
39th IARCS Annual Conference
on Foundations of Software
Technology and Theoretical
Computer Science

FSTTCS 2019, December 11–13, 2019, Bombay, India

Edited by

Arkadev Chattopadhyay
Paul Gastin

LIPIcs – Vo l . 150 – FSTTCS 2019 www.dagstuh l .de/ l ip i c s

Editors

Arkadev Chattopadhyay
Tata Institute of Fundamental Research, Mumbai, India
arkadev.c@tifr.res.in

Paul Gastin
LSV, ENS Paris-Saclay, CNRS, Université Paris-Saclay, France
Paul.Gastin@ens-paris-saclay.fr

ACM Classification 2012
Theory of computation

ISBN 978-3-95977-131-3

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-131-3.

Publication date
December, 2019

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
https://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.FSTTCS.2019.0

ISBN 978-3-95977-131-3 ISSN 1868-8969 https://www.dagstuhl.de/lipics

mailto:arkadev.c@tifr.res.in
https://orcid.org/0000-0002-1313-7722
mailto:Paul.Gastin@ens-paris-saclay.fr
https://www.dagstuhl.de/dagpub/978-3-95977-131-3
https://www.dagstuhl.de/dagpub/978-3-95977-131-3
https://portal.dnb.de
https://creativecommons.org/licenses/by/3.0/legalcode
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.0
https://www.dagstuhl.de/dagpub/978-3-95977-131-3
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Gran Sasso Science Institute and Reykjavik University)
Christel Baier (TU Dresden)
Mikolaj Bojanczyk (University of Warsaw)
Roberto Di Cosmo (INRIA and University Paris Diderot)
Javier Esparza (TU München)
Meena Mahajan (Institute of Mathematical Sciences)
Dieter van Melkebeek (University of Wisconsin-Madison)
Anca Muscholl (University Bordeaux)
Luke Ong (University of Oxford)
Catuscia Palamidessi (INRIA)
Thomas Schwentick (TU Dortmund)
Raimund Seidel (Saarland University and Schloss Dagstuhl – Leibniz-Zentrum für Informatik)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

FSTTCS 2019

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Arkadev Chattopadhyay and Paul Gastin . 0:ix

Invited Talks

Practical Formal Methods for Real World Cryptography
Karthikeyan Bhargavan and Prasad Naldurg . 1:1–1:12

Sketching Graphs and Combinatorial Optimization
Robert Krauthgamer . 2:1–2:1

Finkel Was Right: Counter-Examples to Several Conjectures on Variants of
Vector Addition Systems

Ranko Lazić . 3:1–3:2

Progress in Lifting and Applications in Lower Bounds
Toniann Pitassi . 4:1–4:1

How Computer Science Informs Modern Auction Design
Tim Roughgarden . 5:1–5:1

An Algebraic Framework to Reason About Concurrency
Alexandra Silva . 6:1–6:1

Regular Papers

Connected Search for a Lazy Robber
Isolde Adler, Christophe Paul, and Dimitrios M. Thilikos . 7:1–7:14

Parameterized Streaming Algorithms for Min-Ones d-SAT
Akanksha Agrawal, Arindam Biswas, Édouard Bonnet, Nick Brettell,
Radu Curticapean, Dániel Marx, Tillmann Miltzow, Venkatesh Raman, and
Saket Saurabh . 8:1–8:20

Fast Exact Algorithms Using Hadamard Product of Polynomials
V. Arvind, Abhranil Chatterjee, Rajit Datta, and Partha Mukhopadhyay 9:1–9:14

Approximate Online Pattern Matching in Sublinear Time
Diptarka Chakraborty, Debarati Das, and Michal Koucký . 10:1–10:15

Constructing Faithful Homomorphisms over Fields of Finite Characteristic
Prerona Chatterjee and Ramprasad Saptharishi . 11:1–11:14

Maximum-Area Rectangles in a Simple Polygon
Yujin Choi, Seungjun Lee, and Hee-Kap Ahn . 12:1–12:14

Motif Counting in Preferential Attachment Graphs
Jan Dreier and Peter Rossmanith . 13:1–13:14

Parameterized k-Clustering: Tractability Island
Fedor V. Fomin, Petr A. Golovach, and Kirill Simonov . 14:1–14:15

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

Nonnegative Rank Measures and Monotone Algebraic Branching Programs
Hervé Fournier, Guillaume Malod, Maud Szusterman, and Sébastien Tavenas 15:1–15:14

Unambiguous Catalytic Computation
Chetan Gupta, Rahul Jain, Vimal Raj Sharma, and Raghunath Tewari 16:1–16:13

A Fast Exponential Time Algorithm for Max Hamming Distance X3SAT
Gordon Hoi, Sanjay Jain, and Frank Stephan . 17:1–17:14

Exact and Approximate Digraph Bandwidth
Pallavi Jain, Lawqueen Kanesh, William Lochet, Saket Saurabh, and
Roohani Sharma . 18:1–18:15

An O(n1/4+ε) Space and Polynomial Algorithm for Grid Graph Reachability
Rahul Jain and Raghunath Tewari . 19:1–19:14

Popular Roommates in Simply Exponential Time
Telikepalli Kavitha . 20:1–20:15

The Complexity of Finding S-Factors in Regular Graphs
Sanjana Kolisetty, Linh Le, Ilya Volkovich, and Mihalis Yannakakis 21:1–21:12

More on AC0[⊕] and Variants of the Majority Function
Nutan Limaye, Srikanth Srinivasan, and Utkarsh Tripathi . 22:1–22:14

Planted Models for k-Way Edge and Vertex Expansion
Anand Louis and Rakesh Venkat . 23:1–23:15

Online Non-Preemptive Scheduling to Minimize Maximum Weighted Flow-Time
on Related Machines

Giorgio Lucarelli, Benjamin Moseley, Nguyen Kim Thang, Abhinav Srivastav, and
Denis Trystram . 24:1–24:12

On the AC0[⊕] Complexity of Andreev’s Problem
Aditya Potukuchi . 25:1–25:14

The Preemptive Resource Allocation Problem
Kanthi Sarpatwar, Baruch Schieber, and Hadas Shachnai . 26:1–26:15

Online and Offline Algorithms for Circuit Switch Scheduling
Roy Schwartz, Mohit Singh, and Sina Yazdanbod . 27:1–27:14

On the Probabilistic Degrees of Symmetric Boolean Functions
Srikanth Srinivasan, Utkarsh Tripathi, and S. Venkitesh . 28:1–28:14

Classification Among Hidden Markov Models
S. Akshay, Hugo Bazille, Eric Fabre, and Blaise Genest . 29:1–29:14

Minimisation of Event Structures
Paolo Baldan and Alessandra Raffaetà . 30:1–30:15

Concurrent Parameterized Games
Nathalie Bertrand, Patricia Bouyer, and Anirban Majumdar . 31:1–31:15

Expected Window Mean-Payoff
Benjamin Bordais, Shibashis Guha, and Jean-François Raskin . 32:1–32:15

Interval Temporal Logic for Visibly Pushdown Systems
Laura Bozzelli, Angelo Montanari, and Adriano Peron . 33:1–33:14

Contents 0:vii

Taming the Complexity of Timeline-Based Planning over Dense Temporal
Domains

Laura Bozzelli, Angelo Montanari, and Adriano Peron . 34:1–34:14

Dynamics on Games: Simulation-Based Techniques and Applications to Routing
Thomas Brihaye, Gilles Geeraerts, Marion Hallet, Benjamin Monmege, and
Bruno Quoitin . 35:1–35:14

Query Preserving Watermarking Schemes for Locally Treelike Databases
Agnishom Chattopadhyay and M. Praveen . 36:1–36:14

Complexity of Liveness in Parameterized Systems
Peter Chini, Roland Meyer, and Prakash Saivasan . 37:1–37:15

Greibach Normal Form for ω-Algebraic Systems and Weighted Simple
ω-Pushdown Automata

Manfred Droste, Sven Dziadek, and Werner Kuich . 38:1–38:14

Transformations of Boolean Functions
Jeffrey M. Dudek and Dror Fried . 39:1–39:14

Two-Way Parikh Automata
Emmanuel Filiot, Shibashis Guha, and Nicolas Mazzocchi . 40:1–40:14

The Well Structured Problem for Presburger Counter Machines
Alain Finkel and Ekanshdeep Gupta . 41:1–41:15

A Categorical Account of Replicated Data Types
Fabio Gadducci, Hernán Melgratti, Christian Roldán, and Matteo Sammartino . . . 42:1–42:15

New Results on Cutting Plane Proofs for Horn Constraint Systems
Hans Kleine Büning, Piotr Wojciechowski, and K. Subramani . 43:1–43:14

The Tree-Generative Capacity of Combinatory Categorial Grammars
Marco Kuhlmann, Andreas Maletti, and Lena Katharina Schiffer 44:1–44:14

Cyclic Proofs and Jumping Automata
Denis Kuperberg, Laureline Pinault, and Damien Pous . 45:1–45:14

Reachability in Concurrent Uninterpreted Programs
Salvatore La Torre and Madhusudan Parthasarathy . 46:1–46:16

Distance Between Mutually Reachable Petri Net Configurations
Jérôme Leroux . 47:1–47:14

Boolean Algebras from Trace Automata
Alexandre Mansard . 48:1–48:15

Widths of Regular and Context-Free Languages
David Mestel . 49:1–49:14

Degrees of Ambiguity of Büchi Tree Automata
Alexander Rabinovich and Doron Tiferet . 50:1–50:14

Regular Separability and Intersection Emptiness Are Independent Problems
Ramanathan S. Thinniyam and Georg Zetzsche . 51:1–51:15

FSTTCS 2019

Preface

The 39th IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS 2019) was held at the Indian Institute of Technology Bombay,
India from December 11 to December 13, 2019. In this version, a new format was introduced
as the conference was formally separated into two tracks, Track-A focussing on algorithms,
complexity and related issues and Track-B focussing on logic, automata and other formal
methods aspects of computer science. Each track had its own Program Committee (PC)
with a chair. This volume constitutes the joint proceedings of the two tracks, published in
the LIPIcs series under a Creative Common license, with free online access to all.

The conference comprised of 6 invited talks, 22 contributed talks in Track-A and 23 in
Track-B. This volume contains all contributed papers from both tracks and the abstracts
of all invited talks presented at the conference. There were overall 93 submissions (after
weeding out the obvious bogus ones), 51 in Track-A and 42 in Track-B. We thank all those
who submitted to FSTTCS. We also thank all PC members for their tireless work and all
external reviewers for their expert opinion in the form of timely reviews.

We are grateful to all the invited speakers: Karthikeyan Bhargavan (INRIA-Paris, France),
Robert Krauthgamer (Weizmann, Israel), Ranko Lazić (Warwick, U.K.), Toniann Pitassi
(Toronto, Canada), Tim Roughgarden (Columbia, U.S.) and Alexandra Silva (University
College London, U.K.). They kindly accepted our invitations and gave talks that inspired
the entire FSTTCS audience at large.

The main conference was preceded by two workshops on the 10th December: Complexity
in Algorithmic Game Theory, organized by Siddharth Barman (IISc.) and Umang Bhaskar
(TIFR), and Trends in Transformations, organized by S. Krishna (IIT Bombay). This was
followed by two post-conference workshops on 14th December: Extension Complexity and
Lifting Theorems, organized by Ankit Garg (MSR Bangalore), Raghu Meka (UCLA), Toniann
Pitassi (Toronto) and Makrand Sinha (CWI, Amsterdam), and GALA: Gems of Automata,
Logic and Algebra, organized by C. Aiswarya (CMI, Chennai), S. Akshay (IIT Bombay) and
Benedikt Bollig (LSV, CNRS & ENS Paris-Saclay). Besides, there was a colocated SAT/SMT
winter school from December 8th to 10th.

We are indebted to the organizing committee members from the Department of Computer
Science and Engineering, IIT Bombay for ensuring a smooth running of the conference and
workshops and making all necessary arrangements. We also thank S.P. Suresh of CMI for
maintaining and working on the conference web page. We also thank the friendly staff at
Dagstuhl LIPICs, particularly Michael Wagner, for being prompt and helpful in answering
our queries. Finally, we would also like to thank the members of the Steering Committee for
having faith in us for running the conference.

Arkadev Chattopadhyay and Paul Gastin
December 2019

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

List of Reviewers

Track-A

Saba Ahmadi
Josh Alman
Vishwas Bhargava
Anup Bhattacharya
Sayan Bhattacharya
Ivan Bliznets
Joshua Brakensiek
Deeparnab Chakrabarty
Sourav Chakraborty
Arkadev Chattopadhyay
Bhaskar Ray Chaudhury
Xi Chen
Suryajith Chillara
Rajesh Chitnis
Chi-Ning Chou
Marek Cygan
Prem Laxman Das
Syamantak Das
Dariusz Dereniowski
Christian Engels
Yuval Filmus
Kshitij Gajjar
Francois Le Gall
Ankit Garg
Jugal Garg
Alex Gavryushkin
Parikshit Gopalan
Rupert Hölzl
Hossein Jowhari
Sagar Kale
Pieter Kleer
Amit Kumar
Mrinal Kumar
Gad Landau
Bruno Loff
Satya Lokam
Brendan Lucier
Diptapriyo Majumdar
Yury Makarychev
Nikhil Mande

Barnaby Martin
Andrew McGregor
Klaus Meer
Or Meir
Neeldhara Misra
Pranabendu Misra
Rajat Mittal
Anish Mukherjee
Maryam Negahbani
Patrick K. Nicholson
Prajakta Nimbhorkar
Ioannis Panageas
Geevarghese Philip
Aditya Potukuchi
David Purser
Jaikumar Radhakrishnan
Sridharan Ramanujan
Atri Rudra
Barna Saha
Chandan Saha
Rahul Santhanam
Ramprasad Saptharishi
Jayalal Sarma
Kanthi Sarpatwar
Nitin Saurabh
Lena Schlipf
C. Seshadhri
Suhail Sherif
Anastasios Sidiropoulos
Avishay Tal
Kavitha Telikepalli
Roei Tell
Meng-Tsung Tsai
Rahul Vaze
Ben Lee Volk
Thomas Watson
Sheng Yang
Yu Yokoi
Chihao Zhang

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xii Reviewers

Track-B

Parosh Aziz Abdulla
Sergio Abriola
C. Aiswarya
S. Akshay
Clément Aubert
Nikolaj Bjorner
Michael Blondin
Udi Boker
Benedikt Bollig
Florian Bruse
Véronique Bruyère
Michaël Cadilhac
Simon Castellan
Debraj Chakraborty
Vincent Cheval
Dmitry Chistikov
Pierre Clairambault
Wojciech Czerwiński
Deepak D’Souza
Dana Drachsler Cohen
Mahsa Eftekhari Hesari
Ehab Elsalamouny
Mohamed Faouzi Atig
Hongfei Fu
Pierre Ganty
Paul Gastin
David Gross-Amblard
Shibashis Guha
Christoph Haase
Hsi-Ming Ho
Markus Holzer
Suresh Jagannathan
Jean-Pierre Jouannaud
Marcin Jurdzinski
Joost-Pieter Katoen
Christoforos Keroglou
Stefan Kiefer
Alexander Knapp
Alexander Knop
Steve Kremer
S. Krishna
Anna Labella
Jean-Jacques Levy
Kamal Lodaya

Christof Löding
Amaldev Manuel
Nicolas Markey
Bastien Maubert
Filip Mazowiecki
Alexander Meduna
Lukasz Mikulski
Benjamin Monmege
Antoine Mottet
Madhavan Mukund
Maurizio Murgia
K. Narayan Kumar
Uwe Nestmann
Youssouf Oualhadj
Catuscia Palamidessi
Erik Paul
Vincent Penelle
Guillermo Perez
Sophie Pinchinat
Anton Pirogov
Thomas Place
Sanjiva Prasad
M. Praveen
Karin Quaas
Raghavan Komondoor
R. Ramanujam
Narad Rampersad
Jean-Francois Raskin
Prakash Saivasan
Sven Schewe
Sylvain Schmitz
Stefan Schwoon
Salomon Sickert
Michał Skrzypczak
Mate Soos
Sriram Sankaranarayanan
B. Srivathsan
S. P. Suresh
Ramanathan S. Thinniyam
Rob van Glabbeek
Vincent Van Oostrom
Sarah Winter
Georg Zetzsche
Martin Zimmermann

Practical Formal Methods for
Real World Cryptography
Karthikeyan Bhargavan
Inria, Paris, France
karthikeyan.bhargavan@inria.fr

Prasad Naldurg
Inria, Paris, France
prasad.naldurg@inria.fr

Abstract
Cryptographic algorithms, protocols, and applications are difficult to implement correctly, and errors
and vulnerabilities in their code can remain undiscovered for long periods before they are exploited.
Even highly-regarded cryptographic libraries suffer from bugs like buffer overruns, incorrect numerical
computations, and timing side-channels, which can lead to the exposure of sensitive data and long-
term secrets. We describe a tool chain and framework based on the F∗ programming language
to formally specify, verify and compile high-performance cryptographic software that is secure by
design. This tool chain has been used to build a verified cryptographic library called HACL∗, and
provably secure implementations of sophisticated secure communication protocols like Signal and
TLS. We describe these case studies and conclude with ongoing work on using our framework to
build verified implementations of privacy preserving machine learning software.

2012 ACM Subject Classification Security and privacy → Formal security models; Security and
privacy → Logic and verification

Keywords and phrases Formal verification, Applied cryptography, Security protocols, Machine
learning

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.1

Category Invited Talk

1 Introduction

Cryptography is the backbone of most internet applications, including e-commerce, online
payment, messaging, social networking, and user communications. Different algorithms and
protocols are used to guarantee different levels of confidentiality, integrity and authentication
protection, depending on application and user requirements. In some applications, its use can
be opaque to end users, such as in digital rights management and business analytics. While
there is no need to motivate the use of cryptography online, implementing cryptographic
software for real world applications can be incredibly complex and error-prone. Though gov-
ernments, companies, and standards bodies have been using and stress-testing cryptographic
algorithms for more than twenty years, surprisingly, there is a lack of rigour in how many
new protocols and applications are implemented.

Implementations of cryptographic primitives can have obvious as well as subtle vulnerab-
ilities that are often difficult to detect. To illustrate, in OpenSSL, a widely used open-source
(and hence open to scrutiny) implementation of common cryptographic algorithms, 16 CVEs
(common vulnerability and exposures reports) have been issued since 2017 for vulnerabilities
in the core cryptographic functions. These bugs range from incorrect implementations of
numerical computations (5), to timing side channel attacks (6), and memory safety issues
(5). Such programming errors can often be exploited by a remote attacker to tamper with
the cryptographic computation, leading to various degrees of exposure, and invalidating the

© Karthikeyan Bhargavan and Prasad Naldurg;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 1; pp. 1:1–1:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:karthikeyan.bhargavan@inria.fr
mailto:prasad.naldurg@inria.fr
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.1
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 Practical Formal Methods for Real World Cryptography

security guarantees the algorithm was designed for in the first place. As a typical example,
Brumley et al. [19] show how an arithmetic bug in the implementation of an elliptic curve in
OpenSSL can be practically exploited to retrieve a victim’s long term private key.

Finding such bugs in large codebases that are focused more on high-performance than
high-assurance is not an easy task. Software development practices, from good hygiene and
code reviews, to unit-testing and fuzzing, are best-effort and usually incapable of finding
subtle vulnerabilities. Rather than attempt to find and fix bugs in an ad hoc manner, our
philosophy, in line with a number of recent works [20, 7, 46, 15, 6, 39, 26], is to use formal
verification to prove the absence of large classes of vulnerabilities by design.

We use the F∗ programming language and verification framework [43] to build HACL∗, a
library of verified cryptographic algorithms in C. Given a published standard specification of a
cryptographic primitive, we write verified code in F∗ that is memory safe, functionally correct,
and resistant to timing side-channels. This code is then compiled to readable C code that
is as performant as hand-written C code in state-of-the-art libraries like OpenSSL. HACL∗
supports most of the algorithms used in modern cryptographic protocols and applications,
and is currently being used by the Mozilla Firefox Web browser, the WireGuard VPN, the
Tezos Blockchain, and the Microsoft WinQuic protocol stack.

HACL∗ provides a robust basis for building high-assurance cryptographic applications, but
the cryptographic library is only one component of the security stack. To protect connections
between clients and servers, Web applications rely on standardized protocols like Transport
Layer Security (TLS) [42]. For end-to-end secure messaging, WhatsApp and Skype rely
on a complex cryptographic protocol called Signal [1]. These protocols invoke a series of
cryptographic constructions across multiple messages to achieve sophisticated security goals.
The overall security of each protocol depends on subtle invariants, which may be falsified by
incorrect designs or buggy implementations. For example, the Triple Handshake attacks on
the TLS [13] uncovered a protocol design flaw in the way three TLS sessions can be composed
together, resulting in an attack on client authentication that had remained undiscovered for
18 years. The SMACK attacks on TLS libraries [9] found a class of implementation bugs that
allowed attacker to completely bypass the security of a large subset of HTTPS connections
on the Web. Preventing these kinds of attacks requires careful formal analysis.

We observe that cryptographic primitives are themselves getting more complex, with
new post-quantum algorithms and homomorphic encryption constructions currently being
standardized and deployed. Applications that use these new constructions, such as electronic
voting and privacy preserving machine learning, are even more complicated to specify and
analyse than traditional cryptographic protocols. Inevitably, attackers are also getting more
sophisticated, and the classic network attacker model needs to be augmented with finer
distinctions to catch and fix vulnerabilities.

We argue that the combination of complex protocols, sophisticated security properties, and
powerful attackers demands a more rigorous treatment of cryptographic software development.
In this paper, we describe how we can apply our verification tool chain across all layers
of a secure distributed application, starting with cryptographic algorithms (Section 2), to
end-to-end protocols with sophisticated security properties (Section 3), all the way to novel
privacy-preserving applications (Section 4). Through these case studies, we show how formal
methods can play an important role in building high-assurance cryptographic software.

K. Bhargavan and P. Naldurg 1:3

Figure 1 HACL∗ verification and compilation tool chain.

2 Verified Cryptography: HACL∗

HACL∗ [47] is a verified open-source library of modern cryptographic algorithms, including
the elliptic curve Curve25519 [3], the authenticated encryption construction ChaCha20-
Poly1305 [2], the hash function SHA-2 [44], and the signature scheme Ed25519 [4]. Put
together, these algorithms are enough to satisfy all the classic cryptographic needs of a
distributed software application. In particular, HACL∗ supports the full NaCl cryptographic
API [8], and implements a full ciphersuite of TLS 1.3 [42]. The distributable code of HACL∗
is in portable C, which can be easily wrapped into multiple languages and dropped into
application software that needs these algorithms. For example, HACL∗ is currently used to
implement TLS in Mozilla Firefox and as the NaCl implementation in the Tezos blockchain.

The verification and compilation tool chain used in the development of HACL∗ is depicted
in Figure 1. All the code in HACL∗ is written in F∗, an ML-like functional programming
language with a type system that includes polymorphism, dependent types, monadic effects,
refinement types, and a weakest precondition calculus [43]. The language is aimed at program
verification, and its type system allows the expression of precise and compact functional
correctness and security property specifications for programs, which can be mechanically
verified, with the help of an SMT solver. After verification, an F∗ program can be compiled
to OCaml, F#, C, or even WebAssembly, and so it can run on a variety of platforms.

Figure 1 shows the workflow for adding a new verified cryptographic primitive in HACL∗.
The first step is to write a high-level specification (Spec) in a higher-order purely functional
subset of F∗. This specification relies on standard libraries for basic datatypes such as
mathematical and machine integers (Z,MachineInt), and immutable arrays (Sequences), also
written in Pure F∗. Next, an optimized implementation of the primitive itself (Code) is
written in Low∗, a low level subset of F∗ that can be efficiently compiled to C, using the
KreMLin compiler [41]. For a full description of the syntax, type system, and semantics of
F∗, refer to [43], and for the formal development of Low∗ and its compilation to C, see [41].

FSTTCS 2019

1:4 Practical Formal Methods for Real World Cryptography

The Low∗ Code cannot use mathematical integers, and it is only allowed to use machine
integer operations in ways that are safe from timing side channels. For example, if an
unsigned 32-bit integer (uint32) holds a secret value, e.g. part of an encryption key, it cannot
be compared with another integer, it cannot be used as an index into an array, and it cannot
be used in a division or modulo operation. This is because, on most hardware platforms,
the time taken by these operations may reveal the contents of the secret integer to a remote
attacker. Cryptographic code that uses such operations is not secret independent, and hence
may be vulnerable to various side-channels attacks.

The Low∗ code can also use mutable but memory-safe arrays (Buffers) to hold crypto-
graphic state. However, all the arrays used in HACL∗ are stack-allocated, that is, they never
use the heap, and hence do not have to be explicitly allocated or freed.

The code for each crytpographic algorithm is then verified, using the F∗ typechecker, to
ensure that it conforms with the logical preconditions and type abstractions in the F∗ library.
A failure to type-check here may indicate the presence of memory safety, functional correctness,
or side channel vulnerabilities (or that the type checker may need more annotations to prove
correctness). If type checking succeeds, the Low∗ code is compiled using KreMLin to portable
C code, preserving all the properties verified in F∗.

Surprisingly, writing formally verified cryptographic code in HACL∗ does not have a
performance cost. Our C code is as fast as the hand-optimized C code in state-of-the-art
cryptographic libraries like OpenSSL. In many cases, the structured compact code generated
from F∗ is even faster. Performance is especially important for encryption algorithms and
elliptic curves that are used within network protocols like TLS, where cryptography often
dominates cost and can be a performance bottleneck. For example, our HACL∗ implementation
of Curve25519 was about 20% faster than the previous code for this elliptic curve in Firefox.
Hence adopting our code significantly cut the cost of HTTPS connections between Firefox
and popular websites like GMail. Similarly, the WireGuard VPN [24], which runs within the
Linux Kernel and needs high-performance high-assurance code for Curve25519, uses HACL∗.

HACL∗ is an evolving project. We are extending it with more elliptic curves, encryption
algorithms, and hash functions, and use it as a basis for building implementations of more
advanced and experimental cryptographic constructions including post-quantum cryptography
and homomorphic encryption. As a part of our privacy preserving machine learning project,
which we describe in Section 4, we are building verified implementations of several partially
homomorphic encryption schemes including Goldwassser-Micali [29], the Paillier [36] additive
homomorphic system, and the DGK system [22, 23], using the BigNum library and other
verified primitives from HACL∗. To further improve the performance of HACL∗ code, we
are building a cryptographic provider called EverCrypt that combines verified C code from
HACL∗ with verified assembly code from the Vale project [15].

3 Verified Protocols: LibSignal∗

In this section, we describe how to extend the scope of our security guarantees from crypto-
graphic libraries to cryptographic protocols. Protocols that are built using verified primitives
are not automatically secure, and require a different set of tools for specification and verifica-
tion of higher-level properties.

We illustrate this with our work on Signal, an end-to-end encryption protocol for instant
messaging that is used in many popular applications like WhatsApp, Skype, and Facebook
Messenger, by billions of users worldwide. The main design goal of Signal is to maximally
protect the privacy of its users, even if the Signal servers are compromised, and even if some

K. Bhargavan and P. Naldurg 1:5

Figure 2 LibSignal* verification and compilation toolchain.

user devices are stolen or confiscated. To this end, Signal uses a novel key exchange protocol
called X3DH [35] paired with an aggressive key update mechanism called Double Ratchet [38]
that frequently changes message encryption keys, rendering old keys obsolete. Formally,
Signal seeks to achieve a novel property called post-compromise security [21], in addition
to classic secure channel guarantees like sender authentication, message confidentiality, and
forward secrecy.

There are several implementations of Signal, including official libraries in Java (for Android
phones), in C (for iPhones), and in JavaScript (for Web applications), that are embedded
within various messaging applications. For example, the desktop version of Skype uses a
library called libsignal-javascript for private conversations. This means that any flaw in the
design of Signal or a bug in its JavaScript code may break the security of these private
conversations.

We have built a verified implementation of Signal called LibSignal∗ [40] using the tool
chain depicted in Figure 2. Note the similarity in the overall work flow with our tool chain
in Figure 1. We first write a formal specification of the Signal protocol in the pure fragment
of F∗. We then hand-translate this specification to the syntax of the ProVerif protocol
analyzer [14] and verify it for all the target security properties of Signal, including forward
and post-compromise security, following the methodology of [33]. If ProVerif fails to verify the
protocol, it produces a counter-example that may indicate a security vulnerability. However,
our analysis found no flaws in Signal, except for a known replay vulnerability [33].

Our next step was to write a Low∗ implementation of Signal, which needed several
cryptographic algorithms, including AES-CBC, HMAC, Curve25519, Ed25519, and SHA-
2, all of which we implement and verify in HACL∗. We then verify the Low∗ code of
Signal (composed with the Low∗ code for HACL∗) for conformance to the high-level protocol
specification. Finally, we compile the code, via the KreMLin compiler to C and WebAssembly,
obtaining verified implementations of the Signal protocol in these languages.

WebAssembly [31] is a new meta-assembly language supported by all Web browsers
and many application frameworks. It allows compact and efficient low-level programs to
be embedded within JavaScript applications and run on any platform. In comparison to

FSTTCS 2019

1:6 Practical Formal Methods for Real World Cryptography

JavaScript, WebAssembly enjoys many advantages, making it a good target for verified
code. In particular, WebAssembly is a small, statically typed language with a clean formal
semantics, and it offers strong isolation guarantees against malicious JavaScript code. We
develop a formal translation from Low∗ to WebAssembly and implement this as a new
back-end for the KreMLin compiler [40]. We use this back-end to compile both HACL∗
and LibSignal∗. Our WebAssembly version of HACL∗ may independently be used in any
JavaScript application that needs verified cryptography.

We observe that just generating the core cryptographic protocol code for Signal does not
make it immediately usable by a messaging application. For example, the libsignal-protocol-
javascript library provides a session and key management layer and exposes a simple interface
to its applications. Our implementation of LibSignal∗ borrows this JavaScript code so that we
meet the same interface and pass all the interoperability tests of Signal. Notably, however, we
embed our verified WebAssembly code into the unverified JavaScript in a defensive manner
that reduces the risk of private key exposure.

Our work in Signal is also influenced by our experience with the verification of the
Transport Layer Security (TLS) protocol, the de facto standard for secure communications
across the Internet. Although TLS was carefully specified and widely implemented, a large
number of vulnerabilities were regularly found, both in the protocol design (e.g [13]) and in
its implementations (e.g. [9]). When the Internet Engineering Task Force (IETF) began the
process of standardizing TLS 1.3, it invited researchers to help them design the new protocol
to be secure by design. Many researchers responded to this challenge, publishing a series of
papers analyzing various draft versions of the protocol. In our work, we built detailed formal
models of several drafts of TLS 1.3 using the verification tools ProVerif and CryptoVerif [10].
As part of Project Everest [11], we are also helping build a verified implementation of TLS
1.3 in F∗ using the same tool chain as HACL∗, but extending it with cryptographic security
proofs [12].

Our work with LibSignal∗ and TLS shows how we can compose the low-level guarantees
of HACL∗ with the sophisticated security proofs of ProVerif and other tools to obtain a
verified cryptographic protocol implementation that can readily be deployed in real world
messaging applications. We believe that this methodology offers a template for many more
future applications.

4 Verified Applications

Encouraged by this flexibility and modularity, we plan to extend our framework to target
distributed web applications beyond cryptographic primitives and communication protocols.
We describe this next in the context of preserving privacy in machine learning classification,
where its secure implementation will require certification of application code on clients
and servers.

4.1 Privacy Preserving Machine Learning
Machine learning classification as-a-service is an attractive use-case for cloud servers. Such a
server would host a classifier algorithm, and process and reply to classification queries from
authenticated subscribers (or clients). Since learning applications consume large amounts of
training data to generate useful classifiers, user privacy is a pressing concern. Protecting
sensitive and personally identifiable information (PII) of users from servers, both during
model learning and subsequent classification is desirable and can be a legal/compliance
requirement. We focus only on the classification phase here to illustrate our techniques.

K. Bhargavan and P. Naldurg 1:7

Figure 3 Programming and Verification Framework: The programmer first writes a high-level
mathematical specification of the classifier (or any other computation over private data) in F∗.
The programmer can run and test this specification. She then implements this specification as a
distributed program with components running at the client and the cloud server. The program is
composed with a cryptographic library and the whole system is verified using F∗. If verification
succeeds, the code is compiled to C and can be deployed on the network.

A machine-learning classifier that preserves user privacy should not learn anything about
the user query issued by a client or its resulting response (i.e.,the resulting class). At the
same time, from the point of view of server, the mathematical models used for learning and
inference can be proprietary and need to be hidden from clients.

We describe the context of our work in more detail. In model learning, the inputs to the
learning algorithm are labeled data values, converted to feature vectors ~x, and used to learn
a model of weights w of a classifier consisting of say k classes c1 · · · ck, given by C(~x,w). In
the classification phase, the label cj , 1 ≤ j ≤ k for an unseen feature vector ~y input by a
client, is predicted using the classifier C as cj = C(~y, w). As mentioned earlier, we focus only
on the classification phase, where the server is presented with a query and is expected to
return the appropriate class label prediction.

Cryptographic techniques can offer a solution to this problem that satisfies both parties.
Some relevant cryptographic schemes in this context include applications based on homo-
morphic encryption (HE) [27, 18, 32, 30] secure multi-party computation (SMC) [45, 34],
garbled circuits [30, 32], and functional encryption (FE) [17], which allow clients and servers

FSTTCS 2019

1:8 Practical Formal Methods for Real World Cryptography

to jointly compute functions over encrypted or private data without revealing their inputs
to each other. In HE, the result also remains encrypted, and can only be decrypted with
the appropriate key. A typical HE algorithm takes an encrypted input x for program P and
produces the encrypted result of applying x on the function encoded by P .

With HE, both the model w and query ~y are encrypted using say a public HE key. The
prediction classifier is implemented on the server as the homomorphic evaluation function
Eval(C). The result of the prediction, cj , has to be declassified and presented to the client
that issued the query. The cryptographic properties of the HE scheme ensure that the client
does not learn anything about model w beyond what it can learn from observing the predicted
class of its input, and the server does not learn the value of the input, or its predicted class.
A caveat here is that there are certain types of attacks, including model inversion, and access
to prior knowledge, that can reveal user information even if they are encrypted. Techniques
such as differential privacy [25] can help alleviate these concerns, and we plan to study them
in the future.

HE schemes that can compute arbitrary functions (called fully HE or FHE) are fairly
straightforward to implement, but are prohibitively expensive. Even with the latest imple-
mentation of HELib [28], general depth-limited homomorphic computations of interest in
machine learning have very large overheads, e.g, with matrix multiplication being over 600K
times slower than plaintext computations, which does not make them practical for useful
applications. However, HE schemes that are restricted in their functionality, called partial HE
schemes (PHE) are more practical, and can perform one type, say add or multiply [37, 29] or
a small number of computations, e.g., quadratic functions [16]. We have seen e.g., in [18, 32],
that PHE schemes can be combined with other auxiliary cryptographic schemes such as
secure multi-party computations (SMC) and garbled circuits (GC), or even with strong
hardware protection guarantees to build solutions that are practical, and provide strong
guarantees.

We propose a programming and verification framework to help developers build distributed
software applications using composite PHE protocols, and extend it to include auxiiary
schemes such as SMC and GCs, incorporating verified cryptographic primitives and their
high-performance implementations. With our framework, a developer can prove that the
application code is functionally correct, that it correctly composes the various cryptographic
schemes and protocols it uses, and that it does not accidentally leak any secrets (via side-
channels, for example.) Our end-to-end solution can be seen as a logical extension of our work
presented in the earlier two sections, and results in verified and efficient implementations of
state-of-the-art secure privacy-preserving learning and classification.

Given a high-level algorithmic specification of a machine learning classifier, along with a set
of confidentiality constraints on its inputs, our goal is to build and verify its implementation
as an efficient distributed cryptographic application. Our verified implementation tool chain
is shown in Figure 3, with four stages. Again, note how this can be seen as a modular
extension of our earlier designs.

1. Global High-Level Specification: We first write a global high-level specification of
our desired distributed computation in F∗, focusing on classification algorithms for now.
The specification consists of the function φ it computes, the characterization of its model
w, in terms of feature vectors ~χ, input ~x ∈ ~χ, and the result ci = φ(w, ~x) from C the set
of classes. The high-level confidentiality specification is that the evaluation of φ must
preserve the secrecy of w, ~x, and ci from relevant parties.

2. Distributed Implementation: We then write implementations, also in F∗, of the
client and the cloud server, detailing all their network interactions and cryptographic
computations. We prove that this implementation meets the high-level spec, while

K. Bhargavan and P. Naldurg 1:9

preserving our desired confidentiality goals, given an abstract (trusted) interface for the
underlying cryptography. The implementation can itself be broken into a reusable verified
library of commonly used constructions, like addition, secure comparison, dot products,
polynomial evaluation, etc. and application-specific code for the classification algorithm
we seek to implement.

3. Cryptographic Instantiation: The code for these two parties will usually rely on a
variety of cryptographic primitives, which will need to be instantiated with concrete
schemes such as Paillier, GCs, random permutations, etc. which are themselves hard to
implement correctly. We build verified implementations of all the cryptographic schemes
we need, as an extension to the HACL∗ verified crypto library. These primitives compile
to C code that is as fast as state-of-the-art hand-written crypto libraries. Each primitive
is verified for memory safety, resistance to common timing side-channels, and functional
correctness with respect to a high-level mathematical specification. We propose to build
a series of verified HE and SMC schemes in HACL∗, which will also be reusable in other
applications.

4. Low-Level Executable Components: Finally, we compile all our F∗ code along with
the cryptographic library to C to obtain two C implementations, one for the client and one
for the server. We envisage that these libraries will be embedded into larger applications
that will handle less security-critical concerns like user interfaces, networking code, and
persistent storage. Generating C code allows our code to run efficiently on a variety of
platforms, including smartphones, and enables existing legacy applications to use our
toolchain to verify their core cryptographic components.

At the end of this workflow, we obtain high performance verified protocol code in C for
clients, and servers which can communicate over an untrusted network, but still provide
strong correctness and confidentiality guarantees.

5 Proposed Roadmap

We propose to build our verification toolchain in stages, evaluating them over a series of
case studies. Our eventual goal is to be able to verify privacy-preserving implementations of
inference for naïve Bayes classifiers, hyperplane decision classifiers (perceptron, least squares,
Fischer’s linear discriminants, SVMs), decision tree classifiers, and neural networks.

As a longer-term goal, we see our toolchain as something that can be integrated into a
mainstream framework for building distributed cryptographic applications. For example, the
machine learning framework can be integrated with TensorFlow [5], which offers an API to
developers that is not very far from the core operations we consider in this work: addition,
multiplication, dot-product, comparison etc. We envision that machine learning developers
will be able to write and test their high-level specifications as TensorFlow programs and our
toolchain will help them develop verified low-level distributed protocols that implement these
programs in a privacy-preserving style that can be safely deployed in the untrusted cloud.

Our verified framework and the modular tool chain allows us to develop high-assurance
cryptographic applications that incorporate state-of-the-art cryptographic algorithms, com-
plicated cryptographic protocols and their composition, and allow us analyze the resulting
implementation for sophisticated and fine-grained end-to-end security properties.

FSTTCS 2019

1:10 Practical Formal Methods for Real World Cryptography

References
1 Signal. https://signal.org/docs/.
2 ChaCha20 and Poly1305 for IETF Protocols. IETF RFC 7539, 2015.
3 Elliptic Curves for Security. IETF RFC 7748, 2016.
4 Edwards-Curve Digital Signature Algorithm (EdDSA) . IETF RFC 8032, 2017.
5 Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfel-
low, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensor-
Flow: Large-scale machine learning on heterogeneous systems, 2015. Software available from
tensorflow.org. URL: http://tensorflow.org/.

6 José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin Grégoire,
Vincent Laporte, Tiago Oliveira, Hugo Pacheco, Benedikt Schmidt, and Pierre-Yves Strub.
Jasmin: High-Assurance and High-Speed Cryptography. In ACM SIGSAC Conference on
Computer and Communications Security (CCS), pages 1807–1823, 2017.

7 Andrew W Appel. Verification of a cryptographic primitive: SHA-256. ACM Transactions on
Programming Languages and Systems (TOPLAS), 37(2):7, 2015.

8 Daniel J Bernstein, Tanja Lange, and Peter Schwabe. The security impact of a new crypto-
graphic library. In International Conference on Cryptology and Information Security in Latin
America (LATINCRYPT), pages 159–176. Springer, 2012.

9 Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet,
Markulf Kohlweiss, Alfredo Pironti, Pierre-Yves Strub, and Jean Karim Zinzindohoue. A
Messy State of the Union: Taming the Composite State Machines of TLS. In IEEE Symposium
on Security and Privacy, pages 535–552, 2015.

10 Karthikeyan Bhargavan, Bruno Blanchet, and Nadim Kobeissi. Verified Models and Reference
Implementations for the TLS 1.3 Standard Candidate. In IEEE Symposium on Security and
Privacy, pages 483–503, 2017.

11 Karthikeyan Bhargavan, Barry Bond, Antoine Delignat-Lavaud, Cédric Fournet, Chris
Hawblitzel, Catalin Hritcu, Samin Ishtiaq, Markulf Kohlweiss, Rustan Leino, Jay Lorch,
Kenji Maillard, Jianyang Pang, Bryan Parno, Jonathan Protzenko, Tahina Ramananandro,
Ashay Rane, Aseem Rastogi, Nikhil Swamy, Laure Thompson, Peng Wang, Santiago Zanella-
Béguelin, and Jean-Karim Zinzindohoué. Everest: Towards a Verified, Drop-in Replacement
of HTTPS. In Summit on Advances in Programming Languages (SNAPL), 2017.

12 Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss, Ji-
anyang Pan, Jonathan Protzenko, Aseem Rastogi, Nikhil Swamy, Santiago Zanella-Béguelin,
and Jean Karim Zinzindohoué. Implementing and Proving the TLS 1.3 Record Layer. In
Proceedings of the IEEE Symposium on Security and Privacy, 2017.

13 Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Alfredo Pironti, and Pierre-
Yves Strub. Triple Handshakes and Cookie Cutters: Breaking and Fixing Authentication over
TLS. In IEEE Symposium on Security and Privacy, pages 98–113, 2014.

14 Bruno Blanchet. Modeling and Verifying Security Protocols with the Applied Pi Calculus and
ProVerif. Foundations and Trends in Privacy and Security, 1(1-2):1–135, October 2016.

15 Barry Bond, Chris Hawblitzel, Manos Kapritsos, K. Rustan M. Leino, Jacob R. Lorch, Bryan
Parno, Ashay Rane, Srinath Setty, and Laure Thompson. Vale: Verifying High-Performance
Cryptographic Assembly Code. In USENIX Security Symposium, 2017.

16 Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF Formulas on Ciphertexts. In
Theory of Cryptography Conference (TCC), pages 325–341, 2005.

17 Dan Boneh, Amit Sahai, and Brent Waters. Functional Encryption: Definitions and Challenges.
In Theory of Cryptography Conference (TCC), pages 253–273, 2011.

https://signal.org/docs/
http://tensorflow.org/

K. Bhargavan and P. Naldurg 1:11

18 Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser. Machine Learning
Classification over Encrypted Data. In Network and Distributed System Security Symposium
(NDSS), 2015.

19 Billy B Brumley, Manuel Barbosa, Dan Page, and Frederik Vercauteren. Practical realisation
and elimination of an ECC-related software bug attack. In Topics in Cryptology (CT-RSA),
pages 171–186. Springer, 2012.

20 Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin, Peter Schwabe, Ming-Hsien Tsai, Bow-Yaw
Wang, Bo-Yin Yang, and Shang-Yi Yang. Verifying Curve25519 Software. In ACM SIGSAC
Conference on Computer and Communications Security (CCS), pages 299–309, 2014.

21 Katriel Cohn-Gordon, Cas J. F. Cremers, and Luke Garratt. On Post-compromise Security.
In IEEE Computer Security Foundations Symposium (CSF), pages 164–178, 2016.

22 Ivan Damgård, Martin Geisler, and Mikkel Krøigaard. Efficient and Secure Comparison for
On-Line Auctions. In Josef Pieprzyk, Hossein Ghodosi, and Ed Dawson, editors, Information
Security and Privacy, 2007.

23 Ivan Damgard, Martin Geisler, and Mikkel Kroigard. A Correction to “Efficient and Secure
Comparison for On-Line Auctions”. Int. J. Appl. Cryptol., 1(4), August 2008.

24 Jason A. Donenfeld. WireGuard: Next Generation Kernel Network Tunnel. In Network and
Distributed System Security Symposium (NDSS), 2017.

25 Cynthia Dwork. Differential Privacy. In International Conference on Automata, Languages
and Programming (ICALP) - Volume Part II, 2006.

26 A. Erbsen, J. Philipoom, J. Gross, R. Sloan, and A. Chlipala. Simple High-Level Code for
Cryptographic Arithmetic - With Proofs, Without Compromises. In IEEE Symposium on
Security and Privacy, 2019.

27 Craig Gentry. A Fully Homomorphic Encryption Scheme. PhD thesis, Stanford University,
Stanford, USA, 2009.

28 Craig Gentry and Shai Halevi. Implementing Gentry’s Fully-homomorphic Encryption Scheme.
In Advances in Cryptology (EUROCRYPT), pages 129–148, 2011.

29 Shafi Goldwasser and Silvio Micali. Probabilistic Encryption & How to Play Mental Poker
Keeping Secret All Partial Information. In ACM Symposium on Theory of Computing (STOC),
1982.

30 Trinabh Gupta, Henrique Fingler, Lorenzo Alvisi, and Michael Walfish. Pretzel: Email
Encryption and Provider-supplied Functions Are Compatible. In Conference of the ACM
Special Interest Group on Data Communication (SIGCOMM), pages 169–182, 2017.

31 Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman, Dan
Gohman, Luke Wagner, Alon Zakai, and JF Bastien. Bringing the Web Up to Speed
with WebAssembly. In ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pages 185–200, 2017.

32 Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. GAZELLE: A low
latency framework for secure neural network inference. In USENIX Security Symposium, pages
1651–1669, 2018.

33 Nadim Kobeissi, Karthikeyan Bhargavan, and Bruno Blanchet. Automated verification for
secure messaging protocols and their implementations: A symbolic and computational approach.
In IEEE European Symposium on Security and Privacy (EuroSP), pages 435–450, 2017.

34 Eleftheria Makri, Dragos Rotaru, Nigel P. Smart, and Frederik Vercauteren. EPIC: Efficient
Private Image Classification (or: Learning from the Masters). Topics in Cryptology (CT-RSA),
2019.

35 Moxie Marlinspike and Trevor Perrin. The X3DH Key Agreement Protocol, 2016. URL:
https://signal.org/docs/specifications/x3dh/.

36 Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In
International Conference on the Theory and Applications of Cryptographic Techniques, pages
223–238, 1999.

FSTTCS 2019

https://signal.org/docs/specifications/x3dh/

1:12 Practical Formal Methods for Real World Cryptography

37 Pascal Paillier. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes.
In Advances in Cryptology (EUROCRYPT), pages 223–238, 1999.

38 Trevor Perrin and Moxie Marlinspike. The Double Ratchet Algorithm, 2016. URL: https:
//signal.org/docs/specifications/doubleratchet/.

39 Andy Polyakov, Ming-Hsien Tsai, Bow-Yaw Wang, and Bo-Yin Yang. Verifying Arithmetic
Assembly Programs in Cryptographic Primitives. In Conference on Concurrency Theory
(CONCUR), 2018.

40 Jonathan Protzenko, Benjamin Beurdouche, Denis Merigoux, and Karthikeyan Bhargavan.
Formally Verified Cryptographic Web Applications in WebAssembly. In IEEE Symposium on
Security and Privacy, pages 1256–1274, 2019.

41 Jonathan Protzenko, Jean-Karim Zinzindohoué, Aseem Rastogi, Tahina Ramananandro, Peng
Wang, Santiago Zanella-Béguelin, Antoine Delignat-Lavaud, Catalin Hritcu, Karthikeyan
Bhargavan, Cédric Fournet, and Nikhil Swamy. Verified Low-Level Programming Embedded
in F*. PACMPL, 1(ICFP):17:1–17:29, September 2017.

42 E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3, 208. IETF RFC 8446.
43 Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud,

Simon Forest, Karthikeyan Bhargavan, Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss,
Jean-Karim Zinzindohoue, and Santiago Zanella-Béguelin. Dependent Types and Multi-
Monadic Effects in F*. In ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), pages 256–270, 2016.

44 National Institute of Standards US Department of Commerce and Technology (NIST). Federal
Information Processing Standards Publication 180-4: Secure hash standard (SHS), 2012.

45 Sameer Wagh, Divya Gupta, and Nishanth Chandran. SecureNN: Efficient and Private Neural
Network Training. In Privacy Enhancing Technologies Symposium. (PETS 2019), 2019.

46 Jean Karim Zinzindohoue, Evmorfia-Iro Bartzia, and Karthikeyan Bhargavan. A Verified
Extensible Library of Elliptic Curves. In IEEE Computer Security Foundations Symposium
(CSF), pages 296–309, 2016.

47 Jean-Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan Protzenko, and Benjamin
Beurdouche. HACL*: A verified modern cryptographic library. In ACM SIGSAC Conference
on Computer and Communications Security (CCS), pages 1789–1806, 2017.

https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/doubleratchet/

Sketching Graphs and Combinatorial Optimization
Robert Krauthgamer
Weizmann Institute of Science, Rehovot, Israel
robert.krauthgamer@weizmann.ac.il

Abstract
Graph-sketching algorithms summarize an input graph G in a manner that suffices to later answer
(perhaps approximately) one or more optimization problems on G, like distances, cuts, and matchings.
Two famous examples are the Gomory-Hu tree, which represents all the minimum st-cuts in a graph
G using a tree on the same vertex set V (G); and the cut-sparsifier of Benczúr and Karger, which
is a sparse graph (often a reweighted subgraph) that approximates every cut in G within factor
1± ε. Another genre of these problems limits the queries to designated terminal vertices, denoted
T ⊆ V (G), and the sketch size depends on |T | instead of |V (G)|.

The talk will survey this topic, particularly cut and flow problems such as the three examples
above. Currently, most known sketches are based on a graphical representation, often called edge
and vertex sparsification, which leaves room for potential improvements like smaller storage by
using another representation, and faster running time to answer a query. These algorithms employ
a host of techniques, ranging from combinatorial methods, like graph partitioning and edge or
vertex sampling, to standard tools in data-stream algorithms and in sparse recovery. There are also
several lower bounds known, either combinatorial (for the graphical representation) or based on
communication complexity and information theory.

Many of the recent efforts focus on characterizing the tradeoff between accuracy and sketch size,
yet many intriguing and very accessible problems are still open, and I will describe them in the talk.

2012 ACM Subject Classification Theory of computation → Sketching and sampling; Mathematics
of computing → Combinatorial optimization; Theory of computation → Graph algorithms analysis

Keywords and phrases Sketching, edge sparsification, vertex sparsification, Gomory-Hu tree, mim-
icking networks, graph sampling, succinct data structures

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.2

Category Invited Talk

Funding Robert Krauthgamer : Work partially supported by ONR Award N00014-18-1-2364, the
Israel Science Foundation grant #1086/18, and a Minerva Foundation grant.

© Robert Krauthgamer;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 2; pp. 2:1–2:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:robert.krauthgamer@weizmann.ac.il
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.2
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Finkel Was Right: Counter-Examples to Several
Conjectures on Variants of Vector Addition
Systems
Ranko Lazić
DIMAP, Department of Computer Science, University of Warwick, UK
R.S.Lazic@warwick.ac.uk

Abstract
Studying one-dimensional grammar vector addition systems has long been advocated by Alain Finkel.
In this presentation, we shall see how research on those systems has led to the recent breakthrough
tower lower bound for the reachability problem on vector addition systems, obtained by Czerwiński et
al. In fact, we shall look at how appropriate modifications of an underlying technical construction can
lead to counter-examples to several conjectures on one-dimensional grammar vector addition systems,
fixed-dimensional vector addition systems, and fixed-dimensional flat vector addition systems.

2012 ACM Subject Classification Theory of computation → Concurrency; Theory of computation
→ Verification by model checking; Theory of computation → Program reasoning

Keywords and phrases Petri nets, vector addition systems, reachability

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.3

Category Invited Talk

Funding Ranko Lazić : Partly supported by the Leverhulme Trust Research Fellowship “Petri Net
Reachability Conjecture” (RF-2017-579).

Acknowledgements This presentation is based on joint work with Wojciech Czerwiński, Sławomir
Lasota, Jérôme Leroux and Filip Mazowiecki. I also thank Matthias Englert for inspiring conversa-
tions about these variants of vector addition systems.

1 Outline

We shall discuss counter-examples to each of the following conjectures.
In the context of the gap between the ExpSpace membership of the coverability problem

for one-dimensional grammar vector addition systems [2] and its PSpace hardness [5], it
was attractive to think that there is an exponential bound such that, at least for systems
whose ratio is finite and greater than 1, every positive instance has some derivation whose
height is at most the bound.

I Conjecture 1. One-dimensional grammar vector addition systems whose ratio is finite and
greater than 1 have coverability witnessing derivations that are at most exponentially high.

It has been known since the refinement by Rosier and Yen [4] of Rackoff’s bounds [3] that
fixed-dimensional vector addition systems have coverability witnessing runs that are at most
exponentially long, and there seemed to be no reason why the same should not hold for the
reachability problem.

I Conjecture 2. Fixed-dimensional vector addition systems have reachability witnessing
runs that are at most exponentially long.

© Ranko Lazić;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 3; pp. 3:1–3:2

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:R.S.Lazic@warwick.ac.uk
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.3
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Finkel Was Right

It has also been known that flat vector addition systems in which update vectors are
given in unary have reachability witnessing runs that are at most polynomially long, provided
the dimension is 1 or 2 [1], and it seemed plausible that this property would be true in every
fixed dimension.

I Conjecture 3. Fixed-dimensional flat vector addition systems in which update vectors are
given in unary have reachability witnessing runs that are at most polynomially long.

The same work of Englert et al. established NL membership of the reachability problem
for two-dimensional flat unary vector addition systems, and it was similarly plausible that
the same would be the case in every fixed dimension. However, we shall discuss how to
obtain NP hardness already in a specific small dimension.

References
1 Matthias Englert, Ranko Lazić, and Patrick Totzke. Reachability in Two-Dimensional Unary

Vector Addition Systems with States is NL-Complete. In LICS, pages 477–484. ACM, 2016.
doi:10.1145/2933575.2933577.

2 Jérôme Leroux, Grégoire Sutre, and Patrick Totzke. On the Coverability Problem for Pushdown
Vector Addition Systems in One Dimension. In ICALP, Part II, volume 9135 of LNCS, pages
324–336. Springer, 2015. doi:10.1007/978-3-662-47666-6_26.

3 Charles Rackoff. The Covering and Boundedness Problems for Vector Addition Systems.
Theor. Comput. Sci., 6:223–231, 1978. doi:10.1016/0304-3975(78)90036-1.

4 Louis E. Rosier and Hsu-Chun Yen. A Multiparameter Analysis of the Boundedness Problem
for Vector Addition Systems. J. Comput. Syst. Sci., 32(1):105–135, 1986. doi:10.1016/
0022-0000(86)90006-1.

5 Juliusz Straszyński. Complexity of the reachability problem for pushdown Petri nets. Master’s
thesis, University of Warsaw, Faculty of Mathematics, Informatics, and Mechanics, 2017. URL:
https://apd.uw.edu.pl/diplomas/155747.

https://doi.org/10.1145/2933575.2933577
https://doi.org/10.1007/978-3-662-47666-6_26
https://doi.org/10.1016/0304-3975(78)90036-1
https://doi.org/10.1016/0022-0000(86)90006-1
https://doi.org/10.1016/0022-0000(86)90006-1
https://apd.uw.edu.pl/diplomas/155747

Progress in Lifting and Applications in Lower
Bounds
Toniann Pitassi
University of Toronto, Canada
Institute for Advanced Study, Princeton, NJ, USA
toni@cs.toronto.edu

Abstract
Ever since Yao introduced the communication complexity model in 1979, it has played a pivotal
role in our understanding of limitations for a wide variety of problems in Computer Science. In this
talk, I will present the lifting method, whereby communication lower bounds are obtained by lifting
much simpler lower bounds. I will show how lifting theorems have been used to solve many open
problems in a variety of areas of computer science, including: circuit complexity, proof complexity,
combinatorial optimization (size of linear programming formulations), cryptography (linear secret
sharing schemes), game theory and privacy.

At the end of the talk, I will sketch the proof of a unified lifting theorem for deterministic and
randomized communication (joint with Arkadev Chattopadyhay, Yuval Filmus, Sajin Koroth, and
Or Meir.)

2012 ACM Subject Classification Theory of computation → Communication complexity

Keywords and phrases complexity theory, lower bounds, communication complexity

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.4

Category Invited Talk

© Toniann Pitassi;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 4; pp. 4:1–4:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:toni@cs.toronto.edu
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.4
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

How Computer Science Informs Modern Auction
Design
Tim Roughgarden
Columbia University, Department of Computer Science, New York, USA
tr@cs.columbia.edu

Abstract
Over the last twenty years, computer science has relied on concepts borrowed from game theory and
economics to reason about applications ranging from internet routing to real-time auctions for online
advertising. More recently, ideas have increasingly flowed in the opposite direction, with concepts
and techniques from computer science beginning to influence economic theory and practice.

In this lecture, I will illustrate this point with a detailed case study of the 2016-2017 Federal
Communications Commission incentive auction for repurposing wireless spectrum. Computer science
techniques, ranging from algorithms for NP-hard problems to nondeterministic communication
complexity, have played a critical role both in the design of the reverse auction (with the government
procuring existing licenses from television broadcasters) and in the analysis of the forward auction
(when the procured licenses sell to the highest bidder).

2012 ACM Subject Classification Theory of computation → Algorithmic game theory and mechan-
ism design

Keywords and phrases Game Theory, Auction Design, Algorithms

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.5

Category Invited Talk

Funding Supported by NSF Award CCF-1813188 and ARO grant W911NF1910294.

© Tim Roughgarden;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 5; pp. 5:1–5:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tr@cs.columbia.edu
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.5
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

An Algebraic Framework to Reason About
Concurrency
Alexandra Silva
University College London, United Kingdom
alexandra.silva@ucl.ac.uk

Abstract
Kleene algebra with tests (KAT) is an algebraic framework for reasoning about the control flow of
sequential programs. Hoare, Struth, and collaborators proposed a concurrent extension of Kleene
Algebra (CKA) as a first step towards developing algebraic reasoning for concurrent programs.
Completing their research program and extending KAT to encompass concurrent behaviour has
however proven to be more challenging than initially expected. The core problem appears because
when generalising KAT to reason about concurrent programs, axioms native to KAT in conjunction
with expected axioms for reasoning about concurrency lead to an unexpected equation about
programs. In this talk, we will revise the literature on CKA(T) and explain the challenges and
solutions in the development of an algebraic framework for concurrency.

The talk is based on a series of papers joint with Tobias Kappé, Paul Brunet, Bas Luttik,
Jurriaan Rot, Jana Wagemaker, and Fabio Zanasi [1, 2, 3]. Additional references can be found on
the CoNeCo project website: https://coneco-project.org/.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory

Keywords and phrases Kleene Algebra, Concurrency, Automata

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.6

Category Invited Talk

Supplement Material Additional references can be found on the CoNeCo project website:
https://coneco-project.org/.

Funding Alexandra Silva: Research supported by ERC starting grant Profoundnet (679127).

References
1 Tobias Kappé, Paul Brunet, Bas Luttik, Alexandra Silva, and Fabio Zanasi. Brzozowski

Goes Concurrent - A Kleene Theorem for Pomset Languages. In Roland Meyer and Uwe
Nestmann, editors, 28th International Conference on Concurrency Theory (CONCUR 2017),
volume 85 of Leibniz International Proceedings in Informatics (LIPIcs), pages 25:1–25:16,
Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/
LIPIcs.CONCUR.2017.25.

2 Tobias Kappé, Paul Brunet, Jurriaan Rot, Alexandra Silva, Jana Wagemaker, and Fabio
Zanasi. Kleene Algebra with Observations. In Wan Fokkink and Rob van Glabbeek, editors,
30th International Conference on Concurrency Theory (CONCUR 2019), volume 140 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 41:1–41:16, Dagstuhl, Germany, 2019.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.CONCUR.2019.41.

3 Tobias Kappé, Paul Brunet, Alexandra Silva, and Fabio Zanasi. Concurrent Kleene Algebra:
Free Model and Completeness. In Amal Ahmed, editor, Programming Languages and Systems,
pages 856–882, Cham, 2018. Springer International Publishing.

© Alexandra Silva;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 6; pp. 6:1–6:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alexandra.silva@ucl.ac.uk
https://coneco-project.org/
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.6
https://coneco-project.org/
https://doi.org/10.4230/LIPIcs.CONCUR.2017.25
https://doi.org/10.4230/LIPIcs.CONCUR.2017.25
https://doi.org/10.4230/LIPIcs.CONCUR.2019.41
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Connected Search for a Lazy Robber
Isolde Adler
School of Computing, University of Leeds, Leeds, United Kingdom
I.M.Adler@leeds.ac.uk

Christophe Paul
CNRS, LIRMM, Université de Montpellier, Montpellier, France
christophe.paul@lirmm.fr

Dimitrios M. Thilikos
CNRS, LIRMM, Université de Montpellier, Montpellier, France
sedthilk@thilikos.info

Abstract
The node search game against a lazy (or, respectively, agile) invisible robber has been introduced as
a search-game analogue of the treewidth parameter (and, respectively, pathwidth). In the connected
variants of the above two games, we additionally demand that, at each moment of the search,
the clean territories are connected. The connected search game against an agile and invisible
robber has been extensively examined. The monotone variant (where we also demand that the
clean territories are progressively increasing) of this game, corresponds to the graph parameter
of connected pathwidth. It is known that the price of connectivty to search for an agile robber is
bounded by 2, that is the connected pathwidth of a graph is at most twice (plus some constant) its
pathwidth. In this paper, we investigate the connected search game against a lazy robber. A lazy
robber moves only when the searchers’ strategy threatens the location that he currently occupies.
We introduce two alternative graph-theoretic formulations of this game, one in terms of connected
tree decompositions, and one in terms of (connected) layouts, leading to the graph parameter of
connected treewidth. We observe that connected treewidth parameter is closed under contractions
and prove that for every k ≥ 2, the set of contraction obstructions of the class of graphs with
connected treewidth at most k is infinite. Our main result is a complete characterization of the
obstruction set for k = 2. One may observe that, so far, only a few complete obstruction sets are
explicitly known for contraction closed graph classes. We finally show that, in contrast to the agile
robber game, the price of connectivity is unbounded.

2012 ACM Subject Classification Mathematics of computing → Graph theory

Keywords and phrases Graph searching, Tree-decomposition, Obstructions

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.7

Funding Christophe Paul: Supported by projects DEMOGRAPH (ANR-16-CE40-0028) and ESIGMA
(ANR-17-CE23-0010).
Dimitrios M. Thilikos: Supported by projects DEMOGRAPH (ANR-16-CE40-0028) and ESIGMA
(ANR-17-CE23-0010). Supported by the Research Council of Norway and the French Ministry of
Europe and Foreign Affairs, via the Franco-Norwegian project PHC AURORA 2019.

1 Introduction

A graph-search game is opposing a group of searchers and a robber that are moving in turn
on a graph. A search strategy is a sequence of moves of the searchers that eventually leads
to the capture of the robber. The cost of a search strategy is the maximum number of
searchers simultaneously present on the graph during the search strategy. The search number
of a graph is defined as the minimum cost of a search strategy. Different rules imposed
on the search strategy and the moves of the robber define different searching games. The

© Isolde Adler, Christophe Paul, and Dimitrios M. Thilikos;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 7; pp. 7:1–7:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:I.M.Adler@leeds.ac.uk
mailto:christophe.paul@lirmm.fr
mailto:sedthilk@thilikos.info
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.7
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Connected Search for a Lazy Robber

study of graph searching parameters is an active field of graph theory as several important
graph parameters have their search-game analogues that provide useful insights. For related
surveys, see [2, 3, 10,21,38].

One of the most classic graph-search games is the one of node-search introduced by
Kirousis and Papadimitriou [31, 32]. In this version, both the searchers and the robber
occupy vertices of the graph. One searcher can move at a time. The capture of the robber
happens when some searcher and the robber simultaneously occupy the same vertex and
that the robber cannot escape along a path free of a searcher. In this paper we consider
monotone search strategies against an invisible robber. Being invisible implies that the search
strategy has to be independent of the moves of the robber. A search strategy is monotone
if it prevents the robber from moving to vertices that have been already occupied by the
searchers, implying that the robber territory is never increasing. The robber territory is the
set of vertices that can be reached from the robber position by a path free of searcher.

Agility and laziness. A robber can be lazy or agile. A lazy robber resides on a vertex as
long as a searcher is not placed on that vertex, while an agile robber may move whenever he
wants to. The distinction between a lazy and an agile robber was introduced for the first time
in [13]. Motivated by established links with well-studied graph theoretical parameters, there
is an extensive amount of research on the different variants of the search game depending
on the monotonicity constraint and on the laziness or agility of the robber. In particular,
the monotone search number of a graph G against an agile (resp. lazy) robber is equal
to the pathwidth (resp. treewidth) of G [13, 31, 32, 36, 42]. Also, it was proven that the
non-monotone variants are equal to their monotone counterparts [8, 9, 20,34,42].

The connectivity issue. In both search games described above, no constraint (apart from
the monotonicity, which in this context, as mentioned before, is no restriction) is ruling the
move of a searcher. That is, a searcher can move arbitrarily far away from his/her original
position. For this reason, such search games have been called “helicopter search games” (as
suggested in [42]). From the application view point, this teleportation ability is not always
realistic. In some settings (like cave exploration), it is natural to constrain the search to be
connected. That is, the clean territory induces a connected subgraph1 at each step of the
search (see [24] for an example).

This inspired the question on the “price of connectivity”, asking whether there is some
universal constant c such that the connected search number is no more than c times its
non-connected counterpart. In its original form, this question was asked in [5] for the
agile variant and, in the same paper, it was answered affirmatively for the case of trees (see
also [6,16–19,22,37] for related results). Later, it was proved for all graphs by Dereniowski [14],
who suggested a connected counterpart of pathwidth, called connected pathwidth, that is
equivalent to the monotone connected agile search number. Then it was proved that this
parameter is always upper bounded by twice the pathwidth plus one.

1 Interestingly, the motivating story of one of the foundational articles on graph searching, authored by
Torrence Parsons [39] in 1976, was inspired by an earlier article of Breisch in Southwestern Cavers
Journal [11] proposing a “speleotopological” approach for the problem of finding an explorer lost in
a system of dark caves. It is worth to stress that this setting neglected the natural connectivity
requirement.

I. Adler, C. Paul, and D.M. Thilikos 7:3

1.1 Our contributions
Connected treewidth. In this paper, we study the (monotone) connected search against a
lazy robber. Our first contribution is to establish the parameter by giving two alternative
definitions: one in terms of connected tree decompositions and one in terms of connected
layouts. Intuitively, a tree-decomposition (T,F) is connected2 if it can be rooted at some
node r in a way that for every node u, the subgraph Gu, induced by the subset Vu of vertices
appearing in some bag on the path in T between r and u, is connected. We observe that this
is a natural extension of the concept of connected pathwidth proposed by [14]. Our layout
definition is a variant of the classic layout definition of [13] with the restriction that now
we only consider layouts where every prefix induces a connected graph. Our equivalence,
proven in Section 3, indicates that monotone connected search against a lazy robber can be
seen as a natural way to define a connected version of treewidth. We also stress that the
non-monotone variant of this game corresponds to an different parameter, as proved in [24].
Yet another way to define “connected” treewidth is to consider tree decompositions where
for every t ∈ VT , the bag Xt induces a connected subgraph of G. We refer to this variant
bag-connected treewidth (while the one we define in this paper can be called prefix-connected
treewidth). Bag-connected treewidth was introduced independently by Jégou and Terrioux
in [27], in the context of solving Constraint Satisfaction Problems (CSPs)(see [26, 28]) and,
in a combinatorial context, by Diestel and Müller in [15] who revealed interesting relations
with graph-geometric parameters such as the geodesic cycle number, graph hyperbolicity
(see also [25]).

Contraction Obstructions. We say that a graph H is a contraction of G, denoted by H � G,
if a graph isomorphic to H can be obtained from G by a series of edge contractions. We also
say that H is a minor of G if H is a contraction of a subgraph of G. We define the minor
obstructions (contraction obstructions, respectively) of a graph class G, denoted by obs≤(G)
(obs�(G), respectively), as the set of all minor (contraction, respectively) minimal graphs
that do not belong to G. It is easy to see that when G is minor (contraction, respectively)
closed, then obs≤(G) (obs�(G), respectively) provides a complete characterization of a minor
closed (contraction, respectivelly) class G: a graph belongs to G if and only if it excludes all
graphs in obs≤(G) (respectively obs�(G)) as minors (contractions, respectively). Moreover,
in the case of the minor relation, we know from the theorem of Roberston and Seymour
[40] that the set obs≤(G) is always finite and therefore the aforementioned characterization
provides a finite characterization of any minor closed class in terms or forbidden minors.
To identify (or even to compute) obs≤(G) for different instantiations of minor closed graph
classes is an interesting topic in graph theory (see [1, 35]). For instance, if Tk is the class of
graphs with treewidth at most k, then obs≤(Tk) is known for every k ≤ 3 [4] and remains
unknown for k > 3 (see [41] for some partial results for the case where k = 4). Similarly, if Pk
is the class of graphs with pathwidth at most k, then obs≤(Pk) is known for k ≤ 2 [30] and
remains unknown for k > 2. Bounds for the size of the graphs in obs≤(Tk) and obs≤(Pk)
have been proved in [33].

Unfortunately, the landscape is more obscure for the contraction relation as contraction
obstruction sets are not finite in general. Contraction obstruction sets are only known for
a few contraction closed classes. For instance, the contraction obstruction set for planar

2 We also want to point out that alternative notions of connected tree-decomposition have been con-
sidered, see for example [23] and [15,27] for two different definitions. We believe that the parameter
correspondence we establish is a strong argument in favour of our definition proposal.

FSTTCS 2019

7:4 Connected Search for a Lazy Robber

v u

Figure 1 A graph G ∈ T c
2 such G− uv /∈ T c

2 and G− v /∈ T c
2 .

graphs is described in [12]. A more elaborate example of a finite contraction obstruction
set was identified in [7], containing 177 connected graphs, for the class of graphs whose
connected mixed search number (for an agile and invisible robber) is at most 2. Another
class characterized by an infinite set of contraction obstructions is discussed in [29].

Let k ∈ N. By T ck , we denote the class of all (connected) graphs with connected treewidth
at most k. We observe that T c2 is not minor closed: removing a vertex or an edge (see e.g., the
graph G of Figure 1) may increase the connected treewidth. Therefore, no characterization
via minor obstruction exists. However, in this paper we observe that T ck is contraction closed,
for every k, and it is a challenging problem to identify Ok := obs�(T ck) for distinct values
of k, especially since we have no guarantee that this set is finite. Moreover, in case Ok is
infinite, we are essentially looking for a finite canonical description of this set.

Our second contribution is the complete identification of O2. As a preliminary part of
our results, in Subsection 4.1, we prove general properties of Ok for every k. These are later
used to identify O2. In Section 5, that is the most technical part of this paper, we prove that
O2 is an infinite set that can be canonically described by a sequence of gluing operations.

Price of connectivity. We give, for every k ≥ 2, an infinite subset of obs�(T ck) consisting
of graphs of treewidth 2, i.e., graphs in T2 (see Section 4.2). Consequently, the price of con-
nectivity on treewidth is unbounded and this makes a sharp contrast with the corresponding
result on pathwidth. To conclude, for monotone search, the price of connectivity is bounded
when we are searching for an agile robber while this price goes to infinity when the robber is
lazy. This latter contribution provides a simpler construction of a result from [24] that the
cost of connectivity can be log n, where n is the number of vertices.

2 Preliminaries

2.1 Standard definitions
Sequences. Given a finite set U , a sequence σ over U is a bijection σ : U → [|U |]. For
x ∈ U , σ(x) = i if x is at the i-th position in σ and we denote σi = σ−1(i). For x, y ∈ U ,
if σ(x) < σ(y), we write x <σ y. We define the sets σ<i = {x ∈ U | σ(x) < i} and
σ≤i = {x ∈ U | σ(x) ≤ i}. Alternatively, we denote a sequence by σ = 〈σ1, . . . , σn〉.

Graphs. The graphs we consider are undirected are simple. We use standard notations.
For a subset S of vertices, G[S] denotes the subgraph induced by S. A separator is a subset
S of vertices such that G \ S = G[V \ S] contains more connected components than G. A
connected component H of G \ S is a full S-component of G if NG(V (H)) = S. We denote
by C(G,S) the set of all full S-connected components of G and by F(G,S) the set containing
every induced subgraph G[S ∪ C] with C ∈ C(G,S). The set of cut vertices of a graph G is
denoted C(G).

I. Adler, C. Paul, and D.M. Thilikos 7:5

Contracting an edge e = xy ∈ E(G) yields the graph G/e obtained by removing x and y
fromG, introducing a new vertex and making it adjacent with all vertices inNG({x, y})\{x, y}.
If F is a subset of edges of G, then G/F is the graph obtained by contracting the edges of F .
We say that a graph H is a contraction of G, denoted by H � G, if a graph isomorphic to H
can be obtained by a series of edge contractions.

A tree-decomposition of a graph G = (V,E) is a pair (T,F) where T = (VT , ET) is
a tree and F = {Xt ⊆ V | t ∈ VT } such that : 1)

⋃
t∈VT

Xt = V ; 2) for every edge
e ∈ E, there exists a node t ∈ T such that e ⊆ Xt; and 3) for every vertex x ∈ V , the
set {t ∈ VT | x ∈ Xt} induces a connected subgraph of T . We refer to VT as the set of
nodes of T and the sets of F as the bags of (T,F). The width of a tree-decomposition
(T,F) is width(T,F) = max

{
|X| − 1 | X ∈ F

}
and the tree-width of a graph G is tw(G) =

min
{

width(T,F) | (T,F) is a tree-decomposition of G
}
.

Rooted graphs. A q-rooted graph (with q ∈ N) is a pair G = (G,R) where G is a graph
and R is a sequence over a subset R of q vertices of G, called roots. A rooted graph is any
q-rooted graph, where q ≥ 0. We treat every graph G as the 0-rooted graph (G, 〈〉). The
rooted graph (G,R) is connected if either G is connected or if every connected component of
G contains at least one vertex from R. It is biconnected if adding an edge between every pair
of root vertices yields a biconnected graph. Gluing two q-rooted graphs (G1,R1) and (G2,R2)
results in the graph (G1,R1)⊕ (G2,R2) obtained by identifying the vertex R1(i) with R2(i)
for every i ∈ [q]. The operation of gluing k ≥ copies of a rooted graph K is denoted by k×K
and is defined in the obvious way (keep always in mind that the result is a graph). A rooted
graph H = (H,T) is a contraction of a rooted graph G = (G,R), denoted H � G if a rooted
graph isomorphic to (H,T) can be obtained after a series of edge contractions on G, under
the constraint that no path between two vertices of R can be contracted to a single vertex.
If a vertex v ∈ V (H) results from the contraction of an edge incident to a root vertex of R,
then v is a root vertex of T.

Tree vertex separation. A layout σ of a rooted graph G = (G,R) is a sequence over V (G)
such that for every 1 ≤ j ≤ |R|, σ−1(j) ∈ R. We denote by L(G) the set of all layouts of
G. For every i ∈ [n], the supporting set of position i is the set Sσ(i) =

{
x ∈ V (G) | σ(x) <

i and there exists a (x, σi)-path whose internal vertices belong to σ>i}. The so-called tree
vertex separation number of a rooted graph G is defined as tvs(G) = min

{
tcost(G, σ) | σ ∈

L(G)
}
, where tcost(G, σ) = max{

∣∣Sσ(i)
∣∣ | i ∈ [n]}.

Search strategies against a lazy robber. A search strategy on a graph G is a sequence
S = 〈S1, . . . , Sr〉, with r ∈ N, over the sets of subsets of vertices of V (G) where |S1| = 1 and
for all i ∈ [r−1], the symmetric difference of Si and Si+1 has cardinality one. Notice that the
difference between two consecutive set either corresponds to a placement or to the removal of
a searcher on some vertex v. The cost of a search strategy S is cost(S) = max{|Si| | i ∈ [r]}.

For a search strategy S against a lazy robber, we define the sequence of robber spaces as
the sequence FS = 〈F1, . . . , Fr〉 where:

F1 = V (G) \ S1.
For i ∈ [2, r], let Fi = (Fi−1 − Si) ∪ {v ∈ V − Si : there is a path from a vertex
u ∈ Fi−1 ∩ (Si − Si−1) to v whose vertices except u belong to V − Si}.

The complementary sequence FS = 〈F 1, . . . , F r〉 is the sequence of clean spaces. We say
that the search strategy S is complete, if Fr = ∅; monotone, if for each i ∈ [r− 1], Fi+1 ⊆ Fi.
We define lns(G) as the minimum cost of a complete (or, alternativaly, cop-win) monotone
search strategy on G against a lazy robber.

FSTTCS 2019

7:6 Connected Search for a Lazy Robber

3 Parameter equivalences

I Proposition 1 ([13,42]). For any graph G, we have tw(G) = tvs(G) = lns(G)− 1.

To prove a result similar to the above well-known theorem, we adapt the definitions of graph
search, tree decomposition, layouts and the associated parameters to the connected setting3.

A (monotone and complete) search strategy S = 〈S1, . . . , Sr〉 of a graph G is connected if
at every step i ∈ [r] the clean space F i is connected. We define the parameter mclns(G)
as the minimum cost of a monotone, complete and connected strategy on G against a
lazy robber.
A tree-decomposition (T,F) of a graph G is connected if there exists a node r ∈ V (T)
such that for every node u ∈ V (T), the subgraph G[Vu] is connected, where Vu contains
all the vertices that belong to some bag Xt associated with a node t in the u, r-path in
T . We then define the connected treewidth ctw(G) as the minimum width of a connected
tree-decomposition. Figure 2 provides an example where the treewidth and the connected
treewidth of a graph differs.
A layout σ of a graph G is connected if for every i ∈ [n], the subgraph G[σ≤i] is connected.
We let Lc(G) denote the set of connected layouts of G. We then define the connected tree
vertex separation parameter as ctvs(G) = min{tcost(G, σ) | σ ∈ Lc(G)}.

1

2

3

a

b
b′

a′
c

c′

d
d′

e

e′

f

f ′

Figure 2 A series-parallel graph G with tw(G) = 2 and ctw(G) = 3. A connected tree-
decomposition of minimum width is given by the path-decomposition (P,F) where V (P) =
{x1, . . . x8} and F = {X1 = {1, a, b, 2}, X2 = {1, a′, b′, 2}, X3 = {1, 2, c, d}, X4 = {1, 2, d, 3}, X5 =
{1, 2, 3, c′}, X6 = {1, 3, c′, d′}, X7 = {1, 3, e, f}, X8 = {1, 3, e′, f ′}}, the root node being x1.

Let us now state the main theorem of this section.

I Theorem 2. For every connected graph G, we have ctw(G) = ctvs(G) = mclns(G)− 1.

We stress that if in the proof above we use connected path decompositions instead of
connected tree decompositions, we obtain the counterpart of Theorem 2 linking the connected
path-width of a graph to the connected search number against an agile robber and to a
parameter called connected path vertex separation number.

4 General properties of obstructions

A graph class G is closed under contraction, if every graph H, that is a contraction of a
member G of G, also belongs to G. Assume G is closed under contraction, then a graph G
is a contraction obstruction to G, if G /∈ G but H ∈ G for every H � G. Similarly, a graph
parameter κ(·) is closed under contraction if for every pair of graphs H and G such that
H � G, κ(H) ≤ κ(G).

3 These definitions naturally extend to rooted graphs.

I. Adler, C. Paul, and D.M. Thilikos 7:7

The following lemma, stated in terms of rooted graphs, proves that the parameters ctw(·),
mclns(·) and ctvs(·) are closed under contraction.

I Lemma 3. Let (G1,R1) and (G2,R2) be two q-rooted graphs such that (G1,R1) � (G2,R2).
Then ctvs(G1,R1) ≤ ctvs(G2,R2).

4.1 Non-biconnected obstructions
We extend the notion of obstruction sets to rooted graphs in the natural manner. For
every q ≥ 1, we let O(q)

k denoted the set containing every q-rooted graph G = (G,R),
where ctvs(G) > k and for every proper contraction G′ of G, ctvs(G′,R′) ≤ k. We can
prove that an obstruction contains at most one cut vertex, meaning that knowing the set of
biconnected obstructions and of 1-rooted obstructions will be enough to describe the full set
of obstructions.

We now introduce some concepts on graphs. A vertex subset S ⊆ V (G) is a separator
if G \ S= G[V \ S] contains more connected components than G. A connected component
H of G \ S is a full S-component of G if NG(V (H)) = S. We denote by C(G,S) the set
of all full S-connected components of G. We denote by F(G,S) the set containing every
induced subgraph G[S ∪ C] with C ∈ C(G,S). A separator S is a minimal separator if
|F(G,S)| ≥ 2. A minimal separator S is a minimal 〈x, y〉-separator if x and y belong to
different full S-components. A vertex x ∈ V (G) is a cut-vertex if {x} is a separator. The set
of cut vertices of a graph G is denoted C(G). A graph G is biconnected if it is connected
and C(G) = ∅. A biconnected component of a graph is any biconnected subgraph of G that
is vertex-maximal. Let x ∈ C(G) be a cut vertex of G. The pair (G, x) is called a s-pair.
If Z ∈ F(G, {x}), then the 1-rooted graph (Z, 〈x〉) is a 1-component of the s-pair (G, x).
Similarly, if {x, y} is a minimal separator of G, then the triple (G, x, y) is called a s-triple.
A 2-rooted graph (H, 〈x, y〉) is a 2-component of the s-triple (G, x, y) if {x, y} is a minimal
separator of G and H ∈ F(G, {x, y}).

A vertex v of a graphG is called k-simplicial if it has degree at most k and its neighborhood
induces a complete subgraph. The proof of the next lemma is presented in Section 4 of the
(attached) full version.

I Lemma 4. For every k ≥ 1 and every connected graph G, G ∈ Ok is not biconnected iff G

contains exactly one cut vertex and G ∈ {A⊕B | A,B ∈ O(1)
k }.

The proof of Lemma 4 is a consequence of Lemma 3 and the next two Lemmas .

I Lemma 5. If a connected graph G contains a k-simplicial vertex v, then G /∈ Ok.

Proof. (sketch) The argument simply follows from the observation that G′ = G − v is a
contraction of G and that extending a connected layout σ′ of G′ by adding v as the last
vertex yields a connected layout σ of G such that tcost(G, σ) = tcost(G′, σ′). J

I Lemma 6. Let G be a connected graph. If G ∈ Ok and contains a cut vertex v, then the
s-pair (G, v) contains exactly two 1-components and v is the unique cut vertex of G.

Proof. (sketch) Suppose that v is a cut vertex of G ∈ Ok and that C0, C1, C2 are dis-
tinct connected components of the graph G − v. It follows from Lemma 3 that for every
i ∈ {0, 1, 2}, ctvs(G[Ci ∪ C(i+1)mod 3 ∪ {v}]) 6 k, which implies that for every i ∈ {0, 1, 2},
ctvs(G[Ci ∪ {v}], {v}) ≤ k or ctvs(G[C(i+1) mod 3 ∪ {v}], {v}) ≤ k. Using the connected
layouts that certifies these later inequalities, one can build a connected layout σ of G such
that tcost(G, σ) ≤ k, a contradiction to the fact that G ∈ Ok.

FSTTCS 2019

7:8 Connected Search for a Lazy Robber

So removing a cut vertex in G leaves exactly two connected components. Suppose that
there exist two cut vertices x and y and let Cx (resp. Cy) be the connected component of
G−x not containing y (resp. of G−y not containing x). Then applying arguments similar as
the ones above to the subgraphs Gx = [Cx∪{x}], Gy = G[Cy∪{y}] and Gxy = G− (Cx∪Cy)
allows to show the existence of a connected layout σ of G such that tcost(G, σ) ≤ k, a
contradiction to the fact that G ∈ Ok. J

4.2 On the price of connectivity

We next examine the question of the price of connectivity for connected treewidth. Let
us recall that it is known that the connected pathwidth is a most twice the pathwidth
of a graph. Concerning treewidth, as a consequence of Proposition 1 and of the proof of
Proposition 7 below, we know that there exists graphs of treewidth at most 4 with abritrary
large connected treewidth. Moreover increasing the connected treewidth by one requires to
double the number of vertices.

I Proposition 7 ([24]). For any n0, there is n ≥ n0 and an n-vertex graph G such that
mclns(G) ∈ Ω(mlns(G) · logn).

We strengthen the theorem above by proving that this result also holds when restricting
to series-parallel graphs (that are biconnected graphs of treewidth at most two). Our
construction yields to way more simpler graphs than in [24]. The proof of the next result is
in Section 6 of the full version.

I Theorem 8 (Corollary 2 in the full version). For every k ∈ N, the obstruction set obs(T ck)
contains infinitely many series-parallel graphs.

To prove Theorem 8, we construct an infinite family of series-parallel graphs with
arbitrarily large connected treewidth. For k ≥ 2, we define the family Qk = {A⊕B | A,B ∈
Yk} where Yk is the family of 1-rooted graphs Yk = (Yk, 〈r〉) that can be constructed as
follows: take any tree Tk, rooted at vertex r, such that the distance between every leaf and r
is k and every non-leaf vertex has at least two children; add an apex vertex z universal to
the leaves of Tk; if r has only two neighbors, these neighbors may or may not be adjacent to
each another.

r

Y = (Y, 〈r〉) Y′ = (Y ′, 〈r〉)

z

r1

r2

Figure 3 A graph H = Y⊕Y’ ∈ O4 with Y = (Y, 〈r〉) ∈ Y4 and Y’ = (Y ′, 〈r〉) ∈ Y4.

Theorem Theorem 8 is based on the following lemma.

I Lemma 9. For every k ≥ 2, Qk ⊆ obs�(T ck).

I. Adler, C. Paul, and D.M. Thilikos 7:9

Proof. (sketch) We first observe that every 1-rooted graph Y = (Y, 〈r〉) ∈ Yk can be
constructed from two (or more) graphs Y1 = (Y1, 〈r1〉) ∈ Yk−1 and Y2 = (Y2, 〈r2〉) ∈ Yk−1
by identifying their apex vertices and adding a root vertex r adjacent to the roots r1 and r2
of Y1 and Y2 (see Figure 3). For any Yk = (Yk, 〈r〉) ∈ Yk, we define the 2-rooted graphs
Y(2)
k = (Y, 〈r, z〉) where z is the apex vertex of Yk. The proof relies on the following claims,

that for every k ≥ 2: (a) ctvs(Y(2)
k) = k, (b) ctvs(Yk) > k, and (c) for every edge e of Yk,

ctvs((Yk/e, 〈r〉)) ≤ k.
Let us sketch the argument of the second claim. Consider a connected layout σ ∈ Lc(Yk)

and suppose that σi = z. By the connectivity of σ, the induced subgraph Yk[σ≤i] contains
a path P from the root r to the apex z. Observe that P contains exactly k + 2 vertices
r, v2, . . . vk+1, z and that Yk contains k + 1 internally vertex disjoint paths from the apex z
to r, v2, . . . vk+1. It follows that the supporting set Sσ(i) contains at least k + 1 vertices.

From the second and the third claims we conclude that every Yk = (Yk, 〈r〉) ∈ Yk
belongs to the set O1

k of 1-rooted obstructions of T ck . By Lemma 4, we conclude that
Qk ⊆ obs�(T ck). J

5 The obstruction set O2

Thanks to Lemma 4, the non-biconnected parts of O2 can be determined if we identify the
1-rooted obstruction set O(1)

2 . To that aim, let us first define the family B(1)
2 = {Yx}∪{Y(k)

x |
k ≥ 2]} where Y(k)

x = (k ×Ry
x, 〈x〉) (see Figure 4). It is not difficult to check that these

graphs are 1-rooted obstructions.

x

y

x

Ry
x Y

(2)
x

y

x

Rx
y

y

x

Rxy

x

Yx

x

Y
(3)
x

x

Y
(4)
x

Figure 4 The rooted graphs Rxy, Ry
x, Rx

y , Yx, Y(2)
x , Y(3)

x , and Y(4)
x .

It can be easily checked that the three biconnected graphs depicted in Figure 5 belong to
O2. We define the set B2 = {K4,W1,W2} ∪ {A⊕B | A,B ∈ B(1)

2 }.

Figure 5 From left to right, the graphs K4, W1, and W2.

2-twin expansion. Let G = (G,R) be a rooted graph and let S ⊆ V (G). We say that S is
a 2-twin family of G if S ∩ V (R) = ∅, |S| ≥ 2 and there are two vertices a, b ∈ V (G) such
that ∀s ∈ S,NG(s) = {a, b}. We call the vertices a, b the bases of the 2-twin family S. We
say that a graph G’ = (G′,R′) is a 2-twin expansion of G if R = R′ and G′ is obtained from
G by adding vertices such that each additional vertex is made adjacent with the base vertices
of some of the 2-twin families of G. Given a class of rooted graphs C we define its 2-twin
expansion texp(C) as the class of rooted graphs containing all 2-twin expansions of all the
graphs in C. We are now ready to state the main result of this section.

FSTTCS 2019

7:10 Connected Search for a Lazy Robber

I Theorem 10. A graph G belongs to T c2 if and only if it does not contains a graph of
texp(B2) as a contraction, that is O2 = texp(B2).

5.1 Some elements of the proof of Theorem 10
The set O2 is closed under twin expansion. We say that a rooted graph G is simplified
if all its 2-twin families have size 2. Given a rooted graph G we denote by G̃ the unique
simplified rooted graph such that G ∈ texp({G̃}). Given a set C of rooted graphs, we define
C̃ = {G̃ | G ∈ C}. Observe that every graph of B2 is simplified.

I Lemma 11. A graph G belongs to O2 iff G̃ belongs to O2.

The next lemma is the extension of Lemma 11 to 1-rooted obstructions. Its proof mainly
follows from Lemma 4.

I Lemma 12. Let H = (H, 〈v〉) be a 1-rooted graph. Then H ∈ O(1)
2 if and only if H̃ ∈ Õ(1)

2 .

Simplified obstructions. We now identify sets of simplified graphs, 1-rooted graphs and
2-rooted graphs that are obstructions. Later, we prove that from these sets the full set of
obstructions to T c2 can be constructed. The following Lemmas establish that the sets B(1)

2
and B2 build from the graphs of Figure 4 and Figure 5 are simplified obstructions.

I Lemma 13. If a 1-rooted graph G = (G, 〈x〉) belongs to texp(B(1)
2), then G ∈ O(1)

2 . If a
graph G belongs to texp(B2), then G belongs to O2.

Let us now turn to biconnected 2-rooted obstructions. We define the set B(2)
2 =

{Rxy,Rxy+,Kxy−
4 ,Kxy

4 } of 2-rooted graphs depicted in Figure 6. We say that a bicon-
nected 2-rooted graph H = (H, 〈x, y〉) is elementary if it is texp(B(2)

2)-free.

x y x y

Rxy Rxy+

x y x y

Kxy−
4 Kxy

4
R+

xy

Figure 6 The 2-rooted graphs Rxy, Rxy+, Kxy−
4 , Kxy

4 and R+
xy.

I Lemma 14. The set of biconnected graphs in O(2)
2 is texp(B(2)

2).

Proof. (sketch) By considering a minimal counter-example, the proof first establishes that
every elementary biconnected 2-rooted graph belongs to T c2 . Then we check that for every
2-rooted graph G ∈ texp(B(2)

2), ctw(G) ≥ 3 but every contraction of G belongs to T c2 . J

Structure of obstructions. Let xy be an edge of a graph G. We say that xy is a separating
edge if the set {x, y} is a minimal separator. We say that xy is a marginal edge if there is a
vertex z such that both (G, x, z) and (G, y, z) are s-triples.

I Lemma 15. Let G be a graph in Õ2. If G contains a separating edge xy, then either G
is isomorphic to W2 or G contains a cut-vertex r and the 1-component of the s-pair (G, r)
containing xy is isomorphic to Yr.

I. Adler, C. Paul, and D.M. Thilikos 7:11

I Lemma 16. Let G ∈ Õ2 be a graph without separating edge. If (G, x, y) is a s-triple, then
1. either every 2-component of (G, x, y) is elementary,
2. or there exists a non-elementary 2-component of (G, x, y), denoted by H = (H, 〈x, y〉),

such that G \ (V (H) \ {x, y}) cannot be contracted to `×Rxy for any ` ≥ 2.

From Lemma 15 and Lemma 16, we deduce a series of properties needed to understand
the role of marginal edges and to conclude the characterization of O2.

I Lemma 17. Let (G, x, y) be an s-triple of G ∈ Õ2. If (H, 〈x, y〉) is a 2-component of
(G, x, y) that is isomorphic to Ry

x, then x is a cut-vertex.

I Lemma 18. Let (G, x, y) be an s-triple of G ∈ Õ2. If H is an elementary 2-component of
(G, x, y) without cut-vertex, then H is isomorphic to Rxy.

I Lemma 19. Let G = (G, 〈x〉) ∈ Õ(1)
2 .

1. If (G, x, y) is a s-triple, then none of its 2-components is isomorphic to Rxy.
2. If H = (H, 〈x, y〉) is an elementary 2-component of an s-triple (G, x, y), then H is

isomorphic to Ry
x.

Biconnected obstructions. We now have all the ingredients for the proof of Theorem 10.
We start with the identification of the biconnected elements of Õ2.

I Lemma 20. No biconnected graph in Õ2 contains a marginal edge.

I Lemma 21. The biconnected graphs in Õ2 are the graphs K4, W1, and W2.

Proof. (sketch) For a contradiction, we suppose that Õ2 contains a graph G distinct from
K4, W1, and W2. From Lemma 15, G does not contain a separating edge. As it excludes K4
as a contraction, it contains a degree-two vertex a. Let x and y be the two neighbors of a and
let H = {H0, . . . ,Hq} be the 2-components of the s-triple (G, x, y) with V (H0) = {a, x, y}.
As G is biconnected, so is every 2-rooted graph in H. We next prove that exactly one of
the 2-rooted graphs in {H1, . . . ,Hq}, say H1, is not elementary. Then by Lemma 18, every
Hj ∈ H distinct from H1 is isomorphic to Rxy. As G is simplified, we have q ≤ 2. If q = 2,
as H0⊕H2 = 2×Rxy, as H1 is not elementary and as G does not contains a separating edge,
Lemma 16 leads to a contradiction. In the case q = 1, it can be proved that H1 contains a
cut vertex, implying the existence of a marginal edge in G, a contradiction to Lemma 20. J

Non-biconnected obstructions. The second part of the proof of Theorem 10 identifies the
non-biconnected elements of Õ2.

I Lemma 22. The non-biconnected graphs in Õ2 are the graphs in {A⊕B | A,B ∈ B(1)
2 }.

Proof. (sketch) From Lemma 4 and Lemma 13, it is enough to prove that Õ(1)
2 ⊆ B(1)

2 . We
assume, towards a contradiction, that there is some 1-rooted graph G = (G, 〈r〉) ∈ Õ(1)

2 \B
(1)
2 .

Observe that G is B(1)
2 -free and G is biconnected. From Lemma 15, we can assume that G

does not have separating edges. Let J = 2×G. As the underlying graphs of the 2-rooted
graphs in B(1)

2 are {K4,W1,W2}-free, Lemma 4 implies that J is B2-free and thereby K4-free.
It can easily be seen that r has more than two neighbors. Also one may consider a 2-tree T
that contains G as a spanning subgraph and satisfies the following properties

(D1) If an edge is marginal in T then it is also marginal in G.
(D2) If an edge is simplicial in T then one of its endpoints have degree 2 in G.
(D3) If an edge is a separating edge of G, then it is also a separating edge in T .

FSTTCS 2019

7:12 Connected Search for a Lazy Robber

Let z be a neighbor of r. Because of (D3), the edge e = rz is either a marginal or a simplicial
edge of T . We claim that e is marginal. Indeed, if e is simplicial, then from (D2) z has degree
2. Let w be the other neighbor of z. Notice that one of the 2-components of the s-triple
(G, r, w) is isomorphic to Rrw, a contradition to Lemma 19. We now know that e = rz is
a marginal edge. Let t be the base of e. cleanly (G, r, t) is an s-triple and tr 6∈ E(G) as G
does not have separating edges. We denote by U = U1, . . . ,Uq the 2-components of (G, r, t).
Our next step is to prove that all 2-rooted graphs in U are simple. This, together with
Lemma 19 imply that all graphs in U are isomorphic to Rt

r. This means that G contains
as a contraction some Y(`)

t for some ` ≥ 3. As each such Y(`)
t belongs to B(1)

2 we have a
contradiction. J

References
1 Isolde Adler. Open Problems related to computing obstruction sets. Manuscript, September

2008.
2 Steve Alpern and Shmuel Gal. The theory of search games and rendezvous. International Series

in Operations Research & Management Science, 55. Kluwer Academic Publishers, Boston,
MA, 2003.

3 Brian Alspach. Searching and sweeping graphs: a brief survey. Matematiche (Catania),
59(1-2):5–37 (2006), 2004.

4 Stefan Arnborg, Andrzej Proskurowski, and Derek G. Corneil. Forbidden minors characteriza-
tion of partial 3-trees. Discrete Mathematics, 80(1):1–19, 1990.

5 Lali Barrière, Paola Flocchini, Fedor V. Fomin, Pierre Fraigniaud, Nicolas Nisse, Nicola
Santoro, and Dimitrios M. Thilikos. Connected graph searching. Inf. Comput., 219:1–16, 2012.
doi:10.1016/j.ic.2012.08.004.

6 Lali Barrière, Pierre Fraigniaud, Nicola Santoro, and Dimitrios M. Thilikos. Searching Is Not
Jumping. In 29th International Workshop on Graph-Theoretic Concepts in Computer Science
(WG 2003), volume 2880 of LNCS, pages 34–45. Springer, 2003.

7 Micah J Best, Arvind Gupta, Dimitrios M. Thilikos, and Dimitris Zoros. Contraction
obstructions for connected graph searching. Discrete Applied Mathematics, 209:27–47, 2016.
9th International Colloquium on Graph Theory and Combinatorics, 2014, Grenoble.

8 D. Bienstock and Paul Seymour. Monotonicity in graph searching. J. Algorithms, 12(2):239–245,
1991.

9 Dan Bienstock, Neil Robertson, Paul D. Seymour, and Robin Thomas. Quickly excluding a
forest. J. Comb. Theory Ser. B, 52(2):274–283, 1991.

10 Daniel Bienstock. Graph searching, path-width, tree-width and related problems (a survey).
In Reliability of computer and communication networks (New Brunswick, NJ, 1989), volume 5
of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pages 33–49. Amer. Math. Soc.,
Providence, RI, 1991.

11 R. Breisch. An intuitive approach to speleotopology. Southwestern Cavers (A publication of
the Southwestern Region of the National Speleological Society), VI(5):72–78, 1967.

12 Erik D. Demaine, MohammadTaghi Hajiaghayi, and Ken-ichi Kawarabayashi. Algorithmic
Graph Minor Theory: Improved Grid Minor Bounds and Wagner’s Contraction. Algorithmica,
54(2):142–180, 2009. doi:10.1007/s00453-007-9138-y.

13 Nick D. Dendris, Lefteris M. Kirousis, and Dimitrios M. Thilikos. Fugitive-search games on
graphs and related parameters. Theoret. Comput. Sci., 172(1-2):233–254, 1997.

14 Dariusz Dereniowski. From Pathwidth to Connected Pathwidth. SIAM J. Discrete Math.,
26(4):1709–1732, 2012. doi:10.1137/110826424.

15 Reinhard Diestel and Malte Müller. Connected Tree-Width. Combinatorica, 38(2):381–398,
2018. doi:10.1007/s00493-016-3516-5.

https://doi.org/10.1016/j.ic.2012.08.004
https://doi.org/10.1007/s00453-007-9138-y
https://doi.org/10.1137/110826424
https://doi.org/10.1007/s00493-016-3516-5

I. Adler, C. Paul, and D.M. Thilikos 7:13

16 Paola Flocchini, Miao Jun Huang, and Flaminia L. Luccio. Contiguous Search in the Hypercube
for Capturing an Intruder. In Proceedings of the 19th International Parallel and Distributed
Processing Symposium (IPDPS 2005) IPDPS. IEEE Computer Society, 2005.

17 Paola Flocchini, Miao Jun Huang, and Flaminia L. Luccio. Decontamination of chordal rings
and tori using mobile agents. Int. J. of Found. of Comp. Sc., 18(3):547–564, 2007.

18 Paola Flocchini, Miao Jun Huang, and Flaminia L. Luccio. Decontamination of hypercubes
by mobile agents. Networks, page to appear, 2007.

19 F. V. Fomin, D. M. Thilikos, and I. Todinca. Connected Graph Searching in Outerplanar
Graphs. Electronic Notes in Discrete Mathematics, 22:213–216, 2005. 7th International
Colloquium on Graph Theory. Short communication.

20 Fedor V. Fomin and Dimitrios M. Thilikos. On the monotonicity of games generated by
symmetric submodular functions. Discrete Appl. Math., 131(2):323–335, 2003. Submodularity.
doi:10.1016/S0166-218X(02)00459-6.

21 Fedor V. Fomin and Dimitrios M. Thilikos. An annotated bibliography on guaranteed graph
searching. Theoret. Comput. Sci., 399(3):236–245, 2008.

22 Pierre Fraigniaud and Nicolas Nisse. Connected Treewidth and Connected Graph Searching.
In Proceedings of the 7th Latin American Symposium on Theoretical Informatics (LATIN
2006), volume 3887 of LNCS, pages 479–490. Springer, 2006.

23 Pierre Fraigniaud and Nicolas Nisse. Connected Treewidth and Connected Graph Searching.
In 7th Latin American Symposium on Theoretical Informatics (LATIN 2006), volume 3887 of
LNCS, pages 479–490. Springer, 2006.

24 Pierre Fraigniaud and Nicolas Nisse. Monotony Properties of Connected Visible Graph
Searching. In 32nd International Workshop on Graph-Theoretic Concepts in Computer Science
(WG 2006), volume 4271 of LNCS, pages 229–240. Springer, 2006.

25 Matthias Hamann and Daniel Weißauer. Bounding Connected Tree-Width. SIAM J. Discrete
Math., 30(3):1391–1400, 2016. doi:10.1137/15M1044618.

26 Philippe Jégou and Cyril Terrioux. Bag-Connected Tree-Width: A New Parameter for Graph
Decomposition. In International Symposium on Artificial Intelligence and Mathematics, ISAIM
2014, Fort Lauderdale, FL, USA, January 6-8, 2014, 2014. URL: http://www.cs.uic.edu/
pub/Isaim2014/WebPreferences/ISAIM2014_Jegou_Terrioux_New.pdf.

27 Philippe Jégou and Cyril Terrioux. Tree-Decompositions with Connected Clusters for Solving
Constraint Networks. In Barry O’Sullivan, editor, Principles and Practice of Constraint
Programming - 20th International Conference, CP 2014, Lyon, France, September 8-12, 2014.
Proceedings, volume 8656 of Lecture Notes in Computer Science, pages 407–423. Springer,
2014. doi:10.1007/978-3-319-10428-7_31.

28 Philippe Jégou and Cyril Terrioux. Combining restarts, nogoods and bag-connected decompos-
itions for solving CSPs. Constraints, 22(2):191–229, 2017. doi:10.1007/s10601-016-9248-8.

29 Marcin Kaminski, Daniël Paulusma, and Dimitrios M. Thilikos. Contracting planar graphs to
contractions of triangulations. J. Discrete Algorithms, 9(3):299–306, 2011. doi:10.1016/j.
jda.2011.03.010.

30 Nancy G. Kinnersley and Michael A. Langston. Obstruction set Isolation for the Gate Matrix
Layout Problem. Discrete Applied Mathematics, 54:169–213, 1994.

31 Lefteris M. Kirousis and Christos H. Papadimitriou. Interval graphs and searching. Discrete
Math., 55(2):181–184, 1985.

32 Lefteris M. Kirousis and Christos H. Papadimitriou. Searching and pebbling. Theoret. Comput.
Sci., 47(2):205–218, 1986.

33 J. Lagergren. Upper bounds on the size of obstructions and intertwines. J. Comb. Theory,
Ser. B, 73:7–40, 1998.

34 Andrea S. LaPaugh. Recontamination does not help to search a graph. J. Assoc. Comput.
Mach., 40(2):224–245, 1993.

FSTTCS 2019

https://doi.org/10.1016/S0166-218X(02)00459-6
https://doi.org/10.1137/15M1044618
http://www.cs.uic.edu/pub/Isaim2014/WebPreferences/ISAIM2014_Jegou_Terrioux_New.pdf
http://www.cs.uic.edu/pub/Isaim2014/WebPreferences/ISAIM2014_Jegou_Terrioux_New.pdf
https://doi.org/10.1007/978-3-319-10428-7_31
https://doi.org/10.1007/s10601-016-9248-8
https://doi.org/10.1016/j.jda.2011.03.010
https://doi.org/10.1016/j.jda.2011.03.010

7:14 Connected Search for a Lazy Robber

35 Thomas W. Mattman. Forbidden Minors: Finding the Finite Few. In Aaron Wootton, Valerie
Peterson, and Christopher Lee, editors, A Primer for Undergraduate Research: From Groups
and Tiles to Frames and Vaccines, pages 85–97, Cham, 2017. Springer International Publishing.
doi:10.1007/978-3-319-66065-3_4.

36 Rolf H. Möhring. Graph problems related to gate matrix layout and PLA folding. In
Computational graph theory, volume 7 of Comput. Suppl., pages 17–51. Springer, Vienna, 1990.

37 Nicolas Nisse. Connected graph searching in chordal graphs. Discrete Applied Mathematics,
157(12):2603–2610, 2009. Second Workshop on Graph Classes, Optimization, and Width
Parameters. doi:10.1016/j.dam.2008.08.007.

38 Nicolas Nisse. Network Decontamination, pages 516–548. Springer International Publishing,
Cham, 2019. doi:10.1007/978-3-030-11072-7_19.

39 T. D. Parsons. Pursuit-evasion in a graph. In Theory and applications of graphs, volume 642
of Lecture Notes in Math., pages 426–441. Springer, Berlin, 1978.

40 Neil Robertson and P. D. Seymour. Graph Minors. XX. Wagner’s conjecture. Journal of
Combinatorial Theory, Series B, 92(2):325–357, 2004.

41 Daniel P. Sanders. On linear recognition of tree-width at most four. SIAM J. Discrete Math.,
9(1):101–117, 1996.

42 P. D. Seymour and Robin Thomas. Graph searching and a min-max theorem for tree-width.
J. Comb. Theory Ser. B, 58(1):22–33, 1993.

https://doi.org/10.1007/978-3-319-66065-3_4
https://doi.org/10.1016/j.dam.2008.08.007
https://doi.org/10.1007/978-3-030-11072-7_19

Parameterized Streaming Algorithms for
Min-Ones d-SAT
Akanksha Agrawal
Department of Computer Science,
Ben-Gurion University of the Negev,
Beer-Sheva, Israel
akanksha.agrawal.2029@gmail.com

Arindam Biswas
The Institute of Mathematical Sciences, HBNI,
Chennai, India
arindam.b@ftml.net

Édouard Bonnet
CNRS, ENS de Lyon,
Université Claude Bernard Lyon 1
LIP UMR5668, France
edouard.bonnet@ens-lyon.fr

Nick Brettell
Department of Computer Science,
Durham University, Durham, UK
nbrettell@gmail.com

Radu Curticapean
BARC, University of Copenhagen,
Copenhagen, Denmark
ITU Copenhagen, Copenhagen, Denmark
radu.curticapean@gmail.com

Dániel Marx
Institute for Computer Science and Control,
MTA SZTAKI, Budapest, Hungary
dmarx@cs.bme.hu

Tillmann Miltzow
Department of Computer Science,
Utrecht University, Utrecht, Netherlands
t.miltzow@googlemail.com

Venkatesh Raman
The Institute of Mathematical Sciences, HBNI,
Chennai, India
vraman@imsc.res.in

Saket Saurabh
The Institute of Mathematical Sciences, HBNI,
Chennai, India
Department of Computer Science,
University of Bergen, Bergen, Norway
saket@imsc.res.in

Abstract
In this work, we initiate the study of the Min-Ones d-SAT problem in the parameterized streaming
model. An instance of the problem consists of a d-CNF formula F and an integer k, and the
objective is to determine if F has a satisfying assignment which sets at most k variables to 1. In
the parameterized streaming model, input is provided as a stream, just as in the usual streaming
model. A key difference is that the bound on the read-write memory available to the algorithm is
O(f(k) log n) (f : N → N, a computable function) as opposed to the O(log n) bound of the usual
streaming model. The other important difference is that the number of passes the algorithm makes
over its input must be a (preferably small) function of k.

We design a (k + 1)-pass parameterized streaming algorithm that solves Min-Ones d-SAT
(d ≥ 2) using space O

(
(kdck + kd) log n

)
(c > 0, a constant) and a (d + 1)k-pass algorithm that uses

space O(k log n). We also design a streaming kernelization for Min-Ones 2-SAT that makes (k + 2)
passes and uses space O

(
k6 log n

)
to produce a kernel with O

(
k6) clauses.

To complement these positive results, we show that any k-pass algorithm for Min-Ones d-SAT
(d ≥ 2) requires space Ω

(
max

{
n1/k/2k, log (n/k)

})
on instances (F, k). This is achieved via a

reduction from the streaming problem POT Pointer Chasing (Guha and McGregor [ICALP
2008]), which might be of independent interest. Given this, our (k + 1)-pass parameterized streaming
algorithm is the best possible, inasmuch as the number of passes is concerned.

In contrast to the results of Fafianie and Kratsch [MFCS 2014] and Chitnis et al. [SODA 2015],
who independently showed that there are 1-pass parameterized streaming algorithms for Vertex
Cover (a restriction of Min-Ones 2-SAT), we show using lower bounds from Communication

© Akanksha Agrawal, Arindam Biswas, Édouard Bonnet, Nick Brettell, Radu Curticapean,
Dániel Marx, Tillmann Miltzow, Venkatesh Raman, and Saket Saurabh;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 8; pp. 8:1–8:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:akanksha.agrawal.2029@gmail.com
mailto:arindam.b@ftml.net
mailto:edouard.bonnet@ens-lyon.fr
mailto:nbrettell@gmail.com
mailto:radu.curticapean@gmail.com
mailto:dmarx@cs.bme.hu
mailto:t.miltzow@googlemail.com
mailto:vraman@imsc.res.in
mailto:saket@imsc.res.in
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Parameterized Streaming Algorithms for Min-Ones d-SAT

Complexity that for any d ≥ 1, a 1-pass streaming algorithm for Min-Ones d-SAT requires space
Ω(n). This excludes the possibility of a 1-pass parameterized streaming algorithm for the problem.
Additionally, we show that any p-pass algorithm for the problem requires space Ω(n/p).

2012 ACM Subject Classification Theory of computation → Streaming models; Theory of
computation → Fixed parameter tractability; Theory of computation → Streaming, sublinear
and near linear time algorithms; Mathematics of computing → Combinatorial algorithms

Keywords and phrases min, ones, sat, d-sat, parameterized, kernelization, streaming, space, efficient,
algorithm, parameter

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.8

1 Introduction

The satisfiability problem (SAT) is among most studied NP-complete problems and
serves as the canonical problem for NP, being the first problem which was shown to
be NP-complete [6, 23]. It is an important problem in both theory and practice, and
together with its variants, it appears in nearly every domain of Computer Science (see
for example [9, 15, 16, 17, 30]). Because of this, the problem has been studied in various
paradigms such as classical Complexity Theory [3], Approximation Algorithms [22, 34], Exact
Algorithms [14, 32], Parameterized Complexity [7, 31], and Heuristics [16].

A variant which frequently appears in the literature is d-SAT (d ≥ 1), where problem
instances have at most d variables per clause. While d-SAT is NP-complete for d ≥ 3, 2-SAT
is a classic example of a tractable, i.e. polynomial-time-solvable problem. In this work, we
study an optimization version of d-SAT in the framework of parameterized streaming, which
combines streaming algorithms and parameterized algorithms.

The streaming framework was formulated to study the behaviour of algorithms that
process large amounts of data in a sequential manner. The input appears as a sequence of
items and the assumption is that the amount of read-write memory available to the algorithm
is very limited, typically logarithmic in the total size of the input. Because of this, the
algorithm is unable to store the entirety of its input in memory, and since the input appears
in a sequence, the algorithm does not have random access to the it. It may however make
multiple passes over the input. The goal in the streaming framework is to process the input
by making as few passes (ideally, just one) over it as possible while using as little memory as
possible. The study of problems in this framework dates back to the 1980s [12, 28], although
the framework was formally established only in 1996 [2, 20]. The other player in the combined
framework that we employ is Parameterized Complexity – an approach pioneered by Downey
and Fellows [8]. For details on Parameterized Complexity, we refer the reader to the books
of Downey and Fellows [8], Flum and Grohe [13], Niedermeier [29], and the recent book of
Cygan et al. [7]. Appendix A provides a short introduction to the subject.

Min-Ones d-Sat and the Parameterized Streaming Model. We study the following
optimization version of d-SAT which, among other things, generalizes Vertex Cover
and d-Hitting Set. For d ≥ 1, the problem is defined as follows.

Min-Ones d-SAT Parameter: k

Instance: (F, k), where F is a boolean formula with at most d literals per clause, and
k ∈ N.
Question: Can F be satisfied by setting at most k of its variables to 1?

https://doi.org/10.4230/LIPIcs.FSTTCS.2019.8

A. Agrawal et al. 8:3

It should be noted here that the problem 2-SAT admits a polynomial-time algorithm [4,
10, 25]. Its minimization version however, being a generalization of Vertex Cover is
NP-hard [33]. Indeed, the graph in a Vertex Cover instance can be seen as a formula
in which the vertices are variables and each edge is a monotone clause containing the two
endpoints as (positive) literals.

Fafianie and Kratsch [11] considered the question of kernelizing d-Hitting Set,
d-Set Matching and Edge Dominating Set in the streaming model. Chitnis et al. [5]
studied the problems Maximal Matching and Vertex Cover in the parameterized
streaming model. The space used by these algorithms is O(f(k) logn), where k is the
parameter, n is the size of the input, and f : N→ N is a computable function.

The parameterized streaming model relaxes the space constraint of the usual streaming
model to f(k) logn, and allows the algorithm to make at most g(k) passes over its input,
where g : N→ N is a (preferably slowly-growing) computable function. The goal now is to
make as few passes over the input as possible, relative to the parameter. Under these new
constraints, it is possible to construct streaming algorithms that have more refined space
requirements, and we can also perform a more delicate analysis of the streaming complexity
of the problem in question. Our results here illustrate this fact.

Our Results. In Section 2, we describe a parameterized streaming algorithm for Min-Ones
d-SAT (d ≥ 2) that solves instances (F, k) using O

(
(kdck + kd) logn

)
(c > 0, a constant) bits

of space and makes k + 1 passes. We then show that by carefully simulating the execution
stack of the standard branching algorithm for Min-Ones d-SAT, a (d+ 1)k-pass, O(k logn)-
space algorithm can be obtained. We believe that such an approach will be useful in the
design of parameterized streaming algorithms for other problems as well. As an application,
we show how the two algorithms can be used to solve IP2 (a restricted Integer Programming
problem) in the parameterized streaming model.

Section 3 describes a streaming kernelization for Min-Ones 2-SAT and an application
of the algorithm to IP2. By making k + 2 passes over the input formula, it produces a
kernel with O

(
k6) clauses while using O

(
k6 logn

)
bits of space. It is known that for d ≥ 3,

Min-Ones d-SAT does not admit a polynomial kernel [24] under certain (fairly reasonable)
assumptions, ruling out a generalization of this result to larger values of d. Our algorithm
also provides an alternative to the known kernelization [27] for the problem, since it can also
be executed in the less restrictive random-access machine (RAM) model.

We then exhibit various lower bounds in Section 4 to complement the positive results
above. For d ≥ 2, we show that any k-pass streaming algorithm for Min-Ones-d-
SAT requires Ω

(
max

{
n1/k/2k, log (n/k)

})
bits of space in the worst case. This result

is obtained by combining a well-known lower bound for the DISJk [26] problem from
Communication Complexity and a lower bound for the streaming problem POT Pointer
Chasing [18]. This (unconditional) lower bound implies, among other things, that the k + 1
pass Min-Ones d-SAT (d ≥ 2) algorithm of section 2 is pass-optimal.

The next result in the section shows that even for d = 1, any 1-pass algorithm for
Min-Ones d-SAT requires space Ω(n). This is in contrast to the results of Fafianie
and Kratsch [11] and Chitnis et al. [5], who independently showed that there are 1-pass
parameterized streaming algorithms for the Vertex Cover problem (a restriction of
Min-Ones 2-SAT). Finally, we show that any p-pass algorithm for Min-Ones d-SAT
(d ≥ 1), where p may be a function of both n and k, requires space O(n/p).

I Note 1.1. Although we do not provide an explicit accounting of the time used by our
algorithms, it is not difficult to see that the streaming FPT algorithms all run in FPT time
overall and the kernelizations, in polynomial time.

FSTTCS 2019

8:4 Parameterized Streaming Algorithms for Min-Ones d-SAT

Related Results. Min-Ones 2-SAT was first studied by Gusfield and Pitt [19], who
gave a polynomial-time 2-approximation algorithm for the problem. Misra et al. [27]
exhibited an equivalence between Min-Ones-2 AT and Vertex-Cover via a polynomial-
time parameter-preserving reduction. Fafianie and Kratsch [11], and Chitnis et al. [5]
showed that Vertex Cover admits a single-pass, O

(
k2)-space algorithm. As noted earlier,

Min-Ones 2-SAT generalizes Vertex Cover. Analogously, Min-Ones d-SAT generalizes
d-Hitting Set. The question of kernelizing d-Hitting-Set was studied by Abu-Khzam [1],
and Fafianie and Kratsch [11], who gave a single-pass algorithm that produces a kernel with
O
(
kd
)
sets.

Preliminaries. Here we introduce some basic concepts and notation used in the rest of the
paper. For n ∈ N, [n] denotes the set {1, 2, . . . , n}. Let x ∈ {0, 1}n and i ∈ [n]. The ith
coordinate of x is denoted by x[i]. Consider a set of variables V = {x1, . . . , xn}. A literal is a
variable xi (called an unnegated literal) or its negation ¬xi (called a negated literal). A clause
is a disjunction (OR) of literals, e.g. (x1 ∨ ¬x2 ∨ ¬x3). It is called monotone if it consists
entirely of unnegated literals, and is called anti-monotone if it consists entirely of negated
literals. Clauses containing both negated and unnegated literals are called non-monotone.

A conjunction (AND) of clauses is called a CNF formula. When each clause has at most d
literals, it is called a d-CNF formula. An assignment for a CNF formula F over the variable
set V is a subset S ⊆ V . The assignment satisfies a clause if there is a variable in S that
appears unnegated in the clause or a variable in V \ S that appears negated in the clause.
An assignment which satisfies all clauses in a formula is called a satisfying assignment for
the formula.

2 Streaming FPT Algorithms

The main result of this section is an algorithm that solves instances (F, k) of
Min-Ones d-SAT in k + 1 passes using space O

(
(kdck + kd) logn

)
(c > 0, a constant).

We also describe how to simulate the execution of the standard branching algorithm for the
problem to solve in instances in (d+ 1)k passes using space O(k logn) (see Appendix B.1).
Using these algorithms as subroutines, we then show how IP2, a restricted version of the
Integer Programming problem, where every constraint has at most two variables, can be
solved in the parameterized streaming model (see Appendix D).

The (k+ 1)-pass algorithm begins by a making a single pass over the formula and obtains
a set of minimal assignments for certain “essential” monotone clauses in the formula. In the
next k − 1 passes, these assignments are extended as much as possible using the implications
appearing in the formula. Finally, the algorithm makes an additional pass to check if the
formula as a whole is satisfied by one of the extended assignments.

Let (F, k) be an instance of Min-Ones 2-SAT on the variable set V = {x1, x2, . . . , xn}.
The next result shows how a streaming kernelization for d-Hitting Set (defined below) can
be used to enumerate minimal solutions for a certain hitting set problem.

d-Hitting Set Parameter: k

Instance: (U,F , k), where F is a family of subsets of U of size at most d, and k ∈ N.
Question: Is there a set S ⊆ U of size at most k such that S ∩A 6= ∅ for all A ∈ F ?

A. Agrawal et al. 8:5

I Proposition 2.1 (♠1). There is an algorithm Enum-d-HS, that finds the set Sk, of all
minimal d-hitting sets of size at most k, for an instance I = (X , U, k) of d-Hitting Set
in time O

(
dk|I|

)
. Moreover, |Sk| ∈ O

(
dk
)
and the algorithm uses space O

(
k|I|+ kdkbU

)
,

where |I| is the size of I and bU is maximum size of the elements of U in bits.

The following result follows from Observation 1, Theorem 1 and Lemma 7 of [11].

I Proposition 2.2. There is a 1-pass streaming algorithm called Stream-HS for d-Hitting-
Set, which given an instance I = (X , U, k) with umax as the maximum element of U , returns
an (equivalent instance) I ′ = (X ′, U ′ ⊆ U, k) using O

(
kd log |U |

)
bits of memory and O

(
kd
)

time at each step, such that the following conditions are satisfied.
1. |X ′| ∈ O

(
kd
)
and the bit size of I ′ is bounded by O

(
kd log |U |

)
.

2. Elements of U ′ are represented using log |U | bits.
3. S ⊆ U (or U ′) of size at most k is a solution to I if and only if it is a solution to I ′.

We note that in item 1 of Proposition 2.2, the size of I ′ can be bounded by O
(
kd log k

)
,

by relabeling, but we want to preserve the exact variables, so we do not use relabeling.
Next, we apply the algorithm Stream-HS of Proposition 2.2 to obtain a set, which we call

a set of essential monotone clauses, C1, and the set S1 of all minimal assignments (as sets of
variables set to 1) for them of size at most k, as follows.

Pass 1. For each monotone clause C = (x1∨x2∨· · ·∨xd′) (where d′ ≤ d) seen in the stream,
pass the set {x1, x2, . . . , xd′} to Stream-HS. Let It = (Xt, Ut, k) be the output of Stream-HS
once the entire stream has been read. Set C1 = Xt. Using Proposition 2.1, compute the set
S1, of all minimal d-hitting sets of size at most k for It.

The next lemma bounds the time and the space used in Pass 1.

I Lemma 2.3 (♠). Pass 1 uses space O
(
(kd + dk)k logn

)
and time O

(
dkkd logn

)
after

reading each clause from the stream.

Let C+ be the set of all monotone clauses of F, let F+ = ∧C∈C+C and F+
1 = ∧C∈C1C.

Recall that C1 is the set of clauses computed in Pass 1. We have the following observation,
which follows from Proposition 2.1 and item 3 of Proposition 2.2.

I Observation 2.4. S1 is the set of all minimal satisfying assignments of size at most k for
both F+ and F+

1 .

The next observation relates satisfying assignments to F and the family S1.

I Observation 2.5 (♠). Let S be the set of all minimal satisfying assignments of size at
most k for F. Then for each S ∈ S, there is S′ ∈ S1, such that S′ ⊆ S.

Now we describe the next k − 1 passes. The algorithm constructs a set Sprm of prime
partial assignments, which will be enough to resolve the instance. Initially, we set Sprm = S1.

Pass ` (2 ≤ ` ≤ k). Consider a non-monotone clause C = (xC1 ∨ xC2 · · · ∨ xCd1
∨ ¬yC1 ∨

¬yC2 ∨ . . .¬yCd2
) (where d1 + d2 ≤ d) seen in the stream. For each S ∈ Sprm, such that

{yC1 , yC2 , . . . yCd2
} ⊆ S and {xC1 , xC2 , . . . xCd1

} ∩ S = ∅ we do the following.
If |S| = k, then remove S from Sprm.
Otherwise, |S| ≤ k − 1. Let S ′prm = Sprm, and for i ∈ [d1], let Si = S ∪ {xCi }. Set
Sprm = (S ′prm \ {S}) ∪ {Si | i ∈ [d1]}.

1 Proofs of results marked with a ♠ can be found in the appendices.

FSTTCS 2019

8:6 Parameterized Streaming Algorithms for Min-Ones d-SAT

Clearly, Pass `, where 2 ≤ ` ≤ k, on reading a clause C uses time O(|S1|dk). Moreover, it
modifies the sets in Sprm (increasing |Sprm| by at most a factor of d), by either removing a set
S ∈ S1 completely, or adding one more element to S (when the size is less than k). The above
procedure is executed only for k− 1 passes. Thus, it always maintains that |Sprm| ∈ O

(
dO(k))

(see Proposition 2.1) and each set in Sprm has at most k elements (each representable by logn
bits). Thus, the (total) space used by the algorithm is bounded by O

(
(kd + dO(k))k logn

)
.

For simplicity of description, we introduce the following notation. We set S1
prm = S1 and

for each ` ∈ [k], we let S`prm denote the the set Sprm after the execution of Pass `. We let
ρ = (Q1, Q2, . . . , Qt) be the sequence of non-monotone clauses in F, where the ordering is
given by the order of their appearance in the stream. For ` ∈ [k] \ {1}, i ∈ [t], we let S`prm(i)
be the set Sprm (after modification, if any) at Pass ` after reading the clause Qi. Furthermore,
we let S`prm(0) be the set S`−1

prm . Next, we prove some results that will be useful in establishing
the correctness of the algorithm.

I Lemma 2.6. Let S be the set of all minimal assignments for F of size at most k. For
each ` ∈ [k] and S ∈ S, there is S′ ∈ S`prm, such that S′ ⊆ S.

Proof. We prove this using induction on `. The claim follows for ` = 1 from Observation 2.5.
This forms the base case of our induction. Next, we assume that the claim holds for each ` ≤ z
(for some 1 ≤ z ≤ k−1) and then we prove it for ` = z+1. At the beginning of `th pass when
no non-monotone clause is read from the stream, we have for each S ∈ S, there is S′ ∈ S`prm(0),
such that S′ ⊆ S. This follows from the fact that S`prm(0) = S`−1

prm . Next, we assume that at
Pass `, the claim holds after reading the clause Qi, for each i ≤ p, where p ∈ [t−1]∪{0}. Now
we prove the claim for Qp+1 = (xp+1

1 ∨xp+1
2 · · ·∨xp+1

d1
∨¬yp+1

1 ∨¬yp+1
2 ∨ . . .¬yp+1

d2
). Consider

S ∈ S and let Ŝ ∈ S`prm(p), such that Ŝ ⊆ S. We will show that there is a set S′ ∈ S`prm(p+1),
such that S′ ⊆ S. Let X = {xp+1

1 , xp+1
2 , . . . , xp+1

d1
} and Y = {yp+1

1 , yp+1
2 , . . . , yp+1

d2
}. If Y 6⊆ Ŝ

or X ∩ Ŝ 6= ∅, then Ŝ ∈ S`prm(p+ 1). Hence, S′ = Ŝ is a set such that S′ ⊆ S. Otherwise, we
have Y ⊆ Ŝ and X ∩ Ŝ = ∅. Since S satisfies Qp+1, it must contain a variable, say xp+1

i∗ from
{xp+1

1 , xp+1
2 , . . . , xp+1

d1
}. AsX∩Ŝ = ∅, Ŝ ⊆ S, |S| ≤ k, and xp+1

i∗ ∈ S, we have that |S| ≤ k−1.
For i ∈ [d1], let Ŝi = Ŝ ∪ {xp+1

i }. Recall that S`prm(p+ 1) = (S`prm(p) \ {Ŝ}) ∪ {Ŝi | i ∈ [d1]}.
From the above we can conclude that Ŝi∗ ⊆ S and Ŝi∗ ∈ S`prm(p + 1). This concludes
the proof. J

I Observation 2.7. For i ∈ [k − 1] and a set S ∈ Siprm, if S ∈ Si+1
prm , then for each

` ∈ {i, i+ 1, . . . , k}, we have S ∈ S`prm.

Proof. Consider i ∈ [k − 1] and a set S ∈ Siprm, such that S ∈ Si+1
prm . Let ` ∈

{i + 2, i + 3 . . . , k} be the lowest integer, such that S /∈ S`prm (if such an ` does not
exist, the claim trivially holds). Since S ∈ S`−1

prm and S /∈ S`prm, there is a non-monotone
clause Q = (x1 ∨ x2 · · · ∨ xd1 ∨ ¬y1 ∨ ¬y2 ∨ . . .¬yd2), such that {y1, y2, . . . , yd2} ⊆ S and
{x1, x2, . . . , xd1} ∩ S = ∅. But we also encountered Q at (`− 1)th pass, and S should have
been modified/deleted, which is a contradiction. J

I Lemma 2.8. Let S be the set of all assignments for F of size at most k. For every S ∈ S,
there is S′ ∈ Sprm, such that S′ ⊆ S and S′ satisfies every clause of F.

Proof. Consider S ∈ S and let S′ ∈ Sprm = Skprm be a set such that S′ ⊆ S. The existence
of S′ is guaranteed by Lemma 2.6. We will show that S′ satisfies all the clauses of F. By
the construction of Sprm, there is a set Ŝ ∈ S1, such that Ŝ ⊆ S′. Thus, S′ satisfies each
monotone clause of F (see Proposition 2.1 and 2.2). Next, consider an anti-monotone clause

A. Agrawal et al. 8:7

C = (¬y1 ∨ ¬y2 ∨ . . .¬yd′) (where d′ ≤ d), and let Y = {y1, y2, . . . , yd′}. Since S satisfies
C, YS = Y \ S is a non-empty set. As S′ ⊆ S, we have S′ ∩ YS = ∅. Thus, S′ satisfies
C. If S′ satisfies all the non-monotone clauses of F, then the claim follows. Otherwise, let
C = (x1 ∨ x2 · · · ∨ xd1 ∨ ¬y1 ∨ ¬y2 ∨ . . .¬yd2) be a non-monotone clause in F which is not
satisfied by S′, and let X = {x1, x2, . . . , xd1} and Y = {y1, y2, . . . , yd2}. Since S′ does not
satisfy C, we have Y ⊆ S′ and X ∩ S′ = ∅. Notice that Y ⊆ S as S′ ⊆ S. As S satisfies C,
we have S∩X 6= ∅. This together with the fact that X ∩S′ = ∅ implies that |S′| ≤ k−1. We
can assume that Ŝ 6= ∅, as Sprm can be assumed to contain only non-empty sets, otherwise, ∅
is a solution to F. The above discussions together with Observation 2.7 and the fact that
|S′| ≤ k − 1, implies that S′ ∈ Sk−1

prm (and we have S′ ∈ Skprm). But then at the kth pass, we
would have encountered C, and S′ would be replaced by d1 many sets, namely S′ ∪ {xi}, for
each i ∈ [d1]. This concludes the proof. J

In the (k + 1)th pass, the algorithm performs the following steps, whose correctness is
established by the discussion above.

Pass k + 1. Consider a clause C seen in the stream. If there is S ∈ Sprm, such that S does
not satisfy C, then remove S from Sprm. When the stream is over, if Sprm 6= ∅, then return
yes, and otherwise, return no.

We now have the following theorem.

I Theorem 2.9. Instances (F, k) of Min-Ones d-SAT (d ≥ 2) can be solved in k+ 1 passes
using space O

(
(kdck + kd) logn

)
(c > 0, a constant).

By carefully adapting the standard branching algorithm for Min-Ones-d-SAT, we obtain
the following theorem.

I Theorem 2.10 (♠). Instances (F, k) of Min-Ones d-SAT (d ≥ 2) can be solved in
(d+ 1)k passes using space O(k logn).

Using Theorem 2.9 and 2.10 we can obtain the following result for IP2, a restricted Integer
Programming problem in which every constraint has at most 2 variables (see Appendix D
for details).

I Theorem 2.11 (♠). IP2 admits algorithms that solve instances (P, k) in
k + 1 passes using space O(f(k) logn) (f : N→ N, a computable function), and in
3k passes using space O(f(k) logn).

3 Streaming Kernelizations

In this section, we describe a kernelization for Min-Ones 2-SAT that makes k + 2 passes
over instances (F, k) using space O

(
k6 logn

)
and produces a kernel with O

(
k6) clauses. In

the first pass, the algorithm computes a set of monotone clauses as in Section 2. Then over
k more passes, for each variable x appearing in these clauses, the algorithm computes a set
of variables which must be set to one if x is set to 1, and the implications that force this.
In the last pass, it collects all anti-monotone clauses which only contain variables that also
appear in the stored clauses.

We now formally describe our algorithm. Let (F, k) be an instance of Min-Ones 2-SAT
on n variables. In the first pass we apply the algorithm Stream-HS of Proposition 2.2 to
obtain a set of monotone clauses, C1. That is, we do the following.

FSTTCS 2019

8:8 Parameterized Streaming Algorithms for Min-Ones d-SAT

Pass 1. Obtain a set C1 of monotone clauses of F using the same procedure as the first
pass of Section 2.

Let V be the set of variables appearing in F, V1 be the set of variables appearing in C1.
For each variable v ∈ V1, we maintain a set of variables Pv and a set of clauses Pv. Initially,
Pv = {v} and Pv = ∅, for v ∈ V1. Now we are ready to describe our next k passes.

Pass `. Consider a non-monotone clause C = (x ∨ ¬y) seen in the stream. For each v ∈ V1
such that y ∈ Pv, x /∈ Pv, C /∈ Pv, and |Pv| ≤ k, add x and C to the sets Pv and Pv,
respectively.

For v ∈ V1 and ` ∈ [k + 1], by Pv(`) we denote the set Pv at the end of pass ` (or at the
beginning of pass `+ 1, when ` = 1). Furthermore, we let P = ∪v∈V1Pv and P = ∪v∈V1Pv.

I Observation 3.1 (♠). Let i ∈ [k] and v ∈ V1, such that |Pv(i)| = |Pv(i + 1)|. For all
` ∈ {i, i+ 1, . . . , k + 1}, we have |Pv(`)| = |Pv(i)|.

I Lemma 3.2. Let S be an assignment which satisfies all clauses in P. For each v ∈ V1 ∩S,
we have Pv ⊆ S.

Proof. Consider v ∈ V1∩S and let ρ = (C1 = (x1∨¬y1), C2 = (x2∨¬y2), . . . , Ct = (xt∨¬yt))
be the order in which the clauses in Pv were added. Note that Px = {xi | i ∈ [t]}. We will
show by induction on the index i ∈ [t] that each xi ∈ S. Before reading C1, the only element
in Pv was v. As C1 was added to Pv, it must hold that y1 = v. Since v ∈ S, and S satisfies
each clause in P , S must contain x1. For the induction hypothesis, we suppose that for some
p ∈ [t− 1], we have {xi | i ∈ [p]} ⊆ S. We will now show that xp+1 ∈ S. Since Cp+1 ∈ Pv
and Cp+1 appears after Ci in ρ, for each i ∈ [p], there exists z ∈ {xi | i ∈ [p]}, such that
z = yp+1. But since z ∈ S and S satisfies each clause in P, we have that xp+1 ∈ S. J

Let F′ be the 2-CNF formula containing all the anti-monotone clauses of F and all the
clauses in C1 ∪ P.

I Lemma 3.3. (F, k) is a YES instance of Min-Ones 2-SAT if and only if (F′, k) is a YES
instance of Min-Ones 2-SAT.

Proof. The forward direction follows from the fact that each clause in F′ is also a clause
in F. In the backward direction, let S be a solution to Min-Ones 2-SAT in (F′, k), and
S′ =

⋃
v∈V1∩S Pv. We show that S′ is a solution to Min-Ones-2-SAT in (F, k). Since

V1 ∩ S ⊆ S′, from Proposition 2.2 we have that S′ satisfies each monotone clause of F. From
Lemma 3.2 we have S′ ⊆ S. Thus, S′ satisfies each anti-monotone clause of F (F′ contains
all of them). If S′ satisfies each non-monotone clause of F, then the claim follows. Otherwise,
we have a non-monotone clause C = (x∨¬y) in F, which is not satisfied by S′. We have that
x /∈ S′ and y ∈ S′. Let Vy = {v ∈ V1 | y ∈ Pv}. The construction of S′ implies that there is
v∗ ∈ Vy such that v∗ ∈ S. From the construction of S′ we have that x /∈ Pv∗ . The above
discussions together with Observation 3.1 implies that we would have encountered C at a
pass i ≤ k, and we did not add x to Pv∗ . This means that |Pv∗ | ≥ k+ 1. But this contradicts
the fact that S has size at most k (note that from Lemma 3.2 we have Pv∗ ⊆ S). J

Let V2 = V1 ∪
(⋃

v∈V1
Pv
)
. We will construct a set B of anti-monotone clauses. Initially,

B = ∅. We now describe the (k + 2)th pass of our algorithm, which constructs the set B.

A. Agrawal et al. 8:9

Pass k + 2. For each anti-monotone clause C = (¬x ∨ ¬y) in the stream with {x, y} ⊆ V2
and C /∈ B, add C to B. Then forget the sets Pv, where v ∈ V1.

Let F̃ be the 2-CNF formula obtained from F by removing all anti-monotone clauses that
are not in B.

I Lemma 3.4 (♠). (F, k) is a yes-instance of Min-Ones-2-SAT if and only if (F̃, k) is a
yes-instance of Min-Ones 2-SAT.

Notice that we have stored the sets of clauses C1, P, and B, of sizes O
(
k2), O

(
k3), and

O
(
k6), respectively. This results in the instance (F̃, k) of Min-Ones 2-SAT. The above

discussions together with Lemma 3.4 implies the following theorem.

I Theorem 3.5. Min-Ones-2-SAT admits an algorithm that kernelizes instances (F, k) in
k + 2 passes using space O

(
k6 logn

)
and produces a kernel with O

(
k6) clauses.

4 Lower Bounds

We begin this section by exhibiting a reduction from the POT Pointer Chasing problem
(defined later) to Min-Ones 2-SAT and use it to prove the following theorem.

I Theorem 4.1. Any streaming algorithm that solves instances (F, k) of Min-Ones d-SAT
(d ≥ 2) in k passes requires space Ω

(
max

{
n1/k/2k, log n

k

})
, where n is the number of variables

in F .

The well-known truncated disjointness problem of Communication Complexity has the
following lower bound.

I Proposition 4.2 (Kushilevitz and Nisan [26], Example 2.12). Let n, k ∈ N with 0 ≤ k ≤ bn/2c.
Any deterministic protocol for DISJk requires Ω

(
log
(
n
k

))
bits of communication overall .

For some background on DISJk and other problems (INDEX and DISJ) appearing
in the proofs below, the reader is referred to Kushilevitz and Nisan’s standard work on
Communication Complexity [26].

Using the bound of Proposition 4.2, it is possible to prove the intuitively obvious notion
that a streaming algorithm which needs to keep track of locations in its input must use space
Ω(logn), where n is the size of its input.

I Lemma 4.3. Let MOdSSolve be a streaming algorithm for Min-Ones d-SAT (d ≥ 2)
that solves instances (F, k) of Min-Ones d-SAT on n variables using space g(n, k). For
any k ∈ {1, . . . , bn/2c}, if MOdSSolve makes p passes to solve instances (F, k), then
g(n, k) = Ω

(
(1/p) log

(
n
k

))
.

Proof. Consider the following protocol for DISJk, in which Alice receives the set S ⊆
{1, . . . , n} and Bob receives the set T ⊆ {1, . . . , n} (|S|, |T | = k). Alice constructs the
forumla FS =

∧
i∈S ¬xi ∨ ¬xi and Bob constructs the formula FT =

∧
i∈T xi ∨ xi. Observe

that (FS ∧ FT , k) is a YES instance of Min-Ones 2-SAT if and only if S ∩ T = ∅.
Now alice runs MOdSSolve with parameter k and FS as partial input, and passes its

memory rS to Bob. Bob resumes execution of MOdSSolve on the memory rS and feed it the
formula FT . With this, the algorithm makes the first pass over FS ∧ FT . Bob then passes
the algorithm’s memory rT back to Alice. Using rT , Alice resumes execution of MOdSSolve.
The process is repeated for as many passes as the algorithm requires over FS ∧FT . Once the
algorithm halts, Bob returns its output as his answer.

FSTTCS 2019

8:10 Parameterized Streaming Algorithms for Min-Ones d-SAT

1 2 3

4

5 6 7

8

9 10 11

12

13

post-order traversal: 1 2 3 4 5 6 7 8 9 10 11 12 13

stream: 3 3 f(1) f(2) f(3) f(4) f(5) f(6) f(7) f(8) f(9) f(10) f(11) f(12) f(13)

level

1

2

3

3

0 1 0 0 0 1 1 0 0

116

4

Figure 1 An instance of POT Pointer Chasing with parameters t = 3 and l = 2. The stream
consists of t, k and the values of f appearing as in the lexicographic post-order traversal of the tree.
In the tree, labels appear in black next to vertices, and the corresponding values of f appear in grey.
The chain of pointers leads to the vertex labelled 3, with f(3) = 0.

Since MOdSSolve outputs YES if and only if (FS ∧ FT , k) is a YES instance, the protocol
is valid. The amount of communication per pass between Alice and Bob is at most 2g(n, k),
so the total amount of communication is at most 2pg(n, k). From Proposition 4.2, we have
2pg(n, k) = Ω

(
log
(
n
k

))
, i.e. g(n, k) = Ω

(
(1/p) log

(
n
k

))
. J

The above result shows an Ω(logn) lower bound on the space used by any algorithm that
solves instances (F, k) of Min-Ones d-SAT in Ω(k) passes. This is quite weak, but it is
possible to strengthen the result substantially using a lower bound for the following POT
Pointer Chasing problem.

Consider a complete t-ary tree T with l+ 1 levels rooted at the vertex r. Let the levels be
numbered from 1 to l + 1, with the root being on level 1. For each non-leaf vertex v, define
vi to be the ith child of v (in the lexicographic ordering of its children). Given a function
f : V(T)→ {0, . . . , t− 1}, define f∗(v) = vf(v) for non-leaf vertices v and f∗(v) = f(v) for
leaf vertices. For i ∈ N, (f∗)i(r) denotes the result of applying f∗ to r repeatedly, i times.

POT Pointer Chasing

Instance: (T, f), where T is a complete t-ary tree with l+ 1 levels rooted at r, encoded
as a post-order traversal of its vertices, and f : V(T)→ {0, . . . , t− 1}.
Question: Is (f∗)l(r) = 1?

Figure 1 shows an instance with parameters t = 3 and l = 2. The following result exhibits
a tradeoff between the number of passes made by a streaming algorithm for POT Pointer
Chasing and the space it requires.

I Proposition 4.4 (Guha and McGregor [18], Theorem 1). Any p-pass streaming algorithm
that solves POT Pointer Chasing instances over t-ary trees with (p+ 1) levels requires
space Ω(t/2p) in the worst case.

I Lemma 4.5. Let (T, f) be an instance of POT Pointer Chasing, where T is a t-ary
tree with k + 1 levels. A boolean formula F can be constructed such that (T, f) is a YES
instance of POT Pointer Chasing if and only if (F, k) is a YES instance of Min-Ones
2-SAT.

Proof. The tree T has levels 1, . . . , k + 1, with the root r on level 1 and the leaves on level
k + 1. Since each internal vertex has t children, |V (T)| = tk+1−1

t−1 = O
(
tk
)
. Consider the

following boolean formula F with n = tk−1
t−1 = Θ

(
tk−1) variables.

A. Agrawal et al. 8:11

Let w = f∗(r), i.e. the f(r)th child of r, and Tw be the subtree of T rooted at w. The
variable set of F is {xv | v ∈ V(Tw)}. For each vertex v on level i = 2, . . . , k of T , F has the
clause xv → xf∗(v) ≡ ¬xv ∨ xf∗(v). For each leaf vertex v, F has the clause ¬xv ∨¬xv if and
only if f(v) = 0. In addition, F has the clause xw ∨ xw.

We now show that (F, k) is an equivalent instance of Min-Ones 2-SAT. Consider the leaf
vertex z = (f∗)k(r), i.e. the vertex reached by chasing pointers from the root of T . If (T, f)
is a YES-instance, i.e. f(z) = 1, then F can be satisfied by setting k variables (corresponding
to variables on the w–z path in T) to 1, i.e. (F, k) is a YES instance. In the other case, i.e.
f(z) = 0, F is unsatisfiable: F contains the clause xw ∨ xw, a chain of implications from w

to z, and the clause ¬xz ∨ ¬xz, which cannot be satisfied simultaneously. Thus, (F, k) is a
NO instance. J

Observe that the implication xv → xf(v) can be produced by simply reading off the
value f(v). This is because in the stream, the values of f appear as in the (lexicographic)
post-order traversal of T , and knowing the value f(v) and the position of f(v) in the stream
is enough to determine the f(v)th child of v. Thus, the clauses can be produced on the fly
while making a pass over the post order traversal of T .

We now prove Theorem 4.1.

Proof. Let MOdSSolve be a k-pass streaming algorithm for Min-Ones 2-SAT that uses
space g(n, k) on inputs (F, k) over n variables. Consider an algorithm that takes as input an
instances (T, f) of POT Pointer Chasing over trees with k+ 1 levels, producing instances
(F, k) (over n = Θ

(
tk−1) variables) of Min-Ones 2-SAT on the fly as above, and feeding

them as input to MOdSSolve. Because of Lemma 4.5, the output of A on (F, k) correctly
decides (T, f).

The algorithm makes k passes over its input and the amount of space used overall is
O(g(n, k) + logn). This value is Ω

(
t/2k

)
, by Proposition 4.4. Since n = Θ

(
tk
)
, we have

g(n, k) + logn = Ω
(
n1/k/2k

)
. Consider the case k ≥

√
logn. The expression n1/k/2k is

o(1), so g(n, k) = Ω
(
n1/k/2k

)
holds trivially. In the other case, i.e. k <

√
logn, we have

g(n, k) = Ω(logn) by Lemma 4.3, so g(n, k) + logn = O(g(n, k)), i.e. g(n, k) = Ω
(
n1/k/2k

)
.

Observe that the bound g(n, k) = Ω
(
log n

k

)
holds for any k ≤ bn/2c (Lemma 4.3),

and for k > bn/2c, g(n, k) = Ω
(
log n

k

)
holds trivially. Therefore, we have g(n, k) =

Ω
(
max

{
n1/k/2k, log n

k

})
. J

Suppose a streaming algorithm for Min-Ones 2-SAT uses space O
(
f(k)n1/k−ε) (ε > 0,

a constant) to decide instances (F, k) over n variables. Observe that limn→∞
f(k)n1/k−ε

n1/k/2k = 0
for any function f . Thus, we have the following corollary.

I Corollary 4.6. Let ε > 0 be a number. Any streaming algorithm for Min-Ones 2-SAT
that uses space O

(
f(k)n1/k−ε) must make at least k + 1 passes over its input.

The preceding corollary shows that the algorithm of Theorem 2.9, which makes k + 1
passes over (F, k), is the best possible inasmuch as the number of passes is concerned. We now
exhibit two lower bounds on the space complexity of Min-Ones 2-SAT using Communication
Complexity similar to those in Lemma 4.3, which apply to Min-Ones d-SAT even when
d = 1.

I Theorem 4.7. There are no 1-pass streaming algorithms for Min-Ones d-SAT (d ≥ 1)
that use space f(k)g(n) (f, g : N→ N, computable functions; g = o(n)) on instances (F, k)
with n variables.

FSTTCS 2019

8:12 Parameterized Streaming Algorithms for Min-Ones d-SAT

Proof. Observe that any instance (a, b) of INDEX can be encoded as the formula
F =

(∧
a[i]=1 ¬xi

)
∧ (xb). (F, 1) is a NO instance if and only if a[b] = 1. Suppose there is a

1-pass algorithm for Min-Ones d-SAT that uses space f(k)g(n) on n-variable inputs with
parameter k. Alice runs the algorithm on

∧
a[i]=1 ¬xi and passes the algorithm’s memory to

Bob. Bob resumes executing the algorithm on the memory and feeds it the additional clause
xb. Using the output of the algorithm, Bob can determine the value a[b].

It is known that any deterministic 1-pass protocol for INDEX requires Ω(n) bits of
communication (Kushilevitz and Nisan [26], Example 4.19). Because Alice passes the
algorithm’s memory to Bob, the size of this memory must be Ω(n), i.e. f(1)g(n) = Ω(n).
Thus, there are no 1-pass parameterized streaming algorithms for Min-Ones d-SAT (d ≥ 1)
that use space O(f(k)g(n)) with g = o(n). J

The above theorem shows that even in the case where every clause consists of exactly one
literal, it is not possible to solve an instance of Min-Ones d-SAT in a single pass without
using space Ω(n). Unlike Theorem 4.1, the next result holds in cases where p, the number of
passes made by the algorithm, is a more general function of k.

I Theorem 4.8. Any p-pass streaming algorithm for Min-Ones d-SAT (d ≥ 1) requires
space Ω(n/p).

Proof. The claim follows from the fact that instances of DISJ can be encoded as SAT
formulas in which every clause comprises one literal. Consider the formula F =

∧
(CS ∪ CT),

where CS = {xi | i ∈ S} and CT = {¬xi | i ∈ T}. S ∩ T = ∅ if and only if F is satisfiable.
By standard arguments from Communication Complexity, any p-pass streaming algorithm
for Min-Ones 2-SAT must use space Ω(n/p). J

5 Conclusion

In this work, we have proved a variety of results that together provide a complete picture
of the parameterized streaming complexity of Min-Ones d-SAT. One of the main results
is the streaming algorithm for Min-Ones d-SAT which solves instances (F, k) in (k + 1)
passes using space O

(
(kdck + kd) logn

)
(c > 0, a constant). The matching (k+ 1)-pass lower

bound shows that in terms of the number of passes, this result is the best possible.
It is pertinent to note that such results, i.e. which show a sharp tradeoff between the

space complexity of a parameterized streaming problem and the number of passes allowed,
are quite scarce in the literature. It would be interesting to see which other parameterized
streaming problems exhibit such behaviour.

References
1 Faisal N. Abu-Khzam. Kernelization Algorithms for D-Hitting Set Problems. In Algorithms

and Data Structures, pages 434–445. Springer Berlin Heidelberg, 2007.
2 Noga Alon, Yossi Matias, and Mario Szegedy. The Space Complexity of Approximating the

Frequency Moments. Journal of Computer and System Sciences, 58(1):137–147, February
1999.

3 Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009.

4 Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A Linear-Time Algorithm for
Testing the Truth of Certain Quantified Boolean Formulas. Information Processing Letters,
8(3):121–123, 1979.

A. Agrawal et al. 8:13

5 Rajesh Chitnis, Graham Cormode, Mohammadtaghi Hajiaghayi, and Morteza Monemizadeh.
Parameterized Streaming: Maximal Matching and Vertex Cover. In Proceedings of the 26th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1234–1251, 2015.

6 Stephen A. Cook. The Complexity of Theorem-proving Procedures. In Proceedings of the 3rd
Annual ACM Symposium on Theory of Computing (STOC), pages 151–158, 1971.

7 Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms, volume 4. Springer,
2015.

8 Rod G. Downey and Michael R. Fellows. Fundamentals of Parameterized complexity. Springer-
Verlag, 2013.

9 Dingzhu Du, Jun Gu, Panos M Pardalos, et al. Satisfiability problem: theory and applications:
DIMACS Workshop, March 11-13, 1996, volume 35. American Mathematical Soc., 1997.

10 Shimon Even, Alon Itai, and Adi Shamir. On the complexity of timetable and multicommodity
flow problems. SIAM Journal on Computing, 5(4):691–703, 1976.

11 Stefan Fafianie and Stefan Kratsch. Streaming Kernelization. In Mathematical Foundations of
Computer Science (MFCS), pages 275–286, 2014.

12 Philippe Flajolet and G Nigel Martin. Probabilistic counting. In Proceedings of the 24th
Annual Symposium on Foundations of Computer Science (FOCS), pages 76–82, 1983.

13 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2006.

14 Fedor V. Fomin and Petteri Kaski. Exact Exponential Algorithms. Commun. ACM, 56(3):80–
88, March 2013.

15 Lance Fortnow. The Status of the P Versus NP Problem. Commun. ACM, 52(9):78–86,
September 2009.

16 Weiwei Gong and Xu Zhou. A survey of SAT solver. In AIP Conference Proceedings, volume
1836, 2017.

17 Jun Gu, Paul W Purdom, John Franco, and Benjamin W Wah. Algorithms for the satisfiability
(sat) problem. In Handbook of Combinatorial Optimization, pages 379–572. Springer, 1999.

18 Sudipto Guha and Andrew McGregor. Tight Lower Bounds for Multi-Pass Stream Computation
Via Pass Elimination. In International Colloquium on Automata, Languages and Programming
(ICALP), volume 5125, pages 760–772, 2008.

19 Dan Gusfield and Leonard Pitt. A Bounded Approximation for the Minimum Cost 2-Sat
Problem. Algorithmica, 8(1-6):103–117, 1992.

20 Monika Rauch Henzinger, Prabhakar Raghavan, and Sridhar Rajagopalan. Computing on
data streams. In External Memory Algorithms, Proceedings of a DIMACS Workshop, pages
107–118, 1998.

21 Dorit S Hochbaum, Nimrod Megiddo, Joseph (Seffi) Naor, and Arie Tamir. Tight Bounds
and 2-Approximation Algorithms for Integer Programs with Two Variables per Inequality.
Mathematical Programming, 62(1-3):69–83, 1993.

22 David S Johnson. Approximation algorithms for combinatorial problems. Journal of computer
and system sciences, 9(3):256–278, 1974.

23 Richard M Karp. Reducibility among combinatorial problems. In Complexity of computer
computations, pages 85–103. Springer, 1972.

24 Stefan Kratsch and Magnus Wahlström. Two Edge Modification Problems without Polynomial
Kernels. In Parameterized and Exact Computation, 4th International Workshop, (IWPEC),
pages 264–275, 2009.

25 Melven R Krom. The decision problem for a class of first-order formulas in which all disjunctions
are binary. Mathematical Logic Quarterly, 13(1-2):15–20, 1967.

26 Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University Press,
New York, NY, USA, 1997.

27 Neeldhara Misra, N. S. Narayanaswamy, Venkatesh Raman, and Bal Sri Shankar. Solving
Min Ones 2-Sat as Fast as Vertex Cover. Theoretical Computer Science, 506:115–121, 2013.

FSTTCS 2019

8:14 Parameterized Streaming Algorithms for Min-Ones d-SAT

28 J Ian Munro and Mike S Paterson. Selection and sorting with limited storage. In Proceedings
of the 19th Annual Symposium on Foundations of Computer Science (FOCS), pages 253–258,
1978.

29 Rolf Niedermeier. Invitation to fixed-parameter algorithms. Oxford Lecture Series in
Mathematics and Its Applications. Oxford University Press, 2006.

30 Thomas Stützle, Holger Hoos, and Andrea Roli. A review of the literature on local search
algorithms for MAX-SAT. Rapport technique AIDA-01-02, Intellectics Group, Darmstadt
University of Technology, Germany, 2001.

31 Stefan Szeider. On fixed-parameter tractable parameterizations of SAT. In International
Conference on Theory and Applications of Satisfiability Testing, pages 188–202. Springer, 2003.

32 Gerhard J Woeginger. Exact algorithms for NP-hard problems: A survey. In Combinatorial
Optimization—Eureka, You Shrink!, pages 185–207. Springer, 2003.

33 Mihalis Yannakakis. Node- and Edge-Deletion NP-Complete Problems. In Proceedings of the
10th Annual ACM Symposium on Theory of Computing (STOC), pages 253–264, 1978.

34 Mihalis Yannakakis. On the approximation of maximum satisfiability. Journal of Algorithms,
17(3):475–502, 1994.

A A Brief Introduction to Parameterized Complexity

A parameterized problem Π is a subset of Γ∗ × N, where Γ is a finite alphabet. An
instance of a parameterized problem is a tuple (x, k), where x is a classical problem
instance and k is an integer, which is called the parameter. The framework of parameterized
complexity was originally introduced to deal with NP-hard problems, with the aim to limit
the exponential growth in the running time expression to the parameter alone. A central
notion in parameterized complexity is fixed-parameter tractability (FPT) which means, for a
parameterized problem Π, there is an algorithm that given an instance (x, k), decides whether
or not (x, k) is a YES instance of Π in time f(k) ·p(|x|), where f is a computable function of k
and p is a polynomial in the input size. Another central notion in parameterized complexity
is kernelization, which mathematically captures the efficiency of a data preprocessing. A
typical goal of a kernelization algorithm is to store only “small” amount of information,
which is enough to recover the answer to the original instance. The “smallness” of the stored
information is quantified by the input parameter. Formally, a kernelization algorithm or a
kernel for a parameterized problem Π is given an input (x, k), and the goal is to obtain an
equivalent instance (x′, k′) of Π in polynomial time, such that |x′|+ k′ ≤ g(k). Here, g is
some computable function whose value only depends only on k, and depending on whether it
is a linear, polynomial, or exponential function, the kernel is called a linear, polynomial, or
exponential kernel, respectively. It is well known that a parameterized problem is FPT if and
only if it admits a kernel. Thus, in the literature, the term “kernel” is used for polynomial
kernels (unless stated otherwise). For more details on parameterized complexity, we refer the
reader to the books of Downey and Fellows [8], Flum and Grohe [13], Niedermeier [29], and
the recent book by Cygan et al. [7].

B Missing Proofs from Section 2

Proof of Proposition 2.1
The algorithm Enum-d-HS is given in Algorithm 1. We start by proving the correctness
of the algorithm by induction on k. When k ≤ 0, then the algorithm correctly computes
the set Sk (see Steps 1-6). Let us assume that the algorithm returns the correct output for
all k ≤ t, where t ∈ N. We will now prove that the output of the algorithm is correct for

A. Agrawal et al. 8:15

Algorithm 1 Enum-d-HS.
Input: A set X , of subsets of size at most d of a universe U , and an integer k.
Output: The (multi)set Sk, of all minimal d-hitting sets of size at most k.

1 if k < 0 or ∅ ∈ X then
2 return ∅; /* no hitting set possible */
3 if k = 0 and there is a non-empty set F ∈ X then
4 return ∅; /* no hitting set possible */
5 if k = 0 or there is no set in X then
6 return {∅}; /* ∅ is a hitting set for ∅ */
7 Set Sk = ∅;
8 Let X = {x1, x2, . . . , xd′} (where d′ ≤ d) be an arbitrary non-empty set in X ;
9 for i = 1 to d′ do

10 Let Xi = {Y ∈ X | xi /∈ Y };
11 Si =Enum-d-HS(Xi, U \ {xi}, k − 1);
12 for each S ∈ Si do
13 Sk = Sk ∪ {S ∪ {xi}};

14 Remove those sets from Sk which are not minimal solutions to (X , U, k);
15 return Sk;

k = t + 1 ≥ 1. If there is no non-empty set in X , then the algorithm returns the correct
output (Steps 1-2 and 5-6). Hereafter, we assume that Steps 1-6 are not executed (otherwise,
we already have the correct output). Also, we have that k ≥ 1 and there is a non-empty
set X = {x1, x2, . . . , xd′} ∈ X . Any d-hitting set must contain at least one element from X.
By induction hypothesis, for each i ∈ [d′], we (correctly) compute the set Si of all minimal
d-hitting sets of size at most k− 1, for the instance (Xi, U \ {xi}, k− 1). Notice that each set
S ∈ Si, intersects each set in Xi and may not intersect X. Moreover, S ∪ {xi} is a d-hitting
set for (X , U, k). From the above discussion (together with the induction hypothesis), we
obtain that Sik = {S ∪ {xi} | S ∈ Si} is a set containing all minimal d-hitting sets containing
xi for (X , U, k). Thus, ∪i∈[d′]Sik is a set containing all minimal d-hitting sets for (X , U, k).
Moreover, by construction we have that Sk = ∪i∈[d′]Sik with non-minimal solutions removed,
is the output returned by the algorithm at Step 17. This concludes the proof of correctness
of the algorithm.

We now move to the running time analysis of the algorithm. Notice that the running
time of the algorithm is given by the recurrence: T (k) = d · T (k − 1) + O(|U |+ |X |+ |Sk|).
Also, the size of Sk is given by the recurrence D(k) = d · D(k − 1), where 0 ≤ D(0) ≤ 1.
Thus, the running time of the algorithm is bounded by O

(
dk‖I‖

)
and |Sk| ∈ O

(
dk
)
. Next,

we move to the analysis of the space used by the algorithm. Notice that at any point of time,
in the recursive procedure, memory is allocated for at most k copies of Enum-d-HS. Hence,
the space required by the algorithm can be bounded by O

(
k‖I‖+ kdkbU

)
. J

Proof of Lemma 2.3
From Proposition 2.2, Pass 1 can compute It = (Xt, Ut, k) after reading all the clauses from
the stream using O

(
kd logn

)
space, and using O

(
kd
)
time after reading a clause from the

stream. Furthermore, |Xt| ∈ O
(
kd
)
, and elements of Ut are represented using logn bits

(by Proposition 2.2 and our assumption that variables of F are x1, x2, . . . , xn). Now using
Enum-d-HS of Proposition 2.1, the algorithm computes S1 using space (in bits) bounded by
O
(
(kd + dk)k logn

)
and time bounded by O

(
dkkd logn

)
. J

FSTTCS 2019

8:16 Parameterized Streaming Algorithms for Min-Ones d-SAT

Proof of Observation 2.5
Any minimal satisfying assignment S ∈ S is also a satisfying assignment for F+. From
Observation 2.4 we know that S1 is the set of all minimal satisfying assignments of size at
most k for F+. Hence, it follows that there is S′ ∈ S1, such that S′ ⊆ S. J

B.1 (O
(
dk
)
, O(k))-streaming-FPT Algorithm for Min-Ones-d-SAT

In this section, we design an (O
(
dk
)
,O(k))-streaming-FPT algorithm for Min-Ones-d-

SAT. The algorithm closely follows the standard O
(
dk
)
(n+m)O(1) branching algorithm for

Min-Ones-d-SAT, where n and m are the number of variables and clauses in the input
instance.

Let (F, k) be an instance of Min-Ones-d-SAT. By S, we denote the stream of clauses in
F. We give our (O

(
dk
)
,O(k))-streaming-FPT algorithm Stream-MOS, for Min-Ones-d-SAT

algorithm in Algorithm 2. In the following, we describe various functions of the algorithm
Stream-MOS. We note that each of the functions have access to the stream S and a global
variable called pass-count.

1. The function FinishScan takes no input and returns no output (only updates pass-count).
Its goal is only to read the stream till the end and update pass-count, which stores the
number of passes we have made through S. When we enter this function, the pass number
is updated. If we are already at the end of the stream S, then it exits without doing any
other operation. Otherwise, it read S till the end and exits. The purpose of defining this
function (and maintaining pass-count) is to simplify the analysis of the algorithm.

2. The function TestSatisfiability takes as input a set S, and its objective is to determine
whether or not S satisfies each clause of F. A call to TestSatisfiability, makes a
complete scan through S and we explicitly ensure that whenever it is called, we are at
the beginning of the stream. Whenever we find a clause unsatisfied by S in the stream,
the function calls FinishScan to complete the scanning through remaining clauses of S
and update pass-count, and then it exits after returning 0. In the case when there is no
clause which is not satisfied by S, it makes a call to FinishScan to update pass-count,
and exits after returning 1.

3. The function FindBranchClause takes as input a set S. Its objective is to find a clause C
which cannot be satisfied (by just) setting variables in S to 1. More precisely, it returns
a clause C (if it exists) which satisfies two conditions (to be stated, shortly). Let X and
Y be the sets of variables which appear positively and negatively in C, respectively. It
must hold that Y ⊆ S and X ∩ S = ∅. Notice that for a satisfying assignment S′ for
F, such that S ⊆ S′, it must hold that S′ ∩X 6= ∅. Moreover, as S ∩X = ∅, S′ must
contain at least one more vertex (from X), which is not present in S. We will later see
how we use C to progress our branching procedure. To find C, FindBranchClause makes
a complete scan through S. If it finds a clause C with the desired properties, it makes a
call to FinishScan to complete the scan through S and update pass-count, and then it
exits after returning C. If a clause with the desired properties is not found even when we
reach the end of the stream S, it makes a call to FinishScan to update pass-count, and
then exits after returning ♦ (indicating that a clause with the desired property could not
be found).

4. The function DetectSolution takes as input a set S, and its objective is to determine
whether or not there is a solution for (F, k) which sets each variable in S to 1. This
function is defined because our algorithm is a recursive procedure, and as the algorithm
progresses, we maintain a set of variables that have already been set to 1. We note that at

A. Agrawal et al. 8:17

Algorithm 2 Algorithm Stream-MOS.

Input: A stream of clauses S for an instance (F, k) of Min-Ones-d-SAT.
1 pass-count=0;
2 Function FinishScan()
3 pass-count = pass-count+1;
4 if at end of the stream S then
5 return;
6 while end of the stream S is not reached do
7 Read the next clause in the stream;
8 return;
9 Function TestSatisfiability(Set S)

10 while end of the stream S is not reached do
11 Read the next clause C in the stream;
12 if C is not satisfied by S then
13 FinishScan();
14 return 0;
15 FinishScan();
16 return 1;
17 Function FindBranchClause(Set S)
18 while end of the stream S is not reached do
19 Read the next clause C in the stream, and let X and Y be the sets of

variables in C appearing positively and negatively, respectively;
20 if Y ⊆ S and S ∩X = ∅ then
21 FinishScan();
22 return C;
23 return ♦;
24 Function DetectSolution(Set S)
25 if S > k then
26 return 0;
27 if TestSatisfiability(S)= 1 then
28 return 1;
29 C = FindBranchClause(S);
30 if C 6= ♦ then
31 if |S| = k then
32 return 0;
33 Let X = {x1, x2, . . . , xd′} (where d′ ≤ d) be the set of variables appearing

positively in C;
34 ans = 0;
35 for i = 1 to d′ do
36 ans = ans ∨ DetectSolution(S ∪ {xi});
37 return ans;
38 return 0;
39 Function MainMOS()
40 res = DetectSolution(∅);
41 return res;

FSTTCS 2019

8:18 Parameterized Streaming Algorithms for Min-Ones d-SAT

any point of time we allocate memory only for one such set, and whenever we make calls
to other functions, we send the memory location, instead of a separate copy of the set
itself. At some steps we call other functions with a modified set (with an element added
to S), in this case also we send the memory address after appending the new element
(in the front). The above can be achieved by using appropriate memory pointers. Next,
we describe the working of DetectSolution. If |S| > k, then it (correctly) return 0,
indicating that there is no satisfying assignment of size at most k containing S. Hereafter,
we assume that |S| ≤ k. Now the function checks if S is a satisfying assignment for F,
by making a call to TestSatisfiability with (memory location of) S as the argument.
If TestSatisfiability(S) returns 1, then the function exits after (correctly) returning
1. Otherwise, it makes a call to FindBranchClause with (memory location of) S as the
argument, and stores the output of it in C. Next, it considers the case when C 6= ♦. Let
X and Y be the sets of variables appearing positively and negatively in C, respectively. By
the properties of the clauses returned by FindBranchClause, we know that X∩S = ∅ and
Y ⊆ S. Thus, for any satisfying assignment S′ for F with S ⊆ S′, S′ ∩X 6= ∅ must hold.
As X ∩S = ∅, S′ must contain at least one vertex from X and this vertex does not belong
to S. If |S| = k, then there cannot be a satisfying assignment of size at most k containing
S, as otherwise, it will not satisfy C. Thus, in the above case, the function correctly
returns 0, and exits. Next, the function deals with the case when |S| < k. For any x ∈ X,
it checks if there is a satisfying assignment for F of size at most k containing S ∪ {x}.
This is done by making a recursive call to DetectSolution with (the memory location of)
S ∪{x} as the argument. If for any x ∈ X, DetectSolution(S ∪{x}) returns 1, then the
function exits after (correctly) returning 1. If for no x ∈ X, DetectSolution(S ∪ {x})
returns 1, then the function exits after (correctly) returning 0. If none of the above
statements could be used to return an answer, then the algorithm returns 0 and exits.

5. The function MainMOS is the main function of the algorithm, where the algorithm begins
its execution. The objective of MainMOS is to return 1 if (F, k) is a yes-instance of
Min-Ones-d-SAT and return 0, otherwise. Thus, we have only statement, namely,
DetectSolution(∅) in this function. The correctness of this function follows from the
correctness of DetectSolution.

Next, we state a lemma regarding Stream-MOS, which will be used to establish the main
theorem of this section.

I Lemma B.1. Stream-MOS correctly resolves an instance Min-Ones-d-SAT (presented as
a stream S, of clauses). Moreover, it uses space bounded by O(k logn) and makes at most
O
(
dk
)
passes over S.

Proof. The correctness of Stream-MOS is immediate from the correctness of each of its
functions (which is apparent from their respective descriptions). We now bound the space
used by the algorithm and the number of passes it makes over S. The space bounds follows
from the facts that at any point of the time, we have at most O(k) active instances of
DetectSolution and whenever we pass a set as an argument to a function, its memory is
passed, rather than a copy of the set itself. To bound the number of passes that the algorithm
makes over S, it is enough to bound pass-count. Recall that pass-count is updated only when
TestSatisfiability or FindBranchClause is called by DetectSolution. In the above, the
pass-count is updated by TestSatisfiability or FindBranchClause by making a call to
FinishScan, which increments pass-count exactly by 1. Observe that the total number of
(recursive) calls to TestSatisfiability or FindBranchClause, made by DetectSolution
is bounded by O

(
dk
)
. Thus, pass-count is bounded by O

(
dk
)
. This concludes the proof. J

The proof of Theorem 2.10 follows from Lemma B.1.

A. Agrawal et al. 8:19

C Missing Proofs from Section 3

Proof of Observation 3.1
Consider i ∈ [k] and v ∈ V1, such that |Pv(i)| = |Pv(i+ 1)|. Let ` ∈ {i+ 2, i+ 3 . . . , k+ 1} be
the lowest integer such that |Pv(`)| 6= |Pv(i)| (if such an ` does not exist, the claim trivially
holds). Since |Pv(` − 1)| = |Pv(i)| and |Pv(`)| 6= |Pv(i)|, there is a non-monotone clause
Q = (x∨¬y), such that y ∈ Pv(`− 1) and x /∈ Pv(`− 1). But we also encountered C in pass
(`− 1), and Pv should have been modified, which is a contradiction. J

Proof of Lemma 3.4
From Lemma 3.3, it is enough to show that (F′, k) is a yes-instance of Min-Ones-2-SAT if
and only if (F̃, k) is a yes-instance of Min-Ones 2-SAT.

The forward direction follows from the fact that each clause in F′ is also a clause in
F̃. In the backward direction, let S be a solution to Min-Ones 2-SAT in (F̃, k). Notice
that S satisfies all monotone and non-monotone clauses of F′. For an anti-monotone clause
C = (¬x ∨ ¬y), if at least one of x or y is not in V2, say x /∈ V2, then x /∈ S (since S ⊆ V2).
Otherwise, x, y ∈ V2, and then C is also a clause in F̃. Thus, C is satisfied by S. J

D Streaming FPT Algorithm for IP2

In this section, we consider a restriction of the integer programming problem, IP2 (defined
below). We show how to convert an instance of IP2 to an instance of Min-Ones 2-SAT
under parameterized streaming constraints, using the approach of Hochbaum et al. [21]. This
allows us to use the algorithms for Min-Ones 2-SAT to solve IP2. We consider integer
programs on n variables and m constraints that have the following form.

Minimize
n∑
j=1

wjxj , subject to

aixpi + bixqi ≥ ci, (i ∈ [m], pi, qi ∈ [n]),
0 ≤ xj ≤ uj , (j ∈ [n]), and
xj ∈ {0, 1}, (j ∈ [n]).

where the coefficients appearing in the constraints are integers, and for all j ∈ [n], wj ∈ N.
Such integer programs (hereafter called bounded integer programs) were considered by

Hochbaum et al. [21], who showed that by applying a transformation to the variables of
the program, the problem of finding a feasible solution becomes equivalent to 2-SAT. We
consider the following problem.

IP2
Input: A bounded-IP P, where we want to minimize

∑n
j=1 wjxj , subject to aixpi+bixqi ≥

ci, for i ∈ [m] and 0 ≤ xj ≤ uj , for j ∈ [n], and an integer k ∈ N.
Question: Is there a is feasible solution for P, such that

∑n
j=1 wjxj ≤ k?

Let (P, k) be an instance of bounded-IP, where P is provided as a stream of wi, for i ∈ [n],
followed by the constraints. As a constraint arrives, we show how we create 2-CNF clauses
for it. This will give us an instance of (F, k), such that (P, k) is a yes-instance of IP2 if and
only if (F, k) is a yes-instance of Min-Ones-2-SAT. We note that both the construction
and the equivalence of the instances follows from [21], therefore, we only briefly explain the
construction of F.

FSTTCS 2019

8:20 Parameterized Streaming Algorithms for Min-Ones d-SAT

We use the approach described in Section 4 of [21] to construct F. Consider the variable
constraint 0 ≤ xp ≤ up, for p ∈ [n]. By replacing xp with up binary variables xp,l (l ∈ [up]) and
introducing the constraints xp,l ≥ xp,l+1 (l ∈ [up− 1]), we obtain an injective correspondence
between xp and (xp,1, . . . , xp,ui): xp =

∑up
l=1 xp,l. To model these constraints, we add the

clause (xp,l ∨ ¬xp,l+1) to F, for each l ∈ [up − 1].
Let aixp + bixq ≥ ci be a constraint. We only state the case where ap, bq > 0 (for more

details, see [21]). For i ∈ [m] and l ∈ {0, . . . , up}, let αi,l = d(ci − lai)/bie−1. The constraint
can be expressed by adding the clauses to F as follows.(

xp,l+1 ∨ xq,αk,l+1

)
, for every l ∈ {0, . . . up − 1} with 0 ≤ αi,l < uq.

xp,l+1, for every l ∈ {0, . . . , up − 1} with αk,l ≥ uq.
xq,αi,l for l = up with αk,up ≥ 0.

Next, we state how weights (and the function to be minimized) are encoded. Note
that the weights appearing in the objective function are nonnegative integers. Let xp be a
variable with wp > 1. To express the effect of setting xp to 1 on the objective function, we
introduce wp − 1 additional variables yp,1, . . . , yp,wi−1 and the clauses (¬xp ∨ yp,j) to F, for
all j ∈ [wi − 1].

Producing the clauses as a stream. Under the reasonable assumption that the clauses
of P can each be stored in working memory, i.e. in O(f(k) logn) bits of space, and by
the construction of F, it is easy to see that as a constraint of P arrives, we can construct
the of corresponding clauses for that constraint in space bounded by O(g(k) logn). The
above discussions together with the algorithms of Section 2 and B.1, implies the proof of
Theorem 2.11.

Fast Exact Algorithms Using Hadamard Product
of Polynomials
V. Arvind
Institute of Mathematical Sciences (HBNI), Chennai, India
arvind@imsc.res.in

Abhranil Chatterjee
Institute of Mathematical Sciences (HBNI), Chennai, India
abhranilc@imsc.res.in

Rajit Datta
Chennai Mathematical Institute, Chennai, India
rajit@cmi.ac.in

Partha Mukhopadhyay
Chennai Mathematical Institute, Chennai, India
partham@cmi.ac.in

Abstract
Let C be an arithmetic circuit of poly(n) size given as input that computes a polynomial f ∈ F[X],
where X = {x1, x2, . . . , xn} and F is any field where the field arithmetic can be performed efficiently.
We obtain new algorithms for the following two problems first studied by Koutis and Williams
[13, 22, 14].

(k,n)-MLC: Compute the sum of the coefficients of all degree-k multilinear monomials in the
polynomial f .

k-MMD: Test if there is a nonzero degree-k multilinear monomial in the polynomial f .
Our algorithms are based on the fact that the Hadamard product f ◦ Sn,k, is the degree-k

multilinear part of f , where Sn,k is the kth elementary symmetric polynomial.

For (k,n)-MLC problem, we give a deterministic algorithm of run time O∗(nk/2+c log k) (where
c is a constant), answering an open question of Koutis and Williams [14, ICALP’09]. As
corollaries, we show O∗(

(
n
↓k/2

)
)-time exact counting algorithms for several combinatorial problems:

k-Tree, t-Dominating Set, m-Dimensional k-Matching.

For k-MMD problem, we give a randomized algorithm of run time 4.32k · poly(n, k). Our
algorithm uses only poly(n, k) space. This matches the run time of a recent algorithm [8] for
k-MMD which requires exponential (in k) space.

Other results include fast deterministic algorithms for (k,n)-MLC and k-MMD problems for depth
three circuits.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation

Keywords and phrases Hadamard Product, Multilinear Monomial Detection and Counting, Rectan-
gular Permanent, Symmetric Polynomial

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.9

Related Version A full version of the paper is available at https://arxiv.org/abs/1807.04496.

Acknowledgements We thank anonymous reviewers for their comments on an earlier version of this
paper. We are particularly grateful to an anonymous reviewer for pointing out the combinatorial
applications of Theorem 1 in exact counting.

© V. Arvind, Abhranil Chatterjee, Rajit Datta, and Partha Mukhopadhyay;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 9; pp. 9:1–9:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:arvind@imsc.res.in
mailto:abhranilc@imsc.res.in
mailto:rajit@cmi.ac.in
mailto:partham@cmi.ac.in
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.9
https://arxiv.org/abs/1807.04496
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Fast Exact Algorithms Using Hadamard Product of Polynomials

1 Introduction

Koutis and Williams [13, 22, 14] introduced and studied two algorithmic problems on
arithmetic circuits. Given as input an arithmetic circuit C of poly(n) size computing a
polynomial f ∈ F[x1, x2, . . . , xn], the (k,n)-MLC problem is to compute the sum of the
coefficients of all degree-k multilinear monomials in the polynomial f , and the k-MMD
problem is to test if f has a nonzero degree-k multilinear monomial.

These problems are natural generalizations of the well-studied k-path detection and
counting problems in a given graph [13] as well as several other combinatorial problems like
k-Tree, t-Dominating Set, m-Dimensional k-Matching [14], well-studied in the parameterized
complexity, reduce to these problems. In fact, the first randomized FPT algorithms for the
decision version of these combinatorial problems were obtained from an O∗(2k) 1 algorithm
for k-MMD for monotone circuits using group algebras [13, 22, 14]. Recently, Brand et al.
[8] have given the first randomized FPT algorithm for k-MMD for general circuits that runs
in time O∗(4.32k). Their method is based on exterior algebra and color coding [1].

In general, the exact counting versions of these problems are #W[1]-hard. For these
counting problems, improvements to the trivial O∗(nk) time exhaustive search algorithm are
known only in some cases (like counting k-paths) [6]. Since an improvement for (k,n)-MLC
over exhaustive search will yield faster exact counting algorithms for all these problems,
Koutis and Williams [14] pose this as an interesting open problem. They give an algorithm
of run time O∗(nk/2) to compute the parity of the sum of coefficients of degree-k multilinear
monomials.

The techniques based on group algebra [13, 14] and exterior algebra [8] can be broadly
classified asmultilinear algebra techniques. We give a new approach to the k-MMD, (k,n)-MLC
problems, and related problems. Our algorithm is based on computing the Hadamard product
of polynomials. The Hadamard product (also known as Schur product) generally refers to
Hadamard product of matrices and is used in matrix analysis. We consider the Hadamard
product of polynomials (e.g., see [3]). Given polynomials f, g ∈ F[X], their Hadamard
product is defined as f ◦ g =

∑
m([m]f · [m]g)m, where [m]f denotes the coefficient of

monomial m in f .
The Hadamard product is a useful tool in noncommutative computation [3, 5]. A contribu-

tion of the present paper is to develop an efficient way to implement Hadamard product in the
commutative setting which is useful for designing FPT and exact algorithms. As mentioned
above, the Hadamard product has been useful in arithmetic circuit complexity results, e.g.,
showing hardness of the noncommutative determinant [5]. Transferring techniques from
circuit complexity to algorithm design is an exciting area of research. We refer the reader to
the survey article of Williams [21], see also [23].

This paper. We apply the Hadamard product of polynomials in the setting of commutative
computation. This is achieved by combining earlier ideas [3, 5] with a symmetrization trick
shown in Section 2. We then use it to design efficient algorithms for (k,n)-MLC, k-MMD and
related problems.

Consider the elementary symmetric polynomial Sn,k of degree k over the n variables
x1, x2, . . . , xn. By definition, Sn,k is the sum of all the degree-k multilinear monomials.
Computing the Hadamard product of Sn,k and a polynomial f sieves out precisely the
degree-k multilinear part of f . This connection with the symmetric polynomial gives the
following result.

1 The O∗ notation suppresses polynomial factors.

V. Arvind, A. Chatterjee, R. Datta, and P. Mukhopadhyay 9:3

I Theorem 1. The (k,n)-MLC problem for any arithmetic circuit C of poly(n) size, has a
deterministic O∗(nk/2+c log k) time algorithm where c is a constant.

The field F could be any field where the field operations can be efficiently computable.
The above run time O∗(nk/2+c log k) (where c is a constant) beats the naive O∗(nk) bound,
answering the question asked by Koutis and Williams [14].

An ingredient of the proof is a result in [5] that allows us to efficiently compute the
Hadamard product of a noncommutative algebraic branching program (ABP) with a non-
commutative polynomial f , even with only black-box access to f that allows evaluating
f on matrix-valued inputs. The other ingredient is an algorithm of Björklund et al. [7]
for evaluating rectangular permanent over noncommutative rings, that can be viewed as
an algorithm for evaluating S∗n,k (a symmetrized noncommutative version of Sn,k) over
matrices. Now, applying the routine conversion of a commutative circuit to an ABP, which
incurs only a quasi-polynomial blow-up, we get a faster algorithm for (k,n)-MLC of gen-
eral circuits. As applications of Theorem 1 we obtain improved counting algorithms for
k-Tree, t-Dominating Set, and m-Dimensional k-Matching.

The next algorithmic result we obtain is the following.

I Theorem 2. The k-MMD problem for any arithmetic circuit C of poly(n) size, has a
randomized O∗(4.32k) time and polynomial space-bounded algorithm.

Again, the field F could be any field where the field operation can be efficiently computable.
We briefly sketch the proof idea. Suppose that C is the input arithmetic circuit computing
a homogeneous polynomial f of degree k. We essentially show that k-MMD is reducible to
checking if the Hadamard product f ◦ C ′ is nonzero for some circuit C ′ from a collection
of homogeneous degree-k depth two circuits. This collection of depth two circuits arises
from the application of color coding [1]. Furthermore, the commutative Hadamard product
f ◦ C ′ turns out to be computable in O∗(2k) time by a symmetrization trick combined with
Ryser’s formula for the permanent. The overall running time (because of trying several
choices for C ′) turns out to be O∗(4.32k). Finally, checking if f ◦C ′ is nonzero reduces to an
instance of polynomial identity testing which can be solved in randomized polynomial time
using Demillo-Lipton-Schwartz-Zippel Lemma [9, 24, 18]. The technique based on Hadamard
product seems to be quite different than the exterior algebra based technique. Another
difference is that, our algorithm uses poly(n, k) space whereas the algorithm in [8] takes
exponential space.

Next, we state the results showing fast deterministic algorithms for depth-three circuits.
We use the notation Σ[s]Π[k]Σ to denote depth three circuits of top Σ gate fan-in s and the
Π gates compute the product of k homogeneous linear forms over X.

I Theorem 3. Given any homogeneous depth three Σ[s]Π[k]Σ circuit of degree k, the
(k,n)-MLC problem can be solved in deterministic O∗(2k) time. Over Z, the k-MMD problem
can be solved in deterministic O∗(4k) time. Over finite fields, k-MMD problem can be solved
in deterministic ekkO(log k)(2ck + 2k) · poly(n, k, s) time, where c ≤ 5.

Here the key observation is that we can efficiently compute the commutative Hadamard
product of a depth three circuit with any circuit. It is well-known that the elementary
symmetric polynomial Sn,k can be computed using an algebraic branching program of size
poly(n, k).

We compute the Hadamard product of the given depth three circuit with that homogeneous
branching program for Sn,k, and check whether the resulting depth three circuit is identically
zero or not. The same idea yields the algorithm to compute the sum of the coefficients of the
multilinear terms as well.

FSTTCS 2019

9:4 Fast Exact Algorithms Using Hadamard Product of Polynomials

Related Work. Soon after the first version of our paper [2] appeared in ArXiv, an inde-
pendent work [16, v1] 2 also considers the k-MMD and (k,n)-MLC problems. The main
ingredient of [16] is the application of a nontrivial Waring decomposition over rationals of
symmetric polynomials [15] which does not have any known analogue for small finite fields.
The algorithms obtained for k-MMD and (k,n)-MLC are faster (O∗(4.08k) time for k-MMD
and O∗(nk/2) for (k,n)-MLC). In comparison, our algorithms also work for all finite fields.
As already mentioned, the algorithm of Koutis and Williams [14] for (k,n)-MLC works over
F2 and the run time is O∗(nk/2). In this sense, our algorithm for (k,n)-MLC can also be
viewed as a generalization that does not depend on the characteristic of the ground field. It
is to be noted that, over fields of small characteristic a Waring decomposition of the input
polynomial may not be available. For example, over F2 the polynomial xy has no Waring
decomposition.

Organization. The paper is organized as follows. In Section 2 we explain the Hadamard
product framework. The proof of Theorem 1 and its consequences are given in Section 3.
Section 4 contains the the proof of Theorem 2. The proof of Theorem 3 can be found in the
full version in ArXiv.

2 Hadamard Product Framework

Computing the Hadamard product of two commutative polynomials is, in general, compu-
tationally hard. This can be observed from the fact that the Hadamard product of the
determinant polynomial with itself is the permanent polynomial. Nevertheless, we develop
a method for some special cases, that is efficient with degree k as the fixed parameter, for
computing the scaled Hadamard product of commutative polynomials.

I Definition 4. The scaled Hadamard product of polynomials f, g ∈ F[X] is defined as

f ◦s g =
∑
m

(m! · [m]f · [m]g) m,

where for monomial m = xe1
i1
xe2
i2
. . . xerir we define m! = e1! · e2! · · · er!.

Computing the scaled Hadamard product is key to our algorithmic results for k-MMD
and (k,n)-MLC. Broadly, it works as follows: we transform polynomials f and g to suitable
noncommutative polynomials. We compute their (noncommutative) Hadamard product
efficiently [3, 5], and we finally recover the scaled commutative Hadamard product f ◦s g (or
evaluate it at a desired point ~a ∈ Fn).

Suppose f ∈ F[x1, x2, . . . , xn] is a homogeneous degree-k polynomial given by a circuit
C. We can define its noncommutative version Cnc which computes the noncommutative
homogeneous degree-k polynomial f̂ ∈ F〈y1, y2, . . . , yn〉 as follows.

I Definition 5. Given a commutative circuit C computing a polynomial in F[x1, x2, ..., xn],
the noncommutative version of C, Cnc is the noncommutative circuit obtained from C by fixing
an ordering of the inputs to each product gate in C and replacing xi by the noncommuting
variable yi : 1 ≤ i ≤ n.

2 See the final version [16] to be appeared in FOCS 2019.

V. Arvind, A. Chatterjee, R. Datta, and P. Mukhopadhyay 9:5

Let Xk denote the set of all degree-k monomials over X. As usual, Y k denotes all degree-k
noncommutative monomials (i.e., words) over Y . Each monomial m ∈ Xk can appear as
different noncommutative monomials m̂ in f̂ . We use the notation m̂→ m to denote that
m̂ ∈ Y k will be transformed to m ∈ Xk by substituting xi for yi, 1 ≤ i ≤ n. Then, we
observe the following, [m]f =

∑
m̂→m[m̂]f̂ .

The noncommutative circuit Cnc is not directly useful for computing Hadamard product.
However, the following symmetrization helps. We first explain how permutations σ ∈ Sk act
on the set Y k of degree-k monomials (and hence, by linearity, act on homogeneous degree k
polynomials).

For each monomial m̂ = yi1yi2 · · · yik , the permutation σ ∈ Sk maps m̂ to the monomial
m̂σ defined as m̂σ = yiσ(1)yiσ(2) · · · yiσ(k) . By linearity, f̂ =

∑
m̂∈Y k [m̂]f̂ · m̂ is mapped by σ

to the polynomial, f̂σ =
∑
m̂∈Y k [m̂]f̂ · m̂σ.

The symmetrized polynomial of f , f∗, is degree-k homogeneous polynomial f∗ =∑
σ∈Sk f̂

σ. We now explain the use of symmetrization in computing the scaled Hadam-
ard product f ◦s g.

I Proposition 6. For a homogeneous degree-k commutative polynomial f ∈ F[X] given by
circuit C, and its noncommutative version Cnc computing polynomial f̂ ∈ F〈Y 〉, consider the
symmetrized noncommutative polynomial f∗ =

∑
σ∈Sk f̂

σ. Then for each monomial m ∈ Xk

and each word m′ ∈ Y k such that m′ → m, we have: [m′]f∗ = m! · [m]f.

Proof. Let f =
∑
m[m]f ·m and f̂ =

∑
m̂[m̂]f̂ · m̂. Notice that [m]f =

∑
m̂→m[m̂]f̂ . Now,

we write f∗ =
∑
m′ [m′]f∗ ·m′. The group Sk acts on Y k (degree k words in Y) by permuting

the positions. Suppose m = xe1
i1
· · ·xeqiq is a type e = (e1, . . . , eq) degree k monomial over

X and m′ → m. Then, by the Orbit-Stabilizer lemma the orbit Om′ of m′ has size k!
m! . It

follows that

[m′]f∗ =
∑

m̂∈Om′

m! · [m̂]f̂ = m!
∑
m̂→m

[m̂]f̂ = m! · [m]f.

It is important to note that for some m̂ ∈ Y k such that m̂→ m, even if [m̂]f̂ = 0 then also
[m̂]f∗ = m! · [m]f . J

Next, we show how to use Proposition 6 to compute scaled Hadamard product in
the commutative setting via noncommutative Hadamard product. We note that given a
commutative circuit C computing f , the noncommutative polynomial f̂ depends on the
circuit structure of C. However, f∗ depends only on the polynomial f .

I Lemma 7. Let C be a circuit for a homogeneous degree-k polynomial g ∈ F[X]. For any
homogeneous degree-k polynomial f ∈ F[X], to compute a circuit for f ◦s g efficiently, it
suffices to compute a circuit for f∗ ◦ ĝ efficiently where ĝ is the polynomial computed by the
noncommutative circuit Cnc. Moreover, given any point ~a ∈ Fn, (f ◦s g)(~a) = (f∗ ◦ ĝ)(~a).

Proof. We write f =
∑
m[m]f · m and g =

∑
m′ [m′]g · m′, and notice that f ◦s g =∑

mm! · [m]f · [m]g ·m.
Suppose the polynomial computed by Cnc is ĝ(Y) =

∑
m∈Xk

∑
m̂→m[m̂]ĝ · m̂. By Pro-

position 6, the noncommutative polynomial f∗(Y) =
∑
m∈Xk

∑
m̂→mm! · [m]f · m̂. Hence,

(f∗ ◦ ĝ)(Y) =
∑
m∈Xk

∑
m̂→m

m! · [m]f · [m̂]g · m̂ =
∑
m∈Xk

m! · [m]f
∑
m̂→m

[m̂]g · m̂.

FSTTCS 2019

9:6 Fast Exact Algorithms Using Hadamard Product of Polynomials

Therefore, using any commutative substitution (i.e. by substituting the Y variables by X
variables), we get back a commutative circuit for f ◦s g. Moreover, given a point ~a ∈ Fn,

(f∗ ◦ ĝ)(~a) =
∑
m∈Xk

m! · [m]f
∑
m̂→m

[m̂]g · m̂(~a) =
∑
m∈Xk

m! · [m]f ·m(~a)
∑
m̂→m

[m̂]g.

From the definition, [m]g =
∑
m̂→m m̂[ĝ]. Hence, (f∗ ◦ ĝ)(~a) =

∑
m∈Xk m! · [m]f ·m(~a)[m]g =

(f ◦s g)(~a). J

3 The Sum of Coefficients of Multilinear Monomials

In this section we prove Theorem 1. As already sketched in Section 1, the main conceptual
step is to apply the symmetrization trick to reduce the (k,n)-MLC problem to evaluating
rectangular permanent over a suitable matrix ring. Then we use a result of [7] to solve the
instance of rectangular permanent evaluation problem. As corollaries of our technique, we
improve the running time of exact counting of several combinatorial problems studied in [14].

Before we prove the theorem, let us recall the definition of an ABP. An algebraic branching
program (ABP) is a directed acyclic graph with one in-degree-0 vertex called source, and
one out-degree-0 vertex called sink. The vertex set of the graph is partitioned into layers
0, 1, . . . , `, with directed edges only between adjacent layers (i to i+ 1). The source and the
sink are at layers zero and ` respectively. Each edge is labeled by a linear form over variables
x1, x2, . . . , xn. The polynomial computed by the ABP is the sum over all source-to-sink
directed paths of the product of linear forms that label the edges of the path. An ABP is
homogeneous if all edge labels are homogeneous linear forms. ABPs can be defined in both
commutative and noncommutative settings. Equivalently, a homogeneous ABP of width
w computing a degree-k polynomial over X can be thought of as the (1, w)th entry of the
product of w×w matrices M1 · · ·Mk where entries of each Mi are homogeneous linear forms
over X. By [xj]Mi, we denote the w × w matrix over F, such that (p, q)th entry of the
matrix,([xj]Mi)(p, q) = [xj](Mi(p, q)), the coefficient of xj in the linear form of the (p, q)th
entry of Mi.

We now define the permanent of a rectangular matrix. The permanent of a rectangular
k×n matrix A = (aij), with k ≤ n is defined as rPer(A) =

∑
σ∈Ik,n

∏k
i=1 ai,σ(i) where Ik,n is

the set of all injections from [k] to [n]. Also, we define the noncommutative polynomial S∗n,k
as S∗n,k(y1, y2, . . . , yn) =

∑
T⊆[n],|T |=k

∑
σ∈Sk

∏
i∈T yσ(i) which is the symmetrized version

of the elementary symmetric polynomial Sn,k as defined in Proposition 6. Given a set of
matrices M1, . . . ,Mn define the rectangular matrix A = (ai,j)i∈[k],j∈[n] such that ai,j = Mj .
Now we make the following crucial observation.

I Observation 8.

S∗n,k(M1, . . . ,Mn) = rPer(A).

We use a result from [7], that shows that over any ring R, the permanent of a rectangular
k × n matrix can be evaluated using O∗(k

(
n
↓k/2

)
) ring operations. In particular, if R is a

matrix ring Ms(F), the algorithm runs in time O(k
(
n
↓k/2

)
poly(n, s)). Now we are ready to

prove Theorem 1.

Proof. Let us first proof a special case of the theorem when the polynomial f is given by
an ABP B of width s. Notice that, we can compute the sum of the coefficients of the
degree-k multilinear terms by evaluating (f ◦ Sn,k)(~1). Now to compute the Hadamard
product efficiently, we transfer the problem to the noncommutative domain. Let Bnc defines

V. Arvind, A. Chatterjee, R. Datta, and P. Mukhopadhyay 9:7

the noncommutative version of the commutative ABP B computing the polynomial f . From
Lemma 7, it suffices to compute (Bnc ◦ S∗n,k)(~1). Now, the following lemma reduces this to
evaluating S∗n,k over matrix ring. We recall the following result from [5].

I Lemma 9 (Theorem 2 of [4]). Let f be a homogeneous degree-k noncommutative polynomial
in F〈Y 〉 and B be an ABP of width w computing a homogeneous degree-k polynomial
g = (M1 · · ·Mk)(1, w) in F〈Y 〉. Then (f ◦ g)(~1) = (f(AB1 , . . . , ABn))(1, (k + 1)w) where for
each i ∈ [n], ABi is the following (k + 1)w × (k + 1)w block superdiagonal matrix,

ABi =

0 [yi]M1 0 . . . 0
0 0 [yi]M2 . . . 0
...

...
.

...
0 0 0 . . . [yi]Mk

0 0 0 . . . 0

 .

To see the proof, for any monomial m = yi1yi2 · · · yik ∈ Y k,

(ABi1A
B
i2 · · ·A

B
ik

)(1, (k + 1)w) = ([yi1]M1 · [yi2]M2 · · · [yik]Mk)(1, w) = [m]g,

from the definition. Hence, we have,

f(AB1 , AB2 , . . . , ABn)(1, (k + 1)w) =
∑
m∈Y k

[m]f ·m(ABi1 , A
B
i2 , . . . , A

B
ik

)(1, (k + 1)w)

=
∑
m∈Y k

[m]f · [m]g.

Now, we construct a k × n rectangular matrix A = (ai,j)i∈[k],j∈[n] from the given ABP
Bnc setting ai,j = AB

nc

j as defined. Using Observation 8, we now have,

rPer(A)(1, (k+1)s) = S∗n,k(AB
nc

1 , . . . , AB
nc

n)(1, (k+1)s) = (S∗n,k ◦Bnc)(~1) = (Sn,k ◦sB)(~1).

Hence combining the algorithm of Björklund et al. for evaluating rectangular permanent
over noncommutative ring [7] with Lemma 9, we can evaluate the sum of the coefficients
deterministically in time O(k

(
n
↓k/2

)
poly(s, n)).

Now, we are ready to prove the general case. It uses the following standard transformation
from circuit to ABP [20, 19] and reduces the problem to the ABP case again. Given an
arithmetic circuit of size s′ computing a polynomial f of degree k, f can also be computed
by a homogeneous ABP of size s′O(log k). Hence given a polynomial f by a poly(n) sized
circuit, we first get a circuit of poly(n) size for degree-k part of f using standard method of
homogenization [19]. Then we convert the circuit to a homogeneous ABP of size nO(log k).
Then, we apply the first part of the proof on the newly constructed ABP. Notice that the
entire computation can be done in deterministic O∗(nk/2+c log k) for some constant c. J

Some Applications
As immediate consequence of Theorem 1, we improve the counting complexity of several
combinatorial problems studied in [14]. To the best of our knowledge, nothing better than
the trivial exhaustive search algorithm were known for the counting version of these problems.
We start with the k-Tree problem.

I Corollary 10. Given a tree T of k nodes and a graph G of n nodes, we can count the
number of (not necessarily induced) copies of T in G in deterministic O∗(

(
n
↓k/2

)
) time.

FSTTCS 2019

9:8 Fast Exact Algorithms Using Hadamard Product of Polynomials

Proof. Let us define Q =
∑
j∈V (T),i∈V (G) CT,i,j , following [14] where if |V (T)| = 1, we define

CT,i,j = xj and if |V (T)| > 1, let Ti,1, . . . , Ti,` be the connected subtrees of T remaining
after nodei is removed from T . For each t ∈ [`], let ni,t ∈ [k] be the (unique) node in Ti,t
that is a neighbour of i in T , then we define

CT,i,j =
∏̀
t=1

 ∑
j′:(j,j′)∈E(G)

xj · CTi,t,ni,t,j′

 .

By the result of [14], it is known that to solve the k-Tree problem it is sufficient to count
the number of multilinear terms in Q. Following Theorem 1, it suffices to show that Q has
a poly(n, k) sized ABP. It is enough to show that CT,i,j has a poly(n, k) sized ABP and
the ABP for Q follows easily. We construct an ABP for each C(T, i, j) of size poly(n, k)
by induction on size of T . Suppose CT,i,j has such small ABP for |V (T)| ≤ p. Then, for
V (T) = p + 1, it is clear from the definition that C(T, i, j) will also have a small ABP.
Therefore, the polynomial Q will also have an ABP of size poly(n, k). J

The second application is for t-Dominating Set problem.

I Corollary 11. Given a graph G = (V,E), we can count the number of sets S of size k that
dominates at least t nodes in G in O∗(

(
n
↓t/2
)
) deterministic time.

Proof. Following [14], define

P (X, z) =

∑
i∈V

(1 + zxi)
∏

j:(i,j)∈E

(1 + zxj)

k

.

We inspect [zt]P (X, z) which is a homogeneous degree t polynomial over X, call it Q(X).
As P (X, z) has a small ABP of poly(n, k) size substituing z by any scalar, we obtain an
ABP of size poly(n, k) for Q(X) also by interpolation. Then, we use the standard method to
homogenize the ABP and apply Theorem 1 to count the number of multilinear terms. This
is sufficient to solve the problem by the result of [14]. J

The final application is regarding m-Dimensional k-Matching problem.

I Corollary 12. Given mutually disjoint sets Ui, i ∈ [m], and a collection C of m-tuples from
U1 × · · · ×Um , we can count the number of sub-collection of k mutually disjoint m-tuples in
C in deterministic O∗(

(
n

↓(m−1)k/2
)
) time.

Proof. Following [14] , encode each element u in U = ∪mi=2Ui by a variable xu ∈ X. Encode
each m-tuple t = (u1, . . . , um) ∈ C ⊆ U1 × · · · × Um by the monomial Mt =

∏m
i=2 xui .

Assume U1 = {u1,1, . . . , u1,n}, and let Tj ⊆ C denote the subset of m-tuples whose first
coordinate is u1,j . Consider the polynomial

P (X, z) =
n∏
j=1

1 +
∑
t∈Tj

(z ·Mt)

 .

Clearly, P (X, z) has an ABP of size poly(n,m). Let Q(X) = [zk]P (X, z), we can obtain a
small ABP of size poly(n,m, k) for Q(X) by interpolation. Now, we homogenize the ABP
and apply Theorem 1 to count the number of multilinear terms which is sufficient by the
result of [14]. J

V. Arvind, A. Chatterjee, R. Datta, and P. Mukhopadhyay 9:9

Hardness for Computing Rectangular Permanent over any Ring
In [7], it is shown that a k × n rectangular permanent can be evaluated over commutative
rings and commutative semirings in O(h(k) · poly(n, k)) time for some computable function
h . In other words, the problem is in FPT parameterized by the number of rows. An
interesting question is to ask whether one can get any FPT algorithm when the entries are
from noncommutative rings (in particular, matrix rings). We prove that such an algorithm is
unlikely to exist. We show that counting the number of k-paths in a graph G, a well-known
#W[1]-complete problem, reduces to this problem. So, unless ETH fails we do not have such
an algorithm [10].

I Theorem 13. Given a k × n matrix X with entries Xij ∈ Mt×t(Q), computing the
rectangular permanent of X is #W[1]-hard with k as the parameter where t = (k+ 1)n under
polynomial time many-one reductions.

Proof. If we have an algorithm to compute the permanent of a k × n matrix over noncom-
mutative rings which is FPT in parameter k, that yields an algorithm which is FPT in
k for evaluating the polynomial S∗n,k on matrix inputs. This follows from Observation 8.
Now, given a graph G we can compute a homogeneous ABP of width n and k layers for the
graph polynomial CG defined as follows. Let G(V,E) be a directed graph with n vertices
where V (G) = {v1, v2, . . . , vn}. A k-walk is a sequence of k vertices vi1 , vi2 , . . . , vik where
(vij , vij+1) ∈ E for each 1 ≤ j ≤ k− 1. A k-path is a k-walk where no vertex is repeated. Let
A be the adjacency matrix of G, and let y1, y2, . . . , yn be noncommuting variables. Define
an n× n matrix B

B[i, j] = A[i, j] · yi, 1 ≤ i, j ≤ n.

Let ~1 denote the all 1’s vector of length n. Let ~y be the length n vector defined by ~y[i] = yi.
The graph polynomial CG ∈ F〈Y 〉 is defined as

CG(Y) = ~1T ·Bk−1 · ~y.

Let W be the set of all k-walks in G. The following observation is folklore.

I Observation 14.

CG(Y) =
∑

vi1vi2 ...vik∈W
yi1yi2 · · · yik .

Hence, G contains a k-path if and only if the graph polynomial CG contains a multilinear term.

Clearly the number of k-paths in G is equal to (CG ◦ Sn,k)(~1). By Lemma 7, we know
that it suffices to compute (CGnc ◦S∗n,k)(~1). We construct kn× kn matrices A1, . . . , An from
the ABP of CGnc following Lemma 9. Then from Lemma 9, we know that (CGnc ◦S∗n,k)(~1) =
S∗n,k(A1, . . . , An)(1, t) where t = (k + 1)n. So if we have an algorithm which is FPT in k for
evaluating S∗n,k over matrix inputs, we also get an algorithm to count the number of k-paths
in G in FPT(k) time. J

4 Multilinear Monomial Detection

In this section, we prove Theorem 2. Apart from being a new technique, the Hadamard
product based algorithm runs in polynomial space and does not depend on the characteristic
of the ground field. This is in contrast with the exterior algebra based approach [8] and
Waring rank based approach [16].

We first recall that the Hadamard product of a noncommutative circuit and a noncom-
mutative ABP can be computed efficiently. The proof is similar to the proof of Lemma 9.

FSTTCS 2019

9:10 Fast Exact Algorithms Using Hadamard Product of Polynomials

I Lemma 15 (Corollary 4 of [5]). Given a homogeneous noncommutative circuit of size
S′ for f ∈ F〈y1, y2, . . . , yn〉 and a homogeneous noncommutative ABP of size S for g ∈
F〈y1, y2, . . . , yn〉, we can compute a noncommutative circuit of size O(S3S′) for f ◦ g in
deterministic S3S′ · poly(n, k) time where k is the degree upper bound for f and g.

Now we give an algorithm for computing the Hadamard product for a special case in the
commutative setting. Any depth two Π[k]Σ circuit computes the product of k homogeneous
linear forms over the input set of variables X.

I Lemma 16. Given an arithmetic circuit C of size s computing g ∈ F[X], and a homogeneous
Π[k]Σ circuit computing f ∈ F[X], and any point ~a ∈ Fn, we can evaluate (f ◦s g)(~a) in
O∗(2k) time and in polynomial space.

Proof. By standard homogenization technique [19] we can extract the homogeneous degree-
k component of C and thus we can assume that C computes a homogeneous degree-k
polynomial. Write f =

∏k
j=1 Lj , for homogeneous linear forms Lj . The corresponding

noncommutative polynomial f̂ is defined by the natural order of the j indices (and replacing
xi by yi for each i).

B Claim 17. The noncommutative polynomial f∗ has a (noncommutative) Σ[2k]Π[k]Σ circuit,
which we can write as f∗ =

∑2k
i=1 Ci, where each Ci is a (noncommutative) Π[k]Σ circuit.

Before we prove the claim, we show that it easily yields the desired algorithm: First we
notice that

Cnc ◦ f∗ =
2k∑
i=1

Cnc ◦ Ci.

Now, by Lemma 15, we can compute in poly(n, s, k) time a poly(n, s, k) size circuit for the
(noncommutative) Hadamard product Cnc ◦ Ci. As argued in the proof of Lemma 7, for any
~a ∈ Fn we have

(g ◦s f)(~a) = (C ◦s f)(~a) = (Cnc ◦ f∗)(~a).

Thus, we can evaluate (g ◦s f)(~a) by incrementally computing (Cnc ◦ Ci)(~a) and adding up
for 1 ≤ i ≤ 2k. This can be clearly implemented using only polynomial space. J

Now, we prove the above claim. Consider f = L1L2 · · ·Lk. Then f̂ = L̂1L̂2 · · · L̂k, where
L̂j is obtained from Lj by replacing variables xi with the noncommutative variable yi for
each i. We will require the following observation.

I Observation 18.

f∗ =
∑
σ∈Sk

L̂σ(1)L̂σ(2) · · · L̂σ(k).

Proof. Let us prove the claim, monomial by monomial. Fix a monomial m′ in f∗ such
that m′ → m. Suppose m′ = yi1yi2 . . . yik . Note that, m = xi1xi2 . . . xik . Recall from
Proposition 6, [m′]f∗ = m! · [m]f . Now, the coefficient of m′ in

∑
σ∈Sk

∏k
j=1 L̂σ(j) is

[m′]

∑
σ∈Sk

k∏
j=1

L̂σ(j)

 =
∑
σ∈Sk

k∏
j=1

[yij]L̂σ(j).

V. Arvind, A. Chatterjee, R. Datta, and P. Mukhopadhyay 9:11

Let us notice that, [yij]L̂σ(j) = [xij]Lσ(j). Hence,

[m′]

∑
σ∈Sk

k∏
j=1

L̂σ(j)

 =
∑
σ∈Sk

k∏
j=1

[xij]Lσ(j). J

Now we observe the following easy fact.

I Observation 19. For a degree k monomial m = xi1xi2 · · ·xik (where the variables can
have repeated occurrences) and a homogeneous Π[k]Σ circuit C =

∏k
j=1 Lj, the coefficient of

monomial m in C is given by m! · [m]C =
∑
σ∈Sk

∏k
j=1([xij]Lσ(j)).

Proof of Claim 17. Now, the claim directly follows from Observation 19 as∑
σ∈Sk

∏k
j=1[xij]Lσ(j) = m! · [m]f .

Now define the k × k matrix T such that each row of Ti is just the linear forms
L̂1, L̂2, . . . , L̂k appearing in f . The (noncommutative) permanent of T is given by Perm(T) =∑
σ∈Sk

∏k
j=1 L̂σ(j), which is just f∗.

We now apply Ryser’s formula [17] (noting the fact that it holds for the noncommutative
permanent too), to express Perm(T) as a depth-3 homogeneous noncommutative Σ[2k]Π[k]Σ
formula. It follows that f∗ = Perm(T) has a Σ[2k]Π[k]Σ noncommutative formula. C

We include a proof of Observation 19 for completeness.

Proof. We assume, without loss of generality, that repeated variables are adjacent in the
monomial m = xi1xi2 · · ·xik . More precisely, suppose the first e1 variables are xj1 , and the
next e2 variables are xj2 and so on until the last eq variables are xjq , where the q variables
xjk , 1 ≤ k ≤ q are all distinct.

We notice that the monomial m can be generated in C by first fixing an order σ : [k] 7→ [k]
for multiplying the k linear forms as Lσ(1)Lσ(2) · · ·Lσ(k), and then multiplying the coefficients
of variable xij , 1 ≤ j ≤ k picked successively from linear forms Lσ(j), 1 ≤ j ≤ k. However,
these k! orderings repeatedly count terms.

We claim that each distinct product of coefficients term is counted exactly m! times. Let
Ej ⊆ [k] denote the interval Ej = {` | ej−1 + 1 ≤ ` ≤ ej}, 1 ≤ j ≤ q, where we set e0 = 0.

Now, to see the claim we only need to note that two permutations σ, τ ∈ Sk give rise to
the same product of coefficients term if and only if σ(Ej) = τ(Ej), 1 ≤ j ≤ q. Thus, the
number of permutations τ that generate the same term as σ is m!.

Therefore the sum of product of coefficients
∑
σ∈Sk

∏k
j=1([xij]Lσ(j)) is same as m! · [m]C,

which completes the proof. J

I Remark 20. Over rationals, computing f ◦s g, when g is a Π[k]Σ circuit, can also be done by
computing g∗ using Fischer’s identity [11]. However, Lemma 16 also works over finite fields.

Now we are ready to prove Theorem 2.

Proof. By homogenization, we can assume that C computes a homogeneous degree k

polynomial f .
We go over a collection of colorings {ζi : [n] → [k]} chosen uniformly at random and

define a Π[k]Σ formula Pi =
∏k
j=1

∑
`:ζi(`)=j x` for each colouring ζi. A monomial is covered

by a coloring ζi if the monomial is nonzero in Pi. The probability that a random coloring
covers a given degree-k multilinear monomial is k!

kk
≈ e−k. Hence, for a collection of O∗(ek)

many colorings {ζi : [n]→ [k]} chosen uniformly at random, with constant probability all
the multilinear terms of degree k are covered.

FSTTCS 2019

9:12 Fast Exact Algorithms Using Hadamard Product of Polynomials

For each coloring ζi, we construct a circuit C ′i = C ◦s Pi.
Notice that we are interested only in multilinear monomials and for each such monomial

m, the additional multiplicative factor m! = 1. Also, the coefficient of each monomial is
exactly 1 in each Pi, and if f contains a multilinear term then it will be covered by some Pi.
Now we perform PIT test on each C ′i using Demillo-Lipton-Schwartz-Zippel Lemma [9, 24, 18]
in randomized polynomial time to complete the procedure. More precisely, we pick a random
~a ∈ Fn and evaluate C ′i on that point. Notice that, by the proof of Lemma 16, it is easy to see
that C ′i(~a) can be computed deterministically in time 2k ·poly(n, s) time and poly(n, k) space.3

To improve the run time from O∗((2e)k) to O∗(4.32k), we can use the idea of Hüffner
et al. [12]4. The key idea is that, using more than k colors we would reduce the number of
colorings and hence the number of ΠΣ circuits, but it would increase the formal degree of
each Pi. Following [12], we use 1.3k many colors and each Pi will be a Π[1.3k]Σ circuit. For
each coloring ζi : [n]→ [1.3k] chosen uniformly at random, we define the following Π[1.3k]Σ
circuit, Pi(x1, x2, . . . , xn, z1, . . . , z1.3k) =

∏1.3k
j=1

(∑
`:ζi(`)=j x` + zj

)
.

Since each Pi is of degree 1.3k, we need to modify the circuit C to another circuit C ′
of degree 1.3k in order to apply Hadamard products. The key idea is to define the circuits
C ′ ∈ F[X,Z] as follows:

C ′(X,Z) = C(X) · S1.3k,0.3k(z1, . . . , z1.3k)

where S1.3k,0.3k(z1, . . . , z1.3k) is the elementary symmetric polynomial of degree 0.3k over
the variables z1, . . . , z1.3k. By the result of [12], for O∗(1.752k) many random colorings with
high probability each multilinear monomial in C will be covered by the monomials of some
Pi (over the X variables).

Now to compute C ′nc◦P ∗i for each i, we symmetrize the polynomial Pi, the symmetrization
happens over theX variables as well as over the Z variables. But in C ′nc we are only interested
in the monomials (or words) where the rightmost 0.3k variables are over Z variables. In
the noncommutative circuit C ′nc, every sub-word zi1zi2 . . . zi0.3k receives a natural ordering
i1 < i2 < . . . < i0.3k.

Notice that

P ∗i (X,Z) =
∑

σ∈S1.3k

1.3k∏
j=1

 ∑
`:ζi(`)=σ(j)

x` + zσ(j)

 .

Our goal is to understand the part of P ∗i (X,Z) where each monomial ends with the
sub-word zi1zi2 . . . zi0.3k and the top k symbols are over the X variables. For a fixed set of
indices W = {i1 < i2 < . . . < i0.3k}, define the set T = [1.3k] \W . Let S[k],T be the set
of permutations σ ∈ S1.3k such that σ : [k] → T and σ(k + j) = ij for 1 ≤ j ≤ 0.3k. As
we have fixed the last 0.3k positions, each σ ∈ S[k],T corresponds to some σ′ ∈ Sk. Let
ZW = zi1zi2 . . . zi0.3k . Now the following claim is immediate.

3 Since the syntactic degree of the circuit is not bounded here, and if we have to account for the bit level
complexity (over Z) of the scalars generated in the intermediate stage we may get field elements whose
bit level complexity is exponential in the input size. So, a standard technique is to take a random prime
of polynomial bit-size and evaluate the circuit modulo that prime.

4 This is also used in [8].

V. Arvind, A. Chatterjee, R. Datta, and P. Mukhopadhyay 9:13

B Claim 21. The part of P ∗i (X,Z) where each monomial ends with the sub-word ZW and
the first k variables are from X, is P ∗i,W · ZW , where

P ∗i,W (X) =
∑

σ∈S[k],T

k∏
j=1

 ∑
`:ζi(`)=σ(j)

x`

 =
∑
σ′∈Sk

k∏
j=1

 ∑
`:ζi(`)=σ′(j)

x`

 .

Notice that,
∑
W⊆[1.3k]:|W |=0.3k P

∗
i,W contains all the colourful degree-k multilinear

monomials over X. We now obtain the following.

(C ′nc ◦ P ∗i)(X,Z) =
∑

W⊆[1.3k]:|W |=0.3k

(
Cnc(X) ◦ P ∗i,W (X)

)
· ZW .

Setting each zi = 1 and using distributivity of Hadamard product, we get (C ′nc ◦P ∗i)(X,~1) =
Cnc(X) ◦

∑
W⊆[1.3k]:|W |=0.3k P

∗
i,W which is the colourful multilinear part of the input circuit.

We now consider (C ′◦sPi)(X,Z) and substitute 1 for each Z variable and do a randomized
PIT test on the X variables using Demillo-Lipton-Schwartz-Zippel Lemma [9, 24, 18]. By
Lemma 16, for any random ~a ∈ Fn, (C ′ ◦s Pi)(~a) can be computed in O∗(21.3k) = O∗(2.46k)
time and poly(n, k) space. This suffices to check whether the resulting circuit is identically
zero or not. We repeat the procedure for each coloring and obtain a randomized O∗(4.32k)
algorithm. This completes the proof of Theorem 2. J

References
1 Noga Alon, Raphael Yuster, and Uri Zwick. Color-Coding. J. ACM, 42(4):844–856, 1995.

doi:10.1145/210332.210337.
2 Vikraman Arvind, Abhranil Chatterjee, Rajit Datta, and Partha Mukhopadhyay. Fast

Exact Algorithms Using Hadamard Product of Polynomials. CoRR, abs/1807.04496, 2018.
arXiv:1807.04496.

3 Vikraman Arvind, Pushkar S. Joglekar, and Srikanth Srinivasan. Arithmetic Circuits and the
Hadamard Product of Polynomials. In IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS 2009, December 15-17, 2009, IIT
Kanpur, India, pages 25–36, 2009. doi:10.4230/LIPIcs.FSTTCS.2009.2304.

4 Vikraman Arvind and Srikanth Srinivasan. On the hardness of the noncommutative
determinant. In Proceedings of the 42nd ACM Symposium on Theory of Computing,
STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages 677–686, 2010. doi:
10.1145/1806689.1806782.

5 Vikraman Arvind and Srikanth Srinivasan. On the hardness of the noncommutative determin-
ant. Computational Complexity, 27(1):1–29, 2018. doi:10.1007/s00037-016-0148-5.

6 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Counting Paths and
Packings in Halves. In Amos Fiat and Peter Sanders, editors, Algorithms - ESA 2009, pages
578–586, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

7 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Evaluation of
permanents in rings and semirings. Inf. Process. Lett., 110(20):867–870, 2010. doi:10.1016/
j.ipl.2010.07.005.

8 Cornelius Brand, Holger Dell, and Thore Husfeldt. Extensor-coding. In Proceedings of the
50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles,
CA, USA, June 25-29, 2018, pages 151–164, 2018. doi:10.1145/3188745.3188902.

9 Richard A. Demillo and Richard J. Lipton. A probabilistic remark on algebraic program testing.
Information Processing Letters, 7(4):193–195, 1978. doi:10.1016/0020-0190(78)90067-4.

10 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

FSTTCS 2019

https://doi.org/10.1145/210332.210337
http://arxiv.org/abs/1807.04496
https://doi.org/10.4230/LIPIcs.FSTTCS.2009.2304
https://doi.org/10.1145/1806689.1806782
https://doi.org/10.1145/1806689.1806782
https://doi.org/10.1007/s00037-016-0148-5
https://doi.org/10.1016/j.ipl.2010.07.005
https://doi.org/10.1016/j.ipl.2010.07.005
https://doi.org/10.1145/3188745.3188902
https://doi.org/10.1016/0020-0190(78)90067-4
https://doi.org/10.1007/978-1-4471-5559-1

9:14 Fast Exact Algorithms Using Hadamard Product of Polynomials

11 Ismor Fischer. Sums of Like Powers of Multivariate Linear Forms. Mathematics Magazine,
67(1):59–61, 1994. doi:10.1080/0025570X.1994.11996185.

12 Falk Hüffner, Sebastian Wernicke, and Thomas Zichner. Algorithm Engineering for Color-
Coding with Applications to Signaling Pathway Detection. Algorithmica, 52(2):114–132, 2008.
doi:10.1007/s00453-007-9008-7.

13 Ioannis Koutis. Faster Algebraic Algorithms for Path and Packing Problems. In Automata,
Languages and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland,
July 7-11, 2008, Proceedings, Part I: Tack A: Algorithms, Automata, Complexity, and Games,
pages 575–586, 2008. doi:10.1007/978-3-540-70575-8_47.

14 Ioannis Koutis and Ryan Williams. LIMITS and applications of group algebras for parameter-
ized problems. ACM Trans. Algorithms, 12(3):31:1–31:18, 2016. doi:10.1145/2885499.

15 Hwangrae Lee. Power Sum Decompositions of Elementary Symmetric Polynomials. In Linear
Algebra and its Applications, volume 492. Elsevier, August 2015.

16 Kevin Pratt. Faster Algorithms via Waring Decompositions. CoRR, abs/1807.06194, 2018.
arXiv:1807.06194.

17 H.J. Ryser. Combinatorial mathematics. Carus mathematical monographs. Mathematical
Association of America; distributed by Wiley [New York, 1963. URL: https://books.google.
co.in/books?id=wOruAAAAMAAJ.

18 Jacob T. Schwartz. Fast Probabilistic algorithm for verification of polynomial identities. J.
ACM., 27(4):701–717, 1980.

19 Amir Shpilka and Amir Yehudayoff. Arithmetic Circuits: A survey of recent results and open
questions. Foundations and Trends in Theoretical Computer Science, 5(3-4):207–388, 2010.
doi:10.1561/0400000039.

20 Leslie G. Valiant, Sven Skyum, S. Berkowitz, and Charles Rackoff. Fast Parallel Computation
of Polynomials Using Few Processors. SIAM J. Comput., 12(4):641–644, 1983. doi:10.1137/
0212043.

21 Richard Ryan Williams. The Polynomial Method in Circuit Complexity Applied to Algorithm
Design (Invited Talk). In 34th International Conference on Foundation of Software Technology
and Theoretical Computer Science, FSTTCS 2014, December 15-17, 2014, New Delhi, India,
pages 47–60, 2014. doi:10.4230/LIPIcs.FSTTCS.2014.47.

22 Ryan Williams. Finding paths of length k in O*(2k) time. Inf. Process. Lett., 109(6):315–318,
2009. doi:10.1016/j.ipl.2008.11.004.

23 Ryan Williams. Algorithms for Circuits and Circuits for Algorithms. In IEEE 29th Conference
on Computational Complexity, CCC 2014, Vancouver, BC, Canada, June 11-13, 2014, pages
248–261, 2014. doi:10.1109/CCC.2014.33.

24 R. Zippel. Probabilistic algorithms for sparse polynomials. In Proc. of the Int. Sym. on
Symbolic and Algebraic Computation, pages 216–226, 1979.

https://doi.org/10.1080/0025570X.1994.11996185
https://doi.org/10.1007/s00453-007-9008-7
https://doi.org/10.1007/978-3-540-70575-8_47
https://doi.org/10.1145/2885499
http://arxiv.org/abs/1807.06194
https://books.google.co.in/books?id=wOruAAAAMAAJ
https://books.google.co.in/books?id=wOruAAAAMAAJ
https://doi.org/10.1561/0400000039
https://doi.org/10.1137/0212043
https://doi.org/10.1137/0212043
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.47
https://doi.org/10.1016/j.ipl.2008.11.004
https://doi.org/10.1109/CCC.2014.33

Approximate Online Pattern Matching in
Sublinear Time
Diptarka Chakraborty
National University of Singapore, Singapore
diptarka@comp.nus.edu.sg

Debarati Das
University of Copenhagen, Denmark
debaratix710@gmail.com

Michal Koucký
Computer Science Institute of Charles University, Czech Republic
koucky@iuuk.mff.cuni.cz

Abstract
We consider the approximate pattern matching problem under edit distance. In this problem we are
given a pattern P of length m and a text T of length n over some alphabet Σ, and a positive integer
k. The goal is to find all the positions j in T such that there is a substring of T ending at j which
has edit distance at most k from the pattern P . Recall, the edit distance between two strings is the
minimum number of character insertions, deletions, and substitutions required to transform one
string into the other. For a position t in {1, ..., n}, let kt be the smallest edit distance between P

and any substring of T ending at t. In this paper we give a constant factor approximation to the
sequence k1, k2, ..., kn. We consider both offline and online settings.

In the offline setting, where both P and T are available, we present an algorithm that for all t in
{1, ..., n}, computes the value of kt approximately within a constant factor. The worst case running
time of our algorithm is Õ(nm3/4).

In the online setting, we are given P and then T arrives one symbol at a time. We design
an algorithm that upon arrival of the t-th symbol of T computes kt approximately within O(1)-
multiplicative factor and m8/9-additive error. Our algorithm takes Õ(m1−(7/54)) amortized time per
symbol arrival and takes Õ(m1−(1/54)) additional space apart from storing the pattern P . Both of
our algorithms are randomized and produce correct answer with high probability. To the best of our
knowledge this is the first algorithm that takes worst-case sublinear (in the length of the pattern)
time and sublinear extra space for the online approximate pattern matching problem. To get our
result we build on the technique of Chakraborty, Das, Goldenberg, Koucký and Saks [FOCS’18] for
computing a constant factor approximation of edit distance in sub-quadratic time.

2012 ACM Subject Classification Theory of computation → Pattern matching; Theory of compu-
tation → Streaming, sublinear and near linear time algorithms

Keywords and phrases Approximate Pattern Matching, Online Pattern Matching, Edit Distance,
Sublinear Algorithm, Streaming Algorithm

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.10

Related Version A full version of the paper is available at https://arxiv.org/abs/1810.03664.

Funding The research leading to these results is partially supported by the Grant Agency of the
Czech Republic under the grant agreement no. 19-27871X and by the European Research Council
under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement
no. 616787.

Acknowledgements Authors would like to thank anonymous reviewers for many helpful suggestions
and comments on an earlier version of this paper.

© Diptarka Chakraborty, Debarati Das, and Michal Koucký;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 10; pp. 10:1–10:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:diptarka@comp.nus.edu.sg
mailto:debaratix710@gmail.com
mailto:koucky@iuuk.mff.cuni.cz
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.10
https://arxiv.org/abs/1810.03664
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Approximate Online Pattern Matching in Sublinear Time

1 Introduction

Finding the occurrences of a pattern in a larger text is one of the fundamental problems in
computer science. Due to its immense applications this problem has been studied extensively
under several variations [25, 21, 5, 17, 23, 18, 24, 31, 26]. One of the most natural variations
is where we are allowed to have a small number of errors while matching the pattern. This
problem of pattern matching while allowing errors is known as approximate pattern matching.
The kind of possible errors varies with the applications. Generally we capture the amount of
errors by the metric defined over the set of strings. One common and widely used distance
measure is the edit distance (aka Levenshtein distance) [28]. The edit distance between
two strings T and P denoted by dedit(T, P) is the minimum number of character insertions,
deletions, and substitutions required to transform one string into the other. In this paper we
focus on the approximate pattern matching problem under edit distance. This problem has
various applications ranging from computational biology, signal transmission, web searching,
text processing to many more.

Given a pattern P of length m and a text T of length n over some alphabet Σ, and an
integer k we want to identify all the substrings of T at edit distance at most k from P . As
the number of such substrings might be quadratic in n and one wants to obtain efficient
algorithms, one focuses on finding the set of all right-end positions in T of those substrings
at distance at most k. More specifically, for a position t in T , we let kt be the smallest
edit distance of a substring of T ending at t-th position in T . (We number positions in
T and P from 1.) The goal is to compute the sequence k1, k2, . . . , kn for P and T . Using
basic dynamic programming paradigm we can solve this problem in O(nm) time [33]. Later
Masek and Paterson [29] shaved a logn factor from the above running time bound. Despite
of a long line of research, this running time remains the best till now. Recently, Backurs
and Indyk [8] indicate that this O(nm) bound cannot be improved significantly unless the
Strong Exponential Time Hypothesis (SETH) is false. Moreover Abboud et al. [3] showed
that even shaving an arbitrarily large polylog factor would imply that NEXP does not have
non-uniform NC1 circuits which is likely but hard to prove conclusion. More hardness results
can be found in [2, 9, 1, 4].

In this paper we focus on finding an approximation to the sequence k1, k2, . . . , kn for
P and T . For reals c, a ≥ 0, a sequence k̃1, . . . , k̃n is (c, a)-approximation to k1, . . . , kn, if
for each t ∈ {1, . . . , n}, kt ≤ k̃t ≤ c · kt + a. Hence, c is the multiplicative error and a

is the additive error of the approximation. An algorithm computes (c, a)-approximation
to approximate pattern matching if it outputs a (c, a)-approximation of the true sequence
k1, k1, . . . , kn for P and T . We refer to (c, 0)-approximation simply as c-approximation. Our
main theorem is the following.

I Theorem 1. There is a constant c ≥ 1 and there is a randomized algorithm that computes
a c-approximation to approximate pattern matching in time Õ(n ·m3/4) with probability at
least (1− 1/n3).

In the recent past researchers also studied the approximate pattern matching problem in
the online setting. The online version of this pattern matching problem mostly arises in real life
applications that require matching pattern in a massive data set, like in telecommunications,
monitoring Internet traffic, building firewall to block viruses and malware connections and
many more. The online approximate pattern matching is as follows: we are given a pattern
P first, and then the text T is coming symbol by symbol. Upon receipt of the t-th symbol
we should output the corresponding kt. The online algorithm runs in amortized time O(`) if
it runs in total time O(n · `). We also say that the online algorithm uses extra space O(s) if
in addition to storing the pattern P it uses at most O(s) cells of memory at any time.

D. Chakraborty, D. Das, and M. Koucký 10:3

I Theorem 2. There is a constant c ≥ 1 and there is a randomized online algorithm
that computes (c,m8/9)-approximation to approximate pattern matching in amortized time
Õ(m1−(7/54)) and extra space Õ(m1−(1/54)) with probability at least 1− 1/poly(m).

To the best of our knowledge this is the first online approximation algorithm that takes
sublinear (in the length of the pattern) running time and sublinear extra space for the
approximate pattern matching problem. Designing algorithm that uses small extra space is
quite natural from the practical point of view and has been considered for many problems
including pattern matching, e.g. [32, 22].

To prove our result we use the technique developed by Chakraborty, Das, Goldenberg,
Koucký and Saks in [10, 11], where they provide a sub-quadratic time constant factor
approximation algorithm for the edit distance problem. In particular, in [11] authors describe
a constant factor approximation algorithm that given two strings of length n runs in time
Õ(n12/7). Now suppose we only have a black-box access to that approximation algorithm
for computing the edit distance. Then we claim that we get O(1)-approximation to the
offline approximate pattern matching problem in time Õ(nm6/7). Let us first set a parameter
k = m6/7. Now in the first phase we run O(nk) time algorithm by Landau and Vishkin [27]
and get all the values of kt which are at most k. In the next phase we divide the text T into
overlapping substrings of length m with overlap of m− k. In other words for every t that
are multiple of k consider the substring Tt−m+1,t (that starts at (t−m+ 1)-th symbol and
ends at t-th symbol). For all the positions t that are multiple of k and kt > k (as identified
by the first phase) we use the edit distance algorithm of [11] to get O(1)-approximation
of dedit(Tt−m+1,t, P) and output that value as k̃t. Since kt ≤ dedit(Tt−m+1,t, P) ≤ 2kt, the
output k̃t is an O(1)-approximation of kt. For all the remaining values of t (that are not
multiples of k, and kt > k) we output k̃t′ + (t− t′) where t′ = b tk c · k, as an estimate of kt.
Since kt′ − (t− t′) ≤ kt ≤ kt′ + (t− t′), for all t such that kt > k we get O(1)-approximation
of kt. Note, the above described process takes Õ(nm6/7) time and thus breaks O(nm) barrier
for the offline approximate pattern matching problem for constant factor approximation.
However our claimed running time in Theorem 1 is better than that of this black-box
algorithm.

In this paper we first design an offline algorithm by building upon the technique used
in [11]. To do this we exploit the similarity between the “dynamic programming graphs” (see
Section 2) for approximate pattern matching problem and the edit distance problem. To get
Õ(nm3/4) time algorithm for the offline approximate pattern matching problem still requires
careful modifications to the edit distance algorithm. However the scenario becomes much
more involved if one wants to design an online algorithm using only a small amount of extra
space. The approximation algorithm for edit distance in [11] works in two phases: first a
covering algorithm is used to discover a suitable set of shortcuts in the pattern matching
graph, and then a min-cost path algorithm on a grid graph with the shortcuts yields the
desired result. In the online setting we carefully interleave all of the above phases. However
that by itself is not sufficient since the first phase, i.e., the covering algorithm used in [11]
essentially relies on the fact that both of the strings are available at any point of time. We
modify the covering technique so that it can also be implemented in the situation when we
cannot see the full text. We show that if we store the pattern P then we need only O(m1−γ)
extra space (for some small constant γ > 0) to perform the sampling. Furthermore, the
min-cost path algorithm in [11] takes O(m) space. We modify that algorithm too in a way so
that it also works using only O(m1−γ) space (for some small constant γ > 0). We describe
our algorithm in more details in Section 5.

FSTTCS 2019

10:4 Approximate Online Pattern Matching in Sublinear Time

1.1 Related work

The approximate pattern matching problem is one of the most extensively studied problems
in modern computer science due to its direct applicability to data driven applications. In
contrast to the exact pattern matching here a text location has a match if the distance between
the pattern and the text is within some tolerated limit. In our work we study the approximate
pattern matching under edit distance metric. The very first O(nm)-time algorithm was given
by Sellers [33] in 1980. Masek and Paterson [29] proposed an O(nm/ logn)-time O(n)-space
algorithm using Four Russians [7] technique. Later [30, 27, 20] gave O(nk)-time algorithms
where k is the upper limit of allowed edit operations. All of these algorithms use either
O(m2) or O(n) space. However [19, 36] note that achieving O(m) space is also possible while
maintaining the running time. A faster (for small values of k) algorithm was given by Cole
and Hariharan [16], which has running time O(n(1 + k4/m)). We refer the interested readers
to a beautiful survey by Navarro [31] for a comprehensive treatment on this topic. We have
already seen in the previous section that any c-approximation algorithm for the edit distance
problem can be transformed into an O(c)-approximation algorithm for the approximate
pattern matching problem. We get (logm)O(1/ε)-approximation to the approximate pattern
matching problem in time O(nm 1

2 +ε) (for every ε > 0) from the edit distance algorithm
of Andoni et al. [6]. To achieve the same running time while having only constant factor
approximation is an important open problem.

All the above mentioned algorithms assume that the entire text is available from the
very beginning of the process. However in the online version, the pattern is given at the
beginning and the text arrives in a stream, one symbol at a time. Clifford et al. [12] gave
a “black-box algorithm” for online approximate matching where the supported distance
metrics are Hamming distance, matching with wildcards, L1 and L2 norm. Their algorithm
has running time O(

∑log2 m
j=1 T (n, 2j−1)/n) per symbol arrival, where T (n,m) is the running

time of the best offline algorithm. This result was extended in [14] by introducing an
algorithm solving online approximate pattern matching under edit distance metric in time
O(k logm) per symbol arrival. This algorithm uses O(m)-space. In [15] the running time
was further improved to O(k) per symbol. However none of these algorithms for edit distance
metric is black-box and they highly depend on the specific structure of the corresponding
offline algorithm. Recently, Starikovskaya [34] gave a randomized algorithm which has a
worst case time complexity of O((k2√m + k13) log4 m) and uses space O(k8√m log6 m).
Although her algorithm takes both sublinear time and sublinear space for small values of k,
heavy dependency on k in the complexity terms makes it much worse than the previously
known algorithms in the high regime of k. On the lower bound side, Clifford, Jalsenius
and Sach [13] showed in the cell-probe model that expected amortized running time of
any randomized algorithm solving online approximate pattern matching problem must be
Ω(
√

logm/(log logm)3/2) per output.

2 Preliminaries

We recall some basic definitions of [11]. Consider the text T of length n to be aligned along
the horizontal axis and the pattern P of length m to be aligned along the vertical axis. For
i ∈ {1, . . . , n}, Ti denotes the i-th symbol of T and for j ∈ {1, . . . ,m}, Pj denotes the j-th
symbol of P . Ts,t is the substring of T starting by the s-th symbol and ending by the t-th
symbol of T . For any interval I ⊆ {0, . . . , n}, TI denotes the substring of T indexed by
I \ {min(I)} and for J ⊆ {0, . . . ,m}, PJ denotes the substring of P indexed by J \ {min(J)}.

D. Chakraborty, D. Das, and M. Koucký 10:5

Edit distance and pattern matching graphs

For a text T of length n and a pattern P of length m, the edit distance graph GT,P is a
directed weighted graph called a grid graph with vertex set {0, · · · , n} × {0, · · · ,m} and
following three types of edges: (i− 1, j)→ (i, j) (H-steps), (i, j − 1)→ (i, j) (V-steps) and
(i− 1, j − 1)→ (i, j) (D-steps). Each H-step or V-step has cost 1 and each D-step costs 0 if
Ti = Pj and 1 otherwise. The pattern matching graph G̃T,P is the same as the edit distance
graph GT,P except for the cost of horizontal edges (i, 0)→ (i+ 1, 0) which is zero.

For intervals I ⊆ {0, . . . , n} and J ⊆ {0, . . . ,m}, GT,P (I × J) is the subgraph of GT,P
induced on I × J . Clearly, GT,P (I × J) ∼= GTI ,PJ

. We define the cost of a path τ in GTI ,PJ
,

denoted by costGTI ,PJ
(τ), as the sum of the costs of its edges. We also define the cost of a

graph GTI ,PJ
, denoted by cost(GTI ,PJ

), as the cost of the cheapest path from (min I,min J)
to (max I,max J).

The following is well known in the literature (e.g. see [33]).

I Proposition 3. Consider a pattern P of length m and a text T of length n, and let
G = G̃T,P . For any t ∈ {1, . . . , n}, let I = {0, · · · , t}, and J = {0, · · · ,m}. Then kt =
cost(G(I × J)) = mini≤t dedit(Ti,t, P).

A similar proposition is also true for the edit distance graph.

I Proposition 4. Consider a pattern P of length m and a text T of length n, and let
G = GT,P . For any i1 ≤ i2 ∈ {1, · · · , n}, j1 ≤ j2 ∈ {1, · · · ,m} let I = {i1 − 1, · · · , i2} and
J = {j1 − 1, · · · , j2}. Then cost(G(I × J)) = dedit(Ti1,i2 , Pj1,j2).

Let G be a grid graph on I × J and τ = (i1, j1), . . . , (il, jl) be a path in G. Horizontal
projection of a path τ is the set {i1, . . . , il}. Let I ′ be an interval contained in the horizontal
projection of τ , then τI′ denotes the (unique) minimal subpath of τ with horizontal projection
I ′. Let G′ = G(I ′ × J ′) be a subgraph of G. For δ ≥ 0 we say that I ′ × J ′ (1− δ)-covers the
path τ if the initial and the final vertex of τI′ are at a vertical distance of at most δ(|I ′| − 1)
from (min(I ′),min(J ′)) and (max(I ′),max(J ′)), resp..

A certified box of G is a pair (I ′×J ′, `) where I ′ ⊆ I, J ′ ⊆ J are intervals, and ` ∈ N∪{0}
such that cost(G(I ′× J ′)) ≤ `. At high level, our goal is to approximate each path τ in G by
a path via the corner vertices of certified boxes. For that we want that a substantial portion
of the path τ goes via those boxes and that the sum of the costs of the certified boxes is not
much larger than the actual cost of the path. The next definition makes our requirements
precise. Let σ = {(I1× J1, `1), (I2× J2, `2), . . . , (Is× Js, `s)} be a sequence of certified boxes
in G. Let τ be a path in G(I × J) with horizontal projection I. For any k, ζ ≥ 0, we say
that σ (k, ζ)-approximates τ if the following three conditions hold:
1. I1, . . . , Is is a decomposition of I, i.e., I =

⋃
i∈[s] Ii, and for all i ∈ [s− 1], min(Ii+1) =

max(Ii).
2. For each i ∈ [s], Ii × Ji (1− `i/(|Ii| − 1))-covers τ .
3.

∑
i∈[s] `i ≤ k · cost(τ) + ζ.

3 Offline approximate pattern matching

3.1 Technical Overview
To prove Theorem 1 we design an algorithm as follows. For k = 2j , j = 0, . . . , logm3/4, we
run the standard O(nk) algorithm by Landau and Vishkin [27] to identify all t such that
kt ≤ k. To identify positions with kt ≤ k for k > m3/4 where k is a power of two we will use

FSTTCS 2019

10:6 Approximate Online Pattern Matching in Sublinear Time

the technique of [11] to compute (O(1), O(m3/4))-approximation of k1, . . . , kn. The obtained
information can be combined in a straightforward manner to get a single O(1)-approximation
to k1, . . . , kn: For each t, if for some 2j ≤ m3/4, kt is at most 2j (as determined by the
former algorithm) then output the exact value of kt using the algorithm of [27], otherwise
output the approximation of kt found by the latter algorithm. This way, for kt ≤ m3/4 we
will get the exact value, and for k > m3/4 we will get an O(1)-approximation. We will now
elaborate on the latter algorithm based on [11]. The edit distance algorithm of [11] has two
phases which we will also use. The first phase (covering phase) identifies a set of certified
boxes, subgraphs of the pattern matching graph with good upper bounds on their cost. These
certified boxes should cover the min-cost paths of interest. Then the next phase runs a
min-cost path algorithm on these boxes to obtain the output sequence. We will show that
both of these phases take Õ(nm3/4) time and so the overall running time will be Õ(nm3/4).

We next describe the two phases of the algorithm. The algorithm will use the following
parameters: w1 = m1/4, w2 = m1/2, d = m1/4, θ = m−1/4. The meaning of the parameters
is essentially the same as in [11] though their setting is different. Let c0, c1 ≥ 0 be the large
enough constants from [11]. For simplicity we will assume without loss of generality that
w1 and w2 are powers of two (by rounding them down to the nearest powers of two), θ is a
reciprocal of a power of two (by decreasing θ by at most a factor of two), w2|m (by chopping
off a small suffix from P which will affect the approximation by a negligible additive error
as m3/4 � w2), and m|n (if not we can run the algorithm twice: on the largest prefix of T
of length divisible by m and then on the largest suffix of T of length divisible by m). The
algorithm will not explicitly compute kt for all t but only for t where t is a multiple of w2,
and then it will use the same value for each block of w2 consecutive kt’s. Again, this will
affect the approximation by a negligible additive error.

3.2 Covering phase

We describe the first phase of the algorithm now. First, we partition the text T into substrings
T 0

1 , . . . , T
0
n0

of length m, where n0 = n/m. Then we process each of the parts independently.
Let T ′ be one of the parts. We partition T ′ into substrings T 1

1 , T
1
2 , . . . , T

1
n1

of length w1,
and we also partition T ′ into substrings T 2

1 , T
2
2 , . . . , T

2
n2

of length w2, where n1 = m/w1 and
n2 = m/w2. For a substring u of v starting by i-th symbol of v and ending by j-th symbol of
v, we let {i− 1, i, i+ 1, . . . , j} be its span. Moreover for δ ∈ (0, 1) we call u to be (δ)-aligned
if both i− 1 and j − 1 are divisible by δ(j − i). The covering algorithm proceeds in phases
j = 0, . . . , dlog 1/θe associated with εj = 2−j . Similar to the edit distance algorithm, here
also each phase has two parts, namely the dense substrings and the extension sampling. Then
the covering algorithm proceeds as follows:

Dense substrings

In this part the algorithm aims to identify for each εj , a set of substrings T 1
i that are similar

(i.e., up to “small” edit distance) to more than d (εj/8)-aligned, w1 length substrings of P .
We identify each T 1

i by testing a random sample of relevant substrings of P . If we determine
with high confidence that there are at least Ω(d) substrings of P similar to T 1

i , we add T 1
i

into a set Dj of such strings, and we also identify all T 1
i′ that are similar to T 1

i . By triangle
inequality we would also expect them to be similar to many relevant substrings of P . So we
add these T 1

i′ to Dj as well as we will not need to process them anymore. We output the set
of certified boxes of edit distance O(εjw1) found this way. More formally:

D. Chakraborty, D. Das, and M. Koucký 10:7

For j = dlog 1/θe, . . . , 0, the algorithm maintains sets Dj of substrings T 1
i . These sets

are initially empty.

Step 1. For each i = 1, . . . , n1 and j = dlog 1/θe, . . . , 0, if T 1
i is in Dj then we continue

with the next i and j. Otherwise we process it as follows.

Step 2. Set εj = 2−j . Independently at random, sample 8c0 ·m · (εjw1d)−1 · logn many
(εj/8)-aligned substrings of P of length w1. For each sampled substring u check if its edit
distance from T 1

i is at most εjw1. If less than 1
2 · c0 · logn of the samples have their edit

distance from T 1
i below εjw1 then we are done with processing this i and j and we continue

with the next pair.

Step 3. Otherwise we identify all substrings T 1
i′ that are not in Dj and are at edit distance

at most 2εjw1 from T 1
i , and we let X to be the set of their spans relative to the whole T .

Step 4. Then we identify all (εj/8)-aligned substrings of P of length w1 that are at edit
distance at most 3εjw1 from T 1

i , and we let Y to be the set of their spans. (We also allow
some (εj/8)-aligned substrings of P of edit distance at most 6εjw1 to be included in the set
Y as some might be misidentified to have the smaller edit distance from T 1

i by our procedure
that searches for them, see further.)

Step 5. For each pair of spans (I, J) from X × Y we output corresponding certified box
(I × J, 8εjw1). We add substrings corresponding to X into Dj and continue with the next
pair i and j.

Once we process all pairs of i and j, we proceed to the next phase: extension sampling.

Extension sampling

In this part for every εj = 2−j and every substring T 2
i , which does not have all its substrings

T 1
` contained in Dj we randomly sample a set of such T 1

` ’s. For each sampled T 1
` we

determine all relevant substrings of P at edit distance at most εjw1 from T 1
` . There should

be O(d)-many such substrings of P . We extend each such substring into a substring of size
|T 2
i | within P and we check the edit distance of the extended string from T 2

i . For each
extended substring of edit distance at most 3εjw2 we output a set of certified boxes.

Here we define the appropriate extension of substrings. Let u be a substring of T of
length less than |P |, and let v be a substring of u starting by the i-th symbol of u. Let v′
be a substring of P of the same length as v starting by the j-th symbol of P . The diagonal
extension u′ of v′ in P with respect to u and v, is the substring of P of length |u| starting
at position j − i. If (j − i) ≤ 0 then the extension u′ is the prefix of P of length |u|, and if
j − i+ |P | > |P | then the extension u′ is the suffix of P of length |u|.

Step 6. Process all pairs i = 1, . . . , n2 and j = dlog 1/θe, . . . , 0.

Step 7. Independently at random, sample c1 · log2 n · logm substrings T 1
` that are part

of T 2
i and that are not in Dj . (If there is no such substring continue for the next pair of i

and j.)

Step 8. For each T 1
` , find all (εj/8)-aligned substrings v′ of P of length w1 that are at edit

distance at most εjw1 from T 1
` .

FSTTCS 2019

10:8 Approximate Online Pattern Matching in Sublinear Time

Step 9. For each v′ determine its diagonal extension u′ with respect to T 2
i and T 1

` . Check
if the edit distance of u′ and T 2

i is less than 3εjw2. If so, compute it and denote the distance
by c. Let I ′ be the span of T 2

i relative to T , and J ′ be the span of u′ in P . For all powers a
and b of two, m3/4 ≤ a ≤ b ≤ m, output the certified box (I ′ × J ′, c+ a+ b). Proceed for
the next i and j.

This ends the covering algorithm which outputs various certified boxes.
To implement the above algorithm we will use Ukkonen’s [35] O(nk)-time algorithm to

check whether the edit distance of two strings of length w1 is at most εjw1 in time O(w2
1εj).

Given the edit distance is within this threshold the algorithm can also output its precise
value. We use this algorithm in Step 3. To identify all substrings of length w1 at edit distance
at most εjw1 of S from a given string R (where S is the pattern P of length m and R is
one of the T 1

i of length w1), in Step 4, we use the O(nk)-time pattern matching algorithm
of Landau and Vishkin [27]. For a given threshold k, this algorithm determines for each
position t in S, whether there is a substring of edit distance at most k from R ending at
that position in S. If the algorithm reports such a position t then we know by the following
proposition that the substring St−|R|+1,t is at edit distance at most 2k. At the same time
we are guaranteed to identify all the substrings of S of length w1 at edit distance at most
k from R. Hence in Step 4, finding all the substrings at distance 3εjw1 with perhaps some
extra substrings of edit distance at most 6εjw1 can be done in time O(mw1εj).

I Proposition 5. For strings S and R, and integers t ∈ {1, . . . , |S|}, k ≥ 0 , if mini≤t dedit(
Si,t, R) ≤ k then dedit(St−|R|+1,t, R) ≤ 2k.

Proof. Let Si,t be the best match for R ending by the t-th symbol of S. Hence, k =
dedit(Si,t, R). If Si,t is by ` symbols longer than R then k ≥ ` and dedit(St−|R|+1,t, R) ≤
k + ` ≤ 2k by the triangle inequality. The same is true if Si,t is shorter by ` symbols. J

3.3 Correctness of the covering algorithm
I Lemma 6. Let t ≥ 1 be such that t is a multiple of w2. Let τt be the min-cost path between
vertex (t − m, 0) and (t,m) in the edit distance graph G = GT,P of T and P of cost at
least m3/4 ≥ θm. The covering algorithm outputs a set of weighted boxes R such that every
(I × J, `) ∈ R is correctly certified i.e., cost(G(I × J)) ≤ ` and there is a subset of R that
(O(1), O(kt))-approximates τt with probability at least 1− 1/n7.

It is clear from the description of the covering algorithm that it outputs only correct
certified boxes from the edit distance graph of T and P , that is for each box (I × J, `),
cost(G(I × J)) ≤ `.

The cost of τt corresponds to the edit distance between P and Tt−m+1,t and it is bounded
by 2kt by Proposition 5. Let k′t be the smallest power of two ≥ kt. We claim that by
essentially the same argument as in Proposition 3.8 and Theorem 3.9 of [11] the algorithm
outputs with high probability a set of certified boxes that (O(1), O(k′t))-approximates τt.
Therefore instead of repeating the whole proof, here we sketch the differences between the
current covering algorithm with that of [11] and argue about how to handle them.

The main substantial difference is that the algorithm in [11] searches for certified boxes
located only within O(kt) diagonals along the main diagonal of the edit distance graph. (This
rests on the observation of Ukkonen [35] that a path of cost ≤ kt must pass only through
vertices on those diagonals.) Here we process certified boxes in the whole matrix as each t
requires a different “main” diagonal. Except for this difference and the order of processing
various pieces the algorithms are the same.

D. Chakraborty, D. Das, and M. Koucký 10:9

The discovery of certified boxes depends on the number (density) of relevant substrings of
P similar to a given T 1

i . In the edit distance algorithm in [11] this density is measured only
in the O(kt)-width strip along the main diagonal of the edit distance graphs whereas here
it is measured within the whole P . (So the actual classification of substrings T 1

i on dense
(in Dj) and sparse (not in Dj) might differ between the two algorithms.) Hence, one could
think (though technically not quite correct) that the certified boxes output by the current
algorithm form a superset of boxes output by the edit distance algorithm of [11]. However,
this difference is immaterial for the correctness argument in Theorem 3.9 of [11].

Another difference is that in Step 4 we use O(mw1εj)-time algorithm to search for all
the similar substrings. This algorithm will report all the substrings we were looking for and
additionally it might report some substrings of up to twice the required edit distance. This
necessitates the upper bound 8εjw1 in certified boxes in Step 5. It also means a loss of factor
of at most two in the approximation guarantee as the boxes of interest are reported with the
cost 8εjw1 instead of the more accurate 5εjw1 of the original algorithm in [11] which would
give a (45, 15cost(τt))-approximation. (In that theorem θm represents an (arbitrary) upper
bound on the cost of τt provided it satisfies certain technical conditions requiring that θ is
large enough relative to m. This is satisfied by requiring that cost(τt) ≥ m3/4 ≥ θm.)

Another technical difference is that the path τt might pass through two edit distance
graphs GT 0

`−1,P
and GT 0

`
,P , where t ∈ [(`− 1)m+ 1, `m]. This means that one needs to argue

separately about restriction of τt to GT 0
`−1,P

and GT 0
`
,P . However, the proof of Theorem 3.9

in [11] analyses approximation of the path in separate parts restricted to substrings of T of
size w2. As both t and m are multiples of w2, the argument for each piece applies in our
setting as well.

3.4 Time complexity of the covering algorithm
By analyzing the running time we get the following.

I Lemma 7. The covering algorithm runs in time Õ(nm3/4) with probability at least 1−1/n8.

We analyse the running time of the covering algorithm for each T ′ = T 0
i separately. We

claim that the running time on T ′ is Õ(m7/4) so the total running time is Õ((n/m)m7/4) =
Õ(nm3/4).

In Step 1, for every i = 1, . . . , n1 and j = 0, . . . , logm1/4, we might sample O(m
εjw1d

· logn)
substrings of P of length w1 and check whether their edit distance from T 1

i is at most εjw1.
This takes time at most Õ(m

εjw1d
· mw1
· w2

1εj) = Õ(m2/d) = Õ(m7/4) in total.
We say that a bad event happens either if some substring T 1

i has more than d relevant
substrings of P having distance at most εjw1 but we sample less than 1

2 · c0 logn of them,
or if some substring T 1

i has less than d/4 relevant substrings of P having distance at most
εjw1 but we sample more than 1

2 · c0 logn of them. By Chernoff bound, the probability
of a bad event happening during the whole run of the covering algorithm is bounded by
exp(−O(logn)) ≤ 1/n8, for sufficiently large constant c0. Assuming no bad event happens
we analyze the running time of the algorithm further.

Each substring T 1
i that reaches Step 3 can be associated with a set of its relevant substrings

in P of edit distance at most εjw1 from it. The number of these substrings is at least d/4
many. These substrings must be different for different strings T 1

i that reach Step 3 as if they
were not distinct then the two substrings T 1

i and T 1
i′ would be at edit distance at most 2εjw1

from each other and one of them would be put into Dj in Step 5 while processing the other
one so it could not reach Step 3. Hence, we can reach Steps 3–5 for at most 8m

εjw1
· 4
d strings

T 1
i . For a given j and each T 1

i that reaches Step 3, the execution of Steps 3 and 4 takes
O(mw1εj) time, hence we will spend in them Õ(m2/d) = Õ(m7/4) time in total.

FSTTCS 2019

10:10 Approximate Online Pattern Matching in Sublinear Time

Step 5 can report for each j at most 8m
εjw1

· mw1
certified boxes, so the total time spent in

this step is Õ(m2/w1) = Õ(m7/4) as εjw1 ≥ 1/4.
Step 7 takes order less time than Step 8. In Step 8 we use Ukkonen’s [35] O(nk)-time

edit distance algorithm to check the distance of strings of length w1. We need to check
Õ(n2 · m

εjw1
) pairs for the total cost Õ(mw2

· m
εjw1

· w2
1εj) = Õ(m7/4) per j.

As no bad event happens, for each T 1
` , there will be at most d/4 strings v′ processed in

Step 9. We will spend O(w2
2εj) time on each of them to check for edit distance and O(log2 n)

to output the certified boxes. Hence, for each j we will spend here Õ(mw2
· dw2

2εj) time, which
is Õ(mw2d) in total.

Thus, the total time spent by the algorithm in each of the steps is Õ(m7/4) as required.

4 Min-cost Path in a Grid Graph with Shortcuts

In this section we explain how we use certified boxes to calculate the approximation of kt’s.
Consider any grid graph G. A shortcut in G is an additional edge (i, j)→ (i′, j′) with cost `,
where i < i′ and j < j′.

Let GT,P be the edit distance graph for T and P . Let (I×J, `) be a certified box in GT,P
with |I| = |J |. If ` < 1/2(|I| − 1) add a shortcut edge eI,J from vertex (min I,min J + `) to
vertex (max I,max J − `) with cost 3`. Do this for all certified boxes output by the covering
algorithm to obtain a graph G′T,P . Note, if ` ≥ 1/2(|I| − 1) we do not add any shortcut edge
for the corresponding certified box. Next remove all the diagonal edges (D-steps) of cost 0
or 1 from graph G′T,P and obtain graph G′′T,P .

I Proposition 8. If τ is a path from (t−m, 0) to (t,m) in GT,P which is (k, ζ)-approximated
by a subset of certified boxes σ by the covering algorithm then there is a path from (t−m, 0) to
(t,m) in G′′T,P of cost at most 5 ·(k ·costGT,P

(τ)+ζ) consisting of shortcut edges corresponding
to σ and H and V steps.

We provide the proof of proposition 8 in the full version. By Lemma 6 and Proposition 8,
for t where w2|t, the cost of a shortest path from (t−m, 0) to (t,m) in G′′T,P is bounded by
O(kt). At the same time, any path in G′′T,P from (i, 0) to (t,m), i ≤ t, has cost at least kt.
So we only need to find the minimal cost of a shortest path from any (i, 0) to (t,m) in G′′T,P
to get an approximation of kt.

To find the minimal cost, we reset to zero the cost of all horizontal edges (i, 0)→ (i+ 1, 0)
in G′′T,P to get a graph G. The graph G corresponds to taking the pattern matching graph
G̃T,P , removing from it all its diagonal edges and adding the shortcut edges. The cost of a
path from (0, 0) to (t,m) in G is the minimum over i ≤ t of the cost of a shortest path from
(i, 0) to (t,m) in G′′T,P .

Hence, we want to calculate the cost of the shortest path from (0, 0) to (t,m) for all
t.1 For this we will use a simple algorithm that will make a single sweep over the shortcut
edges sorted by their origin and calculate the distances for t = 0, . . . , n. The algorithm will
maintain a data structure that at time t will allow to answer efficiently queries about the
cost of the shortest path from (0, 0) to (t, j) for any j ∈ {0, . . . ,m}.

The data structure will consist of a binary tree with m+ 1 leaves. Each node is associated
with a subinterval of {0, . . . ,m} so that the j-th leaf (counting from left to right) corresponds
to {j}, and each internal node corresponds to the union of all its children. We denote by

1 Although, we really care only about t where w2|t, as for all the other values of t we will approximate kt

by the value equal to k̃t′ + (t− t′), where t′ = b t
w2
c. Recall, k̃t′ is the estimated value of kt′ .

D. Chakraborty, D. Das, and M. Koucký 10:11

Iv the interval associated with a node v. The depth of the tree is at most 1 + log(m+ 1).
At time t, query to the node v of the data structure will return the cost of the shortest
path from (0, 0) to (t,max Iv) that uses some shortcut edge (i, j) → (i′, j′), where j′ ∈ Iv.
Each node v of the data structure stores a pair of numbers (cv, tv), where cv is the cost of
the relevant shortest path from (0, 0) to (tv,max Iv) and tv is the time it was updated the
last time. (Initially this is set to (∞, 0).) At time t ≥ tv, the query to the node v returns
cv + (t− tv).

At time t to find the cost of the shortest path from (0, 0) to (t, j) we traverse the
data structure from the root to the leaf j. Let v1, . . . , v` be the left children of the nodes
along the path in which we continue to the right child. We query nodes v1, . . . , v` to get
answers a1, . . . , a`. The cost of the shortest paths from (0, 0) to (t, j) is a = min{j, a1 +
(j −max Iv1), a2 + (j −max Iv2), . . . , a` + (j −max Iv`

)}. As each query takes O(1) time to
answer, computing the shortest path to (t, j) takes O(logm) time.

The algorithm that outputs the cheapest cost of any path from (0, 0) to (t,m) in G

will process the shortcut edges (i, j)→ (i′, j′) one by one in the order of increasing i. The
algorithm will maintain lists L0, . . . , Ln of updates to the data structure to be made before
time t. At time t the algorithm first outputs the cost of the shortest path from (0, 0) to (t,m).
Then it takes each shortcut edge (t, j)→ (t′, j′) one by one, t < t′. (The algorithm ignores
shortcut edges where t = t′.) Using the current state of the data structure it calculates the
cost c of a shortest path from (0, 0) to (t, j) and adds (c+ d, j′) to list Lt′ , where d is the
cost of the shortcut edge (t, j)→ (t′, j′).

After processing all edges starting at (t, ·) the algorithm performs updates to the data
structure according to the list Lt+1. Update (c, j) consists of traversing the tree from the
root to the leaf j and in each node v updating its current values (cv, tv) to the new values
(c′v, t+ 1), where c′v = min{cv + t+ 1− tv, c+ max Iv − j}. Then the algorithm increments t
and continues with further edges.

If the number of shortcut edges is m then the algorithm runs in time O(n+m(logm+
logm)). First, it has to set-up the data structure, sort the edges by their origin and then it
processes each edge. Processing each edge will require O(logm) time to find the min-cost
path to the originating vertex and then later at time t′ it will require time O(logm) to
update the data structure. As there are Õ(nm ·

m
θw1
· mw1

) ≤ Õ(nm3/4) certified boxes in total
the running time of the algorithm is as required.

The correctness of the algorithm is immediate from its description.

5 Online approximate pattern matching

In this section we describe the online algorithm from Theorem 2. In the online setting the
pattern P is given while the text T arrives in online fashion. The main challenge of this
setting is that at any point of time (other than the pattern) we are allowed to store a substring
of the text of length just sublinear in m. To overcome this situation the online algorithm is
based on interleaved execution of the cover and min-cost path algorithms from Sections 3.2
and 4. Moreover we need to maintain some extra data structure in a clever manner for the
covering algorithm. Also to get the required space bound we use a slightly modified tree data
structure for the min-cost path algorithm. For the online setting we use the same parameters
as the offline one, but we set their values slightly differently: w1 = m11/18, w2 = m20/27,
d = m7/54, θ = m−1/9. Next, we describe the data structure used in the covering algorithm
and the modified tree data structure for the min-cost path algorithm.

FSTTCS 2019

10:12 Approximate Online Pattern Matching in Sublinear Time

Covering algorithm data structure. For each substring T 0
r of m consecutive input symbols

of text T , and j = dlog 1/θe, . . . , 0 the algorithm will maintain a set D′j that stores the
content of strings T 1

i that reached Step 3 of the covering algorithm during processing of T 0
r .

Moreover for each of such string T 1
i the algorithm will also store a set Yi,j that contains the

spans obtained in Step 4 while processing T 1
i . This is done as the whole m length string T 0

r

can’t be stored at once. Moreover to bound the size of D′j and Yi,j , before adding a new T 1
i

that reached Step 3 of the covering algorithm to D′j , we first ensure that no string close to
T 1
i is already contained in D′j . Also after finishing each T 0

r we discard all the information
associated with it.

Modified tree data structure. Here we describe the modified tree data structure used for
the min-cost path algorithm. Notice, every shortcut edge corresponds to some certified box.
Our covering algorithm has log 1/θ rounds where in any round the total number of possible
vertical positions, where the bottom left corner or the top right corner point of any certified
box might lie is bounded by m

θw1
. Next, we round up all the edit distance estimates to powers

of two, hence in any certified box there are at most 2 logm positions from which a shortcut
edge might start or end. Therefore, the number of distinct vertical positions where these
shortcut edges might originate from or lead to is bounded by q = 2m

θw1
· log 1/θ · logm. Thus

the tree data structure of the min-cost path algorithm will ever perform updates to at most
q logm distinct nodes. We do not need to store the nodes that are never updated, so the
tree data structure will occupy only space Õ(m

θw1
).

5.1 The online algorithm
Now we explain how to interleave the two phases to achieve required time and space bound.
The algorithm processes the input text T in batches of w2 symbols. Upon receipt of the
t-th symbol we buffer the symbol, if t is not divisible by w2 then the algorithm outputs the
estimated value for (t − 1)-th position plus one, i.e., k̃t−1 + 1 as the current value kt and
waits for the next symbol. Otherwise we received batch T 2

` of next w2 symbols, for ` = t/w2,
and we will proceed as follows.

The covering algorithm in the online setting is similar to the covering algorithm offline
setting. However here, we will execute the covering algorithm twice on each T 2

` where during
the first execution the only thing that we will send to the min-cost path algorithm are the
certified boxes produced at Step 9, all other modifications to data structures will be discarded.
During the second run of the algorithm on T 2

` , we will preserve all modifications to D′j ’s and
other data structures except we will discard the certified boxes produced at Step 9 (we will
not send them to the min-cost path algorithm as they are already sent in the first pass).

Covering algorithm. We now describe how the covering algorithm executes on each T 2
` .

The algorithm maintain sets Sj , j = dlog 1/θe, . . . , 0 that are empty at the beginning. We
partition T 2

` into T 1
g , . . . , T

1
h of length w1, where g = (` − 1) · w2

w1
+ 1 and h = g + w2

w1
− 1.

For i = g, . . . , h we do the following. For each j = dlog 1/θe, . . . , 0, set εj = 2−j . Check,
whether T 1

j is at edit distance at most 2εjw1 from some string T 1
i′ in D′j . If it is then send

the set of all the certified boxes (I, J, 8εjw1) to the min-cost path algorithm, where I is the
span of T 1

i in T and J ∈ Yi′,j . If it is not close to any string in D′j then sample the relevant
substring in P as in Step 2 and see how many of them are at edit distance ≤ εjw1 from T 1

i .
If at most 1

2 · c0 · logn of the samples have their edit distance from T 1
i below εjw1 then put

index i into Sj and continue for another j and then the next i. Otherwise we execute Step 4
of the algorithm to find set Y . (We always skip Step 3.) We put T 1

i into Dj and set Yi,j to

D. Chakraborty, D. Das, and M. Koucký 10:13

Y . During the first execution of the covering algorithm, upon processing all j and i we will
directly proceed to the sparse extension sampling part whereas after the second execution
of the covering algorithm, we send all the certified boxes (I, J, 8εjw1) to the min-cost path
algorithm, where I is the span of T 1

i and J ∈ Yi,j .
In the extension sampling part for each j = dlog 1/θe, . . . , 0, we sample from the set Sj

the strings T 1
` in Step 7, and we proceed for them as in Steps 8–9. During the first execution

of the covering algorithm, for each certified box (I, J, `′) produced in Step 9 round up `′ to
the nearest larger or equal power of two and send the box to the min-cost path algorithm.

Min-cost path algorithm. The min-cost path algorithm receives certified boxes from the
covering algorithm and it converts them into corresponding shortcut edges. The algorithm
receives the certified boxes at two distinct phases.

Shortcut edges generated after the first execution of the covering algorithm correspond
to boxes that were produced at Step 9. These edges are sorted by their originating vertex,
stored, and processed at appropriate time steps during the next phase.

During the next phase the algorithm receives boxes (I, J, 8εjw1), where I is the span of
some T 1

i and J ∈ Yi,j . It converts them into edges and upon receiving all the edges for a
particular T 1

i , it sorts them according to their originating vertex. Then the min-cost path
algorithm proceeds from time steps (i− 1) ·w1 to i ·w1 − 1, and processes all stored shortcut
edges that originate in these time steps. During these time steps it also updates its tree
data structure as in the offline case. Again we use lists for storing pending updates. At any
moment of time, the number of unprocessed edges and updates is bounded by the number
of edges produced in Step 9 and edges produced for a particular string T 1

i . This is at most
Õ(m

θw1
). We conclude by the following lemma:

I Lemma 9. Let n and m be large enough integers. Let P be the pattern of length m, T
be the text of length n (arriving online one symbol at a time), 1/m ≤ θ ≤ 1 be a real. Let
θw1 ≥ 1, w1 ≤ θw2, w1|w2 and w2|n. With probability at least 1 − 1/poly(n) the online
algorithm for pattern matching runs in amortized time Õ(md + mw1

w2
+ dw2 + m

w1
) per symbol

and in extra space Õ(w2 + m
dθ + m

w1θ
+ m2

θ2w2
1d

+ d).

We defer the proof of the above lemma to the full version. We instantiate the above lemma
for the parameters: w1 = m11/18, w2 = m20/27, d = m7/54, θ = m−1/9, to get the following:

I Theorem 10 (Restatement of Theorem 2). There is a constant c ≥ 1 so that there is a
randomized online algorithm that computes (c,m8/9)-approximation to approximate pattern
matching in amortized time Õ(m1−(7/54)) and extra space Õ(m1−(1/54)) with probability at
least 1− 1/poly(m).

6 Discussion

For our online pattern matching algorithm it can be noticed that there is a clear trade off
among the running time, the extra space used by the algorithm and the additive part of
the approximation factor. Keeping the running time fixed, decreasing the additive part of
the approximation factor (by changing the value of parameter θ) would increase the extra
space used, and also keeping the additive error part fixed, decreasing the running time would
increase the extra space used.

FSTTCS 2019

10:14 Approximate Online Pattern Matching in Sublinear Time

Open Problem. The online algorithm presented in this paper has non-trivial time and space
complexity only for the case when the edit distance between the pattern and the text is high.
Therefore, it will be nice to extend our online approximation algorithm for the full range of
edit distance, which will be interesting from both theoretical and practical perspectives.

References
1 Amir Abboud and Arturs Backurs. Towards Hardness of Approximation for Polynomial

Time Problems. In 8th Innovations in Theoretical Computer Science Conference, ITCS 2017,
January 9-11, 2017, Berkeley, CA, USA, pages 11:1–11:26, 2017.

2 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight Hardness Results
for LCS and Other Sequence Similarity Measures. In IEEE 56th Annual Symposium on
Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015,
pages 59–78, 2015.

3 Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and Ryan Williams.
Simulating branching programs with edit distance and friends: or: a polylog shaved is a lower
bound made. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 375–388, 2016.

4 Amir Abboud and Aviad Rubinstein. Fast and Deterministic Constant Factor Approximation
Algorithms for LCS Imply New Circuit Lower Bounds. In 9th Innovations in Theoretical
Computer Science Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA, USA, pages
35:1–35:14, 2018.

5 Karl Abrahamson. Generalized String Matching. SIAM J. Comput., 16(6):1039–1051, December
1987.

6 Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Polylogarithmic Approximation
for Edit Distance and the Asymmetric Query Complexity. In 51th Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada,
USA, pages 377–386, 2010.

7 V. L. Arlazarov, E. A. Dinic, M. A. Konrod, and L. A. Faradzev. On economic construction
of the transitive closure of a directed graph. Dokl. Akad, Nauk SSSR 194:487–488, 1970. [in
Russian]. English translation: Soviet. Math. Dokl. 11 No. 5 (1970), 1209–1210.

8 Arturs Backurs and Piotr Indyk. Edit Distance Cannot Be Computed in Strongly Subquadratic
Time (Unless SETH is False). In Proceedings of the Forty-Seventh Annual ACM on Symposium
on Theory of Computing, STOC ’15, pages 51–58, New York, NY, USA, 2015. ACM.

9 Karl Bringmann and Marvin Künnemann. Quadratic Conditional Lower Bounds for String
Problems and Dynamic Time Warping. In IEEE 56th Annual Symposium on Foundations of
Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 79–97, 2015.

10 Diptarka Chakraborty, Debarati Das, Elazar Goldenberg, Michal Koucký, and Michael E.
Saks. Approximating Edit Distance within Constant Factor in Truly Sub-Quadratic Time.
In 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris,
France, October 7-9, 2018, pages 979–990, 2018.

11 Diptarka Chakraborty, Debarati Das, Elazar Goldenberg, Michal Koucký, and Michael E.
Saks. Approximating Edit Distance Within Constant Factor in Truly Sub-Quadratic Time.
CoRR, abs/1810.03664, 2018. arXiv:1810.03664.

12 Raphaël Clifford, Klim Efremenko, Benny Porat, and Ely Porat. A Black Box for Online
Approximate Pattern Matching. In Combinatorial Pattern Matching, 19th Annual Symposium,
CPM 2008, Pisa, Italy, June 18-20, 2008, Proceedings, pages 143–151, 2008.

13 Raphaël Clifford, Markus Jalsenius, and Benjamin Sach. Cell-probe bounds for online edit
distance and other pattern matching problems. In Proceedings of the Twenty-Sixth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January
4-6, 2015, pages 552–561, 2015.

14 Raphaël Clifford and Benjamin Sach. Online Approximate Matching with Non-local Distances.
In Combinatorial Pattern Matching, 20th Annual Symposium, CPM 2009, Lille, France, June
22-24, 2009, Proceedings, pages 142–153, 2009.

http://arxiv.org/abs/1810.03664

D. Chakraborty, D. Das, and M. Koucký 10:15

15 Raphaël Clifford and Benjamin Sach. Pseudo-realtime Pattern Matching: Closing the Gap. In
Combinatorial Pattern Matching, 21st Annual Symposium, CPM 2010, New York, NY, USA,
June 21-23, 2010. Proceedings, pages 101–111, 2010.

16 Richard Cole and Ramesh Hariharan. Approximate String Matching: A Simpler Faster
Algorithm. In Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
25-27 January 1998, San Francisco, California, USA., pages 463–472, 1998.

17 Maxime Crochemore. String-Matching on Ordered Alphabets. Theor. Comput. Sci., 92(1):33–
47, 1992.

18 Maxime Crochemore, Leszek Gasieniec, Wojciech Plandowski, and Wojciech Rytter. Two-
Dimensional Pattern Matching in Linear Time and Small Space. In STACS, pages 181–192,
1995.

19 Zvi Galil and Raffaele Giancarlo. Data structures and algorithms for approximate string
matching. J. Complexity, 4(1):33–72, 1988.

20 Zvi Galil and Kunsoo Park. An Improved Algorithm for Approximate String Matching. SIAM
Journal on Computing, 19(6):989–999, 1990.

21 Zvi Galil and Joel Seiferas. Time-space-optimal String Matching (Preliminary Report). In
Proceedings of the Thirteenth Annual ACM Symposium on Theory of Computing, STOC ’81,
pages 106–113, New York, NY, USA, 1981. ACM.

22 Arnab Ganguly, Rahul Shah, and Sharma V. Thankachan. pBWT: Achieving succinct data
structures for parameterized pattern matching and related problems. In Proceedings of the
Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona,
Spain, Hotel Porta Fira, January 16-19, pages 397–407, 2017.

23 Leszek Gasieniec, Wojciech Plandowski, and Wojciech Rytter. The Zooming Method: A Recurs-
ive Approach to Time-Space Efficient String-Matching. Theor. Comput. Sci., 147(1&2):19–30,
1995.

24 Piotr Indyk. Faster Algorithms for String Matching Problems: Matching the Convolution
Bound. In 39th Annual Symposium on Foundations of Computer Science, FOCS ’98, November
8-11, 1998, Palo Alto, California, USA, pages 166–173, 1998.

25 Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. Fast Pattern Matching in
Strings. SIAM J. Comput., 6(2):323–350, 1977.

26 Tsvi Kopelowitz and Ely Porat. A Simple Algorithm for Approximating the Text-To-Pattern
Hamming Distance. In 1st Symposium on Simplicity in Algorithms, SOSA 2018, January
7-10, 2018, New Orleans, LA, USA, pages 10:1–10:5, 2018.

27 Gad M. Landau and Uzi Vishkin. Fast Parallel and Serial Approximate String Matching.
Journal of Algorithms, 10(2):157–169, 1989.

28 VI Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions and Reversals.
Soviet Physics Doklady, 10:707, 1966.

29 William J. Masek and Michael S. Paterson. A faster algorithm computing string edit distances.
Journal of Computer and System Sciences, 20(1):18–31, 1980.

30 G. Myers. Incremental alignment algorithms and their applications. Technical Report, 1986.
31 Gonzalo Navarro. A Guided Tour to Approximate String Matching. ACM Comput. Surv.,

33(1):31–88, March 2001.
32 Mihai Patrascu. Succincter. In 49th Annual IEEE Symposium on Foundations of Computer

Science, FOCS 2008, October 25-28, 2008, Philadelphia, PA, USA, pages 305–313, 2008.
33 Peter H. Sellers. The Theory and Computation of Evolutionary Distances: pattern recognition.

Journal of Algorithms, pages 1:359–373, 1980.
34 Tatiana A. Starikovskaya. Communication and Streaming Complexity of Approximate Pattern

Matching. In 28th Annual Symposium on Combinatorial Pattern Matching, CPM 2017, July
4-6, 2017, Warsaw, Poland, pages 13:1–13:11, 2017.

35 Esko Ukkonen. Algorithms for Approximate String Matching. Inf. Control, 64(1-3):100–118,
March 1985.

36 Esko Ukkonen and Derick Wood. Approximate String Matching with Suffix Automata.
Algorithmica, 10(5):353–364, 1993.

FSTTCS 2019

Constructing Faithful Homomorphisms over Fields
of Finite Characteristic
Prerona Chatterjee
Tata Institute of Fundamental Research, Mumbai, India
prerona.chatterjee@tifr.res.in

Ramprasad Saptharishi
Tata Institute of Fundamental Research, Mumbai, India
ramprasad@tifr.res.in

Abstract
We study the question of algebraic rank or transcendence degree preserving homomorphisms over
finite fields. This concept was first introduced by Beecken et al. [3] and exploited by them and
Agrawal et al. [2] to design algebraic independence based identity tests using the Jacobian criterion
over characteristic zero fields. An analogue of such constructions over finite characteristic fields were
unknown due to the failure of the Jacobian criterion over finite characteristic fields.

Building on a recent criterion of Pandey, Saxena and Sinhababu [14], we construct explicit
faithful maps for some natural classes of polynomials in fields of positive characteristic, when a
certain parameter called the inseparable degree of the underlying polynomials is bounded (this
parameter is always 1 in fields of characteristic zero). This presents the first generalisation of some
of the results of Beecken, Mittmann and Saxena [3] and Agrawal, Saha, Saptharishi, Saxena [2] in
the positive characteristic setting.

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory; Comput-
ing methodologies → Symbolic and algebraic manipulation

Keywords and phrases Faithful Homomorphisms, Identity Testing, Algebraic Independence, Finite
characteristic fields

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.11

Related Version https://eccc.weizmann.ac.il/report/2018/212/

Funding Prerona Chatterjee: Supported by a fellowship of the DAE.
Ramprasad Saptharishi: Research supported by Ramanujan Fellowship of DST.

1 Introduction

Multivariate polynomials are fundamental objects in mathematics. These are the primary
objects of study in algebraic complexity with regard to classifying their hardness as well
as algorithmic tasks involving them. The standard computational model for computing
multivariate polynomials is algebraic circuits. They are directed acyclic graphs with internal
nodes labelled by “+” and “×” gates having the obvious operational semantics, and leaves
are labelled by the input variables or field constants.

An important concept about relationships between polynomials is the notion of algebraic
dependence. A set of polynomials f = {f1, . . . , fm} ⊂ F[x] is said to be algebraically
dependent if there is some nonzero polynomial combination of them that is zero. Such a
nonzero polynomial A(z1, . . . , zm) ∈ F[z], if one exists, for which A(f1, . . . , fm) = 0 is called
the annihilating polynomial for the set {f1, . . . , fm}. For instance, if f1 = x, f2 = y and
f3 = x2 + y2, then A = z2

1 + z2
2 − z3 is an annihilator. Note that the underlying field is very

important. For example, the polynomials x+ y and xp + yp are algebraically dependent over
Fp, but algebraically independent over a characteristic zero field.

© Prerona Chatterjee and Ramprasad Saptharishi;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 11; pp. 11:1–11:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-2643-8142
mailto:prerona.chatterjee@tifr.res.in
https://orcid.org/0000-0002-7485-3220
mailto:ramprasad@tifr.res.in
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.11
https://eccc.weizmann.ac.il/report/2018/212/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Constructing Faithful Homomorphisms over Fields of Finite Characteristic

Algebraic independence is very well-studied and it is known that algebraically independent
subsets of a given set of polynomials form a matroid ([13]). Hence, the size of the maximum
algebraically independent subset of f is well-defined and is called the algebraic rank or
transcendence degree of f . We denote it by algrank(f) = algrank(f1, . . . , fm).

Several computational questions arise from the above definition. For instance, given a set
of polynomials f = {f1, . . . , fm}, each fi given in its dense representation, can we compute
the algebraic rank of this set efficiently? What if the fi’s are provided as algebraic circuits?

Furthermore, in instances when algrank(f) = m − 1, the smallest degree annihilating
polynomial is unique ([9]). There could be various questions about the minimal degree
annihilator in this case. For instance, can we compute it efficiently? Kayal [9] showed that
even checking if the constant term of the annihilator is zero is NP-hard, and evaluating the
annihilator at a given point is #P-hard. In fact, recently Guo, Saxena, Sinhababu [7] showed
that even in the general case, checking if the constant term of every annihilator is zero is
NP-hard. This effectively means that computing the algebraic rank via properties of the
annihilating polynomials would be hard.

Despite this, over fields of characteristic zero, algebraic rank has an alternate charac-
terisation via the Jacobian criterion. Jacobi [8] showed that the algebraic rank of a set of
polynomials f(⊆ F[x]) is given by the linear rank (over the rational function field F(x)) of
the Jacobian of these polynomials. This immediately yields a randomized polynomial time
algorithm to compute the algebraic rank of a given set of polynomials by computing the rank
of the Jacobian matrix evaluated at a random point [12, 15, 16, 5].

Faithful homomorphisms and PIT
Algebraic independence shares a lot of similarities with linear independence due to the
matroid structure. One natural task is to find a rank-preserving transformation in this
setting. This is defined by what are called faithful homomorphisms.

I Definition 1.1 (Faithful homomorphisms [3]). Let f = {f1, . . . , fm} ⊆ F[x] be a set of
polynomials. If K is an extension field of F, a homomorphism Φ : F[x]→ K[y] is said to be
an F-faithful homomorphism for {f1, . . . , fm} if

algrankF {f1, . . . , fm} = algrankF {Φ(f1), . . . ,Φ(fm)} .

Ideally, we would like a faithful homomorphism with |y| ≈ algrank {f} and K = F. Beecken,
Mittmann and Saxena [3] showed that a generic F-linear homomorphism to algrank(f) many
variables would be an F-faithful homomorphism with high probability.

One important consequence of faithful homomorphisms is that they preserve nonzeroness
of any polynomial composition of f1, . . . , fm.

I Lemma 1.2 ([3, 2]). Suppose f1, . . . , fm ∈ F[x1, . . . , xn] and Φ is an F-faithful homo-
morphism for {f1, . . . , fm}. Then, for any circuit C(z1, . . . , zm) ∈ F[z1, . . . , zm], we have
C(f1, . . . , fm) = 0⇔ C(Φ(f1), . . . ,Φ(fm)) = 0.

Thus, constructing explicit faithful homomorphisms can also be used for polynomial identity
testing (PIT), which is the task of checking if a given algebraic circuit C computes the
identically zero polynomial. For PIT, the goal is to design a deterministic algorithm that
runs in time polynomial in the size of the circuit. There are two types of PIT algorithms,
whitebox and blackbox – in the blackbox setting, we are only provided evaluation access to
the circuit and some of its parameters (such as degree, number of variables, size etc.). Thus
blackbox PIT algorithms for a class C is equivalent to constructing a hitting set, which is
a small list of points in S ⊂ Fn such that any nonzero polynomial f ∈ C is guaranteed to
evaluate to a nonzero value on some a ∈ S.

P. Chatterjee and R. Saptharishi 11:3

It follows from Lemma 1.2 that if we can construct explicit F-faithful homomorphisms
for a set {f1, . . . , fm} whose algebraic rank is k � n, then we have a variable reduction
that preserves the nonzeroness of any composition C(f1, . . . , fm). This approach was used
by Beecken, Mittmann and Saxena [3] and Agrawal, Saha, Saptharishi, Saxena [2], in the
characteristic zero setting, to design identity tests for several subclasses by constructing
faithful maps for {f1, . . . , fm} with algebraic rank at most k = O(1), when

each fi is a sparse polynomial,
each fi is a product of multilinear, variable disjoint, sparse polynomials,
each fi is a product of linear polynomials,

and further generalisations.
All the above constructions crucially depend on the fact that the rank of the Jacobian

captures algebraic independence. However, this fact is true only over fields of characteristic
zero and hence the above results are not known to hold over fields of positive characteristic.

Algebraic independence over finite characteristic
A standard example to exhibit the failure of the Jacobian criterion over fields of finite
characteristic, is

{
xp−1y, yp−1x

}
– these polynomials are algebraically independent over Fp

but the Jacobian is not full-rank over Fp. Pandey, Saxena and Sinhababu [14] characterised
the extent of failure of the Jacobian criterion for {f1, . . . , fm} by a notion called the inseparable
degree associated with this set (formally defined in the full version [4]). Over characteristic
zero, this is always 1 but over characteristic p this is a power of p. In their work, Pandey et al.
presented a Jacobian-like criterion to capture algebraic independence. Informally, each row
of the generalized Jacobian matrix is obtained by taking the Taylor expansion of fi(x + z)
about a generic point, and truncating to just the terms of degree up to the inseparable degree1
(formally defined in the full version [4]). The exact characterisation is more involved and is
presented in Subsection 2.2 but we just state their theorem here.

I Theorem 1.3. [14] Let {f1, . . . , fk} be a set of n-variate polynomials over a field F with
inseparable degree t. Then, they are algebraically dependent if and only if

∃(α1, . . . , αk)(6= 0) ∈ F(z)k s.t.
k∑
i=1

αi·Ht(fi) = 0 mod 〈Ht(f1), . . . ,Ht(fk)〉≥2
F(z)+〈x〉

t+1
.

Although the above statement seems slightly different from the one in [14], it is not too
hard to see that they are actually equivalent. In their paper, Pandey et al. have stated their
criterion in terms of functional dependence. However, stated this way, it clearly generalises
the traditional Jacobian criterion.

In the setting when the inseparable degree is constant, this characterisation yields a
randomized polynomial time algorithm to compute the algebraic rank. Thus, a natural
question is whether this criterion can be used to construct faithful homomorphisms for similar
classes of polynomials as studied by Beecken et al. [3] and Agrawal et al. [2].

I Remark 1.4. Recently, Guo et al. [7] showed that the task of testing algebraic independence
is in AM ∩ coAM via a very different approach. However, it is unclear if their algorithm also
yields constructions of faithful homomorphisms or applications to PIT in restricted settings.

1 Over characteristic zero, the inseparable degree is 1 and this is just the vector of first order partial
derivatives.

FSTTCS 2019

11:4 Constructing Faithful Homomorphisms over Fields of Finite Characteristic

1.1 Our Results
Following up on the criterion of Pandey, Saxena and Sinhababu [14] for algebraic independence
over finite characteristic, we extend the results of Beecken et al. [3] and Agrawal et al. [2] to
construct faithful homomorphisms for some restricted settings. We note that we have not
formally defined the term inseparable degree yet. Although the definition would be required
to precisely understand the criterion of Pandey, Saxena and Sinhababu [14], it is not essential
for the proofs in this paper. The interested reader may find these field theoretic preliminaries
and formal definitions in the full version of the paper [4].

I Theorem 1.5. Let f1, . . . , fm ∈ F[x1, . . . , xn] such that algrank {f1, . . . , fm} = k and
the inseparable degree is t. If t and k are bounded by a constant, then we can construct
a polynomial (in the input length) sized list of homomorphisms of the form Φ : F[x] →
F(s)[y0, y1, . . . , yk] such that at least one of them is guaranteed to be to F-faithful for the set
{f1, . . . , fm}, in the following two settings:

When each of the fi’s are sparse polynomials,
When each of the fi’s are products of variable disjoint, multilinear, sparse polynomials.

Prior to this, construction of faithful homomorphisms over finite fields was known only in
the setting when each fi has small individual degree [3]. Over characteristic zero fields, the
inseparable degree is always 1 and hence the faithful maps constructed in [3], [2] over such
fields can be viewed as special cases of our constructions.

The above theorem also holds for a few other models studied by Agrawal et al. [2] (for
instance, occur-k products of sparse polynomials). We mention the above two models just as
an illustration of lifting the recipe for faithful maps from [3, 2] to the finite characteristic
setting.

I Corollary 1.6. If {f1, . . . , fm} ∈ F[x1, . . . , xn] is a set of s-sparse polynomials with algebraic
rank k and inseparable degree t where k, t = O(1). Then, for the class of polynomials of the
form C(f1, . . . , fm) for any polynomial C(z1, . . . , zm) ∈ F[z], there is an explicit hitting set
of size (s · deg(C))O(1).

I Corollary 1.7. Let C =
∑m
i=1 Ti be a depth-4 multilinear circuit of size s, where each Ti is a

product of variable-disjoint, s-sparse polynomials. Suppose {T1, . . . , Tm} ∈ F[x1, . . . , xn] is a
set of polynomials with algebraic rank k and inseparable degree t where k, t = O(1). Then, for
the class of polynomials of the form C(T1, . . . , Tm) for any polynomial C(z1, . . . , zm) ∈ F[z],
there is an explicit hitting set of size (s · deg(C))O(1).

Comparison with the PIT of [14]

Pandey et al. [14] also gives a PIT result for circuits of the form
∑
i (fi,1 · · · fi,m) where

algrank {fi,1, . . . , fi,m} ≤ k for every i and each fi,j is a degree d polynomial in F[x1, . . . , xn].
They extend the result of Kumar and Saraf [11] to arbitrary fields by giving quasi-polynomial
time hitting sets if kd is at most poly-logarithmically large.

Corollary 1.7 however is incomparable to the PIT of Pandey et al. [14] for the following
reasons:

The algebraic rank bound in the case of [14, 11] is a gate-wise bound rather than a global
bound. Thus, in principle, it could be the case that algrank {fi,1, . . . , fi,m} is bounded by
k for each i but this would not necessarily translate to a bound on algrank

{∏
j fi,j : i

}
as demanded in Corollary 1.7. Hence, in this regard, the PIT of [14, 11] is stronger.

P. Chatterjee and R. Saptharishi 11:5

In the regime when we have algrank
{∏

j fi,j : i
}

and the inseparable degree of this set
to be bounded by a constant, Corollary 1.7 presents an explicit hitting set of polynomial
size, whereas it is unclear if [14, 11] provide any non-trivial upper bound as this does not
translate to any bound on algrank {fi,1, . . . , fi,m}.

On other models studied by Agrawal et al. [2]

Our results, in its current form, do not extend directly some of the other models studied
by Agrawal et al. [2], most notably larger depth multilinear formulas. The primary hurdle
appears to be the recursive use of explicit faithful homomorphisms for larger depth formulas.
In the characteristic p setting, unfortunately, it is unclear if a bound on the inseparable
degree of the original gates can be used to obtain a bound on the inseparable degree of other
sets of polynomials considered in the recursive construction of Agrawal et al. [2].

1.2 Proof overview
The general structure of the proof follows the outline of Agrawal et al. [2]’s construction of
faithful homomorphisms in the characteristic zero setting. Roughly speaking, this can be
described in the following steps:

Step 1 : For a generic linear map Φ : x → F(s)[y1, . . . , yk], write the Jacobian of the
set {f1 ◦ Φ, · · · , fk ◦ Φ} in terms of the Jacobian of the set {f1, · · · , fk}. This can be
described succinctly as a matrix product of the form

Jy(f ◦ Φ) = Φ(Jx(f)) · Jy(Φ(x)).

Step 2 : We know that Jx(f) is full rank. Ensure that Φ(Jx(f)) (where Φ is applied to
every entry of the matrix Jx(f)) remains full rank. This can be done if f ’s are some
structured polynomials such as sparse polynomials, or variable-disjoint products of sparse
polynomials etc.

Step 3 : Choose the map Φ so as to ensure that

rank(Φ(Jx(f)) · Jy(Φ(x))) = rank(Φ(Jx(f))).

This is typically achieved by choosing Φ so as to make Jy(Φ(x)) a rank-extractor. It
was shown by Gabizon and Raz [6] that a parametrized Vandermonde matrix has this
property, and this allows one to work with a homomorphism of the form (loosely speaking)

Φ : xi 7→
k∑
j=1

sijyj .

We would like to execute essentially the same sketch over fields of finite characteristic
but we encounter some immediate difficulties. The criterion of Pandey et al. [14] over finite
characteristic is more involved but it is reasonably straightforward to execute Steps 1 and
2 in the above sketch using the chain rule of (Hasse) derivatives. The primary issue is in
executing Step 3 and this is for two very different reasons.

The first is that, unlike in the characteristic zero setting, the analogue of the matrix
Jy(Φ(x)) have many correlated entries. In the characteristic zero setting, we have complete
freedom to choose Φ so that Jy(Φ(x)) can be any matrix that we want. Roughly speaking,
we only have n · k parameters to define Φ but the analogue of Jy(Φ(x)) is much larger in the

FSTTCS 2019

11:6 Constructing Faithful Homomorphisms over Fields of Finite Characteristic

finite characteristic setting. Fortunately, there is just about enough structure in the matrix
that we can show that it continues to have some rank-preserving properties. This is done
in Section 3.

The second hurdle comes from the subspace that we need to work with in the modified
criterion. The rank-extractor is essentially parametrized by the variable s. In order to show
that it preserves the rank of Φ(Jx(f)) under right multiplication, we would like ensure that
the variable s effectively does not appear in this matrix. In the characteristic zero setting,
this is done by suitable restriction on other variables to remove any dependencies on s in
Φ(Jx(f)). Unfortunately, in the criterion of Pandey et al. [14], we have to work modulo some
suitable subspace and these elements introduce other dependencies on s that appear to be
hard to remove. Due to this hurdle, we are unable to construct F(s)-faithful homomorphisms
even in restricted settings.

However, we observe that for the PIT applications, we are merely required to ensure
that {f1 ◦ Φ, . . . , fk ◦ Φ} remain F-algebraically independent instead of F(s)-algebraically
independent. With this weaker requirement, we can obtain a little more structure in the
subspace involved and that lets us effectively execute Step 3.

Structure of the paper

We begin by describing some preliminaries that are necessary to understand the criterion
of Pandey, Saxena and Sinhababu [14] in the next section. Following that, in Section 3, we
show that certain Vandermonde-like matrices have rank-preserving properties. We use these
matrices to give a recipe of constructing faithful maps, in Section 4, and execute this for the
settings of Theorem 1.5 in Section 5.

2 Preliminaries

2.1 Notations
For a positive integer m, we will use [m] to denote set {1, 2, . . . ,m}.
We will use bold face letters such as x to denote a set of indexed variables {x1, . . . , xn}.
In most cases the size of this set would be clear from context. Extending this notation,
we will use xe to denote the monomial xe1

1 · · ·xen
n .

For a set of polynomials f1, . . . , fm, we will denote by 〈f1, . . . , fm〉K the set of all K-linear
combinations of f1, . . . , fm. Extending this notation, we will use 〈f1, . . . , fm〉rK to denote
the set of all K-linear combinations of r-products fi1 · · · fir (with i1, . . . , ir ∈ [m]) and
〈f1, . . . , fm〉≥rK similarly. In instances when we just use 〈f1, . . . , fm〉, we will denote the
ideal generated by f1, . . . , fm.

Hitting set generators

I Definition 2.1 (Hitting set generators (HSG)). Let C be a class of n-variate polynomials.
A tuple of polynomials G = (G1(α), . . . , Gn(α)) is a hitting set generator for C if for every
nonzero polynomial P (x) ∈ C we have P (G1(α), . . . , Gn(α)) is a nonzero polynomial in α.

The degree of this generator is defined to be max deg(Gi).

Intuitively, such a tuple can be used to generate a hitting set for C by running over several
instantiations of α. Also, it is well known that any hitting set can be transformed into to
HSG via interpolation.

P. Chatterjee and R. Saptharishi 11:7

Isolating weight assignments

Suppose wt : {xi} → N is a weight assignment for the variables {x1, . . . , xn}. We can extend
it to define the weight of a monomial as follows.

wt(xe) =
n∑
i=1

ei · wt(xi)

I Definition 2.2. A weight assignment wt : {xi} → N is said to be isolating for a set S of
monomials if every pair of distinct monomials in S receives distinct weights.

With this background, we are now ready to state the criterion for algebraic independence
over fields of finite characteristic. Similar to the Jacobian Criterion, Pandey, Saxena and
Sinhababu [14] reduce the problem of checking algebraic independence to that of checking
linear independence. However, their criterion is slightly more subtle in the sense that we will
have to check the linear independence of a set of vectors modulo a large subspace.

A formal statement of the Jacobian criterion along with some field theoretic preliminaries
are present in the full version [4]. These include the formal definition of terms such as insep-
arable degree etc. to precisely understand the criterion of Pandey, Saxena and Sinhababu [14]
but are not essential for the proof in this paper.

2.2 The PSS Criterion over fields of finite characteristic
In this section we present a slightly different perspective on the criterion of Pandey et al. [14].
A more elaborate discussion of their criterion is deferred to the full version [4].

Define the following operator Ht(f) := deg≤t(f(x + z)− f(z)), where deg≤t restricts to
just those monomials in x of degree at most t. It is also worth noting that Ht(f) does not
have a constant term and this would become useful in the criterion.

The operator Ht however, as defined above, is indexed by t. Pandey et al. [14] show that
the correct value of t to work with is the inseparable degree of the given set of polynomials
(see full version [4] for details).

Let Ut(f) = Ut(f1, . . . , fk) denote the subspace 〈Ht(f1), . . . ,Ht(fk)〉≥2
F(z) mod 〈x〉t+1.

Then, for any h ∈ Ut(f), we define the modified Jacobian matrix as follows.

PSSJact(f , h) =

Ht(f1) + h

Ht(f2)
...

Ht(fk)

 .
The columns of this matrix are indexed by monomials in x and entries in the column indexed
by xe are the coefficient of xe in the corresponding rows.

I Theorem 2.3 (Alternate Statement for the PSS-criterion). Let {f1, . . . , fk} be a set of
n-variate polynomials over a field F with inseparable degree t. Then, they are algebraically
independent if and only if for every h ∈ Ut(f), PSSJact(f , h) is full rank.

Let Vt(g1, . . . , gk) denote the subspace 〈Ht(g1), . . . ,Ht(gk)〉≥2
F(g(v)) mod 〈y〉t+1. The fol-

lowing lemma can be inferred in the dependent case.

I Lemma 2.4. Let F any field and K be an extension field of F. If {g1, . . . , gk} is a set
of n-variate polynomials in K[y] that are F-algebraically dependent, then for any positive
integer t, there exists h′ ∈ Vt(g1, . . . , gk) such that PSSJact(g, h′) is not full rank.

A proof is given in the full version [4] for the sake of completeness, but we note that the
steps are almost identical to those in [14].

FSTTCS 2019

11:8 Constructing Faithful Homomorphisms over Fields of Finite Characteristic

3 Rank Condensers from Isolating Weight Assignments

In this section, we focus on rank-preserving properties of certain types of matrices. These
are slight generalisations of similar properties of Vandermonde matrices that were proved
by Gabizon and Raz [6] that would be necessary for the application to constructing faithful
homomorphisms.

I Lemma 3.1. Suppose we have an n× n matrix V given by

V =
((
sj·wi

))
i,j

where wi < wj whenever i < j. If V ′ is a matrix obtained from V by replacing some of the
non-diagonal entries by zero, then det(V ′) 6= 0 and furthermore deg(det(V ′)) =

∑n
i=1 i · wi.

The proof of this lemma is not too hard, and can be found in the full version [4].
The following lemma extends this to rank-preserving properties of a related matrix.

I Lemma 3.2. Let A be a matrix over a field F with k rows and columns indexed by
monomials in x of degree at most D that is full-rank. Further, let w = (w1, . . . , wn) be an
isolating weight assignment for the set of degree D monomials, and let wt(xe) =

∑n
i=1 wiei.

Suppose MΦ is a matrix whose rows are indexed by monomials in x of degree at most D,
and columns indexed by pure monomials

{
ydi : i ∈ {1, . . . , k} , d ≤ D

}
given by

MΦ(xe, ydi) =
{
si·wt(xe) if deg(xe) = d

0 otherwise
.

where s is a formal variable. Then, rankF(s)(A ·MΦ) = rankF(A).

Proof. By the Cauchy-Binet formula, if we restrict M ′Φ to a set T of k-columns, then

det(A ·M ′Φ[T]) =
∑

S⊆Columns(A)
|S|=k

det(A[S]) · det(M ′Φ[S, T])

We wish to show that the above sum is nonzero for some choice of columns T . We do that by
first defining a weight function on minors of A, then proving that there is a unique nonzero
minor of A of largest weight, and then choosing a set of columns T such that the degree of
det(M ′Φ[S, T]) coincides with this chosen weight function. Define the weight of a minor of A
as follows:

Suppose the columns of the minor is indexed by S = {xe1 , . . . ,xek} with the property
that wt(xe1) < wt(xe2) < · · · < wt(xek). Define the weight of this minor as

wt(S) =
k∑
i=1

i · wt(xei)

where, recall, wt(xei) =
∑
j wj · ei(j).

B Claim 3.3. There is a unique nonzero k × k minor of A of maximum weight.

Proof. Suppose S1 and S2 are two different minors of A with the same weight. We will just
identify S1 and S2 by the set of column indices for simplicity. Say S1 has columns indexed
by xe1 , . . . ,xek with wt(xe1) < wt(xe2) < · · · < wt(xek) and S2 has columns indexed by
xe′

1 , . . . ,xe′
k with wt(xe′

1) < wt(xe′
2) < · · · < wt(xe′

k).

P. Chatterjee and R. Saptharishi 11:9

Suppose S1 and S2 agree on the first i columns, that is ej = e′j for all j ≤ i, and say
wt(ei+1) < wt(e′i+1). By the matroid property, there must be some column xe′

j from S2 that
we can add to S1 \ {xei+1} so that S = S1 \ {xei+1} ∪

{
xe′

j

}
is also a nonzero minor of A.

Suppose that

wt(xe1) < · · · < wt(xei+r) < wt(xe′
j) < wt(xei+r+1) < · · · < wt(xek).

Then,

wt(S) =
i∑

a=1
a · wt(xea) +

i+r∑
a=i+2

(a− 1) · wt(xea) + (i+ r) wt(xe′
j) +

k∑
a=i+r+1

a · wt(xea)

>

i∑
a=1

a · wt(xea) + (i+ 1) wt(xe′
j) +

k∑
a=i+2

a · wt(xea) >
k∑
a=1

a · wt(xea) = wt(S1)

Hence, there cannot be two different nonzero minors of A of the same weight. Thus, the
nonzero minor of largest weight is unique. C

We will now choose k columns from M ′Φ as follows in such a way that the degree of the
corresponding determinant agrees with the weight function. Note that the matrix M ′Φ has a
natural block-diagonal structure based on the degree of the monomials indexing the rows
and columns.

Let S0 be the unique k × k minor of A having maximum weight. Further, assume its
columns are indexed by xe1 , . . . ,xek with wt(xe1) < wt(xe2) < . . . < wt(xek). Let
di = deg(xei) =

∑
j(ei)j .

Choose the columns T =
{
yd1

1 , yd2
2 , . . . , ydk

k

}
of the matrix M ′Φ.

By Lemma 3.1, for any set of S′ ⊆ Columns(A), we have deg(det(MΦ[S′, T])) ≤ wt(S′) and
furthermore we also have deg(M ′Φ[S0, T]) = wt(S0) as we chose the columns T to ensure that
the main diagonal of the sub-matrix has only nonzero elements. Hence,

det(A ·M ′Φ[T]) =
∑

S⊆Columns(A)
|S|=k

det(A[S]) · det(M ′Φ[S, T]) 6= 0

since the contribution from A[S0] det(M ′Φ[S0, T]) is the unique term of highest degree and so
cannot be cancelled. J

4 Construction of Explicit Faithful Maps

We will be interested in applying a map Φ : F[x] → F(s)[y] and study the transform-
ation of the PSS-Jacobian. Since the entries of the PSS-Jacobian involve Ht(f(x)) =
deg≤t (f(x + z)− f(z)), we would need to also work with Ht(g(y)) where g(y) = f ◦ Φ. To
make it easier to follow, we shall use a different name for the variables in the two cases.
Hence,

Ht(f(x)) := deg≤t (f(x + z)− f(z)) , Ht(g(y)) := deg≤t (g(y + v)− g(v)) .

FSTTCS 2019

11:10 Constructing Faithful Homomorphisms over Fields of Finite Characteristic

4.1 Recipe for constructing faithful maps
Let f1, . . . , fm ∈ F[x1, . . . , xn] be polynomials with algrank {f1, . . . , fm} = k and inseparable
degree t. We will work with linear transformations of the form:

Φ : xi 7→ aiy0 +
k∑
j=1

swi·jyj , for all i ∈ [n],

Φz : zi 7→ aiv0 +
k∑
j=1

swi·jvj , for all i ∈ [n].

where all the variables on the RHS are formal variables. Further, define {g1, . . . , gm} ∈ F[z]
as gi = fi ◦ Φ and Ht(gi) = deg≤t(gi(y + v)− gi(v)).

The main lemma of this section is the following recipe for constructing faithful maps.

I Lemma 4.1 (Recipe for faithful homomorphisms). Let f1, . . . , fm ∈ F[x] be polynomials
such that their algebraic rank is at most k and suppose the inseparable degree is bounded by a
constant t. Further,

suppose G = (G1(α), . . . , Gn(α)) is a hitting-set generator (HSG) for the class of all k×k
minors of PSSJact(f , h) for any h ∈ Ut(f).
suppose w : [n]→ N is an isolating weight assignment for the set of n-variate monomials
of degree at most t.

Then, the homomorphism Φ : F[x1, . . . , xn]→ F(s, α)[y0, . . . , yk] defined as

Φ : xi 7→ y0Gi(α) +
k∑
j=1

yj · sw(i)j ,

is an F-faithful homomorphism for the set {f1, . . . , fm}.

As mentioned earlier, the rough proof sketch would be to first write the PSS-Jacobian of
the transformed polynomials g in terms of f , express that as a suitable matrix product, and
use some rank extractor properties of the associated matrix, as described in Section 3. So
first, let us see how we can get the required matrix product.

I Lemma 4.2 (Evolution of polynomials under Φ). Let Φ : x → F(s)[y] and Φz : z →
F(s)[v] be given as above. Further, for any polynomial h′(a1, . . . , am) ∈ F(g(v))[a], define
h(a1, . . . , am) ∈ F(f(z))[a] as follows.

coeffae(h) is got by replacing every occurrence of gi(v) by fi(z) in coeffae(h′)

Then,

h′(Ht(g1), . . . ,Ht(gm)) = Φ ◦ Φz(h(Ht(f1), . . . ,Ht(fm))).

It is worth noting that the polynomial h(a1, . . . , am) is independent of s. This would be
crucial later on in the proof. The proof of this lemma is not too hard and can be found in
the full version [4].

I Corollary 4.3 (Matrix representation of the evolution). Suppose A′ is a matrix whose
columns are indexed by monomials in y. Further suppose a row in A′ corresponds to a
polynomial, say h′(Ht(g1), . . . ,Ht(gm)) ∈ F(g(v))[y], whose entry in the column indexed
by ye is coeffye(h′(Ht(g))) ∈ F(v, s). If A is the corresponding matrix (having entries
from F(z)) with columns indexed by monomials in x and the corresponding row being
h(Ht(f1), . . . ,Ht(fm)) ∈ F(f(z))[x] as described in Lemma 4.2, then

A′ = Φz(A)× M̃Φ

where M̃Φ(xe,yd) = coeffyd(Φ(xe)).

P. Chatterjee and R. Saptharishi 11:11

Using these and Lemma 3.2, we are now ready to prove Lemma 4.1.

Proof of Lemma 4.1. Without loss of generality, say {f1, . . . , fk} is an algebraically inde-
pendent set. We wish to show that if gi = fi ◦ Φ, then {g1, . . . , gk} is an F-algebraically
independent set as well. Assume on the contrary that {g1, . . . , gk} is an F-algebraically
dependent set. Then for t being the inseparable degree of {f1, . . . , fk}, by Lemma 2.4, there
exists

h′ ∈ Vt(g1, . . . , gk) := 〈Ht(g1), . . . ,Ht(gk)〉≥2
F(g(v)) mod 〈y〉t+1

such that PSSJact(g, h′) is not full rank. Without loss of generality, we can assume that
the entries of PSSJact(g, h′) are denominator-free by clearing out any denominators. Corres-
ponding to h′, define h as in Lemma 4.2, which would also satisfy that

h ∈ Ut(f1, . . . , fk) := 〈Ht(f1), . . . ,Ht(fk)〉≥2
F(z) mod 〈x〉t+1

.

It is worth stressing the fact that the polynomial h is independent of the variable s. Then by
Corollary 4.3 we get

PSSJact(g, h′) = Φz(PSSJact(f , h))× M̃Φ.

Now, if we substitute v0 = 1 and vi = 0 for every i ∈ [k], we get

PSSJact(g, h′)(v0 = 1, v1 = . . . = vk = 0) = PSSJact(f , h)(z = G(α))× M̃Φ.

But since {f1, . . . , fk} is algebraically independent, Theorem 2.3 yields that PSSJact(f , h)
has full rank. Thus, PSSJact(f , h)(z = G(α)) also has full rank since G = (G1(α), . . . , Gn(α))
is a hitting-set generator for the class of all k × k minors of PSSJact(f , h). Most crucially,
the matrix PSSJact(f , h) is independent of the variable s.

To complete the proof, we need to show that multiplication by M̃Φ continues to keep this
full rank to contradict the initial assumption that PSSJact(g, h′) was not full rank.

Finally note that for the Φ we have defined, M̃Φ restricted to only the pure monomial
columns{

yji : i ∈ {1, . . . , k} , j ∈ {0, 1, . . . , t}
}
,

is the same as MΦ as defined in Lemma 3.2. Further, w is an isolating weight assignment for
the set of n-variate monomials of degree at most t, we satisfy the requirements of Lemma 3.2.
Hence, by Lemma 3.2,

rankF(s,α) (PSSJact(g, h′)(v0 = 1, v1 = . . . , vk = 0)) = rankF(α) PSSJact(f , h)(z = G(α))
=⇒ rankF(s,α,v) (PSSJact(g, h′)) ≥ rankF(α) PSSJact(f , h)(z = G(α))

= k,

which contradicts our assumption that it was not full rank. Hence, it must indeed be the
case that {f1 ◦ Φ, . . . , fk ◦ Φ} is F - algebraically independent. J

5 Explicit faithful maps and PIT applications in restricted settings

We now describe some specific instantiations of the recipe given by Lemma 4.1 in restricted
settings. Let us first recall the statement of the main theorem.

FSTTCS 2019

11:12 Constructing Faithful Homomorphisms over Fields of Finite Characteristic

I Theorem 1.5. Let f1, . . . , fm ∈ F[x1, . . . , xn] such that algrank {f1, . . . , fm} = k and
the inseparable degree is t. If t and k are bounded by a constant, then we can construct
a polynomial (in the input length) sized list of homomorphisms of the form Φ : F[x] →
F(s)[y0, y1, . . . , yk] such that at least one of them is guaranteed to be to F-faithful for the set
{f1, . . . , fm}, in the following two settings:

When each of the fi’s are sparse polynomials,
When each of the fi’s are products of variable disjoint, multilinear, sparse polynomials.

Proof. By Lemma 4.1, Φ : F[x1, . . . , xn]→ F(s, α)[y0, . . . , yk] defined as

Φ : xi 7→ y0Gi(α) +
k∑
j=1

yj · sw(i)j ,

is a faithful homomorphism for the set {f1, . . . , fm} if for any h ∈ Ut(f), w = (w1, . . . , wn)
is a basis isolating weight assignment for PSSJac(f , h) and G = (G1(α), . . . , Gn(α)) is such
that the rank of PSSJact(f , h) is preserved after the substitution z→ a for some a ∈ G. We
define the weight using the standard hashing techniques [10, 1].

Defining w: Define w : [n] → N as w(i) = (t + 1)i (mod p), where t is the inseparable
degree.

Assuming t to be a constant, there are only poly(n) many distinct monomials in x of degree
at most t. Thus, standard results by Klivans and Spielman [10] or Agrawal and Biswas [1]
shows that it suffices to go over poly(n) many ‘p’s before w isolates all monomials in x of
degree at most t.
Let PSSJact(f) be the matrix with columns indexed by monomials in x of degree at most t
and rows by k-variate monomials ae in degree at most t, defined as follows.

PSSJact(f)[ae,xd] = coeffxd(Ht(f)e)

Set K =
(
k+t
t

)
be the number of rows in PSSJact(f). Then the following is true.

B Claim 5.1. If G is a hitting set generator for every K ′ ×K ′ minor of PSSJact(f) where
K ′ ≤ K, then the rank of PSSJact(f , h) is preserved for every h ∈ Ut(f).

Proof. We need to show that there is an a in G which has the following property:

For any h ∈ Ut(f), if {Ht(f1) + h,Ht(f2), . . . ,Ht(fk)} are linearly independent, then
so are {Ht(f1)(a) + h(a), Ht(f2)(a), . . . ,Ht(fk)(a)}.

Now suppose this is not the case. Then it must be the case that without loss of generality,
some h ∈ Ut(f), PSSJact(f , h) has full rank but for any a ∈ G,

α1(Ht(f1)(a) + h(a)) +
k∑
i=2

(αi ·Ht(fi)(a)) = 0.

Here, not all of {αi}i∈[k] are zero. However by our hypothesis, this would mean that

α1(Ht(f1) + h) +
k∑
i=2

(αi ·Ht(fi)) 6= 0.

P. Chatterjee and R. Saptharishi 11:13

Let B be a basis of the rows in Ht(f). Then each of {Ht(f1) + h,Ht(f2), . . . ,Ht(fk)} can
be written in terms of rows in B. Thus, the above statement can be rewritten as

K′∑
i=1

βi · bi = α1(Ht(f1) + h) +
k∑
i=2

(αi ·Ht(fi)) 6= 0

where {βi}i∈[K′] are some scalars and K ′ = |B|.
This shows that not all {βi}K

′

i=1 can be zero. Now since G is a hitting set generator for
every K ′ ×K ′ minor in PSSJact(f), there is some a ∈ G such that {bi(a)}i∈[K′] continue
to remain linearly independent. Thus,

∑K′

i=1 βi × bi(a)! = 0, since not all {βi}i∈[K′] is zero.
However, this shows that

α1(Ht(f1)(a) + h(a)) +
k∑
i=2

(αi ·Ht(fi)(a)) =
K′∑
i=1

βi × bi(a) 6= 0.

This contradicts our assumption, and so it must be the case that for any h ∈ Ut(f), the
rank of PSSJact(f , h) is preserved. C

Thus, now it is only a question of finding a hitting set generator of low degree, for every
K ′ ×K ′ minor of PSSJact(f) where K ′ ≤ K. The definitions of these generators for both
cases are similar to those in [2] and the details can be found in the full version [4]. J

5.1 Applications to PIT
As stated in Subsection 1.1, using Lemma 1.2, we get two straightforward corollaries for PIT
for related models (Corollary 1.6 and Corollary 1.7). As mentioned there, the results are
incomparable with the PIT results of Pandey et al. [14] and Kumar and Saraf [11]. For the
proof idea, the interested reader may look at the full version [4].

6 Conclusion and open problems

We studied the task of constructing faithful homomorphisms in the finite characteristic
setting and extended the results of Agrawal et al. [2] in the setting when the inseparable
degree is bounded. There are some very natural open problems in this context.

Are the homomorphisms constructed in the paper also F(s)-faithful homomorphisms?

Our proof only provides a recipe towards constructing F-faithful homomorphisms due to
technical obstacles involving the criterion for algebraic independence over finite character-
istic fields. This is not an issue in characteristic zero fields; Agrawal et al. [2] construct
F(s)-faithful homomorphisms.

How crucial is the notion of inseparable degree in the context of testing algebraic
independence?

The criterion of Pandey, Saxena and Sinhababu [14] crucially depends on this field
theoretic notion and there seems to be compelling algebraic reasons to believe that this
is necessary. However, as mentioned earlier, Guo, Saxena and Sinhababu [7] showed
that algebraic independence testing is in AM ∩ coAM and this proof has absolutely no
dependence on the inseparable degree.

FSTTCS 2019

11:14 Constructing Faithful Homomorphisms over Fields of Finite Characteristic

References
1 Manindra Agrawal and Somenath Biswas. Primality and identity testing via Chinese remain-

dering. J. ACM, 50(4):429–443, 2003. doi:10.1145/792538.792540.
2 Manindra Agrawal, Chandan Saha, Ramprasad Saptharishi, and Nitin Saxena. Jacobian

Hits Circuits: Hitting Sets, Lower Bounds for Depth-D Occur-k Formulas and Depth-3
Transcendence Degree-k Circuits. SIAM J. Comput., 45(4):1533–1562, 2016. doi:10.1137/
130910725.

3 Malte Beecken, Johannes Mittmann, and Nitin Saxena. Algebraic independence and blackbox
identity testing. Information and Computing, 222:2–19, 2013. doi:10.1016/j.ic.2012.10.
004.

4 Prerona Chatterjee and Ramprasad Saptharishi. Constructing Faithful Homomorphisms over
Fields of Finite Characteristic. Electronic Colloquium on Computational Complexity (ECCC),
25:212, 2018. URL: https://eccc.weizmann.ac.il/report/2018/212.

5 Richard A. DeMillo and Richard J. Lipton. A Probabilistic Remark on Algebraic Program
Testing. Inf. Process. Lett., 7(4):193–195, 1978. doi:10.1016/0020-0190(78)90067-4.

6 Ariel Gabizon and Ran Raz. Deterministic extractors for affine sources over large fields.
Combinatorica, 28(4):415–440, 2008. doi:10.1007/s00493-008-2259-3.

7 Zeyu Guo, Nitin Saxena, and Amit Sinhababu. Algebraic Dependencies and PSPACE
Algorithms in Approximative Complexity. In Rocco A. Servedio, editor, 33rd Computational
Complexity Conference, CCC 2018, June 22-24, 2018, San Diego, CA, USA, volume 102 of
LIPIcs, pages 10:1–10:21. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018. doi:
10.4230/LIPIcs.CCC.2018.10.

8 C.G.J. Jacobi. De Determinantibus functionalibus. Journal für die reine und angewandte
Mathematik, 22:319–359, 1841. URL: http://eudml.org/doc/147138.

9 Neeraj Kayal. The Complexity of the Annihilating Polynomial. In Proceedings of the 24th
Annual IEEE Conference on Computational Complexity, CCC 2009, Paris, France, 15-18 July
2009, pages 184–193, 2009. doi:10.1109/CCC.2009.37.

10 Adam R. Klivans and Daniel A. Spielman. Randomness efficient identity testing of multivariate
polynomials. In Jeffrey Scott Vitter, Paul G. Spirakis, and Mihalis Yannakakis, editors,
Proceedings on 33rd Annual ACM Symposium on Theory of Computing, July 6-8, 2001,
Heraklion, Crete, Greece, pages 216–223. ACM, 2001. doi:10.1145/380752.380801.

11 Mrinal Kumar and Shubhangi Saraf. Arithmetic Circuits with Locally Low Algebraic Rank.
Theory of Computing, 13(1):1–33, 2017. doi:10.4086/toc.2017.v013a006.

12 Øystein Ore. Über höhere kongruenzen. Norsk Mat. Forenings Skrifter, 1(7):15, 1922.
13 James G. Oxley. Matroid theory. Oxford University Press, 1992.
14 Anurag Pandey, Nitin Saxena, and Amit Sinhababu. Algebraic independence over positive char-

acteristic: New criterion and applications to locally low-algebraic-rank circuits. Computational
Complexity, 27(4):617–670, 2018. doi:10.1007/s00037-018-0167-5.

15 Jacob T. Schwartz. Fast Probabilistic Algorithms for Verification of Polynomial Identities. J.
ACM, 27(4):701–717, 1980. doi:10.1145/322217.322225.

16 Richard Zippel. Probabilistic algorithms for sparse polynomials. In Symbolic and Algebraic
Computation, EUROSAM ’79, An International Symposiumon Symbolic and Algebraic Com-
putation, volume 72 of Lecture Notes in Computer Science, pages 216–226. Springer, 1979.
doi:10.1007/3-540-09519-5_73.

https://doi.org/10.1145/792538.792540
https://doi.org/10.1137/130910725
https://doi.org/10.1137/130910725
https://doi.org/10.1016/j.ic.2012.10.004
https://doi.org/10.1016/j.ic.2012.10.004
https://eccc.weizmann.ac.il/report/2018/212
https://doi.org/10.1016/0020-0190(78)90067-4
https://doi.org/10.1007/s00493-008-2259-3
https://doi.org/10.4230/LIPIcs.CCC.2018.10
https://doi.org/10.4230/LIPIcs.CCC.2018.10
http://eudml.org/doc/147138
https://doi.org/10.1109/CCC.2009.37
https://doi.org/10.1145/380752.380801
https://doi.org/10.4086/toc.2017.v013a006
https://doi.org/10.1007/s00037-018-0167-5
https://doi.org/10.1145/322217.322225
https://doi.org/10.1007/3-540-09519-5_73

Maximum-Area Rectangles in a Simple Polygon
Yujin Choi
Technische Universität Berlin, Germany
yj5162@postech.ac.kr

Seungjun Lee
Pohang University of Science and Technology, Pohang, Korea
juny2400@postech.ac.kr

Hee-Kap Ahn
Pohang University of Science and Technology, Pohang, Korea
http://tcs.postech.ac.kr/~heekap
heekap@postech.ac.kr

Abstract
We study the problem of finding maximum-area rectangles contained in a polygon in the plane.
There has been a fair amount of work for this problem when the rectangles have to be axis-aligned or
when the polygon is convex. We consider this problem in a simple polygon with n vertices, possibly
with holes, and with no restriction on the orientation of the rectangles. We present an algorithm
that computes a maximum-area rectangle in O(n3 log n) time using O(kn2) space, where k is the
number of reflex vertices of P . Our algorithm can report all maximum-area rectangles in the same
time using O(n3) space. We also present a simple algorithm that finds a maximum-area rectangle
contained in a convex polygon with n vertices in O(n3) time using O(n) space.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Maximum-area rectangle, largest rectangle, simple polygon

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.12

Related Version https://arxiv.org/abs/1910.08686

Acknowledgements This research was supported by the MSIT (Ministry of Science and ICT), Korea,
under the SW Starlab support program (IITP-2017-0-00905) supervised by the IITP (Institute for
Information & communications Technology Promotion).

1 Introduction

Computing a largest figure of a certain prescribed shape contained in a container is a
fundamental and important optimization problem in pattern recognition, computer vision
and computational geometry. There has been a fair amount of work for finding rectangles of
maximum area contained in a convex polygon P with n vertices in the plane. Amenta showed
that an axis-aligned rectangle of maximum area can be found in linear time by phrasing it
as a convex programming problem [3]. Assuming that the vertices are given in order along
the boundary of P , stored in an array or balanced binary search tree in memory, Fischer
and Höffgen gave O(log2 n)-time algorithm for finding an axis-aligned rectangle of maximum
area contained in P [9]. The running time was improved to O(logn) by Alt et al. [2].

Knauer et al. [12] studied a variant of the problem in which a maximum-area rectangle
is not restricted to be axis-aligned while it is contained in a convex polygon. They gave
randomized and deterministic approximation algorithms for the problem. Recently, Cabello
et al. [6] gave an exact O(n3)-time algorithm for finding a maximum-area rectangle with
no restriction on its orientation that is contained in a convex n-gon. They also gave an
algorithm for finding a maximum-perimeter rectangle and approximation algorithms.

© Yujin Choi, Seungjun Lee, and Hee-Kap Ahn;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 12; pp. 12:1–12:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yj5162@postech.ac.kr
mailto:juny2400@postech.ac.kr
https://orcid.org/0000-0001-7177-1679
http://tcs.postech.ac.kr/~heekap
mailto:heekap@postech.ac.kr
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.12
https://arxiv.org/abs/1910.08686
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Maximum-Area Rectangles in a Simple Polygon

This problem has also been studied for containers which are not necessarily convex. Some
previous work on the problem focuses on finding an axis-aligned rectangle of maximum area or
of maximum perimeter contained in a rectilinear polygonal container in the plane [1, 13, 14].
Daniels et al. studied the problem of finding a maximum-area axis-aligned rectangle contained
in a polygon, not necessarily convex and possibly having holes [8]. They gave O(n log2 n)-time
algorithm for the problem. Later, Boland and Urrutia improved the running time by a factor
of O(logn) for simple polygons with n vertices [5]. With no restriction on the orientation of
the rectangles, Hall-Holt et al. gave a PTAS for finding a fat1 rectangle of maximum area
contained in a simple polygon [11].

Our results. We study the problem of finding a maximum-area rectangle with no restriction
on its orientation that is contained in a simple polygon P with n vertices, possibly with
holes, in the plane. We are not aware of any previous work on this problem, except a PTAS
for finding a fat rectangle of maximum area inscribed in a simple polygon [11]. We present
an algorithm that computes a maximum-area rectangle contained in a simple polygon with
n vertices in O(n3 logn) time using O(kn2) space, where k is the number of reflex vertices
of P . Our algorithm can also find all rectangles of maximum area contained in P in the
same time using (n3) space. We also present a simple algorithm that finds a maximum-area
rectangle contained in a convex polygon with n vertices in O(n3) time using O(n) space.

To obtain the running time and space complexities, we characterize the maximum-area
rectangles and classify them into six types, based on the sets of contacts on their boundaries
with the polygon boundary. Then we find a maximum-area rectangle in each type so as to
find a maximum-area rectangle contained in P . To facilitate the process, we construct a
ray-shooting data structure for P of O(n) space which supports, for a given query point in
P and a direction, O(logn) query time. We also construct the visibility region from each
vertex within P , which can be done in O(n2) time using O(n2) space in total. For some
types, we compute locally maximal rectangles aligned to the coordinate axes while we rotate
the axes. To do this, we maintain a few data structures such as double staircases of reflex
vertices and priority queues for events during the rotation of the coordinate axes. They can
be constructed and maintained in O(kn2 logn) time using O(kn2) space. The total number
of events considered by our algorithm is O(n3), each of which is handled in O(logn) time.

I Theorem 1. We can compute a largest rectangle contained in a simple polygon with n
vertices, possibly with holes, in O(n3 logn) time using O(kn2) space, where k is the number
of reflex vertices. We can report all largest rectangles in the same time using O(n3) space.

I Theorem 2. We can find a largest rectangle in a convex polygon P with n vertices in
O(n3) time using O(n) space.

Due to lack of space, some proofs and details are omitted.

2 Preliminary

Let P be a simple polygon with n vertices in the plane. For ease of description, we assume
that P has no hole. When P has holes, our algorithm works with a few additional data
structures and procedures for testing if candidate rectangles contain a hole. We discuss this
in Section 8. Without loss of generality, we assume that the vertices of P are given in order

1 A rectangle is c-fat if its aspect ratio is at most c for some constant c.

Y. Choi, S. Lee, and H.-K. Ahn 12:3

along the boundary of P . We denote by k with k ≥ 1 the number of reflex vertices of P . We
assume the general position condition that no three vertices of P are on a line. Whenever we
say a largest rectangle, it refers to a maximum-area rectangle contained in P .

We use the xy-Cartesian coordinate system and rotate the xy-axes around the origin while
the polygon is stationary. We use Cθ to denote the coordinate axes obtained by rotating the
xy-axes of the standard xy-Cartesian coordinate system by θ degree counterclockwise around
the origin. For a point p in the plane, we use px and py to denote the x- and y-coordinates
of p with respect to the coordinate axes, respectively. We say a segment or line is horizontal
(or vertical) if it is parallel to the x-axis (or the y-axis). Let η(p), λ(p) and δ(p) denote
the ray (segment) emanating from p going horizontally leftwards, rightwards and vertically
downwards in the coordinate axes, respectively, until it escapes P for the first time. We call
the endpoint of a ray other than its source point the foot of the ray. We denote the foot of
η(p), λ(p) and δ(p) by η̄(p), λ̄(p) and δ̄(p), respectively.

We use Dε(p) to denote the disk centered at a point p with radius ε > 0. For any
two points p and q in the plane, we use pq and to denote the line segment connecting p
and q, and |pq| to denote the length of pq. For a segment s, we use D(s) to denote the
smallest disk containing s. For a subset S ⊆ P , we define the visibility region of S as
V (S) = {x ∈ P | px ⊂ P for every point p ∈ S}. For a point p ∈ P , we abuse the notation
such that V (p) = V ({p}). For a set X, we use ∂X to denote the boundary of X.

2.1 Existence of a maximum-area rectangle in a simple polygon
The set G of all parallelograms in the plane is a metric space under the Hausdorff distance
measure dH . The Hausdorff distance between two sets A and B of points in the plane is defined
as dH(A,B) = max{supa∈A infb∈B d(a, b), supb∈B infa∈A d(a, b)}, where d(a, b) denotes the
distance between a and b of the underlying metric. Since the area function µ : G → R≥0 is
continuous in G, the following lemma assures the existence of a largest rectangle contained
in P and thus justifies the problem. Let R denote the set of all rectangles contained in P .
Clearly, R ⊂ G.

I Lemma 3. The set R is compact.

Proof. Define f : R6 → G to be a function that maps a triplet (p, u, v) of points p, u, and v
in R2 to the parallelogram in R2 that has p, p+ u, p+ v, and p+ u+ v as the four corners.

If a parallelogram G ∈ G is not contained in P , there always exists a point q ∈ G and a disk
Dε(q) for some ε > 0 satisfying Dε(q)∩P = ∅ in the plane. Then for any parallelogram Q ∈ G
with dH(G,Q) < ε, the intersection Q∩Dε(q) is not empty and Q is not contained in P . Thus,
C = {G ∈ G | G 6⊂ P} is open in G, and therefore WP =

{
(p, u, v) ∈ R6 | f(p, u, v) ⊂ P

}
=

f−1(G \ C) is closed. This implies that TP =
{

(p, u, v) ∈ R6 | f(p, u, v) ⊂ P, a rectangle
}

=
WP ∩ {(p, u, v) | u · v = 0} is closed and also bounded in R6, i.e. compact. Now we can
conclude that f(TP) = R is also compact by f being continuous in R6. J

2.2 Classification of largest rectangles
We give a classification of largest rectangles based on the sets of contacts they have on their
boundaries with the polygon boundary. We say a rectangle contained in P has a side-contact
(sc for short) if a side has a reflex vertex of P lying on it, excluding the corners. Similarly, we
say a rectangle contained in P has a corner-contact (cc for short) if a corner lies on an edge
or a vertex of P . When two opposite corners (or two opposite sides) have corner-contacts (or
side-contacts), we say the contacts are opposite.

FSTTCS 2019

12:4 Maximum-Area Rectangles in a Simple Polygon

A B C(C1)

D

B1 C2 C3

D1 D2 E3 F(F1) F2E(E1) E2

B2 B3

Figure 1 Classification of the determining sets of contacts of largest rectangles when rotations
are allowed. Each canonical type X, except A, has a few subtypes Xi for i = 1, 2, 3.

Daniels et al. [8] studied this problem with the restriction that rectangles must be axis-
aligned. They presented a classification of determining sets of contacts, defined below, into
five types for a largest axis-aligned rectangle contained in a simple polygon in the plane.

I Definition 4 (Determining set of contacts [8]). A set Z of contacts is a determining set
of contacts if the largest axis-aligned rectangle satisfying Z has finite area and the largest
axis-aligned rectangle satisfying any proper subset of Z has greater or infinite area.

In our problem, a largest rectangle R is not necessarily axis-aligned. Consider two
orthogonal lines which are parallel to the sides of R and pass through the origin. Since R is
aligned to the coordinate axes defined by the lines, it also has a determining set of contacts
defined by Daniels et al. From this observation, we present a classification of the determining
sets of contacts (DS for short) for a largest rectangle in P into six canonical types, from A to
F, and their subtypes. The classification is given below together with the figures in Figure 1.

Type A. Exactly two opposite ccs lying on convex vertices of P .
Type B. One sc on each side incident to a corner c. In addition, B1 has a sc on each
of the other two sides, and B2 and B3 have a cc on the corner c′ opposite to c. B2 has
another sc on a side incident to c′.
Type C (C1). Two ccs on opposite corners c and c′, and a sc on a side e incident to
a corner c. C2 has another sc on the side incident to c′ and adjacent to e, and C3 has
another sc on a side opposite to e.
Type D. A sc on a side e and a cc on each endpoint of e. D1 has another cc and D2 has
another sc on the side opposite to e.
Type E (E1). A sc on a side e and a cc on each endpoint of the side e′ opposite to e. E2
has another sc on a side other than e and e′. E3 has another cc on an endpoint of e.
Type F (F1). ccs on three corners. F2 has ccs on all four corners.

This classification is the same as the one by Daniels et al., except for types A, E, and F.
We subdivide the last type in the classification by Daniels et al. into two types, E and F, for
ease of description. A DS for type A consists of exactly two opposite corner-contacts lying
on convex vertices of P while the corresponding one by Daniels et al. [8] has two opposite
corners lying on the boundary (not necessarily on vertices) of P . This is because there is no
restriction on the orientation of the rectangle.

2.3 Maximal and breaking configurations
Recall that R denotes the set of all rectangles contained in P . Our algorithm finds a largest
rectangle in R of each (sub)type so as to find a largest rectangle contained in P . We call a
rectangle that gives a local maximum of the area function µ among rectangles in R a local

Y. Choi, S. Lee, and H.-K. Ahn 12:5

maximum rectangle (LMR for short). We say an LMR R is of type X if R has all contacts
of subtype Xi for some i = 1, 2, Since a largest rectangle contained in P is a rectangle
aligned to the axes that are parallel to its sides, it has contacts of at least one type defined
above and is an LMR of that type. Therefore, our algorithm finds a largest rectangle among
all possible LMRs of each type.

Consider a rectangle R ∈ R that satisfies a DS Z. If there is no contact other than
Z, there exists a continuous transformation of R such that the transformed rectangle is a
rectangle contained in P and satisfying Z. Then by such a continuous transformation the
area of R may change. Imagine we continue with such a transformation until the transformed
rectangle R′ gets another contact. In this case, we say R′ is in a breaking configuration (BC
for short) of Z. During the transformation, the area of R′ may become locally maximum.
If R′ is locally maximum and has no contact other than Z, we say R′ is in a maximal
configuration of Z. There can be O(1) maximal configurations of Z, which can be observed
from the area function of the rectangle.

I Lemma 5. An LMR satisfying Z is in a maximal configuration or a breaking configuration.

For a breaking configuration Z ′ of a DS Z, observe that Z ′ \ Z is a singleton and Z ′ can
be a BC of some other DSs. With this fact, we can classify BCs by avoiding repetition and
reducing them up to symmetry. See Figure 4 for breaking configurations.

We use Γθ(Z) to denote the axis-aligned rectangle of largest area that satisfies a DS Z in
Cθ. We say a DS Z is feasible at an orientation θ if Γθ(Z) is a rectangle contained in P . We
say an orientation θ is feasible for Z if Γθ(Z) is contained in P .

3 Computing a largest rectangle of type A

It suffices to check all possible squares in P with two opposite corners on convex vertices of
P . Since ∂P is a simple closed curve, we can determine if a rectangle R is contained in P by
checking if all four sides of R are contained in P .

I Lemma 6. We can compute a largest rectangle among all LMRs of type A in O((n− k)n+
(n− k)2 logn) time using O(n) space.

4 Computing a largest rectangle of type B

We show how to compute all LMRs of type B and a largest rectangle among them. We
compute for each DS a largest LMR over the maximal and breaking configurations. In doing
so, we maintain a combinatorial structure for each reflex vertex which helps compute all
LMRs of type B during the rotation of the coordinate axes.

4.1 Staircase of a point in a simple polygon
We define the staircase S(u) of a point u ∈ P as the set of points p ∈ P with px ≤ ux and
py ≤ uy such that the axis-aligned rectangle with diagonal up is contained in P but no
axis-aligned rectangle with diagonal uq is contained in P for any point q ∈ P with qx < px
and qy < py. Thus, S(u) can be represented as a chain of segments. See Figure 2 (a).

The staircase of a point u ∈ P in orientation θ, denoted by Sθ(u), is defined as the
staircase of u in Cθ. Every axis-aligned segment of Sθ(u) has one endpoint at a vertex of
P , η̄(u), or δ̄(u). A segment of Sθ(u) that is not aligned to the axes is a part of an edge
e of P and is called an oblique segment. (We say e appears to the staircase in this case.)

FSTTCS 2019

12:6 Maximum-Area Rectangles in a Simple Polygon

Each vertex of Sθ(u) which is a vertex P , η̄(u), or δ̄(u) is called an extremal vertex. An
extremal vertex v is called a tip if it is a reflex vertex of P . A vertex of Sθ(u) contained in
P is called a hinge. A step of Sθ(u), denoted by an ordered pair (a, b), is the part of Sθ(u)
between two consecutive extremal vertices a and b along Sθ(u), where ax ≤ bx and ay ≥ by.
It consists of either (i) two consecutive segments ar and rb for r = δ(a) ∩ η(b), or (ii) three
consecutive segments aδ̄(a), δ̄(a)η̄(b), and η̄(b)b with δ̄(a)x ≤ η̄(b)x and δ̄(a)y ≥ η̄(b)y. Note
that δ̄(a)η̄(b) is the oblique segment of step (a, b) which we denote by ob(a, b). A horizontal,
vertical, or oblique segment of a step can be just a point in case of degeneracy.

We can construct Sθ(u) for a fixed θ in O(n) time by traversing the boundary of P
in counterclockwise direction starting from η̄(u) while maintaining the staircase of u with
respect to the boundary chain traversed so far. When the next vertex v of the boundary
chain satisfies vx ≥ tx and vy ≤ ty for the last vertex t of the current staircase, we append it
to the staircase. If (part of) the edge incident to v is an oblique segment of the staircase,
then we append it together with v to the staircase. If vx < tx, we ignore v and proceed to
the vertex next to v. If vx ≥ tx and vy > ty, we remove the portion of the current staircase
violated by v and append v to the staircase accordingly. Observe that each vertex and each
edge appear on the staircase at most once during the construction.

4.2 Maintaining the staircase during rotation of the coordinate system
Bae et al. [4] considered the rectilinear convex hull for a set Q of n point in the plane and
presented a method of maintaining it while rotating the coordinate system in O(n2) time.
The boundary of the rectilinear convex hull consists of four maximal chains, each of which is
monotone to the coordinate axes. We adopt their method and maintain the staircase of a
reflex vertex u in a simple polygon.

The combinatorial structure of Sθ(u) changes during the rotation. Figure 2 (b-f) show
S0(u), Sθ1(u) and Sθ2(u) for three orientations 0, θ1, and θ2 (0 < θ1 < θ2 < π/2). Two
consecutive steps, (a, b) and (b, c), of the staircase merge into one step (a, c) when δ̄(a) meets
b (Figure 2 (b)). A step (a, b) splits up into two steps (a, v) and (v, b) when η̄(b) meets a
polygon vertex v (Figure 2 (c)). A step changes its type between (A) and (B) when the
hinge of a step hits a polygon edge (and then it is replaced by an oblique segment) or the
oblique segment of a step degenerates to a point (and then it becomes a hinge) (Figure 2
(d)). The upper tip a (or the lower tip b) of a step (a, b) can disappear from the staircase
when δ̄(η̄(u)) meets a (or η̄(δ̄(u)) meets b). Finally, a vertex, possibly along with an edge
incident to it, can be added to or deleted from Sθ(u) when it is met by η̄(δ̄(u)) or δ̄(η̄(u)).
We call such a change of the staircase due to the cases described above a step event.

One difference of the staircase Sθ(u) to the one for a point-set by Bae et al. is that
the two boundary points of Sθ(u) are η̄(u) and δ̄(u). Since the polygon is not necessarily
monotone with respect to the axes, the staircase may change discontinuously when η̄(u) or
δ̄(u) meets a vertex of P , which we call a ray event. The step of Sθ(u) incident to η̄(u) is
replaced by a chain of O(n) steps when η̄(u) meets a vertex of P (Figure 2 (e)). A subchain
incident to δ̄(u) is replaced by a single step when δ̄(u) meets a vertex of P (Figure 2 (f)).
We call the appearance or disappearance of a step caused by a ray event a shift event of the
ray event. Note that O(n) shift events occur at a ray event. Observe that all the changes
occurring in a staircase during the rotation are caused by step, ray, or shift events. We abuse
Sθ(u) to denote the combinatorial structure of the staircase if understood in context.

I Lemma 7. The number of events that occur to Sθ(u) during the rotation is O(n2).

Y. Choi, S. Lee, and H.-K. Ahn 12:7

u
P

(a) (b)

Sθ(u)

(c) (e)

u u

(d)

a

b

a

b
c v

a
b

v

(f)

η(u)

δ(u)

η̄(u)

δ̄(u)

Figure 2 (a) Staircase Sθ(u) (thick gray chain) and the tips (black disks), the extremal vertices
(black disks and circles), and the hinge (square) of Sθ(u). (b–d) Step events, and (e–f) ray events
during the rotation of the coordinate system.

To capture these combinatorial changes and maintain the staircase during the rotation, we
construct for every reflex vertex p of P , the list of segments of visibility region V (p) sorted
in angular order. We compute for every pair (p, q) of reflex vertices of P , the list C(p, q) of
vertices and segments of ∂V ({p, q}) ∩D(pq), sorted in angular order with respect to p and q.
We also compute for every pair (p, e) of a reflex vertex p and edge e, the sorted list L(p, e) of
angles at which δ(η̄(p)) or η(δ̄(p)) meets a vertex of P while η̄(p) or δ̄(p) lies on e. We store
for each orientation in L(p, e) the information on the vertex corresponding to the orientation.
This can be computed by finding the points that e intersects with the boundary of D(tp) for
each vertex t of P . These structures together constitute the event map.

We also construct an event queue for each reflex vertex, which is a priority queue that
stores events indexed by their orientations. This is to update the staircase during the rotation
in a way similar to the one by Bae et al. [4] using the event map. The event map is of size
O(kn2) and can be constructed in O(kn2 logn) time. For a reflex vertex u, we maintain Sθ(u)
and the event queue Q for u during the rotation using the event map. We also store the
extremal vertices and edges of the staircase in a balanced binary search tree T representing
Sθ(u) in order along the staircase so as to insert and delete an element in O(logn) time.

I Lemma 8. The staircases of all k reflex vertices of P can be constructed and maintained
in O(kn2 logn) time using O(kn2) space during the rotation.

4.3 Data structures – double staircases, event map, and event queue
Our algorithm computes all LMRs of type B during the rotation and returns an LMR with
largest area among them. To do so, it maintains for each reflex vertex u two staircases, Sθ(u)
and Sθ+π

2
(u) which we call the double staircase of u, during the rotation of the coordinate

axes and computes the LMRs of type B that have u as the top sc. Let I denote the interval
of orientations such that the horizontal line with respect to any θ ∈ I passing through u is
tangent to the boundary of P locally at u. Let Rθ be the largest axis-aligned rectangle of
type B in θ ∈ I that is contained in P and has u as the top sc. Observe that every reflex
vertex lying on the right side is a tip of Sθ+π

2
(u). We use X to denote the contact set around

the bottom-left corner cθ of Rθ. Then X contains (1) a tip of Sθ(u) touching the left side
and a tip on either Sθ(u) or Sθ+π

2
(u) touching the bottom side (type B1), (2) an oblique

segment e on Sθ(u) touching cθ and a tip on either Sθ(u) or Sθ+π
2
(u) touching the bottom

side (type B2), or (3) just an oblique segment e on Sθ(u) touching cθ (type B3).

FSTTCS 2019

12:8 Maximum-Area Rectangles in a Simple Polygon

(c)

u

v

γ
α

e

cθ

(a)

u

v

γ
α

β

p

qcθ

(b)

u

v

γ

α

e

cθ q

w

β

u

v

p

q

v′

u v = f(q)

p

q

v′

(e)(d)

Figure 3 LMRs of (a) type B1, (b) type B2, and (c) type B3. (d) Step event on Sθ+π
2

(u) that
f(q) changes from v to v′. (e) The step event in (d) is a step event on Sθ+π(q).

For a reflex vertex u of P , we construct the double staircase of u, S0(u) and Sπ
2

(u). Then
we maintain the event queue Q containing event orientations in order: the orientations for
staircase events (step and ray events) defined in previous section and the orientations at
which two vertices of V (u) are aligned horizontally. The set of the orientations of the latter
type is to capture the event orientations at which a tip of Sθ(u) is aligned horizontally with
a tip of Sθ+π

2
(u). We call them double staircase events. We initialize Q with the latter type

events. Note that it does not increase the time and space complexities of the event queue.

4.4 Computing LMRs of type B1

Consider a reflex vertex t of P that appears as a tip on Sθ(u). We use f(t) to denote the
upper tip of the step on Sθ+π

2
(u) aligned horizontally to t. For example, in Figure 3(a,b),

v = f(q) in Sθ+π
2

(u). During the rotation of the coordinate axes, we consider the change of
f(t) for each tip t on Sθ(u), as well as step, ray, and shift events on the double staircase. At
each orientation, f(t) can be computed in O(logn) time via binary search on Sθ+π

2
(u) with

ty since the staircase chain is monotone with respect to the y-axis. Thus we do not need to
save the value f(t) for each tip t. We consider the orientation when a tip t on Sθ(u) and
f(t) on Sθ+π

2
(u) are aligned horizontally so that f(t) is set to the next tip on Sθ+π

2
(u). At

such a orientation, we detect a DS candidate of the type B1 with top, left, bottom, and right
scs as u, p, q, and v = f(q), respectively. Note that the bottom sc q might have qx > ux.
We process only the case that q is a tip on Sθ(u), since the other case can be handled when
fixing p as an upper side contact, as described in the following, when step (q, v) disappears
by a step event on Sθ+π

2
(p) and u is a tip on Sθ+π(p).

Consider an event E occurring at θ. When a step of the double staircase that possibly
contributes to a DS of type B1 changes due to E, we detect possible DSs that have been
associated with it. Consider a DS {u, p, q, v} as in Figure 3(a). If E is a step or shift event
on Sθ(u), O(1) tips appear or disappear on Sθ(u) and O(1) DSs are detected at each such
event. If E is a step or shift event on Sθ+π

2
(u), there are O(n) tips t on Sθ(u) such that f(t)

changes. Observe that such an event corresponds to a step event on the staircase of q in
Cθ+π. See Figure 3(d-e). Thus, we may consider only step and shift events on Sθ(u) together
with the double staircase events to detect possible DSs of type B1.

We consider O(1) DSs for each event. Let Z = {u, p, q, v} be a DS of type B1 such that
(p, q) is changed or q and v are aligned horizontally by an event E at θE . Given a closed
interval J , we can compute the set ΘZ of orientations θZ ∈ J maximizing µ(Γθ(Z)) locally in
O(1) time because the area function µ(Γθ(Z)) = (|uv| cos γ+ |up| cos(π−(α+γ)))(|uv| sin γ+
|qv| cos(π2 − (β − γ))) has O(1) extremal values in J . For angles α, β, γ, see Figure 3(a).

We find the maximal interval J of orientations for Z = {u, p, q, v} found in an event E
occurring at θE such that θE ∈ J and all elements of Z appear on the double staircase of
u. This can be done by maintaining the latest orientation (< θE) at which (p, q) starts to

Y. Choi, S. Lee, and H.-K. Ahn 12:9

appear as a step, the latest orientation (< θE) at which v starts to appear as a tip to the
double staircase, and the orientation at which f(q) was set to v. Then J = [θa, θE], where
θa is the latest of orientation at which all elements of Z and the step consisting of elements
of Z start to appear on the double staircase while satisfying f(q) = v. Note that the LMRs
with contact Z occur at every orientation of ΘZ and the two endpoints (orientations) of J .
Observe that the rectangle ΓθZ (Z) with θZ ∈ ΘZ corresponds to a maximal configuration,
and Γθ(Z) with θ being an endpoint of J corresponds to a breaking configuration. In this
way, we can compute O(1) LMRs satisfying Z in O(1) time.

For a reflex vertex u, we maintain an event queue Q. For each event E in Q, our algorithm
finds O(1) DSs Z that become infeasible by E, and computes the LMRs in O(1) time. Observe
that a DS Z of type B1 becomes infeasible only at shift, step, and double staircase events.
Since our algorithm is applied to every reflex vertex u of P , we do not need to process the
shift and step events occurring on Sθ+π

2
(u). Therefore, we can detect every possible DS Z

by processing the events in Q. By Lemma 8, we have the following lemma.

I Lemma 9. Our algorithm computes all LMRs of type B1 with largest area in O(kn2 logn)
time, where k is the number of reflex vertices.

4.5 Computing LMRs of type B2

A DS Z = {u, e, q, v} of type B2 consists of three reflex vertices u, q, v realizing the top,
bottom, right sc and an oblique segment e realizing the cc at the bottom-left corner cθ
of Γθ(Z). Let w be the point where the extended line of e and the line through u and v
cross. If w appears below cθ, then the area function is µ(Γθ(Z)) = |uq| sin(β + γ)

(
cot(γ −

α)(|uw| sin γ − |uq| sin(β + γ)) − |vw| cos γ
)
. See Figure 3(b). The area of Γθ(Z) with w

appearing above u can be computed in a similar way. Note that there are O(1) orientations
that maximize µ(Γθ(Z)) locally and they can be computed in O(1) time.

Observe that q is contained in Sθ(u) or (q, v) is a step on Sθ+π
2
(u). In addition to the

method from the Section 4.4, we also handle the case that (q, v) is a step on Sθ+π
2
(u) as

follows. For a reflex vertex t appearing as a tip on Sθ+π
2

(u), let g(t) be the edge that contains
η̄(t). We consider every change of f(t) for each tip t on Sθ(u) and the every change of g(t)
for each tip t on Sθ+π

2
(u) during the rotation.

Consider an event E occurring at θE . If f(q) changes from v to v′, we detect the DS
{u, e, q, v}, where e is the edge containing the oblique segment of the step q belongs to, in a
similar way as we process such an event of type B1.

So it remains to consider the case for an event E that changes g(q) for each tip q on
Sθ+π

2
(u) at θE . Observe that g(q) changes only if a double staircase event occurs associated

with q. Whenever a new step (q, v) appears on Sθ+π
2

(u), we do binary search for η̄(q) ∈ e in
V (q). When g(q) changes or a step (q, v) disappears caused by a step or a shift event on
Sθ+π

2
(u), we find O(1) LMRs with DS Z = {u, e, q, v}, and check if they are in P by checking

if the boundary of the rectangles are in P , since we do not know if e appears on Sθ(u) or
not. These LMRs can be computed in a similar way as we do for type B1. Together with
Lemma 8, we have the following lemma.

I Lemma 10. Our algorithm computes all LMRs of B2 with the largest area in O(kn2 logn)
time, where k is the number of reflex vertices of P .

FSTTCS 2019

12:10 Maximum-Area Rectangles in a Simple Polygon

4.6 Computing LMRs of type B3

Consider the case when DS Z = {u, e, v} is feasible, where e is a polygon edge that appears as
an oblique segment on Sθ(u) and v is a tip on Sθ+π

2
(u) (type B3). See Figure 3(c). To achieve

the largest area, we observe that the bottom-left corner of LMRs satisfying Z must lie at the
midpoint c of the extended line segment pq of e, where p and q are the intersection points of
the line containing e with η(u) and δ(v), respectively. The area function of Γθ({u, cθ, v}),
the rectangle with top sc on u, bottom-left cc on cθ, and right sc on v, is convex with respect
to cθ ∈ l, where l is the line containing e. If c does not lie on e, cθ must lie on a point of e
closest to c to maximize the rectangle area.

The area function of Γθ(Z) for a DS Z of B3 is µ(Γθ(Z)) = |ucθ| sin(α+ γ)
(
|ucθ| cos(π −

(α+γ))+ |uv| cos γ
)
, where cθ is the midpoint of pq (if the midpoint lies on e) or the endpoint

of e that is closer to the midpoint (otherwise) at θ. Since the midpoint moves along l in one
direction as θ increases, there are O(1) intervals of orientations at which the midpoint of pq
is contained in e, and thus this area function has O(1) extremal values in I.

Our algorithm for computing all LMRs of type B3 is simple. First we fix the top sc on u.
For each pair of an edge e and a reflex vertex v, we compute the set ΘZ of orientations that
maximize µ(Γθ(Z)) locally for Z = {u, e, v}. Observe that ΘZ consists of O(1) orientations
because the area function has O(1) extremal values. Then for each θZ ∈ ΘZ , we find two
orientations θ1, θ2 closest to θZ with θ1 ≤ θZ and θ2 ≥ θZ such that the top-right corner of
Γθ(Z) is contained in P by applying binary searching on C(u, v). Finally, we check if Γθ(Z)
is contained in P for O(1) such orientations θ by checking if the boundary of the rectangles
are contained in P . This way we can compute all LMRs of B3 with top sc on u. See Figure 4.
By using the event map and Lemma 8, we have the following lemma.

I Lemma 11. Our algorithm computes all LMRs of B3 with largest area in O(kn2 logn)
time, where k is the number of reflex vertices of P .

5 Computing a largest rectangle of types C and D

LMRs of types C and D can be computed in a way similar to the one for type B. For each reflex
vertex u, we find all LMRs of types C and D that have u on its top side while maintaining
the double staircase of u.

I Lemma 12. We can compute a largest rectangle among all LMRs of types C and D in
O(kn2 logn) time using O(kn2) space, where k is the number of reflex vertices of P .

6 Computing a largest rectangle of type E

We consider the LMRs of type E. Let u be a reflex vertex of P . We detect every DS Z of
type E, containing {u, el, er}, where u is the top sc, el the bottom-left cc, and er the bottom-
right cc. Observe that for each LMR satisfying Z, el and er appear as oblique segments
ob(p, q) ⊂ el and ob(t, v) ⊂ er of Sθ(u) and Sθ+π

2
(u), respectively, such that η̄(t) ∈ ob(p, q)

or λ̄(q) ∈ ob(t, v), depending on whether qy ≤ ty or not. Using this fact, we detect the events
at which Z becomes infeasible, and compute the LMRs satisfying Z.

We compute LMRs of type E at (1) every step and shift event (and ray event) with a step
containing an oblique segment on the double staircase, and (2) every event such that λ̄(q)
meets δ̄(t) on an edge e for a tip q of Sθ(u) and a tip t of Sθ+π

2
(u). At an event E of case

(1), we find DSs Z that become infeasible caused by E. At an event E of case (2) occurring
at θE , we have a step (p, q) on Sθ(u) and a step (t, v) on Sθ+π

2
(u) such that λ̄(q) meets δ̄(v)

Y. Choi, S. Lee, and H.-K. Ahn 12:11

on an edge of P . We consider the same DSs Z1 and Z2 considered in case (1). Observe that
E corresponds to the step event of the double staircase of v at θE − π

2 . The double staircase
of v has a step event at θE − π

2 that δ̄(λ̄(v)) meets q (equivalently, λ̄(q) meets δ̄(v) on an
edge of P at θE). Thus, we can capture E by maintaining the double staircase of v and
insert E to the event queue of u in O(logn) time. We compute this type of events for all
reflex vertices of P by maintaining double staircases of the reflex vertices of P and insert the
events to the event queues of their corresponding reflex vertices whenever such events are
found. There are O(kn2) events in total, and they can be found and inserted to the event
queues in O(kn2 logn) time.

Whenever detecting a DS Z, we take a closed interval J of orientations at which Z

is possibly feasible, and compute O(1) LMRs with contact Z within J . When Z contains
{u, el, er} as the top sc u, bottom-left cc el, and bottom-right cc er, J is the interval such
that ob(p, q) ⊆ el, ob(t, v) ⊆ er, and λ̄(δ̄(p)) ∈ ob(t, v) or λ̄(q) ∈ ob(t, v). Note that the
interval satisfying λ̄(δ̄(p)) ∈ ob(t, v) or λ̄(q) ∈ ob(t, v) can be computed in O(logn) time
using binary search on L(p, el) and L(v, er). If Z contains p as the left sc or e′ as the top-left
cc, we consider the BCs such that v is the right sc or there is another cc on the top-right
corner. Note that the BC of the second case corresponds to a BC of type D1. The orientation
at which such a BC occurs can be computed in O(1) time by solving basic system of linear
equations. Therefore, J can be computed in O(logn) time.

We compute O(1) LMRs for each event and check if they are contained in P in O(logn)
time. There are O(kn2) events corresponding to case (2) which are computed in O(kn2 logn)
time before we handle the events of type E. By Lemma 7, we have the following lemma.

I Lemma 13. We can compute a largest rectangle among all LMRs of type E in O(kn2 logn)
time using O(kn2) space, where k is the number of reflex vertices of P .

7 Computing a largest rectangle of type F

To find all LMRs of type F, we compute the maximal configurations and breaking configurations
of DSs of type F as follows. Consider a DS Z1 = {e1, el, e2} of type F1 and a DS Z2 =
{e1, el, er, e2} of type F2. Then the LMR of a BC of type F1 is the rectangle satisfying Z1∪{u}
or Z1 ∪ {er}, or a rectangle satisfying Z1 with cc on an end vertex of an edge in Z1, where u
is a reflex vertex and er is an edge of P . The LMR satisfying Z1 ∪ {u} belongs to type D1 or
E3 which is computed as an LMR of D or E. The LMR satisfying Z1 ∪ {er} belongs to type
F2 and it is considered for type F2. The LMR of a BC of type F2 is the rectangle satisfying
Z2 ∪ {u}, Z2 ∪ {e′} or the rectangle satisfying Z2 with cc on an end vertex of an edge in
Z2, where u is a reflex vertex and e′ is an edge of P . The LMR satisfying Z2 ∪ {u} belongs
to a BC of type E3 which is computed as an LMR of type E. (See the last BC of type E3
in Figure 4.) Thus, we consider the LMRs of maximal configurations of type F or breaking
configurations Z of type F containing a cc on an end vertex of an edge in Z only.

We say an edge pair (e1, e2) is h-aligned (and v-aligned) at θ if there are points p1 ∈ e1
and p2 ∈ e2 such that p1p2 is horizontal (and vertical) and is contained in P at θ. A pair
(e1, e2) of edges is h-misaligned (and v-misaligned) at θ if the pair is not h-aligned (and not
v-aligned) at θ. Note that a edge pair (e1, e2) changes between being h- or v-aligned and
being h- or v-misaligned only when two vertices of P are aligned horizontally or vertically
during the rotation. We say a triplet (e1, el, e2) of edges t-aligned at θ if there is a point
x ∈ e1 such that λ̄(x) ∈ e2 and δ̄(x) ∈ el at some θ′ ∈ {θ, θ + π

2 , θ + π, θ + 3π
2 }. An edge

triplet (e1, el, e2) is t-misaligned if it is not t-aligned at θ.

FSTTCS 2019

12:12 Maximum-Area Rectangles in a Simple Polygon

We compute LMRs of type F at (1) every event such that two vertices are aligned
horizontally or vertically, and (2) every event such that δ̄(η̄(u)) meets p for every vertex pair
(u, p) at θ′ ∈ {θ, θ+ π

2 , θ+ π, θ+ 3π
2 }. In case (1), at an event such that two vertices u and v

are aligned horizontally, we find an edge pair (e1, e2) which becomes h-misaligned in O(logn)
time using ray-shooting queries with η(u) and λ(v), assuming that ux < vx if such pair exists.
Then we also find edges el and er such that el contains δ̄(η̄(u)) and er contains δ̄(λ̄(v)). We
can find such edges in O(logn) time using ray-shooting queries. Then we compute the set
ΘZi of orientations that maximize µ(Γθ(Zi)) for each DS Z1 = {e1, el, e2}, Z2 = {e1, er, e2}
and Z3 = {e1, el, er, e2} and check if Γθ(Zi) is contained in P for θ ∈ ΘZi . Observe that
the top-left cc of every LMR of type F1 lies at the midpoint c of wt, for the intersection w
of two lines, one containing e1 and one containing el, and the intersection t of two lines,
one containing e1 and one containing e2. Note that every area function of type F as O(1)
extremal values. If c 6∈ e1, we take the point on e1 that is closest to the midpoint. Thus, each
ΘZi has O(1) elements and we can check for each Γθ(Zi) if it is contained in P in O(logn)
using ray-shooting queries. We also compute the BCs satisfying Zi with cc on an end vertex
of an edge in Zi, and check their feasibility. There are O(1) such BCs which can be computed
in O(1) time. We can compute in O(1) time µ(Γθ(Z)) for each BC Z. An event at which
two vertices u and v are aligned vertically can be handled in a symmetric way.

In case (2), when δ̄(η̄(u)) meets p, we find an edge triplet (e1, el, e2) which becomes
t-misaligned in O(logn) time using ray-shooting queries with η(u), λ(u) and δ(p). We also
find edges er and e′r such that δ̄(λ̄(u)) ∈ er and λ̄(p) ∈ e′r in O(logn) time using ray-shooting
queries. Similar to case (1), we compute ΘZi for each DS Z1 = {e1, el, e2}, Z2 = {e1, el, er, e2}
and Z3 = {e1, el, e

′
r, e2} and check if Γθ(Zi) ⊆ P for θ ∈ ΘZi . Then we compute the BCs

satisfying Zi with cc on an end vertex of an edge in Zi and check their feasibility.
There are O(n2) events corresponding to case (1) and O(n3) events corresponding to

case (2). We can compute them in O(n3) time in total. For each event, we find O(1) DSs in
O(logn) time and compute O(1) maximal and breaking configurations of each DS in O(1)
time, and check their feasibility in O(logn) time. And the only data structure we use for
type F is a ray-shooting data structure of O(n) space.

I Lemma 14. We can compute a largest rectangle among all LMRs of type F in O(n3 logn)
time using O(n) space.

8 Computing a largest rectangle in a simple polygon with holes

Our algorithm can compute a largest rectangle in a simple polygon P with h holes and n
vertices. We use the same classification of largest rectangles and find the LMRs of the six
types. We construct a ray-shooting data structure, such as the one by Chen and Wang [7]
in O(n+ h2 polylog h) time using O(n+ h2) space, which supports a ray-shooting query in
O(logn) time. We also construct the visibility region from each vertex of P , which can be
done in O(n2 logn) time using O(n2) space by using the algorithm in [7]. Each visibility
region is simple and has O(n) complexity. The staircase of a vertex of P can be constructed
in O(n logn) time using plane sweep with ray-shooting queries. Each staircase of a vertex u
of P has O(n) space. There are O(n2) events to the staircase of u since it is equivalent to
the staircase constructed in V (u), a simple polygon with O(n) vertices.

We say a rectangle is empty if there is no hole contained in it. Since P has holes, there
can be a hole contained in a rectangle R even though every side of R is contained in P .
Thus, we check the emptiness of rectangles, together with the test for their sides being
contained in P . The emptiness of a rectangle can be checked by constructing a triangular

Y. Choi, S. Lee, and H.-K. Ahn 12:13

range searching data structure for n vertices of P in O(n2) time and space [10]. For a query
with two triangles obtained from subdividing the rectangle by a diagonal, it answers the
number of vertices lying in the triangle in O(logn) time. Since the remaining part of our
algorithm works as it is, we have Theorem 1.

9 Computing a largest rectangle in a convex polygon

When P is convex, there is no reflex vertex and therefore it suffices to consider only the
LMRs of types A and F. Using the method in Lemma 6, we can compute a largest LMR of
type A in O(n2 logn) time using O(n) space.

For type F, we find the events considered in Section 7 and all DSs corresponding to the
events in case (1) that a vertex u is aligned to another vertex in O(n) time by maintaining
rays λ(u), δ(λ̄(u)), δ(u) and λ(δ̄(u)) during the rotation. Since P is convex, the foot of each
ray emanating from u changes continuously along the boundary of P . Similarly, we find
all DSs corresponding to the events in case (2) in Section 7 that an edge triplet becomes
t-misaligned. It is caused by δ̄(η̄(u)) meeting p for a vertex pair (u, p) and its corresponding
DSs can be computed in O(n) time by maintaining η(u), δ(u), ξ(p) and λ(p) during the
rotation, where ξ(p) is the vertically upward ray from p. Thus, we can find all events and
their corresponding DSs in O(n2) time for case (1) and in O(n3) time for case (2). Since
every LMR is contained in P , we can find the maximal configuration of each DS in O(1) time.
We conclude with Theorem 2.

B1

C1 D1

E1

B2

B3

C2

C3

D2

E2

E3

Figure 4 Canonical (sub)types (gray rectangles) and their breaking configurations without
duplication. The breaking configurations of subtypes F1 and F2 appear as breaking configurations of
other types: By adding a sc to a DS Z of type F1, Z becomes a BC of type either D1 or E3. By
adding a cc to a DS Z of type F1, Z becomes a BC of type F2. By adding a sc to a DS Z of type F2,
Z becomes a BC (of the last type) of type D1.

FSTTCS 2019

12:14 Maximum-Area Rectangles in a Simple Polygon

References
1 Alok Aggarwal and Joel Martin Wein. Computational Geometry Lecture Notes for MIT, 1988.
2 Helmut Alt, David Hsu, and Jack Snoeyink. Computing the Largest Inscribed Isothetic

Rectangle. In Proceedings of 7th Canadian Conference on Computational Geometry (CCCG
1995), pages 67–72. University of British Columbia, 1995.

3 Nina Amenta. Bounded Boxes, Hausdorff Distance, and a New Proof of an Interesting Helly-
type Theorem. In Proceedings of 10th Annual Symposium on Computational Geometry (SoCG
1994), pages 340–347, 1994.

4 Sang Won Bae, Chunseok Lee, Hee-Kap Ahn, Sunghee Choi, and Kyung-Yong Chwa. Comput-
ing minimum-area rectilinear convex hull and L-shape. Computational Geometry, 42(9):903–912,
2009.

5 Ralph P. Boland and Jorge Urrutia. Finding the Largest Axis-Aligned Rectangle in a Polygon
in O(n log n) time. In Proceedings of 13th Canadian Conference on Computational Geometry
(CCCG 2001), pages 41–44, 2001.

6 Sergio Cabello, Otfried Cheong, Christian Knauer, and Lena Schlipf. Finding largest rectangles
in convex polygons. Computational Geometry, 51:67–74, 2016.

7 Danny Z. Chen and Haitao Wang. Visibility and ray shooting queries in polygonal domains.
Computational Geometry, 48(2):31–41, 2015.

8 Karen Daniels, Victor Milenkovic, and Dan Roth. Finding the largest area axis-parallel
rectangle in a polygon. Computational Geometry, 7(1):125–148, 1997.

9 Paul Fischer and Klaus-Uwe Höffgen. Computing a maximum axis-aligned rectangle in a
convex polygon. Information Processing Letters, 51(4):189–193, 1994.

10 Partha P. Goswami, Sandip Das, and Subhas C. Nandy. Triangular range counting query
in 2D and its application in finding k nearest neighbors of a line segment. Computational
Geometry, 29(3):163–175, 2004.

11 Olaf Hall-Holt, Matthew J. Katz, Piyush Kumar, Joseph S. B. Mitchell, and Arik Sityon.
Finding Large Sticks and Potatoes in Polygons. In Proceedings of 17th Annual ACM-SIAM
Symposium on Discrete Algorithm (SODA 2016), pages 474–483, 2006.

12 Christian Knauer, Lena Schlipf, Jens M. Schmidt, and Hans Raj Tiwary. Largest inscribed
rectangles in convex polygons. Journal of Discrete Algorithms, 13:78–85, 2012.

13 Michael McKenna, Joseph O’Rourke, and Subhash Suri. Finding the largest rectangle in an
orthogonal polygon. In Proceedings of 23rd Allerton Conference on Communication, Control
and Computing, pages 486–495, 1985.

14 Derick Wood and Chee K. Yap. The orthogonal convex skull problem. Discrete & Computational
Geometry, 3(4):349–365, 1988.

Motif Counting in Preferential Attachment Graphs
Jan Dreier
Department of Computer Science, RWTH Aachen University, Germany
https://tcs.rwth-aachen.de/~dreier
dreier@cs.rwth-aachen.de

Peter Rossmanith
Department of Computer Science, RWTH Aachen University, Germany
https://tcs.rwth-aachen.de
rossmani@cs.rwth-aachen.de

Abstract
Network motifs are small patterns that occur in a network significantly more often than expected.
They have gathered a lot of interest, as they may describe functional dependencies of complex
networks and yield insights into their basic structure [22]. Therefore, a large amount of work went into
the development of methods for network motif detection in complex networks [20, 28, 8, 31, 16, 1, 25].
The underlying problem of motif detection is to count how often a copy of a pattern graph H occurs
in a target graph G. This problem is #W[1]-hard when parameterized by the size of H [14] and
cannot be solved in time f(|H|)no(|H|) under #ETH [7].

Preferential attachment graphs [3] are a very popular random graph model designed to mimic
complex networks. They are constructed by a random process that iteratively adds vertices and
attaches them preferentially to vertices that already have high degree. Preferential attachment has
been empirically observed in real growing networks [24, 19].

We show that one can count subgraph copies of a graph H in the preferential attachment
graph Gn

m (with n vertices and nm edges, where m is usually a small constant) in expected time
f(|H|)mO(|H|6) log(n)O(|H|12)n. This means the motif counting problem can be solved in expected
quasilinear FPT time on preferential attachment graphs with respect to the parameters |H| and m.
In particular, for fixed H and m the expected run time is O(n1+ε) for every ε > 0.

Our results are obtained using new concentration bounds for degrees in preferential attachment
graphs. Assume the (total) degree of a set of vertices at a time t of the random process is d. We
show that if d is sufficiently large then the degree of the same set at a later time n is likely to be
in the interval (1± ε)d

√
n/t (for ε > 0) for all n ≥ t. More specifically, the probability that this

interval is left is exponentially small in d.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases random graphs, motif counting, average case analysis, preferential attachment
graphs

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.13

1 Introduction

Network motifs are small patterns that occur in a network significantly more often than
expected. They are relevant for example in the analysis of biological networks such as
transcription networks of bacteria [22]. Detecting network motifs is computationally very
expensive and there exist numerous algorithms for this task [20, 28, 8, 31, 16, 1, 25]. The
underlying problem of motif detection is to count how often a copy of a pattern graph H
occurs in a target graph G. This can be very hard, as counting perfect matchings is #P-
hard [29]. One of the fastest algorithms by Curticapean, Dell, and Marx can count subgraph
copies of a graph H with k edges in a graph G of size n in time kO(k)n0.174k+o(k) [12]. When
it comes to parameterized complexity, counting k-cliques is #W[1]-hard [14] and cannot be
done in time f(k)no(k) under #ETH [7].

© Jan Dreier and Peter Rossmanith;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 13; pp. 13:1–13:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-2662-5303
https://tcs.rwth-aachen.de/~dreier
mailto:dreier@cs.rwth-aachen.de
https://orcid.org/0000-0003-0177-8028
https://tcs.rwth-aachen.de
mailto:rossmani@cs.rwth-aachen.de
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.13
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Motif Counting in Preferential Attachment Graphs

A general question is whether problems that are hard on general graphs can be solved
efficiently in real-world networks. To this end, the average run time of algorithms on random
graphs has been considered (see [15] for a survey from 1997). For example Janson, Łuczak
and Norros show that in certain scale-free random graphs with exponent α > 2 one can find
a maximal clique in polynomial time [18].

Preferential attachment graphs [3] are random graphs designed to mimic complex networks.
They are constructed by a random process that iteratively adds vertices and attaches
them preferentially to vertices that already have high degree. Scale-free behaviour has
been identified as a central property of many complex networks [6, 9] and the preferential
attachment process is a widely recognized explanation [5] of this behaviour. Preferential
attachment has been empirically observed in real growing networks [24, 19].

Recently, the behaviour of some algorithms on preferential attachment graphs has been
analyzed. Let Gnm be the preferential attachment graph with n vertices and m edges per
vertex by (see Section 2 or a rigorous definition). For example, Korula and Lattanzi present
a reconciliation algorithm with proven 97% success in preferential attachment graphs [21]
and Cooper and Frieze show that the cover time of a simple random walk on Gnm is with
high probability asymptotic to 2m

m−1n log(n) [10].
We show that the motif counting problem can be solved in expected quasilinear time on

preferential attachment graphs by a simple algorithm for any motif of constant size. For
simple graphs G and H let #Sub(H,G) be the number of subgraphs of G isomorphic to H.
If the graph G has loops or multi-edges (as preferential attachment graphs do) then the
subgraphs is counted with respect to the simple graph corresponding to G. Our main result
is the following.

I Theorem 5. There exists a function f such that for every graph H and n,m ∈ N one can
compute #Sub(H,Gnm) in expected time f(|H|)mO(|H|6) log(n)O(|H|12)n.

This means one can compute #Sub(H,Gnm) in expected quasilinear FPT time on pref-
erential attachment graphs with respect to the parameters |H| and m. In particular, for
fixed H and m the expected run time is O(n1+ε) for every ε > 0. Our results can be easily
extended to alternative definitions of #Sub(H,G) for multigraphs.

Our result is obtained as follows: At first, we define a value γl(G) for every graph G

and l ∈ N+ and present a simple algorithm to compute #Sub(H,G) in time f(|H|)γ|H|(G)
for some function f (Lemma 3). We then bound γl(G) by the number of subgraphs in
G of bounded size with at most two pendant vertices (Lemma 7). Using this insight, we
can bound the expected value of γl(G) in preferential attachment graphs by E[γl(Gnm)] =
mO(l6) log(n)O(l12)n (Theorem 4), which directly yields the efficient subgraph counting
algorithm. This analysis is based on concentration bounds for vertex degrees, which are
proven in Section 5.

Concentration Bounds for Degrees in Preferential Attachment Graphs

A large part of the analysis of our motif counting algorithm is based on concentration bounds
for degrees, which we believe to be of individual interest. Aspects of the degree distributions
in preferential attachment graphs are well studied [5, 4, 2, 17, 23, 27, 26, 32]. For example,
Bollobás et al. [5] show that the degree sequence follows a power law distribution and Peköz
et al. [26, 27] bound the rate of convergence of the degree of individual vertices to a limit
distribution. The resulting tail bounds for degrees of individual vertices, however, have
only polynomial accuracy. We complement these results by providing exponentially strong

J. Dreier and P. Rossmanith 13:3

concentration bounds for vertices or sets of vertices with high degree. We believe these
bounds to be useful for proving structural properties and analyzing algorithms on preferential
attachment graphs beyond motif counting.

Let the vertices in a preferential attachment graph be v1, v2, v3, . . . in order of insertion.
Let t ∈ N and S ⊆ {v1, . . . , vt}. We analyze the evolution of the degree of S in the random
process over time. For n ≥ t and m ≥ 1 we define dnm(S) to be the sum over all degrees of
vertices in S in Gnm (we define dnm(vi) := dnm({vi})).

Assume the degree of S at a time t to be dtm(S) = d. It can be shown that the expected
degree of S at a later time n ≥ t of the same random process asymptotically approaches
E[dnm(S) | dtm(S) = d] ∼

√
n
t d [30]. In general, the preferential attachment process is too

unstable and chaotic to guarantee that the degree of S closely centered around its expected
value. We show, however, that if d is sufficiently large then the degree of S at time n is likely
to be in the interval (1± ε)

√
n
t d (for ε > 0) for all n ≥ t. More specifically, the probability

that this interval is left is exponentially small in d. This is formalized by the following
theorem.

I Theorem 19. For t,m, d ∈ N+, 0 < ε ≤ 1/2, S ⊆ {v1, . . . , vt} with Pr[dtm(S) = d] 6= 0
and d ≥ log(log(3tm))ε−200

Pr
[
(1− ε)

√
n

t
d < dnm(S) < (1 + ε)

√
n

t
d for all n ≥ t

∣∣∣ dtm(S) = d
]
≥ 1− e−ε

200d.

Note that concentration is guaranteed for all n ≥ t simultaneously. This means especially
that the degree of large sets of vertices is strongly concentrated at all times of the random
process. The constants have been chosen to ease calculations and can be greatly improved.

2 Preliminaries

We will denote probabilities by Pr[∗] and expectation by E[∗]. The logarithm is the natural
logarithm. We use common graph theory notation [13]. The order of a graph is |G| = |V (G)|.
The size of a graph is ‖G‖ = |V (G) + E(G)|. All graphs (except preferential attachment
graphs) are simple graphs. The underlying simple graph of a multigraph is obtained by
replacing multi-edges with a single edge and removing self-loops. In this work we focus on
the preferential attachment random graph model [3]. The model generates random graphs by
iteratively inserting new vertices and edges. It depends on a parameter m that equals the
number of edges attached to a newly created vertex. We follow the definition of Bollobás
et al. [5]: For a fixed m, the random process is defined by starting with a single vertex and
iteratively adding vertices, thereby constructing a sequence of graphs G1

m, G
2
m, . . . ,Gtm, where

Gtm has t vertices and mt edges. We define dtm(v) to be the degree of vertex v in the graph
Gtm. The random process for m = 1 works as follows. A random graph is started with one
vertex v1 that has exactly one self-loop. This graph is G1

1. We then define the graph process
inductively: Given Gt−1

1 with vertex set {v1, . . . , vt−1}, we create Gt1 by adding a new vertex
vt together with a single edge from vt to vi, where i is chosen at random from {1, . . . , t} with

Pr[i = s] =
{
dt−1

1 (vs)/(2t− 1) 1 ≤ s < t,

1/(2t− 1) s = t.

This means we add an edge to a random vertex with a probability proportional to its degree
at the time. For m > 1, the process can be defined by merging sets of m consecutive vertices
in Gmt1 to single vertices in Gtm [5]. Let v′1, . . . , v′mt be the vertices of Gmt1 . The graph Gtm

FSTTCS 2019

13:4 Motif Counting in Preferential Attachment Graphs

with vertices v1, . . . , vt is constructed by merging v′(i−1)m+1, . . . , v
′
im into a single vertex vi.

The graph Gtm is a multigraph. The number of edges between vertices vi and vj in Gtm
equals the number of edges between the corresponding sets of vertices in Gmt1 . Self-loops
and multi-edges are allowed.

In this work we obtain concentration bounds for the total degree of a set of vertices
S ⊆ {v1, . . . , vt} during the random process. We define the degree of a set S at time n ≥ t
as dnm(S) =

∑
v∈S d

n
m(v).

3 Subgraph Counting

We start by presenting a very simple algorithm that decides for a graph G and a connected
pattern graph H if there exists a subgraph of G isomorphic to H. Then Lemma 2 and 3
generalize this algorithm into a counting algorithm for arbitrary pattern graphs.

Assume there is a subgraph H ′ of G isomorphic to H that we want to find and let l = |H|.
Since H ′ is a connected graph with at most l vertices there exists a vertex v ∈ V (G) such
that H ′ is contained in the l-neighborhood G[NG

l (v)] of v. We build a spanning tree T of
G[NG

l (v)]. Since T is a tree, it is fairly easy to find H ′ if H ′ is a subgraph of T . But what
happens if H ′ contains edges that are not contained in T? We call the edges of G[NG

l (v)]
that are not in T the extra edges of the l-neighborhood of v. Since H has at most

(
l
2
)

edges, there exists a subset F of at most
(
l
2
)
many extra edges such that H is contained in

(V (T), E(T) ∪ F). The graph (V (T), E(T) ∪ F) is a tree with at most
(
l
2
)
extra edges and

therefore has bounded treewidth. Using Courcelle’s theorem [11] it is still easy to find H ′ in
(V (T), E(T) ∪ F). In summary, one can find the graph H ′ by enumerating all v ∈ V (G) and
sets F of at most

(
l
2
)
extra edges in the l-neighborhood of v in G, and then using Courcelle’s

theorem.
We define a value γl(G) of a graph G, which can be obtained by multiplying the size of

each l-neighborhood with the number of sets of extra edges of size at most
(
l
2
)
.

I Definition 1. Let G be a graph and l ∈ N+. We define

γl(G) =
∑

v∈V (G)

|NG
l (v)|

(l2)∑
k=0

(
‖G[NG

l (v)]‖ − |NG
l (v)| − 1

k

)
.

For multigraphs G, γl(G) is defined with respect to the simple underlying graph.

We now show that γl(G) captures the run time of the previously discussed algorithm (up to
a factor independent of G). We start with counting connected patterns and generalize this
afterwards to arbitrary patterns.

I Lemma 2. There exists a function f such that for every graph G and connected graph H
one can compute #Sub(H,G) in time f(|H|)γ|H|(G).

Proof. Let l = |H|. We compute spanning trees Tv of G[NG
l (v)] for v ∈ V (G) in time∑

v∈V (G) O(‖G[NG
l (v)]‖) by breadth-first searches. Let Fv := {F | F ⊆ E(G[NG

l (v)]) \
E(Tv), |F | ≤

(
l
2
)
} be the set of all subsets of at most

(
l
2
)
edges that are in G[NG

l (v)] but not
in Tv. We construct the sets Fv for v ∈ V (G) in time

∑
v∈V (G) O(‖G[NG

l (v)]‖+ |Fv|l2).
Let I be the set of all subgraphs of G isomorphic to H. For v ∈ V (G) and F ∈ Fv let

Iv,F be the set of subgraphs H ′ of (V (Tv), E(Tv) ∪ F) such that H ′ is isomorphic to H,
v ∈ V (H ′) and F ⊆ E(H ′). We claim that #Sub(H,G) = |I| =

∑
v∈V

∑
F∈Fv

|Iv,F (H)|
|H| . Let

H ′ be a subgraph of G. If H ′ is not isomorphic to H then by definition H ′ 6∈ Iv,F for all

J. Dreier and P. Rossmanith 13:5

v ∈ V (G), F ∈ Fv. Assume now that H ′ is isomorphic to H. To prove the claim, need to
make sure that H ′ is counted exactly |H| times. This is the case because H ′ ∈ Iv,F if and
only if v ∈ V (H ′) and F = E(H ′) \ E(Tv).

In order to compute #Sub(H,G), it is now sufficient to iterate over all v ∈ V and F ∈ Fv
and compute |Iv,F |. The graph (V (Tv), E(Tv) ∪ F) is a tree with at most

(
l
2
)
additional

edges and therefore has treewidth at most
(
l
2
)

+ 1. By Courcelle’s theorem [11], there exists
a function f ′ such that one can compute |Iv,F | in time f ′(l)|NG

l (v)|.
The run time of this procedure is dominated by the time taken to compute Tv,Fv for

v ∈ V (G) and |Iv,F | for v ∈ V, F ∈ Fv. Since ‖G[NG
l (v)]‖ ≤ |NG

l (v)|+ |Fv|, this run time is
bounded by∑

v∈V (G)

O
(
‖G[NG

l (v)]‖+ |Fv|l2 + |Fv|f ′(l)|NG
l (v)|

)
= O

(
f ′(l)

∑
v∈V
|Fv||NG

l (v)|
)
. J

I Lemma 3. There exists a function f such that for graphs G and H one can compute
#Sub(H,G) in time f(|H|)γ|H|(G).

Proof. (Sketch) Let H be a representative set of all connected pairwise non-isomorphic
graphs with at most |H| vertices. We compute #Sub(H ′, G) for every connected graph
H ′ ∈ H. Via inclusion-exclusion, we can compute #Sub(H,G). We sketch how the procedure
works if H consists of two components. Via induction, it can be generalized to an arbitrary
number of components. Let C1 and C2 be the components of H. The value c = #Sub(C1, G) ·
#Sub(C2, G) counts all ways in which the two components of H can be embedded in G.
However, c might be larger than #Sub(H,G) since it also counts all embeddings where the
two components intersect in G by sharing one or more vertices. Every intersection of the
two components is connected, thus, we can count them and subtract them. J

We now have a subgraph counting algorithm with efficient run time if the function γ|H|(G)
is small. If G has bounded degree or is a tree, then γ|H|(G) is an fpt function for the
parameter |H|. It remains to show that the function is also small for certain random graphs.

4 Bounding γl in Preferential Attachment Graphs

The remainder of this paper is concerned with the analysis of the run time of the aforemen-
tioned algorithm on preferential attachment graphs. This is done by using our concentration
bounds for degrees (Theorem 19) to prove the following theorem.

I Theorem 4. Let l, n,m ∈ N+ with n ≥ 2. Then E[γl(Gnm)] = mO(l6) log(n)O(l12)n.

This is then sufficient to prove our main result.

I Theorem 5. There exists a function f such that for every graph H and n,m ∈ N one can
compute #Sub(H,Gnm) in expected time f(|H|)mO(|H|6) log(n)O(|H|12)n.

Proof. Direct consequence of Lemma 3 and Theorem 4. J

We prove Theorem 4 via multiple steps. In Lemma 7, we bound for every graph G and
l ∈ N+, γl(G) ≤ 16l6 |B2

4l3(G)|, where Bbl (G) is defined below.

I Definition 6. For a graph G and l, b ∈ N let Bbl (G) be the set of subgraphs in G of size at
most l with no isolated vertices and at most b pendant vertices. If G is a multigraph then
Bbl (G) is defined with respect to the simple underlying graph.

FSTTCS 2019

13:6 Motif Counting in Preferential Attachment Graphs

Then we use the degree bounds from Theorem 19 to step by step (Lemma 8 – 11) bound the
expected value of |Bbl (G)| in preferential attachment graphs.

I Lemma 7. Let G be a graph and l ∈ N+. Then γl(G) ≤ 16l6 |B2
4l3(G)|.

Proof. For every v ∈ V (G) let Tv be a breadth-first spanning tree with root v in G[NG
l (v)]

and Fv := {F | F ⊆ E(G[NG
l (v)]) \E(Tv), |F | ≤

(
l
2
)
} be the set of all subsets of at most

(
l
2
)

edges that are in G[NG
l (v)] but not in Tv. Clearly γl(G) =

∑
v∈V (G) |NG

l (v)||Fv|.
Let v ∈ V (G), w ∈ NG

l (v), F ∈ Fv. Let U ⊆ V (G) be the set containing v, w and all
endpoints of the edges in F . We define a graph Hv,w,F as follows: Start with the empty
graph, add the vertices U , the edges F , and for every u ∈ U the unique path in Tv from v to
u. Since Tv is a breadth-first spanning tree, every path in Tv starting at v contains at most
l + 1 vertices. Since also |U | ≤ 2

(
l
2
)

+ 2, we can bound V (Hv,w,F) ≤ (2
(
l
2
)

+ 2)(l + 1) ≤ 4l3.
Furthermore Hv,w,F contains no vertices with degree zero and every vertex in Hv,w,F except
for v and w is guaranteed to have degree at least two. This implies Hv,w,F ∈ B2

4l3(G).
Let further v′ ∈ V (G), w′ ∈ NG

l (v). If there exists F ′ ∈ F(v′) with Hv,w,F = Hv′,w′,F ′

then v ∈ V (Hv,w,s) and w ∈ V (Hv,w,s). Also there exists at most one F ′ ∈ Fv such
that Hv,w,F = Hv′,w′,F ′ . Thus, there are at most 16l6 choices for v′, w′, F ′ such that
Hv,w,F = Hv′,w′,F ′ . J

It is now sufficient to bound the expected value of |Bbl (G)| in preferential attachment
graphs. At first, we use Theorem 19 to give an upper bound on the degrees of single vertices.

I Lemma 8. There exists h > 0 such that for a ∈ R, n, t, d ∈ N+ with n ≥ at, and
a ≥ h log log(3at) it holds that Pr

[
dn1 (vt) ≥ a

√
n
t

]
≤ e−a/h.

Proof. Let S = {vt, . . . , vt+da/5e}. Then dn1 (vt) ≤ dn1 (S). We assume h to be large enough
that a ≥ 1000. Therefore t+ da/5e ≤ at ≤ n and a/5 ≤ dt+da/5e

1 (S) ≤ 2d1 + a/5e ≤ a/2. We
use these inequalities to bound

Pr
[
dn1 (vt) ≥ a

√
n

t

]
≤
ba/2c∑
d=da/5e

Pr
[
d
t+da/5e
1 (S) = d

]
Pr
[
dn1 (S) ≥ 2

√
n

t
d
∣∣∣ dt+da/5e

1 (S) = d
]
.

Let ε = 1/2. We choose h large enough such that a/5 ≥ log(log(3(t + da/5e)))ε−200 and
ε200a/5 ≥ a/h. Theorem 19 yields for da/5e ≤ d ≤ ba/2c

Pr
[
dn1 (S) ≥ (1 + ε)

√
n

t+ da/5ed
∣∣∣ dt+da/5e

1 (S) = d
]
≤ e−ε

200d ≤ e−a/h. J

While it is easy to use the expected degree of a vertex to show that the probability that
a single edge vxvy exists in Gn1 is close to 1/√xy, it is surprisingly involved to bound the
probability that multiple edges occur. This is because the existence of some edges influences
the degree. Lemma 8 helps us here. We first show the result for m = 1 (Lemma 9) and then
lift it to arbitrary values of m (Lemma 10).

I Lemma 9. Let n ≥ 2 and E ⊆
({v1,...,vn}

2
)
. Then

Pr[E ⊆ E(Gn1)] ≤ log(n)O(|E|)2 ∏
vxvy∈E

1/√xy.

J. Dreier and P. Rossmanith 13:7

Proof. We can assume E that E = {vx1vy1 , . . . , vxlvyl} with xi < yi for 1 ≤ i ≤ l and
yi < yj if i < j. Also, we define for k ≤ l, Ek = {vx1vy1 , . . . , vxkvyk} as the subset of the
first k edges. The chain rule gives us

Pr[E ⊆ E(Gn1)] =
l∏

k=1
Pr[vxkvyk ∈ E(Gn1) | Ek−1 ⊆ E(Gn1)].

We fix some 1 ≤ k ≤ l and set x = xk, y = yk. It is now sufficient to show that

Pr[vxvy ∈ E(Gn1) | Ek−1 ⊆ E(Gn1)] ≤ log(n)O(k)/
√
xy.

If dy−1
1 (vx) = l for l ∈ N then the edge vxvy is inserted with probability l/(2y − 1). Thus

Pr[vxvy ∈ E(Gn1) | Ek−1 ⊆ E(Gn1)] =
∞∑
l=1

l/(2y − 1) · Pr[dy−1
1 (vx) = l | Ek−1 ⊆ E(Gn1)]

= 1/(2y − 1) · E[dy−1
1 (vx) | Ek−1 ⊆ E(Gn1)] ≤ E[dy1(vx) | Ek−1 ⊆ E(Gn1)]/y. (1)

Let now λ ∈ R, whose value we will specify later. Since dy1(vx) ≤ 2y, the law of total
probability states

E[dy1(vx) | Ek−1 ⊆ E(Gn1)] ≤ λ+ 2yPr[dy1(vx) > λ | Ek−1 ⊆ E(Gn1)]
≤ λ + 2yPr[dy1(vx) > λ]/Pr[Ek−1 ⊆ E(Gn1)]. (2)

We now need to find a lower bound for Pr[Ek−1 ⊆ E(Gn1)]. For the first y steps the summed
degree of all vertices is at most 2y. Also each vertex has degree at least one. This means
that every individual edge has probability at least 1/2y, independent of where previous edges
are. This observation together with the chain rule yields

Pr[Ek−1 ⊆ E(Gn1)] =
k−1∏
i=1

Pr[vxivyi ∈ E(Gn1) | Ei−1 ⊆ E(Gn1)] ≤ 1/(2y)k. (3)

Combining (1), (2), and (3) yields

Pr[vxvy ∈ E(Gn1) | E ⊆ E(Gn1)] ≤ λ/y + 2yPr[dy1(vx) > λ](2y)k/y. (4)

Let h be the constant from Lemma 8. We now set λ = h log(y)2k
√
y/x. Then (4) and

Lemma 8 (with a = h log(y)2k and e−a/h = y−2k) yield

Pr[vxvy ∈ E(Gn1) | E ⊆ E(Gn1)] ≤ h log(y)2k
√
y/x/y+ 2y−2k(2y)k = log(n)O(k)/

√
xy. J

I Lemma 10. Let n,m ∈ N+, n ≥ 2 and E ⊆
({v1,...,vn}

2
)
. Then

Pr[E ⊆ E(Gnm)] ≤ log(n)O(|E|)2
m2|E|

∏
vxvy∈E

1/√xy.

Proof. One can simulate Gnm via Gmn1 , by merging every m consecutive vertices into a single
one. For vxvy ∈ E let Exy = {vx′vy′ | m(x − 1) + 1 ≤ x′ ≤ mx,m(y − 1) + 1 ≤ y′ ≤ my}.
This means the edge vxvy is present after the merge operation in Gnm if any edge from Exy is
present in Gmn1 . The union bound and Lemma 9 yield

Pr[E ⊆ E(Gnm)] ≤ log(n)O(|E|)2 ∏
vxvy∈E

∑
vx′vy′∈Exy

1/
√
x′y′

≤ log(n)O(|E|)2
m2|E|

∏
vxvy∈E

1/√xy.
J

FSTTCS 2019

13:8 Motif Counting in Preferential Attachment Graphs

We can now bound E[|Bbl (Gnm)|] by iterating over all possible embeddings of graphs of
size at most l with no isolated vertices and b pendant vertices into Gnm. We use Lemma 10 to
bound the probability that the edges required for this embedding are indeed present in Gnm.

I Lemma 11. Let l, b, n,m ∈ N+ with n ≥ 2. Then E[|Bbl (Gnm)|] = nb/2 log(n)O(l4)mO(l2).

Proof. Let H be a graph with at most l vertices, at most b pendant vertices and no isolated
vertices. Let p be the expected number of subgraphs of Gnm that are isomorphic to H. We
want to give an upper bound for p. Let V (H) = {u1, . . . , uγ} with γ ≤ l and let δ1, . . . , δγ
be the degree sequence of V (H). We compute the following bound for later

n∑
xi=1

1√
xδii

≤ 1 +
∫ n

1

1√
xδi

dx ≤ 1 +
{

log(n) if δi ≥ 2,
2
√
n if δi = 1.

(5)

For integers 1 ≤ x1, . . . , xγ ≤ n, we consider an embedding of H into Gnm that maps
ui to vxi (for 1 ≤ i ≤ γ). According to Lemma 10, the probability that this embedding of
H is a subgraph of Gnm is at most log(n)O(l4)mO(l2)∏γ

i=1
1√
xi
δi
. We sum over all possible

embeddings and use (5) to bound p by

n∑
x1=1

· · ·
n∑

xγ=1
log(n)O(l4)mO(l2)

γ∏
i=1

1√
xδii

= log(n)O(l4)mO(l2)
n∑

x1=1

1√
xδ1

1

· · ·
n∑

xγ=1

1√
x
δγ
γ

(5)= log(n)O(l4)mO(l2)(1 + log(n))γ(1 + 2
√
n)b = nb/2 log(n)O(l4)mO(l2).

For an arbitrary but fixed graph H with at most l vertices, no isolated vertices and at
most b pendant vertices we have bound the expected number of occurrences p. There
are no more than 2l2 graphs with at most l fixed vertices. Therefore, E[|Bbl (Gnm)|] ≤
2l2nb/2 log(n)O(l4)mO(l2). J

At last, Theorem 4 is a direct consequence Lemma 7 and Lemma 11.

5 Degree Bounds

In this section we show that under certain conditions the degree of vertices is closely centered
around their expected value. This is formalized in Theorem 19, which is proven at the end
of this section. We separately show upper and lower bounds and then join these bounds
together. These bounds are proven by first giving bounds that hold for a short interval of
time (Section 5.1) and then extending these bounds for longer intervals of time (Section 5.2).

Let n ≥ t and S ⊆ {v1, . . . , vt}. Remember that dnm(S) is the degree of a set S in Gnm.
Due to the technical nature of this section, we sometimes consider the set S ⊆ {v1, . . . , vt}
to be fixed and write D(n) as shorthand for dn1 (S) to avoid having large formulas as a
superscript. We also define D(n) := D(bnc) for n ∈ R. For n > t we can explicitly state the
probability distribution of D(n) under the condition D(n− 1) as

Pr[D(n) = x | D(n− 1)] =

D(n− 1)/(2n− 1) x = D(n− 1) + 1
1−D(n− 1)/(2n− 1) x = D(n− 1)
0 otherwise.

J. Dreier and P. Rossmanith 13:9

5.1 Short-Term Degree Bounds
Here we show that for small δ from time-step t to (1 + δ)t it is very likely that we increase
the degree of the set S by a factor of 1 + δ/2 +O(δ2).

I Lemma 12. Let 0 < δ < 1 and t ≥ 2
δ2 . Then

Pr
[
D
(
(1 + δ)t

)
≤
(
1 + δ

2 − 2δ2)D(t)
∣∣ D(t)

]
≤ e− 1

16 δ
3D(t).

Proof. For every t′ ∈ R D(t′) = D(bt′c). For every t′ ∈ N either D(t′) = D(t′ − 1) or
D(t′) = D(t′ − 1) + 1. Let N be the number of integers between t and (1 + δ)t. Let ∆i with
1 ≤ i ≤ N be the Bernoulli variable indicating that D(btc + i) = D(btc + i − 1) + 1 and
∆ = ∆1 + · · ·+ ∆N . Then D(t) + ∆ = D((1 + δ)t). Furthermore

Pr[∆i = 1 | ∆1, . . . ,∆i−1, D(t)] = D(btc+ i− 1)
2(btc+ i)− 1 ≥

D(t)
2(1 + δ)t .

Let X = X1 + · · · + XN be the sum of identically distributed Bernoulli variables with
Pr[Xi = 1] = D(t)

2(1+δ)t . We consider two experiments: The first game is N tosses of a fair coin.
The second one is N tosses of a biased coin, where the probability that the ith coin comes up
head depends on the outcome of the previous coins but always is at least 1/2. Obviously, the
probability of at least s heads in the second experiment is at least as high as the probability
of at least s heads in the first experiment. The same argument implies

Pr[∆ ≤ s | D(t)] ≤ Pr[X ≤ s | D(t)]. (6)

With t ≥ 2
δ2 we get N ≥ δt− 1 ≥ (δ − 1

2δ
2)t and

E[X | D(t)] = N Pr[Xi = 1 | D(t)] ≥ (δ − δ2/2)D(t)
2(1 + δ) . (7)

In contrast to ∆, we can directly apply Chernoff bounds to X:

Pr
[
X ≤ (1− δ)E

[
X | D(t)

] ∣∣∣ D(t)
]
≤ e− 1

2 δ
2E[X|D(t)]. (8)

Combining the above inequality with (7), (6) and (8) yields

Pr
[
∆ ≤ (1− δ)(δ − δ2/2)D(t)

2(1 + δ)

∣∣∣ D(t)
] (6)(7)
≤ Pr

[
X ≤ (1− δ)E[X | D(t)]

∣∣∣ D(t)
]

(8)
≤ e−

1
2 δ

2E[X|D(t)]
(7)
≤ e−

δ3−δ4/2
4(1+δ) D(t) ≤ e−

1
16 δ

3D(t). (9)

For 0 ≤ δ ≤ 1, (1−δ)(δ−δ2/2)
2(1+δ) ≥ δ

2 − 2δ2. Thus, by (9) and D((1 + δ)t) = ∆ +D(t)

Pr
[
D((1 + δ)t) ≤ (1 + δ/2− 2δ2)D(t)

∣∣ D(t)
]

= Pr
[
∆ ≤ (δ/2− 2δ2)D(t)

∣∣ D(t)
]

≤ e−
1

16 δ
3D(t).

J

Unfortunately, an additional factor of log(2et) is introduced in the following upper bound.
The proof is very similar to the previous one and is omitted for lack of space.

I Lemma 13. Let 0 < δ ≤ 1
e2 and t ≥ 2

δ2 . Then

Pr
[
D((1 + δ)t) ≥ (1 + δ/2 + 2δ2)D(t)

∣∣∣ D(t)
]
≤ log(2et)e− 1

8 δ
3D(t).

FSTTCS 2019

13:10 Motif Counting in Preferential Attachment Graphs

5.2 Long-Term Degree Bounds
In the previous subsection we established bounds for a small interval from step t to step
(1 + δ)t with an error of order δ2. In this subsection we combine these bounds into long-term
bounds. We get these bounds by defining positions t0 = t and tk+1 = (1 + δk)tk with k ∈ N
and using the union bound to guarantee that for each interval from time tk to tk+1 the
short-term bounds hold. The choice of δk is of high importance for the success of this strategy.
It turns out that we need the product

∏∞
k=1(1 + δk) to diverge, but the error

∏∞
k=1(1 + δ2

k)
to converge. We settle for δk = ε/k2/3, which satisfies both conditions.

Lemma 14 and Lemma 15 bridge the gap between the bounds for small intervals and
longer periods by stating that if the degree differs by a factor of (1± ε) from its expected
value then there has been one interval where the allowed error O(δ2) has been exceeded.

I Lemma 14. Let 0 < ε ≤ 1/8, t > 0, and f : R → R be an increasing function. For every
k ∈ N let δk = ε

k2/3 , hk =
∏k−1
i=1 (1 + δi), and ck =

∏k−1
i=1 (1 + 1

2δi − 2δ2
i).

If there is an n ∈ N, such that t < n and f(n) < (1− ε)
√

n
t f(t), then there is a k ∈ N

such that f((1 + δk)hkt) < (1 + 1
2δk − 2δ2

k)f(hkt) and f(hkt) ≥ ckf(t).

Proof. Consider any n ∈ N, n ≥ t. Let k(n) ∈ N be the maximal value such that hk(n)t ≤ n.
Then n

1+δk(n)
≤ hk(n)t, because of the maximality of k(n). Notice that

(1− ε)
√
n

t
≤ e− 1

2 εe−
1
2 ε

√
n

t
= e−

1
2 ε

√
n

teε
≤ e− 1

2 ε
√

n

t(1 + δk(n))
≤ e− 1

2 ε
√
hk(n)

and for all k ∈ N

ck ≥
k−1∏
i=1

e
1
2 δi−3δ2

i ≥
(k−1∏
i=1

eδi
) 1

2
∞∏
i=1

e
− 3ε2

i4/3 ≥
(k−1∏
i=1

(1 + δi)
) 1

2
e−4ε2

≥ e− 1
2 ε
√
hk.

Combining the upper two inequalities gives us (1 − ε)
√
n/t ≤ ck. We assumed f(n) <

(1− ε)
√

n
t f(t). Monotonicity of f yields f(hk(n)t) ≤ f(n) < (1− ε)

√
n
t f(t) ≤ ck(n)f(t).

Let J = { j ≥ 0 | f(hj+1t) < cj+1f(t) }. The set J is not empty because k(n) − 1 ∈ J
by the equation above. Furthermore, 0 /∈ J because h1 = c1 = 1 and therefore f(h1t) =
f(t) = c1f(t). Let now k be the minimal value in J . Then k > 0, f(hkt) ≥ ckf(t), and
f(hk+1t) < ck+1f(t). At last, we have

f((1+ δk)hkt) = f(hk+1t) < ck+1f(t) = (1+ 1
2δk−2δ2

k)ckf(t) ≤ (1+ 1
2δk−2δ2

k)f(hkt). J

The proof of Lemma 15 is similar to the one of Lemma 14 and is therefore omitted.

I Lemma 15. Let 0 < ε ≤ 1/40, t > 0, and f : R → R be an increasing function. For every
k ∈ N let δk = ε

k2/3 , hk =
∏k−1
i=1 (1 + δi), and ck =

∏k−1
i=1 (1 + 1

2δi + 2δ2
i).

If there is an n ∈ N, such that t < n and f(n) > (1 + ε)
√

n
t f(t), then there is a k ∈ N

such that f((1 + δk)hkt) > (1 + 1
2δk + 2δ2

k)f(hkt) and f(hkt) ≤ ckf(t).

I Lemma 16. Let 0 < ε ≤ 1/40, t > 1
ε6 . For every k ∈ N let δk = ε

k2/3 , hk =
∏k−1
i=1 (1 + δi),

c+
k =

∏k−1
i=1 (1 + 1

2δi + 2δ2
i) and c−k =

∏k−1
i=1 (1 + 1

2δi − 2δ2
i). Then

Pr
[
D((1 + δk)hkt) < (1 + 1

2δk − 2δ2
k)D(hkt), D(hkt) ≥ c−k D(t)

∣∣ D(t)
]
≤ e− 1

16 δ
3
kc
−
k
D(t),

Pr
[
D((1 + δk)hkt) > (1 + 1

2δk + 2δ2
k)D(hkt), D(hkt) ≤ c+

kD(t)
∣∣ D(t)

]
≤ log(2et)e− 1

8 δ
3
kc

+
k
D(t).

J. Dreier and P. Rossmanith 13:11

Proof. At first we focus on the first bound. By the law of total probability

Pr
[
D((1 + δk)hkt) < (1 + 1

2δk − 2δ2
k)D(hkt), D(hkt) ≥ c−k D(t)

∣∣ D(t)
]

≤ Pr
[
D((1 + δk)hkt) < (1 + 1

2δk − 2δ2
k)D(hkt)

∣∣ D(hkt) ≥ c−k D(t)
]
.

The second line of this equation states the probability that the degree of a vertex is in the
future below a certain threshold under the condition that it is currently above a certain
threshold. We can bound this probability if we assume that it currently is not above, but
exactly at the threshold:

Pr
[
D((1 + δk)hkt) < (1 + 1

2δk − 2δ2
k)D(hkt)

∣∣ D(hkt) ≥ c−k D(t)
]

≤ Pr
[
D((1 + δk)hkt) < (1 + 1

2δk − 2δ2
k)D(hkt)

∣∣ D(hkt) = c−k D(t)
]
.

Similarly, the probability that the degree of a vertex is in the future above a certain threshold
under the condition that it is currently below a certain threshold can be bounded by assuming
that it is exactly at the threshold. Thus, it suffices to prove the following two bounds

Pr
[
D((1 + δk)hkt) < (1 + 1

2δk − 2δ2
k)D(hkt)

∣∣ D(hkt) = c−k D(t)
]
≤ e− 1

16 δ
3
kc
−
k
D(t),

Pr
[
D((1 + δk)hkt) > (1 + 1

2δk + 2δ2
k)D(hkt)

∣∣ D(hkt) = c+
kD(t)

]
≤ log(2et)e− 1

8 δ
3
kc

+
k
D(t).

Lemma 12 and 13 state that if 0 ≤ δk = e/k3/2 ≤ 1/e2 and hkt ≥ 2/δ2
k for every k then these

bounds are true. We observe that for 0 ≤ ε ≤ 1/8 the first precondition is always satisfied. We
will finish the proof by showing that hkt ≥ 2/δ2

k for every k. Observe that for 0 ≤ k ≤ 1 we
have hkt ≥ 2/ε2 ≥ 2/δ2

k. We can therefore assume k ≥ 2. First, we need a lower bound for hk.

hk =
k−1∏
i=1

(1 + ε

i2/3) ≥
k−1∏
i=1

e
ε

i2/3 ≥ e3ε(k−1)1/3
≥ e2εk1/3

One can show that ex/x4 ≥ e4/256 for x > 0. We therefore get for x = 2εk1/3

hk ≥ e2εk1/3
= e2εk1/3

(2εk1/3)4
16ε6

δ2
k

≥ ex

x4
16ε6

δ2
k

≥ e4

256
16ε6

δ2
k

≥ 2ε6

δ2
k

.

Since t ≥ 1
ε6 it follows that hkt ≥ 2

δ2
k

. J

I Lemma 17. For 0 < ε ≤ 1/40 and 1
ε6 < t ∈ N

Pr
[
(1− ε)

√
n

t
D(t) < D(n) < (1 + ε)

√
n

t
D(t) for all n ≥ t

∣∣∣ D(t)
]

≥ 1 − log(15t)ε−6 exp
(
−ε1510−24D(t)

)
.

Proof. Observe that

Pr
[
(1− ε)

√
n

t
D(t) < D(n) < (1 + ε)

√
n

t
D(t) for all n ≥ t

∣∣∣ D(t)
]
≥ 1− (p+ + p−)

FSTTCS 2019

13:12 Motif Counting in Preferential Attachment Graphs

with

p− := Pr
[
D(n) < (1− ε)

√
n

t
D(t) for some n ≥ t

∣∣∣ D(t)
]

p+ := Pr
[
D(n) > (1 + ε)

√
n

t
D(t) for some n ≥ t

∣∣∣ D(t)
]
.

We proceed by finding upper bounds for p+ and p−. For k ∈ N let δk = ε
k2/3 , hk =∏k−1

i=1 (1 − δi), c−k =
∏k−1
i=1 (1 − 1

2δi − 2δ2
i) and c+

k =
∏k−1
i=1 (1 − 1

2δi + 2δ2
i). Every function

f(t) : R → R that is a realization of the random variables D(t) is monotonically increasing.
It follows using Lemma 14, Lemma 15, the union bound over all possible choices of k, and
Lemma 16 that

p− ≤
∞∑
k=0

Pr
[
D((1 + δk)hkt) < (1 + 1

2δk − 2δ2
k)D(hkt), D(hkt) ≥ c−k D(t)

∣∣∣ D(t)
]

≤
∞∑
k=0

e−
1

16 δ
3
kc
−
k
D(t),

p+ ≤
∞∑
k=0

Pr
[
D((1 + δk)hkt) > (1 + 1

2δk + 2δ2
k)D(hkt), D(hkt) ≤ c+

kD(t)
∣∣∣ D(t)

]
≤
∞∑
k=0

log(2et)e− 1
8 δ

3
kc

+
k
D(t).

It remains to show that p+ + p− ≤ log(15t)ε−6 exp
(
−ε1510−24D(t)

)
. This last last step

requires a longer calculation which we omit because of space limitations. J

The next lemma is a slight variant of Lemma 17. The proof is omitted for lack of space.

I Lemma 18. For t ∈ R, t ≥ 1, 0 < ε ≤ 1/2, d ∈ N with Pr[D(t) = d] 6= 0 and
d ≥ log(log(3t))ε−200

Pr
[
(1− ε)

√
n

t
d < D(n) < (1 + ε)

√
n

t
d for all n ≥ t

∣∣∣ D(t) = d
]
≥ 1− e−ε

200d.

At last, we generalize this result to different values of m.

I Theorem 19. For t,m, d ∈ N+, 0 < ε ≤ 1/2, S ⊆ {v1, . . . , vt} with Pr[dtm(S) = d] 6= 0
and d ≥ log(log(3tm))ε−200

Pr
[
(1− ε)

√
n

t
d < dnm(S) < (1 + ε)

√
n

t
d for all n ≥ t

∣∣∣ dtm(S) = d
]
≥ 1− e−ε

200d.

Proof. As stated in the introduction, we can simulate Gnm via Gmn1 , by merging every m
consecutive vertices into a single one. Let Gnm be a graph with vertices V = {v1, . . . , vn}.
We can assume that this graph has been constructed from a graph Gmn1 with vertex set
V ′ = {v′1, . . . , v′mn} by merging v′(i−1)m+1, . . . , v

′
im into vi for 1 ≤ i ≤ n. Let S′ ⊆ V ′ be the

set of vertices in Gmn1 that are merged into S. Since the graph allows multi-edges, dnm(S) and
dmn1 (S′) have the same probability distribution. Lemma 17 states with dmn1 (S′) = D(mn)

Pr
[
(1−ε)

√
n

t
d < dmn1 (S′) < (1+ε)

√
n

t
d for all nm ≥ tm

∣∣∣ dtm1 (S′) = d
]
≥ 1−e−ε

200d. J

J. Dreier and P. Rossmanith 13:13

References
1 Noga Alon, Phuong Dao, Iman Hajirasouliha, Fereydoun Hormozdiari, and S Cenk Sahinalp.

Biomolecular network motif counting and discovery by color coding. Bioinformatics, 24(13):i241–
i249, 2008.

2 Agnes Backhausz et al. Limit distribution of degrees in random family trees. Electronic
Communications in Probability, 16:29–37, 2011.

3 Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. Science,
286(5439):509–512, 1999.

4 Béla Bollobás and Oliver Riordan. The diameter of a scale-free random graph. Combinatorica,
24(1):5–34, 2004.

5 Béla Bollobás, Oliver Riordan, Joel Spencer, and Gábor Tusnády. The Degree Sequence of
a Scale-free Random Graph Process. Random Structures & Algorithms, 18(3):279–290, May
2001.

6 Anna D Broido and Aaron Clauset. Scale-free networks are rare. Nature communications,
10(1):1017, 2019.

7 Jianer Chen, Benny Chor, Mike Fellows, Xiuzhen Huang, David Juedes, Iyad A Kanj, and
Ge Xia. Tight lower bounds for certain parameterized NP-hard problems. Information and
Computation, 201(2):216–231, 2005.

8 Jin Chen, Wynne Hsu, Mong Li Lee, and See-Kiong Ng. NeMoFinder: Dissecting genome-
wide protein-protein interactions with meso-scale network motifs. In Proc. of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 106–115.
ACM, 2006.

9 Aaron Clauset, Cosma Rohilla Shalizi, and Mark E. J. Newman. Power-Law Distributions in
Empirical Data. SIAM Review, 51(4):661–703, 2009.

10 Colin Cooper and Alan Frieze. The cover time of the preferential attachment graph. Journal
of Combinatorial Theory, Series B, 97(2):269–290, 2007.

11 Bruno Courcelle. The Monadic Second-Order Logic of Graphs I. Recognizable Sets of Finite
Graphs. Information and Computation, 85(1):12–75, 1990.

12 Radu Curticapean, Holger Dell, and Dániel Marx. Homomorphisms Are a Good Basis
for Counting Small Subgraphs. In Proc. of the 49th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2017, pages 210–223, New York, NY, USA, 2017. ACM.
doi:10.1145/3055399.3055502.

13 R. Diestel. Graph Theory. Springer, Heidelberg, 2010.
14 Jörg Flum and Martin Grohe. The parameterized complexity of counting problems. SIAM

Journal on Computing, 33(4):892–922, 2004.
15 Alan Frieze and Colin McDiarmid. Algorithmic theory of random graphs. Random Structures

& Algorithms, 10(1-2):5–42, 1997.
16 Joshua A Grochow and Manolis Kellis. Network motif discovery using subgraph enumeration

and symmetry-breaking. In Annual International Conference on Research in Computational
Molecular Biology, pages 92–106. Springer, 2007.

17 Svante Janson. Limit theorems for triangular urn schemes. Probability Theory and Related
Fields, 134(3):417–452, 2006.

18 Svante Janson, Tomasz Łuczak, and Ilkka Norros. Large cliques in a power-law random graph.
Journal of Applied Probability, 47(4):1124–1135, 2010.

19 Hawoong Jeong, Zoltan Néda, and Albert-László Barabási. Measuring preferential attachment
in evolving networks. EPL (Europhysics Letters), 61(4):567, 2003.

20 Nadav Kashtan, Shalev Itzkovitz, Ron Milo, and Uri Alon. Efficient sampling algorithm for
estimating subgraph concentrations and detecting network motifs. Bioinformatics, 20(11):1746–
1758, 2004.

21 Nitish Korula and Silvio Lattanzi. An efficient reconciliation algorithm for social networks.
Proc. of the VLDB Endowment, 7(5):377–388, 2014.

FSTTCS 2019

https://doi.org/10.1145/3055399.3055502

13:14 Motif Counting in Preferential Attachment Graphs

22 Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii, and Uri Alon.
Network motifs: simple building blocks of complex networks. Science, 298(5594):824–827,
2002.

23 Tamás F Móri. The maximum degree of the Barabási–Albert random tree. Combinatorics,
Probability and Computing, 14(3):339–348, 2005.

24 Mark EJ Newman. Clustering and preferential attachment in growing networks. Physical
review E, 64(2):025102, 2001.

25 Saeed Omidi, Falk Schreiber, and Ali Masoudi-Nejad. MODA: an efficient algorithm for
network motif discovery in biological networks. Genes & genetic systems, 84(5):385–395, 2009.

26 Erol Peköz, Adrian Röllin, and Nathan Ross. Joint degree distributions of preferential
attachment random graphs. Advances in Applied Probability, 49(2):368–387, 2017.

27 Erol A Peköz, Adrian Röllin, Nathan Ross, et al. Degree asymptotics with rates for preferential
attachment random graphs. The Annals of Applied Probability, 23(3):1188–1218, 2013.

28 Falk Schreiber and Henning Schwöbbermeyer. Frequency concepts and pattern detection for
the analysis of motifs in networks. In Transactions on computational systems biology III, pages
89–104. Springer, 2005.

29 Leslie G Valiant. The complexity of computing the permanent. Theoretical computer science,
8(2):189–201, 1979.

30 Remco van der Hofstad. Random graphs and complex networks, volume 1. Cambridge University
Press, 2016.

31 Sebastian Wernicke. Efficient detection of network motifs. IEEE/ACM Transactions on
Computational Biology and Bioinformatics (TCBB), 3(4):347–359, 2006.

32 Panpan Zhang, Chen Chen, and Hosam Mahmoud. Explicit characterization of moments of
balanced triangular Pólya urns by an elementary approach. Statistics & Probability Letters,
96:149–153, 2015.

Parameterized k-Clustering: Tractability Island
Fedor V. Fomin
Department of Informatics, University of Bergen, Norway
Fedor.Fomin@uib.no

Petr A. Golovach
Department of Informatics, University of Bergen, Norway
Petr.Golovach@uib.no

Kirill Simonov
Department of Informatics, University of Bergen, Norway
Kirill.Simonov@uib.no

Abstract
In k-Clustering we are given a multiset of n vectors X ⊂ Zd and a nonnegative number D, and
we need to decide whether X can be partitioned into k clusters C1, . . . , Ck such that the cost

k∑
i=1

min
ci∈Rd

∑
x∈Ci

‖x− ci‖p
p ≤ D,

where ‖ · ‖p is the Minkowski (Lp) norm of order p. For p = 1, k-Clustering is the well-known
k-Median. For p = 2, the case of the Euclidean distance, k-Clustering is k-Means. We study
k-Clustering from the perspective of parameterized complexity. The problem is known to be
NP-hard for k = 2 and it is also NP-hard for d = 2. It is a long-standing open question, whether the
problem is fixed-parameter tractable (FPT) for the combined parameter d+k. In this paper, we focus
on the parameterization by D. We complement the known negative results by showing that for p = 0
and p =∞, k-Clustering is W[1]-hard when parameterized by D. Interestingly, the complexity
landscape of the problem appears to be more intricate than expected. We discover a tractability
island of k-Clustering: for every p ∈ (0, 1], k-Clustering is solvable in time 2O(D log D)(nd)O(1).

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases clustering, parameterized complexity, k-means, k-median

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.14

Related Version The full version of this paper is available at https://arxiv.org/abs/1902.08559.

Funding This work is supported by the Research Council of Norway via the project “MULTIVAL”.

1 Introduction

Recall that for p > 0, the Minkowski or Lp-norm of a vector x = (x[1], . . . , x[d]) ∈ Rd is
defined as

‖x‖p =
(d∑
i=1
|x[i]|p

)1/p
.

Respectively, we define the (Lp-norm) distance between two vectors x = (x[1], . . . , x[d]) and
y = (y[1], . . . , y[d]) as

distp(x, y) = ‖x− y‖pp =
d∑
i=1
|x[i]− y[i]|p.

© Fedor V. Fomin, Petr A. Golovach, and Kirill Simonov;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 14; pp. 14:1–14:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Fedor.Fomin@uib.no
mailto:Petr.Golovach@uib.no
mailto:Kirill.Simonov@uib.no
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.14
https://arxiv.org/abs/1902.08559
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Parameterized k-Clustering: Tractability Island

We also consider distp for p = 0 and p = ∞. For p = 0, distp is L0 (or the Hamming)
distance, that is the number of different coordinates in x and y:

dist0(x, y) = |{i ∈ {1, . . . , d} | x[i] 6= y[i]}|.

For p =∞, distp is L∞-distance, which is defined as

dist∞(x, y) = max
i∈{1,...,d}

|x[i]− y[i]|.

The k-Clustering problem is defined as follows. For a given (multi) dataset of n vectors
(points) X ⊂ Zd, the task is to find a partition of X into k clusters C1, . . . , Ck minimizing
the cost

k∑
i=1

min
ci∈Rd

∑
x∈Ci

distp(x, ci),

intuitively, ci is a centroid of the cluster Ci.
In particular, for p = 1, distp is the L1-distance and the corresponding clustering problem

is known as k-Median. (Often in the literature, k-Median is also used for clustering
minimizing the sums of the Euclidean distances.) For p = 2, distp is the L2 (Euclidean)
distance, and then the clustering problem becomes k-Means.

Let us note that optimal clusterings for the same set of vectors can be drastically different
for various values of p, as shown in Figure 1. As we show in the paper, the complexity of
k-Clustering also strongly depends on the choice of p.

Figure 1 Optimal clusterings of the same set of vectors with different distances: dist1 in the left
subfigure, dist1/4 in the right subfigure. Shapes denote clusters, crosses denote cluster centroids.

k-Clustering, and especially k-Median and k-Means, are among the most prevalent
problems occurring in virtually every subarea of data science. We refer to the survey of Jain
[22] for an extensive overview. While in practice the most common approaches to clustering
are based on different variations of Lloyd’s heuristic [25], the problem is interesting from
the theoretical perspective as well. In particular, there is a vast amount of literature on
approximation algorithms for k-Clustering whose behavior can be analyzed rigorously, see
e.g. [1, 2, 6, 8, 9, 16, 17, 20, 24, 13, 23, 10, 30].

When it comes to exact solutions, we observe the following phenomena. While heuristic
algorithms for k-Clustering work surprisingly well in practice, from the perspective
of the parameterized complexity, k-Clustering is intractable for all previously studied
parameterizations, see Table 1. The k-Clustering problem is naturally “multivariate”: in
addition to the input size n, there are also parameters like space dimension d, number of
clusters k or the cost of clustering D. The problem is known to be NP-complete for k = 2
[3, 15] and for d = 2 [28, 26]. By the classical work of Inaba et al. [21], in the case when
both d and k are constants, k-Clustering is solvable in polynomial time O(ndk+1). It is a

F. V. Fomin, P. A. Golovach, and K. Simonov 14:3

long-standing open problem whether k-Clustering is FPT parameterized by d+ k. Under
ETH, the lower bound of nΩ(k), even when d = 4, was shown by Cohen-Addad et al. in [11]
for the settings where the set of potential candidate centers is explicitly given as input.
However the lower bound of Cohen-Addad et al. does not generalize to the settings of this
paper when any point in Euclidean space can serve as a center. For the special case, when
the input consists of binary vectors and the distance is Hamming, the problem is solvable in
time 2O(D logD)(nd)O(1) [18].

Our results and approaches. In this paper we investigate the dependence of the complexity
of k-Clustering from the cost of clustering D. It appears, that adding this new “dimension”
makes the complexity landscape of k-Clustering intricate and interesting. More precisely,
we consider the following problem.

Input: A multiset X of n vectors in Zd, a positive integer k, and a nonnegative
number D.

Task: Decide whether there is a partition of X into k clusters {Ci}k
i=1 and k

vectors {ci}k
i=1, called centroids, in Rd such that

k∑
i=1

∑
x∈Ci

dist(x, ci) ≤ D.

k-Clustering with distance dist

Let us remark that vector set X (like the column set of a matrix) can contain many
equal vectors. Also we consider the situation when vectors from X are integer vectors, while
centroid vectors are not necessarily from X. Moreover, coordinates of centroids can be reals.

Our main algorithmic result is the following theorem.

I Theorem 1. k-Clustering with distance distp is solvable in time 2O(D logD)(nd)O(1) for
every p ∈ (0, 1].

Thus k-Clustering when parameterized by D is fixed-parameter tractable (FPT) for
Minkowski distance distp of order 0 < p ≤ 1. In the first step of our algorithm we use color
coding to reduce solution of the problem to the Cluster Selection problem, which we
find interesting on its own. In Cluster Selection we have t groups of weighted vectors
and the task is to select exactly one vector from each group such that the weighted cost of
the composite cluster is at most D. More formally,

Input: A set of m vectors X given together with a partition X = X1 ∪ · · · ∪Xt

into t disjoint sets, a weight function w : X → Z+, and a nonnegative
number D.

Task: Decide whether it is possible to select exactly one vector xi from each set
Xi such that the total cost of the composite cluster formed by x1, . . . , xt

is at most D:

min
c∈Rd

t∑
i=1

w(xi) · dist(xi, c) ≤ D.

Cluster Selection with distance dist

FSTTCS 2019

14:4 Parameterized k-Clustering: Tractability Island

The Cluster Selection problem is closely related to variants of the well-known
Consensus Pattern problem. Namely, for the Hamming distance, the definition of
Cluster Selection nearly coincides with the Colored Consensus Strings with
Outliers problem studied in [7], only in the latter the alphabet is assumed to be of
constant size.

Informally (see Theorem 10 for the precise statement), our reduction shows that if the
distance norm satisfies some specific properties (which distp satisfies for all p) and if Cluster
Selection is FPT parameterized by D, then so is k-Clustering. Therefore, in order to
prove Theorem 1, all we need is to show that Cluster Selection is FPT parameterized by
D when p ∈ (0, 1]. This is the most difficult part of the proof. Here we invoke the theorem of
Marx [27] on the number of subhypergraphs in hypergraphs of bounded fractional edge cover.

Superficially, the general idea of the proof of Theorem 1 is similar to the idea behind the
algorithm for Binary r-Means for L0 from [18]. In both cases, the classical color coding
technique of Alon et al. [4] is used as a preprocessing step. However, the further steps in [18]
strongly exploit the fact that the data is binary. As we will see in Theorem 2, the existence
of an FPT algorithm for k-Clustering in L0 is highly unlikely. Thus the reductions from
[18] cannot be applied in our case, and we need a new approach.

More precisely, for clustering in L0 we prove the following theorem.

I Theorem 2. With distance dist0, k-Clustering parameterized by d+D and Cluster
Selection parameterized by d+ t+D are W[1]-hard.

In particular, this means that up to a widely-believed assumption in complexity that
FPT 6= W[1], Theorem 2 rules out algorithms solving k-Clustering in time f(d,D) · nO(1)

and algorithms solving Cluster Selection in L0 in time g(t, d,D) ·nO(1) for any functions
f(d,D) and g(t, d,D). A similar hardness result holds for L∞.

I Theorem 3. With distance dist∞, k-Clustering parameterized by D and Cluster
Selection parameterized by t+D are W[1]-hard.

This naturally brings us to the question: What happens with k-Clustering for p ∈
(1,∞), especially for the Euclidean distance, that is p = 2. Unfortunately, we are not able to
answer this question when the parameter is D only. However, we can prove that

I Theorem 4. k-Clustering and Cluster Selection with distance dist2 are FPT when
parameterized by d+D.

Thus in particular, Theorem 4 implies that k-Clustering with distance dist2 is FPT
parameterized by d+D. On the other hand, we prove that

I Theorem 5. Cluster Selection with distance distp is W[1]-hard for every p ∈ (1,∞)
when parameterized by t+D .

In particular, Theorem 5 yields that the approach we used to establish the tractability
(with parameter D) of k-Clustering for p = 1 will not work for p > 1.

We summarize our and previously known algorithmic and hardness results for the problems
k-Clustering and Cluster Selection with different distances in Table 1.

In the extended abstract, we provide a full proof of Theorems 1 and 15. Proofs of
Theorems 2, 3, 4, 5, 19 and 28 can be found in the full version of this paper [19].

The remaining part of this paper is organized as follows. Section 2 contains preliminaries.
In Section 3 we prove Theorem 10 which provides us with FPT Turing reduction from
k-Clustering to Cluster Selection. Theorem 10 appears to be a handy tool to establish

F. V. Fomin, P. A. Golovach, and K. Simonov 14:5

Table 1 Complexity of k-Clustering and Cluster Selection.

distp k-Clustering Cluster Selection

p = 0 W[1]-hard param. d + D [Thm 2]
NP-c for k = 2 [15] W[1]-hard param. d + t + D [Thm 2]

0 < p ≤ 1
2O(D log D)(nd)O(1) [Thm 1]

NP-c for k = 2 when p = 1 [15]
NP-c for d = 2 when p = 1 [28]

2O(D log D)(nd)O(1) [Thm 15]
W[1]-hard param. t + d

for p = 1 [Thm 19]

1 < p <∞
FPT param. d + D for p = 2 [Thm 4]

NP-c for k = 2 when p = 2 [3]
NP-c for d = 2 when p = 2 [26]

FPT param. d + D for p = 2 [Thm 4]
W[1]-hard param. t + D [Thm 5]

p =∞ W[1]-hard param. D [Thm 3]
NP-c for k = 2 [Thm 28] W[1]-hard param. t + D [Thm 3]

tractability of k-Clustering. In Section 4 we prove Theorem 1, the main algorithmic result
of this work, stating that when p ∈ (0, 1], k-Clustering and Cluster Selection admit
FPT algorithms with parameter D. We conclude with open problems in Section 5.

2 Preliminaries and notation

Cluster notation. By a cluster we always mean a multiset of vectors in Zd. For distance
dist, the cost of a given cluster C is the total distance from all vectors in the cluster to the
optimally selected cluster centroid, minc∈Rd

∑
x∈C dist(x, c). An optimal cluster centroid

for a given cluster C is any c ∈ Rd minimizing
∑
x∈C dist(x, c). For most of the considered

distances, we argue that an optimal cluster centroid could always be chosen among selected
family of vectors (e.g. integral). Whenever we show this, we only consider optimal cluster
centroids of the stated form afterwards.

Complexity. A parameterized problem is a language Q ⊆ Σ∗×N where Σ∗ is the set of strings
over a finite alphabet Σ. Respectively, an input of Q is a pair (I, k) where I ⊆ Σ∗ and k ∈ N; k
is the parameter of the problem. A parameterized problemQ is fixed-parameter tractable (FPT)
if it can be decided whether (I, k) ∈ Q in time f(k) · |I|O(1) for some function f that depends
of the parameter k only. Respectively, the parameterized complexity class FPT is composed
by fixed-parameter tractable problems. The W-hierarchy is a collection of computational
complexity classes: we omit the technical definitions here. The following relation is known
amongst the classes in the W-hierarchy: FPT = W[0] ⊆ W[1] ⊆ W[2] ⊆ . . . ⊆ W[P]. It is
widely believed that FPT 6= W[1], and hence if a problem is hard for the class W[i] (for any
i ≥ 1) then it is considered to be fixed-parameter intractable. We refer to books [12, 14] for
the detailed introduction to parameterized complexity.

Real computations. As is usual in computational geometry, we express the running time of
algorithms in terms of number of operations over the reals. This is natural since to compute
Lp-distances we have to deal with numbers of form xp where x is an integer and p is any
real number. However, in special cases the bounds hold even for more restrictive models,
e.g. when p = 1 or p = 2 the algorithms operate only on integers of polynomially bounded
length.

FSTTCS 2019

14:6 Parameterized k-Clustering: Tractability Island

3 From k-Clustering to Cluster Selection

In this section we present a general scheme for obtaining an FPT algorithm parameterized
by D, which is later applied to various distances.

First, we formalize the following intuition: there is no reason to assign equal vectors to
different clusters.

I Definition 6 (Initial cluster and regular partition). For a multiset of vectors X, an inclusion-
wise maximal multiset I ⊂ X such that all vectors in I are equal is called an initial cluster.

We say that a clustering {C1, . . . , Ck} of X is regular if for every initial cluster I there
is a i ∈ {1, . . . , k} such that I ⊂ Ci.

Now we prove that it suffices to look only for regular solutions.

I Proposition 7. Let (X, k,D) be a yes-instance to k-Clustering. Then there exists a
solution of (X, k,D) which is a regular clustering.

Proof. Let us assume that the instance (X, k,D) has a solution. There are k clusters {Ci}ki=1
and k vectors {ci}ki=1 in Rd such that

∑k
i=1
∑
x∈Ci

dist(x, ci) ≤ D. Note that for every x ∈ Cj ,
dist(x, cj) ≥ min1≤i≤k dist(x, ci). So if we consider a new clustering {C ′1, . . . , C ′k} with the
same centroids, where C ′j are all vectors from X for which cj is the closest centroid, the total
distance does not increase. If we also break ties in favor of the lower index, then for any
initial cluster I the same centroid ci will be the closest, and all vectors from I will end up in
C ′i, so {C ′1, . . . , C ′k} is a regular clustering. J

From now on, we consider only regular solutions.

I Definition 8 (Simple and composite clusters). We say that a cluster C is simple if it is an
initial cluster. Otherwise, the cluster is composite.

Next we state a property of k-Clustering with a particular distance, which is required
for the algorithm. Intuitively, each unique vector adds at least some constant to the cluster
cost. In the subsequent sections we show that the property holds for all distances in our
consideration.

I Definition 9 (α-property). We say that a distance has the α-property for some α > 0 if for
any s the cost of any composite cluster which consists of s initial clusters is at least α(s− 1).

The Cluster Selection problem defined in the introduction is a key subroutine in our
algorithm. In some cases the problem is solvable trivially, but it presents the main challenge
for our main algorithmic result with the L1 distance. The intuition to the weight function in
the definition of Cluster Selection is that it represents sizes of initial clusters, that is,
how many equal vectors are there.

We also need a procedure to enumerate all possible optimal cluster costs which are less
than D. It may not be straightforward since not all distances in our consideration are integer.
So we assume that the set of all possible optimal cluster costs which are less than D is also
given in the input. Now we are ready to state the result formally.

I Theorem 10. Assume that the α-property holds, Cluster Selection is solvable in time
Φ(m, d, t,D), where Φ is a non-decreasing function of its arguments, and we are given the set
D of all possible optimal cluster costs which are at most D. Then k-Clustering is solvable
in time

2O(D logD)(nd)O(1)|D|Φ(n, d, 2D/α,D).

F. V. Fomin, P. A. Golovach, and K. Simonov 14:7

Proof. By the α-property, in any solution there are at most D/α composite clusters, since
each contains at least two initial clusters. Moreover, there are at most 2D/α initial clusters
in all composite clusters.

Thus by Proposition 7, solving k-Clustering is equivalent to selecting at most T :=
d2D/αe initial clusters and grouping them into composite clusters such that the total cost
of these clusters is at most D. We design an algorithm which, taking as a subroutine an
algorithm for Cluster Selection, solves k-Clustering. An example is shown in Figure 2.

To perform the selection and grouping, our algorithm uses the color coding technique of
Alon, Yuster, and Zwick from [4]. Consider the input as a family of initial clusters I. We
color initial clusters from I independently and uniformly at random by T colors 1, 2, . . . , T .
Consider any solution, and the particular set of at most T initial clusters which are included
into composite clusters in this solution. These initial clusters are colored by distinct colors
with probability at least T !

TT ≥ e−T . Now we construct an algorithm for finding a colorful
solution.

A random coloring

Cluster Selection on and

Cluster Selection on , and

The resulting clustering

Figure 2 An illustration to the algorithm in Theorem 10. We start with a particular random
coloring and a particular partition of colors P = {P1, P2}, where P1 = { , } and P2 = { , , }.
We make two calls to Cluster Selection with respect to P1 and P2 and construct the resulting
clustering. In the example, all input vectors are distinct.

We consider all possible ways to split colors between clusters (some colors may be unused).
Hence we consider all possible families P = {P1, . . . , Ph} of pairwise disjoint non-empty
subsets of {c ∈ {1, . . . , T} : there exists J ∈ I colored by c}. Each family P corresponds
to a partition of the set of colors {1, . . . , T} if we add one fictitious subset for colors which
are not used in the composite clusters. The total number of partitions does not exceed
TT = 2O(D logD).

FSTTCS 2019

14:8 Parameterized k-Clustering: Tractability Island

When partition P is fixed, we form clusters by solving instances of Cluster Selection:
For each i ∈ {1, . . . , h}, we take initial clusters colored by elements of Pi, bundle together
those with the same color, and pass the resulting family to Cluster Selection. First note
that there cannot be P ∈ P of size at most one, since then Cluster Selection has to make
a simple cluster while we assume that all clusters obtained from P are composite. Second,
the total number of clusters has to be k, the number of clusters is |I| −

∑
P∈P |P |+ |P|. For

each P we check that both conditions hold, and if not, we discard the choice of P and move
to the next one, before calling the Cluster Selection subroutine.

Next, we formalize how we call the Cluster Selection subroutine. We fix the set of
colors Pi = {c1, . . . , ct}, then take the sets Ij = {J ∈ I : J is colored by cj} for j ∈ {1, . . . , t}.
We turn each set of initial clusters Ij into a set of weighted vectors Xj naturally: For each
J ∈ Ij , we put one vector x ∈ J into Xj , and w(x) := |J |. The family of sets of vectors X1,
. . . , Xt and the weight function w are the input for Cluster Selection. Then we search
for the minimum cluster cost bound di ≤ D from D, for which the instance (X1, . . . , Xt, di)
of Cluster Selection is a yes-instance, running each time the algorithm for Cluster
Selection.

If for some i setting di to D leads to a no-instance, or if
∑h
i=1 di > D, then we discard the

choice of the partition P and move to the next one. Otherwise, we report that k-Clustering
has a solution and stop. Next, we prove that in this case the solution indeed exists.

We reconstruct the solution to k-Clustering as follows: For each i ∈ {1, . . . , h}
the corresponding to Pi = {c1, . . . , ct} instance of Cluster Selection has a solution
{x1, . . . , xt}. For each j ∈ {1, . . . , t}, consider the corresponding initial cluster Jj consisting
of w(xj) vectors equal to xj . For each i ∈ {1, . . . , h} we obtain a composite cluster ∪tj=1Jj ,
all other clusters are simple. So the total cost is

∑h
i=1 di, which is at most D. Thus, if the

algorithm finds a solution, then (X, d,D) is a yes-instance.

In the opposite direction. If there is a solution to k-Clustering, then there is a regular
solution, and with probability at least e−T initial clusters which are parts of composite clusters
in this solution are colored by distinct colors. Then, there is a partition P = {P1, . . . , Ph}
which corresponds to this solution. This partition is obtained as follows: put into P1 colors
from the first composite cluster, into P2 from the second and so on. At some point our
algorithm checks the partition P , and as it finds the optimal cost value for each cluster, then
it is at most the cost of the corresponding cluster of the solution from which we started.

To analyze the running time, we consider 2O(D logD) partitions P, for each P we |P| =
O(D) times search for optimal di. And for each of |D| possible values 1 of di we make one
call to the Cluster Selection algorithm, which takes time at most Φ(n, d, T,D).

To amplify the error probability to be at least 1/e, we do N = deT e iterations of the
algorithm, each time with a new random coloring. As each iteration succeeds with probability
at least e−T , the probability of not finding a colorful solution after N iterations is at most
(1− e−T)eT ≤ e−1 < 1. So the total running time is 2O(D logD) · (nd)O(1)|D|Φ(n, d, 2D/α,D).

The algorithm could be derandomized by the standard derandomization technique using
perfect hash families [4, 29]. So k-Clustering is solvable in the same deterministic time. J

1 We could also binary search for the optimal di ∈ D instead, thus replacing |D| by log |D| in the running
time. However, for all choices of D we consider this does not make a difference.

F. V. Fomin, P. A. Golovach, and K. Simonov 14:9

4 Algorithms and complexity for distances with p ∈ (0, 1]

The main motivation for the results in this section is the study of k-Clustering with the
L1 distance, the case widely known as k-Medians. However, our main algorithmic result
also extends to distances of order p ∈ (0, 1) since in some sense they behave similarly to the
L1 distance.

4.1 FPT algorithm when parameterized by D

In this subsection, we prove Theorem 1: when p ∈ (0, 1], k-Clustering admits an FPT
algorithm with parameter D. First we state basic geometrical observations for cases p = 1
and p ∈ (0, 1), Then we propose a general algorithm for Cluster Selection which relies
only on these properties. Finally, we show how Theorem 10 could be applied.

The next two claims deal with the structure of optimal cluster centroids. We state and
prove them in the case of weighted vectors where each vector has a positive integer weight
given by a weight function w. The unweighted case is just a special case when the weight of
each vector is one. The proofs of the claims are straightforward and are available in the full
version of this paper.

First, we show that coordinates of cluster centroids could always be selected among the
values present in the input, which helps greatly in enumerating cluster centroids that may
be optimal.

B Claim 11. Assume p ∈ (0, 1], let C = {x1, . . . , xt} be a cluster and w : {x1, · · · , xt} → Z+
be a weight function. There is an optimal (subject to the weighted distance w(xi) ·distp(xi, c))
centroid c of C such that for each i ∈ {1, . . . , d}, the i-th coordinate c[i] of the centroid
is from the values present in the input in this coordinate, that is c[i] ∈ {x1[i], . . . , xt[i]}.
Moreover, for p = 1 we may assume that the optimal value is a weighted median of the values
present in the i-th coordinate.

In particular, by Claim 11 we may assume that the coordinates of optimal cluster centroids
are integers. Then, the α-property holds with α = 1 since at most one of the initial clusters
could have distance zero to the cluster centroid, and all others have distance at least one
since the cluster centroid is integral. Namely, let x be a vector in the cluster, and c be the
cluster centroid, if x 6= c, then there is a coordinate j where x and c differ, and since they
are both integral, |x[j]− c[j]| ≥ 1, and

distp(x, c) =
d∑
i=1
|x[i]− c[i]|p ≥ |x[j]− c[j]|p ≥ 1p = 1.

In what follows, the expression half of vectors by weight means that the total weight of
the corresponding set of vectors is at least half of the total weight of C.

B Claim 12. If at least half of the vectors by weight in the cluster C have the same value z
in some coordinate i, then the optimal cluster centroid is also equal to z in this coordinate.

In order to apply Theorem 10, we need an FPT algorithm for Cluster Selection.
Before obtaining it, we state some properties of hypergraphs, which we need for the algorithm.

A hypergraph G is a set of vertices V (G) and a collection of hyperedges E(G), each
hyperedge is a subset of V (G). If G and H are hypergraphs, we say that H appears at
V ′ ⊂ V (G) as a subhypergraph if there is a bijection π : V (H)→ V ′ with a property that for
any E ∈ E(H) there is E′ ∈ E(G) such that π(E) = E′ ∩ V ′, the action of π is extended to
subsets of V (H) in a natural way.

FSTTCS 2019

14:10 Parameterized k-Clustering: Tractability Island

A fractional edge cover of a hypergraph H is an assignment ψ : E(H)→ [0, 1] such that
for every v ∈ V (H),

∑
E∈E(H):v∈E ψ(E) ≥ 1. The fractional cover number ρ∗(H) is the

minimum of
∑
E∈E(H) ψ(E) taken over all fractional edge covers ψ.

We need the following result of Marx [27] about finding occurences of one hypergraph in
another.

I Lemma 13 ([27]). Let H be a hypergraph with fractional cover number ρ∗(H), and let G be
a hypergraph where each hyperedge has size at most `. There is an algorithm that enumerates
in time |V (H)|O(|V (H)|) · `|V (H)|ρ∗(H)+1 · |E(G)|ρ∗(H)+1 · |V (G)|2 every subset V ′ ⊂ V (G)
where H appears in G as a subhypergraph.

Also, the following version of the Chernoff Bound will be of use.

I Proposition 14 ([5]). Let X1, X2, . . . , Xn be independent 0-1 random variables. Denote
X =

∑n
i=1Xi and µ = E[X]. Then for 0 < β ≤ 1,

P [X ≤ (1− β)µ] ≤ exp(−β2µ/2),
P [X ≥ (1 + β)µ] ≤ exp(−β2µ/3).

We are ready to proceed with the proof that Cluster Selection with p ∈ (0, 1] is FPT
when parameterized by D.

I Theorem 15. For every p ∈ (0, 1], Cluster Selection with distance distp is solvable in
time 2O(D logD)(md)O(1).

Proof. First we check if any of the given vectors could be the centroid of the resulting
composite cluster. When the centroid is fixed, we find the optimal solution in polynomial
time by just selecting the cheapest vector with respect to this centroid from each set. If at
some point we find a suitable centroid, then we return that the solution exists. If not, we
may assume that the centroid is not equal to any of the given vectors. As a consequence,
any vector x selected into the solution cluster contributes at least w(x) to the total distance,
since the centroid must be integral by Claim 11. So we may now consider only vectors of
weight at most D and, moreover, the total weight of the resulting cluster is at most D.

Consider a resulting cluster C with the centroid c. There is some x1 in C from X1, and
distp(x1, c) ≤ D. So if we try all possible x1 from X1 (there are at most m of them), any
feasible centroid is at distance at most D from at least one of them. Since x1 and c are integral,
they could be different in at most D coordinates, as distp(x1, c) =

∑d
i=1 |x1[i]− c[i]|p ≤ D.

We try all possible x1 ∈ X1. After x1 is fixed, we enumerate all subsets P of coordinates
{1, . . . , d} where x1 and c could differ, we show how to do it efficiently afterwards. When the
subset of coordinates P is fixed, we consider all possible centroids, which are integral, equal to
x1 in all coordinates except P , and differ from x1 by at most D1/p in each of coordinates from
P . If |x1[i∗]− c[i∗]| > D1/p for some coordinate i∗, then distp(x1, c) =

∑d
i=1 |x1[i]− c[i]|p ≥

|x1[i∗]− c[i∗]|p > D, so c can not be a centroid. With restrictions stated above, there are at
most 2O(D logD) possible centroids.

It remains to show that we could enumerate all possible coordinate subsets efficiently. We
reduce this task to the task of finding a specific subhypergraph and then apply Lemma 13.

B Claim 16. There are 2O(D logD) coordinate subsets where x1 and an optimal cluster
centroid c could differ. There exists an algorithm which enumerates all of them in time
2O(D logD)(md)O(1).

F. V. Fomin, P. A. Golovach, and K. Simonov 14:11

Proof. Let G be a hypergraph with V (G) = {1, . . . , d}, one vertex for each coordinate, and
for each vector x in ∪tj=1Xj we take w(x) multiple hyperedges Ex which contains exactly
the coordinates where x and x1 differ. We add an edge only if there are at most D such
coordinates, otherwise x can not be in the same cluster as x1. So hyperdeges in G are of size
at most D. Since we consider only vectors of weight at most D, |E(G)| ≤ Dm.

For a solution, let xj be the vector selected from the corresponding Xj , for j ∈ {1, . . . , t},
C = {x1, . . . , xt} be the solution cluster and c be the centroid. All vectors in C are identical
in all coordinates except at most D, since if there are different values in at least D + 1
coordinates, the cost is at least D + 1. Denote this subset of coordinates as Q, c could also
differ from x1 only at Q. Denote the subset of coordinates where c differs from x1 as P ,
P ⊂ Q and so |P | ≤ D. The solution (C, c) induces a subhypergraph H of G in the following
way. Leave only hyperedges corresponding to the vectors in C, and restrict them to vertices
in P . There are at most D vertices and at most D hyperedges in H, since the total weight is
at most D. An example of the correspondence between input vectors and hypergraphs is
given in Figure 3.

D = 2
v 1 2 3 4 5
x1 0 2 1 3 2
x2 0 1 1 3 1
x3 1 2 1 3 1
x4 0 2 2 3 2
x5 0 2 2 3 1

c 0 2 2 3 2

1

2

3

45

x2

x3
x5

x4

Figure 3 An illustration of the hypergraph construction in Claim 16. On the left, the vector
x1 and other input vectors x2, . . . , x5 are given. On the right, the corresponding hypergraph G.
The solution is in red: on the left, the resulting cluster {x1, x4, x5} is of cost 2; on the right, the
corresponding subhypergraph is H. Note that in H the hyperedge x5 is restricted to the only vertex
3, so its size is one.

The next claim shows that the fractional cover number of H is bounded by a constant.

B Claim 17. Each vertex in H is covered by at least half of the hyperedges of H, and
ρ∗(H) ≤ 2.

Proof. Consider a vertex p ∈ P , and assume that less than half of the hyperedges cover p. It
means that in the p-th coordinate the centroid c differs from x1, but less than half of the
vectors in C by weight differ from x1 in this coordinate. This contradicts Claim 12.

So each vertex is covered by at least half of the hyperedges, and setting ψ ≡ 2
|E(H)| leads

to ρ∗(H) ≤ 2. C

In order to enumerate all possible subsets of coordinates P , we try all hypergraphs H
with at most D vertices and at most D hyperedges, and if each vertex is covered by at least
half of the hyperedges, we find all places where H appears in G by Lemma 13. The last step
is done in 2O(D logD) · (md)O(1) time. However, the number of possible H could be up to
2Ω(D2). The following claim, which is analogous to Proposition 6.3 in [27], shows that we
could consider only hypergraphs with a logarithmic number of hyperedges.

FSTTCS 2019

14:12 Parameterized k-Clustering: Tractability Island

B Claim 18. If D ≥ 2, it is possible to delete all except at most 160 lnD hyperedges from
H so that in the resulting hypergraph H∗ each vertex is covered by at least 1/4 of the
hyperedges, and ρ∗(H∗) ≤ 4.

Proof. Denote s = |E(H)|, construct a new hypergraph H∗ on the same vertex set V (H)
by independently selecting each hyperedge of H with probability (120 lnD)/s. Applying
Proposition 14 with β = 1/3, probability of selecting more than 160 lnD hyperedges is
at most exp((−120 lnD)/27) < 1/D2. By Claim 17, each vertex v of H is covered by at
least s/2 hyperedges, and the expected number of hyperedges covering v in H∗ is at least
60 lnD. By Proposition 14 with β = 1/3, the probability that v is covered by less than
40 lnD hyperedges in H∗ is at most exp(−60 lnD/18) ≤ 1/D3. By the union bound, with
probability at least 1− 1/D2 −D · 1/D3 > 0 we select at most 160 lnD hyperedges and each
vertex is covered by at least 40 lnD hyperedges. So the claim holds, and ρ∗(H∗) ≤ 4 by
setting ψ ≡ 4

|E(H∗)| . C

Thus, if there is a subhypergraph H in G corresponding to a solution, then there is also
a subhypergraph H∗ in G appearing at the same subset of V (G) with at most 160 lnD
hyperedges and where each vertex is covered by at least 1/4 of the hyperedges. Since we
only need to enumerate possible coordinate subsets, in our algorithm we try all hypergraphs
of this form and apply Lemma 13 for each of them. Since there are at most 2O(D logD)

hypergraphs with at most 160 lnD hyperedges and since the fractional cover number is still
bounded by a constant, the total running time is 2O(D logD) · (md)O(1), as desired. C

With Claim 16 proven, the proof of the theorem is complete. J

Combining Theorem 10 and Theorem 15, we obtain an FPT algorithm for k-Clustering.
This proves Theorem 1, which we recall here.

I Theorem 1. k-Clustering with distance distp is solvable in time 2O(D logD)(nd)O(1) for
every p ∈ (0, 1].

Proof. We have an algorithm for Cluster Selection whose running time is specified by
Theorem 15. By Claim 11, the α-property holds. The only missing part is to describe the
way of producing the set D of all possible cluster costs which are at most D.

In the case p = 1 all distances are integral so we can take D = {0, . . . , D}.
For the general case, let B = {ap : a ∈ {1, . . . , dD1/pe}}. Consider a cluster C =

{x1, . . . , xt} and the corresponding optimal cluster centroid c. For any xj ∈ C, distp(xj , c) =∑d
i=1 |xj [i]−c[i]|p is a combination of elements of B with nonnegative integer coefficients. This

is because xj and c are integral and the cluster cost is at most D, hence |xj [i]− c[i]| ≤ D1/p

for each i ∈ {1, . . . , d}. Since weights are also integral, the whole cluster cost is a combination
of distances between cluster vectors and the centroid with nonnegative integer coefficients,
and so also a combination of elements of B with nonnegative integer coefficients. This means
that we can take

D =
{∑
b∈B

ab · b : ab ∈ Z, ab ≥ 0,
∑
b∈B

ab ≤ D

}
,

the sum of coefficients ab is at most D since all elements of B are at least 1. The size of D is
at most |B|D = 2O(D logD). J

F. V. Fomin, P. A. Golovach, and K. Simonov 14:13

Note that another widely studied version of k-Clustering is where centroids ci could
be selected only among the set of given vectors. Naturally, our algorithm also works in this
setting since the set of possible centroids is only restricted further.

Also note that Claim 11 and Claim 12 do not hold in the case p > 1, and our algorithm
relies heavily on the structure provided by them. Therefore, it does not seem that the
algorithm could be extended to the case p > 1.

5 Conclusion and open problems

In this paper, we presented an FPT algorithm for k-Clustering with p ∈ (0, 1] parameterized
by D. However, for the case p ∈ (1,∞) we were able only to show the W[1]-hardness of
Cluster Selection. While intractability of Cluster Selection does not exclude that
k-Clustering could be FPT with p ∈ (1,∞), it indicates that the proof of this (if it is true
at all) would require an approach completely different from ours. Thus an interesting and
very concrete open question concerns the parameterized complexity of k-Clustering with
p ∈ (1,∞) and parameter D.

Another open question is about the fine-grained complexity of k-Clustering when
parameterized by k + d. For several distances, we know XP-algorithms: an O(ndk+1)
algorithm by Inaba et. al. [21] for p = 2, as well as trivial algorithms for p ∈ [0, 1]. For the
case when the possible cluster centroids are given in the input, the matching lower bound is
shown in [11]. However, we are not aware of a lower bound complementing the algorithmic
results in the case when any point in Euclidean space can serve as a centroid.

References
1 Marcel R. Ackermann, Johannes Blömer, and Christian Sohler. Clustering for metric and

nonmetric distance measures. ACM Trans. Algorithms, 6(4):59:1–59:26, 2010. doi:10.1145/
1824777.1824779.

2 Pankaj K. Agarwal, Sariel Har-Peled, and Kasturi R. Varadarajan. Approximating extent
measures of points. J. ACM, 51(4):606–635, 2004. doi:10.1145/1008731.1008736.

3 Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat. NP-hardness of Eu-
clidean sum-of-squares clustering. Machine Learning, 75(2):245–248, May 2009. doi:
10.1007/s10994-009-5103-0.

4 Noga Alon, Raphael Yuster, and Uri Zwick. Color-Coding. J. ACM, 42(4):844–856, 1995.
doi:10.1145/210332.210337.

5 D. Angluin and L.G. Valiant. Fast probabilistic algorithms for hamiltonian circuits and match-
ings. J. Computer and System Sciences, 18(2):155–193, 1979. doi:10.1016/0022-0000(79)
90045-X.

6 Mihai Badoiu, Sariel Har-Peled, and Piotr Indyk. Approximate clustering via core-sets. In
Proceedings of the 34th Annual ACM Symposium on Theory of Computing (STOC), pages
250–257. ACM, 2002. doi:10.1145/509907.509947.

7 Christina Boucher, Christine Lo, and Daniel Lokshantov. Consensus Patterns (Probably)
Has no EPTAS. In Nikhil Bansal and Irene Finocchi, editors, Algorithms - ESA 2015, pages
239–250, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

8 Christos Boutsidis, Anastasios Zouzias, Michael W. Mahoney, and Petros Drineas. Random-
ized Dimensionality Reduction for k-Means Clustering. IEEE Trans. Information Theory,
61(2):1045–1062, 2015. doi:10.1109/TIT.2014.2375327.

9 Michael B Cohen, Sam Elder, Cameron Musco, Christopher Musco, and Madalina Persu.
Dimensionality reduction for k-means clustering and low rank approximation. In Proceedings
of the 47tg annual ACM symposium on Theory of Computing (STOC), pages 163–172. ACM,
2015.

FSTTCS 2019

https://doi.org/10.1145/1824777.1824779
https://doi.org/10.1145/1824777.1824779
https://doi.org/10.1145/1008731.1008736
https://doi.org/10.1007/s10994-009-5103-0
https://doi.org/10.1007/s10994-009-5103-0
https://doi.org/10.1145/210332.210337
https://doi.org/10.1016/0022-0000(79)90045-X
https://doi.org/10.1016/0022-0000(79)90045-X
https://doi.org/10.1145/509907.509947
https://doi.org/10.1109/TIT.2014.2375327

14:14 Parameterized k-Clustering: Tractability Island

10 Vincent Cohen-Addad. A Fast Approximation Scheme for Low-dimensional K-means. In
Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
430–440. SIAM, 2018. URL: http://dl.acm.org/citation.cfm?id=3174304.3175298.

11 Vincent Cohen-Addad, Arnaud de Mesmay, Eva Rotenberg, and Alan Roytman. The Bane of
Low-dimensionality Clustering. In Proceedings of the 28th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 441–456. SIAM, 2018. URL: http://dl.acm.org/
citation.cfm?id=3174304.3175300.

12 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

13 W. Fernandez de la Vega, Marek Karpinski, Claire Kenyon, and Yuval Rabani. Approximation
Schemes for Clustering Problems. In Proceedings of the 35th Annual ACM Symposium on
Theory of Computing (STOC), pages 50–58. ACM, 2003. doi:10.1145/780542.780550.

14 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

15 Uriel Feige. NP-hardness of hypercube 2-segmentation. CoRR, abs/1411.0821, 2014. arXiv:
1411.0821.

16 Dan Feldman and Michael Langberg. A unified framework for approximating and clustering
data. In Proceedings of the 43rd Annual ACM Symposium on Theory of Computing (STOC),
pages 569–578. ACM, 2011. doi:10.1145/1993636.1993712.

17 Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning big data into tiny data:
Constant-size coresets for k-means, PCA and projective clustering. In Proceedings of the 23rd
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1434–1453. SIAM,
2013. doi:10.1137/1.9781611973105.

18 Fedor V. Fomin, Petr A. Golovach, and Fahad Panolan. Parameterized Low-Rank Binary
Matrix Approximation. In Proceedings of the 45th International Colloquium on Automata,
Languages, and Programming (ICALP), volume 107 of LIPIcs, pages 53:1–53:16. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018. doi:10.4230/LIPIcs.ICALP.2018.53.

19 Fedor V. Fomin, Petr A. Golovach, and Kirill Simonov. Parameterized k-Clustering: The
distance matters!, 2019. arXiv:1902.08559.

20 Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clustering.
In Proceedings of the 36th Annual ACM Symposium on Theory of Computing (STOC), pages
291–300. ACM, 2004.

21 Mary Inaba, Naoki Katoh, and Hiroshi Imai. Applications of weighted Voronoi diagrams and
randomization to variance-based k-clustering. In Proceedings of the 10th annual Symposium
on Computational Geometry (SoCG), pages 332–339. ACM, 1994.

22 Anil K Jain. Data clustering: 50 years beyond K-means. Pattern recognition letters, 31(8):651–
666, 2010.

23 Stavros G. Kolliopoulos and Satish Rao. A Nearly Linear-Time Approximation Scheme for
the Euclidean k-Median Problem. SIAM J. Computing, 37(3):757–782, June 2007. doi:
10.1137/S0097539702404055.

24 Amit Kumar, Yogish Sabharwal, and Sandeep Sen. Linear-time approximation schemes for
clustering problems in any dimensions. J. ACM, 57(2):5:1–5:32, 2010. doi:10.1145/1667053.
1667054.

25 Stuart P. Lloyd. Least squares quantization in PCM. IEEE Trans. Information Theory,
28(2):129–136, 1982. doi:10.1109/TIT.1982.1056489.

26 Meena Mahajan, Prajakta Nimbhorkar, and Kasturi Varadarajan. The Planar k-Means
Problem is NP-Hard. In Proceedings of the 3rd International Workshop on Algorithms and
Computation (WALCOM), Lecture Notes in Comput. Sci., pages 274–285. Springer, 2009.
doi:10.1007/978-3-642-00202-1_24.

27 Dániel Marx. Closest Substring Problems with Small Distances. SIAM J. Comput., 38(4):1382–
1410, 2008. doi:10.1137/060673898.

http://dl.acm.org/citation.cfm?id=3174304.3175298
http://dl.acm.org/citation.cfm?id=3174304.3175300
http://dl.acm.org/citation.cfm?id=3174304.3175300
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1145/780542.780550
https://doi.org/10.1007/978-1-4471-5559-1
http://arxiv.org/abs/1411.0821
http://arxiv.org/abs/1411.0821
https://doi.org/10.1145/1993636.1993712
https://doi.org/10.1137/1.9781611973105
https://doi.org/10.4230/LIPIcs.ICALP.2018.53
http://arxiv.org/abs/1902.08559
https://doi.org/10.1137/S0097539702404055
https://doi.org/10.1137/S0097539702404055
https://doi.org/10.1145/1667053.1667054
https://doi.org/10.1145/1667053.1667054
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1007/978-3-642-00202-1_24
https://doi.org/10.1137/060673898

F. V. Fomin, P. A. Golovach, and K. Simonov 14:15

28 N. Megiddo and K. Supowit. On the Complexity of Some Common Geometric Location
Problems. SIAM J. Computing, 13(1):182–196, 1984. doi:10.1137/0213014.

29 Moni Naor, Leonard J. Schulman, and Aravind Srinivasan. Splitters and Near-Optimal
Derandomization. In Proceedings of the 36th Annual Symposium on Foundations of Computer
Science (FOCS), pages 182–191. IEEE, 1995.

30 Christian Sohler and David P. Woodruff. Strong Coresets for k-Median and Subspace Approx-
imation: Goodbye Dimension. In Proceedings of the 59th Annual Symposium on Foundations
of Computer Science (FOCS), pages 802–813. IEEE, 2018. doi:10.1109/FOCS.2018.00081.

FSTTCS 2019

https://doi.org/10.1137/0213014
https://doi.org/10.1109/FOCS.2018.00081

Nonnegative Rank Measures and Monotone
Algebraic Branching Programs
Hervé Fournier
Université de Paris, IMJ-PRG, CNRS, F-75013 Paris, France

Guillaume Malod
Université de Paris, IMJ-PRG, CNRS, F-75013 Paris, France

Maud Szusterman
Université de Paris, IMJ-PRG, CNRS, F-75013 Paris, France

Sébastien Tavenas
Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LAMA, 73000 Chambéry, France

Abstract
Inspired by Nisan’s characterization of noncommutative complexity (Nisan 1991), we study different
notions of nonnegative rank, associated complexity measures and their link with monotone computa-
tions. In particular we answer negatively an open question of Nisan asking whether nonnegative
rank characterizes monotone noncommutative complexity for algebraic branching programs. We
also prove a rather tight lower bound for the computation of elementary symmetric polynomials
by algebraic branching programs in the monotone setting or, equivalently, in the homogeneous
syntactically multilinear setting.

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory; Theory
of computation → Complexity classes

Keywords and phrases Elementary symmetric polynomials, lower bounds

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.15

Related Version A full version of the paper is available at https://eccc.weizmann.ac.il/report/
2019/100/.

Funding Sébastien Tavenas: This work was partially funded by the project BIRCA from the IDEX
Université Grenoble Alpes.

1 Introduction

Measures based on rank are one of the main tools to prove lower bounds in algebraic
complexity theory. The complexity of first-order partial derivatives is the key ingredient for
the best lower bound known for general circuits [2]. When looking at higher-order partial
derivatives, one can consider their rank: the rank of partial derivatives, and some variants,
have been intensively used to obtain lower bounds on restricted models [20, 21, 18]. Nisan [19]
provided one of the earliest and cleanest examples of such a measure: when computing a
polynomial over noncommuting variables by a so-called algebraic branching program, it gives
an exact characterization of the complexity.1 To state this result more precisely, let us give
here the definition of algebraic branching programs used in [19].

I Definition 1. An algebraic branching program (ABP) is a layered directed acyclic graph
with a source s and a sink t. The first layer contains only the source s, the last layer contains
only the sink t. Edges can only appear between vertices of successive layers and carry a weight

1 It was noticed in [7] (see also [17]) that this result actually follows from an older characterization for
word series [10]. This characterization was also extended to tree series in [4], which can be applied to
circuits.

© Hervé Fournier, Guillaume Malod, Maud Szusterman, and Sébastien Tavenas;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 15; pp. 15:1–15:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.FSTTCS.2019.15
https://eccc.weizmann.ac.il/report/2019/100/
https://eccc.weizmann.ac.il/report/2019/100/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Nonnegative Rank Measures and Monotone ABPs

which is a linear form of the variables. The weight of a path from s to t is the product of the
weights of its edges. The (homogeneous) polynomial computed by the ABP is the sum of the
weights of the paths from s to t. The width of a layer is the number of vertices on that layer.

This definition makes sense both in the usual case of commuting variables and in the case
of noncommuting variables, over a free algebra, which we consider for the moment. For a
noncommutative homogeneous polynomial P of degree d over variables in X, define matrices
Mi(P), for 0 6 i 6 d: the rows of Mi(P) are indexed by all possible monomials u over X of
degree i, the columns are indexed by all possible monomials v over X of degree d− i, and
the coefficient (u, v) of Mi(P) is the coefficient of the monomial uv in P . We call this matrix
the i-th Nisan matrix of P . The characterization is then expressed by the following theorem.

I Theorem 2 (Nisan [19], Fliess [10]). The size of a smallest ABP computing a noncommu-
tative polynomial P is the sum of the ranks of its Nisan matrices, i.e.,

∑d
i=0 rkMi(P). More

precisely, the value rkMi(P) is the width of the i-th layer in a smallest ABP computing P .
It is also the smallest possible width of the i-th layer in any ABP computing P .

Nisan also considers the case of monotone noncommutative computations. In this case
Nisan does not obtain a characterization of monotone noncommutative complexity, but a
sufficient tool for lower bounds, using the notion of nonnegative rank.

I Definition 3. An ABP over an ordered field is called monotone if all coefficients of linear
forms on the edges are nonnegative.

I Definition 4. The nonnegative rank of a nonnegative matrix M , rk+M , is the smallest
integer r such that M can be written as a sum of r rank-1 nonnegative matrices.

I Proposition 5 (Nisan [19]). For a polynomial P with nonnegative coefficients, the value
rk+Mi(P) is the smallest possible width of the i-th layer in a monotone ABP computing P .
The size of a smallest monotone ABP computing P is therefore at least

∑d
i=0 rk+Mi(P).

Nisan [19] leaves the tightness of the inequality in Proposition 5 as an open question: does
nonnegative rank also provide a characterization of monotone noncommutative complexity?
One of our main results is a negative answer to this question (Theorem 25).

Before that, we consider in Section 2 a more general notion of monotone computation,
which we call weakly monotone. Where monotonicity completely disallows cancellations,
weak monotonicity allows them as long as any monomial appearing in the computation
also appears in the end result. In other words, cancellations can be used to obtain the
specific coefficients of a polynomial, but not to produce and then cancel out monomials
outside the support of the polynomial. We strengthen Proposition 5 for weakly monotone
noncommutative ABPs using a new rank measure. We then obtain a separation showing that
weakly monotone noncommutative arithmetic formulas can be exponentially more powerful
than monotone noncommutative ABPs. Thus weakly monotone lower bounds are stronger
than monotone lower bounds.

In Section 3 we prove Theorem 25, answering Nisan’s question, and more generally explore
the link between nonnegative rank measures and the size of monotone noncommutative
algebraic branching programs.

Finally, in Section 4 we focus on proving lower bounds for monotone commutative ABPs,
building on ideas from the previous sections to develop new tools. Imposing monotonicity as
a restriction on arithmetic computations to prove lower bounds has a long history [22, 15],
which often involves hard polynomials and yields exponential lower bounds. We focus here
on the elementary symmetric polynomials en,k. While it is known that the elementary

H. Fournier, G. Malod, M. Szusterman, and S. Tavenas 15:3

symmetric polynomials en,k require monotone, or even homogeneous multilinear, formulas of
size kΩ(k)n [13], these can be efficiently computed by monotone ABPs of size O(k(n−k)): we
give a simple dynamic programming construction and further references in the full version [11].
The existence of efficient computations imply that our lower bound techniques must be very
precise. Surprisingly, there is also a very simple Ω(k(n − k + 1)) monotone lower bound
in [16], but in a model where edge weights can only be a scalar or a scalar times a variable,
not linear forms, which would only give a trivial lower bound in our setting. Our second
main result is a similarly quadratic lower bound for our model, and for weakly monotone
computations, at the cost of a significant increase in the complexity of the proof: we use a
generalization of a combinatorial problem known as Galvin’s problem.2 Our lower bound
can be equivalently stated as applying to homogeneous syntactically multilinear ABPs.

Let us add one remark on the definition of ABPs. This computation model is inherently
homogeneous and we only consider nonzero homogeneous polynomials. We could also consider
nonhomogeneous ABPs: these are directed acyclic graphs with a source and a sink, not
necessarily layered, with arcs labelled with affine forms. In the noncommutative case, when
computing a homogeneous polynomial, one can show that there is always a minimal-size ABP
which is homogeneous and corresponds to Definition 1. We provide a proof sketch in the full
version [11]. This is also true in the commutative case for weakly monotone computations.
Hence we shall consider only homogeneous branching programs.

Throughout the paper we use R in the case of an ordered field, but these results hold
over any ordered field. When the field is not ordered we denote it by K and assume it is of
characteristic 0.

2 A rank measure for weakly monotone computations

2.1 Weakly monotone computations
As defined before, the weight of a path is the product of the weights of its edges, i.e., a
product of linear forms. Any of the monomials obtained when expanding completely this
product, by choosing one term in each linear form, is said to be produced along the path.

I Definition 6. An ABP is called weakly monotone if any monomial produced along a path
from the source to the sink has a nonzero coefficient in the polynomial computed by this ABP.

Note that this notion of monotonicity makes sense both in the commutative and noncom-
mutative settings (Sections 2 and 3 deal with noncommutative computations, while we will
use the commutative case in Section 4). We now define a new measure for weakly monotone
computations. We will denote the support of a matrix M by suppM : it is the subset of the
coordinates of M which correspond to nonzero entries.

I Definition 7. The weakly nonnegative rank of a matrix M , denoted by rkwM , is the
smallest number r such that there exist M1, . . . ,Mr of rank 1 (with entries of any sign) such
that suppMi ⊆ suppM for all i and

∑r
i=1Mi = M .

The usual nonnegative rank of a matrix already plays a role in several areas. For instance,
the fact that the minimum number of facets of an extension of a polyhedron is equal to the
nonnegative rank of its so-called slack matrix. In another direction, for a 0, 1-matrix M ,

2 A different generalization of this combinatorial problem was recently used to prove almost quadratic
lower bounds on the size of syntactically multilinear circuits [1].

FSTTCS 2019

15:4 Nonnegative Rank Measures and Monotone ABPs

log(rkM) is a lower bound on the communication complexity of the associated problem. The
log-rank conjecture stipulates that there is also a logO(1)(rkM) upper bound. This conjecture
is known to be equivalent to the fact that for any 0, 1-matrixM , log(rk+M) = logO(1)(rkM).
The influence of communication complexity will be felt here too, as it can be seen from the
use of the support of the matrix in the definition of weakly nonnegative rank. In fact, we
will borrow a few more basic concepts from communication complexity.

I Definition 8. For a matrix M with rows indexed by a set I and columns indexed by a set
J , a combinatorial rectangle is a subset of I × J of the form A×B, with A ⊆ I and B ⊆ J .

A cover of a matrix M is a set of combinatorial rectangles, included in the support of M
and whose union is equal to the support of M . We define covM as the smallest size of a
cover of M .

I Proposition 9. We have covM 6 rkwM and rkM 6 rkwM . For a nonnegative matrixM ,
rkwM 6 rk+M .

Let us remark that we can have rkM < rkwM : this is the case for the following matrix [5],

for which rkR = 3 and covR = 4: R =
(

1 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1

)
.

The following proposition is the weak monotone version of Proposition 5.

I Proposition 10. For a noncommutative polynomial P , the smallest size of the i-th layer
of a weakly monotone ABP computing P is equal to rkwMi(P). Hence the weakly monotone
ABP size of P is greater or equal to

∑
i rkwMi(P).

Proof. Let ` ∈ {1, . . . , d− 1} and let M = M`(P), r = rkwM .
Consider a weakly monotone ABP computing P . Let s be the size of layer `. Cutting the

ABP at layer ` we get P =
∑s
i=1 LiRi. Let Ai be the matrix of the polynomial LiRi. The

matrices A1, . . . , As satisfy all the conditions to show that rkwM 6 s.
Conversely, write M`(P) = A1 + . . .+Ar where Ai are rank 1 matrices with suppAi ⊆

suppM . Each Ai can be interpreted as a product of two polynomials LiRi. It is easy to
design a weakly monotone ABP with `-layer of size r computing the polynomials L1, . . . , Lr
on the `-th layer.

So we have proved that for any `, the minimal size of the `-th layer of a weakly monotone
ABP computing P is equal to rkwM`(P). The last inequality follows from the fact that the
minimal size of a weakly monotone ABP computing P is greater or equal to the sum of the
minimal size of the different layers. J

2.2 Separation of rank measures
We show now that we can have rkwM < rk+M . In the following J is the matrix with all
entries equal to 1 and ‖·‖ is the infinite norm.

I Proposition 11. Let M be a nonnegative matrix. For ε > 0 small enough, N = M + εJ

satisfies rkwN 6 rkM + 1 and rk+N > covM .

Proof. We have rkN 6 rkM + 1 because J is of rank 1, and rkN = rkwN since the support
of N is full. Hence rkwN 6 rkM + 1.

It remains to show the lower bound on r = rk+N . Write N = N1 + . . . + Nr with
Ni nonnegative matrix of rank 1. Write Ni = aib

T
i with ai and bi nonnegative satisfying

‖ai‖ = ‖bi‖: this implies that ‖ai‖, ‖bi‖ 6
√
‖N‖ 6 2

√
‖M‖ for ε small enough. Let ãi

H. Fournier, G. Malod, M. Szusterman, and S. Tavenas 15:5

and b̃i be obtained from ai and bi by putting to 0 all entries smaller or equal to
√
ε. Let

Ñi = ãib̃
T
i . The support of Ñi is a combinatorial rectangle. Moreover, supp Ñi ⊆ suppM

since any nonzero entry of Ñi is greater than ε.
Let us show that suppM ⊆

⋃
i supp Ñi. Let Ñ = Ñ1 + . . . + Ñr. For any entry (x, y),

we have |Ni(x, y) − Ñi(x, y)| 6 2
√
ε
√
‖M‖ so ‖N − Ñ‖ 6 2r

√
ε‖M‖. This shows that

‖M − Ñ‖ 6 ‖M −N‖ + ‖N − Ñ‖ 6 ε + 2r
√
ε‖M‖. Hence ‖M − Ñ‖ is smaller than the

smallest nonzero entry of M for ε small enough. This proves that suppM is covered by⋃r
i=1 supp Ñi. J

We want to apply the previous proposition to a matrix with a large gap between rank and
covering bound. Such examples are known: the n×n matrix defined by Mi,j = (ai− aj)2 for
distinct reals a1, . . . , an has rank 3 but covM = Ω(logn) [3]; the slack matrix of a generic
polygon also exhibits such a gap [9] (note that this matrix is not explicit).

We will build on a third construction to obtain an exponential separation between
weakly monotone formulas and monotone ABPs in the noncommutative setting. Let Un
be the matrix whose rows and columns are indexed by {0, 1}n and which is defined by
Un(u, v) = (〈u, v〉 − 1)2, where the scalar product is over R.

I Theorem 12 ([6], see also [8]). It holds that rkUn = O(n2) and covUn = 2Ω(n).

Using Proposition 11, this theorem gives a matrix with an exponential gap between
weakly nonnegative rank and nonnegative rank.

I Proposition 13. For ε > 0 small enough, rkw(Un+εJ) = O(n2) and rk+(Un+εJ) = 2Ω(n).

2.3 Separating noncommutative monotone and weakly monotone
classes

Let us define a noncommutative polynomial over the variables {x0, x1}. For u ∈ {0, 1}n, let
xu = xu1 . . . xun

and define P =
∑
u,v∈{0,1}n(〈u, v〉 − 1)2xuxv. This polynomial was used

in [14] to obtain the following separation.

I Theorem 14 ([14]). The noncommutative polynomial P defined above has formula size
O(n3) but monotone circuit size 2Ω(n).

As a consequence, we get a separation illustrating the difference between monotone and
weakly monotone computations.

I Definition 15. A formula is called weakly monotone if any monomial produced by the
computation (before any possible cancellations) has a nonzero coefficient in the computed
polynomial. More formally, a formula is weakly monotone if any monomial produced by a
parse tree is present in the computed polynomial.

I Theorem 16. For ε > 0 small enough, the noncommutative polynomial P + ε(x0 + x1)2n

has weakly monotone formula size O(n3) but requires monotone ABP size 2Ω(n).

Proof. Let Q = P + ε(x0 + x1)2n for some ε > 0 small enough. The polynomial P has
formula size O(n3) by the upper bound from Theorem 14. The polynomial ε(x0 + x1)2n has
formula size O(n). Since the support of Q is full, the formula obtained for Q by summing
these two formulas is weakly monotone.

The middle Nisan matrix of Q is Mn(Q) = Un + εJ so rk+Mn(Q) = 2Ω(n) by Proposi-
tion 13. It follows from Proposition 5 that Q has monotone ABP size 2Ω(n). J

FSTTCS 2019

15:6 Nonnegative Rank Measures and Monotone ABPs

3 Monotone noncommutative complexity vs monotone rank
measures

This section is devoted to the comparison between nonnegative rank measures and the size
of monotone noncommutative algebraic branching programs, in particular Nisan’s question
on the tightness of the lower bound for monotone noncommutative ABPs. Let us start by a
particular case where the inequality is tight.

We work over a field K of characteristic zero. We say a vector v is a weakly monotone linear
combination of u1, . . . , up if there exist scalars λi for 1 6 i 6 p such that no cancellations
occur:

v =
∑
i∈[1,p]

λiui with supp(v) =
⋃

i∈[1,p]
λi 6=0

supp(ui).

3.1 In the case of ranks at most 2
In the case where each Nisan matrix is of rank at most 2, we prove that an algebraic
branching program of minimal size can be chosen to be monotone (or weakly monotone).
Since rkM 6 2 implies rkM = rkwM = rk+M , it means that the measures

∑
i rk+Mi(P)

and
∑
i rkwMi(P) do characterize the monotone and weakly monotone ABP size in this case.

The proof of the next two lemmas can be found in the full version [11].

I Lemma 17. If a homogeneous noncommutative polynomial P of degree d with nonnegative
coefficients satisfies rkMi(P) = 2 for all 0 < i < d, then there exists a monotone ABP of
width 2 computing P . Hence the minimal size of a monotone ABP computing P is equal to∑d

i=0 rk+Mi(P).

I Lemma 18. If P is a homogeneous noncommutative polynomial of degree d such that
rkMi(P) = 2 for all 0 < i < d, there exists a weakly monotone ABP of width 2 computing P .
Hence the minimal size of a weakly monotone ABP computing P is equal to

∑d
i=0 rkwMi(P).

Then we can easily conclude:

I Theorem 19. Let P be a noncommutative polynomial, homogeneous of degree d > 0, such
that rkMi(P) 6 2 for all i. Then the minimal size of a weakly monotone ABP computing P
is equal to

∑d
i=0 rkwMi(P). Moreover, if P is nonnegative, the minimal size of a monotone

ABP computing P is equal to
∑d
i=0 rk+Mi(P).

Proof. Assume P is nonnegative homogeneous of degree d > 0. We prove the second point
by induction on d. If d = 1 the polynomial P is linear with nonnegative coefficients, P 6= 0,
and thus rk+M0(P)+rk+M1(P) = 2, which is the size of a minimal monotone ABP. Assume
now that d > 1. If rkMi(P) = 2 for all 0 < i < d, then the minimal size of a monotone ABP
computing P is equal to

∑d
i=0 rk+Mi(P) by Lemma 17. Otherwise, there exists 0 < i < d

such that rk+Mi(P) = 1. It means that P = QR with Q and R homogeneous of degree
i and d − i. By induction the minimal size of a monotone ABP computing Q is equal to∑d
i=0 rk+Mi(Q) and similarly for R. The conclusion follows easily for P .
The proof of the first point is analogous, using Lemma 18. J

3.2 Separation of monotone rank measure and ABP size
We now prove a separation between the sum-of-ranks measure and the minimal noncommu-
tative ABP size, both in the monotone and in the weakly monotone cases.

H. Fournier, G. Malod, M. Szusterman, and S. Tavenas 15:7

If X = X1] . . .]Xd is a partition of the set of variables, a noncommutative polynomial
f is called ordered over the family X1, . . . , Xd if it is homogeneous of degree d and if each
monomial m from f is of the form v1v2 · · · vd, where vi ∈ Xi for each i.

We will use several times the following very simple observation.

I Proposition 20. Let Ei be the i-th coordinate hyperplane of Kn. and E =
⋂
i∈I Ei for

I ⊆ [n]. Let v ∈ E, and u1, . . . , up ∈ Kn. Assume v =
∑p
j=1 λjuj is a weakly monotone

linear combination. Then for all j such that λj 6= 0, we have uj ∈ E.
In particular, if v 6= 0 is a weakly monotone linear combination v =

∑
j λjuj, then there

exists j0 such that λj0 6= 0 and uj0 ∈ E \ {0}.

I Lemma 21. There exists a noncommutative ordered degree 3 polynomial H with nonnegative
coefficients in R over the set of variables (X,Y, Z) with |X| = 4, |Y | = 2, |Z| = 4, such that
rk+Mi(H) = rkwMi(H) = rkMi(H) = 3 for i ∈ {1, 2}, so that

∑3
i=0 rk+Mi(H) =∑3

i=0 rkwMi(H) = 8, but the minimal size of a monotone ABP and of a weakly monotone
ABP is 9.

Proof. Define the vectors A =
(

1
0
0
1

)
, B =

(
0
1
1
0

)
, C =

(
1
0
1
0

)
, D =

(
0
1
0
1

)
(they correspond to

the columns of the matrix R of Section 2). Then, rk(A,B,C,D) = 3 and rkw(A,B,C,D) =
4, since cov(A,B,C,D) = 4. Define the matrices M ∈ R4×8

>0 and N ∈ R8×4
>0 : M

def=

(A B A+C
2

B+C
2 C C C+D

2
C+D

2) and N
def=
(
A B A+C

2
B+C

2
C C C+D

2
C+D

2

)
. As C+D

2 = A+B
2 , the columns

of M are monotone linear combinations of A, B and C. Moreover, the columns of N are
monotone linear combinations of (AC) , (BC) and (CD). Hence, rk+M = rk+N = 3. This
shows that rkwM = rkwN = 3.

Let X = {x1, x2, x3, x4}, Y = {y1, y2} and Z = {z1, z2, z3, z4}. We consider the ordered
polynomial H ∈ R>0[X,Y, Z]:

H
def= x1y1z1 + x4y1z1 + x2y1z2 + x3y1z2 + x1y1z3 + 1

2x3y1z3 + 1
2x4y1z3 + 1

2x1y1z4

+ 1
2x2y1z4 + x3y1z4 + x1y2z1 + x3y2z1 + x1y2z2 + x3y2z2 + 1

2x1y2z3 + 1
2x2y2z3

+ 1
2x3y2z3 + 1

2x4y2z3 + 1
2x1y2z4 + 1

2x2y2z4 + 1
2x3y2z4 + 1

2x4y2z4.

One can verify than the middle Nisan matrices of H are M1(H) = M and M2(H) = N .
Assume that there exists a weakly monotone noncommutative homogeneous ABP of

size 8 =
∑

rkwMi(H) computing H. It means that the ABP has exactly rkwMi nodes
at layer i for 0 6 i 6 3. In particular, such an ABP has three nodes at layer 1, each one
computing a polynomial P (1)

1 (X), P (1)
2 (X) and P (1)

3 (X) and has also three nodes at layer
2 which compute the polynomials P (2)

1 (X,Y), P (2)
2 (X,Y) and P (2)

3 (X,Y). The goal is to
show that these triplets of polynomials are precisely defined and there is no way to link them
together in a weakly monotone ABP. By definition of the Nisan matrix, we can see columns
of M as polynomials in R[X] and columns of N as polynomials in R[X,Y].

B Claim 22. The polynomials P (1)
1 , P (1)

2 and P
(1)
3 weakly monotonically generate the

columns of M and the polynomials P (2)
1 , P (2)

2 and P (2)
3 weakly monotonically generate the

columns of N .

Proof. Let us show the result at layer 1, the case of layer 2 is symmetrical. Consider a
column C of the first Nisan matrix: say it corresponds to the coefficient of yjzk in H. If we
instantiate the variables yj and zk to 1 and the other variables from Y ∪ Z to 0 in the ABP,

FSTTCS 2019

15:8 Nonnegative Rank Measures and Monotone ABPs

we get C as a linear combination of columns representing P (1)
1 (X), P (1)

2 (X) and P (1)
3 (X).

More precisely, C =
∑3
s=1 λsP

(1)
s where λs 6= 0 if and only if we can read the monomial yjzk

between the node corresponding to P (1)
s (X) and the output of the ABP.

It remains to show that this linear combination C =
∑3
s=1 λsP

(1)
s is weakly monotone.

Assume this is not, it means for some i the coefficient of xi is 0 in C but there exists s such
that λs 6= 0 and the coefficient of xi in P (1)

s is different to 0. It means that the coefficient of
xiyjzk is 0 in H but there is a path in the ABP with nonzero coefficient for this monomial
(otherwise the scalar in front of P (1)

s (X) would be 0). It contradicts the fact that the ABP is
weakly monotone. C

B Claim 23. If three vectors U , V andW weakly monotonically generate the family (A,B,C)
then (up-to permuting the names of U , V and W), U ∈ RA,V ∈ RB and W ∈ RC.

Proof. As rk(A,B,C) = 3, we can consider the vector-space F generated by {A,B,C},
namely F = {T ∈ R4 | t1 + t2 − t3 − t4 = 0}. So the vectors U , V and W must form a basis
of F and so, have to lie in F . For 1 6 i 6 4, let Ei be the i-th coordinate hyperplane of R4.

Notice that RA = F ∩ E2 ∩ E3. By Proposition 20, since A is a weakly monotone linear
combination of U, V,W , (at least) one of the vectors {U, V,W} must belong to E2 ∩E3. Since
this vector lies also in F , it is in RA.

In the same way, since RB = F ∩ E1 ∩ E4 and RC = F ∩ E2 ∩ E4, one vector of B must
belong to RB and one must belong to RC.

Since RA,RB,RC are 3 distinct one-dimensional linear subspaces, each one of these spaces
has to contain one of the vectors U, V,W . C

B Claim 24. If three vectors Q, R and S weakly monotonically generate the columns of N
then, up to permuting the names of Q, R and S, Q ∈ R (AC) , R ∈ R (BC) , S ∈ R (CD) .

Proof. Let us define B = {Q,R, S}. We can easily see that the columns of N lie in the vector
space given by the intersection of the three hyperplanes F1 = {T ∈ R8 | t1 + t2 = t3 + t4},
F2 = {T ∈ R8 | t5 + t6 = t7 + t8} and F3 =

{
T ∈ R8 |

∑4
i=1 ti =

∑8
j=5 tj

}
. As rk(Q,R, S) =

rkN , the vectors Q, R and S are in F1 ∩ F2 ∩ F3.
For 1 6 i 6 8, we denote by Ei the i-th coordinate hyperplane of R8. Looking at the

two first columns of N we can notice that R (AC) = F1 ∩ F2 ∩ F3 ∩ E2 ∩ E3 ∩ E6 ∩ E8 and
R (BC) = F1 ∩ F2 ∩ F3 ∩ E1 ∩ E4 ∩ E6 ∩ E8 are two distinct one-dimensional spaces of R8. By
Proposition 20, there is at least one vector of B (let us suppose this is Q) such that Q = q (AC)
and at least one other vector of B (assume this is R) such that R = r (BC).

Finally we need to identify the last vector S. For that, we decompose S =
(
S1
S2

)
where

S1 is the projection of S on its first four coordinates and S2 the projection on the last
four. Now, we know that B weakly monotonically generates the last two columns of N . So
there exist a1, a2, a3, b1, b2, b3 ∈ R such that: a1q (AC) + a2r (BC) + a3

(
S1
S2

)
=
(A+C

2
C+D

2

)
and

b1q (AC)+b2r (BC)+b3
(
S1
S2

)
=
(B+C

2
C+D

2

)
. By Proposition 20, as

(A+C
2

C+D
2

)
∈ E2 and

(B+C
2

C+D
2

)
∈ E4,

we know that a2 = b1 = 0. Moreover, as A and (A + C) are not colinear, it means that
S1 belongs to the plane vect(A,A + C) (by the way, this space is inside E2). Similarly,
S1 ∈ vect(B,B + C). As B /∈ E2, these two planes are distinct, so the intersection is of
dimension at most 1. Moreover, vect(C) is in the intersection, and so, S1 ∈ vect(C). There
exists s 6= 0 such that S1 = sC. As a1qA + a3sC = A+C

2 , it implies that a1q = a3s = 1
2 .

Then, we have C
2 + S2

2s = C+D
2 , i.e., S2 = sD. C

H. Fournier, G. Malod, M. Szusterman, and S. Tavenas 15:9

Consequently, by Claim 22 and Claim 24, one node at layer 2 computes the polynomial
whose matrix is s (CD) (with s 6= 0). By instantiating y1 to 0 and y2 to 1/s, this node computes
exactly the polynomial corresponding to D as a weakly monotone linear combination of the
nodes at layer 1. By Claim 23, the nodes at layer 1 are polynomials associated to A, B and
C (up to scalar multiplication). This would imply that rkw(A,B,C,D) = 3, which is false.
Hence, there does not exist a weakly monotone ABP of size 8.

To complete the proof, we show there is a monotone ABP of size 9 computing H. There
are two natural monotone ABPs of size 9, let us describe one of them. One can compute
the four polynomials associated to A, B, C and D at the first layer. It gives the following

monotone ABP of size 9: H = 1
2 (x1+x4 x2+x3 x1+x3 x2+x4)

(y1 0 0
0 y1 0
y2 y2 y1
0 0 y2

)(2z1+z3
2z2+z4
z3+z4

)
. J

I Theorem 25. There exists a noncommutative homogeneous degree 3 polynomial P over
4 variables such that rk+Mi(P) = rkwMi(P) = rkMi(P) = 3 for i ∈ {1, 2}, so that∑3

i=0 rk+Mi(P) =
∑3
i=0 rkwMi(P) = 8, but the minimal size of a weakly monotone or

monotone ABP computing P is 9.

Proof. Consider the noncommutative polynomial P = H(x1, x2, x3, x4, x1, x2, x1, x2, x3, x4).
As H is ordered, and as the previous substitution follows this order, it is injective over the
set of monomials which appear in H, that is to say, if m1 and m2 are two monomials from H

which give the same monomial in P , then m1 = m2. It directly implies that the substitution
establishes a bijection between the set of monomials which appear in H and the ones which
appear in P . We will say that this substitution is faithful.

Any ABP A which computes the polynomial H can be transformed into an ABP B which
computes P with layers of same size by a direct substitution of the variables. Moreover,
if A is monotone, then B is immediately monotone. Then, if A is weakly monotone, the
faithfulness property implies that B is also weakly monotone.

In the other direction, if in a weakly monotone noncommutative ABP A computing P we
replace the variables x1 and x2 in the second layer by y1 and y2 and the variables x1, x2, x3
and x4 in the third layer by z1, z2, z3 and z4, then we get a new ABP B which computes the
polynomial H(x1, x2, x3, x4, y1, y2, z1, z2, z3, z4). The fact that this transformation preserves
the monotonicity is still immediate. The faithfulness property implies it also preserves the
weak monotonicity. So, the theorem follows from Lemma 21. J

I Corollary 26 (Gap increasing with the degree and the number of variables). Let P be the
polynomial defined in Theorem 25. Let m,n > 1. Let X1, . . . , Xn be n sets of distinct
variables, with each set of size 4. Let Q(X1, . . . , Xn) =

∑n
j=1 P

m(Xj). This is a polynomial
of degree 3m in 4n variables such that

∑3m
i=0 rk+Mi(Q) =

∑3m
i=0 rkwMi(Q) = 7mn− n+ 2

but the minimal size of a monotone or weakly monotone ABP for it is equal to 8mn− n+ 2.

Proof. Let us first consider the case n = 1. From Theorem 25, one can easily check that
rkMi(Pm(X1)) = 1 for imultiple of 3 and rkMi(Pm(X1)) = rk+Mi(Pm(X1)) = 3 otherwise,
and that a minimal (weakly) monotone ABP computing Pm(X1) has 8m+ 1 nodes.

Consider a weakly monotone ABP for Q. Assume there is an internal node α and two
distinct indices k and k′ such that α depends on at least one variable of Xk and one variable
of Xk′ . Consequently, one path of the ABP produces a monomial which contains both a
variable in Xk and a variable not in Xk. Since Q =

∑n
j=1 P

m(Xj), a given monomial in Q
can only contain variables coming from a single Xk. The above statement thus contradicts
the fact that the ABP is weakly monotone. Hence, we can partition the internal nodes of the
ABP into n parts, each one related to one variable set Xj . As mentioned earlier, a minimal
weakly monotone ABP for Pm(Xj) has 8m− 1 internal nodes. The minimal size of a weakly
monotone ABP is therefore 8mn−n+ 2. The same is true of a monotone ABP computing Q.

FSTTCS 2019

15:10 Nonnegative Rank Measures and Monotone ABPs

Let us compute the sum of ranks for Q. If 0 < i < 3m, the i-th Nisan matrix of Q is
block-diagonal with n blocks, where the j-th block corresponds to the i-th Nisan matrix
of Pm(Xj). As the nonnegative rank of a block-diagonal matrix is equal to the the sum of
the nonnegative ranks of its blocks, rkMi(Q) = rk+Mi(Q) = n for i ∈ {3, 6, . . . , 3m − 3}
and rkMi(Q) = rk+Mi(Q) = 3n for i ≡ 1, 2 mod 3. Summing over the different layers we
get that the sum-of-ranks measure for Q, both for usual rank and nonnegative rank, and
thus for weakly nonnegative rank, is equal to 7mn− n+ 2. J

An upper bound on the size of a monotone ABP computing a homogeneous degree d
polynomial P is obtained by summing, for each ` ∈ {0, . . . , d} the minimal number of rows
extracted from M`(P) whose cone contains all other columns of M`(P). The example above
shows that this is not a characterization of monotone size: for the polynomial H built in
Lemma 21, it is needed to extract 4 rows in both M1(H) and M2(H). The same remark
applies in the weakly monotone setting (about the minimum number of extracted rows which
weakly monotonically generate all the rows).

4 Lower bounds for monotone commutative ABPs

4.1 Lower bound tools for monotone and weakly monotone ABPs
Consider a homogeneous degree d commutative polynomial P . For ` ∈ {0, . . . , d}, we define
the setM`(P) of matrices, whose rows are indexed by commutative degree-` monomials and
whose columns indexed by degree-(d− `) commutative monomials. A matrix M belongs to
M`(P) if:
(a) for any degree d commutative monomial m such that m does not appear in P and

any (m1,m2) satisfying m = m1m2, m1 of degree ` and m2 of degree d − `, we have
Mm1,m2 = 0;

(b) for any other degree d commutative monomial m,
∑
m1m2=mMm1,m2 is equal to the

coefficient of m in P .
For a matrix M whose rows and columns are indexed by noncommutative monomials, we
define M com the matrix obtained by summing rows and columns indexed by the same
commutative monomial.

I Proposition 27. A homogeneous degree-d noncommutative polynomial Q computes com-
mutatively P without cancelling monomials if and only if M`(Q)com ∈ M`(P) for all
` ∈ {0, . . . , d}.

Proof. The polynomial Q computes commutatively P if and only if, for each `, the ma-
trix M := M`(Q)com satisfies the following: for any degree d commutative monomial m,∑
m1m2=mMm1,m2 is equal to the coefficient of m in P .
The polynomial Q does not cancel monomials if and only if, for all monomial m not

appearing in P and for all decomposition m = m1m2, there is no noncommutative monomial
m′ = m′1m

′
2 in Q such that m′i computes commutatively mi for i ∈ {1, 2}.

Together, these two statements prove the proposition. J

For a homogeneous degree d polynomial P and ` ∈ {0, . . . , d} consider the support matrix
S`(P) indexed by degree-` commutative monomials on the rows, degree-(d− `) commutative
monomials on the column, such that S`(P)m1,m2 = 1 if the coefficient of m1m2 in P is
nonzero and S`(P)m1,m2 = 0 otherwise.

H. Fournier, G. Malod, M. Szusterman, and S. Tavenas 15:11

I Definition 28. For M,S two matrices of the same size we define rkw(M,S) to be the
smallest r such that there exist rank 1 matrices M1, . . . ,Mr such that supp(Mi) ⊆ supp(S)
and M =

∑r
i=1Mi.

Notice that rkwM , defined in Section 2, is nothing but rkw(M,M).

I Theorem 29. The size of a monotone ABP computing a homogeneous commutative
polynomial P of degree d is at least

∑d
`=0 min{rk+M | M ∈M`(P), M > 0}. If the ABP

is weakly monotone the bound becomes
∑d
`=0 min{rkw(M,S`(P)) | M ∈M`(P)}.

Proof. Let ` ∈ {1, . . . , d−1}. Consider an ABP computing P with minimal number of nodes
at level `: say it is w. Cutting this ABP at layer ` gives a decomposition P =

∑w
i=1QiRi.

For i ∈ {1, . . . , w} let Mi be the matrix of QiRi. All matrices Mi are of rank 1 and we
have

∑w
i=1Mi ∈ M`(P). If the ABP is monotone, the matrices Mi are nonnegative and

we get min{rk+M | M ∈ M`(P), M > 0} 6 w. If the ABP is weakly monotone, we have
supp(Mi) ⊆ supp(S`(P)). Hence min{rkw(M,S`(P)) | M ∈M`(P)} 6 w. J

For two same-sized matrices M,S, let cov(M,S) be the smallest number of combinatorial
rectangles included in the support of S and whose union covers the support of M .

I Proposition 30. cov(M,S) 6 rkw(M,S).

Proof. Let r = rkw(M,S) and write M =
∑r
i=1Mi with Mi of rank 1, supp(Mi) ⊆ supp(S).

We have supp(M) ⊆
⋃r
i=1 supp(Mi): this shows that cov(M,S) 6 r. J

I Corollary 31. Any weakly monotone ABP computing P has size greater or equal to∑d
`=0 min{cov(M,S`(P)) | M ∈M`(P)}.

4.2 Application to the elementary symmetric polynomials
For n positive integer we write [n] = {1, . . . , n}. For 0 6 k 6 n, let en,k be the elementary
symmetric polynomial of degree k over the variables x1, . . . , xn: en,k =

∑
I∈([n]

k)
∏
i∈I xi.

Notice that Sj(en,k) is exactly the disjointness matrix Dn,j,k−j with rows indexed by elements
of
([n]
j

)
and columns indexed by elements of

([n]
k−j
)
, and whose entry in row A and column B

is 1 if A ∩B = ∅ and 0 otherwise.
To get lower bounds for en,k using Corollary 31 we need to show that, for enough values

of j and for any M ∈Mj(en,k), cov(M,Dn,j,k−j) is large.

I Proposition 32. For n, j, k fixed, assume cov(M,Dn,j,k−j) 6 m for some M ∈Mj(en,k).
Then there exists A1, . . . , Am ⊆ [n] with the following property:

For all B ∈
(

[n]
k

)
, there is i ∈ {1, . . . ,m} such that |Ai ∩B| = j. (1)

Proof. LetM ∈Mj(en,k). Assume U1 × V1, . . . , Um × Vm is a set of combinatorial rectangles
from

([n]
j

)
×
([n]
k−j
)
included in the support of Dn,j,k−j and covering suppM . Notice that

such a combinatorial rectangle U × V is included in the support of Dn,j,k−j if and only if(⋃
u∈U u

)
∩
(⋃

v∈V v
)

= ∅. For i ∈ {1, . . . ,m}, let Ai =
⋃
u∈Ui

u. From the previous remark
the set of combinatorial rectangles R1, . . . , Rm defined by Ri =

(
Ai

j

)
×
([n]\Ai

k−j
)
is included in

the support of Dn,j,k−j and covers suppM .

FSTTCS 2019

15:12 Nonnegative Rank Measures and Monotone ABPs

Let us show that the family {A1, . . . , Am} satisfies Equation (1). Let B ∈
([n]
k

)
. The

monomial
∏
i∈B xi appears in en,k so one non-zero entry of M is of the form (I, J) with

I ∈
([n]
j

)
, J ∈

([n]
k−j
)
and I ∪ J = B. Therefore (I, J) ∈ Ri for some i ∈ {1, . . . ,m}, i.e.

|Ai ∩B| = |I| = j. J

We will now relate our lower bound endeavor to a combinatorial question known as
Galvin’s problem: for n a multiple of 4, prove a lower bound on the size m of a family
{A1, . . . , Am} ⊆

([n]
n/2
)
such that for any B ∈

([n]
n/2
)
, there exists i such that |Ai ∩B| = n/4.

Proving a lower bound on a family {A1, . . . , Am} satisfying Equation (1) for the parameters
k = n/2 and j = n/4 is a generalization of Galvin’s problem because the sets Ai can be of
arbitrary size, instead of n/2 in the original problem.

We first give a lower bound for the middle elementary symmetric polynomial. The
argument is similar to the solution of Galvin’s original problem presented in [12, Theorem
11.1], which we reproduce here for completeness. It is based on the following result, restricted
here to the case of codes over an alphabet with 2 elements (we denote by ∆ the symmetric
difference between two sets).

I Theorem 33 ([12], Theorem 1.10). Suppose 0 < δ < 1
2 is given. Then there exists ε > 0

such that for any d even satisfying δn < d < (1 − δ)n, any family of distinct subsets
C1, . . . , Cm ⊆ [n] such that, for all i 6= j, |Ci∆Cj | 6= d, has size m 6 (2− ε)n.

I Lemma 34. There exists α > 0 such that for n ∈ 4N \ {0}, k = n/2 and j odd, any family
{A1, . . . , Am} satisfying Equation (1) has size m > αn.

Proof. Assume there exists A1, . . . , Am ⊆ [n] such that F = {A1, . . . , Am} satisfies Equa-
tion (1). Let V be the subspace of Fn2 spanned by the characteristic vectors of the elements
of F . By assumption, for all B ∈

([n]
n/2
)
, there exists F ∈ F such that |B ∩F | = j; this means

that 〈χ(B), χ(F)〉 = 1 6= 0 because j is odd. Hence V ⊥ contains no vector of weight n/2.
Because V ⊥ is a vector space, it implies that for any C,D ⊆ [n] such that χ(C), χ(D) ∈ V ⊥,
|C∆D| 6= n/2.

By Theorem 33, |V ⊥| 6 (2− ε)n for some constant ε > 0. This means that dimV ⊥ 6
(1− α)n for some α > 0. It follows that m = |F| > dimV > αn. J

I Lemma 35. For n ∈ 4N, every weakly monotone ABP computing en,n/2 has size Ω(n2).

Proof. There exists α > 0 such that for n ∈ 4N, k = n/2 and j odd, any family {A1, . . . , Am}
satisfying Equation (1) has size m > αn by Lemma 34. It follows from Proposition 32
that for all M ∈ Mj(en,n/2), cov(M,Dn,j,n/2−j) > αn. The lower bound is obtained by
Corollary 31. J

From the simple observation en,k(x1, . . . , xm, 0, . . . , 0) = em,k(x1, . . . , xm), Lemma 35
yields quadratic lower bounds on the size of weakly monotone ABPs computing en,k for δn 6
k 6 n/2 for a fixed δ > 0. However we need to be more careful to get a quadratic lower bound
for e.g. en,2n/3. Indeed the simple reduction en,k(x1, . . . , xn) =

∏n
i=1 xi ·en,n−k

(
1
x1
, . . . , 1

xn

)
uses divisions, which are not allowed in our model and would cost too much to remove.

In an ABP, the formal degree fdegt(α) of a node α with respect to a variable t is defined
as the maximum degree in t of the polynomial computed along a path from the source to α,
which is also the maximal degree in t of a monomial produced along a path from the source
to α. By definition, the formal degree of the source is 0. Let us denote by α̂ the polynomial
computed at the node α. Remark that fdegt(α) > degt(α̂). The formal degree in t of an
ABP is the formal degree in t of its output.

H. Fournier, G. Malod, M. Szusterman, and S. Tavenas 15:13

Let us show now that we can always extract the part of maximal formal degree without
changing the size of an ABP. We denote by [tk]f the coefficient of the homogeneous component
of f of degree k in t. The proofs of the next two lemmas can be found in the full version [11].

I Lemma 36. Let A be an ABP of size s and of formal degree k in the variable t computing
a polynomial f . Then there exists A′ an ABP of size at most s such that A′ computes [tk]f .

Moreover, if A is weakly monotone, then it is also the case for A′.

I Lemma 37. If there is a weakly monotone ABP of size s computing the polynomial en,p,
then for all q 6 p, there is a weakly monotone ABP of size at most s which computes the
polynomial en−q,p−q.

I Theorem 38. Every weakly monotone ABP, or equivalently every homogeneous syntacti-
cally multilinear ABP, computing en,k has size Ω(min{k2, (n− k)2}).

Proof. Let us first prove the lower bound when n and k are even.
If k 6 n/2, then as mentioned previously, any weakly monotone ABP of size s implies a

weakly monotone ABP of size at most s for e2k,k by putting some variables to 0. So in this
case s = Ω(k2) by Lemma 35.

Otherwise, we have k > n/2. It means that k > 2k − n > 0. Then a weakly monotone
ABP of size s for en,k gives a weakly monotone ABP of size at most s for e2n−2k,n−k by
Lemma 37, choosing the parameters p = k and q = 2k− n. The lower bound s = Ω((n− k)2)
follows from Lemma 35.

The lower bound is obtained for n odd by noticing that e2bn/2c,k can be reduced to en,k
by putting one variable to 0. Moreover, en,k reduces to en−1,k−1 by Lemma 37. So the lower
bound holds for n and k of any parity.

This lower bound also holds in the homogeneous syntactically multilinear model: indeed,
any such ABP computing en,k is weakly monotone because en,k has all degree k monomials
in its support. J

References
1 Noga Alon, Mrinal Kumar, and Ben Lee Volk. Unbalancing Sets and an Almost Quadratic

Lower Bound for Syntactically Multilinear Arithmetic Circuits. In 33rd Computational
Complexity Conference, CCC 2018, June 22-24, 2018, San Diego, CA, USA, pages 11:1–11:16,
2018. doi:10.4230/LIPIcs.CCC.2018.11.

2 Walter Baur and Volker Strassen. The complexity of partial derivatives. Theoretical Computer
Science, 22(3):317–330, 1983. doi:10.1016/0304-3975(83)90110-X.

3 LeRoy B. Beasley and Thomas J. Laffey. Real rank versus nonnegative rank. Linear Algebra
Appl., 431(12):2330–2335, 2009. doi:10.1016/j.laa.2009.02.034.

4 Symeon Bozapalidis and Olympia Louscou-Bozapalidou. The rank of a formal tree power series.
Theoretical Computer Science, 27(1):211–215, 1983. doi:10.1016/0304-3975(83)90100-7.

5 Joel E Cohen and Uriel G Rothblum. Nonnegative ranks, decompositions, and factorizations
of nonnegative matrices. Linear Algebra and its Applications, 190:149–168, 1993.

6 Ronald de Wolf. Nondeterministic Quantum Query and Communication Complexities. SIAM
J. Comput., 32(3):681–699, 2003. doi:10.1137/S0097539702407345.

7 Nathanaël Fijalkow, Guillaume Lagarde, Pierre Ohlmann, and Olivier Serre. Lower bounds for
arithmetic circuits via the Hankel matrix. Electronic Colloquium on Computational Complexity
(ECCC), 25:180, 2018. URL: https://eccc.weizmann.ac.il/report/2018/180.

8 Samuel Fiorini, Serge Massar, Sebastian Pokutta, Hans Raj Tiwary, and Ronald de Wolf.
Exponential Lower Bounds for Polytopes in Combinatorial Optimization. J. ACM, 62(2):17:1–
17:23, 2015. doi:10.1145/2716307.

FSTTCS 2019

https://doi.org/10.4230/LIPIcs.CCC.2018.11
https://doi.org/10.1016/0304-3975(83)90110-X
https://doi.org/10.1016/j.laa.2009.02.034
https://doi.org/10.1016/0304-3975(83)90100-7
https://doi.org/10.1137/S0097539702407345
https://eccc.weizmann.ac.il/report/2018/180
https://doi.org/10.1145/2716307

15:14 Nonnegative Rank Measures and Monotone ABPs

9 Samuel Fiorini, Thomas Rothvoß, and Hans Raj Tiwary. Extended Formulations for Polygons.
Discrete & Computational Geometry, 48(3):658–668, 2012. doi:10.1007/s00454-012-9421-9.

10 Michel Fliess. Matrices de Hankel. J. Math. Pures Appl. (9), 53:197–222, 1974.
11 Hervé Fournier, Guillaume Malod, Maud Szusterman, and Sébastien Tavenas. Nonnegative

rank measures and monotone algebraic branching programs. Electronic Colloquium on Com-
putational Complexity (ECCC), 26:100, 2019. URL: https://eccc.weizmann.ac.il/report/
2019/100.

12 Peter Frankl and Vojtěch Rödl. Forbidden intersections. Trans. Amer. Math. Soc., 300(1):259–
286, 1987. doi:10.2307/2000598.

13 Pavel Hrubes and Amir Yehudayoff. Homogeneous Formulas and Symmetric Polynomials.
Computational Complexity, 20(3):559–578, 2011. doi:10.1007/s00037-011-0007-3.

14 Pavel Hrubes and Amir Yehudayoff. Formulas are Exponentially Stronger than Monotone
Circuits in Non-commutative Setting. In Proceedings of the 28th Conference on Computational
Complexity, CCC 2013, K.lo Alto, California, USA, 5-7 June, 2013, pages 10–14, 2013.
doi:10.1109/CCC.2013.11.

15 Mark Jerrum and Marc Snir. Some Exact Complexity Results for Straight-Line Computations
over Semirings. J. ACM, 29(3):874–897, July 1982. doi:10.1145/322326.322341.

16 Stasys Jukna and Georg Schnitger. On the optimality of Bellman-Ford-Moore shortest path
algorithm. Theor. Comput. Sci., 628:101–109, 2016. doi:10.1016/j.tcs.2016.03.014.

17 Adam Klivans and Amir Shpilka. Learning Restricted Models of Arithmetic Circuits. Theory
of Computing, 2(10):185–206, 2006. doi:10.4086/toc.2006.v002a010.

18 Mrinal Kumar and Shubhangi Saraf. On the Power of Homogeneous Depth 4 Arithmetic
Circuits. SIAM J. Comput., 46(1):336–387, 2017. doi:10.1137/140999335.

19 Noam Nisan. Lower Bounds for Non-Commutative Computation (Extended Abstract). In
Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, May 5-8, 1991,
New Orleans, Louisiana, USA, pages 410–418, 1991. doi:10.1145/103418.103462.

20 Noam Nisan and Avi Wigderson. Lower bounds on arithmetic circuits via partial derivatives.
Comput. Complexity, 6(3):217–234, 1996/97. doi:10.1007/BF01294256.

21 Ran Raz. Multi-linear formulas for permanent and determinant are of super-polynomial size.
J. ACM, 56(2):8:1–8:17, 2009. doi:10.1145/1502793.1502797.

22 C.P. Schnorr. A lower bound on the number of additions in monotone computations. Theoretical
Computer Science, 2(3):305–315, 1976. doi:10.1016/0304-3975(76)90083-9.

https://doi.org/10.1007/s00454-012-9421-9
https://eccc.weizmann.ac.il/report/2019/100
https://eccc.weizmann.ac.il/report/2019/100
https://doi.org/10.2307/2000598
https://doi.org/10.1007/s00037-011-0007-3
https://doi.org/10.1109/CCC.2013.11
https://doi.org/10.1145/322326.322341
https://doi.org/10.1016/j.tcs.2016.03.014
https://doi.org/10.4086/toc.2006.v002a010
https://doi.org/10.1137/140999335
https://doi.org/10.1145/103418.103462
https://doi.org/10.1007/BF01294256
https://doi.org/10.1145/1502793.1502797
https://doi.org/10.1016/0304-3975(76)90083-9

Unambiguous Catalytic Computation
Chetan Gupta
Indian Institute of Technology Kanpur, India
gchetan@cse.iitk.ac.in

Rahul Jain
Indian Institute of Technology Kanpur, India
jain@cse.iitk.ac.in

Vimal Raj Sharma
Indian Institute of Technology Kanpur, India
vimalraj@cse.iitk.ac.in

Raghunath Tewari
Indian Institute of Technology Kanpur, India
rtewari@cse.iitk.ac.in

Abstract
The catalytic Turing machine is a model of computation defined by Buhrman, Cleve, Koucký, Loff,
and Speelman (STOC 2014). Compared to the classical space-bounded Turing machine, this model
has an extra space which is filled with arbitrary content in addition to the clean space. In such a
model we study if this additional filled space can be used to increase the power of computation or
not, with the condition that the initial content of this extra filled space must be restored at the end
of the computation.

In this paper, we define the notion of unambiguous catalytic Turing machine and prove that
under a standard derandomization assumption, the class of problems solved by an unambiguous
catalytic Turing machine is same as the class of problems solved by a general nondeterministic
catalytic Turing machine in the logspace setting.

2012 ACM Subject Classification Mathematics of computing

Keywords and phrases Catalytic computation, Logspace, Reinhardt-Allender

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.16

Funding Rahul Jain: Ministry of Human Resource Development, Government of India
Raghunath Tewari: DST Inspire Faculty Grant, Visvesvaraya Young Faculty Fellowship

Acknowledgements The fourth author would like to thank Michal Koucký for valuable discussions
and for suggesting key ideas which led to the proof of the main result in this paper. The first and
third author would like to thank Ministry of Electronics and IT, India for supporting this research
through the Visvesvaraya PhD. The authors would also like to thank the anonymous reviewers for
their valuable comments which helped in improving the presentation of this paper and suggesting
an alternative proof of CNL = coCNL as a corollary of our result.

1 Introduction

The catalytic computational model was first introduced by Buhrman et al. [2]. It is a
computational model constructed by equipping a standard Turing machine with a large
auxiliary tape in addition to its work tape. This auxiliary tape is filled with arbitrary data
which must be restored at the end of the computation. A catalytic Turing machine with a
workspace of size s(n) can be assumed to have auxiliary space of size 2s(n). The question that
arises is, whether having access to this additional tape increases the power of computation or
not. At first, this extra filled space seemed to be of no use. However, surprisingly, Buhrman
et al. [2] showed that there exist some problems which can be solved by a deterministic

© Chetan Gupta, Rahul Jain, Vimal Raj Sharma, and Raghunath Tewari;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 16; pp. 16:1–16:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gchetan@cse.iitk.ac.in
https://orcid.org/0000-0002-8567-9475
mailto:jain@cse.iitk.ac.in
mailto:vimalraj@cse.iitk.ac.in
mailto:rtewari@cse.iitk.ac.in
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.16
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Unambiguous Catalytic Computation

catalytic logspace Turing machine (CL) but are not known to be solvable by a standard
deterministic logspace Turing machine (L), or even nondeterministic logspace NL. More
precisely, they showed that uniformTC1 ⊆ CL ⊆ ZPP and uniformTC1 is known to contain
NL which is believed to be different from L. This result gives the motivation to explore the
power of the catalytic Turing machine further.

In a subsequent result, Buhrman et al. [3] defined a nondeterministic catalytic computa-
tional model. In a nondeterministic catalytic Turing machine, the content of the auxiliary
tape must be restored to its initial content for every sequence of nondeterministic choices.
The nondeterministic equivalent of CL is called CNL. Using the same observation as in [2]
they showed that CNL ⊆ ZPP. They also showed that, under a standard derandomization
assumption, the class of problems solvable by a nondeterministic logspace catalytic Turing
machine (CNL) is closed under complement, that is CNL = coCNL. To prove this, they first
show that on a specific input x most of the configuration graphs of a CNL machine will be
of polynomial size. They use the pseudorandom generator of [5] to obtain a polynomial
size configuration graph. However, having access to a polynomial size graph is not enough
because the size of a vertex in the graph is still exponentially larger than the size of the
workspace. To circumvent this problem, they use a hash function picked from a hash family
which maps these vertices injectively to smaller values. After that, they apply the inductive
counting technique of Immerman and Szelepcsényi on this smaller size graph to obtain the
final result [4, 8].

In this paper, we define a variant of nondeterministic catalytic Turing machine called
unambiguous catalytic Turing machine. Analogous to the standard Turing machine, an
unambiguous catalytic Turing machine is a nondeterministic catalytic Turing machine which
has at most one accepting path on each input.

We show that under the same derandomization assumption as that of [3], in the logspace
setting, unambiguous catalytic Turing machine (CUL) and nondeterministic catalytic Turing
machine are equivalent in power. This is stated formally in the following theorem.

I Theorem 1 (Main Theorem). If there exists a constant ε > 0 such that DSPACE(n) *
SIZE(2εn), then CNL = CUL.

We prove Theorem 1 by giving an unambiguous logspace catalytic algorithm which
answers if in the configuration graph of a CNL machine, the accepting vertex is reachable
from the starting vertex or not. For this, we use (i) the pseudorandom generator used by [1]
and [3] to obtain a small size min-unique weighted configuration graph of the CNL machine,
(ii) the hashing scheme of [3] which maps the vertices of the configuration graph to smaller
values, and (iii) the double counting technique of [7]. Our result is analogous to a result of
[1] in the traditional Turing machine model, where authors prove that, if there are problems
in DSPACE(n) which require exponential size circuits, then UL = NL.

The rest of the paper is organized as follows. Section 2 contains definitions of nondetermin-
istic and unambiguous catalytic computation. We state the derandomization assumption
under which our result holds, pseudorandom generators and the hashing scheme that we
have used. In Section 3, we prove the main result CUL = CNL.

2 Preliminaries

In this section, we present the necessary definitions, notations, and lemmas. We start with
the definition of a nondeterministic catalytic Turing machine as defined in [3].

C. Gupta, R. Jain, V. R. Sharma, and R. Tewari 16:3

I Definition 2. LetM be a nondeterministic Turing machine with three tapes: one input
tape, one work tape, and one auxiliary tape.

Let x ∈ {0, 1}n be an input, and w ∈ {0, 1}sa(n) be the initial content of the auxiliary
tape. We say thatM(x,w) accepts x if there exists a sequence of nondeterministic choices
that makes the machine accept. If for all possible sequences of nondeterministic choices
M(x,w) does not accept, the machine rejects x.

ThenM is said to be a catalytic nondeterministic Turing machine using workspace s(n)
and auxiliary space sa(n) if for all inputs, the following three properties hold.
1. Space bound. The machineM(x,w) uses space s(n) on its work tape and space sa(n)

on its auxiliary tape.
2. Catalytic condition. M(x,w) halts with w on its auxiliary tape, irrespective of its

nondeterministic choices.
3. Consistency. The outcome of the computation is consistent among all initial aux-tape

content w. M(x,w) should either accept for all choices of w — in which case we say
M accepts x — or it rejects for all possible w — M rejects x. However, the specific
nondeterministic choices that makeM(x,w) go one way or the other may depend on w.

I Definition 3. CNSPACE(s(n)) is the set of decision problems that can be solved by a
nondeterministic catalytic Turing machine with at most s(n) size workspace and 2s(n) size
auxiliary space. CNL denotes the class CNSPACE(O(logn)).

Unambiguous computation is a natural restriction of nondeterministic computation where
on every input the Turing machine can have at most one nondeterministic path which accepts
the input. In the domain of catalytic computation, the definition naturally extends as follows.

I Definition 4. An unambiguous catalytic Turing machine is a nondeterministic catalytic
Turing machine which on every input produces at most one sequence of nondeterministic
choices where the machine accepts.

I Definition 5. CUSPACE(s(n)) is the set of decision problems that can be solved by an
unambiguous catalytic Turing machine with at most s(n) size workspace and 2s(n) size
auxiliary space. CUL denotes the class CUSPACE(O(logn)).

In order to present our result, we will use the notion of configuration graph. Configuration
graphs of a classical Turing machine are used heavily in proving space-bounded computation
results. A modified version of configuration graph was used for catalytic computations by
Buhrman et al. in [3]. They defined the configuration graph in the context of catalytic
computation in the following way: LetM be a nondeterministic catalytic Turing machine with
c logn size workspace and nc size auxiliary space. Then, GM,x,w denotes the configuration
graph of a nondeterministic catalytic Turing machine M on input x and initial auxiliary
content w. Every vertex of GM,x,w corresponds to a configuration ofM reachable from the
initial configuration ofM which consists of the content of the work tape and the auxiliary
tape, head positions of all three tapes and the current state. The graph has a directed edge
from a vertex ver1 to a vertex ver2 if the configuration corresponding to ver2 can be reached
from the configuration corresponding to ver1 in one step inM. We will denote the number
of the vertices in a configuration graph GM,x,w by |GM,x,w|.

A configuration of a nondeterministic catalytic Turing machine M with c logn size
workspace and nc size auxiliary space can be described with at most c logn+ nc + logn+
log(c logn)+lognc+O(1) = O(nc) bits, where we need c logn+nc bits for work and auxiliary
tape content, logn+ log(c logn) + lognc bits for the tape heads, and O(1) bits for the state
information. Thus, the total number of configurations ofM can be upper bounded by 2O(nc),
which also implies |GM,x,w| ≤ 2O(nc) for an input x and initial auxiliary content w.

FSTTCS 2019

16:4 Unambiguous Catalytic Computation

In Section 3, we will prove CUL = CNL under the same assumption the following
derandomization result holds.

I Lemma 6 ([5, 6]). If there exists a constant ε > 0 such that DSPACE(n) * SIZE(2εn)
then for all constants c there exists a constant c′ and a function G : {0, 1}c′ logn → {0, 1}n
computable in O(logn) space, such that for any circuit C of size nc∣∣∣ Pr

r∈{0,1}n
[C(r) = 1]− Pr

s∈{0,1}c′ log n
[C(G(s)) = 1]

∣∣∣ < 1
n
.

Buhrman et al. in [3], showed a way to get a small size configuration graph of a
nondeterministic logspace catalytic Turing machine. We will use the following lemma in our
result, a stronger version of which was proved in [3].

I Lemma 7 ([3]). Let M be a nondeterministic catalytic Turing machine using c logn
size workspace and nc size auxiliary space. If there exists a constant ε > 0 such that
DSPACE(n) * SIZE(2εn), then there exists a function G : {0, 1}O(logn) → {0, 1}nc , such
that on every input x and initial auxiliary content w, for at least one seed s ∈ {0, 1}O(logn),
|GM,x,w⊕G(s)| ≤ n2c+3. Moreover, G is logspace computable. (w⊕G(s) represents the bitwise
XOR of w and G(s))

Let G be a directed graph, with vertex set V (G) and edge set E(G). Then, a weight
function for G is a map W : E(G)→ N which maps every edge in E(G) to a natural number.
Let GW denote the weighted graph with respect to the weight function W . We say a weight
function is a k-bit weight function if every edge in E(G) gets a weight in the range [0, 2k − 1].
A k-bit weight function for a graph G of n vertices can be thought of as a kn2 length binary
string b = b1b2 . . . bk.n2 . In such a representation, the weight assigned to the ith edge ei of G
is W (ei) = Dec(bj+1bj+2 . . . bj+k), where j = k.(i− 1) and Dec(x) is the natural number
whose decimal representation is the binary string x.

We say GW is min-unique, if there is a unique minimum weight path between every pair
of vertices in GW . For any two vertices u and v in V (GW), we denote the weight of the
minimum weight path from u to v by dist(u, v). The following lemma implicit in [1] shows
that under the assumption of Lemma 6 there exists a logspace computable pseudorandom
generator which gives an O(logn)-bit min-unique weight function for any graph of n vertices.

I Lemma 8. If there exists a constant ε > 0 such that DSPACE(n) * SIZE(2εn), then there
exists a logspace computable function W : {0, 1}O(logn) → {0, 1}c′n2 logn, such that for any
directed graph G of n vertices there exists at least one seed s′ ∈ {0, 1}O(logn) for which GW (s′)
is min-unique.

We also borrow the following lemma about the existence of a hash family from [3].

I Lemma 9 ([3]). For every n, there exists a family of hash functions {hk}n
3

k=1, with each
hk a function {0, 1}n → {0, 1}4 logn, such that the following properties hold. First, hk is
computable in space O(logn) for every k, and second, for every set S ⊂ {0, 1}n with |S| ≤ n
there is a hash function in the family that is injective on S.

I Definition 10. Let G be a directed graph, h : V (G) → {1, 2, . . . , n} be a hash function
and W be a weight function for a graph of n vertices. Then, the hashed-weighted graph
denoted by Gh,W is a weighted graph, such that every edge uv ∈ E(Gh,W) has weight
W (uv) = W (h(u)h(v)).

C. Gupta, R. Jain, V. R. Sharma, and R. Tewari 16:5

3 Reinhardt-Allender’s Double Counting in the Catalytic Setting

In this section, we will prove Theorem 1 by constructing a CUL machineM′ which accepts
the same language as that of a given CNL machineM. The core idea is to use the double
counting technique of Reinhardt and Allender [7] on the configuration graph ofM. However,
there are few hurdles to implement it.

Firstly note that, as shown by Buhrman et al. [3], the configuration graph of a CNL
machine M can be of exponential size. Therefore, it is not possible for M′ to do double
counting on this graph in its workspace, which is just logarithmic in size. To handle this
problem, we use the pseudorandom generator of Lemma 7 to get a small size configuration
graph. But this does not solve the problem completely as the size of a vertex in the
configuration graph is still very large. To solve this, we use the family of hash functions
described in Lemma 9. One of these functions injectively maps the vertices of the configuration
graph to small hashed values. Both the pseudorandom generator of Lemma 7 and hash
function family of Lemma 9 were also used in [3] for performing inductive counting. In our
result, to do double counting we need to make the configuration graph min-unique, therefore,
we also use the pseudorandom generator of Lemma 8.

InM′, we do the double counting on the configuration graph ofM for every possible
triplet consisting of seeds of the pseudorandom generators of Lemma 7 and 8 and a hash
function from the hash family of Lemma 9. During the double counting we move on to the
next triplet if the hash function doesn’t map the vertices injectively or the configuration
graph is not min-unique, otherwise, after finishing double counting we accept if the accepting
node in the configuration graph was encountered at some point during the process.

We detect if the configuration graph is not min-unique the same way Reinhardt and
Allender do it in [7]. Detecting if a hash function doesn’t map the vertices injectively is tricky.
Note that, to check whether two vertices of the configuration graph have been mapped to
the same value or not cannot be done directly by storing them in the workspace ofM′. This
is because the size of those vertices can be large. Therefore, we perform a clever bit by bit
comparison of these vertices to check if they have been mapped to the same value or not.
We outline this procedure in Algorithm 3.

In the following lemma, we prove the existence of the pseudorandom generators and the
family of hash functions in the context of a configuration graph of a CNL machine.

I Lemma 11. Let M be a nondeterministic catalytic Turing machine using c logn size
workspace and nc size auxiliary space. For an input x and auxiliary content w, let G be the
pseudorandom generator as given in Lemma 7 and s be a seed such that, |GM,x,w⊕G(s)| ≤ N ,
where N = n2c+3. Then,
1. there exists a family of logspace computable hash functions H = {hk}O(N3)

k=1 , such that
for each k we have hk : {0, 1}N → {0, 1}4 logN , and at least one hk ∈ H injectively maps
V (GM,x,w⊕G(s)) to {0, 1}4 logN .

2. if there exists a constant ε > 0 such that DSPACE(n) * SIZE(2εn), then there exists
a logspace computable function W : {0, 1}O(logN4) → {0, 1}c′N8 logN4 , such that for at
least one seed s′ ∈ {0, 1}O(logN4), the hashed-weighted graph GM,x,w⊕G(s),hk,W (s′) is
min-unique, where hk injectively maps V (GM,x,w⊕G(s)) to {0, 1}4 logN .

Proof. We know that the size of a vertex(configuration) in GM,x,w⊕G(s) can be upper bounded
by O(nc). For the sake of simplicity, we assume that O(nc) ≤ N . Then, 1 follows directly
from Lemma 9 if you take the set S(of Lemma 9) as V (GM,x,w⊕G(s)).

Now, consider the graph GM,x,w⊕G(s) where every vertex is hashed by hk to some value
in the range [0, N4 − 1] injectively. If we treat this hashed graph as a graph of N4 many
vertices, then 2 follows from Lemma 8. J

FSTTCS 2019

16:6 Unambiguous Catalytic Computation

3.1 Proof of Main Theorem
Since CUL ⊆ CNL follows by definition, we only need to show that CNL ⊆ CUL. LetM be a
nondeterministic catalytic Turing machine with c logn size workspace and nc size auxiliary
space. We will prove CNL ⊆ CUL by showing that there exists an unambiguous catalytic
Turing machine M′ with c′ logn size workspace and nc

′ size auxiliary space, where c′ is
sufficiently larger than c, such that on every input x and auxiliary content w, M(x,w)
accepts if and only ifM′(x,w) accepts. For the sake of simplicity, we assume thatM has a
unique configuration when it accepts an input. Let accw and startw denote the accept and
start configurations ofM on input x and auxiliary content w respectively.

Let G, H, W and N be as given in Lemma 11. For s ∈ {0, 1}O(logn), hk ∈ H, and
s′ ∈ {0, 1}O(logN4), we say a triplet 〈s, hk, s′〉 is a good triplet, if (1) hk injectively maps the
vertices of GM,x,w⊕G(s) to {0, 1}4 logN and (2) GM,x,w⊕G(s),hk,W (s′) is min-unique. Otherwise,
we call it a bad triplet. Existence of a good triplet follows directly from Lemma 11.

In our algorithm forM′, we iterate over all possible combinations of s, hk, and s′. In
each iteration we work with the hashed-weighted configuration graph GM,x,w⊕G(s),hk,W (s′).
For a good triplet 〈s, hk, s′〉, our algorithm Accepts if there is a path from startw⊕G(s) to
accw⊕G(s). Otherwise, for a bad triplet 〈s, hk, s′〉 the algorithm moves on to the next triplet.

To perform the double counting technique on GM,x,w⊕G(s),hk,W (s′), we need to identify
the vertices which are at distance i from startw⊕G(s). For this, our algorithm uses an
unambiguous procedure Reachable. Another unambiguous procedure Badgraph is used
to check if hk maps V (GM,x,w⊕G(s),hk,W (s′)) to {0, 1}4 logN injectively or not.

Algorithm 1 outlines the main algorithm ofM′, Algorithm 2 and Algorithm 3 outline
the procedures Reachable and Badgraph respectively.

3.1.1 Description of the Algorithm 1
Let x be the input and w be the auxiliary content ofM′. We iterate over all triplets 〈s, hk, s′〉
using the loop of line 2. In line 3, we set w to w ⊕G(s) and weight function wt to W (s′).
For the sake of simplicity, we assume that the function wt assigns weight one to every edge.
If not we can always split an edge with weight l to an l length path, similar to how it is done
in Lemma 2.1 of [7].

Note that from now onwards, we will denote the hashed-weighted graph for the fixed
triplet 〈s, hk, s′〉 by GM,x,w,hk,wt. We define two sets C=i and C<i for GM,x,w,hk,wt as follows:

C=i = {ver ∈ V (GM,x,w,hk,wt) | dist(startw, ver) = i},

C<i =
i−1⋃
j=0

C=j .

For applying double counting technique, we use two counters ci and di, where, ci = |C<i+1|
and di = Σver∈C<i+1dist(startw, ver). Clearly, c0 = 1 and d0 = 0. From lines 5 to 19, we
compute the counters ci and di iteratively from the values of ci−1 and di−1. Since for a good
triplet 〈s, hk, s′〉, |GM,x,w,hk,wt| can not be more than N4, we compute ci’s and di’s for i = 1
to M , where M = N4. Note that we set M = N4 for a special case where wt assigns weight
one to every edge, otherwise, its value can be different and need to be set accordingly.

Since hk maps the vertices of GM,x,w,hk,wt on {0, 1}4 logN , we go over all possible hashed
values v from 0 to M − 1 and check if there is a vertex ver in GM,x,w,hk,wt such that
dist(startw, ver) = i and hk(ver) = v, using the procedure Reachable. If there exists such
a vertex ver than we increment ci and di accordingly in line 10. Moreover, if ver is an
accepting node then we store this information in the final variable.

C. Gupta, R. Jain, V. R. Sharma, and R. Tewari 16:7

Algorithm 1 Algorithm ofM′.
G andW are as described in Lemma 11. S and S′ are the set of seeds for G andW respectively
and H is the hash function family. M = N4 is the maximum size of the configuration graph
for a good triplet 〈s, hk, s′〉.
1: procedure unambiguousSimulation(Input x, Auxiliary Content w)
2: for 〈s, hk, s′〉 ∈ S ×H × S′ do
3: w ← w ⊕G(s), wt←W (s′), final← FALSE
4: c0 ← 1, d0 ← 0
5: for i = 1 to M do
6: ci ← ci−1, di ← di−1
7: for v = 0 to M − 1 do
8: (found, finalreach)← Reachable(v, i, hk, wt, ci−1, di−1, s)
9: if found = TRUE then
10: ci ← ci + 1, di ← di + i

11: if finalreach = TRUE then
12: final← TRUE
13: end if
14: else if found = BAD then
15: w ← w ⊕G(s)
16: Jump to line 2
17: end if
18: end for
19: end for
20: w ← w ⊕G(s)
21: if final = TRUE then
22: Accept
23: end if
24: end for
25: Reject
26: end procedure

If the triplet 〈s, hk, s′〉 is bad, we catch it while computing the values of ci’s and di’s
using Reachable and move to the next triplet after restoring the initial auxiliary content w
in line 15 by XORing it again with G(s). If it is good, then the loop of line 2 terminates
normally. After which we restore w in line 20 and Accept if final is TRUE in line 22 or
move to the next triplet if final is FALSE.

Finally, if accw is not reachable from startw for any good triplet 〈s, hk, s′〉, we Reject in
line 25.

3.1.2 Description of the Algorithm 2
Reachable(v, i, hk, wt, ci−1, di−1, s) is called only if the following conditions are satisfied:

Condition A: All the vertices in C<i have a unique minimum weight path from startw.
Condition B: All the vertices in C<i are injectively mapped to the set {0, 1}4 logN .

We define the following conditions based on which Reachable detects a bad triplet:
Condition I: There exists a vertex ver1 in C<i and a vertex ver2 in C=i, such that
hk(ver1) = hk(ver2) = v. (hk doesn’t map V (GM,x,w,hk,wt) to {0, 1}4 logn injectively.)

FSTTCS 2019

16:8 Unambiguous Catalytic Computation

Condition II: There exist vertices ver1 and ver2 in C=i such that hk(ver1) = hk(ver2) =
v. (hk doesn’t map V (GM,x,w,hk,wt) to {0, 1}4 logn injectively.)
Condition III: There exists a vertex ver in C=i such that hk(ver) = v and ver has
more than one minimum weight paths from startw. (GM,x,w,hk,wt is not min-unique.)

Reachable is a nondeterministic procedure which Rejects on all sequences of non-
deterministic choices except one, where it returns one of the following pair of values:

(BAD, FALSE) if at least one of the Condition I, II, and III is satisfied.
(TRUE, TRUE) if none of the Condition I, II, or III are satisfied and there exists a
vertex ver in C=i, such that hk(ver) = v and ver = accw.
(TRUE, FALSE) if none of the Condition I, II, or III are satisfied and there exists a
vertex ver in C=i, such that hk(ver) = v but ver 6= accw.
(FALSE, FALSE) if none of the Condition I, II, or III are satisfied and there does not
exist a vertex ver in C=i, such that hk(ver) = v.

Reachable in line 3-31, guesses the vertices of C<i in ascending order of their hashed
values from hk. In every iteration, it first cleans a portion of M′’s workspace say z and
selects l ≤ i− 1 nondeterministically. Then using the workspace z and auxiliary content w
ofM′ it simulates the machineM on x and w for l steps.

During a simulation, we denote the current configuration ofM by (z, w, pos, state), where
z denotes the work tape content, w denotes the auxiliary content, pos denotes the head
positions on the different tapes and state denotes the current state.

To ensure the ascending order, we use the variable h which is initially set to -1. After
every simulation, we compare the hashed value of the current configuration to h in line 7. If
the order is violated, we continue the simulation untilM halts, restore w and Reject. If
not, we assign hk(z, w, pos, state) to h and use it in the next iteration.

In line 13, we store the sum of the distance of all ci−1 many guessed vertices from startw
in the variable d. Variable vpresent intends to store the information about the existence of a
vertex ver in C<i, such that hk(ver) = v. In line 15, we set vpresent to TRUE if h = v.

In line 17-29, if l = i − 1 then we increment cnt for every neighbour of the current
configuration which hashes to v. We also set finalreach to TRUE if a neighbour of the
current configuration is an accepting node accw. Later, we use variables cnt and vpresent to
decide the returning value of Reachable. In line 30, we continue the simulation until a
halting state is reached to restore the auxiliary content.

Outside the loop, in line 32, we compare d with di−1 and Reject if d 6= di−1. Since vertices
in C<i have unique minimum weight path from startw and they were all guessed in ascending
order of their hashed value, d = di−1 holds only for one sequence of nondeterministic choices.
For a more detailed proof of why d = di−1 holds only for one sequence of nondeterministic
choices, one can refer to Theorem 2.2 of [7].

vpresent = FALSE implies that there is no vertex ver in C<i, such that hk(ver) = v. In
such a case, we return the appropriate value based on the value of cnt. cnt = 0 implies
that there is no vertex ver in C=i, such that hk(ver) = v, therefore, we return (FALSE,
FALSE). cnt = 1 implies that there is exactly one vertex ver in C=i, such that hk(ver) = v,
therefore, we return (TRUE, finalreach). cnt > 1 implies that either the Condition II or
III satisfies, therefore, we return (BAD, FALSE).

vpresent = TRUE implies that there is a vertex ver in C<i, such that hk(ver) = v. Here
again, if cnt = 0 we return (FALSE, FALSE). But if cnt > 0, we need to check if Condition
I is satisfied i.e. there is a vertex ver′ 6= ver for which we incremented cnt in line 22 when it
was encountered through a path of weight i. Note that, in Reinhardt-Allender’s algorithm
we do not need to check this because there we do not work with hashed graphs.

C. Gupta, R. Jain, V. R. Sharma, and R. Tewari 16:9

We call the procedure Badgraph to check if the Condition I is satisfied or not. If
Badgraph returns TRUE i.e. Condition I is satisfied, we return (BAD, FALSE). If
Badgraph returns FALSE, then that means that all the vertices for which we incremented
cnt in line 22 were actually the vertex ver encountered through a different path of weight i,
hence we return (FALSE, FALSE).

3.1.3 Description of the Algorithm 3
Badgraph is also a nondeterministic procedure which Rejects on all sequences of non-
deterministic choices except one, where it returns TRUE if Condition I is satisfied, else it
returns FALSE.

Badgraph is called from Reachable if there is a vertex ver in C<i, such that hk(ver) = v

and cnt > 0. Let F denote the set of all the vertices for which cnt was incremented in the
line 22 of Reachable.

In Badgraph we compare ver with every vertex in F one bit at a time because we
cannot store all the bits due to the limited workspace ofM′. In line 2, we set g to be the
index of the vertex in F we intend to compare with ver. In line 3, we set t to be the index
of the bits that we intend to compare. Since a vertex is basically a configuration of machine
M on input x and auxiliary content w, we keep T = O(nc).

From line 4 to 40, we compare the two bits by guessing the vertices of C<i in the same
manner as we do in Rechable. In line 17, we store the tth bit of ver in bit1. To get the gth
vertex of F we use the variable cnt′ which is set to 0 initially in line 4. We increment cnt′
by one every time l = i− 1 and neighbour of the current configuration hashes to v. Thus,
cnt′ = g in line 25 implies that we have the gth vertex of F and we store the tth bit of that
vertex in bit2.

In line 38, we compare both bits bit1 and bit2 and if they are unequal then that means
that there is at least one vertex in F which is different from ver but both have the same
hash value. That implies that Condition I is satisfied and hence we return TRUE.

If we never encounter unequal bits in line 38, then that means that all the vertices in F
are actually the vertex ver. Therefore, we return FALSE in line 43.

3.1.4 Correctness of Algorithm 1
We divide the proof of correctness of the Algorithm 1 into two cases:

Case 1 - Triplet 〈s, hk, s′〉 is good: We first prove that if triplet 〈s, hk, s′〉 is good
then given the correct values of ci−1 and di−1 the ith iteration of the loop of line 5 correctly
computes values of ci and di.

First notice that, since triplet 〈s, hk, s′〉 is good, Reachable will never return BAD
for any of the v chosen in line 7. Now, for every vertex ver in C=i, a call to Reach-
able(hk(ver), i, hk, wt, ci−1, di−1, s) will return (TRUE, finalreach) after which we update
the values ci and di accordingly in line 10. And for any vertex ver not in C=i, a call to
Reachable(hk(ver), i, hk, wt, ci−1, di−1, s) will return (FALSE, FALSE). Thus at the end
of the ith iteration we will have the correct values of ci and di.

Since we start with the correct values of c0 and d0, we can say that the loop of line 5
terminates normally with the correct values of cM and dM . Now, if the vertex accw is present
in the graph GM,x,w,hk,wt such that dist(startw, accw) = i, then final is set to TRUE in
the ith iteration of the loop of line 5 when Reachable(hk(accw), i, hk, wt, ci−1, di−1, s) is
called and it returns (TRUE, TRUE). Following which we halt and Accept in line 22 after
restoring the initial auxiliary content ofM′ by XORing it with G(s). �

FSTTCS 2019

16:10 Unambiguous Catalytic Computation

Algorithm 2 The Reachable procedure.
Reachable(v, i, hk, wt, ci−1, di−1, s) is called only if Condition A and Condition B are
satisfied. The procedure checks if there exists a ver ∈ V (GM,x,w,hk,wt) such that hk(ver) = v,
dist(startw, ver) = i and ver = accw.
1: procedure Reachable(v, i, hk, wt, ci−1, di−1, s)
2: d← 0, h← −1, vpresent ← FALSE, cnt← 0, finalreach← FALSE
3: for j = 1 to ci−1 do
4: Clean the workspace z for simulation ofM.

5: Nondeterministically guess l ≤ i− 1.
6: SimulateM on (x, w) using z as workspace for l steps.
7: if hk(z, w, pos, state) ≤ h then
8: Continue the simulation until a halting state is reached.
9: w ← w ⊕G(s)
10: Reject
11: end if
12: h← hk(z, w, pos, state)
13: d← d + l

14: if h = v then
15: vpresent ← TRUE
16: end if
17: if l = i− 1 then
18: q = Number of configurations reachable from (z, w, pos, state) in one step
19: for r = 1 to q do
20: Simulate one more step.
21: if hk(z, w, pos, state) = v then
22: cnt← cnt + 1
23: if (z, w, pos, state) = accw then
24: finalreach← TRUE
25: end if
26: end if
27: Simulate a step back.
28: end for
29: end if
30: Continue the simulation until a halting state is reached.
31: end for
32: if d 6= di−1 then
33: w ← w ⊕G(s)
34: Reject
35: end if
36: if vpresent = FALSE then
37: if cnt = 0 then return (FALSE, FALSE)
38: else if cnt = 1 then return (TRUE, finalreach)
39: else if cnt > 1 then return (BAD, FALSE)
40: end if
41: else
42: if cnt = 0 then return (FALSE, FALSE)
43: else if Badgraph(v, i, hk, wt, ci−1, di−1, s, cnt) = TRUE then
44: return (BAD, FALSE)
45: else return (FALSE, FALSE)
46: end if
47: end if
48: end procedure

C. Gupta, R. Jain, V. R. Sharma, and R. Tewari 16:11

Algorithm 3 The Badgraph procedure.
Badgraph(v, i, hk, wt, ci−1, di−1, s, cnt) is called only if Condition A and Condition B
are satisfied. The procedure checks if hk maps V (GM,x,w,hk,wt) to {0, 1}4 logn injectively or
not.
1: procedure Badgraph(v, i, hk, wt, ci−1, di−1, s, cnt)
2: for g = 1 to cnt do
3: for t = 1 to T do
4: d← 0, h← −1, bit1← 0, bit2← 0, cnt′ ← 0
5: for j = 1 to ci−1 do
6: Clean the workspace z for simulation ofM.
7: Nondeterministically guess l ≤ i− 1.
8: SimulateM on (x,w) using z as workspace for l steps.
9: if hk(z, w, pos, state) ≤ h then

10: Continue the simulation until a halting state is reached.
11: w ← w ⊕G(s)
12: Reject
13: end if
14: h← hk(z, w, pos, state)
15: d← d+ l

16: if h = v then
17: Store the tth bit of (z, w, pos, state) in bit1.
18: end if
19: if l = i− 1 then
20: q = Number of configurations reachable from (z, w, pos, state)
21: for r = 1 to q do
22: Simulate one more step.
23: if hk(z, w, pos, state) = v then
24: cnt′ ← cnt′ + 1
25: if cnt′ = g then
26: Store the tth bit of (z, w, pos, state) in bit2.
27: end if
28: end if
29: Simulate a step back.
30: end for
31: end if
32: Continue the simulation until a halting state is reached.
33: end for
34: if d 6= di−1 then
35: w ← w ⊕G(s)
36: Reject
37: end if
38: if bit1 6= bit2 then
39: return TRUE
40: end if
41: end for
42: end for
43: return FALSE
44: end procedure

FSTTCS 2019

16:12 Unambiguous Catalytic Computation

Case 2 - Triplet 〈s, hk, s′〉 is bad: A triplet 〈s, hk, s′〉 is bad if
Violation I: hk does not injectively map the vertices of GM,x,w,hk,wt to {0, 1}4 logN .
Violation II: GM,x,w,hk,wt is not min-unique.

We will show that if both violations occur simultaneously then Algorithm 1 moves to the
next triplet without finishing all M iterations of the loop of line 5. The other cases where
only one violation occurs can be analysed similarly.

Let ver1 and ver2 be two vertices of GM,x,w,hk,wt such that (1) dist(startw, ver1) ≤
dist(startw, ver2), (2) hk(ver1) = hk(ver2), and (3) there does not exist any other pair
of vertices say ver3 and ver4 such that hk(ver3) = hk(ver4) and dist(startw, ver3) ≤
dist(startw, ver4) < dist(startw, ver2). ver1 and ver2 exist due to Violation I.

Let ver be a vertex which has more than one minimum weight paths from startw such
that there is no other vertex ver′ with more than one minimum weight paths from startw
and dist(startw, ver′) < dist(startw, ver). ver exists due to Violation II.

Let dist(startw, ver2) = i and dist(startw, ver) = j. First note that i ≤ M , because
if i > M then the first M + 1 vertices on the shortest path from startw to ver2 are all
injevtively mapped to {0, 1}4 logN which is not possible because M = N4 = |{0, 1}4 logN |.

Let i ≤ j, then both Condition A and Condition B are satisfied for C<i, therefore,
the first i − 1 iterations of the loop of line 5 will terminate normally with correct values
of ci−1 and di−1. But on the ith iteration Reachable(hk(ver2), i, hk, wt, ci−1, di−1, s) will
return (BAD, FALSE) as Condition I or II are satisfied and Algorithm 1 will move on to
the next triplet. The case of j < i is similar. �

Finally, if accw /∈ GM,x,w,hk,wt for any good triplet 〈s, hk, s′〉 then the value of final is
never set to TRUE, therefore, after going over all triplets we Reject in line 25.

3.2 coCUL and an alternative proof of CNL = coCNL
Note that, if in line 22 of Algorithm 1 we Reject instead of Accept after finding an accepting
node in the configuration graph for a good triplet 〈s, hk, s′〉 and in line 25 we finally Accept
instead of Reject after not finding the accepting node in any of the configuration graph
for a good triplet 〈s, hk, s′〉, then L(M′) = L(M). This proves that coCNL ⊆ CUL(= CNL),
which implies that CUL = CNL = coCNL = coCUL.

References
1 Eric Allender, Klaus Reinhardt, and Shiyu Zhou. Isolation, Matching, and Counting Uniform

and Nonuniform Upper Bounds. J. Comput. Syst. Sci., 59(2):164–181, October 1999. doi:
10.1006/jcss.1999.1646.

2 Harry Buhrman, Richard Cleve, Michal Koucký, Bruno Loff, and Florian Speelman. Computing
with a Full Memory: Catalytic Space. In Proceedings of the Forty-sixth Annual ACM Symposium
on Theory of Computing, STOC ’14, pages 857–866, New York, NY, USA, 2014. ACM.
doi:10.1145/2591796.2591874.

3 Harry Buhrman, Michal Koucký, Bruno Loff, and Florian Speelman. Catalytic Space: Non-
determinism and Hierarchy. Theory of Computing Systems, 62(1):116–135, January 2018.
doi:10.1007/s00224-017-9784-7.

4 Neil Immerman. Nondeterministic Space is Closed Under Complement. SIAM Journal on
Computing, 17:935–938, 1988.

5 Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits: De-
randomizing the XOR lemma. In Proceedings of the Twenty-ninth Annual ACM Symposium
on Theory of Computing, STOC ’97, pages 220–229, New York, NY, USA, 1997. ACM.
doi:10.1145/258533.258590.

https://doi.org/10.1006/jcss.1999.1646
https://doi.org/10.1006/jcss.1999.1646
https://doi.org/10.1145/2591796.2591874
https://doi.org/10.1007/s00224-017-9784-7
https://doi.org/10.1145/258533.258590

C. Gupta, R. Jain, V. R. Sharma, and R. Tewari 16:13

6 Adam R. Klivans and Dieter van Melkebeek. Graph Nonisomorphism Has Subexponential Size
Proofs Unless the Polynomial-Time Hierarchy Collapses. SIAM J. Comput., 31(5):1501–1526,
May 2002. doi:10.1137/S0097539700389652.

7 Klaus Reinhardt and Eric Allender. Making Nondeterminism Unambiguous. SIAM J. Comput.,
29(4):1118–1131, February 2000. doi:10.1137/S0097539798339041.

8 Robert Szelepcsényi. The Method of Forced Enumeration for Nondeterministic Automata.
Acta Informatica, 26:279–284, 1988.

FSTTCS 2019

https://doi.org/10.1137/S0097539700389652
https://doi.org/10.1137/S0097539798339041

A Fast Exponential Time Algorithm for Max
Hamming Distance X3SAT
Gordon Hoi
School of Computing, National University of Singapore, Singapore 117417, Republic of Singapore
e0013185@u.nus.edu

Sanjay Jain
School of Computing, National University of Singapore, Singapore 117417, Republic of Singapore
sanjay@comp.nus.edu.sg

Frank Stephan
Dept. of Mathematics, National University of Singapore, Singapore 119076, Republic of Singapore
School of Computing, National University of Singapore, Singapore 117417, Republic of Singapore
fstephan@comp.nus.edu.sg

Abstract
X3SAT is the problem of whether one can satisfy a given set of clauses with up to three literals
such that in every clause, exactly one literal is true and the others are false. A related question
is to determine the maximal Hamming distance between two solutions of the instance. Dahllöf
provided an algorithm for Maximum Hamming Distance XSAT, which is more complicated than the
same problem for X3SAT, with a runtime of O(1.8348n); Fu, Zhou and Yin considered Maximum
Hamming Distance for X3SAT and found for this problem an algorithm with runtime O(1.6760n).
In this paper, we propose an algorithm in O(1.3298n) time to solve the Max Hamming Distance
X3SAT problem; the algorithm actually counts for each k the number of pairs of solutions which
have Hamming Distance k.

2012 ACM Subject Classification Mathematics of computing → Combinatorial algorithms; Theory
of computation → Design and analysis of algorithms

Keywords and phrases X3SAT Problem, Maximum Hamming Distance of Solutions, Exponential
Time Algorithms, DPLL Algorithms

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.17

Related Version A full version of the paper is available at [8], https://arxiv.org/abs/1910.01293.

Funding Sanjay Jain: supported in part by the NUS grant C-252-000-087-001 and by Singapore
Ministry of Education Academic Research Fund Tier 2 grant MOE2016-T2-1-019 / R1467-000-234-
112.
Frank Stephan: supported in part by the Singapore Ministry of Education Academic Research Fund
Tier 2 grant MOE2016-T2-1-019 / R1467-000-234-112.

1 Introduction

Given a Boolean formula φ in conjunctive normal form, the satisfiability (SAT) problem
seeks to know if there are possible truth assignments to the variables such that φ evaluates
to the value “True”. One naïve way to solve this problem is to brute-force all possible truth
assignments and see if there exist any assignment that will evaluate φ to “True”. Suppose
that there are n variables and m clauses, we will take up to O(mn) time to check if every
clause is satisfiable. However, since there are 2n different truth assignments, we will take
a total of O(2nnm) time [4]. Classical algorithms were improving on this by exploiting
structural properties of the satisfiability problem and in particular its variants. The basic type
algorithms are called DPLL algorithms – by the initials of the authors of the corresponding

© Gordon Hoi, Sanjay Jain, and Frank Stephan;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 17; pp. 17:1–17:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:e0013185@u.nus.edu
mailto:sanjay@comp.nus.edu.sg
mailto:fstephan@comp.nus.edu.sg
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.17
https://arxiv.org/abs/1910.01293
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 A Fast Algorithm for Max Hamming Distance X3SAT

papers [12, 11] – and the main idea is to branch the algorithm over variables where one
can, from the formula, in each of the branchings deduce consequences which allow to derive
values of some further variables as well, so that the overall amount of the run time can be
brought down. For the analysis of the runtime of such algorithms, we also refer to the work
of Eppstein [2, 3], Fomin and Kratsch [4] and Kullmann [14].

A variant of SAT is the Exact Satisfiability problem (XSAT), where we require that the
satisfying assignment has exactly 1 of the literals to be true in each clause, while the other
literals in the same clause are assigned false. If we have at most 3 literals per clause with the
aim of only having exactly 1 literal to be true, then the whole problem is known as Exact
3-Satisfiability (X3SAT) and this is the problem which we wish to study. Wahlström [10]
provided an X3SAT solver which runs in time O∗(1.0984n) and subsequently there were only
slight improvements; here n is, as also always below, the number of variables of the given
instance and O∗(g(n)) is the class of all functions f bounded by some polynomial p(·) (in
the size of the input) times g(n). The problems mentioned before, SAT, 3SAT and X3SAT
are all known to be NP-complete. More background information to the above bounds can be
found in the PhD theses and books of Dahllöf [19], Gaspers [5] and Wahlström [10].

The runtimes of the problems SAT, 3SAT, XSAT and X3SAT have been well-explored.
Sometimes, instead of just finding a solution instance to a problem, we are interested in
finding many “diverse” solutions to a problem instance. Generating “diverse” solutions is of
much importance in the real world and can be seen in areas such as Automated Planning,
Path Planning and Constraint Programming [17]. How does one then measure the “diversity”
of solutions? This combinatorial aspect can be investigated naturally with the notion of the
Hamming Distance [16]. Given any two satisfying assignments to a satisfiability problem, the
Hamming Distance problem seeks to find the number of variables that differ between them.
The Max Hamming Distance problem therefore seeks to compute the maximum number of
variables that will defer between any two satisfying assignments. If we are interested in the
“diversity” of exact satisfying assignments, then the problem is defined as Max Hamming
Distance XSAT (X3SAT) accordingly. The algorithm given in this paper actually provides
information about the number of pairs of solutions which have Hamming distance k, for
k = 0, 1, . . . , n, which could potentially have uses in other fields such as error correction.

A number of authors have worked in these area previously as well. Crescenzi and Rossi
[15] as well as Angelsmark and Thapper [13] studied the question to determine the maximum
Hamming distance of solutions of instances of certain problems. Dahllöf [18, 19] gave two
algorithms for Max Hamming Distance XSAT problem in O∗(2n) and an improved version
in O∗(1.8348n). The first algorithm enumerates all possible subset of all sizes while checking
that they meet certain conditions. The second algorithm uses techniques found in DPLL
algorithms. Fu, Zhou and Yin [9] specialised on the X3SAT problem and provided an
algorithm to determine the Max Hamming Distance of two solutions of an X3SAT instance
in time O∗(1.676n). Recently, Hoi and Stephan [7] gave an algorithm to solve the Max
Hamming Distance XSAT problem in O(1.4983n).

The main objective of this paper is to propose an algorithm in O(1.3298n) time to solve
the Max Hamming Distance X3SAT problem. The output of the algorithm is a polynomial p
which gives information about the number ak of pairs of solutions of Hamming distance k,
for k = 0, 1, . . . , n. The algorithm does so by simplifying in parallel two versions φ1, φ2 of
the input instance and the main novelty of this algorithm is to maintain the same structure
of φ1 and φ2 and to also hold information about the Hamming distance of the current and
resolved variables while carrying out an DPLL style branching algorithm.

G. Hoi, S. Jain, and F. Stephan 17:3

2 Basic Approach

Suppose a X3SAT formula φ over the set of n variables X is given. The aim is to find the
largest Hamming distance possible between two possible value assignments β1, β2 to the
variables which are solutions of φ, that is, make true exactly one literal in each clause of φ.

To this end, the algorithm presented in this paper computes a polynomial (called HD-
polynomial) in u, with degree at most n, such that the coefficient ck of uk gives the number
of solution pairs (β1, β2) such that the Hamming distance between β1 and β2 is k. The
degree of this polynomial will then provide the largest Hamming distance between any pair
of solutions.

I Example 1. We consider the formula φ = (x1 ∨ x2 ∨ x3)∧ (x1 ∨ x4 ∨ x5)∧ (x1 ∨ x6 ∨ x7)∧
(x2 ∨ x4 ∨¬x6). Exhaustive search gives for this X3SAT formula the following four solutions:

x1 x2 x3 x4 x5 x6 x7

1 0 0 0 0 0 0
0 1 0 0 1 1 0
0 0 1 1 0 1 0
0 0 1 0 1 0 1

So there are 16 pairs of solutions among which four pairs have Hamming distance 0 and
twelve pairs of Hamming distance 4. The intended output of the algorithm is the polynomial
12u4 + 4u0 which indicates that there are four pairs of Hamming distance 0 and twelve pairs
of Hamming distance 4.

The reason for choosing this representation is that our algorithm often needs to add/multiply
possible partial solutions, which can be done easily using these polynomials whenever needed.

The brute force approach would be to consider a search tree, with four branches at the
internal nodes – (0, 0), (0, 1), (1, 0), (1, 1) based on values assigned to some variable x for the
two possible solutions being compared. If at a leaf the candidate value assignments (β1, β2)
formed by using the values chosen along the path from the root are indeed both solutions
for φ and their Hamming distance is k, then the polynomial calculated at the leaf would be
uk; if any of (β1, β2) are not solutions then the polynomial calculated at the leaf would be 0.
Then, one adds up all the polynomials at the leaves to get the result. This exhaustive search
has time complexity (number of leaves)× poly(n, |φ|) = 4n × poly(n, |φ|) for n variables.

For x ∈ X and i, j ∈ {0, 1}, let qx,i,j be u if i 6= j and 1 otherwise. The above brute force
approach for computing the HD-polynomial would be equivalent to computing∑

(β1,β2)

∏
x∈X

qx,β1(x),β2(x),

where (β1, β2) in the summation ranges over the pair of solutions for the X3SAT problem φ.
However, we may not always need to do the full search as above. We will be using

a DPLL type algorithm, where we use branching as above, and simplifications at various
points to reduce the number of leaves in the search tree. Note that the complexity of such
algorithms is proportional to the number of leaves, modulo a polynomial factor: that is,
complexity is O(poly(n, |φ|)× (number of leaves in the search tree)) = O∗(number of leaves
in the search tree).

As an illustration we consider some examples where the problems can be simplified. If
there is a clause (x, y), then x = ¬y for any solution which satisfies the clause. Thus, x and
y’s values are linked to each other, and we only need to explore the possibilities for y and

FSTTCS 2019

17:4 A Fast Algorithm for Max Hamming Distance X3SAT

can drop the branching for x (in addition one needs to do some book-keeping to make sure
the difference in the values of y in two solutions also takes care of the difference in the values
of x in the two solutions; this book-keeping will be explained below). As another example,
if there is a clause (x, x, z), then value of x must be 0 in any solution which satisfies the
clause. Our algorithm would use several such simplifications to bring down the complexity of
finding the largest Hamming distance. In the simplification process, we will either fix values
of some of the variables, or link some variables as above, or branch on a variable x to restrict
possibilities of other variables in clauses involving x and so on (more details below).

In the process, we need to maintain that the HD-polynomial generated is as required.
Intuitively, if we consider a polynomial calculated at any node as the sum of the values of
the polynomials in the leaves which are its descendant, then the value of the polynomial
calculated at the root of the search tree gives the HD-polynomial we want. For this purpose,
we will keep track of polynomials named pmain and px,i,j , which start with pmain being
1, and polynomials px,i,j = qx,i,j , for x ∈ X, i, j ∈ {0, 1} (here qx,i,j is u for i 6= j, and 1
otherwise). If there is no simplification done, then at the leaves, the polynomial pmain will
become the product of px,i,j , x ∈ X, for the values (i, j) taken by x for the two solutions in
that branch. When doing simplification via linking of variables, or assigning truth value to
some variables, etc. we will update these polynomials, so as to maintain that the polynomial
calculated at the root using above method is the HD-polynomial we need. More details on
this updating would be given in the following section.

3 Algorithm for Computing HD-polynomial

In this section we describe the algorithm for finding the HD-polynomial for any X3SAT
formula φ. Note that we consider clause (x, y, z) to be same as (y, x, z), that is order of the
literals in the clause does not matter. We start with some definitions.

Notation: For a formula φ with variable x, we use the notation φ[x = i] to denote the
formula obtained by replacing all occurence of x in φ by i. Similarly, for a set P containing
values/definitions of some parameters, including p1, p2, we use P [p1 = f, p2 = g] to denote
the modification of p1 to f , p2 to g (and rest of the parameters remaining the same).

I Definition 2. Fix a formula φ:
(a) For a literal / variable x, x′ and x′′ and other primed versions are either x or ¬x, i.e.,

they use the same variable x, which may or may not be negated.
(b) Two clauses c, c′ are called neighbours if they share a common variable. For example,

(x, y, z) and (¬x,w, r) are neighbours.
(c) Two clauses are called similar if one of them can be obtained from the other just by

negating some of the literals. They are called dissimilar if they are not similar. For
example, (x, y) is similar to (x,¬y), (1, x, y) is similar to (0,¬x, y), (x, z) is dissimilar
to (x, y) and (x,¬x, z) is dissimilar to (x, z,¬z).

(d) Two X3SAT formulas have the same structure if they have the same number of clauses
and there is a 1–1 mapping between these clauses such that the mapping maps a clause
to a similar clause.

(e) A set of clauses C is called isolated (in φ), if none of the clauses in C is a neighbour of
any clause in φ which is not in C.

(f) A set I of variables is semisolated in φ by J if all the clauses in φ either contain only
variables from I ∪ J , or do not contain any variable from I. We will be using such I and
J for |I| ≤ 10 and |J | ≤ 3 only to simplify some cases.

G. Hoi, S. Jain, and F. Stephan 17:5

(g) We say that x is linked to y, if we can derive that x = y (respectively, x = ¬y) in any
possible solution using constantly many clauses of the X3SAT formula φ as considered in
our case analysis (a constant bound of 20 is enough). In this case we say that value i of
x is linked to value i of y (value i of x is linked to value 1− i of y respectively).

I Definition 3 (see Monien and Preis [1]). Suppose G = (V,E) is a simple undirected graph.
A balanced bisection is a mapping π : V → {0, 1} such that, for Vi = {v : π(v) = i}, |V0|
and |V1| differ by at most one. Let cut(π) = |{(v, w) : v ∈ V0, w ∈ V1}|. The bisection width
of G is the smallest cut(·) that can be obtained for a balanced bisection.

Suppose φ is the original X3SAT formula given over n variable set X. Our main (recursive)
algorithm is MHD(φ1, φ2, s1, s2, V, P), where φ1, φ2 are formulas with the same structure
over variable set V ⊆ X, s1, s2 are some value assignments to variables from X and P is a
collection of polynomials (over u) for pmain and px,i,j , x ∈ X, i, j ∈ {0, 1}. Intuitively, pmain
represents the portion of the polynomial which is formed using variables which have already
been fixed (or implied) based on earlier branching decisions.

Initially, algorithm starts with MHD(φ1 = φ, φ2 = φ, V = X, s1 = ∅, s2 = ∅, P), where φ
is the original formula given for which we want to find the Hamming distance, X is the set
of variables for φ, s1, s2 are empty value assignments, pmain = 1, px,i,j = qx,i,j .

Intuitively, the function MHD(φ1, φ2, s1, s2, V, P) returns the polynomial pmain×
∑

(β1,β2)∏
x∈V [px,β1(x),β2(x)], where β1, β2 range over value assignments to variables in V which are

satisfying for the formula φ1 and φ2 respectively, and which are consistent with the value
assignment in s1, s2, if any, respectively. Thus, if we consider the search tree, then the node
representing MHD(φ1, φ2, s1, s2, V, P) basically represents the polynomial formed∑

(β1,β2)

∏
x∈X

qx,β1(x),β2(x),

where (β1, β2) in the summation ranges over the pair of solutions for the X3SAT problem φ,
consistent with the choices taken for the branching variables in the path from the root to the
node. Over the course of the algorithm, the following steps will be done:

(a) using polynomial amount of work (in size of φ) branch over some variable or group
of variables. That is, if we branch over variable x, we consider all possible values for
x in {0, 1} for φ1, φ2 (consistent with s1(x), s2(x) respectively), and then evaluate the
corresponding subproblems: note that MHD(φ1, φ2, s1, s2, V, P) would be the sum of the
answers returned by (upto) four subproblems created as above: where in the subproblem
for x being fixed to (i, j) in (φ1, φ2) respectively, pmain gets multiplied by px,i,j and x is
dropped from V .

(b) simplify the problem, using polynomial (in size of φ) amount of work, to MHD(φ′1, φ′2, s′1,
s′2, V

′, P ′), where we reduce the number of variables in V or the number of clauses in
φ′1, φ

′
2.

Note that all our branching/simplication rules will maintain the correctness of calculation of
MHD(. . .) as described above.

Thus, the overall complexity of the algorithm is O(poly(n, |φ|) × [number of leaves in
search tree]). In the analysis below thus, whenever branching occurs, reducing the number of
variables from n to n−r1, n−r2, . . . , n−rk in various branches, then we give a corresponding
α0 such that for all α ≥ α0, αn ≥ αn−r1 + αn−r2 + . . . αn−rk . Having these α0’s for each of
the cases below would thus give us that the overall complexity of the algorithm is at most
O(poly(n, |φ|) ∗ αn1), for any α1 larger than any of the α0’s used in the cases.

FSTTCS 2019

17:6 A Fast Algorithm for Max Hamming Distance X3SAT

All of our modifications done via case analysis below would convert similar clauses to
similar clauses. Thus, if one starts with φ1 = φ2, then as we proceed with the modifications
below, the corresponding clauses in the modified φ1, φ2 would remain similar (or both dropped)
in the new (sub)problems created. Thus, φ1, φ2 will always have the same structure.

Our algorithm/analysis is based on two main cases. Initially, first case is applied until it
can no longer be applied. Then, Case 2 applies, repeatedly to solve the problem (Case 2 will
use simplifications as in Case 1.(i) to (iv), but no branching from Case 1). The basic outline
of the algorithm is given below, followed by the detailed case analysis.

Algorithm 1 Algorithm Max Hamming Distance X3SAT: MHD(φ1, φ2, V, s1, s2, P).

Output: The polynomial pmain×
∑

(β1,β2)
∏
x∈V [px,β1(x),β2(x)], where β1, β2 range over

value assignments to variables in V which are satisfying for the formula φ1 and φ2
respectively, and which are consistent with the value assignment in s1, s2, if any, respectively.
Note: As φ1, φ2 have the same structure, the statements below about two clauses being
neighbours, or involving k-variables (and other similar questions) have the same answer
for both φ1, φ2.
if (some clause cannot be satisfied (for example (0, 0, 0) or (1, x,¬x)) in φ1 or φ2) then
return 0. This is Case 1.(i).

else if (for some variable x ∈ V , s1(x) and s2(x) are both defined) or (x does not appear
in any of the clauses) then

return MHD(φ1, φ2, s1, s2, V −{x}, P [pmain = pmain × (
∑
i,j px,i,j)]), where summation

is over pairs of (i, j) which are consistent with (s1(x), s2(x)) (if defined). This is Case
1.(ii).

else if (some clause contains at most two different variables in its literals) then
simplify (φ1, φ2) according to Case 1.(iii) and return the answer from the updated MHD
problem.

else if (there are two clauses sharing exactly 2 common variables) then
simplify (φ1, φ2) according to Case 1.(iv) and return the answer from the updated MHD
problem.

else if (there is a variable appearing in at least 4 dissimilar clauses) then
branch on this variable and do follow-up linking of the variables according to Case 1.(v),
return the sum of the answers obtained from the subproblems.

else if (there is a clause with at least four dissimilar neighbours and there is a small set I
of variables which are semiisolated by a small set J of variables and conditions prescribed
in Case 1.(vi) below hold; we use this only if |I| ≤ 10, |J | ≤ 3) then

branch on all variables except one in J and simplify according to Case 1.(vi) and return
the sum of the answers obtained from the subproblems.

else if (there is a clause with at least 4 dissimilar neighbouring clauses) then
branch on upto three variables and do follow-up linking according to Case 1.(vii) and
return the sum of the answers from the subproblems.

else
In this case all the clauses have at most three dissimilar neighbours, no variable appears
in more than 3 dissimilar clauses and each clause has exactly three variables and no two
dissimilar clauses share two or more variables.
As described in Case 2 below, one can branch on some variables and after simplification,
have two sets of clauses in φ1 (φ2) which have no common variables. Furthermore, as
the clauses do not satisfy the preconditions for Case 1, they again fall in Case 2, and
we can repeatedly branch/simplify the formulas until the number of variables/clauses
become small enough to use brute force.

end if

G. Hoi, S. Jain, and F. Stephan 17:7

3.1 Case 1

This case applies when either some clause is not satisfiable irrespective of the values of the
variables (case (i)) or some variable in V ’s value has already been determined for both φ1, φ2
(case (ii)) or some clauses in φ1 (and thus φ2) use only one or two variables (case (iii)), or
two dissimilar clauses have two common variables (case (iv)), or some variable appears in
four dissimilar clauses (case (v)) or some clause has four dissimilar clauses as neighbours
(which is divided into two subcases (vi) and (vii) below for ease of analysis).

The subcases here are in order of priority. So (i) has higher priority than (ii) and (ii) has
higher priority than (iii) and so on.

(i) If there is a clause which cannot be satisfied (for example the clauses (0, 0, 0) or (1, 1, x)
or (1, x,¬x)) whatever the assignment of values to the variables consistent with s1, s2
in either φ1 or φ2 respectively, then MHD(φ1, φ2, s1, s2, V, P) = 0.

(ii) If a variable x ∈ V is determined in both φ1, φ2 (i.e., s1(x) and s2(x) are defined), or
variable x does not appear in any of the clauses, then do the simplification: update
pmain to pmain × (

∑
i,j px,i,j), where i, j range over value assignments to x in φ1, φ2

which are consistent with (s1(x), s2(x)) (if defined) respectively. That is, answer
returned in this case is MHD(φ1[x = s1(x)], φ2[x = s2(x)], s1, s2, V − {x}, P [pmain =
pmain × (

∑
i,j px,i,j)), where the summation is over i, j consistent with s1(x), s2(x), if

defined.
(iii) If there is a clause which contains only one variable. Then, either the value of the

variable is determined (for example when the clause is of the form (x,¬x,¬x) or (x),
for some literal x, which is satisfiable only via x = 1), or the clause is unsatisfiable
(for example when it is of the form (x, x) or (x, x, x) – in which case we have that
MHD(φ1, φ2, s1, s2, V, P) = 0) or it does not matter what the value of the variable is
for the clause to be satisfied (for example, when the clause is (x,¬x)). Thus, we can
drop the clause and note down the value of the variable in the corresponding si if it is
determined (if this is in conflict with the variable having been earlier determined in si,
then MHD(φ1, φ2, . . .) = 0). Note that x may be determined in only one of φ1, φ2, thus
we do not update the x appearing in any of the remaining clauses of φ1, φ2 to maintain
that the clauses of φ1, φ2 are similar.
If there is a clause which contains literals involving exactly two variables, x and y, then
x and y can be linked, either as x = y or x = ¬y, as we must have exactly one literal in
the clause which is true for any satisfying assignment. Thus, we can replace all usage of
y by x (or ¬x) in both φ1, φ2, drop the variable y from V and correspondingly, update,
for i, j ∈ {0, 1}, px,i,j to px,i,j × py,i′,j′ , based on the linking of values i for x in φ1 (j
for x in φ2 respectively) to value i′ for y in φ1 (j′ for y in φ2 respectively). Here, in case
value of y is determined in s1, s2, then the value of x is correspondingly determined –
and in case it is in conflict with an earlier determination then MHD(φ1, φ2, . . .) is 0.
So for below assume no clause has literals involving at most two variables.

(iv) Two clauses share two of the three variables in the literals:
Suppose the clauses in φ1 are (x, y, w) and (x′, y′, z), where x, x′ (similarly, y, y′) are
literals over same variable.
If x = x′, y = y′, then we have w = z;
If x = ¬x′, y = ¬y′, then we must have w = z = 0;
If x = x′, y = ¬y′, then we must have x = 0 and w = ¬z; (case of x = ¬x′ and y = y′

is symmetrical).

FSTTCS 2019

17:8 A Fast Algorithm for Max Hamming Distance X3SAT

In all the four cases, we have that w is linked to z and thus, z can be replaced using w
in both φ1, φ2, with corresponding update of pw,i,j by pw,i,j × pz,i′,j′ , where i′, j′ are
obtained from i, j based on the linking in φ1, φ2 respectively. Here, in case value of z is
determined in s1, s2, then the value of w is correspondingly determined – and in case it
is in conflict with an earlier determination then MHD(φ1, φ2, . . .) is 0.

(v) A variable x appears in at least four dissimilar clauses.
By Cases 1(iii) and 1(iv), these four clauses use, beside x, variables (y1, z1), (y2, z2),
(y3, z3), (y4, z4) respectively, which are all different from each other. We branch based
on x having values (for (φ1, φ2)): (0, 0), (0, 1), (1, 0) and (1, 1). Then, in each of the four
clauses involving x, we link the remaining yi and zi. Formulas φ1, φ2 and s1, s2, V, P are
correspondingly updated (that is, x is dropped from V , pmain is updated to pmain×px,i,j
based on the branch (i, j), and the linking of the variables is done as in Case 1.(iii)).
Note that for each branch, we thus remove the variable x, and one of the other variables
in each of the four clauses. Thus we can remove a total of 5 variables for each subproblem
based on the branching for x.

(vi) Though technically we need this case only when some clause has four dissimilar
neighbours (see case (vii) and Proposition 4), the simplification can be done in other
cases also.
There exists (I, J), I ∪ J ⊆ V , such that |I| ≤ 10, |J | ≤ 3 and (I, J) is semiisolated in
φ1 (and thus in φ2 too) and one of the following cases hold.
1. j = 1 and i ≥ 1: Suppose J = {x}. In this case, we can simplify the formulas

φ1, φ2 to remove variables from I as follows:
Let W = {value vectors (β1, β2) with domain I ∪{x} : βi is consistent with si and
all clauses involving variables I ∪ {x} in φi are satisfied using βi}.
Let Wi,j = {(β1, β2) ∈W : β1(x) = i ∧ β2(x) = j}.
Let px,i,j = px,i,j × (

∑
(β1,β2)∈Wi,j

∏
v∈I pv,β1(v),β2(v)).

Let V = V − I.
Remove from φ1 and φ2 all clauses containing variables found in I. If x occurs in
any clause after the modification, then answer returned is MHD(φ1, φ2, s1, s2, V, P),
where the parameters are modified as above.
IF x does not occur in any clause after above modification, then, let pmain =
pmain×

∑
i,j px,i,j , where summation is over values (i, j) for x which are consistent

with (s1(x), s2(x)) if defined. V = V − I − {x} and the answer returned is
MHD(φ1, φ2, s1, s2, V, P), where the parameters are modified as above.
Here note that j = 0 case can be similarly handled.

2. J = {w, x} and i ≥ 3, where x appears in some clause C involving a variable not
in I ∪ J .
In this case, we will branch on x and then using the technique of (vi).1 remove
variables from I and then also link the two variables different from x in C. That
is, for each (i, j) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}, that is consistent with (s1(x), s2(x))
subproblem (φ1,i,j , φ2,i,j , s1,i,j , s2,i,j , Vi,j , Pi,j) is formed as follows:
(a) Set values of x in φ1 and φ2 as i and j respectively, updating correspondingly

pmain to pmain × px,i,j and drop x from the variables V .
(b) Eliminate I from the subproblem by using the method in (vi).1 (as w is the

only element of corresponding J in the subproblem).
(c) Link the two variables in the clause C which are different from x.
The answer returned by MHD is the sum of the answers of each of the four
subproblems.

G. Hoi, S. Jain, and F. Stephan 17:9

Note that in each of the four (or less) subproblems, besides x and members of
I, one linked variable in C is removed. Thus, in total at least 5 variables get
eliminated in each subproblem.

3. j = 3 and i ≥ 4 and there is a clause which contains at least two variables v, w from
J and another variable from I (say the clause is (v′, w′, e′)), where v′, w′ are literals
involving v, w); furthermore v, w appear in clauses involving variables not from I:
In this case we will branch on the variables v, w, e (consistent with assignments in
s1, s2 to these variables if any), and simplify each of the subproblems in a way
similar to (vi).2 above. Note that exactly one of (v′, w′, e′) is 1: giving 9 branches
based on the three choice for each of φ1 and φ2. The answer returned by MHD is
the sum of the answers of each of the (upto) nine subproblems.
Note that apart from the 4 elements of I and v, w, for the clauses using variables
not from I, we have two clauses involving v and w. The other variables in each of
these clauses can be linked up. Thus, in total for each of the subproblems at least
8 variables are eliminated.

(vii) There exists a clause with at least 4 dissimilar neighbours and none of the above
cases apply.
Proposition 4 below argues that there is a clause (x, y, z) (in φ1 and thus in φ2) with
at least four neighbours so that further clauses according to one of the following five
situations exist (up to renaming of variables):
1. (x′, a, b), (x′′, c, d), (y′, a′, c′), (y′′, e, ·);
2. (x′, a, b), (x′′, c, d), (y′, e, ·), (y′′, f, ·);
3. (x′, a, b), (x′′, c, d), (y′, a′, c′), (z′, e, ·);
4. (x′, a, b), (x′′, c, d), (y′, e, ·), (z′, f, ·);
5. (x′, a, b), (x′′, c, d), (y′, a′, e), (z′, c′, e′).

where primed versions of the literals use the same variable as unprimed version (though
they maybe negated) and a, b, c, d, e, f, x, y, z are literals involving distinct variables.
Here · stand for literals involving variables different from x, y, z, where it does not
matter what these variables are, as long as they do not create a situation as in cases
1.(i) to 1.(vi).
Suppose the clause corresponding to (x, y, z) in φ2 is (x′′′, y′′′, z′′′). Then we branch
based on (x, x′′′) = (0, 0) or (x, y, z;x′′′, y′′′, z′′′) ∈ { (1, 0, 0; 1, 0, 0), (1, 0, 0; 0, 1, 0),
(1, 0, 0; 0, 0, 1), (0, 1, 0; 1, 0, 0), (0, 0, 1; 1, 0, 0)}. That is either both of x, x′′′ are 0, or at
least one of them is 1 (as before, the branches are only used if the values are consistent
with s1, s2). The branch based on x being 0 in φ1 and x′′′ being 0 in φ2 allows us to
remove x and three variables from linking y with z, a with b and c with d (a total
of four variables). The branch based on the remaining 5 cases allows us to remove
x, y, z and four other variables by linking the variables other than x, y, z in each of
the neighbouring clause in the five possibilities 1–5 mentioned above (a total of seven
variables for each of these subproblems).

I Proposition 4. If cases 1.(i) to 1.(vi) above do not apply and if there is a clause with
at least four dissimilar neighbours then there is also a clause with neighbours as outlined
in (vii).

Proof. Below primed versions of variables denote a literal involving the same variable –
though it may be negated version. Given a clause (x, y, z) with at least four dissimilar
neighbours, without loss of generality assume that x, y, z are not negated in this clause
(otherwise, we can just interchange them with their negated versions). We let x denote a

FSTTCS 2019

17:10 A Fast Algorithm for Max Hamming Distance X3SAT

variable which is in at least two further dissimilar clauses. In the light of Cases 1.(iii), 1.(iv)
not applying, these clauses have new variables a, b, c, d, say (x′, a, b) and (x′′, c, d) (again
without loss of generality, a, b, c, d are not negated). In light of Case 1.(v) not applying,
variable x is used in no further clause.

If two new variables e, f , different from a, b, c, d, x, y, z appear in some clauses involving
x, y, z then there are two clauses of the form (A) (y′, e, ·) and (y′/z′, f, ·), or (B) (y′, e, f)
and (y′/z′, a′, c′) (note that in case (B), both a, b (similarly, both c, d) cannot appear in the
clause as case 1.(iv) did not apply). Thus, 1.(vii).2 or 1.(vii).4 (in case (A)) or 1.(vii).1 or
1.(vii).3 (in case (B)) apply.

Now, assume that at most one other variable e, appears in any clause involving x, y, z
besides a, b, c, d. Without loss of generality suppose the third neighbour of (x, y, z) was
(y′, a′, ·), where · involves variable c or e (it cannot involve b or z as Case 1.(iv) did not
apply). Now, if a or b appears in a further outside clause involving a variable other than
x, y, z, a, b, c, d, e, then (x′, a, b) has neighbours (x, y, z), (x′′, c, d), (a′, y′, c′/e′), (a′′/b′, f, ·)
and thus 1.(vii).1, 1.(vii).2, 1.(vii).3 or 1.(vii).4 apply (with interchanging of names of y
with a and z with b). If none of a or b appears in a further outside clause involving a
variable other than x, y, z, a, b, c, d, e, then one of the cases of 1.(vi) applies with I ∪ J being
{x, y, z, a, b, c, d} or {x, y, z, a, b, c, d, e} (based on whether e appears with any of x, y, z or
not in some clause), and J ⊆ {c, d, e} of the variables which appear in clauses not involving
{x, y, z, a, b, c, d, e}. Here note that in case J = {c, d, e}, then the side condition of 1.(vi).3 is
satisfied using clause (c, d, x′′). J

3.2 Case 2
This case applies when all clauses have exactly three variables, no two clauses have exactly
two variables in common, no variable appears in more than three dissimilar clauses and
dissimilar clauses have at most three dissimilar neighbours.

As our operations on similar clauses leaves them similar, for ease of proof writing, we will
consider similar clauses in any of the formulas as “one” clause when counting below.

Suppose there are m dissimilar clauses involving n variables. First note that for this
case, m ≤ 2n/3. To see this, suppose we distribute the weight 1 of each variable equally
among the dissimilar clauses it belongs to. Then, each clause may get weight (1/3, 1/2, 1) or
(1/2, 1/2, 1/2) (or more) based on whether the variables in the clause appear in (2, 1, 0) or
(1, 1, 1) other clauses in the worst case. Thus, weight on each clause is at least 3/2, and thus
there are at most 2n/3 dissimilar clauses.

I Proposition 5. For some εm which goes to 0 as m goes to ∞, the following holds.
Suppose in φ1 (and thus φ2) there are n variables and m dissimilar clauses each having

three literals involving three distinct variables, such that each clause has at most three
dissimilar neighbours and each variable appears in at most three dissimilar clauses, and no
two dissimilar clauses have two common variables.

Then, we can select k ≤ m(1/6 + εm) variables, such that branching on all possible values
for all of these variables, and then doing simplification based on repeated use of Case 1.(i) to
1.(iv) gives two groups of clauses, each having three literals, where the two groups have no
common variables, and
(a) each clause in each group has at most three dissimilar neighbours,
(b) each variable appears in at most three dissimilar clauses,
(c) no pair of dissimilar clauses have two common variables,
(d) the number of dissimilar clauses in each group is at most (m− k + 2)/2.

G. Hoi, S. Jain, and F. Stephan 17:11

Proof. To prove the proposition, consider each dissimilar clause as a vertex, with edge
connecting two dissimilar clauses if they have a common variable. Using the bisection width
result [5, 6, 1], one can partition the dissimilar clauses into two groups (differing by at most
one in cardinality) such that there exist at most k ≤ (1/6 + εm)×m edges between the two
groups, that is there are at most (1/6 + εm)×m common variables between the two groups
of clauses. One can assume without loss of generality that at most one clause has three
neighbours on the other side. This holds as if there are two dissimilar clauses, say one in
each half, which have all their neighbours on the other side, then we can switch these two
clauses to the other side and decrease the size of the cut. On the other hand, if both these
clauses (say A and B) belong to the same side, then we can switch A to the other side, and
switch the side of one of B’s neighbours – this also decreases the size of the cut.

To see that the properties mentioned ((a), (b) and (c)) are preserved, suppose in a clause
(x, y, z), we branch on x and thus link y with z; here we assume without loss of generality
that x, y, z are all positive literals. Note that as (x, y, z) has at most three neighbours, one
of which contains x, there can be at most two other neighbours of the clause (x, y, z) which
contain y or z.

First suppose y (respectively z) does not appear in any other clause. Without loss of
generality assume that y gets dropped and replaced by z or ¬z based on the linking. Then
dropping the clause (x, y, z) and replacing y by z does not increase the number of dissimilar
clauses that z appears in, nor does it increase the number of neighbours of these clauses as
there is no change in variable name in any clause which is not dropped.

Next suppose both y and z appear in exactly one other dissimilar clause, say (y′, a, b)
and (z′, c, d), where y′ and z′ are literals involving y and z respectively. In that case, linking
y and z (and replacing z by y), makes these two clauses neighbours (if not already so) –
which is compensated by the dropping of the neighbour (x, y, z); the number of clauses in
which y appears remains two. In case these two clauses were already neighbours (say a = c

or ¬c), then due to application of Case 1.(iv), b and d get linked, clauses (y, a, b) and (z, c, d)
thus become similar (resulting in decrease in the neighbour by one for these clauses) and the
above analysis can then be recursively applied for linking b with d.

Now considering the edges (and corresponding common variable for the edge) in the
cut, and branching on all these variables (while being consistent with s1 and s2) and then
doing simplification as in Cases 1(i) to 1(iv), we have that each partition is left with at most
(m+ 1− (k− 1))/2 dissimilar clauses. This holds as, by our assumption above, except maybe
for one clause, all dissimilar clauses have at most two neighbours on the other side. Thus, by
linking the remaining variables for each of the clauses involved in the cut, we can remove
(k − 1)/2 dissimilar clauses on each side using Case 1(iii). J

Thus, one can recursively apply the above modifications in Case 2 to each of the two groups
of clauses, one after other, until all the variables have been assigned the values or linked to
other variables (where the leaf cases occur when the number of dissimilar clauses is small
enough to use brute force assigning values to all of the variables).

Now we count how many variables need to be branched for Case 2 in total if one starts with
m clauses involving n variables. The worst case happens when k = (1/6+ εm)m and the total
number of variables which need to be branched on is m(1 + 5/12 + 52/(122) + . . .) ∗ (1/6 + ε),
where one can take ε as small as desired for corresponding large enough m. Thus the number
of variables branching would be m(2/7 + 12ε/7) ≤ n(4/21 + 24ε/21). As branching on each
variable gives at most 4 children, the number of leaves (and thus complexity of the algorithm
based on Case 2) is bounded by 44n/21+o(n).

FSTTCS 2019

17:12 A Fast Algorithm for Max Hamming Distance X3SAT

3.3 Overall Complexity of the Algorithm
Note that modifications in each of the above cases takes polynomial time in the original
formula φ.

Visualize the running of the above algorithm as a search tree, where the root of the
tree is labeled as the starting problem MHD(φ, φ, V = X, s1 = ∅, s2 = ∅, P), with P having
pmain = 1, px,i,j = qx,i,j .

At any node, if a simplification case applies, then the node has only one child with the
corresponding updated parameters. If a braching case applies, then the node has children
corresponding to the parameters in the branching.

As the work done at each node is polynomial in the length of φ, the overall time complexity
of the algorithm is poly(n, |φ|)× (number of leaves in the above search tree).

We thus analyze the number of possible leaves the search tree would generate.
Suppose T (r) denotes the number of leaves rooted at a node MHD(. . . , V, . . .), where V

has r variables.
Case 1.(i) to Case 1.(iv) and Case 1.(vi).1 do not involve any branching.
If Case 1.(v) is applied to a MHD problem involving r variables, then it creates at most

four subproblems, each having at most r− 5 variables. Thus, the number of leaves generated
in this case is bounded by 4T (r − 5). Note that T (r) = O(αr), for α ≥ α0 = 1.3196 satisfies
the constraints of this equation.

If Case 1.(vi).2 is applied to a MHD problem involving r variables, then it creates at most
4 subproblems each involving at most r − 5 variables. Thus, the number of leaves generated
in this case is bounded by 4T (r − 5). Note that T (r) = O(αr), for α ≥ α0 = 1.3196 satisfies
the constraints of this equation.

If Case 1.(vi).3 is applied to a MHD problem involving r variables, then it creates at most
9 subproblems each involving at most r − 8 variables. Thus, the number of leaves generated
in this case is bounded by 9T (r − 8). Note that any T (r) = O(αr), for α ≥ α0 = 1.3162
satisfies the constraints of this equation.

If Case 1.(vii) is applied to a MHD problem involving r variables, then it creates at most
6 subproblems, one involving at most r − 4 variables and the other involving at most r − 7
variables. Thus, the number of leaves generated in this case is bounded by T (r−4)+5T (r−7).
Note that any T (r) = O(αr), for α ≥ α0 = 1.3298 satisfies the constraints of this equation.

If Case 2 is applied to a MHD problem of r variables, then it creates a search tree which
contains at most O(44r/21+o(r)) leaves. Note that any T (r) = O(αr), for α ≥ α0 = 1.3023
satisfies the constraints of this equation.

Thus, the formula T (r) = O(1.3298r) bounds the number of leaves generated in each of
the cases above, for large enough r. Thus, we have the theorem:

I Theorem 6. Given a X3SAT formula φ, one can find in time O(poly(n, |φ|)× 1.3298n)
the maximum hamming distance between any two satisfying assignments for φ.

4 Conclusion and Future Work

In this paper, we considered a branching algorithm to compute the Max Hamming Distance
X3SAT in O(1.3298n) time. Our novelty lies in the preservation of structure at both sides of
the formula while we branch.

Our method is faster than the naïve invocation of the Max 2-CSP algorithm (see the
discussion in the second-last section of the technical report version of this paper at [8],
https://arxiv.org/abs/1910.01293). Even if one assumes that every clause has only

https://arxiv.org/abs/1910.01293

G. Hoi, S. Jain, and F. Stephan 17:13

three neighbours (as in Case 2, but now from the start), the usage of the Max 2-CSP
algorithm results in a run-time of 92/15×n+o(n) which is contained in O(1.3404n). Without
this assumption, the naïve invocation of the Max 2-CSP algorithm is much worse. Also other
invocations of known methods do not give good timebounds.

Our time bound of O(1.3298n) is achieved by using simple analysis to analyse our
branching rules. Our algorithm uses only polynomial space during its computations. This
can be seen from the fact that the recursive calls at the branchings are independent and can
be sequentialised; each calling instance therefore needs only to store the local data; thus each
node of the call tree uses only h(n) space for some polynomial h. The depth of the tree is
at most n as each branching reduces the variables by 1; thus the overall space is at most
h(n)× n space.

Furthermore, as we determine the number of pairs of solutions with Hamming distance k
for k = 0, 1, . . . , n, where n is the number of variables, one might ask whether this comes
with every good algorithm for free or whether there are faster algorithms in the case that
one computes merely the maximum Hamming distance of two solutions.

References
1 Burkhard Monien and Robert Preis. Upper bounds on the bisection width of 3- and 4-regular

graphs. Journal of Discrete Algorithms, 4(3):475–498, 2006.
2 David Eppstein. Small maximal independent sets and faster exact graph coloring. Proceedings

of the Seventh Workshop on Algorithms and Data Structures, Springer Lecture Notes in
Computer Science, 2125:462–470, 2001.

3 David Eppstein. Quasiconvex analysis of multivariate recurrence equations for backtracking
algorithms. ACM Transactions on Algorithms, 2(4):492–509, 2006.

4 Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Texts in Theoretical
Computer Science, EATCS, Springer, Berlin, Heidelberg, 2010.

5 Serge Gaspers. Exponential Time Algorithms: Structures, Measures, and Bounds. VDM Verlag
Dr. Müller, 2010.

6 Serge Gaspers and Gregory B. Sorkin. Separate, measure and conquer: faster polynomial-space
algorithms for Max 2-CSP and counting dominating sets. ACM Transactions on Algorithms
(TALG), 13(4):44:1–44:36, 2017.

7 Gordon Hoi and Frank Stephan. Measure and conquer for Max Hamming Distance XSAT.
International Symposium on Algorithms and Computation, ISAAC 2019, LIPIcs, 149:18:1–
18:20, 2019.

8 Gordon Hoi, Sanjay Jain and Frank Stephan. A fast exponential time algorithm for Max
Hamming X3SAT. arXiv, 2019. Technical Report version of this paper. arXiv:1910.01293.

9 Linlu Fu, Junping Zhou and Minghao Yin. Worst case upper bound for the maximum
Hamming distance X3SAT problem. Journal of Frontiers of Computer Science and Technology,
6(7):664–671, 2012.

10 Magnus Wahlström. Algorithms, measures and upper bounds for satisfiability and related
problems. PhD thesis, Department of Computer and Information Science, Linköping University,
2007.

11 Martin Davis and Hilary Putnam. A computing procedure for quantification theory. Journal
of the ACM, 7(3):201–215, 1960.

12 Martin Davis, George Logemann and Donald W. Loveland. A machine program for theorem
proving. Communications of the ACM, 5(7):394–397, 1962.

13 Ola Angelsmark and Johan Thapper. Algorithms for the maximum Hamming distance problem.
Recent Advances in Constraints, International Workshop on Constraint Solving and Constraint
Logic Programming, CSCLP 204, Springer Lecture Notes in Computer Science, 3419:128–141,
2004.

FSTTCS 2019

http://arxiv.org/abs/1910.01293

17:14 A Fast Algorithm for Max Hamming Distance X3SAT

14 Oliver Kullmann. New methods for 3-SAT decision and worst-case analysis. Theoretical
Computer Science, 223(1–2):1–72, 1999.

15 Pierluigi Crescenzi and Gianluca Rossi. On the Hamming distance of constraint satisfaction
problems. Theoretical Computer Science, 288(1):85–100, 2002.

16 Richard Wesley Hamming. Error detecting and error correcting codes. Bell System Technical
Journal, 29(2):147–160, 1950.

17 Satya Gautam Vadlamudi and Subbarao Kambhampati. A combinatorial search perspective
on diverse solution generation. Thirtieth AAAI Conference on Artificial Intelligence, pages
776–783, 2016.

18 Vilhelm Dahllöf. Algorithms for Max Hamming Exact Satisfiability. International Symposium
on Algorithms and Computation, ISAAC 2005, Springer Lecture Notes in Computer Science,
3827:829–383, 2005.

19 Vilhelm Dahllöf. Exact Algorithms for Exact Satisfiability Problems. PhD thesis, Department
of Computer and Information Science, Linköping University, 2006.

Exact and Approximate Digraph Bandwidth
Pallavi Jain
Ben-Gurion University of the Negev, Beer-Sheva, Israel
pallavi@post.bgu.ac.il

Lawqueen Kanesh
The Institute of Mathematical Sciences, HBNI, India
lawqueen@imsc.res.in

William Lochet
University of Bergen, Norway
William.Lochet@uib.no

Saket Saurabh
The Institute of Mathematical Sciences, HBNI, India
saket@imsc.res.in

Roohani Sharma
The Institute of Mathematical Sciences, HBNI, India
saket@imsc.res.in

Abstract
In this paper, we introduce a directed variant of the classical Bandwidth problem and study it
from the view-point of moderately exponential time algorithms, both exactly and approximately.
Motivated by the definitions of the directed variants of the classical Cutwidth and Pathwidth
problems, we define Digraph Bandwidth as follows. Given a digraph D and an ordering σ

of its vertices, the digraph bandwidth of σ with respect to D is equal to the maximum value of
σ(v)−σ(u) over all arcs (u, v) of D going forward along σ (that is, when σ(u) < σ(v)). The Digraph
Bandwidth problem takes as input a digraph D and asks to output an ordering with the minimum
digraph bandwidth. The undirected Bandwidth easily reduces to Digraph Bandwidth and thus,
it immediately implies that Directed Bandwidth is NP-hard. While an O?(n!)1 time algorithm
for the problem is trivial, the goal of this paper is to design algorithms for Digraph Bandwidth
which have running times of the form 2O(n). In particular, we obtain the following results. Here, n
and m denote the number of vertices and arcs of the input digraph D, respectively.

Digraph Bandwidth can be solved in O?(3n · 2m) time. This result implies a 2O(n) time
algorithm on sparse graphs, such as graphs of bounded average degree.
Let G be the underlying undirected graph of the input digraph. If the treewidth of G is at
most t, then Digraph Bandwidth can be solved in time O?(2n+(t+2) logn). This result implies
a 2n+O(

√
n logn) algorithm for directed planar graphs and, in general, for the class of digraphs

whose underlying undirected graph excludes some fixed graph H as a minor.
Digraph Bandwidth can be solved in min{O∗(4n · bn),O∗(4n · 2b log b logn)} time, where b
denotes the optimal digraph bandwidth of D. This allow us to deduce a 2O(n) algorithm in
many cases, for example when b ≤ n

log2 n .
Finally, we give a (Single) Exponential Time Approximation Scheme for Digraph Bandwidth.
In particular, we show that for any fixed real ε > 0, we can find an ordering whose digraph
bandwidth is at most (1 + ε) times the optimal digraph bandwidth, in time O∗(4n · (d4/εe)n).

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Mathematics of computing → Approximation algorithms

Keywords and phrases directed bandwidth, digraph bandwidth, approximation scheme, exact
exponential algorithms

1 The O? notation hides the polynomial factors in the instance size.

© Pallavi Jain, Lawqueen Kanesh, William Lochet, Saket Saurabh, and Roohani Sharma;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 18; pp. 18:1–18:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pallavi@post.bgu.ac.il
mailto:lawqueen@imsc.res.in
mailto:William.Lochet@uib.no
mailto:saket@imsc.res.in
mailto:saket@imsc.res.in
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Exact and Approximate Directed Bandwidth

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.18

Funding Saket Saurabh: This project has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 819416).

1 Introduction

The Bandwidth problem is a famous combinatorial problem, where given an undirected
graph G on n vertices, the goal is to embed its vertices onto an integer line such that
the maximum stretch of any edge of G is minimized. More formally, given a graph G

on n vertices and an ordering σ : V (G) → [n], the bandwidth of σ with respect to G is
max(u,v)∈E(G){|σ(u)− σ(v)|}. In the Bandwidth problem, given a graph G, the goal is to
find an ordering σ : V (G) → [n], which has minimum bandwidth with respect to G. The
bandwidth problem has found applications in an array of fields including, but not limited
to, the design of faster matrix operations computation on sparse matrices, VLSI circuit
design, reducing the search space of constraint satisfaction problems and problems from
molecular biology [22]. In many of the real world applications, a fundamental principle
that the Bandwidth problem captures is that of delays that occur as a result of allocation
of tasks on the time interval that have dependencies among them. An ordering in many
scenarios represent the allocation of tasks/objects on a time-line/one-dimensional hardware,
and the stretch of an edge captures the delay/effort/expense incurred to reach the other end
of the edge.

One restriction on the kind of models captured by Bandwidth is that, the models
cannot be tuned to allow for asymmetry or bias. More specifically, what happens when the
connections available between the tasks/objects are unidirectional? What happens when
there is a bias in terms of delay/expense based on the direction of communication on the
time-line/one-dimensional hardware? The above inquisitivities lead to our first contribution
to this article, which is the concept of Digraph Bandwidth2. Given a directed graph D on
n vertices and an ordering σ : V (D)→ [n], the digraph bandwidth of σ with respect to D is
the maximum stretch of the forward arcs in the ordering, that is, max(u,v)∈E(D)

σ(u)<σ(v)
{σ(v)−σ(u)}.

The Digraph Bandwidth problem takes as input a digraph D and outputs an ordering
σ : V (D)→ [n] with the least possible digraph bandwidth with respect to D.

Observe that, with the introduction of directions in the input graph, Digraph Band-
width allows us to capture one-way dependencies, that can help in modelling scenarios where
the links available for modelling the communication are one-directional. Also, by allowing
to care only about the stretch of the forward arcs in the ordering, one can model channels
where communication in one direction is cheaper/easier than the other. The later scenarios
can occur while modelling an uphill-downhill communication, where the cost of going up is a
matter of real concern whereas, the cost of going down is almost negligible.

Note that Digraph Bandwidth is indeed a generalization of the notion of undirected
bandwidth, as for any graph G, if ←→G denotes the digraph obtained from G by replacing each
edge of G by one arc in both direction, then the bandwidth of G is equal to the directed
bandwidth of ←→G . We would like to remark here that on the theoretical front, the way we
lift the definition of bandwidth in undirected graphs to directed graphs, by considering the

2 We choose the name Digraph Bandwidth over the more conventional Directed Bandwidth to avoid
clash of names from literature (which will be discussed later).

https://doi.org/10.4230/LIPIcs.FSTTCS.2019.18

P. Jain, L. Kanesh, W. Lochet, S. Saurabh, and R. Sharma 18:3

stretches of only the forward arcs, is not something unique that we do for Bandwidth. The
idea of only considering arcs going in one direction for “optimizing some function” is very
common to the directed setting. The simplest such example is the notion of a directed cut. If
D is a digraph andX,Y are two disjoint subsets of vertices ofD, then the directed cut ofX and
Y , dcut(X,Y), is defined as the set of arcs (u, v) in E(D), where u ∈ X and v ∈ Y . Another
closely related notion is the notion of Directed Cutwidth introduced by Chudnosky et
al. [5]. A digraph D on n vertices has cutwidth at most k if there exists an ordering of the
vertices σ such that for every i ∈ [n− 1], dcut({σ(1), . . . , σ(i)}, {σ(i+ 1), . . . , σ(n)}) is at
most k. Note that our notion of directed bandwidth is a stronger notion than cutwidth, as
for any ordering σ, the cutwidth associated to σ is at most the digraph bandwith of σ. There
is also a similar notion of Directed Pathwidth [5]. Observe that similar to Directed
Cutwidth and Directed Pathwidth, Digraph Bandwidth is 0 on directed acyclic
graphs (dags).

We would like to remark that ours is not the first attempt in generalising the definition of
bandwidth for digraphs. A notion of bandwidth for directed graphs appeared in 1978 in the
paper by Garey et al. [16]. But the notion was defined only for dags. In their problem, which
they call Directed Bandwidth (DAG-BW), given a dag D, one is interested in finding a
topological ordering (a linear ordering of vertices such that for every directed arc (u, v) from
vertex u to vertex v, u comes before v in the ordering) of minimum bandwidth. Note that
this is very different from our notion of Digraph Bandwidth which is always 0 for dags.

Algorithmic Perspective

Bandwidth is one of the most well-known and extensively studied graph layout problems [17].
The Bandwidth problem is NP-hard [25] and remains NP-hard even on very restricted
subclasses of trees, like caterpillars of hair length at most 3 [24]. Furthermore, the bandwidth
of a graph is NP-hard to approximate within a constant factor for trees [3]. Polynomial-
time algorithms for the exact computation of bandwidth are known for a few graph classes
including caterpillars with hair length at most 2 [2], cographs [29], interval graphs [20] and
bipartite permutation graphs [19]. A classical algorithm by Saxe [26] solves Bandwidth in
time 2O(k)nk+1, which is polynomial when k is a constant. In the realm of parameterized
complexity, Bandwidth is known to be W[t]-hard for all t ≥ 1, when parameterized by
the bandwidth k of the input graph [4]. However, on trees it admits a parameterized
approximation algorithm [12] and an algorithm with running time 2O(k log k)nO(1) on AT-
free graphs [18]. Unger showed in [27] that the problem is APX-hard. The best known
approximation algorithm for this problem is due to Krauthgamer et al. [21] and it provides
an O(log3 n) factor approximation.

The Bandwidth problem is one of the test-bed problems in the area of moderately
exponential time algorithms and has been studied intensively. Trying all possible permutations
of the vertex set yields a simple O∗(n!) time algorithm while the known algorithms for the
problem with running time 2O(n) are far from straightforward. The O∗(n!) barrier was broken
by Feige and Kilian [13] who gave an algorithm with running time O?(10n). This result
was subsequently improved by Cygan and Pilipczuk [6] down to O?(5n). After a series of
improvements, the current fastest known algorithm, due to Cygan and Pilipczuk [9, 7] runs in
time O?(4.383n). We also refer the readers to [8] for the best known exact algorithm running
in polynomial space. For graphs of treewidth t, one can design an algorithm with running
time 2nnO(t) [1, 7]. On the other hand, Feige and Talwar [14] showed that the bandwidth of a
graph of treewidth at most t can be (1+ε)-approximated in time 2O(logn(t+

√
n
ε)). Vassilevska

et al. [28] gave a hybrid algorithm which after a polynomial time test, either computes

FSTTCS 2019

18:4 Exact and Approximate Directed Bandwidth

the bandwidth of a graph in time 4n+o(n), or provides γ(n) log2 n log logn-approximation in
polynomial time for any unbounded γ. Moreover, for any two positive integers k ≥ 2, r ≥ 1,
Cygan and Pilipczuk presented a (2kr− 1)-approximation algorithm that solves Bandwidth
for an arbitrary input graph in O(k

n
(k−1)r nO(1)) time and polynomial space [7]. Finally, Fürer

et al. [15] gave a factor 2-approximate algorithm for Bandwidth running in time O(1.9797n).
DAG-BW, as defined by Garey et al. [16] for dags, was shown to admit a polynomial time
algorithm for testing if a dag has bandwidth at most 2. Also, it was proved that the problem
to determine if the directed bandwidth of a dag is at most k, for any k > 2, is NP-hard even
in the case of oriented trees. This notion of directed bandwidth reappeared in [23], where it
was studied for dense digraphs.

Our Results

The main objective of this paper is to introduce a directed variant of the Bandwidth
problem for general digraphs and study it from the view point of moderately exponential
time algorithms, both exactly and approximately. Throughout the remaining, n,m denote
the number of vertices and arcs in the input digraph, respectively. For many linear layout
problems on graphs on n vertices, beating even the trivial O?(n!) algorithm asymptotically
remains a challenge. In this article we design 2O(n) time algorithms for Digraph Bandwidth.
Below we mention the challenges that Digraph Bandwidth imposes when we try to apply
the techniques used in the design of 2O(n) algorithm for Bandwidth, and how we bend our
ways to overcome them to design the desired algorithms.

The 2O(n) time algorithms for Bandwidth that exist in literature (cited above), all follow
a common principle of bucket-then-order. Suppose one is interested in checking whether the
input graph has an ordering of bandwidth b. The bucket-then-order procedure is a 2-step
procedure, where in the first step, instead of directly guessing the position of the vertex in
the ordering, for a range of consecutive positions (called buckets) of size O(b), one guesses the
set of vertices that will occupy these positions in the final ordering. This process of allocating
a set of vertices to a range of consecutive positions is called bucketing. Since one can always
assume that the graph is connected, once a bucket for the first vertex is guessed using n
trials, its neighbours only have a choice of some c buckets for a small constant c depending
on the constant in the order notation of the size of the bucket. This, makes the bucketing
step run in time 2O(n). The outcome of the first step is a collection of bucketings which
contains a bucketing that is “consistent” with the final ordering. In the second step, given
such a consistent bucketing, one can find the final ordering using either a recursive divide
and conquer technique or a dynamic programming procedure or a measure and conquer kind
of an analysis.

In the case of Digraph Bandwidth, finding a bucketing that is consistent with the
final ordering becomes a challenge as even the information that a vertex is placed in some
fixed bucket does not decrease the options of the number of buckets in which its neighbours
can be placed. This is because there could be some out-neighbours (resp. in-neighbours) of it
that need to be placed before (resp. after) it thereby contributing to backward arcs, which
eventually results in the need for allocating them to far off buckets. We cope up with this
challenge of bucketing in two ways - both of which lead to interesting algorithms that run
in 2O(n) time in different cases. As a first measure of coping up, we take the strategy of
“kill what cause you trouble”. Formally speaking, it is the set of backward arcs in the final
ordering that have unbounded stretch and hence, make the bucketting process difficult. One
way to get back to the easy bucketting case is to guess the set of arcs that will appear as
backward arcs in the final ordering. Having guessed these arcs, one can remove them from

P. Jain, L. Kanesh, W. Lochet, S. Saurabh, and R. Sharma 18:5

the graph and preserve the information that the arcs which remain all go forward the final
ordering. This problem becomes similar to the DAG-BW problem defined on dags by Garey
et al. [16]. We show that one can do the bucketing tricks similar to the undirected case here
to design a 2O(n) algorithm for this problem (Theorem 1.1). This together with the initial
guessing of the backward arcs gives Theorem 1.2.

I Theorem 1.1. DAG-BW on dags can be solved in O?(3n) time.

I Theorem 1.2. Digraph Bandwidth can be solved in O?(3n · 2m) time.

Note that even though the 2m in the running time of Theorem 1.2 looks expensive, it
already generates an algorithm better that O?(n!) for any digraph that has at most o(n logn)
arcs. In particular, this implies an exact algorithm with running time 2O(n) whenever
|E(D)| = O(|V (D)|), for example for digraphs with bounded average degree.

We will now briefly explain about our second way of dealing with the bucketing phase.
As discussed earlier, getting a hold over the arcs which will go backward in the final ordering,
eases out the remaining process. In this strategy, instead of guessing the arcs that goes
backward by a brute force way (that takes 2m), we exploit the fact that guessing a partition
of the vertex set into two parts, left and right - which corresponds to the first n/2 vertices in
the final ordering and the last n/2 vertices in the final ordering, also gives hold on some if not
all backward arcs in the final ordering. We place this simple observation into the framework
of a divide and conquer algorithm to get a bucketting that is not necessarily “consistent”
with the final ordering, but is not too far away to yield a “close enough” approximation to
the optimal ordering. This result is formalized in Theorem 1.3. Effectively, the result states
that one can find an ordering whose digraph bandwidth is at most (1 + ε) times the optimal
in time O?(1/ε)n. Note that, this result is in contrast with the result of Feige and Talwar [14]
for undirected bandwidth where they gave an exponential time approximation scheme that
run in time which had a dependence on the treewidth of the graph(2O(logn(t+

√
n
ε))). As a

side result of our strategy, we can also design an algorithm for solving Digraph Bandwidth
optimally on general digraphs in time O?(2O(n) · OPTn) or O?(2O(n) · 2OPT logOPT logn),
where OPT is the optimal digraph bandwidth of the input digraph. This result is stated in
Theorem 1.4. Note that, on one hand where O(OPTn) is easy to get for the undirected case
(because fixing the position of one vertex in the ordering leaves only 2 ·OPT choices for its
neighbours), it is not trivial for the directed case. Also, observe that Theorem 1.4 gives a
2O(n) algorithm whenever b ≤ n/log2 n.

I Theorem 1.3 ((Single) Exponential Time Approximation Scheme). For any real number
ε > 0, for any digraph D, one can find an ordering of digraph bandwidth at most (1 + ε)
times the optimal, in time O∗(4n · (d4/εe)n).

I Theorem 1.4. Digraph Bandwidth can be solved in min{O∗(4n ·bn),O∗(4n ·2b log b logn)}
time, where b is the optimal digraph bandwidth of the input digraph.

Our last result is based on the connection of the Bandwidth problem with a subgraph
isomorphism problem. Amini et al. [1] viewed the Bandwidth problem, on undirected
graphs, as a subgraph isomorphism problem, and using an inclusion-exclusion formula with
the techniques of counting homomorphisms on graphs of bounded treewidth, they showed
that an optimal bandwidth ordering of a graph on n vertices of treewidth at most t can be
computed in time O?(2t logn+n) and space O?(2t logn). Using this approach and by relating
Digraph Bandwidth via directed homomorphisms to directed path-like-structures, we
obtain the following result.

FSTTCS 2019

18:6 Exact and Approximate Directed Bandwidth

I Theorem 1.5. Let D be a digraph on n vertices and D′ be the underlying undirected
graph. If the treewidth of D′ is at most t, then Digraph Bandwidth can be solved in time
O?(2n+(t+2) logn).

Observe that Theorem 1.5 provides O?(2n+O(
√
n logn)) algorithm for directed planar

graphs and for digraph whose underlying undirected graph excludes some fixed graph H as a
minor. This algorithm in fact, yields a 2O(n) time algorithm even when the treewidth of the
underlying undirected graph of the given digraph is O(n/ logn). Notice that Theorem 1.2
gives 2O(n) time algorithm for digraphs of constant average degree, while Theorem 1.5 will
not apply to these cases as these digraphs could contain expander graphs of constant degree
whose treewidth of the underlying undirected graph could be n/c, for some fixed constant
c. On the other hand Theorem 1.5 could give 2O(n) time algorithm for digraphs that have
O(n2/ logn) arcs but treewidth is O(n/ logn). Thus, Theorems 1.2 and 1.5 give 2O(n) time
algorithm for different families of digraphs.

Road Map

In Section 2, we introduce some notation and definitions. Section 3 is devoted to the proof of
Theorem 1.1 and Section 4 proves Theorem 1.2 with the help of Theorem 1.1. Section 5 leads
to the proofs of Theorems 1.3 and 1.4. Section 6 proves Theorem 1.5. We finally conclude in
Section 7.

2 Preliminaries

For positive integers i, j, [i] = {1, · · · , i} and [i, j] = {i, · · · , j}. For any set X, by X =
(X1, X2) we denote an ordered partition of X, that is X1 ∪ X2 = X, X1 ∩ X2 = ∅ and,
(X1, X2) and (X2, X1) are two different partitions of X. For any functions f1 : X1 → Y1 and
f2 : X2 → Y2, we say that f1 is consistent with f2 if for each x ∈ X1 ∩X2, f1(x) = f2(x). If
f1 and f2 are consistent, then f1 ∪ f2 : X1 ∪X2 → Y1 ∪ Y2 is defined as (f1 ∪ f2)(x) = fi(x),
if x ∈ Xi. For any set V of size n, we call a function σ : V → [n] as an ordering of V). Given
an ordering σ of V (D), an arc (u, v) ∈ E(D) is called a forward arc in σ if σ(u) < σ(v),
otherwise it is called a backward arc. For a natural number b ∈ N, we call σ as a b-ordering of
D if for any forward arc (u, v) ∈ E(D), σ(v)− σ(u) ≤ b, that is, if it has digraph bandwidth
at most b. Given a set V and an integer b, a b-bucketing of V is a function B : V → [p, q],
such that p, q ∈ N and for each i ∈ [p, q − 1], |B−1(i)| = b and |B−1(q)| ≤ b. Note that, if |V |
is a multiple of b, then B−1(q) = b and (q − p+ 1) · b = |V |. If for each i ∈ [p, q], |B−1(i)| ≤ b,
we call B a partial b-bucketing of V . Note that, for any b, every b-bucketing is a partial
b-bucketing. For a (partial) b-bucketing B : V → [p, q], we say that an element v ∈ V is
assigned the i-th bucket of B if B(v) = i and B(v) is called the bucket of v. Also, b is called
the size of the bucket B(v). If B(u) = i and B(v) = j and j > i, then the number of buckets
between the buckets of u and v is equal to j − i− 1. Also, the number of elements of V in the
buckets between i and j is (j − i− 1) · b. In explanations, we sometimes drop b and call B a
(partial) bucketing to mean that it is a b-bucketing for some b that should be clear from the
context. Given a set V , an integer b and an ordering σ of V , one can associate a b-bucketing
with σ which assigns the first b elements in σ the 1-st bucket, the next b-elements the next
and so on. This is formalized below. Given a set V , an integer b and an ordering σ of V , we
say a b-bucketing B respects σ if B : V → [d|V |/be] is defined as follows. For any x ∈ [|V |], if
x = ib+ j for some i ∈ N such that j < b, then B(σx) = i+ 1 if j > 0, and B(σx) = i if j = 0.

The proofs marked with ? have been omitted because of space constraints and will appear
in the full version.

P. Jain, L. Kanesh, W. Lochet, S. Saurabh, and R. Sharma 18:7

3 Exact Algorithm for Directed Bandwidth for dags

The goal of this section is to prove Theorem 1.1. The algorithm follows the ideas of Cygan
and Pilipczuk [10]. We give the details here for the sake of completeness and to mention the
little details where we deviate from the algorithm of [10]. Throughout this section, without
loss of generality, we can assume that the input digraph D is weakly connected, as otherwise,
one can solve the problem on each of the weakly connected components of D and concatenate
the orderings obtained from each of them, in any order, to get the final ordering. Also,
instead of working on the optimization version of the problem, we work on the decision
problem, where together with the input digraph D, one is given an integer b, and the goal is
to decide whether there exists a topological ordering of V (D) of bandwidth at most b. It is
easy to see that designing an algorithm for this decision version with the desired running
time is enough to prove Theorem 1.1. In the following, we abuse notation a little and call
(D, b) as an instance of DAG-BW.

Throughout the remaining section, we call a topological ordering of D of bandwidth b as
a b-topological ordering. A b-bucketing of V (D) is called a b-topological bucketing if for all
(u, v) ∈ E(D), either B(u) = B(v) or B(v) = B(u)+1. Our algorithm, like the algorithm of [10],
has two phases : Bucketing and Ordering. The Bucketing phase of the algorithm is
described by Lemma 3.1.

I Lemma 3.1. (?) Given an instance (D, b) of DAG-BW, one can find a collection B, of
(b+ 1)-topological bucketings of V (D) of size at most 2n−1 · dn/b+1e, in time O?(2n), such
that for every b-topological ordering σ of D, there exists a bucketing B ∈ B such that B
respects σ.

In the Ordering phase, given a (b+ 1)-topological bucketing B, the algorithm finds a
b-topological ordering σ of D, if it exists, such that B respects σ. From Lemma 3.1, the
family B guarantees the existence of a (b + 1)-topological bucketing B of the final desired
ordering, if it exists.

To execute this step, we use the idea of finding a sequence of lexicographically embeddibe
sets using dynamic programming as used in [10]. To define lexicographically embeddible
set, the authors first defined the notion of lexicographic ordering of slots. We use the same
definition in this paper.

I Definition 3.2 (Lexicographic ordering of slots). Given an integer b, let bucket : [n] →
dn/(b+1)e be a function such that bucket(i) = di/(b+1)e and pos : [n]→ [b+ 1] be a function
such that pos(i) = ((i− 1) mod (b+ 1)) + 1. We define the lexicographic ordering of slots
as the lexicographic ordering of (pos(i), bucket(i)), where i ∈ [n].

For the Bandwidth problem, the authors of [10] proceed as follows. Given a graph
G = (V,E), and a (b + 1)-bucketing, B of V (G), they prove that there exists an ordering
σ of G such that B respects σ if and only if there exists a sequence of subsets of V (G),
∅ ⊂ S1 ⊂ · · · ⊂ Sn, |Si| = i, for all i ∈ [n], such that each Si satisfies the following properties:
(i) for each Si, there is a mapping γSi

: Si → [n] such that bucket(γSi
(v)) = B(v), and the set

{(pos(γSi(v)), bucket(γSi(v))) | v ∈ Si} is the set of first |Si| elements in the lexicographic
ordering of slots, and (ii) if u ∈ Si and v /∈ Si, then B(v) ≤ B(u). They call such a set Si
as a lexicographically embeddible set. They then obtain γSi+1 by extending γSi

as follows.
If v ∈ Si ∩ Si+1, then γSi+1(v) = γi(v), otherwise (pos(γSi+1(v)), bucket(γSi+1(v))) is the
|Si+1|th element in the lexicographic embedding of slots. Recall that there is only one vertex
v in Si+1 \ Si. Furthermore, if v has a neighbor u in Si, then B(v) ≤ B(u). If B(v) = B(u),
then since bucket size is at most b+ 1, |γ(v)− γ(u)| ≤ b. If B(v) < B(u), then by construction

FSTTCS 2019

18:8 Exact and Approximate Directed Bandwidth

of γSi+1 , pos(γSi+1(v)) > pos(γSi+1(u)). Now, again since each bucket size is at most b+ 1,
|γ(v) − γ(u)| ≤ b. Therefore, γSi

can be extended to γSi+1 . Thus, γSn
will yield the final

ordering. Hence, the goal reduces to finding a sequence S1 ⊂ · · · ⊂ Sn, |Si| = i, for all i ∈ [n],
such that each Si is a lexicographically embeddible set. We will call such a sequence as a
lexicographically embeddible sequence (les, in short).

We proceed in a similar way for Directed Bandwidth. We first note that one cannot
use the same definition of lexicographically embeddible set as defined above due to the
following reason. Suppose that Si is a lexicographical embeddible set. Consider a vertex
u ∈ Si. Suppose that there exists a vertex v /∈ Si that is an in-neighbor of u, then v cannot
belong to the bucket of u as it will not lead to the topological ordering using the method
defined above. Also, if v is an out-neighbor of u, then since we are working with topological
bucketing, v does not belong to the bucket that precedes the bucket of u. Hence, v belongs
to the bucket of u. We also want γ as a topological ordering. Therefore, we redefine the
notion of lexicographically embeddible set for Directed Bandwidth as follows.

I Definition 3.3 (Lexicographically embeddible set for digraphs). Given a (b+ 1)-topological
bucketing B, of V (D), we say that S ⊆ V (D) is a lexicographically embedibble set if the
following condition holds.
(C1) For each arc (u, v) ∈ E(D) such that u ∈ S and v /∈ S, B(u) = B(v).
(C2) For each arc (u, v) ∈ E(D) such that v ∈ S and u /∈ S, B(u) = B(v)− 1.
(C3) There exists a b-topological ordering γ : S → [n] such that for all v ∈ S, bucket(γ(v)) =

B(v), and (pos(γ(v)), bucket(γ(v))) belongs to the first |S| elements in the lexicographic
ordering of slots. We refer γ as a partial b-topological ordering
that respects lexicographic ordering of slots.

Now we prove that given a (b+ 1)-topological bucketing B of V (D), to find a b-topological
ordering σ such that B respects σ,

I Lemma 3.4. (?) Given a (b + 1)-topological bucketing B of V (D), the following are
equivalent. (i) There exists a b-topological ordering σ of the digraph D such that the unique
(b+1)-bucketing induced by σ, that is Bσ, is B. In other words, Bσ(v) = B(v), for all v ∈ V (D),
(ii)There exists a les, ∅ ⊂ S1 ⊂ · · · ⊂ Sn = V .

Due to Lemma 3.4, our goal is reduced to find a les. Cygan and Pilipczuk [10] find
les using dynamic programming over subsets of the vertex set of given graph. We use a
similar dynamic programming approach with appropriate modification because of the revised
definition of a lexicographically embeddible set. In the dynamic programming table, for each
S ⊆ V (D), c[S] = 1, if and only if S is a lexicographically embeddible set. To compute the
value of c[S], we first find a vertex v ∈ S such that S \ {v} is a lexicographically embeddible
set, that is, c[S \ {v}] = 1, and v satisfies the following properties : (i) for all the arcs
(v, u) ∈ E(D) such that u /∈ S, B(v) = B(u); (ii) for all the arcs (u, v) ∈ E(D) such that
u /∈ S, B(u) = B(v)−1; and (iii) B(v) = ((|S|−1) mod dn/(b+1)e) + 1. We compute the value
of c[S] for every subset S ⊆ V (D). Note that if c[V (D)] = 1, then V (D) is a lexicographically
embeddible set. Also, we can compute les by backtracking in the dynamic programming
table.

I Lemma 3.5. (?) Given an instance (D, b) of DAG-BW, and a (b+ 1)-topological bucketing
B of V (D) that respects some b-topological ordering of D (if it exists), one can compute a les
in time O?(2n).

Note that using Lemmas 3.1, 3.4 and 3.5, one can solve DAG-BW in O?(4n) time. The
desired running time of O?(3n) in Theorem 1.1 can be proved by careful analysis of two
steps in the algorithm as done in Theorem 12 of [10]. Since the proof of this is the same as
that of Theorem 12 of [10], we defer the proof here.

P. Jain, L. Kanesh, W. Lochet, S. Saurabh, and R. Sharma 18:9

4 Exact Algorithm for Digraph Bandwidth via Directed Bandwidth

We call an ordering of the vertex set of a digraph a b-ordering if its digraph bandwidth is at
most b. In order to prove Theorem 1.2 observe the following. Let (D, b) be an instance of (the
decision version of) Digraph Bandwidth. If it is a Yes instance, then let σ be a b-ordering
of D. Let R be the set of backward arcs in σ. Note that σ is a topological ordering of D−R.
If we guess the set of backward arcs R in a b-ordering of D (which takes time 2m), then the
goal is reduced to finding a b-topological ordering, σ, of D −R such that if (u, v) ∈ R, then
σ(u) > σ(v). In fact, one can also observe that it is sufficient to find a b-topological ordering,
ρ, of D−R such that for all (u, v) ∈ R either ρ(u) > ρ(v) or ρ(v)− ρ(u) ≤ b. We claim that
we can find the required ordering of D −R using the algorithm for Directed Bandwidth
for dags given in Section 3. Suppose that σ is a b-ordering of D. Let Bσ be a (b+1)-bucketing
that respects σ. Let R be the set of backward arcs in σ. Since σ is a b-topological ordering
of D − R, using Lemma 3.1, Bσ belongs to the collection of (b + 1)-bucketings B. Now,
using Lemmas 3.5 and 3.4, we obtain a b-topological ordering ρ of D −R that respects Bσ.
Note that ρ is a b-ordering of D, as for each arc (u, v) 6∈ R, ρ(v)− ρ(u) ≤ b because ρ is a
b-topological ordering of D −R. Also, if (u, v) ∈ R, then observe that if Bσ(u) 6= Bσ(v), then
since both σ and ρ respect Bσ and (u, v) is a backward arc in σ, thus, (u, v) is a backward
arc in ρ too, that is, ρ(u) > ρ(v). Otherwise, if (u, v) 6∈ R and Bσ(u) = Bσ(v), then since ρ
respects Bσ and the size of the buckets of Bσ is (b+ 1), therefore, |ρ(u)− ρ(v)| ≤ b. Thus,
the algorithm of Theorem 1.2 runs the algorithm for DAG-BW for each R ⊆ E(D), to obtain
the desired running time.

5 (Single) Exponential Time Approximation Scheme for Digraph
Bandwidth

The goal of this section is to prove Theorems 1.3 and 1.4. Let (D, b) be an instance of (the
decision version of) Digraph Bandwidth. The algorithm relies on an interesting property
of a b-bucketing that respects a b-ordering of D. Let σ be a b-ordering of D and let B be a
b-bucketing of V (D) that respects σ. An interesting property of such a bucketing B is that
if (u, v) ∈ E(D), then either B(u) > B(v) or B(v) ≤ B(u) + 1. This is because the size of
each bucket in B is b and σ is a b-ordering of D. Let us call this property of a b-bucketing
useful. What we saw in the previous section is that if we somehow have a bucketing that
respects σ, then one can design an algorithm to fetch σ from this bucketing. In this section,
instead of seeking for a bucketing that respects σ we seek for a bucketing with the above
mentioned useful property. Observe that, while the existence of such a bucketing with this
useful property might not necessarily imply the existence of some b-ordering of D, but having
such a bucketing with, for example buckets of size b, definitely yields a 2b-ordering of D.
This is because, given such a bucketing one can assign positions to vertices in the ordering
by choosing any arbitrary ordering amongst the vertices that belong to the same bucket
and concatenating these orderings in the order of the bucket numbers. By changing the
bucket size in the described bucketing, one can yield an ordering of digraph bandwidth at
most (1 + ε) times the optimal. This procedure, as we will see, also give an optimal digraph
bandwidth ordering when we use the bucket sizes to be 1. Below we give the description of
the algorithm used to find a bucketing with the useful property.

We begin by formulating the useful property of a bucketing described above. Since
the size of buckets is uniform in a bucketing, instead of defining the property in terms of
bucket numbers, we describe it in terms of the number of vertices that can appear between

FSTTCS 2019

18:10 Exact and Approximate Directed Bandwidth

the two buckets corresponding to the end points of a forward arc in the ordering. Such
a shift in definition helps us to get slightly better bounds in our running time. For any
positive integers b, s and a digraph D, given X ⊆ V (D) and a (partial) b-bucketing of X,
say B : X → [p, q] for some p, q ∈ N, we say that the external stretch of B is at most s if
for each arc (u, v) ∈ E(D[X]), either B(u) ≥ B(v), or (B(v)− B(u)− 1) · b ≤ s. Recall that
B(u)− B(v)− 1 denote the number of buckets between the bucket of u and the bucket of v.
Our major goal now is to prove Lemma 5.1.

I Lemma 5.1. Given a digraph D and positive integers b, s, there is an algorithm, that runs
in time min{O∗(4n · (ds+1/be)n),O∗(4n · (ds+1/be)2(b+s) logn)}, and computes a b-bucketing of
V (D), B : V (D)→ [d|V (D)|/be], of external stretch at most s.

We give a recursive algorithm for Lemma 5.1 (Algorithm 1). Since Algorithm 1 is recursive,
the input of the algorithm will contain a few more things in addition to D, b, s to maintain
the invariants at the recursive steps. We give the description of the input to Algorithm 1 in
Definition 5.2.

I Definition 5.2 (Legitimate input for Algorithm 1). The input (D, b, s, first, last,
left-bor(V (D)), right-bor(V (D)), Bin) is called legitimate for Algorithm 1 if the following
holds. Let δ = ds+1/be.
(P1) D is a digraph, b, s are positive integers and |V (D)| = 2η · b ·δ, where η ≥ 0 is a positive

integer.
(P2) first and last are positive integers such that last − first + 1 = 2η, where η is such

that |V | = 2η · b · δ.
(P3) left-bor(V (D)), right-bor(V (D)) ⊆ V (D),
(P4) Bin : left-bor(V (D)) ∪ right-bor(V (D)) → [first, last] is a partial b-bucketing such

that for each v ∈ left-bor(V (D)), Bin(v) ∈ [first, first + δ − 1], for each v ∈
right-bor(V (D)), Bin(v) ∈ [last − δ + 1, last] and the external stretch of Bin is at
most s.

Observe that δ− 1 represents the number of buckets that can appear between the buckets
of u and v in any b-bucketing of external stretch at most s, where the bucket of u precedes
the bucket of v and (u, v) ∈ E(D). We would like to remark that the condition of 1 is not
serious as we could have worked without it. We state it like the way we do for the sake of
notational and argumentative convenience in the proofs. All it states is that the number of
vertices is a power of 2 multiplied by b and δ. The first and last in 2 represents the bucket
number of the first and last buckets in the bucketing to be outputted. The relation between
first and last in 2 is there to ensure that there are enough buckets to hold the vertices of
D. At any recursive call, the sets left-bor(V (D)) and right-bor(V (D)) represent the sets
of vertices whose buckets have already been fixed in the previous recursive calls. The set
left-bor(V) represents the set of vertices in V that have an in-neighbour to the vertices
that have been decided to be placed in the buckets before the bucket numbered first in the
earlier recursive calls. Similarly, right-bor(V) represents the set of vertices in V that have
an out-neighbour to the vertices that have been decided to be placed in the buckets after the
bucket numbered last in the earlier recursive calls. Thus, in order to give the final bucketing
of external stretch at most s, it is necessary that left-bor(V) are placed in the first δ buckets
and right-bor(V) are placed in the last δ buckets. This is captured in 4. The next definition
describes the properties of the bucketing that would be outputted by Algorithm 1.

I Definition 5.3 (Look-out bucketing for a legitimate instance). Given a legitimate instance
I = (D, b, s, first, last, left-bor(V (D)), right-bor(V (D)), Bin), we say a bucketing B is a
look-out bucketing for I, if B is a b-bucketing Bout : V → [first, last] of external stretch at
most s that is consistent with Bin.

P. Jain, L. Kanesh, W. Lochet, S. Saurabh, and R. Sharma 18:11

Observe that, for the algorithm of Lemma 5.1, a call to Algorithm 1 on (D, b, s, 1, |V |/b, ∅,
∅, φ) is enough. To give the formal description of Algorithm 1, we will use the following
definition.

I Definition 5.4 (B validates a partition (X1, X2)). For any integers p, q and X ′ ⊆ X, let
B : X ′ → [p, q] be a partial bucketing of X ′. Let (X1, X2) be some partition of X. We say
that B validates (X1, X2) if the following holds. Let r = b(p+q)/2c. For each v ∈ X1 ∩X ′,
B(v) ∈ [p, r] and for each v ∈ X2 ∩X ′, B(v) ∈ [r + 1, q].

Algorithm 1 Algorithm for computing b-bucketing of external stretch at most s.
Input: I = (D, b, s, first, last, left-bor(V), right-bor(V), Bin) such that I is legitimate for
Algorithm 1.
Output: A look-out bucketing for I, if it exists.
1: Let V = V (D) and δ = ds+1/be.
2: if |V | = b · δ then
3: return any b-bucketing B : V → [first, last] that it consistent with Bin
4: Let mid = (first+last−1)/2.
5: for each partition (L,R) of V such that |L| = |R| and Bin validates (L,R) do
6: Let borL = {v ∈ L | there exists u ∈ R, (v, u) ∈ E(D)}.
7: Let borR = {v ∈ R | there exists u ∈ L, (u, v) ∈ E(D)}.
8: Let B be the collection of partial b-bucketings, B : borL ∪ borR → [mid − δ +

1,mid + δ], such that for each v ∈ borL, B(v) ∈ [mid − δ + 1,mid], for each
v ∈ borR, B(v) ∈ [mid+ 1,mid+ δ], external stretch of B is at most s and B is
consistent with Bin.

9: for each B ∈ B do
10: Define Bnewin : left-bor(V) ∪ borL ∪ borR ∪ right-bor(V) → [first, last], such

that for each v ∈ left-bor(V) ∪ right-bor(V), Bnewin (v) = Bin(v) and, for each
v ∈ borL ∪ borR, Bnewin (v) = B(v).

11: Let BnewLin : left-bor(V) ∪ borL → [first,mid] be such that BnewLin = Bnewin |L.
12: Let BnewRin : borR ∪ right-bor(V)→ [mid+ 1, last] be such that BnewRin = Bnewin |R.
13: Define left-bor(L) = left-bor(V) and right-bor(L) = borL.
14: Define left-bor(R) = borR and right-bor(R) = right-bor(V).
15: Let IB

L be the instance (D[L], b, s, first,mid, left-bor(L), right-bor(L), BnewLin).
16: Let IB

R be the instance (D[R], b, s,mid, last, left-bor(R), right-bor(R), BnewRin).
17: if IB

L and IB
R are legitimate inputs for Algorithm 1 then

18: if Algorithm 1(IB
L) ! = NO and Algorithm 1(IB

R) ! = NO then
19: return Algorithm 1 (IB

L) ∪ Algorithm 1 (IB
R)

20: return NO

For the formal description of Algorithm 1 refer to the pseudocode. We give the informal
description of Algorithm 1 here. In a legitimate instance when the number of vertices is b · δ,
the number of buckets is δ. Recall that δ = ds+1/be. Note that in this case, every b-bucketing
of the vertex set has external stretch at most s. This is because the number of buckets
between any two buckets is at most δ − 2 and hence, the number of vertices that appear in
the buckets between any two buckets is at most (δ − 2) · b ≤ s.

When the number of vertices is larger, the algorithm first guesses which vertices will be
assigned a bucket from the first half buckets of the final bucketing (this corresponds to the
set L) and which will be assigned the last half (this corresponds to the set R). Since the final

FSTTCS 2019

18:12 Exact and Approximate Directed Bandwidth

bucketing has to be consistent with Bin, from the description of Bin in Definition 5.2, the
vertices of left-bor(V) should belong to the first half buckets and the vertices of right-bor(V)
should belong to the last half buckets. Thus, the algorithm only considers those partitions
(guesses) which Bin validates (Line 5).

Fix a guessed partition (L,R) of V . The set borL represents the set of vertices in L that
have an out-neighbour in R. Similarly, the set borR represents the set of vertices in R with
an in-neighbour in L. Since in any b-bucketing of external stretch at most s, the number of
buckets that can appear between the buckets of the end points of a forward arc is at most
δ − 1, the vertices of borL can only be placed in the δ buckets closest to the middle bucket
and before it. Similarly, the vertices of borR can only be placed in the δ buckets closest to
the middle bucket and after it. The algorithm goes over all possible partial b-bucketings of
these vertices in the described buckets, that are consistent with Bin, and themselves have
external stretch at most δ (Line 8).

For a fixed partial b-bucketing enumerated above, the algorithm recursively finds a
bucketing of the L vertices in the first half buckets and the bucketing of the R vertices in
the last half buckets that is consistent with Bin and the partial b-bucketing of the borL and
borR vertices guessed. This final bucketing is then obtained by combing the two bucketings
from the two disjoint sub-problems (Lines 9 to 19).

I Lemma 5.5. (?) Algorithm 1 on a legitimate input (D, b, s, first, last, left-bor(V),
right-bor(V), Bin), runs in time min{O∗(4n·ds+1/ben),O∗(4n·ds+1/be2(b+s) logn)}, and returns
a look-out bucketing for I, if it exists.

Theorem 1.3 (resp. Theorem 1.3) can be proved by setting bucket size to be dbε/2e (resp. 1)
and external stretch b− 1 as parameters in the algorithm of Lemma 5.1. The full proofs are
deferred to the full version.

6 Exact Algorithm for Digraph Bandwidth via Directed
Homomorphisms

The goal of this section is to prove Theorem 1.5. Towards this, we give a reduction from
Digraph Bandwidth to a subgraph homomorphism problem for digraphs. Given two
digraphs D and H, a directed homomorphism from D to H is a function h : V (D)→ V (H),
such that if (u, v) ∈ E(D), then (h(u), h(v)) ∈ E(H). A directed homomorphism that is
injective is called an injective directed homomorphism. For any positive integers n, b such
that b ≤ n, we denote by P bn the directed graph on n vertices such that V (P bn) = [n] and
E(P bn) = Ef]Eb, where Eb = {(i, j) : i > j, i, j ∈ [n]} and Ef = {(i, i+j) : i ∈ [n−1], j ∈ [b]}.
In the following lemma, we build the relation between Digraph Bandwidth of D and
injective homomorphism from D to P bn.

I Lemma 6.1. For any digraph D and an integer b, D has bandwidth at most b if and only
if there is an injective homomorphism from D to P bn.

Proof. In the forward direction, suppose that D has digraph bandwidth at most b. Let σ be
a b-ordering of D. Let f : V (D) → V (P bn) be a function such that f(u) = σ(u). We claim
that f is an injective homomorphism. Since σ is an ordering of D, f is an injective function.
We prove that it is also a homomorphism. Consider an arc (u, v) ∈ E(D). If σ(u) < σ(v),
then since σ is a b-ordering, σ(v)− σ(u) ≤ b. Therefore, (f(u), f(v)) ∈ Ef . If σ(u) > σ(v),
then (f(u), f(v)) ∈ Eb. Hence, (f(u), f(v)) ∈ E(P bn). In the backward direction, suppose
that there exists an injective homomorphism from D to P bn. Let f : V (D) → V (P bn) be

P. Jain, L. Kanesh, W. Lochet, S. Saurabh, and R. Sharma 18:13

a function. Then, we claim that σ = (f−1(1), · · · , f−1(n)) is a b-ordering of D. Suppose
not, then there exists an arc (u, v) ∈ E(D) such that σ(v) − σ(u) > b. Let u = f−1(j)
and v = f−1(k). Note that σ(u) = j and σ(v) = k. Therefore, j < k. Since k − j > b,
(j, k) /∈ E(P bn), a contradiction that f is an injective homomorphism. J

For any two digraphs D and H, let inj(D,H) denote the number of injective homomorph-
isms from D to H and let hom(D,H) denote the number of homomorphisms from D to H.
Then the following lemma holds from Theorem 1 in [1].

I Lemma 6.2 (Theorem 1, [1]). Suppose that D and H be two digraphs such that |V (D)| =
|V (H)|. Then,

inj(D,H) =
∑

W⊆V (D)

(−1)|W |hom(D \W,H).

Now, we state the following known result about the number of homomorphisms between two
given digraphs D and H.

I Lemma 6.3 (Theorem 3.1, 5.1 [11]). Given digraphs D and H together with a tree
decomposition of D of width tw, hom(D,H) can be computed in time O(nhtw+1 min{tw, h}),
where n = |V (D)| and h = |V (H)|.

Using Lemmas 6.2 and 6.3, we get the following result.

I Lemma 6.4. Given digraphs D and H together with a tree decomposition of D of width
tw, inj(D,H) can be computed in time O(2nnhtw+1 min{tw, h}), where n = |V (D)| and
h = |V (H)|.

Proof of Theorem 1.5. The proof follows from Lemmas 6.1 and 6.4. J

7 Conclusion

In this paper we gave exponential time algorithm for the Digraph Bandwidth problem,
that either solved the problem exactly or computed it approximately. In particular, our
results imply that whenever b ≤ n

log2 n
or, the treewidth of the underlying undirected digraph

is O(n
logn) or, the number of arcs in the digraph are linear in the number of vertices, then

there exists a 2O(n) time algorithm for solving Digraph Bandwidth. Some important
questions that remain open about Digraph Bandwidth are the following.

Does Digraph Bandwidth admit an algorithm with running time 2O(n) on general
digraphs?
Another interesting question is the complexity of the Digraph Bandwidth problem,
when b is fixed. Recall that, in the undirected case, Bandwidth can be solved in time
O(nb+1) [26]. When b = 0, the problem is equivalent to checking if the input is a dag,
which can be done in linear time. For b = 1, we are able to design an O(n2) time
algorithm. For b = 2, the problem seems to be extremely complex, and in fact, we will be
surprised if the problem turns out to be polynomial time solvable. Overall, finding the
complexity of Digraph Bandwidth, for a fixed b ≥ 2, is an interesting open problem.

FSTTCS 2019

18:14 Exact and Approximate Directed Bandwidth

References
1 O. Amini, F.V. Fomin, and S. Saurabh. Counting Subgraphs via Homomorphisms. SIAM J.

Discrete Math., 26(2):695–717, 2012.
2 S.F. Assmann, G.W. Peck, M.M. Sysło, and J. Zak. The bandwidth of caterpillars with hairs

of length 1 and 2. SIAM J. Alg. Discrete Meth., 2(4):387–393, 1981.
3 G. Blache, M. Karpiński, and J. Wirtgen. On approximation intractability of the bandwidth

problem. Citeseer, 1997.
4 H.L. Bodlaender, M.R. Fellows, and M.T. Hallett. Beyond NP-completeness for problems of

bounded width (extended abstract): hardness for the W hierarchy. In Proc. of STOC 1994,
pages 449–458, 1994.

5 M. Chudnovsky, A. Fradkin, and P. Seymour. Tournament Immersion and Cutwidth. J. Comb.
Theory Ser. B, 102(1):93–101, 2012.

6 M. Cygan and M. Pilipczuk. Faster Exact Bandwidth. In Proc. of WG 2008, pages 101–109,
2008.

7 M. Cygan and M. Pilipczuk. Exact and approximate bandwidth. Theor. Comput. Sci.,
411(40-42):3701–3713, 2010.

8 M. Cygan and M. Pilipczuk. Bandwidth and distortion revisited. Discrete Appl. Math.,
160(4-5):494–504, 2012.

9 M. Cygan and M. Pilipczuk. Even Faster Exact Bandwidth. ACM Trans. Algorithms,
8(1):8:1–8:14, 2012.

10 Marek Cygan and Marcin Pilipczuk. Faster exact bandwidth. In International Workshop on
Graph-Theoretic Concepts in Computer Science, pages 101–109. Springer, 2008.

11 J. Díaz, M. Serna, and D.M. Thilikos. Counting H-colorings of partial k-trees. Theor. Comput.
Sci., 281(1-2):291–309, 2002.

12 M.S. Dregi and D. Lokshtanov. Parameterized Complexity of Bandwidth on Trees. In Proc.
of ICALP 2014, pages 405–416, 2014.

13 U. Feige. Coping with the NP-hardness of the graph bandwidth problem. In Proc. of SWAT
2000, pages 10–19. Springer, Berlin, 2000.

14 U. Feige and K. Talwar. Approximating the Bandwidth of Caterpillars. In Proc. of APPROX-
RANDOM 2005, volume 3624, pages 62–73, 2005.

15 M. Fürer, S. Gaspers, and S.P. Kasiviswanathan. An exponential time 2-approximation
algorithm for bandwidth. Theor. Comput. Sci., 511:23–31, 2013.

16 M. Garey, R. Graham, D. Johnson, and D. Knuth. Complexity Results for Bandwidth
Minimization. SIAM J. Appl. Math., 34(3):477–495, 1978.

17 M.R. Garey and D.S. Johnson. Computers and intractability, volume 29. wh freeman New
York, 2002.

18 P.A. Golovach, P. Heggernes, D. Kratsch, D. Lokshtanov, D. Meister, and S. Saurabh. Band-
width on AT-free graphs. Theor. Comput. Sci., 412(50):7001–7008, 2011.

19 P. Heggernes, D. Kratsch, and D. Meister. Bandwidth of bipartite permutation graphs in
polynomial time. J. Discrete Algorithms, 7(4):533–544, 2009.

20 D.J. Kleitman and R. Vohra. Computing the Bandwidth of Interval Graphs. SIAM J. Discrete
Math., 3(3):373–375, 1990.

21 R. Krauthgamer, J.R. Lee, M. Mendel, and A. Naor. Measured Descent: A New Embedding
Method for Finite Metrics. In Proc. of FOCS 2004, pages 434–443, 2004.

22 Yung-Ling Lai and Kenneth Williams. A survey of solved problems and applications on
bandwidth, edgesum, and profile of graphs. Journal of graph theory, 31(2):75–94, 1999.

23 Marek M. Karpinski, Jürgen Wirtgen, and A. Zelikovsky. An Approximation Algorithm for
the Bandwidth Problem on Dense Graphs. Technical report, University of Bonn, 1997.

24 B. Monien. The bandwidth minimization problem for caterpillars with hair length 3 is
NP-complete. SIAM J. Alg. Discrete Meth., 7(4):505–512, 1986.

25 C.H. Papadimitriou. The NP-Completeness of the bandwidth minimization problem. Comput-
ing, 16(3):263–270, 1976.

P. Jain, L. Kanesh, W. Lochet, S. Saurabh, and R. Sharma 18:15

26 J.B. Saxe. Dynamic-programming algorithms for recognizing small-bandwidth graphs in
polynomial time. SIAM J. Alg. Discrete Meth., 1(4):363–369, 1980.

27 W. Unger. The complexity of the approximation of the bandwidth problem. In Proc. of FOCS
1998, pages 82–91, 1998.

28 V. Vassilevska, R. Williams, and S.L.M. Woo. Confronting hardness using a hybrid approach.
In Proc. of SODA, pages 1–10, 2006.

29 J.H. Yan. The bandwidth problem in cographs. Tamsui Oxford J. Math. Sci, 13:31–36, 1997.

FSTTCS 2019

An O(n1/4+ε) Space and Polynomial Algorithm for
Grid Graph Reachability
Rahul Jain
Indian Institute of Technology Kanpur, India
jain@cse.iitk.ac.in

Raghunath Tewari
Indian Institute of Technology Kanpur, India
rtewari@cse.iitk.ac.in

Abstract
The reachability problem is to determine if there exists a path from one vertex to another in a
graph. Grid graphs are the class of graphs where vertices are present on the lattice points of a
two-dimensional grid, and an edge can occur between a vertex and its immediate horizontal or
vertical neighbor only.

Asano et al. presented the first simultaneous time space bound for reachability in grid graphs by
presenting an algorithm that solves the problem in polynomial time and O(n1/2+ε) space. In 2018,
the space bound was improved to Õ(n1/3) by Ashida and Nakagawa.

In this paper, we show that reachability in an n vertex grid graph can be decided by an algorithm
using O(n1/4+ε) space and polynomial time simultaneously.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases graph reachability, grid graph, graph algorithm, sublinear space algorithm

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.19

Funding Rahul Jain: Ministry of Human Resource Development, Government of India
Raghunath Tewari: DST Inspire Faculty Grant, Visvesvaraya Young Faculty Fellowship

Acknowledgements We thank anonymous reviewers for their helpful comments on an earlier version
of this paper.

1 Introduction

The problem of graph reachability is to decide whether there is a path from one vertex to
another in a given graph. This problem has several applications in the field of algorithms and
computational complexity theory. Reachability in directed and undirected graphs capture
the complexity of nondeterministic and deterministic logarithmic space respectively [12]. It
is often used as a subroutine in various network related problems. Hence designing better
algorithms for this problem is of utmost importance to computer scientists.

Standard graph traversal algorithms such as DFS and BFS give a linear time algorithm
for this problem, but they require linear space as well. Savitch’s divide and conquer based
algorithm can solve reachability in O(log2 n) space, but as a tradeoff, it requires nO(logn)

time [13]. Hence it is natural to ask whether we can get the best of both worlds and design
an algorithm for graph reachability that runs in polynomial time and uses polylogarithmic
space. Wigderson asked a relaxed version of this question in his survey - whether graph
reachability can be solved by an algorithm that runs simultaneously in polynomial time and
uses O(n1−ε) space [15]. In this paper, we address this problem for a certain restricted class
of directed graphs.

© Rahul Jain and Raghunath Tewari;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 19; pp. 19:1–19:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-8567-9475
mailto:jain@cse.iitk.ac.in
mailto:rtewari@cse.iitk.ac.in
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.19
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 An O(n1/4+ε) Space and Polynomial Algorithm for Grid Graph Reachability

Barnes et al showed that reachability in general graphs can be decided simultaneously in
n/2Θ(

√
logn) space and polynomial time [6]. Although this algorithm gives a sublinear space

bound, it still does not give a positive answer to Wigderson’s question.
However, for certain topologically restricted graph classes, we know of better space bounds

simultaneously with polynomial time. Planar graphs are graphs that can be drawn on the
plane such that no two edges of the graph cross each other at an intermediate point. Imai
et al. showed that reachability in planar graph can be solved in O(n1/2+ε) space for any
ε > 0 [9] . Later this space bound was improved to Õ(n1/2) [4]. For graphs of higher genus,
Chakraborty et al. gave an Õ(n2/3g1/3) space algorithm which additionally requires an
embedding of the graph on a surface of genus g, as input [7]. They also gave an Õ(n2/3)
space algorithm for H minor-free graphs which requires tree decomposition of the graph
as an input and O(n1/2+ε) space algorithm for K3,3-free and K5-free graphs. For layered
planar graphs, Chakraborty and Tewari showed that for every ε > 0 there is an O(nε) space
algorithm [8]. Stolee and Vinodchandran presented a polynomial time algorithm that, for
any ε > 0 solves reachability in a directed acyclic graph with O(nε) sources and embedded
on the surface of genus O(nε) using O(nε) space [14]. For unique-path graphs, Kannan et al.
presented a O(nε) space and polynomial time algorithm [10].

Grid graphs are a subclass of planar graphs whose vertices are present at the integer
lattice points of an m×m grid and edges can only occur between a vertex and its immediate
vertical or horizontal neighbor. It was known that reachability in planar graphs can be
reduced to reachability in grid graphs in logarithmic space [1]. The reduction, however,
causes atleast a quadratic blow-up in size with respect to the input graph. In this paper, we
study the simultaneous time-space complexity of reachability in grid graphs.

Asano and Doerr presented a polynomial time algorithm that uses O(n1/2+ε) space for
solving reachability in grid graphs [3]. Ashida and Nakagawa presented an algorithm with
improved space complexity of Õ(n1/3) [5]. The latter algorithm proceeded by first dividing
the input grid graph into subgrids. It then used a gadget to transform each subgrid into a
planar graph, making the whole of the resultant graph planar. Finally, it used the planar
reachability algorithm of Imai et al. [9] as a subroutine to get the desired space bound.

In this paper, we present a O(n1/4+ε) space and polynomial time algorithm for grid graph
reachability, thereby significantly improving the space bound of Ashida and Nakagawa.

I Theorem 1 (Main Theorem). For every ε > 0, there exists a polynomial time algorithm
that can solve reachability in an n vertex grid graph, using O(n1/4+ε) space.

To solve the problem we divide the given grid graph into subgrids and replace paths in each
grid with a single edge between the boundary vertices to get an auxiliary graph. This reduces
the size of the graph and preserves reachability. Instead of trying to convert the auxiliary
graph into planar graph while preserving reachability (which was the approach of Ashida and
Nakagawa [5]), we use a divide and conquer strategy to directly solve reachability problem
in the auxiliary graph. We define and use a new type of graph separator of the auxiliary
graph, that we call as pseudoseparator and use it to divide the auxiliary graph into small
components and then combine the solution in a space-efficient manner.

In Section 2 we state the definitions and notations that we use in this paper. In Section 3
we define the auxiliary graph and state various properties of it that we use later. In Section
4 we discuss the concept of a pseudoseparator. We give its formal definition and show how a
pseudoseparator can be computed efficiently. In Section 5 we give the algorithm to solve
reachability in an auxiliary graph and prove its correctness. Finally in Section 6 we use the
algorithm of Section 5 to give an algorithm to decide reachability in grid graphs and thus
prove Theorem 1.

R. Jain and R. Tewari 19:3

2 Preliminaries

Let [n] denote the set {0, 1, 2, . . . , n}. We denote the vertex set of a graph G by V (G)
and its edge set by E(G). For a subset U of V (G), we denote the subgraph of G induced
by the vertices of U as G[U]. For a graph G, we denote cc(G) as the set of all connected
components in the underlying undirected graph of G, where the undirected version is obtained
by removing orientations on all edges of G. Henceforth, whenever we talk about connected
components, we will mean the connected components of the underlying undirected graph.

In a drawing of a graph on a plane, each vertex is mapped to a point on the plane, and
each edge is mapped to a simple arc whose endpoints coincide with the mappings of the end
vertices of the edge. Moreover, the interior points of an arc corresponding to an edge does
not intersect with any other vertex points. A graph is said to be planar if it can be drawn on
the plane such that no two edges of the graph intersect except possibly at the endpoints. We
will not be concerned with details about the representation of planar graphs. We note that
the work of [2], and subsequently [12], implies a deterministic logarithmic space algorithm
that decides whether or not a given graph is planar, and if it is, outputs a planar embedding.
Hence when dealing with planar graphs, we will assume without loss of generality that a
planar embedding is provided as well.

A m×m grid graph is a directed graph whose vertices are [m]× [m] = {0, 1, . . . ,m} ×
{0, 1, . . . ,m} so that if ((i1, j1), (i2, j2)) is an edge then |i1 − i2|+ |j1 − j2| = 1. It follows
from definition that grid graphs are a subset of planar graphs.

3 Auxiliary Graph

Let G be an m×m grid graph. We divide G into m2α subgrids such that each subgrid is a
m1−α ×m1−α grid. Formally, for 1 ≤ i, j ≤ mα, the (i, j)-th subgrid of G, denoted as G[i, j]
is the subgraph of G induced by the set of vertices, V (G[i, j]) = {(i′, j′) | (i− 1) ·m1−α ≤
i′ ≤ i ·m1−α and (j − 1) ·m1−α ≤ j′ ≤ j ·m1−α}.

For 0 < α < 1 and 1 ≤ i, j ≤ mα, we define Auxα(G)[i, j] as follows. The vertex set of
Auxα(G)[i, j] is V (Auxα(G)[i, j]) = {(i′, j′) | i′ = k ·m1−α or j = l ·m1−α, such that k ∈
{i − 1, i} and l ∈ {j − 1, j}}. For two vertices u, v in Auxα(G)[i, j], (u, v) is an edge in
Auxα(G)[i, j] if there is a path from u to v in the subgrid G[i, j]. In a drawing of Auxα(G)[i, j],
we use a straight line to represent the edge if u and v do not lie on a single side of Auxα(G)[i, j],
and an arc present inside the grid to represent it otherwise.

Now for 0 < α < 1, we define the α-auxiliary graph, Auxα(G) as follows. The vertex set
of Auxα(G), V (Auxα(G)) = {(i, j) | i = k ·m1−α or j = l ·m1−α, such that 0 ≤ k, l ≤ mα}.
The edges of Auxα(G) are the edges of Auxα(G)[i, j] taken over all pairs (i, j). Note that
Auxα(G) might have parallel edges, since an edge on a side of a block might be present in the
adjacent block as well. In such cases we preserve both the edges, however in their different
blocks of Auxα(G) in the drawing of Auxα(G) on the plane. Figure 1 contains an example
of a grid graph partitioned into subgrids and its corresponding auxiliary graph. Since each
block Auxα(G)[i, j] contains 4m1−α vertices, the total number of vertices in Auxα(G) would
be at most 4m1+α.

Our algorithm for reachability first constructs Auxα(G) by solving each of them1−α×m1−α

grids recursively. It then uses a polynomial time subroutine to decide reachability in Auxα(G).
Note that we do not store the graph Auxα(G) explicitly, since that would require too much
space. Rather we solve a subgrid recursively whenever the subroutine queries for an edge in
that subgrid of Auxα(G).

FSTTCS 2019

19:4 An O(n1/4+ε) Space and Polynomial Algorithm for Grid Graph Reachability

Figure 1 A grid graph G divided into subgrids and its corresponding auxiliary graph Auxα(G).

Our strategy is to develop a polynomial time algorithm which solves reachability in
Auxα(G) using Õ(m̃1/2+β/2) space where m̃ is the number of vertices in Auxα(G). As
discussed earlier, m̃ can be at most 4m1+α. Hence, the main algorithm would require
Õ(m1/2+β/2+α/2+αβ/2) space. For a fixed constant ε > 0, we can pick α > 0 and β > 0 such
that the space complexity becomes O(m1/2+ε).

3.1 Properties of the Auxiliary Graph
In the following definition, we give an ordered labeling of the vertices on some block of the
auxiliary graph. The labeling is defined with respect to some vertex present in the block.

I Definition 2. Let G be a m×m grid graph, l = Auxα(G)[i, j] be a block of Auxα(G) and
v = (x, y) be a vertex in Auxα(G)[i, j]. Let t = m1−α. We define the counter-clockwise
adjacent vertex of v with respect to the block l, cl(v) as follows:

cl(v) =

(x+ 1, y) if x < (i+ 1)t and y = jt

(x, y + 1) if x = (i+ 1)t and y < (j + 1)t
(x− 1, y) if x > it and y = (j + 1)t
(x, y − 1) if x = it and y > jt

Similarly we also define the r-th counter-clockwise adjacent neighbour of v with respect to the
block l inductively as follows. For r = 0, crl (v) = v and otherwise we have cr+1

l (v) = cl(crl (v)).

Note that for a block l and vertices v and w in it, we write v as cpl (w) where p is smallest
non-negative integer for which cpl (w) = v. Next we formalize what it means to say that two
edges of the auxiliary graph cross each other.

I Definition 3. Let G be a grid graph and l be a block of Auxα(G). For two distinct edges e
and f in the block, such that e = (v, cpl (v)) and f = (cql (v), crl (v)). We say that edges e and f
cross each other if min(q, r) < p < max(q, r).

Note the definition of cross given above is symmetric. That is, if edges e and f cross each
other then f and e must cross each other as well. For an edge f = (cql (v), crl (v)), we define
←−
f = (crl (v), cql (v)) and call it the reverse of f . We also note that if e and f cross each other,
then e and

←−
f also cross each other.

In Lemma 4 we state an equivalent condition of crossing of two edges, and in Lemmas 6
and 7 we state certain properties of the auxiliary graph that we use later.

R. Jain and R. Tewari 19:5

I Lemma 4. Let G be a grid graph and l be a block of Auxα(G). Let w be an arbitrary vertex
in the block l and e = (cpl (w), cql (w)) and f = (crl (w), csl (w)) be two distinct edges in l. Then
e and f cross each other if and only if either of the following two conditions hold:

min(p, q) < min(r, s) < max(p, q) < max(r, s)
min(r, s) < min(p, q) < max(r, s) < max(p, q)

Proof. We prove that if min(p, q) < min(r, s) < max(p, q) < max(r, s) then e and f cross
each other. We let p < r < q < s. Other cases can be proved by reversing appropriate
edges. We thus have integers r1 = r − p, q1 = q − p and s1 = s − p. Clearly, r1 <

q1 < s1. Let v = cpl (w). Thus we have e = (v, cql (w)) = (v, cq1
l (cpl (w))) = (v, cq1

l (v)) and
f = (crl (w), csl (w)) = (cr1

l (cpl (w)), cs1
l (cpl (w))) = (cr1

l (v), cs1
l (v)) The proof for the second

condition is similar.
Now, we prove that if e = (cpl (w), cql (w)) and f = (crl (w), csl (w)) cross each other then

either of the given two condition holds. We assume that p is the smallest integer among p, q,
r and s. Other cases can be proved similarly. Now, let v = cpl (w). We thus have integers
q1 = q − p, r1 = r− p and s1 = s− p such that e = (v, cq1

l (v)) and f = (cr1
l (v), cs1

l (v)). Since
e and f cross each other, we have min(r1, s1) < q1 < max(r1, s1). Thus min(r1 + p, s1 + p) <
q1+p < max(r1+p, s1+p). It follows that min(r, s) < q < max(r, s). Since we assumed p to be
smallest integer among p, q, r and s; we have min(p, q) < min(r, s) < max(p, q) < max(r, s),
thus proving the lemma. J

We see that we can draw an auxiliary graph on a plane such that the arcs corresponding to
two of its edges intersect if and only if the corresponding edges cross each other. Henceforth,
we will work with such a drawing.

I Definition 5. Let G be a grid graph and l be a block of Auxα(G). For a vertex v and edges
f , g such that f = (cql (v), crl (v)) and g = (csl (v), ctl(v)), we say that f is closer to v than g if
min(q, r) < min(s, t).

We say f is closest to v if there exists no other edge f ′ which is closer to v than f .

I Lemma 6. Let G be a grid graph and e1 = (u1, v1) and e2 = (u2, v2) be two edges in
Auxα(G). If e1 and e2 cross each other, then Auxα(G) also contains the edges (u1, v2) and
(u2, v1).

Proof. Let e1 = (v, cpl (v)) and e2 = (cql (v), crl (v)) be two edges that cross each other in
Auxα(G). Let l be the block of Auxα(G) to which e1 and e2 belong. Consider the subgrid of
G which is solved to construct the block l. Since the edge e1 exists in block l, there exists a
path P from v to cpl (v) in the underlying subgrid. This path P divides the subgrid into two
parts such that the vertices cql (v) and crl (v) belong to different parts of the subgrid. Thus,
a path between cql (v) and crl (v) necessarly take a vertex of path P . Hence, there is a path
from v to crl (v) and a path from cpl (v) to crl (v). Thus the lemma follows. J

I Lemma 7. Let G be a grid graph and e1 = (u1, v1) and e2 = (u2, v2) be two edges in
Auxα(G). If e1 and e2 cross a certain edge f = (x, y), and e1 is closer to x than e2, then
the edge (u1, v2) is also present in Auxα(G).

Proof. Let e = (v, cpl (v)), f = (cql (v), crl (v)) and g = (csl (v), ctl(v)). If cql (v) = csl (v) then the
lemma trivially follows. Otherwise, we have two cases to consider:
Case 1 (f crosses g): In this case, we will have (cql (v), ctl(v)) present in Auxα(G) by Lemma 6.
Case 2 (f does not cross g): In this case, we have min(q, r) < min(s, t) < p < max(s, t) <

max(q, r). Since f crosses e, we have the edge (cql (v), cpl (v)) in Auxα(G) by Lemma 6.
This edge will cross g. Hence (cql (v), ctl(v)) is present in Auxα(G). J

FSTTCS 2019

19:6 An O(n1/4+ε) Space and Polynomial Algorithm for Grid Graph Reachability

4 Pseudoseparator in a Grid Graph

Imai et al. used a separator construction to solve the reachability problem in planar graphs [9].
A separator is a set of vertices whose removal disconnects the graph into small components.
An essential property of a separator is that, for any two vertices, a path between the vertices
must contain a separator vertex if the vertices lie in two different components with respect
to the separator.

Grid graphs are subclasses of planar and are known to have good separators. However,
for a grid graph G, the graph Auxα(G) might not have a small separator. Here we show
that Auxα(G) has a different kind of separator, which we call as a PseudoSeparator (see
Definition 8). PseudoSeparator allows us to decide reachability in Auxα(G), by using a divide
and conquer strategy and obtain the claimed time and space bounds.

For a graph H = (V1, E1) given along with its drawing, and a subgraph C = (V2, E2)
of H, define the graph H � C = (V3, E3) as V3 = V1 \ V2 and E3 = E1 \ {e ∈ E1 | ∃f ∈
E2, e crosses f}. We note that the graph H we will be working with throughout the article
will be a subgraph of an auxiliary graph. Hence it will always come with a drawing.

I Definition 8. Let G be a grid graph and H be a vertex induced subgraph of Auxα(G)
with h vertices. Let f : N → N be a function. A subgraph C of H is said to be an f(h)-
PseudoSeparator of Auxα(G) if the size of every connected component in cc(H � C) is at
most f(h). The size of C is the total number of vertices and edges of C summed together.

For a vertex-induced subgraph H of Auxα(G), an f(h)-PseudoSeparator is a subgraph
C of H that has the property that, if we remove the vertices as well as all the edges that
cross one of the edges of the PseudoSeparator, the graph gets disconnected into small pieces.
Moreover for every edge e in H, if there exists distinct sets U1 and U2 in cc(H �C) such that
one of the endpoints of e is in U1 and the other is in U2, then there exists an edge f in C
such that e crosses f . Hence any path which connects two vertices in different components,
must either contain a vertex of C or must contain an edge that crosses an edge of C. We
divide the graph using this PseudoSeparator and give an algorithm which recursively solves
each subgraph and then combines their solution efficiently.

4.1 Constructing a Pseudoseparator
We briefly comment on how to construct a PseudoSeparator of a vertex induced subgraph
H of Auxα(G). First, we pick a maximal subset of edges from H so that no two edges cross
(see Defintion 9). Then we triangulate the resulting graph. This can be done in logspace.
Next, we use Imai et al.’s algorithm to find a separator of the triangulated graph. Call the
triangulated graph as Ĥ and the separator vertices as S. The vertex set of PseudoSeparator
of H will contain all the vertices of S and four additional vertices for each edge of Ĥ[S] that
is not present in H. The edge set of PseudoSeparator of H will contain all the edges of H
which are also in Ĥ[S] and four additional edges for each edge of Ĥ[S] that is not present in
H.

I Definition 9. Let G be a grid graph and H be a vertex induced subgraph of Auxα(G). We
define planar(H) as a subgraph of H. The vertex set of planar(H) is same as that of H.
For an edge e ∈ H, let l be the block to which e belongs and let w be the lowest indexed
vertex in that block. Then e = (cil(w), cjl (w)) is in planar(H) if there exists no other edge
f = (cxl (w), cyl (w)) in H such that min(x, y) < min(i, j) < max(x, y) < max(i, j).

In Lemma 10 we show that the graph planar(H) is indeed planar and prove a simple yet
crucial property of this graph, that would help us to construct the PseudoSeparator.

R. Jain and R. Tewari 19:7

I Lemma 10. Let G be a grid-graph and H be a vertex induced subgraph of Auxα(G). No two
edges of planar(H) cross each other. Moreover, for any edge e in H that is not in planar(H),
there exists another edge in planar(H) that crosses e.

Proof. Let l be a block of Auxα(G) and w be the smallest index vertex of l. Let e =
(cpl (w), cql (w)) and f = (crl (w), csl (w)) be two edges of H that cross. We have, by lemma
4, that either min(p, q) < min(r, s) < max(p, q) < max(r, s) or min(r, s) < min(p, q) <
max(r, s) < max(p, q). Hence, by our construction of planar(H), atmost one of e and f

belongs to it. Thus no two edges of planar(H) can cross.
For the second part, we will prove by contradiction. Let us assume that there exists

edges in H which is not in planar(H) and also not crossed by an edge in planar(H). We
pick edge e = (cpl (w), cql (w)) from them such that min(p, q) of that edge is minimum. Since
this edge is not present in planar(H), we have by definition, an edge f = (crl (w), csl (w))
such that min(r, s) < min(p, q) < max(r, s) < max(p, q). We pick the edge f for which
min(r, s) is minimum. Now, since this edge f is not present in planar(H), we have another
edge g = (cil(w), cjl (w)) in planar(H) such that min(i, j) < min(r, s) < max(i, j) < max(r, s).
We pick g such that min(i, j) is minimum and break ties by picking one whose max(i, j) is
maximum. Now, we have the following cases:
Case 1 (i < r < j < s): In this case, the edge cil(w), csl (w) will be present in H. Since

i < p < s < q, and i < min(r, s), this will contradict the way in which edge f was chosen.
Case 2 (i < s < j < r): In this case, the edge (crl (w), cjl (w)) will be present in H. This

edge will cross e and hence not be present in planar(H). Thus, we have an edge g′ =
(ci′l (w), cj

′

l (w)) in planar(H) such that min(i′, j′) < j < max(i′, j′) < r. We will thus have
two subcases.
Case 2a (i < min(i′, j′)): Here, we will have i < min(i′, j′) < j < max(i′, j′). Hence

this edge will cross g giving a contradiction to the first part of this lemma.
Case 2b (min(i′, j′) ≤ i): Here, this edge should have been chosen instead of g contra-

dicting our choice of g.
The analysis of two remaining cases where j < s < i < r and j < r < i < s are similar to
Cases 1 and 2 respectively. J

We next describe how to compute the triangulated planar graph Ĥ. Given H as an
input, we first find planar(H) using Lemma 10. We then triangulate planar(H) by first adding
edges in the boundary of each block as follows: let l be a block and v be a vertex in l. Let
p be the smallest positive integer such that the vertex cpl (v) is present in H. If the edge
(v, cpl (v)) is not present in planar(H), we add this in Ĥ. This procedure does not result in a
non-planar graph since no edge of planar(H) goes from one block to another. Every edge of l
is now inside the boundary cycle. Finally, we triangulate the rest of the graph and add the
triangulation edges to Ĥ. Note that this process can be done in logspace.

We will be using the following lemma which was proven by Imai et al.

I Lemma 11 ([9]). For every β > 0, there exists a polynomial time and Õ(h1/2+β/2) space
algorithm that takes a h-vertex planar graph P as input and outputs a set of vertices S,
such that |S| is O(h1/2+β/2) and removal of S disconnects the graph into components of size
O(h1−β).

For a subgraph H of Auxα(G), we construct the graph psep(H) in the following way.
(i) Construct Ĥ from H.
(ii) Find a set S of vertices in Ĥ which divides it into components of size O(n1−β) by

applying Lemma 11.

FSTTCS 2019

19:8 An O(n1/4+ε) Space and Polynomial Algorithm for Grid Graph Reachability

(iii) Add each vertex of S to the set V (psep(H)) and each edge of Ĥ(S) which is also in H
to E(psep(H)).

(iv) Let e = (v, w) be a triangulation edge present in block l of Ĥ whose both endpoints are
in S. Let p and q be integers such that w = cpl (v) and v = cql (w). We add the following
set of at most four vertices and four edges to psep(H).
1. Let p1 < p be the largest integer such that an edge e1 with endpoints v and cp1

l (v)
exists.

2. Let p2 > p be the smallest integer such that an edge e2 with endpoints v and cp2
l (v)

exists.
3. Let q1 < q be the largest integer such that an edge e3 with endpoints cq1

l (w) and w
exists.

4. Let q2 > q be the smallest integer such that an edge e4 with endpoints cq2
l (w) and

w exists.
Note that the above edges could be directed either way. We add the vertices cp1

l (v),
cp2
l (v), cq1

l (w) and cq2
l (w) to V (psep(H)). For i = 1, 2, 3, 4, we add the edges ei to

E(psep(H)). We call these four edges as shadows of e.
In Lemma 12 we show that the set psep(H) is a PseudoSeparator of H.

I Lemma 12. Let G be a grid graph and H be a vertex induced subgraph of Auxα(G). The
graph psep(H) is a h1−β-PseudoSeparator of H.

To prove Lemma 12, we first show a property of triangulated graphs that we use in our
construction of PseudoSeparator. It is known that a simple cycle in a planar embedding of a
planar graph divides the plane into two parts. We call these two parts the two sides of the
cycle.

I Lemma 13. Let G be a triangulated planar graph and S be a subset of its vertices. For
every pair of vertex u, v which belong to different components of G \ S, there exists a cycle in
G[S], such that u and v belong to different sides of this cycle.

Proof. To prove the lemma, we first need some terminology. We call a set of faces an
edge-connected region if it can be constructed in the following way:

A set of a single face is an edge-connected region.
If a set F is an edge-connected region and f is a face that shares an edge with one of the
faces of F , then F ∪ {f} is an edge-connected region.

We can orient the edges of an undirected planar simple cycle to make it a directed
cycle. This can help us identify the two sides of the cycle as interior (left-side) and exterior
(right-side).

Let C be a component of G \ S and S′ be the set of vertices of S which are adjacent
to at least one of the vertices of C in G. Let F be the set of triangle faces of G to which
at least one vertex of C belongs. We first observe that for any face f of F , the vertices of
f will either belong to C or S′. We see that F is a region of edge-connected faces. Miller
proved that we could write the boundary of the region of edge-connected faces as a set of
vertex-disjoint simple cycles with disjoint exteriors [11]. These cycles will contain only the
vertices of S′. Hence the lemma follows. J

Proof of Lemma 12. Let C = psep(H). Let S be the set of vertices obtained from Ĥ by
using Lemma 11. We claim that if any two vertices u and v belong to different connected
components of Ĥ \ S, then it belongs to diffent components of cc(H � C). We prove this by
contradiction. Let us assume that it is not true. Then there is an edge from e in H and two

R. Jain and R. Tewari 19:9

u

w

v

(a) The s− t path takes a vertex of the separator.

u′ v′
u v

e

(b) The s− t path crosses an edge of the separator.

Figure 2

distinct sets U1 and U2 of Ĥ \ S such that one of the end point of e is in U1 and the other is
in U2. This edge e does not cross any of the edge of psep(H). Without loss of generality,
let e = (v, cpl (v)), where v ∈ U1 and cpl (v) is not in U1. (we pick the edge e such that p is
minimum) Due to Lemma 13, it follows that there exists a triangulation edge f such that
f = ((cql (v)), crl (v)) and that e crosses f . We orient the triangulation edge so that q < p < r.
Now, since e is not present in planar(H), by Lemma 10 there exists at least one edge that
crosses it and is present in planar(H). Let g = (csl (v), ctl(v)) be one such edge such that t− s
is maximum. We thus have the following cases:
Case 1 (s < q < p < r < t): In this case, since g crosses e, by Lemma 6, we have that the

edge e′ = (csl (v), cpl (v)) is also present in H. e′ also crosses f . Since p− s < p, existence
of e′ contradicts our choice of e.

Case 2 (q < t < p < s < r): In this case, since g crosses e, by Lemma 6, we have that the
edge e′ = (v, ctl(v)) is also present in H. e′ also crosses f . Since t < p, existence of e′
contradicts our choice of e.

Case 3 (q < s < p < t < r): In this case, since g crosses e, by Lemma 6, we have that
the edge e′ = (v, ctl(v)) is present in H. e′ also crosses f and hence e′ was not present
in planar(H). Thus there will exists an edge in planar(H) which crosses e′ by Lemma
10. Let g′ = (cs′

l (v), ct′l (v)) be the edge in planar(H) that crosses e′ such that t′ − s′ is
maximum. We see that t′ < q and s′ > r, for otherwise, existence of g′ will contradict
the way g is chosen. Now, since the edges g and g′ both cross e and g′ is closer to v than
g, by Lemma 7, the edge e′′ = (cs′

l (v), ctl(v)) will also be present in H. e′′ will cross f .
Now, any edge present in planar(H) that crosses e′′ will contradict our choice of g or g′.

Case 4 (t < q < p < r < s): In this case, the edge e′ = (csl (v), cpl (v)) will also be present
in H. e′ will cross f and hence will not be present in planar(H). Any edge present in
planar(H) that also crosses e′ will contradict the way g is chosen.

In other cases, if g is picked such that one of its vertices is common with f , then e will
cross a shadow edge of f giving a contradiction. If g is picked such that g cross f , then it
contradicts the fact that both of them are present in Ĥ. J

Summarizing Lemmas 11 and 12 we have Theorem 14.

I Theorem 14. Let G be a grid graph and H be a vertex induced subgraph of Auxα(G) with
h vertices. For any constant β > 0, there exists an Õ(h1/2+β/2) space and polynomial time
algorithm that takes H as input and outputs an h1−β-PseudoSeparator of size O(h1/2+β/2).

5 Algorithm to Solve Reachability in Auxiliary Graph

In this section, we discuss the grid graph reachability algorithm. Let G be a grid graph having
ñ vertices. By induction we assume that we have access to a vertex induced subgraph H of
Auxα(G), containing h vertices. Below we describe a recursive procedure AuxReach(H,x, y)
that outputs true if there is a path from x to y in H and outputs false otherwise.

FSTTCS 2019

19:10 An O(n1/4+ε) Space and Polynomial Algorithm for Grid Graph Reachability

5.1 Description of the Algorithm AuxReach
First we construct a h1−β-PseudoSeparator C of H, using Theorem 14. We also ensure
that x and y are part of C (if not then we add them). Let I1, I2, . . . , Il be the connected
components of H � C.

We maintain an array called visited of size |C| to mark vertices or edges of the
PseudoSeparator C. Each cell of visited corresponds to a distinct vertex or edge of C.
For a vertex v in C, we set visited[v] := 1 if there is a path from x to v in H, else it is set to
0. For an edge e = (u, v) in C, we set visited[e] := u′ if (i) there is an edge f = (u′, v′) that
crosses e, (ii) there is a path from x to u′ in H and (iii) f is the closest such edge to u. Else
visited[e] is set to NULL. Initially, for all vertex v ∈ C, visited[v] := 0 and for all edges e ∈ C,
visited[e] := NULL. We say that a vertex v is marked if either visited[v] := 1 or visited[e] := v

for some edge e.
First set visited[x] := 1. We then perform an outer loop with h iteration and in each

iteration update certain entries of the array visited as follows. For every vertex v ∈ C, the
algorithm sets visited[v] := 1 if there is a path from a marked vertex to v such that the
internal vertices of that path all belong to only one component Ii. Similarly, for each edge
e = (u, v) of C, the algorithm sets visited[e] := u′ if (i) there exists an edge f = (u′, v′) which
crosses e, (ii) there is a path from a marked vertex to u′ such that the internal vertices
of that path all belong to only one component Ii and, (iii) f is the closest such edge to u.
Finally we output true if visited[y] = 1 else output false. We use the procedure AuxReach
recursively to check if there is a path between two vertices in a single connected component
of H � C. A formal description of AuxReach is given in Algorithm 1.

5.2 Proof of Correctness of AuxReach
Let P be a path from x to y in H. Suppose P passes through the components Iσ1 , Iσ2 , . . . , IσL

in this order. The length of this sequence can be at most |H|. As the path leaves the
component Iσj

and goes into Iσj+1 , it can do in the following two ways only:
i. The path exits Iσj

through a vertex w of PseudoSeparator as shown in Figure 2a. In
this case, Algorithm 1 would mark the vertex w.

ii. The path exits Iσj
through an edge (u, v) whose other endpoint is in Iσj+1 . By Lemma 7,

this edge will cross an edge e = (x′, y′) of the PseudoSeparator. In this case, Algorithm
1 would mark the vertex u′, such that there is an edge (u′, v′) that crosses e as well and
(u′, v′) is closer than (u, v) to x′ and there is a path in Iσj from a marked vertex to u′.
By Lemma 7, the edge (u′, v) would be present in H as well.

Thus after the j-th iteration, AuxReach would traverse the fragment of the path in the
component Iσj

and either mark its endpoint or a vertex which is closer to the edge e of C
which the path crosses. Finally, t would be marked after L iterations if and only if there is
a path from s to t in H. We give a formal proof of correctness in Lemma 15. For a path
P = (u1, u2, . . . ut), we define tail(P) := u1 and head(P) := ut.

I Lemma 15. Let G be a grid graph and H be a vertex induced subgraph of Auxα(G). Then
for any two vertices x, y in H, there is a path from x to y in H if and only if AuxReach(H,x, y)
returns true.

Proof. Firstly observe that a vertex is marked only if there is a path from some other marked
vertex to that vertex in H. Hence if there is no path from x to y then y is never marked by
AuxReach and hence AuxReach returns false.

Now let P be a path from x to y in H. We divide the path into subpaths P1, P2, . . . , Pl,
such that for each i, all vertices of Pi belong to U ∪ V (C) for some connected component U
in cc(H �C) and either (i) head(Pi) = tail(Pi+1), or (ii) ei = (head(Pi), tail(Pi+1)) is an edge

R. Jain and R. Tewari 19:11

Algorithm 1 AuxReach(H, s, t).

Input: A vertex induced subgraph H of Auxα(G) and two vertices x and y in H (let
G be an m×m grid graph and h = |V (H)|)

Output: true if there is a path from x to y in H and false otherwise
1 if h ≤ m1/8 then Use DFS to solve the problem; /* m is a global variable

where G is an m×m grid graph */
2 else
3 Compute a h1−β-PseudoSeparator C of H using Theorem 14;
4 C ← C ∪ {x, y};
5 foreach edge e in C do visited[e]← NULL;
6 foreach vertex v in C do visited[v]← 0;
7 visited[x]← 1;
8 for i = 1 to |H| do
9 foreach edge e = (u, v) ∈ C do

10 if ((∃ marked vertex w) · (∃U ∈ cc(H � C)) · (∃f = (u′, v′) such that f
crosses e and f is closest to u) · (AuxReach(H[U ∪ {w, u′}], w, u′) = true))
then

11 visited[e]← u′

12 end
13 end
14 foreach vertex v ∈ C do
15 if ((∃ marked vertex w) · (∃U ∈

cc(H � C)) · (AuxReach(H[U ∪ {w, v}], w, v) = true)) then
16 visited[v]← 1
17 end
18 end
19 end
20 if visited[y] = 1 then return true;
21 else return false;
22 end

that crosses some edge fi ∈ C. By Definition 8, we have that if condition (i) is true then
head(Pi) is a vertex in C, and if condition (ii) is true then head(Pi) and tail(Pi+1) belong to
two different components of cc(H � C) and ei is the edge between them.

We claim that after i-th iteration of loop in Line 8 of Algorithm 1, either of the following
two statements hold:
(I) head(Pi) is a vertex in C and visited[head(Pi)] = 1.
(II) There exists an edge fi = (ui, vi) of C such that the edge ei = (head(Pi), tail(Pi+1))

crosses fi and there is an edge gi = (u′i, v′i) which crosses fi as well, such that gi is
closer to ui than ei and visited[fi] = u′i.

We prove the claim by induction. The base case holds since x is marked at the beginning.
We assume that the claim is true after the (i− 1)-th iteration. We have that Pi belongs to
U ∪ V (C) for some connected component U in cc(H � C).
Case 1 (head(Pi−1) = tail(Pi) = w(say)): By induction hypothesis w was marked after

the (i − 1)-th iteration. If head(Pi) is a vertex in C then it will be marked after the
i-th iteration in Line 15. On the other hand if ei = (head(Pi), tail(Pi+1)) is an edge that

FSTTCS 2019

19:12 An O(n1/4+ε) Space and Polynomial Algorithm for Grid Graph Reachability

crosses some edge fi = (ui, vi) ∈ C then in the i-th iteration in Line 10, the algorithm
marks a vertex u′i such that, gi = (u′i, v′i) is the closest edge to ui that crosses fi and
there is a path from w to u′i.

Case 2 (ei−1 = (head(Pi−1), tail(Pi)) is an edge that crosses some edge fi−1 =
(ui−1, vi−1) ∈ C): By induction hypothesis, there is an edge gi−1 = (u′i−1, v

′
i−1) which

crosses fi−1 as well, such that gi−1 is closer to ui−1 than ei−1 and visited[fi−1] = u′i−1.
By Lemma 7 there is an edge in H between u′i−1 and tail(Pi) as well. Now if head(Pi) is
a vertex in C then it will be marked after the i-th iteration in Line 15 by querying the
graph H[U ∪{u′i−1, head(Pi)}]. On the other hand if ei = (head(Pi), tail(Pi+1)) is an edge
that crosses some edge fi = (ui, vi) ∈ C then in the i-th iteration in Line 10, AuxReach
queries the graph H[U ∪ {u′i−1, u

′
i}] and marks a vertex u′i such that, gi = (u′i, v′i) is the

closest edge to ui that crosses fi and there is a path from u′i−1 to u′i. J

Our subroutine would solve reachability in a subgraph H (having size h) of Auxα(G).
We do not explicitly store a component of cc(H � C), since it might be too large. Instead,
we identify a component with the lowest indexed vertex present in it and use Reingold’s
algorithm on H � C to determine if a vertex is present in that component. We require
Õ(h1/2+β/2) space to compute a h1−β-PseudoSeparator by Theorem 14. We can potentially
mark all the vertices of the PseudoSeparator and for each edge of PseudoSeparator we mark
at most one additional vertex. Since the size of PseudoSeparator is at most O(h1/2+β/2), we
require Õ(h1/2+β/2) space. The algorithm recurses on a graph with h1−β vertices. Hence
the depth of the recursion is at most 3/(log(1− β)−1), which is a constant.

Since the graph H is given implicitly in our algorithm, there is an additional polynomial
overhead involved in obtaining its vertices and edges. However, the total time complexity
would remain a polynomial in the number of vertices since the recursion depth is constant.

I Lemma 16. Let G be an m×m grid graph and H be a vertex induced subgraph of Auxα(G)
with h vertices. For every β > 0, AuxReach runs in Õ(h̃1/2+β/2) space and polynomial time.

Proof. Since the size of a component U in cc(H �C) might be too large, we will not explicitly
store it. Instead we identify a component by the lowest index vertex present in it and use
Reingold’s algorithm on H � C to determine if a vertex is present in U . Let S(m,h) and
T (m,h) denote the space and time complexity functions respectively of AuxReach, where G
is an m×m grid graph and h is the number of vertices in the graph H. As noted earlier the
depth of the recursion is at most d := 3/(log(1− β)−1).

Consider S(m,h) for any h > m1/8. By Theorem 14, we require Õ(h1/2+β/2) space to
execute Line 3. We can potentially mark all the vertex of C and for each edge e of C we
store at most one additional vertex in visited[e]. Since the size of C is at most O(h1/2+β/2),
we require Õ(h1/2+β/2) space to store C. By induction, a call to AuxReach in line 10 and 15
requires S(m,h1−β) space which can be subsequently reused. Hence the space complexity
satisfies the following recurrence. Then,

S(m,h) =
{
S(m,h1−β) + Õ(h1/2+β/2) h > m1/8

Õ(h) otherwise.

Solving we get S(m,h) = Õ(h1/2+β/2 +m1/4).
Next we measure the time complexity of AuxReach. Consider the case when h > m1/8.

The total number of steps in AuxReach is some polynomial in h, say p. Moreover AuxReach
makes q calls to AuxReach, where q is some other polynomial in h. Hence q(h) ≤ p(h). Then,

T (m,h) =
{
q · T (h1−β) + p h > m1/8

O(h) otherwise.

Solving the above recurrence we get T (m,h) = O(p · qd +m1/4) = O(p2d +m1/4). J

R. Jain and R. Tewari 19:13

6 Solving Grid Graph

Let G be an m×m grid graph. As mentioned in the introduction, our objective is to run
Algorithm 1 on the graph Auxα(G). By definition of Auxα(G), for every pair of vertices x, y
in Auxα(G), there is a path from x to y in Auxα(G) if and only if there is a path from x to
y in G. Hence it is sufficient to work with the graph Auxα(G). However, we do not have
explicit access to the edges of Auxα(G). Note that we can obtain the edges of Auxα(G) by
solving the corresponding subgrid of G to which that edge belongs. If the subgrid is small
enough, then we use a standard linear space traversal algorithm. Otherwise, we use our
algorithm recursively on the subgrid. Algorithm 2 outlines this method.

Algorithm 2 GridReach(Ĝ, ŝ, t̂, m).

Input: A grid graph Ĝ and two vertices ŝ, t̂ of Ĝ and a positive integer m
Output: true if there is a path from s to t in G and false otherwise
if Ĝ is smaller than m1/8 ×m1/8 grid then

Use Depth-First Search to solve the problem;
end
else

Use ImplicitAuxReach(Auxα(G), ŝ, t̂) to solve the problem;
/* ImplicitAuxReach executes the same way as AuxReach except for the

case when it queries an edge (u, v) in a block B of Auxα(G). In
this case, the query is answered by calling GridReach(B, u, v,m)
where B is the subgrid in which edge (u, v) might belong. */

end

Consider an m̂ × m̂ grid graph Ĝ. Let S(m̂) be the space complexity and T (m̂) be
the time complexity of executing GridReach on Ĝ. Note that the size of Auxα(Ĝ) is at
most m̂1+α. For m̂ > m1/8, the space required to solve the grid-graph would be S(m̂) =
S(m̂1−α) + Õ((m̂1+α)1/2+β/2). This is because, a query whether (u, v) ∈ Ĝ would invoke a
recursion which would require S(m̂1−α) space and the main computation of ImplicitAuxReach
could be done using Õ((m̂1+α)1/2+β/2) space. Hence we get the following recurrence for
space complexity.

S(m̂) =
{
S(m̂1−α) + Õ((m̂1+α)1/2+β/2) m̂ > m1/8

Õ(m̂1/4) otherwise

Similar to the analysis of AuxReach, for appropriate polynomials p and q, the time complexity
would satisfy the following recurrence:

T (m̂) =
{
q(m̂) · T (m̂1−α) + p(m̂) m̂ > m1/8

O(m̂) otherwise.

Solving we get S(m) = Õ(m1/2+β/2+α/2+αβ/2) and T (m) = poly(m). For any constant ε > 0,
we can chose α and β such that S(m) = O(m1/2+ε).

FSTTCS 2019

19:14 An O(n1/4+ε) Space and Polynomial Algorithm for Grid Graph Reachability

References
1 Eric Allender, David A Mix Barrington, Tanmoy Chakraborty, Samir Datta, and Sambuddha

Roy. Planar and grid graph reachability problems. Theory of Computing Systems, 45(4):675–
723, 2009.

2 Eric Allender and Meena Mahajan. The complexity of planarity testing. Information and
Computation, 189(1):117–134, 2004. doi:10.1016/j.ic.2003.09.002.

3 Tetsuo Asano and Benjamin Doerr. Memory-Constrained Algorithms for Shortest Path
Problem. In Proceedings of the 23rd Annual Canadian Conference on Computational Geometry
(CCCG 2011), 2011.

4 Tetsuo Asano, David Kirkpatrick, Kotaro Nakagawa, and Osamu Watanabe. Õ(
√

n)-Space
and Polynomial-Time Algorithm for Planar Directed Graph Reachability. In Proceedings of
the 39th International Symposium on Mathematical Foundations of Computer Science (MFCS
2014), pages 45–56, 2014.

5 Ryo Ashida and Kotaro Nakagawa. Õ(n1/3)-Space Algorithm for the Grid Graph Reachability
Problem. In Proceedings of the 34th International Symposium on Computational Geometry
(SoCG 2018), pages 5:1–5:13, 2018.

6 Greg Barnes, Jonathan F. Buss, Walter L. Ruzzo, and Baruch Schieber. A Sublinear Space,
Polynomial Time Algorithm for Directed s-t Connectivity. SIAM Journal on Computing,
27(5):1273–1282, 1998.

7 Diptarka Chakraborty, Aduri Pavan, Raghunath Tewari, N. V. Vinodchandran, and Lin F.
Yang. New Time-Space Upperbounds for Directed Reachability in High-genus and H-minor-free
Graphs. In Proceedings of the 34th Annual Conference on Foundation of Software Technology
and Theoretical Computer Science (FSTTCS 2014), pages 585–595, 2014.

8 Diptarka Chakraborty and Raghunath Tewari. An O(nε) Space and Polynomial Time Al-
gorithm for Reachability in Directed Layered Planar Graphs. ACM Transactions on Computa-
tion Theory (TOCT), 9(4):19:1–19:11, 2017.

9 Tatsuya Imai, Kotaro Nakagawa, Aduri Pavan, N. V. Vinodchandran, and Osamu Watanabe.
An O(n 1

2 +ε)-Space and Polynomial-Time Algorithm for Directed Planar Reachability. In
Proceedings of the 28th Conference on Computational Complexity (CCC 2013), pages 277–286,
2013.

10 Sampath Kannan, Sanjeev Khanna, and Sudeepa Roy. STCON in Directed Unique-Path
Graphs. In Proceedings of the 28th Annual Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS 2008), volume 2, pages 256–267, Dagstuhl,
Germany, 2008. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

11 Gary L. Miller. Finding small simple cycle separators for 2-connected planar graphs. Journal
of Computer and System Sciences, 32(3):265–279, 1986.

12 Omer Reingold. Undirected connectivity in log-space. Journal of the ACM (JACM), 55(4):17,
2008.

13 Walter J Savitch. Relationships between nondeterministic and deterministic tape complexities.
Journal of Computer and System Sciences, 4(2):177–192, 1970.

14 D. Stolee and N. V. Vinodchandran. Space-Efficient Algorithms for Reachability in Surface-
Embedded Graphs. In Proceedings of the 27th Annual Conference on Computational Complexity
(CCC 2012), pages 326–333, 2012.

15 Avi Wigderson. The complexity of graph connectivity. In Proceedings of the 17th International
Symposium on Mathematical Foundations of Computer Science (MFCS 1992), pages 112–132.
Springer, 1992.

https://doi.org/10.1016/j.ic.2003.09.002

Popular Roommates in Simply Exponential Time
Telikepalli Kavitha
Tata Institute of Fundamental Research, Mumbai, India
kavitha@tifr.res.in

Abstract
We consider the popular matching problem in a graph G = (V, E) on n vertices with strict preferences.
A matching M is popular if there is no matching N in G such that vertices that prefer N to M

outnumber those that prefer M to N . It is known that it is NP-hard to decide if G has a popular
matching or not. There is no faster algorithm known for this problem than the brute force algorithm
that could take n! time. Here we show a simply exponential time algorithm for this problem, i.e.,
one that runs in O∗(kn) time, where k is a constant.

We use the recent breakthrough result on the maximum number of stable matchings possible in
such instances to analyze our algorithm for the popular matching problem. We identify a natural
(also, hard) subclass of popular matchings called truly popular matchings and show an O∗(2n) time
algorithm for the truly popular matching problem.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Roommates instance, Popular matching, Stable matching, Dual certificate

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.20

Acknowledgements Work done while visiting Max-Planck-Institut für Informatik, Saarland Inform-
atics Campus, Germany. Thanks to Neeldhara Misra for asking me about fast exponential time
algorithms for the popular roommates problem.

1 Introduction

Consider a matching problem in a graph G = (V,E) on n vertices where each vertex has a
strict ranking of its neighbors: such a graph is called a roommates instance. Matching M
in G is stable if M has no blocking edge, i.e., an edge (u, v) such that both u and v prefer
each other to their respective assignments in M . Stable matchings need not exist in G and a
classical problem here is the stable roommates problem, i.e., does G admit a stable matching?
There are several polynomial time algorithms [24, 30, 31] to solve this problem.

We consider a more relaxed notion of stability called popularity. A vertex u prefers
matching M to matching N if either (i) u is matched in M and unmatched in N or (ii) u
is matched in both M,N and prefers its partner in M to its partner in N . For any two
matchings M0 and M1, let φ(M0,M1) be the number of vertices that prefer M0 to M1.

I Definition 1. A matching M in G = (V,E) is popular if φ(M,N) ≥ φ(N,M) for every
matching N , i.e., ∆(N,M) ≤ 0 where ∆(N,M) = φ(N,M)− φ(M,N).

In an election betweenM and N where vertices cast votes, φ(M,N) is the number of votes
won by M and φ(N,M) is the number of votes won by N . By definition, a popular matching
never loses an election to another matching; thus it is a weak Condorcet winner [5, 6] in the
corresponding voting instance. Every stable matching in G is also popular [4, 17].

There are roommates instances with no stable matchings but with popular matchings, as
shown in Fig. 1. Vertex a prefers b to c while b prefers c to a, and c prefers a to b. The last
choice of a, b, c is d and d’s preference is a � b � c. This instance has no stable matching,
however it has 2 popular matchings M1 = {(a, d), (b, c)} and M2 = {(a, c), (b, d)}.

© Telikepalli Kavitha;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 20; pp. 20:1–20:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kavitha@tifr.res.in
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.20
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Popular Roommates in Simply Exponential Time

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

a : b � c � d

b : c � a � d

c : a � b � d

d : a � b � c

b c

d

2

1

21

2
1

a

2

1

Figure 1 An instance with no stable matching, however it has two popular matchings. Numbers
on edges indicate their preferences. The vertex d is the last choice of a, b, c and d’s last choice is c.

Popular matchings need not always exist in a roommates instance. Consider the above
instance without the vertex d. In any matching in the resulting instance, one of a, b, c (each
is a top choice neighbor for some vertex) has to be left unmatched. Hence for any matching
here, there is a more popular matching.

Popularity is a natural notion of “global stability” and popular matchings may exist in
roommates instances with no stable matchings. The popular roommates problem is to decide
if a given instance G = (V,E) admits a popular matching or not. Unlike stable matchings,
it is NP-hard to decide if a roommates instance admits a popular matching or not [13, 18].
There is no faster algorithm known for the popular roommates problem than the brute force
algorithm that goes through all matchings in G and tests each for popularity. This algorithm
could take n! time. Can a faster algorithm be shown for the popular roommates problem?

1.1 Our results
Our main result is a simply exponential time algorithm for the popular roommates problem.
Note that O∗(kn) denotes O(kn · poly(n)).

I Theorem 2. Given a roommates instance G = (V,E) on n vertices with strict preferences,
the popular roommates problem can be solved in O∗(kn) time, where k is a constant.

When there is a cost function on the edge set, our algorithm also solves the min-cost
popular matching problem. Regarding the constant k in the O∗(kn) running time, we show
that k ≤ 3c where c is the constant involved in the recent breakthrough result [25] that
showed an upper bound of cn on the maximum number of stable matchings in a bipartite
graph with n vertices on each side. It is known [25, 32] that c0 ≤ c ≤ 217 where c0 ≈ 2.28.

We also identify a natural subclass of popular matchings called truly popular matchings;
these are popular matchings that are also popular fractional matchings (defined in Section 2).
The NP-hardness proof of the popular roommates problem [13] shows that the problem of
deciding if a roommates instance admits a truly popular matching or not is NP-hard. We
show an algorithm with running time O∗(2n) for the truly popular matching problem in a
roommates instance G on n vertices.

I Theorem 3. Given a roommates instance G = (V,E) on n vertices with strict preferences,
the problem of deciding whether G admits a truly popular matching or not can be solved in
O∗(2n) time.

1.2 Background and related results
The notion of popularity was proposed by Gärdenfors [17] in 1975 in bipartite graphs. Popular
matchings always exist in bipartite graphs with strict preferences since stable matchings
always exist here [16]. During the last 10-15 years, algorithms for popular matchings in

T. Kavitha 20:3

bipartite graphs have been well-studied [1, 7, 8, 20, 22, 23, 26, 27, 28]: some of these results
are in the domain of one-sided popularity, i.e., vertices on only one side of the bipartite
graph have preferences.

In comparison, there are not many positive results for popular matchings in non-bipartite
graphs. It was shown in [2] that given a matching M , it can be tested in polynomial time
whether M is popular or not, even when there are ties in preference lists. It was shown in
[21] that every roommates instance G admits a matching with unpopularity factor O(logn).

The popular roommates problem is NP-hard [13, 18]. In a complete graph on n vertices,
this problem can be efficiently solved when n is odd, however it is NP-hard for even n [9].
The max-size popular matching problem is NP-hard even in instances with stable matchings
(these are min-size popular matchings) [3]. The only known tractable subclasses of popular
matchings are the class of stable matchings and the class of strongly dominant matchings [13]
(a subclass of max-size popular matchings). When G has bounded treewidth, the min-cost
popular matching problem can be solved in polynomial time [13].

There is a vast literature on fast exponential time algorithms for NP-hard problems and
we refer to the book [15] on this subject. Fast exponential time algorithms for some hard
problems in matchings under preferences are known: one such problem is the sex-equal
stable marriage problem in bipartite graphs where the objective is to find a “fair” stable
matching. When the length of preference lists of vertices on one side of the bipartite graph
is bounded from above by a small value, a fast exponential time algorithm for finding a fair
stable matching is known [29].

1.3 Our techniques

Let G = (V,E) be the given roommates instance. It follows from LP-duality that every
popular matching M in G has a witness to its popularity (Section 2 has these details).
Witnesses have been used to show several results for popular matchings in bipartite graphs [13,
23, 27, 28]. Witnesses for popular matchings in non-bipartite graphs are more complicated
than those in bipartite graphs. In non-bipartite graphs, witnesses have been used in [3, 9, 13]
as certificates of popularity, i.e., to prove that certain matchings are popular.

In this paper we show a necessary condition for popularity in terms of witnesses. We
then use this necessary condition to show a decomposition result for popular matchings: we
show that every popular matching can be partitioned into a stable part and a truly popular
part. Truly popular matchings are a new subclass of popular matchings introduced here and
we characterize these matchings in terms of witnesses.

We use this characterization of truly popular matchings to show that every such matching
can be realized as a stable matching in one of 2n new roommates instances. In bipartite
graphs, a mapping from a subset of max-size popular matchings to the set of stable matchings
in a larger graph was shown in [8]. Our mapping from the set of truly popular matchings to
the union of sets of stable matchings in 2n graphs may be regarded as an extension of this.
Our mapping is more complicated than the one in [8].

Organization of the paper. Section 2 discusses preliminaries. Witnesses for popular
matchings and our main algorithmic result are in Section 3. Our fast exponential time
algorithm for truly popular matchings is in Section 4.

FSTTCS 2019

20:4 Popular Roommates in Simply Exponential Time

2 Preliminaries

Our input is G = (V,E) on n vertices and m edges where every vertex has a strict preference
list ranking its neighbors. It would be convenient to regard every matching in G as a perfect
matching, hence we augment G with self-loops so that every vertex is its own last choice
neighbor. Thus any matching M in G becomes a perfect matching by including self-loops for
vertices left unmatched.

Given a (perfect) matching M , consider the following edge weight function. For any edge
(u, v) in E:

let wtM (u, v) =

2 if (u, v) is a blocking edge to M
−2 if u and v prefer their respective partners in M to each other
0 otherwise.

For any edge (u, v), note that wtM (u, v) = voteu(v,M(u)) + votev(u,M(v)), where for
any pair of adjacent vertices u and v, voteu(v,M(u)) is u’s vote for v versus M(u): it is 1 if
u prefers v to M(u), it is -1 if u prefers M(u) to v, and 0 otherwise, i.e., v = M(u).

For any vertex u, define wtM (u, u) = voteu(u,M(u)) where voteu(u,M(u)) = 0 if the
perfect matching M includes the self-loop (u, u), else wtM (u, u) = −1. For any perfect
matching N , we have:

wtM (N) =
∑

(u,v)∈N

wtM (u, v) =
∑
u∈V

voteu(N(u),M(u)) = φ(N,M)−φ(M,N) = ∆(N,M).

Matching M is popular if and only if ∆(N,M) = wtM (N) ≤ 0 for all matchings N , i.e., if
and only if every perfect matching in G with edge weight function wtM has weight at most 0.
Since wtM (M) = 0, a max-weight perfect matching has weight exactly 0. The max-weight
perfect matching LP in G is described below.

maximize
∑
e∈E′

wtM (e) · xe (LP1)

subject to∑
e∈δ′(u) xe = 1 ∀u ∈ V∑
e∈E[B]

xe ≤ b|B|/2c ∀B ∈ Ω and xe ≥ 0 ∀ e ∈ E′.

Here E′ is the set of edges in the graph G augmented with self-loops and δ′(u) =
δ(u) ∪ {(u, u)} is the set of edges incident to u. Also, Ω is the collection of all odd-sized sets
B ⊆ V with |B| ≥ 3. Note that E[B] is the set of edges in E with both endpoints in B and
self-loops do not belong to E[B]. Consider LP2: this is the dual LP corresponding to LP1.

minimize
∑
u∈V

αu +
∑
B∈Ω
b |B|/2 c · zB (LP2)

subject to

αu + αv +
∑

B∈Ω
u,v∈B

zB ≥ wtM (u, v) ∀ (u, v) ∈ E

αu ≥ wtM (u, u) ∀u ∈ V and zB ≥ 0 ∀B ∈ Ω.

Thus M is popular if and only if the optimal solution to LP2 is 0, i.e., if and only if there
exists a feasible solution (~α, ~z) to LP2 such that

∑
u∈V αu +

∑
B∈Ωb |B|/2 c · zB = 0.

T. Kavitha 20:5

I Definition 4. For a popular matching M , an optimal solution (~α, ~z) to LP2 is called a
witness.

Popular fractional matchings. Recall that G is augmented with self-loops, so it has m+ n

edges. A vector ~p ∈ Rm+n
≥0 such that

∑
e∈δ′(u) pe = 1 for all vertices u is a (perfect) fractional

matching in G. The notion of popularity extends to fractional matchings as well. Here we
compare an integral matching M with a fractional matching ~p as follows:

∆(~p,M) =
∑
u∈V

voteu(~p,M) =
∑
u∈V

∑
v∈Nbr′(u)

p(u,v) · voteu(v,M(u)),

where Nbr′(u) = Nbr(u) ∪ {u}. Note that Nbr(u) is the set of u’s neighbors in the original
graph G (without self-loops).

An integral matching M is a popular fractional matching if ∆(~p,M) ≤ 0 for all fractional
matchings ~p in G. Every popular matching in G need not be a popular fractional matching.
See the instance G in Fig. 2 where vertex preferences are indicated on edges.

Here a is the top choice of b, c, s while b and c are each other’s second choices. Vertex a’s
preference order is b � c � s. Vertex q’s order is r � s and r’s order is s � q, and s’s order
is a � q � r.

�
�
�

�
�
�

��
��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

12 121

3
1 2

2

1

1
1

2

2
2

3

1
2

1 3
2

2
1

132

2 1

s a

cb
rq b c

as

rq

Figure 2 The half-integral matching on the right with a value of 1/2 on the dashed edges is more
popular than M = {(a, s), (b, c), (q, r)}. Note that M is a popular matching.

B Claim 5. M = {(a, s), (b, c), (q, r)} is popular in G (see Fig. 2), however M is not a
popular fractional matching in G.

Proof. We prove the popularity ofM via the witness (~α, ~z) where αa = αr = 1 and αb = αc =
αq = αs = −1 along with z{a,b,c} = 2 and zB = 0 for all other odd sets B. It is easy to check
that (~α, ~z) satisfies the constraints in LP2. Also

∑
u αu +

∑
Bb|B|/2czB = 2− 4 + 2 = 0.

Thus M is popular in G.
However M is not a popular fractional matching in G. We will show a more popular

fractional matching. Consider the half-integral matching ~p indicated on the right in Fig. 2.
So pe = 1/2 for e ∈ {(a, b), (b, c), (c, a), (q, r), (r, s), (s, q)}. We have ∆(~p,M) = 5/2− 3/2 = 1
since ~p gets the vote of a and 1/2-votes of b, c, r while M gets the vote of s and 1/2-vote of
q. Thus ~p defeats M , so M is not a popular fractional matching in G. C

Hence a popular matching may lose an election against a fractional matching. We
introduce the following natural subclass of popular matchings.

I Definition 6. A matching M in G is truly popular if M is a popular fractional matching.

Thus M is a truly popular matching if ∆(~p,M) ≤ 0 for all fractional matchings ~p. The
NP-hardness proof of popular roommates problem in [13] implies that the problem of deciding
if a roommates instance G admits a truly popular matching or not is also NP-hard.

Note that a roommates instance may admit popular matchings but no truly popular
matching. For instance,M = {(a, s), (b, c), (q, r)} is the only popular matching in the instance
given in Fig. 2 and we know from Claim 5 that M is not truly popular.

FSTTCS 2019

20:6 Popular Roommates in Simply Exponential Time

3 An algorithm for the popular roommates problem

In this section we show that every popular matching admits a witness with certain structure.
This will be used in a structural decomposition result and our algorithm for the popular
roommates problem is based on this decomposition.

3.1 Popular matchings and witnesses
In this section we study witnesses for popular matchings. Our first result is the following.

I Lemma 7. Let M be a popular matching in G. Then M has a witness (~α, ~z) such that
~α ∈ {0,±1}n and zB ∈ {0, 1, 2} for all B ∈ Ω.

Proof. Let M be a popular matching in G. Consider LP1 from Section 2: this is the LP
for max-weight perfect matching in the graph G augmented with self-loops and with edge
weights given by wtM . Since wtM (M) = ∆(M,M) = 0, the characteristic vector of M is an
optimal solution to LP1. The constraint system corresponding to LP1 is totally dual integral
(TDI) [10]. Thus there is an optimal integral solution (~α, ~z) to the dual LP, i.e., LP2.

We have αu ≥ wtM (u, u) ≥ −1 for all vertices u. Moreover, if (u, u) ∈M , this constraint
is tight by complementary slackness: so αu = wtM (u, u) = 0 for such a vertex u. Similarly,
for a vertex u matched to a non-trivial neighbor in M (say, (u, v) ∈ M), we have by
complementary slackness:

αu + αv +
∑
B∈Ω
u,v∈B

zB = wtM (u, v) = 0. (1)

Since zB ≥ 0 for all B, this means αu + αv ≤ 0, so αu ≤ −αv ≤ 1. Hence ~α ∈ {0,±1}n.
Let B ∈ Ω be such that zB > 0. Then complementary slackness on LP1 implies:∑

e∈E[B]

xe = b |B|/2 c. (2)

Since |B| ≥ 3, any B ∈ Ω with zB > 0 has at least 1 matched edge in it. Let (u, v) ∈
M ∩ E[B]. Then non-negativity of zB-values and (1) imply that zB ≤ −(αu + αv) ≤ 2.
Hence zB ∈ {0, 1, 2} for every B ∈ Ω. J

We now characterize truly popular matchings in terms of witnesses.

I Theorem 8. A matching M is truly popular iff M has a witness (~α, ~z) such that ~α ∈
{0,±1}n and ~z = ~0.

Proof. We assume G is augmented with self-loops, so any fractional matching ~p becomes a
perfect fractional matching by using self-loops. For any perfect fractional matching ~p in G:
(recall that E′ = E ∪ {(u, u) : u ∈ V })

wtM (~p) =
∑
e∈E′

pe · wtM (e) =
∑
u∈V

∑
v∈Nbr′(u)

p(u,v) · voteu(v,M(u)) = ∆(~p,M).

Thus M is a popular fractional matching if and only if wtM (~p) = ∆(~p,M) ≤ 0 for all
fractional matchings ~p. Consider LP3 given below. LP3 is the max-weight perfect fractional
matching LP in the graph G with edge weight function wtM . LP4 is the dual of LP3.

Suppose M is a matching in G with a witness (~α,~0) for some ~α ∈ {0,±1}n. So:
(i)
∑
u αu = 0, (ii) αv ≥ wtM (v, v) ∀ v ∈ V , and (iii) αu + αv ≥ wtM (u, v) ∀ (u, v) ∈ E.

T. Kavitha 20:7

max
∑
e∈E′

wtM (e) · xe (LP3)

s.t.
∑

e∈δ′(u)

xe = 1 ∀u ∈ V

xe ≥ 0 ∀ e ∈ E′.

min
∑
u∈V

αu (LP4)

s.t. αu + αv ≥ wtM (u, v) ∀ (u, v) ∈ E
αu ≥ wtM (u, u) ∀u ∈ V

It follows from properties (ii) and (iii) stated above that ~α is a feasible solution to LP4.
It follows from property (i) that the optimal value of LP4 is at most 0. Thus the optimal
value of LP3 is at most 0. Since wtM (M) = ∆(M,M) = 0, this means that M is an optimal
solution to LP3. So wtM (~p) ≤ wtM (M) = 0 for all fractional matchings ~p. Thus ∆(~p,M) ≤ 0
for all fractional matchings ~p, i.e., M is a popular fractional matching.

Conversely, suppose M is a truly popular matching in G. So M is a popular fractional
matching in G. Hence ∆(~p,M) ≤ 0 for all perfect fractional matchings ~p, thus wtM (~p) =
∆(~p,M) ≤ 0. Since wtM (M) = 0, this means M is an optimal solution to LP3.

B Claim 9. LP4 has an optimal solution that is integral.

The proof of Claim 9 is given below. Let ~α be an optimal solution of LP4 that is integral.
We have αu ≥ wtM (u, u) from the constraints. Since wtM (u, u) ≥ −1, we have αu ≥ −1 for all
vertices u. It follows from complementary slackness conditions that αu +αv = wtM (u, v) = 0
for every edge (u, v) ∈M . Since αv ≥ −1, it follows that αu ≤ 1.

It also follows from complementary slackness conditions that αu = wtM (u, u) = 0 for
every vertex u matched in M along the self-loop (u, u). Thus M has a witness (~α,~0) such
that ~α ∈ {0,±1}n. J

Proof of Claim 9. Let ~α be any extreme point of the feasible region of LP4. So we have
A~α = b for some submatrix A of the constraint matrix of LP4. Some of the tight constraints
are of the type αu = wtM (u, u): this immediately implies αu is either 0 or −1, i.e., these
coordinates in ~α are integral. Let us remove these constraints from A~α = b, so we have
A′~α′ = b′ where all the constraints are of the type αu + αv = wtM (u, v) for (u, v) ∈ E. So
~α′ = A′−1 · b′.

It is easy to see that all entries in A′−1 are half-integral. This follows from the fact that
the fractional matching polytope of G is half-integral: this is due to the integrality of the
fractional matching polytope in bipartite graphs (Birkhoff-von Neumann theorem).

Since wtM (e) ∈ {0,±2} for every e ∈ E, every entry in b′ is an even integer. Hence
~α′ = A′−1 · b′ is an integral vector. Thus ~α is integral. C

Hence M is a truly popular matching if and only if M has a witness (~α,~0) such that
~α ∈ {0,±1}n. For the sake of brevity, we will say ~α is a witness of M .

3.2 A decomposition result for popular matchings
The following theorem shows that every popular matching in G can be partitioned into a
stable part and a truly popular part. This decomposition resembles a result from [8] that
shows that every popular matching M in a bipartite graph can be decomposed into a stable
part and a dominant1 part.

1 A popular matching N is dominant if N is more popular than any larger matching.

FSTTCS 2019

20:8 Popular Roommates in Simply Exponential Time

I Theorem 10. Let M be a popular matching in G = (V,E). Then M = M0 ∪M1 such that
1. M0 is stable in the subgraph induced on some subset C ⊆ V ;
2. M1 is truly popular in the subgraph induced on V \ C.

Proof. We know from Lemma 7 that every integral witness (~α, ~z) of a popular matching M
satisfies ~α ∈ {0,±1}n and zB ∈ {0, 1, 2} for all B ∈ Ω. Let (~α, ~z) be an integral witness of
M such that the sets B with zB > 0 form a laminar family B. The primal-dual algorithm of
Edmonds [12] shows that M has such a witness.

Let B1, . . . , Bk be the maximal sets in B. We know from (2) that each Bi ∈ B has
b|Bi|/2c edges of M within it. For 1 ≤ i ≤ k, let bi be the lone vertex in Bi that is not
matched to a vertex inside Bi. That is, every vertex in Bi \ {bi} is matched in M to another
vertex in Bi \ {bi}. Let C denote the vertex set ∪ki=1(Bi \ {bi}).

Let M0 be the matching M restricted to the subgraph induced on C and let M1 be the
matching M restricted to the subgraph induced on V \ C. Observe that M = M0 ∪M1.
Claim 11 and Claim 12 show that M0 and M1 are what we seek.

B Claim 11. The matching M0 is stable in the subgraph induced on C.

B Claim 12. The matching M1 is truly popular in the subgraph induced on V \ C.

Claim 11 and Claim 12 are proved below. This finishes the proof of Theorem 10. J

Proof of Claim 11. We will prove the stability of M0 by showing that no edge with both
endpoints in C blocks M . Consider any edge (u, v) with u, v ∈ C. We know that αu + αv +∑

B∈B
u,v∈B

zB ≥ wtM (u, v).

B is a laminar family. Let B′ ⊆ B be the collection of sets with both u and v. We need
to bound

∑
B∈B′ zB . Let B′ be the minimal set in B′. It follows from (2) that the partner of

at least one of u, v (say, u) is in B′ and hence in every set in B′. So we can use (1) for the
pair u,M(u) to bound

∑
B∈B′ zB . Since αu, αM(u) ≥ −1, we have

∑
B∈B′ zB ≤ 2.

The definition of C implies that every vertex x ∈ C is matched in M to another vertex
M(x) in C. Moreover there is some Bi ∈ B such that x,M(x) ∈ Bi. Thus

∑
B∈B:x,M(x)∈B zB

is at least 1 and so αx + αM(x) ≤ −1 by (1). Hence αx is in {0,−1} for every x ∈ C.
Suppose αu = 0. Then αu + αM(u) +

∑
B:u,M(u)∈B zB = wtM (u,M(u)) = 0 along with

αu = 0 and αM(u) ≥ −1 implies that
∑
B:u,M(u)∈B zB ≤ 1. Since this sum is integral

and positive, it equals 1. So wtM (u, v) ≤ 1 in this case. Similarly, when αu = −1,
wtM (u, v) ≤ αu + αv +

∑
B∈B′ zB ≤ −1 + 0 + 2 = 1. Hence in both cases, wtM (u, v) ≤ 0

(since it is in {0,±2}).
So there is no blocking edge to M with both endpoints in C. Thus M0 is stable in the

subgraph induced on C. C

Proof of Claim 12. Let (~α, ~z) be M ’s witness using which C was defined. We claim (~α,~0) is a
witness for M1 in the subgraph induced on V \ C. So we need to show that

∑
u∈V \C αu = 0

and αu + αv ≥ wtM1(u, v) = wtM (u, v) for every edge (u, v) in this subgraph. We already
know that αu ≥ wtM1(u, u) = wtM (u, u) for all u ∈ V .

We have αu + αv +
∑
B:u,v∈B zB ≥ wtM (u, v) for every edge (u, v) in G. There is no

B ∈ B that contains two vertices in V \ C. Thus
∑
B:u,v∈B zB = 0 and so we have the

desired constraint αu + αv ≥ wtM (u, v) for every edge (u, v) in this subgraph.
For any vertex u ∈ V \C that is matched in M , its partner M(u) = v is also in V \C and
we have αu + αv = wtM (u, v) = 0 by complementary slackness (see (1)). For any vertex
u matched in M along its self-loop, αu = wtM (u, u) = 0. Thus

∑
u∈V \C αu = 0. C

T. Kavitha 20:9

The proof of Theorem 10 allows us to show a more structured partition of popular
matchings as stated in Lemma 13 below. Call a truly popular matching M special if M
admits a witness ~α ∈ {±1}n.

I Lemma 13. Let M be a popular matching in G = (V,E). Then M = M ′0 ∪M ′1 where
M ′0 is a stable matching in the subgraph induced on some U ⊆ V and M ′1 is a special truly
popular matching in the subgraph induced on V \ U .

Proof. We will use Theorem 10 here. Let B ⊆ Ω, C ⊆ V , and ~α ∈ {0,±1}n be as defined in
the proof of Theorem 10. Let U = C ∪ {u ∈ V \ C : αu = 0}.

Let M ′0 be the matching M restricted to the subgraph induced on U . Since U ⊇ C, we
haveM ′0 ⊇M0, whereM0 was defined in Theorem 10. We claimM ′0 is stable in the subgraph
induced on U . It follows from the proofs of Claim 11 and Claim 12 that there is no blocking
edge (u, v) to M ′0 where both u, v ∈ C or both u, v ∈ U \ C (in this case αu = αv = 0). So
what we need to show now is that there is no blocking edge (u, v) to M ′0 where u ∈ C and
v ∈ U \ C.

If there is no B ∈ B such that u, v ∈ B then wtM (u, v) ≤ αu + αv ≤ 0. Suppose there is
some B ∈ B with u, v ∈ B. It follows from (2) and the definition of C that u and its partner
M(u) are in B. We know from the proof of Claim 11 that either (i) αu = −1 or (ii) αu = 0
and

∑
B:u,M(u)∈B zB ≤ 1. Since αv = 0, this means that αu + αv +

∑
B:u,v∈B zB ≤ 1. So

wtM (u, v) ≤ 1, i.e., wtM (u, v) ≤ 0 (since it is even). Thus (u, v) does not block M .
So M ′0 is stable in the subgraph induced on U . Let M ′1 be the matching M restricted to

the subgraph induced on V \ U . It follows from the definition of U that M ′1 has a witness ~α
where αu ∈ {±1} for all u ∈ V \ U . Hence M ′1 is a special truly popular matching in the
subgraph induced on V \ U . J

3.3 Our algorithm
We present our algorithm for the popular roommates problem. The input is G = (V,E).
1. For each U ⊆ V do:

a. For each stable matching S in the subgraph induced on U do:
b. For each special truly popular matching T in the subgraph induced on V \ U do:

If S ∪ T is popular in G then return S ∪ T .
2. Return “G has no popular matching”.

A matching M can be tested for popularity via LP1 (see Section 2). There are also
combinatorial algorithms [2, 22] to check if a given matching in a roommates instance is
popular or not. Lemma 13 shows that every popular matching M admits a decomposition as
M = S ∪ T where S is stable in some subgraph and T is a special truly popular matching in
the remaining part of G. Thus if no matching of the form S ∪ T is popular then G has no
popular matching. This proves the correctness of our algorithm.

Implementation. All stable matchings in the graph GU = (U,E′) induced on U can be
listed by enumerating all stable matchings in the bipartite graph G′U = (U ′ ∪ U ′′, E′′) [11]
where U ′ = {u′ : u ∈ U} and U ′′ = {u′′ : u ∈ U}; for every edge (u, v) in GU , there are 2
edges (u′, v′′) and (v′, u′′) in G′U . Preferences in G′U are inherited from GU . Every matching
in the bipartite graph G′U becomes a half-integral matching in the given graph GU .

It is known how to enumerate all stable matchings in a bipartite graph in O∗(s) time
where s is the number of stable matchings in this bipartite graph [19]. It was recently
shown [25] that the maximum number of stable matchings possible in a bipartite graph with
n vertices on each side is cn for some constant c. Thus in O∗(cn) time we can enumerate all
stable matchings in a roommates instance on n vertices.

FSTTCS 2019

20:10 Popular Roommates in Simply Exponential Time

We bound the running time of our algorithm via the following bound on the number of
“special truly popular” matchings present in a roommates instance. Here c is the constant
from [25] that was used in the paragraph above.

I Lemma 14. A roommates instance H on t vertices has at most (2c)t special truly popular
matchings.

The proof of Lemma 14 shows that every special truly popular matching in H can be
realized as a stable matching in one of 2t roommates instances, each on t vertices. This proof
is given in Section 4.1.

Running time of our algorithm. The total number of candidate matchings tested by our
algorithm is at most:

n∑
i=0

(
n

i

)
· ci · (2c)n−i = cn ·

n∑
i=0

(
n

i

)
2n−i = (3c)n.

In the summation above, ci is the bound on the number of stable matchings in the
subgraph GU induced on U (where |U | = i) and the second term, which is (2c)n−i, is the
bound on the number of special truly popular matchings in the subgraph GW induced on
W = V \ U (note that |V \ U | = n− i). This proves Theorem 2 stated in Section 1.

4 Truly popular matchings

In this section we use the characterization of truly popular matchings from Theorem 8 to
show a fast exponential time algorithm for the problem of deciding if G admits a truly
popular matching or not. Our algorithm goes through all S ⊆ V and checks if there is a
popular matching in G with a witness ~α such that αv = 0 for all v ∈ S and αv ∈ {±1} for
all v ∈ V \ S. So the problem we look to efficiently solve is:

∗ given S ⊆ V , is there a truly popular matching in G with a witness ~α ∈ {0,±1}n such
that αv = 0 if and only if v ∈ S.

We will now show an efficient algorithm for the above problem. We solve this problem
by posing it as a stable roommates problem with forbidden edges, which can be solved in
linear time [14]. Given any subset S ⊆ V , we will construct a new roommates instance
GS = (VS , ES) as follows. The vertex set VS = {u0 : u ∈ S} ∪ {u−, u+, `(u) : u ∈ V \ S}.

The vertex `(u) will be called a dummy vertex as its purpose is to ensure that only one of
u+, u− can be matched to a non-dummy neighbor, i.e., an element in {v+, v0, v− : v ∈ Nbr(u)}.
The edge set ES consists of the following edges:

For every (u, v) ∈ E where u, v ∈ S: the edge (u0, v0) ∈ ES .
For every (u, v) ∈ E where u ∈ V \ S and v ∈ S: the edge (u+, v0) ∈ ES .
For every (u, v) ∈ E where u, v ∈ V \ S: if u prefers v to every neighbor in S then
(u−, v+) ∈ ES .

Also, for every vertex u ∈ V \ S: the edges (u+, `(u)) and (u−, `(u)) are in ES . The
preference order of vertices in VS is as follows.
1. For any dummy vertex `(u): the order is u+ � u−.
2. For any subscript 0 vertex u0: the order among its neighbors is as per u’s original

preference order in G. Suppose u’s preference order in G is: a � b � c � d where a, c ∈ S
and b, d ∈ V \ S, then u0’s neighbors in GS are a0, b+, c0, d+ and u0’s preference order is:
a0 � b+ � c0 � d+.

T. Kavitha 20:11

3. For any subscript + vertex u+: the order among its neighbors in GS is as per u’s
preference order in G with `(u) as its least preferred vertex.

4. For any subscript − vertex u−: the order among its neighbors is `(u) as its top choice
followed by its other neighbors in GS as per u’s preference order in G.

The following theorem shows the equivalence we need.

I Theorem 15. The instance G admits a truly popular matching with a witness ~α where
αu = 0 for u ∈ S and αv ∈ {±1} for v ∈ V \ S iff GS has a stable matching MS with the
following properties:
1. MS avoids all edges between a subscript 0 vertex and a subscript + vertex;
2. MS matches all subscript − vertices.

Proof. Suppose G admits a truly popular matching TS with such a witness ~α. We will show
a desired stable matching MS in GS . For any vertex u, let su = +/−/0 corresponding to
αu = +1/−1/0, respectively. For any vertex u ∈ V \ S, we have αu ∈ {±1} and so su ∈ {±};
if su = + then let tu = −, else let tu = +.

Let MS = {(usu
, vsv

) : (u, v) ∈ TS} ∪ {(utu , `(u)) : u ∈ V \ S}.

B Claim 16. MS ⊆ ES , i.e., for every (u, v) in TS , the edge (usu
, vsv

) is present in GS .

Proof. Since TS is truly popular, the characteristic vector of TS is an optimal solution of LP3.
We also know that ~α is an optimal solution of LP4. It follows from complementary slackness
conditions on LP3 and LP4 that for every edge (u, v) ∈ TS , αu + αv = wtTS

(u, v). Since
wtTS

(u, v) = 0 for any edge (u, v) ∈ TS , either αu = αv = 0 or {αu, αv} = {−1, 1}. So every
edge in MS that is not incident to any `-vertex is of the type either (u0, v0) or (u+, v−).

For every edge (u, v) in G where αu = αv = 0, the edge (u0, v0) is in GS . Consider an
edge (u, v) in TS where αu = −1. We need to show that (u−, v+) is in GS . Since ~α is a
witness of TS , we have wtTS

(u, r) ≤ αu + αr = −1 + 0 = −1 for every neighbor r ∈ S. Since
wtTS

(e) ∈ {0,±2} for all e ∈ E, this means wtTS
(u, r) = −2, i.e., u prefers its partner in

TS (this is v) to r. Since this constraint holds for every r ∈ S ∩ Nbr(u), it follows from the
definition of ES that (u−, v+) ∈ ES . C

We next show that MS obeys properties (1) and (2) given in the lemma statement.
(1) Since every edge in MS that is not incident to any `-vertex is of the type either (u+, v−)

or (u0, v0), MS avoids all edges between a subscript 0 vertex and a subscript + vertex.
(2) For any vertex u unmatched in TS , we have (by complementary slackness) αu = wtTS

(u, u)
= 0, i.e., u ∈ S. Thus for every u ∈ V \ S, we have (u, v) ∈ TS for some v ∈ Nbr(u); if
αu = −1 then (u−, v+) ∈MS else (u−, `(u)) ∈MS . Thus all vertices in {u− : u ∈ V \S}
are matched in MS .

In order to show MS is a desired stable matching in GS , we need to show this claim.

B Claim 17. MS is a stable matching in GS .

Proof. By the definition of MS , the vertices `(u) for all u ∈ V \ S are matched in MS . Thus
for any u ∈ V \ S, all of u+, u−, `(u) are matched in MS , so neither (u+, `(u)) nor (u−, `(u))
blocks MS . Other than edges incident to dummy vertices, the graph GS consists of edges of
the type (u+, v−), (u0, v0), (u+, v0), i.e., {αu, αv} is one of {1,−1}, {0, 0}, {1, 0}.

FSTTCS 2019

20:12 Popular Roommates in Simply Exponential Time

So for every (u, v) ∈ E such that (usu , vsv) is in GS , we have αu+αv ≤ 1, i.e., wtTS
(u, v) ≤

1 which means wtTS
(u, v) ≤ 0. The constraint wtTS

(u, v) ≤ 0 implies one of the 3 possibilities:
(i) (u, v) ∈ TS , (ii) u prefers TS(u) to v, (iii) v prefers TS(v) to u. In case (i), we have
(usu , vsv) ∈ MS and in cases (ii) and (iii), one of usu , vsv is matched in MS to a more
preferred neighbor in GS . Thus MS is a stable matching in GS . C

Conversely, suppose GS admits such a stable matching MS . We will show a truly popular
matching TS in G with a desired witness ~α. The matching TS is easy to define:

TS = {(u, v) : (u0, v0) ∈MS or (u+, v−) ∈MS}.

We now need to show that TS is a truly popular matching in G. For this, we will show a
witness ~α ∈ {0,±1}n. Define αu = 0 for all u ∈ S. We will now define αu for each u ∈ V \ S.

For each u ∈ V , note that `(u) is top choice for u−: hence `(u) always has to be matched
in any stable matching in GS . For each u ∈ V \ S:

let αu =
{
−1 if (u+, `(u)) ∈MS

1 if (u−, `(u)) ∈MS .

Observe that all edges in MS not involving any `-vertex are of the form either (u+, v−)
or (u0, v0). This is because MS avoids all edges of the type (u+, v0) by property (1) of a
desired stable matching. Thus αu + αv = 0 for all (u, v) ∈ TS .

B Claim 18. For any vertex u left unmatched in TS , we have u ∈ S, i.e., αu = 0.

Proof. Every vertex of the form u+ (being the top choice vertex of `(u)) has to be matched
in every stable matching in GS ; also, all vertices in {u− : u ∈ V \ S} are matched in MS

by property (2). Hence MS matches u+, u− for all u ∈ V \ S; thus one of u+, u− has to be
matched to a non-dummy neighbor, i.e., a vertex other than `(u). Hence for any vertex u
left unmatched in TS , we have u ∈ S. C

We have
∑
u∈V αu =

∑
(u,v)∈TS

(αu + αv) from Claim 18 and by definition, αu + αv = 0
for each (u, v) ∈ TS . Hence

∑
u∈V αu = 0. Every vertex in V \ S is matched in TS (by

Claim 18) and so we have αu ≥ −1 = wtTS
(u, u) for u ∈ V \ S. For any vertex u ∈ S, we

have αu = 0 ≥ wtTS
(u, u). Thus αu ≥ wtTS

(u, u) for every vertex u.
It can also be shown that αu + αv ≥ wtTS

(u, v) for every edge (u, v) in G. Thus TS is a
truly popular matching in G and the theorem follows. J

All stable matchings in a roommates instance match the same subset of vertices [19]. Call
these vertices stable. Our algorithm for deciding if G admits a truly popular matching (and
returning one, if so) is as follows:
1. For each set S ⊆ V do:

Build the graph GS and check if (i) all subscript − vertices are stable in GS and
(ii) GS admits a stable matching MS that satisfies property 1 given in Theorem 15; if
so, then return the corresponding matching TS in G.

2. Return “no”.

If our algorithm returns a matching TS in Step 1, then TS is truly popular (by Theorem 15).
Suppose the algorithm reaches Step 2: so there is no S ⊆ V such that GS admits a stable
matching that satisfies property 1. Then G has no truly popular matching (by Theorem 15).
Thus the correctness of our algorithm follows from Theorem 15.

T. Kavitha 20:13

Step 1, part (i) is implemented by running a stable matching algorithm (say, [24]) in GS .
Step 1, part (ii) is implemented by running the algorithm for finding a stable matching in a
roommates instance with forbidden edges [14]. Since there are 2n sets S ⊆ V , the running
time of our algorithm is O∗(2n). Thus we have shown Theorem 3 stated in Section 1.

4.1 Proof of Lemma 14
We bound the number of special truly popular matchings in a graph H by bounding the
number of stable matchings in some related graphs that we construct below. Let Sα be the
set of special truly popular matchings in H with a specific witness ~α ∈ {±1}t, where t is the
number of vertices in H. Define σ ∈ {±}t as follows: σu = sign(αu) for all vertices u in H
where sign(αu) = + if αu = 1, else sign(αu) = −.

Corresponding to σ ∈ {±}t, we build the graph Hσ as follows. The vertex set of Hσ is
{uσu

: u is a vertex in H}. For each edge (u, v) in H where σu = − and σv = + do:
if u prefers v to all its neighbors w in H with σw = − then add the edge (u−, v+) to Hσ.

For any vertex uσu
inHσ: uσu

’s preference order of neighbors inHσ is as per u’s preference
order in H. Note that for any neighbor vσv of uσu in Hσ, we have σv = + if σu = − and
vice-versa. This is because the edge set of Hσ consists only of edges of the type (a−, b+).

For each M ∈ Sα, define fα(M) = {(uσu , vσv) : (u, v) ∈M}. We show in Claim 19 below
that for every (u, v) ∈ M , the edge (uσu

, vσv
) is in Hσ. Thus fα(M) is a matching in Hσ.

Moreover, fα(M) is a stable matching in Hσ (see Claim 20). Note that fα is one-to-one.
Hence the total number of special truly popular matchings in H is at most the the maximum
number of stable matchings in Hσ summed up over all σ ∈ {±}t, or equivalently, over all
~α ∈ {±1}t. This sum is at most ct · 2t = (2c)t. J

B Claim 19. For every (u, v) ∈M , the edge (uσu , vσv) is in Hσ.

Proof. We have αu + αv = wtM (u, v) = 0 (by complementary slackness) and so {αu, αv} =
{−1, 1}. Assume without loss of generality that αu = −1 and αv = 1. So σu = − and σv = +.
For any neighbor w of u with σw = −, we have wtM (u,w) ≤ αu + αw = −1− 1 = −2, i.e.,
both u and w prefer their partners in M to each other. Thus u prefers v to all its neighbors
w in H with σw = −. Hence (u−, v+) is in Hσ. C

B Claim 20. fα(M) is a stable matching in Hσ.

Proof. Every edge in Hσ is of the form (a−, b+) for some adjacent pair of vertices a, b in H
and αa = −1, αb = 1. Since ~α is a witness of M , we have wtM (a, b) ≤ αa + αb = 0. Thus
either (a−, b+) ∈ fα(M) or at least one of a, b is matched in M to a more preferred neighbor.
So (a−, b+) does not block fα(M). Thus fα(M) has no blocking edge in Hσ. C

References
1 D. J. Abraham, R. W. Irving, T. Kavitha, and K. Mehlhorn. Popular Matchings. SIAM

Journal on Computing, 37(4):1030–1045, 2007.
2 P. Biró, R. W. Irving, and D. F. Manlove. Popular matchings in the marriage and roommates

problems. In Proceedings of the 7th International Conference on Algorithms and Complexity
(CIAC), pages 97–108, 2010.

3 F. Brandl and T. Kavitha. Two Problems in Max-Size Popular Matchings. Algorithmica,
81(7):2738–2764, 2019.

4 K.S. Chung. On the Existence of Stable Roommate Matchings. Games and Economic Behavior,
33(2):206–230, 2000.

FSTTCS 2019

20:14 Popular Roommates in Simply Exponential Time

5 M.-J.-A.-N. de C. (Marquis de) Condorcet. Essai sur l’application de l’analyse à la probabilité
des décisions rendues à la pluralité des voix. L’Imprimerie Royale, 1785.

6 Condorcet method. https://en.wikipedia.org/wiki/Condorcet_method.
7 Á. Cseh, C.-C. Huang, and T. Kavitha. Popular matchings with two-sided preferences and

one-sided ties. SIAM Journal on Discrete Mathematics, 31(4):2348–2377, 2017.
8 Á. Cseh and T. Kavitha. Popular edges and dominant matchings. Mathematical Programming,

172(1):209–229, 2018.
9 Á. Cseh and T. Kavitha. Popular Matchings in Complete Graphs. In Proceedings of the 38th

Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS), pages 17:1–17:14, 2018.

10 W. H. Cunningham and A. B. Marsh. A primal algorithm for optimal matching. Mathematical
Programming, 8:50–72, 1978.

11 B. C. Dean and S. Munshi. Faster algorithms for stable allocation problems. Algorithmica,
58(1):59–81, 2010.

12 J. Edmonds. Maximum matching and a polyhedron with 0,1-vertices. Journal of Research of
the National Bureau of Standards B, 69B:125–130, 1965.

13 Y. Faenza, T. Kavitha, V. Powers, and X. Zhang. Popular Matchings and Limits to Tractability.
In Proceedings of the 30th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
2790–2809, 2019.

14 T. Fleiner, R. W. Irving, and D. F. Manlove. Efficient algorithms for generalised stable
marriage and roommates problems. Theoretical Computer Scienc, 381:162–176, 2007.

15 F. V. Fomin and D. Kratsch. Exact exponential algorithms. Springer-Verlag New York, Inc.,
New York, 2010.

16 D. Gale and L.S. Shapley. College admissions and the stability of marriage. American
Mathematical Monthly, 69(1):9–15, 1962.

17 P. Gärdenfors. Match making: assignments based on bilateral preferences. Behavioural Science,
20(3):166–173, 1975.

18 S. Gupta, P. Misra, S. Saurabh, and M. Zehavi. Popular matching in roommates setting is
NP-hard. In Proceedings of the 30th ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 2810–2822, 2019.

19 D. Gusfield and R. W. Irving. The Stable Marriage Problem: Structure and Algorithms. MIT
Press, Boston, MA, 1989.

20 M. Hirakawa, Y. Yamauchi, S. Kijima, and M. Yamashita. On The Structure of Popular
Matchings in The Stable Marriage Problem - Who Can Join a Popular Matching? In the 3rd
International Workshop on Matching Under Preferences (MATCH-UP), 2015.

21 C.-C. Huang and T. Kavitha. Near-popular matchings in the Roommates problem. SIAM
Journal on Discrete Mathematics, 27(1):43–62, 2013.

22 C.-C. Huang and T. Kavitha. Popular matchings in the stable marriage problem. Information
and Computation, 222:180–194, 2013.

23 C.-C. Huang and T. Kavitha. Popularity, mixed matchings, and self-duality. In Proceedings
of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2294–2310,
2017.

24 R.W. Irving. An efficient algorithm for the stable roommates problem. Journal of Algorithms,
6:577–595, 1985.

25 A. R. Karlin, S. Oveis Gharan, and R. Weber. A simply exponential upper bound on the
maximum number of stable matchings. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing (STOC), pages 920–925, 2018.

26 T. Kavitha. A size-popularity tradeoff in the stable marriage problem. SIAM Journal on
Computing, 43(1):52–71, 2014.

27 T. Kavitha. Popular half-integral matchings. In Proceedings of the 43rd International Col-
loquium on Automata, Languages, and Programming (ICALP), pages 22.1–22.13, 2016.

https://en.wikipedia.org/wiki/Condorcet_method

T. Kavitha 20:15

28 T. Kavitha, J. Mestre, and M. Nasre. Popular Mixed Matchings. Theoretical Computer
Science, 412(24):2679–2690, 2011.

29 E. McDermid and R. W. Irving. Sex-equal stable matchings: Complexity and exact algorithms.
Algorithmica, 68:545–570, 2014.

30 A. Subramanian. A New Approach to Stable Matching Problems. SIAM Journal on Computing,
23(4):671–700, 1994.

31 C.-P. Teo and J. Sethuraman. The geometry of fractional stable matchings and its applications.
Mathematics of Operations Research, 23(4):874–891, 1998.

32 E. G. Thurber. Concerning the maximum number of stable matchings in the stable marriage
problem. Discrete Mathematics, 248(1-3):195–219, 2002.

FSTTCS 2019

The Complexity of Finding S-Factors in Regular
Graphs
Sanjana Kolisetty
Departments of Mathematics and EECS, CSE Division,
University of Michigan, Ann Arbor, MI, USA
sanjanak@umich.edu

Linh Le
Departments of Mathematics and EECS, CSE Division,
University of Michigan, Ann Arbor, MI, USA
likle@umich.edu

Ilya Volkovich
Department of EECS, CSE Division, University of Michigan, Ann Arbor, MI, USA
ilyavol@umich.edu

Mihalis Yannakakis
Department of Computer Science, Columbia University, New York, NY, USA
mihalis@cs.columbia.edu

Abstract
A graph G has an S-factor if there exists a spanning subgraph F of G such that for all

v ∈ V : degF (v) ∈ S. The simplest example of such factor is a 1-factor, which corresponds to
a perfect matching in a graph. In this paper we study the computational complexity of finding
S-factors in regular graphs. Our techniques combine some classical as well as recent tools from
graph theory.

2012 ACM Subject Classification Mathematics of computing → Matchings and factors; Theory of
computation → Problems, reductions and completeness

Keywords and phrases constraint satisfaction problem, Dichotomy theorem, Graph Factors, Regular
Graphs

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.21

Funding Research partially supported by the NSF-CCF AitF 1535912 Grant.
Sanjana Kolisetty: Research partially supported by the NSF-CCF AitF 1535912 Grant.
Linh Le: Research partially supported by the NSF-CCF AitF 1535912 Grant.

Acknowledgements The authors would like to thank the anonymous referees for their detailed
comments and suggestions on the previous version of the paper.

1 Introduction

The Constraint Satisfaction Problem (CSP for short) has been a classical topic in computer
science of both theoretical and practical importance. While CSPs can be quite general,
in this paper we focus on the “fixed-template” Boolean CSPs. That is, CSPs over the
Boolean domain where the constraints come from a fixed set of Boolean relations Γ. Formally,
given a fixed set of Boolean relations Γ = {R1, R2, . . . , Rm}, a Γ-formula is a conjunction
of constraints of the form Rj(xi1 , . . . , xin

) where Rj ∈ Γ and the xij
-s are propositional

variables; CSP(Γ) forms a decision problem where one needs to determine if a given Γ-formula
is satisfiable. In other words, one needs to determine whether it is possible to satisfy all the
constraints as given by the relations from Γ simultaneously.

© Sanjana Kolisetty, Linh Le, Ilya Volkovich, and Mihalis Yannakakis;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 21; pp. 21:1–21:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sanjanak@umich.edu
mailto:likle@umich.edu
mailto:ilyavol@umich.edu
mailto:mihalis@cs.columbia.edu
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.21
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 The Complexity of Finding S-Factors in Regular Graphs

The object of study is the computational complexity of CSP(Γ) as per the choice of
Γ. In a seminal work of [22], Schaefer identified six classes of sets of Boolean relations
for which CSP(Γ) ∈ P and proved that all other sets of relations generate an NP-complete
problem. This result is what is known as Schaefer’s Dichotomy Theorem which provides
a complete classification of the computational complexity of CSP(Γ). The two most popular
examples of applications of this theorem are the NP-completeness of the 1-in-3SAT and
not-all-equal 3SAT (NAE-3SAT) problems. Subsequently, in [3], a more refined classification
was presented.

While a more general Dichotomy Theorem was recently proved for non-Boolean CSPs
[6, 24]1, there has been a large body of work dedicated to the study of the computational
complexity of a restricted version of CSP(Γ), denoted as CSP2(Γ) or CSPEdge(Γ) [15, 10, 7,
14, 11, 8, 17]. Formally introduced by Feder in [10], CSP2(Γ) corresponds to a specialization
of CSP(Γ) to the instances where each variable appears at most twice. Alternatively, one
can think about embedding the input Γ-formula into a graph, such that edges correspond
to variables and nodes to constraints, and the constraint satisfaction problem asks for a
spanning subgraph such that the set of its edges at each node satisfies the constraint at
the node.

The main subtlety is that if CSP(Γ) ∈ P then, clearly, CSP2(Γ) ∈ P. However, in the
general NP-hard instances there is usually no restriction of the number of appearances of
a variable. Therefore, a proof that CSP(Γ) is NP-hard may not carry over to CSP2(Γ).
In particular, if we consider the aforementioned examples, CSP2(1-in-3SAT) corresponds
to determining existence of a perfect matching in a 3-regular graph, which is decidable
in polynomial time. In addition, CSP2(NAE-3SAT) is “trivial” since every read-twice2
NAE-3SAT-formula is always satisfiable!3

Despite all the invested effort, we are still far away from the ultimate goal. Indeed, the
known results do not even provide a complete classification for the cases when Γ consists
of just a single relation! A natural focus taken in [15], was to consider the sets Γ that
consist of symmetric relations as these instances often arise more naturally in the graph
context, because incident edges to a node are typically treated symmetrically in graph theory.
This class of problems can be regarded as generalized matchings. In this paper we give a
complete classification of the computational complexity of CSP2(Γ), where Γ consists of a
single symmetric relation.

In turns out that the problem has a very natural interpretation in terms of finding
“S-factors” of regular graphs. We say that a graph G has an S-factor, if there exists a
spanning subgraph F of G such that for all v ∈ V : degF (v) ∈ S. The simplest example of
such factor is a 1-factor, which corresponds to a perfect matching in a graph.

1.1 Results
In light of the natural interpretation of the problem in terms of finding S-factors of graphs, we
present our main results using that terminology. The CSP versions of the main results (and
their proofs) can be found in Section 4. Our first result is a Dichotomy Theorem for regular
graphs of even degree. The Dichotomy is obtained by classifying all the tractable cases.

1 Affirming what was known as the CSP Dichotomy Conjecture formulated in [12].
2 A formula in which every variable appears at most twice.
3 This follows immediately from Tutte’s Theorem (Lemma 8), however there is a more direct way to see

that.

S. Kolisetty, L. Le, I. Volkovich, and M. Yannakakis 21:3

I Theorem 1. Let ` ∈ N. There is a polynomial-time algorithm that given a 2`-regular graph
G as an input, finds an S-factor in G, if there is one, in the following four cases:
1. S contains an even number.
2. ` ∈ S.
3. {`− 1, ` + 1} ⊆ S.
4. S = {p, p + 2, · · · , p + 2r} for some p, r ≥ 0.
Otherwise, finding an S-factor is NP-Hard.

As could be observed, all the tractable cases reduce to the case of finding a perfect
matching in a graph (see Section 2.1 for details). Consequently, an algorithm for perfect
matching in graphs (e.g. [9]) could be used to find these S-factors, for the “yes”-instances
of the problem. For regular graph of odd degree, we obtain a somewhat weaker result: we
show that for each set S, the decision problem is either polynomial-time solvable or NP-hard,
yet we are unable to classify explicitly all the tractable cases. Closing this gap will require
resolving several conjectures in graph theory (see [2, 19, 1, 5] for more details).

I Theorem 2. Let ` ∈ N. There is a polynomial-time algorithm that given a (2` + 1)-regular
graph G as an input, decides if G has an S-factor, in the following two cases:
1. Every (2` + 1)-regular graph has an S factor.
2. S = {p, p + 2, · · · , p + 2r} for some p, r ≥ 0.
Otherwise, deciding if G has an S-factor is NP-Hard.

There are specific sets S, for which it is an open problem in graph theory whether every
(2` + 1)-regular graph has an S-factor. A simple concrete example is the case of S = {1, 4}
for degree-5 graphs (the conjecture in this case is that there is always an S-factor). The
theorem tells us that, even though we may not know the answer to the open problem for
a particular S, if it does not hold trivially for all graphs and there is a counterexample,
then the corresponding S-factor problem is NP-hard; that is, there is a way to use any
counterexample (as a black box) to generate an NP-hardness reduction.

1.2 Comparison to Previous Results
In [15], Istrate studied the special case when Γ consists of symmetric relations. In that
work, several “patterns” for which CSP2(Γ) ∈ P were identified. In particular, one such
pattern corresponds to Case 4 of Theorem 1. This result was obtained via connections to
covering problems. In addition, Istrate formulated a sufficient condition under which the
computational complexity of CSP2(Γ) and CSP(Γ) is the same, with the additional “constants
for free” assumption. That is, one can fix some variables to either 0 and 1 (for more details,
see Lemma 26 and the preceding discussion). Later on, Feder [10], extended the condition to
non-symmetric relations, introducing Delta Matroids, and showed that if Γ contains some
relation that is not a Delta matroid then CSP2(Γ) and CSP(Γ) have the same complexity (in
the presence of constants). Several subsequent works [7, 8, 17] introduced further refinements
to Delta Matroids. Yet, “constants for free” remained a prevalent assumption in these and
other CSP-related works. Nonetheless, even with the assumption, no classification for the
mere case of a single symmetric relation was known prior to our work.

We also would like to point out that the “constants for free” assumption is implicitly
equivalent to adding two more relations P (x) = x and Q(x) = ¬x to Γ. It is important to
stress that adding these relations can completely tilt the scale. For example, consider a single
8-ary symmetric relation “two or six out of eight”. Formally, R(x̄) = 1 iff wH(x) = 2 or 6. In
the graphical perspective, this corresponds to the problem of finding a {2, 6}-factor of an
8-regular graph. Now by TutteŠs Theorem (Lemma 8), every 8-regular graph has a 2-factor.
Hence CSP2(R) ∈ P in a “trivial” way. On the other hand, CSP2({R, x,¬x}) is NP-hard

FSTTCS 2019

21:4 The Complexity of Finding S-Factors in Regular Graphs

(follows e.g. from [15]). Our results do not rely on the “constants for free” assumption. In
fact, they complement it: roughly speaking, we show that either CSP2(Γ) ∈ P or there exist
Γ-formulas that “implement” the relations x and ¬x. See Lemmas 29 and 30 for more details.

There is, of course, extensive work in graph theory on factors in graphs, (see e.g. the
surveys [2, 21] and references therein), with the development of a rich theory of matchings,
as well as more general factors. This includes structural results on the existence of factors,
starting from Petersen’s theorem from 1891 [20]; algorithmic results, including e.g. Edmonds’
matching algorithm [9] and its extensions and refinements; and hardness results, starting
e.g. with Lovász’s theorem [18] that for any a, b ∈ N such that 1 ≤ a ≤ b− 3, the problem
of deciding whether a graph has an {a, b}-factor is NP-hard even for simple graphs (not
necessarily of a given, regular degree). We will leverage several of these graph theoretic
results on (generalized) matchings and the existence of suitable factors in graphs. We review
some of these theorems that we use in the next section.

2 Preliminaries

I Definition 1 (Zebras and Holes). Let S ⊆ N be a subset of N. Following [15], we say that S

contains a hole of size t if there exist i such that: i, i+t+1 ∈ S and [i+1, i+t]∩S = ∅. Let a ≤
b ∈ N such that a ≡ b(mod 2). We say that S is an (a, b)-zebra if S = {a, a + 2, a + 4, . . . , b}.
We call a set S a zebra, if it is an (a, b)-zebra for some a, b ∈ N.

I Remark. A set S = {a} also constitutes a zebra since it is an (a, a)-zebra. The following is
a simple observation about the structure of finite subsets of N, that will be useful for us later.

I Observation 2. Let S ⊆ N be a finite, non-empty subset of N then (at least) one of the
following holds:

S contains two consecutive numbers.
S is zebra.
S contains a hole of size at least 2.

2.1 Graphs
In this paper we consider graphs G = (V, E). Unless specified otherwise, all the graphs
considered in the paper are general graphs (i.e. with self-loops and parallel edges). The focus
of this paper is the complexity of finding a particular kinds of subgraphs in graphs, known
as factors. We define this formally now.

I Definition 3 (Factors). Let G = (V, E) be a graph with V vertices and E edges. [2]
1. H-factor: Let H be a set function associated with G that maps V → 2N. We say

that G has an H-factor if there exists a spanning subgraph F of G such that for all
v ∈ V : degF (v) ∈ H(v).

2. f -factor is a specialization to the case when ∀v ∈ V : H(v) = {f(v)}, for some function
f : V (G)→ Z+.

3. S-factor is a specialization to the case when H(v) = S for all v ∈ V , for some fixed set
S ⊆ N.

4. [a, b]-factor is a further specialization to the case when S is the interval [a, b].
5. k-factor is a further specialization to the case when S = {k}.

The simplest case of a graph factor is a 1-factor which corresponds to a perfect matching
of a graph. This problem has a well-known efficient algorithm known as “Blossom Algorithm”.

S. Kolisetty, L. Le, I. Volkovich, and M. Yannakakis 21:5

I Lemma 4 ([9]). There exists a polynomial-time algorithm that given a graph G = (V, E)
as an input, outputs a 1-factor F of G, if one exists.

The algorithm can be easily extended to handle f -factors due to the following observation:

I Lemma 5 ([4]). There exists a polynomial-time algorithm that given a graph G = (V, E)
and a function f : V → Z (as a vector) as an input, outputs a graph G′ such that G′ has
a 1-factor F ′ iff G has an f-factor F . Moreover, F can be computed in polynomial time
given F ′.

In addition, using the simple idea of [16] of introducing self-loops, the algorithm can be
further extended to H-factors, where each H(v) is a zebra (See Definition 1).

I Lemma 6 ([16]). There exists a polynomial-time algorithm that given a graph G = (V, E)
and a function H : V → 2N, where each H(v) is zebra, as an input, outputs a graph G′ and
a function f : V → Z such that G′ has a f -factor F ′ iff G has an H-factor F . Moreover, F

can be computed in polynomial time given F ′.

The following is immediate given the above reductions to the perfect matching case.

I Corollary 7. There exists a polynomial-time algorithm that given a graph G = (V, E) and
a function H : V → 2N, where each H(v) is zebra, as an input, outputs an H-factor F of G,
if one exists.

We note that an efficient algorithm for this kind of H-factors has been obtained in [15]
using a different argument. Recently in [17], the algorithm was extended to also handle
the “asymmetric” version. Next, we require the following results regarding the existence of
regular factors in regular graphs.

I Lemma 8 (Regular Factors of Regular Graphs).
1. [23] Let r, k ∈ N such that 1 ≤ k ≤ r−1. Then any r-regular graph has a {k, k + 1}-factor.
2. [20] Let r and k be even integers such that 2 ≤ k ≤ r. Then any r-regular graph has a

k-factor.
3. [13] Suppose r is even and r

2 is odd. Then any connected r-regular graph of even order
has a r

2 -factor.

As a corollary we obtain the following, which was observed for simple graphs in [1]. We
also note that the proof of [1] is merely existential whereas our proof is algorithmic.

I Lemma 9. Let r ∈ N such that both r and r
2 are even. Then any r-regular graph of even

order has a
{

r
2 − 1, r

2 + 1
}
-factor.

Proof. Let G = (V, E) be a graph satisfying the preconditions. For every v ∈ V , we add a
self-loop. Call this new resulting graph G′ = (V, E′). Observe that G′ is a (r + 2)-regular
graph of even order and r+2

2 = r
2 + 1 is odd. Therefore, by Lemma 8, G′ has a (r

2 + 1)-factor.
Now, consider two cases: if v ∈ V uses the self-loop to fulfill its factor, then the induced
degree of v in G is r

2 − 1. Otherwise, the induced degree of v in G is r
2 + 1. J

2.2 Boolean Relations
I Definition 10. The Hamming Weight of a vector v̄ ∈ {0, 1}n is defined as: wH(v̄) ∆=
|{i | vi 6= 0}|. That is, the number of its non-zero coordinates.

FSTTCS 2019

21:6 The Complexity of Finding S-Factors in Regular Graphs

I Definition 11 (Symmetric Relation). We say that an m-ary relation R(x1, x2, . . . , xm)
is symmetric if there exists a set Spec(R) ⊆ {0 . . . m} such that R(x̄) = 1 if and only if
wH(x̄) ∈ Spec(R). The set Spec(R) is called the spectrum of R.

The following are examples of particular symmetric relations we will be utilizing.

I Example 12.
NE(x1, x2) is a binary relation with Spec(NE) = {1}.
Let k ∈ N. EQk is a k-ary relation with Spec(EQk) = {0, k}.

I Definition 13 (Dual Relation). Let R(x1, . . . , xm) be a relation. We define the dual relation
of R as:

R∗(x1, . . . , xm) ∆= R(¬x1,¬x2, . . . ,¬xm).

The following observation is immediate with respect to symmetric relations.

I Observation 14. For a symmetric m-ary relation R we have: Spec(R∗) =
{m− i | i ∈ Spec(R)}.

2.2.1 Γ-Instances, CSP(Γ), Triviality
In what follows, let Γ = {R1, R2, . . . , R`} be a fixed set of Boolean relations. We will use Γ∗

to denote the set of dual relations. Formally, Γ∗ ∆= {R∗1, R∗2, . . . , R∗`}, where R∗i is the dual
relation of Ri.

I Definition 15. A Γ-instance or Γ-formula Φ is a conjunction of constraints of the form
Rj(xi1 , . . . , xin) where Rj ∈ Γ and the xij -s are propositional variables. The read of a
variable xi in Φ is the number of occurrences of xi in Φ. The read of a formula Φ is the
maximal read of a variable in it.

In this paper we will focus on read-twice formulas, that is formulas in which all the variables
appear at most two times. We now formally introduce the main problem we will study.

I Problem 16. CSP(Γ) forms a decision problem where one needs to determine if a given
Γ-formula is satisfiable. In other words, one needs to determine whether it is possible to
satisfy all the constraints as given by the relations from Γ, simultaneously. For k ≥ 1,
CSPk(Γ) is a specialization of CSP(Γ) to read-k instances. If Γ = {R} has a single relation
R, we will write CSP(R) and CSPk(R).

As was pointed out in the introduction, in this paper we are interested in the computa-
tional complexity of CSP2(Γ), as per the choice of Γ. We now recall Schaefer’s Dichotomy
Theorem [22].

I Lemma 17 ([22]). CSP(Γ) ∈ P in the following six cases:
1. ∀Rj ∈ Γ : Rj(0̄) = 1
2. ∀Rj ∈ Γ : Rj(1̄) = 1
3. ∀Rj ∈ Γ : Rj is equivalent to a conjunction of binary relations
4. ∀Rj ∈ Γ : Rj is equivalent to a conjunction of Horn clauses
5. ∀Rj ∈ Γ : Rj is equivalent to a conjunction of dual-Horn clauses
6. ∀Rj ∈ Γ : Rj is equivalent to a conjunction of affine forms
Otherwise, CSP(Γ) is NP-Hard.

The following is an instantiation of the Theorem to the case of a single symmetric relation.

S. Kolisetty, L. Le, I. Volkovich, and M. Yannakakis 21:7

I Corollary 18. Let R(x1, . . . , xm) be a symmetric relation. Then CSP(R) ∈ P in the
following cases:
1. R(0̄) = 1
2. R(1̄) = 1
3. m ≤ 2
4. Spec(R) contains all odd numbers in {1, . . . , m}

I Definition 19 (Triviality). We say that CSPk(Γ) is trivial if every instance of CSPk(Γ)
(i.e. every read-k Γ-instance) is satisfiable.

To put the above definitions into a context, observe the first two of the six tractable
classes correspond to cases when CSP(Γ) and CSP(Γ∗) are trivial. Similarly, observe that
Cases 4 and 5 correspond the same conditions applied to both CSP(Γ) and CSP(Γ∗). With
some extra work, you can see that the same holds true for Cases 3 and 6. In the same vein,
the following lemma is immediate from the definition.

I Lemma 20. 1. CSP1(Γ) is trivial, as long as Γ does not contain a contradiction.
2. For any k ∈ N and any Γ: CSPk(Γ) is trivial iff CSPk(Γ∗) is trivial.

2.2.2 Induced Relations and Implementation
I Definition 21 (Induced relation). For a relation R(x̄, ȳ) we define the induced relation
∃ȳR(x̄, ȳ) on x̄ as

∃ȳR(x̄, ȳ) = 1 ⇐⇒ ∃ȳ such that R(x̄, ȳ) = 1.

I Definition 22 (Implementation). Let R(x̄) be an arbitrary relation. We say that Γ imple-
ments R, denoted by Γ imp R, if there exists a Γ-instance Φ(x̄, ȳ) such that R(x̄) = ∃ȳΦ(x̄, ȳ).
Furthermore, we say that Γ read-twice-implements R, denoted by Γ imp2 R, if in addition:
1. Each xi is read-once in Φ.
2. Each yj is (at most) read-twice in Φ.

The intuition behind the definition is that if Γ read-twice-implements R then we can,
effectively, consider the set Γ ∪ {R} instead of Γ. The following lemma summarizes this
intuition and will be used implicitly in our proofs.

I Lemma 23. Let R be a relation such that Γ read-twice-implements R and let Γ′ ∆= Γ∪{R}.
Then for every read-twice Γ′-instance Φ′(x̄) there exists a read-twice Γ-instance Φ(x̄, ȳ) such
that Φ′(x̄) = ∃ȳΦ(x̄, ȳ).

The following lemma showcases this intuition further, by showing that a three-way
Equality EQ3 can be used to implement k-way equality EQk for any k ≥ 3. Conversely, one
can use k-way equality EQk to implement k′-way equality EQk′ for any k′ ≤ k.

I Lemma 24. If Γ read-twice-implements EQ3 then Γ read-twice-implements EQk, for any
k ≥ 3.

Proof. By induction on k. The base case k = 3 is trivial. Let Φk denote a Γ-instance
that read-twice implements EQk(x1, . . . , xk). Given Φk, we can read-twice implement
EQk+1(x1, . . . , xk+1) in the following way:

Φk(x1, . . . , xk−1, y) ∧ Φ3(y, xk, xk+1).

Given our inductive hypothesis and the fact that we can read-twice implement EQ3, we can
conclude that Γ read-twice-implements EQk+1. J

FSTTCS 2019

21:8 The Complexity of Finding S-Factors in Regular Graphs

We note this was already observed in [15, 10]. Similar ideas can be used to show that
if Γ read-twice-implements particular relations, then read-twice Γ-formulas exhibit some
interesting closure properties.

I Lemma 25 (Read-Twice Implementing Particular Relations).
1. Closure Under Variable Negation: Suppose Γ read-twice-implements NE. Then

read-twice Γ-formulas are closed under variable negation. Formally, if Γ imp2 R(x, ȳ)
then Γ imp2 R(¬x, ȳ).

2. Closure Under Setting Variables to Constants: Suppose Γ read-twice-implements
x or ¬x. Then read-twice Γ-formulas are closed under setting variables to either 1 or 0,
respectively. Formally, if Γ imp2 R(x, ȳ) then Γ imp2 R(1, ȳ) or R(0, ȳ), respectively.

3. Closure Under Variable Repetition: Suppose Γ read-twice-implements EQk. Then
read-twice Γ-formulas are closed under repetition of any variable arbitrary number of
times.

We will use the above implicitly. We finish this section with the following simple
observation from [15].

I Lemma 26 ([15]). Let R be a symmetric relation such that Spec(R) contains a hole of
size at least 2. Then {R, x,¬x} read-twice-implements EQ3.

We note that Feder [10] extended this claim to a non-symmetric case defining Delta
Matroids. In the same paper it was observed that WLOG every variable in a read-twice
formula occurs exactly twice. Furthermore, such formulas have very natural interpretation as
graphs where edges play the role of variables and nodes the role of constraints.

I Lemma 27 (Graphical Perspective of CSP2 [10]). Every read-twice formula can be efficiently
transformed into an exact read-twice formula, and furthermore viewed as a graph.

3 Main Technical Tools

In this section we present our main technical tools, which we will use to prove Theorems 1
and 2. We begin by showing that the sets Γ for which CSP2(Γ) is non-trivial (in the sense of
Definition 19), read-twice implement NE(x, y) or {x,¬x}. Consequently, by Lemma 25, such
read-twice Γ-formula are closed under variable negation or setting variables to constants
{0, 1}. Note that the result holds for general relations (not necessarily symmetric).

I Lemma 28. Suppose that CSP2(Γ) is non-trivial. Then Γ read-twice-implements NE(x, y)
or {x,¬x}.

Proof. Since CSP2(Γ) is non-trivial, there exists an unsatisfiable read-twice Γ-instance Φ.
On the other hand, recall (e.g. Lemma 20) that any read-once Γ-instance is satisfiable.
Consider the “unpaired” version Φ′ of Φ. Formally, for each variable xi we replace one of
the occurrences with a fresh new variable yi. Observe that the resulting Φ′ is read-once and
hence satisfiable. Now, consider the process of gradually pairing the variables of Φ′, that
will eventually recover Φ. Formally, Φ′0

∆= Φ′. Φ′1 results from Φ′0 by setting x1 = y1. More
generally, Φ′i results from Φ′i−1 by setting xi = yi. As Φ′0 = Φ′ is satisfiable and Φ′n = Φ
is not, by a hybrid argument, there exist i such that Φ′i−1 is satisfiable and Φ′i is not. Let
ϕ(xi, yi) be the relation given by Φ′i−1 induced to the variables xi and yi (Recall Definition
21). By the above, ϕ(0, 0) = ϕ(1, 1) = 0 and either ϕ(0, 1) = 1 or ϕ(1, 0) = 1 (or both).
Consider three cases:

S. Kolisetty, L. Le, I. Volkovich, and M. Yannakakis 21:9

ϕ(0, 1) = ϕ(1, 0) = 1. In this case: ϕ(xi, yi) = NE(xi, yi).
ϕ(0, 1) = 0, ϕ(1, 0) = 1. In this case: ∃yiϕ(xi, yi) = xi and ∃xiϕ(xi, yi) = ¬yi.
ϕ(0, 1) = 1, ϕ(1, 0) = 0. In this case: ∃yiϕ(xi, yi) = ¬xi and ∃xiϕ(xi, yi) = yi. J

Next, we show that for symmetric relations we can derive further closure properties under
some technical conditions.

I Lemma 29. Let R be a symmetric 2`-ary relation such that: ` 6∈ Spec(R) and {`− 1, ` + 1}
6⊆ Spec(R). Then {R, NE} read-twice-implements EQ3 or {x,¬x}.

Proof. We define the following two sets: S− = {a | R(`− a) = 1} and S+ =
{a | R(` + a) = 1}. Furthermore, let a− = min S− and a+ = min S+. We define a− or
a+ to be infinity if S− or S+ is empty, respectively. We consider three cases:

Case 1: a+ = a−. Observe that a− ≥ 2. Using NE and Lemma 25, we plug `− a− pairs
zi,¬zi into the relation R. Formally, consider,

R(z̄, ȳ) ∆= R(z1,¬z1, . . . , z`−a− ,¬z`−a− , y1, . . . , y2a−).

By definition, wH(z̄) = `− a− and 0 ≤ wH(ȳ) ≤ 2a−. Now, since a+ = a−:

R(z̄, ȳ) = 1 ⇐⇒ wH(ȳ) ∈ {0, 2a−}.

Consequently, ∃z̄R(z̄, ȳ) = EQk(ȳ), where k = 2a− ≥ 4.
Case 2: a+ > a−. Observe that a− ≥ 1 and consider R(z̄, ȳ) as above. Now, however,
since a+ > a−:

R(z̄, ȳ) = 1 ⇐⇒ wH(ȳ) = 0.

Hence, we obtain ¬yi. Using NE, we can obtain yi.
Case 3: a− > a+. Observe that a+ ≥ 1. We repeat the argument of Case 2 for the dual
relation R∗ of R. As R∗ read-twice-implements {x,¬x}, so does R. J

We use a similar argument for relations of odd arity.

I Lemma 30. Let R be a symmetric 2` + 1-ary relation such that: {`, ` + 1} 6⊆ Spec(R).
Then {R, NE} read-twice-implements EQ3 or {x,¬x}.

Proof. We define the following two sets: S− = {a | R(`− a) = 1} and S+ =
{a | R(` + 1 + a) = 1}. Furthermore, let a− = min S− and a+ = min S+. We define
a− or a+ to be infinity if S− or S+ is empty, respectively. We consider three cases:

Case 1: a+ = a−. Observe that a− ≥ 1. Consider,

R(z̄, ȳ) ∆= R(z1,¬z1, . . . , z`−a− ,¬z`−a− , y1, . . . , y2a−+1).

By definition, wH(z̄) = `− a− and 0 ≤ wH(ȳ) ≤ 2a− + 1. Now, since a+ = a−:

R(z̄, ȳ) = 1 ⇐⇒ wH(ȳ) ∈ {0, 2a− + 1}.

Consequently, ∃z̄R(z̄, ȳ) = EQk(ȳ), where k = 2a− + 1 ≥ 3.
Case 2: a+ > a−. Observe that a− ≥ 0 and consider R(z̄, ȳ) as above. Now, however,
since a+ > a−:

R(z̄, ȳ) = 1 ⇐⇒ wH(ȳ) = 0.

Hence, we obtain ¬yi. Using NE, we can obtain yi.
Case 3: a− > a+. Observe that a+ ≥ 0. We repeat the argument of Case 2 for the dual
relation R∗ of R. As R∗ read-twice-implements {x,¬x}, so does R. J

FSTTCS 2019

21:10 The Complexity of Finding S-Factors in Regular Graphs

4 Characterization Proof

In this sections we give our main results, thus proving Theorems 1 and 2.

I Theorem 31 (Characterization of Even-Arity Relations). Let R be a symmetric 2`-ary
relation which is not constantly false. Then CSP2(R) ∈ P in the following four cases:

1. There is an even k ∈ Spec(R).
2. ` ∈ Spec(R).
3. {`− 1, ` + 1} ⊆ Spec(R).
4. Spec(R) is a zebra.
Otherwise, CSP2(R) is NP-Hard.

Proof. For Cases 1–4, we will take the graphical perspective (Lemma 27). Indeed, the
problem corresponds to finding an S-factor of a given 2`-regular graph, where S = Spec(R).

1. Follows from Item 2 of Lemma 8.
2. We can assume WLOG that S contains only odd numbers. In particular, ` is odd.

Consider the following algorithm, given a graph G as an input.
Find all the connected components C1, C2, . . . , Ct of G.
If each Ci is of even order, return “true”; otherwise, return “false”.

Analysis: If each Ci is of even order, then by Lemma 8, each Ci has an `-factor and so
does G. Conversely, suppose some Ci is of odd order. Then by Handshaking Lemma, Ci

cannot have an S-factor, as otherwise the overall sum of the degrees will be odd.
3. As before, we can assume WLOG that S contains only odd numbers. Hence, ` is even.

Apply the procedure outlined in the proof of Lemma 9. This will reduce the problem to
the previous case.

4. Apply Corollary 7 with H(v) = Spec(R) for every vertex v in the graph.

For the NP-Hardness proof, we take the CSP view of the problem. We show that if none
of the Cases 1-4 hold, then CSP2(R) is as hard as CSP(R). That is, we can lift the restriction
on the read. The hardness then follows from Schaefer’s Dichotomy Theorem instantiated to
a single symmetric relation - Corollary 18.

B Claim 32. If Spec(R) does not fall into any of the four cases, then Spec(R) contains a
hole of size at least 2 and {R} read-twice-implements EQ3.

Proof. First, observe that Spec(R) cannot have two consecutive numbers (as one of them
will be even) and is not a zebra (Case 4). Therefore, by Observation 2, Spec(R) must contain
a hole of size at least 2.
Next, consider the relation:

N(x, y) ∆= ∃z̄R(z1, z1, z2, z2, . . . , z`−1, z`−1, x, y).

Since Spec(R) does not contain even numbers (Case 1), N(x, y) = NE(x, y). Thus, by Lemma
29 given Cases 2 and 3, {R} read-twice-implements EQ3 or {x,¬x}. In the former case, the
claim follows. In the latter case, Lemma 26 completes the proof of the claim. C

In conclusion, CSP2(R) is as hard as CSP(R) and is thus NP-Hard by Corollary 18. J

For symmetric relations of odd arity, we obtain a somewhat weaker result.

S. Kolisetty, L. Le, I. Volkovich, and M. Yannakakis 21:11

I Theorem 33 (Characterization of Odd-Arity Relations). Let R be a symmetric (2` + 1)-ary
relation which is not constantly false. Then CSP2(R) ∈ P in the following cases:

1. CSP2(R) is trivial.
2. Spec(R) is a zebra.
Otherwise, CSP2(R) is NP-Hard.

Proof. Case 1 is trivial and Case 2 follows from Corollary 7.. For the NP-Hardness proof, we
use a similar argument as in Theorem 31 to conclude that CSP2(R) is as hard as CSP(R).
Here is the high-level idea:

{R} read-twice-implements NE(x, y) or {x,¬x} - Lemma 28.
Spec(R) cannot contain two consecutive numbers - Lemma 8.
Spec(R) contains a hole of size at least 2 - Observation 2.
{R} read-twice-implements EQ3 or {x,¬x} - Lemma 30.
{R} read-twice-implements EQ3 - Lemma 26.

First observe that Spec(R) cannot contain two consecutive numbers since by Lemma 8,
this case is trivial, in the graphical perspective. Consequently, by Observation 2, Spec(R)
must contain a hole of size at least 2. In addition, by Lemma 30, {R} read-twice-implements
EQ3 or {x,¬x}. In the former case, we are done. In the latter case, Lemma 26 completes
the proof. J

5 Discussion & Open Questions

In this paper we obtain the first classification of the computational complexity of CSP2(R),
where R is a single symmetric relation. Alternatively, we obtain a classification of the
complexity of the S-factor problem for regular graphs. The characterization is explicit for
even degree graphs (even arity), while for odd degrees it states that all nontrivial cases,
except for zebras, are NP-hard. An obvious open question is to identify for which sets S, an
S-factor is always guaranteed to exist; this amounts to resolving certain open problems in
graph theory, even for some small specific S, and looks rather challenging.

More generally, the goal of this line of research is to obtain a complete classification of the
computational complexity of CSP2(Γ), analogous to Schaefer’s Dichotomy Theorem. While
an explicit classification may encounter difficult graph-theoretic questions, even for some
specific Γ, it may well be possible to prove a general complexity dichotomy theorem, as we
have done here, without having to resolve explicitly all the hard graph-theoretic questions.

One can observe that all the NP-hardness results of CSP2(Γ), for the special case when Γ
consists of symmetric relation(s), are established via the route of showing that Γ implements
the Equality relation. This, in turn, allows to apply Schaefer’s Dichotomy Theorem. One
interesting open question is whether there exists a set Γ (consisting of not necessarily
symmetric relations) that does not implement Equality, yet for which CSP2(Γ) is NP-Hard.
This would imply that Schaefer’s Dichotomy does not cover all the cases of bounded read.

References
1 S. Akbari and M. Kano. {k, r − k}-Factors of r-Regular Graphs. Graphs and Combinatorics,

30(4):821–826, 2014. doi:10.1007/s00373-013-1324-x.
2 J. Akiyama and M. Kano. Factors and factorizations of graphs - a survey. Journal of Graph

Theory, 9(1):1–42, 1985. doi:10.1002/jgt.3190090103.

FSTTCS 2019

https://doi.org/10.1007/s00373-013-1324-x
https://doi.org/10.1002/jgt.3190090103

21:12 The Complexity of Finding S-Factors in Regular Graphs

3 E. Allender, M. Bauland, N. Immerman, H. Schnoor, and H. Vollmer. The complexity of
satisfiability problems: Refining Schaefer’s theorem. J. Comput. Syst. Sci., 75(4):245–254,
2009. doi:10.1016/j.jcss.2008.11.001.

4 C. Berge. Graphs and Hypergraphs. North-Holland mathematical library. Amsterdam, 1973.
5 A. Bernshteyn, O. Khormali, R. R. Martin, J. Rollin, D. Rorabaugh, S. Shan, and A. J.

Uzzell. Regular colorings and factors of regular graphs. CoRR, abs/1603.09384, 2016. arXiv:
1603.09384.

6 A. A. Bulatov. A Dichotomy Theorem for Nonuniform CSPs. In 58th IEEE Annual Symposium
on Foundations of Computer Science, FOCS, pages 319–330, 2017. doi:10.1109/FOCS.2017.
37.

7 V. Dalmau and D. K. Ford. Generalized Satisfability with Limited Occurrences per Vari-
able: A Study through Delta-Matroid Parity. In The 28th International Symposium Math-
ematical Foundations of Computer Science MFCS, pages 358–367, 2003. doi:10.1007/
978-3-540-45138-9_30.

8 Z. Dvorak and M. Kupec. On Planar Boolean CSP. In Automata, Languages, and Programming
- 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings,
Part I, pages 432–443, 2015. doi:10.1007/978-3-662-47672-7_35.

9 J. Edmonds. Paths, Trees and Flowers. CANADIAN JOURNAL OF MATHEMATICS, pages
449–467, 1965.

10 T. Feder. Fanout limitations on constraint systems. Theor. Comput. Sci., 255(1-2):281–293,
2001. doi:10.1016/S0304-3975(99)00288-1.

11 T. Feder and D. K. Ford. Classification of Bipartite Boolean Constraint Satisfaction through
Delta-Matroid Intersection. SIAM J. Discrete Math., 20(2):372–394, 2006. doi:10.1137/
S0895480104445009.

12 T. Feder and M. Y. Vardi. The Computational Structure of Monotone Monadic SNP and
Constraint Satisfaction: A Study through Datalog and Group Theory. SIAM J. Comput.,
28(1):57–104, 1998. doi:10.1137/S0097539794266766.

13 T. Gallai. On factorisation of graphs. Acta Mathematica Academiae Scientiarum Hungarica,
1(1):133–153, March 1950. doi:10.1007/BF02022560.

14 J. F. Geelen, S. Iwata, and K. Murota. The linear delta-matroid parity problem. J. Comb.
Theory, Ser. B, 88(2):377–398, 2003. doi:10.1016/S0095-8956(03)00039-X.

15 G. Istrate. Looking for a Version of Schaefer”s Dichotomy Theorem When Each Variable
Occurs at Most Twice. Technical report, University of Rochester, Rochester, NY, USA, 1997.

16 M. Kano and H. Matsuda. Partial Parity (g, f)-Factors and Subgraphs Covering Given Vertex
Subsets. Graphs and Combinatorics, 17(3):501–509, 2001. doi:10.1007/PL00013412.

17 A. Kazda, V. Kolmogorov, and M. Rolínek. Even Delta-Matroids and the Complexity of
Planar Boolean CSPs. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages
307–326, 2017. doi:10.1137/1.9781611974782.20.

18 L. Lovász. The factorization of graphs. II. Acta Mathematica Academiae Scientiarum Hungarica,
23(1):223–246, March 1972. doi:10.1007/BF01889919.

19 H. Lu, D. G. L. Wang, and Q. Yu. On the Existence of General Factors in Regular Graphs.
SIAM J. Discrete Math., 27(4):1862–1869, 2013. doi:10.1137/120895792.

20 J. Petersen. Die Theorie der regulären graphs. Acta Mathematica, 15:193–220, 1891. doi:
10.1007/BF02392606.

21 M. D. Plummer. Graph factors and factorization: 1985–2003: A survey. Discrete Mathematics,
307(7-8):791–821, 2007.

22 T. J. Schaefer. The Complexity of Satisfiability Problems. In Proceedings of the 10th
Annual ACM Symposium on Theory of Computing (STOC), pages 216–226, 1978. doi:
10.1145/800133.804350.

23 W.T. Tutte. The Subgraph Problem. In Advances in Graph Theory, volume 3 of Annals of
Discrete Mathematics, pages 289–295. Elsevier, 1978. doi:10.1016/S0167-5060(08)70514-4.

24 D. Zhuk. A Proof of CSP Dichotomy Conjecture. In 58th IEEE Annual Symposium on
Foundations of Computer Science, FOCS, pages 331–342, 2017. doi:10.1109/FOCS.2017.38.

https://doi.org/10.1016/j.jcss.2008.11.001
http://arxiv.org/abs/1603.09384
http://arxiv.org/abs/1603.09384
https://doi.org/10.1109/FOCS.2017.37
https://doi.org/10.1109/FOCS.2017.37
https://doi.org/10.1007/978-3-540-45138-9_30
https://doi.org/10.1007/978-3-540-45138-9_30
https://doi.org/10.1007/978-3-662-47672-7_35
https://doi.org/10.1016/S0304-3975(99)00288-1
https://doi.org/10.1137/S0895480104445009
https://doi.org/10.1137/S0895480104445009
https://doi.org/10.1137/S0097539794266766
https://doi.org/10.1007/BF02022560
https://doi.org/10.1016/S0095-8956(03)00039-X
https://doi.org/10.1007/PL00013412
https://doi.org/10.1137/1.9781611974782.20
https://doi.org/10.1007/BF01889919
https://doi.org/10.1137/120895792
https://doi.org/10.1007/BF02392606
https://doi.org/10.1007/BF02392606
https://doi.org/10.1145/800133.804350
https://doi.org/10.1145/800133.804350
https://doi.org/10.1016/S0167-5060(08)70514-4
https://doi.org/10.1109/FOCS.2017.38

More on AC0[⊕] and Variants of the Majority
Function
Nutan Limaye
Department of Computer Science and Engineering, IIT Bombay, India
nutan@cse.iitb.ac.in

Srikanth Srinivasan
Department of Mathematics, IIT Bombay, India
srikanth@math.iitb.ac.in

Utkarsh Tripathi
Department of Mathematics, IIT Bombay, India
utkarshtripathi.math@gmail.com

Abstract
In this paper we prove two results about AC0[⊕] circuits.

We show that for d(N) = o(
√

logN/ log logN) and N ≤ s(N) ≤ 2dN
1/4d2

there is an explicit
family of functions {fN : {0, 1}N → {0, 1}} such that
fN has uniform AC0 formulas of depth d and size at most s;
fN does not have AC0[⊕] formulas of depth d and size sε, where ε is a fixed absolute constant.

This gives a quantitative improvement on the recent result of Limaye, Srinivasan, Sreenivasaiah,
Tripathi, and Venkitesh, (STOC, 2019), which proved a similar Fixed-Depth Size-Hierarchy
theorem but for d� log logN and s� exp(N1/2Ω(d)

).
As in the previous result, we use the Coin Problem to prove our hierarchy theorem. Our main
technical result is the construction of uniform size-optimal formulas for solving the coin problem
with improved sample complexity (1/δ)O(d) (down from (1/δ)2O(d)

in the previous result).
In our second result, we show that randomness buys depth in the AC0[⊕] setting. Formally, we
show that for any fixed constant d ≥ 2, there is a family of Boolean functions that has polynomial-
sized randomized uniform AC0 circuits of depth d but no polynomial-sized (deterministic) AC0[⊕]
circuits of depth d.
Previously Viola (Computational Complexity, 2014) showed that an increase in depth (by at
least 2) is essential to avoid superpolynomial blow-up while derandomizing randomized AC0

circuits. We show that an increase in depth (by at least 1) is essential even for AC0[⊕].
As in Viola’s result, the separating examples are promise variants of the Majority function on N
inputs that accept inputs of weight at least N/2 +N/(logN)d−1 and reject inputs of weight at
most N/2−N/(logN)d−1.

2012 ACM Subject Classification Theory of computation → Circuit complexity; Theory of compu-
tation → Pseudorandomness and derandomization

Keywords and phrases AC0[⊕], Coin Problem, Promise Majority

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.22

Related Version A full version of the paper is available at https://eccc.weizmann.ac.il/report/
2019/133/.

1 Introduction

This paper addresses questions in the field of Boolean Circuit complexity, where we study
the complexity of compuational problems, modeled as sequences of Boolean functions fN :
{0, 1}N → {0, 1}, in the combinatorially defined Boolean circuit model (see, e.g. [5] for an
introduction).

© Nutan Limaye, Srikanth Srinivasan, and Utkarsh Tripathi;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 22; pp. 22:1–22:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nutan@cse.iitb.ac.in
mailto:srikanth@math.iitb.ac.in
mailto:utkarshtripathi.math@gmail.com
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.22
https://eccc.weizmann.ac.il/report/2019/133/
https://eccc.weizmann.ac.il/report/2019/133/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 AC0[⊕] and Variants of the Majority Function

Boolean circuit complexity is by now a classical research area in Computational complexity,
with a large body of upper and lower bound results in many interesting circuit models. The
questions we consider here are motivated by two of the most well-studied circuit models,
namely AC0 and AC0[⊕]. The circuit class AC0 denotes the class of Boolean circuits of
small-depth made up of AND, OR and NOT gates, while AC0[⊕] denotes the circuit class
that is also allowed the use of parity (addition modulo 2)1 gates.2

Historically, AC0 was among the first circuit classes to be studied and for which super-
polynomial lower bounds were proved. Building on an influential line of work [2, 9, 24],
Håstad [11] showed that any depth-d AC0 circuit for the Parity function on N variables
must have size exp(Ω(N1/(d−1))), hence proving an exponential lower bound for constant
depths and superpolynomial lower bounds for all depths d� logN/ log logN. Researchers
then considered the natural follow-up problem of proving lower bounds for AC0[⊕]. Soon
after, Razborov [17] and Smolensky [21, 22] showed a lower bound of exp(Ω(N1/2(d−1))) for
computing the Majority function on N inputs, again obtaining an exponential lower bound
for constant depths and superpolynomial lower bounds for all depths d� logN/ log logN.

Thus, we have strong lower bounds for both classes AC0 and AC0[⊕]. However, in many
senses, AC0[⊕] remains a much more mysterious class than AC0. There are many questions
that we have been successfully able to answer about AC0 but whose answers still evade us in
the AC0[⊕] setting. This work is motivated by two such questions that we now describe.

Size Hierarchy Theorems. Size Hierarchy theorems are an analogue in the Boolean circuit
complexity setting of the classical Time and Space hierarchy theorems for Turing Machines.
Formally, the problem is to separate the power of circuits (from some class) of size s from
that of circuits of size at most sε for some fixed ε > 0. As is usual in the setting of circuit
complexity, we ask for explicit separations,3 or equivalently, we ask that the separating
sequence of functions be computed by a uniform family of circuits of size at most s.

The challenge here is to obtain explicit functions for which we can obtain tight (or
near-tight) lower bounds, since we want the functions to have (uniform) circuits of size s but
no circuits of size at most sε.

In the AC0 setting, Håstad’s theorem stated above immediately implies such a tight lower
bound, since it is known (folklore) that the Parity function does have depth-d circuits of size
exp(O(N1/d−1)) for every d. Varying the number of input variables to the Parity function
suitably, this yields a Size Hierarchy theorem for the class of AC0 circuits of depth d as long
as d� logN/ log logN and s = exp(o(N1/(d−1))).

For AC0[⊕], however, this is not as clear, as explicit tight lower bounds are harder to
prove. In particular, the lower bounds of Razborov [17] and Smolensky [21, 22] for the
Majority function (and other symmetric functions) are not tight; indeed, the exact complexity
of these functions in AC0[⊕] remains unknown [16]. In a recent result, the authors along
with Sreenivasaiah and Venkitesh [14] were able to show a size hierarchy theorem for AC0[⊕]
formulas4 for depths d � log logN and size s � exp(N1/2Ω(d)). This is a weaker size

1 Though we state our results only for AC0[⊕], they extend in a straightforward way to AC0[p], where we
are allowed gates that add modulo p, for any fixed prime p.

2 The formal definitions of AC0 and AC0[⊕] only allow for polynomial-size circuits and constant depth.
However, since some of our results apply to larger families of circuits, we will abuse notation and talk
about AC0 circuits of size s(N) and depth d(N) where s and d are growing functions of N .

3 It is trivial to show a non-explicit separation by counting arguments.
4 A formula is a circuit where the underlying undirected graph is a tree. For constant-depth, formulas

and circuits are interchangeable with a polynomial blowup in depth. However, this is no longer true at
superconstant depth [18, 19].

N. Limaye, S. Srinivasan, and U. Tripathi 22:3

hierarchy theorem than the one that follows from Håstad’s theorem for AC0, both in terms
of the size parameter as well as the depths until which it holds. In this paper, we build upon
the ideas in [14] and prove the following result that is stronger in both parameters.

I Theorem 1. The following holds for some absolute constant ε > 0. Let N be a growing
parameter and d = d(N), s = s(N) be functions of N with d = o

(√
logN

log logN

)
and N ≤ s ≤

2dN1/d2

. Then there is a family of functions {fN} such that fN has uniform AC0 formulas
of depth d and size at most s but no AC0[⊕] formulas of depth d and size at most sε.

Randomized versus Deterministic circuits. The study of the relative power of randomized
versus deterministic computation is an important theme in Computational complexity. In
the setting of circuit complexity, it is known from a result of Adleman [1] that unbounded-
depth polynomial-sized randomized circuits5 are no more powerful than polynomial-sized
deterministic circuits.

However, the situation is somewhat more intriguing in the bounded-depth setting. Ajtai
and Ben-Or [3] showed that for any randomized depth-d AC0 circuit of size at most s, there
is deterministic AC0 circuit of depth d+ 2 and size at most poly(s) that computes the same
function; a similar result also follows for AC0[⊕] with the deterministic circuit having depth
d+ 3. This begs the question: is this increase in depth necessary?

For AC0 circuits of constant depth, Viola [23] gave an optimal answer to this question by
showing that an increase of two in depth is necessary to avoid a superpolynomial blow-up
in size. To the best of our knowledge, this problem has not been studied in the setting of
AC0[⊕]. In this paper, we show that an increase in depth (of at least one) is required even
for AC0[⊕]. More formally we prove the following theorem.

I Theorem 2. Fix any constant d ≥ 2. There is a family of Boolean functions that
has polynomial-sized randomized uniform AC0 circuits of depth d but no polynomial-sized
(deterministic) AC0[⊕] circuits of depth d.

Theorems 1 and 2 are proved in Sections 2 and 3 respectively. Many proofs are omitted
for lack of space.

1.1 Proof Ideas
The proofs of both theorems are based on analyzing the complexity of Boolean functions
that are closely related to the Majority function.

Size-Hierarchy Theorem. To prove the size hierarchy theorem for constant-depth AC0[⊕]
formulas, [14] studied the AC0[⊕] complexity of the δ-coin problem [7], which is the problem
of distinguishing between a coin that is either heads with probability (1 + δ)/2 or is heads
with probability (1− δ)/2, given a sequence of a large number of independent tosses of this
coin. This problem has been studied in a variety of computational models [20, 7, 8, 10].
It is known [15, 4] that this problem can be solved by AC0 formulas of depth d and size
exp(O(d(1/δ)1/(d−1))) and further [15, 20, 14] that this upper bound is tight up to the
constant in the exponent even for AC0[⊕] formulas of depth d. This gives a family of
functions for which we have tight lower bounds for AC0[⊕] formulas.

5 A randomized Boolean circuit for a Boolean function f(x) is a Boolean circuit C that takes as input
variables x and r such that for each setting of x and uniformly random r, C(x) = f(x) with probability
at least 3/4.

FSTTCS 2019

22:4 AC0[⊕] and Variants of the Majority Function

Based on this, [14] noted that to prove AC0[⊕] size-hierarchy theorems for size s(N) and
depth d(N), it suffices to construct a uniform sequence of formulas of size s and depth d
solving the coin problem optimally (i.e. for δ such that s = exp(O(d(1/δ)1/(d−1)))) using
at most N samples. Before [14], all known size-optimal formula constructions for solving
the δ-coin problem used N = s = exp(O(d(1/δ)1/(d−1))) many samples. The work of [14]
brought the number of samples down to N = (1/δ)2O(d) . Our main technical result here is
an explicit size-optimal formula for solving the δ-coin problem using only (1/δ)O(d) samples.
Plugging this into the framework from [14], we immediately get the improved size-hierarchy
theorem.

While the reason for this improvement is rather technical, we try to give a high-level
outline here. It was shown by O’Donnell and Wimmer [15] and Amano [4] that the δ-coin
problem is solved by read-once AC0 formulas of depth d with gates of prescribed fan-ins.
While the size s of these formulas is optimal, the number of samples is N = s, which is too
big for our purposes. In [14], this number is brought down by distributing a smaller number
of variables across the formula in a pseudorandom way (specifically using a Nisan-Wigderson
design). The challenge now is to show that the formula still solves the δ-coin problem: the
reason this is challenging is that various subformulas now share variables and hence the
events that they accept or reject are no longer independent. However [14] note that Janson’s
inequality [13], a tool from probabilistic combinatorics, can be used to argue that if the
variables are spread out in a suitably “random”-like fashion, then various subformulas at a
certain depth may, for our intents and purposes, be treated as “nearly” independent.

This “distance” from independence is determined by a parameter ∆ that goes into the
statement of Janson’s inequality, and hence let us call it the Janson parameter. In [14],
this parameter was measured in a very brute-force way, forcing us to square the number
of samples every time the depth of the formula increased by 1. This leads to a sample
complexity of (1/δ)2O(d) . Here, however, we give a different way of bounding the Janson
parameter via a recursive analysis, which works as long as the number of variables grows by
a factor of (1/δ) for each additional depth. This gives the improvement in our construction.

Randomized versus Deterministic circuits. For his separation of deterministic and ran-
domized AC0 circuits, Viola [23] used the k-Promise-Majority functions 6 which are Boolean
functions that accept inputs with at least N/2 + k many 1s and reject inputs with at most
N/2−k many 0s. Building on work of [3, 15, 4], Viola [23] showed that for k = N/(logN)d−1,
there are k-Promise-Majorities that have uniform polynomial-sized randomized depth-d AC0

circuits. On the other hand, he also showed that the same problem has no deterministic
circuit of depth d (and in fact even d+ 1).

The challenge in proving such a lower bound is that if a Boolean function has a randomized
circuit of depth d and size s, then it immediately follows that there is also a deterministic
circuit of the same depth and size approximating the same Boolean function (i.e. computing
it correctly on most inputs). In particular, the lower bound technique must be able to
distinguish circuits that are computing the function exactly (since this is hard) from circuits
that are merely approximating it (as this is easy). Viola overcomes this hurdle in the case of
AC0 with a clever argument for depth-3 circuits and an inductive use of the Håstad Switching
lemma for higher depths. Neither of these techniques is available for AC0[⊕] circuits. In fact,

6 These are called Approximate Majorities in a lot of the earlier literature, including in Viola’s work. We
avoid this name, since Approximate Majorities are also used for functions more closely related to the
coin problem [15], and in our opinion, the name “Promise Majorities” better describes these functions.

N. Limaye, S. Srinivasan, and U. Tripathi 22:5

the standard techniques for proving lower bounds against AC0[⊕] involve approximating the
circuits to constant error using low-degree polynomials from F2[x1, . . . , xN]. Note that this
immediately runs into the obstacle mentioned above since we can then no longer distinguish
between circuits that are exactly correct and those that are approximately correct.

The way we get around this argument is to use a recent result of Oliveira, Santhanam and
the second author [16] where it is observed that the standard construction of approximating
polynomials for AC0[⊕] actually gives polynomials that approximate the given circuit C
to very small error on either the zero or the one inputs of C. They are able to use this to
improve known AC0[⊕] lower bounds for the Majority function. Our main observation is that
this stronger lower bound is actually able to distinguish between circuits that approximate
the Majority function to constant error (say from [15, 4]) and those that compute it exactly,
thus overcoming the barrier we mentioned above. We then note that their proof can also be
made to work for k-Promise-Majorities. This yields the separation.

2 Size hierarchy theorem for AC0[⊕]

I Definition 3 (The δ-Coin Problem). Let δ ∈ (0, 1) be a parameter. Given an N ∈ N, we
define the probability distributions µNδ,0 and µNδ,1 to be the product distributions where each bit
is set to 1 with probability (1− δ)/2 and (1 + δ)/2 respectively. We omit the δ in the subscript
and N in the superscript when these are clear from context.

Given a function g : {0, 1}N → {0, 1}, we say that g solves the δ-coin problem if

Pr
x∼µN

0

[g(x) = 1] ≤ 0.1 and Pr
x∼µN

1

[g(x) = 1] ≥ 0.9. (1)

We say that the sample complexity of g is N .

Parameters. Let m, d be growing parameters such that d = o(m/ logm). Let 1/δ =
(m ln 2)d−1/C1, where C1 is a fixed large constant, to be specified below. LetM = dm·2m·ln 2e
and let M1 = 2m.

I Theorem 4. For large enough absolute constant C1, the following holds. For parameters
m, δ, d as above and for d ≥ 2, there is an explicit depth-d AC0 formula of size exp(O(dm))
= exp(O(d(1/δ)1/d−1)) and sample complexity (1/δ)d+4 that solves the δ-coin problem.

We first show how Theorem 4 implies Theorem 1 stated in the introduction.

Proof of Theorem 1. We use Theorem 4 for a suitable choice of parameters to define the
explicit function.

Let m = b(α log s)/dc for some absolute constant α < 1 that we fix below. It can be
checked that as s ≥ N and d = o(

√
logN/ log logN), we have d = o(m/ logm). Define δ as

above and note that (1/δ)d+4 ≤ m2d2 ≤ ((log s)/d)2d2 ≤ N , where the final inequality uses
the given upper bounds on d and s.

We set fN to be the Boolean function computed by the formula Fd constructed above on
the first (1/δ)d+4 of the N input variables. By Theorem 4, the size of Fd is exp(O(dm)) ≤ s
for a small enough absolute constant α and Fd solves the δ-coin problem. Moreover, it was
shown in [14] that any depth-d AC0[⊕] formula solving the δ-coin problem must have size
exp(Ω(d(1/δ)1/(d−1))) = exp(Ω(md)) = sε for some absolute constant ε > 0. This proves the
theorem. J

FSTTCS 2019

22:6 AC0[⊕] and Variants of the Majority Function

2.1 Proof of Theorem 4
In this section we give the construction of the explicit formula solving the δ-coin problem and
prove Theorem 4. There exist integers Q,D, such that7 Q is a prime power, M ≤ QD ≤ 2M
and (m4/δ) ≤ Q ≤ (2m4/δ). Let F be a finite field with Q elements and A ⊆ F be a set
of size m. Let PD be the lexicographically first M univariate polynomials over F of degree
strictly less than D. Similarly, let P ′D be the lexicographically firstM1 univariate polynomials
over F of degree less than D.

We now describe the construction of our formula. The variables in the formula correspond
to the points in the set A × Fd−1. i.e. for each (a, c1, . . . , cd−1) ∈ A × Fd−1, we have a
variable x(a, c1, . . . , cd−1). We thus have m ·Qd−1 many variables, denoted by N .

For each i ∈ [d− 1] and P̄ = (Pi, . . . , Pd−1) ∈ Pd−iD , define a depth-i formula C(Pi,...,Pd−1)
inductively as follows.

C(P1,...,Pd−1) =
∧
a∈A

x(a, P1(a), . . . , Pd−1(a)),

C(P2,...,Pd−1) =
∨

R1∈PD

C(R1,P2,...,Pd−1), C(P3,...,Pd−1) =
∧

R2∈PD

C(R2,P3,...,Pd−1)

and so on, with the gates alternately repeating between AND and OR untill depth d− 1.
Finally, C(∅) is the output of the formula. If the depth of the formula is odd then C(∅) is
equal to

∧
R∈P′

D
C(R) otherwise it is equal to

∧
R∈P′

D
C(R). This finishes the description of

our formula. We use Fd = C(∅) to denote this formula.

Analysis of the construction

Here we present the details regarding the analysis of our construction presented above, which
will be used to prove Theorem 4. We will start with some definitions, notations and some
useful inequalities.

I Definition 5. For 1 ≤ i ≤ d− 1, we define the following terms.
1. For P̄ = (Pi, . . . , Pd−1) ∈ Pd−iD and b ∈ {0, 1}, let

AccP̄ ,b := Pr
µb

[C(Pi,...,Pd−1) accepts] and RejP̄ ,b := Pr
µb

[C(Pi,...,Pd−1) rejects].

Let qP̄ ,b = AccP̄ ,b if i is odd and RejP̄ ,b if i is even.
2. For P̄ = (Pi, . . . , Pd−1), P̄ ′ = (P ′i , . . . , P ′d−1) ∈ Pd−iD , we say that P̄ ∼ P̄ ′ when CP̄ and
CP̄ ′ are distinct gates which share a common input variable.

3. Fix any i ∈ [d−1]. For P̄ = (Pi+1, . . . , Pd−1), P̄ ′ = (P ′i+1, . . . , P
′
d−1) ∈ Pd−i−1

D , b ∈ {0, 1},

∆P̄ ,P̄ ′,b =

∑
Ri,R

′
i∈PD

(Ri,P̄)∼(R′i,P̄
′)

Prµb [C(Ri,P̄) = 0 AND C(R′
i
,P̄ ′) = 0] if CP̄ and CP̄ ′ are AND gates

∑
Ri,R

′
i∈PD

(Ri,P̄)∼(R′i,P̄
′)

Prµb [C(Ri,P̄) = 1 AND C(R′
i
,P̄ ′) = 1] if CP̄ and CP̄ ′ are OR gates

7 Using number-theoretic facts about the density of primes [6] (see for instance [12]), such Q,D can be
found in polynomial time.

N. Limaye, S. Srinivasan, and U. Tripathi 22:7

A useful tool in our analysis of the circuit is Janson’s inequality stated here in the
language of Boolean circuits.

I Theorem 6 (Janson’s inequality). Let C1, . . . , CM be any monotone Boolean circuits over
inputs x1, . . . , xn and let C denote

∨
i∈[M] Ci. For each distinct i, j ∈ [M], we use i ∼ j to

denote the fact that Ci and Cj share a common variable. Assume each xj (j ∈ [M]) is chosen
independently to be 1 with probability pj ∈ [0, 1], and that under this distribution, we have
maxi∈[M]{Prx[Ci(x) = 1]} ≤ 1/2. Then we have

∏
i∈[M]

Prx[Ci(x) = 0] ≤ Prx[C(x) = 0] ≤

 ∏
i∈[M]

Prx[Ci(x) = 0]

 · exp(∆) (2)

where ∆ :=
∑
i∼j Prx[(Ci(x) = 1) ∧ (Cj(x) = 1)].

Throughout, we use log(·) to denote logarithm to the base 2 and ln(·) for the natural
logarithm. We use exp(x) to denote ex.

I Fact 7. Assume that x ∈ [−1/2, 1/2]. Then we have the following chain of inequalities.

exp(x− (|x|/2)) ≤
(a)

exp(x− x2) ≤
(b)

1 + x ≤
(c)

exp(x) ≤
(d)

1 + x+ x2 ≤
(e)

1 + x+ (|x|/2) (3)

We define a few parameters which will be useful in the main technical lemma that helps
in proving Theorem 4.

For i ∈ [d − 1], let αi = mi · (ln 2)i−1 · δ. Also define β1 = 2α1 and βi = βi−1 + 2αi +
2

mi(ln 2)i−1 for 2 ≤ i ≤ d− 2.

I Observation 8. For all i ∈ [d− 2], αi, βi ≤ O(1/m). Also, αd−1 = Θ(C1) = Θ(1). Finally,
for i ∈ [d− 2], using Fact 7 above, we get exp(−βi−1)− exp(−βi) ≥ αi/2.

I Lemma 9. Assume d ≥ 3 and qP̄ ,b and formula C(∅) defined as before. We have the
following properties.
1. For b ∈ {0, 1}, i ∈ [d− 2] such that i ≡ b (mod 2),

1
2m · (1 + αi exp(−βi)) ≤ qP̄ ,b ≤

1
2m · (1 + αi exp(βi))

1
2m · (1− αi exp(βi)) ≤ qP̄ ,(1−b) ≤

1
2m · (1− αi exp(−βi))

2. Say d− 1 ≡ b (mod 2). Then

qP̄ ,b ≥
1

2m · exp(αd−1/4) and qP̄ ,1−b ≤
1

2m · exp(−αd−1/4)

3. For all i ∈ [d− 1], b ∈ {0, 1} and P̄ , P̄ ′ ∈ Pd−i−1
D , ∆P̄ ,P̄ ′,b < δ.

Assuming that the above lemma holds for now, we will prove Theorem 4.

Proof of Theorem 4. We start by bounding the size of Fd = C(∅). As per our construction,
the gates at level 1 are AND gates with fan-in m each. For all 2 ≤ i ≤ d − 1, the fan-in
of each gate on level i is M = dm · 2m · ln 2e and the top fan-in is M1 = 2m. Therefore,
the total number of gates in the formula is m ·Md−2 ·M1. We can trivially bound this

FSTTCS 2019

22:8 AC0[⊕] and Variants of the Majority Function

by Md = O(md2dm). As d = o(m/ logm), we get that the size is bounded by exp(O(dm)).
Recall that 1/δ = (m ln 2)d−1/C1, where C1 is an appropriately chosen constant. Hence
exp(O(dm)) = exp(O(d(1/δ)1/(d−1))).

We will now bound the number of variables N used by the formula. As mentioned above,
N = m ·Qd−1. As Q is chosen such that Q = Θ(m4/δ), there exists a constant C ′ such that
N ≤ m · (C ′m4/δ)d−1.

N ≤ m · (C ′m4/δ)d−1 ≤ (1/δ)d−1 · (md−1)4 ·m · C ′d−1

≤ (1
δ

)d−1 · (1
δ

)4 ·m · (C ′′)d−1 (for some constant C ′′ as 1/δ = (m ln 2)d−1/C1)

≤ (1
δ

)d+3 · 1
δ

= (1
δ

)d+4

Finally, we will show that the formula solves the δ-coin problem. Let us assume that d is even.
In that case, the output gate C(∅) is an OR gate. (When it is an AND gate, the analysis
is very similar.) We bound the probabilities Pra∈µ0 [Fd(a) = 1] and Pra∈µ1 [Fd(a) = 0] by
1/10 each.

Pr
a∈µ0

[Fd(a) = 1] ≤
∑
R∈P′

D

Pr
a∈µ0

[C(R)(a) = 1] Using a Union bound

≤ 2m · 1
2m · exp(−αd−1/4) |P ′D| = 2m, using Lemma 9, (2)

≤ exp(−Ω(C1)) Using the value of αd−1

≤ 1/10. for large enough C1

Pr
a∈µ1

[Fd(a) = 0] ≤
∏
P̄∈P′

D

Pr
a∈µ1

[C(P̄)(a) = 0] · exp(δ) Using Janson’s inequality

and Lemma 9, (3)

≤
∏
P̄∈P′

D

(1− Pr
a∈µ1

[C(P̄)(a) = 1]) · exp(δ)

≤ (1− 1
2m · exp(αd−1/4))2m

· exp(δ) |P ′D| = 2m, using Lemma 9, (2)

≤ exp
(
−2m

2m · exp(αd−1/4)
)
· 2 As exp(δ) ≤ 2

≤ 1/10. Using the value of αd−1

and for large enough C1

This finishes the proof of Theorem 4 assuming Lemma 9. J

We now give the proof of Lemma 9. The proof is by induction on the depth of the circuit.

Proof of Lemma 9. The lemma has three parts. As mentioned above, we proceed by
induction on the depth.

Base case (i = 1): Here let us first assume that we are working with µN1 . We start with
part (1). We wish to bound qP̄ ,1. From the construction of our formula, we know that the
formula has AND gates at layer 1 and the inputs to these are distinct variables and hence
independent. Therefore, qP̄ ,1 =

(1+δ
2
)m. We will upper and lower bound this quantity.(

1 + δ

2

)m
≥ 1

2m · (1 + δm) ≥ 1
2m · (1 + α1 · exp(−β1)) (As α1 = δm, β1 > 0)

N. Limaye, S. Srinivasan, and U. Tripathi 22:9

(
1 + δ

2

)m
= 1

2m · (1 + δ)m ≤ 1
2m · exp(δm) Fact 7 (c)

≤ 1
2m · (1 + δm+ (δm)2) Fact 7 (d)

≤ 1
2m · (1 + δm · exp(2δm)) Fact 7 (c)

= 1
2m · (1 + α1 · exp(β1)) As α1 = δm, β1 = 2α1

In the case of µN0 , we get qP̄ ,0 =
(1−δ

2
)m and a very similar computation can be used to

upper and lower bound this quantity.
There is nothing to prove for part (2) in the base case. We now prove the base case for

part (3). Let P̄ = (P2, . . . , Pd−1), P̄ ′ = (P ′2, . . . , P ′d−1) ∈ Pd−2
D . We will analyse ∆P̄ ,P̄ ′,1 here.

The analysis for ∆P̄ ,P̄ ′,0 is very similar. Let λ denote (1 + δ)/2. For a formula F , let Var(F)
denote the set of variables appearing in it.

∆P̄ ,P̄ ′,1 =
∑

R,R′∈PD

(R,P̄)∼(R′,P̄ ′)

Pr
µ1

[C(R,P̄) = 1 AND C(R′,P̄ ′) = 1]

=
∑
R,R′

(R,P̄)∼(R′,P̄ ′)

λ
|Var(C(R,P̄))∪Var(C(R′,P̄ ′))|

= λ2m ·
∑
R,R′

(R,P̄)∼(R′,P̄ ′)

(
1
λ

)|Var(C(R,P̄))∩Var(C(R′,P̄ ′))|
. (4)

To bound the above term, we use the following technical claim (proof omitted).

B Claim 10. Fix any i ≤ d− 1 and any P̄ , P̄ ′ ∈ Pd−i−1
D , we have

∑
R,R′

(R,P̄)∼(R′,P̄ ′)

3|Var(C(R,P̄))∩Var(C(R′,P̄ ′))| ≤ Q2D ·O
(
m

Q

)
.

Using Claim 10 and (4), we can immediately bound ∆P̄ ,P̄ ′,1 as follows.

∆P̄ ,P̄ ′,1 ≤ λ2m ·
∑
R,R′

(R,P̄)∼(R′,P̄ ′)

3|Var(C(R,P̄))∩Var(C(R′,P̄ ′))| ≤ λ2mQ2D ·O
(
m

Q

)
≤ O

(
m3

Q

)
< δ

where we have used the fact that λ ≥ 1/3, QD = O(M2) = O(m222m), and Q = Θ(m4/δ).
This concludes the bound on ∆P̄ ,P̄ ′,1 and hence concludes the proof of the base case.

Inductive case: The proof of parts (1) and (2) are similar to the base case and hence
omitted.

Finally, we prove the inductive statement about ∆P̄ ,P̄ ′,1 in the case that i is odd. Fix any
P̄ , P̄ ′ ∈ Pd−i−1

D (in the case that i = d− 1, we will have P̄ = P̄ ′ = (∅)). The computation
goes as follows. The crucial steps are the second equality and first inequality, where we
interpret each term in the sum as the probability that a depth i− 1 circuit takes the value 0,
which is bounded using Janson’s inequality and the induction hypothesis.

FSTTCS 2019

22:10 AC0[⊕] and Variants of the Majority Function

∆P̄ ,P̄ ′,1 =
∑
R,R′

(R,P̄)∼(R′,P̄ ′)

Pr
µN

1

[C(R,P̄) = 0 AND C(R′,P̄ ′) = 0]

=
∑
R,R′

(R,P̄)∼(R′,P̄ ′)

Pr
µN

1

[
∨
S

C(S,R,P̄) ∨
∨
S′

C(S′,R′,P̄ ′) = 0]

≤
∑
R,R′

(R,P̄)∼(R′,P̄ ′)

∏
S

Pr[C(S,R,P̄) = 0] ·
∏
S′

Pr[C(S′,R′,P̄ ′) = 0] · exp(4δ)

≤ exp(4δ) ·
∑
R,R′

(R,P̄)∼(R′,P̄ ′)

(
1− (1− 2αi−1)

2m
)2M

= exp(4δ)
(

1− (1− 2αi−1)
2m

)2M
·

∑
R,R′

(R,P̄)∼(R′,P̄ ′)

1

≤ 2 exp(−2m ln 2 +O(αi)) ·
∑
R,R′

(R,P̄)∼(R′,P̄ ′)

1 = O

(1
22m

)
·

∑
R,R′

(R,P̄)∼(R′,P̄ ′)

1

where the first inequality is just Janson’s inequality applied to the formula
∨
S CS,R,P̄ ∨∨

S′ CS′,R′,P̄ ′ ; the second inequality follows from the induction hypothesis applied to level
i− 1 ≤ d− 2 (we have used a slightly weaker bound that is applicable also to other cases
such as when b = 0); and the last inequality follows from our choice of M and the fact
that αi = αi−1 · (m ln 2). The sum in the final term may be bounded by Q2D ·O(m/Q) by
Claim 10. We thus get

∆P̄ ,P̄ ′,1 ≤ O
(
Q2D

2m

)
· m
Q

= O

(
M2

2m

)
· m
Q
≤ O(m3)

Q
< δ

as Q ≥ m4/δ. This finishes the analysis of ∆P̄ ,P̄ ′,1. J

3 Randomized vs. Deterministic AC0[⊕] circuits

For a ∈ {0, 1}n, let |a| denote the Hamming weight of a, i.e. the number of 1s in a.

I Definition 11. Let k, ` ≤ n/2. The Promise Majority problem, PrMajnk,`, is a promise
problem of distiguishing n-bit strings of Hamming weight less than n/2− k from those with
Hamming weight more than n/2 + `. Formally,

PrMajnk,`(a) =

0 if |a| < (n2 − k)

1 if |a| ≥ (n2 + `)

If the length of the input is clear from the context then we drop the superscript n. If k = 0 then
we denote PrMaj0,` by LowPrMaj`. Similarly, ` = 0 then we denote PrMajk,0 by UpPrMajk.
When both k, ` are zero, PrMaj0,0 is the Majority function. If k = ` then we use PrMajk to
denote PrMajk,k.

Let Yesn` ,Nonk denote the yes and no instances of PrMajnk,`. That is, Yesn` = {a ∈ {0, 1}n |
|a| ≥ n/2 + `} and Nonk = {a ∈ {0, 1}n | |a| < n/2− k}. In [23], the following theorem was
proved.

I Theorem 12 (Theorem 1.2 [23]). For any d ≥ 2 and k(N) = Ω(N/(logN)d−1), there is a
uniform family of randomized AC0 circuits of depth d and poly(N) size computing PrMajNk(N).

N. Limaye, S. Srinivasan, and U. Tripathi 22:11

Here, we prove the following theorem.

I Theorem 13. For any d ≥ 2, say C is a (deterministic) AC0[⊕] circuit of depth d computing
PrMajNN/2·(logN)d−1 , then C must have size Nω(1).

It is easy to see that using Theorem 12 and Theorem 13, we immediately get Theorem 2.
In order to prove Theorem 13 we need the following claim. This is our main technical claim.

B Claim 14. Let n ∈ N and let k = Θ(n/(logn)c). Let p ∈ F[x1, . . . , xn] be a (deterministic)
polynomial such that it satisfies one of the following two conditions

either Pr
a∈Non

k

[p(a) = 1] ≤ 1/n, Pr
a∈Yesn

0

[p(a) = 0] ≤ 1/10 (5)

or Pr
a∈Non

0

[p(a) = 1] ≤ 1/10 Pr
a∈Yesn

k

[p(a) = 0] ≤ 1/n (6)

Then deg(p) = Ω(logc+1 n).

Proof of Theorem 13 using Claim 14. We will first show that Theorem 13 follows from the
above claim. We will do this using the following two step argument.

(I) Let us assume for now that C is a circuit of size s and depth d with either OR gate or
⊕ gate as its output gate. Let us call the output gate Gout. We will show that if C
computes PrMajNk then we have a circuit C′ of size s, depth d and with output gate
Gout, such that it computes UpPrMajn2k, where n = N − 2k.8

(II) We will then show that any depth d circuit with OR or ⊕ output gate computing
UpPrMajn2k must have size nω(1).

As we will invoke this for k = N/2(logN)c, which is o(N), an nω(1) lower bound on UpPrMajn2k
will imply a Nω(1) lower bound on PrMajNk , thereby proving the theorem.

Here, (I) can be shown by simply fixing some of the input bits to the constant 1.
Specifically, let us set 2k bits out of the N bits to 1s. Let n = N − 2k. It is easy to see that
if x ∈ {0, 1}n has Hamming weight at least n/2, then in fact y = x · 12k has N/2 + k many
1s. Similarly, if x ∈ {0, 1}n has Hamming weight at most n/2− 2k then the Hamming weight
of y = x · 12k is at most N/2− k.

To show (II) requires a little more work. In particular, to show (II), we use a result
from [16] about degree of polynomials approximating AC0[⊕] circuits. To state their result,
we will introduce some notation.

I Definition 15. Let f : {0, 1}n → {0, 1} be a Boolean function. For any parameters ε0, ε1,
(ε0, ε1)-error probabilistic polynomial for f is a random multilinear polynomial P chosen
from F2[x1, . . . , xn], such that for any b ∈ {0, 1} and any a ∈ f−1(b), Pr[P (a) 6= f(a)] ≤ εb.

A probabilistic polynomial is said to have degree at most d if the underlying distribution
is supported on monomials of degree at most d.

We define the (ε0, ε1)-error probabilistic polynomial degree of a Boolean function f ,
denoted as pdegε0,ε1(f), to be the smallest d such that there is an (ε0, ε1)-error probabilistic
polynomial of degree d for f .

8 As PrMaj is a self-dual function and UpPrMaj and LowPrMaj are duals of each other, we can assume
that the output gate of C is OR or ⊕ without loss of generality.

FSTTCS 2019

22:12 AC0[⊕] and Variants of the Majority Function

I Lemma 16 (Corollary 15, [16]). Let C be a size s, depth d circuit with OR or ⊕ as its output
gate. Then there is a probabilistic polynomial p approximating C such that pdeg1/n2,1/100(p)
is at most O(log s)d−1.

I Remark 17. Let C be a circuit of size s and depth d (with any output gate). It is known that
if p is a probabilistic polynomial for C such that ε0 = ε1 = 1/sO(1), then pdeg1/sO(1),1/sO(1)(p)
is O(log s)d. The above lemma says that if we need only constant error on one of sides, i.e.
say if either ε0 or ε1 is Ω(1), then we can get a better degree upper bound. Instead of having
d in the exponent, we get d− 1 in the exponent. This is crucial.

Note that, if the output gate of C is OR (AND) then we can ensure that ε0 = 1/n2

(ε1 = 1/n2, resp.). If it is a ⊕ gate, then either can be ensured.

Suppose there is an AC0[⊕] circuit C of size s = nt and depth d with top gate OR or ⊕
and computing UpPrMaj2k.

Applying Lemma 16 and by standard averaging arguments we can show that there is a
fixed polynomial P ∈ F [X] that satisfies conditions (5) for c = d− 1 and has the same degree
as the degree of p. Therefore on the one hand, we know that deg(P) is less than or equal to
O(t logn)d−1, while on the other hand using Claim 14 we get that deg(P) is at least Ω(logn)d.
(As N/(logN)c = Θ(n/(logn)c), Claim 14 is applicable.) Thus, O(t logn)d−1 ≥ Ω(logn)d
and hence we get t ≥ Ω(logn)1/d−1. Therefore we get (II). This finishes the proof of
Theorem 13. J

We now proceed with the proof of Claim 14. We will use the following fact in the proof of
Claim 14.

I Fact 18. Say R ∈ F[X] is a non-zero polynomial that vanishes on Nonk , then degree of R
is at least n/2− k.

Proof of Claim 14. We will show that if a deterministic polynomial p ∈ F[X] satisfies condi-
tion (5), then it has degree C · logc+1 n for some constant C. The proof for the lower bound
on the degree of p assuming condition (6) is similar. For simplicity we will work out the
proof when k = n/(logn)c. The proof is similar when k = Θ(n/(logn)c).

Let us use D to denote C · logc+1 n. Consider a polynomial p satisfying condition (5).
Let E0 and E1 be error sets of this polynomial on no and yes instances respectively, i.e.
E0 = {a ∈ Nonn/(logn)c | p(a) = 1} and E1 = {a ∈ Yesn0 | p(a) = 0}. From condition (5) we
have a bound on the cardinalities of E0, E1.

We will first observe that in order to prove the claim, it suffices to show the existence of
a polynomial Q ∈ F[X] with the following three properties.
(a) Q(a) = 0 for all a ∈ E0.
(b) Q · p 6= 0.
(c) deg(Q) ≤ r −D, where r = n/2− n/(logn)c and D is as defined above.
Suppose we have such a Q then let R = Q · p. Now R is a polynomial that vanishes on
Nonn/(logn)c . This is because either p vanishes on Nonn/(logn)c \ E0 or Q vanishes on E0. Due
to property (b), R is also a non-zero polynomial. Therefore using Fact 18, we know that it
has degree at least r. Now assuming property (c) we get that p must have degree at least D,
thereby proving the claim.

The existence of such a Q can be proved using arguments similar to those in [16]. The
proof is omitted for lack of space. C

N. Limaye, S. Srinivasan, and U. Tripathi 22:13

References
1 Leonard M. Adleman. Two Theorems on Random Polynomial Time. In 19th Annual Symposium

on Foundations of Computer Science, Ann Arbor, Michigan, USA, 16-18 October 1978, pages
75–83, 1978.

2 Miklós Ajtai.
∑1

1-formulae on finite structures. Ann. Pure Appl. Logic, 24(1):1–48, 1983.
doi:10.1016/0168-0072(83)90038-6.

3 Miklós Ajtai and Michael Ben-Or. A Theorem on Probabilistic Constant Depth Computations.
In STOC, pages 471–474. ACM, 1984.

4 Kazuyuki Amano. Bounds on the Size of Small Depth Circuits for Approximating Majority.
In ICALP (1), Lecture Notes in Computer Science, pages 59–70. Springer, 2009.

5 Sanjeev Arora and Boaz Barak. Computational complexity : a modern approach. Cambridge
University Press, 2009.

6 Roger C. Baker, Glyn Harman, and János Pintz. The difference between consecutive primes,
II. Proceedings of the London Mathematical Society, 83:532–562, 2001.

7 Joshua Brody and Elad Verbin. The Coin Problem and Pseudorandomness for Branching
Programs. In FOCS, pages 30–39. IEEE Computer Society, 2010.

8 Gil Cohen, Anat Ganor, and Ran Raz. Two Sides of the Coin Problem. In APPROX-RANDOM,
volume 28 of LIPIcs, pages 618–629. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2014.

9 Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, Circuits, and the Polynomial-Time
Hierarchy. Mathematical Systems Theory, 17(1):13–27, 1984. doi:10.1007/BF01744431.

10 Alexander Golovnev, Rahul Ilango, Russell Impagliazzo, Valentine Kabanets, Antonina Ko-
lokolova, and Avishay Tal. AC0[p] Lower Bounds Against MCSP via the Coin Problem. In
46th International Colloquium on Automata, Languages, and Programming, ICALP 2019, July
9-12, 2019, Patras, Greece., pages 66:1–66:15, 2019.

11 John Hastad. Almost Optimal Lower Bounds for Small Depth Circuits. Advances in Computing
Research, 5:143–170, 1989.

12 Pavel Hrubes, Sivaramakrishnan Natarajan Ramamoorthy, Anup Rao, and Amir Yehudayoff.
Lower Bounds on Balancing Sets and Depth-2 Threshold Circuits. In 46th International
Colloquium on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras,
Greece., pages 72:1–72:14, 2019.

13 Svante Janson. Poisson Approximation for Large Deviations. Random Struct. Algorithms,
1(2):221–230, 1990.

14 Nutan Limaye, Karteek Sreenivasaiah, Srikanth Srinivasan, Utkarsh Tripathi, and S. Venkitesh.
A fixed-depth size-hierarchy theorem for AC0[⊕] via the coin problem. In Proceedings of the
51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ,
USA, June 23-26, 2019., pages 442–453, 2019.

15 Ryan O’Donnell and Karl Wimmer. Approximation by DNF: Examples and Counterexamples.
In ICALP, volume 4596 of Lecture Notes in Computer Science, pages 195–206. Springer, 2007.

16 Igor Carboni Oliveira, Rahul Santhanam, and Srikanth Srinivasan. Parity Helps to Compute
Majority. In 34th Computational Complexity Conference, CCC 2019, July 18-20, 2019, New
Brunswick, NJ, USA., pages 23:1–23:17, 2019.

17 Alexander A. Razborov. On the Method of Approximations. In STOC, pages 167–176. ACM,
1989.

18 Benjamin Rossman. On the constant-depth complexity of k-clique. In Proceedings of the 40th
Annual ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada, May
17-20, 2008, pages 721–730, 2008. doi:10.1145/1374376.1374480.

19 Benjamin Rossman and Srikanth Srinivasan. Separation of AC0[⊕] Formulas and Circuits.
In ICALP, volume 80 of LIPIcs, pages 50:1–50:13. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2017.

20 Ronen Shaltiel and Emanuele Viola. Hardness Amplification Proofs Require Majority. SIAM
J. Comput., 39(7):3122–3154, 2010. doi:10.1137/080735096.

FSTTCS 2019

https://doi.org/10.1016/0168-0072(83)90038-6
https://doi.org/10.1007/BF01744431
https://doi.org/10.1145/1374376.1374480
https://doi.org/10.1137/080735096

22:14 AC0[⊕] and Variants of the Majority Function

21 Roman Smolensky. Algebraic Methods in the Theory of Lower Bounds for Boolean Circuit
Complexity. In STOC, pages 77–82. ACM, 1987.

22 Roman Smolensky. On Representations by Low-Degree Polynomials. In FOCS, pages 130–138.
IEEE Computer Society, 1993.

23 Emanuele Viola. Randomness Buys Depth for Approximate Counting. Computational Com-
plexity, 23(3):479–508, 2014. doi:10.1007/s00037-013-0076-6.

24 Andrew Chi-Chih Yao. Separating the Polynomial-Time Hierarchy by Oracles (Preliminary
Version). In 26th Annual Symposium on Foundations of Computer Science, Portland, Oregon,
USA, 21-23 October 1985, pages 1–10, 1985.

https://doi.org/10.1007/s00037-013-0076-6

Planted Models for k-Way Edge and Vertex
Expansion
Anand Louis
Indian Institute of Science, Bangalore, India
anandl@iisc.ac.in

Rakesh Venkat
Indian Institute of Technology, Hyderabad, India
rakeshvenkat@iith.ac.in

Abstract
Graph partitioning problems are a central topic of study in algorithms and complexity theory. Edge
expansion and vertex expansion, two popular graph partitioning objectives, seek a 2-partition of
the vertex set of the graph that minimizes the considered objective. However, for many natural
applications, one might require a graph to be partitioned into k parts, for some k > 2. For a
k-partition S1, . . . , Sk of the vertex set of a graph G = (V,E), the k-way edge expansion (resp. vertex
expansion) of {S1, . . . , Sk} is defined as maxi∈[k] Φ(Si), and the balanced k-way edge expansion
(resp. vertex expansion) of G is defined as

min
{S1,...,Sk}∈Pk

max
i∈[k]

Φ(Si) ,

where Pk is the set of all balanced k-partitions of V (i.e each part of a k-partition in Pk should have
cardinality |V | /k), and Φ(S) denotes the edge expansion (resp. vertex expansion) of S ⊂ V . We
study a natural planted model for graphs where the vertex set of a graph has a k-partition S1, . . . , Sk

such that the graph induced on each Si has large expansion, but each Si has small edge expansion
(resp. vertex expansion) in the graph. We give bi-criteria approximation algorithms for computing
the balanced k-way edge expansion (resp. vertex expansion) of instances in this planted model.

2012 ACM Subject Classification Theory of computation → Semidefinite programming; Theory of
computation → Graph algorithms analysis

Keywords and phrases Vertex Expansion, k-way partitioning, Semi-Random models, Planted Models,
Approximation Algorithms, Beyond Worst Case Analysis

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.23

Related Version A full version of the paper is available at https://arxiv.org/abs/1910.08889.

Funding Anand Louis: Supported in part by SERB Award ECR/2017/003296 and a Pratiksha Trust
Young Investigator Award.

1 Introduction

The complexity of computing various graph expansion parameters are central open problems
in theoretical computer science, and in spite of many decades of intensive research, they
are yet to be fully understood [6, 5, 22, 7, 13, 40]. A central problem in the study of graph
partitioning is that of computing the sparsest edge cut in a graph. For a graph G = (V,E),
we define the edge expansion of a set S of vertices, denoted by φ(S) as

φ(S) def= |E(S, V \ S)|
|S| |V \ S|

|V | , (1.1)

© Anand Louis and Rakesh Venkat;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 23; pp. 23:1–23:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:anandl@iisc.ac.in
mailto:rakeshvenkat@iith.ac.in
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.23
https://arxiv.org/abs/1910.08889
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Planted Models for k-Way Edge and Vertex Expansion

where E(S, V \ S) def= {{u, v} ∈ E|u ∈ S, v ∈ V \ S}. The edge expansion of the graph G is
defined as φG

def= minS⊂V φ(S). Related to this is the notion of the vertex expansion of a
graph. For a graph G = (V,E), we define the vertex expansion of a set S of vertices, denoted
by φV(S) as

φV(S) def= |N(S) ∪N(V \ S)|
|S| |V \ S|

|V | , (1.2)

where N(S) def= {v ∈ V \ S|∃u ∈ S such that {u, v} ∈ E}. The vertex expansion of the graph
G is defined as φV

G
def= minS⊂V φV(S). A few other related notions of vertex expansion have

been studied in the literature, we discuss them in Section 1.4. We also give a brief description
of related works in Section 1.4.

Graph k-partitioning

The vertex expansion and edge expansion objectives seek a 2-partition of the vertex set of the
graph. However, for many natural applications, one might require a graph to be partitioned
into k parts, for some k > 2. Let us use Φ to denote either φ (edge expansion) or φV (vertex
expansion). For a k-partition S1, . . . , Sk of the vertex set, the k-way edge/vertex expansion
of {S1, . . . , Sk} is defined as

Φk (S1, . . . , Sk) def= max
i∈[k]

Φ(Si) ,

and the k-way edge/vertex expansion of G is defined as

ΦkG
def= min
{S1,...,Sk}∈Pk

Φk (S1, . . . , Sk) ,

where Pk is the set of all k-partitions of the vertex set. Optimizing these objective function is
useful when one seeks a k-partition where each part has small expansion. The edge expansion
version of this objective has been studied in [26, 23, 21], etc., and the vertex expansion
version of this objective has been studied in [12]; see Section 1.4 for a brief summary of the
related work.

For many NP-hard optimization problems, simple heuristics work very well in practice,
for e.g. SAT [9], sparsest cut [18, 19], etc. One possible explanation for this phenomenon
could be that instances arising in practice have some inherent structure that makes them
“easy”. Studying natural random/semi-random families of instances, and instances with
planted solutions has been a fruitful approach towards understanding the structure of easy
instances, and in modelling instances arising in practice, especially for graph partitioning
problems [33, 29, 30, 28] (see Section 1.4 for a brief survey). Moreover, studying semi-random
and planted instances of a problem can be used to better understand what aspects of a
problem make it “hard”. Therefore, in an effort to better understand the complexity of
graph k-partitioning problems, we study the k-way edge and vertex expansion of a natural
planted model of instances. We give bi-criteria approximation algorithms for instances from
these models.

1.1 k-way planted models for expansion problems
We study the following model of instances.

I Definition 1.1 (k-Part-edge). An instance of k-Part-edge(n, k, ε, λ, d, r) is generated as
follows.

A. Louis and R. Venkat 23:3

1. Let V be a set of n vertices. Partition V into k sets {S1, S2, . . . Sk}, with |St| = n/k for
every t ∈ [k]. For each t ∈ [k], add edges between arbitrarily chosen pairs of vertices in St
to form an arbitrary roughly d-regular (formally, the degree of each vertex should lie in
[d, rd]) graph of spectral gap (defined as the second smallest eigenvalue of the normalized
Laplacian matrix of the graph, see Section 2.1 for definition) at least λ.

2. For all i, j ∈ [k], add edges between arbitrarily chosen pairs of vertices in Si × Sj such
that φG(Si) 6 εrd ∀i ∈ [k].

3. (Monotone Adversary) For each t ∈ [k], add edges between any number of arbitrarily
chosen pairs of vertices within St.

Output the resulting graph G.

Analogously, we define the vertex expansion model.

I Definition 1.2 (k-Part-vertex). An instance of k-Part-vertex(n, k, ε, λ, d, r) is generated as
follows.
1. Let V be a set of n vertices. Partition V into k sets {S1, S2, . . . Sk}, with |St| = n/k for

every t ∈ [k]. For each t ∈ [k], add edges between arbitrarily chosen pairs of vertices in St
to form an arbitrary roughly d-regular (formally, the degree of each vertex should lie in
[d, rd]) graph of spectral gap (defined as the second smallest eigenvalue of the normalized
Laplacian matrix of the graph, see Section 2.1 for definition) at least λ.

2. For each t ∈ [k], partition St into Tt and St \Tt such that |Tt| 6 εn/k. Add edges between
any number of arbitrarily chosen pairs of vertices in ∪i∈[k]Ti.

3. (Monotone Adversary) For each t ∈ [k], add edges between any number of arbitrarily
chosen pairs of vertices within St.

Output the resulting graph G.

The only difference between k-Part-edge and k-Part-vertex is in the expansion of the sets.
In step 2 of Definition 1.1, we ensured that φ(Si) 6 εrd ∀i ∈ [k]1. In step 2 of Definition 1.2,
the definition ensures that φV(Si) 6 εk ∀i ∈ [k].

Both these models can be viewed as the generalization to k-partitioning of models studied
in the literature for 2-partitioning problems for edge expansion [29], etc. and vertex expansion
[28], etc. These kinds of models can be used to model communities in networks, where k is
the number of communities. The intra-community connections are typically stronger than the
inter-community connections. This can be modelled by requiring Si to have large expansion
(see Theorem 1.3 and Theorem 1.4 for how large a λ is needed compared to ε). Our work for
k > 2 can be used to study more general models of communities than the case of k = 2.

1.2 Our Results
We give bi-criteria approximation algorithms for the instances generated from the k-Part-
edge and k-Part-vertex models. We define OPT as follows

OPT def= min
{P1,...,Pk}∈P̃k

Φk (P1, . . . , Pk) ,

where Φ is φ for k-Part-edge, and φV for k-Part-vertex, and P̃k is the set of all balanced
k-partitions of the vertex-set, i.e. for each {P1, . . . , Pk} ∈ P̃k, we have |Pi| = n/k ∀i ∈ [k].
We note that in k-Part-edge, OPT 6 εrd, and in k-Part-vertex, OPT 6 εk.

1 Since φ(S) measures the weight of edges leaving S (see (1.1)), it is often more useful to compare edge
expansion to some quantity related to the degrees of the vertices inside S. Therefore, in step 2 of
Definition 1.1, we require φ(Si) 6 εrd ∀i ∈ [k], instead of φ(Si) 6 ε ∀i ∈ [k].

FSTTCS 2019

23:4 Planted Models for k-Way Edge and Vertex Expansion

I Theorem 1.3. There exist universal constants c1, c2 ∈ R+ satisfying the following:
there exists a polynomial-time algorithm that takes as input a graph from the class k-Part-
edge(n, k, ε, λ, d, r) with ε 6 λ/(800kr3), and outputs k disjoint sets of vertices W1, . . . ,Wk ⊆
V , that for each i ∈ [k] satisfy:
1. |Wi| > c1n/k,
2. φ(Wi) 6 c2kOPT.

I Theorem 1.4. There exist universal constants c1, c2 ∈ R+ satisfying the following:
there exists a polynomial-time algorithm that takes as input a graph from the class k-
Part-vertex(n, k, ε, λ, d, r) with ε 6 λ/(800kr3), and outputs k disjoint sets of vertices
W1, . . . ,Wk ⊆ V , that for each i ∈ [k] satisfy:
1. |Wi| > c1n/k,
2. φV(Wi) 6 c2kOPT.

Note when k = O (1), Theorem 1.3 and Theorem 1.4 guarantee constant factor bi-criteria
approximation algorithms. The currently best known approximation guarantees for general
instances (i.e. worst case approximation guarantees) of k-way edge expansion problems are
of the form O

(
OPT

√
lognf1(k)

)
or O

(√
OPTf2(k)

)
where f1(k), f2(k) are some functions

of k, and the currently best known approximation guarantees for general instances (i.e.
worst case approximation guarantees) of k-way vertex expansion problems are of the form
O
(
OPT

√
lognf3(k)

)
or O

(√
OPTf4(k, d)

)
where f3(k) is some functions of k and f4 is

some function of k and the maximum vertex degree d. We survey these results in Section 1.4.
Note that our bi-criteria approximation guarantees in Theorem 1.3 and Theorem 1.4 are
multiplicative approximation guarantees and are independent of n.

The above theorem shows that it is possible to produce k disjoint subsets, each of size
Ω(n/k), each with expansion a factor k away from that of the planted partition. While this
may not form a partition of the vertex set, it is not difficult to show that with a loss of a
factor of k, we can indeed get a true partition. This idea of moving from disjoint sets to a
partition is well-known, and has been used before in other works (for e.g., [21]).

I Corollary 1.5. There exist universal constants c1, c2 ∈ R+ satisfying the following: there
exists a polynomial-time algorithm that takes as input a graph from k-Part-edge(n, k, ε, λ, d, r)
(resp. k-Part-vertex(n, k, ε, λ, d, r)) with ε 6 λ/800kcr3, and outputs a k-partition P =
{P1, . . . , Pk} of V such that:
1. For each i ∈ [k], |Pi| > c1n/k,
2. For each i ∈ [k], φ(Pi) 6 c2k

2OPT (resp. φV(Pi) 6 c2k
2OPT).

We note that the above result approximates the k-way expansion of the best balanced
partition in G. The proofs of the above results are given in Section 3.

1.3 Proof Overview
For proving Theorem 1.3 and Theorem 1.4 we use an SDP relaxation (see Section 2.2) similar
to the one used by [23, 31], etc. For the case when k = 2, [29, 28] used slightly different
SDP constraints, and showed that when S1 and S2 contain large edge expanders, the set of
SDP solution vectors {ui : i ∈ V } contain two sets L1, L2 such that |L1| , |L2| = Ω(n), L1
and L2 have small diameter, and the distance between L1 and L2 is Ω(1). The core of our
analysis can be viewed as proving an analogue of this for k > 2 (Proposition 3.3), however,
this requires some new ideas. For i ∈ [k], let µi denote the mean of the vectors corresponding
to the vertices in Si. We use the expansion within Si’s together with the SDP constraints

A. Louis and R. Venkat 23:5

to show that for i, j ∈ [k], i 6= j, each µi must have Ω(n/k) vertices sufficiently close to it,
and that µi and µj must be sufficiently far apart. This can be used to show the existance of
k such sets L1, . . . , Lk, such that for each i ∈ [k], Li has sufficiently small diameter and Li
is sufficiently far from Lj ∀j 6= i. The proof of our structure theorem is similar in spirit to
the proof of structure theorem of [39], but our final guarantees are very different, we discuss
their work in more detail in Section 1.4.

If we can compute k such sets L1, . . . , Lk, then using standard techniques, we can recover
k sets having small expansion. In the case of k = 2, one could just guess a vertex from each
these sets, and compute the two sets satisfying our requirements using standard techniques.
For k > 2, guessing a vertex from each of the balls around µi would also suffice to compute
sets L1, . . . , Lk satisfying our requirements. However, doing this naively would take time
O(nk). To obtain an algorithm for this task whose running time is O (poly(n, k)), we use a
simple greedy algorithm (Algorithm 1) to iteratively compute the sets Li such that Li has
sufficiently small diameter and is sufficiently far from Lj for all j < i. To ensure that this
approach works, one has to ensure that at the start of iteration i+ 1, the set of SDP vectors
for the vertices in V \ ∪ij=iLi has at least k− i clusters each of size Ω(n/k) and having small
diameter. We use our structural result to prove that this invariant holds in all iterations of
the algorithm.

1.4 Related Work
[28] studied the 2-way vertex-expansion in k-Part-vertex for k = 2, and gave a constant factor
bi-criteria approximation algorithm. Our proofs and results can be viewed as generalizing
their result to k > 2. They also studied a stronger semi-random model, and gave an algorithm
for exact recovery (i.e. a 1-approximation algorithm) w.h.p. [29] studied the 2-way edge-
expansion in a model similar to k-Part-edge for k = 2, and gave a constant factor bi-criteria
approximation algorithm. Our proofs and results can be viewed as generalizing their result
to k > 2.

k-partitioning problems. The minimum k-cut problem asks to find a k-partition of the
vertex set which cuts the least number of edges; [43, 38, 42] all gave 2-approximation
algorithms for this problem. A number of works have investigated k-way partitioning in
the context of edge expansion. Bansal et al. [8] studied the problem of computing a k-
partitioning S1, . . . , Sk of the vertex set such that |Si| = n/k for each i ∈ [k], which minimizes
maxi∈[k] |E(Si, V \ Si)|. They give an algorithm which outputs a k-partition of the vertex set
T1, . . . , Tk such that |Ti| 6 (2 + ε)n/k, and maxi∈[k] |E(Ti, V \ Ti)| 6 O

(√
logn log k

)
OPT,

where OPT denotes the cost of the optimal solution. There are also many connections
between graph partitioning problems and graph eigenvalues. Let 0 = λ1 6 λ2 6 . . . 6 λn
denote the eigenvalues of the normalized Laplacian matrix of the graph. Typically, a different
but related notion of edge expansion is used, which is defined as follows.

φ′(S) def= |E(S, V \ S)|
min {vol(S), vol (V \ S)} ,

where vol(S) is defined as the sum of the degrees of the vertices in S. [25] gave an algorithm
to find a k-partition which cuts at most O

(√
λk log k

)
fraction of the edges. [21, 26] showed

that for any k non-empty disjoint subsets S1, . . . , Sk ⊂ V , maxi∈[k] φ
′(Si) = Ω(λk). [21] (see

also [26, 23]) gave an algorithm to find a (1 − ε)k partition S1, . . . , S(1−ε)k of the vertex
set satisfying maxi φ′(Si) = O

((
1/ε3)√λk log k

)
for any ε > 0, and a collection of k non-

empty, disjoint subsets S1, . . . , Sk ⊂ V satisfying maxi φ′(Si) = O
(
k2√λk

)
. [23] gave an

algorithm to find a partition of V into (1− ε)k disjoint subsets S1, S2, . . . , S(1−ε)k, such that
φ′(Si) 6 O

(√
logn log kOPT

)
.

FSTTCS 2019

23:6 Planted Models for k-Way Edge and Vertex Expansion

Given a parameter δ, the small-set edge expansion problem asks to compute the set
S ⊂ V have the least edge expansion among all sets of cardinality at most δ |V | (or volume at
most δvol (V)). Bansal et al. [8] and Raghavendra et al. [41] gave a bi-criteria approximation
algorithm for the small-set edge expansion problem. [23] gave an algorithm that outputs
(1 − ε)k partition S1, . . . , S(1−ε)k such that maxi φ′(Si) = O

(
poly(1/ε)

√
logn log k OPT

)
,

where OPT is least value of maxi∈[k] φ
′(Si) over all k-partitions S1, . . . , Sk of the vertex set.

[23] also studied a balanced version of this problem, and gave bi-criteria approximation
algorithms.

Let ρk(G) denote minS1,...,Sk
maxi∈[k] φ

′(Si) where the minimum is over sets of k non-
empty disjoint subsets S1, . . . , Sk ⊂ V . Kwok et al. [20] showed that for any l > k,
ρk(G) = O

(
lk6λk/

√
λl
)
. They also gave a polynomial time algorithm to compute non-empty

disjoint sets S1, . . . , Sk ⊂ V satisfying this bound. Combining this with the results of [21, 26],
we get aO

(
lk6/
√
λl
)
approximation to the problem of computing k non-empty disjoint subsets

S1, . . . , Sk ⊂ V which have the least value of maxi∈[k] φ
′(Si). Here the approximation factor

depends on λl, but even in the best case when λl = Ω(1) for some l = O(k), the expression
for the approximation guarantee reduces to O

(
k7). They also show that for any l > k and

any ε > 0, there is a polynomial time algorithm to compute non-empty disjoint subsets
S1, . . . , S(1−ε)k ⊂ V such that maxi∈[(1−ε)k] φ

′(Si) = O
(((

l log2 k
)
/ (poly(ε)k)

)
λk/
√
λl
)
.

Peng et al. [39] define the family of well clustered graphs to be those graphs for which
λk+1/ρk(G) = Ω(k2) (their structure theorem requires this ratio to be Ω(k2), their algorithms
require the separation to be larger, i.e. Ω(k3)) . They show that for such graphs, using the
bottom k eigenvectors of the normalized Laplacian matrix, one can compute a k-partition
which is close to the optimal k-partition for k-way edge expansion. They measure the closeness
of their solution to the optimal solution in terms of the volume of the symmetric difference
between the solution returned by their algorithm and the optimal solution. They start by
showing that the vertex embedding of the graph into the k-dimensional space consisting of
the bottom-k eigenvectors is clustered. Our technique to prove our main structural result
Proposition 3.3, which shows that the SDP solution is clustered, is similar in spirit. Firstly,
we note that the results of [39] apply to edge expansion problems and not vertex expansion
problems. Moreover, due to the action of the monotone adversary, the λk+1 of instances from
k-Part-edge could be very small in which case the results of [39] wouldn’t be applicable.

[12] showed that for a hypergraph H = (V,E), there exist (1 − ε)k disjoint subsets
S1, . . . , S(1−ε)k of the vertex set such that maxi φ(Si) = O

(
k2poly log(k)/e1.5)√γk log r,

where r is the size of the largest hyperedge, φ(S) denotes the hypergraph expansion of a set of
vertices S, γk is the kth smallest eigenvalue of the hypergraph Laplacian operator (we refer the
reader to [12] for the definition of φ(·), γk, etc.) Combining these ideas from [12] with the ideas
from [24], we believe it should be possible to obtain an algorithm that outputs (1−ε)k disjoint
subsets S1, . . . , S(1−ε)k such that maxi φ(Si) = O

(
k2poly log(k)poly(1/ε)

)√
lognOPT, where

is OPT is least value of maxi∈[k] φ(Si) over all k-partitions S1, . . . , Sk of the vertex set. Using
a standard reduction from vertex expansion in graphs to hypergraph expansion, we get
analogs of the above mentioned results for vertex expansion in graphs.

Vertex Expansion. An alternative, common definition of vertex expansion that has been
studied in the literature is φV,a(S) def= (|V | |N(S)| / (|S| |V \ S|)), and as before, φV,a

G
def=

minS⊂V φV,a(S). As Louis et al. [27] show, the computation φV
G and φV,a

G is equivalent upto
constant factors.

Feige et al. [13] gave a O
(√

logn
)
-approximation algorithm for computing the vertex

expansion of a graph. Bobkov et al. [10] gave a Cheeger-type inequality for vertex expansion
in terms of a parameter λ∞, which plays a role similar to λ2 in edge-expansion. Building on

A. Louis and R. Venkat 23:7

this, Louis et al. [27] gave an SDP based algorithm to compute a set having vertex expansion

at most O
(√

φV
G log d

)
in graphs having vertex degrees at most d. This bound is tight

upto constant factors [27] assuming the SSE hypothesis. Louis and Makarychev [24] gave a
bi-criteria approximation for small-set vertex expansion.

Edge Expansion. Arora et al. [7] gave a O
(√

logn
)
-approximation algorithm for computing

the edge expansion of a graph. Cheeger’s inequlity [6, 5] says that λ2/2 6 minS⊂V φ′(S) 6√
2λ2.

Stochastic Block Models and Semi-Random Models. Stochastic Block Models (SBMs)
are randomized instance-generation models based on the edge expansion objective and have
been intensively studied in various works, starting with [16, 11, 17]. The goal is to identify
and recover communities in a given random graph, where edges within communities appear
with a probability p that is higher than the probability q of edges across communities. Both
exact and approximate recovery guarantees for SBMs have been investigated using various
algorithms [33, 35, 32, 1, 36, 37], leading to the resolution of a certain conjecture regarding
for what range of model parameters are recovery guarantees are possible. While the above
results deal mostly with the case of SBMs with two communities, k-way SBMs (for k > 2
communities) have been studied in recent works [2, 3, 4].

Semi-Random Models allow instance generation using a combination of both random
edges and some amount of monotone adversarial action (i.e. not change the underlying
planted solution). SDP-based methods seem to work well in this regard, since they are robust
to such adversarial action. Many variants of semi-random models for edge expansion have
been studied in literature. Examples include works due to Feige and Kilian [14], Guedon and
Vershynin [15], Moitra et al. [34], and Makarychev et al. [29, 30, 31]. [31] also allows for a
small amount of non-monotone errors in their model. These works give approximate and
exact recovery guarantees for a range of parameters in their respective models.

2 Preliminaries and Notation

2.1 Notation

We denote graphs by G = (V,E), where the vertex set V is identified with [n] def= {1, 2, . . . n}.
The vertices are indexed by i, j. For any S ⊆ V , we denote the induced subgraph on S by
G[S]. Given i ∈ V and T ⊆ V , define NT (i) def= {j ∈ T : {i, j} ∈ E}, and N(i) = NV (i).

Given the normalized Laplacian L = I −D−1/2AD−1/2, the spectral gap of G denoted by
λ, is the second-smallest eigenvalue of L. Spectral expanders are a family of graphs with λ at
least some constant (independent of the number of vertices in G).

Specific to graphs G generated in the k-Part-vertex and k-Part-edge models, let S =
{S1, . . . , St} be the collection of sets for any i ∈ V , let S(i) denote the set S ∈ S such that
i ∈ S. For a single subset W ⊆ V , we define ∂W = {i ∈W : ∃j /∈W with j ∈ N(i)} ∪
{i /∈W : ∃j ∈W with j ∈ N(i)}, i.e., the symmetric vertex boundary of the cut (W,V \W).
We let E(∂S) be the edges going across the cut (S, V \ S), for any S ⊆ V . Given any
k-partition of the vertex set W = {W1, . . . ,Wk}, we define ∂W = ∪i∈[k]∂Wi to be the set
of boundary vertices on this partition, and E(∂W) = ∪i∈[k]E(∂Wi) to be the edges across
this partition.

FSTTCS 2019

23:8 Planted Models for k-Way Edge and Vertex Expansion

2.2 SDP for k-way edge and vertex expansion
Our algorithms for both k-Part-edge and k-Part-vertex models use a natural semi-definite
programming (SDP) relaxation for k-way expansion. The objective function we use is the
“min-sum” objective in each case. For k-Part-vertex , it looks to minimize the number of
boundary vertices in a balanced k-way partition of the vertex set, and correspondingly in
k-Part-edge, the total number of edges across a balanced k-way partition of the vertex set.

For the k-Part-edge model, we use the following SDP relaxation.

I SDP 2.1 (Primal). k-Part-edge

min
U

1
2
∑
i,j∈E

Uii + Ujj − 2Uij

subject to

Uii = 1 ∀i ∈ V
Uij > 0 ∀i, j ∈ V∑
j

Uij = n/k ∀i ∈ V

Ujj > Uij + Ujk − Uik ∀i, j, k ∈ V
U � 0

I SDP 2.2 (Primal). k-Part-vertex

min
U

∑
i∈V

ηi

subject to

ηi > Uii + Ujj − 2Uij ∀i,∀j ∈ N(i)
Uii = 1 ∀i ∈ V
Uij > 0 ∀i, j ∈ V∑
j

Uij = n/k ∀i ∈ V

Ujj > Uij + Ujk − Uik ∀i, j, k ∈ V
U � 0

The intended integral solution for U in the SDP relaxation (SDP 2.2, SDP 2.1) for either
model is Uij = 1, if i, j lie in the same subset in the planted k-partition of V , and 0 otherwise.
We can alternatively view the SDP variables as a set of vectors {ui ∈ Rn}i∈V , satisfying
uTi uj = Uij . These can be obtained by the Cholesky decomposition of the matrix U . Notice
that the constraint

∑
j Uij = n/k in the relaxations above is specific to k-way partitions

with exactly n/k vertices in each partition, and hence is satisfied by both models for the
integral solution. The second-to-last set of constraints in either SDP are called `2

2 triangle
inequalities, and can be rephrased in the language of vectors as:

‖ui − uj‖2 + ‖uk − uj‖2 > ‖ui − uk‖2 ∀i, j, k ∈ V (2.1)

It is easy to verify that these are satisfied by the ideal integral solution, corresponding to
ui = et, where i ∈ St.

A. Louis and R. Venkat 23:9

For k-Part-edge, for every edge across the partition we accumulate a value of 1 in the
SDP objective in the integral solution. Since every St has φ(St) 6 εrd, we have:

|E(∂St)| 6 εrd
n

k
· (1− 1

k
) 6 εrd

n

k

=⇒ 2
∣∣∪kt=1E(∂St)

∣∣ 6 εrdn

Since the number of edges going across the partition is at most2 εrdn, this is an upper bound
on the optimum of SDP 2.1.

For k-Part-vertex , the integral solution will further set, ηi = 2 for any boundary vertex i
of the partition S, and ηi = 0 if i is not a boundary vertex, yielding a primal objective value
of 2εn. Thus, the optimal value of SDP 2.2 is at most 2εn.

Furthermore, if OPT is as defined in Section 1.2, then in either case we have that
SDP 6 OPT · n.

We introduce some notation regarding the SDP solution vectors {ui}i∈V that will be useful
for proofs. Let d(i, j) def= ‖ui − uj‖2. Due to inequalities (2.1), d(·, ·) is a metric. Given a set
L ⊆ V , define d(i, L) def= minj∈L d(i, j). The `2

2 diameter of L is diam(L) = maxi,j∈L d(i, j).
A ball of `2

2 radius a around a point x ∈ Rn is defined as B(x, a) def= {j ∈ V : d(j, x) 6 a}.

Further proof-specific notations are defined as and when they are needed in the respective
sections.

3 Bi-criteria Guarantees in the Planted Model

We now give a proof of Theorem 1.3, Theorem 1.4 and Corollary 1.5. The main idea is
to show that the SDP solution is clustered around k disjoint balls, each of which have a
significant overlap with a distinct Si, for i ∈ [k]. We can then extract out k sets greedily
using an `1 line embedding.

In what follows, it is convenient to view the variables in the primal SDP as being vectors
ui ∈ Rn for each i ∈ V that satisfy uTi uj = Uij .

The missing proofs for the results in this section are given in the full version of the paper.

3.1 Preliminary Lemmas

I Lemma 3.1. Let δ 6 1/100 and α 6 1 be real numbers. Let {ui}i∈V be a feasible SDP
solution vector set for SDP 2.1 or SDP 2.2. Suppose there exists a set L ⊆ V that satisfies:
(a) |L| > αn

(b) diam(L) 6 δ.
We have:
(a) (Edge) If {ui}i∈V is an optimal solution to SDP 2.1 with objective value βn, then there

exists an i ∈ L, and a ∈ [δ, 1/50] such that W def= B(i, a) satisfies φ(W) 6 O(β/α).
(b) (Vertex) If {ui}i∈V is an optimal solution to SDP 2.2 with objective value βn, then there

exists an i ∈ L, and a ∈ [δ, 1/50] such that W def= B(i, a) satisfies φV(W) 6 O(β/α).

2 We use a slightly loose upper bound for convenience, to match up parameters in our proofs with the
k-Part-vertex model.

FSTTCS 2019

23:10 Planted Models for k-Way Edge and Vertex Expansion

Part (a) of the above lemma follows from standard arguments in edge-expansion literature.
Part (b) is a slight modification of [28, Lemma 3.1] 3. We defer both proofs to the full version
of the paper.

We next show that if the SDP solution is clustered into k disjoint, well-separated balls
of small diameter, then we can iteratively use Lemma 3.1 to find k disjoint sets, each with
small vertex or edge expansion.

I Lemma 3.2. Let δ 6 1
100 and k ∈ Z be large enough. Suppose the optimal SDP solution

vectors {ui}i∈V to SDP 2.1 (resp. SDP 2.2) yield an objective value of βn and satisfy the
following properties:
(a) There exist disjoint sets L1, L2, . . . , Lk ⊆ V , with diam(Lt) 6 δ,
(b) For each t ∈ [k], and for some constant γ, we have |Lt| > γn/k,
(c) For every t 6= t′, d(Lt, Lt′) > 1/10.
Then, we can in polynomial time, find k disjoint sets W1, . . . ,Wk ⊆ V such that for every
t ∈ [k], |Wt| > γn/k, and φ(Wt) 6 O(βk/γ) (resp. φV(Wt) 6 O(βk/γ)).

3.2 Showing that the SDP solution is clustered

We next show that for any input instance from the class k-Part-edge or k-Part-vertex with
appropriate parameters, every feasible set of SDP solution vectors are clustered. Using
Lemma 3.2, we can then immediately conclude the proof of Theorem 1.3 and Theorem 1.4.

Our main technical result is the following proposition.

I Proposition 3.3. Let {ui}i∈V be the optimal solution SDP 2.1 (resp. SDP 2.2) for an
instance G from k-Part-edge(n, k, ε, λ, d, r) (resp. k-Part-vertex(n, k, ε, λ, d, r)) with εkr3/λ 6
1/800. Then, there exist sets L1, . . . , Lk ⊆ V such that:
(a) diam(Lt) 6 1/100,
(b) ∀t ∈ [k] : |Lt ∩ St| > n/2k,
(c) ∀t 6= t′ : d(Lt, Lt′) > 1/10.

Proof of Proposition 3.3. We begin with the following lemma; the proof is given in the full
version of the paper.

I Lemma 3.4. Let {ui}i∈V be the optimal solution to the SDP for an instance G from
k-Part-vertex or k-Part-edge. For each t ∈ [k], let µt = Ei∈St [ui]. The following holds:
(a) ∀t ∈ [k] : Ej∈St

[‖µt − uj‖2] 6 kεr3

λ

(b) 1 > ‖µt‖2 > 1− kεr3/λ

(c) ∀t 6= t′ µTt µt′ 6 kεr3/λ

We use this to prove Proposition 3.3. For each t ∈ [k], define Lt
def= B(µt, 1/400). Clearly,

diam(Lt) 6 1/100.

Since the parameters for either k-Part model are assumed to satisfy εkr3/λ 6 1/800,
we have that for every t ∈ [k], item (a) from Lemma 3.4 implies that Ej∈St

[‖µt − uj‖2] 6
kεr3/λ 6 1/800. We can now use Markov’s inequality:

3 References to the results and proofs in [28] are with respect to the full version of that paper, available
currently as an arXiv preprint.

A. Louis and R. Venkat 23:11

Pr
j∈St

[
‖µt − uj‖2

>
1

400

]
= |St \ (Lt ∩ St)|

|St|
. . . since Lt

def= B(µt, 1/400)

=⇒ |Lt ∩ St|
|St|

= 1− Pr
j∈St

[
‖µt − uj‖2

>
1

400

]
> 1− Ej∈St [‖µt − uj‖

2]
1/400 = 1

2

=⇒ |Lt ∩ St| >
n

2k

To prove item (c) of the lemma, we first prove the following claim:

B Claim 3.5.

∀t 6= t′ ‖µt − µt′‖2 >
9
10

Proof.

‖µt − µt′‖2 = ‖µt‖2 + ‖µt′‖2 − 2µTt µt′

> 1− kεr3

λ
+ 1− kεr3

λ
− 2× kεr3

λ
. . . using Lemma 3.4

> 1− 4kεr3

λ
>

19
20 >

9
10 . . . since kεr

3

λ
6

1
800 . C

From the definition of the sets {Lt}t∈[k], we will use the (plain Euclidean) triangle
inequality and the above claim. Let t 6= t′. We know that d(Lt, Lt′) = d(i, i′) for some i ∈ Lt
and i′ ∈ Lt′ . Using this:

d(Lt, Lt′) = d(i, i′)

= ‖ui − ui′‖2

> (‖µt − µt′‖ − ‖µt − ui‖ − ‖µt − ui′‖)2

. . . by triangle inequality on the point sequence µt → i→ i′ → µt′

>
(∥∥µt − µ′

t

∥∥− 1
20 −

1
20

)2
. . . since d(µt′ , i′), d(µt, i) 6

√
1

400 = 1
20

>
(9

10 −
1
10

)2
>

1
10 .

J

Using the above, we now infer the proof of Theorem 1.3 and Theorem 1.4.

Proof of Theorem 1.3 and Theorem 1.4. Consider the optimal SDP solution vectors
{ui}i∈V for an instance G from k-Part-edge(n, k, ε, λ, d, r) (resp. k-Part-vertex(n, k, ε, λ, d, r)),
with the parameters satisfying the given conditions, and having an objective value of βn.
Note that β 6 OPT, as the SDP is a relaxation. Using Proposition 3.3, we infer the existence
of sets L1, . . . , Lk satisfying the conditions given. The SDP solution thus satisfies all the
conditions of Lemma 3.2, with δ = 1

100 and γ = 1/2, and therefore, we can find in polynomial
time, k disjoint subsets W1, . . . ,Wk: |Wt| > n/2k, and φ(Wt) 6 O(βk), for every t ∈ [k] for
k-Part-edge, or correspondingly φV(Wt) 6 O(βk) for k-Part-vertex. Algorithm 1 describes
the steps in the algorithm explicitly. J

FSTTCS 2019

23:12 Planted Models for k-Way Edge and Vertex Expansion

Algorithm 1 Algorithm for rounding SDP solutions for k-Part-vertex (k-Part-edge) instances.

Input: G = (V,E) from k-Part(n, k, ε, λ, r) and an optimal SDP solution {ui}i∈V on G
Output: Disjoint sets W1, . . . ,Wk ⊆ V with |Wt| > n/2k
1: C ← ∅
2: for t ∈ 1, . . . k do
3: Wt ← ∅
4: for i ∈ V do
5: for r ∈ [1/100, 1/50) do . Can be done in a discrete fashion
6: Ŵ ← B(i, r)
7: If

∣∣∣Ŵ ∣∣∣ < n/2k or Ŵ ∩ C 6= ∅ continue
8: (For k-Part-edge): If Wt = ∅ or φ(Wt) > φ(Ŵ) then Wt ← Ŵ

(For k-Part-vertex): If Wt = ∅ or φV(Wt) > φV(Ŵ) then Wt ← Ŵ

9: end for
10: end for
11: C ← C ∪Wt

12: end for
13: return W1, . . . ,Wt

Proof of Corollary 1.5. The proof for both parts uses a technique to move from disjoint sets
to partitions used before, for instance in [21]. Since previous works use it for edge expansion
already, we state the proof for k-Part-vertex first.

For k-Part-vertex: We start with the setsW1, . . . ,Wk from Theorem 1.4. From the definition
of φV, we have:

|∂Wt| = |N(Wt)|+ |N(V \Wt)|

6 O(1) · OPT · k · |Wt| |V \Wt|
n

= O(k · OPT |Wt|) ∀t ∈ [k]

Define the partition P = {P1, . . . , Pk} as follows: Pi = Wi if i 6= k, and Pk = V \
]i∈[k−1]Wi. Clearly, we have:

|∂Pk| 6

∣∣∣∣∣
k−1⋃
t=1

∂Wt

∣∣∣∣∣ 6 O(k · OPT
k−1∑
t=1
|Wt|) 6 O(kn · OPT)

Above, the last inequality follows since the Wt’s are all disjoint. Since |Pk| > Ω(n/k),
and |V \ Pk| > Ω(n), we infer that φV,k (P) 6 φV(Pk) 6 O

(
k2 · OPT

)
.

For k-Part-edge: The proof is very similar to the preceding one for k-Part-vertex, except
we work with edges. Again, from the definition of φ, we have, for the sets given by
Theorem 1.3:

|E(∂Wt)| 6 O(1) · OPT · k · |Wt| |V \Wt|
n

= O(k · OPT |Wt|)

As before, we define P = {P1, . . . , Pk} as follows: Pi = Wi if i 6= k, and Pk = V \
]i∈[k−1]Wi. From the above bound on |E(∂Wt)|, we get that:

|E(∂Pk)| = O(k · OPT
k−1∑
t=1
|Wt|) = O(kn · OPT),

giving that φk(P) = O(k2 · OPT). J

A. Louis and R. Venkat 23:13

References
1 Emmanuel Abbe, Afonso S Bandeira, and Georgina Hall. Exact recovery in the stochastic

block model. IEEE Transactions on Information Theory, 62(1):471–487, 2016.
2 Emmanuel Abbe and Colin Sandon. Community detection in general stochastic block models:

Fundamental limits and efficient algorithms for recovery. In IEEE 56th Annual Symp. on
Foundations of Computer Science (FOCS), 2015, pages 670–688. IEEE, 2015.

3 Emmanuel Abbe and Colin Sandon. Recovering communities in the general stochastic block
model without knowing the parameters. In Advances in neural information processing systems,
pages 676–684, 2015.

4 Naman Agarwal, Afonso S Bandeira, Konstantinos Koiliaris, and Alexandra Kolla. Multisection
in the stochastic block model using semidefinite programming. In Compressed Sensing and its
Applications, pages 125–162. Springer, 2017.

5 Noga Alon. Eigenvalues and expanders. Combinatorica, 6(2):83–96, 1986.
6 Noga Alon and Vitali D Milman. λ1, isoperimetric inequalities for graphs, and superconcen-

trators. Journal of Combinatorial Theory, Series B, 38(1):73–88, 1985.
7 Sanjeev Arora, Satish Rao, and Umesh V. Vazirani. Expander flows, geometric embeddings

and graph partitioning. J. ACM, 56(2), 2009. (Preliminary version in 36th STOC, 2004).
doi:10.1145/1502793.1502794.

8 Nikhil Bansal, Uriel Feige, Robert Krauthgamer, Konstantin Makarychev, Viswanath Nagara-
jan, Joseph Naor, and Roy Schwartz. Min-max graph partitioning and small set expansion. In
Foundations of Computer Science (FOCS), 2011 IEEE 52nd Annual Symposium on, pages
17–26. IEEE, 2011.

9 Roberto Battiti and Marco Protasi. Approximate Algorithms and Heuristics for MAX-SAT.
In Handbook of Combinatorial Optimization: Volume1–3, pages 77–148, Boston, MA, 1999.
Springer US. doi:10.1007/978-1-4613-0303-9_2.

10 Sergey Bobkov, Christian Houdré, and Prasad Tetali. λ∞, Vertex Isoperimetry and Concen-
tration. Combinatorica, 20(2):153–172, 2000.

11 Ravi B. Boppana. Eigenvalues and Graph Bisection: An Average-case Analysis. In Proceedings
of the 28th Annual Symposium on Foundations of Computer Science, SFCS ’87, pages 280–285,
Washington, DC, USA, 1987. IEEE Computer Society. doi:10.1109/SFCS.1987.22.

12 T.-H. Hubert Chan, Anand Louis, Zhihao Gavin Tang, and Chenzi Zhang. Spectral Properties
of Hypergraph Laplacian and Approximation Algorithms. J. ACM, 65(3):15:1–15:48, 2018.
doi:10.1145/3178123.

13 Uriel Feige, MohammadTaghi Hajiaghayi, and James R. Lee. Improved Approximation
Algorithms for Minimum Weight Vertex Separators. SIAM Journal on Computing, 38(2):629–
657, 2008. doi:10.1137/05064299X.

14 Uriel Feige and Joe Kilian. Heuristics for semirandom graph problems. Journal of Computer
and System Sciences, 63(4):639–671, 2001.

15 Olivier Guédon and Roman Vershynin. Community detection in sparse networks via
Grothendieck’s inequality. Probability Theory and Related Fields, 165(3-4):1025–1049, 2016.

16 Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels:
First steps. Social networks, 5(2):109–137, 1983.

17 Mark Jerrum and Gregory B Sorkin. The Metropolis algorithm for graph bisection. Discrete
Applied Mathematics, 82(1):155–175, 1998.

18 George Karypis and Vipin Kumar. Analysis of Multilevel Graph Partitioning. In Proceedings
of the 1995 ACM/IEEE Conference on Supercomputing, Supercomputing ’95, New York, NY,
USA, 1995. ACM. doi:10.1145/224170.224229.

19 George Karypis and Vipin Kumar. A Fast and High Quality Multilevel Scheme for Partitioning
Irregular Graphs. SIAM J. Sci. Comput., 20(1):359–392, December 1998. doi:10.1137/
S1064827595287997.

FSTTCS 2019

https://doi.org/10.1145/1502793.1502794
https://doi.org/10.1007/978-1-4613-0303-9_2
https://doi.org/10.1109/SFCS.1987.22
https://doi.org/10.1145/3178123
https://doi.org/10.1137/05064299X
https://doi.org/10.1145/224170.224229
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1137/S1064827595287997

23:14 Planted Models for k-Way Edge and Vertex Expansion

20 Tsz Chiu Kwok, Lap Chi Lau, Yin Tat Lee, Shayan Oveis Gharan, and Luca Trevisan.
Improved Cheeger’s Inequality: Analysis of Spectral Partitioning Algorithms Through Higher
Order Spectral Gap. In Proceedings of the Forty-fifth Annual ACM Symposium on Theory of
Computing, STOC ’13, pages 11–20, New York, NY, USA, 2013. ACM. doi:10.1145/2488608.
2488611.

21 James R Lee, Shayan Oveis Gharan, and Luca Trevisan. Multiway spectral partitioning and
higher-order cheeger inequalities. Journal of the ACM (JACM), 61(6):37, 2014.

22 Tom Leighton and Satish Rao. Multicommodity Max-flow Min-cut Theorems and Their
Use in Designing Approximation Algorithms. J. ACM, 46(6):787–832, November 1999. doi:
10.1145/331524.331526.

23 Anand Louis and Konstantin Makarychev. Approximation algorithm for sparsest k-partitioning.
In Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms, pages
1244–1255. SIAM, 2014.

24 Anand Louis and Yury Makarychev. Approximation Algorithms for Hypergraph Small-
Set Expansion and Small-Set Vertex Expansion. Theory of Computing, 12(1):1–25, 2016.
doi:10.4086/toc.2016.v012a017.

25 Anand Louis, Prasad Raghavendra, Prasad Tetali, and Santosh Vempala. Algorithmic ex-
tensions of Cheeger’s inequality to higher eigenvalues and partitions. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, pages 315–326.
Springer, 2011.

26 Anand Louis, Prasad Raghavendra, Prasad Tetali, and Santosh Vempala. Many sparse cuts
via higher eigenvalues. In Proceedings of the forty-fourth annual ACM symposium on Theory
of computing, pages 1131–1140. ACM, 2012.

27 Anand Louis, Prasad Raghavendra, and Santosh Vempala. The Complexity of Approximating
Vertex Expansion. In Proc. of the 54th Annual Symp. on Foundations of Computer Science,
FOCS ’13, pages 360–369, Washington, DC, USA, 2013. IEEE Computer Society. doi:
10.1109/FOCS.2013.46.

28 Anand Louis and Rakesh Venkat. Semi-random Graphs with Planted Sparse Vertex Cuts:
Algorithms for Exact and Approximate Recovery. In 45th International Colloquium on
Automata, Languages, and Programming (ICALP), pages 101:1–101:15, 2018. Full Version at:
arXiv:1805.09747.

29 Konstantin Makarychev, Yury Makarychev, and Aravindan Vijayaraghavan. Approximation
Algorithms for Semi-random Partitioning Problems. In Proc. of the 44th Annual ACM Symp. on
Theory of Computing, STOC ’12, pages 367–384. ACM, 2012. doi:10.1145/2213977.2214013.

30 Konstantin Makarychev, Yury Makarychev, and Aravindan Vijayaraghavan. Constant Factor
Approximation for Balanced Cut in the PIE Model. In Proc. of the 46th Annual ACM
Symp. on Theory of Computing, STOC ’14, pages 41–49, New York, NY, USA, 2014. ACM.
doi:10.1145/2591796.2591841.

31 Konstantin Makarychev, Yury Makarychev, and Aravindan Vijayaraghavan. Learning Com-
munities in the Presence of Errors. In 29th Annual Conference on Learning Theory, volume 49
of Proceedings of Machine Learning Research, pages 1258–1291, Columbia University, New
York, New York, USA, 23–26 June 2016. PMLR. URL: http://proceedings.mlr.press/v49/
makarychev16.html.

32 Laurent Massoulié. Community Detection Thresholds and the Weak Ramanujan Property. In
Proc. of the 46th Annual ACM Symp. on Theory of Computing, STOC ’14, pages 694–703,
New York, NY, USA, 2014. ACM. doi:10.1145/2591796.2591857.

33 Frank D. McSherry. Spectral Partitioning of Random Graphs. In Proc. of the 42nd IEEE
Symp. on Foundations of Computer Science (FOCS), pages 529–537, Washington, DC, USA,
2001. IEEE Computer Society. URL: http://dl.acm.org/citation.cfm?id=874063.875554.

34 Ankur Moitra, William Perry, and Alexander S Wein. How robust are reconstruction thresholds
for community detection? In Proceedings of the forty-eighth annual ACM symposium on
Theory of Computing, pages 828–841. ACM, 2016.

https://doi.org/10.1145/2488608.2488611
https://doi.org/10.1145/2488608.2488611
https://doi.org/10.1145/331524.331526
https://doi.org/10.1145/331524.331526
https://doi.org/10.4086/toc.2016.v012a017
https://doi.org/10.1109/FOCS.2013.46
https://doi.org/10.1109/FOCS.2013.46
https://arxiv.org/abs/1805.09747
https://doi.org/10.1145/2213977.2214013
https://doi.org/10.1145/2591796.2591841
http://proceedings.mlr.press/v49/makarychev16.html
http://proceedings.mlr.press/v49/makarychev16.html
https://doi.org/10.1145/2591796.2591857
http://dl.acm.org/citation.cfm?id=874063.875554

A. Louis and R. Venkat 23:15

35 Elchanan Mossel, Joe Neeman, and Allan Sly. Belief propagation, robust reconstruction and
optimal recovery of block models. In Conference on Learning Theory, pages 356–370, 2014.

36 Elchanan Mossel, Joe Neeman, and Allan Sly. Consistency Thresholds for the Planted Bisection
Model. In Proc. of the 47th Annual ACM Symp. on Theory of Computing, STOC ’15, pages
69–75, New York, NY, USA, 2015. ACM. doi:10.1145/2746539.2746603.

37 Elchanan Mossel, Joe Neeman, and Allan Sly. A proof of the block model threshold conjecture.
Combinatorica, 2017. doi:10.1007/s00493-016-3238-8.

38 J Naor and Yuval Rabani. Tree Packing and Approximating fc-Cuts. In Proceedings of the
twelfth annual ACM-SIAM symposium on Discrete algorithms, volume 103, page 26. SIAM,
2001.

39 R. Peng, H. Sun, and L. Zanetti. Partitioning Well-Clustered Graphs: Spectral Clustering
Works! SIAM Journal on Computing, 46(2):710–743, 2017. doi:10.1137/15M1047209.

40 Prasad Raghavendra and David Steurer. Graph Expansion and the Unique Games Conjecture.
In Proceedings of the Forty-second ACM Symposium on Theory of Computing, STOC ’10,
pages 755–764, New York, NY, USA, 2010. ACM. doi:10.1145/1806689.1806792.

41 Prasad Raghavendra, David Steurer, and Prasad Tetali. Approximations for the Isoperimetric
and Spectral Profile of Graphs and Related Parameters. In Proceedings of the Forty-second
ACM Symposium on Theory of Computing, STOC ’10, pages 631–640, New York, NY, USA,
2010. ACM. doi:10.1145/1806689.1806776.

42 R Ravi and Amitabh Sinha. Approximating k-cuts using network strength as a lagrangean
relaxation. European Journal of Operational Research, 186(1):77–90, 2008.

43 Huzur Saran and Vijay V Vazirani. Finding k cuts within twice the optimal. SIAM Journal
on Computing, 24(1):101–108, 1995.

FSTTCS 2019

https://doi.org/10.1145/2746539.2746603
https://doi.org/10.1007/s00493-016-3238-8
https://doi.org/10.1137/15M1047209
https://doi.org/10.1145/1806689.1806792
https://doi.org/10.1145/1806689.1806776

Online Non-Preemptive Scheduling to Minimize
Maximum Weighted Flow-Time on Related
Machines
Giorgio Lucarelli
LCOMS, University of Lorraine, Metz, France
giorgio.lucarelli@univ-lorraine.fr

Benjamin Moseley
Tepper School of Business, Carnegie Mellon University, USA
moseleyb@andrew.cmu.edu

Nguyen Kim Thang
IBISC, Univ. Paris-Saclay, France
kimthang.nguyen@univ-evry.fr

Abhinav Srivastav
IBISC, Univ. Paris-Saclay, France
abhinavsriva@gmail.com

Denis Trystram
Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG, France
trystram@imag.fr

Abstract
We consider the problem of scheduling jobs to minimize the maximum weighted flow-time on a set of
related machines. When jobs can be preempted this problem is well-understood; for example, there
exists a constant competitive algorithm using speed augmentation. When jobs must be scheduled
non-preemptively, only hardness results are known. In this paper, we present the first online
guarantees for the non-preemptive variant. We present the first constant competitive algorithm
for minimizing the maximum weighted flow-time on related machines by relaxing the problem and
assuming that the online algorithm can reject a small fraction of the total weight of jobs. This is
essentially the best result possible given the strong lower bounds on the non-preemptive problem
without rejection.

2012 ACM Subject Classification Theory of computation → Scheduling algorithms

Keywords and phrases Online Algorithms, Scheduling, Resource Augmentation

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.24

Funding Benjamin Moseley: Google Research Award and NSF grants CCF-1830711, CCF-1824303,
and CCF-1733873
Nguyen Kim Thang: OATA ANR-15-CE40-0015-01
Abhinav Srivastav: OATA ANR-15-CE40-0015-01

1 Introduction

We study the problem of online scheduling non-preemptive jobs to minimize the maximum
(or `∞-norm of the) weighted flow-time on related machines. Here, we are given a set of n
independent jobs that arrive over time. Each job j has a processing requirement pj and a
weight wj . In the related machines environment, each machine i has speed si and the time
required to process j is equal to pj/si. The scheduling algorithm makes online decisions for
assigning each job to one of the machines. If a job j arrives at time rj and completes its
processing at time Cj , then its flow-time Fj is defined as (Cj − rj). We focus on the objective

© Giorgio Lucarelli, Benjamin Moseley, Nguyen Kim Thang, Abhinav Srivastav, and Denis Trystram;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 24; pp. 24:1–24:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:giorgio.lucarelli@univ-lorraine.fr
mailto:moseleyb@andrew.cmu.edu
mailto:kimthang.nguyen@univ-evry.fr
mailto:abhinavsriva@gmail.com
mailto:trystram@imag.fr
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.24
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Non-Preemptive Maximum Weighted Flow-Time

of minimizing the maximum weighted flow-time, i.e., maxj wjFj . This metric is often used
in systems where jobs are prioritized according to their weights and every job needs to be
completed in a reasonable amount of time after its release. The problem of minimizing the
maximum flow-time is a natural generalization of the load-balancing problem where jobs
arrive over time. This problem is also closely related to deadline scheduling problems.

In this paper, we are interested in designing a non-preemptive schedule whose performance
is bounded in the worst-case model. In non-preemptive setting, a job, once started processing,
must be executed without interruption until its completion time. This is in contrast to
preemptive setting where a job can be stopped and later continued from where it left off
without penalty. Several strong theoretical lower bounds are known for simple instances [9, 4].
In order to overcome this lower bounds, Kalyanasundaram and Pruhs [12] and Phillips et
al. [15] proposed the analysis of scheduling algorithms in terms of the speed and machine
augmentations, respectively. Together these augmentations are commonly referred to as
resource augmentation. In a resource augmentation analysis, the idea is to either give the
scheduling algorithm faster processors or extra machines in comparison to the adversary.
For preemptive problems, these models have been quite successful in establishing theoretical
guarantees on algorithms that achieve good performance in practice [5, 11, 3, 10, 17].

Choudhury et al. [7, 8] proposed a different model of resource augmentation where the
online algorithm is allowed to reject a small fraction of the total weight of the incoming
jobs, while the adversary must complete all jobs. Theoretically, this model can lead to
the discovery of good online algorithms, even in the face of strong lower bounds [7, 13].
Practically, the model is useful for systems where it is assumed that clients loose interest in
their job if they wait too long to be completed. Choudhury et al. [7] considered the problem
of load balancing as well as the problem of minimizing the maximum weighted flow-time in
the restricted assignment setting. In this setting, we are given a set of machines and each
job j can only be scheduled on a subset Mj of the machines while its execution takes pj
time units. Even with speed augmentation, these problems admit strong lower bounds in
both preemptive and non-preemptive settings. However, online preemptive algorithms that
achieve a O(1)-competitive ratio and reject a small fraction of the total weight of jobs have
been presented in [7].

Prior works have left open the online non-preemptive scheduling problem of minimizing
the maximum weighted flow time. Even on a single machine, the problem is not understood
and no positive result is known. Moreover, even with speed augmentation, simple examples
lead to strong lower bounds. However, recent works on the rejection model [13] give the
possibility of creating algorithms with strong guarantees for the non-preemptive setting.
Thus, an intriguing open question is whether there exists a constant competitive algorithm
for the maximum weighted flow-time objective in the non-preemptive setting assuming that
a small fraction of total weight of jobs can be rejected. In this paper, we affirmatively answer
this question for the case of related machines by proving the following theorem.

I Theorem 1. For the non-preemptive scheduling problem of minimizing the maximum
weighted flow-time on related machines, there exists a O(1/ε9)-competitive algorithm that
rejects at most O(ε)-fraction of the total weight of jobs, where ε ∈ (0, 1).

1.1 Problem definition and notation
We are given a setM of m machines and a set J of n jobs that arrive online. Each machine i
processes a job at speed si. We index the machines such that s1 ≥ s2 ≥ . . . sm. Each
job j is characterized by its release time rj , its processing requirement pj and its weight wj .

G. Lucarelli, B. Moseley, N. K. Thang, A. Srivastav, and D. Trystram 24:3

The processing requirement and the weight of j are known at its release time rj . If j is
processed on machine i, then it requires pj/si time units. The goal is to schedule the jobs
non-preemptively. Given a schedule S, the completion time of a job j is denoted by CSj . The
weighted flow-time of j is defined as wjFSj = wj(CSj − rj), which is the weighted amount
of time during which j remains in the system. The objective is to minimize the maximum
(`∞-norm of) weighted flow-time, i.e., maxj wjFSj . We omit the superscripts if the schedule
S is clearly defined by the context.

Let F denote the value of the offline optimal solution. Let ε be an arbitrary constant
such that ε ∈ (0, 1). We assume that all weights wj are of the form (1/ε)k, where k is an
integer. This can be assumed by rounding down weights to the nearest power of 1

ε which
affects the competitive ratio by a factor of at most

(1
ε

)
. After rounding, we say that a job j

is of class k if wj =
(1
ε

)k. Let K denote the largest weight class of any job. A job j is valid
on machine i, iff it takes at most F/wj time units on i, that is pj

si
≤ F

wj
.

1.2 Organization
In Section 2, we present the works related to our problem. Then, in Section 3, we present an
offline algorithm for the scheduling problem of minimizing the maximum weighted flow-time
on related machines. This algorithm is inspired by Anand et al. [2] and uses a small look-
ahead, allows preemptions and does not respect the release dates. Specifically, we assume that
the value F of the optimal weighted flow time is known to the algorithm. Since release dates
are not respected, the algorithm creates an infeasible schedule. Later, in Section 4, we discuss
how to convert this offline algorithm to an online algorithm respecting the non-preemptive
requirement. Note that the release dates will be respected due to the online nature. Finally,
we explain how to remove the assumption about knowing the value F in Section 5.

2 Related Work

We discuss first related works for the unweighted case. For a single machine, First-In-First-
Out is an optimal algorithm for minimizing the maximum flow-time. For identical machines,
Bender et al. [14] and Ambulh and Mastrolilli [1] showed that the algorithm that schedules
the incoming jobs on the least loaded machine, is (3−2/m)-competitive. On related machines,
Bansal et al. [4] showed that there exists a 13.5-competitive algorithm. This has recently
been improved to a 12.5-competitive algorithm by Im et al [16]. All the above algorithms
are non-preemptive and their results hold against both the preemptive and non-preemptive
adversary. For the more general setting of unrelated machines, Anand et al. [2] gave an
O(1/ε)-competitive algorithm with (1 + ε)-speed augmentation and this result fundamentally
uses preemption.

In the presence of weights, only results in the preemptive setting are known for the
problem of minimizing the maximum weighted flow-time. Bender et al. [14] showed a lower
bound of Ω(P 1/3) on the competitive ratio on single machine where P is the ratio of the
minimum to maximum job size. This was later improved to Ω(P 0.4) in [6]. Both these lower
bounds also hold if P is replaced with the ratio of the maximum to minimum weight. In
speed augmentation model, Bansal and Pruhs [5] showed that the Highest Density First
policy is (1 + ε)-speed O(1/ε2)-competitive on a single machine. Chekuri and Moseley [6]
presented a (1 + ε)-speed O(1/ε)-competitive algorithm for parallel machines, while Anand
et al. [2] proposed a (1 + ε)-speed O(1/ε3)-competitive algorithm for related machines. In
the rejection model, Choudhury et al. [7] presented an O(1/ε4)-competitive algorithm for
the restricted assignment settings when an ε-factor of the weight of the jobs can be rejected
by the online algorithm.

FSTTCS 2019

24:4 Non-Preemptive Maximum Weighted Flow-Time

3 An Offline Look-ahead Algorithm with Preemptions

In this section we assume that the value F of the optimal solution is given, preemptions are
allowed and the release dates of the jobs are not necessarily respected. Intuitively, we show
the following. For ease of explanation assume that all jobs have unit weight. We consider
all the jobs released during a long interval of size O(F/ε). Since the maximum weighted
flow-time is F , all such jobs must be scheduled within an interval of size O(F/ε+ F) by the
optimal solution. We show that by rejecting an O(ε)-fraction of the total weight of jobs,
an online algorithm can schedule all the remaining jobs in the interval of size O(F/ε). The
algorithm below builds on this idea when jobs have different weights. This is inspired by the
work of Anand et al. [2] where speed augmentation is used to achieve a similar effect. Recall
that there exists a strong lower bound in the speed augmentation model. In rejection model,
one needs to ensure that the algorithm rejects at most O(ε)-fraction of jobs both in terms of
weights and volume.

We allow our algorithm to reject some jobs. For each weight class k and integer `, let
I(k, `) denote the interval

[
`Fεk

ε3 , (`+1)Fεk

ε3

)
. We say that a job j belongs to type (k, `) if it is of

class k and rj ∈ I(k, `). Observe that intervals I(k, `) form a nested set of intervals. Note that
at least

(1
ε3

)
jobs that belong to class k or more, can be scheduled during an interval I(k, `).

The online algorithm A is defined to have the following rejection and scheduling policies.

Rejection policy. The rejection policy of A is described in Algorithm 1. The algorithm
uses a simple rejection policy where it ensures that for each interval I(k, `) the algorithm
rejects at least ε2/2-fraction of volume of jobs and O(ε)-fraction of weight of jobs.

Algorithm 1 RA(I, F, ε).
1: for k = K to 1 do
2: for ` = 1, 2, . . . do
3: J(k, `) := the set of jobs of type (k, `)
4: D := bε2|J(k, `)|+ ε

∑
I(k′`′)⊆I(k,`):

k′=k+1

|J(k′, `′)|c+
∑

I(k′,`′)⊆I(k,`):
k′≥k+2

|J(k′, `′)|

5: Reject longest-D jobs from J(k, `)

Scheduling policy. The scheduling policy of A is described in Algorithm 2. The algorithm
uses the following order: it picks jobs in the decreasing order of their class, and within each
class it goes by increasing order of its intervals. When considering a job j, the algorithm
schedules j during the interval I(k, `) on the slowest valid machine with enough free space.
Jobs may be scheduled preemptively. This completes the description of the algorithm A.

Algorithm 2 SA(I, F, ε).
1: for k = K to 1 do
2: for ` = 1, 2, . . . do
3: for each non-rejected job j of type (k, `) do
4: mj := the slowest machine for which j is valid
5: for i := mj , . . . , 1 do
6: If there is at least pj/si free slots (preemptive) on machine i during I(k, `) then

schedule j on i during the first such free slots.

G. Lucarelli, B. Moseley, N. K. Thang, A. Srivastav, and D. Trystram 24:5

3.1 Analysis of the Offline Algorithm
In this section, we prove that Algorithm SA will always find enough space to schedule the
non-rejected set of jobs in RA.

I Theorem 2. Algorithm SA outputs a preemptive schedule for the set of non-rejected jobs
which ensures that each job that belongs to type (k, `) is scheduled during I(k, `). Note that
schedule may process jobs before their release date.

We prove this by contradiction. Let j∗ be the first non-rejected job that algorithm A
cannot schedule on some machine i. Then we will show that the value of the offline optimal
solution is strictly greater than F , which contradicts our assumption on the knowledge of
the value of optimal offline solution, F .

Assume that j∗ is of type (k∗, `∗). We build a set S of job recursively. Initially S just
contains j∗. We add j′ of type (k′, `′) to S if there is already a job j of type (k, l) in S

satisfying the following conditions:
1. k′ ≥ k.
2. A processes j′ on a machine i which is valid for j as well.
3. A processes j′ during the I(k′, `′) such that I(k′, `′) ⊆ I(k, `)

For a machine i and interval I(k, `), define the machine-interval Ii(k, `) as the time
interval I(k, `) on machine i. We construct a set IM of machine-intervals as follows: For
every job j ∈ S of type (k, `), we add the interval Ii(k, `) to IM for all machines i such that
j is valid for i.

I Definition 3. We say that an interval Ii(k, `) ∈ IM is maximal if there is no other interval
Ii(k′, `′) which contains Ii(k, `).

Observe that every job in S except j∗ gets processed in one of machine-intervals in IM .
Let IX denote the set of maximal intervals in IM . We show that the jobs in S satisfy the
following property.

I Lemma 4. For any maximal interval Ii(k, `) ∈ IX , Algorithm SA processes a job on at
least (1− ε3)-fraction of the interval on machine i.

Proof. We prove this property holds whenever we add a new maximal interval to IX . Suppose
this property holds at some point in time, and we add a new job j′ to S. Let j, k, `, j′, k′, `′
be as in the description of S. Since k′ ≥ k and j is valid for i, the interval set IX already
contains the interval Ii′(k, `) for all i′ ≤ i. Hence the intervals Ii′(k′, `′) cannot be maximal
for any i′ ≤ i. Suppose an interval Ii′(k′, `′) is maximal, where i′ > i, and j′ is valid for
i′. Our algorithm would have considered scheduling j′ on i′ before going to i. Hence the
machine i′ is at least |Ii′(k′, `′)| − pj/si′ amount busy scheduling other jobs from S. The
lemma follows since pj/si′ ≤ F/wj ≤ Fεk. J

I Corollary 5. There are at least (1
ε3 − 1) jobs of class k or more scheduled for every

Ii(k, `) ∈ IX .

Proof. Recall that the size of the interval Ii(k, `) is Fεk

ε3 and the size of the longest job
scheduled in the interval Ii(k, `) is εkF . Combining these facts with Lemma 4 shows that
the corollary holds. J

Next we associate the set of rejected jobs to the maximal intervals. Recall that
|I(k, `)| denote the length of the interval I(k, `). Intuitively, we show that for each
maximal interval Ii(k, `) ∈ IX , we can associate at least O(ε2)|Ii(k, `)| volume of jobs

FSTTCS 2019

24:6 Non-Preemptive Maximum Weighted Flow-Time

that are rejected by the algorithm RA such that these jobs are of type (k′, `′) where
I(k′, `′) ⊆ I(k, `). To this end, let R denote the set of job rejected by RA. Let R(k, `) =
{j ∈ R : j is of type (k′, `′) and I(k′, `′) ⊆ I(k, `)}.

I Lemma 6. There exists a function φ : R→ IX such that for every Ii(k, `) ∈ IX , it holds
that vol(φ−1(Ii(k, `))) ≥ ε2

4 |Ii(k, `)| and φ−1(Ii(k, `)) ⊆ R(k, `) where vol(Q) denotes the
total volume of jobs in the set Q.

Proof. Fix a maximum interval I = Ii(k, `). Let kmax denote the maximum weight class of
the job scheduled in I. Recall the intervals Ii(k′, `′) ⊆ Ii(k, `) are nested.

We first form an 1/ε-ary tree where a node v(k′, `′) represents the set of jobs of type
(k′, `′) scheduled in the interval I on i. The node v(k′, `′) is the the ancestor of the node
v(k′ + 1, `′′) iff Ii(k′ + 1, `′′) ⊆ Ii(k′, `′). The height of this tree is kmax − k. Note that some
of the leaves can be empty. Therefore, we trim the tree such that leaves are non-empty. For
this, we find an empty leave and remove it from the tree. We repeat this procedure until no
empty leaves are present. Note that an intermediate node of the tree can be empty. Next,
we consider the following cases depending upon the number of jobs in the leaves:

Case 1: There are at least 1/ε2-jobs in each leaf. The algorithm RA rejects at least ε2/2
number of jobs at each non-empty node of the tree. Let j be such a job rejected by RA
for some node in the tree, then we define φ(j) = I (i.e., associate rejected job j to interval
I). Recall that RA rejects longest jobs among jobs of fixed class. Thus, the total volume
of jobs associated with the interval I is at least ε2/2 and the lemma holds.

Case 2: If the number of jobs in each leaf is between 1/ε and 1/ε2. The algorithm RA
rejects at least ε2/2 fraction of volume of jobs at each non-empty node except leaves.
As before, let j be such a job rejected by RA, then we define φ(j) = I. We show that
the total volume of jobs in the leaves are small. Let v(k′, `′) denote jobs corresponding
to some leaf. Then |v(k′, `′)| < 1/ε2. The total volume of jobs in v(k′, `′) is at most
(Fεk′)/ε2 = ε|Ii(k′, `′)|. Observe that the jobs of any two leaves are scheduled independent
of each other in separate sub-intervals. Combining this fact with the previous bound
on the volume of jobs in leaves implies that the total volume of jobs in leaves is at
most ε|I|. Thus, the total volume of jobs scheduled during the interval I is at most
2.vol(φ−1(I))/ε2 + ε|I|. Since SA processes jobs on at least (1− ε3)-fraction of I, it holds
that vol(φ−1(I)) ≥ (ε2/2)(1− ε3 − ε)|I| ≥ (ε2/4)|I|.

Case 3: If the number of jobs in each leaf is strictly less than 1/ε. If the algorithm rejects
ε2-fraction of total volume of jobs at each non-empty level other than the leaf, then the
lemma holds (the proof is similar to Case 2). Thus, we consider the case where the parent
of a leaf does not reject ε2-fraction of the total volume of jobs. This implies that each
parent has at most 1/ε2 number of jobs and the height of the subtree rooted at the parent
node is at most 1. The algorithm RA rejects ε2/2 jobs for each node from the root to
the parent of parent of a leaf. As before, let j be such a job rejected by RA, then we
define φ(j) = I. Unlike Case 2 where intervals corresponding to leaves are disjoint, th
intervals of parents of two leaves can overlap. Here, we use the top-down approach to
count the total volume of jobs. Each job in the parent node is split into 1/ε-parts. We
“virtually force” these parts to be accounted in the leaves of that parent (even though
their weight class is strictly smaller than the weight class of the leaves). Thus the number
of jobs in each leaf can increase by at most 1/ε2. Using arguments similar to Case 2,
the total volume of jobs in the leaves is at most 2εI. Since SA process job on at least
(1 − ε3)-fraction of I, it holds that vol(φ−1(I)) is at least ε2/2(1 − ε3 − 2ε)|I|-volume
of jobs. J

G. Lucarelli, B. Moseley, N. K. Thang, A. Srivastav, and D. Trystram 24:7

I Corollary 7. The total volume of jobs in S′ = S ∪ R is greater than
∑
I(k,`)∈IX I(1 +

ε3)|I(k, `)|.

I Lemma 8. If the value of offline solution is at most F , then the total volume of jobs in S′
is at most

∑
I(k,`)∈IX (1 + ε3)|I(k, `)|.

Proof. For any maximal interval I(k, `) on machine i, let Iεi (k, `) be the interval of length
(1 + ε3)|I(k, `)| which starts at the same time as I(k, `) on machine i.

Let j ∈ S be a job of type (k, `). The optimal offline solution must schedule j within
Fεk of its release date. Since rj ∈ I(k′, `′) ⊆ I(k, `), the optimal solution must process a job
j during Iε(k, `). So, the total volume of jobs in S can be at most |

⋃
I(k,`)∈IX I

ε
i (k, `)| ≤∑

I(k,`)∈IX (1 + ε3)|I(k, `)|. J

Clearly, Corollary 7 contradicts Lemma 8. So, Algorithm SA must be able to process all
the jobs.

I Lemma 9. The total weight of jobs rejected by the algorithm RA is O(ε)-fraction of the
total weight of jobs in the instance I.

4 The Online Algorithm B

The previous algorithm A is an offline preemptive algorithm for I that does not respect the
release dates. This section presents an online non-preemptive algorithm B. This algorithm is
assumed to know the optimal objective F and this algorithm is extended in a later section
to when this is not known. The algorithm maintains a queue for each machine i and time
t. Unlike the previous algorithm, B rejects the job of type (k, `) at the end of the interval
I(k, `). For each non-rejected job j, B uses SA to figure out the assignment of jobs to the
machines. This algorithm differs from the online algorithm mentioned in Anand et al. [2] as
it schedules jobs non-preemptively and does not necessarily process jobs in their decreasing
order of their weights.

The rejection and assignment policies of B in given Algorithm 3.

Algorithm 3 MB(I, F, ε).
1: for t = 0, 1, 2, · · · do
2: Let K denote the largest class of a job.
3: for k = K to 1 do
4: if t is the end point of the interval I(k, `) for some ` then

5: Rejection similar to RA
6: J(k, `) := the set of jobs of type (k, `)
7: D := bε2|J(k, `)|+ ε

∑
I(k′`′)⊆I(k,`):

k′=k+1

|J(k′, `′)|c+
∑

I(k′,`′)⊆I(k,`):
k′≥k+2

|J(k′, `′)|

8: Reject longest-D Tjobs from J(k, `) from the remaining jobs in J(k, `)

9: Assignment similar to SA
10: for each non-rejected job j of class k do
11: Let mj denote the machine on which j is scheduled by SA
12: Assign j to the queue of mj

FSTTCS 2019

24:8 Non-Preemptive Maximum Weighted Flow-Time

After the execution of Algorithm 3, the algorithm B uses two more rejection policies for
each machine i . The first policy ensures that B rejects O(ε2)-fraction of new assigned jobs
whereas the second policy ensures that B processes jobs in a non-preemptive fashion. At any
time if the machine i is idle, B picks a job from the highest class according to the ordering
given by SA.

Making B Non-preemptive. We now detail the second rejection policy. During the pro-
cessing of a job of some class on a machine i, the algorithm maintains a bound on total
weight of higher class jobs that are newly assigned to machine i. Let j be the job running at
the start of interval I(k, `+ 1) on machine i. Let kj denote the class of j. B rejects j if there
is a new job j′ of type (k′, l′) that k′ ≥ kj + 2 and the intervals I(k′, `′) and I(k, `) end at
same time. This ensures that the weight of job j and j′ differ at least by a factor of 1/ε. It
may happen that there is no job class k′ ≥ kj + 2. In this case, the algorithm B rejects j
if there are at least (1/ε newly arrived jobs of type (k′, `′) if k′ ≥ kj + 1 and the intervals
I(k′, `′) and I(k, `) end at same time. Note that this also ensures the weight of newly arrived
jobs is at least an (1/ε) times the weight of current running job. These rejection policies and
scheduling policy of the algorithm B for the machine i at time t is mentioned in Algorithm 4.

Algorithm 4 SB(I, F, ε, i, t).
1: Rejection similar to RA
2: for k = K to 1 do
3: if t is the end point of the interval I(k, `) for some ` then

4: Ji(k, `) := the set of jobs of type (k, `) assigned to i at t
5: D := b2ε2|Ji(k, `)|+ 2ε

∑
I(k′`′)⊆I(k,`):

k′=k+1

|Ji(k′, `′)|c+ 2
∑

I(k′,`′)⊆I(k,`):
k′≥k+2

|Ji(k′, `′)|

6: Reject D-longest jobs from J(k, `, i)

7: Making algorithm non-preemptive
8: Let j ∈ (k, `) be the job executing on i at t
9: Let Jk′ denote the set of jobs of class k′ assigned to i at t

10: if |J(k+1)| ≥ 1/ε or ∃k′′ : |J(k′′)| > 0 and k′′ ≥ k + 2 then
11: Reject j

12: Scheduling Policy
13: if the machine i is idle then
14: Start processing the earliest job of highest class in the queue of i

4.1 Analysis
For a class k, let Jk be the jobs of class at least k. For a class k, integer `, and machine i,
let Q(i, k, `) denote the jobs of Jk which are in the queue of machine i at the beginning of
I(k, `). The jobs in Q(i, k, `) could consist of either
1. jobs in Q(i, k, `− 1), or
2. jobs of Jk which get processed by A during I(k, ` − 1) on machine i. Indeed, the jobs

of Jk which are dispatched to machine i during I(k, `− 1) will complete processing in
I(k, `− 1) in A and hence may get added (if not rejected) to Q(i, k, `). Let P (i, k, `− 1)
denotes the volume of such jobs that are added by B to the queue of machine i.

Next, we note some properties of the algorithm B:

G. Lucarelli, B. Moseley, N. K. Thang, A. Srivastav, and D. Trystram 24:9

I Property 1. A job j gets scheduled in B only in later slots than those it was scheduled on
by A.

I Property 2. For a class k, integer ` and machine i, the total processing of jobs in P (i, k, `)
is at most (1−ε3)Fεk

ε3 .

Proof. If the volume of jobs processed by algorithm A during the interval I(k, `) is at most
(1−ε3)Fεk

ε3 , then the property holds trivially. Assume that the volume of jobs processed by
algorithm A during the interval I(k, `) is strictly greater than (1−ε3)Fεk

ε3 . Then it holds that
the algorithm rejects at least ε2/4-fraction of volume of jobs assigned to i (the proof is similar
to Lemma 6). Thus the total volume of jobs assigned to i is strictly greater than (1+ε3)Fεk

ε3 .
But, this contradicts Theorem 2. J

I Property 3. For a class k, integer l and machine i, the total remaining processing time of
jobs in Q(i, k, `) is at most (1−ε3)Fεk

ε3 .

Proof. We use induction. Suppose this is true for some i, k, l. We show that this holds
for i, k, ` + 1 as well. By induction |Q(i, k, `)| is at most (1−ε3)Fεk

ε3 . We consider multiple
separate cases based on which job gets processed during the interval I(k, `) on machine i.

1. Suppose the machine i is busy processing jobs from Jk during I(k, `).
Then algorithm either processes job from Q(i, k, `) or P (i, k, `). The total volume of
such jobs are bounded by 2(1−ε3)Fεk

ε3 . The property holds since the total volume of job
processed by i is |I(k, `)| = Fεk

ε3 .
2. Suppose job j of class smaller than k is processed at the start of I(k, `) and Q(i, k, `) = 0.

In this case, Q(i, k, ` + 1) consists of the jobs of P (i, k, `). The property follows since
|P (i, k, `)| ≤ (1−ε3)Fεk

ε3 .
3. Suppose job j of class smaller than k is processing at the start of I(k, `) and Q(i, k, `) > 0.

We show that Q(i, k, `) is at most Fεk

ε . Let σj denote the starting time of job j on
machine i. Then we have that σj > `Fεk

ε3 − pj/si ≥ `Fεk

ε3 − Fεk

ε . Since algorithm B prefers
jobs of higher class, it must be the case that at σj no job of class k or higher was available
with machine i . Hence Q(i, k, `) consists of jobs that were added to the queue of machine
i during the interval

(
σj ,

`Fεk

ε3

]
. Since Q(i, k, `) > 0 and the class of j is strictly smaller

than k, j must belong of class (k − 1), otherwise B would reject j due to non-preemptive
rejection policy. Moreover, there are at most 1/ε jobs of class k in Q(i, k, `). Hence, the
total volume of jobs in Q(i, k, `) is most Fεk

ε . The property follows from the facts that B
spends at most Fεk

ε processing time on j.
4. Suppose B processes a job of class smaller than k at some point in I(k, `).

This implies that Q(i, k, `+ 1) contains jobs that are released during the interval I(k, `).
The property holds due to Claim 2. J

I Theorem 10. In the schedule B a job j of class k has flow-time at most Fεk

ε8 . Hence the
algorithm B is an O(1

ε9)-competitive algorithm that rejects at most O(ε)-fraction of total
weights of job.

Proof. Consider a job j of class (k, ` − 1). Suppose it gets processed on machine i. The
algorithm B adds j to the queue Q(i, k, `). Let j′ be the job running at beginning of the
interval I(k, `). Property 3 from above implies that the total remaining processing time of
jobs in Q(i, k, `) is at most (1−ε3)Fεk

ε3 = (1− ε3)|(k, `)|.

FSTTCS 2019

24:10 Non-Preemptive Maximum Weighted Flow-Time

Consider an interval I that starts at same time as I(k, `) and has length (1−ε3)Fεk

ε7 =
|I(k, `)|/ε4. During I, the algorithm process jobs of Jk that are either in (1) Q(i, k, `), or
(2) processed by A on machine i. From Property 2, the total processing of jobs in (2) is
(1 − ε3)|I|. This leaves us with ε3|I| processing time. This is enough of process the jobs
in Q(i, k, `) and j′ as (1− ε3)Fε

k

ε3 + Fεk−1 ≤ Fεk

ε4 = ε3|I|. So the flow time of j is at most
|I|+ |I(k, `)| = Fεk(1

ε7 + 1
ε3). J

5 Removing the assumption about knowledge of F

In this section, we show how to remove the assumption about knowledge of F . We apply the
standard double trick that is often used in the online algorithms. Recall that our previous
look-ahead algorithm assumed that we know the optimal F . Here, we will construct another
look-ahead algorithm C which will invoke A for different guesses of F . Fix an instance I. Let
I(k, `, F) be the interval [`Fε

k

ε3 , (`+1)Fεk

ε3). This is same as I(k, `) except that the intervals
are also parameterized by F . Similarly, we say that a job of class k is of type (k, `, F) if
rj ∈ I(k, `, F).

Our algorithm will work with the guesses of F which are powers of
(

1+ε3

ε3

)
. Without the

loss of generality, we assume that all release dates and processing times are integers. We
first generalize the algorithm A. The new algorithm, denoted by A′, will take as parameters
an instance I ′, the guess F and a starting time t0 - all release dates in I ′ will be at least t0.
It will run A′ with the understanding that time start at t0. The interval I(k, `, F) will be
defined as [t0 + `Fεk

ε3 , t0 + (`+1)Fεk

ε3). The algorithm C is described below.

Algorithm 5 A look-ahead algorithm C.
1: Initialize F0 = 1, t0 = 0, I0 = I
2: for u = 0, 1, 2, . . . do
3: Run A′(Iu, Fu, tu)
4: if All non-rejected jobs are finished then
5: Stop and output the scheduled produced.
6: else
7: let j be the first non-rejected job which algorithm A′(Iu, Fu, tu) is not to schedule.
8: Suppose j is of type (k, `, Fu).
9: Define tu+1 be the end-point of I(k, `, Fu).

10: Define Iu+1 be the jobs in Iu which are not scheduled yet.
11: Define rj = max{tu+1, rj},∀j ∈ Iu+1.
12: Set Fu+1 = Fu

(
1+ε3

ε3

)
.

Note that this algorithm, like Algorithm A, is preemptive.

5.1 Analysis
Suppose during some iteration u, we find a job j∗ that the algorithm is not able to schedule
in iteration u. Let j∗ be type of (k∗, `∗, Fu). Recall that tu+1 is the end point of I(k∗, `∗, Fu).
For a job j ∈ Iu let ruj denote its release date in Iu.

I Lemma 11. Any job j ∈ Iu+1 with ruj < tu+1 must be of class at most k∗. Further, if
such a job is of class k, then tu+1 − rj ≤ Fu+1ε

k.

G. Lucarelli, B. Moseley, N. K. Thang, A. Srivastav, and D. Trystram 24:11

Proof. Suppose j ∈ Iu and ruj < tu+1. If j is of type (k, `, Fu) such that k > k∗, then
I(k, `, Fu) ⊆ I(k∗, `∗, Fu). Hence the interval I(k, `, Fu) end at or or before tu+1. By
definition of j∗ the algorithm must have scheduled j in I(k, `, Fu) and so, before the tu+1.
This proves the first statement in the lemma.

To prove the second statement of lemma, we use induction on u. Suppose the second
statement is true for iteration u − 1. We show that it holds for u. Let j be job of class
k ≤ k∗ such that j ∈ Iu+1 and ruj < tu+1. Note that interval I(k, `, Fu) ends on or after
tu+1. Hence tu+1 − ruj ≤ |I(k, `, Fu)| = Tuε

k

ε3 . If rj ≥ tu, then ruj = rj , and we have
tu+1 − rj ≤ |I(k, `, Fu)| = Fuε

k

ε3 = Fu+1ε
k

(1+ε3) ≤ Fu+1ε
k.

On the other hand, if ruj = tu. So we get tu+1 − tu ≤ |I(k∗, `∗, Fu)| ≤ Fuε
k∗

ε3 ≤ Fuε
k

ε3 . By
induction hypothesis, we have tu−rj < Fuε

k. Hence we have tu+1−rj = tu+1−tu+tu−rj ≤(
1+ε3

ε3

)
Fuε

k = Fu+1ε
k. J

I Lemma 12. If C does not finish all jobs in the iteration u, then the value of offline optimal
solution is at least Fu.

Proof. The proof is similar to Lemma 8. The set S is defined similarly. For each machine
and interval I(k, `, Fu) the algorithm rejects at least ε2-fraction of volume of jobs. Lemma 4
and Lemma 6 remain unchanged.

Note that for a job j of type (k, `, Fu), ruj may lie earlier than the start time of I(k, `, Fu).
So the optimum offline algorithm may complete processing j even before the start of this
interval. But Lemma 11 shows that j is released at most ε3|I(k, `, Fu)| to the left of
I(k, `, Fu). So in the definition of the intervals Iε(k, `, Fu) in Lemma 4, we consider the
interval I(k, `, Fu) and two segments of length ε3|I(k, `, Fu)| both before and after I(k, `, Fu).
Rest of the arguments are same as in the proof of Lemma 8. J

I Corollary 13. Suppose OPT lies between Fu−1 and Fu. Then the algorithm C completes a
job of class k with flow-time at most (1+ε3)Fuε

k

ε3

5.2 Making the algorithm online

We now describe the final on-line algorithm D. The above theorem implies that for any job
j, we will know the machine on which it get schedules by time rj + (1+ε3)Fuε

k

ε3 . At this time,
we place j on the queue of the machine to which it gets scheduled on by C. Further each
machine prefer the jobs of larger class and within a particular class, it just goes by processing
times. We reject at least 2ε2 volume of jobs in each interval. To achieve this, the algorithm
rejects job 4ε2-jobs (ε-fraction as in A and 3ε-fraction on each machine i) in the description
of the algorithm B. Hence Property 2 for the algorithm B can be changed slightly to show
that |P (i, k, `)| is at most (1−2ε3)Fεk

ε3 .

I Theorem 14. In the schedule D a job j of class k has flow-time at most Fεk

ε8 . Hence the
algorithm D is an O(1

ε9)-competitive algorithm that rejects at most O(ε)-fraction of total
weights of job.

FSTTCS 2019

24:12 Non-Preemptive Maximum Weighted Flow-Time

References
1 C. Ambühl and M. Mastrolilli. On-line scheduling to minimize max flow time: an optimal

preemptive algorithm. Oper. Res. Lett., 33(6):597–602, 2005.
2 S. Anand, K. Bringmann, T. Friedrich, N. Garg, and A. Kumar. Minimizing Maximum

(Weighted) Flow-time on Related and Unrelated Machines. In Proceedings of International
Colloquium on Automata, Languages and Programming, pages 13–24, 2013.

3 S. Anand, N. Garg, and A. Kumar. Resource augmentation for weighted flow-time explained
by dual fitting. In Proceedings of Symposium on Discrete Algorithms, pages 1228–1241, 2012.

4 N. Bansal and E. Cloostermans. Minimizing Maximum Flow-Time on Related Machines. In
Proceedings of Workshop on Approximation Algorithms for Combinatorial Problems, pages
1–14, 2015.

5 N. Bansal and K. Pruhs. Server Scheduling in the Weighted `p Norm. In Proceedings of Latin
American Symposium on Theoretical Informatics, pages 434–443, 2004.

6 Chandra Chekuri, Sungjin Im, and Benjamin Moseley. Online Scheduling to Minimize
Maximum Response Time and Maximum Delay Factor. Theory of Computing, 8(1):165–195,
2012.

7 A.R. Choudhury, S. Das, N. Garg, and A .Kumar. Rejecting jobs to Minimize Load and
Maximum Flow-time. In Proceedings of Symposium on Discrete Algorithms, pages 1114–1133,
2015.

8 A.R. Choudhury, S. Das, A. Kumar, P. Harsha, and G. Ramalingam. Minimizing weighted
`p-norm of flow-time in the rejection model. In Proceedings on the Conference on Foundations
of Software Technology and Theoretical Computer Science, volume 45, pages 25–37, 2015.

9 P.F. Dutot, E. Saule, A. Srivastav, and Denis D. Trystram. Online Non-preemptive Scheduling
to Optimize Max Stretch on a Single Machine. In Proceedings of nternational Conference on
Computing and Combinatorics, pages 483–495, 2016.

10 K. Fox, S. Im, and B. Moseley. Energy efficient scheduling of parallelizable jobs. In Proceedings
of Symposium on Discrete Algorithms, pages 948–957, 2013.

11 A. Gupta, S. Im, R. Krishnaswamy, B. Moseley, and K. Pruhs. Scheduling heterogeneous
processors isn’t as easy as you think. In Proceedings of Symposium on Discrete Algorithms,
pages 1242–1253, 2012.

12 B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance. Journal of ACM,
47(4):617–643, 2000.

13 Giorgio Lucarelli, Nguyen Kim Thang, Abhinav Srivastav, and Denis Trystram. Online
Non-preemptive Scheduling in a Resource Augmentation Model based on Duality. In European
Symposium on Algorithms (ESA, 2016), volume 57, pages 1–17, 2016.

14 B.A. Michael, S. Chakrabarti, and S. Muthukrishnan. Flow and Stretch Metrics for Scheduling
Continuous Job Streams. In Proceedings of the Annual Symposium on Discrete Algorithms,
pages 270–279, 1998.

15 C.A. Phillips, C. Stein, and E. Torng andJ. Wein. Optimal time-critical scheduling via resource
augmentation. Algorithmica, 32(2):163–200, 2002.

16 Im S, B. Moseley, K. Pruhs, and C. Stein. Minimizing Maximum Flow Time on Related
Machines via Dynamic Posted Pricing. In 25th Annual European Symposium on Algorithms,
ESA 2017, September 4-6, 2017, Vienna, Austria, pages 51:1–51:10, 2017.

17 N.K. Thang. Lagrangian Duality in Online Scheduling with Resource Augmentation and
Speed Scaling. In Proceedings of European Symposium on Algorithms, pages 755–766, 2013.

On the AC0[⊕] Complexity of Andreev’s Problem
Aditya Potukuchi
Department of Computer Science, Rutgers University, USA
http://paul.rutgers.edu/~ap1311/
aditya.potukuchi@cs.rutgers.edu

Abstract
Andreev’s Problem is the following: Given an integer d and a subset of S ⊂ Fq × Fq, is there a
polynomial y = p(x) of degree at most d such that for every a ∈ Fq, (a, p(a)) ∈ S? We show an
AC0[⊕] lower bound for this problem.

This problem appears to be similar to the list recovery problem for degree-d Reed-Solomon
codes over Fq which states the following: Given subsets A1, . . . , Aq of Fq, output all (if any) the
Reed-Solomon codewords contained in A1 × · · · ×Aq. In particular, we study this problem when the
lists A1, . . . , Aq are randomly chosen, and are of a certain size. This may be of independent interest.

2012 ACM Subject Classification Theory of computation → Circuit complexity

Keywords and phrases List Recovery, Sharp Threshold, Fourier Analysis

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.25

Related Version A full version of the paper is available at https://arxiv.org/abs/1907.07969.

Funding Aditya Potukuchi: Research supported in part by NSF grant CCF-1514164.

Acknowledgements I would like to thank Swastik Kopparty for the discussions that led to Section 5,
and Bhargav Narayanan for the discussions that led to Theorem 8.

1 Introduction

For a prime power q, let us denote by Fq, the finite field of order q. Let us denote the
elements of Fq = {a1, . . . , aq}. One can think of a1, . . . , aq as some ordering of the elements
of Fq. Let Pd = Pqd be the set of all univariate polynomials of degree at most d over Fq. Let
us define the problem which will be the main focus of this paper:

Input: A subset S ⊆ F2
q, and integer d.

Output: Is there a p ∈ Pdq such that {(ai, p(ai)) | i ∈ [q]} ⊆ S?

The problem of proving NP-hardness of the above function seems to have been first asked
in [11]. It was called “Andreev’s Problem” and still remains open. One may observe that
above problem is closely related to the List Recovery of Reed-Solomon codes. In order to
continue the discussion, we first define Reed-Solomon codes:

I Definition 1 (Reed-Solomon code). The degree d Reed-Solomon over Fq, abbreviated as
RS[q, d] is the following set:

RS[q, d] = {(p(a1), . . . , p(aq)) | p ∈ Pqd}

Reed-Solomon codes are one of the most widely (if not the most widely) studied families
of error-correcting codes. It can be checked that RS[q, d] is a (d+ 1)-dimensional subspace
of Fqq such that every non-zero vector has at least q − d non-zero coordinates. In coding
theoretic language, we say that RS[q, d] is a linear code of block length q, dimension d+ 1
and distance q − d.

© Aditya Potukuchi;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 25; pp. 25:1–25:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-7233-7532
http://paul.rutgers.edu/~ap1311/
mailto:aditya.potukuchi@cs.rutgers.edu
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.25
https://arxiv.org/abs/1907.07969
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 On the AC0[⊕] Complexity of Andreev’s Problem

The List Recovery problem for a code C ⊂ Fnq is defined as follows:

I Definition 2 (List Recovery problem for C).
Input: Sets A1, . . . , An ⊆ Fq.
Output: C ∩ (A1 × · · · ×An).

Given the way we have defined these problems, one can see that Andreev’s Problem is
essentially proving NP-hardness for the List Recovery of Reed-Solomon codes where one just
has to output a Boolean answer to the question

C ∩ (A1 × · · · ×An) 6= ∅?

Indeed, let us consider a List Recovery instance where the code C is RS[q, d], and the
input sets are given by A1, . . . , Aq. Let us identify (A1, . . . , Aq) with the set

S =
⋃
i∈[q]

{(ai, z) | z ∈ Ai} ⊆ F2
q

and let us identify every codeword w = (w1, . . . , wq) ∈ C, with a set wset = {(ai, wi) | i ∈ [q]}.
Clearly, we have that w ∈ A1 × · · · × Aq if and only if wset ⊆ S. Often, we will drop the
subscript on wset and refer to w both as a codeword, and as the set of points it passes
through. Further identifying F2

q with [q2], and and parameterizing the problem by r = d
q , we

view Andreev’s Problem as a Boolean function APr : {0, 1}q×q → {0, 1}.
The main challenge here is to prove (or at least conditionally disprove) NP-hardness

for Andreev’s Problem, which has been open for over 30 years. Another natural problem
one could study is the circuit complexity for APr. This is the main motivation behind
this paper, and we will study the AC0[⊕] complexity of APr. We shall eventually see that
even this problem needs relatively recent results about the power of AC0[⊕] in our proof.
Informally, AC0 is the class of Boolean functions computable by circuits of constant depth,
and polynomial size, using ∧, ∨, and ¬ gates. AC0[⊕] is the class of Boolean functions
computable by circuits of constant depth, and polynomial size, using ∧, ∨, ¬, and ⊕ (MOD2)
gates. The interested and unfamiliar reader is referred to [3] (Chapter 14) for a more formal
definition and further motivation behind this class. We show that APr cannot be computed
by AC0 circuits for a constant r. This type of result is essentially motivated by a similar
trend in the study of the complexity of Minimum Circuit Size Problem. Informally, the
Minimum Size Circuit Problem (or simply MCSP) takes as input a truth table of a function
on m bits, and an integer s. The output is 1 if there is a Boolean circuit that computes the
function with the given truth table and has size at most s. It is a major open problem to
show the NP-hardness of MCSP. A lot of effort has also gone into understanding the circuit
complexity of MCSP. Allender et al. [2] proved a superpolynomial AC0 lower bound, and
Hirahara and Santanam [9] proved an almost-quadratic formula lower bound for MCSP. A
recent result by Golonev et al. [8] extends [2] and proves an AC0[⊕] lower bound for MCSP.
Thus one can seek to answer the same question about APr.

We now state our main theorem:

I Theorem 3 (Main Theorem). For any prime power q, and r ∈ (0, 1), we have that any
depth h circuit with ∧, ∨, ¬, and ⊕ gates that computes APr on q2 bits must have size at
least exp

(
Ω̃
(
hq

c2
h−1

))
.

We make a remark about the theorem. The most glaring aspect is that r ∈ (0, 1) is more
or less a limitation of our proof technique. Of course, as r gets very small, i.e., r = O

(
1
q

)
,

one can find depth 2 circuits of size qO(rq) = qO(1). But, we do not know that the case where,
for example, r = Θ

(
1

log q

)
is any easier for AC0[⊕].

A. Potukuchi 25:3

Related prior work: A result of Bogdanov and Safra

Shortly after this paper was uploaded, Bogdanov pointed out to us that can alternative
proof of the AC0[⊕] lower bound can be obtained (using some other theorems that are also
used in this paper) from [4] (specifically Theorem 14). As stated, this bound works in the
regime d = Kq where 0.89 < K < 1. One difference in approach is that the lower bound
here proceeds via showing that APr has a sharp threshold (see Definition 4) whereas in [4],
the sharp threshold can be shown for an adversarially restricted version of this problem. We
believe that the generality of techniques in this paper could find use elsewhere (for example,
such as that in Section 5).

1.1 Results on sharp threshold for APc

For a p ∈ (0, 1), let X1, X2, . . . denote independent Ber(p) random variables. For a family
of Boolean functions f : {0, 1}n → {0, 1}, we use f (n)(p) to denote the random variable
f(X1, . . . , Xn).

I Definition 4 (Sharp threshold). For a family of monotone functions f , we say that f has
a sharp threshold at p if for every ε > 0, there is an n0 such that for every n > n0, we have
that P(f (n)(p(1− ε)) = 0) ≥ 0.99, and P(f (n)(p(1 + ε)) = 1) ≥ 0.99.

Henceforth, we shall assume that q is a very large prime power. So, all the high probability
events and asymptotics are as q grows. Where there is no ambiguity, we also just use f(p) to
mean f (n)(p) and n growing.

One limitation of AC0[⊕] that is exploited when proving lower bounds (including in [8]) for
monotone functions is that AC0[⊕] cannot compute functions with “very” sharp thresholds.
For a quantitative discussion, let us call the smallest ε in the definition above the threshold
interval. It is known that AC0 (and therefore, AC0[⊕]) can compute (some) functions with
threshold interval of O

(
1

logn

)
, for example, consider the following function on Boolean inputs

z1, . . . , zn: Let Z1 t · · · tZ` be an equipartition of [n], such that each |Zi| ≈ logn− log logn.
Consider the function given by

f(z1, . . . , zn) =
∨
i∈[`]

 ∧
j∈Zi

zj

 .

This is commonly known as the tribes function and is known to have a threshold interval
of O

(
1

logn

)
. This is clearly computable by an AC0 circuit. A construction from [12] gives an

AC0 circuit (in n inputs) of size nO(h) and depth h that has a threshold interval Õ
(

1
(logn)h−1

)
.

A remarkable result from [12] and [6] (Theorem 13 from [6] plus Lemma 3.2 in [1]) says that
this is in some sense, tight. Formally,

I Theorem 5 ([12, 6]). Let n be any integer and f : {0, 1}n → {0, 1} be a function with
threshold interval δ at 1

2 . Any depth h circuit with ∧, ∨, ¬, and ⊕ gates that computes f
must have size at least exp

(
Ω
(
h (1/δ)

1
h−1
))

.

This improves upon previous lower bounds by Shaltiel and Viola [14] who show a size
lower bound of exp

(
(1/δ)

1
h+2

)
. In [12], this was studied as the Coin Problem, which we will

also define in Section 4. Given the above theorem, a natural strategy suggests itself. If we
could execute the following two steps, then we would be done:

FSTTCS 2019

25:4 On the AC0[⊕] Complexity of Andreev’s Problem

1. Establish Theorem 5 for functions with thresholds at points other than 1
2 .

2. Show that APr has a sharp threshold at q−r with a suitably small threshold interval, i.e.,
1

poly q .

The first fact essentially reduces to approximating p-biased coins by unbiased coins in
constant depth. Understanding the second part, naturally leads us to study APr(p) for some
p = p(q). Let A1, . . . , Aq ⊂ Fq be independently chosen random subsets where each element
is included in Ai with probability p. Let C be the RS[q, rq] code. We have |C| = qrq+1. Let
us denote

X := |(A1 × · · · ×Aq) ∩ C|.

For w ∈ C, let Xw denote the indicator random variable for the event {w ∈ A1 × · · · ×Aq}.
Clearly, X =

∑
w∈C Xw, and for every w ∈ C, we have P(Xw = 1) = pq. We first note that

for ε = ω
(

log q
q

)
, and p = q−r(1− ε), we have, using linearity of expectation,

E[X] =
∑
w∈C

E[Xw]

= |C| · (q−r(1− ε))q

= qrq+1 (q−r(1− ε))q
= q · (1− ε)q

≤ q · e−εq

= o(1).

When p = q−r(1 + ε), using a similar calculation as above, we have

E[X] = q · (1 + ε)q ≥ q.

To summarize, for ε = ω
(

log q
q

)
, and p = q−r(1 − ε), E[X] → 0, and for p = q−r(1 + ε),

E[X]→∞.

I Lemma 6. For ε = ω
(

log q
q

)
, we have

P(APr(q−r(1− ε)) = 1) ≤ exp (−Ω(εq)) .

Proof. This is just Markov’s inequality. We have P(APr(p(1 − ε)) = 0) = P(X ≥ 1) ≤
E[X] ≤ q · e−εq = exp (−Ω(εq)). J

This counts for half the proof of the sharp threshold for APr. The other half forms the
main technical contribution of this work. We show the following:

I Theorem 7. Let q be a prime power, r = r(q) and ε = ε(q) be real numbers such that
q−r ≥ log q

q and ε = ω
(

max
{
q−r,

√
qr−1 log (q1−r)

})
.

Let A1, . . . , Aq be independently chosen random subsets of Fq with each point picked
independently with probability q−r(1 + ε). Then

P((A1 × · · · ×Aq) ∩ RS[q, rq] = ∅) = o(1).

A. Potukuchi 25:5

First, we observe is that when r is bounded away from 0 and 1, then ε = 1
poly(q) suffices.

The condition to focus on here is that q−r ≥ log q
q . Indeed, one can see that this condition is

necessary to ensure that w.h.p, all the Ai’s are nonempty. So, for example, if the dimension
of C is q−1, then setting p = q−1(1+ ε) is enough for E[X] = ω(1) but this does not translate
to there almost surely being a codeword in A1 × · · · ×Aq.

Lemma 6 and Theorem 7 together give us that APr has a sharp threshold at
max

{
q−r, log q

q

}
whenever 1 − 1

q ≥ r � 1
log p . For the sake of completeness one could

ask if APr has a threshold for all feasible values of r, and we show that the answer is yes.
More formally,

I Theorem 8 (Sharp threshold for list recovery). For every r = r(q), there is a critical
p = p(r, q) such that for every ε > 0,
1. P (APr(p(1− ε)) = 1) = o(1).
2. P (APr(p(1 + ε)) = 1) = 1− o(1).

The case that is not handled by Theorem 7 is when r = O
(

1
log q

)
(since in this case,

Theorem 7 requires ε = Ω(1)). This corresponds to the case where q−r is a number bounded
away from 0 and 1.

1.2 Results on random list recovery with errors
Given a random subset of points in S ⊆ F2

q , what is the largest fraction of any degree d = Θ(q)
polynomial that is contained in this set? Using the Union Bound, it is easy to see that no
polynomial of degree d has more than d log 1

p
q + o(q) points contained in S (formal details

are given in Section 5). We show that perhaps unsurprisingly, this is the truth. Formally,

I Corollary 9. Let S be a randomly chosen subset of F2
q where each point is picked independ-

ently with probability p. Then with probability 1− o(1),

max
w∈RS[q,d]

|w ∩ S| = d log 1
p
q −O

 q

log
(

1
p

)
 .

We restrict our attention to the case when d = Θ(q), where the above statement is
nontrivial. This is the content of Section 5. However, we believe that the statement should
hold for all rates, and error (in general) better than O

(
q

log q

)
.

2 Preliminaries

2.1 Properties of Reed-Solomon codes
We will state some basic facts about Reed-Solomon codes that will be used in the proof. The
first one is that the dual vector space of a Reed-Solomon code is also a Reed-Solomon code.

I Fact 10. Let C be a RS[q, d] code. Then C⊥ = RS[q, q − d− 1].

For t 6= 0, let Wt be the number of codewords of weight t in RS[q, d]. We have the
following simple bound.

I Proposition 11. We have Wq−i ≤ qd+1

i! .

FSTTCS 2019

25:6 On the AC0[⊕] Complexity of Andreev’s Problem

Proof. We have that C is a d+ 1-dimensional subspace of Fq. Add i extra constraints by
choosing some set of i coordinates and restricting them to 0. As long as i < d, these new
constraints strictly reduce the dimension of C. There are exactly

(
q
i

)
ways to choose the

coordinates, and the resulting space has dimension d + 1 − i. Therefore, the number of
codewords of weight at most q − i is at most qd+1−i ·

(
q
i

)
· ≤ qd+1

i! . J

2.1.1 Punctured Reed-Solomon codes
All of the statements above when instead of Reed-Solomon codes, one considers punctured
Reed-Solomon codes. For a w = (w1, . . . , wn) ∈ Fnq , and a set S ⊂ [n′], let us define

w|S = (wi)i∈S .

For a subset C ⊂ Fn′q , let us define

C|S := {w|S | w ∈ C}

We call RS[q, d]|S the S-punctured RS[q, d] code. Let C denote the RS[q, d]|n code. Since
the properties we will care about are independent of the specific set S, let is just parametrize
this by |S| =: n. The following properties hold

1. C⊥ = RS[q, q − d− 1]n.
2. Let Wi be the number of codewords in C code of weight i. Then we have

Wn−i ≤
qk−ini

i! .

Both facts can be easily checked.

2.2 Basic probability inequalities
We will use the standard (multiplicative) Chernoff bound for sums of i.i.d. Bernoulli random
variables. Let X1, . . . , Xn be independent Ber(p) random variables. Let X :=

∑
i∈[n]Xiand

denote µ = E[X] = np. Then for any ε ∈ (0, 1), we have:

P (|X − µ| ≥ εµ) ≤ e
ε2µ

2 . (1)

We also have (a special case of) the Paley-Zygmund inequality, which states that for a
nonnegative random variable X,

P(X > 0) ≥ E2[X]
E[X2] . (2)

2.3 Fourier analysis over Fq

For functions u, v : Fnq → C, we have a normalized inner product 〈u, v〉 := 1
qn

∑
s∈Fnq

u(s)v(s).
Consider any symmetric, non-degenerate bi-linear map χ : Fnq × Fnq → R/Z (such a map
exists). For an α ∈ Fnq , the character function associated with α, denoted by χα : Fnq → C is
given by χα(x) = e−2πiχ(α,x).

We have that for all distinct α, β ∈ Fq, we have that 〈χα, χβ〉 = 0, and every function
f : Fq → C can be written in a unique way as f(x) =

∑
α∈Fq f̂(α)χα(x). Here the f̂(α)’s are

called the Fourier coefficients, given by

f̂(α) = 〈f, χα〉.

A. Potukuchi 25:7

We will state some facts that we will use in the proof of Theorem 7. The interested reader
is referred to the excellent book of Tao and Vu [15] (chapter 4) for further details.
I Fact 12 (Plancherel’s Theorem). For functions f, g : Fn → C, we have

〈f, g〉 =
∑
α

f̂(α)ĝ(α).

I Fact 13. Suppose g : Fnq → C can be written as a product g(x) =
∏
i∈[t] gi(x), then we

have the Fourier coefficients of g given by:

ĝ(α) = (ĝ1 ∗ · · · ∗ ĝt) (α)

=
∑

β1,...,βt−1

ĝ1(β1) · · · ĝt−1(βt−1)ĝt(α−
∑

i∈[q−1]

βi).

I Fact 14. If g : Fnq → C is the indicator of a linear space C, we have:

ĝ(α) =
{
|C|
|F|n , if α ∈ C⊥

0, otherwise.

2.4 Hypercontractivity and sharp thresholds
Here we state some tools from the analysis of Boolean function that we will use:
I Definition 15. We say that a function f : {0, 1}n → {0, 1} is transitive-symmetric if for
every i, j ∈ [n], there is a permutation σ ∈ Sn such that:
1. σ(i) = j

2. f(xσ(1), . . . , xσn) = f(x) for all x ∈ {0, 1}n.
Let f : {0, 1} → {0, 1} be a monotone function. We will state an important theorem by

Friedgut and Kalai, as stated in the excellent reference [13], regarding sharp thresholds for
balanced symmetric monotone Boolean functions. This will be another important tool that
we will use.
I Theorem 16 ([7]). Let f : {0, 1}n → {0, 1} be a nonconstant, monotone, transitive-
symmetric function and let F : [0, 1] → [0, 1] be the strictly increasing function defined by
F (p) = P(f(p) = 1). Let pcrit be the critical probability such that F (pcrit) = 1/2 and assume
without loss of generality that pcrit ≤ 1/2. Fix 0 < ε < 1/4 and let

η = B log(1/ε) · log(1/pcrit)
logn ,

where B > 0 is a universal constant. Then assuming η ≤ 1/2,

F (pcrit · (1− η)) ≤ ε, F (pcrit · (1 + η)) ≥ 1− ε.

We will use an immediate corollary of the above theorem.
I Corollary 17. Let f : {0, 1}n → {0, 1} be a nonconstant, monotone, transitive-symmetric
function. Let F : [0, 1]→ [0, 1] be the strictly increasing function defined by F (p) = Pr(f(p) =
1). Let p be such that F (p) ≥ ε, and let η = B log(1/ε) · log(1/pc)

logn . Then F (p(1 + 2η)) ≥ 1− ε.
In particular, in the above corollary, if for some ε ∈ (0, 1) we have that F−1(ε) ∈ (0, 1),

then the function f has a sharp threshold.
One easy observation that will allow us to use Theorem 16 is the following:

I Proposition 18. The Boolean function APr : {0, 1}q×n → {0, 1} is transitive-symmetric.
Proof. For a pair of coordinates indexed by (i1, j1) and (i2, j2), it is easy to see that the
map (x, y) 7→ (x+ i2 − i1, y + j2 − j1) gives us what we need since the set of polynomials is
invariant under these operations. J

FSTTCS 2019

25:8 On the AC0[⊕] Complexity of Andreev’s Problem

3 Proof ideas of Theorem 7 and Theorem 8

Here, we sketch the proofs of the Theorem 7 and Theorem 8, which can be considered the
two main technical contributions of this work. Due to space constraints, we do not reproduce
the full proof. However, all the essential ideas are contained in Section 3.2 and Sec 3.3. First,
we describe why some obvious approaches do not work.

3.1 What doesn’t work, and why
One obvious attempt to prove Theorem 7 is to consider the second moment of
X(= |C ∩ (A1 × · · · ×Aq)|) and hope that E[X2] = (1 + o(1))E2[X]. Unfortunately, E[X2] is
too large. Through a very careful calculation using the weight distribution of Reed Solomon
codes which we do not attempt to reproduce here, we have E[X2] = Ω

(
e

1
pE2[X]

)
. So in

the regime where, for example, p = q−Ω(1), this approach is unviable.
To understand this (without the aforementioned involved calculation) in an informal

manner, let us fix p = q−r for some fixed constant r. Let us identify the tuple of sets
(A1, . . . , Aq) with the single set S = ∪i∈[q]{(ai, z) | z ∈ Ai}. So, we are choosing a
random subset S ⊂ F2

q of size ≈ q2−r. On the other hand, the objects we are looking
for, i.e., codewords, have size q. This is much larger than the standard deviation of |S|,
which is of the order of q1−(r/2). Thus, conditioning on the existence of some codeword
w ⊂ F2

q, the distribution of S changes significantly. One way to see this is the follow-
ing: Using standard Chernoff bounds, one can check that the size of S is almost surely
q2−r ±O

(
q1−(r/2) log q

)
. However, conditioned on w ∈ A1 × · · · ×Aq, the size of S is almost

surely q+ q−r(q2 − q)±O
(
q1−(r/2) log q

)
(the additional q comes from the points that make

up w). This is much larger than before when r is relatively large. On the other hand,
the main point behind (successful) applications of the second moment method is that the
distribution does not significantly change after such a conditioning.

One possible way to circumvent the above problem is to pick a uniformly random set
S ⊂ F2

q of size q2−r, instead of every point independently with probability q−r. This is a
closely related distribution, and it is often the case that Theorems in this model are also
true in the above “i.i.d.” model. This fact can be also be made formal (see, for example [10]
Corollary 1.16). Here, when one conditions on the existence of some codeword w, at least
|S| does not change. Thus the second moment method is not ruled out right at the start.
However, it seems to be much more technically involved and it is unclear if it is possible to
obtain the relatively small threshold interval that is required for Theorem 3 in this way.

3.2 Proof sketch of Theorem 7
The key idea in the proof of this theorem is to count the number of polynomials in the
“Fourier basis”. Let us consider f : Fqq → {0, 1} to be the indicator of C. For i ∈ [q], let
gi : Fq → {0, 1} denote the indicator of Ai.

For an extremely brief and informal discussion, what we what we want is essentially
〈f,
∏
i∈[q] gi〉, which, by Plancharel’s identity (see Fact 12) is

∑
α f̂ ·

∏̂
i gi(α). Since C is

a vector space, we have that f̂ is supported on C⊥. Moreover, ĝi(αi) is much larger when
αi = 0 than when αi 6= 0 if Ai is random. This combined with the fact that most points
in C⊥ have large weight, and a bit more Fourier analysis means that the inner product,
〈f,
∏
i gi〉 is dominated by f̂(0)

∏
i∈[q] ĝi(0) which is the expected number of codewords in

A1 × · · · ×Aq.

A. Potukuchi 25:9

Now we give a slightly less informal sketch.

Proof sketch of Theorem 7. What we are trying to estimate is exactly

X = |C ∩ (A1 × · · · ×Aq)| =
∑

(x1,...,xq)∈Fq
f(x)

∏
i∈[q]

gi(xi)

 .

Using Fourier analysis over Fq, one can show that
qq

|C|
·X =

∑
(α1,...,αq)∈C⊥

∏
i∈[q]

ĝi(αi)

≥
∏
i∈[q]

ĝi(0)−

∣∣∣∣∣∣
∑

(α1,...,αq)∈C⊥\{0}

∏
i∈[q]

ĝi(αi)

∣∣∣∣∣∣ . (3)

Using the fact that C is an RS[q, rq] code, one has (see Fact 10) that C⊥ is an RS[q, q−rq−1]
code. What will eventually help in the proof is that the weight distribution of Reed Solomon
codes (and so in particular, C⊥) is well understood.

Now clearly, it suffices to understand the term
∑

(α1,...,αq)∈C⊥

(∏
i∈[q] ĝi(αi)

)
=: R. One

way to control |R| is to control |R|2 = RR. Here, one can use the fact that the Ai’s are
randomly and independently chosen to establish cancellation in many terms of E[|R|2]. More
precisely, one can prove that

E[|R|2] =
∑

(α1,...,αq)∈C⊥\{0}

∏
i∈[q]

E[|ĝi(αi)|2]. (4)

It is a more or less standard fact that if Ai is a uniformly random set where every element
is included with probability p independently, then

E
[
|ĝi(0)|2

]
= p2 + p(1− p)

q
(5)

and

E
[
|ĝi(αi)|2

]
= p(1− p)

q
for αi 6= 0. (6)

This difference, will be the reason why |R| is typically much smaller than
∏
i∈[q] ĝi(0).

To continue, let us rewrite (4) using (5) and (6) as

E[|R|2] =
n−1∑
i=0

∑
α∈C⊥\{0}
wt(α)=n−i

(
p2 + p(1− p)

q

)i(
p(1− p)

q

)n−i

≤
n−1∑
i=0

qq−rq

i!

(
p2 + p(1− p)

q

)i(
p(1− p)

q

)n−i
The last inequality is using the fact that C⊥ is a RS[q, q− rq− 1] code (Fact 10) and thus

we understand its weight distribution (Proposition 11). This quantity can be shown to be at
most e · (1− p)q · qq−rq

(
p
q

)q
e(

2pq
1−p) and so Markov’s inequality gives that with probability

at least 1− 1
q , one has that

|R| ≤
(
eq · (1− p)q · qq−rq

(
p

q

)q
e(

2pq
1−p)

) 1
2

. (7)

On the other hand, using standard large deviation inequalities (1), we have the following:

FSTTCS 2019

25:10 On the AC0[⊕] Complexity of Andreev’s Problem

B Claim 19. For q, c as given above, let ε = ω
(√

qr−1 log (q1−r)
)
, and p = q−r(1 + ε). Then

with probability 1− o(1), we have:∏
i∈[q]

ĝi(0) ≥ q−rq(1 + 0.9ε)0.9q. (8)

What remains to be checked is that for the given range of parameters, plugging in the
estimates from (8) and (7) inside (3) gives us that X > 0, which completes the proof. J

3.3 Proof sketch of Theorem 8
The starting point of Thoerem 8 is noticing that the only case not covered by Theorem 7 is
p ∈ (0, 1) is some fixed constant, or equivalently r = O

(
1

log q

)
.

Proof sketch of Theorem 8. Here we have a somewhat crude weight distribution result for
Reed Solomon codes (Proposition 11) to compute the second moment. We first show that
E[X2] = O

(
e

1
pE2[X]

)
. Using, for example the Paley-Zygmund Inequality (2), this means

that P(X > 0) ≥ Ω(e−
1
p). Thus we have that {X > 0} with at least some (possibly small)

constant probability. But what we need is that P(X > 0) ≥ 0.99. For this, we now use
the fact that APr is monotone and transitive-symmetric. So Corollary 17) gives that for
p′ = p+O

(
1

log q

)
, we have that P(APr(p′) = 1) ≥ 0.99. J

4 AC0[⊕] lower bound for APr

We prove the lower bound by showing that APr solves a biased version of the Coin Problem,
and use the lower bounds known for such kinds of functions, obtained by [12], [6].

I Definition 20 ((p, ε)-coin problem). We say that a circuit C = Cn on n inputs solves the
(p, ε)-coin problem if

For X1, . . . , Xn ∼ Ber(p(1− ε)),

P(C(X1, . . . , Xn) = 0) ≥ 0.99

For X1, . . . , Xn ∼ Ber(p(1 + ε)),

P(C(X1, . . . , Xn) = 1) ≥ 0.99

The
(1

2 , ε
)
-Coin Problem was explicitly introduced in [5]. We shall abbreviate the (p, ε)-

Coin Croblem on n variables as CPn(p, ε). We observe that a function f : {0, 1}n → {0, 1}
solves CPn (p, ε) if it has a sharp threshold at p with threshold interval at most ε. The one
obstacle we have to overcome in using Theorem 5 is that APr has a sharp threshold at
p−c � 1

2 . However, we will show how to simulate biased Bernoulli r.v’s from almost unbiased
ones. Let C(s, d) to denote the class of functions on n variables which have circuits of size
O(s) = O(s(n)) and depth d = d(n) using ∧, ∨, ¬, and ⊕ gates. Here, we make the following
simple observation about the power of AC0[⊕] circuits to solve biased and unbiased ε-coin
problem. First, we observe that it is possible to simulate a biased coin using an unbiased one.

A. Potukuchi 25:11

I Lemma 21. Let s be such that 1
2s ≤ p ∈ (0, 1), and ε ≤ 1

sK
for a large constant K. Then,

there is a CNF Fp on t ≤ s2-variables such that for inputs X1 . . . , Xt ∈ Ber
(1

2 + ε
)
,

P (Fp(X1, . . . , Xt) = 1) = p(1 + Ω(εL))

and for inputs X1 . . . , Xt ∈ Ber
(1

2 − ε
)
,

P (Fp(X1, . . . , Xt) = 1) = p

(
1 + 1

2Ω(
√
t)
− Ω(εL)

)
where L = blog2(1/p)c.

The idea is essentially that the AND of k unbiased coin is a 2−k-biased coin. However,
some extra work has to be done if we want other biases (say, (0.15) · 2k). We give a sketch of
the proof

Proof Sketch. Consider the sequence of integers {ki}i∈N such that for every i, ki is the
largest such that

i∏
j=1

(
1− 1

2j

)kj
≥ p.

We make a basic observation:

I Observation 22. We have that k1 = blog2(1/p)c ≤ s and for all j ≥ 2, we have that
kj ≤ 3.

Let ` be the largest such that k` > 0 and
∑
i∈[`] i · ki < s2. Let t =

∑
i∈[`] i · ki. Consider

the CNF given by

Cp =
∧
j∈[`]

∧
i∈kj

Cji

where the clause Cji is an ∨ of j independent variables. It remains to check that Cp satisfies
the required properties. J

This lemma now gives us the following:

I Lemma 23. Let z ∈ (0, 1) be a fixed constant. If CPn
(1
nz , o(ε logn)

)
∈ Cn(s, h), then

there is a t ≤ log2 n such that CPnt
(1

2 , ε
)
∈ Cnt(zs logn, h+ 2).

Proof. Let C be a circuit for CPn
(1
nz , δ

)
-coin problem. Replace each input variable with

the CNF F(1
nz) from Lemma 21 on t = O(log4 n) independent variables. Call this circuit C′,

on tn variables. If the bias of each of these input variables is 1
2 + ε, then the guarantee of

Lemma 21 is that output of the and gate is 1 with probability at least 1
nz (1 + Ω(ε logn)).

A similar computation gives that if the bias of the inputs are
(1

2 − ε
)
, then the bias of the

output is at most 1
nz (1− Ω(ε logn)). Therefore, C′ solves CPnt

(1
2 , ε
)
, and has size at most

s logn, and depth h+ 2. J

Theorem 7 and Lemma 6, together, now give us the following corollary:

I Corollary 24. Let q be a large enough prime power. Then APr on q2 inputs solves the
(q−r, ε) coin problem, for ε = ω

(
max

{
q−r, q

r−1
3

})

FSTTCS 2019

25:12 On the AC0[⊕] Complexity of Andreev’s Problem

As a result, Theorem 5, and Lemma 21, and Lemma 23 together, give us the following
bounded depth circuit lower bound for APr:

I Theorem 3 (Restated). For any r ∈ (0, 1), and h ∈ N, we have that

APr 6∈ C
(

exp
{

Ω̃
(
hq

r2
h−1

)}
, h
)
.

5 Random list recovery with errors

In this section, we shall again consider Reed-Solomon codes RS[q, rq] where r is some
constant between 0 and 1. Let us slightly abuse notation, as before, and think of a codeword
w ∈ RS[q, rq] corresponding to a polynomial p(X) as the set of all the zeroes of the polynomial
Y = p(X). That is, for a codeword w = (w1, . . . , wq) associated with polynomial p, we think
of w as a subset {(ai, p(ai)) | i ∈ [q]} (recall that F = {a1, . . . , aq}). For a set of points
S ⊂ F2

q and a codeword w we say the agreement between w and S to denote the quantity
|w ∩ S|. For a code C, we say that the agreement between C and S to denote maxw∈C |m∩ S|.

We are interested in the following question: For a set S ⊂ F2
q. What is the smallest `

such that there exists a w ∈ RS[q, rq] such that |w ∩ S| ≥ q − `? In other words, what is the
largest agreement between RS[q, rq] and S? This is (very close to) the list recovery problem
for codes with errors. Naturally, we seek to answer this question when S is chosen randomly
in an i.i.d. fashion with probability p. Theorem 7 gives asymptotically tight bounds in a
relatively straightforward way for constant error rate.

One can observe that the only properties about Reed-Solomon codes that was used
in Theorem 7 was the weight distribution in the dual space of codewords. However, (see
Section 2.1.1) these are also true for punctured Reed-Solomon codes codes. So, an analogus
theorem also holds for punctured Reed Solomon codes. Formally,

I Theorem 25. Let q, n, d be integers such that q is a prime power and n = ω(log q), and

q−
d
n ≥ logn

q and let ε = ω

(
max

{
q−

d
n

√
q1− dn log

(
q1− dn

)})
. Let C be an RS[q, d]|n code.

Let A1, . . . , An be independently chosen random subsets of Fq with each point picked
independently with probability q− dn (1 + ε). Then

P((A1 × · · · ×An) ∩ C = ∅) = o(1).

We do not repeat the proof but is it the exact same as that of Theorem 7. Let Ea denote
the event that the agreement between S and RS[q, rq] is a. Union bound gives us that

P(Eq−`) ≤
(
q

`

)
qrq+1pq−`. (9)

So if ` is such that the RHS of 9 is o(1). Then the agreement is almost surely less than q− `.
For the other direction, we have the following corollary:

I Corollary 26. Let ε ≥ max
{

10q−
d
q−` ,

√
q1− d

q−` · log q
}
. Let S be a randomly chosen

subset of F2
q with each point picked independently with probability at least q−

d
q−` (1 + ε), then

with probability at least 1− o(1), the agreement between S and RS[q, d] is at least q − `.

A. Potukuchi 25:13

Proof. For i ∈ [q − `], let us denote

Si := {j | (i, j) ∈ S}.

Let us use S′ := S1 × · · · × Sq−`. Let us denote C = RS[q, d]|q−`. Formally, for a codeword
w ∈ RS[q, d], denote pw to be the polynomial corresponding to m. We have

C = {(i, pw(i)) | i ∈ [q − `])}

We observe that the conditions in Theorem 7 hold, so

P(C ′ ∩ S′ = ∅) = o(1)

as desired. J

I Corollary 9 (Restated). Given a random subset S ⊆ F2
q where each point is picked with

probability p, then with probability at least 1− o(1), the largest agreement RS[q, d] with S is

d log 1
p
q −O

(
q

log(1
p)

)
.

Proof. Let a be an integer that denotes the maximum agreement between S and RS(q, d).
Suppose that a ≤ d log 1

p
q, then setting ` = q − a, and noting that the conditions for

Corollary 26 are satisfied, we get that with probability at least 1− o(1), there is a polynomial
that agrees with the set S in the first q − ` coordinates. On the other hand, if a ≥
d log 1

p
q + 4 q

log(1
p) , again, setting ` = q − a, Union Bound gives us:

P(Eq−`) ≤
∑
w∈C

∑
P⊂Fq
|P |=q−`

P(w|P ⊆ S)

=
(
q

`

)
qd+1pq−r

� 1
q
.

And so we have that with probability at least 1− o(1), the agreement of RS(q, d) with S

is d log 1
p
q −O

(
q

log(1
p)

)
. J

6 Conclusion

We started off by attempting to prove a bounded depth circuit lower bound for Andreev’s
Problem. This led us into (the decision version of the) random List Recovery of Reed-Solomon
codes. Here we show a sharp threshold for a wide range of parameters, with nontrivial
threshold intervals in some cases. However, one of the unsatisfactory aspects about Theorem 8
is that it is proved in a relatively “hands-off” way possibly resulting in a suboptimal guarantee
on ε. The obvious open problem that is the following:

I Open Problem. Is Theorem 8 true with a better bound on ε?

If it is true with a much smaller ε, it would extend in a straightforward way to the AC0[⊕]
lower bound as well. Another point we would like to make is that the only thing stopping us
from proving Theorem 8 for general MDS codes is the lack of Proposition 18.

FSTTCS 2019

25:14 On the AC0[⊕] Complexity of Andreev’s Problem

References
1 Rohit Agrawal. Coin Theorems and the Fourier Expansion. CoRR, abs/1906.03743, 2019.

arXiv:1906.03743.
2 Eric Allender, Harry Buhrman, Michal Koucký, Dieter van Melkebeek, and Detlef Ronneburger.

Power from Random Strings. SIAM J. Comput., 35(6):1467–1493, 2006. doi:10.1137/
050628994.

3 Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, New York, NY, USA, 1st edition, 2009.

4 Andrej Bogdanov and Muli Safra. Hardness Amplification for Errorless Heuristics. In 48th
Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007)., pages 418–426,
2007. doi:10.1109/FOCS.2007.25.

5 J. Brody and E. Verbin. The Coin Problem and Pseudorandomness for Branching Programs.
In 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, pages 30–39,
October 2010.

6 Eshan Chattopadhyay, Pooya Hatami, Shachar Lovett, and Avishay Tal. Pseudorandom
Generators from the Second Fourier Level and Applications to AC0 with Parity Gates. In
10th Innovations in Theoretical Computer Science Conference, ITCS 2019, pages 22:1–22:15,
2019. doi:10.4230/LIPIcs.ITCS.2019.22.

7 Ehud Friedgut and Gil Kalai. Every Monotone Graph Property Has A Sharp Threshold, 1996.
8 Alexander Golovnev, Rahul Ilango, Russell Impagliazzo, Valentine Kabanets, Antonina Ko-

lokolova, and Avishay Tal. AC0[p] Lower Bounds Against MCSP via the Coin Problem. In
46th International Colloquium on Automata, Languages, and Programming, ICALP 2019,
pages 66:1–66:15, 2019. doi:10.4230/LIPIcs.ICALP.2019.66.

9 Shuichi Hirahara and Rahul Santhanam. On the Average-case Complexity of MCSP and Its
Variants. In Proceedings of the 32Nd Computational Complexity Conference, CCC ’17, pages
7:1–7:20, 2017.

10 Svante Janson, Tomasz Łuczak, and Andrej Rucinski. Preliminaries. John Wiley, New York,
2000.

11 David S Johnson. The NP-completeness Column: An Ongoing Guide. J. Algorithms, 7(2):289–
305, June 1986.

12 Nutan Limaye, Karteek Sreenivasaiah, Srikanth Srinivasan, Utkarsh Tripathi, and S. Venkitesh.
A fixed-depth size-hierarchy theorem for AC0[⊕] via the coin problem. In Proceedings of the
51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, pages 442–453,
2019. doi:10.1145/3313276.3316339.

13 Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, New York, NY,
USA, 2014.

14 Ronen Shaltiel and Emanuele Viola. Hardness Amplification Proofs Require Majority. SIAM
J. Comput., 39(7):3122–3154, July 2010.

15 Terence Tao and Van H. Vu. Additive Combinatorics. Cambridge Studies in Advanced
Mathematics. Cambridge University Press, 2006. doi:10.1017/CBO9780511755149.

http://arxiv.org/abs/1906.03743
https://doi.org/10.1137/050628994
https://doi.org/10.1137/050628994
https://doi.org/10.1109/FOCS.2007.25
https://doi.org/10.4230/LIPIcs.ITCS.2019.22
https://doi.org/10.4230/LIPIcs.ICALP.2019.66
https://doi.org/10.1145/3313276.3316339
https://doi.org/10.1017/CBO9780511755149

The Preemptive Resource Allocation Problem
Kanthi Sarpatwar
IBM T. J. Watson Research Center, Yorktown Heights, NY, United States of America
sarpatwa@us.ibm.com

Baruch Schieber
Computer Science Department, New Jersey Institute of Technology, Newark, NJ, United States of
America
https://cs.njit.edu/faculty/sbar
baruch.m.schieber@njit.edu

Hadas Shachnai
Computer Science Department, Technion, Haifa, Israel
hadas@cs.technion.ac.il

Abstract
We revisit a classical scheduling model to incorporate modern trends in data center networks and
cloud services. Addressing some key challenges in the allocation of shared resources to user requests
(jobs) in such settings, we consider the following variants of the classic resource allocation problem
(RAP). The input to our problems is a set J of jobs and a set M of homogeneous hosts, each has an
available amount of some resource. A job is associated with a release time, a due date, a weight
and a given length, as well as its resource requirement. A feasible schedule is an allocation of the
resource to a subset of the jobs, satisfying the job release times/due dates as well as the resource
constraints. A crucial distinction between classic RAP and our problems is that we allow preemption
and migration of jobs, motivated by virtualization techniques.

We consider two natural objectives: throughput maximization (MaxT), which seeks a maximum
weight subset of the jobs that can be feasibly scheduled on the hosts inM , and resource minimization
(MinR), that is finding the minimum number of (homogeneous) hosts needed to feasibly schedule all
jobs. Both problems are known to be NP-hard. We first present an Ω(1)-approximation algorithm
for MaxT instances where time-windows form a laminar family of intervals. We then extend the
algorithm to handle instances with arbitrary time-windows, assuming there is sufficient slack for
each job to be completed. For MinR we study a more general setting with d resources and derive an
O(log d)-approximation for any fixed d ≥ 1, under the assumption that time-windows are not too
small. This assumption can be removed leading to a slightly worse ratio of O(log d log∗ T), where T
is the maximum due date of any job.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Packing and covering problems; Theory of computation → Scheduling
algorithms

Keywords and phrases Machine Scheduling, Resource Allocation, Vector Packing, Approximation
Algorithms

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.26

Related Version Full Version: https://arxiv.org/abs/1811.07413

1 Introduction

We revisit a classical scheduling model to incorporate modern trends in data center networks
and cloud services. The proliferation of virtualization and containerization technologies, along
with the advent of increasingly powerful multi-core processors, has made it possible to execute
multiple virtual machines (or jobs) simultaneously on the same host, as well as to preempt
and migrate jobs with relative ease. We address some fundamental problems in the efficient
allocation of shared resources such as CPU cores, RAM, or network bandwidth to several
competing jobs. These problems are modeled to exploit multi-job execution and facilitate

© Kanthi Sarpatwar, Baruch Schieber, and Hadas Shachnai;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 26; pp. 26:1–26:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-7737-1200
mailto:sarpatwa@us.ibm.com
https://cs.njit.edu/faculty/sbar
mailto:baruch.m.schieber@njit.edu
mailto:hadas@cs.technion.ac.il
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.26
https://arxiv.org/abs/1811.07413
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 The Preemptive Resource Allocation Problem

preemption and migration, while respecting resource and timing constraints. Typically, the
infrastructure service providers are oversubscribed; therefore, the common goals here include
admission control of jobs to maximize throughput, or minimizing the additional resource
required to process all jobs.

The broad setting considered in this paper is the following. Suppose we are given a set
of jobs J that need to be scheduled on a set of identical hosts M , where each host has a
limited amount of one or more resources. Each job j ∈ J has release time rj , due date dj ,
and length pj , along with a required amount of the resource sj (s̄j for multiple resources). A
job j can be preempted and migrated across hosts but cannot be processed simultaneously
on multiple hosts, i.e., at any time a job can be processed by at most one host. However,
multiple jobs can be processed by any host at any given time, as long as their combined
resource requirement does not exceed the available resource. We consider two commonly
occurring objectives, namely, throughput maximization and resource minimization.

In the maximum throughput (MaxT) variant, we are given a set of homogeneous hosts M
and a set of jobs J , such that each job j has a profit wj > 0 and attributes (pj , sj , rj , dj).
The goal is to find a subset S ⊆ J of jobs of maximum profit

∑
j∈S wj that can be feasibly

scheduled on M . This problem can be viewed as a preemptive variant of the classic resource
allocation problem (RAP) [26, 11, 8, 5].

In the resource minimization (MinR) variant, we assume that each job j has a resource
requirement vector s̄j ∈ [0, 1]d as one of the attributes, where d ≥ 1 is the number of available
resources. W.l.o.g., we assume that each host has a unit amount of each of the d resources. A
schedule that assigns a set of jobs Si,t to a host i ∈M at time t is feasible if

∑
j∈Si,t

s̄j ≤ 1̄d.
Given a set of jobs J with attributes (pj , s̄j , rj , dj), we seek a set of (homogeneous) hosts M
of minimum cardinality such that all of the jobs can be scheduled feasibly on M . MinR is a
generalization of the classic vector packing (VP) problem, in which a set of d-dimensional
items needs to be feasibly packed into a minimum number of d-dimensional bins of unit size
in each dimension, i.e., the vector sum of all the items packed into each bin has to be less
than or equal to 1̄d. Any instance of VP can be viewed as an instance of MinR with rj = 0,
dj = 1 and pj = 1 for job j ∈ J .

Another application of this general scheduling scenario relates to the allocation of space
and time to advertisements by online advertisement platforms (such as Google or Facebook).
In the ad placement problem [14, 18] we are given a schedule length of T time slots and a
collection of ads that need to be scheduled within this time frame. The ads must be placed
in a rectangular display area. whose contents can change in different time slots. All ads
share the same height, which is the height of the display area, but may have different widths.
Several ads may be displayed simultaneously (side by side), as long as their combined width
does not exceed the width of the display area. In addition, each advertisement specifies a
display count (in the range 1, . . . , T), which is the number of time slots during which the ad
must be displayed. The actual time slots in which the advertisement will be displayed may
be chosen arbitrarily by the scheduler, and, in particular, need not be consecutive. Suppose
that each advertisement is associated with some positive profit, and the scheduler may accept
or reject any given ad. A common objective is to schedule a maximum-profit subset of ads
within a display area of given width. Indeed, this problem can be cast as a special case of
MaxT with a single host, where all jobs have the same release time and due date.

1.1 Prior Work
The classical problem of preemptively scheduling a set of jobs with attributes (pj , sj = 1, rj , dj)
on a single machine so as to maximize throughput can be cast as a special case of MaxT
with a single host, where each job requires all of the available resource. Lawler [24] showed

K. Sarpatwar, B. Schieber, and H. Shachnai 26:3

that in this special case MaxT admits a polynomial time approximation scheme (PTAS),
and the problem is polynomially solvable for uniform job weights. For multiple hosts (i.e.,
m = |M | > 1), this special case of MaxT (sj = 1 for all j ∈ J) admits a 1

6+ε -approximation,
for any fixed ε > 0. This follows from a result of Kalyanasundaram and Pruhs [21].

As mentioned earlier, another special case of MaxT was studied in the context of advert-
isement placement. The ad placement problem was introduced by Adler et al. [1] and later
studied in numerous papers (see, e.g., [14, 18, 15, 23, 22] and the survey in [25]). Freund
and Naor [18] presented a (1/3− ε)-approximation for the maximum profit version, namely,
for MaxT with a single host and the same release time and due date for all jobs.

Fox and Korupula [17] studied our preemptive scheduling model, with job attributes
(pj , sj , rj , dj), under another popular objective, namely, minimizing weighted flow-time. Their
work differs from ours in two ways: while they focus on the online versions, we consider our
problems in an offline setting. Further, as they note, while the throughput and resource
minimization objectives are also commonly considered metrics, their techniques only deal
with flow-time. In fact, these objectives are fundamentally different, and we need novel
algorithms to tackle them.

The non-preemptive variant of MaxT, known as the resource allocation problem (RAP), was
introduced by Phillips et al. [26], and later studied by many authors (see, e.g., [7, 6, 8, 9, 19, 11]
and the references therein).1 Chakaravarthy et al. [9] consider a generalization of RAP and
obtain a constant approximation based on a primal-dual algorithm. We note that the
preemptive versus non-preemptive problems differ quite a bit in their structural properties.

As mentioned above, MinR generalizes the classic vector packing (VP) problem. The
first non-trivial O(log d)-approximation algorithm for VP was presented by Chekuri and
Khanna [10], for any fixed d ≥ 1. This ratio was improved by Bansal, Caprara and
Sviridenko [3] to a randomized algorithm with asymptotic approximation ratio arbitrarily close
to ln d+1. Bansal, Eliás and Khan [4] recently improved this ratio further to 0.807+ln(d+1).
A “fractional variant” of MinR was considered by Jansen and Porkolab [20], where time was
assumed to be continuous. For this problem, in the case of a single host, they obtain a PTAS,
by solving a configuration linear program (rounding the LP solution is not necessary because
time is continuous in their case).

Resource minimization was considered also in the context of the ad placement problem.
In this variant, all ads must be scheduled, and the objective is to minimize the width of the
display area required to make this possible. Freund and Naor [18] gave a 2-approximation
algorithm for the problem, which was later improved by Dawande et al. [15] to 3/2. This
implies a 3-approximation for MinR instances with d = 1, where all jobs have the same release
time and due date. We note that this ratio can be slightly improved, using the property that
sj ≤ 1 for all j ∈ J . Indeed, we can schedule the jobs to use the resource, such that the total
resource requirements at any two time slots differ at most by one. Thus, the total amount of
resource required at any time exceeds the optimum, OPT , at most by one unit, implying the
jobs can be feasibly scheduled on 2OPT + 1 hosts.

Another line of work relates to the non-preemptive version of MinR, where d = 1 and
the requirement of each job is equal to 1 (see, e.g. [13, 12]); thus, at most one job can be
scheduled on each host at any time.

1 RAP is also known as the bandwidth allocation problem.

FSTTCS 2019

26:4 The Preemptive Resource Allocation Problem

1.2 Contributions and Techniques

For summarizing our results, we need the notion of slackness. Denote the time window for
processing job j ∈ J by χj = [rj , dj], and let |χj | = dj − rj + 1 denote the length of the
interval. Throughout the discussion, we assume that time windows are large enough, i.e.,
there is a constant λ ∈ (0, 1), such that pj ≤ λ|χj | for any job j. Such an assumption is
quite reasonable in scenarios arising in our applications. We call λ the slackness parameter
of the instance.

For the MaxT problem, we present (in Section 3) an Ω(1)-approximation algorithm. As
mentioned above, the non-preemptive version of this problem is the classic RAP. To see
the structural differences between the non-preemptive and preemptive versions, we consider
their natural linear programming relaxations. In solving RAP it suffices to have a variable
xjt for each job j and time slot t, indicating the start of job j at slot t. This allows to
apply a natural randomized rounding algorithm, where job j is scheduled to start at time
t with probability xjt. On the other hand, in MaxT a job can be preempted; therefore,
each job requires multiple indicator variables. Further, these variables must be rounded in
an all-or-nothing fashion, i.e., either we schedule all parts of a job or none of them. Our
approach to handle this situation is to, somewhat counter-intuitively, “dumb down” the
linear program by not committing the jobs to a particular schedule; instead, we choose a
subset of jobs that satisfy certain knapsack constraints and construct the actual schedule in
a subsequent phase.

We first consider a laminar variant of the problem, where the time windows for the
jobs are chosen from a laminar family of intervals.2 This setting includes several important
special cases, such as (i) all jobs are released at t = 0 but have different due dates, or (ii)
jobs are released at different times, but all must be completed by a given due date. Recall
that m = |M | is the number of hosts. Our result for the laminar case is a 1

2 − λ
(1

2 + 1
m

)
-

approximation algorithm, assuming that the slackness parameter satisfies λ < 1− 2
m+2 .

Using a simple transformation of an arbitrary instance to laminar, we obtain a 1
8 −λ

(1
2 + 1

m

)
-

approximation algorithm for general instances, assuming that λ < 1
4 −

1
2(m+2) . Our results

imply that as λ decreases, the approximation ratio approaches 1
2 and 1

8 for the laminar and
the general case, respectively.

Subsequently, we tighten the slackness assumption further to obtain an Ω(1)-approxima-
tion algorithm for any constant slackness λ ∈ (0, 1) for the laminar case and any constant
λ ∈ (0, 1

4) for the general case. In the special case where the weight of the job is equal
to its area, we extend an algorithm due to Chen, Hassin and Tzur [11] to obtain an Ω(1)-
approximation guarantee for the general case with no assumption on slackness.

Our algorithm for the laminar case relies on a non-trivial combination of a packing phase
and a scheduling phase. While the first phase ensures that the output solution has high profit,
the second phase guarantees its feasibility. To facilitate a successful completion of the selected
jobs, we formulate a set of conditions that must be satisfied in the packing phase. Both
phases make use of the structural properties of a laminar family of intervals. In the packing
phase, we apply our rounding procedure (for the LP solution) to the tree representation
of the intervals.3 We further use this tree in the scheduling phase, to feasibly assign the
resource to the selected jobs in a bottom-up fashion. Our framework for solving MaxT is
general, and may therefore find use in other settings of non-consecutive resource allocation.

2 See the formal definition in Section 2.
3 This procedure bears some similarity to the pipage rounding technique of [2].

K. Sarpatwar, B. Schieber, and H. Shachnai 26:5

For the MinR problem, we obtain (in Section 4) an O(log d)-approximation algorithm
for any constant d ≥ 1, under a mild assumption that any job has a window of size
Ω(d2 log d log T), where T = maxj dj . We show that this assumption can be removed, leading
to a slight degradation in the approximation factor to O(log d log∗ T), where log∗ T is the
smallest integer κ such that log log . . . log︸ ︷︷ ︸

κ times

T ≤ 1. Our approach builds on a formulation of

the problem as a configuration LP, inspired by the works of [3, 16]. However, we quickly
deviate from these prior approaches, in order to handle the time-windows and the extra
constraints. Our algorithm involves two main phases: a maximization phase and residual
phase. Roughly speaking, a configuration is a subset of jobs that can be feasibly assigned to a
host at a given time slot t. For each t, we choose O(m log d) configurations with probabilities
proportional to their LP-values. In this phase, jobs may be allocated the resource only for
part of their processing length. In the second phase, we construct a residual instance based
on the amount of time each job has been processed. A key challenge is to show that, for any
time window χ, the total “area” of jobs left to be scheduled is at most 1/d of the original
total area. We use this property to solve the residual instance.

2 Preliminaries

We start with some definitions and notation. For our preemptive variants of RAP, we assume
w.l.o.g. that each host has a unit amount of each resource. We further assume that time
is slotted. We allow non-consecutive allocation of a resource to each job, as well as job
migration. Multiple jobs can be assigned to the same machine at a given time but no job
can be processed by multiple machines at the same time. Formally, we denote the set of jobs
assigned to host i ∈M at time t by Si,t. We say that job j is completed if there are pj time
slots t ∈ [rj , dj] = χj in which j is allocated its required amount of the resource on some
host. A job j is completed if |{t ∈ χj : ∃i ∈M such that j ∈ Si,t}| ≥ pj . Let T = maxj∈J dj
be the latest due date of any job.

In MaxT, each job j ∈ J has a resource requirement sj ∈ (0, 1]. An assignment of a subset
of jobs S ⊆ J to the hosts in M is feasible if each job j ∈ S is completed, and for any time
slot t and host i ∈ M ,

∑
j∈Si,t

sj ≤ 1, i.e., the sum of requirements of all jobs assigned to
host i is at most the available resource. For the MinR variant, we assume multiple resources.
Thus, each job j has a resource requirement vector s̄j ∈ [0, 1]d, for some constant d ≥ 1.
Further, each host has a unit amount of each of the d resources. An assignment of a set of
jobs Si,t to a host i ∈M at time t is feasible if

∑
j∈Si,t

s̄j ≤ 1̄d.
Let aj = sjpj denote the total resource requirement (or, area) of job j ∈ J and refer to

the quantity wj/aj as the density of job j. Finally, a set of intervals is laminar if for any two
intervals χ′ and χ′′, exactly one of the following holds: χ′ ⊆ χ′′, χ′′ ⊂ χ′ or χ′ ∩ χ′′ = φ.

3 Throughput Maximization

We first consider the case where L = {χj : j ∈ J} forms a laminar family of intervals.
In Section 3.1, we present an Ω(1)-approximation algorithm for the laminar case when
λ ∈

(
0, 1− 2

m+2

)
. Following this, we describe (in Section 3.2) our constant approximation

for the general case for λ ∈
(

0, 1
4 −

1
2(m+2)

)
. We then show, in Section 3.3, how to tighten the

results to any constant slackness parameter (i) λ ∈ (0, 1) in the laminar case (ii) λ ∈ (0, 1
4) in

the general case. As an interesting corollary, we obtain an Ω
(

1
logn

)
-approximation algorithm

FSTTCS 2019

26:6 The Preemptive Resource Allocation Problem

for the general MaxT problem with no slackness assumption. Further, we show that in the
special case of maximum utilization (i.e., the profit of each job equals its “area”), we obtain
an Ω(1) guarantee with no assumption on the slackness.

3.1 The Laminar Case
Our algorithm proceeds in two phases. While the first phase ensures that the output solution
has high profit, the second phase guarantees its feasibility. Specifically, let ω ∈ (0, 1− λ

m] be
a parameter (to be determined).

In Phase 1, we find a subset of jobs S satisfying a knapsack constraint for each χ. Indeed,
any feasible solution guarantees that the total area of jobs within any time-window χ ∈ L is
at most m|χ|. Our knapsack constraints further restrict the total area of jobs in χ to some
fraction of m|χ|. We adopt an LP-rounding based approach to compute a subset S that is
optimal subject to the further restricted knapsack constraints. (We remark that a dynamic
programming approach would work as well. However, such an approach would not provide us
with any intuition as to how an optimal solution for the further restricted instance compares
with the optimal solution of the original instance.)

In Phase 2 we allocate the resource to the jobs in S, by considering separately each host
i at a given time slot t ∈ [T] as a unit-sized bin (i, t) and iteratively assigning each job j ∈ S
to a subset of such available bins, until j has the resource allocated for pj distinct time slots.
An outline of the two phases is given in Algorithm 1.

Algorithm 1 Throughput maximization algorithm outline.

Input: Set of jobs J , hosts M and a parameter ω ∈ (0, 1− λ
m]

Output: Subset of jobs S ⊆ J and a feasible assignment of S to the hosts in M
Phase 1: Select a subset S ⊆ J , such that for each χ ∈ L:∑

j∈S:χj⊆χ aj ≤ (ω + λ
m)m|χ|

Phase 2: Find a feasible allocation of the resource to the jobs in S

Phase 1: The algorithm starts by finding a subset of jobs S ⊆ J such that for any χ ∈ L:∑
j∈S:χj⊆χ aj ≤ (ω + λ

m)m|χ|. We solve the following LP relaxation, in which we impose
stricter constraint on the total area of the jobs assigned in each time window χ.

LP: Maximize
∑
j∈J wjxj

Subject to:
∑
j:χj⊆χ ajxj ≤ ωm|χ| ∀χ ∈ L

0 ≤ xj ≤ 1 ∀j ∈ J

Rounding the Fractional Solution: Suppose x∗ = (x∗j : j ∈ J) is an optimal fractional solution
for the LP. Our goal is to construct an integral solution x̂ = (x̂j : j ∈ J). We refer to a job j
with x∗j ∈ (0, 1) as a fractional job, and to the quantity ajx∗j as its fractional area. W.l.o.g.,
we may assume that for any interval χ ∈ L, there is at most one job j with χj = χ such that
0 < x∗j < 1, i.e., it is fractional. Indeed, if two such jobs exist, then the fractional value of
the higher density job (breaking ties arbitrarily) can be increased to obtain a solution no
worse than the optimal. Note, however, that there could be fractional jobs j′ with χj′ ⊂ χ.

We start by setting x̂j = x∗j for all j ∈ J . Consider the tree representation of L, which
contains a node (also denoted by χ) for each χ ∈ L, and an edge between nodes corresponding
to χ and χ′, where χ′ ⊂ χ, if there is no interval χ′′ ∈ L such that χ′ ⊂ χ′′ ⊂ χ.4 Our

4 Throughout the discussion we use interchangeably the terms node and interval when referring to a
time-window χ ∈ L.

K. Sarpatwar, B. Schieber, and H. Shachnai 26:7

rounding procedure works in a bottom-up fashion. As part of this procedure, we label the
nodes with one of two possible colors: gray and black. Initially, all leaf nodes are colored
black, and all internal nodes are colored gray. The procedure terminates when all nodes are
colored black. A node χ is colored as black if the following property holds:

I Property 1. For any path P(χ, χl) from χ to a leaf χl there is at most one fractional job
j such that χj lies on P(χ, χl).

We note that the property trivially holds for the leaf nodes. Now, consider a gray interval
χ with children χ1, χ2, . . . , χν , each colored black. Note that χ is well defined because leaf
intervals are all colored black. If there is no fractional job that has χ as its time-window,
Property 1 follows by induction, and we color χ black. Assume now that j is a fractional job
that has χ as its time-window (i.e., χj = χ). If there is no other fractional job that has its
time-window (strictly) contained in χ, Property 1 is trivially satisfied. Therefore, assume that
there are other fractional jobs j1, j2, . . . , jl that have their time-windows (strictly) contained
in χ. Now, we decrease the fractional area (i.e., the quantity aj x̂j) of j by ∆ and increase the
fractional area of jobs in the set {j1, j2, . . . , jl} by ∆k for job jk, such that ∆ =

∑
k∈[l] ∆k.

Formally, we set x̂j → x̂j − ∆
aj

and x̂jk
→ x̂jk

+ ∆k

ajk
. We choose these increments such that

either x̂j becomes 0, or for each k ∈ [l], x̂jk
becomes 1. Clearly, in both scenarios, Property 1

is satisfied, and we color χ black.
When all nodes are colored black, we round up the remaining fractional jobs. Namely, for

all jobs j such that x̂j ∈ (0, 1), we set x̂j = 1. It is important to note that by doing so we
may violate the knapsack constraints. However, in Theorem 1, we bound the violation.

I Theorem 1. Suppose I = (J,M,L) is a laminar instance of MaxT with optimal profit W
and ∀j ∈ J : pj ≤ λ|χj |. For any ω ∈ (0, 1− λ

m], the subset S = {j ∈ J : x̂j = 1}, obtained
as above, satisfies

∑
j∈S wj ≥ ωW , and for any χ ∈ L,

∑
j∈S:χj⊆χ aj ≤ (ω + λ

m)m|χ|.

Proof. We first observe that any optimal solution x∗ for the LP satisfies:
∑
j∈J wjx

∗
j ≥ ωW .

Indeed, consider an optimal solution O for the instance I. We can construct a fractional
feasible solution x′ for the LP by setting x′j = ω if j ∈ O; otherwise, x′j = 0. Clearly, x′ is a
feasible solution for the LP with profit ωW .

Consider an integral solution x̂, obtained by applying the rounding procedure on x∗. We
first show that

∑
j∈J wj x̂j ≥ ωW . To this end, we prove that

∑
j∈J wj x̂j ≥

∑
j∈J wjx

∗
j ≥

ωW . Suppose we decrease the fractional area of a job j by an amount ∆, i.e., we set
x̂j ← x̂j − ∆

aj
. By the virtue of our procedure, we must simultaneously increase the fractional

area of some subset of jobs Fj , where for each k ∈ Fj we have χk ⊂ χj . Further, the combined
increase in the fractional area of the jobs in Fj is the same ∆. Now, we observe that the
density of job j (i.e., wj

aj
) cannot be higher than any of the jobs in Fj . Indeed, if j′ ∈ Fj has

density strictly lower than j, then the optimal solution x∗ can be improved by decreasing the
fractional area of j′ by some ε while increasing that of j by the same amount (it is easy to
see that no constraint is violated in this process) – a contradiction. Therefore, our rounding
procedure will never result in a loss, and

∑
j∈J wj x̂j ≥

∑
j∈J wjx

∗
j ≥ ωW .

We now show that, for each χ ∈ L,
∑
j∈J:χj⊆χ aj x̂j ≤ (ω + λ

m)m|χ|. First, observe
that for any gray interval χ the total fractional area is conserved. This is true because
there is no transfer of fractional area from the subtree rooted at χ to a node outside this
subtree until χ is colored black. Now, consider an interval χ that is colored black. We note
that for any job j with x∗j = 0, our algorithm ensures that x̂j = 0, i.e., it creates no new
fractional jobs. Consider the vector x̂ when the interval χ is converted from gray to black.
At this stage, we have that the total (fractional) area packed in the subtree rooted at χ is

FSTTCS 2019

26:8 The Preemptive Resource Allocation Problem

V (χ) def=
∑
j∈J:χj⊆χ aj x̂j ≤ ωm|χ|. Let F(χ) denote the set of all fractional jobs j′ that

have their time-windows contained in χ (i.e., χj′ ⊆ χ). We claim that the maximum increase
in V (χ) by the end of the rounding procedure is at most

∑
j′∈F(χ) aj′ . This holds since our

procedure does not change the variables x̂j ∈ {0, 1}. Thus, the maximum increase in the
total area occurs due to rounding all fractional jobs into complete ones, after all nodes are
colored black. To complete the proof, we now show that the total area of the fractional jobs
in the subtree rooted at χ satisfies A[χ] def=

∑
j′∈F(χ) aj′ ≤ λ|χ|. We prove this by induction

on the level of node χ. Clearly, if χ is a leaf then the claim holds, since there can exist at
most one fractional job j in χ, and aj ≤ pj ≤ λ|χ|. Suppose that {χ1, χ2, . . . χl} are the
children of χ. If there is a fractional job j with χj = χ then, by Property 1, there are no
other fractional jobs with time-windows contained in χ. Hence, A[χ] = aj ≤ λ|χ|. Suppose
there is no fractional job with χj = χ; then, by the induction hypothesis: A[χk] ≤ λ|χk| for
all k ∈ [l]. Further,

∑
k∈[l] |χk| ≤ |χ| and A[χ] =

∑
k∈[l]A[χk] ≤

∑
k∈[l] λ|χk| ≤ λ|χ|. J

Let O be an optimal solution for I satisfying: ∀χ ∈ L :
∑
j∈O:χj⊆χ aj ≤ cm|χ|, for

some c ≥ 1. Then it is easy to verify that any optimal solution x∗ for the LP satisfies:∑
j∈J wjx

∗
j ≥ ω

cW . Hence, we have

I Corollary 2. Suppose I = (J,M,L) is a laminar instance of MaxT, such that ∀j ∈
J : pj ≤ λ|χj |. Let S+ ⊆ J be a subset of jobs of total profit W satisfying ∀χ ∈ L:∑
j∈S+:χj⊆χ aj ≤ cm|χ|, for some c ≥ 1. Then, for any ω ∈ (0, 1− λ

m], there exists a subset
S ⊆ J satisfying

∑
j∈S wj ≥

ω
cW , such that ∀χ ∈ L,

∑
j∈S:χj⊆χ aj ≤ (ω + λ

m)m|χ|.

Phase 2: In Phase 1 we obtained a subset S ⊆ J , such that for each χ ∈ L:
∑
j∈S:χj⊆χ aj ≤

(ω + λ
m)m|χ|. We now show that it is always possible to find a feasible packing of all jobs in

S. We refer to host i at time t as a bin (i, t). In the allocation phase we label a bin with one
of three possible colors: white, gray or black. Initially, all bins are colored white. We color a
bin (i, t) gray when some job j is assigned to host i at time t and color it black when we
decide to assign no more jobs to this bin. Our algorithm works in a bottom-up fashion and
marks an interval χ as done when it has successfully completed all the jobs j with χj ⊆ χ.
Consider an interval χ such that any χ′ ⊂ χ has already been marked done. Let j ∈ S be
a job with time-window χj = χ, that has not been processed yet. To complete job j, we
must pick pj distinct time slots in χ and assign it to a bin in each slot. Suppose that we
have already assigned the job to p′j < pj slots so far. Denote by avail(j) ⊆ χ the subset of
time slots where j has not been assigned yet. We pick the next slot and bin as shown in
Algorithm 2.

I Theorem 3. For any λ < 1− 2
m+2 , there exists a 1

2 − λ
(1

2 + 1
m

)
-approximation algorithm

for the laminar MaxT problem, assuming that pj ≤ λ|χj | for all j ∈ J .

Proof. Given an instance I = (J,M,L) and a parameter ω ∈ (0, 1− λ
m], let W denote the

optimal profit. We apply Theorem 1 to find a subset of jobs S ⊆ J of profit ωW , such that
for any χ ∈ L:

∑
j∈S:χj⊆χ aj ≤ (ω + λ

m)m|χ|. We now show that there is a feasible resource
assignment to the jobs in S for ω = 1

2 − λ
(1

2 + 1
m

)
. Clearly, this would imply the theorem.

We show that for the above value of ω Algorithm 2 never reports fail, i.e., the resource is
feasibly allocated to all jobs in S. Assume towards contradiction that Algorithm 2 reports
fail while assigning job j. Suppose that j was assigned to p′j < pj bins before this fail. For
t ∈ χ = χj , we say that bin (i, t) is bad if either (i, t) is colored gray, or j has been assigned
to some bin (i′, t) in the same time slot. We first show that the following invariant holds, as
long as no job j+ such that χ ⊂ χj+ has been allocated the resource: the number of bad bins

K. Sarpatwar, B. Schieber, and H. Shachnai 26:9

Algorithm 2 Resource allocation to job j in a single time slot.

1: if there exists a gray bin (i, t) in avail(j) then
2: let S(i,t) be the set of jobs assigned to this bin
3: if

∑
j′∈S(i,t)

sj′ + sj ≤ 1 then
4: assign j to host i at time t
5: else if there exists a white bin (i′, t′) in avail(j) then
6: assign j to host i′ at time t′.
7: color (i, t) and (i′, t′) black
8: pair up (i, t)↔ (i′, t′)
9: else
10: report fail
11: end if
12: else if there exists a white bin (i, t) in avail(j) then
13: assign j to host i at time t
14: color the bin (i, t) gray
15: else
16: report fail
17: end if

while processing job j is at most λm|χ|. Assuming that the claim is true in each of the child
intervals of χ, {χ1, χ2 . . . , χl}, before any job with time window χ is allocated the resource,
we have the number of bad bins = number of gray bins is at most

∑
k∈[l] λm|χk| ≤ λm|χ|.

Now, consider the iteration in which we assign j to host i at time t. If (i, t) is a gray bin,
then the number of bad bins cannot increase. On the other hand, suppose (i, t) was white
before we assign j. If there are no gray bins in χ, then the number of bad bins is at most
mpj ≤ λm|χ|. Suppose there exist some gray bins, and consider those bins of the form (i′, t′)
such that job j has not been assigned to any host at time t′. If there are no such bins, then
again the number of bad bins is at most mpj ≤ λm|χ|. Otherwise, we must have considered
one such gray bin (i′, t′) and failed to assign j to host i′ at time t′. By the virtue of the
algorithm, we must have colored both (i, t) and (i′, t′) black. Thus, the number of bad bins
does not increase, and our claim holds. Now, since we pair the black bins (i, t) ↔ (i′, t′)
only if

∑
j∈S(i,t)

sj +
∑
j′∈S(i′,t′)

sj′ > 1, the total number of black bins < 2(ω + λ
m)m|χ|.

Hence, the total number of bins that are black or bad is < (λ+ 2(ω+ λ
m))m|χ|. Now, setting

ω = 1
2 − λ

(1
2 + 1

m

)
, there should be at least one bin (i∗, t∗) that is neither black nor bad.

But in this case, we could have assigned j to host i∗ at time t∗, which is a contradiction to
the assumption that the algorithm reports a fail. J

For convenience, we restate the claim shown in the proof of Theorem 3.

I Corollary 4. Let I = (J,M,L) be a laminar instance where pj ≤ λ|χj | ∀j ∈ J , for λ ∈
(0, 1). Let S ⊆ J be a subset of jobs, such that for any χ ∈ L:

∑
j∈S:χj⊆χ aj ≤ (ω + λ

m)m|χ|,
where ω ≤ 1

2 − λ
(1

2 + 1
m

)
. Then, there exists a feasible resource assignment to the jobs in S.

3.2 The General Case
We use a simple transformation of general instances of MaxT into laminar instances and
prove an Ω(1)-approximation guarantee. Let W denote the set of all time-windows for jobs
in J , i.e., W = {χj : j ∈ J}. We now construct a laminar set of intervals L and a mapping
L :W → L. Recall that T = maxj∈J dj . The construction is done via a binary tree T whose
nodes correspond to intervals [l, r] ⊆ [T]. The construction is described in Algorithm 3.

FSTTCS 2019

26:10 The Preemptive Resource Allocation Problem

Algorithm 3 Transformation into a laminar set.

Input: Job set J and W = {χj : j ∈ J}
Output: Laminar set of intervals L and a mapping L :W → L
1: let [T] be the root node of tree T
2: while ∃ a leaf node [l, r] in T such that r − l > 1 do
3: add to T two nodes [l, b l+r2 c] and [b l+r2 c+ 1, r] as the children of [l, r]
4: end while
5: let L be the set of intervals corresponding to the nodes of T
6: For each χ ∈ W, let L(χ) = χ′, where χ′ is the largest interval in L contained in χ,

breaking ties by picking the rightmost interval.

I Lemma 5. In Algorithm 3, the following properties hold (Proof in final version):
1. For any j ∈ J , |χj | ≤ 4|L(χj)|.
2. For χ ∈ L, let χ̃ = {t ∈ χj : j ∈ J, L(χj) = χ}, i.e., the union of all time-windows in

W that are mapped to χ. Then, |χ̃| ≤ 4|χ|.

I Theorem 6. For any λ < 1
4−

1
2(m+2) , there exists a

1
8−λ

(1
2 + 1

m

)
-approximation algorithm

for MaxT , assuming that pj ≤ λ|χj | for all j ∈ J .

Proof. Given an instance (J,M,W) of MaxT with slackness parameter λ ∈ (0, 1), we first
use Algorithm 3 to obtain a laminar set of intervals L and the corresponding mapping
L :W → L. Consider a new laminar instance (J` = {j` : j ∈ J},M` = M,L), constructed
by setting χj`

= L(χj). Note that if S` ⊆ J` is a feasible solution for this new instance,
the corresponding set S = {j : j` ∈ S`} is a feasible solution for the original instance.
Let λ` denote the slackness parameter for the new instance. We claim that λ` ≤ 4λ.
Assume this is not true, i.e., there exists a job j`, such that pj`

> 4λ|χj`
|; however, by

Lemma 5, we have pj`
= pj ≤ λ|χj | ≤ 4λ|χj`

|. A contradiction. Now, suppose O ⊆ J is
an optimal solution of total profit W for the original (non-laminar) instance. Consider the
corresponding subset of jobs O` = {j` : j ∈ O}. By Lemma 5, for any χ ∈ L, |χ̃| ≤ 4|χ|.
It follows that, for any χ ∈ L,

∑
j`∈O`:χj`

⊆χ aj`
=
∑
j∈O:L(χj)⊆χ aj ≤ 4m|χ|. Now, we use

Corollary 2 for the laminar instance, taking c = 4, S+ = O` and λ` ∈ (0, 1). Then, for any
ω ∈ (0, 1 − λ`

m], there exists S` ⊆ J` of total profit
∑
j`∈S`

wj ≥ ω
cW , such that ∀χ ∈ L,∑

j`∈S`:χj⊆χ aj`
≤ (ω+ λ`

m)m|χ|. By Corollary 4, there is a feasible assignment of the resource

to the jobs in S` for ω ≤ 1
2−λ`

(1
2 + 1

m

)
. Taking ω = 1

2 − 4λ
(

1
2 + 1

m

)
≤ 1

2 − λ`
(

1
2 + 1

m

)
,

we have the approximation ratio w
c = 1

8 − 4λ
(1

8 + 1
4m
)
, for any λ < 1

4 −
1

2(m+2) . We now
return to the original instance and take for the solution the set S = {j : j` ∈ S`}. J

3.3 Eliminating the Slackness Requirements
In this section we show that the slackness requirements in Theorems 3 and 6 can be
eliminated, while maintaining a constant approximation ratio for MaxT . In particular, for
laminar instances, we show below that Algorithm 1 can be used to obtain a polynomial
time Ω(1)-approximation for any constant slackness parameter λ ∈ (0, 1). For general MaxT
instances, this leads to an Ω(1)-approximation for any constant λ ∈ (0, 1

4). We also show a
polynomial time Ω(1

logn)-approximation algorithm for general MaxT using no assumption
on slackness. We use below the next result, for instances with “large” resource requirement.
The proof is deferred to the full version.

K. Sarpatwar, B. Schieber, and H. Shachnai 26:11

I Lemma 7. For any δ ∈ (0, 1) there is an Ω(1
log(1/δ))-approximation for any instance

I = (J,M,W) of MaxT satisfying sj ≥ δ ∀ j ∈ J .

3.3.1 Laminar Instances
Recall that m = |M | is the number of hosts. Given a fixed λ ∈ (0, 1), let

α = α(m,λ) = λ(1− λ)
1− λ+ λ

m

. (1)

In Phase 1 of Algorithm 1, we round the LP solution to obtain a subset of jobs S ⊆ J .
We first prove the following.

I Lemma 8. Let λ ∈ (0, 1) be a slackness parameter, and

ω = (1− α)(1− λ)− αλ

m
, (2)

where α is defined in (1). Then, given a laminar instance I = (J,M,L) satisfying pj ≤ λ|χj |
and sj ≤ α, there is a feasible allocation of the resource to the jobs in S.

Proof. We generate a feasible schedule of the jobs in S proceeding bottom-up in each laminar
tree. That is, we start handling job j only once all the jobs ` with time windows χ` ⊂ χj
have been scheduled. Jobs having the same time window are scheduled in an arbitrary order.
Let j be the next job, whose time window is χ = χj . We can view the interval χ as a set of
|χ| time slots, each consisting of m unit size bins. We say that a time slot t ∈ χj is “bad” for
job j if there is no space for one processing unit of j (i.e., an “item” of size sj) in any of the
bins in t; else, time slot t is “good”. We note that immediately before we start scheduling job
j the number of bad time slots for j is at most m|χ|(1−λ)(1−α)−aj

m(1−sj) . Indeed, by Theorem 1,
choosing for ω the value in (2), after rounding the LP solution the total area of jobs ` ∈ S,
such that χ` ⊆ χj , is at most

(ω + αλ

m
)m|χ| = ((1− α)(1− λ)− αλ

m
+ αλ

m
)m|χ|. (3)

In addition, for a time slot t to be “bad” for job j, each bin in t has to be at least (1− sj)-full.
Hence, the number of good time slots for j is at least

|χ| − m|χ|(1− λ)(1− α)− aj
m(1− sj)

= |χ|(1− (1− λ)(1− α)
1− sj

) + aj
m(1− sj)

≥ pj
λ

(1− (1− λ)(1− α)
1− sj

) + aj
m(1− sj)

≥ pj

The first inequality follows from the fact that pj ≤ λ|χj | = λ|χ|, and the second inequality
holds since sj ≤ α. Hence, job j can be feasibly scheduled, for any j ∈ S. J

Using Lemmas 7 and 8, we prove our main result.

I Theorem 9. For any m ≥ 1 and constant λ ∈ (0, 1), MaxT admits a polynomial time
Ω(1)-approximation on any laminar instance I = (J,M,L) with slackness parameter λ.

Proof. Given a laminar instance I satisfying the slackness condition, we handle separately
two subsets of jobs.

FSTTCS 2019

26:12 The Preemptive Resource Allocation Problem

Subset 1: Jobs j satisfying sj ≤ α = α(m,λ), where α is defined in (1). We solve MaxT
for these jobs using Algorithm 1, taking the value of ω as in (2). By Theorem 1, the
approximation ratio is ω = (1−α)(1− λ)− αλ

m = (1− λ)2, i.e., we have a constant factor.
Subset 2: For jobs j satisfying sj > α, use Lemma 7 to obtain an Ω(1

log(1/α))-approximation.

Taking the best among the solutions for the two subsets of jobs, we obtain an Ω(1)-
approximation. J

3.3.2 The General Case
Recall that, given a general MaxT instance, (J,M,W), with a slackness parameter λ ∈ (0, 1),
our transformation yields a new laminar instance (J` = {j` : j ∈ J},M` = M,L) with a
slackness parameter λ` ≤ 4λ (see the proof of Theorem 6). Now, define

α` = α`(m,λ`) = λ`(1− λ`)
1− λ` + λ`

m

, (4)

and set

ω = (1− α`)(1− λ`)−
α`λ`
m

. (5)

Then, by Lemma 8, we have that any job j` ∈ J` selected for the solution set S can be
assigned the resource (using Algorithm 1).

I Theorem 10. For any m ≥ 1 and constant λ ∈ (0, 1
4), MaxT admits a polynomial time

Ω(1)-approximation on any instance I = (J,M,W) with slackness parameter λ.

Proof. Given such an instance I, consider the resulting laminar instance. As before, we
handle separately two subsets of jobs.
Subset 1: For jobs j` ∈ J` satisfying sj`

≤ α`, where α` is defined in (4), apply Algorithm 1
with ω value as in (5). Then, the approximation ratio is ω = (1− λ`)2 ≥ (1− 4λ)2.

Subset 2: For jobs j` where sj`
> α`, use Lemma 7 to obtain Ω(1

log(1/α`))-approximation.

Taking the best among the solutions for the two subsets of jobs, we obtain an Ω(1)-
approximation. J

Finally, consider a general instance of MaxT . By selecting δ = 1
n , we can apply Lemma 7

to obtain an Ω(1
logn)-approximate solution, S1 for the jobs j ∈ J of heights sj ≥ 1

n . Let S2

be a solution consisting of all jobs j for which sj < 1
n . Note that this solution is feasible

since
∑
j∈S2

sj < 1. Selecting the highest profit solution between S1 and S2, we have:

I Corollary 11. There is a polynomial time Ω(1
logn)-approximation algorithm for MaxT .

3.3.3 Maximizing Utilization
Consider instances of MaxT where the profit gained from scheduling job j is wj = aj = sjpj .
We give the proof of the following in [27].

I Theorem 12. There is a polynomial time Ω(1)-approximation for any instance of MaxT
where wj = aj for all j ∈ J .

K. Sarpatwar, B. Schieber, and H. Shachnai 26:13

4 Resource Minimization

In this section, we consider the MinR problem with d resources, where d ≥ 1 is some constant.
We show that the problem admits an O(log d)-approximation algorithm under some mild
assumptions on the slack and minimum window size. Further, we show that the latter
assumption can be removed with a slight degradation in the approximation guarantee.

Our approach builds on a formulation of the problem as a configuration LP and involves
two main phases: a maximization phase and residual phase. We start by describing the
configuration LP that is at the heart of our algorithm. Let Jt ⊆ J denote the set of all
jobs j such that t ∈ χj , i.e., j can be allocated resources at time slot t. For any t ∈ [T]
and S ⊆ Jt, C = (S, t) is a valid configuration on a single host if

∑
j∈S s̄j ≤ 1̄d, i.e., the

jobs in S can be feasibly assigned to a single host at time slot t. Denote the set of all valid
configurations at time t by Ct, and by Cj the set of all valid configurations (S, t), such that
S contains job j. Denote by xC the indicator variable for choosing configuration C and by
m the number of hosts needed to schedule all jobs. The fractional relaxation of the integer
program formulation of our problem is given below.

Primal : Minimize m

Subject to: m−
∑
C∈Ct

xC ≥ 0, ∀t ∈ [T]
−
∑
C∈Cj∩Ct

xC ≥ −1, ∀j ∈ J, t ∈ [T]∑
C∈Cj xC ≥ pj , ∀j ∈ J

xC ≥ 0, ∀C

The first constraint ensures that we do not pick more than m configurations for each
time slot t ∈ [T]. The second constraint guarantees that at most one configuration is chosen
for each job j at a given time t. Finally, the last constraint guarantees that each job j is
allocated the resource for pj time slots, i.e., job j is completed. The proof of the following
theorem (see [27]) is similar to a result of Fleischer et al. [16], with some differences due to
“negative” terms in the objective of the dual program.

I Theorem 13. For any ε > 0, there is a polynomial time algorithm that yields a (1 + ε)-
approximate solution for the configuration LP.

Given the objective value m of the approximate LP solution, we choose for each t

O(m log d) configurations with probabilities proportional to their LP-values. In this phase,
jobs may be allocated the resource only for part of their processing length. In the second
phase, we construct a residual instance based on the amount of time each job has been
processed. A key challenge is to show that, for any time window χ, the total “area” of jobs
left to be scheduled is at most 1/d of the original total area. We use this property to solve
the residual instance. The detailed algorithm and its analysis are given in [27].

I Theorem 14. Let (J,W) be an instance of MinR with slackness parameter λ ∈ (0, 1
4). Fix

an ε ∈ (0, 1). If |χj | ≥ 1
mθd

2 log d log(Tε− 1
2) ∀ j ∈ J , for sufficiently large constant θ, we

obtain an O(log d) approximation guarantee with probability at least 1− ε.

I Theorem 15. Let (J,W) be an instance of MinR with slackness parameter λ ∈ (0, 1
4).

Fix an ε ∈ (0, 1). There is a polynomial time algorithm that yields an O(log d log∗ T)
approximation ratio with probability at least 1− ε.

FSTTCS 2019

26:14 The Preemptive Resource Allocation Problem

References
1 Micah Adler, Phillip B Gibbons, and Yossi Matias. Scheduling space-sharing for internet

advertising. Journal of Scheduling, 5(2):103–119, 2002.
2 Alexander A. Ageev and Maxim Sviridenko. Pipage Rounding: A New Method of Constructing

Algorithms with Proven Performance Guarantee. J. Comb. Optim., 8(3):307–328, 2004.
3 Nikhil Bansal, Alberto Caprara, and Maxim Sviridenko. A New Approximation Method for Set

Covering Problems, with Applications to Multidimensional Bin Packing. SIAM J. Comput.,
39(4):1256–1278, 2009.

4 Nikhil Bansal, Marek Eliáš, and Arindam Khan. Improved approximation for vector bin
packing. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1561–1579, 2016.

5 Nikhil Bansal, Zachary Friggstad, Rohit Khandekar, and Mohammad R Salavatipour. A logar-
ithmic approximation for unsplittable flow on line graphs. ACM Transactions on Algorithms,
10(1):1, 2014.

6 Amotz Bar-Noy, Reuven Bar-Yehuda, Ari Freund, Joseph Naor, and Baruch Schieber. A unified
approach to approximating resource allocation and scheduling. J. ACM, 48(5):1069–1090,
2001.

7 Amotz Bar-Noy, Sudipto Guha, Joseph Naor, and Baruch Schieber. Approximating the
Throughput of Multiple Machines in Real-Time Scheduling. SIAM J. Comput., 31(2):331–352,
2001.

8 Gruia Călinescu, Amit Chakrabarti, Howard J. Karloff, and Yuval Rabani. An improved
approximation algorithm for resource allocation. ACM Trans. Algorithms, 7(4):48:1–48:7,
2011.

9 Venkatesan T Chakaravarthy, Anamitra R Choudhury, Shalmoli Gupta, Sambuddha Roy, and
Yogish Sabharwal. Improved algorithms for resource allocation under varying capacity. In
European Symposium on Algorithms, pages 222–234. Springer, 2014.

10 Chandra Chekuri and Sanjeev Khanna. On multidimensional packing problems. SIAM journal
on computing, 33(4):837–851, 2004.

11 Bo Chen, Refael Hassin, and Michal Tzur. Allocation of bandwidth and storage. IIE
Transactions, 34(5):501–507, 2002.

12 Julia Chuzhoy and Paolo Codenotti. Resource minimization job scheduling. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, pages 70–83.
Springer, 2009.

13 Julia Chuzhoy, Sudipto Guha, Sanjeev Khanna, and Joseph Naor. Machine minimization
for scheduling jobs with interval constraints. In Foundations of Computer Science, 2004.
Proceedings. 45th Annual IEEE Symposium on, pages 81–90, 2004.

14 Milind Dawande, Subodha Kumar, and Chelliah Sriskandarajah. Performance bounds of
algorithms for scheduling advertisements on a web page. Journal of Scheduling, 6(4):373–394,
2003.

15 Milind Dawande, Subodha Kumar, and Chelliah Sriskandarajah. Scheduling web advertise-
ments: a note on the minspace problem. Journal of Scheduling, 8(1):97–106, 2005.

16 L. Fleischer, M. X. Goemans, V. S. Mirrokni, and M. Sviridenko. Tight Approximation
Algorithms for Maximum Separable Assignment Problems. Math. Oper. Res., 36(3):416–431,
2011.

17 Kyle Fox and Madhukar Korupolu. Weighted flowtime on capacitated machines. In Proceedings
of the twenty-fourth annual ACM-SIAM symposium on Discrete algorithms, pages 129–143.
SIAM, 2013.

18 Ari Freund and Joseph Naor. Approximating the advertisement placement problem. Journal
of Scheduling, 7(5):365–374, 2004.

19 Navendu Jain, Ishai Menache, Joseph Naor, and Jonathan Yaniv. Near-optimal scheduling
mechanisms for deadline-sensitive jobs in large computing clusters. ACM Transactions on
Parallel Computing, 2(1):3, 2015.

K. Sarpatwar, B. Schieber, and H. Shachnai 26:15

20 Klaus Jansen and Lorant Porkolab. On preemptive resource constrained scheduling: polynomial-
time approximation schemes. Integer Programming and Combinatorial Optimization, pages
329–349, 2002.

21 Bala Kalyanasundaram and Kirk Pruhs. Eliminating Migration in Multi-processor Scheduling.
J. Algorithms, 38(1):2–24, 2001.

22 Arshia Kaul, Sugandha Aggarwal, Anshu Gupta, Niraj Dayama, Mohan Krishnamoorthy, and
PC Jha. Optimal advertising on a two-dimensional web banner. International Journal of
System Assurance Engineering and Management, pages 1–6, 2017.

23 Subodha Kumar, Milind Dawande, and Vijay Mookerjee. Optimal scheduling and placement
of internet banner advertisements. IEEE Transactions on Knowledge and Data Engineering,
19(11), 2007.

24 Eugene L Lawler. A dynamic programming algorithm for preemptive scheduling of a single
machine to minimize the number of late jobs. Annals of Operations Research, 26(1):125–133,
1990.

25 Shinjini Pandey, Goutam Dutta, and Harit Joshi. Survey on Revenue Management in Media
and Broadcasting. Interfaces, 47(3):195–213, 2017.

26 Cynthia A. Phillips, R. N. Uma, and Joel Wein. Off-line admission control for general
scheduling problems. In Proceedings of the Eleventh Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 879–888, 2000.

27 Kanthi K. Sarpatwar, Baruch Schieber, and Hadas Shachnai. The Preemptive Resource
Allocation Problem. CoRR, abs/1811.07413, 2018. arXiv:1811.07413.

FSTTCS 2019

http://arxiv.org/abs/1811.07413

Online and Offline Algorithms for Circuit Switch
Scheduling
Roy Schwartz
Technion – Israel Institute of Technology, Haifa, Israel
schwartz@cs.technion.ac.il

Mohit Singh
Georgia Institute of Technology, Atlanta, GA, USA
mohit.singh@isye.gatech.edu

Sina Yazdanbod
Georgia Institute of Technology, Atlanta, GA, USA
syazdanbod@gatech.edu

Abstract
Motivated by the use of high speed circuit switches in large scale data centers, we consider the
problem of circuit switch scheduling. In this problem we are given demands between pairs of servers
and the goal is to schedule at every time step a matching between the servers while maximizing the
total satisfied demand over time. The crux of this scheduling problem is that once one shifts from
one matching to a different one a fixed delay δ is incurred during which no data can be transmitted.

For the offline version of the problem we present a (1 − 1/e − ε) approximation ratio (for any
constant ε > 0). Since the natural linear programming relaxation for the problem has an unbounded
integrality gap, we adopt a hybrid approach that combines the combinatorial greedy with randomized
rounding of a different suitable linear program. For the online version of the problem we present a
(bi-criteria) ((e− 1)/(2e− 1)− ε)-competitive ratio (for any constant ε > 0) that exceeds time by
an additive factor of O(δ/ε). We note that no uni-criteria online algorithm is possible. Surprisingly,
we obtain the result by reducing the online version to the offline one.

2012 ACM Subject Classification Theory of computation → Online algorithms; Theory of compu-
tation → Scheduling algorithms

Keywords and phrases approximation algorithm, online, matching, scheduling

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.27

Related Version A full version of the paper is available at https://arxiv.org/abs/1905.02800.

Funding Roy Schwartz: Research is supported by NSF-BSF grant 2016742.
Mohit Singh: Research is supported by NSF- AF:1910423 and NSF-AF:1717947.

1 Introduction

In recent years the vast scaling up of data centers is fueled by applications such as cloud
computing and large-scale data analytics. Such computational tasks, which are performed in a
data center, are distributed in nature and are spread over thousands of servers. Thus, it is no
surprise that designing better and efficient switching algorithms is a key ingredient in obtaining
better use of networking resources. Recently, several works have focused on high speed optical
circuit switches that have moving optical mirrors [6, 10, 28] or wireless circuits [13, 15, 29].

A common feature of many of these new switching models is that at any time the data
can be transmitted on any matching between the senders and the receivers. However, once
the switching algorithm decides to reconfigure from the current matching to a new different
matching. This is due to physical limitations such as the time it takes to rotate mirrors, a
fixed delay is incurred. This delay happens before data can be sent along the new reconfigured

© Roy Schwartz, Mohit Singh, and Sina Yazdanbod;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 27; pp. 27:1–27:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:schwartz@cs.technion.ac.il
mailto:mohit.singh@isye.gatech.edu
mailto:syazdanbod@gatech.edu
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.27
https://arxiv.org/abs/1905.02800
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Online and Offline Circuit Switch Scheduling

matching. Indeed even if one mirror rotates the delay must be incurred and no data can be
sent. This has led to significant study on obtaining good scheduling algorithms that take this
delay into account [18, 21, 27]. The cost in switching between matchings makes the problem
different when compared to the classical literature on scheduling in crossbar switching [5],
which are usually based on Birkhoff von-Neumann decompositions. In this paper, we focus
on finding the schedule that sends as much data as possible in a fixed time window. We aim
to design simple and efficient offline and online algorithms, with provable guarantees, for
the scheduling problem that incorporates switching delays.

In the circuit switch scheduling problem, we are given a traffic demand matrix D ∈
R|A|×|B|+ , where A is the set of senders and B is the set of receivers. Dij denotes the amount
of data that needs to be sent from sender i to receiver j. The Dij ’s can also be seen as weights
on the edges of a complete bipartite graph with vertex set A ∪B. We are also given a time
window W and a switching time δ > 0. At any time, the algorithm must pick a matching
M and duration α for which the data is transmitted along the edges of the matching M
that still require data to be sent. When the algorithm changes to another matching M ′ for
another duration α′, the algorithm must account for δ amount of time for switching between
the two matchings. Indeed even if one edge changes in the matching, the delay must be
incurred and no data can be sent on any of the matching edges. The total amount of time
that data is sent along matchings as well as switching time between the matchings must
total no more than W . The objective is to maximize the total demand that is satisfied.

1.1 Our Results and Contributions
Our main contribution in this paper are simple and efficient algorithms for the offline and
online variants of the circuit switch scheduling problem. The following theorem summarizes
our result for the offline setting which gives the first constant factor approximation algorithm
for all instances.

I Theorem 1. Given any constant ε > 0, there is a polynomial time algorithm that returns
a (1− 1/e− ε)-approximation for the circuit switch scheduling problem.

It was already noted in Bojja et al. [27] that the circuit switch scheduling problem is a
special case of maximizing a monotone submodular function given a knapsack constraint.
Unfortunately, the above reduction requires a ground set of exponential size where elements
in the ground set corresponds to matchings of senders and receivers. Hence, the rich literature
on submodular function maximization (such as [24]) cannot be applied. Indeed the main
challenge is the presence of exponential number of matchings that define the configurations.

Bojja et al. [27] show that the greedy algorithm can be implemented in polynomial time
and give a guarantee under the assumption that all entries of the data matrix are small as
compared to the time window. Unfortunately, it is easy to construct examples where the
greedy algorithm does not give a guarantee close to (1− 1

e) (Refer to the full version of our
paper [23] for an example).

A different approach is to formulate a linear programming relaxation and round the
fractional solution. Indeed, it is easy to formulate two natural linear programming relaxations
to the circuit switch scheduling problem. The first assigns a distribution over matchings for
every time, whereas the second picks configurations with the additional knapsack constraint.
Unfortunately, both have an unbounded integrality gap (Refer to the full version of our paper
[23] for the gap examples). Thus, a different approach must be used.

We adopt a hybrid approach that combines greedy and rounding of a special linear
program to prove the above theorem. We first give an improved analysis of the greedy
algorithm and show it gives a (1− 1

e − ε) approximation when δ < ε ·W . On the other hand,

R. Schwartz, M. Singh, and S. Yazdanbod 27:3

when δ ≥ εW , the optimal solution only contains 1
ε different matchings. While it is not

possible to even guess these constant number of matchings in the solution, we can enumerate
(approximately) the time these unknown matchings are scheduled. We then formulate an
assignment linear program that assigns matchings to each of these guessed time slots. Then
a simple randomized rounding gives us the desired approximation in this case.

We also consider the online variant of the problem where the data matrix is not known
in advance but is revealed over time. We consider a discrete time process where at each
time step, we receive a new data matrix that needs to be transmitted in addition to the
traffic demand still left from all preceding time steps. Moreover, we can choose a matching
to transmit data at any time step with the constraint that whenever we change the matching
from the previous step, no data is transmitted for δ steps. Our main contribution is a
reduction from the online variant to the offline variant. To the best of our knowledge,
such reductions with a minor loss in the guarantee are seldomly found. This results in a
bi-criteria algorithm since the online algorithm is allowed a slightly larger time window than
the optimum. We remark that such a bi-criteria approximation is necessary and we refer the
reader to the full version of our paper [23] for details. The following theorem summarizes
the above.

I Theorem 2. Given a β-approximation for the offline circuit switch scheduling problem and
an integer k ≥ 3, there exists an algorithm achieving a competitive ratio of (1− 2/k) β

1+(1−2/k)β
for the online circuit switch scheduling problem which uses a time window of W + kδ as
compared to a time window of W for the optimum.

Combining Theorem 1 and Theorem 2, we have the following corollary.

I Corollary 3. For any constant ε > 0, there exists an algorithm achieving a competitive
ratio of

(
e−1

2e−1 − ε
)
for the online circuit switch scheduling problem which uses a time window

of W +O (δ/ε) as compared to a time window of W for the optimum.

We note that the online algorithm in the above corollary runs in polynomial time. If one
is not interested in the running time of the algorithm, but rather interested only in coping
with an unknown future, then Theorem 2 gives an online algorithm whose competitive ratio
is (1/2− ε) for any arbitrarily small constant ε > 0 (by assuming that the offline problem can
be solved optimally, i.e., β = 1).

1.2 Related Work
Bojja et al. [27] were the first to formally introduce the offline variant of the circuit switch
scheduling problem. They focused on the special case that all entries of the data matrix are
significantly small, and analyzed the greedy algorithm. Though it is known that the greedy
algorithm does not provide any worst-case approximation guarantee for the general case
of maximizing a monotone submodular function given a knapsack constraint, [27] proved
that in the special case of small demand values, where Dij ≤ εW for all i, j they obtain
a
(
1− 1

e1−ε

)
-approximation. To the best of our knowledge, our algorithm gives the best

provable bound for the offline variant of the circuit switch scheduling problem. A different
related variant of the problem is when data does not have to reach its destination in one step,
i.e., data can go through several different servers until it reaches its destination [18, 21, 27].

A dual approach, given by Liu et al. [20], aims to minimize the total needed time to trans-
mit the entire demand matrix. Since our algorithm aims to maximize the transmitted data in
a time window ofW , one can use our algorithm as a black box while optimizing overW . It was
proven in [19] that the problem of minimizing the time needed to send all of the data is NP-
Complete. Hence, we conclude that the circuit switch scheduling problem is also NP-Complete.

FSTTCS 2019

27:4 Online and Offline Circuit Switch Scheduling

The problem of decomposing a demand matrix into matchings, i.e., the decomposition of
a matrix into permutation matrices, was considered by [3, 8, 17, 22]. The special cases of
zero delay [14] and infinite delay [25] have also been considered. Several related, but slightly
different, settings include [7, 11, 26].

Regarding the theoretical problem of maximizing a monotone submodular function given a
knapsack constraint, Sviridenko [24] (building upon the work of Khuller et al. [16]) presented
a tight (1− 1/e)-approximation algorithm. This tight algorithm enumerates over all subsets
of elements of size at most three, and greedily extends each subset of size three, and returns
the best solution found. Deviating from the above combinatorial approach of [16, 24],
Badanidiyuru and Vondrák [2] and Ene and Nguyen [9] present algorithms that are based on
an approach that extrapolates between continuous and discrete techniques. Unfortunately,
as previously mentioned, none of the above algorithms can be directly applied to the circuit
switch problem due to the size of the ground set.

The online version of the circuit switch scheduling problem has been considered from
a queuing theory prospective, with delays [4] and without delays [12]. In these works,
guarantees are proven under the assumption that the incoming traffic is from a known
distribution or i.i.d. random variables. To the best of our knowledge, the online version has
not been studied from a theoretical perspective.

2 Preliminaries

First, let us start with a formal description of the problem. We are given a complete bipartite
graph G = (A,B,E) where A and B are the sets of sending and receiving servers, a constant
δ ≥ 0 and a time window W ≥ 0. We are also given the traffic demand matrix of the graph,
D ∈ R|A|×|B|+ , where Dij denotes the amount of data that needs to be sent from sender i to
receiver j. The Dij ’s can be seen as weights on the edges of the complete bipartite graph.
To simplify the notation, for an edge e = (i, j) we abbreviate Dij to De. Let M be the
collection of all matchings in G.
I Definition 4. The pair (M,α) is called a configuration if M ∈M and α ∈ R+.
The term scheduling a configuration (M,α) means sending data via the matching M for a
duration of time that equals α. For simplicity of presentation, we also interpret a matchingM
as a {0, 1}|A|×|B| matrix where e ∈M if and only if the entry of edge e in M equals 1. Note
that for any edge e ∈M the total data sent through e would be min(De, α) and the total
amount of data sent by the configuration would be ||min (D,αM) ||1 =

∑
e∈M min (De, α)

(note that the minimum is taken element-wise). For simplicity of presentation we may use
||.||1 and ||.|| interchangeably.

Switching from a configuration (M,α) to another (M ′, α′) incurs a given constant delay δ,
during which no transmission is done. Let C denote the collection of all possible configurations.
I Definition 5. A schedule S of size k is a subset S ⊆ C such that |S| = k. We say that S
requires a total time of

∑
(M,α)∈S (α+ δ) to be scheduled.

The total time of the schedule includes both the time for sending data with each configuration
and the delay in switching between them. This brings us to the definition of a feasible schedule.
I Definition 6. A schedule S is feasible if

∑
α:(M,α)∈S(α+ δ) ≤W .

In the offline setting, the goal is to find a feasible schedule S that maximizes the data sent
over the given time window of length W . This problem can be formulated as follows:

max
{∣∣∣∣∣∣min

(
D,
∑

(M,α)∈SαM
)∣∣∣∣∣∣

1
: S ⊆ C,

∑
α:(M,α)∈S (α+ δ) ≤W

}
. (1)

R. Schwartz, M. Singh, and S. Yazdanbod 27:5

We note that C might be of infinite size. However, we use standard discretization techniques
to limit the set of possible values of α in our algorithms. We will discuss this with more detail
in the later relevant sections. For now, assume C is finite. To facilitate the notation and the
analysis of our problem, we turn to a well-known class of functions called submodular functions.

I Definition 7. Given a ground set N = {1, 2, 3, ..., n}, a set function f : 2N → R+ is a
submodular function if for every A,B ⊆ N : f(A) + f(B) ≥ f(A ∪B) + f(A ∩B).

For our problem, define f : 2C → R+ as:

f (S) =
∣∣∣∣∣∣min

(
D,
∑

(M,α)∈SαM
)∣∣∣∣∣∣

1
.

Moreover, we denote by fS ((M,α)) = f (S ∪ (M,α))−f (S) the marginal gain of the schedule
S if the configuration (M,α) was added to it. It has been shown that f is submodular (refer
to Theorem 1 in [27]). For the sake of completeness, we state the theorem. Note that f is
monotone if for every A ⊆ B ⊆ N : f(A) ≤ f(B).

I Theorem 8 (Theorem 1 in [27]). The function f is a monotone submodular function.

For the online version of the problem, we use a discrete time model. Unlike the offline
version, in the online setting we do not know the entire traffic matrix of the graph in the
beginning. We start with D0 as the demand matrix already present in the initial graph.
At time t an additional traffic matrix Dt is revealed to the algorithm that includes new
demands for data that need to be transmitted. In the online version of the problem sending
configuration (M,α) means that for the next α ∈ Z+ time steps our algorithm is busy sending
the matching M . Switching a configuration to a different one incurs an additional delay of
δ ∈ N steps, during which no data can be sent. The incoming traffic matrices, at every step
starting with the sending of (M,α) and ending with the switching cost (a total of α+ δ time
steps), will accumulate and be added to the remaining traffic matrix of the graph.

3 Offline Circuit Switch Scheduling Problem

In this section, we prove Theorem 1 by giving an approximation algorithm for the circuit
switch scheduling problem. Our algorithm is a combination of the greedy algorithm as well as
a linear programming based approach. We first show that the greedy algorithm gives close to
a (1− 1

e)-approximation if δ, the switching time, is much smaller than the time window. This
is done in Section 3.1. In Section 3.2, we give a randomized rounding algorithm for a linear
programming relaxation that gives a (1− 1

e)-approximation but runs in time exponential in
number of matchings used in the optimal solution. While the natural linear program for the
problem has unbounded gap, we show how to bypass this when the schedule has a constant
number of matchings.

3.1 Greedy Algorithm
The greedy algorithm is as follows: at each step choose the configuration that maximizes
the amount of data it sends per unit of time it uses. Formally, if Ri is the remaining data
demand in the graph after i configurations were already chosen, the greedy algorithm will
choose the following configuration to be used next:

(Mi+1, αi+1) = argmaxM∈M,α∈R+

||min (Ri, αM) ||1
α+ δ

. (2)

FSTTCS 2019

27:6 Online and Offline Circuit Switch Scheduling

Algorithm 1 Greedy Algorithm.

1: Input: G = (A,B,E) , D, δ,W
2: Output: {(M1, α1) , . . . , (Mr, αr)}
3: S ← ∅. i← 0, R1 ← D.
4: while

∑
α:(M,α)∈S (α+ δ) ≤W do

5: i← i+ 1, (Mi, αi)← arg maxM∈M,α∈R+
||min(Ri,αM)||

α+δ .
6: S ← S ∪ {(Mi, αi)}, Ri+1 ← Ri −min (Ri, αiMi).
7: end while
8: r ← i.
9: if

∑
(M,α)∈S (α+ δ) > W then

10: βr ←W − δ −
∑r−1
j=1(αj + δ)

11: if βr ≥ 0 then
12: S ← (S \ {(Mr, αr)}) ∪ {(Mr, βr)}
13: else
14: S ← (S \ {(Mr, αr)})
15: end if
16: end if
17: return S

The greedy algorithm continues to pick configurations until the first time the time
constraint is violated or met. Algorithm 1 demonstrates this process. Let r denote this
number of steps and Sr the schedule created after r steps of this algorithm. The last chosen
configuration may violate the time window budget and a natural strategy is to reduce its
duration to the time window W as is done in Step (11)-(12) of the algorithm. Indeed [27]
analyzes this algorithm and shows that it performs well if each entry in data matrix is small.
They also show that the above optimization problem can be solved using the maximum
weight matching problem. We give a different analysis of the algorithm and show that it
gives us a

(
1− 1

e − ε
)
-approximation if δ < (e

2(e−1)ε) ·W .

I Theorem 9. Let Sr denote the schedule as returned by the greedy algorithm and O denote
the optimal schedule. Then

f(Sr) ≥
(

1− 2δ
W

)(
1− 1

e

)
f(O).

Proof. To analyze the algorithm, we first show that the objective of the optimal schedule of
a slightly smaller time window W − δ is not much smaller than the optimum value of the
optimum schedule for time window W in Lemma 10. Indeed, the lemma states that given
any schedule for time window W , for example the optimal schedule, there exists a schedule
with time window W − δ of a comparable objective.

I Lemma 10. For any schedule S for a time window of W , there is a schedule S̃ on a
window of W − δ time such that f(S̃) ≥

(
1− 2δ

W

)
f (S).

Proof. Let Tdata be the total time spent sending data and Tswitch be the total time spent
switching between configurations. Thus, W = Tdata +Tswitch. We prove that we can remove δ
time from some configuration or we can remove an entire configuration from S while reducing
the objective by no more than 2δ

W fraction of the objective. Consider the two following cases
for the given S. If Tdata ≥ W

2 , we have f(S)
Tdata

≤ 2
W f (S). Thus there exists a configuration

R. Schwartz, M. Singh, and S. Yazdanbod 27:7

that we can deduct δ time from and at most lose 2δ
W f (S). If Tswitch ≥ W

2 . This means the
number of configurations is at least W

2δ . Each configuration on average sends 2δ
W f (S) data.

Therefore, there is a configuration we can completely remove from our schedule such that
total amount of lost data is at most 2δ

W f (S). In both cases we can reduce the time taken by
the schedule by at least δ and have a new schedule S̃ such that f

(
S̃
)
≥
(
1− 2δ

W

)
f (S). J

Let O′ denote the optimal solution with time window W − δ. From Lemma 10, we have
f(O′) ≥

(
1− 2δ

W

)
f(O). In the following lemma, we show that the output of the greedy

algorithm is at least a
(
1− 1

e

)
-approximation of f(O′). The proof of the lemma follows

standard analysis for greedy algorithms for coverage functions, or more generally submodular
functions, except at the last step. For the proof refer to the full version of our paper [23].
The proof of Theorem 9 now follows immediately.

I Lemma 11. If O′ is the optimum schedule on time window W − δ, then

f(Sr) ≥ (1− 1
e

)f(O′). J

3.2 Linear Programming Approach for Constant Number of
Configurations

In this section, we assume that we want to schedule at most a given constant k number of
configurations and prove the following theorem.

I Theorem 12. There exists a randomized polynomial time algorithm that given an integer
k and an instance of the circuit switch scheduling problem returns a feasible schedule whose
objective, in expectation, is at least (1− 1

e − ε) of the optimum solution that uses at most k
matchings. Moreover the running time of the algorithm is polynomial in n

εk
.

Let us denote optimum schedule by O = {(M∗1 , α∗1), . . . , (M∗k , α∗k)}. Note that, without
the loss of generality, we can assume that we know what the α∗i ’s are. This can be done
by a standard discretization of the possible values. Since, the number of configurations is
constant this enumeration will be polynomial in 1

εk
to an accuracy of ε. The total data

sent by a schedule S is f(S) = ||min(D,
∑

(M,α)∈S αM)||1. However, in this section, it is
more beneficial to consider the total data as the sum of total data sent over each edge. We
model the total data by Z =

∑
e∈E ze, where ze is the amount of data that was sent through

edge e in our graph. In the case of the optimum, z∗e = min(De,
∑
α∗:(M∗,α∗)∈O:e∈M∗ α

∗) and
Z∗ =

∑
e∈E z

∗
e . We can formulate the following integer program for this problem.1

(P) max
∑
e∈E

ze (3)

s.t.
∑
M∈M

xM,i ≤ 1 ∀i = 1, . . . , k (4)

ze ≤ De ∀e ∈ E (5)

ze ≤
k∑
i=1

∑
M∈M:e∈M

α∗i · xM,i ∀e ∈ E (6)

xM,i ∈ {0, 1} ∀e ∈ E,∀M ∈M,∀i = 1, . . . , k

1 The variable xM,i is the fractional indicator for choosing the configuration (M,α∗i).

FSTTCS 2019

27:8 Online and Offline Circuit Switch Scheduling

Constraints (4) is to ensure that only one matching is considered in every time interval.
Constraint (5) and (6) are to model the total data sent. We can relax this integer program to
an LP by changing the xM,i ∈ {0, 1} to 0 ≤ xM,i ≤ 1. The following lemma states that the
relaxed linear program is a relaxation of our problem for the constant number of configurations.

I Lemma 13. Let ZLP be the value of an optimum solution to the LP, then ZLP ≥ Z∗

Proof. If O = {(M∗1 , α∗1), . . . , (M∗k , α∗k)} is our optimum answer, based on O we will create a
feasible answer to the LP. For every (M∗i , α∗i) ∈ O, we set xM∗,i = 1. Clearly, the constraint
4 is satisfied since we picked exactly one matching for every interval. The constraints 5 and
6 are by definition satisfied since f(O) = ||min(D,

∑
(M,α)∈O αM)|| and the constraints are

modeling this minimum. This argument shows that the optimum answer is feasible in the
LP and since the LP is a maximization problem we can conclude that ZLP ≥ f(O). J

The LP contains an exponential number of variables, since the number of matchings in the
complete graph is exponential in the size of the graph. To be able to solve this program we
need to introduce a separation oracle for the dual of this LP. The following program is the
dual of our LP.

(D) min
k∑
i=1

yi +
∑
e∈E

deae (7)

s.t. yi ≥ α∗i
∑
e∈M

be ∀M ∈M,∀i = 1, . . . , k (8)

ae + be ≥ 1 ∀e ∈ E (9)
ae ≥ 0, be ≥ 0, yi ≥ 0 ∀e ∈ E,∀i = 1, . . . , k

The Lemma 14 states the existence of a separation oracle.

I Lemma 14. The dual program D admits a polynomial time separation oracle.

Proof. Given a solution ({yi}ki=1, {aE}e∈E , {be}e∈E) we are required to determine whether
it is feasible and if not provide a constraint that is violated. We can easily determine whether
all constraints of type (9) are satisfied, and if not provide one that is violated, by a simple
enumeration over all edges e ∈ E. The same can be done for constraints of type (8) by
enumerating over i = 1, . . . , k and for each i compute a maximum weight matching in G
equipped with {be}e∈E as edge weights and check whether the maximum weight matching
has value at most yi/α∗i . If the maximum weight matching exceeds the target value return
the constraint that corresponds to i and the maximum weight matching. J

Solving the linear program will provide us with a fractional solution {xM,i}M∈M,i=1,...,k. For
any i we have

∑
M∈M xM,i ≤ 1. This constraint of the LP creates a distribution over the

matchings in time interval i. We create a solution to the program P from the fractional
solution by a randomized rounding technique. We pick M ∈ M for the time interval i
with probability xM,i. Note that with probability 1 −

∑
M∈M xM,i no matching will be

chosen for this time interval. A formal description of this rounding method is provided in
Algorithm 2. Let XM,i denote the indicator random variable if matching M is selected for
the ith slot. Moreover, let Ye,i denote the random variable that edge e is present in the
matching chosen in the ith slot. We have Ye,i =

∑
M∈M:e∈M XM,i for each e ∈ E and i and

E[Ye,i] =
∑
M∈M:e∈M xM,i. Moreover, let Ze denote the random variable that denotes the

data sent along edge e. Then we have Ze = min(De,
∑k
i=1 α

∗
i Ye,i). Observe that the random

variables {Ye,i}ki=1 are independent.

R. Schwartz, M. Singh, and S. Yazdanbod 27:9

Algorithm 2 Randomized Rounding.

1: Input: (k, {α∗i }ki=1, {xM,i}M∈M,i=1,...,k)
2: Output: {(Mi, α

∗
i)}ki=1

3: for i← 1, . . . , k do
4: choose Mi to be a random matching w.p. xM,i for the interval i
5: end for
6: return {(Mi, α

∗
i)}ki=1

The following Lemma 15 is implicit in Theorem 4 of Andelman and Mansour [1].

I Lemma 15. Let Y1, . . . , Yn be independent Bernoulli random variables and let Z =
min(B,

∑n
i=1 biYi) for some non-negative reals B, b1, . . . , bn. Then we have that E[Z] ≥(

1− 1
e

)
min (B,E [

∑n
i=1 biYi]) .

Applying the above lemma for each e and random variables {Ye,i}ki=1, we obtain that

E[Ze] ≥
(

1− 1
e

)
min

(
De,E

[
k∑
i=1

α∗i Ye,i

])
=
(

1− 1
e

)
min

(
De,

k∑
i=1

∑
M∈M:e∈M

α∗i xe,i

)
≥

(
1− 1

e

)
· ze.

Now summing over all edges, Theorem 12 follows. We are now ready to conclude our
discussion of the offline variant of the circuit switch scheduling problem and prove Theorem 1.

Proof of Theorem 1. Given ε > 0, if δ ≤ (e
2(e−1)ε)W then Theorem 9 gives us a (1− 1

e − ε)-
approximation. Otherwise, 2(e−1)

e
1
ε >

W
δ implying that at most 2(e−1)

e
1
ε configurations can

be scheduled. In this case, Theorem 12 will give a (1− 1
e − ε)-approximation. J

4 Online Circuit Switch Scheduling Problem

In this section, we prove Theorem 2. Recall that in the online setting, we consider a discrete
time model2 where an additional traffic matrix is revealed at every time t = 1, 2, . . . , T . At
every time step t, a new set of traffic demands arrives and adds to the remaining traffic
that has not been sent so far. We assume that the data matrix arriving at each step is
integral and thus can be modeled as a multigraph. We denote the incoming traffic matrices
as multigraphs {E1, E2, . . . , ET } (instead of Di’s to simplify and familiarize the notation)
and thus union of any two such graphs is defined by adding the number of copies of edges in
the two constituents. Before proving the general theorem, we first consider the case when
there is no delay while switching matchings, i.e., δ = 0. Observe that in this case, the offline
problem can be solved exactly and we show a 1

2 -competitive algorithm for the online problem.
The general reduction builds on this simple case along with the offline algorithm.

2 We could also consider a continuous time model where data matrices can arrive at any time and the
algorithm can choose a matching at any time instant with a switching time δ when no data is sent. Our
results apply to this model as well. The discrete model makes the presentation of the results easier.

FSTTCS 2019

27:10 Online and Offline Circuit Switch Scheduling

4.1 Without Configuration Delay

Observe that an online algorithm, in this case, will pick a set of matchings {M1,M2, . . . ,MT },
instead of a schedule, that covers the maximum number of edges. At each step t, the algorithm
picks the maximum matching from the graph formed by the new edges that arrive, Et, and the
remaining edges in the graph from previous steps which we denote by Rt−1. The algorithm
is formally given in Algorithm 3. HereM denotes the set of all matchings on the complete
bipartite graph with parts A and B. The objective of Algorithm 3 is

∑T
t=1 |Mt|, where

|Mt| denotes the number of edges in the matching Mt. We denote the optimum solution by
O = {O1, . . . , OT }, We have the Theorem 16 for our approximation guarantee.

Algorithm 3 Online Greedy Algorithm without Delay.

1: Input: Bipartite multigraphs on E1, E2, . . . , ET on A ∪ B where Et is disclosed at
beginning of step t.

2: Output: {M1,M2, . . . ,MT }
3: R0, S ← ∅, t← 1.
4: for t← 1, 2, . . . , T do
5: R′t ← Rt−1 ∪ Et, Mt ← argmaxM∈M,M⊆R′t |M |.
6: S ← S ∪ {Mt}, Rt ← R′t \ {Mt}, t← t+ 1.
7: end for
8: return S

I Theorem 16. Algorithm 3 is 1
2 -competitive for the online circuit switch scheduling problem

without delays.

Proof. Let Γ = {E1, . . . , ET } denote the incoming edges for the first T steps. We call this
the input sequence for the first T steps. We use induction on T to prove the theorem.
Specifically, we prove that for any input sequence of edges for T steps, Γ = {E1, E2, . . . , ET },
we have

∑T
t=1 |Mt| ≥ 1

2
∑T
t=1 |Ot|.

For T = 1, we know that the maximum matching has the biggest size of any matching in
the graph. So, we have |M1| ≥ |O1| and thus the base case holds. By the induction hypothesis,
we have that for any input sequence of T −1 steps, we have

∑T−1
t=1 |Mt| ≥ 1

2
∑T−1
t=1 |Ot| where

{Mt}T−1
t=1 and {Ot}T−1

t=1 are the output of the algorithm and the optimal solution, respectively.
Now, consider any input sequence E1, . . . , ET . Recall, R1 is the residual graph formed

after first step of the algorithm, i.e. R1 = E1 \M1. At the next step, the algorithm will find
the maximum matching in R′2 = R1 ∪ E2 as its edge set. We build a new sequence of T − 1
inputs and apply induction to it.

Let Γ′ = {R′2, E3, . . . , ET }. Consider the optimum solution on this new input sequence.
Let {M ′t}Tt=2 be the matchings that our algorithm picks given this new input sequence and
{O′t}Tt=2 the optimum matchings. Using the induction hypothesis we can write

∑T
t=2 |M ′t | ≥

1
2
∑T
t=2 |O′t|.
First note that for 2 ≤ i ≤ n,Mi = M ′i . This is true since Mi and M ′i are the maximum

matchings of the same graph as can be seen inductively. We now show the following lemma
that relates the optimum solution of the new instance to the original instance.

I Lemma 17.
∑T
t=2 |O′t| ≥

∑T
t=2 |Ot| − |M1|.

Proof. The matchings {O2 \M1, O3 \M1, . . . , OT \M1} is a feasible output for the optimum
solution on the Γ′ sequence. Therefore, we have

∑T
t=2 |O′t| ≥

∑T
t=2 |Ot|−|M1| as required. J

R. Schwartz, M. Singh, and S. Yazdanbod 27:11

Using the induction hypothesis and the lemma we can write

T∑
t=2
|Mt| ≥

1
2

(
T∑
t=2
|Ot| − |M1|

)

Adding the inequality |M1| ≥ |O1| to both sides, we obtain

T∑
t=1
|Mt| ≥

1
2

(
T∑
t=2
|Ot|

)
+ 1

2 |M1| ≥
1
2

(
T∑
t=2
|Ot|

)
+ 1

2 |O1| =
1
2

(
T∑
t=1
|Ot|

)

and the induction step follows. J

4.2 With Configuration Delay
In this section, we assume switching between the configurations causes a delay of δ ∈ N steps
during which no data is sent. We also assume that we have access to a β-approximation for
the offline version of the problem. Note that we view the offline algorithm as a black-box.
More formally, we assume we have an algorithm of the form Algorithm 4. To reiterate, G is
the given complete bipartite graph, D is the traffic demand matrix, δ is the switching delay
and W is the size of the time window. Recall, that sending the configuration (M,α) means
that for the next α steps we will only send data using matching M .

Algorithm 4 Offline Algorithm for Circuit Switch Scheduling.

1: Input: G = (A,B,E) , D, δ,W
2: Output: S = {(M1, α1), . . . , (Mj , αj)}

Given a constant k ≥ 1, the first step of the algorithm is to wait kδ steps for data to
accumulate and then run the offline algorithm on the accumulated data for time window
W = kδ. Let S1 be the output of the offline algorithm. We run this schedule from time
t = kδ + 1 to t = 2kδ. Meanwhile, we collect the incoming data matrices in these times.
Figure 1 shows one step of the algorithm. At the next step, we consider the total remaining
data that includes data that has not been scheduled so far from previous schedule(s) and
newly arrived data in previous kδ steps. We then run the offline algorithm on this data
matrix to obtain a schedule for the next kδ steps. More generally, we continue this process
for every block of kδ time steps. Algorithm 5 is the formal description of the algorithm. Note
that this description is written as an enumeration over blocks of size kδ. Recall that f(S)
denotes the amount of data sent by any schedule S.

Proof of Theorem 2. We use a coefficient γ ≤ β and optimize γ in the end. We prove
the theorem by induction on the number of the blocks, i.e., l and will follow along the
lines of proof of Theorem 16. As we did in the proof of Theorem 16, we consider the
incoming traffic as sequences. But in this case we define a sequence Γ = {I1, I2, . . . , Il},
where Ii =

⋃i(kδ)
j=(i−1)(kδ)+1 Dj is the input of block i. For l = 1, let the optimum schedule be

O and the algorithm’s schedule be S. Figure 1 shows this setting. Using Lemma 10, there
exists a schedule Õ with the property that f

(
Õ
)
≥
(
1− 2

k

)
f (O). Since S is the output of

our offline algorithm we can write f (S) ≥ βf (O′) ≥
(
1− 2

k

)
βf (O) ≥

(
1− 2

k

)
γf (O) and

the basis of the induction is proven.
For l = t, again let O be the optimum schedule and S = S1 ∪ S2 · · · ∪ St be the output

of our algorithm where each Si is the schedule on ith kδ block. Let O1 be the optimum
schedule for the first block and S1 our algorithm’s schedule on that block. Refer to Figure 2
for an illustration of this setting.

FSTTCS 2019

27:12 Online and Offline Circuit Switch Scheduling

Algorithm 5 Online Greedy with Delay.

1: Input:δ, k and data matrices D1, D2, . . . , DT on A×B where Di revealed at beginning
of step i. Let l = d Tkδ e.

2: Output:S = S1 ∪ S2 ∪ . . . ∪ Sl.
3: S ← ∅, R0 ← ∅.
4: for r ← 0, . . . , l − 1 do
5: R′r ← Rr +

∑
rkδ+1≤j≤(r+1)kδDj .

6: Sr ← OfflineAlgorithm (G,R′r, δ, kδ).
7: Rr+1 ← R′r −min

(
R′r,

∑
(α,M)∈Sr αM

)
, S ← S ∪ Sr.

8: end for
9: return S

Figure 1 Basis of the induction. The crossed out block is the waiting period of our algorithm.

Figure 2 Step of the induction.

Consider the new input sequence Γ′ = {R′1 ∪ I2, I3, . . . , It}. Let the optimum schedule
on the new input sequence be O′ and the algorithm’s schedule be S ′ = S′1 ∪ · · · ∪ S′l . From
the induction hypothesis, we have f (S ′) ≥

(
1− 2

k

)
γf (O′) . Note that Si = S′i−1 for i ≥ 2

and thus f (S ′) = f (S \ S1) = f (S) − f (S1) . As in the proof of Lemma 17, a candidate
schedule for the new instance is to consider O \O1 and ignore the data sent by the algorithm
in the schedule S1 if it appears in any of the optimal matchings. Thus we obtain that

f (O′) ≥ f (O \O1)− f (S1) = f (O)− f (O1)− f (S1) .

For O1 based on our basis argument we can find S1 such that f (S1) ≥
(
1− 2

k

)
βf (O1). To

sum up, we have the two following inequalities:

f (S)− f (S1) ≥
(

1− 2
k

)
γ ((f (O)− f (O1))− f (S1)) ,

f (S1) ≥
(

1− 2
k

)
βf (O1) .

Rewriting the first inequality, we have

f (S)−
(

1−
(

1− 2
k

)
γ

)
f (S1) ≥

(
1− 2

k

)
γ (f (O)− f (O1))

Adding the
(
1−

(
1− 2

k

)
γ
)
times the second inequality

f (S) ≥
(

1− 2
k

)
γf (O)−

(
1− 2

k

)(
γ − β

(
1−

(
1− 2

k

)
γ

))
f(O1)

Optimizing the γ we get γ = β

(1+(1− 2
k)β) and thus proving the theorem. J

R. Schwartz, M. Singh, and S. Yazdanbod 27:13

References
1 Nir Andelman and Yishay Mansour. Auctions with budget constraints. In Scandinavian

Workshop on Algorithm Theory, pages 26–38, 2004.
2 Ashwinkumar Badanidiyuru and Jan Vondrák. Fast algorithms for maximizing submodular

functions. In Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete
algorithms, pages 1497–1514, 2014.

3 Siddharth Barman. Approximating Nash Equilibria and Dense Bipartite Subgraphs via an
Approximate Version of Caratheodory’s Theorem. In Proceedings of the Forty-seventh Annual
ACM Symposium on Theory of Computing, STOC ’15, pages 361–369, 2015.

4 G Celik, Sem C Borst, Philip A Whiting, and Eytan Modiano. Dynamic scheduling with
reconfiguration delays. Queueing Systems, 83(1-2):87–129, 2016.

5 Cheng-Shang Chang, Wen-Jyh Chen, and Hsiang-Yi Huang. On service guarantees for input-
buffered crossbar switches: a capacity decomposition approach by Birkhoff and von Neumann.
In 1999 Seventh International Workshop on Quality of Service (IWQoS’99), pages 79–86, 1999.

6 K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang, X. Wen, and Y. Chen.
OSA: An Optical Switching Architecture for Data Center Networks With Unprecedented
Flexibility. IEEE/ACM Transactions on Networking, 22(2):498–511, 2014.

7 Abel Dasylva and R Srikant. Optimal WDM schedules for optical star networks. IEEE/ACM
Transactions on Networking, 7(3):446–456, 1999.

8 Fanny Dufossé, Kamer Kaya, Ioannis Panagiotas, and Bora Uçar. Further notes on Birkhoff–von
Neumann decomposition of doubly stochastic matrices. Linear Algebra and its Applications,
554:68–78, 2018.

9 Alina Ene and Huy L. Nguyen. A Nearly-linear Time Algorithm for Submodular Maximization
with a Knapsack Constraint. CoRR, abs/1709.09767, 2017. arXiv:1709.09767.

10 Nathan Farrington, George Porter, Sivasankar Radhakrishnan, Hamid Hajabdolali Bazzaz,
Vikram Subramanya, Yeshaiahu Fainman, George Papen, and Amin Vahdat. Helios: a hybrid
electrical/optical switch architecture for modular data centers. ACM SIGCOMM Computer
Communication Review, 40(4):339–350, 2010.

11 Shu Fu, Bin Wu, Xiaohong Jiang, Achille Pattavina, Lei Zhang, and Shizhong Xu. Cost and
delay tradeoff in three-stage switch architecture for data center networks. In 2013 IEEE 14th
International Conference on High Performance Switching and Routing (HPSR), pages 56–61,
2013.

12 Leonidas Georgiadis, Michael J Neely, Leandros Tassiulas, et al. Resource allocation and
cross-layer control in wireless networks. Foundations and Trends® in Networking, 1(1):1–144,
2006.

13 Navid Hamedazimi, Zafar Qazi, Himanshu Gupta, Vyas Sekar, Samir R Das, Jon P Longtin,
Himanshu Shah, and Ashish Tanwer. Firefly: A reconfigurable wireless data center fabric
using free-space optics. In ACM SIGCOMM Computer Communication Review, volume 44
(4), pages 319–330, 2014.

14 Thomas Inukai. An efficient SS/TDMA time slot assignment algorithm. IEEE Transactions
on Communications, 27(10):1449–1455, 1979.

15 Srikanth Kandula, Jitendra Padhye, and Victor Bahl. Flyways to DeCongest Data Center
Networks. Proc. of Hot Nets, 2009.

16 Samir Khuller, Anna Moss, and Joseph Seffi Naor. The budgeted maximum coverage problem.
Information processing letters, 70(1):39–45, 1999.

17 Janardhan Kulkarni, Euiwoong Lee, and Mohit Singh. Minimum Birkhoff-von Neumann
Decomposition. In International Conference on Integer Programming and Combinatorial
Optimization, pages 343–354, 2017.

18 Conglong Li, Matthew K. Mukerjee, David G. Andersen, Srinivasan Seshan, Michael Kaminsky,
George Porter, and Alex C. Snoeren. Using Indirect Routing to Recover from Network Traffic
Scheduling Estimation Error. In Proceedings of the Symposium on Architectures for Networking
and Communications Systems, ANCS ’17, pages 13–24, 2017.

FSTTCS 2019

http://arxiv.org/abs/1709.09767

27:14 Online and Offline Circuit Switch Scheduling

19 Xin Li and Mounir Hamdi. On scheduling optical packet switches with reconfiguration delay.
IEEE Journal on Selected Areas in Communications, 21(7):1156–1164, 2003.

20 He Liu, Matthew K Mukerjee, Conglong Li, Nicolas Feltman, George Papen, Stefan Savage,
Srinivasan Seshan, Geoffrey M Voelker, David G Andersen, Michael Kaminsky, et al. Scheduling
techniques for hybrid circuit/packet networks. In Proceedings of the 11th ACM Conference on
Emerging Networking Experiments and Technologies, page 41, 2015.

21 Liang Liu, Long Gong, Sen Yang, Jun Xu, and Lance Fortnow. Better Algorithms for Hybrid
Circuit and Packet Switching in Data Centers. arXiv preprint, 2017. arXiv:1712.06634.

22 Vahab Mirrokni, Renato Paes Leme, Adrian Vladu, and Sam Chiu wai Wong. Tight Bounds for
Approximate Carathéodory and Beyond. In Proceedings of the 34th International Conference
on Machine Learning, volume 70, pages 2440–2448, 2017.

23 Roy Schwartz, Mohit Singh, and Sina Yazdanbod. Online and Offline Greedy Algorithms for
Routing with Switching Costs. arXiv preprint, 2019. arXiv:1905.02800.

24 Maxim Sviridenko. A note on maximizing a submodular set function subject to a knapsack
constraint. Operations Research Letters, 32(1):41–43, 2004.

25 Brian Towles and William J Dally. Guaranteed scheduling for switches with configuration
overhead. IEEE/ACM Transactions on Networking, 11(5):835–847, 2003.

26 Shay Vargaftik, Katherine Barabash, Yaniv Ben-Itzhak, Ofer Biran, Isaac Keslassy, Dean
Lorenz, and Ariel Orda. Composite-path switching. In Proceedings of the 12th International
on Conference on emerging Networking Experiments and Technologies, pages 329–343, 2016.

27 S. Bojja Venkatakrishnan, M. Alizadeh, and P. Viswanath. Costly circuits, submodular
schedules and approximate carathéodory theorems. Queueing Systems, pages 1–37, 2018.

28 Guohui Wang, David G Andersen, Michael Kaminsky, Konstantina Papagiannaki, TS Ng,
Michael Kozuch, and Michael Ryan. c-Through: Part-time optics in data centers. In ACM
SIGCOMM Computer Communication Review, volume 40 (4), pages 327–338, 2010.

29 Xia Zhou, Zengbin Zhang, Yibo Zhu, Yubo Li, Saipriya Kumar, Amin Vahdat, Ben Y Zhao,
and Haitao Zheng. Mirror mirror on the ceiling: Flexible wireless links for data centers. ACM
SIGCOMM Computer Communication Review, 42(4):443–454, 2012.

http://arxiv.org/abs/1712.06634
http://arxiv.org/abs/1905.02800

On the Probabilistic Degrees of Symmetric
Boolean Functions
Srikanth Srinivasan
Department of Mathematics, Indian Institute of Technology Bombay, Mumbai, India
srikanth@math.iitb.ac.in

Utkarsh Tripathi
Department of Mathematics, Indian Institute of Technology Bombay, Mumbai, India
utkarshtripathi.math@gmail.com

S. Venkitesh
Department of Mathematics, Indian Institute of Technology Bombay, Mumbai, India
venkitesh.mail@gmail.com

Abstract
The probabilistic degree of a Boolean function f : {0, 1}n → {0, 1} is defined to be the smallest d

such that there is a random polynomial P of degree at most d that agrees with f at each point with
high probability. Introduced by Razborov (1987), upper and lower bounds on probabilistic degrees
of Boolean functions – specifically symmetric Boolean functions – have been used to prove explicit
lower bounds, design pseudorandom generators, and devise algorithms for combinatorial problems.

In this paper, we characterize the probabilistic degrees of all symmetric Boolean functions up to
polylogarithmic factors over all fields of fixed characteristic (positive or zero).

2012 ACM Subject Classification Theory of computation → Computational complexity and cryp-
tography

Keywords and phrases Symmetric Boolean function, probabilistic degree

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.28

Related Version A full version of the paper is available on [21], https://eccc.weizmann.ac.il/
report/2019/138/download.

Funding Srikanth Srinivasan: Supported by MATRICS grant MTR/2017/000958 awarded by SERB,
Government of India.
Utkarsh Tripathi: Supported by the Ph.D. Scholarship of NBHM, DAE, Government of India.
S. Venkitesh: Supported by the Senior Research Fellowship of HRDG, CSIR, Government of India.

1 Introduction

Studying the combinatorial and computational properties of Boolean functions by representing
them using multivariate polynomials (over some field F) is an oft-used technique in Theoretical
Computer Science. Such investigations into the complexity of Boolean functions have led to
many important advances in the area (see, e.g. [2, 14, 23] for a large list of such results).

An “obvious” way of representing a Boolean function f : {0, 1}n → {0, 1} is via a
multilinear polynomial P ∈ F[x1, . . . , xn] such that P (a) = f(a) for all a ∈ {0, 1}n. While
such a representation has the advantage of being unique, understanding the computational
complexity of f sometimes requires us to understand polynomial representations where we
allow some notion of error in the representation. Here again, many kinds of representations
have been studied, but we concentrate here on the notion of Probabilistic degree of a Boolean
function, introduced by Razborov [16]. It is defined as follows.

© Srikanth Srinivasan, Utkarsh Tripathi, and S. Venkitesh;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 28; pp. 28:1–28:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:srikanth@math.iitb.ac.in
mailto:utkarshtripathi.math@gmail.com
mailto:venkitesh.mail@gmail.com
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.28
https://eccc.weizmann.ac.il/report/2019/138/download
https://eccc.weizmann.ac.il/report/2019/138/download
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 On the Probabilistic Degrees of Symmetric Boolean Functions

I Definition 1 (Probabilistic polynomial and Probabilistic degree). Given a Boolean function
f : {0, 1}n → {0, 1} and an ε > 0, an ε-error probabilistic polynomial for f is a random
polynomial P (with some distribution having finite support) over F[x1, . . . , xn] such that for
each a ∈ {0, 1}n,

Pr
P

[P(a) 6= f(a)] ≤ ε.

We say that the degree of P, denoted deg(P), is at most d if the probability distribution
defining P is supported on polynomials of degree at most d. Finally, we define the ε-error
probabilistic degree of f , denoted pdegF

ε(f), to be the least d such that f has an ε-error
probabilistic polynomial of degree at most d.

When the field F is clear from context, we use pdegε(f) instead of pdegF
ε(f).

Intuitively, if we think of multivariate polynomials as algorithms and degree as a notion of
efficiency, then a low-degree probabilistic polynomial for a Boolean function f is an efficient
randomized algorithm for f .

The study of the probabilistic degree itself is by now a classical topic, and has had
important repercussions for other problems. We list three such examples below, referring the
reader to the papers for definitions and exact statements of the results.

Razborov [16] showed strong upper bounds on the probabilistic degree of the OR function
over fields of (fixed) positive characteristic. Along with lower bounds on the probabilistic
degree of some symmetric Boolean functions,1 this led to the first lower bounds for the
Boolean circuit class AC0[p], for prime p [16, 17, 19].
Tarui [22] and Beigel, Reingold and Spielman [3] showed upper bounds on the probabilistic
degree of the OR function over any characteristic (and in particular over the reals). This
leads to probabilistic degree upper bounds for the circuit class AC0, which was used by
Braverman [5] to resolve a long-standing open problem of Linial and Nisan [11] regarding
pseudorandom generators for AC0.

Alman and Williams [1] showed that for constant error, the probabilistic degree of
any symmetric Boolean function is at most O(

√
n), and used this to obtain the first

subquadratic algorithm for an offline version of the Nearest Neighbour problem in the
Hamming metric.

In all the above results, it was important to understand the probabilistic degree of a
certain class of symmetric Boolean functions. However, the problem of characterizing the
probabilistic degree of symmetric Boolean functions in general does not seem to have been
considered. This is somewhat surprising, since this problem has been considered in a variety
of other computational models, such as AC0 circuits of polynomial size [8, 6], AC0[p] circuits
of quasipolynomial size [12], Approximate degree2 [15] and Perceptrons3 of quasipolynomial
size [24].

1 Recall that a symmetric Boolean function f : {0, 1}n → {0, 1} is a function such that f(x) depends only
on the Hamming weight of x. Examples include the threshold functions, Parity (counting modulo 2),
etc.

2 A Boolean function f : {0, 1}n → {0, 1} is said to have approximate degree at most d if there is a degree
d polynomial P ∈ R[x1, . . . , xn] such that at each a ∈ {0, 1}n, |f(a)− P (a)| ≤ 1/4.

3 Perceptrons are depth-2 circuits with a Majority gate as the output gate with AND and OR gates
feeding into it.

S. Srinivasan, U. Tripathi, and S. Venkitesh 28:3

Our result. In this paper, we give an almost-complete understanding of the probabilistic
degrees of all symmetric Boolean functions over all fields of fixed positive characteristic and
characteristic 0. For each Boolean function f on n variables, our upper bounds and lower
bounds on pdeg(f) are separated only by polylogarithmic factors in n.

We now introduce some notation and give a formal statement of our result. We shall use
the notation [a, b] to denote an interval in R as well as an interval in Z; the distinction will
be clear from the context. Throughout, fix some field F of characteristic p which is either a
fixed positive constant or 0. Let n be a growing integer parameter which will always be the
number of input variables. We use sBn to denote the set of all symmetric Boolean functions
on n variables. Note that each symmetric Boolean function f : {0, 1}n → {0, 1} is uniquely
specified by a string Spec f : [0, n]→ {0, 1}, which we call the Spectrum of f , in the sense
that for any a ∈ {0, 1}n, we have

f(a) = Spec f(|a|).

Given a f ∈ sBn, we define the period of f , denoted per(f), to be the smallest positive
integer b such that Spec f(i) = Spec f(i+ b) for all i ∈ [0, n− b]. We say f is k-bounded if
Spec f is constant on the interval [k, n− k]; let B(f) denote the smallest k such that f is
k-bounded.

Standard decomposition of a symmetric Boolean function [12]. Fix any f ∈ sBn. Among
all symmetric Boolean functions f ′ ∈ sBn such that Spec f ′(i) = Spec f(i) for all i ∈
[dn/3e, b2n/3c], we choose a function g such that per(g) is as small as possible. We call g
the periodic part of f . Define h ∈ sBn by h = f ⊕ g. We call h the bounded part of f .

We will refer to the pair (g, h) as a standard decomposition of the function f . Note that
we have f = g ⊕ h.

I Observation 2. Let f ∈ sBn and let (g, h) be a standard decomposition of f . Then,
per(g) ≤ bn/3c and B(h) ≤ dn/3e.

In this paper, we prove the following upper and lower bounds for the probabilistic degrees
of symmetric Boolean functions. While the most important setting for understanding the
probabilistic degree is the setting of constant error (i.e. ε = Ω(1)), we state the upper bound
results for arbitrary ε > 0 since the inductive construction naturally gives rise to this stronger
statement.

I Theorem 3 (Upper bounds on probabilistic degree). Let F be a field of constant characteristic
p (possibly 0) and n ∈ N be a growing parameter. Let f ∈ sBn be arbitrary and let (g, h) be
a standard decomposition of f . Then we have the following for any ε > 0.
1. If per(g) = 1, then pdegF

ε(g) = 0, .
If per(g) is a power of p, then pdegF

ε(g) ≤ per(g), [12]
(Note that per(g) cannot be a power of p if p = 0.)

2. pdegF
ε(h) = Õ(

√
B(h) log(1/ε) + log(1/ε)),

3. pdegF
ε(f) =

O(
√
n log(1/ε)) if per(g) > 1 and not a power of p, [1]

Õ(min{
√
n log(1/ε),per(g)+ otherwise.√

B(h) log(1/ε) + log(1/ε)})
When p is positive, we can replaced the Õ(·) with O(·) in all the above bounds.

We obtain almost (up to polylogarithmic factors) matching lower bounds for all symmetric
Boolean functions over all fields.

FSTTCS 2019

28:4 On the Probabilistic Degrees of Symmetric Boolean Functions

I Theorem 4 (Lower bounds on probabilistic degree). Let F be a field of constant characteristic
p (possibly 0) and n ∈ N be a growing parameter. Let f ∈ sBn be arbitrary and let (g, h) be
a standard decomposition of f . Then for any constant ε ≤ 1/3, we have
1. pdegF

ε(g) = Ω̃(
√
n) if per(g) > 1 and is not a power of p and Ω̃(min{

√
n,per(g)})

otherwise.
2. pdegF

ε(h) = Ω̃(
√
B(h)),

3. pdegF
ε(f) =

{
Ω̃(
√
n) if per(g) > 1 and not a power of p,

Ω̃(min{
√
n, per(g) +

√
B(h)}) otherwise.

where the Ω̃(·) hides poly(logn) factors.

I Remark 5. A natural open question following our results is to remove the polylogarithmic
factors separating our upper and lower bounds. We remark that in characteristic 0, such
gaps exist even for the very simple OR function despite much effort [13, 9, 4]. Over positive
characteristic, there is no obvious barrier, but our techniques fall short of proving tight lower
bounds for natural families of functions such as the Exact Threshold functions (defined below).

Many proofs are omitted for lack of space. They appear in the full version of the paper.

1.1 Proof Outline
For the outline below, we assume that the field is of fixed positive characteristic p.

Upper bounds. Given a symmetric Boolean function f on n variables with standard
decomposition (g, h), it is easy to check that pdegε(f) = O(pdegε(g)+pdegε(h)). So it suffices
to upper bound the probabilistic degrees of periodic and bounded functions respectively.

For periodic functions g with period a power of p, Lu [12] showed that the exact degree
of the Boolean functions is at most per(g). If the period is not a power of p, then we use the
upper bound of Alman and Williams [1] that holds for all symmetric Boolean functions (as
we show below, this is nearly the best that is possible).

For a t-constant function h (defined in Section 3), we use the observation that any t-
constant function is essentially a linear combination of the threshold functions Thr0

n, . . . ,Thrtn
(see Section 2 for the definition) and so it suffices to construct probabilistic polynomials for
Thrin, for i ∈ [0, t].4

Our main technical upper bound is a new probabilistic degree upper bound of
O(
√
t log(1/ε) + log(1/ε)) for any threshold function Thrtn. This upper bound interpol-

ates smoothly between a classical upper bound of O(log(1/ε)) due to Razborov [16] for t = 1
and a recent result of Alman and Williams [1] that yields O(

√
n log(1/ε)) for t = Ω(n).

The proof of our upper bound is based on the beautiful inductive construction of Alman
and Williams [1] which gives their above-mentioned result. The key difference between our
proof and the proof of [1] is that we need to handle separately the case when the error
ε ≤ 2−Ω(t).5 In [1], this is a trivial case since any function on n Boolean variables has an
exact polynomial of degree n which is at most O(

√
n log(1/ε)) when ε ≤ 2−Ω(n). In our

setting, the correct bound in this case is O(log(1/ε)), which is non-obvious. We obtain
this bound by a suitable modification of Razborov’s technique (for t = 1) to handle larger
thresholds.

4 We actually need to construct probabilistic polynomials for all the threshold functions simultaneously.
We ignore this point in this high-level outline.

5 This case comes up naturally in the inductive construction, even if one is ultimately only interested in
the case when ε is a constant.

S. Srinivasan, U. Tripathi, and S. Venkitesh 28:5

Lower bounds. Here, our proof closely follows a result of Lu [12], who gave a characterization
of symmetric Boolean functions that have quasipolynomial-sized AC0[p] circuits.6 To show
circuit lower bounds for a symmetric Boolean function h, Lu showed how to convert a circuit
C computing h to a circuit C ′ computing either the Majority or a MODq function (where q
and p are relatively prime). Since both of these are known to be hard for AC0[p] [16, 17], we
get the lower bound.

We show how to use Lu’s reductions (and variants thereof) but in the setting of probabilistic
polynomials. This works because

We also have strong probabilistic degree lower bounds for the Majority and MODq

functions (in fact, this is the source of the AC0[p] lower bound).
Lu’s constructions of the hard functions from h (and our variants) involve taking ANDs
and ORs of a few copies of (restrictions of) h. This also gives a reduction from the hard
functions to h in the setting of probabilistic degree, since ANDs and ORs are known to
have small probabilistic degree [16].

With these observations in place, the proof reduces to a careful case analysis to get the
correct lower bound in each case. Interestingly, while it is not clear whether these ideas give
a tight understanding of the AC0[p]-circuit complexity of symmetric Boolean functions, they
do give nearly tight (up to log factors) lower bounds for probabilistic degree.

2 Preliminaries

Some Boolean functions. Fix some positive n ∈ N. The Majority function Majn on n

Boolean variables accepts exactly the inputs of Hamming weight at least n/2. For t ∈ [0, n],
the Threshold function Thrtn accepts exactly the inputs of Hamming weight at least t; and
similarly, the Exact Threshold function EThrtn accepts exactly the inputs of Hamming weight
exactly t. Finally, for b ∈ [2, n] and i ∈ [0, b− 1], the function MODb,i

n accepts exactly those
inputs a such that |a| ≡ i (mod b). In the special case that i = 0, we also use MODb

n.

I Fact 6. We have the following simple facts about probabilistic degrees. Let F be any field.
1. (Error reduction [9]) For any δ < ε ≤ 1/3 and any Boolean function f , if P is an ε-error

probabilistic polynomial for f , then Q = M(P1, . . . ,P`) is a δ-error probabilistic polyno-
mial for f where M is the exact multilinear polynomial for Maj` and P1, . . . ,P` are inde-
pendent copies of P. In particular, we have pdegF

δ(f) ≤ pdegF
ε(f) ·O(log(1/δ)/ log(1/ε)).

2. (Composition) For any Boolean function f on k variables and any Boolean functions
g1, . . . , gk on a common set of m variables, let h denote the natural composed function
f(g1, . . . , gk) on m variables. Then, for any ε, δ > 0, we have pdegF

ε+kδ(h) ≤ pdegF
ε(f) ·

maxi∈[k] pdegF
δ(gi).

3. (Sum) Assume that f, g1, . . . , gk are all Boolean functions on a common set of m variables
such that f =

∑
i∈[k] gi. Then, for any δ > 0, we have pdegF

kδ(f) ≤ maxi∈[k] pdegF
δ(gi).

2.1 Some previous results on probabilistic degree
The following upper bounds on probabilistic degrees of OR and AND functions were proved
by Razborov [16] in the case of positive characteristic and Tarui [22] and Beigel, Reingold
and Spielman [3] in the general case.

6 Recall that an AC0[p] circuit is a constant-depth circuit made up of gates that can compute the Boolean
functions AND, OR, NOT and MODp (defined below).

FSTTCS 2019

28:6 On the Probabilistic Degrees of Symmetric Boolean Functions

I Lemma 7 (Razborov’s upper bound on probabilistic degrees of OR and AND). Let F be a
field of characteristic p. For p > 0, we have

pdegF
ε(ORn) = pdegF

ε(ANDn) = O(p log(1/ε)). (1)

For any p, we have

pdegF
ε(ORn) = pdegF

ε(ANDn) = O(logn · log(1/ε)). (2)

We now recall two probabilistic degree lower bounds due to Smolensky [18, 20], building
on the work of Razborov [16].

I Lemma 8 (Smolensky’s lower bound for close-to-Majority functions). For any field F, any
ε ∈ (1/2n, 1/5), and any Boolean function g on n variables that agrees with Majn on a 1− ε
fraction of its inputs, we have

pdegF
ε(g) = Ω(

√
n log(1/ε)).

I Lemma 9 (Smolensky’s lower bound for MOD functions). For 2 ≤ b ≤ n/2, any F such that
char(F) = p is coprime to b, any ε ∈ (1/2n, 1/(3b)), there exists an i ∈ [0, b− 1] such that

pdegF
ε(MODb,i

n) = Ω(
√
n log(1/bε)).

I Remark 10. From the above lemma, it also easily follows that if b ≤ n/4, then for every
i ∈ [0, b− 1], we have pdegF

ε(MODb,i
n) = Ω(

√
n log(1/bε)). This is the usual form in which

Smolensky’s lower bound is stated. The above form is slightly more useful to us because it
holds for b up to n/2.

We will also need the following result of Alman and Williams [1].

I Lemma 11. Let F be any field. For any n ≥ 1, ε > 0 and f ∈ sBn, pdegF
ε(f) =

O(
√
n log(1/ε)).

2.2 A string lemma
Given a function w : I → {0, 1} where I ⊆ N is an interval, we think of w as a string from
the set {0, 1}|I| in the natural way. For an interval J ⊆ I, we denote by w|J the substring of
w obtained by restriction to J .

The following simple lemma can be found, e.g. as a consequence of [10, Chapter I, Section
2, Theorem 1].

I Lemma 12. Let w ∈ {0, 1}+ be any non-empty string and u, v ∈ {0, 1}+ such that
w = uv = vu. Then there exists a string z ∈ {0, 1}+ such that w is a power of z (i.e. w = zk

for some k ≥ 2).

I Corollary 13. Let g ∈ sBn be arbitrary with per(g) = b > 1. Then for all i, j ∈ [0, n− b+1]
such that i 6≡ j (mod b), we have Spec g|[i,i+b−1] 6= Spec g|[j,j+b−1].

Proof. Suppose Spec g|[i,i+b−1] = Spec g|[j,j+b−1] for some i 6≡ j (mod b). Assume without
loss of generality that i < j < i + b. Let u = Spec g|[i,j−1], v = Spec g|[j,i+b−1], w =
Spec g|[i+b,j+b−1]. Then u = w and the assumption uv = vw implies uv = vu. By Lemma 12,
there exists a string z such that uv = zk for k ≥ 2 and therefore per(g) < b. This contradicts
our assumption on b. J

S. Srinivasan, U. Tripathi, and S. Venkitesh 28:7

I Lemma 14. Let n ∈ N be a growing parameter and let f ∈ sBn with periodic part g.
For any 1 ≤ b ≤ bn/3c, either per(g) ≤ b or for all distinct i, j ∈ [dn/3e − b, dn/3e],
Spec f |[i,i+(dn/3e+b)] 6= Spec f |[j,j+(dn/3e+b)].

Proof. W.l.o.g. say i < j. Assume per(g) > b (otherwise, we are done trivially). Then,
for any b′ ≤ b, it follows that there is an k ∈ [dn/3e, b2n/3c − b′] such that Spec f(k) 6=
Spec f(k + b′). In particular, we see that Spec f |[i,i+(dn/3e+b)] 6= Spec f |[i+b′,i+b′+(dn/3e+b)].
Fixing b′ = j − i yields the result. J

3 Upper bounds

In this section, we will first prove upper bounds on the probabilistic degree of a smaller
class of symmetric Boolean functions, called t-constant functions, and then use it to prove
Theorem 3.

3.1 Upper bound on probabilistic degree of t-constant functions
I Definition 15 (t-constant function). For any positive n ∈ N and t ∈ [0, n], a Boolean
function f ∈ sBn is said to be t-constant if f |{x:|x|≥t} is a constant, that is, Spec f |[t,n] is a
constant.

The following observation is immediate.

I Observation 16. A Boolean function f : {0, 1}n → {0, 1} is t-constant if and only if
f =

∑t
j=0 ajThrjn, for some a0, . . . , at ∈ {−1, 0, 1}. In other words, f is t-constant if and

only if there exists a linear polynomial g(Y0, . . . , Yt) = a0Y0 + · · ·+ atYt ∈ F[Y0, . . . , Yt] with
aj ∈ {−1, 0, 1}, j ∈ [0, t] such that f = g(Thr0

n, . . . ,Thrtn).

We will prove an upper bound on the probabilistic degree of t-constant Boolean functions.
For this, we first generalize the notion of probabilistic polynomial and probabilistic degree to
a tuple of Boolean functions. This generalization was implicit in [1].

I Definition 17 (Probabilistic poly-tuple and probabilistic degree). Let f = (f1, . . . , fm) :
{0, 1}n → {0, 1}m be an m-tuple of Boolean functions and ε ∈ (0, 1). An ε-error probabilistic
poly-tuple for f is a random m-tuple of polynomials P (with some distribution having finite
support) from F[X1, . . . , Xn]m such that

Pr
P∼P

[P (x) 6= f(x)] ≤ ε, for all x ∈ {0, 1}n.

We say that the degree of P is at most d if P is supported on m-tuples of polynomials
P = (P1, . . . , Pm) where each Pi has degree at most d. Finally we define the ε-error
probabilistic degree of f , denoted by pdegF

ε(f), to be the least d such that f has an ε-error
probabilistic poly-tuple of degree at most d.

We make a definition for convenience.

I Definition 18 (Threshold tuple). For positive n ∈ N, t ∈ [0, n], an (n, t)-threshold
tuple is any tuple of Boolean functions (Thrt1n , . . . ,Thrtmn), with t1, . . . , tm ∈ [0, t] and
max{t1, . . . , tm} ≤ t.

The main theorem of this subsection is the following.

FSTTCS 2019

28:8 On the Probabilistic Degrees of Symmetric Boolean Functions

I Theorem 19. For any positive n ∈ N, t ∈ [0, n], if T is an (n, t)-threshold tuple and
ε ∈ (0, 1/3), then

pdegε(T) =
{
Õ(
√
t log(1/ε) + log(1/ε)), char(F) = 0,

O(
√
t log(1/ε) + log(1/ε)), char(F) = p > 0.

.

As a corollary to the above theorem, we get an upper bound for the probabilistic degree
of t-constant functions.

I Corollary 20. For any t-constant Boolean function f : {0, 1}n → {0, 1} and ε ∈ (0, 1/3),

pdegε(f) =
{
Õ(
√
t log(1/ε) + log(1/ε)), char(F) = 0,

O(
√
t log(1/ε) + log(1/ε)), char(F) = p > 0.

.

Proof. By Observation 16, there exists g(Y0, . . . , Yt) = a0Y0 + · · ·+ atYt ∈ F[Y0, . . . , Yt] with
aj ∈ {−1, 0, 1}, j ∈ [0, t] such that f = g(Thr0

n, . . . ,Thrtn). We note that deg g = 1. So by
Theorem 19, we get

pdegε(f) = deg g · pdegε(Thr0
n, . . . , Thrt

n) =

{
Õ(
√

t log(1/ε) + log(1/ε)), char(F) = 0,

O(
√

t log(1/ε) + log(1/ε)), char(F) = p > 0.
.

J

Before we prove Theorem 19, we will gather a few results that we require. The following
lemma is a particular case of Bernstein’s inequality (Theorem 1.4, [7]).

I Lemma 21. Let X1, . . . , Xm be independent and identically distributed Bernoulli random
variables with mean p. Let X =

∑m
i=1Xi. Then for any θ > 0,

Pr [|X −mp| > θ] ≤ 2 exp
(
− θ2

2mp(1− p) + 2θ/3

)
.

We will also need the following polynomial construction.

I Theorem 22 (Lemma 3.1, [1]). For any symmetric Boolean function f : {0, 1}n → {0, 1}
and integer interval [a, b] ⊆ [0, n], there exists a symmetric multilinear polynomial EX[a,b]f ∈
Z[X1, . . . , Xn] such that deg(EX[a,b]f) ≤ b− a and Spec (EX[a,b]f)|[a,b] = Spec f |[a,b].

We will now prove Theorem 19.

Proof of Theorem 19. For any a = (a1, . . . , ak), b = (b1, . . . , bk) ∈ Fk, fix the notation
a ∗ b = (a1b1, . . . , akbk). Throughout, the notation 1 will denote the constant-1 vector of
appropriate length.

For positive characteristic p, we prove that for any positive n ∈ N, t ∈ [0, n] and
ε ∈ (0, 1/100), any (n, t)-threshold tuple T has an ε-error probabilistic poly-tuple T of degree
at most Ap

√
t log(1/ε) +Bp log(1/ε), for constants Ap = Bp = 4800000p (we make no effort

to minimize the constants). For p = 0, we prove a similar result with a degree bound of
A0 logn ·

√
t log(1/ε) + B0 logn · log(1/ε), for A0 = B0 = 5000000. This will prove the

theorem for ε < 1/100. To prove the theorem for all ε ≤ 1/3, we use error reduction (Fact 6)
and reduce the error to 1/100 and then apply the result for small error.

S. Srinivasan, U. Tripathi, and S. Venkitesh 28:9

The proof is by induction on the parameters n, t and ε. At any stage of the induction,
given an (n, t)-threshold tuple with error parameter ε, we construct the required probabilistic
poly-tuple by using the probabilistic poly-tuples (guaranteed by inductive hypothesis) for
suitable threshold poly-tuples with n/10 inputs and error parameter ε/4. Thus the base
cases of the induction are as follows.

Base Case: Suppose n ≤ 10. Let T = (T1, . . . , Tm) be an (n, t)-threshold tuple. Let
Q1, . . . , Qm be the unique multilinear polynomial representations of T1, . . . , Tm respectively.
Then Q = (Q1, . . . , Qm) is an ε-error probabilistic poly-tuple for T , for all ε ∈ (0, 1/100),
with degQ ≤ n = 10.

Base Case: Suppose ε ≤ 2−t/160000. Let T = (T1, . . . , Tm) = (Thrt1n , . . . ,Thrtmn) be any
(n, t)-threshold tuple and let r = 160000 log(1/ε).

Suppose n ≤ r. Let Q1, . . . , Qm be the unique multilinear representations of T1, . . . , Tm
respectively. Then Q = (Q1, . . . , Qm) is an ε-error probabilistic polynomial with degQ ≤ n ≤
r = dlog(1/ε)e. Now suppose n > r. Let P1 = (EX[0,r]T1, . . . ,EX[0,r]Tm). Then degP1 ≤ r.
Choose a uniformly random hash function H : [n]→ [r] and let Sj = H−1(j), j ∈ [r].

First let us suppose that char(F) = p > 0. Choose αi ∼ Fp, i ∈ [n] independently
and uniformly at random and define Lj(x) =

∑
i∈Sj

αixi, for x ∈ {0, 1}n, j ∈ [r]. For
i ∈ [m], let P(i)

2 = Q
(i)
r (Lp−1

1 , . . . ,Lp−1
r), where Q(i)

r is the unique multilinear polynomial
representation of Thrtir . Let P2 = (P(1)

2 , . . . ,P(m)
2). Define P = 1− (1−P1) ∗ (1−P2), that

is, P = (P(1), . . . ,P(m)), where P(i) = OR2(P (i)
1 ,P(i)

2), for all i ∈ [m].
Note that since ε ≤ 2−t/160000, we have r = 4800000 log(1/ε) ≥ t. Thus ti ≤ t ≤ r, for

all i ∈ [m]. Now fix any a ∈ {0, 1}n. Let Za = {i ∈ [m] : Thrtin (a) = 0} and Na = {i ∈ [m] :
Thrtin (a) = 1}. So we have |a| < ti ≤ t ≤ r and hence EX[0,r]Ti(a) = 0, for all i ∈ Za. Also
|(Lp−1

1 (a), . . . ,Lp−1
r (a))| ≤ |a| < ti w.p.1, and so P(i)

2 (a) = Q
(i)
r ((Lp−1

1 (a), . . . ,Lp−1
r (a))) = 0

w.p.1, for all i ∈ Za simultaneously. Thus P(i)(a) = 0 w.p.1, for all i ∈ Za simultaneously.
Further we have |a| ≥ ti, for all i ∈ Na. We will now show that P(i)(a) = 1 w.p. at least

1− ε, for all i ∈ Na simultaneously. If |a| ≤ r, then again P (i)
1 (a) = 1, for all i ∈ Na and so

P(i)(a) = 1 w.p.1. Now suppose |a| ≥ r. Without loss of generality, assume t1 ≤ · · · ≤ tm = t.
Then we have P(1)

2 (a) ≥ · · · ≥ P(m)
2 (a) w.p.1, under the order 1 > 0. So it is enough to show

that P(m)(a) = 1 w.p. at least 1− ε.
Define I(H) = {j ∈ [r] : supp(a) ∩ Sj 6= ∅}. We get

Pr
[
P(m)

2 (a) = 0
]

= Pr
[
P(m)

2 (a) = 0 | |I(H)| < r/10
]
· Pr [|I(H)| < r/10]

+ Pr
[
P(m)

2 (a) = 0 | |I(H)| ≥ r/10
]
· Pr [|I(H)| ≥ r/10]

≤ Pr [|I(H)| < r/10] + max
H:|I(H)|≥r/10

Pr
[
P(m)

2 (a) = 0 | H
]
.

By Union Bound, we get

Pr [|I(H)| < r/10] ≤
∑

I⊆[r], |I|=r/10

Pr [I(H) ⊂ I] ≤
(

r

r/10

)
1

10r ≤
1
4r ≤

1
4 ·

1
2r ≤

ε

4 .

Now fix any H such that |I(H)| ≥ r/10, and let ` = |I(H)|. Note that P(m)
2 (a) is 0 if and

only if at most t−1 many Lj(a) are non-zero. We consider only j ∈ I(H). For each j ∈ I(H),
the probability that Lj(a) is non-zero is 1− 1/p ≥ 1/2. Thus, the expected number of Lj(a)
(j ∈ I(H)) that are non-zero is at least `/2 ≥ r/20. Thus, by Lemma 21,

FSTTCS 2019

28:10 On the Probabilistic Degrees of Symmetric Boolean Functions

Pr
[
P(m)

2 (a) = 0 | H
]

= Pr [|I(H) ∩ {j : Lj(a) = 1}| ≤ t− 1 | H] ≤ 2 exp
(
− r

240

)
<

ε

2 .

where for the inequality we have used the fact that t ≤ r/40. Thus Pr
[
P(m)

2 (a) = 0
]
≤ ε,

proving the base case when char(F) = p > 0.
Now suppose char(F) = 0. Then for i ∈ [m] we let P(i)

2 = Q
(i)
r (O1, . . . ,Or), where

Q
(i)
r is the unique multilinear polynomial representation of Thrtir , and for j ∈ [r], Oj is a

1/3-error probabilistic polynomial for ORSj
, the OR function on variables (Xk : k ∈ Sj). Let

P2 = (P(1)
2 , . . . ,P(m)

2). Define P = 1 − (1 − P1) ∗ (1 − P2), that is, P = (P(1), . . . ,P(m)),
where P(i) = OR2(P (i)

1 ,P(i)
2), for all i ∈ [m]. The rest of the analysis follows similarly,

proving the base case when char(F) = 0.

Inductive Construction. For any positive characteristic p, any n′ < n, t′ ∈ [0, n′] and ε′ ∈
(0, 1/100), assume the existence of an ε′-error probabilistic poly-tuple for any (n′, t′)-threshold
tuple, with degree at most Ap

√
t′ log(1/ε′) +Bp log(1/ε′); similarly, for characteristic zero,

assume we have a probabilistic poly-tuple of degree A0 logn·
√
t′ log(1/ε′)+B0 logn·log(1/ε′).

We now consider an (n, t)-threshold tuple T = (T1, . . . , Tm) = (Thrt1n , . . . ,Thrtmn). As-
sume that the parameter ε > 2−t/160000 since otherwise can use the construction from the
base case. Define

T ′ = (T ′1, . . . , T ′m) =
(

Thrt1/10
n/10 , . . . ,Thrtm/10

n/10

)
,

T ′′+ = (T ′′1,+, . . . , T ′′m,+) =
(

Thrt1/10+20
√
t log(1/ε)

n/10 , . . . ,Thrtm/10+20
√
t log(1/ε)

n/10

)
,

T ′′− = (T ′′1,−, . . . , T ′′m,−) =
(

Thrt1/10−20
√
t log(1/ε)

n/10 , . . . ,Thrtm/10−20
√
t log(1/ε)

n/10

)
.

By induction hypothesis, let T′,T′′+,T′′− be ε/4-error probabilistic poly-tuples for T ′, T ′′+, T ′′−
respectively. Let N′′ = (1 − T′′+) ∗ T′′−. For any x ∈ {0, 1}n, choose a random subvector
x̂ ∈ {0, 1}n/10 with each coordinate chosen independently with probability 1/10, with
replacement. Define

T(x) = N′′(x̂) ∗ E(x) + (1−N′′)(x̂) ∗T′(x̂),

where E = (E1, . . . , Em), with Ei = EX[ti−300
√
t log(1/ε),ti+300

√
t log(1/ε)]Thrtin , i ∈ [m]. We

will now prove that T is an ε-error probabilistic poly-tuple for T .

Correctness of Inductive Construction. We now check that the construction above gives
an ε-error probabilistic poly-tuple for T . Fix any a ∈ {0, 1}n. Let â ∈ {0, 1}n/10 be chosen
as given in the inductive construction.

Suppose |a| ≤ 2t. Let θ = 10
√
t log(1/ε). Applying Lemma 21, we get

Pr [||â| − |a|/10| > θ] < ε/4. By induction hypothesis, the probability that T′(â) does
not agree with T ′(â) is at most ε/4, and similarly for T′′+ and T′′−. Let Ga be the event that
none of the above events occur; by a union bound, the event Ga occurs with probability at
least 1− ε. In this case, we show that T(a) = T (a), which will prove the correctness of the
construction in the case that |a| ≤ 2t.

To see the above, observe the following for each i ∈ [m].
T′i(â) = Ti(a) if ||a| − ti| > 10θ. This is because T′i(â) = T ′i (â) by our assumption that
the event Ga has occurred. Further, we also have T ′i (â) = Ti(a) since |â− |a|/10| ≤ θ (by
occurrence of Ga) and hence |a| ≥ ti if and only if |â| ≥ ti/10.

S. Srinivasan, U. Tripathi, and S. Venkitesh 28:11

If ||a| − ti| > 30θ, then N′′i (â) = 0. This is because ||â| − |a|/10| ≤ θ and hence
||â| − ti/10| > 2θ. Hence, either T′′i,+(â) = 1 or T′′i,−(â) = 0 and therefore, N′′i (â) = 0.
Thus, when ||a| − ti| > 30θ, the definition of T yields Ti(a) = T′i(â) = Ti(a). We are
therefore done in this case.
If ||a| − ti| < 10θ, then N′′i (â) = 1. This is similar to the analogous statement above.
Therefore, when ||a| − ti| < 10θ, we have Ti(a) = Ei(a) = Ti(a) as |a| ∈ [ti −
300
√
t log(1/ε), ti + 300

√
t log(1/ε)]. Hence, we are done in this case also.

If 10θ ≤ ||a| − ti| ≤ 30θ, then Ei(a) = T′(â) = Ti(a). Since N′′i (â) ∈ {0, 1} for each
i ∈ [m], we again obtain Ti(a) = Ti(a).

This shows that for any a such that |a| ≤ 2t, whenever Ga does not occur, T(a) = T (a).
Now suppose |a| > 2t. Then by a Chernoff bound (follows from Lemma 21), we get

Pr [|â| < 1.5t/10] < 2 exp(−t/400) < ε/2. Also, by the induction hypothesis, the probability
that T′(â) does not agree with T ′(â) is at most ε/4, and similarly for T′′+ and T′′−. Let Ga
denote the event that none of the above events occur; we have Pr [G] ≥ 1− ε. As above, we
show that when Ga occurs, then T(a) = T (a).

To see this, we proceed as follows.
Since |a| ≥ 2t and |â| ≥ 1.5t/10, both T (a) and T′i(â) are both the constant-1 vector.
Further, we note that we have N′′i (â) = 0 for each i ∈ [m]. This is because ||â| − ti/10| ≥
(|â| − t/10) ≥ t/20 > 20

√
t log(1/ε).

This implies that Ti(a) = T′i(â) = 1 for each i ∈ [m].
Hence, when Ga does not occur, we have T(a) = T (a), which proves the correctness of the
construction.

Correctness of Degree. The computation that shows that deg(T) satisfies the inductive
claim is omitted here and is in the full version of the paper. J

3.2 Upper bounds from Theorem 3

Upper bound for pdegε(g). This result is due to Lu [12].

Upper bound for pdegε(h). Let B(h) = k. Thus we can write h = h1 + (1− h̃2), for k-
constant symmetric Boolean functions h1, h2, where h̃2(x1, . . . , xn) = h2(1− x1, . . . , 1− xn).
But then by Corollary 20, pdegε(h1) = pdegε(h2) = O(

√
k log(1/ε) + log(1/ε)) and so

pdegε(h) = O(
√
k log(1/ε) + log(1/ε)) over positive characteristic p. For p = 0, we obtain

the same upper bound up to log-factors.

Upper bound for pdegε(f). Let (g, h) be the standard decomposition of f . So f = g⊕h =
g + h − 2gh. Further, we already have the Alman-Williams bound of O(

√
n log(1/ε)) on

pdegε(f) (Lemma 11). So we get pdegε(f) = O(min{
√
n log(1/ε),per(g)+

√
B(h) log(1/ε)+

log(1/ε)}) over positive characteristic and the same bound up to log-factors over characteristic
0. This concludes the proof of Theorem 3.

4 Lower bounds

In this section, we prove the lower bounds from Theorem 4.
Throughout, F is fixed to be some arbitrary field of characteristic p (possibly 0). We use

pdegε(·) instead of pdegF
ε(·) and pdeg(·) instead of pdegF

1/3(·).

FSTTCS 2019

28:12 On the Probabilistic Degrees of Symmetric Boolean Functions

4.1 Preliminary lemmas
We need some preliminary lemmas. The proofs are omitted for lack of space.

I Lemma 23. Let n,m ∈ N, n > m and ε ≤ 1/3. Let f ∈ sBn and g ∈ sBm be such that
per(g) divides per(f) and per(f) ≤ (n−m+2)/2. Then pdegε(f) = Ω(pdegε(g)/ log3(n/ε)).

I Lemma 24. For any 1/2n ≤ ε ≤ 1/3, pdegε(EThrdn/2en) = Ω̃(
√
n log(1/ε)).

4.2 Lower bounds from Theorem 4
We recall the lower bound for periodic functions from Theorem 4. In light of Observation 2,
this is a slightly more general statement.

I Lemma 25. Let g ∈ sBn be any function with per(g) = b ≤ n/3, then pdegε(g) = Ω̃(
√
n)

if per(g) > 1 and is not a power of p and Ω̃(min{
√
n, per(g)}) otherwise.

Proof. Assume per(g) = b > 1. Consider the two cases below.

b is not a power of p. Let b′ be any non-trivial divisor of b which is coprime to p (if p = 0,
we simply take b′ = b). For i ∈ [0, b′ − 1], define gi = MODb′,i

dn/3e. The functions g
and gi satisfy the hypotheses of Lemma 23 and therefore for any constant ε ≤ 1/3,
pdegε(g) = Ω̃(pdegε(gi)).
Note that as b ≤ n/3, we have b′ ≤ n/6 ≤ 1

2dn/3e. Hence, by Lemma 9, for some
i ∈ [0, b′ − 1], pdeg1/n2(gi) = Ω(

√
n log(n2/b)) = Ω̃(

√
n).

Therefore pdeg1/n2(g) = Ω̃(
√
n) and hence by Fact 6 item 1 pdeg(g) = Ω̃(

√
n).

b = pk for some k ∈ N. Let m = min(b2/100, dn/3e). Let g′ ∈ sBm with per(g′) = b be
such that Spec (g′)(i) = 0 whenever bm/2c − bb/2c ≤ i ≤ bm/2c and Spec (g′)(i) = 1
whenever bm/2c < i ≤ bm/2c+ b− bb/2c − 1.
Again, the functions g and g′ satisfy the hypotheses of Lemma 23 and therefore for any
constant ε ≤ 1/3, pdegε(g) = Ω̃(pdegε(g′)).
Note that g′ agrees with the Majm function on all inputs x ∈ {0, 1}m such that ||x|−(m/2)|
is at most b/2. By a Chernoff bound (follows from Lemma 21),

Pr
x∈{0,1}m

[||x| −m/2| > b/2] ≤ 2e− b2
2m = 2e−50 < 1/5.

Therefore g′ agrees with Majm on more than 4/5 fraction of inputs and hence by Lemma 8,
pdeg(g′) = Ω(

√
m). Therefore, pdeg(g) = Ω̃(

√
m) = min(Ω̃(b), Ω̃(

√
n)). J

We now recall the lower bound for bounded symmetric Boolean functions from Theorem 4.

I Lemma 26. Let h ∈ sBn be such that B(h) ≤ dn/3e. Then, pdegε(h) = Ω̃(
√
B(h)),

Proof. Let B(h) = b. Then, we know that Spech(i) = 0 for i ∈ [b, n− b] and further either
Spech(b− 1) or Spech(n− b+ 1) is 1. We assume w.l.o.g. that Spech(n− b+ 1) = 1 (the
other case is similar).

Fix some integer b′ = b−O(1) so that 2b+ 2bb′/2c ≤ n. Define h′ ∈ sBb′ as

h′(x) =
∨

i∈[0,bb′/2c]

h(x1n−b−2bb′/2c+i0b−b
′+2bb′/2c−i), for all x ∈ {0, 1}b

′
.

We claim that h′ = Majb′ . To show this, we proceed as follows.

S. Srinivasan, U. Tripathi, and S. Venkitesh 28:13

Let |x| ≤ b′/2 and therefore |x| ≤ bb′/2c. Then for all i ∈ [0, bb′/2c], using our choice of
b′, we have

b ≤ n− b− 2bb′/2c ≤ |x1n−b−2bb′/2c+i0b−b
′+2bb′/2c−i| = |x|+ (n− b− 2bb′/2c+ i) ≤ n− b

and therefore none of the terms in the OR above evaluate to 1. Thus h′(x) = 0.
Let |x| > b′/2 and therefore |x| ≥ bb′/2c+ 1. Let |x| = bb′/2c+ j for some j ∈ [1, db′/2e].

Let i = bb′/2c − j + 1. Then |x1n−b−2bb′/2c+i0b−b′+2bb′/2c−i| = n− b+ 1. Therefore the OR
evaluates to 1 and h′(x) = 1.

From the above we see that h′ = Majb. Now,

pdeg(h′) ≤ pdeg2/n(h′)

≤ pdeg1/n(OR) · pdeg1/n2(h)

≤ O(log2 n) ·O(logn) · pdeg(h)

≤ Õ(pdeg(h)).

The second inequality follows from Fact 6 item 2 and the third inequality follows from
Lemma 7 and Fact 6 item 1.

Since pdeg(Majb′) = Ω(
√
b′) = Ω(

√
b), it follows that pdeg(h) = Ω̃(

√
b). J

Using the above, a short case analysis yields the lower bound on pdeg(f) for general
f ∈ sBn. The proof is omitted.

References
1 Josh Alman and Ryan Williams. Probabilistic polynomials and hamming nearest neighbors.

In 2015 IEEE 56th Annual Symposium on Foundations of Computer Science (FOCS), pages
136–150. IEEE, 2015.

2 Richard Beigel. The polynomial method in circuit complexity. [1993] Proceedings of the Eigth
Annual Structure in Complexity Theory Conference, pages 82–95, 1993.

3 Richard Beigel, Nick Reingold, and Daniel A. Spielman. The Perceptron Strikes Back. In
Proceedings of the Sixth Annual Structure in Complexity Theory Conference, Chicago, Illinois,
USA, June 30 - July 3, 1991, pages 286–291, 1991. doi:10.1109/SCT.1991.160270.

4 Siddharth Bhandari, Prahladh Harsha, Tulasimohan Molli, and Srikanth Srinivasan. On the
Probabilistic Degree of OR over the Reals. In Sumit Ganguly and Paritosh Pandya, editors, 38th
IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS 2018), volume 122 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 5:1–5:12, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. doi:10.4230/LIPIcs.FSTTCS.2018.5.

5 Mark Braverman. Polylogarithmic independence fools AC0 circuits. J. ACM, 57(5), 2010.
doi:10.1145/1754399.1754401.

6 Bettina Brustmann and Ingo Wegener. The Complexity of Symmetric Functions in Bounded-
Depth Circuits. Inf. Process. Lett., 25(4):217–219, 1987. doi:10.1016/0020-0190(87)90163-3.

7 Devdatt P Dubhashi and Alessandro Panconesi. Concentration of measure for the analysis of
randomized algorithms. Cambridge University Press, 2009.

8 Ronald Fagin, Maria M. Klawe, Nicholas Pippenger, and Larry J. Stockmeyer. Bounded-Depth,
Polynomial-Size Circuits for Symmetric Functions. Theor. Comput. Sci., 36:239–250, 1985.
doi:10.1016/0304-3975(85)90045-3.

9 Prahladh Harsha and Srikanth Srinivasan. On Polynomial Approximations to AC0. In
Klaus Jansen, Claire Mathieu, José D. P. Rolim, and Chris Umans, editors, Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016), volume 60 of Leibniz International Proceedings in Informatics (LIPIcs), pages
32:1–32:14, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.APPROX-RANDOM.2016.32.

FSTTCS 2019

https://doi.org/10.1109/SCT.1991.160270
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.5
https://doi.org/10.1145/1754399.1754401
https://doi.org/10.1016/0020-0190(87)90163-3
https://doi.org/10.1016/0304-3975(85)90045-3
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.32

28:14 On the Probabilistic Degrees of Symmetric Boolean Functions

10 David Lawrence Johnson, David Leroy Johnson, and SS Johnson. Topics in the theory of
group presentations, volume 42. Cambridge University Press, 1980.

11 Nathan Linial and Noam Nisan. Approximate inclusion-exclusion. Combinatorica, 10(4):349–
365, 1990.

12 Chi-Jen Lu. An exact characterization of symmetric functions in qAC0[2]. Theoretical
Computer Science, 261(2):297–303, 2001.

13 Raghu Meka, Oanh Nguyen, and Van Vu. Anti-concentration for Polynomials of Independent
Random Variables. Theory of Computing, 12(1):1–17, 2016. doi:10.4086/toc.2016.v012a011.

14 Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, New York, NY,
USA, 2014.

15 Ramamohan Paturi. On the degree of polynomials that approximate symmetric Boolean
functions (preliminary version). In Proceedings of the twenty-fourth annual ACM symposium
on Theory of computing, pages 468–474. ACM, 1992.

16 Alexander A. Razborov. Lower bounds on the size of bounded depth circuits over a complete
basis with logical addition. Mathematicheskie Zametki, 41(4):598–607, 1987. (English transla-
tion in Mathematical Notes of the Academy of Sciences of the USSR, 41(4):333–338, 1987).
doi:10.1007/BF01137685.

17 Roman Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit
complexity. In Proceedings of the nineteenth annual ACM symposium on Theory of computing,
pages 77–82. ACM, 1987.

18 Roman Smolensky. Algebraic Methods in the Theory of Lower Bounds for Boolean Circuit
Complexity. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing,
pages 77–82, 1987.

19 Roman Smolensky. On representations by low-degree polynomials. In Proceedings of 1993
IEEE 34th Annual Foundations of Computer Science, pages 130–138. IEEE, 1993.

20 Roman Smolensky. On Representations by Low-Degree Polynomials. In FOCS, pages 130–138,
1993. doi:10.1109/SFCS.1993.366874.

21 Srikanth Srinivasan, Utkarsh Tripathi, and S. Venkitesh. On the Probabilistic Degrees of
Symmetric Boolean functions. Electronic Colloquium on Computational Complexity (ECCC),
138:1–24, 2019. URL: https://eccc.weizmann.ac.il/report/2019/138.

22 Jun Tarui. Probabilistic Polynomials, AC0 Functions, and the Polynomial-Time Hierarchy.
Theoretical Computer Science, 113(1):167–183, 1993.

23 Richard Ryan Williams. The polynomial method in circuit complexity applied to algorithm
design (invited talk). In 34th International Conference on Foundation of Software Technology
and Theoretical Computer Science (FSTTCS 2014). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2014.

24 Zhi-Li Zhang, David A Mix Barrington, and Jun Tarui. Computing symmetric functions
with AND/OR circuits and a single MAJORITY gate. In Annual Symposium on Theoretical
Aspects of Computer Science, pages 535–544. Springer, 1993.

https://doi.org/10.4086/toc.2016.v012a011
https://doi.org/10.1007/BF01137685
https://doi.org/10.1109/SFCS.1993.366874
https://eccc.weizmann.ac.il/report/2019/138

Classification Among Hidden Markov Models
S. Akshay
IIT Bombay, India

Hugo Bazille
Univ Rennes, Inria, IRISA, France

Eric Fabre
Univ Rennes, Inria, IRISA, France

Blaise Genest
Univ Rennes, CNRS, IRISA, France

Abstract
An important task in AI is one of classifying an observation as belonging to one class among several
(e.g. image classification). We revisit this problem in a verification context: given k partially
observable systems modeled as Hidden Markov Models (also called labeled Markov chains), and an
execution of one of them, can we eventually classify which system performed this execution, just by
looking at its observations? Interestingly, this problem generalizes several problems in verification
and control, such as fault diagnosis and opacity. Also, classification has strong connections with
different notions of distances between stochastic models.

In this paper, we study a general and practical notion of classifiers, namely limit-sure classifiers,
which allow misclassification, i.e. errors in classification, as long as the probability of misclassification
tends to 0 as the length of the observation grows. To study the complexity of several notions of
classification, we develop techniques based on a simple but powerful notion of stationary distributions
for HMMs. We prove that one cannot classify among HMMs iff there is a finite separating word
from their stationary distributions. This provides a direct proof that classifiability can be checked in
PTIME, as an alternative to existing proofs using separating events (i.e. sets of infinite separating
words) for the total variation distance. Our approach also allows us to introduce and tackle new
notions of classifiability which are applicable in a security context.

2012 ACM Subject Classification Theory of computation

Keywords and phrases verification: probabilistic systems, partially observable systems

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.29

Related Version A full version of the paper is available at http://perso.crans.org/genest/abfg19.
pdf.

Funding This work has been partially supported by DST/CEFIPRA/INRIA Associated team
EQuaVE and DST Inspire Faculty Award [IFA12-MA-17].

Acknowledgements We would like to thank Stefan Kiefer for his expert opinion, as well as anonymous
reviewers for their constructive comments.

1 Introduction

The spectacular success of artificial intelligence (AI) and machine learning techniques in
many varied application domains in the last decade has led to the emergence of several new
and old questions, especially regarding their guarantees and correctness. This has led to
several recent projects at the interface of formal methods and AI, whose broad goal is to
formally reason and verify properties about these AI models and tasks. One such important
task in AI is classification, which is a fundamental problem with many practical applications,

© S. Akshay, Hugo Bazille, Eric Fabre, and Blaise Genest;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 29; pp. 29:1–29:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.FSTTCS.2019.29
http://perso.crans.org/genest/abfg19.pdf
http://perso.crans.org/genest/abfg19.pdf
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 Classification Among HMMs

e.g., in image processing. In this paper, we consider classification in a verification context.
One main issue when verifying systems is partial observability. It is thus important to know
what information can be recovered from a partially observable system.

We first consider a system perspective: we want to know whether, no matter the execution
of the system, some hidden information is retrievable, at least with high probability. To
represent the system, we thus consider a partially observable stochastic model, namely
Hidden Markov Models (HMM for short) [12, 10], also known as labeled Markov chains [6] or
probabilistic labeled transition systems [5]. While notationally different, these various models
are equivalent in terms of expressive power. In HMMs, states are not observable, but we get
some (potentially stochastic) signals from states. In the specific variant of HMMs that we
study in this paper, we encode the signals from states as labels of transitions exiting states.
That is, the observation from an execution of an HMM is its labeling sequence. We encode the
different hidden information as several HMMs, with different transition probabilities. Finding
the hidden information from the observation thus amounts to classifying the observation
among the different HMMs.

Many problems concerning systems with hidden information can be recast in the framework
of classification, such as, (i) fault diagnosis: classifying between a faulty system that has
executed errors and the system without faults [14, 15, 4, 5]; (ii) opacity: classifying between
high and low privilege parts of the system [10], etc. Although some problems are incomparable
(e.g. diagnosis is intrinsically “asymmetric” while classification is “symmetric”), most proof
techniques and ideas are common. Moreover, results on classification problems have been
applied to show results in these related contexts. While it is not our aim to survey these
applications here, we provide two instances: a fault diagnosis problem [5] is solved using a
result on distance between stochastic systems [6], which is equivalent with classification [11].
Also, opacity is cast as a classification problem in [10]. We hence believe that classification is
a good framework to state and prove algorithmic and complexity results.

Several notions of classification can be defined: sure, almost-sure, and limit-sure, depend-
ing respectively on whether we want the classification to eventually happen for sure, with
probability 1, or with arbitrarily small error. The first two notions have classical solutions
coming from fault-diagnosis [14, 4]: the existence of such classifiers can be checked in PTIME
and PSPACE respectively. The third notion is however the most practical as the classifier is
the most powerful: it can use the long run statistics on observations to take its decision (e.g.
the frequency of ab’s in the word). It is also the hardest notion to study for this very reason.

We focus on this notion of limit-sure classification in this paper. First, a closely-related
problem of distinguishability has been proved to be in PTIME by [11], using the PTIME
algorithm from [6] to test whether the total variation metric between two HMMs is 1. We
reinvestigate these deep results using different techniques, which shines some new light on
this problem. Our starting point is the following: for a very restricted class of HMMs [10],
whose underlying Markov chains are ergodic and crucially, assuming that initial distributions
have non-zero probability on every state, it is sufficient to consider the statistics on states
(e.g. the frequency of state s). These statistics on states are obtained by [10] using the
classical notion of stationary distributions over the underlying Markov Chain, i.e. the HMM
where we forget all observations. As we show in Example 2, stationary distributions on
Markov chains do not suffice for solving limit-sure classification for general HMMs. We build
on this idea and propose a new notion to study the long run statistics of the observations.

Our first contribution is to develop the notion of stationary distributions for general
HMMs to study the long run statistics of the observations. To do so, we focus on beliefs, that
is, the set of states that can be reached with the same observation. We show that a notion of

S. Akshay, H. Bazille, E. Fabre, and B. Genest 29:3

stationary distributions can be defined for beliefs in Bottom Strongly Connected Components
(BSCCs), and that it also corresponds to a notion of asymptotic distributions, describing the
asymptotic statistics of beliefs. This generalizes stationary distributions for Markov chains:
for instance, irreducible Markov chains of period k correspond to cycling through k different
beliefs. We believe that this notion can find applications in other contexts.

Our next contribution is to show how this notion of stationary distribution of HMMs can
be used to characterize limit-sure classifiability. We show that we cannot classify between
HMMs iff they have beliefs which can be reached by the same observation and for which the
stationary distributions can be separated by one finite word (for which the probability is
different). This provides a PTIME algorithm to test for limit-sure classifiability. Note that
the existence of such a PTIME algorithm has been established in [11], where this result was
formulated in terms of HMMs distinguishability. The proofs are different however, as [11]
focuses on separating events [6], that is sets of infinite words with probability 0 (resp. 1) in
one of the HMMs (resp. the other one), while considering stationary distributions allows us
to focus on a single finite separating word with probability p (resp. q 6= p).

Our final contribution is to study classifiability in a security context: an attacker has
different attacks against different HMMs. To be able to perform his attack, he needs to
find one execution that can be classified (and thus attacked) rather than whether every
execution can be classified. We call this notion attack-classification. We study limit-sure
attack-classification using the notion of stationary distributions for HMMs developed above.
We show that deciding whether there exists a limit-sure attack-classifier between two HMMs
is PSPACE-complete. On the other hand, if we consider a variation on the notion of limit-sure
attack-classifier, which extends distinguishability for HMMs [11], we are able to show that it
is not only different from limit-sure attack-classifier, but this problem is also undecidable.
All missing proofs and details can be found in the long version [1].

2 Preliminaries and Problem Statement

A Hidden Markov Model [12, 13, 10] (HMM for short) A on finite alphabet Σ is a tuple
A = (S,M, σ0) with S a set of states, σ0 an initial distribution, M : S ×Σ× S → [0; 1], such
that for all s,

∑
a,s′ M(s, a, s′) = 1. Notice that this notion has been referred to using different

names in the literature: labeled Markov chains, pLTS (probabilistic transition systems) in
[5], probabilistic automata (not to be confused with Rabin’s Probabilistic automata), etc.
Classical Markov chains can be viewed as HMMs with a single letter alphabet. In what
follows we assume knowledge of classical properties, definitions about Markov chains, such
as irreducibility, aperiodicity and refer to [9] for a formal treatment.

A run ρ of A is a sequence in S(Σ×S)∗. It starts in s−(ρ), with σ0(s−(ρ)) > 0, and ends
in state s+(ρ). An observation w from A is a sequence of letters w = a1 · · · an ∈ Σ∗ such
that there exists a run ρ made of n+ 1 states ρ = s0, a1 . . . , ansn with σ0(s0) > 0 and for all
i > 0, M(si−1, ai, si) > 0. We denote obs(ρ) = w. For a run ρ = s0, a1 . . . , ansn, we define
its probability as P (ρ) = σ0(s0) ·

∏n
i=1M(si−1, ai, si). We sometimes abuse notation and

write M(s1, w, sn) to mean
∏n
i=1M(si−1, ai, si). We define the probability of an observation

w ∈ Σ∗ as P (w) =
∑
ρ|obs(ρ)=w P (ρ). In general we write PAσ to express the probability in

HMM A with initial distribution σ. If σ(s) = 1, then we use PAs instead.
A non-deterministic finite automaton (NFA for short) is as usual a structure A =

(S,∆, S0), where the transition probabilities (as in a HMM) are replaced with a transition
relation ∆ and initial distribution is replaced by a set of initial states S0. For a HMM
(S,M, σ0), we can associate the NFA A = (S,∆, S0), by taking (s, a, t) ∈ ∆ iff M(s, a, t) > 0
and s ∈ S0 iff σ0(s) > 0. The notion of paths and observation is preserved. Fig. 1 shows an
HMM on the left and an NFA on the right.

FSTTCS 2019

29:4 Classification Among HMMs

x y

z

a, 1
2

a, 1
2

a, 1
2

b, 1
2b, 1

4

b, 1
4

a, 1
2

{x} {z}{x, y}

{y}

a

a

b

b

a

a

b

Figure 1 Example of an HMM A on alphabet Σ = {a, b} and of an NFA BA on alphabet Σ.

The language of an automaton (or by extension of an HMM) is the set of observations
L(A) = {w | w = obs(ρ), ρ a path of A}. We denote by L∞(A) the set of infinite observations
in A, that is such that every of its prefix is in L(A). Finally, we use the standard way to
extend probabilities to some sets of infinite paths, by means of cylinder-sets [2]. In particular,
taking two HMMs A1,A2 on the same alphabet, L∞(A1)∩L∞(A2) is measurable. We write
L(A, s) for the language of A starting in state s.

A strongly connected component C of an HMM A is a maximal set of states such that
there is a path from any state of C to any state of C. A strongly connected component C is
called a bottom strongly connected component(BSCC) if the only states reachable from C are
in C. For instance, there is only one BSCC in the NFA of Fig. 1, with 2 states {x, y} and
{z}. Runs of an HMM end up in one of the BSCCs with probability 1.

Probabilistic Finite Automata (PFA). Several lower bounds will come from results on
Rabin’s probabilistic finite automaton (PFA) [8]. A PFA A on finite alphabet Σ is a tuple
A = (S, (Ma)a∈Σ, σ0) with S a set of states, σ0 an initial distribution, Ma : S×S → [0, 1] for
each a ∈ Σ, such that for all a, s,

∑
s′ Ma(s, s′) = 1. Similar to HMMs, the states of a PFA

are not observed, but only letters a ∈ Σ are. The difference is that we can control a PFA by
choosing an action a ∈ Σ, while in HMMs, we observe passively an observation a ∈ Σ.

2.1 Probabilistic equivalence can be checked in PTIME
The PTIME algorithm for probabilistic equivalence is at the core of the PTIME algorithms
from [6] (and hence [11, 5] using it), [10] and ours. Let σ1, σ2 be distributions over states of
HMMs A1,A2 respectively. HMMs A1,A2 are equivalent from distributions σ1, σ2, denoted
(A1, σ1) ≡ (A2, σ2), if for any observation w ∈ Σ∗, we have PA1

σ1
(w) = PA2

σ2
(w). In [3] (see

also [6]), it is shown how to test in polynomial time whether PA1
σ1
≡ PA2

σ2
, i.e.

∀w ∈ Σ∗, (σ1 σ2) ·
[
M1(w) ∅
∅ M2(w)

]
· (1, · · · , 1,−1, · · · ,−1)T = 0

As the dimension of Eq(A1,A2) = {
[
M1(w) ∅
∅ M2(w)

]
· (1, · · · , 1,−1, · · · ,−1)T | w ∈

Σ∗} is at most |A1|+ |A2|, we can build a basis v1, . . . v` for Eq(A1,A2) of size ` ≤ |A1|+ |A2|.
It suffices then to check whether (σ1 σ2) · vi = 0 for all i ≤ `.

Notice that equivalence of PFA has been known to be in PTIME for 30 years [16], before
HMMs [3]. Actually, equivalences of HMMs of and PFAs are inter-reducible (one direction
can be found in [7], and the other one is easy by considering the HMM associated with a
PFA, which performs actions of the PFA uniformly at random).

S. Akshay, H. Bazille, E. Fabre, and B. Genest 29:5

2.2 The classification problem and its variants
Let (Ai)i≤k be a set of HMMs representing different behaviors of a system under observation.
The system secretly picks one HMM behavior to follow, i.e. it is a priori unknown which
of the HMMs is being followed by the system. We want to classify, i.e. find out, which
HMM behavior the system follows, only by looking at the observation w ∈ Σ∗. The longer
we observe the system, the larger the length of the observation and better the information
we have to find out the HMM. This leads us to the notion of classifiability. As it suffices to
consider HMMs pairwise, we will consider in the following there is only a choice between
k = 2 HMMs. We will denote them by A1, with n states, and A2, with m states. Formally,
a classifier is a function f : Σ∗ → {⊥, 1, 2} that outputs the index of the HMM from an
observation, or possibly ⊥ if it cannot conclude (yet). Consider for example A1,A2, both
following the HMM in Figure 1, the difference being that A1 starts in x while A2 starts
in z. If the observation starts with b, then we know the systems follows A2, because b is
not possible from x. We can thus let f(bw) = 2. However, if the observation is ab2a, then
it could come from any A1 or A2. If the systems are probabilistically equivalent, then no
matter how much we observe, we cannot classify among them. However, this is one extreme
case. One can consider several notions of classifiability:

sure classifiability: there exists a classifier f that eventually identifies the accurate HMM
that generated w. That is, for all w ∈ Σ∞, there exists a finite prefix v of w and a
classifier f for v such that f(v) = 1 (resp. f(v) = 2) iff there is no path ρ of A2 (resp. of
A1) with obs(ρ) = w.
almost-sure classifiability: there exists a classifier f that eventually identifies the accurate
HMM that generated w with probability 1. This classifier cannot do errors, but there
may be some infinite observation that cannot be classified, though the probability it
happens should be 0 (such as tossing tail forever on a fair coin).
limit-sure classifiability: there exists a classifier f that, for all ε > 0, eventually provides
the accurate HMM with probability > 1− ε. This is the most general notion: sure implies
almost-sure implies limit-sure classifiability.

This leads to the two main questions that we are interested in, for each of the above
notions: (i) how easy is it to decide if there exists a classifier? (ii) if there exists a classifier,
how easy is it to produce one explicitly? For the first question, we can answer easily for the
two first notions, which have been studied in different contexts.

I Proposition 1 ([14, 4]). We can surely classify among 2 HMMs iff L∞(A1)∩L∞(A2) = ∅,
and this can be checked in PTIME. We can almost-surely classify among 2 HMMs iff the set
L∞(A1) ∩ L∞(A2) has probability 0, and this is a PSPACE-complete problem.

For the first two notions, building the classifier is also easy: intuitively, it suffices to
compute the set of states reached with the observation (called belief in the next section) for
both HMMs. If the system is classifiable, one of these sets will eventually (almost surely
with the second notion) become empty. The classifier answers the HMM with non-empty set.

Unlike the two first notions, limit-sure classifiability cannot be expressed in terms of the
language. Indeed, it is possible to limit-surely classify among A1,A2, and yet L(A1) = L(A2).
Also, a limit-sure classifier can use statistics in order to give its estimate, which opens a lot
of possibilities. Let us illustrate these:

I Example 2. Consider again A1,A2, where both are the HMM A from Fig. 1, where A1
starts from state x and A2 starts from state z. If the observation starts with b, then it is
easy to conclude that the HMM is A2. If it starts with a, then the set of states which can

FSTTCS 2019

29:6 Classification Among HMMs

be reached after observation a is {x, y} in A1 and {z} in A2, which are both in the BSCCs.
Actually, after an even number of b’s (and any number of a’s), we still have {x, y} the set of
states possible in A1 and {z} in A2. In the following section using stationary distributions
on HMMs, we will show how to compute that if the HMM is A1, after an even number of b’s,
the long term average is 3

5 to be in x and 2
5 to be in y. From this, we deduce that the long

term average is 4
5 = 3

51 + 2
5

1
2 to perform an a after an even number of b’s. On the other hand,

if the HMM is A2, then the state is z and we obtain the long term average 1
2 to perform

letter a after an even number of b’s. As the observation grows, the average frequency over
the observation will tend towards the long term average by law of large numbers. Thus the
classifier f(w) = 1, if the average frequency of a’s after an even number of b’s observed in w
is closer to 4

5 than to 1
2 , is limit-sure. Notice that using the standard stationary distributions

on Markov chains as in [10] only tells us that both A1 and A2 stay in long term average
frequency 3

7 in x, 2
7 in y, and 2

7 in z , and thus do 5
7 = 3

7 + 2
7

1
2 + 2

7
1
2 of a’s in average, which

cannot limit-surely classify between A1,A2.

From the point of view of practical applicability, limit-sure classifiers are the most
powerful, although harder to study. In Section 4, we will study limit-sure classifiability, that
we simply call classifiability. In Section 5, we further generalize this notion to a game-theoretic
attack-classification framework, which is applicable in security settings.

3 Stationary distributions for HMMs

In order to solve limit-sure classification, we would like to use statistics on observations.
Stationary distributions, which is a concept developed for Markov chains, tells us the
frequency to expect about states, as used in [10]. We generalize this concept to HMMs to
take into account observations. While stationary distributions for HMMs turn out to be
crucial in the realm of classifiability, we believe it is also of independent interest.

For a Markov chain M , a stationary distribution σ is a distribution over states of M
such that σ ·M = σ. In HMMs, the observation plays an important role and changes our
knowledge of states in which the run could be. Thus, we consider the set of states that
could be reached in an HMM A with a given observation, and call this as the belief-state
or just belief. Formally, let w be an observation. The belief BA(w) associated with w is
the set of states {s+(ρ) | obs(ρ) = w} which can be reached by a path labeled by w. For
instance, with the HMM A from Fig. 1, we have BA(aa) = {x, y}. We let BA = (2S ,∆, s0)
be the belief automaton associated with A: (i) its states represent the beliefs associated with
observations of A, (ii) we have (B, a,B′) ∈ ∆ if B′ = {s′ | ∃s ∈ B,M(s, a, s) > 0}, and (iii)
s0 = {s | σ0(s) > 0} ∈ 2S . This is the usual subset construction used for determinizing an
automaton, as shown on Fig. 1. As BA is deterministic, we sometimes abuse notation and
denote ∆(B, a) for the unique B′ with (B, a,B′) ∈ ∆.

Consider a BSCC D of HMM A (as for Markov chains, this is to ensure irreducibility).
For x ∈ D, we denote by BxD the subgraph of BA reachable from {x}. On figure 1, we have
ByD = BA. It has a unique BSCC, with 2 beliefs {x, y} and {z}. We now show that this is
the general form of the belief automaton:

I Lemma 3. There is a unique BSCC in BxD, and it does not depend upon x ∈ D.

We denote ED the set of beliefs X in the unique BSCC of BxD, and EA the union over all
BSCCs D of A. Notice that EA may not contain all beliefs in the BSCCs of BA, because
we restrict ourselves to beliefs X reachable from {x} with a single state x of a BSCC of
A. This is crucial for Lemma 3 to hold. We will see that considering singletons is not a

S. Akshay, H. Bazille, E. Fabre, and B. Genest 29:7

x y

1
2

1
2

3
4

1
4

Figure 2 Markov chain Mx,y associated with the belief {x, y}.

restriction: assume that the belief reached in a BSCC of beliefs comes from two different
states x, y. Either the statistics on observation from x and y are the same, in which case we
change nothing by considering them only from x. Otherwise, they have different statistics on
observation, and looking at the observed statistics will give away with arbitrarily small error
the state x or y which they originate from.

For Markov chains (i.e. HMMs on a one letter alphabet), the BSCC ED is exactly
X1 → X2 · · · → Xk → X1, with k the period of this BSCC. Hence, this construction can be
seen as a generalization to HMMs of the notion of period of a Markov chain. We use it to
generalize the Fundamental theorem of Markov chains to HMMs.

Let X ∈ EA. We are interested in the asymptotic distribution associated to belief X, that
is the statistics over states of X given that the belief state is X. From that, we will be able to
deduce the statistics over observations. Let WX the (possibly countable infinite) set of words
which brings from belief X to belief X without seeing belief X in-between. Consider σy,i the
distribution over X such that σy,i(x) =

∑
w∈W i

X
M(y, w, x), the probability of reaching x

from y after seeing i words of WX . To compute the limit of σy,i, we define the stationary
distribution σX : X → [0, 1] of the HMM given a belief X. For that, we enrich the states of
A with its beliefs, considering the product A× BA (same runs with same probabilities as in
A). For all x, y ∈ X, let MX(x, y) be the probability in the HMM A× BA to reach (y,X)
from (x,X) before reaching any other (z,X), z 6= y (we refer to [2] to compute MX(x, y) for
all x, y). We have that for all x ∈ X,

∑
y∈XMX(x, y) = 1, that is MX is a Markov chain.

For instance, on Fig. 1, let X = {x, y} ∈ E. The Markov chain MX is depicted in Fig. 2 has
a unique stationary distribution σ(x) = 3

5 and σ(y) = 2
5 . We obtain:

I Theorem 4. Given a HMM A, let X be a belief in EA. Then, MX has a unique
stationary distribution denoted σX : X → [0, 1], i.e. σX ·MX = σX . Further, for all y ∈ X,
σy,i −→

i→+∞
σX .

Proof sketch. We apply the fundamental theorem to MX to get the statement. It suffices
to show that MX is ergodic. For all x ∈ X, by Lemma 3, there is an observation vx leading
from {x} to X, i.e. ∆({x}, vx) = X. As ∆({x}, vix) is increasing with i and |∆({x}, vix)| ≤ n
for all i, we obtain ∆({x}, vn+1

x) = ∆(X, vn+1
x). We can then obtain a word wx with

∆({x}, wx) = ∆(X,wx) = X. Now, by induction on the size of X, we can build a uniform
word w such that ∆({x}, w) = X for all x ∈ X. For all x, y ∈ X, we get M |w|X (x, y) > 0. J

4 Limit-sure Classifiability

We start by stating the definition of limit-sure classification more precisely:

I Definition 5. Two HMMs A1,A2 are limit-sure classifiable iff there exists a computable
function, also called a classifier, f : Σ∗ → {1, 2} such that P (ρ run of A1 of size k |
f(obs(ρ)) = 2)→k→∞ 0, and similarly for ρ run of A2.

FSTTCS 2019

29:8 Classification Among HMMs

y, z x, z

z, x z, y

a

a

b

a

a

b

b

b

a

a

{y}, {z} {x}, {z}

{z}, {x, y} {x, y}, {z}

a

b a
b

b

a a

Figure 3 Twin automaton (on the left) and twin-belief automaton (on the right), for A1,A2

starting in states y and z.

(Notice we do not need ⊥ as the classifier is allowed to give erroneous answers at first).
Consider the Maximum A Posteriori (MAP) classifier [12, 10]: it answers 1 if PA1(u) >
PA2(u), and 2 otherwise. To do so, it just needs to record for every state of A1 (resp. every
state of A2) the probability to observe u and finish in state s1 (resp. s2). Indeed, we may
then compute confidence(i, u) = PAi (u)

PA1 (u)+PA2 (u) , i.e. the probability that the decision i is
correct after observing u. Notice that this confidence is not necessarily non-decreasing, and
that the answer of a classifier can also switch from one answer to the other. In fact, we show
in Proposition 16 in [1] that if (A1,A2) is limit-sure classifiable, then the MAP classifier
will be a limit-sure classifier. The main problem is to decide when limit-sure classification
holds. In fact, this problem can be solved in PTIME. We remark that a variant of the
problem was already shown to be in PTIME, namely distinguishability [6, 11]. While both
problems coincide for HMMs, as explained in Section 4.4, our proof described in the rest of
this section, crucially uses the notion of stationary distributions for HMMs developed in the
previous section.

4.1 The Twin Automaton and the Twin Belief Automaton

Given HMMs A1,A2, we define their twin automaton A = (S = S1 × S2,∆, s0) as the
product of the automata associated with A1×A2 by forgetting the probabilities. Recall that
A1 has n states and A2 has m states. The transition relation is ∆ = {((s1, s2), a, (t1, t2)) |
MA1(s1, a, t1) > 0,MA2(s2, a, t2) > 0}, with initial state s0 = (s1

0, s
2
0). We call states of

A twin states. In the following, we will often consider the belief automata BA,BA1 ,BA2

associated with A,A1,A2, obtained by the subset construction (see Section 3). States of
BA will be called twin beliefs. Notice that although twin beliefs are formally sets of pairs
of states in 2S1×S2 , we can also present them as pairs of sets of states 2S1 × 2S2 because
if (s1, s2) and (s′1, s′2) are in the same twin belief, then we also have (s1, s

′
2) and (s′1, s2) in

this twin belief. We will thus write the twin belief X(u) associated with observation u as
X(u) = (X1(u), X2(u)), with X1(u), X2(u) the beliefs states of BA1 ,BA2 associated with u.
Figure 3 presents an example with a twin automaton and the twin belief automaton for two
copies of the HMM given in figure 1, one starting in state y and the other starting in state z.

I Lemma 6 (Proposition 18 in [6]). Let (X ′1, X ′2) be a reachable twin belief of BA. Let
X1 ⊆ X ′1, X2 ⊆ X ′2. Let σ1, σ2 be two distributions over X1, X2 with (A1, σ1) ≡ (A2, σ2).
Then one cannot classify between A1,A2.

S. Akshay, H. Bazille, E. Fabre, and B. Genest 29:9

4.2 Characterization for classifiability
Our goal is to use the result of Section 3 to obtain stationary distributions in A1,A2, and
classify between them by comparing the stochastic language wrt these stationary distributions
using probabilistic equivalence (see Section 2.1). In order to do this, we first need to compare
the same information in both HMMs. The idea is to consider twin beliefs from each HMM:
we will enrich A1 with the beliefs of A2, and vice versa. Let A′1 be the HMM where the
state space is S1 × 2S2 , and the transition matrix is MA′

1
((x, Y), a, (x′, Y ′)) = MA1(x, a, x′)

if Y ′ = {y′ | (y, a, y′), y ∈ Y }, and 0 otherwise, for all x, Y, a, x′, Y ′. We define similarly
A′2 with set of states S2 × 2S1 . It is easy to see that for all observation w, the belief state
BA′

1
(w) = {(x1, BA2(w)) | x1 ∈ BA1(w)}, is isomorphic to the twin belief (BA1(w), BA2(w)),

isomorphic to BA′
2
(w), and we will abuse notation and represent beliefs of A′1 and A′2 as

twin belief (X1, X2), where X1 or X2 can be empty.
What we are interested in is what happens after a BSCC of A is reached. We thus

consider twin beliefs reachable from some (x1, x2) in the BSCC of A. The set of twin beliefs
reachable in A′1 and in A′2 from ({x1}, {x2}) are almost the same, except for twin beliefs of
the form (X1, ∅) which cannot be reached in A′2, and of the form (∅, X2) which cannot be
reached in A′1.

I Definition 7. We say that a twin belief (X1, X2) is oblivious if the languages of BA1 from
X1 and of BA2 from X2 are the same.

By definition, if (X1, X2) is not oblivious, there are words differentiating X1 and X2.
Now, assume that X = (X1, X2) is oblivious. The twin beliefs reachable from (X1, X2)

are the same in A′1 and A′2. To potentially differentiate them, we need to consider their long
term statistics. Let B1 and B2 be the belief automata associated with A′1 and A′2. Let EA be
the union of BSCCs of twin beliefs accessible from twin states in the BSCCs of twin states,
as in lemma 3. Let X ∈ EA. In this case, we say that X is in the BSCCs of twin beliefs. We
define σ1

X : X1 → [0, 1] the stationary distribution in A′1 around the twin belief X (formally,
σ1
X is defined on (x,X2) for all x ∈ X1, and we omit the second component X2 because it is

constant). In the same way, we define σ2
X : X2 → [0, 1] for the second component X2 around

the twin belief X. We can then look for words differentiating A1,A2, i.e. with different
probabilities from σ1

X and from σ2
X . We can now state our characterization:

I Theorem 8. The following are equivalent:
1. One cannot limit-surely classify between A1,A2,
2. There exists an oblivious X ∈ EA in a BSCC of twin beliefs such that (A1, σ

1
X) ≡ (A2, σ

2
X),

3. There exists a BSCC D of A and X1 ⊆ S1, X2 ⊆ S2, and y1 ∈ X1, y2 ∈ X2, such that
(y1, x2) ∈ D for all x2 ∈ X2 and (x1, y2) ∈ D for all x1 ∈ X1, and two distributions σ1

over X1 and σ2 over X2 such that (A1, σ
1) ≡ (A2, σ

2).

The second condition is sufficient to show that MAP is a limit-sure classifier (see Pro-
position 16 in [1]). However, checking condition 2 explicitly is not algorithmically efficient,
as the belief automaton can have exponentially many states. Instead, to obtain a PTIME
algorithm to check limit-sure classifiability, we will use the third condition. For comparison,
in [6], a variant of the equivalence between (1) and (3) is shown, without using the stationary
distributions σ1

X , σ
2
X of (2).

For the proof, we note that the case of 2 implies 3 is easy. For the remaining two directions,
i.e. 1 implies 2 and 3 implies 1, proofs are technical, and can be found in the long version [1].
For 1 implies 2, we prove that negation of 2 implies that the MAP classifier (defined in

FSTTCS 2019

29:10 Classification Among HMMs

beginning of Section 4) is limit-sure, implying negation of 1. Intuitively, negation of 2 means
that every pair of reachable beliefs have a distinguishing word. It then suffices to consider
statistics on these finite number of distinguishing words to know the originating HMM with
arbitrarily high probability. For 3 implies 1, we show that any twin belief (H1, H2) reached
from (y1, y2) in EA must be oblivious because of the probabilistic equivalence. We show this
implies (A1, σ

1
H1,H2

) and (A2, σ
2
H1,H2

) are equivalent and conclude using Lemma 6.

4.3 A PTIME Algorithm
Theorem 8 gives us a characterization for the existence of a limit-sure classifier. The third
condition is particularly interesting, because it does not require computing beliefs. Using
this, we can build an efficient algorithm, similar to [6], to test in PTIME whether there exists
a limit-sure classifier between A1,A2.

Our Algorithm 1, presented below, uses linear programming: we let v1, . . . , v` be the
basis of Eq(A1,A2) (see Section 2.1). There exist two distributions σ1, σ2 over X1, X2 with
(A1, σ

1) ≡ (A2, σ
2) iff the linear system of equations (for all j ≤ `, (σ1 σ2) · vj = 0) has a

solution (with σ1, σ2 as variables), which can be solved in Polynomial time.

Algorithm 1 Limit-sure Classifiability.

1: Compute D1, . . . , Dk the BSCCs of the twin automaton A.
2: for i=1..k do
3: for (y1, y2) ∈ Di do
4: Let X1 = {x1 | (x1, y2) ∈ Di}, X2 = {x2 | (y1, x2) ∈ Di}.
5: if there exist two distributions σ1, σ2 over X1, X2 with σ1(y1) > 0 and σ2(y2) > 0
6: with (A1, σ

1) ≡ (A2, σ
2) then

7: return not classifiable
8: return classifiable

The correctness of the algorithm is immediate from Theorem 8, as it checks explicitly for
the third condition to hold, in which case it returns not classifiable. If the third condition is
false for every BSCC D, then it returns classifiable.

4.4 Comparison with Distinguishability between HMMs [11]
We complete this section, by comparing our results with a related result on HMMs. In [11],
the problem of distinguishability between labeled Markov Chains has been considered. First,
labeled Markov Chains are just another name for HMMs. The idea behind distinguishability
is similar to the idea behind classifiability. Still, there are some technical differences:
distinguishability asks that for all ε > 0, there exists a (1− ε)-classifier, that is a classifier
f : Σ∗ → {⊥, 1, 2}, such that if the classifier answers f(u) = 1, then there is probability at
least (1− ε) that the observation comes from a run from A1, and similarly for f(u) = 2. To
compare, limit-sure classifiers need to be uniform over ε (see the next section).

The authors of [11] show that this notion can be checked in PTIME, by indirectly using
the result of [6] stating that one can check in PTIME whether the total variation distance
between two HMMs is 1. More precisely, the total variation distance is defined as:

I Definition 9. The total variation distance between two HMMs A1 and A2 is given by

d(A1,A2) = sup
E⊂Σω

|PA1(E)− PA2(E)|.

S. Akshay, H. Bazille, E. Fabre, and B. Genest 29:11

This supremum has been shown to be a maximum [6]. It is not too hard to show that
limit-sure classification coincides with these notions as well for HMMs:

I Theorem 10. The following are equivalent:
1. There exists a limit-sure classifier for A1,A2,
2. For all ε > 0, there exists a (1− ε)-classifier for A1,A2,
3. d(A1,A2) = 1.

The proofs to obtain the PTIME algorithms are quite different though: we use stationary
distributions in HMMs while [6] focuses on separating events. Some intermediate results are
however related: our Proposition 18 in [1] is to be compared with Proposition 19 b) of [6]:
Our statement is stronger as the equivalence is true from all pairs of states with the same
(non stochastic) language - and in particular from (i1, j1) = (y1, y2) (cf Proposition 17 in [1]).
Also, the proof of Proposition 18 in [1] is simple, using strict convexity focusing on one finite
separating word, while in [6], the existence of a maximal separating events (sets of infinite
words) is used crucially in the proof of Proposition 19 b).

Surprisingly, our resulting algorithm is very similar to the one in [6], whereas we use very
different methods. Still, we can restrict the search to distributions in a BSCC of twin states,
while [6] considers subdistributions on the whole state space of twin states. This allows us to
optimize the number of variables in the Linear Program.

5 Attack-classification

While limit-sure classification allows for some misclassification, i.e. error in classification,
it requires that every execution of the HMMs is classifiable. From a security perspective,
if one wants to make sure that two systems cannot be distinguished from each other, then
the question changes slightly: from the point of view of an attacker who could exploit the
knowledge of which model the system is following, it need not classify every single execution.
It only needs to find one execution for which it can decide. This gives rise to what we call
attack-classification, which amounts to providing the attacker with a reset action she can
play when she believes the execution cannot be classified. Then, a new (possibly the same)
HMM is taken at random and an execution of this new HMM is observed by the attacker.
For instance, it is not possible to limit-surely classify between HMM A3 and HMM A4 on
Figure 4, because executions starting with a b cannot be classified. On the other hand, an
attacker can wait for an execution of the system starting with an a, for which he is sure the
HMM is A3. If it starts with a b, then the attacker just forgets this execution and wait for a
new execution of the system (the “reset” operation).

x

y

b, 1
10

a, 9
10

b

z b x′

y′

b, 9
10

a, 1
10

b

Figure 4 HMMs A3,A4 and A5 (left to right). One cannot classify betweeen A3,A4, but they
can be attack-classified. On the other hand, one cannot attack-classify between A3,A5.

FSTTCS 2019

29:12 Classification Among HMMs

We start by considering limit-sure attack-classifiers, namely, we require that there exists
a reset-strategy, which with probability 1, resets only finitely many times, and a limit-sure
classifier for the observation after the last reset. We also consider what happens if instead of
limit-sure classifier, we ask for the existence of a family of (1− ε)-classifiers after the last
reset, one for each ε. The difference is that the reset action can take into account the ε in
the latter, but not in the former. While both notions coincide for the classifiers defined in
the previous section, we show now that they do not coincide for attack-classification.

Figure 4 illustrates the difference between these two notions, considering A3 and A5.
First, for all ε > 0, there exists an (1 − ε)-attack-classifier: given an ε, the reset strategy
resets if the first letter b happens within the first kε = log(1

9ε) steps. That is, the reset
strategy is τ(a∗) = ⊥, τ(akεw) = ⊥ and τ(a`b) = reset for ` < kε. For observation akεw, the
classifier claims that the HMM is A3, which is true with probability at least (1− ε). However,
this reset strategy is not compatible with limit-sure classifier (and, in fact, no reset strategy
is), because it is not uniform wrt all ε: once a b has been produced, no more information
can be gathered. On the other hand, limit-sure attack-classified implies the existence of
(1 − ε)-attack-classifiers for all ε. Thus the former notion of limit-sure attack-classifier is
strictly contained in the latter. More importantly, we show that deciding the former is
PSPACE-complete, while the latter turns out to be undecidable.

5.1 Limit-sure attack-classifiability is PSPACE-complete
Let us first formalize the definition of attack-classification.

I Definition 11. We say two HMMs A1,A2 are limit-sure attack-classifiable if: there exists
1. reset strategy τ : Σ∗ → {⊥, reset} telling when to reset, and which eventually stops

resetting, with probability 1 on the reset runs, and
2. limit-sure classifier for u, where u ∈ Σ∗ denotes the suffix of observations since last reset.

In the following, we show an algorithmic characterization for this concept. Intuitively,
there needs to exist one execution of one HMM (say A1), such that no matter the execution
of the other HMM with the same observation, we can eventually classify between these two
executions. We will thus consider A′1 and A′2, the HMMs A1 and A2 enriched with the
beliefs of the other HMM.

First, we define classifiable twin states in the BSCC of twin states: (x1, x2) ∈ A is
classifiable iff for (X1, X2) in the unique BSCC of twin beliefs, either (X1, X2) is non
oblivious or (X1, X2) is oblivious and (A1, σ

1
X1,X2

) 6≡ (A2, σ
2
X1,X2

), for (σ1
X1,X2

, σ2
X1,X2

) the
stationary distributions built for (X1, X2). Notice that it does not depends upon the choice
of (X1, X2). For a belief state X2 of A2, we say that (x1, X2) ∈ A′1 is classifiable if (x1, x2)
is classifiable for all x2 ∈ X2 (in particular, every (x1, x2) is in a BSCC of twin states). In
particular, (x1, ∅) is classifiable. We define (x2, X1) ∈ A′2 similarly.

I Proposition 12. (A1,A2) is limit-sure attack-classifiable iff there exists a classifiable
(x1, X2) ∈ A′1, or a classifiable (x2, X1) ∈ A′2.

In case there are more than two HMMs, we follow the state s of one HMM and the belief
of every other HMMs along the observation, and we need to check classifiability between (s, t)
for every t in the belief of any of the other HMMs. Using this characterization, we obtain:

I Theorem 13. Let A1, A2 be two HMMs. It is PSPACE-complete to check whether (A1,A2)
are limit-sure attack-classifiable.

S. Akshay, H. Bazille, E. Fabre, and B. Genest 29:13

5.2 Existence of (1 − ε) attack-classifiers for all ε is undecidable
We now turn to the other notion. Let ε > 0. An (1 − ε) attack-classifier for two HMMs
A1,A2 is given by:
1. A reset strategy τ : Σ∗ → {⊥, reset} telling when to reset, and which eventually stops

resetting, with probability 1 on the reset runs, and
2. a (1 − ε)-classifier for u, where u ∈ Σ∗ denotes the suffix of the observations since the

last reset.

We next show that this notion, which we showed to be weaker than limit-sure attack-
classifiability on Fig 4, is also computationally much harder, in fact, it is undecidable.

I Theorem 14. It is undecidable to know whether for all ε, there exists an (1− ε) attack-
classifier between 2 HMMs.

Intuitively, we reduce from the problem of whether a PFA B, that accepts all words with
probability in (0, 1), is 0 and 1 isolated, that is, there is no sequence of words (wi)i∈N such
that limn→∞P

B(wi) = 0 or = 1. This problem is undecidable [8]. The idea is to transform
the PFA into an HMM which performs the actions of the PFA uniformly at random. We
check whether we can attack classify this HMM with an HMM which accepts all words of
size k with probability 1/2k. This is possible if 0 is not isolated or if 1 is not isolated.

6 Conclusion

In this paper, we tackled the notion of limit-sure classifiability between HMMs, which is
a general notion in studying how to uncover hidden information in partially observable
systems. The class of classifiers we consider are quite powerful, as they can use statistics on
the observations in order to take their decision. To obtain our results, summarized in the
table below we developed a robust theory of stationary distributions for HMMs.

While limit-sure classifiability is stronger and more complex than almost-sure classifiability,
checking for it is in a lower complexity class: PTIME instead of PSPACE-complete. This
result shines some new light on total variation metric for stochastic systems, recovering with
different techniques the PTIME result from [6]. We also considered attack-classifiability, where
the attacker needs to classify at least one observation rather than every execution. In this
setting, there is a difference between limit-sure classifier and the existence of (1−ε)-classifiers
for each ε. Limit-sure attack-classifiability is decidable (PSPACE-complete), whereas the
existence of (1− ε)-classifiers for all ε is undecidable.

limit-sure
classifiability

limit-sure
attack-classifiability

∀ε, (1− ε)
attack-classifiability

Complexity PTIME PSPACE-complete Undecidable

References
1 S. Akshay, Hugo Bazille, Eric Fabre, and Blaise Genest. Classification among Hidden Markov

Models, 2019. URL: http://perso.crans.org/genest/ABFG19.pdf.
2 Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, Cambridge,

MA, 2008.
3 Vijay Balasubramanian. Equivalence and Reduction of Hidden Markov Models, 1993.

FSTTCS 2019

http://perso.crans.org/genest/ABFG19.pdf

29:14 Classification Among HMMs

4 Nathalie Bertrand, Serge Haddad, and Engel Lefaucheux. Foundation of diagnosis and
predictability in probabilistic systems. In 34th International Conference on Foundation of
Software Technology and Theoretical Computer Science, volume 29 of LIPIcs. Leibniz Int.
Proc. Inform., pages 417–429. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2014.

5 Nathalie Bertrand, Serge Haddad, and Engel Lefaucheux. Accurate approximate diagnosability
of stochastic systems. In Language and automata theory and applications, volume 9618 of Lec-
ture Notes in Comput. Sci., pages 549–561. Springer, 2016. doi:10.1007/978-3-319-30000-9_
42.

6 Taolue Chen and Stefan Kiefer. On the total variation distance of labelled Markov chains. In
Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer
Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), pages Article No. 33, 10. ACM, New York, 2014.

7 Laurent Doyen, Thomas A. Henzinger, and Jean-François Raskin. Equivalence of labeled
Markov chains. Internat. J. Found. Comput. Sci., 19(3):549–563, 2008. doi:10.1142/
S0129054108005814.

8 Hugo Gimbert and Youssouf Oualhadj. Probabilistic automata on finite words: decidable
and undecidable problems. In Automata, languages and programming. Part II, volume 6199
of Lecture Notes in Comput. Sci., pages 527–538. Springer, Berlin, 2010. doi:10.1007/
978-3-642-14162-1_44.

9 John G. Kemeny and J. Laurie Snell. Finite Markov chains. The University Series in
Undergraduate Mathematics. D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New
York, 1960.

10 Christoforos Keroglou and Christoforos N. Hadjicostis. Probabilistic system opacity in
discrete event systems. Discrete Event Dyn. Syst., 28(2):289–314, 2018. doi:10.1007/
s10626-017-0263-8.

11 Stefan Kiefer and A. Prasad Sistla. Distinguishing hidden Markov chains. In Proceedings of
the 31st Annual ACM-IEEE Symposium on Logic in Computer Science (LICS 2016), page 10.
ACM, New York, 2016.

12 Daniel Ramage. Hidden Markov Models Fundamentals, CS229, lecture notes, 2007.
13 Anooshiravan Saboori and Christoforos N. Hadjicostis. Probabilistic current-state opacity is

undecidable. In Proceedings of the 19th Intl. Symposium on Mathematical Theory of Networks
and Systems, pages 1–10, 2010.

14 Meera Sampath, Raja Sengupta, Stéphane Lafortune, Kasim Sinnamohideen, and Demosthenis
Teneketzis. Failure diagnosis using discrete-event models. IEEE Trans. Contr. Sys. Techn.,
4(2):105–124, 1996. doi:10.1109/87.486338.

15 David Thorsley and Demosthenis Teneketzis. Diagnosability of stochastic discrete-event systems.
IEEE Trans. Automat. Control, 50(4):476–492, 2005. doi:10.1109/TAC.2005.844722.

16 Wen-Guey Tzeng. The Equivalence and Learning of Probabilistic Automata (Extended
Abstract). In 30th Annual Symposium on Foundations of Computer Science, Research Triangle
Park, North Carolina, USA, 30 October - 1 November 1989, IEEE FOCS’89, pages 268–273,
1989. doi:10.1109/SFCS.1989.63489.

https://doi.org/10.1007/978-3-319-30000-9_42
https://doi.org/10.1007/978-3-319-30000-9_42
https://doi.org/10.1142/S0129054108005814
https://doi.org/10.1142/S0129054108005814
https://doi.org/10.1007/978-3-642-14162-1_44
https://doi.org/10.1007/978-3-642-14162-1_44
https://doi.org/10.1007/s10626-017-0263-8
https://doi.org/10.1007/s10626-017-0263-8
https://doi.org/10.1109/87.486338
https://doi.org/10.1109/TAC.2005.844722
https://doi.org/10.1109/SFCS.1989.63489

Minimisation of Event Structures
Paolo Baldan
University of Padova, Italy
baldan@math.unipd.it

Alessandra Raffaetà
Ca’ Foscari University of Venice, Italy
raffaeta@unive.it

Abstract
Event structures are fundamental models in concurrency theory, providing a representation of events
in computation and of their relations, notably concurrency, conflict and causality. In this paper
we present a theory of minimisation for event structures. Working in a class of event structures
that generalises many stable event structure models in the literature, (e.g., prime, asymmetric, flow
and bundle event structures) we study a notion of behaviour-preserving quotient, taking hereditary
history preserving bisimilarity as a reference behavioural equivalence. We show that for any event
structure a uniquely determined minimal quotient always exists. We observe that each event
structure can be seen as the quotient of a prime event structure, and that quotients of general event
structures arise from quotients of (suitably defined) corresponding prime event structures. This
gives a special relevance to quotients in the class of prime event structures, which are then studied
in detail, providing a characterisation and showing that also prime event structures always admit a
unique minimal quotient.

2012 ACM Subject Classification Theory of computation → Concurrency; Software and its engin-
eering → Formal methods

Keywords and phrases Event structures, minimisation, history-preserving bisimilarity, behaviour-
preserving quotient

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.30

Related Version Extended version of the paper available at http://arxiv.org/abs/1907.07042.

Funding Paolo Baldan: Supported by the PRIN Project Analysis of Program Analyses (ASPRA).

1 Introduction

When dealing with formal models of computational systems, a classical problem is that of
minimisation, i.e., for a given system, define and possibly construct a compact version of
the system which, very roughly speaking, exhibits the same behaviour as the original one,
avoiding unnecessary duplications. The minimisation procedure depends on the notion of
behaviour of interest and also on the expressive power of the formalism at hand, which
determines its capability of describing succinctly some behaviour. A classical example is
that of finite state automata, where one is typically interested in the accepted language.
Given a deterministic finite state automaton, a uniquely determined minimal automaton
accepting the same language can be constructed, e.g., as a quotient of the original automaton
via a partition/refinement algorithm (see, e.g., [16]). Moving to non-deterministic finite
automata, minimal automata become smaller, at the price of a computationally more
expensive minimisation procedure and non-uniqueness of the minimal automaton [22].

In this paper we study the problem of minimisation for event structures, a fundamental
model in concurrency theory [33, 34]. Event structures are a natural semantic model when
one is interested in modelling the dynamics of a system by providing an explicit representation
of the events in computations (occurrence of atomic actions) and of the relations between

© Paolo Baldan and Alessandra Raffaetà;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 30; pp. 30:1–30:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-9357-5599
mailto:baldan@math.unipd.it
https://orcid.org/0000-0002-0295-8787
mailto:raffaeta@unive.it
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.30
http://arxiv.org/abs/1907.07042
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Minimisation of Event Structures

events, like causal dependencies, choices, possibility of parallel execution, i.e., in what is
referred to as a true concurrent (non-interleaving) semantics. Prime event structures [24],
probably the most widely used event structure model, capture dependencies between events
in terms of causality and conflict. A number of generalisations of prime event structures have
been introduced in the literature. For instance, flow [9, 8] and bundle [20] event structures
add the possibility of directly modelling disjunctive causes. Asymmetric event structures [5]
and extended bundle event structures [20] include an asymmetric form of conflict which
allows one to model concurrent readings and precedences between actions. Event structures
have been used for defining a concurrent semantics of several formalisms, like Petri nets [24],
graph rewriting systems [4, 3, 27] and process calculi [32, 31, 10]. Recent applications are in
the field of weak memory models [11, 25, 17, 13] and of process mining and differencing [15].

Behavioural equivalences, defined in a true concurrent setting, take into account not
only the possibility of performing steps, but also the way in which such steps relate with
each other. We will focus on hereditary history preserving (hhp-)bisimilarity [7], the finest
equivalence in the true concurrent spectrum in [29], which, via the concept of open map,
has been shown to arise as a canonical behavioural equivalence when considering partially
ordered computations as observations [18].

The motivation for the present paper originally stems from some work on business
process models. The idea, advocated in [15, 1], is to use event structures as a foundation
for representing, analysing and comparing process models. Processes are mined in the form
of event structures and then translated into a suitable process modeling language. The
processes, in their graphical presentation, should be simple and understandable, as much as
possible, by a human user, who should be able, e.g., to interpret the differences between two
processes diagnosed by a comparison tool. For this aim it is important to avoid “redundancies”
in the representation and thus to reduce the number of events, without altering the behaviour
(modifications that “extend” the behaviour could be sensible in model generalisation, but this
is not of interest here). The paper [2] explores the use of asymmetric and flow event structures
and, for such models, it introduces some reduction techniques that allow one to merge events
without changing the true concurrent behaviour. A notion of behaviour-preserving quotient,
referred to as a folding, is introduced over an abstract class of event structures, having
asymmetric and flow event structures as subclasses. However, no general theory is developed.
The mentioned paper focuses on a special class of foldings, the so-called elementary foldings,
which can only merge a single set of events into one event, and these are studied separately on
each specific subclass of event structures (asymmetric and flow event structures), providing
only sufficient conditions ensuring that a function is an elementary folding.

A general theory of behaviour-preserving quotients for event structures is thus called for,
settling some natural foundational questions. Is the notion of folding adequate, i.e., are all
behaviour-preserving quotients expressible in terms of foldings? Is there a minimal quotient
in some suitably defined general class of event structures? Does it exist in specific subclasses?
(for asymmetric and flow event structures the answer is known to be negative, but for prime
event structures the question is open). Can we have a characterisation of foldings for specific
subclasses of event structures, providing not only sufficient but also necessary conditions?

In this paper we start addressing the above questions. We work in a general class of
event structures based on the idea of family of posets [26] (also called rigid families in [14]).
Although this is not discussed in deep due to space limitations, poset event structures are
sufficiently expressive to generalise most stable event structures models in the literature,
including prime [24], asymmetric [5], flow [9] and bundle [20] event structures (a wider
discussion can be found in [6].)

P. Baldan and A. Raffaetà 30:3

As a first step we study, in this general setting, the notion of folding. A folding is
a surjective function that identifies some events while keeping the behaviour unchanged.
Formally, it establishes a hhp-bisimilarity between the source and target event structure. It
turns out that not all behaviour-preserving quotients arise as foldings, but we show that
for any behaviour-preserving quotient, there is a folding that induces a coarser equivalence.
Additionally, given two possible foldings of an event structure we show that it is always
possible to “join” them. This allows us to prove that for each event structure a maximally
folded version, namely a uniquely determined minimal quotient, always exists.

Relying on the order-theoretic properties of the set of configurations of event structures [26],
and on the correspondence between prime event structures and domains [24], we derive that
each event structure in the considered class arises as the folding of a canonical prime event
structure. Moreover, all foldings between general event structures arise from foldings of the
corresponding canonical prime event structures. Interestingly, this result can be derived from
a characterisation of foldings as open maps in the sense of [18].

The results above give a special relevance to foldings in the class of prime event structures,
which thus are studied in detail. We provide necessary and sufficient conditions characterising
foldings for prime event structures. This allows us to establish a clear connection with the so-
called abstraction morphisms, introduced in [12] for similar purposes. The characterisation of
foldings provided can guide, at least in the case of finite structures, the effective construction
of behaviour preserving quotients. Moreover we show that also prime event structures always
admit a minimal quotient.

Most results have a natural categorical interpretation, which is only hinted at in the
paper. In order to keep the presentation simple, the categorical references are inserted in side
remarks that can be safely skipped by the non-interested reader. This applies, in particular,
to the possibility of viewing foldings as open maps in the sense of [18]. This correspondence,
which in the present paper only surfaces, suggests the possibility of understanding and
developing our results in a more abstract categorical setting. More details are provided in
the extended version [6].

The rest of the paper is structured as follows. In § 2 we introduce the class of event
structures we work with and hereditary history preserving bisimilarity. Moreover, we discuss
how some event structure models in the literature embed into the considered class. In § 3 we
study the notion of folding, we prove the existence of a minimal quotient and we show the
tight relation between general foldings and those on prime event structures. In § 4 we present
folding criteria on prime event structures, and discuss the existence of minimal quotients.
Finally, in § 5 we draw some conclusions, discuss connections with related literature and
outline future work venues. Due to space limitations all proofs have been omitted. They can
be found in the extended version [6], which also contains some additional results.

2 Event Structures and History Preserving Bisimilarity

In this section we define hereditary history-preserving bisimilarity, the reference behavioural
equivalence in the paper. This is done for an abstract notion of event structure, introduced
in [26], in a way that various stable event structure models in the literature can be seen as
special subclasses. We will explicitly discuss prime [24] and flow [9, 8] event structures.

Notation. We first fix some basic notation on sets, relations and functions. Let r⊆ X ×X
be a binary relation. The relation r is acyclic on Y if there is no {y0, y1, . . . , yn} ⊆ Y such
that y0 r y1 r . . . r yn r y0. Relation r is a partial order if it is reflexive, antisymmetric and

FSTTCS 2019

30:4 Minimisation of Event Structures

a

c

b

a

c a b
b

c

a c b

a

c
b

c

Figure 1 An event structure E and the canonical pes P(E).

transitive. Given a function f : X → Y we will denote by f [x 7→ y] : X ∪ {x} → Y ∪ {y}
the function defined by f [x 7→ y](x) = y and f [x 7→ y](z) = f(z) for z ∈ X \ {x}. Note that
the same notation can represent an update of f , when x ∈ X, or an extension of its domain,
otherwise. For Z ⊆ X, we denote by f|Z : Z → Y the restriction of f to Z.

2.1 Event Structures
Following [26, 28, 30, 2, 14], we work on a class of event structures where configurations are
given as a primitive notion. More precisely, we borrow the idea of family of posets from [26],
more recently considered also under the name of rigid family in [14].

I Definition 2.1 (family of posets). A poset is a pair (C,≤C) where C is a set and ≤C is
a partial order on C. A poset will be often denoted simply as C, leaving the partial order
relation ≤C implicit. Given two posets C1 and C2 we say that C1 is a prefix of C2 and write
C1 v C2 if C1 ⊆ C2 and ≤C1=≤C2 ∩ (C2 × C1). A family of posets F is a prefix-closed set
of finite posets i.e., a set of finite posets such that if C2 ∈ F and C1 v C2 then C1 ∈ F . We
say that two posets C1, C2 ∈ F are compatible, written C1 a C2, if they have an upper bound,
i.e., there is C ∈ F such that C1, C2 v C. The family of posets F is called coherent if each
subset of F whose elements are pairwise compatible has an upper bound.

Posets C will be used to represent configurations, i.e., sets of events executed in a
computation of an event structure. The order ≤C intuitively represents the order in which
the events in C can occur. This motivates the prefix order that can be read as a computational
extension: when C1 v C2 we have that C1 ⊆ C2, events in C1 are ordered exactly as in C2,
and the new events in C2 \ C1 cannot precede events already in C1 (i.e., for all x1 ∈ C1,
x2 ∈ C2, if x2 ≤C2 x1 then x2 ∈ C1).

An example of family of posets can be found in Fig. 1 (left). Observe, for instance, that
the configuration with set of events {c} is not a prefix of the one with set of events {a, c},
since in the latter a ≤ c.

An event structure is then defined simply as a coherent family of posets where events
carry a label. Hereafter Λ denotes a fixed set of labels.

I Definition 2.2 ((poset) event structure). A (poset) event structure is a tuple E =
〈E,Conf (E), λ〉 where E is a set of events, Conf (E) is a coherent family of posets such
that E =

⋃
Conf (E) and λ : E → Λ is a labelling function. For a configuration C ∈ Conf (E)

the order ≤C is referred to as the local order.

In [2] abstract event structures are defined as a collection of ordered configurations, without
any further constraint. This is sufficient for giving some general definitions which are then
studied in specific subclasses of event structures. Here, in order to develop a theory of foldings
at the level of general event structures, we need to assume stronger properties, those of a

P. Baldan and A. Raffaetà 30:5

family of posets from [26] (e.g, the fact that Definition 3.14 is well-given relies on this). This
motivates the name poset event structure. Also note that, differently from what happens
in other general concurrency models, like configuration structures [30], configurations are
endowed explicitly with a partial order, which in turn intervenes in the definition of the prefix
order between configurations. This is essential to view as subclasses some kinds of event
structures, like asymmetric event structures [5] or extended bundle event structures [21],
where the order on configuration is not simply subset inclusion. Since we only deal with
poset event structures and their subclasses, we will often omit the qualification “poset” and
refer to them just as event structures. Moreover, we will often identify an event structure E
with the underlying set E of events and write, e.g., x ∈ E for x ∈ E.

An isomorphism of configurations f : C → C ′ is an isomorphism of posets that respects
the labelling, namely for all x, y ∈ C, we have λ(x) = λ(f(x)) and x ≤C y iff f(x) ≤C′ f(y).
When configurations C,C ′ are isomorphic we write C ' C ′.

Given an event x in a configuration C, it will be useful to refer to the prefix of C including
only those events that necessarily precede x in C (and x itself). This motivates the following
definition.

I Definition 2.3 (history). Let E be an event structure, let C ∈ Conf (E) and let x ∈ C.
The history of x in C is defined as the set C[x] = {y ∈ C | y ≤C x} endowed with the
restriction of ≤C to C[x], i.e., ≤C[x]=≤C ∩(C[x] × C[x]). The set of histories in E is
Hist(E) = {C[x] | C ∈ Conf (E) ∧ x ∈ C}. The set of histories of a specific event x ∈ E will
be denoted by Hist(x).

We mentioned that various generalisations of pess in the literature can be naturally
viewed as subclasses of poset event structures. Verifying that the corresponding families of
configurations satisfy the properties of Definition 2.2 is easy. We briefly discuss prime and
flow event structures (more details are in [6], where also other models are discussed).

Prime event structures. Prime event structures [24] capture the dependencies between
events in terms of causality and conflict.

I Definition 2.4 (prime event structure). A prime event structure (pes, for short) is a tuple
P = 〈E,≤,#, λ〉, where E is a set of events, ≤ and # are binary relations on E called
causality and conflict, respectively, and λ : E → Λ is a labelling function, such that
≤ is a partial order and bxc = {y ∈ E | y ≤ x} is finite for all x ∈ E;
is irreflexive, symmetric and hereditary with respect to causality, i.e., for all x, y, z ∈ E,
if x#y and y ≤ z then x#z.

Configurations are sets of events without conflicts and closed with respect to causality. For
later use, we also introduce a notation for the absence of conflicts, referred to as consistency.

I Definition 2.5 (consistency, configuration). Given a pes P = 〈E,≤,#, λ〉, say that x, y ∈ E
are consistent, written x a y, when ¬(x#y). A subset X ⊆ E is called consistent, written
aX, when its elements are pairwise consistent. A configuration of P is a finite set of events
C ⊆ E such that (i) aC and (ii) for all x ∈ C, bxc ⊆ C.

Some examples of pess can be found in Fig. 2. Causality is represented as a solid arrow,
while conflict is represented as a dotted line. For instance, in P0, event a1 is a cause of b1 and
it is in conflict both with a2 and b3. Only direct causalities and non-inherited conflicts are
represented. For instance, in P0, the conflicts a1#b2, a2#b1 and b1#b2 are not represented
since they are inherited. The labelling is implicitly represented by naming the events by
their label, possibly with some index. For instance, a1 and a2 are events labelled by a.

FSTTCS 2019

30:6 Minimisation of Event Structures

a1 a2 b3 c

b1 b2

a12 b3 c

b1 b2

a12 b3 c

b12

a1 a2 b3 c

b11 b12 b21 b22

P0 P1 P2 P3

Figure 2 Some prime event structures.

a b c

d0 d1 d2

a b c

d01 d2

a b c

d0 d12

a b c

d012

F0 F1 F2 F3

Figure 3 Some flow structures.

Clearly pess can be seen as poset event structures. Given a pes P = 〈E,≤,#, λ〉
and its set of configurations Conf (P), the local order of a configuration C ∈ Conf (P) is
≤C=≤ ∩(C × C), i.e., the restriction of the causality relation to C. The extension order
turns out to be simply subset inclusion. In fact, given C1 ⊆ C2, if x1 ∈ C1 and x2 ∈ C2,
with x2 ≤C2 x1, then necessarily x2 ∈ C1 since configurations are causally closed. Therefore,
recalling that ≤C1=≤ ∩(C1 × C1) and ≤C2=≤ ∩(C2 × C2), we immediately conclude that
≤C2 ∩(C2 × C1) =≤ ∩(C2 × C1) =≤ ∩(C1 × C1) =≤C1 , as desired. As an example, the pes
P2 of Fig. 2, viewed as a poset event structure, can be found in Fig. 4.

Flow event structures. Flow event structures [9, 8] extend pess with the possibility of
modelling in a direct way multiple disjunctive and mutually exclusive causes for an event.

I Definition 2.6 (flow event structure). A flow event structure (fes) is a tuple 〈E,≺,#, λ〉,
where E is a set of events, ≺⊆ E × E is an irreflexive relation called the flow relation,
⊆ E × E is the symmetric conflict relation, and λ : E → Λ is a labelling function.

Causality is replaced by an irreflexive (in general non transitive) flow relation ≺, intuitively
representing immediate causal dependency. Moreover, conflict is no longer hereditary.

An event can have causes which are in conflict and these have a disjunctive interpretation,
i.e., the event will be enabled by a maximal conflict-free subset of its causes.

I Definition 2.7 (fes configuration). Given a fes F = 〈E,≺,#, λ〉, a configuration is a
finite set of events C ⊆ E such that (i) ≺ is acyclic on C, (ii) ¬(x#x′) for all x, x′ ∈ C and
(iii) for all x ∈ C and y /∈ C with y ≺ x, there exists z ∈ C such that y#z and z ≺ x.

Some examples of fess can be found in Fig. 3. Relation ≺ is represented by a double
headed solid arrow. For instance, consider the fes F1. The set C = {a, d01} is a configuration.
We have b ≺ d01 and b 6∈ C, but this is fine since there is a ∈ C such that a#b and a ≺ d01.

Under mild assumptions that exclude the presence of non-executable events (a condition
referred to as fullness in [8]), fess can be seen as poset event structures, by endowing
each configuration C with a local order arising as the reflexive and transitive closure of the
restriction of the flow relation to C, i.e., ≤C= (≺ ∩(C × C))∗.

2.2 Hereditary History Preserving Bisimilarity
In order to define hereditary history preserving bisimilarity, it is convenient to have an
explicit representation of the transitions between configurations.

P. Baldan and A. Raffaetà 30:7

a12 c b3
a12

b12
a12 c b3 c

a12 c

b12

Figure 4 The configurations Conf (P2) of the pes P2 in Fig. 2 viewed as poset event structures.

I Definition 2.8 (transition system). Let E be an event structure. If C,C ′ ∈ Conf (E) with
C v C ′ we write C X−→ C ′ where X = C ′ \ C.

When X is a singleton, i.e., X = {x}, we will often write C x−→ C ′ instead of C {x}−−→ C ′.
As it happens in the interleaving approach, a bisimulation between two event structures

requires any event of an event structure to be simulated by an event of the other, with the
same label. Additionally, the two events must have the same “causal history”.

I Definition 2.9 (hereditary history preserving bisimilarity). Let E, E′ be event structures.
A hereditary history preserving (hhp-)bisimulation is a set R of triples (C, f, C ′), where
C ∈ Conf (E), C ′ ∈ Conf (E′) and f : C → C ′ is an isomorphism of configurations, such that
(∅, ∅, ∅) ∈ R and for all (C1, f, C

′
1) ∈ R

1. for all C1
x−→ C2 there exists some C ′1

x′−→ C ′2 such that (C2, f [x 7→ x′], C ′2) ∈ R;
2. for all C ′1

x′−→ C ′2 there exists some C1
x−→ C2 such that (C2, f [x 7→ x′], C ′2) ∈ R;

3. if C2 ∈ Conf (E) with C2 v C1 then (C2, f|C2 , f(C2)) ∈ R (downward closure).

Observe that, in the definition above, an event must be simulated by an event with the
same label. In fact, in the triple (C ∪ {x}, f [x 7→ x′], C ′ ∪ {x′}) ∈ R, the second component
f [x 7→ x′] must be an isomorphism of configurations, i.e., of labelled posets, and thus
it preserves labels. Hhp-bisimilarity has been shown to arise as a canonical behavioural
equivalence on prime event structures, as an instance of a general notion defined in terms of the
concept of open map, when considering partially ordered computations as observations [18].

3 Foldings of Event Structures

In this section, we study a notion of folding, which is intended to formalise the intuition of a
behaviour-preserving quotient for an event structure. We prove that there always exists a
minimal quotient and we show that foldings between general poset event structures always
arise, in a suitable formal sense, from foldings over prime event structures.

3.1 Morphisms and Foldings
We first endow event structures with a notion of morphism. In the sequel, given two event
structures E, E′, a function f : E → E′ and a configuration C ∈ Conf (E), we write f(C)
to refer to the poset whose underlying set is {f(x) | x ∈ C}, endowed with the order
f(x) ≤f(C) f(y) iff x ≤ y.

I Definition 3.1 (morphism). Let E,E′ be event structures. A (strong) morphism f : E→ E′
is a function f : E → E′ between the underlying sets of events such that λ = λ′ ◦ f and for
all configurations C ∈ Conf (E), the function f is injective on C and f(C) ∈ Conf (E′).

FSTTCS 2019

30:8 Minimisation of Event Structures

Hereafter, the qualification “strong” will be omitted since this is the only kind of morphisms
we deal with. It is motivated by the fact that normally morphisms on event structures
are designed to represent simulations. If this were the purpose, then the requirement on
preservation of configurations could have been weaker, i.e., we could have asked the order in
the target configuration to be included in (not identical to) the image of the order of the
source configuration and morphisms could have been partial. However, in our setting, for
the objective of defining history-preserving quotients, the stronger notion works fine and
simplifies the presentation.
I Remark 3.2. The composition of morphisms is a morphism and the identity is a morphism.
Hence the class of event structures and event structure morphisms form a category ES.

I Definition 3.3 (folding). Let E and E′ be event structures. A folding is a morphism
f : E→ E′ such that the relation Rf = {(C, f|C , f(C)) | C ∈ Conf (E)} is a hhp-bisimulation.

In words, a folding is a function that “merges” some sets of events of an event structure
into single events without altering the behaviour modulo hhp-bisimilarity. In [2] the notion
of folding is given by requiring the preservation of hp-bisimilarity, a weaker behavioural
equivalence defined as hhp-bisimilarity but omitting the requirement of downward-closure
(condition 3 in Definition 2.9). Note that, as far as the notion of folding is concerned, this
makes no difference: Rf is downward-closed by definition, hence it is a hhp-bisimulation
whenever it is a hp-bisimulation. Instead, taking hhp-bisimilarity as the reference equivalence
appears to be the right choice for the development of the theory. For instance, it allows one
to prove Lemma 3.12 that plays an important role for arguing about the adequateness of
the notion of folding (e.g., it is essential for Proposition 3.13). Interestingly, foldings can be
characterised as open maps in the sense of [18], by taking conflict free prime event structures
as subcategory of observations. This is explicitly worked out in [6].

As an example, consider the pess in Fig. 2 and the function f02 : P0 → P2 that maps
events as suggested by the indices, i.e., f02(a1) = f02(a2) = a12, f02(b1) = f02(b2) = b12,
f02(b3) = b3 and f02(c) = c. It is easy to see that f02 is a folding. Note that, instead,
f01 : P0 → P1, again mapping events according to their indices, is not a folding. In fact,
f01({a1}) = {a12}

b2−→ {a12, b2}, but clearly there is no transition {a1}
x−→ with f01(x) = b2,

since the only preimage of b2 in P0 is b2.
Observe that the greater expressiveness of fess allows one to obtain smaller quotients.

For instance, consider Fig. 3. The fes F0 seen as a pes would be minimal. Instead, in the
class of fess it is not: the obvious functions from F0 to F1 and F2 are foldings.
I Remark 3.4. The composition of foldings is a folding and the identity is a folding. We can
consider a subcategory ESf of ES with the same objects and foldings as morphisms.

Consider again the pess in Fig. 2 and the morphisms f30 : P3 → P0 and f02 : P0 → P2.
These are induced by the labelling, apart for the bij for which we let f30(bij) = bi. Both are
foldings: the first merges b11 with b12 and b21 with b22, while the second merges a1 with a2
and b1 with b2. Their composition f32 = f30 ◦ f02 : P3 → P2 is again a folding.

A simple but crucial result shows that the target event structure for a folding is completely
determined by the mapping on events. We first define the quotient induced by a morphism.

I Definition 3.5 (quotients from morphisms). Let E, E′ be event structures and let f : E→ E′
be a morphism. Let ≡f be the equivalence relation on E defined by x ≡f y if f(x) = f(y). We
denote by E/≡f

the event structure with configurations Conf (E/≡f
) = {[C]≡f

| C ∈ Conf (E)}
where [C]≡f

= {[x]≡f
| x ∈ C} is ordered by [x]≡f

≤[C]≡f
[y]≡f

iff x ≤C y.

It is immediate to see that E/≡f
is a well-defined event structure.

P. Baldan and A. Raffaetà 30:9

a1 a2

b1 b2

a1 a2

b1 b2

a12

b12

P4 P5 P6

Figure 5 Non existence of pushout of general morphisms.

I Lemma 3.6 (folding as equivalences). Let E, E′ be event structures and let f : E→ E′ be a
morphism. If f is a folding then E/≡f

is isomorphic to E′.

The previous result allows us to identify foldings with the corresponding equivalences on
the source event structures and motivates the following definition.

I Definition 3.7 (folding equivalences). Let E be an event structure. The set of folding
equivalences over E is FEq(E) = {≡f | f : E→ E′ folding for some E′}.

Hereafter, we will freely switch between the two views of foldings as morphisms or as
equivalences, since each will be convenient for some purposes.

We next observe that given two foldings we can always take their “join”, providing a new
folding that, roughly speaking, produces a quotient smaller than both the original ones.

I Proposition 3.8 (joining foldings). Let E,E′,E′′ be event structures and let f ′ : E → E′,
f ′′ : E → E′′ be foldings. Define E′′′ as the quotient E/≡ where ≡ is the transitive closure
of ≡f ′ ∪ ≡f ′′ . Then g′ : E′ → E′′′ defined by g′(x′) = [x]≡ if f ′(x) = x′ and g′′ : E′′ → E′′′
defined by g′′(x′′) = [x]≡ if f ′′(x) = x′′ are foldings.

As an example, consider the pes in Fig. 2 and two morphisms f30 : P3 → P0 and
f31 : P3 → P1. The way all events are mapped by f30 and f31 is naturally suggested by their
labelling, apart for the bij for which we let f30(bij) = bi while f31(bij) = bj . It can be seen
that both are foldings. Their join, constructed as in Proposition 3.8, is P2 with the folding
morphisms f02 : P0 → P2 and f12 : P1 → P2.
I Remark 3.9. Proposition 3.8 is a consequence of the fact that the category ES has pushouts
of foldings. Indeed, E′′′ as defined above is the pushout of f ′ and f ′′ (in ES and also in ESf).
It can be seen that, in general, ES does not have all pushouts.

As a counterexample to the existence of pushouts in ES for general morphisms, consider
the obvious mappings f45 : P4 → P5 and f46 : P4 → P6 in Fig. 5. It is easy to realise that, if a
pushout existed, the mapping from P5 into the pushout object should identify the concurrent
events a1 and a2, failing to be an event structure morphism.

When interpreted in the setting of folding equivalences of an event structure, Proposi-
tion 3.8 has a clear meaning. Recall that the equivalences over some fixed set X, ordered
by inclusion, form a complete lattice, where the top element is the universal equivalence
X ×X and the bottom is the identity on X. Then Proposition 3.8 implies that FEq(E) is a
sublattice of the lattice of equivalences. Actually, it can be shown that FEq(E) is itself a
complete lattice. Therefore each event structure E admits a maximally folded version.

I Theorem 3.10 (lattice of foldings). Let E be an event structure. Then FEq(E) is a sublattice
of the complete lattice of equivalence relations over E.

I Remark 3.11. The above result arises from a generalisation of Proposition 3.8 showing that,
for any event structure E, each collection of foldings fi : E→ Ei, with i ∈ I, admits a colimit
in ES. Thus the coslice category (E ↓ ESf) has a terminal object, which is the maximally
folded event structure.

FSTTCS 2019

30:10 Minimisation of Event Structures

It is natural to ask whether behaviour-preserving quotients correspond to foldings. Strictly
speaking, the answer is negative. More precisely, there can be morphisms f : E→ E′ such
that E/≡f

is hhp-bisimilar to E, but f is not a folding. For an example, consider the pess P0
and P1 in Fig. 2 and the morphism f01 : P0 → P1 suggested by the indexing. We already
observed this is not a folding, but P0/≡f01

, which is isomorphic to P1, is hhp-bisimilar to P0.
However, we can show that for any behaviour-preserving quotient, there is a folding that
produces a coarser equivalence, and thus a smaller quotient. For instance, in the example
discussed above, there is the folding f02 : P0 → P2, that “produces” a smaller quotient.

This follows from the possibility of joining foldings (Proposition 3.8) and the fact that a
hhp-bisimulation can be always seen as an event structure, a result that generalises to our
setting a property proved for pess in [7].

I Lemma 3.12 (hhp-bisimulation as an event structure). Let E′, E′′ be event structures and
let R be a hhp-bisimulation between them. Then there exists a (prime) event structure ER
and two foldings π′ : ER → E′ and π′′ : ER → E′′.

I Proposition 3.13 (foldings subsume behavioural quotients). Let E be an event structure
and let f : E→ E′ be a morphism such that E/≡f

is hhp-bisimilar to E. Then there exists a
folding g : E→ E′′ such that ≡g is coarser than ≡f .

The proof relies on the possibility of joining foldings (Proposition 3.8) and the fact that
a hhp-bisimulation can be always seen as an event structure, a result that generalises to our
setting a property proved for pess in [7].

3.2 Folding through Prime Event Structures
We observe that each event structure is the folding of a corresponding canonical pes. We
then prove that, interestingly enough, all foldings between event structures arise from foldings
of the corresponding canonical pess.

We start with the definition of the canonical pes associated with an event structure.

I Definition 3.14 (pes for an event structure). Let E be an event structure. Its canonical pes
is P(E) = 〈Hist(E),v,#, λ′〉 where v is prefix, # is incompatibility, i.e., for H1, H2 ∈ Hist(E)
we let H1#H2 if ¬(H1 a H2), and λ′(H) = λ(x) when H ∈ Hist(x). Given a morphism
f : E→ E′ we write P(f) : P(E)→ P(E′) for the morphism defined by P(f)(H) = f(H).

It can be easily seen that the definition above is well-given. In particular, P(E) is a
well-defined pes because, as proved in [26], a family of posets ordered by prefix is finitary
coherent prime algebraic domain. Then the tight relation between this class of domains and
pes highlighted in [33] allows one to conclude the proof. For instance, in Fig. 1(right) one
can find the canonical pes for the event structure on the left.

The canonical pes associated with an event structure can always be folded to the original
event structure.

I Lemma 3.15 (unfolding event structures to pes’s). Let E be an event structure. Define a
function φE : P(E)→ E, for all H ∈ Hist(E) by φE(H) = x if H ∈ Hist(x) for x ∈ E. Then
φE is a folding.

We next show that any morphism from a pes to an event structure E factorises uniquely
through the pes P(E) associated with E (categorically, φE is cofree over E). The same applies
to foldings and it will be useful to relate foldings in E with foldings in P(E).

P. Baldan and A. Raffaetà 30:11

I Lemma 3.16 (cofreeness of φE). Let E be an event structure, let P′ be a pes and let f :
P′ → E be an event structure morphism. Then there exists a unique morphism g : P′ → P(E)
such that f = φE ◦ g.

P(E) E

P′

φE

f
g

Moreover, when f is a folding then so is g.

I Remark 3.17. Lemma 3.16 means that the category PES of prime event structures is a
coreflective subcategory of ES, i.e., P : ES→ PES can be seen as a functor, right adjoint
to the inclusion I : PES → ES. Moreover, P restricts to a functor on the subcategory of
foldings, P : ESf → PESf , where an analogous result holds.

We conclude that all foldings between event structures arise from foldings of the associated
pess. Given that PES is a coreflective subcategory of ES and foldings can be seen as open
maps, this result (and also the fact that morphisms φE are foldings) can be derived from [18,
Lemma 6]. More details on this can be found in the extended version [6].

I Proposition 3.18 (folding through pes’s). Let E,E′ be event structures. For all morphisms
f : E→ E′ consider P(f) : P(E)→ P(E′) defined by P(f)(H) = f(H). Then f is a folding iff
P(f) is a folding.

4 Foldings for Prime Event Structures

Motivated by the fact that foldings on general poset event structures always arise from
foldings of the corresponding canonical pess, in this section we study foldings in the class of
pess. We provide a characterisation and show that also pess always admit a least quotient.

Since foldings are special morphisms, we first provide a characterisation of pes morphisms.

I Lemma 4.1 (pes morphisms). Let P and P′ be pess and let f : P → P ′ be a function on
the underlying sets of events. Then f is a morphism iff for all x, y ∈ P
1. λ′(f(x)) = λ(x);
2. f(bxc) = bf(x)c; namely (a) for all z′ ∈ P′, if z′ ≤ f(x) there exists z ∈ P such that

z ≤ x and f(z) = z′ (b) if z ≤ x then f(z) ≤ f(x);
3. (a) if f(x) = f(y) and x 6= y then x#y and (b) if f(x)#f(y) then x#y.

These are the standard conditions characterising (total) pes morphisms (see, e.g., [33]),
with the addition of condition (2b) that is imposed to ensure that configurations are mapped
to isomorphic configurations, as required by the notion of (strong) morphism (Definition 3.1).

We know that not all pes morphisms are foldings. We next identify some additional
conditions characterising those morphisms which are foldings. Given a relation r⊆ X ×X
and Y,Z ⊆ X we write Y r∀ Z if for all y ∈ Y and z ∈ Z it holds y r z. Singletons are
replaced by their only element, writing, e.g., y r∀ Z for {y} r∀ Z.

I Theorem 4.2 (pes foldings). Let P and P′ be pess and let f : P → P′ be a morphism.
Then f is a folding if and only if it is surjective and for all X,Y ⊆ P, x, y ∈ P, y′ ∈ P′
1. if x#∀f−1(y′) then f(x)#y′;
2. if a(X ∪ {x}), a(Y ∪ {y}), a(X ∪ Y) and f(x) = f(y) then there exists z ∈ P such that

f(z) = f(x) and a(X ∪ Y ∪ {z}).

FSTTCS 2019

30:12 Minimisation of Event Structures

The notion of folding on pess turns out to be closely related to that of abstraction
homomorphism for pess introduced in [12] for similar purposes. More precisely, abstraction
homomorphisms can be characterised as those pes morphisms additionally satisfying condition
(1) of Theorem 4.2, while they do not necessarily satisfy condition (2). Their more liberal
definition with respect to foldings can be explained by the fact that they are designed to
work on a subclass of structured pess (a formal comparison is in the extended version [6]).

The next result “transfers” the conditions characterising foldings to folding equivalences.

I Corollary 4.3 (folding equivalences for pes’s). Let P be a pes and let ≡ be an equivalence
on P. Then ≡ is a folding equivalence in FEq(P) iff for all x, y ∈ P, x 6= y, if x ≡ y then
1. λ(x) = λ(y);
2. [bxc]≡ = [byc]≡;
3. x#y.
Moreover, for all x, y ∈ P, X,Y ⊆ P
4. if x#∀[y]≡ then [x]≡#∀[y]≡;
5. if a(X ∪ {x}), a(Y ∪ {y}), a(X ∪ Y) there exists z ∈ [x]≡ such that a(X ∪ Y ∪ {z}).

For instance, in Fig. 2, consider the equivalence ≡01 over P0 such that a1 ≡01 a2.
This produces P1 as quotient. This is not a folding equivalence since condition (4) fails:
a1#∀[b2]≡01 , but ¬(a2#b2) and thus ¬([a1]≡01#∀[b2]≡01). Instead, the equivalence ≡02 over
P0 such that a1 ≡02 a2 and b1 ≡02 b2, producing P2 as quotient, satisfies all five conditions.

When pess are finite, the result above suggests a possible way of identifying foldings:
one can pair candidate events to be folded on the basis of conditions (1)-(3) and then try to
extend the sets with condition (4)-(5) when possible. The procedure can be inefficient due to
the global flavor of the conditions. This will be further discussed in the conclusions.

We know, from Proposition 3.8, that all event structures admit a “maximally folded”
version. We next observe that the same result continues to hold in the class of pess.

I Theorem 4.4 (joining foldings on pes’s). Let P,P′,P′′ be pess and let f ′ : P → P′,
f ′′ : P → P′′ be foldings. Define E′′′ along with g′ : P′ → E′′′ and g′′ : P′′ → E′′′ as
in Proposition 3.8. Then E′′′ is a pes. As a consequence, each pes admits a uniquely
determined minimal quotient in the class of pess.

I Remark 4.5. Theorem 4.4 is a consequence of the fact that the subcategory PESf is a
coreflective subcategory of ESf and thus it is closed under colimits.

In passing, we note that in the class of fess the existence of a unique minimal folding
is lost. In fact, consider Fig. 3. It can be easily seen that F1 and F2 are different minimal
foldings of F0. In particular, merging the three d-labelled events as done in F3 modifies the
behaviour. In fact, in F3, the event d012 is not enabled in C = {a} since c ≺ d012 and no
event in C is in conflict with c. Instead, in F0, the event d0 is clearly enabled from {a}.
Existence of a unique minimal folding could be possibly recovered by strengthening the
notion of folding. Note, however, that this would be against the spirit of our work where
the notion of folding is not a choice. Rather, after having assumed hhp-bisimilarity as the
reference behavioural equivalence, the notion of folding is essentially “determined” as a
quotient (surjective function) that preserves the behaviour up to hhp-bisimilarity.

5 Conclusions

We studied the problem of minimisation for poset event structures, a class that encompasses
many stable event structure models in the literature, taking hereditary history preserving
bisimilarity as reference behavioural equivalence. We showed that a uniquely determined

P. Baldan and A. Raffaetà 30:13

minimal quotient always exists for poset event structures and also in the subclass of pess.
We showed that foldings between general poset event structures arise from foldings of
corresponding canonical pess. Finally, we provided a characterisation of foldings of pess.

We believe that, besides its original motivations from the setting of business process
models and its foundational interest, this work can be of help in the study of minimisation,
under a true concurrent equivalence, of operational models which can be mapped to event
structures, like transition systems with independence or Petri nets.

As underlined throughout the paper, our theory of folding has many connections with
the literature on event structures. The idea of “unfolding” more expressive models to prime
algebraic domains and pess has been studied by many authors (e.g., in [26, 24, 28, 30, 9]).
The same can be said for the idea of refining a single action into a complex computation
(see, e.g., [29] and references therein). Instead, the problem of characterising behaviour-
preserving quotients of event structures has received less attention. We already commented
on the relation with abstraction homomorphisms for pess [12], which capture the idea of
behaviour-preserving abstraction but only in a subclass of structured pess. In some cases,
given a Petri net or an event structure a special transition system can be extracted, on which
minimisation is performed. In particular, the paper [23] proposes an encoding of safe Petri
nets into causal automata, preserving hp-bisimilarity. Such automata can be transformed
into a standard labelled transition systems, which in turn can be minimised. However, in
this way, the correspondence with the original events is lost.

The notion of behaviour-preserving function has been given an elegant abstract charac-
terisation in terms of open maps [18]. We mentioned the possibility of viewing our foldings
as open maps and we observed that various results admit a categorical interpretation (see
also [6]). This gives clear indications of the possibility of providing a general abstract view of
the results in this paper, something which represents an interesting topic of future research.

The characterisation of foldings on pess can be used as a basis to develop, at least in the
case of finite structures, algorithms for the construction of behaviour preserving quotients.
The fact that conditions for folding refer to sets of events might make the minimisation
procedure very inefficient. Identifying suitable heuristics and investigating the possibility of
having more “local” folding conditions are interesting directions of future work.

Although not explicitly discussed in the paper, by considering elementary foldings, i.e.,
foldings that just merge a single set of events, one can indeed determine some more efficient
folding rules. This is essentially what is done for aess and fess in [2]. However, restricting
to elementary foldings is limiting, since it can be seen that general foldings cannot be always
decomposed in terms of elementary ones (e.g., it can be seen that in Fig. 2, the folding
f02 : P0 → P2 cannot be obtained as the composition of elementary foldings).

When dealing with possibly infinite event structures one could try to devise reduction
rules acting on some finitary representation and inducing foldings on the corresponding event
structure. Note, however, that working, e.g., on finite safe Petri nets, the minimisation
procedure would be necessarily incomplete, given that hhp-bisimilarity is undecidable [19].

References
1 A. Armas-Cervantes, P. Baldan, M. Dumas, and L. García-Bañuelos. Diagnosing behavi-

oral differences between business process models: An approach based on event structures.
Information Systems, 56:304–325, 2016.

2 A. Armas-Cervantes, P. Baldan, and L. García-Bañuelos. Reduction of event structures under
history preserving bisimulation. Journal of Logical and Algebraic Methods in Programming,
85(6):1110–1130, 2016.

FSTTCS 2019

30:14 Minimisation of Event Structures

3 P. Baldan. Modelling concurrent computations: from contextual Petri nets to graph grammars.
PhD thesis, University of Pisa, 2000.

4 P. Baldan, A. Corradini, H. Ehrig, M. Löwe, U. Montanari, and F. Rossi. Concurrent Semantics
of Algebraic Graph Transformation Systems. In G. Rozenberg, editor, Handbook of Graph
Grammars and Computing by Graph Transformation, volume III: Concurrency, pages 107–187.
World Scientific, 1999.

5 P. Baldan, A. Corradini, and U. Montanari. Contextual Petri nets, asymmetric event structures
and processes. Information and Computation, 171(1):1–49, 2001.

6 P. Baldan and A. Raffaetà. Minimising Event Structures, 2019. arXiv:1907.07042.
7 M.A. Bednarczyk. Hereditary History Preserving Bisimulations or What is the Power of the

Future Perfect in Program Logics. Technical report, Polish Academy of Sciences, 1991.
8 G. Boudol. Flow Event Structures and Flow Nets. In Semantics of System of Concurrent

Processes, volume 469 of LNCS, pages 62–95. Springer Verlag, 1990.
9 G. Boudol and I. Castellani. Permutation of transitions: an event structure semantics for

CCS and SCCS. In Linear Time, Branching Time and Partial Order Semantics in Logics and
Models for Concurrency, volume 354 of LNCS, pages 411–427. Springer Verlag, 1988.

10 R. Bruni, H.C. Melgratti, and U. Montanari. Event Structure Semantics for Nominal Calculi.
In C. Baier and H. Hermanns, editors, CONCUR 2006, volume 4137 of LNCS, pages 295–309.
Springer, 2006.

11 S. Castellan. Weak memory models using event structures. In Proceedings of JFLA’16, 2016.
12 I. Castellani. Bisimulations for Concurrency. PhD thesis, University of Edimburgh, 1988.
13 S. Chakraborty and V. Vafeiadis. Grounding thin-air reads with event structures. PACMPL,

3(POPL):70:1–70:28, 2019.
14 I. Cristescu, J. Krivine, and D. Varacca. Rigid families for CCS and the pi-calculus. In

Proceedings of ICTAC’15, volume 9399 of LNCS, pages 223–240. Springer, 2015.
15 M. Dumas and L. García-Bañuelos. Process Mining Reloaded: Event Structures as a Unified

Representation of Process Models and Event Logs. In R.R. Devillers and A. Valmari, editors,
Petri Nets 2015, volume 9115 of LNCS, pages 33–48. Springer, 2015.

16 J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, 2006.

17 A. Jeffrey and J. Riely. On Thin Air Reads: Towards an Event Structures Model of Relaxed
Memory. In M. Grohe, E. Koskinen, and N. Shankar, editors, LICS 2016, pages 759–767.
ACM, 2016.

18 A. Joyal, M. Nielsen, and G. Winskel. Bisimulation from Open Maps. Information and
Computation, 127(2):164–185, 1996.

19 M. Jurdzinski, M. Nielsen, and J. Srba. Undecidability of domino games and hhp-bisimilarity.
Information and Computation, 184(2):343–368, 2003.

20 R. Langerak. Bundle Event Structures: A Non-Interleaving Semantics for Lotos. In 5th Intl.
Conf. on Formal Description Techniques (FORTE’92), pages 331–346. North-Holland, 1992.

21 R. Langerak. Transformation and Semantics for LOTOS. PhD thesis, Department of Computer
Science, University of Twente, 1992.

22 A.R. Meyer and L.J. Stockmeyer. The Equivalence Problem for Regular Expressions with
Squaring Requires Exponential Space. In SWAT (FOCS), pages 125–129. IEEE Computer
Society, 1972.

23 U. Montanari and M. Pistore. Minimal Transition Systems for History-Preserving Bisimulation.
In 14th Annual Symposium on Theoretical Aspects of Computer Science, volume 1200 of LNCS,
pages 413–425. Springer Verlag, 1997.

24 M. Nielsen, G. Plotkin, and G. Winskel. Petri Nets, Event Structures and Domains, Part 1.
Theoretical Computer Science, 13:85–108, 1981.

25 J. Pichon-Pharabod and P. Sewell. A concurrency semantics for relaxed atomics that permits
optimisation and avoids thin-air executions. In R. Bodík and R. Majumdar, editors, POPL
2016, pages 622–633. ACM, 2016.

http://arxiv.org/abs/1907.07042

P. Baldan and A. Raffaetà 30:15

26 A. Rensink. Posets for Configurations! In W. R. Cleaveland, editor, Proceedings of CON-
CUR’92, volume 630 of LNCS, pages 269–285. Springer, 1992.

27 G. Schied. On relating Rewriting Systems and Graph Grammars to Event Structures. In
H.-J. Schneider and H. Ehrig, editors, Dagstuhl Seminar 9301 on Graph Transformations in
Computer Science, volume 776 of LNCS, pages 326–340. Springer, 1994.

28 R.J. van Glabbeek. History preserving process graphs. Draft available at http://theory.
stanford.edu/~rvg/abstracts.html#hppg, 1996.

29 R.J. van Glabbeek and U. Goltz. Refinement of actions and equivalence notions for concurrent
systems. Acta Informatica, 37(4/5):229–327, 2001.

30 R.J. van Glabbeek and G.D. Plotkin. Configuration structures, event structures and Petri
nets. Theoretical Computer Science, 410(41):4111–4159, 2009.

31 D. Varacca and N. Yoshida. Typed event structures and the linear pi-calculus. Theoretical
Computer Science, 411(19):1949–1973, 2010.

32 G. Winskel. Event Structure Semantics for CCS and Related Languages. Technical Report
DAIMI PB-159, University of Aarhus, 1983.

33 G. Winskel. Event Structures. In Petri Nets: Applications and Relationships to Other Models
of Concurrency, volume 255 of LNCS, pages 325–392. Springer, 1987.

34 G. Winskel. Events, Causality and Symmetry. Computer Journal, 54(1):42–57, 2011.

FSTTCS 2019

http://theory.stanford.edu/~rvg/abstracts.html#hppg
http://theory.stanford.edu/~rvg/abstracts.html#hppg

Concurrent Parameterized Games
Nathalie Bertrand
Univ. Rennes, Inria, CNRS, IRISA, Rennes, France

Patricia Bouyer
LSV, CNRS & ENS Paris-Saclay, Univ. Paris-Saclay, Cachan, France

Anirban Majumdar
Univ. Rennes, Inria, CNRS, IRISA, Rennes, France
LSV, CNRS & ENS Paris-Saclay, Univ. Paris-Saclay, Cachan, France

Abstract
Traditional concurrent games on graphs involve a fixed number of players, who take decisions
simultaneously, determining the next state of the game. In this paper, we introduce a parameterized
variant of concurrent games on graphs, where the parameter is precisely the number of players.
Parameterized concurrent games are described by finite graphs, in which the transitions bear regular
languages to describe the possible move combinations that lead from one vertex to another.

We consider the problem of determining whether the first player, say Eve, has a strategy to ensure
a reachability objective against any strategy profile of her opponents as a coalition. In particular
Eve’s strategy should be independent of the number of opponents she actually has. Technically, this
paper focuses on an a priori simpler setting where the languages labeling transitions only constrain
the number of opponents (but not their precise action choices). These constraints are described as
semilinear sets, finite unions of intervals, or intervals.

We establish the precise complexities of the parameterized reachability game problem, ranging
from PTIME-complete to PSPACE-complete, in a variety of situations depending on the contraints
(semilinear predicates, unions of intervals, or intervals) and on the presence or not of non-determinism.

2012 ACM Subject Classification Theory of computation → Verification by model checking

Keywords and phrases concurrent games, parameterized verification

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.31

Funding Patricia Bouyer : has been funded by ERC project EQualIS.

Acknowledgements We thank Christoph Haase for insightful discussions on semilinear sets.

1 Introduction

Parameterized verification. The generalisation and everyday usage of, for example, cloud
computing and blockchains technology, calls for the verification of algorithms running on
distributed systems. Concrete examples are consensus and leader-election algorithms, but also
coherence protocols, etc. This explains the recent interest of the model-checking community
for the verification of systems composed of an arbitrary number of agents [10, 5].

Verifying algorithms running on distributed systems for all possible number of agents at
once calls for symbolic techniques. These are generic, and compare favorably –in terms of
complexity– to applying standard verification techniques on a given instance with a fixed
large number of agents. Therefore, beyond its original goal of verifying systems independently
of the number of agents, parameterized verification can also be more efficient than standard
verification for large systems. In the last 15 years, parameterized verification algorithms were
successfully applied to various case studies, such as data-consistency for cache coherence
protocols in uniform memory access multiprocessors [9], and the core of simple reliable
broadcast protocols in asynchronous systems [13].

© Nathalie Bertrand, Patricia Bouyer, and Anirban Majumdar;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 31; pp. 31:1–31:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-9957-5394
https://orcid.org/0000-0002-2823-0911
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.31
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 Concurrent Parameterized Games

Multiplayer concurrent games. In parallel, for multi-agents systems, the AI and model-
checking communities traditionally use concurrent games on graphs to model the complex
interactions between agents [1, 2]. An arena for n players is a directed graph where the
transitions are labeled by n-tuples of actions. At each vertex of the graph, the n players
select simultaneously and independently an action, and the next vertex is determined by the
combined move consisting of all the actions. Most often, one considers infinite duration plays,
that is plays generated by iterating this process forever. Concepts studied on multiplayer
concurrent games include some borrowed from game theory, such as winning strategies (see
e.g. [1]), rationality of players (see e.g. [11]), Nash equilibria (see e.g. [17, 6]).

Concurrent games with a parameterized number of players. The purpose of the current
paper is to settle the foundations of concurrent games involving a parameterized number
of players, paving the way to the modelling and verification of interactions involving an
arbitrary number of agents. We envision that such games may later have applications in a
variety of contexts, such as telecommunications and distributed algorithms. The conclusion
presents a simple coordination game, and one of our long-term objectives is to solve the
distributed synthesis problem of such games.

Generalising concurrent games to a parameterized number of agents can be done by
replacing, on edges of the arena, tuples representing the choice of each of the agents by
languages of finite yet a priori unbounded words. It seems natural to first consider regular
languages, represented by regular expressions. For instance the label a+ represents that all
players choose action a, while ab+ is the situation where the first player chooses a, while all
other players play b. Such a parameterized arena can represent infinitely many interaction
situations, one for each possible number of agents. In parameterized concurrent games, the
agents do not know a priori the number of agents participating to the interaction. Each
player observes the action it plays and the vertices the play goes through. These pieces of
information may refine the knowledge each player has on the number of involved agents.

Figure 1 presents a first example of a parameterized arena. This arena represents a
situation where the players need to figure out the parity of their number in order to make
a correct decision (action b if there is an even number of players, and c otherwise). Here,
players can collectively reach the target vertex v4: they all play a in the two first steps, and
from v3, if the play went through v1 (resp. v2), they all play b (resp. c).

v0

v1

v2

v3

v4

v5

(aa
)+

a(aa) +

a ≥2

a
≥2

(bb
)+

c(c
c)
+

(cc) +
b(bb) +

Figure 1 Example of a parameterized arena.

As for traditional concurrent games, one can consider natural questions such as, for
instance, the distributed synthesis problem as in the above example, or the existence and
computation of Nash equilibria. To start with, we consider a simpler decision problem:
the first player, called Eve, is distinguished, and the question is whether she can ensure
a reachability objective against the coalition of the other players, not knowing a priori
the number of her opponents. She therefore must play uniformly, whatever the number of
opponents she has. To simplify the exposition, we assume that the languages on transition

N. Bertrand, P. Bouyer, and A. Majumdar 31:3

of the arena are particularly simple: they only constrain the number of opponents Eve has.
However, as discussed in Section 4, this simpler setting is not restrictive for the decision
problem we consider.

Contributions. After the definition of the parameterized game setting, the main contribution
of this paper is the resolution of the so-called parameterized reachability game problem, with
tight complexity bounds. We distinguish several cases, depending on whether arenas are
deterministic or not, and on whether constraints on the number of opponents are intervals,
finite unions of intervals, or semilinear sets.

The existence of a uniformly winning strategy for Eve reduces to the resolution of the
knowledge game, a two-player reachability turn-based game. The latter is a priori exponential
in the size of the original arena, since vertices include the knowledge Eve has on the possible
number of her opponents, and this exponential blowup is unavoidable. Yet, when constraints
are only intervals, the knowledge game is only of polynomial size. In this particular case, we
prove the parameterized game problem to be PTIME-complete. For finite unions of intervals,
and when the parameterized arena is deterministic, we show that if Eve has a winning
strategy, she has one that can be represented by a polynomial size strategy tree. This small
model property, together with the encoding of 3SAT allows us to prove the problem to
be NP-complete. Finally, for finite unions of intervals and non-deterministic arenas, or for
semilinear sets (with no assumption of non-determinism) the parameterized game problem
is PSPACE-complete. The lower bound is obtained by a reduction from QBF-SAT, while
the upper bound derives from a depth-first search algorithm on an exponential size tree,
non-trivially extracted from the knowledge game. All the complexities are summarized in
Table 1, on page 6.

Related work. Up to our knowledge, this contribution is the first to introduce and study
a model of concurrent games with a parameterized number of players. Our model of
parameterized concurrent games mixes interactions and an arbitrary number of agents. As
far as we are aware, only a couple of other works in parameterized verification have defined
a game semantics, and they all largely differ from the current setting. First, to study
broadcast networks of many identical Markov decision processes, broadcast networks of
two-player games were introduced [4]. There, the behaviour of each agent is the same and
is described by a two-player turn-based game. Second, a control problem for an arbitrary
size population of identical agents was studied in [3]. In that work, a controller plays
against a parameterized number of agents, similarly to Eve playing against an unknown
number of opponents. However, in contrast to our parameterized games, in the population
control problem, the semantics is a turn-based game, and, most importantly, the arena is not
centralized.

2 Game setting

We first introduce parameterized arenas, which form a simple setting for modelling games
with a parameterized number of players. In such arenas, edges are labeled with sets of pairs
(a, k) for a an action of Eve, and k a number of opponents. We discuss in Section 4 how a
natural extension of concurrent games to a parameterized number of players, with regular
languages on edges, reduces to this simpler setting. In the whole paper, we denote by N the
set of natural numbers (including 0) and write N>0 for the set of positive natural numbers.

FSTTCS 2019

31:4 Concurrent Parameterized Games

I Definition 1. A parameterized arena is a tuple A = 〈V,Σ,∆〉 where
V is a finite set of vertices;
Σ is a finite set of actions;
∆ : V × Σ× N>0 → 2V is the transition function.

The arena is deterministic if for every v ∈ V , and every pair (a, k) ∈ Σ×N>0, there is at
most one vertex v′ ∈ V such that v′ ∈ ∆(v, a, k). Action a ∈ Σ is enabled at vertex v if there
exists k ∈ N>0 such that ∆(v, a, k) 6= ∅. The arena is assumed to be complete for enabled
actions: for every v ∈ V , if a is enabled at v, then for all k ∈ N>0, ∆(v, a, k) 6= ∅. This
assumption is natural: Eve does not know how many opponents she has, and the successor
vertex must exist whatever that number is. Given a predicate P ⊆ N>0, ∆(v, a, P) is a
shorthand for

⋃
k∈P ∆(v, a, k).

Further, for any v, v′ ∈ V and a ∈ Σ, we introduce the following notation to represent the
set of number of opponents that can lead from v to v′ under action a of Eve: ∇(v, a, v′) =
{k ∈ N>0 | v′ ∈ ∆(v, a, k)}. Finally, we write E = {(v, a, v′) | ∃k ∈ N>0, v

′ ∈ ∆(v, a, k)} for
the set of edges of the arena.

v0

v1

v2

v3

v4

v5

a,
=1

a,6=1

a

a

a,
=1

b, 6=
1

b,=1
a, 6=1

Figure 2 Example of a parameterized reachability game.

I Example 2. An example of a deterministic parameterized reachability game is presented
in Figure 2, with V = {v0, . . . , v5}, Σ = {a, b}. Here and in other pictures, we use constraints
to represent the transition function: for instance, the label ‘a,= 1’ on the transition from v0
to v1 represents ∆(v0, a, 1) = {v1}, and the label ‘a, 6= 1’ means that for every k 6= 1 (that is,
k ≥ 2), ∆(v0, a, k) = {v2}, or simply ∆(v0, a, 6= 1) = {v2}. Moreover, we omit the constraint
if it is trivial e.g., for every k ∈ N>0, ∆(v1, a, k) = {v3}. On that example, action a is the
only enabled action at vertices v0, v1 and v2, and both a and b are enabled at v3. Also
(v0, a, v1) is an example of edge. Finally, ∇(v3, a, v4) = {1} and ∇(v3, b, v4) = [2,∞).

Let k ∈ N>0. A k-history, for a coalition composed of k opponents of Eve, is a finite
sequence v0a0 · · · vi ∈ (V ·Σ)∗ ·V such that for every j < i, vj+1 ∈ ∆(vj , aj , k) (or equivalently
k ∈

⋂
j<i∇(vj , aj , vj+1)). A history in A is a k-history for some k ∈ N>0. We note Hist(k)

(resp. Hist) for the set of k-histories (resp. histories) in G. Similar notions of a k-play and a
play are defined for infinite sequences.

I Definition 3. A strategy for Eve from v in A is a mapping σ : Hist→ Σ that associates
to every history hv′ ∈ Hist an action σ(hv′) which is enabled at v′. Further, σ is memoryless
whenever for every hv′, h′v′ ∈ Hist, σ(hv′) = σ(h′v′).

A strategy for Eve is applied with no prior information on the number of her opponents.
Given a strategy σ, an initial vertex v and k ∈ N>0 a number of opponents, we define
the outcome Out(σ, v, k) as the set of plays that σ induces from v when Eve has exactly k
opponents. Formally, Out(σ, v, k) is the set of all k-plays ρ = v0a0v1a1v2 · · · such that v = v0,

N. Bertrand, P. Bouyer, and A. Majumdar 31:5

and for all i ≥ 0, σ(v0a0 · · · vi) = ai and vi+1 ∈ ∆(vi, ai, k). The completeness assumption
ensures that the set Out(σ, v, k) is not empty. Finally, Out(σ) is the set of all possible plays
induced by σ from v: Out(σ, v) =

⋃
k≥1 Out(σ, v, k).

Given an arena A = 〈V,Σ,∆〉, a target vertex t ∈ V defines a reachability game G = (A, t)
for Eve. A strategy σ for Eve from v in the reachability game G = (A, t) is winning if all
plays in Out(σ, v) eventually reach t. If there exists a winning strategy from v, then we say
that v belongs to the winning region of Eve.

I Example 4. Resuming Example 2, one can show that Eve has a winning strategy σ from
v0 to reach the target v4 defined by σ(v0) = σ(v0av1) = σ(v0av2) = a, σ(v0av1av3) = a and
σ(v0av2av3) = b. Intuitively, the decision at vertex v3 depends on whether the play went
through v1 –in this case Eve deduces that she has a single opponent– or v2. Note that no
memoryless strategy is winning for Eve: if she always chooses a at v3, she is losing against
more than 1 opponents; and similarly for b. The winning region for Eve is {v0, v4}.

The purpose of this paper is to establish the complexity of the following decision problem:

Parameterized reachability game problem
Input: A parameterized reachability game G = (A, t) and an initial vertex v.
Question: Does Eve have a winning strategy from v in G?

For algorithmic reasons, we assume the transition function ∆ of A can be described
in a finite way. More precisely, the sets ∇(v, a, v′) for v, v′ ∈ V and a ∈ Σ should be
simple enough.

We first consider constraints described by closed intervals (since we deal with sets of
natural numbers, it is no restriction to assume intervals to be closed) or finite unions of closed
intervals. If [a, b] (resp. [a,∞)) is an interval, then we say a is a left endpoint and b (resp.
∞) is a right endpoint. As a complexity parameter, we use #endpointsA, the number of
endpoints used in constraints in A. All the complexities will be functions of this parameter,
independently of the precise values of the endpoints.

More generally, we also consider semilinear predicates over N. A simple example of a
semilinear predicate is the predicate “divisible by p”, where p ∈ N>0. W.l.o.g. we assume
semilinear sets are given as finite unions of ultimately periodic sets of integers. A set S ⊆ N
is ultimately periodic if there exist a threshold t ∈ N and a period p ∈ N such that for all
a, b ∈ N with a, b ≥ t and a ≡ b mod p, we have a ∈ S iff b ∈ S. For complexity issues,
all constants are assumed to be represented in binary. In that context, as a complexity
parameter, we use #predA, the number of predicates used on edges of A.

3 Resolution of the parameterized reachability game problem

In this section, we study the complexity of the parameterized reachability game problem.

I Theorem 5. The complexity of the parameterized reachability game problem is stated in
Table 1.

Note that the complexities for constraints given as (finite unions of) intervals are in-
dependent of values of endpoints used in the constraints. When constraints are given as
semilinear sets, the complexity does depend on #predA as well as the size of the encodings
of the semilinear sets.

The rest of this section is devoted to proving these complexity results. To do so, we
start with defining a finite two-player game abstraction, the knowledge game, which precisely
captures the partial-information aspect of our parameterized game model.

FSTTCS 2019

31:6 Concurrent Parameterized Games

Table 1 Complexity of the parameterized reachability game problem.

Deterministic arenas Non-deterministic arenas
C
on

st
ra
in
ts Intervals PTIME-complete

Finite unions of intervals NP-complete PSPACE-complete

Semilinear sets PSPACE-complete

3.1 The knowledge game
From a parameterized reachability game, we construct a standard two-player turn-based
game. We do not recall this notion here, and refer to [12, Chap. 2] for it.

I Definition 6. Let G = (A, t) be a parameterized game, with A = 〈V,Σ,∆〉. The knowledge
game associated with G is the two-player turn-based reachability game KG = (VE∪VA,∆K, F),
between Eve and Adam, such that VE ⊆ V ×2N>0 and VA ⊆ VE×Σ are Eve and Adam vertices,
respectively; ∆K ⊆ (VE×VA)∪(VA×VE) is the edge relation; and F = VE∩{(t,K) | K ⊆ N>0}
is the set of target vertices. They are defined inductively by
{(v,N>0) | v ∈ V } ⊆ VE;
∀(v,K) ∈ VE, ∀a ∈ Σ enabled at v, (v,K, a) ∈ VA and

(
(v,K), (v,K, a)

)
∈ ∆K;

∀(v,K, a) ∈ VA, ∀v′ ∈ V such that K ∩ ∇(v, a, v′) 6= ∅, (v′,K ∩ ∇(v, a, v′)) ∈ VE and(
(v,K, a), (v′,K ∩∇(v, a, v′))

)
∈ ∆K;

A strategy for Eve in KG is a function λ : (VE · VA)∗ · VE → VA compatible with ∆K. We
borrow standard notions of outcomes and winning strategies from the literature.

It is not hard to see that the game KG is finite. Indeed, one can show by induction
that every Eve’s vertex (v,K) (hence every Adam’s vertex (v,K, a)) is such that K is an
intersection of finitely many sets of the form ∇(v′, a, v′′) or N>0.

I Example 7. Figure 3 represents the knowledge game associated with the parameterized
game from Example 2. Circle vertices belong to Eve, and rectangle ones to Adam. In this
two-player game, Eve has a winning strategy from (v0,N>0) to reach the doubly-circled
target vertices.

v0,N>0 v0,N>0,a

v1,=1

v2,6=1

v1,=1,a

v2,6=1,a

v3,=1

v3,6=1

v3,=1,a

v3,=1,b

v3, 6=1,a

v3, 6=1,b

v4,=1

v5,=1

v4,6=1

v5,6=1

Figure 3 Knowledge game for the example of Figure 2.

We now investigate the size of KG , that the number of its vertices and edges, w.r.t.
the complexity measures we introduced for the parameterized game G. Note that the size
only might not reflect the complexity of building the knowledge game, in particular when
constraints are given as semilinear predicates (one for instance needs to check emptiness of
intersections of predicates); we discuss this further in the proof of Proposition 11.

N. Bertrand, P. Bouyer, and A. Majumdar 31:7

I Lemma 8. For G = (A, t) a parameterized game with A = 〈V,Σ,∆〉, the size of the
associated knowledge game KG is polynomial in both |V | and |Σ|, and
1. exponential in #predA, for constraints defined by semilinear predicates;
2. exponential in #endpointsA, for constraints defined by finite unions of intervals; and
3. polynomial in #endpointsA, for constraints defined as intervals.
Furthermore, the exponential blowup is unavoidable in the two first cases.

Proof. By definition, all pairs (v,N>0) for v ∈ V belong to VE representing that Eve has
no initial knowledge of the number of her opponents. Further knowledge sets for vertices in
KG are obtained by taking the intersection of existing knowledge sets with sets of the form
∇(v, a, v′).

Therefore, when constraints in the arena are given by semilinear predicates, the number
of knowledge sets is bounded by 2#predA . Hence |VE | ≤ 2#predA |V | and |VA| ≤ 2#predA |V ||Σ|,
yielding an overall exponential bound on |KG |. Note that it is exponential in the number of
predicates, but not in the size of their encodings.

When constraints are defined by finite unions of intervals, the number of knowledge sets is
bounded by 3#endpointsA . Indeed, a finite union of intervals can be encoded by a word on the
alphabet formed of the set of endpoints, with a repetition for singletons; for instance, if E =
{2, 5, 8, 11, 17, 23,∞}, writing ai for the i-th letter of E, [2, 8] ∪ {11} ∪ [17,∞) is represented
by the string a1a3a4a4a5a7. Hence |VE | ≤ 3#endpointsA |V | and |VA| ≤ 3#endpointsA |V ||Σ|,
yielding an overall exponential bound on |KG |. Note that it is exponential in the number of
endpoints, but not in the size of their encodings.

Finally, when constraints are defined by intervals, a better upper bound can be obtained.
All knowledge sets in KG are intervals whose endpoints appear in the constraints of A.
There can be at most #endpoints2

A such intervals, so that |VE | ≤ #endpoints2
A|V | and

|VA| ≤ #endpoints2
A|V ||Σ|, yielding an overall polynomial bound on |KG |.

v0

v1 v′1

v2 v′2

vn v′n

t

a1

b,
6=1

b,=1

a2 b,=2

b,6=2

a
n

b,=n

b, 6=n

b

b

b

...

...

Figure 4 A deterministic game Gn (n ∈ N>0), whose size is polynomial in n and whose knowledge
game is exponential in n.

The exponential upper bound is reached by the family (Gn)n∈N>0 of deterministic para-
meterized games depicted on Figure 4, and for which the constraints are unions of intervals
(a particular case of semilinear predicates). Both the number of endpoints, and the number
of predicates are linear in n. The associated knowledge game has vertices (v0,K) for every
non-empty subset K of {1, . . . , n}. Indeed, intuitively, from vertex (v0,K) in KGn

, for any
k ∈ K, the successor vertex in two steps by ak and b, in case the number of opponents is not
k, is the vertex (v0,K \ {k}). Thus |Gn| ∈ O(n) and |KGn

| ∈ O(n2n). J

FSTTCS 2019

31:8 Concurrent Parameterized Games

We now state the correctness of the knowledge game construction:

I Theorem 9. Eve has a winning strategy σ from v0 in G if and only if she has a winning
strategy λ from (v0,N>0) in KG.

Proof sketch. There is a correspondence between histories in G and KG . Every history h =
v0a0v1 · · · vi in G, can be lifted to the history κ(h) = (v0,K0)(v0,K0, a0)(v1,K1) · · · (vi,Ki)
in KG where: K0 = N>0, and for every 1 ≤ j ≤ i, Kj = Kj−1 ∩∇(vj−1, aj−1, vj). Note that
κ(h) is well-defined since, by definition of a history, Ki is not empty. Conversely, any history
H = (v0,K0)(v0,K0, a0)(v1,K1) · · · (vi,Ki) in KG projects to ι(H) = v0a0v1 · · · vi which is a
history in G. Moreover, for every k ∈ Ki, ι(H) is a k-history in G. Using κ and ι, one can
easily lift winning strategies from G to KG and, vice versa project winning strategies from
KG to G, to prove the desired equivalence. J

3.2 The simple case of intervals
I Proposition 10. When constraints are intervals, the parameterized reachability game
problem is PTIME-complete.

When constraints are intervals only, the knowledge game is polynomial in the size of the
parameterized arena (see Lemma 8) and it can be computed in polynomial time. Hence
the parameterized reachability game problem is in PTIME. It is moreover complete for this
class, since two-player reachability games are PTIME-hard (by straightforward reduction
from the CIRCUIT-SAT problem). We thus obtain the above complexity result, independently
of whether the arena is deterministic or not.

3.3 General PSPACE upper bound
I Proposition 11. The parameterized reachability game problem is in PSPACE when con-
straints are given as finite unions of intervals or semilinear sets.

Proof sketch. To prove this result, we rely on the knowledge game construction, which has
been proven correct for the existence of winning strategies (see Theorem 9). Let G = (A, t) be
a parameterized reachability game, and v0 be an initial vertex. We show that one can decide
in polynomial space in the size of G whether Eve has a winning strategy from (v0,N>0) in KG .

For each vertex (v,K) ∈ VE of Eve in KG , we define a reachability game KG [v,K], which
is the restriction of KG to vertices (v′,K, a) and (v′,K ′) that are reachable from (v,K) via
vertices with same knowlege set K only. Formally, KG [v,K] is the restriction of KG to the
following sets of vertices, defined inductively:

V 0
E = {(v,K)}
V iA = {(v′,K, a) | v′ 6= t and (v′,K) ∈ V iE and

(
(v′,K), (v′,K, a)

)
∈ ∆G}

V i+1
E = {(v′,K ′) | ∃(v′′,K, a) ∈ V iA s.t.

(
(v′′,K, a), (v′,K ′)

)
∈ ∆G}

Notice that in KG [v,K], all Adam vertices have knowledge set K. Also Eve vertices
(v′,K ′) with knowledge K ′ (K or with v′ = t have no successors: we refer to them as the
output vertices of KG [v,K]. We write O[v,K] for the set of such vertices.

The game KG [v,K] is polynomial in the size of G. Indeed, there are at most (|Σ|+ 1)|V |
many Eve or Adam vertices with second component exactly K and at most |E||V | many Eve
vertices with second component strictly smaller than K. When constraints are given as finite
unions of intervals, this game can be computed in polynomial time in #endpointsA. For
semilinear sets, KG [v,K] can be computed in polynomial space in the size of the encodings

N. Bertrand, P. Bouyer, and A. Majumdar 31:9

of the predicates as finite unions of ultimately periodic sets; in particular, if P is a semilinear
predicate one needs to check whether (P ∩K) (K (to decide whether one obtains an output
vertex of KG [v,K]). Once constructed, KG [v,K] can be solved in polynomial time in |G|
since this is a standard two-player turn-based reachability game. We use these games in
sub-routines for solving the parameterized reachability game problem.

Using the subgames KG [v,K], we consider the following exponential-size tagged tree T
defined inductively as follows: the root n0 = (v0,N>0) is the initial vertex of KG , and (v′,K ′)
is a child of (v,K) if (v′,K ′) ∈ O[v,K] is an output vertex of KG [v,K]. Our aim is to tag
each node n = (v,K) of T with Win or Lose, to reflect whether Eve has a winning strategy
from (v,K) in KG . We define the following tagging function:

tag((v,K)) =

Win if v = t

Win if Eve has a winning strategy in KG [v,K] from (v,K) to reach
the set {α ∈ O[v,K] | tag(α) = Win}

Lose otherwise.

One can show the correctness of the tagging function: tag((v,K)) = Win if and only if Eve
has a winning strategy in KG from (v,K). Finally, the root of the tree can be tagged in
polynomial space, by a a depth-first search algorithm on T (see Figure 5). The height of
T is polynomially bounded, in #endpointsA in the case of finite unions of intervals, and in
#predA in the case of semilinear predicates. Once the tag of a node has been computed, its
whole subtree can be forgotten. Therefore one can “reuse” polynomial space to repeatedly
solve the games KG [v,K] for different v and K. In the DFS tagging, the size of the stack is
at most the height of tree times the maximal number of successors of a vertex v in G. Finally
polynomial space is sufficient to store the knowledge of one node of the T . J

v0,K0,?

v1,K1,Win v2,K2,Lose v3,K3,?

v5,K5,Lose v6,K6,?

t,K9,Win v10,K10,?
...

v11,K11,?

v7,K7,? v8,K8,?

v4,K4,?

Figure 5 Illustration of the polynomial space DFS tagging algorithm: the Win/Lose tags of green
nodes have already been computed (and their subtrees have been removed); the tags of red nodes
are being computed (hence the label ‘?’); and the blue nodes are waiting to be processed (we also
use label ‘?’). For instance, before tagging (v6, K6), one needs to first compute the tag of (v10, K10)
(which is ongoing), then compute the tag of (v11, K11) (which is waiting).

FSTTCS 2019

31:10 Concurrent Parameterized Games

3.4 An NP upper bound for deterministic arenas when constraints are
finite unions of intervals

The previous PSPACE upper bound can be improved when the arena is deterministic and
constraints are given by finite unions of intervals.

I Proposition 12. The parameterized reachability game problem is in NP, when constraints
are finite unions of intervals and when restricting to deterministic arenas.

Proof sketch. Pick an arbitrary winning strategy σ for Eve, and consider the (labeled) tree
Tσ it induces: nodes are histories, and the children of a node are the possible next histories
(depending on the number of opponents). This tree is finite because σ is winning, and one
can add to the node label the knowledge Eve has for the corresponding history. This tree
satisfies the following properties: (i) along any path of Tσ, the number of distinct knowledge
sets is at most #endpointsA; and (ii) the knowledge at sibling nodes form a partition of the
knowledge at their parent node. The second property has the following consequence. At each
level of the tree, the knowledge of all nodes form a partition of N>0 using endpoints from
the arena description, so that the number of nodes at each level is bounded by #endpointsA.
Also, if a node has the same knowledge as its parent, it cannot have siblings. This allows to
compress linear parts of the tree, and to tranform an arbitrary winning strategy into one
whose tree is “small”, i.e. polynomial in the size of the arena. J

3.5 Lower bounds
We prove all lower bounds mentioned in Table 1. We start with the PSPACE-hardness when
constraints are finite unions of intervals and arenas are a priori non-deterministic.

I Proposition 13. When constraints are finite unions of intervals, the parameterized reach-
ability game problem is PSPACE-hard.

Proof sketch. The proof is by reduction from QBF-SAT, which is known to be PSPACE-
complete [16]. Let ϕ = ∃x1∀x2∃x3 . . . ∀x2r ·

(
C1 ∧ C2 ∧ . . . ∧ Cm

)
be a quantified Boolean

formula in prenex normal form, where for every 1 ≤ h ≤ m, Ch = `h,1 ∨ `h,2 ∨ `h,3, and for
every 1 ≤ j ≤ 3, `h,j ∈ {xi,¬xi | 1 ≤ i ≤ 2r} are the literals. From ϕ, we construct an arena
Aϕ = 〈V,Σ,∆〉 (see an illustrative example in Figure 6) as follows:

V = {v0, v1, . . . , v2r−1, v2r} ∪ {vx1 , vx̄1 , . . . , vx2r , vx̄2r} ∪ {vC1 , vC2 , . . . , vCm , vCm+1} ∪
{⊥,>}, where we identify v2r with vC1 , and vCm+1 with >.
Σ = {u, c} ∪

⋃
1≤i≤2r{ai, āi}

For every 0 ≤ s ≤ r−1, 1 ≤ i ≤ 2r, 1 ≤ h ≤ m and 1 ≤ j ≤ 3:
1. ∆(v2s, a2s+1,≥ 1) = {vx2s+1} and ∆(v2s, ā2s+1,≥ 1) = {vx̄2s+1}
2. ∆(v2s+1, u,≥ 1) = {vx2s+2 , vx̄2s+2}
3. ∆(vxi

, c, 6= 2i) = {vi} and ∆(vxi
, c,= 2i) = {>}

4. ∆(vx̄i
, c, 6= 2i−1) = {vi} and ∆(vx̄i

, c,= 2i−1) = {>}
5. ∆(vCh

, ai, 6= 2i) = {vCh+1} if `h,j = xi; ∆(vCh
, āi, 6= 2i−1) = {vCh+1} if `h,j = ¬xi

To obtain a complete arena, all unspecified transitions lead to a sink state ⊥.

From v0, a first phase consists in choosing a valuation for the variables: Eve can choose
the truth values of existentially quantified variables in vertices v2s (with actions a2s+1 for
true and ā2s+1 for false), and her opponents resolve the non-determinism of action u (u
stands for universal) to choose the truth values of universally quantified variables in vertices
v2s−1. Due to the constraints on the edges, the knowledge of Eve at vC1 contains for every
variable xi, either 2i or 2i−1 (and not both); where containing 2i (resp. 2i−1) encodes the
fact that xi has been set to false by Eve or her opponents (resp. true).

N. Bertrand, P. Bouyer, and A. Majumdar 31:11

v0 v1 v2 v3 vC1 vC2 >

vx1

vx̄1

vx2

vx̄2

vx3

vx̄3

vx4

vx̄4

a1

ā
1

u

u

a3

ā
3

u

u

c,6=2

c,
6=1

c,6=4

c,
6=3

c, 6=6

c,
6=5

c, 6=8

c,
6=7

c,=2

>

c,=4

>

c,=6

>

c,=8

>

c,=1

>

c,=3

>

c,=5

>

c,=7

>

a1,6=2

ā2,6=3

ā3,6=5

⊥

a2,6=4

a3,6=6

ā4,6=7

⊥

Figure 6 Reduction for formula ϕ = ∃x1∀x2∃x3∀x4 ·(x1∨¬x2∨¬x3)∧(x2∨x3∨¬x4). Knowledge
of Eve at vC1 contains for every variable xi, either 2i or 2i−1 (and not both); containing 2i (resp.
2i−1) encodes that xi has been set to false (resp. true).

From vC1 a second phase starts where one checks whether the generated valuation makes
all clauses in ϕ true. Sequentially, Eve chooses for every clause a literal that makes the clause
true and these choices must be consistent with the first phase. To enforce this, plays with
2i−1 and 2i opponents check the consistency of the assignment for variable xi. For instance,
if action ai (encoding xi set to true) against 2i−1 opponents leads from vCh

to vCh+1 , this
means that vxi was visited, hence that xi was set to true. On the contrary, if vxi was not
visited, hence xi was set to false, then against 2i−1 opponents, action ai will lead to ⊥. The
role of āi is dual; it encodes assigning false to xi, and will be checked with plays against 2i
opponents.

The above reduction ensures the following equivalence: Eve has a winning strategy in the
parameterized game Gϕ = (Aϕ,>) if and only if ϕ is true. J

Note that the reduction can also be done with only three actions, which is the maximal
number of enabled actions from any vertex. The reduction uses unions of intervals (due
to 6= i constraints). Finally the arena is non-deterministic at each vertex corresponding to
universal quantifiers in ϕ. We extend this reduction in two ways to get rid of nondeterminism.
First, instead of QBF-SAT, one can encode 3SAT (which is known to be NP-complete [8])
and obtain a deterministic parameterized game:

I Corollary 14. When constraints are finite unions of intervals, and arenas are deterministic,
the parameterized reachability game problem is NP-hard.

Second, increasing the expressive power of predicates can encode universal quantifiers
without nondeterminism:

I Proposition 15. When constraints are semilinear sets and arenas are deterministic, the
parameterized reachability game problem is PSPACE-hard.

Proof sketch. We slightly modify the construction of the proof of Proposition 13 as shown
on Figure 7. For every 1 ≤ i ≤ 2r, pi is the i-th prime number, and Pi the semilinear
predicate “is a multiple of pi”.

Intuitively, at the end of the first phase, the truth value of variable xi is witnessed by the
fact that the set of possible number of opponents is a multiple of pi if xi is set to true (that
is Pi is satisfied), and it is not a multiple of pi if xi is set to false (that is, ¬Pi is satisfied).
The rest of the proof is identical to that of Proposition 13. J

FSTTCS 2019

31:12 Concurrent Parameterized Games

v0 v1 v2 v3 vC1 vC2 >

vx1

vx̄1

vx2

vx̄2

vx3

vx̄3

vx4

vx̄4

a1
,P

1

ā
1 ,¬
P
1

u,
P2

u,¬
P
2

a3
,P

3

ā
3 ,¬
P
3

u,
P4

u,¬
P
4

a1,¬P1

>

ā1,P1

>

a3,¬P3

>

ā3,P3

>

a1,P1

ā2,¬P2

ā3,¬P3

⊥

a2,P2

a3,P3

ā4,¬P4

⊥

Figure 7 Reduction for formula ϕ = ∃x1∀x2∃x3∀x4 · (x1∨¬x2∨¬x3)∧ (x2∨x3∨¬x4). Predicate
Pi is “divisible by i-th prime number”.

4 Discussion: Beyond the number of players

Our model of parameterized game, with constraints on the number of opponents for Eve, is
actually a simplification of a general concurrent game model, where the number of players is a
parameter. This general model, motivated in introduction, is an extension of the multiplayer
concurrent games of [2], where tuples of actions are replaced with languages.

I Definition 16. A language-based parameterized arena is a tuple AL = 〈V,Σ,∆L〉 where
V is a finite set of vertices;
Σ is a finite set of actions;
∆L : V × Σ≥2 → 2V is the transition function.

The fact that Eve has at least one opponent explains the term Σ≥2 in the transition function.
We assume that for every (v, v′) ∈ V 2, ∇L(v, v′) def= {w ∈ Σ≥2 | v′ ∈ ∆L(v, w)} is regular.
Figure 1 in introduction provides an example of a language-based parameterized arena.

The game is then played as follows, when k+1 is the number of players, called Eve, Adam1,
. . . , Adamk: from vertex v, each of the players select simultaneously and independently an
action in Σ; concatenating all the letters (Eve first, and then all Adams’ actions), it forms a
word w; the next vertex of the game is then one of the vertices v′ in ∆L(v, w); the game then
resumes from vertex v′. Strategies for Eve, and outcomes can be defined similarly to that of
parameterized arenas in Section 2. The language-based parameterized game problem is then
to decide whether Eve has a strategy that is winning against any number of opponents:

Language-based parameterized reachability game problem
Input: A language-based parameterized reachability game G = (A, t) and a vertex v.
Question: Does Eve have a winning strategy from v in G?

Language-based parameterized arenas generalize parameterized arenas: one can for
instance replace rules of the form v′ ∈ ∆(v, a, k) in a parameterized arena by v′ ∈ ∆L(v, aΣk)
to construct a language-based parameterized arena, preserving the winning region for Eve.
For our problem of existence of a winning strategy for Eve, the reduction in the other
direction also holds:

I Proposition 17. The language-based parameterized reachability game problem reduces in
polynomial time to the parameterized reachability game (with semilinear predicates).

N. Bertrand, P. Bouyer, and A. Majumdar 31:13

Proof sketch. From a language-based parameterized arena, one can obtain an equivalent one
(i.e. preserving the winning region for Eve) by first taking a left quotient of languages by any
possible letter, and then projecting the obtained languages to lengths of words. Describing
the reduction is simpler with the ∇ functions (and equivalent to using the ∆ ones). We
set ∇(v, a, v′) = {|u| | u ∈ a−1∇L(v, v′)}, where a−1∇L(v, v′) is the left quotient by a of
∇L(v, v′). Since ∇L(v, v′) is regular, the set ∇(v, a, v′) is semilinear [15]. Moreover, one can
compute in polynomial time a representation for ∇(v, a, v′) as a union of polynomially many
ultimately periodic sets, with a polynomial encoding [7, 14]. Clearly enough this polynomial
time reduction preserves the winning region for Eve. J

Thanks to Proposition 17, and using Propositions 11 and 15 we obtain the precise
complexity of the language-based parameterized reachability game problem:

I Theorem 18. The language-based parameterized reachability game problem is PSPACE-
complete.

5 Conclusion

In this paper, we introduce parameterized concurrent reachability games as a natural extension
of the traditional concurrent games, where the number of players is unknown a priori. We
consider different variants of a parameterized arena where the constraints on the number of
opponents can be represented by intervals, finite unions of intervals, or semilinear sets. We
have shown the existence of a uniform winning strategy for the first player to be PSPACE-
complete in the general case, NP-complete when the arena is deterministic and the constraints
are unions of intervals, and PTIME-complete when restricting to intervals only.

In this paper, we focused on reachability objectives. However the knowledge game
approach also applies to more general objectives, like Büchi or parity, and even for quantitative
objectives such as mean-payoff objectives. There is indeed a tight connection between
strategies in the original game and strategies in the knowledge game, making the knowledge
game abstraction correct for a variety of objectives. We plan to investigate complexity issues
for objectives beyond reachability.

In future work, we also wish to investigate further this parameterized games model. In
particular, it will be interesting to consider standard game theory concepts such as Nash
equilibria. Also, to solve coordination problems, we will look for algorithms to synthesize
strategies for all the players to achieve a global common goal. The figure below presents a
simple coordination game, where we assume each player has a distinct identifier from 1 to
some n ∈ N, and their global objective is to reach the target vertex v1.

v0 v1v2
a+bΣ≥2\(a+b+a∗ba+)

a∗ba+

If the players do not know beforehand the total number of players, but know their identifiers,
a winning strategy profile is as follows: player i plays action a for the first i−1 steps, then
plays b, and finally plays a for the remaining steps. Doing so, each player will in turn play
action b, and when the last player does, the play reaches v1. Synthesizing automatically
winning profiles in such games is one of our long-term goals.

FSTTCS 2019

31:14 Concurrent Parameterized Games

References

1 Luca de Alfaro, Thomas A. Henzinger, and Orna Kupferman. Concurrent Reachability Games.
In Proceedings of the 39th Annual Symposium on Foundations of Computer Science (FOCS’98),
pages 564–575. IEEE Computer Society, 1998. doi:10.1109/SFCS.1998.743507.

2 Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time Temporal Logic.
Journal of the ACM, 49:672–713, 2002. doi:10.1145/585265.585270.

3 Nathalie Bertrand, Miheer Dewaskar, Blaise Genest, and Hugo Gimbert. Controlling a
Population. In Proceedings of the 28th International Conference on Concurrency Theory
(CONCUR’17), volume 85 of LIPIcs, pages 12:1–12:16. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2017. doi:10.4230/LIPIcs.CONCUR.2017.12.

4 Nathalie Bertrand, Paulin Fournier, and Arnaud Sangnier. Playing with Probabilities in
Reconfigurable Broadcast Networks. In Proceedings of the 17th International Conference on
Foundations of Software Science and Computation Structure (FoSSaCS’14), volume 8412
of Lecture Notes in Computer Science, pages 134–148. Springer, April 2014. doi:10.1007/
978-3-642-54830-7_9.

5 Roderick Bloem, Swen Jacobs, Ayrat Khalimov, Igor Konnov, Sasha Rubin, Helmut
Veith, and Josef Widder. Decidability of Parameterized Verification. Synthesis Lectures
on Distributed Computing Theory. Morgan & Claypool Publishers, 2015. doi:10.2200/
S00658ED1V01Y201508DCT013.

6 Patricia Bouyer, Romain Brenguier, Nicolas Markey, and Michael Ummels. Pure Nash
Equilibria in Concurrent Games. Logical Methods in Computer Science, 11(2:9), 2015. doi:
10.2168/LMCS-11(2:9)2015.

7 Marek Chrobak. Finite Automata and Unary Languages. Theoretical Computer Science,
47(3):149–158, 1986. doi:10.1016/0304-3975(86)90142-8.

8 Stephen A. Cook. The Complexity of Theorem-Proving Procedures. In Proceedings of the 3rd
Annual ACM Symposium on Theory of Computing (STOC’71), pages 151–158. ACM, 1971.
doi:10.1145/800157.805047.

9 Giorgio Delzanno. Constraint-Based Verification of Parameterized Cache Coherence Protocols.
Formal Methods in System Design, 23(3):257–301, 2003. doi:10.1023/A:1026276129010.

10 Javier Esparza. Keeping a Crowd Safe: On the Complexity of Parameterized Verification
(Invited Talk). In Proceedings of the 31st International Symposium on Theoretical Aspects
of Computer Science (STACS’14), volume 25 of LIPIcs, pages 1–10. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2014. doi:10.4230/LIPIcs.STACS.2014.1.

11 Dana Fisman, Orna Kupferman, and Yoad Lustig. Rational Synthesis. In Proceedings of the
16th International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’10), volume 6015 of Lecture Notes in Computer Science, pages 190–201.
Springer, 2010. doi:10.1007/978-3-642-12002-2_16.

12 Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and Infinite
Games: A Guide to Current Research, volume 2500 of Lecture Notes in Computer Science.
Springer, 2002. doi:10.1007/3-540-36387-4.

13 Igor Konnov, Helmut Veith, and Josef Widder. What You Always Wanted to Know About
Model Checking of Fault-Tolerant Distributed Algorithms. In Proceedings of the 10th Inter-
national Andrei Ershov Informatics Conference (PSI’15), volume 9609 of Lecture Notes in
Computer Science, pages 6–21. Springer, 2015. doi:10.1007/978-3-319-41579-6_2.

14 Andrew Martinez. Efficient Computation of Regular Expressions from Unary NFAs. In
Proceedings of the 5th International Workshop on Descriptional Complexity of Formal Systems
(DCFS’02), pages 174–187. Department of Computer Science, The University of Western
Ontario, Canada, 2002.

15 Rohit Parikh. On Context-Free Languages. Journal of the ACM, 13(4):570–581, 1966.
doi:10.1145/321356.321364.

https://doi.org/10.1109/SFCS.1998.743507
https://doi.org/10.1145/585265.585270
https://doi.org/10.4230/LIPIcs.CONCUR.2017.12
https://doi.org/10.1007/978-3-642-54830-7_9
https://doi.org/10.1007/978-3-642-54830-7_9
https://doi.org/10.2200/S00658ED1V01Y201508DCT013
https://doi.org/10.2200/S00658ED1V01Y201508DCT013
https://doi.org/10.2168/LMCS-11(2:9)2015
https://doi.org/10.2168/LMCS-11(2:9)2015
https://doi.org/10.1016/0304-3975(86)90142-8
https://doi.org/10.1145/800157.805047
https://doi.org/10.1023/A:1026276129010
https://doi.org/10.4230/LIPIcs.STACS.2014.1
https://doi.org/10.1007/978-3-642-12002-2_16
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/978-3-319-41579-6_2
https://doi.org/10.1145/321356.321364

N. Bertrand, P. Bouyer, and A. Majumdar 31:15

16 Larry J. Stockmeyer and Albert R. Meyer. Word Problems Requiring Exponential Time
(Preliminary Report). In Proceedings of the 5th Annual ACM Symposium on Theory of
Computing (STOC’73), pages 1–9. ACM, 1973. doi:10.1145/800125.804029.

17 Michael Ummels and Dominik Wojtczak. The Complexity of Nash Equilibria in Limit-
Average Games. In Proceedings of the 22nd International Conference on Concurrency Theory
(CONCUR’11), volume 6901 of Lecture Notes in Computer Science, pages 482–496. Springer,
2011. doi:10.1007/978-3-642-23217-6_32.

FSTTCS 2019

https://doi.org/10.1145/800125.804029
https://doi.org/10.1007/978-3-642-23217-6_32

Expected Window Mean-Payoff
Benjamin Bordais
ENS Rennes, France

Shibashis Guha
Université libre de Bruxelles, Belgium

Jean-François Raskin
Université libre de Bruxelles, Belgium

Abstract
We study the expected value of the window mean-payoff measure in Markov decision processes
(MDPs) and Markov chains (MCs). The window mean-payoff measure strengthens the classical
mean-payoff measure by measuring the mean-payoff over a window of bounded length that slides
along an infinite path. This measure ensures better stability properties than the classical mean-payoff.
Window mean-payoff has been introduced previously for two-player zero-sum games. As in the
case of games, we study several variants of this definition: the measure can be defined to be prefix-
independent or not, and for a fixed window length or for a window length that is left parametric. For
fixed window length, we provide polynomial time algorithms for the prefix-independent version for
both MDPs and MCs. When the length is left parametric, the problem of computing the expected
value on MDPs is as hard as computing the mean-payoff value in two-player zero-sum games, a
problem for which it is not known if it can be solved in polynomial time. For the prefix-dependent
version, surprisingly, the expected window mean-payoff value cannot be computed in polynomial
time unless P=PSpace. For the parametric case and the prefix-dependent case, we manage to
obtain algorithms with better complexities for MCs.

2012 ACM Subject Classification Mathematics of computing → Stochastic processes; Mathematics
of computing → Probability and statistics

Keywords and phrases mean-payoff, Markov decision processes, synthesis

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.32

Related Version A full version of the paper is available at https://arxiv.org/abs/1812.09298.

Funding Work partially supported by the ARC project Non-Zero Sum Game Graphs: Applications
to Reactive Synthesis and Beyond (Fédération Wallonie-Bruxelles), and the EOS project Verifying
Learning Artificial Intelligence Systems (F.R.S.-FNRS & FWO).

1 Introduction

Markov Decision processes (MDPs) are a classical model for decision-making in stochastic
environments [16, 1]. Objectives in MDPs are formalized by functions that map infinite
paths to values. Classical examples of such functions are the mean-payoff and the discounted
sum [16]. The mean-payoff function does not guarantee local stability of the values along the
path: if the mean-value of an infinite path is v, it is possible that for arbitrarily long infixes of
the path, the mean-payoff of the infix is largely away from v. There have been several recent
contributions [8, 4, 9, 5] that address this problem. Here, we study window mean-payoff
objectives for MDPs; these objectives were first introduced in [8, 9] for two-player games.

In window mean-payoff [9], payoffs are considered over a local finite length window that
slides along the path: the objective is to ensure that the mean-payoff always reaches a given
threshold within the window length `. This is a strengthening of classical mean-payoff: for
all lengths `, and all infinite sequences π of payoffs, if π satisfies the window mean-payoff
objective for threshold v, then π has a mean-payoff of at least v. Interestingly, this additional
stability property can always be met at the cost of a small degradation of mean-payoff
performances in two-player games: whenever there exists a strategy with mean-payoff value

© Benjamin Bordais, Shibashis Guha, and Jean-François Raskin;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 32; pp. 32:1–32:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.FSTTCS.2019.32
https://arxiv.org/abs/1812.09298
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 Expected Window Mean-Payoff

Table 1 Complexity, hardness and memory requirements for solving different window objectives
for Markov decision processes and Markov chains (2-p stands for “two-player”).

MDP Markov chain
Complexity Memory Hardness Complexity

WMP polynomial (Thm. 5) polynomial 2-p DirWMP (Thm. 9) polynomial (Cor. of Thm. 5)
BWMP UP ∩ coUP (Thm. 10) memoryless 2-p Mean-payoff (Thm. 13) polynomial1 (Thm. 19)
DirWMP exponential2 (Thm. 15) exponential PSpace (Thm. 16) pseudopolynomial3 (Thm. 21)

v then for every ε > 0, there is a window length ` and a strategy that ensure that the
window mean-payoff for threshold v − ε is eventually satisfied for windows of length ` (see
Lemma 2(b) in [9]).

Here, we study how to maximize the expected value of the window mean-payoff function
f`DirWMP defined as follows: let π : N→ Z be an infinite sequence of payoffs, then

f`DirWMP(π) = sup{λ ∈ R | ∀i ∈ N : max
1≤j≤`

1
j

j−1∑
k=0

π(i+ k) ≥ λ}

i.e., it returns the supremum of all thresholds that are enforced by the sequence of payoffs
π for every window of length `. As in [13], we study natural variants: (i) when the length
of the window is fixed or it is left unspecified but needs to be bounded, and (ii) when
the window property needs to be enforced from the beginning or not (leading to a prefix-
independent variant.)

Main contributions. First, we provide an algorithm to compute the best expected value
of f`WMP (prefix-independent version with fixed window length ` - noted WMP) with a time
complexity polynomial in the size of the MDP and in ` (Theorem 5). As window mean-payoff
objectives aim at strong stability over reasonable periods of time, it is natural to assume that
` is bounded polynomially by the size of the MDP, and so our algorithm is fully polynomial
for those interesting cases. This complexity matches the complexity of computing the value
of the function f`WMP for two-player games [9], and we provide a relative hardness result:
deciding the existence of a winning strategy in a window mean-payoff game can be reduced
in log-space to the problem of the expected value of f`WMP in an MDP (Theorem 9). Second,
we consider the case in which the length ` in the measure f`WMP is not fixed but is required
to be bounded (BWMP). We provide an algorithm in UP ∩ coUP (Theorem 10), and we
show that providing a polynomial time solution for this case would give a polynomial time
solution to the value problem in mean-payoff games (Theorem 13), a long-standing open
problem [18]. Third, we consider the prefix-dependent version (DirWMP), i.e. the window
property needs to hold directly from the beginning of the path. Surprisingly, this problem is
expected to be harder: no polynomial time solution can exist unless P=PSpace. Indeed,
we show that this problem is PSpace-Hard even if ` is given in unary (Theorem 16). We
also provide an algorithm that executes in time that is polynomial in the size of the MDP,
and in the largest weight appearing in the MDP, and exponential in the window length `
(Theorem 15). Finally, while our main results concentrate on MDPs, we also systematically
provide results for the special case of Markov chains. An overview of our results is given
in Table 1.

1 independent of any window size
2 exponential in window size and the number of bits to represent the weights on the edges
3 pseudopolynomial in the number of bits to represent the weights on the edges

B. Bordais, S. Guha, and J.-F. Raskin 32:3

Related works. Window mean-payoff objectives were first introduced in [8] for two-player
games, then for games with imperfect information in [13], and in combination with ω-regular
constraints in [7]. Here, we consider them for MDPs instead of games. Still, we show that,
for the prefix-independent version of the window objectives, inside an end-component of
an MDP, the expected window mean-payoff value is closely related to the worst-case value
of the associated zero-sum games (see Lemma 6 and Lemma 11). Stability issues of the
mean-payoff measure triggered other works. First, in [4], MDPs with the objective to optimize
the expected mean-payoff performance and stability are studied. Their notion of stability
is related to statistical variance. The notion of stability offered by window mean-payoff
objective studied here, is stronger. The techniques used to solve the two problems differ:
in [4] they rely on solving sets of quadratic constraints, while our techniques rely on graph
game algorithms and linear programming. Second, [5] introduces window-stability objectives.
They are directly inspired from the window mean-payoff objective of [4] but contrary to
window mean-payoff objectives, do not enjoy the inductive window property which is heavily
used in our algorithms. Also, [5] considers games (2 players) and graphs (1 player) but not
MDPs (1 1

2 players).
MDP with classical mean-payoff objectives have been studied both for the threshold

probability problem, in which the objective is to find a strategy that maximizes the probability
that the mean-payoff is above a given threshold, and for the expectation problem that asks
for a strategy that maximizes the expected value of the mean-payoff [16]. Combination
of both types of constraints have been considered in [3]. The work of Brihaye et al. [6],
appeared recently on arXiv, and was done independently of our work. The authors of [6]
consider the threshold probability problem for window mean-payoff objectives in MDP: given
a threshold λ ∈ Q, and a window length `, the problem asks to find a strategy that maximizes
the probability of obtaining a window mean-payoff greater than or equal to λ. We study
the expectation problem, and as for traditional mean-payoff objectives, the two problems
are different and cannot be easily reduced to one another (see [3] and the discussion in the
previous paragraph). Our work and their work are largely complementary. Some of the basic
techniques employed in the two papers are however similar, e.g. for the prefix-independent
objectives, both the works analyze maximal end components in related ways. Nevertheless,
there are also important differences between the two works; e.g. we show that for the
expected value, the prefix-dependent and the prefix-independent versions of the bounded
window mean-payoff objective, lead to the same value; this is not the case for the threshold
probability problem. We also show interesting connections between the fixed and the bounded
case, for the expected value problem: the bounded case can be seen as the limit of the fixed
case (Theorem 14), again this property does not hold for the threshold problem. Also, the
algorithms for direct fixed window objective differ largely for the two problems. Though both
the problems have been shown to be PSpace-Hard, the expected value problem requires
a more involved reduction. Finally, while we have shown how to solve the expected value
problem for the special case of MCs for which we establish better complexity results, this is
not considered in [6].

Structure of the paper. Sect. 2 introduces the necessary definitions and concepts. Sect. 3
defines the different variants of window mean-payoff objectives. Sect. 4 studies the prefix-
independent variants while Sect. 5 covers the prefix-dependent variants. Algorithms and
hardness results are given for all the problems. Finally, Sect. 6 considers the special case of
MCs. We only provide sketches of the proofs here. Full proofs are given in [2].

FSTTCS 2019

32:4 Expected Window Mean-Payoff

2 Preliminaries

For k ∈ N, we denote by [k]0 and [k] the set of natural numbers {0, . . . , k} and {1, . . . , k}
respectively. Given a finite set A, a (rational) probability distribution over A is a func-
tion Pr : A → [0, 1] ∩ Q such that

∑
a∈A Pr(a) = 1. We denote the set of probabil-

ity distributions on A by D(A). The support of a probability distribution Pr on A is
Supp(Pr) = {a ∈ A | Pr(a) > 0}, and Pr is called Dirac if |Supp(Pr)| = 1. An event is said to
happen almost surely if it happens with probability 1.

Markov chain. A weighted Markov chain (MC, for short) is a tupleM = 〈S,E, sinit, w,P〉,
where S is a set of states, sinit ∈ S is an initial state, E ⊆ S × S is a set of edges, w : E → Q
maps edges to weights (or payoff), and P : S → D(E) assigns a probability distribution on
the set E(s) of outgoing edges from s. In the following, P(s, (s, s′)) is denoted P(s, s′), for
all s ∈ S. The Markov chainM is finite if S is finite.

For s ∈ S, the set of infinite paths inM starting from s is PathsM(s) = {π = s0s1 . . . ∈
Sω | s0 = s,∀n ∈ N, P(sn, sn+1) > 0}. The set of all the paths in M is PathsM =⋃
s∈S PathsM(s). For a path π = s0s1 . . . ∈ PathsM, by π(i, l) we denote the sequence of l+1

states (or l edges) si . . . si+l, and for simplicity, we denote π(i, 0) by π(i). The infinite suffix of
π starting in sn is denoted by π(n,∞) ∈ PathsM. The set of finite paths starting from a state
s ∈ S is defined as FpathsM(s) = {π = s . . . s′ ∈ S+ | ∃π̄ ∈ PathsM, ππ̄ ∈ PathsM(s)} and
FpathsM =

⋃
s∈S FpathsM(s). For π = s . . . s′, we denote by Last(π), the last state s′ in π.

Consider some measurable function f : PathsM(sinit) → R associating a value to each
infinite path starting from sinit. For an interval I ⊆ R, we denote by f−1(M, sinit, I) the
set {π ∈ PathsM(sinit) | f(π) ∈ I}, and for r ∈ R, we denote by f−1(M, sinit, r) the set
f−1(M, sinit, [r, r]). Since the set of paths PathsM(sinit) forms a probability space, measured by
a function Pr [17], and f is a random variable, we denote by EMsinit(f) =

∫
x∈R Pr(f−1(M, sinit, x))·

x the expected value of f over the set of paths starting from sinit.
The bottom strongly connected components (BSCCs for short) in a finite Markov chain

M are the strongly connected components B from which it is impossible to exit, i.e. for all
s ∈ B and t ∈M, if P(s, t) > 0 then t ∈ B. We denote by BSCC(M) the set of BSCCs ofM.
Every infinite path eventually ends up in one of the BSCCs with probability 1. Considering
♦ and � as the standard LTL eventually and always operators and that ♦�B denotes that
eventually the path visits only states in B (see [1] for a formal definition), we formally state:

I Proposition 1. For all s ∈ S, Pr(π ∈ PathsM(s) | ∃B ∈ BSCC(M), π |= ♦�B) = 1.

Markov decision process. A finite weighted Markov decision process (MDP, for short) is a
tuple Γ = 〈S,E,Act, sinit, w,P〉, where S is a finite set of states, sinit ∈ S is an initial state,
Act is a finite set of actions, and E ⊆ S ×Act× S is a set of edges, the function w : E → Q
maps edges to weights (or payoffs), and P : S × Act → D(E) is a function that assigns a
probability distribution on the set E(s, a) of outgoing edges from s if action a ∈ Act is taken
from s. Given s ∈ S and a ∈ Act, we define Post(s, a) = {s′ ∈ S | P(s, a)(s, s′) > 0}. Then,
for all states s ∈ S, we denote by Act(s) the set of actions {a ∈ Act | Post(s, a) 6= ∅}. We
assume that, for all s ∈ S, we have Act(s) 6= ∅. In the following, we denote P(s, a)(s, s′) by
P(s, a, s′).

A strategy in Γ is a function σ : S+ → D(Act) such that Supp(σ(s0 . . . sn)) ⊆ Act(sn),
for all s0 . . . sn ∈ S+. We denote by strat(Γ) the set of strategies available in Γ. Once we fix
a strategy σ in an MDP Γ = 〈S,E,Act, sinit, w,P〉, we obtain an MC Γ[σ] [1]. A strategy σ is
deterministic, if for each s0 . . . sn ∈ S+, the distribution assigned by σ is Dirac, otherwise the
strategy is randomized. We show that deterministic strategies suffice for playing optimally
in all the problems considered here. For a sequence ρ ∈ S+ of states, we also denote by

B. Bordais, S. Guha, and J.-F. Raskin 32:5

Last(ρ) the last state in ρ. Consider a measurable function f that associates a value to infinite
paths in Markov chains. Then, we call supσ∈strat(Γ) EΓ[σ]

sinit (f) the optimal expected value of f
in Γ. In the sequel, when clear from the context, we denote supσ∈strat(Γ) EΓ[σ]

sinit (f) by EΓ
sinit(f).

A deterministic strategy can be encoded by a transition system 〈Q, act, δ, ι〉 where Q is a
(possibly infinite) set of states, commonly called modes, act : Q× S → Act selects an action
such that, for all q ∈ Q and s ∈ S, act(q, s) ∈ Act(s), δ : Q × S → Q is a mode update
function and ι : S → Q selects an initial mode for each state s ∈ S. The amount of memory
used by such a strategy is defined to be |Q|. A strategy is said to be memoryless if |Q| = 1,
that is, the choice of action only depends on the current state where the choice is made.
Formally, a strategy is memoryless if for all finite sequences of states ρ1 and ρ2 in S+ such
that Last(ρ1) = Last(ρ2), we have σ(ρ1) = σ(ρ2). A strategy is called finite memory if Q
is finite. Note that the state space of Γ[σ] is S ×Q. For a sequence π of states in Γ[σ], we
denote by proj(π)|S the corresponding sequence of states in the MDP Γ.

An end-component (EC, for short) M = (T,A) with T ⊆ S, and A : T → 2Act is
a sub-MDP of Γ (for all s ∈ T, we have A(s) ⊆ Act(s), and for all a ∈ A(s), we have
Post(s, a) ⊆ T) that is strongly connected. A maximal EC (MEC, for short) is an EC that is
not included in any other EC. We denote by MEC(Γ) the set of all maximal end components
of Γ. Any infinite path will eventually end up in one maximal end component almost surely,
whatever strategy is considered. This is stated in the following proposition:

I Proposition 2 ([11]). In an MDP Γ, for each strategy σ ∈ strat(Γ), for every state s ∈ S,
and mode q ∈ Q, we have: Pr(π ∈ PathsΓ[σ]

(s, q) | ∃M = (T,A) ∈ MEC(Γ), proj(π)|S |=
♦�T) = 1.

Weighted two-player games. An MDP can also be considered to have the semantics of a
two-player turn-based game (denoted 2P) played for infinitely many rounds while ignoring
the probabilities. Every 2P we consider here can be played optimally with deterministic
strategies, therefore we restrict ourselves to deterministic strategies for both players. The
first round starts from sinit. In each round, Player 1 chooses an action a ∈ Act(s) from a
state s while Player 2 chooses a state s′ ∈ Post(s, a). We denote by GΓ = 〈S,E,Act, sinit, w〉
the two-player game that is obtained from an MDP Γ = 〈S,E,Act, sinit, w,P〉.

For a 2P, Player 1 thus chooses among the deterministic strategies available in MDPs. A
strategy of Player 2 is a function µ : S+·Act→ S, with the restriction that if µ(s0s1 . . . sn·a) =
s then P(sn, a, s) > 0. The set of deterministic strategies for Player 1 and Player 2 are
denoted by strat1(G) and strat2(G) respectively. In a two-player game there is no randomness:
Given two strategies σ1 ∈ strat1(G) and σ2 ∈ strat2(G), we denote by π(G,s,σ1,σ2) the
unique path that occurs in 2P G under strategies σ1 and σ2 from state s. Then, for a
function f that associates a value to each infinite path, we denote by V f

s (G) the value
sup

σ1∈strat1(G)
inf

σ2∈strat2(G)
f(π(G,s,σ1,σ2)). The definitions of the memories of strategies also apply

to two-player games.
In the following, in MCs, MDPs and in 2Ps, w.l.o.g. we consider only non-negative integer

weights4. We denote by W the maximum weight appearing on the edges for MCs, MDPs and
2Ps. We denote the size of an MCM, MDP Γ and 2P G by |M|, |Γ| and |G| respectively.
This size is equal to |S|+ |E|.

4 For weights belonging to Q, we can multiply them with the LCM d of their denominators to obtain
integer weights. Among the resultant set of integer weights, if the minimum integer weight κ is negative,
then we add -κ to the weight of each edge so that the resultant weights are natural numbers. For a
function f if the expected value was originally x, then the new expected value is d · x− κ.

FSTTCS 2019

32:6 Expected Window Mean-Payoff

3 Window Mean-Payoff Value

Let M = 〈S,E, sinit, w,P〉 be a finite MC. Let ρ = s0 . . . sn ∈ FpathsM(s), we define
MP : FpathsM → Q as: MP(ρ) = 1

n

∑n
i=0 w(si, si+1), where n = |ρ| > 0, the number of edges

in ρ. For π = s0 . . . ∈ PathsM, the mean-payoff function fMean : PathsM → R is defined as

fMean(π) = lim inf
n→∞

MP(s0 . . . sn) (1)

We now define several variants of window mean-payoff value functions. For π =
s0s1 . . . sn . . . ∈ PathsM, a window size `, and a position i, the window mean-payoff value of
π in position i over length ` is defined by WMP`(π(i,∞)) = max

k∈[`]
MP(π(i, k)), i.e. it is the

maximal value of the mean-payoff of an infix of π that starts at position i and with a size at
most `. For a threshold λ such that WMP`(π(i,∞)) ≥ λ, we say that the window mean-payoff
value over length ` is at least λ at position i. We define the fixed window mean-payoff function
f`WMP : PathsM → R such that, for every path π = s0s1 . . . sn . . . ∈ PathsM:

f`WMP(π) = sup{λ ∈ R | ∃k ∈ N, ∀i ≥ k : WMP`(π(i,∞)) ≥ λ} (2)

s0 s1

s2

s3

s4

s5

s6

.5, 3
.5, 10

.5, 1

.5, 0

1, 1

.5, 0

.5, 10

1, 3 1, 6

1, 01, 1

1, 51, -2

Figure 1 In the MEC M with initial state s0, the expected value of f`WMP (resp. fBWMP) is the
maximum of the value of the two-player game with the direct fixed window mean-payoff (resp.
classical mean-payoff) objective obtained over all states. Also, for ` = 3, we have EMs0 (f`WMP) <
EMs0 (fBWMP) < EMs0 (fMean).

The value f`WMP(π) corresponds to the supremum over all thresholds λ where for every
such λ, there exists a position k such that for all positions i ≥ k, the window mean-
payoff value over length ` is at least λ. We note some properties of the function f`WMP.
First, it is prefix-independent, that is, for every path π ∈ PathsM, for all n ≥ 1, we have
f`WMP(π) = f`WMP(π(n,∞)). Second, it is a strengthening of the classical mean-payoff function:
for all paths π, we have that f`WMP(π) ≤ fMean(π). And finally, f`WMP imposes strong stability
properties: if f`WMP(π) ≥ λ, then from some point on in π, it is always the case that the
observed mean-payoff from position i gets larger than λ within position i+ `. This stability
property is not enforced by classical mean-payoff function for which infixes of arbitrary
lengths can have arbitrary low mean-payoffs.

Then, we define the bounded window mean-payoff function fBWMP : PathsM → R such
that, for every path π = s0 . . . ∈ PathsM:

fBWMP(π) = sup{λ ∈ R | ∃`, k ≥ 1,∀i ≥ k : WMP`(π(i,∞)) ≥ λ} (3)

Here, the length of the window is not fixed but it needs to be bounded.

B. Bordais, S. Guha, and J.-F. Raskin 32:7

Now, we define the direct fixed window mean-payoff function f`DirWMP : PathsM → R such
that, for every path π = s0 . . . ∈ PathsM:

f`DirWMP(π) = sup{λ ∈ R | ∀i ≥ 0 : WMP`(π(i,∞)) ≥ λ} (4)

Here the window property must hold from the beginning of the path and so it is not prefix-
independent. For every path π ∈ PathsM, we have f`DirWMP(π) ≤ f`WMP(π). Finally, we define
the direct bounded window mean-payoff function fDirBWMP : PathsM → R such that, for every
path π = s0 . . . ∈ PathsM:

fDirBWMP(π) = sup{λ ∈ R | ∃` ≥ 1,∀i ≥ 0 : WMP`(π(i,∞)) ≥ λ} (5)

i.e., variant where the length of the window is not fixed.
The following proposition relates some of the variants defined above in a Markov chainM.

I Proposition 3. Let π ∈ PathsM. Then, we have: sup`≥1 f`WMP(π) = fBWMP(π) ≤ fMean(π).

I Example 4. Consider the example in Figure 1 where the MDP Γ is a single MEC. The
probabilities appear in black and the weights in red. The strategy that chooses the blue
action in s0 and in s2 maximizes the expected value of the classical mean-payoff function
fMean in Γ from s0. The expected value of this strategy is 5. However, clearly, while playing
this strategy, we run the risk of having a mean-payoff of 0 for arbitrarily long period (while
looping between s0 and s2). So it may not be the best strategy if we aim at some stability
property in the mean-payoff. In this example, the strategy that maximizes the expected
value of f`WMP for ` = 3, is the strategy that plays the brown action in state s0 and then
alternates between the brown and green action in s1.

4 Algorithms and Hardness for Prefix-independent Objectives

The fixed window mean-payoff function for length ` can be solved in time that is polynomial
in the size of the MDP and in `:

I Theorem 5. Given an MDP Γ with maximum weight W , a window length ` and a
threshold λ ∈ Q, whether EΓ

sinit
(f`WMP) ≥ λ can be decided in O(poly(|Γ|, `, log2W)) time and

deterministic polynomial memory strategies suffice to play optimally.

To establish this result, we first study the case of a single MEC M = (T,A). By
Proposition 2, for every strategy σ, each path of Γ[σ] will almost surely end up in an MEC.
Since f`WMP is prefix-independent, the value of a path only depends on its behavior in the
MEC in which it ends up. Since M is strongly connected (as it is an MEC), for every
s, s′ ∈ T , there exists a strategy σ(s,s′) ∈ strat(M) such that every path starting from s

reaches s′ almost surely, in the Markov chain M [σ(s,s′)]. Therefore, for all s, s′ ∈ T , we have
EΓ
s (f`WMP) = EΓ

s′(f`WMP), i.e. the optimal expected value is the same from all states in the
MEC. We denote by λ`M this optimal value. Now, the following lemma interestingly relates
λ`M to the maximum over all states s of the optimal adversarial value from s (which is the
value of V f`DirWMP

s), that is when the stochastic behavior in M is replaced by an adversary:

I Lemma 6. LetM = (T,A) be an MEC that is also an MDP. Then λ`M = max
s∈T

V
f`DirWMP
s (GM).

Proof sketch. Let v ∈ T be a state that maximizes the value of the 2P that is, V f`DirWMP
v (GM) =

maxs∈T V
f`DirWMP
s (GM). When a strategy σ is fixed in M , using classical probability arguments

(Borel-Cantelli) every possible finite sequence of states (with respect to the strategy σ) is

FSTTCS 2019

32:8 Expected Window Mean-Payoff

visited infinitely often almost surely. In particular, the worst sequence of states in terms of
maximizing the fixed window mean-payoff (that is the sequence that Player 2 chooses in the
two-player game GM) is visited infinitely often almost surely. Hence, the expected window
mean-payoff in the MEC M is at most the value of the 2P GM from v, that is V f`DirWMP

v (GM).
Now, consider a strategy in the MEC M that consists in reaching v and then playing

according to an optimal deterministic strategy of Player 1 in the two-player game GM
from v. Then, every path in M consistent with that strategy has a window mean-payoff
of at least V f`DirWMP

v (GM). Thus the expected value of the window mean-payoff is at least
V

f`DirWMP
v (GM). J

To solve the two-player game, we rely on the following result from [9]:

I Theorem 7. Given a 2P with maximum weight W , a window length `, and a threshold
λ ∈ Q, in a two-player window mean-payoff game, for both the fixed window and the direct
fixed window mean-payoff objectives, it can be decided in O(poly(|G|, `, log2W)) time if
Player 1 has a winning strategy. For both players, an optimal strategy may need memory that
is linear in |G| and ` and such strategies can be constructed in time O(poly(|G|, `, log2W)),
and deterministic strategies suffice to play optimally.

I Example 8. Consider again the example of Figure 1. Lemma 6 tells us that we need
to compute the two-player game value of the direct fixed window objective for ` = 3 at
each state of the MEC. We can check that this value is equal to 2 for all states but s0 and
s2 in which the game values are equal to 1 and 2/3 respectively. Now, to obtain the best
expected value for f`WMP with ` = 3 from s0, we must play a strategy that first reaches almost
surely any state s /∈ {s0, s2} and then switches to an optimal strategy for the two-player
game from s.

As we know how to deal with an MEC, we now consider the general case.

Proof sketch of Theorem 5. Our algorithm for solving the general case proceeds as follows:
(i) it decomposes Γ into MECs, (ii) for each MEC M , it computes the value λ`M as described
in Lemma 6, (iii) it constructs a new MDP ΓMEC that is identical to Γ except that every
MEC M ∈ MEC(Γ) is now compacted into a single state sM , the transition relation is defined
accordingly to mimic the transition relation of Γ over its MECs, the value of each transition
that self-loops on sM is assigned the value λ`M , as computed in point (ii), and the other
transitions have the same value as in Γ, (iv) it computes the optimal expected (classical)
mean-payoff value for the new MDP ΓMEC. It should be clear that the optimal expected
mean-payoff of ΓMEC is equal to the optimal expected window mean-payoff value in Γ.

Now we analyze the complexity of this algorithm. The MEC decomposition of Γ of step
(i) can be done in quadratic time [10] in the size of Γ yielding at most |S| MECs. By Theorem
7, given a threshold λ, for every MEC M and for each state s in M , it can be decided in
time O(poly(|M | · ` · log2W)) whether Player 1 has a winning strategy for the direct fixed
window mean-payoff game from s. To find the maximal expected window mean-payoff in
M , we do a binary search over a set Λ = {pq | q ∈ [`], p ∈ [q ·W]0} with |Λ| = O(W · `2)
different possible values of λ and decide the two-player game starting from each state in
M for each such λ. Furthermore, the construction of ΓMEC can be done in time O(|Γ|).
Finally, the maximal expected value of the (classical) mean-payoff in ΓMEC can be computed
in polynomial time (see e.g. [16]) using linear programming. Thus all the steps can be done
in time O(poly(|Γ|, `, log2W)).

B. Bordais, S. Guha, and J.-F. Raskin 32:9

We construct the optimal strategy σ from steps (i) − (iii) by combining them with
a deterministic memoryless strategy that optimizes the expected value of the (classical)
mean-payoff in ΓMEC (step (iv)). When this memoryless strategy prescribes to stay in an
MEC M , we apply inside M the strategy defined in the proof of Lemma 6. The memory
used by the strategy σ is polynomial in |Γ| and ` as announced. J

The algorithm above relies on solving two-player games for the direct fixed window
mean-payoff objective. We next show that this step cannot be improved without improving
the algorithms for those games. Indeed, the following relative hardness result holds: solving
the two-player game for the direct fixed window mean-payoff objective can be reduced in
log-space to computing the expected value of the fixed window mean-payoff function.

I Theorem 9. Given a 2P G with an initial state sinit and a window length `, we can construct
in log-space an MDP ΓG with an initial state s′init such that EΓG

s′
init

(f`WMP) = V
f`DirWMP
sinit (G).

Proof sketch. Consider a weighted two-player game G = 〈S,E,Act, sinit, w〉. We construct
an MDP Γ from G such that EΓ

sinit(f
`
WMP) = V

f`DirWMP
sinit (G).

We first construct another game Greset = 〈S,E′, Act, sinit, w′〉 from G where E′ =
E ∪ {(s, a, sinit) | (s, a, sinit) /∈ E, s ∈ S \ {sinit} and a ∈ Act(s)} and w′(e) = w(e) for e ∈ E
and w′(e) = (W + 1) · ` for e ∈ E′ \ E. Note that the game graph of Greset is strongly
connected. In the game Greset, since Player 2 may “reset” the game at any time by taking
an edge to sinit, the maximum of the value over all starting states of the two-player game is
achieved at the state sinit. Moreover, the weight on these new edges being high enough, it is
not in the interest of Player 2 to take one of them more than once. It follows that the values
of the two-player game, starting from sinit, for the direct fixed window objective are the same
in G and Greset.

Now considering Greset as an MDP Γ = 〈S,E′, Act, sinit, w′,P〉, such that for all e ∈ E′,
we have P(e) > 0, we note that Γ is actually an MEC. The result follows from Lemma 6. J

We now consider the prefix-independent version of the bounded window mean-payoff
objective. For that case, we provide a UP ∩ coUP solution.

I Theorem 10. Given an MDP Γ and a threshold λ ∈ Q, deciding whether EΓ
sinit

(fBWMP) ≥ λ
is in UP ∩ coUP and deterministic memoryless strategies suffice to play optimally.

Since fBWMP is prefix-independent, similar to the fixed case, we first consider a single
MEC M . All the states in the MEC M have the same value λM , and surprisingly, this value
is the maximum over all states s of M of the optimal adversarial value from s (i.e. when
the stochastic behavior is replaced by an adversary), for the classical mean-payoff value
V fMean
s (GM):

I Lemma 11. Let M = (T,A) be an MEC that is also an MDP. Then λM = max
s∈T

V fMean
s (GM).

Proof sketch. Let v be a state such that V fMean
v (GM) = maxs∈T V fMean

s (GM).
Consider an optimal strategy σ2 for Player 2 (that can be chosen among deterministic

memoryless strategies). Now, let σ ∈ strat(M) (note that σ may be a randomised strategy),
` ≥ 1 and s be a state in the Markov chain M [σ]. Any path π compatible with strategies
σ and σ2 must ensure V fMean

v (GM) ≥ fMean(π) ≥ f`WMP(π) (the last inequality is given by
Proposition 3). Hence, in the MC M [σ], there is a non-zero probability to reach a sequence of
states whose window mean-payoff is below V fMean

v (GM) from s. This is true for every state s in
M [σ]. It follows that for every path π ∈ PathsM

[σ]
, almost surely a sequence of states whose

FSTTCS 2019

32:10 Expected Window Mean-Payoff

window mean-payoff is at most V fMean
v (GM) is visited infinitely often. Therefore, the fixed

window mean-payoff for length ` of a path inM [σ] is almost surely at most V fMean
v (GM). This is

true for every ` ≥ 1. Hence, by Proposition 3, we have that the bounded window mean-payoff
of a path in M [σ] is at most V fMean

v (GM) almost surely. Thus, EM [σ](fBWMP) ≤ V fMean
v (GM).

This holds for every strategy σ ∈ strat(M). Therefore, λM ≤ V fMean
v (GM).

Now, consider an optimal strategy σ1 ∈ strat1(GM) for Player 1 in GM . Let ρ be a
cycle of mean-payoff m that is minimal among all the cycles compatible with σ1. Note that
V fMean
v (GM) equals m. Every path π ∈ PathsM

[σ1]
has a bounded window mean-payoff of at

least m since every cycle appearing in π has a mean-payoff of at least m, and for every ε, there
exists ` > 0 such that a direct fixed window mean-payoff of m− ε can be ensured for every
window of length ` along π. Thus λM ≥ m = maxs∈T V fMean

s (GM) and hence the result. J

I Example 12. Consider again the example of Figure 1. Lemma 11 tells us that we need to
compute the two-player game value of the classical mean-payoff objective fMean at each state
of the MEC. We can check that this value is equal to 2.5 for all states (by taking the brown
action from s1) but s0 and s2 at which the game value is equal to 1 . Now, to obtain the
best expected value for fBWMP, we must play a strategy that first reaches almost surely, from
s0, any other state s /∈ {s0, s2}, (e.g. always play brown) and then switches to the optimal
strategy for the two-player game from s for the classical mean-payoff objective.

We can now prove our main theorem for the bounded window mean-payoff objective.

Proof sketch for Theorem 10. The algorithm for this case follows exactly the algorithm
in four steps (i), (ii), (iii), and (iv) of the algorithm for the proof of Theorem 5, with the
difference, that step (ii) computes λM instead of λ`M , and we use Lemma 11 to this end.
The complexity of the algorithm is no more polynomial but in UP ∩ coUP because step (ii)
requires solving a mean-payoff game [18, 14]. To construct an optimal strategy, we follow the
same recipe as in the proof of Theorem 5. In this case, the strategies are deterministic and
memoryless (mean-payoff games can be played optimally with memoryless strategies) and so
deterministic memoryless strategies are sufficient to obtain the optimal expected value of the
function fBWMP. J

The following theorem shows that a polynomial time solution to our problem would lead
to a polynomial time algorithm to solve mean-payoff games. The proof uses a reduction
similar to the one used in the proof of Theorem 9.

I Theorem 13. Given a two-player game G with an initial state sinit, we can construct in
log-space an MDP ΓG with an initial state s′init such that EΓG

s′
init

(fBWMP) = V fMean
sinit

(G).

Finally, we show that in an MDP, the expected bounded window mean-payoff equals the
supremum of the fixed window mean-payoff over all window lengths and over all strategies,
which match the intuition behind these definitions.

I Theorem 14. For every MDP Γ, we have sup
σ∈strat(Γ)

EΓ[σ](fBWMP) = sup
`

sup
σ∈strat(Γ)

EΓ[σ](f`WMP).

5 Algorithms and Hardness for Direct Variants

We start with the direct fixed window objective. Surprisingly the complexity of solving
this objective is substantially higher than its prefix-independent conterpart. Our algorithm
is exponential in ` and in the number of bits to encode W . As shown later, the higher
complexity is explained by the fact that the problem is PSpace-Hard.

B. Bordais, S. Guha, and J.-F. Raskin 32:11

I Theorem 15. Given an MDP Γ with an initial state sinit, a window length ` and a
threshold λ ∈ Q, whether EΓ

sinit
(f`DirWMP) ≥ λ can be decided in time O(poly(|S| ·W ` · `2)) and

deterministic exponential memory strategies suffice to play optimally.

Proof sketch. As f`DirWMP is prefix-dependent, it is not sufficient to know the expected value
of this function in the MECs of Γ. Instead, we construct a new MDP Γ` which is a finite
state structure that maps each infinite path π of Γ to the minimal mean-payoff encountered
in a window of size ` along this path. The state space of Γ` is S′ = S × ([W]0)`−1 ×Λ where
Λ = {pq | q ∈ [`], p ∈ [q ·W]0} and the initial state s′init = (sinit, [W, . . . ,W],W). Informally,
a state t = (s, [w1, . . . , w`−1], λt) ∈ S′ summarizes all finite paths ρ = s0 . . . s in Γ where the
last `− 1 weights encountered are w1, . . . , w`−1, and λt keeps track of the minimum window
mean-payoff seen so far in π for window size `. Moreover, in MDP Γ` every edge exiting t
has a weight equal to λt. In this way, for each π′ ∈ PathsΓ` , the sequence of weights seen
along π′ is a non-increasing series of values belonging to the finite set Λ. Thus, eventually
the sequence reaches a value λ which never changes again, this λ is the direct fixed window
mean-payoff of the corresponding path in Γ and because every edge exiting t has a weight
equal to λt, we see that λ is also the mean-payoff of π′ in Γ`. Now, it remains to compute
the optimal expected mean-payoff in Γ` which can be done in polynomial time in the size of
Γ` using linear programming, see e.g.[16]. This optimal expected mean-payoff in Γ` is equal
to the optimal expected direct fixed window mean-payoff for window size ` in Γ. Note that
although the algorithm is exponential in ` and in the number of bits used to represent W , it
is fixed parameter tractable, if we consider W and ` as parameters.

Since optimal expected mean-payoff in an MDP can be achieved using memoryless
deterministic strategies and the size of Γ` is exponential in the size of the original MDP Γ,
an optimal strategy with memory exponential in the size of Γ exists. J

We now provide the following hardness result:

I Theorem 16. Given an MDP Γ with an initial state sinit, a window length ` and a λ ∈ Q,
deciding whether EΓ

sinit
(f`DirWMP) ≥ λ is PSpace-Hard.

Proof. We show a reduction from the threshold probability problem for shortest path
objectives [12]. An instance of the threshold probability problem is given by an MDP
Γ = (S,E,Act, sinit, w,P) where w.l.o.g., we have that w assigns positive weights on the edges,
T ⊆ S is a set of target states, and for a strategy σ, the truncated sum TST : Paths(Γ[σ]) −→
N ∪∞ up to T from the initial state sinit is defined as

TST (ρ) =
{ ∑n−1

i=0 w(ei) if ∃n such that ρ(n) ∈ T and ∀i ≤ n− 1, we have ρ(i) 6∈ T
∞ if ∀i ≥ 0, ρ(i) 6∈ T,

where ei = (ρ(i), a, ρ(i+ 1)), a ∈ Act; for a threshold L ∈ N, and a probability threshold p,
the problem asks to decide if there exists a strategy σ such that PΓ[σ],sinit [{ρ ∈ Paths(Γ

[σ]) |
TST (ρ) ≤ L}] ≥ p. The problem is known to be PSpace-Complete, even for acyclic MDPs
[12]. The target set T is assumed to be made of absorbing states (i.e., with self-loops); the
acyclicity is to be interpreted over the rest of the underlying graph.

Let Γ = (S,E,Act, sinit, w,P), where S = T] V , and T is a set of target vertices. The
acyclicity of that MDP implies that, from the initial state sinit 6∈ T , it takes at most |S| − 1
steps to reach a vertex in T . Let W be the maximum weight appearing in Γ. We assume
that L ≤W · (|S| − 1), otherwise the problem is trivial.

FSTTCS 2019

32:12 Expected Window Mean-Payoff

We construct a new MDP Γ′ = (S′, E,Act′, sinit, w′,P′) where S′ = S ∪ {sfinal1 , sfinal2},
Act′ = Act ∪ {loop, α, β}. The set of edges E′ = {(v, a, s) | (v, a, s) ∈ E, v ∈ V , s ∈ S} ∪
{(t, α, sfinal1) | t ∈ T} ∪ {(t, β, sfinal2) | t ∈ T} ∪ {(sfinal1 , loop, sfinal1)} ∪ {(sfinal2 , loop, sfinal2)}
∪ {(v, β, sfinal2) | v ∈ V and there is no outgoing edge from v in Γ}. The probability function
P′ is defined as:

P′(v, a, s) = P(v, a, s) such that (v, a, s) ∈ E, v ∈ V , s ∈ S;
P′(t, α, sfinal1) = 1 for t ∈ T ;
P′(t, β, sfinal2) = 1 for t ∈ T ;
P′(sfinalj , loop, sfinalj) = 1 for j ∈ {1, 2};
P′(v, β, sfinal2) = 1 for (v, β, sfinal2) ∈ E′ and v ∈ V ;

The weight function w′ is defined as follows.
w′(v, a, s) = −w(v, a, s) such that (v, a, s) ∈ E, v ∈ V , s ∈ S;
w′(t, α, sfinal1) = L, for t ∈ T ;
w′(t, β, sfinal2) = W · (|S| − 1), for t ∈ T ;
w′(sfinal1 , loop, sfinal1) = 0;
w′(sfinal2 , loop, sfinal2) = − 1

|S| , and
w′(v, β, sfinal2) = W · (|S| − 1) for (v, β, sfinal2) ∈ E′ and v ∈ V .

Let ` = |S|. Starting from sinit, since the weights on all the edges on the paths leading to a
state in t ∈ T are negative, the direct fixed window mean-payoff will consider paths until they
reach sfinalj for j ∈ {1, 2} given that the weights on the edges outgoing from t are positive.

We now call a path to be good if t appears in the path for some t ∈ T , and the sum of
the edges from sinit to t is at least −L, otherwise the path is bad. Note that for a good path,
choosing α leads to a direct fixed window mean-payoff of 0, while choosing β leads to direct
fixed window mean-payoff of − 1

|S| . On the other hand, for a bad path, choosing α gives
a direct fixed window mean-payoff of at most − 1

|S| , while choosing β gives a direct fixed
window mean-payoff of − 1

|S| . Therefore, for an optimal strategy, the direct fixed window
mean-payoff for a good path is 0, and for a bad path, it is − 1

|S| .
We have |Γ′| = O(poly(|Γ|)). Furthermore, the expected value of the direct fixed window

mean-payoff, EΓ
sinit(f

`
DirWMP) ≥ p · 0 + (1− p) · − 1

|S| = −(1− p) · 1
|S| iff there is a solution to

the threshold probability problem.
Note that since ` = |S|, deciding whether the expected value of the direct fixed window

mean-payoff for an MDP is greater than or equal to some threshold is PSpace-hard even
when ` is given in unary. Thus, we cannot expect to have an algorithm that is polynomial in
the value of ` unless P=PSpace5. J

We now consider the bounded case. In fact, the function fDirBWMP is equivalent to fBWMP:

I Lemma 17. For every path π in an MDP, we have that fDirBWMP(π) = fBWMP(π).

Proof sketch. It is easy to see that fDirBWMP(π) ≤ fBWMP(π). Now for every ε > 0, a window
mean-payoff value of fBWMP(π)−ε can be ensured from the beginning of the path π by
considering appropriately large window length. Since fDirBWMP(π) is the supremum of the
window mean-payoff values that can be ensured with arbitrarily large window lengths, the
result follows. J

5 The reduction does not work for Markov chains since we cannot get a threshold for the window mean-
payoff that separates the cases when there is a solution to the threshold probability problem for shortest
path objective and when a solution to the problem does not exist. That is, if the sum of path from s′

init
to t is below L and the edge corresponding to action α is taken in t, we do not know how much below 0
will the window mean-payoff be.

B. Bordais, S. Guha, and J.-F. Raskin 32:13

As a direct corollary of Lemma 17, Theorem 10 and Theorem 13, we obtain:

I Theorem 18. Given an MDP Γ and a λ ∈ Q, we have EΓ
sinit

(fDirBWMP) = EΓ
sinit

(fBWMP),
and whether EΓ

sinit
(fDirBWMP) ≥ λ can be decided in UP ∩ coUP, and it is as hard as solving

two-player mean-payoff games.

6 Solving Window Mean-Payoff Objectives for Markov Chain

We focus on the bounded window objective and the direct fixed window objective for MCs,
as MCs are special cases of MDPs, and for these two objectives, we show strict improvement
in the complexity of the algorithms compared to MDPs. We start with the bounded window
mean-payoff function, for which we provide a polynomial time solution while the case of
MDPs is at least as hard as mean-payoff games (Theorem 13).

I Theorem 19. Given an MCM and a threshold λ ∈ Q, whether EMsinit
(fBWMP) ≥ λ can be

decided in polynomial time.

We first outline the case of a BSCC B since by Proposition 1, each path in an MC almost
surely ends up in a BSCC. Let λB be the expected value of fBWMP in B :

I Lemma 20. For an MC that is a BSCC B, we have λB = min
ρ∈ElemCycles(B)

MP(ρ).

Proof sketch. For every `, a path π in B will almost surely have infinitely many infixes
of length ` going around a minimum mean-cycle, leading to f`WMP(π) ≤ cB where cB =

min
ρ∈ElemCycles(B)

MP(ρ). Moreover, for each path π in B and for every ε > 0, by choosing an

appropriate window length `, we have f`WMP(π) ≥ cB − ε. By definition of fBWMP, we have
fBWMP(π) = cB almost surely. J

Proof sketch of Theorem 19. Note that EMsinit(fBWMP) =
∑

B∈BSCC(M)

Pr(♦B) · λB. Since for

each BSCC B, both mean of the minimum mean-cycle in B and the probability of reaching
B can be computed in polynomial time [15, 16], we obtain the result. J

We now consider the direct fixed window mean-payoff function. We show the following.

I Theorem 21. Given an MCM, with set S of states, a window length ` and a threshold
λ ∈ Q, whether EMsinit

(f`DirWMP) ≥ λ can be decided in O(poly(|S| · ` ·W)) time.

We first consider the inductive property of windows (see [8]). For an infinite path
π = s0 . . ., a threshold λ ∈ Q, a window length `, a position i ∈ N and l ∈ [`], we say that the
window starting at position i is closed at position i+l with respect to λ if WMP`(π(i,∞)) ≥ λ.
Otherwise, the window is open.

Inductive property of windows. Let π = s0 . . . ∈ PathsM, ` be a window length, and λ be
a threshold. Assume that a window starting at a position j is open at j′ < j + ` but closed
at j′ + 1. Then, any window starting at a position between j and j′ is closed at j′ + 1.

Note that we cannot focus only on the BSCCs here. Let f = f`DirWMP. Then, for
every path π ∈ PathsM, we have f(π) ∈ Λ with Λ = {pq | q ∈ [`], p ∈ [q · W]0}. Let
Λ = {λ0, . . . , λn}. For every λi ∈ Λ, we construct a new Markov chain Mλi

` so that the
probability Pr(f−1(M, sinit, [λi,∞[)) is equal to the probability of not reaching a trap state in
Mλi

` . Thanks to the inductive property of windows, we only need to remember the location of

FSTTCS 2019

32:14 Expected Window Mean-Payoff

the largest window that is still open, as well as the “amount of payoff” that is required to close
it. Hence, in the Markov chainMλi

` , the state space S′ = (S× [`−1]0× [W ·(`−1)]0)∪{trap}.
If the window cannot be closed within ` steps, then the state trap is reached. For λi ∈ Λ, we
have the following lemma.

I Lemma 22. Pr(f−1(M, sinit, [λi,∞[)) = Pr(π ∈ PathsM
λi
` | π |= ¬♦{trap})

We can now prove Theorem 21.

Proof sketch of Theorem 21. Assume w.l.o.g. that, in Λ, we have λ0 < . . . < λn. Now for
all i ≤ n − 1, we have Pr(f−1(M, sinit, λi)) = Pr(f−1(M, sinit, [λi,∞[)) −
Pr(f−1(M, sinit, [λi+1,∞[)), and EMsinit(f) =

n∑
i=0

Pr(f−1(M, sinit, λi))·λi. Note that |Λ| ≤ `·W ·`

and for each λi ∈ Λ, we have that |Mλi
` | ≤ |M| · ` ·W · `+ 1. Since reachability in Markov

chain (here to the trap state) can be decided in polynomial time and W is given in binary,
the result follows. J

If W is a parameter, we get a fixed parameter tractable algorithm.

References
1 Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.
2 Benjamin Bordais, Shibashis Guha, and Jean-François Raskin. Expected Window Mean-Payoff.

CoRR, abs/1812.09298, 2018. arXiv:1812.09298.
3 Tomás Brázdil, Václav Brozek, Krishnendu Chatterjee, Vojtech Forejt, and Antonín Kucera.

Two Views on Multiple Mean-Payoff Objectives in Markov Decision Processes. Logical Methods
in Computer Science, 10(1), 2014.

4 Tomás Brázdil, Krishnendu Chatterjee, Vojtech Forejt, and Antonín Kucera. Trading per-
formance for stability in Markov decision processes. J. Comput. Syst. Sci., 84:144–170, 2017.

5 Tomás Brázdil, Vojtech Forejt, Antonín Kucera, and Petr Novotný. Stability in Graphs and
Games. In 27th International Conference on Concurrency Theory, CONCUR 2016, August
23-26, 2016, Québec City, Canada, volume 59 of LIPIcs, pages 10:1–10:14. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2016.

6 Thomas Brihaye, Florent Delgrange, Youssouf Oualhadj, and Mickael Randour. Life is Random,
Time is Not: Markov Decision Processes with Window Objectives. CoRR, abs/1901.03571,
2019. arXiv:1901.03571.

7 Véronique Bruyère, Quentin Hautem, and Jean-François Raskin. On the Complexity of
Heterogeneous Multidimensional Games. In 27th International Conference on Concurrency
Theory, CONCUR 2016, August 23-26, 2016, Québec City, Canada, volume 59 of LIPIcs,
pages 11:1–11:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

8 Krishnendu Chatterjee, Laurent Doyen, Mickael Randour, and Jean-François Raskin. Looking
at Mean-Payoff and Total-Payoff through Windows. In Automated Technology for Verification
and Analysis - 11th International Symposium, ATVA 2013, Hanoi, Vietnam, October 15-18,
2013. Proceedings, volume 8172 of Lecture Notes in Computer Science, pages 118–132. Springer,
2013.

9 Krishnendu Chatterjee, Laurent Doyen, Mickael Randour, and Jean-François Raskin. Looking
at mean-payoff and total-payoff through windows. Inf. Comput., 242:25–52, 2015.

10 Krishnendu Chatterjee and Monika Henzinger. Efficient and Dynamic Algorithms for Altern-
ating Büchi Games and Maximal End-Component Decomposition. J. ACM, 61(3):15:1–15:40,
June 2014.

11 Luca De Alfaro. Formal Verification of Probabilistic Systems. PhD thesis, Stanford University,
Stanford, CA, USA, 1998.

http://arxiv.org/abs/1812.09298
http://arxiv.org/abs/1901.03571

B. Bordais, S. Guha, and J.-F. Raskin 32:15

12 Christoph Haase and Stefan Kiefer. The Odds of Staying on Budget. In Automata, Languages,
and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10,
2015, Proceedings, Part II, pages 234–246, 2015.

13 Paul Hunter, Guillermo A. Pérez, and Jean-François Raskin. Looking at mean payoff through
foggy windows. Acta Inf., 55(8):627–647, 2018.

14 Marcin Jurdzinski. Deciding the Winner in Parity Games is in UP ∩ co-UP. Inf. Process.
Lett., 68(3):119–124, 1998.

15 Richard M. Karp. A characterization of the minimum cycle mean in a digraph. Discrete
Mathematics, 23:309–311, 1978.

16 Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1994.

17 Moshe Y. Vardi. Automatic Verification of Probabilistic Concurrent Finite-State Programs. In
26th Annual Symposium on Foundations of Computer Science, Portland, Oregon, USA, 21-23
October 1985, pages 327–338. IEEE Computer Society, 1985.

18 Uri Zwick and Mike Paterson. The complexity of mean payoff games on graphs. Theoretical
Computer Science, 158(1-2):343–359, 1996.

FSTTCS 2019

Interval Temporal Logic for Visibly Pushdown
Systems
Laura Bozzelli
University of Napoli “Federico II”, Napoli, Italy

Angelo Montanari
University of Udine, Udine, Italy

Adriano Peron
University of Napoli “Federico II”, Napoli, Italy

Abstract
In this paper, we introduce and investigate an extension of Halpern and Shoham’s interval temporal
logic HS for the specification and verification of branching-time context-free requirements of pushdown
systems under a state-based semantics over Kripke structures. Both homogeneity and visibility
are assumed. The proposed logic, called nested BHS, supports branching-time both in the past
and in the future, and is able to express non-regular properties of linear and branching behaviours
of procedural contexts in a natural way. It strictly subsumes well-known linear time context-free
extensions of LTL such as CaRet [4] and NWTL [2]. The main result is the decidability of the
visibly pushdown model-checking problem against nested BHS. The proof exploits a non-trivial
automata-theoretic construction.

2012 ACM Subject Classification Theory of computation → Logic and verification

Keywords and phrases Pushdown systems, Interval temporal logic, Model checking

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.33

1 Introduction

Model checking in the framework of interval temporal logics. Point-based temporal logics
(PTLs), such as, for instance, the linear-time temporal logic LTL [25] and the branching-time
temporal logics CTL and CTL∗ [16], provide a standard framework for the specification and
verification (model checking) of the behavior of reactive systems. In this framework, the
evolution of a system over time is described state-by-state (“point-wise” view). Interval
temporal logics (ITLs) have been proposed as an alternative setting for reasoning about
time [17, 24, 28]. Unlike standard PTLs, they assume intervals, instead of points, as their
primitive entities. ITLs allow one to specify relevant temporal properties that involve, e.g.,
actions with duration, accomplishments, and temporal aggregations, which are inherently
“interval-based”, and thus cannot be naturally expressed by PTLs. They have been applied
in various areas of computer science, including formal verification, computational linguistics,
planning, and multi-agent systems (e.g. see [18, 24, 26]). Among ITLs, the landmark is
Halpern and Shoham’s modal logic of time intervals HS [17], which features one modality for
each of the 13 ordering relations between pairs of intervals (the so-called Allen’s relations),
apart from equality. The satisfiability problem for HS and most of its fragments is undecidable
over all relevant classes of linear orders, with some meaningful exceptions (see [23, 12, 13]).

In the last years, the model checking problem for HS over finite Kripke structures (finite
MC problem) has been extensively studied [8, 9, 10, 18, 19, 20, 21, 22]. Each finite path
of a Kripke structure is interpreted as an interval, whose labelling is defined on the basis
of the labelling of the component states. In particular, the finite MC problem under the
homogeneity assumption (a proposition letter holds over an interval if and only if it holds over
each component state) and the state-based semantics (time branches both in the future and

© Laura Bozzelli, Angelo Montanari, and Adriano Peron;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 33; pp. 33:1–33:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.FSTTCS.2019.33
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Interval Temporal Logic for Visibly Pushdown Systems

in the past) has been investigated in [9, 21, 22]. In this setting, it turns out to be decidable
and the complexity of the problem for full HS and its syntactical fragments has been almost
completely settled (the only intriguing open question is the complexity of the problem for
full HS currently located in between an Expspace lower bound and a non-elementary upper
bound). In [10] the authors study the expressiveness of the state-based semantics of HS and
of two variants: the computation-tree-based semantics, that allows time to branch only in
the future, and the trace-based semantics, that disallows time branching. The computation-
tree-based variant of HS is expressively equivalent to finitary CTL∗ (the variant of CTL∗
with quantification over finite paths), while the trace-based variant is equivalent to LTL (but
at least exponentially more succinct). The state-based variant is more expressive than the
computation-tree-based variant and expressively incomparable with both LTL and CTL∗.

Model checking of pushdown systems. In the last two decades, model checking of push-
down automata (PDA) against non-regular properties has received a lot of attention [2, 4,
5, 11, 14]. PDA are an infinite-state formalism suitable to model the control flow of typical
sequential programs with recursive procedure calls. PDA have a decidable model-checking
problem against regular specifications (e.g. see [29, 15]) but the general problem of checking
context-free properties is undecidable. The latter problem has been positively solved, however,
for interesting subclasses of context-free requirements such as those expressed by the linear
temporal logic CaRet [4], a context-free extension of LTL. CaRet formulas are interpreted on
words over a pushdown alphabet which is partitioned into three disjoint sets of call, return, and
internal symbols respectively denoting a procedure invocation (i.e., a push stack operation), a
return from a procedure call (a pop stack operation), and an internal operation (not affecting
the stack). CaRet allows one to specify non-regular context-free properties which require
matching of calls and returns such as correctness of procedures with respect to pre and post
conditions, and security properties that require the inspection of the call-stack.
An automata-theoretic generalization of CaRet is the class of Nondeterministic Visibly
Pushdown Automata (NVPA) [5], a subclass of PDA where the operations on the stack are
determined by the input symbols over a pushdown alphabet. The accepted class of visibly
pushdown languages (or VPL) is closed under Boolean operations, and the problem of lan-
guage inclusion, which is undecidable for context-free languages, is instead decidable for
VPL. This implies that under the visibility requirement (call and returns are made visible)
the model-checking problem of pushdown systems (VPMC problem) against linear-time
pushdown properties is decidable. To the best of our knowledge, the only branching-time
context-free logic introduced in the literature with a decidable VPMC problem (in particular,
the problem is Exptime-complete) is the visibly pushdown µ-calculus (VP-µ) [3], an extension
of the modal µ-calculus with future modalities which allow one to specify requirements on
the branching behavior of procedural contexts.

Paper contributions. First of all, we unify the linear time (trace-based) and branching
time (computation-based and state-based) semantic variants of HS in a common framework.
To this end, we extend HS with a novel binding operator, which restricts the evaluation of
a formula to the interval sub-structure induced by the current interval. The extension is
denoted by BHS. By additionally generalizing the interval mapping also to infinite paths, the
logic BHS gives one the ability to force a linear-time semantics of the temporal modalities
along a (finite or infinite) path, so that the trace-based semantics can be subsumed.

As a second contribution, BHS, with the state-based semantics, is further extended
for specifying branching-time context-free requirements of pushdown systems under the
homogeneity and visibility assumptions. It is the very first time (as far as we know) that

L. Bozzelli, A. Montanari, and A. Peron 33:3

HS is studied in the context of model checking of pushdown systems (in general, of infinite
state systems) where only PTL approaches have been investigated, and it is interesting
to notice that the most distinctive feature of pushdown systems, namely, the matching of
a call with the corresponding return, has a natural interval nature (it bounds meaningful
computation intervals where local properties can be checked). This suggests that an interval
temporal logic (instead of point-based one) could be a natural choice. The extension of
BHS we propose, called nested BHS, is powerful despite its simplicity: we just add to BHS a
special proposition pwm that captures finite intervals corresponding to computations with
well-matched pairs of calls and returns. We investigate the expressiveness of nested BHS
showing that it strictly subsumes well-known linear time context-free extensions of LTL
such as CaRet [4] and NWTL [2]. Nested BHS is a formalism which supports past and
future branching-time besides linear time: future branching time allows to express context-
free versions of standard CTL∗-like properties (for instance, multiple return conditions for
procedure calls); past branching time allows to check properties (regular and context-free) of
multiple histories leading to a common fixed state. An expressiveness comparison between
VP-µ and BHS is out of the scopes of this paper. Here, we just observe that while VP-µ is
bisimulation-closed [3], HS, and thus BHS, with the state-based semantics, is not (this is due
to branching past [10]). Whether the future fragment of BHS is subsumed or not by VP-µ is
an intriguing open issue.

As a third and main result, we prove that the VPMC problem against nested BHS is
decidable, although with a non-elementary complexity. For the upper bound, we exploit
a non-trivial automata-theoretic approach consisting in translating a nested BHS formula
ψ into an NVPA accepting suitable encodings of the computations of the given pushdown
system which satisfy formula ψ. Actually, we conjecture that the non-elementary complexity
of nested BHS only depends on the nesting depth of the binding modality.

2 Interval temporal logic HS with binding contexts

In this section, we introduce the temporal logic HS with binding contexts (BHS for short)
and the model-checking framework for verifying BHS formulas.

We fix the following notation. Let N be the set of natural numbers. For all i, j ∈ N, with
i ≤ j, [i, j] denotes the set of natural numbers h such that i ≤ h ≤ j. Let w be a finite or
infinite word over some alphabet. We denote by |w| the length of w (we set |w| =∞ if w is
infinite). For all i, j ∈ N, with i ≤ j, w(i) is the i-th letter of w, wi = w(i)w(i+ 1) . . . is the
suffix of w from position i on, while w[i, j] denotes the infix of w given by w(i) · · ·w(j). The
set Pref(w) of proper prefixes of w is the set of non-empty finite words u such that w = u · v
for some non-empty word v. The set Suff(w) of proper suffixes of w is the set of non-empty
words u such that w = v · u for some non-empty finite word v. We fix a finite set AP of
atomic propositions which represent predicates over the states of the given system.

A Kripke structure over AP is a tuple K = (AP , S, E,Lab, s0), where S is a set of states,
E ⊆ S × S is a transition relation, Lab : S 7→ 2AP is a labelling function assigning to each
state s the set of propositions that hold over it, and s0 ∈ S is the initial state. We say that K
is finite if S is finite. A path π of K is a non-empty word over S such that, for all 0 ≤ i < |π|,
(π(i), π(i+ 1)) ∈ E. A path is initial if it starts from the initial state of K . A path π induces
the word Lab(π) over 2AP having the same length as |π| given by Lab(π(0))Lab(π(1)) We
also say that Lab(π) is the trace induced by π.

An interval algebra to reason about intervals and their relative orders was proposed by
Allen in [1], while a systematic logical study of interval representation and reasoning was
done a few years later by Halpern and Shoham, who introduced the interval temporal logic

FSTTCS 2019

33:4 Interval Temporal Logic for Visibly Pushdown Systems

Table 1 Allen’s relations and corresponding HS modalities.

Allen relation HS Definition w.r.t. interval structures Example

x y
v z
v z

v z
v z
v z

v z

meets 〈A〉 [x, y]RA[v, z] ⇐⇒ y = v

before 〈L〉 [x, y]RL[v, z] ⇐⇒ y < v

started-by 〈B〉 [x, y]RB [v, z] ⇐⇒ x = v ∧ z < y

finished-by 〈E〉 [x, y]RE [v, z] ⇐⇒ y = z ∧ x < v

contains 〈D〉 [x, y]RD[v, z] ⇐⇒ x < v ∧ z < y

overlaps 〈O〉 [x, y]RO[v, z] ⇐⇒ x < v < y < z

HS featuring one modality for each Allen relation, but equality [17]. Table 1 depicts 6 of the
13 Allen’s relations, together with the corresponding HS (existential) modalities. The other
7 relations are the 6 inverse relations (given a binary relation R , the inverse relation R is
such that bR a iff aR b) and equality. Here, we introduce an extension of the logic HS, called
binding HS (BHS for short), obtained by adding a novel binding modality which allows one
to restrict the valuation of a formula to the interval sub-model induced by a given interval.

Let APu be a finite set of uninterpreted interval properties. BHS formulas ψ over APu
are defined by the grammar:

ψ ::= true | false | pu | ¬ψ | ψ ∧ ψ | 〈X〉ψ | Bψ

where pu ∈ APu, 〈X〉 is the existential temporal modality for the (non-trivial) Allen’s relation
X ∈ {A,L,B,E,D,O,A,L,B,E,D,O}, and B is the unary binding modality. The size |ψ| of
a formula ψ is the number of distinct subformulas of ψ. We also exploit the standard logical
connectives ∨ (disjunction) and → (implication) as abbreviations, and for any temporal
modality 〈X〉, the dual universal modality [X] defined as: [X]ψ := ¬〈X〉¬ψ. The standard
logic HS is obtained from BHS by disallowing the binding modality.

W.l.o.g. we assume the non-strict semantics, which admits intervals consisting of a single
point. Under such an assumption, all HS-temporal modalities can be expressed in terms of
〈B〉, 〈E〉, 〈B〉, and 〈E〉 [28]. As an example, 〈A〉 can be expressed in terms of 〈E〉 and 〈B〉 as:
〈A〉ϕ := (¬ 〈E〉 true ∧ (ϕ ∨ 〈B〉ϕ)) ∨ 〈E〉(¬ 〈E〉 true ∧ (ϕ ∨ 〈B〉ϕ)). BHS can be viewed as
an extension, by means of the binding modality B, of a multi-modal logic where 〈B〉, 〈E〉, 〈B〉,
and 〈E〉 are the primitive temporal modalities. BHS formulas can thus be interpreted over a
multi-modal Kripke structure, called abstract interval model (AIM for short), where intervals
are treated as atomic objects and Allen’s relations as binary relations over intervals. As we
will see, in model-checking against BHS, a Kripke structure is suitably mapped to an AIM.

Formally, an abstract interval model (AIM) [21] over APu is a tuple A = (APu, I, BI, EI,

LabI), where I is a possibly infinite set of worlds (abstract intervals), BI and EI are two
binary relations over I, and LabI : I 7→ 2AP u is a labeling function, which assigns a set of
proposition letters from APu to each abstract interval. In the interval setting, I is interpreted
as a set of intervals and BI and EI as Allen’s relations B (started-by) and E (finished-by),
respectively; LabI assigns to each interval in I the set of atomic propositions that hold over
it. The semantics of the B modality is based on the notion of abstract interval sub-model
induced by a given abstract interval.

I Definition 1. Let A = (APu, I, BI, EI,LabI) be an AIM. The sub-interval relation GI
induced by BI and EI is defined as follows: (I, J) ∈ GI iff (I, J) ∈ (BI ∪ EI)∗ (i.e., (I, J)
is in the reflexive and transitive closure of the relation BI ∪ EI). For I ∈ I, the abstract
interval sub-model induced by I is the AIM AI = (APu, II , BII , EII ,LabII), where II is the set
of abstract sub-intervals of I, i.e., the set of J ∈ I such that (I, J) ∈ GI and BII (resp., EII ,
LabII) is the restriction of BI (resp., EI, LabI) to II .

L. Bozzelli, A. Montanari, and A. Peron 33:5

Semantics of BHS. Let A = (APu, I, BI, EI,LabI) be an AIM. A context C is either ε (the
empty context) or an abstract interval J ∈ I. We write Aε for A (the meaning of Iε, BεI , EεI ,
and LabεI is analogous). For an interval I ∈ IC and a BHS formula ψ, the satisfaction relation
AC, I |= ψ is inductively defined as follows (the Boolean connectives are treated as usual):

AC, I |= pu iff pu ∈ LabC
I (I), for any pu ∈ APu;

AC, I |= 〈X〉ψ, for X ∈ {B,E}, iff I XC
I J and AC, J |= ψ for some J ∈ IC;

AC, I |= 〈X〉ψ, for X ∈ {B,E}, iff J XC
I I and AC, J |= ψ for some J ∈ IC;

AC, I |= Bψ iff AI , I |= ψ.

Following [21], we propose a state-based approach for model-checking Kripke structures
against BHS which consists in defining a mapping from Kripke structures to AIMs, where
the abstract intervals correspond to the paths of the Kripke structure and the following two
assumptions are adopted: (i) the set APu of HS-propositions coincides with the set AP of
proposition letters for the given Kripke structure, and (ii) a proposition holds over an interval
if and only if it holds over all its subintervals (homogeneity principle). Differently from [21],
where only finite paths are considered, here we consider both finite and infinite paths.

I Definition 2. Let K = (AP , S, E,Lab, s0) be a Kripke structure. The AIM induced by K is
AK = (AP , I, BI, EI,LabI), where I is the set of finite and infinite paths of K , and:

BI = {(π, π′) ∈ I× I | π′ ∈ Pref(π)}, EI = {(π, π′) ∈ I× I | π′ ∈ Suff(π)}, and
for all p ∈ AP , Lab−1

I (p) = {π ∈ I | p ∈
⋂i<|π|
i=0 Lab(π(i))}.

A Kripke structure K over AP is a model of a BHS formula ψ over AP , written K |= ψ,
if for all initial paths π of K , AK , π |= ψ. The finite model-checking problem consists in
checking whether K |= ψ, for a given BHS formula ψ and a finite Kripke structure K .

We observe that in the considered model-checking setting, the semantics of temporal
modalities 〈B〉 and 〈E〉 is “linear-time” both in HS and in BHS, i.e., 〈B〉 and 〈E〉 allow one
to select only subpaths (proper prefixes and suffixes) of the current timeline (computation).
As for the temporal modalities 〈B〉 and 〈E〉, while in HS the semantics of these modalities
is always “branching-time” (i.e., 〈B〉 and 〈E〉 allow one to non-deterministically extend the
current timeline in the future and in the past, respectively), in BHS the semantics of 〈B〉
and 〈E〉 can be either “linear-time” or “branching-time”, depending on the current context.

Forcing linear time. We now show how the binding modality can be used to force a linear
time semantics for a formula. By exploiting the notion of abstract interval sub-model, the
linear-time model-checking setting for HS formulas introduced in [10] can be reformulated as
follows: K is a model of an HS formula ψ under the linear-time (or trace-based) semantics,
written K |=lin ψ, if for all initial infinite paths π of K and positions i ≥ 0, AπK , π[0, i] |= ψ.
It is easy to check that K |=lin ψ iff K |= B((¬ 〈A〉 true) → [B]ψ) where the subformula
¬ 〈A〉 true captures the infinite paths π and the binding modality B forces the occurrences
of 〈B〉 and 〈E〉 in ψ to refer only to sub-paths of π.

3 Model Checking Visibly Pushdown Systems against nested BHS

In this section we introduce and address expressiveness issues of a context-free extension of
BHS, called nested BHS, for model checking (infinite-state) Kripke structures generated by
Visibly Pushdown Systems (VPS).

We first recall the standard notions of pushdown alphabet and VPS. A pushdown alphabet
is a finite alphabet Σ = Σcall ∪ Σret ∪ Σint which is partitioned into a set Σcall of calls, a set
Σret of returns, and a set Σint of internal actions. This partition induces a nested hierarchical

FSTTCS 2019

33:6 Interval Temporal Logic for Visibly Pushdown Systems

structure in a word over Σ obtained by associating to each call the corresponding matching
return (if any) in a well-nested manner. Formally, the set of well-matched finite words wm
over Σ is inductively defined by the following abstract syntax: wm := ε

∣∣ a ·wm ∣∣ c ·wm ·r ·wm,
where ε is the empty word, a ∈ Σint, c ∈ Σcall , and r ∈ Σret. Let w be a non-empty word
over Σ. For a call position 0 ≤ i < |w|, if there is j > i such that j is a return position of
w and w[i + 1, j − 1] is a well-matched finite word (note that j is uniquely determined if
it exists), we say that j is the matching return of i along w and i is the matching call of
j. An infinite word is well-matched if each call (resp., return) has a matching return (resp.,
matching call). For instance, consider the finite word w depicted below where Σcall = {c},
Σret = {r}, and Σint = {ı}. Note that 0 is the unique unmatched call position of w.

w = 0
c

1
c

2
ı

3
c

4
ı

5
r

6
r

7
c

8
ı

9
r

10
ı

To verify recursive programs, we assume that the set AP of atomic propositions (which
represent predicates over the states of the system) contains three special propositions, namely,
call, ret, and int: call denotes the invocation of a procedure, ret denotes the return from a
procedure, and int denotes internal actions of the current procedure. Under this assumption,
the set AP induces a pushdown alphabet ΣAP = Σcall∪Σret∪Σint , where for t ∈ {call, ret, int},
Σt = {P ⊆ AP | P ∩ {call, ret, int} = {t}}.

A Visibly Pushdown System (VPS) over AP is a tuple PS = (AP , Q = Qcall ∪ Qret ∪
Qint , q0,Γ∪{⊥},Trans,Lab), where: (i)Q is a finite set of (control) states, which is partitioned
into a set of call states Qcall , a set of return states Qret , and a set of internal states Qint , (ii)
q0 ∈ Q is the initial state, (iii) Γ∪ {⊥} is a finite stack alphabet, (where ⊥ /∈ Γ is the special
stack bottom symbol), (iv) Trans ⊆ (Qcall ×Q× Γ) ∪ (Qret × (Γ ∪ {⊥})×Q) ∪ (Qint ×Q) is
a transition relation, and (v) Lab : Q 7→ 2AP is a labelling function assigning to each control
state q ∈ Q the set Lab(q) of propositions that hold over it such that for all t ∈ {call, ret, int}
and q ∈ Qt, Lab(q) ∩ {call, ret, int} = {t}.

Intuitively, from a call state q ∈ Qcall , PS chooses a push transition of the form (q, q′, γ) ∈
Trans, pushes the symbol γ 6= ⊥ onto the stack, and the control changes from q to q′. From
a return state q ∈ Qret , PS chooses a pop transition of the form (q, γ, q′), where γ is popped
from the stack (if γ = ⊥, then γ is read but not popped). Finally, from an internal state
q ∈ Qint , PS can choose only transitions of the form (q, q′) which do not use the stack.

A configuration of PS is a pair (q, β), where q ∈ Q and β ∈ Γ∗ · {⊥} is a stack content.
The initial configuration is (q0,⊥) (the stack is initially empty). The VPS PS induces an
infinite-state Kripke structure KPS = (AP , S, E,Lab′, s0), where S is the set of configurations
of PS , s0 is the initial configuration, and for all configurations s = (q, β), Lab′((q, β)) = Lab(q)
and the set E(s) of configurations s′ such that (s, s′) ∈ E (s-successors) is defined as follows:

Push If q ∈ Qcall , then E(s) = {(q′, γ · β) | (q, q′, γ) ∈ Trans}.

Pop If q ∈ Qret, then either β = ⊥ and E(s) = {(q′,⊥) | (q,⊥, q′) ∈ Trans}, or β = γ · β′,
with γ ∈ Γ, and E(s) = {(q′, β′) | (q, γ, q′) ∈ Trans}.

Internal If q ∈ Qint , then E(s) = {(q′, β) | (q, q′) ∈ Trans}.
Note that the traces of KPS are words over the pushdown alphabet ΣAP . An (initial)
computation of PS is an (initial) path in KPS .

L. Bozzelli, A. Montanari, and A. Peron 33:7

Nested BHS. We now focus on model-checking VPS against BHS formulas over a set of
propositions AP ⊇ {call, ret, int}. To that purpose, we extend the state-based branching-time
approach presented in Section 2 by augmenting the set of atomic propositions AP with the
special well-matching proposition, denoted by pwm, which is fulfilled by a path of a Kripke
structure over AP iff the associated trace is a well-matched finite word over ΣAP .

I Definition 3. Let K = (AP , S, E,Lab, s0) be a Kripke structure over AP . The generalized
AIM induced by K is the AIM over AP ∪ {pwm} given by NK = (AP ∪ {pwm}, I, BI, EI,LabI),
where I, BI, EI, Lab−1

I (p) for p ∈ AP are defined as in Definition 2, and Lab−1
I (pwm) is the

set of finite paths π of K such that Lab(π) is well-matched. For a BHS formula ψ over
AP ∪ {pwm} and a path π of K , we write K , π |=n ψ to mean that NK , π |= ψ. K is a nested
model of ψ, denoted K |=n ψ, if K , π |=n ψ for all initial paths of K .

A nested BHS formula over AP is a BHS formula over AP ∪ {pwm}. The visibly pushdown
model checking (VPMC) problem against nested BHS is the problem of checking, given a
visibly pushdown system PS and a nested BHS formula ψ (both over AP), if KPS |=n ψ holds.

We also consider the so-called linear-time fragment of nested BHS (nested BHSlin for
short) obtained by imposing that modalities 〈B〉 and 〈E〉 occur in the scope of the binding
modality B. In nested BHSlin formulas ψ, the valuation of ψ depends only on the trace of
the given path and is independent of the underlying Kripke structure. Formally, for all paths
π and π′ of (possibly distinct) Kripke structures K and K ′ having the same trace, it holds
that K , π |=n ψ iff K ′, π′ |=n ψ. Thus, given a nested BHSlin formula ψ and a non-empty
word w over ΣAP , we write w |=n ψ to mean that K , π |=n ψ for any Kripke structure K with
labeling Lab and path π such that Lab(π) = w.

In the following, we give some examples of how to use nested BHS as a specification
language. For this, we introduce some auxiliary formulas which will be used as macro to specify
more complex requirements. The formula len1 := [E] false captures the singular intervals
(i.e. paths of length 1), and for a nested BHS formula ψ, the formulas left(ψ) := 〈A〉(len1∧ψ)
and right(ψ) := 〈A〉(len1 ∧ ψ) assert that ψ holds at the singular intervals corresponding
to the left and right endpoints, respectively, of the current finite interval. The formula
θmwm := left(call) ∧ right(ret) ∧ pwm ∧ [B]¬pwm characterizes the finite intervals whose first
position is a matched call and the last position is the associated matching return, while the
formula θpc := ξret ∧ [B]ξret , where ξret := right(ret)→ (len1 ∨ θmwm ∨ 〈E〉 θmwm), captures
intervals such that each non-first return position has a matched-call, i.e., fragments of
computations π starting at a configuration s which precede the end (if any) of the procedural
context associated with s. Finally, the formula θloc := right(true) ∧ θpc ∧ ξcall ∧ [E]ξcall ,
where ξcall := left(call) → (len1 ∨ θmwm ∨ 〈B〉 θmwm), characterizes the finite intervals π
satisfying θpc such that each non-last call position has a matching-return, i.e., the finite
intervals π s.t. the first and last positions of π belong to the same local procedural path (alias
abstract path). An abstract path captures the local computation within a procedure with the
removal of subcomputations corresponding to nested procedure calls.

Specifying requirements. As we will show in Theorem 4, nested BHS strictly subsumes
well-known context-free linear-time extensions of standard LTL, such as the logic CaRet [4]. In
the analysis of recursive programs, an important feature of CaRet is that it allows to express
in a natural way LTL requirements over two kinds of non-regular patterns on words over a
pushdown alphabet: abstract paths and caller paths (a caller path represents the call-stack
content at a given position). We show that CaRet formulas can be translated in polynomial
time into nested BHS formulas of the form Bψ such that ψ is a nested HS formula (see

FSTTCS 2019

33:8 Interval Temporal Logic for Visibly Pushdown Systems

Theorem 4). It is worth noting that while CaRet provides ad hoc modalities for expressing
abstract and caller properties, in nested BHS, we just use the special proposition pwm and
the regular modalities in BHS for expressing such non-regular context-free requirements.
Additionally, nested BHS supports branching-time both in the past and in the future.
In particular, the novel logic allows to specify in a natural way procedural-context (resp.
abstract, resp. caller) versions of standard CTL and CTL∗ requirements which cannot
be expressed in CaRet. As a first example, the procedural-context version of the CTL
formula E(p1Up2), requiring that there is a computation π from the current configuration
s such that the LTL formula p1Up2 holds along a prefix of π which precedes the end
(if any) of the procedural context associated with s, can be expressed in nested HS by
〈A〉(θpc ∧ [B]p1 ∧ right(p2)), where 〈A〉 plays the role of the existential path quantifier E of
CTL∗. Similarly, the abstract version of E(p1Up2), requiring that there is an abstract path
from the current configuration s such that the LTL formula p1Up2 holds, can be expressed
by 〈A〉{θloc ∧ right(p2) ∧ [B](θloc → (left(p1) ∧ right(p1)))}.

As another example, we consider a generalized version of the total correctness requirement
for a procedure A (popular in formalisms like Hoare logic), requiring that if a precondition pre
is satisfied when A is called and an additional condition p eventually holds at a configuration
s preceding the return (if any) of procedure A, then there is a computation from s such
that A terminates and the post condition post holds upon return. This requirement can be
expressed by the following nested HS formula, where cA denotes invocation of procedure A:
[E]{(left(call∧cA∧pre)∧right(p)∧θpc)→ 〈B〉(θmwm∧right(post))}. Note that for expressing
the previous branching-time requirement, we cannot simply use the existential path quantifier
of CTL∗ corresponding to 〈A〉, but we need to keep track of the current interval satisfying
θpc, and we exploit modality 〈B〉 to nondeterministically extend this interval in the future.

We now consider the ability of expressing past branching-time modalities. Assume
that the initial state q0 is characterized by proposition init, q0 is not a return state, and
q0 is not strictly reachable by any state. Then, the requirement that for every reachable
configuration s where procedure A is called, s can be also reached in such a way that procedure
B is on the call-stack can be expressed in nested HS by the formula right(call ∧ cA) →
〈E〉{left(call ∧ cB) ∧ θpc ∧ (left(init) ∨ 〈E〉(left(init) ∧ θpc))}.

As a last example, we consider the ability of specifying different properties at different
returns of a procedural call depending on the behavior of the different branches in the called
procedural context. For instance, let us consider the requirement that whenever a procedure
is invoked, there are at least two branches in the called procedural context which return and:
in one of them, condition p eventually holds and condition q holds upon the return, while in
the other one, p never holds and q does not hold upon the return. This can be expressed by
right(call)→ {〈A〉(θmwm ∧ right(q) ∧ 〈B〉 〈E〉 p) ∧ 〈A〉(θmwm ∧ right(¬q) ∧ ¬ 〈B〉 〈E〉 p)}.

Expressiveness issues for nested BHS. Given two logics F1 and F2 interpreted over Kripke
structures on AP ⊇ {call, ret, int}, and two formulas ϕ1 ∈ F1 and ϕ2 ∈ F2, we say that ϕ1
and ϕ2 are equivalent if ϕ1 and ϕ2 have the same Kripke structure models. We say that F2
is subsumed by F1, written F1 ≥ F2, if for each formula ϕ2 ∈ F2, there is a formula ϕ1 ∈ F1
such that ϕ1 and ϕ2 are equivalent. Moreover, F1 is as expressive as (resp., strictly more
expressive than) F2 if both F1≥F2 and F2≥F1 (resp., F1≥F2 and F2 6≥F1).

We compare nested BHSlin with known context-free linear-time extensions of LTL, namely
CaRet [4], NWTL [2], and the extension of CaRet with the within modality W (see [2]). Recall
that NWTL and CaRet + W are expressively complete for the known context-free extension
FOµ of standard first-order logic (FO) over words (on a pushdown alphabet) by a binary
call/matching return predicate [2], while it is an open question whether the same holds for
CaRet [2]. Our expressiveness results can be summarized as follows.

L. Bozzelli, A. Montanari, and A. Peron 33:9

I Theorem 4.
1. Nested BHSlin has the same expressiveness as FOµ, and NWTL (resp., CaRet + W) can be

translated in polynomial time into equivalent nested BHSlin formulas ψ, where for CaRet
formulas, ψ is of the form Bψ′ for some nested HS formula ψ′.

2. Nested BHS is strictly more expressive than FOµ.
3. HS (hence, BHS as well) is strictly more expressive than standard CTL∗.

Sketched proof. Due to lack of space, the proof of Statement 1 is omitted. Statement 2
easily follows from Statement 1 and the fact that nested BHS supports branching-time. For
example, let us consider the classical branching-time requirement asserting that from each
state reachable from the initial one, it is possible to reach a state where proposition p holds.
It is well-known that this formula is not FO-definable (see [7], Theorem 6.21). Hence, it is
not FOµ-definable as well (on Kripke structures having labeling Lab such that int ∈ Lab(s)
for each state, FO and FOµ are equivalent). On the other hand, the previous requirement
can be easily expressed in HS. Now, let us consider Statement 3. In [10], it is shown that
in the state-based setting and under the homogeneity principle adopted in this paper, but
assuming that intervals are associated with only finite paths of the Kripke structure, it holds
that HS is strictly more expressive than finitary CTL∗ (a variant of standard CTL∗ where
path quantification ranges over finite paths). By allowing also infinite paths and trivially
adapting the results in [10], we deduce that HS (as considered in this paper) is strictly more
expressive than standard CTL∗. J

4 Decision procedures

In this section, we show that the VPMC problem against nested BHS is decidable. The
proof is based on a non-trivial automata-theoretic approach consisting in translating a given
nested BHS formula ψ into a Non-deterministic Visibly Pushdown Automaton (NVPA) [5]
accepting encodings of the computations of the given VPS PS which satisfy the formula ψ.

Details about the syntax and semantics of NVPA can be found in [5]. Here, we consider
NVPA equipped with two sets F and Fω of accepting states: F is used for acceptance of
finite words, and Fω for acceptance of infinite words. For an NVPA A, we denote by L(A)
the language of finite and infinite words over Σ accepted by A (Visibly Pushdown Language).

We fix a visibly pushdown system PS = (AP , QPS , q
0
PS ,ΓPS ∪ {⊥},TransPS ,LabPS) over AP ,

where QPS = Qcall ∪Qret ∪Qint . For encoding computations of PS , we adopt the pushdown
alphabet ΣPS = Σcall ∪ Σret ∪ Σint defined as follows: Σcall := Qcall ∪ ΓPS ∪ (Qcall × ΓPS),
Σret := Qret, and Σint := Qint. Thus, the return (resp., internal) symbols in ΣPS are the
return (resp., internal) states of PS , while the set of calls consists of the call states of PS
together with the stack symbols, and the pairs call state/stack symbol. Given a finite word w
over ΣPS \Qcall , the unmatched call part umc(w) of w is the word over ΓPS defined as follows:
let h0 < . . . < hn−1 be the (possibly empty) sequence of unmatched call positions of w, then
umc(w) = γ0 . . . γn−1, where for each 0 ≤ i ≤ n− 1, γi is the ΓPS -component of w(hi).

We encode the computations π of PS by words over ΣPS consisting of a prefix (the head)
over ΓPS encoding the stack content of the first configuration of π, followed by a word over
ΣPS \ ΓPS (the body) which keeps track of the states visited by π together with the stack-top
symbols pushed from the non-last configurations of π associated with the call states.

I Definition 5 (Computation-codes). A computation-code (of PS) is a word w over the
pushdown alphabet ΣPS of the form w = wh · wb such that the prefix wh (the head) is a word
in Γ∗PS and the suffix wb (the body) is either a non-empty finite word in ((Qcall×ΓPS)∪Qret∪

FSTTCS 2019

33:10 Interval Temporal Logic for Visibly Pushdown Systems

Qint)∗ · (Qcall ∪Qret ∪Qint), or an infinite word over (Qcall × ΓPS) ∪Qret ∪Qint. Moreover,
the body wb satisfies the following conditions for each 0 ≤ i < |wb| − 1 (∞− 1 is for ∞),
where for a symbol σ ∈ ΣPS \ ΓPS , we denote by q(σ) the QPS -component of σ:

if wb(i) is a call, then wb(i) = (q, γ) and (q, q(wb(i+ 1)), γ) ∈ TransPS .
if wb(i) is an internal action then (wb(i), q(wb(i+ 1))) ∈ TransPS .
if wb(i) is a return, then (wb(i), γ, q(wb(i + 1))) ∈ TransPS , where γ = ⊥ if the return
position i+ |wh| has no matched-call in w = wh · wb; otherwise, γ is the ΓPS -component
of w(ic), where ic is the matched-call position of i+ |wh|.

We denote by ΠPS the set of computation-codes. Clearly, there is a bijection between ΠPS

and the set of computations of PS . In particular, a computation code w = wh · wb encodes
the computation πw of PS of length |wb| given by πw := (q(wb(0)), β0 ·⊥)(q(wb(1)), β1 ·⊥) . . .,
where for each 0 ≤ i < |wb|, βi is the reverse of the unmatched call part of the prefix of
w until position i+ |wh| − 1. Note that the head wh encodes the stack content of the first
configuration, i.e., β0 = (wh)R · ⊥, where (wh)R is the reverse of wh.

We now illustrate the translation of nested BHS formulas over AP into a subclass of
NVPA over ΣPS , we call PS-NVPA. A PS-NVPA is simply an NVPA over ΣPS accepting only
computation-codes. The following result is straightforward.

I Proposition 6. One can construct a PS-NVPA APS with O(|ΣPS |) states and O(|ΓPS |) stack
symbols accepting the set ΠPS of computation-codes.

For the Boolean connectives in nested BHS formulas, we exploit the well-known closure
of NVPA under language Boolean operations [5]. In particular the following holds.

I Proposition 7 (Closure under intersection and complementation [5]). Given two PS-NVPA
A and A′ with n and n′ states, and m and m′ stack symbols, respectively, one can construct
(i) a PS-NVPA with n · n′ states and m ·m′ stack symbols accepting L(A) ∩ L(A′), and (ii) a
PS-NVPA with O(|ΣPS | · 2n

2) states and O(|ΣPS |2 · 2n
2) stack symbols accepting ΠPS \ L(A).

We now extend in a natural way the semantics of the HS modalities 〈B〉, 〈B〉, 〈E〉, 〈E〉 to
languages L of words over the pushdown alphabet ΣPS , i.e. we interpret the 〈B〉, 〈B〉, 〈E〉,
〈E〉 modalities as operators over languages on ΣPS . The translation of nested BHS formulas
into PS-NVPA is crucially based on the closure of PS-NVPA under such language operations.

For a computation-code w ∈ ΠPS encoding a PS -computation πw, we denote by PrefPS (w)
the set of computation-codes encoding the computations in Pref(πw), and by SuffPS (w) the
set of computation-codes encoding the computations in Suff(πw). Given a language L over
ΣPS , let 〈B〉PS (L), 〈E〉PS (L), 〈B〉PS (L), 〈E〉PS (L) be the languages over ΣPS defined as follows:

〈B〉PS (L) = {w ∈ ΠPS | PrefPS (w) ∩ L 6= ∅};
〈E〉PS (L) = {w ∈ ΠPS | SuffPS (w) ∩ L 6= ∅};
〈B〉PS (L) = {w ∈ ΠPS | ∃w′ ∈ ΠPS ∩ L such that w ∈ PrefPS (w′)};
〈E〉PS (L) = {w ∈ ΠPS | ∃w′ ∈ ΠPS ∩ L such that w ∈ SuffPS (w′)}.

We show that PS-NVPA are closed under the above language operations. We start with
the prefix operator 〈B〉PS and the suffix operator 〈E〉PS .

I Proposition 8 (Closure under 〈B〉PS and 〈E〉PS). Given a PS-NVPA A with n states and m
stack symbols, one can construct in polynomial time a PS-NVPA with O(n · |ΣPS |) states and
O(m · |ΓPS |) stack symbols accepting 〈B〉PS (L(A)) (resp., 〈E〉PS (L(A))).

L. Bozzelli, A. Montanari, and A. Peron 33:11

Proof. Let us consider the suffix operator 〈E〉PS (the closure under 〈B〉PS is straightforward).
Let A be a PS -NVPA with set of states Q and stack alphabet Γ. We first construct an NVPA
A′ with O(|Q|) states and O(|Γ|) stack symbols accepting the set of words w over ΣPS such
that there is a non-empty proper prefix w′ of w over ΣPS \Qcall so that the last symbol of
w′ is in ΣPS \ ΓPS and umc(w′) · w′′ is accepted by A, where w′′ is the remaining portion
of w, i.e. w = w′ · w′′. Since A accepts only words in ΠPS , our encoding ensures that the
PS -NVPA accepting 〈E〉PS (L(A)) and satisfying the statement of the theorem is given by the
synchronous product of A′ with the PS-NVPA APS accepting ΠPS of Proposition 6.

We now illustrate the construction of the NVPA A′. Intuitively, A′ guesses a non-empty
proper prefix w′ of the given input w such that the last symbol of w′ is in ΣPS \ΓPS and checks
that there is an accepting run of A over umc(w′) · w′′, where w = w′ · w′′. The behaviour of
A′ is split in two phases. In the first phase, starting from an initial state of A, A′ simulates
the behaviour of A over the unmatched call part umc(w′) of the guessed prefix w′ of the
input. In the second phase, A′ simply simulates the behaviour of A over w′′ and accepts
if and only if A accepts. A′ keeps track in its (control) state of the current state of the
simulated run of A over umc(w′) · w′′. Whenever a call position ic is read along the guessed
prefix w′, A′ guesses that one of the following two conditions holds:

ic is a matched-call position in the guessed prefix w′: A′ pushes a special symbol # on
the stack, and the Q-component of the state remains unchanged. Moreover, in order to
ensure that the guess is correct, A′ exploits a flag mc. Intuitively, the flag mc marks the
current state iff the current input position has a caller whose matching return exists in
the guessed prefix w′. The transition function of A′ ensures that the flag is propagated
consistently with the guesses. In particular, on reading a call of w′ in a state marked
by mc, the flag mc is pushed onto the stack in order to be recovered on reading the
matching-return. The guesses are ensured to be correct by requiring that the second
phase can start only if the flag mc does not appear in the current state.
ic is an unmatched-call position in the guessed prefix w′: from the current state with
Q-component q, A′ guesses a push-transition q

c,push(γ)−→ q′ of A such that c is the
ΓPS -component of w′(ic), pushes γ on the stack and moves to a state whose Q-component
is q′. A′ ensures that in the first phase no symbol in Γ can be popped from the stack.

Note that in the first phase, on reading a non-call position, the Q-component of the state of
A′ remains unchanged. J

Next, we consider the prefix-converse operator 〈B〉PS and the suffix-converse operator
〈E〉PS . For an NVPA A and state q, Aq denotes the NVPA defined as A but with set of initial
states given by {q}. Given states q and p of A, a summary of A from q to p is a run of Aq
over some finite well-matched word leading to a configuration whose associated state is p. A
minimally well-matched word is a non-empty finite well-matched word w whose first position
is a call having as matching-return the last position of w. We denote by MR(ΣPS) the set of
words over ΣPS such that each return position has a matching call.

I Proposition 9 (Closure under 〈B〉PS and 〈E〉PS). Given a PS-NVPA A with n states and m
stack symbols, one can construct in polynomial time
1. a PS-NVPA with O(n2) states and O(n ·m) stack symbols accepting 〈B〉PS (L(A)), and
2. a PS-NVPA with 3n states and m stack symbols accepting 〈E〉PS (L(A)).

Proof. We focus on Property 1 (i.e. closure under 〈B〉PS). Let A be a PS-NVPA with set
of states Q and stack alphabet Γ. We first construct an NVPA A′ over ΣPS with O(|Q|2)
states and O(|Q||Γ|) stack symbols accepting the language 〈B〉(L(A)) := {w ∈ Σ∗PS | ∃w′′ ∈
L(A) such that w ∈ (Pref(w′′) ∪ {ε})}.

FSTTCS 2019

33:12 Interval Temporal Logic for Visibly Pushdown Systems

Starting from A′, one can trivially construct in linear time an NVPA A′′ over ΣPS accepting
the set of non-empty finite words v such that the last symbol of v is not in ΓPS and the word
obtained from v by replacing the last symbol of v with its QPS -component is accepted by A′.
Since A accepts only words in ΠPS , our encoding ensures that A′′ is a PS-NVPA accepting
〈B〉PS (L(A)), and the result follows. We describe now the construction of the NVPA A′
accepting 〈B〉(L(A)). Intuitively, given an input w ∈ Σ∗PS , A′ guesses a right-extension w ·w′
of w with w′ 6= ε and checks that there is an accepting run of A over w · w′. A′ simulates
the behaviour of A on the given input w. Additionally, whenever a call position ic occurs,
A′ guesses that one of the following conditions holds:

ic is a matched-call position of the input w: in order to ensure that the guess is correct, as
in the proof of Proposition 8, A′ carries in its state a flag mc that marks the current state
if the current input position has a caller whose matching return exists. The transition
function of A′ ensures that the flag is propagated consistently with the guesses and the
acceptance condition on finite words ensures that the guesses are correct.
ic is an unmatched call position both in the input w and in the guessed right-extension
w ·w′: in this case, A′ pushes the special symbol bad on the stack (the transition function
ensures that bad is never popped from the stack), and carries in the control state, by
means of an additional flag uc, the information that in the guessed right-extension w ·w′,
there are no unmatched return positions in w′.
ic is an unmatched call position in the input w but has matching return ir in the guessed
right-extension w · w′: in this case, A′ simulates the behavior of A by choosing from
the current state q a push transition q w(ic),push(γ)−→ q′ of A, and, additionally, guesses a
matching pop-transition p r,push(γ)−→ p′ of A associated with the guessed return position
ir. Then, A′ pushes the special symbol bad on the stack and moves to a state which keeps
track both of the next state q′ in the simulated run of A over w ·w′ and the state p (we call
summary state) associated with the guessed matching return position ir. Additionally, if
ic is the first guessed unmatched call position with matched return in w ·w′ (i.e., the infix
from ic to ir is the maximal minimally well-matched word containing the last position of
the input w), A′ chooses the matching pop-transition p r,push(γ)−→ p′ in such a way that
for the target state p′, (L(Ap′) \ {ε}) 6= ∅ if the flag uc does not mark the current state
(i.e., every call in w has a matching return in w · w′), and (L(Ap′) \ {ε}) ∩MR(ΣPS) 6= ∅
otherwise (w′ has no unmatched return positions). By using the stack, the summary state
p is propagated along the maximal abstract path of w from position ic + 1. Whenever
a new call îc occurs, then either îc has a matched return in the input w, or a matching
return îr in the guessed right-extension w · w′. In the first case, A′ pushes the summary
state p onto the stack to recover it on reading the matching return. In the second case, A′

chooses from the current state q̂ a push transition q̂ w(̂ic),push(γ)−→ q̂′ of A and a matching
pop-transition p̂ r,push(γ)−→ p̂′ of A associated with the return position îr such that there
exists a summary of A from state p̂′ to the summary state p (such a summary corresponds
to the portion of the guessed run of A over w · w′ associated with the infix from position
îr + 1 to position ir − 1). Then, A′ pushes the special symbol bad on the stack and moves
to a state which keeps track both of the next state q̂′ (main state) in the simulated run
of A and the new summary state p̂. When the input w is read, A′ accepts only if there is
summary of A from the current main state to the current summary state.

In case A′ guesses that every call in the input w is either matched in w, or unmatched
in the guessed right-extension w · w′, then A′ accepts only if for the final main state q,
(L(Aq) \ {ε}) 6= ∅ if no call has been guessed unmatched, and (L(Aq) \ {ε}) ∩MR(Σ) 6= ∅

L. Bozzelli, A. Montanari, and A. Peron 33:13

otherwise. By standard results, given states p and q of A, checking whether there is a
summary from p to q (resp., (L(Aq) \ {ε}) 6= ∅, resp., (L(Aq) \ {ε}) ∩MR(ΣPS) 6= ∅) can be
done in polynomial time. Hence, A′ can be constructed in polynomial time. J

We can now establish the main result of this paper.

I Theorem 10. Given a VPS PS and a nested BHS formula ψ, one can construct a PS-NVPA
accepting the words encoding the computations π of PS s.t. KPS , π |= ψ. Moreover, the VPMC
problem for nested BHS (resp., nested BHSlin) is decidable with a non-elementary complexity.

Sketch of proof. We can easily show that nested BHSlin can be translated in linear-time into
FOµ. Hence, by [6], given a nested BHSlin formula θ, one can construct an NVPA A of size
non-elementary in the size of θ accepting the words v over ΣAP such that v |=n θ. Starting
from A, one can easily construct a PS -NVPA A′ accepting the set of words over ΣPS encoding
the computations π of PS such that KPS , π |=n θ. Hence, the first part of the theorem holds
for nested BHSlin. Thus, since an arbitrary nested BHS formula can be seen as a nested
HS formula whose atomic formulas are nested BHSlin formulas, and being non-emptiness
of NVPA solvable in polynomial time, the first part of the theorem and non-elementary
decidability of the considered problem easily follow from the result for nested BHSlin and
Propositions 7–9. For the non-elementary lower-bound, we show that the result already holds
for finite model-checking against BHSlin. The proof is by a polynomial-time reduction from
the universality problem for star-free regular expressions built from union, concatenation,
and negation. This problem is known to have a non-elementary complexity [27]. J

5 Concluding remarks

We have introduced and proved decidable a branching-time context-free logical framework for
visibly pushdown model-checking, based on an extension of standard HS under the state-based
semantics over Kripke structures and the homogeneity assumption. Future work will focus
on the problem of determining the exact complexity of the VPMC problem for nested HS
and its relevant fragments, and the complexity for nested BHS in terms of the nesting depth
of the binding modality. Another intriguing problem concerns the expressiveness of the
binding modality: in particular, is (nested) BHS more expressive than (nested) HS? We
are also motivated to study suitable generalizations of the homogeneity assumption about
the behavior of proposition letters over intervals. Finally, an interesting issue concerns the
expressiveness comparison of nested BHS and VP-µ [3].

References
1 J. F. Allen. Maintaining Knowledge about Temporal Intervals. Communications of the ACM,

26(11):832–843, 1983.
2 R. Alur, M. Arenas, P. Barceló, K. Etessami, N. Immerman, and L. Libkin. First-Order and

Temporal Logics for Nested Words. In Proc. 22nd LICS, pages 151–160. IEEE Computer
Society, 2007.

3 R. Alur, S. Chaudhuri, and P. Madhusudan. A fixpoint calculus for local and global program
flows. In Proc. 33rd POPL, pages 153–165. ACM, 2006.

4 R. Alur, K. Etessami, and P. Madhusudan. A Temporal Logic of Nested Calls and Returns.
In Proc. 10th TACAS, volume 2988 of LNCS, pages 467–481. Springer, 2004.

5 R. Alur and P. Madhusudan. Visibly Pushdown Languages. In Proc. 36th STOC, pages
202–211. ACM, 2004.

6 R. Alur and P. Madhusudan. Adding nesting structure to words. Journal of ACM, 56(3):16:1–
16:43, 2009.

FSTTCS 2019

33:14 Interval Temporal Logic for Visibly Pushdown Systems

7 C. Baier and J.P. Katoen. Principles of Model Checking. The MIT Press, 2008.
8 L. Bozzelli, A. Molinari, A. Montanari, and A. Peron. An in-Depth Investigation of Interval

Temporal Logic Model Checking with Regular Expressions. In Proc. 15th SEFM, LNCS 10469,
pages 104–119. Springer, 2017.

9 L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala. Model checking for fragments
of the interval temporal logic HS at the low levels of the polynomial time hierarchy. Inf.
Comput., 262(Part):241–264, 2018.

10 L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala. Interval vs. Point Temporal Logic
Model Checking: An Expressiveness Comparison. ACM Trans. Comput. Logic, 20(1):4:1–4:31,
2019.

11 L. Bozzelli and C. Sánchez. Visibly Linear Temporal Logic. J. Autom. Reasoning, 60(2):177–220,
2018.

12 D. Bresolin, D. Della Monica, A. Montanari, P. Sala, and G. Sciavicco. Interval temporal
logics over strongly discrete linear orders: Expressiveness and complexity. Theor. Comput.
Sci., 560:269–291, 2014.

13 D. Bresolin, D. Della Monica, A. Montanari, P. Sala, and G. Sciavicco. Decidability and
Complexity of the Fragments of the Modal Logic of Allen’s Relations over the Rationals.
Information and Computation, accepted for publication on February 20, 2019.

14 K. Chatterjee, D. Ma, R. Majumdar, T. Zhao, T.A. Henzinger, and J. Palsberg. Stack Size
Analysis for Interrupt-Driven Programs. In Proc. 10th SAS, LNCS 2694, pages 109–126.
Springer, 2003.

15 T. Chen, F. Song, and Z. Wu. Global Model Checking on Pushdown Multi-Agent Systems. In
Proc. 30th AAAI, pages 2459–2465. AAAI Press, 2016.

16 E. A. Emerson and J. Y. Halpern. “Sometimes” and “not never” revisited: on branching
versus linear time temporal logic. Journal of the ACM, 33(1):151–178, 1986.

17 J. Y. Halpern and Y. Shoham. A Propositional Modal Logic of Time Intervals. Journal of the
ACM, 38(4):935–962, 1991.

18 A. Lomuscio and J. Michaliszyn. An Epistemic Halpern-Shoham Logic. In Proc. 23rd IJCAI,
pages 1010–1016, 2013.

19 A. Lomuscio and J. Michaliszyn. Decidability of model checking multi-agent systems against
a class of EHS specifications. In Proc. 21st ECAI, pages 543–548, 2014.

20 A. Lomuscio and J. Michaliszyn. Model Checking Multi-Agent Systems against Epistemic HS
Specifications with Regular Expressions. In Proc. 15th KR, pages 298–308. AAAI Press, 2016.

21 A. Molinari, A. Montanari, A. Murano, G. Perelli, and A. Peron. Checking interval properties
of computations. Acta Informatica, 53(6-8):587–619, 2016.

22 A. Molinari, A. Montanari, and A. Peron. Model checking for fragments of Halpern and
Shoham’s interval temporal logic based on track representatives. Inf. Comput., 259(3):412–443,
2018.

23 A. Montanari, G. Puppis, and P. Sala. A decidable weakening of Compass Logic based on
cone-shaped cardinal directions. Logical Methods in Computer Science, 11(4), 2015.

24 B. Moszkowski. Reasoning About Digital Circuits. PhD thesis, Dept. of Computer Science,
Stanford University, Stanford, CA, 1983.

25 A. Pnueli. The temporal logic of programs. In Proc. 18th FOCS, pages 46–57. IEEE, 1977.
26 I. Pratt-Hartmann. Temporal propositions and their logic. Artificial Intelligence, 166(1-2):1–36,

2005.
27 L. J. Stockmeyer. The complexity of decision problems in automata theory and logic. PhD

thesis, MIT, 1974.
28 Y. Venema. Expressiveness and Completeness of an Interval Tense Logic. Notre Dame Journal

of Formal Logic, 31(4):529–547, 1990.
29 I. Walukiewicz. Pushdown Processes: Games and Model Checking. In Proc. 8th CAV, pages

62–74, 1996.

Taming the Complexity of Timeline-Based
Planning over Dense Temporal Domains
Laura Bozzelli
University of Napoli “Federico II”, Napoli, Italy

Angelo Montanari
University of Udine, Udine, Italy

Adriano Peron
University of Napoli “Federico II”, Napoli, Italy

Abstract
The problem of timeline-based planning (TP) over dense temporal domains is known to be undecidable.
In this paper, we introduce two semantic variants of TP, called strong minimal and weak minimal
semantics, which allow to express meaningful properties. Both semantics are based on the minimality
in the time distances of the existentially-quantified time events from the universally-quantified
reference event, but the weak minimal variant distinguishes minimality in the past from minimality
in the future. Surprisingly, we show that, despite the (apparently) small difference in the two
semantics, for the strong minimal one, the TP problem is still undecidable, while for the weak
minimal one, the TP problem is just PSPACE-complete. Membership in PSPACE is determined
by exploiting a strictly more expressive extension (ECA+) of the well-known robust class of Event-
Clock Automata (ECA) that allows to encode the weak minimal TP problem and to reduce it to
non-emptiness of Timed Automata (TA). Finally, an extension of ECA+(ECA++) is considered,
proving that its non-emptiness problem is undecidable. We believe that the two extensions of ECA
(ECA+ and ECA++), introduced for technical reasons, are actually valuable per sé in the field of TA.

2012 ACM Subject Classification Computing methodologies→ Planning under uncertainty; Theory
of computation → Quantitative automata

Keywords and phrases Timeline-based planning, timed automata, event-clock automata

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.34

1 Introduction

Timeline-based planning (TP for short) is a promising approach to real-time temporal planning
and reasoning about executions under uncertainty [10, 11, 13, 14, 15, 16]. Compared to
classical action-based temporal planning [17, 28], TP adopts a more declarative paradigm
which focuses on the constraints that sequences of actions have to fulfil to reach a given goal.
In TP, the planning domain is modeled as a set of independent, but interacting, components,
each one identified by a state variable. The temporal behaviour of a single state variable
(component) is described by a sequence of tokens (timeline) where each token specifies a
value of the variable (state) and the period of time during which it takes that value. The
overall temporal behaviour (set of timelines) is constrained by a set of synchronization rules
that specify quantitative temporal requirements between the time events (start-time and
end-time) of distinct tokens. Synchronization rules have a very simple format: either trigger
rules, expressing invariants and response properties (for each token with a fixed state, called
trigger, there exist some tokens satisfying some mutual temporal relations), or trigger-less
ones, expressing goals (there exist some tokens satisfying some mutual temporal relations).
Notice that the way in which requirements are specified by synchronization rules corresponds
to the “freeze” mechanism in the well-known timed temporal logic TPTL [1], which uses the
freeze quantifier to bind a variable to a specific temporal context (a token in the TP setting).

© Laura Bozzelli, Angelo Montanari, and Adriano Peron;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 34; pp. 34:1–34:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.FSTTCS.2019.34
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 Taming Complexity of Timeline-Based Planning over Dense Temporal Domains

TP has been successfully exploited in a number of application domains, including space
missions, constraint solving, and activity scheduling (see, e.g., [4, 9, 12, 18, 23, 25]). A
systematic study of expressiveness and complexity of TP has been undertaken only very
recently in both the discrete-time and the dense-time settings [5, 6, 20, 21].

In the discrete-time case, the TP problem is EXPSPACE-complete, and expressive
enough to capture action-based temporal planning (see [20, 21]). Despite the simple format of
synchronization rules, the shift to a dense-time domain dramatically increases expressiveness
and complexity, depicting a scenario which resembles that of the well-known timed linear
temporal logics MTL and TPTL, under a pointwise semantics, which are undecidable in
the general setting [1, 26]. The TP problem in its full generality is indeed undecidable [6],
and undecidability is caused by the high expressiveness of trigger rules (if only trigger-less
rules are used, the TP problem is just NP-complete [8]). Decidability can be recovered by
imposing suitable syntactic/semantic restrictions on the trigger rules. In particular, two
restrictions are considered in [5]: (i) the first one limits the comparison to tokens whose start
times follow the start time of the trigger (future semantics of trigger rules); (ii) the second
one imposes that a non-trigger token can be referenced at most once in the timed constraints
of a trigger rule (simple trigger rules). Under these two restrictions, the TP problem is
decidable with a non-primitive recursive complexity [5] and can be solved by a reduction
to model checking of Timed Automata (TA) [2] against MTL over finite timed words, the
latter being a known decidable problem [27]. By removing either the future semantics or
the simple trigger rule restrictions, the TP problem turns out to be undecidable [6, 7].

Our Contribution. In this paper, without imposing any syntactic restriction to the format
of synchronization rules, we investigate an alternative semantics for the trigger rules in the
dense-time setting, which turns out to be still quite expressive and relevant for practical
applications, and has the main advantage of guaranteeing a reasonable computational
complexity. In the standard semantics of trigger rules, if there are many occurrences of
non-trigger tokens carrying the same specified value, say v, nothing forces the choice of a
specific occurrence. For instance, if the trigger token represents a prompt and the v-valued
token is a reaction to it, the chosen v-valued token is not guaranteed to be the first one
after issuing the prompt. In a reactive context, one is in general interested in relating an
issued prompt to the first response to it and not to an arbitrarily delayed one. A similar idea
is exploited by Event-Clock Automata (ECA) [3], a well-known robust subclass of Timed
Automata(TA) [2]. In ECA, each symbol a of the alphabet is associated with a recorder or
past clock, recording (at the current time) the time elapsed since the last occurrence of a,
and a predicting or future clock, measuring the time required for the next occurrence of a.

The alternative semantics of trigger rules is based on the minimality in the time distances
of the start times of existentially quantified tokens in a trigger rule from the start time of
the trigger token. In fact, the minimality constraint can be used to express two alternative
semantics: the weak minimal semantics, which distinguishes minimality in the past, with
respect to the trigger token, from minimality in the future, and the strong minimal semantics,
which considers minimality over all the start times (both in the past and in the future).
Surprisingly, this apparently small difference in the definitions of weak and strong minimal
semantics leads to a dramatic difference in the complexity-theoretic characterization of the TP
problem: while the TP problem under the strong minimal semantics is still undecidable, the
TP problem under the weak minimal semantics turns out to be PSPACE-complete (which
is the complexity of the emptiness problem for TA and ECA [2, 3]). PSPACE membership
of the weak minimal TP problem is shown by a non-trivial exponential-time reduction to

L. Bozzelli, A. Montanari, and A. Peron 34:3

non-emptiness of TA. To handle the trigger rules under the weak minimal semantics, we
exploit, as an intermediate step in the reduction, a strictly more expressive extension of
ECA, called ECA+. This novel extension of ECA is obtained by allowing a larger class of
atomic event-clock constraints, namely, diagonal constraints between clocks of the same
polarity (past or future) and sum constraints between clocks of opposite polarity. In [19],
these atomic constraints are used in event-zones to obtain symbolic forward and backward
analysis semi-algorithms for ECA, which are not guaranteed to terminate. We show that,
similar to ECA, ECA+ are closed under language Boolean operations and can be translated
in exponential time into equivalent TA with an exponential number of control states, but a
linear number of clocks. We also investigate an extension of ECA+, called ECA++, where the
polarity requirements in the diagonal and sum constraints are relaxed, and we show that the
nonemptiness problem for such a class of automata is undecidable. We believe that these
two original extensions of ECA, namely, ECA+ and ECA++, are interesting per sé, as they
shed new light on the landscape of event-clock and timed automata.

The paper is organized as follows. In Section 2, we recall the TP framework and we
introduce the strong and weak minimal semantics. In Section 3, we prove that the TP problem
under the strong minimal semantics is still undecidable. In Section 4, we introduce and
address complexity and expressiveness issues for ECA+ and ECA++. Moreover, by exploiting
the results for ECA+, we prove PSPACE-completeness of the weak minimal TP problem.
Conclusions provide an assessment of the work done and outline future research themes.

2 The TP Problem

In this section, we recall the TP framework as presented in [15, 20] and we introduce the
strong and weak minimal semantics. In TP, domain knowledge is encoded by a set of state
variables, whose behaviour over time is described by transition functions and constrained by
synchronization rules. We fix the following notation. Let N be the set of natural numbers,
R+ the set of non-negative real numbers, and Intv the set of intervals in R+ whose endpoints
are in N∪ {∞}. Given a finite word w over some alphabet (or, equivalently, a finite sequence
of symbols), |w| denotes the length of w and for all 0 ≤ i < |w|, w(i) is the i-th letter of w.

I Definition 1. A state variable x is a triple x = (Vx, Tx, Dx), where Vx is the finite domain
of the variable x, Tx : Vx → 2Vx is the value transition function, which maps each v ∈ Vx to
the (possibly empty) set of successor values, and Dx : Vx → Intv is the constraint function
that maps each v ∈ Vx to an interval.

A token for a variable x is a pair (v, d) consisting of a value v ∈ Vx and a duration d ∈ R+
such that d ∈ Dx(v). For a token t = (v, d), value(t) denotes the first component v of t.
Intuitively, a token for x represents an interval of time where the state variable x takes
value v. The behavior of the state variable x is specified by means of timelines which are
non-empty sequences of tokens π = (v0, d0) . . . (vn, dn) consistent with the value transition
function Tx, that is, such that vi+1 ∈ Tx(vi) for all 0 ≤ i < n. We associate to the i-th token
(0 ≤ i ≤ n) of the timeline π two punctual events: (i) the start point whose timestamp (start
time), denoted by s(π, i), is 0 if i = 0, and is given by

∑i−1
h=0dh otherwise, and (ii) the end

point whose timestamp (end time), denoted by e(π, i), is given by e(π, i) := s(π, i) + di.
Given a finite set SV of state variables, a multi-timeline of SV is a mapping Π assigning

to each state variable x ∈ SV a timeline for x.

I Example 2. Assume to have transactions (e.g database transactions) accessing a common
shared resource A for read/write operations. The resource A can be unlocked (unA),
read_locked (r_lA) or write_locked (w_lA). A state variable xA = (VA, TA, DA) with

FSTTCS 2019

34:4 Taming Complexity of Timeline-Based Planning over Dense Temporal Domains

unA

(0,∞)
r_lA

(m,M)
w_lA

(m,M)

iK

(0,∞)
rlK

(0, Tout)
wlK

(0, Tout)

ruK

(m,M)
wuK

(m,M)

Figure 1 State variables xA and xK .

VA = {unA, r_lA, w_lA} is used to describe the availability/locking of the resource during
time. The value transition function TA is represented as a graph in Figure 1 (left). Each
node is labelled by a value v and by the constraint DA(v). The constants m and M are
lower and upper bound, respectively, for the durations of read/write locking.
A state variable xK = (VK , TK , DK), with K ranging over transaction names, describes
the read/write locking requests issued by transaction K for the use of the resource A. A
transaction can be idle (iK), issuing a read or write lock for accessing the resource (rlK
or wlK , resp.), or reading or writing the resource (ruK or wuK , resp.). Therefore we have
VK = {iK , rlK , wlK , ruK , wuK}. An issued lock request can be accepted allowing the use of
the resource or refused. There is a timeout Tout for waiting the availability of the resource.
The value transition and constraint functions TK and DK are depicted in Figure 1 (right).

Synchronization rules. Fix a finite set SV of state variables. Multi-timelines of SV can
be constrained by a set of synchronization rules, which relate tokens, possibly belonging to
different timelines, through temporal constraints on the start/end-times of tokens (point
constraints) and on the difference between start/end-times of tokens (difference constraints).
The synchronization rules exploit an alphabet Σ of token names to refer to the tokens along
a multi-timeline, and are based on the notions of atom and existential statement.

An atom is either a clause of the form ev(o) ∈ I (point atom), or of the form ev(o) −
ev′(o′) ∈ I (difference atom), where o, o′ ∈ Σ, I ∈ Intv, and ev, ev′ ∈ {s, e}. Intuitively, an
atom ev(o) ∈ I asserts that the ev-time (i.e., the start-time if ev = s, and the end-time
otherwise) of the token referenced by o is in the interval I, while an atom ev(o)− ev′(o′) ∈ I
requires that the difference between the ev-time and the ev′-time of the tokens referenced by o
and o′, respectively, is in I. Formally, an atom is evaluated with respect to a Σ-assignment λΠ
for a given multi-timeline Π of SV which is a mapping assigning to each token name o ∈ Σ a
pair λΠ(o) = (π, i) such that π is a timeline of Π and 0 ≤ i < |π| (intuitively, (π, i) represents
the token of Π referenced by the name o). An atom ev(o) ∈ I (resp., ev(o)− ev′(o′) ∈ I) is
satisfied by λΠ if ev(λΠ(o)) ∈ I (resp., ev(λΠ(o))− ev′(λΠ(o′)) ∈ I).

An existential statement E is a statement of the form E := ∃o1[x1 = v1] · · · ∃on[xn = vn].C,
where C is a conjunction of atoms, oi ∈ Σ, xi ∈ SV , and vi ∈ Vxi for each i = 1, . . . , n. The
elements oi[xi = vi] are called quantifiers. A token name used in C, but not occurring in any
quantifier, is said to be free. Intuitively, the quantifier oi[xi = vi] binds the name oi to some
token in the timeline for variable xi having value vi. A Σ-assignment λΠ for a multi-timeline
Π of SV satisfies E if each atom in C is satisfied by λΠ, and for each quantified token name
oi, λΠ(oi) = (π, h) where π = Π(xi) and the h-th token of π has value vi. A multi-timeline
Π of SV satisfies E if there exists a Σ-assignment λΠ for Π which satisfies E .

L. Bozzelli, A. Montanari, and A. Peron 34:5

I Definition 3. A synchronization rule R for the set SV of state variables has the forms
(trigger rule) o0[x0 = v0]→ E1 ∨ E2 ∨ . . . ∨ Ek, (trigger-less rule) > → E1 ∨ E2 ∨ . . . ∨ Ek,
where o0 ∈ Σ, x0 ∈ SV , v0 ∈ Vx0 , and E1, . . . , Ek are existential statements. In trigger rules,
the quantifier o0[x0 = v0] is called trigger, and it is required that only o0 may appear free in
Ei (for i = 1, . . . , k). For trigger-less rules, it is required that no token name appears free.

Intuitively, a trigger o0[x0 = v0] acts as a universal quantifier, which states that for
all the tokens of the timeline for the state variable x0 having value v0, at least one of the
existential statements Ei must be true. Trigger-less rules simply assert the satisfaction of
some existential statement. Formally, the standard semantics of the synchronization rules is
defined as follows. A multi-timeline Π of SV satisfies a trigger-less rule R of SV if Π satisfies
some existential statement of R. Π satisfies a trigger rule R of SV with trigger o0[x0 = v0]
if for every position i of the timeline Π(x0) for x0 such that Π(x0)(i) = (v0, d), there is an
existential statement E of R and a Σ-assignment λΠ for Π such that λΠ(o0) = (Π(x0), i) and
λΠ satisfies E . Trigger-less are usually exploited to express initial conditions or the goals of
the problem. Trigger rules are useful to specify invariants and response requirements.

I Example 4. With reference to Example 2, we introduce synchronization rules to guarantee
that the shared resource A is accessed in mutual exclusion during writing. We first define
some shorthand for expressing conjunctions of atoms where o and o are token names:

during(o, o) := s(o) − s(o) ∈ [0,∞) ∧ e(o) − e(o) ∈ [0,∞) requires that the token
referenced by o occurs during the token referenced by o;
overlap(o, o) := e(o)− s(o) ∈ (0,∞) ∧

∧
ev∈{s,e} ev(o)− ev(o) ∈ (0,∞) asserts that the

o’s token does not start before the o’s token and crosses the end point of the o’s token.

The following first pair of trigger-less rules fix the initial conditions: the resource A is
initially unlocked and each transaction K is idle. The next trigger rule ensures that when a
transaction K reads the resource A, the resource is locked for reading. The last trigger rule
requires that when K writes A, there is a write locking token of A having the same temporal
window as the K-token.
> → ∃o[xA = unA]. s(o) ∈ [0, 0] and > → ∃o[xK = iK]. s(o) ∈ [0, 0];
o0[xK = ruK]→ ∃o[xA = r_lA].during(o, o0);
o0[xK = wuK]→ ∃o[xA = w_lA].during(o, o0) ∧ during(o0, o).

The two trigger rules above ensure the mutual exclusion among reads and writes of the
resource A by the same transaction K. The following rules are added to guarantee mutual
exclusion when distinct transactions K and H write A, i.e. we have to ensure that K and H
do not feature tokens of value wuK and wuH , respectively, with the same temporal window.

o0[xK = wuK]→
∨
s∈{iH ,wlH ,rlH}

(
∃o[xH = s].during(o, o0) ∨ ∃o[xH = s].during(o0, o)∨

∃o[xH = s].overlap(o0, o) ∨ ∃o[xH = s].overlap(o, o0)
)
.

Minimal semantics of trigger rules. In the following we define the variant of the semantics
for trigger rules newly proposed and investigated in this paper. It is obtained from the
standard semantics by additionally requiring that the given Σ-assignment λΠ selects for
each (existential) quantifier o[x = v] a token for variable x with value v whose start point
has a minimal time distance from the start point of the trigger. Actually, the constraint of
minimality can be used to express two alternative semantics: the weak minimal semantics
which distinguishes minimality in the past (w.r.t. the trigger token) from the minimality in
the future, and the strong minimal semantics which considers minimality over all the start
times (both in the past and in the future) of the tokens for a variable x and x-value v.

FSTTCS 2019

34:6 Taming Complexity of Timeline-Based Planning over Dense Temporal Domains

I Definition 5. Let o0 ∈ Σ. A Σ-assignment λΠ for a multi-timeline Π of SV is weakly
minimal w.r.t. o0 if for each o ∈ Σ with λΠ(o) = (π, i), the following holds:

minimality in the past: if s(π, i) ≤ s(λΠ(o0)) then there is no position ` along the timeline
π such that value(π(i)) = value(π(`)) and s(π, i) < s(π, `) ≤ s(λΠ(o0)).
minimality in the future: if s(π, i) ≥ s(λΠ(o0)) then there is no position ` along the
timeline π such that value(π(i)) = value(π(`)) and s(π, i) > s(π, `) ≥ s(λΠ(o0)).

A Σ-assignment λΠ for Π is strongly minimal w.r.t. o0 if for each o ∈ Σ with λΠ(o) =
(π, i), there is no position ` along the timeline π such that value(π(i)) = value(π(`)) and
|s(π, `)− s(λΠ(o0))| < |s(π, i)− s(λΠ(o0))|.

The weak minimal (resp., strong minimal) semantics of the trigger rules is obtained from
the standard one by imposing that the considered Σ-assignment λΠ is weakly minimal (resp.,
strongly minimal) w.r.t. the trigger token o0.

Note that we consider start points of tokens for expressing minimality. Equivalent
semantics can be obtained by considering end points of tokens instead.

With reference to Example 4, we observe that, due to the constraints during and overlap,
the weak minimal semantics for the considered trigger rules corresponds to the standard one.

Domains and plans. A TP domain D = (SV,R) is specified by a finite set SV of state
variables and a finite set R of synchronization rules modeling their admissible behaviors. A
weak (resp., strong) minimal plan of D is a multi-timeline of SV satisfying all the rules in R
under the weak (resp., strong) minimal semantics of trigger rules. The weak (resp. strong)
minimal TP problem is checking given a domain D, whether there is a weak (resp. strong)
minimal plan of D. We also consider the discrete-time versions of the previous problems,
where the durations of the tokens in a plan are restricted to be natural numbers.
I Assumption 6 (Strict time monotonicity). In the following, for simplifying the technical
presentation of some results, without loss of generality, we assume that given a state variable
x = (Vx, Tx, Dx), the duration of a token for x is never zero, i.e., for each v ∈ Vx, 0 /∈ Dx(v).

3 Undecidability of the strong minimal TP problem

In this section, we establish the negative result for the strong minimal semantics by a
polynomial-time reduction from the halting problem for Minsky 2-counter machines [24].
The key feature in the reduction is the possibility to express for a given value v, a temporal
equidistance requirement w.r.t. the start point of the trigger token for the start points of the
last token before the trigger with value v and the first token after the trigger with value v.

I Theorem 7. The strong minimal TP problem is undecidable even in the discrete-time
setting.

Proof. A nondeterministic Minsky 2-counter machine is a tuple M = (Q, qinit, qhalt,∆),
where Q is a finite set of (control) locations, qinit ∈ Q is the initial location, qhalt ∈ Q is
the halting location, and ∆ ⊆ Q × L × Q is a transition relation over the instruction set
L = {inc, dec, zero_test} × {1, 2}. For a transition δ = (q, op, q′) ∈ ∆, we define from(δ) := q,
op(δ) := op, and to(δ) := q′. Without loss of generality we assume that:

for each transition δ ∈ ∆, from(δ) 6= qhalt and to(δ) 6= qinit, and
there is exactly one transition in ∆, denoted δinit, having as source location qinit.

An M -configuration is a pair (q, ν) consisting of a location q ∈ Q and a counter valuation
ν : {1, 2} → N. A computation of M is a non-empty finite sequence (q1, ν1), . . . , (qk, νk) of
configurations such that for all 1 ≤ i < k, there is some instruction opi = (tagi, ci) ∈ L, so

L. Bozzelli, A. Montanari, and A. Peron 34:7

that (qi, opi, qi+1) ∈ ∆ and: (i) νi+1(c) = νi(c) if c 6= ci; (ii) νi+1(ci) = νi(ci) + 1 if tagi = inc;
(iii) νi+1(ci) = νi(ci) − 1 and νi(ci) > 0 if tagi = dec; and (iv) νi+1(ci) = νi(ci) = 0 if
tagi = zero_test. The halting problem is to decide whether for a machine M , there is a
computation starting at the initial configuration (qinit, νinit), where νinit(1) = νinit(2) = 0,
and leading to some halting configuration (qhalt, ν) (it was proved to be undecidable in [24]).
To prove Theorem 7 we construct a TP instance DM = (SVM , RM) such that M halts iff
there exists a strong minimal discrete-time plan for DM .

We exploit a state variable xM for encoding the evolution of the machine M and
additional state variables for checking that the values of counters in the timeline for xM
are correctly updated. The domain VM of the state variable xM is given by VM := V∆ ×
{1L, 1R, 2L, 2R, [L,]L, [R,]R} where V∆ is the set of pairs (δ′⊥, δ), where δ′⊥ ∈ ∆∪{⊥}, δ ∈ ∆,
and to(δ′⊥) = from(δ) if δ′⊥ 6= ⊥, and δ = δinit otherwise. Intuitively, in the pair (δ′⊥, δ), δ
represents the transition currently taken by M from the current non-halting configuration C,
while δ′⊥ is ⊥ if C is the initial configuration, and δ′ represents the transition exploited by
M in the previous computational step otherwise.

A configuration C = (q, ν) of M is encoded by the timelines πC (configuration codes) of
length 9 for the state variable xM illustrated in the following figure, where v ∈ V∆ (called
V∆-value of πC) is of the form (δ′⊥, δ) such that from(δ) = q. Note that the configuration

(v, 1L) (v, [L)

ν(1) + 1

(v, 2L)

1

(v,]L)

ν(2) + 1

(v, [R)

1

(v, 2R)

1

(v,]R)

ν(2) + 1

(v, 1R)

1

(vnew, 1L)

ν(1) + 1

Left Part Right Part

code πC is subdivided in two parts. In the left part (resp., right part), the encoding of
counter 1 (resp., 2) precedes the encoding of counter 2 (resp., 1). The value ν(1) of counter 1
is encoded by the duration, which is ν(1) + 1, of the counter token with value marked by
1L in the left part, and the counter token with value marked by 1R in the right part, and
similarly for counter 2. The four tokens with values marked by [L,]L, [R, and]R, respectively,
are called tagged tokens and their duration is always 1: they are used to check by trigger
rules (under the strong minimal semantics) that increment and decrement M -instructions
are correctly encoded. Moreover, we require that the configuration code πC satisfies the
following additional requirement (V∆-requirement), with v = (δ′⊥, δ) and δ = (q, op, q′):

vnew = v if to(δ) = qhalt, and vnew is of the form (δ, δ′′) otherwise (consecution);
if δ = δinit then the counter tokens have duration 1;
if op = (dec, c) (resp., op = (zero_test, c)), then the durations of the counter tokens with
values (v, cL) and (v, cR) are greater than 1 (resp., are equal to 1).

A pseudo-configuration code is defined as a configuration code but the durations of the
counter tokens are arbitrary with the restriction that the V∆-requirement is fulfilled.

By construction and the assumption onM , we can easily define a trigger-less rule Rinit,halt
and define the transition and constraint function of xM in such a way that the timelines
of xM satisfying Rinit,halt (called pseudo-computation codes) are the sequences of the form
π0 · · ·πn such that: (i) πi · πi+1(0) and πn are pseudo-configuration codes for all 0 ≤ i < n,
(ii) if n > 0 (resp., n = 0), the V∆-value of π0 · π1(0) (resp., π0) is (⊥, δinit) (initialization),
and (iii) the V∆-value of πn is of the form (δ′⊥, δ) such that to(δ) = qhalt (halting).

We now consider the crucial part of the reduction which has to guarantee that along a
pseudo-computation code the counters are correctly encoded (i.e., the durations of the left
and right tokens for each counter in a pseudo-configuration code coincide) and are updated

FSTTCS 2019

34:8 Taming Complexity of Timeline-Based Planning over Dense Temporal Domains

accordingly to the M -instructions. Here, we focus on the increment instruction (inc, 1) for
counter 1. For this, we exploit trigger rules in conjunction with an additional state variable
x(inc,1) having domain Vcheck := {check1, check2, trigger ,⊥} and capturing the timelines π
such that the duration of each token is at least 1 and the untimed part of π is an arbitrary
non-empty word over Vcheck . Let πM be a pseudo-computation code, πC a non-initial pseudo-
configuration code of πM with V∆-value (δ′⊥, δ) such that δ′⊥ 6= ⊥ and op(δ′⊥) = (inc, 1)
(we denote by V(inc,1) the set of such V∆-values), and πCp

the pseudo-configuration code
preceding πC along πM . We need to ensure that the duration of the token for counter 1
(resp., 2) in the left part of πC is one plus the duration (resp., is the duration) of the token for
counter 1 (resp., 2) in the right part of πCp

. The proposed encoding ensures that the previous
requirement holds iff for each token tk1L

of πM with value in V(inc,1) × {1L}, the following
holds ((inc, 1)-requirement): for the last token marked by]R (resp., [R) preceding tk1L

and
the first token marked by [L (resp.,]L) following tk1L

, their start points have the same time
distance from the start point of tk1L

. Then, in order to enforce the (inc, 1)-requirement, we
first require that:

(*) the timelines πM and π(inc,1) of variables xM and x(inc,1), respectively, are synchronized,
i.e., they have the same length and for each position i, the start-times of the ith tokens
of πM and π(inc,1) coincide;

(**) for the timeline π(inc,1) for variable x(inc,1) (synchronized with πM), it holds that a token
has value trigger (resp., has value check1, resp., has value check2) iff the associated token
along πM has a value in V(inc,1) × {1L} (resp., in V∆ × {]R, [L}, resp., in V∆ × {[R,]L}).

Since the duration of a token is not zero, the previous two requirements (*)–(**) can be
easily expressed by trigger rules under the strong minimal semantics. Finally, we require that
for each trigger-token tktrigger along the timeline π(inc,1) for x(inc,1) and for each ` = 1, 2, the
start points of the last check`-token of π(inc,1) preceding tktrigger and the first check`-token
following tktrigger have the same time distance from the start point of tktrigger . By the strong
minimal semantics, this requirement can be expressed by the following two trigger rules,
where op = (inc, 1), which ensure that for the check`-tokens (` = 1, 2) whose start points
have the smallest time distance from the start point of the trigger, there is one preceding the
trigger and one following the trigger:

o[xop = trigger]→ ∃o1[xop = check1]∃o2[xop = check2].
∧
`=1,2 s(o)− s(o`) ∈ [0,∞)

o[xop = trigger]→ ∃o1[xop = check1]∃o2[xop = check2].
∧
`=1,2 s(o`)− s(o) ∈ [0,∞). J

4 Decidability of the weak minimal TP problem

In this section, we show that the weak minimal TP problem is decidable and PSPACE-
complete. The upper bound is obtained by an exponential-time reduction to nonemptiness
of Timed Automata (TA) [2]. In order to handle the trigger rules under the weak minimal
semantics, we exploit as an intermediate step an extension, denoted by ECA+, of the known
class of Event Clock Automata (ECA) [3]. The rest of the section is organized is follows.
We first shortly recall the class of Timed Automata (TA) [2]. Then, in Subsection 4.1, we
introduce and address complexity and expressiveness issues for the newly introduced class of
ECA+. Finally, in Subsection 4.2, we solve the weak minimal TP problem.

Let Σ be a finite alphabet. A timed word w over Σ is a finite word w = (a0, τ0) · · · (an, τn)
over Σ × R+ (τi is the time at which ai occurs) such that τi ≤ τi+1 for all 0 ≤ i < n

(monotonicity). The timed word w is also denoted by (σ, τ), where σ is the untimed word
a0 · · · an and τ = τ0 · · · τn. A timed language over Σ is a set of timed words over Σ.

L. Bozzelli, A. Montanari, and A. Peron 34:9

A TA over Σ is a tuple A = (Σ, Q,Q0, C,∆, F), where Q is a finite set of (control)
states, Q0 ⊆ Q is the set of initial states, C is a finite set of clocks, F ⊆ Q is the set of
accepting states, and ∆ is the finite set of transitions (q, a, θ,Res, q′) such that q, q′ ∈ Q,
a ∈ Σ, Res ⊆ C is a clock reset set, and θ is a clock constraint over C, that is a conjunction
of atomic formulas of the form c ∼ n (simple constraints) with c ∈ C, ∼∈ {<,≤,≥, >},
and n ∈ N. We denote by KA the maximal constant used in the clock constraints of A.
Intuitively, in a TA A, while transitions are instantaneous, time can elapse in a control state.
The clocks progress at the same speed and can be reset independently of each other when a
transition is executed, in such a way that each clock keeps track of the time elapsed since
the last reset. Moreover, clock constraints are used as guards of transitions to restrict the
behavior of the automaton. Formally, a configuration of A is a pair (q, val), where q ∈ Q and
val : C → R+ is a clock valuation for C assigning to each clock a non-negative real number.
For t ∈ R+ and a reset set Res ⊆ C, the valuations (val + t) and val[Res] are defined as: for
all c ∈ C, (val + t)(c) = val(c) + t, and val[Res](c) = 0 if c ∈ Res and val[Res](c) = val(c)
otherwise. For a clock constraint θ, val satisfies θ, written val |= θ, if for each conjunct c ∼ n
of θ, val(c) ∼ n.

A run r of A on a timed word w=(a0, τ0) · · · (an, τn) over Σ is a sequence of configurations
r = (q0, val0) · · · (qn+1, valn+1) starting at an initial configuration (q0, val0), with q0 ∈
Q0 and val0(c) = 0 for all c ∈ C, and such that for all 0 ≤ i ≤ n (we let τ−1 = 0):
(qi, ai, θ,Res, qi+1) ∈ ∆ for some constraint θ and reset set Res, (vali + τi − τi−1) |= θ and
vali+1 = (vali + τi − τi−1)[Res]. The run r is accepting if qn+1 ∈ F . The timed language
LT (A) of A is the set of timed words w over Σ s.t. there is an accepting run of A over w.

4.1 Extended Event-clock Automata

In this section, we introduce an extension, denoted by ECA+, of Event Clock Automata
(ECA) [3]. In ECA, clocks have a predefined association with the input alphabet symbols
and their values refer to the time distances from previous and next occurrences of input
symbols. ECA+ extend ECA by allowing a larger class of atomic event-clock constraints,
namely diagonal constraints (alias difference constraints) between clocks of the same polarity
and sum constraints between clocks of opposite polarity. Additionally, we consider the
extension of ECA+, denoted by ECA++, where the polarity requirements in the diagonal
and sum constraints are relaxed. We show that ECA+ are more expressive than ECA and
that they can be translated in exponential time into equivalent TA. Differently from ECA+,
ECA++ are a very powerful formalism having an undecidable nonemptiness problem.

Here, we adopt a propositional-based approach where the input alphabet is given by 2P
for a given set of atomic propositions. The set CP of event clocks associated with P is given
by CP :=

⋃
p∈P{

←−cp,−→cp}. Thus, for each proposition p ∈ P, there are two event clocks: the
event-recording or past clock ←−cp which records the time elapsed since the last occurrence of p
in the input word (if any), and the event-predicting or future clock −→cp which provides the
time required to the next occurrence of p (if any). A special value ⊥ is exploited to denote
the absence of a past (resp., future) occurrence of proposition p. Formally, the values of the
event clocks at a position i of a timed word w can be deterministically determined as follows.

I Definition 8 (Determinisitic clock valuations). An event-clock valuation is a mapping
val : CP 7→ R+ ∪ {⊥}, assigning to each event clock a value in R+ ∪ {⊥}. For a timed word
w = (σ, τ) over 2P and a position 0 ≤ i < |w|, the event-clock valuation valwi , specifying the
values of the event clocks at position i along w, is defined as follows for each p ∈ P:

FSTTCS 2019

34:10 Taming Complexity of Timeline-Based Planning over Dense Temporal Domains

valwi (←−cp) =

τi − τ` if there exists the unique 0 ≤ ` < i : p ∈ σ(`) and

∀k : ` < k < i⇒ p /∈ σ(k)
⊥ otherwise

valwi (−→cp) =

τ` − τi if there exists the unique i < ` < |σ| : p ∈ σ(`) and

∀k : i < k < `⇒ p /∈ σ(k)
⊥ otherwise

An ECA+ over 2P is a tuple A = (2P , Q,Q0, CP ,∆, F), where Q is a finite set of states,
Q0 ⊆ Q is a set of initial states, F ⊆ Q is a set of accepting states, and ∆ is a finite set of
transitions (q, a, θ, q′), where q, q′ ∈ Q, a ∈ 2P , and θ is an ECA+ event-clock constraint that
is a conjunction of atomic formulas of the following forms, where p, p′ ∈ P , ∼∈ {<,≤,≥, >},
and n⊥ ∈ N ∪ {⊥}: (i) ←−cp ∼ n⊥ or −→cp ∼ n⊥ (simple constraints); or (ii) ←−cp −←−cp′ ∼ n⊥
or −→cp −−→cp′ ∼ n⊥ (diagonal constraints between event clocks of the same polarity); or (iii)
←−cp +−→cp′ ∼ n⊥ (sum constraints between event clocks of opposite polarity). We denote by
KA the maximal constant used in the event-clock constraints of A. An ECA [3] is an ECA+

which does not use diagonal and sum constraints. We also consider the extension of ECA+,
denoted by ECA++, where the transition guards also exploit as conjuncts diagonal (resp.,
sum) constraints over event clocks of opposite polarity (resp., of the same polarity).

Let us fix an event-clock valuation val. We extend in the natural way the valuation val to
differences (resp., sums) of event clocks: for all c, c′ ∈ CP , val(c− c′) = val(c)− val(c′) and
val(c+ c′) = val(c) + val(c′) where each sum or difference involving ⊥ evaluates to ⊥. Given
an event-clock constraint θ, val satisfies θ, written val |= θ, if for each conjunct t ∼ n⊥ of θ,
either (i) val(t) 6= ⊥, n⊥ 6= ⊥, and val(t) ∼ n⊥, or (ii) val(t) = ⊥, n⊥ = ⊥, and ∼∈ {≤,≥}.

A run π of an ECA+ (resp., ECA++) A over a timed word w = (σ, τ) is a sequence of
states π = q0, . . . , q|w| such that q0 ∈ Q0 and for all 0 ≤ i < |w|, (qi, σ(i), θ, qi+1) ∈ ∆ for
some constraint θ such that valwi |= θ. The run π is accepting if q|w| ∈ F . The timed language
LT (A) of A is the set of timed words w over 2P s.t. there is an accepting run of A on w.

As an example, let us consider the ECA+ Ap, depicted below, whose set P of atomic
propositions consists of a unique proposition p. Evidently, Ap accepts the set of timed words

q0 q1
{p}

q2
{p}, ←−cp +−→cp = 1

q3
{p}

w of length 3 of the form ({p}, τ0), ({p}, τ1), ({p}, τ2) such that the time difference between
the first and last symbol is 1, i.e. τ2 − τ0 = 1. One can easily show that there is no ECA
accepting LT (Ap). Hence, we obtain the following result.

I Theorem 9. For a proposition p, there is a timed language over 2{p} which is definable by
ECA+ but is not definable by ECA. Hence, ECA+ are strictly more expressive than ECA.

Like ECA [3], we show that the class of timed languages accepted by ECA+ (resp., ECA++)
is closed under Boolean operations. The closure under complementation is crucially based
on the fact that event-clock values are determined solely by the input word.

I Theorem 10 (Closure properties). Given two ECA+ (resp., ECA++) A and A′ over 2P with
n and n′ states, respectively, one can construct ECA+ (resp., ECA++) A∪, A∩, and Ac such
that: (i) A∪ (resp., A∩) accepts LT (A) ∪ LT (A′) (resp., LT (A) ∩ LT (A′)) and has n+ n′

(resp., nn′) states and greatest constant max(KA,KA′); and (ii) Ac accepts the complement
of LT (A) and has 2O(n) states and greatest constant KA.

It is known that ECA can be translated in singly exponential time into equivalent TA [3].
We generalize this result to the class of ECA+.

L. Bozzelli, A. Montanari, and A. Peron 34:11

I Theorem 11 (From ECA+ to TA). Given an ECA+ A over 2P , one can construct in
exponential time a TA A′ over 2P such that LT (A′) = LT (A) and KA′ = KA. Moreover, A′
has n · 2O(p) states and O(p) clocks, where n is the number of A-states and p is the number
of event-clock atomic constraints used by A.

Sketched proof. Let A = (2P , Q,Q0, CP ,∆, F) be an ECA+ over 2P . The TA A′ accepting
LT (A) is essentially obtained from A by replacing each atomic event-clock constraint of A
with a set of standard clocks together with associated reset operations and clock constraints.
To remove simple event-clock constraints of A, we proceed as in [3]. Here, we focus on the
removal of diagonal constraints over event-predicting clocks. Let us consider a diagonal
predicting clock constraint η : −→cp−−→cp′ ∼ n⊥ of A where n⊥ ∈ N∪{⊥}. We consider the case
n⊥ 6= ⊥ (the other case being simpler). For handling the constraint η, the TA A′ exploits the
fresh standard clock cη and in case n⊥ = 0 and ∼ is ≥, the additional fresh standard clock ĉη.
The first (resp., second) clock is reset only if proposition p′ (resp., p) occurs in the current
input symbol. Assume that the prediction η is done by A at position i of the input word
for the first time. Then, the simulating TA A′ carries the obligation η in its control state in
order to check that there are next positions where p and p′ occur and τp − τp′ ∼ n⊥ holds,
where τp (resp., τp′) is the timestamp associated with the first next position ip > i (resp.,
ip′ > i) where p (resp., p′) occurs. Note that all the predictions η done by A before positions
ip and ip′ correspond to the same obligation. First, assume that the first next position ip′ > i

where p′ occurs strictly precedes position ip. In this case, on reading position ip′ , A′ resets
the clock cη and replaces the old obligation η with the updated obligation (η, p′) in order to
check that the constraint cη ∼ n⊥ holds when the next p occurs (i.e., at position ip). If a
new prediction η is done at a position jnew ≥ ip′ strictly preceding ip, the fresh obligation η
is carried in the control state together with the obligation (η, p′). We distinguish two cases:

p′ occurs in some position strictly following jnew and strictly preceding ip. Let j′ be
the smallest of such positions. On reading position j′, A′ replaces the old obligations
η and (η, p′) with (η, p′) and resets the clock cη iff η is a lower bound constraint, i.e.,
∼∈ {>,≥}. This is safe since if η is a lower bound, then the fulfillment of prediction η at
jnew guarantees the fulfillment of prediction η at position i. Vice versa, if η is an upper
bound, then the fulfillment of prediction η at i guarantees the fulfillment of prediction η′
at position jnew. Thus, when η is a lower bound, new obligations (η, p′) rewrite the old
ones, while when η is an upper bound, new obligations (η, p′) are ignored.
there is no position strictly following jnew and strictly preceding ip, where p′ occurs. In
this case, when ip is read, the old obligation η is replaced with the obligation (η, p) unless
p′ occurs at position ip (in the latter case, A′ simply checks that 0 ∼ n⊥).

In both the cases on reading position ip, the constraint cη ∼ n⊥ is checked and the
obligation (η, p′) is discarded. The case where ip′ = ip is trivial (on reading position i, A′
checks that 0 ∼ n⊥ holds). Finally, assume that ip strictly precedes i′p. The cases where
either c 6= 0 or ∼ is distinct from ≥ are easy to handle, since in these cases if η is a lower
bound (resp., upper bound), then the prediction η done at position i is not satisfied (resp., is
satisfied). Thus, we focus on the case where c = 0 and ∼ is ≥. On reading position ip, the
clock ĉη is reset and the old obligation η is replaced with the updated obligation (η, p) in
order to check that the constraint ĉη = 0 holds when the next p′ occurs (i.e., at position ip′).
In this case, new obligations (η, p) occurring before position ip′ are ignored, i.e., the clock ĉη
is not reset at such positions. Finally, in order to ensure that raised obligations about η are
eventually checked, the accepting states of A′ do not contain such obligations. J

FSTTCS 2019

34:12 Taming Complexity of Timeline-Based Planning over Dense Temporal Domains

Theorem 11 cannot be extended to the class of ECA++. In fact we show that for these
automata, the nonemptiness problem is undecidable. The undecidability proof is similar to
the one for the strong minimal TP problem.

I Theorem 12. The nonemptiness problem of ECA++ is undecidable even for the subclass
of ECA++ which use only simple atomic event-clock constraints and diagonal constraints over
event clocks of opposite polarity of the form ←−cp −−→cp′ = 0.

4.2 Solving the weak minimal TP problem

In this section, by exploiting the results of Section 4.1, we establish the following result,
where for a TP domain D = (SV,R), the maximal constant KD of D is the greatest integer
occurring in the atoms of R and in the constraint functions of the variables in SV .

I Theorem 13. Given a TP domain D = (SV,R), one can build in exponential time a TA AD
with 2O(N+

∑
x∈SV

|Vx|) states, O(N+ |SV |) clocks, and maximal constant O(KD), where N is
the overall number of quantifiers and atoms in the rules of R, such that LT (AD) 6= ∅ iff there
is a weak minimal plan of D. Moreover, the weak minimal TP problem is PSPACE-complete.

Sketched proof. For each x ∈ SV , let x = (Vx, Tx, Dx). In order to prove the first part of
Theorem 13, we first define an encoding of the multi-timelines of SV by means of timed
words over 2P for the set P of propositions given by {init}∪

⋃
x∈SV Px where for each x ∈ SV ,

Px = {x}× Vx×{s, e}× {0, 1}. We use the propositions in Px to encode the tokens tk along
a timeline for x: the start point and end point of tk are specified by propositions (x, v, s, b)
and (x, v, e, b), respectively, where b ∈ {0, 1} and v is the value of tk. The meaning of the
bit b ∈ {0, 1} is explained below. The additional proposition init ∈ P is used to mark the
first point of a multi-timeline code in order to check point atoms of trigger rules by ECA+

event-clock constraints. A code for a timeline for x is a timed word w over 2Px of the form
w = ({(x, v0, s, b0)}, τ0), ({(x, v0, e, b0)}, τ1) · · · ({(x, vn, s, bn)}, τn), ({(x, vn, e, bn)}, τn+1)

such that for all 0 ≤ i ≤ n: (i) vi+1 ∈ Tx(vi) if i < n; (ii) τ0 = 0 and τi+1 − τi ∈ Dx(vi);
(iii) let `i be the greatest index 0 ≤ j < i such that vj = vi if such an index exists, and let
`i := ⊥ otherwise. Then, bi = (b`i

+ 1) mod 2 if `i 6= ⊥, and bi = 0 otherwise. Intuitively,
for each value v ∈ Vx occurring along w, the associated bit acts as a modulo 2 counter which
is incremented at each visit of v along w (in the handling of the trigger rules under the weak
minimal semantics, it is used by ECA+ event-clock constraints to reference the end-event of a
token whose start-event (x, v, s) is the first occurrence of (x, v, s, b) for some b ∈ {0, 1} after
the current input position). The timed word w encodes the timeline for x of length n+ 1
given by π = (v0, τ1 − τ0) . . . (vn, τn+1 − τn). Note that since the duration of a token is not
zero, we have that τi+1 > τi for all 0 ≤ i ≤ n. A code for a multi-timeline for SV is obtained
by merging different timelines (one for each variable x ∈ SV), i.e., it is a non-empty timed
word w over 2P of the form w = (P0, τ0) · · · (Pn, τn) such that: (i) for all x ∈ SV , the timed
word obtained from (P0 ∩ Px, τ0) · · · (Pn ∩ Px, τn) by removing the pairs (∅, τi) is a code of a
timeline for x; (ii) init ∈ P0, init /∈ Pi for all 1 ≤ i ≤ n, and P0 ∩ Px 6= ∅ for all x ∈ SV .

The trigger rules in R under the weak minimal semantics can be handled by ECA+ over
2P : the start and end points of the chosen non-trigger tokens are mapped to last and next
occurrences of propositions in P w.r.t. the current input position (trigger) of a multi-timeline
encoding, while the atoms in the rules are mapped to ECA+ event-clock constraints. Note
that ECA+ cannot express trigger-less rules since the semantics of these rules does not
constraint the chosen punctual events to be closest as possible to a reference event.

L. Bozzelli, A. Montanari, and A. Peron 34:13

B Claim 1. One can construct in exponential time an ECA+ A∀ over 2P such that for each
multi-timeline Π of SV and encoding wΠ of Π, wΠ is accepted by LT (A∀) iff Π satisfies
the trigger rules in R under the weak minimal semantics. Moreover, A∀ has a unique state,
O(Na) atomic event-clock constraints, and maximal constant O(KD), where Na is the overall
number of atoms in the trigger rules in R.

For the trigger-less rules in R, the following result (Claim 2) has been established in [5]
for a slightly different encoding of the multi-timelines. The result can be easily adapted to
the encoding proposed here.

B Claim 2. One can construct in exponential time a TA A∃ over 2P accepting the codes
of the multi-timelines of SV which satisfy the trigger-less rules in R. Moreover, A∃ has
2O(Nq+

∑
x∈SV

|Vx|) states, O(|SV |+Nq) clocks, and maximal constant O(KD), where Nq is
the overall number of quantifiers in the trigger-less rules of R.

By Theorem 11 and Claim 1–2, the first part of Theorem 13 concerning the construction of
the TA AD for the TP domain D, directly follows. For the second part of Theorem 13, we
recall that non-emptiness of a TA A can be solved by an NPSPACE search algorithm in the
region graph of A which uses space logarithmic in the number of states of A and polynomial
in the number of clocks and in the length of the encoding of the maximal constant of A [2].
Thus, since AD can be built on the fly, and the search in the region graph of AD can be
done without explicitly constructing AD, membership in PSPACE of the weak minimal
TP problem follows. PSPACE-hardness is proved by a polynomial time reduction from a
domino-tiling problem for grids with rows of linear length [22]. J

5 Conclusions

We have addressed the TP problem in the dense-time setting under two novel semantics
of the trigger rules: the weak and strong minimal ones. Surprisingly, we have shown that,
despite the apparently small difference in the two semantics, the strong minimal one leads to
an undecidable TP problem, while the weak minimal one leads to a PSPACE-complete TP
problem. In order to solve the weak minimal TP problem, we have investigated two novel
and strictly more expressive extensions of ECA which we believe to be interesting per sé in
the field of TA. As for future work, we shall study the strong minimal TP problem when
just one or two state variables are used, whose decidability remains an open issue. Moreover,
we aim at investigating the TP problem in the controllability setting, where the values of
some variables are not under the system control, but depend on the environment.

References
1 R. Alur and T. A. Henzinger. A Really Temporal Logic. Journal of the ACM, 41(1):181–204,

1994.
2 Rajeev Alur and David L. Dill. A Theory of Timed Automata. Theoretical Computer Science,

126(2):183–235, 1994.
3 Rajeev Alur, Limor Fix, and Thomas A. Henzinger. Event-Clock Automata: A Determinizable

Class of Timed Automata. Theoretical Computer Science, 211(1-2):253–273, 1999.
4 J. Barreiro, M. Boyce, M. Do, J. Frank, M. Iatauro, T. Kichkaylo, P. Morris, J. Ong,

E. Remolina, T. Smith, and D. Smith. EUROPA: A Platform for AI Planning, Scheduling,
Constraint Programming, and Optimization. In Proc. of the 4th ICKEPS, 2012.

5 L. Bozzelli, A. Molinari, A. Montanari, and A. Peron. Complexity of Timeline-Based Planning
over Dense Temporal Domains: Exploring the Middle Ground. In Proc. of the 9th GandALF
2018, EPTCS 277, pages 191–205, 2018.

FSTTCS 2019

34:14 Taming Complexity of Timeline-Based Planning over Dense Temporal Domains

6 L. Bozzelli, A. Molinari, A. Montanari, and A. Peron. Decidability and Complexity of Timeline-
Based Planning over Dense Temporal Domains. In Proc. of the 16th KR, pages 627–628. AAAI
Press, 2018.

7 L. Bozzelli, A. Molinari, A. Montanari, and A. Peron. Undecidability of future timeline-based
planning over dense temporal domains. arxiv.org/abs/1904.09184, 2019. arXiv:1904.09184.

8 L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and G. J. Woeginger. Timeline-Based
Planning over Dense Temporal Domains with Trigger-less Rules is NP-Complete. In Proc. of
the 19th ICTCS, volume 2243 of CEUR Workshop Proceedings, pages 116–127, 2018.

9 A. Cesta, G. Cortellessa, S. Fratini, A. Oddi, and N. Policella. An Innovative Product for
Space Mission Planning: An A Posteriori Evaluation. In Proc. of the 17th ICAPS, pages
57–64, 2007.

10 A. Cesta, A. Finzi, S. Fratini, A. Orlandini, and E. Tronci. Flexible Timeline-Based Plan
Verification. In Proc. of the 32nd KI, LNCS 5803, pages 49–56. Springer, 2009.

11 A. Cesta, A. Finzi, S. Fratini, A. Orlandini, and E. Tronci. Analyzing Flexible Timeline-Based
Plans. In Proc. of the 19th ECAI, volume 215 of Frontiers in Artificial Intelligence and
Applications, pages 471–476. IOS Press, 2010.

12 S. Chien, D. Tran, G. Rabideau, S.R. Schaffer, D. Mandl, and S. Frye. Timeline-Based Space
Operations Scheduling with External Constraints. In Proc. of the 20th ICAPS, pages 34–41.
AAAI, 2010.

13 M. Cialdea Mayer and A. Orlandini. An Executable Semantics of Flexible Plans in Terms of
Timed Game Automata. In Proc. of the 22nd TIME, pages 160–169. IEEE Computer Society,
2015.

14 M. Cialdea Mayer, A. Orlandini, and A. Ubrico. A Formal Account of Planning with Flexible
Timelines. In Proc. of the 21st TIME, pages 37–46. IEEE Computer Society, 2014.

15 M. Cialdea Mayer, A. Orlandini, and A. Umbrico. Planning and Execution with Flexible
Timelines: a Formal Account. Acta Informatica, 53(6–8):649–680, 2016.

16 A. Cimatti, A. Micheli, and M. Roveri. Timelines with Temporal Uncertainty. In Proc. of the
27th AAAI, 2013.

17 M. Fox and D. Long. PDDL2.1: An Extension to PDDL for Expressing Temporal Planning
Domains. Journal of Artificial Intelligence Research, 20:61–124, 2003.

18 J. Frank and A. Jónsson. Constraint-based Attribute and Interval Planning. Constraints,
8(4):339–364, 2003.

19 G. Geeraerts, J.F. Raskin, and N. Sznajder. Event Clock Automata: From Theory to Practice.
In Proc. of the 9th FORMATS, LNCS 6919, pages 209–224. Springer, 2011.

20 N. Gigante, A. Montanari, M. Cialdea Mayer, and A. Orlandini. Timelines are Expressive
Enough to Capture Action-based Temporal Planning. In Proc. of the 23rd TIME, pages
100–109. IEEE Computer Society, 2016.

21 N. Gigante, A. Montanari, M. Cialdea Mayer, and A. Orlandini. Complexity of Timeline-Based
Planning. In Proc. of the 27th ICAPS, pages 116–124. AAAI Press, 2017.

22 D. Harel. Algorithmics: The spirit of computing. Wesley, 2nd edition, 1992.
23 A. K. Jónsson, P. H. Morris, N. Muscettola, K. Rajan, and B. D. Smith. Planning in

Interplanetary Space: Theory and Practice. In Proc. of the 5th AIPS, pages 177–186. AAAI,
2000.

24 M. L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, Inc., 1967.
25 N. Muscettola. HSTS: Integrating Planning and Scheduling. In Intelligent Scheduling, pages

169–212. Morgan Kaufmann, 1994.
26 J. Ouaknine and J. Worrell. On Metric Temporal Logic and Faulty Turing Machines. In Proc.

of the 9th FOSSACS, LNCS 3921, pages 217–230. Springer, 2006.
27 J. Ouaknine and J. Worrell. On the decidability and complexity of Metric Temporal Logic

over finite words. Logical Methods in Computer Science, 3(1), 2007.
28 J. Rintanen. Complexity of Concurrent Temporal Planning. In Proc. of the 17th ICAPS,

pages 280–287. AAAI, 2007.

http://arxiv.org/abs/1904.09184

Dynamics on Games: Simulation-Based
Techniques and Applications to Routing
Thomas Brihaye
Université de Mons, Mons, Belgium
thomas.brihaye@umons.ac.be

Gilles Geeraerts
Université libre Bruxelles, Brussels, Belgium
gigeerae@ulb.ac.be

Marion Hallet
Université de Mons, Mons, Belgium
Université libre Bruxelles, Brussels, Belgium
marion.hallet@umons.ac.be

Benjamin Monmege
Aix Marseille Univ, CNRS, LIS, Université de Toulon, France
benjamin.monmege@univ-amu.fr

Bruno Quoitin
Université de Mons, Mons, Belgium
bruno.quoitin@umons.ac.be

Abstract
We consider multi-player games played on graphs, in which the players aim at fulfilling their own
(not necessarily antagonistic) objectives. In the spirit of evolutionary game theory, we suppose that
the players have the right to repeatedly update their respective strategies (for instance, to improve
the outcome w.r.t. the current strategy profile). This generates a dynamics in the game which may
eventually stabilise to an equilibrium. The objective of the present paper is twofold. First, we aim
at drawing a general framework to reason about the termination of such dynamics. In particular, we
identify preorders on games (inspired from the classical notion of simulation between transitions
systems, and from the notion of graph minor) which preserve termination of dynamics. Second, we
show the applicability of the previously developed framework to interdomain routing problems.

2012 ACM Subject Classification Theory of computation → Algorithmic game theory

Keywords and phrases games on graphs, dynamics, simulation, network

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.35

Related Version A full version of the paper is available at [1], http://arxiv.org/abs/1910.00094.

Funding This article is based upon work from COST Action GAMENET CA 16228 supported by
COST (European Cooperation in Science and Technology).
Gilles Geeraerts: Supported by an ARC grant of the Fédération Wallonie-Bruxelles.
Marion Hallet: Supported by an FNRS grant and an UMONS grant of the Fonds Franeau Mobilité.
Benjamin Monmege: Partially supported by the DeLTA project (ANR-16-CE40-0007) and by ANR
project Ticktac (ANR-18-CE40-0015).

Acknowledgements We thank Timothy Griffin and Marco Chiesa for fruitful discussions.

1 Introduction

Games are nowadays a well-established model to reason about several problems in computer
science. In the game paradigm, several agents (called players) are assumed to be rational, and
interact in order to reach a fixed objective. As such, games have found numerous applications,

© Thomas Brihaye, Gilles Geeraerts, Marion Hallet, Benjamin Monmege, and Bruno Quoitin;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 35; pp. 35:1–35:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:thomas.brihaye@umons.ac.be
mailto:gigeerae@ulb.ac.be
mailto:marion.hallet@umons.ac.be
https://orcid.org/0000-0002-4717-9955
mailto:benjamin.monmege@univ-amu.fr
mailto:bruno.quoitin@umons.ac.be
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.35
http://arxiv.org/abs/1910.00094
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 Dynamics on Games: Simulation-Based Techniques and Applications to Routing

such as controller synthesis [14, 17] or network protocols [12]. In this paper, we are mainly
concerned about multi-player games played on graphs, in which n ≥ 2 players interact trying
to fulfil their own objectives (which are not necessarily antagonistic to the others); and where
the arena (defining the possible actions of the players) is given as a finite graph.

An example of such game is given in Figure 1, modelling an instance of an interdomain
routing problem which is typical of the Internet. In this case, two service providers v1 and
v2 want to route packets to a target node v⊥ through the links that are represented by
the graph edges. For economical reasons, v1 prefers to route the traffic to v⊥ through v2
(using path c1s2) instead of sending them directly to v⊥, and symmetrically for v2. (Assume
for instance that both v1 and v2 are located in Europe, and that v⊥ is in America. Then,
s1 and s2 are transatlantic links that incur a huge cost of operation for the origin nodes.)
Then, assume that, initially, v1 and v2 route the packets through s1 and s2 respectively, and
broadcast this information through the network. When v1 becomes aware of the choice of
v2, he could decide to rely on the c1 link instead, trying to route his packets through v2.
However, due to the asynchronous nature of the network, v2 could decide to route through
c2 before the new choice of v1 reaches it. Hence, the packets get blocked in a cycle c1c2c1 · · ·
and do not reach v⊥ anymore. Then, v1 and v2 could decide simultaneously to reverse to s1
and s2 respectively which brings the network to its initial state, where the same behaviour
can start again. Clearly, such oscillations in the routing policies must be avoided.

This simple example illustrates the main notions we will consider in the paper. We
study the notion of dynamics in games, which model the behaviour of the players when
they repeatedly update their strategy (i.e. their choices of actions) in order to achieve a
better outcome. Then, the main objectives of the paper are to draw a general framework to
reason about the termination of such dynamics and to show its applicability to interdomain
routing problems (as sketched above). We say that a dynamics terminates when the players
converge to an equilibrium, i.e. a state in which they have no incentive to further update their
respective strategies. Our framework is introduced in Section 3 and 4. It relies on notions
of preorders, in particular the simulation preorder [11]. Simulations are usually defined on
transition systems: intuitively, a system A simulates a system B if each step of B can be
mimicked in A. We consider two kinds of preorders: preorders defined on game graphs, i.e.
on the structure of the games; and simulation defined on the dynamics, which are useful
to reason about termination (indeed, if a dynamics D1 simulates a dynamics D2, and if D1
terminates, then D2 terminates as well). We show how the existence of a relation between
game graphs implies the existence of a simulation between the induced dynamics of those
games (Theorem 8, Theorem 9). This technique allows us to check the termination of the
dynamics using structural criteria about the game graph.

The motivation of this framework comes from several examples of problems in the
literature [7, 15, 9, 2] that are (sometimes implicitly) reduced to checking the termination
of a dynamics in a multi-player game, and where sufficient criteria are proposed that can
be expressed as the existence of a preorder between game graphs. We thus seek to unify
these results, hoping that our framework will foster new applications of the game model.
For instance, several sufficient conditions for termination in the network problem sketched
above consist in checking that the game graph does not contain a forbidden pattern [7]. This
containment can naturally be expressed as a preorder.

To this aim, we introduce, in Section 4 a preorder relation on game graphs, which is
inspired from the classical notion of graph minor [10]. Intuitively, a game graph G′ is a
minor of G if G′ can be obtained by deleting edges and vertices from G (under well-chosen
conditions that are compatible with the game setting). Then, the relation “is a minor of”
forms a preorder relation on game graphs and allows one to reason on the termination of
dynamics (see Theorem 8 and Theorem 9).

T. Brihaye, G. Geeraerts, M. Hallet, B. Monmege, and B. Quoitin 35:3

Finally, in Section 5, we achieve our second objective, by casting questions about Interdo-
main Routing into our framework. Interdomain Routing is the process of constructing routes
across the networks that compose the Internet. The Border Gateway Protocol (BGP), is the
de facto standard interdomain routing protocol. As sketched in the example above, it grows
a routing tree towards every destination network in a distributed manner. The example also
shows that the behaviour of the BGP is naturally modelled as a game, as already pointed out
before (see [5, 15] for example). In particular, checking for so-called safety (does the protocol
always converge to a stable state?) amounts to checking termination of some dynamics. In
Section 5, we formally express BGP in our game model; revisit a classical result of Sami et
al. that we re-prove within our framework; and finally obtain a new result regarding BGP:
we provide a novel necessary and sufficient condition for convergence in the restricted (yet
realistic) setting where the preferences of the nodes range on the next-hop in the route only.

Due to space constraints, full proofs and some examples can be found in [1].

2 Preliminaries

Graphs. A (directed) graph is a pair G = (V,E) where V is a set of states (or nodes),
E ⊆ V × V is the set of edges. A labelled graph is a tuple G = (V,E, L) where (V,E) is a
graph, and L : E → S is a function associating, to each edge e, a label L(e) from a set S of
labels. A (labelled) graph G is finite iff V is finite. A path in a (labelled) graph G is a finite
sequence v1v2 · · · vk or an infinite sequence v1v2 · · · vi · · · of states such that (vi, vi+1) ∈ E
for all i. We denote v1, the first state of a path π, by first(π). When π = v1v2 · · · vk is finite,
we let last(π) = vk. We let V⊥ = {v ∈ V | there is no v′ : (v, v′) ∈ E} be the set of terminal
states. We say that a path π is maximal iff: either π is infinite, or π is finite and last(π) ∈ V⊥.
Let π1 = v1 · · · vk and π2 = u1u2 · · · be two paths such that (vk, u1) ∈ E. Then, we write
π1π2 to denote the new path v1 · · · vku1u2 · · · , obtained by the concatenation of π1 and π2.

Following automata terminologies, a labelled graph G is said to be complete deterministic
if for every state v and label `, there is exactly one edge (v, v′) s.t. L(v, v′) = `.

Games played on graphs. An n-player game is a tuple G = (V,E, (Vi)1≤i≤n, (�i)1≤i≤n)
where players are denoted by 1, . . . , n and: (V,E) is a finite graph which forms the arena of
the game, with V⊥ the terminal states; (Vi)1≤i≤n is a partition of V \ V⊥ indicating which
player owns each (non-terminal) state of the game (v belongs to player i iff v ∈ Vi); and
�i describes the preference of player i as a reflexive, transitive and total (i.e. for all π, π′,
π �i π

′ or π′ �i π) binary relation defined on maximal paths which we call plays (the set of
all plays being denoted by Play). Intuitively, player i prefers play π to play π′ iff π′ �i π. We
can extract from �i a strict partial order relation by letting π ≺i π

′ if player i strictly prefers
play π′ to play π, i.e. if π �i π

′ and π′ 6�i π. We also write π ∼i π
′ if π �i π

′ and π′ �i π,
and say that π and π′ are equivalent for player i. From now on, we describe preferences by
mentioning plays of interest only (implicitly, all unmentioned plays are equivalent, and below
in the preference order). We also abuse notations and identify a game with its arena: so, we
can write, for instance, about the “paths of G”, meaning the paths of the underlying arena.

I Example 1. Consider the example of [7]. In our context, it is modelled with the 2-player
game GDIS = (V,E, (V1, V2), (�1,�2)) depicted on the left of Figure 1. The state v⊥ is
terminal. Player 1 owns V1 = {v1}, and player 2 owns V2 = {v2}. Let E = {c1, s1, c2, s2} be
such that si = (vi, v⊥) and c1 = (v1, v2), c2 = (v2, v1). Edges ci stand for “continue”, and
edges si stand for “stop”. For player 1, we let the preferences be (v1v2)ω ≺1 v1v⊥ ≺1 v1v2v⊥,
where πω denotes an infinite number of iterations of the cycle π. Symmetrically, player 2

FSTTCS 2019

35:4 Dynamics on Games: Simulation-Based Techniques and Applications to Routing

v1 v2

v⊥

c1

c2
s1 s2

c1c2 s1c2

c1s2 s1s2

c1c2 s1c2

c1s2 s1s2

Figure 1 Left: a 2-player game GDIS . Middle: GDIS〈 P1−→〉. Right: GDIS〈 PC−→〉.

has preferences (v2v1)ω ≺2 v2v⊥ ≺2 v2v1v⊥. In this case, all unmentioned plays are equally
worse for both players, in particular the plays that do not start in the state owned by the
player (this will always be the case in the routing application of Section 5).

Strategies and strategy profiles. The game is played by letting players move a token along
the edges of the arena. Note that, in our games, there is no designated initial state, so the
play can start in any state v. The choice of the initial state is not under the control of any
player. Then, the player who owns v picks an edge (v, w) and moves the token to w. It is
then the turn of the player who owns w to choose an edge (w, u) and so forth. The game
continues ad infinitum or until a terminal node has been reached, thereby forming a play. Of
course, each player will act in order to yield a play that is best according to his preference
order ≺i. Since no player controls the choice of the initial vertex, the players will seek to
obtain the best path considering any possible initial vertex (see the formal definitions below).
This will be important for the application of Interdomain Routing in Section 5, where the
games are networks and each state corresponds to a network node that wants to send a
packet to one of the terminal states.

Formally, a non-maximal path is called a history in the following, and the set of all
histories is denoted by Hist. We let Histi be the set of histories h such that last(h) ∈ Vi,
i.e. h ends in a state that belongs to player i. We further let player(h) = i iff h ∈ Histi.
The way players behave in the game is captured by the central notion of strategy, which
is a mapping from a history h to a successor state in the graph, indicating how the player
will play from h. A player i strategy is thus a function σi : Histi → V such that, for all
h ∈ Histi, (last(h), σi(h)) ∈ E. A strategy profile σ is a tuple (σi)1≤i≤n of strategies, one for
each player i. In the following, when we consider a strategy profile σ, we always assume
that σi is the corresponding strategy of player i. We also abuse notations, and write σ(h) to
denote the node obtained by playing the relevant strategy of σ from h, i.e. σ(h) = σi(h) with
i = player(h). We denote by Σi(G) and Σ(G) the sets of player i strategies and of strategy
profiles respectively (if the game G is clear from the context, we may drop it and write Σ and
Σi). As usual, given a strategy profile σ = (σi)1≤i≤n and a strategy σ′j for some player j, we
denote by (σ−j , σ

′
j) the strategy profile obtained from σ by replacing the player j strategy

σj with σ′j . Fixing a history h (or, in particular, an initial node) and a profile of strategies σ
is sufficient to determine a unique play that is called the outcome: we let Outcome (σ, h) be
the (unique) play hv1v2 · · · such that for all i ≥ 1: vi = σ(hv1 · · · vi−1).

Of particular interest are the positional strategies (sometimes called memoryless), i.e. the
set of strategies such that the action of the player depends on the last state of the history only.
That is, σi is positional iff for all pairs of histories h1 and h2 in Histi: last(h1) = last(h2)
implies σi(h1) = σi(h2). For a positional strategy profile σ, and a state v ∈ V , we write
σ(v) to denote the (unique) state σ(h) returned by σ for all h with last(h) = v. We denote
by ΣP(G) the set of strategy profiles composed of positional strategies only, and by ΣP

i (G)
the set of player i positional strategies. From all states v, applying a positional strategy

T. Brihaye, G. Geeraerts, M. Hallet, B. Monmege, and B. Quoitin 35:5

profile builds a play such that the very same decision is always taken at a particular state:
therefore, it either creates a finite path without cycles, or a lasso (infinite path that starts
with a finite path without cycle and continues with an infinite simple cycle, disjoint from the
finite path). We let PlayP be the set of all positional plays thus generated. In a game where
we are only interested in positional strategies (as this will be the case in the application to
routing, for instance), the preferences need only be defined on positional plays. Indeed, all
other plays will never be obtained as an outcome, and can be assumed to be worse than any
other positional play.

Game Dynamics. Let us now turn our attention to the central notion of dynamics. Intuit-
ively, a dynamics consists in letting players update their strategies according to some criteria.
For example, a player will want to update his strategy in order to yield a better outcome
according to his preferences. Therefore, a dynamics can be understood as a graph whose
states are the strategy profiles and whose edges correspond to possible updates.

I Definition 2. Let G be a game. A dynamics for G is a binary relation → ⊆ Σ× Σ over
the strategy profiles of G. Its associated graph is G〈→〉 = (Σ,→), where Σ is the set of states.
The terminal profiles σ of G〈→〉 (without outgoing edges) are called the equilibria of →.

We will focus on five dynamics, modelling certain rational behaviours of the players:
The one-step dynamics 1−→. It corresponds to the minimal update that can occur, where
only one player changes a single decision in order to improve the outcome from his point
of view: σ 1−→ σ′ iff there is a player i ∈ {1, . . . , n} and a history h ∈ Histi such that
(i) σ(h) 6= σ′(h); (ii) Outcome (σ, h) ≺i Outcome (σ′, h); and (iii) σ(h′) = σ′(h′) for all
h′ 6= h. Note that the equilibria of the one-step dynamics are exactly the so-called
subgame perfect equilibria (SPE) introduced in [16] (see also [13]).
The positional one-step dynamics P1−→. It ranges over positional strategy profiles only,
and corresponds to a single player updating his strategy from a single state. Formally,
σ

P1−→ σ′ (with σ, σ′ ∈ ΣP) iff there are a player i ∈ {1, . . . , n} and a state v ∈ Vi s.t. (i)
σ(v) 6= σ′(v); (ii) Outcome (σ, v) ≺i Outcome (σ′, v); and (iii) σ(v′) = σ′(v′) for all v′ 6= v.
The best reply positional one-step dynamics bP1−−→. We let σ bP1−−→ σ′ iff there exists a player
i ∈ {1, . . . , n} and a state v ∈ Vi such that the three properties of the positional one-step
dynamics are satisfied, and, in addition, the following best-reply condition is satisfied:
(iv) for all σ′′ 6= σ′ such that σ P1−→ σ′′ if player i is the one that has changed its strategy
between σ and σ′′, then: Outcome (σ′′, v) �i Outcome (σ′, v).
The positional concurrent dynamics PC−−→ and its best reply version bPC−−→. Several players
can update their strategies at the same time (in a “one step” fashion), but each individual
update would yield a better play when performed independently (in some sense, each
player performing an update “believes” he will improve). Formally, for σ, σ′ ∈ ΣP, we
let σ PC−−→ σ′ (respectively, σ bPC−−→ σ′) iff for all i ∈ P (σ, σ′), σ P1−→ (σ′i, σ−i) (respectively,
σ

bP1−−→ (σ′i, σ−i)).

Observe that other dynamics can be defined, corresponding to other behaviours of the
players. We focus on these five dynamics as they fit the applications we target in Section 5.
We have already said that the equilibria of 1−→ are SPEs, and we can also see from the
definitions that the equilibria of the four other dynamics coincide.

I Example 3. Let GDIS be the game from Example 1. The graphs GDIS〈 P1−→〉 and GDIS〈 PC−−→〉
are given in the middle and the right of Figure 1, where each strategy profile is represented
by the choices of the players from v1 and v2. For example, c1c2 is the strategy profile s.t.

FSTTCS 2019

35:6 Dynamics on Games: Simulation-Based Techniques and Applications to Routing

σ1(v1) = v2 and σ2(v2) = v1. Note that, in this example, P1−→ = bP1−−→ and PC−−→ = bPC−−→.
Moreover, we can see that GDIS〈 P1−→〉 has no infinite paths, contrary to GDIS〈 PC−−→〉. We then
say that the dynamics P1−→ terminates on GDIS, while PC−−→ does not terminate on GDIS.

The main problem we study is whether a given dynamics terminates on a certain game:
we say that a dynamics → terminates on the game G if there is no infinite path in the graph
G〈→〉 of the dynamics. As illustrated in the introduction (Example 1), such infinite paths
may be problematic in certain applications, like in the Interdomain Routing problem, where
an infinite path in the dynamics means that the routing protocol does not stabilise. We are
thus interested in techniques to check whether a dynamics terminates on a given game.

Sometimes, a dynamics does not terminate in general, but does when we restrict ourselves
to fair executions where all players will eventually have the opportunity to update their
strategies if they want to. Formally, given a dynamics →, an infinite path σ1 → σ2 → · · ·
of the graph G〈→〉 is not fair if there exists a player i, and a position k such that for all
` ≥ k, player i can switch his strategy in σ` (i.e. there is σ` → σ′ where σ`

i 6= σ′i), but for all
` ≥ k, player i keeps the same strategy forever (i.e. σ`

i = σk
i). We say that the dynamics →

fairly terminates for the game G if there are no infinite fair paths in the graph G〈→〉: this is
a weakening of the notion of termination seen before (see [1] for an example of a dynamics
that does not terminate but terminates fairly).

3 Simulations: preorders on the dynamics graphs

At this point of the paper, it is important to understand that a game is characterised by two
graphs: the game graph which gives its structure (see for example, Figure 1, left); and the
dynamics graph, which, given a fixed dynamics →, defines the semantics of the game as the
long-term behaviour of the players (Figure 1, middle and right). In the present section, we
study preorder relations on the dynamics graphs, relying on the classical notion of simulation
[11]. They are the key ingredients to reason about the termination of dynamics.

The domain of a binary relation R ⊆ A×B is the set of elements a ∈ A such that there
exists b ∈ B with (a, b) ∈ R. The co-domain or R is the set of elements b ∈ B such that
there exists a ∈ A with (a, b) ∈ R. We denote the domain of R by dom(R). The transitive
closure R+ of relation R is defined as (a, b) ∈ R+ iff there are a0 = a, a1, a2, . . . , an = b such
that for all i ∈ {0, 1, . . . , n− 1}, (ai, ai+1) ∈ R.

Partial simulations and simulations. We start with some weak version of the notion of
simulation, called partial simulation v. Intuitively, we say that a state u partially simulates
a state u′ (noted u′ v u) if for all successor states v′ of u′, the following holds: if v′ is in the
domain of the simulation, then there must be some state v simulating v′ such that v is a
successor of u. Formally, if G = (V,E) and G′ = (V ′, E′) are two graphs, a binary relation v
contained in V ′ × V is a partial simulation of G′ by G if: for all (u′, v′) ∈ E′ ∩ dom(v)2, for
all u ∈ V : u′ v u implies there is v ∈ V such that (u, v) ∈ E and v′ v v. Then, a simulation
v of G′ by G is a partial simulation of G′ by G s.t. dom(v) = V ′, i.e. all states of G′ are
simulated by some state of G. When a (partial) simulation v of G′ by G exists, we say that
G (partially) simulates G′. The following example highlights the difference between partial
simulations and simulations. Assume G with only one edge u → v and G′ with only two
edges u′ → v′1 and u′ → v′2. Then, the relation v s.t. u′ v u and v′1 v v (but v′2 6v v) is a
partial simulation (its domain is {u′, v′1} so it is not a problem that v′2 is not simulated) but
is not a simulation relation.

T. Brihaye, G. Geeraerts, M. Hallet, B. Monmege, and B. Quoitin 35:7

Simulations between dynamics graphs help in showing termination properties, as shown
by the following folk result:

I Proposition 4. Let G1 and G2 be two games, →1 and →2 be two dynamics on G1 and G2
respectively. If G1〈→1〉 simulates G2〈→2〉 and the dynamics →1 terminates on G1, then the
dynamics →2 terminates on G2.

Bisimulations and transitive closure. We can define other preorder relations on dynamics
graphs. A bisimulation is a simulation v such that the inverse relation v−1 is also a simulation.
We say that G = (V,E) and G′ = (V ′, E′) are bisimilar when there is a bisimulation between
them. As a corollary of the previous proposition, if G1〈→1〉 and G2〈→2〉 are bisimilar, then
→1 terminates on G1 if and only if →2 terminates on G2.

For termination purposes, it is also perfectly fine to simulate a single step of G′ in several
steps of G for instance. The following proposition stems from Proposition 4 and mixes the
notions of transitive closures and partial simulations.

I Proposition 5. Let G1 and G2 be two games, →1 and →2 be dynamics on G1 and G2 resp.
If G1〈→+

1 〉 simulates G2〈→2〉 and the dynamics →1 terminates on G1, then the dynamics
→2 terminates on G2.
If v is a partial simulation of G2〈→+

2 〉 by G1〈→+
1 〉, and the dynamics →1 terminates

on G1, then there are no paths in G2〈→2〉 that visit a state of dom(v) infinitely often.

4 Minors and domination: preorders on game graphs

Let us now introduce notions of preorders on game graphs. We introduce a new notion of graph
minor which consists in lifting the classical notion of graph minor to the context of n-player
games on graphs. To the best of our knowledge, this has not been done previously. This new
preorder on game graphs enables us to use in a simple context the results of Section 3 to reason
about termination of dynamics. Let us start with the formal definition. For that purpose,
we start by defining two transformations on game graphs. Let G = (V,E, (Vi)i, (�i)i) be an
n-player game. Then we can modify it by applying either of the following transformations
that yields a game G′ = (V ′, E′, (V ′i)i, (�′i)i).

Deletion of an edge (u, v) ∈ E. Then, V ′ = V , E′ = E \ {(u, v)}, (V ′i)i = (Vi)i and �′i is
s.t. π1 �′i π2 iff π1 �i π2 and π1, π2 are both paths of G′.
Deletion of a state v ∈ Vj (for a certain player j). This can happen in two different ways:
1. either when v is isolated, i.e. when (u, v) 6∈ E and (v, u) 6∈ E for all u ∈ V . Then,

V ′ = V \ {v}, E′ = E, V ′i = Vi for all i 6= j, V ′j = Vj \ {v}, and (�′i)i = (�i)i.
2. or when v has a unique outgoing edge (v, v′) and all predecessors u of v (i.e. (u, v) ∈ E)

do not have v′ as a successor (i.e. (u, v′) /∈ E). In this case, we have V ′ = V \ {v},
V ′i = Vi for all i 6= j and V ′j = Vj \ {v}, E′ = (E ∩ (V ′ × V ′)) ∪ {(u, v′) | (u, v) ∈ E},
and π′1 �′i π′2 iff π1 �i π2 where π1 and π2 are the plays of G obtained from π′1 and π′2
respectively, by replacing all occurrences of (u, v′) (for some u) by (u, v), (v, v′).

I Definition 6. Let G and G′ be two n-player games. Then, G′ is a minor of G if G′ can be
obtained from G by applying a sequence of edges and states deletions.

I Example 7. An example of minor is depicted in Figure 2. If the original preferences of the
player owning state v1 are v1v4v5v⊥ ≺ v1v3v⊥ ≺ v1v2v4v⊥ ≺ v1v2v4v5v⊥ (other plays being
equally worse for this player), then after the deletion of the edge (v4, v⊥), his preferences
become v1v4v5v⊥ ≺ v1v3v⊥ ≺ v1v2v4v5v⊥ (the path v1v2v4v⊥ does not exist in the new

FSTTCS 2019

35:8 Dynamics on Games: Simulation-Based Techniques and Applications to Routing

v1 v2

v3 v4

v⊥ v5

v1 v2

v3 v4

v⊥ v5

v1 v2

v3

v⊥ v5

v1 v2

v3

v⊥ v5

Figure 2 Minors obtained by first deleting the edge (v4, v⊥), then the state v4 (that has now a
unique successor v5), and then the edge (v1, v5).

v1 v2

v⊥v3

c1

c2s1 s2d

c1c2 s1c2 dc2

c1s2 s1s2 ds2

c1c2 s1c2 dc2

c1s2 s1s2 ds2

Figure 3 L: a 3-player game G with GDIS (Figure 1) as a minor. M: G〈 PC−→〉. R: G〈 bPC−−→〉.

graph and has simply been removed from the preferences). Next, the deletion of v4 is allowed
because it is a single outgoing edge v5, and neither v1 nor v2 nor v3 have an edge to v5.
After this deletion, the preferences become v1v5v⊥ ≺ v1v3v⊥ ≺ v1v2v5v⊥. Finally, after the
deletion of the edge (v1, v5), the preferences become v1v3v⊥ ≺ v1v2v5v⊥.

The deletion of a state therefore consists in squeezing each path of length 2 around it in
a single edge. In the example, the deletion of the state v4 consists in squeezing the paths
v1v4v5 in the edge v1v5, and the same for v2v4v5 and v3v4v5 in the edges v2v5 and v3v5
respectively. The condition (u, v′) /∈ E makes sure that this squeezing is not perturbed
by the presence of an incident edge (u, v′) that could have contradictory preferences. For
instance, in the previous example, we cannot remove vertex v2 in the minor obtained before
having removed edge (v1, v5): otherwise, we would obtain as preferences for the owner of v1
the chain v1v5v⊥ ≺ v1v3v⊥ ≺ v1v5v⊥ which is not possible.

We can link termination of dynamics on graph games to the presence of minors, in the
various dynamics introduced before: if we manage to find a game minor where the dynamics
does not terminate, then the original game does not terminate either.

I Theorem 8. Let G be a game, and G′ be a minor of G. If → ∈ { 1−→, P1−→, PC−−→}, then G〈→〉
simulates G′〈→〉. In particular, via Proposition 4, if the dynamics → terminates for G, then
it terminates for G′ too.

Sketch of proof. We prove the result for 1−→ ; the two other cases are similar. Since sim-
ulations are transitive relations, it is sufficient to only consider that G′ has been obtained
from G either by deleting a single edge, or by deleting a single node. Let us briefly detail
the case where G′ is obtained by the deletion of a state v. If h ∈ Hist(G) \ {h | last(h) = v},
we can construct a corresponding play f(h) of G′ by replacing a sequence uvv′ of h by
uv′. The conditions over the deletion of v implies that that f is indeed a bijection from
Hist(G) \ {h | last(h) = v} to Hist(G′). We then consider the following relation on strategy
profiles: σ′ v σ if for all histories h ∈ Hist(G)\{h | last(h) = v}, σ′(f(h)) = σ(h) if σ(h) 6= v,
and σ′(f(h)) = v′ otherwise; and show that v is a simulation (indeed a bisimulation). J

Notice that Theorem 8 suffers from three weaknesses. First, it does not hold for the best
reply dynamics bP1−−→ and bPC−−→, as shown by the following example. Consider again the game
GDIS from Example 1. Further, consider the game G in Figure 3 obtained from GDIS by adding

T. Brihaye, G. Geeraerts, M. Hallet, B. Monmege, and B. Quoitin 35:9

a third player, who owns a single node v3, such that the only edges to and from v3 are (v1, v3)
and (v3, v⊥), and where the preferences of player 1 are now v1v⊥ ≺1 v1v2v⊥ ≺1 v1v3v⊥
(observe that now, he prefers a path that traverses the new node v3 above all other paths).
Clearly, GDIS is a minor of G. Using Theorem 8, and since we know that GDIS〈 PC−−→〉 does
not terminate, we deduce that G〈 PC−−→〉 does not terminate either. Moreover, in this example,
GDIS〈 PC−−→〉 = GDIS〈 bPC−−→〉, so even with the best-response property, the dynamics does not
terminate in the minor. However, one can check that G〈 bPC−−→〉 terminates thanks to the
best-response property: Player 1 will not try to obtain path v1v2v⊥ (which leads to a cycle
in GDIS〈 PC−−→〉), but will choose a strategy going to v3 (see Figure 3, Right). So, GDIS is a
minor of G, s.t. bPC−−→ terminates for GDIS but not in G. The example can be adapted to bP1−−→.

A second weakness is that Theorem 8 does not apply to fair termination: the dynamics
→ could fairly terminate for the game G, but not for his minor G′. This could be the case if
we remove every choice (except one) for a certain player in the minor G′ creating a fair cycle
in G′ that would not be present in G.

Finally, the reciprocal of Theorem 8 does not hold: all dynamics terminate on the trivial
graph with a single state, but it is also minor of all games, including those where the dynamics
does not terminate.

This motivates the introduction of a stronger notion of graph minor, where it is allowed to
remove only the so-called dominated edges. Formally, let G be a game, let v ∈ Vi be a state,
and let e1 = (v, v1) and e2 = (v, v2) be two outgoing edges of v. We say that e1 is dominated
by e2 if for all positional strategies1 σ ∈ ΣP, Outcome (σ1, v) ≺i Outcome (σ2, v), where σ1
and σ2 coincide with σ except that σ1(v) = v1 and σ2(v) = v2. Intuitively, this means that
the player always prefers e2 to e1. Then, a game G′ is said to be a dominant minor of G if
it can be obtained from G by deleting states as before, but only deleting dominated edges.
Equipped with this notion, we overcome the three limitations of Theorem 8 we had identified:

I Theorem 9. Let G be a game and G′ be a dominant minor of G. If → ∈ { bP1−−→, bPC−−→}, then
we can build a simulation v of G′〈→〉 by G〈→〉 such that: (i) v−1 is a partial simulation of
G〈→〉 by G′〈→〉; and (ii) if there is a fair cycle in G then there is a fair cycle in G′.

In particular, the dynamics → fairly terminates for G if and only if it does for G′.

Now, Theorem 9 has some limitations too. We can show that it does not hold for
the “non-best-reply dynamics” P1−→ and PC−−→. Moreover, even when we consider best-reply
dynamics, the fairness condition remains crucial: we can exhibit (see [1]) a case where there
is a (non-fair) cycle in G but no cycles in G′.

5 Applications to interdomain routing convergence

As explained in the introduction, the Border Gateway Protocol (BGP) is the de facto standard
interdomain routing protocol. Its role is to establish routes to all the networks that compose
the Internet. BGP does this by growing a routing tree towards every destination network
in a distributed manner, as follows. In the initial state, only the router in the destination
network has a route towards itself that it advertises to its neighbours. Each time a router
receives an advertisement, it selects among the neighbour routes the one it considers best
and then advertises it to its neighbours. The process repeats until no router wants to change

1 We restrict our definition to the context of positional strategies, for the sake of brevity, but it can be
extended to the more general setting.

FSTTCS 2019

35:10 Dynamics on Games: Simulation-Based Techniques and Applications to Routing

its best route. To select its best route, a router first filters the received routes to retain only
permitted ones and ranks them according to its preference. Both the filtering and ranking of
routes by a router are decided based on the network’s routing policy. For example, a route
can be preferred over another because it offers better performance or costs less and it can be
filtered out because it is not economically viable.

As shown in the introductory example, the routing approach at the heart of BGP
has known convergence issues. It could fail to reach an equilibrium, entering a persistent
oscillatory behaviour or it could have no equilibrium at all. This is a well-studied problem
that has led to considerable work [7, 6, 5, 15, 3, 4, 8, 12]. In their seminal work [7], Griffin
et al. analysed the BGP convergence properties using a simplified model named the Stable
Path Problem (SPP). The main questions they ask are the following: (1) whether an SPP
instance is Solvable, i.e., whether it admits a stable state; (2) whether the stable state is
Unique; and (3) whether the system is Safe, i.e. it always converges to a stable state.

They also give a sufficient condition for an SPP instance to be safe: the absence of
a substructure named a Dispute Wheel. Later, Sami et al. [15] have shown that the
existence of multiple stable states is a sufficient condition to prevent safety (i.e. Safe =⇒
Unique). These results have later been refined by Cittadini et al. [3]. While the works just
cited focus on the definition of sufficient conditions for safety, another approach by Gao and
Rexford [6] achieves convergence by enforcing only local conditions on route preferences.

In this section, we show how SPP can be expressed in our n-player game model, therefore
Safety reduces to checking for termination of the game dynamics. We revisit the result of
Sami et al. by providing a new proof that relies on our framework. Then, we further exploit
this framework to obtain a new result about SPP: we provide a necessary and sufficient
condition for safety in a setting which is more restricted (yet still realistic) than in [7].

One target games. We first translate the SPP, as a combination of: (1) a reachability game
that models the network topology and routing policies; and (2) the best-reply positional
concurrent dynamics that models the asynchronous behaviour of the routing protocol.

Using this approach, the routing safety problem translates to a dynamics termination
problem.

We rely on a particular class of games, that we call one target games (1TG for short):
they have a unique target, the destination network, that all players want to reach. Each
player corresponds to a network in the Internet and as such owns a single state. The routing
policies of networks are modelled by the preference relations and by the distinction between
permitted and forbidden paths. The preferences are only over positional strategies (paths),
meaning that each network picks its next-hop independently of its predecessors. Permitted
and forbidden paths model the fact that only some paths are allowed by the networks routing
policies. Forbidden paths are also used to take into account additional restrictions that
cannot be directly modelled. In SPP, the paths are simple (no loops); and non-simple paths
are forbidden, for obvious reasons of efficiency. Moreover, in SPP, if at some point a network
reaches a forbidden path, he will inform his neighbours that he is not able to reach the target.
To model this, we impose a requirement that that if a path is permitted, all its suffixes are
also permitted.

Formally, let G = (V,E, (Vi)1≤i≤n, (�i)1≤i≤n) be an n-player game. For all 1 ≤ i ≤ n,
we assume that Pi is the set of permitted paths of player i. All these paths are finite paths of
the form vi · · · v⊥ ∈ Pi. We denote by Pc

i the set of forbidden paths, i.e. all the positional
plays starting in vi that are not in Pi (in particular, all infinite paths are forbidden). We let
P =

⋃
1≤i≤n Pi and Pc =

⋃
1≤i≤n Pc

i . Then, G is a one target game (1TG) if:

T. Brihaye, G. Geeraerts, M. Hallet, B. Monmege, and B. Quoitin 35:11

V⊥ = {v⊥}, and, for all players i: Vi = {vi};
for all π1 ∈ Pc

i , for all π2 ∈ Pi: π1 ≺i π2 (permitted is better than forbidden);
for all π1, π2 ∈ Pc

i : π1 ∼i π2 (all forbidden paths are equivalent);
for all π1, π2 ∈ Pi: π1 ∼i π2 implies that then there are v ∈ V and π̃1, π̃2 s.t. π1 = vivπ̃1
and π2 = vivπ̃2 (if two permitted paths are equivalent, they have the same next-hop);
for all π ∈ Pi, for all suffixes π̃ of π: π̃ ∈ P (all suffixes of permitted paths are permitted).

Our running example (Figure 1) is a 1TG. Since, in such a game, each player owns one
and only one state, we will abuse notation by confusing each state v ∈ V with its player. For
example, for v ∈ Vi, we will write ≺v instead of ≺i.

Sami et al: Termination implies a unique terminal node. Equipped with this definition,
we start by revisiting a result of Sami et al. saying that when an instance of SPP is safe, the
solution is unique. In our setting, this translates as follows:

I Theorem 10. Let G be a 1TG. If bPC−−→ fairly terminates for G (i.e. the corresponding
instance of SPP is safe), then it has exactly one equilibrium.

We (re-)prove this result in our setting. We rely on the notion of L-fair path that we
define now. For a labelled graph G = (V,E,L), we write v1 →a v2 iff L(v1, v2) = a (for
v1, v2 ∈ V). We further write v1 →A v2 with A = a1 · · · an iff v1 →a1 · · · →an

v2. Then, a
path π = v1v2 · · · is L-fair if all labels occur infinitely often in this path, i.e. for all a ∈ L,
for all k ≥ 1, ∃k′ ≥ k such that L(vk′ , vk′+1) = a. A cycle π is called constant if there exists
a state v such that π = vω. Moreover, a node is a sink if its only outgoing edges are self
loops. Then, we can show the following technical lemma:

I Lemma 11. Let G = (V,E, L) be a finite complete deterministic labelled graph satisfying:
for all v ∈ V , for all a, b ∈ L, there are A,B ∈ L∗ and ṽ ∈ V such that v →aA ṽ and
v →baB ṽ. If there exists a state from which we can reach two different sinks, then G has a
non constant L-fair cycle.

Thanks to this result, we can establish Theorem 10. We prove the contrapositive, as
follows. We assume that G〈 bPC−−→〉 has more than one equilibrium. We introduce a new
dynamics (taking into account the beliefs of the players about the other players’ strategies)
and we use Lemma 11, to show that G〈 〉 has an L-fair cycle. Then, we define a partial
simulation v of G〈 〉 by G〈 bPC−−→〉 and use Proposition 5 to conclude that G〈 bPC−−→〉 has a
cycle, which is fair. Hence, bPC−−→ does not fairly terminate.

Griffin et al: Dispute wheels. Another classical notion in the BGP literature is that of a
dispute wheel (DW for short), defined by Griffin et al. [7] as a “circular set of conflicting
rankings between nodes”. They have shown that the absence of a DW is a sufficient condition
for safety, which is of course of major practical interest to prove that BGP will converge in a
given network. Moreover, a DW is an instance of a forbidden pattern in a game, and we will
thus apply the results from Section 4.

We start by formally defining a DW. Let G = (V,E, (Vi)1≤i≤n, (�i)1≤i≤n) be a 1TG with
Pi the set of permitted paths of vi. A triple D = (U,P,H) is a DW of G if:
(i) U = (u1, . . . , uk) ∈ V k is a tuple of states; (ii) P = (π1, . . . , πk) is a tuple of permitted
paths such that for all 1 ≤ i ≤ k: πi ∈ Pui

, i.e., πi is a permitted path starting in ui

; (iii) H = (h1, . . . , hk) is a tuple of non-maximal paths such that for all 1 ≤ i ≤ k:
hiπ(i mod k)+1 ∈ Pui

; and (iv) for all 1 ≤ i ≤ k: πi ≺ui
hiπ(i mod k)+1.

FSTTCS 2019

35:12 Dynamics on Games: Simulation-Based Techniques and Applications to Routing

Intuitively, in a DW, all players ui (for i = 1, . . . , k) can chose between two paths to v⊥:
either a “direct” path πi, or an “indirect” path hiπ(i mod k)+1, which traverses u(i mod k)+1;
and where the latter is always preferred. So u1 prefers to reach through u2, u2 through u3,
and so on until uk who prefers to reach through u1. Such a conflict clearly yields loops where
the target is never reached. The game in Figure 1 is a typical example of game that has a
DW, if we let U = (v1, v2), P = (v1v⊥, v2v⊥) and H = (v1, v2). Indeed, v1v⊥ ≺1 v1v2v⊥ and
v2v⊥ ≺2 v2v1v⊥. Then, in our setting the sufficient condition of Griffin et al. [7] becomes:

I Theorem 12 ([7]). Let G be a 1TG. If G has no DW then bPC−−→ fairly terminates for G.

New result: strong dispute wheels for a necessary condition. It is well-known, however,
that the absence of a DW is not necessary (see for example Figure 3 for a game that has a
DW but where bPC−−→ terminates). As far as we know, finding a unique and necessary condition
for the fair termination of bPC−−→ in 1TGs is still an open problem.

Relying on our framework, we manage to obtain such a necessary and sufficient condition
in a restricted setting. We first strengthen the definition of DW by introducing the notion of
strong dispute wheel (SDW for short). We then obtain two original (as far as we know) results
regarding SDW. First, the absence of SDW is a necessary condition for the termination of
PC−−→ (i.e. we drop the best-reply and the fairness hypothesis). Second, the absence of an SDW
is also a sufficient condition in the restricted setting where the preferences of the players
range only on their next-hop. This means for example that u1 prefers to reach the target
through u2 rather than through u3, but does not mind the route u2 uses (as long as v⊥ is
reached). While this is a restriction, we believe that it is still meaningful in practice, since
networks usually have little control about the routes chosen by their neighbours.

We first define the notion of SDW. Let G be a 1TG and D = (U,P,H) be a DW of G.
Then, D is a strong dispute wheel (SDW) of G if:
1. for all 1 ≤ i ≤ k: all states ui ∈ U occur only in πi, hi and hi−1 (we identify h0 with hk)

and not in the other paths of P and H; and
2. for all πi, πj ∈ P , for all hk, h` ∈ H with k 6= `: πi, hk and h` share no states of V \ U ,

and if πi and πj share a state v of V \ U then πi and πj have the same suffix after v.
An important property of this definition is that, whenever a game G contains an SDW
D = (U,P,H), we can extract a minor G′ which is essentially an SDW restricted to the states
of U (formally, G′ contains an SDW D′ = (U ′, P ′, H ′) where U ′ = U is the set of states of
G′). We do so by first deleting from G all edges that do not occur in P and H; then all
v 6∈ U (which have at most one outgoing edge at this point), using the procedure described
in Section 4. Note that the two extra conditions in the definition of an SDW guarantee that
the deletion of all the states v 6∈ U can occur.

I Theorem 13. Let G be a 1TG. If PC−−→ terminates for G, then G has no SDW.

Proof. By Theorem 8, it is sufficient to prove that the dynamics PC−−→ does not terminate
in the minor game G′ extracted from the SDW (see above). We let, for all 1 ≤ i ≤ k,
σ1(ui) = u(i mod k)+1, and σ2(ui) = v⊥. Since the path resulting from σ1 does not visit v⊥,
by definition of an SDW, we have σ1

PC−−→ σ2
PC−−→ σ1. Hence G′〈 PC−−→〉 contains a cycle. J

Thus, the absence of an SDW is a necessary condition for the termination of PC−−→. We can
further show that this condition is sufficient in the restricted case where any two (permitted)
paths that have the same next-hop are equivalent. Formally, let G be a 1TG. We say that it

T. Brihaye, G. Geeraerts, M. Hallet, B. Monmege, and B. Quoitin 35:13

bPC−−→ does not fairly
terminate for G

PC−−→ does not fairly
terminate for G

PC−−→ does not
terminate for G

G has a DW G has a DW+ G has an SDW
Thm 12 [7] [7] Thm 13

Thm 14

Figure 4 Relationship between SDW and prior results: dashed arrow only holds for N1TG.

is a neighbour one target game (N1TG for short) if for all players i, for all permitted paths
π1, π2 ∈ Pi of player i: π1 = vivπ

′
1 and π2 = vivπ

′
2 implies that π1 ∼i π2. Then, we can show

the following, relying on Theorem 13 (and thus, also on Theorem 8):

I Theorem 14. Let G be a N1TG. Then, PC−−→ does not fairly terminate for G if and only if
G has an SDW.

Sketch of proof. In [7], Griffin et al. prove a stronger result than Theorem 12, showing that
if G〈 PC−−→〉 has a fair cycle, then G has a DW satisfying the following additional properties:
(1) for all ui ∈ U : j 6= i implies ui /∈ πj ; (2) for all v /∈ U , for all i, j: v /∈ πi ∩ hj ; and (3) for
all v ∈ πi ∩ πj : πi(v) = πj(v).

We call DW+ such DW. Then, the general schema of our proof is summarised in Figure 4:
first, we show that the existence of a DW+ implies an SDW by showing the required
additional properties. By Theorem 13, this implies G〈 PC−−→〉 has a cycle. Then, we conclude
by showing that this implies the existence of a fair cycle. J

Finding an SDW in practice. Because of the intricate definition of SDW, finding an SDW
in a real network may be challenging in practice. However, we have:

I Proposition 15. Let G be an N1TG. Then PC−−→ does not fairly terminate for G if and only
if GDIS is a minor of G.

6 Perspectives

We envision multiple directions of future work. First, we could consider games with imperfect
information. In the application to interdomain routing for example, this could be used to
model a malicious router that advertises lies to selected neighbours. Advertising a non-
existent or non-feasible path would allow for example an attacker to attract the packets of
an opponent’s network. Second, we could investigate a better way to model asynchronicity
(useful for the routing problem) than the concurrent dynamics we have studied here. Third,
we chose to model fairness via a qualitative property which ensures that all the players will
eventually have the opportunity to update their strategies if they want to. An alternative way
could be the use of probabilities: indeed, there are games for which a dynamics → does not
fairly terminate, but where an equilibrium is reached almost surely when interpreting G〈→〉
as a finite Markov chain (with uniform distributions). Finally, we could apply the dynamics
of graph-based games to other problems than interdomain routing, like load sensitive routing.

FSTTCS 2019

35:14 Dynamics on Games: Simulation-Based Techniques and Applications to Routing

References
1 T. Brihaye, G Geeraerts, M. Hallet, Benjamin Monmege, and B. Quoitin. Dynamics on Games:

Simulation-Based Techniques and Applications to Routing. CoRR, abs/1910.00094, 2019.
arXiv:1910.00094.

2 Thomas Brihaye, Gilles Geeraerts, Marion Hallet, and Stéphane Le Roux. Dynamics and
Coalitions in Sequential Games. In Patricia Bouyer, Andrea Orlandini, and Pierluigi San
Pietro, editors, Proceedings Eighth International Symposium on Games, Automata, Logics
and Formal Verification, GandALF 2017, Roma, Italy, 20-22 September 2017., volume 256 of
EPTCS, pages 136–150, 2017. doi:10.4204/EPTCS.256.10.

3 Luca Cittadini, Giuseppe Di Battista, Massimo Rimondini, and Stefano Vissicchio.
Wheel+Ring=Reel: the Impact of Route Filtering on the Stability of Policy Routing.
IEEE/ACM Transaction on Networking, 19(4):1085–1096, August 2011.

4 Matthew L. Daggitt, Alexander J. T. Gurney, and Timothy G. Griffin. Asynchronous
convergence of policy-rich distributed Bellman-Ford routing protocols. In Sergey Gorinsky
and János Tapolcai, editors, Proceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication, SIGCOMM 2018, Budapest, Hungary, August 20-25, 2018,
pages 103–116. ACM, 2018. doi:10.1145/3230543.3230561.

5 Alex Fabrikant and Christos H. Papadimitriou. The complexity of game dynamics: BGP
oscillations, sink equilibria, and beyond. In Shang-Hua Teng, editor, Proceedings of the
Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2008, San Francisco,
California, USA, January 20-22, 2008, pages 844–853. SIAM, 2008. URL: http://dl.acm.
org/citation.cfm?id=1347082.1347175.

6 Lixin Gao and Jennifer Rexford. Stable internet routing without global coordination.
IEEE/ACM Trans. Netw., 9(6):681–692, 2001. doi:10.1109/90.974523.

7 Timothy Griffin, F. Bruce Shepherd, and Gordon T. Wilfong. The stable paths problem
and interdomain routing. IEEE/ACM Trans. Netw., 10(2):232–243, 2002. URL: http:
//portal.acm.org/citation.cfm?id=508332.

8 Aaron D. Jaggard, Neil Lutz, Michael Schapira, and Rebecca N. Wright. Dynamics at the
Boundary of Game Theory and Distributed Computing. ACM Trans. Economics and Comput.,
5(3):15:1–15:20, 2017. doi:10.1145/3107182.

9 S. Le Roux and A. Pauly. A Semi-Potential for Finite and Infinite Sequential Games (Extended
Abstract). In Domenico Cantone and Giorgio Delzanno, editors, Proceedings of the Seventh
International Symposium on Games, Automata, Logics and Formal Verification, Catania, Italy,
14-16 September 2016, volume 226 of Electronic Proceedings in Theoretical Computer Science,
pages 242–256. Open Publishing Association, 2016. doi:10.4204/EPTCS.226.17.

10 László Lovász. Graph minor theory. Bull. Amer. Math. Soc. (N.S.), 43(1):75–86, 2006.
11 Robin Milner. Communication and concurrency. PHI Series in computer science. Prentice

Hall, 1989.
12 Noam Nisan, Tim Roughgarden, Éva Tardos, and Vijay V. Vazirani. Algorithmic Game Theory.

Cambridge University Press, New York, NY, USA, 2007.
13 Martin J. Osborne and Ariel Rubinstein. A course in game theory. MIT Press, Cambridge,

MA, 1994.
14 A. Pnueli and R. Rosner. On the Synthesis of a Reactive Module. In POPL, pages 179–190.

ACM Press, 1989.
15 Rahul Sami, Michael Schapira, and Aviv Zohar. Searching for Stability in Interdomain Routing.

In INFOCOM 2009. 28th IEEE International Conference on Computer Communications, Joint
Conference of the IEEE Computer and Communications Societies, 19-25 April 2009, Rio de
Janeiro, Brazil, pages 549–557. IEEE, 2009. doi:10.1109/INFCOM.2009.5061961.

16 Reinhard Selten. Spieltheoretische behandlung eines oligopolmodells mit nachfrägentragheit.
Zeitschrift für die gesamte Staatswissenschaft, 12:201–324, 1965.

17 Wolfgang Thomas. On the Synthesis of Strategies in Infinite Games. In STACS, pages 1–13,
1995.

http://arxiv.org/abs/1910.00094
https://doi.org/10.4204/EPTCS.256.10
https://doi.org/10.1145/3230543.3230561
http://dl.acm.org/citation.cfm?id=1347082.1347175
http://dl.acm.org/citation.cfm?id=1347082.1347175
https://doi.org/10.1109/90.974523
http://portal.acm.org/citation.cfm?id=508332
http://portal.acm.org/citation.cfm?id=508332
https://doi.org/10.1145/3107182
https://doi.org/10.4204/EPTCS.226.17
https://doi.org/10.1109/INFCOM.2009.5061961

Query Preserving Watermarking Schemes for
Locally Treelike Databases
Agnishom Chattopadhyay
Chennai Mathematical Institute, Chennai, India
UMI ReLaX, Indo-French joint research unit

M. Praveen
Chennai Mathematical Institute, Chennai, India
UMI ReLaX, Indo-French joint research unit

Abstract
Watermarking is a way of embedding information in digital documents. Much research has been
done on techniques for watermarking relational databases and XML documents, where the process
of embedding information shouldn’t distort query outputs too much. Recently, techniques have been
proposed to watermark some classes of relational structures preserving first-order and monadic second
order queries. For relational structures whose Gaifman graphs have bounded degree, watermarking
can be done preserving first-order queries.

We extend this line of work and study watermarking schemes for other classes of structures. We
prove that for relational structures whose Gaifman graphs belong to a class of graphs that have
locally bounded tree-width and is closed under minors, watermarking schemes exist that preserve
first-order queries. We use previously known properties of logical formulas and graphs, and build on
them with some technical work to make them work in our context. This constitutes a part of the
first steps to understand the extent to which techniques from algorithm design and computational
learning theory can be adapted for watermarking.

2012 ACM Subject Classification Security and privacy → Information accountability and usage
control; Theory of computation → Finite Model Theory; Information systems → Relational database
model

Keywords and phrases Locally bounded tree-width, closure under minors, first-order queries, water-
marking

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.36

Related Version A full version of the paper is available at https://arxiv.org/abs/1909.11369.

Funding M. Praveen: Partially supported by a grant from the Infosys foundation.

Acknowledgements The authors thank B. Srivathsan and K. Narayan Kumar for feedback on the
draft.

1 Introduction

Watermarking of digital content can be used to check intellectual property violations. The
idea is to embed some information, such as a binary string, in the digital content in such a
way that it is not easily apparent to the end user. If the legitimate owner of the digital content
suspects a copy to be stolen, they should be able to retrieve the embedded information, even
with limited access to the stolen copy, even if it has been tampered to remove the embedded
information. Here there are two opposing goals. One is to be able to embed large amount of
information. The other is to ensure that the embedding doesn’t distort the content too much.

© Agnishom Chattopadhyay and M. Praveen;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 36; pp. 36:1–36:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.FSTTCS.2019.36
https://arxiv.org/abs/1909.11369
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

36:2 Query Preserving Watermarking Schemes for Locally Treelike Databases

Table 1 EmployeeTable of Ex. 1.

(a) The original EmployeeTable.

FirstName City Salary

John Chennai 10,000
Arjun Coimbatore 20,000
Pooja Chennai 15,000
Neha Vellore 30,000
Padma Coimbatore 20,000

(b) A distorted EmployeeTable.

FirstName City Salary

John Chennai 10,001
Arjun Coimbatore 19,999
Pooja Chennai 14,999
Neha Vellore 30,000
Padma Coimbatore 20,001

There can be many ways to measure how much distortion is acceptable. In [1], embedding
is performed by flipping bits in numerical attributes while preserving the mean and variance
of all numerical attributes. There are other works that focus on the specific use of the digital
content: in [14], the digital content consists of graphs whose vertices represent locations and
weighted edges represent distance between locations. It is shown that information can be
embedded in such a way that the shortest distance between any two locations is not distorted
too much.

We study embedding information in relational databases such that the distortion on
query outputs is bounded.

I Example 1. The table EmployeeTable shown in Table 1(a) is an example of a database
instance of an organization’s record of employees.

Consider the following query parameterized by the variable x.

ψ(x) ≡ select FirstName,Salary from EmployeeTable where City=x

If we substitute the variable x with a particular city c, the above query lists the salaries of
individuals working in that city. Let total(c) be the sum of all salaries listed by the query
ψ(c). We want to hide data in EmployeeTable by distorting the Salary field. Let total′(c)
be the sum of all salaries listed by the query ψ(c) run on the distorted database. We say
that the distortion preserves the query ψ(x) if there is a constant B such that for any city c,
the absolute value of the difference between total(c) and total′(c) is bounded by B.

Assuming that we can distort each employee’s salary by at most 1 unit and we wish to
maintain the bound B to be 0, our options are the following: increase the salary of John
by 1 and decrease the salary of Pooja by 1 or vice-versa. Similarly for Arjun and Padma.
This gives us four different ways distort the data base. These distortions are designed to
preserve only the query ψ(x). If a different query is run on the same distorted databases, the
results may vary widely. Suppose the organization distributes the four distorted databases
among it’s branches. If a stolen copy of the database is found, the organization can run the
query ψ(x) on the stolen copy. By observing the salaries of John, Pooja, Arjun and Padma
and comparing them with the values from the original database, one can narrow down on
the branches where the leakage happened. The organization only needs to run the query
ψ(x) on the suspected stolen copy, just like any normal consumer of the database. This is
important since the entity possessing the stolen copy may not allow full access to its copy of
the database. We say a watermarking scheme is scalable if for larger databases, there are
larger number of ways to distort the database, while still preserving queries of interest.

In [13], meta theorems are proved regarding the existence of watermarking schemes for
classes of databases preserving queries written in classes of query languages. The Gaifman
graph of a database is a graph whose set of vertices is the set of elements in the universe

A. Chattopadhyay and M. Praveen 36:3

of the database. There is an edge between two elements if the two elements participate in
some tuple in the database. For databases with unrestricted structures, even simple queries
can’t be preserved; see [13, Theorem 3.6] and [12, Example 3]. Preserving queries written
in powerful query languages and handling databases with minimum restrictions on their
structure are conflicting goals. For databases whose Gaifman graphs have bounded degree,
first-order queries can be preserved [13]. It is also shown that for databases whose Gaifman
graphs are similar to trees, MSO queries can be preserved. The similarity of a graph to a tree
is measured by tree-width. For example, XML documents are trees and have tree-width 1.

Contributions. We prove that watermarking schemes exist for databases whose Gaifman
graphs belong to a class of graphs that have locally bounded tree-width and is closed under
minors, preserving unary first-order queries. Classes of graphs with bounded degree are
contained in this class. A graph G has locally bounded tree-width if it satisfies the following
property: there exists a function f such that for any vertex v and any number r, the sphere
of radius r around v induces a subgraph on G whose tree-width is at most f(r).

Why first-order logic? The pivotal Codd’s theorem [3] states that first-order logic is
expressively equivalent to relational algebra, and relational algebra is the basis of standard
relational database query languages.

Why locally bounded treewidth? Classes of graphs with locally bounded treewidth are
good starting points to start using techniques from algorithm design and computational
learning theory in other areas. Seese [18] proved that first-order properties can be decided in
linear time for graphs of bounded degree. Baker [2] showed efficient approximation algorithms
for some specific hard problems, when restricted to planar graphs. Eppstein [7] showed
that Baker’s technique continues to work in a bigger class of graphs: it suffices for the class
of graphs to have locally bounded tree-width and additionally, the class should be closed
under minors. Frick and Grohe [9] showed that on any class of graphs with locally bounded
tree-width, any problem definable in first-order logic can be decided efficiently1. For problems
definable in first-order logic, the classes of graphs for which efficient algorithms exist was
then extended to bigger and bigger classes: excluded minors [8], locally excluded minors
[5], bounded expansion, locally bounded expansion [6] and nowhere dense [11]. It is now
known that nowhere dense graphs are the biggest class of graphs for which there are efficient
algorithms for first-order definable problems [6, 15, 11], provided some complexity theoretic
assumption are true. Results related to computational learning theory have been proved in
[12] for classes of graphs with locally bounded treewidth. Recently, similar results have been
proven for nowhere dense classes of graphs [17].

Why unary queries? Some of the techniques we have used are difficult to extend to non-
unary queries. Some technical details about this are discussed in the conclusion.

Related Works. The fundamental definitions of what it means for a watermarking scheme
to be scalable and preserving a query was given in [14]. It was shown in [14] that on weighted
graphs, scalable watermarking schemes exist preserving shortest distance between vertices.
The adversarial model was also introduced in [14], where the person possessing the stolen

1 Here, efficiency means fixed parameter tractability; see [9] for details.

FSTTCS 2019

36:4 Query Preserving Watermarking Schemes for Locally Treelike Databases

copy can introduce additional distortion to evade detection. It is shown in [14] that a
watermarking scheme for the non-adversarial model can be transformed to work for the
adversarial model, under some assumption about the quantity of distortion introduced by
the person trying to evade detection, and the amount of knowledge the person possesses.
Gross-Amblard [13] adapted these definitions for relational structures of any vocabulary and
any query written in Monadic Second Order (MSO) logic, and showed results about classes
of structures of bounded degree and tree-width. Gross-Amblard [13] also provided the insight
that existence of scalable watermarking schemes preserving queries from a certain language
is closely related to learnability of queries in the same language. We make use of this insight
in our work. Grohe and Turán [12] proved that MSO-definable families of sets in graphs of
bounded tree-width have bounded Vapnik-Chervonenkis (VC) dimension, which has well
known connections in computational learnability theory. It is also shown in [12] that on
classes of graphs with locally bounded tree-width, first-order definable families of sets have
bounded VC dimension.

2 Preliminaries

Relational databases. A signature (or database schema) τ is a finite set of relation symbols
{R1, . . . , Rt}. We denote by ri the arity of Ri for every i ∈ {1, . . . , t}. A τ -structure
G = (V,RG1 , . . . RGt) (or database instance) consists of a set V called the universe, and an
interpretation RGi ⊆ V ri for every relation symbol Ri. For a fixed s ∈ N, a weighted structure
(G,W) is a finite structure G together with a weight function W , which is a partial function
from V s to N, that maps a s-tuple b to its weight W (b).

First Order and Monadic Second Order Queries. An atomic formula is a formula of the
form x = y or R(x1, . . . xr), where x, y, x1 . . . xr are variables and R is an r-ary relational
symbol in τ . First-order (FO) formulas are formulas built from atomic formulas using the
usual boolean connectives and existential and universal quantification over the elements of
the universe of a structure.

Monadic Second Order (MSO) logic extends first-order logic by allowing existential
and universal quantifications over subsets of the universe. Formally, there are two types
of variables. Individual variables, which are interpreted by elements of the universe of a
structure, and set variables, which are interpreted by subsets of the universe of a structure. In
addition to the atomic formulas of first-order logic mentioned in the previous paragraph, MSO
has atomic formulas of the form X(x), saying that the element interpreting the individual
variable x is in the set interpreting the set variable X. Furthermore, MSO has quantification
over both individual and set variables.

The quantifier rank, denoted qr(ψ) of a formula ψ is the maximum number of nested
quantifiers in ψ. A free variable of a formula ψ is a variable x that does not occur in
the scope of a quantifier. The set of free variables of a formula ψ is denoted by free(ψ).
A sentence is a formula without free variables. We write ψ(x1, . . . , xr) to indicate that
free(ψ) ⊆ {x1, . . . , xr}. We denote the size of ψ by ||ψ||. We only work with formulas that
have free individual variables, but not free set variables. Given a vector x = 〈x1, . . . , xs〉 of
variables, a formula ψ(x) and a structure G, we denote by ψ(G) = {a ∈ V s | G |= ψ(a)} the
set of tuples of elements from the universe V of G that can be assigned to the variables x to
satisfy ψ(x).

Suppose ψ(x, y) is a formula with two distinguished vectors of free variables x of length
r and y of length s. We call ψ(x, y) a s-ary query with r parameters. Given a structure
G, we call ψ(a,G) = {b ∈ V s | G |= ψ(a, b)} the output of the query ψ(x, y) with parameter

A. Chattopadhyay and M. Praveen 36:5

a. We refer to r (resp. s), the length of x (resp. y), as the input length (resp. the output
length) of ψ(x, y). Given a weighted structure (G,W), a parametric query ψ(x, y) and a
parameter a, we extend the weight function W to weights of query outputs by defining
W (ψ(a,G)) = Σb∈ψ(a,G)W (b). For a given structure G and a query ψ(x, y), we define
U =

⋃
a∈V r ψ(a,G) to be the set of active tuples.

Watermarking schemes. Suppose c, d ∈ N. A weighted structure (G,W ′) is a c-local
distortion of another weighted structure (G,W) if for all b ∈ V s, |W ′(b)−W (b)| ≤ c. The
weighted structure (G,W ′) is a d-global distortion of (G,W) with respect to a query ψ(x, y)
if and only if, for all a ∈ V r, |W ′(ψ(a,G))−W (ψ(a,G))| ≤ d.

I Definition 2 ([14, 13]). Given a class of weighted structures K and a query ψ(x, y), a
watermarking scheme preserving ψ(x, y) is a pair of algorithmsM (called the marker) and
D (called the detector) along with a function f : N→ N and a constant d ∈ N such that:

The markerM takes as input a weighted structure (G,W) ∈ K and a mark µ, which is
a bit string of length f(|U |), where U is the set of active tuples. It outputs a weighted
structure (G,Wµ) ∈ K such that (G,Wµ) is a 1-local and d-global distortion of (G,W)
for the query ψ(x, y).
The detector D is given (G,W), the original structure as input and has access to an
oracle that runs queries of the form ψ(x, y) on (G,Wµ). The output of D is the hidden
mark µ.

Intuitively, the marker takes a bit string and hides it in the database by distorting weights.
The detector detects the hidden mark by observing the weights and comparing it with the
original weights. The term f(|U |) denotes the length of the bit string that is hidden in the
database by the marker. We call a watermarking scheme scalable if the function f grows at
least as fast as some fractional power asymptotically. For example, the scheme is scalable if
f(n) =

√
n for all n, but not scalable if f(n) = logn for all n. We will mention later why

scalability is important in situations where adversaries try to erase watermarks. Note that
the algorithm D interacts with the marked database (G,Wµ) only through ψ(x, y) queries.
Hence, it is not worthwhile distorting the weights of tuples that are not active.

Continuing Example 1, the query ψ(x) given there can be written in First-order as
(ψ(〈city〉, 〈name, salary〉) = EmployeeTable(name, city, salary). The set of active tuples
is U = {〈John, 10000〉, 〈Arjun, 20000〉, 〈Pooja, 15000〉, 〈Neha, 30000〉, 〈Padma,20000〉}. We
can increase the salary of John by 1 and decrease the salary of Pooja by 1 or vice-versa.
Similarly for Arjun and Padma. This gives 4 different distortions that are 1-local and 0-global.
The marker algorithm can take a mark, which is a bit string of length 2, so there are 4 possible
marks. The marker can assign these 4 marks to the 4 possible distortions. The detector can
observe the changes to the salaries by querying the distorted copy and comparing the results
with the original database. The detector can compute the hidden mark by accessing the
assignment of the 4 marks to the 4 possible distortions given by the marker. For any instance
database of this signature, we can pair off an employee of a city with another employee in
the same city and use one such pair to encode one bit of a watermark to be hidden. If there
are n active tuples, we can encode n

2 bits, assuming that there are at least two employees in
each city. For this watermarking scheme, the function f is defined as f(n) = n

2 and this is a
scalable scheme.

Watermarking schemes can also be put in a context where there are adversaries who
know that there is some hidden mark and try to prevent the detector algorithm from working
properly, by distorting the database further. Instead of the oracle running queries on (G,Wµ),

FSTTCS 2019

36:6 Query Preserving Watermarking Schemes for Locally Treelike Databases

the queries are run on (G,W ′µ), which is a distortion of (G,Wµ). The detector has to still
detect the hidden mark µ correctly. Under some assumptions about the quantity of distortion
between (G,Wµ) and (G,W ′µ), watermarking schemes that work in non-adversarial models
can be transformed to work in adversarial models; we refer the interested readers to [14, 13].
The correctness of such transformations depend on probabilistic arguments, where scalability
helps. With bigger watermarks that are hidden to begin with, there is more room to play
around with the distortions introduced by the adversaries.

3 Watermarking schemes

In this section, we prove that scalable watermarking schemes exist for some type of structures.
First we prove that if the Gaifman graphs belong to a class of graphs with bounded tree-width,
then scalable water marking schemes exist preserving unary MSO queries. Then we prove
that if the Gaifman graphs belong to a class of graphs that is closed under minors and that
has locally bounded tree-width, then scalable water marking schemes exist preserving unary
FO queries.

3.1 MSO Queries on Structures with Bounded Tree-width

3.1.1 Trees, Tree Automata and Clique-width

We begin by reviewing some concepts and known results that are needed.
A binary tree is a {S1, S2,�}-structure, where S1, S2 and � are binary relation symbols.

A tree T = (T, ST1 , ST2 ,�T) has a set of nodes T , a left child relation ST1 and a right child
relation ST2 . Relation �T stands for the transitive closure of ST1 ∪ST2 , the tree-order relation.
Given a finite alphabet Σ, let τ(Σ) = {S1, S2,�} ∪ {Pa|a ∈ Σ} where for all a ∈ Σ, Pa is a
unary symbol. A Σ-tree is a structure T = (T, ST1 , ST2 ,�T , (P Ta)a∈Σ), where the restriction
(T, ST1 , ST2 ,�T) is a binary tree and for each v ∈ T there exists exactly one a ∈ Σ such that
v ∈ P Ta . We denote this unique a by σT (v). Intuitively, this represents the labelling of nodes
by letters from Σ where σT (v) is the label for the node v. We consider trees with a finite
number of pebbles placed on nodes. The pebbles are considered to be distinct: pebble 1
on node v1 and pebble 2 on node v2 is not the same as pebble 1 on node v2 and pebble 2
on node v1. For some k ≥ 1, let Σk = Σ × {0, 1}k. This extended alphabet denotes the
position of the pebbles in the tree. Suppose T is a Σ-tree and k pebbles are placed on the
nodes v = 〈v1, . . . , vk〉. Then Tv is the Σk-tree with the same underlying tree as T and
σTv (u) = (σT (u), α1, . . . , αk) where αi = 1 if and only if u = vi.

A Σ-tree automaton is a tuple A = (Q, δ, F) where Q is a set of states and F ⊆ Q are the
accepting states. The function δ : ((Q ∪ {∗})2 × Σ)→ Q is the transition function, where ∗
is a special symbol not in Q. A run ρ : T → Q of A on a Σ-tree T is a function satisfying
the following conditions.

If v is a leaf then ρ(v) = δ(∗, ∗, σT (v)).
If v has two children u1 and u2, then ρ(v) = δ(ρ(u1), ρ(u2), σT (v)).
If v has only a left child u then ρ(v) = δ(ρ(u), ∗, σT (v)).
Similarly if v has only a right child.

If v is the root of T , a run ρ of A on T is an accepting run if ρ(v) ∈ F . A Σ(r+s) tree
automaton defines a s-ary query with r parameters. We denote by A(a, T) = {b ∈ T s |
A has an accepting run on Tab} the output of the query A on T with parameter a. It is well
known that MSO queries and tree automata have the same expressive power.

A. Chattopadhyay and M. Praveen 36:7

Clique-width. A well-known notion of measuring the similarity of a graph to a tree is its
tree-width. Many nice properties of trees carry over to classes of structures of bounded
tree-width. For our purposes, we use clique-width, a related notion. It is well known that a
structure of tree-width at most k has clique-width at most 2k [4].

A k-colored structure is a pair (G, γ) consisting of a structure G and a mapping γ : V →
{1, . . . , k}. A basic k-colored structure is a k-colored structure (G, γ) where |V | = 1 and
RG = ∅ for all R. We let Γk be the smallest class of structures that contain all basic k-colored
structures and is closed under the following operations:

Union: take two k-colored structures on disjoint universes and form their union.
(i → j) recoloring, for 1 ≤ i, j ≤ k: take a k-colored structure and recolor all vertices
colored i to j.
(R, i1, . . . ir)-connecting, for every r ≥ 1, every r-ary relation symbol R and every
1 ≤ i1, . . . ir ≤ k: take a k-colored structure (G, γ) and add all tuples 〈v1, . . . vr〉 ∈ V r
with γ(vj) = ij for 1 ≤ j ≤ r to RG.

The clique-width of a structure G, denoted by cw(G), is the minimum k such that there
exists a k-coloring γ : V → {1, . . . k} such that (G, γ) ∈ Γk.

For every k-colored structure (G, γ) ∈ Γk we can define a binary, labeled parse-tree in a
straightforward way. The leaves of this tree are the elements of G labeled by their color, and
each inner node is labeled by the operation it corresponds to. A parse-tree (also called a
clique decomposition) of a structure G of clique-width k is a parse tree of some (G, γ) ∈ Γk.
For the next lemma, it is important to note that if T is a parse-tree for a structure G, then
V ⊆ T .

I Lemma 3 ([12, Lemma 16]). Let k ≥ 1. For every MSO formula ϕ(x) there is a MSO
formula ϕ̃(x) such that for every structure G of clique-width k and for every parse-tree T of
G we have ϕ(G) = ϕ̃(T). Furthermore, there are constants c, d (only depending on k and
the signature τ) such that ||ϕ̃|| ≤ c||ϕ|| and qr(ϕ̃) ≤ qr(ϕ) + d.

3.1.2 Watermarking Schemes to Preserve MSO Queries on Structures
With Bounded Tree-width

Now we prove that there are scalable watermarking schemes that work for structures from
classes with bounded tree-width and preserve a given MSO query. At a high level, the idea
is the following: the given MSO query is converted to an equivalent tree automaton. If the
number of active elements is large compared to the number of states in the automaton, we
can select pairs of elements that can’t be distinguished by the automaton. Either both the
elements are in the output of the query or none of them are. Hence, distorting one of them
by a positive amount and the other one by a negative amount will not contribute to the
global distortion.

We begin with the following lemma, which says that if a tree automaton runs on a
large tree, we can find large number of pairs of nodes that are “similar” with respect to the
automaton. Some of the proofs have been skipped here due to space constraints; they can
be found in the full version. A similar result is proved and used in [12] to show that MSO-
definable families of sets in graphs of bounded tree-width have bounded Vapnik-Chervonenkis
(VC) dimension. The similarity of the following result with that of [12] hints at some possible
connections between watermarking schemes and VC dimension.

FSTTCS 2019

36:8 Query Preserving Watermarking Schemes for Locally Treelike Databases

I Lemma 4. Let A be a Σr+1 tree automaton with m states. Let T be a Σ tree. Suppose
Y ⊆ T is a set of nodes of T with at least 2mm+2 elements2. Then, there exists n = b |Y |

4mm+4c
pairwise disjoint sets of nodes V1, V2, . . . , Vn ⊆ T and pairs (bi, b′i) ∈ (Vi∩Y)2 of distinct nodes
for all i ∈ {1, . . . , n} satisfying the following property: for every a = 〈a1, a2, . . . , ar〉 ∈ T r
and every i ∈ {1, . . . , n}, if {a1, a2, . . . , ar}∩Vi = ∅ then the runs of A on Tabi

and Tab′
i
label

the tree roots with the same state.

The following result is proved in [13], but the proof in that paper used a variant of
Lemma 4 whose proof has an error. We give a proof with a different constant factor.

I Theorem 5. Suppose K is a class of structures with bounded clique-width. Suppose ψ(x, y)
is a unary MSO query of input length r, where all the free variables are individual variables.
Then, there exists a scalable watermarking scheme preserving ψ(x, y) on structures in K.

Proof. Suppose G is a structure in K, so it has bounded clique-width. From Lemma 3, we
get an MSO formula ψ̃(x, y), which can be interpreted on clique decompositions of G to
get the same effect as interpreting ψ(x, y) on G. We then get an automaton A equivalent
to ψ̃(x, y). Let U be the set of active tuples of G for the query ψ(x, y). Now we apply
Lemma 4, setting T to be a clique decomposition of G and Y to be the set of active
tuples U . We get n pairs (b1, b′1), (b2, b′2), . . . , (bn, b′n), where n is a constant fraction of
|U |. Given a weight function W for G and a mark µ : {0, 1}n, we define the new weight
function W ′ as follows. We set (W ′(bi),W ′(b′i)) = (W (bi) + 1,W (b′i) − 1) if µ(i) = 0 and
(W ′(bi),W ′(b′i)) = (W (bi)− 1,W (b′i) + 1) if µ(i) = 1. For all other elements, W ′ is same as
W . The modified weight function W ′ has local distortion bounded by 1 by construction. The
detector can recover the bits of the mark µ by querying the original and distorted databases
and noting the differences in weights assigned to active tuples by W and W ′. We will show
that it has global distortion bounded by r, the input length of ψ(x, y).

Suppose a = 〈a1, a2, . . . , ar〉 is used as input parameter to the query ψ(x, y) on G and
(bi, b′i) is a pair selected from a set Vi as in Lemma 4. If {a1, . . . , ar} ∩ Vi = ∅, then the runs
of A on Tabi

and Tab′
i
end in the same state. Hence, bi ∈ ψ(a,G) iff b′i ∈ ψ(a,G). This means

that either both bi and b′i are in ψ(a,G) or both of them are absent. Hence, the distortion on
bi, b

′
i cancel each other, provided {a1, . . . , ar} ∩ Vi = ∅. Hence, a pair (bi, b′i) may contribute

to the global distortion only when {a1, . . . , ar}∩Vi 6= ∅. Since all the Vi are mutually disjoint
and there are at most r elements in {a1, . . . , ar}, the global distortion is at most r. J

Since bounded tree-width implies bounded clique-width, the above result also holds for
classes of structures with bounded tree-width.

3.2 FO Queries on Minor Closed Structures with Locally Bounded
Tree-width

In this section, we consider structures whose Gaifman graphs belong to a class of graphs
that has bounded local tree-width and is closed under minors. We prove that scalable
watermarking schemes exist preserving unary first-order queries. We use concepts and
techniques from [12] where it is proved that in similar classes of graphs, sets definable by
unary first order formulas have bounded VC dimension. It is observed in [12] that this result
extends to non-unary formulas. For this extension, [12] uses a generic result from model

2 A similar result is stated in [13] with 4m elements, but there is an error in the proof; see the full version
for details.

A. Chattopadhyay and M. Praveen 36:9

theory that deals with VC dimension and doesn’t use Gaifman graphs. So far, there are no
such generic results about watermarking schemes yet. We have not yet found ways to extend
our results on watermarking to non-unary queries.

3.2.1 Gaifman’s Locality and Locally Bounded Tree-width
First we review some concepts and known results that we use. Given a structure G =
(V,RG1 , . . . , RGt), its Gaifman graph is the undirected graph (V,E), where (v1, v2) ∈ E if
there is a relation Ri in G and a tuple v ∈ Ri such that v1 and v2 appear in v. The
distance between two elements, denoted d(., .), in a structure is defined to be the shortest
distance between them in the Gaifman graph. The distance between two tuples of elements
v1, v2 is d(v1, v2) = min{d(v1, v2) | v1 ∈ v1, v2 ∈ v2}. Given v ∈ V , ρ ∈ N, the ρ-sphere
Sρ(v) is the set {v′ | d(v, v′) ≤ ρ}, and for a tuple v, Sρ(v) =

⋃
v∈v Sρ(v). We define the

ρ-neighborhood around a tuple v to be the structure Nρ(v) induced on G by Sρ(a). The
equivalence relation ≈ρ on tuples of elements is defined as a ≈ρ b if Nρ(a) ≈ Nρ(b) (where ≈
denotes isomorphism).

A formula ψ is said to be local if there is a number ρ ∈ N such that for every G and
tuples v1 and v2 of G, Nρ(v1) ≈ Nρ(v2) implies G |= ψ(v1) ⇐⇒ G |= ψ(v2). This value ρ is
then called the locality radius of ψ. Gaifman’s theorem states that every first-order formula
is local. We often annotate a formula ψ with its locality rank r and write it as ψ(r) for the
sake of explicitness. Furthermore, d>r(v1, v2) is a first-order formula enforcing the distance
between v1 and v2 to be at least r + 1.

I Theorem 6 (Gaifman’s locality theorem [10]). Every First Order formula ϕ(x) is equivalent
to a Boolean combination of the following:

local formulas ψ(ρ)(x) around x and
sentences of the form

χ = ∃x1, . . . , xs

 s∧
i=1

α(ρ)(xi) ∧
∧

1≤i<j≤s
d>2ρ(xi, xj)

 .

Furthermore,
The transformation from ϕ to such a Boolean combination is effective;
If qr(ϕ) = q and n is the length of x, then ρ ≤ 7q, s ≤ q + n.

The (q, k)-type of v in G, denoted by tpGq (v), is the set of all first-order formulas
ϕ(x1, . . . , xk) of quantifier rank at most q such that G |= ϕ(v). A (q, k)-type is a maximal
consistent set of first-order formulas ϕ(x1, · · ·xk) of quantifier rank at most q. Equivalently,
a (q, k)-type is the (q, k)-type of some k-tuple v in some structure G. For a specific (q, k),
there are only finitely many (q, k) types. The number of such types is denoted by t(q, k).

We get the following as a corollary of Gaifman’s locality theorem.

I Corollary 7. Let q ∈ N and ρ = 7q. Let G be a structure and a, a′ ∈ V r, b, b′ ∈ V s such
that tpGq (a) = tpGq (a′), tpGq (b) = tpGq (b′), d(a, b) ≥ 2ρ + 1 and d(a′, b′) ≥ 2ρ + 1. Then
tpGq (a, b) = tpGq (a′, b′).

Locally Bounded Tree-width. We say that a class of structures K has locally-bounded
tree-width if there exists a function f : N→ N such that given any G ∈ K, any v ∈ V and
any r ∈ N, the tree-width of Nr(x) is at most f(r).

FSTTCS 2019

36:10 Query Preserving Watermarking Schemes for Locally Treelike Databases

Next we recall some properties of class of graphs closed under minors. An edge contraction
is an operation which removes an edge from a graph while simultaneously merging the two
vertices it used to connect. A graph H is a minor of a graph G if a graph isomorphic to H
can be obtained from G by contracting some edges, deleting some edges and deleting some
isolated vertices. A class K of graphs is said to be closed under minors if for every graph G
in K and every minor H of G, H is also in K.

Suppose a class of graphs K is closed under minors and has locally bounded tree-width
(the class of planar graphs is an example). Let G be a graph in K and let v be an arbitrary
vertex in G. For i ≥ 0, let Li be the set of all vertices of G whose shortest distance from v

is i. For any i, r, the subgraph induced by ∪rj=1Li+j on G has tree-width that depends only
on r. See the full version for a proof of this. This idea has been used to design approximation
algorithms for hard problems [2, 7].

3.2.2 Watermarking Schemes to Preserve FO Queries on Minor Closed
Classes with Locally Bounded Tree-width

Now we prove that there exist watermarking schemes that preserve unary FO queries on
classes of structures that are closed under minors and that have locally bounded tree-width.
We use Gaifman’s locality theorem on the FO query and consider the constituent local
queries. Answer to local queries only depend on local neighborhoods of the structure, which
have bounded tree-width. We can run automata on them and proceed as in the previous
section. We have to be careful that queries run on overlapping neighborhoods don’t interfere
with each other.

Let K be a class of structures whose Gaifman graphs belong to a class of graphs with
locally bounded tree-width and that is closed under minors, let G be a structure in K and let
ψ(x, y) be a unary first-order query. Let q be the rank of ψ(x, y) and let ρ be its locality radius.
Suppose U ⊆ V is the set of active elements for the query ψ(x, y). Let c ∈ U be an active
element such that the set Uc = {b ∈ U | tpGq (b) = tpGq (c)} has the maximum cardinality. Due
to our choice of c, we get |Uc| ≥ |U |

t(q,r+1) (recall that r is the length of x and t(q, r+ 1) is the
possible number of (q, r+ 1)-types). We will show that there is a number l that is a constant
fraction of |U | such that we can hide any mark µ ∈ {0, 1}≤l. Given a weight functionW for G
and a mark µ ∈ {0, 1}l, we select l pairs of elements (b1, b′1), (b2, b′2), . . . , (bl, b′l) from Uc and
define the new weight function Wµ as follows: (Wµ(bi),Wµ(b′i)) = (W (bi) + 1,W (bi)− 1) if
µ(i) = 1 and (Wµ(bi),Wµ(b′i)) = (W (bi)−1,W (bi)+1) if µ(i) = 0. For all other elements,Wµ

is same as W . The new weight function is a 1-local distortion of the old one by construction.
The difficulty is to ensure that the global distortion is bounded by a constant. We overcome
this difficulty by ensuring that bi and b′i cannot be distinguished by the query ψ(x, y): for
almost all a ∈ V r, bi ∈ ψ(a,G) iff b′i ∈ ψ(a,G). The following lemma suggests how to select
such pairs.

I Lemma 8. Suppose ψ(x, y) is a query and ψ(ρ)
1 (x, y), ψ(ρ)

2 (x, y), . . . , ψ(ρ)
α (x, y) are the local

formulas given by Theorem 6 (Gaifman’s locality theorem). Suppose G is a structure and
a ∈ V r, b, b′ ∈ V are such that G |= ψ

(ρ)
i (a, b) iff G |= ψ

(ρ)
i (a, b′) for every i ∈ {1, 2, . . . , α}.

Then b ∈ ψ(a,G) iff b′ ∈ ψ(a,G).

Now our goal is to select a large number of pairs (b, b′) from Uc such that they cannot be
distinguished by any local query ψ(ρ)

i (x, y), as assumed in Lemma 8. Let us fix some k ≥ 1
and apply Lemma 3 to every local query ψ(ρ)

i (x, y). We get a MSO formula ψ̃i(x, y) such
that for every structure G′ with a parse tree T of clique-width at most k, ψ(ρ)

i (G′) = ψ̃i(T).

A. Chattopadhyay and M. Praveen 36:11

L0 L1 Li+2jθ+j Li+2(j+1)θ+j+1

v
θ layers θ layers θ layers θ layers

Bθ(Li+2jθ+j) Bθ(Li+2(j+1)θ+j+1)

Figure 1 Division of Gaifman’s graph of G into Bands and layers.

Our next goal is to identify substructures of G with bounded clique-width. Since we are
considering structures of bounded local tree-width, any neighborhood of G of bounded radius
has bounded tree-width, hence bounded clique-width.

For the MSO formulas ψ̃1(x, y), ψ̃2(x, y), . . . , ψ̃α(x, y), let A1, A2, . . . , Aα be the corres-
ponding tree automata. Let A be the tree automaton obtained by applying the usual product
construction to A1, A2, . . . , Aα and let m be the number of states in A.

We pick some element v ∈ V arbitrarily from the universe of G, let L0 = {v}, and then
define the layer Li to be the elements of G which are at a distance exactly i from v. This
divides the graph into layers L0, L1, L2, For a layer Lj , define the band B2ρ(Lj) to be the
union of the layers Lj−2ρ, Lj−2ρ+1, . . . , Lj , . . . , Lj+2ρ−1, Lj+2ρ. Intuitively, B2ρ(Lj) consists
of the layer Lj , 2ρ layers to the left of Lj and 2ρ layers to the right. Let θ = (2(r + 1) + 2)ρ
and define the band Bθ(Li) in an analogous way. For 0 ≤ i ≤ 2θ, define Li to be the set of
layers {Li, Li+2θ+1, Li+4θ+2, . . .} = {Li+2jθ+j | j ≥ 0}. Since there are 2θ + 1 such sets, it
must be the case that there is some Li such that |Uc∩ (∪Li)| ≥ |Uc|

2θ+1 . We denote by Y1, Y2 . . .

the layers in this ∪Li in increasing order of their distance from L0. If v is any element in Lj ,
then S2ρ(v) ⊆ B2ρ(Lj). Notice that by construction, B2ρ(Yi)∩B2ρ(Yj) = ∅ = Bθ(Yi)∩Bθ(Yj)
for any i 6= j. Refer to Fig. 1 for a visual representation of the bands. The layer L0 is
represented by the single vertex v. The layers Li+2jθ+j , Li+2(j+1)θ+j+1 are represented by
solid vertical lines. Other layers are represented by vertical lines that are grayed out.

In the sequence of layers that we obtained, let Y ′1 , Y ′2 , . . . Y ′γ be those that contain at
least 2mm + 2 elements from Uc. Let Y ′′1 , Y ′′2 , . . . , Y ′′δ be the layers that contain less than
2mm+2 elements from Uc. Let v′′1 , v′′2 , . . . , v′′δ be arbitrarily chosen elements of Y ′′1 , Y ′′2 , . . . , Y ′′δ
respectively that are in Uc (we may ignore a particular Y ′′i if it does not contain any elements
of Uc in it). We will use the set of pairs M1 = {(v′′1 , v′′2), . . . , (v′′δ−1, v

′′
δ)} for watermarking.

Next we select watermarking pairs from the layers Y ′1 , Y ′2 , . . . Y ′γ . For each layer Y ′i , let
Ni be the substructure induced by the band Bθ(Y ′i). This is a band of width 2θ + 1, so its
tree-width and hence clique-width (say k) depends only on 2θ+1, which in turn depends only
on the locality radius ρ and the input length r. Now we can apply Lemma 4 with the tree
automaton A and the parse tree T of Ni of clique width at most k, setting Y = Y ′i ∩Uc. We
get pairs (b(i,1), b

′
(i,1)), (b(i,2), b

′
(i,2)), . . . , (b(i,n), b

′
(i,n)), where n = b |Y

′
i ∩Uc|

4mm+4 c. We will use the
set of pairs M2 = ∪i ∪j {(b(i,j), b′(i,j))} also for watermarking. Again note that all elements
in the pairs are in Uc.

I Lemma 9. Suppose a watermarking pair (v′′i , v′′(i+1)) ∈ M1 consists of elements from
Y ′′i , Y

′′
(i+1) respectively. If the tuple a = 〈a1, . . . , ar〉 is such that {a1, . . . , ar} ∩ (B2ρ(Y ′′i) ∪

B2ρ(Y ′′(i+1))) = ∅, then v′′i ∈ ψ(a,G) iff v′′(i+1) ∈ ψ(a,G).

I Lemma 10. Suppose a watermarking pair (b, b′) ∈M2 was selected from some set Vj (as
specified in Lemma 4) of some band Ni. If a = 〈a1, . . . , ar〉 is such that {a1, . . . , ar}∩Vj = ∅,
b ∈ ψ(a,G) iff b′ ∈ ψ(a,G).

FSTTCS 2019

36:12 Query Preserving Watermarking Schemes for Locally Treelike Databases

Y ′i

b

b′

2ρ 2ρ

C1

2ρ

Cj−1

2ρ

Cj

2ρ

Cj+1

2ρ

Cr+1

2ρ2ρ

C1

2ρ

Cj−1

2ρ

Cj

2ρ

Cj+1

2ρ

Cr+1

a1 in these regions 2ρ2ρ

a2 in these regions and outside

Figure 2 The regions C1, . . . , Cr+1 and a1, a2 used in Case III of the proof of Lemma 10.

Proof.
Case I: {a1, . . . , ar} ∩B2ρ(Y ′

i) = ∅. In this case, since b, b′ are both on the layer Y ′i , we
have Sρ(a) ∩ (Sρ(b) ∪ Sρ(b′)) = ∅. Hence we can apply Corollary 7 to infer the result.

Case II: Sρ(a) ⊆ B(2(r+1)+2)ρ(Y ′
i). In this case, Sρ(abb′) ⊆ B(2(r+1)+2)ρ(Y ′i) = Bθ(Y ′i).

We selected (b, b′) according to Lemma 4, with the tree automaton A running on a parse
tree of Ni. Since the tree automaton runs all the automata A1, A2, . . . , Aα simultaneously,
we infer that Ni |= ψ

(ρ)
j (a, b) iff Ni |= ψ

(ρ)
j (a, b′) for every j ∈ {1, 2, . . . , α}. Since

Sρ(abb′) ⊆ Bθ(Y ′i), the substructure induced on Ni by Sρ(abb′) is isomorphic to the
substructure induced on G by Sρ(abb′). Since ψ(ρ)

j (x, y) is a local formula around x, y
with locality radius ρ, we infer that Ni |= ψ

(ρ)
j (a, b) iff G |= ψ

(ρ)
j (a, b) and Ni |= ψ

(ρ)
j (a, b′)

iff G |= ψ
(ρ)
j (a, b′) for every j ∈ {1, 2, . . . , α}. Hence, G |= ψ

(ρ)
j (a, b) iff G |= ψ

(ρ)
j (a, b′) for

every j ∈ {1, 2, . . . , α}. We can now apply Lemma 8 to infer the result.
Case III: {a1, . . . , ar} ∩B2ρ(Y ′

i) 6= ∅ and {a1, . . . , ar} 6⊆ B(2(r+1)+2)ρ(Y ′
i). In this

case, some elements of a may be within distance 2ρ from b, b′. Some elements of a
may be quite far and their ρ neighborhoods may not be included in Bθ(Y ′i). We divide
Bθ(Y ′i)\B2ρ(Y ′i) into r+1 regions C1, C2, . . . Cr+1. Define C1 = B4ρ(Y ′i)\B2ρ(Y ′i), C2 =
B6ρ(Y ′i) \B4ρ(Y ′i), etc. Since there are r + 1 such regions, and only r parameters in a,
there is a region, say Cj that doesn’t contain any elements of a. Let a1 be the tuple of
elements of a that are in B2ρ(Y ′i) ∪ C1 ∪ · · · ∪ Cj−1 and let a2 consist of the remaining
elements of a. Note that Sρ(a1bb

′) ∩ Sρ(a2) = ∅ (since the region Cj is of width 2ρ,
a1bb

′ are on the inside of this band and a2 are on the outside). Refer to Fig. 2 for a
visual presentation of a1, a2. The layer Y ′i is represented by a solid vertical line, in which
b, b′ are highlighted. Other layers are represented by vertical lines that are grayed out.
Boundaries of regions are represented by dashed vertical lines. Each region consists of
2ρ layers on the left and 2ρ layers on the right. Since the layer Cj doesn’t contain any
elements of a, it acts as a buffer between Sρ(a1bb

′) and Sρ(a2).
Let the structure H1 be an isomorphic copy of Ni (which is the substructure induced
by Bθ(Y ′i)). Since H1 consists of 2θ + 1 layers, the tree-width and hence clique-width of
H1 depends only on 2θ + 1. Let H2 be a disjoint union of at most r spheres of radius
at most 2rρ, containing an isomorphic copy of Nρ(a2) (details of constructing H2 are
in the full version). The clique-width of H2 also depends only on r and ρ. Let H be
the disjoint union of H1 and H2. For the elements a1bb

′ in Ni, the isomorphism with
H1 will give corresponding elements in H1; let h(a1bb

′) be these corresponding elements.
Similarly, let h(a2) be the elements in H2 corresponding to a2 in Nρ(a2). Let T be a
parse tree of Ni (and so of H1) and T ′ be a parse tree of H2 of minimum clique-widths,
with k being the maximum of these two widths. We obtain a parse tree T ′′ of H of

A. Chattopadhyay and M. Praveen 36:13

clique-width at most k by making T and T ′ as subtrees of a new root labeled by the
union operation. We selected b, b′ according to Lemma 4 with the tree automaton A

and parse tree T . We infer that the automaton A labels the roots of Th(a1b) and Th(a1b′)
with the same state. Hence, the automaton A labels the roots of T ′′h(a1ba2) and T ′′h(a1b′a2)
with the same state (note that h(a1bb

′) are in T while h(a2) are in T ′). Hence, we
infer that H |= ψ

(ρ)
j (h(a), h(b)) iff H |= ψ

(ρ)
j (h(a), h(b′)) for every j ∈ {1, 2, . . . , α}. The

substructure induced on G by Sρ(abb′) is isomorphic to the substructure induced on H by
Sρ(h(abb′)). Since ψ(ρ)

j (x, y) is a local formula around x, y with locality radius ρ, we infer
that H |= ψ

(ρ)
j (h(a), h(b)) iff G |= ψ

(ρ)
j (a, b) and H |= ψ

(ρ)
j (h(a), h(b′)) iff G |= ψ

(ρ)
j (a, b′).

Hence, G |= ψ
(ρ)
j (a, b) iff G |= ψ

(ρ)
j (a, b′) for every j ∈ {1, 2, . . . , α}. We can now apply

Lemma 8 to infer the result. J

The technique of considering a small number of layers to get graphs of bounded tree-width
was known before [2, 7]. Here, we find ways of using it to bound global distortions and
that is the main technical contribution of this paper. Now we state the main result of this
sub-section.

I Theorem 11. Suppose K is a class of structures whose Gaifman graphs belong to a class
of graphs that is closed under minors and have locally bounded tree-width. Suppose ψ(x, y)
is a unary first-order query of input length r. Then, there exists a scalable watermarking
scheme preserving ψ(x, y) on structures in K.

Proof idea. Every pair in M1 ∪M2 can hide one bit in the database and |M1 ∪M2| is a
constant fraction the size of the set of active tuples, as shown in the full version. For a given
parameter a, a pair (b, b′) ∈ M1 ∪M2 contributes to global distortion only if a intersects
with some spheres around (b, b′), as proved in Lemma 9 and Lemma 10. The spheres are
mutually disjoint, so a can intersect with at most r spheres. Hence the global distortion is
bounded by r. J

4 Conclusion

In [14], there is a transformation of watermarking schemes for non-adversarial models into
schemes for adversarial models, under some assumptions. As observed in [13], the same
transformation under similar assumptions also work for MSO and FO queries. Hence, our
result on FO queries can also use a similar transformation to work on adversarial models.

The difficulty with non-unary queries is that Gaifman graphs don’t capture information
about active tuples – even if two elements b1, b2 appear in the same active tuple, the Gaifman
graph may not have an edge between b1 and b2. The results on VC dimension use powerful
results from model theory [19] or versions of finite Ramsey theorem for hyper graphs [16].
It remains to be seen whether similar results are true for watermarking schemes. It also
remains to be seen if the condition on closure under minors can be dropped and watermarking
schemes can still be obtained, as shown for VC dimension in [12].

Beginning with graphs of bounded degree, it is now known that for the much bigger class
of graphs that are nowhere dense, FO properties can be efficiently decided. It remains to be
seen whether results on watermarking schemes can be extended to the class of graphs that
are nowhere dense.

We don’t know if there are deeper connections between bounded VC dimension and
presence of scalable watermarking schemes preserving queries. Some progress is made in [13],
where it is shown that unbounded VC dimension doesn’t necessarily mean absence of scalable
watermarking schemes, but more work is needed in this direction.

FSTTCS 2019

36:14 Query Preserving Watermarking Schemes for Locally Treelike Databases

References
1 R. Agrawal and J. Kiernan. Watermarking relational databases. In International Conference

on Very Large Databases, VLDB, 2002.
2 B. S. Baker. Approximation algorithms for NP-complete problems on planar graphs. J. ACM,

41:153–180, 1994.
3 E. F. Codd. Relational completeness of database sublanguages. In Proceedings of the Sixth

Courant Computer Science Symposium on Data Base Systems, Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 65–98, New York, NY, USA, 1972. Prentice-Hall.

4 Bruno Courcelle and Stephan Olariu. Upper bounds to the clique width of graphs. Discrete
Applied Mathematics, 101(1):77–114, 2000.

5 A. Dawar, M. Grohe, and S. Kreutzer. Locally excluding a minor. In Proceedings of the 22nd
IEEE Symposium on Logic in Computer Science, LICS, pages 270–279, 2007.

6 Z. Dvořàk, D. Kràl, and R. Thomas. Deciding first-order properties for sparse graphs. In
Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science, FOCS,
pages 133–142, 2010.

7 D. Eppstein. Diameter and treewidth in minor-closed graph families. Algorithmica, 27:275–291,
2000.

8 J. Flum and M. Grohe. Fixed-parameter tractability, definability, and model checking. SIAM
Journal on Computing, 31:113–145, 2001.

9 M. Frick and M. Grohe. Deciding first-order properties of locally tree-decomposable structures.
J. ACM, 48(6):1184–1206, 2001.

10 H. Gaifman. On Local and Non-Local Properties. In J. Stern, editor, Proceedings of the
Herbrand Symposium, volume 107 of Studies in Logic and the Foundations of Mathematics,
pages 105–135. Elsevier, 1982.

11 M. Grohe, S. Kreutzer, and S. Siebertz. Deciding First-Order Properties of Nowhere Dense
Graphs. J. ACM, 64(3):17:1–17:32, 2017.

12 M. Grohe and G. Turán. Learnability and Definability in Trees and Similar Structures. Theory
of Computing Systems, 37(1):193–220, January 2004.

13 David Gross-Amblard. Query-preserving Watermarking of Relational Databases and XML
Documents. ACM Trans. Database Syst., 36(1):3:1–3:24, 2011.

14 S. Khanna and F. Zane. Watermarking Maps: Hiding Information in Structured Data. In
Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’00,
pages 596–605, Philadelphia, PA, USA, 2000. Society for Industrial and Applied Mathematics.

15 S. Kreutzer. Algorithmic meta-theorems. In J. Esparza, C. Michaux, and C. Steinhorn,
editors, Finite and Algorithmic Model Theory, pages 177–270. Cambridge University Press,
2011. chapter 5.

16 M.C. Laskowski. Vapnik-Chervonenkis classes of definable sets. Journal of the London
Mathematical Society, 45(2):377–384, 1992.

17 M. Pilipczuk, S. Siebertz, and S. Toru’nczyk. On the number of types in sparse graphs. In
Proceedings of LICS, pages 799–808, 2018.

18 D. Seese. Linear time computable problems and first-order descriptions. Mathematical
Structures in Computer Science, 6:505–526, 1996.

19 S. Shelah. Stability, the f.c.p. and superstability. Annals of Mathematical Logic, 3:271–362,
1971.

Complexity of Liveness in Parameterized Systems
Peter Chini
TU Braunschweig, Germany
p.chini@tu-braunschweig.de

Roland Meyer
TU Braunschweig, Germany
roland.meyer@tu-braunschweig.de

Prakash Saivasan
TU Braunschweig, Germany
p.saivasan@tu-braunschweig.de

Abstract
We investigate the fine-grained complexity of liveness verification for leader contributor systems.
These consist of a designated leader thread and an arbitrary number of identical contributor threads
communicating via a shared memory. The liveness verification problem asks whether there is an
infinite computation of the system in which the leader reaches a final state infinitely often. Like
its reachability counterpart, the problem is known to be NP-complete. Our results show that, even
from a fine-grained point of view, the complexities differ only by a polynomial factor.

Liveness verification decomposes into reachability and cycle detection. We present a fixed point
iteration solving the latter in polynomial time. For reachability, we reconsider the two standard
parameterizations. When parameterized by the number of states of the leader L and the size of
the data domain D, we show an (L + D)O(L+D)-time algorithm. It improves on a previous algorithm,
thereby settling an open problem. When parameterized by the number of states of the contributor C,
we reuse an O∗(2C)-time algorithm. We show how to connect both algorithms with the cycle detection
to obtain algorithms for liveness verification. The running times of the composed algorithms match
those of reachability, proving that the fine-grained lower bounds for liveness verification are met.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory;
Theory of computation → Problems, reductions and completeness

Keywords and phrases Liveness Verification, Fine-Grained Complexity, Parameterized Systems

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.37

Related Version A full version of the paper is available as [9] and https://arxiv.org/abs/1909.
12004.

Acknowledgements We thank Arnaud Sangnier for helpful discussions.

1 Introduction

We study the fine-grained complexity of liveness verification for parameterized systems
formulated in the leader contributor model. The model [26, 16] assumes a distinguished
leader thread interacting (via a shared memory) with a finite but arbitrary number of
indistinguishable contributor threads. The liveness verification problem [14] asks whether
there is an infinite computation of the system in which the leader visits a set of final states
infinitely often. Fine-grained complexity [13, 10] studies the impact of parameters associated
with an algorithmic problem on the problem’s complexity like the influence of the contributor
size on the complexity of liveness verification. The goal is to develop deterministic algorithms
that are provably optimal. We elaborate on the three ingredients of our study.

© Peter Chini, Roland Meyer, and Prakash Saivasan;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 37; pp. 37:1–37:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:p.chini@tu-braunschweig.de
mailto:roland.meyer@tu-braunschweig.de
mailto:p.saivasan@tu-braunschweig.de
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.37
https://arxiv.org/abs/1909.12004
https://arxiv.org/abs/1909.12004
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2 Complexity of Liveness in Parameterized Systems

The leader contributor model has attracted considerable attention [26, 16, 14, 31, 17, 23, 7].
From a modeling point of view, a variety of systems can be formulated as anonymous entities
interacting with a central authority, examples being client-server applications, resource-
management systems, and distributed protocols on wireless sensor networks. From an
algorithmic point of view, the model has led to positive surprises. Hague [26] proved
decidability of reachability even in a setting where the system components are pushdown
automata. La Torre et al. [31] generalized the result to any class of components that satisfies
mild assumptions, the most crucial of which being computability of downward closures. As
for the complexity, Esparza et al. [16, 17] proved PSPACE-completeness for Hague’s model
and NP-completeness in the setting where the components are given by finite-state automata.
The liveness problem was first studied in [14]. Interestingly, liveness has the same complexity
as reachability, it is NP-complete for finite-state systems. Fortin et al. [23] generalized the
study to LTL-definable properties and gave conditions for NEXPTIME-completeness.

Fine-grained complexity is a field within parameterized complexity [13, 10]. Parameterized
complexity intends to explain the following gap between theory and practice that is observed
throughout algorithmics. Despite a high worst-case complexity, tools may have an easy
time solving a problem. Parameterized complexity argues that measuring the complexity
of a problem in terms of the size of the input, typically denoted by n, is too rough. One
should consider further parameters k that capture the shape of the input or the solution
sought. Then the gap is due to the fact that tools implement an algorithm running in time
f(k) · poly(n). Here, f may be an exponential, but it only depends on the parameter, and
that parameter is small in practice. Problems solvable by such an algorithm are called
fixed-parameter tractable and belong to the complexity class FPT. Fine-grained complexity
is the study of the precise function f that is needed, via upper and lower bound arguments.

The fine-grained complexity of the reachability problem for the leader contributor model
was studied in our previous work [7]. We assumed that the components are finite state and
considered two parameterizations. When parameterized by the size of the contributors C,
we showed that reachability can be solved in time O∗(2C). The notation O∗ suppresses
polynomial factors in the running time. Interestingly, this is the best one can hope for. An
algorithm with a subexponential dependence on C, to be precise an algorithm running in
time 2o(C), would contradict the so-called exponential time hypothesis (ETH). The ETH [28]
is a standard hardness assumption in parametrized complexity that is used to derive relative
lower bounds. The second parameterization is by the size of the leader L and the size of
the data domain D. We gave an algorithm running in time (LD)O(LD). Interestingly, the
lower bound is only 2o((L+D)·log(L+D)). Being away a quadratic factor in the exponent means a
substantial gap for a deterministic algorithm.

In the present paper, we study the fine-grained complexity of the liveness verification
problem. We assume finite-state components and consider the same parameterization as for
reachability. The surprise is in the parameterization by L and D. We give an algorithm running
in time (L + D)O(L+D). This matches the lower bound and closes the gap for reachability.
When parameterized by the size of the contributors, we obtain an O∗(2C) algorithm.

To explain the algorithms, note that a live computation decomposes into a prefix and
an accepting cycle. Finding prefixes is a matter of reachability. We show how to combine
reachability algorithms with a cycle detection to obtain algorithms that find live computations.
The resulting algorithms will run in time O(Reach(L, D, C) ·Cycle(L, D, C)) where Reach(L, D, C)
denotes the running time of the invoked reachability algorithm and Cycle(L, D, C) that of the
cycle detection. This result allows for considering reachability and cycle detection separately.

Our first main contribution is an algorithm for reachability when L and D are given as
parameters. It runs in time (L + D)O(L+D) and significantly improves upon the (LD)O(LD)-time
algorithm from [7]. Moreover, it is optimal in the fine-grained sense. It closes the gap between

P. Chini, R. Meyer, and P. Saivasan 37:3

upper and lower bound. The algorithm works over sketches of computations. A sketch is
valid if there is an actual computation corresponding to it. In [7], we performed a single
validity check for each sketch. Here, we show that valid sketches can be build up inductively
from small sketches. To this end, we interleave validity checks with compression phases. Our
algorithm is a dynamic programming on small sketches, exploiting the inductive approach.

Our second main result is an algorithm for detecting cycles. We show that the problem
is actually solvable in polynomial time. Technically, we employ a characterization of cycles
via (certain) SCC decompositions of the contributor automaton. These decompositions can
be computed by a fixed point iteration invoking Tarjan’s algorithm [35] in polynomial time.

Since Cycle(L, D, C) is polynomial, liveness has the same complexity as reachability also
in the fine-grained sense. With the above result, we obtain the mentioned algorithms for
liveness by composing the reachability algorithms with the cycle detection.

Related Work. The parameterized complexity has also been studied for other verification
problems. Farzan and Madhusudan [18] consider the problem of predicting atomicity viola-
tions. Depending on the synchronization, they obtain an efficient fine-grained algorithm resp.
prove an FPT-algorithm unlikely. In [15], the authors give an efficient (fine-grained) algorithm
for the problem of checking TSO serializability. In [5], we studied the fine-grained complexity
of bounded context switching [33], including lower bounds on the complexity. In [7], we gave
a parameterized analysis of the bounded write-stage restriction, a generalization of bounded
context switching [2]. The problem turns out to be hard for different parameterizations, and
has a large number of hard instances. In a series of papers [20, 19, 36], Fernau et al. studied
FPT-algorithms for problems from automata theory.

Related to leader contributor systems are broadcast networks (ad-hoc networks) [34, 12].
These consist of an arbitrary number of finite-state contributors that communicate via
message passing. There is no leader. This has an impact on the complexity of safety [11, 24]
and liveness [6, 3] verification, which drops from NP (leader contributor systems) to P.

More broadly, the verification of parameterized systems is an active field of research [4].
Prominent approaches are well-structuredness arguments [1, 21] and cut-off results [25].
Well-structuredness means the transition relation is monotonic wrt. a well-quasi ordering on
the configurations, a combination that leads to surprising decidability results. A cut-off is a
bound on the size of system instances such that correctness of the bounded instances entails
correctness of all instances. Our algorithm uses different techniques. We give a reduction
from liveness to reachability combined with a polynomial-time cycle check. Reductions from
liveness to reachability or safety are recently gaining popularity in verification [29, 32, 27].
For reachability, we then rely on techniques from parameterized complexity [13, 10], namely
identifying combinatorial objects to iterate over and dynamic programming.

2 Leader Contributor Systems and the Liveness Problem

We introduce leader contributor systems and the leader contributor liveness problem of interest
following [26, 16, 14]. Moreover, we give a short introduction to fine-grained complexity. For
standard textbooks, we refer to [22, 10, 13].

Leader Contributor Systems. A leader contributor system consists of a designated leader
thread communicating with a number of identical contributor threads via a shared memory.
Formally, the system is a tuple S = (D, a0, PL, PC) where D is the finite domain of the shared
memory and a0 ∈ D is the initial memory value. The leader PL and the contributor PC

FSTTCS 2019

37:4 Complexity of Liveness in Parameterized Systems

are abstractions of concrete threads making visible the interaction with the memory. They
are defined as finite state automata over the alphabet Op(D) = {!a, ?a | a ∈ D} of memory
operations. Here, !a denotes a write of a to the memory, ?a denotes a read of a. The leader
is given by the tuple PL = (Op(D), QL, q0

L, δL) where QL is the set of states, q0
L ∈ QL is the

initial state, and δL ⊆ QL × (Op(D) ∪ {ε})×QL is the transition relation. We extend the
relation to words in Op(D)∗ and usually write q −→w L q

′ for (q, w, q′) ∈ δL. The contributor
is defined similarly, by PC = (Op(D), QC , q0

C , δC).
The possible interactions of a thread with the memory depend on the current memory

value and the internal state of the thread. To keep track of this information, we use
configurations. These are tuples of the form (q, a, pc) ∈ CF t = QL × D × QtC . Here, pc
is a vector storing the current state of each contributor, and there are t ∈ N contributors
participating in the computation. The number of participating contributors can be arbitrary,
but will be fixed throughout the computation. Therefore, the set of all configurations is
given by CF =

⋃
t∈N CF t. A configuration is called initial if it is of the form (q0

L, a
0, pc0)

where pc0(i) = q0
C for each i ∈ [1..t]. We use projections to access the components of a

configuration. Let πL and πD denote the projections to the leader state resp. the memory
content, πL((q, a, pc)) = q and πD((q, a, pc)) = a. The map πC projects a configuration to
the set of contributor states present in pc, πC((q, a, pc)) = {pc(i) | i ∈ [1..t]}.

The current configuration of S may change due to an interaction with the memory or
an internal transition. We capture such changes by a labeled transition relation among
configurations, → ⊆ CF × (Op(D)∪{ε})×CF . It contains transitions induced by the leader
and by the contributor. We focus on the former. If there is a write q −→!b L q′ of the leader, we
get (q, a, pc) −→!b (q′, b, pc). Similarly, a read q −→?a L q

′ induces (q, a, pc) −→?a (q′, a, pc). Note
that the current memory value has to match the read symbol. An internal transition q −→ε L q′
yields (q, a, pc) −→ε (q′, a, pc). For the transitions induced by the contributors, let pc(i) = p

and pc′ = pc[i = p′], meaning pc′(i) = p′ and pc′ coincides with pc in all other components.
A transition p −−−−−→!b/?a/ε

C p′ yields (q, a, pc) −−−−−→!b/?a/ε (q, b/a, pc′), like for the leader. Note that
transitions are only defined among configurations involving the same number of contributors.
It is convenient to assume that the leader never writes !a and immediately reads ?a again.
In this case, we could replace the corresponding read transition by ε.

The transition relation → is generalized to words, denoted by c −→w c′ with w ∈ Op(D)∗.
We call such a sequence a computation of S. We also write c →∗ c′ if there is a word w

with c −→w c′, and c→+ c′ if w has length at least 1. An infinite computation is a sequence
σ = c0 → c1 → . . . of infinitely many transitions. We call it initialized if c0 is an initial
configuration. Since σ involves infinitely many configurations but the set QL is finite, there
are states of the leader that occur infinitely often along the computation. We denote the set
of these states by Inf(σ) = {q ∈ QL | ∃∞ i : q = πL(ci)}.

Leader Contributor Liveness. The leader contributor liveness problem is the task of deciding
whether the leader satisfies a liveness specification while interacting with a number of
contributors. Formally, given a leader contributor system S = (D, a0, PL, PC) and a set
of final states F ⊆ QL encoding the specification, the problem asks whether there is an
initialized infinite computation σ such that the leader visits F infinitely often along σ. Since
F is finite, this is equivalent to Inf(σ)∩F 6= ∅. In this case, σ is called a live computation.

Leader Contributor Liveness (LCL)
Input: A leader contributor system S = (D, a0, PL, PC) and final states F ⊆ QL.
Question: Is there an infinite initialized computation σ such that Inf(σ) ∩ F 6= ∅?

P. Chini, R. Meyer, and P. Saivasan 37:5

Fine-Grained Complexity. The problem LCL is known to be NP-complete [14]. Despite its
hardness, it may still admit efficient deterministic algorithms the running times of which
depend exponentially only on certain parameters. To find parameters that allow for the
construction of such algorithms, one examines the parameterized complexity of LCL. Note that
the name does not refer to parameterized systems. It stems from measuring the complexity
not only in the size of the input but also in the mentioned parameters.

Let Σ be an alphabet. Unlike in classical complexity theory where we consider problems
over Σ∗, a parameterized problem P is a subset of Σ∗×N. Inputs to P are pairs (x, k) with the
second component k being referred to as the parameter. Problem P is called fixed-parameter
tractable if it admits a deterministic algorithm deciding membership in P for pairs (x, k) in
time f(k) · |x|O(1). Here, f is a computable function that only depends on k. Since f usually
dominates the polynomial, the running time of the algorithm is denoted by O∗(f(k)).

While finding an upper bound for the function f amounts to coming up with an efficient
algorithm, lower bounds on f are obtained relative to hardness assumptions. One of the
standard assumptions is the exponential time hypothesis (ETH) [28]. It asserts that 3-SAT
cannot be solved in time 2o(n) where n is the number of variables in the input formula. The
lower bound is transported to the problem of interest via a reduction from 3-SAT. Then, f
cannot drop below a certain bound unless ETH fails. It is a task of fine-grained complexity
to find the optimal function f , where upper and lower bound match.

We conduct fine-grained complexity analyses for two parameterizations of LCL. First, we
consider LCL(L, D), the parameterization by the number of states in the leader L and the
size of the data domain D. We show an (L + D)O(L+D)-time algorithm, matching the lower
bound for LCL from [7]. The second parameterization LCL(C) is by the number of states of
the contributor C. We give an algorithm running in time O∗(2C). It also matches the known
lower bound [7]. Therefore, both algorithms are optimal in the fine-grained sense. The
parameterizations LCL(L) and LCL(D) are unlikely to be fixed-parameter tractable. These
problems are hard for W[1], a complexity class comprising intractable problems [7].

3 Dividing Liveness along Interfaces

A live computation naturally decomposes into a prefix and a cycle. This means that solving
LCL amounts to finding both, a prefix computation and a cyclic computation. However,
we need to guarantee that the computations can be linked. The prefix should lead to a
configuration that the cycle loops on. Since there are infinitely many configurations, we
introduce the finite domain of interfaces. An interface abstracts a configuration to its leader
state, memory value, and set of contributor states. Hence, an interface can be seen as a
summary of those configurations that are suitable for linking prefix and cycle.

Our algorithm to solve LCL works as follows. We start a reachability algorithm for the
leader contributor model on the final states that the live computation should visit. After a
modification, the algorithm outputs all interfaces witnessing prefixes to those states. Let
Reach(L, D, C) denote the running time of the reachability algorithm. We show that the
obtained set of interfaces will be of size at most Reach(L, D, C). We iterate over the interfaces
and pass each to a cycle detection which works over interfaces instead of configurations. If a
cycle was found, a live computation exists. Let Cycle(L, D, C) be the time needed for a single
cycle detection. Then, the running time of the algorithm can be estimated as follows.

I Theorem 1. LCL can be solved in time O(Reach(L, D, C) · Cycle(L, D, C)).

The first step in proving Theorem 1 is to decompose live computations into prefixes and
cycles. To be precise, we aim for a decomposition where the cycle is saturated in the sense
that the initial configuration already contains all contributor states that will be encountered

FSTTCS 2019

37:6 Complexity of Liveness in Parameterized Systems

along the cycle. Knowing these states in advance eases technical arguments when finding
cycles in Section 5. Formally, a cyclic computation τ = c→∗ c is called saturated if for each
configuration c′ in τ , we have πC(c′) ⊆ πC(c). We write c→∗sat c for a saturated cycle. The
following lemma yields the desired decomposition. If not stated otherwise, proofs and details
for the current section are provided in the full version of the paper.

I Lemma 2. There is an infinite initialized computation σ with Inf(σ) ∩ F 6= ∅ if and only
if there is a finite initialized computation c0 →∗ c→+

sat c with πL(c) ∈ F .

We would like to decompose LCL into finding prefix and cycle. But we need to ensure that
the found computations can be linked at an explicit configuration. For avoiding the latter,
we introduce interfaces. An interface is a triple I = (S, q, a) ∈ P(QC)×QL×D consisting of
a set of contributor states S, a state of the leader q, and a memory value a. A configuration
c matches the interface I if πC(c) = S, πL(c) = q, and πD(c) = a. We denote this by I(c),
interpreting I as a predicate. The set of interfaces is denoted by IF. The following lemma
shows that the notion allows for decomposing LCL. We can search for prefixes and cycles
separately. The lemma provides the arguments needed to complete the proof of Theorem 1.

I Lemma 3. Let I ∈ IF. There is a computation c0 →∗ c →+
sat c with I(c) if and only if

there are computations d0 →∗ d and f →+
sat f with I(d) ∧ I(f).

In the following, we turn to our main contributions. We present algorithms for reachability
and cycle detection and obtain precise values for Reach(L, D, C) and Cycle(L, D, C). Further,
we modify the reachability algorithms to output interfaces. Then we invoke Theorem 1 to
derive algorithms for LCL. The first problem that we consider is finding prefixes.

Leader Contributor Reachability (LCR)
Input: A leader contributor system S = (D, a0, PL, PC) and final states F ⊆ QL.
Question: Is there an initialized computation c0 →∗ c with πL(c) ∈ F?

The problem LCR is NP-complete [16]. Its complexity Reach(L, D, C) depends on the
parameterization. There are two standard parameterizations [7, 8]: LCR(L, D) and LCR(C).

For the parameterization by L and D, we present an algorithm solving LCR(L, D) in time
(L + D)O(L+D). The algorithm solves an open problem [7] by matching the known lower bound:
unless ETH fails, LCR cannot be solved in time 2o((L+D)·log(L+D)). The algorithm and its
modification for obtaining interfaces are presented in Section 4.

I Theorem 4. LCR(L, D) can be solved in time (L + D)O(L+D).

For LCR(C), we modify the reachability algorithm from [7, 8] so that it outputs interfaces
that witness prefixes. We recall the result on the complexity of the algorithm.

I Theorem 5 ([7, 8]). LCR(C) can be solved in time O(2C · C 4 · L 2 · D 2).

The second task to solve LCL is detecting cycles. We formalize the problem. It takes an
interface and asks for a saturated cycle on a configuration that matches the interface.

Saturated Cycle (CYC)
Input: A leader contributor system S = (D, a0, PL, PC) and an interface I ∈ IF.
Question: Is there a computation c→+

sat c with I(c)?

We present an algorithm solving CYC in polynomial time. Key to the algorithm is a fixed
point iteration over certain subgraphs of the contributor. Details are postponed to Section 5.

P. Chini, R. Meyer, and P. Saivasan 37:7

I Theorem 6. CYC can be solved in time O(D 2 · (C 2 + L 2 · D 2)).

The theorem shows that Cycle(L, D, C) is polynomial. Hence, by Theorem 1, we obtain
that LCL can be solved in time O∗(Reach(L, D, C)). This means that liveness verification and
safety verification in the leader contributor model only differ by a polynomial factor. Taking
the precise values for Reach(L, D, C) into account, Theorem 1 yields the following.

I Corollary 7. LCL(L, D) can be solved in time (L + D)O(L+D).

I Corollary 8. LCL(C) can be solved in time O(2C · L · D 2 · (L · C 4 + D · C 2 + L 2 · D 3)).

For the latter result, we are actually more precise in determining the time complexity than
stated in Theorem 1. Both obtained algorithms are optimal. They match the corresponding
lower bounds for LCL that carry over from reachability [7]. Unless ETH fails, LCL cannot
neither be solved in time 2o((L+D)·log(L+D)) nor in time 2o(C).

4 Reachability Parameterized by Leader and Domain

We present the algorithm for LCR(L, D). It runs in time (L + D)O(L+D) and therefore proves
Theorem 4. Moreover, with the results from Section 3 and 5, the algorithm can be utilized for
solving LCL in time (L + D)O(L+D). Like in [7], the algorithm relies on a notion of witnesses.
These are sketches of computations. A witness is valid if there is an actual computation
following the sketch. Validity can be checked in polynomial time.

The algorithm from [7] iterates over all witnesses and tests validity for each. Hence, the
time complexity of the algorithm is proportional to (LD)O(LD), the number of considered
witnesses. Key to our new algorithm is the fact that we can restrict to so-called short
witnesses. These are sketches of loop-free computations. We show that validity of witnesses
can be checked inductively from validity of short witnesses. We exploit the inductivity by a
dynamic programming. It runs in time proportional to (L + D)O(L+D), the number of short
witnesses. This yields the desired complexity as stated in Theorem 4.

4.1 Witnesses and Validity
We introduce witnesses and recall the notion of validity. Afterwards, we elaborate on the
main idea of our new algorithm: restricting to short witnesses for checking validity.

Intuitively, a witness is a compact way to represent computations of a leader contributor
system. From a computation, a witness only stores the actions of the leader and the positions
where memory symbols were written by a contributor for the first time. We call these
positions first writes. From such a position on, we can assume an unbounded supply of the
corresponding memory symbol. There is always a copy of a contributor waiting to provide it.

Formally, a witness is a triple x = (w, q, σ). The word w = (q1, a1)(q2, a2) . . . (qn, an)
represents the run of the leader. It is a sequence from (QL × (D] {⊥}))∗, containing leader
states potentially combined with a memory value. The state q ∈ QL is the target of the leader
run. First-write positions are specified by σ : [1..k]→ [1..n], a monotonically increasing map
where k ≤ D. The number of first-write positions k is called the order of x. We denote it by
ord(x) = k. Moreover, we use Wit for the set of all witnesses. A witness x = (w, q, σ) ∈Wit
is called initialized if w begins in the initial state q0

L of the leader automaton.
If a witness corresponds to an actual computation, we call it valid. This means, the

witness encodes a proper run of the leader and moreover, the first writes along the run can
be provided by the contributors. Since the definition of witnesses only specifies first-write
positions but not values, we need the notion of first-write sequences. The latter will allow
for the definition of validity.

FSTTCS 2019

37:8 Complexity of Liveness in Parameterized Systems

A first-write sequence is a sequence of data values β ∈ D≤D that are all different. Formally,
βi 6= βj for i 6= j. We use FW to denote the set of all those sequences. Given a witness
x = (w, q, σ), we define its validity with respect to a first-write sequence β of length ord(x).
For being valid, x has to be leader valid along β and contributor valid along β. We make
both notions more precise. Details regarding this section including formal definitions are
available in the full version of the paper.

Leader Validity. The witness is leader valid along β if w encodes a run of the leader that
reaches state q. Reading during the run is restricted to symbols from β: the `-th symbol β`
is available for reading once the run arrives at position σ(`). Formally, the encoding depends
on the memory values ai. If ai 6= ⊥, the leader has a transition qi −−→!ai

L qi+1. If ai = ⊥,
the leader either has an ε-transition or reads a symbol available at position i, from the set
Sβ(i) = {β` | σ(`) ≤ i}. We use LValidβ(x) to indicate that x is leader valid along β.

Contributor Validity. The witness is contributor valid along β if the contributors can
provide the first writes for w in the order indicated by σ. Let us focus on the i-th first
write βi. Providing βi is a question of reachability of the set Qi = {p | ∃p′ : p −−→!βi

C p′}
in the contributor automaton. More precise, we need a contributor that reaches Qi while
reading only symbols available along w. This means that reading is restricted to earlier first
writes and symbols written by the leader during w up to position σ(i).

Let Expr(x, β1 . . . βi−1) be the language of available reads. We say that x is valid for
the i-th first write of β if Qi is reachable by a contributor while reading is restricted to
Expr(x, β1 . . . βi−1). We use CValidiβ(x) to indicate this validity. If x is valid for all first
writes, it is contributor valid along β. Formally, CValidβ(x) =

∧
i∈[1..ord(x)] CValidiβ(x).

With leader and contributor validity in place, we can define x to be valid along β if
LValidβ(x) ∧ CValidβ(x). Again, we use predicate notation. We write Validβ(x) if x is valid
along β. Validity of a witness along a first-write sequence can be checked in polynomial time.

I Lemma 9. Let x ∈Wit and β ∈ FW. Validβ(x) can be evaluated in polynomial time.

The algorithm from [7] iterates over witnesses and invokes Lemma 9 to check validity. The
following lemma proves the correctness: validity indicates the existence of a computation.

I Lemma 10. Let q ∈ QL. There is an initialized computation c0 →∗ c with πL(c) = q if
and only if there is an initialized x = (w, q, σ) ∈Wit and a β ∈ FW so that Validβ(x).

For obtaining a tractable algorithm, we would like to restrict to short witnesses when
checking validity. These are witnesses encoding a loop-free run of the leader. The following
two observations are crucial to our development.

Leader validity can be checked inductively on short witnesses. A witness x can be written
as a product x = x1 × x2 × · · · × xk+1 of smaller witnesses. Each xi encodes that part of the
leader run of x happening between two first-write positions σ(i− 1) and σ(i). The witness
concatenation × appends these runs. Each xi can assumed to be a short witness. There is
no need for recording loops of the leader between first writes. We can cut them out.

Assume y = x1×· · ·×xi encodes a proper run ρ of the leader that reads from the available
first writes β1, . . . , βi−1. Formally, LValidβ1...βi−1(y). Then, leader validity of y × xi+1 along
β1 . . . βi mainly depends on the newly added witness xi+1. The reason is that we prolong ρ,
a run of the leader that was already verified. All that we have to remember from ρ is where

P. Chini, R. Meyer, and P. Saivasan 37:9

it ends. This means that we can shrink y to a short witness. We consecutively cut out
loops from the leader, denoted by Shrink∗, until we obtain a loop free witness. Formally, if
LValidβ1...βi−1(y) holds true, we have the equality

LValidβ1...βi
(y × xi+1) = LValidβ1...βi

(Shrink∗(y)× xi+1).

Hence, checking leader validity can be restricted to (concatenations of) short witnesses.
Like leader validity, we can restrict contributor validity to short witnesses. The main

reason is that testing validity for the i-th first write only requires limited knowledge about
earlier first writes. As long as we guarantee that earlier first writes can be provided along
a run of the leader, we do not have to keep track of their precise positions anymore. This
means that we can shrink the run when testing validity for the i-th first write.

Assume that y = x1×· · ·×xi is known to be contributor valid. Formally, CValidβ1...βi−1(y)
is true. Note that the first writes considered in y are β1, . . . , βi−1. We want to check
contributor validity of y × xi+1. Since there is only one new first write that we add,
namely βi, we have to evaluate CValidiβ1...βi

(y× xi+1). Satisfying contributor validity means
that βi can be provided along y× xi+1 assuming that β1, . . . , βi−1 were already provided. In
fact, it is not important where these earlier first writes appeared exactly. We just need the
fact that after y, they can assumed to be there. This allows for shrinking y and forgetting
about the precise positions of the earlier first writes. Formally, if CValidβ1...βi−1(y), we have

CValidiβ1...βi
(y × xi+1) = CValidiβ1...βi

(Shrink∗(y)× xi+1).

In the next section, we turn the above observations into a recursive definition of validity
for short witnesses. The recursion only involves short witnesses of lower order. Since the
number of these is bounded by (L + D)O(L+D), we can employ a dynamic programming that
checks validity of short witnesses in time proportional to their number.

4.2 Algorithm and Correctness
Before we can formulate the recursion, we need to introduce short witnesses and a concatena-
tion operator on the same. A short witness is a witness z = (w, q, σ) ∈Wit where the leader
states in w = (q1, a1) . . . (qn, an) are all distinct. We use Witsh to denote the set of all short
witnesses. Moreover, let Ord(k) denote the set of those short witnesses that are of order k.

Let x = (w, q, σ) ∈ Ord(i) and y = (w′, q′, σ′) ∈ Ord(j) be two short witnesses. Assume
that the first state in w′ is q, meaning that y starts with the target state of x. Then, the short
concatenation of x and y is defined to be the short witness x⊗y = Shrink∗(x×y) ∈ Ord(i+j).

The price to pay for the smaller number of short witnesses is a more expensive check for
validity. Rather than checking validity once for each short witness, we build them up by a
recursion along the order, and check validity for each composition. Let z be a short witness.
If ord(z) = 0, there are no first-write positions. Only leader validity is important:

Validsh
ε (z) = LValidε(z).

For a short witness z of order k + 1, we define validity along β = β1 . . . βk+1 ∈ FW by

Validsh
β (z) =

∨
x∈Ord(k)
y∈Ord(1)

[z = x⊗ y] ∧ LValidβ(x× y) ∧ CValidk+1
β (x× y) ∧Validsh

β′ (x).

Here β′ = β1 . . . βk is the prefix of β where the last element is omitted.

FSTTCS 2019

37:10 Complexity of Liveness in Parameterized Systems

The idea behind the recursion is to cut off the last first write βk+1, check its validity,
and recurse on the remaining part. To this end, z is decomposed into two short witnesses
x ∈ Ord(k) and y ∈ Ord(1). Intuitively, x is the compression of a larger witness that is
already known to be valid and y is the short witness responsible for the last first write. By
our considerations above, we already know that it suffices to check validity for βk+1 with x
instead of its expanded form. These are the evaluations LValidβ(x×y) and CValidk+1

β (x×y).
To guarantee validity along β′, we recurse on Validsh

β′ (x).
The following lemma shows the correctness of the recursion. Using Lemma 10, we can

work with short witnesses to discover computations in the given leader contributor system.

I Lemma 11. Let q ∈ QL and β ∈ FW. There is an x = (w, q, σ) ∈Wit with Validβ(x) if
and only if there is an z = (w′, q, σ′) ∈Witsh with Validsh

β (z). In this case, init(x) = init(z).

Note that in the lemma, init(x) refers to the first state of w. Similarly for z.
It remains to give the algorithm. For each first-write sequence β and each short witness z,

we compute Validsh
β (z) by a dynamic programming. To this end, we maintain a table indexed

by first-write sequences and short witnesses. An entry for β ∈ FW and z ∈Witsh is computed
as follows. Let |β| = ord(z) = k. We iterate over all short witnesses x ∈ Ord(k−1), y ∈ Ord(1)
and check whether z = x⊗ y holds. If so, we compute LValidβ(x× y) ∧ CValidkβ(x× y) and
look up the value of Validsh

β′ (x) in the table. Details on the precise complexity are presented
in the full version of the paper.

I Proposition 12. The set of all valid short witnesses can be computed in time (L + D)O(L+D).

It is left to explain how interfaces can be obtained from the algorithm. From a valid short
witness, target state and last memory value can be read off. Contributor states can be
obtained by synchronizing the contributor along the witness. This takes polynomial time.
Details can be found in the full version of the paper.

5 Finding Cycles in Polynomial Time

We give an efficient algorithm solving CYC in time O(D2 ·(C2 +L2 ·D2)). This proves Theorem 6.
The algorithm relies on a characterization of cycles in terms of stable SCC decompositions.
These are decompositions of the contributor automaton into strongly connected subgraphs
that are stable in the sense that they write exactly the symbols they intend to read. With a
fixed point iteration, we show how to find stable SCC decompositions in the mentioned time.

Our algorithm is technically simple. It relies on a fixed point iteration calling Tarjan’s
algorithm [35] to obtain SCC decompositions. Hence, the algorithm is easy to implement and
shows that stable SCC decompositions are the ideal structure for detecting cycles. Moreover,
we can modify the algorithm to detect cycles where the leader necessarily makes a move.

We also discovered that cycles can be detected by a non-trivial polynomial-time reduction
to the problem of finding cycles in dynamic graphs. Although the latter can be solved in
polynomial time [30], the obtained algorithm for CYC does not admit an efficient polynomial-
time complexity. The reason is that the algorithm in [30] repeatedly solves linear programs
that grow large due to the reduction. Compared to this method, our algorithm is more
efficient and technically simpler due to being tailored to the actual problem.

5.1 From Saturated Cycles to Stable SCC decompositions
We characterize cycles in terms of stable SCC decompositions. These are decompositions of
the contributor automaton that can provide themselves with all the symbols that a cycle
along this structure may read. For the definition, we generalize properties of a fixed cycle to

P. Chini, R. Meyer, and P. Saivasan 37:11

the fact that a saturated cycle exists. We link the latter with an alphabet Γ, a variable for
the set of reads in a saturated cycle. Then we define stable SCC decompositions depending
on Γ. Hence, the search for a cycle amounts to finding a Γ with a stable SCC decomposition.

Throughout the section, we fix an interface I = (S, q, a) and a saturated cycle τ = c→+
sat c

with I(c). We assume that the set Writes(τ) = {b ∈ D | d −→!b d′ ∈ τ} is non-empty, τ contains
at least one write. If τ contains only reads, then either a contributor or the leader run in an
?a-loop, a cycle which is easy to detect. We generalize two properties of τ .

Property 1: Strongly connectedness. Considering the saturated cycle τ , we can observe
how the current state of a particular contributor P changes over time. Assume P starts in
a state p and visits a state p′ during τ . Since it runs along the cycle, the contributor will
eventually move from p′ back to p again. This means that in the contributor automaton, there
is a path from p to p′ and vice versa. Phrased differently, p and p′ are strongly connected.

To make this notion more precise, we define a subgraph of the contributor automaton.
Intuitively, it is the restriction of PC to the states and transitions visited along τ . Rather
than defining it for a single computation τ , we generalize to a set of enabled reads Γ ⊆ D.
The directed graph GS(Γ) = (S,E(Γ)) has as vertices the contributor states S and as edges
the set E(Γ). The latter are transitions of PC between states in S that are either reads
enabled by Γ or writes of arbitrary symbols. Formally, we have

(p, p′) ∈ E(Γ) if p −→?b C p′ with b ∈ Γ or p −→!b C p′ with b ∈ D.

For the cycle τ = c→+
sat c, the induced graph is GS(Γ) where Γ = Writes(τ). With the

graph in place, we can define our notion of strongly connected states.

I Definition 13. Let p, p′ ∈ S be two states and Γ ⊆ D. We say that p and p′ are strongly
Γ-connected if p and p′ are strongly connected in the graph GS(Γ).

Like the classical notion, the above definition generalizes to sets. We say that a set V ⊆ S is
strongly Γ-connected if each two states in V are strongly Γ-connected.

The saturated cycle τ runs along the SCC decomposition of its induced graph GS(Γ).
Following a particular contributor P in τ , we collect the visited states in a set SP ⊆ S. Then,
SP is strongly Γ-connected and thus contained in an inclusion maximal strongly connected
set, an SCC of GS(Γ). Hence, the contributors in τ stay within SCCs of the graph. We
associate with τ the SCC decomposition. Again, we generalize to a given alphabet.

Let Γ ⊆ D and V ⊆ S strongly Γ-connected. We call V a strongly Γ-connected component
(Γ-SCC) if it is inclusion maximal. The latter means that for each V ⊆ V ′ with V ′ strongly
Γ-connected, we already have V = V ′. We consider the unique partition of S into Γ-SCCs.
Note that by a partition, we mean a collection (S1, . . . , S`) of pairwise disjoint subsets of S
such that S =

⋃
i∈[1..`] Si. The order of a partition is not important for our purpose.

I Definition 14. The partition of S into Γ-SCCs is called Γ-SCC decomposition of S.

We denote the Γ-SCC decomposition by SCCdcmpS(Γ). It consists of the vertices of the
SCC decomposition of GS(Γ). Hence, we can obtain it from an application of Tarjan’s
algorithm [35], a fact that becomes important when computing SCCdcmpS(Γ) in Section 5.2.

Property 2: Stability. Let SCCdcmpS(Γ) = (S1, . . . , S`) be the Γ-SCC decomposition
associated with the saturated cycle τ . The writes in τ can be linked with the Si. If a write
occurs between states p, p′ ∈ Si, we associate it with the set Si. The writes of the leader all
occur on a cyclic computation q →∗L q. The point of assigning writes to sets is the following.
Writes that belong to a set can occur on a cycle through a set of the decomposition.

FSTTCS 2019

37:12 Complexity of Liveness in Parameterized Systems

We generalize from τ to a given alphabet Γ ⊆ D. Let SCCdcmpS(Γ) = (S1, . . . , S`) be
the Γ-SCC decomposition of S. The writes of the decomposition is the set of all symbols
that occur as writes either between the states of Si or in a cycle q →∗L q on the leader
while preserving the memory content a. Formally, we define the writes to be the union
Writes(S1, . . . , S`) = WritesC(S1, . . . , S`) ∪WritesL(S1, . . . , S`) where

WritesC(S1, . . . , S`) = {b | p −→!b C p′ with p, p′ ∈ Si} and
WritesL(S1, . . . , S`) = {b | ∃u, v : (q, a) −−−→u.!b.v

L′ (q, a)}.

Here,→L′ denotes the transition relation of the automaton PL′ , a restriction of the leader PL
to reads within WritesC(S1, . . . , S`). The automaton also keeps track of the memory content.
We define PL′ = (Op(D), QL ×D, (q0

L, a
0), δL′) with the transitions

(s, b) −→!b
′

L′ (s′, b′) if s −→!b
′

L s
′,

(s, b) −→?b L′ (s′, b) if s −→?b L s′ and b ∈WritesC(S1, . . . , S`),
(s, b) −→ε L′ (s, b′) if b′ ∈WritesC(S1, . . . , S`).

The last transitions change the memory content due to a write of a contributor.
The following lemma states that writes behave monotonically. This fact will become

important in Section 5.2. We provide a proof in the full version of the paper.

I Lemma 15. Let Γ ⊆ Γ′ ⊆ D. We have Writes(SCCdcmpS(Γ)) ⊆Writes(SCCdcmpS(Γ′)).

During the cycle τ , reads are always preceded by corresponding writes. Hence, the writes
of the Γ-SCC decomposition, where Γ = Writes(τ), provide all symbols needed for reading. In
fact, we have Writes(SCCdcmpS(Γ)) ⊇ Γ. The following definition generalizes this property.

I Definition 16. Let Γ ⊆ D. The Γ-SCC decomposition SCCdcmpS(Γ) of S is called stable
if it provides Γ as its writes, meaning Writes(SCCdcmpS(Γ)) = Γ.

Note that the definition asks for equality instead of inclusion. The reason is that we can
express stability as a fixed point of a suitable operator. This will be essential in Section 5.2.

Characterization. The following proposition characterizes the existence of saturated cycles
via stable SCC decompositions. It is a major step towards the polynomial-time algorithm.

I Proposition 17. There is a saturated cycle τ = c →+
sat c with I(c) if and only if there

exists a non-empty subset Γ ⊆ D such that SCCdcmpS(Γ) is stable.

Proof. Assume the existence of a saturated cycle τ . Our candidate set is Γ = Writes(τ). We
already argued above that Writes(SCCdcmpS(Γ)) ⊇ Γ. If equality holds, SCCdcmpS(Γ) is
stable and Γ is the set we are looking for. Otherwise, we have Writes(SCCdcmpS(Γ))) Γ.

In the latter case, we consider Γ′ = Writes(SCCdcmpS(Γ)) instead of Γ. Since Γ′ ⊇ Γ,
we can apply Lemma 15 and obtain that Writes(SCCdcmpS(Γ′)) contains Γ′.

Iterating this process yields a sequence of sets (Γi)i that is strictly increasing, Γi (Γi+1,
and that satisfies Writes(SCCdcmpS(Γi)) ⊇ Γi. The sequence is finite since Γi ⊆ D for all i.
Hence, there is a last set Γd which necessarily fulfills Writes(SCCdcmpS(Γd)) = Γd.

For the other direction, we need to construct a saturated cycle from a set Γ with stable
SCC decomposition. Idea and formal proof are given in the full version of the paper. J

P. Chini, R. Meyer, and P. Saivasan 37:13

5.2 Computing Stable SCC decompositions

The search for a saturated cycle reduces to finding an alphabet Γ with a stable SCC
decomposition. Following the definition of stability, we can express Γ as a fixed point that
can be computed by a Kleene iteration [37] in polynomial time. We define the suitable
operator. It acts on the powerset lattice P(D) and for a given set X, it computes the writes
of the X-SCC decomposition. Formally, it is defined by

WritesSCC (X) = Writes(SCCdcmpS(X)).

The operator is monotone and can be evaluated in polynomial time.

I Lemma 18. For X ⊆ X ′ subsets of D, we have WritesSCC (X) ⊆WritesSCC (X ′). More-
over, WritesSCC (X) can be computed in time O(D · (C 2 + L 2 · D 2)).

Monotonicity follows from Lemma 15. For the evaluation, let X be given. We apply
Tarjan’s algorithm on GS(X) to compute the X-SCC decomposition SCCdcmpS(X). This
takes linear time. It is left to compute the writes Writes(SCCdcmpS(X)). For details on the
computation and the precise complexity we refer to the full version.

The following lemma states that the non-trivial fixed points of the operator WritesSCC
are precisely the sets with a stable SCC decomposition. Hence, searching for a cycle reduces
to searching for a fixed point.

I Lemma 19. For Γ 6= ∅ we have, Γ = WritesSCC (Γ) if and only if SCCdcmpS(Γ) is stable.

Correctness immediately follows from the definition of stability. For finding a suitable
set Γ, we employ a Kleene iteration to compute the greatest fixed point of WritesSCC . It
starts from Γ = D, the top element of the lattice. At each step, it evaluates WritesSCC (Γ)
by invoking Lemma 18. This takes time O(D · (C2 + L2 · D2)). Termination is after at most D
steps since at least one element is removed from the set Γ each iteration. Hence, the time to
compute the greatest fixed point of WritesSCC is O(D2 · (C2 + L2 · D2)).

6 Conclusion

We studied the fine-grained complexity of LCL, the liveness verification problem for leader
contributor systems. To this end, we first decomposed LCL into the reachability problem
LCR and the cycle detection CYC. We focused on the complexity of LCR. While an optimal
O∗(2C)-time algorithm for LCR(C) was already known, we presented an algorithm solving
LCR(L, D) in time (L + D)O(L+D). The algorithm is optimal in the fine-grained sense and
therefore solves an open problem. It is a dynamic programming based on a notion of valid
short witnesses. Moreover, we showed how to modify both algorithms for LCR so that they
are compatible with a cycle detection and can be used in algorithms solving LCL.

Further, we determined the complexity of CYC. We presented an efficient fixed point
iteration running in time O(D2 · (C2 + L2 · D2)). It is based on a notion of stable SCC
decompositions and invokes Tarjan’s algorithm to find them. The result shows that LCL and
LCR admit the same fine-grained complexity.

FSTTCS 2019

37:14 Complexity of Liveness in Parameterized Systems

References
1 P. A. Abdulla and B. Jonsson. Verifying Programs with Unreliable Channels. In LICS, pages

160–170. IEEE, 1993.
2 M. F. Atig, A. Bouajjani, K. N. Kumar, and P. Saivasan. On Bounded Reachability Analysis of

Shared Memory Systems. In FSTTCS, volume 29 of LIPIcs, pages 611–623. Schloss Dagstuhl,
2014.

3 N. Bertrand, P. Fournier, and A. Sangnier. Playing with Probabilities in Reconfigurable
Broadcast Networks. In FOSSACS, volume 8412 of LNCS, pages 134–148. Springer, 2014.

4 R. Bloem, S. Jacobs, A. Khalimov, I. Konnov, S. Rubin, H. Veith, and J. Widder. Decidability
of Parameterized Verification. Synthesis Lectures on Distributed Computing Theory. Morgan
& Claypool Publishers, 2015.

5 P. Chini, J. Kolberg, A. Krebs, R. Meyer, and P. Saivasan. On the Complexity of Bounded
Context Switching. In ESA, volume 87, pages 27:1–27:15. Schloss Dagstuhl, 2017.

6 P. Chini, R. Meyer, and P.Saivasan. Liveness in Broadcast Networks. In NETYS, 2019.
7 P. Chini, R. Meyer, and P. Saivasan. Fine-Grained Complexity of Safety Verification. In

TACAS, volume 10806 of LNCS, pages 20–37. Springer, 2018.
8 P. Chini, R. Meyer, and P. Saivasan. Fine-Grained Complexity of Safety Verification. CoRR,

abs/1802.05559, 2018. arXiv:1802.05559.
9 P. Chini, R. Meyer, and P. Saivasan. Complexity of Liveness in Parameterized Systems. CoRR,

abs/1909.12004, 2019. arXiv:1909.12004.
10 M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,

and S. Saurabh. Parameterized algorithms. Springer, 2015.
11 G. Delzanno, A. Sangnier, R. Traverso, and G. Zavattaro. On the Complexity of Parameterized

Reachability in Reconfigurable Broadcast Networks. In FSTTCS, volume 18 of LIPIcs, pages
289–300. Schloss Dagstuhl, 2012.

12 G. Delzanno, A. Sangnier, and G. Zavattaro. Parameterized Verification of Ad Hoc Networks.
In CONCUR, volume 6269 of LNCS, pages 313–327. Springer, 2010.

13 R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity. Springer, 2013.
14 A. Durand-Gasselin, J. Esparza, P. Ganty, and R. Majumdar. Model Checking Parameterized

Asynchronous Shared-Memory Systems. In CAV, volume 9206 of LNCS, pages 67–84. Springer,
2015.

15 C. Enea and A. Farzan. On Atomicity in Presence of Non-atomic Writes. In TACAS, volume
9636 of LNCS, pages 497–514. Springer, 2016.

16 J. Esparza, P. Ganty, and R. Majumdar. Parameterized Verification of Asynchronous Shared-
Memory Systems. In CAV, pages 124–140, 2013.

17 J. Esparza, P. Ganty, and R. Majumdar. Parameterized Verification of Asynchronous Shared-
Memory Systems. JACM, 63(1):10:1–10:48, 2016.

18 A. Farzan and P. Madhusudan. The Complexity of Predicting Atomicity Violations. In
TACAS, volume 5505 of LNCS, pages 155–169. Springer, 2009.

19 H. Fernau, P. Heggernes, and Y. Villanger. A multi-parameter analysis of hard problems on
deterministic finite automata. JCSS, 81(4):747–765, 2015.

20 H. Fernau and A. Krebs. Problems on Finite Automata and the Exponential Time Hypothesis.
In CIAA, volume 9705 of LNCS, pages 89–100. Springer, 2016.

21 A. Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere! TCS,
256(1-2):63–92, 2001.

22 F. V. Fomin and D. Kratsch. Exact Exponential Algorithms. Texts in Theoretical Computer
Science. Springer, 2010.

23 M. Fortin, A. Muscholl, and I. Walukiewicz. Model-Checking Linear-Time Properties of
Parametrized Asynchronous Shared-Memory Pushdown Systems. In CAV, volume 8044 of
LNCS, pages 155–175. Springer, 2017.

24 P. Fournier. Parameterized verification of networks of many identical processes. PhD thesis,
University of Rennes 1, 2015.

http://arxiv.org/abs/1802.05559
http://arxiv.org/abs/1909.12004

P. Chini, R. Meyer, and P. Saivasan 37:15

25 S. M. German and A. P. Sistla. Reasoning about Systems with Many Processes. JACM,
39(3):675–735, 1992.

26 M. Hague. Parameterised Pushdown Systems with Non-Atomic Writes. In FSTTCS, volume 13
of LIPIcs, pages 457–468. Schloss Dagstuhl, 2011.

27 M. Hague, R. Meyer, S. Muskalla, and M. Zimmermann. Parity to Safety in Polynomial Time
for Pushdown and Collapsible Pushdown Systems. In MFCS, volume 117 of LIPIcs, pages
57:1–57:15. Schloss Dagstuhl, 2018.

28 R. Impagliazzo and R. Paturi. On the Complexity of k-SAT. JCSS, 62(2):367–375, 2001.
29 I. V. Konnov, M. Lazic, H. Veith, and J. Widder. A short counterexample property for safety

and liveness verification of fault-tolerant distributed algorithms. In POPL, pages 719–734.
ACM, 2017.

30 S. R. Kosaraju and G. F. Sullivan. Detecting Cycles in Dynamic Graphs in Polynomial Time
(Preliminary Version). In STOC, pages 398–406. ACM, 1988.

31 S. La Torre, A. Muscholl, and I. Walukiewicz. Safety of Parametrized Asynchronous Shared-
Memory Systems is Almost Always Decidable. In CONCUR, volume 42 of LIPIcs, pages
72–84. Schloss Dagstuhl, 2015.

32 O. Padon, J. Hoenicke, G. Losa, A. Podelski, M. Sagiv, and S. Shoham. Reducing liveness to
safety in first-order logic. PACMPL, 2(POPL):26:1–26:33, 2018.

33 S. Qadeer and J. Rehof. Context-Bounded Model Checking of Concurrent Software. In TACAS,
volume 3440 of LNCS, pages 93–107. Springer, 2005.

34 A. Singh, C. R. Ramakrishnan, and S. A. Smolka. Query-Based Model Checking of Ad Hoc
Network Protocols. In CONCUR, volume 5710 of LNCS, pages 603–619. Springer, 2009.

35 R. E. Tarjan. Depth-First Search and Linear Graph Algorithms. SICOMP, 1(2):146–160,
1972.

36 T. Wareham. The Parameterized Complexity of Intersection and Composition Operations
on Sets of Finite-State Automata. In CIAA, volume 2088 of LNCS, pages 302–310. Springer,
2000.

37 G. Winskel. The formal semantics of programming languages - an introduction. Foundation of
computing series. MIT Press, 1993.

FSTTCS 2019

Greibach Normal Form for ω-Algebraic Systems
and Weighted Simple ω-Pushdown Automata
Manfred Droste
Institut für Informatik, Universität Leipzig, Germany
droste@informatik.uni-leipzig.de

Sven Dziadek
Institut für Informatik, Universität Leipzig, Germany
dziadek@informatik.uni-leipzig.de

Werner Kuich
Institut für Diskrete Mathematik und Geometrie, Technische Unversität Wien, Austria
werner.kuich@tuwien.ac.at

Abstract
In weighted automata theory, many classical results on formal languages have been extended into
a quantitative setting. Here, we investigate weighted context-free languages of infinite words, a
generalization of ω-context-free languages (Cohen, Gold 1977) and an extension of weighted context-
free languages of finite words (Chomsky, Schützenberger 1963). As in the theory of formal grammars,
these weighted languages, or ω-algebraic series, can be represented as solutions of mixed ω-algebraic
systems of equations and by weighted ω-pushdown automata.

In our first main result, we show that mixed ω-algebraic systems can be transformed into Greibach
normal form. Our second main result proves that simple ω-reset pushdown automata recognize all
ω-algebraic series that are a solution of an ω-algebraic system in Greibach normal form. Simple
reset automata do not use ε-transitions and can change the stack only by at most one symbol. These
results generalize fundamental properties of context-free languages to weighted languages.

2012 ACM Subject Classification Theory of computation → Automata over infinite objects; Theory
of computation → Quantitative automata; Theory of computation → Grammars and context-free
languages

Keywords and phrases Weighted omega-Context-Free Grammars, Algebraic Systems, Greibach
Normal Form, Weighted Automata, omega-Pushdown Automata

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.38

Funding Sven Dziadek: supported by DFG Research Training Group 1763 (QuantLA).
Werner Kuich: partially supported by Austrian Science Fund (FWF): grant no. I1661 N25.

1 Introduction

Context-free languages provide a fundamental concept for programming languages in com-
puter science. In order to model quantitative properties, already in 1963, Chomsky and
Schützenberger [3] introduced weighted context-free languages. The theory of weighted push-
down automata developed quickly; for background, we refer the reader to the survey [19] and
the books [21, 20, 16, 10]. In 1977, Cohen and Gold [4] investigated context-free languages
of infinite words. Weighted pushdown automata on infinite words were studied more recently
by Ésik and Kuich [14].

The goal of this paper is the investigation of weighted context-free languages and weighted
pushdown automata on infinite words. As in [20, 16], the weighted context-free languages of
finite and infinite words are described by solutions of mixed ω-algebraic systems of equations.
In our first main result, we show that these systems can be transformed into a Greibach
normal form. In the literature, Greibach normal forms, central for context-free languages of

© Manfred Droste, Sven Dziadek, and Werner Kuich;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 38; pp. 38:1–38:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:droste@informatik.uni-leipzig.de
mailto:dziadek@informatik.uni-leipzig.de
mailto:werner.kuich@tuwien.ac.at
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.38
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

38:2 Greibach Normal Form and Weighted Simple ω-Pushdown Automata

finite words, have been established for ω-context-free languages (of infinite words), see [4],
and also for algebraic systems of equations for series over finite words [20, 16]; this latter
result is employed in our proof. Hence here we extend these classical results to a weighted
version for infinite words.

In our second main result, we consider weighted simple pushdown automata. These
automata do not use ε-transitions and utilize only three simple stack commands: popping a
symbol, pushing a symbol or leaving the stack unaltered; moreover, it is only possible to read
the topmost stack symbol by popping it. Observe that together with the restriction of not
allowing ε-transitions, these restrictions for the actions on the stack are non-trivial. In our
second main result we show that these weighted simple pushdown automata still recognize the
weighted ω-context-free languages that are a solution of weighted ω-context-free grammars
in Greibach normal form. Our proof uses two ingredients. First, weighted ω-pushdown
automata are expressively equivalent to mixed ω-algebraic systems of equations, see [8, 9].
Secondly, we apply a recent corresponding expressive equivalence result for weighted simple
pushdown automata on finite words from [7] to construct the required weighted simple
ω-pushdown automata.

We believe the model of weighted simple ω-pushdown automata to be very natural.
Similar expressivity equivalence results in the unweighted case hold for context-free languages
of finite words, hidden in a proof by Blass and Gurevich [1], and also for ω-context-free
languages, see [6].

After the preliminaries in the next section, Sections 3 and 4 contain our results on the
Greibach normal form. Sections 5 and 6 describe weighted simple pushdown automata.

2 Preliminaries

For the convenience of the reader, we recall definitions and results from Ésik, Kuich [16].
A semiring S is called complete if it has “infinite sums” (i) that are an extension of the

finite sums, (ii) that are associative and commutative and (iii) that satisfy the distribution
laws (see Conway [5], Eilenberg [12], Kuich [19]).

A semiring S equipped with an additional unary star operation ∗ : S → S is called a
starsemiring. In complete semirings for each element a, the star a∗ of a is defined by

a∗ =
∑
j≥0

aj .

Hence, each complete semiring is a starsemiring, called a complete starsemiring.
A semiring is called continuous if it is ordered, each directed subset has a least upper

bound and addition and multiplication preserves the least upper bound of directed sets. Any
continuous semiring is complete. See Ésik, Kuich [16] for background.

Suppose that S is a semiring and V is a commutative monoid written additively. We call
V a (left) S-semimodule if V is equipped with a (left) action

S × V → V, (s, v) 7→ sv

subject to the following rules:

s(s′v) = (ss′)v , (s+ s′)v = sv + s′v , s(v + v′) = sv + sv′ ,

1v = v , 0v = 0 , s0 = 0 ,

for all s, s′ ∈ S and v, v′ ∈ V . If V is an S-semimodule, we call (S, V) a semiring-
semimodule pair.

M. Droste, S. Dziadek, and W. Kuich 38:3

Suppose that (S, V) is a semiring-semimodule pair such that S is a starsemiring and
S and V are equipped with an omega operation ω : S → V . Then we call (S, V) a
starsemiring-omegasemimodule pair. A semiring-semimodule pair (S, V) is called complete if
S is a complete semiring, V is a complete monoid and the left action of the semimodule is
distributive; moreover, it is required that it has “infinite products” mapping infinite sequences
over S to V such that the product (i) can be partitioned, (ii) can be extended from the left
and (iii) is distributive (see Ésik, Kuich [17]).

Suppose that (S, V) is complete. Then we define

s∗ =
∑
i≥0

si and sω =
∏
i≥1

s ,

for all s ∈ S. This turns (S, V) into a starsemiring-omegasemimodule pair. Observe that, if
(S, V) is a complete semiring-semimodule pair, then 0ω = 0.

A star-omega semiring is a semiring S equipped with unary operations ∗ and ω : S → S.
A star-omega semiring S is called complete if (S, S) is a complete semiring-semimodule pair,
i.e., if S is complete and is equipped with an infinite product operation that satisfies the
three conditions stated above. A complete star-omega semiring S is called continuous if the
semiring S is continuous.

For the definition of quemirings, we refer the reader to [16], page 110. Here we note that
a quemiring T is isomorphic to a quemiring S × V determined by the semiring-semimodule
pair (S, V); this is an algebraic structure with an addition given componentwise and a
multiplication given by semiring multiplication in the first component and a semidirect
product type addition in the second component (since S acts on V); cf. Elgot [13], Ésik,
Kuich [16], page 109. Also, one can define a natural star operation on S × V , see [16].

For an alphabet Σ, we call mappings r of Σ∗ into S series. The collection of all such
series r is denoted by S〈〈Σ∗〉〉. We call the set supp(r) = {w | (r, w) 6= 0} the support of
a series r. We denote by S〈Σ〉, S〈{ε}〉 and S〈Σ ∪ {ε}〉 the series with support in Σ, {ε}
and Σ ∪ {ε}, respectively. Mappings of Σω into S are called ω-series and their collection is
denoted by S〈〈Σω〉〉. See [20, 16] for more information. Examples of series in S〈Σ∗〉 for a
semiring 〈S,+, ·, 0, 1〉 are 0, w, sw for s ∈ S and w ∈ Σ∗, defined by

(0, w) = 0 for all w,
(w,w) = 1 and (w,w′) = 0 for w 6= w′,

(sw,w) = s and (sw,w′) = 0 for w 6= w′.

Consider a starsemiring-omegasemimodule pair (A, V). Following Bloom, Ésik [2], we
define a matrix operation ω : An×n → V n×1 on a starsemiring-omegasemimodule pair (A, V)
as follows. If n = 0, Mω is the unique element of V 0, and if n = 1, so that M = (a), for
some a ∈ A, Mω = (aω). Assume now that n > 1 and write M as

M =
(
a b

c d

)
, (1)

where a, b, c and d are submatrices of M , called blocks of M . Then

Mω =
(

(a+ bd∗c)ω + (a+ bd∗c)∗bdω
(d+ ca∗b)ω + (d+ ca∗b)∗caω

)
.

FSTTCS 2019

38:4 Greibach Normal Form and Weighted Simple ω-Pushdown Automata

Following Ésik, Kuich [15], we define matrix operations ω,k : An×n → V n×1 for 0 ≤ k ≤ n
as follows. Assume that M ∈ An×n is decomposed into blocks a, b, c, d as in (1), but with a
of dimension k × k and d of dimension (n− k)× (n− k). Then

Mω,k =
(

(a+ bd∗c)ω
d∗c(a+ bd∗c)ω

)
.

Observe that Mω,0 = 0 and Mω,n = Mω. Intuitively, M can be interpreted as an adjacency
matrix and Mω,k are infinite paths where the first k states are repeated states, i.e., states
that are Büchi-accepting.

I Example 1. Formal languages are covered by our model. Let 〈B,∨,∧, 0, 1〉 be the Boolean
semiring. Then let 0∗ = 1∗ = 1 and take infima as infinite products. This makes B a
continuous star-omega and commutative semiring. It then follows that B〈〈Σ∗〉〉 × B〈〈Σω〉〉 is
isomorphic to formal languages of finite and infinite words with the usual operations.

The semiring 〈N∞,+, ·, 0, 1〉 with N∞ = N ∪ {∞} and the natural infinite product
operation of numbers is a continuous star-omega and commutative semiring.

The tropical semiring 〈N∞,min,+,∞, 0〉 with the usual infinite sum operation as infinite
product is a commutative semiring and a continuous star-omega semiring.

3 Mixed ω-Algebraic Systems

This and the next section describe the Greibach normal form for mixed ω-algebraic systems.
Throughout this paper, S is a continuous, and therefore complete, star-omega semiring

with the underlying semiring S being commutative; and Σ denotes an alphabet.
By Theorem 5.5.5 of Ésik, Kuich [16], (S〈〈Σ∗〉〉, S〈〈Σω〉〉) is a complete semiring-semi-

module pair, hence a Conway semiring-semimodule pair, satisfying εω = 0 (for Conway
semiring-semimodule pairs, cf. Ésik, Kuich [16], page 106). Hence, S〈〈Σ∗〉〉 × S〈〈Σω〉〉 is a
generalized starquemiring.

In the sequel, x and z denote vectors of dimension n and m, respectively, i.e., x =
(x1, . . . , xn), z = (z1, . . . , zm). It will be clear from the context whether they are used as row
or as column vectors. Similar conventions hold for vectors p, σ and τ . Moreover, X denotes
the set of variables {x1, . . . , xn} for S〈〈Σ∗〉〉, while {z1, . . . , zm} is the set of variables for
S〈〈Σω〉〉.

A mixed ω-algebraic system over the quemiring S〈〈Σ∗〉〉×S〈〈Σω〉〉 consists of an algebraic
system over S〈〈Σ∗〉〉

x = p(x), p ∈ (S〈(Σ ∪X)∗〉)n×1

and a linear system over S〈〈Σω〉〉

z = %(x)z, % ∈ (S〈(Σ ∪X)∗〉)m×m .

The pair (σ, τ) ∈ (S〈〈Σ∗〉〉)n × (S〈〈Σω〉〉)m is a solution of the mixed ω-algebraic system

x = p(x), z = %(x)z , if σ = p(σ), τ = %(σ)τ .

Observe that, by Theorem 5.5.7 of Ésik, Kuich [16], τk = %(σ)ω,k for each 1 ≤ k ≤ m is a
solution for the linear system z = %(σ)z.

A solution (σ1, . . . , σn) of the algebraic system x = p(x) is termed least solution if

σi ≤ τi, for each 1 ≤ i ≤ n,

for all solutions (τ1, . . . , τn) of x = p(x).

M. Droste, S. Dziadek, and W. Kuich 38:5

If σ is the least solution of x = p(x), then z = %(σ)z is called an Salg〈〈Σ∗〉〉-linear
system and (σ, τk) = (σ, %(σ)ω,k), where k ∈ {0, 1, . . . ,m}, is called kth-canonical solution of
x = p(x), z = %(x)z. Each kth-canonical solution is also called a canonical solution.

Recall that Salg〈〈Σ∗〉〉 comprises the components of least solutions of algebraic systems

xi = pi, (1 ≤ i ≤ n) where pi ∈ S〈(Σ ∪X)∗〉 for 1 ≤ i ≤ n .

We define Salg〈〈Σω〉〉 to be the collection of all components of vectors Mω,k, where M ∈
(Salg〈〈Σ∗〉〉)n×n, n ≥ 1, and k ∈ {1, . . . , n}. Moreover, ω-Rat(Salg〈〈Σ∗〉〉) is defined to be
the ω-Kleene closure of (i.e., the generalized starquemiring generated by) Salg〈〈Σ∗〉〉.

I Example 2. We consider the following mixed ω-algebraic system over the quemiring
N∞〈〈Σ∗〉〉 × N∞〈〈Σω〉〉 for the tropical semiring 〈N∞,min,+,∞, 0〉

x1 = 1ax1b+ 1ab z1 = cz1

z2 = x1z1 + z1

where a, b, c ∈ Σ and using the natural number 1.
Then for the algebraic system x = p(x) over N∞〈〈Σ∗〉〉, we get the least solution σ =

anbn 7→ n. The first canonical solution of the mixed ω-algebraic system x = p(x), z = %(x)z
over N∞〈〈Σ∗〉〉 × N∞〈〈Σω〉〉 is then (σ, cω 7→ 0, anbncω 7→ n). Hence the series anbncω 7→ n

is ω-algebraic but it is clearly not recognizable by a weighted automaton without stack.

Now we have the following characterization of algebraic and ω-algebraic series.

I Theorem 3. Let S be a continuous complete star-omega semiring with the underlying
semiring S being commutative and let Σ be an alphabet. Then the following statements are
equivalent for (s, υ) ∈ S〈〈Σ∗〉〉 × S〈〈Σω〉〉:
(i) (s, υ) ∈ Salg〈〈Σ∗〉〉 × Salg〈〈Σω〉〉,
(ii) (s, υ) ∈ ω-Rat(Salg〈〈Σ∗〉〉),
(iii) (s, υ) = ‖A‖, where A is a finite Salg〈〈Σ∗〉〉-automaton over S〈〈Σ∗〉〉 × S〈〈Σω〉〉,
(iv) s ∈ Salg〈〈Σ∗〉〉 and υ =

∑
1≤j≤l sjt

ω
j for some l ≥ 0, where sj , tj ∈ Salg〈〈Σ∗〉〉,

(v) (s, υ) is component of the automata-theoretic solution of an Salg〈〈Σ∗〉〉-linear system
over S〈〈Σ∗〉〉 × S〈〈Σω〉〉,

(vi) (s, υ) is component of the canonical solution of a mixed ω-algebraic system over S〈〈Σ∗〉〉
× S〈〈Σω〉〉.

Proof. The statements (ii), (iii) and (iv) are equivalent by Theorem 5.4.9 (see also The-
orem 5.6.6) of Ésik, Kuich [16]. J

4 Greibach Normal Form for Mixed ω-Algebraic Systems

In this section we show that for any element of Salg〈〈Σ∗〉〉 × Salg〈〈Σω〉〉 there exists a mixed
ω-algebraic system in Greibach normal form such that this element is a component of a
solution of this mixed ω-algebraic system. Similar to the definition for algebraic systems on
finite words (cf. also Greibach [18]), a mixed ω-algebraic system

x = p(x), z = %(x)z

is in Greibach normal form if

supp(pi(x)) ⊆ {ε} ∪ Σ ∪ ΣX ∪ ΣXX, for all 1 ≤ i ≤ n, and
supp(%ij(x)) ⊆ Σ ∪ ΣX, for all 1 ≤ i, j ≤ m .

For the construction of the Greibach normal form we need a corollary to Theorem 3.

FSTTCS 2019

38:6 Greibach Normal Form and Weighted Simple ω-Pushdown Automata

I Corollary 4. The following statement for (s, υ) ∈ S〈〈Σ∗〉〉 × S〈〈Σω〉〉 is equivalent to the
statements (i) to (vi) of Theorem 3:
s ∈ Salg〈〈Σ∗〉〉 and υ =

∑
1≤j≤l sjt

ω
j for some l ≥ 0, where sj , tj ∈ Salg〈〈Σ∗〉〉 with (tj , ε) = 0;

moreover (sj , ε) = 0 or sj = (sj , ε)ε.
Proof. The proof is an easy case distinction. J

We now assume that (s, υ) ∈ Salg〈〈Σ∗〉〉 × Salg〈〈Σω〉〉 is given in the form of Corollary 4
with l = 1. By Theorem 2.4.10 of Ésik, Kuich [16], there exist algebraic systems in Greibach
normal form whose first component of their least solutions equals s1, t1.

Firstly, we deal with the case (s1, ε) = 0. Let

xi = pi(x) +
∑

1≤j≤n
pij(x)xj , for each 1 ≤ i ≤ n, (∗)

where supp(pi(x)) ⊆ Σ ∪ ΣX, supp(pij(x)) ⊆ ΣX, be the algebraic system in Greibach
normal form for s1 and

x′i = p′i(x′) +
∑

1≤j≤m
p′ij(x′)x′j , for each 1 ≤ i ≤ m, (∗∗)

where supp(p′i(x′)) ⊆ Σ ∪ ΣX ′, supp(pij(x′)) ⊆ ΣX ′, be the algebraic system in Greibach
normal form for t1. Let σ and σ′ with σ1 = s1 and σ′1 = t1 be the least solutions of (∗) and
(∗∗), respectively.

Consider now the mixed ω-algebraic system consisting of the algebraic system (∗), (∗∗)
over S〈〈Σ∗〉〉 and the linear system over S〈〈Σω〉〉

z′′ = p′1(x′)z′′ +
∑

1≤j≤m
p′1j(x′)z′j ,

z′i = p′i(x′)z′′ +
∑

1≤j≤m
p′ij(x′)z′j , for 1 ≤ i ≤ m ,

zi = pi(x)z′′ +
∑

1≤j≤n
pij(x)zj , for 1 ≤ i ≤ n .

(∗ ∗ ∗)

Observe that the mixed ω-algebraic system is in Greibach normal form. We then order
the variables of the mixed ω-algebraic system (∗), (∗∗), (∗ ∗ ∗) as x1, . . . , xn;x′1, . . . , x′m; z′′;
z′1, . . . , z

′
m; z1, . . . , zn. Observe that σ′1σ′ω1 = σ′ω1 .

The next lemma states that the system (∗), (∗∗), (∗ ∗ ∗) is the mixed ω-algebraic system
in Greibach normal whose canonical solution indeed contains a component σ1σ

′ω
1 = s1t

ω
1 as

described in the statement of Corollary 4.
I Lemma 5. The solution

(σ1, . . . , σn;σ′1, . . . , σ′m;σ′1σ′ω1 ;σ′1σ′ω1 , . . . , σ′mσ′ω1 ;σ1σ
′ω
1 , . . . , σnσ

′ω
1) (2)

is the first canonical solution of the mixed ω-algebraic system (∗), (∗∗), (∗ ∗ ∗).
Secondly, we deal with the case s1 = (s1, ε)ε. Consider now the mixed ω-algebraic system

consisting of (∗∗) and the linear system over S〈〈Σω〉〉

z′′ = p′1(x′)z′′ +
∑

1≤j≤m
p′1j(x′)z′j ,

z′i = p′i(x′)z′′ +
∑

1≤j≤m
p′ij(x′)z′j , 1 ≤ i ≤ m ,

z1 = (s1, ε)p′1(x′)z′′ + (s1, ε)
∑

1≤j≤m
p′1j(x′)z′j .

(∗∗∗∗)

M. Droste, S. Dziadek, and W. Kuich 38:7

I Lemma 6. The solution

(σ′1, . . . , σ′m;σ′1σ′ω1 ;σ′1σ′ω1 , . . . , σ′mσ′ω1 ; (s1, ε)σ′ω1) . (3)

is the first canonical solution of the mixed ω-algebraic system (∗∗), (∗∗∗∗).

We now consider general sums of series of the above form. The next lemma shows how to
construct a mixed ω-algebraic system whose canonical solution is the sum of the canonical
solutions of multiple mixed ω-algebraic systems as given in the Lemmas 5 and 6.

I Lemma 7. Let (s, υ) ∈ Salg〈〈Σ∗〉〉 × Salg〈〈Σω〉〉 be given in the form of Corollary 4. Then
there exists a mixed ω-algebraic system in Greibach normal form such that υ is a component
of its l-th canonical solution.

Our first main result is the following.

I Theorem 8. The following statement for (s, υ) ∈ S〈〈Σ∗〉〉 × S〈〈Σω〉〉 is equivalent to the
statements of Theorem 3:
(s, υ) is component of a canonical solution of a mixed ω-algebraic system over S〈〈Σ∗〉〉
× S〈〈Σω〉〉 in Greibach normal form.

Proof. The above statement trivially implies statement (vi) of Theorem 3. By Corollary 4
and Lemma 7, the statements of Theorem 3 imply the above statement. J

5 Simple Reset Pushdown Automata

In this second part of the paper, we want to show that weighted ω-pushdown automata can
be transformed into a simple form. The next section will prove this result for ω-algebraic
series that are a component of a solution of an ω-algebraic system in Greibach normal form.
For the proof, we will need the corresponding result for finite words as an intermediate step.
This result, the expressive equivalence of algebraic series (of finite words) and (weighted)
simple reset pushdown automata, has been established in [7]. We recall the construction
of the weighted simple reset pushdown automata here for the convenience of the reader, as
variants of these automata will be used in Section 6 for ω-algebraic series.

Following Kuich, Salomaa [20] and Kuich [19], we introduce pushdown transitions matrices.
These matrices can be considered as adjacency matrices of graphs representing automata.
A special form, the reset pushdown matrices, is used for pushdown automata starting with
an empty stack and allowing the automaton to push onto the empty stack. Here, we are
interested in simple reset pushdown matrices, introduced in [7]. This simple form allows
the automaton only to push one symbol, to pop one symbol or to ignore the stack. The
corresponding automata, the simple reset pushdown automata are a generalization of the
unweighted automata used in [6]. They do not use ε-transitions and don’t allow the inspection
of the topmost stack symbol.

Let Γ be an alphabet, called pushdown alphabet and let n ≥ 1. A matrix M̄ ∈ (Sn×n)Γ∗×Γ∗

is called a pushdown matrix (with pushdown alphabet Γ and state set {1, . . . , n}) if
(i) for each p ∈ Γ there exist only finitely many blocks M̄p,π, π ∈ Γ∗, that are unequal to 0;
(ii) for all π1, π2 ∈ Γ∗,

M̄π1,π2 =
{
M̄p,π, if there exist p ∈ Γ, π, π′ ∈ Γ∗ with π1 = pπ′ and π2 = ππ′,

0, otherwise.

Intuitively, the infinite pushdown matrix M̄ is (ii) fully represented only by the blocks M̄p,π

where p ∈ Γ, π ∈ Γ∗ and (i) only finitely many such blocks are nonzero.

FSTTCS 2019

38:8 Greibach Normal Form and Weighted Simple ω-Pushdown Automata

A matrix M ∈ (Sn×n)Γ∗×Γ∗ is called row-finite if {π′ |Mπ,π′ 6= 0} is finite for all π ∈ Γ∗.
Let Γ be a pushdown alphabet and {1, . . . , n}, n ≥ 1, be a set of states. A reset matrix
MR ∈ (Sn×n)Γ∗×Γ∗ is a row-finite matrix such that

(MR)π1,π2 = 0 for π1, π2 ∈ Γ∗ with π1 6= ε .

A reset pushdown matrix M ∈ (Sn×n)Γ∗×Γ∗ is the sum M = MR + M̄ of a reset matrix
MR and a pushdown matrix M̄ .

Intuitively, a reset pushdown matrix is similar to a pushdown matrix with the additional
possibility to push onto the empty stack, i.e., Mε,π is allowed to be nonzero. Note that reset
pushdown matrices are still finitely represented because of the row-finiteness.

A reset pushdown matrix M is called simple if M ∈
(
(S〈Σ〉)n×n

)Γ∗×Γ∗ for some n ≥ 1,
and for all p, p1 ∈ Γ,

Mp,ε, Mp,p = Mε,ε and Mp,p1p = Mε,p1 ,

are the only blocks Mπ,π′ , where π ∈ {ε, p} and π′ ∈ Γ∗, that may be unequal to the zero
matrix 0.

Hence, a simple reset pushdown matrix M is defined by its blocks Mε,ε and Mp,ε, Mε,p

(p ∈ Γ). Intuitively, the automata will only be allowed to ignore the stack (modeled by
Mε,ε), pop one symbol (Mp,ε) or push one symbol (Mε,p). Note also that the matrix
M ∈ ((S〈Σ〉)n×n)Γ∗×Γ∗ forbids ε-transitions. Moreover, the equalities Mp,p = Mε,ε and
Mp,p1p = Mε,p1 imply that the next transition does not depend on the topmost symbol of the
stack except when popping it (modeled by Mp,ε). An example of a simple reset pushdown
matrix can be found in Example 14.

A reset pushdown automaton (with input alphabet Σ) A = (n,Γ, I,M, P) is given by
a set of states {1, . . . , n}, n ≥ 1,
a pushdown alphabet Γ,
a reset pushdown matrix M ∈ ((S〈Σ ∪ {ε}〉)n×n)Γ∗×Γ∗ called transition matrix,
a row vector I ∈ (S〈{ε}〉)1×n, called initial state vector,
a column vector P ∈ (S〈{ε}〉)n×1, called final state vector.

The behavior ‖A‖ of a reset pushdown automaton A is defined by

‖A‖ = I(M∗)ε,εP .

A reset pushdown automaton A = (n,Γ, I,M, P) is called simple if M is a simple reset
pushdown matrix. Example 14 shows a simple ω-reset pushdown automaton.

Given a series r ∈ Salg〈〈Σ∗〉〉, we want to construct a simple reset pushdown automaton
with behavior r. By Theorems 5.10 and 5.4 of [19], r is a component of the unique solution
of a strict algebraic system in Greibach normal form.

We only consider the algebraic series r with (r, ε) = 0; cf. [7] for the other case. So we
assume without loss of generality that r is the x1-component of the unique solution of the
algebraic system (4) with variables x1, . . . , xn

xi = pi, 1 ≤ i ≤ n,

of the form

xi =
∑

1≤j,k≤n

∑
a∈Σ

(pi, axjxk)axjxk +
∑

1≤j≤n

∑
a∈Σ

(pi, axj)axj +
∑
a∈Σ

(pi, a)a . (4)

M. Droste, S. Dziadek, and W. Kuich 38:9

As shown in [7], we can construct the simple reset pushdown automaton As = (n+1,Γ, Is,
M, P), 1 ≤ s ≤ n, with r = ‖A1‖ as follows:
We let Γ = {x1, . . . , xn}; we also denote the state n+ 1 by f ; the entries of M of the form
(Mxk,xk

)i,j , (Mxk,ε)i,j , (Mε,xk
)i,j , (Mε,ε)i,j , (Mε,ε)i,f , where 1 ≤ i, j, k ≤ n, that may be

unequal to 0 are

(Mε,xk
)i,j =

∑
a∈Σ

(pi, axjxk)a ,

(Mxk,xk
)i,j = (Mε,ε)i,j =

∑
a∈Σ

(pi, axj)a ,

(Mxk,ε)i,k = (Mxk,xk
)i,f = (Mε,ε)i,f =

∑
a∈Σ

(pi, a)a ;

we further put (Is)s = ε, (Is)i = 0 for 1 ≤ i ≤ s− 1 and s+ 1 ≤ i ≤ n+ 1; finally let Pf = ε

and Pj = 0 for 1 ≤ j ≤ n;
The following motivation will be essential for our later construction for ω-pushdown

automata. Intuitively, the variables in the algebraic system are simulated by states in the
simple reset pushdown automaton As. By the Greibach normal form, only two variables
on the right-hand side are allowed. The first is modeled directly by changing the state, the
second is pushed to the pushdown tape and the state is changed to it later when the variable
is popped again. The special final state f will only be used as the last state.

Note that (Mxk,xk
)i,f allows the automaton to change to the final state with a non-empty

pushdown tape. This is an artificial addition to fit the definition of simple reset pushdown
matrices. If the simple reset automaton is not popping a symbol from the pushdown tape,
it cannot distinguish between different pushdown states. Even though the automaton can
enter the final state too early, it can not continue from there as it is a sink.

Observe that ‖As‖ = ((M∗)ε,ε)s,f for all 1 ≤ s ≤ n.
This simple reset pushdown matrix M is called the simple pushdown matrix induced by

the Greibach normal form (4). The simple reset pushdown automata As, 1 ≤ s ≤ n, are
called the simple reset pushdown automata induced by the Greibach normal form (4).

The following (main) theorem of [7] states that the behavior of the simple reset pushdown
automata induced by the Greibach normal form (4) is the unique solution of the original
algebraic system (4).

I Theorem 9 (Theorem 11 of [7]). The unique solution of the algebraic system (4) is

(‖A1‖, . . . , ‖An‖) = (((M∗)ε,ε)1,f , . . . , ((M∗)ε,ε)n,f) .

I Corollary 10 (Corollary 12 of [7]). Let r ∈ Salg〈〈Σ∗〉〉. Then there exists a simple reset
pushdown automaton with behavior r.

6 Simple ω-Reset Pushdown Automata

This section will prove that simple ω-reset pushdown automata can be obtained from ω-
algebraic systems in Greibach normal form. We first prove some results for infinite applications
of simple reset pushdown matrices. Then we introduce simple ω-reset pushdown automata
and the main theorem will show that they can recognize all ω-algebraic series that are
solutions of ω-algebraic systems in Greibach normal form.

In the sequel, (S, V) is a complete semiring-semimodule pair.

FSTTCS 2019

38:10 Greibach Normal Form and Weighted Simple ω-Pushdown Automata

We will use sets Pl comprising infinite sequences over {1, . . . , n} as defined in [8]:

Pl = {(j1, j2, . . .) ∈ {1, . . . , n}ω | jt ≤ l for infinitely many t ≥ 1} .

Observe the following summation identity: Assume that A1, A2, . . . are matrices in Sn×n.
Then for 0 ≤ l ≤ n, 1 ≤ j ≤ n, and m ≥ 1, we have∑
(j1,j2,...)∈Pl

(A1)j,j1(A2)j1,j2 · · · =
∑

1≤j1,...,jm≤n

(A1)j,j1 · · · (Am)jm−1,jm

∑
(jm+1,jm+2,...)∈Pl

(Am+1)jm,jm+1 · · · .

By Theorem 5.5.1 of Ésik, Kuich [16] we obtain, for a finite matrix A and for 0 ≤ l ≤ n,
the equality AAω,l = Aω,l. By Theorem 6 of Droste, Ésik, Kuich [8], we have a similar result
for pushdown matrices. We will now show the same equality for a reset pushdown matrix M .

I Theorem 11. Let (S, V) be a complete semiring-semimodule pair and M ∈ (Sn×n)Γ∗×Γ∗

be a reset pushdown matrix. Then
(i) Mω,l = MMω,l, for each 0 ≤ l ≤ n,
(ii) (Mω)p = (M̄ω)p + (M̄∗)p,ε(Mω)ε, for any p ∈ Γ,
(iii) (Mω,l)p = (M̄ω,l)p + (M̄∗)p,ε(Mω,l)ε, for each 0 ≤ l ≤ n and p ∈ Γ.

Proof.
(i) The proof is similar to the proof of Theorem 6 of [8] but we also need to handle empty

pushdown tapes.
(ii) We obtain, for p ∈ Γ,

(Mω)p =
∑

π1,π2,···∈Γ+

Mp,π1Mπ1,π2 · · ·+
∑
t≥1

∑
π1,...,πt−1∈Γ+

Mp,π1 · · ·Mπt−1,ε(Mω)ε

= (M̄ω)p +
∑
t≥1

(M̄ t)p,ε(Mω)ε

= (M̄ω)p + (M̄∗)p,ε(Mω)ε .

(iii) The proof is similar to the proof of (ii) but more technical as it needs to consider the
repeated states. J

I Lemma 12. Let (S, V) be a complete semiring-semimodule pair. Let M be a simple reset
pushdown matrix. Then,
(i) (Mω)p = (Mω)ε + (M∗)ε,εMp,ε(Mω)ε for p ∈ Γ,
(ii) (Mω,l)p = (Mω,l)ε + (M∗)ε,ε(Mp,ε)(Mω,l)ε for each 0 ≤ l ≤ n and p ∈ Γ.

Proof. Only (i): We obtain, for p ∈ Γ,

(Mω)p =
∑

π1,π2,···∈Γ∗
Mp,π1Mπ1,π2 · · ·

=
∑

π1,π2,···∈Γ∗
Mp,π1pMπ1p,π2p · · ·+

∑
t≥0

∑
π1,...,πt−1∈Γ∗

Mp,π1p · · ·Mπt−1p,pMp,ε(Mω)ε

= (Mω)ε +
(∑
t≥0

∑
π1,...,πt−1∈Γ∗

Mε,π1 · · ·Mπt−1,ε

)
Mp,ε(Mω)ε

= (Mω)ε +
∑
t≥0

(M t)ε,εMp,ε(Mω)ε

= (Mω)ε + (M∗)ε,εMp,ε(Mω)ε . J

M. Droste, S. Dziadek, and W. Kuich 38:11

2 3 4 1
a, (↓, Z0) : 1 b, (↑, X) b, (↑, Z0)

a, (↓, X) : 1 b, (↑, X) c,#

c,#
b, (↑, Z0)

Figure 1 Example 14: Weighted simple ω-pushdown automaton, where (↓, X) means push symbol
X, (↑, X) means pop X, and # leaves the stack unaltered. All shown transitions have a weight
equal to the natural number 0 except the two transitions reading letter a and pushing a symbol
onto the stack that have weight 1. All other possible transitions have weight ∞.

I Lemma 13. Let M be induced by the Greibach normal form (4). Then, for all 1 ≤ j, k ≤ n
and 0 ≤ l ≤ n,

((Mω,l)xk
)j = ((Mω,l)ε)j + ((M∗)ε,ε)j,f ((Mω,l)ε)k .

Proof. By Lemma 12(ii), we have

((Mω,l)xk
)j =

[
(Mω,l)ε + (M∗)ε,ε(Mxk,ε)(Mω,l)ε

]
j

= ((Mω,l)ε)j +
[
(M∗)ε,ε(Mxk,ε)(Mω,l)ε

]
j

Then for 1 ≤ j, k ≤ n, we have(
(M∗)ε,ε(Mxk,ε)(Mω,l)ε

)
j

=
∑

1≤t1,t2≤f
((M∗)ε,ε)j,t1(Mxk,ε)t1,t2((Mω,l)ε)t2

=
∑

1≤t1≤f
((M∗)ε,ε)j,t1(Mε,ε)t1,f ((Mω,l)ε)k

= ((M∗)ε,εMε,ε)j,f ((Mω,l)ε)k
= ((M∗)ε,ε)j,f ((Mω,l)ε)k .

The second equality holds because we defined (Mxk,ε)t1,t2 = 0 for t2 6= k and (Mxk,ε)t1,k =
(Mε,ε)t1,f for induced simple pushdown matrices. The result follows. J

Next, an ω-reset pushdown automaton

A = (n,Γ, I,M, P, l)

is given by a reset pushdown automaton (n,Γ, I,M, P) and an integer l with 0 ≤ l ≤ n,
which indicates that 1, . . . , l are the repeated states of A. The behavior ‖A‖ of this ω-reset
pushdown automaton A is defined by

‖A‖ = I(M∗)ε,εP + I(Mω,l)ε .

The ω-reset pushdown automaton A = (n,Γ, I,M, P, l) is called simple if M is a simple reset
pushdown matrix.

I Example 14. Figure 1 shows a simple ω-reset pushdown automaton A = (4,Γ, I,M, P, 1)
over the quemiring N∞〈〈Σ∗〉〉×N∞〈〈Σω〉〉 for the tropical semiring 〈N∞,min,+,0 =∞,1 = 0〉
with Σ = {a, b, c}, Γ = {Z0, X}, I2 = 0, Ii =∞ for i 6= 2 and Pi =∞ for all 1 ≤ i ≤ 4. The
adjacency matrix M of the automaton is a simple reset pushdown matrix. As an indication,
M is defined with (Mε,ε)1,1 = (Mε,ε)2,1 = 0c, (Mε,Z0)2,3 = 1a, etc., resulting in e.g.,

Mε,ε =

0c 0 0 0
0c 0 0 0
0 0 0 0
0 0 0 0

 and finally M =

Mε,ε Mε,Z0 Mε,X · · ·
MZ0,ε Mε,ε 0 · · ·
MX,ε 0 Mε,ε · · ·
...

...
...

. . .

 ,

FSTTCS 2019

38:12 Greibach Normal Form and Weighted Simple ω-Pushdown Automata

where the excluded part of M can be derived from the rules of pushdown and simple reset
pushdown matrices. The automaton A has the behavior anbncω 7→ n, similar to the mixed
ω-algebraic system in Example 2.

Now, for a series r ∈ Salg〈〈Σ∗〉〉 × Salg〈〈Σω〉〉, we want to construct a simple ω-reset
pushdown automaton with behavior r. For our construction, r must be a component of a
solution of an ω-algebraic system in Greibach normal form. An ω-algebraic system consists
of only one system over the quemiring variables {y1, . . . , yn}. See [16], pp. 136 for details.

Similar to the definition for mixed ω-algebraic systems, an ω-algebraic system

y = p(y)

is in Greibach normal form if

supp(pi(y)) ⊆ {ε} ∪ Σ ∪ ΣY ∪ ΣY Y, for all 1 ≤ i ≤ n .

Let r be a component of a solution of the ω-algebraic system (5) in Greibach normal
form over the complete semiring-semimodule pair (S, V), i.e., over the quemiring S × V ,

yi =
∑

1≤j,k≤n

∑
a∈Σ

(pi, ayjyk)ayjyk +
∑

1≤j≤n

∑
a∈Σ

(pi, ayj)ayj +
∑
a∈Σ

(pi, a)a . (5)

The variables of this system are yi, (1 ≤ i ≤ n); they are variables for (S, V). The
system (5) induces the following mixed ω-algebraic system:

xi =
∑

1≤j,k≤n

∑
a∈Σ

(pi, ayjyk)axjxk +
∑

1≤j≤n

∑
a∈Σ

(pi, ayj)axj +
∑
a∈Σ

(pi, a)a , (4)

and

zi =
∑

1≤j,k≤n

∑
a∈Σ

(pi, ayjyk)a(zj + xjzk) +
∑

1≤j≤n

∑
a∈Σ

(pi, ayj)azj . (6)

Let now, for 1 ≤ s ≤ n and 0 ≤ l ≤ n,

Als = (n+ 1,Γ, Is,M, P, l)

be the simple ω-reset pushdown automata such that (n+ 1,Γ, Is,M, P), for 1 ≤ s ≤ n, are
induced by the Greibach normal form (4).

The following theorem states that the induced simple ω-reset pushdown automata behave
similar to the solution of system (5). Note that in the semimodule part (Mω,l)ε of the
behavior, state f will never be reached.

I Theorem 15. Let (S, V) be a complete semiring-semimodule pair. Let the simple ω-reset
pushdown automata ‖Als‖ for 1 ≤ s ≤ n and 0 ≤ l ≤ n be induced by the Greibach normal
form (4). Then, for 0 ≤ l ≤ n,

(‖Al1‖, . . . , ‖Aln‖) =
(
((M∗)ε,ε)1,f + ((Mω,l)ε)1, . . . , ((M∗)ε,ε)n,f + ((Mω,l)ε)n

)
is a solution of (5).

M. Droste, S. Dziadek, and W. Kuich 38:13

Proof. By Theorem 9, (((M∗)ε,ε)1,f , . . . , ((M∗)ε,ε)n,f) is a solution of (4). We show that
(((Mω,l)ε)1, . . . , ((Mω,l)ε)n) is a solution of (6) and substitute it into the right sides of (6):

∑
1≤j,k≤n

(Mε,yk
)i,j
(

((Mω,l)ε)j + ((M∗)ε,ε)j,f ((Mω,l)ε)k
)

+
∑

1≤j≤n
(Mε,ε)i,j((Mω,l)ε)j

=
∑

1≤j,k≤n
(Mε,yk

)i,j((Mω,l)yk
)j +

∑
1≤j≤n

(Mε,ε)i,j((Mω,l)ε)j

=
∑

1≤k≤n
(Mε,yk

(Mω,l)yk
)i + (Mε,ε(Mω,l)ε)i

= ((MMω,l)ε)i = ((Mω,l)ε)i, for each 1 ≤ i ≤ n .

The first equality is by Lemma 13, the last equality by Theorem 11(i). The result follows. J

The following is now immediate by Theorem 15 and our previous discussion.

I Corollary 16. Let r ∈ Salg〈〈Σ∗〉〉 × Salg〈〈Σω〉〉 such that r is a component of a solution of
an ω-algebraic system in Greibach normal form. Then there exists a simple ω-reset pushdown
automaton with behavior r.

7 Discussion

We have extended the characterization of ω-algebraic series so that we can use the ω-Kleene
closure to transfer the property of Greibach normal form from algebraic systems to mixed
ω-algebraic ones. This generalizes a fundamental property from context-free languages.

We believe that the same technique can be used to transfer other properties of algebraic
systems to infinite words. Cohen, Gold [4] use this technique also for the elimination of
chain rules, for the Chomsky normal form and for effective decision methods of emptiness,
finiteness and infiniteness.

The second part transforms ω-algebraic series into simple ω-reset pushdown automata.
Simple ω-reset pushdown automata do not use ε-transitions; in the literature, this is also
called a realtime pushdown automaton. Realtime pushdown automata read a symbol of the
input word in every transition - exactly like context-free grammars in Greibach normal form
generate a letter in every derivation step. Additionally, each derivation step of context-free
grammars in Greibach normal form increases the number of non-terminals in the sentential
form by at most one. We showed that for realtime pushdown automata it suffices to handle
at most one stack symbol per transition. Here the Greibach normal form provides exactly
the properties needed to construct simple ω-reset pushdown automata.

As the first part applies only to mixed ω-algebraic systems, we could not use this result
in the second part where the Greibach normal form is needed for ω-algebraic systems.

The model of simple ω-reset pushdown automata seems to be very natural. They occur
when applying general homomorphisms to nested-word automata [1]. Their unweighted
counterparts have been used for a Büchi-type logical characterization of timed pushdown
languages [11] and ω-context-free languages [6]. A corresponding result for weighted ω-
context-free languages is currently in development and uses the simple ω-reset pushdown
automata introduced here.

FSTTCS 2019

38:14 Greibach Normal Form and Weighted Simple ω-Pushdown Automata

References
1 A. Blass and Y. Gurevich. A note on nested words. Microsoft Research, 2006. URL: https:

//www.microsoft.com/en-us/research/publication/180-a-note-on-nested-words/.
2 S. L. Bloom and Z. Ésik. Iteration Theories. EATCS Monographs on Theoretical Computer

Science. Springer, 1993. doi:10.1007/978-3-642-78034-9.
3 N. Chomsky and M. P. Schützenberger. The Algebraic Theory of Context-Free Languages.

In P. Braffort and D. Hirschberg, editors, Computer Programming and Formal Systems,
volume 35 of Studies in Logic and the Foundations of Mathematics, pages 118–161. Elsevier,
1963. doi:10.1016/S0049-237X(08)72023-8.

4 R. S. Cohen and A. Y. Gold. Theory of ω-Languages I: Characterizations of ω-Context-
Free Languages. Journal of Computer and System Sciences, 15(2):169–184, 1977. doi:
10.1016/S0022-0000(77)80004-4.

5 J. H. Conway. Regular Algebra and Finite Machines. Chapman & Hall, 1971.
6 M. Droste, S. Dziadek, and W. Kuich. Logic for ω-Pushdown Automata. Information and

Computation, 2019. Special issue on “Weighted Automata”, Accepted for publication.
7 M. Droste, S. Dziadek, and W. Kuich. Weighted Simple Reset Pushdown Automata. Theoretical

Computer Science, 777:252–259, 2019. doi:10.1016/j.tcs.2019.01.016.
8 M. Droste, Z. Ésik, and W. Kuich. The Triple-Pair Construction for Weighted ω-Pushdown

Automata. Electronic Proceedings in Theoretical Computer Science, 252:101–113, 2017. doi:
10.4204/EPTCS.252.12.

9 M. Droste and W. Kuich. A Kleene Theorem for Weighted ω-Pushdown Automata. Acta
Cybernetica, 23:43–55, 2017. doi:10.14232/actacyb.23.1.2017.4.

10 M. Droste, W. Kuich, and H. Vogler, editors. Handbook of Weighted Automata. EATCS Mono-
graphs in Theoretical Computer Science. Springer, 2009. doi:10.1007/978-3-642-01492-5.

11 M. Droste and V. Perevoshchikov. A Logical Characterization of Timed Pushdown Languages.
In 10th International Computer Science Symposium in Russia (CSR 2015), volume 9139 of
LNCS, pages 189–203. Spinger, 2015. doi:10.1007/978-3-319-20297-6_13.

12 S. Eilenberg. Automata, Languages, and Machines, volume 59, Part A of Pure and Applied
Mathematics. Elsevier, 1974. doi:10.1016/S0079-8169(08)60880-6.

13 C. C. Elgot. Matricial theories. Journal of Algebra, 42(2):391–421, 1976. doi:10.1016/
0021-8693(76)90106-X.

14 Z. Ésik and W. Kuich. A Semiring-Semimodule Generalization of ω-Context-Free Languages.
In J. Karhumäki, H. Maurer, G. Păun, and G. Rozenberg, editors, Theory Is Forever, volume
3113 of LNCS, pages 68–80. Springer, 2004. doi:10.1007/978-3-540-27812-2_7.

15 Z. Ésik and W. Kuich. A Semiring-Semimodule Generalization of ω-Regular Languages II.
Journal of Automata, Languages and Combinatorics, 10(2–3):243–264, 2005. doi:10.25596/
jalc-2005-243.

16 Z. Ésik and W. Kuich. Modern Automata Theory, 2007. URL: http://www.dmg.tuwien.ac.
at/kuich.

17 Z. Esik and W. Kuich. On Iteration Semiring-Semimodule Pairs. Semigroup Forum, 75(1):129–
159, 2007. doi:10.1007/s00233-007-0709-7.

18 S. A. Greibach. A New Normal-Form Theorem for Context-Free Phrase Structure Grammars.
J. ACM, 12(1):42–52, 1965. doi:10.1145/321250.321254.

19 W. Kuich. Semirings and Formal Power Series: Their Relevance to Formal Languages
and Automata. In G. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages:
Volume 1 Word, Language, Grammar, chapter 9, pages 609–677. Springer, 1997. doi:10.1007/
978-3-642-59136-5_9.

20 W. Kuich and A. Salomaa. Semirings, Automata, Languages, volume 5 of EATCS Monographs
on Theoretical Computer Science. Springer, 1986. doi:10.1007/978-3-642-69959-7.

21 A. Salomaa and M. Soittola. Automata-Theoretic Aspects of Formal Power Series. Texts and
Monographs in Computer Science. Springer, 1978. doi:10.1007/978-1-4612-6264-0.

https://www.microsoft.com/en-us/research/publication/180-a- note-on-nested-words/
https://www.microsoft.com/en-us/research/publication/180-a- note-on-nested-words/
https://doi.org/10.1007/978-3-642-78034-9
https://doi.org/10.1016/S0049-237X(08)72023-8
https://doi.org/10.1016/S0022-0000(77)80004-4
https://doi.org/10.1016/S0022-0000(77)80004-4
https://doi.org/10.1016/j.tcs.2019.01.016
https://doi.org/10.4204/EPTCS.252.12
https://doi.org/10.4204/EPTCS.252.12
https://doi.org/10.14232/actacyb.23.1.2017.4
https://doi.org/10.1007/978-3-642-01492-5
https://doi.org/10.1007/978-3-319-20297-6_13
https://doi.org/10.1016/S0079-8169(08)60880-6
https://doi.org/10.1016/0021-8693(76)90106-X
https://doi.org/10.1016/0021-8693(76)90106-X
https://doi.org/10.1007/978-3-540-27812-2_7
https://doi.org/10.25596/jalc-2005-243
https://doi.org/10.25596/jalc-2005-243
http://www.dmg.tuwien.ac.at/kuich
http://www.dmg.tuwien.ac.at/kuich
https://doi.org/10.1007/s00233-007-0709-7
https://doi.org/10.1145/321250.321254
https://doi.org/10.1007/978-3-642-59136-5_9
https://doi.org/10.1007/978-3-642-59136-5_9
https://doi.org/10.1007/978-3-642-69959-7
https://doi.org/10.1007/978-1-4612-6264-0

Transformations of Boolean Functions
Jeffrey M. Dudek
Department of Computer Science, Rice University, Houston, TX, USA
jmd11@rice.edu

Dror Fried
Department of Mathematics and Computer Science, The Open University of Israel, Ra’anana, Israel
dfried@openu.ac.il

Abstract
Boolean functions are characterized by the unique structure of their solution space. Some properties
of the solution space, such as the possible existence of a solution, are well sought after but difficult to
obtain. To better reason about such properties, we define transformations as functions that change
one Boolean function to another while maintaining some properties of the solution space. We explore
transformations of Boolean functions, compactly described as Boolean formulas, where the property
is to maintain is the number of solutions in the solution spaces. We first discuss general characteristics
of such transformations. Next, we reason about the computational complexity of transforming one
Boolean formula to another. Finally, we demonstrate the versatility of transformations by extensively
discussing transformations of Boolean formulas to “blocks,” which are solution spaces in which the
set of solutions makes a prefix of the solution space under a lexicographic order of the variables.

2012 ACM Subject Classification Theory of computation → Logic and verification

Keywords and phrases Boolean Formulas, Boolean Functions, Transformations, Model Counting

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.39

Funding Jeffrey M. Dudek: Supported by NSF grants DMS-1547433 and IIS-1527668, by the
Big-Data Private-Cloud Research Cyberinfrastructure MRI-award funded by NSF under grant CNS-
1338099, by the Ken Kennedy Institute Computer Science & Engineering Enhancement Fellowship
funded by the Rice Oil & Gas HPC Conference, and by the Ken Kennedy Institute 2017/18 Cray
Graduate Fellowship.

Acknowledgements We would like to thank Kuldeep S. Meel, Moshe Y. Vardi, and Rice’s Computer-
Aided Verification Group for useful discussions.

1 Introduction

Boolean functions play an integral part in many areas in computer science, electrical engin-
eering and more [22, 11]. For example by abstracting properties of a system as a true/false
dichotomy, one can model such properties as a Boolean function where a positive (true)
output of that formula means that the property appears in the system. Typically every
Boolean function can be uniquely characterized by its solution space, also called a truth
table, which is a table that assigns the true/false output of the function for every possible
assignment to the Boolean inputs. Since the size of such a table can be very large, in
particular exponential in the number of variables, more compact representations of Boolean
functions are used, such as Boolean formulas, Karnaugh maps [15], and Boolean Decision
Diagrams (BDDs) [8]. Such compact representations, however, come at a cost since reasoning
about properties of the Boolean function such as whether a solution exists, or counting the
number of solutions, becomes a challenging problem. A question to ask, therefore, is whether
one can better reason about properties of a Boolean function by “transforming” the function
to a different Boolean function while still preserving some of the original properties.

© Jeffrey M. Dudek and Dror Fried;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 39; pp. 39:1–39:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-9980-0320
mailto:jmd11@rice.edu
mailto:dfried@openu.ac.il
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.39
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

39:2 Transformations of Boolean Functions

In this work, we lay foundations for thematic exploration of such transformations of
Boolean functions. In our setting we use Boolean formulas to describe Boolean functions,
and the property of the solution space that we maintain is the number of solutions in the
solution space. In general, counting the number of solutions is a problem of great importance
[12, 5, 16], which is known to be a #P-hard problem [21] and there are numerous works,
both theoretical [20, 13] and applied [19, 17] that address this problem. In all this, the
structure of the solution space can play an important role in the attempts for obtaining
efficient counting [9, 7, 2].

In our formulation, transformations are quantified Boolean formulas that describe bijec-
tions between the output columns of solution spaces with the same number of variables.
Thus the result of applying such a transformation T to a Boolean formula ϕ is a Boolean
formula ψ with the same number of variables and same number of solutions as ϕ has.

This paper can be separated into three parts. In the first part we define transformations
and discuss properties of transformations such as closure under composition and the inverse
operation. We ask whether every pair of Boolean formulas with the same number of variables
always has an expressible, polynomially-sized transformation between them. We discuss this
in the second part and give an affirmative answer if the number of alternating quantifiers
is not limited. Moreover, we show that if the number of alternations is bounded then the
question is equivalent to the collapse of the polynomial hierarchy.

In the third part of the paper we present various transformations and combination of
transformations that demonstrate the versatility of our framework. For that, we focus on a
specific solution space structure called a “block,” in which the set of solutions form a prefix
of the solution space, under a lexicographic order of the variables. Boolean formulas with
such a block-type solution space– for example, chain formulas [9]– have efficient counting.
We describe several techniques to construct transformations that merge solutions together in
order to transform a solution space to a block. Specifically, we describe a method to, for
an arbitrary given Boolean formula ϕ, construct a transformation (possibly of exponential
size) that can transform ϕ to a block. We then present classes of transformations that
can transform certain specialized types of solution spaces into blocks. The transformations
in this part are “parameterized,” in the sense that there are certain parameters for the
transformations that are adjusted according to the given Boolean formula.

Finally, a divide-and-conquer approach for a solution is a general technique also used
in studies of Boolean functions [14, 10]. We show a transformation that can efficiently
transform specific Boolean formulas to a block by first finding transformations to blocks for
each sub-formula in a divide-and-conquer manner.

2 Preliminaries

A Boolean function f : {0, 1}n → {0, 1} is a function that assigns n input Boolean variables
{x1, · · · , xn} to a Boolean output 0 (false) or 1 (true). The solution space, also called a
truth table, of f is the explicit description of f as a table of a size 2n. A solution however is
an assignment ~σ for which f(σ) = 1. Thus the solution space of f contains solutions and
non-solutions.

Throughout this work, we generally assume that n is fixed and use ~x to denote a
sequence of n variables xn, · · · , x1. Moreover, we fix the order of the sequence of variables,
thus have a lexicographic order ≤lex on the truth assignments to ~x, where xn is the most
significant bit (msb) and x1 the least significant bit (lsb). We also define a function

J.M. Dudek and D. Fried 39:3

bin : {0, · · · , 2n − 1} → {0, 1}n that maps the integers 0 ≤ c ≤ 2n − 1 to their natural
encoding as a corresponding assignment to n variables (e.g. for n = 4, bin(3) = 0011), and
the corresponding inverse function | · | : {0, 1}n → {0, · · · , 2n − 1} (then |0011| = 3).

One compact description of a Boolean function f is by a Boolean formula ϕf (x1, · · ·xn)
that is satisfied exactly when f is 1. When f is obvious or irrelevant, we omit f from the
notation of ϕf . Every Boolean formula ϕ over n variables describes a unique solution space
of size 2n. The number of solutions to ϕ, i.e. the number of assignments that set ϕ to true
is denoted by #ϕ. The size of ϕ is defined as the length of ϕ and is denoted by |ϕ|. Two
Boolean formulas ϕ,ψ that describe the same Boolean function are called logically equivalent,
denoted ϕ ≡ ψ, and by definition such formulas have identical solution spaces.

In our settings, we also reason about partial solution spaces (also called subspaces). For
a solution space S, the partial solution S[σn, · · · , σi+1] of size 2i is obtained by assigning
σj ∈ {0, 1} to the variable xj for each j such that i+ 1 ≤ j ≤ n. We denote by

S[xn, · · · , xi+1] = {S[σn, · · · , σi+1] | (σn, · · ·σi+1) ∈ {0, 1}n−i}

the set of all solution spaces of size 2i obtained by fixing xn, · · ·xi+1 to every assignment.
When ~σ is a complete assignment for the variables xn · · ·x1, then S[~σ] denotes the value of
the assignment ~σ in S (i.e. true or false). A null solution space is a solution space in which
all its assignments are valued to 0.

A block is a solution space whose set of solutions make a prefix under the fixed lexicographic
order ≤lex. That is, a (possibly partial) solution space S of size 2i is a block if, for every
pair of assignments ~σ, ~σ′ ∈ {0, 1}i where S[~σ] = 1 and ~σ′ ≤lex ~σ, it holds that S[~σ′] = 1. We
can also describe a block S by its output column as 1k02i−k for some positive integer k. In
this case, k is exactly the number of solutions in S. Finally for every 0 ≤ c ≤ 2n, we define
blockc to be the formula over n variables whose solution space is the block with c solutions.
That is, blockc(~x) ≡ (~x ≤lex bin(c)) ∧ (~x 6= bin(c)). Note that blockc can be written as a
Boolean formula (in particular, as a chain formula [9]). When obvious from the context we
sometimes refer to the formula blockc as a block with c solutions.

3 Definitions and properties

Given a function g : {0, 1}n → {0, 1}m for some integers n,m, we say that a quantified
Boolean formula F (~x, ~y) describes g if ~x (called the domain variables) is of size n, ~y (called
the range variables) is of size m, and for every assignments ~a,~b for ~x, ~y respectively we have
F (~a,~b) = true iff g(~a) = ~b.

We now define transformations as follows:

I Definition 1. A transformation T (~x, ~y) is a quantified Boolean formula over 2n free
variables that describes a bijection from {0, 1}n to {0, 1}n.

We assume without loss of generality that all transformations are described in a prenex
normal form. The size of a transformation T is the number of symbols in the underlying
QBF formula, denoted |T |. Although we allow arbitrary alternation of quantifiers in trans-
formations, one might consider restricting to transformations in ΣP

k (for some fixed k) in
order to limit the number of quantifier alternations and hence ease reasoning. In particular,
restricting to transformations in ΣP

1 (i.e. using only existential quantifiers), allows reasoning
on such transformations by using SAT solvers, while still maintaining some expressiveness,
e.g. by using “carry” bits as we see in Section 5.1. Unless mentioned otherwise, for the
rest of the paper we assume that all the Boolean formulas have n free variables and all
transformations have 2n free variables.

FSTTCS 2019

39:4 Transformations of Boolean Functions

x1 ∨ x3

0
1
0
1
1
1
1
1

XOR0,1,1

XOR0,1,1(x1 ∨ x3)
1
0
1
0
1
1
1
1

Figure 1 The truth tables of the formula x1∨x3 and of the result after applying the transformation
XOR0,1,1. Each truth table is given in lexicographic order from top (where x3 = x2 = x1 = 0) to
bottom (where x3 = x2 = x1 = 1).

We now define how to apply a transformation to a Boolean formula. Given a transforma-
tion T (~x, ~y) that describes a bijection g : {0, 1}n → {0, 1}n and a Boolean formula ϕ(~z) over
n free variables, we apply T to ϕ by constructing a new Boolean formula ApplyT,ϕ over n
free variables in which we identify the domain variables of T with the variables of ϕ:

ApplyT,ϕ(~y) ≡ ∃~x (T (~x, ~y) ∧ ϕ(~x)).

For convenience, we denote ApplyT,ϕ by T (ϕ). If ψ is a Boolean formula over n variables
and ψ ≡ T (ϕ), we say that T transforms ϕ into ψ. Note that we can also think of a
transformation as a function from Boolean formulas to Boolean formulas. Also notice that
T (ϕ) is a Boolean formula with n free variables whose solution space is resulted by applying
g (i.e., the bijection described by T) to the solution space of ϕ. That is, ~a is a solution of ϕ if
and only if g(~a) is a solution of T (ϕ). Since g is a bijection, it follows that ϕ and T (ϕ) indeed
have the same number of solutions. Although transformations are defined over formulas,
to ease the reading we sometimes say that we apply transformations to a solution space,
in which case we mean that we apply the transformation to a formula with the mentioned
solution space.

I Example 2. The simplest transformation is the identity transformation id(~x, ~y) ≡
∧

i xi ↔
yi. For all Boolean formulas ϕ, id(ϕ) ≡ ϕ.

I Example 3. The transformation T1(x1, x2, y1, y2) ≡ (x1 ↔ y2) ∧ (x2 ↔ y1) is a transform-
ation over 4 free variables. When applied to a Boolean formula ϕ(x1, x2), T1 syntactically
switches between x1 and x2. That is, T1(ϕ(x1, x2)) ≡ ϕ(x2, x1).

I Example 4. For a given vector ~a ∈ {0, 1}n, the bijection that maps every ~b ∈ {0, 1}n to
~b⊕ ~a is represented by the XOR transformation:

XOR~a(~x, ~y) ≡
∧

i

(yi ↔ (xi ⊕ ai)).

Figure 1 describes an example of the XOR transformation.

3.1 Properties of transformations
We consider transformations as combinatorial objects that can be used to construct other,
more complicated transformations. For that, we describe a few simple algebraic properties of
transformations and then define the composition of two transformations.

J.M. Dudek and D. Fried 39:5

We begin by listing a few simple properties of transformations, which follow directly from
the fact that transformations describe bijections:

B Claim 5. Let T be a transformation and let ϕ and ψ be Boolean formulas. Then:
1. T (ϕ ∨ ψ) ≡ T (ϕ) ∨ T (ψ)
2. T (ϕ ∧ ψ) ≡ T (ϕ) ∧ T (ψ)
3. T (¬ϕ) ≡ ¬(T (ϕ))

We next consider compositions of transformations. Let T1 and T2 be transformations
that describe bijections g1 and g2. We define the composition of T1 and T2, denoted T2 ◦ T1,
to be a transformation that describes the composition of g1 and g2 (which is the bijection
g2 ◦ g1 that maps each ~a ∈ {0, 1}n to g2(g1(~a))). Note that composition can be described by
a simple syntactic construction of T2 ◦ T1 from T1 and T2 as the following claim shows.

B Claim 6. (T2 ◦ T1)(~x, ~y) ≡ ∃~z (T1(~x, ~z) ∧ T2(~z, ~y))

Naturally, we also have that for an arbitrary Boolean formula ϕ, applying T2 ◦ T1 to ϕ is
logically equivalent to applying T1 to ϕ followed by applying T2:

B Claim 7. (T2 ◦ T1(ϕ)) is logically equivalent to T2(T1(ϕ)).

Proof. We have that:

T2(T1(ϕ))(~z) ≡ ∃~y (T2(~y, ~z) ∧ T1(ϕ)(~y))
≡ ∃~y (T2(~y, ~z) ∧ ∃~x (T1(~x, ~y) ∧ ϕ(~x)))
≡ ∃~x (∃~y (T1(~x, ~y) ∧ T2(~y, ~z)) ∧ ϕ(~x)) ≡ (T2 ◦ T1)(ϕ)(~z) C

Notice that if T1 and T2 are both in ΣP
k for some k, then Claim 6 proves that their

composition T2 ◦ T1 is in ΣP
k as well. We will specifically use this fact for the merge-rotation

transformations described in Section 5.2 which are in ΣP
1 . A transformation constructed by

composition of many ΣP
1 transformations is also in ΣP

1 and so can still be reasoned about
with a SAT solver.

Along the same lines, we define the inverse transformation of a transformation T (that
describes a bijection g) to be a transformation T−1 that describes the inverse bijection g−1.
As with composition, there is a simple syntactic construction of T−1 from T by swapping
the domain and range variables:

B Claim 8. T−1(~x, ~y) ≡ T (~y, ~x)

Proof. Let g be the bijection described by T . Notice that for every assignment ~a and ~b to
~x and ~y we have that T (~b,~a) = true if and only if g(~b) = ~a, which occurs if and only if
g−1(~a) = ~b. Hence T (~y, ~x) indeed describes g−1. C

As a direct result from Claim 8, we get that the inverse transformation is indeed an
inverse under the composition operator as follows.

I Corollary 9. Let T be a transformation and ϕ be a Boolean formula. Then (T ◦T−1)(ϕ) ≡
(T−1 ◦ T)(ϕ) ≡ ϕ.

FSTTCS 2019

39:6 Transformations of Boolean Functions

4 Transformations and the polynomial hierarchy

In this work the transformations that we define do not affect the number of solutions of a
formula. In particular, if a transformation transforms a Boolean formula ϕ1 into ϕ2 then
the number of solutions of ϕ1 and ϕ2 must be the same. Perhaps surprisingly, the converse
is also true: if two Boolean formulas ϕ1 and ϕ2 over the same number of variables n have
the same number of solutions then there must be a transformation of size polynomial in
max{n, |ϕ1|, |ϕ2|} that transforms ϕ1 into ϕ2. We give this result as the following theorem.

I Theorem 10. There is a polynomial p : N3 → N such that, if ϕ1 and ϕ2 are two
Boolean formulas with n variables each and the same number of solutions, then there is a
transformation T of size no more than p(n, |ϕ1|, |ϕ2|) such that T (ϕ1) ≡ ϕ2.

Proof. For a given Boolean formula ϕ of n variables and an assignment {0, 1}n, let H1
ϕ(~a)

be the set of solutions strictly smaller, under ≤lex than ~a. That is H1
ϕ(~a) = {~c | ~c <lex

~a ∧ ϕ(~c) = 1}. Similarly, let H0
ϕ(~a) = {~c | ~c <lex ~a ∧ ϕ(~c) = 0} be the set of non-solutions

strictly smaller than ~a.
Now let L ⊆ {0, 1}n × {0, 1}n be the set of (~a,~b) ∈ {0, 1}n × {0, 1}n such that either:

(i) ϕ1(~a) = ϕ2(~b) = 1, and |H1
ϕ1

(~a)| = |H1
ϕ2

(~b)|, or; (ii) ϕ1(~a) = ϕ2(~b) = 0, and |H0
ϕ1

(~a)| =
|H0

ϕ2
(~b)|.

Since for an arbitrary ~a ∈ {0, 1}n and an arbitrary Boolean formula ϕ, both |H1
ϕ(~a)| and

|H0
ϕ(~a)| can be computed by using a single #P query, L belongs to P#P and consequently

to PSPACE. Therefore there is a polynomially-sized QBF formula T with 2n free variables
whose solution space is L.

Finally, recall that ϕ1 and ϕ2 have the same number of solutions. For every ~a ∈ {0, 1}n,
there is therefore exactly one ~b ∈ {0, 1}n such that (~a,~b) ∈ L. Thus T describes a bijection
and so T is indeed a transformation. Together with the fact that, by definition ϕ1(~a) = ϕ2(~b)
for every (~a,~b) ∈ L, we have that that T (ϕ1) ≡ ϕ2. J

The transformation T obtained by Theorem 10 may have arbitrarily nested quantifiers. A
natural question to ask is whether it is possible to generalize Theorem 10 while limiting the
number of alternating quantifiers. This leads us to the following conjecture, which restricts
the number of quantifier alternations to some k ≥ 1.

I Conjecture 1 (Transformation Conjecture at k). There is an integer k ≥ 1 and a polynomial
p : N3 → N such that, if ϕ1 and ϕ2 are two Boolean formulas with n variables each and
the same number of solutions, then there is a transformation T ∈ ΣP

k of size no more than
p(n, |ϕ1|, |ϕ2|) such that T (ϕ1) ≡ ϕ2.

As we next show via the following two lemmas, our conjecture is equivalent to open
unsolved questions in computational complexity.

We first generalize our proof of Theorem 10 to the restricted setting of the conjecture. In
order to obtain ΣP

k transformations, our proof requires the stronger, open assumption that
the polynomial hierarchy collapses at or before ΣP

k (in place of the fact used in Theorem 10
that P#P ⊆ PSPACE). We state this result as the following lemma.

I Lemma 11. For all k ≥ 1, if P#P ⊆ ΣP
k then the Transformation Conjecture at k holds.

Proof. Let Boolean formulas ϕ1 and ϕ2 be Boolean formulas over n variables each, with the
same number of solutions. Consider the language L ⊆ {0, 1}n × {0, 1}n defined in the proof
of Theorem 10. In particular, if P#P ⊆ ΣP

k then L belongs to ΣP
k . It follows that there is a

polynomially-sized ΣP
k formula T with 2n free variables whose solution space is L. Hence, as

in the proof of Theorem 10, T is a transformation and T (ϕ1) ≡ ϕ2. J

J.M. Dudek and D. Fried 39:7

We next show in Lemma 12 that on the other hand the Transformation Conjecture implies
that the polynomial hierarchy collapses at or before the level ΣP

k+4. Tightening the result to
prove the exact converse of Lemma 11, which would be that the Transformation Conjecture
implies the collapse of the polynomial hierarchy at or before ΣP

k , remains for future work.

I Lemma 12. For all k ≥ 1, if the Transformation Conjecture at k holds then P#P ⊆ ΣP
k+4.

Proof. Let p : N3 → N be the polynomial from the conjecture. It suffices to prove that,
given a Boolean formula ϕ over n variables and an index 1 ≤ i ≤ n+ 1, we can construct (in
polynomial time) a ΣP

k+4 Turing Machine M that takes ϕ and i as input and accepts if and
only if the i-th bit of #ϕ is 1. This decision problem is complete for P#P .

Our Turing Machine M first guesses a formula T ∈ ΣP
k (in prenex normal form) over 2n

variables and an integer 0 ≤ c ≤ 2n and makes a sequence of ΠP
k+3 queries to verify that: (1)

T is a transformation, (2) T transforms ϕ into a block with c solutions, and (3) the i-th bit
of c is 1. M accepts if and only if these three conditions hold for some guess T and c, where
T has size no more than p(n, |ϕ|, |blockc|) and 0 ≤ c ≤ 2n.

Intuitively, c is our verified guess of the number of solutions for ϕ, so that M can check if
the i-th bit of #ϕ is 1 just by consulting c. The transformation T is used to verify c.

The first property (that T is a transformation) can be verified by making a ΠP
k+3 query

followed by a ΠP
k+1 query:

α(T) ≡ ∀~x ∃~y ∀~z (T (~x, ~z)↔ (~y = ~z))
β(T) ≡ ∀~y ∃~x (T (~x, ~y)).

In particular, α(T) evaluates to true if and only if T describes some function g, and β(T)
then evaluates to true if and only if g is invertible. Thus α(T) and β(T) together hold if and
only if T describes a bijection g, i.e. if and only if T is a transformation.

The second property (that T transforms ϕ into a block with c solutions) can be verified
by a single ΠP

k+1 query:

γ(T, c) ≡ ∀~x ∃~y (T (~x, ~y) ∧ (ϕ(~x)↔ blockc(~y)))

Recall from Section 2 that, for 0 ≤ c ≤ 2n, blockc(~x) ≡ (~x ≤ bin(c)) ∧ (~x 6= bin(c)) is the
Boolean formula whose solution space is a block with c solutions.

Finally, the third property (that the i-th bit of c is 1) can be verified simply by reading
the bits of c.

Since M makes a single polynomially-sized guess (of T and c) followed by three ΠP
k

queries, M is indeed a ΣP
k+4 Turing Machine. Since transformations preserve the number

of solutions and #blockc = c, then if M accepts it means that ϕ must have c solutions.
Moreover, if M accepts then the i-th bit of c is 1. Thus the i-th bit of #ϕ is indeed 1.
Conversely, consider the case where the i-th bit of #ϕ is 1. By the Transformation Conjecture
there exists a polynomially-sized transformation T ′ ∈ ΣP

k that transforms ϕ into block#ϕ.
Thus M will accept with T = T ′ and c = #ϕ. J

5 Transformations to blocks

In this section we give examples of how to use the transformations definitions and properties
defined in Section 3 to construct and combine various transformations in order to manipulate
the solution space to a specific structure. For that, we choose the structure of a block solution
space and we focus on a specific type of transformations that transform a given formula into
a block.

FSTTCS 2019

39:8 Transformations of Boolean Functions

In general, Boolean formulas with a block solution space, such as blockc or chain formulas
[9] have efficient counting by a simple binary-search method. To see this, assume that ϕ is a
formula with n variables and a block solution space. Then for every assignment ~σ to the
variables of ϕ, we have that ϕ(~σ) = 1 if and only if #ϕ ≥ |~σ|. Therefore #ϕ can be found
by at most n such queries. Thus we have that a hypothetical efficient transformation of a
given formula to a block can lead to efficient counting.

Moreover, in the setting of transformations, the following claim, which follows directly from
the transformation properties discussed in Section 3, shows that by exploring transformations
to blocks we can also get a better understanding on transformations between every two
formulas.

B Claim 13. Let ϕ1, ϕ2 be Boolean formulas with the same number of solutions, and with
transformations T1, T2 respectively to blocks . Then T−1

2 ◦ T1(ϕ1) ≡ ϕ2.

Proof. Assume that #ϕ1 = #ϕ2 = c. Then the transformations T1, T2 transform ϕ1 and ϕ2
respectively to a block of c solutions. Then T1(ϕ1) ≡ T2(ϕ2) ≡ blockc(~x). Then from the
transformation properties we have that T−1

2 (blockc(~x)) ≡ ϕ2, thus T−1
2 ◦ T1(ϕ1) ≡ ϕ2. C

We first describe a type of transformations, possibly of exponential size to the size of the
input, that can block any Boolean formula. These transformations are based on merging the
solutions in the solution space together. We then explore a different technique, more efficient
size-wise, of transformations, called merge-rotate that merges subspaces, that are already
blocks, into a single block. We show how by iterating the merge-rotate transformations we
can transform more sophisticated solution spaces to a block. Finally we demonstrate the
use of the iterative approach to efficiently transform a specific type of formulas that are
conjunction of two variable-disjoint sub-formulas, once their transformations to blocks are
found. The transformations that we describe here are “parameterized” in the sense that the
transformations use additional parameters that are depended on the given input formula.
Exploring so called “oblivious” transformations that do not have such parameters is left for
future work.

5.1 Transforming general formulas to blocks
A general description of a solution space S for every Boolean formula ϕ is as a sequence of
alternating intervals of all solutions and all non-solutions. That is, S = (1k10k2 · · · 1k`−10k`)
where 0 ≤ ki ≤ 2n for every i ≤ ` for some even `, and

∑
i ki = 2n. In this section, we show

a general ΣP
1 transformation, of size polynomial in max{`, n}, that blocks S.

For that, we first describe addition as a way to ”shift” whole intervals in a solution space.
Let ψ+,i(~y,~a,~b) be the following ΣP

1 formula:

∃z1 · · · ∃zi

¬z1 ∧
i∧

j=1
(yj ↔ aj ⊕ bj ⊕ zj) ∧

i−1∧
j=1

(zj+1 ↔ ((zj ∧ aj) ∨ (zj ∧ bj) ∨ (aj ∧ bj)))

The ~z variables represent the carry in the addition of the ~a and ~b variables. Recall

from Section 2 that | · | : {0, 1}n → {0, 1, · · · , 2n − 1} produces the n-bit positive integer
corresponding to an assignment. Then we have the following.

B Claim 14. For all integers 0 < i ≤ n and assignments ~y,~a,~b ∈ {0, 1}n, ψ+,i(~y,~a,~b) = true

if and only if |~y| = |~a|+ |~b| (mod 2i).

J.M. Dudek and D. Fried 39:9

Now let interval(c,d)(ϕ(x)) ≡ (bin(c) ≤lex ~x <lex bin(d)) be the formula that is true for
every assignment ~σ over the n variables for which |~σ| ∈ [c, d). Denote by k′i =

∑
h≤i kh the

last index of the i’th interval and set k′0 = 0. Then let Merge(k1,···k`)(~x, ~y) be the following
transformation:

Merge(k1,···k`)(~x, ~y) =
`/2−1∧
j=0

(
interval(k′2j

,k′2j+1)(~x)→ ψ+,n(~y, ~x, 2n −
∑

1≤h≤j

k2h)∧

interval(k′2j+1,k′2j+2)(~x)→ ψ+,n(~y, ~x,
∑

j<h<`/2

k2h+1)
)

Note that Merge(k1,···k`)(~x, ~y) is of size polynomial in max{`, n}.

B Claim 15. Let ϕ be a Boolean formula with a solution space described as S =
(1k10k2 · · · 1k`−10k`) where 0 ≤ ki ≤ 2n for all 0 ≤ i ≤ ` and

∑
i ki = 2n. Let k =∑`/2−1

i=0 k2i+1. Then Merge(k1,···k`) is a ΣP
1 transformation that transforms ϕ to the block

(1k02n−k).

Proof. The transformation Merge(k1,···k`) simply shifts the j-th odd interval (which are all 1)
to be the j-th interval in the lexicographic order by shifting the interval past all earlier
0 blocks, and the j-th even interval (which are all 0) to be the `/2 + j-th interval in the
lexicographic order by shifting the interval past all later 1 blocks. Thus all 0 blocks occur
lexicographically after all 1 blocks following the transformation. C

When ` is exponential in n, the size of Merge(k1,···k`) is exponential in n as well. In
Sections 5.2 and 5.3 we explore ways to maintain efficient size transformations for certain
solution spaces with an exponential number of intervals.

5.2 The merge-rotate transformation
We next turn our attention to a different technique of transformations to blocks called the
merge-rotate transformation. For merge-rotate we assume that a given solution subspace
B is “halved” into an “upper” subspace B0 and a “lower” subspace B1 that are already in
block forms. The transformation merge-rotate (as its name implies) rotates B0 in order to
merge its solutions with B1, then rotates the entire subspace B to turn B to a block. We
describe the merge-rotate technique, then see how to extend merge-rotate to an iterative
process that can handle more complicated solution spaces.

We start from the ψ+ formula, defined in Section 5.1, upon which we define the following
rotc transformation for a given integer 0 ≤ c < 2n.

I Definition 16. For given 0 ≤ c < 2n and 0 < i ≤ n, let rotc,i(~x, ~y) = ψ+,i(~y, ~x, bin(~c)) ∧∧n
j=i+1(xj ↔ yj).

By applying rotc,i to a Boolean formula ϕ we ”rotate” each subspace in S[xn, · · · , xi+1]
of size 2i of ϕ by c steps (mod 2i).

Next let σn, · · ·σi+1 be an assignment to xn, · · · , xi+1 and assume that the subspaces
B0 = S[σn, · · ·σi+1, 0] and B1 = S[σn, · · ·σi+1, 1] are already in block forms, with number
of solutions k and k′ respectively. The overall subspace B = S[σn, · · ·σi+1] has the form
(1k02i−1−k1k′02i−1−k′). We show how to use the rotation transformation on these blocks, to
transform the subspace B a block of the form (1k+k′02i−(k+k′)). For that, we need to restrict
the rotation only to B0 in order to merge the solutions of B0 and B1. We then use rotation
on the entire subspace B to rotate B to a block form.

FSTTCS 2019

39:10 Transformations of Boolean Functions

1
...

1

k

0
...

0

2i−1 − k

B0

1
...

1

k′

0
...

0

2i−1 − k′

B1

rot2i−1−k,i−1 ∧ ¬xi

id ∧ xi

0
...

0

2i−1 − k

1
...

1

k

B0

1
...

1

k′

0
...

0

2i−1 − k′

B1

rot2i−1+k,i

1
...

1

k

1
...

1

k′

0
...

0

2i−1 − k′

0
...

0

2i−1 − k

Figure 2 The transformation to blocks MergeRotate is a composition of two rot transformations.
Each solution subspace of the form B = (1k02i−1−k1k′02i−1−k′) is transformed on B0 by rot2i−1−k,i−1

and on B1 by the identity transformation to (02i−1−k1k+k′02i−1−k′) and then by rot2i−1−k,i to
(1k+k′02i−1−(k+k′)).

This results in the following transformation which we call MergeRotate, also depicted in
Figure 2. Note that id is the identity transformation as defined in Section 3.

I Definition 17. Let k, i ≤ n be given. The transformation MergeRotate is defined as:

MergeRotate(k, i) ≡ rot2i−1+k,i ◦ ((rot2i−1−k,i−1 ∧ ¬xi) ∨ (id ∧ xi))

Then we have the following claim, whose proof follows from the definition ofMergeRotate.

B Claim 18. Let B0 = S[σn, · · ·σi+1, 0] and B1 = S[σn, · · ·σi+1, 1] for some index i ≤ n and
(σn, · · ·σi+1) ∈ {0, 1}n−i. Assume that B0 and B1 are blocks of size k and k′ respectively.
Then the transformation MergeRotate(k, i) transforms B = S[σn, · · ·σi+1] to a block of
k + k′ solutions.

Note that k′, the number of solutions in B1, is not required for MergeRotate. Also note
that MergeRotate is in NP and in size polynomial to n.

We next give a technical lemma, which we make use of in Section 5.3, that shows that
when using MergeRotate we do not always need to have the rotation as the exact size of
the block of B0, as long as B1 is a null solution space.

I Lemma 19. Let B0 = S[σn, · · ·σi+1, 0] and B1 = S[σn, · · ·σi+1, 1] for some index i ≤ n

and (σn, · · ·σi+1) ∈ {0, 1}n−i. Assume that B0 is a block of size k′ and that B1 is a null
solution space (note that it means that the overall subspace B = (1k′02i−1−k′02i−1) is already
a block of k′ solutions). Then for every k′ ≤ k ≤ 2i−1 the transformation MergeRotate(k, i)
maintains B = S[σn, · · ·σi+1] as a block of k′ solutions.

Proof. Note that when applying MergeRotate, we first rotate only B0 by 2i−1 − k. This
results in a space B′ = (02i−1−k1k′0k−k′02i−1). Now the second rotation rotates B′ by
2i−1 + k which makes B′′ = (1k′0k−k′02i−102i−1−k) = (1k′02i−k′) as required. J

J.M. Dudek and D. Fried 39:11

1 . . . 1

k

0 . . . 0

2i − k

. . . 1 . . . 1

k

0 . . . 0

2i − k
m k-block subspaces

1 . . . 1

km

0 . . . 0

2i − km

0 . . . 0

2i

. . . 0 . . . 0

2i

2n−i −m− 1 null subspaces

Figure 3 The truth table of a k-block i-suffix-null solution space, given in lexicographic order
from left to right as described in Definition 20.

In the next sections we show where MergeRotate can be used iteratively to construct
transformations of polynomial size to blocks for formulas with a specific solution space
structure.

5.3 Iterating the merge-rotate transformations
Having defined the merge-rotate transformation, we would like to see how to use it to transform
more complex solution spaces, with possibly an exponential number of intervals, into blocks.
For that, a natural solution space that can demonstrate the iterative use of merge-rotate is
a solution space S where, for some integer 0 ≤ k ≤ 2i and every (σn, · · ·σi+1) ∈ {0, 1}n−1,
the subspace S[xn, · · ·xi+1] is a block of size k. In fact, we can make a somewhat stronger
statement on a more complicated solution space structure as defined below. This structure
also appears later in Section 5.4.

I Definition 20. For a given i ≤ n, and 0 ≤ k ≤ 2i, a solution space is said to be a k-block
i-suffix-null if there exists an integer 0 ≤ m ≤ 2n−i such that: (i) every solution space
S[σn, · · · , σi+1] where (σn, · · ·σi+1) >lex bin(m) is a null solution space; (ii) every solution
space S[σn, · · · , σi+1] where (σn, · · ·σi+1) <lex bin(m) is a block of size k; (iii) S[bin(m)] is
a block of size 0 ≤ km ≤ k.

Figure 3 depicts a k-block i-suffix-null solution space. Note that m can be 0 which
means that the entire solution space is null, or can be 2n−i in which all that the elements in
S[xn, · · ·xi+1] are k-blocks. Moreover, if i = n then S is a block of size k.

We next show how to construct a transformation composed of n− i merge-rotate trans-
formations in order to block a k-block i-suffix-null solution space. For given i < n and k < 2i,
let ItrMergeRotate(k, i) be the following transformation:

MergeRotate(2n−i−1k, n) ◦ · · · ◦MergeRotate(2j−1k, i+ j) ◦ · · · ◦MergeRotate(k, i+ 1)

We then have the following.

I Theorem 21. For a given i < n and k < 2i, let S be a k-block i-suffix-null solution space.
Then ItrMergeRotate(k, i) transforms S into a block.

Proof. We prove by induction that for every 0 ≤ j ≤ n−i, the solution space S after applying
the transformation MergeRotate(2j−1k, i+ j), is a (2jk)-block (i+ j)-suffix-null. It follows
after applying MergeRotate(2j−1k, i+ j) for j = n− i that S is an `-block n-suffix-null (for
some ` ≤ 2n−ik), i.e. S is a block.

In the base case j = 0 (i.e. before applying the first MergeRotate), S is by hypothesis a
k-block i-suffix-null solution space. Assume by induction that, for some 0 ≤ j ≤ n− i− 1
when applying ItrMergeRotate(k, i) on S, after MergeRotate(2j−1k, i+ j) we have that S
is a (2jk)-block (i + j)-suffix-null solution space. Then by definition, there is some m for

FSTTCS 2019

39:12 Transformations of Boolean Functions

which the subspace S[σn, . . . , σi+j+1] is a null block for every (σn, . . . , σi+j+1) >lex bin(m),
a block of size 2jk for every (σn, . . . , σi+j+1) <lex bin(m) and S[bin(m)] is a km block for
some km ≤ 2jk.

Now the transformationMergeRotate(2jk, i+j+1) is applied on S, as described in Defin-
ition 17, by merging and rotating the subspaces S[σn, . . . σi+j+2, 0] and S[σn, . . . σi+j+2, 1]
for every (σn, . . . σi+j+2) ∈ {0, 1}n−i−j−1. This makes four cases to consider:
1. (σn, . . . σi+j+2, 1) < bin(m). Then both S[σn, . . . σi+j+2, 0] and S[σn, . . . σn−i+j+2, 1] are

blocks of size 2jk, and therefore by Claim 18, applying MergeRotate(2jk, i + j + 1)
transforms S[σn, . . . σi+j+2] to a block of size 2j+1k.

2. (σn, . . . σi+j+2, 0) > bin(m). Then both S[σn, . . . σi+j+2, 0] and S[σn, . . . σn−i+j+2, 1] are
null, and therefore applying MergeRotate(2jk, i+ j + 1) maintains S[σn, . . . σi+j+2] null
as well.

3. (σn, . . . σi+j+2, 1) = bin(m). Then the subspace S[σn, . . . σi+j+2, 0] is a block of size 2jk,
while the subspace S[σn, . . . σi+j+2, 1] is a block of size km < 2jk. Then again by Claim
18, applying MergeRotate(2jk, i+ j + 1) transforms S[σn, . . . σi+j+2] to a block of size
2jk + km, where 2jk + km ≤ 2j+1k.

4. (σn, . . . σi+j+2, 0) = bin(m). Then the subspace S[σn, . . . σi+j+2, 0] is a block of size km,
while the subspace S[σn, . . . σi+j+2, 1] is a null block. Since km ≤ 2jk this case fits to the
conditions of Lemma 19. Therefore we get that S[σn, · · ·σi+j+2] is (still) a block of size
km ≤ 2j+1k.

That shows that applying MergeRotate(2jk, i + j + 1) on S in the j’th iteration of
ItrMergeRotate(k, i) transforms S to a 2j+1k-block (i+ j + 1)-suffix-null solution space as
required. J

In the next section we see how to make use of Theorem 21 when blocking specific
conjuncted Boolean formulas.

5.4 Transforming conjuncted variable-disjoint formulas
Having defined the iterated merge-rotate method, we finally demonstrate how to combine it
with existing transformations to blocks, in the specific formulation which we now describe.

I Theorem 22. Let ϕ be a Boolean formula such that ϕ = ϕ1 ∧ ϕ2 where ϕ1 and ϕ2 have
disjoint variables. Furthermore, assume that T1 and T2 are ΣP

1 transformations that transform
ϕ1 and ϕ2 respectively to blocks. Then there is a ΣP

1 transformation of size polynomial in
|T1|+ |T2|+ |ItrMergeRotate| that transforms ϕ to a block.

Proof. We denote the ϕ1 variables by xn . . . xi+1 for some i and the ϕ2 variables by xi . . . , x1.
We set an order on xn, . . . x1 where xn is the msb. Denote the number of solutions in ϕ1
by k1 and the number of solutions of ϕ2 by k2 (we can obtain the ki’s by performing the
transformations to blocks on ϕi’s and use binary search.). Note that every solution subspace
S[σn, . . . σi+1] of S[xn, . . . xi+1] is either null (when ϕ1(σn, . . . , σi+1) = 0) or is an identical
copy of the solution space of ϕ2 (when ϕ1(σn, . . . , σi+1) = 1).

We first apply T ′2 = T2 ∧
∧

j>i(xj ↔ yj) on ϕ. This effectively applies T2 to every copy of
the solution space of ϕ2 and so transforms every subspace of S[xn, . . . xi+1] that is not null
to a block of size k2. Next, we apply T ′1 = T1 ∧

∧
j≤i(xj ↔ yj) to T2(ϕ). This transforms

the solution space S to a k2-block i-suffix-null. Finally we make use of Theorem 21 and
apply ItrMergeRotate(k2, i) to transform S to a block. Thus the resulting composition
ItrMergeRotate(k2, i) ◦ T ′1 ◦ T ′2 is a transformation that transforms ϕ to a block. Moreover,
this composition is in ΣP

1 since all components are in ΣP
1 . J

J.M. Dudek and D. Fried 39:13

Theorem 22 shows that there are cases in which a divide-and-conquer approach, in the
sense of a syntactical decomposition of a Boolean formula into separate conjuncts, followed
by pursuing a transformation for each sub formula separately to a block, can lead to an
efficient transformation for the original formula to a block. This approach also follows recent
methods in decomposition of Boolean formulas, see for example [10].

6 Conclusion

The transformations that we explored in this work transform Boolean functions, described by
Boolean formulas, while maintaining the number of solutions. Manipulations of the structure
of the solution space through Boolean formulas were done before on various occasions. One
classical example in the theoretical setting is Sipser’s proof of BPP ⊆ ΣP

2 ∩ ΠP
2 [3] that

makes use of what we call the XOR transformation. In a more applied setting, the SAT
community uses transformations in an ad-hoc manner as preprocessing steps; although some
preprocessing techniques change the number of solutions, many techniques do not [4]. In
addition, in the area of approximate model counting, two very recent works [2, 7] suggest the
use of transformations to create a high degree of separation (in terms of Hamming distance)
between solutions in the solution space in order to improve practical approximate counting.
It would be interesting in future work to see how our work on transformations can be applied
with this goal. Finally, it is also worth mentioning a similar line of work that studies the
Formula Isomorphism Problem, which asks if there exists a bijection between variables such
that two Boolean formulas become equivalent [1, 6, 18].

To the best of our knowledge, this work is the first that formally defines and studies
the general concept of transformations of Boolean functions described as Boolean formulas.
Among the results that we presented here are not only takeaways on the computational com-
plexity limitations of using transformations, but also definitions, properties, and foundational
techniques that express the versatility and the usability in which transformations can be
used to combinatorially manipulate various solution spaces.

References
1 Manindra Agrawal and Thomas Thierauf. The formula isomorphism problem. SIAM Journal

on Computing, 30(3):990–1009, 2000.
2 S. Akshay and Kuldeep S. Meel. Scalable Approximate Model Counting via Concentrated

Hashing. Under submission.
3 Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge

University Press, New York, NY, USA, 1st edition, 2009.
4 Armin Biere. Preprocessing and Inprocessing Techniques in SAT. In Proceedings of HVC,

page 1, 2011. doi:10.1007/978-3-642-34188-5_1.
5 Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of satisfiability, volume 185.

IOS Press, 2009.
6 Elmar Böhler, Edith Hemaspaandra, Steffen Reith, and Heribert Vollmer. Equivalence and

isomorphism for Boolean constraint satisfaction. In International Workshop on Computer
Science Logic, pages 412–426. Springer, 2002.

7 Michele Boreale and Daniele Gorla. Approximate Model Counting, Sparse XOR Constraints
and Minimum Distance, 2019. arXiv:1907.05121.

8 Randal E Bryant. Graph-based algorithms for boolean function manipulation. Technical
report, Cargnegie-Mellon University, 2001.

9 Supratik Chakraborty, Dror Fried, Kuldeep S Meel, and Moshe Y Vardi. From weighted to
unweighted model counting. In Proceedings of IJCAI, 2015.

FSTTCS 2019

https://doi.org/10.1007/978-3-642-34188-5_1
http://arxiv.org/abs/1907.05121

39:14 Transformations of Boolean Functions

10 Supratik Chakraborty, Dror Fried, Lucas M. Tabajara, and Moshe Y. Vardi. Functional
Synthesis via Input-Output Separation. In Proceedings of FMCAD, pages 1–9, 2018.

11 Yves Crama and Peter L Hammer. Boolean functions: Theory, algorithms, and applications.
Cambridge University Press, 2011.

12 Carmel Domshlak and Jörg Hoffmann. Probabilistic planning via heuristic forward search and
weighted model counting. J. of AI Research, 30:565–620, 2007.

13 Lance Fortnow. Counting complexity. Complexity theory retrospective II, pages 81–107, 1997.
14 Dror Fried, Axel Legay, Joël Ouaknine, and Moshe Y. Vardi. Sequential Relational Decompos-

ition. In Proceedings of LICS, pages 432–441, 2018.
15 Maurice Karnaugh. The map method for synthesis of combinational logic circuits. Transactions

of the American Institute of Electrical Engineers, Part I: Communication and Electronics,
72(5):593–599, 1953.

16 Yehuda Naveh, Michal Rimon, Itai Jaeger, Yoav Katz, Michael Vinov, Eitan Marcu, and Gil
Shurek. Constraint-based random stimuli generation for hardware verification. AI Magazine,
28(3):13–13, 2007.

17 Umut Oztok and Adnan Darwiche. A top-down compiler for sentential decision diagrams. In
Proceedings of IJCAI, pages 3141–3148, 2015.

18 B.V. Rao and M.N. Sarma. Isomorphism testing of read-once functions and polynomials. In
Proceedings of FSTTCS, 2011.

19 Tian Sang, Fahiem Bacchus, Paul Beame, Henry A Kautz, and Toniann Pitassi. Combining
component caching and clause learning for effective model counting. In Proceedings of SAT,
pages 20–28, 2004.

20 Larry Stockmeyer. The complexity of approximate counting. In Proceedings of STOC, pages
118–126. ACM, 1983.

21 Leslie G Valiant. The complexity of enumeration and reliability problems. SIAM J. on
Computing, 8(3):410–421, 1979.

22 Ingo Wegener. The complexity of Boolean functions. BG Teubner, 1987.

Two-Way Parikh Automata
Emmanuel Filiot
Université libre de Bruxelles, Belgium

Shibashis Guha
Université libre de Bruxelles, Belgium

Nicolas Mazzocchi
Université libre de Bruxelles, Belgium

Abstract
Parikh automata extend automata with counters whose values can only be tested at the end of
the computation, with respect to membership into a semi-linear set. Parikh automata have found
several applications, for instance in transducer theory, as they enjoy a decidable emptiness problem.

In this paper, we study two-way Parikh automata. We show that emptiness becomes undecidable
in the non-deterministic case. However, it is PSpace-C when the number of visits to any input
position is bounded and the semi-linear set is given as an existential Presburger formula. We also
give tight complexity bounds for the inclusion, equivalence and universality problems. Finally, we
characterise precisely the complexity of those problems when the semi-linear constraint is given by
an arbitrary Presburger formula.

2012 ACM Subject Classification Theory of computation→ Formal languages and automata theory

Keywords and phrases Parikh automata, two-way automata, Presburger arithmetic

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.40

Related Version https://arxiv.org/abs/1907.09362

Funding Emmanuel Filiot: Research associate of F.R.S.-FNRS. He was supported by the ARC
Project Transform Fédération Wallonie-Bruxelles, the FNRS CDR project J013116F and “Synapse”
FNRS MIS project J013116F.
Shibashis Guha: Supported by the ARC project “Non-Zero Sum Game Graphs: Applications to
Reactive Synthesis and Beyond” (Fédération Wallonie-Bruxelles).
Nicolas Mazzocchi: PhD student funded by a FRIA fellowship from the F.R.S.-FNRS.

1 Introduction

Parikh automata, introduced in [18], extend finite automata with counters in Z which can
be incremented and decremented, but the counters can only be tested at the end of the
computation, for membership in a semi-linear set (represented for instance as an existential
Presburger formula). More precisely, transitions are of the form (q, σ,~v, q′) where q, q′ are
states, σ is an input symbol and ~v ∈ Zd is a vector of dimension d. A word w is accepted if
there exists a run ρ on w reaching an accepting state and whose final vector (the component-
wise sum of all vectors along ρ) belongs to a given semi-linear set. Parikh automata strictly
extend the expressive power of finite automata. For example, the context-free language
of words of the form anbn is definable by a deterministic Parikh automaton which checks
membership in a∗b∗, counts the number of occurrences of a and b, and at the end tests for
equality of the counters, i.e. membership in the linear set {(n, n) | n ∈ N}. They still enjoy
decidable, NP-C, non-emptiness problem [9].

Parikh automata (PA) have found applications for instance in transducer theory, in
particular to the equivalence problem of functional transducers on words, and to check
structural properties of transducers [10], as well as in answering queries in graph databases [9].

© Emmanuel Filiot, Shibashis Guha, and Nicolas Mazzocchi;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 40; pp. 40:1–40:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.FSTTCS.2019.40
https://arxiv.org/abs/1907.09362
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

40:2 Two-Way Parikh Automata

Extensions of Parikh automata with a pushdown stack have been considered in [17] with
positive decidability results with respect to emptiness. Two-way Parikh automata with a
visibly pushdown stack have been considered in [6] with applications to tree transducers.

In this paper, our objective is to study two-way Parikh automata (2PA), the extension
of PA with a two-way input head, where the semi-linear set is given by an existential
Presburger formula. For 2PA as well as subclasses such as deterministic 2PA (2DPA), we aim
at characterizing the precise complexity of their decision problems (membership, emptiness,
inclusion, equivalence), and analysing their expressiveness and closure properties.

Contributions. Since semi-linear sets are closed under all Boolean operations, it is easily
seen that deterministic Parikh automata (DPA) are closed under all Boolean operations.
More interestingly, it is also known that, while they strictly extend the expressive power of
DPA, unambiguous PA (UPA) are (non-trivially) closed under complement (as well as union
and intersection) [2]. We give here a simple explanation to these good closure properties:
UPA effectively correspond to 2DPA. Closure of 2DPA under Boolean operations indeed holds
straightforwardly due to determinism. The conversion of UPA to 2DPA is however non-trivial,
but is obtained by the very same result on word transducers: it is known that unambiguous
finite transducers are equivalent to two-way deterministic finite transducers [21], based on a
construction by Aho, Hopcroft and Ullman [1], recently improved by one exponential in [7].
Parikh automata can be seen as transducers producing sequences of vectors (the vectors
occurring on their transitions), hence yielding the result. The conversion of 2DPA to UPA
is a standard construction based on crossing sections, which however needs to be carefully
analysed for complexity purposes.

The effective equivalence between 2DPA and UPA indeed entails decidability of the non-
emptiness problem for 2DPA. However, given that non-emptiness of PA is known to be
NP-C [9], and the conversion of 2DPA to UPA is exponential, this leads to NExpTime
complexity. By a careful analysis of this conversion and small witnesses properties of
Presburger formulas, we show that emptiness of 2DPA, and even bounded-visit 2PA, is
actually PSpace-C. Bounded-visit 2PA are non-deterministic 2PA such that for some natural
number k, each position of an input word w is visited at most k times by any accepting
computation on w. In particular, 2DPA are always n-visit for n the number of states. If the
number k of visits is a fixed constant, non-emptiness is then NP-C, which is consistent with
the complexity result of [9] for (one-way) PA (by taking k = 1). We show that dropping the
bounded-visit restriction however leads to undecidability.

Thanks to the closure properties of 2DPA, we show that the inclusion, universality and
equivalence problems are all coNExpTime-C. Those problems are known to be undecidable
for PA [18]. The membership problem of 2PA turns out to be NP-C, just as for (one-way)
PA. The coNExpTime lower bound holds for one-way deterministic Parikh automata, a
result which is also new, to the best of our knowledge.

Finally, we study the extension of two-way Parikh automata with a semi-linear set defined
by a Σi-Presburger formula, i.e. a formula with a fixed number i of unbounded blocks of
quantifiers where the consecutive blocks alternate i−1 times between existential and universal
blocks, and the first block is existential. We characterise tightly the complexity of the
non-emptiness problem for bounded-visit Σi-2PA, as well as the universality, inclusion and
equivalence problems for Σi-2DPA, in the weak exponential hierarchy [13]. For i > 1, we find
that the complexity of these problems is dominated by the complexity of checking satisfiability
or validity of Σi-Presburger formulas. This is unlike the case i = 1: the non-emptiness
problem for bounded-visit 2PA is PSpace-C while satisfiability of Σ1-formulas is NP-C.

E. Filiot, S. Guha, and N. Mazzocchi 40:3

Related work. Parikh automata are known to be equivalent to reversal-bounded mul-
ticounter machines (RBCM) [16] in the sense that they describe the same class of languages [2].
Two-way RBCM (2RBCM), even deterministic, are known to have undecidable emptiness
problem [16]. Using diophantine equations as in [16], we show that emptiness of 2PA is
undecidable. However our decidability result for 2DPA contrasts with the undecidabilty of
deterministic 2RBCM emptiness. The difference is that 2RBCM can test their counters at
any moment during a computation, and not only at the end. Based on the fact that the
number of reversals is bounded, deferring the tests at the end of the computation is always
possible [16] but non-determinism is needed. Unlike 2DPA, deterministic 2RBCM are not
necessarily bounded-visit. A 2DPA can be seen as a deterministic 2RBCM whose tests on
counters are only done at the end of a computation.

Two-way Parikh automata on nested words have been studied in [6] where it is shown
that under the single-use restriction (a generalisation of the bounded-visit restriction to
nested words), they have NExpTime-C non-emptiness problem. Bounded-visit 2PA are a
particular case of those Parikh automata operating on (non-nested) words. Applying the
result of [6] to 2PA would yield a non-optimal NExpTime complexity for the non-emptiness
problem, as it first goes through an explicit but exponential transformation into a one-way
machine with known NP-C non-emptiness problem. Here instead, we rely on a small witness
property, whose proof uses a transformation into one-way Parikh automaton, and then we
apply a PSpace algorithm performing on-the-fly the one-way transformation up to some
bounded length.

Finally, the emptiness problem for the intersection of n PA was shown to be PSpace-C
in [9]. Our PSpace-C result on 2PA emptiness generalises this result, as the intersection of
n PA can be simulated trivially by a (sweeping) n-bounded 2PA. The main lines of our proof
are similar to those in [9], but in addition, it needs a one-way transformation on top of the
proof in [9], and a careful analysis of its complexity.

2 Two-way Parikh automata

Two-way Parikh automata are two-way automata extended with weight vectors and a semi-
linear acceptance condition. In this section, we first define two-way automata, semi-linear
sets and then two-way Parikh automata.

Two-way Automata. A two-way finite automaton (2FA for short) A over an alphabet Σ
is a tuple (Q,QL, QR, QI , QH , QF ,∆) whose components are defined as follows. We let `
and a be two delimiters not in Σ, intended to represent the beginning and the end of the
word respectively. The set Q is a non-empty finite set of states partitioned into the set of
right-reading states QR and the set of left-reading states QL. Then, QI ⊆ QR is the set of
initial states, QH ⊆ Q is the set of halting states, and QF ⊆ QH is the set of accepting states.
The states belonging to QH \QF are said to be rejecting. Finally, ∆ ⊆ Q× (Σ∪ {`,a})×Q
is the set of transitions. Intuitively, the reading head of A is always placed in between input
positions, a transition from q ∈ QR (resp. q ∈ QL) reads the input letter on the right (resp.
left) of the head and moves the head one step to the right (resp. left). Also, we have the
following restrictions on the behaviour of the head to keep it in between the boundaries `
and a and to ensure the following properties on the initial and the halting states:
1. no outgoing transition from a halting state:

(QH × (Σ ∪ {`,a})×Q) ∩∆ = ∅

FSTTCS 2019

40:4 Two-Way Parikh Automata

2. the head cannot move left (resp. right) when it is to the left of ` (resp. right of a):
(QL × {`} ×QL) ∩∆ = ∅ (resp. (QR × {a} × (QR \QF)) ∩∆ = ∅)

3. all transitions leading to a halting state qH read the delimiter a:
((q, a, qH) ∈ ∆ ∧ qH ∈ QH) =⇒ (q ∈ QR ∧ a = a)

A configuration (uL, p, uR) of A on a word u ∈ Σ∗ consists of a state p and two words
uL, uR ∈ (Σ ∪ {`,a})∗ such that uLuR = `ua. A run ρ on a word u ∈ Σ∗ is a sequence
ρ = (uL

0, q0, u
R
0)a1(uL

1, q1, u
R
1) . . . an(uL

n, qn, u
R
n) alternating between configurations on u and

letters in Σ ∪ {`,a} such that for all 1 ≤ i ≤ n, we have (qi−1, ai, qi) ∈ ∆, and for all
s ∈ {L,R}, if qi−1 ∈ Qs then |usi | = |usi−1| − 1. The length of the run ρ, denoted |ρ| is the
number of letters appearing in ρ. Here |ρ| = n. The run ρ is halting if qn ∈ QH (and hence
uR
n = ε by condition 3), initial if uL

0 = ε and q0 ∈ QI , accepting if it is both initial and
halting, and qn ∈ QF ; otherwise the run is rejecting. A word u is accepted by A if there
exists an accepting run of A on u, and the language L(A) of A is defined as the set of words
it accepts.

An automaton A is said to be one-way (FA) if QL is empty. A run ρ is said to
be k-visit if every input position is visited at most k times in the run ρ, i.e. for ρ =
(uL

0, q0, u
R
0) . . . (uL

n, qn, u
R
n), we have max{|P | | P ⊆ {0, . . . , n} ∧ ∀i, j ∈ P, uL

i = uL
j} ≤ k. The

automaton A is said to be k-visit if all its accepting runs are k-visit, fixed-visit if it is k-visit
for some fixed k and bounded-visit if it is k-visit for some unfixed k. Also, A is said to be
deterministic if for all p ∈ Q and all a ∈ Σ ∪ {`,a} there exists at most one q ∈ Q such that
(p, a, q) ∈ ∆. Finally, it is unambiguous (denoted by the class 2UFA or UFA depending on
whether it is two-way or one-way) if for every input word there exists at most one accepting
run. The following proposition is trivial but useful:

I Proposition 2.1. Any bounded-visit 2FA with n states is k-visit for some k ≤ n.

Semi-linear Sets. Let d ∈ N 6=0. A set L ⊆ Zd of dimension d is linear if there exist
~v0, . . . , ~vk ∈ Zd such that L = {~v0 +

∑k
i=1 xi~vi | x1, . . . , xn ∈ N}. The vectors (~vi)1≤i≤k are

the periods and ~v0 is called the base, forming what we call a period-base representation of L,
whose size is d · (k+ 1) · log2(µ+ 1) where µ is the maximal absolute integer appearing on the
vectors. A set is semi-linear if it is a finite union of linear sets. A period-base representation
of a semi-linear set is given by a period-base representation for each of the linear sets it is
composed of, and its size is the sum of the sizes of all those representations.

Alternatively, a semi-linear set of dimension d can be represented as the set of models of
a Presburger formula with d free variables. A Presburger formula is a first-order formula
built over terms t on the signature {0, 1,+,×2} ∪X, where X is a countable set of variables
and ×2 denotes the doubling (unary) function1. In particular, Presburger formulas obey the
following syntax:

Φ def= t ≤ t | ∃x Φ | Φ ∧ Φ | Φ ∨ Φ | ¬Φ

The class of formulas of the form ∃~x1,∀~x2 . . . ,Ωi~xi [ϕ] where ϕ is quantifier free and Ω ∈ {∀,∃}
is denoted by Σi. In particular, Σ1 is the set of existential Presburger formulas. The size
|Ψ| of a formula is its number of symbols. We denote by ~v |= ϕ the fact that a vector ~v
of dimension d satisfies a formula ϕ with d free variables, and say that ϕ is satisfiable if
there exists such a ~v. The formula ϕ is said to be valid if it is satisfied by any ~v. It is
well-known [12] that a set S ⊆ Zd is semi-linear iff there exists an existential Presburger
formula ψ with d free variables such that S = {~v | ~v |= ψ}.

1 The function ×2 is syntactic sugar allowing us to have simpler binary encoding of values.

E. Filiot, S. Guha, and N. Mazzocchi 40:5

Let Σ = {a1, . . . , an} be an alphabet (assumed to be ordered), and u ∈ Σ∗, the Parikh
image of u is defined as the vector P(u) = (|u|a1 , . . . , |u|an

) where |u|a denotes the number
of times a occurs in u. The Parikh image of language L ⊆ Σ∗ is P(L) = {P(u)|u ∈ L}.
Parikh’s theorem states that the Parikh image of any context-free language is semi-linear.

Two-way Parikh automata. A two-way Parikh automaton (2PA) of dimension d ∈ N over Σ
is a tuple P = (A, λ, ψ) where A = (Q,QL, QR, QI , QH , QF ,∆) is a 2FA over Σ, λ : ∆→ Zd

maps transitions to vectors, and ψ is an existential Presburger formula with d free variables,
and is called the acceptance constraint. The value V (ρ) of a run ρ of A is the sum of the
vectors occurring on its transitions, with V (ρ) = 0Zd if |ρ| = 0. A word is accepted by P if it
is accepted by some accepting run ρ of A and V (ρ) |= ψ. The language L(P) of P is the set
of words it accepts. The automaton P is said to be one-way, two-way, k-visit, unambiguous
and deterministic if its underlying automaton A is so. We define the representation size2
of P as |P | = |Q|+ |ψ|+ |range(λ)|

(
d log2(µ+ 1) + |Q|2

)
where range(λ) = {λ(t) | t ∈ ∆}

and µ is the maximal absolute entries appearing in weight vectors of P . Finally two 2PA are
equivalent if they accept the same language.

Examples. Let Σ = {a, b, c,#} and for all n ∈ N, let Ln = {ak#u | u ∈ {b, c}∗ ∧ k = |{i |
1 ≤ i ≤ |u| − n ∧ u[i] 6= u[i + n]}|}, i.e. k is the number of positions i in u such that the
ith letter u[i] mismatches with u[i + n]. For all n, Ln is accepted by the 2DPA of Fig. 1
which has O(n) states, tagged with R or L to indicate whether they are right- or left-reading
respectively. On a word w, the automaton starts by reading ak and increments its counter
to store the value k (state qa). Then, for the first |u| − n positions i of u, the automaton
checks whether u[i] 6= u[i+ n] in which case the counter is decremented. To do so, it stores
σ = u[i] in its state, moves n+ 1 times to the right (states q0, q

σ
1 , . . . , q

σ
n), checks whether

u[i+ n] 6= u[i] (transitions qσn to p1) and decrements the counter accordingly. Then, it moves
n times to the left (states p1 to pn). Whenever it reads a from states qσj , pj or q0, it moves
to state qF and accepts if the counter is zero.

qI
R

qa

R

q0
R

qb1 R
qbnR

qc1
R

qcn
R

p1
L

pn
L

qF
RS = {0}

a | 0

a | 0

` | 0
a | 1

| 0

b | 0

b, c | 0 b, c | 0

b 0
c −1

c | 0
b, c | 0 b, c | 0

b −1
c 0

b, c | 0b, c | 0b, c | 0

Figure 1 A 2DPA recognising Ln = {ak#u | u ∈ {b, c}∗ ∧ k = |{i | 1 ≤ i ≤ |u| − n ∧ u[i] 6=
u[i + n]}|}.

Our second example shows how to encode multiplication. The language {an#am#an×m |
n,m ∈ N} is indeed definable by the 2PA of Figure 2 which has dimension 2. When reading a
word of the form an#am#a`, every accepting run makes k passes over an where k is chosen
non-deterministically by the choice made on state q1 on reading #. Along those k passes,
the automaton increments the first dimension whenever a is read in a right-to-left pass. It

2 Note that weight vectors are not memorized on transitions but into a table and transitions only carry a
key of this table to refer the corresponding weight vectors.

FSTTCS 2019

40:6 Two-Way Parikh Automata

also counts the number of passes in the second dimension. Thus, when entering state q2, the
sum of the vectors so far is (nk, k). Then, on am, it decrements the second dimension and
on a`, it decrements the first dimension, and eventually checks that both the counters are
equal to zero, which implies that k = m and ` = nk = nm. Note that this automaton is not
bounded-visit as its number of visits to any position of an is arbitrary.

q0
R

q1
R

q2
R

q3
R

q4
R

q5
L

S = {(0, 0)}

` | (0, 0)

a | (0, 0)

| (0, 0)

a | (0,−1)

| (0, 0)

a | (−1, 0)

a | (0, 0)

| (0, 1)

a (1, 0)
(0, 0)

` | (0, 0)

Figure 2 A 2PA recognising {an#am#an×m | n, m ∈ N}.

3 Relating two-way and one-way Parikh automata

In this section, we provide an algorithm which converts a bounded-visit 2PA into a PA defining
the same language, through a crossing section construction. This technique is folkloric in
the literature (see Section 2.6 of [15]) and has been introduced to convert a 2FA into an
equivalent FA. Intuitively, the one-way automaton is constructed such that on each position
i of the input word, it guesses a tuple of transitions (called crossing section), triggered by the
original two-way automaton at the same position i and additionally checks a local validity
between consecutive tuples (called matching property). A one-way automaton takes crossing
sections as set of states. Furthermore, the matching property is defined to ensure that the
sequence of crossing sections which successively satisfy it, correspond to the sequence of
crossing sections of an accepting two-way run. Thanks to the commutativity of +, the order
in which weights are combined by the two-way automaton does not matter and therefore,
transitions of the one-way automaton are labelled by summing the weights of transitions of
the crossing section. Formally, we define a crossing section as follows:

I Definition 3.1 (crossing section). Let k ∈ N 6=0. Consider a k-visit 2PA P = (A, λ, ψ) over
Σ and a ∈ Σ ∪ {`,a}. An a-crossing section is a sequence c = (p1, a, q1) . . . (p`, a, q`) ∈ ∆+

such that 1 ≤ ` ≤ k, p1, q` ∈ QR and for all m ∈ {L,R}, pi ∈ Qm =⇒ pi+1 /∈ Qm. We define
the value of c as V (c) =

∑`
i=1 λ(pi, a, qi), and its length |c| = `. The L-anchorage of c is

defined by p1f(q2, p3) . . . f(q`−1, p`) where f(qi, pi+1) = ε if qi = pi+1 and qi ∈ QR, otherwise
f(qi, pi+1) = qipi+1. The R-anchorage of c is defined by f(q1p2) . . . f(q`−2p`−1)q` where
f(qi, pi+1) = ε if qi = pi+1 and qi ∈ QL, otherwise f(qi, pi+1) is the identity. Furthermore,
c is said to be initial if its L-anchorage is p1 ∈ QI . Dually, c is said to be accepting if its
R-anchorage is q` ∈ QF .

Given a run ρ of a 2PA over u and a position 1 ≤ i ≤ |u|, the crossing section of ρ at
position i is defined as the sequence of all transitions triggered by ρ when reading the ith
letter, taken in the order of appearance in ρ. We also define the crossing section sequence
C(ρ) as the sequence of crossing sections of ρ from position 1 to |u|. Note that the first
crossing section is initial and the last crossing section of ρ is accepting if ρ is accepting.

I Example 3.2. Figure 3, shows a run over the word `aba. Consider the a-crossing section
c = (p1, a, q1)(p2, a, q2)(p2, a, q3)(p4, a, q4)(p5, a, q5) with q1 = p2, q2 = p3 and q4 = p5. In
particular the run makes on immediate reversal at those states, and exits the a-crossing
section from q3 to q5. The L-anchorage of c is p1f(q2, p3)f(q4, p5) = p1, the R-anchorage of c
is f(q1, p2)f(q3, p4)q5 = q3p4q5 and V (c) = ~v2 +~v3 +~v4 +~v11 +~v12. Note that the states of the
crossing section do not appear in the anchorage when the run changes its reading direction.

E. Filiot, S. Guha, and N. Mazzocchi 40:7

p1

q3

p4

q5

` a b a

~v1 ~v2

~v3

~v4 ~v5 ~v6

~v8 ~v7

~v9

~v11 ~v10

~v12 ~v13 ~v14

q1
=
p2q2

=
p3

q4
=
p5

Figure 3 A a-crossing section of a run.

I Definition 3.3 (matching relation). Consider two crossing sections c1, c2 from the same
automaton. The matching relation M is defined such that (c1, c2) ∈M if the R-anchorage of
c1 equals the L-anchorage of c2.

In general, an arbitrary sequence of crossing sections may not correspond to a run of a
two-way automaton, that is a crossing section sequence s = c1, . . . , c` such that C(ρ) 6= s for
all run ρ. Lemma 3.4 shows that the matching property ensures the existence of such a run
ρ in the two-way automaton.

I Lemma 3.4. Consider s = c1, . . . , cn where ci is an ai-crossing section such that c1 is
initial, cn is accepting, and (ci, ci+1) ∈ M for all i ∈ {1, . . . , n − 1}. Then there exists an
accepting two-way run ρ over a1 . . . an such that C(ρ) = s. Moreover, V (ρ) =

∑n
i=1 V (ci).

I Theorem 3.5. Let k ∈ N6=0. Given a k-visit 2PA P , one can effectively construct an
equivalent PA R that is at most exponentially bigger. Furthermore, if P is deterministic then
R is unambiguous.

Proof. Let P = (A, λ, ψ) with A = (Q,QL, QR, QI , QH , QF ,∆) be a k-visit 2PA of dimension
d with n = |Q| states. In this proof we show how to construct R = (B,ω, ψ) where
B = (V, V L, V R, VI , VH , VF ,Γ) is a PA of dimension d having O(n2k) states such that
|range(ω)| ≤ |range(λ)|k+1. Note that the formula ψ is the same in both P and R.

To do so, we first consider a symbol > and extend the relation M such that (c,>) ∈M
holds for all accepting crossing section c. Then, we define R as follows:

V is the set of crossing sections of length at most k
VI is the set of initial crossing sections and VH = VF = {>}
Γ = {(c1, a, c2) ∈ V × (Σ ∪ {`,a})× V | (c1, c2) ∈M ∧ c1 is an a-crossing section}
ω : (c1, a, c2) 7→ V (c1)

Similar to the case of 2FA, a word u is accepted by B if there exists an accepting run of B
on u, and the language L(B) of B is defined as the set of words it accepts. The inclusion
L(R) ⊆ L(P) is a direct consequence of Lemma 3.4, while the other direction is based on the
following observation: any accepting two-way run ρ has a sequence of crossing sections C(ρ),
consecutively satisfying the matching relation. Note that, the choice of c2 in a transition
(c1, a, c2) is non-deterministic in general; but when P is deterministic at most one such choice
of c2 will correspond to a two-way run ensuring unambiguity. J

FSTTCS 2019

40:8 Two-Way Parikh Automata

The previous crossing section construction permits to construct a one-way automaton
from a bounded-visit two-way automaton. This construction is exponential in the number
of states and in the number of distinct weight vectors. Nevertheless, a close inspection of
the proof of Theorem 3.5, reveals that the exponential explosion in the number of distinct
weight vectors can be avoided, while preserving the non-emptiness (but not the language).

I Lemma 3.6. Let P be a k-visit 2PA. We can effectively construct a PA R with O(n2k)
states and such that L(R) = ∅ iff L(P) = ∅. Furthermore, R has the same set of weight
vectors and the same acceptance constraint as P .

Proof. The construction is the same as in Theorem 3.5 but each transition of the one-way
automaton t = (c1, a, c2) is split into the following |c1| consecutive transitions, using a fresh
symbol # /∈ Σ: c1

a−→ (t, 1) #−→ (t, 2) #−→ . . . (t, |c1| − 2) #−→ (t, |c1| − 1) #−→ c2. The vectors of
those transitions are defined as follows. If c1[i] denotes the ith transition of c1, then the
vector of the first R-transition is the vector of the P -transition c1[1], and the vector of any
R-transition from state (t, i) is the vector of the P -transition c1[i+ 1]. The two languages
are then equal modulo erasing # symbols. J

I Theorem 3.7. Unambiguous Parikh automata have the same expressiveness as two-way
deterministic (even reversible3) Parikh automata i.e. UPA = 2DPA. Furthermore, the
transformation from one formalism to the other can be done in ExpTime.

Proof. We only show here UPA ⊆ 2DPA. The opposite direction is given by Theorem 3.5.
Let P = (A, λ, ψ) be a UPA of dimension d over Σ. Consider the alphabet Λ ⊆ Zd as the set
of vectors occurring on the transitions of P . We can see the automaton A with the morphism
λ as an unambiguous finite transducer T defining a function from Σ∗ to Λ∗. It is known that
any unambiguous letter-to-letter one-way transducer can be transformed into an equivalent
letter-to-letter deterministic two-way transducer. This result is explicitly stated in Theorem 1
of [21] which is based on a general technique introduced by Aho, Hopcroft and Ullman [1]4.
Recently, another approach has been introduced which reduces the complexity of the previous
technique by one exponential [7], and allows to show that any unambiguous finite transducer
is equivalent to a reversible two-way transducer exponentially bigger, yielding our result. J

4 Emptiness Problem

The emptiness problem asks, given a 2PA, whether the language it accepts is empty. We
have seen in Example 2 how to encode the multiplication of two natural numbers encoded
in unary. We can generalise this to the encoding of solutions of Diophantine equations as
languages of 2PA, yielding undecidability:

I Theorem 4.1. The emptiness problem for 2PA is undecidable.

The proof of this theorem relies on the fact that an input position can be visited an
arbitrary number of times, due to non-determinism. If instead we forbid this, we recover
decidability. To prove it, we proceed in two steps: first, we rely on the result of the previous

3 An automaton is said to be reversible if it is both deterministic and co-deterministic.
4 Based on the technique of Aho and Hopcroft and Ullman a similar result was shown in [4] for weighted

automata, namely that an unambiguous weighted automata over a semiring can be converted into an
equivalent deterministic two-way weighted automata.

E. Filiot, S. Guha, and N. Mazzocchi 40:9

section showing that any bounded-visit 2PA can be effectively transformed into some (one-
way) PA. This yields decidability of the emptiness problem as this problem is known to
be decidable for PA. To get a tight complexity in PSpace, we analyse this transformation
(which is exponential), to get exponential bounds on the size of shortest non-emptiness
witnesses. A key lemma is the following, whose proof gathers ideas and arguments that
already appeared in [20, 9].

I Lemma 4.2. Let P be a one-way Parikh automaton with n states and γ distinct weight
vectors. Then, we can construct an existential Presburger formula ϕ(x) =

∨m
i=1 ϕi(x) such

that for all ` ∈ N, ϕ(`) holds iff there exists w ∈ L(P) ∩ Σ`. Furthermore, log2(m) and each
ϕi are poly(|P |, logn), in addition ϕ can be constructed in time 2O(γ2 log(γn)).

I Remark 4.3. Note that, ϕ(x) is not in prenex normal form (PNF) but ϕi are. Since ϕ is a
disjunction of PNF subformulas, it can be in PNF in polynomial time.

Thanks to the lemma above, we are able to show that the non-emptiness problem for
bounded-visit 2PA is PSpace-C, just as the non-emptiness problem for two-way automata.
In some sense, adding semi-linear constraints to two-way automata is for free as long as it is
bounded-visit.

I Theorem 4.4. The non-emptiness problem for bounded-visit 2PA is PSpace-C. It is NP-C
for k-visit 2PA when k is fixed.

Proof. Consider a k-visit 2PA P = (A, λ, ψ) of dimension d. We start with the PSpace
membership. Intuitively, we first want to apply Lemma 3.6 in order to deal with a one-way
automaton, and apply then Lemma 4.2 to reduce the non-emptiness problem of the one-way
Parikh automaton to the satisfiability of an existential Presburger formula. Nevertheless, we
cannot explicitly transform P into a one-way automaton while keeping polynomial space. So,
in the sequel, (i) we highlight an upper bound on the smallest witness of non-emptiness and
based on it, (ii) we provide an NPSpace algorithm which decides if there exists such a witness.

(i) By Lemma 4.2 applied on the PA obtained from Lemma 3.6, there exists an existential
Presburger formula ϕ(`) =

∨m
i=1 ϕi(`) where each |ϕi| is polynomial in |P |. This formula is

satisfiable iff there exists w ∈ Σ` such that w ∈ L(P). By Theorem 6 (A) of [22], there exists
N exponential in |ϕi| such that ϕi is satisfiable iff ϕi(`) holds for some 0 ≤ ` ≤ N . Hence,
there exists N exponential in |P | such that min{|u| | u ∈ L(P)} ≤ N .

(ii) The algorithm guesses a witness u of length at most N on-the-fly and a run on it. It
controls its length by using a binary counter: as N is exponential in |P |, the memory needed
for that counter is polynomial in |P |. The transitions of the one-way automaton obtained from
Lemma 3.6 can also be computed on-demand in polynomial space. Eventually, it suffices to
check that the last state is accepting and the sum ~v = (v1, . . . , vd) of the vectors computed on-
the-fly along the run satisfies the Presburger formula ψ(x1, . . . , xd). To do so, our algorithm
constructs a closed formula ψ~v in polynomial time such that ψ~v is true iff ~v |= ψ. It is possible
by hardcoding the values of ~v in ψ by substituting each xi by a term tvi of size (log2(vi))2

encoding vi, by using the function symbol ×2 e.g. t13 = ×2(×2(×2(1))) +×2(×2(1)) + 1. Let
us argue that ψ~v has polynomial size. Let µ be the maximal absolute entry of vectors of P ,
then vi ≤ µN , and since N is exponential in |P |, tvi

has polynomial size in |P | and log2(µ).
Hence ψ~v has polynomial size, and its satisfiability can be checked in NP [22].

The lower bound is direct as it already holds for the emptiness problem of deterministic
two-way automata, by a trivial encoding of the PSpace-C intersection problem of n DFA [19].

When k is fixed, then the conversion to a one-way automaton (Lemma 3.6) is polynomial.
Then, the result follows from the NP-C result for the non-emptiness of PA [9]. J

FSTTCS 2019

40:10 Two-Way Parikh Automata

I Remark 4.5. In [9], non-emptiness is shown to be polynomial time for PA when the
dimension is fixed, the values in the vectors are unary encoded and the semi-linear constraint
is period-base represented. As a consequence, for all fixed d, k, the non-emptiness problem
for k-visit 2PA with vectors in {0, 1}d and a period-base represented semi-linear constraint
can be solved in PTime.

5 Closure properties, universality, inclusion and equivalence problems

Since the class of 2DPA is equivalent to the class of UPA that is known to be closed under
Boolean operations [3, 18], we get the closure properties of 2DPA for free, although with
non-optimal complexity. We show here that they can be realised in linear-time for intersection
and union. For the complement however, while the size of the state-space stays linear, the
size of the acceptance condition explodes due to the transformation of negated existential
Presburger formulas into existential formulas.

I Theorem 5.1 (Boolean closure). Let P, P1, P2 be 2DPA such that P = (A, λ, ψ). One can
construct a 2DPA P = (A′, λ′, ψ′) such that L(P) = L(P) and the size of A′ is linear in the size
of A. One can construct in linear-time a 2DPA P∪ (resp. P∩) such that L(P∪) = L(P1)∪L(P2)
(resp. L(P∩) = L(P1) ∩ L(P2)).

Proof. Let us start by intersection, assuming Pi = (Ai, λi, ψi) has dimension di. The
automaton P∩ is constructed with dimension d1 + d2. Then P∩ first simulates P1 on
the first d1 dimensions (with weight vectors belonging to Zd1 × {0}d2), and then, if P1
eventually reaches a halting state, it stops if it is non-accepting and rejects, otherwise it
simulates P2 on the last d2 dimensions with vectors in {0}d1 × Zd2 , and accepts the word
if the word is accepted by P2 as well. The Presburger acceptance condition is defined as
ψ(~x1, ~x2) = ψ1(~x1) ∧ ψ2(~x2). Note that if P1 never reaches a halting state, then P∩ won’t
either, so the word is rejected by both automata. It is also a reason why this construction
cannot be used to show closure under union: even if P1 never reaches a halting state, it
could well be the case that P2 accepts the word, but the simulation of P2 in that case
will never be done. However, assuming that P1 halts on any input, closure under union
works with a similar construction. Additionally, we need to keep in some new counter c the
information whether P1 has reached an accepting state: First P∪ simulates P1, if P1 halts in
some accepting state, then c is incremented and P∪ proceeds with the simulation of P2. The
formula is then ψ(~x1, ~x2, c) = (c = 1 ∧ ψ1(~x1)) ∨ ψ2(~x2).

So, we have closure under union in linear-time as long as P1 halts on every input.
This can be used to show closure under complement, using the following observation:
L(P) = L(A) ∪ L(A, λ,¬ψ) and moreover, it is known that 2DFA can be complemented
in linear-time into a 2DFA which always halts [11]. The formula ¬ψ is universal since ψ
is existential. Then, ¬ψ could be converted into an equivalent existential formula using
quantifier elimination [5] of doubly exponential size.

For the closure under union, we use the equality L(P1) ∪ L(P2) = L(P1) ∩ L(P2). It can
be done in linear-time because the formulas for P1 and P2 are universal, and so is the formula
for the 2DPA accepting L(P1) ∩ L(P2). By applying again the complement construction, we
get an existential formula (without using quantifier eliminations). J

Thanks to Theorem 5.1 and decidability of non-emptiness for 2DPA, we easily get
the decidability of the universality problem (deciding whether L(P) = Σ∗), the inclusion
problem (deciding whether L(P1) ⊆ L(P2)), and the equivalence problem (deciding whether

E. Filiot, S. Guha, and N. Mazzocchi 40:11

L(P1) = L(P2)) for 2DPA. The following theorem establishes tight complexity bounds. It is
a consequence of a more general result (Theorem 6.4) that we establish for Parikh automata
with arbitrary Presburger formulas in Section 6.

I Theorem 5.2. The universality, inclusion and equivalence problems are coNExpTime-C
for 2DPA.

Finally, we study the membership problem which asks given a Parikh automaton P and
a word w ∈ Σ∗, whether w ∈ L(P). Hardness was known already for PA [9].

I Theorem 5.3. The membership problem for 2PA is NP-C.

6 Parikh automata with arbitrary Presburger acceptance condition

In this section, we consider Parikh automata where the acceptance constraint is given as
an arbitrary Presburger formula, that is, not restricted to existential Presburger formula,
and we study the complexity of their decision problems. For all i > 0, a two-way Σi-Parikh
automaton (Σi-2PA for short) is a tuple P = (A, λ,Ψ) where A, λ are defined just as for 2PA
and Ψ ∈ Σi. In particular, a Σ1-2PA is exactly a 2PA. Similarly, we also define Σi-DPA,
Σi-2DPA, Σi-PA as expected, and their Πi counterpart (when the formula is in Πi).

The complexity of Presburger arithmetic has been connected to the weak ExpTime
hierarchy [14, 13] which resides between NExpTime and ExpSpace. It is defined as⋃
i≥0 ΣExp

i where:

ΣP
0

def= ΠP
0

def= PTime ΣP
i+1

def= NPΣP
i ΠP

i+1
def= coNPΣP

i

ΣExp
0

def= ΠExp
0

def= ExpTime ΣExp
i+1

def= NExpTimeΣP
i ΠExp

i+1
def= coNExpTimeΣP

i

Since Lemma 4.2 uses the acceptance constraint as a black box, we can generalise it as
follows.

I Lemma 6.1. For any fixed i ∈ N 6=0, given a Σi-PA P with n states and γ distinct
weight vectors, we can construct a Σi-formula Φ such that for all ` ∈ N we have that
Φ(`) =

∨m
j=1 Φj(`) holds iff there exists w ∈ L(P) ∩ Σ|`|. Furthermore, log2(m) and the size

of each Φj are poly(|P |, log(n)), in addition Φ can be constructed in time 2O(γ2 log(γn)).

Using Lemma 6.1, we can extend Theorem 4.4 to bounded-visit Σi+1-2PA. Note that the
case of Σ1-2PA is not covered by the following statement.

I Theorem 6.2. For any fixed i ∈ N 6=0, the non-emptiness problem for bounded-visit Σi+1-
2PA is ΣExp

i -C.

Proof. For the upper-bound, we show that this problem can be solved by an alternating
Turing machine in exponential time, which alternates at most i times between sequences of
non-deterministic and universal transitions, starting with non-deterministic transitions (called
i-alternating machine in the sequel). As shown in [13], the satisfiability of Σi+1-formulas
is complete for ΣExp

i -C. Hence there is an i-alternating machineM running in exponential
time which checks the satisfiability of such formulas. Now, similar to the case of Σ1 in
Theorem 4.4, from a bounded-visit Σi+1-2PA P one can construct a Σi+1-formula which is
true iff the automaton has a non-empty language. We can do so by applying Lemma 6.1
on the PA obtained5 from Lemma 3.6. Hence, non-emptiness of a bounded-visit Σi+1-2PA

5 Lemma 3.6 can be trivially adapted to Σi-formulas as acceptance condition.

FSTTCS 2019

40:12 Two-Way Parikh Automata

reduces to satisfiability of a Σi+1-formula Φ(`) =
∨m
j=1 Φj(`) such that log2(m) and the size

of each Φj are polynomial in |P | and can be constructed in time 2O(γ2 log(γn)). However we
cannot construct explicitly Φ, since its size is exponential in |P |. Instead we construct an
i-alternating machineM′ that first guesses a disjunct Φs and constructs it in exponential
time, and then simulates the machineM on Φs. Recall theM starts with non-deterministic
transitions. Thus the machine M′ runs in exponential time, and also performs only i

alternations, which provides ΣExp
i upper bound.

Hardness comes from checking if a Σi+1-sentence holds true, which is ΣExp
i -C as shown

in [13]. From a Σi+1-sentence Ψ it suffices to construct a Parikh automaton P = (A, λ,Ψ) of
dimension 0 such that L(A) 6= ∅, therefore L(P) 6= ∅ iff L(P) = L(A) iff Ψ holds. J

I Theorem 6.3 (Boolean closure). Let P, P1, P2 be Σi-2DPA. One can construct in linear
time a Πi-2DPA P and two Σi-2DPA P∪, P∩ such that L(P) = L(P), L(P∪) = L(P1)∪L(P2)
and L(P∩) = L(P1) ∩ L(P2).

Proof. The constructions are the same as in the proof of the case i = 1 of Theorem 5.1, using
closure under disjunction and conjunction of Σi and the fact that negating a Σi-formula
yields a Πi-formula. J

I Theorem 6.4. For all fixed i ∈ N 6=0, the universality, inclusion and equivalence problems
for Σi-2DPA are ΠExp

i -C.

Proof. We first prove the upper bound for the most general problem which is inclusion.
Let Pi = (Ai, λi, ψi) be a Σi-2DPA. Note that L(P1) ⊆ L(P2) iff L(P1) ∩ L(P2) = ∅.
So, using Theorem 6.3 we first construct in linear-time a Πi-2DPA P2 = (A′2, λ′2,Ψ′2) such
that L(P2) = L(P2) and then P∩ = (A, λ,Ψ) such that L(P∩) = L(P1) ∩ L(P2). From
the construction in Theorem 5.1 generalised to Σi-2DPA, recall that the formula Ψ is
defined as Ψ(~x1, ~x2) = Ψ1(~x1)∧Ψ′2(~x2). Let Ψ1(~x1) = ∃~y1∀~y2 . . .Ω~yi [ϕ1(~x1, ~y1, . . . , ~yi)], and
Ψ′2(~x2) = ∀~z1∃~z2 . . .

Ω

~zi [ϕ2(~x2, ~z1, . . . , ~zi)] where Ω, Ω

∈ {∃,∀} such that Ω 6= Ω. Hence Ψ is
equivalent to the following Σi+1-formula.

∃~y1∀~z1∀~y2∃~z2∃~y3 . . .Ω~zi−1~yi

Ω

~zi

[
ϕ1(~x1, ~y1, . . . , ~yi) ∧ ϕ2(~x2, ~z1, . . . , ~zi)

]
Finally, emptiness of P∩ can be decided in ΠExp

i by Theorem 6.2.
For the lower bound, we show that the universality problem of Σi-DPA is ΠExp

i -hard.
This holds even for a fixed number of states and vector values in {−1, 0, 1}, showing that
the complexity comes from the formula part. From a Σi-formula Ψ with d free variables, we
construct a Parikh automaton P = (A, λ,Ψ) of dimension d over alphabet Σ = {a+

i , a
−
i }1≤i≤d.

Any word w over Σ defines a valuation µw(xi) = |w|a+
i
− |w|a−

i
for all 1 ≤ i ≤ d. Conversely,

any valuation µ can be encoded as a word over Σ. Hence, Ψ holds for all values iff for all
w ∈ Σ∗, we have µw |= Ψ. We construct a deterministic one-way automaton A such that
L(A) = Σ∗ and for all w ∈ Σ∗, the value of the run r over w is µw. The automaton A has
one accepting and initial state q over which it loops and, when reading a+

i (resp. a−i) it
increases dimension i by 1 (resp. by −1). J

I Remark 6.5. Since a 2DPA is a Σ1-2DPA, and the class coNExpTime is the same as ΠExp
1 ,

we have that Theorem 6.4 for i = 1 is exactly the same as Theorem 5.2.

E. Filiot, S. Guha, and N. Mazzocchi 40:13

7 Conclusion

In this paper, we have provided tight complexity bounds for the emptiness, inclusion,
universality and equivalence problems for various classes of two-way Parikh automata. We
have shown that when the semi-linear constraint is given as a Σi-formula, for i > 1, the
complexity of those problems is dominated by the complexity of checking satisfiability or
validity of Σi-formulas. We have shown that 2DPA (resp. bounded-visit 2PA) have the same
expressive power as unambiguous (one-way) PA (resp. non-deterministic PA). Remark that
the same techniques apply to show that 2UPA are equivalent to 2DPA, and hence to UPA,
exactly as it is done for string transducer in [7, 8].

In terms of succinctness, it is already known that 2DFA are exponentially more succinct
than FA, witnessed for instance by the family Dn = {uu | u ∈ {0, 1}∗∧|u| = n}. However Dn

is accepted by a PA with polynomially many states in n and vectors of dimension 2n which
permit to store each input letters and check equality with the acceptance constraint. We
conjecture that 2DPA are exponentially more succinct than PA, witnessed by the language
Ln of Section 2. We leave as future work the introduction of techniques allowing to prove
such results (pumping lemmas), as the dimension and acceptance constraint size has to be
taken into account as well, as shown with Dn.

Finally, we plan to extend the pattern logic of [10], which intensively uses (one-way)
Parikh automata for its model-checking algorithm, to reason about structural properties
of two-way machines, and use two-way Parikh automata emptiness checking algorithms for
model-checking this new logic.

PA

bounded-visit
2PA

fixed-visit
2PA

Exp
O(1)

PTime

O(1)

UPA Exp←−→ 2DPA

2PA

Two-way automata Non-emptiness Universality & Inclusion
2PA undecidable undecidable

bounded-visit 2PA PSpace-C undecidable
fixed-visit 2PA NP-C undecidable

2DPA NP-C coNExpTime-C
bounded-visit Σi-2PA ΣExp

i−1-C undecidable
fixed-visit Σi-2PA ΣExp

i−1-C undecidable
Σi-2DPA ΣExp

i−1-C ΠExp
i -C

Figure 4 Summary of expressivenesses and complexities where bounded-visit 2PA (resp. fixed-visit
2PA) holds for k-visit 2PA for some k (resp. for some fixed k).

FSTTCS 2019

40:14 Two-Way Parikh Automata

References
1 Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. A general theory of translation.

Mathematical Systems Theory, 3(3):193–221, 1969.
2 Michaël Cadilhac, Alain Finkel, and Pierre McKenzie. On the Expressiveness of Parikh

Automata and Related Models. In NCMA’11 Proceedings, pages 103–119, 2011.
3 Michaël Cadilhac, Alain Finkel, and Pierre McKenzie. Unambiguous Constrained Automata.

Int. J. Found. Comput. Sci., 24(7):1099–1116, 2013.
4 Vincent Carnino and Sylvain Lombardy. On Determinism and Unambiguity of Weighted

Two-Way Automata. IJFCS, 26(8):1127–1146, 2015.
5 David C. Cooper. Theorem proving in arithmetic without multiplication. Machine Intelligence,

7(1):91––99, 1972.
6 Luc Dartois, Emmanuel Filiot, and Jean-Marc Talbot. Two-Way Parikh Automata with a

Visibly Pushdown Stack. In FoSSaCS’19 Proceedings, pages 189–206, 2019.
7 Luc Dartois, Paulin Fournier, Ismaël Jecker, and Nathan Lhote. On Reversible Transducers.

In ICALP’18 Proceedings, pages 113:1–113:12, 2017.
8 Rodrigo de Souza. Uniformisation of Two-Way Transducers. In LATA’13 Proceedings, pages

547–558, 2013.
9 Diego Figueira and Leonid Libkin. Path Logics for Querying Graphs: Combining Expressiveness

and Efficiency. In LICS’15 Proceedings, pages 329–340, 2015.
10 Emmanuel Filiot, Nicolas Mazzocchi, and Jean-François Raskin. A Pattern Logic for Automata

with Outputs. In DLT’18 Proceedings, pages 304–317, 2018.
11 Viliam Geffert, Carlo Mereghetti, and Giovanni Pighizzini. Complementing two-way finite

automata. Information and Computation, 205(8):1173–1187, 2007.
12 Seymour Ginsburg and Edwin H. Spanier. Semigroups, Presburger formulas, and languages.

Pacific Journal of Mathematics, 16(2):285–296, 1966.
13 Christoph Haase. Subclasses of presburger arithmetic and the weak Exp hierarchy. In LICS’14

Proceedings, pages 47:1–47:10, 2014.
14 Lane A. Hemachandra. The strong exponential hierarchy collapses. Journal of Computer and

System Sciences, 39:299–322, 1987.
15 John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages and

Computation. Addison-Wesley, 1979.
16 Oscar H. Ibarra. Reversal-Bounded Multicounter Machines and Their Decision Problems.

Journal ACM, 25(1):116–133, 1978.
17 Wong Karianto. Parikh Automata with Pushdown Stack, 2004.
18 Felix Klaedtke and Harald Rueß. Monadic Second-order Logics with Cardinalities. In ICALP’03

Proceedings, pages 681–696, 2003.
19 Dexter Kozen. Lower bounds for natural proof systems. Foundations of Computer Science,

pages 254–266, 1977.
20 Anthony Widjaja Lin. Model checking infinite-state systems: generic and specific approaches.

PhD thesis, University of Edinburg, 2010.
21 Michal P. Chytil and Vojtech Jákl. Serial Composition of 2-Way Finite-State Transducers and

Simple Programs on Strings. In ICALP’77 Proceedings, pages 135–147, 1977.
22 Bruno Scarpellini. Complexity of subcases of presburger arithmetic. American Mathematical

Society, 284(1):203–218, 1984.

The Well Structured Problem for Presburger
Counter Machines
Alain Finkel
LSV, ENS Paris-Saclay, CNRS, Université Paris-Saclay, IUF, France
alain.finkel@ens-paris-saclay.fr

Ekanshdeep Gupta
Chennai Mathematical Institute, Chennai, India
ekanshdeep@cmi.ac.in

Abstract
We introduce the well structured problem as the question of whether a model (here a counter machine)
is well structured (here for the usual ordering on integers). We show that it is undecidable for most
of the (Presburger-defined) counter machines except for Affine VASS of dimension one. However,
the strong well structured problem is decidable for all Presburger counter machines. While Affine
VASS of dimension one are not, in general, well structured, we give an algorithm that computes
the set of predecessors of a configuration; as a consequence this allows to decide the well structured
problem for 1-Affine VASS.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Verification by model checking

Keywords and phrases Well structured transition systems, infinite state systems, Presburger counter
machines, reachability, coverability

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.41

Related Version https://arxiv.org/abs/1910.02736

Funding The work reported was carried out in the framework of ReLaX, UMI2000 (ENS Paris-Saclay,
CNRS, Univ. Bordeaux, CMI, IMSc). This work was also supported by the grant ANR-17-CE40-0028
of the French National Research Agency ANR (project BRAVAS).

1 Introduction

Context. Well Structured Transition Systems (WSTS) [9, 8] are a well-known model to
solve termination, boundedness, control-state reachability and coverability problems. It is
well known that Petri nets and Vector Addition Systems with States (VASS) are WSTS and
that Minsky machines are not WSTS. But the characterization of counter machines which
are well structured (resp. with strong monotony) is surprisingly unknown. Moreover, given a
counter machine, can we decide whether it is well structured (resp. with strong monotony)?
These questions are relevant since a positive answer could allow to verify particular instances
of undecidable models like Minsky machines and counter machines. In this paper, we consider
Presburger counter machines (PCM) where each transition between two control-states is
labelled by a Presburger formula which describes how each counter is modified by the firing of
the transition. The PCM model includes Petri nets, Minsky machines and most of the counter
machine models studied in the literature, for example counter machines where transitions
between control-states are given by affine functions having Presburger domains [3, 11].

Affine VASS. In an Affine VASS (AVASS), transitions between control-states are labelled
by affine functions whose matrices have elements in Z (and not in N as usual). AVASS
extends VASS (where transitions are translations) and positive affine VASS (introduced as

© Alain Finkel and Ekanshdeep Gupta;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 41; pp. 41:1–41:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alain.finkel@ens-paris-saclay.fr
mailto:ekanshdeep@cmi.ac.in
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.41
https://arxiv.org/abs/1910.02736
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

41:2 The Well Structured Problem for Presburger Counter Machines

self-modified nets in [21] and studied as affine well structured nets in [13]. [4] extends the
Rackoff technique to AVASS where all matrices are larger than the identity matrix: for this
subclass, coverability and boundedness are shown in EXPSPACE. The variation of VASS
which may go below 0, called Z-VASS, is studied in [15] and for their extension, Z-Affine
VASS, reachability is shown NP-complete for VASS with resets, PSPACE-complete for VASS
with transfers and undecidable in general [2, 1]; let us remark that all Z-Affine VASS have
positive matrices.

Moreover AVASS allow the simulation of the zero-test so they are at least as expressive as
Minsky machines. But for dimension one, AVASS are more expressive than Minsky machines:
in fact, Post∗ is computable as a Presburger formula for 1-counter Minsky machines but this
is not the case for 1-AVASS which can generate the set of all the powers of 2 (this set is not
the solution of any Presburger formula).

The computation of the set Pre∗ of all predecessors of a configuration is effective for 2-
VASS (extended with one zero-test and resets) [12] as a Presburger formula and for pushdown
automata [5] as a regular language. But the computation of Pre∗ fails for 3-VASS and for
Pushdown VAS since Pre∗ is neither semilinear nor regular [19].

Our contributions. We introduce two new problems related to well structured systems and
Presburger counter machines. The so-called well structured problem: (1) given a PCM, is
it a WSTS? and the strong well structured problem: (2) given a PCM, is it a WSTS with
strong monotony?

We prove that the well structured problem is undecidable for PCM even if restricted
to dimension one (1-PCM) with just Presburger functions (i.e. piecewise affine functions);
undecidability is also verified for Affine VASS in dimension two (2-Affine VASS). The
undecidability proofs use the fact that Minsky machines can be simulated by both 1-PCM
and 2-Affine VASS. However, we prove the decidability of the well structured problem for
1-Affine VASS (which subsumes 1-Minsky machines). Since the strong monotony can be
expressed as a Presburger formula, the strong well structured problem is decidable for all
PCMs. These results are summarised below:

Well Structured Problem Strong Well Structured Problem
PCM U D
Functional 1-PCM U [Theorem 14] D
2-AVASS U D
2-Minsky machines U [Theorem 15] D
1-AVASS D [Theorem 26] D

We give an algorithm that computes Pre∗ of a 1-AVASS and this extends a similar known
result for 1-Minsky machines and 1-VASS (and for pushdown automata [5]). The computation
of Pre∗ allows us to give a simple proof that reachability and coverability are decidable for
1-AVASS (in fact reachability is known to be PSPACE-complete for polynomial one-register
machines [10] which contains 1-AVASS). Moreover, the computation of Pre∗ allows to decide
the well structured problem for 1-AVASS. These results are summarised below:

Reachability Coverability
1-PCM (functional) U U [Corollary 19]
1-AVASS D [Corollary 24] D
d-totally positive AVASS D [Theorem 29] D
d-positive AVASS (d ≥ 2) U [Theorem 28] D [WSTS]
2-AVASS U U [Corollary 18]

A. Finkel and E. Gupta 41:3

Outline. We introduce in Section 2 two models, well structured transition systems (WSTS)
and Presburger counter machines (PCM); we show that the property for an ordering to be
well is undecidable. Section 3 analyses the decidability of the well structured problems for
many classes of PCM and Affine VASS. Section 4 studies the decidability of reachability and
coverability for the classes studied in Section 3.

Due to space constraints, some proofs are deferred to an extended version of this paper
freely available online under the same title.

2 Counter machines and WSTS

A relation ≤ on a set E is a quasi ordering if it is reflexive and transitive; it is an ordering if
moreover ≤ is antisymetric. A quasi ordering ≤ on E is a well quasi ordering (wqo) if for all
infinite sequences of elements of E, (ei)i∈N, there exists two indices i < j such that ei ≤ ej .
For an ordered set (E,≤) and a subset X ⊆ E, the upward closure of X denoted by ↑X is
defined as follows: ↑X = {x | ∃y ∈ X such that y ≤ x}. X is said to be upward closed if
X = ↑X.

2.1 Arithmetic counter machines
A d-dim arithmetic counter machine (short, d-arithmetic counter machine or an arithmetic
counter machine) is a tuple M = (Q,Φ,→) where Q is a finite set of control-states, Φ
is a set of logical formulae with 2d free variables x1, ..., xd, x

′
1, ..., x

′
d and →⊆ Q × Φ × Q

is the transition relation between control-states. We can also without loss of generality
assume that → covers Φ, i.e. Φ does not have unnecessary formulae. A configuration of
M refers to an element of Q × Nd. The operational semantics of a d-arithmetic counter
machine M is a transition system SM = (Q × Nd,→) where →⊆ (Q × Nd) × (Q × Nd) is
the transition relation between configurations. For a transition (q, φ, q′) in M , we have a
transition (q;x1, ..., xd)→ (q′;x′1, ..., x′d) in SM iff φ(x1, ..., xd, x

′
1, ..., x

′
d) holds. Note that we

are slightly abusing notation by using the same → for both M and SM . We may omit Φ
from the definition of a counter machine if it is clear from context.

A d-dim arithmetic counter machineM with initial configuration c0 is defined by the tuple
M = (Q,Φ,→, c0) where (Q,Φ,→) is a d-arithmetic counter machine and c0 ∈ Q×Nd is the
initial configuration. An arithmetic counter machine is effective if the transition relation is
decidable (there is a decidable procedure to determine if there is a transition x→ y between
any two configurations x, y) and this is the case when it is given by an algorithm, a recursive
relation, or decidable first order formulae (for instance Presburger formulae). An arithmetic
counter machine is said to be functional if each formula in Φ that labels a transition in M
defines a partial function.

Most usual counter machines can be expressed with Presburger formulae. It is well known
that Presburger arithmetic with congruence relations without quantifiers is equivalent in
expressive power to standard Presburger arithmetic [14].

I Definition 1. A Presburger counter machine (PCM) is an arithmetic counter machine
M = (Q,Φ,→) such that Φ is a set of Presburger formulae with congruence relations without
quantifiers.

I Proposition 2 ([6]). The property for a d-dim PCM to be functional is decidable in NP.

FSTTCS 2019

41:4 The Well Structured Problem for Presburger Counter Machines

q1 q2

x′ = x− 13

x′ = 19− x

x′ = x− 3

x′ = x

Figure 1 The counter machine M1.

Minsky machines with d counters are d-PCM M = (Q,Φ,→) where Φ consists of either
translations with upwards closed guards, or formulae of the form ∧di=1(xi = x′i) ∧ xk = 0 for
varying k (zero-tests). Vector Addition Systems with States (VASS) are Minsky machines
without zero-tests. An Affine VASS with d counters (d-AVASS) is a d-PCM where each
transition is labelled by a formula equivalent to an affine function of the form f(x) = Ax+ b

where A ∈Md(Z) is a d× d matrix over Z and b ∈ Zd. The domain of such a function would
be the (Presburger) set of all x ∈ Nd such that Ax+ b ∈ Nd. For convenience, we will denote
d-AVASS transitions by a pair (A, b) ∈ Md(Z) × Zd. Note that AVASS is an extension of
VASS where transitions are not labelled by vectors but by affine functions (Ai, bi). Let us
define positive and totally-positive AVASS. A positive AVASS S is an AVASS such that every
matrix Ai of S is positive. This model has been studied for instance in [13]. A totally-positive
AVASS S is a positive AVASS such that every vector bi of S is positive. For totally positive
AVASS, an instance of the boundedness problem has been shown decidable in [13]. Note that
we say something is positive if it is greater than or equal to 0, not strictly greater than 0.

I Example 3. The machine M1 in Figure 1 is a 1-AVASS but it is not a 1-VASS because
there is a negative transition from q1 to q1.

I Proposition 4 ([6]). Checking whether a given PCM is a VASS, AVASS, positive AVASS
or a totally positive AVASS is decidable.

2.2 Well structured transition systems
A transition system is a tuple S = (X,→) where X is a (potentially infinite) set of con-
figurations and →⊆ X × X is the transition relation between configurations. We denote
by ∗−→ the reflexive and transitive closure of −→. For a subset S ⊆ X, we denote by
Pre(S) := {t | t→ s for some s ∈ S}, and Pre∗(S) := {t | t ∗−→ s for some s ∈ S}. Similarly
for Post(S) and Post∗(S).

An ordered transition system S = (X,→,≤) is a transition system (X,→) with a quasi-
ordering ≤ on X. Given two configurations x, y ∈ X, x is said to cover y if there exists
a configuration y′ ≥ y such that x ∗−→ y′. An ordered transition system S = (X,→,≤) is
monotone, if for all configurations s, t, s′ ∈ X such that s→ t, s′ ≥ s implies that s′ covers t.
S is strongly monotone if for all configurations s, t, s′ ∈ X such that s → t, s′ ≥ s implies
that there exists t′ ≥ t such that s′ → t′.

I Definition 5 ([8]). A well structured transition system (WSTS) is an ordered transition
system S = (X,→,≤) such that (X,≤) is a wqo and S is monotone.

The coverability problem is to determine, given two configurations s and t, whether there
exists a configuration t′ such that s ∗−→ t′ ≥ t (s covers t). This problem is one often studied
alongside well-structuredness.

A. Finkel and E. Gupta 41:5

Let us consider the usual wqo ≤ on Q× Nd associated with a d-counter machine M =
(Q,→): (q1;x1, x2, ..., xd) ≤ (q2; y1, ..., yd) ⇐⇒ (q1 = q2) ∧ (∧di=1xi ≤ yi).

We say that an arithmetic counter machine M = (Q,Φ,→) is well structured (or is a
WSTS) iff its associated transition system SM is a WSTS under the usual ordering. Since the
usual ordering on (Q× Nd,≤) is a wqo, let us remark that the associated ordered transition
system SM = (Q× Nd,→,≤) is a WSTS iff SM is monotone.

Given a counter machine M = (Q,→), the control-state reachability problem is that given
a configuration (q;n1, ..., nd), and a control-state q′ whether there exist values of counters
(m1, ...,md) such that (q;n1, ..., nd)

∗−→ (q′;m1, ...,md). In this case, we often say that q′ is
reachable from (q;n1, ..., nd).

We introduce two new problems related to WSTS and Presburger counter machines.
The well structured problem: given a PCM, is it a WSTS?
The strong well structured problem: given a PCM, is it a WSTS with strong monotony?

I Example 6. The machine M1 (Figure 1) is not strongly monotone since we have:
(q1, 0) x′=19−x−−−−−−→ (q1, 19). However, we see that Post∗(q1, 10) = {(q1, 9), (q1, 10)}. There-
fore we can deduce that (q1, 10) cannot cover (q1, 19). Hence M1 is not well structured. We
give, in Section 4, an algorithm for deciding whether a 1-AVASS is well structured.

It is shown in [8] that almost every transition system can be turned into a WSTS for
the termination ordering which is not, in general, decidable. So the problem is not only to
decide whether a system is a WSTS in general; we have to choose a decidable ordering. We
show that deciding whether arbitrary (non-effective) transition systems are well-structured
for the usual (decidable) ordering on natural numbers is undecidable.

I Proposition 7. The well structured problem for 1-arithmetic counter machines is undecid-
able.

We now show that restricting to effective transition systems does not allow us to decide
the property of being a WSTS.

I Corollary 8. The well structured problem (for the usual ordering on N) for effective
transition systems whose set of configurations is included in N is undecidable.

Proof. There exists a reduction from the Halting Problem as follows:
Given a Turing machine M , we define a transition system SM = (N,→M) as follows:

If (m = 0) ∨ (M does not halt in m steps), then, for all n, there is a transition m →M n.
Hence this transition relation →M is decidable. Now, if M does not halt, then there is a
transition m →M n for all m,n ∈ N. This satisfies monotony, hence in this case, SM is a
WSTS. However, if M halts in exactly m steps, then there is no transition from m+ 1 but
there is, in any case, a transition from 0 to n for all n. Hence in this case, SM is not a WSTS.
Therefore, SM is a WSTS iff T does not halt. J

2.3 Testing whether an ordering is well
In the previous results, the usual well ordering on natural numbers is not necessarily the
unique decidable ordering when considering the well structured problem for counter machines.
Let ≤ be a decidable quasi ordering relation on Nd. If we are interested in whether a counter
machine with this ordering is WSTS, it raises the natural question of whether we can decide if
≤ is a wqo. Unfortunately, but unsurprisingly, we first show that this property is undecidable
in dimension one (d = 1).

FSTTCS 2019

41:6 The Well Structured Problem for Presburger Counter Machines

I Proposition 9. The property for a decidable ordering on N to be a well ordering is
undecidable.

Let us study the case of Presburger-definable orderings in N. Among many equivalent
characterizations of wqo, we know that a quasi ordering is well iff it satisfies well-foundedness
and the finite anti-chain property. Both of these properties can be expressed using monadic
second order variables. But, it is shown in [17] that Presburger Arithmetic with a single
monadic variable becomes undecidable. Hence, this cannot directly be used to check if a
Presburger-definable ordering is a wqo. However, we still have the following result:

I Proposition 10. The property for a Presburger relation on N to be a well quasi ordering
is decidable.

3 The well structured problem for PCM

In the sequel, whenever we talk about PCM being WSTS, we will consider the usual ordering
on Q×Nd defined in subsection 2.2. We introduce a general technique to prove undecidability
of checking whether a counter machine of some class is a WSTS. Let S0 be the class of
machines we are interested in. We will show reduction from reachability in Minsky machines.

I Lemma 11. Suppose we have a procedure which takes a 2 counter Minsky machine with
initial state M = (Q,→, q0) and a control-state q1 as input and generates a machine N of
class S0 which satisfies the following two requirements:

All control-states in M are reachable implies N is a WSTS. (1)
N is a WSTS implies q1 is reachable in M from (q0; 0, 0). (2)

Then, the well structured problem for S0 is undecidable.

Proof. Suppose that the well structured problem for S0 is decidable. We will use the
above procedure to get an algorithm for Minsky machine reachability. Fix (M, q1), where
M = (Q,→M , q0). We want to check if q1 is reachable from (q0; 0, 0).

Let |Q| = n. Consider all 2n−2 subsets Q′ ⊆ Q satisfying that {q0, q1} ⊆ Q′. For each
such Q′, let →Q′ denote the restriction of →M to the set Q′ ×Q′. Hence, we can associate a
Minsky machine M ′ = (Q′,→Q′ , q0) to each such subset Q′. We call M ′ a sub-machine of
M corresponding to Q′.

Now, for each sub-machine M ′, we consider the machine N ′ of class S0, generated by the
given procedure from (M ′, q1). If there exists M ′ such that N ′ is a WSTS, then we have
that q1 is reachable in M ′ (by condition (2)), hence in M .

On the other hand, if q1 was reachable in M , then let Qreach ⊆ Q be the set of all
control-states of M which are reachable from (q0; 0, 0). Let its corresponding sub-machine
be M ′. Since all control-states of M ′ are reachable (by choice of Qreach), therefore the
corresponding N ′ will be a WSTS (by condition (1)).

Hence, q1 is reachable in M from (q0; 0, 0) iff there exists a subset Q′ ⊆ Q satisfying that
{q0, q1} ⊆ Q′ such that the corresponding sub-machine M ′ is a WSTS. Since there are only
2n−2 such subsets, we can check all of them to decide whether q1 is reachable in M .

Hence, we have given an algorithm to check reachability in Minsky machine. Therefore,
the well structured problem for S0 is undecidable. J

We will use Lemma 11 to prove that the well structured problem for functional 1-dim
PCMs is undecidable. To apply Lemma 11, we need to give an algorithm which takes a
Minsky machine M = (Q,→M , q0) and a control-state q1, and generates a functional 1-dim
PCM N1 satisfying conditions (1) and (2).

A. Finkel and E. Gupta 41:7

Construction of a functional 1-dim PCM N1

Let (M, q0) be given. The procedure to generate a 1-dim PCM N1 is as follows:
Let vp(n) denote the largest power of p dividing n. For M = (Q,→M , q0), we define

the 1-PCM N1 = (Q,→N , (q0, 1)) with the same set Q of control-states. We will represent
the values of the two counters (m,n) by the one-counter values 2m3nc for any c such that
v2(c) = v3(c) = 0. Conversely, a configuration (q, n) of N1 will correspond to (q; v2(n), v3(n))
of M . Note that, we are allowing multiplication by constants c in N1 as long as v2(n) and
v3(n) remain unchanged.

Increment/decrement of counters corresponds to multiplication/division by 2 and 3 which
is Presburger expressible. Similarly, zero-test corresponds to checking divisibility by 2 and
3 which is again Presburger-expressible. So first, for each transition in →M , we add the
corresponding transition to →N .

Now, to get the suitable properties of conditions (1) and (2), we will add two more types
of transitions to →N . For each control-state q, we add a transition (q, x′1 = 6x1 + 1, q0)
to →N . We shall call it a “reset-transition” because v2(6x1 + 1) = v3(6x1 + 1) = 0, so
this transition corresponds to a counter-reset in M from anywhere regardless of our present
configuration. Note that such a transition would not change the reachability set in M . This
“reset-transition” is crucial in forcing well-structuredness in N . Also, we add a transition
(q0, (x1 = 0 ∧ x′1 = 0), q1) to →N to ensure condition (2). Since the configuration (q0, 0)
cannot be reached from the initial configuration (q0, 1) during any run of N1, this will also
not affect the reachability set of N1. Note that, all of our transitions are functional, hence
N1 is a functional 1-dim PCM.

Now, we show that the construction of N1 satisfies conditions (1) and (2).

I Lemma 12. The functional 1-dim PCM N1 satisfies condition (1).

Proof. Suppose that all control-states of M are reachable from (q0; 0, 0). Then we claim
that N1 will be a WSTS. Suppose there is a transition (q, n) →N (q′,m) and (q, n′) is
a configuration with (q, n′) ≥ (q, n). Hence we want to show existence of some path
(q, n′) ∗−→N (q′,m′) ≥ (q′,m).

Case 1: The transition (q, n)→N (q′,m) is a “reset-transition”. Hence q′ = q0 andm = 6n+1.
In this case, note that since n′ ≥ n, the transition (q, n′) →N (q0, 6n′ + 1) ≥ (q0,m)
satisfies the requirement.

Case 2: The transition (q, n) →N (q′,m) is not a “reset-transition”. In this case, m ≤ 3n
because the above transition corresponds, in M to an increment/decrement in c1 or
c2 or a zero-test. In each case, we can check that m ≤ 3n. Let there be a path
(q0; 0, 0) ∗−→M (q′;n1, n2) inM for some n1, n2. Such a path exists because all control-states
in M are reachable. Hence, we take the “reset-transition” (q, n′)→N (q0, 6n′ + 1) and
follow the corresponding path (q0, 6n′ + 1) ∗−→N (q′, 2n13n2(6n′ + 1)) ≥ (q′, 3n) ≥ (q′,m).
Hence we have again shown monotony to prove that N1 is a WSTS.

Hence we have shown that if all control-states ofM are reachable, thenN1 is monotone. J

I Lemma 13. The functional 1-dim PCM N1 satisfies condition (2).

Proof. Since there is a transition (q0, 0)→N (q1, 0), we deduce that if N1 is a WSTS, then
(q0, 1) ∗−→N (q1, n) for some n by monotony because (q0, 0) ≤ (q0, 1). Also note that since
N1 simulates M , hence reachability of q1 in N1 implies that q1 is reachable from (q0; 0, 0)
in M . J

FSTTCS 2019

41:8 The Well Structured Problem for Presburger Counter Machines

Since we have provided a construction of functional 1-dim PCM N1 satisfying conditions
(1) and (2), from Lemma 11 we have that:

I Theorem 14. The well structured problem for functional 1-dim PCMs is undecidable.

Similarly, we can use Lemma 11 to show this result for 2 counter Minsky machines. This
construction can be found in the extended version of this paper.

I Theorem 15. The well structured problem for 2-dim Minsky machines is undecidable.

Now, we make the observation that we can perform zero-tests using affine functions.
The basic idea is that a transition x′ = −x is only satisfied by a counter whose value
is 0. Increments/decrements can already be implemented in 2-AVASS since translations
are affine functions. A zero test on the first counter can be done by having a transition

labelled by
([
−1 0
0 1

]
,

[
0
0

])
, and similarly for second counter. Since we can implement

both increment/decrements and zero-tests with 2-AVASS, we can simulate 2-counter Minsky
machines with 2-AVASS. Note that we can extend this result to d-AVASS simulating d-counter
Minsky machines.

As a direct consequence of this and Theorem 15, we have that:

I Corollary 16. The well structured problem for 2-AVASS is undecidable.

However, if we consider strong monotony instead of monotony, the above undecidability
results can be turned into a decidability result. Strong monotony can be expressed in
Presburger arithmetic as follows:

∧
φ∈Φ

(∀x1...∀xd∀x′1...∀x′d∀y1...∀yd((
d∧
i=1

xi ≤ yi) ∧ φ(x1, ..., xd, x
′
1, ..., x

′
d)

=⇒ (∃y′1...∃y′d(
d∧
i=1

x′i ≤ y′i) ∧ φ(y1, ..., yd, y
′
1, ..., y

′
d))))

Since Presburger arithmetic is decidable, the strong well structured problem for d-PCM
is decidable.

I Remark 17. The validity of the formula of strong monotony can also be decided for extended
PCM defined in decidable extensions of Presburger Arithmetic.

4 Decidability results for 1-AVASS

Now, let us look at some reachability and coverability results for the various models of AVASS.
First, we can simulate 2-counter Minsky machines with 2-AVASS. Since coverability and
reachability are undecidable for 2-counter Minsky machines, we directly have the following
result:

I Corollary 18. Control-state reachability, hence coverability is undecidable for 2-AVASS.

Similarly, we showed in Construction of functional 1-PCM N1 that we can also simulate
2-counter Minsky machines with functional 1-PCM. Hence, we also have the following:

I Corollary 19. Control-state reachability, hence coverability is undecidable for functional
1-PCM.

A. Finkel and E. Gupta 41:9

Now, let us examine the case of 1-AVASS. For 1-AVASS, reachability and consequently
coverability is decidable from work done in [10]. We show that checking whether it is a
WSTS is also decidable. Moreover, we give a simpler proof of decidability of reachability and
coverability.

Given M = (Q,→) a 1-AVASS and a final configuration (qf , nf) that we want to check
reachability for, we present Algorithm 1 which computes Pre∗(qf , nf) as a Presburger formula.
A transition (q, x′ = ax+ b, q′) is positive if a ≥ 0. Let a cycle/path in M be called positive
if all transitions are positive. A cycle (q1, ..., qk, q1) is called a simple cycle if q1, ..., qk are all
pairwise distinct.

Let us denote by Preq the set Pre∗(qf , nf) ∩ ({q} × N). For a transition t = (q, x′ =
ax+ b, q′) and a given subset of X ⊆ N, let Pret(X) denote {n : an+ b ∈ X}. For a simple
cycle c rooted at q with an effective guard and transition, extend the above notation Preci(X)
for i repetitions of the cycle. Then, let Prec∗(X) := ∪i∈NPrec

i(X). We will conveniently
replace X by a formula which denotes a subset of N.

Algorithm 1 Algorithm for computing P re∗(qf , nf) in 1-AVASS.

1: procedure computePre*
2: for all q ∈ Q do
3: φq ≡ ⊥
4: φqf

≡ (n = nf)
5: for all q ∈ Q do
6: for all simple cycles c rooted at q do
7: c.transition = simplifyTransition(c)
8: c.guard = computeGuard(c)
9: notFinished = True

10: while notFinished do
11: notFinished = False
12: for all q ∈ Q do
13: φ′ = φq
14: for all transitions t = (q, x′ = ax+ b, q′) ∈→ do
15: ExploreTransition(t)
16: for all simple cycles c containing q do
17: ExploreCycle(c)
18: if φ′ 6= φq then . Check equality as Presburger formulae
19: notFinished = True

The algorithm will keep a variable φq for each control-state q ∈ Q which will store a
Presburger formula (with one free variable n) denoting the currently discovered subset of
Preq. Let this be denoted by JφqK, i.e. JφqK := {n : φq(n)}. For uniformity, we can assume
that φq is a disjunction of formulae of form range ∧mod where range ≡ (r ≤ n ≤ s) (s
possibly ∞) and mod ≡ (n =dq

d).
We initially simplify each simple cycle into a meta-transition which is the composition of

all individual transitions in the cycle. We will also compute the guard of a cycle. Since each
positive transition has an upward closed guard and each negative transition has a downward
closed guard, the guard of a cycle will be of the form r ≤ n ≤ s for some r, s ∈ N (s possibly
∞). Hence, we will only consider a cycle in terms of its guard and its meta-transition.

FSTTCS 2019

41:10 The Well Structured Problem for Presburger Counter Machines

We use two main procedures in computePre*:
1. ExploreTransition: Given a transition t = (q, x′ = ax+ b, q′), it computes Pret(φq′)

and appends it to φq.
2. ExploreCycle: Given a simple cycle c rooted at q, it computes Prec∗(φq) and appends

it to φq.

I Lemma 20. For any transition t, and any simple cycle c, given φq, Pret(φq) and Prec
∗(φq)

are both Presburger expressible and effectively computable.

With this lemma the algorithm is well-defined. Now let us prove the termination and the
correctness of the algorithm.

I Proposition 21. Algorithm computePre* terminates.

Proof. For each q, we will show that Preq can be obtained in finitely many iterations of the
algorithm. Let q ∈ Q be arbitrary.

Case 1: Preq is finite:
Each value will be discovered in finitely many iterations, hence Preq will be obtained in
finitely many iterations.

Case 2: Preq is infinite:
Since we are talking about reaching (qf , nf), we note that the only transitions which can
decrease arbitrarily large values are transitions of the form x′ = b or x′ = x− a, a > 0.
Hence, since Preq has arbitrarily large values, and each run has to reach nf (i.e. has to
be decreased), we can see that there must either be a transition x′ = b, or a positive cycle
with meta-transition x′ = x− a, reachable from q through a positive path.
Case 2.i: There is a transition x′ = b:

In this case, there exists N such that for all n ≥ N , the same path suffices. In this
case, once the aforementioned path is discovered, {n : n ≥ N} becomes a subset of
JφqK ⊆ Preq, which leaves finitely many values in Preq \ JφqK, which can again be
discovered by finitely many additional runs.

Case 2.ii: There are positive cycles with meta-transition x′ = x− a:
The idea is that we will cover Preq when we compute Prec∗ for such a cycle c. This is
because for such a cycle, all that matters is the value of the counter modulo a. Since
there are only finitely many distinct values modulo a, these will again be discovered
in finitely many runs. Hence, each cycle will be discovered in finitely many runs.
Therefore since there are finitely many simple cycles, the corresponding values of Preq
will also be discovered in finitely many runs.

Hence, for all q, in finitely many runs we will get Preq = JφqK. At such a point, the
algorithm has to stop, hence termination is guaranteed. J

I Theorem 22 (Correctness). Given a 1-AVASS M = (Q,→) and a configuration (q, n), the
algorithm computePre* computes Pre∗(q, n) as a Presburger formula.

Proof. We will show that Algorithm 1 upon termination will always have JφqK = Preq.
That JφqK ⊆ Preq should be clear. Suppose the algorithm terminates with JφqK (Preq

for some q ∈ Q. For some value n ∈ Preq \ JφqK, consider a path which covers (q2, n2), say
the path is (q, n)→ (p1, n1)→ ...→ (pm, nm)→ (q2, n

′). In such a path, consider the largest
i, such that ni /∈ Jφpi

K. Now, in the last iteration of the algorithm, since ni+1 ∈ Jφpi+1K (by
choice of i), hence, we will explore the edge to include ni ∈ JφpiK. Hence, the algorithm would
not have terminated. Contradiction. Hence, when the algorithm terminates, JφqK = Preq. J

A. Finkel and E. Gupta 41:11

I Example 23. Let us consider machine M1 in Figure 1. Suppose we want to compute
Pre∗(q1, 19). We begin with φq1 ≡ (n = 19), φq2 ≡ ⊥. If we apply ExploreTransition to
the transition (q2, (x′ = x), q1), we will get φq2 ≡ (n = 19). If we now apply ExploreCycle
to the cycle (q2, x

′ = x− 3, q2), we will get φq2 ≡ (n ≥ 19∧ n =3 1). Continuing like this, we
end up with φq1 ≡ (n ∈ {0, 3, 6, 19}∨(n ≥ 13∧n =3 1)∨(n ≥ 32∧n =3 2)∨(n ≥ 45∧n =3 0))
and φq2 ≡ (n ≥ 0 ∧ n =3 0) ∨ (n ≥ 19 ∧ n =3 1) ∨ (n ≥ 32 ∧ n =3 2). This is Pre∗(q1, 19).

I Corollary 24 ([10]). Reachability (hence coverability and control-state reachability) for
1-AVASS is decidable.

I Remark 25. Algorithm 1 also works if we extend the model of 1-AVASS with Presburger
guards at each transition. Hence, reachability, coverability and the well-structured problem
are all decidable for this model as well.

It could be useful to determine whether an 1-AVASS is a WSTS (with strict monotony)
because if it is the case, it will allow to decide other problems like the boundedness problem
that is not immediately a consequence of the computability of Pre∗(↑(q, n)). Since we can
compute Pre∗(q, n), we can also compute Pre∗(↑(q, n)) by the same technique as in Corollary
24 This can be used to determine whether a given 1-AVASS is a WSTS as follows.

I Theorem 26. The well structured problem is decidable for 1-AVASS.

Proof. First we show that M is a WSTS, iff for all negative transitions (q1, (x′ = ax+ b), q2),
the set {q1}×N is a subset of Pre∗(↑(q2, b)). For any negative transition (q1, (x′ = ax+b), q2),
we have (q1, 0)→ (q2, b). If M is a WSTS, by monotony, for any n ≥ 0, there exists a path
(q1, n) ∗−→ (q2, b

′) ≥ (q2, b) because (q1, n) ≥ (q1, 0). This implies that {q1} × N is a subset of
Pre∗(↑(q2, b)).

In the other direction, let there be a transition (q1, n)→ (q2, an+ b) and (q1, n
′) ≥ (q1, n).

If the transition is positive, i.e. a ≥ 0, then we directly have the transition (q1, n
′) →

(q2, an
′+b) ≥ (q2, an+b). If the transition is negative, then we have that (q2, an+b) ≤ (q2, b).

Since (q1, n
′) ∈ Pre∗(↑(q2, b)) (by hypothesis, since it is a negative transition), hence we

have that (q1, n
′) ∗−→ (q2, b

′) ≥ (q2, b) ≥ (q2, an+ b). Hence, M is monotone. Therefore, M is
a WSTS iff for all negative transitions (q1, (x′ = ax+ b), q2), the set {q1} × N is a subset of
Pre∗(↑(q2, b)).

Now, since Pre∗(↑(q, n)) is computable, we can check that for each negative transition
(q1, (x′ = ax+ b), q2), the set {q1} ×N is a subset of Pre∗(↑(q2, n)) to determine whether M
is a WSTS or not. J

I Example 27. Let us consider machine M1 in Figure 1 and its negative transition (q1, x
′ =

19 − x, q1). We observe that the set Pre∗(↑(q1, 19)) = {q1, q2} × {n : n ≥ 19} does not
contain {q1} × N, hence machine M1 is not a WSTS. However, in this example (Figure 1), if
we replace the transition (q1, (x′ = x − 13), q2) by (q1, (x′ = x + 1), q2), we will get a new
machine M2 which is still not a 1-VASS, but it is a WSTS.

Let us focus our attention to positive AVASS now. We know that for positive 1-AVASS
reachability is decidable from Corollary 24. We show that reachability is undecidable for
positive 2-AVASS by reduction from Post’s Correspondence Problem (PCP) [16]. Our result
completes the view about decidability of reachability for VASS extensions in small dimensions.
As a matter of fact, reachability is undecidable for VASS with two resets in dimension 3
(to adapt the proof in [7]), hence for positive 3-AVASS but it is decidable for VASS with
two resets in dimension 2 [12]. If we replace resets by affine functions, reachability becomes
undecidable in dimension two.

FSTTCS 2019

41:12 The Well Structured Problem for Presburger Counter Machines

q0 q1 q2

(
~I,

[
−1
−1

])
(~I,~0)

(
~0,
[
1
1

])
([

2|a1| 0
0 2|b1|

]
,

[
(a1)2
(b1)2

])([
2|a2| 0

0 2|b2|

]
,

[
(a2)2
(b2)2

])

([
2|a3| 0

0 2|b3|

]
,

[
(a3)2
(b3)2

]) ([
2|ak| 0

0 2|bk|

]
,

[
(ak)2
(bk)2

])...

Figure 2 Construction for undecidability of reachability for positive 2-AVASS by reduction from
PCP.

Reichert gives in [20] a reduction from the Post correspondence problem to reachability
in a subclass of 2-AVASS and we may remark that his proof is still valid for positive 2-
AVASS. Blondin, Haase and Mazowiecki made some similar observations [1] for subclasses of
3− Z-AVASS, with positive matrices. Our proof is essentially the same as [20].

I Theorem 28. Reachability is undecidable for positive 2-AVASS.

Proof. Suppose we are given an instance of PCP, i.e. we are given a1, ..., ak, b1, ..., bk ∈ {0, 1}∗
for some k ∈ N. We want to check if there exists some sequence of numbers n1, ..., n` ∈
{1, ..., k} such that an1 ...an`

= bn1 ...bn`
(concatenated as strings).

We will construct the positive 2-AVASS as demonstrated in Figure 2, where |ai| refers
to the length of the string, and (ai)2 refers to the number encoded by the string ai if read
in binary (most significant digit to the left). The idea is that we use the two counters to
store the value of (an1 ...an`

)2 and (bn1 ...bn`
)2 for any n1, ..., n`. But we first increment each

counter to keep track of leading zeroes. Now, the configuration (q2; 0, 0) is reachable from
(q0; 0, 0) in the positive 2-AVASS described in Figure 2 iff the given PCP has an affirmative
answer. Hence, checking reachability in positive d-AVASS is undecidable for d ≥ 2. J

Also, we note that positive-AVASS are well-structured with strong monotony. Hence
coverability is decidable [13]. If we look at totally-positive AVASS, we can see that coverability
is already decidable by the same argument. However, reachability is also decidable.

I Theorem 29. Reachability is decidable in totally-positive AVASS for any dimension.

Proof. Let M = (Q,→) be a totally-positive d-AVASS. Given (q0;n1, ..., nd), suppose we
want to check reachability of (qf ;m1, ...,md). Let N = max{m1, ...,md}. Let fN : N →
{1, ..., N, ω} be the function which is identity on {1, ..., N} and maps {N+1, ...} to ω. Extend
this function to the set Nd component-wise. Since M is totally-positive, we can restrict our
search space from Q × Nd to Q × {0, ..., N, ω}d by applying fN to each configuration and
using the following arithmetic rules: 0.ω = 0, and for all k ≥ 1, k.ω = ω and ω + k = ω.

We claim that if (qf ;m1, ...,md) is reachable, then it is reachable in this restricted
search-space. This follows from the fact that given any element (n1, ..., nd) of Nd, and a
totally positive transition t = (A, b), we will have that t(fN (n1, ..., nd)) = fN (t(n1, ..., nd))
(t acts on fN (n1, ..., nd) to give an element in {0, ..., N, ω}d). This is because a totally
positive transition cannot decrease a value other than by multiplying it by 0, hence any
value greater than N will continue to be greater than N . Also note that, by choice of N ,
fN (m1, ...,md) = (m1, ...,md).

Once we have this, we can make an induction on the length of the path to see that if
(qf ;m1, ...,md) is reachable, it is reachable in the restricted search-space Q× {0, ..., N}d.

Since Q× {0, ..., N, ω}d is finite, this shows decidability of reachability. J

A. Finkel and E. Gupta 41:13

Coverability undecidable
Coverability decidable
Reachability decidable

Pre* computable

WSTS

Totally positive d-AVASS 1-AVASS

1-Minsky machines

VASS

Positive d-AVASS

2-Minsky machines
d-AVASS (d ≥ 2)

Figure 3 Showing reachability and coverability results for various AVASS models.

5 Conclusion and perspective

We introduced two variants of the well structured problem for PCM and we solve it for
many classes of PCMs. Moreover, we answer the decidability questions for reachability and
coverability for classes of PCMs and AVASSs (we summarise the results of Section 4 in
Figure 3).

Many open problems can be attacked like the complexity of reachability for 1-AVASS
(reachability is NP for 1-VASS and PSPACE for polynomial VASS), the size of Pre∗ of a
1-AVASS (and its relation with the theory of flattable VASS [18]), and the decidability of
the property for a Presburger relation on Nd to be a well-quasi ordering for d ≥ 2.

We also open the way to study the decidability of the well structured problems (for
various orderings) for many other models like pushdown counter machines, FIFO automata,
Petri nets extensions. For instance, we wish to solve the well structured problems for FIFO
automata. We know that lossy FIFO automata are well structured (for the subword ordering)
but what is the class of perfect FIFO automata which is well structured (for the prefix
ordering)?

References
1 Michael Blondin, Christoph Haase, and Filip Mazowiecki. Affine Extensions of Integer Vector

Addition Systems with States. In Sven Schewe and Lijun Zhang, editors, 29th International
Conference on Concurrency Theory, CONCUR 2018, September 4-7, 2018, Beijing, China,
volume 118 of LIPIcs, pages 14:1–14:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2018. doi:10.4230/LIPIcs.CONCUR.2018.14.

2 Michael Blondin and Mikhail Raskin. The Complexity of Reachability in Affine Vector Addition
Systems with States. CoRR, 2019. arXiv:1909.02579.

3 Bernard Boigelot and Pierre Wolper. Symbolic Verification with Periodic Sets. In Computer
Aided Verification, 6th International Conference, CAV ’94, Stanford, California, USA, June
21-23, 1994, Proceedings, pages 55–67, 1994. doi:10.1007/3-540-58179-0_43.

FSTTCS 2019

https://doi.org/10.4230/LIPIcs.CONCUR.2018.14
http://arxiv.org/abs/1909.02579
https://doi.org/10.1007/3-540-58179-0_43

41:14 The Well Structured Problem for Presburger Counter Machines

4 Rémi Bonnet, Alain Finkel, and M. Praveen. Extending the Rackoff technique to Affine nets.
In Deepak D’Souza, Telikepalli Kavitha, and Jaikumar Radhakrishnan, editors, IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS
2012, December 15-17, 2012, Hyderabad, India, volume 18 of LIPIcs, pages 301–312. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012. doi:10.4230/LIPIcs.FSTTCS.2012.301.

5 Ahmed Bouajjani, Javier Esparza, Alain Finkel, Oded Maler, Peter Rossmanith, Bernard
Willems, and Pierre Wolper. An Efficient Automata Approach to some Problems on Context-
Free Grammars. Information Processing Letters, 74(5-6):221–227, June 2000. URL: http:
//www.lsv.ens-cachan.fr/Publis/PAPERS/PS/BEFMRWW-IPL2000.ps.

6 Stéphane Demri, Alain Finkel, Valentin Goranko, and Govert van Drimmelen. Model-checking
CTL* over flat Presburger counter systems. Journal of Applied Non-Classical Logics, 20(4):313–
344, 2010. doi:10.3166/jancl.20.313-344.

7 Catherine Dufourd, Alain Finkel, and Philippe Schnoebelen. Reset Nets between Decidability
and Undecidability. In Kim G. Larsen, Sven Skyum, and Glynn Winskel, editors, Proceedings
of the 25th International Colloquium on Automata, Languages and Programming (ICALP’98),
volume 1443 of Lecture Notes in Computer Science, pages 103–115, Aalborg, Denmark, July
1998. Springer. doi:10.1007/BFb0055044.

8 A. Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere! Theoretical
Computer Science, 256(1):63–92, 2001. ISS. doi:10.1016/S0304-3975(00)00102-X.

9 Alain Finkel. Reduction and covering of infinite reachability trees. Information and Computa-
tion, 89(2):144–179, 1990.

10 Alain Finkel, Stefan Göller, and Christoph Haase. Reachability in Register Machines with
Polynomial Updates. In Krishnendu Chatterjee and Jiří Sgall, editors, Proceedings of the
38th International Symposium on Mathematical Foundations of Computer Science (MFCS’13),
volume 8087 of Lecture Notes in Computer Science, pages 409–420, Klosterneuburg, Austria,
August 2013. Springer. doi:10.1007/978-3-642-40313-2_37.

11 Alain Finkel and Jérôme Leroux. How to Compose Presburger-Accelerations: Applications to
Broadcast Protocols. In FST TCS 2002: Foundations of Software Technology and Theoretical
Computer Science, 22nd Conference Kanpur, India, December 12-14, 2002, Proceedings, pages
145–156, 2002. doi:10.1007/3-540-36206-1_14.

12 Alain Finkel, Jérôme Leroux, and Grégoire Sutre. Reachability for Two-Counter Machines
with One Test and One Reset. In Sumit Ganguly and Paritosh Pandya, editors, Proceedings
of the 38th Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS’18), Leibniz International Proceedings in Informatics, pages 31:1–31:14,
Ahmedabad, India, December 2018. Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.
FSTTCS.2018.31.

13 Alain Finkel, Pierre McKenzie, and Claudine Picaronny. A Well-Structured Framework for
Analysing Petri Net Extensions. Information and Computation, 195(1-2):1–29, November
2004. doi:10.1016/j.ic.2004.01.005.

14 Christoph Haase. A Survival Guide to Presburger Arithmetic. ACM SIGLOG News, 5(3):67–82,
July 2018. doi:10.1145/3242953.3242964.

15 Christoph Haase and Simon Halfon. Integer Vector Addition Systems with States. In Joël
Ouaknine, Igor Potapov, and James Worrell, editors, Reachability Problems - 8th International
Workshop, RP 2014, Oxford, UK, Sept. 22–24, 2014. Proceedings, volume 8762 of Lecture Notes
in Computer Science, pages 112–124. Springer, 2014. doi:10.1007/978-3-319-11439-2_9.

16 Vesa Halava. Another proof of undecidability for the correspondence decision problem - Had I
been Emil Post. CoRR, abs/1411.5197, 2014. arXiv:1411.5197.

17 Matthias Horbach, Marco Voigt, and Christoph Weidenbach. The Universal Fragment of Pres-
burger Arithmetic with Unary Uninterpreted Predicates is Undecidable. CoRR, abs/1703.01212,
2017. arXiv:1703.01212.

https://doi.org/10.4230/LIPIcs.FSTTCS.2012.301
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PS/BEFMRWW-IPL2000.ps
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PS/BEFMRWW-IPL2000.ps
https://doi.org/10.3166/jancl.20.313-344
https://doi.org/10.1007/BFb0055044
https://doi.org/10.1016/S0304-3975(00)00102-X
https://doi.org/10.1007/978-3-642-40313-2_37
https://doi.org/10.1007/3-540-36206-1_14
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.31
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.31
https://doi.org/10.1016/j.ic.2004.01.005
https://doi.org/10.1145/3242953.3242964
https://doi.org/10.1007/978-3-319-11439-2_9
http://arxiv.org/abs/1411.5197
http://arxiv.org/abs/1703.01212

A. Finkel and E. Gupta 41:15

18 Jérôme Leroux and Grégoire Sutre. On Flatness for 2-Dimensional Vector Addition Systems
with States. In Philippa Gardner and Nobuko Yoshida, editors, CONCUR 2004 - Concurrency
Theory, 15th International Conference, London, UK, August 31 - September 3, 2004, Pro-
ceedings, volume 3170 of Lecture Notes in Computer Science, pages 402–416. Springer, 2004.
doi:10.1007/978-3-540-28644-8_26.

19 Jérôme Leroux, Grégoire Sutre, and Patrick Totzke. On the Coverability Problem for Pushdown
Vector Addition Systems in One Dimension. In Automata, Languages, and Programming -
42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings,
Part II, pages 324–336, 2015. doi:10.1007/978-3-662-47666-6_26.

20 Julien Reichert. Reachability games with counters : decidability and algorithms. (Décidab-
ilité et complexité de jeux d’accessibilité sur des systèmes à compteurs). PhD thesis, École
normale supérieure de Cachan, France, 2015. URL: https://tel.archives-ouvertes.fr/
tel-01314414.

21 Rüdiger Valk. Self-Modifying Nets, a Natural Extension of Petri Nets. In Giorgio Ausiello and
Corrado Böhm, editors, Automata, Languages and Programming, Fifth Colloquium, Udine,
Italy, July 17-21, 1978, Proceedings, volume 62 of Lecture Notes in Computer Science, pages
464–476. Springer, 1978. doi:10.1007/3-540-08860-1_35.

FSTTCS 2019

https://doi.org/10.1007/978-3-540-28644-8_26
https://doi.org/10.1007/978-3-662-47666-6_26
https://tel.archives-ouvertes.fr/tel-01314414
https://tel.archives-ouvertes.fr/tel-01314414
https://doi.org/10.1007/3-540-08860-1_35

A Categorical Account of Replicated Data Types
Fabio Gadducci
Dipartimento di Informatica, Università di Pisa, Italia
https://www.di.unipi.it/~gadducci
fabio.gadducci@unipi.it

Hernán Melgratti
Departamento de Computación, Universidad de Buenos Aires, Argentina
ICC-CONICET-UBA, Buenos Aires, Argentina
https://lafhis.dc.uba.ar/~melgratti
hmelgra@dc.uba.ar

Christian Roldán
Departamento de Computación, Universidad de Buenos Aires, Argentina
https://lafhis.dc.uba.ar/~croldan
croldan@dc.uba.ar

Matteo Sammartino
Department of Computer Science, University College London, UK
https://matteosammartino.com
m.sammartino@ucl.ac.uk

Abstract
Replicated Data Types (rdts) have been introduced as a suitable abstraction for dealing with
weakly consistent data stores, which may (temporarily) expose multiple, inconsistent views of their
state. In the literature, rdts are commonly specified in terms of two relations: visibility, which
accounts for the different views that a store may have, and arbitration, which states the logical order
imposed on the operations executed over the store. Different flavours, e.g., operational, axiomatic
and functional, have recently been proposed for the specification of rdts. In this work, we propose
an algebraic characterisation of rdt specifications. We define categories of visibility relations and
arbitrations, show the existence of relevant limits and colimits, and characterize rdt specifications
as functors between such categories that preserve these additional structures.

2012 ACM Subject Classification Theory of computation → Program semantics; Software and its
engineering → General programming languages

Keywords and phrases Replicated data type, Specification, Functorial characterisation

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.42

Funding Research partially supported by the MIUR PRIN 2017FTXR7S “IT-MaTTerS”, by the EU
H2020 RISE programme under the Marie Skłodowska-Curie grant agreement 778233, by the UBACyT
projects 20020170100544BA and 20020170100086BA, by the PIP project 11220130100148CO, by the
Leverhulme Prize PLP-2016-129, and by the EPSRC grant EP/S028641/1.

Acknowledgements We thank the reviewers for their careful reading and insightful comments.

1 Introduction

The cap theorem establishes that a distributed data store can simultaneously provide
two of the following three properties: consistency, availability, and tolerance to network
partitions [8]. A weakly consistent data store prioritises availability and partition tolerance
over consistency. As a consequence, a weakly consistent data store may (temporarily) expose
multiple, inconsistent views of its state; hence, the behaviour of operations may depend
on the particular view over which they are executed. Replicated data types (rdts) have
been proposed as suitable data type abstractions for weakly consistent data stores. The
specification of such data types usually takes into account the particular views over which

© Fabio Gadducci, Hernán Melgratti, Christian Roldán, and Matteo Sammartino;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 42; pp. 42:1–42:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://orcid.org/0000-0003-0690-3051
https://www.di.unipi.it/~gadducci
mailto:fabio.gadducci@unipi.it
https://orcid.org/0000-0003-0760-0618
https://lafhis.dc.uba.ar/~melgratti
mailto:hmelgra@dc.uba.ar
https://orcid.org/0000-0001-9997-4857
https://lafhis.dc.uba.ar/~croldan
mailto:croldan@dc.uba.ar
https://orcid.org/0000-0003-1456-2242
https://matteosammartino.com
mailto:m.sammartino@ucl.ac.uk
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.42
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

42:2 A Categorical Account of Replicated Data Types

SlwwR

Ü
〈wr(1), ok〉

��

〈wr(2), ok〉

��
〈rd, 2〉

ê
=

〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 2〉}

,

〈wr(1), ok〉

〈rd, 2〉}

〈wr(2), ok〉

,

〈rd, 2〉}

〈wr(1), ok〉

〈wr(2), ok〉

(a) Visibility relation with admissible arbitrations.

SlwwR

Ü
〈wr(1), ok〉

��
〈rd, 0〉

ê
= ∅

(b) Non admissible arbitrations.

Figure 1 A register specification.

operations are executed. A view is usually represented by a visibility relation, which is a
binary, acyclic relation over the operations (a.k.a. events) executed by the system. The
state of a store is described instead as a total order over the events, called arbitration,
which describes the way in which conflicting concurrent operations are resolved. Different
specification approaches for rdts are presented in the literature, all of them building on
the notions of visibility and arbitration [2, 3, 4, 5, 7, 6, 9, 11, 13, 14]. A purely functional
approach for the specification of rdts has been presented in [7, 6], where an rdt is associated
with a function that maps each visibility relation into a set of arbitrations.

Consider an rdt Register that represents a memory cell, whose content can be updated
and read. Following the approach in [7], the rdt Register is specified by a function that
maps visibility relations into sets of arbitrations: we call here such function SlwwR. Figure 1a
illustrates the definition of SlwwR for the case in which the visibility relation involves two
concurrent writes and a read. Events are depicted by pairs 〈operation, result〉 where wr(k)
stands for an operation that writes the value k and rd stands for a read. The two writes are
unrelated (i.e., they are not visible to each other), while the read operation sees both writes.
The returned value of the read operation is 2, which coincides with one of the visible written
values. According to Figure 1a, SlwwR maps such visibility graph into a set containing those
arbitrations (i.e., total orders over the three events in the visibility relation) in which wr(1)
precedes wr(2). Arbitrations may not reflect the causal ordering of events; in fact, the last
two arbitrations in the right-hand-side of the equation in Figure 1a place the read before
the operation that writes the read value 2. We remark that arbitrations do not necessarily
account for real-time orderings of events: they are instead possible ways in which events can
be logically ordered to explain a given visibility. For instance, the excluded arbitrations in the
image of SlwwR are the total orders in which wr(2) precedes wr(1), i.e., the specification bans
the behaviour in which a read operation returns a value that is different from the last written
one. An extreme situation is the case in which the specification maps a visibility relation into
an empty set of arbitrations, which means that events cannot be logically ordered to explain
such visibility. For instance, the equation in Figure 1b assigns an empty set of arbitrations
to a visibility relation in which the read operation returns a value that is different from the
unique visible written value (i.e., it returns 0 instead of 1). In this way, the specification
bans the behaviour in which a read operation returns a value that does not match a previous
written value. As originally shown [7], this style of specification can be considered (and it
is actually more general than) the model for the operational description of rdts proposed
in [4]. We refer the reader to [6] for a formal comparison of the two different approaches.

This work develops the approach suggested in [7] for the categorical characterisation
of rdt specifications. We consider the category PIDag(L) of labelled, directed acyclic
graphs and injective pr-morphisms, i.e., label-preserving morphisms that reflect directed
edges, and the category SPath(L) of sets of labelled, total orders and ps-morphisms, i.e.,
morphisms between sets of paths. A ps-morphism f : X1 → X2 from a set of paths X1 to a
set of paths X2 states that any total order in X2 can be obtained by extending some total

F. Gadducci, H. Melgratti, C. Roldán, and M. Sammartino 42:3

order in X1. In this work we show that a large class of specifications, dubbed coherent, can
be characterised functorially. Roughly, a coherent specification accounts for those rdts
such that the arbitrations associated with a visibility relation can be obtained by extending
arbitrations associated with “smaller” visibilities: as illustrated in [6], they correspond to
what are called return value consistent rdts in [4]. We establish a bijection between functors
and specifications, showing that a coherent specification induces a functor from PIDag(L)
into SPath(L) that preserves colimits and binary pullbacks and vice versa.

The paper has the following structure. Section 2 offers some preliminaries on categories
of relations, which are used for proposing some basic results on categories of graphs and
paths in Section 3. Section 4 recalls the set-theoretical presentation of rdts introduced in [6].
Section 5 introduces our semantical model, the category of set of paths, describing some of its
basic properties with respect to limits and colimits. In Section 6 we present some categorical
operators for rdts, which are used in Section 7 to present our main characterisation results.
The paper is closed with some final remarks, a comparison of the proposed constructions
with those presented in [7], and some hints towards future work.

2 Preliminaries on Relations

Relations. Given a finite set E, a (binary) relation ρ over E is a subset ρ ⊆ E × E of the
cartesian product of E with itself. We use the pair 〈E, ρ〉 to denote a relation ρ over E, in
order to always have the set of events explicit, and simply ∅ to denote the empty relation.

A subset E′ ⊆ E is downward closed with respect to ρ if ∀e ∈ E, e′ ∈ E′.e ρ e′ implies e ∈ E′

and, when ρ is clear, we write bec for the smallest downward closed set including e ∈ E.

IDefinition 1 ((Binary Relation) Morphisms). A (binary relation) morphism f : 〈E, ρ〉 → 〈T, γ〉
is a function f : E→ T such that

∀e, e′ ∈ E. e ρ e′ implies f(e) γ f(e′)

A morphism f : 〈E, ρ〉 → 〈T, γ〉 is past-reflecting (shortly, pr-morphism) if

∀e ∈ E, t ∈ T. t γ f(e) implies ∃e′ ∈ E. e′ ρ e ∧ t = f(e′)

Note that both classes of morphisms are closed under composition: we denote as Bin the
category of relations and their morphisms and PBin the sub-category of pr-morphisms.

I Lemma 2 (Characterising pr-morphisms). Let f : 〈E, ρ〉 → 〈T, γ〉 be a morphism. If
1. f(e) γ f(e′) implies e ρ e′, and
2.

⋃
e∈E f(e) is downward closed,

then it is a pr-morphism. If f is injective, then the converse holds.

Proof. For ⇒), let us take e ∈ E and t ∈ T. If t γ f(e), then there exists e′ ∈ E such that
t = f(e′) because of (2). By (1), f(e′) γ f(e) implies e′ ρ e.

For⇐), by the definition of pr-morphism f(e) γ f(e′) implies ∃e ∈ E. e ρ e′ ∧ f(e) = f(e).
Since f is injective, e = e and hence e ρ e′. So, let T =

⋃
e∈E f(e). We want to show that

∀t ∈ T, t′ ∈ T . tγ t′ implies t ∈ T

The proof follows by contradiction. Assume that ∃t ∈ T, t′ ∈ T . t γ t′ ∧ t 6∈ T . By
definition of T ,∃e ∈ E such that f(e) = t′. Since f is a pr-morphism, then

t γ f(e) implies ∃e′ ∈ E. e′ ρ e ∧ t = f(e′)

Therefore t = f(e′) ∈ T , which contradicts the assumption t /∈ T . J

FSTTCS 2019

42:4 A Categorical Account of Replicated Data Types

Clearly, Bin has both finite limits and finite colimits, which are computed point-wise as
in Set. The structure is largely lifted to PBin.

I Proposition 3 (Properties of PBin). The inclusion functor PBin → Bin reflects finite
colimits and binary pullbacks.

In other words, since Bin has finite limits and finite colimits, finite colimits and binary
pullbacks in PBin always exist and are computed as in Bin. There is e.g. no terminal
object, since morphisms in Bin into the singleton are clearly not past-reflecting.

Monos in Bin are just morphisms whose underlying function is injective, and similarly in
PBin, so that the inclusion functor preserves (and reflects) them.

I Lemma 4 (Monos under pushouts). Pushouts in Bin (and thus in PBin) preserve monos.

We now introduce labelled relations. Consider the forgetful functors Ur : Bin→ Set and
Up : PBin→ Set, the latter factoring through the inclusion functor PBin→ Bin. Given a
set L of labels, we consider the comma categories Bin(L) = Ur ↓ L and PBin(L) = Up ↓ L:
finite colimits and binary pullbacks always exist and are essentially computed as in Bin.

Explicitly, an object in Ur ↓ L is a triple (E, ρ, λ) for a labeling function λ : E → L. A
label-preserving morphism (E, ρ, λ) → (E′, ρ′, λ′) is a morphism f : (E, ρ) → (E′, ρ′) such
that ∀s ∈ E. λ(s) = λ′(f(s)). Moreover, finite colimits and binary pullbacks exist and are
computed as in Bin. Similar properties hold for the objects and the morphisms of Up ↓ L.

3 Categories of Graphs and Paths

We now move to introduce specific sub-categories that are going to be used for both the
syntax and the semantics of specifications.

I Definition 5 (PDag). PDag is the full sub-category of PBin whose objects are directed
acyclic graphs.

In other terms, objects are relations whose transitive closures are strict partial orders.
I Remark 6. The full sub-category of Bin whose objects are directed acyclic graphs is not
suited for our purposes, since e.g. it does not admit pushouts, not even along monos. The
one with pr-morphisms is much more so, still remaining computationally simple.

I Proposition 7 (Properties of PDag). The inclusion functor PDag→ PBin reflects finite
colimits and binary pullbacks.

We now move to consider paths, i.e., relations that are total orders.

I Definition 8 (Path). Path is the full sub-category of Bin whose objects are paths.

Note that defining Path as only containing pr-morphisms would be too restrictive, since
there exists a pr-morphism between two paths if and only if one path is a prefix of the other.

I Proposition 9 (Properties of Path). The inclusion functor Path → Bin reflects finite
colimits.

As for relations, we consider suitable comma categories in order to capture labelled paths
and graphs. In particular, we use the forgetful functors Urp : Path→ Set and Upd : PDag→
Set: for a set of labels L we denote PDag(L) = Urp ↓ L and Path(L) = Upd ↓ L. Once more,
finite colimits and binary pullbacks always exist and are essentially computed as in Bin.

F. Gadducci, H. Melgratti, C. Roldán, and M. Sammartino 42:5

4 Replicated Data Type Specification

We briefly recall the set-theoretical model of replicated data types (rdt) introduced in [6].
Our main result is its categorical characterisation, which is given in the following sections.

First, some notation. We denote a graph as the triple 〈E ,≺, λ〉 and a path as the triple
〈E ,≤, λ〉, in order to distinguish them. Moreover, given a graph G = 〈E ,≺, λ〉 and a subset
E ′ ⊆ E , we denote by G|E′ the obvious restriction (and the same for a path P).

We now define a product operation on a set of paths X = {〈Ei,≤i, λi〉}i. First, we say
that the paths of a set X are compatible if ∀e, i, j. e ∈ Ei ∩ Ej implies λi(e) = λj(e).

I Definition 10 (Product). Let X be a set of compatible paths. The product of X is⊗
X = {P | P is a path over

⋃
i

Ei and P|Ei
∈ X }.

Intuitively, the product of paths is analogous to the synchronous product of transition
systems, in which common elements are identified and the remaining ones can be freely
interleaved, as long as the original orders are respected. A set of sets of paths X1,X2, . . . is
compatible if

⋃
i Xi is so. In such case we can define the product

⊗
i Xi as

⊗ ⋃
i Xi.

Now, let us further denote with G(L) and P(L) the sets of (finite) graphs and (finite)
paths, respectively, labelled over L and with ε the empty graph. Also, when the set of labels
L is chosen, we let G(E , λ) and P(E , λ) the sets of graphs and paths, respectively, whose
elements are those in E and are labelled by λ : E → L.

I Definition 11 (Specifications). A specification S is a function S : G(L)→ 2P(L) such that
S(ε) = {ε} and ∀G. S(G) ∈ 2P(EG,λG).

In other words, a specification S maps a graph (interpreted in terms of the visibility
relation of a rdt) to a set of paths (that is, the admissible arbitrations of the rdt). Indeed,
note that P ∈ S(G) is a path over EG, hence a total order of the events in G.

As shown in [6], Definition 11 offers an alternative characterisation of rdts [4] for a
suitable choice of the set of labels. In particular, an rdt boils down to a specification labelled
over pairs 〈operation, value〉 that is saturated and past-coherent. The former property is a
technical one: roughly, if G′ is an extension of G with a fresh event e, then the admissible
arbitrations that a saturated specification S assigns to G′ (i.e., the set of paths S(G′)) are
included in the admissible arbitrations of G saturated with respect to e, i.e., all the paths
that extends a path in S(G) with e inserted at an arbitrary position. Coherence instead is
fundamental and expresses that admissible arbitrations of a visibility graph can be obtained
by composing the admissible arbitrations of smaller visibilities.

I Definition 12 ((Past-)Coherent Specification). Let S be a specification. We say that S is
past-coherent (briefly, coherent) if

∀G 6= ε. S(G) =
⊗
e∈EG

S(G|bec).

Explicitly, in a coherent specification S the arbitrations of a configuration G (i.e., the set
of paths S(G)) are the composition of the arbitrations associated with its sub-graphs G|bec.

Next example illustrates a coherent specification for the Register rdt.

FSTTCS 2019

42:6 A Categorical Account of Replicated Data Types

I Example 13 (Register). Fix the set of labels L = {〈wr(k), ok〉, 〈rd, k〉 | k ∈ N} ∪ {〈rd,⊥〉}.
Then, the specification of the rdt Register is given by the function SlwwR defined as

P ∈ SlwwR(G) iff ∀e ∈ EG.

λ(e) = 〈rd,⊥〉 implies ∀e′ ≺G e, k. λ(e′) 6= 〈wr(k), ok〉
∀k. λ(e) = 〈rd, k〉 implies ∃e′ ≺G e. λ(e′) = 〈wr(k), ok〉 and

∀e′′ ≺G e, k′ 6= k. e′ <P e′′ implies λ(e′′) 6= 〈wr(k′), ok〉

Intuitively, a visibility graph G is mapped to a non-empty set of arbitrations (i.e.,
SlwwR(G) 6= ∅) only when each event e in G associated with a read operation has a re-
turn value k that matches the value written by the greatest event e′ (according to <P). The
result of a read is undefined (i.e., ⊥) when it does not see any write (first condition).

5 The model category

In order to provide a categorical characterisation of coherent specifications, we must first
define precisely the model category. So far, we know that its objects have to be sets of
compatible paths. We fix a set of labels L, and we first look at a free construction for paths,
and then we turn our attention to morphisms.

5.1 Saturation
I Definition 14 (Path saturation). Let P be a path and f : (EP, λP) → (E , λ) a function
preserving labels. The saturation of P along f is defined as

sat(P, f) = {Q | Q ∈ P(E , λ) and f induces a morphism f : P→ Q}

Saturation is generalised to sets of paths X ⊆ P(E , λ) as
⋃

P∈X sat(P, f).

Note that, should f not be injective, it could be that sat(P, f) = ∅.

I Example 15. Consider the injective, label-preserving function f from {〈wr(1), ok〉, 〈wr(2),
ok〉} to {〈wr(1), ok〉, 〈wr(2), ok〉, 〈rd, 2〉}. Then, we have

sat

Ö 〈wr(1), ok〉

〈wr(2), ok〉

 , f

è
=

〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 2〉}

,

〈wr(1), ok〉

〈rd, 2〉}

〈wr(2), ok〉

,

〈rd, 2〉}

〈wr(1), ok〉

〈wr(2), ok〉

Intuitively, saturation adds 〈rd, 2〉 – and in general events not in the image of f – to the
original path in all possible ways, preserving the order of original events.

I Definition 16 (Path retraction). Let Q be a path and f : E → EQ a function. The retraction
of Q along f is defined as

ret(Q, f) = {P | P ∈ P(E , λ) and f induces a morphism f : P→ Q}

The notion of retraction is extended to sets of paths X ⊆ P(E , λ) as
⋃

Q∈X ret(Q, f).

Note that λ is fully characterised as the restriction of λQ along the mapping. Should f be
injective, ret(Q, f) would be a singleton, and if f is an inclusion, then ret(Q, f) = Q|E .

We may now start considering the relationship between the two notions.

F. Gadducci, H. Melgratti, C. Roldán, and M. Sammartino 42:7

I Lemma 17. Let X1 ⊆ P(E1, λ1) be a set of paths and f : (E1, λ1) → (E2, λ2) a function
preserving labels. Then X1 ⊆ ret(sat(X1, f), f). If f is injective, then the equality holds.

I Lemma 18. Let X2 ⊆ P(E2, λ2) be a set of paths and f : E1 → E2 a function. Then
X2 ⊆ sat(ret(X2, f), f).

We say that an injective function f is saturated with respect to X2 if the equality holds.

I Example 19. Consider the set of paths X1 and X2 and the pr-morphism f below

X1 =

〈wr(1), ok〉

〈wr(2), ok〉

 X2 =

〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 2〉

 f :
〈wr(1), ok〉

〈wr(2), ok〉
→

〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 2〉

the underlying function f (defined in Example 15) is not saturated with respect to X2 because

〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 2〉

 6= sat(ret(

〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 2〉

, f), f) = sat(

〈wr(1), ok〉

〈wr(2), ok〉

, f)

In fact, the ps-morphism f : X1 → X2 only adds the new event 〈rd, 2〉 on top of the path in
X1, thus making it a topological ps-morphism (see Section 7.3 later on).

5.2 From saturation to categories
We can exploit saturation to get a simple definition of our model category.

I Definition 20 (ps-morphism). Let X1 ⊆ P(E1, λ1) and X2 ⊆ P(E2, λ2) be sets of paths. A
path-set morphim (shortly, ps-morphism) f : X1 → X2 is a function f : (E1, λ1) → (E2, λ2)
preserving labels such that X2 ⊆ sat(X1, f).

Intuitively, there is a ps-morphism from the set of paths X1 to the set of paths X2 if any
path in X2 can be obtained by adding events to some path in X1. This notion captures the
idea that arbitrations of larger visibilities are obtained as extensions of smaller visibilities.

I Example 21. Consider the following three sets and the function f from Example 15

X1 =

〈wr(1), ok〉

〈wr(2), ok〉

 X2 =

〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 2〉

,

〈wr(1), ok〉

〈rd, 2〉

〈wr(2), ok〉

 X3 =

〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 2〉

,

〈wr(2), ok〉

〈rd, 2〉

〈wr(1), ok〉

Now, f induces a ps-morphism f : X1 → X2 because X2 ⊆ sat(X1, f) (the latter is shown in
Example 15). On the contrary, there is no ps-morphism from X1 to X3: the rightmost path
of X3 cannot be obtained by extending a path of X1 with an event labelled by 〈rd, 2〉.

I Definition 22 (Sets of Paths Category). We define SPath(L) as the category whose objects
are sets of paths labelled over L and arrows are ps-morphisms.

I Proposition 23 (Properties of SPath). The category SPath(L) has finite colimits along
monos and binary pullbacks.

FSTTCS 2019

42:8 A Categorical Account of Replicated Data Types

Proof.
(Strict) initial object. The (unique) initial object is 〈∅, {ε}, ∅〉, with ε ∈ P(∅, ∅) the empty

path. Let X ⊆ P(E , λ) and ! : ∅ → E the unique function. We have a function ! : (∅, ∅)→
(E , λ) such that X ⊆ sat({ε}, !) = P(E , λ).

Binary Pushouts. Let X ,X1, and X2 be sets of paths and fi : X → Xi ps-morphisms.
Consider the underlying functions fi : E → Ei and their pushout f′

i : Ei → E1 +E E2 in the
category of sets: it induces a pushout f′

i : Xi → sat(X1, f′
1) ∩ sat(X2, f′

2) in SPath(L).
Binary Pullbacks. Let X ,X1, and X2 be sets of paths and fi : Xi → X ps-morphisms.

Consider the underlying functions fi : Ei → E and their pullback f′
i : E1 ×E E2 → Ei

in the category of sets: it induces a pullback f′
i : ret(X1, f′

1) ∪ ret(X2, f′
2) → Xi in

SPath(L). J

The above characterisation of pushouts is enabled by the fact that we considered injective
functions. To help intuition, we now instantiate that characterisation to suitable inclusions.

I Lemma 24. Let fi : X → Xi be ps-morphisms such that the underlying functions fi : E → Ei
are inclusions and E = E1 ∩ E2. Then their pushout is given by f′

i : Xi → X1 ⊗X2.

Proof. By definition X1 ⊗X2 = {P | P is a path over
⋃
i Ei and P|Ei

∈ Xi}. Note also that
sat(Xi, f′

i) =
⋃

Q∈Xi
{P | P ∈ P(

⋃
i Ei,

⋃
i λi) and f′

i induces a path morphism f′
i : P → Q}.

Since f′
i is an inclusion, the latter condition equals to P|Ei

= Q, thus the property holds. J

I Example 25. Consider the following ps-morphisms
〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 2〉

←

〈wr(1), ok〉

〈wr(2), ok〉

→

〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 1〉

,

〈wr(2), ok〉

〈wr(1), ok〉

〈rd, 1〉

then, the pushout is given by the following ps-morphisms

〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 2〉

→

〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 1〉

〈rd, 2〉

,

〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 2〉

〈rd, 1〉

←

〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 1〉

,

〈wr(2), ok〉

〈wr(1), ok〉

〈rd, 1〉

An analogous property holds for pullbacks. Let fi : Xi → X be ps-morphisms such that

the underlying functions are inclusions: the pullback is given as f′
i :

⋃
i Xi|E1∩E2

→ Xi. In
particular, the square below is both a pullback and a pushout.

⋃
i Xi|E1∩E2

X1

X2 X1 ⊗X2

6 Structure and Operators for Visibility

We now study the category of visibility relations. We first introduce an operation that will
be handy for our categorical characterisation. We say that a graph G is rooted if there exists
a (necessarily unique) event e ∈ EG such that G = G|bec.

F. Gadducci, H. Melgratti, C. Roldán, and M. Sammartino 42:9

I Definition 26 (Extension). Let G = 〈E ,≺, λ〉 and E ′ ⊆ E. We define the extension of G
over E ′ with ` as the graph G`E′ = 〈E>,≺ ∪ (E ′ × {>}), λ[> 7→ `]〉.

Here, E> denotes the extension of the set E with a new event >, labelled into `. Intuitively,
G`E′ is obtained by adding to the visibility relation G a new event “seeing” some events in E ′.
We call the inclusion G→ G`E′ an extension morphism. Should G`E′ be rooted, we call it a root
extension of G, and the associated inclusion a root extension morphism.

I Proposition 27. Rooted graphs form a family of separators of PDag(L).

Proof. We need to show that for any pair of pr-morphisms f1, f2 : G1 → G2 such that f1 6= f2
there is a rooted graph G and a morphism f : G→ G1 such that f; f1 6= f; f2. Given e ∈ EG1

such that f1(e) 6= f2(e), it suffices to consider the pr-morphism f : G1|bec → G1. J

We now further curb the arrows in PDag(L) to monic ones. Intuitively, we are only
interested in what happens if we add further events to visibility relations. We thus consider
the sub-category PIDag(L) of direct acyclic graphs and monic pr-morphisms. Note that the
chosen morphism f in the proof of Proposition 27 is mono, since morphisms in PDag(L)
are monic if and only if the underlying function is injective. We can then show that rooted
graphs are also a family of generators for the sub-category PIDag(L).

We first need a technical lemma.

I Lemma 28 (Monos under pushouts, 2). Pushouts in PDag(L) preserve monos.

We can then state an important characterisation of PIDag(L).

I Proposition 29. PIDag(L) is the smallest sub-category of PDag(L) containing all root
extension morphisms and closed under finite colimits.

Proof. First, note that, since pushouts in PDag(L) preserve monos, the smallest sub-
category of PDag(L) containing all root extensions and closed under finite colimits is surely
a sub-category also of PIDag(L). So, given a monic pr-morphism f : G1 → G2, we need to
prove that it can be generated from root extension morphisms via colimits. We proceed by
induction on the cardinality of EG2 .

If the cardinality is 0, then f must be the identity of the empty graph. Otherwise,
consider G2 and assume that it is rooted with root e. Now, if e ∈ img(f), since the image of
a pr-morphism is downward closed, it turns out that f is the identity of G2. If it is not in the
image, then f can be decomposed as G1 → (G2 \ e)→ G2: the left-most is given by induction,
while the right-most is a root extension morphism. Without loss of generality, let us assume
that G2 has two distinct roots, namely e1 and e2, and that the image of f is contained in
G2|be1c. Now, f can be decomposed as G1 → G2|be1c → G2: the left-most is given by induction,
while the right-most is obtained via the pushout of the span G2|be1c ∩ G2|be2c → G2|beic. J

7 A categorical correspondence

It is now the time for moving towards our categorical characterisation of specifications.
In this section we will show that coherent specifications induce functors preserving the
relevant categorical structure (soundness) and, conversely, that a certain class of functors
(basically, those preserving finite colimits and binary pullbacks) induce coherent specifications
(completeness). Finally, we will prove that these functions between functors and specifications
are mutually inverse, establishing a one-to-one correspondence (up-to isomorphism).

We first provide a simple technical result for coherent specifications.

FSTTCS 2019

42:10 A Categorical Account of Replicated Data Types

I Lemma 30. Let S be a coherent specification and E ⊆ EG. If E is downward closed, then
S(G)|E ⊆ S(G|E).

Proof. Let E be downward closed, and note that this amounts to requiring E =
⋃
e∈E bec,

hence for all e ∈ E we have that (G|E)|bec = G|bec. By the latter and by coherence we have

S(G)|E = (
⊗

e∈EG
S(G|bec))

∣∣∣
E
and S(G|E) =

⊗
e∈E S(G|bec). Note that (

⊗
e∈EG
S(G|bec))

∣∣∣
E
⊆⊗

e∈E S(G|bec) because a path in the former can always be restricted to a suitable path with
fewer events on the latter (the converse in general does not hold). J

7.1 Soundness
The notion of specification introduced in Definition 11 is oblivious to the existence of
morphisms between graphs. In the following we impose a minimal consistency requirement,
i.e., that a specification maps isomorphic graphs to isomorphic sets of paths, along the same
isomorphism on events. That is, if there exists an isomorphism in PDag from G1 to G2 with
underlying bijection f : EG1 → EG2 , then for all specifications S there is an isomorphism in
SPath(L) from S(G1) to S(G2) with the same underlying function.

I Proposition 31 (functors induced by specifications). A coherent specification S induces a
functor M(S) : PIDag(L)→ SPath(L).

Proof. For G we define M(S)(G) as S(G) and for f : G → G′ we define M(S)(f) as the ps-
morphism with underlying injective function f : (EG, λG) ↪→ (EG′ , λG′). The proof boils down
to showing that f really is a ps-morphism from S(G) into S(G′), i.e., S(G′) ⊆ sat(S(G), f)
and, since we are considering specifications preserving isomorphisms, we can restrict our
attention to the case where f is an inclusion.

Since f is a pr-morphism,
⋃

e∈EG
f(e) is downward-closed in G′ and thus by Lemma 30

we have S(G′)|EG
⊆ S(G′|EG

) = S(G), the latter equality given by coherence. Now, consider
a path P ∈ S(G′). Since P|EG

∈ S(G), we have P ∈ sat(S(G), f), because saturation adds
missing events – namely those in EG′ \ EG – to P|EG

in all possible ways. Therefore we can
conclude S(G′) ⊆ sat(S(G), f). J

It is a well-known fact that the category of sets and injective functions lacks pushouts.
The same also holds for PIDag(L). However, recall now that pushouts in PDag(L) preserve
monos (Lemma 28). Thus in the following we say that a functor F : PIDag(L)→ SPath(L)
weakly preserves finite pushouts (and in fact, finite colimits) if any commuting square in
PIDag(L) that is a pushout (via the inclusion functor) in PDag(L) is mapped by F to a
pushout in SPath(L).

I Theorem 32. Let S be a coherent specification. The induced functor M(S) : PIDag(L)→
SPath(L) weakly preserves finite colimits and preserves binary pullbacks.

Proof. The initial object is easy, since it holds by construction. As for pushouts and pullbacks:
since S is coherent, it boils down to Lemma 24. J

7.2 Completeness
It is now time for moving to the completeness results of our work, showing (a few alternatives
on) how to obtain a specification from a functor.

I Theorem 33. Let F : PIDag(L) → SPath(L) be a functor such that F(G) ⊆ P(EG, λG).
If F weakly preserves finite colimits and preserves binary pullbacks, it induces a coherent
specification S(F).

F. Gadducci, H. Melgratti, C. Roldán, and M. Sammartino 42:11

Proof. Let S(F)(G) = F(G). We shall show that F(G) is coherent. Consider the following
pushout in PDag(L)

G|be1c∩be2c G|be2c

G|be1c G|be1c∪be2c

(7.1)

Since F preserves pullbacks, thus monos, and weakly preserves pushouts, this diagram is
mapped by F to the following pushout in SPath(L)

F(G|be1c∩be2c) F(G|be2c)

F(G|be1c) F(G|be1c∪be2c)
(7.2)

where all underlying functions between events are inclusions. By Lemma 24 we have that

F(G|be1c∪be2c) ' F(G|be1c)⊗ F(G|be2c)

Since clearly G = G|⋃
e∈EG

bec, by associativity of pushouts we obtain coherence

F(G) '
⊗
e∈EG

F(G|bec)

Isomorphism preservation follows from F being a functor. J

Combined with Theorem 32, the result above intuitively tells us that the coherence
of a specification roughly corresponds to the weak preservation of colimits. However, the
set-theoretical requirement F(G) ⊆ P(EG, λG) is still unsatisfactory, yet apparently unavoidable,
because a generic F could associate any set of paths to a graph. We can sharpen the result
by requiring functors to preserve specific properties for suitable arrows of PIDag(L). The
candidates are root extension morphisms, given the properties shown in Section 6. In order
to define the functors, we also need to consider a suitable subset of the arrows of SPath(L).

I Definition 34 (Saturated specifications). Let S be a specification. It is saturated if for all
graphs G and extensions G`E the inclusion f : EG → EG` is saturated with respect to S(G`E) (see
Lemma 18), that is

∀G, E , `. S(G`E) = sat(ret(S(G`E), f), f)

A saturation ps-morphism (along `) is a saturated ps-morphism f : X1 → X2 with
underlying function (E , λ)→ (E>, λ[> 7→ `]). We can now prove an instance of Theorem 33
concerning saturated specifications.

I Proposition 35. Let F : PIDag(L) → SPath(L) be a functor mapping root extension
morphisms into saturation ps-morphisms (along the same labels). If F weakly preserves finite
colimits, it induces a saturated, coherent specification S(F).

Proof. We first show that F preserves monos, which renders the assumption of Theorem 33
about preservation of pullbacks redundant. We will essentially follow the proof of Propos-
ition 29. Given f : G1 → G2 in PIDag(L), we proceed by induction on the cardinality of
EG2 . If EG2 is ∅, i.e., it is the initial object, then f is the identity on ∅, and the claim follows
by functors preserving identities. Suppose now that G2 is rooted with root e. If e ∈ img(f),
then f again is the identity. Otherwise, f can be decomposed as G1 → (G2 \ e) → G2: the

FSTTCS 2019

42:12 A Categorical Account of Replicated Data Types

left-most one satisfies the induction hypothesis, and the right-most one is a root extension
morphism, which by hypothesis is mapped to a (monic) saturation ps-morphism. Therefore,
by functoriality of F, the claim holds for the composition of these morphisms. If G2 is not
rooted, then f can be similarly decomposed as G1 → G2|be1c → G2. By induction the claim
holds for the left-most morphism. The right-most one is obtained via a pushout of the form
(7.1), which is mapped by F to a pushout of the form (7.2), because F (weakly) preserves finite
colimits. By induction hypothesis, the span of this pushout consists of monic ps-morphisms,
therefore we use Lemma 24 to conclude that the pushout morphisms are monic as well, hence
the right-most morphism satisfies our claim. Again, the claim for the whole of f follows from
functoriality of F. A similar inductive argument can be used to show that F(G) is a set of
paths over (EG, λG) (up to a label-preserving isomorphism of events). Therefore we can now
re-use the proof of Theorem 33 and obtain that S(F) is a coherent specification.

It remains to be shown that S(F) is saturated, that is F(G`E) = sat(ret(F(G`E), f), f).
If G`E is rooted, this follows from F mapping root extensions to saturation ps-morphisms.
Otherwise, by coherence, F(G`E) can be decomposed into the product

⊗
e∈(EG)>

F(G`E
∣∣
bec). For

each component of the product we have a root extension G`E
∣∣
bec \e→ G`E

∣∣
bec, which is mapped

by F to a saturation ps-morphism, therefore we have F(G`E
∣∣
bec) = sat(ret(F(G`E

∣∣
bec), fe), fe),

where fe is the underlying function between events of the root extension. Saturation of F(G`E)
follows by computing the product of these sets of paths. J

7.3 More Completeness
The need of finding a suitable image for root extension morphisms allows for alternative
choices. To this end, we introduce a different subset of the arrows of SPath(L).

I Definition 36 (Path extension/prefixing). Let P be a path and f : (EP, λP) → (E , λ) a
function preserving labels. The extension of P along f is defined as

ext(P, f) = {Q | Q ∈ P(E , λ) and f induces a pr-morphism f : P→ Q}

Similarly, let Q be a path and f : E → EQ a function preserving labels. The prefixing of Q
along f is defined as

pre(Q, f) = {P | P ∈ P(E , λ) and f induces a pr-morphism f : P→ Q}

Both definitions immediately extend to sets of paths. Should f be injective, pre(Q, f)
would be a singleton, and if f is an inclusion, then pre(Q, f) = Q|E , for the latter a prefix of
Q. Also, note that similarly P has to be a prefix for all the paths in ext(P, f).

I Example 37. A topological specification StopR for a Register can be defined as SlwwR in
Example 13 with the additional requirement that paths are topological orderings of visibilities

P ∈ StopR(G) iff P ∈ SlwwR(G) and ≺G ⊆ ≤P

In this way, StopR(G) excludes e.g. the two right-most arbitrations of the equation in Figure 1a.

I Definition 38 (Topological specifications). Let S be a specification. It is topological if

∀G, E , `. S(G`E) = ext(pre(S(G`E), f), f)

A topological ps-morphism (along `) is a ps-morphism f : X1 → X2 with underlying
function (E , λ) → (E>, λ[> 7→ `]) such that X2 = ext(pre(S(X2), f), f). The name is
directly reminiscent of what are called topological rdts in [10, 5], and in fact it similarly
guarantees that arbitrations preserve the visibility order. We can thus prove another instance
of Theorem 33, now concerning topological specifications.

F. Gadducci, H. Melgratti, C. Roldán, and M. Sammartino 42:13

I Proposition 39. Let F : PIDag(L) → SPath(L) be a functor mapping root extension
morphisms into topological ps-morphisms (along the same labels). If F weakly preserves finite
colimits, it induces a topological, coherent specification S(F).

7.4 Interchangeability of Functors and Coherent Specifications
The connection between the construction of Theorem 32 and Theorem 33 is quite tight, and
in fact induces a one-to-one correspondence between functors and coherent specifications.

I Theorem 40. Let S be a coherent specification. Then S(M(S)) = S. Conversely, let
F : PIDag(L) → SPath(L) be a functor verifying the hypothesis of Theorem 33. Then
M(S(F)) ' F.

Proof. We first show that M(S(F)) ' F. For notational convenience, we denote M(S(F))
by M′. We will show the existence of a natural isomorphism ϕ : M′ ⇒ F. By definition,
we have M′(G) = S(F)(G) = F(G), therefore we can define ϕG = IdF(G). We need to prove
that it is natural, which in this case amounts to showing M′(f) = F(f), for f : G → G′ in
PIDag(L). This follows from M′(f) and F(f) having the same underlying function between
events, namely the inclusion (EG, λG)→ (EG′ , λG′).

Now we show that S(M(S)) = S for any coherent specification S. This follows directly
from the definition of M and S. In fact, S(M(S))(G) = M(S)(G) = S(G). J

The one-to-one correspondence can be lifted to the specific classes of saturated/topological
coherent specifications and to the functors of Proposition 35/Proposition 39, respectively.
However, what is most relevant is the fact the interchangeability allows one to leverage the
categorical machinery of the functor category for providing operators on specifications.
I Remark 41. Besides coherence, one of the keys of the previous correspondence is the (quite
reasonable) choice of specifications that preserve isomorphisms. In general terms, whenever
one needs to consider the relationship between different specifications, it is necessary to take
into account how the underlying sets of events are related. This is quite easy to accomplish
if we move to the functorial presentation. For example, we can say that a specification S1
refines a specification S2 if S1(G) ⊆ S2(G) for all graphs G. However, this is a very concrete
characterisation: it would be more general to check for the existence of a ps-morphism
S2(G2)→ S1(G1) whose underlying function f : EG2 → EG1 is a bijection, in order to abstract
from the identities of the events. In this case, a further constraint would be that f is
preserved along the image of the morphisms in PIDag(L). These requirements boil down to
the existence of a natural transformation M(S2)→M(S1).

8 Conclusions and Further Works

In this paper we have provided a functorial characterisation of rdt specifications. Our
starting point is the denotational approach proposed in [7, 6], in which rdt specifications
are associated with functions mapping visibility graphs into sets of admissible arbitrations
that are also saturated and coherent, and where a preliminary functorial correspondence was
proposed. In this paper we streamlined and expanded the latter result. We considered the
category PDag(L) of labelled, acyclic graphs and pr-morphisms for representing visibility
graphs. We equip PDag(L) with operators that model the evolution of visibility graphs
and we show that the sub-category PIDag(L) of monic morphisms can be generated by the
subset of root extensions via pushouts. For arbitrations, we take SPath(L), which is the
category of sets of labelled, total orders and ps-morphisms. Then, we show that each coherent

FSTTCS 2019

42:14 A Categorical Account of Replicated Data Types

specification mapping isomorphic graphs into isomorphic set of paths induces a functor M(S) :
PIDag(L)→ SPath(L). Conversely, we prove that a functor F : PIDag(L)→ SPath(L)
that preserves finite colimits and binary pullbacks induces an coherent specification S(F).
Moreover, M(S) and S(F) are shown to be inverses of each other.

With respect to the categorical results expressed in [7], besides the additional charac-
terisation of topological specifications, the key improvement has been the proof that the
coherence of specifications has a precise counterpart in terms of the weak preservation of
colimits on their functorial presentations, as stated by Theorem 32 and Theorem 33. We thus
removed the set-theoretical requirements occurring e.g. in [7, Section 5.3], as witnessed by the
definition of coherent functor there. We believe that this purely functorial characterisation of
rdts, as further witnessed by Proposition 35 and Proposition 39, provides an ideal setting
for the development of techniques for handling rdt composition, as briefly pointed out by
the functorial characterisation of refinement between specifications. Our long term goal is to
equip rdt specifications with a set of operators that enables us to specify and reason about
complex rdts compositionally, i.e., in terms of their constituent parts. We aim at providing
a uniform formal treatment to the compositional approaches proposed in [1, 10, 12].

References

1 Carlos Baquero, Paulo Sérgio Almeida, Alcino Cunha, and Carla Ferreira. Composition in
state-based replicated data types. Bulletin of the EATCS, 123, 2017.

2 Ahmed Bouajjani, Constantin Enea, and Jad Hamza. Verifying eventual consistency of
optimistic replication systems. In Suresh Jagannathan and Peter Sewell, editors, POPL 2014,
pages 285–296. ACM, 2014.

3 Sebastian Burckhardt, Alexey Gotsman, and Hongseok Yang. Understanding eventual consist-
ency. Technical Report MSR-TR-2013-39, Microsoft Research, 2013.

4 Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek Zawirski. Replicated
data types: specification, verification, optimality. In Suresh Jagannathan and Peter Sewell,
editors, POPL 2014, pages 271–284. ACM, 2014.

5 Andrea Cerone, Giovanni Bernardi, and Alexey Gotsman. A framework for transactional
consistency models with atomic visibility. In Luca Aceto and David de Frutos-Escrig, editors,
CONCUR 2015, volume 42 of LIPIcs. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

6 Fabio Gadducci, Hernán Melgratti, and Christian Roldán. On the semantics and implementa-
tion of replicated data types. Science of Computer Programming, 167:91–113, 2018.

7 Fabio Gadducci, Hernán C. Melgratti, and Christian Roldán. A denotational view of replicated
data types. In Jean-Marie Jacquet and Mieke Massink, editors, COORDINATION 2017,
volume 10319 of LNCS, pages 138–156. Springer, 2017.

8 Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services. SIGACT News, 33(2):51–59, June 2002.

9 Alexey Gotsman and Sebastian Burckhardt. Consistency models with global operation
sequencing and their composition. In Andréa W. Richa, editor, DISC 2017, volume 91 of
LIPIcs, pages 23:1–23:16. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

10 Alexey Gotsman and Hongseok Yang. Composite replicated data types. In Jan Vitek, editor,
ESOP 2015, volume 9032 of LNCS, pages 585–609. Springer, 2015.

11 Gowtham Kaki, Kapil Earanky, K. C. Sivaramakrishnan, and Suresh Jagannathan. Safe
replication through bounded concurrency verification. In OOPSLA 2018, volume 2 of PACMPL,
pages 164:1–164:27. ACM, 2018.

12 Adriaan Leijnse, Paulo Sérgio Almeida, and Carlos Baquero. Higher-order patterns in replicated
data types. In PaPoC 2019. ACM, 2019.

F. Gadducci, H. Melgratti, C. Roldán, and M. Sammartino 42:15

13 Marc Shapiro, N. Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-free replicated data
types. In Xavier Défago, Franck Petit, and Vincent Villain, editors, SSS 2011, volume 6976 of
LNCS, pages 386–400. Springer, 2011.

14 K. C. Sivaramakrishnan, Gowtham Kaki, and Suresh Jagannathan. Declarative programming
over eventually consistent data stores. In David Grove and Steve Blackburn, editors, PLDI
2015, pages 413–424. ACM, 2015.

FSTTCS 2019

New Results on Cutting Plane Proofs for Horn
Constraint Systems
Hans Kleine Büning
Universität Paderborn, Paderborn, Germany
kbcsl@uni-paderborn.de

Piotr Wojciechowski
LDCSEE, West Virginia University, Morgantown, WV, USA
pwjociec@mix.wvu.edu

K. Subramani
LDCSEE, West Virginia University, Morgantown, WV, USA
k.subramani@mail.wvu.edu

Abstract
In this paper, we investigate properties of cutting plane based refutations for a class of integer
programs called Horn constraint systems (HCS). Briefly, a system of linear inequalities A · x ≥ b is
called a Horn constraint system, if each entry in A belongs to the set {0, 1,−1} and furthermore
there is at most one positive entry per row. Our focus is on deriving refutations i.e., proofs of
unsatisfiability of such programs using cutting planes as a proof system. We also look at several
properties of these refutations. Horn constraint systems can be considered as a more general form of
propositional Horn formulas, i.e., CNF formulas with at most one positive literal per clause. Cutting
plane calculus (CP) is a well-known calculus for deciding the unsatisfiability of propositional CNF
formulas and integer programs. Usually, CP consists of a pair of inference rules. These are called
the addition rule (ADD) and the division rule (DIV). In this paper, we show that cutting plane
calculus is still complete for Horn constraints when every intermediate constraint is required to be
Horn. We also investigate the lengths of cutting plane proofs for Horn constraint systems.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming

Keywords and phrases Horn constraints, cutting planes, proof length

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.43

Funding This research was supported in part by the Air-Force Office of Scientific Research through
Grant FA9550-19-1-017.

1 Introduction

This paper is concerned with the length of tree-like and Dag-like cutting plane refutations
of Horn constraint systems (HCSs). HCSs are a type of polyhedral constraint system in
which, each constraint is of the form a · x ≥ b, coefficients are limited to the set {0, 1,−1},
and each constraint has at most one variable with positive coefficient. HCSs find important
applications in several problem domains [6].

A refutation of a system of constraints is a certificate that proves the infeasibility of that
system. Associated with the concept of certificates is the concept of certifying algorithms.
A certifying algorithm is any algorithm that, instead of simply returning yes or no to a
feasibility query, provides a proof (certificate) that the returned response is correct [23].
Certifying algorithms for many combinatorial optimization problems have been studied in the
literature. This is especially true for certifying algorithms that utilize properties of graphical
structures [10,17,21].

© Hans Kleine Büning, Piotr Wojciechowski, and K. Subramani;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 43; pp. 43:1–43:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kbcsl@uni-paderborn.de
mailto:pwjociec@mix.wvu.edu
mailto:k.subramani@mail.wvu.edu
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.43
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

43:2 New Results on Cutting Plane Proofs for Horn Constraint Systems

Certifying algorithms rely on the presence of short certificates, both positive and negative.
In case of Horn constraint systems, a satisfying assignment serves as a positive certificate
and it is clearly succinct. In this paper, we focus on negative certificates or refutations of
Horn constraint systems; in particular, we focus on cutting plane based refutations. Our
primary interest is the length of the refutations. This helps identify what restrictions can
be placed on cutting plane refutations of HCSs, while still guaranteeing the existence of
short refutations. In particular, we focus on the length of both tree-like refutations and
Dag-like refutations. We also investigate how the length of refutations changes when different
inference rules are used. In this paper, we use two well-known inference rules known as
the ADD rule and DIV rule [5] (see Section 2). Additionally we study the complexity of
finding read-once refutations of Horn constraint systems when we allow for constraints to be
multiplied by bounded coefficients.

The principal contributions of this paper are as follows:
1. Cutting plane tree-like refutations using only the ADD rule do not p-simulate cutting plane

tree-like refutations using both the ADD rule and DIV rule for HCSs (see Theorem 9).
2. There exist HCSs for which Tree-like refutations using the ADD and DIV rules must be

exponential in the size of the input HCS (see Theorem 10).
3. Dag-like refutations using the ADD and DIV rules are polynomial in the size of the input

HCS (see Theorem 11).
4. Finding read-once refutations of HCSs is NP-hard even when we allow for constraints

to be multiplied by coefficients bounded by a fixed constant (see Theorem 17).

Additionally, we derive interesting corollaries from the above results.
The rest of this paper is organized as follows: In Section 2, we introduce the problems

being studied. Section 3 provides motivation for studying this problem and describe the
related work in the literature. Our results for tree-like refutations are presented in Section 4.
In Section 5, we give our results for Dag-like refutations. We examine read-once refutations
with restricted multiplication in Section 6. We conclude in Section 7 by summarizing our
contributions, and outlining avenues for future research.

2 Statement of Problems

In this section, we define the problems under consideration.

I Definition 1. A system of constraints A · x ≥ b is said to be a Horn Constraint system
(HCS) or a Horn polyhedron if

1. The entries in A belong to the set {0, 1,−1}.
2. Each row of A contains at most one positive entry.
3. x is a real valued vector.
4. b is an integral vector.

In a constraint a · x ≥ b1, b1 is called the defining constant and in the constraint system
A · x ≥ b, b is referred to as the defining constant vector. The assumption that b is integral
is necessary to maintain the soundness of the proof systems discussed in this paper.

We are interested in certificates of infeasibility; in particular, we are interested in cutting
plane based refutations. In linear programs (systems of linear inequalities), we use the
following rule:

H.K. Büning, P. Wojciechowski, and K. Subramani 43:3

ADD :
∑n

i=1 ai · xi ≥ b1
∑n

i=1 a′i · xi ≥ b2∑n
i=1(ai + a′i) · xi ≥ b1 + b2

(1)

We refer to Rule (1) as the ADD rule. This rule plays the same role as resolution in
clausal formulas. It is easy to see that Rule (1) is sound in that any assignment satisfying
the hypotheses must satisfy the consequent. Furthermore, the rule is complete in that if
the original system is linear infeasible, then repeated application of Rule (1) will result in a
contradiction of the form: 0 ≥ b, b > 0. The completeness of the ADD rule was established
by Farkas [11], in a lemma that is famously known as Farkas’ Lemma for systems of linear
inequalities [27].

Farkas’ lemma along with the fact that linear programs must have basic feasible solutions
establishes that the linear programming problem is in the complexity class NP ∩ coNP.
Farkas’ lemma is one of several lemmata that consider pairs of linear systems in which exactly
one element of the pair is feasible. These lemmas are collectively referred to as “Theorems of
the Alternative” [25].

I Definition 2. A linear refutation is a sequence of applications of the ADD rule that results
in a contradiction of the form 0 ≥ b, b ≥ 1.

In general, applying the ADD rule to an infeasible system A · x ≥ b, could result in a
contradiction of the form 0 ≥ b, b > 0. However, in case of Horn systems (with integral
defining constants), we must have b ≥ 1 (see [6]).

When studying integer feasibility, we typically use an additional rule. This is referred to
as the DIV rule and is described as follows:

DIV :
∑n

i=1 aij · xi ≥ bj d ∈ Z+ : aij

d ∈ Z, i = 1 . . . n∑n
i=1

aij

d · xi ≥
⌈

bj

d

⌉ (2)

Rule (2) corresponds to dividing a constraint by a common divisor d of the left-hand
coefficients and then rounding the right-hand side. Since each aij

d is an integer this inference
preserves integer solutions but does necessarily preserve linear solutions. However, for systems
of Horn constraints the DIV rule preserves linear feasibility, since in Horn polyhedra, linear
feasibility implies integer feasibility [6].

I Definition 3. An integer refutation is a sequence of applications of the ADD and DIV
rules that results in a contradiction of the form 0 ≥ b, b ≥ 1.

Note that for systems of Horn constraints, an integer refutation still proves linear
infeasibility.

We now formally define the types of refutations discussed in this paper.

I Definition 4. A Dag-like refutation is a refutation in which each constraint, can be used
any number of times. This applies to constraints present in the original system and those
derived as a result of previous applications of the inference rules.

I Definition 5. A tree-like refutation is a refutation in which each derived constraint, can
be used at most once. However, if a derived constraint needs to be reused, then it can be
re-derived.

I Definition 6. A read-once refutation is a refutation in which each constraint can be used
at most once. This applies to constraints present in the original system and those derived as
a result of previous applications of the inference rules.

FSTTCS 2019

43:4 New Results on Cutting Plane Proofs for Horn Constraint Systems

For both tree-like and Dag-like refutations, we are interested in the length of the refutation.
We measure the length of a refutation in terms of the number of inferences.

I Definition 7. The length of a refutation is the number of inferences (either the ADD rule
or the DIV rule) in the refutation.

We use |S| to denote the length of proof S. Using this definition of length, we can now
define the concept of p-simulation.

I Definition 8. Let S and S′ be two proof systems. S p-simulates S′ over a set of formulas
F , if there exists a polynomial p(n) such that for every formula f in F , there exists a proof
Sf of f under proof system S such that |Sf | ≤ p(|S′f |) where S′f is the shortest proof of f

under proof system S′.

This paper examines both tree-like refutations and Dag-like refutations using only the
ADD rule as well as these types of refutations using both the ADD and DIV rules.

3 Motivation and Related Work

Horn constraint systems generalize difference constraint systems. Recall that a difference
constraint is a relationship of the form: xi− xj ≥ bij . A conjunction of difference constraints
is called a Difference constraint system (DCS). It is well-known that a DCS is feasible if and
only if it has an integral solution (as long as the vector of defining constants is integral).
This is because the constraint matrix A of a DCS is Totally unimodular (TU) [27]. If A is
TU and b is integral, then all the extreme points of the polyhedron A · x ≥ b are integral.
Horn constraint matrices are not TU ; however, it is known that if A · x ≥ b is feasible, then
it has a minimal element, which is integral [32]. Horn constraint systems have been used as
domains in abstract interpretation [2, 9]. Horn systems also find applications in declarative
programming [16, 22]. The applications of Horn constraints to program verification has
been discussed extensively in [3, 20]. Recently, Horn clauses have been utilized to solve the
satisfiability problem for general CNF systems through MAXSAT resolution [4].

This paper is concerned with negative certificates. Assume that we are given a linear
constraint system P : A · x ≥ b (not necessarily Horn). Any satisfying assignment to the
system serves as a positive certificate which asserts the feasibility of P. In order to certify
the infeasibility of a linear system, we typically resort to Farkas’ lemma [11]. As per Farkas’
lemma, it suffices to provide a non-negative m-vector y, such that y ·A = 0, y · b < 0. This
vector y is called the Farkas witness of the infeasibility of P.

It is important to note that the absence of a Farkas witness guarantees linear feasibility
but not integer feasibility. For establishing integer infeasibility, additional inference rules are
required. One such inference system is the cutting plane calculus introduced by Gomory [12].
Gomory proposed cutting planes mainly as an algorithmic approach to solve integer programs
and was less concerned with proofs and proof lengths. One of the first papers to use cutting
planes as a propositional proof system is [8]. The connection between resolution and cutting
planes is explored in [14]. In [13], it is shown that there exist tautologies (the pigeonhole
principle) for which the number of resolution steps must be exponential in the size of the
input. Exponential lower bounds for cutting plane proofs are detailed in [5] and [26]. It is
unlikely that succinct certificates of infeasibility exist for integer programming, since this
would mean that integer programming lies in the complexity class NP ∩ coNP.

In this paper, we focus on deriving bounds on the lengths of cutting plane proofs in
restricted cutting plane systems. It is to be noted that placing restrictions on the type or
number of inferences that can be applied could cause the proof system to become incomplete.
There are several reasons to consider restricted proof systems, viz.

H.K. Büning, P. Wojciechowski, and K. Subramani 43:5

1. Restricted proofs tend to be “short” (polynomial in the size of the input). For instance,
read-once refutations are at most linear in the size of the input. Read-once and literal-once
refutations have been discussed extensively for boolean formulas in [15] and [31]. This
is in stark contrast to general resolution. In general resolution a refutation could have
exponentially many steps [13].

2. In certain cases, the presence of restricted proofs can be determined in polynomial time.
For instance, we have shown that the problem of read-once refutations is in P for difference
constraints [29] and Unit Two Variable Per Inequality (UTPVI) constraints [30].

In recent work, we showed that the problem of finding read-once refutations under the
ADD and DIV rules in Horn constraint systems is NP-hard [19]. In this paper, we extend
these results by studying the lengths of tree-like and Dag-like refutations under the ADD
and DIV rules. We also examine read-once refutations when we allow for limited use of
multiplication.

4 Tree-like Refutations

In this section, we examine the length of tree-like refutations for HCSs.
First, we compare tree-like proofs using only the ADD rule to tree-like proofs using both

the ADD and DIV rules.

I Theorem 9. Tree-like proofs using only the ADD rule do not p-simulate tree-like proofs
using both the ADD rule and DIV rule for HCSs.

Proof. Consider the following HCS:

−x1 − x2 − x3 − . . .− xn ≥ 1 x3 − . . .− xn ≥ 0

x1 − x2 − x3 − . . .− xn ≥ 0
...

x2 − x3 − . . .− xn ≥ 0 xn ≥ 0
(3)

We will show that any tree-like refutation of System 3 that uses only the ADD rule has at
least (2n − 1) inferences. This will be done by induction on the number of variables. Let Hn

be System 3.
If n = 1, then H1 consists of the constraints −x1 ≥ 1 and x1 ≥ 0. This system has the

following refutations using only the ADD rule:
1. Apply the ADD rule to −x1 ≥ 1 and x1 ≥ 0 to get 0 ≥ 1.
This is a contradiction. Thus, System H1 has a refutation with 1 = 21 − 1 inference. Note
that this is the shortest refutation of System H1, thus any refutation of this system must
use at least 1 inference as desired.

Now assume that when n = k any refutation System Hk uses at least (2k − 1) inferences.
Let us look at System Hk+1. Without the constraint xk+1 ≥ 0, System Hk+1 can be satisfied
by setting x = (0, 0, 0, . . . , 0,−1). Thus, any refutation of System Hk+1 must use xk+1 ≥ 0.

Let Rk+1 be a refutation of Hk+1. Since the addition of constraints is associative we can
assume without loss of generality that Rk+1 consists of the following:
1. A derivation of a constraint of the form −c · xk+1 ≥ 1 for some constant c from System

Hk+1 \ {xk+1 ≥ 0}.
2. An additional c applications of the ADD rule (using the constraint xk+1 ≥ 0) to derive

the the constraint 0 ≥ 1.

Note that System Hk+1 \ {xk+1 ≥ 0} can be constructed from System Hk by adding
−xk+1 to every constraint. This means that any tree-like derivation of −c · xk+1 ≥ 1 for
some constant c from System Hk+1 \ {xk+1 ≥ 0} corresponds to a refutation of System Hk.

FSTTCS 2019

43:6 New Results on Cutting Plane Proofs for Horn Constraint Systems

Thus, by the inductive hypothesis, this derivation must use at least (2k − 1) inferences. Since
every constraint in Hk+1 \ {xk+1 ≥ 0} has a −xk+1 term, we must have that c ≥ 2k in the
resultant constraint.

Thus, to derive the constraint 0 ≥ 1 an additional c ≥ 2k inferences of the form “ADD
−c ·xk+1 ≥ 1 and xk+1 ≥ 0 to get −(c− 1) ·xk+1 ≥ 1” are needed. Since we desire a tree-like
refutation, we cannot shorten this refutation by reusing already derived constraints. Thus,
any refutation of System Hk+1 needs to use a total of 2k + 2k − 1 = 2k+1 − 1 inferences.

However, System 3 has the following tree-like refutation using both the ADD and DIV
rules:
1. Apply the ADD rule to −x1 − x2 − x3 − . . .− xn ≥ 1 and x1 − x2 − x3 − . . .− xn ≥ 0 to

get
−2 · x2 − 2 · x3 − . . .− 2 · xn ≥ 1.

2. Apply the DIV rule with d = 2 to−2·x2−2·x3−. . .−2·xn ≥ 1 to get−x2−x3−. . .−xn ≥ 1.
3. Apply the ADD rule to −x2 − x3 − . . . − xn ≥ 1 and x2 − x3 − . . . − xn ≥ 0 to get
−2 · x3 − . . .− 2 · xn ≥ 1.

4. Apply the DIV rule with d = 2 to −2 · x3 − . . .− 2 · xn ≥ 1 to get −x3 − . . .− xn ≥ 1.

5.
...

6. Apply the ADD rule to −xn ≥ 1 and xn ≥ 0 to get 0 ≥ 1.

This refutation has only (2 · n− 1) inferences. Thus, the tree-like refutation of System 3
that uses only the ADD rule is exponentially longer than the tree-like refutation using both
the ADD and DIV rules. J

Despite the fact that the DIV rule can result in much shorter tree-like refutations for
systems of Horn constraints, there are still systems of Horn constraints with exponentially
long refutations.

I Theorem 10. For every positive integer n, there exists an HCS with n variables for which
every tree-like cutting plane proof using both the ADD and DIV rules is exponential in the
size of the system.

Proof. We show this by introducing the variable x0 to System (3). Specifically, we examine
the following system of Horn constraints.

x0 − x1 − x2 − x3 − . . .− xn ≥ 1 x3 − . . .− xn ≥ 0

x1 − x2 − x3 − . . .− xn ≥ 0
...

x2 − x3 − . . .− xn ≥ 0 xn ≥ 0
−x0 − xi ≥ 0

(4)

We will examine how the minimum length of a tree-like proof using both the ADD rule
and DIV rule depends on the choice of xi in the constraint −x0 − xi ≥ 0.

By construction, the constraint x0 − x1 − x2 − x3 − . . .− xn ≥ 1 is the only constraint in
System (4) with the term x0. Thus, any constraint derived from x0−x1−x2−x3−. . .−xn ≥ 1
must have the term x0 until x0 is canceled from the constraint. This means that, the DIV rule
cannot be applied (with d > 1) to any constraint derived from x0−x1−x2−x3− . . .−xn ≥ 1
until x0 is eliminated. There are two ways to eliminate x0 from this constraint:

Type 1. Derive the constraint −x0 ≥ 0 from the remaining constraints and then eliminate
x0. In this case, the only constraint with −x0 is the constraint −x0 − xi ≥ 0. Thus,
we must derive the constraint xi ≥ 0. To do this we need to eliminate xi+1 . . . xn

from xi − xi+1 − . . .− xn ≥ 0 using the constraints where those variables have positive
coefficients.

H.K. Büning, P. Wojciechowski, and K. Subramani 43:7

Type 2. Eliminate it by using the constraint −x0 − xi ≥ 0 and then eliminate the extra
copy of xi. Note that in this case the DIV rule cannot be applied until this extra copy is
eliminated. To do this without deriving the constraint xi ≥ 0 (since this would make it
the equivalent of a Type 1 refutation), we need to cancel the variables x1 . . . xi−1.

We will refer to these as Type 1 and Type 2 tree-like refutations. We will show that any
tree-like refutation of system (4) requires min(2 · n + 2n−i, 2 · (n− i) + 2i + 1) inferences.

First consider the case where xi = xn in System (4). This results in the following HCS.

x0 − x1 − x2 − x3 − . . .− xn ≥ 1 x3 − . . .− xn ≥ 0

x1 − x2 − x3 − . . .− xn ≥ 0
...

x2 − x3 − . . .− xn ≥ 0 xn ≥ 0
−x0 − xn ≥ 0

In this case, System (4) has the following Type 1 tree-like refutation.
1. Apply the ADD rule to xn ≥ 0 and −x0 − xn ≥ 0 to get −x0 ≥ 0.
2. Apply the ADD rule to −x0 ≥ 0 and x0 − x1 − x2 − x3 − . . .− xn ≥ 1 to get −x1 − x2 −

x3 − . . .− xn ≥ 1.

We have now derived System (3) with n variables. From Theorem 9, System (3) has a
tree-like refutation of length (2 · n − 1). Thus, if xi = xn, System (4) has a refutation of
length (2 · n + 1) as desired.

However, consider the case where xi = x1 in System 4. This results in the following HCS.

x0 − x1 − x2 − x3 − . . .− xn ≥ 1 x3 − . . .− xn ≥ 0

x1 − x2 − x3 − . . .− xn ≥ 0
...

x2 − x3 − . . .− xn ≥ 0 xn ≥ 0
−x0 − x1 ≥ 0

In this case, System (4) has the following Type 2 tree-like refutation.
1. Apply the ADD rule to −x0 − x1 ≥ 0 and x0 − x1 − x2 − x3 . . . xn ≥ 1 to get −2 · x1 −

x2 − x3 . . .− xn ≥ 1.
2. Apply the ADD rule to x1 − x2 − x3 − . . .− xn ≥ 0 and −2 · x1 − x2 − x3 . . .− xn ≥ 1 to

get −x1 − 2 · x2 − 2 · x3 − . . .− 2 · xn ≥ 1.
3. Apply the ADD rule to x1−x2−x3− . . .−xn ≥ 0 and −x1− 2 ·x2− 2 ·x3 . . .− 2 ·xn ≥ 1

to get −3 · x2 − 3 · x3 − . . .− 3 · xn ≥ 1.
4. Apply the DIV rule with d = 3 to−3·x2−3·x3−. . .−3·xn ≥ 1 to get−x2−x3−. . .−xn ≥ 1.

This results in System (3) with (n − 1) variables. This means that completing the
refutation will take an additional (2 · n− 3) inferences. Thus, in this case, System (4) has a
refutation of length (2 · n + 1) as desired.

Now we consider System (4). As stated previously, any tree-like refutation must be Type
1 or Type 2. Thus, we need to calculate the minimum number of inferences used by each
type of refutation.

First we find the minimum length of a Type 1 tree-like refutation. In the general case for
System (4), this refutation has the following form:
1. Apply the ADD rule to

xi − xi+1 − . . .− xn ≥ 0 and xi+1 − xi+2 . . .− xn ≥ 0

to get

xi − 2 · xi+2 − . . .− 2 · xn ≥ 0.

FSTTCS 2019

43:8 New Results on Cutting Plane Proofs for Horn Constraint Systems

2. Apply the ADD rule to xi − 2 · xi+2 − . . .− 2 · xn ≥ 0 and 2 copies of
xi+2 − xi+3 . . .− xn ≥ 0 to get

xi − 4 · xi+3 − . . .− 4 · xn ≥ 0.

3. For each r = 3 . . . (n− i− 1), apply the ADD rule to

xi − 2r−1 · xi+r − . . .− 2r−1 · xn ≥ 0

and 2r−1 copies of x+r − xi+r+1 . . .− xn ≥ 0 to get

xi − 2r · xi+r+1 − . . .− 2r · xn ≥ 0.

4. Apply the ADD rule to xi − 2n−i−1 · xn and 2n−i−1 copies of xn ≥ 0 to get xi ≥ 0.
5. Apply the ADD rule to xi ≥ 0 and −x0 − xi ≥ 0 to get −x0 ≥ 0.
6. Apply the ADD rule to −x0 ≥ 0 and x0 − x1 − x2 − x3 − . . .− xn ≥ 1 to get

−x1 − x2 − x3 − . . .− xn ≥ 1.

This takes a minimum of (2n−i + 1) inferences. We have now derived System (3) with n

variables. From Theorem 9, System (3) has a tree-like refutation of length (2 · n− 1). Thus,
the minimum length of a Type 1 tree-like refutation of System (4) is (2 · n + 2n−i) as desired.

Now we find the minimum length of a Type 2 tree-like refutation. In the general case for
System (4), this refutation has the following form:
1. Apply the ADD rule to

−x0 − xi ≥ 0 and x0 − x1 − x2 − x3 . . .− xn ≥ 1

to get

−x1 − x2 − . . .− 2 · xi − . . .− xn ≥ 1

2. Apply the ADD rule to

x1 − x2 − x3 − . . .− xn ≥ 0 and − x1 − x2 − . . .− 2 · xi − . . .− xn ≥ 1

to get

−2 · x2 − 2 · x3 − . . .− 3 · xi − . . .− 2 · xn ≥ 1.

3. Apply the ADD rule to −2 · x2 − 2 · x3 − . . . − 3 · xi − . . . − 2 · xn ≥ 1 and 2 copies of
x2 − x3 − . . .− xn ≥ 0 to get

−4 · x3 − 4 · x4 − . . .− 5 · xi − . . .− 4 · xn ≥ 1.

4. For each r = 3 . . . i− 1, apply the ADD rule to

−2r−1 · xr − 2r−1 · xr+1 − . . .− (2r−1 + 1) · xi − . . .− 2r−1 · xn ≥ 1

and 2r−1 copies of xr − xr+1 − . . .− xn ≥ 0 to get

−2r · xr+1 − 2r · xr+2 − . . .− (2r + 1) · xi − . . .− 2r · xn ≥ 1.

5. Apply the ADD rule to −(2i−1 + 1) · xi − 2i−1 · xi+1 − . . .− 2i−1 · xn ≥ 1 and (2i−1 + 1)
copies of xi − xi+1 . . .− xn ≥ 0 to get

−(2i + 1) · xi+1 − (2i + 1) · xi+2 − . . .− (2i + 1) · xn ≥ 1.

H.K. Büning, P. Wojciechowski, and K. Subramani 43:9

6. Apply the DIV rule with d = (2i + 1) to

−(2i + 1) · xi+1 − (2i + 1) · xi+2 − . . .− (2i + 1) · xn ≥ 1

to get

−xi+1 − xi+2 − . . .− xn ≥ 1.

This takes a minimum of (2i + 2) inferences. We have now derived System (3) with (n− i)
variables. This means that completing the refutation will take an additional (2 · n− i− 1)
inferences. Thus, the minimum length of a Type 2 tree-like refutation of System (4) is
(2 · (n− i) + 2i + 1) as desired.

Thus, when xi = x n
2
any tree-like refutation of System 4 must have a length of at least

(n + 2 n
2 + 1).

x0 − x1 − x2 − x3 − . . .− xn ≥ 1 x3 − . . .− xn ≥ 0

x1 − x2 − x3 − . . .− xn ≥ 0
...

x2 − x3 − . . .− xn ≥ 0 xn ≥ 0
−x0 − x n

2
≥ 0

Thus, any tree-like refutation of this system that uses both the ADD rule and the DIV
rule must be exponential in the size of the system. J

5 Dag-like Refutations

In this section, we examine the lengths of Dag-like refutations of systems of Horn constraints.
Unlike tree-like refutations, Dag-like refutations of HCSs are guaranteed to be polynomially

sized.

I Theorem 11. Dag-like cutting plane proofs of Horn constraint systems are polynomial in
the size of the constraint system even when restricted to using only the ADD rule.

Proof. Let H be an unsatisfiable system of Horn constraints with m constraints over n

variables. If H has no positive absolute constraints (constraints of the form xi ≥ c), then
let D ⊆ H be the set of difference constraints in H. If x is a assignment to the variables in
H that satisfies every constraint in D, then for some positive constant M , (x−M · 1) is a
satisfying assignment to H. Thus, D must be unsatisfiable. It is easy in this case H has a
refutation of length at most m since D is an infeasible system of difference constraints.

If H has a positive absolute constraint xi ≥ c, then we can construct the system H′
by removing the constraint xi ≥ c and summing it with every constraint with the literal
−xi. This process is repeated, until a feasible system is derived or an infeasible system of
difference constraints is constructed.

Note that if an infeasible system of difference constraints is constructed, then the system
has a read-once refutation using only the ADD rule. This is a linearly sized proof of
infeasibility. To obtain this system, we eliminated at most (n− 1) constraints of the form
xi ≥ c. Each of these eliminations took at most m applications of the ADD rule. Since the
refutation of the resultant DCS is read-once, it cannot use more than m inferences. Thus,
any refutation discovered by this process has length at most m · n. J

Note that the refutation generated this way has the following properties:
1. Every intermediate constraint is a Horn constraint.
2. Only the ADD rule is used.

FSTTCS 2019

43:10 New Results on Cutting Plane Proofs for Horn Constraint Systems

Thus, we have the following corollaries:

I Corollary 12. Every infeasible system of Horn constraints has a refutation where every
intermediate constraint is Horn.

Proof. This follows immediately from the fact that in the refutation generated by Theorem
11, every intermediate constraint is Horn. J

I Corollary 13. If a Dag-like refutation of length n exists for an unsatisfiable Horn constraint
system H, then there exists a polynomial p such that there exists Dag-like refutation of length
p(n), even when all intermediate constraints are Horn.

Proof. Let D be a Dag-like refutation of H of length n. Let HD ⊆ H be the set of constraints
in H used by D. Thus, HD is an infeasible HCS. By Theorem 11, HD has a polynomially
sized Dag-like refutation D′ of length n′ where every intermediate constraint is Horn. Thus,
there exists a polynomial p such that n′ ≤ p(|HD|) ≤ p(n) since |HD| ≤ n. J

I Corollary 14. Dag-like refutations using only the ADD rule p-simulate Dag-like refutations
using both the ADD rule and DIV rule for HCSs.

Proof. Let H be an arbitrary HCS. Let D be the shortest Dag-like refutation of H that uses
both the ADD rule and the DIV rule, and let n be the length of D. Let HD ⊆ H be the set
of constraints in H used by D. Thus, HD is an infeasible HCS. By Theorem 11, HD has a
polynomially sized Dag-like refutation D′ of length n′ using only the ADD rule. Thus, there
exists a polynomial p such that n′ ≤ p(|HD|) ≤ p(n) since |HD| ≤ n. J

6 Restricted Read-once Refutations

In this section, we examine the complexity of finding read-once refutations of HCSs when we
allow for the multiplication of constraints by bounded coefficients. To accomplish this, we
introduce an inference rule known as the MUL rule. This rule is described as follows:

MUL :
∑n

i=1 aij · xi ≥ bj cj ∈ Z+∑n
i=1 cj · aij · xi ≥ cj · bj

(5)

Rule (5) corresponds to multiplying a constraint by a positive integer multiplier. Note
that, with unrestricted use of the ADD and MUL rules, any infeasible system of Horn
constraints has a read-once refutation. This refutation is constructed as follows:

1. Let H be an infeasible HCS, and let T be a tree-like refutation of H that uses only the
ADD rule.

2. For each constraint lj ∈ H, let cj be the number of times lj is used in T . If cj > 0, apply
the MUL rule, with multiplier cj to lj .

3. Use the ADD rule to sum together all the constraints generated with the MUL rule.

Thus, we examine the problem of finding read-once refutations in HCSs when we only
allow for restricted use of the MUL rule.

I Definition 15. An r-restricted read-once refutation using the ADD and MUL rules of an
HCS H, is a read-once refutation of H such that:

1. The MUL rule is only applied with with multiplier c ≤ r.
2. The MUL rule is only applied to constraints in H.

H.K. Büning, P. Wojciechowski, and K. Subramani 43:11

First we show that, for any fixed constant r, the problem of finding an r-restricted
read-once refutation using the ADD and MUL rules is NP-hard. To accomplish this, we
utilize a reduction from the set packing problem.

I Definition 16. The set packing problem is the following: Given a set S, m subsets
S1, . . . , Sm of S, and an integer k, does {S1, . . . , Sm} contain k mutually disjoint sets.

This problem is known to be NP-complete [18].

I Theorem 17. Let r be any positive integer. Finding r-restricted read-once refutations
using the ADD and MUL rules is NP-hard for HCSs.

Proof. Consider an instance of the set packing problem and let h be the integer such that
2h ≤ r < 2h+1. We construct the system of Horn constraints H as follows:

1. For each xi ∈ S:
a. Create the variables xi and wi.
b. For each g = 1 . . . h, create the variables yi,(2·g−1) and yi,(2·g). Also create the

constraints yi,(2·g−1) − yi,(2·g+1) − yi,(2·g+2) ≥ 0 and yi,(2·g) − yi,(2·g+1) − yi,(2·g+2) ≥ 0.
c. Create the constraints xi − yi,1 − yi,2 ≥ 0, yi,(2·h−1) − wi ≥ 0, yi,(2·h) − wi ≥ 0, and

wi ≥ 0.
2. For j = 1 . . . k, create the variable vj .
3. For each subset Sl, l = 1 . . . m, and each j = 1 . . . k create the constraints vj−

∑
xi∈Sl

xi ≥
0.

4. Finally create the constraint −v1 − . . .− vk ≥ 1.

We will show that H has an r-restricted read-once refutation using the ADD and MUL
rules if and only if the sets S1, . . ., Sm have a packing of size k. First we assume that H has
a r-restricted read-once refutation R using the ADD and MUL rules.

Consider the constraint xi − yi,1 − yi,2 ≥ 0. Assume that R applies the MUL rule to this
constraint with multiplier ci. This results in the constraint ci · xi − ci · yi,1 − ci · yi,2 ≥ 0 To
eliminate the variables yi,1 and yi,2, R must also do the following:

1. Apply the MUL rule with multiplier ci to each the constraints yi,1 − yi,3 − yi,4 ≥
0 and yi,2 − yi,3 − yi,4 ≥ 0. Then apply the ADD rule to generate the constraint
ci · xi − 2 · ci · yi,3 − 2 · ci · yi,4 ≥ 0.

2. Apply the MUL rule with multiplier 2 · ci to each the constraints yi,3 − yi,5 − yi,6 ≥
0 and yi,4 − yi,5 − yi,6 ≥ 0. Then apply the ADD rule to generate the constraint
ci · xi − 4 · ci · yi,5 − 4 · ci · yi,6 ≥ 0.

3. Apply the MUL rule with multiplier 4 · ci to each the constraints yi,5 − yi,7 − yi,8 ≥
0 and yi,6 − yi,7 − yi,8 ≥ 0. Then apply the ADD rule to generate the constraint
ci · xi − 8 · ci · yi,7 − 8 · ci · yi,8 ≥ 0.

4. Apply the MUL rule with multiplier 2h−1 ·ci to each the constraints yi,(2·h−1)−wi ≥ 0 and
yi,(2·h)−wi ≥ 0. Then apply the ADD rule to generate the constraint ci ·xi−2h ·ci ·wi ≥ 0.

5. Apply the MUL rule with multiplier 2h · ci to the constraint wi ≥ 0. Then apply the
ADD rule to generate the constraint ci · xi ≥ 0.

Since R is an r-restricted read-once refutation, we have that 2h · ci ≤ r < 2 · 2h. Thus,
ci = 1.

By construction, xi − yi,1 − yi,2 ≥ 0 is the only constraint in H where xi has positive
coefficient. Thus, for each xi, R can only use one constraint where xi has negative coefficient.
Otherwise, R will be unable to cancel every instance of −xi.

FSTTCS 2019

43:12 New Results on Cutting Plane Proofs for Horn Constraint Systems

Note that, by construction, the only constraint in H with positive defining constant is
−v1 − . . . − vk ≥ 1. Thus, this constraint must by used in R. For each vi, R must use a
constraint corresponding to one of the sets S1, . . ., Sm. Recall, that xi can be used by at
most one of these constraints, thus the sets chosen for each vj must be mutually disjoint and
no set can be chosen multiple times. This can only happen if the sets S1, . . ., Sm have a
packing of size k.

Now assume that the sets S1, . . ., Sm have a packing of size k. Assume without loss of
generality that this packing is the sets S1, . . ., Sk. H has the following r-restricted read-once
refutation using the ADD and MUL rules.
1. Start with the constraint −v1 − . . .− vk ≥ 1.
2. For each vj , apply the ADD rule to the constraint vj −

∑
xi∈Sj

xi ≥ 0 and the result of
the previous application of the ADD rule.

3. Let L be the constraint derived through this process. Since the sets S1, . . ., Sk are
mutually disjoint, every variable xi in L has coefficient −1.

4. For each xi in L, derive the constraint xi ≥ 0, using the method detailed previously.
Then use the constraint xi ≥ 0 to eliminate −xi from L. J

Note that the construction used in Theorem 17 assumes that r is a fixed constant. Let
n be the number of variables in the HCS H constructed in the proof of Theorem 17. By
construction, we have that n = k + (2 · log2 r + 2) · |S|. We can assume without loss of
generality that k ≤ |S| (we cannot pack more than k non-empty subsets of S into S). Thus,
n ≤ |S| · (2 · log2 r + 3). Let c be an arbitrary positive integer. If we choose r = 2

|S|c−1−3
2 ,

then |S|c−1 = 2 · (log2 r) + 3 and nc−1 ≤ (2 · (log2 r) + 3)c. This means that log2 r is in
O(n1− 1

c). This leads to the following corollary of Theorem 17.

I Corollary 18. Let c be an arbitrary positive integer. Finding r-restricted read-once refuta-
tions using the ADD and MUL rules is NP-hard for HCSs, even when r is O

(
2(n1− 1

c)
)
.

7 Conclusion

In this paper, we studied refutability in Horn constraint systems under various cutting plane
based proof systems. Horn constraint systems generalize difference constraint systems and
find applications in a number of domains, especially program verification. We looked at
both tree-like and Dag-like refutations. Both these proof systems are complete for Horn
constraint systems (assuming that the defining constants are integers). For both types of
refutations we looked at refutations using only the ADD rule as well as refutations using
both the ADD and DIV rules. We showed there exist HCSs with exponentially sized tree-like
refutations even when both the ADD and DIV rules are allowed. We also showed that every
HCS has a polynomially sized Dag-like refutation even when restricted to only the ADD
rule. It follows that cutting plane Dag-like refutations using only the ADD rule p-simulate
cutting plane Dag-like refutations using the ADD rule and DIV rule for HCSs. Additionally,
we established that if a cutting plane refutation of length n exists for an unsatisfiable Horn
constraint system, then there exists a cutting plane proof of length p(n), even when all
intermediate constraints are Horn. We also showed that, when we allow for constraints to
be multiplied by bounded coefficients, the problem of finding a read-once refutation of an
HCS is NP-complete. Our results are important because they are the first step towards
the design of efficient procedures in constraint solvers [7, 24,28].

H.K. Büning, P. Wojciechowski, and K. Subramani 43:13

From our perspective, the following problems are worth pursuing:
1. Can we find the shortest tree-like or Dag-like proofs of an unsatisfiable Horn constraint

system, if only the ADD rule is permitted?
2. Can we find the shortest tree-like or Dag-like proofs of an unsatisfiable Horn constraint

system, if both the ADD and the DIV rules are permitted?

It is worth noting that in the case of Horn clauses the problem of finding the shortest
resolution proof is NP-hard [1]. Even worse, the problem is hard to linearly approximate [1].
However, these negative results do not directly apply to tree-like (or Dag-like) proofs in Horn
constraint systems.

References
1 M. Alekhnovich, S. Buss, S. Moran, and T. Pitassi. Minimum Propositional Proof Length

is NP-Hard to Linearly Approximate. In Mathematical Foundations of Computer Science
(MFCS), pages 176–184. Springer-Verlag, 1998. Lecture Notes in Computer Science.

2 Alexey Bakhirkin and David Monniaux. Combining Forward and Backward Abstract Inter-
pretation of Horn Clauses. In Static Analysis - 24th International Symposium, SAS 2017, New
York, NY, USA, August 30 - September 1, 2017, Proceedings, pages 23–45, 2017.

3 Nikolaj Bjørner, Arie Gurfinkel, Kenneth L. McMillan, and Andrey Rybalchenko. Horn Clause
Solvers for Program Verification. In Fields of Logic and Computation II - Essays Dedicated to
Yuri Gurevich on the Occasion of His 75th Birthday, pages 24–51, 2015.

4 Maria Luisa Bonet, Sam Buss, Alexey Ignatiev, Joao Marques-Silva, and Antonio Morgado.
MaxSAT Resolution With the Dual Rail Encoding. In AAAI Conference on Artificial In-
telligence, 2018. URL: https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/
16782/16235.

5 Maria Luisa Bonet, Toniann Pitassi, and Ran Raz. Lower Bounds for Cutting Planes Proofs
with Small Coefficients. J. Symb. Log., 62(3):708–728, 1997.

6 R. Chandrasekaran and K. Subramani. A combinatorial algorithm for Horn programs. Discrete
Optimization, 10:85–101, 2013.

7 Alessandro Cimatti, Alberto Griggio, and Roberto Sebastiani. Computing Small Unsatisfiable
Cores in Satisfiability Modulo Theories. J. Artif. Intell. Res. (JAIR), 40:701–728, 2011.

8 W. Cook, C. R. Coullard, and Gy. Turan. On the complexity of Cutting-Plane Proofs. Discrete
Applied Mathematics, 18:25–38, 1987.

9 Patrick Cousot and Radhia Cousot. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In POPL, pages
238–252, 1977.

10 Marcel Dhiflaoui, Stefan Funke, Carsten Kwappik, Kurt Mehlhorn, Michael Seel, Elmar
Schömer, Ralph Schulte, and Dennis Weber. Certifying and repairing solutions to large LPs
how good are LP-solvers? In SODA, pages 255–256, 2003.

11 Gyula Farkas. Über die Theorie der Einfachen Ungleichungen. Journal für die Reine und
Angewandte Mathematik, 124(124):1–27, 1902.

12 R. E. Gomory. Outline of an algorithm for integer solutions to linear programs. Bulletin of
the American Mathematical Society, 64:275–278, 1958.

13 A. Haken. The intractability of resolution. Theoretical Computer Science, 39(2-3):297–308,
August 1985.

14 John N. Hooker. Generalized Resolution and Cutting Planes. Annals of Operations Research,
12(1-4):217–239, 1988.

15 K. Iwama and E. Miyano. Intractability of Read-Once Resolution. In Proceedings of the
10th Annual Conference on Structure in Complexity Theory (SCTC ’95), pages 29–36, Los
Alamitos, CA, USA, June 1995. IEEE Computer Society Press.

FSTTCS 2019

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16782/16235
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16782/16235

43:14 New Results on Cutting Plane Proofs for Horn Constraint Systems

16 Joxan Jaffar and Michael Maher. Constraint Logic Programming: A Survey. The Journal of
Logic Programming, s 19–20:503–581, October 1994. doi:10.1016/0743-1066(94)90033-7.

17 Haim Kaplan and Yahav Nussbaum. Certifying algorithms for recognizing proper circular-arc
graphs and unit circular-arc graphs. Discrete Applied Mathematics, 157(15):3216–3230, 2009.

18 Richard M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W.
Thatcher, editors, Complexity of Computer Computations, pages 85–103, New York, 1972.
Plenum Press.

19 Hans Kleine Büning, Piotr J. Wojciechowski, and K. Subramani. On the application of
restricted cutting plane systems to Horn constraint systems. In The 12th International
Symposium on Frontiers of Combining Systems, London, United Kingdom„ September 4-6,
2019, Proceedings, pages 149–164, 2019.

20 Anvesh Komuravelli, Nikolaj Bjørner, Arie Gurfinkel, and Kenneth L. McMillan. Compositional
Verification of Procedural Programs using Horn Clauses over Integers and Arrays. In Formal
Methods in Computer-Aided Design, FMCAD 2015, Austin, Texas, USA, September 27-30,
2015., pages 89–96, 2015.

21 Dieter Kratsch, Ross M. McConnell, Kurt Mehlhorn, and Jeremy Spinrad. Certifying algorithms
for recognizing interval graphs and permutation graphs. In SODA, pages 158–167, 2003.

22 Kung-Kiu Lau and Mario Ornaghi. Specifying Compositional Units for Correct Program
Development in Computational Logic. In Program Development in Computational Logic: A
Decade of Research Advances in Logic-Based Program Development, pages 1–29. Springer,
2004.

23 R. M. McConnell, K. Mehlhorn, S. Näher, and P. Schweitzer. Certifying algorithms. Computer
Science Review, 5(2):119–161, 2011.

24 Microsoft Research. Z3: An efficient SMT solver. URL: http://research.microsoft.com/
projects/z3/.

25 G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. JohnWiley&Sons,
New York, 1999.

26 Pavel Pudlák. Lower Bounds for Resolution and Cutting Plane Proofs and Monotone Compu-
tations. J. Symb. Log., 62(3):981–998, 1997. doi:10.2307/2275583.

27 A. Schrijver. Theory of Linear and Integer Programming. John Wiley and Sons, New York,
1987.

28 SRI International. Yices: An SMT solver. URL: http://yices.csl.sri.com/.
29 K. Subramani. Optimal Length Resolution Refutations of Difference Constraint Systems.

Journal of Automated Reasoning (JAR), 43(2):121–137, 2009.
30 K. Subramani and Piotr Wojciechowki. A Polynomial Time Algorithm for Read-Once Certific-

ation of Linear Infeasibility in UTVPI Constraints. Algorithmica, 81(7):2765–2794, 2019.
31 Stefan Szeider. NP-completeness of refutability by literal-once resolution. In Automated

Reasoning, First International Joint Conference, IJCAR 2001, Siena, Italy, June 18-23, 2001,
Proceedings, pages 168–181, 2001.

32 A.F. Veinott and G.B. Dantzig. Integral Extreme points. SIAM Review, 10:371–372, 1968.

https://doi.org/10.1016/0743-1066(94)90033-7
http://research.microsoft.com/projects/z3/
http://research.microsoft.com/projects/z3/
https://doi.org/10.2307/2275583
http://yices.csl.sri.com/

The Tree-Generative Capacity of
Combinatory Categorial Grammars
Marco Kuhlmann
Dept. of Computer and Information Science, Linköping University, SE-581 83 Linköping, Sweden
marco.kuhlmann@liu.se

Andreas Maletti
Institute for Computer Science, Universität Leipzig, P.O. box 100 920, D-04009 Leipzig, Germany
maletti@informatik.uni-leipzig.de

Lena Katharina Schiffer
Institute for Computer Science, Universität Leipzig, P.O. box 100 920, D-04009 Leipzig, Germany
schiffer@informatik.uni-leipzig.de

Abstract
The generative capacity of combinatory categorial grammars as acceptors of tree languages is
investigated. It is demonstrated that the such obtained tree languages can also be generated by
simple monadic context-free tree grammars. However, the subclass of pure combinatory categorial
grammars cannot even accept all regular tree languages. Additionally, the tree languages accepted
by combinatory categorial grammars with limited rule degrees are characterized: If only application
rules are allowed, then they can accept only a proper subset of the regular tree languages, whereas
they can accept exactly the regular tree languages once first degree composition rules are permitted.

2012 ACM Subject Classification Theory of computation; Theory of computation → Formal lan-
guages and automata theory; Theory of computation → Tree languages; Theory of computation
→ Grammars and context-free languages; Computing methodologies; Computing methodologies →
Artificial intelligence; Computing methodologies → Natural language processing

Keywords and phrases Combinatory Categorial Grammar, Regular Tree Language, Linear Context-
free Tree Language

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.44

Funding Marco Kuhlmann: Supported by the Centre for Industrial IT (CENIIT), grant 15.02.
Lena Katharina Schiffer : Supported by the German Research Foundation (DFG) Research Training
Group GRK 1763 “Quantitative Logics and Automata”.

1 Introduction

Categorial grammars [5] were introduced alongside the phrase-structure grammars (regular,
context-free, context-sensitive grammars, etc.) of the Chomsky hierarchy [6] inspired by
classical notions from proof theory [1, 3]. Combinatory Categorial Grammar (CCG) [23, 24] is
an extension following the approach of combinatory logic [22, 7]. CCG received considerable
attention in theoretical computer science culminating in the proofs of its mild context-
sensitivity, which in particular, requires efficient parsing [27], as well as its equivalence to
several other established grammar formalisms [28]. It has since become a widely applied
formalism in computational linguistics [18, 17].

The basis for CCG is provided by a lexicon and a rule system. The lexicon assigns
syntactic categories to the symbols of the input and the rule system describes how adjoining
categories can be combined to eventually obtain a (binary) derivation tree. The mentioned
equivalence result due to Vijay-Shanker and Weir [28] shows that CCG, Tree-Adjoining
Grammar (TAG) [12] as well as linear indexed grammars [11] are equivalent in expressive
power, which establishes that they generate the same string languages. However, the used

© Marco Kuhlmann, Andreas Maletti, and Lena Katharina Schiffer;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 44; pp. 44:1–44:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-2492-9872
mailto:marco.kuhlmann@liu.se
https://orcid.org/0000-0003-3202-0498
mailto:maletti@informatik.uni-leipzig.de
https://orcid.org/0000-0002-0164-2932
mailto:schiffer@informatik.uni-leipzig.de
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.44
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

44:2 Tree-Generative Capacity of CCG

construction depends on the ability to restrict the combination rules and to include entries
for the empty word in the lexicon. Modern variants of CCG disfavor rule restrictions and the
obtained pure CCG are strictly less expressive than TAG [14] unless unbounded generalized
composition rules are permitted, in which case they are strictly more expressive than TAG [26].
Indeed, CCG with unbounded composition rules, rule restrictions as well as ε-entries in the
lexicon are Turing-complete [15].

The mentioned studies examine the string (or weak) generative capacity of CCG, but
already [26] asks for the tree (or strong) generative capacity or, more specifically, the expres-
siveness of the tree languages of CCG derivation trees [10]. Koller and Kuhlmann [13] show
that CCG and TAG generate incomparable classes of dependency trees. In this contribution,
we answer the original question and characterize the tree languages accepted by CCGs, and
relate them to the standard notions of regular [9, 10] and context-free tree languages [19, 20].
A tree language F is accepted by a CCG G if F is obtained as a relabeling of the derivation
tree language of G. Our work therefore is similar in spirit to that of Tiede [25], who studied
the strong generative capacity of Lambek-style categorial grammars [16].

In the variant of CCG we investigate, the rule system is finite and includes only application
and composition operators (i.e. rules based on the B-combinator of combinatory logic [8]).
In general, we allow rule restrictions that further constrain the categories the rules can be
applied to. Notice that our results concern only binary trees since the derivation trees of
CCGs are binary. Our main result is that the tree languages accepted by CCGs can also be
generated by simple monadic context-free tree grammars (Theorem 20). For CCG without
rule restrictions this inclusion is proper since not even all regular tree languages [10] are
accepted by these CCGs (Theorem 22). In addition, we show that CCGs without composition
operations, which are weakly equivalent to (ε-free) context-free grammars, generate a strict
subclass of the regular tree languages that does not even include all local tree languages
(Theorem 9). Finally, if we limit the permitted composition operators to first degree, then
exactly the regular tree languages are accepted (Theorem 14).

2 Preliminaries

We denote the set of nonnegative integers by N and let [k] = {i ∈ N | 1 ≤ i ≤ k} for every
k ∈ N. The power-set (i.e. set of all subsets) of a set A is P(A) = {A′ | A′ ⊆ A}, and
P+(A) = P(A) \ {∅} contains all nonempty subsets. As usual, an alphabet is a finite set of
symbols. The monoid (Σ∗, ·, ε) consists of all strings (i.e. sequences) over a set Σ together
with concatenation · and the empty string ε. We often write concatenation by juxtaposition.
The length of a string w ∈ Σ∗ (i.e. the number of components in the sequence) is denoted
by |w|. Any set L ⊆ Σ∗ is a language, and the languages form a monoid (P(Σ∗), ·, {ε}) with
concatenation lifted to languages by L · L′ = {w · w′ | w ∈ L, w′ ∈ L′}. Every mapping
f : Σ → ∆∗ [respectively, f : Σ → P(∆∗)] extends uniquely to a monoid homomorphism
f ′ : Σ∗ → ∆∗ [respectively, f ′ : Σ∗ → P(∆∗)]. We will not distinguish the mapping f and its
induced homomorphism f ′, but rather use f for both.

Given two sets A and A′, a relation from A to A′ is a subset ρ ⊆ A×A′. The inverse of ρ
is ρ−1 = {(a′, a) | (a, a′) ∈ ρ}, and for every B ⊆ A, we let ρ(B) = {a′ | ∃b ∈ B : (b, a′) ∈ ρ}.
The relation ρ ⊆ A×A′ can also be understood as a mapping ρ̂ : A→ P(A′) with ρ̂(a) = ρ({a})
for all a ∈ A. We will not distinguish these two representations.

We build binary trees over the set Σ2 of binary internal symbols, the alphabet Σ1 of
unary internal symbols, and the alphabet Σ0 of leaf symbols.1 Formally, the set TΣ2,Σ1(Σ0)
of binary (Σ2,Σ1)-trees indexed by Σ0 is the smallest set T such that (i) a ∈ T for all a ∈ Σ0,

1 We explicitly allow an infinite set of internal binary symbols.

M. Kuhlmann, A. Maletti, and L. K. Schiffer 44:3

(ii) n(t) ∈ T for all n ∈ Σ1 and t ∈ T , and (iii) c(t1, t2) ∈ T for all c ∈ Σ2 and t1, t2 ∈ T . We
use graphical representations of trees to increase the readability. Every subset F ⊆ TΣ2,Σ1(Σ0)
is a tree language. The mapping pos : TΣ2,Σ1(Σ0)→ P+({1, 2}∗) assigning positions to a tree
is defined by (i) pos(a) = {ε} for all a ∈ Σ0, (ii) pos(n(t)) = {ε} ∪ {1 ·w | w ∈ pos(t)} for all
n ∈ Σ1 and t ∈ TΣ2,Σ1(Σ0), and (iii) for all c ∈ Σ2 and t1, t2 ∈ TΣ2,Σ1(Σ0),

pos
(
c(t1, t2)

)
=
{
ε
}
∪
{

1 · w | w ∈ pos(t1)
}
∪
{

2 · w | w ∈ pos(t2)
}
.

We let leaves(t) = {w ∈ pos(t) | w · 1 /∈ pos(t)} be the set of leaf positions in t, and
ht(t) = maxw∈leaves(t) |w| be the height of the tree t. The subtree of t at position w ∈ pos(t)
is denoted by t|w, and the label of t at position w is denoted by t(w). Moreover, t[t′]w denotes
the tree obtained from t by replacing the subtree at position w by the tree t′ ∈ TΣ2,Σ1(Σ0).
Given ∆ ⊆ Σ2 ∪ Σ1 ∪ Σ0, let pos∆(t) = {w ∈ pos(t) | t(w) ∈ ∆}. We simply write posδ(t)
instead of pos{δ}(t).

We reserve the use of the symbol �. The set CΣ2,Σ1(Σ0) of contexts contains all trees
of TΣ2,Σ1(Σ0 ∪ {�}), in which the special symbol � occurs exactly once. Let C ∈ CΣ2,Σ1(Σ0).
Since pos�(C) contains one element, we often identify it with its only element. To save space,
we write tC for C[t]w, where w = pos�(C).2

A relabeling is a mapping ρ : (Σ2 ∪Σ1 ∪Σ0)→ P+(∆) for some alphabet ∆.3 It induces a
mapping ρ̂ : TΣ2,Σ1(Σ0)→ P+(T∆,∆(∆)) for every t ∈ TΣ2,Σ1(Σ0) by

ρ̂(t) =
{
u ∈ T∆,∆(∆) | pos(u) = pos(t), ∀w ∈ pos(u) : u(w) ∈ ρ

(
t(w)

)}
.

In the following, we again do not distinguish between the relabeling ρ and its induced
mapping ρ̂ on trees. A simple (monadic) context-free tree grammar [19, 20] (sCFTG) is a
system G = (N,Σ, I, P) such that (i) N = N1 ∪N0, where N1 and N0 are alphabets of unary
and nullary nonterminals, respectively, (ii) Σ = Σ2 ∪ Σ0, where Σ2 and Σ0 are alphabets of
internal and leaf terminal symbols, respectively, such that N ∩Σ = ∅, (iii) I ⊆ N0 are nullary
start nonterminals, and (iv) P is a finite set of productions such that

P ⊆
(
N0 × TΣ2,N1(Σ0 ∪N0)

)
∪
(
N1 × CΣ2,N1(Σ0 ∪N0)

)
.

The grammar is called monadic, because there are only nullary and unary nonterminals;
simple means that the rules are linear and nondeleting, so all subtrees of a nonterminal on
the left side of a rule have to appear exactly once on the right side. If N1 = ∅, then G is
a regular tree grammar (RTG). We write productions (n, r) as n→ r. Next, we define the
rewrite semantics [2] for the sCFTG G. For arbitrary ξ, ζ ∈ TΣ2,N1(Σ0 ∪N0) and positions
w ∈ pos(ξ) we let ξ ⇒G,w ζ if there exists a production n→ r ∈ P such that

ξ|w = n and ζ = ξ[r]w with n ∈ N0, or
ξ|w = n(ξ′) and ζ = ξ[ξ′r]w with n ∈ N1 and ξ′ ∈ TΣ2,N1(Σ0 ∪N0).

We write ξ ⇒G ζ if there exists w ∈ pos(ξ) such that ξ ⇒G,w ζ. The tree language F(G)
generated by G is F(G) = {t ∈ TΣ2,∅(Σ0) | ∃n0 ∈ I : n0 ⇒+

G t}, where ⇒+
G is the transitive

closure of ⇒G. The tree languages generated by sCFTGs are context-free,4 and a tree
language F is regular if and only if there exists an RTG G such that F = F(G). A detailed
introduction to trees and tree languages can be found in [10].

2 This order tC is beneficial for arguments C (see Section 3).
3 We require that each input symbol can be relabeled.
4 Note that this is not an equivalence. There are context-free tree languages that are not generated by

any sCFTG.

FSTTCS 2019

44:4 Tree-Generative Capacity of CCG

s⇒
σ

α σ

s β

⇒

σ
α σ

σ

α σ

s β

β ⇒

σ
α σ

σ

α σ

σ

α β

β

β
s⇒

σ
α σ

n

β

γ ⇒

σ
α σ

σ

α σ

n

σ

β β

γ

γ

⇒

σ
α σ

σ

α σ

σ

α σ

σ

σ

β β

β

γ

γ

γ

Figure 1 Derivations using the RTG G1 (left) and the sCFTG G2 (right) of Examples 1 and 2,
respectively.

I Example 1. The regular tree grammar G1 = (N,Σ, I, P) with N = N0 = I = {s},
Σ2 = {σ}, Σ0 = {α, β}, and P = {s → σ(α, σ(s, β)), s → σ(α, β)} generates the leaf
language {αnβn | n ≥ 1}. Note that because it is an RTG, all nonterminals are nullary and
thus leaves, which is similar to the property of right-linearity that can be encountered in
CFGs.

Two important facts concerning the regular tree languages are that they properly include
the derivation tree languages of CFGs and that their leaf languages are exactly the context-free
languages.

I Example 2. The sCFTG G2 = (N,Σ, I, P) with N = N0 = I = {s}, N2 = {n}, Σ2 = {σ},
Σ0 = {α, β, γ} and

P =
{
s→ σ(α, σ(β, γ)), s→ σ(α, σ(n(β), γ)),
n→ σ(α, σ(n(σ(�, β)), γ)), n→ σ(α, σ(σ(�, β), γ))}

generates the leaf language {αnβnγn | n ≥ 1}. Since G2 is simple, the placeholder �, which
indicates the new position of the subtree under the unary nonterminal symbol n, appears
exactly once on the right side of the respective rules.

3 Combinatory Categorial Grammars

Combinatory categorial grammars (CCGs) extend the classical categorial grammars of
Ajdukiewicz and Bar-Hillel [4] by rules inspired by combinatory logic [8]. Here, as in
most of the formal work on CCGs, we restrict our attention to the rules of composition,
which are based on the B-combinator.

Let A be an alphabet, and let C(A) = TS,∅(A), where S = {/, /} is the set of slashes.
The elements of C(A) are called categories (over A), of which the elements of A ⊆ C(A) are
atomic. We write categories using infix notation, omitting unnecessary parentheses based
on the convention that slashes are left-associative. Thus every category takes the form
c = a|1c1 · · · |kck where a ∈ A, |i ∈ S, and ci ∈ C(A), for all i ∈ [k]. The atomic category a
is called the target of c and the slash–argument pairs |ici are called the arguments of c.
If ci ∈ A for all i ∈ [k], we call c a first-order category. The set of all first-order categories
over A is denoted by Cf (A). The number k is called the arity of c. Note that, from the
tree perspective, the sequence of arguments is a context α = �|1c1 · · · |kck. The number k
is the length of α; we write it as |α|. We let A(A) ⊆ CS,∅(A) be the set of all argument
contexts (over A). Finally, for every k ∈ N, we let C(A, k) = { c ∈ C(A) | arity(c) ≤ k } and
A(A, k) = {α ∈ A(A) | |α| ≤ k }.

M. Kuhlmann, A. Maletti, and L. K. Schiffer 44:5

Intuitively, a category c/c′ can be combined with a category c′ to its right to become c;
similarly, a category c /c′ can be combined with c′ to its left. Formally, given an alphabet A
and k ∈ N, a rule of degree k over A takes one of two possible forms [28]:

ax/c, c|1c1 · · · |kck → ax|1c1 · · · |kck (forward rule)
c|1c1 · · · |kck, ax /c→ ax|1c1 · · · |kck (backward rule)

where a ∈ A, c ∈ C(A) ∪ {y}, and |i ∈ S and ci ∈ C(A) ∪ {yi} for every i ∈ [k]. The
category ax|c with | ∈ {/, /} is called the primary input category and the other cate-
gory c|1c1 · · · |kck is the secondary input category of the rule. The categories c, c1, . . . , ck can
thus be either concrete categories from C(A) or a category variable {y, y1, . . . , yk} that will
match each category from C(A). Similarly, the argument context variable x will match each
argument context of A(A). We let R(A) be the set of all rules over A, and for every k ∈ N
let R(A, k) be the finite set of all generic (i.e. always using variables instead of concrete
categories) rules over A with degree at most k. Rules of degree 0 are called application rules,
whereas rules of higher degree are called composition rules. A rule system is a pair Π = (A,R)
consisting of an alphabet A and a finite set R ⊆ R(A) of rules over A. A ground instance
of a rule r is obtained by substituting concrete categories for the variables {y, y1, . . . } and
a concrete argument context for the variable x in r. The set of all ground instances of Π
induces a relation →Π ⊆ C(A)2 × C(A), which extends to a relation ⇒Π ⊆ C(A)∗ × C(A)∗ by
⇒Π = { (ϕ c c′ ψ, ϕ c′′ ψ) | ϕ,ψ ∈ C(A)∗; c, c′ →Π c′′ }.

I Example 3. Consider the rule r = Dx/D, D/E /C → Dx/E /C, where {C,D,E} are
atoms and x is an argument context variable. A possible ground instance of this rule
is D/C/E/D, D/E /C → D/C/E/E /C, where x was replaced by the argument context
�/C/E. The primary input category c1 = D/C/E/D has target D and arguments /C, /E,
and /D. As c1 takes three atomic categories as arguments, it is a first-order category and
arity(c1) = 3. The rule degree is determined by the number of arguments replacing the last
argument of the primary input category, so r has degree k = 2. Note that D/C/E/D is short
for ((D/C)/E)/D, which is different from (D/C)/(E/D). The rules r′ = Dx/(E/D), E/
D /C → Dx /C and r′′ = Dx/(E/D), E/D /(C/C)→ Dx /(C/C) both have first degree.

IDefinition 4 ([28]). A combinatory categorial grammar (CCG) is a tuple G = (Σ, A,R, I, L)
consisting of an alphabet Σ of input symbols, a rule system (A,R), a set I ⊆ A of initial
categories, and a finite relation L ⊆ Σ × C(A) called lexicon. It is a k-CCG [resp. pure
k-CCG], for k ∈ N, if each r ∈ R has degree at most k [resp. if R = R(A, k)].

I Example 5. The classical categorial grammars of Ajdukiewicz and Bar-Hillel [4],
which are also called AB-grammars, are 0-CCGs. However, the term 0-CCG is more general
since as opposed to AB-grammars, they allow rule restrictions (i.e. they are not necessarily
pure). As a concrete example, let G3 = (Σ, A,R(A, 0), I, L) be the CCG given by the input
alphabet Σ = {c, d}, the atomic categories A = {C,D}, the set of initial categories I = {C},
and the lexicon L with L(c) = {C/D, C/D/C} and L(d) = {D}. Clearly, it is a 0-CCG. For
a slightly more involved example containing rule restrictions, see Example 15.

I Definition 6. A combinatory categorial grammar G = (Σ, A,R, I, L) accepts the category
sequences C(G) ⊆ C(A)∗ and the string language L(G) ⊆ Σ∗, where

C(G) = {ϕ ∈ C(A)∗ | ∃a0 ∈ I : ϕ⇒∗(A,R) a0} and L(G) = L−1(C(G)) .

A tree t ∈ TC(A),∅(L(Σ)) is a derivation tree of G if t(w · 1), t(w · 2)→(A,R) t(w) for every
w ∈ pos(t) \ leaves(t). The set of all such trees is denoted by D(G).

FSTTCS 2019

44:6 Tree-Generative Capacity of CCG

c
.....

C/D/C

c
..

C/D

d
..
D

C

C/D

d
.........
D

C

c
...............
C

c
.........
C

c
..
C

d
..

D/E/D /C

D/E/D

d
.....

D/E/D /C

D/E/E/D /C

D/E/E/D

d
............

D/E /C

D/E/E/E /C

D/E/E/E

e
...................
E

D/E/E

e
......................
E

D/E

e
.........................
E

D

Figure 2 Derivations using the AB-grammar G3 (left) and the CCG G4 (right) of Examples
5 and 15, respectively.

The grammar of Example 5 accepts L(G3) = {cidi | i ≥ 1}, which is context-free but
not regular. A derivation tree for the string ccdd is shown in Figure 2. We draw derivation
trees according to the standard conventions for CCGs, so the root is drawn at the bottom.
The dotted lines visualize the input symbol–category mapping implemented by the lexicon.
Overall, G3 accepts the category sequences C(G3) = {(C/D/C)i−1 · (C/D) ·Di | i ≥ 1}.

The language accepted by a CCG is obtained by relabeling the leaf categories of the
derivation trees using the lexicon. For the accepted tree language we similarly allow a
relabeling to avoid the restriction to the particular symbols of C(A).

I Definition 7. Let G = (Σ, A,R, I, L) be a CCG and ρ : C(A) → P+(∆) be a relabeling.
They accept the tree language Fρ(G) = {ρ(d) ∈ T∆,∅(∆) | d ∈ D(G), d(ε) ∈ I}. A tree lan-
guage F ⊆ T∆,∅(∆) is acceptable by the CCG G if there exists a relabeling ρ′ : C(A)→ P+(∆)
such that F = Fρ′(G).

Because L(Σ) is finite, there exists k ∈ N such that L(Σ) ⊆ C(A, k). The least such inte-
ger k is called the arity of L and denoted by arity(L); i.e. arity(L) = max{arity(c) | c ∈ L(Σ)}.
If L = ∅, then we let arity(L) = 0.

4 0-CCGs

Let G = (Σ, A,R, I, L) be a 0-CCG. An important property of 0-CCGs is that each category
that occurs in a derivation tree has arity at most arity(L). Thus, derivation trees are built
over a finite set of symbols.

I Theorem 8 (see [4] and [25, Proposition 3.25]). The string languages accepted by 0-CCGs
are exactly the ε-free context-free languages. Moreover, for each 0-CCG G the derivation tree
language D(G) and the accepted tree languages are regular.

To characterize the tree languages accepted by 0-CCGs, we need to introduce an additional
structural property of the derivation tree language D(G) and the acceptable tree languages.
Roughly speaking, the min-height mht(t) of a tree t is the minimal length of a path from
the root to a leaf. Recall that the height coincides with the maximal length of those
paths. For all alphabets Σ2 and Σ0, let mht: TΣ2,∅(Σ0)→ N be such that mht(a) = 0 and
mht(c(t1, t2)) = 1 + min(mht(t1),mht(t2)) for all a ∈ Σ0, c ∈ Σ2, and t1, t2 ∈ TΣ2,∅(Σ0). A
tree t ∈ TΣ2,∅(Σ0) is universally mht-bounded by h ∈ N if mht(t|w) ≤ h for every w ∈ pos(t).
Finally, a tree language F ⊆ TΣ2,∅(Σ0) is universally mht-bounded by h if every t ∈ F is

M. Kuhlmann, A. Maletti, and L. K. Schiffer 44:7

S

NP

the car

VP

ran NP

the NP

red light

〈S,→〉

〈NP,←〉

the car

〈VP,←〉

ran 〈NP,→〉

the 〈NP,→〉

red light

〈S, r0〉

〈NP, r1〉

〈NP, r1〉/〈car, r2〉 〈car, r2〉

〈S, r0〉\〈NP, r1〉

〈S, r0〉\〈NP, r1〉/〈NP, r1〉 〈NP, r1〉

〈the, r3〉 〈NP, r1〉\〈the, r3〉

〈red, r3〉 〈NP, r1〉\〈the, r3〉\〈red, r3〉

Figure 3 Decomposition into spinal runs and the corresponding derivation tree of the 0-CCG.

universally mht-bounded by h, and it is universally mht-bounded if there exists h ∈ N such
that it is universally mht-bounded by h. Note that “universally mht-bounded” is a purely
structural property of a tree as it only depends on the shape of the tree and is completely
agnostic about the node labels. It is thus preserved by the application of a relabeling.
Consequently, ρ(F) is universally mht-bounded by h if and only if F is universally mht-
bounded by h for every tree language F ⊆ TΣ2,∅(Σ0) and relabeling ρ : (Σ2 ∪ Σ0)→ P+(∆).

Let us reconsider the 0-CCG G3 of Example 5. The set D(G3) is universally mht-bounded
by 1 (see Figure 2). It turns out that exactly the universally mht-bounded regular tree
languages are acceptable by 0-CCGs. We already observed that the tree languages acceptable
by 0-CCGs are regular, but for the converse we have to exploit the universal mht-bound.
We utilize those short paths to a leaf to decompose the tree into spines, which are short
paths in the tree that lead from a node to a leaf and are never longer than the universal
min-height. The primary categories for the applications are placed along those spines and
each spine terminates in an atomic category that can be combined with the category from
another spine. The idea of the construction is illustrated in Figure 3. This close relation and
the good closure properties of regular tree languages allow us to derive a number of closure
results for the tree languages acceptable by 0-CCGs (see Table 1).

I Theorem 9. Let F ⊆ TΣ2,∅(Σ0) be a tree language. Then F is acceptable by some 0-CCG
if and only if it is regular and universally mht-bounded.

We have seen that, while basic categorial grammars and context-free grammars are weakly
equivalent, they are not strongly equivalent when considered as tree-generating devices. More
specifically, the class of derivation tree languages of basic categorial grammars are a proper
subclass of the class of local tree languages (i.e. derivation tree languages of context-free
grammars). This result is similar to a result by Schabes et al. [21] showing that context-free
grammars are not closed under strong lexicalization, meaning that there are context-free
grammars such that no lexicalized grammar5 generates the same derivation tree language.

5 A CFG is called lexicalized if every production contains a terminal symbol.

FSTTCS 2019

44:8 Tree-Generative Capacity of CCG

Table 1 Closure properties of the tree languages acceptable by 0-CCGs and 1-CCGs.

regular tree languages tree languages
closure \ class = tree languages acceptable by 1-CCGs acceptable by 0-CCGs

union 3 3

intersection 3 3

complement 3 7

relabeling 3 3

α-concatenation [10] 3 3

α-iteration [10] 3 7

5 1-CCGs

In this section, we will consider 1-CCGs, which allow rules of degree at most 1. Thus, the
secondary input categories appearing in their derivation tree languages have at most one
additional argument after the category consumed by the composition. We will show that the
1-CCGs accept exactly the regular tree languages by showing inclusion in both directions.

I Lemma 10. For each 1-CCG G the derivations D(G) and the accepted tree language are
regular.

The following lemma establishes a normal form for regular tree grammars that is easily
achieved using standard techniques. For every m ∈ N, let Zm = {i ∈ N | 0 ≤ i < m}.

I Lemma 11. For each RTG G there exists an equivalent RTG G′ = (Zm,Σ, I ′, P ′) in
normal form, in which every nonterminal n ∈ Zm generates a uniquely defined terminal
symbol σn; i.e. for all n ∈ Zm there exists σn ∈ Σ such that t(ε) = σn for all t ∈ TΣ
with n⇒+

G′ t.

Given an RTG G = (Zm,Σ, I, P) in the normal form of Lemma 11, we are allowed to
regard only the nonterminals of G when constructing an equivalent 1-CCG. Our goal is to find
a 1-CCG G′ = (Σ′, A,R, I ′, L) and a projection π : C(A)→ Zm such that F(G) = Fπ′◦π(G′).
Because π maps from categories to nonterminals, but F(G) is labeled by terminal symbols,
we need the projection π′ : Zm → Σ to map from nonterminals to terminals. This function is
well-defined due to the constraint on G, that each nonterminal generates a single terminal.

Given a production n→ σ(n1, n2) ∈ P and a projection π : C(A)→ Zm, we need categories
c1 ∈ π−1(n1) and c2 ∈ π−1(n2) for each category c ∈ π−1(n) such that c1, c2 → c is a valid
ground instance of a rule in R. This ensures that each category can be derived by the
composition of two categories mapped to matching nonterminals. We only regard first-order
categories with at most one argument due to the restriction on 1-CCGs. Starting from
any nonterminal, the productions P allow the derivation of at most all ordered pairs of
nonterminals. The number of ordered pairs Z2

m increases quadratically in m, whereas the
number of different composition input pairs resulting in a fixed category increases only
linearly in |A|. The category matrix depicted in Figure 4 illustrates that a first-order category
with one argument is the result of the forward compositions of |A| different category pairs.
In addition to composition rules, application rules are neccessary to obtain an atomic initial
category. Based on these observations, we construct a 1-CCG G′ with m2 atoms in the
following way.

M. Kuhlmann, A. Maletti, and L. K. Schiffer 44:9

I Definition 12. Given an RTG G = (Zm,Σ, I, P) in the normal form of Lemma 11, we
construct the 1-CCG G′ = ({x},Z2

m, R, π
−1(I) ∩ Z2

m, L) with

R =
{
a/b, b→ a | π(a)→ σ

(
π(a/b), π(b)

)
∈ P, σ ∈ Σ2, a, b ∈ Z2

m

}
∪
{
a/b, b/c→ a/c | π(a/c)→ σ

(
π(a/b), π(b/c)

)
∈ P, σ ∈ Σ2, a, b, c ∈ Z2

m

}
L = {(x, a) | a ∈ C(A, 1) ∩ Cf (A), π(a)→ α ∈ P, α ∈ Σ0, a ∈ Z2

m}

where the mapping π : (Z2
m ∪ {n/n′ | n, n′ ∈ Z2

m}) → Zm is given by π
(
(i, j)

)
= i and

π
(
(i, j)/(i′, j′)

)
= i+ j′ mod m for all i, i′, j, j′ ∈ Zm.

I Lemma 13. For each RTG G there exists a 1-CCG G′ accepting the tree language F(G).

Proof. We have to establish that the 1-CCG G′ = ({x},Z2
m, R, π

−1(I), L) of Definition 12
accepts the tree language F(G) of RTG G = (Zm,Σ, I, P) using the relabeling π′ ◦ π. The
category c = (i, j)/(i′, j′) is the result of the forward composition of (i, j)/(k, l) and (k, l)/
(i′, j′), where i, i′, j, j′, k, l ∈ Zm. Figure 4 illustrates the projection π by means of a projection
matrix, which is a category matrix with categories replaced according to the projection.
Row and column labels follow lexicographic order. When we slice it evenly into blocks of
size m ×m, we can observe that the entries in the rows cycle through the nonterminals,
whereas in a single column, each block has only a single nonterminal in all m entries. This
is because the value of j′ changes in every entry, whereas the value of i changes only every
m entries. Nonetheless, a complete column of the whole projection matrix contains all
m nonterminals. Relabeling in this manner ensures that all pairs of nonterminals are covered
by arbitrary pairs of row and column. These are determined by the result category.

Given a category (i, j)/(i′, j′) and an ordered pair (g, h) of nonterminals, we need to
verify that there exist k, l ∈ Zm with π((i, j)/(k, l)) = g and π((k, l)/(i′, j′)) = h. Since
g = (i+l) mod m and h = (k+j′) mod m, we obtain l = (g−i) mod m and k = (h−j′) mod m.
Furthermore, given an arbitrary atom (i, j) and nonterminals g, h ∈ Zm, we want to find a
category (i, j)/(k, l) and an atom (k, l) such that π((i, j)/(k, l)) = g and π((k, l)) = h. From
the definition of the projection, π((k, l)) = k, so we have k = h and l = (g − i) mod m.

We relabel F(G′) using π′ ◦ π as described above. Due to the fact that the categories
occurring in derivation trees of G′ cannot have higher order or arity greater than 1, they
never leave the domain of π. As a result, we were able to construct a 1-CCG accepting
the tree language F(G). Thus, for each regular tree language, we can construct a 1-CCG
accepting it. J

I Theorem 14. The tree languages accepted by 1-CCGs are exactly the regular tree languages.

6 Inclusion in the Context-Free Tree Languages

In this section, we want to relate the derivation tree languages of CCGs to the context-free
tree languages. However, this is complicated by the presence of potentially infinitely many
categories. Let us illustrate the problem first.

I Example 15. Let G4 = (Σ, A,R, {D}, L) be the 3-CCG given by the alphabet Σ = {c, d, e},
the atomic categories A = {C,D,E}, the lexicon L with L(c) = {C}, L(d) = {D/E /C,
D/E/D /C}, L(e) = {E}, and the rule set R consisting of the rules

Dx/D, D/E/D /C → Dx/E/D /C Dx/E, E → Dx

Dx/D, D/E /C → Dx/E /C C, Dx /C → Dx

FSTTCS 2019

44:10 Tree-Generative Capacity of CCG

a0 a1 a2 a3

a0 a0/a0 a0/a1 a0/a2 a0/a3

a1 a1/a0 a1/a1 a1/a2 a1/a3

a2 a2/a0 a2/a1 a2/a2 a2/a3

a3 a3/a0 a3/a1 a3/a2 a3/a3

(0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2)

(0, 0) 0 1 2 0 1 2 0 1 2

(0, 1) 0 1 2 0 1 2 0 1 2

(0, 2) 0 1 2 0 1 2 0 1 2

(1, 0) 1 2 0 1 2 0 1 2 0

(1, 1) 1 2 0 1 2 0 1 2 0

(1, 2) 1 2 0 1 2 0 1 2 0

(2, 0) 2 0 1 2 0 1 2 0 1

(2, 1) 2 0 1 2 0 1 2 0 1

(2, 2) 2 0 1 2 0 1 2 0 1

Figure 4 The category matrix (left) contains all first-order categories of arity 1 with only forward
slashes in a CCG with four atoms. Each category is the result of the forward composition of a category
taken from the same row and one from the same column, respectively. The i-th entry of each row can
be combined with the i-th entry of each column. Thus, each category is the result of four different
forward compositions. The projection matrix (right) shows a 1-CCG with nine atomic categories after
relabeling using projection π : C(A)→ Z3, obtained from an RTG with three nonterminals by applying
Definition 12. Suppose we want to find two categories projected to nonterminals (g, h) = (0, 2) whose
composition yields (i, j)/(i′, j′) = (0, 1)/(0, 1). These are categories (0, 1)/(1, 0) and (1, 0)/(0, 1)
since (k, l) = ((h− j′) mod 3, (g − i) mod 3) = ((2− 1) mod 3, (0− 0) mod 3) = (1, 0).

where x ∈ A(A). From a few sample derivation trees (see Figure 2) we can convince ourselves
that G4 accepts the string language L(G4) = { cidiei | i ≥ 1 }, which shows that 3-CCGs can
accept non-context-free string languages. In addition, the derivation trees D(G4) contain
infinitely many categories as labels.

Since the classical tree language theory only handles finitely many labels, we switch to
a different representation and consider rule trees. To simplify the notation, we introduce
the following shorthands. We let T = TR,∅

(
L(Σ)

)
be the set of all potential rule trees (see

Definition 16), and for all alphabets N1 and N0 we let SF(N1, N0) = TR,N1

(
L(Σ) ∪N0

)
be

the forms of a sCFTG with unary nonterminals N1 and nullary nonterminals N0.

I Definition 16. Let G = (Σ, A,R, I, L) be a CCG. A tree t ∈ T is a rule tree of G if
catG(t) ∈ I, where catG : T→ C(A) is the partial function that is inductively defined by

catG(c) = c for all c ∈ L(Σ),
catG

(
(ax/c, cγ → axγ)(t1, t2)

)
= aαγ for all trees t1, t2 ∈ T such that catG(t1) = aα/c

and catG(t2) = cγ, and
catG

(
(cγ, ax /c→ axγ)(t1, t2)

)
= aαγ for all trees t1, t2 ∈ T such that catG(t1) = cγ and

catG(t2) = aα /c.
The set of all rule trees of G is denoted by R(G).

The rule trees provide a natural encoding of the (successful) derivation trees of a CCG
using only finitely many labels. More precisely, there is an (obvious) bijection between the
derivation trees D(G) and the domain of the function catG.

In the following, let G = (Σ, A,R, I, L) be a CCG. Our goal is to construct an sCFTG
that generates exactly the rule tree language R(G). To this end, we first need to limit the
arity of the categories. Let k ∈ N be the maximal arity of a category in

I ∪ L(Σ) ∪ {cγ | ax/c, cγ → axγ ∈ R} ∪ {cγ | cγ, ax /c→ axγ ∈ R} ,

i.e. the maximal arity of the categories that occur in the lexicon, as initial category, or
as the secondary premise of a rule of R. Roughly speaking, the constructed sCFTG will
use the categories C(A, k) as nullary nonterminals and tuples 〈a, |c, γ〉 consisting of an

M. Kuhlmann, A. Maletti, and L. K. Schiffer 44:11

(ax/a, a→ ax)

(c/a, ax\c→ ax/a)

(a, cx\a→ cx)

a c/a\a

(ax/b, b/c\c→ ax/c\c)

a/b/b b/c\c

a

(ax/a, a→ ax)

(c/a, ax\c→ ax/a)

〈c/a〉 (ax/b, b/c\c→ ax/c\c)

a/b/b 〈b/c\c〉

〈a〉

〈a, /a, �〉

〈a, \c, /a〉

〈a, /b, /c\c〉

〈a/b/b〉

Figure 5 Rule tree t (without lexical entries), spinal(t), and its encoding enc(t).

atomic category a ∈ A, a single argument |c with | ∈ S and c ∈ C(A, k), and an argument
tree γ ∈ A(A, k) as unary nonterminals. Recall that we write substitutions α[t] as tα
for α ∈ A(A) and t ∈ C(A) ∪ A(A).

I Definition 17. We construct the sCFTG G′ = (N1 ∪N0, R ∪ L(Σ), I ′, P) with
N1 = {〈a, |c, γ〉 | a ∈ A, | ∈ S, c ∈ C(A, k), γ ∈ A(A, k)} and N0 = {〈c〉 | c ∈ C(A, k)},
I ′ = {〈a0〉 | a0 ∈ I}, and
the following set P of productions

P =
{
〈c〉 → c | c ∈ L(Σ)

}
∪ (1){

〈a, /c, γ〉 → s
(
�, 〈cγ〉

)
| s =

(
ax/c, cγ → axγ

)
∈ R

}
∪ (2){

〈a, /c, γ〉 → s
(
〈cγ〉,�

)
| s =

(
cγ, ax /c→ axγ

)
∈ R} ∪ (3){

〈aαγ〉 → 〈a, |c, γ〉
(
〈aα|c〉

)
| a ∈ A, α, γ ∈ A(A), | ∈ S, c ∈ C(A, k),
|α| < k, |αγ| ≤ k

}
∪ (4){

〈a, |c, γ〉 → 〈a, |′c′,�〉
(
〈a, |c, γ|′c′〉(�)

)
| a ∈ A, |, |′ ∈ S, c, c′ ∈ C(A, k), γ ∈ A(A, k − 1)

}
(5)

We still have to establish that G′ indeed generates exactly R(G). This will be achieved
by showing both inclusions in the next chain of lemmas.

I Lemma 18. F(G′) ⊆ R(G).

For the converse, we decompose and encode rule trees R(G) in a more compact manner.
First, we translate a rule tree into its primary spine form. For all a ∈ A, c ∈ C(A, k),
γ ∈ A(A, k), and t1, t2 ∈ T we let

spinal
(
c
)

= c

spinal
(
(ax/c, cγ → axγ)(t1, t2)

)
= (ax/c, cγ → axγ)

(
spinal(t1), 〈c〉

)
spinal

(
(cγ, ax /c→ axγ)(t1, t2)

)
= (cγ, ax /c→ axγ)

(
〈c〉, spinal(t2)

)
.

Clearly, spinal : T→ TR,∅(L(Σ) ∪N0). An example is shown in Figure 5. Additionally, we
encode rule trees using only the nonterminals of G′ [i.e. a tree of T∅,N1(N0)]. To this end,
we define a mapping enc: T → T∅,N1(N0). For all a ∈ A, c ∈ C(A, k), γ ∈ A(A, k), and
t1, t2 ∈ T we let

enc(c) = 〈c〉
enc
(
(ax/c, cγ → axγ)(t1, t2)

)
= 〈a, /c, γ〉

(
enc(t1)

)
enc
(
(cγ, ax /c→ axγ)(t1, t2)

)
= 〈a, /c, γ〉

(
enc(t2)

)
.

This encoding is also demonstrated in Figure 5.

FSTTCS 2019

44:12 Tree-Generative Capacity of CCG

〈a/b/c〉 ⇒G′

〈a, /b, /c〉

〈a/b/b〉
⇒G′

〈a, \c, �〉

〈a, /b, /c\c〉

〈a/b/b〉

⇒G′

〈a, /a, �〉

〈a, \c, /a〉

〈a, /b, /c\c〉

〈a/b/b〉

Figure 6 Derivation of the encoding.

I Lemma 19. 〈catG(t)〉 ⇒∗G′ enc(t) ⇒∗G′ spinal(t) for every t ∈ T with catG(t) ∈ C(A, k),
and hence R(G) ⊆ F(G′).

I Theorem 20. The rule trees R(G) of a CCG G can be generated by an sCFTG.

7 Proper Inclusion for Pure CCGs

In this section, we show that there exist CFG derivation tree languages that cannot be
accepted by any pure CCG. A CCG (Σ, A,R, I, L) is pure if R = R(A, k) for some k ∈ N.
In particular, this shows that the inclusion demonstrated in Section 6 is proper for pure
CCGs. We start with our counterexample CFG. To make the text more readable, we assume
henceforth that all computations with nonterminals are performed modulo 3.

I Example 21. Let us consider the CFG Gex = (N,Γ, 〈0, 0〉, P) with the nonterminals
N = {〈i, j〉 | 0 ≤ i, j ≤ 2}, the terminals Γ = {α}, and the set P of productions contains
exactly 〈i, j〉 → 〈i + 1, j〉 〈i, j + 1〉 and 〈i, j〉 → α for every 〈i, j〉 ∈ N . Clearly, the tree
language D(Gex) is not universally mht-bounded.

Theorem 9 already shows that the tree language D(Gex) cannot be accepted by any
0-CCG. Similarly, it is impossible to accept D(Gex) with a pure CCG. This follows from
the transformation schemes of [14] that change the order of consecutive application and
non-application operations, resulting in derivation trees with reordered subtrees and therefore
with the wrong shape after relabeling. Due to the absence of rule restrictions in pure CCGs,
the applicability of these transformations cannot be prevented.

I Theorem 22. The tree language D(Gex) cannot be accepted any pure CCG.

8 Conclusion

We have shown that the tree languages accepted by CCGs with limited composition depth
and rule restrictions are a subset of the tree languages generated by simple monadic context-
free tree grammars. This inclusion is proper for pure CCGs (i.e. without rule restrictions).
In addition, the tree languages accepted by 0-CCGs are a proper subset of regular tree
languages, whereas those accepted by 1-CCGs are exactly the regular tree languages. While
the step from 0-CCGs to 1-CCGs does not increase the weak generative capacity, the strong
generative capacity increases. We also observe that there is no difference in expressivity for
0-CCGs between the pure and non-pure variants, while for higher rule degrees, pure CCGs
are strictly weaker. The first statement follows from the fact that we are able to construct
an equivalent pure 0-CCG for each mht-bounded regular tree language.

M. Kuhlmann, A. Maletti, and L. K. Schiffer 44:13

The construction used in the classical proof of weak equivalence between CCG and
TAG [28] demonstrated that there is no difference in weak generative capacity between
2-CCGs and k-CCGs with k > 2 and that the inclusion of higher-order categories in the
lexicon does not change weak generative capacity. However, as stated in the Introduction, this
construction utilizes ε-entries, which are problematic from a computational point of view [15].
Future work should explore the relationship between TAG and CCG, and in particular
the effects of higher rule degrees k (up to unlimited composition depth) and higher-order
categories, in the absence of ε-entries. Another interesting direction is strong generative
capacity: If for a given sCFTG a strongly equivalent CCG could be constructed (the inverse
direction of what we showed in Theorem 20), this would characterize the tree-generative
capacity of CCG exactly. Furthermore, the effect of the inclusion of additional rules on the
expressivity should be studied.

References
1 Kazimierz Ajdukiewicz. Die syntaktische Konnexität. Studia Philosophica, 1:1–27, 1935.
2 Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University Press,

1998.
3 Yehoshua Bar-Hillel. A quasi-arithmetical notation for syntactic description. Language,

29(1):47–58, 1953.
4 Yehoshua Bar-Hillel, Haim Gaifman, and Eli Shamir. On Categorial and Phrase Structure

Grammars. In Yehoshua Bar-Hillel, editor, Language and Information: Selected Essays on
Their Theory and Application, pages 99–115. Addison Wesley, 1964.

5 Yehoshua Bar-Hillel, Micha Perles, and Eli Shamir. On formal properties of simple phrase
structure grammars. In Yehoshua Bar-Hillel, editor, Language and Information: Selected
Essays on their Theory and Application, chapter 9, pages 116–150. Addison Wesley, 1964.

6 Noam Chomsky. Three models for the description of language. IRE Transactions on Informa-
tion Theory, 2(3):113–124, 1956.

7 Haskell B. Curry. Foundations of combinatorial logic. American Journal of Mathematics,
52(3):509–536, 1930.

8 Haskell B. Curry, Robert Feys, and William Craig. Combinatory Logic. Number 1 in Studies
in Logic and the Foundations of Mathematics. North-Holland, 1958.

9 Ferenc Gécseg and Magnus Steinby. Tree Automata. Akadémiai Kiadó, Budapest, 1984. 2nd
revision available at arXiv:1509.06233.

10 Ferenc Gécseg and Magnus Steinby. Tree Languages. In Grzegorz Rozenberg and Arto Salomaa,
editors, Handbook of Formal Languages, volume 3, chapter 1, pages 1–68. Springer, 1997.

11 John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages and
Computation. Addison Wesley, 1979.

12 Aravind K. Joshi and Yves Schabes. Tree-Adjoining Grammars. In Grzegorz Rozenberg and
Arto Salomaa, editors, Beyond Words, volume 3 of Handbook of Formal Languages, pages
69–123. Springer, 1997.

13 Alexander Koller and Marco Kuhlmann. Dependency Trees and the Strong Generative Capacity
of CCG. In Proc. 12th EACL, pages 460–468. ACL, 2009.

14 Marco Kuhlmann, Alexander Koller, and Giorgio Satta. Lexicalization and Generative Power
in CCG. Comput. Linguist., 41(2):187–219, 2015.

15 Marco Kuhlmann, Giorgio Satta, and Peter Jonsson. On the Complexity of CCG Parsing.
Comput. Linguist., 44(3):447–482, 2018.

16 Joachim Lambek. The mathematics of sentence structure. Amer. Math. Monthly, 65(3):154–170,
1958.

17 Kenton Lee, Mike Lewis, and Luke Zettlemoyer. Global neural CCG parsing with optimality
guarantees. In Proc. 2016 EMNLP, pages 2366–2376. ACL, 2016.

FSTTCS 2019

https://arxiv.org/abs/1509.06233

44:14 Tree-Generative Capacity of CCG

18 Mike Lewis and Mark Steedman. Unsupervised induction of cross-lingual semantic relations.
In Proc. 2013 EMNLP, pages 681–692. ACL, 2013.

19 William C. Rounds. Context-Free Grammars on Trees. In Proc. 1st STOC, pages 143–148.
ACM, 1969.

20 William C. Rounds. Tree-Oriented Proofs of Some Theorems on Context-Free and Indexed
Languages. In Proc. 2nd STOC, pages 109–116. ACM, 1970.

21 Yves Schabes, Anne Abeillé, and Aravind K. Joshi. Parsing Strategies with ‘Lexicalized’
Grammars: Application to Tree Adjoining Grammars. In Proc. 12th CoLing, pages 578–583,
1988.

22 Moses Schönfinkel. Über die Bausteine der mathematischen Logik. Mathematische Annalen,
92(3–4):305–316, 1924.

23 Mark Steedman. The Syntactic Process. MIT Press, 2000.
24 Mark Steedman and Jason Baldridge. Combinatory Categorial Grammar. In Robert D. Borsley

and Kersti Börjars, editors, Non-Transformational Syntax: Formal and Explicit Models of
Grammar, chapter 5, pages 181–224. Blackwell, 2011.

25 Hans-Jörg Tiede. Deductive Systems and Grammars: Proofs as Grammatical Structures. PhD
thesis, Indiana University, Bloomington, IN, USA, 1999.

26 Krishnamurti Vijay-Shanker and David J. Weir. Combinatory Categorial Grammars: Genera-
tive Power and Relationship to Linear Context-Free Rewriting Systems. In Proc. 26th ACL,
pages 278–285. ACL, 1988.

27 Krishnamurti Vijay-Shanker and David J. Weir. Polynomial time parsing of combinatory
categorial grammars. In Proc. 28th ACL, pages 1–8. ACL, 1990.

28 Krishnamurti Vijay-Shanker and David J. Weir. The Equivalence of Four Extensions of
Context-Free Grammars. Math. Systems Theory, 27(6):511–546, 1994.

Cyclic Proofs and Jumping Automata
Denis Kuperberg
Univ Lyon, CNRS, ENS de Lyon, UCBL, LIP UMR 5668, F-69342, LYON Cedex 07, France

Laureline Pinault
Univ Lyon, CNRS, ENS de Lyon, UCBL, LIP UMR 5668, F-69342, LYON Cedex 07, France

Damien Pous
Univ Lyon, CNRS, ENS de Lyon, UCBL, LIP UMR 5668, F-69342, LYON Cedex 07, France

Abstract
We consider a fragment of a cyclic sequent proof system for Kleene algebra, and we see it as a
computational device for recognising languages of words. The starting proof system is linear and we
show that it captures precisely the regular languages. When adding the standard contraction rule,
the expressivity raises significantly; we characterise the corresponding class of languages using a new
notion of multi-head finite automata, where heads can jump.

2012 ACM Subject Classification Theory of computation → Logic

Keywords and phrases Cyclic proofs, regular languages, multi-head automata, transducers

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.45

Related Version Appendix with proofs available at https://hal.archives-ouvertes.fr/hal-
02301651.

Funding This work has been funded by the European Research Council (ERC) under the European
Union’s Horizon 2020 programme (CoVeCe, grant agreement No 678157), and was supported by the
LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program “Investissements
d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).

1 Introduction

Cyclic proof systems have received much attention in the recent years. Proofs in such systems
are graphs rather than trees, and they must satisfy a certain validity criterion.

Such systems have been proposed for instance by Brotherston and Simpson in the context
of first order logic with inductive predicates [4], as an alternative to the standard induction
schemes. The infinite descent principles associated to cyclic proofs are in general at least as
powerful as the standard induction schemes, but the converse is a delicate problem. It was
proven only recently that it holds in certain cases [3, 18], and that there are also cases where
cyclic proofs are strictly more expressive [2].

Cyclic proof systems have also been used in the context of the µ-calculus [8], where we
have inductive predicates (least fixpoints), but also coinductive predicates (greatest fixpoints),
and alternation of those. Proof theoretical aspects such as cut-elimination were studied
from the linear logic point of view [11, 10], and these systems were recently used to obtain
constructive proofs of completeness for Kozen’s axiomatisation [9, 1].

Building on these works, Das and Pous considered the simpler setting of Kleene algebra,
and proposed a cyclic proof system for regular expression containments [6]. The key observa-
tion is that regular expressions can be seen as µ-calculus formulas using only a single form of
fixpoint: the definition of Kleene star as a least fixpoint (e∗ = µx.1 + e · x). Their system is
based on a non-commutative version of µMALL [10], and it is such that a sequent e ` f is
derivable if and only if the language of e is contained in that of f . This work eventually led
to an alternative proof of left-handed completeness for Kleene algebra [5].

© Denis Kuperberg, Laureline Pinault, and Damien Pous;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 45; pp. 45:1–45:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-5406-717X
https://orcid.org/0000-0002-1220-4399
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.45
https://hal.archives-ouvertes.fr/hal-02301651
https://hal.archives-ouvertes.fr/hal-02301651
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

45:2 Cyclic Proofs and Jumping Automata

In the latter works, it is natural to consider regular expressions as datatypes [12], and
proofs of language containments as total functions between those datatypes [13]. Such a
computational interpretation of cyclic proofs was exploited to prove cut-elimination in [7].

We follow the same approach here, focusing on an even simpler setting: our sequents
essentially have the shape A∗ ` 2, where A is a finite alphabet and 2 is a type (or formula)
for Boolean values. Cyclic proofs no longer correspond to language containments: they give
rise to functions from words to Booleans, i.e. , formal languages. We characterise the class
of languages that arise from such proofs.

If we keep a purely linear proof system, as in [6, 7], we show that we obtain exactly the
regular languages. In contrast, if we allow the contraction rule, we can express non-regular
languages. We show that in this case, we obtain the languages that are recognisable by a
new class of automata, which we call jumping multihead automata1. Indeed, cyclic proofs
are more expressive than the plain one-way multihead automata that were studied in the
literature [14]. Intuitively, when reading a word, a multihead automaton may only move its
heads forward, letter by letter, while a jumping multihead automaton also has the possibility
to let a given head jump to the position of another head. This gives the opportunity to record
positions in the word, and to repeatedly analyse the suffixes starting from those positions.

Outline

We define our cyclic proof system and its computational interpretation in Sect. 2. Then we
define jumping multihead automata and establish their basic properties (Sect. 3). We prove
the equivalence between the two models in Sect. 4 (Thm. 19), from which it follows that we
capture precisely the regular languages in the linear case (Thm. 24). We discuss directions
for future work in Sect. 5.

Notation

Given sets X,Y , we write X × Y for their Cartesian product, X] Y for their disjoint union,
and X∗ for the set of finite sequences (lists) over X. Given such a sequence l, we write |l| for
its length and li or l(i) for its ith element. We write B for the set {ff , tt} of Booleans, and
〈x, y, z〉 for tuples. We use commas to denote concatenation of both sequences and tuples,
and ε to denote the empty sequence. We write Im(f) for the image of a function f .

2 Infinite proofs and their semantics

We let a, b range over the letters of a fixed and finite alphabet A. We work with only two
types (or formulas): the type A of letters, and the type A∗ of words. We let e, f range over
types, and E,F range over finite sequences of types. Given such a sequence E = e1, . . . , en,
we write [E] for the set e1 × · · · × en.

We define a sequent proof system, where sequents have the shape E ` 2, and where proofs
of such sequents denote functions from [E] to B, i.e. subsets of [E].

1 This new class should not be confused with the jumping finite automata introduced by Meduna and
Zemek [16], which are not multihead.

D. Kuperberg, L. Pinault, and D. Pous 45:3

E,F ` 2
w
E, e, F ` 2

E, e, e, F ` 2
c

E, e, F ` 2
(E,F ` 2)a∈A

A
E,A, F ` 2

E,F ` 2 E,A,A∗, F ` 2
∗

E,A∗, F ` 2
t
` 2

f
` 2

Figure 1 The rules of C.

f
` 2

f
` 2

t
` 2

w
A∗ ` 2

...

A∗ ` 2
A

A,A∗ ` 2
∗

A∗ ` 2

...

A∗ ` 2
A

A,A∗ ` 2
∗

A∗ ` 2
•

• •

•
...

A∗ ` 2

...

A∗ ` 2
w
A∗, A∗ ` 2

w
A,A∗, A∗ ` 2

∗
A∗, A∗ ` 2

c
A∗ ` 2

•

Figure 2 Two regular preproofs; only the one on the left is valid.

2.1 Infinite proofs
We now define the cyclic proof system whose six inference rules are given in Fig. 1. In
addition to two structural rules (weakening and contraction), we have a left introduction
rule for each type, and two right introduction rules for Boolean constants. Note that there
is no exchange rule, which explains why the structural and left introduction rules use two
sequences E and F rather than a single one.

The left introduction rule for type A∗ corresponds to an unfolding rule, looking at A∗
as the least fixpoint expression µX.(1] A × X) (e.g., from µ-calculus). The left premiss
intuitively corresponds to the case of an empty list, while the right premiss covers the case
of a non-empty list. Except from weakening and contraction, those rules form a very small
fragment of those used for Kleene algebra in [7] (interpreting A as a sum 1 + · · ·+ 1 with |A|
elements and 2 as the binary sum 1 + 1).

Note that we are not interested in provability in the present paper: every sequent can be
derived trivially, using weakenings and one of the two right introduction rules. The objects
of interest are the proofs themselves; this explains why we have two axioms for proving the
sequent ` 2: they correspond to two different proofs.

We set B = A] {0, 1}. A (possibly infinite) tree is a non-empty and prefix-closed subset
of B∗, which we view with the root, ε, at the bottom; elements of B∗ are called addresses.

I Definition 1. A preproof is a labelling π of a tree by sequents such that, for every node v

with children v1, . . . vn, the expression
π(v1) · · · π(vn)

π(v)
is an instance of a rule from Fig. 1.

A preproof is regular if it has finitely many distinct subtrees, i.e. it can be viewed as the
unfolding of a finite graph. A preproof is affine if it does not use the c-rule.

If π is a preproof, we note Addr(π) its set of addresses, i.e. its underlying tree. The
formulas appearing in lists E,F of any rule instance are called auxiliary formulas. The non
auxiliary formula appearing in the conclusion of a rule is called the principal formula.

A ∗ address in a preproof π is an address v which is the conclusion of a ∗ rule in π.
Two examples of regular preproofs are depicted in Fig. 2. The alphabet A is assumed to

have exactly two elements, so that the A rule is binary. Backpointers are used to denote
circularity: the actual preproofs are obtained by unfolding the graphs. The preproof on the

FSTTCS 2019

45:4 Cyclic Proofs and Jumping Automata

right might look suspicious: it never uses the axioms t or f . In fact, only the one on the
left satisfies the validity criterion which we define below. Before doing so, we need to define
a notion of thread, which are the branches of the shaded trees depicted on the preproofs.
Intuitively a thread follows a star formula occurrence along a branch of the proof. First we
need to define parentship and ancestor relations.

I Definition 2. A [star] position in a preproof π is a pair 〈v, i〉 consisting of an address v
and an index i ∈ [0; |E| − 1], where π(v) = E ` 2 [and Ei is a star formula]. A position
〈w, j〉 is the parent of a position 〈v, i〉 if |v| = |w| + 1 and, looking at the rule applied at
address w the two positions point at the same place in the lists E,F of auxiliary formulas, or
at the formula e when this is the contraction rule, or at the principal formula A∗ when this
is the ∗ rule and v = w1. We write 〈v, i〉C 〈w, j〉 in the former cases, and 〈v, i〉 C· 〈w, j〉 in
the latter case. Position 〈w, j〉 is an ancestor of 〈v, i〉 when those positions are related by the
transitive closure of the parentship relation.

The graph of the parentship relation is depicted in Fig. 2 using shaded thick lines and an
additional bullet to indicate when we pass principal star steps (C·). Note that in the ∗ rule,
the principal formula occurrence A∗ is not considered as a parent of the occurrence of A in
the right premiss.

We can finally define threads and the validity criterion.

I Definition 3. A thread is a possibly infinite branch of the ancestry graph. A thread is
principal when it visits a ∗ rule through its principal formula. A thread is valid if it is
principal infinitely often.

In the first preproof of Fig. 2, the infinite green thread 〈ε, 0〉 B· 〈1, 1〉B 〈11, 0〉 B· 〈111, 1〉B
〈1111, 0〉 . . . is valid, as well as every other infinite thread. There is no valid thread in the
second preproof: taking a principal step forces the thread to terminate.

I Definition 4. A preproof is valid if every infinite branch contains a valid thread. A proof
is a valid preproof. We write π : E ` 2 when π is a proof whose root is labelled by E ` 2.

In the examples from Fig. 2, only the preproof on the left is valid, thanks to the infinite
green thread. The second preproof is invalid: infinite threads along the (infinitely many)
infinite branches are never principal.

This validity criterion is essentially the same as for the system LKA [7], which in turn is
an instance of the one used for µMALL [10]: we just had to extend the notion of ancestry
to cover the contraction rule. Note however that the presence of this rule induces some
subtleties. For instance, while in the cut-free fragment of LKA, a preproof is valid if and
only if it is fair (i.e. every infinite branch contains infinitely many ∗ steps [7, Prop. 8]), this
is no longer true with contraction: the second preproof from Fig. 2 is fair and invalid.

In the affine case, due to the fragment we consider here, and since we do not include cut,
the situation is actually trivial:

I Proposition 5. Every affine preproof is valid.

2.2 Computational interpretation of infinite proofs
We now show how to interpret a proof π : E ` 2 as a function [π] : [E]→ B. Since proofs
are not well-founded, we cannot reason directly by induction on proofs. We use instead the
following relation on partial computations, which we prove to be well-founded thanks to the
validity criterion.

D. Kuperberg, L. Pinault, and D. Pous 45:5

I Definition 6. A partial computation in a fixed proof π is a pair 〈v, s〉 consisting of an
address v of π with π(v) = E ` 2, and a value s ∈ [E]

Given two partial computations, we write 〈v, s〉 ≺ 〈w, t〉 when
1. |v| = |w|+ 1,
2. for every i, j such that 〈v, i〉C 〈w, j〉, we have si = tj, and
3. for every i, j such that 〈v, i〉 C· 〈w, j〉, we have |si| < |tj |.
The first condition states that the subproof at address v should be one of the premisses of
the subproof at w; the second condition states that the values assigned to star formulas
should remain the same along auxiliary steps; the third condition ensures that they actually
decrease in length along principal steps.

I Lemma 7. The relation ≺ on partial computations is well-founded.

Proof. Suppose by contradiction that there exists an infinite descending sequence. By
condition 1/, this sequence corresponds to an infinite branch of π. By validity, this branch
must contain a thread which is principal infinitely many times. This thread contradicts
conditions 2/ and 3/ since we would obtain an infinite sequence of lists of decreasing
length. J

I Definition 8. The return value [v](s) of a partial computation 〈v, s〉 with π(v) = E ` 2
is a Boolean defined by well-founded induction on ≺ and case analysis on the rule used at
address v.
w : [v](s, x, t) , [v0](s, t)
c : [v](s, x, t) , [v0](s, x, x, t)
t : [v]() , tt
f : [v]() , ff

A : [v](s, a, t) , [va](s, t)
∗ : [v](s, l, t) is defined by case analysis on the list l:

[v](s, ε, t) , [v0](s, t)
[v](s, x :: q, t) , [v1](s, x, q, t)

In each case, the recursive calls are made on strictly smaller partial computations: they occur
on direct subproofs, the values associated to auxiliary formulas are left unchanged, and in
the second subcase of the ∗ case, the length of the list associated to the principal formula
decreases by one.

I Definition 9. The semantics of a proof π : E ` 2 is the function [π] : s 7→ [ε](s).

(Note that we could give a simpler definition of the semantics for affine proofs by reasoning on
the total size of the arguments; such an approach however breaks in presence of contraction.)

Let us compute the semantics of the first (and only) proof in Fig. 2. Recall that A has
two elements in this example, so set A = {a, b} (and thus B = {0, 1, a, b}), and let us use a
(resp. b) to navigate to the left (resp. right) premiss of the A rule. Starting from words aba
and aab, we get the two computations on the left below:

[ε](ab)
= [1](a, b)
= [1a](b)
= [1a1](b, ε)
= [1a1b](ε)
= [1a1b0]()
= ff

[ε](aab)
= [1](a, ab)
= [1a](ab)
= [1a1](a, b)
= [1a1a](b)
= [1a1a0]()
= tt

ε = ff
[ε](au) = [ε](u)
[ε](bu) = [1a](u)

[1a](ε) = ff
[1a](au) = tt
[1a](bu) = [ε](u)

Using the fact that the subproofs at addresses ε, 1a and 1a1b are identical, we can also
deduce the equations displayed on the right, which almost correspond to the transition
table of a deterministic automaton with two states ε and 1a. This is not strictly speaking a

FSTTCS 2019

45:6 Cyclic Proofs and Jumping Automata

π

E, F ` 2

...

E,A∗, F ` 2
wA

E,A,A∗, F ` 2
∗

E,A∗, F ` 2
•

Figure 3 Weakening stars (Prop. 10).

ff

tt

...

A∗ ` 2
ff

×

...

A∗, A∗ ` 2
∗

A∗, A∗ ` 2
∗

A∗, A∗ ` 2
∗

A∗, A∗ ` 2
∗

A∗, A∗ ` 2
c

A∗ ` 2
∗

A∗ ` 2
•

•
•

•
•
•

•

Figure 4 A regular proof for {a2n

| n ∈ N}.

deterministic automaton because of the fifth line: when reading an a, the state 1a decides to
accept immediately, whatever the remainder of the word. We can nevertheless deduce from
those equations that ε recognises the language A∗aaA∗.

Trying to perform such computations on the invalid preproof on the right in Fig. 2 gives
rise to non-terminating behaviours, e.g., ε [0](ε, ε) [00](ε) . . . and [ε](x :: q)
[0](x :: q, x :: q) [01](x, q, x :: q) [010](q, x :: q) [0100](x :: q)

Before studying a more involved example, we prove the following property:

I Proposition 10. The weakening rule (w) is derivable in a way that respects regularity,
affinity, existing threads, and the semantics.

Proof. When the weakened formula is A, it suffices to apply the A rule and to use the
starting proof |A| times. When the weakened formula is A∗, assuming a proof π : E,F ` 2, we
construct the proof in Fig. 3. The step marked with wA is the previously derived weakening
on A. The preproof is valid because this step does preserve the blue thread. J

As a consequence, the full proof system is equivalent to the one without weakening. We shall
see that the system would remain equally expressive with the addition of an exchange rule
(see Rem. 23 below), but that the contraction rule instead plays a crucial role and changes
the expressive power.

Let us conclude this section with an example beyond regular languages: we give in Fig. 4
a proof whose semantics is the language of words over a single letter alphabet, whose length
is a power of two (a language which is not even context-free). Since the alphabet has a single
letter, the A rule becomes a form of weakening, and we apply it implicitly after each ∗ step.
We also abbreviate subproofs consisting of a sequence of weakenings followed by one of the
two axioms by tt, ff , or just × when it does not matter whether we return true or false.

Writing n for the word of length n and executing the proof on small numbers, we observe

[ε](0) = [0]() = ff
[ε](1) = [1](0) = [10](0, 0) = [100](0) = tt
[ε](2) = 1 = [10](1, 1) = [101](1, 0) = [1010](1) = [ε](1) = tt
[ε](3) = [1](2) = [10](2, 2) = [101](2, 1) = [1011](2, 0) = ff
[ε](4) = [1](3) = [10](3, 3) = [101](3, 2) = [1011](3, 1) = [10111](3, 0) = [101111](2, 0)

= [101](2, 0) = [1010](2) = [ε](2) = tt

More generally, the idea consists in checking that the given number can be divided by two
repeatedly, until we get 1. To divide a number represented in unary notation by two, we copy
that number using the contraction rule, and we consume one of the copies twice as fast as the

D. Kuperberg, L. Pinault, and D. Pous 45:7

other one (through the three instances of the ∗ rule used at addresses 101, 1011, and 10111);
if we reach the end of one copy, then the number was even, the other copy precisely contains
its half, and we can proceed recursively (through the backpointer on the left), otherwise the
number was odd and we can reject. The subproof at address 101110 is never explored: we
would be in a situation where the slowly consumed copy gets empty before the other one.

Finally note that every (even undecidable) language can be represented using an infinite
(in general non regular) proof: apply the left introduction rules eagerly, and fill in the left
premisses of the ∗ rules using the appropriate axiom.

3 Jumping multihead automata

Now we introduce the model of Jumping Multihead Automata (JMA) and establish its basic
properties. We will prove in Sect. 4 that its expressive power is precisely that of cyclic proofs.

3.1 Definition and semantics of JMAs
Let A be a finite alphabet and / /∈ A be a fresh symbol. We note A/ = A ∪ {/}.

IDefinition 11. A jumping multihead automaton (JMA) is a tupleM = 〈S, k, s0, sacc, srej , δ〉
where:

S is a finite set of states;
k ∈ N is the number of heads;
s0 ∈ S is the initial state;
sacc ∈ S and srej ∈ S are final states, respectively accepting and rejecting;
δ : Strans × (A/)k −→ S × Actk is the deterministic transition function, where Strans ,
S \ {sacc, srej} is the set of non-final states, and Act , {�, �} ∪ {J1, J2, . . . , Jk}.

In the transition function, symbols � and � stand for “stay in place” and “move forward”
respectively, and action Ji stands for “jump to the position of head number i”. Intuitively,
if the machine is in state s, each head j reads letter ~a(j), and δ(s,~a) = (s′, α), then the
machine goes to state s′ and each head j performs the action α(j). Accordingly, to guarantee
that the automaton does not try to go beyond the end marker of the word, we require that if
δ(s,~a) = (s′, α), then for all j ∈ J1, kK with ~a(j) = / we have α(j) 6= �.

A configuration of a JMAM = 〈S, k, s0, sacc, srej , δ〉 is a triple c = (w, s, p) where w is
the input word, s ∈ S is the current state, and p = (p1, . . . , pk) ∈ J0, |w|Kk gives the current
head positions. If the position pi is |w| then the head i is scanning the symbol /.

The initial configuration on an input word w is (w, s0, (0, . . . , 0)). Let w = a0a1 . . . an−1
be the input and an = /. Let (w, s, (p1, . . . , pk)) be a configuration with s ∈ Strans, and
(s′, (x1, . . . , xk)) = δ(s, (ap0 , . . . apk

)) be given by the transition function. Then the successor
configuration is defined by (w, s′, (p′1, . . . , p′k)), where for all i ∈ J1, kK p′i depends on xi in
the following way:

(1) p′i = pi if xi = � (2) p′i = pi + 1 if xi = � (3) p′i = pj if xi = Jj

A configuration (w, s, p) is final if s ∈ {sacc, srej}. It is accepting (resp. rejecting) if
s = sacc (resp. s = srej). A run of a JMAM on w is a sequence of configurations c0, c1, . . . , cr

on w where c0 is the initial configuration, and ci+1 is the successor configuration of ci for all
i. If cr is rejecting (resp. accepting), we say that the word w is rejected (resp. accepted) by
M. We say thatM terminates on w if there is a maximal finite run ofM on w, ending in a
final configuration. The language ofM, noted L(M), is the set of finite words accepted by
M, i.e. the set of words w ∈ A∗ such thatM has an accepting run on w.

FSTTCS 2019

45:8 Cyclic Proofs and Jumping Automata

I Example 12. The language L = {a2n | n ∈ N} can be recognised by the following JMA
with two heads. (Missing transitions all go to the rejecting final state.)

s0 s1 s2

srej

sacc

(a, /),�, J1
(a, a),�, �

(a, a), �, �

(a, /), �,�
(/, /),�,�

(a, /),�,�

The idea behind the automaton is similar as the proof given in Fig. 4: one head advances
at twice the speed of the other. When the fast head reaches the end of the word, it either
rejects if the length is odd and at least 2, or jumps to the position of the slow head located
in the middle of the word. From there, the automaton proceeds recursively.

Notice that on an input word u, three scenarios are possible: the automaton accepts by
reaching sacc, rejects by reaching srej , or rejects by looping forever. In order to translate
JMAs into cyclic proofs, whose validity criterion ensures termination, it is convenient to
forbid the last scenario. We ensure such a property by a syntactic restriction on the transition
structure of JMAs.

The transition graph of a JMAM = 〈S, k, s0, sacc, srej , δ〉 is the labelled graph GM =
(S,E), where the vertices are states S, and the set of edges is E ⊆ S × S ×Actk, defined by
E = {(s, s′, α) | ∃~a ∈ (A/)k, δ(s,~a) = (s′, α)}.

A JMA M is progressing if for every cycle e1e2 . . . el in its transition graph, where
ei = (si, si+1, αi) for each i ∈ J1, lK and sl+1 = s1, there exists a head j ∈ J1, kK with
α1(j)α2(j) . . . αl(j) ∈ (�∗ · � ·�∗)+. (Intuitively we require that for every loop, one of the
head does not jump during this loop and moves forward at least once).

The JMA from Ex. 12 always terminates, but it is not progressing due to the loop
on the initial state. It could easily be modified into a progressing JMA by introducing a
new intermediary state instead of looping on s0. In fact, even in cases where a JMA can
indefinitely loop on some inputs, one can always turn it into a progressing one recognising
the same language. Hence all JMAs are assumed to be progressing from now on.

I Lemma 13. Every JMA can be converted into a progressing JMA with the same language.

Proof. We use the fact that the number of possible configurations on a given word w is
bounded polynomially in the length of w. We add heads to the JMA that just advance
counting up until this bound, making the JMA progressing. Details are given in [15,
Appendix]. J

I Lemma 14. Given a JMA M, we can check in NL whether M is progressing. If M is
progressing, then it terminates on all words.

3.2 Expressive power of JMAs
Write JMA(k) for the set of languages expressible by a progressing JMA with k heads. JMAs
encode only DLogSpace languages; one-head JMAs capture exactly the regular languages.

I Lemma 15.
⋃

k≥1 JMA(k) ⊆ DLogSpace.

Proof. It is straightforward to translate a JMA with k heads into a Turing machine using
space O(logk(n)), by remembering the position of the heads. J

D. Kuperberg, L. Pinault, and D. Pous 45:9

I Lemma 16. JMA(1) = Reg.

As mentioned in the introduction, (non-jumping) multihead automata have already been
investigated in the literature [14]. They consist of automata with a fixed number of heads (k)
that can either only go from left to right, (like our JMAs, case of 1-way automata, 1DFA(k)),
or in both directions (case of 2-ways automata, 2DFA(k)). We briefly compare JMAs to
those automata, starting with the 1-way case.

First of all, it is clear that for all k ≥ 1, 1DFA(k) ⊆ JMA(k) (in particular, because
1DFAs can be assumed to be progressing without increasing the number of heads).
I Remark 17. Since emptiness, universality, regularity, inclusion and equivalence are unde-
cidable for 1DFAs with 2 heads [14], these problems are also undecidable for JMAs with
2 heads.

The following proposition shows that the ability to jump increases the expressive power.

I Proposition 18. For all k ≥ 1, JMA(2) * 1DFA(k).

Proof. It is proven in [19] that (1DFA(k))k∈N forms a strict hierarchy, by defining a language
Lb that is recognisable by a 1DFA with k heads if and only if b <

(
k
2
)
. We slightly modify

these languages so that they become expressible with a two heads JMA while keeping the
previous characterisation for 1DFA. Details are given in [15, Appendix]. J

Concerning 2-ways automata (2DFA) it is known that
⋃

k≥1 2DFA(k) = DLogSpace [14],
so that by Lem. 15 every JMA can be translated into a deterministic multihead 2-way
automaton, not necessarily preserving the number of heads. The converse direction is more
delicate. The language of palindromes belongs to 2DFA(2), but we conjecture that it cannot be
represented by a JMA, whatever the number of heads. We also conjecture that (JMA(k))k∈N
forms a strict hierarchy: we think that the language L = al1$al2$. . . $alk $aΠk

i=1li can be
recognised by a JMA only if it has strictly more than k heads.

4 Equivalence between JMAs and cyclic proofs

We now turn to proving the following characterisation.

I Theorem 19. The languages recognised by JMAs are those recognised by regular proofs.

We prove the theorem in the next two subsections, by providing effective translations between
the two models. Notice that by Rem. 17, the theorem implies that for regular proofs π,
emptiness and other basic properties of [π] are undecidable.

4.1 From JMAs to cyclic proofs
LetM = 〈S, k, s0, sacc, srej , δ〉 be a jumping multihead automaton. We want to build a regular
proof πM of A∗ ` 2 such that [πM] = L(M). A difficulty is that heads in the automaton
may stay in place, thus reading the same letter during several steps. In contrast the letters
are read only once by cyclic proofs, so that we have to remember this information. We do
so by labelling the sequents of the produced proof πM with extra information describing
the current state of the automaton. If k′ ∈ N, let Fk′ be the set of injective functions
J1, k′K→ J1, kK. A labelled sequent is a sequent of the form (A∗)k′ ` 2 together with an extra
label in S ×Fk′ × (A ∪ {�, /})k.

The intuitive meaning of a label (s, f, ~y) is the following: s is the current state of the
automaton, f maps each formula A∗ of the sequent to a head of the automaton, and ~y stores
the letter that is currently processed by each head. Symbol � is used if this letter is unknown,

FSTTCS 2019

45:10 Cyclic Proofs and Jumping Automata

and the head is scheduled to process this letter and move to the right. The values intuitively
provided to each A∗ formula of the sequent are the suffixes to the right of the corresponding
heads of the automaton. On the examples, labels will be written in grey below the sequents.

It will always be the case that if the label of (A∗)k′ is (s, f, ~y), then Im(f) ⊆ {i | yi 6= /},
i.e. all heads reading symbols from A ∪ {�} correspond to a formula A∗ in the sequent. We
say that a sequent is fully labelled if its label does not contain �.

The construction of πM will proceed by building gadgets in the form of proof trees, each
one (apart from the initial gadget) connecting a labelled sequent in the conclusion to a finite
set of labelled sequents in the hypotheses. If some labelled sequents in the hypotheses have
already been encountered, we simply put back pointers to their previous occurrence. Since
the number of labelled sequents is finite, this process eventually terminates and yields a
description of πM.

When describing those gadgets we abbreviate sequences of inference steps or standalone
proofs using double bars labelled with the involved rule names.

Initial gadget. The role of the initial gadget is to reach the first labelled sequent from the
conclusion A∗ ` 2. It simply creates k identical copies of A∗. This expresses the fact that the
initial configuration is 〈w, s0, (0, 0, ...0)〉. We note idk the identity function on J1, kK. The
initial labelled sequent is (A∗)k ` 2 together with label (s0, idk, (�, . . . ,�)).

The initial gadget is as follows:
(A∗)k ` 2

s0,idk,(�,...,�)
c, . . . , c

A∗ ` 2

Reading gadget. Every time the label (s, f, ~y) of the current address is not fully labelled,
we use the gadget readi, where i = min{j | ~y(j) = �} to process the first unknown letter.

We note i′ = f−1(i) the position of the A∗ formula corresponding to head i and define
the gadget readi as follows:

(A∗)k′−1 ` 2
s,f ′,(y1,...,yi−1,/,...,yk)

((A∗)k′ ` 2
s,f,(y1,...,yi−1,a,...,yk)

)
a∈A

A

(A∗)i′−1, A,A∗, (A∗)k′−i′ ` 2
∗

(A∗)k′ ` 2
s,f,(y1,...,yi−1,�,...,yk)

where f ′(x) ={
f(x) if 1 ≤ x < i′

f(x+ 1) if i′ ≤ x ≤ k′ − 1

Transition gadget. Thanks to the readi gadgets, we can now assume we reach a fully labelled
sequent, with label of the form (s, f, (y1, . . . , yk)). If s /∈ {sacc, srej}, we use a transition
gadget, whose general shape is as on the right below, with (s′, α) = δ(s, (y1, . . . , yk)):

This gadget is designed such that for all i ∈ J1, kK:
if α(i) = � then zi = yi

if α(i) = � then zi = �,
if α(i) = Jj then zi = yj .

(A∗)k′′ ` 2
s′,f ′,(z1,...,zk)

δ

(A∗)k′ ` 2
s,f,(y1,...,yk)

In the last case, a contraction is used to duplicate the A∗ formula corresponding to head j,
and the function f ′ maps this new formula to head i. The occurrence of A∗ corresponding
to yi is weakened (possibly after having been duplicated if another head jumped to i).

D. Kuperberg, L. Pinault, and D. Pous 45:11

We describe this gadget on two examples below. An element f : J1, k′K→ J1, kK is simply
represented by f(1)f(2) . . . f(k′).

δ(s, (a, b, /)) = (s′, (�,�, J1)) δ(s, (c, d, e)) = (s′, (J3, �, J2))

A∗, A∗, A∗ ` 2
s′,132,(�,b,a)

c
A∗, A∗ ` 2
s,12,(a,b,/)

A∗, A∗, A∗ ` 2
s′,231,(e,�,d)

w,w
A∗, A∗, A∗, A∗, A∗ ` 2

c, c
A∗, A∗, A∗ ` 2

s,123,(c,d,e)

Notice that it is also possible to avoid unnecessary contractions, in order to bound the number
of A∗ formulas in a sequent by k. The symbol � means that the formula A∗ is scheduled for
a ∗ rule, and will be immediately processed thanks to the gadget readi as described above.

Final gadget. It remains to describe what happens if the current sequent is fully labelled
with s ∈ {sacc, srej}. In this case, we simply conclude with a (tt) axiom if s = sacc or with a
(ff) axiom if s = srej .

This achieves the description of the preproof πM. The following lemma expresses its
correctness; we prove it in [15, Appendix].

I Lemma 20. IfM is a progressing JMA, the preproof πM is valid, and [πM] = L(M).

4.2 From cyclic proofs to JMAs
Let π be a regular proof with conclusion A∗ ` 2. Let k be the maximal number of star
formulas in the sequents of π. We build a JMAM with k heads such that L(M) = [π].

The idea of the construction is to store all necessary information on the current state
of the computation in π into the state space of M, besides the content of star formulas.
This includes the current address in π, and the actual letters corresponding to the alphabet
formulas, together with some information linking star formulas to heads of the automaton.

This allowsM to mimic the computation of [π] on an input u, in a similar way as the
converse translation from Sect. 4.1. In particular, we keep the invariant that the value
associated to each star formula is the suffix of u to the right of the corresponding head ofM.

State space ofM. Let m be the maximal number of alphabet formulas in the sequents of
π. We use a register with m slots, each one possibly storing a letter from A. Let R =

⋃m
i=0A

i

be the set of possible register values. An element b1 . . . bi of R describes the content of the i
alphabet formulas of the current sequent. We denote the empty register by ♦. Intuitively,
the register needs to store the values that have been processed by the automaton, but are
still unknown in the proof π as they are represented by alphabet formulas.

Let F be the set
⋃k

i=0J1, kKi. An element f ∈ F associates to each A∗ formula of a
sequent the index of a head ofM. This allows us to keep track of the correspondence between
heads ofM and suffixes of the input word being processed by π.

We define the state space ofM as S = (Addr(π)×R×F) ∪ {sacc, srej}.
Notice that Addr(π) is infinite, soM is an infinite-state JMA. However, if π has finitely

many subtrees, we will be able to quotient Addr(π) by v ∼ w if v and w correspond to the
same subtree, and obtain a finite-state JMA.

FSTTCS 2019

45:12 Cyclic Proofs and Jumping Automata

If (v, r, f) is a state ofM, we will always have |r| = m′ and |f | = k′, where m′ (resp. k′)
is the number of alphabet (resp. star) formulas in π(v). Moreover, for all i ∈ J1,m′K, the ith

alphabet formula contains the letter r(i) stored in the ith slot of the register r.
The initial state is s0 = (ε,♦, 1). It points to the root of π, with empty register, and

maps the only star formula to head 1.

Transition function ofM. If s = (v, r, f) is a state ofM, and ~a = (a1, . . . , ak) is the tuple
of letters read by each head with ai ∈ A/, we want to define δ(s,~a) = (s′, α) ∈ S ×Actk.

We write αid for the action tuple (�, . . . ,�) leaving each head at the same position. We
write movei (resp. jumpi,j) for the element of Actk which associates to heads i′ 6= i the
action � and to head i the action � (resp. jump to head j).

First of all, if the rule applied to v in π is an axiom (tt) (resp. (ff)), we set s′ = sacc
(resp. srej) and α = αid . This allowsM to stop the computation and return the same value
as [π]. Otherwise, we define s′ = (v′, r′, f ′) and α depending on the rule applied to v in π.
By Prop. 10, we can assume that the proof π does not use the weakening rule. Let m′ (resp.
k′) be the number of alphabet (resp. star) formulas in π(v).

Contraction Rule: We set v′ = v0, and do a case analysis on the principal formula:
ith alphabet formula: we set f ′ = f , r′ = r(1) · · · r(i− 1) · r(i) · r(i) · r(i+ 1) · · · r(m′)
and α = αid .
ith star formula: let j ∈ J1, kK be the smallest integer not appearing in f , corresponding
to the index of the first available head. We want to allocate it to this new copy, by
making it jump to the position of the head f(i). We take r′ = r, f ′ = f(1) · · · f(i) · j ·
f(i+ 1) · · · f(k′), and α = jumpj,f(i).

Star rule: Let i be the index of the principal star formula. We now want the head j , f(i)
pointing on this formula to move right. The letter processed by this head will be added
to the register.

if ~a(j) = /, the head reached the end of the input. This corresponds to the left premiss
of the ∗ rule. We set v = v0, f ′ = f(1) · · · f(i− 1)f(i+ 1) · · · f(k′), r′ = r and α = αid .
if ~a(j) ∈ A, we set v′ = v1, f ′ = f , α = movei, and r′ = r(1) · · · r(i′)~a(i)r
(i′ + 1) · · · r(m′), where i′ is the number of A formulas before the principal star
formula.

Let i be the index of the principal A formula, and a = r(i) be the letter associated to it.
We define v′ = va, f ′ = f , α = αid, and r′ = r(1) . . . r(i− 1)r (i+ 1) . . . r(m′), i.e. we
erase the ith slot.

This completes the description of the JMAM = 〈S, k, s0, sacc, srej , δ〉.

I Lemma 21. The JMAM is progressing, and L(M) = [π].

I Example 22. We can obtain a progressing JMA for the language L = {a2n | n ∈ N} by
translating the proof from Fig. 4 using the above procedure. As there are at most two star
formulas in the sequents of the proof, the produced JMA has two heads. As there is only
one letter in the alphabet, we can just forget the register. Similarly we consider that any
ff part (resp. tt part) of the proof corresponds to the state srej (resp. sacc). Using _ for
reading any symbol (a letter a or /), we can represent the obtained automaton as follows:

D. Kuperberg, L. Pinault, and D. Pous 45:13

ε; (1) 1; (1) 11; (1, 2) sacc

111; (1, 2)

srej 1111; (1, 2) 11111; (1, 2)

(a,_), �,�

(/,_),�,�

(_,_),�, J1 (_, /),�,�

(_, a),�, �(_, /),�,�

(_, a),�, �

(_, /),�,� (_, a),�, �

(a,_), �,�

I Remark 23. Our encoding from regular proofs to JMAs would still work if we had included
an exchange rule in the system, and the encoding from JMAs to regular proofs does not
require the exchange rule. Therefore, such a rule would not increase the expressive power.

4.3 The affine case: regular languages

Looking at the encodings in the two previous sections, we can observe that:
the encoding of an affine regular proof is a JMA with a single head: in absence of
contraction, all sequents in proof ending with A∗ ` 2 have at most one star formula;
the encoding of a JMA with a single head does not require contraction: this rule is used
only for the initial gadget and when the action of a head is to jump on another one.

As a consequence, we have a correspondence between affine regular proofs and JMAs with a
single head, whence, by Lemma 16:

I Theorem 24. The regular languages are those recognisable by affine regular proofs.

5 Conclusion

We have defined a cyclic proof system where proofs denote formal languages, as well as a
new automata model: jumping multihead automata. We have shown that regular proofs
correspond precisely to the languages recognisable by jumping multihead automata, and that
affine regular proofs correspond to regular languages. We see two directions for future work.

First, we restricted to sequents of the shape E ` 2 in order to focus on languages. The
proof system we started from (LKA [7]) however makes it possible to deal with sequents of
the shape E ` e: it suffices to include right introduction rules for the alphabet (A) and star
formulas (A∗). By doing so, we obtain a system where proofs of A∗ ` A∗ denote transductions:
functions from words to words. We conjecture that in the affine case, we obtain exactly
the subsequential transductions [17], i.e. transductions definable by deterministic 1-way
transducers. In the general case (with contraction), we would need a notion of jumping
multihead transducers.

Second, we used a cut-free proof system. While adding the cut rule for the presented
system (restricted to sequents E ` 2) seems peculiar since the input and output are not of
the same shape, it becomes reasonable when moving to general sequents for transductions.
We have observed that we can go beyond MSO-definable transductions when doing so, even
in the affine case. We would like to investigate and hopefully characterise the corresponding
class of transductions.

FSTTCS 2019

45:14 Cyclic Proofs and Jumping Automata

References
1 Bahareh Afshari and Graham E. Leigh. Cut-free completeness for modal mu-calculus. In

LiCS, pages 1–12, 2017. doi:10.1109/LICS.2017.8005088.
2 Stefano Berardi and Makoto Tatsuta. Classical System of Martin-Löf’s Inductive Definitions

Is Not Equivalent to Cyclic Proof System. In FoSSaCS, pages 301–317, 2017. doi:10.1007/
978-3-662-54458-7_18.

3 Stefano Berardi and Makoto Tatsuta. Equivalence of inductive definitions and cyclic proofs
under arithmetic. In LiCS, pages 1–12, 2017. doi:10.1109/LICS.2017.8005114.

4 James Brotherston and Alex Simpson. Sequent calculi for induction and infinite descent.
Journal of Logic and Computation, 21(6):1177–1216, 2011. doi:10.1093/logcom/exq052.

5 Anupam Das, Amina Doumane, and Damien Pous. Left-handed completeness for Kleene
algebra, via cyclic proofs. In LPAR, volume 57 of EPiC Series in Computing, pages 271–289.
Easychair, 2018. doi:10.29007/hzq3.

6 Anupam Das and Damien Pous. A cut-free cyclic proof system for Kleene algebra. In
TABLEAUX, volume 10501 of Lecture Notes in Computer Science, pages 261–277. Springer,
2017. doi:10.1007/978-3-319-66902-1_16.

7 Anupam Das and Damien Pous. Non-wellfounded proof theory for
(Kleene+action)(algebras+lattices). In CSL, volume 119 of LIPIcs, pages 18:1–18:19.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.CSL.2018.19.

8 Christian Dax, Martin Hofmann, and Martin Lange. A Proof System for the Linear Time
µ-Calculus. In FSTTCS, volume 4337 of Lecture Notes in Computer Science, pages 273–284.
Springer, 2006. doi:10.1007/11944836_26.

9 Amina Doumane. Constructive completeness for the linear-time µ-calculus. In LiCS, pages
1–12, 2017. doi:10.1109/LICS.2017.8005075.

10 Amina Doumane, David Baelde, and Alexis Saurin. Infinitary proof theory: the multiplicative
additive case. In CSL, volume 62 of LIPIcs, pages 42:1–42:17. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, September 2016. doi:10.4230/LIPIcs.CSL.2016.42.

11 Jérôme Fortier and Luigi Santocanale. Cuts for circular proofs: semantics and cut-elimination.
In CSL, volume 23 of LIPIcs, pages 248–262, 2013. doi:10.4230/LIPIcs.CSL.2013.248.

12 Alain Frisch and Luca Cardelli. Greedy Regular Expression Matching. In ICALP, volume
3142 of Lecture Notes in Computer Science, pages 618–629. Springer, 2004. doi:10.1007/
978-3-540-27836-8_53.

13 Fritz Henglein and Lasse Nielsen. Regular expression containment: coinductive axiomatization
and computational interpretation. In POPL, 2011, pages 385–398. ACM, 2011. doi:10.1145/
1926385.1926429.

14 Markus Holzer, Martin Kutrib, and Andreas Malcher. Multi-Head Finite Automata: Charac-
terizations, Concepts and Open Problems. In International Workshop on The Complexity of
Simple Programs (CSP), pages 93–107, 2008. doi:10.4204/EPTCS.1.9.

15 Denis Kuperberg, Laureline Pinault, and Damien Pous. Cyclic Proofs and Jumping Automata,
2019. Version with appendix. URL: https://hal.archives-ouvertes.fr/hal-02301651.

16 Alexander Meduna and Petr Zemek. Jumping Finite Automata. Int. J. Found. Comput. Sci.,
23(7):1555–1578, 2012. doi:10.1142/S0129054112500244.

17 Marcel Paul Schützenberger. Sur une Variante des Fonctions Sequentielles. Theor. Comput.
Sci., 4(1):47–57, 1977.

18 Alex Simpson. Cyclic Arithmetic Is Equivalent to Peano Arithmetic. In FoSSaCS, pages
283–300, 2017. doi:10.1007/978-3-662-54458-7_17.

19 Andrew C Yao and Ronald L. Rivest. k+1 Heads Are Better than k. Journal of the ACM,
25(2):337–340, 1978. doi:10.1145/322063.322076.

https://doi.org/10.1109/LICS.2017.8005088
https://doi.org/10.1007/978-3-662-54458-7_18
https://doi.org/10.1007/978-3-662-54458-7_18
https://doi.org/10.1109/LICS.2017.8005114
https://doi.org/10.1093/logcom/exq052
https://doi.org/10.29007/hzq3
https://doi.org/10.1007/978-3-319-66902-1_16
https://doi.org/10.4230/LIPIcs.CSL.2018.19
https://doi.org/10.1007/11944836_26
https://doi.org/10.1109/LICS.2017.8005075
https://doi.org/10.4230/LIPIcs.CSL.2016.42
https://doi.org/10.4230/LIPIcs.CSL.2013.248
https://doi.org/10.1007/978-3-540-27836-8_53
https://doi.org/10.1007/978-3-540-27836-8_53
https://doi.org/10.1145/1926385.1926429
https://doi.org/10.1145/1926385.1926429
https://doi.org/10.4204/EPTCS.1.9
https://hal.archives-ouvertes.fr/hal-02301651
https://doi.org/10.1142/S0129054112500244
https://doi.org/10.1007/978-3-662-54458-7_17
https://doi.org/10.1145/322063.322076

Reachability in Concurrent Uninterpreted
Programs
Salvatore La Torre
Università degli Studi di Salerno, Italia
https://docenti.unisa.it/salvatore.latorre
slatorre@unisa.it

Madhusudan Parthasarathy
University of Illinois, Urbana-Champaign, USA
http://madhu.cs.illinois.edu/
madhu@illinois.edu

Abstract
We study the safety verification (reachability problem) for concurrent programs with uninterpreted
functions/relations. By extending the notion of coherence, recently identified for sequential programs,
to concurrent programs, we show that reachability in coherent concurrent programs under various
scheduling restrictions is decidable by a reduction to multistack pushdown automata, and establish
precise complexity bounds for them. We also prove that the coherence restriction for these various
scheduling restrictions is itself a decidable property.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Formal languages and automata theory; Software and its engineering → Formal
software verification

Keywords and phrases Verification, uninterpreted programs, concurrent programs, shared memory

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.46

Acknowledgements This material is based upon work supported by the National Science Foundation
under Grant CCF-1527395, GNCS 2019 grant and MIUR-FARB 2018-19 grant.

1 Introduction

Verification against assertion violations for sequential programs that have only Boolean
variables and have recursive function calls is decidable, as the problem is equivalent to
pushdown automata reachability/emptiness. However, generalizations of this result to other
settings is hard. First, there are hardly any positive results for verifying recursive programs
that work over infinite domains. Second, concurrent recursive program verification is typically
undecidable (two stacks suffice to encode the executions of Turing machines) if the interaction
of the threads is not restricted in any way.

A recent paper by Mathur et al. introduces a decidable class of sequential programs where
the data domain is infinite [27]. The first ingredient for decidability is that the programs
compute terms over functions and compare them over relations that are both assumed to be
uninterpreted. The theory of uninterpreted functions is an important theory. Theoretically,
it was the one studied by Gödel for his completeness theorems [15], and practically, the
decidability of validity of its quantifier-free fragment is exploited by SMT solvers and is often
used (typically in combination with other theories) to solve feasibility of loop-free program
snippets, in bounded model-checking, and to validate verification conditions [10]. The second
ingredient for decidability is a technical restriction called coherence. Coherent programs
have two properties – the memoizing property (which intuitively says that computed terms
once dropped cannot be recomputed) and the early assume property (which intuitively says
that equality assumptions in program executions happen early, well before their superterms

© Salvatore La Torre and Madhusudan Parthasarathy;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 46; pp. 46:1–46:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://docenti.unisa.it/salvatore.latorre
mailto:slatorre@unisa.it
http://madhu.cs.illinois.edu/
mailto:madhu@illinois.edu
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.46
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

46:2 Reachability in Concurrent Uninterpreted Programs

are computed and dropped). The work by [27] shows that for coherent programs, one can
build a streaming congruence closure algorithm with finite memory, and by modeling this
algorithm as an automaton, verify programs.

From a practical point of view, uninterpreted abstractions have been considered [18], and
a recent paper shows that verifying programs using an uninterpreted abstraction can be
effective [12]. Also, extensions of the decidable verification result for uninterpreted programs
has found applications in verifying memory-safety for heap-manipulating programs, where
heaps are naturally modeled using infinite domains [28].

In this paper, we consider the problem of verifying concurrent uninterpreted programs,
with both recursion and shared memory.

Note that concurrent recursive programs even over Boolean domains have an undecidability
verification (reachability) problem. Programs with uninterpreted functions/relations are
much more complex than programs with Boolean domains – it is easy to see that we can
simulate a program with Boolean domains by using a program with no functions or relations,
with two special immutable variables for T and F , and only using equality relations in the
program. Moreover, this will always yield a coherent program. Consequently, concurrent
recursive coherent uninterpreted programs clearly have an undecidable reachability problem.

There has been a rich literature of work that has identified restrictions of concurrent
recursive Boolean programs for which reachability is decidable (see [2, 9, 19, 21, 24, 25, 30]).
Verification of such programs can be modeled as reachability/emptiness problem in multistack
pushdown systems and several underapproximations based on restricting the scheduling of
threads has yielded decidability. These include bounded context-switching [30], bounded
scope executions [24], (k, d)-budgeted executions [2], k-phase executions [20], k-path-tree
executions [23], etc. Some generalizations of the above decidability results that show
decidability when manipulating multiple stacks in a way that the accesses correspond to
bounded tree-width manipulations are also known [13, 26], and some of these restrictions
have been applied for finding errors in predicate abstracted programs as well [17, 31, 21].
There has also been a lot of work on studying register automata (both sequential and
concurrent) on data words where registers can read data from infinite domains but use only
equality/disequality checks (note that uninterpreted functions/relations that must satisfy
the congruence axioms are not allowed) [6, 7, 14, 8, 29]; see also work extending to programs
where variables range over natural numbers, with equality, but with no functions [1].

The goal of this paper is to establish decidability results for concurrent recursive programs
working over infinite uninterpreted data domains with certain scheduling restrictions that
were shown to yield decidable reachability in the setting of Boolean programs. Our main
results are that coherent concurrent program safety verification (for a notion of coherence
for concurrent programs we define) is decidable for bounded context-switching, bounded
scope executions, (k, d)-budgeted executions, k-phase executions, ordered executions, and
k-path-tree executions.

There are two primary technical challenges to establish our results. First, we need to
define an appropriate extension of coherence for concurrent programs. We propose such a
natural extension. We model a concurrent program as working on a data-domain that is
shared amongst all processes; we think this is an important design decision as the alternative
choice of having local universes is both unnatural (domains of programs in the real world are
often common, like integers or other forms of data structures) and prohibits communication of
unbounded data between processes. The notion of coherence (memoizing and early assumes)
is defined based on the frontier of computation, which includes all variables that could
ever come into scope. This includes the unbounded copies of local variables stored in each
program’s stack as well as the shared variables.

S. La Torre and M. Parthasarathy 46:3

The second challenge is to build a multistack automaton that accurately captures the
feasibility of coherent runs of the concurrent recursive program. In the automata constructed
in [27] for sequential programs, the automata do not store actual elements of the universe
in the stack or state, of course, as the universe is infinite. Rather, the automata store
relationships between variables – more precisely the equalities between variables in the
initial model defined by the equality assumptions occurring in the program’s execution, the
disequality constraints implied by it, and certain local function maps between variables. Let
us call this the EDF information – information on equalities, disequalities, and function maps
between variables. The automaton constructed by [27] effects a streaming congruence closure
algorithm that has finite memory by keeping track of the EDF information on variables
currently in scope after any execution.

In concurrent programs, the EDF information is significantly harder to keep track of
because it includes relationships between not just the local variables of one process or
relationships between local variables and shared variables, but also between local variables of
different processes. For example, when a call returns in a local thread, it has to recover all
EDF information between new local variables in scope and local variables of other threads.

The above complications mean that we cannot simply abstract each local thread into its
EDF information and then take their concurrent evolution. In fact, our results do not extend
to parameterized concurrent systems (where there are an unbounded number of processes),
even for the cases where Boolean program verification under certain scheduling restrictions
are known to be decidable (e.g., bounded rounds is known to be decidable [21]).

Our multistack automaton construction instead maintains a complex invariant – an element
in the stack for a process p contains several kinds of information: the EDF information on
local variables of p and shared variables at the time the push (function call) happened, EDF
relationship of local variables in p to local variables in p just below the stack (the caller’s
variables), and most importantly, EDF information between local variables across processes
at the time this information was pushed onto the stack. Maintaining this complex invariant
at every stage is involved, and gives us the reduction from reachability of concurrent coherent
programs to multistack automata reachability.

The reduction to multistack automata reachability is rewarding as we can exploit the fact
that reachability of the latter under various scheduling restrictions have been well studied for
establishing decidability. Utilizing these results, we show that concurrent coherent program
reachability is decidable for the following restrictions: bounded context-switching, bounded
scope executions (k, d)-budgeted executions, k-phase executions, ordered executions, and
k-path-tree executions. We also show that our decidability results have optimal complexity.
In fact we can show that the complexity of verification of coherent concurrent programs is
precisely the same as that for Boolean programs under similar scheduling restrictions.

There is another natural related question that arises: Given a concurrent program with a
scheduling restriction as above, how can the user determine whether it is coherent? We show
that checking whether a concurrent program is coherent under these scheduling restrictions
is also decidable and decidable in the same time complexity as the reachability algorithm.

2 Concurrent Uninterpreted Programs

In this section, we introduce the notion of concurrent programs over data domains with
uninterpreted functions and relations. We start by recalling some definitions about first order
data structures, then we recall the definition of uninterpreted sequential programs and then
we extend it to concurrent programs.

FSTTCS 2019

46:4 Reachability in Concurrent Uninterpreted Programs

A first order signature is (C,F ,R) where C is a set of constants, F is a set of function
symbols, and R is a set of relation symbols. Relations and functions have an implicitly
assigned arity in N>0. A signature is algebraic if R is empty and in this case we denote
it simply as the pair (C,F). A data model for (C,F ,R) is M = (U, {JcK | c ∈ C}, {JfK |
f ∈ F}, {JRK | R ∈ R}) consisting of a universe, and an interpretation on the universe for
constants, functions and relations (a data model for an algebraic signature will not have
an interpretation for the relations). The set of terms is defined inductively as follows: each
constant from C is a term and for any m-ary function f and terms t1, . . . , tm, f(t1, . . . , tm) is
also a term. An immediate superterm of t is f(t1, . . . , tm) where t ∈ {t1, . . . , tm}. A superterm
of t is either an immediate superterm of t or an immediate superterm of a superterm of t.
The interpretation of a term t inM is denoted as JtKM.

In the following, for an integer n > 0, we denote with [n] the set {1, . . . , n}.

2.1 Uninterpreted sequential programs
We consider simple sequential programs over uninterpreted functions and relations, and with
possibly recursive calls to methods. We fix a finite set of variables V which includes both
local and global variables used by the programs to store information during a computation.
Values are manipulated by using function and relation symbols from a first order signature
(C,F ,R). We also fix a finite set of method names M . A program is essentially formed
of a list of method definitions, one for each method name in M and such that there is a
main method, i.e., the method from which the execution starts, that we denote m0. We
allow methods to return tuples of values, thus for every method m ∈M , we fix a tuple of
distinct output variables om. Also for the ease of presentation and without loss of generality,
we assume that all methods have the same list of parameters which coincides with a fixed
permutation of all the local variables. In the following, we denote such list as lvars. Each
method body contains assignments, sequencing, conditionals, loops and method calls.

The precise syntax is given by the following grammar:

〈pgm〉 ::= m⇒ om〈 stmt〉 | 〈pgm〉 〈pgm〉
〈stmt〉 ::= 〈stmt〉; 〈stmt〉 | skip | x := y | x := f(z) | assume(〈cond〉)

| w := m(lvars) | if (〈cond〉) then 〈stmt〉 else 〈stmt〉 | while (〈cond〉) 〈stmt〉
〈cond〉 ::= x = y | x = c | c = d | R(z) | 〈cond〉 ∨ 〈cond〉 | ¬〈cond〉

In the above, m ∈ M is a method name, c, d ∈ C are constants, f ∈ F is a function
name, R ∈ R is a relation name, x, y ∈ V are variables, w is a tuple of variables from V ,
and z is a tuple of constants from C and variables from V . Moreover, we allow for standard
operators: ‘:=’ is the assignment operator, ‘;’ is the program sequencing operator, skip is
the “do nothing” statement, if-then-else is the usual conditional statement and while is
the usual loop statement. Method calls are handled as usual with a call stack. Namely, a
configuration of the program consists of a stack which stores the history of positions at which
calls were made, along with valuations for local variables, and the top of the stack contains
the local and global valuations, and a pointer to the current statement being executed. Note
that we do not make use of an explicit return statement: a call to module m is returned
when there are no more statements of m to execute (the values that need to be returned are
assigned to the output variables om before the call ends).

For the ease of presentation, in the rest of the paper we will assume that the programs
have only conditionals of the form ‘x = y’ and ‘x 6= y’, constants will not appear in any of
the program expressions and the signature is algebraic, i.e., R is empty. Note that this is
without loss of generality. In fact, any relation R can be captured by a function fR with the

S. La Torre and M. Parthasarathy 46:5

same arity and a Boolean variable bR. A Boolean combination of conditions can be modeled
using the if-then-else construct. Constants can be removed by using instead variables that
are not modified in the program.

Fix a set of functions F . An execution of a sequential program over a set of variables V and
set of methods M is a sequence over the alphabet Π = {“x := y”, “x := f(z)”, “assume(x =
y)”, “assume(x 6= y)”, “call m”, “w := return” | x, y, z, w are in V,m ∈M}. In particular,
for a program P , denoting bd(m) the body of a method m ∈M , the set of complete executions
of P is generated by the following context-free grammar:

Xε → ε

Xskip; st → Xst

Xx:=y; st → “x := y” · Xst

Xx:=f(z); st → “x := f(z)” · Xst

Xassume(c); st → “assume(c)” · Xst

Xif(c) then st1 else st2 ; st → “assume(c)” · Xst1 ; st | “assume(¬c)” ·Xst2 ; st

Xwhile(c) {st1} ; st → “assume(c)” · Xst1 ; while(c) {st1} ; st | “assume(¬c)” · Xst

Xw:=m(lvars) ; st → “call m” ·Xbd(m) · “w := return” · Xst

where Xst denotes the nonterminal symbol corresponding to a statement st and Xbd(m0) ; ε is
the start symbol (recall m0 is the main method). An execution is any prefix of a complete
execution. Note that not all the executions are feasible.

2.2 Concurrent uninterpreted programs
A concurrent uninterpreted program is a finite set of recursive uninterpreted programs running
in parallel and sharing a finite set of variables S. The syntax of concurrent programs is
defined by extending the syntax of the sequential programs with the following rule:

〈conc-pgm〉 ::= 〈pgm〉 | 〈pgm〉 || 〈conc-pgm〉

where each sequential program uses its own set of local and global variables along with the set
of the shared variables (for a sequential program the shared variables are as global variables,
the only difference is that they can be read and written also by the other sequential threads).

For the rest of the paper, we fix a concurrent uninterpreted program P that is formed
by the sequential programs P1, . . . , Pn (where n > 0). We refer to programs P1, . . . , Pn as
the component programs of P. We denote with Vi the set of local and global variables of
each Pi and assume that the sets S, V1, . . . , Vn are pairwise disjoint. Further, we denote
Vars = S ∪

⋃n
i=1 Vi the set of all variables used in P. Any (complete) execution of P is

obtained as an interleaving ρ1, . . . , ρn where ρi is a (complete) execution of Pi for i ∈ [n].
To distinguish among the different sequential programs in a concurrent execution, we

assume pairwise disjoint alphabets and for each program Pi, we will denote the corresponding
alphabet Πi and any symbol of the form “a” as 〈a〉i, that is, we let Πi = {〈x := y〉i, 〈x :=
f(z)〉i, 〈assume(x = y)〉i, 〈assume(x 6= y)〉i, 〈call m〉i, 〈w := return〉i | x, y, z, w are in Vi ∪
S,m ∈M}. Thus, the overall alphabet for P is Π =

⋃
i∈[n] Πi.

At the beginning of any execution each variable x is set according to an initial inter-
pretation of the data model that we denote with init(x). Then, the variables are updated
according to the intended semantics of the statements.

For any ρ′ such that ρ · ρ′ · ρ′′ is an execution of P and i ∈ [n], we say that ρ′ is i-matched
if all the calls of program Pi (i.e., of the form 〈call m〉i) that occur in ρ′ are matched within
ρ′. The map Comp captures the term associated with program variables at the end of any
execution. Denoting with ρ any execution of P, Comp is inductively defined as follows:

FSTTCS 2019

46:6 Reachability in Concurrent Uninterpreted Programs

comp(ε, x) = init(x) x ∈ Vars
Comp(ρ.〈x := y〉i, x) = Comp(ρ, y)

Comp(ρ.〈x := y〉i, x′) = Comp(ρ, x′) x′ ∈ Vars and x′ 6= x

Comp(ρ · 〈x := f(z)〉i, x) = f(Comp(ρ, z1), . . . , Comp(ρ, zr)) where z = (z1, . . . , zr)
Comp(ρ · 〈x := f(z)〉i, x′) = Comp(ρ, x′) x 6= x′

Comp(ρ · 〈assume(x = y)〉i, x′) = Comp(ρ, x′) x′ ∈ Vars
Comp(ρ · 〈assume(x 6= y)〉i, x′) = Comp(ρ, x′) x′ ∈ Vars

Comp(ρ · 〈call m〉i · ρ′

·〈(w1, . . . wr := return〉i, wj)
= Comp(ρ · 〈call m〉i · ρ′, om[j]) ρ′ is i-matched

Comp(ρ · 〈call m〉i · ρ′

·〈(w1, . . . wr := return〉i, x)
= Comp(ρ, x)

ρ′ is i-matched,
x 6∈ {w1, . . . wr}

We denote with ≤ the prefix relation among executions, i.e., for executions ρ, ρ′, with
ρ′ ≤ ρ we mean that ρ′ is a prefix of ρ. The set of all the terms computed by an execution ρ
is Terms(ρ) =

⋃
ρ′≤ρ,x∈Vars Comp(ρ′, x).

The semantics of uninterpreted programs is defined with respect to a data model that
gives a meaning to the elements in the signature, and thus to the computed terms. An
execution ρ is said to be feasible with respect to a data model if the assumptions it makes
are true in that model. To formalize the notion of feasible executions we first define the sets
of the equality assumes and the disequality assumes of an execution.

For any execution ρ, the set of equality assumes of ρ, denoted α(ρ), is a subset of
Terms(ρ)× Terms(ρ) inductively defined as: α(ε) = ∅; and if σ is 〈assume(x = y)〉i, i∈ [n],
then α(ρ · σ) = α(ρ)∪ {(Comp(ρ, x), Comp(ρ, y))}, otherwise α(ρ · σ) = α(ρ). Similarly, the set
of disequality assumes β(ρ) can be defined as: β(ε) = ∅; and if σ is 〈assume(x 6= y)〉i, i∈ [n],
then β(ρ · σ) = β(ρ) ∪ {(Comp(ρ, x), Comp(ρ, y))}, otherwise β(ρ · σ) = β(ρ).

An execution ρ is feasible in a data-model M if JtKM = Jt′KM for every (t, t′) ∈ α(ρ),
and JtKM 6= Jt′KM for every (t, t′) ∈ β(ρ).

We recall that an equivalence relation ∼=⊆ Terms × Terms is said to be a congruence
if whenever t1 ∼= t′1, t2 ∼= t′2, . . . tm ∼= t′m and f is an m-ary function then f(t1, . . . tm) ∼=
f(t′1, . . . t′m). Given a binary relation A ⊆ Terms × Terms, the congruence closure of A,
denoted ∼=A, is the smallest congruence containing A. We can then show:

I Proposition 1. An execution ρ is feasible in some data model if and only if ∼=α(ρ) ∩β(ρ) = ∅.

3 Verification of concurrent uninterpreted programs

The basic verification problem is reachability that consists of checking whether a given set
of target states is reachable in a program execution. For uninterpreted programs, there
is an additional request: the execution must be feasible in some data model. The target
set is often captured by a program counter (corresponding to an assertion) and a Boolean
combination of equalities over program variables. As also observed in [27], by simple program
transformations, the reachability problem for uninterpreted programs can always be reduced
to checking the existence of a feasible complete execution (the assertion condition is translated
into a block containing assume and if statements). In such a translation the size of the
resulting program is linear in the sizes of the starting program and the assertion conditions.
Thus we consider the following reachability problem for concurrent uninterpreted programs:

I Definition 2 (Reachability). Given a concurrent uninterpreted program P, the reachability
problem asks whether there exists a feasible complete execution of P.

S. La Torre and M. Parthasarathy 46:7

We observe that this decision problem is already undecidable for sequential uninterpreted
programs even in absence of recursive method calls, and becomes EXPTIME-complete if the
search is restricted to coherent computations [27]. Unfortunately, in the case of concurrent
uninterpreted programs, assuming coherence does not suffice to gain decidability. In fact,
reachability is undecidable even for concurrent programs with variables ranging over finite
domains and with only two component programs. Consequently, we further restrict the
executions by adopting some limitations studied in the literature that bound the interaction
among the component programs.

In the rest of this section, we define first the notion of coherence, then the above mentioned
restrictions for concurrent uninterpreted programs, and then the general bounded reachability
problem. Finally, we conclude with a high level description of our approach to decide it.

Coherence. For terms t1, t2 ∈ Terms and congruence ∼= on Terms, we say that t2 is a
superterm of t1 modulo ∼= if there are terms t′1, t′2 ∈ Terms such that t′1 ∼= t1, t′2 ∼= t2 and t′2
is a superterm of t′1. For the ease of presentation in the informal descriptions we will identify
equivalent terms, and thus we will refer to a term meaning any of its equivalent terms. For
example, if we say that a term t is recomputed in an execution, we actually mean that the
computed term t is equivalent to a term that was computed earlier in the execution. Also,
we call a superterm modulo an equivalence ∼= simply a superterm.

The notion of coherent execution introduced in [27] for sequential programs naturally
extends to concurrent programs by using the Comp map defined above. Informally, an
execution is coherent if it is memoizing and has early assumes. The memoizing property says
that if a term t is recomputed there must be a variable that currently evaluates to t. The
early assume property instead imposes constraints on when 〈assume(x = y)〉i steps are taken
within the execution: it requires that such assume statements appear before the execution
reassigns all the variables storing any computed term t that is a superterm of the terms
stored in x or y (i.e., before it “drops” all of such superterms).

Formally, we say that a (complete) execution ρ over variables Vars is coherent if it satisfies
the following two properties:
1. (Memoizing) Let π′ = π · 〈x := f(z)〉i be a prefix of ρ and let t = Comp(π′, x). If there is

a term t′ ∈ Terms(π) such that t′ ∼=α(π) t, then there must exist some y ∈ V such that
Comp(π, y) ∼=α(π) t.

2. (Early Assumes) Let π′ = π · 〈assume(x=y)〉 be a prefix of ρ and let tx = Comp(π, x) and
ty = Comp(π, y). If there is a term t′ ∈ Terms(π) such that t′ is either a superterm of tx or
of ty modulo ∼=α(π), then there must exist a variable z ∈ V such that Comp(π, z) ∼=α(π) t

′.
A coherent program is a program whose executions are all coherent.

In the literature, there is a notion of freshness [32, 8] that may remind people of the
notion of memoizing above; however, these are not similar, as the memoizing restriction
is on freshness of the computed terms and not on the underlying semantics of the data
values computed (two terms may be different but still correspond to the same element in a
particular data model).

Bounding the interaction among the component programs. Denote with Π =
⋃
i∈[n] Πi

the alphabet over variables V and functions F . Also, for any ρ′ such that ρ · ρ′ · ρ′′ is an
execution of P and i ∈ [n], we say that ρ′ is i-matched if all the calls of program Pi (i.e.,
of the form 〈call m〉i) that occur in ρ′ are matched within ρ′. For integers k, d > 0, we
consider the bounding conditions that restrict the search respectively to the following sets of
executions:

FSTTCS 2019

46:8 Reachability in Concurrent Uninterpreted Programs

a k-context execution ρ is the concatenation of k contexts, i.e., ρ = ρ1 . . . ρk where
ρi ∈ Π∗ji

, for i ∈ [k] and ji ∈ [n], is a context of Pji
(bounded context-switching, con for

short) [30];
a k-scoped execution ρ is such that for each pair of matching call and return from any Πi,
the portion of ρ delimited by them does not contain more than k contexts of Pi, i.e., for
any decomposition ρ = ρ′.σc.ρ

′′.σr.ρ
′′′ where for some i ∈ [n], σc is of the form 〈call m〉i,

σr is of the form 〈w := return〉i, and ρ′′ is i-matched, ρ′′ does not contain more than k
contexts of Pi (scope-bounded matching relations, sco for short) [24];
a (k, d)-budget execution ρ is such that for each component program Pi and for each ρ′′
such that ρ = ρ′.ρ′′.ρ′′′ where the call stack of Pi contains more than d calls, there are at
most k contexts of Pi in ρ′′ (budget-bounded context-switching, bud for short) [2]1;
a k-phase execution is the concatenation of k phases where a phase of component program
Pi is a sequence from Π where all the return symbols are from alphabet Πi, i.e., are of
the form 〈w := return〉i (bounded number of phases, pha for short) [20];
an ordered execution ρ is such that for each j ∈ [n] and for each return σr from Πj ,
all the calls from Πi, with i < j, that occur in ρ before σr are matched, i.e., for each
decomposition ρ = ρ′.σr.ρ

′′, ρ′ is i-matched for all i < j (ordered matching relations, ord
for short) [11];
a k-path-tree execution ρ is such that it can be encoded into a stack tree2 whose nodes
can be discovered in the order given by ρ by a walk that starts from the root and visits
each node at most k times (bounded path-trees, pat for short) [23].

Bounded reachability. The bounded reachability problem asks to solve reachability by
restricting the search within a subset of the coherent program executions that satisfy a given
bounding condition. Formally:

I Definition 3 (Bounded Reachability). Given a concurrent uninterpreted program P and
a bounding condition B over the executions of P, the B-bounded reachability problem asks
whether there exists a feasible and coherent complete execution of P that satisfies B.

In the following, we will refer to a B-bounded reachability problem as B-reach.

Decision algorithm. We reduce the bounded reachability problem to a reachability problem
in multistack visibly pushdown automata (Mvpa). In particular, we construct an Mvpa
AVars that captures exactly all the coherent and feasible executions over an alphabet Π, and
an Mvpa AP that captures all the executions of P . We then take the intersection of the two
Mvpa’s and check if it accepts an execution that fulfills the bounding condition. In Section
4, we construct AVars and prove its correctness, and in Section 5 we give AP and discuss the
correctness and complexity of the decision algorithm for the considered bounding conditions.

1 The original definition admits a different value of k and d for each component program however the
computational complexity of the reachability problem is the same.

2 A stack tree is a binary tree obtained by labeling the root with the first symbol of ρ, and then the
successor in ρ labels the left child unless it is a matched return, and in this case it labels the right child
of the matching call.

S. La Torre and M. Parthasarathy 46:9

4 MVPA capturing coherent and feasible executions

In this section, we construct an Mvpa AVars that accepts all the coherent and feasible
executions of a concurrent uninterpreted program over the variables Vars and functions F .

The crux of the construction is to represent and maintain the equality/disequality/func-
tional (EDF) relationship between variables along a concurrent execution. Concurrency
poses new challenges on how to maintain this EDF information. Besides the terms that
are currently stored in the program variables, we need to account for those in the local
variables of unreturned calls (still in a call stack) for each of the component programs.
In concurrent programs, a term can flow from a local variable into a shared variable and
then to a local variable of another component program thus potentially establishing direct
equality/inequality/superterm relations among the terms stored in two local variables of two
different component programs. Moreover, as the execution proceeds, these terms can go deep
down into their respective call stacks while no other currently used variable stores them (nor
terms that are equivalent to them), and still on returning, these relations need to be restored.

We organize this complex (and unbounded) piece of information into stack and shared
states. Stack states are kept into the stacks of the corresponding component programs while
shared states are maintained in the control state of the Mvpa, and both of them store the
relations among the content of all variables. To link the shared state with all the stack states
at the top of the stacks and a stack state to the next stack state below into the stack, we
use shadow variables, i.e., additional variables that are used in our relations as placeholders
for actual program variables. For each component program we add a shadow variable for
each program variable. The stack state of a component program is then augmented with
its shadow variables, and the shared state is augmented with the overall set of shadow
variables (we need to link this state to all the stacks). When a method call of component
Pi is issued, we push into stack i the stack state of Pi that can be derived from the current
shared state, and then update the shared state by setting the shadow variables of Pi equal
to the corresponding program variables. Shadow variables stay unchanged in all the other
cases, and thus we maintain the invariant that a shadow variable of Pi has the value of the
corresponding program variable at the time the current method of Pi was called (the initial
value in the case of the main method). This way, in each stack, a stack state l is linked to the
state l′ below it by having each shadow variable of l to evaluate equal to the corresponding
program variable in l′, thus forming a chain across the stack values. The same holds for the
shared state and the stack states at the top of all the stacks.

We recall that a multistack visibly pushdown automaton (Mvpa) consists of a finite control
along with one or more pushdown stores (stacks) that are driven by the input. We refer the
reader to [3, 24] for the details.

In the rest of the section, we first formalize the introduced notions, then we give some
details on the construction of the Mvpa and argue its correctness.

Shadow variables. Fix i ∈ [n]. For each component program Pi, we consider a shadow
variable for each shared variable and for each variable of all the component programs Pj
with j ∈ [n]. We denote the first set as S′i and the second set as V ′i,j . Further, we denote
Vars′i = S′i ∪

⋃
j∈[n] V

′
i,j (the overall set of shadow variables for Pi), Vars′ =

⋃
i∈[n] Vars′i

(the set of all the shadow variables), V = Vars ∪ Vars′ (the overall set of variables), and
Vi = Vars ∪ Vars′i (the set of the program variables along with the shadow variables of Pi).

We extend the notation Comp to capture the described semantics of the shadow variables as
follows. For i ∈ [n], denoting with x′ ∈ Vars′i the shadow variable corresponding to x ∈ Vars,
we set: Comp(ε, x′) = Comp(ε, x), Comp(ρ.〈call m〉i, x′) = Comp(ρ, x) (i.e., x′ stores the value

FSTTCS 2019

46:10 Reachability in Concurrent Uninterpreted Programs

of x on calling a method), Comp(ρ.〈call m〉i.ρ′.〈w := return〉i, x′) = Comp(ρ, x′) where ρ′ is i-
matched (i.e., after the call the previous value of x′ is restored) and Comp(ρ.σ, x′) = Comp(ρ, x′)
for all σ 6∈ {〈call m〉i, 〈w := return〉i | m is a method}.

States and invariants. For an equivalence relation ∼ over a set V , we denote with V/∼
the quotient set, i.e., {[v]∼ | v ∈ V }.

Given a set of variables V and a set of functions F , let (E,D,P,B) be a tuple such that:
E ⊆ V × V is an equivalence relation over V ;
D ⊆ V/E × V/E is a symmetric relation;
P is a partial interpretation of the functions from F over the equivalence classes of E
(for an r-ary function f , P (f) is a partial map from (V/E)r to V/E);
B is such that for an r-ary function f , B(f) is map from (V/E)r to {⊥,>}.

A shared state (resp. stack state of Pi for i ∈ [n]) is a tuple of the form (E,D,P,B) as above
where V = V (resp. V = Vi).

In our construction, along any execution, we aim to maintain a shared state (E,D,P,B)
such that E tracks the occurred equivalences, D tracks the occurred inequalities, P captures
the superterm relation among the currently stored terms, and B signals that some superterms
of the currently stored terms have been already computed. Formally, we wish to maintain
the following:

Invariants. For an execution ρ, variables x, y, x1, . . . , xr ∈ Vars and function f ∈ F ,
I1. (x, y) ∈ E if and only if Comp(ρ, x) ∼=α(ρ) Comp(ρ, y);
I2. ([x]E , [y]E) ∈ D if and only if there are t0, t1 ∈ Terms(ρ) s.t. (t0, t1) ∈ β(ρ), and for

i ∈ {0, 1}, ti ∼=α(ρ) Comp(ρ, x) and t1−i ∼=α(ρ) Comp(ρ, y);
I3. P (f)([x1]E , . . . , [xr]E) = [x]E if and only if t ∼=α(ρ) f(t1, . . . , tr) with t = Comp(ρ, x) and

ti = Comp(ρ, xi) for i ∈ [r];
I4. B(f)([x1]E , . . . , [xr]E) = > if and only if there is a prefix ρ′ of ρ s.t. t ∼=α(ρ) f(t1, . . . , tr)

with t = Comp(ρ′, z) for some z ∈ Vars and ti = Comp(ρ, xi) for i ∈ [r].

4.1 The Mvpa AVars

AVars uses n stacks, one for each component program Pi. The symbols of stack i are the
stack states. The control states are q̄fs, q̄mem, q̄ea and the shared states. Intuitively, q̄fs,
q̄mem, and q̄ea are entered when respectively the feasibility, memoizing and early assume
property is violated by the input execution. The set of initial states is a singleton containing
only the shared state (E0, ∅, P0, B0) where E0 = {(x, x) | x ∈ V}, and for each f ∈ F , P0(f)
is undefined and B0(f) is the constant map assigning ⊥. Let Q̄fs be the set containing q̄fs
and all the shared states (E,D,P,B) such that D is not irreflexive. All the control states
are accepting except for q̄mem, q̄ea and all the states from Q̄fs. The transition relation is
defined below.

As we go along with the description of the transitions, we also convey a proof by induction
of the fulfillment of the invariants I1–I4 at the control states of the form (E,D,P,B) assuming
that the concurrent execution that leads to such states is coherent. Indeed, in our proof we
show a stronger property. In fact, we show that invariants I1–I4 hold with respect to V (not
only Vars) and additionally:
I5. for i ∈ [n] and any execution of the form ρ = ρ′.〈call m〉i.ρ′′ where ρ′′ is i-matched, the

stack state at the top of the stack for program Pi after reading ρ fulfills I1–I4 on ρ′.

S. La Torre and M. Parthasarathy 46:11

The induction is on the length of the input execution. The base case, i.e., when the
execution is empty, is a direct consequence of I1–I5 holding at the initial state of AVars.

Transitions from non-accepting states. The only transitions going out of the states q̄fs,
q̄mem, and q̄ea are transitions to themselves (sink rejecting states). From all states of the
form (E,D,P,B) such that D is not irreflexive, it is only possible to reach q̄fs.

Internal transitions from accepting states. We describe the internal transitions from a
control state q of the form (E,D,P,B) such that D is irreflexive. We start by analyz-
ing two cases that can take to states that are not of the form (E′, D′, P ′, B′). On the
input symbol 〈x := f(x1, . . . , xr)〉i, AVars enters q̄mem if B(f)([x1]E , . . . , [xr]E) = > and
P (f)([x1]E , . . . , [xr]E) is undefined (i.e., when we are trying to recompute a term that is
not stored in any variables at this point of the execution and thus the memoizing property
breaks). On the input symbol 〈assume(x = y)〉i, AVars enters q̄ea if there is a superterm t of
either the term stored in x or the one stored in y that is stored in z and there is a function
f ∈ F s.t. B(f)([x1]E , . . . , [xr]E) = > but P (f)([x1]E , . . . , [xr]E) is undefined where z is
one of x1, . . . , xr (i.e., we get evidence that no term equivalent to a previously computed
superterm of those stored in either x or y is currently stored, and thus the early assume
property breaks).

In the remaining cases, the internal transitions take to a state of the form (E′, D′, P ′, B′)
such that on input σ and with i ∈ [n]: if σ = 〈assume(x = y)〉i, we merge the equivalence
classes of x and y and propagate equality on the stored superterms (by P), then update
D, P and B according to the equivalence classes of E′; if σ = 〈assume(x 6= y)〉i, we just
add ([x]E , [y]E) and ([y]E , [x]E) to the set of inequalities D; if σ = 〈x := f(x1, . . . , xr)〉i, we
essentially move x to the equivalence class P (f)([x1]E , . . . , [xr]E) if defined and start a new
one otherwise, remove the pairs of D involving x if x was the only variable of its class, and
update P and B according to E′; the case σ = 〈x := y〉i is simpler than the previous one, we
just need to remove the pairs of D involving x if x was the only variable of its class, merge
the equivalence classes of x and y, and modify P and B accordingly. It is simple to see that
the invariants I1–I5 are preserved.

Push and pop transitions. The only push and pop transitions are from control states of the
form (E,D,P,B). As for the internal transitions, (E,D,P,B) is updated with the purpose
of preserving the wished invariants. Additionally, on a call symbol of the form 〈call m〉i,
the shadow variables of component program Pi are set to the terms currently stored in the
corresponding program variables (by enforcing equality with these variables) and the current
stack state (i.e., the restriction of the current control state to the variables Vi) is pushed
onto stack i. On a return symbol of the form 〈w := return〉i, the stack state at the top of
stack i is popped and merged with the current control state such that the resulting state
relates: the terms at the beginning of the resumed method call (referred by the variables
from Vars′i in the popped state) to the rest of the terms of the current state (referred by the
variables other than Vars′i in the current control state). Below, we give the details only for
the return transitions.

Let σ = 〈w := return〉i be the input symbol, q = (E,D,P,B) be the current control state,
m be the returned method and q` = (E`, D`, P`, B`) be the top symbol of stack i. From q, by
reading σ and popping q`, AVars moves to a control state q′ = (E′, D′, P ′, B′) that is obtained
as follows. We start by renaming in q` each variable x to x. Denote Vars = {x | x ∈ Vars}
and Vars′i = {x′ | x′ ∈ Vars′i} (recall that q` is over the set of variables Vi). Then, we define
q′′ as the component-wise union of q and q` (i.e., we retain the equivalences, inequalities and
map definitions from these states). Note that q′′ is over the variables from V ∪ Vars ∪ Vars′i.

FSTTCS 2019

46:12 Reachability in Concurrent Uninterpreted Programs

Now, we update q′′ by assuming the equations x′ = x for x ∈ Vars where x′ ∈ Vars′i and
x ∈ Vars are the variables corresponding to x in the respective sets. In the resulting state
we then drop all the variables from Vars′i ∪ Vars and rename back each variable x′ ∈ Vars′i
to the corresponding variable x′ ∈ Vars′i. The resulting state qmrg is thus over the variables
from V. Finally, we get q′ by updating this state according to the assignments w := om.

To argue the induction step in this case, let ρ = ρ′.〈call m〉i.ρ′′ where ρ′′ is i-matched.
From the induction hypothesis, q` fulfills I1–I4 restricted to Vi on ρ′ (I5) and q fulfills I1–I4
on ρ. Thus, by effect of the equations x′ = x that we assumed to get qmrg from q′′, we
relate the valuation of each variable at the end of ρ′ to: its valuation at the end of ρ for
the variables listed in w (i.e., before assigning the terms returned by method m), and its
valuation at the end of ρ.〈w := return〉i for the remaining ones. Therefore, the state qmrg
fulfills I1–I4 on ρ.〈wm := return〉i except for assuming the valuation Comp(ρ, w) for w in w.
Finally, since q′ is obtained from qmrg through the assignments w := om, we get that q′ fulfills
I1–I4 on ρ.〈wm := return〉i. Further, after the transition is taken, the stack state at the top
of the stack must clearly fulfill I5. In fact, since on reading a call of Pi we push onto the
corresponding stack the restriction of the control state to Vi, by the inductive hypothesis we
get that I1–I4 clearly holds up to that point of the computation.

Correctness. From the above arguments, the following lemma holds:

I Lemma 4. Let ρ be a coherent concurrent execution over variables Vars and functions F .
If AVars reaches a control state of the form (E,D,P,B) after reading ρ, then (E,D,P,B)
satisfies the invariants I1–I4.

By building on the results from [27] and the above lemma, we get:

I Lemma 5. Let ρ be a coherent concurrent execution over variables Vars and functions
f ∈ F . For σ ∈ Π, the following holds:
1. ρ is infeasible iff AVars enters a state in Q̄fs on input ρ;
2. ρ.σ is not memoizing iff AVars enters q̄mem on input ρ.σ;
3. ρ.σ does not satisfy the early-assumes property iff AVars enters q̄ea on input ρ.σ.

Since the only non-accepting states of AVars are q̄mem , q̄ea and all the states from Q̄fs, by
inductively applying the above lemma we get:

I Theorem 6. A concurrent computation ρ is accepted by AVars if and only if ρ is coherent
and feasible.

By assuming that the signature has constant size, the number of different tuples of the
form (E,D,P,B) over the set of variables V is O(2|V|O(1)) where |V| = O(n |Vars|), and thus,
also the size of AVars is V is O(2|V|O(1)).

5 Checking bounded reachability and coherence

Fix a concurrent uninterpreted program P with component programs P1, . . . , Pn.

Reduction to Mvpa reachability. By standard constructions, it is possible to construct an
Mvpa AP of size exponential in the number of components n that accepts all and only the
complete executions of P.

Since the stack operations are visible in the input alphabet, the intersection of two Mvpas
is still an Mvpa that can be obtained by the cross product of the starting Mvpas [3, 24].
Denoting AP,Vars the Mvpa capturing the intersection of AP and AVars, the size of AP,Vars

is 2|V|O(1) (note that |V| ≥ n). Thus, by Theorem 6, we have:

S. La Torre and M. Parthasarathy 46:13

I Theorem 7. AP,Vars has size 2|V|O(1) and accepts all and only the coherent and feasible
executions of P.

Decidable bounded reachability problems. By restricting the executions with the bounding
conditions given in Section 3, we obtain versions of Mvpa’s that have a decidable reachability
problem. This along with Theorem 7 gives the decidability of the bounded reachability
problem for concurrent uninterpreted programs under all the considered bounding conditions.
Concerning to the computational complexity, we have the following upper-bounds (we denote
with A an n-stack Mvpa):

from [30], the Mvpa reachability problem within k context-switches can be solved in time
O(k3|A|5(n|Q|)k) where Q denotes the set of control states of A, thus by Theorem 7 we
get that con-reach can be decided in time exponential in the size of V and k;
from [24] we have that the Mvpa reachability problem restricted to k-scoped executions
can be decided in O(2n|Q|2kn+1) time, and thus by Theorem 7 we get that sco-reach
can be decided in time exponential in the size of V and k;
from [2], we have that the Mvpa reachability problem restricted to (k, d)-budget executions
can be decided in time exponential in (|A|+ d+ k); by encoding the stacks up to depth
d into the control state, we can give a decision algorithm in the style of that given for
the scope-bounded restriction that takes O(2n(|Q|+ |Γ|nd)2kn+1) time, which gives for
bud-reach an upper-bound that is exponential in size of V, d and k;
from [23], we have that the Mvpa reachability problem restricted to k-path-tree executions
can be decided in time 2O(k(n+log |A|)), thus by Theorem 7 we get that pat-reach can be
decided in time exponential in the size of V and k;
from [20], we have that the Mvpa reachability problem restricted to k-phase executions
can be decided in time 2|A|2O(k) , thus by Theorem 7 we get that pha-reach can be
decided in time double exponential in the size of V and k;
from [4], we have that the Mvpa reachability problem restricted to ordered executions can
be decided in time |A|2O(n) , thus by Theorem 7 we get that ord-reach can be decided
in time exponential in the size of V and double exponential in n.

Since the reachability problem for sequential uninterpreted programs is EXPTIME-hard
[27] and each instance of this problem is also an instance of con-reach, sco-reach, bud-
reach and pat-reach, we have that all these problems are EXPTIME-complete. Moreover,
since the reachability of Mvpa restricted to ordered executions and bounded phase executions
can be reduced to the respective problems for Boolean programs, and both these problems are
2EXPTIME-hard [4, 20], we have that pha-reach and ord-reach are 2EXPTIME-complete.
Thus, we get the following theorem:

I Theorem 8. The problems con-reach, sco-reach, bud-reach and pat-reach are
EXPTIME-complete, and the problems pha-reach and ord-reach are 2EXPTIME-com-
plete.

Deciding coherence. Define Anotco as the Mvpa obtained from AVars by removing the state
q̄fs and the transitions involving it, and making q̄mem and q̄ea its only accepting states. From
Lemma 5, we get that Anotco accepts a concurrent execution ρ if and only if ρ is incoherent.
Thus, to determine whether a program P is coherent we can just check Anotco ∩ AP = ∅.
Therefore, by the results on the considered bounding conditions introduced above, we get:

I Theorem 9. Deciding coherence is EXPTIME-complete under con, sco, bud and pat
restrictions and 2EXPTIME-complete under pha and ord restrictions.

FSTTCS 2019

46:14 Reachability in Concurrent Uninterpreted Programs

6 Conclusions

In this paper, we have shown the decidability of the reachability problem for concurrent
uninterpreted programs under a number of restrictions that have been considered in the
literature for the analysis of finite-domain concurrent programs. Our results do not extend
directly to parametric uninterpreted programs, i.e., concurrent uninterpreted programs with
executions formed of unboundedly many component programs (see [5, 21, 16, 22]). In
fact, we crucially use in our reduction to Mvpa to distinguish among the local variables
of each component program. Also, known results on sequentializations (see [19, 25, 31]),
i.e., code-to-code translations into non-deterministic sequential programs which (under
certain assumptions) behave equivalently, do not seem to to work for uninterpreted programs
as coherence suddenly breaks when rearranging the order of the statements. Both these
directions deserve future investigation.

References

1 Parosh Aziz Abdulla, C. Aiswarya, and Mohamed Faouzi Atig. Data Multi-Pushdown
Automata. In Roland Meyer and Uwe Nestmann, editors, 28th International Conference on
Concurrency Theory, CONCUR 2017, September 5-8, 2017, Berlin, Germany, volume 85 of
LIPIcs, pages 38:1–38:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017. doi:
10.4230/LIPIcs.CONCUR.2017.38.

2 Parosh Aziz Abdulla, Mohamed Faouzi Atig, Othmane Rezine, and Jari Stenman. Budget-
bounded model-checking pushdown systems. Formal Methods in System Design, 45(2):273–301,
2014. doi:10.1007/s10703-014-0207-y.

3 Rajeev Alur and P. Madhusudan. Adding nesting structure to words. J. ACM, 56(3):16:1–16:43,
2009. doi:10.1145/1516512.1516518.

4 Mohamed Faouzi Atig, Benedikt Bollig, and Peter Habermehl. Emptiness of Ordered Multi-
Pushdown Automata is 2ETIME-Complete. Int. J. Found. Comput. Sci., 28(8):945–976, 2017.
doi:10.1142/S0129054117500332.

5 Mohamed Faouzi Atig, Ahmed Bouajjani, and Shaz Qadeer. Context-Bounded Analysis For
Concurrent Programs With Dynamic Creation of Threads. Logical Methods in Computer
Science, 7(4), 2011. doi:10.2168/LMCS-7(4:4)2011.

6 Mikolaj Bojańczyk, Claire David, Anca Muscholl, Thomas Schwentick, and Luc Segoufin.
Two-variable logic on data words. ACM Trans. Comput. Log., 12(4):27:1–27:26, 2011. doi:
10.1145/1970398.1970403.

7 Mikolaj Bojańczyk, Anca Muscholl, Thomas Schwentick, and Luc Segoufin. Two-variable logic
on data trees and XML reasoning. J. ACM, 56(3):13:1–13:48, 2009. doi:10.1145/1516512.
1516515.

8 Benedikt Bollig, Aiswarya Cyriac, Paul Gastin, and K. Narayan Kumar. Model Checking
Languages of Data Words. In Lars Birkedal, editor, Foundations of Software Science and
Computational Structures - 15th International Conference, FOSSACS 2012, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2012, Tallinn,
Estonia, March 24 - April 1, 2012. Proceedings, volume 7213 of Lecture Notes in Computer
Science, pages 391–405. Springer, 2012. doi:10.1007/978-3-642-28729-9_26.

9 Ahmed Bouajjani, Michael Emmi, and Gennaro Parlato. On Sequentializing Concurrent
Programs. In Eran Yahav, editor, Static Analysis - 18th International Symposium, SAS 2011,
Venice, Italy, September 14-16, 2011. Proceedings, volume 6887 of Lecture Notes in Computer
Science, pages 129–145. Springer, 2011. doi:10.1007/978-3-642-23702-7_13.

10 Aaron R. Bradley and Zohar Manna. The Calculus of Computation: Decision Procedures with
Applications to Verification. Springer-Verlag, Berlin, Heidelberg, 2007.

https://doi.org/10.4230/LIPIcs.CONCUR.2017.38
https://doi.org/10.4230/LIPIcs.CONCUR.2017.38
https://doi.org/10.1007/s10703-014-0207-y
https://doi.org/10.1145/1516512.1516518
https://doi.org/10.1142/S0129054117500332
https://doi.org/10.2168/LMCS-7(4:4)2011
https://doi.org/10.1145/1970398.1970403
https://doi.org/10.1145/1970398.1970403
https://doi.org/10.1145/1516512.1516515
https://doi.org/10.1145/1516512.1516515
https://doi.org/10.1007/978-3-642-28729-9_26
https://doi.org/10.1007/978-3-642-23702-7_13

S. La Torre and M. Parthasarathy 46:15

11 Luca Breveglieri, Alessandra Cherubini, Claudio Citrini, and Stefano Crespi-Reghizzi. Multi-
Push-Down Languages and Grammars. Int. J. Found. Comput. Sci., 7(3):253–292, 1996.
doi:10.1142/S0129054196000191.

12 Denis Bueno and Karem A. Sakallah. euforia: Complete Software Model Checking with
Uninterpreted Functions. In Constantin Enea and Ruzica Piskac, editors, Verification, Model
Checking, and Abstract Interpretation - 20th International Conference, VMCAI 2019, Cascais,
Portugal, January 13-15, 2019, Proceedings, volume 11388 of Lecture Notes in Computer
Science, pages 363–385. Springer, 2019. doi:10.1007/978-3-030-11245-5_17.

13 Aiswarya Cyriac, Paul Gastin, and K. Narayan Kumar. MSO decidability of multi-pushdown
systems via split-width. In Maciej Koutny and Irek Ulidowski, editors, CONCUR 2012 -
Concurrency Theory - 23rd International Conference, CONCUR 2012, Newcastle upon Tyne,
UK, September 4-7, 2012. Proceedings, volume 7454 of Lecture Notes in Computer Science,
pages 547–561. Springer, 2012. doi:10.1007/978-3-642-32940-1_38.

14 Claire David, Leonid Libkin, and Tony Tan. On the Satisfiability of Two-Variable Logic over
Data Words. In Christian G. Fermüller and Andrei Voronkov, editors, Logic for Programming,
Artificial Intelligence, and Reasoning - 17th International Conference, LPAR-17, Yogyakarta,
Indonesia, October 10-15, 2010. Proceedings, volume 6397 of Lecture Notes in Computer
Science, pages 248–262. Springer, 2010. doi:10.1007/978-3-642-16242-8_18.

15 Martin Davis. Kurt Gödel. Über Die Vollständigkeit des Logikkalküls . Collected Works,
Volume I, Publications 1929–1936, by Kurt Gödel, Edited by Solomon Feferman, John
W. Dawson Jr., Stephen C. Kleene, Gregory H. Moore, Robert M. Solovay, and Jean van
Heijenoort, Clarendon Press, Oxford University Press, New York and Oxford, 1986, Even Pp.
60– 100. - Kurt Gödel. On the Completeness of the Calculus of Logic . English Translation
by Stefan Bauer-Mengelberg and Jean van Heijenoort of the Preceding. Journal of Symbolic
Logic, 55(1):341–342, 1990. doi:10.2307/2274974.

16 Antoine Durand-Gasselin, Javier Esparza, Pierre Ganty, and Rupak Majumdar. Model checking
parameterized asynchronous shared-memory systems. Formal Methods in System Design,
50(2-3):140–167, 2017. doi:10.1007/s10703-016-0258-3.

17 Michael Emmi, Shaz Qadeer, and Zvonimir Rakamaric. Delay-bounded scheduling. In Thomas
Ball and Mooly Sagiv, editors, Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2011, Austin, TX, USA, January 26-28,
2011, pages 411–422. ACM, 2011. doi:10.1145/1926385.1926432.

18 Sumit Gulwani and Ashish Tiwari. Assertion Checking Unified. In Byron Cook and
Andreas Podelski, editors, Verification, Model Checking, and Abstract Interpretation, 8th
International Conference, VMCAI 2007, Nice, France, January 14-16, 2007, Proceed-
ings, volume 4349 of Lecture Notes in Computer Science, pages 363–377. Springer, 2007.
doi:10.1007/978-3-540-69738-1_26.

19 Omar Inverso, Ermenegildo Tomasco, Bernd Fischer, Salvatore La Torre, and Gennaro Parlato.
Bounded Model Checking of Multi-threaded C Programs via Lazy Sequentialization. In
Armin Biere and Roderick Bloem, editors, Computer Aided Verification - 26th International
Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna,
Austria, July 18-22, 2014. Proceedings, volume 8559 of Lecture Notes in Computer Science,
pages 585–602. Springer, 2014. doi:10.1007/978-3-319-08867-9_39.

20 Salvatore La Torre, P. Madhusudan, and Gennaro Parlato. A Robust Class of Context-
Sensitive Languages. In 22nd IEEE Symposium on Logic in Computer Science (LICS 2007),
10-12 July 2007, Wroclaw, Poland, Proceedings, pages 161–170. IEEE Computer Society, 2007.
doi:10.1109/LICS.2007.9.

21 Salvatore La Torre, P. Madhusudan, and Gennaro Parlato. Model-Checking Parameterized
Concurrent Programs Using Linear Interfaces. In Tayssir Touili, Byron Cook, and Paul B.
Jackson, editors, Computer Aided Verification, 22nd International Conference, CAV 2010,
Edinburgh, UK, July 15-19, 2010. Proceedings, volume 6174 of Lecture Notes in Computer
Science, pages 629–644. Springer, 2010. doi:10.1007/978-3-642-14295-6_54.

FSTTCS 2019

https://doi.org/10.1142/S0129054196000191
https://doi.org/10.1007/978-3-030-11245-5_17
https://doi.org/10.1007/978-3-642-32940-1_38
https://doi.org/10.1007/978-3-642-16242-8_18
https://doi.org/10.2307/2274974
https://doi.org/10.1007/s10703-016-0258-3
https://doi.org/10.1145/1926385.1926432
https://doi.org/10.1007/978-3-540-69738-1_26
https://doi.org/10.1007/978-3-319-08867-9_39
https://doi.org/10.1109/LICS.2007.9
https://doi.org/10.1007/978-3-642-14295-6_54

46:16 Reachability in Concurrent Uninterpreted Programs

22 Salvatore La Torre, Anca Muscholl, and Igor Walukiewicz. Safety of Parametrized Asyn-
chronous Shared-Memory Systems is Almost Always Decidable. In Luca Aceto and David
de Frutos-Escrig, editors, 26th International Conference on Concurrency Theory, CONCUR
2015, Madrid, Spain, September 1.4, 2015, volume 42 of LIPIcs, pages 72–84. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2015. doi:10.4230/LIPIcs.CONCUR.2015.72.

23 Salvatore La Torre, Margherita Napoli, and Gennaro Parlato. A Unifying Approach for
Multistack Pushdown Automata. In Erzsébet Csuhaj-Varjú, Martin Dietzfelbinger, and
Zoltán Ésik, editors, Mathematical Foundations of Computer Science 2014 - 39th International
Symposium, MFCS 2014, Budapest, Hungary, August 25-29, 2014. Proceedings, Part I, volume
8634 of Lecture Notes in Computer Science, pages 377–389. Springer, 2014. doi:10.1007/
978-3-662-44522-8_32.

24 Salvatore La Torre, Margherita Napoli, and Gennaro Parlato. Scope-Bounded Pushdown Lan-
guages. Int. J. Found. Comput. Sci., 27(2):215–234, 2016. doi:10.1142/S0129054116400074.

25 Akash Lal and Thomas W. Reps. Reducing concurrent analysis under a context bound to
sequential analysis. Formal Methods in System Design, 35(1):73–97, 2009. doi:10.1007/
s10703-009-0078-9.

26 P. Madhusudan and Gennaro Parlato. The tree width of auxiliary storage. In Thomas Ball
and Mooly Sagiv, editors, Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011,
pages 283–294. ACM, 2011. doi:10.1145/1926385.1926419.

27 Umang Mathur, P. Madhusudan, and Mahesh Viswanathan. Decidable verification of un-
interpreted programs. PACMPL, 3(POPL):46:1–46:29, 2019. URL: https://dl.acm.org/
citation.cfm?id=3290359, doi:10.1145/3290359.

28 Umang Mathur, Adithya Murali, Paul Krogmeier, P. Madhusudan, and Mahesh Viswanathan.
Deciding Memory Safety for Forest Datastructures. CoRR, abs/1907.00298, 2019. arXiv:
1907.00298.

29 Andrzej S. Murawski, Steven J. Ramsay, and Nikos Tzevelekos. Reachability in pushdown
register automata. J. Comput. Syst. Sci., 87:58–83, 2017. doi:10.1016/j.jcss.2017.02.008.

30 Shaz Qadeer and Jakob Rehof. Context-Bounded Model Checking of Concurrent Software. In
Nicolas Halbwachs and Lenore D. Zuck, editors, Tools and Algorithms for the Construction
and Analysis of Systems, 11th International Conference, TACAS 2005, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2005, Edinburgh,
UK, April 4-8, 2005, Proceedings, volume 3440 of Lecture Notes in Computer Science, pages
93–107. Springer, 2005. doi:10.1007/978-3-540-31980-1_7.

31 Shaz Qadeer and Dinghao Wu. KISS: keep it simple and sequential. In William Pugh and
Craig Chambers, editors, Proceedings of the ACM SIGPLAN 2004 Conference on Programming
Language Design and Implementation 2004, Washington, DC, USA, June 9-11, 2004, pages
14–24. ACM, 2004. doi:10.1145/996841.996845.

32 Nikos Tzevelekos. Fresh-register automata. In Thomas Ball and Mooly Sagiv, editors,
Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011, pages 295–306. ACM, 2011.
doi:10.1145/1926385.1926420.

https://doi.org/10.4230/LIPIcs.CONCUR.2015.72
https://doi.org/10.1007/978-3-662-44522-8_32
https://doi.org/10.1007/978-3-662-44522-8_32
https://doi.org/10.1142/S0129054116400074
https://doi.org/10.1007/s10703-009-0078-9
https://doi.org/10.1007/s10703-009-0078-9
https://doi.org/10.1145/1926385.1926419
https://dl.acm.org/citation.cfm?id=3290359
https://dl.acm.org/citation.cfm?id=3290359
https://doi.org/10.1145/3290359
http://arxiv.org/abs/1907.00298
http://arxiv.org/abs/1907.00298
https://doi.org/10.1016/j.jcss.2017.02.008
https://doi.org/10.1007/978-3-540-31980-1_7
https://doi.org/10.1145/996841.996845
https://doi.org/10.1145/1926385.1926420

Distance Between Mutually Reachable Petri Net
Configurations
Jérôme Leroux
LaBRI, CNRS, Univ. Bordeaux, France
jerome.leroux@labri.fr

Abstract
Petri nets are a classical model of concurrency widely used and studied in formal verification with
many applications in modeling and analyzing hardware and software, data bases, and reactive
systems. The reachability problem is central since many other problems reduce to reachability
questions. In 2011, we proved that a variant of the reachability problem, called the reversible
reachability problem is exponential-space complete. Recently, this problem found several unexpected
applications in particular in the theory of population protocols. In this paper we revisit the reversible
reachability problem in order to prove that the minimal distance in the reachability graph of two
mutually reachable configurations is linear with respect to the Euclidean distance between those two
configurations.

2012 ACM Subject Classification Theory of computation → Logic and verification

Keywords and phrases Petri nets, Vector addition systems, Formal verification, Reachability problem

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.47

Related Version A full version of the paper is available at https://hal.archives-ouvertes.fr/
hal-02156549.

Funding Jérôme Leroux: The author is supported by the grant ANR-17-CE40-0028 of the French
National Research Agency ANR (project BRAVAS).

1 Introduction

Petri nets are a classical model of concurrency widely used and studied in formal verification
with many applications in modeling and analyzing hardware and software, data bases, and
reactive systems. The reachability problem is central since many other problems reduce
to reachability questions. Unfortunately, the reachability problem is difficult for several
reasons. In fact, from a complexity point of view, we recently proved that the problem is
non-elementary [6] by observing that the worst case complexity in space is at least a tower
of exponential with height growing linearly in the dimension of the Petri nets. Moreover,
even in practice, the reachability problem is difficult. Nowadays, no tool exists for deciding
that problem since the known algorithms are difficult to be implemented and require many
enumerations in exponentially large state spaces (see [13] for the state-of-the-art algorithm
deciding the reachability problem).

Fortunately, easier natural variants of the reachability problems can be applied in various
contexts. For instance, the coverability problem which consists in deciding if a configuration
can be covered by a reachable one can be applied in the analysis of concurrent programs [1]
(in that context, covered means component-wise smaller than or equal). The coverability
problem is known to be exponential-space complete [16, 5], and efficient tools exist [4, 8].
Another variant is the reversible reachability problem. This problem consists in deciding if
two configurations are mutually reachable one from the other. This problem was proved to
be exponential-space complete in [11] and finds unexpected applications in population proto-
cols [7], trace logics [12], universality problems related to structural liveness problems [10],
and in solving the home state problem [2].

© Jérôme Leroux;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 47; pp. 47:1–47:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jerome.leroux@labri.fr
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.47
https://hal.archives-ouvertes.fr/hal-02156549
https://hal.archives-ouvertes.fr/hal-02156549
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

47:2 Short Runs

Contribution. The exponential-space complexity upper-bound of the reversible reachability
problem proved in [11] is obtained by observing that if two configurations are mutually
reachable, then the two configurations belong to a cycle of the (infinite) reachability graph
with a length at most doubly-exponential with respect to the size in binary of the two
configurations. In this paper, we focus on the minimal length of such a cycle (called the
distance in the sequel) with respect to the Euclidean distance between those two configurations.
We prove that the distance is linearly bounded by the Euclidean distance up-to a doubly-
exponential constant that only depends on the Petri net. As a direct consequence, this
result generalizes [11] and it shows that the distance between two nearby (for the Euclidean
distance) mutually reachable configurations is small.

Outline. In Section 2 we introduce our main problem about the distance between mutually
reachable Petri net configurations and we motivate the problem. In Section 3 we extend
Petri nets with control states. A petri net with states is basically given as a finite state
automaton with transitions labeled by Petri net actions. We also introduce the subclass of
structurally reversible Petri nets. Intuitively a Petri net with states is structurally reversible
if the effect of every transition can be reverted as soon as we execute that transition from a
large enough configuration. We provide in that section a sufficient condition to decide the
reachability problem for structurally reversible Petri nets between large configurations. In
Section 4 and Section 5, we recall some techniques called Rackoff’s extraction to extract
components that are “very large” compared to others from executions. Those techniques
are applied in Section 6 in order to extract from a strongly connected component of the
reachability graph of a Petri net, a structurally reversible Petri net with states. Intuitively,
this Petri net with states is obtained by projecting away components that can be large in
the considered strongly connected component. From that Petri net with states, and thanks
to the sufficient condition for reachability introduced in Section 3, we proved in Section 7
our main result about the distance between mutually reachable configurations.

In the paper, d is a positive natural number denoting the number of components of
vectors. Given a vector x in the set of reals Rd, we denote by x(1), . . . ,x(d) its components in
such a way x = (x(1), . . . ,x(d)). Moreover, we introduce the norms ‖x‖ def=

∑d
i=1 |x(i)| and

‖x‖∞
def= max1≤i≤d |x(i)|. The set of integers and the set of non-negative natural numbers

are denoted as Z and N respectively.

2 Petri Nets

A Petri net A (PN for short) is a finite set of pairs (a−,a+) in Nd × Nd called actions. In
the literature, vectors a− and a+ are respectively usually called the pre-condition and the
post-condition of a. A configuration is a vector in Nd. We associate to an action a = (a−,a+)
the binary relation a−→ over the configurations defined by x a−→ y if for some configuration
c we have x = a− + c and y = a+ + c. Notice that x a−→ y if, and only if, x ≥ a− and
y = x− a−+ a+. We denote by A−→ the one-step reachability relation of A defined by x A−→ y
if there exists an action a in A such that x a−→ y. A PN A defines an infinite graph (Nd, A−→)
called the reachability graph of A.

A σ-execution, where σ = a1 . . . ak is a word of actions, is a non-empty word of configura-
tions e = c0c1 . . . ck such that the following relations hold:

c0
a1−→ c1 · · ·

ak−→ ck

J. Leroux 47:3

We denote by src(e) and tgt(e) the configurations c0 and ck respectively. An A∗-execution is
a σ-execution for some word σ over A. An Aω-execution e is an infinite word of configurations
such that every finite non-empty prefix is an A∗-execution. We associate to a word σ of actions
the binary relation σ−→ over the configurations defined by x σ−→ y if there exists a σ-execution
from x to y. The displacement of a word σ = a1 . . . ak is the vector ∆(σ) def=

∑k
j=1 ∆(aj)

where ∆(a) def= a+−a− for every action a = (a−,a+). Notice that x σ−→ y implies ∆(σ) = y−x
but the converse is not true in general. We introduce the reachability relation A∗−−→ defined as
the union of the relations σ−→ where σ ∈ A∗. Notice that this relation is the reflexive and
transitive closure of A−→.

The Petri net reachability problem consists in deciding given a PN A and two configura-
tions x and y if x A∗−−→ y. In [6], we provided a non-elementary complexity lower-bound for
the PN reachability problem. Moreover, we prove that for every natural number h, there
exists a PN Ah such that the reachability problem for that PN is at least h-exponential
space hard. It means that the minimal length of a word σ ∈ A∗h satisfying x σ−→ y is at least
(h+ 1)-exponential with respect to ‖x‖+ ‖y‖. This huge lower bound is no longer valid for
mutually reachable configurations.

Two configurations x and y are said to be mutually reachable for a PN A if x A∗−−→ y and
y A∗−−→ x. The PN reversible reachability problem consists in deciding given a PN A and two
configurations x and y if they are mutually reachable for A. In [11], we proved that the
PN reversible reachability problem is decidable in exponential-space by proving that there
exists at most doubly-exponential long words σ and w in A∗ such that x σ−→ y and y w−→ x.
This result can be refined by introducing the notion of distance. The distance between two
mutually reachable configurations x and y for a PN A is formally defined as follows:

distA(x,y) def= min
σ,w∈A∗

{|σw| | x σ−→ y w−→ x}

A simple lower bound on the distance can be obtained by observing that configurations along
an execution are relatively close one from each other as shown in the proof of the following
lemma.

I Lemma 1. Let us consider a PN A ⊆ {0, . . . ,m}d ×{0, . . . ,m}d for some positive natural
number m. For every mutually reachable configurations x and y, we have:

distA(x,y) ≥ ‖y− x‖ 2
dm

Proof. Let σ be a word in A∗ such that x σ−→ y and let us prove that ‖y− x‖ ≤ m|σ|. Assume
that σ = a1 . . . ak. Since ∆(aj) ∈ {−m, . . . ,m}d, it follows that ∆(σ) ∈ {−mk, . . . ,mk}d.
In particular ‖∆(σ)‖ ≤ dmk. As ∆(σ) = y − x and k = |σ|, we deduce the relation
‖y− x‖ ≤ md|σ|. Now, let us consider a word w in A∗ such that y w−→ x and observe that
we have ‖x− y‖ ≤ dm|w| by symmetry. It follows that |σw| ≥ ‖y− x‖ 2

dm and we have
proved the lemma. J

This paper focus on an upper-bound of the form distA(x,y) ≤ fA(‖y− x‖) where fA is a
function that only depends on the PN A and not on the two mutually reachable configurations
x and y. Such a bound cannot be derived from [11]. In fact, the best upper bound that can
be derived from that paper is the following one:

distA(x,y) ≤ 34d2n15dd+2

where n = (1 + 2m)(1 + 2 max{‖x‖, ‖y‖}).

FSTTCS 2019

47:4 Short Runs

In this paper we prove that such a function fA exists. Moreover a linear one exists as
shown by the following theorem.

I Theorem 2. Let us consider a PN A ⊆ {0, . . . ,m}d×{0, . . . ,m}d for some positive natural
number m. For every mutually reachable configurations x and y, we have:

distA(x,y) ≤ ‖y− x‖cd,m

where:

cd,m ≤ (3dm)(d+1)2d+4

I Remark 3. The previous theorem provides as a corollary a new proof that the reversible
reachability problem is solvable in exponential space. It also provides a bound on the minimal
elements defining the domain of reversibility (introduced in [11]) of an action a in A defined as
Da,A

def= {x ∈ Nd | ∃y x a−→ y A∗−−→ x}. In fact, this set is upward closed and if x is a minimal
element for ≤ in Da,A then the vector y satisfying x a−→ y is such that distA(x,y) ≤ dmcd,m
since ‖y− x‖ = ‖∆(a)‖ ≤ dm. We deduce that there exists a word σ of actions in A such
that y σ−→ x with a length bounded by dmcd,m. If a component of x is larger than m|σ|, the
vector x cannot be minimal since the vector x′ obtained from x by replacing that coordinate
by m|σ| satisfies x′ a−→ y′ σ−→ x′ where y′ def= x′ + ∆(a). Hence ‖x‖ ≤ dm2cd,m.

3 Structurally Reversible Petri Nets With States

A Petri net with states (PNS for short) is a tuple 〈Q,A, T 〉 where Q is a non empty finite
set of elements called states, A is a Petri net, and T is a set of triples in Q×A×Q called
transitions. A path π from a state p to a state q labeled by a word σ of actions is a word of
transitions of the form (q0, a1, q1) . . . (qk−1, ak, qk) for some states q0, . . . , qk satisfying q0 = p

and qk = q, and for some actions a1, . . . , ak satisfying σ = a1 . . . ak. The displacement of
π is the vector ∆(π) def= ∆(σ). A path is said to be elementary if qi = qj implies i = j. A
path such that q0 = qk is called a cycle on q0. A cycle is said to be simple if qi = qj with
i < j implies i = 0 and j = k. A pair (q,x) in Q× Nd is called a state-configuration and it
is denoted as q(x) in the sequel. We associate to a path π the binary relation π−→ over the
state-configurations defined by p(x) π−→ q(y) if π is a path from p to q labeled by a word σ of
actions such that x σ−→ y.

A PNS is said to be structurally reversible if for every transition (p, a, q) there exists a
path π from q to p such that ∆(a) + ∆(π) = 0. Structurally reversible PNSes are such that
the displacement of any cycle can be canceled by the displacement of another cycle as shown
by the following lemma.

I Lemma 4. For every state q and for every cycle θ on q, there exists a cycle θ′ on q such
that ∆(θ′) = −∆(θ).

Proof. Assume that θ = (q0, a1, q1) . . . (qk−1, ak, qk) with q0 = q = qk. Since the PNS
is structurally reversible, for every j ∈ {1, . . . , k}, there exists a path πj from qj to qj−1

such that ∆(aj) + ∆(πj) = 0. Now, observe that θ′ def= πk . . . π1 is a cycle on q such that
∆(θ′) = −∆(θ). J

J. Leroux 47:5

A partial configuration is a vector x ∈ NI where I ⊆ {1, . . . , d}. We associate to a
configuration x ∈ Nd and a set I ⊆ {1, . . . , d} the partial configuration x|I in NI defined by
x|I(i) = x(i) for every i ∈ I. Given an action a = (a−,a+) of a Petri net, we extend the binary
relation a−→ over the partial configurations by x a−→ y if x,y are two partial configurations
in NI such that there exists a partial configuration c ∈ NI satisfying x = a−|I + c and
y = a+|I + c.

A flow function is a function F : Q → NI for some subset I ⊆ {1, . . . , d} such that
F (p) a−→ F (q) for every transition (p, a, q) in T . In this section we prove the following result.

I Lemma 5. Let us consider a structurally reversible PNS with at most r states and with
actions in {0, . . . ,m}d × {0, . . . ,m}d for some positive natural number m, let p(x) and q(y)
be two state-configurations such that the following conditions hold for some flow function
F : Q→ NI :

x|I = F (p) and y|I = F (q),
x(i),y(i) ≥ mr3(3drm)d for every i 6∈ I, and
y− x is the sum of the displacement of a path from p to q and a vector in the subgroup
of (Zd,+) generated by the displacements of the cycles.

Then p(x) π−→ q(y) for a path π such that |π| ≤ (‖y− x‖+ drm)r3(3drm)2d.

In this section, we fix such a structurally reversible PNS G. Since G is a disjoint union of
strongly connected components, we can assume without loss of generality that G is strongly
connected. The proof of Lemma 5 follows an extended form of the zigzag-freeness approach
introduced in [14]. Intuitively, we fix an elementary path π0 from p to q, and we prove that
there exists a sequence θ1, . . . , θk of short cycles on q such that for every n ∈ {0, . . . , k} the
displacement of ∆(θ1 . . . θn) is almost the vector n−d

k z where z def= y− x−∆(π0). This result
is based on the following lemma.

I Lemma 6 ([9]). Let v1, . . . ,vk be a non-empty sequence of vectors in Rd such that
‖vj‖∞ ≤ 1 for every 1 ≤ j ≤ k and let v =

∑k
j=1 vj. There exists a permutation σ of

{1, . . . , k} such that for every n ∈ {d, . . . , k}, we have:

‖
n∑
j=1

vσ(j) −
n− d
k

v‖∞ ≤ d

From the previous lemma we deduce the following two corollaries.

I Corollary 7. Let Z be a set of vectors in {−m, . . . ,m}d for some positive natural number
m, and assume that z is a finite sum of vectors in Z. Then z is a finite sum of at most
(‖z‖+ 1)(3dm)d vectors in Z.

Proof. By symmetry, we can assume without loss of generality that z ≥ 0. Let k be the
minimal natural number such that there exists a sequence z1, . . . , zk of vectors in Z such
that z = z1 + · · ·+ zk. If k = 0 the lemma is proved, so let us assume that k ≥ 1. Observe
that there exists a sequence e1, . . . , ek of vectors in Nd such that z =

∑k
j=1 ej and such that

ej(i) ≤ max{0, zj(i)} for every 1 ≤ i ≤ d and every 1 ≤ j ≤ k. We introduce the sequence
v1, . . . ,vk defined by vj

def= zj −ej . Notice that ‖vj‖∞ ≤ m and
∑k
j=1 vj = 0. We introduce

xn
def=

∑n
j=1 vj . By applying a permutation, Lemma 6 applied on the sequence (1

mvj)1≤j≤n
shows that we can assume without loss of generality that xn ∈ X for every d ≤ n ≤ k where
X is the set of vectors x ∈ Zd such that ‖x‖∞ ≤ md. Notice that if n ∈ {0, . . . , d}, we also
have xn ∈ X since xn is a sum of at most d vectors with a nom bounded by m.

FSTTCS 2019

47:6 Short Runs

The cardinal of X is bounded by (1+2dm)d ≤ (3dm)d. Now, assume by contradiction that
there exists ` ∈ {0, . . . , k − (3dm)d} satisfying ej = 0 for every j ∈ {`+ 1, . . . , `+ (3dm)d}.
Notice that there exists p < q in {`, . . . , `+ (3dm)d} such that xp = xq since the cardinal
of X is bounded by (3dm)d. It follows that

∑q
j=p+1 vj = 0. From ej = 0 for every

j ∈ {`+ 1, . . . , `+ (3dm)d} it follows that vj = zj for every j ∈ {p+ 1, . . . , q}. In particular∑q
j=p+1 zj = 0. Hence k is not minimal since we can remove the vectors zp+1, . . . , zq

from the sequence z1, . . . , zk, and we get a contradiction. It follows that for every ` ∈
{0, . . . , k − (3dm)d} there exists j ∈ {` + 1, . . . , ` + (3dm)d} such that ej 6= 0. From
‖z‖ =

∑k
j=1 ‖ej‖, it follows that ‖z‖ ≥

k
(3dm)d − 1. Hence k ≤ (‖z‖+ 1)(3dm)d. J

I Remark 8. The bound (‖z‖+ 1)(3dm)d provided by the previous lemma is better than
the bound (‖z‖+ 1)(2 + (3m+ 1)d)d that one can derive from [15] by introducing the linear
system z =

∑k
j=1 njzj over the free variables z, n1, . . . , nk, where k is the cardinal of Z, and

{z1, . . . , zk} = Z.

I Corollary 9. Assume that z = z1 + · · ·+ zk where z1, . . . , zk are vectors in {−m, . . . ,m}d
for some positive natural number m ≥ 1. There exists a permutation σ of {1, . . . , k} such
that for every n ∈ {0, . . . , k} and for every i ∈ {1, . . . , d}, we have:

n∑
j=1

zσ(j)(i) ≥ min{z(i), 0} −md

Proof. If k = 0 the lemma is proved. So, we can assume that k ≥ 1. By applying a
permutation, Lemma 6 on the sequence (1

mzj)1≤j≤k shows that we can assume without
loss of generality that for every n ∈ {0, . . . , k}, there exists a vector en ∈ Rd such that
‖en‖∞ ≤ md and such that xn = n−d

k z + en where xn
def=

∑n
j=1 zj . Let i ∈ {1, . . . , d}

and let us prove that xn(i) ≥ min{z(i), 0} −md. Observe that if n ∈ {0, . . . , d} then the
property is immediate since xn(i) ≥ −md. So, let us assume that n > d. If z(i) ≥ 0 then
n−d
k z(i) ≥ 0 and we get xn(i) ≥ en(i) ≥ −md. If z(i) ≤ 0 then n−d

k z(i) ≥ z(i). In particular
xn(i) ≥ min{z(i), 0} −md also in that case. J

A cycle is said to be full-state if every state occurs in the cycle. We first prove that there
exists a “short” full-state cycle with a zero displacement thanks to the following lemma.

I Lemma 10. Every transition occurs on a finite sequence θ1, . . . , θn of (eventually disjoint)
simple cycles such that ∆(θ1) + · · ·+ ∆(θn) = 0 and such that n ≤ (3drm)d.

Proof. Let t be a transition. Since G is strongly connected, the transition t occurs in a
simple cycle θ0. Lemma 4 shows that −∆(θ0) is a finite sum of displacements of simple cycles.
In particular −∆(θ0) is in the cone generated by the displacements of simple cycles, i.e. the
finite sums of displacements of simple cycles multiplied by non-negative rational numbers.
From Carathéodory theorem, there exists d simple cycles r1, . . . , rd and d non-negative
rational numbers λ1, . . . , λd such that −∆(θ0) =

∑d
j=1 rj∆(θj). By introducing a positive

integer β0 such that βj
def= β0rj is a natural number for every j, we derive that the following

linear system over the sequences (βj)0≤ j≤d of natural numbers

d∑
j=0

βjvj = 0

admits a solution satisfying β0 > 0 where vj
def= ∆(θj).

J. Leroux 47:7

From [15], it follows that solutions of that system can be decomposed as finite sums
of “minimal” solutions (βj)1≤j≤k of the same system satisfying additionally the following
constraint:

d∑
j=0

βj ≤ (1 + (d+ 1)rm)d

From 1 + (d + 1)rm ≤ (3drm), we derive (1 + (d + 1)rm)d ≤ (3drm)d. Since there exist
solutions of that system with β0 > 0, there exists at least a minimal one satisfying the same
constraint. We have proved the lemma. J

I Lemma 11. There exists a full-state cycle with a zero displacement with a length bounded
by r2(r − 1)(3drm)d.

Proof. Let us consider the set H of pairs (p, q) ∈ Q×Q such that there exists a transition
from p to q with p 6= q. For every h ∈ H of the form (p, q), we select a transition th ∈ T from
p to q. Lemma 10 shows that for every h ∈ H, there exists a sequence of at most (3drm)d
simple cycles with a zero total displacement. It follows that there exists a sequence of at most
|H|(3drm)d simple cycles with a zero total displacement that contains all the transitions th
with h ∈ H. Since the set of transitions that occurs in that sequence is strongly connected,
Euler’s Lemma shows that there exists a cycle θ with the same Parikh image as the sum of
the Parikh images of the cycles occurring in the sequence. It follows that |θ| ≤ r|H|(3rdm)d.
Notice that ∆(θ) = 0 and θ is a full-state cycle. From |H| ≤ r(r − 1) we are done. J

Now, let us prove Lemma 5. Let π0 be an elementary path from p to q, and let
z def= y− x−∆(π0).

Let us first explain why z is a finite sum of displacements of simple cycles. By hypothesis,
there exists a path π1 from p to q such that y − x −∆(π1) is in the group generated by
displacements of cycles. Let π′ be a path from q to p and observe that z = (y − x −
∆(π1))−∆(π′π0) + ∆(π′π1). Since π′π0 and π′π1 are two cycles, it follows that z is in the
group generated by the displacements of the cycles. Lemma 4 shows that z is finite sum of
displacements of simple cycles.

Corollary 7 and Corollary 9 shows that there exists a sequence z1, . . . , zk of displacements
of simple cycles such that z =

∑k
j=1 zj , k ≤ (1 + ‖z‖)(3drm)d, and such that for every

n ∈ {0, . . . , k}, we have:

n∑
j=1

zj(i) ≥ min{0, z(i)} − drm

Lemma 11 shows that there exists a full-state cycle θ0 with a zero displacement with a length
bounded by r2(r−1)(3drm)d. Thanks to a rotation of θ0, we can assume that θ0 is a cycle on
q. Now, observe that for every 1 ≤ j ≤ k, there exists a simple cycle θ′j with a displacement
equal to zj . By inserting θ′j in the full-state cycle θ0, we get a cycle θj on q. Notice that
∆(θj) = zj and |θj | ≤ r2(r − 1)(3drm)d + r. We introduce the path π defined as follows:

π
def= π0θ1 . . . θn

We are going to prove that p(x) π−→ q(y). To do so, let u be a prefix of π and let
i ∈ {1, . . . , d} and let us prove that x(i) + ∆(u)(i) ≥ 0. Oberve that if i ∈ I, the flow
function F shows that x(i) + ∆(u)(i) = F (qu)(i) ≥ 0 where qu is a state reached from p by

FSTTCS 2019

47:8 Short Runs

reading u. So, we can assume that i 6∈ I. Observe that if u is a prefix of π0 the property
is immediate since ∆(u)(i) ≥ −m|u| ≥ −mr. In particular x(i) + ∆(u)(i) ≥ 0. So, we can
assume that there exists n ∈ {1, . . . , k} and a prefix u′ of θn such that u = π0θ1 . . . θn−1u

′. It
follows that ∆(u) = ∆(π0)+∆(u′)+

∑n−1
j=1 zj(i). Moreover, notice that ∆(u′)(i) ≥ −m|u′| ≥

−mr2(r − 1)(3drm)d −mr for every i ∈ {1, . . . , d}.
We decompose the proof that x(i) + ∆(u)(i) ≥ 0 in two cases following that z(i) ≤ 0 or

z(i) ≥ 0.
Assume first that z(i) ≥ 0. In that case

∑n−1
j=1 zj(i) ≥ −drm. It follows that ∆(u)(i) ≥

−mr −mr2(r − 1)(3drm)d −mr − drm ≥ −mr3(3drm)d. Hence x(i) + ∆(u)(i) ≥ 0.
Now, assume that z(i) ≤ 0. In that case

∑n−1
j=1 zj(i) ≥ z(i) − drm. It follows that

x(i) + ∆(u)(i) ≥ x(i) + ∆(π0) + z(i) + ∆(u′)(i) − drm = y(i) − ∆(u′)(i) − drm ≥
y(i)−mr2(r − 1)(3drm)d −mr ≥ 0.

We have proved that p(x) π−→ q(y). Now, observe that |π| ≤ r+k(r2(r−1)(3drm)d+r). From
k ≤ (1+‖z‖)(3drm)d and ‖z‖ ≤ ‖y− x‖+d(r−1)m, we get |π| ≤ (‖y− x‖+drm)r3(3drm)2d.
Lemma 5 is proved.

4 Extractors

The notion of extractors was first introduced in [11]. Intuitively, extractors provides a natural
way to classify components of a vector of natural numbers into two categories: large ones and
small ones. The notion is parametrized by a set I ⊆ {1, . . . , d} that provides a way to focus
only on components in I. More formally, a d-dimensional extractor λ is a non-decreasing
sequence (λ0 ≤ · · · ≤ λd+1) of positive natural numbers denoting some thresholds. Given
a d-dimensional extractor λ and a set I ⊆ {1, . . . , d}, a (λ, I)-small set of a set C ⊆ Nd
is a subset J ⊆ I such that c(j) < λ|J| for every j ∈ J and c ∈ C. The following lemma
shows that there exists a unique maximal (λ, I)-small set w.r.t. inclusion. We denote by
extractλ,C(I) this set.

I Lemma 12. The class of (λ, I)-small sets of a set C ⊆ Nd is non empty and stable under
union.

Proof. We adapt the proof of [11, Section 8]. Since the class contains the empty set, it is
nonempty. Now, let us prove the stability by union by considering two (λ, I)-small sets J1
and J2 of C and let us prove that J def= J1 ∪ J2 is a (λ, I)-small set of C. Since J1, J2 ⊆ I,
we derive J ⊆ I. Let c ∈ C and j ∈ J . If j ∈ J1 then c(j) < λ|J1| ≤ λ|J| since |J1| ≤ |J |.
Symmetrically, if j ∈ J2 we deduce that c(j) < λ|J2| ≤ λ|J|. We have proved that J is a
(λ, I)-small set of C. J

I Example 13. Let us consider the 2-dimensional extractor λ = (λ0 ≤ λ1 ≤ λ2 ≤ λ3) and
assume that I = {1, 2} and let C = {(m,n)} with m,n ∈ N. We have:

extractλ,X(I) =

{1, 2} if m,n < λ2

∅ if (m ≥ λ2 ∧ n ≥ λ1) ∨ (m ≥ λ1 ∧ n ≥ λ2)
{1} if m < λ1 ∧ n ≥ λ2

{2} if m ≥ λ2 ∧ n < λ1

I Remark 14. As shown by the previous example, the values λ0 and λd+1 of any d-dimensional
extractor λ are not used directly by our definitions. Those extremal values are introduced to
simplify some notations in the sequel.

J. Leroux 47:9

The following lemma shows that components that are not in extractλ,C(I) are large for
at least one vector in C.

I Lemma 15. Let J def= extractλ,C(I). For every i ∈ I\J there exists c ∈ C such that:

c(i) ≥ λ|J|+1

Proof. Assume that for some i ∈ I\J , we have c(i) < λ|J|+1 for every c ∈ C. Let J ′ def= J∪{i}
and observe that J ′ is a (λ, I)-small set of C. In fact, for every c ∈ C and for every j ∈ J ′, we
have c(j) < λ|J| ≤ λ|J′| if j ∈ J , and c(j) < λ|J|+1 = λ|J′| if j = i. We get a contradiction
by maximality of extractλ,C(I). We deduce the lemma. J

Given a set I ⊆ {1, . . . , d} we define extractλ,e(I) for a finite word e of configurations by
extractλ,ε(I) def= I, and by extractλ,ec(I) def= extractλ,{c}(extractλ,e(I)) for every c ∈ Nd and
for every finite word e of configurations. Given an infinite word e of configurations, we observe
that (extractλ,en

(I))n∈N where en is the finite prefix of e of length n is a non-increasing
sequence of sets in {1, . . . , d}. It follows that this sequence is asymptotically constant and
equals to a set included in {1, . . . , d}. We denote extractλ,e(I) that set. The following lemma
shows that extracting along a word of configurations in C asymptotically coincides with an
extraction of C.

I Lemma 16. Let us consider a set I ⊆ {1, . . . , d}, an extractor λ, a set C of configura-
tions, and an infinite word e over C. We have extractλ,C(I) ⊆ extractλ,e(I). Moreover,
extractλ,C(I) = extractλ,e(I) if every configuration of C occurs infinitely often in e.

Proof. We introduce J def= extractλ,C(I), J∞
def= extractλ,e(I), the prefix en of length n of e,

and Jn
def= extractλ,en(I).

Let us prove that J ⊆ Jn for every n. Since J0 = I the property is proved for n = 0.
Assume that J ⊆ Jn−1 for some n ≥ 1 and let us prove that J ⊆ Jn. There exists c ∈ C
such that en = en−1c. Since c ∈ C, it follows that c(j) < λ|J| for every j ∈ J . As J ⊆ Jn−1,
we deduce that J is a (λ, Jn−1)-small set of {c}. Since Jn is the maximal set satisfying that
property, we get J ⊆ Jn and we have proved the induction. It follows that J ⊆ Jn for every
n ∈ N. Moreover, since J∞ =

⋂
n∈N Jn, we deduce the inclusion J ⊆ J∞.

Now, assume that every c ∈ C occurs in e infinitely often. Since (Jn)n∈N is a non
increasing sequence of {1, . . . , d}, there exists N such that Jn = J∞ for every n ≥ N . Let
c ∈ C. There exists n > N such that en = en−1c. From Jn = extractλ,{c}(Jn−1) and
Jn = Jn−1 = J∞, we derive J∞ = extractλ,{c}(J∞). In particular c(j) < λ|J∞| for every
j ∈ J∞. We have proved that c(j) < λ|J∞| for every j ∈ J∞ and for every c ∈ C. As J∞ ⊆ I,
we deduce that J∞ is a (λ, I)-small set of C. Since J is the maximal set satisfying that
property, we deduce that J∞ ⊆ J . It follows that J = J∞. J

5 Rackoff Extraction

An A∗-execution e is said to be I-cyclic for some I ⊆ {1, . . . , d} if src(e)|I = tgt(e)|I . We say
that a word σ = a1 . . .ak of actions in A is obtained from an A∗-execution e by removing I-
cycles where I ⊆ {1, . . . , d}, if there exists a decomposition of e into a concatenation e0 . . . ek

of I-cyclic A∗-executions e0, . . . , ek such that tgt(ej−1) aj−→ src(ej) for every 1 ≤ j ≤ k.

An extractor λ = (λ0 ≤ · · · ≤ λd+1) is said to be m-adapted if for every n ∈ {0, . . . , d}:

λn+1 ≥ λn +mλnn

FSTTCS 2019

47:10 Short Runs

I Lemma 17 (slight extension of [16]). Let λ be an m-adapted extractor and e be an A∗-
execution for a PN A ⊆ {0, . . . ,m}d × Nd. Let I def= extractλ,e({1, . . . , d}). There exists a
word σ that can be obtained from e by removing I-cycles such that

|σ| ≤
d∑
j=1

λjj

and such that src(e) σ−→ c for some configuration c satisfying c(i) = tgt(e)(i) for every i ∈ I,
and such that for every i 6∈ I we have:

c(i) ≥ λ|I|+1 −m
|I|∑
j=1

λjj

Proof. The proof follows a similar approach to the original one from Rackoff [16]. A detailed
proof is given in a long version of the paper available online. J

6 Strongly-Connected Components of Configurations

A strongly-connected component of configurations of a PN A (SCCC for short) is a strongly-
connected component of the reachability graph (Nd, A−→).

We associate to an extractor λ and a SCCC C of a PN A, a PNS G defined as follows.
We introduce the set I def= extractλ,C({1, . . . , d}), the set of states Q def= {c|I | c ∈ C} and
the set of transitions T def= {(x|I , a,y|I) | (x, a,y) ∈ C×A×C ∧ x a−→ y}. Notice that Q is
finite since it contains at most λ|I||I| elements. In particular T is finite as well. The PNS G is
defined as the tuple 〈Q,A, T 〉.

I Lemma 18. The PNS G is structurally reversible.

Proof. Let (p, a, q) be a transition in T . There exist x,y ∈ C such that x a−→ y and such
that p = x|I and q = y|I . Moreover since C is a SCCC, there exists a word σ of actions in A
such that y σ−→ x. We deduce that there exists a path in G from q to p labeled by σ. Notice
that ∆(a) + ∆(σ) = y− x + x− y = 0. It follows that G is structurally reversible. J

Let us prove the following technical lemma.

I Lemma 19. If C is not reduced to a singleton, there exists an Aω-execution e of configu-
rations in C such that every configuration of C occurs infinitely often in e.

Proof. Since C is countable, there exists an infinite sequence (cn)n∈N such that C = {cn | n ∈
N}. Moreover, by replacing that sequence by the sequence s0, s1, . . . where sn

def= c0, . . . , cn,
we can assume without loss of generality that every configuration of C occurs infinitely often
in the sequence (cn)n∈N. Since C is a SCCC, for every positive natural number n, there exists
an A∗-execution from cn−1 to cn of the form encn. Let us introduce the word e def= e1e2
Notice that since C is not reduced to a singleton, the word e is infinite. Moreover, notice
that e is an Aω-execution satisfying the lemma. J

Now, assume that λ is m-adapted for some positive natural number m.

J. Leroux 47:11

I Lemma 20. If A ⊆ {0, . . . ,m}d × Nd, for every x ∈ C, there exists a cycle in G on x|I
labeled by a word u such that:

|u| ≤
d∑
j=1

λjj

and a configuration x′ such that x u−→ x′, x′|I = x|I and such that x′(i) ≥ λ|I|+1−m
∑|I|
j=1 λ

j
j

for every i 6∈ I.

Proof. Observe that if C is reduced to a singleton, the lemma is trivial with u def= ε. So, we
can assume that C is not a singleton. Lemma 19 shows that there exists an Aω-execution
e = c0c1 . . . of configurations in C such that every configuration of C occurs infinitely
often. Without loss of generality, by replacing e by a suffix of e we can assume that x = c0.
Lemma 16 shows that extractλ,e({1, . . . , d}) = I. It follows that there exists N ∈ N such
that for every n ≥ N the prefix en of e of length n satisfies extractλ,en({1, . . . , d}) = I. Since
x occurs infinitely often in e, there exists n ≥ N such that x is the last configuration of
en. Lemma 17 shows that there exists a word u that can be obtained from en by removing
I-cycles such that

|u| ≤
d∑
j=1

λjj

and such that x u−→ x′ for some configuration x′ satisfying x′|I = x|I , and such that for every
i 6∈ I we have:

x′(i) ≥ λ|I|+1 −m
|I|∑
j=1

λjj

Since u can be obtained from en by removing I-cycles, it follows that u is the label of a cycle
on x|I in the PNS G. J

Symmetrically, we deduce a similar backward property.

I Lemma 21. If A ⊆ Nd × {0, . . . ,m}d, for every y ∈ C, there exists a cycle in G on y|I
labeled by a word v such that:

|v| ≤
d∑
j=1

λjj

and a configuration y′ such that y′ v−→ y, y′|I = y|I , and such that for every i 6∈ I:
y′(i) ≥ λ|I|+1 −m

∑|I|
j=1 λ

j
j.

Proof. Let us introduce the PN A′
def= {(a+,a−) | (a−,a+) ∈ A}. Observe that C is a SCCC

of A′. Let G′ be the PNS associated to the extractor λ and the SCCC C of A′. Lemma 22
shows that there exists a cycle in G′ on y|I labeled by a word u such that:

|u| ≤
d∑
j=1

λjj

and a configuration y′ such that y u−→ y′, y|I = y′|I , and such that y′(i) ≥ λ|I|+1−m
∑|I|
j=1 λ

j
j

for every i 6∈ I. Assume that u = a′1 . . . a
′
n with a′j = (xj ,yj) and let v def= a1 . . . an with

aj
def= (yj ,xj). Observe that since u is a cycle on y|I in G′, then v is a cycle on y|I in G.

Moreover, from y u−→ y′ we derive y′ v−→ y. We have proved the lemma. J

FSTTCS 2019

47:12 Short Runs

7 Mutually Reachable Configurations

In this section, we prove Theorem 2. We consider a PN A ⊆ {0, . . . ,m}d × {0, . . . ,m}d for
some positive natural number m. We consider two mutually reachable configurations x,y
for A. Since the theorem is trivial when x = y, we can assume that x 6= y. In particular
‖y− x‖ ≥ 1.

We let C be the SCCC of A containing x and y. We introduce the extractor λ satisfying
λ0 = 1, and for every n ∈ {0, . . . , d}:

λn+1
def= m

n∑
j=1

λjj +mλ3n
n (3dλnnm)d

Observe that λ is m-adapted. We introduce I def= extractλ,C({1, . . . , d}) and the structurally
reversible PNS G associated to C, λ and A. Notice that the number of states of G is bounded
by r def= λ

|I|
|I|. We introduce the states p, q of G defined as p def= x|I and q

def= y|I . Observe
that y− x is the displacement of a path from p to q in G. We introduce the flow function
F : Q→ NI defined as the identity.

Let us observe that λj ≤ λd for every j ∈ {1, . . . , d}. In particular r ≤ λdd.

I Lemma 22. The PNS G admits a cycle on p labeled by a word u and a cycle on q labeled
by a word v such that:

|u|, |v| ≤ dλdd

and such that there exist configurations x′,y′ such that x u−→ x′, y′ v−→ y, and such that for
every i 6∈ I, we have:

x′(i),y′(i) ≥ mr3(3drm)d

Proof. This lemma is a direct corollary of Lemma 20 and Lemma 21. J

From y′ − x′ = y − x − ∆(u) − ∆(v), we deduce from Lemma 5 that there exists a
word σ of actions in A such that x′ σ−→ y′ and such that |σ| ≤ (‖y′ − x′‖+ drm)r3(3drm)2d.
Observe that we have:

‖y′ − x′‖ ≤ ‖y− x‖+ ‖∆(u)‖+ ‖∆(v)‖
≤ ‖y− x‖+ dm(|u|+ |v|)
≤ ‖y− x‖+ 2d2mλdd

Let w = uσv. Observe that x w−→ y. We derive:

|w| ≤ 2dλdd + (‖y− x‖+ 2dλddm+ dλddm)λ3d
d (3dλddm)2d

≤ ‖y− x‖8dλddmλ3d
d (3dλddm)2d

≤ 1
2‖y− x‖(3dλddm)6d

From the following Lemma 23 we derive:

|w| ≤ 1
2‖y− x‖(3dm)(d+1)2d+4

We deduce Theorem 2.

J. Leroux 47:13

I Lemma 23. We have:

(3dλddm)6d ≤ (3dm)(d+1)2d+4

Proof. Assume first that d = 1. In that case, the definiton of λn+1 with n = 0 provides
λ1 = 3m2 and the lemma is immediate. So, let us assume that d ≥ 2. Notice that λjj ≤ λnn
for every j ∈ {1, . . . , n} for every n ∈ {0, . . . , d− 1}. It follows that we have:

λn+1 ≤ 2dλ3n
n m(3dλnnm)d

≤ (3dλnm)(d+1)2−4

By induction, we deduce that for every n ∈ {0, . . . , d}, we have:

λn ≤ (3dm)n((d+1)2−4)n

In particular:

3dλddm ≤ (3dm)d
2(d+1)2d

Hence

(3dλddm)6d ≤ (3dm)6d3(d+1)2d

≤ (3dm)(d+1)2d+4

where we use the inequality 6d3 ≤ (d+ 1)4. J

8 Conclusion

In this paper we proved that the distance in the reachability graph between two mutually
reachable configurations is linear with respect to the Euclidean distance between those two
configurations. As a future work, we would like to apply that result to provide lower bounds
on the number of states of population protocols computing some predicates [3].

The author thanks Alain Finkel, Igor Khmelnitsky, and Serge Haddad for promoting him
a Karp and Miller problem that motivated this work, and Matthias Englert and Ranko Lazic
for pointing out the Steinitz constant lemma [9].

References
1 Gérard Basler, Michele Mazzucchi, Thomas Wahl, and Daniel Kroening. Symbolic Counter

Abstraction for Concurrent Software. In CAV, volume 5643 of Lecture Notes in Computer
Science, pages 64–78. Springer, 2009.

2 Eike Best and Javier Esparza. Existence of home states in Petri nets is decidable. Inf. Process.
Lett., 116(6):423–427, 2016.

3 Michael Blondin, Javier Esparza, and Stefan Jaax. Large Flocks of Small Birds: on the Minimal
Size of Population Protocols. In Rolf Niedermeier and Brigitte Vallée, editors, 35th Symposium
on Theoretical Aspects of Computer Science, STACS 2018, February 28 to March 3, 2018,
Caen, France, volume 96 of LIPIcs, pages 16:1–16:14. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2018. doi:10.4230/LIPIcs.STACS.2018.16.

4 Michael Blondin, Alain Finkel, Christoph Haase, and Serge Haddad. Approaching the
Coverability Problem Continuously. In Marsha Chechik and Jean-François Raskin, editors,
Tools and Algorithms for the Construction and Analysis of Systems - 22nd International
Conference, TACAS 2016, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings,
volume 9636 of Lecture Notes in Computer Science, pages 480–496. Springer, 2016.

FSTTCS 2019

https://doi.org/10.4230/LIPIcs.STACS.2018.16

47:14 Short Runs

5 E. Cardoza, Richard J. Lipton, and Albert R. Meyer. Exponential Space Complete Problems
for Petri Nets and Commutative Semigroups: Preliminary Report. In STOC’76, pages 50–54.
ACM, 1976. doi:10.1145/800113.803630.

6 Wojciech Czerwinski, Slawomir Lasota, Ranko Lazic, Jérôme Leroux, and Filip Mazowiecki.
The Reachability Problem for Petri Nets is Not Elementary (Extended Abstract). In STOC.
ACM Computer Society, 2019. to appear.

7 Javier Esparza, Pierre Ganty, Jérôme Leroux, and Rupak Majumdar. Verification of population
protocols. Acta Inf., 54(2):191–215, 2017.

8 Thomas Geffroy, Jérôme Leroux, and Grégoire Sutre. Occam’s Razor applied to the Petri net
coverability problem. Theor. Comput. Sci., 750:38–52, 2018.

9 V. S. Grinberg and S. V. Sevast’yanov. Value of the Steinitz constant. Functional Analysis
and Its Applications, 14(2):125–126, April 1980. doi:10.1007/BF01086559.

10 Petr Jancar, Jérôme Leroux, and Grégoire Sutre. Co-finiteness and Co-emptiness of Reachability
Sets in Vector Addition Systems with States. In Petri Nets, volume 10877 of Lecture Notes in
Computer Science, pages 184–203. Springer, 2018.

11 Jérôme Leroux. Vector Addition System Reversible Reachability Problem. Logical Methods in
Computer Science, 9(1), 2013.

12 Jérôme Leroux, M. Praveen, and Grégoire Sutre. A Relational Trace Logic for Vector Addition
Systems with Application to Context-Freeness. In CONCUR, volume 8052 of Lecture Notes in
Computer Science, pages 137–151. Springer, 2013.

13 Jérôme Leroux and Sylvain Schmitz. Reachability in Vector Addition Systems is Primitive-
Recursive in Fixed Dimension. In LICS. IEEE Computer Society, 2019. to appear.

14 Jérôme Leroux and Grégoire Sutre. On Flatness for 2-Dimensional Vector Addition Systems
with States. In CONCUR, volume 3170 of Lecture Notes in Computer Science, pages 402–416.
Springer, 2004.

15 Loic Pottier. Minimal Solutions of Linear Diophantine Systems: Bounds and Algorithms. In
R. V. Book, editor, Proceedings 4th Conference on Rewriting Techniques and Applications,
Como (Italy), volume 488 of Lecture Notes in Computer Science, pages 162–173. Springer,
1991.

16 C. Rackoff. The covering and boundedness problems for vector addition systems. Theoretical
Computer Science, 6(2):223–231, 1978.

https://doi.org/10.1145/800113.803630
https://doi.org/10.1007/BF01086559

Boolean Algebras from Trace Automata
Alexandre Mansard
LIM, University of La Réunion, France
alexandre.mansard@univ-reunion.fr

Abstract
We consider trace automata. Their vertices are Mazurkiewicz traces and they accept finite words.
Considering the length of a trace as the length of its Foata normal form, we define the operations of
level-length synchronization and of superposition of trace automata. We show that if a family F of
trace automata is closed under these operations, then for any deterministic automaton H ∈ F , the
word languages accepted by the deterministic automata of F that are length-reducible to H form a
Boolean algebra. We show that the family of trace suffix automata with level-regular contexts and
the subfamily of vector addition systems satisfy these closure properties. In particular, this yields
various Boolean algebras of word languages accepted by deterministic vector addition systems.

2012 ACM Subject Classification Theory of computation→ Formal languages and automata theory

Keywords and phrases Boolean algebras, traces, automata, synchronization, pushdown automata,
vector addition systems

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.48

1 Introduction

In automatic verification, it is useful to highlight families of languages with good closure
properties, as for example Boolean algebras of languages. For example, the fact that the
first-order theory of any word-automatic graph1 is decidable essentially relies on the Boolean
closure properties of regular languages: to any relation defined by a first-order formula, there
corresponds (in an effective way) a regular language and the problem of deciding whether
the graph satisfies a given statement reduces to the problem of deciding emptiness for the
corresponding regular language [13].

The regular, context-free, context-sensitive and recursively enumerable languages form
a famous increasing hierarchy of formal language families defined by Chomsky in [8] from
grammars of increasing complexity. It can also be obtained from families of automata. Indeed,
regular languages are accepted by finite automata, context-free languages are accepted by
pushdown automata (or more generally by word suffix automata [2]), context-sensitive
languages are accepted, for instance, by bounded synchronized automata [20], and recursively
enumerable languages are accepted by Turing machines [4]. And if it is well-known that
regular languages or context-sensitive languages form a Boolean algebra, it is also well-known
that it is not the case of context-free languages. Nevertheless, it was shown that various
subclasses of context-free languages form Boolean algebras [17, 18, 5], as for example visibly
pushdown languages with respect to a given pushdown alphabet [1]. Besides, pushdown
automata model sequential computations. For parallel computations, a relevant family of
automata consists of vector addition systems. Hence, the question arises of which Boolean
algebras can be obtained from this family of automata.

1 A word-automatic graph is a graph of which the vertex set is a regular language and each relation is
recognized by a finite letter by letter synchronized transducer.

© Alexandre Mansard;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 48; pp. 48:1–48:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alexandre.mansard@univ-reunion.fr
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.48
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

48:2 Boolean Algebras from Trace Automata

In this paper, we consider trace automata. Their vertices are Mazurkiewicz traces [10] and
they accept finite words. Traces bear the advantage of describing executions of concurrent
systems [23]. We define the length of a trace as the length of its Foata normal form and we
show that we can obtain Boolean algebras from any trace automata family F closed under
level-length synchronization and level-length superposition (Theorem 34). These operations
ensure the stability under intersection and difference of the class of recognized word languages.
More precisely, we show that for any deterministic automaton H ∈ F , the class of languages
accepted by the deterministic automata in F length-reducible to H form a Boolean algebra
of word languages.

Then, we apply the previous result to the family TrSuffix of trace suffix automata (with
level-regular contexts), introduced in [16]. A trace suffix automaton is described by a finite set
of rules of the form W(u a−→ v), where u and v are traces, a is a label and W is a level-regular
trace language (i.e., a language of traces of which the Foata normal forms form a regular
word language). We show that this family satisfies the closure conditions stated above.

Lastly, we deduce that the subfamily TrSuffixVAS of trace suffix automata over trace
monoids of which the dependence alphabet is the equality also satisfies the closure conditions
stated above. Since TrSuffixVAS essentially corresponds to some vector addition systems
(VAS), we obtain various Boolean algebras of word languages accepted by deterministic
vector addition systems.

Related works. In [6, 7], Caucal and Rispal adapt Eilenberg’s recognizability for languages
[11] to infinite automata in order to obtain Boolean algebras. More precisely, in [7], they show
how to obtain various Boolean algebras from any family of word automata (i.e., automata
of which vertices are words) closed under the operations of length synchronization and
superposition. However, vector additions systems, seen as word automata (each trace is
encoded by its Foata normal form), are not closed under length superposition.

Besides, in the literature, different types of VAS languages were considered [9, 12, 19, 22]:
the labeling function may be free or not, λ-transitions (transitions labeled by the empty
word) may be allowed or not, the set of final markings may be finite or equal to all accessible
markings. In general, the various investigations focus on closure properties [12] and on
the relationship with the other classical formal languages enumerated above [22, 21, 14].
Indeed, it is well known that VAS languages contain regular languages, are incomparable
with context-free languages, but are context-sensitive [19]. The regularity (respectively the
context-freeness) of some VAS languages is decidable [22] (respectively [21, 14]). But, if some
type of VAS languages are closed under union and intersection, the complementation remains,
to our knowledge, a challenging problem. In the usual terminology of VAS (or Petri nets),
the VAS for which we prove that the languages form a Boolean algebra are labeled (i.e.,
the labeling function is total and may not be injective), deterministic (from any marking,
distinct transitions labeled by a same letter are not allowed) and equipped of a level-regular
set of final vertices. Moreover, an action can be performed only with respect to a context
that is assumed level-regular also.

2 Preliminaries

In this section, we give some preliminaries about automata and Mazurkiewicz traces. We use
standard notations. In particular, the union of two disjoint sets A and B is denoted A ∪̇ B.

A. Mansard 48:3

2.1 Automata: definition and generalities
An automaton is given by a set of edges labeled by letters, plus initial and final vertices.

Let V be a set (of vertices), T be a set of symbols called terminals and C = {ι, o} be a
set of colors. A T -automaton G over V is a subset of V × T × V ∪ C × V of vertex set

VG := {v ∈ V | ∃ a, u (u, a, v) ∈ G ∨ (v, a, u) ∈ G} ∪ {v ∈ V | ∃ c (c, v) ∈ G}

such that the set TG = {a ∈ T | ∃ u, v ∈ V, (u, a, v) ∈ G} is finite. The automaton G is finite
if its vertex set VG is finite. Denote by IG := {v ∈ VG | (ι, v) ∈ G} the set of initial vertices
of G and by FG := {v ∈ VG | (o, v) ∈ G} the set of final vertices of G.

An element (u, a, v) ∈ G is an edge. Its label is a, its source is u and its target is v. The
notation u a−→

G
v (or u a−→ v when G is understood) means (u, a, v) ∈ G. Any couple (c, v) ∈ G

is a vertex v colored by c ∈ C.
The automaton G is deterministic if IG is reduced to a singleton and for each a ∈ T , if

(u a−→
G

v and u a−→
G

v′) then v = v′. Given a family F of automata, we denote by Fdet the
subfamily of F consisting in deterministic automata.

A path in G of source u and goal v, labeled by a word a1 . . . ak ∈ T ∗, is a finite sequence
of the form u

a1−→
G

u1, . . . , uk−1
ak−→
G

v, with u = v for k = 0. We denote by u a1...ak−−−−→
G

v the
existence of such a path. A path is accepting if its source is initial and its goal is final. The
language accepted by an automaton G is the set L(G) of words that label its accepting paths.
The regular languages of T -words are the languages accepted by finite automata.

A morphism f from a T -automaton G into a T -automaton H is a mapping f : VG → VH
such that

u
a−→
G
v =⇒ f(u) a−→

H
f(v) and (c, u) ∈ G =⇒ (c, f(u)) ∈ H

If such a morphism exists, we write G f−→ H (or just G −→ H) and we say that G is f -reducible
(or just reducible) to H. Moreover, if f is a bijection and G f−→ H and H f−1

−−→ G, then G
and H are said to be f -isomorphic.

I Lemma 1. Let G and H be automata. If G −→ H, then L(G) ⊆ L(H).

Suppose there exists a length-mapping | | : V −→ N. A morphism f is length-preserving
if |f(v)| = |v| for any v ∈ VG. If such a morphism exists, we say that G is length-reducible to
H and we write G f−→` H (or just G −→` H). The automata G and H are length-isomorphic
if there exists a length-preserving morphism f such that G and H are f -isomorphic.

I Example 2. Let us consider the infinite binary tree T2 := {Ku a−→ Kua | u ∈ {a, b}∗} ∪
{Ku b−→ Kub | u ∈ {a, b}∗} ∪ {(ι,K)} ∪ {o} × K{a, b}∗ and the visibly pushdown
automaton Vis({c},∅, {a, b}) := {⊥>n a,b−−→ ⊥>n+1 | n > 0} ∪ {⊥>n c−→ ⊥>n−1 | n >
1} ∪ {⊥ c−→ ⊥} ∪ {(ι,⊥)} ∪ {o} × {⊥>n | n > 0}. The automaton T2 is length-reducible
to Vis({c},∅, {a, b}). See Figure 1.

2.2 Mazurkiewicz traces
Given a (finite) alphabet Σ, recall that Σ∗ is the free monoid of finite Σ-words.

A dependence relation D on Σ is a reflexive and symmetric binary relation. The pair
(Σ, D) is called a dependence alphabet. The complement of D is the independence relation
I := Σ2\D. The (Σ, D)-trace equivalence ≡D is the least congruence on Σ∗ such that

FSTTCS 2019

48:4 Boolean Algebras from Trace Automata

c
K ⊥

⊥>

⊥>2

Kb

Kba Kb2

a

a

b

ba

c

c

T2

.........

a, b

a, b

KabKa2

b

Ka

Vis({c},∅, {a, b})

Figure 1 T2 is length-reducible to Vis({c},∅, {a, b}) (Example 2).

Figure 2 The Foata normal form of [acbdab] (Example 4).

(a, b) ∈ I ⇒ ab ≡D ba. The (Σ, D)-trace of a word w ∈ Σ∗ is its ≡D-equivalence class. It is
denoted [w]. Note that ≡D-equivalent Σ-words have the same length. The quotient monoid
Σ∗/ ≡D is called the trace monoid of the dependence alphabet (Σ, D) and is denoted by
M(Σ, D). Its elements are called the traces over (Σ, D). The length of a trace t is the
length of any word belonging to it and is denoted |t|. Denote by TotalΣ := Σ× Σ the total
dependence relation over Σ and by IdΣ := {(a, a) | a ∈ Σ} the equality. Note that in case of
D = TotalΣ, the trace monoid M(Σ, D) coincides with the free monoid Σ∗.

Consider the finite alphabet ID := {A ⊆ Σ | ∀a1 6= a2 ∈ A (a1, a2) ∈ I} of independent
subsets of Σ, and denote by ΠID

: I∗D → M(Σ, D) the canonical morphism defined by
ΠID

(∅) = [ε] and ΠID
({a1, · · · , an}) = [a1 . . . an] (n > 1). Consider the binary relation B on

I−D := ID \ {∅} defined by: ABB ⇐⇒ ∀b ∈ B ∃a ∈ A (a, b) ∈ D. The set of I−D
∗-words of

the form A1 . . . Ap (p > 0) such that A1BA2B· · ·BAp is denoted F. The surjective morphism
ΠID

is not injective. Indeed, suppose Σ = {a, b} and aIb, then ΠID
({a, b}) = ΠID

({a}{b}).
The following proposition expresses that each trace is encodable by a unique I−D-word in F.

I Proposition 3 (Foata normal form, [10]). Let t ∈M(Σ, D). There exists a unique I−D-word
dteF = A1 · · ·Ap ∈ F (p > 0), the Foata normal form of t, such that ΠID

(A1 · · ·Ap) = t.

I Example 4. Suppose Σ = {a, b, c, d} and aIc, bId, cId. The Foata normal form of
t = [acbdab] (see Figure 2) is dteF = {a, c}{b, d}{a}{b}.

The following lemma is straightforward.

I Lemma 5 (Level automata). The set F of Foata normal forms is a regular word language
over I−D .

In general, dsteF and dseFdteF may be different. Indeed, suppose D = {(a, a), (b, b)}. If
s = [a] and t = [ab], then dseF = {a}, dteF = {a, b} and dsteF = {a, b}{a}. The following
lemma expresses some compatibility between concatenation and Foata normal form.

I Lemma 6. Let s, t ∈ M(Σ, D) such that dseF = A1 · · ·Ap (p > 0). Then there ex-
ist Bi1 , . . . Bik ∈ I−D (0 6 k 6 p and 1 6 i1 < · · · < ik 6 p) and C1, . . . , Cm ∈
I−D (m > 0) such that dsteF = A1 . . . (Ai1 ∪̇ Bi1) . . . (Aik ∪̇ Bik) . . . ApC1 . . . Cm and
ΠI−

D
(Bi1 . . . BikC1 . . . Cm) = t.

Proof. By induction on the length of t. J

A. Mansard 48:5

In the following, given a trace t, we denote by ‖t‖ the length of its Foata normal form.
A trace automaton is an automaton of which the vertices belong to some trace monoid

M(Σ, D) and accepts finite words (over an alphabet that may have no relation with Σ).

3 From word (suffix) automata to trace (suffix) automata

In this section, we recall how to obtain various Boolean algebras of deterministic context-free
languages from word suffix automata [7]. Then we consider the notion of level-regular trace
languages. This allows to define the family TrSuffix of trace suffix automata with level-regular
contexts, an extension to traces of word suffix automata. Lastly, we will define (in terms
of trace suffix automata) the vector addition systems from which we will obtain Boolean
algebras (Section 5).

3.1 Boolean algebras from word suffix automata
Given a word language L over T , a non-empty family of languages FL is a Boolean algebra
relative to L if L1 ⊆ L, L−L1 ∈ FL and L1 ∩L2 ∈ FL for any L1, L2 ∈ FL. Observe that if
FL is a Boolean algebra relative to L then ∅, L ∈ FL.

A word suffix automaton is a finite union of automata of the form

W (u a−→ v) ∪ {ι} × I ∪ {o} × F

where W , I and F are regular word languages (over a finite alphabet), u and v are words,
a ∈ T and W (u a−→ v) = {wu a−→ wv | w ∈W}. We denote by Stack the family of word suffix
automata. The languages accepted by Stack are the context-free languages [3].

In [7], Caucal and Rispal show how to obtain various Boolean algebras of deterministic
context-free languages.

I Theorem 7 ([7]). Let H be a deterministic word suffix automaton of which the empty word
is not a vertex. Then the class of languages Rec`Stackdet

(H) = {L(G) | G ∈ Stackdet, G −→` H}
is a Boolean algebra relative to L(H).

In the following, we will consider the family TrSuffix of trace suffix automata with level-
regular contexts, introduced in [16] (see Subsection 3.3). This family is an extension to
Mazurkiewicz traces of word suffix automata (a word suffix automaton is just a trace suffix
automaton with level-regular contexts over a trace monoid for which the dependence relation
is total). We will also consider the subfamily TrSuffixVAS of vector addition systems and we
will show how to obtain Boolean algebras from these, in the same vein as Theorem 7.

3.2 Level-regularity
In order to build the family TrSuffix of trace suffix automata with level-regular contexts, let
us give some reminders about the notion of level-regular trace languages [16].

A (Σ, D)-trace language is a subset of M(Σ, D). If L is a trace language, then
⋃
L =

{w ∈ Σ∗ | [w] ∈ L}. If L is a word language, then [L] is the trace language defined by
[L] := {[w] ∈M(Σ, D) | w ∈ L}. In particular, [

⋃
L] = L and

⋃
[L] ⊇ L.

Given a trace language L ⊆ M(Σ, D) and a trace t ∈ M(Σ, D), the right residual
(respectively the left residual) of L by t, Lt−1 (respectively t−1L), is Lt−1 := {s ∈M(Σ, D) |
st ∈ L} (respectively t−1L := {s ∈M(Σ, D) | ts ∈ L}). The product of L by t (respectively
the product of t by L), Lt (respectively tL), is Lt := {st ∈M(Σ, D) | s ∈ L} (respectively
tL := {ts ∈ M(Σ, D) | s ∈ L}). If L1,L2 ⊆ M(Σ, D) are trace languages, their product is
the trace language L1L2 := {t1t2 | t1 ∈ L1, t2 ∈ L2}. In particular, L∅ = ∅L = ∅.

FSTTCS 2019

48:6 Boolean Algebras from Trace Automata

A trace language L ⊆ M(Σ, D) is recognizable if there exists a finite monoid N and a
monoid morphism φ : M(Σ, D) → N such that L = φ−1(φ(L)). The class of recognizable
trace languages is denoted by Rec(M(Σ, D)).

I Proposition 8 ([10]). The following are equivalent:
L is recognizable,⋃
L is a regular word language,

the set {t−1L | t ∈M(Σ, D)} of left residuals of L is finite,
the set {Lt−1 | t ∈M(Σ, D)} of right residuals of L is finite.

I Remark 9. In case of D = TotalΣ, Rec(M(Σ, D)) = Reg(Σ∗).

I Proposition 10 ([10]). Rec(M(Σ, D)) is a Boolean algebra closed under concatenation.

The trace language [(ab)∗] with aIb is not recognizable since its union, the set of words
over {a, b} with the same number of occurences of a and b, is not regular. Nevertheless,
the set {a, b}∗ of Foata normal forms of its elements is regular. This suggests considering a
weaker notion of recognizability.

I Definition 11. L ⊆M(Σ, D) is level-regular if the word language dLeF is regular.

Since dLeF = Π−1
ID

(L) ∩ F, any recognizable trace language is level-regular. Note also
that any level-regular trace language is a rational subset of the monoid M(Σ, D). Denote by
LevelReg(M(Σ, D)) the class of level-regular languages of the trace monoid M(Σ, D).

I Proposition 12 ([16]). LevelReg(M(Σ, D)) is a Boolean algebra.

The class LevelReg(M(Σ, D)) is not closed under concatenation [16]. Nevertheless,
multiplication and residuation of trace languages on the right by a trace preserves the
level-regularity.

I Lemma 13. Let L ∈ LevelReg(M(Σ, D)) and t ∈ M(Σ, D). The trace languages Lt−1

and Lt are level-regular.

Given a word language L, we denote by Pref(L) := {u | ∃ v uv ∈ L} the set of prefixes of
words in L. From the lemma below, it follows, in particular, that the set of prefixes of Foata
normal forms of a level-regular trace language is a regular word language.

I Lemma 14. Let L ∈ LevelReg(M(Σ, D)). Then ΠID
(Pref dLeF) ∈ LevelReg(M(Σ, D)).

3.3 Trace suffix automata with level-regular contexts
We consider trace suffix automata with level-regular contexts [16]. These generalize both
word suffix automata (see Subsection 3.1) and vector addition systems (see the following
subsection).

A trace suffix automaton (with level-regular contexts) over a trace monoid M(Σ, D) is of
the form

G =
⋃

16i6n
Wi(ui

ai−→ vi) ∪ {ι} × IG ∪ {o} × FG

where Wi, IG,FG ∈ LevelReg(M(Σ, D)), ui, vi ∈ M(Σ, D), ai ∈ T and Wi(ui
ai−→ vi) =

{wiui
ai−→ wivi | wi ∈ Wi} (1 6 i 6 n). The trace language Wi is called the context of

the rewriting rule Wi(ui
ai−→ vi) (1 6 i 6 n). Denote by TrSuffix the family of trace suffix

automata.

A. Mansard 48:7

c

c

c
c

· · ·

· · ·

a a

aa

a a

b b b

bbb

a a

aa

a a

b b b

bbb

a a

aa

a a

b b

bbb

...

.

.

.

.

.

.

· · ·

· · ·· · ·

b

Figure 3 The infinite quarter grid tree is a trace suffix automaton (see Example 15).

I Example 15 (Infinite quarter grid tree). See Figure 3. Consider the following trace suffix
automaton with level-regular contexts, where the independence relation is {(a, b), (b, a)}.

[⊥{a, b, c}∗]([ε] a−→ [a]) ∪ [⊥{a, b, c}∗]([ε] b−→ [b]) ∪ [⊥{a, b, c}∗]([ε] c−→ [c])
In particular, it was shown in [16] that its first-order theory with reachability is decidable

though it is not a ground term rewriting graph [15].

The trace suffix automata for total dependence relations are the word suffix automata.
Thus regular languages and context-free languages are accepted by trace suffix automata.
On the other hand:

I Proposition 16 ([16, 20]). The languages accepted by the trace suffix automata are context-
sensitive.

The previous proposition relies on the fact that trace suffix automata are actually
word-automatic automata [16] and the latter accept the context-sensitive languages [20].

3.4 Vector addition systems
Here, a vector addition system G over Σ is a trace suffix automaton over the trace monoid
M(Σ, IdΣ). Denote by TrSuffixVAS the family of vector addition systems. The family
TrSuffixVAS is a subfamily of TrSuffix.

I Example 17. Observe that a vector addition system over a singleton alphabet is a word
suffix automaton since the equality relation over such an alphabet coincides with the total
relation. Let (T−1, T0, T1) a triple of disjoint finite alphabets. The trace suffix automaton
VisVAS∨ Stack(T−1, T0, T1) over M({>}, {(>,>)}) defined below is a vector addition system
over the singleton alphabet {>}. It is length-isomorphic to a word suffix automaton. The
Boolean algebra Rec`Stackdet

(VisVAS∨ Stack(T−1, T0, T1)) (see Theorem 7) is the family of
visibly pushdown languages with respect to (T−1, T0, T1) ([1]).

VisVAS∨ Stack(T−1, T0, T1) :=
⋃
λ∈T1

[>+]([ε] λ−→ [>]) ∪̇
⋃
λ∈T0

[>+]([ε] λ−→ [ε])

∪̇
⋃

λ∈T−1

[>+]([>] λ−→ [ε]) ∪̇
⋃

λ∈T−1

[>]([ε] λ−→ [ε]) ∪̇ {ι} × {[>]} ∪̇ {o} × [>+]

FSTTCS 2019

48:8 Boolean Algebras from Trace Automata

0 1 2

1

2

3

3 4 5 6 7

· · ·

· · ·
≃

a

a

a

a

a

b

b

b

b

b

b

b

b

b

b b

· · ·

· · ·

a

a

a

a

a

b

b

b

b

b

b

b

b

b

b b

· · ·

· · ·

· · ·

· · ·

[ε] x3 x6

y
x

y2

x2

y3

x3

x5
y2

x7
y

x4
y

Figure 4 A vector addition system from a finite set of integer vectors.

In the previous example, the length variation of two adjacent vertices is almost 1. It is
no more the case for the following example that shows, in particular, how to obtain a vector
addition system from a finite set of integer vectors of the same dimension.

I Example 18. Consider the finite set A :=
{

(2
−1), (1

1), (3
0)
}
of 2-dimensional integer vectors

and the automaton GA over N2, defined by

GA := {v l(a)−−→ v′ | v, v′ ∈ N2, a ∈ A, v + a = v′}

where l : A −→ T is the labeling function that maps (1
1) and (3

0) to the terminal b and (2
−1)

to the terminal a. The automaton GA is isomorphic to the vector addition system over the
alphabet {x, y} defined by the following rules

M([y] a−→ [xx]) ∪ M([ε] b−→ [xy]) ∪ M([ε] b−→ [xxx])

where M denotes the trace monoid M({x, y}, Id{x,y}). See Figure 4.

4 Level-length synchronization and Boolean algebras from trace
automata

In this section, we show how to obtain various Boolean algebras of word languages from
the family TrSuffix (Theorem 37). Actually, this will be deduced from a more general
result, since we give sufficient conditions for any family of trace automata to define Boolean
algebras (Theorem 34). After considering a notion of synchronization of two traces belonging
to disjoint trace monoids, we define their level-length synchronization. Then we define
the level-length synchronization and superposition of two trace automata (Definition 23
and 27) and we show that under some relevant assumptions, they accept respectively the
intersection and the difference (Lemmas 25 and 33). As a consequence, we show how to
obtain a Boolean algebra of word languages from any trace automata family closed under
level-length synchronization and superposition and from a deterministic automaton in this
family (Theorem 34). Finally, we show that the family TrSuffix is closed under level-length
synchronization and superposition.

Let M(Σ1, D1) and M(Σ2, D2) be trace monoids such that Σ1 ∩ Σ2 = ∅.
Let s ∈M(Σ1, D1) and t ∈M(Σ2, D2).

I Definition 19. The synchronization s ‖ t of s and t is the product st in the trace monoid
M(Σ1 ∪̇ Σ2, D1 ∪ D2).

I Definition 20. The level-length synchronization s ‖= t of s and t is s ‖ t if ‖s‖ = ‖t‖ and
is not defined otherwise.

A. Mansard 48:9

We also define s ‖> t := s ‖ t if ‖s‖ > ‖t‖ and s ‖6 t := s ‖ t if ‖s‖ 6 ‖t‖.
Given L1 ⊆M(Σ1, D1) and L2 ⊆M(Σ2, D2), we define

L1 ‖ L2 := {t1 ‖ t2 | t1 ∈ L1, t2 ∈ L2} and L1 ‖= L2 := {t1 ‖= t2 | t1 ∈ L1, t2 ∈ L2},
L1 ‖> L2 := {t1 ‖> t2 | t1 ∈ L1, t2 ∈ L2} and L1 ‖6 L2 := {t1 ‖6 t2 | t1 ∈ L1, t2 ∈ L2}.
These synchronized trace languages remain level-regular if L1 and L2 are.

I Lemma 21. Let L1 ∈ LevelReg(M(Σ1, D1)) and L2 ∈ LevelReg(M(Σ2, D2)). The follow-
ing trace languages are level-regular: L1 ‖ L2, L1 ‖> L2, L1 ‖6 L2, L1 ‖= L2.

If a synchronized trace language is level-regular, then so are its projections. Let us make
explicit what such a projection is. For i ∈ {1, 2}, denoting ī := 3 − i, we consider the
morphism πi from M(Σ1 ∪̇ Σ2, D1 ∪̇ D2) into M(Σi, Di) defined by πi([a]) = [a] if a ∈ Σi

and πi([a]) = [ε] if a ∈ Σī. Given t ∈ M(Σ1 ∪̇ Σ2, D1 ∪̇ D2), there exists a unique couple
(t1, t2) ∈M(Σ1, D1)×M(Σ2, D2) such that t = t1t2. This couple is given by t1 = π1(t) and
t2 = π2(t). The morphism πi naturally extends to trace languages.

I Lemma 22. Let L ∈ LevelReg(M(Σ1 ∪̇ Σ2, D1 ∪̇ D2)). The trace languages π1(L) and
π2(L) are level-regular.

Now, we consider the level-length synchronization of two automata. It is an automaton
over the level-length synchronization of vertices of these automata.

I Definition 23. Let G1 and G2 be trace automata over respectively M(Σ1, D1) and
M(Σ2, D2). Their level-length synchronization G1 ‖= G2 is the trace automaton over
M(Σ1 ∪̇ Σ2, D1 ∪̇ D2) defined by

G1 ‖= G2 := {p1 ‖= p2
a−→ q1 ‖= q2 | p1

a−−→
G1

q1, p2
a−−→
G2

q2}

∪ {ι} × (IG1 ‖= IG2) ∪ {o} × (FG1 ‖= FG2)

I Lemma 24. G1 ‖= G2
πi−→` Gi (i ∈ {1, 2}).

If two automata are length-reducible to a same deterministic one, then the intersection of
their languages is accepted by their level-length synchronization.

I Lemma 25. If H is a deterministic trace automaton such that G1 −→` H and G2 −→` H,
then L(G1 ‖= G2) = L(G1) ∩ L(G2).

Proof. Let u ∈ L(G1) ∩ L(G2) be a word. By Lemma 1 and since G1 −→` H, there exists an
accepting path labeled by u in H. Since H is deterministic, this path is unique. Then, for
any two paths in G1 and G2 accepting u, the sequences of lengths of vertices of these paths
are same, because they are the same as the sequence of lengths of the path accepting u in H.
Hence, u labels an accepting path in G1 ‖= G2. The other inclusion is straightforward. J

If two deterministic automata are length-reducible to a same deterministic one, then their
level-length synchronization is also a deterministic automaton.

I Lemma 26. If G1, G2 and H are deterministic trace automata such that Gi −→` H

(i ∈ {1, 2}), then G1 ‖= G2 is a deterministic automaton.

We are now introducing the level-length superposition G �] H of trace automata. When
restricted to deterministic automata and if G −→` H, this accepts the difference language
L(H) − L(G) (Lemma 33). Note that to accept the difference, we may consider simpler
operations. The level-length superposition bears the advantage of preserving the boundedness

FSTTCS 2019

48:10 Boolean Algebras from Trace Automata

of the degree. Indeed, we will consider families of automata of bounded degree and in order
to obtain Boolean algebras, we will require these families to be closed under level-length
superposition.

Given a word language L and a word u, we write u v L if u is a prefix of a word in L. A
trace automaton is [ε]-free if [ε] is not a vertex.

I Definition 27. Let G and H be [ε]-free trace automata over respectively M(Σ1, D1) and
M(Σ2, D2) and] /∈ Σ1 ∪̇ Σ2. The level-length superposition of G on H is the trace automaton
G �] H over M(Σ1 ∪̇ {]} ∪̇ Σ2, D1 ∪̇ {(],])} ∪̇ D2) defined by

G �] H :=
(1) {p ‖= s

a−→ q ‖= t | p a−→
G
q, s

a−→
H

t}
(2) ∪ {ι} × (IG ‖= IH)
(3) ∪ {o} × ((VG − FG) ‖= FH)
(4) ∪ {p ‖= s

a−→ p[]] ‖ t | s a−→
H

t, ‖s‖ 6 ‖t‖, p ∈ VG,¬∃p′(p
a−→
G
p′ ∧ ‖p′‖ = ‖t‖)}

(5) ∪ {p ‖= s
a−→ q[]] ‖= t | s a−→

H
t, ‖s‖ > ‖t‖, p ∈ VG,¬∃p′(p

a−→
G
p′ ∧ ‖p′‖ = ‖t‖), dqeF v dpeF}

(6) ∪ {p[]] ‖6 s
a−→ p[]] ‖ t | s a−→

H
t, ‖s‖ 6 ‖t‖, dpeF v dVGeF}

(7) ∪ {p[]] ‖6 s
a−→ p[]] ‖6 t | s a−→

H
t, ‖s‖ > ‖t‖, dpeF v dVGeF}

(8) ∪ {p[]] ‖6 s
a−→ q[]] ‖= t | s a−→

H
t, ‖s‖ > ‖t‖, ‖t‖ < ‖p[]]‖, dpeF v dVGeF, dqeF v dpeF}

(9) ∪ {o} × ({p[]] ‖6 s | dpeF v dVGeF, s ∈ FH})
(10) ∪ {ι} × ({[]] ‖ s | s ∈ IH ,¬(∃p ∈ IG ‖p‖ = ‖s‖)})

Let us give some more explanations about this definition. First, observe that there are
two kinds of vertices: those in which] occurs and the other ones. Then, observe that the
edges between non]-vertices are those of G ‖= H. Note that the edges at lines (4) and (5)
are the only ones between]-vertices and non]-vertices, and that they leave the set VG‖=H of
non]-vertices. Thus, once a path leaves VG‖=H , it never returns.

Given t ∈M(Σ1 ∪̇ {]} ∪̇ Σ2, D1 ∪̇ D2), we denote by π1(t) (respectively π2(t)) the unique
trace in M(Σ1 ∪̇ {]}, D1) (respectively M(Σ2, D2)) such that t = π1(t)π2(t).

For each edge s a−→
H

t and each vertex x of G �] H, H-projecting on s (i.e., π2(x) = s),

there exists an edge x a−−−−→
G�]H

y with y H-projecting on t (i.e., π2(y) = t). Since on the other

hand, any initial vertex of H lifts to an initial vertex of G�]H (lines (2) and (10)), it follows
that any initial path in H (an initial path is a path of which the source is an initial vertex)
lifts to an initial path of G �] H.

I Lemma 28. Any word that labels an initial path in H, also labels an initial path in G�]H.

Lastly, note that we preserve the fact that the level-length of any vertex is given by the
level-length of its H-component (see Lemma 30). In particular, the first component is not
longer than the second one.

It will be relevant to discuss about the final vertices of G �] H only under some more
assumptions about G and H (Lemma 30, Corollary 32 and Lemma 33).

I Example 29. Let us consider the automata described in Example 2. The unique initial
vertex of T2 �] Vis({c},∅, {a, b}) is K ‖= ⊥. The final vertices of T2 �] Vis({c},∅, {a, b})
are these for which the number of occurrences of] is 1. See Figure 5 for the restriction of
T2 �] Vis({c},∅, {a, b}) to the vertices accessible from the initial vertex and co-accessible
from final vertices.

I Lemma 30. G �] H π2−→` H.

A. Mansard 48:11

Kb ⊥⊤3
Kb

♯

⊥⊤2
Kb

♯

⊥⊤
Kb

♯♯

Ka

⊥⊤

♯

Ka

⊥⊤2

♯

Ka

⊥⊤3

Kb2

⊥⊤2

ι

Kba

⊥⊤2

Kab

Ka2

⊥⊤2

⊥⊤2

Ka

⊥⊤2
K

♯

⊥⊤
K

♯

K

♯

K

⊥⊤ ⊥⊤

⊥

⊥

c

a, ba, b

c

a b

a

b

c

a, b a, b

cc

c

c a, b

c

a, bc

a

b

c c

c c c

. . .

...

. . .

. . .

. . .

.

.

. . .

c

c

Figure 5 Trimmed level-length superposition of T2 on Vis({c},∅, {a, b}) (see Example 29).

By Lemma 1, L(G �] H) ⊆ L(H). That is, if a word labels an accepting path in G �] H
then it also labels an accepting path in H. The converse is not true in general, as we will see
in Lemma 33.

The level-length superposition preserves determinism.

I Lemma 31. If G and H are deterministic, then G �] H is deterministic.

Observe that the automaton described at lines (1), (2) and (3) (Definition 27) is the
level-length synchronization of H and the automaton obtained from G by declaring final the
non final vertices and vice-versa. By Lemma 25 and since obviously H −→` H, we deduce the
following corollary.

I Corollary 32. If G and H are deterministic, G −→` H and w is a word that labels an initial
path in G ‖= H, then w ∈ L(G) ∩ L(H)⇐⇒ w /∈ L(G �] H).

The level-length superposition accepts the difference.

I Lemma 33. If G and H are deterministic and G −→` H, then L(G �] H) = L(H)− L(G).

Proof. By Lemmas 30, 31 and Corollary 32, it remains to show that any word w ∈ L(H)−
L(G) that does not label any initial path in G ‖= H is accepted by G�]H. The unique initial
path in the deterministic automaton G �] H labeled by w is accepting since its goal is of the
form p[]] ‖6 s (s ∈ FH) and any such vertex is final in G�]H (line (9) in Definition 27). J

Let us apply Lemmas 25 and 33. From any trace automata family closed under level-length
synchronization and superposition, we obtain various Boolean algebras of word languages
from the deterministic automata of this family.

I Theorem 34. Let F be a family of trace automata closed under level-length synchronization
and superposition and H ∈ Fdet [ε]-free. Then the class of languages Rec`Fdet

(H) = {L(G) |
G ∈ Fdet, G −→` H} is a Boolean algebra relative to L(H).

FSTTCS 2019

48:12 Boolean Algebras from Trace Automata

Let us show that Theorem 34 applies to the family TrSuffix.

I Proposition 35. The family TrSuffix is closed under level-length synchronization.

Proof (Sketch). First, observe that given G1, G2 ∈ TrSuffix, the sets of initial vertices
and final vertices of G1 ‖= G2 are level-regular by Lemma 21. Indeed, the level-length
synchronization of level-regular languages remains level-regular. Then, since the operation
‖= is distributive over union, it suffices to suppose that G1 (respectively G2) is of the
form W1(u1

a−→ v1) over M(Σ1, D1) (respectively W2(u2
b−→ v2) over M(Σ2, D2)) with

Wi ∈ LevelReg(M(Σi, Di)), ui, vi ∈ M(Σi, Di) (i ∈ {1, 2}). If a 6= b, then G1 ‖= G2 = ∅.
Suppose a = b. We show that G1 ‖= G2 := {p1 ‖= p2

a−→ q1 ‖= q2 | p1
a−−→
G1

q1, p2
a−−→
G2

q2} is

equal to
(
(W1u1 ‖= W2u2)(u1 ‖ u2)−1 ∩ (W1v1 ‖= W2v2)(v1 ‖ v2)−1) (u1 ‖ u2

a−→ v1 ‖ v2).
Since (W1u1 ‖= W2u2)(u1 ‖ u2)−1 ∩ (W1v1 ‖= W2v2)(v1 ‖ v2)−1 is level-regular by Lemmas
13, 21 and Proposition 12, this proves the proposition. J

I Proposition 36. The family TrSuffix is closed under level-length superposition.

Proof (Sketch). Since G �] (H1 ∪ H2) = G �] H1 ∪ G �] H2, it suffices to consider
G =

⋃
16i6n

Wi(ui
ai−→ vi) ∪ {ι} × IG ∪ {o} × FG over M(Σ1, D1) and H = Z(x a−→

y) ∪ {ι}× IH ∪ {o}×FH over M(Σ2, D2). We may assume that the level-length variation
of the rules Wi(ui

ai−→ vi) (1 6 i 6 n) and Z(x a−→ y) is constant and is equal respectively
to δi and δH . We show that the sets of initial and final vertices of G �] H correspond to
level-regular trace languages. Then, by distinguishing the cases δH > 0 and δH < 0, we show
that the sets of edges constituting G �] H (Definition 27) can be described as trace suffix
automata with level-regular contexts. In each case, the level-regularity of the trace languages
considered (for initial and final vertices and for the contexts of the rewriting rules) will be
ensured by Proposition 12 and Lemmas 13, 14, 21, 22. J

Let us apply Theorem 34 and Propositions 35 and 36.

I Theorem 37. Let H be an [ε]-free deterministic trace suffix automaton. Then
Rec`TrSuffixdet

(H) = {L(G) | G ∈ TrSuffixdet, G −→` H} is a Boolean algebra relative to
L(H).

5 Vector addition systems

By Theorem 34 and since we will prove that TrSuffixVAS is closed under level-length synchron-
ization and superposition, we obtain various Boolean algebras of word languages accepted by
deterministic vector addition systems.

I Theorem 38. Let H ∈ TrSuffixVAS
det [ε]-free. Then Rec`TrSuffixVAS

det
(H) = {L(G) | G ∈

TrSuffixVAS
det , G −→` H} is a Boolean algebra relative to L(H).

Proof. Given Theorem 34, it suffices to show that TrSuffixVAS is closed under level-length
synchronization and superposition. Consider G1, G2 ∈ TrSuffixVAS with G1 over Σ1, G2 over
Σ2, Σ1 ∩ Σ2 = ∅ and] /∈ Σ1 ∪̇ Σ2. Then observe that G1 ‖= G2 (respectively G1 �] G2) is
a trace suffix automaton over Σ1 ∪̇ Σ2 (respectively over Σ1 ∪̇ {]} ∪̇ Σ2). J

I Example 39. The Boolean algebra Rec`TrSuffixVAS
det

(VisVAS∨ Stack(∅,∅, {a})) is the Boolean
algebra of regular languages over the singleton alphabet {a}.

A. Mansard 48:13

a a

a

b

a

b

a

o

⊥2

⊥2

a

b b

a

a

o

⊥

⊥
b

ι
a2 a3
⊥3
b b

⊥4

⊥3

a2
o

. . .
...

⊥3

⊥5

. . .aaa

oc c co o o
ι

b b bb, c

⊥4

a

Figure 6 A trace suffix automaton that
accepts {anban | n > 0} (Example 40).

a

b

⊥2

c
b

b

b

b

b

ι
o

a
⊥2

b

⊥3

a2

b

⊥3

a2

b2

⊥3

a2

. . .

.

. . .aaa

oc c co o o
ι

b b bb, c

⊥

a

c

a

a

c

Figure 7 A trace suffix automaton that
accepts {anbncn | n > 0}∗ (Example 41).

I Example 40. It is well-known that the language L = {anban | n > 0}, while being
context-free, is not a visibly pushdown language [1]. Consider the following vector addition
system G over {⊥, a, b} defined by

G := [(⊥a)∗⊥]([b] b−→ [ε]) ∪ [b(⊥a)∗⊥]([ε] a−→ [⊥a]) ∪ [(⊥a)∗⊥+]([a] a−→ [⊥])
∪ {ι} × {[⊥b]} ∪ {o} × [⊥∗]

We have L = L(G) ∈ Rec`TrSuffixVAS
det

(VisVAS∨ Stack(∅, {b}, {a})). See Figure 6.

I Example 41. It is well-known that the language L = {anbncn | n > 0}∗ is not context-free.
Consider the following vector addition system G over {⊥, a, b} defined by

G := [(⊥ab)∗⊥]([ε] a−→ [⊥ab]) ∪ [(⊥ab)∗(⊥a)+⊥]([b] b−→ [ε]) ∪ [(⊥a)∗⊥]([⊥a] c−→ [ε])
∪ {ι} × {[⊥]} ∪ {o} × {[⊥]}

We have L = L(G) ∈ Rec`TrSuffixVAS
det

(VisVAS∨ Stack({c}, {b}, {a})). See Figure 7.

6 Conclusion

Summing up, we have shown how to obtain various Boolean algebras from any family of trace
automata closed under level-length synchronization and superposition. The family TrSuffix
of trace suffix automata with level-regular contexts and the subfamily TrSuffixVAS of vector
addition systems satisfy these closure conditions. In particular, we obtain various Boolean
algebras of context-sensitive languages accepted by deterministic vector addition systems.
However, a better understanding of these languages seems to be a challenging problem.
Moreover, it would be interesting to show that some other subfamilies of TrSuffixVAS also
satisfy the closure conditions stated above.

FSTTCS 2019

48:14 Boolean Algebras from Trace Automata

References
1 R. Alur and P. Madhusudan. Visibly pushdown languages. In Proceedings of the 36th Annual

ACM Symposium on Theory of Computing, Chicago, IL, USA, June 13-16, 2004, pages
202–211, 2004. doi:10.1145/1007352.1007390.

2 D. Caucal. On the Regular Structure of Prefix Rewriting. Theor. Comput. Sci., 106(1):61–86,
1992. doi:10.1016/0304-3975(92)90278-N.

3 D. Caucal. On Infinite Transition Graphs Having a Decidable Monadic Theory. In Automata,
Languages and Programming, 23rd International Colloquium, ICALP96, Paderborn, Germany,
8-12 July 1996, Proceedings, pages 194–205, 1996. doi:10.1007/3-540-61440-0_128.

4 D. Caucal. On the transition graphs of turing machines. Theor. Comput. Sci., 296(2):195–223,
2003. doi:10.1016/S0304-3975(02)00655-2.

5 D. Caucal. Boolean algebras of unambiguous context-free languages. In IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS
2008, December 9-11, 2008, Bangalore, India, pages 83–94, 2008. doi:10.4230/LIPIcs.FSTTCS.
2008.1743.

6 D. Caucal and C. Rispal. Recognizability for Automata. In Developments in Language Theory -
22nd International Conference, DLT 2018, Tokyo, Japan, September 10-14, 2018, Proceedings,
pages 206–218, 2018. doi:10.1007/978-3-319-98654-8_17.

7 D. Caucal and C. Rispal. Boolean Algebras by Length Recognizability. In Tiziana Margaria,
Susanne Graf, and Kim G. Larsen, editors, Models, Mindsets, Meta: The What, the How, and
the Why Not? Essays Dedicated to Bernhard Steffen on the Occasion of His 60th Birthday, pages
169–185. Springer International Publishing, Cham, 2019. doi:10.1007/978-3-030-22348-9_
11.

8 N. Chomsky. Three models for the description of languages. IRE Transactions on Information
Theory, 2(3):113–124, September 1956. doi:10.1109/TIT.1956.1056813.

9 S. Crespi-reghizzi and D. Mandrioli. Petri nets and szilard languages. Information and Control,
33(2):177–192, 1977. doi:10.1016/S0019-9958(77)90558-7.

10 V. Diekert and G. Rozenberg. The Book of Traces. WORLD SCIENTIFIC, 1995. doi:
10.1142/2563.

11 S. Eilenberg. Automata, Languages, and Machines. Academic Press, Inc., Orlando, FL, USA,
1974.

12 M. Hack. Decidability questions for Petri nets. PhD thesis, MIT, Dept. Electrical Engineering,
Cambridge, Mass., USA, 1975.

13 B. Hodgson. On Direct Products of Automaton Decidable Theories. Theor. Comput. Sci.,
19:331–335, 1982. doi:10.1016/0304-3975(82)90042-1.

14 J. Leroux, V. Penelle, and G. Sutre. On the Context-Freeness Problem for Vector Addition
Systems. In 28th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2013,
New Orleans, LA, USA, June 25-28, 2013, pages 43–52, 2013. doi:10.1109/LICS.2013.9.

15 C. Löding. Model-Checking Infinite Systems Generated by Ground Tree Rewriting. In
Foundations of Software Science and Computation Structures, 5th International Conference,
FOSSACS 2002. Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2002 Grenoble, France, April 8-12, 2002, Proceedings, pages 280–294, 2002.
doi:10.1007/3-540-45931-6_20.

16 A. Mansard. Unfolding of Finite Concurrent Automata. In Proceedings 11th Interaction and
Concurrency Experience, ICE 2018, Madrid, Spain, June 20-21, 2018., pages 68–84, 2018.
doi:10.4204/EPTCS.279.8.

17 K. Mehlhorn. Pebbling Mountain Ranges and its Application of DCFL-Recognition. In
Automata, Languages and Programming, 7th Colloquium, Noordweijkerhout, The Netherlands,
July 14-18, 1980, Proceedings, pages 422–435, 1980. doi:10.1007/3-540-10003-2_89.

18 D. Nowotka and J. Srba. Height-Deterministic Pushdown Automata. In Mathematical
Foundations of Computer Science 2007, 32nd International Symposium, MFCS 2007, Ceský
Krumlov, Czech Republic, August 26-31, 2007, Proceedings, pages 125–134, 2007. doi:10.
1007/978-3-540-74456-6_13.

https://doi.org/10.1145/1007352.1007390
https://doi.org/10.1016/0304-3975(92)90278-N
https://doi.org/10.1007/3-540-61440-0_128
https://doi.org/10.1016/S0304-3975(02)00655-2
https://doi.org/10.4230/LIPIcs.FSTTCS.2008.1743
https://doi.org/10.4230/LIPIcs.FSTTCS.2008.1743
https://doi.org/10.1007/978-3-319-98654-8_17
https://doi.org/10.1007/978-3-030-22348-9_11
https://doi.org/10.1007/978-3-030-22348-9_11
https://doi.org/10.1109/TIT.1956.1056813
https://doi.org/10.1016/S0019-9958(77)90558-7
https://doi.org/10.1142/2563
https://doi.org/10.1142/2563
https://doi.org/10.1016/0304-3975(82)90042-1
https://doi.org/10.1109/LICS.2013.9
https://doi.org/10.1007/3-540-45931-6_20
https://doi.org/10.4204/EPTCS.279.8
https://doi.org/10.1007/3-540-10003-2_89
https://doi.org/10.1007/978-3-540-74456-6_13
https://doi.org/10.1007/978-3-540-74456-6_13

A. Mansard 48:15

19 J. L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 1981.

20 C. Rispal. The synchronized graphs trace the context-sensitive languages. Electr. Notes Theor.
Comput. Sci., 68(6):55–70, 2002. doi:10.1016/S1571-0661(04)80533-4.

21 S. R. Schwer. The context-freeness of the languages associated with vector addition systems is
decidable. Theoretical Computer Science, 98(2):199–247, 1992. doi:10.1016/0304-3975(92)
90002-W.

22 R. Valk and G. Vidal-Naquet. Petri nets and regular languages. Journal of Computer and
System Sciences, 23(3):299–325, 1981. doi:10.1016/0022-0000(81)90067-2.

23 G. Winskel and M. Nielsen. Models for Concurrency. In S. Abramsky, Dov M. Gabbay,
and T. S. E. Maibaum, editors, Handbook of Logic in Computer Science (Vol. 4), pages
1–148. Oxford University Press, Inc., New York, NY, USA, 1995. URL: http://dl.acm.org/
citation.cfm?id=218623.218630.

FSTTCS 2019

https://doi.org/10.1016/S1571-0661(04)80533-4
https://doi.org/10.1016/0304-3975(92)90002-W
https://doi.org/10.1016/0304-3975(92)90002-W
https://doi.org/10.1016/0022-0000(81)90067-2
http://dl.acm.org/citation.cfm?id=218623.218630
http://dl.acm.org/citation.cfm?id=218623.218630

Widths of Regular and Context-Free Languages
David Mestel
University of Luxembourg
david.mestel@uni.lu

Abstract
Given a partially-ordered finite alphabet Σ and a language L ⊆ Σ∗, how large can an antichain
in L be (where L is given the lexicographic ordering)? More precisely, since L will in general be
infinite, we should ask about the rate of growth of maximum antichains consisting of words of length
n. This fundamental property of partial orders is known as the width, and in a companion work
[10] we show that the problem of computing the information leakage permitted by a deterministic
interactive system modeled as a finite-state transducer can be reduced to the problem of computing
the width of a certain regular language. In this paper, we show that if L is regular then there is
a dichotomy between polynomial and exponential antichain growth. We give a polynomial-time
algorithm to distinguish the two cases, and to compute the order of polynomial growth, with the
language specified as an NFA. For context-free languages we show that there is a similar dichotomy,
but now the problem of distinguishing the two cases is undecidable. Finally, we generalise the
lexicographic order to tree languages, and show that for regular tree languages there is a trichotomy
between polynomial, exponential and doubly exponential antichain growth.

2012 ACM Subject Classification Theory of computation→ Formal languages and automata theory

Keywords and phrases Formal languages, combinatorics on words, information flow

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.49

Related Version A full version of the paper is available at https://arxiv.org/abs/1709.08696.

Funding The author is supported by FNR under grant number 11689058 (Q-CoDe).

1 Introduction

Computing the size of the largest antichain (set of mutually incomparable elements) is the
“central” problem in the extremal combinatorics of partially ordered sets (posets) [14]. In
addition to some general theory [7], it has attracted study for a variety of specific sets,
beginning with Sperner’s Theorem on subsets of {1, . . . , n} ordered by inclusion [12, 2, 11],
and for random posets [1]. The size of the largest antichain in a poset is called its width.

In this work we study languages L (regular or context-free) over finite partially ordered
alphabets, with the lexicographic partial order. Since such languages will in general contain
infinite antichains, we study the sets L=n of words of length n, and ask how the width of
L=n grows with n; we call this the antichain growth rate of L.

In addition to its theoretical interest, the motivation for this work is the study of quantified
information flow in computer security: we wish to know whether a pair of isolated agents
interacting with a common central system (for example different programs running on a single
computer and communicating with the operating system) can obtain any information about
each other’s actions, and if so how much. In a companion work [10] we show that if the central
system is modeled as a deterministic finite-state transducer then this leakage is equivalent
to the width of a certain regular language (roughly speaking, antichains corresponding to
consistent sets of observations for one agent). The dichotomy we obtain in this paper thus
corresponds to a dichotomy between logarithmic and linear information flow.

© David Mestel;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 49; pp. 49:1–49:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:david.mestel@uni.lu
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.49
https://arxiv.org/abs/1709.08696
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

49:2 Widths of Regular and Context-Free Languages

In Section 2 we set out basic definitions and results on the lexicographic order, antichains
and antichain growth. In Section 3 we show that for regular languages there is a dichotomy
between polynomial and exponential antichain growth, and give a polynomial-time algorithm
for distinguishing the two cases. In Section 4 we give a polynomial-time algorithm to compute
the order of polynomial antichain growth. In Section 5 we show that for context-free languages
there is a similar dichotomy between polynomial and exponential antichain growth, but that
the problem of distinguishing the two cases is undecidable. In Section 6 we show that for
regular tree languages there is a trichotomy between polynomial, exponential and doubly
exponential antichain growth. Finally in Section 7 we discuss open problems.

For reasons of space, many proofs have been omitted or sketched in the conference version
of this work; an extended version with full proofs may be found at [9].

2 Languages, lexicographic order and antichains

I Definition 1. Let Σ be a finite alphabet equipped with a partial order �. Then the
lexicographic partial order induced by � on Σ∗ is the relation � given by
(i) ε � w for all w ∈ Σ∗ (where ε is the empty word), and
(ii) For any x, y ∈ Σ, w, w′ ∈ Σ∗, we have xw � yw′ if and only if either x ≺ y or x = y

and w � w′.

If words x and y are comparable in this partial order we write x ∼ y. If x is a prefix of y
we write x ≤ y. For a language L, we will often write L=n to denote the set {w ∈ L | |w| = n}
(with corresponding definitions for L<n, etc.), and |L|=n for |L=n|.

The main subject of this work is antichains, that is sets of words which are mutually
incomparable. It will sometimes be useful also to consider quasiantichains, which are sets
of words which are incomparable except that the set may include prefixes (note that this
is not a standard term). The opposite of an antichain is a chain, in which all elements are
comparable.

I Definition 2. A language L is an antichain if for every l1, l2 ∈ L with l1 6= l2 we have
l1 6∼ l2. L is a quasiantichain if for every l1, l2 ∈ L we have either l1 ≤ l2, l2 ≤ l1 or l1 6∼ l2.
L is a chain if for all l1, l2 ∈ L we have l1 ∼ l2.

It is easy to see that the property of being an antichain is preserved by the operations of
prefixing, postfixing and concatenation.

I Lemma 3 (Prefixing). Let w,w1, w2 be any words. Then w1 ∼ w2 if and only if ww1 ∼
ww2. Hence for any language L, wL is an antichain (respectively quasiantichain) if and only
if L is an antichain (quasiantichain).

I Lemma 4 (Postfixing). Let w,w1, w2 be any words. Then w1 ∼ w2 if w1w ∼ w2w. Hence
for any language L, Lw is an antichain if L is an antichain.

I Lemma 5 (Concatenation). Let w1, w2, w
′
1, w

′
2 be any words such that w1 6≤ w2 and

w2 6≤ w1. Then w1w
′
1 ∼ w2w

′
2 if and only if w1 ∼ w2. Hence if L1 and L2 are antichains

then L1L2 is an antichain.

Clearly the property of being an antichain is not preserved by Kleene star, since L∗ will
contain prefixes for any non-empty L. The best we can hope for is that L∗ is a quasiantichain.

I Lemma 6 (Kleene star). Let L be an antichain. Then L∗ is a quasiantichain.

D. Mestel 49:3

Ultimately we are going to care about the size of antichains inside particular languages.
Since these will often be unbounded, we choose to ask about the rate of growth; that is,
if L1, L2, L3, . . . ⊆ L are antichains such that Li consists of words of length i, how quickly
can |Li| grow with i? We will call

⋃
i Li an antichain family and ask whether it grows

exponentially, polynomially, etc.

I Definition 7. A language L is an antichain family if for each n the set L=n of words in L
of length n is an antichain.

I Definition 8. A language L is exponential (or has exponential growth) if there exists
some ε > 0 such that

lim sup
n→∞

|L|=n
2εn > 0,

and the supremum of the set of ε for which this holds is the order of exponential growth.
L is polynomial (or has polynomial growth) if there exists some k such that

lim sup
n→∞

|L|=n
nk

<∞.

If 0 < lim supn→∞
|L|=n
nk

<∞ then we say that L has polynomial growth of order k.
For notational convenience, we will sometimes later adopt the convention that a language

L which is finite (and so lim supn→∞
|L|=n
nk

= 0 for all k) has polynomial growth of order −1.

A reasonable alternative choice of notation would have been to define the quantity wn to
be the size of the largest antichain consisting of words of length n, and then ask about the
growth of the series w1, w2, This is clearly equivalent to the definitions we have given
above.

Note that we will sometimes use other characterisations that are clearly equivalent; for
instance L has exponential growth if and only if there is some ε such that |L|=n > 2εn infinitely
often. We will sometimes refer to a language which is not polynomial as “super-polynomial”,
or as having “growth beyond all polynomial orders”. Of course there exist languages whose
growth rates are neither polynomial nor exponential; for instance |L|=n = Θ(2

√
n).

I Definition 9. A language L has exponential antichain growth if there is an exponential
antichain family L′ ⊆ L. L has polynomial antichain growth if for every antichain family
L′ ⊆ L we have that L′ is polynomial.

Antichain growth generalises the classical notion of language growth, which is just
antichain growth with respect to the discrete partial order (in which all elements of Σ are
incomparable).

Note that we could have chosen to define exponential antichain growth as containing
an exponential antichain (rather than an exponential antichain family). We will eventually
see (Corollary 17) that for regular languages the two notions are equivalent. However, for
general languages they are not; indeed the following proposition shows that the two possible
definitions are not equivalent even for context-free languages.

I Proposition 10. There exists a context-free language L such that L has exponential
antichain growth but all antichains in L are finite.

FSTTCS 2019

49:4 Widths of Regular and Context-Free Languages

Proof. Let Σ = {a, b, 0, 1} with ≺= {(a, b)}. Let L =
⋃∞
n=1 Ln =

⋃∞
n=1 a

n−1b{0, 1}n.
Then each Ln is an antichain of size 2n consisting of words of length 2n, but we have
L1 > L2 > L3 > . . . so any antichain is a subset of Lk for some k and hence is finite (the
notation L1 > L2 means that for any w1 ∈ L1 and w2 ∈ L2 we have w2 ≺ w1). Plainly L is
a context-free language. J

We observed above that Kleene star does not preserve the property of being an antichain.
We conclude this section by establishing Lemma 12, which addresses this problem; if our
goal is to find a large antichain, it suffices to find a large quasiantichain (where the precise
meaning of “large” is having exponential growth).

As a preliminary, we observe the straightforward fact that taking finite unions does not
change the polynomial or exponential growth character of languages.

I Lemma 11. Let L1, L2, . . . , Lk be languages, such that
⋃k
i=1 Li has exponential growth of

order ε (respectively super-polynomial growth). Then Li has exponential growth of order ε
(respectively super-polynomial growth) for some i.

We are now ready to prove Lemma 12.

I Lemma 12. Let L be an exponential quasiantichain. Then there exists an exponential
antichain L′ ⊆ L.

Proof sketch. We construct an exponential subset of L which is prefix-free, and is therefore
an exponential antichain. We do this by a Ramsey-style argument: always maintaining the
invariant of exponential growth, at each step we pick a fixed word w of length k, throw
away that word if it is in the set, and also throw away all longer words of which w is not a
prefix; by Lemma 11 it is always possible to choose w such that this process preserves the
invariant. J

3 Regular languages

The dichotomy between polynomial and exponential language growth for regular languages
has been independently discovered at least six times (see citations in [4]), in each case based
on the fact that a regular language L has polynomial growth if and only if L is bounded (that
is, L ⊆ w∗1 . . . w∗k for some w1, . . . , wk); otherwise L has exponential growth.

In [4], Gawrychowski, Krieger, Rampersad and Shallit describe a polynomial time al-
gorithm for determining whether a language is bounded. The key idea is to consider the sets
Lq of words which can be generated beginning and ending at state q. L is bounded if and
only if for every q we have that Lq is commutative (that is, that Lq ⊆ w∗ for some w), and
this can be checked in polynomial time.

In this section, we generalise this idea to the problem of antichain growth by showing
that L has polynomial antichain growth if and only if Lq is a chain for every q, and otherwise
L has exponential antichain growth. This is sufficient to establish the dichotomy theorem
(Theorem 16). To give an algorithm for distinguishing the two cases (Theorem 18), we show
how to produce an automaton whose language is empty if and only if Lq is a chain (roughly
speaking the automaton accepts pairs of incomparable words in Lq).

Before proving the main theorems, we first establish (Lemma 13) that if L1 and L2 have
polynomial antichain growth then so does L1L2. Moreover if the rates of polynomial growth
of L1 and L2 are at most k1 and k2 respectively then the rate of polynomial growth of L1L2
is at most k1 + k2 + 1. For the proof of this see the extended version [9].

D. Mestel 49:5

I Lemma 13. Let L1, L2 be languages with polynomial antichain growth of order at most k1
and k2 respectively. Then L1L2 has polynomial antichain growth of order at most k1 + k2 + 1.

We are now ready to prove the main theorem, generalising the condition for polynomial
language growth (that Lq is commutative for every q) to one for polynomial antichain growth:
that Lq is a chain for every relevant q.

I Definition 14. A state q of an automaton A = (Q,Σ,∆, q0, F) is accessible if q is reachable
from q0 and co-accessible if F is reachable from q.

I Definition 15. Let A = (Q,Σ,∆, q0, F) be an NFA. Then for each q1, q2 ∈ Q, the
automaton Aq1,q2 , (Q,Σ,∆, q1, {q2}).

I Theorem 16. Let A = (Q,Σ,∆, q0, F) be an NFA over a partially ordered alphabet. Then
(i) L(A) has polynomial antichain growth if and only if L(Aq,q) is a chain for every

accessible and co-accessible state q, and
(ii) if L(A) does not have polynomial antichain growth then it contains an exponential

antichain (and hence has exponential antichain growth).

Proof. Suppose that w1, w2 ∈ L(Aq,q) with w1 6∼ w2 and q accessible and co-accessible, so
w ∈ L(Aq0,q) and w′ ∈ L(Aq,q′) for some w,w′ and some q′ ∈ F . Now by the Kleene star
Lemma we have that (w1 +w2)∗ is an exponential quasiantichain and so by Lemma 12 there
is an exponential antichain L′ ⊆ (w1 + w2)∗. Then by the Prefixing and Postfixing Lemmas
we have that wL′w′ ⊆ L is an exponential antichain.

For the converse, we proceed by induction on |Q|. Let Q′ = Q \ {q0}, F ′ = F \ {q0} and
∆′(q, a) = ∆(q, a) \ {q0} for all q ∈ Q′, a ∈ Σ. For any q ∈ Q′, let A′q = (Q′,Σ,∆′, q, F ′).
Then by the inductive hypothesis we have that L(A′q) has polynomial antichain growth. Also,
since Lq0 = L(Aq0,q0) is a chain it has polynomial (in particular constant) antichain growth.
Now we have

L(A) ⊆ Lq0 ∪
⋃
q∈Q′

⋃
a∈∆(q0,q)

Lq0aL(A′q).

By Lemma 13, each Lq0aL(A′q) also has polynomial antichain growth, and hence by
Lemma 11 so does the finite union. J

A trivial restatement of part (ii) of the theorem shows that the two possible definitions
of antichain growth are equivalent.

I Corollary 17. Let L be a regular language. Then L has exponential (respectively super-
polynomial) antichain growth if and only if L contains an exponential (respectively super-
polynomial) antichain.

Using Theorem 16 we can produce an algorithm for distinguishing the two cases.

I Theorem 18. There exists a polynomial time algorithm to determine whether the language
of a given NFA A has exponential antichain growth.

Proof sketch. We construct an NFA B which accepts interleavings of incomparable words
over Σ and Σ′ (a fresh copy of the alphabet). We then have that L(Aq,q) is a chain if and
only if L((Aq,q ||| A′q,q) ∩ B) is empty, where A′ is a copy of A over alphabet Σ′. This can
be checked in polynomial time. J

FSTTCS 2019

49:6 Widths of Regular and Context-Free Languages

4 Precise growth rates

In [4] the authors give an algorithm to compute the order of polynomial language growth for
the language of a given NFA; on the other hand efficiently computing the order of exponential
growth is an open problem. In this section we give an algorithm to compute the order of
polynomial antichain growth for the language of a given NFA. We do this by first giving an
algorithm for DFA, and then showing that in fact it also works for NFA. We will assume
throughout without loss of generality that all states are accessible and co-accessible.

I Definition 19. Let A = (Q, q0, F,Σ, δ) be a DFA over a partially ordered alphabet. Let
GA = (Q,E) be the directed graph with vertex-set Q such that (q, q′) ∈ E if and only if
q
w−→ q′ for some w ∈ Σ∗.
Let G′A = (Q,E′) be the directed graph with (q, q′) ∈ E′ if and only if there exist words

w 6∼ w′ ∈ Σ∗ such that q w−→ q and q w′−→ q′. We will write Lq,q′ , L(Aq,q′).

We will generally omit the subscript As from now on, where this will not cause confusion.
Note that by Theorem 16, we have that G′ is a directed acyclic graph (DAG) if and only

if L(A) has polynomial antichain growth. By a similar argument to the proof of Theorem 18,
the graph G′ can be computed in polynomial time. Clearly G can be computed in polynomial
time using a flood fill.

I Definition 20. Let A = (Q, q0, F,Σ, δ) be a DFA with polynomial antichain growth. For a
directed path P = q0q1 . . . ql (not necessarily simple) in GA, let

D(P) = |{i ∈ {0, . . . , l − 1}|(qi, qi+1) ∈ E(G′A)}|+
{

1 if |Lqm,ql | =∞
0 otherwise.

,

where m = max{i+ 1|(qi, qi+1) ∈ G′A} if this exists, and 0 otherwise.

Observe that if |Lqm,ql | =∞ then we have ww′∗w′′ ⊆ Lqm,ql for some w,w′, w′′.

I Lemma 21. Let A = (Q, q0, F,Σ, δ) be a DFA with polynomial antichain growth. Let P
be the set of directed paths from q0 to an element of F . Then the quantity

DA = max
P∈P

D(P)

is well-defined and can be computed in polynomial time.

Proof. To show that DA is well-defined, observe that no directed cycle in G contains an edge
in G′. Indeed, suppose that q1q2 . . . q1 is a directed cycle in G, with (q1, q2) ∈ E(G′). Then
we have q1

w−→ q1 and q1
w′−→ q2 for some w 6∼ w′ ∈ Σ∗. Also we have q2

w′′−−→ q1 for some
w′′ ∈ Σ∗. But then q1

w′w′′−−−→ q1 and w′w′′ 6∼ w by the Concatenation Lemma, contradicting
polynomial antichain growth of L(A). Hence D(P) is bounded.

For a polynomial time algorithm, first expand G and G′ by adding a sink vertex vf for
each f ∈ F . For each q such that |Lq,f | =∞ put (q, vf) ∈ E(G) and (q, vf) ∈ E(G′). Then
add a further vertex v with (f, v) ∈ E(G) and (vf , v) ∈ E(G) for all f ∈ F . Then DA is
precisely the maximum number of edges of G′ contained in a directed path from q0 to v in G.

Form the graph G′′ on vertex-set Q ∪ {v} by (v1, v2) ∈ E(G′′) if and only if there is a
path from v1 to v2 in G containing a single edge of G′. Then we have that G′′ is a DAG (by
the first observation), and DA is the longest path from q0 to v in G′′, which can be found by
a simple dynamic programming algorithm. J

D. Mestel 49:7

We will show that the order of polynomial antichain growth of L(A) is precisely DA − 1.

I Lemma 22. Let A = (Q, q0, F,Σ, δ) be a DFA with polynomial antichain growth. Then
L(A) has polynomial antichain growth of order at least DA − 1.

Proof. Let P = q0q1 . . . ql be a path with D(P) = DA. Let i1, . . . , ik be such that
(qij , qij+1) ∈ E(G′A) for all j. Let w1, . . . , wk, w

′
1 . . . , w

′
k, w ∈ Σ∗ be such that wj 6∼ w′j

for all j, qij
wj−−→ qij for all j, qij

w′j−−→ qij+1 for all j < k, qik
w′k−−→ ql, and q0

w−→ qi1 .
Suppose that |Lqm,ql | =∞ (with m = ik defined as in Definition 20), and let w′, w′′, w′′′ ∈

Σ∗ be such that w′w′′∗w′′′ ⊆ Lqm,ql . Then L = ww∗1w
′
1w
∗
2w
′
2 . . . w

∗
kw
′w′′∗w′′′ is an antichain

family with polynomial growth of order k = DA − 1. Similarly if |Lqm,ql | < ∞, then
L = ww∗1w

′
1w
∗
2w
′
2 . . . w

∗
kw
′
k is an antichain with polynomial growth of order k−1 = DA−1. J

We will now prove the upper bound. Our strategy will be to classify words by the edges
of G′ they visit. We first show a preliminary lemma, which bounds the antichain growth
from regions between edges of G′.

I Lemma 23. Let q1, q2 ∈ Q, and let L ⊆ Lq1,q2 be the set of words such that no edges of
G′ appear in the runs corresponding to elements of L. Then L has antichain growth of order
at most 0.

Proof. Without loss of generality we may assume that A does not have any transitions
labelled by more than a single letter (by introducing additional states if necessary; in
particular we can set Q′ = Q× Σ and ensure that δ′(q, x) ∈ Q× {x} for all x ∈ Σ).

We will show that L cannot contain two incomparable words that correspond after removal
of loops to the same sets of simple paths in G.1 Since G is finite and hence contains only
finitely many simple paths, this suffices to establish the result.

Suppose that w1 6∼ w2 correspond to the same simple path P . Suppose that the first
point of divergence of w1 and w2 is at state q; that is, that w1 = wx1w

′
1 and w2 = wx2w

′
2

with x1 6= x2 ∈ Σ and q1
w−→ q (see Figure 1). Without loss of generality we may assume that

q and δ(q, x1) lie on P .
Since the path for w2 corresponds to P after removal of cycles, we must have that

w′2 = w′′2w
′′′
2 with q x2w

′′
2−−−→ q and q w′′′2−−→ q2. But w1 6∼ w2 and x1 6= x2 so x1 6∼ x2 and so

x1 6∼ x2w
′′
2 . Hence (q, δ(q, x1)) ∈ G′, which is a contradiction. J

q
1

w

q
x

1

x
2

w
2
’’

q
2

w
1
’

Figure 1 The proof of Lemma 23.

1 Note that since removal of loops may be done in many different ways, a single path may correspond
to multiple simple paths. We are asserting that L cannot contain two incomparable words which
correspond to precisely the same sets of simple paths.

FSTTCS 2019

49:8 Widths of Regular and Context-Free Languages

I Lemma 24. Let A = (Q, q0, F,Σ, δ) be a DFA with polynomial antichain growth. Then
L(A) has polynomial antichain growth of order at most DA − 1.

Proof. We may assume without loss of generality that there is only a single accepting state,
say qf (otherwise consider seperately the automata A1, . . . ,A|F | which agree with A except
for having only a single accepting state; then on the one hand we have DA = maxDAi , but
on the other hand L(A) =

⋃
Ai which is a finite union and hence the order of antichain

growth of L(A) is the maximum of the orders of growth of the L(Ai)).
We classify words by the edges of G′ that appear in their accepting runs. We shall show

that the set of words corresponding to a fixed sequence P of G′-edges has antichain growth of
order at most D(P) (where D(P) = |P | − 1 or |P | depending on whether the set of accepted
words beginning at the last vertex of P is finite). Since the number of relevant G′-edge
sequences is finite (recalling that no edge of G′ is contained in a directed cycle in G and so
no G′-edge can appear more than once), this will suffice to establish the result.

Let (q1, q
′
1), . . . , (qk, q′k) be a set of G′-edges. Then the set L of words which have this

sequence of G′-edges in their run is given by

L = L′q0,q1
X1L

′
q′1,q2

X2L
′
q′2,q3

. . . XkL
′
q′
k
,qf
,

where Xi = {x ∈ Σ | δ(qi, x) = q′i} and L′q,q′ ⊂ Lq,q′ is the set of words whose runs do not
include edges of G′.

The Xi are finite and hence have antichain growth of order −1. By Lemma 23 the L′q′
i
,qi+1

and also L′q0,q1
and L′q′

k
,qf

have antichain growth of order at most 0. Moreover if Lq′
k
,qf

is finite then so is L′q′
k
,qf
⊆ Lq′

k
,qf and so it has antichain growth of order −1. The result

follows by Lemma 13. J

Combining Lemmas 21, 22 and 24 yields

I Theorem 25. Let A = (Q, q0, F,Σ, δ) be a DFA with polynomial antichain growth. Then
L(A) has polynomial antichain growth of order exactly DA − 1, which can be computed in
polynomial time.

We now show how to extend this algorithm to the case of NFA. Note that DA as defined
above is well-defined for NFA just as for DFA, and that the algorithm to compute it in
polynomial time is equally applicable. It therefore remains to show that for NFA we also
have that if A has polynomial antichain growth then it has antichain growth of order exactly
DA − 1.

We do this by showing (Lemma 27) that DA depends only on the language L(A), so
that if A and A′ are NFA with L(A) = L(A′) then DA = DA′ . Having shown this we then
consider A′ to be the determinisation of A. This is a DFA with L(A′) = L(A), and by
Theorem 25 we have that L(A′) has polynomial antichain growth of order DA′ − 1 = DA− 1.

We will first show (Lemma 26) that if L = v0w
∗
1v1w

∗
2v2 . . . w

∗
kvk ⊆ L(A) then there exists

a single sequence of states q1, q2, . . . , qk which essentially realises L (that is, up to various
offsets we have vi ∈ L(Aqi,qi+1) and w∗i ∈ L(Aqi,qi)).

I Lemma 26. Let A = (Q, q0, F,Σ,∆) be an NFA such that v0w
∗
1v1w

∗
2v2 . . . w

∗
kvk ⊆ L(A).

Then then there exists a sequence of states q1, q2, . . . , qk+1 and integers m1,m2, . . .mk,
m′1,m

′
2, . . . ,m

′
k and n1, n2, . . . , nk such that

(i) v0w
m1
1 ∈ L(Aq0,q1) and wm

′
k

k vk ∈ L(Aqk,F),
(ii) for all 0 < i < k we have wm

′
i

i viw
mi+1
i+1 ∈ L(Aqi,qi+1), and

(iii) for all 0 < i ≤ k we have wnii ∈ L(Aqi,qi).

D. Mestel 49:9

Proof. Consider an accepting run for v0w
|Q|+1
1 v1w

|Q|+1
2 v2 . . . w

|Q|+1
k vk ∈ L(A), and write

q(s) for the state reached in this run after the word s. By the pigeon-hole principle,
we must have q(v0w

m1
1) = q(v0w

m1+n1) = q1 (say) for some m1 ≥ 0 and some n1 > 0
with m1 + n1 ≤ |Q| + 1. Let m′1 = |Q| + 1 − m1 − n1. Similarly for each i we have
q(v1w

|Q|+1
1 v2 . . . w

mi
i) = q(v1w

|Q|+1
1 v2 . . . w

mi+ni
i) = qi (say) for some mi ≥ 0 and ni > 0

with mi + ni ≤ |Q| + 1. Let m′i = |Q| + 1 −mi − ni. Then these qi,mi,m
′
i and ni give

the result. J

I Lemma 27. Let A and A′ be NFA with L(A) = L(A′). Then DA = DA′ .

Proof. Let A = (Q, q0, F,Σ,∆) and A′ = (Q′, q′0, F ′,Σ,∆′).
Suppose that DA′ = k. Then by an identical argument to the proof of Lemma 22 we

have that v0w
∗
1v1w

∗
2v2 . . . w

∗
kvk ⊆ L(A′) = L(A) for some v0, . . . , vk, w1, . . . , wk ∈ Σ∗ with

wi 6∼ vi. Then by Lemma 26 there exists a sequence of states q1, q2, . . . , qk+1 ∈ Q and
integers m1,m2, . . . ,mk,m

′
1,m

′
2, . . .m

′
k and n1, n2, . . . , nk such that (i)–(iii) in the statement

of the lemma hold. Now since wi 6∼ vi we have wkinii 6∼ wm
′
i

i viw
mi+1
i+1 for sufficiently large ki

and so DA ≥ k = DA′ . Similarly DA′ ≥ DA, and hence DA = DA′ . J

I Theorem 28. Let A be an NFA with polynomial antichain growth. Then L(A) has
polynomial antichain growth of order exactly DA − 1.

Proof. Let A′ be the powerset determinisation of A, so A′ is a DFA with L(A′) = L(A).
By Theorem 25, L(A′) has polynomial antichain growth of order exactly DA′ − 1, and by
Lemma 27 we have DA′ = DA. J

5 Context-free languages

In [6], Ginsburg and Spanier show (Theorem 5.1) that a context-free grammar G generates
a bounded language if and only if the sets LA(G) and RA(G) are commutative for all non-
terminals A, where LA and RA are respectively the sets of possible w and u in productions
A
∗⇒ wAu. They also give an algorithm to decide this (which [4] improves to be in

polynomial time).
We generalise this to our problem by showing that G generates a language with polynomial

antichain growth if and only LA(G) and also the sets RA,w(G) of possible u for each fixed
w are chains, and that otherwise L(G) has exponential antichain growth. However, we will
show that the problem of distinguishing the two cases is undecidable, by reduction from the
CFG intersection emptiness problem.

Except where otherwise specified, we will assume all CFGs have starting symbol S
and that all nonterminals are accessible and co-accessible: for any nonterminal A we have
S
∗⇒ uAu′ for some u, u′ ∈ Σ∗ and A ∗⇒ v for some v ∈ Σ∗.

I Definition 29. Let G be a context-free grammar (CFG) over Σ. Then for any nonterminal
A let

LA(G) = {w ∈ Σ∗| ∃u ∈ Σ∗ : A ∗⇒ wAu}.

I Lemma 30. Let G be a CFG over Σ and A some nonterminal such that LA(G) is not a
chain. Then L(G) contains an exponential antichain.

Proof. Since LA(G) is not a chain, we have w1, w2, u1, u2 with w1 6∼ w2 such that A ∗⇒ w1Au1
and A ∗⇒ w2Au2. Now A is accessible and co-accessible so also S ∗⇒ uAu′ and A ∗⇒ v for
some u, u′, v ∈ Σ∗.

FSTTCS 2019

49:10 Widths of Regular and Context-Free Languages

Hence uwi1wi2 . . . wikvuikuik−1 . . . ui1u
′ ⊆ L(G), for any i1i2 . . . ik ∈ {1, 2}∗. Write

φ : (w1 +w2)∗ → (u1 +u2)∗ for the map wi1wi2 . . . wik 7→ uikuik−1 . . . ui1 (with any ambiguity
resolved arbitrarily).

Now {wi1wi2 . . . wik |i1 . . . ik ∈ {1, 2}∗} = (w1 + w2)∗ is a quasiantichain by Lemma 6,
clearly it is exponential and hence by Lemma 12 it contains an exponential antichain L.
By the Concatenation Lemma we have that L′ = {lvφ(l)|l ∈ L} is an antichain, and it is
exponential because there is a bijection between L and L′ such that the length of each word in
L′ exceeds the length of the corresponding word in L by a factor of at most |v|+max(|u1|,|u2|)

min(|w1|,|w2|) .
By the Prefixing and Postfixing Lemmas we have that uL′u′ ⊆ L(G) is an exponential
antichain. J

I Definition 31. Let G be a CFG over Σ. Then for any nonterminal A and any w ∈ Σ∗, let

RA,w(G) = {u ∈ Σ∗|A ∗⇒ wAu}.

I Lemma 32. Let G be a CFG over Σ, A some nonterminal and w ∈ Σ∗ such that RA,w(G)
is not a chain. Then L(G) has exponential antichain growth.

Proof. We have v, w, u, u′ ∈ Σ∗ and u1 6∼ u2 ∈ Σ∗ such that S ∗⇒ uAu′, A ∗⇒ v, A ∗⇒ wAu1
and A ∗⇒ wAu2. Let Li = uw2iv(u1u2 + u2u1)iu′. Then Li is an antichain and

⋃∞
i=1 Li is

an exponential antichain family. J

I Lemma 33. Let G be a CFG over Σ such that LA(G) and RA,w(G) are chains for all
nonterminals A and all w ∈ Σ∗. Then L(G) has polynomial antichain growth.

Proof sketch. Induction on the number of nonterminals, similarly to the proof of Theorem 16.
J

Combining these three lemmas gives:

I Theorem 34. Let L be a context-free language. Then either L has exponential antichain
growth or L has polynomial antichain growth.

It is a straightforward exercise to show that the ambiguity of an NFA (the maximum
number of accepting paths corresponding to a given word) can be represented as the width
of a suitable context-free language, and hence Theorem 34 implies the well-known result
that the ambiguity of an NFA has either polynomial or exponential growth (see Theorem 4.1
of [13]).

We now show that the problem of distinguishing the two cases of antichain growth is
undecidable for context-free languages, by reduction from the CFG intersection emptiness
problem. In fact, it is undecidable even to determine whether a given CFG generates a chain.

I Definition 35. CFG-Intersection is the problem of determining whether two given
CFGs have non-empty intersection. CFG-Chain is the problem of determining whether
the language generated by a given CFG is a chain. CFG-ExpAntichain is the problem
of determining whether the language generated by a given CFG has exponential antichain
growth.

I Lemma 36. CFG-Intersection is undecidable.

Proof. [5], Theorem 4.2.1. J

I Lemma 37. There is a polynomial time reduction from CFG-Intersection to CFG-
Chain.

D. Mestel 49:11

Proof. Let G1, G2 be arbitrary CFGs over alphabet Σ. Let Σ̃ = Σ∪{0, 1}, with an arbitrary
linear order on Σ, and Σ < 0,Σ < 1 but 0 and 1 incomparable. Let G̃ be a CFG such that

L(G̃) = (L(G1)0) ∪ (L(G2)1)

(which can trivially be constructed with polynomial blowup). Then L(G̃) is a chain if and
only if G1 ∩G2 = ∅. J

I Lemma 38. Let L be a prefix-free chain. Then L∗ is a chain.

Proof. Let lw 6∼ l′w′ be a minimum-length counterexample with l, l′ ∈ L and w,w′ ∈ L∗.
By minimality and the Prefixing Lemma we have that l 6= l′. Then by the Concatenation
Lemma since L is prefix-free we have that l 6∼ l′, which is a contradiction. J

I Lemma 39. There is a polynomial time reduction from CFG-Chain to CFG-ExpAnti-
chain.

Proof. Let G be a CFG over a partially ordered alphabet Σ. Let Σ̃ = Σ ∪ {0}, with Σ < 0.
Let G̃ be a CFG such that L(G̃) = (L(G)0)∗.

We claim that L(G̃) has exponential antichain growth if and only if L(G) is not a chain.
Indeed, suppose that l1 6∼ l2 ∈ L(G). Then l10 6∼ l20 and so by Lemmas 6 and 12 we have
that (l10 + l20)∗ ⊆ L(G̃) contains an exponential antichain.

Conversely, suppose that L(G) is a chain. Then L(G)0 is a prefix-free chain and so by
Lemma 38 we have that L(G̃) is a chain. J

Combining these lemmas gives:

I Theorem 40. The problems CFG-Chain and CFG-ExpAntichain are undecidable.

6 Tree automata

In this section, we generalise the definition of the lexicographic ordering to tree languages,
and prove a trichotomy theorem: regular tree languages have antichain growth which is
either polynomial, exponential or doubly exponential.

Notation and definitions (other than for the lexicographic ordering) are taken from [3], to
which the reader is referred for a more detailed treatment. Results in this section are stated
without proof; all proofs may be found in the extended version [9].

I Definition 41. Let F be a finite set of function symbols of arity ≥ 0, and X a set of
variables. Write Fp for the set of function symbols of arity p. Let T (F ,X) be the set of
terms over F and X . Let T (F) be the set of ground terms over F , which is also the set of
ranked ordered trees labelled by F (with rank given by arity as function symbols).

For example, the set of ordered binary trees is T (F), where F = {f, g, c} and f has arity
2, g arity 1 and c arity 0.

Note that this generalises the definition of finite words over an alphabet Σ, by taking
F = Σ ∪ {ε}, giving each a ∈ Σ arity one and ε arity zero.

A term t is linear if no free variable appears more than once in t. A linear term mentioning
k free variables is a k-ary context.

I Definition 42. Let F be equipped with a partial order �. Then the lexicographic partial
order induced by � on T (F) is the relation � defined as follows: for any f ∈ Fp, f ′ ∈ Fq
and any t1, . . . , tp ∈ T (F) and t′1, . . . , t′q ∈ T (F) we have f(t1, . . . , tp) � f ′(t′1, . . . , t′q) if and
only if either f ≺ f ′ or f = f ′ and ti � t′i for all i.

FSTTCS 2019

49:12 Widths of Regular and Context-Free Languages

Note that this generalises Definition 1, by taking ε � a for all a ∈ Σ. As before we will
write t ∼ t′ if t, t′ ∈ T (F) are related by the lexicographic order; the definitions of chain and
antichain are as before. To quantify antichain growth we need a notion of the size of a tree.
The measure we will use will be height:

I Definition 43. The height function h : T (F ,X)→ N is defined by h(x) = 0 for all x ∈ X ,
h(t) = 1 for all t ∈ F0 and h(t(t1, . . . , tn)) = 1 + max(h(t1, . . . , tn)) for all t ∈ Fn (n ≥ 1)
and t1, . . . , tn ∈ T (F ,X). For a language L, the set {t ∈ L | h(t) = k} is denoted L=k.

For example, taking the earlier example of binary trees, ground terms of height 3 include
f(f(c, c), f(c, c)), f(c, f(c, c)) and g(f(c, c)).

We say that L has doubly exponential antichain growth if there is some ε such that the
maximum size antichain in L=n exceeds 22εn infinitely often.

I Definition 44. A nondeterministic finite tree automaton (NFTA) over F is a tuple
A = (Q,F , Qf ,∆) where Q is a set of unary states, Qf ⊆ Q is a set of final states, and
∆ a set of transition rules of type f(q1(x1), . . . , qn(xn)) → q(f(x1, . . . , xn)), for f ∈ Fn,
q, q1, . . . , qn ∈ Q and x1, . . . , xn ∈ X . The move relation→

A
is defined by applying a transition

rule possibly inside a context and possibly with substitutions for the xi. The reflexive transitive
closure of →

A
is denoted ∗→

A
.

A tree t ∈ T (F) is accepted by A if there is some q ∈ Qf such that t ∗→
A
q(t). The set of

trees accepted by A is denoted L(A).

Again this generalises the definition of an NFA: put in transitions ε→ q(ε) for all accepting
states q, a(q(x))→ q′(a(x)) whenever q ∈ ∆(q′, a), and set Qf as the initial state.

The critical idea for the proof is to find the appropriate analogue of Lq. This turns out
to be the set Pq of binary contexts such that if the free variables are assigned state q then
the root can also be given state q. By analogy to the “trousers decomposition” of differential
geometry (also known as the “pants decomposition”), we refer to such a context as a pair of
trousers. It turns out that a sufficient condition for L to have doubly exponential antichain
growth is for Pq to be non-empty for some q (note that this does not depend on the particular
partial order on Σ). On the other hand, if Pq is empty for all q, then there is in a suitable
sense no branching and so we have a similar situation to ordinary languages.

I Definition 45. Let A = (Q,F , Qf ,∆) be an NFTA and q ∈ Q. A linear term t ∈
T (F , {x1, x2}) is a pair of trousers with respect to q if x1, x2 appear in t and t[x1 ←
q(x1), x2 ← q(x2)] ∗→

A
q(t). The set of pairs of trousers with respect to q is denoted Pq(A).

I Lemma 46. Let A = (Q,F , Qf ,∆) be a reduced NFTA. If there exists some q ∈ Q such
that Pq(A) is non-empty, then L(A) contains a doubly exponential antichain.

I Lemma 47. Let A = (Q,F , Qf ,∆) be a reduced NFTA such that Pq(A) = ∅ for all q ∈ Q.
Then L(A) has at most exponential growth.

In the case where there are no pairs of trousers, the situation is essentially equivalent
to ordinary NFA, and so we have a further dichotomy between exponential and polynomial
antichain growth. To show this, we define a set equivalent to Lq,q, and show that we have
polynomial growth if it is a chain and exponential growth otherwise.

IDefinition 48. Let A = (Q,F , Qf ,∆) be an NFTA, and q ∈ Q. Define Lq(A) ⊆ T (F , {x1})
to be the set of unary contexts t such that t[x1 ← q(x1)] ∗→

A
q(t).

D. Mestel 49:13

Note that unary contexts are linear terms in which exactly one free variable appears, so
Lq(A) does not contain ground terms. Note also that x1 ∈ Lq(A) for any A.

To give meaning to the statement “Lq(A) is a chain”, we must extend the definition of
the lexicographic order from the set T (F) of ground terms to the set T (F , {x1}) of unary
contexts. We do this by extending the relation � on F to F ∪ {x1} by x1 � f for all f ∈ F ,
and extending this to the lexicographic order as before.

I Lemma 49. Let A = (Q,F , Qf ,∆) be a reduced NFTA such that Pq(A) = ∅ for all q.
Then L(A) has polynomial antichain growth if Lq(A) is a chain for all q, and otherwise L(A)
has exponential antichain growth.

Combining these lemmas gives

I Theorem 50. Let L be a regular tree language over a partially ordered alphabet. Then
L has either doubly exponential antichain growth, singly exponential antichain growth, or
polynomial antichain growth.

The special case of the trivial partial order (in which elements are only comparable to
themselves) yields the fact that the language growth of any regular tree language is either
polynomial, exponential or doubly exponential, which may not have previously appeared in
the literature.

I Corollary 51. Let L be a regular tree language. Then L has either doubly exponential
language growth, singly exponential language growth or polynomial language growth.

Finally, we show that there is a polynomial algorithm to detect doubly exponential growth,
by determining whether or not the language of a given NFTA contains a pair of trousers.

I Theorem 52. There exists a polynomial time algorithm to determine whether the language
of a given NFTA has doubly exponential growth.

7 Open problems

It is remarkable that, many decades after the discovery of the dichotomy between polynomial
and exponential language growth, and 11 years after the work of Gawrychowski, Krieger,
Rampersad and Shallit [4], it remains unknown whether there is an efficient algorithm
to compute the order of exponential language growth of a given NFA. Consequently we
consider that resolving this question (by providing either a polynomial-time algorithm or an
appropriate hardness result) is the most important open problem in this area.

For a DFA, on the other hand, the order of exponential language growth is easily computed
as the spectral radius of the transition matrix. However, it is not clear how such “algebraic”
methods can be applied to the case of antichain growth, and so a second open problem is to
find a polynomial-time algorithm to compute the order of exponential antichain growth for
DFA. Such a result would have immediate application to the field of quantified information
flow, since it would allow one to compute the flow rate in the “dangerous” linear case, at
the cost of determinising the automaton representing the system (with overhead roughly
corresponding to the amount of hidden state the system contains).

The final problem in this direction is the combination of the preceding two: to find
a polynomial-time algorithm to compute the order of exponential antichain growth for a
given NFA.

FSTTCS 2019

49:14 Widths of Regular and Context-Free Languages

Alternatively we may wish to ask not about growth rates in the asymptotic limit, but
instead about the precise width of L=n or L≤n for given n. This is particularly relevant
to applications in computer security, where we may want not just an approximation “for
sufficiently large n” but a concrete guarantee. For the case of a language given as a DFA
and n given in unary there is a straightforward dynamic programming algorithm to compute
these quantities (for details see p.89 of [8]), but what about for NFA and for more concise
representations of n?

Finally we pose a more speculative question: what other phenomena, apart from informa-
tion flow, can antichains with respect to the lexicographic order usefully represent?

References
1 Graham Brightwell. Random k-dimensional orders: Width and number of linear extensions.

Order, 9(4):333–342, 1992.
2 E. Rodney Canfield. On a problem of Rota. Advances in Mathematics, 29(1):1–10, 1978.
3 H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison, and

M. Tommasi. Tree Automata Techniques and Applications. Available on: http://www.grappa.
univ-lille3.fr/tata, 2007. release October, 12th 2007.

4 Paweł Gawrychowski, Dalia Krieger, Narad Rampersad, and Jeffrey Shallit. Finding the
growth rate of a regular of [sic] context-free language in polynomial time. In Developments in
Language Theory, pages 339–358. Springer, 2008.

5 Seymour Ginsburg. The Mathematical Theory of Context Free Languages. McGraw-Hill Book
Company, 1966.

6 Seymour Ginsburg and Edwin H. Spanier. Bounded ALGOL-like languages. Transactions of
the American Mathematical Society, 113(2):333–368, 1964.

7 D. Kleitman, M. Edelberg, and D. Lubell. Maximal sized antichains in partial orders. Discrete
Mathematics, 1(1):47–53, 1971.

8 David Mestel. Quantifying information flow. PhD thesis, University of Oxford, 2018.
9 David Mestel. Widths of regular and context-free languages. CoRR, abs/1709.08696, 2018.

arXiv:1709.08696.
10 David Mestel. Quantifying information flow in interactive systems. In Proc. 32nd IEEE

Computer Security Foundations Symposium (CSF ’19), pages 414–427, June 2019.
11 G. W. Peck. Maximum antichains of rectangular arrays. Journal of Combinatorial Theory,

Series A, 27(3):397–400, 1979.
12 Emanuel Sperner. Ein Satz über Untermengen einer endlichen Menge. Mathematische

Zeitschrift, 27(1):544–548, 1928.
13 Andreas Weber and Helmut Seidl. On the Degree of Ambiguity of Finite Automata. Theor.

Comput. Sci., 88(2):325–349, October 1991.
14 Douglas B. West. Extremal Problems in Partially Ordered Sets. In Ivan Rival, editor, Ordered

Sets: Proceedings of the NATO Advanced Study Institute held at Banff, Canada, August 28 to
September 12, 1981, pages 473–521. Springer Netherlands, Dordrecht, 1982.

http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata
http://arxiv.org/abs/1709.08696

Degrees of Ambiguity of Büchi Tree Automata
Alexander Rabinovich
Tel Aviv University, Israel
https://www.cs.tau.ac.il/~rabinoa/
rabinoa@tauex.tau.ac.il

Doron Tiferet1

Tel Aviv University, Israel
sdoron5.t2@gmail.com

Abstract
An automaton is unambiguous if for every input it has at most one accepting computation. An
automaton is finitely (respectively, countably) ambiguous if for every input it has at most finitely
(respectively, countably) many accepting computations. An automaton is boundedly ambiguous if
there is k ∈ N, such that for every input it has at most k accepting computations. We consider
nondeterministic Büchi automata (NBA) over infinite trees and prove that it is decidable in
polynomial time, whether an automaton is unambiguous, boundedly ambiguous, finitely ambiguous,
or countably ambiguous.

2012 ACM Subject Classification Theory of computation → Automata over infinite objects

Keywords and phrases automata on infinite trees, ambiguous automata

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.50

Funding Supported in part by Len Blavatnik and the Blavatnik Family foundation.

1 Introduction

Degrees of Ambiguity

The relationship between deterministic and nondeterministic machines plays a central role
in computer science. An important topic is a comparison of expressiveness, succinctness
and complexity of deterministic and nondeterministic models. Various restricted forms of
nondeterminism were suggested and investigated (see [4, 5] for recent surveys).

Probably, the oldest restricted form of nondeterminism is unambiguity. An automaton is
unambiguous if for every input there is at most one accepting run. For automata over finite
words there is a rich and well-developed theory on the relationship between deterministic,
unambiguous and nondeterministic automata [5]. All three models have the same expressive
power. Unambiguous automata are exponentially more succinct than deterministic ones, and
nondeterministic automata are exponentially more succinct than unambiguous ones [6, 7].

Many other notions of ambiguity were suggested and investigated. A recent paper [5]
surveys works on the degree of ambiguity and on various nondeterminism measures for finite
automata on words.

An automaton is k-ambiguous if on every input it has at most k accepting runs; it is
boundedly ambiguous if it is k-ambiguous for some k; it is finitely ambiguous if on every input
it has finitely many accepting runs.

It is clear that an unambiguous automaton is k-ambiguous for every k > 0, and a
k-ambiguous automaton is finitely ambiguous. The reverse implications fail. For ε-free
automata over words (and over finite trees), on every input there are at most finitely many

1 corresponding author

© Alexander Rabinovich and Doron Tiferet;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 50; pp. 50:1–50:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-1460-2358
https://www.cs.tau.ac.il/~rabinoa/
mailto:rabinoa@tauex.tau.ac.il
mailto:sdoron5.t2@gmail.com
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.50
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

50:2 Degrees of Ambiguity of Büchi Tree Automata

accepting runs. Hence, every ε-free automaton on finite words and on finite trees is finitely
ambiguous. However, over ω-words there are nondeterministic automata with uncountably
many accepting runs. Over ω-words and over infinite trees, finitely ambiguous automata are
a proper subclass of the class of countably ambiguous automata, which is a proper subclass
of nondeterministic automata. Our main result is:

I Theorem 1. There are polynomial time algorithms that decide whether a Büchi automaton
over trees is unambiguous, boundedly ambiguous, finitely ambiguous, or countably ambiguous.

Over infinite trees, Büchi tree automata are less expressive than Monadic Second-Order
Logic or parity automata. In Sect. 8 we will show that the problem whether a parity tree
automaton is ambiguous is co-NP complete.

Related Works

Weber and Seidl [14] investigated several classes of ambiguous automata on words and
obtained polynomial time algorithms for deciding the membership in each of these classes.
Their algorithms were derived from structural characterizations of the classes.

In particular, they proved that the following Bounded Ambiguity Criterion (BA) charac-
terizes whether there is a bound k such that a nondeterministic automaton on words has at
most k accepting runs on each word.
Forbidden Pattern for Bounded Ambiguity: There are distinct useful2 states p, q ∈ Q such

that for some word u, there are runs on u from p to p, from p to q and from q to q.

Weber and Seidl [14] proved that an NFA is not boundedly ambiguous iff it contains the
forbidden pattern for bounded ambiguity. This pattern is testable in polynomial time; hence,
it can be decided in polynomial time whether the degree of ambiguity of a NFA is bounded.

Seidl [12] provided a structural characterization of bounded ambiguity for automata on
finite trees and derived a polynomial algorithm to decide whether such an automaton is
boundedly ambiguous.

Löding and Pirogov [8] and Rabinovich [10] provided structural characterizations and
polynomial algorithms for bounded, finite and countable ambiguity of Büchi automata
on ω-words. These characterizations and algorithms can be adopted for other acceptance
conditions: parity, Rabin, Muller, etc.

Our proof of Theorem 1 will first provide structural characterizations of bounded, finite
and countable ambiguity of automata on infinite trees, and then derive polynomial algorithms.

As far as we know, the degrees of ambiguity for automata over infinite trees have not been
investigated. The decidability whether an automaton on infinite trees is finitely ambiguous
or countably ambiguous can be obtained from the results of Bárány et al. in [2], where an
extension of monadic second-order logic of order with the cardinality quantifiers “there exist
uncountably many sets,” “there are countably many sets,” “there are finitely many sets”
(MSO(∃<ℵ0 ,∃>ℵ0)) was investigated. It was proved that, over the class of finitely branching
trees, MSO(∃<ℵ0 ,∃>ℵ0) is (effectively) equally expressive to plain monadic second-order
logic of order (MSO). It is a routine exercise for a given automaton on infinite trees to write
sentences in MSO(∃<ℵ0 ,∃>ℵ0) that express “the automaton has finitely many accepting runs,”
“the automaton has countably many accepting runs,” and “the automaton has uncountably
many accepting runs.” By combining these with Rabin’s theorem on decidability of MSO
over infinite trees we obtain that it is decidable whether an automaton is finitely or countably
ambiguous. Unfortunately, the complexity of the algorithm extracted from this proof is (at
least) triple exponential. Our proofs are inspired by techniques used in [2].

2 A state is useful if it is on an accepting run.

A. Rabinovich and D. Tiferet 50:3

Organization of the paper. The next section contains standard definitions and notations
about tree automata. The main results are stated in Sect. 3 and are proved in Sects. 4–7.
The last section presents the conclusion and further results. Missing proofs will appear in
the full paper.

2 Preliminaries

We recall here standard terminology and notations about trees and automata [13, 9].

Trees. A tree order ≤ on a set t is a partial order with a unique minimal element (the
root of t) such that for every u ∈ t, the set {v | v ≤ u} is finite and linearly ordered by ≤.
We use standard terminology and notations: u is an ancestor of v if u ≤ v, u is a child of
v, u is a leaf, u and v are incomparable - denoted by u ⊥ v - if neither u ≤ v nor v ≤ u; a
subset A of t is an antichain, if its elements are incomparable with each other.

If ≤ is a tree order over t and u ∈ t, we denote by t≥u the restriction of ≤ to the set
{v | v ≥ u}; t≥u is called the subtree of t rooted at u. A binary tree is a tree order with a
partition of children into two sets - left/right child such that every non-leaf node has exactly
one left child and one right child. The full binary tree is a binary tree without leaves.

There is a natural order isomorphism between the full binary trees and the set of strings
{l, r}∗ with prefix order; it maps ε to the root, l to the left child of root, etc. We will often
refer to a node in the full binary tree by the corresponding string over {l, r}.

If Σ is an alphabet, then a Σ-labeled tree is a tree t and a function σt from elements of
t to Σ. We often use “Σ-tree” for “Σ-labeled tree”; Σ-labeled full binary trees are defined
similarly. We often use “tree” or variables t, t′, T for “full binary tree” for “labeled tree” or
for “full binary labeled tree.” It will be clear from the context or unimportant what kind of
tree is used. In particular, t≥u is naturally defined over all such kinds of trees.

Grafting. If t, t1 are trees and u ∈ t, then the grafting of t1 at u in t, denoted by t ◦u t1, is a
tree which is obtained from t when t≥u is replaced by t1. Formally, this is defined by taking
an isomorphic copy t′1 of t1 with the domain disjoint from the domain of t and defining a
tree order ≤′ on t \ t≥u ∪ t′1, by v1 ≤′ v2 if v1 is an ancestor of v2 in t or in t′1, or if v1 ∈ t
and v2 ∈ t′1. More generally, if t is a tree, A is an antichain in t and t1 is a tree, then the
grafting of t1 at A in t is a tree which is obtained from t by replacing every subtree t≥a by t1
for a ∈ A. Even more generally, if t is a tree, A is an antichain in t and f assigns a tree ta to
every a ∈ A, then grafting f at A in t is a tree obtained from t, by replacing every subtree
t≥a by ta for a ∈ A.

Automata. We use standard notations and terminology about Büchi automata on (infinite)
full binary Σ-labeled trees and on ω-strings. A Büchi automaton A has an alphabet Σ, a
finite set of states QA, initial states QI ⊆ QA, a transition relation δA, and a set of final
states F ⊆ QA. For a Büchi automaton on ω-string, δA ⊆ QA × Σ×QA; for a Büchi tree
automaton, δA ⊆ QA × Σ×QA ×QA.

Given a Büchi automaton A = (Q,Σ, QI , δ, F) and a state q ∈ Q, Aq is defined as
Aq = (Q,Σ, {q}, δ, F), by replacing the set of initial states of A by {q}.

The notion of a computation/run, accepting computation of A on an ω-string/tree is
defined as usual. We use letter f for a final state of automata, and we use the letters φ, φ′
for computations. We denote by ACC(A, t) the set of accepting computations of A on t. We
denote by L(A) := {t | ACC(A, t) is not empty} the language of A.

FSTTCS 2019

50:4 Degrees of Ambiguity of Büchi Tree Automata

A state q of A is useful if there is a tree, an accepting computation φ on t and a node u
such that φ(u) = q. There is a polynomial algorithm that for A and q checks whether q is
useful. There is a polynomial algorithm which for every A computes an automaton B with
all states useful and L(A) = L(B). We will always assume that all states are useful.

Degree of Ambiguity. We denote by |X|, the cardinality of a set X. da(A) is defined
as sup{|ACC(A, t)| | t ∈ L(A)}. We say that A is unambiguous if da(A) = 1, boundedly
ambiguous if there is k ∈ N such that da(A) ≤ k, finitely ambiguous if |ACC(A, t)| is finite
for every t, countably ambiguous if ACC(A, t) is countable for every t.

I Example 2. Consider Büchi tree automata {Ai}3
i=1 over the unary alphabet.

1. A1 has a single state q; it is initial and final. ∆1 = (q, q, q). A1 is deterministic.
2. The set of states of A2 is Q2 := {q, q1}, both are initial and final, and ∆2 := Q×Q×Q.
A2 is uncountably ambiguous.

3. The set of states of A3 is Q3 := {q, f}, f is the final state, q is initial, and ∆3 =
{q} ×Q×Q ∪ {(f, f, f)}). A3 is countably ambiguous.

4. Over the unary alphabet there is only one full binary tree; therefore, every finitely
ambiguous automata is boundedly ambiguous.

A computation of A on a Σ-tree t can be considered as a QA-labeling of t. The grafting of
computations φ ◦v φ′ is defined as for the corresponding QA-trees. We often use implicitly
the following simple Lemma.

I Lemma 3 (Grafting). Let A be an automaton, t, t1 trees, v ∈ t and φ ∈ ACC(A, t), and
φ1 ∈ ACC(Aq, t1). If φ(v) = q, then φ ◦v φ1 is an accepting computation of A on t ◦v t1.

A similar lemma holds for general grafting. As an immediate consequence, we obtain the
following lemma:

I Lemma 4. da(A) ≥ da(Aq) for every useful state q of A.

We suspect that the following lemma is folklore. For lack of reference, we provide a proof in
the full version of the paper.

I Lemma 5. It is computable in polynomial time whether a Büchi tree automaton is unam-
biguous.

The next definition and theorem are taken from [8, 10]. They provide a forbidden pattern
characterization of degrees of ambiguity of automata on ω-words.

I Definition 6 (Forbidden pattern for ω-word automata). Let B be a Büchi automaton on
ω-words such that all its states are useful.
B contains a forbidden pattern for bounded ambiguity if there are distinct states p, q
such that for a (finite) word u, there are runs of Bp on u from p to p and from p to q
and there is a run of Bq on u from q to q.
B contains a forbidden pattern for countable ambiguity if there is a final state f and
there are two distinct runs of Bf on the same word u from f to f .
B contains a forbidden pattern for finite ambiguity if it contains the forbidden pattern for
countable ambiguity or there is a final state f , and q 6= f , and a word u such that there
are runs of Bq on u from q to q and on u from q to f and a run of Bf on u from f to f .

A. Rabinovich and D. Tiferet 50:5

I Theorem 7. Let B be a Büchi automaton on ω-words.
1. B has uncountably many accepting runs on some ω-word if and only if B contains the

forbidden pattern for countable ambiguity.
2. B has infinitely many accepting runs on some ω-word if and only if B contains the

forbidden pattern for finite ambiguity.
3. B is not boundedly ambiguous iff it contains the forbidden pattern for bounded ambiguity.

3 Main Result

In this section we first introduce branch ambiguity and ambiguous transition patterns and
then state our main results.

3.1 Branch Ambiguity
IDefinition 8 (Projection of a computation on a branch). Let φ ∈ ACC(A, t) and π := v0v1 . . .

be a branch of t. φ(π) := φ(v0)φ(v1) · · · ∈ QωA is the projection of φ on π. We define
ACC(A, t, π) := {φ(π) | φ ∈ ACC(A, t)}.

I Definition 9 (Branch ambiguity). A is at most n branch-ambiguous if |ACC(A, t, π)| ≤ n
for every t and branch π. A is bounded branch ambiguous if it is at most n branch ambiguous
for some n. A is finitely (countably) branch ambiguous if |ACC(A, t, π)| is finite (respectively,
countable) for every t and π.

Let A be a Büchi tree automaton. We define a Büchi ω-automaton AB which has the same
ambiguity as branch ambiguity of A:

I Definition 10 (Branch automaton). For a Büchi tree automaton A = (Q,Σ, QI , δ, F), the
corresponding branch automaton AB is an ω-word automaton (Q,ΣB , QI , δB , F), where
1. ΣB := Σ× Σd × Σcons with

a. Σd := {l, r} directions alphabet (left/right).
b. Σcons := {S ⊆ Q | ∩

q∈S
L(Aq) 6= ∅} sets of states, which we consider “consistent.”

2. (q, a, q′) ∈ δB iff a = (σ, l, S) and ∃p ∈ S : (q, σ, (q′, p)) ∈ δ or a = (σ, r, S) and
∃p ∈ S : (q, σ, (p, q′)) ∈ δ.

I Lemma 11. The branch ambiguity of a tree automaton A is bounded (respectively, fi-
nite, countable) iff the ambiguity of the corresponding branch ω-automaton AB is bounded
(respectively, finite, countable).

I Proposition 12 (Computability of branch ambiguity). It is computable in polynomial time
whether the branch ambiguity of A is bounded, finite, or countable.

3.2 Ambiguous Transition Pattern
I Definition 13 (Ambiguous transition pattern). Let A = (Q,Σ, QI , δ, F) be a Büchi auto-
maton with corresponding branch automaton AB = (Q,ΣB , QI , δB , F). A has a q-ambigu-
ous transition pattern if q ∈ Q and there are p1, p2 ∈ Q and y1 ∈ Σ∗B, y2 ∈ Σ+

B with runs
of AB from q to p1 on y1 and from p2 to q on y2 such that at least one of the following holds:
1. There are two transitions (p1, (a, d, {q1}), p2), (p1, (a, d, {q2}), p2) ∈ δB with q1 6= q2 and

L(Aq1) ∩ L(Aq2) 6= ∅, or
2. There is a transition (p1, (a, d, {q1}), p2) ∈ δB with da(Aq1) > 1.

FSTTCS 2019

50:6 Degrees of Ambiguity of Büchi Tree Automata

A is said to have an ambiguous transition pattern if there exists q ∈ Q such that A has
a q-ambiguous transition pattern.

Lemma 14 provides sufficient conditions for an ambiguous transition pattern.

I Lemma 14 (q-ambiguous transition pattern). Let A be a Büchi tree automaton and v⊥w.
If one of the following conditions holds, then A has a q-ambiguous transition pattern.
1. There is φ ∈ ACC(Aq, t) such that q = φ(v) and φ(w) = p, where Ap is ambiguous.
2. There are φ, φ′ ∈ ACC(Aq, t) such that q = φ(v) and ∀v′(v′ ≤ v)→ (φ(v′) = φ′(v′), and

φ(w) 6= φ′(w).

I Lemma 15. If A has an ambiguous transition pattern then its ambiguity degree is not
bounded. If A has an f -ambiguous transition pattern (for a final state f), then its ambiguity
degree is not countable.

I Lemma 16. It is computable in polynomial time whether A has an ambiguous transition
pattern and whether A has an f -ambiguous transition pattern for a final state f .

3.3 Characterizations of Degrees of Ambiguity
The next two propositions characterize bounded and finite ambiguity.

I Proposition 17 (Bounded ambiguity). The following are equivalent:
1. Büchi tree automaton A is not boundedly ambiguous.
2. At least one of the following conditions holds:

a. A is not bounded branch ambiguous.
b. A has an ambiguous transition pattern.

When “Büchi tree automaton A” is replaced by “an automaton A on finite trees” in
Proposition 17 we obtain an instance of a theorem proved by Seidl in [12]. A proof of
Proposition 17 is a simple variation of the proof in [12]. It will be sketched in the full paper.

I Proposition 18 (Finite ambiguity). The following are equivalent:
1. Büchi tree automaton A is not finitely ambiguous.
2. At least one of the following conditions holds:

a. A is not finite branch ambiguous.
b. A has an f -ambiguous transition pattern for a final state f .

In order to characterize countable ambiguity, we first introduce branching patterns.

I Definition 19 (A branching pattern for A over (Q, f)). Let A be a Büchi tree automaton,
f a final state of A and Q ⊆ QA \ {f}, where QA are the states of A. A branching pattern
M for A over (Q, f) is a function τM : Q→ Q×Q and a tuple (q1, q2) ∈ Q×Q.

I Definition 20 (Realizable branching pattern). Let t be a full binary tree and u ⊥ v two
nodes of t. A branching pattern M for A over (Q, f) is realized in t at u, v by computations
φ1, φ2, {φq | q ∈ Q} if the following holds:
1. φ1, φ2 ∈ ACC(Af , t) and φ1(u) = f = φ2(v), φ1(v) = q1 and φ2(u) = q2.
2. For each q ∈ Q: φq ∈ ACC(Aq, t) and τM (q) = (φq(v), φq(u)) and φq visits an accepting

state on both paths from the root of t to u and from the root of t to v.
In Sects. 5 and 7 we prove the next two propositions. Their proof is more complicated than
the proofs of Propositions 17 and 18.

A. Rabinovich and D. Tiferet 50:7

I Proposition 21 (Countable ambiguity). The following are equivalent:
1. Büchi tree automaton A is not countably ambiguous.
2. At least one of the following conditions holds:

a. A is not countable branch ambiguous.
b. A has an f -ambiguous transition pattern for a final state f .
c. A branching pattern for A is realizable.

I Proposition 22. It is computable in polynomial time whether there is a realizable branching
pattern for a Büchi tree automaton A.

I Theorem 23 (Main). It is computable in polynomial time whether a Büchi tree automaton
is unambiguous, bounded ambiguous, finitely ambiguous, or countably ambiguous.

Proof. For unambiguity – by Lemma 5. For bounded ambiguity by Proposition 17, Lemma
16 and Proposition 12. For finite ambiguity by Proposition 18, Lemma 16 and Proposition
12. For countable ambiguity by Propositions 21, 12, 22 and Lemma 16. J

Road map of the proofs. Sect. 4 and Sect. 5 deal with structural characterizations of
finite and countable ambiguity and prove Propositions 18 and 21. Sects 6 and 7 deal with
computability of degrees of ambiguity. Proposition 12 and Lemma 16 are proved in Sect. 6,
and Proposition 22 is proved in Sect. 7. The proofs of Lemmas 11, 14 and 15 are given in
the full version of the paper.

4 Finite Ambiguity

In this section we prove Proposition 18 - a structural characterization of finite ambiguity.
(2)⇒ (1) follows from Lemma 11 and Lemma 15. Below we prove the (1) ⇒ (2) direction.

Let t be a tree such that ACC(A, t) is not finite. We define a branch π := v0 . . . vi . . . in
t and an ω-sequence of states q0 . . . qi . . . such that for every i:
1. From qi there are infinitely many accepting computations of Aqi

on the subtree t≥vi
.

2. There is an accepting computation φi on t such that φi(vj) = qj for every j ≤ i.
Define v0 as the root of t and q0 as an initial state from which there are infinitely many
accepting computations.

Assume that vi and qi were defined. Since there are infinitely many accepting computations
from state qi on the subtree t≥vi

, infinitely many of them take the same first transition from
qi to 〈ql, qr〉 and either there are infinitely many accepting computations from state ql on
the subtree rooted at the left child of vi, or from state qr on the subtree rooted at the right
child of vi. Define vi+1 and qi+1 according to these cases.

If |ACC(A, t, π)| is infinite, then by the definition of branch ambiguity we have that
A is not finite branch ambiguous, and 2(a) holds. Otherwise, there exist φ1, . . . , φk ∈
ACC(A, t) such that ACC(A, t, π) = {φi(π) | 1 ≤ i ≤ k}. Choose n such that for all
1 ≤ i < j ≤ k : φi(v0 . . . vn) 6= φj(v0 . . . vn). One of these computations, say φ1, holds that
∀i ≤ n : φ1(vi) = qi. Hence, ∀i : φ1(vi) = qi.

Let f be an accepting state which occurs infinitely often in φ1(π). Choose N > n such
that φ1(vN) = qN = f . By selection of qN , there are infinitely many accepting computations
of Af on t≥vN

. Take two different accepting computations φ′, φ′′ ∈ ACC(Af , t≥vN
). By

selection of φ1, ∀i ≥ N : φ1(vi) = φ′(vi) = φ′′(vi) = qi. Therefore, φ′ and φ′′ differ at some
node w /∈ π, and there exist i > N such that φ1(vi) = f = φ′(vi) = φ′′(vi) and vi ⊥ w.
Applying Lemma 14(2) on φ′, φ′′ and vi ⊥ w, we obtain that Af has an f -ambiguous
transition pattern, and 2(b) holds.

FSTTCS 2019

50:8 Degrees of Ambiguity of Büchi Tree Automata

5 Countable Ambiguity

In this section we prove Proposition 21 – a structural characterization of countable ambiguity.

5.1 Direction (2) ⇒ (1) of Proposition 21

2(a)⇒(1) follows by definition of branch ambiguity, and 2(b)⇒(1) follows by Lemma 15.
Below 2(c)⇒(1) is proved.

I Definition 24 (Corresponding automaton AM for pattern M). Let M be a branching pattern
for A over (Q, f) (see Definition 19). We define a Büchi tree automaton AM over the unary
alphabet with the set of states Q ∪ {f}; all states are final, the initial state is f , and the
transition relation is ∆M := {(q, q′, q′′) | q ∈ Q and (q′, q′′) = τM (q)} ∪ {(f, q1, f), (f, f, q2)}.

The following simple lemma states the properties of accepting computations of AM . It will
be useful in showing that if a branching pattern for A is realized, then A is not countably
ambiguous.

I Lemma 25 (Accepting computations of AM).
1. Let φ be an accepting computation of AM . Then the set of nodes {v | φ(v) = f} is a

branch.
2. For every branch π there is an accepting computation φ of AM such that ∀v ∈ π(φ(v) = f).
3. The set of accepting computations of AM is uncountable.

I Lemma 26. Let A = (QA,Σ, QI , δ, F) be a Büchi tree automaton such that a branching
pattern for A is realizable. Then A is not countably ambiguous.

Proof. Assume that a branching pattern M over (Q, f) is realized in t at u ⊥ v by φ1, φ2,
{φq | q ∈ Q}. We construct a sequence of trees: t1 := t, and ∀i ≥ 1 : ti+1 := ti ◦Ai

t, where
Ai = {u, v}i. We graft t at every node in Ai of ti. This operation is well defined as Ai is an
antichain (∀a1 6= a2 ∈ Ai : a1 ⊥ a2, since u ⊥ v).

For each y ∈ {l, r}∗ we define ky := max{i | y ∈ {u, v}i · z, z ∈ {l, r}∗}. Notice that by
the construction, if σt1+ky

(y) = a then ∀i > ky : σti(y) = a. Define tω as σtω (y) := t1+ky
(y).

We now proceed to show that the set of accepting computations of Af on tω is not
countable, by defining an injective map from the set of accepting computations of AM (on
the tree over the unary alphabet) to the set of accepting computations of Af on tω.

I Notations 27. Let h be a homomorphism h : {l, r}∗ → {l, r}∗, where h(l) = v and
h(r) = u. Since u⊥v, it follows that h is a bijection from {l, r}∗ onto {u, v}∗.

For each accepting computation φ of AM we assign an accepting computation φ̂ of Af on
tω. If w ∈ {u, v}∗ then φ̂(w) := φ(h−1(w)) (hence, the map is injective). Otherwise, let
w = y · z where y ∈ {u, v}kw and z ∈ {l, r}+. If φ(h−1(y)) = q 6= f then φ̂(w) := φq(z). Else,
if φ(h−1(y · u)) = f then φ̂(w) := φ1(z); otherwise, φ̂(w) := φ2(z) (recall that φ1, φ2, φq are
computations on t that realize M).

It is routine to verify that φ̂ is an accepting computation of Af on tω. By Lemma 25,
AM has uncountably many accepting computations and we defined an injective map from
these computations to accepting computations of Af . Hence, Af is not countably ambiguous.
Therefore, by Lemma 4, A is not countably ambiguous. J

A. Rabinovich and D. Tiferet 50:9

5.2 Direction (1) ⇒ (2) of Proposition 21
I Definition 28 (q-path and q-computation). Given a Büchi tree automaton A = (Q,Σ, QI , δ,
F), a state q ∈ Q and a tree t ∈ L(A), we define the following:

A q-path (of an accepting computation φ) is an ω-path π := v0 . . . vi . . . of t such that
v0 is the root, φ(v0) = q and there exist infinitely many nodes vi such that φ(vi) = q.
A q-computation is an accepting computation φ such that φ has a q-path in t.

The next lemma reduces the question whether the cardinality of accepting computations is
uncountable to the question whether the cardinality of f -computations is uncountable.

I Lemma 29. A Büchi tree automaton A = (Q,Σ, QI , δ, F) has uncountably many accepting
computations on t iff there is a state f ∈ F , a node u ∈ t and an accepting computation
φ0 ∈ ACC(A, t) such that φ0(u) = f and Af has uncountably many f -computations on t≥u.

Proof. ⇐ direction is trivial.
⇒: Assume that the set Φ := ACC(A, t) of accepting computations of A on t is

uncountable. For each computation φ ∈ Φ define a tree t′φ by pruning the tree t as follows:
for every node v ∈ t, if φ(v) ∈ F and φ has an φ(v)-path on t≥v, prune the descendants of v.
Hence, t′φ is a subtree of t over the set of nodes Vφ := {v | ∀u < v : φ(u) ∈ F → φ has no
φ(u)-paths on t≥u}. If u is a leaf of t′φ, then φ(u) ∈ F and φ has an φ(u)-path on t≥u.

Observe that t′φ is finite. Otherwise, by the König Lemma, it would have an infinite
branch π = v0 . . . vi . . . such that φ(v0) . . . φ(vi) . . . has finitely many occurrences of states
from F which contradicts that φ is an accepting run on t.

Therefore, to each computation φ ∈ Φ corresponds a finite tree t′φ. The set of all
possible finite trees is countable, and since there are uncountably many computations in
Φ, we conclude that there is a finite tree t0 and an uncountable set Φt0 ⊆ Φ such that
∀φ ∈ Φt0 : t0 = t′φ. Since there are finitely many assignments of states to the nodes of t0,
we conclude that there is a computation φ0 and an uncountable set Φ′ ⊆ Φt0 such that
∀v ∈ t0∀φ ∈ Φ′ : φ(v) = φ0(v). For each leaf u ∈ t0 define Φu as the set of restrictions Φ′ on
t≥u. Notice that the cardinality of Φ′ is bounded by the product of the cardinalities of Φu.
Hence, there is u such that Φu is uncountable. Each computation φ ∈ Φu has originated from
a computation with an φ0(u)-path on t≥u, and therefore Φu is the set of f -computations of
Af on t≥u for f = φ0(u). J

We are going to prove that if A is not countably ambiguous and has at most countable
branch ambiguity and no f -ambiguous transition pattern, then it has a branching pattern.
The main technical lemma uses the following definition.

I Definition 30. Let T be a subset of nodes of a tree t. We consider T as a substructure
of t with the ancestor relation. In particular, u is a T -leaf if u < v for no v ∈ T ; u is a
T -successor of v if u, v ∈ T , u > v and no T -node is between u and v; T is a full binary
subset-tree of t, if T has a minimal node and every node of T has two T -successors.

I Lemma 31 (Main). Assume f is a final state and there are uncountably many f-
computations of A on t, and conditions 2(a) and 2(b) of Proposition 21 do not hold. Then,
there is a full binary subset-tree X of t such that for every u ∈ X there is an f -computation
φu on t such that if v ∈ X and v ≤ u then φu(v) = f .

The lemma is proved in the full paper, where X is constructed level by level. However,
in order to carry out such a construction we need a much stronger inductive assertion.
In particular, our construction implies that for every u ∈ X, Af has uncountably many
f -computations on t≥u. The next lemma is easily derived from the König Lemma.

FSTTCS 2019

50:10 Degrees of Ambiguity of Büchi Tree Automata

I Lemma 32. If T is a full binary subset-tree of t, then there is a full binary subset-tree
T ′ ⊆ T such that if v1, v2 are the T ′-successors of u, and Aq accepts t≥u, then Aq has an
accepting computation on t≥u which passes through F on the paths of t≥u from u to v1 and
from u to v2.

I Lemma 33. Let (T,≤) be the full binary tree and lab be a labeling of its nodes by a finite
alphabet. Then, there are v1, v2 > u such that v1 ⊥ v2 and lab(v1) = lab(u) = lab(v2).

Proof. Choose a node u such that the cardinality of Σ≥u := {lab(w) | u ≤ w} is minimal.
Then for every w′ ≥ u and every σ ∈ Σ≥w there is v′ ≥ w′ with lab(v′) = σ. J

The next Lemma, together with Lemma 29, shows that if a tree automaton is uncountably
ambiguous and 2(a) and 2(b) of Proposition 21 do not hold, then 2(c) holds. This implies
the (1)⇒ (2) direction of Proposition 21.

I Lemma 34. Let A be a Büchi tree automaton and f be a final state of A. Assume that
there are uncountably many f-computations of Af on t and conditions 2(a) and 2(b) of
Proposition 21 do not hold. Then, there exist three nodes u, v1, v2 ∈ t such that a branching
pattern for Af is realized at v1, v2 in t≥u.

Proof. Let X be the full binary subset-tree of t, guaranteed by Lemma 31. By applying
Lemma 32 on X, we obtain a full binary subset-tree T ⊆ X. Define a labeling of T by
lab(v) = {φ(v)|φ ∈ ACC(Af , t)} for each v ∈ T . This is a labeling by a finite alphabet.
Therefore, by Lemma 33, we have nodes v1, v2 > u such that v1 ⊥ v2 and lab(u) = lab(v1) =
lab(v2) = Q′. We are going to define computations that realize a branching pattern over
(Q′ \ {f}, f) at v1, v2 in t≥u.

For i = 1, 2, set φi to be the restriction of φvi
to t≥u, where φvi

is as in Main Lemma.
This gives immediately that φi ∈ ACC(Af , t≥u) and φ1(v1) = φ2(v2) = f . Since Af is
ambiguous, by Lemma 14(1) and the assumption that A has no f -ambiguous transition
pattern, we obtain φ1(v2) 6= f 6= φ2(v1).

By Lemma 32, for each q ∈ Q′ \ {f} there is φq ∈ ACC(Aq, t≥u) which visits F on the
paths (in t≥u) from u to the children of u in T . Hence, it visits F on the paths from u to v1
and from u to v2. Next, observe that φq(v1), φq(v2) ∈ Q′ by the definition of labeling. We
are going to show that φq(v1) 6= f and φq(v2) 6= f . This will show that φ1, φ2 and φq for
q ∈ Q′ \ {f} realize a branching pattern, and thus finish the proof.

Aiming for a contradiction, assume φq(v1) = f . There is φ′ ∈ ACC(Af , t) such that
φ′(u) = q. Let φ′q be a grafting of φq on φ′ at u. It reaches v1 in state f . Consider the
branch automaton computation from the root of t to v1 which correspond to φ′q and φv1 .
These are different computations (since they differ at u) from f to f . Hence, AB contains the
forbidden pattern for countable ambiguity (see Def. 6), and by Theorem 7 we have that AB
is not countably ambiguous. Therefore, A is not countable branch ambiguous - contradiction
to the assumptions of the lemma. The proof of φq(v2) 6= f is similar. J

6 Computability of branch ambiguity and the ambiguous transition
pattern

Here we describe algorithms to test the degree of ambiguity of branch automata and to test
if an automaton has an ambiguous transition pattern. The following Lemma easily follows
from Definition 10 of the branch automaton.

A. Rabinovich and D. Tiferet 50:11

I Lemma 35. Let AB be the branch automaton of A. Assume that ri ∈ Ql+1 for i = 1, . . . , k
are runs of AB on u = (σ1, d1, S1) . . . (σl, dl, Sl) ∈ Σ∗B. Then for i = 1, . . . , l there are S′i ⊆ Si
such that |S′i| ≤ k and ri for i = 1, . . . , k are runs of AB on u = (σ1, d1, S

′
1) . . . (σl, dl, S′l).

A letter (σ, d, S) ∈ ΣB is called a k-state letters if S has at most k states. If A has n states,
then the alphabet ΣB of the branch automaton AB might be of size 2|Σ| × 2n, yet the
number of k-state letter is bounded by 2|Σ| ×

∑k
i=1
(
n
i

)
≤ 2|Σ|nk. To test whether a k-state

letter (σ, d, S) is in ΣB, we can check whether the intersection of the tree languages L(Aq)
for q ∈ S is non-empty. This can be done in O(nk) time (checking non-emptiness of the
intersection Büchi language). We denote by A(k)

B the restriction of the branch automaton
AB to the k state letters. It is computable in O(|A|k) time from A.

Now, we are ready to prove Lemma 16 and Proposition 12.

Proof of Lemma 16. For each p1 and p2, items 1 and 2 of Definition 13 can be tested in
polynomial time. There is a q-ambiguous pattern, if there is a run of A(1)

B from q to p1 and
from p2 to q for a pair p1 and p2 which passed the test. This is reduced to the reachability
problem. J

Proof Sketch of Proposition 12. The degree of ambiguity of ω-word Büchi automata is
characterized by the forbidden patterns in Theorem 7. Each of these patterns involves
conditions on at most three runs on the same word and can be tested for an automaton B in
polynomial time. Hence, by Lemma 35, AB has these patterns iff A(3)

B has them, and can
be tested in time p(|A(3)

B |) for a polynomial p. Since A(3)
B is computable in polynomial time

from A, we obtain a polynomial time algorithm. J

7 Computability of a branching pattern

Here we prove Proposition 22. In Sect. 7.1 we show that if A has a branching pattern, then
it has a branching pattern over (Q, f), where Q has at most two states. Sect. 7.2 presents a
polynomial time algorithm to verify if A has a branching pattern with at most two states.

7.1 Reduction to small branching patterns
In Sect. 5.1 we assigned to each branching pattern M a tree automaton AM over the unary
alphabet. This automaton is almost deterministic, in the sense that from every state q 6= f

it has a unique transition and it does not enter f . Hence, AM has a unique accepting
computation from every q 6= f . From f it has two transitions. A transition function defined
next will help to describe properties of accepting computations of AM .

I Definition 36 (Transition function of branching pattern). Let M be a branching pattern for
A over (Q, f) with τM : Q → Q × Q and a tuple (q1, q2) ∈ Q × Q. Its transition function
δM : ({f} ∪Q)× {l, r} → Q is defined as follows:

δM (f, d) :=
{
q1 if d = l

q2 if d = r
;For p 6= f,with τM (p) = (q′, q′′) : δM (p, d) :=

{
q′ if d = l

q′′ if d = r

I Lemma 37.
1. Let q 6= f and φq be a (unique) accepting computation of AM (on the tree over unary

alphabet) from q. Then φq(w) = δM (q, w) for every w ∈ {l, r}∗.
2. Let s := d1 . . . dk ∈ {l, r}+, and let φs be an accepting computation of AM from f such

that φs(d1 . . . di) = f for every i ≤ k. Then for every w ∈ {l, r}∗: (a) if di = l then
φs(d1 . . . di−1rw) = δM (f, lw) and (b) if di = r then φs(d1 . . . di−1lw) = δM (f, rw).

FSTTCS 2019

50:12 Degrees of Ambiguity of Büchi Tree Automata

I Lemma 38. Assume a branching pattern M for A over (Q, f) is realized. Let lM (q) :=
δM (q, l) and rM (q) := δM (q, r) for all q ∈ Q. Then:
1. If lM maps Q to Q0 (Q, then a branching pattern for A over (Q0, f) is realized. Dually,

if rM maps Q to Q1 (Q then a branching pattern for A over (Q1, f) is realized.
2. If lM and rM are bijections, then there is Q′ such that |Q′| ≤ 2 and a branching pattern

for A over (Q′, f) is realized.
3. A branching pattern for A over (Q′, f) is realized with |Q′| ≤ 2.

Proof. We will assume the branching pattern M for A over (Q, f) is realized in a tree t at
nodes u, v by computations φ1, φ2, {φq | q ∈ Q}.

(1) Assume lM maps Q to Q0 (Q. Let t′ := (t ◦u t) ◦v t. Define the following
computations on t′: φ′1 := (φ1 ◦u φ2) ◦v φq1 , φ′2 := (φ2 ◦u φq2) ◦v φ2, and for each q ∈ Q0 with
fM (q) = (p1, p2) we set φ′q := (φq ◦u φp2) ◦v φp1 . Let u′ := uv and v′ = vv be two nodes of
t′. By Lemma 3 we have that φ′1, φ′2 ∈ ACC(Af , t) and ∀q ∈ Q0 : φ′q ∈ ACC(Aq, t′). Notice
that φ′1(u′) = φ′1(uv) = φ2(v) = f , φ′2(v′) = φ′2(vv) = φ2(v) = f , and from the construction
it follows that φ′1(v′), φ′2(u′), φ′q(u′), φ′q(v′) ∈ {φq(v) | q ∈ Q} = {δM (q, l) | q ∈ Q} ⊆ Q0.
Since φq visits F on both paths from the root to u and from the root to v, so does φ′q on
the path from the root to u′ = uv and from the root to v′ = vv. It follows that a branching
pattern for A over (Q0, f) is realized in t′ at u′, v′ by computations φ′1, φ′2 and {φ′q | q ∈ Q0}.
The proof of the dual case is symmetric.

(2) The set of bijections on a finite set is a finite group under the composition and the
identity map is its identity element. If k is the cardinality of a finite group, then ck is
equal to the identity for every element c. Let k > 0 be such that both lkM and rkM are the
identity map.

Define tu1 := t, tv1 := t and ∀i > 1 let tui+1 := t ◦u tui and tvi+1 := t ◦v tvi . Finally, construct
a tree t′ := (t ◦u tuk−1) ◦v tvk−1.

Let p1 := δM (f, lk) and p2 := δM (f, rk). We will show that a branching pattern for A
over ({p1, p2}, f) is realized in t′ at uk, vk.

The following are obtained using Lemma 3 and definition of δM :

i αi := φ1 ◦u (φ1 ◦u (· · · ◦u φ1) . . .)︸ ︷︷ ︸
i times

is an accepting computation of Af on tui . It assigns f

to node ui.
ii βi := φ2 ◦v (φ2 ◦v (· · · ◦v φ2) . . .)︸ ︷︷ ︸

i times

is an accepting computation of Af on tvi . It assigns f

to node vi.
iii Let q0 ∈ Q and qi := δM (q0, r

i). Then φr
i

q0
:= φq0 ◦u (φq1 ◦u (· · · ◦u φqi−1) . . .) is an

accepting computation of Aq0 on tui , which holds φri

q0
(uj) = qj for j ≤ i.

iv Let q′0 ∈ Q and q′i := δM (q′0, li). Then φl
i

q′0
:= φq′0 ◦v (φq′1 ◦v (· · · ◦v φq′

i−1
) . . .) is an

accepting computation of Aq′0 on tvi , which holds φliq′0(vj) = q′j for j ≤ i.

Let q′ := φ1(v) and q′′ := φ2(u). From i and iv, it follows that φ′1 := (φ1 ◦uαk−1)◦v φl
k−1

q′

is an accepting computation of Af on t′, such that φ′1(uk) = f , φ′1(vk) = δM (f, lk) and φ′1
visits F on the path from the root to vk (as it coincides with φ1 on the path from the root
to v, which visits F).

Using similar arguments from ii and iii, we obtain that φ′2 := (φ2 ◦u φr
k−1

q′′) ◦v βk−1 is an
accepting computation of Af on t′, such that φ′2(vk) = f , φ′2(uk) = δM (f, rk) and φ′2 visits
F on the path from the root to uk.

A. Rabinovich and D. Tiferet 50:13

In addition, from iii and iv is follows that for all p ∈ Q with τM (p) = (p′, p′′), the
computation φ′p := (φp ◦u φr

k−1

p′′) ◦v φl
k−1

p′ is an accepting computation of Ap on t′, such
that φ′p(uk) = δM (p, rk) and φ′p(vk) = δM (p, lk). By selection of k we have δM (p, lk) =
δM (p, rk) = p and therefore we obtain that φ′p(uk) = p = φ′p(vk).

Take p1 := δM (f, lk) = φ′1(vk) and p2 := δM (f, rk) = φ′2(uk). We have φ′p1
(uk) =

φ′p1
(vk) = p1 and φ′p2

(uk) = φ′p2
(vk) = p2, and therefore we obtain that a branching pattern

for A over ({p1, p2}, f) is realized in t′ at uk, vk by computations φ′1, φ′2, φ′p1
and φ′p2

, as
requested.

(3) Let M over (Q, f) be a realizable branching pattern for A such that the cardinality
of Q is minimal. If either lM or rM is not a bijection, then by item 1, there is a realizable
pattern over (Q0, f), where |Q0| < |Q|. Hence, both lM and rM are bijections. Therefore, by
item 2 and minimality of |Q|, we obtain |Q| ≤ 2. J

7.2 Small branching patterns are in P
For every t over Σ and u1, u2 ∈ t, define t′ := t(u1, u2) over Σ′ := Σ × Σu1 × Σu2 with
Σui

:= {0, 1}, such that the projection of t′ on Σ is t and the projection of t′ on Σui
is a tree

tui
with σtui

(w) = 1 iff w = ui for i = 1, 2.
It is easy to construct Büchi automata over Σ′ with the following properties in O(|A|)

time.
An automaton Anodes which accepts t′ iff t′ = t(u1, u2) and u1 ⊥ u2.
An automaton Aq,q1,q2 which accepts t′ iff t′ = t(u1, u2) and there exists a computation
φ ∈ ACC(Aq, t) with φ(u1) = q1, φ(u2) = q2 and φ visits an accepting state on both
paths from the root to u1 and from the root to u2.
An automaton ALf,q which accepts t′ iff t′ = t(u1, u2) and there exists a computation
φ ∈ ACC(Af , t) such that φ(u1) = f and φ(u2) = q.
An automaton ARf,q which accepts t′ iff t′ = t(u1, u2) and there exists a computation
φ ∈ ACC(Af , t) such that φ(u1) = q and φ(u2) = f .

By Lemma 38, A has a realizable branching pattern iff there exists a realizable branching
pattern over (Q, f), τM : Q → Q, (q1, q2) ∈ Q×Q with |Q| ≤ 2. For each such branching
pattern we define:

LM := L(Anodes) ∩ ∩
(p,p1,p2)|p∈Q,τM (p)=(p1,p2)

L(Ap,p1,p2) ∩ L(ALf,q1
) ∩ L(ARf,q2

)

By construction of the automata we have that the branching pattern M is realizable iff
LM 6= ∅. This could be verified in polynomial time in |QA|, as this is an intersection of at
most five Büchi tree languages. Since the number of such patterns is polynomial in |QA| we
obtain a polynomial time algorithm.

8 Conclusion and Further Results

We proved that the degree of ambiguity of Büchi automata on infinite trees is in PTIME.
The Büchi acceptance conditions on trees are less expressive than parity, Rabin, Street and
Muller conditions. Unfortunately, we have

I Proposition 39.
The problems of deciding whether a parity tree automaton is not unambiguous/boundedly
ambiguous/finitely ambiguous are co-NP complete
The problem of deciding weather a parity tree automaton is not countably ambiguous is
co-NP hard.

FSTTCS 2019

50:14 Degrees of Ambiguity of Büchi Tree Automata

It is still unknown if the problem of deciding weather a parity tree automaton is not countably
ambiguous is in co-NP, although we believe it is indeed the case.

The degree of ambiguity of a regular language is defined in a natural way. E.g., a language
is k-ambiguous if it is accepted by a k-ambiguous automaton and no k − 1-ambiguous
automaton accepts it. Over finite words and finite trees every regular language is accepted
by a deterministic automaton. Over ω-words every regular language is accepted by an
unambiguous automaton [1]. Over infinite tree there are ambiguous languages [3]. We can
show that over infinite trees there is a hierarchy of degrees of ambiguity [11]:

I Proposition 40. There are k-ambiguous languages for every k ∈ N. There are finitely,
countably and uncountable ambiguous languages.

We plan to investigate whether the degree of ambiguity of infinite tree language is decidable.

References
1 André Arnold. Rational omega-Languages are Non-Ambiguous. Theor. Comput. Sci., 26:221–

223, September 1983. doi:10.1016/0304-3975(83)90086-5.
2 Vince Bárány, Łukasz Kaiser, and Alex Rabinovich. Expressing cardinality quantifiers in

monadic second-order logic over trees. Fundamenta Informaticae, 100(1-4):1–17, 2010.
3 Arnaud Carayol, Christof Löding, Damian Niwinski, and Igor Walukiewicz. Choice functions

and well-orderings over the infinite binary tree. Open Mathematics, 8(4):662–682, 2010.
4 Thomas Colcombet. Unambiguity in automata theory. In International Workshop on Descrip-

tional Complexity of Formal Systems, pages 3–18. Springer, 2015.
5 Yo-Sub Han, Arto Salomaa, and Kai Salomaa. Ambiguity, nondeterminism and state complexity

of finite automata. Acta Cybernetica, 23(1):141–157, 2017.
6 Ernst Leiss. Succinct representation of regular languages by Boolean automata. Theoretical

computer science, 13(3):323–330, 1981.
7 Hing Leung. Descriptional complexity of NFA of different ambiguity. International Journal of

Foundations of Computer Science, 16(05):975–984, 2005.
8 Christof Löding and Anton Pirogov. On Finitely Ambiguous Büchi Automata. In Developments

in Language Theory - 22nd International Conference, DLT 2018, Tokyo, Japan, September
10-14, 2018, Proceedings, pages 503–515, 2018. doi:10.1007/978-3-319-98654-8_41.

9 Dominique Perrin and Jean-Éric Pin. Infinite words: automata, semigroups, logic and games,
volume 141. Academic Press, 2004.

10 Alexander Rabinovich. Complementation of Finitely Ambiguous Büchi Automata. In Interna-
tional Conference on Developments in Language Theory, pages 541–552. Springer, 2018.

11 Alexander Rabinovich and Doron Tiferet. Degree of Ambiguity for Tree Automata and Tree
Languages, forthcoming.

12 Helmut Seidl. On the finite degree of ambiguity of finite tree automata. Acta Informatica,
26(6):527–542, 1989.

13 Wolfgang Thomas. Automata on infinite objects. In Formal Models and Semantics, pages
133–191. Elsevier, 1990.

14 Andreas Weber and Helmut Seidl. On the degree of ambiguity of finite automata. Theoretical
Computer Science, 88(2):325–349, 1991.

https://doi.org/10.1016/0304-3975(83)90086-5
https://doi.org/10.1007/978-3-319-98654-8_41

Regular Separability and Intersection Emptiness
Are Independent Problems
Ramanathan S. Thinniyam
Max Planck Institute for Software Systems (MPI-SWS), Germany
thinniyam@mpi-sws.org

Georg Zetzsche
Max Planck Institute for Software Systems (MPI-SWS), Germany
georg@mpi-sws.org

Abstract
The problem of regular separability asks, given two languages K and L, whether there exists a regular
language S that includes K and is disjoint from L. This problem becomes interesting when the input
languages K and L are drawn from language classes beyond the regular languages. For such classes,
a mild and useful assumption is that they are full trios, i.e. closed under rational transductions.

All the results on regular separability for full trios obtained so far exhibited a noteworthy
correspondence with the intersection emptiness problem: In each case, regular separability is
decidable if and only if intersection emptiness is decidable. This raises the question whether for full
trios, regular separability can be reduced to intersection emptiness or vice-versa.

We present counterexamples showing that neither of the two problems can be reduced to the
other. More specifically, we describe full trios C1, D1, C2, D2 such that (i) intersection emptiness
is decidable for C1 and D1, but regular separability is undecidable for C1 and D1 and (ii) regular
separability is decidable for C2 and D2, but intersection emptiness is undecidable for C2 and D2.

2012 ACM Subject Classification Theory of computation → Models of computation; Theory of
computation → Formal languages and automata theory

Keywords and phrases Regular separability, intersection emptiness, decidability

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.51

Related Version https://arxiv.org/pdf/1908.04038.pdf

Acknowledgements We thank Lorenzo Clemente and Wojciech Czerwiński for fruitful discussions.

1 Introduction

The intersection emptiness problem for language classes C and D asks for two given languages
K from C and L from D, whether K ∩ L = ∅. If C and D are language classes associated
with classes of infinite-state systems, then intersection emptiness corresponds to verifying
safety properties in concurrent systems where one system of C communicates with a system
of D via messages or shared memory [6]. The question of separability is to decide whether
two given languages are not only disjoint, but whether there exists a finite, easily verifiable,
certificate for disjointness (and thus for safety). Specifically, the S separability problem for a
fixed class S of separators and language classes C and D asks, for given languages K from C
and L from D, whether there exists a language S ∈ S with K ⊆ S and S ∩ L = ∅.

There is extensive literature dealing with the separability problem, with a range of
different separators considered. One line of work concerns separability of regular languages by
separators from a variety 1 of regular languages. Here, the investigation began with a more
general problem, computing pointlikes (equivalently, the covering problem) [2, 20, 38], but

1 By which we mean the algebraic notion.

© Ramanathan S. Thinniyam and Georg Zetzsche;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 51; pp. 51:1–51:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-9926-0931
mailto:thinniyam@mpi-sws.org
https://orcid.org/0000-0002-6421-4388
mailto:georg@mpi-sws.org
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.51
https://arxiv.org/pdf/1908.04038.pdf
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

51:2 Regular Separability and Intersection Emptiness Are Independent Problems

later also concentrated on separability (e.g. [32, 33, 34, 35, 36, 37]). Moreover, separability
has been studied for regular tree languages, where separators are either piecewise testable tree
languages [21] or languages of deterministic tree-walking automata [5]. For non-regular input
languages, separability has been investigated with piecewise testable languages (PTL) [11]
and generalizations thereof [42] as separators. Separability of subsets of trace monoids [7]
and commutative monoids [9] by recognizable subsets has been studied as well.

A natural choice for the separators is the class of regular languages. On the one hand, they
have relatively high separation power and on the other hand, it is usually verifiable whether a
given regular language is in fact a separator. For instance, they generalize piecewise testable
languages but are less powerful than context-free languages (CFL). Since the intersection
problem for CFL is undecidable, it is not easy to check if a given candidate CFL is a separator.

This has motivated a recent research effort to understand for which language classes C,D
regular separability is decidable [29, 9, 8]. An early result was that regular separability is
undecidable for CFL (by this we mean that both input languages are context-free) [39, 25].
This was recently strengthened to undecidability already for visibly pushdown languages [28]
and one-counter languages [29]. On the positive side, it was shown that regular separability
is decidable for several subclasses of vector addition systems (VASS): for one-dimensional
VASS [29], for commutative VASS languages [9], and for Parikh automata (equivalently,
Z-VASS) [8]. Moreover, it is decidable for languages of well-structured transition systems [10].
Furthermore, decidability still holds in many of these cases if one of the inputs is a general
VASS language [12]. However, if both inputs are VASS languages, decidability of regular
separability remains a challenging open problem.

Of course, if one of the input languages is regular, checking regular separability degenerates
into checking intersection with a regular language. Thus, the problem becomes interesting
when both input languages are non-regular. Many language classes beyond the regular
languages constitute full trios, meaning that they are closed under rational transductions.
This is typically the case for classes that originate from non-deterministic infinite-state
systems [16] and from various types of grammars [16, 13].

In the case of full trios, the available results exhibit a striking correspondence between
regular separability and the intersection problem: Wherever decidability of regular separa-
bility has been clarified for a full trio, it is decidable if and only if intersection is decidable.
Of the abovementioned languages classes, the context-free languages [3], languages of (one-
dimensional) VASS [22], one-counter automata [3], Parikh automata [27], and well-structured
transition systems [18] each constitute a full trio (visibly pushdown languages and commuta-
tive VASS languages do not form full trios). In fact, in the case of well-structured transition
systems, it even turned out that two languages are regular-separable if and only if they are
disjoint [10]. Moreover, deciding regular separability usually involves non-trivial refinements
of the methods for deciding intersection. Without the restriction of being a full trio, there
is an example of a language class where the intersection problem is decidable, but regular
separability is not: the visibly pushdown languages for a fixed alphabet partition [28].

In light of these observations, there was a growing interest in whether there is a deeper
connection between regular separability and intersection emptiness in the case of full trios. In
other words: Is regular separability just intersection emptiness in disguise? It is conceivable
that for full trios, regular separability and intersection emptiness are mutually reducible.
An equivalence in this spirit already exists for separability by PTL: For full trios C and D,
separability by PTL for C and D is decidable if and only if the simultaneous unboundedness
problem is decidable for C and for D [11]. These two problems, in turn, are equivalent to
computing downward closures [41]. A further analogous equivalence is that full trios are
closed under intersection if and only if they are closed under the shuffle operator [19].

R. S. Thinniyam and G. Zetzsche 51:3

Contribution. We show that regular separability and intersection emptiness are independent
problems for full trios: Each problem can be decidable while the other is undecidable.
Specifically, we present full trios C1, D1, C2, D2, so that (i) for C1 and D1, regular separability
is undecidable, but intersection emptiness is decidable and (ii) for C2 and D2, regular
separability is decidable, but intersection emptiness is undecidable. Some of these classes
have been studied before (such as the higher-order pushdown languages), but some have
not (to the best of our knowledge). However, they are all natural in the sense that they
are defined in terms of machine models and have decidable emptiness and membership
problems. We introduce two new classes defined by counter systems that accept based on
certain numerical predicates. These predicates are specified either using reset vector addition
systems or higher-order pushdown automata.

2 Preliminaries

We use Σ (sometimes Γ) to denote a finite set of letters and Σ∗ to denote the set of finite
strings (aka words) over the alphabet Σ. To distinguish between expressions over natural
numbers and expressions involving words, we use typewriter font to denote letters, e.g. a, 0,
1, etc. For example, 0n is the word consisting of an n-fold repetition of the letter 0, whereas
0n is the number zero. The empty string is denoted ε. If S ⊆ N we write aS for the set
{an | n ∈ S} ⊆ a∗ and 2S for the set {2n | n ∈ S} ⊆ N.

We define the map ν : {0, 1}∗ → N which takes every word to the number which it denotes
in binary representation: We define ν(ε) = 0 and ν(w1) = 2 · ν(w) + 1 and ν(w0) = 2 · ν(w)
for w ∈ {0, 1}∗. For example, ν(110) = 6. Often we are only concerned with words of the
form {0} ∪ 1{0, 1}∗. For subsets L ⊆ {0, 1}∗, we define ν(L) = {ν(w) | w ∈ L}.

Languages are denoted by L,L′,K etc. and the language of a machine M is denoted by
L(M). Classes of languages are denoted by C, D, etc.

I Definition 2.1. An asynchronous transducer T is a tuple T = (Q,Γ,Σ, E, q0, F) with a
set of finite states Q, finite output alphabet Γ, finite input alphabet Σ, a finite set of edges
E ⊆ Q×Γ∗×Σ∗×Q, initial state q0 ∈ Q and set of final states F ⊆ Q. We write p v|u−−→ q if
(p, v, u, q) ∈ E and the machine reads u in state p, outputs v and moves to state q. We also
write p w|w′−−−→

∗
q if there are states q0, q1, . . . , qn and words u1, u2, . . . , un, v1, v2, . . . , vn such

that p = q0, q = qn, w′ = u1u2 · · ·un, w = v1v2 · · · vn and qi
vi|ui−−−→ qi+1 for all 0 ≤ i ≤ n.

The transduction T ⊆ Γ∗ × Σ∗ generated by the transducer T is the set of tuples
(v, u) ∈ Γ∗ × Σ∗ such that q0

v|u−−→
∗

qf for some qf ∈ F . Given a language L ⊆ Σ∗, we define
TL := {v ∈ Γ∗ | ∃u ∈ L (v, u) ∈ T}. A transduction T ⊆ Γ∗×Σ∗ is rational if it is generated
by some asynchronous transducer.

A language is a subset of Γ∗ for some alphabet Γ. A language class is a collection
of languages, together with some way to finitely represent these languages, for example
using machine models or grammars. We call a language class a full trio if it is effectively
closed under rational transductions. This means, given a representation of L in C and an
asynchronous transducer for T ⊆ Γ∗×Σ∗, the language TL belongs to C and one can compute
a representation of TL in C.

The following equivalent definition of full trios is well known (see Berstel [3]):

I Lemma 2.2. A language class is closed under rational transductions if and only if it
is effectively closed under (i) homomorphic image, (ii) inverse homomorphic image, and
(iii) intersection with regular languages.

FSTTCS 2019

51:4 Regular Separability and Intersection Emptiness Are Independent Problems

We are interested in decision problems where the representation of a language L (or
possibly multiple languages) is the input. In particular, we study the following problems.

I Problem 2.3 (Intersection Emptiness). For languages classes C1 and C2, the intersection
emptiness problem, briefly IE(C1, C2), is defined as follows:
Input: Languages L1 from C1 and L2 from C2.
Question: Is L1 ∩ L2 empty?

I Problem 2.4 (Regular Separability). For languages classes C1 and C2, the regular separability
problem, briefly RS(C1, C2), is defined as follows:
Input: Languages L1 from C1 and L2 from C2.
Question: Is there a regular language R such that L1 ⊆ R and L2 ∩R = ∅?
We will write L|K to denote that L and K are regular-separable.

I Problem 2.5 (Emptiness). The emptiness problem for a language class C, briefly Empty(C),
is defined as:
Input: A language L from C.
Question: Is L = ∅, i.e. is L empty?

I Problem 2.6 (Infinity). The infinity problem for a language class C, briefly Inf(C), is defined
as:
Input: A language L from C.
Question: Does L contain infinitely many words?

3 Incrementing automata

The counterexamples we construct are defined using special kinds of automata that can
only increment a counter, which we will define formally below. The acceptance condition
requires that the counter value satisfies a specific numerical predicate, in addition to reaching
a final state. By a predicate class, we mean a class P of predicates over natural numbers
(i.e. subsets P ⊆ N) such that there is a way to finitely describe the members of P. As an
example, if C is a language class, then a subset S ⊆ N is a pseudo-C predicate if S = ν(L)
for some L ∈ C and L ⊆ {0, 1}∗. Now the class of all pseudo-C predicates constitutes a
predicate class, because a pseudo-C predicate can be described using the finite description of
a language in C. The class of all pseudo-C predicates is denoted pseudoC.

I Definition 3.1. Let P be a predicate class. An incrementing automaton over P is a
five-tuple M = (Q,Σ, E, q0, F) where Q is a finite set of states, Σ is its input alphabet,
E ⊆ Q× Σ∗ × {0, 1} ×Q a finite set of edges, q0 ∈ Q an initial state and F is a finite set of
acceptance pairs (q, P) where q ∈ Q is a state and P belongs to P .

A configuration of M is a pair (q, n) ∈ Q × N. For two configurations (q, n), (q′, n′),
we write (q, n) w−→ (q′, n′) if there are configurations (q1, n1), . . . , (q`, n`) with q1 = q and
q` = q′ and edges (qi, wi,mi, qi+1) with ni+1 = ni +mi for 1 ≤ i < ` and w = w1 · · ·w`. The
language accepted byM is

L(M) = {w ∈ Σ∗ | (q0, 0) w−→ (q,m) for some (q, P) in F with m ∈ P}.

The collection of all languages accepted by incrementing automata over P is denoted I(P).

It turns out that even with no further assumptions on the predicate class P , the language
class I(P) has some nice closure properties.

R. S. Thinniyam and G. Zetzsche 51:5

I Lemma 3.2. Let P be a predicate class. The languages of incrementing automata over P
are precisely the finite unions of languages of the form TaP where P ∈ P and T ⊆ Σ∗×{a}∗
is a rational transduction. In particular, the class of languages accepted by incrementing
automata over P is a full trio.

Proof. For every accepting pair (q, P) ofM, we construct a transducer Tq,P , which has the
same set of states asM, accepting state set {q} and for each edge (q′, w,m, q′′) ofM the
transducer reads a if m = 1 or ε if m = 0 and outputs w. Then L(M) is the finite union of
all Tq,P (aP).

Conversely, since the languages accepted by incrementing automata over P are clearly
closed under union, it suffices to show that TaP is accepted by an incrementing automaton
over P. We may assume that T is given by a transducer in which every edge is of the form
(q, w, am, q′) with m ∈ {0, 1}. Let M have the same state set as T and turn every edge
(q, w, am, q′) into an edge (q, w,m, q′) forM. Finally, for every final state q of T , we giveM
an accepting pair (q, P). Then clearly L(M) = TaP .

This implies that the class of incrementing automata over P is a full trio: If L ⊆ Σ∗ is
accepted by a incrementing automata over P, then we can write L = T1aP1 ∪ · · · ∪ T`aP`
with T1, . . . , T` ⊆ Σ∗ × a∗. If T ⊆ Γ∗ ×Σ∗ is a rational transduction, then TL = (TT1)aP1 ∪
· · · ∪ (TT`)aP` and since TTi is again a rational transduction for 1 ≤ i ≤ `, the lanuage TL
is accepted by some incrementing automaton over P. J

It is obvious that the class I(P) does not always have a decidable emptiness problem:
Emptiness is decidable for I(P) if and only if it is decidable whether a given predicate from P
intersects a given arithmetic progression, i.e. given P andm,n ∈ N, whether (m+nN)∩P 6= ∅.
For all the predicate classes P we consider, emptiness for I(P) will always be decidable.

4 Decidable Intersection and Undecidable Regular Separability

In this section, we present a language class C so that the intersection emptiness problem
IE(C, C) is decidable for C, but the regular separability problem RS(C, C) is undecidable for C.
The definition of C is based on reset vector addition systems.

Reset Vector Addition Systems. A reset vector addition system (reset VASS) is a tuple
V = (Q,Σ, n, E, q0, F), where Q is a finite set of states, Σ is its finite input alphabet, n ∈ N
is its number of counters, E ⊆ Q × Σ∗ × {1, . . . , n} × {0, 1,−1, r} × Q is a finite set of
edges, q0 ∈ Q is its initial state, and F ⊆ Q is its set of final states. A configuration of V
is a tuple (q,m1, . . . ,mn) where q ∈ Q and m1, . . . ,mn ∈ N. We write (q,m1, . . . ,mn) w−→
(q′,m′1, . . . ,m′n) if there is an edge (q, w, k, x, q′) such that for every j 6= k, we have m′j = mj

and
if x ∈ {−1, 0, 1}, then m′k = mk + x,
if x = r, then m′k = 0.

If there are configurations c1, . . . , c` and words w1, . . . , w`−1 with ci
wi−→ ci+1 for 1 ≤ i < `,

and w = w1 · · ·w`, then we also write c1
w−→ c`. The language accepted by V is defined as

L(V) = {w ∈ Σ∗ | (q0, 0, . . . , 0) w−→ (q,m1, . . . ,mn) for some q ∈ F and m1, . . . ,mn ∈ N}.

The class of languages accepted by reset VASS is denoted R.
Our language class will be I(pseudoR), i.e. incrementing automata with access to predi-

cates of the form ν(L) where L ⊆ {0, 1}∗ is the language of a reset VASS.

FSTTCS 2019

51:6 Regular Separability and Intersection Emptiness Are Independent Problems

I Theorem 4.1. RS(I(pseudoR), I(pseudoR)) is undecidable and
IE(I(pseudoR), I(pseudoR)) is decidable.

Note that I(pseudoR) is a full trio (Lemma 3.2) and since intersection is decidable, in
particular its emptiness problem is decidable: For L ⊆ Σ∗, one has L ∩ Σ∗ = ∅ if and only if
L = ∅. Moreover, note that we could not have chosen R as our example class: Since reset
VASS are well-structured transition systems, regular separability is decidable for them [10].

Before we begin with the proof of Theorem 4.1, let us mention that instead of R, we could
have chosen any language class D, for which (i) D is closed under rational transductions,
(ii) D is closed under intersection, (iii) Empty(D) is decidable and (iv) Inf(D) is undecidable.
For example, we could have also used lossy channel systems instead of reset VASS.

We now recall some results regarding R from literature.

I Lemma 4.2. Emptiness is decidable for R.

The lemma follows from the fact that reset VASS are well-structured transition systems [14],
for which the coverability problem is decidable [1, 17] and the fact that a reset VASS has a
non-empty language if and only if a particular configuration is coverable.

The following can be shown using standard product constructions, please see the full
version [40].

I Lemma 4.3. R is closed under rational transductions, union, and intersection.

We now show that regular separability is undecidable for I(pseudoR). We do this using
a reduction from the infinity problem for R, whose undecidability is an easy consequence of
the undecidability of boundedness of reset VASS.

The boundedness problem for reset VASS is defined below and was shown to be undecid-
able by Dufourd, Finkel, and Schnoebelen [14] (and a simple and more general proof was
given by Mayr [30]). A configuration (q, x1, . . . , xn) is reachable if there is a w ∈ Σ∗ with
(q0, 0, . . . , 0) w−→ (q, x1, . . . , xn). A reset VASS V is called bounded if there is a B ∈ N such
that for every reachable (q, x1, . . . , xn), we have x1 + · · ·+ xn ≤ B. Hence, the boundedness
problem is the following.
Input: A reset VASS V.
Question: Is V bounded?

I Lemma 4.4. The infinity problem for R is undecidable.

Proof. From an input reset VASS V = (Q,Σ, n, E, q0, F), we construct a reset VASS V ′ over
the alphabet Σ′ = {a} as follows. In every edge of V, we replace the input word by the
empty word ε. Moreover, we add a fresh state s, which is the only final state of V ′. Then, we
add an edge (q, ε, 1, 0, s) for every state q of V . Finally, we add a loop (s, a, i,−1, s) for every
i ∈ {1, . . . , n}. This means V ′ simulates a computation of V (but disregarding the input)
and can spontaneously jump into the state s, from where it can decrement counters. Each
time it decrements a counter in s, it reads an a from the input. Thus, clearly, L(V ′) ⊆ a∗.
Moreover, we have am ∈ L(V ′) if and only if there is a reachable configuration (q, x1, . . . , xn)
of V with x1 + · · ·+ xn ≥ m. Thus, L(V ′) is finite if and only if V is bounded. J

Note that infinity is already undecidable for languages that are subsets of 10∗. This is
because given L from R, a rational transduction yields L′ = {10|w| | w ∈ L} and L′ is infinite
if and only if L is.

Our reduction from the infinity problem works because the input languages have a
particular shape, for which regular separability has a simple characterization.

R. S. Thinniyam and G. Zetzsche 51:7

I Lemma 4.5. Let S0, S1 ⊆ N and N \ 2N ⊆ S1. Then aS0 and aS1 are regular-separable if
and only if S0 is finite and disjoint from S1.

Proof. If S0 is finite and disjoint from S1, then clearly aS0 is a regular separator. For
the “only if” direction, consider any infinite regular language R ⊆ a∗. It has to include
an arithmetic progession, meaning that there exist m,n ∈ N with am+nN ⊆ R. Hence, for
sufficiently large `, the language {ax | 2` < x < 2`+1} ⊆ S1 must intersect with R. In other
words, no infinite R can be a regular separator of aS0 and aS1 i.e. S0 must be finite (and
disjoint from S1). J

I Lemma 4.6. Regular separability is undecidable for I(pseudoR).

Proof. We reduce the infinity problem for R (which is undecidable by Lemma 4.4) to regular
separability in I(pseudoR). Suppose we are given L from R. Since R is effectively closed
under rational transductions, we also have K = {10|w| | w ∈ L} in R. Note that K is infinite
if and only if L is infinite. Then ν(K) ⊆ 2N and K1 := aν(K) belongs to I(pseudoR). Let
K2 = aN\2N = aν(1{0,1}∗1{0,1}∗), which also belongs to I(pseudoR), because 1{0, 1}∗1{0, 1}∗
is regular and thus a member of R.

By Lemma 4.4, K1 and K2 are regular-separable if and only if K1 is finite and disjoint
from K2. Since K1 ∩K2 = ∅ by construction, we have regular separability if and only if K1
is finite, which happens if and only if K is finite. J

For Theorem 4.1, it remains to show that intersection is decidable for I(pseudoR). We
do this by expressing intersection non-emptiness in the logic Σ+

1 (N,+,≤, 1, pseudoR), which
is the positive Σ1 fragment of Presburger arithmetic extended with pseudo-R predicates.
Moreover, we show that this logic has a decidable truth problem.

We begin with some notions from first-order logic (please see [15] for syntax and semantics
of first-order logic). First-order formulae will be denoted by φ(x̄), ψ(y) etc. where x̄ is a
tuple of (possibly superset of the) free variables and y is a single free variable. For a formula
φ(x̄), we denote by Jφ(x̄)K the set of its solutions (in our case, the domain is N).

Our decision procedure for Σ+
1 (N,+,≤, 1, pseudoR) is essentially the same as the procedure

to decide the first-order theory of automatic structures [4], except that instead of regular
languages, we use R. For w̄ = (w1, w2, . . . , wk) ∈ (Σ∗)k, the convolution w1 ⊗ w2 ⊗ . . .⊗ wk
is a word over the alphabet (Σ ∪ {�})k where � is a padding symbol not present in Σ. If
wi = wi1wi2 . . . wimi and m = max{m1,m2, . . . ,mk} then

w1 ⊗ w2 ⊗ . . .⊗ wk :=

w′11
w′21
...

w′k1

 . . .

w′1m
w′2m
...

w′km

 ∈ ((Σ ∪ {�})k)∗

where w′i1 · · ·w′im = �m−miwi for 1 ≤ i ≤ k. We say that a k-ary (arithmetic) relation R ⊆
Nk is a pseudo-R relation if the set of words LR = {w1⊗w2⊗· · ·⊗wk | (ν(w1), . . . , ν(wk)) ∈
R} belongs to R. In our decision procedure for Σ+

1 (N,+,≤, 1, pseudoR), we will show
inductively that every formula defines a pseudo-R relation.
I Remark 4.7. Note that our definition of the convolution deviates from the usual one that
pads words on the right [4, 26]. This is because we want pseudo-R predicates to be pseudo-R
relations. By our definition of ν, this means the least significant bit will always be on the
right. Since we also want the ternay addition relation {(x, y, z) ∈ N3 | x + y = z} to be a
pseudo-R relation, we need to align the words in the convolution at the least significant bit
and thus pad on the left.

FSTTCS 2019

51:8 Regular Separability and Intersection Emptiness Are Independent Problems

Formally, we consider the theory Σ+
1 (N,+,≤, 1, pseudoR) where (N,+,≤, 1, pseudoR) is

the structure with domain N of natural numbers, the constant symbol 1 and the binary
symbols + and ≤ taking their canonical interpretations and pseudoR is a set of predicate
symbols, one for each pseudo-R predicate. By Σ+

1 we mean the fragment of first order
formulae obtained by using only the boolean operations ∧,∨ and existential quantification.

I Definition 4.8. Let Σ+
1 (N,+,≤, 1, pseudoR) be the set of first order logic formulae given

by the following grammar:

φ(x̄, ȳ, z̄) :=S(x) | t1 ≤ t2 | φ1(x̄, ȳ) ∧ φ2(x̄, z̄) | φ1(x̄, ȳ) ∨ φ2(x̄, z̄) | ∃y φ′(y, x̄)

where S is from pseudoR and t1, t2 are terms obtained from using variables, 1 and +.

I Lemma 4.9. The truth problem for Σ+
1 (N,+,≤, 1, pseudoR) is decidable.

Proof. It is clear that by introducing new existentially quantified variables, one can transform
each formula from Σ+

1 (N,+,≤, 1, pseudoR) into an equivalent formula that is generated by
the simpler grammar

φ(x̄, ȳ, z̄) :=S(x) | x+ y = z | x = 1 |
φ1(x̄, ȳ) ∧ φ2(x̄, z̄) | φ1(x̄, ȳ) ∨ φ2(x̄, z̄) | ∃y φ′(y, x̄)

We want to show that given any input sentence ψ from Σ+
1 (N,+,≤, 1, pseudoR), we can

decide if it is true or not. If the sentence has no variables, then it is trivial to decide.
Otherwise, ψ = ∃x̄ φ(x̄) for some formula φ(x̄). We claim that the solution set R = Jφ(x̄)K is
a pseudo-R relation and a reset VASS for LR can be effectively computed. Assuming the
claim, the truth of ψ reduces to the emptiness of Jφ(x̄)K or equivalently the emptiness of LR,
which is decidable by Lemma 4.2.

We prove the claim by structural induction on the defining formula φ(x̄), please see the
full version [40] for details. J

I Remark 4.10. The truth problem for Π+
1 (N,+,≤, 1, pseudoR) is undecidable by reduction

from the infinity problem for R. Given L ⊆ 10∗, let RL = ν(L) ⊆ N be the predicate
corresponding to L. Now the downward closure D := {x ∈ N | ∃y : x ≤ y ∧ RL(y)} is
definable in Σ+

1 (N,+,≤, 1, pseudoR) and therefore K := ν(D) belongs to R by the proof of
Lemma 4.9. Then the Π+

1 -sentence ∀x : RK(x) is true if and only if L is infinite.
Having established that Σ+

1 (N,+,≤, 1, pseudoR) is decidable, we are ready to show that
intersection emptiness is decidable for I(pseudoR).

I Lemma 4.11. The intersection problem is decidable for I(pseudoR).

Proof. Given L1, L2 ∈ I(pseudoR), by Lemma 3.2, we know that both L1 and L2 are finite
unions of languages of the form TaS , where S is a pseudo-R predicate. Therefore, it suffices
to decide the emptiness of intersections of the form T1aS1 ∩ T2aS2 where S1 and S2 are
pseudo-R predicates. Note that T1aS1 ∩ T2aS2 = ∅ iff T−1

2 T1aS1 ∩ aS2 = ∅. Since T−1
2 T1

is again a rational transduction, it suffices to check emptiness of languages of the form
TaS1 ∩ aS2 where T ⊆ a∗ × a∗ is a rational transduction. Notice that we can construct an
automaton A over the alphabet Σ′ = {b, c} with the same states as the transducerMT for
T and where for any transition p am|an−−−−→ q ofMT we have a transition p bmcn−−−→ q in A. It
is clear that (ax, ay) ∈ T iff there exists a word w ∈ L(A) such that w contains exactly x

R. S. Thinniyam and G. Zetzsche 51:9

occurrences of b and y occurrences of c. Now it follows from Parikh’s theorem [31] that the
set {(x, y) ∈ N× N | (ax, ay) ∈ T} is semilinear, meaning that there are numbers n0, . . . , nk
and m0, . . . ,mk such that (ax, ay) ∈ T if and only if

∃z1∃z2 . . . ∃zk (x = n0 +
k∑
i=i

zini) ∧ (y = m0 +
k∑
i=i

zimi).

In particular, there is a formula φT (x, y) in Σ+
1 (N,+,≤, 1, pseudoR) such that (ax, ay) ∈ T if

and only if φT (x, y) is satisfied. We can now write a formula φ2(x) in Σ+
1 (N,+,≤, 1, pseudoR)

such that φ2(x) is satisfied if and only if ax ∈ TaS2 :

φ2(x) := ∃y
(
φT (x, y) ∧ S2(y)

)
In the same way, the formula φ1(x) := S1(x) defines aS1 . Now set φ = ∃x

(
φ1(x) ∧ φ2(x)

)
.

Then φ is true if and only if TaS2 ∩ aS1 6= ∅. Decidability of IE(I(pseudoR), I(pseudoR))
follows from Lemma 4.9. J

5 Decidable Regular Separability and Undecidable Intersection

In this section, we present language classes C and D so that IE(C,D) is undecidable, but
RS(C,D) is decidable. These classes are constructed using higher-order pushdown automata,
which we define first.

We follow the definition of [23]. Higher-order pushdown automata are a generalization of
pushdown automata where instead of manipulating a stack, one can manipulate a stack of
stacks (order-2), a stack of stacks of stacks (order-3), etc. Therefore, we begin by defining
these higher-order stacks. While for ordinary (i.e. order-1) pushdown automata, stacks are
words over the stack alphabet Γ, order-(k + 1) stacks are sequences of order-k stacks. Let Γ
be an alphabet and k ∈ N. The set of order-k stacks SΓ

k is inductively defined as follows:

SΓ
0 = Γ, SΓ

k+1 = {[s1 · · · sm]k+1 | m ≥ 1, s1, . . . , sm ∈ SΓ
k }.

For a word v ∈ Γ+, the stack [· · · [[v]1]2 · · ·]k is also denoted JvKk. The function top yields the
topmost symbol from Γ. This means, we have top([s1 · · · sm]1) = sm and top([s1 · · · sm]k) =
top(sm) for k > 1.

Higher-order pushdown automata operate on higher-order stacks by way of instructions.
For the stack alphabet Γ and for order-k stacks, we have the instruction set IΓ

k = {pushi, popi |
1 ≤ i ≤ k} ∪ {rewγ | γ ∈ Γ}. These instructions act on SΓ

k as follows:

[s1 · · · sm]1 · rewγ = [s1 · · · sm−1γ]1
[s1 · · · sm]k · rewγ = [s1 · · · sm−1(sm · rewγ)]k if k > 1
[s1 · · · sm]i · pushi = [s1 · · · smsm]i
[s1 · · · sm]k · pushi = [s1 · · · sm (sm · pushi)]k if k > i

[s1 · · · sm]i · popi = [s1 · · · sm−1]i if m ≥ 2
[s1 · · · sm]k · popi = [s1 · · · sm−1 (sm · popi)]k if k > i

and in all other cases, the result is undefined. For a word w ∈ (IΓ
k)∗ and a stack s ∈ SΓ

k , the
stack s · w is defined inductively by s · ε = s and s · (wx) = (s · w) · x for x ∈ IΓ

k .
An (order-k) higher-order pushdown automaton (short HOPA) is a tuple

A = (Q,Σ,Γ,⊥, E, q0, F), where Q is a finite set of states, Σ is its input alphabet, Γ is its
stack alphabet, ⊥ ∈ Γ is its stack bottom symbol, E is a finite subset of Q×Σ∗×Γ× (IΓ

k)∗×Q

FSTTCS 2019

51:10 Regular Separability and Intersection Emptiness Are Independent Problems

whose elements are called edges, q0 ∈ Q is its initial state, and F ⊆ Q is its set of final
states. A configuration is a pair (q, s) ∈ Q× SΓ

k . When drawing a higher-order pushdown
automaton, an edge (q, u, γ, v, q′) is represented by an arc q u|γ|v−−−→ q′. An arc q u|v−−→ q′ means
that for each γ ∈ Γ, there is an edge (q, u, γ, v, q′).

For configurations (q, s), (q′, s′) and a word u ∈ Σ∗, we write (q, s) u−→A (q′, s′) if there
are edges (q1, u1, γ1, v1, q2), (q2, u2, γ2, v2, q3), . . . , (qn−1, un−1, γn−1, vn−1, qn) in E and stacks
s1, . . . , sn ∈ SΓ

k with top(si) = γi and si ·vi = si+1 for 1 ≤ i ≤ n−1 such that (q, s) = (q1, s1)
and (q′, s′) = (qn, sn) and u = u1 · · ·un. The language accepted by A is defined as

L(A) = {w ∈ Σ∗ | (q0, J⊥Kk) w−→A (q, s) for some q ∈ F and s ∈ SΓ
k }.

The languages accepted by order-k pushdown automata are called order-k pushdown languages.
By H, we denote the class of languages accepted by an order-k pushdown automaton for
some k ∈ N. In our example of classes with decidable regular separability and undecidable
intersection, one of the two classes is H. The other class will again be defined using
incrementing automata.

I Definition 5.1. Let C be a language class. A predicate P ⊆ N is a power-C predicate if
P = N \ 2N ∪ {2ν(w) | w ∈ L} for some language L from C. The class of power-C predicates
is denoted powerC.

Our example of classes with decidable regular separability but undecidable intersection is
H on the one hand and I(powerH) on the other hand. It is well-known that H is a full trio
(see, e.g., [16]). Moreover, I(powerH) is a full trio according to Lemma 3.2.

I Theorem 5.2. RS(H, I(powerH)) is decidable, whereas IE(H, I(powerH)) is undecidable.

Note that decidable regular separability implies that I(powerH) has a decidable emptiness
problem: For L ⊆ Σ∗, one has Σ∗|L if and only if L = ∅. Moreover, note that we could not
have chosen H as our counterexample, because regular separability is undecidable for H
(already for context-free languages) [39, 25].

For showing Theorem 5.2, we rely on two ingredients. The first is that infinity is
decidable for higher-order pushdown languages. This is a direct consequence of a result of
Hague, Kochems and Ong [23], showing that the more general simultaneous unboundedness
problem [41] and diagonal problem [11] are decidable for higher-order pushdown automata.

I Lemma 5.3 ([23]). Inf(H) is decidable.

The other ingredient is that turning binary representations into unary ones can be
achieved in higher-order pushdown automata.

I Lemma 5.4. If L ⊆ {0, 1}∗ is an order-k pushdown language, then L′ = {10ν(w) | w ∈ L}
is an order-(k + 2) pushdown language.

Proof. Let A be an order-k HOPA accepting L ⊆ {0, 1}∗. We construct an order-(k + 2)
HOPA A′ for L′. We may clearly assume that A has only one final state qf . The following
diagram describes A′:

q′0 q0 qf p q′f
1|pushk+2rew#pushk+1rew⊥ ε|popk+1

ε|0|popk+1pushk+2

0|1|popk+1pushk+2

ε|#|popk+2

ε|⊥′|ε

R. S. Thinniyam and G. Zetzsche 51:11

The HOPA A′ starts in the configuration (q′0, J⊥′Kk+2) and in moving to q0, it reads 1 and
goes to (q0, [J⊥′Kk+1[J#KkJ⊥Kk]k+1]k+2). In the part in the dashed rectangle, A′ simulates
A. However, instead of reading an input symbol a ∈ {0, 1}, A stores that symbol on the
stack. In order not to interfere with the simulation of A, this is done by copying the order-k
stack used by A and storing a in the copy below. This is achieved as follows. For every edge
p
a|γ|v−−−→ q with v ∈ (IΓ

k)∗, A′ instead has an edge

p q
ε|γ|push1rewapushk+1pop1v

This pushes the input symbol a on the (topmost order-k) stack, makes a copy of the topmost
order-k stack, removes the a from this fresh copy, and then excutes v. Edges p ε|γ|v−−−→ (i.e.
ones that read ε from the input) are kept.

When A′ arrives in qf , it has a stack [J⊥′Kk+1[J#Kks1 · · · sms]k+1]k+2, where s is the
order-k stack reached in the computation of A, and s1, . . . , sm store the input word w ∈ Σ∗
read by A, meaning top(s1) · · · top(sm) = w. When moving to p, A′ removes s so as to obtain
[J⊥′Kk+1[J#Kks1 · · · sm]k+1]k+2 as a stack.

In p, A′ reads the input word 0ν(w) as follows. While in p, the stack always has the form

t = [J⊥′Kk+1t1 · · · t`]k+2, (1)

where each ti is an order-(k+ 1) stack of the form [J#Kks1 · · · sm]k+1 for some order-k stacks
s1, . . . , sm ∈ SΓ

k . To formulate an invariant that holds in state p, we define a function µ on
the stacks as in (1). First, if ti = [J#Kks1 · · · sm]k+1, then let µ(ti) = ν(top(s1) · · · top(sm)).
Next, let µ(t) = µ(t1) + · · ·+ µ(t`). It is not hard to see that the loops on p preserve the
following invariant: If 0r is the input word read from configuration (p, t) to (p, t′), then

µ(t) = r + µ(t′). To see this, consider a one step transition (p, t)
ε|0|popk+1pushk+2−−−−−−−−−−−→ (p, t′). If

t = [J⊥′Kk+1t1 · · · t`]k+2 = [J⊥′Kk+1t1 · · · t`−1[J#Kks1 · · · sm]k+1]k+2

then

t′ = [J⊥′Kk+1t1 · · · t`−1[J#Kks1 · · · sm−1]k+1[J#Kks1 · · · sm−1]k+1]k+2.

If w = top(s1) . . . top(sm) then w = w′0 where w′ = top(s1) · · · top(sm−1) since we popped
sm off the stack. Moreover,

µ(t′) =
`−1∑
i=1

µ(ti) + 2ν(w′) =
`−1∑
i=1

µ(ti) + ν(w) = µ(t)

Similarly we see that if the transition taken is 0|1|popk+1pushk+2 then we get µ(t) = µ(t′)+1.
By induction on the length of the run, we get µ(t) = r + µ(t′) when 0r is read.

Now observe that when A′ first arrives in p with stack t, then by construction we have
` = 1 and µ(t) = µ(t1) = ν(w). Moreover, when A′ moves on to q′f with a stack as in (1),
then ` = 0 and thus µ(t) = 0. Thus, the invariant implies that if A′ reads 0r while in p, then
r = ν(w). This means, A′ has read 10ν(w) in total.

Finally, from a stack t as in (1), A′ reaches q′f in finitely many steps, please see the full
version [40] for details. J

I Lemma 5.5. The problem IE(H, I(powerH)) is undecidable.

FSTTCS 2019

51:12 Regular Separability and Intersection Emptiness Are Independent Problems

Proof. We reduce intersection emptiness for context-free languages, which is well-known
to be undecidable [24], to IE(H, I(powerH)). Let K1,K2 ⊆ {0, 1}∗ be context-free. Since
K1∩K2 6= ∅ if and only if 1K1∩1K2 6= ∅ and 1Ki is context-free for i = 0, 1, we may assume
that K1,K2 ⊆ 1{0, 1}∗. This implies K1 ∩K2 6= ∅ if and only if ν(K1) ∩ ν(K2) 6= ∅.

Let P2 = N \ 2N ∪ 2ν(K2). Then P2 ⊆ N is a power-H predicate, because H includes the
context-free languages. Thus, the language L2 = {10n | n ∈ P2} belongs to I(powerH) and

L2 = {10n | n ∈ N \ 2N} ∪ {102ν(w)
| w ∈ K2}.

Moreover, let L1 := {102ν(w) | w ∈ K1}. Since L1 = {10ν(10ν(w)) | w ∈ K1} and K1 is an
order-1 pushdown language, applying Lemma 5.4 twice yields that L1 is an order-5 pushdown
language and thus belongs to H. Now clearly L1 ∩ L2 6= ∅ if and only if ν(K1) ∩ ν(K2) 6= ∅,
which is equivalent to K1 ∩K2 = ∅. J

For showing decidability of regular separability, we use the following well-known fact
(please see the full version [40] for a proof).

I Lemma 5.6. Let L =
⋃m
i=1 Li and K =

⋃n
i=1Ki. Then K|L if and only if Li|Kj for all

i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}.

The last ingredient for our decision procedure is the following simple but powerful observation
from [12] (for the convenience of the reader, a proof can be found in [40]).

I Lemma 5.7. Let K ⊆ Γ∗, L ⊆ Σ∗ and T ⊆ Σ∗ × Γ∗ be a rational transduction. Then
L|TK if and only if T−1L|K.

The following now completes the proof of Theorem 5.2.

I Lemma 5.8. The problem RS(H, I(powerH)) is decidable.

Proof. Suppose we are given L1 ⊆ Σ∗ from H and L2 ⊆ Σ∗ from I(powerH). Then we can
write L2 =

⋃n
i=1 Tia

Pi , where for 1 ≤ i ≤ n, Ti ⊆ Σ∗ × a∗ is a rational transduction and
Pi ⊆ N is a power-H predicate. Since L1|L2 if and only if L1|TiaPi for every i (Lemma 5.6),
we may assume L2 = TaP for T ⊆ Σ∗ × a∗ rational and P ⊆ N a power-H predicate.
According to Lemma 5.7, L1|TaP if and only if T−1L1|aP . Since T−1 is also a rational
transduction and H is a full trio, we may assume that L1 is in H with L1 ⊆ a∗ and L2 = aP .

By Lemma 4.5, we know that L1|aP if and only if L1 is finite and disjoint from aP . We
can decide this as follows. First, using Lemma 5.3 we check whether L1 is finite. If it is not,
then we know that L1|L2 is not the case.

If L1 is finite, then we can compute a list of all words in L1: We start with F0 = ∅ and
then successively compute finite sets Fi ⊆ L1. For each i ∈ N, we check whether L1 ⊆ Fi,
which is decidable because L1 ∩ (a∗ \ Fi) is in H and emptiness is decidable for H. If
L1 6⊆ Fi, then we enumerate words in a∗ until we find am with am ∈ L1 (membership in L1
is decidable) and am /∈ Fi. Then, we set Fi+1 = Fi ∪ {am}. Since L1 is finite, this procedure
must terminate with Fi = L1. Now we have L1|aP if and only if Fi ∩ aP = ∅. The latter can
be checked because powerH predicates are decidable. J

R. S. Thinniyam and G. Zetzsche 51:13

6 Conclusion

We have presented a language class C1 for which intersection emptiness is decidable but
regular separability is undecidable in Section 4. Similarly, in Section 5 we constructed C2,D2
for which intersection emptiness is undecidable but regular separability is decidable. All
three language classes enjoy pleasant language theoretic properties in that they are full trios
and have a decidable emptiness problem.

Let us provide some intuition on why these examples work. The underlying observation
is that intersection emptiness of two sets is insensitive to the shape of their members: If
f : X → Y is any injective map and S disjoint from the image of f , then for A,B ⊆ X, we
have A ∩ B = ∅ if and only if (f(A) ∪ S) ∩ f(B) = ∅. Regular separability, on the other
hand, is affected by such distortions: For example, if K,L ⊆ 1{0, 1}∗ are infinite, then
aN\2N ∪ a2ν(K) and a2ν(L) are never regular-separable, even if K and L are. Hence, roughly
speaking, the examples work by distorting languages (using encodings as numbers) so that
intersection emptiness is preserved, but regular separability reflects infinity of the input
languages. We apply this idea to language classes where intersection is decidable, but infinity
is not (Theorem 4.1) or the other way around (Theorem 5.2). All this suggests that regular
separability and intersection emptiness are fundamentally different problems.

Moreover, our results imply that any simple combinatorial decision problem that charac-
terizes regular separability has to be incomparable with intersection emptiness. Consider
for example the infinite intersection problem as a candidate. It asks whether two given
languages have an infinite intersection. Note that if L and K are languages from C and D,
respectively, then L ∩K 6= ∅ if and only if L#∗ and K#∗ (where # is a symbol not present
in L or K) have infinite intersection. Moreover, if C and D are full trios, then they effectively
contain L#∗ and K#∗, respectively. This implies a counterexample with decidable regular
separability and undecidable infinite intersection.

While the example from Section 4 is symmetric (meaning: the two language classes are
the same) and natural, the example in Section 5 is admittedly somewhat contrived: While
pseudo-C predicates rely on the common conversion of binary into unary representations,
power-C predicates are a bit artificial. It would be interesting if there were a simpler
symmetric example with decidable regular separability and undecidable intersection.

References

1 Parosh Aziz Abdulla, Karlis Cerans, Bengt Jonsson, and Yih-Kuen Tsay. General decidability
theorems for infinite-state systems. In Proceedings 11th Annual IEEE Symposium on Logic in
Computer Science, pages 313–321. IEEE, 1996.

2 Jorge Almeida. Some algorithmic problems for pseudovarieties. Publ. Math. Debrecen, 54(1):531–
552, 1999.

3 Jean Berstel. Transductions and context-free languages. Springer-Verlag, 2013.
4 Achim Blumensath and Erich Gradel. Automatic structures. In Proceedings of LICS 2000,

pages 51–62. IEEE, 2000.
5 Mikołaj Bojańczyk. It is Undecidable if Two Regular Tree Languages can be Separated by a

Deterministic Tree-walking Automaton. Fundam. Inform., 154(1-4):37–46, 2017.
6 Ahmed Bouajjani, Javier Esparza, and Tayssir Touili. A generic approach to the static analysis

of concurrent programs with procedures. International Journal of Foundations of Computer
Science, 14(04):551–582, 2003.

7 Christian Choffrut and Serge Grigorieff. Separability of rational relations in A∗ × Nm by
recognizable relations is decidable. Information processing letters, 99(1):27–32, 2006.

FSTTCS 2019

51:14 Regular Separability and Intersection Emptiness Are Independent Problems

8 Lorenzo Clemente, Wojciech Czerwiński, Sławomir Lasota, and Charles Paperman. Regular
Separability of Parikh Automata. In Proceedings of ICALP 2017, pages 117:1–117:13, 2017.

9 Lorenzo Clemente, Wojciech Czerwiński, Sławomir Lasota, and Charles Paperman. Separability
of Reachability Sets of Vector Addition Systems. In Proceedings of STACS 2017, pages 24:1–
24:14, 2017.

10 Wojciech Czerwiński, Slawomir Lasota, Roland Meyer, Sebastian Muskalla, K. Narayan
Kumar, and Prakash Saivasan. Regular Separability of Well-Structured Transition Systems. In
Proceedings of CONCUR 2018, pages 35:1–35:18, 2018. doi:10.4230/LIPIcs.CONCUR.2018.35.

11 Wojciech Czerwiński, Wim Martens, Lorijn van Rooijen, Marc Zeitoun, and Georg Zetzsche.
A Characterization for Decidable Separability by Piecewise Testable Languages. Discrete
Mathematics & Theoretical Computer Science, 19(4), 2017.

12 Wojciech Czerwiński and Georg Zetzsche. An Approach to Regular Separability in Vector
Addition Systems, 2019. In preparation.

13 Jürgen Dassow and Gheorghe Păun. Regulated Rewriting in Formal Language Theory. Springer,
Heidelberg, 1989.

14 Catherine Dufourd, Alain Finkel, and Philippe Schnoebelen. Reset Nets Between Decidability
and Undecidability. In Proceedings of ICALP 1998, pages 103–115, 1998.

15 Herbert B Enderton. A mathematical introduction to logic. Elsevier, 2001.
16 Joost Engelfriet. Context-Free Grammars with Storage. CoRR, abs/1408.0683, 2014. arXiv:

1408.0683.
17 Alain Finkel and Philippe Schnoebelen. Fundamental Structures in Well-Structured Infinite

Transition Systems. In Proceedings of LATIN 1998, pages 102–118, 1998.
18 Gilles Geeraerts, Jean-François Raskin, and Laurent Van Begin. Well-structured languages.

Acta Informatica, 44(3-4):249–288, 2007.
19 Seymour Ginsburg and Sheila Greibach. Principal AFL. Journal of Computer and System

Sciences, 4(4):308–338, 1970.
20 Samuel J.v. Gool and Benjamin Steinberg. Pointlike sets for varieties determined by groups.

Advances in Mathematics, 348:18–50, 2019.
21 Jean Goubault-Larrecq and Sylvain Schmitz. Deciding Piecewise Testable Separability for

Regular Tree Languages. In Proceedings of ICALP 2016, pages 97:1–97:15, 2016.
22 Sheila A. Greibach. Remarks on blind and partially blind one-way multicounter machines.

Theoretical Computer Science, 7(3):311–324, 1978.
23 Matthew Hague, Jonathan Kochems, and C.-H. Luke Ong. Unboundedness and Downward

Closures of Higher-order Pushdown Automata. In POPL 2016, pages 151–163, New York, NY,
USA, 2016. ACM.

24 Juris Hartmanis. Context-free languages and Turing machine computations. In Proceedings of
Symposia in Applied Mathematics, volume 19, pages 42–51, 1967.

25 Harry B. Hunt III. On the Decidability of Grammar Problems. Journal of the ACM, 29(2):429–
447, 1982. doi:10.1145/322307.322317.

26 Bakhadyr Khoussainov and Anil Nerode. Automatic presentations of structures. In Logic
and Computational Complexity, volume 960 of LNCS, pages 367–392, Berlin, Heidelberg, 1995.
Springer.

27 Felix Klaedtke and Harald Rueß. Monadic Second-Order Logics with Cardinalities. In
Proceedings of ICALP 2003, volume 2719 of LNCS, pages 681–696, Springer, Heidelberg, 2003.
Springer.

28 Eryk Kopczyński. Invisible Pushdown Languages. In Proceedings of LICS 2016, pages 867–872,
New York, NY, USA, 2016. ACM.

29 Sławomir Lasota and Wojciech Czerwiński. Regular Separability of One Counter Automata.
Logical Methods in Computer Science, 15, 2019. Extended version of LICS 2017 paper.

30 Richard Mayr. Undecidable problems in unreliable computations. Theoretical Computer
Science, 297(1-3):337–354, 2003.

31 Rohit J Parikh. On context-free languages. Journal of the ACM, 13(4):570–581, 1966.

https://doi.org/10.4230/LIPIcs.CONCUR.2018.35
http://arxiv.org/abs/1408.0683
http://arxiv.org/abs/1408.0683
https://doi.org/10.1145/322307.322317

R. S. Thinniyam and G. Zetzsche 51:15

32 Thomas Place. Separating Regular Languages with Two Quantifiers Alternations. In Proceed-
ings of LICS 2015, pages 202–213, 2015.

33 Thomas Place, Lorijn van Rooijen, and Marc Zeitoun. Separating Regular Languages by
Piecewise Testable and Unambiguous Languages. In Proceedings of MFCS 2013, pages 729–740,
2013.

34 Thomas Place and Marc Zeitoun. Separation and the Successor Relation. In Proceedings of
STACS 2015, pages 662–675, 2015.

35 Thomas Place and Marc Zeitoun. Separating Regular Languages with First-Order Logic.
Logical Methods in Computer Science, 12(1), 2016.

36 Thomas Place and Marc Zeitoun. Concatenation Hierarchies: New Bottle, Old Wine. In
Proceedings of CSR 2017, pages 25–37, 2017.

37 Thomas Place and Marc Zeitoun. Separation for dot-depth two. In Proceedings of LICS 2017,
pages 1–12, 2017.

38 Thomas Place and Marc Zeitoun. The Covering Problem. Logical Methods in Computer
Science, 14(3), 2018.

39 Thomas G. Szymanski and John H. Williams. Noncanonical extensions of bottom-up parsing
techniques. SIAM Journal on Computing, 5(2), 1976.

40 Ramanathan S Thinniyam and Georg Zetzsche. Regular Separability and Intersection Empti-
ness are Independent Problems. arXiv preprint, 2019. arXiv:1908.04038.

41 Georg Zetzsche. An Approach to Computing Downward Closures. In Proceedings of
ICALP 2015, pages 440–451, 2015.

42 Georg Zetzsche. Separability by piecewise testable languages and downward closures beyond
subwords. In Proceedings of LICS 2018, pages 929–938, 2018.

FSTTCS 2019

http://arxiv.org/abs/1908.04038

	p000-Frontmatter
	Preface
	Reviewers

	p001-Bhargavan
	Introduction
	Verified Cryptography: HACL*
	Verified Protocols: LibSignal*
	Verified Applications
	Privacy Preserving Machine Learning

	Proposed Roadmap

	p002-Krauthgamer
	p003-Lazic
	Outline

	p004-Pitassi
	p005-Roughgarden
	p006-Silva
	p007-Adler
	Introduction
	Our contributions

	Preliminaries
	Standard definitions

	Parameter equivalences
	General properties of obstructions
	Non-biconnected obstructions
	On the price of connectivity

	The obstruction set O_2
	Some elements of the proof of Theorem 10

	p008-Agrawal
	Introduction
	Streaming FPT Algorithms
	Streaming Kernelizations
	Lower Bounds
	Conclusion
	A Brief Introduction to Parameterized Complexity
	Missing Proofs from Section 2
	(O(d^{k}),O(k))-streaming-FPT Algorithm for Min-Ones-d-SAT

	Missing Proofs from Section 3
	Streaming FPT Algorithm for IP_2

	p009-Arvind
	Introduction
	Hadamard Product Framework
	The Sum of Coefficients of Multilinear Monomials
	Multilinear Monomial Detection

	p010-Chakraborty
	Introduction
	Related work

	Preliminaries
	Offline approximate pattern matching
	Technical Overview
	Covering phase
	Correctness of the covering algorithm
	Time complexity of the covering algorithm

	Min-cost Path in a Grid Graph with Shortcuts
	Online approximate pattern matching
	The online algorithm

	Discussion

	p011-Chatterjee
	Introduction
	Our Results
	Proof overview

	Preliminaries
	Notations
	The PSS Criterion over fields of finite characteristic

	Rank Condensers from Isolating Weight Assignments
	Construction of Explicit Faithful Maps
	Recipe for constructing faithful maps

	Explicit faithful maps and PIT applications in restricted settings
	Applications to PIT

	Conclusion and open problems

	p012-Choi
	Introduction
	Preliminary
	Existence of a maximum-area rectangle in a simple polygon
	Classification of largest rectangles
	Maximal and breaking configurations

	Computing a largest rectangle of type A
	Computing a largest rectangle of type B
	Staircase of a point in a simple polygon
	Maintaining the staircase during rotation of the coordinate system
	Data structures – double staircases, event map, and event queue
	Computing LMRs of type B1
	Computing LMRs of type B2
	Computing LMRs of type B3

	Computing a largest rectangle of types C and D
	Computing a largest rectangle of type E
	Computing a largest rectangle of type F
	Computing a largest rectangle in a simple polygon with holes
	Computing a largest rectangle in a convex polygon

	p013-Dreier
	Introduction
	Preliminaries
	Subgraph Counting
	Bounding gamma_{l} in Preferential Attachment Graphs
	Degree Bounds
	Short-Term Degree Bounds
	Long-Term Degree Bounds

	p014-Fomin
	Introduction
	Preliminaries and notation
	From k-Clustering to Cluster Selection
	Algorithms and complexity for distances with p in (0, 1]
	FPT algorithm when parameterized by D

	Conclusion and open problems

	p015-Fournier
	Introduction
	A rank measure for weakly monotone computations
	Weakly monotone computations
	Separation of rank measures
	Separating noncommutative monotone and weakly monotone classes

	Monotone noncommutative complexity vs monotone rank measures
	In the case of ranks at most 2
	Separation of monotone rank measure and ABP size

	Lower bounds for monotone commutative ABPs
	Lower bound tools for monotone and weakly monotone ABPs
	Application to the elementary symmetric polynomials

	p016-Gupta
	Introduction
	Preliminaries
	Reinhardt-Allender's Double Counting in the Catalytic Setting
	Proof of Main Theorem
	Description of the Algorithm 1
	Description of the Algorithm 2
	Description of the Algorithm 3
	Correctness of Algorithm 1

	coCUL and an alternative proof of CNL = coCNL

	p017-Hoi
	Introduction
	Basic Approach
	Algorithm for Computing HD-polynomial
	Case 1
	Case 2
	Overall Complexity of the Algorithm

	Conclusion and Future Work

	p018-Jain
	Introduction
	Preliminaries
	Exact Algorithm for Directed Bandwidth for dags
	Exact Algorithm for Digraph Bandwidth via Directed Bandwidth
	(Single) Exponential Time Approximation Scheme for Digraph Bandwidth
	Exact Algorithm for Digraph Bandwidth via Directed Homomorphisms
	Conclusion

	p019-Jain
	Introduction
	Preliminaries
	Auxiliary Graph
	Properties of the Auxiliary Graph

	Pseudoseparator in a Grid Graph
	Constructing a Pseudoseparator

	Algorithm to Solve Reachability in Auxiliary Graph
	Description of the Algorithm AuxReach
	Proof of Correctness of AuxReach

	Solving Grid Graph

	p020-Kavitha
	Introduction
	Our results
	Background and related results
	Our techniques

	Preliminaries
	An algorithm for the popular roommates problem
	Popular matchings and witnesses
	A decomposition result for popular matchings
	Our algorithm

	Truly popular matchings
	Proof of Lemma 14

	p021-Kolisetty
	Introduction
	Results
	Comparison to Previous Results

	Preliminaries
	Graphs
	Boolean Relations
	Gamma-Instances, CSP(Gamma), Triviality
	Induced Relations and Implementation

	Main Technical Tools
	Characterization Proof
	Discussion & Open Questions

	p022-Limaye
	Introduction
	Proof Ideas

	Size hierarchy theorem for AC^{0}[oplus]
	Proof of Theorem 4

	Randomized vs. Deterministic AC^{0}[oplus] circuits

	p023-Louis
	Introduction
	k-way planted models for expansion problems
	Our Results
	Proof Overview
	Related Work

	Preliminaries and Notation
	Notation
	SDP for k-way edge and vertex expansion

	Bi-criteria Guarantees in the Planted Model
	Preliminary Lemmas
	Showing that the SDP solution is clustered

	p024-Lucarelli
	Introduction
	Problem definition and notation
	Organization

	Related Work
	An Offline Look-ahead Algorithm with Preemptions
	Analysis of the Offline Algorithm

	The Online Algorithm B
	Analysis

	Removing the assumption about knowledge of F
	Analysis
	Making the algorithm online

	p025-Potukuchi
	Introduction
	Results on sharp threshold for AP_c
	Results on random list recovery with errors

	Preliminaries
	Properties of Reed-Solomon codes
	Punctured Reed-Solomon codes

	Basic probability inequalities
	Fourier analysis over F_q
	Hypercontractivity and sharp thresholds

	Proof ideas of Theorem 7 and Theorem 8
	What doesn't work, and why
	Proof sketch of Theorem 7
	Proof sketch of Theorem 8

	AC^0[oplus] lower bound for AP_r
	Random list recovery with errors
	Conclusion

	p026-Sarpatwar
	Introduction
	Prior Work
	Contributions and Techniques

	Preliminaries
	Throughput Maximization
	The Laminar Case
	The General Case
	Eliminating the Slackness Requirements
	Laminar Instances
	The General Case
	Maximizing Utilization

	Resource Minimization

	p027-Schwartz
	Introduction
	Our Results and Contributions
	Related Work

	Preliminaries
	Offline Circuit Switch Scheduling Problem
	Greedy Algorithm
	Linear Programming Approach for Constant Number of Configurations

	Online Circuit Switch Scheduling Problem
	Without Configuration Delay
	With Configuration Delay

	p028-Srinivasan
	Introduction
	Proof Outline

	Preliminaries
	Some previous results on probabilistic degree
	A string lemma

	Upper bounds
	Upper bound on probabilistic degree of t-constant functions
	Upper bounds from Theorem 3

	Lower bounds
	Preliminary lemmas
	Lower bounds from Theorem 4

	p029-Akshay
	Introduction
	Preliminaries and Problem Statement
	Probabilistic equivalence can be checked in PTIME
	The classification problem and its variants

	Stationary distributions for HMMs
	Limit-sure Classifiability
	The Twin Automaton and the Twin Belief Automaton
	Characterization for classifiability
	A PTIME Algorithm
	Comparison with Distinguishability between HMMs [Kiefer-Sistla, 2016]

	Attack-classification
	Limit-sure attack-classifiability is PSPACE-complete
	Existence of (1-epsilon) attack-classifiers for all epsilon is undecidable

	Conclusion

	p030-Baldan
	Introduction
	Event Structures and History Preserving Bisimilarity
	Event Structures
	Hereditary History Preserving Bisimilarity

	Foldings of Event Structures
	Morphisms and Foldings
	Folding through Prime Event Structures

	Foldings for Prime Event Structures
	Conclusions

	p031-Bertrand
	Introduction
	Game setting
	Resolution of the parameterized reachability game problem
	The knowledge game
	The simple case of intervals
	General PSPACE upper bound
	An NP upper bound for deterministic arenas when constraints are finite unions of intervals
	Lower bounds

	Discussion: Beyond the number of players
	Conclusion

	p032-Bordais
	Introduction
	Preliminaries
	Window Mean-Payoff Value
	Algorithms and Hardness for Prefix-independent Objectives
	Algorithms and Hardness for Direct Variants
	Solving Window Mean-Payoff Objectives for Markov Chain

	p033-Bozzelli
	Introduction
	Interval temporal logic HS with binding contexts
	Model Checking Visibly Pushdown Systems against nested BHS
	Decision procedures
	Concluding remarks

	p034-Bozzelli
	Introduction
	The TP Problem
	Undecidability of the strong minimal TP problem
	Decidability of the weak minimal TP problem
	Extended Event-clock Automata
	Solving the weak minimal TP problem

	Conclusions

	p035-Brihaye
	Introduction
	Preliminaries
	Simulations: preorders on the dynamics graphs
	Minors and domination: preorders on game graphs
	Applications to interdomain routing convergence
	Perspectives

	p036-Chattopadhyay
	Introduction
	Preliminaries
	Watermarking schemes
	MSO Queries on Structures with Bounded Tree-width
	Trees, Tree Automata and Clique-width
	Watermarking Schemes to Preserve MSO Queries on Structures With Bounded Tree-width

	FO Queries on Minor Closed Structures with Locally Bounded Tree-width
	Gaifman's Locality and Locally Bounded Tree-width
	Watermarking Schemes to Preserve FO Queries on Minor Closed Classes with Locally Bounded Tree-width

	Conclusion

	p037-Chini
	Introduction
	Leader Contributor Systems and the Liveness Problem
	Dividing Liveness along Interfaces
	Reachability Parameterized by Leader and Domain
	Witnesses and Validity
	Algorithm and Correctness

	Finding Cycles in Polynomial Time
	From Saturated Cycles to Stable SCC decompositions
	Computing Stable SCC decompositions

	Conclusion

	p038-Droste
	Introduction
	Preliminaries
	Mixed omega-Algebraic Systems
	Greibach Normal Form for Mixed omega-Algebraic Systems
	Simple Reset Pushdown Automata
	Simple omega-Reset Pushdown Automata
	Discussion

	p039-Dudek
	Introduction
	Preliminaries
	Definitions and properties
	Properties of transformations

	Transformations and the polynomial hierarchy
	Transformations to blocks
	Transforming general formulas to blocks
	The merge-rotate transformation
	 Iterating the merge-rotate transformations
	Transforming conjuncted variable-disjoint formulas

	Conclusion

	p040-Filiot
	Introduction
	Two-way Parikh automata
	Relating two-way and one-way Parikh automata
	Emptiness Problem
	Closure properties, universality, inclusion and equivalence problems
	Parikh automata with arbitrary Presburger acceptance condition
	Conclusion

	p041-Finkel
	Introduction
	Counter machines and WSTS
	Arithmetic counter machines
	Well structured transition systems
	Testing whether an ordering is well

	The well structured problem for PCM
	Decidability results for 1-AVASS
	Conclusion and perspective

	p042-Gadducci
	Introduction
	Preliminaries on Relations
	Categories of Graphs and Paths
	Replicated Data Type Specification
	The model category
	Saturation
	From saturation to categories

	Structure and Operators for Visibility
	A categorical correspondence
	Soundness
	Completeness
	More Completeness
	Interchangeability of Functors and Coherent Specifications

	Conclusions and Further Works

	p043-KleineBuning
	Introduction
	Statement of Problems
	Motivation and Related Work
	Tree-like Refutations
	Dag-like Refutations
	Restricted Read-once Refutations
	Conclusion

	p044-Kuhlmann
	Introduction
	Preliminaries
	Combinatory Categorial Grammars
	0-CCGs
	1-CCGs
	Inclusion in the Context-Free Tree Languages
	Proper Inclusion for Pure CCGs
	Conclusion

	p045-Kuperberg
	Introduction
	Infinite proofs and their semantics
	Infinite proofs
	Computational interpretation of infinite proofs

	Jumping multihead automata
	Definition and semantics of JMAs
	Expressive power of JMAs

	Equivalence between JMAs and cyclic proofs
	From JMAs to cyclic proofs
	From cyclic proofs to JMAs
	The affine case: regular languages

	Conclusion

	p046-LaTorre
	Introduction
	Concurrent Uninterpreted Programs
	Uninterpreted sequential programs
	Concurrent uninterpreted programs

	Verification of concurrent uninterpreted programs
	MVPA capturing coherent and feasible executions
	The Mvpa A_{Vars}

	Checking bounded reachability and coherence
	Conclusions

	p047-Leroux
	Introduction
	Petri Nets
	Structurally Reversible Petri Nets With States
	Extractors
	Rackoff Extraction
	Strongly-Connected Components of Configurations
	Mutually Reachable Configurations
	Conclusion

	p048-Mansard
	Introduction
	Preliminaries
	Automata: definition and generalities
	Mazurkiewicz traces

	From word (suffix) automata to trace (suffix) automata
	Boolean algebras from word suffix automata
	Level-regularity
	Trace suffix automata with level-regular contexts
	Vector addition systems

	Level-length synchronization and Boolean algebras from trace automata
	Vector addition systems
	Conclusion

	p049-Mestel
	Introduction
	Languages, lexicographic order and antichains
	Regular languages
	Precise growth rates
	Context-free languages
	Tree automata
	Open problems

	p050-Rabinovich
	Introduction
	Preliminaries
	Main Result
	Branch Ambiguity
	Ambiguous Transition Pattern
	Characterizations of Degrees of Ambiguity

	Finite Ambiguity
	Countable Ambiguity
	Direction (2) ==> (1) of Proposition 21
	 Direction (1) ==> (2) of Proposition 21

	Computability of branch ambiguity and the ambiguous transition pattern
	Computability of a branching pattern
	Reduction to small branching patterns
	Small branching patterns are in P

	Conclusion and Further Results

	p051-Thinniyam
	Introduction
	Preliminaries
	Incrementing automata
	Decidable Intersection and Undecidable Regular Separability
	Decidable Regular Separability and Undecidable Intersection
	Conclusion

