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Preface

This volume contains the papers presented at CSL 2020, the 28th edition in the series
of Computer Science Logic (CSL), the annual conference of the European Association for
Computer Science Logic (EACSL). CSL 2020 was held in Barcelona, Spain, 13-16 January
2020. Until 2018 CSL took place in August/September, and CSL 2020 is the first conference
in the series scheduled in January.

CSL started as a series of international workshops, and became an international conference
in 1992. Previous editions of CSL were held in Birmingham (2018), Stockholm (2017),
Marseille (2016), Berlin (2015), Vienna (2014), Torino (2013), Fontainebleau (2012), Bergen
(2011), Brno (2010), Coimbra (2009), Bologna (2008), Lausanne (2007), Szeged (2006),
Oxford (2005), Karpacz (2004), Vienna (2003), Edinburgh (2002), Paris (2001), Munich
(2000), Madrid (1999), Brno (1998), Aarhus (1997), Utrecht (1996), Paderborn (1995),
Kazimierz (1994), Swansea (1993) and San Miniato (1992).

CSL is an interdisciplinary conference, spanning across both basic and application-oriented
research in mathematical logic and computer science. It is a forum for the presentation
of research on all aspects of logic and applications, including automated deduction and
interactive theorem proving, constructive mathematics and type theory, equational logic
and term rewriting, automata and games, game semantics, modal and temporal logic,
logical aspects of computational complexity, finite model theory, computational proof theory,
logic programming and constraints, lambda calculus and combinatory logic, domain theory,
categorical logic and topological semantics, database theory, specification, extraction and
transformation of programs, logical aspects of quantum computing, logical foundations of
programming paradigms, verification and program analysis, linear logic, higher-order logic,
non-monotonic reasoning.

CSL 2020 received 82 submissions from 32 countries. The programme committee selected
32 papers for presentation at the conference. Each paper was reviewed by at least three
members of the programme committee, with the help of external reviewers. The submission
and reviewing process, programme committee discussion, and author notifications were all
handled by the Easychair conference management system. In addition to the contributed
papers, there were five invited talks, by

Véronique Cortier (LORIA, France)
Anuj Dawar (University of Cambridge, UK)
Artur Jeż (University of Wrocław, Poland)
Delia Kesner (University Paris Diderot, France)
Iddo Tzameret (Royal Holloway, UK)

We thank the five invited speakers for contributing to the success of the conference with
their interesting talks and papers.

A special regular item in the CSL programme is the Ackermann Award presentation.
This is the EACSL Outstanding Dissertation Award for Logic in Computer Science. This
year, the jury decided to give the Ackermann Award for 2019 to

Antoine Mottet for his PhD thesis entitled Dichotomies in Constraint Satisfaction
Canonical Functions and Numeric CSPs,

supervised by Manuel Bodirsky at the Technical University of Dresden. The award was
officially presented at the conference on the 15th January 2020. The citation of the award,
28th EACSL Annual Conference on Computer Science Logic (CSL 2020).
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0:x Preface

an abstract of the thesis and a biographical sketch of the recipient are included in the
proceedings.

We are very grateful to all the members of the CSL 2020 programme committee and
external reviewers for their careful and efficient evaluation of the papers submitted. We
would like to thank also the members of the organisation committee, and in particular the
chair, Albert Atserias, for taking care of every detail to make the conference enjoyable for
all the participants. It was also a pleasure to work with Thomas Schwentick who, as the
EACSL president, provided excellent guidance. The proceedings of CSL 2020 are published
as a volume in the LIPIcs series. We thank Michael Wagner and all the Dagstuhl/LIPIcs
team for their ongoing support and for the high quality preparation of these proceedings.

Maribel Fernández and Anca Muscholl October 25, 2019
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Ackermann Award 2019

The fifteenth Ackermann Award is presented at CSL’20 in Barcelona, Spain. The 2020
Ackermann Award was open to any PhD dissertation on any topic represented at the annual
CSL and LICS conferences that were formally accepted by a degree-granting institution in
fulfillment of the PhD degree between 1 January 2017 and 31 December 2018. The Jury
received eleven nominations for the 2019 Award. The candidates came from a number of
different countries around the world. The institutions at which the nominees obtained their
doctorates represent seven different countries in Europe, North America and South America.

Again this year, EACSL Ackermann Award is generously sponsored by the association
Alumni der Informatik Dortmund e.V.1

The topics covered a wide range of areas in Logic and Computer Science as represen-
ted by the LICS and CSL conferences. All submissions were of a very high quality and
contained significant contributions to their particular fields. The jury wish to extend their
congratulations to all the nominated candidates for their outstanding work.

The wide range of excellent candidates presented the jury with a difficult task. After an
extensive discussion, one candidate stood out and the jury unanimously decided to award
the 2019 Ackermann Award to:

Antoine Mottet from France, for his thesis
Dichotomies in Constraint Satisfaction Canonical Functions and Numeric CSPs
approved by Technische Universität Dresden in 2018.

Citation
Antoine Mottet receives the 2019 Ackermann Award of the European Association of Computer
Science Logic (EACSL) for his thesis

Dichotomies in Constraint Satisfaction Canonical Functions and Numeric CSPs.

Mottet’s thesis is a significant contribution to the area of Constraint Satisfaction Problems
over infinite domains. It confirms the Dichotomy conjecture of Bodirsky and Pinsker for α0-
categorical structures for a substantial special case using a generic approach that establishes
ties with CSPs for finite structures. As a corollary it yields a new and simpler proof of the
complexity dichotomy for MMSNP. It further proves dichotomies for two significant classes of
structures that are first-order reducts of (Z, <,+). The thesis shows a strong mathematical
background and a great maturity in Universal Algebra, Model Theory, and Ramsey theory,
as well as a strong sense of Computational Complexity.

Background of the Thesis
A Constraint Satisfaction Problem (CSP) can be formulated as a decision problem where
the input consists of two structures A,B, and the aim is to determine whether there is a
homomorphism from A to B. Much of the study has focused on non-uniform CSP, where
the structure B is fixed. E.g., if B is a triangle graph then CSP is just the 3-colourability
problem. Feder and Vardi conjectured that, for each finite structure B, CSP is either

1 www.cs.tu-dortmund.de/nps/en/Alumni/index.html
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0:xvi Ackermann Award 2019

solvable in polynomial time or NP-complete. This famous dichotomy conjecture has spawned
considerable research and has been confirmed independently by Bulatov and Zhuk in 2017,
one of the most significant results in Theoretical Computer Science of the last decade.

However, many problems such as the feasibility problem for a given system of linear
inequalities over the rational numbers can be stated in the form of CSP over a set definable
in an infinite structure B, but not for any finite B. The case of a general infinite structure is
easily shown to be too broad to admit any kind of classification of CSPs. An active research
program has been to look at structures that are well-behaved. One class of structures that
have received attention are the ω-categorical structures, which include the rational order and
the integers with equality. Within these, particular attention has been paid to structures
M that are finitely-bounded and homogeneous. The former means that the finite structures
that can be embedded in M are universally axiomatizable, while the latter means that every
isomorphism on a finite substructure of M can be extended to M. Bodirsky and Pinsker
conjectured that the dichotomy conjecture holds for CSPs defined over a reduct of a finitely
bounded homomogeneous structure. This dichotomy conjecture for infinite structures is still
open, and has been a touchstone for much further investigation.

Another line of work has been the study of CSP over structures definable from structures
related to arithmetic, such as the integers with addition and order. Here the motivation
is not from the dichotomy conjecture but from the high relevance of these problems for
applications.

Contributions of the Thesis
Mottet’s thesis makes significant contributions to both lines of research, the case of finitely
bounded homogeneous structures and the case of structures related to arithmetic.

In the case of finitely bounded homogeneous structures, the first major contribution of
the thesis is a reduction that allows one to lift tractability results from the finite case to the
infinite case. Tractability here means membership in PTIME, but the reduction can also be
used to lift results on definability of a CSP via Datalog, a stronger condition than PTIME
membership. The reduction and corresponding lifting results give a uniform approach to many
tractability results in the literature. A second contribution is a means to lift intractability
results from the finite to the infinite case. By combining the two lifting techniques, Mottet is
able to establish the Bodirsky-Pinsker for a special case of finitely bounded homogeneous
structures, those that are definiable over an infinite set with interpretations for a set of unary
predicates.

A second contribution in the same line deals with CSPs that are definable in a certain
logic: Monotone Monadic Strict NP (MMSNP). Feder and Vardi gave a randomized PTIME
reduction between (ordinary finite-domain) CSPs and MMSNP, and Kun showed that this
reduction could be de-randomized. Putting this together with the recent proof of the
dichotomy conjecture, we see that every MMNSP is either NP-complete or in PTIME. The
thesis provides a new proof of this result, avoiding derandomization but instead going through
the infinite case. In the process, the proof resolves a number of other questions concerning
CSPs definable over infinite structures.

The second half of the thesis turns to CSPs related to arithmetic. A first contribution in
this line deals with “numeric CSPs”: CSPs over structures whose relations are first-order
definable in a reduct of the integers with the linear ordering relation. Mottet proves the
dichotomy conjecture for such structures, in the process obtaining a characterization of the
tractable cases. A second significant result establishes the dichotomy conjecture for CSPs
over the integers with addition and a single constant.
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In summary, the thesis contributes a set of fundamental results that are relevant to a
number of communities within computer science. The depth and breadth of the techniques
applied are also extremely impressive, with the proofs making use of a dazzling variety of
techniques, ranging from model theory, universal algebra, combinatorics, and complexity
theory.

Biographical Sketch
Antoine Mottet obtained a Bachelor’s degree in Computer Science at École Normale Supérieure
de Lyon, France, and a Master’s degree in Computer Science at École Normale Supérieure de
Cachan, France. His PhD work was carried out at the Technische Universität Dresden under
the supervision of Manuel Bodirsky. Since completing his PhD in 2018, he has been working
as a postdoctoral researcher at Charles University in Prague, Czech Republic.

Jury
The jury for the Ackermann Award 2019 consisted of eight members, two of them ex officio,
namely, the president and the vice-president of EACSL. In addition, the jury also included a
representative of SIGLOG (the ACM Special Interest Group on Logic and Computation).

The members of the jury were:
Christel Baier (TU Dresden),
Michael Benedikt (University of Oxford),
Mikołaj Bojańczyk (University of Warsaw),
Jean Goubault-Larrecq (ENS Paris-Saclay),
Dexter Kozen (Cornell University),
Dale Miller (INRIA Saclay), SigLog representative,
Simona Ronchi Della Rocca (University of Torino), the vice-president of EACSL,
Thomas Schwentick (TU Dortmund University), the president of EACSL.

Previous winners
Previous winners of the Ackermann Award were
2005, Oxford:

Mikołaj Bojańczyk from Poland,
Konstantin Korovin from Russia, and
Nathan Segerlind from the USA.

2006, Szeged:
Balder ten Cate from the Netherlands, and
Stefan Milius from Germany.

2007, Lausanne:
Dietmar Berwanger from Germany and Romania,
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Abstract
Cryptographic protocols aim at securing communications over insecure networks like the Internet.
Over the past decades, numerous decision procedures and tools have been developed to automatically
analyse the security of protocols. The field has now reached a good level of maturity with efficient
techniques for the automatic security analysis of protocols

After an overview of some famous protocols and flaws, we will describe the current techniques
for security protocols analysis, often based on logic, and review the key challenges towards a fully
automated verification.
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1 Description of the talk

Cryptographic protocols aim at securing communications over insecure networks like the
Internet. Over the past decades, numerous decision procedures and tools have been developed
to automatically analyse the security of protocols. The field has now reached a good level of
maturity with efficient techniques for the automatic security analysis of protocols

After an overview of some famous protocols and flaws, we will describe the current
techniques for security protocols analysis, often based on logic, and review the key challenges
towards a fully automated verification. For example, one well-established tool for analyzing
protocols is ProVerif [1], that internally relies on resolution of Horn clauses. ProVerif performs
very well in practice but due to this abstraction, it cannot handle protocols with long term
states such counters or tables. We have recently realized [2] that these limitations can be
overcome with subtle encodings as well as the integration of mature techniques for integers.

Another major challenge is the coverage of privacy properties (e.g. anonymity, untraceab-
ility, ballot secrecy) that are typically expressed as equivalence properties. Such properties
require novel verification techniques and many tools have been recently developed, such as
SPEC [5], DeepSec [3], SatEquiv [4], with different scope and efficiency compromise.
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Abstract
We discuss a recent convergence of notions of symmetric computation arising in the theory of linear
programming, in logic and in circuit complexity. This leads us to a coherent and robust definition of
problems that are efficiently and symmetrically solvable. This is at once a rich class of problems
and one for which we have methods for proving lower bounds. In this paper, we take a tour through
results which show applications of these methods in a number of areas.
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1 Introduction

It has been said that computer science is the science of abstraction. Aho and Ullman
in their seminal book Foundations of Computer Science [1] call it the “mechanization of
abstraction”. To model a part of the world computationally is to forget (or “abstract away”)
the features that are unnecessary to the computational task at hand and keep only the
essential elements in a suitable data model. For example, a widely used data model in
the world of algorithm design is that of graphs, which captures a collection of entities and
their pairwise relationships. The relationships could reflect compatibility of kidney donors
with patients needing transplants or they could pair riders with drivers in a car-pooling
system. Once the details are abstracted away, we can use exactly the same graph matching
algorithm to find a suitable matching in either system. Yet, in the field of computational
complexity, which studies the resources required by algorithms and aims to elucidate why
some computational problems are inherently intractable, algorithms are usually modelled
as Turing machines, a low-level model working on strings of bits. This mismatch between
the levels of abstraction at which algorithms are formulated, and at which complexity is
analyzed is tied to persistent obstacles in complexity theory.

An important feature that distinguishes an abstract data structure, such as a graph, from
its concrete representation, such as a pointer list, are its symmetries. In a graph, two vertices
may appear identical and therefore interchangeable while their concrete representations are
distinguished by some feature (such as actual pointer values) that is hidden by the abstraction.
Algorithms that work at the higher level of abstraction must respect the symmetries in the
abstract data. We use the term symmetric computation to describe computation at the
abstract level that respects the inherent symmetries of the data.

The mismatch between algorithms working on high-level data structures and complexity
defined in terms of low-level machines is one of the central concerns of the field of descript-
ive complexity, which seeks to formulate a theory of complexity at the level of high-level
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descriptions. Usually this takes the form of characterizing complexity in terms of definability
in a logic. The paradigmatic result being Fagin’s theorem [22] that the class of problems
definable in existential second-order logic is exactly the class NP. The classic question of
descriptive complexity, of whether there is a logic that exactly characterizes polynomial-time
computation, first posed by Chandra and Harel [13] can be understood as asking whether it
is possible to describe efficient algorithms, whenever they exist, at the level of abstraction of
the data?

In the quest for a logic for P (see [24]), fixed-point logic with counting (FPC) emerged
as a logic of reference. Even though Cai et al. [12] demonstrated three decades ago that
the logic does not express all graph properties in P, the logic has been the focus of much
research in recent years. This is because it has proved remarkably expressive and at the
same time we have powerful techniques for proving inexpressibility results for it. Work in
recent years has shown that FPC can be seen as capturing a natural class of symmetric
algorithms inside P, with equivalent formulations in arising in circuit complexity and the
theory of linear programming. Thus, the methods for proving inexpressibility results give
techniques for showing lower bounds for such algorithms. In this article, I give a brief survey
of such results and methods. The survey does not include any proofs, and not much by way
of definitions. I attempt to motivate and state the results, placing them in a wider narrative
and provide pointers to the original sources.

2 Counting Width

Put simply, FPC is an extension of first-order logic by means of a mechanism for iteration
(usually taken to be an inflationary fixed-point construct) and a mechanism for counting.
The latter allows us to form numerical terms to denote the cardinality of any definable set.
The logic has been extensively studied in the context of descriptive complexity theory. A
good account of the logic and work on it in the 1990s can be found in Otto’s monograph [34].
It was often said at the time that, though Cai, Fürer and Immerman had shown that FPC
cannot express all polynomial-time properties of graphs, all natural properties in P are in
FPC. We now know this is not true. In particular, the study of constraint satisfaction
problems has turned up a host of natural problems that are in P, but not in FPC. Indeed,
the constraint satisfaction problems that are in FPC are exactly the ones of bounded width
(see [5, 10]).

At the same time, research on FPC since the turn of the century has shown the remarkably
rich expressive power of the logic. An important strand of this has been the line of work that
shows that FPC captures all of P on classes of sparse graphs, or more generally structures
with sparse connectivity. This culminates in the result of Grohe [25] which shows that FPC
captures P on any class of graphs which excludes some fixed graph as a minor. Grohe’s
book [25] which gives the proof of this result also provides an excellent, up-to-date definition
of and introduction to the logic FPC in its early chapters. For another overview of the logic
and its expressive power, see the survey [15].

The key method for proving that some class C of structures is not definable in FPC is
based on the expressive power of first-order logic with counting. To be precise, let Ck denote
the fragment of first-order logic where we restrict formulas to have no more than k variables
altogether, but we are allowed to use them compactly by allowing counting quantifiers. That
is, we can write ∃ixθ to denote that there are at least i elements x for which θ(x) holds. It
is known that for any formula ϕ of FPC, there is a fixed value k such that, restricted to
structures with at most n elements, ϕ is equivalent to a formula ϕn of Ck. We write ≡k to
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denote the relation of elementary equivalence for Ck: two structures A and B are said to be
Ck-equivalent, written A ≡k B, if every sentence of Ck true in one structure is also true in
the other. Thus, to show that a class C is not definable in FPC, it suffices to show that C is
not closed under ≡k for any fixed k. This motivates the following definition [17].

I Definition 1. For any isomorphism-closed class of finite structures C, let Cn denote the
collection of structures in C with at most n elements. We write νC : N→ N for the function
such that νC(n) is the least k for which Cn is closed under ≡k. We call νC the counting width
of C.

If C is definable in FPC, νC is bounded by a constant. On the other hand, there are
classes of structures not definable in FPC, indeed problems of very high complexity, which
still have bounded counting width. We can understand the property of having bounded
counting width as a non-uniform version of FPC definability. For any C, the class Cn is a
finite collection of structures (up to isomorphism) which can be defined by a single sentence
ϕn of CνC(n). This sequence of sentences is uniform when it is generated by a single sentence
of FPC. It is also not hard to see that we never need more than n variables to express ϕn,
since any structure on n elements can be described completely, up to isomorphism, by a
sentence of first-order logic with at most n variables. Thus, νC(n) ≤ n for any C whatsoever.

Cai, Fürer and Immerman [12] gave the first construction of a class of graphs of unbounded
counting width, which we call the CFI construction for short. Indeed, the showed that there
is a class C with νC = Ω(n). Such lower bounds were then established for a number of specific
problems, either by a construction inspired by that of Cai et al. (for instance in [14] or [5])
or by means of reductions (see [5] and [9]). The reductions involved are those definable in a
logic such as FPC or fragments of it, such as first-order logic or Datalog. In general, if we
can show that a class C is reducible to a class D by means of such a reduction I, and I takes
structures of size n to structures of size nd, then νC = O(νdD). In particular, if we can bound
the size of I(A) by a linear function in the size of A, we prove that νD = Ω(νC). As was
pointed out in [17], this implies in particular that for any non-uniform constraint satisfaction
problem, the counting width is either O(1) or Ω(n), providing a sharp definability dichotomy.

3 Symmetric Circuits

The claim that definability in FPC is a natural formalization of the notion of solvability by
means of a symmetric polynomial-time algorithm rests on the characterization of FPC as the
class of problems decided by polynomially-uniform symmetric circuits with threshold gates.

Circuits models have been studied in the context of computational complexity because
they seemed a promising route to proving lower bounds. A circuit is really an unfolding of
the behaviour of an algorithm for a fixed size of input. The hope is that the difficulty of the
computation that it represents can then be studied purely combinatorially in the structure
of the circuit. Formally, we have a decision problem that is a language L ⊆ {0, 1}∗. Such
a language can be described by a family of Boolean functions: (fn)n∈ω : {0, 1}n → {0, 1},
and each fn can be represented by a circuit Cn which is a directed acyclic graph where we
think of the vertices as gates suitably labeled by Boolean operators for the internal gates
and by inputs x1, . . . , xn for the gates without incoming edges. The operators we allow on
the internal gates are the basis. The standard Boolean basis (∧,∨,¬) can sometimes be
extended, for instance, with threshold or majority gates.

From our perspective, circuits provide a very low-level model of computation. When we
describe decision problems in a high-level descriptive language, such as FPC, the descriptions
can, of course, be translated to circuits. The circuits we get as a result of such a translation
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have natural symmetry properties. In particular, imagine a circuit C that takes as input
an n-vertex (directed) graph. That is to say, the inputs to C are n2 variables labelled
xij(1 ≤ i, j,≤ n) representing the potential edges in the graph. Now, if C decides a property
of graphs that is invariant under isomorphisms, the output of the circuit is unchanged if we
permute the vertices of the graph. Given an n-vertex graph G, there are many ways that it
can be mapped onto the inputs of the circuit C, one for each bijection between V (G) – the
vertices of G – and {1, . . . , n}. So the output is unchanged under any permutation π ∈ Sn
acting on the inputs by the action xij 7→ xπ(i)π(j). For circuits obtained from logic, this
invariance property is witnessed by a syntactic invariance condition. That is, any permutation
π ∈ Sn can be extended to an automorphism of C which takes each input xij to xπ(i)π(j).
We call circuits with this syntactic invariance condition symmetric. The definition extends
naturally to relational signatures beyond just graphs. For a relational signature τ , we say
that a circuit is τ -symmetric if it accepts at its inputs the encoding of a τ -structure and
every permutation of the elements of the structure extends to an automorphism of the circuit.
This notion has been studied previously in [21] under the name of generic circuits and in [33]
where they were called explicitly order-invariant circuits.

We establish in [2] that the expressive power of FPC is exactly captured by families
of polynomially-uniform symmetric circuits in a basis that includes the standard Boolean
functions along with either threshold or majority gates. This shows that FPC is, in fact, a
natural circuit complexity class and helps to establish the robustness of the class. Indeed, we
can, besides threshold or majority gates, also allow gates for arbitrary Boolean functions that
are fully symmetric (this is observed in [20], where circuit models are considered using gates
which are not fully symmetric). Here a function f : {0, 1}n → {0, 1} is fully symmetric if it
is unchanged by any permutation of its inputs. Equivalently, f(x) = f(y) whenever x and y
are two binary strings with the same number of 1s. Hence, FPC consists of exactly those
properties that are decidable by symmetric circuits using any fully symmetric functions in
the basis, justifying its claim to be a natural symmetric fragment of P.

One consequence of the circuit characterization of FPC is that we can see the CFI
construction as giving a circuit lower bound. Indeed, like most circuit lower bounds, this one
also works for the non-uniform circuit families. We can prove that any family of polynomial-
size τ -symmetric circuits (even a non-uniform one) accepts a class of structures of bounded
counting width. The relationship can be stated more generally, not just for polynomial size
circuits.

I Theorem 2 ([2]). For any ε > 0 and any family (Cn)n∈ω of symmetric circuits of size
s where s(n) ≤ 2n1−ε , the class of structures accepted by the circuits has counting width
O( log s

logn ).

We can, indeed, prove this relationship directly, without going through the translation
into logic. The usual method of showing that A ≡k B for a pair of structures A and B is
by means of the k-pebble bijection game of Hella [28]. This game can be used directly as a
lower bound method for symmetric circuits (see [19] for an exposition). The key idea is that
we prove in [2] that in a circuit of size s (within the bounds of Theorem 2), the stabilizer
group of each gate has a small support, of size O( log s

logn ). We can then show that a symmetric
circuit with support of size k cannot distinguish two structures A and B on which Duplicator
has a winning strategy in the 2k-pebble bijection game.
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4 Linear Programming

Linear programming is a widely used approach to solving combinatorial optimization problems.
It provides a powerful framework within which optimization problems can be represented,
as well as efficient methods for solving the resulting programs. In particular, it is known
since the work of [29] on the ellipsoid method that there are polynomial-time algorithms that
solve linear programs. In [3], we show that this can be expressed in FPC. That is to say,
we consider a natural representation of linear programs as relational structures, where the
variables and the constrants are unordered sets, and we show that there is an FPC sentence
that defines those linear programs that are feasible and an FPC interpretation that, in any
such program, defines a representation of the optimum value of a linear objective function.

We also consider linear programs that are not given explicitly, but rather in terms of
a separation oracle. The classic example is that of the linear program that encodes the
maximum matching problem. Given a weighted graph G, the linear program that encodes
its matching problem is exponential in the size of G. However, the ellipsoid method can be
used in such cases as long as we have a means of determining, for any vector x, whether
it is in the polytope P described by the constraint matrix and, if it is not, a hyperplane
that separates x from the polytope. This is known as a separation oracle for P . It is shown
in [3] that, as long as a separation oracle for a polytope P is itself definable in FPC, then
the corresponding linear programming optimization problem can also be defined in FPC. By
showing that a separation for the matching problem is definable in FPC we were able to
prove the following, settling a long-standing open question [11].

I Theorem 3 ([3]). The size of a maximum matching in a graph is definable in FPC.

Symmetry of linear programs is a property that has been studied in the literature in
its own right. Yannakakis [38] initiated the study of symmetric extended formulations.
Again, let us consider graphs over the vertex set [n]. We can consider these as functions
G : X → {0, 1} where X = {xij | i, j ∈ [n]} is the set of potential edges. Equivalently, we
can think of graph as a 0-1 valued vector in the Euclidean space RX .

Consider, in particular, P ⊆ {0, 1}X which is the collection of simple cycles of length n.
The convex hull of P , conv(P ) ⊆ RX is known as the travelling salesman polytope or the
Hamiltonian cycle polytope. Solving the travelling salesman problem amounts to optimizing a
linear function over P , and determining whether a graph G : X → {0, 1} has a Hamiltonian
cycle is the same as determining whether there is a point in P consistent with x ≤ G(x)
for all x ∈ X. Thus, if we could represent conv(P ) by a set of linear constraints of size
polynomial in n, we could solve these NP-hard problems in polynomial time. Yannakakis
proved that conv(P ) does not have a polynomial-size symmetric extended formulation. That
is to say, we cannot obtain it as the projection of a polytope Q ⊆ RX×Y using additional
variables Y , as long as Q is symmetric. The notion of symmetry is the natural one. Any
permutation of [n] has a natural action on X and hence on RX . The symmetry requirement
says that for any such permutation π ∈ Sn we can find a permutation σ of Y such that
for xy ∈ RX×Y , xy ∈ Q if, and only if, π(x)σ(y) ∈ Q. While the lower bound proof of
Yannakakis relies heavily on the notion of symmetry, it turns out that this is not essential
to the result. A long line of work originating with the result of Yannakakis culminated
in a proof by Rothvoß [35] that shows that the Hamiltonian cycle polytope does not have
polynomial-size extended formulations, symmetric or not. It is worth remarking that these
lower bound results on the size of the Hamiltonian cycle polytope are obtained by means of
reductions from the matching polytope. That is, even though the problem of determining the
maximum matching in a graph is known to be in polynomial-time, there is no polynomial-size
extended formulation of it that yields a linear program of polynomial-size.
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We now consider a different way of representing the set Cn ⊆ {0, 1}X as a linear program.
We say that a polytope P ⊆ RX recognizes Cn if Cn ⊆ P and {0, 1}n \ Cn is disjoint from P .
Now, a class C of structures that is decidable in polynomial time necessarily is recognized by
a polynomial-size family of extended polytopes. That is, a P recognizing it can always be
obtained as the projection of some Q ⊆ RX×Y of polynomial size. This was already shown
by Yannakakis [38] and really amounts to establishing that linear programming is complete
for P under (say) logarithmic-space reductions. But, here we have dropped the symmetry
requirement. What classes of structures are recognized by symmetric families of extended
polytopes? It turns out that they are exactly the classes of bounded counting width [6].

I Theorem 4 ([6]). For any ε > 0 and any family (Qn)n∈ω ⊆ RX×Y of symmetric linear
programs of size at most s where s(n) ≤ 2n1−ε , the class of structures accepted has counting
width O( log s

logn ).

This implies, in particular, that there is a family of symmetric linear programs that recognizes
the class of graphs with a perfect matching in this sense, but there is still provably not one
for the class of graphs with a Hamiltonian cycle, in contrast with the results of Yannakakis.

5 Lift-and-Project Hierarchies

In Section 4, we consider extended formulations of linear programs. Such extended for-
mulations are widely used in applications of linear programming (and its extensions) to
combinatorial optimization problems. Typically, we can formulate a combinatorial optimiza-
tion problem as a {0, 1}-integer linear programming problem. The solutions to this form a
set S ⊆ {0, 1}X . The linear programming relaxation takes this formulation and relaxes the
condition that a variable x must take values in the set {0, 1} and replaces it with 0 ≤ x ≤ 1.
This defines a polytope P ⊆ RX which includes all the points in S. Extended formulations are
obtained in an attempt to add additional constraints (including additional variables) so that
the projection onto RX gives us a better approximation of the convex hull of S. There are
several systematic ways of constructing extended formulations that give infinite hierarchies
interpolating between P and conv(S). There are hierarchies, not only of linear programs
but also of semidefinite programs. They include the Sherali-Adams, Lovasz-Schrijver and
Lasserre hierarchies (see [31]).

These hierarchies have an interesting connection with symmetric computation as we have
defined it, and especially with the notion of counting width. The first connection, established
independently by Atserias and Maneva [7] and Malkin [32] is in connection with the Sherali-
Adams relaxations of the graph isomorphism integer program. In essence, they show that
the equivalence relation on graphs that is induced by the kth Sherali-Adams relaxation of
this program is sandwiched between the equivalences ≡k and ≡k+1. One consequence is that
the CFI construction can be used to show that no finite level of the hierarchy gives us graph
isomorphism exactly. See [26] for an alternative account, which also constructs a family of
relaxations that correspond exactly to ≡k. Taking this further, Atserias and Ochremiak [8]
show that relaxations of graph isomorphism based on semi-definite programming cannot do
better. In particular, they extend the FPC simulation of the ellipsoid method from [3] to
show that the class of feasible semidefinite programs itself has bounded counting width. Note
that feasibility of semidefinite programs is not known to be in P, so we would not expect it
to be in FPC, so the non-uniform definition of counting width is essential here.

A further connection between lift-and-project hierarchies and counting width is established
in the context of constraint optimization problems. These form a very general class of
combinatorial optimization problems to which the method of systematic extended formulations
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can be applied. Constraint satisfaction problems (CSP) are usually defined as decision
problems where we are given a collection V of variables, a domain D of values and constraints.
A constraint is a pair (x, R), where x ∈ V k is a tuple of variables and R ⊆ Dk a relation
on D. An assignment h : V → D satisfies the constraint (x, R) if h(x) ∈ R. The problem is
to decide if all the constraints can be simultaneously satisfied. If we fix the domain D in
advance as well as the set Γ of relations on D that can appear in the constraints, we can
see D = (D,Γ) as a finite relational structure. The instance is then a structure A in the
same vocabulary and we define CSP(D) to be the class of structures A such that there is
a homomorphism from A to D. This view of CSP as essentially homomorphism problems
is due to Feder and Vardi [23]. As noted above, we have a known dichotomy with respect
to the counting width of CSP(D): either νCSP(D) = O(1) or νCSP(D) = Ω(n). Interestingly,
this lifts to an interesting dichotomy for constraint optimization problems formulated as
finite-valued CSP.

A finite-valued constraint satisfaction problem (VCSP) is given by a finite set D and a
collection Γ of functions f : Dk → Q+. An instance of the problem is a set V of variables
along with a set C of constraints, each of which is a triple c = (x, f, w) with f ∈ Γ, x ∈ V k
where k is the arity of f and w ∈ Q+. The algorithmic problem is to find an assignment
h : V → D of values to the variables which minimizes

∑
c∈C wcfc(hxc). As usual, we can

obtain a decision problem from the optimization problem by including with an instance an
explicit threshold t. Thus, we think of VCSP(D,Γ) as the decision problem of determining,
given (V,C, t) whether there is an assignment h : V → D such that

∑
c∈C wcfc(hxc) ≤ t.

The following dichotomy is established in [16]:

I Theorem 5. For every D and Γ, either νVCSP(D,Γ) = O(1) or νVCSP(D,Γ) = Ω(n).

Moreover, the cases of unbounded counting width co-incide exactly with the cases known to
be NP-hard, while the bounded width ones are all definable in FPC.

The lower bound on counting width established in Theorem 5 has interesting consequences
for lift-and-project hierarchies. We can define a basic linear programming (BLP) formulation
for any VCSP(D,Γ) and show that it can be constructed by an FPC interpretation from
an instance of VCSP(D,Γ). Moreover, each fixed level of the standard lift-and-project
hierarchies, such as the Lasserre hierarchy, over this program is also given by an FPC
interpretation. Using the fact that solvability of semidefinite programs has bounded counting
width, we can then establish that if νVCSP(D,Γ) = Ω(n), then any bounded number of levels of
the Lasserre hierarchy cannot yield a solution to VCSP(D,Γ). These are strong algorithmic
lower bounds obtained by means of the methods of counting width. In particular, the
following dichotomy is established in [17].

I Theorem 6. If for some (D,Γ), t : N → N is a function such that any instance (V,C)
of VCSP(D,Γ) is solved exacly by considering the t(n)th Lasserre lift of the basic linear
programming relaxation of (V,C), then t(n) = Ω(νVCSP(D,Γ)(n)).

6 Hardness of Approximation

In the 1990s, the field of computational complexity was transformed by the PCP theorem [4],
and the proofs of hardness of approximation that flowed from it. This showed that, assuming
P 6= NP, not only is it impossible to have efficient algorithms to solve various NP-hard
optimization problems exactly, it is also impossible to have efficient algorithms that solve
the problem approximately. In the years since then, this has led to the devleopment of a
thriving field studying the hardness of approximation.
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For many specific NP-hard optimization problems we know an exact ratio α such that
there is a polynomial-time algorithm that solves the problem α-approximately, but no such
algorithm guaranteeing a better ratio unless P = NP. For instance, consider the problem
Max3SAT, where we are given a Boolean formula ϕ in 3CNF and we are required to
determine the maximum number m of clauses of ϕ that can be simultaneously satisfied. A
trivial algorithm can appoximate the value of m up to a ratio of 7

8 , but unless P = NP,
no polynomial-time algorithm can guarantee an approximation ration of 7

8 + ε for any
ε [27]. There are other problems where there is a gap between the best known achievable
approximation ratio and the best known lower bound. For instance, it is known that the size
of a vertex cover in a graph can be approximated up to a factor of 2 by a polynommial-time
alogrithm. On the other hand, we know that unless P = NP, there is no algorithm that will
achieve an approximation ratio better than

√
2 [30]. It is conjectured that the lower bound

can be improved to 2− ε, but this remains open.
In [9] we were able to reproduce these lower bounds as unconditional inexpressibility

results for FPC. That is, we can prove that there is no term of FPC that can define, given a
Boolean formula ϕ in 3CNF, a number that is guaranteed to be within 7

8 + ε of the maximum
number of clauses satisfiable in ϕ. Similarly, we cannot define in FPC a number guaranteed
to be within a factor of

√
2 of the size of the minimum vertex cover in a graph. In short, even

if P = NP we can still say that there is no polynomial-time symmetric algorithm that achieves
such approximation ratios. On the other hand, the algorithms that achieve the upper bounds
for these problems are easily seen to be in FPC, i.e. they can be implemented symmetrically.
Thus, one can see the hardness of approximation results as telling us something fundamental
about the limits of symmetric computation, regardless of whether or not P = NP.

The PCP theorem established the hardness of approximating Max3SAT by giving a
reduction from the satisfiability decision problem to itself. It gives a way of translating (in
polynomial time) a Boolean formula ϕ into a formula ϕ′ such that if ϕ is satisfiable than so
is ϕ′ and if ϕ is not satisfiable than in ϕ′, no more than a 1− ε fraction of the clauses can be
simultaneously satisfied (for some explicit constant ε). The value of ε can then be amplified
to be arbitrarily close to 1

8 by further reductions as in [27]. To prove the undefinability of
the approximation in FPC, what we show is that the 3CNF formulas that are satisfiable
and those that are at most 7

8 + ε-satisfiable cannot be separated by any class of bounded
counting width.

I Theorem 7 ([9]). For any ε > 0, if C is a class of 3CNF formulas that contains all
satisfiable formulas and does not contain any that are not ( 7

8 + ε)-satisfiable, then νC = Ω(n).

Theorem 7 is established by means of a reduction from the problem Max3XOR of
maximizing the number of satisfiable clauses in a 3XOR formula. A gap similar to that in
Theorem 7 is first established for 3XOR.

I Theorem 8 ([9]). For any ε > 0, if C is a class of 3XOR formulas that contains all
satisfiable formulas and does not contain any that are not ( 1

2 + ε)-satisfiable, then νC = Ω(n).

This is proved by means a variant of the CFI construction. In previous versions of the CFI
construction, the aim is to construct a pair of structures A and B which are ≡k-equivalent,
but differ minimally with respect to some property of interest (such as satisfiability, or graph
3-colourability). The equivalence with respect to ≡k is, of course, proved using Spoiler-
Duplicator games. In the present instance, the aim is to show indistinguishability of a pair
of structures which differ significantly on some numeric parameter (such as the number of
clauses that can be satisfied, or the size of the smallest vertex cover). This poses significant
new challenges.
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While the work reported in [9] establishes counting-width lower bounds for approximation
of Max3SAT, Max3XOR and Vertex Cover, there is a substantial body of work on
hardness of approximation that we have only begun to explore from the point of view of
definability. It would be interesting to establish bounds for problems like MaxCut and
Max2SAT where there are gaps between the best known upper and lower bounds for
approximability in the context of polynomial-time algorithms. What would be even more
exciting would be to show a bound for symmetric algorithms that was stronger than one
known for general polynomial-time alogorithms.

7 Arithmetic Circuits

As a final topic, we turn to another model of computation, that of arithmetic circuits. These
are intended to model computation at a level where arithmetic operations such as addition
and multiplication are of unit cost (see [37]).

Formally, an arithmetic circuit over a field K and a set of variables X is a directed acyclic
graph where every input (i.e. node of indegree 0) is labelled by an element of X or an element
of K, and every internal node is labelled either + (a sum gate) or × (a product gate). A
distinguished output gate can then be seen as computing a polynommial in the ring K[X].
In the field of arithmetic circuit complexity, we are concerned with determining for various
polynomials, what is the size of the smallest circuit that computes it.

Two polynomials (strictly speaking they are families of polynomials) that are much
studied in the field are the determinant and the permanent. They are both defined on a
set of variables X representing the entries of an n× n matrix, so X = {xij | 1 ≤ i, j ≤ n}.
The determinant is defined as det(X) =

∑
π∈Sn(−1)sgn(π) ∏

i xiπ(i), where sgn(π) is 0 if
π is an even permutation and 1 if it is an odd permutation. The permanent is defined
similarly, but without the sign. So, perm(X) =

∑
π∈Sn

∏
i xiπ(i). Written this way, the

size of the expressions defining the polynomials is exponential in n, due to the sum over n!
permutations. Nonetheless, it is known that there are polynomial-size circuits for computing
the determinant, and these can be easily obtained from polynomial time algorithms for
computing it. On the other hand, it is conjectured that there are no polynomial-size circuits
for computing the permanent. Indeed, this is equivalent to Valiant’s conjecture that VP is
different to VNP, the analogue of the P 6= NP conjecture for arithmetic circuits [36].

It is clear from their definitions that both det(X) and perm(X) are invariant under
permutations of the variables X which are induced by the natural action of Sn. In other
words, for any permutation π ∈ Sn, if we permute X by mapping xij to xπ(i)π(j), it does not
change either det(X) or perm(X). So, it makes sense to ask whether these polynomials can
be computed by polynomial-size symmetric circuits in the sense of Section 3. The definition
of such circuits is an easy extension of the idea presented in that section: an arithmetic
circuit on the variable set X = {xij | 1 ≤ i, j ≤ n} is symmetric if every permutation π ∈ Sn
acting on the indices extends to an automorphism of the circuit. In recent work [18], we
have been able to show that det(X) can, indeed, be computed by polynomial-size symmetric
circuits, and perm(X) provably cannot. The upper bound for the determinant is obtained
by showing that known fast parallel algorithms for computing the determinant can be done
symmetrically. Note that the standard algorithm based on Gaussian elimination cannot be
carried out symmetrically in polynomial time. This is known from the counting width lower
bounds on solvability of systems of linear equations.

For the lower bound on computing the permanent, we rely on another CFI-like construction.
To be precise, we show that we can construct for each k, a pair of bipartite graphs G and H
such that G ≡k H but G and H have different numbers of perfect matchings. This is then
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related to arithmetic circuits by means of a translation. If we had a polynomial-size arithmetic
circuit for computing perm(X), we could get a polynomial-size circuit with Boolean inputs
which computes the number of perfect matchings in a bipartite graph. But, for such circuits,
we can show that the output must be invariant under ≡k for some constant k.

One interesting aspect of this proof is the role of perfect matchings in a graph. We know
that the decision problem of determining whether or not a graph has a perfect matching
has bounded counting width. For bipartite graphs, a construction of Blass, Gurevich and
Shelah [11] shows that it has width 2, and the result of Anderson et al. [3] shows that even
for general graphs, it is constant. Nevertheless, it turns out that the number of perfect
matchings is not a ≡k-invariant for any k, even for bipartite graphs.

8 Conclusion

The notion of symmetry in computation arises naturally when we consider algorithms
described at a high-level of abstraction and how they are translated to low-level models. The
tension between preserving symmetry and efficient implementation rests to some extent on
the fact that we cannot efficiently detect symmetries, e.g. we do not know how to efficiently
determine if two graphs are isomorphic. What is remarkable is that a number of distinct
notions of symmetry, arising in different fields, such as database theory, combinatorial
optimization and circuit complexity converge on a common core. At the heart of the theory
that emerges from this core is a graded approximation of isomorphism – the equivalence
relations ≡Ck – which has itself been widely studied from many independent directions. This
leads to a coherent and robust notion of efficient symmetric computation. On the one hand
it is a remarkably powerful model and on the other hand, we have methods for proving lower
bounds for it. There seems to be a wealth of possible areas of application for it.
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Abstract
In word equation problem we are given an equation u = v, where both u and v are words of letters
and variables, and ask for a substitution of variables by words that equalizes the sides of the equation.
This problem was first solved by Makanin and a different solution was proposed by Plandowski only
20 years later, his solution works in PSPACE, which is the best computational complexity bound
known for this problem; on the other hand, the only known lower-bound is NP-hardness. In both
cases the algorithms (and proofs) employed nontrivial facts on word combinatorics.

In the paper I will present an application of a recent technique of recompression, which simplifies
the known proofs and (slightly) lowers the complexity to linear nondeterministic space. The technique
is based on employing simple compression rules (replacement of two letters ab by a new letter c,
replacement of maximal repetitions of a by a new letter), and modifying the equations (replacing
a variable X by bX or Xa) so that those operations are sound and complete. In particular, no
combinatorial properties of strings are used.

The approach turns out to be quite robust and can be applied to various generalizations and
related scenarios (context unification, i.e. equations over terms; equations over traces, i.e. partially
ordered words; . . . ).
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1 Introduction

1.1 Word equations
The word equation problem, i.e. solving equations in the algebra of words, was first investigated
by Markov in the fifties. In this problem we get as an input an equation of the form

u = v

where u and v are strings of letters (from a fixed alphabet) as well as variables and a solution
is a substitution of words for variables that turns this formal equation into a true equality of
strings of letters (over the same fixed alphabet). It is relatively easy to show a reduction of
this problem to the Hilbert’s 10-th problem, i.e. the question of solving systems of Diophantine
equations. Already then it was generally accepted that Hilbert’s 10-th problem is undecidable
and Markov wanted to show this by proving the undecidability of word equations.
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Alas, while Hilbert’s 10-th problem is undecidable, the word equation problem is decidable,
which was shown by Makanin [36]. The termination proof of his algorithm is very complex and
yields a relatively weak bound on the computational complexity, thus over the years several
improvements and simplifications over the original algorithm were proposed [21, 56, 27, 19].
Simplifications have many potential advantages: it seems natural that simpler algorithm can
be generalised or extended more easily (for instance, to the case of equations in groups) than
a complex one. Moreover, simpler algorithm should be more effective in practical applications
and should have a lower complexity bounds.

Subcases. It is easy to show NP-hardness for word equations, so far no better computational
complexity lower bound is known. Such hardness stimulated a search for a restricted subclasses
of the problem for which efficient (i.e. polynomial) algorithms can be given [2]. One of such
subclasses is defined by restricting the amount of different variables that can be used in an
equation: it is known that equations with one [13, 29] and two [2, 20, 12] variables can be
solved in polynomial time. Already for three variables it is not known, whether they are in
NP or not [50] and partial results require nontrivial analysis [50].

Generalisations. Since Makanin’s original solution much effort was put into extending his
algorithm to other structures. Three directions seemed most natural:

adding constraints to word equations;
equations in free groups;
partial commutation;
equations in terms.

Constraints From the application point of view, it is advantageous to consider word equations
that can also use some additional constraints, i.e. we require that the solution for X
has some additional properties. This was first done for regular constraints [56], on the
other hand, for several types of constraints, for instance length-constraints, it is still open,
whether the resulting problem is decidable or not (it becomes undecidable, if we allow
counting occurrences of particular letter in the substitutions and arithmetic operations
on such counts [1]).

Free groups From the algebraic point of view, the word equation problem is solving equations
in a free semigroup. It is natural to try to extend an algorithm from the free semigroup
also to the case of free groups and then perhaps even to a larger class of groups (observe,
that there are groups and semigroups for which the word problem is undecidable). The
first algorithm for the group case was given by Makanin [37, 38], his algorithm was not
primitively-recursive [28]. Furthermore, Razborov showed that this algorithm can be
used to give a description of all solutions of an equation [48] (more readable description
of the Razborov’s construction is available in [25]). As a final comment, note that such a
description was the first step in proving the Tarski’s Conjecture for free groups (that the
theory of free groups is decidable) [26].

Partial commutation Another natural generalization is to allow partial commutation between
the letters, i.e. for each pair of letters we specify, whether ab = ba or not. Such partially
commutative words are usually called traces, after Mazurkiewicz, and the corresponding
groups are usually known as Right-Angled Artin Groups, RAAGs for short. Decidability
for trace equations was shown by Matiyasevich [39] and for RAAGs by Diekert and
Muscholl [11]. In both cases the main step in the proof was a reduction from a partially
commutative case to a no-commutative one.
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Terms We can view words as very simple terms: each letter is a function symbol of
arity 1. In this way word equations are equations over (very simple) terms. It is
known, that term unification can be decided in polynomial time, assuming that variables
represent closed (full) terms [49]; thus such a problem is unlikely to generalise word
equations.
A natural generalisation of term unification and word equations is a second-order uni-
fication, in which we allow variables to represent functions that take arguments (which
need to be closed terms). However, it is known that this problem is undecidable, even
in many restricted subcases [18, 14, 30, 32]. Context unification [4, 5, 51] is a natural
problem “in between”: we allow variables representing functions, but we insist that they
use their argument exactly once. It is easy to show that such defined problem generalises
word equations, on the other hand, the undecidability proofs for second-order unification
do not transfer directly to this model.
Being a natural generalisation is not enough to explain the interest in this problem,
more importantly, context unification has natural connections with other, well-studied
problems (equality up to constraints [40], linear second-order unification [33, 30], one-step
term rewriting [41], bounded second order unification [53], . . . ). Unfortunately, for over
two decades the question of decidability of context unification remained open. Despite
intensive research, not much is known about the decidability of this problem: only results
for some restricted subcases are known: [5, 52, 31, 30, 55, 54, 34, 17].

1.2 Compression and word equations
For more than 20 years since Makanin’s original solution there was very small progress in
algorithms for word equations: the algorithm was improved in many places, in particular
this lead to a better estimation of the running time; however, the main idea (and the general
complexity of the proof) was essentially the same.

The breakthrough was done by Plandowski and Rytter [47], who, for the first time, used
the compression to solve word equations. They showed, that the shortest solution (of size N)
of the word equation (of size n) has an SLP1 representation of size poly(n, logN); using the
algorithm for testing the equality of two SLPs [43] this easily yields a (non-deterministic)
algorithm running in time poly(n, logN). Unfortunately, this work did not provide any
bound on N and the only known bound (4 times exponential in n) came directly from
Makanin’s algorithm, together those two results yielded a 3NEXPTIME algorithm. Soon after
the bound on the size of the shortest solution was improved to triply exponential [19], which
immediately yielded an algorithm from class 2NEXPTIME, however, the same paper [19]
improved Makanin’s algorithm, so that it workd in EXPSPACE.

Next, Plandowski gave a better (doubly exponential) bound on the size of the shortest
solution [44] and thus obtained a NEXPTIME algorithm, in particular, at that time this was
the best known algorithm for this problem. The proof was based on novel factorisations
of words. By better exploiting the interplay between factorisations and compression, he
improved the algorithm so that it worked in PSPACE [45].

It is worth mentioning, that the solution proposed by Plandowski is essentially different
than the one given by Makanin. In particular, it allowed generalisations more easily: Diekert,
Gutiérrez and Hagenah [8] showed, that Plandowski’s algorithm can be extended to the case

1 A Straight Line Programme (SLP for short), is simply a context free grammar generating exactly one
word.
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in which we allow regular constraints in the equation (i.e. we want that the word substituted
for X is from a regular language, whose description by a finite automaton is part of the
input) and inversion; such an extended algorithm still works in polynomial space. It is easy
to show that solving equations in free groups reduces to the above-mentioned problem of
word equations with regular constraints and inversion [8] (it is worth mentioning, that in
general we do not know whether solving equations in free groups is easier or harder than
solving the ones in a free semigroup).

On the other hand, Plandowski showed, that his algorithm can be used to generate a
finite representation of all solutions of a word equation [46], which allows solving several
decision problems concerning the set of all solutions (finiteness, boundedness, boundedness of
the exponent of periodicity etc.). It is not known, whether this algorithm can be generalised
so that it generates all solutions also in the case of regular constraints and inversion (or in a
free group).

The new, simpler algorithm for word equations and demonstration of connections between
compression and word equations gave a new hope for solving the context unification problem.
The first results were very promising: by using “tree” equivalents of SLPs computational
complexity of some problems related to context unification was established [17, 31, 6].
Unfortunately, this approach failed to fully generalise Plandowski’s algorithm for words: the
equivalent of factorisations that were used in the algorithm were not found for trees.

It is worth mentioning, that the approach proposed by Rytter and Plandowski, in which we
compress a solution using SLPs (or in the non-deterministic case – we guess the compressed
representation of the solution) and then perform the computation directly on the SLP-
compressed representations using known algorithm that work in polynomial time, turned out
to be extremely fruitful in many branches of computer science. The recent survey by Lohrey
gives several such successful applications [35].

I Remark. As this is an informal survey presentations, most of the proofs are only sketched
or omitted.

2 Recompression for word equations

We begin with a formal definition of the word equations problem: Consider a finite alphabet
Σ and set of variables X ; during the algorithm Σ will be extended by new letters, but it will
always remain finite. Word equation is of a form “u = v”, where u, v ∈ (Σ ∪ X )∗ and its
solution is a homomorphism S : Σ ∪ X 7→ Σ∗, which is constant on Σ, that is S(a) = a, and
satisfies the equation, i.e. words S(u) and S(v) are equal. By n we denote the size of the
equation, i.e. |u|+ |v|. The algorithm requires only small improvements so that it applies
also to systems of equations, to streamline the presentation we will not consider this case.

Fix any solution S of the equation u = v, without loss of generality we can assume that
this is the shortest solution, i.e. the one minimising |S(u)|; let N denote the length of the
solution, that is |S(u)|. By the earlier work of Plandowski and Rytter [47] we know that S(u)
(and also S(X) for each variable X) has an SLP (of size poly(n, logN)), in fact the same
conclusion can be to drawn from the later works of Plandowski [44, 45, 46]. Regardless of the
form of S and SLP, we know, that at least one of the productions in this SLP is of the form
c→ ab, where c is a nonterminal of the SLP while a, b ∈ Σ are letters. Let us “reverse” this
production, i.e. replace in S(u) all pairs of letters ab by c. It is relatively easy to formalise
this operation for words, it is not so clear, what should be done in case of equations, so let
us inspect the easier fragment first.
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Algorithm 1 PairComp(ab, w) Compression of pair ab.

1: let c ∈ Σ be an unused letter
2: replace all occurrences of ab in w by c

Consider an explicitly given word w. Performing the “ab-pair compression” on it is easy
(we replace each pair ab by c), as long as a 6= b: replacing pairs aa is ambiguous, as such
pairs can “overlap”. Instead, we replace maximal blocks of a letter a: block a` is maximal,
when there is no letter a to left and to the right of it (in particular, there could be no letter
at all).

Formally, the operations are defined as follows:
ab pair compression For a given word w replace all occurrences of ab in w by a fresh
letter c.
a block compression For a given word w replace all occurrences of maximal blocks a` for
` > 1 in w by fresh letters a`.

We always assume, that in the ab-pair compression the letters a and b are different.
Observe, that those operations are indeed “inverses” of SLP productions: replacing ab

with c corresponds to a production c → ab, similarly replacing a` with a` corresponds to
a production a` → a`.

Algorithm 2 BlockComp(a, w) Block compression for a.

1: for ` > 1 do
2: let a` ∈ Σ be an unused letter
3: replace all maximal blocks a` in w by a`

Iterating the pair and blocks compression results in a compression of word w, assuming
that we treat the introduced symbols as normal letters. There are several possible ways
to implement such iteration, different results are obtained by altering the order of the
compressions, exact treatment of new letters and so on. Still, essentially each “reasonable”
variant works.

Observe, that if we compress two words, say w1 and w2, in parallel then the resulting
words w′1 and w′2 are equal if and only if w1 and w2 are. This justifies the usage of compression
operations to both sides of the word equation in parallel, it remains to show, how to do that.

Let us fix a solution S, a pair ab (where a 6= b); consider how does a particular occurrence
of ab got into S(u).

I Definition 1. For an equation u = v, solution S and pair ab an occurrence of ab in S(u)
(or S(v)) is

explicit, if it consists solely of letters coming from u (or v);
implicit, if it consists solely of letters coming from a substitution S(X) for a fixed
occurrence of some variable X;
crossing, otherwise.

A pair ab is crossing (for a solution S) if it has at least one crossing occurrence and
non-crossing (for a solution S) otherwise.

We similarly define explicit, implicit and crossing occurrences for blocks of letter a; a is
crossing, if at least one of its blocks has a crossing occurrence. (In other words: aa is
crossing).
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I Example 2. Equation

aaXbbabababa = XaabbY abX

has a unique solution S(X) = a, S(Y ) = abab, under which sides evaluate to

aaabbabababa = aaabbabababa .

Pair ba is crossing (as the first letter of S(Y ) is a and first Y is preceded by a letter b,
moreover, the last letter of S(Y ) is b and the second Y is succeeded by a letter a), pair ab is
non-crossing. Letter b is non-crossing, letter a is crossing (as X is preceded by a letter a on
the left-hand side of the equation and on the right-hand side of the equation X is succeeded
by a letter a).

Algorithm 3 PairComp(ab, ‘u = v’) Pair compression for ab in an equation u = v.

1: let c ∈ Σ be a fresh letter
2: replace all occurrences of ab in ‘u = v’ by c

Algorithm 4 BlockComp(a, ‘u = v’) Block compression for a letter a in an equation ‘u = v’.

1: for ` > 1 do
2: let a` ∈ Σ be a fresh letter
3: replace all occurrences of maximal blocks a` in ‘u = v’ by a`

Fix a pair ab and a solution S of the equation u = v. If ab is non-crossing, performing
PairComp(ab, S(u)) is easy: we need to replace every explicit occurrence (which we do directly
on the equation) as well as each implicit occurrence, which is done “implicitly”, as the solution
is not stored, nor written anywhere. Due to the similarities to PairComp we will simply
use the name PairComp(ab, ‘u = v’), when we make the pair compressions on the equation.
The argument above shows, that if the equation had a solution for which ab is non-crossing
then also the obtained equation has a solution. The same applies to the block compression,
called BlockComp(a, ‘u = v’) for simplicity. On the other hand, if the obtained equation has
a solution, then also the original equation had one (this solution is obtained by replacing
each letter c by ab, the argument for the block compressions the same).

I Lemma 3. Let the equation u = v have a solution S, such that ab is non-crossing for S.
Then u′ = v′ obtained by PairComp(ab, ‘u = v’) is satisfiable.

If the obtained equation u′ = v′ is satisfiable, then also the original equation u = v is.
The same applies to BlockComp(a, ‘u = v’).

Unfortunately Lemma 3 is not enough to simulate Compression(w) directly on the equation:
In general there is no guarantee that the pair ab (letter a) is non-crossing, moreover, we
do not know what are the pairs that have only implicit occurrences. It turns out, that the
second problem is trivial: if we restrict ourselves to the shortest solutions then every pair
that has an implicit occurrence has also a crossing or explicit one, a similar statement holds
also for blocks of letters.

I Lemma 4 ([47]). Let S be a shortest solution of an equation ‘u = v’. Then:
If ab is a substring of S(u), where a 6= b, then a, b have explicit occurrences in the
equation and ab has an explicit or crossing occurrence.
If ak is a maximal block in S(u) then a has an explicit occurrence in the equation and ak

has an explicit or crossing occurrence.
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The proof is simple: suppose that a pair (block) has only implicit occurrences. Then we
could remove them and the obtained solution is shorter, contradicting the assumption.

Getting back to the crossing pairs (and blocks), if we fix a pair ab (letter a), then it is
easy to “uncross” it: by Definition 1 we can conclude that the pair ab is crossing if and only
if for some variables X and Y (not necessarily different) one of the following conditions holds
(we assume that the solution does not assign an empty word to any variable – otherwise we
could simply remove such a variable from the equation):

(CP1) aX occurs in the equation and S(X) begins with b;
(CP2) Y b occurs in the equation and S(Y ) ends with a;
(CP3) Y X occurs in the equation, S(X) begins with b while b S(Y ) ends with a.

In each of these cases the “uncrossing” is natural: in (CP1) we “pop” from X a letter b
to the left, in (CP2) we pop a to the right from Y , in (CP3) we perform both operations.
It turns out that in fact we can be even more systematic: we do not have to look at the
occurrences of variables, it is enough to consider the first and last letter of S(X) for each
variable X:

If S(X) begins with b then we replace X with bX (changing implicitly the solution
S(X) = bw to S′(X) = w), if in the new solution S(X) = ε, i.e. it is empty, then we
remove X from the equation;
if S(X) ends with a then we apply a symmetric procedure.

Such an algorithm is called Pop.

Algorithm 5 Pop(a, b, ‘u = v’).

1: for X: variable do
2: if the first letter of S(X) is b then . Guess
3: replace every X w ‘u = v’ by bX

. Implicitly change solution S(X) = bw to S(X) = w

4: if S(X) = ε then . Guess
5: remove X from u and v
6: . . . . Perform a symmetric operation for the last letter and a

It is easy to see, that for appropriate non-deterministic choices the obtained equation has
a solution for which ab is non-crossing: for instance, if aX occurs in the equation and S(X)
begins with b then we make the corresponding non-deterministic choices, popping b to the
left and obtaining abX; a simple proof requires a precise statement of the claim as well as
some case analysis.

I Lemma 5. If the equation ‘u = v’ has a solution S then for an appropriate run of
Pop(a, b, ‘u = v’) (for appropriate non-deterministic choices) the obtained equation u′ = v′

has a corresponding solution S′, i.e. S(u) = S′(u′), for which ab is a non-crossing pair.
If the obtained equation has a solution then also the original equation had one.

Thus, we know how to proceed with a crossing ab-pair compression: we first turn ab into
a non-crossing pair (Pop) and then compress it as a non-crossing pair (PairComp).

We would like to perform similar operations also for block compression. For non-crossing
blocks we can naturally define a similar algorithm BlockComp(a, ‘u = v’). It remains to show
how to “uncross” a letter a. Unfortunately, if aX occurs in the equation and S(X) begins
with a then replacing X with aX is not enough, as S(X) may still begin with a. In such
a case we iterate the procedure until the first letter of X is not a (this includes the case in

CSL 2020
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which we remove the whole variable X). Observe, that instead of doing this letter by letter,
we can uncross a in one step: it is enough to remove from variable X its whole a-prefix and
a-suffix of S(X) (if w = a`w′ar, where w′ does not begin nor end with a, a-prefix w is a`

and a-suffix is ar; if w = a` then a-suffix is empty). Such an algorithm is called CutPrefSuff.

Algorithm 6 CutPrefSuff(a, ‘u = v’) Popping prefixes and suffixes.

1: for X: variable do
2: guess the lengths `, r of a-prefix and suffix of S(X) . S(X) = a`war

. If S(X) = a` then r = 0
3: replace occurrences of X in u and v by a`Xar . a`, ar are stored in a compressed

way
4: . Implicitly change the solution S(X) = a`wbr to S(X) = w

5: if S(X) = ε then . Guess
6: remove X from u and v

Similarly as in Pop we can show that after an appropriate run of CutPrefSuff the obtained
equation has a (corresponding) solution for which a is non-crossing. Unfortunately, there is
another problem: we need to write down the lengths ` and r of a-prefixes and suffixes. We can
write them as binary numbers, in which case they use O(log `+log r) bits of memory. However
in general those still can be arbitrarily large numbers. Fortunately, we can show that in some
solution those values are at most exponential (and so their description is polynomial-size).
This easily follows from the exponential bound on exponent of periodicity [27]. For the
moment it is enough that we know that:

I Lemma 6 ([27]). In the shortest solution of the equation ‘u = v’ each a-prefix and a-suffix
has at most exponential length (in terms of |u|+ |v|).

Thus in Pop we can restrict ourselves to a-prefixes and suffixes of at most exponential
length.

I Lemma 7. Let S be a shortest solution of ‘u = v’. After some run of CutPrefSuff(a, ‘u = v’)
(for appropriate non-deterministic choices) the obtained equation ‘u′ = v′’ has a corresponding
solution S′, such that S′(u′) = S(u), and a is a non-crossing letter for S′, moreover, the
explicit a blocks in ‘u′ = v′’ have at most exponential length.

If the obtained equation has a solution then also the original equation had one.

After Pop we can compress a-blocks using BlockComp(a, ‘u = v’), observe that afterwards
long a-blocks are replaced with single letters.

We are now ready to simulate Compression directly on the equation. The question is, in
which order we should compress pairs and blocks? We make the choice nondeterministically:
if there are any non-crossing pairs or letters, we compress them. This is natural, as such
compression decreases both the size of the equation and the size of the length-minimal
solution of the equation. If all pairs and letters are crossing, we choose greedily, i.e. the one
that leads to the smallest equation (in one step). It is easy to show that such a strategy keeps
the equation quadratic, more involved strategy, in which we compress many pairs/blocks in
parallel, leads to a linear-length equation.

Call one iteration of the main loop a phase.
The correctness of the algorithm follows from the earlier discussion on the correctness of

BlockComp, CutPrefSuff, PairComp and Pop. In particular, the length of the length-minimal
solution drops by at least 1 in each iteration, thus the algorithm terminates.
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Algorithm 7 WordEqSAT Deciding the satisfiability of word equations.

1: while |u| > 1 or |u| > 1 do . The equation is nontrivial
2: L← list of letters in u, v . Occurring in the equation
3: Choose a pair ab ∈ P 2 or a letter a ∈ P
4: if it is crossing then
5: uncross it
6: compress it
7: Solve the problem naively . The problem is simple when both sides have length 1

I Lemma 8. Algorithm WordEqSAT has O(N) phases, where N is the length of the shortest
solution of the input equation.

Let us try to bound the space needed by the algorithm: we claim that for appropriate
nondeterministic choices the stored equation has at most 8n2 letters (and n variables). To
see this, observe first that each Pop introduces at most 2n letters, one at each side of the
variable. The same applies to CutPrefSuff (formally, CutPrefSuff introduces long blocks
but they are immediately replaced with single letters, and so we can think that in fact we
introduce only 2n letters). By (CP1)–(CP3) we know that there are at most 2n crossing
pairs and crossing letters (as each crossing pair / each crossing letter corresponds to one
occurrence of a variable and one “side” of such an occurrence). If the equation has m letters
(and at most n occurrences of variables) and there is an occurrence of a non-crossing pair
or block then we choose it for compression. Otherwise, there are m letters in the equation
and each is covered by at lest one pair/block, so for one of 2n choice at least m

2n letters is
covered, so at least m

4n letters are removed. Thus the new equation has at most

m︸︷︷︸
previous

− m

4n︸︷︷︸
removed

+ 2n︸︷︷︸
popped

≤ 8n2 − 2n+ 2n

= 8n2 ,

where the inequality follows by the inductive assumption that m ≤ 8n2. Going for the
bit-size, each symbol requires at most logarithmic number of bits, and so

I Lemma 9. WordEqSAT runs in O(n2 logn) space.

With some effort we can make the above if analysis much tighter:

I Theorem 10 ([24]). The recompression based algorithm (nondeterministically) decides
word equations problem in O(n logn) bit-space; moreover, the stored equation has linear
length.

As a reminder: a PSPACE algorithm for this problem is already known [45]. Its memory
consumption is not stated explicitly in that work, however, it is much larger than O(n logn):
the stored equations are of length O(n3) and during the transformations the algorithm uses
essentially more memory.

3 Similar applications

Generating a representation of all solutions

So far we have only considered the satisfiability of word equations. In general, there can be
many solutions of such an equation and it is desirable to have a (finite) representation of
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all of them. The first such description was given by Plandowski [46], his algorithm works
in PSPACE and generates an exponential representation of all solutions. We show that a
similar description can be created using the recompression approach. It is easy to believe
that the compression of pairs and blocks “preserves” the set of solutions: if S is a solution of
an equation u = v then we can compress the pairs (or blocks) in the word S(u) and simulate
such a compression directly on the equation u = v obtaining u′ = v′ with a “corresponding”
solution S′(u′). In this way we naturally obtain a graph: its nodes are labelled with equations
and an edge between equations u = v and u′ = v′ will describe how to transform the solutions
of u′ = v′ into solutions of u = v (note that a node labelled with u = v can have several
edges to many other nodes). The mentioned description is fairly natural: we replace a letter
c by a pair ab or replace a` with a` or prepend or append some letters to S(X). It remains
to guarantee that both the nodes and the edges have reasonable size description (in our case:
polynomial).

Unfortunately, there is a problem: consider an equation aXXXX = XaY Y , it has
solutions of the form S(X) = a`X , S(Y ) = a`Y , where additionally 4`X + 1 = `X + 1 + 2`Y .
There are infinitely many such solutions and replacing X by a`X during the CutPrefSuff
can use arbitrarily large memory and transform this equation into an infinite number
of other equations. On the other hand, as a next step we replace a-blocks of length
4`X + 1 = `X + 1 + 2`Y by a new letter and the precise length of those blocks is unimportant,
what matters is that they are of the same length. In general, we can improve the block
compression so that it uses numerical parameters (for lengths) instead of concrete values
of prefixes and suffixes. As a first step, in CutPrefSuff when we pop an a-prefix of length
a`X from X, the `X is not a number, but rather a numerical parameter, the same applies
to the a-suffix rX . Next we (non-deterministically) identify maximal blocks of the same
length and verify, whether indeed such blocks can be of equal length. The guessed equalities
correspond to a system of linear Diophantine equations. Moreover, each solution of such
a system corresponds to a solution of the word equation and vice-versa. In this way we
no longer need to consider large numbers and long equations and can guarantee that the
considered equations are always of polynomial length (observe that this modification in fact
removes the necessity of using the bound on the Σ-exponent of periodicity). Unfortunately,
as a side effect we get that the edges in our graph representation of all solutions are labelled
with systems of linear Diophantine equations and each solution of such a system corresponds
to one transformation of the solution of the word equation.

I Theorem 11 ([24]). Using the recompression based algorithm we can compute (in PSPACE)
a finite graph representation of all solutions of a word equation. Each node and edge have
a polynomial description, the whole graph has at most exponential number of nodes and edges.

As in the case of the decision variant, the recompression-based algorithm has much
lower space consumption, than previously known [46], the same applies to the size of the
constructed representation.

The above characterization is combinatorial in nature. On the other hand, it is natural
to characterize the class of languages that can be obtained as sets of solutions of a word
equation. For instance, the question of whether it is an indexed language, in the sense of Aho,
was posed a long time ago. Using extensions of the recompression technique and interpreting
it in the algebraic setting it can be shown that the language of all solutions of a given word
equation is an EDT0L language [3] (so, in particular, an index language). This is by no
means an easy task, in particular, the block compression needs to be redesigned essentially
from scratch.
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I Theorem 12 ([3]). The set of solutions of a given word equtaion is an EDT0L language.

Equations with one variable

As already mentioned, one of the investigated subclasses of word equations are the equations
with one variable. It is easy to show that they can be decided in O(n3) and improving
to quadratic running time requires only a couple of observations [7]. The first nontrivial
algorithm for this problem had an O(n logn) running time [42], while Dąbrowski and
Plandowski gave an algorithm with O(n+ #X logn) running time [13], where #X denotes
the number of occurrences of a variable X in the original equation.

It is easy to see that the recompression based algorithm becomes deterministic in case of
one variable equations: it makes the following non-deterministic choices:

What is the first (last) letter of S(X)?
What is the length of the a-prefix a` (suffix ar) of S(X)?

When the equation has only one variable, answers to both of those questions can be easily
obtained from the equation.

I Lemma 13. Without loss of generality word equation with one variable are of the form

A0XA1 . . . Ak−1XAk = XB1 . . . B`−1XB` , (1)

where A0 is a non-empty word and exactly one of the words Ak, B` is empty.
Let the first letter of A0 be a. Each solution S(X) /∈ a+ has the same a-prefix as A0;

symmetric fact holds also for a-suffixes.

Lemma 13 yields a simple recompression based algorithm: in each phase we identify candidate
solutions from a+, where a is the first letter of A0, and verify whether indeed such a candidate
is a solution. Next we perform recompression: all remaining solutions have the same a-prefix
(and suffix).

A natural implementation of this algorithm has the same running time as the algorithm
by Dąbrowski and Plandowski, i.e. O(n+ #X logn). It is possible to improve the running
time to linear, this requires several non-trivial improvements of the algorithm and usage of
efficient data structures (suffix arrays with a structure for computing the longest common
prefix, i.e. lcp). In particular:

Instead of one equation the algorithm actually stores a system of equations and sometimes
splits one equation into two smaller ones, in this way we save space.
We keep track, which words are the same and for set of identical words we store one copy
and represent all of them by pointers.
We prove that for a certain class of solutions the algorithm reports such solutions within
O(1) phases. In many places of the proofs we show that the corresponding solution is
from this class.
We improve the testing procedure: some of the candidate solutions are rejected based
on their structural properties, moreover we use a much more precise cost analysis: we
calculate for each word separately, whether it took part in a particular test or not. In
this way we can establish that some tests took less time than linear (which is the time
needed for reading the whole equation).

I Theorem 14 ([23]). Using a recompression based algorithm we can in linear time return
all solutions of a word equation with one variable.
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Equations with regular constraints and inversion; equations in free groups

As already mentioned, it is natural and important to extend the word equations by regular
constraints and inversion, in particular this leads to an algorithm for equations in free
groups [8] (the reduction between those two problems is fully syntactical and does not depend
on the particular algorithm for solving word equations). Note that it is unknown, whether
the algorithm generating a representation of all solutions can be also extended by regular
constraints and inversion. Thus the only previously known algorithm for representation of
all solutions of an equation in a free group was due to Razborov [48], and it was based on
Makanin’s algorithm for word equations in free groups.

Adding the regular constraints to the recompression based algorithm WordEqSAT is fairly
standard: We can encode all constraints using one non-deterministic finite automaton (the
constraints for particular variables differ only in the set of accepting states). For each letter
c we store its transition function, i.e. a function fc : Q 7→ 2Q, which says that the automaton
in state q after reading a letter c reaches a state in fc(q). This function is naturally extended
to words: it still defines which states can be reached from q after reading w. Formally
fwa = (fw ◦ fa)(q) = {p | ∃q′ ∈ fw(q) i p ∈ fa(q′)} for a letter a. If we introduce a new letter
c (which replaces a word w) then we naturally define the transition function fc ← fw. We
can express the regular constraints in terms of this function: saying that S(X) is accepted
by an automaton means that fS(X)(q0) is one of the accepting states. So it is enough to
guess the value of fS(X) which satisfies this condition; in this way we can talk about the
value fX for a variable X. Popping letters from a variable means that we need to adjust the
transition function, i.e. when we replace X by aX then fX = fa ◦ fX′ , we similarly define
fX when we pop letters to the right.

More problems are caused by the inversion: intuitively it corresponds to taking the
inverse element in the group and on the semigroup level we this is simulated by requiring that
a = a for each letter a and a1a2 . . . am = am . . . a2a1. This has an impact on the compression:
when we compress a pair ab to c, then we should also replace ab = ba by a letter c. At the
first sight this looks easy, but becomes problematic, when those two pairs are not disjoint,
i.e. when a = a (or b = b); in general we cannot exclude such a case and if it happens, in
a sequence bab during the pair compression for ba we want to simultaneously replace ba
and ab, which is not possible. Instead, we replace maximal fragments that can be fully
covered with pairs ab or ba, in this case this: the whole triple bab. In the worst case (when
a = a and b = b) we need to replace whole sequences of the form (ab)n, which is a common
generalisation of both pairs and blocks compression.

As in the case of semigroups, this representation can be interpreted in the algebraic
setting, which is even more natural, and can be used to show that the set of solutions is an
EDT0L language.

I Theorem 15 ([10], [3]). A recompression based algorithm generates in polynomial space
the description of all solutions of a word equation in free semigroups with inversion and
regular constraints. This in particular provides a similar description in case of free groups
with regular constraints and shows that the set of solutions is an EDT0L language.

Trace equations. For our purposes it is better to view partially commuting words, i.e.
traces, in terms of resources of letters: we equip letters of the alphabet Σ with resources,
formally there is a function ρ : Σ→ R, where R is some finite set. Then two different letters
commute if and only if they do not share a resource, i.e. ab = ba for a 6= b if and only if
ρ(a) ∩ ρ(b) = ∅. It is easy to see the equivalence of words with resources and traces.
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Figure 1 A context and the same context applied on an argument.

It is difficult to apply compression operations in trace equation to letters of different
resources. On the other hand, when the set of resources of some letters are the same, they
behave exactly like ordinary non-commuting words and the recompression approach can be
applied to them. A natural approach to solving trace equation using recompression involves
also another operation of “lifting” letters, i.e. increasing the set of resources of a letter. In
this way the trace is partially “linearized”, as part of the commutation is removed.

It turns out that this approach can be implemented, and the algorithm alternates the
lifting and compression operations, which is in contrast to previous approaches to trace
equations, which linearized the trace once at the beginning. In particular, the results
concerning the involution, regular constraints and equations in the corresponding groups,
which are the well-known Right-angled Artin groups, also generalize to traces. The details
are rather technical and are beyond the scope of a survey aimed at presenting recompression
technique.

I Theorem 16 ([9]). The set of solutions of trace equation (with involution and regular
constraints) is an EDT0L, its nonemptiness can be decided in PSPACE.

The same results holds also for Right-angled Artin Groups.

Context unification

Recall that the context unification is a generalisation of word equations to the case of
terms. What type of equations we would like to consider? Clearly we consider terms over a
fixed signature (which is usually part of the input), and allow occurrences of constants and
variables. If we allow only that the variables represent full terms, then the satisfiability of
such equations is decidable in polynomial time [49] and so probably does not generalise the
word equations (which are NP-hard). This is also easy to observe when we look closer at a
word equation: the words represented by the variables can be concatenated at both ends, i.e.
they represent terms with a missing argument.

We arrive at a conclusion that our generalisation should use variables with arguments, i.e.
the (second-order) variables take an argument that is a full term and can use it, perhaps
several times. Such a definition leads to a second-order unification, which is known to be
undecidable even in very restricted subcases [18, 14, 30, 32].

Thus we would like to have a subclass of second order unification that still generalises
word equations. In order to do that we put additional restriction on the solutions: each
argument can be used by the term exactly once. Observe that this still generalise the word
equations: using the argument exactly once naturally corresponds to concatenation.

Formally, in the context unification problem [4, 5, 51], we consider an equation u = v in
which we use variables (representing closed terms), which we denote by letters x, y, as well
as context variables (representing terms with one “hole” for the argument, they are usually
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Figure 2 Term f(h(c, c, c), f(c, f(c, c))) represented as a tree, f is of arity 2, h arity 3, while c: 0.

called contexts), which we denote by letters X,Y . Syntactically, u and v are terms that use
letters from signature Σ (which is part of the input), variables and context variables, the
former are treated as symbols of arity 0, while the latter as symbols of arity 1. A substitution
S assigns to each variable a closed term over Σ and to each context variable it assigns a
context, i.e. a term over Σ∪{Ω} in which the special symbol Ω has arity 0 and is used exactly
once. (Intuitively it corresponds to a place in which we later substitute the argument). S is
extended to u, v in a natural way, note that for a context variable X the term S(X(t)) is
obtained by replacing in S(X) the unique symbol Ω by S(t). A solution is a substitution
satisfying S(u) = S(v).

I Example 17. Consider a signature {f, c, c′}, where f has arity 2 while c, c′ have arity 0
and consider an equation X(c) = Y (c′), where X and Y are context variables. The equation
has a solution S(X) = f(Ω, c′), S(Y ) = f(c,Ω) and then S(X(c)) = f(c, c′) = S(Y (c′)).

We try to apply the main idea of the recompression also in the case of terms: we iterate
local compression operations and we guarantee that the word (term) equation is polynomial
size. Since several term problems were solved using compression-based methods [17, 31, 6,
15, 16], there is a reasonable hope that our approach may succeed.

Pair and block compression easily generalise to sequences of letters of arity 1 (we can think
of them as words), unfortunately, there is no guarantee that a term has even one such letter.
Intuitively, we rather expect that it has mostly leaves and symbols of larger arity. This leads
us to another local compression operation: leaf compression. Consider a node labelled with f
and its i-th child that is a leaf. We want to compress f with this child, leaving other children
(and their subtrees) unchanged. Formally, given f of arity at least 1, position 1 ≤ i ≤ ar(f)
and a letter c of arity 0 the LeafComp(f, i, c, t) operation (leaf compression) replaces in term
t nodes labelled with f and subterms t1, . . . , ti−1, c, ti+1, . . . , tar(f) (where c and position i
are fixed, while other terms t1, . . . , ti−1, ti+1, . . . , tar(f) – varying) by a term labelled with f ′
and subterms t′1, . . . , t′i−1, t

′
i+1, . . . , t

′
ar(f) that are obtained by applying recursively LeafComp

to terms t1, . . . , ti−1, ti+1, . . . , tar(f); in other words, we first change the label from f to f ′
and then remove the i-th child, which has a label c and we apply such a compression to all
occurrences of f and c in parallel.

The notion of crossing pair generalizes to this case in a natural way and the uncrossing
replaces a term variable with a constant or replaces X(t) with X(f(x1, . . . , xi, t, xi+1, . . . , x`)).
Note that this introduces new variables.

Now the whole algorithm looks similar as in the case of word equations, we simply use
additional compression operation. However, the analysis is much more involved, as the new
uncrossing introduces fresh term variables. However, their number at any point can be
linearly bounded and the polynomial upper-bound follows.

I Theorem 18 ([22]). Recompression based algorithm solves context unification in non-
deterministic polynomial space.
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Abstract
The purpose of this paper is to identify programs with control operators whose reduction semantics
are in exact correspondence. This is achieved by introducing a relation ', defined over a revised
presentation of Parigot’s λµ-calculus we dub ΛM .

Our result builds on two fundamental ingredients: (1) factorization of λµ-reduction into multi-
plicative and exponential steps by means of explicit term operators of ΛM , and (2) translation of
ΛM -terms into Laurent’s polarized proof-nets (PPN) such that cut-elimination in PPN simulates
our calculus. Our proposed relation ' is shown to characterize structural equivalence in PPN.
Most notably, ' is shown to be a strong bisimulation with respect to reduction in ΛM , i.e. two
'-equivalent terms have the exact same reduction semantics, a result which fails for Regnier’s
σ-equivalence in λ-calculus as well as for Laurent’s σ-equivalence in λµ.
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1 Introduction

An important topic in the study of programming language theories is unveiling structural
similarities between expressions denoting programs. They are widely known as structural
equivalences; equivalent expressions behaving exactly in the same way. Process calculi are
a rich source of examples. In CCS expressions stand for processes in a concurrent system.
For example, P ‖ Q denotes the parallel composition of processes P and Q. Structural
equivalence includes equations such as the one stating that P ‖ Q and Q ‖ P are equivalent.
This minor reshuffling of subexpressions has little impact on the behavior of the overall
expression: structural equivalence is a strong bisimulation for process reduction. This paper

o ' p

o′ ' p′

is concerned with such notions of reshuffling of expressions in λ-calculi with control operators.
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4:2 Strong Bisimulation for Control Operators

The induced notion of structural equivalence, in the sequel ', should identify terms having
exactly the same reduction semantics too, that is, should be a strong bisimulation with
respect to reduction in these calculi. In other words, ' should be symmetric and moreover
o ' p and o  o′ should imply the existence of p′ such that p  p′ and o′ ' p′, where  
denotes some given notion of reduction for control operators (see figure on the right).

Formulating such structural equivalences for the λ-calculus is hindered by the sequential
(left-to-right) orientation in which expressions are written. Consider for example the terms
(λx.(λy.t)u) v and (λx.λy.t) v u. They seem to have the same redexes, only permuted, similar
to the situation captured by the above mentioned CCS equation. A closer look, however,
reveals that this is not entirely correct. The former has two redexes (one indicated below by
underlining and another by overlining) and the latter has only one (underlined):

(λx.(λy.t)u) v and (λx.(λy.t)) v u (1)

The overlined redex on the left-hand side is not visible on the right-hand side; it will only
reappear, as a newly created redex, once the underlined redex is computed. Despite the fact
that the syntax gets in the way, Regnier [27] proved that these terms behave in essentially
the same way. More precisely, he introduced a structural equivalence for λ-terms, known
as σ-equivalence and he proved that σ-equivalent terms have head, leftmost, perpetual and,
more generally, maximal reductions of the same length. However, the mismatch between the
terms in (1) is unsatisfying since there clearly seems to be an underlying strong bisimulation,
which is not showing itself due to a notational shortcoming. It turns out that through the
graphical intuition provided by linear logic proof-nets, one can define an enriched λ-calculus
that unveils a strong bisimulation for the intuitionistic case [4]. Further details are described
below. In this paper, we resort to this same intuition to explore whether it is possible
to uncover a strong bisimulation behind a notion of structural equivalence for the more
challenging setting of classical logic. Thus, we will not only capture structural equivalence
on pure functions, but also on programs with control operators. In our case it is polarized
proof-nets (PPN) that will serve as semantic yardstick. We next briefly revisit proof-nets
and discuss how they help unveil structural equivalence as strong bisimulation for λ-calculi.
An explanation of the challenges that we face in addressing the classical case will follow.

Proof-Nets. A proof-net is a graph-like structure whose nodes denote logical inferences
and whose edges or wires denote the formula they operate on (cf. Sec. 6). Proof-nets were
introduced in the setting of linear logic [12], which provides a mechanism to explicitly control
the use of resources by restricting the application of the structural rules of weakening and
contraction. Proof-nets are equipped with an operational semantics specified by graph
transformation rules which captures cut elimination in sequent calculus. The resulting
cut elimination rules on proof-nets are split into two different kinds: multiplicative, that
essentially (linearly) reconfigure wires, and exponential, which are the only ones that are
able to erase or duplicate (sub)proof-nets. The latter are considered to introduce interesting
or meaningful computation. Most notably, proof-nets abstract away the order in which
certain rules occur in a sequent derivation. As an example, assume three derivations of the
judgements ` Γ, A, ` ∆, A⊥, B and ` Λ, B⊥, resp. The order in which these derivations are
composed via cuts into a single derivation is abstracted away in the resulting proof-net:

` Γ, A ` ∆, A⊥, B ` Π, B⊥

A Γ

cut

A⊥ B ∆

cut

B⊥ Π
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In other words, different terms/derivations are represented by the same proof-net. Hidden
structural similarity between terms can thus be studied by translating them to proof-nets.
Moreover, following the Curry-Howard isomorphism which relates computation and logic, this
correspondence can be extended not only to terms themselves [10, 8, 18, 5] but also to their
reduction behavior [2]. In this paper, however, we concentrate on identifying those different
classical derivations which translate to the same graph representation. As is standard in
the literature, the notion of proof-net identity we adopt includes simple equalities such
as associativity of contraction nodes and other similar rewirings (cf. notion of structural
equivalence of proof-nets).

Intuitionistic σ-Equivalence. As mentioned before, Regnier introduced a notion of σ-
equivalence on λ-terms (written here 'σ and depicted in Fig. 1), and proved that σ-equivalent
terms behave in essentially identical way. This equivalence relation involves permuting certain
redexes, and was unveiled through the study of proof-nets. In particular, following Girard’s
encoding of intuitionistic into linear logic [12], σ-equivalent terms are mapped to the same
proof-net (modulo multiplicative cuts and structural equivalence).

(λx.λy.t)u 'σ1 λy.(λx.t)u y /∈ u
(λx.t v)u 'σ2 (λx.t)u v x /∈ v

Figure 1 Regnier’s σ-equivalence for λ-terms.

The reason why Regnier’s result is not immediate is that redexes present on one side of
an equation may disappear on the other side of it, as illustrated in the terms in (1). One
might rephrase this observation by stating that 'σ is not a strong bisimulation over the set
of λ-terms. If it were, then establishing that σ-equivalent terms behave essentially in the
same way would be trivial.

Adopting a more refined view of λ-calculus, as suggested by linear logic, which splits
cut elimination on logical derivations into multiplicative and exponential steps yields a
decomposition of β-reduction into multiplicative/exponential steps on terms. The theory of
explicit substitutions (a survey can be found in [17]) provides a convenient syntax to reflect
these steps at the term level. Indeed, β-reduction can be decomposed into two steps, namely
B (for Beta), which acts at a distance [5] in the sense that the abstraction and the argument
may be separated by an arbitrary number of explicit substitutions, and S (for Substitution):

(λx.t)[x1\v1] . . . [xn\vn]u 7→B t[x\u][x1\v1] . . . [xn\vn]
t[x\u] 7→S t{x\u} (2)

Firing the B-rule creates an explicit substitution operator, written t[x\u], so that B essentially
reconfigures symbols, and indeed reads as a multiplicative cut in proof-nets. The S-rule
executes the substitution by performing a replacement of all free occurrences of x in t with
u, written t{x\u}, so that it is S that performs interesting or meaningful computation and
reads as an exponential cut in proof-nets.

A term without any occurrence of the left-hand side of rule B is called a B-normal form;
we shall refer to these terms as canonical forms. Decomposition of β-reduction by means of
the rules in (2) prompts one to replace 'σ (Fig. 1) with a new relation 'σB (Fig. 2). The
latter is formed essentially by taking the B-normal form of each side of the 'σ equations1.

1 Also included in 'σB is equation 'σB
3

allowing commutation of orthogonal (independent) substitutions.
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(λy.t)[x\u] 'σB
1

λy.t[x\u] y /∈ u
(t v)[x\u] 'σB

2
t[x\u] v x /∈ v

t[y\v][x\u] 'σB
3

t[x\u][y\v] y /∈ u, x /∈ v

Figure 2 Strong bisimulation for λ-terms with explicit substitutions.

Since B-reduction corresponds only to multiplicative cuts in proof-nets, the translation of
'σB -equivalent typed terms also yields structurally equivalent proof-nets. In other words,
'σB -equivalence classes of λ-terms with explicit substitutions in B-normal form are in one-to-
one correspondence with intuitionistic linear logic proof-nets [5]. Moreover, 'σB is a strong
bisimulation with respect to meaningful reduction (i.e. S-reduction) over the extended set of
terms that includes explicit substitutions [5, 4]. Indeed, 'σB is symmetric, and moreover,
u 'σB v and u→S u

′ implies the existence of v′ such that v →S v
′ and u′ 'σB v′. Note also

that the B-normal form of both sides of (1) are 'σB -equivalent, thus repairing the mismatch.

Classical σ-Equivalence. This work sets out to explore structural equivalence for λ-calculi
with control operators. These calculi include operations to manipulate the context in which
a program is executed. We focus here on Parigot’s λµ-calculus [25], which extends the
λ-calculus with two new operations: [α] t (named term) and µα.c (µ-abstraction). The former
may be read as “call continuation α with t as argument” and the latter as “record the current
continuation as α and continue as c”. Reduction in λµ consists of the β-rule together with:

(µα.c)u 7→µ µα.c{{α\u}}

where c{{α\u}}, called here replacement, replaces all subexpressions of the form [α] t in c with
[α] (t u). Regnier’s notion of σ-equivalence for λ-terms was extended to λµ by Laurent [23]
(cf. Fig. 4 in Sec. 4). Here is an example of terms related by this extension, where the redexes
are underlined/overlined:

((λx.µα.[γ]u)w) v 'σ (µα.[γ] (λx.u)w) v

Once again, the fact that a harmless permutation of redexes has taken place is not obvious.
The term on the right has two redexes (µ and β) but the one on the left only has one
(β) redex. Another, more subtle, example of terms related by Laurent’s extension clearly
suggests that operational indistinguishability cannot rely on relating arbitrary µ-redexes; the
underlined µ-redex on the left does not appear at all on the right:

(µα.[α]x) y 'σ x y (3)

Clearly, σ-equivalence on λµ-terms fails to be a strong bisimulation. Nonetheless, Laurent
proved properties for 'σ in λµ similar to those of Regnier for 'σ in λ. Again, one has the
feeling that there is a strong bisimulation hiding behind σ-equivalence for λµ.

Towards a Strong Bisimulation for Control Operators. We seek to formulate a notion of
equivalence for λµ in the sense that it is concerned with harmless permutation of redexes
possibly involving control operators and inducing a strong bisimulation. As per the Curry-
Howard isomorphism, proof normalization in classical logic corresponds to computation in

Notice however that the B-expansion of 'σB
3
-equivalent terms yields 'σ-equivalent terms again. For

example, the B-expansion of t[y\v][x\u] 'σB
3
t[x\u][y\v] yields (λy.(λx.t)u) v 'σ1,σ2 (λx.(λy.t) v)u.
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µα′.([α]x)Jα\α′yK ' x y

µα′.[α′]x y ' x y

R R

/

Figure 3 Failure of strong bisimulation.

λ-calculi with control operators [13, 25]. Moreover, since classical logic can be translated
into polarized proof-nets (PPN), as defined by O. Laurent [22, 23], we use PPNs to guide the
development in this work. A first step towards our goal involves decomposing the µ-rule as
was done for the β-rule with the rules in (2): this produces a rule M (for Mu), to introduce an
explicit replacement, that also acts at a distance, and another rule R (for Replacement), that
executes replacements:

(µα.c)[x1\v1] . . . [xn\vn]u 7→M (µα′.cJα\α′uK)[x1\v1] . . . [xn\vn]
cJα\α′uK 7→R c{{α\α′u}}

(4)

where c{{α\α′u}} replaces each sub-expression of the form [α] t in c by [α′] tu. Meaningful
computation is seen to be performed by R rather than M. This observation is further supported
by the fact that both sides of the M-rule translate into the same proof-net (cf. Sec. 6).

Therefore, we tentatively fix our notion of meaningful reduction to be S ∪ R over the set
of canonical forms, the latter now obtained by taking both B and M-normal forms. However,
in contrast to the intuitionistic case where the decomposition of β into a multiplicative rule
B and an exponential rule S suffices for unveiling the strong bisimulation behind Regnier’s σ-
equivalence in λ-calculus, it turns out that splitting the µ-rule into M and R is not fine-grained
enough. There are various examples, that will be developed in this paper, that illustrate
that the resulting relation is still not a strong bisimulation. One such example results
from taking the BM normal form of the terms in equation (3), as depicted in Fig. 3. This
particular use of R on the left seems innocuous. In fact we show that in our proposed calculus
and its corresponding translation to PPNs, both terms µα′.([α]x)Jα\α′yK and µα′.[α′]x y
denote structurally equivalent PPNs (cf. Sec. 6 for a detailed discussion). In any case, this
example prompts us to further inquire on the fine structure of R. In particular, we will argue
(Sec. 4) that rule R should be further decomposed into several independent notions, each one
behaving differently with respect to PPNs, and thus with respect to our strong bisimulation
'. Identifying these notions and their interplay in order to expose the strong bisimulation
hidden behind Laurent’s σ-equivalence is the challenge we address in this work.

Contributions. The multiplicative/exponential splitting of the intuitionistic case applied
to the classical case, falls noticeably short in identifying programs with control operators
whose reduction semantics are in exact correspondence. The need to further decompose rule
R is rather unexpected, and our proposed decomposition turns out to be subtle yet admits a
natural translation to PPN. Moreover, it allows us to obtain a novel and far from obvious
strong bisimulation result, highlighting the deep correspondence between PPNs and classical
term calculi. Our contributions may be summarized as follows:

1. A refinement of λµ, called ΛM -calculus, including explicit substitutions for variables
(resp. explicit replacement for names), and being confluent (Thm. 5).

2. A natural interpretation of ΛM into PPN. More precisely, ΛM -reduction can be imple-
mented by PPN cut elimination (Thm. 14).
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3. A notion of structural equivalence ' for ΛM which:
a. characterizes PPN modulo structural equivalence (Thm. 21);
b. is conservative over Laurent’s original equivalence 'σ (Thm. 22);
c. is a strong bisimulation with respect to meaningful steps (Thm. 25).

Structure of the Paper. Sec. 2 and 3 present λµ and ΛM , resp. Sec. 4 presents a further
refinement of ΛM . Sec. 5 defines typed ΛM -objects, Sec. 6 defines polarized proof-nets, and
presents the translation from the former to the latter. Sec. 7 presents our equivalence '.
Its properties are discussed and proved in Sec. 8 and Sec. 9. Finally, Sec. 10 concludes and
describes related work. Most proofs can be found in [7] including extended details on PPNs,
whose presentation has been abridged in this paper.

2 The λµ-calculus

Preliminary Concepts. A rewrite system R is a set of objects and a binary (one-step)
reduction relation →R over those objects. We write �R (resp. →+

R) for the reflexive-
transitive (resp. transitive) closure of →R. A term t is in R-normal form, written t ∈ R-nf
or simply t ∈ R, if there is no t′ s.t. t→R t′.

Syntax. We fix a countable infinite set of variables x, y, z, . . . and continuation names
α, β, γ, . . .. The set of objects O(λµ), terms T (λµ), commands C(λµ) and contexts of
the λµ-calculus are given by the following grammar:

Objects o ::= t | c
Terms t ::= x | t t | λx.t | µα.c
Commands c ::= [α] t
Contexts O ::= T | C
Term Context T ::= � | T t | t T | λx.T | µα.C
Command Context C ::= � | [α] T

The term (. . . ((t u1)u2) . . .)un abbreviates as t u1 u2 . . . un. The grammar extends λ-terms
with two new constructors: commands [α] t and µ-abstractions µα.c. Regarding contexts,
there are two holes � and � of sort term (t) and command (c) respectively. We write O〈o〉
to denote the replacement of the hole � (resp. �) by a term (resp. by a command). We
often decorate contexts or functions over expressions with sorts t and c. For example, Ot is a
context O with a hole of sort term. The subscript is omitted if it is clear from the context.

Free and bound variables of objects are defined as expected, in particular fv(µα.c) def=
fv(c) and fv([α] t) def= fv(t). Free names of objects are defined as follows: fn(x) def= ∅,
fn(λx.t) def= fn(t), fn(t u) def= fn(t)∪fn(u), fn(µα.c) def= fn(c)\{α}, and fn([α] t) def= fn(t)∪{α}.
Bound names are defined accordingly. We use fvx(o) (resp. fnα(o)) to denote the number
of free occurrences of the variable x (resp. name α) in o. We write x /∈ o (resp. α /∈ o)
if x /∈ fv(o) and x /∈ bv(o) (resp. α /∈ fn(o) and α /∈ bn(o)). This notion is extended to
contexts as expected.

We work with the standard notion of α-conversion i.e. renaming of bound variables
and names, thus for example [δ] (µα.[α] (λx.x)) z ≡α [δ] (µβ.[β] (λy.y)) z. In particular, when
using two different symbols to denote bound variables (resp. names), we assume that they
are distinct, without explicitly mentioning it.
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Semantics. Application of the substitution {x\u} to the object o, written o{x\u}, may
require α-conversion in order to avoid capture of free variables/names, and it is defined as
expected. Application of the replacement {{α\α′u}} to an object o, where α 6= α′, written
o{{α\α′u}}, passes the term u as an argument to any sub-command of o of the form [α] t and
changes the name of α to α′. This operation is also defined modulo α-conversion in order to
avoid the capture of free variables/names. Formally:

x{{α\α′u}} def= x

(t v){{α\α′u}} def= t{{α\α′u}} v{{α\α′u}}
(λx.t){{α\α′u}} def= λx.t{{α\α′u}} x /∈ u
(µβ.c){{α\α′u}} def= µβ.c{{α\α′u}} β /∈ (u, α, α′)
([α] c){{α\α′u}} def= [α′] (c{{α\α′u}}u)
([β] c){{α\α′u}} def= [β] c{{α\α′u}} β 6= α

For example, if I = λz.z, then ((µα.[α]x) (λz.z x)){x\I} is equal to (µα.[α] I) (λz.z I), and
([α]x (µβ.[α] y)){{α\α′I}} = [α′]x (µβ.[α′] y I) I.

I Definition 1. The λµ-calculus is given by the set O(λµ) and the λµ-reduction relation
→λµ, defined as the closure by all contexts of the following rewriting rules2 (equivalently,
→λµ

def= Ot〈7→β ∪ 7→µ〉:

(λx.t)u 7→β t{x\u}
(µα.c)u 7→µ µα′.c{{α\α′u}}

Various control operators can be expressed in the λµ-calculus [11, 21]. A typical example
of expressiveness of the λµ-calculus is the control operator call-cc [13], specified by the
term λx.µα.[α]x (λy.µδ.[α] y). The term call-cc is assigned the type ((A→ B)→ A)→ A

(Peirce’s Law) in the simply typed λµ-calculus, thus capturing classical logic.

The Notion of σ-Equivalence for λµ-Terms. As in λ-calculus, structural equivalence for
λµ captures inessential permutation of redexes, but this time also involving the control
constructs. Laurent’s notion of σ-equivalence for λµ-terms [23] (written here also 'σ) is
depicted in Fig. 4. The first two equations are exactly those of Regnier (hence 'σ on
λµ-terms strictly extends 'σ on λ-terms); the remaining ones involve interactions between
control operators themselves or control operators and application and abstraction.

Laurent proved properties for 'σ similar to those of Regnier for 'σ. More precisely,
u 'σ v implies that u is normalizable (resp. is head normalizable, strongly normalizable) iff
v is normalizable (resp. is head normalizable, strongly normalizable) [23, Prop. 35]. Based
on Girard’s encoding of classical into linear logic [12], he also proved that the translation of
the left and right-hand sides of the equations of 'σ, in a typed setting, yield structurally
equivalent PPNs [23, Thm. 41]. These results are non-trivial because the left and right-hand
side of the equations in Fig. 4 do not have the same β and µ redexes. For example, (µα.[α]x) y
and x y are related by equation σ8, however the former has a µ-redex (more precisely it has a
linear µ-redex) and the latter has none. Indeed, as mentioned in Sec. 1 (cf. the terms in (3)),
'σ is not a strong bisimulation with respect to λµ-reduction (cf. Fig. 5). There are other

2 Parigot [25]’s µ-rule (µα.c)u 7→µ µα.c{{α\u}}, relies on a binary replacement operation {{α\u}} assigning
[α] (t{{α\u}})u to [α] t (thus not changing the name of the command). We remark that µα.c{{α\u}} ≡α
µα′.c{{α\α′u}}. We adopt here the ternary presentation of the replacement operator [20], because it
naturally extends to that of the ΛM -calculus in Sec. 3.
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4:8 Strong Bisimulation for Control Operators

(λy.λx.t) v 'σ1 λx.(λy.t) v x /∈ v
(λx.t v)u 'σ2 (λx.t)u v x /∈ v

(λx.µα.[β]u)w 'σ3 µα.[β] (λx.u)w α /∈ w
[α′] (µα.[β′] (µβ.c)w) v 'σ4 [β′] (µβ.[α′] (µα.c) v)w α /∈ w, β /∈ v, β 6= α′, α 6= β′

[α′] (µα.[β′]λx.µβ.c) v 'σ5 [β′]λx.µβ.[α′] (µα.c) v x /∈ v, β /∈ v, β 6= α′, α 6= β′

[α′]λx.µα.[β′]λy.µβ.c 'σ6 [β′]λy.µβ.[α′]λx.µα.c β 6= α′, α 6= β′

[α]µβ.c 'σ7 c{β\α}
µα.[α] v 'σ8 v α /∈ v

Figure 4 Laurent’s σ-equivalence for λµ-terms.

(µα.[α]x) y 'σ8 x y

µα.[α]x y 'σ8 x y

µ µ/

Figure 5 Laurent’s 'σ equivalence not a strong bisimulation.

examples illustrating that 'σ is not a strong bisimulation (cf. Sec. 7). It seems natural to
wonder whether, just like in the intuitionistic case, a more refined notion of λµ-reduction
could change this state of affairs; that is a challenge we take up in this paper.

3 The ΛM -calculus

We now extend the syntax of λµ to that of ΛM . We again fix a countable infinite set of vari-
ables x, y, z, . . . and continuation names α, β, γ, . . .. The set of objects O(ΛM), terms
T (ΛM), commands C(ΛM), stacks and contexts are given by the following grammar:

Objects o ::= t | c | s
Terms t ::= x | t t | λx.t | µα.c | t[x\t]
Commands c ::= [α] t | cJα\α′sK
Stacks s ::= # | t · s
Contexts O ::= T | C | S
Term Contexts T ::= � | T t | t T | λx.T | µα.C | T[x\t] | t[x\T]
Command Contexts C ::= � | [α] T | CJα\α′sK | cJα\α′SK
Stack Contexts S ::= T · s | t · S
Substitution Contexts L ::= � | L[x\t]
Replacement Contexts R ::= � | RJα\α′sK

Terms of λµ are enriched with explicit substitutions of the form t[x\u]. Commands
of λµ are enriched with explicit replacements of the form cJα\α′sK, where α 6= α′, and
α′ is called a replacement name. Stacks are empty (#) or non-empty (t · s). Explicit
replacements with empty stacks (i.e. Jβ\α#K) are called renaming replacements, otherwise
stack replacements.

Stack concatenation, denoted s · s′, is defined as expected, where _ · _ is associative
and # is the neutral element. We often write t1 · . . . · tn ·# simply as t1 · . . . · tn (thus, in
particular, u ·# is abbreviated as u). Moreover, given a term u, we use the abbreviation u :: s
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for the term u if s = # and ((u t1) . . .)tn if s = t1 · . . . · tn. This operation is left-associative,
hence u :: s1 :: s2 means (u :: s1) :: s2.

Free and bound variables of ΛM -objects are extended as expected. In particular,
fv(t[x\u]) def= fv(t) \ {x} ∪ fv(u), and fv(cJγ\γ′sK) def= fv(c) ∪ fv(s), while fn(t[x\u]) def=
fv(t) ∪ fv(u), and fn(cJγ\γ′sK) def= fn(c) \ {γ} ∪ {γ′} ∪ fn(s). We work, as usual, modulo
α-conversion so that bound variables and names can be renamed. Thus e.g. x[x\u] ≡α y[y\u]
and µγ.[γ]x ≡α µβ.[β]x. In particular, we will always assume by α-conversion, that x /∈ fv(u)
in the term t[x\u] and α /∈ fn(s) in the command cJα\α′sK.

The notions of free and bound variables and names are extended to contexts by defining
fv(�) = fv(�) = fn(�) = fn(�) = ∅. A variable x occurs bound in O if, for any fresh
variable y 6= x, it occurs in O〈y〉 but not free. Similarly for names. Thus for example x is
bound in λx.� and (λx.x)� and α is bound in �Jα\α′sK. We use fv(o1, o2) (resp. fn(o1, o2))
to abbreviate fv(o1) ∪ fv(o2). (resp. fn(o1) ∪ fn(o2)) and also fn(o, α) to abbreviate
fn(o) ∪ {α}. An object o is free for a context O, written fc(o, O), if the bound variables
and bound names of O do not occur free in o. Thus for example fc(zy, λx.(�[x′\w])) holds
but fc(xy, λx.�) does not hold. This notation is naturally extended to sets, i.e. fc(S, O)
means that the bound variables and bound names of O do not occur free in any element of S.
We write x /∈ o (resp. α /∈ o) if x /∈ fv(o) and x /∈ bv(o) (resp. α /∈ fn(o) and α /∈ bn(o)).
This notion is extended to contexts as expected.

As in Sec. 2, we use o{x\u} and o{{α\α′s}} to denote, respectively, the natural extensions
of the substitution and replacement operations to ΛM -objects. Both are defined modulo
α-conversion to avoid capture of free variables/names. While the first notion is standard, we
formalise the second one.

I Definition 2. Given α /∈ fn(s), the replacement o{{α\α′s}} is defined as follows:

x{{α\α′s}} def= x

(t u){{α\α′s}} def= t{{α\α′s}}u{{α\α′s}}
(λx.t){{α\α′s}} def= λx.t{{α\α′s}} x /∈ s
(µβ.c){{α\α′s}} def= µβ.c{{α\α′s}} β /∈ (s, α, α′)
t[x\u]{{α\α′s}} def= t{{α\α′s}}[x\u{{α\α′s}}] x /∈ s
([α] t){{α\α′s}} def= [α′] (t{{α\α′s}} :: s)
([β] t){{α\α′s}} def= [β] t{{α\α′s}} α 6= β

cJγ\βs′K{{α\α′s}} def= c{{α\α′s}}Jγ\βs′{{α\α′s}}K α 6= β

cJγ\α#K{{α\α′s}} def= c{{α\α′s}}Jγ\βsKJβ\α′#K s 6= #, β fresh
cJγ\α#K{{α\α′#}} def= c{{α\α′#}}Jγ\α′#K
cJγ\αs′K{{α\α′s}} def= c{{α\α′s}}Jγ\α′s′{{α\α′s}} · sK s′ 6= #

#{{α\α′s}} def= #
(t · s′){{α\α′s}} def= t{{α\α′s}} · s′{{α\α′s}}

E.g. ([α]x){{α\γy1 · y2}} = [γ]x y1 y2, and ([α]x)Jβ\αz1K{{α\γy1}} = ([γ]x y1)Jβ\γz1 · y1K,
while ([α]x)Jβ\α#K{{α\γy1 · y2}} = ([γ]x y1 y2)Jβ\γ′y1 · y2KJγ′\γ#K.

When s = #, the replacement operation _{{α\α′s}} is called a renaming. Most of the
cases in the definition above are straightforward, we only comment on the interesting ones.
When the (meta-level) replacement operator affects a renaming replacement, i.e. in the
case cJγ\α#K{{α\α′s}}, the renaming Jγ\α#K is blocking the replacement, so that an explicit
replacement Jγ\βsK with a fresh name β is created, and β is then renamed to α′. Regarding
the last clause of the definition for commands, since the explicit replacement Jγ\αs′K is
blocking, it accumulates any additional arguments for γ, hence why stacks (i.e. sequences of
terms) are used, instead of terms, as target for names.
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The two operations o{x\u}, and o{{α\α′s}} are extended to contexts as expected.

I Definition 3. The ΛM-calculus is given by the set of objects O(ΛM) and the ΛM-
reduction relation →ΛM , defined as the closure by all contexts of the rewriting rules:

L〈λx.t〉u 7→B L〈t[x\u]〉
t[x\u] 7→S t{x\u}

L〈µα.c〉u 7→M L〈µα′.cJα\α′u ·#K〉
cJα\α′sK 7→R c{{α\α′s}}

where 7→B and 7→M are both constrained by the condition fc(u, L), and 7→M also requires
α′ /∈ (c, u, α, L), thus both rules pull the list context L out by avoiding the capture of free vari-
ables/names of u. Equivalently,→ΛM

def= Ot〈7→B ∪ 7→S ∪ 7→M〉 ∪ Oc〈7→R〉. Given X ∈ {B, S, M, R},
we write →X for the closure by all contexts of 7→X .

Note that B and M above, also presented in (2) and (4) of the introduction, operate at
a distance [5], a characteristic in line with our semantical development being guided by
Proof-Nets. Also, following Parigot [25], one might be tempted to rephrase the reduct of M
with a binary constructor, writing L〈µα.cJα\uK〉. But this is imprecise since free occurrences
of α in c cannot be bound to both µα and Jα\uK. The subscript α′ in cJα\α′uK shall replace
α in c as described above. The ΛM -calculus implements the λµ-calculus by means of more
atomic steps, i.e.

I Lemma 4. Let o ∈ O(λµ). If o→λµ o
′, then o�ΛM o′.

Just like λµ, the ΛM -calculus is confluent too. This is proved by using the interpretation
method [15], where ΛM is interpreted into λµ by means of a suitable projection function.

I Theorem 5. The →ΛM relation is confluent.

Proof. By the interpretation method [15], using confluence of →λµ [25]. Details in [7]. J

4 Refining Replacement

Now that we have introduced the relation ΛM and hence the reader has a clearer picture
of the presentation/implementation of λµ we will be working with, we briefly revisit our
objective. We seek to identify a relation ' on a subset of ΛM -terms (which we call canonical)
that is a strong bisimulation for a subset of ΛM -reduction (which we call meaningful). The
proof-net translation of the intuitionistic case suggests that ' be defined on the subset of
ΛM terms that are in BM-normal form, since a term and its BM-reduct are essentially different
syntactic presentations of the same thing. Consequently, we can in principle declare S ∪ R
as the subset of ΛM -reduction that is meaningful. However the proof-net translation of
ΛM suggests that meaningful reduction for ΛM is the exponential one, manipulating boxes
(cf. Sec. 6), which allow in particular their erasure and duplication, and unfortunately R also
includes cases without any box manipulation. Moreover, as hinted at in the introduction,
when incorporating the BM-normal form of Laurent’s σ-equivalence equations into ', one
immediately realizes that strong bisimulation fails. The heart of the matter is that R is too
course-grained and that we should break it down, weeding out those instances that present
an obstacle to strong bisimulation. Indeed, one can distinguish between linear and non-linear
instances of R, the translation of the latter involving boxes while the former’s not. This
section presents a refinement of R, in four stages, identifying a subset of replacement R we
dub meaningful replacement reduction. The latter, together with S, will conform the whole
notion of meaningful reduction (Def 9).
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([α]µβ.c)Jα\α′sK 'σ7 c{β\α}Jα\α′sK

[α′] (µβ.c{{α\α′s}}) s

[α′]µβ′.BM(c{{α\α′s}}Jβ\β′sK) ??? BM(c{β\α}{{α\α′s}})

R

R

BM

Figure 6 Implicit renaming and strong bisimulation.

Stage 1: Renaming vs Stack Replacement. In this first stage we split R according to the
nature of the explicit replacement, renaming or stack:

cJα\α′#K 7→R# c{{α\α′#}}
cJα\α′sK 7→R¬# c{{α\α′s}} if s 6= #

Accordingly, we call R# the renaming replacement rule and R¬# the stack replacement rule.
The renaming replacement rule unfortunately throws away important information that is
required for our strong-bisimulation. As an example, consider the equation σ7 of Fig. 4, but
under a ΛM context containing an explicit replacement Jα′\αsK, as depicted in Fig. 6. Firing
Jα′\αsK on the left leads to the creation of another stack replacement redex on the left, with
no such redex mimicking it on the right. Indeed, the term on the lower left hand corner has
a pending explicit replacement and hence cannot be equated with the term on the lower
right hand corner.

As for our notion of meaningful replacement reduction, this leads us to disregard the
renaming replacement rule, leaving renaming replacements in terms as is, that is, without
executing them. An adaptation of σ7 to ΛM will later be adopted in our ' relation (cf. Sec. 7)
where (implicit) renaming is left pending as an explicit renaming replacement. In summary,
at this stage, our notion of meaningful replacement reduction is taken to be just R¬#.

Stage 2: A First Refinement of Stack Replacement. The next stage in the refinement
process is to further split the stack replacement rule R¬# based on the number of free
occurrences of the name to be replaced, as indicated by fnα(c) below. The motivation
behind this split is that some instances of the replacement rule that replace exactly one
name, actually relate terms that are structurally equivalent when translated to PPNs, hence
perform no meaningful computation. Thus we consider the following rules:

cJα\α′sK 7→R6=1
¬#

c{{α\α′s}} if fnα(c) 6= 1 and s 6= #
cJα\α′sK 7→R=1

¬#
c{{α\α′s}} if fnα(c) = 1 and s 6= #

In rule R6=1
¬# we immediately recognize as involving substantial work due to duplication or

erasure of the stack s. Hence, we update our current notion of meaningful replacement
computation by replacing our former selection of R¬# with the more restricted R 6=1

¬#.
We next have to determine whether rule R=1

¬#, or refinements thereof, should too be judged
as meaningful. For that we must take a closer look at its behavior for specific instances of
the command c based on the possible (unique) occurrence of the name α: on a named term
(Stage 3) or on an explicit replacement (Stage 4).

Stage 3: Stack Replacement on Named Term. In the right-hand side of rule R=1
¬# the

command c is traversed by the meta-level replacement {{α\α′s}} until the unique free occur-
rence α is reached. Since free names only occur in commands, the left hand-side of R=1

¬# has
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4:12 Strong Bisimulation for Control Operators

necessarily one of the following forms:

C〈[α] t〉Jα\α′sK C〈c′Jβ\αs′K〉Jα\α′sK

for some context C and where α does not occur free in C, t, c′, s′. We next focus on the first
case leaving the second to Stage 4. The first case gives rise to the rule name:

C〈[α] t〉Jα\α′sK 7→name C〈[α′] t :: s〉 if α /∈ (t, C), s 6= #

At this point in our development, we pause and briefly discuss linear µ-redexes before getting
back to name. From the very beginning, there was never any hope for σ-equivalence (Fig. 4) to
be a strong bisimulation since, as mentioned by Laurent [23], it does not distinguish between
terms with linear µ-redexes. A µ-redex in λµ is linear if it has the form (µα.Q〈[α]u〉) v with
α /∈ (u, Q) and Q defined as follows:

P ::= � | P t | λx.P | µα.[β] P Q ::= � | [β] P〈µγ.�〉

An example is the term (µα.[α]x) y, one of the two terms of (3) mentioned in Sec. 1. Such
µ-reduction steps reducing linear µ-redexes hold no operational meaning: if o linearly µ-
reduces to o′, then their graphical interpretation yield PPNs whose multiplicative normal
form are structurally equivalent [23, Thm. 41] (revisited in Sec. 8 as Thm. 19).

Returning to our development, we next need to identify what a linear/non-linear split of
rule name looks like in our setting of ΛM , the intuition arising, again, from PPN. For that
we introduce linear contexts.

I Definition 6. There are four sets of linear contexts, each denoted using the expressions
XY, with X, Y ∈ {T, C}. The letters X and Y in the expression XY denote the sort of the object
with which the hole will be filled and the sort of the resulting term, resp.: e.g. LTC denotes a
context that takes a command and outputs a term.

(Linear TT Contexts) LTT ::= � | LTT t | λx.LTT | µα.LCT | LTT[x\t]
(Linear TC Contexts) LTC ::= LTC t | λx.LTC | µα.LCC | LTC[x\t]
(Linear CC Contexts) LCC ::= � | [α] LTC | LCCJα\α′sK
(Linear CT Contexts) LCT ::= [α] LTT | LCTJα\α′sK

For example, [α]� is a LTC context and [β] (� v)Jα\α′uK is a LTT context.
Given the above definition of linear contexts we can now split name into its linear and

non-linear versions:

C〈[α] t〉Jα\α′sK 7→N¬lin C〈[α′] t :: s〉 if C not linear, α /∈ (t, C), s 6= #
LCC〈[α] t〉Jα\α′sK 7→N LCC〈[α′] t :: s〉 if α /∈ (t, LCC), s 6= #

The named term [α] t in the non-linear rule N¬lin could be duplicated or erased and thus
this rule joins R 6=1

¬# as part of meaningful replacement reduction. However, as was the case
above for linear µ-redexes, rule N has no meaningful computational content and hence will
be incorporated into ' by taking its canonical normal form (LCC and t below are assumed in
canonical normal form). The new equation is called lin:

LCC〈[α] t〉Jα\α′sK 'lin LCC〈[α′]C(t :: s)〉 if α /∈ (t, LCC), s 6= #

The notation C(_) denotes the canonical form of an object. A precise definition will be
presented in Stage 4.

Summarizing our results of Stage 3, meaningful replacement reduction consists for the
moment of R 6=1

¬# and N¬lin. In the next and final stage, we analyze the case where the left
hand-side of R=1

¬# has the form C〈c′Jβ\αs′K〉Jα\α′sK.
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Stage 4: Stack Replacement on Explicit Replacements. Suppose the left hand-side of
R=1
¬# has the form C〈c′Jβ\αs′K〉Jα\α′sK. This gives rise to the two instances swap and comp:

C〈c′Jβ\α#K〉Jα\α′sK 7→swap C〈c′Jβ\αsKJα\α′#K〉 if α /∈ (c′, C), s 6= #
C〈c′Jβ\αs′K〉Jα\α′sK 7→comp C〈c′Jβ\α′s′ · sK〉 if α /∈ (c′, C, s′), s′, s 6= #

If we now consider linear/non-linear variants of the above two rules, depending on whether
the context C in their LHSs is a linear context or not (in the sense of Def. 6), we end up with
the following four rules, where we use letters r and r′ to denote non-empty stacks.

C〈c′Jβ\α#K〉Jα\α′rK 7→W¬lin C〈c′Jβ\αrKJα\α′#K〉 C not linear, α /∈ (c′, C)
C〈c′Jβ\αr′K〉Jα\α′rK 7→C¬lin C〈c′Jβ\α′r′ · rK〉 C not linear, α /∈ (c′, C, s′)

LCC〈c′Jβ\α#K〉Jα\α′rK 7→W LCC〈c′Jβ\αrKJα\α′#K〉 α /∈ (c′, LCC), fc({s, α′}, LCC)
LCC〈c′Jβ\αr′K〉Jα\α′rK 7→C LCC〈c′Jβ\α′r′ · rK〉 α /∈ (c′, LCC, s′), fc({s, α′}, LCC)

The rules involving non-linear contexts, namely W¬lin and C¬lin join R6=1
¬# and N¬lin in con-

forming meaningful replacement computation. Indeed, although there is a unique occurrence
of α which is target of the explicit replacement on the LHS of these rules, the stack s could
be duplicated or erased. This concludes our deconstruction of rule R.

I Definition 7. Meaningful replacement reduction, written →R• , is defined by the
contextual closure of the reduction rules {R6=1

¬#, N¬lin, W¬lin, C¬lin}.

Rules M, which together with B compute canonical forms, create new explicit replacements.
These explicit replacements may be rearranged using rules W and C leading to the following
notion of canonical form computation:

I Definition 8. Canonical forms are terms in B, M, C and W-normal form. The reduction
relation →BMCW is easily seen to be confluent and terminating, thus, from now on, the notation
C(o) stands for the (unique) BMCW-normal form of an object o. It will be shown later that
C-reduction on ΛM -objects corresponds to multiplicative cuts in PPNs (cf. Thm. 14).

In summary, we shall define a strong bisimulation ' (Sec. 7) defined exclusively on
canonical forms and where reduction is taken to be meaningful:

I Definition 9. Meaningful reduction is a relation of canonical forms defined as follows:

t t′ iff t→SR• u and t′ = C(u)

where →SR• is →S ∪ →R• . We may write  S or  R• to emphasize a meaningful step
corresponding to rule S or R• respectively.

The following diagram summarizes this section’s findings.

cJα\α′sK

s = # s 6= #

fnα(c) = 1 fnα(c) 6= 1

c = C〈c′Jβ\αs′K〉 c = C〈[α] t〉

s′ = # s′ 6= #

C linear C non linear C linear C non linear

C linear C non linear

renaming:
not reducible

C form
computation

(→W)

meaningful
reduction
(→R•)

C form
computation

(→C)

meaningful
reduction
(→R•)

equivalence
relation
('lin)

meaningful
reduction
(→R•)

meaningful
reduction
(→R•)
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4:14 Strong Bisimulation for Control Operators

(ax)
x : A ` x : A | ∅

Γ ` t : A→ B | ∆ Γ′ ` u : A | ∆′
(app)

Γ ∪ Γ′ ` tu : B | ∆ ∪∆′

Γ, (x : A)≤1 ` t : B | ∆
(abs)

Γ ` λx.t : A→ B | ∆
Γ ` c | ∆, (α : A)≤1

(µ)
Γ ` µα.c : A | ∆

Γ ` t : A | ∆, (α : A)≤1

(name)
Γ ` [α] t | ∆, α : A

Γ, (x : B)≤1 ` t : A | ∆ Γ′ ` u : B | ∆′
(sub)

Γ ∪ Γ′ ` t[x\u] : A | ∆ ∪∆′

Γ ` c | ∆, (α : S → B)≤1, (α′ : B)≤1 Γ′ ` s : S | ∆′, (α′ : B)≤1

(repl)
Γ ∪ Γ′ ` cJα\α′sK | ∆ ∪∆′, α′ : B

(sth)
∅ ` # : ε | ∅

Γ ` t : A | ∆ Γ′ ` s : S | ∆′
(stt)

Γ ∪ Γ′ ` t · s : A · S | ∆ ∪∆′

Figure 7 Typing Rules for the ΛM -calculus.

5 Types

In this section we introduce simple types for ΛM , which extends the type system in [25] to
our syntax. Types are generated by the following grammar:

Term Types A ::= ι | A→ B

Stack Types S ::= ε | A · S

where ι is a base type. The type constructor _·_ should be understood as a non-commutative
conjunction, which translates to a tensor in linear logic (see [7]). The arrow is right associative.
We use the abbreviation A1 · A2 · . . . · An · ε → B for the type A1 → A2 . . . → An → B

(in particular, ε→ B is equal to B so ε is the left neutral element for the functional type).
Variable assignments (Γ), are functions from variables to types; we write ∅ for the empty
variable assignment. Similarly, name assignments (∆), are functions from names to types.
We write Γ ∪ Γ′ and ∆ ∪∆′ for the compatible union between assignments meaning that
if x ∈ dom(Γ ∩ Γ′) then Γ(x) = Γ′(x), and similarly for ∆ and ∆′. When dom(Γ) and dom(Γ′)
are disjoint we may write Γ,Γ′. The same for name assignments.

The typing rules are presented in Fig. 7. There are three kinds of typing judgements:
Γ ` t : A | ∆ for terms, Γ ` c | ∆ for commands and Γ ` s : S | ∆ for stacks. The notation
Γ, (x : A)≤1 (resp. ∆, (α : A)≤1) is used to denoted either Γ, x : A or Γ (resp. either ∆, α : A
or ∆), i.e. the assumption x : A occurs at most once in Γ, (x : A)≤1. Commands have no type,
cf. rules (name) and (repl), and stacks are typed with stack types, which are heterogeneous
lists, i.e. each component of the list can be typed with a different type. The interesting
rule is (repl), which is a logical modus ponens rule, where the fresh variable α′ may be
already present in the name assignment of the command c or the stack s, thus the notation
∆ ∪∆′, α′ : B means in particular that α′ is neither in ∆ nor in ∆′.

We use the abbreviation Γ ` o : T | ∆ if o = t and T = A, or o = c and there is no type,
or o = s and T = S. We write π . Γ ` o : T | ∆ if π is a type derivation concluding with
Γ ` o : T | ∆. The typing system enjoys the following properties:

I Lemma 10 (Relevance). Let o ∈ O(ΛM). If π . Γ ` o : T | ∆, then dom(Γ) = fv(o) and
dom(∆) = fn(o).
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I Lemma 11 (Preservation of Types for 'σ). Let o ∈ O(λµ). If π .Γ ` o : T | ∆ and o 'σ o′,
then there exist π′ . Γ ` o′ : T | ∆′.

I Lemma 12 (Subject Reduction). Let o ∈ O(ΛM) s.t. πo .Γ ` o : T | ∆. If o→ΛM o′, then
there exist Γ′ ⊆ Γ and ∆′ ⊆ ∆ and πo′ s.t. πo′ . Γ′ ` o′ : T | ∆′.

Remark that free variables and names of objects decrease in the case of erasing reduction
steps, as for example (λx.y) z → y or (µα.[γ]x) z → µα.[γ]x.

From now on, when o 'σ o′ (resp. o→ΛM o′), we will refer to πo and πo′ as two related
typing derivations, i.e. πo′ is obtained from πo by the proof of Lem. 11 (resp. Lem. 12).

6 Polarized Proof Nets

Laurent [22] introduced Polarized Linear Logic (LLP), a proof system based on polarities on
linear logic formulae. It is equipped with a corresponding notion of Polarized Proof-Nets
(PPN) which allows for a simpler correctness criterion.

One particularly interesting feature is the translation of classical logic into LLP obtained
by interpreting A → B as !A ( B, which is a straightforward extension of that from
intuitionistic logic to LLP, thus capturing the translation from λ-calculus to LLP.

As mentioned in Sec. 1, it is possible to translate ΛM -objects to PPNs. More precisely, we
translate typing derivations π . Γ ` o : T | ∆. The translations of T and (formulae in) ∆ are
called output formulae whereas, the translations of formulae in Γ are called input formulae,
given that they correspond to the λ-variables. Following [23], this gives the following formulae
categories:

Formulae F ::= N | P
Negative formulae N ::= O | ?Q
Positive formulae P ::= Q | !O
Output formulae O ::= ι | ?QOO

Anti-output formulae Q ::= ι⊥ | !O ⊗Q

Negation is involutive (ι⊥⊥ = ι) with (?QOO)⊥ = !Q⊥ ⊗O⊥ and (?Q)⊥ = !Q⊥.

I Definition 13. A proof-structure is a finite acyclic oriented graph built over the alphabet
of nodes represented below (where the orientation is the top-bottom one):

Axiom Cut Weakening Contraction

ax

O⊥ O cut

N N⊥ w

N

c

N N

N

Tensor Par Dereliction Box

⊗

!O Q

!O ⊗Q

O

?Q O

?QOO

d

Q

?Q

!

O

!O O O ?Q ?Q

· · · · · ·

Remark that each wire is labelled with a formula. In particular, conclusions in boxes have
only one bang formula !O, all others being negative formulae.
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A polarized proof-net (PPN) is a proof-structure satisfying a simple correctness
criterion [23]. We refer the reader to op.cit. and simply mention that since our proof-
structures are obtained from translating typed terms, this criterion is always met. Structural
equivalence for PPNs, is based on a set of axioms that allow a reordering of weakening
and contraction nodes. By lack of space we don’t provide all the technical details here, but
we refer the interested to [7] for further details on this standard relation. In the sequel,
polarized proof-net equality, written ≡, is always taken modulo structural equivalence.

The reduction relation for PPNs, denote by →PPN, is given by a set of cut elimination
rules, split into multiplicative and exponential rules. By lack of space we don’t include the
rules here, but we refer the interested to [7] for further technical details. The major point
is that only exponential cuts deal with erasure and duplication of boxes and ⊗-trees, these
last ones used to interpret stacks in the term language. Exponential cuts are considered as
the meaningful rules of PPNs, because of their erasure/duplication power. Multiplicative
cuts are confluent and terminating, and we thus use multiplicative normal-forms as a
technical tool to define the translation of typed ΛM -objects to PPNs.

More precisely, the translation from ΛM to PPNs guiding the semantical development of
our work is an extension of that introduced in [23] for λµ-terms, based in turn on Girard’s
translation of classical formulae to linear logic. We do not give any technical detail in this
abstract, formal definitions are fully developed in [7]. For the sequel, it is sufficient to keep
in mind that formulae are translated to polarized linear logic, and type derivations to PPNs.
We use the notation π♦ to denote the translation of the typing derivation π.

Without entering into details, it is worth mentioning that π♦ does not preserve ΛM -
reduction, so that we extend it to a new one, written _�, in such a way that π� is the
multiplicative normal-form of π♦. Then, the following property holds.

I Theorem 14. Let o, p be typed ΛM-objects. If o →ΛM p, and πo, πp are two related
corresponding type derivations for o and p resp., then πo� �PPN πp

�.

Proof. By induction on →ΛM by adapting Lem. 18 and 19 in [22]. More precisely, the only
ΛM -reduction steps involving exponential rules on the PPNs side are →S and the non-linear
instances of →R (called →R• in Sec. 4), while →B, →C and →W are translated to multiplicative
cuts, and both →M and →N give the identity. J

7 Structural Equivalence for ΛM

We introduce our notion of structural equivalence for ΛM , written ', breaking down the
presentation into the three key tools on which we have based our development: canonical
forms, linear contexts and renaming replacements. Finally, we introduce ' itself.

Canonical Forms. As discussed in Sec. 1, the initial intuition in defining a strong bisimu-
lation for ΛM arises from the intuitionistic case: Regnier’s equivalence 'σ is not a strong
bisimulation, but taking the B-normal form of the left and right hand sides of these equations,
results in a strong bisimulation 'σB on λ-terms with explicit substitutions. In the classical
case, we similarly begin from Laurent’s 'σ relation on λµ-terms and consider the canonical
forms, realised by the C-nf (Def. 8), resulting in the relation 'σB on ΛM -terms (Fig. 8).
This equational theory would be the natural candidate for our strong bisimulation, but
unfortunately it is not the case as we explain below.

Linear Contexts. The first three equations in Fig. 8 together with equation σB9 can be
generalized by noting that explicit substitution commutes with linear contexts (cf. Def. 6),
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(λy.t)[x\u] 'σB
1

λy.t[x\u]
(t v)[x\u] 'σB

2
t[x\u] v

(µα.[β]u)[x\v] 'σB
3

µα.[β]u[x\v]
[α′] (µα′′.[β′] (µβ′′.cJβ\β′′vK)Jα\α′′uK) 'σB

4
[β′] (µβ′′.[α′] (µα′′.cJα\α′′uK)Jβ\β′′vK)

[α′] (µα′′.([β′]λx.µβ.c)Jα\α′′vK) 'σB
5

[β′]λx.µβ.[α′] (µα′′.cJα\α′′vK)
[α′]λx.µα.[β′]λy.µβ.c 'σB

6
[β′]λy.µβ.[α′]λx.µα.c

[α]µβ.c 'σB
7

c{β\α}
µα.[α] t 'σB

8
t

t[y\v][x\u] 'σB
9

t[x\u][y\v]

Conditions for the equations: σB1 : y /∈ u, σB2 : x /∈ v, σB3 : α /∈ v, σB4 : α /∈ v, β /∈ w, β′′ 6=
α′, α′′ 6= β′, σB5 : x /∈ v, β /∈ v, β′′ 6= α′, α′′ 6= β′, σB8 : α /∈ t, σB9 : y /∈ u, x /∈ v.

Figure 8 A first reformulation of Laurent’s 'σ on ΛM -terms.

the latter being the contexts that cannot be erased, nor duplicated, i.e. in proof-net parlance,
they do not lay inside a box. The same situation arises between linear contexts and
explicit replacements (cf. equations σB4 -σB5 ). Thus, linear contexts can be traversed by
any independent explicit operator (substitution/replacement). Thanks to linear contexts,
equations σB1 -σB2 -σB3 -σB9 and also σB4 -σB5 from Fig. 8 can be subsumed by (and hence replaced
with) the commutation between linear contexts and explicit operators as specified by the
following equations, which will be part of our equivalence '.

LTT〈v〉[x\u] 'exs LTT〈v[x\u]〉
LCC〈c〉Jα\α′sK 'exr LCC〈cJα\α′sK〉

The first equation is constrained by the condition x /∈ LTT and fc(u, LTT) while the second one
by α /∈ LCC and fc({s, α′}, LCC), which essentially prevent any capture of free variables/names.

Renaming Replacements. As mentioned in Sec. 4, we adapt 'σB
7

by transforming implicit
(meta-level) renaming into explicit replacement. The new equation becomes:

[α]µβ.c 'ρ cJβ\α#K

and the situation of the diagram in Fig. 6 is modified as follows:

([α]µβ.c)Jα\α′sK 'ρ cJβ\α#KJα\α′sK

[α′] (µβ.c{{α\α′s}}) ::s C(cJβ\α#K{{α\α′s}})

[α′]µβ′.C(c{{α\α′s}}Jβ\β′sK) 'ρ C(c{{α\α′s}})Jβ\β′sKJβ′\α′#K

R• R•

C def

Note how the behaviour of replacement over renaming replacements (cf. Def. 2) plays a key
role in the bottom right corner of the previous diagram.

The Relation ' and Admissible Equalities. Given all these considerations, we define:
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I Definition 15. Σ-equivalence, written ', is a relation over terms in canonical normal
form. It is defined as the smallest reflexive, symmetric and transitive relation over terms in
canonical normal form, that is closed under the following axioms:

LTT〈v〉[x\u] 'exs LTT〈v[x\u]〉 x /∈ LTT, fc(u, LTT)
LCC〈c〉Jα\α′sK 'exr LCC〈cJα\α′sK〉 α /∈ LCC, fc({s, α′}, LCC)
([α]u)Jα\α′sK 'lin [α′]C(u :: s) α /∈ u, s 6= #

[α′]λx.µα.[β′]λy.µβ.u 'pp [β′]λy.µβ.[α′]λx.µα.u α 6= β′, α′ 6= β

[α]µβ.c 'ρ cJβ\α#K
µα.[α] t 'θ t α /∈ t

We conclude this section by showing some interesting admissible '-equalities. First, we
state a permutation result between substitution (resp. replacement) contexts and linear term
(resp. command) contexts that will be useful later in the paper:

I Lemma 16.
1. Let t ∈ T (ΛM). Then C(L〈LTT〈t〉〉) ' C(LTT〈L〈t〉〉), if bv(L) /∈ LTT and fc(L, LTT).
2. Let c ∈ C(ΛM). Then C(R〈LCC〈c〉〉) ' C(LCC〈R〈c〉〉), if bn(R) /∈ LCC and fc(R, LCC).

Some further admissible equations are:

1. t[x\u][y\v] ' t[y\v][x\u], where x /∈ v, and y /∈ u.
2. cJα′\αsKJβ′\βs′K ' cJβ′\βs′KJα′\αsK, where α 6= β′, β 6= α′, α′ /∈ s′ and β′ /∈ s.
3. [α′]µα.[β′]µβ.c ' [β′]µβ.[α′]µα.c.

Finally, as already mentioned in Sec. 4, linear µ-steps are captured by σ-equivalence [23].
In our setting, they are essentially captured by the axiom 'lin of the '-equivalence.

A last remark of this section concerns preservation of types for our equivalence:

I Lemma 17 (Preservation of Types for '). Let o ∈ O(ΛM). If π . Γ ` o : T | ∆ and o ' o′,
then there exists π′ . Γ ` o′ : T | ∆.

As before, when o ' o′ we will refer to πo and πo′ as two related typing derivations.

8 Two Correspondence Results

We now show how our '-equivalence relates to σ, and hence, to PPN equality modulo
structural equivalence. In particular, we want to understand whether reshufflings captured by
σ-equivalence may have been left out by '. One such set of reshufflings are those captured
by the equation σB7 in Fig. 8. As discussed in Sec. 4 (cf. Fig. 6), this equation breaks strong
bisimulation and motivates the introduction of renaming replacements into ΛM , as well as
the inclusion of equation [α]µβ.c 'ρ Jβ\α#K into our relation '. This gives us:

[α]µβ.c 'σB
7
c{β\α} in λµ vs. [α]µβ.c 'ρ cJβ\α#K in ΛM

The question that arises is whether the reshufflings captured by 'σB
7

are the only ones that
are an obstacle to obtaining a strong bisimulation. We prove in this section that this is
indeed the case. This observation is materialized by the following property (cf. Thm. 22):

o 'σ p if and only if C(o) 'er C(p)

where 'er is the renaming equivalence generated by our strong bisimulation ' plus
the following axiom c{{β\α#}} 'ren cJα\β#K, which equates the implicit renaming used in



D. Kesner, E. Bonelli, and A. Viso 4:19

equation σB7 with the renaming replacement used in equation ρ. This sheds light on the
unexpected importance that renaming replacement plays in our strong bisimulation result.

The (⇒) direction of Thm. 22, stated below, is relatively straightforward to prove:

I Lemma 18. If o 'σ p, then C(o) 'er C(p).

In what follows we focus on the (⇐) direction of Thm. 22. We first discuss the soundness
and completeness properties of the equivalence relation 'er. This result is based on Laurent’s
completeness result for σ-equivalence. Indeed, a first translation from typed λµ-objects
to polarized proof-nets, written _◦, is defined in [23], together with a second translation,
written _•, which is defined as the multiplicative normal-form of _◦, where multiplicative
normal-forms are obtained by reducing all the so-called multiplicative cuts.

The σ-equivalence relation on λµ-terms has the remarkable property that o and p are
σ-equivalent iff their proof-net (second) translation _• are structurally equivalent (cf. ≡-
equivalence introduced in Sec. 6). That is, two σ-equivalent objects have the same structural
proof-net representation modulo multiplicative cuts.

I Theorem 19 ([23]). Let o and p be typed λµ-objects such that o 'σ p and let πo, πp be two
related corresponding typing derivations. Then o 'σ p iff π•o ≡ π•p.

As mentioned in Sec. 6, we have extended the translation _◦ to the new constructors of
ΛM , the resulting function is written _♦. Moreover, we have also extended the translation
_♦ to a new one, written _�, in such a way that π� is the multiplicative normal-form of π♦.
Since O(λµ) ⊂ O(ΛM), then for every λµ-object o we have π♦

o ≡ π◦o and πo� ≡ π•o .
Our relation ', together with the equivalence 'ren, which are both defined on our calculus

ΛM , represent equivalent proof-nets as well:

I Lemma 20 (Soundness). Let o, p ∈ O(ΛM) in C-nf. If o 'er p, then πo� ≡ πp�, where πo
and πp are two related corresponding typing derivations.

Moreover, 'er-equivalent terms in C-nf have an exact correspondence with PPNs.

I Theorem 21 (Correspondence I). Let o, p ∈ O(λµ). Then C(o) 'er C(p) iff πC(o)
� ≡ πC(p)

�,
where πC(o), πC(p) are two related corresponding typing derivations for C(o) and C(p).

On the other hand, we have related σ-equivalence in λµ to Σ-equivalence in ΛM in such
a way that o 'σ p implies C(o) 'er C(p) (Lem. 18), where er is the equivalence relation
generated by converting the renaming replacement into an implicit renaming. The full picture
is given by the following result, stating that the converse implication also holds.

I Theorem 22 (Correspondence II). Let o, p ∈ O(λµ). Then o 'σ p iff C(o) 'er C(p).

The main results of this section can be depicted in the diagram below:

o 'σ p C(o) 'er C(p)

π•o ≡ π•p πC(o)
� ≡ πC(p)

�

Thm. 19

Thm. 22

Thm. 21

9 The Strong Bisimulation Result

As stated in Thm. 19, λµ-objects that map to the same PPN (modulo structural equivalence)
are captured exactly by Laurent’s σ-equivalence, which may also been seen as providing a
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natural relation of reshuffling. Unfortunately, as explained in the introduction, σ-equivalence
is not a strong bisimulation. We set out to devise a new term calculus in which reshuffling
can be formulated as a strong bisimulation without changing the PPN semantics. The
relation we obtain, ', is indeed a strong bisimulation over canonical forms, i.e. '-equivalent
canonical terms have exactly the same redexes. This is the result we present in this section.
It relies crucially on our decomposition of replacement →R (cf. Sec. 4) into linear and non-
linear replacements, the former having no computational content (i.e. structurally equivalent
PPNs modulo multiplicative cuts), and thus included in our '-equivalence, while the latter
corresponding to exponential cut elimination steps, and thus considered as part of our
meaningful reduction.

Before stating the bisimulation result, we mention some important technical lemmas:

I Lemma 23. Let o ∈ O(ΛM). If o ' o′, then C(O〈o〉) ' C(O〈o′〉).

I Lemma 24. Let u, s, o ∈ O(ΛM) be in C-nf. Assume p ' p′ and v ' v′ and q ' q′. Then,
C(p{x\u}) ' C(p′{x\u}) and C(o{x\v}) ' C(o{x\v′}).
C(p{{γ\γ′s}}) ' C(p′{{γ\γ′s}}) and C(o{{γ\γ′q}}) ' C(o{{γ\γ′q′}}).

Proof. Uses Lem. 23. Details in [7]. J

We are now able to state the promised result, namely, the fact that ' is a strong
 -bisimulation.

I Theorem 25 (Strong Bisimulation). Let o ∈ O(ΛM). If o ' p and o  o′, then ∃p′ s.t.
p p′ and o′ ' p′.

Proof. Uses all the previous lemmas of this section. See [7] for full details. J

10 Conclusion

This paper refines the λµ-calculus by splitting its rules into multiplicative and exponential
fragments. This new presentation of λµ allows to reformulate σ-equivalence on λµ-terms
as a strong bisimulation relation ' on the extended term language ΛM . In addition, ' is
conservative w.r.t. σ-equivalence, and '-equivalent terms share the same PPN representation.

Besides [23], which inspired this paper and has been discussed at length, we briefly mention
further related work. In [1], polarized MELL are represented by proof-nets without boxes,
by using the polarity information to transform explicit !-boxes into more compact structures.
In [19], the λµ-calculus is refined to a calculus λµr with explicit operators, together with
a small-step substitution/replacement operational semantics at a distance. At first sight
λµr seems to be more atomic than ΛM . However, λµr forces the explicit replacements to
be evaluated from left to right, as there is no mechanism of composition, and thus only
replacements on named locations can be performed. Other refinements of the λµ-calculus
were defined in [6, 26, 28]. A further related reference is [16]. A precise correspondence is
established between PPN and a typed version of the asynchronous π-calculus. Moreover, they
show that Laurent’s 'σ corresponds exactly to structural equivalence of π-calculus processes
(Prop. 1 in op.cit). In [24] Laurent and Regnier show that there is a precise correspondence
between CPS translations from classical calculi (such as λµ) into intuitionistic ones on the
one hand, and translations between LLP and LL on the other.

Besides confluence, studied in Sec. 2, it would be interesting to analyse other rewriting
properties of our term language such as preservation of λµ-strong normalization of the
reduction relations →ΛM and  , or confluence of  . Moreover, a reformulation of ΛM in



D. Kesner, E. Bonelli, and A. Viso 4:21

terms of two different syntactical operators, one for renaming replacement, and another one
for stack replacements, would probably enlighten the intuitions on PPNs that have been used
in this work. We have however chosen a unified syntax for explicit replacements in order to
shorten the inductive cases of many of our proofs.

Another further topic would be to explore how our notion of strong bisimulation behaves
on different calculi for Classical Logic, such as for example λµµ̃ [9]. Moreover, following
the computational interpretation of deep inference provided by the intuitionistic atomic
lambda-calculus [14], it would be interesting to investigate a classical extension and its
corresponding notion of strong bisimulation. It is also natural to wonder what would be an
ideal syntax for Classical Logic, that is able to capture strong bisimulation by reducing the
syntactical axioms to a small and simple set of equations.

We believe the relation  is well-suited for devising a residual theory for λµ. That is,
treating  as an orthogonal system, from a diagrammatic point of view [4], in spite of the
critical pairs introduced by ρ and θ. This could, in turn, shed light on call-by-need for λµ
via the standard notion of neededness defined using residuals.

Finally, our notion of '-equivalence could facilitate proofs of correctness between abstract
machines and λµ (like [3] for lambda-calculus) and help establish whether abstract machines
for λµ are “reasonable” [3].
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Abstract
This talk explores the question of what does logic and specifically proof theory can tell us about the
fundamental hardness questions in computational complexity. We start with a brief description of
the main concepts behind bounded arithmetic which is a family of weak formal theories of arithmetic
that mirror in a precise manner the world of propositional proofs: if a statement of a given form is
provable in a given bounded arithmetic theory then the same statement is suitably translated to a
family of propositional formulas with short (polynomial-size) proofs in a corresponding propositional
proof system.

We will proceed to describe the motivations behind the study of bounded arithmetic theories,
their corresponding propositional proof systems, and how they relate to the fundamental complexity
class separations and circuit lower bounds questions in computational complexity. We provide
a collage of results and recent developments showing how bounded arithmetic and propositional
proof complexity form a cohesive framework in which both concrete combinatorial questions about
complexity as well as meta-mathematical questions about provability of statements of complexity
theory itself, are studied.

Specific topics we shall mention are: (i) The bounded reverse mathematics program [2]: studying
the weakest possible axiomatic assumptions that can prove important results in mathematics and
computing (cf. [8, 4]), and the correspondence between circuit classes and theories. (ii) The meta-
mathematics of computational complexity: what kind of reasoning power do we need in order to prove
major results in complexity theory itself, and applications to complexity lower bounds (cf. [6, 7]). (iii)
Proof complexity: the systematic treatment of propositional proofs as combinatorial and algebraic
objects and their algorithmic applications (cf. [1, 5, 3]).
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Abstract
In this paper we investigate the notion of generalized connective for multiplicative linear logic.
We introduce a notion of orthogonality for partitions of a finite set and we study the family of
connectives which can be described by two orthogonal sets of partitions.

We prove that there is a special class of connectives that can never be decomposed by means of
the multiplicative conjunction ⊗ and disjunction `, providing an infinite family of non-decomposable
connectives, called Girard connectives. We show that each Girard connective can be naturally
described by a type (a set of partitions equal to its double-orthogonal) and its orthogonal type. In
addition, one of these two types is the union of the types associated to a family of MLL-formulas in
disjunctive normal form, and these formulas only differ for the cyclic permutations of their atoms.
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1 Introduction

In his seminal paper [7], Girard introduced the notion of generalized multiplicative connective
for linear logic [6] expressed in terms of permutations over finite sets. This work was then
improved by Danos and Regnier in [5] where permutations were replaced by the weaker
structure of partitions of finite sets. In particular, the original orthogonality condition for
permutations proposed by Girard is replaced by the following:

two partitions on the same finite domain are orthogonal iff the (bipartite) multigraph with
vertices the blocks of the two partitions and edges between blocks sharing an element

is connected and acyclic (ACC for short).

This orthogonality relation is extended to sets of partitions: two sets of partitions P and
Q are orthogonal (denoted P ⊥ Q) if their elements are pairwise orthogonal (see Figure 1).

G1 :

[1, 2] [3]
• •

•
[1, 2, 3]

G2 :

[1, 2] [3]
• •

• •
[1, 3] [2]

G3 :

[1, 2] [3]
• •

• •
[1] [2, 3]

Figure 1 The two partitions 〈[1, 2], [3]〉 and 〈[1, 2, 3]〉 are not orthogonal since G1 contains a cycle.
The two sets of partitions P = {〈[1, 2], [3]〉} and Q = {〈[1, 3], [2]〉, 〈[1], [2, 3]〉} are orthogonal.
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a1 a2 a3

`
⊗

F

test
 

a1 a2 a3

•
◦ •

F

and

a1 a2 a3

• ◦
•

F

P•F = {〈[0, 2, 3], [1]〉 , 〈[0, 1, 3], [2]〉}
a⊥1 a⊥2 a⊥3

⊗

`
F⊥

test
 

a⊥1 a⊥2 a⊥3
•

• ◦

F⊥

and

a⊥1 a⊥2 a⊥3
•

◦ •

F⊥

P•F⊥ = {〈[0, 1, 2], [3]〉 , 〈[1, 2], [0, 3]〉}

Figure 2 The pretype of the formulas F = (a1 ` a2)⊗ a3 and F⊥ = (a⊥1 ⊗ a⊥2 ) ` a⊥3 .

Multiplicative linear logic has two well-known proof systems: sequent calculus and
proof nets. Thus, we are able to associate sets of partitions to multiplicative formulas
F = F (a1, . . . , an) by means these two syntaxes.

In the sequential syntax, a partition keeps the information about how the literals a1, . . . , an
occurring in F are gathered between its m premise sequents. In this way, we can see a (non-
logical) derivation of F from a1, . . . , an as a generalized m-ary rule of the sequent calculus
and this rule is completely characterized by the organization of its premises – i.e. how premise
atoms are split into sequents. This is possible because multiplicative rules are linear, that is
conservative with respect to literals, and unconditional, that is context-free. By means of
example, consider the following (non-logical) derivation of F (a1, a2, a3) = (a1 ` a2)⊗ a3 and
its associated generalized rule ρ:

a1, a2 `
a1 ` a2 a3 ⊗

(a1 ` a2)⊗ a3

!
a1, a2 a3 ρ
F (a1, a2, a3)

Then, the organization of F is the same of its unique associated generalized rule ρ, that
is OF = {〈[1, 2], [3]〉} = Oρ. However, if we consider its dual formula F⊥(a⊥1 , a⊥2 , a⊥3 ) =
(a⊥1 ⊗a⊥2 )`a⊥3 we observe two possible derivations associated to two possible generalized rules
ρ1 and ρ2 and that OF⊥ = {〈[1, 3], [2]〉, 〈[2, 3], [1]〉} = Oρ1 ∪ Oρ2 since Oρ1 = {〈[1, 3], [2]〉}
and Oρ2 = {〈[2, 3], [1]〉}. Moreover OF ⊥ OF⊥ .

a⊥1 , a
⊥
3 a⊥2 ⊗

a⊥1 ⊗ a⊥2 , a3 `
(a⊥1 ⊗ a⊥2 ) ` a⊥3

!
a⊥1 , a

⊥
3 a⊥2 ρ1

F⊥(a⊥1 , a⊥2 , a⊥3 )

a⊥2 , a
⊥
3 a⊥1 ⊗

a⊥1 ⊗ a⊥2 , a3 `
(a⊥1 ⊗ a⊥2 ) ` a⊥3

!
a⊥2 , a

⊥
3 a⊥1 ρ2

F⊥(a⊥1 , a⊥2 , a⊥3 )

In the graphical syntax (i.e. proof structures), a partition keeps the information about how
the premises are gathered by a Danos-Regnier switching [5] in the correction graph of the
proof structure with premises a1, . . . , an and the conclusion of a MLL-formula F (i.e. the
formula tree of F ). However, as already observed in [12], this construction gives another
key information: not all blocks of a partition have the same statute. In fact, only one of its
block is principal, that is, it is connected with the conclusion. To keep this information, we
consider the set of pointed partitions, i.e. partitions over {0, 1, . . . , n} where 0 is a marking
for principal blocks of a formula F (a1, ..., an): we call this set, the pretype of F , denoted by
P•F (see Figure 2). Once we define a forgetting function b−c erasing the occurrence of 0 in a
pointed partition, we observe that bP•F c ⊥ bP•F⊥c.

The sequential and the graphical way to associate a set of partitions to a MLL-formula
F (a1, . . . , an) are in some sense orthogonal since we can show that OF = bP•F c⊥.
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This construction suggests a natural generalization for sequent calculus: given two sets of
partitions P and Q over {1, . . . , n} such that P ⊥ Q and Q = P⊥ (or P = Q⊥), we define
a pair of generalized multiplicative connectives C = C(P,Q) and C⊥ for which we assume
given a set of sequent rules. Each rule introducing C or C⊥ has as organization a partition
in P or respectively Q. Moreover, the orthogonality of P and Q assures the existence of a
cut-elimination procedure.

Analogously, in proof structures syntax, given two sets of pointed partitions P • and
Q• over {0, 1, . . . , n} such that bP •c ⊥ bQ•c and bP •c⊥ ⊥ bQ•c⊥, we define a pair of dual
multiplicative connectives satisfying cut-elimination. The information given by the pointed
partitions allows us to define the Danos-Regnier switches for these connectives, since it gives
us not only the information on how to gather the incoming edges of a node into blocks, but
also which one of them is connected with the outgoing edge. This gives an extension of
the correctness criterion for proof structures containing such connectives. Furthermore, the
orthogonality of bP •c⊥ and bQ•c⊥ is mandatory for cut-elimination.

One natural question arises about the decomposability by means of ` and ⊗:

given a pair of partitions (P,Q) describing a multiplicative connective C(P,Q), is it always
possible to find a MLL-formula F such that OF = P and OF⊥ = Q?

A preliminary negative answer to this question is given by the non-decompsable connective
G4 defined in [7] in terms of permutations, and here reported as reformulated in [5]:

G4 = C(P,Q) with P = {〈[1, 2], [3, 4]〉, 〈[2, 3], [4, 1]〉} and Q = {〈[1, 3], [2], [4]〉, 〈[2, 4], [1], [3]〉}

In [11] the second author defines an infinite family of non-decomposable connectives generaliz-
ing G4. Each (sequential) connective of this family is given by a set of two partitions P , called
entangled pair1, together with its orthogonal set of partitions P⊥ = {q | q ⊥ p for all p ∈ P}.

In this paper we make a step further with respect to [11] by providing an infinite class of
sets of partitions S〈u,v〉 enabling us to define an infinite class of non-decomposable connectives
strictly including the entangled ones. We show that this set of partitions can be expressed as
the union of the types of a family of formulas obtained by all the possible cyclic permutations
of the literals of a formula F (a1, . . . , an) = (a1,1 ⊗ · · · ⊗ a1,n1)` · · ·` (ak,1 ⊗ · · · ⊗ ak,nk

), i.e.
a MLL disjunctive normal form. Besides the combinatorial nature of this property, this allows
to prove that if S〈u,v〉 ⊂ P , then any generalized connective C(P,Q) cannot be decomposable.

Non-decomposable connectives represent a new challenging research subject in linear
logic: a denotational semantics and the geometry of interaction for the extension of MLL
with these connectives are still missing. Moreover, we foresee an extension of Andreoli’s
paradigm of modular proof construction, using such connectives as additional modules [3, 10].

Structure of the paper. In Section 2 we give some backgrounds on graphs and partitions
of finite sets. In particular, we provide a family of partitions satisfying a property of closure
with respect to a notion of orthogonality. Furthermore we recall some multiplicative linear
logic definitions and results in Section 3. In Section 4 we explain the correspondence between
partitions sets and generalized multiplicative connectives and in Section 5 we redefine the
notions of decomposable connectives in graphical and sequential syntax. Finally in Section 6
we give the family of non-decomposable connectives called Girard connectives.

1 A pair of partitions, p and q, is entangled iff p and q have the same number of blocks and each block
contains at most 2 elements of the support {1, . . . , n}.
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2 Graphs and Partitions

A (direct) multigraph G = (V,E) is given by a set of vertices V and a multiset of edges
E = {(u, v)|u, v ∈ V }. We denote u_v iff there is a (u, v) ∈ E and u 6_v iff there is no (u, v)
in E. A multigraph is undirected if the set of edges is reflexive, i.e. (u, v) ∈ E iff (v, u) ∈ E.
Let u, v ∈ V , then a path form u to v is a sequence of vertices v0, . . . , vn ∈ V such that
vi_vi+1 for all i ∈ 0, . . . , n− 1.A multigraph is connected if for all u, v ∈ V there is a path
from u to v. A connected component of a graph is a maximal subset of connected vertices
V ′ ⊂ V . A path is a cycle if v0 = vn. A cycle is primitive if vi 6_vj for all j 6= i + 1 with
i 6= 0 and j 6= n. A multigraph is acyclic if it contains no cycles. A graph is a multigraph
such that E is a set of edges, i.e. there is at most one edge (u, v) for each pair of vertices
u, v ∈ V .

I Theorem 1 (Euler-Poincaré invariance). Let G = (V,E) be a multigraph. If |Cy| and |CC|
are respectively the number of primitive cycles and the number of connected components of G,
then |V | − |E|+ |Cy| − |CC| = 0.

A partition p = 〈γ1, . . . , γu〉 of a finite set X = {1, ..., n} is a set of subsets of X (an
element of P(X)) such that X =

⋃
i γi and if i 6= j then γi ∩ γj = ∅. We denote by PX

the set of partitions of a finite set X and Pn = P{1,...,n}. We call X the support of p and γi
a block of p. To simplify reading, we differentiate parenthesis for partitions and blocks as
follows p = 〈[a1,1, . . . , a1,k1 ], . . . , [au,1, . . . , au,ku ]〉.

I Definition 2 (Orthogonality). Let p, q ∈ Pn. The (undirected) graph of incidence of p and
q, denoted G(p, q), is the multigraph with vertices the blocks of p and q such that there is an
edge vγ1_vγ2 for each element in γ1 ∩ γ2 6= ∅. We say that p and q are orthogonal, denoted
p ⊥ q, iff the induced multigraph G(p, q) is connected and acyclic (ACC for short).

The notion of orthogonality extends to set of partitions: if P,Q ⊂ Pn, we say that P and
Q are orthogonal (P ⊥ Q) iff they are pointwise orthogonal, that is p ⊥ q for all p ∈ P and
q ∈ Q. If P ⊂ Pn, we denote P⊥ = {q ∈ Pn | p ⊥ q for all p ∈ P} the orthogonal of P . For
an example refer to Figure 1.

From Theorem 1 we deduce the following

I Corollary 3. If p, q ∈ P ∈ Pn and |p| 6= |q| then P⊥ = ∅.

I Definition 4 (Type). A set of partitions P ⊂ Pn is a type iff P = P⊥⊥.

We here recall some results form [12] which are useful to compute the orthogonal of a set
of partitions and to decide whenever a set of partitions is a type.

I Proposition 5 (Partitions and Orthogonality). Let A,B ⊂ Pn, then the following facts hold:
1. A⊥ = A⊥⊥⊥. This means that A⊥ is a type;
2. A ⊥ B iff A ⊆ B⊥ and A ⊥ B iff B ⊆ A⊥;
3. A ⊆ B implies B⊥ ⊆ A⊥;
4. if A is a type, then there is B such that A = B⊥;
5. (

⋃
iAi)⊥ =

⋂
iA
⊥
i ;

6. (
⋂
iAi)⊥ ⊇

⋃
iA
⊥
i ;

7. if A admits a set B such that A ⊥ B then all partitions in A have the same cardinality.

In particular, the intersection of types is always a type, while the union is not.
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〈[1, 2], [3, 4], [5, 6]〉 〈[2, 3], [4, 5], [6, 1]〉 〈[1, 2, 3], [4, 5, 6], [7, 8, 9]〉 〈[2, 3, 4], [5, 6, 7], [8, 9, 1]〉 〈[3, 4, 5], [6, 7, 8], [9, 1, 2]〉

12

3

4 5

6

12

3

4 5

6
1

23
4
5
6 7

8
9

1
23

4
5
6 7

8
9

1
23

4
5
6 7

8
9

Figure 3 Examples of basic partitions and their corresponding subdivision of the cycle in n parts.

I Example 6. Let P,Q ⊂ P4 be defined as

P = {p1 = 〈[1, 3], [2, 4]〉, p2 = 〈[1, 4], [2, 3]〉} and Q = {q1 = 〈[1, 3, 4], [2]〉, q2 = 〈[2, 3, 4], [1]〉

Then P⊥ = {p1}⊥ ∩ {p2}⊥ = {〈[3, 4], [1], [2]〉, 〈[1, 2], [3], [4]〉} and Q⊥ = {q1}⊥ ∩ {q2}⊥ =
{〈[1, 2], [3], [4]〉}. That is P is a type and Q is not.

I Theorem 7 (No sub-type). If T ⊂ Pn is a type, then there is no type T ′ 6= T such that
T ′ ⊂ Pn and T ′ ⊂ T .

Proof. By Proposition 5.3 if P ⊂ T then T⊥ ⊆ P⊥. In particular, T ⊥ P⊥. By Proposition
5.2 we have P ⊆ T⊥⊥. J

I Definition 8 (Entangled pairs of partitions [11]). A pair of partitions P = {p, q} ⊂ Pn with
p 6= q is an entangled pair if |p| = |q| and 1 ≤ |γ| ≤ 2 for each γ ∈ p ∪ q.

By means of example, the set P and P⊥ given in Example 6 are both entangled pairs.

I Theorem 9 (Entangled types [11]). Every entangled pair of partitions P ⊂ Pn is a type.

2.1 Basic Partitions
For the rest of this paper we assume n ∈ N such that n = uv for some u, v > 1.

A basic partition of n is a partition p ∈ Pn with u blocks of v elements such that each
block is of the form [i, i+ 1, . . . , i+ v− 1], if i+ v− 1 ≤ n, or [i, . . . , n, 1, 2, . . . , i+ v− 1− n]
otherwise. Intuitively, if we place the elements in {1, . . . , n} over a circle in an increasing
order, a basic partition can be viewed as a subdivision of that circle into u intervals containing
v elements as shown in Figure 3.

I Definition 10 (Space of basic partitions). We call the space of basic partitions of rank 〈u, v〉,
denoted S〈u,v〉, the set of all possible basic partitions of n made of u blocks of v elements.
That is, S〈u,v〉 ⊂ Pn is the following set

p1 : 〈[1, . . . , v], [v + 1, . . . , 2v], . . . , [v(u− 1) + 1, . . . , n]〉
p2 : 〈[2, . . . , v + 1], [v + 2, . . . , 2v + 1], . . . , [v(u− 1) + 2, . . . , n, 1]〉

...
...

pi : 〈[i, . . . , v + (i− 1)], [v + i, . . . , 2v + (i− 1)], . . . , [v(u− 1) + i, . . . , n, 1, . . . , i− 1]〉
...

...
pv : 〈[v, . . . , 2v − 1], [2v, . . . , 3v − 1], . . . , [n, 1, . . . , v − 1]〉


Some examples of spaces with different rank are given in Figure 4.

I Lemma 11 (Cardinality of S〈u,v〉). If S〈u,v〉 is a space of rank 〈u, v〉, then |S〈u,v〉| = v.

Proof. For each 1 ≤ i ≤ v there is a unique p ∈ S〈u,v〉 such that [i, . . . , i+ v − 1] ∈ p. J
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6:6 Generalized Connectives for Multiplicative Linear Logic

S〈3,2〉 = {〈[1, 2], [3, 4], [5, 6]〉, 〈[2, 3], [4, 5], [6, 1]〉}

S〈2,3〉 = {〈[1, 2, 3], [4, 5, 6]〉, 〈[2, 3, 4], [5, 6, 1]〉, 〈[3, 4, 5], [6, 1, 2]〉}

S〈3,3〉 = {〈[1, 2, 3], [4, 5, 6], [7, 8, 9]〉, 〈[2, 3, 4], [5, 6, 7], [8, 9, 1]〉, 〈[3, 4, 5], [6, 7, 8], [9, 1, 2]〉}

Figure 4 Some examples of spaces of rank 〈u, v〉.

q : 〈 [i, v + i, . . . , (u− 1)v + i] , [b1] , . . . , [bu−1] , . . . , [bk(u−1)+1] , . . . , [b(k+1)(u−1)] , . . . , [bn−2u+1] , . . . , [bn−u] 〉
• • . . . • . . . • . . . • . . . • . . . •

• • •
p : 〈 γ1 , γ2 , . . . , γu 〉

Figure 5 If p ∈ S〈u,v〉 and bi ∈ {1, . . . , n} \ {i, v + 1, . . . , (u− 1)v + i} then p ⊥ q for q, p ∈ Pn.

I Definition 12 (Distance). Given 1 ≤ i, j ≤ n, we define the distance of i and j modulo n

δn(i, j) =
{
min{j − i, i− j + n} if j ≥ i
min{i− j, j − i+ n} if j < i

(1)

E.g the distance of 1 and 9 modulo n = 9 is 1 that is, δ9(1, 9) = min{8, 1}.

I Lemma 13 (Distance). Let 1 ≤ i, j ≤ n = uv.
δn(i, j) < v iff there is p ∈ S〈u,v〉 containing a block γ such that i, j ∈ γ;
δn(i, j) ≥ v iff for all p ∈ S〈u,v〉 there are γ1 6= γ2 ∈ p such that i ∈ γ1, j ∈ γ2.

Proof. Since δn(i, j) = δn(j, i), we assume without losing generality that i < j. Hence, it
suffices to remark that S〈u,v〉 always contains a partition including block [i, . . . , i+ v− 1]
if i+ v − 1 ≤ n, or including block [i, i+ 1, . . . , n, 1, 2, . . . , i+ v − 1− n] if i+ v − 1 > n;
By similar reasoning. J

I Lemma 14. If S〈u,v〉 is a space of basic partitions then its orthogonal S⊥〈u,v〉 is not empty.

Proof. Let q be the partition consisting of n− u+ 1 blocks including a block [i = a1, . . . , au]
such that δn(ai, aj) = hv with h ∈ N for 1 < j ≤ u (called ith-block of congruence modulo v),
and n− u singleton blocks over {1, . . . , n} \ {a1, . . . , au}.

After Lemma 13 the multigraph G(p, q) is acyclic, that is |Cy| = 0. Hence, by Theorem 1,
p ⊥ q for all p ∈ S〈u,v〉 (see Figure 5 for an intuition). J

I Corollary 15. All partitions of S⊥〈u,v〉 have size 1 + n− u = 1 + u(v − 1).

Proof. It follows Lemma 14. J

Moreover, by simple arithmetic argument we have the following results:

I Lemma 16. If p ∈ S〈u,v〉 and 1 ≤ i, j ≤ n = uv with δn(i, j) > v, then there is 1 ≤ k ≤ n
such that δn(i, j) = hv for a h ∈ N and δn(j, k) < v. That is, for each i, j there is a k at
distance a multiple of v from i which belongs to the same block of j in the partition p.

I Proposition 17. If S〈u,v〉 is a space of rank 〈u, v〉, then:
1. if 1 ≤ i ≤ n, then there exists a partition q ∈ S⊥〈u,v〉 such that [i] ∈ q;
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q : 〈 [i, v + i, . . . , (u− 1)v + i] , . . . , [j] , . . . , [bn−u] 〉
• • . . . • . . . • . . . • . . . • . . . • . . . • • . . . •

• • . . . • . . . •
p : 〈 γ1 , γ2 , . . . , γk , . . . , γu 〉

↓

q′ : 〈 [v + i, . . . , (u− 1)v + i] , . . . , [i, j] , . . . , [bn−u] 〉
• • . . . • . . . • . . . • . . . • . . . • . . . • • . . . •

• • . . . • . . . •
p : 〈 γ1 , γ2 , . . . , γk , . . . , γu 〉

Figure 6 The permutation q including the ith-block of congruence modulo v and q′ are both
ortogonal to p ∈ S〈u,v〉.

2. if 1 ≤ i, j ≤ n such that δn(i, j) ≥ v, then there is a partition q ∈ S⊥〈u,v〉 containing a
block γ such that i, j ∈ γ.

Proof. 1. By Lemma 14, given 1 ≤ i, j ≤ n such that δ(i, j) > v and δ(i, j) = hv for h ∈ N,
there is a partition q containing the jth-block of congruence modulo v and all singleton
blocks is in S⊥〈u,v〉. Hence, in q there is the singleton block [i].

2. if δn(i, j) = hv for a h ∈ N, then we consider the partition q made of the ith-block of
congruence modulo v and singleton blocks.
If δn(i, j) > v and δn(i, j) = hv for a h ∈ N we define a partition q′ from q by removing i
form the ith-block of congruence modulo v and adding i to the singleton [j] as shown
in Figure 6. To prove that q′ ∈ S⊥〈u,v〉 it suffices to use Lemma 16. In fact, we can
assume that i belongs to γi ∈ p ∈ S〈u,v〉. Then there is k such that i ∈ γk for any
p ∈ S〈u,v〉. Since j 6= i+ hv with h ∈ N, then γk 6= γ1. By Theorem 1, G(q′, p) is acyclic
and connected, hence q′ ⊥ p. J

I Theorem 18. Every space of basic partitions S〈u,v〉 is a type.

Proof. Assume by contradiction that S〈u,v〉 is not a type, i.e. assume there exists p′ ∈
(S⊥〈u,v〉)⊥ such that p′ /∈ S〈u,v〉. By Proposition 17.1, p′ cannot contain any singleton block
[i]. Moreover, by Proposition 17.2, p′ cannot contain any block γ such that i, j ∈ γ and
δn(i, j) ≥ v. This means that p′ consists only of blocks containing elements at distance
strictly smaller than v, hence |p′| > u. This contradicts Proposition 5.7. J

3 Multiplicative Linear Logic Backgrounds

We consider the class F of multiplicative linar logic formulas (denoted by A,B, . . . ) in
negation normal form, generated by a countable set A = {a, b, . . . } of propositional variables
by the grammar A,B ::= a | A⊥ | A`B | A⊗B modulo the involution of (·)⊥ and the de
Morgan laws: A⊥⊥ = A, (A⊗B)⊥ = A⊥ `B⊥ and (A`B)⊥ = A⊥ ⊗B⊥. A sequent is a
set of occurrences of formulas. If a ∈ A, we say that a and a⊥ are atoms or atomic formulas.
The sequent system for MLL is given by the rules in Figure 7. If ρ is a sequent system rule,
we call active a formula in a premise of a rule which is not in its conclusion and and principal
the formula introduced by the rule in the conclusion.
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ax
A,A⊥

Γ, A ∆, A⊥
cutΓ,∆

Γ, A ∆, B
⊗

Γ,∆, A⊗B
Γ, A,B `Γ, A`B

Figure 7 Standard MLL Sequent Calculus.

A B

`
A`B

A B

⊗

A⊗B

ax

A A⊥

A A⊥

cut

p

A

A

c

Figure 8 Labels conditions for vertices and edges of a proof structures (also known as links).

I Definition 19 (Proof Structure). A proof structure P is a direct graph with edges labeled by
MLL-formulas and vertices labeled by {ax, cut,⊗,`, p, c} according to conditions of Figure 8.
We call premises (conclusions) of a proof structure the nodes labeled by p (c). Moreover,
abusing notation, we identify these nodes with the formula labeling the outgoing (respectively
incoming) edge of these nodes. Similarly, we call premises ( conclusion) of a node its incoming
(outgoing) edges labels.

To each derivation d with conclusion Γ in MLL we associate the proof structure Pd with
conclusions Γ defined as follows:

for all inference rule ρ in d there is a corresponding node in Pd labeled by ρ having as
premises the active formulas of ρ and as conclusion the principal formula of ρ;
for each formula in the conclusion of d there is a node in Pd labeled by c.

I Definition 20. A proof structure π is a proof net if there is a derivation d in MLL such
that π = Pd.

We characterize proof nets by means of correctness conditions on proof structures.

I Definition 21 (Switching). A switching σ of a MLL proof structure P is a function
associating to each `-node in P a switch, i.e. a block of the partition 〈[1], [2]〉. For each
switching, we define σ(P) as the undirected correction graph (also called test) obtained by
forgetting the orientation of edges and by removing, for each `-node with conclusion A`B,
the edge labeled by B if its switch is [1] or the edge labeled by A if the switch is [2].

I Theorem 22 (Danos-Regnier sequentialization [5]). For each switching σ of π, the graph
σ(π) is ACC iff there is a derivation d such that P = Pd.

The interest of proof nets lies on the fact that they allow of identify derivations which are
equivalent modulo rules permutations. This simplifies the proof of cut-elimination theorem for
MLL by eliminating the bureaucracy of rules permutations during cut-elimination procedure.
The rewriting rules for proof structures cut-elimination are given in Figure 9.

I Theorem 23 (Danos-Regnier cut-elimination [5]). Cut-elimination procedure for proof
structures is convergent and preserves connectedness and acyclicity.

4 Generalized multiplicative connectives and partitions sets

An n-ary connective is a syntactic symbol C we use to construct a new formula C(A1, . . . , An)
from the formulas A1, . . . , An in a formal grammar. By means of example, in MLL we have
only the (binary) connectives ` and ⊗. We remark that in a complete sequent calculus,
each n-ary connective C admits at least one rule ρ with k ≤ n premise sequents with active
formulas A1, . . . , An and principal formula C(A1, . . . , An).

In [5] the authors define a generalized multiplicative rule as a sequent rule which is:
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A B A⊥ B⊥

` ⊗

cut

→
A B A⊥ B⊥

cut cut

A ax

cut A
→

A

A

Figure 9 Proof nets cut-elimination rewriting rules.

` Γ1, Ai1 , . . . , Aik . . . ` Γm, Aih , . . . , Ain ρC
` Γ1, . . . ,Γm,C(A1, . . . , An)

Oρ = 〈[i1, . . . , ik], . . . , [ih, . . . in]〉

Figure 10 A sequential rule ρ introducing the connective C and its associate partition Oρ.

conservative with respect of the atoms (or linear), i.e. the premises of the rule have
exactly the same atoms as the conclusion;
unconditional, i.e. the rule does not require information about the contexts.

As remarked in [7] and [5], these conditions allow us to associate set of partitions to
multiplicative connectives of linear logic. In fact, in sequent calculus we can associate to
each connective C the set of partitions describing how all the sequential rules introducing C
gather the principal subformula between its premise sequents.

Similarly, by the Danos-Regnier correctness criterion, each switching of a MLL proof
structure determines a partition corresponding to the premises belonging to the same
connected component. However, some of the premises can never be connected to the root
of a single-conclusion test of a proof net. For this reason, we prove in this paper that a
set of partitions is not enough to describe a graphical connective, since each connective has
to be given together with its possible switches. This additional information is provided by
considering a special symbol to mark the principal block, i.e. the unique block selected by
the switch to be connected to the conclusion.

4.1 Partitions and generalized sequential connectives
We can associate to a multiplicative rule (i.e. linear and context-free) of the sequent calculus
with n active formulas a partition in Pn. That is, a multiplicative m-ary rule ρC for a
generalized n-ary connective C is completely characterized by the organization of its principal
subformulas A1, . . . , An (see Figure 10).

I Definition 24 (Organization of a rule). Let ρ be an m-ary rule (i.e. a rule with m premise
sequents) with n active formulas A1, . . . , An and principal formula C(A1, . . . , An). The
partition Oρ ∈ Pn associated to ρ is made of m blocks defined as follows: i, j belong to a
same block iff the formulas A1 and Aj belong to the same premise of ρ. We call Oρ the
organization of the rules ρ.

I Example 25. The organizations of the `-rule and the ⊗-rule are respectively {〈[1, 2]〉}
and {〈[1], [2]〉}. Moreover, {〈[1, 2]〉} ⊥ {〈[1], [2]〉}.

This allows to describe an n-ary connective by means of a set of partitions.

I Definition 26 (Generalized sequential connective). We says that a pair (P,Q) of non-empty
sets of partitions in Pn is a description of (or it describes) a sequential n-ary connective if
P ⊥ Q and if Q = P⊥ or P = Q⊥.

If (P,Q) is a description of a n-ary sequential connective, we denote by C(P,Q) a sequential
n-ary connective described by (P,Q) and by C⊥(P,Q) = C(Q,P) its dual connective – described
by (Q,P ). We call O(C(P,Q)) = P the organization of C(P,Q).
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The organization a sequential connective C = C(P,Q) can be interpreted as the set of the
organizations of the rules introducing C. That is, if C is a sequential connective described
by (P,Q), we can think to O(C) as the organizations of some rules in a two-sided calculus
introducing C in the right-hand side and the set O(C⊥) as the organizations of all the rules
introducing C on the left-hand side (because O⊥C = OC⊥ is a type).
I Remark 27. If C(P,Q) is a generalized sequential connective, since Q 6= ∅, by Corollary 3
all its sequential rules have the same arity m = |p| for any p ∈ P .

Let C = {C1, . . . ,Cn} be a set of multiplicative connectives, we define the generalized
C-multiplicative formulas FC extending F with the generalized connectives in C, that is, for all
C = C(P,Q) ∈ C with P,Q ∈ Pn we extend the grammar of MLL-formulas with C(A1, . . . Ani)
and C⊥(A1, . . . Ani

). Thus, for each p ∈ P , we define a sequential rule ρpC introducing the
connective C(P,Q) such that Oρp

C
= p (see Figure 10). We denote MLL(C) the extension of

MLL with the sequent rules
⋃

C∈C
⋃
p∈P {ρ

p
C}.

I Theorem 28. The sequent system MLL(C) is cut-free, that is a sequent Γ in FC is derivable
in MLL(C) ∪ {cut} iff it is in MLL(C).

Proof. The proof is given in [5]. It suffices to remark that the partitions sets describing C
and its dual C⊥ describe the introduction rules for these connectives. Hence a cut-elimination
step consist of replacing the cut-rule and the two rules ρ and ρ′ introducing the cut-formula
by cut-rules between the active formulas of ρ and ρ′. J

I Example 29. If we consider the partitions sets P = {〈[1, 2], [3]〉} and Q = {〈[1, 2, 3]〉},
we have P 6⊥ Q. If ρP and ρ′Q, are the corresponding sequent rules, we can not define a
cut-elimination step as shown below.

` Γ, A1, B2 ` ∆, C3 ρ
` Γ,∆, ρ(A1, B2, C3)

` Γ, A1, B2, C3
ρ′

` Γ, ρ′(A1, B2, C3)

` Γ, A1, B2 ` ∆, C3 ρ
` Γ,∆, ρ(A1, B2, C3)

` Σ, A1, B2, C3
ρ′

` Σ, ρ′(A1, B2, C3)
cut` Γ,∆,Σ

4.2 Partitions and generalized graphical connectives
We associate to each correction graph of an MLL-proof structure with n premises and one
single conclusion a partition in Pn where each block contains the indices of connected premises.
Hence, we are able to associate to each proof net a set of partitions corresponding to all its
possible correction graphs where axiom nodes are replaced by pairs of premise nodes.

I Definition 30 (Pointed partition). A pointed partition2 p• is defined as a partition of the
set {0, k + 1, . . . , n} with k ∈ N such that [0] is not an allowed block of p•. We denote by P•n
the set of pointed partitions over the set {0, 1, . . . , n}. We define a forgetful map

b−c : P{0,k+1,...,n} → P{k+1,...,n}

which associates to each pointed partition p• a partition bp•c = p called underlying partition of
p• given by removing the element 0 form its the non-singleton block in which occurs. Similarly
if p• is a set of pointed partitions we denote by P = bp•c the set {p = bp•c | p• ∈ p•}.

Intuitively, we use the element 0 to mark the principal block, i.e. the block containing the
indices of the premises which are connected to the conclusion in a test.

With this definition, we define the analogous of Definition 26 for graphical connectives.

2 The name “pointed partition” is inspired by pointed spaces of topology, which are spaces where a specific
point plays a special role.
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A1 . . . A
n

C

C(A1, . . . , An)

A1 A2 A3 A4 A5 A6

C

C(A1, . . . , An)

p•

 

A1 A2 A3 A4 A5 A6

• ◦ ◦

C(A1, . . . , An)

Figure 11 On the left: Labels conditions for generalized connectives. On the right: A node
labeled by the C(P•,Q•) with 〈[0, 1, 2, 4], [3, 5], [6]〉 = p• ∈ P • and how this node is modified during
test computation when p• is its selected switch.

I Definition 31 (Generalized Graphical Connectives). We say that the pair (P •, Q•) of non-
empty sets of pointed partitions in P•n such that for all 0 < i ≤ n there is a block γ such that
{0, i} ⊂ γ ∈ p• ∈ P • (respectively {0, i} ⊂ γ ∈ q• ∈ Q•) is a description of (or it describes)
a graphical n-ary connective if bP •c ⊥ bQ•c and if bP •c⊥ ⊥ bQ•c⊥.

We denote by C(P•,Q•) a graphical n-ary connective described by (P •, Q•) and by
C⊥(P•,Q•) = C(Q•,P•) its dual connective – described by (Q•, P •).

I Example 32. If P • = {〈[1, 0], [2]〉, 〈[1], [0, 2]〉} and Q• = {〈[0, 1, 2]〉}, then ` and ⊗ are
respectively described by (P •, Q•) and (Q•, P •).

I Definition 33 (Generalized Proof Structure). Let C = {C(P•1 ,Q•1), . . . ,C(P•
k
,Q•

k
)} be a set

of graphical n-ary connectives. An MLL(C) proof structure is a direct graph P with edges
labeled by MLL(C)-formulas and vertices labed by {ax, cut,⊗,`, p, c} ∪ {C,C⊥}C∈C satisfying
conditions in Figures 8 and 11.

As for MLL proof structure, in order to define a correctness criterion, we extend the
notion of switching to graphical n-ary connectives.

I Definition 34 (Switching). Let C be a set of generalized graphical connectives. A switching
σ of a MLL(C) proof structure P is a function associating to each C(P•,Q•)-node (i.e. a node
labeled by C(P•,Q•) ∈ C) a switch, i.e. a pointed partition p• ∈ P •.

Each switching σ defines an undirected graph σ(P) (called correction graph or test)
obtained by forgetting edge orientations and modifying each node v labeled by C(P•,Q•) with
switch p• ∈ P • as follows: for each block γ ∈ p• with 0 /∈ γ, disconnect the corresponding
edges targeting v and we re-link them to a fresh target node vγ for each γ (see Figure 11).

I Definition 35 (Pretype). Let F be a MLL(C) formula over the atoms a1, . . . , an and PF be
the unique proof structure with premise a1, . . . , an and conclusion F , i.e. PF is the formula
tree of F . For each switching σ of PF we define a pointed partition p•σ ∈ P•n as follows:

i and j belong to the same block in p• iff ai and aj belongs to the same connected
component of σ(P);
i belongs in the same block 0 in p• iff ai is connected to the conclusion of σ(P).

The pretype of F is the set P•F = {p•σ ∈ P•n | σ is a switching of PF }. We call bP•F c the
Danos-Regnier pretype (or DR-pretype for short) of F . The type of F is the bi-orthogonal
of DR-pretype, i.e. TF = bP•F c⊥⊥.

I Definition 36 (Generalized Proof Net). A MLL(C)-proof structure P is a MLL(C)-proof net
iff for each switching σ of P the graph σ(P) is ACC.

The computational meaning of generalized connectives is guaranteed by the fact that the
elimination of a cut-vertex linking two vertices labeled by C and C⊥ preserves the correctness
criterion [5]. This follows from Definition 31 of a graphical connective: the condition P ⊥ Q
is necessary for ACC of proof structures, while the condition P⊥ ⊥ Q⊥ is mandatory to
ensure the stability of ACC under cut-elimination (see Figure 12).
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A1 . . . A
n

A
⊥
1 . . . A

⊥
n

C C⊥

cut

→
A1 . . . A

n
A
⊥
1 . . . A

⊥
n

cut · · · cut

Figure 12 Generalized proof nets cut-elimination rewriting rule.

5 Decomposable connectives

In this section we study a notion of decomposability by means of ⊗ and ` for generalized
connectives in both sequential and graphical sense. In particular, we provide a new definition
of decomposability for graphical connectives which has to replace the one given in [5].

5.1 Sequential connectives
I Definition 37 (Organization of a formula). If F = F (a1, . . . , an) is a MLL-formula, we
define the organization of F as the set of all partitions p ∈ Pn with p = 〈γ1, . . . , γk〉 such that
there is a MLL-derivation of F form the premise sequents {ai}i∈γ1 , . . . , {ai}i∈γk

.

I Definition 38 (Decomposable sequential connectives). A sequential connective C(P,Q) is
s-decomposable if there is a MLL-formula F such that P = OF (and Q = OF⊥).

I Example 39. Let P = {〈[1, 3, 4], [2]〉, 〈[2, 3, 4], [1]〉, 〈[1, 3], [2, 4]〉, 〈[1, 4], [2, 3]〉} and Q =
{〈[1, 2], [3], [4]〉}. Then C(P,Q) is s-decomposable. In fact P = OF for F = (a1⊗a2)`a3 `a4.

We show in Subsection 5.3 (Corollary 48) that if C is a s-decomposable sequential
connective, then OC is a type.

5.2 Graphical connectives
As for the sequential case, we define a notion of decomposability for graphical connectives.

I Definition 40 (Decomposable graphical connectives). A graphical n-ary connective C(P•,Q•)
is g-decomposable iff there is a MLL formula F (a1, . . . , an) such that P • = P•F and Q• = P•F⊥ .
It is DR-decomposable if bP •c = bP•F c and bQ•c = bP•F⊥c.

I Lemma 41. If a graphical connective is not DR-decomposable then it is not g-decomposable.

Proof. By absurd, let C(P•,Q•) be a g-decomposable graphical connective which is not DR-
decomposable. Thus, there is a MLL formula F such that P • = P•F and Q• = P•F⊥ . Then
bP •c = bP•F c and bQ•c = bP•F⊥c. J

I Example 42. Let F = (((a1 ` a2)⊗ a3)⊗ a4) ` a5 and

P•F = P •1 = {〈[0, 1, 3, 4], [2], [5]〉, 〈[1, 3, 4], [2], [0, 5]〉, 〈[0, 2, 3, 4], [1], [5]〉, 〈[2, 3, 4], [1], [0, 5]〉}
P•F⊥ = Q• = {〈[0, 1, 2, 5], [3], [4]〉, 〈[0, 3, 5], [1, 2], [4]〉, 〈[0, 4, 5], [1, 2], [3]〉}.

Let P •2 = P •1 ∪ {〈[1, 3, 4], [0, 2], [5]〉} and C1 = C(P•1 ,Q•) and C2 = C(P•2 ,Q•). Then C1 and
C2 are both DR-decomposable, since bP •1 c = bP •2 c = bP•F c and bQ•c = bP•F⊥c, while
C1 = C(P•1 ,Q•) is g-decomposable and C2 = C(P•2 ,Q•) is not g-decomposable.
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I Proposition 43 (Switchings composition). Let F = F (a1, . . . , an) be a MLL-formula, then:
1. If F = F1(a1, . . . , ak) ` F2(ak+1, . . . an) and σ is a switching of PF , there are p•1 ∈

P{0,1,...,m} and a p•2 ∈ P{0,m+1,...,n} pointed partitions associated respectively to a test of
PF1 and a test of PF2 such that p•σ ∈ P•n is p•σ = bp•1c ∪ p•2 or p•σ = p•1 ∪ bp•2c.

2. If F = F1(a1, . . . , ak) ⊗ F2(ak+1, . . . an) and σ is a switching of PF , then there are
p•1 ∈ P{0,1,...,m} and a p•2 ∈ P{0,m+1,...,n} pointed partitions associated respectively to a
test of PF1 and a test of PF2 such that p•σ ∈ P•n is the pointed partition

p•σ = (p•1 \ {γ•1}) ∪ (p•2 \ {γ•2}) ∪ {γ•1 ∪ γ•2}

with γ•1 and γ•2 respectively the blocks of p•1 and p•2 containing 0.
3. For all i ∈ {1, . . . , n} there is a p• ∈ P•F with γ ∈ p• such that {0, i} ⊂ γ.

Proof. 1. Since F = F1 ` F2, then every switching σ on PF is given by a switching σ1
on PF1 , a switching σ2 on PF2 and a switch for the principal ` node. If i, j > 0, then
i, j ∈ γ ∈ p•σ iff their corresponding premise are connected in σ(PF ). Thus i, j belong to
a same block iff there is a block in p•σ1

or in p•σ2
which contains both i and j.

For j = 0, since only one block may contain 0 accordingly with the switch of the principal
`, i and 0 belong in the same block iff they are either in the same block in p•σ1

or in p•σ2
.

2. Similarly to the previous case. It suffices to remark that if i, j ∈ γ ∈ p•σ then either i and
j belong to the same block in p•σ1

or in p•σ2
, or i and 0 belong to the same block in p•σ1

and j and 0 belong to the same block in p•σ2
.

3. By induction over F . If F = a is an atomic formula then P•F = {〈[1]〉}, while if F = F1⊗F2
or F = F1 ` F2 then i and 0 belong to the same block of a pointed partition in P•F iff i
and 0 belong to a same block of a partition in P•F1

∪ P•F2
. J

I Proposition 44 (Pretypes composition). Let F be a MLL-formula.
1. If F = F1 ` F2, then p• ∈ P•F iff p• = bp•1c ∪ p•2 or p• = p•1 ∪ bp•2c with p•1 ∈ P•F1

and
p•2 ∈ P•F2

.
2. If F = F1⊗F2, then p• ∈ P•F iff p• = (p•1 \ {γ•1})∪ (p•2 \ {γ•2})∪ {γ•1 ∪ γ•2} with p•1 ∈ P•F1

and 0 ∈ γ•1 ∈ p•1, and p•2 ∈ P•F2
and 0 ∈ γ•2 ∈ p•2.

Proof. It follows the constructions given in the proof of Proposition 44. J

I Lemma 45. If F = F1 ` F2 is a MLL formula then |bP•F c| = |bP•F1
c| · |bP•F2

c|.

Proof. Since bp•1 ∪ bp•2cc = bbp•1c ∪ p•2c = bp•1c ∪ bp•2c, we conclude by Proposition 44. J

5.3 Correspondence between sequential and graphical connectives
There is a strong link between s-decomposable sequential and g-decomposable graphical
connectives as exemplified by ⊗ and `:

b{〈[0, 1, 2]〉}c⊥ = {〈[1, 2]〉}⊥ = {〈[1], [2]〉} = O(⊗)
b{〈[1, 0], [2]〉, 〈[1], [0, 2]〉}c⊥ = {〈[1], [2]〉}⊥ = {〈[1, 2]〉} = O(`)

In fact, the two syntaxes are orthogonal views of a same decomposable connective:

I Proposition 46 ([5]). If C(P•,Q•) is a g-decomposable graphical connective, then there is a
MLL formula F such that O(F ) = bP•C(P•,Q•)

c⊥.

I Example 47. If we consider the connective C given in the Example 39, bP•P•c = bP•F c =
{〈[1, 2], [3], [4]〉, } with F = ((a1 ⊗ a2) ` a3) ` a4 and bP•P•c⊥ = OF = {〈[1, 3, 4], [2]〉,
〈[2, 3, 4], [1]〉〈[1, 3], [2, 4]〉, 〈[1, 4], [2, 3]〉}.
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I Corollary 48. If C is a s-decomposable sequential connective, O(C) and O(C⊥) are types.

Proof. It is consequence of Propositions 5.4 and 46. J

6 Non-decomposable connectives

In this section we show that not all connectives are decomposable. We start by the following
connective given in [7], then reformulated in [5]:

G4 = C(P,Q) with P = {〈[1, 2], [3, 4]〉, 〈[2, 3], [4, 1]〉} and Q = {〈[1, 3], [2], [4]〉, 〈[2, 4], [1], [3]〉}

Following [11], G4 belongs to a class of non-decomposable connectives, called entangled, given
by two sets of partitions P and Q such that one of them is an entangled type (Definition 8).

We now define a more general class of non-decomposable connectives C(P,Q) where
P = S〈u,v〉 is a basic set of partitions. We then call such connectives Girard connectives. We
prove that these connectives are not decomposable and that whenever S〈u,v〉 is contained in
a set of partitions P then the connective C(P,Q) is non-decomposable (for any Q).

Moreover, if G is a Girard connective, the sequent G(a1, . . . , an),G⊥(a⊥1 , . . . , a⊥n ) admits
no η-exapaded proof in MLL(C) (this problem is known as “packaging problem”). In fact,
since Girard connectives are not decomposable, this sequent is not stepwise derivable in
MLL(C). In other words, for any C containing at least one non-decomposable connective, any
sequent system for MLL(C) can not be an initial-coherent system [13].

I Definition 49 (Girard connectives). If S〈u,v〉 is a space of basic partitions with u and
v prime numbers, we call the sequential connective C〈u,v〉 described by (S〈u,v〉,S⊥〈u,v〉) a
sequential Girard connective. Moreover, we call the graphical connective C〈u,v〉 described by
(P •, Q•) a graphical Girard connective iff bP •c = S〈u,v〉 and bQ•c = S⊥〈u,v〉.

I Theorem 50. Every Girard graphical connective is not DR-decomposable.

Proof. Let C(P•,Q•) be a Girard graphical connective. By definition this means that bP •c =
S〈u,v〉 and bQ•c = S⊥〈u,v〉. By absurd, if C(P•,Q•) is DR-decomposable, then there is a
MLL-formula F such that bP•F c = S〈u,v〉 and bP•F⊥c = S⊥〈u,v〉. Depending on F , we have
three cases:

if F is an atomic formula, then bP•F c = {〈[1]〉} 6= S〈u,v〉 for any u, v ∈ N;
if F = F1 `F2, by Lemma 45, v = |S〈u,v〉| = |bP•F c| = |bP•F1

c| · |bP•F2
c|. Since v is prime,

we can assume without loss of generality that bP•F1
c = {p1}, thus there is at least a block

γ ∈ p1 such that γ ∈ p for all p ∈ bP•F c;
if F (a1, . . . , an) = F1 ⊗ F2, we can assume without loss of generality that F1 =
F1(a1, . . . , ak) and F2 = F2(ak+1,...,,an

) with k + 1 > v. Thus, by Proposition 43.3,
there is a γ1 ∈ p•1 ∈ P•F1

such that 0, 1 ∈ γ1. Since k + 1 > v and n = uv, then there is
j ≥ k + 1 such that δn(i, j) ≤ v. Moreover, by Proposition 43.3, there is a γ2 ∈ p•2 ∈ P•F2

such that 0, j ∈ γ2. By Proposition 43.2 we conclude that there is γ ∈ p• ∈ P•F such that
j, i ∈ γ, which is absurdum after Lemma 13. J

I Corollary 51. Every graphical Girard connective is not g-decomposable.

Proof. By Theorem 50 and Lemma 41. J

I Corollary 52. Every Girard connective is not s-decomposable.

I Theorem 53 (Danos-Regnier). Let P = bP •c and Q = bQ•c s.t. P = Q⊥ and Q = P⊥.
Then a graphical connective C(P•,Q•) is DR-decomposable iff C(P,Q) is s-decomposable.
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G4 G⊥4
a1 a2 a3 a4

⊗ ⊗

`
F1

a1 a2 a3 a4

` `
⊗

F1
⊥

a4 a1 a2 a3

⊗ ⊗

`
F2

a4 a1 a2 a3

` `
⊗

F2
⊥

{〈[0, 1, 2], [3, 4]〉, 〈[0, 3, 4], [1, 2]〉} {〈[0, 1, 3], [2], [4]〉, 〈[0, 2, 4], [1], [3]〉, 〈[0, 1, 4], [2], [3]〉, 〈[0, 2, 3], [1], [4]〉}
∪ ∩

{〈[0, 1, 4], [2, 3]〉, 〈[0, 2, 3], [1, 4]〉} {〈[0, 1, 3], [2], [4]〉, 〈[0, 2, 4], [1], [3]〉, 〈[0, 1, 2], [3], [4]〉, 〈[0, 3, 4], [1], [2]〉}

Figure 13 The connectives G4 = C〈2,2〉 and its dual connective G⊥4 seen respectively as the union
of DNF formulas pretypes and the intersection of CNF formula pretypes.

In [11] it is showed that P = Q⊥ and Q = P⊥ for every sequential connective C(P,Q).

I Corollary 54 (Completion of a sequential Girard connective). Let n = uv with u, v prime
numbers, and P and Q non empty subsets of Pn. If C(P,Q) is a s-decomposable sequential,
then C〈u,v〉 6⊂ P and C⊥〈u,v〉 6⊂ P .

Proof. By Theorem 18, both S〈u,v〉 and S⊥〈u,v〉 are types. Moreover, by Proposition 46, if
C(P,Q) is decomposable then P is a type. Then, by Theorem 7, none of C〈u,v〉 and C⊥〈u,v〉 can
be subsets of P . J

7 Conclusions and future works

In this paper we studied the generalized multiplicative connectives which can be described
by two sets of pairwise orthogonal partitions. The orthogonality condition guarantees the
definition of dual connectives for which cut-elimination is satisfied. Thus, multiplicative linear
logic can be extended with these connectives preserving a computational interpretation.

We defined a notion of decomposability by means of ` and ⊗ for generalized connectives,
with respect to both sequent calculus and proof structures syntax. We then showed the
existence of connectives which are not decomposable in both senses. In particular, we
exhibited the existence of an infinite family of non-decomposable connectives called Girard
connectives. For such non-decomposable generalized connectives, we gave an interpratation
as superposition of special decomposable generalized connectives which are connectives
associated to a family of MLL disjunctive normal forms.

The class of Girard connectives strictly includes the class of non-decomposable entagled
connectives, thus extending the previous work of the second author on the same subject [11].
Although the definition of a Girard connective appears to be highly combinatorial, it admits
the following simple geometrical interpretation. Every Girard connective in graphical syntax
can be interpreted either as the union of the pretypes of a family of DNF formulas or as the
intersection of the pretypes of a family of CNF formulas having the same formula tree but
differing for the cyclic permutation of their atoms/leaves (see Figure 13). Observe that cyclic
permutations can help to visualize the partition associated to those connectives (see Figure
3). This interpretation is not trivial since, by Proposition 5.6, the union of pretypes is not
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necessarily a type. However, these connectives have no relation with the cyclic fragment
of multiplicative linear logic [1]: neither the order among blocks nor the order among the
elements of each block take role in the definition.

The existence of non-decomposable multiplicative connectives which do not admit any
sequentialization via the ⊗ and `, suggests future investigations on their geometry of
interaction [8], their connection to syntaxes for concurrency such as the π-calculus [14] and
their denotational semantics [4] expanding the ideas given in [9] for syntectic connectives.
Moreover, from the view point of logical programming with proof nets [3], non-decomposable
graphical connectives provide additional modules. We foresee the use of the Girard connectives
which may be interpreted as superposition of DNF for the definition of modules representing
the superpositions of bipoles [2].
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Abstract
For every finitary set functor F we demonstrate that free algebras carry a canonical partial order.
In case F is bicontinuous, we prove that the cpo obtained as the conservative completion of the free
algebra is the free completely iterative algebra. Moreover, the algebra structure of the latter is the
unique continuous extension of the algebra structure of the free algebra.

For general finitary functors the free algebra and the free completely iterative algebra are proved
to be posets sharing the same conservative completion. And for every recursive equation in the
free completely iterative algebra the solution is obtained as the join of an ω-chain of approximate
solutions in the free algebra.
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1 Introduction

Recursion and iteration belong to the crucial concepts of theoretical computer science. An
algebraic treatement was suggested by Elgot who introduced iterative algebraic theories
in [9]. The corresponding concept for algebras over a given endofunctor F was defined by
Milius [10]: an algebra is called completely iterative if every recursive equation has a unique
solution in it. We recall this in Section 5. The free completely iterative theory of Elgot is
then precisely the algebraic theory corresponding to the free completely iterative algebras.
Milius also described the free completely iterative algebra on a given object X: it is precisely
the terminal coalgebra for the endofunctor F (−) +X. This corresponds nicely to the fact
that the free algebra on X is precisely the initial algebra for F (−) +X.

In the present paper we study iterative algebras for a finitary set functor F (i.e., one
preserving filtered colimits). We first show that given a choice of an element of F∅, we obtain
a canonical partial order on the initial algebra µF and on the terminal coalgebra νF . To
illustrate this, consider the polynomial functor HΣ for a finitary signature Σ: here νHΣ is
the algebra of all Σ-trees and µHΣ the subalgebra of all finite Σ-trees. The ordering of νHΣ
is “by cutting”: for two Σ-trees s and s′ we put s < s′ if s is obtained from s′ by cutting,
for a certain height, all nodes of larger heights away. This makes νHΣ a cpo which is the
conservative completion of the subposet µHΣ. (The basic reason is that for every infinite
Σ-tree its cuttings ∂ns at level n ∈ N form an ω-chain with s = t∂ns.) Now every finitary
set functor can be presented as a quotient of a polynomial functor, see Section 4, and both
µF and νF inherit their orders from the order of Σ-trees by cutting. We prove that
(a) if F is bicontinuous, i.e., it also preserves limits of ωop-sequences, then νF is a cpo which

is the conservative completion (see Remark 8) of µF , and
(b) for finitary set functors in general νF and µF share the same conservative completion.
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7:2 On Free Completely Iterative Algebras

Moreover, the coalgebra structure of νF is the unique continuous extension of the inverted
algebra structure of µF . And for every coalgebra A the unique homomorphism into νF is a
join of an ω-chain of approximate homomorphisms hn : A → µF . All this depends on the
choice of an element in F∅.

We then apply this to a new description of the free completely iterative algebra on an
arbitrary set X 6= ∅. We choose a variable in X and obtain an order on ΦX, the free algebra
for F on X, and one on ΨX, the free completely iterative algebra on X. We prove that the
conservative completion of ΦX and ΨX coincide. And that in case that F is bicontinuous,
ΨX is the conservative completion of ΦX. In both cases, the algebra structure of ΨX is the
unique continuous extension of that of ΦX. Moreover, solutions of recursive equations in
ΨX can be obtained as joins of ω-chains of so-called approximate solutions in ΦX obtained
in a canonical manner.

Related Work. We can work with complete metrics in place of complete partial orders.
Barr proved that given a bicontinuous set functor F with F∅ 6= ∅, there is a canonical
complete metric on νF which is the Cauchy completion of µF , see [8]. This was extended
in [2] to finitary set functors with F∅ 6= ∅ : νF and µF have the same Cauchy completion,
and the coalgebra structure of νF is the unique continuous extension of the inverted algebra
structure of µF .

In the bicontinuous case a cpo structure of νF was presented in [4]. But the definition
was quite technical; we recall this in Section 3. One of the main results of the present paper
that the order of νF by cutting (inherited from Σ-trees) coincides with that of op. cit.

2 Polynomial Functors

We first illustrate our method on the special case: the polynomial functor HΣ associated
with a signature Σ = (Σn)n∈N. This is a set functor given by

HΣX =
∐
n∈N

Σn ×Xn ,

and we represent the elements of the above set as “flat” terms σ(x1, . . . , xn) where σ ∈ Σn
and (xi) ∈ Xn.
I Remark 1.
(1) A free algebra ΦΣX on a set is the algebra of all terms with variables in X. This can

be represented by finite trees as follows. A Σ-tree is an ordered tree labelled in Σ so
that every node labelled in Σn has precisely n successors. We consider Σ-trees up to
isomorphism. Now given a set X we form a new signature

ΣX = Σ +X

in which elements of X have arity 0. A ΣX -tree is called a Σ-tree over X; its leaves are
labelled by nullary symbols or variables from X. Then we get

ΦΣX = all finite Σ-trees over X.

The algebra structure

ϕ : HΣ
(
ΦΣX

)
→ ΦΣX

assigns to each member σ(t1, . . . , tn) (where ti are finite ΣX -trees) the ΣX -tree with root
labelled by σ and with n maximum proper subtrees t1, . . . , tn. Thus ϕ−1 is tree tupling.
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(2) The terminal coalgebra νHΣ can analogously be described as the coalgebra of all Σ-trees,
the coalgebra operation is tree-tupling. For every set X we denote by ΨX the terminal
coalgebra of HΣX (= HΣ(−) +X):

ΨΣX = νHΣX = ν(HΣ +X) .

It consists of all Σ-trees over X. The coalgebra structure

τ : ΨΣX → HΣ(ΨΣX)

assigns to a tree t ∈ ΨΣX either x ∈ X, if t is a root-only tree labelled in X, or
σ(t1, . . . , tn), if the root of t is labelled by σ ∈ Σn and its successor subtrees are t1, . . . , tn.
This is a free completely iterative algebra for HΣ, see Section 5.

I Example 2.
(1) If Σ consists of a set A of unary operation symbols, we have HΣX = A×X. A tree in

ΨΣX is either a finite unary tree over X corresponding to an element of A∗ ×X (a leaf
labelled in X, the other nodes labelled in A) or an infinite unary tree corresponding to a
word in Aω:

ΨΣX = A∗ ×X +Aω .

(2) Let Σ be a signature of one n-ary symbol for every n ∈ N. Thus HΣX = X∗. A tree in
ΨΣX does not need labels for inner nodes, and for leaves we either have a label in X or
we consider the leaf unlabelled:

ΨΣX = all finitely branching trees with leaves
partially labelled in X.

I Notation 3. Let us choose an element p ∈ X ∪ Σ0. Then every tree t in ΨΣX yields a
tree ∂nt of height at most n by cutting all nodes of larger heights away and relabelling all
leaves of height n by p.

I Definition 4. We consider ΨΣX as a poset where for distinct trees s, s′ we put

s < s′ iff s is a cutting of s′.

That is, s = ∂ns
′ for some n ∈ N.

I Example 5.
(1) For HΣX = A×X the subset Aω of ΨΣX is discretely ordered. Given (u, x) and (v, y)

in A∗ ×X then

(u, x) < (v, y) iff u is a proper prefix of v and x = p.

Finally (u, x) < w, for w ∈ Aω, iff u is a finite prefix of w and x = p.

(2) For HΣX = X∗ the set ΨΣX is ordered by cutting.

I Remark 6.
(a) Every tree s in ΨΣX is a join of its cuttings:

s =
⊔
n∈N

∂ns .
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7:4 On Free Completely Iterative Algebras

(b) Every strictly increasing sequence (sn)n∈N in ΨΣX lies in ΦΣX, i.e., each sn is finite.
And this sequence has a unique upper bound. Indeed, define s ∈ ΦΣX as follows: for
every k ∈ N there exists n ∈ N such that all the trees sn, sn+1, sn+2, . . . agree up to
height k. Then this is how s is defined up to height k.
It is easy to verify that s is a well-defined Σ-tree over X. This is obviously an upper
bound: to verify sm < s for every m, one shows, for the height k of the finite tree sm,
that sm and s agree at that height, hence sm = ∂ks. Every other upper bound s′ agrees
with s on heights 0, 1, 2, . . . – thus, s = s′.

(c) Given a directed set A ⊆ ΨΣX, all strictly increasing ω-chains in A have the same upper
bound. Indeed, let (sn) and (s′n) be strictly increasing sequences in A, then since A is
directed, we can find a strictly increasing sequence (s′′n) in A such that each s′′n is an
upper bound of sn and s′n for every n. The unique upper bound of that sequence is also
an upper bound for (sn) and (s′n).

I Corollary 7. ΨΣX is a cpo, i.e., it has directed joins.

Indeed, if a directed set A ⊆ ΨΣX has a largest element, then this is tA. Assuming the
contrary, we can find a strictly increasing sequence sn ∈ A. If s is its upper bound, then
s = tA. In fact, given x ∈ A, we can find a strictly increasing sequence s′n ≥ sn in A with
x ≤ s′0 (since A is directed). Since ts′n is an upper bound of (sn), it follows that ts′n = s.
Thus, s in an upper bound of A, and it is clearly the smallest one.

I Remark 8.
(1) A monotone function between posets is called continuous if it preserves all existing

directed joins.

(2) Recall that a conservative completion of a poset P is a cpo P̄ containing P as a subposet
closed under existing directed joins with the following universal property:

For every continuous function f : P → Q, where Q is a cpo, there exists a unique
continuous extension f̄ : P̄ → Q.

See [7], Corollary 2, for the proof that P̄ exists.

(3) ΨΣX is a conservative completion of ΦΣX. Indeed, given a continuous function
f : ΦΣX → Q, define f̄ : ΨΣX → Q by f̄(s) = t

n∈N
f(∂ns) for every tree s in ΨΣX.

This extends f , and the proof of Corollary 7 demonstrates that f̄ is continuous. It is
unique: from s = t∂ns the formula for f̄ follows via continuity.

3 The limit F ω1 as a cpo

In this section F denotes a finitary set functor with F∅ 6= ∅. If we choose an element
p : 1→ F∅, then the limit Fω = lim

n∈N
Fn1 of the terminal-coalgebra chain carries a structure

of a cpo (a poset with directed joins). This cpo was presented in [4], we recall this structure
here and show in the next section a more intuitive description of that cpo ordering.

I Notation 9.
(1) The initial algebra is denoted by µF with the algebra structure ϕ : F (µF ) → F . The

terminal coalgebra is denoted by νF with the structure τ : νF → F (νF ).
(2) For the initial object 0 (empty set) the unique morphism i : 0→ F0 yields an ω-sequence

of objects Fn0 (n ∈ N) and connecting morphisms Fni called the initial-algebra ω-chain.
Its colimit is denoted by Fω0 with the colimit cocone in : Fn0 → Fω0. Since F is
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finitary, Fω0 is an initial algebra. The algebra structure ϕ : F (Fω0)→ Fω0 is the unique
morphism with ϕ · Fin = in+1 for n ∈ N. See [3].

(3) Dually, the unique morphism t : F1→ 1 yields an ωop-sequence of objects Fn1 (n ∈ N)
and connecting morphisms Fnt, called the terminal coalgebra ω-chain. Its limit is denoted
by Fω1 with the limit cone tn : Fω1→ Fn1.

(4) The unique morphism u : 0 → 1 defines morphisms Fnu : Fn0 → Fn1. There exists a
unique monomorphism ū : Fω0 → Fω1 with tn · ū · in = Fnu (n ∈ N), see [4, Lemma
2.4].

(5) Since p : 1→ F0 has been chosen, we get morphisms

en = ū · in+1 · Fnp : Fn1→ Fω0 ,

and we define

rn = en · tn : Fω1→ Fω1 .

The following theorem is Theorem 3.3 in [4]. The assumption, made in that paper, that
F is bicontinuous, was not used in the proof. Observe that the statement concerns the limit
Fω1 of which we do not claim it is νF .

I Theorem 10. Fω1 is a cpo w.r.t. the following ordering

x v y iff x = y or x = rn(y) for some n ∈ N.

Every strictly increasing ω-chain has a unique upper bound in Fω1.

I Example 11.
(1) For F = HΣ we have Fω1 = νHΣ, all Σ-trees. Recall our choice of p ∈ F0 = Σ0. The

ordering v above is precisely that by cutting, see Definition 4.
Indeed, ū : µHΣ → νHΣ is just the inclusion map. If we put 1 = {p}, then HΣ1 consists
of Σ-trees σ(p, . . . , p) or σ ∈ Σ0 of height at most 1 with leaves labelled by p. More
generally, Hn

Σ1 consists of Σ-trees of height at most n with leaves of height n labelled by
p. The function en : Hn

Σ1→ µHΣ is the inclusion map, hence, rn is the cutting function
∂n of Section 2.

(2) For the finite power-set functor Pf we have Pf0 = {∅}, thus the chosen element is
p = ∅. Recall that a non-ordered tree is called extensional if for every node all maximum
subtrees are pairwise distinct (i.e., non-isomorphic). Every tree has an extensional
quotient obtained by recursively identifying equal maximum subtrees of every node.
In the initial-algebra chain, Pnf 0 can be described as the set of all extensional trees of
height at most n (and Pnf i are the inclusion maps). Hence Pωf 0 =

⋃
n∈N
Pnf 0 is the set of

all finite extensional trees.
Worrell proved that Pωf 1 can be described as the set of all compactly branching strongly
extensional trees, see [11]. (Given a tree s, a relation R on its nodes is called a tree
bisimulation if (a) it only relates nodes of the same height and (b) given xRy, then
for every successor x′ of x there is a successor y′ of y with x′Ry′, and vice versa. A
tree is called strongly extensional if every tree bisimulation is contained in the diagonal
relation.)
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7:6 On Free Completely Iterative Algebras

I Remark 12. Observe that each rn factorizes through µF : we have morphisms

∂n : νF → µF with rn = ū · ∂n .

Indeed, put ∂n = in+1 · Fnp · tn.

I Notation 13 (See [3]). The initial-algebra chain for F beyond the above finitary iterations
is the following chain indexed by all ordinals n: on objects define Fn0 by F 00 = 0, Fn+10 =
F (Fn0) and F k0 = colimn<k F

n0 for limit ordinals k. The connecting morphisms are denoted
by in,k : Fn0→ F k0 (n ≤ k). We have i0,1 : 0→ F0 unique, in+1,k+1 = Fin,k, and for limit
ordinals k the cocone (in,k)n<k is a colimit cocone.

Dually, the terminal-coalgebra chain indexed by Ordop has objects Fn1 with F 01 = 1,
Fn+11 = F (Fn1) and F k1 = lim

k>n
Fn1. And it has connecting morphisms tn,k with t1,0

unique, tn+1,k+1 = Ftn,k and (tn,k)k>n the limit cone if k is a limit ordinal. In our notation
above we thus have t = t1,0, Ft = t2,1, etc.

I Lemma 14. Every natural transformation ε : H → F between endofunctors induces
(1) a unique natural transformation ε̂n : Hn1 → Fn1 (n ∈ Ord) between their terminal-

coalgebra chains satisfying

ε̂n+1 ≡ H(Hn1) εHn1−−−−→ F (Hn1) F ε̂n−−−−→ F (Fn1) ,

and
(2) a unique natural transformation ε̃n : Hn0→ Fn0 (n ∈ Ord) between their initial-algebra

chains satisfying

ε̃n+1 ≡ H(Hn0) εHn0−−−−→ F (Hn0) F ε̃n−−−−→ F (Fn0) .

Proof. We present the proof of (1), that of (2) is completely analogous.
Denote by tn,k and t′n,k the connecting morphisms of the terminal-coalgebra chains for F

and H, resp.
We have ε̂0 : 1→ 1 unique, and ε̂1 = ε1 : H1→ F1 is also unique. The first naturality

square

H1
t′1,0 //

ε̂1
��

1

ε̂0
��

F1
t1,0

// 1

trivially commutes.
Given ε̂n, then ε̂n+1 is uniquely determined by the above formula. And every naturality

square for n

Hn1
t′n,m //

ε̂n
��

Hm1

ε̂m
��

Fn1
tn,m

// Fm1

(m ≤ n)
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yields the following naturality square for n+ 1:

Hn+11
Ht′n,m //

ε̂n+1

��

εHn1

%%

Hm+11

ε̂m+1

��

εHm1

}}F (Hn1)
Ft′n,m //

F ε̂n

yy F ε̂m !!
Fn+11

Ftn,m

// Fm+11

Indeed, the upper part commutes since ε : H → F is natural, and for the lower one apply F
to the square above.

Thus, all we need proving is that given a limit ordinal k for which all the above squares
with m ≤ n < k commute, there is a unique ε̂k : Hk1→ F k1 making the following squares

Hk1
t′k,n //

ε̂k
��

Hn1

ε̂n

��
F k1

tk,n
// Fn1

(n < k)

commutative. The morphism ε̂n · t′k,n for all n < k form a cone of the k-chain with limit
F k1, i.e., we have, for each n > m, the following commutative triangle

Hk1

t′k,n

��

t′k,m

��
Hn1

ε̂n

��

t′n,m

// Hm1

ε̂m

��
Fn1

tn,m
// Fm1

Thus, ε̂k is uniquely determined by the above commutative squares. J

I Remark 15. ε̂ω : Hω1→ Fω1 is the unique morphism satisfying ε̂n · t′n = tn · ε̂ω for every
n ∈ N. Indeed, this follows from the above proof since tn = tω,n and t′n = t′ω,n. Analogously,
ε̃ω : Hω0→ Pω0 is the unique morphism satisfying ε̃ · i′n = in · ε̃n for every n ∈ N.

I Remark 16. Recall the description of the terminal coalgebra of a finitary set functor F due
to Worrell [11]:
(a) All connecting morphisms tn,ω with n ≥ ω are monic, thus, Fω+ω1 =

⋂
n∈N

Fω+n1;

(b) Fω+ω1 is the terminal coalgebra whose coalgebra structure is inverse to tω+ω+1,ω+ω.

I Example 17. For Pf (see 11(2)) the subset Pω+n1 of Pω1 consists of all strongly extensional
compactly branching trees which are finitely branching at all levels up to n − 1. Thus,⋂
n∈N
Pω+n1 is the set νPf of all finitely branching strongly extensional trees in Pωf 1. This

was proved in [11].
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7:8 On Free Completely Iterative Algebras

I Remark 18. Since µF can be viewed as a coalgebra for F (via ϕ−1), we have a unique
coalgebra homomorphism

m : µF → νF with τ ·m = Fm · ϕ−1 .

This is monic for every finitary set functor, see [2, Proposition 5.1].
We thus can consider µF as a subset of νF and m as the inclusion map.
Since both HΣ and F are finitary functors, we have the morphism ε̃ω : µHΣ → µF of

Lemma 14.

I Lemma 19. ε̃ω : (µHΣ, ϕ
′) → (µF, ϕ · εµF ) is a homomorphism of algebras for HΣ.

Consequently, ε̃ω is a restriction of k̂, i.e., we have k̂ ·m′ = m · ε̃ω : µHΣ → νF .

Proof.
(1) To verify that ε̃ω is a homomorphism, i.e., ε̃ω · ϕ′ = ϕ · εµF ·HΣε̃ω, we use the fact that

the colimit cocone (i′n)n∈N yields a colimit cocone (HΣi
′
n)n∈N. And each HΣi

′
n merges

the two sides of our equation:

ε̃ω · ϕ′ ·HΣi
′
n = ε̃ω · i′n+1 (definition of ϕ′)

= in+1 · ε̃n+1 (definition of ε̃ω)

= ϕ · Fin · ε̃n+1 (definition of ϕ)

= ϕ · F (in · ε̃n) · εFn0 (definition of ε̃n+1)

= ϕ · εµF ·HΣ(in · ε̃n) (ε natural)

= ϕ · εµF ·HΣε̃ω ·HΣi
′
n (definition of ε̃ω) .

(2) We observe that m and m′ are homomorphisms of algebras for HΣ. Indeed, τ ·m =
Fm · ϕ−1 in Remark 18 yields

m · (ϕ · εµF ) = τ−1 · Fm · εµF = (τ−1 · ενF ) ·HΣm,

analogously for m′. Due to (1) this shows that m · ε̃ω : (µHΣ, ϕ
′)→ (νF, τ−1 · ενF ) is a

homomorphism for HΣ. So is k̂ ·m′, thus the initiality of µF yields k̂ ·m′ = m · ε̃ω. J

4 The Order by Cutting

We have seen in Section 2 that for polynomial functors the terminal coalgebra νHΣ is a cpo
when ordered by cutting of the Σ-trees. In the present section we represent an arbitrary
finitary set functor F as a quotient of some HΣ. This will enable us to introduce an order by
cutting on νF and µF . We then prove the following, whenever F∅ 6= ∅:
(a) if F is bicontinuous, i.e., preserves also limits of ωop-chains, then νF is a cpo which is

the conservative completion of µF ,
and
(b) for F in general νF and µF share the same conservative completion.

I Definition 20. By a presentation of a set functor F is meant a finitary signature Σ and a
natural transformation ε : HΣ � F with epic components.

I Proposition 21 (See [6]). A set functor has a presentation iff it is finitary. The category
of algebras for F is then equivalent to a variety of Σ-algebras.
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I Remark 22. The proof is not difficult: a possible signature for F is Σn = Fn for n ∈ N.
Yoneda Lemma yields a natural transformation from Σn × Set(n,−) to F for every n ∈ N,
and this defines ε : HΣ → F which is epic iff F is finitary.

Moreover, if elements of HΣX =
∐
n∈N

Σn×Xn are represented as flat terms σ(x1, . . . , xn),

then we define ε-equations as equations of the following form:

σ(x1, . . . , xn) = τ(y1, . . . , ym)

such that σ ∈ Σn, τ ∈ Σm, and εX merges the given elements of HΣX. (Here X =
{x1, . . . , xn, y1, . . . ym}.) The variety of Σ-algebras presented by all ε-equations is equivalent
to the category of F -algebras. This equivalence takes an algebra α : FA→ A to the Σ-algebra
α · εA : HΣA→ A.

I Corollary 23. The initial algebra µF is the quotient of the algebra µHΣ of finite Σ-trees
modulo the congruence ∼ merging trees s and s′ iff s can be obtained from s′ by a (finite)
application of ε-equations.

I Example 24. The finite power-set functor Pf has a presentation by the signature Σ with
a unique n-ary operation for every n ∈ N. Thus, HΣX = X∗. And we consider the natural
transformation εX : X∗ → PfX given by (x1 . . . xn) 7→ {x1, . . . , xn}.

µHΣ can be described as the algebra of all (unlabelled) finite trees. And two trees
are congruent iff they have the same extensional quotient, see Example 11. Consequently,
µPf = µHΣ

/
∼ is the set of all finite unordered extensional trees.

I Remark 25. Analogously to µF = µHΣ
/
∼ above, we can describe the terminal coalgebra

νF as a quotient of νHΣ, whenever a nullary symbol p ∈ Σ0 is chosen, as follows. In [5, 3.13],
the congruence ∼∗ on νHΣ of a possibly infinite application of ε-equations was defined as
follows:

s ∼∗ s′ iff ∂ns ∼ ∂ns′ (n ∈ N) .

I Theorem 26 ([5, 3.15]). The quotient coalgebra νHΣ
/
∼∗ is, when considered as an

F -coalgebra, the terminal coalgebra. Shortly,

νF = νHΣ

/
∼∗ .

I Remark 27. Let τ ′ : νHΣ → HΣ(νHΣ) and τ : νF → F (νH) denote the respective coalgebra
structures. The quotient map k̂ : νHΣ → νF is a homomorphism of coalgebras for F , i.e.,
the following square

νHΣ

k̂

��

τ ′ // HΣ(νHΣ)
ενHΣ // F (νHΣ)

Fk̂
��

νF
τ

// F (νF )

commutes. This was proved in [5], see the proof of Theorem 3.15 there (where k̂ was denoted
by ε̂).

I Lemma 28. The morphism k̂ : νHΣ → νF is a split epimorphism.

CSL 2020



7:10 On Free Completely Iterative Algebras

Proof. Choose b : F (νF )→ HΣ(νF ) with ενF ·b = id. For the coalgebra b ·τ : νF → HΣ(νF )
we have a unique homomorphism k∗ : νF → νHΣ with τ ′ · k∗ = HΣk

∗ · (b · τ). We prove
k̂ · k∗ = id by verifying that k̂ · k∗ is an endomorphism of the terminal coalgebra νF , i.e.,
τ · (k̂ · k∗) = F (k̂ · k∗) · τ :

τ · k̂ · k∗ = F k̂ · ενHΣ · τ ′ · k∗ (k̂ a homomorphism)
= Fk · ενHΣ ·HΣk

∗ · b · τ (k∗ a homomorphism)
= F (k · k∗) · ενF · b · τ (ε natural)
= F (k · k∗) · τ (ενF · b = id) J

I Definition 29. The following relation ≤ on νF is called order by cutting: given distinct
congruence classes [s] and [s′] of ∼∗, put

[s] < [s′] iff s ∼ ∂ns′ for some n ∈ N .

We obtain posets νF and µF (as a subposet via ū see Remark 18).

I Example 30. For the presentation of Pf of Example 24 we know that νHΣ is the algebra
of all finitely branching trees. We have s ∼∗ s′ iff the extensional quotients of ∂ns and ∂ns′
coincide for all n ∈ N. This way Barr described νPf in [8].

Consequently, for extensional trees we have s < s′ iff s is the extensional quotient of some
cutting of s′.

I Notation 31. In the rest of the present section we assume that F is a finitary set functor
with F∅ 6= ∅, and that a presentation ε is given. Since ε∅ : Σ0 → F∅ is epic, we can choose a
nullary symbol p′ in Σ0. This yields a choice of p = ε∅(p′) in F∅.

We use the notation τ , ϕ, rn etc. for F as in Section 3, and the corresponding notation
τ ′, ϕ′, r′n etc. for HΣ. Recall ε̂ω : νHΣ → Fω1 from Lemma 14.

I Remark 32.
(1) The homomorphism k̂ : νHΣ → νF of Remark 27 is clearly monotone and preserves the

least elements. Indeed, if p′ ∈ Σ0 is the chosen element, then the least element of νHΣ is
the singleton tree labelled by p′. And the least element of νF is [p′] = k̂(p′).

(2) Since ε̃ω is a domain-codomain restriction of k̂, see Lemma 19, it also is monotone and
preserves the least element.

I Proposition 33. The morphisms rn : Fω1 → Fω1 and r′n : Hω
Σ1 → Hω

Σ1 are related by
rn · ε̂ω = ε̂ω · r′n (n ∈ N).

Proof.
(1) We prove Fnu · ε̃n = ε̂n · Hn

Σu by induction on n ∈ N. The first step is trivial. The
induction step is computed as follows:

Fn+1u · ε̃n+1 = F (Fnu · ε̃n) · εHnΣ0 (definition of ε̃n)

= F (ε̂n ·Hn
Σu) · εHnΣ0 (induction hypothesis)

= F ε̂n · εHnΣ1 ·Hn+1
Σ u (ε natural)

= ε̂n+1 ·Hn+1
Σ u (definition of ε̂n) .
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(2) We next verify ū · ε̃ω = ε̂ω · ū′. For that it is sufficient to prove, for all n ∈ N, that
ū · ε̃ω · i′n = ε̂ω · ū′ · i′n. Indeed, (i′n) is a collectively epic cocone. Thus, we only need
to verify, by induction on k ∈ N, that tn+k merges the two sides of that equation:
tn+k · (ū · ε̃ω · i′n) = tn+k · (ε̂ω · ū′ · i′n). (Here we use the fact that (tn+k)k∈N is a collectively
monic cone for every n.)
This follows for k = 0 from the following computation:

tn · ū · ε̃ω · i′n = tn · ū · in · ε̃n see Remark 15
= Fnu · ε̃n (definition of ū)
= ε̂n ·Hn

Σu see (1)
= ε̂n · t′n · ū′ · i′n (definition of ū′)
= tn · ε̂ω · ū′ · i′n see Remark 15 .

And if the above equation holds for k, then we can write tn+(k+1) as t(n+1)+k and apply
the above equation to k and n+ 1. From that we obtain the induction step:

tn+(k+1) · ū · ε̃ω · i′n = t(n+1)+k · ū · ε̃ω · i′n+1 ·Hn
Σi (i′n compatible)

= t(n+1)+k · ε̂ω · ū′ · i′n+1 ·Hn
Σi (induction hypothesis)

= tn+(k+1) · ε̂ω · ū′ · i′n (i′n compatible) .

(3) Now we prove for the given point p = ε∅ · p′ : 1→ F0 that Fnp · ε̂n = ε̃n+1 ·Hn
Σp
′. This

is trivial for n = 0, and the induction step is as follows:

Fn+1p · ε̂n+1 = Fn+1p · F ε̂n · εHn1 (definition of ε̂n)
= F

(
ε̃n+1 ·Hn

Σp
′) · εHn1 (induction hypothesis)

= F ε̃n+1 · εHn+1
Σ 1 ·H

n+1
Σ p′ (ε natural)

= ε̃n+2 ·Hn+1
Σ p′ (definition of ε̃n) .

(4) The proof of our proposition follows. Recall that rn is defined by

rn = en · tn = ū · in+1 · Fnp · tn

and analogously r′n. Thus

rn · ε̂ω = ū · in+1 · Fnp · tn · ε̂ω
= ū · in+1 · Fnp · ε̂n · t′n see Remark 15
= ū · in+1 · ε̃n+1 ·Hn

Σp
′ · t′n see (3)

= ū · ε̃ω · i′n+1 ·Hn
Σp
′ · t′n see Remark 15

= ε̂ω · ū′ · i′n+1 ·Hn
Σp
′ · t′n see (2)

= ε̂ω · r′n . J

In the following theorem µF is considered as a subset of νF via the monomorphism m,
see Remark 18. Thus (µF )A, ordered component-wise, is a subposet of (νF )A. Moreover,
F (µF ) is considered as a poset via the bijection ϕ, and analogously for F (νF ).

I Theorem 34. Let F be a finitary set functor with F∅ 6= ∅. The order of νF by cutting
coincides with that of Theorem 10. And the poset νF has the same conservative completion
as its subposet µF . The coalgebra structure τ is the unique continuous extension of ϕ−1.
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Proof.
(1) Recall that tn = tω,n and Ftn = tω+1,n+1, thus

tn+1 · tω+ω,ω = tω+ω,n+1 = Ftn · tω+ω,ω+1 .

Moreover, observe that since τ−1 = tω+ω+1,ω+ω, we have tω+ω,ω+1 · τ−1 = Ftω+ω,ω.

(2) We prove that the homomorphism k̂ : νHΣ → νF of Remark 27 fulfils

ε̂ω = tω+ω,ω · k̂ : νHΣ → Fω1 .

Following Remark 15 we need to prove the following equalities

tn · (tω+ω,ω · k̂) = ε̂n · t′n (n ∈ N) .

The case n = 0 is trivial. The induction step is as follows:

ε̂n+1 · t′n+1 = F ε̂n · εHnΣ1 · t′n+1 (definition of ε̂n)

= F ε̂n · εHnΣ1 ·HΣt
′
n · τ ′ (τ ′ = (t′ω+1,ω)−1

and t′n = t′ω,n)
= F (ε̂n · t′n) · ενHΣ · τ ′ (ε natural)

= Ftn · Ftω+ω,ω · F k̂ · ενHΣ · τ ′ (induction hypothesis)

= Ftn · tω+ω,ω+1 · τ−1 · F k̂ · ενHΣ · τ ′ by (1)

= Ftn · tω+ω,ω+1 · k̂ (k̂ a homomorphism)

= tn+1 · tω+ω,ω · k̂ by (1) .

(3) The congruence ∼∗ is the kernel equivalence of k̂, see Remark 27. Since tω+ω,ω is monic,
it follows from (1) that this is also the kernel equivalence of ε̂ω.

(4) The ordering of Fω1 defined in Theorem 10 coincides, when restricted to νF (via the
embedding tω+ω,ω), with the ordering by cutting. To prove this, we verify that, given
elements x = [t] and y = [s] of νF , the following equivalence holds for every n ∈ N:

t ∼∗ ∂ns iff tω+ω,ω(x) = rn · tω+ω,ω(y) .

That is, we are to prove for all n ∈ N that

ε̂ω(t) = ε̂ω · r′n(s) iff tω+ω,ω(x) = rn · tω+ω,ω(y) .

Due to (2), this translates to the following equivalence

ε̂ω(t) = ε̂ω · r′n(s) iff ε̂ω(t) = rn · ε̂ω(s) ,

which follows from Proposition 33.

(5) For the morphism ū : µF → Fω1 of 3.1(4) we prove that

ū = tω+1,ω · Fū · ϕ−1 .

It is sufficient to prove that the equality holds when precomposed by in+1 : Fn+10→ µF

for every n ∈ N. Since in+1 = in+1,ω and ϕ−1 = iω,ω+1, we have ϕ−1 · in = in+1,ω+1 =
Fin. Thus we want to verify

ū · in+1 = tω+1,ω · F (ū · in) .
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For that, we postcompose by tn+1+k for all k ∈ N (and use that given any n this cone is
collectively monic):

tn+1+k · ū · in+1 = tω+1,n+1+k · F (ū · in) .

This equation holds for k = 0 since the left-hand side is Fn+1u, see 3.1(4), and the
right-hand one is

tω+1,n+1 · F (ū · in) = Ftn · Fū · Fin = F (Fnu) .

The induction step from k to k + 1 (for n arbitrary) is easy: just re-write n+ 1 + k + 1
as n+ 2 + k and use the induction hypothesis on n+ 1 in place of n.

(6) For every element x ∈ Fω1, all elements rn(x) are compact. That is, given a directed set
D ⊆ Fω1, then rn(x) v

⊔
D implies rn(x) v y for some y ∈ D. This clearly holds for

F = HΣ. Due to Proposition 33 and (4) above, it also follows for F .

(7) Fω1 is the conservative completion of µF . More precisely, we prove that the embedding
ū : µF → Fω1 has the universal property w.r.t. to continuous maps from µF to cpo’s.
(Observe that µF is trivially closed under existing directed joins due to Theorem 10.)
First, observe that the image of each rn is a subset of the image of ū, see Remark 12.
Every element x ∈ Fω1 yields a sequence rn(x) in µF , and for the order of Theorem 10
we clearly have x =

⊔
n∈N

rn(x). Given a monotone function f : µF → B where B is a cpo,

we define f̄ : Fω1→ B by f̄(x) =
⊔
n∈N

f
(
rn(x)

)
. This is a continuous function. Indeed,

given a directed set D ⊆ Fω1 we know from Theorem 10 that x =
⊔
D exists. Then D

is mutually cofinal with {rn(x);n ∈ N}. This is clear if x ∈ D. Otherwise, (6) implies
that each rn(x) is, due to rn(x) v x, under some element of D. And for each y ∈ D the
fact that y v x implies that we have n with y = rn(x). Consequently, f [D] is mutually
cofinal with {f

(
rn(x)

)
}in B, thus, f(tD) = f(x) = tf [D].

(8) We prove that ū factorizes through tω+ω,ω =
⋂
n∈N

tω+n,ω, see Remark 16. We verify by

induction a factorization through tω+n,ω. For n = 1, see (5). For n = 2 we apply (5)
twice: since Ftω+1,ω = tω+2,ω+1, we get

ū = tω+1,ω · F (tω+1,ω · Fū · ϕ−1)
= tω+2,ω · F (Fū · ϕ−1) .

Analogously for n = 3, 4, . . . .

(9) The proof of the theorem follows. First, Fω1 is the conservative completion of νF , the
argument is as in (7). It follows that ϕ−1 : µF → F (µF ), which is a poset isomorphism
(by our definition of the order of F (µF )) has at most one continuous extension to νF .
And τ is continuous (indeed, a poset isomorphism, too). Thus, we just need proving that
τ extends ϕ−1. In other words, the inclusion map m of Remark 18 fulfils τ ·m = Fm ·ϕ−1,
and Fm is also the inclusion map.
The latter is clear in case F preserves inclusion maps. Next let F be arbitrary. By
Theorem III.4.5 in [6] there exists a set functor F̄ preserving inclusion which agrees
with F on all nonempty sets and functions and fulfils F̄∅ 6= ∅ (since F∅ 6= ∅). Then the
categories of algebras for F and F̄ also coincide, thus µF = µF̄ . And the categories of
nonempty coalgebras for F and F̄ also coincide, hence, νF = νF̄ . Since the theorem
holds for F̄ , it also holds for F . J
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I Corollary 35. A bicontinuous set functor with F∅ 6= ∅ has a terminal coalgebra which
is the conservative completion of its initial algebra. Its coalgebra structure is the unique
continuous extension of the inverted algebra structure of µF .

This follows from the above proof: we have seen that the conservative completion of µF
is Fω1 which, for F bicontinuous, is νF .

I Remark 36. In the proof of the above theorem we have seen that k̂ is a domain restriction
of ε̂ω: we have ε̂ω = tω+ω,ω · k̂. And the homomorphism ε̃ω is a domain-codomain restriction
of k̂, see Lemma 19. Consequently, Proposition 33 yields

∂n · k̂ = ε̃ω · ∂′n : νHΣ → µF (n ∈ N) .

Here ∂′n is the domain-restriction of r′n and ∂n that of rn, see Remark 12.

5 Free Iterative Algebras

I Assumption 37. Throughout this section F is a finitary set functor with a given presenta-
tion ε : HΣ � F , see Definition 20.

I Remark 38. Let X be a nonempty set.
(1) The initial algebra of F (−) + X is precisely the free algebra for F on X: notation

ΦX = µF (−)+X. Indeed, the components of the algebra structure ϕ : F (ΦX)+X → ΦX
yield an algebra ΦX for F and a morphism η : X → ΦX, respectively. That F -algebra
clearly has the universal property w.r.t. η.

(2) Let us choose an element p′ ∈ Σ0 +X. The finitary functor F (−) +X has the following
presentation: the signature is ΣX of Remark 1. And the natural transformation can,
since HΣX = HΣ(−) +X, be chosen to be

ε+ idX : HΣX � F (−) +X .

This yields an element p ∈ F∅+X which is ε∅(p′) in case p′ ∈ Σ0, else p′ = p.

I Notation 39. ΦX denotes the poset forming the free algebra on X for F ordered by
cutting w.r.t ε+ idX . And ∼ is the congruence on ΦΣX (the algebra of finite Σ-trees on X)
of applying ε-equations, see Corollary 23.

I Remark 40. We do not speak about (ε + idX)-equations, since we do not have to: the
function

εZ + idX : HΣZ +X → FZ +X

does not merge flat terms with variables from X, hence, every (ε+ idX)-equation is simply
an ε-equation.

I Corollary 41. Free algebras for F are free Σ-algebras modulo ε-equations: ΦX = ΦΣX/ ∼.

I Examples 42.
(1) For F = Id we choose p ∈ X and obtain ΦX = N×X ordered as follows:

(n, x) < (m, y) iff n < m and x = p .
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(2) The functor FX = A×X yields

ΦX = A∗ ×X

ordered by

(u, x) < (v, y) iff u is a prefix of v and x = p.

(3) The functor FX = XI × {0, 1} (corresponding to deterministic automata with a finite
input set I) is naturally equivalent to HΣ, where Σ consists of two operations a, b of arity
n = card I. Thus ΦX is the algebra of all finite n-ary trees with inner nodes labelled by
{a, b} and leaves labelled in X. The order is by tree cutting.

(4) Let Pk denote the subfunctor of the power-set functor given by all subsets of at most
k elements. We can describe ΦX as the algebra of all non-ordered, finite extensional
k-branching trees (i.e. every node has at most k children) with leaves labelled in X + {p}.
Here we use a signature Σ having, for every n ≤ k, precisely one n-ary operation; the
nullary one is called p. Then ΦΣX is the algebra of all k–branching finite trees with
leaves labelled in X + {p}. It is ordered by tree cutting. And given k-branching trees s
and s′ we have s ∼ s′ iff they have the same extensional quotient, see 11(2). This yields
the above description of ΦX.
To describe the order of ΦX, let us call the extensional quotient of ∂ns (cutting s at
height n) the n-th extensional cutting. Then for distinct s, s′ in ΦX we have s < s′ iff s
is an extensional cutting of s′.

I Remark 43. Whereas the initial algebra for F (−)+X is the free algebra for F , the terminal
coalgebra

ΨX = νF (−) +X

is the free completely iterative algebra for F , as we recall below. The concept of a recursive
equation in an algebra α : FA→ A is given by a set X of recursive variables and a morphism
e : X → FX +A.

I Definition 44. A solution of recursive equation e : X → FX +A in an algebra (A,α) is a
morphism e† : X → A making the following square

X
e† //

e

��

A

FX +A
Fe†+id

// FA+A

[α,id]

OO

commutative. The algebra (A,α) is called completely iterative if every recursive equation has
a unique solution.

I Example 45. If F = HΣ, we can think of e as a system of recursive equations of the form

x = σ(x1, . . . , xn) or x = a (a ∈ A),

one for every variable x ∈ X (depending on e(x) lying in the left-hand or right-hand
summand of HΣX + A). And then the solution e† makes an assignment of elements of A
to variables from X satisfying those recursive equations: from x = σ(x1, . . . , xn) we get
e†(x) = σA

(
e†(x1), . . . , e†(xn)

)
, and from x = a we get e†(x) = a.
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The algebra νHΣ of Σ-trees (with the algebra structure τ−1 of tree-tupling) is completely
iterative. For every recursive equation e : X → HΣX + νHΣ the solution e† : X → νHΣ can
be defined as follows: given n ∈ N we describe the cut trees ∂′ne†(x) for all variables x ∈ X
simultaneously by induction on n ∈ N:
(1) ∂′0e†(x) is the singleton tree labelled by p.
(2) Given ∂′ne†(x) for all x ∈ X, then for every x ∈ X with e(x) = σ(x1, . . . , xn) in the left-

hand summand HΣX we define ∂′n+1e
†(x) to be the tree with root labelled by σ and with

n subtrees ∂′ne†(xi), i = 1, . . . , n. Whereas if e(x) = s ∈ νHΣ, then ∂′n+1e
†(x) = ∂′n+1s.

I Theorem 46 (See [10]). Let τX : ΨX → F (ΨX)+X be the terminal coalgebra for F (−)+X.
The components of τ−1

X make ΨX an F -algebra with a morphism η : X → ΨX. This is the
free completely iterative algebra for F w.r.t. the universal morphism η.

In particular, (νF, τ−1) is the initial completely iterative algebra.

I Notation 47. ΨX denotes the poset forming the free completely iterative algebra on X
for F ordered by cutting w.r.t. ε+ idX . And ∼∗ is the congruence on ΨΣX (the algebra of
Σ trees over X) of a possibly infinite application of ε-equations, see Remark 25.

I Corollary 48. Let F be a bicontinuous set functor. The free completely iterative algebra
ΨX on a set X 6= ∅ is a cpo which is the conservative completion of the free algebra ΦX.

The algebra structure of ΨX is the unique continuous extension of the algebra structure
of ΦX.

This is an application of Corollary 35 to F (−) +X.

I Example 49.
(1) For F = Id the conservative completion of ΦX = N×X adds just one maximum element

as
⊔
n∈N

(n, p). Thus ΨX = N×X + 1.

(2) For FX = A × X the conservative completion of A∗ × X adds joins to all sequences
(u0, p) < (u1, p) < (u2, p) < · · · where each un is a prefix of un+1 (n ∈ N). That join is
expressed by the infinite word in Aω whose prefixes are all un. We thus get

ΨX = A∗ ×X +Aω .

(3) For the bicontinuous functor F = Pk we can describe ΨX as the algebra of all extensional
k-branching trees with leaves labelled in X + {p}.
Indeed, this algebra with the order by extensional cutting (see Example 42), is the
completion of its subalgebra ΦX of finite trees. To see this, observe that every strictly
increasing sequence s0 < s1 < s2 · · · in ΨX has a unique upper bound: the tree s defined
level by level so that, given n, its extensional cutting at n is the same as that of sk for
all but finitely many k ∈ N. Therefore, given a continuous function f : ΦX → B where
B is a cpo, the unique continuous extension f̄ : ΨX → B is given by f̄(s) =

⊔
n∈N

f(sn)

where sn is the extensional cutting of s at level n.
(4) For the functor FX = XI × {0, 1} we have ΨX = n-ary trees with leaves labelled in X

and inner nodes labelled in {a, b}. The order is by cutting.

(5) Aczel and Mendler introduced in [1] the functor (−)3
2 defined by

X3
2 =

{
(x1, x2, x3) ∈ X3;xi = xj for some i 6= j

}
.
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This is a bicontinuous functor with a presentation using Σ = {σ1, σ2, σ3}, all operations
binary, and the following ε-equations

σ1(x, x) = σ2(x, x) = σ3(x, x) .

Here ε : HΣ → (−)3
2 is given by σ1(x, y) 7→ (x, x, y), σ2(x, y) 7→ (x, y, y) and σ3(x, y) 7→

(x, y, x).
The free algebra ΦX = ΦΣX/ ∼ is described as follows: ΦΣX consists of finite binary
trees with leaves labelled in X and inner nodes labelled in Σ. And s ∼ s′ means that
we can obtain s from s′ be relabelling arbitrarily inner nodes whose left and right child
yield the same tree. The order is by cutting.
The free completely iterative algebra is ΨX = ΨΣx

/
∼∗, where ΨΣX are binary trees

with leaves labelled in X and inner nodes labelled in Σ. And ∼∗ allows infinite relabelling
of the type above. ΨX is a cpo which is the conservative completion of ΦX.

I Corollary 50. For every finitary set functor the free algebra on a set X 6= ∅ has the same
conservative completion as the iterative algebra on X. The algebra structure of ΨX is, again,
the unique continuous extension of the algebra structure of ΦX.

This is an application of Theorem 34 to F (−) +X.

I Example 51. For the finite power-set functor Pf the algebra ΨX can be described as
the quotient ΨΣX

/
∼∗, where ΨΣX are the finitely branching trees with leaves labelled in

X + {p}. And s ∼∗ s′ means that the extensional cuttings of s and s′ are the same for every
level n.

A better description: ΨX is the set of all finitely branching strongly extensional trees
(see Example 11(2)), with leaves labelled in X + {p}. The proof is completely analogous to
that for νPf in Worrell’s paper [11].

ΨX is ordered by extensional cutting. This is not a cpo. To see this, consider an arbitrary
strongly extensional tree s which is not finitely branching. Thus, s /∈ ΨX. Each extensional
cutting is finite (since for every n we only have a finite number of extensional trees of height
n) and this yields an increasing ω-sequence in ΦX that has no join in ΨX.

The common conservative completion of ΦX and ΨX is the algebra of all compactly
branching strongly extensional trees with leaves labelled in X + {p}. The proof is, again,
analogous to that for νPf in [11].

6 Approximate Solutions

In this section we prove that solutions of iterative equations in free iterative algebras are
obtainable as joins of ω-chains of approximate solutions. This is true for every finitary set
functor F and every nonempty set of recursion variables. We first prove the corresponding
result for the terminal coalgebra considered as an algebra τ−1 : F (νF )→ νF .

Throughout this section a presentation ε : HΣ → F is assumed and a choice of an element
p ∈ F∅+X where X is a fixed set of “recursion” variables. In particular at the begining we
set X = ∅ and choose p ∈ F∅, i.e., we work with a finitary functor with F∅ 6= ∅.

We continue to use τ , ϕ, ∂n, . . . for F and τ ′, ϕ′, ∂′n, . . . for HΣ (as in Section 4). We
know that νF is the initial completely iterative algebra. We are going to describe solutions
e† : X → νF of recursive equations e : X → FX + νF as joins of ω-chains

e†0 v e
†
1 v e

†
2 . . . : X → µF
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of approximate solutions in the initial algebra. Here we work with the poset (νF )X ordered
pointwise and its subposet (µF )X .

Recall ∂n from Remark 12.

I Definition 52. The k-th approximate solution e†k : X → νF of a recursive equation
e : X → FX + νF is defined by induction on k ∈ N as follows:

e†0 : X → µF is the least element of the poset (µF )X ,

and given e†k, then the following square defines e†k+1:

X
e†
k+1 //

e

��

µF

FX + νF

id +∂k
��

FX + µF
Fe†

k
+id

// F (µF ) + µF

[ϕ,id]

OO

We are going to prove that the unique solution e† of e in νF is the join of the ω-chain e†k
considered in (νF )X . Or, more precisely, for the inclusion m : µF → νF of Remark 18 we
have

e† =
⊔
k∈N

m · e†k .

I Example 53. If F = HΣ then e†n is precisely the cutting ∂′ne† of Example 45. This is
obvious for n = 0, and the induction step is easy.

I Theorem 54. Let F be a finitary set functor with F∅ 6= ∅. For every recursive equation
e : X → FX + νF the unique solution in νF is the join of the ω-chain of approximate
solutions e†n (n ∈ N) in the poset (νF )X .

Proof. We know from Example 45 that the theorem holds for HΣ. We apply this to the
following recursive equation w.r.t. HΣ:

e′ ≡ X e−−−→ FX + νF
b+k∗−−−−−−→ HΣX + νHΣ

where b is a splitting of εX and k∗ splits k̂, see Lemma 28. Thus, e = (εX + k̂) · e′. We know
that (e′)† is the join (e′)† =

⊔
n∈N

m′ · (e′)† for the inclusion m′ : µHΣ → νHΣ. From that we

derive e† =
⊔
n∈N

m · e†n by proving that (1) e† = k̂ · (e′)† and (2) e†n = ε̃ω · (e′)†n for n ∈ N (see

Remark 15). Indeed, we then have

e† = k̂ ·
⊔
n∈N

m′ · (e′)†n =
⊔
n∈N

k̂ ·m′ · (e′)†n

since post-composition with k̂ preserves the order and all joins that exist in (µHΣ)X : recall
from Remark 32 that k̂ : νHΣ → (νHΣ)

/
∼∗ is the quotient map inducing the order by

cutting on νF . We get from Lemma 19

e† =
⊔
n∈N

m · ε̃ω · (e′)†n =
⊔
n∈N

m · e†n

as required.
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(1) Proof of e† = k̂ ·(e′)†. It is sufficient to prove that k̂ ·(e′)† solves e in the algebra (νF, τ−1),
i.e., it is equal to [τ−1, id] ·

(
F [k̂ · (e′)†] + id

)
· e. This follows from the commutative

diagram below, since e = (εX + k̂) · e′:

X
(e′)† //

e′

��

νHΣ
k̂ // νF

HΣX+νHΣ
HΣ(e′)†+id//

HΣ[k̂·(e′)†]+id ((
εX+k̂

��

HΣ(νHΣ)+νHΣ
ενHΣ+id

//

[(τ ′)−1,id]

OO

HΣk̂+id
��

F (νHΣ)+ νHΣ

(N)

Fk̂+k̂

!!

HΣ(νF )+νHΣ
ενF+k̂

,,
FX+νF

(N)

F [k̂·(e′)†]+id
// F (νF )+νF

[τ−1,id]

OO

The upper left-hand part expresses that (e′)† solves e′. For all the other inner parts
consider the components of the corresponding coproducts separately. The right-hand
components commute in each case trivially. The left-hand components of the parts
denoted by (N) commute since ε is natural. For the upper right-hand part recall that k̂
is a homomorphism, i.e., τ · k̂ = F k̂ · ενHΣ .

(2) The proof of e†n = k̃ · (e′)†n is performed by induction on n ∈ N . The case n = 0 is trivial
since ε̃ω preserves the least element (see Remark 32) and (e′)†0 is the constant map of
that value. The induction step follows from the commutative diagram below:

X

e

ww
e′

��

(e′)†n+1 // µHΣ
ε̃ω // µF

FX+νF

id +∂n

��

HΣX+νHΣ
εX+k̂oo

id +∂′n
��

HΣX+µHΣ

εX+ε̃ω

��

HΣ(e′)†n+id
// HΣ(µHΣ)+µHΣ

[ϕ′,id]

OO

εµHΣ+ε̃ω
��

F (µHΣ)+µF
F ε̃ω+id

((
FX+µF

F (e′)†n+id
33

Fe†n+id
// F (µF )+µF

[ϕ,id]

OO

The lower triangle commutes since e†n = ε̃ω · (e′)†n by induction hypothesis. The upper
square is the definition of (e′)†n+1 and the part right of it commutes due to ε̃ω being a
homomorphism, see Lemma 19. The middle part commutes by naturality of ε. For the
lower left-hand part see Remark 36.

(3) It remain s
⊔

(e†n) to verify that (en)n∈N is an ω-chain in (νF )X . For (e′)†n this follows
from (e′)†n = ∂n ·(e′)†, see Example 45. Thus, we only need to observe that (e′)†n ≤ (e′)†n+1
implies ε̃ω · (e′)†n ≤ ε̃ω · (e′)

†
n+1. Indeed, see Remark 32. J
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I Definition 55. For every coalgebra α : X → FX we define approximate homomorphisms
hn : X → µF by induction on n ∈ N as follows: h0 is the least element of (µF )X , and given
hn we put

hn+1 ≡ X
α−−→ FX

Fhn−−−−→ F (µF ) ϕ−−→ µF .

I Corollary 56. For every coalgebra (X,α) the unique homomorphism to νF is the join of
the ω-chain of approximate homomorphisms in (νF )X .

Proof. Let h : (X,α)→ (νF, τ) be the unique homomorphism. Form the recursive equation

e ≡ X α−−→ FX
inl−−−→ FX + νF .

Then e†n = hn for every n ∈ N. This is clear for n = 0. The induction step follows from the
square in Definition 52: observe that (id +∂n) · e = (id +∂n) · inl ·α = inl ·α.

Moreover, h is a solution of e: from τ · h = Fh · α we get h = τ−1 · Fh · α = τ−1 · (Fh+
id) · inl ·α, as required. Thus, our corollary follows from the preceding theorem. J

I Corollary 57. Let F be a finitary set functor. For every nonempty set Y the solutions of
recursive equations in the free iterative algebra ΨY are obtained as joins of ω-chains of the
approximate solutions in the free algebra ΦY .

This is just an application of the above theorem to the functor F (−) + Y and a choice
p ∈ Y making ΨY a poset by cutting.

7 Conclusions and Open problems

Terminal coalgebras of finitary set functors F carry a canonical partial order which is a cpo
whenever F is bicontinuous. This was observed by the author a long time ago. The present
paper describes this order in a completely new manner, using the cutting of Σ-trees for a
signature Σ presenting F . In the bicontinuous case the terminal coalgebra is the conservative
completion of the initial algebra of F . Moreover the algebra structure of µF determines the
coalgebra structure of νF as the unique continuous extension of the inverted map.

The above results are applied to free completely iterative algebras ΨX for F on all
nonempty sets X. In the bicontinuous case ΨX is the conservative completion of the free
algebra ΦX on X, and the algebra structure of ΨX is the unique continuous extension of
that of ΦX. For finitary set functors in general, ΦX and ΨX have the same conservative
completions. We have demonstrated this on several examples of “everyday” finitary functors.
Our main result is that solutions of recursive equations in ΨX can be obtained as joins of
ω-chains of (canonically defined) approximate solutions in ΦX.

It is an open problem whether an analogous result can be proved for accessible set functors
in general. Another important question is whether there is a reasonable class of locally
finitely presentable categories such that a similar order of free iterative algebras can be
presented for every finitary endofunctor.
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Abstract
A Büchi automaton is strongly unambiguous if every word w ∈ Σω has at most one final path. Many
properties of strongly unambiguous Büchi automata (SUBAs) are known. They are fully expressive:
every regular ω-language can be represented by a SUBA. Equivalence and containment of SUBAs
can be decided in polynomial time. SUBAs may be exponentially smaller than deterministic Muller
automata and may be exponentially bigger than deterministic Büchi automata. In this work we
show that SUBAs can be learned in polynomial time using membership and certain non-proper
equivalence queries, which implies that they are polynomially predictable with membership queries.
In contrast, under plausible cryptographic assumptions, non-deterministic Büchi automata are not
polynomially predictable with membership queries.
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1 Introduction

Reactive systems – systems which interact with their environment via inputs and outputs
in an ongoing manner, are ubiquitous in today’s life: operating systems, hardware systems,
protocols and networking systems are just a few of the classical examples; self-driving cars
and autonomous robots are today’s leading examples. A computation of a reactive system
can be abstracted by an infinite word over an alphabet consisting of inputs and outputs.
The behavior of a reactive system can thus be seen as a language of infinite words (ω-words).
Thus, under the assumption that the systems are finite-state, automata that process infinite
words (ω-automata), and the class of languages they recognize – the regular ω-languages –
are a useful model for reactive systems. Indeed, this is the main model used in the design,
verification and synthesis of reactive systems.

In various applications, the need to infer the language of a system at hand (or in mind)
has arisen. In many settings the inference problem can assume the existence of an entity
answering membership queries (is a certain word in the language?) and equivalence queries (is
the current hypothesis of the identity of the language correct?). This setting, enables the use
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of the L∗ algorithm [2], an algorithm for inferring a regular language using membership queries
and equivalence queries. Indeed, L∗ or its improved descendants (see in [22]) have been used
for tasks including black-box checking [29], assume-guarantee reasoning [18], specification
mining [1], error localization [14], learning interfaces [28], regular model checking [24], finding
security bugs [13], code refactoring [27, 31], learning verification fixed-points [33], as well as
analyzing botnet protocols [15] and smart card readers [13].

A disadvantage of using L∗ in applications that model behavior using ω-words is that it
limits the learned languages to the class of safety languages, a strict subset of the regular
ω-languages, for which the complement can be described by a language of finite words.
However, many interesting properties of reactive systems, in particular, liveness and fairness,
require richer classes of regular ω-languages. For this reason it is desirable to obtain a
learning algorithm for the full class of regular ω-languages.

Learnability results regarding the class of regular ω-languages can be summarized shortly
as follows. The full class of regular ω-languages can be learned either using a non-polynomial
reduction to finite words, termed (L)$ [21], or using a representation by families of DFAs
(FDFA), which may be exponentially more succinct than (L)$, although the running time of
the algorithm may be polynomial in (L)$ in the worst case [5]. The maximal sub-class of
the regular ω-languages which is known to be polynomially learnable is the set of languages
accepted by deterministic weak parity automata (DwPA) [25].

In this work we show that while under plausible crypotographic assumptions, the class
of ω-regular languages is not polynomially predictable with membership queries when the
target language is represented using a non-deterministic Büchi automaton (Theorem 1), it is
polynomially predictable with membership queries when the target language is represented
using a strongly unambiguous Büchi automaton (Corollary 15).

The result on polynomial predictability with membership queries of strongly unambiguous
Büchi automata (SUBA) is a corollary of a result (Theorem 12) on learning SUBAs in
polynomial time using membership and non-proper equivalence queries (where hypotheses
are represented using mod-2-MAs for a related language of finite words).1 This contrast
in learnability results for the class of regular ω-languages arises because the running time
of the learning algorithm is bounded as a function of the size of the representation of the
target language, and NBAs (non-deterministic Büchi automata) may be exponentially more
succinct than SUBAs. Thus we also focus on succinctness comparisons between alternative
representations.

In §2, we provide the preliminaries regarding Büchi automata and strongly unambiguous
Büchi automata. In §3, we discuss the framework of learning with membership queries
(MQs) and equivalence queries (EQs), and discuss related learnability results for regular
ω-languages. In §4, we discuss the framework of polynomial predictability with MQs; relate
it to the framework of learning with MQs and EQs; and provide the negative result regarding
learnability using NBAs. The positive result about learnability using SUBAs is proved in §7,
after some more necessary definitions are provided.

Complexity of learning algorithms is measured with respect to the size of the representation
of the unknown target language. We thus provide, in §5, size comparison results between
SUBAs and other models of regular ω-languages for which learning algorithms have been
obtained. We show that SUBAs may be exponentially more succinct than FDFAs and
DwPAs, but the other direction is also true: FDFAs and DwPAs can be exponentially more
succinct than SUBAs. We further show that SUBAs can be exponentially more succinct
than the DFA representation for (L)$ or its reverse.

1 Mod-2-MAs are explained in the body of the paper, in §6.
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The learning algorithm for SUBAs uses a reduction to unambiguous finite automata on
finite words (UFAs) and uses the model of mod-2-MA; a special type of multiplicity automata.
In §6 we explain multiplicity automata and mod-2-MAs and study size comparisons relating
mod-2-MAs, DFAs and NFAs. A UFA of size n can be represented by a mod-2-MA of size at
most n, and UFAs, NFAs and mod-2-MAs may be exponentially more succinct than DFAs.
We show that NFAs may be exponentially more succinct than mod-2-MAs, and that if there
exist infinitely many Mersenne primes, then mod-2-MAs are exponentially more succinct
than NFAs.

Finally, as mentioned, we provide the positive result for learning SUBAs in §7 and
conclude with a short discussion in §8.

2 Strongly Unambiguous Büchi Automata

Carton and Michel [12] introduced the definition of a complete strongly unambiguous Büchi
automaton (CUBA) and proved that every regular ω-language can be accepted by a CUBA.
Bousquet and Löding [9] introduced the relaxed definition of a strongly unambiguous Büchi
automaton (SUBA) and proved that the containment and equivalence problems for SUBAs
are solvable in polynomial time. Their proof reduces these problems for SUBAs to the
containment and equivalence problems for unambiguous finite automata, which were shown
to be solvable in polynomial time by Stearns and Hunt [20]. The usual translation of a linear
temporal logic (LTL) formula into a Büchi automaton produces a SUBA; see the papers of
Wilke [34, 35] for more on the relationship between LTL and CUBAs.

Given a finite alphabet Σ of symbols, we consider both the set of finite words Σ∗ and
the set of infinite or ω-words Σω, which are maps from the positive integers to Σ. The term
word refers to a finite word or an ω-word. A subset of Σ∗ is a language and a subset of Σω
is an ω-language. For a word w, the notation w[j] refers to the symbol of w indexed by j,
where indices start at 1. For words w and v and a finite word u, if w = uv, then u is a prefix
of w and v is a suffix of w.

We consider two types of automata: nondeterministic finite automata (NFAs), which
accept sets of finite words, and nondeterministic Büchi automata (NBAs), which accept sets
of infinite words, that can each be represented as a tuple A = (Σ, Q,Q0,∆, F ), where Σ is
the finite alphabet of input symbols, Q is the finite set of states, Q0 ⊆ Q is the set of initial
states, ∆ ⊆ Q× Σ×Q is the transition relation, and F ⊆ Q is the set of final states.

A path of an NFA (resp. an NBA) on a word w is a finite (resp. infinite) sequence of
states q0, q1, . . . such that for all j indexing symbols of w, (qj−1, w[j], qj) ∈ ∆. A path is
initial if q0 ∈ Q0. A path of an NFA is final if it ends with a final state. A path of an NBA
is final if it passes infinitely often through a final state. A path is accepting if it is both
initial and final. For an NFA or NBA, the word w is accepted if there exists at least one
accepting path for w. We use JAK for the set of words accepted by A.

The transition relation ∆ is deterministic if for any q1 ∈ Q and σ ∈ Σ, there is at most
one q2 ∈ Q such that (q1, σ, q2) ∈ ∆. If an NFA (resp. NBA) has a deterministic transition
relation and at most one initial state, then it is a deterministic finite automaton (DFA) (resp.
a deterministic Büchi automaton (DBA).) The transition relation ∆ is reverse deterministic
if the reverse relation ∆r = {(q2, σ, q1) | (q1, σ, q2) ∈ ∆} is deterministic. A state q of an
NFA or NBA A is live if it appears on an accepting path for some word w. The automaton
is trim if it contains no non-live states. The non-live states may be removed from A without
affecting the set of words it accepts.
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Figure 1 Left: A DBA D for the language (Σ∗b)ω that is not a SUBA, and a SUBA S for the
same language. Right: Two nonisomorphic minimum SUBAs S1 and S2 for (a+ b)∗(aa∗bb∗)ω.

The class of languages accepted by NFAs or DFAs is the regular languages. The class of
languages accepted by NBAs is the regular ω-languages. The class of languages accepted by
DBAs is a proper subclass of the class of regular ω-languages.

Unambiguous Automata
An NFA A is said to be unambiguous (UFA) if every word w ∈ Σ∗ has at most one
accepting path.
An NBA B is said to be unambiguous (UBA) if every word w ∈ Σω has at most one
accepting path.
An NBA B is said to be strongly unambiguous (SUBA) if every word w ∈ Σω has at most
one final path [9].
An NBA B is said to be strongly unambiguous and complete (CUBA) if every word
w ∈ Σω has exactly one final path [12].

Note that every DFA is a UFA and every UFA is an NFA, and these containments are
proper. The above standard definitions for UFAs and UBAs refer to the uniqueness of
accepting paths, while the definitions for SUBAs and CUBAs refer to the uniqueness of final
paths, whether or not they are also initial. Every CUBA is a SUBA, and every SUBA is an
UBA, and these containments are proper. Note that a DBA is not necessarily a SUBA. For
instance, the DBA D of Fig. 1 which recognizes all words with infinitely many b’s is not a
SUBA, since bω is accepted from both states 1 and 2. The SUBA S of Fig. 1 accepts this
language. Carton and Michel [12] proved that every regular ω-language can be accepted by
a CUBA (and therefore also by a SUBA).

In this paper we focus on the class of SUBAs. It is easy to see that for any w ∈ Σω if
there is a final path on w, it originates at a unique state, and therefore the transition function
of any trim SUBA is reverse deterministic. Unlike in the case of DFAs representing regular
languages of finite words, there need not be a canonical minimum SUBA for a language. In
Fig. 1 we show two non-isomorphic SUBAs S1 and S2 with the minimum possible number of
states for the set of ω-words over the alphabet {a, b} that contain an infinite number of a’s
and an infinite number of b’s.2

3 Learning Regular ω-Languages With Queries

The first framework of learning that we consider is that of an algorithm learning a target
language L using equivalence queries (EQs) and membership queries (MQs). In a membership
query, the learning algorithm specifies a word w and receives the answer 1 if w ∈ L and

2 Automata A = (Σ, Q,Q0,∆, F ) and A′ = (Σ, Q′, Q′0,∆′, F ′) are isomorphic if they are equivalent to
each other under a renaming of the states. Formally, if there exists a map h : Q → Q′ such that (a)
q ∈ Q0 iff h(q) ∈ Q′0, (b) q ∈ F iff h(q) ∈ F ′ and (c) (q1, σ, q2) ∈ δ iff (h(q1), σ, h(q2)) ∈ δ′.
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the answer 0 if w 6∈ L, indicating whether w is a member of the target language. In an
equivalence query, the learning algorithm specifies a hypothesis, that is, a set of words H, and
receives either the answer “yes”, signifying that the sets H and L are equal, or the answer
“no” together with an arbitrarily selected counterexample w such that w is an element of
exactly one of L and H, that is, a counterexample that shows the sets H and L are not
equal. If the answer to an equivalence query is “yes”, the learning algorithm has succeeded
in identifying the target language L.

The above description omits a specification of how a word w is represented when it is
the subject of a MQ by the learning algorithm or when it is returned as a counterexample
to an EQ, as well as how a set of words H is represented by the learning algorithm in an
EQ. It also omits a measure of the “size” of the target language L, which is a parameter to
functions bounding the running time of the algorithm. We now address these omissions.

As is usual, a finite word w is represented by the finite sequence of symbols it contains,
and its length is the length of that sequence. Arbitrary ω-words w are not represented; rather
we restrict the words used in MQs and returned as counterexamples by EQs to be ultimately
periodic, that is, words of the form u(v)ω for finite words u, v ∈ Σ∗, denoting u concatenated
with an infinite sequence of copies of v. This restriction is justified by the fact that two
regular ω-languages that agree on the classification of all ultimately periodic words are in
fact equal [10]. Given an ω-language L and a symbol $ not in the alphabet of L, we define

(L)$ = {u$v | u(v)ω ∈ L}.

Then two regular ω-languages L1 and L2 are equal if and only if (L1)$ = (L2)$. Consistent
with this definition, we assume that the ultimately periodic word u(v)ω is represented by
the finite string u$v. Calbrix et al. [11] introduced this definition and showed that if L is a
regular ω-language, then (L)$ is a regular language.

To represent both the target language L and a hypothesis set H, the natural choice is
an automaton of the type being considered (for example, a SUBA), with an appropriate
size measure (for example, the number of states of the automaton.) If this is the situation,
the EQs are termed proper. However, it is sometimes useful to allow a different type of
representation of hypotheses H in the EQs, in which case the EQs are non-proper. This issue
will be considered further in Section 7.

In defining the running time of a learning algorithm, each EQ or MQ is counted as an
oracle call, that is, one step. The learning algorithm must be able to cope with arbitrary
counterexamples, which may be arbitrarily long, so it is said to run in polynomial time if its
running time is bounded by a polynomial in the size of the smallest automaton accepting
the target language L and the length of the longest counterexample returned by EQs.

In this learning framework, Maler and Pnueli [25] gave a polynomial time learning
algorithm using MQs and proper EQs for a strict subclass of languages accepted by DBAs,
namely the class of ω-languages L such that both L and its complement (Σω \L) are accepted
by DBAs. This class of languages is characterized by the deterministic weak parity automata
(DwPA) and is a strict subclass of the class of all regular ω-languages.

Farzan et al. [21] applied the learning algorithm L∗ to the problem of learning a DFA
accepting the regular language (L)$, providing an algorithm using MQs and proper EQs to
learn an arbitrary regular ω-language represented by NBAs.3 One issue with this approach is

3 L∗ runs in time polynomial in n and ` where n is the size of the minimal DFA for the language, and ` the
size of the largest counterexample, asks at most n equivalence queries and at most O(`n2) membership
queries [2]. The complexity of the algorithm proposed by Farzan et al. is thus polynomial with respect
to the size of a DFA for (L)$.
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that the DFA for (L)$ may be quite large: for an NBA with m states, Calbrix et al. provide
an upper bound of 2m + 22m2+m on the size of a DFA for (L)$. In Section 5 we show that
the minimum DFA for (L)$ and its reverse, (L)r$, may also be exponentially larger than a
SUBA for L.

Angluin and Fisman [4] proposed a representation of regular ω-languages using families
of DFAs, a representation that may be exponentially more concise than the minimum DFA
for (L)$, and gave a learning algorithm Lω based on that representation. However, the
intermediate hypotheses of the learning algorithm could be large, in the worst case as large
as a minimum DFA for (L)$.

4 A Negative Result for Learning NBAs

NBAs may be exponentially more succinct than SUBAs (see Section 5). However, in this
section we show that under plausible cryptographic assumptions, there is no polynomial time
algorithm to learn NBAs using equivalence and membership queries. We now define a second,
more relaxed, notion of learning, namely polynomial predictability with membership queries.

The learning framework of polynomial predictability with membership queries assumes
that there is an upper bound n on the length of relevant example words and that there is an
arbitrary unknown probability distribution D on these words. The learning algorithm has
access to words randomly drawn according to D and labeled according to the target concept
L, as well as MQs to L. The algorithm is also given an upper bound s on the target concept
and an accuracy parameter ε > 0. We refer to the operation of drawing a word according to
D and getting the result of its membership in L as drawing a classsified word. The algorithm
runs for some time, drawing classified words and making MQs until it requests one test word
to predict. This word is also drawn according to D and, without making any further draws
of classified words or MQs, the algorithm outputs 1 or 0 as a prediction of whether the word
is a member of L or not. For the algorithm to be successful, this prediction must be correct
with probability at least (1− ε). In the running time of the algorithm, drawing a classified
word, making a MQ and requesting the test word to predict count as oracle calls, that is,
each counts as one step.

A class C of languages with a particular choice of representations is polynomially predictable
with membership queries if there exists a (possibly randomized) learning algorithm A in the
framework just described, that takes as input n, s and ε, such that for any positive integer n,
any probability distribution D over words of length at most n, for any target language L ∈ C,
for any positive integer s that is an upper bound on the size of the smallest representation
of L, and for any ε > 0, the algorithm A with access to words drawn according to D and
classified according to L, and access to MQs for L, runs for time bounded by a polynomial
in n, s, and 1/ε and with probability at least (1− ε) correctly predicts the classification of
the test word to predict.

Comparing this definition of learning to that in Section 3, the definition using EQs
and MQs requires complete representations of the hypotheses in a specific form, while
polynomial predictability with MQs only requires the ability to make predictions of the
classifications of new examples, with no restriction on how the (implicit) hypothesis is
represented. The definition of polynomial predictability with MQs is more relaxed than
the definition of polynomial time learning with EQs and MQs in the sense that if a class
C can be learned in polynomial time with EQs and MQs, where the representation used in
the EQs has a polynomial time membership test, then C is also polynomially predictable
with membership queries. Angluin [2] showed that if the hypotheses used in EQs have a
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polynomial time membership test, then polynomial time learnability with EQs and MQs
implies PAC-learnability with MQs; this in turn implies polynomial predictability with MQs.

We now prove the following negative result for learning NBAs.

I Theorem 1. If we assume the computational intractability of any of the following three
problems: (1) testing quadratic residues modulo a composite, (2) inverting RSA encryption, or
(3) factoring Blum integers, then the concept class of regular ω-languages is not polynomially
predictable with membership queries, when the target language is represented by an NBA.

This follows from the analogous result for nondeterministic finite automata proved by Angluin
and Kharitonov [7, Corollary 7]. The proof below is a straightforward reduction of predicting
NFAs with membership queries to predicting NBAs with membership queries.

Proof. We first describe a general transformation of an NFA A over the input alphabet Σ to
a related NBA A′ over an augmented input alphabet. Choose a new alphabet symbol a 6∈ Σ.
Given an NFA A = (Σ, Q,Q0,∆, F ), we construct from it the NBA A′ = (Σ′, Q′, Q′0,∆′, F ′)
as follows. Let Σ′ = Σ ∪ {a}. Choose a new state, say q′ 6∈ Q, and let Q′ = Q ∪ {q′} and
Q′0 = Q0. For the transition relation, let ∆′ = ∆ ∪ {(q, a, q′) | q ∈ F} ∪ {(q′, a, q′)}. Thus,
there is a new transition on a from every final state of A to the new state q′, and a transition
on a from q′ to itself. Let F ′ = {q′}, so the new state is the only final state of A′. It is not
difficult to see that if L ⊆ Σ∗ is the language accepted by A, then the ω-language accepted
by A′ is L · aω.

If we have a learning algorithm A′ that polynomially predicts NBA acceptance using
membership queries, we can use it to construct an algorithm A that polynomially predicts
NFA acceptance using membership queries. To implement A running with a target language
L accepted by the NFA A and the probability distribution D on Σ∗, we simulate the algorithm
A′, answering its queries as follows.

Suppose A′ makes a membership query with (u, v) representing the ultimately periodic
word u(v)ω. If u(v)ω = xaω for some x ∈ Σ∗ then we make a MQ to L with the word x and
return the resulting answer. Otherwise, the answer to the MQ is 0.

Suppose A′ requests a random classified word. Then we request a word from Σ∗ chosen
according to D and classified according to L, which returns a pair (x, y) where x ∈ Σ∗ and
y ∈ {0, 1} indicates whether or not x ∈ L. The element we supply to A′ is the pair ((x, a), y),
which indicates the choice of the ω-word xaω and the classification y.

Finally, when A′ requests the test word to predict, we request the test word to predict,
and receive a string x ∈ Σ∗, chosen according to D. The test word that we supply to A′ to
predict is (x, a), representing the ω-word xaω.

The queries of A′ are answered as though it is learning the NBA A′ derived from A, with
the distribution on ω-words giving probability D(x) to xaω for x ∈ Σ∗, and probability zero
to words not of this form. Thus, if A′ predicts the correct classification of (x, a) by A′, then
A predicts the correct classification of x by A. J

Because of the relationship between polynomial time learnability with EQs and MQs and
polynomial predictability with membership queries, we have the following.

I Corollary 2. If we assume the truth of any of the three cryptographic assumptions listed in
Theorem 1 then there is no polynomial time algorithm to learn NBAs using EQs and MQs,
such that the representation used in the EQs has a polynomial time membership test.
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5 Size Comparisons for SUBAs

Because the performance of a learning algorithm is bounded as a function of the size of
the representation of the target language, we investigate size comparisons between SUBAs
and other representations of regular ω-languages. For their conversion of an NBA of n
states to an equivalent SUBA, Carton and Michel [12] give an upper bound of (12n)n on
the number of states in the resulting CUBA. Bousquet and Löding [9] show that there is
a family of languages Ln such that Ln is accepted by a DBA (which is also an NBA) of
n+ 1 states but any SUBA to accept Ln must have at least 2n−1 states, showing that DBAs
and NBAs may be exponentially more succinct than SUBAs. Here we focus on comparisons
to representations used in learning algorithms, namely deterministic weak parity automata
(DwPAs), families of DFAs (FDFAs) and DFAs for (L)$.

5.1 Comparison to FDFAs and DwPAs
A family of DFAs (FDFA) F = (M, {Aq}) over an alphabet Σ consists of a leading deter-
ministic automatonM = (Σ, Q, q0, δ) and progress DFAs Aq = (Σ, Sq, s0q, δq, Fq) for each
q ∈ Q. LetM be an automaton and (u, v) a pair of finite words representing the ultimately
periodic word uvω. The normalization of (u, v) with respect toM is the pair (x, y) such that
x = uvi, y = vj and 0 ≤ i < j are the smallest for which uvi and uvi+j reach the same state
ofM. A pair of finite words (u, v) is accepted by an FDFA F = (M, {Aq}) if y is accepted
by Aqx

where qx is the state reached byM when reading x and (x, y) is the normalization
of (u, v) with respect toM. For a comprehensive discussion on FDFAs see [3].

A deterministic weak parity automaton (DwPA) is a tuple (Σ, Q, q0, δ, κ) where the first
four components are the same as for DBAs, and κ : Q→ {1, . . . , k} maps a state to a number
from a finite set of naturals, referred to as color. A DwPA accepts an ω-word w if the
maximal color visited along the run of the DwPA on w is even.

I Theorem 3. There exists a family {Ln} of ω-languages such that Ln is recognized by a
SUBA of 2n+ 2 states, while any FDFA and any DwPA recognizing Ln require at least 2n
states.

Proof. The proof uses the same family of languages used by Bousquet and Löding [9] to
prove an exponential translation may be required when going from SUBAs to deterministic
Muller automata. The family they proposed is given by Ln = Σ∗aΣn−1abω where Σ = {a, b}.
Fig 2. in [9] shows a SUBA for Ln with n+ 2 states. To see that an FDFA requires at least
n states, we note that the number of states in a leading automaton of an FDFA is at least
the number of equivalence classes in the right congruence ∼L where for all finite words x
and y we have that x ∼L y iff ∀w ∈ Σω. xw ∈ L ⇐⇒ yw ∈ L. The proof follows since the
number of equivalence classes derived from ∼Ln is at least 2n [26]. The proof for DwPA
follows from this as well since the number of equivalence classes of ∼L is also a lower bound
for the number of states of any deterministic ω-automaton for a language L [6]. J

I Theorem 4. There exists a family {Ln} of ω-languages such that Ln is recognized by an
FDFA using n+ 3 states and by a DwPA using n+ 2 states, while any SUBA recognizing Ln
requires at least 2n states.

Proof of Thm. 4 . The proof uses the same family of languages used by Bousquet and
Löding [9] to prove an exponential translation may be required when going from deterministic
Büchi automata to SUBAs. The family they proposed is given by Ln = Σn−1aΣω where
Σ = {a, b}. A FDFA for Ln has the same structure as a DFA for Σn−1aΣ∗, namely states
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Figure 2 A SUBA with 4n+ 5 states for Ln used in the proof of Thm. 5 for which any DFA to
recognize (Ln)$ or its reverse requires at least 2n states.

q0, q1, . . . , qn, qn+1 where qi transits with a or b to qi+1 for 0 ≤ i < n, qn transits to qn+1
with a and qn+1 transits to itself with a or b. The progress automata for all states qi for
i ≤ n is empty, and the progress automaton for state qn+1 is the one state accepting DFA.
To build a DwPA for Ln we can take the same structure and the coloring κ(qn+1) = 2 and
κ(qi) = 1 for any 0 ≤ i ≤ n. J

5.2 Comparison to DFAs for (L)$ or Its Reverse
One may notice that the families of languages used in the comparisions of SUBA with DMA,
DBA, FDFA and DwPA are similar to the families of languages used to show that a DFA
for the reverse of a language L can be exponentially bigger or exponentially smaller than
a DFA for L itself. This has to do with the fact that SUBAs are backward deterministic.
We thus asked ourselves whether there exists a family of languages {Ln} that a SUBA can
characterize with polynomially in n many states, while both a DFA for (Ln)$ and a DFA for
its reverse, (Ln)r$, would require exponentially many states. The answer is positive.

I Theorem 5. There exists a family {Ln} of ω-languages such that Ln is recognized by a
SUBA of 4n+ 5 states, while any DFA to recognize (Ln)$ or its reverse requires at least 2n
states.

Proof. We define a family of ω-languages over the alphabet {0, 1, 0′, 1′} by

Ln =
(

(0 + 1)∗
(
0(0 + 1)n0(0 + 1)n0′ + 1(0 + 1)n1(0 + 1)n1′

))ω
,

for all positive integers n. We define an NBA An of 4n+ 5 states to accept Ln (depicted
in Fig. 2), and show that it is a SUBA. It is not difficult to verify that An accepts Ln. To
see that An is a SUBA, note that any final run on an ω-word w must pass infinitely often
through r0,n or r1,n. After the former, the only possible symbol is 0′, and after the latter, the
only possible symbol is 1′, and these symbols can occur nowhere else. Because the transition
function of An is reverse deterministic, this completely determines the sequence of states
traversed in a final run on w.

Next we show that a DFA to accept (Ln)$ must have at least 2n states. Assume to the
contrary that there is a DFAM with fewer than 2n states that accepts this language. Then
there exist two different strings u, v ∈ {0, 1}n that reach the same state q ofM from the
initial state. Without loss of generality, there exist w, u1, v1 ∈ {0, 1}∗ such that u = w0u1
and v = w1v1. Let x be any element of {0, 1}∗ with length n− |u1|. Then ux = w0u1x and
vx = w1v1x reach the same state ofM from the initial state. However, w0u1x(0u1x0′0u1x)ω
is an element of Ln while w1v1x(0u1x0′0u1x)ω is not, so ux$0u1x0′0u1x ∈ (Ln)$, while
vx$0u1x0′0u1x 6∈ (Ln)$, a contradiction because these two strings must reach the same state
ofM from its initial state.
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Finally we show that a DFA to accept (Ln)r$, the reverse of (Ln)$ must have at least 2n
states. Assume that there is a DFAMr of fewer than 2n states that accepts the language
(Ln)r$. There exist two different strings u, v ∈ {0, 1}n that reach the same state of Mr from
its initial state, and strings w, u1, v1 ∈ {0, 1}∗ such that u = w0u1 and v = w1v1. Let
x, y ∈ {0, 1}∗ be arbitrary strings of lengths |x| = n− |u1| and |y| = n− |w|. Consider the
two strings

z0 = w0u1x00′y = ux00′y, and z1 = w1v1x00′y = vx00′y,

which reach the same state of Mr from its initial state. Considering the reverses of these
two strings, zr0 = yr0′0xrur10wr is a possible period of Ln, that is,

0xrur10wr(zr0)ω ∈ Ln, but 0xrur10wr(zr1)ω 6∈ Ln.

Thus, z0$w0u1x0 ∈ (Ln)r$ while z1$w0u1x0 6∈ (Ln)r$, a contradiction because z0 and z1 reach
the same state ofMr from its initial state. J

6 Multiplicity Automata

A multiplicity automaton represents a function f mapping finite strings Σ∗ to elements of a
field K. The definitions are formulated using vectors and matrices and their products over
K. A multiplicity automaton of dimension d is specified as a tuple A = (Σ, vI , {µσ}σ∈Σ, vF ),
where Σ is the input alphabet, vI ∈ Kd is the initial state, for each symbol σ ∈ Σ, µσ ∈ Kd×d
is the transition map on σ, and vF ∈ Kd is the output map. To specify the function f

computed by A we first define a function µ from Σ∗ to Kd×d inductively as follows. For the
empty string ε, µ(ε) is the d×d identity matrix. Given σ ∈ Σ and w ∈ Σ∗, µ(σw) = µσ ·µ(w),
where · denotes matrix product. Thus, for a word w = σ1σ2 · · ·σn, µ(w) = µσ1 · µσ2 · · ·µσn

.
Then the value output by A on input word w is given by

f(w) = v>I µ(w)vF ,

where the vectors vI and vF from Kd are interpreted as d× 1 column vectors.
Multiplicity automata have many useful properties. Assume that the arithmetic operations

in the field K take one step. Then computing f(w) requires computing the product of |w|
square matrices and two vectors of dimension d and takes time polynomial in |w| and d. Thon
and Jaeger [32] (who use the term (linear) sequential systems for multiplicity automata) give
polynomial time algorithms to find a basis for the state space of a multiplicity automaton,
to minimize a multiplicity automaton and to test two multiplicity automata for equivalence.
The algorithm to find a basis for the states also yields a shortest string w (if any) that is
not mapped to 0, and shows that such a string must have length less than the dimension of
the automaton. This is because if the output is 0 on all the basis elements, the function is
identically 0. Given multiplicity automata A1 and A2 of dimensions d1 and d2 computing
f1 and f2, there are multiplicity automata for the sum f1 + f2 (of dimension d1 + d2) and
product f1 · f2 (of dimension d1 · d2) that may be constructed in polynomial time.

We consider the special case of multiplicity automata over the Galois Field K = GF(2)
of the two elements {0, 1}, in which addition is defined modulo 2. These are termed mod-
2-multiplicity automata, abbreviated as mod-2-MAs. The outputs of a mod-2-MA A are
either 0 or 1, so we may consider them as language acceptors by defining JAK to be the set
of elements of Σ∗ mapped to 1 by A. We next show how to convert a mod-2-MA to an
equivalent DFA.
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M1 = ({a, b}, (1, 0, 0), {µa, µb}, (1, 1, 0)>)
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Figure 3 Left: a mod-2-MA M1 of dimension 3. Middle: the DFA D1 constructed from the
mod-2-MA M1 according to Lemma 6. Right: the UFA A4 from Denis et al. [19].

I Lemma 6. Let A = (Σ, vI , {µσ}σ∈Σ, vF ) be a mod-2-MA of dimension n. There exists a
DFA A′ with at most 2n states such that JAK = JA′K.

Proof. For A′ the set of states is all row vectors v ∈ {0, 1}n and the initial state is v>I . For
states v1 and v2 there is a transition from v1 to v2 on σ if and only if v2 = v1µσ. The set of
final states is all states v such that the inner product of v and v>F is 1. Then the definition
of the output of A guarantees that for all w ∈ Σ∗, the output of A on w is 1 if and only if
A′ accepts w. J

As an example of this construction, consider the mod-2-MAM1 of dimension 3 given in
the left of Fig. 3. The equivalent DFA D1 constructed fromM1 as described in the proof of
Lemma 6 is shown in the middle of Fig. 3, with unreachable states omitted. To see that the
blowup in this conversion is inevitable, let’s make some connection to NFAs and UFAs first.

The language accepted by M1 and D1 is the same as the language accepted by the
UFA called A4 by Denis et al. [19], shown on the right in Fig. 3, which can be verified by
determinizing A4 and comparing with D1. Note that no NFA of fewer than 4 states can
accept this language, because it must ensure that ak is accepted if and only if k is 0 or 1
modulo 4. Thus, a mod-2-MA may be more concise than the smallest equivalent NFA, an
issue we consider further below. For the reverse direction, we have the following, observed in
Example 2.3 by Beimel et al. [8].

I Lemma 7. Let A = (Σ, Q,Q0,∆, F ) be an NFA of n states. There exists a mod-2-MA A′
of dimension n such that for every w ∈ Σ∗, the output of A′ on input w is 1 if and only if
the number of accepting paths for w in A is odd.

Proof. Suppose the states of A are Q = {q1, q2, . . . , qn}. We define a mod-2-MA A′ of
dimension n as follows. For vectors in {0, 1}n, dimension i represents state qi for i = 1, 2, . . . , n.
The vector vI is the characteristic vector of Q0, the vector vF is the characteristic vector of
F , and for each σ ∈ Σ, [µσ]i,j = 1 if and only if (qi, σ, qj) ∈ ∆. An inductive proof shows that
[µ(w)]i.j = 1 if and only if the number of paths on w from qi to qj is odd. Multiplying on
the left by the transpose of vI selects the paths starting at an initial state, and multiplying
on the right by vF adds up the results for the final states, giving 1 if and only if the total
number of accepting paths on input w in A is odd. J

In the case of a UFA, for each w ∈ Σ∗ the number of accepting paths is either 0 or 1,
immediately implying the following fact, also observed by Beimel et al.

I Corollary 8. For any UFA A of n states, there exists a mod-2-MA A′ of dimension n such
that JAK = JA′K.
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Figure 4 The UFA U2 accepting Σ∗aΣΣ for Σ = {a, b} and the mod-2-MA for the same language

constructed according to Lemma 7.

As an example of this construction, consider the language Σ∗aΣΣ, consisting of all strings
over Σ = {a, b} with an a as the third symbol from the end. This is accepted by the UFA U2
of 4 states, shown in Fig. 4 on the left. The mod-2-MAM2 of dimension 4 constructed from
U2 according to Lemma 7 is given on the right of Fig. 4.

I Remark 9. In the case of mod-2-MAs, the results listed above for general multiplicity
automata give polynomial time algorithms to minimize the number of dimensions, and to
test equivalence, emptiness and universality, as well as polynomial time constructions for the
symmetric difference (by addition), complement (by adding the constant 1), intersection (by
multiplication), and union (by intersection and complement) of two given automata. If the
language is nonempty, a shortest accepted word may be found in polynomial time and has
length less than the number of dimensions (see [32]).

Beimel et al. [8] consider the problem of learning a multiplicity automaton computing a
function f using suitably generalized equivalence and membership queries (see Section 3 for
the basic definitions of learning with queries.) In particular, the answer to a membership
query on word w ∈ Σ∗ is the value of f(w) ∈ K, and the answer to an equivalence query
with a multiplicity automaton H is either “yes” or a counterexample, that is, a word w ∈ Σ∗
such that the output of H on w is not equal to f(w). Beimel et al. give an algorithm to learn
a multiplicity automaton in time polynomial in the rank of the Hankel matrix of f (which
is bounded above by the dimension of the multiplicity automaton) and the length of the
longest counterexample. In contrast to L∗, in which rows of the observation table that are
unequal become distinct states, in the learning algorithm for multiplicity automata, a row
becomes a new basis vector only if it is linearly independent of the existing basis vectors.

Given that DFAs, UFAs, NFAs and mod-2-MAs all accept the class of regular languages,
an important distinction between them is succinctness, the number of states in the smallest
automaton to accept a given regular language. An NFA, UFA or mod-2-MA of n states
can be converted to an equivalent DFA of at most 2n states. DFAs are UFAs, which are
NFAs, so NFAs are at least as succinct as UFAs, which are at least as succinct as DFAs. By
Corollary 8, each UFA can be converted to a mod-2-MA of the same size, so mod-2-MAs are
at least as succinct as UFAs and DFAs. The family of languages Ln given by (a+b)∗a(a+b)n
shows that NFAs, UFAs and mod-2-MAs may be exponentially more succinct than DFAs.

Schmidt [30] considers the family of complements of the languages Ln given by {ww |
w ∈ {0, 1}n}, and shows that the complement of Ln can be accepted by an NFA of O(n2)
states, but requires at least 2n states for a UFA. His argument is that the rank of the binary
matrix F (x, y) = xy 6∈ Ln where x, y ∈ {0, 1}n is at least 2n, and therefore that a UFA
must have at least 2n states. This also shows that a mod-2-MA for the complement of Ln
must have dimension at least 2n. This leaves the question of whether mod-2-MAs may be
non-polynomially more concise than UFAs or NFAs. Here we consider the comparison of the
sizes of NFAs and mod-2-MAs over a unary alphabet.
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I Lemma 10. There is a family of unary languages {Ln} such that the smallest NFA that
accepts Ln has size O(n2) while the smallest mod-2-MA that accepts Ln has dimension at
least 2Θ(n/ logn).

Proof. Given n, let p1, p2, . . . , p` denote the primes less than or equal to n and let P (n)
denote their product. Define Ln to contain all words at such that t is not a positive
integer multiple of P (n). We define an NFA An to accept Ln as follows. The states are
Q = {q0} ∪ {ri,j | 1 ≤ i ≤ n, 0 ≤ j < pi}, where q0 is the only initial state and all states are
final except for those in {ri,j | 1 ≤ i ≤ k, j = pi − 1}. There are transitions on a from q0 to
each ri,0 and from each ri,j to ri,j+1, where the addition is modulo pi. Then ε is accepted,
and at is rejected only if t is a positive integer multiple of each pi, that is, a positive integer
multiple of P (n), so An accepts Ln and has O(n2) states.

Let A′ be a mod-2-MA of dimension N accepting Ln. Then there is a mod-2-MA of
dimension N + 1 accepting the complement of Ln (Remark 9). But the shortest word in the
complement of Ln has length P (n), so P (n) < N + 1. Because the number of primes less
than or equal to n is Θ(n/ logn) and each prime is at least 2, the lower bound follows. J

For more information on sizes of finite automata accepting unary languages, see the paper of
Chrobak [16, 17], which gives more refined bounds.

In the other direction, we prove a conditional lower bound in the following lemma. A
Mersenne prime is a prime of the form 2d − 1 for some positive integer d. Unfortunately,
it is unknown whether there are infinitely many Mersenne primes. For this paper, a shift
register sequence of dimension d is an infinite periodic sequence {an} of bits defined by initial
conditions ai = bi for i = 0, 1, . . . , d− 1 and a linear recurrence

an = c1an−1 + c2an−2 + . . .+ cdan−d,

for all n ≥ d, where each ci ∈ {0, 1} and the addition is modulo 2. The maximum possible
minimum period of a shift register sequence is 2d − 1, and it is known that for every positive
integer d there are shift register sequences of maximum period. These are known as maximal
length or pseudo noise sequences. A maximal length sequence has 2d−1 ones and 2d−1 − 1
zeros in the period. Golomb’s book [23] is a definitive reference for shift register sequences.
An example of a maximal length sequence of dimension 4 is given by a0 = 0, a1 = 0, a2 = 0,
a3 = 1 and for all n ≥ 4, an = an−3 + an−4 (mod 2). This recurrence generates a sequence
with period 000100110101111.

I Lemma 11. If there are infinitely many Mersenne primes then there is a family of unary
languages Ld such that for infinitely many values of d, Ld is accepted by a mod-2-MA of
dimension d but no NFA of fewer than 2d − 1 states accepts Ld.

Proof. Suppose the unary alphabet is Σ = {]}. For a language L ⊆ Σ∗ we may define the
infinite sequence χLn where χLn = 1 if ]n ∈ L and 0 otherwise. Given a maximal length shift
register sequence {an} of dimension d, there exists a mod-2-MA A of dimension d such that
the language L accepted by A has χLn = an for all n ≥ 0. Such a mod-2-MA A can be
constructed as follows. Let an = c1an−1 + c2an−2 + . . . + cdan−d, with initial conditions
ai = bi for 0 ≤ i < d, be the linear recurrence used to define the given maximal length shift
register sequence. Then let the mod-2-MAM be the tuple

({]}, (b0, . . . , bd−1), {µ]}, (1, 0, . . . , 0)>),
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where the matrix µ] is as prescribed on the right.

µ] =


0 0 . . . 0 cd
1 0 . . . 0 cd−1
0 1 . . . 0 cd−2
...

...
. . .

...
...

0 0 . . . 1 c1


It follows that (χLm, χLm+1, . . . , χ

L
m+d−1) · µ] is equal to (χLm+1, χ

L
m+2, . . . , χ

L
m+d), for any

m ≥ 0, and therefore, for any n ≥ 0, the value of χLn is equal to (b0, b1, . . . , bd−1) · (µ])n ·
(1, 0, . . . , 0)>.

Let A′ be an NFA accepting L corresponding to a maximal length shift register sequence
of dimension d. Then A′ must contain at least one reachable cycle of states with at least
one final state. The length of that cycle must not be 1 or relatively prime to 2d − 1, or else
positions of the period that should be 0’s will eventually be assigned 1. More specifically,
since the sequence is not constant and since the period of the shift register sequence is 2d− 1,
there exist m1,m2 < 2d such that for all ` the value of a`·(2d−1)+m1 is 0 and the value of
a`·(2d−1)+m2 is 1. On the other hand if there is a cycle of length p in A′, then for some k ≥ 0,
the value of ak+j1·p is equal to ak+j2·p, for all j1, j2 ≥ 0. It can be shown that if p is coprime
to 2d − 1, then there exist z1, z2, x1, x2 ≥ 0, such that x1 · (2d − 1) +m1 is equal to k + z1 · p
and x2 · (2d − 1) +m2 is equal to k + z2 · p, a contradiction. Thus p must not be coprime
to 2d − 1. Therefore, if 2d − 1 is prime, that is, if 2d − 1 is a Mersenne prime, p must be a
multiple of 2d − 1 and as a result A must have at least 2d − 1 states. J

7 Learning SUBAs in Polynomial Time With MQs and Non-Proper
EQs

In contrast to the negative result in Section 4 for learning NBAs, we show that SUBAs can
be learned in polynomial time using MQs and non-proper EQs. Since these two classes of
automata both accept all the regular ω-languages, a key difference is in the succinctness of
the representation of a regular ω-language by an NBA versus a SUBA.

I Theorem 12. There is a polynomial time algorithm to learn all regular ω-languages, when
the target language is represented by a SUBA, using membership queries and non-proper
equivalence queries (using mod-2-MAs to represent hypotheses).

The existence of the learning algorithm is established by the following two results.

I Lemma 13 (Bousquet and Löding [9]). Let A be a SUBA of n states accepting the language
L = JAK. Then there is a UFA of O(n2) states for the language (L)$.

Bousquet and Löding prove that there are polynomial time algorithms to determine contain-
ment and equivalence of two regular ω-languages represented by SUBAs. Their proof gives a
construction that takes a SUBA A of n states accepting a language L and produces a UFA
of at most n+ 2n2 states that accepts (L)$.

I Lemma 14 (Beimel et al. [8]). There is a polynomial time algorithm to learn UFAs with
membership and non-proper equivalence queries (using mod-2-MAs to represent hypotheses).

Beimel et al. [8] give an algorithm to learn multiplicity automata over a field K using
(generalized) MQs and EQs that runs in time polynomial in the dimension of the target
automaton and the length of the longest counterexample. They remark (p. 519) that their
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results imply a polynomial time algorithm for learning UFAs. Specifically, combining their
algorithm with the fact that UFAs can be transformed to mod-2-MAs of the same size
(Corollary 8) yields the lemma.

Proof of Theorem 12. Let A be a SUBA of n states with input alphabet Σ accepting the
language L. We assume $ 6∈ Σ, and let Σ$ = Σ∪{$}. For a MQ to L, the input is a string u$v
and the answer is 1 or 0 according to whether u(v)ω ∈ L, that is, whether u$v ∈ (L)$. For a
non-proper EQ to L, the input is a mod-2-MA H over the alphabet Σ$ and the answer is “yes”
if the language accepted by H is precisely (L)$. Otherwise, the answer is a counterexample
w ∈ (Σ$)∗ such that H accepts w and w 6∈ (L)$ or H rejects w and w ∈ (L)$.

The learning algorithm of Beimel et al. may use these EQs and MQs to L to learn a
mod-2-MA for the language (L)$. Because (L)$ is accepted by a UFA of O(n2) states, and
therefore by a mod-2-MA of dimension O(n2) (Corollary 8), the learning algorithm runs in
time polynomial in n and the length of the longest counterexample. J

In contrast to the negative result in Section 4 for the representation of regular ω-languages
by NBAs, we have the following corollary.

I Corollary 15. The class of ω-regular languages is polynomially predictable with membership
queries when the target language is represented by a SUBA.

Proof. By the discussion preceding Theorem 1, it is sufficient to note that there is a
polynomial time algorithm that takes as inputs a mod-2-MA H and a finite word w and
decides whether H accepts w. J

8 Discussion

We have shown that there is a polynomial time algorithm to learn strongly unambiguous
Büchi automata (SUBAs) using membership queries and non-proper EQs, where the EQs
use mod-2-MAs to represent (L)$. This implies that SUBAs are polynomially predictable
with membership queries. By contrast, we have shown that under plausible cryptographic
assumptions, general NBAs are not polynomially predictable with MQs. In applications,
careful thought should be given to the choice of representations, considering both succinctness
and learnability.

Given that the standard translation of a linear temporal logic (LTL) formula to an NBA
yields a SUBA [34, 35], it is natural to ask what our results imply about the learnability of
LTL formulas. The first step of the standard translation of an LTL formula φ constructs a
state set consisting of all subsets of subformulas of φ, so the constructed SUBA may be of
size exponential in the size of φ. Thus an algorithm that runs in time polynomial in the size
of the SUBA does not avoid this exponential blow up. However, the difficulty of learning
LTL formulas may be unavoidable: LTL formulas are at least as expressive and succinct as
Boolean formulas, and the results of Angluin and Kharitonov [7] show that under the same
cryptographic assumptions in Theorem 1, Boolean formulas are not polynomially predictable
with membership queries.

Several avenues of research are suggested by our results. Can the equivalence queries
used by the learning algorithm of Theorem 12 be modified to use SUBAs, or at least NBAs,
as hypotheses? Farzan et al. [21] show how to convert the DFA hypotheses used by their
algorithm to NBAs for equivalence queries, a method that does not extend to mod-2-MAs.
The question of how different two minimal SUBAs for the same language can be appears
to be open; note that the SUBAs in Fig. 1 are isomorphic if we permit a permutation of
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the alphabet symbols. Given the useful properties of mod-2-MAs, perhaps the idea of using
mod-2-MAs for (L)$ as a general representation of regular ω-languages L should be explored.
On a minor point, is there a proof that mod-2-MAs may be exponentially more succinct
than NFAs without the assumption that there are infinitely many Mersenne primes? Finally,
none of our results bear on the open questions of whether deterministic Büchi automata,
deterministic parity automata or deterministic Muller automata are learnable in polynomial
time with equivalence and membership queries.
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Abstract
We introduce a subclass of linear recurrence sequences which we call poly-rational sequences because
they are denoted by rational expressions closed under sum and product. We show that this class is
robust by giving several characterisations: polynomially ambiguous weighted automata, copyless
cost-register automata, rational formal series, and linear recurrence sequences whose eigenvalues are
roots of rational numbers.
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1 Introduction

The study of sequences of numbers originated in mathematics and has deep connections with
many fields. A prominent class of sequences is that of linear recurrence sequences, such as
the Fibonacci sequence

0, 1, 1, 2, 3, 5, 8, 13, . . .

Despite the simplicity of linear recurrence sequences many problems related to them remain
open, and are the object of active research. In theoretical computer science the two main
questions are:

How to finitely represent sequences?
How to algorithmically analyse properties of sequences?

In this paper we focus on problems related to the first question. The question of
representation has led to important insights in the structure of linear recurrence sequences
by giving several equivalent characterisations, some of which we briefly review here. We refer
to Section 2 and the next sections for technical definitions.

© Corentin Barloy, Nathanaël Fijalkow, Nathan Lhote, and Filip Mazowiecki;
licensed under Creative Commons License CC-BY

28th EACSL Annual Conference on Computer Science Logic (CSL 2020).
Editors: Maribel Fernández and Anca Muscholl; Article No. 9; pp. 9:1–9:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CSL.2020.9
https://arxiv.org/abs/1908.03890
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de
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Linear recurrence sequences. A sequence of ratioanl numbers u = 〈un〉n∈N = 〈u0, u1, u2,

. . .〉 is a linear recurrence system (LRS) if there exist real numbers a1, . . . , ak such that for
all n ≥ 0

un+k = a1un+k−1 + . . .+ akun. (1)

In this paper we will consider only sequences of rational numbers, therefore, we additionally
assume that ai are rational numbers. The smallest k for which u satisfies an equation of
the form (1) is called the order of u. The Fibonacci sequence 〈Fn〉n∈N is an LRS of order 2
satisfying the recurrence Fn+2 = Fn+1 + Fn.

Rational expressions. Studying the closure properties of linear recurrence sequences yields
the following result, an instance of the Kleene-Schützenberger theorem [20]: linear recurrence
sequences form the smallest class of sequences containing the sequences 〈a, 0, 0, . . .〉 for a
rational number a and closed under sum, Cauchy product, and Kleene star.

Weighted automata. The model of weighted automata is a well studied quantitative
extension of classical automata. In general a weighted automaton recognises a function
f : Σ∗ → R, hence when considering a unary alphabet this becomes f : {a}∗ → R, and
identifying {a}∗ with N we can see f as a sequence of numbers. Whenever we write about
sequences recognised by models like weighted automata, we implicitly assume that these are
over a unary alphabet.

Cost-register automata. Several characterisations of weighted automata have been intro-
duced [6, 12, 3]. We will be interested in the model of cost-register automata (CRA). These
are deterministic models with registers whose contents are blindly updated (i.e., without
transitions like zero tests). It was shown that considering linear updates yields a model
equivalent to weighted automata.

We summarise in one theorem the equivalences above, which is the starting point of our
work. Technical definitions are given in the paper.

I Theorem 1 (Folklore, see for instance [5, 20, 7]). The following classes of sequences are
effectively equivalent.

Linear recurrence sequences,
Sequences recognised by weighted automata,
Sequences recognised by linear cost-register automata,
Sequences denoted by rational expressions,
Sequences whose formal series are rational, i.e. of the form P

Q where P,Q are polynomials.

Algorithmic analysis of linear recurrence sequences

The questions regarding algorithmic analysis are far from being answered. A very simple
and natural problem, the Skolem problem, is still unsolved [21, 18]: given a linear recurrence
sequence, does it contain a zero? Recent breakthrough results sharpened our understanding
of the Skolem problem [16, 17], but one of the outcomes is that the general problem for the
whole class of linear recurrence sequences is beyond our reach at the moment, since it would
impact notoriously difficult problems from number theory. We refer the reader to the recent
survey about what is known to be decidable for linear recurrence sequences [18].
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Our contributions

Since the full class of linear recurrence sequences is too hard to be algorithmically analysed
(we only mentioned the Skolem problem but many related problems are also difficult), let us
revise our ambitions, go back to the drawing board, and study tractable subclasses.

In this paper we introduce poly-rational sequences which is a strict fragment of linear
recurrence sequences. We give several equivalent characterisations of this class following
the equivalence results stated in Theorem 1. Our results are summarised in the following
theorem.

I Theorem 2. The following classes of sequences are effectively equivalent.
Sequences denoted by poly-rational expressions (Section 2),
Sequences recognised by polynomially ambiguous weighted automata (Section 3),
Sequences recognised by copyless cost-register automata (Section 4),
Sequences whose formal series are of the form P

Q where P,Q are polynomials and the
roots of Q are roots of rational numbers (Section 5),
Linear recurrence sequences whose eigenvalues are roots of rational numbers (Section 5).

We do not discuss the efficiency of reductions proving the equivalences. Our constructions
are elementary, and in most cases they yield blow ups in the size of representation.

We note that the Skolem problem and its variants are known to be decidable, and NP-hard,
for the subclass of poly-rational sequences. The decidability easily follows from the fact that
our class is subsumed by other classes for which such results were obtained (see e.g. [19], for
the case where all eigenvalues are roots of algebraic real numbers). The Skolem problem is
known to be NP-hard already for the class of LRS whose eigenvalues are roots of unity [1].
This implies that the Skolem problem for the class of poly-rational sequences is also NP-hard,
which is the best known lower bound even for the full class of linear recurrence sequences.

Related works

The intractability of the Skolem problem for linear recurrence sequences also impacts the
other equivalent models, leading to the study of several restrictions. A classical approach
to tame weighted automata is to bound the ambiguity of weighted automata, i.e. bounding
the number of accepting runs with a function depending on the length of the word. Many
positive results have been obtained in the past years following this approach [11, 10, 8].

Another restriction studied in the model of cost-register automata is the copyless restric-
tion: registers are not allowed to be copied more than once. It was conjectured that the
copyless restriction would result in good decidability properties [3], but this has been recently
falsified [2].

2 Linear recurrence sequences and rational expressions

We let u = 〈un〉n∈N = 〈u0, u1, u2 . . .〉 denote a sequence of rational numbers.

Linear recurrence sequences

We will assume that an LRS u is given by the numbers a1, . . . , ak and the values of the first
k elements: u0, . . . , uk−1. The recurrence (1) induces the sequence u. We let LRS denote
the class of LRS. Given an LRS we define its characteristic polynomial as

Q(x) = xk − a1x
k−1 − . . .− ak−1x− ak.
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9:4 A Robust Class of Linear Recurrence Sequences

The roots of the characteristic polynomial are called the eigenvalues of the LRS.

Formal series

Formal series are a different representation for sequences. The sequence 〈un〉n∈N induces
the formal series S(x) =

∑
n∈N unx

n, with the interpretation that the coefficient of xn is the
value of the n-th element in the sequence. Note that a polynomial represents a sequence
with a finite support.

I Example 3. A standard example of an LRS is the Fibonacci sequence 〈Fn〉n∈N defined
by the recurrence Fn+2 = Fn+1 + Fn and initial values F0 = 0, F1 = 1. Its characteristic
polynomial is p(x) = x2 − x− 1, whose roots are 1+

√
5

2 and 1−
√

5
2 . The corresponding formal

series is S(x) =
∑∞
n=0 Fnx

n. Using the definition of F we obtain S(x) = x+ xS(x) + x2S(x)
and thus S(x) = x

1−x−x2 .

Rational expressions

We start by defining three classes of sequences.
Fin: a sequence u is in Fin, or equivalently u has finite support, if the set {n ∈ N : un 6= 0}
is finite;
Arith: a sequence u is in Arith, or equivalently u is arithmetic, if u0 = a, un+1 = un+ b

for some rational numbers a, b;
Geo: a sequence u is in Geo, or equivalent u is geometric, if u0 = a, un+1 = λ · un, for
some rational numbers a, λ.

We let Geoλ denote the class of geometric sequences with a fixed parameter λ.

We now define some classical operators. Here u,v,u1, . . . ,uk are sequences.
Sum: u + v is the component wise sum of sequences;
Cauchy product: u · v = 〈

∑
p+q=n up · vq〉n∈N; inducing (u)n defined by (u)0 =

〈1, 0, 0, 0, . . .〉 and (u)n+1 = (u)n · u, in particular (u)1 = u;
Kleene star: (u)∗ =

∑
n∈N (u)n, it is only defined when u0 = 0;

Hadamard product: u× v is the component wise product of sequences;
Shift: 〈a,u〉 = 〈a, u0, u1, . . .〉, defined for any rational number a;
Shuffle: shuffle(u1,u2, . . . ,uk) = 〈u1

0, u
2
0, . . . , u

k
0 , u

1
1, u

2
1, . . . , u

k
1 , u

1
2, . . .〉.

We write Rat[C, op1, . . . , opk] for the smallest class of sequences containing C and closed
under the operators op1, . . . , opk. Rational expressions in Theorem 1 are classically defined
as follows [20]:

Rat = Rat[Fin,+, ·, ∗].

The class Rat contains all classes defined above, and is closed under all mentioned operators,
i.e.

Rat = Rat[Fin ∪Arith ∪Geo,+, ·, ∗,×, shift, shuffle].

We now introduce a class of sequences denoted by a fragment of rational expressions,
whose study is the purpose of this article. The class is called poly-rational sequences, because
they are denoted by rational expressions using sum and product.

I Definition 4 (Poly-rational sequences).

PolyRat = Rat[Arith ∪Geo,+,×, shift, shuffle].
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In other words PolyRat is the smallest class of sequences containing arithmetic and geometric
sequences that is closed under sum, Hadarmard product, shift, and shuffle. A trivial
observation is that Fin ⊆ PolyRat since using shift one can generate any sequence with
finite support. One could try to simplify the definition of PolyRat replacing Arith ∪Geo
with Fin. Unfortunately, the operators +,×, shift, shuffle are too restricted, and geometric
and arithmetic sequences could not be generated. In fact, the class would collapse to Fin.

Since Rat contains Arith and Geo and is closed under Hadamard product, shift, and
shuffle, we have PolyRat ⊆ Rat. We will show that the inclusion is indeed strict. As we will
see in this paper, the class PolyRat has many equivalent and surprising characterisations.

3 Characterisation with polynomially ambiguous weighted automata

We refer to e.g. [7] for an excellent introduction to weighted automata. We consider weighted
automata over the rational semiring (Q,+, ·), where + and · are the standard sum and
product. For an alphabet Σ, weighted automata recognise functions assigning rational
numbers to finite words, i.e. f : Σ∗ → Q. In this paper we will consider only one-letter
alphabets so the set of words is {a}∗ =

{
ε, a, a2, . . .

}
, which is identified with N. Therefore,

weighted automata recognise functions f : N→ Q, i.e. weighted automata recognise sequences
of rational numbers.

Formally, a weighted automaton is a tuple A = (Q,M, I, F ), where Q is a finite set of
states, M is a Q×Q matrix over Q and I, F are the initial and final vectors, respectively,
of dimension Q (for convenience we label the coordinates by elements of Q). The sequence
recognised by the automaton A is JAK defined by JAK(n) = ItMnF , where It is the transpose
of I.

We give an equivalent definition of A in terms of accepting runs. We say that a state
q ∈ Q is an initial state if I(q) 6= 0 and that it is a final state if F (q) 6= 0. If q is initial we
say that its initial weight is I(q), and if q is final then its final weight is F (q). For two states
p, q ∈ Q we say that there is a transition from p to q if M(p, q) 6= 0. Such a transition is
denoted p→ q and its weights is M(p, q). A run ρ is a sequence of consecutive transitions,
and it is accepting if the first state is initial and the last state is final. The value of an
accepting run ρ = q0 → q1 → · · · → qn is

|ρ| = I(q0) ·
(
n−1∏
i=0

M(qi, qi+1)
)
· F (qn).

Let RunsA(n) denote the set of all accepting runs of length n. An alternative and equivalent
definition of JAK is

JAK(n) =
∑

ρ∈RunsA(n)

|ρ|.

I Example 5. Consider the automaton A = (Q,M, I, F ) represented in Figure 1. We have
JAK(n) = Fn, where 〈Fn〉n∈N is the Fibonacci sequence from Example 3.

The ambiguity of an automaton A is the function aA : N→ N which associates to n the
number of accepting runs |RunsA(n)|. We consider the following classes:

DetWA – the class of deterministic weighted automata, i.e. such that for any p, there
exists at most one q such that M(p, q) 6= 0;
kWA for fixed k ∈ N – the class of k-ambiguous weighted automata, i.e. when aA(n) ≤ k
for all n;
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9:6 A Robust Class of Linear Recurrence Sequences

Figure 1 A weighted automaton recognising the Fibonacci sequence.

FinWA =
⋃
k∈N kWA – the class of finitely ambiguous weighted automata, i.e. when

there exists k such that aA(n) ≤ k for all n;
PolyWA – class of polynomially ambiguous automata, i.e. when there exists a polynomial
P : N→ N such that aA(n) ≤ P (n) for all n;
WA – the full class of weighted automata.

For example, the automaton in Example 5 is not polynomially ambiguous because the
number of accepting runs is exponential. We will see that this is no accident by proving in
Section 5 that the Fibonacci sequence is not in PolyWA.

We present our first characterisation of PolyRat.

I Theorem 6. PolyRat = PolyWA

Proof of Theorem 6
This subsection is divided into two parts for both inclusions.

PolyRat ⊆ PolyWA
Figure 2 shows how to recognise the arithmetic and the geometric sequences. For each finitely

Figure 2 The weighted automaton on the left recognises the arithmetic sequence with parameters
(a, b) and it is linearly ambiguous. The weighted automaton on the right recognises the geometric
sequence with parameters a, λ and it is deterministic.

supported sequence a simple weighted automaton can be constructed. It remains to prove
that the class PolyWA is closed under the operators. The sum and products correspond
to union and product of automata, it is readily verified that these standard constructions
preserve the polynomial ambiguity. Below we deal with shift and shuffle operators.

Suppose we have a polynomially ambiguous automaton A for u and we want to construct
a new polynomially ambiguous automaton A′ for 〈a,u〉. We start with the case when a = 0.
Then A′ has the same set of states as A plus one new state q0, which is the only initial state
in A′. All transitions from A are inherited. There are additionally only outgoing transitions
from q0 to all states that are initial in A; the weight of each transition is the initial weight of
the corresponding state in A. It is readily verified that A′ recognises 〈0,u〉 and that A′ is
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polynomially ambiguous. For a 6= 0 it suffices to add one more state that is both initial and
final with initial weight 1 and final weight a.

To deal with shuffle we start with the following preliminary construction. Fix some k > 0
and a polynomially ambiguous automaton A recognising u. We construct A[k] recognising
u′ = 〈u0, 0, . . . , 0︸ ︷︷ ︸

k

, u1, 0, . . . , 0︸ ︷︷ ︸
k

, u2, . . .〉, i.e. elements ui are separated by k− 1 elements with 0.

The idea to construct A′ is that the set of states have an additional component {0, . . . , k − 1},
and they behave like A every k-th step; in the remaining steps they only wait. Formally,
the set of states of A[k] is Q× {0, . . . , k − 1}, where Q is the set of states of A. The initial
(final) states are (q, 0) such that q is initial (final) in A with the same weight. For every
transition p→ q in A there is a transition (p, 0)→ (q, 1) in A[k] with the same weight. The
remaining transitions are (q, i)→ (q, (i+ 1) mod k) with weight 1, defined for every i > 0
and every q ∈ Q. It is readily verified that A[k] recognises u′.

Let A0, . . . ,Ak−1 be polynomially ambiguous automata recognising u0, . . . ,uk−1. For
every Ai let Ai[k] be an automaton as above, additionally shifted i times with 0’s. Then
shuffle(u0, . . . ,uk−1) is recognised by the disjoint union of Ai[k].

PolyWA ⊆ PolyRat

The first step is to decompose polynomially ambiguous automata into a union of automata
that we will call chained loops. We say that the states p0, p1, . . . pk−1 ∈ Q form a loop if
M(pi, pj) 6= 0 is equivalent to j = i+ 1 mod k and a path if M(pi, pj) 6= 0 is equivalent to
j = i+ 1 (in particular pk−1 has no successor). A chained loop of size k is an automaton
over the set states of {q0, . . . , qk−1} ∪ P such that

q0 is the unique initial state;
q0, . . . , qk−1 form a path;
each qi is contained in at most one loop (the states in P are used only as intermediate
states in the loops);
qk−1 is the unique final state with F (qk−1) = 1.

We define the concatenation of two chained loops A1,A2: this is the chained loop obtained
by constructing the union of the two automata with the initial state being the initial state of
A1, the final state being the final state of A2, and rewiring the output of A1 to the initial
state of A2, see e.g. Figure 3.

Figure 3 Three example chained loops. The initial and final weights are depicted by ingoing and
outgoing edges. The chained loop A1 recognises the sequence defined by f1(2n) = 2·3n, f1(2n+1) = 0
whose power series is 2

1−3x2 . The chained loop A2 recognises the sequence f2(n) = 5n+1 whose
power series is 5

1−5x
. The chained loop A3 is the concatenation of A1 and A2 and it recognises the

sequence f3(n) =
∑n

i=1 f1(i− 1) · f2(n− i) whose power series is 10x
(1−3x2)(1−5x) .
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9:8 A Robust Class of Linear Recurrence Sequences

I Lemma 7. Every polynomially ambiguous weighted automaton is equivalent to a union of
chained loops.

Proof. Let A be a polynomially ambiguous weighted automaton. Without loss of generality
A is trimmed, i.e. every state occurs in at least one accepting run.

We first note that any state in A is contained in at most one loop. Indeed, a state
contained in two loops induces a sequence of words with exponential ambiguity. This implies
that a sequence (q0, q1, . . . , qk) with qi 6= qj for i 6= j induces at most one chained loop of
which it is the path. There are finitely many such sequences because k is bounded by the
number of states of A.

We claim that A is equivalent to the union of all chained loops induced by such sequences.
Indeed, there is a bijection between the runs of A and the runs of all the chained loops,
respecting the values of runs. Consider a run ρ of A, where a state q appears multiple times.
Then between each occurence of q this is the same run, because they are loops over q and
there can be only one loop containing q. So ρ = uvkw, where v is the (only) loop containing
q. Repeating this for u and w, we obtain a unique decomposition of ρ into

q0 · `m0
0 · q0 → q1 · `m1

1 · q1 → · · · → qk · `mk
n · qk,

where `i is a loop over qi (we can have mi = 0) and qi 6= qj for i 6= j. J

Our aim is to use the decomposition result stated in Lemma 7 to prove the inclusion
PolyWA ⊆ PolyRat. It will be convenient for reasoning to use formal series.

I Lemma 8.
The formal series induced by a chained loop of size 1 with a loop is of the form α

1−λx` ,
where α = I(q0), λ is the product of the weights in the loop and ` is the length of the loop.
If there is no loop this reduces to α.
Let S1, S2 be the formal series induced by the chained loops A1 and A2, then the formal
series induced by the concatenation of A1 and A2 is x · S1 · S2.
Let S1, S2 be the formal series induced by two automata A1 and A2, then the formal
series induced by the union of A1 and A2 is S1 + S2.

Proof. The first and the third item are immediate, we focus on the second. For convenience
let us assume that A1(−1) = 0. By definition the concatenation of two chained loops
recognises the sequence defined by

JAK(n) =
n∑
i=0

JA1K(i− 1) · JA2K(n− i)

since an accepting run in the concatenation is the concatenation of an accepting run in A1
and an accepting run in A2. The only issue is that the output state of A1 was changed into
a transition, and to include this step we write A1(i− 1) instead of A1(i). Hence the formal
series is indeed the Cauchy product of S1 and S2, shifted by one. J

We are now half-way through the proof of the inclusion PolyWA ⊆ PolyRat: thanks to
Lemma 7, we can restrict our attention to unions of chained loops, and thanks to Lemma 8,
we know what are the formal series induced by the sequences computed by such automata.
More specifically, they are obtained from formal series of the form α

1−λx` by taking sums and
Cauchy products (with an additional shift).

To prove that PolyRat contains such sequences it is tempting to attempt showing that
the sequences above are in PolyRat and the closure of PolyRat under sums and Cauchy
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products. Unfortunately, the closure under Cauchy product is not clear (although it will
follow from the final result that it indeed holds).

We sidestep this issue by observing that we only need to be able to do Cauchy products
of formal series of a special form. Indeed, the formal series described above are of the form
P
Q where P,Q are rational polynomials and the roots of Q are roots of rational numbers: this
is true of α

1−λx` and is clearly closed under sums and Cauchy products (with the additional
shift).

Notice that every chained loop can be obtained as concatenations of chained loops of
size 1. Thus Lemma 8 gives a characterisation of formal series corresponding to unions of
chained loops: these are sums of products of α

1−λx` and polynomials. We further simplify
this characterisation applying the following lemma.

I Lemma 9. Consider the formal series P
Q where P,Q are rational polynomials and the roots

of Q are roots of rational numbers. Then P
Q can be written as the sum of formal series of the

form R
(1−λx`)k for rational polynomials R, rational numbers λ, and `, k natural numbers.

Proof. This is a direct consequence of the fact that Q[x] is a Euclidean ring. The exact
statement following from this is that any product

∏n
i=1

Ri

Pi
where the polynomials Pi are

mutually prime (meaning, for each i, the polynomials Pi and
∏
j 6=i Pj are coprime) can be

written as a sum of Qi

Pi
for some rational polynomials Qi.

To conclude, we observe that any polynomial whose roots are roots of rational numbers
can be written as a product of mutually prime polynomials of the form (1− λx`)k. J

By Lemma 8 and Lemma 9 it follows that for every finite union of chained loops its formal
series is a sum of R

(1−λx`)k for rational polynomials R, rational numbers λ, and `, k natural
numbers. Combining this with Lemma 7 we get that the formal series computed by PolyWA
are of the same form. Thus we have reduced proving the inclusion PolyWA ⊆ PolyRat to
proving that sequences whose formal series are sums of formal series of the form R

(1−λx`)k are
in PolyRat.

Since PolyRat is closed under sum, it suffices to consider one such formal series. Moreover,
due to the closure under shifts we can assume that the polynomial R is equal to 1; as stated
in the lemma below.

I Lemma 10. The sequence whose formal series is 1
(1−λx`)k is in PolyRat.

Proof. We know that
1

(1− λx`)k =
∑
n∈N

(
n+ k − 1
k − 1

)
λnx`·n.

Note that
(
n+k−1
k−1

)
is a polynomial in n of degree at most k − 1, i.e.

(
n+k−1
k−1

)
=
∑k−1
p=0 apn

p.
It follows that

1
(1− λx`)k =

k−1∑
p=0

ap ·
∑
n∈N

npλnx`·n

It is enough to prove that for each p the sequence whose formal series is∑
n∈N

apn
pλnx`·n

is in PolyRat. Using an arithmetic sequence and Hadamard products we construct
〈apnp〉n∈N. Multiplying it using Hadamard product with the geometric sequence 〈λn〉n∈N

yields 〈apnpλn〉n∈N. Shuffling the obtained sequence with ` − 1 null sequences yields the
desired sequence. J
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3.1 Application: the ambiguity hierarchy of weighted automata
We show that the natural classes of weighted automata defined by ambiguity can be described
using subclasses of rational expressions.

Figure 4 The strict ambiguous hierarchy of weighted automata.

I Lemma 11.
DetWA =

⋃
λ∈Q Rat[Geoλ, shift, shuffle];

FinWA = Rat[Geo,+, shift, shuffle].

Proof. We start by proving DetWA =
⋃
λ∈Q Rat[Geoλ, shift, shuffle].

(⊆) Since the automaton is deterministic it has a shape of a lasso, i.e. the states can be
partitioned into a path such that the last state on the path is in a loop. Let λ be the value
obtained by multiplying all values on the loop, let l be the length of the loop and let m be
the length of the path. Then it is easy to see that the sequence is obtained by first taking a
shuffle of l sequences in Geoλ and then shifting it m times.

(⊇) We already know that Geoλ are definable by deterministic weighted automata from
Figure 2. Closure under shift follows from the construction in the proof of PolyRat ⊆
PolyWA because it preserves the property of being deterministic. The shuffle construction
preserves this property only up to a certain point. The construction of each automaton Ai[k]
is deterministic but taking their sum does not yield explicitly a deterministic automaton.
It suffices to observe that by construction Ai[k] are all lasso automata with loops of the
same length. Moreover, every word is accepted by at most one Ai[k]. To define the final
automaton consider Ai[k] with the longest path. The final automaton will be Ai[k] with
modified transitions and final outputs. Indeed we add the automata one by one, and for
every accepting state we readjust the ingoing and outgoing transitions to give the correct
value.

Proof of FinWA = Rat[Geo,+, shift, shuffle].
(⊆) By Lemma 7 we know that each automaton in FinWA is a union of chained loops.

It is easy to see that every such chained loop has to be a lasso otherwise it will contradict the
assumption that the automaton is finitely ambiguous. Then the construction follows by doing
the construction for every lasso as in the proof of DetWA =

⋃
λ∈Q Rat[Geoλ, shift, shuffle]

and using + to deal with the union.
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(⊇) This follows the same steps as the proof of DetWA =
⋃
λ∈Q Rat[Geoλ, shift, shuffle].

It is even simpler because we can take a union of two automata and remain in the class of
FinWA. J

We give examples witnessing the strict inclusions DetWA ( FinWA ( PolyWA ( WA
and kWA ( (k + 1)WA.

I Lemma 12.
a = shuffle(〈2n〉n∈N, 〈1〉n∈N) is in 1WA but not in DetWA,
uk defined by un = 1n + 2n + · · ·+ (k + 1)n is in (k + 1)WA but not in kWA,
v defined by vn = n is in PolyWA but not in FinWA;
Fibonacci is in WA but not in PolyWA.

We omit the simple but technical proofs of the first three items. Only the last item will
be proved in Section 5, it follows from the fact that PolyWA = PolyRat is equal to the
class of LRS whose eigenvalues are roots of rational numbers. As mentioned in Example 3
the characteristic polynomial of the Fibonacci sequence is x2 − x− 1, so its eigenvalues are
not roots of rationals.

4 Characterisation with copyless cost-register automata

Cost-register automata (CRA) [3] are deterministic automata with write-only registers, where
each transition updates the registers using addition and multiplication. Like in Section 3 we
will consider only the variant of the model over a one-letter alphabet recognising functions
f : N→ Q.

Let X be a set of variables (registers). The set of expressions Expr(X ) is generated by
the following grammar

e ::= x | r | e+ e | e · e,

where x ∈ X and r ∈ Q. A substitution is a mapping ν : X → Expr(X ). We let Subs(X )
denote the set of all substitutions. A valuation is a function σ : X → Q, it is a special case of
substitutions, where expressions are limited to constants. We freely compose these objects:
for instance let X = {x}, define the valuation ν0(x) = 0, the substitution σ(x) = x+ 1 and
the expression e = 2x. Then ν0 ◦ σn ◦ e = 2n. Note that we use the non-standard order for
functional composition. We see this computation as the output of a 1-register machine which
initialises x with 0, increments its value at each step and outputs its double value.

Formally, a CRA is a tuple A = (Q,X , δ, q0, ν0, µ), where Q is the set of states, X is
the set of registers, δ : Q → Q× Subs(X ) is the transition function, q0 is the initial state,
ν0 : X → Q is the initial valuation and µ : Q→ Q is the final output function. The output
of A on n is defined by the unique run of length n: let q0 → q1 → · · · → qn such that
δ(qi) = (qi+1, σi+1)

JAK(n) = ν0 ◦ σ1 ◦ · · · ◦ σn ◦ µ(qn).

A CRA is said to be linear if its transitions and output function use only linear expressions,
i.e. such that in the grammar e · e is restricted to e · r. We let LCRA denote the class of
sequences recognised by linear CRA, which is known to be equivalent to the class WA [3].
The linear CRA represented in Figure 5 recognises the Fibonacci sequence.

A substitution σ is called copyless if each register is used at most once in σ(x) for every
x. It is easy to observe that a composition of copyless substitutions is a copyless substitution.
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qν0(xi) = i µ(q) = x0

x0 := x1
x1 := x0 + x1

Figure 5 A linear CRA recognising the Fibonacci sequence. There is only one state and two
variables X = {x0, x1}. Since there is only one state the transitions are presented using only the
expression that is applied every time.

A CRA is said to be copyless if in each transition, each substitution is copyless. For example
in Figure 5 the register x1 is used twice in the substitution so it is not a copyless automaton.
We let CCRA denote the class of sequences recognised by copyless cost register automata
(CCRA). In [13] it is shown that CCRA is a subclass of linear CRA. We show that this is
another class characterising PolyRat.

I Theorem 13. PolyRat = CCRA

PolyRat ⊆ CCRA
This inclusion is easy to prove, it requires to perform the classical constructions as in Section 3
and to note that they respect the copyless restriction.

CCRA ⊆ PolyRat
We make use of a simple property in [15]. A substitution is in normal form if there exists an
order on the registers x1 < · · · < xk such that the substitutions updating registers respect
the order: σ(xi) can use only registers xj such that xj ≥ xi. A CCRA is in normal form if
all substitutions used by it are in normal form, with the same order on the registers. It is
known that every CCRA has an equivalent CCRA in normal form [15, Proposition 1]. We
will use this fact only to prove Lemma 14, but in the construction we will assume that the
CCRA is in normal form.

Consider a CCRA A, we prove that the sequence u it recognises is in PolyRat. We
assume without loss of generality that A is in normal form. Since A is deterministic it
has the shape of a lasso: a tail of length k and a loop of length `. Let us fix n ∈ N and
`′ ∈ {0, . . . , `− 1}, the run is

q0 → · · · → qk → (p0 → · · · → p`−1)n → p0 → · · · → p`′ . (2)

Let δ(qi) = (qi+1 mod `, βi) for i ∈ {0, . . . , k}, with the convention that qk+1 = p0, and
δ(pi) = (pi+1 mod `, σi) for i ∈ {0, . . . , `− 1}. Define

ν′0 = ν0 ◦ β0 ◦ · · · ◦ βk ; σ = σ0 ◦ · · · ◦ σ`−1 ; e = σ0 ◦ · · · ◦ σ`′−1 ◦ µ(p`′).

Notice that σ is a copyless substitution since it is a composition of copyless substitutions.
We define the sequence u[`′] by

un[`′] = ν′0 ◦ σn ◦ e.
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We will prove in Lemma 14 that the sequence u[`′] is in PolyRat. The decomposition of
the runs into a lasso implies the following equality:

u = 〈u0, u1, . . . , uk−1, shuffle(u[0], . . . ,u[`− 1])〉,

which implies that u is in PolyRat, provided the lemma below is true.

I Lemma 14. For every copyless substitution σ in normal form, for all initial valuation ν
and for all expression e, the sequence

〈ν ◦ σn ◦ e〉n∈N

is in PolyRat.

Proof. We prove that the sequence ux = ν ◦ σn(x) is in PolyRat for every register x, i.e.
the lemma holds for e = x. The general case follows since PolyRat is closed under addition
and product.

We consider two cases. Suppose x is not used in σ(x). We prove that for n big enough the
sequence stabilises, i.e. σn(x) = σn+1(x) = c for some constant c. We show this by induction
on the order < from the assumed normal form. If x is the largest element in the order <
then σ(x) is a constant and thus σn(x) = σn+1(x). For the induction step suppose x is not
the largest element. If σ(x) is a constant then the claim is trivial. Otherwise let x1, . . . , xm
be registers used in σ(x). Since σ is copyless then xi is not used in σ(xi) for every i. Hence
by the induction assumption for every i there exists ni such that σn(xi) = σn+1(xi) for all
n ≥ ni. It suffices to take n = maxi{ni | 1 ≤ i ≤ m} + 1. Since constant sequences are
geometric sequences with λ = 1 then ux can be defined in PolyRat using shift.

Now suppose that x is used in σ(x). The expression σ(x) is equivalent to
∑m
i=0 ai · xi for

some constants ai, where x0 = x and xi are pairwise different. Since σ is copyless then for
all i > 0 we know that σ(xi) does not use xi. By the previous paragraph there exists N such
that σN (xi) = σN+1(xi) = ci for some constants ci for all i > 0. Let n ≥ N . Then

ν ◦ σn+1(x) = ν ◦ σn ◦ σ(x) = ν ◦

(
m∑
i=0

ai · σn(xi)
)

= a0 · (ν ◦ σn(x)) +
m∑
i=1

ai · ci.

Let a = a0 and b =
∑m
i=1 ai · ci. We proved that for n ≥ N the sequence ux satisfies

ux(n+ 1) = a · ux(n) + b. It remains to prove that this sequence is in PolyRat. It is enough
to show that u′x(n) = ux(n+N) is in PolyRat since to obtain ux it suffices to use shift N
times. There are two cases. If a = 1 then u′x(n) is an arithmetic sequence, which concludes
the proof. If a 6= 1 then

u′x(n) = an · u′x(0) +
n−1∑
i=0

ai · b = an · u′x(0) + b · a
n − 1
a− 1 .

This is a sum of a geometric sequence an · (u′x(0) + b
a−1 ); and a constant sequence − b

a−1 ;
which proves u′x is in PolyRat. J

I Remark 15. One can extract from this proof the equivalence between linear CCRA and
Rat[Arith ∪Geo,+, shift, shuffle].

It was recently shown that CCRA are strictly less expressive than weighted automata [15].
The proof goes by analysing the Fibonacci sequence. We will get as a corollary of our results
a self-contained proof that LCRA and CCRA are different.
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5 Characterisation with linear recurrence sequences and formal series

Our last two characterisations are as follows.

I Theorem 16. PolyRat is the class of LRS whose eigenvalues are roots of rational numbers,
and equivalently whose formal series are P

Q with P,Q rational polynomials and the roots of Q
are roots of rational numbers.

Before proving the theorem, we note that we can now substantiate the claim that the
Fibonacci sequence is not in PolyRat (hence not in CCRA and PolyWA), since its
eigenvalues are not roots of rational numbers.

We rely on the following classical result about LRS, see e.g. [9].

I Lemma 17. Let u be an LRS and Q its characteristic polynomial. The formal series
induced by u is P

Q for some rational polynomial P .

For both inclusions we rely on Theorem 6 stating that PolyRat = PolyWA and the
decompositions obtained in the subsequent lemmas.

PolyRat ⊆ LRS whose eigenvalues are roots of rational numbers

By Lemma 7 and Lemma 8 the formal series of sequences in PolyWA are sums and Cauchy
products of formal series of the form R

1−λx` , where R is a rational polynomial, ` ∈ N and
λ ∈ Q. The roots of 1− λx` are roots of 1

λ , so the roots of the characteristic polynomial are
roots of rational numbers.

LRS whose eigenvalues are roots of rational numbers ⊆ PolyRat

Consider an LRS whose eigenvalues are roots of rational numbers. Thanks to Lemma 17
the formal series it induces is P

Q with P,Q rational polynomials and the roots of Q are
roots of rational numbers. By Lemma 9 the formal series can be written as a sum of formal
series of the form R

(1−λx`)k for rational polynomials R, rational number λ, and `, k natural
numbers. It follows from Lemma 10 and the closure of PolyRat under sum and shift that
such sequences belong to PolyRat.

6 Conclusion

We introduced a class of linear recurrence sequences and obtained several characterisations.
The most surprising equivalence is CCRA = PolyWA. This equality is very particular to
our setting: for instance the two classes are incomparable, i.e. neither of the inclusions hold,
for tropical semirings [15, 14]. We also conjecture that these classes are incomparable over
the rational semiring for general alphabets (of size bigger than 1).

We leave open the precise complexity of the Skolem problem for PolyRat. Recent
progress has been made for a subclass of PolyRat [1]: the Skolem problem for LRS whose
eigenvalues are roots of unity is NP-complete. Our class is more general since we consider LRS
whose eigenvalues are roots of rational numbers, so the NP-hardness also applies. However
the algorithm constructed in [1] does not extend to our class.
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Abstract
The frameworks of coverage and vacuity in formal verification analyze the effect of mutations applied
to systems or their specifications. We adopt these notions to network formation games, analyzing the
effect of a change in the cost of a resource. We consider two measures to be affected: the cost of the
Social Optimum and extremums of costs of Nash Equilibria. Our results offer a formal framework to
the effect of mutations in network formation games and include a complexity analysis of related
decision problems. They also tighten the relation between algorithmic game theory and formal
verification, suggesting refined definitions of coverage and vacuity for the latter.
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1 Introduction

Following the emergence of the Internet, there has been an explosion of studies employing
game-theoretic analysis to explore applications such as network formation and routing in
computer networks [21, 1, 20, 4]. In network-formation games (for a survey, see [37]), the
network is modeled by a weighted graph. The weight of an edge indicates the cost of
activating the transition it models, which is independent of the number of times the edge is
used. Players have reachability objectives, each given by a source and a target vertex. Under
the common Shapley cost-sharing mechanism, the cost of an edge is shared evenly by the
players that use it. The players are selfish agents who attempt to minimize their own costs,
rather than to optimize some global objective. In network-design settings, this would mean
that the players selfishly select a path instead of being assigned one by a central authority.
The study of networks from a game-theoretic point of view focuses on optimal strategies for
the underlying players, stable outcomes of a given setting, namely equilibrium points, and
outcomes that are optimal for the society as a whole.

A different type of reasoning about networks is the study of their on-going behaviors. In
particular, in recent years we see growing use of formal-verification methods in the context
of software-defined networks [34, 33]. The study of networks from a formal-verification point
of view focuses on specification and verification of their behavior. The primary problem
here is model checking: given a system (in particular, a network) and a specification for its
desired behavior, decide whether the system satisfies the specification [18]. Typically, the
system is given by means of a labeled graph and the specification is given by a temporal-logic
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formula. An important element in model-checking methodologies is an assessment of the
quality of the modeling of the system and the specifications as well as the exhaustiveness of
the model-checking process. Researchers have developed a number of sanity checks, aiming
to detect errors in the modeling [27]. Two leading sanity checks are vacuity and coverage.
In vacuity, the goal is to detect cases where the system satisfies the specification in some
unintended trivial way [10, 31, 14]. In coverage, the goal is to increase the exhaustiveness
of the specification by detecting components of the system that do not play a role in the
verification process [24, 25, 16, 15]. Both vacuity and coverage checks are based on analyzing
the effect of applying local mutations to the system or the specification. The intuition is
that model checking of an exhaustive well-formed specification should be sensitive to such
mutations.

Beyond the practical importance of sanity checks, their study highlights some general
important theoretical properties regarding the sensitivity of systems and specifications to
mutations. Examples to such properties include duality between mutations applied to the
system and the specification [29], and trade-offs between desired and undesired insensitivity
to mutations (for example, fault tolerance is associated with a desired insensitivity to
mutations) [17]. A fundamental property of mutations in the context of formal verification is
monotonicity: mutations to temporal-logic formulas are monotone, in the sense that if ψ is a
formula and ϕ is a sub-formula of ψ that appears in a positive polarity (that is, nested in an
even number of negations), then when we mutate ψ to ψ′ by replacing ϕ by ϕ′, then ψ′ → ψ

iff ϕ′ → ϕ. Monotonicity turns out to be a very helpful property in the context of vacuity
checking. Indeed, the basic notion in vacuity is of a subfumula ϕ not affecting the satisfaction
of a specification ψ. Formally, consider a system S satisfying a specification ψ. A subformula
ϕ of ψ does not affect (the satisfaction of) ψ in S if S also satisfies all specifications obtained
by mutating ϕ to some other subformula [10]. Thanks to monotonicity, we can check whether
ϕ affects ψ by examining only the most challenging mutation, namely one that replaces ϕ by
false and the most helpful mutation, namely one that replaces ϕ by true.

Our goal in this paper is to examine the sensitivity of network-formation games (NFGs,
for short) to mutations applied to costs. While our study adopts from formal verification
the notion of mutation-based analysis, we examine the effect of mutations on measures from
game theory: the cost of stable and optimal outcomes. Recall that a strategy of a player
in an NFG is a path from a source to a target vertex. A profile in the game is a vector of
strategies, one for each player. A Social Optimum (SO) is a profile that minimizes the total
cost to all players. A Nash equilibrium (NE) is a profile in which no player can decrease her
cost by a unilateral deviation from her current strategy, that is, assuming that the strategies
of the other players do not change.

Consider an NFG N . We say that the edge e of N SO-affects N if a change in the cost of
e leads to a change in the cost of the SO. Formally, there exists x ≥ 0 such that the cost of
the SO profiles in N is different from the cost of the SO profiles in N [e← x], that is N with
e being assigned cost x. We consider the function costeSO(N) : R→ R, mapping a cost x ≥ 0
to the cost of the SO profiles in N [e← x]. That is, costeSO(N) describes the cost of the SO
in N as a function of the cost of the edge e. We say that costSO is monotonically increasing
if for every NFG N and edge e of N , the function costeSO(N) is monotonically increasing.
Likewise, costSO is continuous if for every NFG N and edge e, the function costeSO(N) is
continuous. For the best and worst NEs, we similarly define when an edge e bNE-affects and
wNE-affects N , and define the functions costbNE and costwNE , which describe the cost of
the best and worst NEs as a function of the cost of an edge.
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Our first set of results concerns the way edge costs affect the SO. Here, the results are
quite expected: costSO is monotonically increasing and continuous, which leads to simple
solutions to related decision problems: as is the case with model checking and temporal-logic
specifications, we can decide whether an edge e SO-affects N by checking the cost of the
SO in N [e ← 0] and N [e ← ∞N ], for a sufficiently large cost ∞N . This leads to ∆P

2 and
ΘP

2 upper bounds (depending on whether costs are given in binary or unary, respectively),
which we show to be tight. Also, we show that it is NP-complete and DP-complete to
decide whether we can mutate a cost in a way that would cause the SO to be below or agree
exactly with, respectively, a given threshold. The technically challenging results here are
the ∆P

2 -lower bound (it is tempting to believe that thanks to monotonicity, we could decide
whether e SO-affects N using only logarithmically many queries to an NP oracle that bounds
the SO) and the DP upper bound (the upper and lower bounds on the SO that we can obtain
by querying an NP and a co-NP oracle need not be associated with the same edge).

Things become unexpected when we turn to study effects on the costs of the best and
worst NEs. Here an edge may affect the bNE without participating in profiles that are NEs,
and may thus affect the bNE both positively and negatively. In model checking, this is
related to coverage and vacuity in a setting with multiple occurrences of subformulas. For
example, the atomic proposition p appears in the formula ψ = (ϕ1 → p) ∧ (p → ϕ2) both
positively and negatively. Consequently, we cannot decide whether p affects the satisfaction
of ψ by examining its replacement by only true or false (in the context of vacuity), and we
do not know the effect of mutating p in the system on the satisfaction of ψ (in the context of
coverage). We show that costbNE is neither monotone nor continuous, and in fact a change
in the cost of an edge may incentivize players in surprising ways. In particular (see Figure 5),
an edge e may not participate in any bNE in N [e← x], for all x ≥ 0, and still the bNE may
decrease as we increase the cost of e. We show that these challenges can be overcome by
more restricted notions such as piecewise monotonicity and monotonicity on the participation
of the mutated edge in bNE profiles. In particular, we show that these notions produce the
same (tight) complexity bounds for the analogous decision problems we introduce for the
SO. We note that while the general phenomenon of non-monotonicity is known (e.g., Braess’
Paradox [12], the effectiveness of burning money [23, 36] or tax increase [19]), we are the
first, to the best of our knowledge, to provide a comprehensive study of effects caused by
cost mutation.

Our results on NFGs give rise to two research directions in coverage and vacuity in formal
verification. The first arises from the segmentation of R+ induced by the non-monotonicity
of the bNE, which suggests a similar segmentation in the context of multi-valued specification
formalisms [2]. The second is a study of coverage and vacuity in formalisms for specifying
strategic on-going behaviors [3, 13]. We discuss these research directions in Section 5.

Due to lack of space, some of the proofs are omitted, and can be found in the full version,
as listed above.

2 Preliminaries

2.1 Network formation games
A network formation game (NFG) is N = 〈k, V,E, c, γ〉, where k is a number of players, V
is a set of vertices, E ⊆ V × V is a set of directed edges, c : E → R

+, where R+ is the set
of positive real numbers including 0, is a cost function that maps each edge to the cost of
forming it, and γ = {〈s1, t1〉, ..., 〈sk, tk〉} is a set of objectives, each specifying a source and a
target vertex per player. Thus, for all 1 ≤ i ≤ k, the objective of player i is to form a path
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from si to ti. A strategy for player i is a simple path πi ⊆ E from si to ti. Note that since
the path is simple, then πi is indeed a subset of E. A profile P = 〈π1, ..., πk〉 is a vector
of strategies, one for each player. For an edge e ∈ E, we denote by usedP (e) the number
of players that use e in their strategy in P , thus these with e ∈ πi. We say that e ∈ P if
usedP (e) > 0.

Players pay the cost of forming edges they use. If players share an edge, they also share
its cost. Thus, the cost of a strategy πi in a profile P is costN,P (πi) =

∑
e∈πi

c(e)
usedP (e) . Note

that since c is positive, it is indeed sufficient to consider only simple paths as strategies. The
cost of P in N is the sum of costs of its strategies, that is cost(N,P ) =

∑k
i=1 costN,P (πi).

Equivalently, cost(N,P ) =
∑
e∈P c(e).

A Social Optimum (SO) of N is a profile with minimal cost. That is, a profile P is an
SO if for every other profile P ′ we have that cost(N,P ) ≤ cost(N,P ′). Note that there may
be several profiles that are a social optimum. We denote by SO(N) and costSO(N) the set
of such profiles and their cost, respectively.

We say that the profile P is a Nash Equilibrium (NE) inN if no player can decrease her cost
by deviating to another strategy assuming the other players stay in their strategies1. Formally,
for all 1 ≤ i ≤ k and every π′i 6= πi, the cost of π′i in P ′ = 〈π1, ..., πi−1, π

′
i, πi+1, ..., πk〉 is no

lower than the cost of πi in P , i.e. costN,P (πi) ≤ costN,P ′(π′i). A best NE (bNE) in N is an
NE profile with minimal cost, i.e. a profile P is bNE iff P is an NE, and for every profile P ′
that is an NE, we have cost(N,P ) ≤ cost(N,P ′). We denote by bNE(N) and costbNE(N)
the set of profiles that are bNE, and their cost, respectively.

We dually define a worst NE (wNE) to be an NE profile with maximal cost, and denote
by wNE(N ) and costwNE(N) the set of such profiles and their cost, respectively. The
Price of Stability (PoS) of N is the ratio between the cost of the bNE and the SO, that is,
PoS(N ) = costbNE(N)

costSO(N) .

I Example 1. Consider the NFG N appearing in Figure 1.

s

u v

t1 t2

4 4

3
4 2

1

Figure 1 The NFG N .

Table 1 Players’ costs in N .

Player 2 π1
2 π2

2

Player 1 s→ u→ t2 s→ v → t2

π1
1 6 5

s→ u→ t1 5 7
π2

1 8 3
s→ v → t1 6 4

Assume that N is formed by two players. The first has objective 〈s, t1〉. The available
strategies for her are π1

1 = {(s, u), (u, t1)} and π2
1 = {(s, v), (v, t1)}. The second player

has objective 〈s, t2〉. The available strategies for her are π1
2 = {(s, u), (u, t2)} and π2

2 =
{(s, v), (v, t2)}. If Player 1 choses the strategy π1

1 and Player 2 uses the strategy π1
2 , then

they share the cost of the edge (s, u), and their costs are 4
2 + 3 = 5 and 4

2 + 4 = 6 respectively.
Table 1 describes the costs of the two players in the different profiles.

The profile with the lowest cost is P = 〈π2
1 , π

2
2〉. Therefore, SO(N) = {P}, with cost

costSO(N) = 7. Note that P is also the only NE in N . It is an NE since for the deviation
P ′ = 〈π1

1 , π
2
2〉, it holds that 4 = costN,P (π2

1) < costN,P ′(π1
1) = 7 and for the deviation

1 Throughout this paper, we consider pure strategies and pure deviations, as is the case for the vast
literature on cost-sharing games.
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P ′′ = 〈π2
1 , π

1
2〉 it holds that 3 = costN,P (π2

2) < costN,P ′′(π1
2) = 8. It is the only NE in N

since for every other profile there is a beneficial deviation. Therefore, P is both a bNE and a
wNE. Since the bNE and the SO coincide, it follows that PoS(N ) = 1 . J

Consider an edge e ∈ E and a value x ∈ R+. We denote by c[e← x] the cost function that
agrees with c on every edge except e, which is assigned x. That is, c[e ← x](e) = x, and
for all edge e′ 6= e, we have c[e← x](e′) = c(e′). Let N = 〈k, V,E, c, γ〉, and let e ∈ E. We
denote by N [e ← x] the network obtained from N by changing the cost of e to x. Thus,
N [e← x] = 〈k, V,E, c[e← x], γ〉.

Let c1 and c2 be cost functions. We say that c2 bounds c1 from above, denoted c1 ≤ c2, if for
all e ∈ E, we have c1(e) ≤ c2(e). We extend the notation to NFGs. Let N1 = 〈k, V,E, c1, γ〉
and N2 = 〈k, V,E, c2, γ〉 be two NFGs that differ only on their cost functions. If c1 ≤ c2, we
say that N2 bounds N1 from above, denoted N1 ≤ N2.

I Lemma 2. Let N1 and N2 be two NFGs that differ only on their cost functions. If
N1 ≤ N2, then for every profile P , we have cost(N1, P ) ≤ cost(N2, P ).

2.2 Affecting edges in NFGs
Consider an NFG N and an edge e of N . We say that the edge e SO-affects N if there
exists x ≥ 0 such that costSO(N [e← x]) 6= costSO(N). That is, when changing the cost of
e to x, the cost of the SO profiles of N changes. We define bNE-affects, wNE-affects, and
PoS-affects in a similar way, referring to the costs of the best and worst NEs, and the PoS.

I Example 3. Consider the NFG N from Example 1, and consider the edge e = (s, v). The
edge e SO-affects N , since, for example, for N [e← 2] we have that 〈π2

1 , π
2
2〉 is an SO with

cost 5 < 7 = costSO(N). As another example, for N [e ← 10] we have that 〈π1
1 , π

1
2〉 is an

SO with cost 11 > 7 = costSO(N). Next, consider the edge e = (u, t1). For every x ≥ 0,
we have cost(N [e ← x], 〈π1

1 , π
1
2〉) = x + 8, cost(N [e ← x], 〈π1

1 , π
2
2〉) = x + 9, cost(N [e ←

x], 〈π2
1 , π

1
2〉) = 14, and cost(N [e ← x], 〈π2

1 , π
2
2〉) = 7. Therefore, costSO(N [e ← x]) =

min{x+ 8, x+ 9, 14, 7} = 7 = costSO(N), and so e does not SO-affect N .
We proceed to bNE and wNE. Here, the change may affect the stability of profiles, and

not just their cost. Consider the edge e = (s, u). Table 2 describes the costs of the different
profiles of N [e← (1− ε)], for some 0 < ε < 1.

Table 2 Costs in N [〈s, u〉 ← (1− ε)].

Player 2 π1
2 π2

2

Player 1 s→ u→ t2 s→ v → t2

π1
1 4 1

2 −
ε
2 5

s→ u→ t1 3 1
2 −

ε
2 4− ε

π2
1 5− ε 3

s→ v → t1 6 4

Table 3 Costs in N [〈u, t1〉 ← x].

Player 2 π1
2 π2

2

Player 1 s→ u→ t2 s→ v → t2

π1
1 6 5

s→ u→ t1 2 + x 4 + x

π2
1 8 3

s→ v → t1 6 4

We previously saw that the only NE profile in N is P = 〈π2
1 , π

2
2〉, with cost 7, and therefore

it is both the bNE and the wNE. We can see that the cost of P is minimal for N [e← (1− ε)].
However, P is no longer an NE. Indeed, for the profile P ′ = 〈π1

1 , π
2
2〉, obtained by a deviation

of Player 1, we have that 4 − ε = costN [e←1−ε],P ′(π1
1) < costN [e←1−ε],P (π2

1) = 4. For
N [e← (1− ε)], the only NE profile is 〈π1

1 , π
1
2〉, with cost 8− ε. For 0 < ε < 1 it therefore

holds that 7 = costbNE(N) < costbNE(N [e ← 1 − ε]) = 8 − ε, and the same for wNE.
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10:6 Coverage and Vacuity in Network Formation Games

Therefore, the edge e both bNE-affects and wNE-affects N . Furthermore, e PoS-affects N ,
as PoS(N ) = 1 and PoS(N [e ← 1 − ε]) = 8−ε

7 > 1 .
Next, consider the edge e = (u, t1). We show that e does not bNE-affect nor does it

wNE-affect N . To see this, consider the costs of the different profiles of N [e← x] for x ≥ 0,
described in Table 3. It can be easily verified that, for all x ≥ 0, the only NE in N [e← x] is
〈π2

1 , π
2
2〉. Therefore, costbNE(N [e ← x]) = costwNE(N [e ← x]) = 7. As e neither SO-affect

nor bNE-affect N , it follows that e does not PoS-affect N .
It is also worth noting that it is not always the case that an edge either both bNE-affects

and wNE-affects or both does not bNE-affect and wNE-affect N . As an example, consider
the edge e = (u, t2). The cost table of N [e← x] appears in Table 4.

Table 4 Costs in N [〈u, t2〉 ← x].

Player 2 π1
2 π2

2

Player 1 s→ u→ t2 s→ v → t2

π1
1 2 + x 5

s→ u→ t1 5 7
π2

1 4 + x 3
s→ v → t1 6 4

It is not hard to see that for 0 ≤ x ≤ 3, it holds that P1 = 〈π1
1 , π

1
2〉 and P2 = 〈π2

1 , π
2
2〉

are NEs in N [e ← x]. However, cost(N [e ← x], P1) = 7 + x and cost(N [e ← x], P2) = 7.
Therefore, costbNE(N [e ← x]) = min{7 + x, 7} = 7, and costwNE(N [e ← x]) = max{7 +
x, 7} = 7 + x. Since for all x > 3, the profile P2 is the only NE in N [e← x], it follows that e
does not bNE-affect N , and e wNE-affects N . J

2.3 Monotonicity and continuity

Consider a function f : R → R. We say that f is monotonically increasing if for all
x1, x2 ∈ R, we have that x1 ≤ x2 implies f(x1) ≤ f(x2). For x0 ∈ R, we say that f is
continuous at x0 if for every ε > 0 there exists δ > 0 such that for all x ∈ R, if |x− x0| < δ

then |f(x)− f(x0)| < ε. Then, we say that f is continuous if f is continuous at x0 for all
x0 ∈ R.

For an edge e ∈ E, we define the function costeSO(N) : R → R by costeSO(N)(x) =
costSO(N [e ← x]) if x ≥ 0, and costeSO(N)(x) = costSO(N [e ← 0]) otherwise. That is,
costeSO(N) is the cost of the SO in N as a function of the cost of the edge e. We say
that costSO is monotonically increasing, if for every NFG N and edge e of N , the function
costeSO(N) is monotonically increasing. That is, costSO is monotonically increasing if an
increase in the cost of any edge, for any NFG, can only cause an increase in the cost of the
SO. Likewise, costSO is continuous, if for every NFG N and edge e, the functioncosteSO(N)
is continuous. We define the monotonicity and the continuity of costbNE , costwNE and PoS
in a similar way.

3 Affecting the Social Optimum

In this section we study the sensitivity of the SO to cost mutations. We first study the
monotonicity and continuity of costSO, and then the complexity of relevant decision problems.
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3.1 Monotonicity and continuity of the SO
I Theorem 4 (costSO is monotone). For every NFG N and edge e of N , the function
costeSO(N) is monotone.

Proof. Let N1 and N2 be NFGs that differ only in their cost functions. We prove that if
N1 ≤ N2, then costSO(N1) ≤ costSO(N2). In particular, this holds for N1 and N2 being N
with cost functions that differ only in the cost of e. Let P1 ∈ SO(N1) and let P2 ∈ SO(N2).
By the minimality of the SO for N1, we get that cost(N1, P1) ≤ cost(N1, P2). By Lemma 2, as
N1 ≤ N2, we have that cost(N1, P2) ≤ cost(N2, P2). Therefore, cost(N1, P1) ≤ cost(N2, P2),
and hence costSO(N1) ≤ costSO(N2). J

Since costSO is monotonically increasing, a sufficient condition for an edge not to SO-affect
the network is based on comparing the cost of the SO in the two extreme costs for the edge.
The lowest cost is 0. For the highest cost, let ∞N be a sufficiently large value for a cost of
an edge to be considered extreme in N , in the sense that if an edge e with cost ∞N is in
some strategy, then the cost of that strategy is guaranteed to be larger than the cost of all
strategies that do not contain e. For example, we can define ∞N to be 1 +

∑
e∈E c(e).

I Lemma 5. For every NFG N and edge e of N , the edge e does not SO-affect N iff
costSO(N [e← 0]) = costSO(N [e←∞N ]).

Proof. Since N [e ← 0] ≤ N [e ← ∞N ] and the function costSO(N) is monotonically in-
creasing, then costSO(N [e← 0]) = costSO(N [e←∞N ]) implies that for all x ≥ 0, we have
costSO(N [e ← 0]) = costSO(N [e ← x]) = costSO(N [e ← ∞N ]). Thus, for all x ≥ 0, we
have costSO(N) = costSO(N [e← x]), so the cost of e does not SO-affect N . For the other
direction, if the cost of e does not SO-affect N , then, by definition, for all x ≥ 0, we have that
costSO(N) = costSO(N [e ← x]). In particular, costSO(N [e ← 0]) = costSO(N [e ← ∞N ]),
and we are done. J

Note that it follows that for an NFG N and edge e in it, if there is a profile P ∈ SO(N) such
that e ∈ P and c(e) > 0, then e SO-affects N , as reducing its cost to 0 reduces also the cost
of the SO.

In case e SO-affects N , we can characterize the behavior of costSO(N [e← x]) as follows.

I Lemma 6. Consider an NFG N and an edge e of N . If e SO-affects N , then there is a
value x ∈ R such that the following hold.
1. For all values y with y > x, the edge e does not participate in any profile in SO(N [e← y])

and costSO(N [e← y]) = x+ costSO(N [e← 0]).
2. For all values y with y < x, the edge e participates in at least one profile in SO(N [e← y])

and costSO(N [e← y]) = y + costSO(N [e← 0]).
3. The edge e participates in at least one profile in SO(N [e← x]) and costSO(N [e← x]) =

x+ costSO(N [e← 0]).

Proof. Since e SO-affects N , then, by Lemma 5, we have that costSO(N [e ← 0]) <

costSO(N [e ← ∞N ]). It is not hard to see that taking x to be min{y : costSO(N [e ←
y]) = costSO(N [e ← ∞N ])} satisfies the conditions in the lemma. In particular, when e

participates in all profiles in the SO, then x = min ∅ =∞. J

I Theorem 7. For every NFG N and edge e of N , the function costeSO(N) is continuous.
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10:8 Coverage and Vacuity in Network Formation Games

Proof. Consider an NFG N and edge e of N . First, if the edge e does not SO-affect N , then
costeSO(N) is constant and therefore continuous. Otherwise, by Lemma 6, there is a value x ∈
R such that for all values y with y ≥ x, we have that costSO(N [e← y]) = x+ costSO(N [e←
0]), and for all values y with y < x, we have that costSO(N [e← y]) = y + costSO(N [e← 0]).
Thus, continuity in all points except x follows immediately from continuity of linear functions.
For the point x, Lemma 6 implies that for all ε > 0, we have that f(x+ ε)− f(x) = 0, and
f(x)− f(x− ε) = ε, so costeSO(N) is continuous also at x. J

3.2 Decision problems
The SO-cost decision problem is the problem of deciding, given an NFG N and a threshold
κ ≥ 0, whether costSO(N) ≤ κ. The SO-cost problem is NP-complete [37]. In this section
we study the following related decision problems.
1. Edge-SO-affects: Given an NFG N and an edge e of N , does e SO-affect N? Thus,

Edge-SO-affects = {〈N, e〉 | e SO-affects N}.
2. Edge-SO-optimization: Given an NFG N , an edge e of N , and a threshold κ ≥ 0, is there a

value x ≥ 0, such that costSO(N [e← x]) ≤ κ? Thus, Edge-SO-optimization = {〈N, e, κ〉 |
there exists x ≥ 0 such that costSO(N [e← x]) ≤ κ}.

3. SO-optimization: Given an NFG N and a threshold κ ≥ 0, is there an edge e of N and a
value x ≥ 0, such that costSO(N [e ← x]) ≤ κ? Thus, SO-optimization= {〈N,κ〉 | there
exist e and x ≥ 0 such that costSO(N [e← x]) ≤ κ}.

4. SO-control: Given an NFGN and a threshold κ ≥ 0, is there an edge e ofN and a value x ≥
0, such that costSO(N [e ← x]) = κ? Thus, SO-control= {〈N,κ〉 | there exist e and x ≥
0 such that costSO(N [e← x]) = κ}.

Analyzing the complexity of the problems, we assume that the costs of an NFG are given
in binary. As we shall note below, this affects the complexity of the problems. In addition to
the classes NP and co-NP, we are going to refer to the class ∆P

2 = PNP (ΘP
2 ), of decision

problems that can be decided by a polynomial-time deterministic Turing machine that has
access to polynomially many (logarithmically many, respectively) queries to an oracle to an
NP-complete problem, and the class DP, of decision problems that are the intersection of
an NP and a co-NP problem. That is, a decision problem L is in DP if there are decision
problems L1, L2 such that L1 ∈ NP, L2 ∈ co-NP and L = L1 ∩ L2.

I Theorem 8. The Edge-SO-affects problem is ∆P
2 -complete, and is ΘP

2 complete when costs
are given in unary.

Proof. We start with membership in ∆P
2 . Given an NFG N and an edge e in N , a

deterministic Turing machine can use an oracle to SO-cost, calculate costSO(N [e← 0]) and
costSO(N [e←∞N ]) and compare them. Since the maximal cost of a profile is

∑
e∈E c(e),

and costSO is the sum of costs of a subset of edges, rather than an arbitrary number in
R, the Turing machine can proceed by a binary search and thus the number of oracle
calls is logarithmic in

∑
e∈E c(e). When costs are given in binary,

∑
e∈E c(e) is exponential

in input, hence there are polynomially-many oracle calls. Thus, Edge-SO-affects∈ ∆P
2 .

However, when costs are given in unary,
∑
e∈E c(e) is polynomial in input, hence there are

logarithmically-many oracle calls. Thus, Edge-SO-affects∈ ΘP
2 .

In the full version, we prove that the problem is ∆P
2 -hard by a reduction from maximum-

satisfying-assignment, namely the problem of deciding, given a 3CNF formula ϕ if the
lexicographically maximal assignment that satisfies ϕ has LSB that equals 1. It was shown by
[26] that maximum-satisfying-assignment is ∆P

2 -complete. Essentially, given ϕ, we construct
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an NFG N such that profiles corresponds to assignments, and the cost of a profile decreases
with lexicographically greater satisfying assignments. The edge e participates in profiles
that correspond to assignments in which the LSB is 1, and is minimal only when the
maximal lexicographic assignment has LSB 1. Consequently, 〈N, e〉 ∈ Edge-SO-affects iff ϕ ∈
maximum-satisfying-assignment.

In the full version, we prove that when costs are given in unary, the problem is ΘP
2 -hard.

The proof is by a reduction from VC-compare, namely the problem of deciding, given two
undirected graphs G1 = 〈V1, E1〉 and G2 = 〈V2, E2〉, whether the size of a minimal vertex
cover of G1 is less than or equal to the size of a minimal vertex cover of G2. Essentially,
given G1 and G2, we construct an NFG N that subsumes both graphs and the objectives of
the players are defined so that profiles correspond to choosing a vertex cover in one of the
graphs. The edge e participates in profiles in which the players choose to proceed with a
cover in G1, which happens only when the size of a minimal vertex cover of G1 is less than
or equal to the size of a minimal vertex cover of G2. Consequently, 〈N, e〉 ∈ Edge-SO-affects
iff 〈G1, G2〉 ∈ VC-compare. J

We continue to the optimization problems. The proof is easy and can be found in the full
version. In particular, the lower bounds are by a reduction from the SO-cost problem.

I Theorem 9. The Edge-SO-optimization and SO-optimization problems are NP-complete.

For the upper-bound of the SO-control problem, we first need the following lemma.

I Lemma 10. Let N be an NFG and let κ ≥ 0 be a threshold. If there are (not necessarily
distinct) edges e1 and e2 of N such that costSO(N [e1 ← 0]) ≥ κ and costSO(N [e2 ←∞]) ≤ κ,
then there is an edge e of N and a value x ≥ 0 such that costSO(N [e← x]) = κ.

Proof. Assume towards contradiction that for all edges e of N and value x ≥ 0, it holds
that costSO(N [e ← x]) 6= κ. In particular, this means that costSO(N [e1 ← 0]) > κ and
costSO(N [e2 ← ∞]) < κ. Hence, by monotonicity of costeSO(N), we get that costSO(N) =
costSO(N [e2 ← c(e2)]) ≤ costSO(N [e2 ← ∞]) < κ < costSO(N [e1 ← 0]) ≤ costSO(N [e1 ←
c(e1)]) = costSO(N). J

I Theorem 11. The SO-control problem is DP-complete.

Proof. We start with membership. Let L1 = {〈N,κ〉 | there exist an edge e and x ≥ 0
such that costSO(N [e ← x]) ≤ κ} and L2 = {〈N,κ〉 | there exist an edge e and x ≥ 0
such that costSO(N [e ← x]) ≥ κ}. Note that L1 is SO-optimization and is therefore in
NP. We show that L2 is in co-NP. The complement of L2 is Lc2 = {〈N,κ〉 | for all edges
e and x ≥ 0 we have costSO(N [e ← x] < κ)}. A witness for membership in Lc2 is a set
S of |E| = m profiles, one for each edge, satisfying cost(N [e ← ∞], Pe) < κ for each
Pe ∈ S. The witness is polynomial since we only require m profiles. By monotonicity, it
holds that if such a profile Pe exists for an edge e, then for every x ≥ 0, we have that
costSO(N [e ← x]) ≤ cost(N [e ← x], Pe) ≤ cost(N [e ← ∞], Pe) < κ. If this holds for every
edge, then 〈N,κ〉 ∈ Lc2. In the other direction, if there is an edge e such that for every
profile P it holds that cost(N [e←∞], P ) ≥ κ, then costSO(N [e←∞]) ≥ κ, and therefore
〈N,κ〉 /∈ Lc2. Therefore, Lc2 is in NP, hence L2 is in co-NP. We show that L1∩L2 =SO-control.

For the first direction, let 〈N,κ〉 ∈ SO-control. Therefore, there is an edge e ∈ E and
a value x ≥ 0 such that costSO(N [e← x]) = κ. In particular, we have that costSO(N [e←
x]) ≤ κ, therefore 〈Nκ〉 ∈ L1. Furtheremore, costSO(N [e← x]) ≥ κ, therefore 〈N,κ〉 ∈ L2.
Hence, 〈N,κ〉 ∈ L1 ∩ L2.
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For the other direction, let 〈N,κ〉 ∈ L1 ∩ L2. Since 〈N,κ〉 ∈ L1, there is e1 ∈ E and
x1 ≥ 0 such that costSO(N [e1 ← x1]) ≤ κ. If costSO(N [e1 ← ∞]) ≥ κ, then by continuity
and the intermediate value theorem, there is x ≥ 0 such that costSO(N [e1 ← x]) = κ, hence
〈N,κ〉 ∈ SO-control. If costSO(N [e1 ← ∞]) < κ, we use the fact that 〈N,κ〉 ∈ L2. Hence,
there is e2 ∈ E and x2 ≥ 0 such that costSO(N [e2 ← x2]) ≥ κ. If costSO(N [e2 ← 0]) ≤ κ,
then again by continuity and the intermediate value theorem, there is x ≥ 0 such that
costSO(N [e2 ← x]) = κ. If costSO(N [e2 ← 0]) > κ, then since costSO(N [e1 ← ∞]) < κ by
Lemma 10, there is an edge e ∈ E and a value x ≥ 0 such that costSO(N [e← x]) = κ, and
therefore 〈N,κ〉 ∈ SO-control.

We turn to prove that the problem is DP-hard. We reduce SAT-UNSAT to SO-control.
SAT-UNSAT is the problem of deciding, given two 3CNF formulas ϕ1 and ϕ2, whether ϕ1
is satisfiable and ϕ2 is not satisfiable. That is, 〈ϕ1, ϕ2〉 ∈ SAT-UNSAT iff there exists an
assignment f1 to the variables of ϕ1 such that f1 satisfies ϕ1, and for all assignments f2 to
the variables of ϕ2, it holds that f2 does not satisfy ϕ2. It was shown in [35] that SAT-UNSAT
is DP-complete.

We propose the following reduction. For each formula ϕi, with i ∈ {1, 2}, we add a fresh
variable zi. We first construct a new formula ϕ′i in the following way. For each clause, we
disjunct the clause with zi. We also conjunct the entire formula with ¬zi. Note that if ϕi
is satisfied by an assignment fi, then ϕ′i is satisfied by the assignment that agrees with fi
on all the variables in ϕi, and has zi = false. Furthermore, if ϕi is unsatisfiable, then ϕ′i is
unsatisfiable. Indeed, an assignment that satisfies ϕ′i must have zi = false, implying that all
other clauses are satisfied by an assignment that satisfies ϕi as well. Next, we construct an
NFG Ni = 〈ki, Vi, Ei, ci, γi〉, for i ∈ {1, 2}, as follows (see Figure 2).

¬zizi...¬xijxij...¬xi1xi1

¬z′iz′i...¬x′j
i

x′j
i...¬x′1

i
x′1
i

si

bizbijbi1

cik
... ... cini

ci1 ci¬zi

i+ 1

i+
1

i
+

1

i+
1

i+ 1

i+ 1

i+ 1 i+ 1 i+ 1 i+ 1 i+ 1 i+ 1

0 0 0 00 0 0 0

0 00 0

Figure 2 The NFG Ni; each edge denotes a set of two parallel edges with the same cost.

Let ni be the number of variables in ϕi, and let mi be the number of clauses in ϕi. Thus,
the number of variables in ϕ′i is ni + 1, and the number of clauses in ϕ′i is mi + 1. We define
Vi =

⋃
1≤j≤ni+1{xij ,¬xij , x′j

i
,¬x′j

i
, bij}

⋃
1≤k≤mi+1{cik} ∪ {si}. That is, for each variable xij

of ϕ′i, we have in Vi two vertices for the variable xij , denoted xij , x
′
j
i, two vertices for its

negation ¬xij , denoted ¬xij ,¬x′j
i, and another vertex, denoted bij . We also have a vertex for
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each clause, and a source vertex. The edges and costs are as follows. There are two parallel
edges, each with cost i+ 1, from si to both x′j

i
,¬x′j

i for every variable xij of ϕ′i. There are
two parallel edges, each with cost i+1, from x′j

i to xij and from ¬x′j
i to ¬xij for every variable

xij of ϕ′i. There are two parallel edges, each with cost 0 from both xij ,¬xij to bij . Finally, for
every clause cik, there are two parallel edges, each with cost 0, from every literal appearing
in cik to the vertex cik. Note that, in particular, this means that there are two parallel edges
with cost 0 from zi to all clauses except the clause ¬zi. Finally, we have ki = ni + 1 +mi + 1
players. The first ni + 1 players are clause players, and the objective of Player 1 ≤ k ≤ ni + 1
is 〈si, cik〉. The rest are variable players, and the objective of Player ni + 2 ≤ j ≤ ni +mi + 2
is 〈si, bij〉. To complete the construction, we fix N = 〈k1 +k2, V1∪V2, E1∪E2, c1∪c2, γ1∪γ2〉
and κ = 4n1 + 6n2 + 16.

Note that since N1 and N2 are disjoint, it holds that costSO(N) = costSO(N1) +
costSO(N2). We argue that if ϕi, for i ∈ [1, 2], is satisfiable, then costSO(Ni) = 2(i+1)·(ni+1),
and otherwise costSO(Ni) = 2(i + 1) · (ni + 2). Thus, N has a distinct SO-cost to every
combination of {SAT, UNSAT} × {SAT, UNSAT}, which enables us to point to a threshold κ
such that 〈ϕ1, ϕ2〉 ∈ SAT-UNSAT iff 〈N,κ〉 ∈ SO-control. Details can be found in the full
version. J

4 Affecting the Best Nash Equilibrium

In this section we study the sensitivity of the best NE to cost mutations. As we shall see,
while the setting is less clean than in the SO case, we are able to obtain the same complexity
bounds for analogous decision problems.

4.1 Monotonicity and continuity of the bNE
I Theorem 12 (costbNE is not monotone). There is an NFG N and an edge e of N , such
that the function costebNE(N) is not monotone.

Proof. Consider the NFG N appearing in Figure 3. The game is played between two players,
with objectives 〈s, t1〉 and 〈s, t2〉. Let e = 〈s, t2〉. Table 5 describes the costs of the players
in the possible four profiles of N [e← x]. When x ∈ [0, 1), the only NE is 〈π2

1 , π
1
2〉, with cost

x+ 2. When x > 1, the only NE is 〈π2
1 , π

2
2〉, with cost 2. So, for all x ∈ (0, 1), we have that

costbNE(N [e← x]) = 2 + x > 2 = costbNE(N [e← 1]), and thus costebNE(N) is not monotone.
J

t2 v t1

s

x 32

00

Figure 3 The NFG N .

Table 5 Players’ costs in N .

Player 2 π1
2 π2

2

Player 1 s→ t2 s→ v → t2

π1
1 x 2

s→ t1 3 3
π2

1 x 1
s→ v → t1 2 1

I Theorem 13 (costbNE is not continuous). There is an NFG N and an edge e of N , such
that the function costebNE(N) is not continuous.
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Proof. We use the same NFG N and edge e as in the proof of Theorem 12. It is easy to see
that costebNE(N) is not continuous at 1. J

While costbNE is neither monotonous nor continuous, we now show that it is composed
of finitely many linear segments. We say that a function f : R+ → R

+ is composed of linear
segments if there is a segmentation 0 = x0 < x1 < ... < xn < xn+1 = ∞ of R+, for some
n ≥ 0, such that for every 0 ≤ i ≤ n there is a linear function fi : R→ R such that for all
x ∈ [xi, xi+1] it holds that f(x) = fi(x). We call x0, x1, ..., xn+1 the edge points of f . Given
an NFG N , a profile P , and an edge e, the cost of P is a linear function with respect to the
cost of e. Indeed, cost(N,P ) =

∑
e′∈P\{e} c(e′)+1P,ec(e), where 1P,e ∈ {0, 1} is an indicator

of e being used in P . In particular, when 1P,e = 0, then cost(N,P ) is a constant function.

I Lemma 14. Given an NFG N , an edge e, and a profile P , the range of values x such that
P is an NE in N [e← x] is a single (possibly empty) segment.

Proof. By definition, a profile P is an NE if for every i and for every profile P ′ obtained
from P by a deviation π′i of Player i that costN,P (πi) ≤ costN,P ′(π′i). Hence, P is an NE in
N [e← x] in values x for which the set of constraints of the form costN,P (πi) ≤ costN,P ′(π′i)
holds. As each constraint is a linear inequality in a single variable (that is, x), the solution
set is a single (perhaps empty) segment. J

We denote by bumps(P ) the set of edge points of the segment along which P is an
NE in N [e ← x]. That is, bumps(P ) = {a, b} if P is an NE in N [e ← x] for exactly all
a ≤ x ≤ b. By Lemma 14, bumps(P ) contains at most two points. We further denote by
Bumps(N, e) =

⋃
P bumps(P ). Since the number of strategies per player and the number of

players are finite, the number of profiles is finite as well. Hence, since |bumps(P )| ≤ 2 for
every profile P , we get that Bumps(N, e) is finite.

Consider two profiles P1 6= P2 in N . For an edge e, we say that a value x ≥ 0 is an
intersection point for e, P1, and P2, if cost(N [e← x], P1) = cost(N [e← x], P2). Note that
since cost(N [e← x], P ) is linear for every profile P , there is at most one intersection point
for every edge and two profiles. Let Ints(N, e) be the set of all intersection points for e and
pairs of profiles in N . Since the number of different profiles is finite, so is Ints(N, e).

I Theorem 15. Consider an NFG N and an edge e in N . Then, costbNE(N [e ← x]) is
composed of finitely many linear segments, and is monotonically increasing within each
segment.

Proof. Recall that costebNE(N)(x) = costbNE(N [e ← x]) = minP∈bNE(N [e←x]) cost(N [e ←
x], P ) = minP∈bNE(N [e←x])

∑
e′∈P\{e} c(e′) + 1P,ex. Hence, costbNE(N [e← x]) is composed

of linear segments. The set of edge points refines bumps(N, e) ∪ Ints(N, e), and since it is
finite, so are the number of segments. Furthermore, as cost(N [e← x], P ) is monotonically
increasing for every P , we get that costbNE(N [e ← x]) is monotonically increasing within
each segment. J

Figure 4 below contains plots2 of the function costbNE(N [e← x]). The left plot describes
costbNE(N [e ← x]) where N is the NFG from Example 1 and e = 〈s, u〉. To its right, we
describe a three-player NFG N and the plot of costbNE(N [e← x]) with e = 〈s, v2〉.

2 The plots were generated by a simple Python program that gets as input an NFG by means of a
NetworkX weighted directed graph, and naively follows the segmentation from Theorem 15.
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t3 t1

t2v1 v2

s

6 x 3

0.5

2.501

Figure 4 Plots for costbNE(N [e← x]).

4.2 Decision problems
The bNE-cost decision problem is the problem of deciding, given an NFG N and a threshold
κ ≥ 0, whether costbNE(N) ≤ κ. The bNE-cost problem is NP-complete [4]. In this section
we study the following related decision problems.
1. Edge-bNE-affects: Given an NFG N and an edge e of N , does e bNE-affect N? Thus,

Edge-bNE-affects = {〈N, e〉 | e bNE-affects N}.
2. Edge-bNE-optimization: Given an NFG N , an edge e of N , and a threshold κ ≥ 0, is

there a value x ≥ 0, such that costbNE(N [e ← x]) ≤ κ? Thus, Edge-bNE-optimization
= {〈N, e, κ〉 | there exists x ≥ 0 such that costbNE(N [e← x]) ≤ κ}.

3. bNE-optimization: Given an NFG N and a threshold κ ≥ 0, is there an edge e of N and a
value x ≥ 0, such that costbNE(N [e← x]) ≤ κ? Thus, bNE-optimization= {〈N,κ〉 | there
exist e and x ≥ 0 such that costbNE(N [e← x]) ≤ κ}.

Before we turn to analyze the complexity of the problems, let us illustrate the non-intuitive
behavior of costbNE . Consider the NFG N appearing in Figure 5, and let e = 〈s, v2〉. As can
be seen in Table 6, the profile 〈π3

1 , π
3
2〉 is an NE with cost 10 independent of the value of x.

Then, when 0 ≤ x ≤ 1
2 , the profile 〈π2

1 , π
1
2〉 is an NE with cost 10.5 + x, and when x ≥ 1

2 , the
profile 〈π1

1 , π
1
2〉 is an NE with cost 9. Accordingly, costbNE(N [e← x]) is 10 when 0 ≤ x < 1

2 ,
and is 9 when x ≥ 1

2 . Though observations of the non-intuitive behavior of network exists in
literature (e.g., Braess’ Paradox [12]), it is common that added/removed edges participate in
equilibria profiles either before or after changing the network. In this example, however, the
edge e, which bNE-affects N , does not participate in any bNE profile! Thus, costbNE is fixed
in the two segments [0, 1

2 ) and [ 1
2 ,∞], yet still e bNE affects N .

t1 t2

v1 v2 v3

s

4 x 8

4 1

5.5 5
1 1

Figure 5 The NFG N .

Table 6 Players’ costs in N .

Player 2 π1
2 π2

2 π3
2

Player 1 s, v1, t2 s, v2, t2 s, v3, t2

π1
1 3 5 + x 9

s, v1, t1 6 8 8
π2

1 5 5 + x
2 9

s, v2, t1 5.5 + x 5.5 + x
2 5.5 + x

π3
1 5 5 + x 5

s, v3, t1 9 9 5

I Lemma 16. Let N be an NFG, and let e be an edge in N . If there is an NE profile P
such that e /∈ P , then for all x ≥ c(e), we have that P is an NE in N [e← x].
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10:14 Coverage and Vacuity in Network Formation Games

Proof. Assume towards contradiction that there is x > c(e) such that P is not an NE.
Then, there is a player i with strategy πi in P that has an incentive to unilaterally deviate
to another strategy π′i. Denote by P ′ the deviation profile resulting from i’s deviation.
Since P is an NE in N , we have that costN,P (πi) ≤ costN,P ′(π′i). Since e /∈ P , we have that
costN [e←x],P (πi) = costN,P (πi). Since x > c(e) we have that costN,P ′(π′i) ≤ costN [e←x],P ′(π′i).
Therefore costN [e←x],P (πi) ≤ costN [e←x],P ′(π′i), in contradiction to the fact that Player i has
an incentive to deviate. J

Lemma 16, together with the segmentation of bNE(N [e← x]), is used for proving the
following characterization of an edge that does not bNE-affect N . The proof is based on a
careful consideration of all cases and can be found in the full version.

I Theorem 17. Let N be an NFG. An edge e in N does not bNE-affect N iff there is a
profile P ∈ bNE(N [e← 0]) such that e /∈ P and for all x ≥ 0 it holds that costbNE(N [e←
x]) ≥ costbNE(N [e← 0]).

I Theorem 18. The Edge-bNE-affects problem is ∆P
2 -complete, and is ΘP

2 -complete when
costs are given in unary.

Proof. We start with membership. First, note that given an NFG N , and edge e of N ,
and a value κ ≥ 0, we can decide in NP whether there is a profile P such that e /∈ P and
cost(N,P ) = κ.

Let OPT0 = costbNE(N [e← 0]). As argued in the membership claim for Theorem 8, we
can find OPT0 using polynomially-many queries to an NP oracle when costs are given in
binary, and using logarithmically-many queries when costs are given in unary. Then, using a
single query to Edge-bNE-optimization (with modification to strictly smaller) with input N, e,
and OPT0, we can decide if there is a value x ≥ 0 such that costbNE(N [e← x]) < OPT0. If
so, then e affects N . Otherwise, use a single query to ask if there is a profile P such that
e /∈ P and cost(N [e← 0], P ) = OPT0. By Theorem 17, we have that e bNE-affects N iff the
answer is no.

The hardness results for ∆P
2 and ΘP

2 can be found in the full version. In both cases we
use the same reduction as in the hardness results for Theorem 8. In the case of ∆P

2 we make
a slight variation. Then we show that the profiles described for the SO is a superset of the
bNE profiles. J

Finally, for the optimization problems, the analysis is similar to the one in Theorem 9,
except that we also have to argue that the witness value x is polynomial in input. The details
can be found in the full version.

I Theorem 19. The edge-bNE-optimization and bNE-optimization problems are NP-complete.

I Remark 20 (On the PoS and the worst NE). Recall that PoS(N ) = costbNE(N)
costSO(N) . If an

edge e bNE-affects N , it does not necessarily imply that e PoS-affects N . Indeed, e may
participate also in the SO. Nevertheless, the NFG N used in the proofs of Theorems 12
and 13 demonstrates that PoS is neither monotone nor continuous. To see this, note that
for all x ≥ 0, we have that costSO(N [e ← x]) = 2, we get that for x ∈ [0, 1), we have that
PoS(N [e ← x]) = 1 + x

2 , and for x ≥ 1, we have that PoS(N [e ← x]) = 1 .
As for the worst NE, since the NFG N used in the proofs of Theorems 12 and 13 is such

that N [e← x] has a single NE for all values of x, the considerations about the best and worst
NE coincide, and thus N demonstrate that costwNE is neither monotone nor continuous.
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5 Discussion and Future Work

We studied the effect of mutations applied to the cost of edges in network formation games.
Our results about monotonicity and continuity of the SO and NE are aligned with similar
folk results in similar settings in game theory. We are, however, the first to introduce a
formal framework to study these phenomena, and to provide a complexity analysis of the
decision problems they induce. We also point to new surprising effects of the mutations.

The mutations we study for NFGs are of a restricted type: an unbounded change in
the cost of a single resource in the game. As has been the case in coverage and vacuity
in formal verification, richer types of mutations reflect practical bounds on the possible
mutations. For example, it would be interesting to study how one can control the bNE by a
budget-restricted mutation of several edges. Also, while our definition of affect is Boolean,
namely an edge SO-, bNE-, or wNE-affects a network or it does not, it is interesting to
examine a quantitative approach, where we care how much an edge affects these measures.
Finally, while our optimization problems care about an upper bound to the costs of the SO
and bNE, in some applications it is interesting to control these values by both an upper and
lower bound. We leave the richer setting and variants for future research.

Both game theory and formal verification aim at reasoning about behaviors of interacting
entities, yet consider different aspects of the interaction. We view this work as another chain
in an exciting transfer of concepts and ideas between the two areas [28]. In the context of
game theory, this includes an extension of NFGs to objectives that are richer than reachability
[9], to a timed setting [6], and to a setting where the strategies of the players are dynamic
[7]. Beyond richer settings, it is shown in [30, 5] how ideas used in formal verification for
abstraction and symbolic presentation of huge systems can be used for reasoning about NFGs.
In the other direction, concepts from game theory are used in the formalization of strategic
behaviors in formal verification (e.g., rational verification and synthesis [22, 38]). In the more
economic view, cost-sharing mechanisms from NFGs are used in [8] in order to augment the
problem of synthesis from component libraries by cost considerations.

Our contribution here started with the transfer of concepts from formal verification to
game theory, yet our results suggest new research directions in coverage and vacuity in formal
verification, and logic in general. Studies of coverage and vacuity so far concern Boolean
specification formalisms [27]. In contrast, the objectives of the players in typical game-
theoretic settings, in particular NFGs, are quantitative. Recently, there is growing interest
in multi-valued specification formalisms, which specify the quality of systems, and not only
their correctness [2]. Moreover, the systems we reason about may be multi-valued too. For
the multi-valued setting, we need to develop a theory of quantified multi-valued propositions.
In particular, the segmentation of values in R+ we perform for bNE, is analogous to a
segmentation of [0, 1] – the domain of values of atomic propositions and sub-formulas in
typical multi-valued formalisms. Indeed, while mutations of sub-formulas that appear in a
positive or negative polarity behave monotonically, sub-formulas with a mixed polarity may
induce a non-trivial segmentation. Moreover, as has been the case with bumps(P ) in the
bNE segmentation, the edge points of the segments may not be constants that appear in the
formula. For example, when sub-formulas and atomic propositions take values in [0, 1], then
the maximal satisfaction value of the formula p∧ (¬p) is when the satisfaction value of p is 1

2 .
Furthermore, the need to reason formally about multi-agent systems has led to a devel-

opment of specification formalisms that enable reasoning about on-going strategic behavi-
ors [3, 13, 32, 11]. Essentially, these formalisms, most notably ATL, ATL?, and Strategy
Logic (SL), include quantification of strategies of the different agents and of the computations
they may force the system into, making it possible to specify concepts like SO and NE.
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10:16 Coverage and Vacuity in Network Formation Games

While coverage and vacuity are traditionally viewed as sanity checks in model checking, in
the context of SL specifications, they can also be used for revealing properties of games
and strategic behaviors. Out work demonstrates how SL formulas that specify concepts
like SO and NE explain properties like monotonicity. Indeed, non-monotonicity of the bNE
corresponds to the mixed polarity of the objectives in the SL formula that describes an NE:
a negative occurrence (left-hand side of an implication) when we refer to a deviation and a
positive one (right-hand side of that implication) in for the current strategy. In contrast, in
the formula for the SO, all occurrences of the objectives are positive, implying monotonicity.
Moreover, for a specific given game, reasoning about the effect of mutations can be reduced to
checking the coverage of SL formulas that specify properties of the game. Thus, a framework
for coverage and vacuity in SL is interesting for both formal verification and game theory.
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Abstract
We consider algebras of languages over the signature of reversible Kleene lattices, that is the
regular operations (empty and unit languages, union, concatenation and Kleene star) together with
intersection and mirror image. We provide a complete set of axioms for the equational theory of
these algebras. This proof was developed in the proof assistant Coq.
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1 Introduction

We are interested in algebras of languages, equipped with the constants empty language (0),
unit language (1, the language containing only the empty word), the binary operations
of union (+), intersection (∩), and concatenation (·), and the unary operations of Kleene
star ((−)?) and mirror image ((−)). It is convenient in this paper to see the Kleene star as
a derived operator e? := 1 + e+ with the operator e+ representing the non-zero iteration.
We call these algebras reversible Kleene lattices. Given a finite set of variables X, and two
terms e, f built from variables and the above operations, we say that the equation e ' f is
valid if the corresponding equality holds universally.

In a previous paper [3] we have presented an algorithm to test the validity of such
equations, and shown this problem to be ExpSpace-complete. However, we had left open
the question of the axiomatisation of these algebras. We address it now, by providing in the
current paper a set of axioms from which every valid equation can be derived.

Several fragments of this algebra have been studied:
Kleene algebra (KA): if we restrict ourselves to the operators of regular expressions (0, 1,

+, ·, and (−)+), then several axiomatisation have been proposed by Conway[4], before
being shown to be complete by Krob [8] and Kozen [6].

Kleene algebra with converse: if we add to KA the mirror operation, then the previous
theorem can be extended by switching to a duplicated alphabet, with a letter a′ denoting
the mirror of the letter a. A small number of identities may be added to KA to get a
complete axiomatisation [2].

Identity-free Kleene lattices: this algebra stems from the operators 0, +, ·, ∩ and (−)+. In
a recent paper [5] Doumane and Pous provided a complete axiomatisation of this algebra.
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The present work is then an extension of identity-free Kleene lattices, by adding unit and
mirror image. We provide in Table 1 a set of axioms which we prove to be complete for the
equational theory of language algebra, by reducing to the the completeness theorem of [5].
This proof has been formalised in Coq.

The paper is organised as follows. In Section 2, we introduce some notations and define
the various types of expressions used in the paper. We present our axioms and state our
main theorem. In Section 3 we deal with a technical lemma having to do with the treatment
of the empty word. We proceed in Section 4 to extend the theorem of [5] with the mirror
image operator. Section 5 studies in detail terms of the algebra that are below the constant
1, as those play a crucial role in the main proof. We present the proof of our main result in
Section 6. We conclude in Section 7 by a discussion on an operator that is missing from our
signature, namely constant > denoting the full language.

On the Coq formalisation

As we have mentioned already, the proofs in this paper have been formalised and checked
using the proof assistant Coq. This has several consequences for the present article.

Since Coq offers a very high level of confidence in the proofs it validates, the summary
we give here is not meant to convince the reader of our result’s validity. Instead we focus on
the precise statement of the theorems we proved, and the strategy we employed to establish
those. If the reader has doubts as to the validity of some of our claims we refer them to the
Coq proof, available on GitHub.

The source of most mistakes when dealing with formal proofs is the correspondence
between the statement we want to prove and the one we actually prove. In other words, the
main task when assessing the validity of a Coq proof consists in checking that the definitions
and assertions in the Coq file match those we have in mind. To that effect, we tried in the
present document to remain as close as possible to the Coq script. This might sometimes
lead to slightly pedantic definitions, and less than intuitive proofs. We feel however that this
is better than the alternative: we use the claims we checked instead of making more intuitive
but imprecise arguments.

2 Preliminaries

2.1 Sets, words, and languages
Given a set X, we write P (X) for the powerset of X and Pf (X) for the set of finite subsets
of X. We will denote the two-elements boolean set as 2. For two sets X,Y , we write X × Y
for their Cartesian product, X ∪ Y for their union, and X ∩ Y for their intersection. The
empty set is denoted by ∅. We will use the notation f(A) for a set A ⊆ X and a function
f : X → Y to represent the set {y ∈ Y | ∃a ∈ A : f(a) = y} = {f(a) | a ∈ A}.

Let Σ be an arbitrary alphabet (set), the words over Σ are finite sequences of elements from
Σ. The set of all words is written Σ?, and the empty word is written ε. The concatenation of
two words u, v is simply denoted by uv. The mirror image of a word u, obtained by reading
it backwards, is written u. For instance abc is the word cba.

A language is a set of words, that is an element of L 〈Σ〉 := P (Σ?). We will also use the
symbol ε to denote the unit language {ε}. The concatenation of two languages L and M ,
denoted by L ·M , is obtained by lifting pairwise the concatenation of words: it contains
exactly those words that can be obtained as a concatenation uv where 〈u, v〉 ∈ L ×M .
Similarly the mirror image of a language L, denoted by L, is the set of mirror images of words

http://coq.inria.fr
https://github.com/monstrencage/LangAlg
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Table 1 Axioms of reversible Kleene lattices.

e+ f = f + e (1a.1)
e+ (f + g) = (e+ f) + g (1a.2)

e+ 0 = e (1a.3)
e ∩ f = f ∩ e (1a.4)
e ∩ e = e (1a.5)

e ∩ (f ∩ g) = (e ∩ f) ∩ g (1a.6)
(e+ f) ∩ g = e ∩ g + f ∩ g (1a.7)
(e ∩ f) + e = e (1a.8)

(a) Distributive lattice.

e · (f · g) = (e · f) · g (1b.1)
e · 0 = 0 = 0 · e (1b.2)

(e+ f) · g = e · g + f · g (1b.3)
e · (f + g) = e · f + e · g (1b.4)

e+ = e+ e · e+ (1b.5)
e+ = e+ e+ · e (1b.6)

e · f + f = f ⇒ e+ · f + f = f (1b.7)
f · e+ f = f ⇒ f · e+ + f = f (1b.8)

(b) Concatenation and iteration.

e = e (1c.1)
e+ f = e+ f (1c.2)
e · f = f · e (1c.3)
e ∩ f = e ∩ f (1c.4)
e+ = e+ (1c.5)

(c) Mirror image.

1 · e = e = e · 1 (1d.1)
1 ∩ (e · f) = 1 ∩ (e ∩ f) (1d.2)

1 ∩ e = 1 ∩ e (1d.3)
(1 ∩ e) · f = f · (1 ∩ e) (1d.4)

((1 ∩ e) · f) ∩ g = (1 ∩ e) · (f ∩ g) (1d.5)
(g + (1 ∩ e) · f)+ = g+ + (1 ∩ e) · (g + f)+ (1d.6)

(d) Unit.

from L. We write Ln when L ∈ L 〈Σ〉 and n ∈ N for the iterated concatenation, defined by
induction on n by L0 := ε and Ln+1 := L · Ln. The language L+ is the union of all non-zero
iterations of L, i.e. L+ :=

⋃
n>0 L

n.

2.2 Terms: syntax and semantics
Throughout this paper, we will consider expressions over various signatures which we list
here. We fix a set of variables X, and let x, y, ... range over X.
Expressions: e, f ∈ EX ::= x | 0 | 1 | e+ f | e · f | e ∩ f | e+ | e;
One-free expressions: e, f ∈ E′X ::= x | 0 | e+ f | e · f | e ∩ f | e+ | e;
Simple expressions: e, f ∈ E−X ::= x | 0 | e+ f | e · f | e ∩ f | e+;

We will use various sets of axioms, depending on the signature. All of the axioms under
consideration are listed in Table 1. We use these axioms to generate equivalence relations over
terms. For a type of expressions TX ∈

{
EX ,E′X ,E

−
X

}
, the axiomatic equivalence relation,

written ≡ is the smallest congruence on TX containing those axioms in Table 1 that only use
symbols from the signature of TX . This means that for E−X we use the axioms from Tables 1a
and 1b, for E′X we add those from Table 1c and for EX we keep all of the axioms of Table 1.
We will use the shorthand e 5 f to mean e+ f ≡ f . This ensures that 5 is a partial order
with respect to ≡. We list in Table 2 some statements that are provable from the axioms.

I Remark 1. Axioms in Tables 1a and 1b are borrowed from [5]. We actually omit two
axioms from Pous & Doumane: their axiomatisation include (2a.1) and (2a.3), which happen
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11:4 A Complete Axiomatisation of a Fragment of Language Algebra

Table 2 Some consequences of the axioms.

e+ e ≡ e (2a.1)
e ∩ 0 ≡ 0 (2a.2)

e ∩ (e+ f) ≡ e (2a.3)

(a) Lattice laws.

e+ · e+ 5 e+ (2b.1)(
e+)+ ≡ e+ (2b.2)

(1 + e)+ ≡ 1 + e+ (2b.3)

(b) Iteration.

0 ≡ 0 (2c.1)
1 ≡ 1 (2c.2)

0+ ≡ 0 (2c.3)
1+ ≡ 1 (2c.4)

(c) Constants.

e 5 g ⇒ f 5 g ⇒ e+ f 5 g (2d.1)
g 5 e⇒ g 5 f ⇒ g 5 e ∩ f (2d.2)

e 5 f ⇔ e ∩ f ≡ e (2d.3)
1 5 e · f ⇔ 1 5 e ∧ 1 5 f (2d.4)

(d) Reasoning rules.

to be derivable from the other identities. The mirror image identities, presented in Table 1c
come from [2] (except (1c.4), which is a trivial extension). In Table 1d, we find (1d.1) which
is a standard monoid law, as well as (1d.4) and (1d.5) from [1]. Axiom (1d.6) was also present
in that paper, although using the Kleene star instead of the non-zero iteration. As far as we
know the identities (1d.2) and (1d.3) are new.

Given an expression e ∈ TX , a set Σ, and a map σ : X → L〈Σ〉, we may interpret e as a
language over Σ using the following inductive definition:

JxKσ := σ(x) Je+ fKσ := JeKσ ∪ JfKσ
q
e+y

σ
:= JeK+

σ

J0Kσ := ∅ Je · fKσ := JeKσ · JfKσ JeKσ := JeKσ
J1Kσ := ε Je ∩ fKσ := JeKσ ∩ JfKσ

The semantic equivalence and semantic containment relations on TX , respectively written '
and ., are defined as follows:

e ' f ⇔ ∀Σ, ∀σ : X → L〈Σ〉 , JeKσ = JfKσ .

e . f ⇔ ∀Σ, ∀σ : X → L〈Σ〉 , JeKσ ⊆ JfKσ .

The main result of this paper is a completeness theorem for reversible Kleene lattices:

I Theorem 24 (Main result). ∀e, f ∈ EX , e ≡ f ⇔ e ' f .

Since all of the axioms in Table 1 are sound for languages, we know that the implication
from left to right holds. This paper will thus focus on the converse implication, and will
proceed in several steps. Our starting point will be the recently published completeness
theorem for identity-free Kleene lattices [5]:

I Theorem 2. ∀e, f ∈ E−X , e ≡ f ⇔ e ' f .

I Remark 3. In [5], this theorem is established for interpretations of terms as binary relations
instead of languages. However both semantic equivalences coincide for this signature [1].
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Table 3 The two definitions of v.

ε v1 ε
ε v1 v

ε v1 •v
u v1 v

•u v1 •v
xu v1 v x ∈ Σ

xu v1 •v
u v1 v x ∈ Σ

xu v1 xv

u v2 u ε v2 •
u v2 v v v2 w

u v2 w

u v2 v u′ v2 v
′

uu′ v2 vv
′

3 A remark about the empty word

In several places in the proof, it makes some difference whether or not the empty word
belongs to the language of some one-free expression. We show here one way one might
manipulate this property, that will be of use later on. The main technical result of this
section is the following lemma:

I Proposition 4. Given an alphabet Σ, a symbol • /∈ Σ, a map σ : X → L〈Σ〉 and a set of
variables X ⊆ X, there are maps σ′ : X → L〈Σ ∪ {•}〉 and φ : (Σ ∪ {•})? → Σ? such that:

∀a ∈ X , ε /∈ σ′(a) ∀e ∈ E′X , JeKσ = φ (JeKσ′ \ ε) .

Before we can prove it, we need to introduce a few definitions and intermediate lemmas.
Let us fix for the remainder of the section an alphabet Σ, and a new symbol • /∈ Σ. We write
Σ′ := Σ ∪ {•}. The monoid homomorphism φ : Σ′? → Σ? is generated by

φ (•) := ε ∀x ∈ Σ, φ (x) := x.

We will need an ordering v between words over Σ′, that corresponds intuitively to “u v v
if u can be obtained by removing some •s from v”. To define this relation, we provide two
deduction systems in Table 3. The definition v1 can be thought of as being more algorithmic:
it is syntax directed (given a pair of words u, v, there is at most one rule with conclusion
u v1 v), and progressing from bottom to top it removes the superfluous •s from the right
hand side. The other definition is more algebraic. It can be summarised as “the smallest
precongruence containing ε v2 •”. It turns out both definitions are equivalent, and we will
simply write v instead of vi.

I Lemma 5. v1=v2.

Proof. First we prove that v2⊆v1. By proceeding by induction on the derivation u v2 v,
we see that it amounts to showing that v1 1) is a preorder (i.e. reflexive and transitive) 2)
contains ε v1 • and 3) satisfies the rule u v1 v and u′ v1 v

′ implies uu′ v1 vv
′.

1. Reflexivity and transitivity can be shown by a simple induction on words.
2. By induction on u we can show that u v1 •u (which implies ε v1 •).
3. Then we may prove:

by induction on u that for any v1, v2 we have v1 v1 v2 ⇒ uv1 v1 uv2 and
by induction on the derivation u v1 v that for every w, we get uw v1 vw.

These two properties, together with transitivity give us that v1 is a precongruence.

For the other containment, we show that u v1 v ⇒ u v2 v by a straightforward induction
on the derivation u v1 v. J
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11:6 A Complete Axiomatisation of a Fragment of Language Algebra

By induction on the derivation u v2 v we may prove the following properties:

u v v ⇒ φ (u) = φ (v) (3.1)
u v v ⇒ u v v (3.2)

By induction on v, and using the definition v1, we get the following decomposition property:

u1u2 v v ⇒ ∃v1, v2 : v = v1v2 ∧ u1 v v1 ∧ u2 v v2 (3.3)

We make the following observations about words greater than ε:

I Lemma 6. For any words u, v ∈ Σ′:
1. ε v u⇔ φ (u) = ε.
2. If ε v u, v then either u v v or v v u.

Proof. 1. By (3.1), we only need to check the right to left implication. We do so by induction
on u. φ (u) = ε means that u is only composed of •s, so there are two case, both being
straightforward instances of v1.

2. This second observation is a consequence of the following statement: if ε v u, v then
u v v if and only if the length of u is smaller than the length of v. By a simple induction
on v2 one can show that for any u, v we have the left-to-right implication. For the
converse implication we perform the induction on v. J

We now arrive at the key property of this ordering:

I Lemma 7. Any words u, v such that φ (u) = φ (v) have a least upper bound, i.e. a word
u t v such that u v u t v, v v u t v and for any word t such that u v t and v v t, we have
u t v v t.

Proof. We pose a word w = φ (u) = φ (v), and proceed by induction on w. If w = ε, then by
the remark we made earlier u and v are ordered, so the least upper bound is the maximum
of the two.

Otherwise, we have φ (u) = φ (v) = aw. By (yet another) induction, we show that this
means we can decompose u and v as follows:

u = u1au2 v = v1av2 ε v u1, v1 w = φ (u2) = φ (v2) .

So we may use our induction hypothesis to get a least upper bound for u2 and v2. Since u1
and v1 are both greater than ε, they are ordered. Without loss of generality, let us assume
u1 v v1. In this case, we claim that u t v = v1a (u2 t v2). It is straightforward to check that
u v u t v and v v u t v.

For the remaining property, let t be a word such that u v t and v v t. We use another
decomposition lemma (omitted here), to decompose t as

t = t1at2 u1 v t1 u2 v t2 v1 v t1 v2 v t2.

This allows us to conclude: since u2 v t2 and v2 v t2, then u2 t v2 v t2, so:

u t v = v1a (u2 t v2) v t1at2 = t. J

Notice that by (3.1) and Lemma (7) we get that each equivalence class of the relation
{〈u, v〉 | φ (u) = φ (v)} forms a join-semilattice.

We may now prove Proposition 4:
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Proof of Proposition 4. We fix Σ, σ, and X as in the statement, and define Σ′ and φ () as in
the rest of this section. Finally, σ′ is defined as σ′(x) := {u | φ (u) ∈ σ(x) ∧ (x ∈ X ⇒ u 6= ε)}.

It is straightforward to check that φ (σ′(x)) = σ(x) for any variable x. Therefore we only
need to check that this property is preserved by the operators of one-free expressions. For
any languages L,M , the following distributivity laws hold:

φ
(
L
)

= φ (L) φ (L ·M) = φ (L) · φ (M)

φ
(
L+) = φ (L)+

φ (L ∪M) = φ (L) ∪ φ (M)

However, it is not the case in general that φ (L ∩M) = φ (L)∩φ (M). To make the induction
go through, we will need to show that this identity holds for all the languages generated from
the languages σ′(x) by the operations 0, ·,+,∩, (−)+

, (−). This is achieved by identifying
some sufficient condition for φ (L ∩M) = φ (L) ∩ φ (M), and showing that this condition is
satisfied by every language of the shape JeKσ′ .

A good choice for such a condition is the property “being upwards-closed with respect
to v”, i.e. languages L such that whenever u ∈ L and u v v, then v ∈ L. Clearly σ′(x) is
closed for any variable x. Since the property “being closed” is preserved by each operation in
the signature of E′X , we deduce that for any expression e ∈ E′X the language JeKσ′ is closed.

Thankfully, for closed languages the missing identity φ (L ∩M) = φ (L) ∩ φ (M) holds,
thanks to Lemma 7. Thus we may conclude by induction on the expressions that JeKσ =
φ (JeKσ′). For the last step, notice that ε v • and φ (ε) = φ (•). Since JeKσ′ is closed, if
ε ∈ JeKσ′ then • ∈ JeKσ′ , thus φ (JeKσ′ \ ε) = φ (JeKσ′) = JeKσ. J

By setting the set X in the previous proposition to the full setX, we get the straightforward
corollary, which will prove useful in the next section.

I Corollary 8. Let e be a one-free expression, then for any expression f ∈ EX we have

e . f ⇔ ∀Σ, ∀σ : X → L〈Σ〉 , ε /∈
⋃
x∈X

σ(x)⇒ JeKσ ⊆ JfKσ .

4 Mirror image

In this section, we show a completeness theorem for one-free expressions. In order to get
this result we will use translations between E′X and E−X×2. An expression e ∈ E′X is clean,
written e ∈ CX , if the mirror operator is only applied to variables. First, notice that we may
restrict ourselves to clean expressions thanks to the following inductive function:

Υ : E′X × 2→ E′X
〈0, b〉 7→ 0

〈
e+, b

〉
7→ Υ 〈e, b〉+

〈x,>〉 7→ x 〈e,>〉 7→ Υ 〈e,⊥〉
〈x,⊥〉 7→ x 〈e,⊥〉 7→ Υ 〈e,>〉

〈e+ f, b〉 7→ Υ 〈e, b〉+ Υ 〈f, b〉 〈e · f,>〉 7→ Υ 〈e,>〉 ·Υ 〈f,>〉
〈e ∩ f, b〉 7→ Υ 〈e, b〉 ∩Υ 〈f, b〉 〈e · f,⊥〉 7→ Υ 〈f,⊥〉 ·Υ 〈e,⊥〉 .

We can show by induction on terms the following properties of Υ:

∀ 〈e, b〉 ∈ E′X × 2, Υ 〈e, b〉 ∈ CX . (4.1)
∀e ∈ E′X , Υ 〈e,>〉 ≡ e and Υ 〈e,⊥〉 ≡ e. (4.2)

We now define translations between clean expressions and simple expressions:
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11:8 A Complete Axiomatisation of a Fragment of Language Algebra

↑ (−) : CX → E−X×2 replaces mirrored variables x with 〈x,⊥〉 and variables x with 〈x,>〉;
↓ (−) : E−X×2 → CX replaces 〈x,>〉 with x and 〈x,⊥〉 with x.

We can easily show by induction the following properties:

∀e ∈ CX , ↓↑e = e. (4.3)
∀e, f ∈ E−X×2, e ≡ f ⇒ ↓e ≡ ↓f. (4.4)

The last step to obtain the completeness theorem for E′X is the following claim:

B Claim 9. ∀e, f ∈ CX , e ' f ⇒ ↑e ' ↑f .

I Lemma 10. If Claim 9 holds, then ∀e, f ∈ E′X , e ≡ f ⇔ e ' f .

Proof. By soundness, we know that e ≡ f ⇒ e ' f . For the converse implication:

e ' f ⇒ Υ 〈e,>〉 ' Υ 〈f,>〉 By soundness and Equation (4.2).
⇒ ↑Υ 〈e,>〉 ' ↑Υ 〈f,>〉 By Claim 9.
⇒ ↑Υ 〈e,>〉 ≡ ↑Υ 〈f,>〉 By Theorem 2.
⇒ ↓↑Υ 〈e,>〉 ≡ ↓↑Υ 〈f,>〉 By Equation (4.4).
⇒ Υ 〈e,>〉 ≡ Υ 〈f,>〉 By Equation (4.3).
⇒ e ≡ f By Equation (4.2).

J

Hence, we only need to show Claim 9 to conclude. To that end, we show that for any
clean expression e, any interpretation of ↑e can be obtained by applying some transformation
to some interpretation of e. Thanks to Corollary 8, we may restrict our attention to
interpretation that avoid the empty word. This seemingly mundane restriction turns out to
be of significant importance: if the empty word is allowed, the proof of Lemma 11 becomes
much more involved. More precisely, we prove the following lemma:

I Lemma 11. Let Σ be some set and σ : X × 2 → L〈Σ〉 some interpretation such that
∀x, ε /∈ σ(x). There exists an alphabet Σ′, an interpretation σ′ : X → L〈Σ′〉 and a function
ψ : L 〈Σ′〉 → L 〈Σ〉 such that: ∀e ∈ CX , J↑eKσ = ψ (JeKσ′).

Proof. We fix Σ and σ : X×2→ L〈Σ〉 as in the statement. Like in the proof of Proposition 4,
we set Σ′ = Σ∪{•}, with • a fresh letter, and write φ (u) for the word obtained from u ∈ Σ′?
by erasing every occurrence of •. Additionally we define the function η : Σ? → Σ′? as follows:

η(ε) := ε η(a u) := • a η(u) (〈a, u〉 ∈ Σ× Σ?).

Clearly, φ (η(u)) = u and η (u v) = η(u) η(v). We may now define σ′ and ψ:

σ′(x) := {η(u) | u ∈ σ 〈x,>〉} ∪
{
η(u)

∣∣∣ u ∈ σ 〈x,⊥〉} ψ (L) := {u | η(u) ∈ L} .

This is where the restriction ε /∈ σ(x) comes in. Indeed a word w cannot be written both as
w = η(u1) and as w = η(u2) unless w = u1 = u2 = ε. Since σ does not contain the empty
word, we may show that ψ (σ′(x)) = σ 〈x,>〉 and ψ

(
σ′(x)

)
= σ 〈x,⊥〉.

ψ distributes over the union and intersection operators. However, it does not hold in
general that ψ (L ·M) = ψ(L) · ψ(M). Like in the proof of Proposition 4 we will therefore
identify a predicate on languages that is sufficient for this identity to hold, is satisfied by
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σ′(x), and is stable by ·,∩,+, (−)+
, (−). In this case we find that an adequate candidate is

“L contains only valid words”, where the set V of valid words is defined as follows:

u ∈ Σ+

η(u) ∈ V
u ∈ V
u ∈ V

u ∈ V v ∈ V
u v ∈ V

Alternatively, the elements of V are words over Σ′ that can be written as a product α1 . . . αn
with 1 6 n and each αi ∈ (Σ · •) ∪ (• · Σ). One may see from the definitions that σ′(x) ⊆ V.
V can also be seen to be trivially closed by concatenation and mirror image. Since the
remaining operators are either idempotent (union and intersection) or derived (iteration), we
get that JeKσ′ ⊆ V. This enables us to conclude thanks to the following property:

∀u1, u2 ∈ V, η(u) = u1 u2 ⇒ ∃v1, v2 : u1 = η(v1) ∧ u2 = η(v2) ∧ u = v1 v2. (4.5)

This property enables us to show that ψ (L ·M) = ψ(L) · ψ(M) and ψ (L+) = ψ (L)+, for
languages of valid words L,M . Hence we obtain by induction on expressions that for any
term e ∈ CX , it holds that J↑eKσ = JeKσ′ . J

I Theorem 12. ∀e, f ∈ E′X , e ≡ f ⇔ e ' f .

Proof. Thanks to Lemma 10, we only need to check Claim 9. Let e, f be two clean expressions
such that e ' f , we want to prove ↑e ' ↑f . According to Corollary 8, we need to compare
J↑eKσ and J↑fKσ for some σ : X × 2→ L〈Σ〉 such that ε /∈

⋃
x∈X×2 σ(x). By Lemma 11, we

may express these languages as respectively ψ (JeKσ′) and ψ (JfKσ′). Since e ' f , we get that
JeKσ′ = JfKσ′ , thus proving the desired identity and concluding the proof. J

5 Interlude: tests

Before we start with the main proof, we define tests and establish a few result about them.
Given a list of variables u ∈ X?, we define the term θu by induction on u as θε := 1 and
θa u := a∩ θu. Thanks to the following remark, we will hereafter consider θA for A ∈ Pf (X):

I Remark 13. Let u, v be two lists of variables containing the same letters (meaning a variable
appears in u if and only if it appears in v). Then θu ≡ θv.

The following property explains our choice of terminology: the function λσ. JθAKσ can be
seen as a boolean predicate testing whether the empty word is in each of the σ(a) for a ∈ A.

I Lemma 14. Let Σ be some alphabet and σ : X → L〈Σ〉. Then either ∀a ∈ A, ε ∈ σ(a),
in which case JθAKσ = ε, or JθAKσ = ∅.

Tests satisfy the following universal identities, with A,B ∈ Pf (X) and e, f ∈ EX :

θA 5 1 (5.1)
θA ∩ θB ≡ θA · θB ≡ θA∪B (5.2)
θA ≡ θA · θA (5.3)
a ∈ A⇒ θA 5 a (5.4)
θA · e ≡ e · θA (5.5)
(θA · e) ∩ (θB · f) ≡ θA∪B · (e ∩ f) (5.6)
θ+
A ≡ θA ≡ θA. (5.7)
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We now want to compare tests with other tests or with expressions. Let us define the
following interpretation for any finite set A ∈ Pf (X).

σA : X → L〈∅〉

x 7→
{
ε if x ∈ A
∅ otherwise.

Note that the alphabet here does not matter, since we only want the unit language and the
empty language. This interpretation enables us to establish the following lemma:

I Lemma 15. For any A,B ∈ Pf (X), the following are equivalent:

(i) ε ∈ JθBKσA
(ii) B ⊆ A (iii) θA 5 θB (iv) θA . θB.

Proof. Assume (i) holds, i.e. ε ∈ JθBKσA
. By Lemma 14 this means that for every a ∈ B we

have ε ∈ σA(a) which by definition of σA ensures that a ∈ A. Thus we have shown that (ii)
holds. We show that (ii) implies (iii) by induction on the size of B:

if B = ∅, by Equation (5.1) θA 5 1 = θ∅.
if B = {a} ∪ B′ with a /∈ B′, since B ⊆ A we have a ∈ A and B′ ⊆ A. By induction
hypothesis we know that θA 5 θ′B . By Remark 13 we get that θA ≡ a∩ θA. Hence we get:

θA ≡ a ∩ θA 5 a ∩ θ′B = θB .

Thanks to soundness we have that (iii) implies (iv). For the last implication, notice that by
construction of σA we have ε ∈ JθAKσA

. Therefore if θA . θB then we can conclude that
ε ∈ JθAKσA

⊆ JθBKσA
. J

We now define a function I : EX → Pf (Pf (X)), whose purpose is to represent as a sum
of tests the intersection of an arbitrary expression with 1:

I(0) := ∅ I(1) := {∅} I(x) := {{x}} I(e+ f) := I(e) ∪ I(f)

I(e · f) = I(e ∩ f) := {A ∪B | 〈A,B〉 ∈ I(e)× I(f)} I(e+) = I(e) := I(e).

I Lemma 16. ∀e ∈ EX , 1 ∩ e ≡
∑
C∈I(e) θC .

I Corollary 17. ∀e ∈ EX ,∀A ∈ Pf (X) , θA 5 e⇔ θA . e.

Proof. We only need to show the implication from right to left. Assume θA . e. This implies
1 ∩ θA . 1 ∩ e, and since θA 5 1 we know that 1 ∩ θA ≡ θA which by soundness implies
θA ' 1∩ θA. Combining this with Lemma 16, we get that θA ' 1∩ θA . 1∩ e '

∑
C∈I(e) θC .

By Lemma 15, we know that ε ∈ JθAKσA
, which means that ε ∈

r∑
C∈I(e) θC

z

σA

=⋃
C∈I(e) JθCKσA

. Therefore there must be some B ∈ I(e) such that ε ∈ JθBKσA
which

by Lemma 15 tells us that θA 5 θB . We may now conclude:

θA 5 θB 5
∑
C∈I(e)

θC ≡ 1 ∩ e 5 e. J

I Remark 18. The word “test” is reminiscent of Kleene algebra with tests (KAT)[7]. Indeed
according to Equation (5.1) our tests are sub-units, like in KAT. However unlike in KAT,
there are non-test terms t such that t 5 1. In general such terms are sums of tests, as can be
inferred from Lemma 16 (because for every sub-unit e 5 1, we have e ≡ 1 ∩ e ≡

∑
C∈I(e) θC).
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6 Completeness of reversible Kleene lattices

To tackle this completeness proof, we will proceed in three steps. Since we already proved
soundness, and since an equality can be equivalently expressed as a pair of containments, we
start from the following statement:

∀e, f ∈ EX , e . f ⇒ e 5 f.

First, we will show that any expression in EX can be equivalently written as a sum of terms
that are either tests or products θA · e of a test and a one-free expression. The case of tests
having been dispatched already (Corollary 17), this reduces the problem to:

∀e ∈ E′X , ∀A ∈ Pf (X) , ∀f ∈ EX , θA · e . f ⇒ θA · e 5 f.

Second, we will show that for any pair 〈A, f〉 ∈ Pf (X) × EX , there exists an expression
〈f〉A ∈ EX such that θA · 〈f〉A 5 f and whenever θA · e . f we have e . 〈f〉A. This further
reduces the problem into:

∀e ∈ E′X , ∀f ∈ EX , e . f ⇒ e 5 f.

For the third and last step, we show that for any expression f ∈ EX , there is an expression
[f ] ∈ E′X such that [f ] 5 f and whenever e . f for e ∈ E′X we have e . [f ]. This is enough
to conclude thanks to Theorem 12.

In the next three subsections, we introduce constructions and prove lemmas necessary for
each step. Then, in Section 6.4 we put them all together to show the main result.

6.1 First step: normal forms
A normal form is either an expression of the shape θA or of the shape θA · e with e ∈ E′X .
We denote by NF the set of normal forms. The main result of this section is the following:

I Lemma 19. For any e ∈ EX there exists a finite set N (e) ⊆ NF such that e ≡
∑
η∈N (e) η.

Proof. We show by induction on e how to build N (e). The correctness of the construction
is fairly straightforward, and is left as an exercise : we will only state the relevant proof
obligations when appropriate.

For constants, variables, and unions, the choice is rather obvious:

N (0) := ∅ N (1) := {θ∅} N (x) := {θ∅ · x} N (e+ f) := N (e) ∪N (f).

The case of mirror image is also rather straightforward:

N (e) := {θA | θA ∈ N (e)} ∪
{
θA · e′

∣∣ θA · e′ ∈ N (e)
}
.

For concatenations, we define the product η � γ of two normal forms η, γ ∈ NF as:

θA�θB := θA∪B θA�θB ·e := θA ·e�θB := θA∪B ·e θA ·e�θB ·f := θA∪B · (e · f) .

We then define N (e · f) := {η � γ | 〈η, γ〉 ∈ N (e)×N (f)}. For correctness of the construc-
tion, we would have to prove that ∀η, γ ∈ NF, η · γ ≡ η � γ.

For intersections, we define ⊗ : NF× NF→ Pf (NF):

θA ⊗ θB := {θA∪B} θA ⊗ θB · e := θA · e⊗ θB := {θA∪B∪C | C ∈ I(e)}
θA · e⊗ θB · f := θA∪B · (e ∩ f) .

CSL 2020
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We then define N (e ∩ f) :=
⋃
〈η,γ〉∈N (e)×N (f) η ⊗ γ.

Finally, for iterations we use the following definition:

N (e+) := {θA | θA ∈ N (e)} ∪

θ∪iAi
·

(∑
i

ei

)+
∣∣∣∣∣∣ {θAi

· ei | i 6 n} ⊆ N (e)

 . J

I Remark. In [1], a similar lemma was proved (Lemma 3.4). However, the proof in that
paper is slightly wrong, as it fails to consider the cases θA ∩ θB (easy) and θA ∩ θB · e (more
involved).

6.2 Second step: removing tests on the left
Here we want to transform an inequation θA · e . f , into one one the shape e . 〈f〉A, while
maintaining that θA · 〈f〉A 5 f . The construction of 〈f〉A is fairly straightforward, the
intuition being that θA forces us to only consider interpretations such that a ∈ A⇒ ε ∈ JaKσ.
Therefore, for any a ∈ A we replace in f every occurrence of a with 1 + a.

I Lemma 20. θA · 〈f〉A 5 f 5 〈f〉A.

Proof. Since a 5 1 + a, we can show by induction that f 5 〈f〉A. Also, if a ∈ A:

θA · (1 + a) ≡ θA + θA · a By (1d.1) and (1b.4)
≡ θA · θA + θA · a By (5.3)
≡ θA · (θA + a) By (1b.4)
≡ θA · a. By (5.4)

This proves for the case of variables that θA · 〈f〉A 5 f , and can be generalised to arbitrary
expressions by a simple induction. J

For the other property, we rely on the following lemma:

I Lemma 21. Let Ξ be some alphabet, and σ : X → L〈Ξ〉 be an interpretation such that
∀x ∈ X, ε /∈ σ(x). Then J〈f〉AKσ = J〈f〉AKτ , where τ : X → L〈Ξ〉

x 7→ σ(x) ∪ {ε | x ∈ A} .

Proof. The result follows from a straightforward induction, the only interesting case being
that of variables x ∈ A. This case is a simple consequence of our definitions:

J1 + aKτ = ε ∪ τ(a) = ε ∪ σ(a) ∪ ε = ε ∪ σ(a) = J1 + aKσ . J

I Corollary 22. Let 〈A, e〉 ∈ Pf (X)× E′X such that θA · e . f , then e . 〈f〉A.

Proof. Since by Lemma 20 we have f 5 〈f〉A by soundness and transitivity of . we
have θA · e . 〈f〉A. We want to show that e . 〈f〉A, so by Corollary 8 we only need
to check that for any interpretation σ : X → L〈Σ〉 such that ε /∈

⋃
x∈X σ(x) we have

JeKσ ⊆ J〈f〉AK
σ
. If we take τ like in Lemma 21, we get that 1) since for every variable

σ(x) ⊆ τ(x), JeKσ ⊆ JeKτ and 2) since for every a ∈ A we have ε ∈ τ(a), we get JθAKτ = ε.
Together these tell us that JeKσ ⊆ JeKτ = ε · JeKτ = JθA · eKτ . Since θA · e . 〈f〉A we know
that JθA · eKτ ⊆ J〈f〉AK

τ
, and by Lemma 21 we know J〈f〉AK

σ
= J〈f〉AK

τ
. We may therefore

conclude that JeKσ ⊆ JθA · eKτ ⊆ J〈f〉AK
τ

= J〈f〉AK
σ
. J
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6.3 Third step: removing tests on the right

This last step relies on Proposition 4 and Lemma 19.

I Lemma 23. For any expression f ∈ EX , there exists a one-free expression [f ] ∈ E′X such
that [f ] 5 f and for any one-free expression e ∈ E′X such that e . f we have e . [f ]. In
other words, [f ] is the maximum of the set {e ∈ E′X | e 5 f}.

Proof. We define [f ] :=
∑
θ∅·f ′∈N (f) f

′. We can easily check that [f ] 5 f :

[f ] ≡ 1 · [f ] = θ∅ ·
∑

θ∅·f ′∈N (f)

f ′ ≡
∑

θ∅·f ′∈N (f)

θ∅ · f ′ 5
∑

η∈N (f)

η ≡ f.

For the other property, we rely on Proposition 4. Assume e . f , we want to show that
e . [f ]. By Corollary 8, it is enough to check that JeKσ ⊆ J[f ]Kσ for interpretations σ
such that ∀x ∈ X, ε /∈ σ(x). Let σ be such an interpretation, and u some word such that
u ∈ JeKσ. Notice that the condition on σ ensures that ∀x ∈ X, 1∩ σ(x) = ∅, hence JθAKσ 6= ∅
implies that A = ∅ by Lemma 14. Also, because σ(x) never contains the empty word and
e does not feature the constant 1, u must be different from ε. Since e . f , we already
know that u ∈ JfKσ. By Lemma 19 and soundness, we know that there is a normal form
η ∈ N (f) such that u ∈ JηKσ. Since u 6= ε, η cannot be a test: that would imply by (5.1)
that η 5 1, hence JηKσ ⊆ J1Kσ = ε. Therefore we know that there is a term θA · f ′ ∈ N (f)
such that u ∈ JθA · f ′Kσ. This means that u ∈ Jf ′Kσ and ε ∈ JθAKσ. As we have noticed
before, this means that A = ∅. Thus we get u ∈ Jf ′Kσ and θ∅ · f ′ ∈ N (f), which ensures that
u ∈ J[f ]Kσ. J

6.4 Main theorem

We may now prove the main result of this paper:

I Theorem 24 (Main result). ∀e, f ∈ EX , e ≡ f ⇔ e ' f .

Proof. Since e ≡ f ⇔ e 5 f ∧ f 5 e and e ' f ⇔ e . f ∧ f . e, we focus instead on proving
that e 5 f ⇔ e . f . By soundness we know that e 5 f ⇒ e . f , so we only need to show
the converse implication.

Let e, f ∈ EX such that e . f . By Lemma 19 we can show that e ≡
∑
η∈N (e) η. Let

η ∈ N (e). Thanks to the properties of . we have that η . f . There are two cases for η:
either η = θA for some A ∈ Pf (X), in which case we have η 5 f by Corollary 17;
or η = θA · e′ with A ∈ Pf (X) and e′ ∈ E′X . In that case, by Corollary 22 we have
e′ . 〈f〉A, and by Lemma 23 we get e′ . [〈f〉A]. Since both e′ and [〈f〉A] are one-free,
we may apply Theorem 12 to get a proof that e′ 5 [〈f〉A]. Therefore

η = θA · e′ 5 θA · [〈f〉A] 5 θA · 〈f〉A By Lemma 23.
5 f By Lemma 20.

In both cases we have established that η 5 f , so by monotonicity we show that

e ≡
∑

η∈N (e)

η 5
∑

η∈N (e)

f 5 f. J
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7 The “top” problem

In reversible Kleene lattices, union and intersection form a distributive lattice, and 0 acts
as both the unit of union and the annihilator of intersection. All that is missing to get
a bounded distributive lattice is the unit of intersection and annihilator of union, namely
the constant >, to be interpreted as the full language. However, this turns out to be more
complicated than one might think.

The first idea that comes to mind is to add the sole axiom >+ e = >. This axiom just
says that for any expression e 5 >, and is enough to show that e ∩ > ≡ > ∩ e ≡ e. It is
obviously sound, so we get soundness of the resulting axiomatic equivalence. This axiomatic
equivalence can be reduced without too much difficulty to that of reversible Kleene lattices,
thanks to the following remark:
I Remark 25. If we write E>X for expressions with >, let φ : E>X → EX+1 be the function
that replaces every occurrence of > with

(∑
a∈X+1(a+ a)

)?. Then the following identity
holds: ∀e, f ∈ E>X , e ≡ f ⇔ φ(e) ≡ φ(f).

This same construction, when applied to expressions without intersections, yields a
completeness proof. In the presence of intersection however it is not complete. We illustrate
this with two examples.

I Example 26 (Levi’s lemma). Levi’s lemma for strings [9] states that whenever we have two
factorisations of the same word, i.e. u1 u2 = v1 v2, then either ∃w, u1 = v1 w ∧ v2 = w u2 or
∃w, v1 = u1 w ∧ u2 = w v2. If we now move from words to languages, it means that every
word that can be obtained simultaneously as L1 · L2 and M1 ·M2 also belongs to either
L1 · > ·M2 or M1 · > · L2. In other words, the following inequation holds:

(e1 · e2) ∩ (f1 · f2) . (e1 · > · f2) + (f1 · > · e2) .

However this equation is not derivable. This law also contrasts with the properties we can
observe in every fragment of this algebra that we have studied: in every case, if a term
without ? or + is smaller than a term e+ f , then it must be smaller than either e or f . One
can plainly see that it is not the case here.

I Example 27 (Factorisation). Another troubling example is the following:

(a · b) ∩ (a · c) . a · ((> · b) ∩ (> · c)) .

As before, this inequation is valid, but it is not derivable, and it does not involve unions.
This suggests that the (in-)equational theory of languages with just the signature 〈·,∩,>〉 is
already non-trivial. We believe that the key to adding > to Kleene lattices lies with a better
understanding of the theory of this smaller signature.
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This paper studies propositional proof systems in which lines are sequents of decision trees or
branching programs, deterministic or non-deterministic. Decision trees (DTs) are represented by
a natural term syntax, inducing the system LDT, and non-determinism is modelled by including
disjunction, _, as primitive (system LNDT). Branching programs generalise DTs to dag-like
structures and are duly handled by extension variables in our setting, as is common in proof
complexity (systems eLDT and eLNDT).

Deterministic and non-deterministic branching programs are natural nonuniform analogues of
log-space (L) and nondeterministic log-space (NL), respectively. Thus eLDT and eLNDT serve as
natural systems of reasoning corresponding to L and NL, respectively.
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1 Introduction

Propositional proof systems are widely studied because of their connections to feasible
complexity classes and their usefulness for computer-based reasoning. The first connections
to computational complexity arose largely from the work of Cook and Reckhow [11, 16, 17],
showing a connection to the NP-coNP question. These results, building on the work of
Tseitin [33] initiated the study of the relative efficiency of propositional proof systems.
The present paper is introduces propositional proof systems that are closely connected to
log-space (L) and nondeterministic log-space (NL).
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12:2 Proof Systems of Decision Trees and Branching Programs

Our original motivation for this study was to investigate propositional proof systems
corresponding to the first-order bounded arithmetic theories VL and VNL for L and NL,
see [15]. This follows a long line of work defining formal theories of bounded arithmetic that
correspond to computational complexity classes, as well as to provability in propositional
proof systems. The first results of this type were due (independently) to Paris and Wilkie [30]
who gave a translation from I∆0 to constant-depth Frege (AC0-Frege) proofs and to Cook [11]
who gave a translation from PV to extended Frege (eF) proofs. Since the first-order bounded
arithmetic theory S1

2 is conservative over the equational theory PV, Cook’s translation also
applies to the bounded arithmetic theory S1

2 [7]. As shown in the table below, similar
propositional translations have since been given for a range of other theories, including
first-order, second-order and equational theories.

Formal Propositional Complexity

Theories Proof Systems Class

PV, S1
2 eF P [11, 7]

PSA, U1
2 QBF PSPACE [18, 7]

Ti
2, Si`1

2 Gi, G˚i`1 PΣp
i [27, 28, 7]

VNC0 Frege (F) ALogTime [14, 15, 1]

VL GL˚ L [31, 15]

VNL GNL˚ NL [32, 15]

For an introduction to these and related results, see the books [7, 15, 25, 26]. A hallmark of
the table above is that the lines in the propositional proofs express (nonuniform) properties
in the corresponding complexity class. For instance, lines in a Frege proof are propositional
formulas, for which the evaluation problem is complete for alternating log-time (ALogTime),
cf. [8]. Likewise, lines in an eF proof are (implicitly) Boolean circuits, for which the evaluation
problem is complete for P, cf. [29].

This paper’s main goal is to define alternatives for the proof systems GL˚ and GNL˚

corresponding to log-space and nondeterministic log-space (see [31, 32, 12, 13]). GL˚ restricts
cut formulas to be “ΣCNFp2q” formulas; the subformula property then implies that proofs
contain only ΣCNFp2q formulas when proving ΣCNFp2q theorems. GNL˚ similarly restricts
cut formulas to be “ΣKrom” formulas.1 ΣCNFp2q and ΣKrom do have expressive power
equivalent to nonuniform L and NL respectively [22, 19], but they are are somewhat ad
hoc classes of quantified formulas, and their connections to L and NL are indirect. In
this paper, we propose new proof systems, eLDT and eLNDT, as alternatives for GL˚

and GNL˚ respectively. The lines in eLDT and eLNDT proofs are sequents of formulas
expressing branching programs and nondeterministic branching programs, respectively. This
follows an earlier unpublished suggestion of S. Cook [10], who gave a system for L based on
branching programs via “Prover-Liar” games (see [9]). The advantage of our systems is that
deterministic and nondeterministic branching programs correspond directly to nonuniform
L and NL respectively and do not require the use of quantified formulas. (See [34] for a
comprehensive introduction to branching programs.)

1 A ΣKrom formula has the form if it has the form D~zφp~z, ~xq, where φ is a conjunction C1^C2^ ¨ ¨ ¨ ^Cn

with each Ci a disjunction of any number of x-literals and at most two z-literals.
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To design the proof systems eLDT and eLNDT, we need to choose representations for
branching programs. For this, we use a formula-based representation, as this fits well into
the customary frameworks for proof systems. Since formulas only represent tree-structures,
we first define the systems LDT and LNDT for decision trees and non-deterministic decision
trees, respectively. From here dag-like structures are described using extension variables,
allowing us to abbreviate complex formulas by fresh variables, yielding the systems eLDT
and eLNDT. An example this is given in Figure 2 on page 12. This is similar to the way the
extension variables in extended Frege proofs allow circuits to be expressed by small formulas.

We start in Section 2 describing proof systems LDT and LNDT that work with just
deterministic and nondeterministic decision trees (without extension variables). Deterministic
decision trees are represented by formulas using a single “case” or “if-then-else” connective,
written in infix notation ApB, which means “if p is false, then A, else B”. The condition p is
required to be a literal, but A and B are arbitrary formulas. The system LDT is a sequent
calculus system in which all formulas are decision trees. Nondeterministic decision trees may
further be composed by disjunctions, allowing formulas of the form pA_ Bq. The system
LNDT is a sequent calculus in which all formulas are nondeterministic decision trees. LDT
and LNDT are weak systems; in fact, they are both polynomially simulated by depth-2 LK
that is, by the sequent calculus LK with all formulas are depth two, allowing proofs to be
dag-like. Figure 1 shows the equivalences between systems as currently established; those
that concern LDT and LNDT are given in Section 4. Section 5 introduces the proof systems
eLDT and eLNDT for branching programs and nondeterministic branching programs.

One issue in designing these proof systems is the treatment of isomorphic or bisimilar
branching programs. One approach is to allow proofs to freely replace any branching program
with any isomorphic or bisimilar branching program by means of additional axioms, e.g.
as done by Jeřábek [21] for the reformulation of extended Frege using Boolean circuits as
lines. The problem with using isomorphism or bisimilarity axioms is that these problems (for
branching programs) are in NL but not known to be in L. Such axioms are thus undesirable,
at least for eLDT, as it is a proof system for log-space. We instead adopt a more conservative
approach: the equivalence of bisimilar branching programs must be proved explicitly.

Since formulas in eLDT and eLNDT proofs express nonuniform L and NL properties,
respectively, they are intermediate in expressive power between Boolean formulas (expressing
NC1 properties) and Boolean circuits (expressing nonuniform P properties). Thus it is not
surprising that, as shown in Figure 1, these two systems are between Frege and extended
Frege in strength. In addition, since NL properties can be expressed by quasipolynomial size
formulas, it is not unexpected that Frege proofs can quasipolynomially simulate eLNDT,
and hence eLDT. These results are given in Section 6.

We include only brief proof sketches in this paper, due to space constraints, but full
proofs may be found in [5].

2 Decision tree formulas and LDT proofs

This section describes decision tree (DT) formulas, and the associated sequent calculus proof
system LDT. All our proof systems are propositional proof systems with variables x, y, z . . .
intended to range over the Boolean values False and True. We use 0 and 1 to denote the
constants False and True, respectively. A literal is either a propositional variable x or a
negated propositional variable x. We use use variables p, q, r, . . . to range over literals.

The only connective for forming decision tree formulas (DT formulas) is the 3-ary “case”
function, written in infix notation as pApBq where A and B are formulas and p is required
to be a literal. This informally means “if p is false, then A, else B”. Formally:
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Tree-1-LK

Tree-LDT

Tree-2-LKÐÑ
Thm 18

Tree-LNDTÐÑ
Thm 17

LDTThm 13
ÐÑ
Thm 14

1-LK

2-LKÐÑ
Thm 18

LNDT

Frege ÐÑLKÐÑTree-LK

eLDT

eLNDT

eLKÐÑTree-eLK

Thm 13
qp

Thm 14

Thm 29

qp
Thm 30

Figure 1 Relations between proof systems. Ñ means “polynomially simulates”; Ñqp means
“quasipolynomially simulates”; 99K means “exponentially separated from”. d-LK is the system of
dag-like LK proofs with only depth d formulae occurring (atomic formulae have depth 0) By default,
all proof systems allow dag-like proofs, unless they are labeled as “Tree”.

I Definition 1. Decision tree formulas, or DT formulas, are inductively defined as follows:
1. any literal p is a DT formula, and
2. if A and B are DT formulas and p is a literal, then pApBq is a DT formula. We call p

the decision literal of this formula.
The size of a DT formula A is the number of occurrences of atomic formulas in A.

Suppose α is a 0-1-truth assignment to the variables; the semantics of DT formulas is
defined by extending α to be a truth assignment to all DT formulas by inductively defining:

αpxq “ 1´ αpxq (1)

αpApBq “

#

αpAq if αppq “ 0
αpBq otherwise.

It is important that only literals p serve as the case distinctions in DT formulas. Notably,
for C a complex formula, an expression pAC Bq, which evaluates to A if C is true and to B
if C is false, would in general denote a decision diagram rather than a decision tree.

Although there is no explicit negation of DT formulas, we informally define the negation
A of a DT formula inductively by letting x denote x, and letting ApB denote the formula
ApB. Of course A is a DT formula whenever A is, and A correctly expresses the negation
of A. Notice also that negative decision literals are “syntactic sugar”, since Ap̄B is equivalent
to BpA. Nonetheless the notation is useful for making later definitions more intuitive.
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Our definition of DT formulas is somewhat different from the usual definition of decision
trees. The more common definition would allow 0 and 1 as atomic formulas instead of
literals p as in condition 1 of Definition 1. We call such formulas 0{1-DT formulas; they are
equivalent to DT formulas in expressive power. The constants 0 and 1 are equivalent to ppp
and ppp, for any literal p. More generally, 0pA, 1pA, Ap0 or Ap1 are equivalent to ppA, ppA,
App, or App, respectively. Conversely, a literal p, when used as atom, is equivalent to 0p1.
I Remark 2 (Expressive power of decision trees). It is easy to decide the validity or satisfiability
of a DT formula with a log-space algorithm. To check satisfiability, for example, one examines
each leaf in the formula tree (each atomic subformula p) and verifies whether the path of
literals from the root to the leaf is consistent with some truth assignment.

A DT formula A of size n can be expressed as a DNF formula of size Opn2q with at most
n disjuncts, defined formally in Section 3. Informally this DNF is formed by taking the
disjunction of terms (a.k.a conjunctions of literals) corresponding to paths from the root to a
leaf. A dual construction expresses a DT formula A as a CNF formula of size Opn2q with at
most n conjuncts. It is folklore that the construction can be partially reversed: namely any
Boolean function that is equivalently expressed by a DNF ϕ and a CNF ψ can be represented
by a DT formula of size quasipolynomial in the sizes of ϕ and ψ. This bound is optimal, as
[23] proves a quasipolynomial lower bound.

We next define the proof system LDT for reasoning about DT formulas. Lines in an LDT
proof are sequents, hence they express disjunctions of DT’s. Thus lines in LDT proofs can
express DNF properties, whose validity problem is non-trivial, indeed coNP-complete.

I Definition 3. A cedent, denoted Γ, ∆ etc., is a multiset of formulas; we often use commas
for multiset union, and write Γ, A for the multiset Γ, tAu. A sequent is an expression Γ Ñ ∆
where Γ and ∆ are cedents. Γ and ∆ are called the antecedent and succedent, respectively.

The intended meaning of Γ Ñ ∆ is that if every formula in Γ is true, then some formula in ∆
is true. Accordingly, Γ Ñ ∆ is true under a truth assignment α iff αpAq “ 0 for some A P Γ
or αpAq “ 1 for some A P ∆. A sequent is valid iff it is true for every truth assignment.

I Definition 4. The sequent calculus LDT is a proof system in which lines are sequents of
DT formulas. The valid initial sequents (axioms) are, for p any literal,

pÑ p p, pÑ Ñ p, p.

The rules of inference are:

Contraction rules: A,A,Γ Ñ ∆
c-l:

A,Γ Ñ ∆
Γ Ñ ∆, A,Ac-r:
Γ Ñ ∆, A

Weakening rules: Γ Ñ ∆w-l:
A,Γ Ñ ∆

Γ Ñ ∆w-r:
Γ Ñ ∆, A

Cut rule: Γ Ñ ∆, A A,Γ Ñ ∆
cut: Γ Ñ ∆

Decision rules: Γ, AÑ p,∆ Γ, p, B Ñ ∆
dec-l: Γ, ApB Ñ ∆

Γ ÑA, p,∆ Γ, pÑB,∆
dec-r: Γ ÑApB,∆
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12:6 Proof Systems of Decision Trees and Branching Programs

Proofs are, by default, dag-like. I.e. a proof of a sequent S in LDT is a sequence pS0, . . . , Snq

such that S is Sn and each Sk is either an initial sequent or is the conclusion of an inference
step whose premises occur amongst pSiqiăk. The subsystem where proofs are restricted to be
tree-like (i.e. trees of sequents composed by inference steps) is denoted Tree-LDT.

The size of a proof is the sum of the sizes of the formula occurrences in the proof.

The inference rules that are new to LDT are the two decision rules, dec-l and dec-r. Since
ApB is equivalent to pA _ pq ^ pp _ Bq, the lower sequent of a dec-r is true (under some
fixed truth assignment) iff both upper sequents are true under the same assignment, i.e. the
rule is sound and invertible. Similarly, since ApB is also equivalent to pA^ pq _ pp^Bq, the
dec-l rule is also sound and invertible.
I Remark 5 (Cut-free completeness). The invertibility properties also imply that the cut-free
fragment of LDT is complete. To prove this by induction on the complexity of sequents, start
with a valid sequent Γ Ñ ∆; choose any non-atomic formula ApB in Γ or ∆, and apply the
appropriate decision rule dec-l or dec-r that introduces this formula. The upper sequents of
this inference are also valid and, furthermore, they have logical complexity strictly less than
the logical complexity of Γ Ñ ∆. The base case of the induction is when Γ Ñ ∆ contains
only atomic formulas; in this case, it can be inferred from an initial sequent with weakenings.
Note that this shows in fact, that any valid sequent can be proved in LDT using only decision
rules, weakenings, and initial sequents. The system also enjoys a “local” cut-elimination
procedure, via standard techniques, but that is beyond the scope of this work.

I Proposition 6. The following have polynomial size, cut-free, Tree-LDT proofs:

(a) AÑA

(b) ÑA,A

(c) A,AÑ

(d) AÑ p,ApB

(e) p,B ÑApB

(f) ApB ÑA, p

(g) ApB, pÑB

3 Comparing DT proof systems and LK proof systems

LK is the usual Gentzen sequent calculus for Boolean formulas over the basis ^ and _. The
Boolean formulas are defined inductively by

Any literal p is a Boolean formula, and
If A and B are Boolean formulas, then so are pA_Bq and pA^Bq.

The proof system LK has the same initial sequents (axioms) as LDT, its inference rules are
the contraction rules c-l and c-r, the weakening rules w-l and w-r, the cut rule, and the
following Boolean rules:

A,B,Γ Ñ ∆
-̂l:

A^B,Γ Ñ ∆
Γ Ñ ∆, A Γ Ñ ∆, B-̂r:

Γ Ñ ∆, A^B

A,Γ Ñ ∆ B,Γ Ñ ∆
_-l:

A_B,Γ Ñ ∆
Γ Ñ ∆, A,B

_-r:
Γ Ñ ∆, A_B

Recall that a clause is a disjunction of literals and a term is a conjunction of literals.

I Definition 7. A Boolean formula is depth one if it is either a clause or a term. 1-LK
is the fragment of LK in which all formulas appearing in sequents are depth one formulas.
Tree-1-LK is the same system with the restriction that proofs are tree-like.

If ~p is a vector of literals, we write
Ž

~p to denote a disjunction of the literals ~p, taken in
the indicated order. The notation

Ź

~p is defined similarly. The nesting of disjunctions and
conjunctions can be arbitrary, so

Ž

~p denotes any formula of the form p
Ž

~p 1q_p
Ž

~p 2q where
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~p 1 and ~p 2 denote p1, . . . , pk and pk´1, . . . , p` for some 1 ď k ď `. Although these notations
are ambiguous about the nesting of disjunctions or conjunctions, this makes no difference in
this work, since if A and B are both of the form

Ž

~p but with different orders of applications
of _’s, then there are polynomial size, cut-free Tree-1-LK proofs of AÑB and B ÑA.

Later theorems will compare the proof theoretic strengths of various fragments and
extensions of LDT to fragments of LK. Since these theories use different languages, we need
to establish translations between cedents of DT formulas and (depth one) Boolean formulas.

I Definition 8. For a (nonempty) sequence of literals ~p we define the DT formulas Conjp~pq
and Disjp~pq by induction on the length of ~p as follows:

Conjppq :“ p

Conjpp, ~pq :“ pppConjp~pqq
Disjppq :“ p

Disjpp, ~pq :“ pDisjp~pqppq

In other words, if ~p “ pp1, . . . , p`q, for ` ą 1, we have:

Conjp~pq “ pp1p1pp2p2p¨ ¨ ¨ pp`´2p`´2pp`´1p`´1p`qq ¨ ¨ ¨ qqq

Disjp~pq “ ppp¨ ¨ ¨ ppp`p`´1p`´1qp`´2p`´2q ¨ ¨ ¨ qp2p2qp1p1q.

It is not hard to verify that Conj and Disj correctly express the conjunction and disjunction
of the literals ~p. This is borne out by the next proposition.

I Proposition 9. The following sequents have polynomial size, cut-free Tree-LDT proofs.

(a) Conjp~p, ~qqÑ Conjp~pq
(b) Conjp~p, ~qqÑ Conjp~qq
(c) Conjp~pq,Conjp~qqÑ Conjp~p, ~qq

(d) Disjp~pqÑ Disjp~p, ~qq
(e) Disjp~qqÑ Disjp~p, ~qq
(f) Disjp~p, ~qqÑ Disjp~pq,Disjp~qq

For the converse direction of simulating LDT (and its supersystems) by LK, we need to
express DT formulas A as Boolean formulas in both CNF and DNF forms. For this we define
TmspAq as a multiset of terms (i.e., a multiset of conjunctions) and ClspAq as a multiset of
clauses (i.e., a multiset of disjunctions) so that A is equivalent to both the DNF

Ž

TmspAq
and the CNF

Ź

ClspAq.

I Definition 10. Let A be a DT-formula. The terms and clauses of A are the multisets
TmspAq and ClspAq inductively defined by letting Tmsppq and Clsppq both equal p, and letting

TmspBpCq :“ tpp^Dq : D P TmspBqu Y tpp^Dq : D P TmspCqu (2)

ClspBpCq :“ tpp_Dq : D P ClspBqu Y tpp_Dq : D P ClspCqu. (3)

For example, if A is p1p2pp3p4p5q then TmspAq is tp2 ^ p1, p2 ^ p4 ^ p3, p2 ^ p4 ^ p5u, and
ClspAq is equal to tp2 _ p1, p2 _ p4 _ p3, p2 _ p4 _ p5u.

The equivalence between A,
Ž

TmspAq and
Ź

ClspAq is witnessed by simple proofs:

I Proposition 11. There are polynomial size, cut-free Tree-LK-proofs of:
(a) C ÑD, for each C P TmspAq and D P ClspAq.
(b) (i) ClspApBqÑD, p, for each D P ClspAq;

(ii) p,ClspApBqÑD, for each D P ClspBq.
(iii) ClspAqÑD, p, for each D P ClspApBq.
(iv) p,ClspBqÑD, for each D P ClspApBq.

(c) (i) C Ñ p,TmspApBq, for each C P TmspAq;
(ii) p, C Ñ TmspApBq, for each C P TmspBq.
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12:8 Proof Systems of Decision Trees and Branching Programs

(iii) C Ñ p,TmspAq, for each C P TmspApBq.
(iv) p, C Ñ TmspBq, for each C P TmspApBq.

Proof sketch. Part (a) of the lemma is proved by induction on the complexity of A. Parts
(b) and (c) are trivial once the definitions are unwound. For example, (b.i) follows from the
fact that ClspApBq contains the formula p_D. This allows (b.i) to be derived from the two
sequents pÑ p and DÑD. The former is an axiom, and the latter has a tree-like cut-free
proof by Proposition 6a. The other cases are similar. J

The next definition shows how to compare proof complexity between proof systems that
work with DT formulas and ones that work with Boolean formulas.

I Definition 12. Let P be a proof system for sequents of Boolean formulas (or at least,
sequents of depth one Boolean formulas), and Q be a proof system for sequents of DT formulas.
We say that P polynomially simulates Q if there is a polynomial time procedure which, given
a Q-proof of

A0, . . . , Am´1 ÑB0, . . . , Bn´1, (4)

where the Ai’s and Bi’s are DT-formulas, produces a P -proof of

ClspA0q, . . . ,ClspAm´1qÑ TmspB0q, . . . ,TmspBn´1q. (5)

The system Q polynomially simulates P if there is a polynomial time procedure which, given
a P -proof of

ł

~a0, . . . ,
ł

~am´1 Ñ
ľ

~b0, . . . ,
ľ

~bn´1, (6)

where the ~ai’s and ~bi’s are sequences of literals, produces a Q-proof of

Disjp~a0q, . . . ,Disjp~am´1qÑ Conjp~b0q, . . . ,Conjp~bn´1q. (7)

The systems P and Q are polynomially equivalent if they polynomially simulate each other.
(5) is called the Boolean translation of (4). (7) is called the DT-translation of (6). Quasipoly-
nomial simulation and equivalence are defined in the same way, but using quasipolynomial
time (time 2logOp1q n) procedures.2

3.1 1-LK and LDT
Our first results compare the weakest systems considered in this work, operating with just
DT formulas or with just terms and clauses.

I Theorem 13. LDT polynomially simulates 1-LK. Tree-LDT polynomially simulates
Tree-1-LK.

Proof sketch. We may replace terms
Ź

~a and clauses
Ž

~a occurring in a 1-LK proof by
DT-formulas Conjp~aq or Disjp~aq respectively. The result can be adapted into a correct LDT
proof using cuts against proofs from Proposition 9. J

2 It turns out that all stated quasipolynomial simulations in this work (Theorems 14 and 30) take time
nOplog nq

“ 2Oplog2 nq.
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A converse result holds too, but we have only a quasipolynomial simulation in the tree-like
case. It is open whether this can be improved to a polynomial simulation.

I Theorem 14. 1-LK polynomially simulates LDT. Tree-1-LK quasipolynomially simulates
Tree-LDT.

Proof sketch. In a given LDT proof, we may replace every DT A in an antecedent by the
multiset ClspAq and every DT A in a succedent by TmspAq. The result can be adapted into
a correct 1-LK proof using cuts against proofs of the truth conditions from Proposition 11.

In the tree-like case, when simulating the cut rule we must copy one subproof polynomially
many times (such copying is unnecessary when proofs are dag-like). However it turns out we
may freely choose which of the two subproofs to duplicate, so we may just take the smaller
one, which has size at most half that of the original proof. Doing this recursively yields a
nOplog nq “ 2Oplog2 nq bound on the size of the resulting Tree-1-LK proof. J

4 Nondeterministic decision tree formulas and LNDT proofs

This section defines nondeterministic decision tree (NDT) formulas, and the associated
sequent calculus LNDT. The NDT formulas have two kinds of connectives; the 3-ary case
function ApB and the Boolean OR-gate (_). Formally:

I Definition 15. The nondeterministic decision tree formulas, or NDT formulas for short,
are inductively defined by

Any literal p is a NDT formula;
If A and B are NDT formulas and p is a literal, then pApBq is a NDT formula;
If A and B are NDT formulas, then pA_Bq is an NDT formula.

A nondeterministic gate in a decision tree accepts just when at least one of its children
is accepting. This corresponds exactly to an _ gate, which yields True exactly when at
least one input is True. One of our motivations in defining LNDT that is will serve as a
foundation for our later definition eLNDT, which will capture a logic for nondeterministic
branching programs, and hence a logic for nonuniform NL.

I Definition 16. The sequent calculus LNDT is a proof system in which lines are sequents
of NDT formulas. Its initial sequents (axioms) and rules are the sames as those of LDT,
along with the two _ inferences, _-l and _-r, of LK as described on page 6.

For α a 0-1-truth assignment, the semantics of NDT formulas is defined extending the
definition of the semantics of DT formulas, in equations 1, to include

αpA_Bq “

#

1 if αpAq “ 1 or αpBq “ 1
0 otherwise.

It is straightforward to verify that LNDT is sound and complete for sequents of NDT formulas,
by a similar argument to that of Remark 5.

4.1 LDT and tree-like LNDT are equivalent
Next we turn to the relative complexity of LDT and LNDT. Naturally the latter subsumes
the former, but this can be strengthened as follows:

I Theorem 17. Tree-LNDT is polynomially equivalent to LDT over DT-sequents.
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12:10 Proof Systems of Decision Trees and Branching Programs

We will soon see that this also refines the known polynomial equivalence between 1-LK and
Tree-2-LK (see [2, 3]), by virtue of Theorems 14 and 18.

Proof sketch. To show that Tree-LNDT polynomially simulates LDT we notice that lines
of an LDT proof (i.e. sequents of DT formulas) may be expressed as NDT formulas. From
here one may use an adaptation of a standard technique for showing that tree-like LK is
equivalent to dag-like LK, carefully managing the complexity of formulas occurring.

To show that LDT polynomially simulates Tree-LNDT, we first notice that each NDT
formula may be written as a disjunction of DT formulas (“normal form”), and further-
more that LNDT proofs may be written in a way that operates with only such formu-
las with only polynomial blowup. Now we convert a normal form Tree-LNDT proof π
of

Ž

Π1, . . . ,
Ž

Πk Ñ
Ž

Λ1, . . . ,
Ž

Λl to a (dag-like) LDT derivation π1 of the sequent
Ñ Λ1, . . . ,Λl from extra hypotheses tÑ Πiu

k
i“1. This is proved by induction on the struc-

ture of the proof tree and takes polynomial time. Now, when π derives a DT sequent, notice
that π1 is just a LDT proof of the same sequent. J

4.2 Equivalence of LNDT and 2-LK
A Boolean formula is depth two if it is depth one, or if it is a conjunction of clauses or a
disjunction of terms. 2-LK is the fragment of LK in which all formulas occurring are depth
two formulas. Tree-2-LK is the same system with the restriction that proofs are tree-like.

I Theorem 18. LNDT and 2-LK are polynomially equivalent. Tree-LNDT and Tree-2-LK
are polynomially equivalent.

This is not so surprising a result, since NDTs have equivalent expressive power to DNFs, so
depth two sequents may be written as NDT sequents and vice-versa.

Proof sketch. A (two-sided) 2-LK proof is simulated in LNDT by simply replacing every
DNF

Ž

i

Ź

~pi with the NDT
Ž

i Conjp~piq and locally repairing the proof using cuts against
proofs from Proposition 8. In the other direction we work with “normal form” LNDT proofs
(as in the proof of Theorem 17). From here the translation to DNFs is straightforward,
since DT formulas already have small DNFs, cf. Definition 10. Again, we use cuts against
proofs of the appropriate truth conditions. Both simulations map tree-like proofs to tree-like
proofs. J

5 Proof systems for branching programs

5.1 Formulas and proofs with extension variables
We now describe the systems eLDT and eLNDT which reason about deterministic and
nondeterministic branching programs respectively.3 Formulas can now include extension
variables, usually denoted by e1, e2, etc. It is important that the extension variables are
explicitly distinguished from the propositional variables we have thus far used.

The purpose of extension variables is to serve as abbreviations for more complex formulas.
Thus, proofs that use extension variables will be accompanied by a set of extension axioms
tei Ø Aiuiăn, where each formula Ai may use any literals p but is restricted to use only the
extension variables ej for j ă i. The intent is that ei is an abbreviation for the formula Ai.

3 These systems could equally well be called LBP and LNBP, using “BP” for “branching programs’.
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I Definition 19. Extended decision tree formulas (eDT formulas) are defined as follows:
(1) Any literal p is an eDT formula.
(2) Any extension variable e is an eDT formula.
(3) If A and B are eDT formulas and p is a literal, then pApBq is a DT formula.
In particular, a decision literal p in a formula ApB is not allowed to be an extension variable.
The intuition is that the extension variables may “name” nodes in a branching program.

I Definition 20. Extended nondeterministic decision tree formulas (eNDT formulas) are
defined by the closure conditions (1)-(3) above (replacing “eDT” by “eNDT”) and:
(4) If A and B are eNDT formulas, then pA_Bq is an eNDT formula.

A set of extension axioms is a set A “ tei Ø Aiuiăn where e0, . . . , en´1 are extension
variables such that the only extension variables appearing in Ai are e0, . . . , ei´1, for i ă n.
We identify A with the set of sequents consisting of ei ÑAi and Ai Ñ ei, for i ă n. eDT and
eNDT formulas have truth semantics only relative to a set of extension axioms tei Ø Aiuiăn.
Namely, for α a truth assignment, the definition of truth is extended by setting αpeiq “ αpAiq.

I Definition 21. An eLDT proof is a pair pπ,Aq where A “ tei Ø Aiuiăn is a set of
extension axioms where each Ai is an eDT formula, and π is an LDT derivation which is
allowed to use initial sequents from A. eLNDT proofs are defined similarly, but with eLNDT
formulas Ai and eLNDT derivations.

Note that all formulas in an eLDT or eLNDT proof are based on a single set of extension
axioms tei Ø Aiuiăn.

Let us discuss how the extended formulas we have introduced may be used to represent
bona fide branching programs. A (deterministic) branching program is a directed acyclic
graph G such that (a) G has a unique source node, (b) sink nodes in G are labelled with
either 0 or 1, (c) all other nodes are labelled with a literal p and have two outgoing edges,
one labelled 0 and the other 1. G can be converted into an equivalent eDT formula with
associated extension axioms tei Ø Aiuiăn by introducing an extension variable for every
internal node in G. Conversely, as is described in more detail in Section 5.2, any eDT
formula A with extension axioms tei Ø Aiuiăn can be straightforwardly transformed into a
linear size deterministic branching program. For this, the nodes in the branching program
correspond to the extension variables ei and the subformulas of the formulas Ai.

Nondeterministic branching programs are defined similarly to deterministic branching
programs, but further allowing the internal nodes of G to be labelled with “_” as well as
literals (in this case the labelling of its outgoing edges is omitted). The semantics is that an
_-node is accepting provided at least one of its children is accepting. It is straightforward
to convert a nondeterministic branching program into an eLNDT formula with associated
extension axioms, and vice versa. A similar construction yields the folklore fact that “extended
Boolean formulas” are as expressive as Boolean circuits.

I Example 22. Consider the (deterministic) branching program G in Figure 2, on the left,
which returns 1 just if at least two out of the four input variables w, x, y, z are 1. Edges
labelled with 0 are here dotted (and always left outgoing) while edges labelled 1 are here
solid (and always right outgoing). In this particular case, the branching program is ordered
(or an OBDD), i.e. variables occur in the same relative order on each path from the source
to a sink. The program also happens to compute a monotone Boolean function.

To represent G in eLDT, we introduce extension variables for each internal node of the
program as follows. Write eij for the jth node of the ith layer, with i, j ranging from 0
onward, and introduce the extension axioms in Figure 2, on the right.4 Now G is represented

4 Formally, we are writing 0 and 1 as shorthand for ppp̄ and p̄pp respectively, for some/any literal p.
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w

x x

y y 1

0 z 1

0 1
e10 Ø e20xe21

e11 Ø e21x1
e20 Ø 0ye31

e21 Ø e31y1
e31 Ø 0z1

Figure 2 A branching program G, on the left, computing the 2-out-of-4 threshold function and
an encoding of its (internal) local conditions by extension variables, on the right. Dotted edges are
labelled 0 and solid edges are labelled 1. G is equivalent to the eDT formula e10we11.

by the eDT formula e10we11. Notice that the orderedness of the program is reflected in its
eLDT representation: writing px0, x1, x2, x3q for pw, x, y, zq, we have that xi is the root of
the formula that any eij abbreviates.

Other representations of G are possible, for instance by renaming the extension variables
or by partially unwinding the graph. In both these two latter cases, the eDT representation
obtained will be provably equivalent to the one above, by polynomial-size proofs in eLDT,
by virtue of Lemma 28 later.

5.2 Foundational issues and Boolean combinations
The fact that extension variables cannot be used as decision literals is a significant limitation
on the expressiveness of DT formulas. Recall for instance that the conjunction of p1 and p2
can be expressed with the DT formula Conjpp1, p2q, namely pp1p1p2q. However, it is not
permitted to form pe1e1e2q; in fact, it is not possible to express the conjunction e1 ^ e2
without taking the extension axioms defining e1 and e2 into account. If we could write
the conjunction of e1 and e2 by a generic formula Ape1, e1q, then we could introduce a
new extension variable representing Ape1, e2q. This would imply that eDT formulas are
as expressive as extended Boolean formulas; in other words, that deterministic branching
programs would be as expressive as Boolean circuits. This is a non-uniform analogue of
L “ P (i.e., log-space equals polynomial time) and, of course, is an open question.

Nonetheless, for any given extension variables e and e1, there is a formula Andpe, e1q
expressing the conjunction of e and e1 by changing the underlying set of extension axioms.
The intuition is that we start with the branching program G for e, but now with sink nodes
labelled with 0 or 1 instead of with variables. To form the branching program for e^ e1, we
take (an isomorphic copy) of the branching program G1 for e1, and modify G by replacing
each sink node labelled with 1 with the source node of G1 (in other words, each edge directed
into a sink “1” is modified to instead point to the root of G1). Since we do not actually have
0 and 1 in the language, we work modulo their encodings by literals:

I Definition 23. Let C be an eDT or eNDT formula. Cr0{Bs is the formula obtained by
replacing (in parallel) each occurrence of a literal p as a leaf in C with the formula pB ppq.
Similarly, Cr1{Bs is the formula obtained by replacing each occurrence of a literal p as a leaf
in C with the formula pp pBq.

The point of Cr0{Bs is that pB ppq evaluates to 1 if p is true, and to B otherwise. Thus,
the intent is that Cr0{Bs is equivalent C _B. Likewise, we want Cr1{Bs to be equivalent
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C ^B. However, these equivalences hold only if the substitutions are applied not just in C
but instead throughout the definitions of the extension axioms used in C. This is done with
the following definition.

I Definition 24. Let A be a set of extension axioms tei Ø Aiuiăn. Another set of extension
axioms Ar1{Bs is defined as follows. First, let te1iui be a set of new extension variables. Define
Air~e

1{~es to be the result of replacing each ej in Ai with e1j . Let A1i be pAir~e
1{~esqr1{Bs. Then

Ar1{Bs is the set of extension axioms te1i Ø A1iuiănYA. The set Ar0{Bs is defined similarly:
letting ~e 2 be another set of new extension variables, defining A2i to be pAir~e

2{~esqr0{Bs, and
letting Ar0{Bs be the set of extension axioms te2i Ø A2i uiăn YA.

Finally, if A and B are eDT or eNDT formulas defined using extension axioms A, then
AndpA,Bq is by definition Ar1{Bs relative to the extension axioms Ar1{Bs. The formula
OrpA,Bq for disjunction is defined similarly, namely, it is equal to Ar0{Bs relative to the
extension axioms Ar0{Bs.

Note the two formulas AndpA,Bq and OrpA,Bq introduced different sets of new extension
variables, so we may use both AndpA,Bq and OrpA,Bq without any clashes between
extension variables. More generally, we adopt the convention that the new extension variables
are uniquely determined by the Boolean combination being constructed. For instance, e1i
could have instead been designated ei,pA^Bq. When measuring proof size, we also need
to count the sizes of the subscripts on the extension variables. This clearly however only
increases proof size polynomially.

There are two other sources of growth of size in forming AndpA,Bq and OrpA,Bq. The
first is that formula sizes increase since copies of B is substituted in at many places in A and
A: this potentially gives a quadratic blowup in proof size. We avoid this quadratic blowup
in proof size, by always taking B to be a single variable (namely, an extension variable).
The construction of AndpA,Bq or OrpA,Bq also introduces many new extension variables,
namely it potentially doubles the number of variables. To control this, we will ensure that
the constructions of Andp¨, ¨q and Orp¨, ¨q are nested only logarithmically.

I Example 25. Consider the formula Andpp1,Andpp2, p3qq, which is a translation of the
Boolean formula p1 ^ pp2 ^ p3q to a DT formula. To form Andpp2, p3q, start with pp2p21q
and substitute p3 for “1”, to obtain pp2p2p3q. Then Andpp1,Andpp2, p3qq is obtained by
forming pp1p11q and replacing “1” with Andpp2, p3q to obtain pp1p1pp2p2p3q. It is also the
same as Conjpp1, p2, p3q. A similar construction shows that Orpp1,Orpp2, p3q is equal to
ppp3p2p2qp1p1q. This is a translation of the Boolean formula p1 _ pp2 _ p3q to a DT formula,
and is equal to Disjpp1, p2, p3q.

I Example 26. Let A be the formula pp1p2pe1p3e2qq and B be the formula pq1q2e2q in the
context of the extension axioms A

e1 Ø pr1r2e2q e2 Ø ps1s2s3q, (8)

where pi, qi, ri, si are literals. The formula Ar0{Bs is formed as follows. First Ap~e 1{~eq is
e11 Ø pr1r2e

1
2q, e12 Ø ps1s2s3q. Then Ar0{Bs contains the extension axioms of A as shown

in (8) plus the extension axioms e11 Ø ppBr1r1qr2e
1
2q, e12 Ø ppB s1 s1qs2pBs3s3qq. Finally,

Ar0{Bs is the DT formula ppBp1p1qp2pe
1
1pe

1
2qq, namely, pppq1q2e2qp1p1qp2pe

1
1pe

1
2qq, relative

to the four extension axioms in Ar0{Bs.

5.3 Truth conditions and renaming of extension variables
We show that, despite the delicate renaming of variables required for notions such as Ar0{Bs
and AndpA,Bq, for DT (respectively eNDT) formulas A,B, we may nonetheless realise their
basic truth conditions by small eLDT (respectively eLNDT) proofs:
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I Lemma 27. Let A and B be eDT formulas (respectively, eNDT formulas) relative to
extensions axioms A. Then, the sequents (a)-(c) below have polynomial size, cut free eLDT
proofs (respectively, eLNDT proofs) relative to the extension axioms Ar0{Bs. The same holds
for the sequents (d)-(f) relative to Ar1{Bs.

(a) B ÑAr0{Bs
(b) AÑAr0{Bs

(c) Ar0{BsÑA,B

(d) Ar1{BsÑB

(e) Ar1{BsÑA

(f) A,B ÑAr1{Bs

Proof sketch. Parts (a)-(c) are proved by showing inductively that if C is a subformula of
Ar0{Bs or a subformula of any A1i in Ar0{Bs, then C ÑA,B and B ÑC and AÑC have
short eLDT (resp., eLNDT) proofs. The base cases are just the cases where C is is the form
pB ppq. The inductive cases are trivial. A similar argument proves cases (d)-(f). J

The proofs of Lemma 27 seem to be inherently dag-like, and we do not know if there are
polynomial-size Tree-eLDT proofs for those sequents.

As discussed above, we assume that the choice of new extension variables ~e 1 or ~e 2 depends
explicitly on what formula AndpA,Bq and OrpA,Bq is being formed. In other words, each
e1i or e2i is a variable ei,AndpA,Bq or ei,OrpA,Bq. In the proof of Theorem 29 later, this
means that the translations of distinct occurrences of the same Boolean formula use the
same extension variables. However, this is not strictly necessary, as eLDT can prove the
equivalence of formulas after renaming extension variables:

I Lemma 28. Suppose A is a DT formula w.r.t. extension axioms A “ tei Ø Aiui, and
that the extension variables ~f are distinct from the extension variables ~e. Let B equal Ar~f{~es
w.r.t. the extension axioms B “ tfi Ø Air~f{~esui. Then eLDT has a polynomial size, cut free
(dag-like) proofs of AÑB and B ÑA relative to the extension axioms AY B.

Lemma 28 has a straightforward proof that proceeds inductively through all subformulas of
the formulas Ai and A.

6 Simulations for eLDT, eLNDT and LK

We compare the systems eLDT and and eLNDT with LK, showing that they are all quasi-
polynomially related in terms of proof size, constituting the upper half of Figure 1.

6.1 eLDT polynomially simulates LK

The intuition for the next simulation is that the formulas in an LK proof are Boolean and
may be evaluated in log-space. Thus they may be expressed by polynomial-size eDT formulas
(under appropriate extension axioms).

I Theorem 29. eLDT (and so also eLNDT) polynomially simulates LK.

Proof sketch. We assume the given LK proof is written in balanced form, i.e. with only
Oplognq-depth Boolean formulas occurring. Once again we proceed by replacing each formula
occurrence by an eDT formula representing it, by virtue of the constructions of And and
Or from Definition 24. (We appeal to the logarithmic depth of Boolean formula occurrences
in order to control the complexity of this translation). From here we locally simulate each
step of the LK proof by cutting against the truth conditions from Lemma 27. J
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6.2 LK quasipolynomially simulates eLNDT

The intuition for the next simulation is that eNDT formulas define nondeterministic logspace
properties, and these are expressible with quasipolynomial size Boolean formulas.

I Theorem 30. LK quasipolynomially simulates eLNDT (and so also eLDT).

Proof sketch. We work from the observation that NL predicates have quasipolynomial-size
(in fact nOplog nq-size) Boolean formulas. Moreover, there is an evaluator for non-deterministic
branching programs with quasipolynomial-size Boolean formulas for st-connectivity in graphs,
whose basic properties were shown to have quasipolynomial-size LK proofs in [4]. Once the
basic truth conditions of this evaluator are given appropriate LK proofs, we may proceed by
duly replacing every eNDT formula occurrence in an eLNDT proof π by the corresponding
Boolean formula evaluating the non-deterministic branching program it represents. We cut
against proofs of the truth conditions to locally simulate each step of π. J

7 Conclusions

We presented sequent-style systems LDT, LNDT, eLDT and eLNDT that manipulate decision
trees, nondeterministic decision trees, branching programs (via extension) and nondetermin-
istic Branching Programs (via extension) respectively. The systems eLDT and eLNDT serve
as natural systems for log-space and nondeterministic log-space reasoning, respectively. We
examined their relative proof complexity and also compared them to (low depth) Frege
systems (more precisely their representations in the sequent calculus LK).

We did not compare the proof complexity theoretic strength of our systems eLDT and
eLNDT with the systems GL˚ for L and GNL˚ for NL in [31, 32]. In future work we intend
to show that our systems correspond to the bounded arithmetic theories VL and VNL in the
usual way. Namely, proofs of Π1 formulas in VL translate to families of small eLDT proofs
of each instance, and, conversely, VL proves the soundness of eLDT. (Similarly for VNL
and eLNDT.) This would render our systems polynomially equivalent to GL˚ and GNL˚,
respectively, by the analogous results from [31, 32], though this remains work in progress.

Two natural open questions arise from this work.

I Question 31. Does Tree-1-LK polynomially simulate Tree-LDT, or is there a quasipoly-
nomial separation between the two?

I Question 32. Does Tree-eLDT polynomially simulate eLDT? Similarly for eLNDT.

While well-defined, the systems Tree-eLDT and Tree-eLNDT do not seem very robust, in
the sense that it is not immediate how to witness branching program isomorphisms with
short proofs. Nonetheless, it would be good to settle their proof complexity theoretic status.

There has been much recent work on the proof complexity of systems that may manipulate
OBDDs [24, 6, 20], branching programs where propositional variables must occur in the
same relative order on each path through the dag. In fact, we could also define an “OBDD
fragment” of eLDT by restricting lines to eDT formulas expressing OBDDs, as alluded to in
Example 22. It would be interesting to examine such systems from the point of view of proof
complexity in the future, in particular comparing them to existing OBDD systems.
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Abstract
We define a computational type theory combining the contentful equality structure of cartesian
cubical type theory with internal parametricity primitives. The combined theory supports both
univalence and its relational equivalent, which we call relativity. We demonstrate the use of the
theory by analyzing polymorphic functions between higher inductive types, and we give an account
of the identity extension lemma for internal parametricity.
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1 Introduction

Cubical type theory [17, 3, 2] is a recent extension of type theory with contentful equality (or
paths). The central concept of cubical type theory, inherited from homotopy type theory [30],
is that terms can be equal in multiple ways, each of which is a method of translating results
between them. The motivating example of contentful equality is structured isomorphism. In
informal mathematical practice, it is common to treat isomorphic objects as if they were
“the same,” because any interesting property of one will also hold of the other. Cubical type
theory makes this informal practice formal: equality of types is isomorphism, which is to say
that we have Voevodsky’s univalence axiom [32]. For this to be possible, it is essential that
equality be contentful, because two objects can be isomorphic in many ways. The key feature
of cubical type theory, in comparison with homotopy type theory, is that it is a programming
language, not just a logical formalism; in particular, uses of contentful equality compute.

A user of cubical type theory can also define types with custom equality structure using
higher inductive types (HITs) [18, 14]. A simultaneous generalization of inductive types and
quotient types, a HIT is freely generated by a collection of constructors, each of which may
introduce not only elements but also paths between elements. For example, the following
specification defines a type Z/2Z of integers modulo 2 from a type Z of integers.

data Z/2Z : U where
| in(n : Z) : Z/2Z
| mod(n : Z, x : I) : Z/2Z [x = 0 ↪→ in(n) | x = 1 ↪→ in(n+ 2)]

© Evan Cavallo and Robert Harper;
licensed under Creative Commons License CC-BY

28th EACSL Annual Conference on Computer Science Logic (CSL 2020).
Editors: Maribel Fernández and Anca Muscholl; Article No. 13; pp. 13:1–13:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-8174-7496
mailto:ecavallo@cs.cmu.edu
https://orcid.org/0000-0002-9400-2941
mailto:rwh@cs.cmu.edu
https://doi.org/10.4230/LIPIcs.CSL.2020.13
https://arxiv.org/abs/1901.00489
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


13:2 Internal Parametricity for Cubical Type Theory

This type has two constructors, in and mod. The first introduces an element of Z/2Z for each
element of Z, while the second identifies in(n) and in(n+ 2) for every n : Z. To construct a
function out of Z/2Z, we simply explain where to send in and mod, in direct analogy with the
induction principle of an ordinary inductive type. In addition to quotients, HITs permit the
definition of higher-dimensional objects, enabling the use of type theory as a domain-specific
language for formalizing homotopy-theoretic mathematics [30].

While contentful equality creates new possibilities, it also introduces new obligations. The
type of equalities between any pair of objects has its own equality structure, which means
that every type actually contains an infinite tower of structure: paths, paths between paths,
and so on. A user of HITs is often forced to wrestle with this higher-dimensional structure. A
particularly vicious example is provided by the smash product [30, §6.8], a key construction
in homotopy theory. The smash product is a binary operator − ∧− : U∗ → U∗ → U∗ on the
universe U∗ := (X : U) ×X of pointed types. Defined as a HIT (see Section 4.3), it is the
natural notion of tensor product for U∗, being left adjoint to the pointed function space. We
thus expect properties such as commutativity and associativity: for any X,Y, Z : U∗, we hope
that X ∧ Y ' Y ∧X and (X ∧ Y )∧Z ' X ∧ (Y ∧Z). However, these laws are not so simple
to prove. The associator, in particular, involves two stacked applications of ∧; this means the
programmer must wrangle with two-dimensional structure to define functions back and forth,
then three-dimensional structure to prove they are inverses. Worse yet, these are only the
first level of an infinite hierarchy of laws satisfied by ∧. For example, Mac Lane’s pentagon
relates the two different ways of re-associating the product of four types; to prove it requires
building four-dimensional terms. Despite concerted effort [31, 12], a complete formal proof
that the smash product is a symmetric monoidal product has yet to be produced.

For all the suffering, these properties seem “obvious” in a way familiar to computer
scientists: they look like consequences of parametricity [25]. Parametricity is Reynolds’
crystallization of a property enjoyed by many type theories: programs behave uniformly
in their type variables. Reynolds captures this uniformity in the existence of a relational
interpretation of type theory that expresses the invariance of type constructions under a broad
class of relations. With parametricity, it is often possible to derive what Wadler dubs “free
theorems” [33], naturality properties enjoyed by any term of a given type. In our case, we can
hope that there are only so many functions α : (X,Y, Z:U∗)→ (X ∧ Y ) ∧ Z → X ∧ (Y ∧ Z).
Perhaps any definable function of this type satisfies Mac Lane’s pentagon?

Contributions

We present a cubical type theory with internal parametricity, a further extension to type
theory introduced by Bernardy and Moulin [8, 9, 6, 21, 23, 22]. Just as cubical type
theory makes the fact that all constructions act on isomorphisms available to the user,
internally parametric type theory exposes that all constructions act on relations, providing
an operational account of Reynolds’s denotational presentation of parametricity. In fact, the
two are based on the same design principle: the use of dimension variables.

Our contribution can be viewed in two ways. On the one hand, we bring parametricity
to bear on problems in cubical type theory, giving in particular a characterization of maps
between smash products. On the other, we provide an internally parametric theory that
enjoys the extensionality principles of cubical type theory. A lack of function extensionality,
for one, is acutely visible when working with Church encodings. By relying on univalence, we
are able to eliminate the technical device of I-sets used by Bernardy, Coquand, and Moulin
in their presheaf model [6]. We also explore the use of internal parametricity beyond the
initial forays of Bernardy et al., internally developing the sub-universe of bridge-discrete
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types (which is closed under all type formers except the universe) as a substitute for the
traditional identity extension lemma. This is a departure from previous approaches [4, 23]
where the goal is typically to externally restrict the universe to bridge-discrete types from
the start. We also show by example that the relational interpretations of inductive types can
be characterized. Finally, we use this paper as an opportunity to compare and contrast the
mechanisms underlying cubical and parametric type theory.

We begin in Section 2 by introducing cubical type theory. In Section 3, we mix in the
parametricity primitives. With the theory complete, we make use of it in Section 4, proving
results about the smash product and probing the status of the identity extension lemma.
In Section 5, we go into more detail on the meaning of the judgments and canonicity. In
Section 6, we briefly sketch a presheaf model. We close in Section 7 with a discussion of
related work. Complete proofs of our results, and in particular a detailed development of the
computational interpretation, can be found in our companion technical report [15].

2 Cubical type theory

Cubical type theory, in its various incarnations, is a means of organizing the data of a
type equipped with path structure. Homotopy theory suggests various ways of doing this;
empirically, cubical structure is most convenient for the design of type theories, because
n-dimensional elements of a type can be represented by terms in a context of n dimension
variables. In this section, we recall cartesian cubical type theory [3, 2]; however, one can
substitute another cubical type theory (e.g., [17, 24]) in the remainder of this paper without
difficulty.

2.1 Path dimensions
Like ordinary type theory, cubical type theory is based on four judgment forms, expressing
typehood, type equality, elementhood, and element equality.

Γ� A type Γ� A = B type Γ�M ∈ A Γ�M = N ∈ A

For us, these judgments are behavioral specifications on terms of an untyped programming
language. Roughly, a program A is a type when, for any instantiation of its hypotheses,
it computes to a name in some prescribed set of value types, while M is in A when its
instantiations compute to values in the type named by A. Types and elements are equal
when they compute to the same values, where value equality is again prescribed in advance.
We use the notation � for the behavioral counterpart of the formal `. To more quickly give
the reader a feel for the system, however, we will defer precise definitions of the judgments
to Section 5, and instead first present a collection of rules they satisfy.

Cubical type theory is distinguished by the addition of path dimensions, for which we
write r, s. These are specified by judgments Γ� r pdim and Γ� r = s pdim and populated
by variables and two distinguished constants.

Γ, x : I,Γ′ � x pdim Γ� 0 pdim Γ� 1 pdim

In the context we write dimension variable assumptions in the form x : I, but this is merely
suggestive notation: “I” is not the name of a type. We also allow dimension equality
assumptions. (Note that dimension equality is decidable.)

CSL 2020
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Γ, x : I� A type Γ�M0 ∈ A〈0/x〉 Γ�M1 ∈ A〈1/x〉
Γ� Pathx.A(M0,M1) type

Γ, x : I� P ∈ A Γ� P 〈0/x〉 = M0 ∈ A〈0/x〉 Γ� P 〈1/x〉 = M1 ∈ A〈1/x〉
Γ� λIx.P ∈ Pathx.A(M0,M1)

Γ� Q ∈ Pathx.A(M0,M1) Γ� r pdim
Γ� Q@r ∈ A〈r/x〉

Γ, x : I� P ∈ A
Γ� (λIx.P )@r = P 〈r/x〉 ∈ A〈r/x〉

Γ� Q ∈ Pathx.A(M0,M1) ε ∈ {0, 1}
Γ� Q@ε = Mε ∈ A〈ε/x〉

Γ� Q ∈ Pathx.A(M0,M1)
Γ� Q = λIx.Q@x ∈ Pathx.A(M0,M1)

Figure 1 Rules for Path-types.

· ctx
Γ ctx Γ� A type

Γ, a : A ctx
Γ ctx

Γ, x : I ctx
Γ ctx Γ� r pdim Γ� s pdim

Γ, r = s ctx

A path dimension variable can be pictured as varying in the real unit interval [0, 1]: as x
varies in a term x : I�M ∈ A, the term M draws out a “line” in A. The line’s “endpoints”
are obtained by substituting 0 and 1 for x: writing −〈r/x〉 for path dimension substitution,
we have M〈0/x〉 ∈ A〈0/x〉 and M〈1/x〉 ∈ A〈1/x〉. Path dimension variables support all of
the structural rules (weakening, contraction, and exchange) enjoyed by ordinary variables.
In contrast to ordinary variables, however, there is more to M than its closed instantiations
M〈0/x〉 and M〈1/x〉: there can be many distinct terms with the same endpoints.

Path dimensions provide a judgmental notion of contentful equality: a path between
M0 ∈ A and M1 ∈ A is a term x : I � P ∈ A such that P 〈0/x〉 = M0 and P 〈1/x〉 = M1.
The judgmental notion is then internalized via Path-types, shown in Figure 1. Aside from the
indices M0 and M1, they behave as “functions out of I”: they are introduced by abstraction,
eliminated by application, and satisfy β- and η-rules. In general, Path-types are heterogeneous,
meaning that they are dependent functions: they take the form Pathx.A(M0,M1) where
x : I� A type, and applying Q ∈ Pathx.A(M0,M1) at r yields Q@r ∈ A〈r/x〉. When A does
not depend on x, we simply write PathA(M0,M1).

Using just these few principles of cubical type theory, we can already observe that path
types validate function extensionality. Given F0, F1 ∈ (a:A)→ B, a pointwise path between
them is a term H ∈ (a:A)→ PathB(F0a, F1a). Given such an H, we obtain a path between
F0 and F1 by simply flipping the order of abstraction: λIx.λa.Ha@x ∈ Path(a:A)→B(F0, F1).

2.2 Coercion and composition

The path apparatus equips each type with some kind of infinite-dimensional relation. It is
reflexive: given any M ∈ A, we have λI .M ∈ PathA(M,M). However, there is as yet no
reason for it to be symmetric or transitive, nor for all constructions to respect it. These
properties are ensured by adding two operations: coercion and composition.
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The coercion operation turns paths between types into isomorphisms,1 implementing one
direction of the correspondence required by the univalence axiom. Given a line x.A and an
element M ∈ A〈r/x〉 at some index r, coercion produces an element at any other index s.

Γ, x : I� A type Γ� r, s pdim Γ�M ∈ A〈r/x〉
Γ� coer sx.A (M) ∈ A〈s/x〉

We moreover impose the equation coer rx.A (M) = M ∈ A〈r/x〉. From this, one can show that
λa.coer sx.A (a) ∈ A〈r/x〉 → A〈s/x〉 is in fact an isomorphism. Using coercion, we can see that
all constructions respect paths, in the following sense: if we have some property B ∈ A→ U ,
a proof N ∈ BM0 that B holds of some M0 ∈ A0, and a path Q ∈ PathA(M0,M1), we get
a proof coe0 1

x.B(Q@x)(N) ∈ BM1 that B holds of M1. This fact can be used to invert and
compose paths, establishing that path equality is symmetric and transitive.

While coercion gives us all we need of equality, it is not a strong enough “induction
hypothesis.” Operationally, the evaluation of a coercion term is guided by the outermost
constructor of type line. To explain the reduction of coercion for Path-types, a second
operation, (homogeneous) composition, is required to obtain a term with the correct endpoints.
As the purpose of this operation is essentially technical, however, we defer to [3, 2] for details.

2.3 Paths in the universe: V-types and univalence
Coercion converts paths of types into isomorphisms, but we still need a way to convert
isomorphisms into paths. This is accomplished by a new type former: Glue-types in [17, 2],
V-types in [3], and G-types in [11]. We use V-types, a sufficient special case of Glue-types.

The V constructor does not, strictly speaking, convert an isomorphism into a path.
Rather, it takes an isomorphism and a path as input, and produces a second path that is the
concatenation of the two inputs. Precisely, it takes a dimension r pdim, some r = 0� A type
defined at its 0 endpoint, some B type, and an isomorphism r = 0 � E ∈ A ' B. These
inputs form a V-shape, hence the name.

A

B0 B1
r →

E
Vr(A,B,E)

B

The output is a type Vr(A,B,E) satisfying the equations r = 0 � Vr(A,B,E) = A type
and r = 1� Vr(A,B,E) = B type.

To transform an isomorphism E ∈ A ' B of types A,B ∈ U into a path, we simply take
λIx.Vx(A,B,E) ∈ PathU (A,B). This is the special case of the V-type where B is constant
in the direction of the output (here x).

2.4 Higher inductive types
As described in the introduction, cubical type theory also supports higher inductive types,
types generated by constructors that may take dimension arguments and be attached at
their boundaries to other elements. We refer to [18, 14] for formal treatments of HITs in
cubical type theory; for this paper, we will only need an intuitive understanding.

1 For us, an isomorphism is a function with a left and right inverse up to path equality. That is, we define
A ' B to be the following type.

(f : A→ B)× (l : B → A)× (r : B → A)× ((a:A)→ PathA(l(fa), a))× ((b:B)→ PathB(f(rb), b))
These are often called equivalences in the literature, and have several equivalent definitions [30, §4].
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3 Internalizing parametricity

We now add internal parametricity primitives, closely following Bernardy, Coquand, and
Moulin [6]. (Our notation, however, differs substantially from theirs; see [15, Figure 7] for a
translation dictionary.) Reynolds’ parametricity captures the vague concept of “uniformity in
type variables” by the precise concept of acting on relations. To say that all constructions act
on relations is essentially to say that type theory has a relational semantics. With internal
parametricity, we make that semantics visible inside the theory.

With cubical type theory, the goal was to ensure that all constructions act on isomorphisms;
the solution was to equip each type with equality structure via dimension variables, then to
identify lines between types with isomorphisms. For internal parametricity, we ensure that
constructions act on relations with the same technique, but now identifying lines between
types with type-valued relations. Where we use the word path in cubical type theory, we will
use bridge in parametric type theory, following Nuyts et al. [23].

3.1 Bridge dimensions
Second verse, same as the first: we introduce bridge dimensions r, s, . . . by judgments
Γ� r bdim and Γ� r = s bdim with two constants Γ� 0, 1 bdim. We use bold type to
distinguish bridge from path dimensions. We likewise add bridge dimension and equality
assumptions – but this time, only equations where one side is a constant.

Γ ctx
Γ,x : 2 ctx

Γ ctx Γ� r bdim ε ∈ {0,1}
Γ, r = ε ctx

The distinguishing feature of bridge dimensions is that they are substructural, specifically
affine: they do not support contraction. For Γ ctx and (x : 2) ∈ Γ, write Γ\x for the result
of deleting x and all term variables that occur beyond it from the context.2

(Γ, y : I)\x := (Γ\x, y : I) (Γ, a : A)\x := Γ\x (Γ,y : 2)\x :=
{

Γ if x = y

(Γ\x,y : 2) if x 6= y

Set Γ\ε = Γ. We then have the following structural rules for bridge dimension variables.

Γ,x : 2,Γ′ � x bdim
BHyp

ΓΓ′ � J
Γ,x : 2,Γ′ � J

BWeak

Γ� r bdim Γ\r,x : 2� Γ′ ctx Γ\r,x : 2,Γ′ � J
Γ(Γ′〈r/x〉)� J 〈r/x〉

BCut

The first two rules are unsurprising, but the third contains an essential restriction. To
substitute r for x in a judgment Γ,x : 2,Γ′ � J , we must know that neither Γ′ or J refers
to r (if it is a variable). In other words, r must be fresh for Γ′ and J .

The Bezem-Coquand-Huber (BCH) cubical sets model [10, 11] also uses affine dimension
variables, but recent work on cubical type theories has focused on structural variables.
The primary motivation for the shift is to support HITs, whose development remains an
open problem in the affine setting; ease of implementation is another factor. For internal

2 Here we follow the approach developed by Cheney for nominal dependent type theory [16].
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Γ� r bdim Γ\r,x : 2� A type Γ\r,x : 2, a : A� B type Γ�M ∈ A〈r/x〉
Γ\r, a0 : A〈0/x〉� N0 ∈ B〈0/x〉[a0/a] Γ\r, a1 : A〈1/x〉� N1 ∈ B〈1/x〉[a1/a]
Γ\r, a0 : A〈0/x〉, a1 : A〈1/x〉, a : Bridgex.A(a0, a1)� N ∈ Bridgex.B[a@x/a](N0, N1)

Γ� extentr(M ; a0.N0, a1.N1, a0.a1.a.N) ∈ B〈r/x〉[M/a]

extentε(M ; · · · ) = Nε[M/aε] ∈ B〈ε/x〉[M/a]

Γ\r,x : 2�M ∈ A
Γ� extentr(M〈r/x〉; · · · ) = N [M〈0/x〉/a0][M〈1/x〉/a1][λ2x.M/a]@r ∈ B〈r/x〉[M/a]

Figure 2 The extent operator. We omit straightforwardly inferrable premises for readability.

parametricity, however, affine dimensions are essential to ensure the correct characterization
of bridges in function types (Section 3.2) and in the universe (Section 3.3).

As with paths, we introduce types Bridgex.A(M0,M1) of bridges over x.A from M0 to
M1. We write λ2x.P for the values of these types. In accordance with the judgmental
structure, a bridge can only be applied to a fresh variable: if Γ\r � Q ∈ Bridgex.A(M0,M1),
then Γ � Q@r ∈ A〈r/x〉. Otherwise, they are exactly like path types; see [15, §8.3] for
rules. We now have one direction of our desired correspondence between bridges of types and
binary relations: for any x.A, we have the relation Bridgex.A(−,−) on A〈0/x〉 and A〈1/x〉.

3.2 Bridges at function type: extent
In the standard relational interpretation of type theory [7, 4], two functions are related when
they take related arguments to related results. As such, we expect Bridgex.(a:A)→B(F0, F1)
to be isomorphic to the following.

(a0:A〈0/x〉)(a1:A〈1/x〉)(q:Bridgex.A(a0, a1))→ Bridgex.B[q@x/a](F0a0, F1a1) (1)

Although it is simple to define a map from Bridgex.(a:A)→B(F0, F1) to the type (1), the con-
verse is more delicate. In fact, the first role of substructurality is in enabling this principle. As
we have seen, structural dimensions give rise to a different principle: Pathx.(a:A)→B(F0, F1) '
(a:A) → Pathx.B(F0a, F1a) when A does not depend on x. The proof, sketched in Sec-
tion 2.1, uses the interchangeability of terms λa.λIx.P and λIx.λa.P . However, λa.λ2x.P

and λ2x.λa.P are not interchangeable: in the former, x ranges over dimensions that are
fresh for a, whereas no such restriction is in play in the latter. Conversely, structural
dimensions would not allow us to prove that the map from Bridgex.(a:A)→B(F0, F1) to (1)
is an isomorphism, as having both principles at once would lead to a contradiction (in the
presence of Gel-types, defined below). The two principles are both derivable for paths, but
only thanks to the presence of coercion – an operation with no equivalent for bridges.

To see how we can get from (1) to Bridgex.(a:A)→B(F0, F1) with affine dimensions, let H in
(1) be given. Abstracting x and a, our goal is to exhibit a term in B that is equal to F0a when
x = 0 and F1a when x = 1. Recall that a, being abstracted when x is in scope, ranges over
terms that may mention x. We would like, then, to think of a as a bridge in direction x, and to
supply that bridge to H. In syntax, we would like to write “H(a〈0/x〉)(a〈1/x〉)(λ2x.a)@x”.
This does not quite make sense: a is a variable, so a〈0/x〉 = a.

We instead introduce an operator, extentr(M ; a0.N0, a1.N1, a0.a1.a.N), that performs
the substitutions and capture once a (now M) is instantiated. This operator satisfies the
rules shown in Figure 2; we call it extent because it reveals the extent of the term M as a
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Γ� r bdim Γ\r � A type Γ\r � B type Γ\r, a : A, b : B � R type
Γ� Gelr(A,B, a.b.R) type

Γ\r �M ∈ A Γ\r � N ∈ B Γ\r � P ∈ R[M,N/a, b]
Γ� gelr(M,N,P ) ∈ Gelr(A,B,R)

Γ,x : 2� Q ∈ Gelx(A,B,E)
Γ� ungel(x.Q) ∈ R[Q〈0/x〉, Q〈1/x〉/a, b]

Gel0(A,B, a.b.R) = A Gel1(A,B, a.b.R) = B gel0(M,N,P ) = M : A

gel1(M,N,P ) = N : B ungel(x.gelx(M,N,P )) = P : R[M,N/a, b]

Q〈r/x〉 = gelr(Q〈0/x〉, Q〈1/x〉,x.Q) : Gelr(A,B, a.b.R)

Figure 3 Rules for Gel-types.

line in direction r. There are three cases: either r is 0 or 1, in which case M is simply a
point, or r is a variable x, in which case M is a bridge in direction x. The operator takes
an argument for each case, here N0, N1, and N . The last of these takes as input endpoints
a0, a1 and a bridge a between them and produces a bridge between N0 and N1; when extentx

executes, it supplies M〈0/x〉, M〈1/x〉, and λ2x.M to N and outputs its value at x.
Substructurality is essential to extent because of its use of variable capture: the mapping

λ2 : (x,M)  λ2x.M is not stable under all dimension substitutions. If M = M ′(x,y),
for example, then applying λ2 after substituting 〈y/x〉 results in λ2y.M ′(y,y), while
applying λ2 before substituting 〈y/x〉 results in the inequivalent λ2x.M ′(x,y). However,
variable capture does commute with substitution of fresh variables. Returning to the original
motivation, extent is exactly what is needed to get from (1) to Bridgex.(a:A)→B(F0, F1).

H  λ2x.λa.extentx(a; a0.F0a0, a1.F1a1, a0.a1.a.Ha0a1a) : Bridgex.(a:A)→B(F0, F1)

It is straightforward to show that this map is in fact an isomorphism [15, Theorem 6.9].

3.3 Bridges in the universe: Gel-types and relativity
The final ingredient is the equivalent of univalence: a characterization of bridges in the
universe as binary type-valued relations. We call this property relativity.

I Definition 1. A universe U is relativistic when for every pair of types A,B : U , the map
λC.Bridgex.C@x(−,−) ∈ BridgeU (A,B)→ (A×B → U) is an isomorphism.

As in cubical type theory, we implement the inverse map with a new type constructor:
Gel, so named because it resembles the G-types of the BCH model but applies to relations
rather than isomorphisms. Rules for Gel-types – omitting those for coercion and composition
– are displayed in Figure 3. In stark contrast to V- or Glue-types, coercion and composition
in Gel-types are simple; this is because the direction of a coercion or composition is always a
path dimension and therefore orthogonal to the direction of the Gel-type.

Given a dimension r and a relation Γ\r, a : A, b : B � R type for which r is fresh, we
obtain a type Gelr(A,B, a.b.R) satisfy Gel0(A,B, a.b.R) = A and Gel1(A,B, a.b.R) = B.
Its values take the form gelr(M,N,P ) where M ∈ A, N ∈ B, and P is a proof the
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two are related by R; we have gel0(M,N,P ) = M ∈ A and gel1(M,N,P ) = N ∈ B.
Given a bridge Γ,x : 2 � Q ∈ Gelx(A,B, a.b.R) over a Gel-type, we can project the proof
ungel(x.Q) : R[Q〈0/x〉, Q〈1/x〉/a, b] that its endpoints – elements of A and B respectively
– are related by R. When we have A,B ∈ U and R ∈ A×B → U , we write Gelr(A,B,R) as
shorthand for Gelr(A,B, a.b.R〈a, b〉).

Whereas V-types concatenate an isomorphism and a path to produce a path, Gel-types
directly convert relations to bridges. That this is possible is a consequence of substructurality.
The constructor Gelx performs a dimension shift: it takes A, B, and R in some context Γ,
and it produces a type in context Γ,x : 2. To express a typing rule for Gel, we must be able
to specify that x is fresh for A,B,R. By contrast, Vx takes a type in context Γ,x with an
isomorphism at one end and produces a type in context Γ,x; there is no dimension shift.

Moreover, a V-like type would be insufficient for internal parametricity. In cubical type
theory, we can turn E : A ' B into a path by attaching it to the constant path λI .B, which
corresponds to the identity equivalence at B. For bridges, however, this might not give the
desired result: the constant bridge λ2 .B corresponds to the relation BridgeB(−,−), which
may be distinct from the identity relation PathB(−,−). In particular, they fail to coincide
when B is a universe: we have BridgeU (A,B) ' (A×B → U) 6' (A ' B) ' PathU (A,B).

I Theorem 2. Any universe U closed under Gel types is relativistic.

Sketch. Given a : A and b : B, the gel and ungel operators constitute an isomorphism between
R〈a, b〉 and Bridgex.Gelx(A,B,R)(a, b) by virtue of their β- and η-rules. By univalence, this
gives a path in U between the two. By function extensionality, then, we have a path from R to
Bridgex.Gelx(A,B,R)(−,−). Thus λR.Gelx(A,B,R) is a left inverse to λC.Bridgex.C@x(−,−),
getting us halfway to a proof that U is relativistic.

For the right inverse, we need a path from λ2x.Gelx(A,B,Bridgex.C@x(−,−)) to C

for C : BridgeU (A,B). We use the fact that bridges between paths correspond to paths
between bridges, a correspondence implemented by swapping binders [15, Theorem 6.2]. It
thus suffices to exhibit a bridge over x.PathU (Gelx(A,B,Bridgex.C@x(−,−)), C@x) between
λI .A and λI .B. Next, we apply univalence, reducing the goal to constructing a bridge over
x.Gelx(A,B,Bridgex.C@x(−,−)) ' C@x between the identity equivalences on A and B.

Finally, we can show, using the characterization of bridges at function type, that bridges
at an isomorphism type correspond to isomorphisms between bridges in the source and target
types [15, Corollary 6.10]. That is, it is enough to show that for every a : A and b : B, we
have an isomorphism between Bridgex.Gelx(A,B,Bridgex.C@x(−,−))(a, b) and Bridgex.C@x(a, b).
This is a special case of the inverse condition already proven. J

4 The practice of internal parametricity

We have completed a formulation of internally parametric cubical type theory. Now, we will
use it. As a warm-up, we prove that bool is isomorphic to its Church encoding. Then we
move on to novel results: a characterization of bridges in bool, the definition and applications
of bridge-discrete types, and finally, a characterization of maps between smash products.

4.1 The basics: booleans
A classic application of parametricity is the characterization of Church encodings, definitions
of inductive types by their universal properties. Our universes are predicative, so Church
encodings likely cannot be used to obtain data types ex nihilo. If we know that a data type
exists, however, we can show that it is isomorphic to its Church encoding.
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I Theorem 3. The type B := (X:U)→ X → X → X is isomorphic to bool.

Proof. It is easy to exhibit functions in either direction.

λb.(λX.λt.λf.ifX(b; t, f)) ∈ bool→ B λg.g(bool)(true)(false) ∈ B → bool

One inverse condition is immediate. For the other, we must construct a path from
λX.λt.λf.ifX(g(bool)(true)(false); t, f) to g for all g : B. Applying function extensional-
ity, we assume X : U and t, f : X and aim to connect ifX(g(bool)(true)(false); t, f) to
gXtf .

Intuitively, we want to say that g is natural in its type argument; specifically, with respect
to the map ifX(−; t, f) : bool→ X. Accordingly, we define the relation given by the graph
of this map: R : bool × X → U given by R〈b, a〉 := PathX(ifX(b; t, f), a). To obtain the
relational interpretation of g at R, we introduce a dimension x and apply g at its Gel-type.

g(Gelx(bool, X,R)) ∈ Gelx(bool, X,R)→ Gelx(bool, X,R)→ Gelx(bool, X,R)

Next, we apply this to the related pairs (true, t) and (false, f), in the form of gelx terms.

g(Gelx(bool, X,R))(gelx(true, t, λI .t))(gelx(false, f, λI .f)) ∈ Gelx(bool, X,R)

Call this term W . If we substitute 0 for x in W , each Gel or gel term steps to its first
argument; thus W 〈0/x〉 = g(bool)(true)(false). Likewise, W 〈1/x〉 = gXtf . The term
ungel(x.W ) is then a proof that these are related by R, which is precisely what we need. J

We can also characterize the bridges in bool. Intuitively, these are all trivial: bool’s only
elements are the zero-dimensional true and false. To show this, we use parametricity, an
interesting parallel with the use of univalence for characterizing paths in HITs.

I Theorem 4. For any b0, b1 : bool, we have Bridgebool(b0, b1) ' Pathbool(b0, b1).

Sketch. We will only construct the forward map; for a full proof, see [15, Theorem 11.5]. Let
q : Bridgebool(b0, b1). Given x, we have Px := Gelx(bool, bool,Pathbool(−,−)) corresponding
to the identity relation on bool, as well as a map Fx : bool→ Px defined as follows.

Fx := λb.ifPx(b; gelx(true, true, λI .true), gelx(false, false, λI .false))

Note that F0 = F1 = λb.ifbool(b; true, false). By applying F pointwise to q, we thus obtain
λ2x.Fx(q@x) ∈ Bridgex.Px

(ifbool(b0; true, false), ifbool(b1; true, false)). It is easy to show that
for any b : bool, there is a path from ifbool(b; true, false) to b; using coercion, we obtain some
T ∈ Bridgex.Px

(b0, b1). Applying ungel gives an element of Pathbool(b0, b1). J

The definition of the forward map uses parametricity; showing that it is an isomorphism
uses iterated parametricity, which is to say two-bridge-dimensional types. Just as a one-
dimensional bridge corresponds to a relation indexed by its boundary (the two endpoint
types), relativity and the characterization of bridges at function type suffice to show that
two-dimensional bridges satisfy the same characterization, the boundary now being given by
four types and four relations in a square shape.

4.2 Bridge-discrete types
The booleans are one example of a bridge-discrete type, a type with trivial bridge structure.
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I Definition 5. A type A is bridge-discrete when for all pairs a0, a1 : A, the canonical map
λp.coe0 1

x.BridgeA(a0,p@x)(λ2 .a0) ∈ PathA(a0, a1)→ BridgeA(a0, a1) is an isomorphism. We
write isBDisc(A) for the type of proofs that A is bridge-discrete.

To show that A is bridge-discrete, it suffices to exhibit any family of isomorphisms between
PathA and BridgeA [15, Corollary 10.7]. The type isBDisc(A) is a homotopy proposition [30,
§3.3]: all proofs of isBDisc(A) are equal up to a path.

Bridge-discrete types are worth identifying because they provide an analogue to the
identity extension lemma, a standard lemma in parametricity stating that the relational
interpretation of a closed type is its identity relation. This does not hold in our theory, in
the sense that a homogeneous bridge type BridgeA(M0,M1) is not necessarily isomorphic to
PathA(M0,M1) (take A = U). However, we can instead work by inserting bridge-discreteness
hypotheses where the lemma would be required. For example, in imitation of Abel et al. [1],
we can prove that path equality in a bridge-discrete type is isomorphic to Leibniz equality.

I Proposition 6 ([15, §11.2]). Let A be bridge-discrete. For any a0, a1 : A, PathA(a0, a1) is
isomorphic to (P :A→ U)→ Pa0 → Pa1.

Fortunately, most type constructors preserve bridge-discreteness. We can check that
UBDisc := (X : U)× isBDisc(X) is closed under almost all the type formers, with the obvious
exception of universes.

I Proposition 7. The sub-universe UBDisc is closed under product, function, Path-, and
Bridge-types. It is univalent and relativistic (i.e., closed under V- and Gel-types).

Proof. For the first statement, see [15, Lemma 10.9]. Any sub-universe of a univalent
universe carved out by a proposition is univalent (see [30, Lemma 3.5.1]). For the proof of
relativity, see [15, Theorem 10.12]. J

Per Section 4.1, we also expect that UBDisc is closed under inductive types. Proposition 7
implies that we can also use parametricity in UBDisc: for example, one can repeat the proof
of Theorem 3 to show that bool is isomorphic to (X:U)→ isBDisc(X)→ X → X → X.

Finally, we observe as a simple consequence of Theorem 4 that the excluded middle for
homotopy propositions [30, §3.4] is refuted by internal parametricity. (The excluded middle
for all types is already refuted by univalence [30, Corollary 3.27].)

I Definition 8. Write isProp(A) := (a0, a1:A) → PathA(a0, a1). The excluded middle for
homotopy propositions is LEM := (X:U)→ isProp(X)→ (b : bool)× ifU (b;X,¬X).

I Lemma 9. If A is bridge-discrete, then any function f : U → A is constant.

Proof. For any pair of types X,Y : U , we have a bridge B := λ2x.Gelx(X,Y, . .⊥) between
them, thus a bridge λ2x.f(B@x) : BridgeA(fX, fY ) between their images by f , thus a path
from fX to fY by bridge-discreteness of A. J

I Theorem 10. There is a term of type LEM→ ⊥.

Proof. We refute the weak excluded middle WLEM := (X:U)→ (b : bool)× ifU (b;¬X,¬¬X),
the special case of LEM that decides negated types. (Any negated type is a homotopy
proposition.) Let f : WLEM. Then λX.fst(fX) ∈ U → bool. By Theorem 4 and Lemma 9,
this map is constant. But fst(f⊥) and fst(f>) cannot be equal, so we have a contradiction. J

CSL 2020



13:12 Internal Parametricity for Cubical Type Theory

4.3 The smash product
We adopt the convention of writing A∗ : U∗ := (X : U)×X for a pointed type, A := fst(A∗)
for its underlying type, and a0 := snd(A∗) for its basepoint. Given A∗, B∗ ∈ U∗, we write
A∗ →∗ B∗ := (f : A→ B)× PathB(fa0, b0) for the type of basepoint-preserving functions
from A∗ to B∗. Given A∗, B∗ : U∗, their smash product is the following HIT.

data A∗ ∧B∗ : U where
| pair(a : A, b : B) : A∗ ∧B∗
| basel : A∗ ∧B∗
| baser : A∗ ∧B∗
| gluel(b : B, x : I) : A∗ ∧B∗ [x = 0 ↪→ basel | x = 1 ↪→ pair(a0, b)]
| gluer(a : A, x : I) : A∗ ∧B∗ [x = 0 ↪→ baser | x = 1 ↪→ pair(a, b0)]

In words, the smash product of A∗ and B∗ is the cartesian product of their underlying types
modulo the relation equating all pairs of the form (a0, b) or (a, b0). The smash product can
itself be made a pointed type A∗ ∧∗ B∗ with basepoint pair(a0, b0).

Our goal is to characterize the polymorphic pointed endofunctions on n-ary smash
products. Here, we will only consider the binary case, and we will only sketch the proof. For
the binary case, we give detailed pen-and-paper proofs of the arguments that use parametricity
directly in [15, Appendix C], and we have formalized the purely cubical arguments in the
redtt cubical proof assistant [29, cool.smash].

I Theorem 11. Any function f∗ : (X∗, Y∗:U∗)→ X∗ ∧∗ Y∗ →∗ X∗ ∧∗ Y∗ is connected by a
path to either the polymorphic identity or the polymorphic constant function.

That we cannot squeeze a complete proof into this space may seem to undermine our
case for parametricity’s usefulness. However, our argument is not that it is easy, but that it
scales. After establishing the above, we will argue that no combinatorial explosion results
from generalizing to n-ary smash products, in contrast to the more direct approaches.

I Definition 12. Given f : A → B, write Grr(A,B, f) := Gelr(A,B, a.b.PathB(fa, b)).
Given f∗ : A∗ →∗ B∗, define Gr∗r(A∗, B∗, f∗) := 〈Grr(A,B, f), gelr(a0, b0, f0)〉 ∈ U∗.

The smash product has an action: from f∗ : A∗ →∗ C∗ and g∗ : B∗ →∗ D, we obtain
f∗ ∧ g∗ ∈ A∗ ∧B∗ → C∗ ∧D∗. The following extracts results from products of Gr-types.

I Lemma 13 (Graph Lemma for ∧). Let pointed types A∗, B∗, C∗, D∗ : U∗ and pointed
functions f∗ : A∗ →∗ C∗, g∗ : B∗ →∗ D∗ be given. For any x, there is a map of type

Gr∗x(A,C, f) ∧ Gr∗x(B,D, g)→ Grx(A∗ ∧B∗, C∗ ∧D∗, f∗ ∧ g∗)

equal to the identity function on A∗ ∧B∗ when x = 0 and on C∗ ∧D∗ when x = 1.

Sketch. This is analogous to Theorem 4; we define the map by smash product induction.
We use extent and ungel to extract relation witnesses in the pair, gluel, and gluer cases. J

I Proposition 14. Any element of bool∗ ∧ bool∗ is either pair(true, true) or pair(false, false).

I Lemma 15. Any f : (X∗, Y∗:U∗)→ X → Y → X∗ ∧ Y∗ is connected by a path to either
1. the pairing function λ〈X,x0〉.λ〈Y, y0〉.λa.λb.pair(a, b), or
2. the constant basepoint function λ〈X,x0〉.λ〈Y, y0〉.λ .λ .pair(x0, y0).
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Proof. Let X∗, Y∗ : U∗, a : X, and b : Y be given. We have a function gX∗ ∈ bool∗ →∗ X∗
taking true to x0 and false to a, likewise gY∗ ∈ bool∗ →∗ Y∗ taking true to y0 and false to b.

Fix a fresh bridge dimension x. By taking the Gel-types for the graphs of the above
functions, we obtain pointed types GX∗ := Gr∗x(bool, X, gX) and GY∗ := Gr∗x(bool, Y, gY ). We
apply f with the elements of GX and GY corresponding to a and b.

f(GX∗ )(GY∗ )(gelx(false, a, λI .a))(gelx(false, b, λI .b)) ∈ GX∗ ∧GY∗

At x = 0, this is equal to f(bool∗)(bool∗)(false)(false) ∈ bool∗ ∧ bool∗; at x = 1, it is equal to
fX∗Y∗ab ∈ X∗ ∧ Y∗. By Lemma 13, we obtain a term in Grx(bool∗ ∧bool∗, X∗ ∧Y∗, gX∗ ∧ gY∗ )
with the same endpoints. Applying ungel, we get a proof that these endpoints are in the
graph of gX∗ ∧ gY∗ , i.e., that (gX∗ ∧ gY∗ )(f(bool∗)(bool∗)(false)(false)) is path-equal to fX∗Y∗ab.
By Proposition 14, f(bool∗)(bool∗)(false)(false) has two possible values. If it is pair(true, true),
then fX∗Y∗ab must be pair(x0, y0); if it is pair(false, false), then fX∗Y∗ab is pair(a, b). J

Sketch of Theorem 11. To characterize f∗ : (X∗, Y∗:U∗)→ X∗ ∧∗ Y∗ →∗ X∗ ∧∗ Y∗, we must
characterize its behavior on each constructor, as well as the proof that it preserves the
basepoint of X∗ ∧∗ Y∗. Given X∗, Y∗, write fX∗Y∗ for the function underlying f∗X∗Y∗.

Write P := (X∗, Y∗:U∗)→ X → Y → X∗ ∧ Y∗. First, we isolate the behavior of f∗ on the
pair constructor: λX∗.λY∗.λa.λb.fX∗Y∗(pair(a, b)) ∈ P . By Lemma 15, this is one of two
functions. We aim to show that this is the only degree of freedom available to f∗.

The values of f on the basel and baser constructors are uniquely determined up to a path
by the fact that f∗X∗Y∗ is basepoint-preserving, as basel and baser are connected to the
basepoint of X∗ ∧∗ Y∗ by gluel(y0,−) and gluer(x0,−) respectively.

For gluel, we consider the term H := λIx.λX∗.λY∗.λa.λb.fX∗Y∗(gluel(b, x)), which is
a path in P from λX∗.λY∗.λa.λb.fX∗Y∗(basel) to λX∗.λY∗.λa.λb.fX∗Y∗(pair(x0, b)). By
Lemma 15, we know that P is isomorphic to bool, which means in particular that it is a
homotopy set: its path types are all homotopy propositions. So H, and therefore the behavior
of f∗ on gluel terms, is uniquely determined (up to a path). The same applies to gluer.

Finally, write f0 : (X∗, Y∗:U∗) → PathX∗∧Y∗(fX∗Y∗(pair(x0, y0)), pair(x0, y0)) for the
proof that f preserves the basepoint of X∗ ∧∗ Y∗. As with gluel, we prove that f0 is uniquely
determined by recasting it as a path in P , namely the path λx.λX∗.λY∗.λa.λb.f0X∗Y∗@x
that connects λX∗.λY∗.λa.λb.fX∗Y∗(pair(x0, y0)) to λX∗.λY∗.λa.λb.pair(x0, y0). J

To prove the n-ary generalization of this theorem, we can proceed by a inductive argument,
showing for each i ≤ n that there are exactly two maps of the following type.

(X1∗, . . . , Xn∗:U∗)→ X1 → · · · → Xn−i → (Xn−i+1∗ ∧∗ · · · ∧∗ Xn∗)→
∧
∗iXi∗

For the base case i = 0, we use an easy generalization of Lemma 15; for the inductive step,
the argument in the proof of Theorem 11. What is key is that we never use an iterated
induction argument on the elements of stacked smash products, so we never find ourselves
dealing with a two-dimensional case like that of gluel(gluel(c, x), y) ∈ X∗ ∧ (Y∗ ∧ Z∗).

To see how we can apply the theorem, consider the case of commutativity. If we have
K : (X∗, Y∗:U) → X∗ ∧∗ Y∗ →∗ Y∗ ∧∗ X∗, then λX∗.λY∗.KX∗,Y∗ ◦KY∗,X∗ is a polymorphic
endofunction on smash products. By Theorem 11, we can show it is the identity simply by
showing it is not constant, which we can do by instantiating X∗, Y∗ with bool∗, bool∗ and
testing it on pair(false, false). If it is indeed non-constant, we see that K is an isomorphism.
Similar techniques show that any non-constant associator is an isomorphism and satisfies
Mac Lane’s pentagon.
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5 Computational meaning of the judgments

We now explain more precisely the meanings of the typing judgments. We follow the work of
Angiuli et al. [3]. The central idea is that well-typed terms need not only evaluate to values,
but evaluate in a way that is coherent with respect to substitution of dimensions.

First, we have an operational semantics, specified by judgments M val and M 7−→M ′.
We write M ⇓ V when M 7−→∗ V and V val. The “closed” types and terms – those to which
the operational semantics applies – are those whose free variables are all dimensions, i.e,
those well-formed in some ΦΨ ctx where Φ = x1 : 2, . . . ,xn : 2 and Ψ = y1 : I, . . . , ym : I. A
type system on this language is a five-place relation τ(Φ,Ψ, A0, A

′
0, ϕ). It specifies, for each

context ΦΨ, those values A0 and A′0 that are equal value types in that context, and associates
to each such pair a partial equivalence relation (PER) ϕ on values in context ΦΨ. To be a
type system, τ is required to satisfy laws ensuring symmetry, transitivity, and so forth. To
interpret the type formers described in Sections 2 and 3, we can define an appropriate τ by a
fixed-point construction populating it with the various constructors.

Two terms A and A′ in context ΦΨ are then equal types when they evaluate to equal
type values in a way that commutes with dimension substitution.

I Definition 16. Given τ , define a five-place relation PTy(τ)(Φ,Ψ, A,A′, α) on context
ΦΨ, terms A,A′, and families (αψ)ψ:Φ′Ψ′→ΦΨ indexed by substitutions into ΦΨ, as follows.
PTy(τ)(Φ,Ψ, A,A′, α) holds when for all ψ1 : Φ1Ψ1 → ΦΨ and ψ2 : Φ2Ψ2 → Φ1Ψ1, we have

Aψ1 ⇓ A1 A1ψ2 ⇓ A2 Aψ1ψ2 ⇓ A12 A′ψ1 ⇓ A′1 A′1ψ2 ⇓ A′2 A′ψ1ψ2 ⇓ A′12

with τ(Φ2,Ψ2, V, V
′, αψ1ψ2) for all V ∈ {A2, A12} and V ′ ∈ {A′2, A′12}.

We write JAK for the α such that PTy(τ)(Φ2,Ψ2, A,A, α) when it exists; the laws
required of type systems ensure its uniqueness. We now say that ΦΨ� A = A′ type when
PTy(τ)(Φ,Ψ, A,A′, α) for some α (satisfying a certain coherence condition). As a special
case, we say that ΦΨ � A type when ΦΨ � A = A type. Element equality is defined
analogously: M and M ′ are equal in A when they coherently evaluate to equal values
in JAK. Finally, the closed judgments are extended to open judgments by functionality:
Γ� A = A′ type holds when ΦΨ� Aγ = A′γ′ type for all ΦΨ� γ = γ′ ∈ Γ.

By definition of ΦΨ�M ∈ bool, we obtain a canonicity theorem.

I Theorem 17 (Canonicity). If ΦΨ�M ∈ bool, then either M 7−→∗ true or M 7−→∗ false.
Additionally, either ΦΨ�M = true ∈ bool or ΦΨ�M = false ∈ bool.

6 Presheaf model

As we have said, the rules presented in Sections 2 and 3 can be used as a formalism for
reasoning in parametric cubical type theory. Following prior work on cubical type theory
[17, 2] and internal parametricity [6], this formalism also supports a presheaf semantics.

The two base categories at play, defined using the notation of Buchholtz and Morehouse
[13], are the BCH cube category �B := C(we,·) and the cartesian cube category �P := C(wec,·).
(Here w, e, and c stand for weakening, exchange, and contraction respectively.) We model
parametric cubical type theory in the category C := Set(�B×�P)op

of presheaves on the product
of the two. We can immediately obtain an interpretation of the standard and cubical type
formers (including the universe) by applying a result of Angiuli et al. [2, Theorem 1]. For
the interval, we take (·, x : I) ∈ �B ×�P; for the generating cofibrations Cof ⊆ Ωdec, we take
finite unions of equations of the form r = s and r = ε. It is straightforward to check that
these choices satisfy the axioms required to apply their theorem.
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On the parametric side, we follow the BCH model. Given a context Γ interpreted as some
JΓK : C, its extension Γ,x : 2 is interpreted as the separated product JΓK⊗ y(x : 2, ·), whose
elements at (Φ,Ψ) ∈ �B ×�P are pairs (γ, r) with r ∈ Φ ∪ {0,1} and γ ∈ JΓK(Φ \ {r},Ψ).
Bridge-types are interpreted à la BCH path types; the inclusion of equations r = ε in Cof
ensures that they support coercion and composition. Gel-types can be interpreted similarly
to BCH G-types (though coercion and composition are much simpler in our case).

One advantage of univalence is that we can obtain a relativistic universe without replacing
sets with I-sets, Bernardy et al. do [6]. In their theory, the isomorphism implemented by
gel and ungel is replaced by an equality Bridgex.Gelx(A,B,R)(M,N) = R〈M,N〉. To ensure
that the interpretations of these types have exactly the same elements, sets are everywhere
replaced with I-sets. In our notation, these would be Φ-sets: for Φ ∈ �B, a Φ-element is a
family indexed by subcontexts Φ′ ⊆ Φ, and a Φ-set is a set of Φ-elements. Interpreting types
as families of I-sets makes it possible to give an interpretation of Gel- and Bridge-types that
validates the above equation. In our work, on the contrary, the equality is replaced by an
isomorphism, obviating the need for I-sets. By exploiting univalence, we can still obtain a
path and so establish the target isomorphism between BridgeU (A,B) and A×B → U .

7 Related and future work

Our parametric cubical type theory is, for the most part, simply the union of Angiuli et al.’s
cartesian cubical type theory [3] and Bernardy et al.’s internally parametric type theory [6].
We work with binary rather than unary parametricity, but as Bernardy et al. remark, this
requires only cosmetic changes. There is little interaction between the two halves of the
theory; we need only to check that coercion and composition can be defined for the new
types. For bridge types, this requires a minor change to the definition of composition, the
addition of r = ε tube equations. As discussed in Section 6, our Gel-types satisfy fewer
equations than the corresponding types in [6]; accordingly, our proof of relativity is novel.

A second approach to internal parametricity has been developed by Nuyts, Vezzosi, and
Devriese [23]. Like ours, their system is based on paths and bridges. Where ours are almost
entirely separate, however, theirs are connected by a modality, which mediates between
variable uses in continuous and parametric positions. Intuitively, their goal is to internalize
the independence of element-level calculation from terms at the type level, whereas ours
is merely to internalize the relational interpretation. The divergence of aims leads to very
different considerations; in particular, their bridge dimensions are structural. In later work
[22], Nuyts and Devriese generalize from paths and bridges to an infinite tower of relations.

Parametric cubical type theory also strongly resembles Riehl and Shulman’s directed
type theory [27]. Where ours has semantics in presheaves on �B ×�P, theirs is aimed at
presheaves on ∆×∆, two copies of the simplex category. In both cases, one half of the base
category is used for equality, while the other endows types with a relational structure. For
directed type theory, the goal is to identify those types for which the relational structure is
actually a category structure, meaning that concatenable bridges have path-unique composites.
Interestingly, their model does not appear to admit a relativistic universe [26, §2].

Stepping outside the realm of internalization, there has been general interest in higher-
dimensional generalizations of parametricity, for example in the work of Atkey et al. [4],
Benton et al. [5], Ghani et al. [19], and Sojakova and Johann [28]. Atkey et al.’s use of reflexive
graphs to construct a parametric model with a discrete universe is to Bernardy-Moulin-style
internal parametricity as the Hofmann-Streicher groupoid model [20] is to cubical type theory.

CSL 2020



13:16 Internal Parametricity for Cubical Type Theory

One unsolved problem looms large: to what extent do results in parametric type theory
translate into ordinary type theory? Naturally, not all theorems translate – (f :U → bool)→
Pathbool(f>, f⊥) is provable in parametric type theory but refuted in classical cubical sets –
but one reasonable conjecture is that proofs Γ � M ∈ A translate when Γ and A use no
function types. It appears fairly straightforward to obtain results of this kind in semantics,
but syntactic results are much murkier; similar conservativity questions for homotopy and
cubical type theory over ordinary type theory remain open.
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Abstract
We present a new constructive model of univalent type theory based on cubical sets. Unlike prior
work on cubical models, ours depends neither on diagonal cofibrations nor connections. This is made
possible by weakening the notion of fibration from the cartesian cubical set model, so that it is not
necessary to assume that the diagonal on the interval is a cofibration. We have formally verified in
Agda that these fibrations are closed under the type formers of cubical type theory and that the
model satisfies the univalence axiom. By applying the construction in the presence of diagonal
cofibrations or connections and reversals, we recover the existing cartesian and De Morgan cubical
set models as special cases. Generalizing earlier work of Sattler for cubical sets with connections, we
also obtain a Quillen model structure.
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1 Introduction

Cubical set models provide a constructive justification for Voevodsky’s univalence axiom
and higher inductive types, as introduced in Homotopy Type Theory and Univalent Found-
ations (HoTT/UF) [38]. In this paper we develop a general axiomatization encompassing
many existing cubical set models, allowing us to better understand the relationship between
them and prove results about the entire class of models simultaneously.

The first model of HoTT/UF was developed by Voevodsky using Kan simplicial sets [26]
and relies crucially on classical logic [9]. A major source of open problems in HoTT/UF has
been the quest for constructive models; besides recent progress on a constructive variation of
the Kan simplicial set model [23], the most fruitful approaches have been based on cubical

© Evan Cavallo, Anders Mörtberg, and Andrew W Swan;
licensed under Creative Commons License CC-BY

28th EACSL Annual Conference on Computer Science Logic (CSL 2020).
Editors: Maribel Fernández and Anca Muscholl; Article No. 14; pp. 14:1–14:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-8174-7496
mailto:ecavallo@cs.cmu.edu
mailto:anders.mortberg@math.su.se
mailto:a.w.swan@uva.nl
https://doi.org/10.4230/LIPIcs.CSL.2020.14
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de
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sets. This was pioneered by the Bezem, Coquand and Huber (BCH) model [7, 8], which uses
presheaves on the symmetric monoidal cube category. These cubical sets have degeneracy
and face maps, but it is not possible to take the diagonal face of a square. An important
feature of cubical sets, relative to simplicial sets, is that the product of representable cubical
sets is again representable. This makes it possible to represent n-dimensional terms as
ordinary terms in a context of n variables, each ranging over the interval object I. The lack
of diagonals in the BCH model corresponds to a lack of contraction for these contexts; the
BCH model is substructural. This complicates giving a type-theoretic presentation; more
fundamentally, it is unclear how to formulate and construct higher inductive types.

A natural approach, then, is to instead allow diagonals and study cartesian cubical sets,
which model structural interval contexts. The base category here has a compact description
as the free finite product category on an interval object [4, 29]. Cartesian cubical sets are
hence better-suited as a basis for cubical type theory, and they are known to support higher
inductive types. However, constructing univalent universes was an open problem for many
years. The difficulties in modeling univalent universes motivated Cohen, Coquand, Huber
and Mörtberg (CCHM) [15] to consider a cube category with even more structure, namely
connections (∧ and ∨) and an involutive reversal operation (¬) satisfying the axioms of
a De Morgan algebra. Using these additional operations, they gave the first cubical set
model of univalent type theory with higher inductive types, as well as the first cubical type
theory. It was later observed by Orton and Pitts (OP) [28] that the CCHM constructions
do not require the full structure of a De Morgan algebra; a so-called “connection algebra”
suffices. As a special case, there is a cubical category where the connection algebra is the free
bounded distributive lattice. We call the resulting presheaf category Dedekind cubical sets,
following Awodey, as the number of elements of Hom(In, I) are the Dedekind numbers [5].
Angiuli, Favonia, and Harper (AFH) [3] showed that that a model of HoTT/UF could also
be developed in cartesian cubical sets without connections or reversals; their computational
model was then adapted to an Orton-Pitts style construction by Angiuli et al. (ABCFHL) [2].

In short, a wide variety of cube categories give rise to models of univalent type theory.
Moreover, the underlying cube category is not the only parameter: one must also formulate
Kan composition, i.e., choose a class of fibrations. Kan composition, a cubical analogue of the
lifting condition in Kan simplicial sets, ensures that Path types induce a notion of equality.
A representative special case of composition is coercion. Given a type A that depends on a
dimension variable i : I, coercion establishes a relationship between the elements of A(r/i)
and A(s/i) for various r, s : I. The nature of this relationship varies from model to model. In
CCHM, the simplest case, coercion provides a map coe0→1

i.A : A(0/i)→ A(1/i). In AFH, on
the other hand, there is an operation coer→si.A : A(r/i)→ A(s/i) for every r, s : I, together
with an equation coer→ri.A a = a : A(r/i). Other model constructions use intermediate points
between these two extremes. For example, OP include 0→ 1 and 1→ 0. A more expressive
cube category can compensate for a more limited form of coercion; in CCHM, coercions
ε→ s and r → ε for ε : {0, 1} are derivable from the primitive 0→ 1 coercion.

In its general form, Kan composition coerces a cube while preserving some part of its
boundary, a generalization necessary in order to derive coercion for Path types. The choice
of allowable boundary shapes is a third parameter; from the model categorical perspective,
it corresponds to a choice of generating cofibrations. In CCHM cubical sets, a boundary
is specified by a collection of (conjunctions of) faces of the form (r = 0) or (r = 1). For
cartesian cubes, AFH took the crucial step of also including (r = s) boundary constraints,
corresponding to diagonal faces of cubes. Model categorically, this corresponds to including
the diagonal on the interval as a generating cofibration, i.e. to assume diagonal cofibrations.
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Table 1 Varieties of cubical models of HoTT/UF.

Diagonals Additional structure Kan operations Diagonal cofibrations
BCH 0 → r, 1 → r

CCHM X ∧, ∨, ¬ (De Morgan) 0 → 1
Dedekind X ∧, ∨ (distributive lattice) 0 → 1, 1 → 0

OP X ∧, ∨ (connection algebra) 0 → 1, 1 → 0
AFH/ABCFHL X r → s X

We collect the existing cubical set models in Table 1. As a general rule, these constructions
can still be conducted in a setting with additional structure. For example, both the CCHM
and ABCFHL model constructions can both be carried out in cubical sets with connections,
reversals, and diagonal cofibrations. (The exception is BCH, which apparently relies crucially
on the absence of diagonal maps.) The constructions produce the same notions of fibration
where they are mutually applicable, as is observed for the CCHM and ABCFHL models in
[2, Sec. 3.4]. What is lacking, however, is a single construction that applies in all cases.

Contributions

Our main contribution is a unification of the structural cubical models (i.e., all but BCH)
as instances of a single construction. This is achieved by axiomatizing a class of models in
the internal language style of Orton and Pitts [28], based on a “weak” variation of cartesian
Kan composition. This notion of fibration specializes to the AFH definition in the presence
of diagonal cofibrations (Section 2.3.1) and to the CCHM definition in the presence of
connections and reversals (Section 2.3.2). The “weak” fibrations are closed under basic type
formers (Section 2.4), Glue types (Section 2.5), and fibrant univalent universes (Section 2.6),
thus give rise to a model of HoTT/UF. Furthermore, we obtain algebraic weak factorization
systems of cofibrations and trivial fibrations (Section 3.2) and of trivial cofibrations and
fibrations (Section 3.3). Finally, we verify that a theorem of Sattler [32, Thm. 2.8] applies,
allowing us to obtain a model structure (Section 3.4) from the factorization systems.

2 A general axiomatization

Following Orton and Pitts [28], we construct models of cubical type theory from locally
cartesian closed categories C: we describe a collection of axioms in the internal language of
such categories, then use the language as a tool to show that any category satisfying the
axioms induces a class of fibrations closed under various type formers. Rather than relying
on an impredicative universe of propositions, as Orton and Pitts do, we follow Licata, Orton,
Pitts and Spitters (LOPS) [27] and work in a predicative theory. We use Agda [1] extended
with postulates for function extensionality and uniqueness of identity proofs to simulate the
internal type theory of a locally cartesian closed category.1

We adopt Agda’s (ultimately Nuprl’s) syntax here, writing (x : A)→ B x for dependent
and A→ B for non-dependent functions. We assume a non-cumulative hierarchy of universes
U0 : U1 : . . . ; here, we leave levels implicit and write U for simplicity, but they are explicit
in the formalization. Among Agda’s inductive types, we need identity types (written u = v

1 The formalization and additional material can be found at https://github.com/mortberg/gen-cart.
For a summary of where all of the results in the paper can be found, see https://github.com/mortberg/
gen-cart/blob/master/agda/unifying-summary.agda.
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and with a single constructor refl), an empty type ⊥ : U , and sum types A ] B (with
constructors inl and inr). We write Σ(x : A), B x for dependent and A×B for non-dependent
product types. Following HoTT/UF, we define the type of (homotopy) propositions as
hProp , Σ(A : U), (x y : A) → x = y. We assume a propositional truncation operation
‖−‖ : U → hProp universally approximating any type as an hProp. We then define disjunction
P ∨Q of propositions P and Q as the propositional truncation ‖P ]Q‖. The negation of a
type ¬A is defined as A→ ⊥; this is always a proposition.

This type theory can be interpreted in any presheaf topos [25], in particular the various
cubical and simplicial set categories, assuming enough Grothendieck universes. The standard
example throughout the paper is the category of cartesian cubical sets.

2.1 The interval and Path types
The axiomatic requirements on C begin with an interval type I : U with endpoints 0 : I and
1 : I. We require I to be connected (ax1) and 0, 1 to be distinct (ax2).

ax1 : (P : I→ U)→ ((i : I)→ P i ] ¬(P i))→ ((i : I)→ P i) ] ((i : I)→ ¬(P i))
ax2 : ¬(0 = 1)

Given A : I→ U , we define the type of paths in A as Path(A) , (i : I)→ A i. Given a : A 0
and b : A 1, we write a ∼ b , Σ(p : Path(A)), (p 0 = a)× (p 1 = b). Given p : a ∼ b and r : I,
we write p @ r for the application of fst p to r, which satisfies p @ 0 = a and p @ 1 = b.

2.2 Cofibrant propositions
Next, we assume a universe à la Tarski of generating cofibrant propositions Φ : U supporting
the following operations. We write [_ ] : Φ→ hProp for the decoding function and stipulate
that it interprets the code constructors appropriately.

(_ ≈ 0) : I→ Φ ax3 : (i : I)→ [ (i ≈ 0) ] = (i = 0)
(_ ≈ 1) : I→ Φ ax4 : (i : I)→ [ (i ≈ 1) ] = (i = 1)

∨ : Φ→ Φ→ Φ ax5 : (ϕψ : Φ)→ [ϕ ∨ ψ ] = [ϕ ] ∨ [ψ ]

Note that we have two bottom elements, (0 ≈ 1) and (1 ≈ 0). The decoding of these
imply each other, but we need not assume they are equal. The same holds for the two top
elements (0 ≈ 0) and (1 ≈ 1). Note that for all A : U , we have elim⊥ : [ (0 ≈ 1) ]→ A by ax2.
I Remark 1. If C is a topos, we can take Φ to be the subobject classifier Ω. To obtain a
constructive presheaf model, we can instead take Φ to be the subobject of Ω of sieves with
decidable image at each stage. However, the axiomatization of Φ does not presume the
existence of a subobject classifier; nor does it require that inter-derivable cofibrations are
equal. This is similar to the approach taken in [2, 27], where Φ , Σ(A : U), cof A is specified
by a predicate cof : U → U on types. However, our variation requires that Φ is a small type,
which is needed to construct identity types while preserving universe level.

A partial element of A is a term f : [ϕ ] → A. Given such a partial element f and an
element x : A, we define the extension relation f ↗ x , (u : [ϕ ])→ f u = x, so that f ↗ x

is the type of proofs that the partial element f extends to the total element x. Following [15],
we write A[ϕ 7→ f ] , Σ(x : A), f ↗ x for the type of all elements of A extending f . Given a
partial path f : [ϕ ]→ Path(A) and r : I, we write f · r , λu.f u r : [ϕ ]→ A r.

This completes the basic set of axioms, which will suffice to interpret the Σ-, Π-, Path
types and basic datatypes. We defer the introduction of two final axioms to Section 2.5,
where we will need them to interpret (strict) Glue types.
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2.3 Fibration structures
Using the interval and the universe of cofibrant propositions, we can now define our notion
of fibration structure, a weaker variation on the fibration structures used in [2, 3].

I Definition 2 (Weak composition). Given r : I, A : I→ U , ϕ : Φ, f : [ϕ ]→ Path(A) and
x0 : (A r)[ϕ 7→ f · i], a weak composition structure is given by two operations

wcom : (s : I)→ (A s)[ϕ 7→ f · s] wcom : fst (wcom r) ∼ fstx0

satisfying (i : I) → f · r ↗ wcom @ i. We write WComp r A ϕ f x0 for the type of such
weak composition structures, i.e.,

WComp r A ϕ f x0 , Σ (wcom : ...),Σ(wcom : ...), (i : I)→ f · r ↗ wcom @ i

In contrast with [2, 3], we do not require that the equality wcom r A ϕ f x0 r = x0 holds
strictly. Instead, the wcom operation enforces the equation up to a path constant on ϕ. We
say that wcom r A ϕ f x0 s composes r → s in A, and refer to f as the tube and x0 as the
cap of the composition. We refer to wcom as the “cap path”, as it relates wcom r A ϕ f x0 r

to the cap x0.

I Example 3. We can illustrate the above choice of terminology with the following example.
The composition problem is given by the tube u0 and u1 at (j ≈ 0) and (j ≈ 1) together
with a cap x0 at (i ≈ r). The composition from r to i is the interior of the square on the
right, while the cap path is the gray path connecting the composition at r to x0.

i
j

k

u0 u1

x0

7→
u0 u1

x0

I Definition 4 (Weak fibrations and fibration structures). A weak fibration (A,α) over Γ : U
is a family A : Γ→ U equipped with a fibration structure α : isFib A, where

isFib A , (r : I)(p : I→ Γ)(ϕ : Φ)(f : [ϕ ]→ (i : I)→ A(p i))(x0 : A(p r)[ϕ 7→ f · r])
→WComp r (A ◦ p) ϕ f x0

We write Fib Γ , Σ(A : Γ→ U), isFib A for the type of weak fibrations over Γ. As in [28,
Def. 5.8], we obtain a category with families (CwF) [21] where the families over Γ : U are
(A,α) : Fib Γ and elements of such a family are dependent functions in (x : Γ)→ A x. Given
P : Fib Γ and σ : ∆→ Γ, we write P [σ] : Fib ∆ for the reindexing of P along σ.
I Remark 5. When discussing the model structure in Section 3.4, we will use the term
fibration for the usual external notion of a map that has the right lifting property against
trivial cofibrations. Whenever this overloading of terminology might be confusing we use the
terms weak fibration and fibration structure when referring to the internal notions.

Given α : isFib A, s : I and r, p, ϕ, f and x0 as in Definition 4, we introduce the following
more readable notation for the composites provided by α.

wcomr→s
α p [ϕ 7→ f ]x0 , fst (fst (α r p ϕ f x0) s) : A (p s)

wcomr
α p [ϕ 7→ f ]x0 , fst (snd (α r p ϕ f x0)) : (wcomr→r

α p [ϕ 7→ f ]x0) ∼ fstx0

CSL 2020
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Given ϕ,ψ : Φ, we follow [15] and write [ϕ 7→ f, ψ 7→ g] : [ϕ ∨ ψ ]→ A for the union of
partial elements f : [ϕ ]→ A and g : [ψ ]→ A that agree where they are both defined, i.e.
such that ∀(u : [ϕ ]) (v : [ψ ]).f u = g v. This generalizes directly to [ϕ1 7→ f1, ..., ϕn 7→ fn].

We say that a proposition A : hProp is cofibrant if it is logically equivalent to the decoding
of a generating cofibrant proposition, i.e. isCofProp A , Σ(ϕ : Φ), A↔ [ϕ ]. When r, s : I
are such that (r = s) is cofibrant, we will be able to “improve” weak composition r → s to
obtain a strict composition that is exactly equal to its cap when r = s.

I Definition 6 (Strict composition). Given r : I, A : I→ U , ϕ : Φ, f : [ϕ ]→ Path(A) and
x0 : (A r)[ϕ 7→ f · i], a strict composition structure is given by an operation

scom : (s : I)→ isCofProp(r = s)→ (A s)[ϕ 7→ f · s]

satisfying fst (scom r c) = fstx0 for all c : isCofProp(r = r).

We will leave the argument isCofProp(r = s) implicit. Writing SComp r A ϕ f x0 for
the type of strict composition operations on A, we define strict fibrations as follows.

I Definition 7 (Strict fibrations). A strict fibration (A,α) over Γ : U is a family A : Γ→ U
equipped with a strict fibration structure α : isSFib A, where

isSFib A , (r : I)(p : I→ Γ)(ϕ : Φ)(f : [ϕ ]→ (i : I)→ A(p i))(x0 : A(p r)[ϕ 7→ f · r])
→ SComp r (A ◦ p) ϕ f x0

I Lemma 8 (Strictification). Given Γ : U and A : Γ→ U , there is a map isFib A→ isSFib A.

Proof. Given α : isFib A and r, p, ϕ, f and x0 as in Definition 7, let

w , wcomr→s
α p [ϕ 7→ f ]x0 w , wcomr

α p [ϕ 7→ f ]x0

Given s : I, we define the following term that corrects the (r = s) face of w using w.

scom s , wcom0→1
α (λ_.p s) [ϕ 7→ λu _.f u s, (r = s) 7→ λ_ i.w @ i]w J

In particular, as (r = ε) and (ε = r) are always cofibrant for ε : {0, 1}, we have strict
composition operations ε→ r and r → ε in any fibration. Defining 0 , 1 and 1 , 0, we note
that the weak compositions ε→ ε are already strict, as the cap condition is vacuous.

2.3.1 AFH fibrations
We now compare our definition of fibration to that of existing cartesian cubical type theories
and models. A key feature of these is the use of diagonal cofibrations, which correspond to
an operation (_ ≈ _) : I→ I→ Φ decoding as follows.

ax∆ : (r s : I)→ [ (r ≈ s) ] = (r = s)

The form of fibration used in these models was originally proposed by Coquand [16], but it
was initially unclear how to model univalent universes. AFH observed that the problems
could be dealt with by introducing diagonal cofibrations, and used them to give a complete
computational semantics of univalent type theory (we hence refer to these as “AFH fibrations”).
These ideas were then adapted in ABCFHL to give an Orton-Pitts style model construction.
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I Definition 9 (AFH composition). Given r : I, A : I → U , ϕ : Φ, f : [ϕ ] → Path(A) and
x0 : (A r)[ϕ 7→ f ·i], an AFH composition structure is given by com : (s : I)→ (A s)[ϕ 7→ f ·s]
satisfying fst (com r) = fstx0. We write AFHComp r A ϕ f x0 for the type of such AFH
composition structures, and write

isAFHFib A , (r : I)(p : I→ Γ)(ϕ : Φ)(f : [ϕ ]→ (i : I)→ A(p i))
(x0 : A(p r)[ϕ 7→ f · r])→ AFHComp r (A ◦ p) ϕ f x0

When isAFHFib is taken as the definition of fibration, it seems that diagonal cofibrations
are crucial to construct fibrant univalent universes of fibrant types. Specifically, they are
needed to ensure that composition in Glue/V types and the universe satisfies the strict cap
condition. In the presence of diagonal cofibrations, our definition of fibration coincides with
isAFHFib.

I Theorem 10. Given Γ : U and A : Γ→ U , we have isAFHFib A iff we have isFib A.2

Proof. Any AFH composition structure induces a weak composition structure, as any equality
can be turned into a path. For the converse direction, apply Lemma 8 with ax∆. J

I Remark 11. Awodey [6] has formulated a categorical notion of unbiased fibrations and
shown that this coincides with AFH fibrations; it thus also coincides with weak composition
in the presence of diagonal cofibrations.

2.3.2 CCHM fibrations
Next, we compare with the CCHM definition of fibration. Following Orton and Pitts [28],
we assume operations u, t : I→ I→ I satisfying the axioms of a connection algebra.

axu : (r : I)→ (0 u r = 0 = r u 0) ∧ (1 u r = r = r u 1)
axt : (r : I)→ (0 t r = r = r t 0) ∧ (1 t r = 1 = r t 1)

I Remark 12. A connection algebra is weaker than the De Morgan algebra used in CCHM:
there is no reversal ¬ : I→ I and the connections need not form a distributive lattice. Thus,
Orton and Pitts [28] obtain a construction that applies to both CCHM and Dedekind cubical
sets, compensating for the lack of reversals by parametrizing the composition operation by
ε : {0, 1}. Following Orton and Pitts, we continue to call this “CCHM composition” despite
the superficial difference from the operation defined in [15].

I Definition 13 (CCHM composition). Given ε : {0, 1}, A : I→ U , ϕ : Φ, f : [ϕ ]→ Path(A)
and x0 : (A ε)[ϕ 7→ f · i], a CCHM composition structure is a term com : (A ε)[ϕ 7→ f · ε].
We write CCHMComp ε A ϕ f x0 for the type of such CCHM composition structures, and

isCCHMFib A , (ε : {0, 1})(p : I→ Γ)(ϕ : Φ)(f : [ϕ ]→ (i : I)→ A(p i))
(x0 : A(p ε)[ϕ 7→ f · r])→ CCHMComp ε (A ◦ p) ϕ f x0

A key result in CCHM is that connections and composition 0 → 1 suffice to derive
composition 0→ r (i.e. Kan filling). The following result shows that we can in fact derive
all of the cartesian composition operations, except for the strict equality for r → r. This
clarifies the relationship between CCHM and AFH composition. As CCHM only requires
compositions ε→ ε, diagonal cofibrations are not needed for Glue types and the universe.

2 This is already observed for weak coercion in [2, Sec. 2.7].
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I Theorem 14. Given Γ : U and A : Γ→ U , we have isCCHMFib A iff we have isFib A.

Proof. We can go from isFib A to isCCHMFib A by simply instantiating r with ε and s with
ε. For the other direction, let r, p, ϕ, f and x0 be as in Definition 4. First, we define the
following term, which composes from A (p r) to A (p (j ∧ r)) for any j : I.

q j , com1→0
α (λi.p ((j ∨ i) ∧ r))

[
ϕ 7→ λu i.f u ((j ∨ i) ∧ r)
(j = 1) 7→ λ_ _.x0

]
x0

We can then define weak composition to s : I.

wcom s , com0→1
α (λi.p (i ∧ s)) [ϕ 7→ λu i.f u (i ∧ s), (0 ≈ 1) 7→ elim⊥] (q 0)

The cap path is defined as follows.

wcom , λ(j : I).com0→1
α (λi.p ((j ∨ i) ∧ r))

[
ϕ 7→ λu i.f u ((j ∨ i) ∧ r)
(j = 1) 7→ λ_ _.x0

]
(q j) J

2.4 Fibration structures for basic type formers
The collection of fibrations is closed under all of the basic type formers of cubical type
theory: Σ-, Π-, Path types and any basic datatypes that C supports. The arguments are very
similar to those of [2, 3], but additional adjustments are necessary to compensate for the
new weakness. We include the proof for Σ-types in order to illustrate this in detail.

I Theorem 15 (Fibrant Σ-types). Given Γ : U , A : Γ→ U , B : (Σ(x : Γ), A x)→ U , we have

isFibΣ : isFib A→ isFib B → isFib (Σ A B)

where (Σ A B) x , Σ(a : A x), B (x, a).

Proof. Let α : isFib A and β : isFib B and r, p, ϕ, f and x0 be as in Definition 4. We first
define the composite and cap path for the first components of the open box.

wA i , wcomr→i
α p [ϕ 7→ λu j. fst (f u j)] (fstx0)

wA , wcomr
α p [ϕ 7→ λu j. fst (f u j)] (fstx0)

To define the composite of the second components, we first adjust the type of the cap.
For this, we use a strict composition 1→ k in B, which is derivable from β per Lemma 8.

b k , scom1→k
β (λj.(p r, wA @ j)) [ϕ 7→ λu _. snd (f u r)] (sndx0)

When k is 0, this is the corrected cap of our composition in B.

wB , wcomr→s
β (λi.(p i, wA i)) [ϕ 7→ λu i. snd (f u i)] (b 0)

wB , wcomr
β (λi.(p i, wA i)) [ϕ 7→ λu i. snd (f u i)] (b 0)

Composition in the pair type is then defined to be the pair wcom s , (wA s, wB). For
the cap path, we combine the cap path wB for the composition in B with the path b that
relates b 0 to sndx0 over wA.

c t , wcom1→0
β (λj.(p r, wA @ j))

ϕ 7→ λu _. snd (f u r)
(t = 0) 7→ λ_ j.wB @ j

(t = 1) 7→ λ_ _. sndx0

 (b t)

We then let wcom , λ(t : I).(wA @ t, c t). J
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The case for Π-types is similar to that of Σ-types: the proof roughly follows that of strict
composition, but additional composites have to be inserted to mediate between composites
and their caps. The proofs for Path types and natural numbers are essentially identical to
those of [2, 3]. We omit the details here, but the interested reader may consult [13, Sec. 3] or
our Agda formalization. It is also straightforward to verify that these definitions are stable
under reindexing, so that we obtain a CwF that supports Σ-, Π- and Path types. This CwF
also supports natural numbers if C has a natural numbers object.

2.5 Glueing
Glue types were introduced in [15, Sec. 6] to unify the proofs that the universe of fibrant
types is fibrant and univalent. This construction also occurs implicitly in the proof that the
universe is univalent in the Kan simplicial set model [26, Thm. 3.4.1]. The construction of
these types in the internal language was described in detail by Orton and Pitts [28, Sec. 6].
In this section we only briefly sketch their construction; apart from the proof of Theorem 17,
there are no major differences.

I Definition 16 (Glueing). Given ϕ : Φ, A : [ϕ ]→ U , B : U and f : (x : [ϕ ])→ A x→ B,
we define Glue ϕ A B f : U as follows.

Glue ϕ A B f , Σ(a : (x : [ϕ ])→ A x),Σ(b : B), (x : [ϕ ])→ f x (a x) = b

Elements of this type are thus pairs (a, b) where a is a partial element of A and b is an
element of B such that f applied to a extends to b. When ϕ is >, the Glue type is isomorphic
to A. The Glue operator lifts to a fiberwise operation on families of types, which we also call
Glue. To prove that it takes fibrations to fibrations, however, we must also require that f is
an equivalence. There are various ways to express this; we follow Voevodsky and say that f
is an equivalence when its fibers are contractible [38, 39]. We write A ' B for the type of
equivalences between A and B.

I Theorem 17 (Fibrant Glue types). Given Γ : U , ϕ : Γ → Φ, A : (x : Γ) → [ϕ x ] → U ,
B : Γ → U and f : (x : Γ) (v : [ϕ x ]) → A x v → B x. If f has the structure of an
equivalence then there is a function isFibGlue : isFib A→ isFib B → isFib (Glue ϕ A B f).

The proof of this theorem is a variation of the one of [2]; as with Σ-types, some additional
compositions are needed to compensate for the weakness. We refer the interested reader to
the detailed type theoretic presentation in [13, Sec. 4.2] and to the Agda formalization.

Note that the fibrancy of these types does not require any additional axioms. However,
they are weaker than the Glue types of [15]: they are not strictly equal to A when ϕ is >,
only isomorphic. In order to prove univalence and fibrancy of the universe, we first need
to strictify. Writing A ∼= B for the type of isomorphisms between A and B, we require the
following strictness axiom (ax9 in [28]).

ax6 : (ϕ : Φ) (A : [ϕ ]→ U) (B : U) (s : (u : [ϕ ])→ A u ∼= B)→
Σ(B′ : U),Σ(s′ : B′ ∼= B), (u : [ϕ ])→ (A u, s u) = (B′, s′)

Using this axiom, we can perform the same construction as in [28, Def. 6.1] and obtain
a type SGlue ϕ A B f that satisfies the desired equation strictly and is isomorphic to
Glue ϕ A B f . We then transport the weak fibration structure from Glue to SGlue along this
isomorphism. However, the weak composition operation that we obtain this way will not
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necessarily reduce to the composition operation of A when ϕ is >. In order to correct this,
we assume an operation ∀ : (I→ Φ)→ Φ satisfying the following.

ax7 : (ϕ : I→ Φ)→ [ ∀ϕ ] = (i : I)→ [ϕ i ]

Using this axiom, we can perform the same “alignment” as in [28, Thm. 6.13] and obtain
a weak fibration structure for SGlue that reduces that of A when ϕ is >.

2.5.1 Univalence
Voevodsky’s univalence axiom states that the canonical map idtoequiv : (A ∼ B)→ (A ' B)
is an equivalence. This formulation of univalence assumes a universe of (fibrant) types. As
we have not yet constructed a universe, we instead define a variation of univalence that uses
a primitive notion of lines between types. For Γ : U and A,B : Fib Γ, we define

A ∼U B , Σ(P : Fib (Γ× I)), P [(id, 0)] = A× P [(id, 1)] = B

I Theorem 18 (Univalence for ∼U ). We have (A ∼U B) ' (fstA ' fstB).

Proof. This is equivalent3 to the existence of a term ua : A ' B → A ∼U B such that
idtoequiv ◦ ua = id. The ua term follows directly from SGlue in the standard way [28, Thm.
7.2]. The inverse condition can be proven by unfolding the algorithm for weak composition
in SGlue, in analogy with [28, Thm. 7.3]. J

This model hence satisfies this variation of the univalence axiom. Following [27], we may
also construct a universe and prove the standard formulation of the univalence axiom.

2.6 Fibrant univalent universes
The universe construction of LOPS [27] can be performed in a modal extension of type
theory called crisp type theory. Andrea Vezzosi has developed an extension of Agda with the
crisp modality called Agda-[. However, this was only recently incorporated into the standard
version of Agda, so we have not formally verified the content of this section.

A key component in the LOPS universe construction is a special feature of the interval
in the various cubical set categories: it is tiny, i.e. exponentiation by it has a right adjoint.
This is not true for ∆1, so the following theorem does not apply to Kan simplicial sets.

I Theorem 19 (Universe construction). If I is tiny, then we can construct a universe U with
a fibration El that is classifying in the sense of [27, Thm. 5.2].

Proof. We need to check that the assumptions of [27, Thm. 5.2] are satisfied. First of all,
the arguments of isFib and WComp can be rearranged to match [27, Def. 2.2]. We then
need to check that axioms (1)–(4) in [27] hold. The first two are function extensionality
and uniqueness of identity proofs, which we are assuming. The other two are disjointness of
endpoints and that ⊥ is a cofibrant proposition, both of which follow from ax2. J

We next need to show that this universe has a weak fibration structure, is closed under all
of the type formers of cubical type theory, and satisfies the univalence axiom. This has been
formalized in Agda-[ for AFH fibrations in [2], and we do not expect any difficulty doing the

3 This was originally pointed out by Daniel R. Licata in https://groups.google.com/forum/#!msg/
homotopytypetheory/j2KBIvDw53s/YTDK4D0NFQAJ.

https://groups.google.com/forum/#!msg/homotopytypetheory/j2KBIvDw53s/YTDK4D0NFQAJ
https://groups.google.com/forum/#!msg/homotopytypetheory/j2KBIvDw53s/YTDK4D0NFQAJ
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same here, the only difference being the strictness of the cap equation. For a type theoretic
proof that the universe is fibrant and univalent using the fibration structures in this paper,
see [13, Sec. 4.3 and 4.4].

3 Model structures on cubical sets

We will now prove that our definition of fibration structures forms part of a Quillen model
structure. This helps to clarify the relation between our definition and already established
and well known definitions in homotopical algebra. We assume the reader is familiar
with standard concepts in homotopical algebra such as model structures, algebraic weak
factorization systems (awfs’s), and the Leibniz adjunction. See e.g. [31] for these definitions.

Further details, including proofs of these results, are available in [14]. We have also
defined the two factorization systems in Agda by postulating the existence of W -types with
reductions [36], a simple class of (extensional) higher inductive types.

We will use some extra notational conventions for this section. We write δi : 1→ I for
i : {0, 1} for the endpoint inclusions. We use the subscript B when working with objects in a
slice category C/B. In particular, we have an interval object IB defined as the projection
I×B → B, with obvious endpoint maps δBi : 1B → IB .

3.1 Cofibrantly generated awfs’s
To construct a model structure, we first need to define two weak factorization systems, one
for cofibrations and trivial fibrations and one for trivial cofibrations and fibrations. In both
cases, we will use the following definitions and theorems from [36] and [34].

I Definition 20 ([36, Def. 6.1]). Let m be a map in a slice category C/I and let f be a
map in another slice category C/J . A family of lifting problems of m against f consists of
an object K, together with maps σ : K → I and τ : K → J and a lifting problem of σ∗(m)
against τ∗(f) in C/K.

We say m has the fibered left lifting property against f and f has the fibered right lifting
property against m if every family of lifting problems has a diagonal filler.

A family of lifting problems K,σ, τ, p, q is universal if for any other family of lifting
problems K ′, σ′, τ ′, p′, q′, there is a unique map t : K ′ → K such that σ′ = t ◦ σ, τ ′ = t ◦ τ ,
p′ = t∗(p) and q′ = t∗(q).

I Proposition 21 ([34, Prop. 3.2.4], [36, Def. 6.2]). Universal lifting problems exist.

I Proposition 22 ([34, Prop. 3.2.5]). f has the fibered right lifting property against m iff
the universal lifting problem has a filler.

I Definition 23. A fibered algebraic weak factorization system or fibered awfs consists
of an algebraic weak factorization system (LJ , RJ) on each slice category C/J preserved by
reindexing (up to isomorphism).

A fibered awfs is cofibrantly generated if there exists a map m in some slice category C/I
such that for each J and each map f in C/J , RJ algebra structures on f correspond precisely
to diagonal fillers of the universal lifting problem of m against f .

The following theorem will allow us to construct the two weak factorization systems of
the model structure.

I Theorem 24. Let m be a map in some slice category C/I. The fibered awfs cofibrantly
generated by m exists if either of the two conditions below are satisfied.
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1. C is an internal category of presheaves in a locally cartesian closed category with finite
colimits, disjoint sums and W -types, and m is a locally decidable monomorphism.

2. C is a ΠW -pretopos (e.g. C is a topos with natural number object), and it satisfies the
axiom weakly initial set of covers (WISC).

Proof. If (1) holds, apply [36, Thm. 6.14], and if (2) holds, apply [36, Cor. 6.12]. J

3.2 Cofibration and trivial fibration awfs

We can view the cofibrant propositions [− ] : Φ→ hProp as a monomorphism > : Φtrue � Φ,
where Φtrue , Σ(ϕ : Φ), [ϕ ] = >.

I Definition 25 (Generating cofibrations). Let m : A→ B be a map in a slice category C/I.
We say m is a generating cofibration if either of the equivalent conditions below holds.
1.
∑
I m is a pullback of >.

2. m is a pullback of I∗(>) : I∗(Φtrue)→ I∗(Φ) in C/I.

I Proposition 26. Generating cofibrations are closed under pullbacks and binary unions.
Every isomorphism is a generating cofibration.

I Proposition 27. Let f : X → Y be a map in a slice C/J . The following are equivalent.
1. f has the fibered right lifting property against >, viewed as a map Φtrue → 1Φ in C/Φ.
2. f has the fibered right lifting property against generating cofibrations of the form A→ 1B

in slice categories C/B.
3. f has the fibered right lifting property against every generating cofibration.
4. f has the right lifting property against every generating cofibration in C/J .

I Definition 28 (Trivial fibrations and cofibrations). If a map f : X → Y in a slice category
C/J satisfies one, and so all, of the equivalent conditions in Proposition 27 we say that f is
a trivial fibration. A map m in a slice category C/I is a cofibration if it has the fibered left
lifting property against every trivial fibration.

When working in Agda we found it helpful to use an alternative definition of trivial
fibration following [15, Sec. 5.1]. We say that a type A : U is contractible if the type SContr A
is inhabited, where we define SContr A , (ϕ : Φ)→ (t : [ϕ]→ A)→ A[ϕ 7→ t]. We define a
map f : X → Y to be a trivial fibration if every fiber is contractible.

If m and C satisfy the necessary conditions to apply Theorem 24 then there is an awfs
(C,F t) where the class underlying F t is precisely the class of trivial fibrations. We refer to
maps in the class underlying C as cofibrations.

3.3 Trivial cofibration and fibration awfs

We now give a more abstract characterization of weak fibrations (Definition 4) and define an
awfs where the right maps are weak fibrations. Following Gambino and Sattler [24], we use
the Leibniz adjunction to describe fibrations, writing ×̂B and ˆhomB(−,−) for the Leibniz
product and exponential constructed in a slice category C/B. We also use the following
notion of weak lifting property. This definition (although not the name) has been used before
in homotopical algebra by Dold [20] and also by Reedy [30]. Note however that the definition
of fibration considered by Dold is weaker than the one here, as one may see from Lemma 8.
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I Definition 29 (Weak left lifting property). Let m : A → B and f : X → Y . We say m
has the weak left lifting property against f if for every commutative square, as in the solid
lines below, there is a diagonal map, as in the dotted line below, such that the lower triangle
commutes strictly, and the upper triangle commutes up to a homotopy h : j ◦m ∼ a such
that f ◦ h is constant. We refer to such diagonal maps as weak fillers.

A X

B Y

a

m
∼

f

b

I Theorem 30. A map f : X → Y is a weak fibration if and only if for every object B,
every map r : 1B → IB and generating cofibration m : A→ 1B in C/B, r has the weak left
lifting property against ˆhomB(m, f).

Proof. Working in C/B, r has the weak left lifting property against ˆhomB(m, f) iff every
lifting problem of r ×̂Bm against f has a weak filler satisfying the additional condition of
being strict on A. This holds for all B, r and m and every choice of lifting problem iff it holds
for the universal lifting problem of ∆ ×̂I×Φ> against f , where ∆ is the map 1I×Φ → II×Φ in
C/(I× Φ) defined as the diagonal map I× Φ→ I× I× Φ. Such fillers of the universal lifting
problem correspond precisely to WComp terms. J

In order to obtain an awfs, we show that the above is equivalent to an alternative definition
using the mapping cylinder factorization, which we recall is defined as below.

I Definition 31 (Mapping cylinder factorization). Let m : A→ B. We define the mapping
cylinder factorization to be the maps A L(m)−→ Cyl(m) R(m)−→ B, defined as follows. We first
define Cyl(m) as the pushout of δA0 and m, writing ι0 : I×A→ Cyl(m) and ι1 : B → Cyl(m)
for the pushout inclusions. We define L(m) to be ι0 ◦ δA1 and define R(m) to be the unique
map such that R(m) ◦ ι0 = m ◦ π1 and R(m) ◦ ι1 = 1B.

I Theorem 32. Let f be a map in C. Then f is a weak fibration if and only if it has the
fibered right lifting property against the map LI×Φ(∆) ×̂I×Φ> in the slice category C/(I×Φ).

Using this alternative definition, we can apply Theorem 24 to obtain an awfs (Ct, F )
where F is precisely the class of weak fibrations. We refer to maps in Ct as trivial cofibrations.

3.4 The model structure
Now that we have defined the awfs’s (C,F t) and (Ct, F ), we use Sattler’s [32, Thm. 2.8] in
order to obtain a model structure on C.

I Lemma 33. The awfs’s (C,F t) and (Ct, F ) have the following key properties.
1. The functor ˆhom(δi,−) maps fibrations to trivial fibrations.
2. The functor ˆhom([δ0, δ1],−) preserves fibrations and trivial fibrations.
3. Every cofibration is a monomorphism.
4. Cofibrations are stable under pullback.

I Theorem 34. Suppose that C satisfies axioms ax1–ax5 and that every fibration is U-small
for some universe of small fibrations where the underlying object U is fibrant, and that C and
Φ satisfy one of the conditions required to apply Theorem 24.

Let (C,F t) be the awfs defined in Section 3.2 and let (Ct, F ) be the awfs defined in
Section 3.3 (restricted to C/1). Then C and F form the cofibrations and fibrations of a
(uniquely determined) model structure on C.
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Proof. By Sattler’s [32, Thm. 2.8] it suffices to check the following conditions.
1. The span property holds.
2. Trivial fibrations satisfy 2-out-of-3 relative to fibrations.
3. Fibrations and trivial fibrations extend along trivial cofibrations.
4. The wfs (Ct, F ) satisfies the Frobenius property.

Conditions (1) and (2) follow from the key properties (1) and (2) in Lemma 33 by
essentially the same arguments used by Sattler in [32, Sec. 4].

Trivial fibrations extend along all cofibrations, by the same argument used by Sattler
in [32, Lem. 3.9] together with the key properties (3) and (4) in Lemma 33.

As Sattler remarks in [32, Rem. 7.6], to show fibrations extend along trivial cofibrations
it suffices to show every fibration belongs to a universe U where the underlying object is
fibrant, which we assumed.

Finally, (Ct, F ) is Frobenius by the existence of fibration structures on Π-types and the
adjunction between pullback and dependent product. J

In particular, if ax6 and ax7 hold and I is tiny, we can use the construction of U from
Section 2.6 together with the proof of fibrancy in [13, Sec. 4.3].

The model structure obtained this way is “minimal” in the following sense [14, Sec. 1.6].

I Theorem 35. The class Ct is as small as possible subject to the following two conditions.
1. For every object B, the map δB0 : B → B × I belongs to Ct.
2. C and Ct form the cofibrations and trivial cofibrations of a model structure.

4 Identity types and higher inductive types

We have formalized three constructions of identity types in Agda, each of which requires
additional assumptions. The first follows [15, Sec. 9.1]; this requires a dominance on Φ and
extensionality for cofibrant propositions. The second approach uses the (C,F t) factorization
system following [33], while the third approach uses the (Ct, F ) factorization system following
[12, 11]. These rely on W -types with reductions to obtain the factorization systems. We
refer the interested reader to the Agda formalization for details.

A crucial component for modeling universes closed under higher inductive types is the
decomposition of composition into homogeneous composition and coercion [12, 18]. A
type A : Γ → U supports weak homogeneous composition if all of its fibers support weak
composition, i.e. for all (x : Γ) the type A x has a weak composition structure. Supporting
weak coercion corresponds to having weak composition only in the case when ϕ is ⊥ (i.e.,
the tube is empty). We have formalized that a type has weak composition if and only if
it has weak homogeneous composition and weak coercion. This makes it possible for us to
follow the same approach as in [12, 18] to model higher inductive types. We refer the reader
to [13, Sec. 5.1] for the construction of a circle type in this setting.

5 Conclusions

We have proved that any locally cartesian closed category C with I and Φ satisfying ax1–ax7
and where I is tiny provides a constructive model of HoTT/UF. Examples of such categories
are CCHM and Dedekind cubical sets as proven in [28, Sec. 8], and cartesian cubical sets as
proven in [2, Sec. 3.2]. Our conditions hold for cubical assemblies [37] and also apply to new
variants of cubical assemblies based on cartesian cubes rather than Dedekind cubes.
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Our construction of a model structure also applies to all of the above examples. As
observed by Sattler [32, Cor. 8.5], the LOPS construction of a universe does not apply for
simplicial sets because the interval is not tiny, but one can still obtain a model structure
using the non-constructive theorem that the definition of Kan fibration here is equivalent to
the classical definition using horn inclusions.

From the perspective of practical implementation and usability, the type theory corres-
ponding to this model is inferior to the type theories it generalizes: equalities that are strict
in the specialized type theories here only hold up to paths, so additional path algebra is
necessary to implement composition at the various types. The objective is rather to present
a theory with which the mathematical properties of the various type theories and models
can be studied simultaneously.

Future work

Now that we have given a unified construction for the various cubical models, the natural
next step is to use it to establish relationships between its various instantiations. One option
is to prove homotopy canonicity for the type theory using categorical gluing as in [19]. This
would show that closed terms of natural number type written in weak cartesian type theory
evaluate to the same numeral in any of the existing cubical type theories.

The construction may also be useful for uniformly analyzing the model structures induced
by different choices of cube category and generating cofibrations. Sattler has observed [17]
that the CCHM and ABCFHL constructions give model structures that are not Quillen
equivalent to spaces. However, the question is open for Dedekind cubes. One might also
investigate the relationships between the various cubical model structures.

Finally, the program of unification remains unfinished, as the BCH model is not an
instance of our construction. Indeed, our approach seems ill-suited to BCH, as it crucially
involves the diagonal (r = s) of compositions r → s. It is unclear to us whether BCH can be
naturally accommodated; it may simply be a fundamentally different construction.

5.1 Related work

As the notion of fibration defined in this paper coincides with the one of Orton and Pitts [28]
in the presence of a connection algebra, and this is equivalent to the Gambino-Sattler
definition [24], we recover the model structure of Sattler [32] when the category also has
connections. Another presentation of this model structure on CCHM and Dedekind cubical
sets can be found in Boulier’s Ph.D. thesis [10], formalized in the Coq proof assistant. Since
an equivalent definition of fibration was used by Van den Berg and Frumin in [22], when our
model structure exists we can recover theirs by restricting to fibrant objects. However, our
proof does not apply to their main example of the effective topos because it is unknown how
to construct a universe satisfying ax6 in this setting (see [35, Thm. 5.7]).

Furthermore, as we recover AFH fibrations when we assume diagonal cofibrations, we
also recover the model structure on cartesian cubical sets sketched by Coquand based on
Sattler’s model structure [17]. Awodey [4] uses a variation of composition 0→ r and 1→ r

to construct an awfs on cartesian cubical sets, but it is unclear whether this is sufficient to
obtain a model structure. Awodey has recently [6] introduced a notion of “unbiased fibrations”
that are equivalent to AFH fibrations, so the resulting model structure is also a special
case of ours when we assume diagonal cofibrations. Our generalization hence clarifies the
relationship between some of the various model structures on different cubical set categories.
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Abstract
Shrub-depth is a graph invariant often considered as an extension of tree-depth to dense graphs.
We show that the model-checking problem of monadic second-order logic on a class of graphs of
bounded shrub-depth can be decided by AC0-circuits after a precomputation on the formula. This
generalizes a similar result on graphs of bounded tree-depth [3]. At the core of our proof is the
definability in first-order logic of tree-models for graphs of bounded shrub-depth.
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1 Introduction

In [15] Ganian et al. introduced the graph invariant shrub-depth with the goal to extend
the invariant tree-depth in a similar way as clique-width extends tree-width. Shrub-depth
turned out to be a quite robust notion as shown by the following result of [15].

For a class K of graphs the following are equivalent:
(i) K has bounded shrub-depth.
(ii) K has an MSO-interpretation (i.e., an interpretation definable in monadic second-

order logic MSO) of width one in a class of rooted labelled trees of bounded depth.
(iii) K has bounded SC-depth (subset-complementation depth).

Let p-MC(K ,MSO) denote the parameterized model-checking problem for MSO on the
class K parameterized by the length of the formula. In [3] we showed that p-MC(K ,MSO)
is in para-AC0 for every class K of graphs of bounded tree-depth. The parameterized
circuit complexity class para-AC0 is considered to be the parameterized analog of the circuit
complexity class (dlogtime-uniform) AC0. In fact, by definition, a parameterized problem is in
para-AC0 if it is in (dlogtime-uniform) AC0 after a precomputation on the parameter. Recall
that the class FPT (fixed-parameter-tractability) consists of the parameterized problems
that are solvable in polynomial time after a precomputation on the parameter.

As the main result of this paper we extend our result on the MSO-model-checking for
classes of bounded tree-depth to classes of bounded shrub-depth.

I Theorem 1. p-MC(K ,MSO) ∈ para-AC0 for every class of bounded shrub-depth.
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It is well known that p-MC(K ,MSO) ∈ FPT if K has bounded clique-width (a result due to
Courcelle et al. [5]). By [15] every class of bounded shrub-depth has bounded clique-width.
Hence, p-MC(K ,MSO) ∈ FPT for K of bounded shrub-depth. However, there exist graph
classes K of bounded clique-width with p-MC(K ,MSO) /∈ para-AC0, e.g., the class of all
graphs consisting of disjoint paths [3, Theorem 7.3]. Therefore, the algorithmic techniques
via clique-width cannot be adapted to para-AC0. Instead, we develop some combinatorial
machinery on graphs of bounded shrub-depth which can be defined in first-order logic (FO).

We briefly explain some ingredients of this combinatorial machinery. Central to the
definition of shrub-depth are tree-models of graphs. The tree-models are rooted trees of
constant depth with colored leaves, the leaves being the vertices of the corresponding graph.
Their FO-definability has presented some major challenges. To better understand tree-models,
we find it more convenient to work with the SC-depth instead of the shrub-depth. Roughly
speaking, the SC-depth SC(G) of a graph G is the minimum number of parallel subset
complementations required to construct G from graphs without any edges (i.e, from graphs
of isolated vertices). The equivalence between (i) and (iii) mentioned at the beginning tells us
that the boundedness of the SC-depth of a class of graphs is equivalent to the boundedness
of its shrub-depth. As a first step we prove that the complementation subsets (we call
them flipping sets) underlying SC(G) can be uniquely determined in FO if we are given
an unambiguous representative system of G (once having the flipping sets we can construct
a tree-model as in the proof of the implication (iii) ⇒ (i) in [15]). However the size of a
representative system cannot be bounded in terms of the depth of the graph. Hence we cannot
afford to guess such a system in FO. We show that every graph of bounded SC-depth has a
representation as a tiered graph. For such graphs we can guess appropriate representative
systems iteratively in FO. Once all the flipping subsets have been obtained, we can FO-define
a tree-model. More precisely,we show:

I Theorem 2. If K is a class of bounded shrub-depth (or of bounded SC-depth), there is an
FO-interpretation that assigns to every ordered graph (G,<) with G ∈ K a tree-model.

Barrington et al. [1] showed that the expressive power of FO with built-in arithmetic
coincides exactly with dlogtime-uniform AC0-computability. Using this fact we get Theorem 1
from Theorem 2 in the same way as we did for tree-depth in [3].

We obtain a further consequence of our proof of the FO-definability of tree-models. In
fact, we get that every MSO-sentence is equivalent to an FO-sentence on ordered graphs of
bounded shrub-depth. More precisely:

I Proposition 3. Let K be a class of graphs of bounded shrub-depth. Then for every
MSO-sentence ϕ there is an FO-sentence ψ such that for any ordered graph (G,<) with
G ∈ K ,

G |= ϕ ⇐⇒ (G,<) |= ψ.

Observe that the above ϕ has no access to the order, while ψ does. So it is natural to ask
whether we can eliminate all occurrences of < in ψ, in other words, whether MSO = FO
on K . The result was already claimed by Gajarský and Hlinĕný [11]:

I Theorem 4. MSO = FO on every class of graphs of bounded shrub-depth.

We prove this result from Proposition 3 using Craig’s Interpolation Theorem. Craig’s
Interpolation Theorem [6] is a basic result in classical model theory. However it fails on finite
models [17]. To circumvent this problem, in a straightforward way we generalize the notion of
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SC-depth to infinite graphs and observe that our combinatorial characterization of bounded
SC-depth carries over to infinite graphs as well. The excursion to the infinite yields new
insights for finite graphs, e.g., we show the following effective version of [15, Corollary 5.6]:

I Theorem 5. There is an algorithm that applied to d eventually stops and outputs a finite
set Fd of graphs such that a graph has SC-depth ≤ d if and only if it excludes the graphs
in Fd as induced subgraphs.

Related work. Theorem 1 can be viewed as a part of the recent efforts to extend algorithmic
meta-theorem to dense graphs. Algorithmic meta-theorems unify many algorithmic results on
graph classes where the underlying computational problems can be defined in terms of logic.
Most existing such meta-theorems concern sparse graph classes, i.e., graph classes where the
number of edges is linearly bounded by the number of vertices. As examples we mention
Courcelle’s Theorem [4] that the p-MC(MSO,K) can be solved in fixed-parameter linear
time provided that K has bounded tree-width and the result due to Grohe et al. [16] stating
that p-MC(FO,K ) ∈ FPT if K is a nowhere dense class. The dependence of the parameter
in Courcelle’s Theorem is non-elementary as shown by Frick and Grohe [9]. Improvements of
the dependence of the parameter are known for various classes of graphs (see e.g., Gajarský
and Hlinĕný [10] and Lampis [19]). A similar better dependence of the parameter holds for
graph classes of bounded shrub-depth if every graph is given alongside with a tree-model
of corresponding depth [10]. As far as circuit complexity is concerned, Pilipczuk et. al
showed [20] that the model-checking problem for FO on graphs of bounded expansion can be
decided by circuits of size f(k) · nO(1) and of depth f(k) +O(logn), where k is the size of
the input formula and n the size of the graph.

Compared to sparse graph classes, much less is known for dense graphs. We have already
mentioned that p-MC(K ,MSO) ∈ FPT if K has bounded clique-width. Recall that the
class of cliques (i.e., complete graphs), which are obviously dense, has clique-width 1. For
first-order logic, algorithmic meta-theorems are known e.g., for interval graphs [14], partial
orders [12], and graphs FO-interpretable in bounded degree graphs [13].

In [8] Elberfeld et al. proved that MSO = FO on graphs of bounded tree-depth. Graphs
of bounded tree-depth has bounded shrub-depth as well. Thus Theorem 4 generalizes this
result. As already mentioned, Theorem 4 was first claimed in [11, Theorem 5.14]. One crucial
tool is based on the proof of [11, Theorem 5.2]. However, we could not verify this proof.
Besides that, our proof uses completely different techniques.

The MSO-sentence ψ in Proposition 3 contains a symbol for the order relation, however
its validity in a graph G (of the class K) does not depend on what order of the set of
vertices of G we choose. That is, by definition, the sentence ϕ is order-invariant on K . In a
recent paper Eickmeyer et al. [7] obtain FPT-tractability results for the set of order-invariant
MSO-sentences essentially for the same classes of graphs as in the unordered case. However
the model-checking problem for order-invariant MSO on graphs of bounded tree-depth (thus
on graphs of bounded shrub-depth) is not in para-AC0. In fact, consider graphs consisting
of disjoint triangles and isolated vertices. Then the parity of the number of the triangles can
be expressed by an order-invariant MSO-sentence. On the other hand, it is easy to see that
this property cannot be in AC0 by Parity /∈ AC0.

Organization of this paper. In Section 2 we fix some notations. In Section 3 and Section 4
we recall the definitions and some basic properties of shrub-depth and of SC-depth, respect-
ively, and show that the classes TMm(d) and SC(d) are MSO-axiomatizable. In Sections 5–7
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we stepwise develop the machinery which finally allows us to prove Theorem 2 (and hence,
Theorem 1) in Section 8. Theorem 4 and Theorem 5 are shown in Section 9 and Section 10,
respectively.

Due to space limitations we defer many proofs to the full version of this paper. Sometimes
we indicate this by writing “Proof: full paper” at the end of the statement of a theorem,
proposition,. . .

2 Preliminaries

We denote by N the set of natural numbers ≥ 0. For n ∈ N let [n] := {1, 2, . . . , n}.

First-order logic FO and monadic second-order logic MSO. A vocabulary τ is a finite set
of relation symbols. Each relation symbol has an arity. A structure A of vocabulary τ , or
τ -structure, consists of a nonempty set A, called the universe of A and of an interpretation
RA ⊆ Ar of each r-ary relation symbol R ∈ τ . In this paper all structures have a finite
universe with the exception of Section 9 and Section 10.

Formulas ϕ of first-order logic FO of vocabulary τ are built up from atomic formulas
x1 = x2 and Rx1 . . . xr (where R ∈ τ is of arity r and x1, x2, . . . , xr are variables) using
the boolean connectives ¬, ∧, and ∨ and the universal ∀ and existential ∃ quantifiers. By
the notation ϕ(x̄) with x̄ = x1, . . . , xe we indicate that the variables free in ϕ are among
x1, . . . , xe. In addition to the individual variables of FO, formulas of monadic second-order
logic MSO may also contain set variables. We use lowercase letters (usually x, y, z) to denote
individual variables and uppercase letters (usually X,Y, Z) to denote set variables. To obtain
MSO the syntax of FO is enhanced by new atomic formulas of the form Xy and quantification
is also allowed over set variables.

Graphs and trees. In this paper graphs are always simple and undirected. When considering
definability problems for graphs we view graphs as τ := {E}-structures where the edge
relation is an irreflexive and symmetric binary relation. Otherwise we use the notation G
for a graph and view it as a pair G = (V (G), E(G)), where V (G) is the set of vertices and
E(G) the set of edges. For graphs G and H with disjoint vertex sets we denote by G ∪̇ H
the graph with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H).

We view rooted trees with m labels as τm := {P,L1, . . . , Lm}-structures T =
(
T, P T , LT1 ,

. . ., LTm
)
. Here P is a binary relation symbol and L1, . . . , Lm are unary. P T is the parent-child

relation of the tree. The root of the tree can be defined by the formula root(x) := ∀y¬Pyx.
The relations LT1 , . . . , LTm are the labels. Recall that the depth of T is the maximum length of
a path from the root to a leaf. We denote by leaves(T ) the set of leaves of T . For m, d ∈ N
we denote by Tree[m, d] the class of rooted trees with m labels and of depth d, where each
root-to-leaf path is of length exactly d.

3 Shrub-depth

We recall the notion of the shrub-depth of a graph (introduced in [15]) and show that the
classes TMm(d) (with m, d ∈ N) of bounded shrub-depth are axiomatizable in MSO.

I Definition 6. Let m, d ∈ N. A tree-model of m labels and depth d of a graph G is a pair
(T , D) with T ∈ Tree[m, d] and D ⊆ {1, 2, . . . ,m}2 × {1, 2, . . . , h} for some h ≥ d 1 (called

1 For technical reasons (in particular, for the proof of Proposition 12), we allow h to be greater than d.
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the signature of the tree-model) such that
V (G) = leaves(T ),
each leaf of T holds exactly one label from {P1, . . . , Pm} and no other node of T holds a
label, i.e., leaves(T ) = P T1 ∪̇ · · · ∪̇ P Tm ,
for any i, j ∈ [m] and s ∈ [d] if (i, j, s) ∈ D, then (j, i, s) ∈ D,
E(G) =

{
{u, v} | u, v ∈ V (G), u 6= v, u ∈ P Ti , v ∈ P Tj , and

(
i, j, distT (u ∧ v, u)

)
∈ D

}
.

By distT (u ∧ v, u) we denote the distance from the least common ancestor u ∧ v of u and v
to v. Note that distT (u∧ v, u) = distT (u∧ v, v), as both u and v are leaves of T (of the same
depth). In the context of tree-models we also speak of the colors Pi and say that vertex v has
color Pi if v ∈ P Ti .

I Definition 7 ([15]). Let TMm(d) denote the class of graphs with a tree-model of m labels
and depth d. A class K of graphs has shrub-depth d if there exists m such that K ⊆ TMm(d),
while for all m′ ∈ N we have K 6⊆ TMm′(d− 1).

The class K has bounded shrub-depth if K ⊆ TMm(d) for some m, d ∈ N.

The following lemma shows that the shrub-depth is relevant only to infinite classes of graphs
and not to a single graph.

I Lemma 8. For every graph G we have G ∈ TM|V (G)|(1).

Proof. Assume V (G) = [m]. Then a tree T ∈ Tree[m, 1] with P Ti = {i} for i ∈ [m] together
with the signature D := {(i, j, 1) | i, j ∈ [m] and {i, j} ∈ E(G)} is a tree-model for G. J

The shrub-depth hierarchy is strict:

I Proposition 9. Let d ∈ N. The class of graphs underlying rooted trees in Tree[m, d] for
some (= all) m has shrub depth d. Proof: full paper.

The following facts are easy to verify.

I Lemma 10.
(a) TMm(d) ⊆ TMm′(d′) for m ≤ m′ and d ≤ d′.
(b) TMm(d) is closed under induced subgraphs.
(c) Every graph which is a clique is in TM1(1).

A proof of the next result can be found in [15].

I Proposition 11. There is a computable function ` : N2 → N such that for G ∈ TMm(d)
every two vertices, which are in the same connected component of G, have a distance ≤ `(m, d).
Hence, for fixed m, d ∈ N, we can express in FO that two vertices are in the same connected
component in graphs of TMm(d).

By this lemma we see that the class of paths is not of bounded shrub-depth. As every path
is a subgraph of some clique, Lemma 10(c) shows that the classes TMm(d) for m, d ≥ 1 are
not closed under subgraphs.

By [15, Corollary 5.6] we know that for m, d ∈ N there is a finite set Fm,d of graphs
such that a graph G is in TMm(d) if and only if “G excludes the graphs in Fm,d as induced
subgraphs”, i.e, no graph in Fm,d is isomorphic to an induced subgraph of G. Hence there
is an FO-sentence ρ(m, d) axiomatizing TMm(d). However the proof of [15, Corollary 5.6]
sheds no light on how to compute ρ(m, d) from (m, d). We need the corresponding result for
MSO in order to get such an effective FO-axiomatization of TMm(d) in Section 9.

I Proposition 12. We can effectively compute for m, d ∈ N an MSO-axiomatization of
TMm(d). Proof: full paper.
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4 SC-depth

Classes of graphs of bounded shrub-depth coincide with classes of graphs of bounded SC-
depth. For our goal it is more convenient to work with the SC-depth. Let G be a graph
and S a subset of its vertex set V (G). Then GS denotes the graph obtained from G by
flipping the set S; that is, GS has the vertex set V (G) and edge set{

{u, v} ∈ E(G) | u /∈ S or v /∈ S
}
∪
{
{u, v} | u, v ∈ S, u 6= v, and {u, v} /∈ E(G)

}
.

Here, we deviate from the original notation ḠS , which might become cumbersome when
there are several flipping sets. For subsets S1, . . . , Sn of V (G) we write GS1...Sn for(
. . . ((GS1)S2) . . .

)Sn . The following lemma contains some simple facts about G 7→ GS .

I Lemma 13. Let S ⊆ V (G), T ⊆ V (G), and H be a further graph.
(a) If |S| ≤ 1, then GS = G;
(b) if GS = GT and |S| ≥ 2, then S = T ;
(c) GST = GTS;
(d) GSS = G;
(e) (GS ∪̇ H) = (G ∪̇ H)S (recall that S ⊆ V (G)).
We introduce the class SC(d) of graphs of complementation depth ≤ d (or, SC-depth ≤ d).

I Definition 14. Let d ∈ N. We define inductively the class SC(d).

SC(0) is the class of graphs whose vertex set is a singleton.

Assume that m ≥ 1 and the graphs G1, . . . , Gm ∈ SC(d) have pairwise disjoint vertex sets.
Then for S ⊆ V (G1) ∪ · · · ∪ V (Gm) we have(

G1 ∪̇ G2 ∪̇ · · · ∪̇ Gm
)S ∈ SC(d+ 1).

A class of graphs is of bounded SC-depth if it is contained in SC(d) for some d ∈ N.

As every clique has SC-depth ≤ 1 we see that the class of cliques has bounded SC-depth.
The following lemma shows that every graph is in some SC(d). We define the SC-depth
SC(G) of a graph G as the least d ∈ N such that G ∈ SC(d).

I Lemma 15. G ∈ SC(|V (G)| − 1) for every graph G.

Proof. The proof is a simple induction on |V (G)|. A graph with only one vertex is in SC(0)
by definition. Let d ≥ 1 and let u be any vertex of a graph G with exactly d+ 1 vertices.
Let H be the graph induced by G on V (G) \ {u} and set H1 := H{v∈V (H)|{u,v}∈E(G)}. By
induction hypothesis, H1 ∈ SC(d− 1) as H1 has d elements. Let U denote the graph with
V (U) = {u}. As G = (H1 ∪̇ U){u}∪{v∈V (H)|{u,v}∈E(G)}, we get G ∈ SC(d). J

If we write G ∪̇ H we tacitly assume that the graphs G and H have disjoint vertex sets
and if we write GS we assume that S ⊆ V (G).

The following basic properties of the classes SC(d) will be proven in the full paper.

I Lemma 16. Let d ∈ N.
(a) SC(d) ⊆ SC(d+ 1).
(b) SC(d) is closed under taking induced subgraphs.

(c) SC(d+ 1) =

(G1 ∪̇ G2 ∪̇ · · · ∪̇ Gm
)S∣∣∣∣∣ m ≥ 1, G1, . . . , Gm ∈ SC(d) are con-

nected and S ⊆ V (G1) ∪ · · · ∪ V (Gm)

.

Moreover, assume that H =
(
G1 ∪̇ G2 ∪̇ · · · ∪̇ Gm

)S with Gi ∈ SC(d). Then for the
connected components Hij of Gi we have Hij ∈ SC(d) and H =

(⋃̇
Hij

)S.
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Parts (a) and (b) of the following proposition show that a class of graph has bounded shrub-
depth if and only if it has bounded SC-depth. Then its part (c) follows by Proposition 11.

I Proposition 17 ([15]).
(a) Let m, d ∈ N. Then TMm(d) ⊆ SC(d ·m · (m+ 1)).
(b) Let d ∈ N. Then SC(d) ⊆ TM2d(d).
(c) There is a computable function `SC : N→ N such that for G ∈ SC(d) every two vertices,

which are in the same connected component of G, have a distance ≤ `SC(d).
Again using the existence of a characterization of SC(d) in terms of excluding a finite set of
induced subgraphs, one gets the FO-axiomatizability of SC(d). We will show the effective
FO-axiomatizability (see Corollary 43(a)). Here we get (see the full paper for a proof):

I Proposition 18. We can effectively compute for d ∈ N an MSO-axiomatization ρd of SC(d).

5 Towers and representative systems

For d ≥ 1 we denote by Tow(d) the class of towers ≤ d, i.e., the class of graphs which can
be written in the form

G =
(
I(V (G))

)S1...Sd . (1)

Here I(X) denotes the graph with vertex X and no edges. By Lemma 13(a) we have
Tow(d) ⊆ Tow(d+ 1) and by Lemma 13(e), every graph is in Tow(d) for some d. Note
that Tow(d) ⊆ SC(d) for d ≥ 1. However, already SC(2) is not contained in any class
Tow(d). In fact, the graphs Gn :=

(
{a1, . . . , an, b1, . . . , bn},

{
{ai, bi} | i ∈ N

})
for n ≥ 1

are all contained in SC(2). Note that every two vertices of the graph in (1), which are in the
same atom of the boolean algebra generated by S1, . . . , Sd, “behave in the same way.” Hence,
Gn /∈ Tow(d) for d < log2 n. Readers familiar with [19] will realize that a class of graphs
has bounded neighborhood diversity if and only if it is contained in Tow(k) for some k ∈ N.

In this section, as a first step towards the main results we show that the classes Tow(d)
are FO-axiomatizable, thereby getting familiar with some tools relevant to the general case.

We set S := S1 . . . Sd. For G as in (1) we associate with every v ∈ G a “color”

χS(v) := (b1, . . . , bd) ∈ {0, 1}d, where bi =
{

1 if v ∈ Si
0 otherwise.

For b = (b1, . . . , bd) ∈ {0, 1}d and b′ = (b′1, . . . , b′d) ∈ {0, 1}d we define

〈b, b′〉 :=
∑
i∈[d]

bi · b′i mod 2.

I Lemma 19. Let G =
(
I(X)

)S and v, w ∈ V (G) with v 6= w. Then

{v, w} ∈ EG ⇐⇒ 〈χS(v), χS(w)〉 = 1.

Note that the mapping χS : V (G) → {0, 1}d is not necessarily surjective. Assume that
χS(V (G)) = {b1, . . . , bm} with pairwise distinct bi’s in {0, 1}d. For i ∈ [m] choose a vertex
ui ∈ V (G) such that χS(ui) = bi. Then, (u1, . . . , um; b1, . . . , bm) is a d-representative system
for G in the sense of the following definition and χS is a corresponding coloring.
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15:8 FO-Definability of Shrub-Depth

I Definition 20. Let G be a graph and d ≥ 1. A d-representative system for G is a tuple

R :=
(
u1, . . . , um; b1, . . . , bm

)
with u1, . . . , um ∈ V (G) and with pairwise distinct elements b1, . . . , bm of {0, 1}d if there is a
“coloring” χ : V (G)→ {b1, . . . , bm} with (R1) and (R2).
(R1) For every i ∈ [m]: χ(ui) = bi.
(R2) For all v, w ∈ V (G) with v 6= w:

(
{v, w} ∈ EG ⇐⇒ 〈χ(v), χ(w)〉 = 1

)
.

The vertices u1, . . . , um are then called representatives.

I Proposition 21. A graph is in Tow(d) if and only if it has a d-representative system.

We prove this characterization of Tow(d) in the full paper. It does not yield an FO-
axiomatization of Tow(d) as we need the coloring χ. In general this coloring is not uniquely
determined (again see the full paper). This fact motivates the following definition.

I Definition 22.
(i) Let d ≥ 1 and B ⊆ {0, 1}d. The set B is unambiguous if for b1, b2 ∈ B, 〈b1, b〉 = 〈b2, b〉

for all b ∈ B implies b1 = b2.
(ii) Let G be a graph with G =

(
I(V (G))

)S1...Sd . Then S1, . . . , Sd is unambiguous if
χS1...Sd(V (G)) is unambiguous. A d-representative system (u1, . . . , um; b1, . . . , bm) for
G is unambiguous if {b1, . . . , bm} is unambiguous.

Every representative system contains an unambiguous representative system.

I Lemma 23. Let R :=
(
u1, . . . , um; b1, . . . , bm

)
be a d-representative system for a graph G.

Then there is an s ∈ [m] and 1 ≤ i1 < . . . < is ≤ m such that
(
ui1 , . . . , uis ; bi1 , . . . , bis

)
is an

unambiguous d-representative system for G. Proof: full paper.

Why is unambiguity an important property? The next result shows that for unambiguous
representative systems there is a unique coloring. Its value for a vertex is already determined
by its neighbors in the set of representatives.

I Proposition 24. Let G be a graph, R :=
(
u1, . . . , um; b1, . . . , bm

)
be an unambiguous d-

representative system for G, and χ a corresponding coloring. Then (by Definition 20 and
unambiguity) for v ∈ V (G) \ {u1, . . . , um} the color χ(v) is the unique bj with j ∈ [m] such
that for all i ∈ [m] we have

{v, ui} ∈ E(H) ⇐⇒ 〈bj , bi〉 = 1.

Then S1, . . . , Sd ⊆ V (G) with Si := {v ∈ V (G) | (χ(v))i = 1}
(
by (χ(v))i we denote the ith

component of χ(v)
)
is unambiguous and G = (I(V (G)))S1...Sd .

Proof. The second part follows from the fact that χS1...Sd = χ. J

Now we easily get the FO-axiomatizability of Tow(d) (for a proof see the full paper).

I Theorem 25. For d ≥ 1 the class Tow(d) is axiomatizable in FO.

6 Tiered graphs

We introduce (d, q)-tiered graphs, a technical tool we use to obtain our main results. Every
graph we considered in the previous section is (0, q)-tiered for some q ∈ N. So in the preceding
section we saw that for (0, q)-tiered graphs G we can FO-define flipping sets that applied
to V (G) yield G. (d, q)-tiered graphs G contain some distinguished sets of flipping sets
S0, . . . ,Sd. In this section we show that essentially we can FO-define flipping sets S′0, . . . ,S′d
with GS0,...,Sd = GS′0,...,S

′
d (see Corollary 32).
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I Definition 26. For a set X and S1, . . . , Sd ⊆ X we set

color(X,S1 . . . Sd) := {χS1...Sd(v) | v ∈ X},

the set of colors of elements of X w.r.t. S1, . . . , Sd.

I Definition 27. Let q, d ∈ N.
(a) If G =

(
I(V (G))

)S with |S| ≤ q, then G is a (0, q)-tiered graph.
(b) Assume d ≥ 1 and let G0, . . . , Gd = G be graphs. If

(i) G0 =
(
I(X))S0 for some set X and some S0 with |S0| ≤ q,

(ii) for every t ∈ [d] we have Gt =
(
Gt−1 ∪̇

⋃̇
δ∈∆t, e∈FδHte

)St
for some St with

|St| ≤ q, for some finite ∆t and Fδ for δ ∈ ∆t, and for some graphs Hte for e ∈ Fδ
with δ ∈ ∆t,

(iii) for every t ∈ [d] and every δ ∈ ∆t we have |Fδ| ≥ 3 and for all e, e′ ∈ Fδ,

c(δ) := color(V (Hte),St . . .Sd) = color(V (Hte′),St . . .Sd),

then G is a (d, q)-tiered graph.

Note that part (b)(iii) is the only restriction on the graphs Hte even though in our applications
these graphs will be “simpler” than G. In part (b)(ii) we allow that on the right hand side
of the equality at most one of the terms is missing. That is, it can be that either the term
Gt−1 is not present (Gt−1 is the “empty” graph) or that ∆t = ∅

((⋃̇
δ∈∆t, e∈FδHte

)St is the
“empty” graph

)
. If for t = 1 the term G0 is not present, then X is empty in (b)(i).

In this section and the next one terms may represent the “empty” graph by similar reasons.

For G as in Definition 27(b)(ii) and t ∈ {0, 1, . . . , d} we define the tth tier Tt by

T0 = X and Tt =
⋃

δ∈∆t, e∈Fδ

V (Hte) for all t ∈ [d].

I Lemma 28. Let v ∈ Tt with t ∈ {0, . . . , d}. Then χS0...St−1(v) = 0̄.

By Definition 27 we have

G =
(
· · ·
(
I(T0)S0 ∪̇

⋃̇
δ∈∆1, e∈Fδ

H1e
)S1 ∪̇ · · · ∪̇

⋃̇
δ∈∆d, e∈Fδ

Hde

)Sd

=
(
I(T0) ∪̇

⋃̇
t∈[d], δ∈∆t, e∈Fδ

Hte

)S0S1...Sd
(by Lemma 13 (e)). (2)

Our goal is to show that in G we can FO-define flipping sets “equivalent to” S0,S1, . . . ,Sd.
To that end, we introduce an auxiliary graph

L :=
(
. . .
(

(I(T0))S0 ∪̇ I(T1)
)S1
∪̇ · · · ∪̇ I(Td)

)Sd
=
(
I(V (G))

)S0S1...Sd . (3)

We want to apply to L =
(
I(V (G))

)S0S1...Sd the results developed in the preceding section.
First we show that relevant information on E(L) can be FO-defined in G.

Let t ∈ [d]. For δ ∈ ∆t we fix pairwise distinct e1, e2, e3 ∈ Fδ. As for i ∈ [3],
c(δ) = color(V (Htei),St . . .Sd), we choose for I(V (Htei))St...Sd a representative system(
uδi1, . . . , u

δ
i|c(δ)|;χSt...Sd(uδi1), . . . , χSt...Sd(uδi|c(δ)|)

)
such that for i, j ∈ [3] and ` ∈

[
|c(δ)|

]
,

χSt...Sd(uδi`) = χSt...Sd(uδj`). (4)
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Then V Vt :=
{
uδi` | δ ∈ ∆t, i ∈ [3], and ` ∈

[
|c(δ)|

]}
is the set of voting vertices in Tt.

Let c(0) := color(T0,S0 . . .Sd) and let
(
u1, . . . , u|c(0)|;χS0...Sd(u0), . . . , χS0...Sd(u|c(0)|)

)
be a

representative system for
(
I(T0)

)S0...Sd . We define the set V V of all voting vertices by

V V :=
{
u1, . . . , u|c(0)|

}
∪
⋃
t∈[d]

V Vt.

One easily shows:

I Lemma 29.
(a) χS0...Sd({u | u ∈ V V }) = χS0...Sd(V (L)).
(b) The size of V V can be bounded in terms of d, q, and

∑
t∈[d] |∆t|.

Part (a) of the next lemma shows that we can decide in G whether {u, v} ∈ E(L) between
a voting vertex u and any other vertex v (see the full paper for a proof). Essentially, the
majority opinion of the voting vertices decides. Part (b) is an immediate consequence of (a).

I Lemma 30.
(a) Let v ∈ V (G) and u ∈ V Vt for some t ≥ 1, say u = uδi` where δ ∈ ∆t, i ∈ [3], and

` ∈
[
|c(δ)|

]
. If v 6= u, then

{v, u} ∈ E(L) ⇐⇒ there are 1 ≤ i1 < i2 ≤ 3 such that {v, uδi1`}, {v, u
δ
i2`} ∈ E(G).

For u ∈ {u1, . . . , u|c(0)|} with v 6= u we have
(
{v, u} ∈ E(L) ⇐⇒ {v, u} ∈ E(G)

)
.

(b) In G we can express in FO with parameters for the elements of V V whether {v, u} ∈ E(L)
for v ∈ V (L) and u ∈ V V .

However the information of part (a) doesn’t allow us to compute χS0...Sd(v) for all v ∈ V (L).
Again we have the problem of ambiguity. We turn to this problem. By Lemma 29(a) we can
choose vertices u1, . . . , um ∈ V V such that

R :=
(
u1, . . . , um;χS0...Sd(u1), . . . , χS0...Sd(um)

)
is a representative system for L =

(
I(V (G))

)S0S1...Sd . In the preceding section we have seen
how to obtain unambiguous S′0, . . . ,S′d with L =

(
I(V (G))

)S′0S′1...S
′
d . Let us recall how we

did this. So assume R is not unambiguous. Then there are distinct j1, j2 ∈ [m] such that

for all i ∈ [m]: χS0...Sd(uj1)⊕ χS0...Sd(ui) = χS0...Sd(uj2)⊕ χS0...Sd(ui).

Then we gave all vertices of color χS0...Sd(uj2) the color χS0...Sd(uj1). This could be prob-
lematic as we also want to preserve (2), that is, we also aim at:

G =
(
I(T0) ∪̇

⋃̇
t∈[d], δ∈∆t, e∈Fδ

Hte

)S′0S′1...S
′
d

. (5)

If e.g. the vertex uj2 is in H5e and uj1 is in H3e′ and we give uj2 the color of uj1 , then
already S3 (more precisely, S′3) could introduce edges between uj2 and vertices in H3e′ that
destroy the validity of (5). In fact, the first equality of (2) implies that S3 cannot contain
any vertex from H5e. In the proof of our goal (the following proposition) in the full version
we take care of this problem. In essence, we will always keep a vertex in its original tier.

I Proposition 31. Let the (d, q)-tiered graph G and L be as above. There exist sequences of
subsets S′0, . . . ,S′d of V (G) = V (L) such that:
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(a) G =
(
· · ·
(
I(T0)S′0 ∪̇

⋃̇
δ∈∆1, e∈FδH1e

)S′1 ∪̇ · · · ∪̇
⋃̇
δ∈∆d, e∈FdHde

)S′d
and thus,

G =
(
I(T0) ∪̇

⋃̇
t∈[d], δ∈∆, e∈Fδ

Hte

)S′0S′1...S
′
d

.

In particular, all ∆t’s, Fδ’s, and Hte’s are the same as in (2) and for t ∈ [d], δ ∈ ∆t,
and e, e′ ∈ Fδ we have color(V (Hte),S′t . . .S′d) = color(V (Hte′),S′t . . .S′d). Hence, also
the first equality for G witnesses that G is a (d, q)-tiered graph.

(b) L :=
(
. . .
(

(I(T0))S′0 ∪̇ I(T1)
)S′1
∪̇ · · · ∪̇ I(Td)

)S′d
=
(
I(V (G))

)S′0S′1...S
′
d . Moreover,

S′0S′1 . . .S′d is unambiguous with respect to L.
By (2) and Lemma 13(c), (d) we get the following immediate consequence of part (a).

I Corollary 32. GS′0S′1...S
′
d = I(T0) ∪̇

⋃̇
t∈[d], δ∈∆t, e∈FδHte = GS0,...,Sd .

The main message of this section is the following: For (d, q)-tiered graphs once we have
guessed the correct unambiguous representative system we can FO-define the edge relation
of the graph GS′0...S

′
d .

7 From graphs of bounded SC-depth to tiered graphs

Here we reduce graphs of bounded SC-depth to tiered graphs (see Proposition 36). For
this purpose it is useful to consider the generalized SC-depth of graphs obtained from the
SC-depth by allowing “at the end” a bounded number of flipping sets.

I Definition 33. Let d, q ∈ N. By GSC(d, q) we denote the class of graphs of q-generalized
SC-depth ≤ d (here q refers to the bound for the number of flipping sets in the last step).
The classes GSC(d, q) are defined as follows.
(i) If the vertex set V (G) of the graph G is a singleton, then G ∈ GSC(0, q).
(ii) Assume d ≥ 1 and G =

(⋃̇
e∈FGe

)S with |S| ≤ q and Ge ∈ SC(d− 1) for every e ∈ F .
Then G ∈ GSC(d, q).

I Lemma 34.
(a) SC(d) = GSC(d, 1).
(b) If G ∈ GSC(1, q), then G is a (0, q)-tiered graph.
Let d ≥ 2 and q ≥ 1 and G ∈ GSC(d, q). Hence G =

(⋃̇
e∈FGe

)S, where |S| ≤ q and
Ge ∈ SC(d− 1) for every e ∈ F . We let F0 be the set of e ∈ F such that there is at most
one e′ ∈ F with e′ 6= e and color(V (Ge′),S) = color(V (Ge),S). We partition F \ F0 into
sets (Fδ)δ∈∆ such that for every δ ∈ ∆ there is a color c(δ) such that for all e ∈ Fδ we
have c(δ) = color(V (Ge),S) and for distinct δ, δ′ ∈ ∆ we have c(δ) 6= c(δ′). By definition,
|∆| ≤ 22q and |Fδ| ≥ 3 for all δ ∈ ∆ (note that ∆ may be empty). Observe that

|F0| ≤ 2 · 22|S| = 22q+1. (6)

As d ≥ 2, for every e ∈ F0 the graph Ge can be written in the form Ge =
(⋃̇

f∈FeGef

)Se
,

where all Gef are in SC(d− 2) and Se ⊆ V (Ge). Let T be the sequence of all sets Se with
e ∈ F0. By (6), |T| ≤ 22q+1. We define the graph G′ by (note that F0 may be empty)

G′ :=
(⋃̇

e∈F0, f∈Fe
Gef

)T
.

The following statements result directly from the definitions.
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I Lemma 35.
(a) G′ ∈ GSC(d− 1, 22q+1).

(b) G =
(
G′ ∪̇

⋃̇
δ∈∆, e∈FδGe

)S
with |∆| ≤ 22q , Ge ∈ SC(d− 1) for e ∈ Fδ and δ ∈ ∆.

We define the function h by: h(0, q) := 0, h(1, q) := q, and h(d+ 1, q) := h(d, 22q+1)
for d ≥ 1. Now a simple induction shows (for a proof see the full paper):

I Proposition 36. Let d ≥ 1 and G ∈ GSC(d, q). Then G is a (d− 1, h(d, q))-tiered graph,
i.e., G can be written in the form

G =
(
. . .
((
I(T0)

)S1 ∪̇
⋃̇

δ∈∆1, e∈Fδ
H1e

)S2
∪̇ . . . ∪̇

⋃̇
δ∈∆d−1, e∈Fδ

Hd−1 e

)Sd
,

where |St| ≤ h(d, q) for t ∈ [d] and where |∆t| ≤ h(d, q) for t ∈ [d− 1]. In addition, for d ≥ 2
we have Hte ∈ SC(t− 1) for t ∈ [d− 1], δ ∈ ∆t, and e ∈ Fδ.

8 FO-definition of tree-models for graphs of bounded shrub-depth

Using the results of the preceding sections we first prove that there is a computable function
d 7→ ϕd where ϕd is an FO-sentence whose class of models has bounded shrub-depth and
contains SC(d). Then we show how using ideas from [15] we can refine this proof to obtain
Theorem 2, i.e., the FO-definability of tree-models for graphs of bounded shrub-depth.

I Proposition 37. Let d ∈ N and Γ := h(d, 1). There is an FO-sentence ϕd with (a) and (b).
(a) If G ∈ SC(d), then G |= ϕd.
(b) If G |= ϕd, then SC(G) ≤ d·(d+1)·Γ

2 .
For later purposes we assume that ϕd also expresses that E is irreflexive and symmetric.

Proof. We set ϕ0 := ∀x∀y(x = y ∧ ¬Exy). Let d ≥ 1 and G be a graph with SC(G) = d.
Hence G ∈ GSC(d, 1) by Lemma 34(a). By Proposition 36 the graph G is (d− 1,Γ)-tiered,
thus G can be written in the form

G =
(
. . .
((
I(T0)

)S1 ∪̇
⋃̇

δ∈∆1, e∈Fδ
H1e

)S2
∪̇ . . . ∪̇

⋃̇
δ∈∆d−1, e∈Fδ

Hd−1 e

)Sd
,

where in particular, |St| ≤ Γ for t ∈ [d] and Hte ∈ SC(t− 1) for every t ∈ [d− 1], δ ∈ ∆t and
e ∈ Fδ. By Proposition 31 we can assume that for

L :=
(
. . .
(

(I(T0))S1 ∪̇ I(T1)
)S2
∪̇ · · · ∪̇ I(Td−1)

)Sd
=
(
IV (G)

)S1...Sd

S1 . . .Sd is unambiguous (with respect to L). Here Ti =
⋃̇
δ∈∆i, e∈FδV (Hie) for i ∈ [d− 1].

By Lemma 29(b) the size of voting vertices can be bounded in terms of d. Thus as ϕd we
can take an FO-sentence which (existentially) guesses voting vertices for such an unambiguous
S1 . . .Sd and guesses a subset of these vertices which togethr with their χS1...Sd -colors (which
are also guessed) yield a representative system for L. Then it defines the S1, . . . ,Sd and
expresses that every connected component of GS1...Sd satisfies ϕd−1. Now the validity of (a)
should be clear.

We prove (b) by induction on d. Of course, (b) holds for d = 0. So assume that d ≥ 1 and
that the statement (b) is true for d− 1. Let G |= ϕd. Then there are S1, . . . ,Sd such that
every connected component H of G1 := GS1...Sd satisfies ϕd−1. Hence, SC(H) ≤ (d−1)·d·Γ

2 by

induction hypothesis. As G =
(⋃̇

H connected component of G1
H
)S1...Sd

by Lemma 16(c), we get

SC(G) ≤ d · Γ+ max{SC(H) | H connected component of G1}

≤ d · Γ + (d− 1) · d · Γ
2 ≤ d · (d+ 1) · Γ

2 . J
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We turn to a proof of Theorem 2. It suffices to show the following result (cf. Proposition 17).

I Theorem 38. Let d ∈ N. There is an FO-interpretation that assigns to every ordered
graph (G,<) with G ∈ SC(d) a tree-model.

Proof. We know that SC(d) ⊆ TM2d(d) (see Proposition 17(b)). We recall the proof of this
result from [15, Theorem 3.6]. For an SC-derivation W witnessing G ∈ SC(d) it constructs
a tree T (W ) ∈ Tree[2d, d] (see page 4 for the definition of Tree[m, d]), which together
with a signature D will be a tree-model of G. We denote the labels by Lb with b ∈ {0, 1}d.
Essentially the tree T (W ) is the “tree of the SC-derivation”: The leaves of T (W ) are the
vertices of G. Each internal node t of T (W ) is associated with a flipping set St. By adding
nodes with the empty flipping set we can assume that every path from the root to a leaf
has length d. Let v ∈ V (G) and let t0 = r, t1, . . . , td = v be the path from the root r of
T (W ) to v. Then v gets the color (= label) Lb if for i ∈ [d] we have (bi = 1 ⇐⇒ v ∈ Sti).
The pair {u, v} is an edge of G if and only if u and v are simultaneously contained in an
odd number of flipping sets St, where t ranges over all internal nodes. This can easily be
determined from the colors of u and v, and from the depth of their least common ancestor
u∧ v. So it yields the definition of the corresponding signature D(d) (note that D(d) doesn’t
depend on the concrete SC-derivation but only on d).

Now let <G be an arbitrary order of V (G). As G ∈ SC(d), the graph G is a model
of the sentence ϕd of Proposition 37. The process described in ϕd shows how one gets an
SC-derivation witnessing SC(G) ≤ g(d) := d·(d+1)·Γ

2 . Using <G we can describe in FO such a
derivationW (<G): According to ϕd first we guess voting vertices with certain properties, now
we choose the lexicographically <G-first voting vertices with these properties. Then by ϕd
we guess a subset of these vertices together with their colors as representative system. Now
we choose the lexicographically <G-smallest such subset and the “smallest” colors which do
the job. Then by ϕd we get S1, . . . ,Sd with |Si| ≤ Γ for i ∈ [d]. W.l.o.g. we may assume that
|Si| = Γ. The root of the tree T (W (<G)) starts with a path of length d · Γ− 1 ending with
a node t0. The nodes of the path are associated with the flipping sets in S1, . . . ,Sd. Then
for every v ∈ V (G), which in GS1...Sd is not in the connected component of an <G-smaller
element, we add an derivation for this component according to ϕd−1 as one child of t0. By
this procedure we get a tree in T (W (<G)) ∈ Tree[2g(d), g(d)], where g(d) := d·(d+1)·Γ

2 .
In this way we get an FO-interpretation I defining in (G,<G) with G |= ϕd the tree-

model T (W (<G)) of G. That is, we can present (it is tedious but straightforward) a tuple
of FO-formulas I =

(
ϕuni(x̄), ϕP (x̄, ȳ), (ϕLb(x̄))b∈{0,1}g(d)

)
, where x̄ = x0, . . . , xg(d) and

ȳ = y0, . . . , yg(d) such that (G,<G)I :=
(
ϕ

(G,<G)
uni , ϕ

(G,<G)
P , (ϕ(G,<G)

Lb
)b∈{0,1}g(d)

)
is isomorphic

to the tree-model T (W (<G)). For example, ϕ(G,<G)
uni :=

{
(v0, . . . , vg(d)) ∈ Gg(d) | (G,<G ) |=

ϕuni(v̄)
}
is the universe of (G,<G)I and ϕ

(G,<G)
P :=

{
(v̄, w̄) | v̄, w̄ ∈ ϕ(G,<G)

uni , (G,<G) |=
ϕP (v̄, w̄)

}
is the parent-child relation of (G,<G)I . J

As already mentioned in the Introduction we get Theorem 1 from the preceding result in
the same way as we did for tree-depth in [3]. For the sake of completeness let us recall that
for a class K of graphs the parameterized model-checking p-MC(K ,MSO) for MSO on K is
defined by

Instance: A graph G ∈ K and an MSO-sentence ϕ.
Parameter: k ∈ N.

Problem: Decide if k = |ϕ| and A |= ϕ.

In the next section we will apply a further consequence of Theorem 38, an improvement of
Proposition 3, which again can be obtained as the corresponding result for tree-depth in [3]:

CSL 2020
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I Proposition 39. Let d ∈ N. There is an algorithm that assigns to every MSO[{E}]-sentence
ϕ an FO

[
{E,<}

]
-sentence ϕ+ such that for every ordered graph (G,<) with G |= ϕd,

G |= ϕ ⇐⇒ (G,<G) |= ϕ+.

9 MSO = FO on classes of bounded shrub-depth

The goal of this section is to show that in models of ϕd every MSO[{E}]-sentence is equivalent
to an FO[{E}]-sentence, i.e, that the we can omit the order relation used in Proposition 39.
To get this result we use Craig’s interpolation which is known to be true only if we consider
finite and infinite models. However, we have introduced the notion of SC-depth for finite
graphs only. So let us extend this concept to infinite graphs. If not stated otherwise explicitly,
in the following “graph” always means a finite or infinite graph.

Let G be a graph and S ⊆ V (G), then GS is defined as in the finite case.

I Definition 40. The class SC(d) (extending the “old” SC(d)) is defined by induction on d:

SC(0) is the class of graphs whose vertex set is a singleton.

Assume that I is a set with |I| ≥ 1 and that for i ∈ I the graphs Gi are in SC(d) and have
pairwise disjoint vertex sets. Then

(⋃̇
i∈IGi

)S ∈ SC(d+ 1) for every S ⊆
⋃
i∈I V (Gi).

The SC-depth of a graph is the least d ∈ N such that G ∈ SC(d).

Not every graph has an SC-depth, that is, the analogue of Lemma 15 fails. For example,
an infinite path has no SC-depth. We leave it to the reader to generalize the notion of
shrub-depth and to realize that Lemma 8, the analogue of Lemma 15 for shrub-depth, fails.
But all other results in Section 3–Section 7 and Proposition 37 of Section 8 are true for
graphs in the way stated (or with obvious changes). One exception: In the definition of
tiered graph we have to require that the Hte’s have an SC-depth.

Let us look what happens with Theorem 38 of Section 8. On page 13 for the first time
we considered orders on graphs. Once we have an order <G in a finite model G of the
sentence ϕd we got a canonical SC-derivation W (<G) of G, which could be described by an
interpretation I. When defining the derivation W (<G) we used a few times the property that
every nonempty subset of V (G) contains a <G-least element or the same property for subsets
of V (G)r for some r ≥ 1 with respect to the lexicographic order <Glex of r-tuples induced
by <G. All these subsets were definable by an FO[{E}]-formula ψ(x̄, ȳ), where |x̄| = r and
the variables in ȳ are parameters. Then we used the fact that the following sentence is true
in every finite (G,<G):

least-element(ψ) := ∀ȳ
(
∃x̄ψ(x̄, ȳ)→ ∃x̄

(
ψ(x̄, ȳ) ∧ ∀x̄′(ψ(x̄′, ȳ)→ x̄ ≤lex x̄

′)
))
.

Here |x̄′| = |x̄|. Let

LE(<) :=
{
least-element(ψ) | ψ = ψ(x̄, ȳ) ∈ FO[{E}] and |x̄| ≥ 1

}
be the set of least-element sentences for all FO[{E}]-formulas. Furthermore set

LE∗(<) := LE(<) ∪
{
“E is irreflexive and symmetric”

}
∪
{
“< is an order”

}
.

Then we can reformulate Proposition 39 and extend it to arbitrary graphs:

I Proposition 41. For every MSO[{E}]-sentence ϕ there exists an FO[{E,<}]-sentence ϕ+

such that LE∗(<) ∪ {ϕd} |= (ϕ↔ ϕ+).
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Now we turn to the main result of this section, which extends Theorem 4.

I Theorem 42. Let d ≥ 1. In models of ϕd (hence, in particular, in graphs in SC(d))
every MSO[{E}]-sentence ϕ is equivalent to an FO[{E}]-sentence ψ. Moreover, there is an
algorithm that on input ϕ yields ψ. Proof: full paper.

I Corollary 43.
(a) There is a computable function d 7→ ψd, where ψd ∈ FO[{E}] axiomatizes SC(d).
(b) There is a computable function (m, d) 7→ ψm,d, where ψm,d ∈ FO[{E}] axiomatizes

TMm(d).

Proof.
(a) We know from Proposition 18 that there is a computable function d 7→ ρd, where

ρd ∈ MSO[{E}] axiomatizes SC(d). By the preceding theorem we effectively get a
ψd ∈ FO[{E}] equivalent to ρd in models of ϕd. Then ψd := ϕd ∧ ψd axiomatizes SC(d).

(b) As by Proposition 17 (a) we have TMm(d) ⊆ SC(d·m·(m+1)), we can argue for TMm(d)
similarly, now using Proposition 12. J

10 The excursion to the infinite yields further results

The following result is an effective version of the result [15, Corollary 5.6] mentioned on
page 5 and on page 7.

I Theorem 44. There is an algorithm that applied to (m, d) eventually stops and outputs a
finite set Fm,d of finite graphs such that a graph is in TMm(d) if and only if it excludes the
graphs in Fm,d as induced subgraphs. The anloguous result holds for SC(d).

Proof. As TMm(d) is closed under induced subgraphs, by the Łoś-Tarski Theorem of classical
model theory (cf. [2, 18]) we effectively find (from ψm,d of Corollary 43) a universal FO-
sentence νm,d axiomatizing TMm(d) (recall that a universal FO-sentence is a sentence of the
form ∀x1 . . . ∀xnχ with quantifier-free χ). Every universal sentence just expresses that there
is a finite set of finite graphs that are excluded as induced subgraphs. J

Various applications of the same flavour may be obtained using the following lemma. We
will prove this lemma and present various applications in the full version of this paper.

I Lemma 45. Let d ≥ 1 and K ⊆ SC(d) be a class closed under induced subgraphs. For every
MSO-sentence ϕ, if the class of finite models of ϕ in K is closed under induced subgraphs,
so is the class of models of ϕ in K.

For the class of finite graphs Rossman [21] has proved the analogue of the result of classical
model theory that a sentence preserved under homomorphisms is equivalent to an existential-
positive FO-sentence (a sentence is positive if it does not contain the negation symbol).
Along the previous lines one can show that this preservation theorem holds for TMm(d): A
sentence preserved under homomorphisms between finite graphs in TMm(d) is equivalent to
an existential-positive FO-sentence.
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11 J. Gajarský and P. Hlinĕný. Kernelizing MSO Properties of Trees of Fixed Height, and Some
Consequences. Logical Methods in Computer Science, 11(1), 2015.
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Abstract
The connection between the Call-By-Push-Value lambda-calculus introduced by Levy and Linear
Logic introduced by Girard has been widely explored through a denotational view reflecting the
precise ruling of resources in this language. We take a further step in this direction and apply Taylor
expansion introduced by Ehrhard and Regnier. We define a resource lambda-calculus in whose
terms can be used to approximate terms of Call-By-Push-Value. We show that this approximation
is coherent with reduction and with the translations of Call-By-Name and Call-By-Value strategies
into Call-By-Push-Value.
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1 Introduction

Linear Logic [15] has been introduced by Girard as a refinement of Intuitionistic Logic that
take into account the use, reuse or erasing of formulas. In order to mark formulas that can be
reused or erased, Girard introduced the exponential !X and considered a linear implication
X ( Y . Following the proof/program correspondence paradigm, Linear Logic can be used to
type λ-calculus according to a chosen reduction strategy as Call-By-Name or Call-By-Value.
Abstraction terms λxM usually typed by X ⇒ Y will be typed as !X ( Y when following a
Call-By-Name evaluation strategy and by !(X ( Y ) when following a Call-By-Value strategy.
Therefore, both evaluation strategies can be faithfully encoded in Linear Logic.

Levy followed a related goal when he introduced Call-By-Push-Value [21] : having a lambda
calculus where both Call-By-Name and Call-By-Value can be taken into account. Since its
introduction this calculus has been related to the Linear Logic approach [4, 12, 6, 22, 20]. We
adopt this latest presentation which differentiates two kinds of types: positive and general
types used for typing two kinds of terms: values and general terms respectively. The marker
!I is used to transform a general type I into a value type !I which can be erased, used and
duplicated. The idea behind ! is to stop the evaluation of the terms typed by !I by placing
them into thunks (i.e. putting them into boxes).

The purpose of this article is to push further the relations between Call-By-Push-Value and
Linear Logic and to underline the resource consumption at play. For this we use syntactical
Taylor expansion, that reflects Taylor expansion into semantics. Indeed, several semantics of
Linear Logic and λ-calculus are interpreting types as topological vector spaces and terms
as smooth functions that enjoy Taylor expansion [5, 7, 8, 18]. Indeed, those functions can
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be written as power series whose coefficients are computed thanks to a derivative operator.
The syntactical Taylor expansion enable the representation of terms as a combination of
approximants named resource terms.

Taylor expansion has first been introduced by Ehrhard and Regnier while they presented
the differential λ-calculus [9], they noticed that it was possible to give a syntactical version
of Taylor formula, and that this object was defined on the multilinear fragment of differential
λ-calculus. It consists in associating to a λ-term an infinite series of resource terms, that
enjoy a linearity property, in the following sense: resource calculus is endowed with an
operational semantics similar to λ-calculus, but with no duplication nor erasing of subterms
during reduction. As, in analysis analytic maps are approximated by series of monomials,
here λ-terms are approximated by series of resource terms. Taylor expansion gives a natural
semantics, where the reduction rules of resource calculus aim to identify the terms having
the same interpretation in a denotational model. In particular, the normal form of Taylor
expansion (or Taylor normal form) is a pleasant notion of approximation of normal forms
in various λ-calculi, and is strongly linked to the notion of Böhm trees, since Ehrhard and
Regnier’s seminal works [10]. This link has been extended in several direction, see e.g.
Vaux [27] for algebraic λ-calculus, Kerinec, Manzonetto and Pagani [17] for Call-By-Value
calculus, or Dal Lago and Leventis [19] for probabilistic λ-calculus. Let us also mention
two other related approachs to approximation of λ-calculus with polyadic terms instead
of resource terms [23, 24]. Taylor expansion has also been studied for the Bang Calculus,
an untyped analogue of Call-By-Push-Value, by Guerrieri and Ehrhard [13] and then by
Guerrieri and Manzonetto [16].

We propose, following that fertile discipline, a syntactical Taylor expansion for Λpv, which
is the Linear Logic-oriented presentation of Call-By-Push-Value we use (and corresponds to
Λhp in Ehrhard’s paper [12]).

A first difficulty we have to tackle, is the fact that designing a convenient resource
calculus, say ∆pv, that respects Λpv dynamics is not trivial. In particular, in a redex, the
argument is a value but is not necessary of exponential type. Then, the argument of a
resource redex shall not be necessarily a multiset, while it is always the case in Call-By-Name
and Call-By-Value resource calculi, as it ensures the reductions are linear. The semantical
reason of that phenomenon is that in a quantitative model of Λpv, all values with a positive
type are freely duplicable, thanks to the coalgebras morphisms associated to those types’
interpretation. The solution we adopt is to give a syntactical account to those morphisms in
the reduction rules, so as to ∆pv stays consistent with Call-By-Push-Value operational and
denotational semantics, while keeping the resource reduction linear.

We can then consider a Taylor expansion, as a function from Λpv to sets of terms in
∆pv, that consists of approximants. Once this framework is set, we are able to show that
the properties of Call-By-Push-Value, relative to the embeddings of various strategies of
evaluation, can be transported at the resource level.

The principal result of the paper is the simulation of Λpv reductions in full Taylor
expansion, where resource terms take coefficients in a commutative semiring. The key
ingredients for this simulation to run are intrinsic to the properties of ∆pv: the dynamics
of reduction must reflect the reduction of Λpv, and the mechanisms of the calculus must
enjoy combinatorial properties, so that the coefficients commute with the simulation. More
precisely, it means that for M,N ∈ Λpv such that M reduces to N , if Taylor expansion of M
is equal to

∑
i∈I aimi, where ai are coefficients taken in a semiring, and mi are resource terms

approximating M , then we have a notion of reduction such that
∑
i∈I aimi ⇒

∑
j∈I ajnj ,

and for each resource term n, its coefficient in the latter combination is the same as its
coefficient in the Taylor expansion of N .



J. Chouquet and C. Tasson 16:3

Contents of the paper

We first present (Section 2) Λpv as the starting point of our study, describing its operational
semantics, provide examples of its expressive power, and give elements of its denotational
semantics relative to coalgebras. We introduce and develop in Section 3 the resource calculus
∆pv together with its operational semantics. Then, in Section 4, we define Taylor expansion
for Λpv. First, in a qualitative way, with sets of approximants, where we show that it allows
the simulation of Λpv reductions. We also describe how the embeddings of Call-By-Name
and Call-By-Value into Call-By-Push-Value are transported at the resource level. Finally,
we introduce quantitative Taylor expansion, with coefficients, and prove the commutation
property between Taylor expansion and reduction that demonstrates that Taylor expansion
is compatible with Λpv operational semantics.

Terminology and notations

We write N for the set of natural numbers, andSk for the group of permutations on {1, . . . , k}.
For a term m, and a variable x, we denote as degx(m) the number of free occurrences of x
in m. These occurrences might be written x1, . . . , xdegx(m), while all referring to x.

Finite multisets of elements of a set X are written x = [x1, . . . , xk] for any k ∈ N, and
are functions from X to N. We use the additive notation x+x′ for the multiset such that for
all y ∈ X, (x+ x′)(y) = x(y) + x′(y). The size of x is written |x| and is equal to

∑
y∈X x(y).

We denote as X ! the set of all finite multisets of elements of X. We might write (x, . . . , x)k
for tuples or [x, . . . , x]k for multisets to denote k occurrences of the same element x.

If σ is a linear combination of terms
∑
i∈I ai ·mi, we use the notation λxσ =

∑
i∈I ai ·λxmi,

der(σ) =
∑
i∈I ai · der(mi), and σ! =

∑
k∈N

∑
i1,. . . ,ik∈I ai1 . . . aik · [mi1 , . . . ,mik ]. In

the same way, if τ =
∑
j∈J aj · nj , we write (σ, τ) =

∑
i∈I
∑
j∈J aiaj · (mi, nj). 〈σ〉τ =∑

i∈I
∑
j∈J aiaj · 〈mi〉nj . This notation corresponds to the linearity of syntactic constructors

with respect to potentially infinite sums of terms that will appear in Taylor expansion.

2 Call-By-Push-Value

2.1 Syntax and operational semantics
We consider a presentation of Call-By-Push-Value coming from Ehrhard [12], and convenient
for its study through Linear Logic semantics.
I Definition 1 (Call-By-Push-Value calculus Λpv).

Λpv : M ::= x | λxM | 〈M〉M | case(M,y ·M, z ·M) | fixx(M) | (M,M) | π1(M) | π2(M) |

M ! | der(M) | ι1(M) | ι2(M)

We distinguish a subset of Λpv, the values :

V ::= x |M ! | (V, V ) | ι1(M) | ι2(M)

Positive types: A,B ::= !I | A⊗B | A⊕B
General types : I, J ::= A | A( I | >
The typing rules are given in Figure 1 and reduction rules are given below:

〈λxM〉V →pv M [V/x] der(M !)→pv M

πi(V1, V2)→pv Vi fixx(M)→pv M [(fixx(M))!/x]
case(ιi(V ), x1 ·M1, x2 ·M2)→pv Mi[V/xi]
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16:4 Taylor expansion for Call-By-Push-Value

Γ, x : A ` x : A
Γ `M : I
Γ `M ! : !I

Γ, x : A `M : B
Γ ` λxM : A( B

Γ `M : A( I ∆ ` N : A
Γ,∆ ` 〈M〉N : I

Γ `M : A ∆ ` N : B
Γ,∆ ` (M,N) : A⊗B

Γ `M : A1 ⊗A2 i ∈ {1, 2}
Γ ` πi(M) : Ai

Γ `M : Ai i ∈ {1, 2}
Γ ` ιi(M) : A1 ⊕A2

Γ ` m : !A
Γ ` der(m) : A

Γ `M1 : A⊕B ∆ `M2 : I Θ `M3 : I
Γ,∆,Θ ` case(M1, y ·M2, z ·M3) : I

Γ, x : !I `M : I
Γ ` fixx(M) : I

Figure 1 Typing rules for Λpv.

We define evaluation contexts E, for all terms M,N .

E ::= [] | 〈M〉E | 〈E〉M | πi(E) | ιi(E) | (M,E) | (E,M) | case(E, x ·M,y ·N) | der(E)

and we set as an additional reduction rule E[M ] →pv E[N ] for every M,N such that
M →pv N .

2.2 An overview of denotational semantics and coalgebras
Let us give an overview of the denotational semantics of Call-By-Push-Value that justifies
the introduction of the resource calculus below. This semantics is based on the semantics of
Linear Logic that types the Call-By-Push-Value we are studying.

Let us describe briefly what is a model of Linear Logic (see [25] for a detailed presentation).
It is given by a category L together with a symmetric monoidal structure (⊗, 1, λ, ρ, α, σ)
which is closed1 and we write X ( Y for the object of linear morphisms. It has a
cartesian structure with cartesian product & and terminal object >. The category L
is equipped with a comonad ! : L → L together with a counit derX ∈ L(!X,X) and
a comultiplication digX ∈ L(!X, !!X). This comonad comes with a symmetric monoidal
structure2 from (L,&) to (L,⊗), that is two natural isomorphisms m0 ∈ L(1, !>) and
m2 ∈ L(!X ⊗ !Y, !(X & Y )).

By using isomorphisms m0 and m2; the functoriality of the comonad ! and the cartesian
structure, we can build a structure of comonoid on any !X, which enable erasing and
duplication of resources as we will see below.

erase!X ∈ L(!X, 1) split2
!X ∈ L(!X, !X ⊗ !X)

A coalgebra3 (P, hP ) is made of an object P and a morphism hP ∈ L(P, !P ) which
is compatible with the comonad structure as derPhP = Id and digPhP = !hPhP . Every
coalgebra inherits the comonoid structure of !P , that is it is equipped with: eraseP ∈ L(P, 1)
and split2

P ∈ L(P, P ⊗ P ) defined as:

eraseP : P
hP−−→ !P wP−−→ 1 split2

P : P
hP−−→ !P cP−−→ !P ⊗ !P derP⊗derP−−−−−−−−→ P ⊗ P.

1 Most model we consider are also ∗-autonomous: there is a ⊥ such that X is isomorphic to (X ( ⊥) ( ⊥
2 The two isomorphims m0 and m2 correspond to the so-called Seely isomorphisms.
3 We want the semantics we use to interpret Call-By-Push-Value to be compatible with Taylor expansion.

That is why, we have chosen to resolve the comonad using the Eilenberg-Moore resolution. The resulting
category can be not well-pointed as for example the relational model described below. Another option,
which is simpler and should be explored, is to use the Fam resolution [1].
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((i,mi), (mY ,mZ))

(i,mi) (mY ,mZ)

mi mY mZ

hP→
[
((i, x1

i ), (y1, z1)),

(i, x1
i ) (y1, z1)

x1
i y1

z1

. . . ((i, x1
k), (yk, zk))

](i, xk
i ) (yk, zk)

xk
i yk

zk

where
∑k
j=1 x

j
i = mi,

∑k
j=1 y

j = mY , and
∑k
j=1 z

j = mZ .

Figure 2 Action of the coalgebra morphism hP on a positive type.

Using similar computation, we can define splitkP ∈ L(P, P ⊗ · · · ⊗ P︸ ︷︷ ︸
k

).

Notice that the structure of comonad of ! induces a coalgebras structure on !X. Moreover,
every construction of positive type preserves the coalgebra structure. To define the coalgebraic
structure of P ⊗Q where P and Q are both coalgebras, let us first define the morphisms
µ0 ∈ L(1, !1) and µ2 ∈ L(!X ⊗ !Y, !(X ⊗ Y )) as

µ0 : 1 m0

−−→ !> dig>−−−→ !!> !(m0)−1

−−−−−→ !1

µ2 : !X ⊗ !Y m2
−−→ !(X & Y ) digX&Y−−−−−→ !!(X & Y ) !(m2)−1

−−−−−→ !(!X ⊗ !Y ) !(derX⊗derY )−−−−−−−−→ !(X ⊗ Y ).

Then, we can define hP⊗Q : P ⊗Q hP⊗hQ−−−−−→ !P ⊗ !Q µ2

−→ !(P ⊗Q). The coalgebraic structure of
the coproduct is entirely defined by the morphisms for i ∈ {1, 2}: Pi

hPi−−→ !Pi
!ini−−→ !(P1 ⊕ P2)

if the category has coproducts.
Thus, we can deduce that every positive type is interpreted as a coalgebra.

Example
The relational model is closely related to the Taylor expansion of the λ-calculus. Indeed,
every λ-term is interpreted as the set of the interpretation of the resource terms that appear
in its Taylor expansion. We can state that Taylor expansion is the syntactical counterpart of
the relational model.

Let us describe some of these constructions on the relational model of linear logic. The
category Rel is made of sets and relations. The tensor product is given by the set cartesian
product and its unit is the singleton set whose unique element is denoted ∗. The product is
given by disjoint union and the terminal object is the emptyset. Rel can be equipped with
the comonad of finite multisets. The comonadic structure of !X is

derX = {([a], a)|a ∈ X} digX = {(m, [m1, . . . ,mk])|m1 + · · ·+mk = m}.

The comonoidal structure of !X is

erase!X = {([], ∗)} split2
!X = {(m, (m1,m2))|m1 +m2 = m}.

A positive type is a finite combination of ⊕,⊗, !. For instance if P = (!X1⊕!X2)⊗(!Y ⊗!Z),
then P is a coalgebra (see Figure 2):

hP = {(((i,mi)) , (mY ,mZ)), [((i, x1
i ), (y1, z1)), . . . , ((i, xki ), (yk, zk))]|

mi = x1
i + · · · + xki ,mY = y1 + · · · + yk,mZ = z1 + · · · + zk},
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16:6 Taylor expansion for Call-By-Push-Value

and is equipped with the comonoidal structure:

eraseP = {(((i, []), ([], []), ∗)}
split2

P = {((i,mi), (mY ,mZ)) , ((i, (m1
i +m2

i )), ((m1
Y +m2

Y ), (m1
Z +m2

Z)))|
m1
i +m2

i = mi,m
1
Y +m2

Y = mY ,m
1
Z +m2

Z = mZ}}.

Remark that the structural morphisms are the same as those of !X but at the leaves of the
tree structure describing the formula P .

3 Resource calculus for Call-By-Push-Value

We introduce a typed resource calculus, able to simulate the operational semantics of Λpv.
The conditional construction is considered through tests of equality, and there is no explicit
fixpoint. The main difference with other resource calculi, like Call-By-Name or Call-By-Value,
is that redexes of shape 〈λxm〉n are not enough to entail Λpv reduction. Indeed, the notion
of value is too wide to be entirely captured in multisets of approximants: 〈λxM〉(V1, V2) is a
redex in Λpv, then we must be able to reduce terms like 〈λxm〉(v1, v2) in the resource setting,
while keeping it sensitive to resource consumption. We proceed so with the introduction of a
splitting operator, which allows us to duplicate a value using the structure of its positive
type.

I Definition 2 (Call-By-Push-Value resource calculus ∆pv). The syntax of types is the same
as the syntax of Λpv.

∆pv : m ::= x | 1 | 2 | λxm | 〈m〉m | (m = m) ·m | (m,m) | π1(m) | π2(m)
| [m, . . . ,m] | der(m)

We distinguish the values of the calculus:

v ::= x | 1 | 2 | [m, . . . ,m] | (v, v)

Γ, x : A ` x : A
Γ ` mi : I, i ∈ {1, . . . , k}

Γ ` [m1, . . . ,mk] : !I
Γ, x : A ` m : B

Γ ` λxm : A( B
Γ ` m : A( I ∆ ` n : A

Γ,∆ ` 〈m〉n : I
Γ ` m : !A

Γ ` der(m) : A
Γ ` m : A ∆ ` n : B

Γ,∆ ` (m,n) : A⊗B
Γ ` m : A1 ⊗A2 i ∈ {1, 2}
Γ ` πi(m) : Ai

Γ ` m : Ai i ∈ {1, 2}
Γ ` (i,m) : A1 ⊕A2

Γ ` m1 : A1 ⊕A2 ∆ ` m2 : Ai Θ ` m3 : I
Γ,∆,Θ ` (m1 = (i,m2)) ·m3 : I

Figure 3 Typing rules for ∆pv.

In order to set the operational semantics of the resource calculus just defined, we introduce
a new construction splitk. Its operational semantics is the duplication of ground values such
as integers or variables and the split of the leaves of tree structure induced by pairs and
injections, as exemplified in Figure 4. This splitting operator is the syntactical counterpart
of the semantical morphism associated to each coalgebra P interpreting a positive type:
splitkP ∈ L(P, P ⊗ · · · ⊗ P︸ ︷︷ ︸

k

) (see Section 2.2).
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⊗

⊕ ⊗

! ! !
m m′ m′′

(i,m) (m′,m′′)

((i,m), (m′,m′′)) splits into:
⊗

⊕ ⊗

! ! !
m1 m′1 m′′1

(i,m1) (m′1,m′′1 )(
( (i,m1), (m′1,m′′1 )), . . . ⊗

⊕ ⊗

! ! !
mk m′k m′′k

(i,mk) (m′k,m′′k)

, ((i,mk), (m′k,m′′k))
)

where
∑k
i=1mi = m,

∑k
i=1m

′
i = m′, and

∑k
i=1m

′′
i = m′′.

Figure 4 Splitting a value, the tree of its positive type labelled by resource components.

I Definition 3 (Split). splitk(m) is defined as a set of k-tuples of values of same shape
than m. It is defined when m is a value itself.

splitk(m) = {(m1, . . . ,mk) |
∑k
i=1mi = m}

splitk(x) = {(x, . . . , x)k}
splitk(i) = {(i, . . . , i)k} for i ∈ {1, 2}.
splitk((m,n)) = {((m1, n1), . . . , (mk, nk)) | (m1, . . . ,mk) ∈ splitk(m), (n1, . . . , nk) ∈
splitk(n)}.

We define now the reduction rules associated to ∆pv, by adding the distinguished term 0
to the calculus.
〈λxm〉n→rpv m[n1/x1, . . . , nk/xk] for degx(m) = k and all (n1, . . . , n

′
k) ∈ splitk(n).

(v = (i, v′)) · n→rpv n if v = (i, v′). (v = (i, v′)) · n→rpv 0 otherwise.
der([m1, . . . ,mk])→rpv m1 if k = 1, and der([m1, . . . ,mk])→rpv 0 otherwise.
πi((m1,m2))→rpv mi

We define evaluation contexts e, for all terms t, u of ∆pv :

e ::= [] | 〈e〉m | 〈m〉e | λxe | (e,m) | (m, e) | (e = m) · n | (m = e) · n | der(e)

and set the additional rule e[m]→rpv e[n] if m→rpv n by one of the above rules, with e[0] = 0
for all context e.

We cannot define a reduction for tests of equality that produces non values-terms, because
we would lost confluence: for example, if we allow to reduce m(π1(m1,m2) = m1) · n, then
m reduces to 0, and it reduces as well to (m1 = m1) · n, which reduces to n.

I Proposition 4 (Subject Reduction). For any terms m,n and general type I, if m : I and
m→rpv n, then n : I.

Proof. By induction on m.
If m = (πi(m1,m2)) and if n = mi, then there exist A1, A2 such that mi : Ai, and we
have m : Ai and n : Ai.
If m = der([n]), then there is a type J such that n : J , and we have [n] : !J and m : J .
If m = (v1 = (i, v2)) · n, then if n : J for some type J , then m : J .
If m = 〈λxm′〉v and n = m′[v1/x1, . . . , vk/xk] for k = degx(m′) and (v1, . . . , vk) ∈
splitk(v), then x : A, v : A,m′ : J, λxm′ : A ( J , for some types A, J . Then m : J , in
order to conclude n : J , it remains to ensure that for all i ∈ {1, . . . , k}, vi : A which is
done easily by an induction on v, and that it implies m′[v1/x1, . . . , vk/xk] : A. That last
point follows from a standard argument.
If m = e[m′] and n = e[n′] for n→rpv n

′, we conclude by induction hypothesis. J
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16:8 Taylor expansion for Call-By-Push-Value

We define for all k ∈ N, all variable x and m ∈ ∆pv, a set of terms fixkx(m) as follows,
with fix0

x(m) = {m[[]/x1, . . . , []/xdegx(m)]}:

fixk+1
x (m) =

{
m
[
m1/x1, . . . ,mdegx(m)/xdegx(m)

]
| ∀i ≤ degx(m) : mi ∈ (fixkx(m))!}.

4 Taylor expansion

Taylor expansion consists in taking infinitely many approximants of a given object. As analytic
maps can be understood as infinite series of polynomials that approximate it, Λpv terms can
be considered through all resource terms that are also multilinear (in the computational
sense) approximants. We first introduce a qualitative version, with sets, through which
we show a first simulation property (Proposition 9), and we prove that the embeddings of
Call-By-Name and Call-By-Value behave well at the resource level (Property 2). Then, we
introduce coefficients so as to consider full quantitative Taylor expansion. Lemma 10 ensures
that it does not lead to divergence issues through a finiteness property of antireduction.
Finally, we prove the full simulation of Λpv reduction in Taylor expansion, showing that
coefficients commute with reduction, in Theorem 17.

4.1 Definition and Simulation
I Definition 5 (Support of Taylor expansion). We define the sets of resource terms corres-
ponding to the support of Taylor expansion of Λpv:
Tpv(x) = {x} Tpv〈M〉N = {〈m〉n | m ∈ Tpv(M), n ∈ Tpv(N)}
Tpv(ιi(M)) = {(i,m) | m ∈ Tpv(M)} Tpv(der(M)) = {der(m) | m ∈ Tpv(M)}
Tpv(M !) = Tpv(M)! Tpv((M,N)) = {(m,n) | m ∈ Tpv(M), n ∈ Tpv(N)}
Tpv(πi(M)) = {πi(m) | m ∈ Tpv(M)} Tpv(fixx(M)) = {fixk

x(m) | m ∈ Tpv(M), k ∈ N}
Tpv(λxM) = {λxm | m ∈ Tpv(M)} Tpv(case(M, z1 ·N1, z2 ·N2)) = {(m = (i,m′))·ni[m′/zi]

| i ∈ {1, 2},m ∈ Tpv(M), ni ∈ Tpv(Ni),m′ ∈ ∆pv}

I Property 1. Let M ∈ Λpv, m ∈ Tpv(M), and k ∈ N. splitk(m) is defined if and only if
M is a value.

Proof. One can check that the syntax of resource terms v that are in Tpv(V ) for a value
V matchs exactly the resource values of Definition 2. It is easy to verify that splitk(v) is
always defined, and that if m ∈ Tpv(M) is not such a resource value, then splitk(m) is not
defined. J

The following corollary shows that ∆pv is consistent with Λpv in the following sense: an
approximant of a redex in Λpv is always a redex in ∆pv, and a redex in ∆pv which is an
approximant of a term in Λpv, is the approximation of a redex. This is mostly trivial, but for
redexes of shape 〈λxm〉n (respectively 〈λxM〉N), where it is a consequence of Property 1,
as stated in the following corollary:

I Corollary 6. Let 〈λxm〉n ∈ Tpv((λxM)N). There is a term m′ such that 〈λxm〉n→rpv m
′

by reducing the most external redex if and only if N is a value. Recall moreover that
(λxM)N →pv M [N/x] if and only if N is a value.

I Lemma 7. If M is a value, k ∈ N, m ∈ Tpv(M) and (m1, . . . ,mk) ∈ splitk(m) then for
all i ∈ {1, . . . , k}, mi ∈ Tpv(M).

Proof. By induction on M , using Property 1 :
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If M = x, then m = x and splitk(m) = (x, . . . , x)k. We conclude since Tpv(x) = {x}.
If M = N !, then m = [n1, . . . , nl], and for all i ∈ {1, . . . , l}, ni ∈ Tpv(N). We have
(m1, . . . ,mk) = (n1, . . . , nk) with

∑k
i=1 ni = [n1, . . . , nl]. Then, each ni is a multiset of

elements in Tpv(N), and ni ∈ Tpv(N !) = Tpv(M).
If M = (N,N ′), then m = (n, n′) for n ∈ Tpv(N) and n′ ∈ Tpv(N ′). (m1, . . . ,mk) =
((n1, n

′
1), . . . , (nk, n′k)) with (n1, . . . , nk) ∈ splitk(N) and (n′1, . . . , n′k) ∈ splitk(N ′). By

induction hypothesis, for all i ∈ {1, . . . , k}, ni ∈ Tpv(N) and n′i ∈ Tpv(N ′). Then for all i,
(ni, n′i) ∈ Tpv(N,N ′) = Tpv(M).
If M = ιj(N), then m = (j, n) for n ∈ Tpv(N) and splitk(m) = ((j, n1), . . . , (j, nk)) with
(n1, . . . , nk) ∈ splitk(n). By induction hypothesis, for all i ∈ {1, . . . , k}, ni ∈ Tpv(N).
Then for all i, (j, ni) ∈ Tpv(ιj(N)) = Tpv(M). J

The following substitution lemma is crucial to ensure that Taylor expansion is compatible
with reduction. It will be used for proving simulation, in Proposition 9.

I Lemma 8 (Substitution). Let m ∈ Tpv(M), k = degx(m), and n1, . . . , nk ∈ Tpv(N), for
M,N ∈ Λpv. We have m[n1/x1, . . . , nk/xk] ∈ Tpv(M [N/x]).

Proof. The proof is by induction on M . We only consider representative cases, the other
following by similar applications of induction hypothesis.

If M = x, then m = x, k = 1, m[n1/x1] = n1, and M [N/x] = N . Then m[n1/x1] ∈
Tpv(M [N/x]).
If M = λyM ′, then degx(M) = degx(M ′),m = λym′ for m′ ∈ Tpv(M ′). By induc-
tion hypothesis, m′[n1/x1, . . . , nk/xk] ∈ Tpv(M ′[N/x]). Since m[n1/x1, . . . , nk/xk] =
λym′[n1/x1, . . . , nk/xk], we conclude.
If M = 〈M1〉M2, then m = 〈m1〉m2 for mi ∈ Tpv(Mi), and degx(m) = l1 + l2 for
l1 = degx(m1) and l2 = degx(m2). By induction hypothesis, m1[n1/x1, . . . , nl1/xl1 ] ∈
Tpv(M1[N/x]) and m2[nl1+1/x, . . . , nl1+l2/x] ∈ Tpv(M2[N/x]). Since m[n1/x1, . . . ,

nk/xk] = 〈m1[n1/x1, . . . , nl1/xl1 ]〉m2[nl1+1/x, . . . , nl1+l2/x], and M [N/x] =
〈M1[N/x]〉M2[N/x], we conclude.
If M = M ′!, then m = [m′1, . . . ,m′l] with m′i ∈ Tpv(M ′) for all i, and degx(m) =

∑l
i=1 ki

where ki = degx(m′i). By induction hypothesis, m′i[nki−1+1/xki−1+1, . . . ,

nki−1+ki
/xki−1+ki ] ∈ Tpv(M ′[N/x]) for all i ∈ {1, . . . , l} (setting k0 = 0). Then,

M [N/x] = (M ′[N/x])!, and we can conclude as before.
In M = case(M ′, z1 ·N1, z2 ·N2), then m = (m′ = (i,m′′)) ·ni[m′′/zi] for i ∈ {1, 2},m′ ∈
Tpv(M ′), ni ∈ Tpv(Ni),m′′ ∈ ∆pv. We conclude by induction hypothesis as above. J

Notice that only the case where N is a value will be used, since the other cases do not
appear in the operational semantics.

We can finally prove the first simulation property:

I Proposition 9 (Simulation). If M →pv M
′, then for any m ∈ Tpv(M), either m→rpv 0 or

there is m′ ∈ Tpv(M ′) such that m→=
rpv m

′, where →=
rpv is the reflexive closure of →rpv.

Proof. By induction on M :
If M = πi((M1,M2)) and M ′ = Mi, then m = πi((m1,m2)) for mi ∈ Tpv(Mi). We
conclude since M →pv Mi and m→rpv mi.
If M = der(N !) and M ′ = N , then m = der([n1, . . . nk]), with ni ∈ Tpv(N) for all
i ∈ {1, . . . , k}. We conclude since M →pv N and m →rpv n1 if k = 1 and m →rpv 0
otherwise.
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16:10 Taylor expansion for Call-By-Push-Value

If M = fixx(N) and M ′ = N [(fixx(N))!/x], then it is easy to verify that Tpv(M) =
Tpv(M ′), using Lemma 8 and unfolding the definition of Taylor expansion of fixpoint. We
need a reflexive reduction for this case.
If M = (λyN)V and M ′ = N [V/y], then m = 〈λyn〉v for n ∈ Tpv(N) and v ∈ Tpv(V ). By
Property 1, splitk(v) is defined for any k ∈ N, then m→rpv n[v1/yf(1), . . . , vk/yf(k)] for
degy(n) = k and (v1, . . . , vk) ∈ splitk(v). By Lemma 7, for all i ∈ {1, . . . , k}, vi ∈ Tpv(V ),
and by the substitution Lemma 8, n[v1/y1, . . . , vk/yk] ∈ Tpv(N [V/y]).
If M = case(ιi(V ), x1 ·M1, x2 ·M2) and M ′ = Mi[V/xi], then, m = ((i, v) = (j, n)) ·
mi[v/xi] for i, j ∈ {1, 2}, v ∈ Tpv(V ), n ∈ ∆pv,mi ∈ Tpv(Mi). Either m →rpv 0, either
(i, v) = (j, n) and in this case m→rpv mi[n/xi] = mi[v/xi]. By the substitution Lemma 8
we conclude, since we have M →pv Mi[V/xi] and mi[v/xi] ∈ Tpv(Mi[V/xi]).
If M = E[N ] and M ′ = E[N ′], then we can easily show that there is a resource context e
such that m = e[n] and n ∈ Tpv(N). By induction hypothesis, either n→rpv 0, and then
e[n] = 0, or there exists n′ such that n →rpv n

′ and n′ ∈ Tpv(N ′). We can easily adapt
the substitution Lemma to conclude e[n′] ∈ Tpv(E[N ′]). J

4.2 Embeddings of CBV and CBN
Call-By-Push-Value is known to subsume both Call-By-Name and Call-By-Value strategies.
In particular, the two strategies can be embedded into Λpv. If we consider simply typed
λ-calculus4 Λ, we set two functions ()v, ()n : Λ → Λpv, defined in Table 5. We do not
consider here calculi with products, or other constructors, in order to focus in a simple
setting on the relation between exponentials and strategies of reduction (see Ehrhard and
Tasson’s work [14] for more developments). Our embeddings ensure e.g. the following
property: ((λxM)N)v →pv (M [N/x])v if and only if N is a variable or an abstraction, and
((λxM)N)n →pv (M [N/x])n for any M,N .

From the Taylor expansion point of view, let T n and T v be, respectively, usual Call-By-
Name expansion, and Call-By-Value expansion (first defined by Ehrhard [11]). We can check
the correctness of our construction of ∆pv and Tpv with respect to those embeddings, using
T n and T v defined in Table 2. The first one is defined on ∆n, which is the original Ehrhard
and Regnier’s resource calculus [9], and the second one on ∆v, a Call-By-Value resource
calculus, introduced by Ehrhard [11]. Both are described in Table 1.

Table 1 Call-By-Name and Call-By-Value resource calculi.

∆n ∆v

m,n ::= x | λxm | 〈m〉n m,n ::= [x1, . . . , xk] | [λxm1, . . . , λxmk] | 〈m〉n

〈λxm〉[n1, . . . , nk]→ m[n1/xf(1), . . . , nk/xf(k)] 〈[λxm]〉[n1, . . . , nk]→ m[n1/xf(1), . . . , nk/xf(k)]
if k = degx(m) andf ∈ Sk if k = degx(m) andf ∈ Sk

I Property 2. For any pure λ-term M ∈ Λ, E(Tpv((M)v)) = T v(M) and E(Tpv((M)n)) =
T n(M), where E is the function that erases all the derelictions (that do not exist in ∆n nor
in ∆v) in a set of terms.

4 We do not make types explicit, since the translation works in the same way with pure λ-calculus (e.g
when translated in Linear Logic proof nets). But since the target calculus is typed, this restriction is
necessary
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Table 2 T v : Λ→ P (∆v) and T n : Λ→ P (∆n).

Call-By-Name Taylor expansion Call-By-Value Taylor expansion
T n(x) = {x} T v(x) = {x}!

T n(MN) = {〈m〉n | m ∈ T n(M), n ∈ T n(N)!} T v(MN) = {〈m〉n | m ∈ T v(M), n ∈ T v(N)}
T n(λxM) = {λxm | m ∈ T n(M)} T v(λxM) = {[λxm1, . . . , λxmk] | mi ∈ T v(M)}

Figure 5 Both translations are functions from Λ to Λpv.

Call-By-Name translation Call-By-Value translation
(x)n = der(x) (x)v = der(x)!

(MN)n = 〈Mn〉(Nn)! (MN)v = 〈der(M)〉N
(λxM)n = λxMn (λxM)v = (λxMv)!

Proof. The proof consists in a simple examination of the definitions. Let us start with
Call-By-Value constructions: The variable case is immediate since Tpv(xv) = {der(x)}!, and
T v(x) = {x}!. Tpv((λxM)v) = {[λxm1, . . . , λxmk] | k ∈ N,mi ∈ Tpv(Mv)}, we conclude
since by induction hypothesis, E(Tpv(Mv)) = T v(M) and T v(λxM) = {[λxm′1, . . . , λxm′l] |
l ∈ N,m′i ∈ T v(M)}. The application case is managed with a similar argument with
induction hypothesis, and with the fact that E(〈der(M)〉N) = 〈E(M)〉E(N).

For Call-By-Name, we only consider the application case (the other being straightfor-
ward): Tpv((MN)n) = {〈m〉n | m ∈ Tpv(Mn), n ∈ Tpv(Nn)!}. By induction hypothesis,
E(Tpv(Mn)) = T n(M) and E(Tpv(Nn)) = T n(N), and we can conclude. J

Together with the simulation property of Tpv (Property 9), Property 2 proves that Call-
By-Push-Value subsumes both Call-By-Name and Call-By-Value strategies, and that remains
valid at a resource level.

4.3 Finiteness
The following lemma ensures that one can consider a quantitative version of Taylor expansion
Tpv, and extend the resource reduction to an infinite and weighted setting. The conditions of
validity of this result have been widely studied in non uniform settings, Linear-Logic proof
nets, or various strategies of reduction [2, 3, 26, 27]. This is necessary for proving Lemma 15
that state that coefficients remain finite under reduction.

I Lemma 10 (Finiteness of antireduction). Let n ∈ ∆pv and M in Λpv. {m ∈ Tpv(M) |
m→=

rpv n} is finite.

(sketch). We do not detail the proof, since we can adapt the first author’s work [2] for PCF.
The idea is to extend Ehrhard and Regnier’s original proof [10], defining a coherence relation
on resource terms in a way Tpv(M) is always a maximal clique for this relation. In particular,⋃
k∈N fixkx(m) must be a clique.
Then, it remains to show that the reduction preserves coherence, and that if m,m′ are

coherent, and both reduce to n, then m = m′. We conclude that there cannot be several
distinct resource terms in Tpv(M) reducing to a common term. J

4.4 Taylor expansion with coefficients
In the remainder of this section, we will consider infinite linear combinations of resource terms.
Those terms will take coefficients in an arbitrary commutative semiring S with fractions: a
semiring in which every natural number k 6= 0 ∈ N admits a multiplicative inverse, written

CSL 2020
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1
k . For a combination ϕ =

∑
i∈I ai ·mi ∈ S∆pv , and for a resource term m ∈ ∆pv, we denote

by (ϕ)m the coefficient of m in ϕ, that correspond to
∏
mi=m ai.

All the constructors of ∆pv are linear, in the sense that we can write e.g.
λx
(∑

i∈I ai ·mi

)
=
∑
i∈I ai · λxmi, (see Introduction for those notations). This allows

us to give the definition of full Taylor expansion with coefficients as follows:

I Definition 11 (Full Taylor expansion). Let S be any commutative semiring with fractions.
We define quantitative Taylor expansion, which is a function ()∗ : Λpv → S∆pv , and consists
in linear combinations of elements in Tpv.

x∗ = x.
(λxM)∗ = λxM∗

(〈M〉N)∗ = 〈M∗〉N∗
((M,N))∗ = (M∗, N∗)
(ιi(M))∗ = (i,M∗)
(πi(M))∗ = πi((∗M))
case(M,x1 ·N1, x2 ·N2)∗ =

∑
i∈{1,2}

∑
r∈∆pv

((M∗) = (i, r)) · (Ni[M/xi])∗

(M !)∗ =
∑
k∈N

1
k! [M

∗, . . . ,M∗]k
(der(M))∗ = der(M∗)

Taylor expansion of fixpoints is defined inductively. We set a combination fixx(M)∗k for all
k ∈ N, which corresponds to k unfoldings of M in x, as a quantitative version of the sets
fixkx(m) of Definition 5.

(fixx(M))∗0 = (M [[]/x])∗

(fixx(M))∗k+1 =
∑

m∈Tpv(M)

∑
−→
m∈(fixk

x(M))!

(M∗)m
degx(m)∏
i=1

((fixx(M))∗k)!
mi
·

m[m1/x1, . . . ,mdegx(m)/xdegx(m)]

and we set (fixx(M))∗ =
∑
k∈N (fixx(M))∗k.

We also need to give a quantitative version of the splitting operator, in order to make
one step-reduction commute with quantitative Taylor expansion defined above.

I Definition 12 (Quantitative split). We define for all k ∈ N and all resource value v the
weighted finite sum splitk+(v) as follows : if v ∈ {1, 2} or v = x, then splitk+(v) = (v, . . . , v)k.

If v = m, then splitk+(v) =
∑

m1+. . .+mk=m

|m|!
|m1|!. . . |mk|!

· (m1, . . . ,mk). If v = (v1, v2), then

splitk+(v) is defined as following, setting −→v i = (vi,1, . . . , vi,k) :∑
(v1,1,. . . ,v1,k)

∈|splitk
+(v1)|

∑
(v2,1,. . . ,v2,k)

∈|splitk
+(v2)|

(
splitk+(v1)

)
−→v 1

(
splitk+(v2)

)
−→v 2
· ((v1,1, v2,1), . . . , (v1,k, v2,k))

We now introduce a reduction rule that takes into account the coefficients of definition 12.

I Definition 13 (Quantitative resource reduction →rpv+). Let m ∈ ∆pv and k = degx(m).

〈λxm〉v →rpv+

∑
(v1,. . . ,vk)∈∆k

pv

(
splitk+(v)

)
(v1,. . . ,vk)

m[v1/x1, . . . , vk/xk]

If m→rpv n by reducing a redex of another shape than 〈λxm〉n, then we also set m→rpv+ n.
Notice that if m→rpv+

∑k
i=1 ai · ni, then for all i ∈ {1, . . . , k} such that ai 6= 0, we have

m→rpv ni.
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I Definition 14 (Reduction between combinations). We define a reduction ⇒⊆ S∆pv × S∆pv .
Given a family of resource terms (mi)i∈I and a family of finite sums of resources terms
(νi)i∈I such that for all i ∈ I, and for all n ∈ |νi| the set {j ∈ I | mj →=

rpv+ n} is finite.
In that case, we set

∑
i∈I ai ·mi ⇒

∑
i∈I ai · ni as soon as mi →=

rpv ni for all i ∈ I.

I Lemma 15. Let M ∈ Λpv with M∗ =
∑
i∈I ai · mi and ϕ =

∑
i∈I ai · νi such that

mi →=
rpv+ νi for all i ∈ I. Then, for all i ∈ I and for all n ∈ |νi|, n has a finite coefficient in

ϕ.
In other words, the reduction ⇒ is always defined on Taylor expansion.

Proof. This is an immediate consequence of Lemma 10 and Definition 13. J

I Lemma 16. Let m ∈ ∆pv, with degx(m) = k, and V a value of Λpv.∑
v∈Tpv(V )

∑
(v1,. . . ,vk)

∈splitk(v)

(V ∗)v
(
splitk+(v)

)
(v1,. . . ,vk)

·m[v1/x1, . . . , vk/xk]

=
∑

(v1,. . . ,vk)
∈Tpv(V )k

k∏
i=1

(V ∗)vi ·m[v1/x1, . . . , vk/xk]

Proof. The proof is by induction on V .
If V is a variable, then all the coefficients (V ∗)vi

are equal to 1, and the result is trivial.
If V = N !, then we want to establish the following, for any k ∈ N:

∑
n

∈Tpv(N)!

∑
(n1,. . . ,nk)

∈splitk(n)

(
splitk+(n)

)
(n1,. . . ,nk)

|n|∏
i=1

(N∗)ni

1
|n|! ·m[n1/x1, . . . , nk/xk]

=
∑

(n1,. . . ,nk)
∈Tpv(N !)k

1
|n1|!. . . |nk|!

k∏
i=1

|ni|∏
j=1

(N∗)ni,j
·m[n1/x1, . . . , nk/xk]

Where for all i ≤ k, ni = [ni,1, . . . , ni,|ni|].

This equation is verified by looking at the definition of splitk+.
(
splitk+(n)

)
(n1,. . . ,nk)

is

equal to |n|!
|n1|!. . . |nk|! , which is enough to simplify the above equation and conclude this

case.
If V = (V1, V2). Then we want to establish:∑

(v1,v2)
∈Tpv((V1,V2))

∑
(u1,. . . ,uk)

∈splitk((v1,v2))

(V1, V2)∗(v1,v2)

(
splitk

+((v1, v2))
)

(u1,. . . ,uk)
·m[u1/x1, . . . , uk/xk]

=
∑

(u1,. . . ,uk)
∈Tpv((V1,V2))k

k∏
i=1

(V ∗1 )v1,i

k∏
j=1

(V ∗2 )v2,j ·m[u1/x1, . . . , uk/xk]

Where (u1, . . . , uk) = ((v1,1, v2,1), . . . , (v1,k, v2,k)), for (vi,1, . . . , vi,k) ∈ splitk(vi).
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By induction hypothesis, we have for i ∈ {1, 2}:∑
vi∈Tpv(Vi)

∑
(vi,1,. . . ,vi,k)

∈splitk(vi)

(V ∗i )vi

(
splitk+(vi)

)
(vi,1,. . . ,vi,k)

·m[vi,1/x1, . . . , vi,k/xk]

=
∑

(vi,1,. . . ,vi,k)

∈Tpv(Vi)k

k∏
j=1

(V ∗i )vi,j ·m[vi,1/x1, . . . , vi,k/xk]

Which allows us to conclude this case since ((V1, V2)∗)(v1,i,v2,j) = (V ∗1 )v1,i × (V ∗2 )v2,j and(
splitk+((v1, v2)

)
(u1,. . . ,uk)

=
∏2
i=1

(
splitk+(vi)

)
(vi,1,. . . ,vi,k)

The case V = ιi(V ′) is proved in the same way by induction hypothesis. J

I Property 3. (M [N/x])∗ =

∑
m∈Tpv(M)

∑
(n1,. . . ,nk)∈Tpv(N)k

(M∗)m
k∏
i=1

(N∗)ni ·m[n1/x1, . . . , nk/xk]

where k = degx(m).

Proof. Easy induction on M . J

We can finally state the main result of this section and of the paper: Theorem 17
establishes the simulation of Λpv operational semantics in Taylor expansion with coefficients.

I Theorem 17. Let M,M ′ ∈ Λpv, if M →pv M
′, then M∗ ⇒M ′∗.

Proof. We use Proposition 9, and verify that it extends to full Taylor expansion, keeping all
coefficients in the right place.

If M = 〈λxN〉V and M ′ = N [V/x], then M∗ =∑
n∈Tpv(N)

∑
v∈Tpv(V )

(N∗)n(V ∗)v · 〈λxn〉v

⇒
∑

n∈Tpv(N)

∑
v∈Tpv(V )

∑
(v1,. . . ,vk)

∈splitk(v)

(N∗)n(V ∗)v
(
splitk+(v)

)
(v1,. . . ,vk)

· n[v1/x1, . . . , vk/xk]

=
∑

n∈Tpv(N)

∑
(v1,. . . ,vk)∈Tpv(V )k

(N∗)n
k∏
i=1

(V ∗)vi
· n[v1/x1, . . . , vk/xk]

The last equality is obtained by Lemma 16, and is equal to N [V/x]∗ by Property 3.
If M = case((ιi(V ), x1 ·M1, x2 ·M2)) and M ′ = Mi[V/xi], then M∗ =∑

j∈{1,2}

∑
r∈∆pv

((i, V )∗ = (j, r)) ·N∗j [V ∗/xj,1, . . . , V ∗/xj,k]

⇒ N∗i [V ∗/xi,1, . . . , V ∗/xi,k]

Which is equal to (N [V/x])∗ by Property 3.
If M = der(N !) and M ′ = N , then we verify immediately (der(N !))∗ = der((N !)∗) =
der((N∗)!) = N∗, since der([n1, . . . , nk])→rpv 0 if k 6= 1.
If M = fixx(N), then, M∗ = (M [(fixxM)!/x])∗. Property 3 and an examination of the
definition of Taylor expansion of fixpoint is sufficient to verify this point.
The projections rules are obtained by a straightforward application of the definitions. J
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5 Conclusions

We have introduced a new resource calculus reflecting Call-By-Push-Value resource handling
and based on Linear Logic semantics. We have then defined Taylor expansion for Call-By-
Push-Value as an approximation theory of Call-By-Push-Value encounting for resources.
Then, we have shown that it behaves well with respect to the original operational semantics:
Taylor expansion with coefficients commutes with reduction in Λpv. For future work, three
directions shall be explored:

The calculus can be extended in order to define inductive and coinductive datatypes.
Integers, for instance, could be defined by adding to our syntax (): 0 = ι1(), k + 1 = ι2(k),
and all integers defined in this way have the type ι = (1⊕ ι). The successor suc can then
be defined as the second injection. Then, if x has no free occurrence in N1, the term
case(M,x ·N1, y ·N2) is an adequate encoding of an “if zero” conditional If(M,N1, y ·N2)
(where the value to which M evaluates is passed to the following computation).
The coinductive datatype of streams can also be defined: let A be a positive type,
SA = !(A⊗ SA) is the type of lazy streams of type A (the tail of the stream being always
encapsulated in an exponential, the evaluation is postponed). We can construct a term
of type SA ( ι( A which computes the k-th element of a stream:

fixf (λxλy(If(y, π1(der(x)), z · 〈der(f)〉π2〈der(x)〉z)))

and a term of type !(ι( A) ( SA:

fixf
(
λg
(
der(g)0, 〈der(f)〉(λx〈der(g)〉suc(x))!))

which builds a stream by applying inductively a function to an integer. There are other
classical constructions, such as lists, that can be constructed with these ingredients. For
a more detailed presentation, see Ehrhard and Tasson’s work [14]. We have good hope
that this kind of extensions can be incorporated in our resource driven-constructions.
Extend our constructions in a probabilistic setting, to fit with existing quantitative
models like probabilistic coherence spaces. Indeed Lemma 10, which is crucial to define
reduction on quantitative Taylor expansion, strongly relies on the uniformity of the
calculus, i.e we use the fact that all resource terms appearing in the Taylor expansion of
a Call-By-Push-Value term have the same shape (there is a correspondance between their
syntactic trees). The extension seems highly non trivial. But, Dal Lago and Leventis’
recent work [19] might be a starting point.
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17:2 Tangent Categories from the Coalgebras of Differential Categories

Differential Categories
Blute, Cockett, Seely [7]

Cartesian Differential Categories
Blute, Cockett, Seely [6]

Restriction Differential Categories
Cockett, Cruttwell, Gallagher [14]

Tangent Categories
Rosicky [41]
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Figure 1 The world of differential categories and how it’s all connected.

transformations that formalize the basic properties of the tangent bundle functor on the
category of smooth manifolds. The study of the tangent category structure of coEilenberg-
Moore categories of such differential categories was initiated by the third author in talks
at the Category Theory 2014 conference [35] and the Foundational Methods in Computer
Science conference in 2014 [34].

The use of differentiation in programming, particularly for applications in machine learn-
ing, has renewed computer scientists’ interest in the abstract semantics of differentiation.
Tensor differential categories provide perhaps the simplest abstract description of differenti-
ation. Tangent categories, on the other hand, are at quite the other end of the spectrum,
providing an abstract semantics for differential geometry. That the two are directly linked
by the coEilenberg-Moore construction (which is purely algebraic) witnesses that there is a
surprisingly direct relationship between differential programming and differential geometry
which might usefully be exploited.

In Figure 1 the relationships between the various differential categories are illustrated.
The investigation of differential structure of this kind was initiated by Erhrard [17] and
formulated as a categorical axiomatization in [7]. Classical smooth functions arose indirectly
as the coKleisli maps of these differential categories: thus, the next step was to directly
axiomatize this classical intuition. This was accomplished in [6], where Cartesian differential
categories were introduced. By considering the representability of a tensor product in
Cartesian differential categories it was then possible to extract a (tensor) differential category
from a Cartesian differential category [4]. Classical analysis considers maps that are not
defined everywhere and, thus, the theory of Cartesian differential categories with partiality
was developed [14]. It was a natural step from there to consider differentiable manifolds, and
this created a desire to develop a basic axiomatization for differential geometry: this led to the
development of abstract differential geometry based on tangent categories, which had been
introduced by Rosický in [41] and were later generalized and studied further by Cockett and
Cruttwell in [12]. An important alternative approach to tangent categories was introduced
by Leung [32] and was further developed by Garner in [20] to provide a view of tangent
categories as categories enriched in Weil spaces. Cartesian differential categories are always
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examples of tangent categories [12, Proposition 4.7]. Conversely the differential bundles
of a tangent category over a fixed base, under mild limit assumptions, form a Cartesian
differential category, showing that a tangent category is locally a Cartesian differential
category [13, Theorem 5.14]. These observations tightly linked Cartesian differential and
tangent categories; in fact this relationship is captured by an adjunction [12, Theorem 4.12].
The current paper provides an important direct link between (tensor) differential categories
and tangent categories.

An important example of a (tensor) differential category is the opposite of the category of
Abelian groups with the free exponential modality [7] where the differential structure is based
on differentiating polynomials. The coEilenberg-Moore category, in this case, is the opposite
of the category of commutative rings. The fact that this is a tangent category captures a
fundamental aspect of both algebraic geometry [24] and Synthetic Differential Geometry [29].
That the coEilenberg-Moore category of a differential category is a tangent category in much
more generality allows further significant examples. Not only can one dispense with the
necessity of assuming negatives, but also with the necessity of having a monoidal coalgebra
modality [4] or, equivalently, the Seely isomorphisms, !(A×B) ∼= !(A)⊗ !(B) [43] (which the
third author required in [34]). Dispensing with the assumption of negatives allows one to
generalize the example of commutative rings to commutative semirings [22] and to consider
examples from combinatorics and computer science. Dispensing with the assumption of a
monoidal coalgebra modality/the Seely isomorphisms allows consideration of such examples
as C∞-rings [29, 39] or Rota-Baxter algebras [23]. When a coalgebra modality is monoidal,
it will give rise, when sufficient limits are present, to a representable tangent category. This
means that the tangent functor is of the form _D for an infinitesimal object D and so has
left adjoint _×D. Two examples of such differential categories include the opposite category
of vector spaces with the free commutative algebra modality (one of the original examples of
a differential category in [7]), as well as the the category of vector spaces with the cofree
cocommutative coalgebra modality (as studied by Clift and Murfet in [11]). It is interesting
to note that in both cases, the infinitesimal object is the ring of dual numbers over the field.
On the other hand, as the free C∞-ring modality is not monoidal, this provides an example
of a non-representable tangent category that, nonetheless, has a tangent functor that is a
right adjoint.

Conventions: This paper assumes a knowledge of basic category theory and of symmetric
monoidal categories. We refer the reader to [36] if further details are needed on these topics.
In this paper we shall use diagrammatic order for composition: explicitly, this means that
the composite map fg is the map that employs f first and then g. Furthermore, to simplify
working in symmetric monoidal categories, we will allow ourselves to work in symmetric
strict monoidal categories, and therefore we suppress the associator and unitor isomorphisms.
Symmetric monoidal categories will be denoted by (X,⊗,K, τ) where X is the underlying
category, ⊗ is the tensor product, K is the monoidal unit, and τA,B : A⊗B → B ⊗A is the
symmetry isomorphism.

2 Tangent Categories

Tangent categories were introduced by Rosický in [41], then later generalized and studied
further by Cockett and Cruttwell in [12]. This generalization, which replaced Abelian
groups with commutative monoids, opened the door to examples of tangent categories from
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17:4 Tangent Categories from the Coalgebras of Differential Categories

combinatorics and computer science where one does not expect to have negatives. The
axioms of a tangent category abstract the essential properties of tangent bundles over smooth
manifolds [31]. In this section we provide a brief overview of tangent categories, and refer
the reader to [12, 20] for a more in-depth introduction.

I Definition 1. Let X be a category. A tangent structure [12] T on X is a sextuple
T := (T, p, σ, z, `, c) consisting of:

An endofunctor T : X→ X;
A natural transformation pM : T(M) → M , known as the projection, such that for
each M and each n ∈ N, there is an n-th fibre power1 Tn(M) of pM (with projections
ρi : Tn(M)→ T(M)), and this fibre power is preserved by Tm for each m ∈ N. For each
n ∈ N, this induces a functor Tn : X→ X where by convention T0 = 1X and T1 = T.
Natural transformations σM : T2(M)→ T(M), known as the sum operation on tan-
gent vectors, zM : M → T(M), known as the zero vector field, `M : T(M)→ T2(M),
known as the vertical lift, and cM : T2(M)→ T2(M), known as the canonical flip;

and such that p, σ, z, `, and c satisfy the various equational axioms found in [12, 20] and that
for each M , the following diagram is an equalizer diagram [36], known as the universality
of the vertical lift:

T2(M)
〈ρ0zT(M),ρ1`M 〉T(σM )

// T2(M)
T(pM ) //

pT(M)pMzM

// T(M)

where 〈−,−〉 is the pairing operation induced by the universal property of the pullback.

I Definition 2. A tangent category [12] is a pair (X,T) consisting of a category X and a
tangent structure T on X. The fibre powers of p, together with the equalizer appearing in the
axiom of universality of the vertical lift, are collectively referred to as the tangent limits
[20] of a tangent category.

We refer the reader to [12] where the axioms of a tangent category are expressed in
commutative diagrams. In [32], Leung defined an alternative axiomatization of a tangent
category using Weil algebras; this was exploited by Garner in [20] to provide a description of
tangent categories as categories enriched in Weil spaces.

I Example 3. Here are some well-known examples of tangent categories. Other examples of
tangent categories can be found in [12, 20, 13].
1. The canonical example of a tangent category is the category of finite-dimensional smooth

manifolds, where for a manifold M , T(M) is the standard tangent bundle over M .
2. Every Cartesian differential category [6] is a tangent category [12, Proposition 4.7]. In

particular this implies that every categorical model of the differential λ-calculus [10, 37]
is a tangent category.

3. Let k be a field, and let CALGk be the category of commutative k-algebras. Then CALGk
is a tangent category where for a commutative k-algebra A, T(A) := A[ε] is the ring of
dual numbers over A, A[ε] = {a+ bε| a, b ∈ A} with ε2 = 0. The projection is defined as
pA(a+ bε) = a, and so T2(A) := A[ε, ε′] = {a+ bε+ cε′| a, b, c ∈ A} with ε2 = ε′

2 = εε′ =
0. On the other hand, T2(A) := {a+ bε1 + cε2 + dε1ε2| a, b, c, d ∈ A} with ε21 = ε22 = 0.
The remaining tangent structure is defined as follows: σA(a + bε + cε′) = a + (b + c)ε,
zA(a) = a, `A(a+ bε) = a+ bε1ε2, and cA(a+ bε1 + cε2 + dε1ε2) = a+ cε1 + bε2 + dε1ε2.

1 I.e, a fibered product [36] of n instances of pM
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We will generalize this example in the context of codifferential categories in Section 5. In
particular, this example generalizes to the category of commutative algebras over any
commutative unital semiring.

Of particular importance to this paper is when the tangent functor has a left adjoint,
which induces a tangent structure on the opposite category of the tangent category.

I Theorem 4. [12, Proposition 5.17] Let (X,T) be a tangent category such that for each
n ∈ N, Tn : X → X has a left adjoint Ln : X → X. Then Xop has a tangent structure with
tangent functor L = L1.

See Example 7.3 for an application of this theorem. In Section 6 we will use Theorem 4
to obtain a tangent structure on the coEilenberg-Moore category of a differential category.

We now turn our attention to representable tangent categories, which briefly are tangent
categories whose tangent functor is representable. Representable tangent categories are a
very important kind of tangent category as they are closely related to synthetic differential
geometry [29]. First recall that in a category X with binary products ×, an object D is
an exponent object if the functor − ×D : X → X has a right adjoint (−)D : X → X. A
functor F : X→ X is representable if F(−) ∼= (−)D for some exponent object D, and D is
said to represent the functor F.

I Definition 5. A representable tangent category [12] is a tangent category (X,T)
such that X has finite products and for each n ∈ N, Tn is a representable functor, that
is, Tn(−) ∼= (−)Dn for some exponent object Dn. In the case of n = 1, the object D1
(which we denote simply as D) representing the tangent functor, T(−) ∼= (−)D, is called the
infinitesimal object [12] of the representable tangent category (X,T).

Alternatively one can axiomatize representable tangent categories in terms of the infin-
itesimal object D, see [12, Definition 5.6]. Note that by definition, a representable functor
has a left adjoint and therefore one can apply Theorem 4 to a representable tangent category.

I Theorem 6. [12, Corollary 5.18] Let (X,T) be a representable tangent category with
infinitesimal object D. Then Xop has a tangent structure with tangent functor −×D.

I Example 7. We finish this section with some examples of representable tangent categories.
1. Every tangent category embeds into a representable tangent category [20].
2. The subcategory of infinitesimally and vertically linear objects of any model of synthetic

differential geometry [29] is a representable tangent category with infinitesimal object
D = {x ∈ R| x2 = 0}, where R is the line object [12, Proposition 5.10].

3. Let k be a field. Recall that in CALGk, the categorical coproduct is given by the tensor
product of k-vector spaces ⊗ which is therefore a product in CALGopk . Then CALGopk is a
representable tangent category with infinitesimal object k[ε], the ring of dual numbers
over k. For a commutative k-algebra A, Ak[ε] (in CALGopk ) is defined as the symmetric
A-algebra over the Kähler module of A (see [12, Proposition 5.16] for full details). By
applying Theorem 6 to this example, one obtains precisely the tangent structure on
CALGk from Example 3.3, where in particular we note that A[ε] ∼= A⊗ k[ε]. In Section
6 we will generalize this example to the context of differential categories. We again
note that this example generalizes to the category of commutative algebras over any
commutative semiring.
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3 Coalgebra Modalities and their coEilenberg-Moore Categories

In this section we review (co)algebra modalities and take a look at their (co)Eilenberg-
Moore categories. Coalgebra modalities were introduced in the development of differential
categories [7], as a weakening of the notion of linear exponential comonad that is required
for a categorical model of the multiplicative and exponential fragment of linear logic (MELL)
[3, 42, 38]. While the notion of a coalgebra modality is strictly weaker than that of a linear
exponential comonad – which is precisely a monoidal coalgebra modality [4] – coalgebra
modalities provide a sufficient context in which to axiomatize differentiation.

A comonad [36] on a category X will be denoted as a triple (!, δ, ε) with endofunc-
tor ! : X→ X and natural transformations δA : !(A) → !!(A) and εA : !(A) → A. A
!-coalgebra will be denoted as a pair (A,ω) with underlying object A and !-coalgebra
structure ω : A→ !(A). The category of !-coalgebras and !-coalgebra morphisms is called
the coEilenberg-Moore category [36] of the comonad (!, δ, ε) and will be denoted X!.
Coalgebra modalities are comonads such that every cofree !-coalgebra comes equipped with
a natural cocommutative comonoid structure.

I Definition 8. A coalgebra modality [7] on a symmetric monoidal category is a quin-
tuple (!, δ, ε,∆, e) consisting of a comonad (!, δ, ε) equipped with two natural transformations
∆A : !(A)→ !(A)⊗ !(A) and eA : !(A)→ K such that for each object A, (!(A),∆A, eA) is a
cocommutative comonoid and δA is a comonoid morphism.

What can we say about the coEilenberg-Moore category of a coalgebra modality? It turns
out that every !-coalgebra of a coalgebra modality comes equipped with a cocommutative
comonoid structure [9]. Indeed if (A,ω) is a !-coalgebra, then the triple (A,∆ω, eω) is a
cocommutative comonoid where ∆ω and eω are defined as follows:

∆ω := A
ω // !(A) ∆A // !(A)⊗ !(A) εA⊗εA// A⊗A eω := A

ω // !(A) eA // K

It is important to point out that (A,∆ω, eω) is in general only a cocommutative comonoid
in the base category X and not in the coEilenberg-Moore category X!, since the latter does
not necessarily have a monoidal product. Also notice that since δA is a comonoid morphism,
when applying this construction to a cofree !-coalgebra (!(A), δA) we recover ∆A and eA,
that is, ∆δA = ∆A and eδA = eA.

I Definition 9. In a symmetric monoidal category with finite products × and terminal object
1, a coalgebra modality has Seely isomorphisms [3, 4, 43] if the map χ1 : !(1)→ K and
natural transformation χ : !(A×B)→ !A⊗ !B defined respectively as

!(1) e // K !(A×B) ∆ // !(A×B)⊗ !(A×B)
!(π0)⊗!(π1) // !(A)⊗ !(B)

are isomorphisms, so !(1) ∼= K and !(A×B) ∼= !(A)⊗ !(B).

Coalgebra modalities with Seely isomorphisms can equivalently be defined as monoidal
coalgebra modalities [3, 4], which are coalgebra modalities equipped with a natural
transformation mA,B : !(A) ⊗ !(B) → !(A ⊗ B) and a map mK : K → !(K) making !
a symmetric monoidal comonad such that ∆ and e are both monoidal transformations
and !-coalgebra morphisms. Furthermore for a monoidal coalgebra modality, the monoidal
product of the base category becomes a finite product in the coEilenberg-Moore category [42].
Explicitly, the terminal object is the !-coalgebra (K,mK) while the product of !-coalgebras
(A,ω) and (B,ω′) is (A,ω)⊗ (B,ω′) := (A⊗B, (ω ⊗ ω′)mA,B).
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I Example 10. Here are some examples of coalgebra modalities. Many other examples of
coalgebra modalities (with and without the Seely isomorphisms) can be found in [5].
1. There is no shortage of examples of coalgebra modalities since every categorical model

of MELL admits a coalgebra modality which has the Seely isomorphism. For example,
Hyland and Schalk provide a nice list of such examples in [26, Section 2.4].

2. Let k be a field and let VECk be the category of k-vector spaces, which is a symmetric
monoidal category with respect to the standard tensor product of k-vector spaces. For
every k-vector space V , there exists a cofree cocommutative k-coalgebra [44] over V ,
denoted !(V ), where a detailed construction can be found in [11, 26, 44]. In particular, if
k has characteristic 0 2 and if X = {xi | i ∈ I} is a basis of V , then !(V ) ∼=

⊕
v∈V

k[X] as

k-coalgebras (where k[X] is the polynomial ring over k generated by the set X). This
induces a coalgebra modality ! on VECk which furthermore has the Seely isomorphisms
(!(V ×W ) ∼= !(V )⊗ !(W ) and !(0) ∼= k), and by [40] we know that the coEilenberg-Moore
category of ! is isomorphic to the category of cocommutative k-coalgebras (which are the
cocommutative comonoids in VECk). By applying results in [40], one can generalize this
example to the category of modules over an arbitrary commutative unital ring.

The dual notion of a coalgebra modality is an algebra modality. Since we will be working
with algebra modalities in Section 5, we provide the definition of an algebra modality in detail.
Amonad [36], the dual notion a comonad, on a category X will be denoted as a triple (S, µ, η)
consisting of an endofunctor S : X→ X and natural transformations µA : S2(A)→ S(A) and
ηA : S(A)→ A. An S-algebra will be denoted as a pair (A, ν) with underlying object A and
structure map ν : S(A)→ A. The category of S-algebras and S-algebra morphisms is called
the Eilenberg-Moore category [36] of the monad (S, µ, η) and is denoted XS.

I Definition 11. An algebra modality [9] on a symmetric monoidal category is a quintuple
(S, µ, η,∇, u) consisting of a monad (S, µ, η) equipped with two natural transformations
∇A : S(A)⊗ S(A)→ S(A) and e : K → S(A) such that for each object A, (S(A),∇A, uA) is
a commutative monoid and µA is a monoid morphism.

Since algebra modalities are dual to coalgebra modalities, it follows that every S-algebra
comes equipped with a commutative monoid structure [9], which we again point out is in the
base category and not the Eilenberg-Moore category. Explicitly, given an S-algebra (A, ν) of
an algebra modality (S, µ, η,∇, u), the triple (A,∇ν , uν) is a commutative monoid where ∇ω
and uω are defined as follows:

∇ν := A⊗A
ηA⊗ηA// S(A)⊗ S(A) ∇A // S(A) νA // A uν := K

uA // S(A) ν // A

Dual to coalgebra modalities with the Seely isomorphisms, in the case of a symmetric
monoidal category with finite coproducts ⊕ and initial object 0, if the algebra modality has
the Seely isomorphisms, i.e. S(0) ∼= K and S(A ⊕ B) ∼= S(A) ⊗ S(B), then the monoidal
product becomes a coproduct in Eilenberg-Moore category.

I Example 12. Here are some examples of algebra modalities. Many other examples of
algebra modalities (with and without the Seely isomorphisms) can be found in [5].

2 In [11], Clift and Murfet work, for simplicity, with an algebraically closed field of characteristic 0.
However, as they point out, the assumption that the field is algebraically closed is not necessary in the
construction.
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1. Let k be a field. In analogy with Example 10.2, for every k-vector space V there exists a
free commutative k-algebra over V , denoted Sym(V ), which is also called the symmetric
algebra over V [30]. In particular, if X = {xi | i ∈ I} is a basis of V , then Sym(V ) ∼= k[X]
as k-algebras (where k[X] is the polynomial k-algebra generated by the set X). This
induces an algebra modality Sym on VECk which furthermore has the Seely isomorphisms
(so that Sym(V × W ) ∼= Sym(V ) ⊗ Sym(W ) and Sym(0) ∼= k) and whose Eilenberg-
Moore category is isomorphic to the category of commutative k-algebras (which are the
commutative monoids in VECk). This example generalizes to the category of modules
over an arbitrary commutative unital semiring.

2. Let R be the field of real numbers. C∞-rings [29, 39] are defined as the algebras of the
Lawvere theory whose morphisms are smooth maps between Cartesian spaces Rn, so
a C∞-ring can be defined equivalently as a set A equipped with a family of functions
Φf : An → A indexed by the smooth functions f : Rn → R, satisfying certain equations.
For example, if M is a smooth manifold, then C∞(M) = {f : M → R| f is smooth} is
a C∞-ring where for a smooth map f : Rn → R, Φf : C∞(M)n → C∞(M) is defined
by post-composition by f . Every C∞-ring is a commutative R-algebra and for every
R-vector space V there exists a free C∞-ring over V [28, Theorem 3.3][16], denoted as
S∞(V ). This induces an algebra modality S∞ on VECR [16], where in particular for a
finite dimensional vector space V of dimension n, one has that S∞(V ) ∼= C∞(Rn). The
Eilenberg-Moore category of S∞ is the category of C∞-rings [29, 39, 16]. It is important
to note that this is an example of an algebra modality which does NOT have the Seely
isomorphisms. However, C∞-rings are mathematically important, as they provide the
basis for well-adapted models of synthetic differential geometry [29, 39] and provide a
natural setting for the adaptation of algebro-geometric methods to a smooth context.

4 Differential Categories

In this section we review (co)differential categories and, in particular, we will take a look
at some well-known examples that correspond to differentiating polynomials and smooth
maps. Differential categories were introduced by Blute, Cockett, and Seely [7] to provide the
categorical semantics of differential linear logic [18]. While a codifferential category is simply
the dual of a differential category, we provide full definitions of each since we will be working
with codifferential categories in Section 5 and in the appendix, and we will be working with
differential categories in Section 6.

Two of the basic properties of the derivative from classical differential calculus require
addition (or at least the number 0): the Leibniz rule and the constant rule. Therefore we
must first discuss additive structure. Here we mean “additive” in the sense of [7], that is,
enriched over commutative monoids. In particular this definition does not assume negatives
nor does it assume biproducts, so this differs from other definitions of an additive category
such as in [36]. That said, in Section 5 and Section 6 we will be working with (co)differential
categories with biproducts.

I Definition 13. An additive category is a category enriched in commutative monoids,
that is, a category in which each hom-set is a commutative monoid, with addition operation
+ and zero 0, and in which composition preserves the additive structure in the sense that
k(f+g)h = (kfh)+(kgh) and 0f = 0 = f0. An additive symmetric monoidal category
[7] is a symmetric monoidal category that is also an additive category such that the monoidal
product ⊗ is compatible with the additive structure in the sense that k ⊗ (f + g) ⊗ h =
k ⊗ f ⊗ h+ k ⊗ g ⊗ h and f ⊗ 0⊗ g = 0.
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Every category with finite biproducts is an additive category, and finite (co)products in
an additive category are automatically finite biproducts. In fact, every additive category can
be completed to a category with biproducts [36], where the completion is also an additive
category, and similarly every additive symmetric monoidal category can be completed to
an additive symmetric monoidal category with distributive biproducts. For this reason it
is possible to argue (as in [19]) that one might as well always assume one has biproducts.
However, it is important to bear in mind that only monoidal coalgebra modalities are
guaranteed to lift to the biproduct completion. Thus, for a treatment of arbitrary coalgebra
modalities this assumption cannot be made (see [5] for more details).

I Definition 14. A differential category [7] is an additive symmetric monoidal category
with a coalgebra modality (!, δ, ε,∆, e) that comes equipped with a deriving transformation,
that is, a natural transformation dA : !(A)⊗A→ !(A) such that the following equalities hold:
[d.1] Constant Rule: dAeA = 0
[d.2] Leibniz Rule: dA∆A = (∆A⊗1!(A))(1!(A)⊗τ!(A),A)(dA⊗1!(A))+(∆A⊗1!(A))(1!(A)⊗dA)
[d.3] Linear Rule: dAεA = eA ⊗ 1A
[d.4] Chain Rule: dAδA = (∆A ⊗ 1A)(δA ⊗ dA)d!(A)
[d.5] Interchange Rule3: (dA ⊗ 1A)dA = (1⊗ τA,A)(dA ⊗ 1A)dA

CoKleisli maps of coalgebra modalities, that is, maps of type f : !(A) → B, are to
be thought of as smooth maps from A to B as they are, in a certain sense, infinitely
differentiable. Indeed the derivative of f : !(A) → B is the map D[f ] : !(A) ⊗ A → B,
defined as the composite D[f ] := dAf . The constant rule [d.1] amounts to the statement
that the derivative of a constant map is zero. The second axiom [d.2] is the analogue of
the classical Leibniz rule in differential calculus. For the third axiom, a subclass of smooth
maps are the linear maps, which are coKleisli maps of the form εAg : !(A) → B for some
map g : A → B. Then the linear rule [d.3] says that the derivative of a linear map is
“constant” with respect to the point at which it is taken. The fourth axiom [d.4] is the
chain rule regarding composition in the coKleisli category. The interchange rule [d.5], is the
independence of order of differentiation, which, naively put, says that differentiating with
respect to x then y is the same as differentiation with respect to y then x. For more details
and for string diagram representation of the axioms of a differential category, we refer the
reader to [7, 5].

I Definition 15. A differential storage category [7] is a differential category with finite
biproducts whose coalgebra modality has the Seely isomorphisms.

For differential storage categories, the differential category structure can equivalently be
axiomatized by a natural transformation ηA : A→ !(A) known as a codereliction [7, 5, 19].
For monoidal coalgebra modalities, there is a bijective correspondence between coderelictions
and deriving transformations [5]. However, we will see below that the deriving transformation
plays the more important role when discussing tangent category structure of (co-)Eilenberg-
Moore categories of differential categories.

I Example 16. Here are some examples of differential storage categories. Many other
examples of differential (storage) categories can be found in [7, 5, 18].

3 It should be noted that the interchange rule [d.5] was not part of the definition in [7] but was later added
to ensure that the coKleisli category of a differential category (with finite products) was a Cartesian
differential category [6].
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1. In [8], Blute, Ehrhard, and Tasson showed that the category of convenient vector spaces
and bounded linear maps between them is a differential storage category. In particular,
the coKleisli category is precisely the category of convenient vector spaces and smooth
maps between them. The differential structure is induced by the limit definition of the
derivative in locally convex vector spaces.

2. In [18], Ehrhard provides a differential storage category (amongst others) whose objects
are linearly topologized vector spaces generated by finiteness spaces. The differential
structure corresponds to differentiating multivariable power series.

3. In [11], Clift and Murfet study the differential category structure induced by cofree
cocommutative coalgebras. So if k is a field of characteristic 0, VECk is a differential
storage category with the coalgebra modality ! defined in Example 10.2. Recalling that
for a vector space V with basis X, !(V ) ∼=

⊕
v∈V

k[X], the deriving transformation can be

expressed as:

dV :
(⊕
v∈V

k[X]
)
⊗ V →

⊕
v∈V

k[X] pv(x1, . . . , xn)⊗ xi 7→ pv(x1, . . . , xn)xi

where pv(x1, . . . , xn) is a polynomial in distinct indeterminates x1, x2, ..., xn ∈ X and lies
in the v-th coproduct-component of !V , where v ∈ V . This example also generalizes for
modules over a commutative unital semiring.

I Definition 17. A codifferential category [9] is an additive symmetric monoidal category
with an algebra modality (S, µ, η,∇, u) that comes equipped with a deriving transforma-
tion4, that is, a natural transformation dA : S(A)→ S(A)⊗A such that dual equalities of
[d.1] to [d.5] hold, that is:
[cd.1] Constant Rule: uAdA = 0
[cd.2] Leibniz Rule:

∇AdA = (dA ⊗ 1S(A))(1S(A) ⊗ τA,S(A))(∇A ⊗ 1S(A)) + (1S(A) ⊗ dA)(∇A ⊗ 1S(A))

[cd.3] Linear Rule: ηAdA = uA ⊗ 1A
[cd.4] Chain Rule: µAdA = dS(A)(µA ⊗ dA)(∇A ⊗ 1A)
[cd.5] Interchange Rule: dA(dA ⊗ 1A) = dA(dA ⊗ 1A)(1⊗ τA,A)

I Example 18. Here are some examples of codifferential categories. Many other examples
of codifferential categories can be found in [7, 5].
1. Let k be a field. Then VECk is a codifferential storage category with the algebra modality

Sym defined in Example 12.1, and where the differential structure corresponds precisely
to differentiation of polynomials. To see this, recall that for a k-vector space V with
basis set X, Sym(V ) ∼= k[X]. Therefore the deriving transformation can be expressed as
dV : k[X]→ k[X]⊗ V , which is given by taking a sum involving the partial derivatives:

dV : k[X]→ k[X]⊗ V p(x1, . . . , xn) 7→
n∑
i=1

∂p

∂xi
(x1, . . . , xn)⊗ xi

So VECopk is a differential storage category. See [7, 5] for full details on this example. This
example generalizes to the category of modules over a commutative unital semiring.

4 As in the literature, we keep the same terminology and notation for a deriving transformation in the
context of a codifferential category
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2. Other than the codifferential category structure given by Sym from the previous example,
VECR also has a codifferential category structure with respect to the algebra modality S∞
defined in Example 12.2. The deriving transformation is induced by differentiating smooth
functions. In particular for Rn, S∞(Rn) = C∞(Rn) and the deriving transformation
dRn : C∞(Rn)→ C∞(Rn)⊗ Rn is defined as a sum involving the partial derivatives:

dRn : C∞(Rn)→ C∞(Rn)⊗ Rn f 7→
n∑
i=1

∂f

∂xi
⊗ xi

Hence VECopR is a differential category. See [16] for full details on this example.

5 Tangent Structure and Codifferential Categories

The goal of this section is to prove that the Eilenberg-Moore category of a codifferential
category with finite biproducts is a tangent category. To achieve this we need to first
introduce the concept of a tangent monad, in order to lift tangent structure to Eilenberg-
Moore categories.

Let (S, µ, η) be a monad on a category X and let T : X→ X be an endofunctor. Recall
that a distributive law [45] of T : X → X over (S, µ, η) is a natural transformation
λM : S(T(M))→ T(S(M)) such that the following diagrams commute:

S2T(M)

µT(M)

��

S(λM )// STS(M)
λS(M)// TS2(M)

T(µM )
��

T(M)

T(ηM ) ##

ηT(M)// ST(M)

λM

��
ST(M)

λM

// TS(M) TS(M)

Distributive laws of this sort allow us to lift T to the Eilenberg-Moore category of (S, µ, η)
[45], noting that this is an instance of a more general result of Appelgate that is stated in
[27]. Explicitly, the endofunctor T : XS → XS, called the lifting of T, is defined on objects by

T(A, S(A) ν // A ) := (T(A), ST(A) λA // TS(A)
T(ν)// T(A)) and on maps by T(f) := T(f).

I Definition 19. A tangent monad on a tangent category (X,T) is a quadruple (S, η, µ, λ)
consisting of a monad (S, η, µ) equipped with a distributive law λ of the tangent functor T
over (S, µ, δ) such that the following diagrams commute:

ST(M)

λM

��

S(pM )

##

ST2(M)
S(σM )//

〈S(ρ0)λ,S(ρ1)λ〉
��

ST(M)

λM

��

S(M)

zS(M) ##

S(zM )// ST(M)

λM

��
TS(M)

pS(M)
// S(M) T2S(M)

σS(M)
// TS(M) TS(M)

ST(M)

λM

��

S(`M )// ST2(M)

λT(M)

��

ST2(M)

λT(M)

��

S(cM )// ST2(M)

λT(M)

��
TST(M)

T(λM )
��

TST(M)

T(λM )
��

TST(M)

T(λM )
��

TS(M)
`S(M)

// T2S(M) T2S(M)
cS(M)
// T2S(M)
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Equivalently a tangent monad is a monad in the 2-category of tangent categories [20]
since the above diagrams imply that (S, λ) is a tangent morphism [12].

I Proposition 20. The Eilenberg-Moore category of a tangent monad is a tangent category
such that the forgetful functor preserves the tangent structure strictly.

Proof. Let (S, η, µ, λ) be a tangent monad on a tangent category (X,T). Since λ is a
distributive law, this induces a lifting functor T : XS → XS. Then we can define p(A,ν) := pA,
z(A,ν) := zA, `(A,ν) := `A, c(A,ν) := cA. That p, z, `, and c are all S-algebra morphisms
follows from naturality of p, z, `, c and the respective diagrams of a tangent monad. To define
the addition map σ, we must first address limits in XS. It is well known that any given
diagram has a limit in the Eilenberg-Moore category as soon as it has a limit in the base
category [36]. Therefore the tangent limits of (X,T) easily lift to XS, where in particular

T2(A, S(A) ν // A ) := (T2(A), ST2(A)
〈S(ρ0)λ,S(ρ1)λ〉 // T2S(A)

T2(ν) // T2(A)) . Then
we have that σ(A,ν) := σA. It follows that T := (T, p, σ, z, `, c) is a tangent structure on XS,
which by definition is preserved strictly by the forgetful functor. We conclude that (XS,T) is
a tangent category. J

The converse of Proposition 20 is also true, that is, if the Eilenberg-Moore category
of a monad admits a tangent structure that is strictly preserved by the forgetful functor,
then said monad is a tangent monad. In fact, in analogy with results for other kinds of
distributive laws [45], tangent monads are in bijective correspondence with liftings of the
tangent structure in this sense. Also note that by the universal property of the pullback
there are distributive laws λn,M : STn(M)→ TnS(M) for each n ∈ N.

To provide a tangent structure on the Eilenberg-Moore category of a codifferential
category, we will define a tangent monad structure on the algebra modality itself. However
we first need to address which tangent structure of the base category we will be lifting to
the Eilenberg-Moore category. This is where finite biproducts come into play. Recall that a
category with finite biproducts [36] can be described as an additive category with a zero
object 0 = 1 such that for each pair of objects A and B, there is an object A⊕B and maps
ι0 : A → A ⊕ B, ι1 : B → A ⊕ B, π0 : A ⊕ B → A, and π1 : A ⊕ B → B, satisfying the
well-known identities. This makes A⊕B both a product and a coproduct of A and B.

Every category X with finite biproducts admits a tangent structure whose tangent
functor is the diagonal functor, that is, the tangent functor T is defined on objects as
T(A) := A⊕A and on maps as T(f) := f ⊕ f . The projection is pA := A⊕A π0 // A , the

zero is zA := A
ι0 // A⊕A , the vertical lift is `A := A⊕A ι0⊕ι1 // A⊕A⊕A⊕A , and the

canonical flip is cA := A⊕A⊕A⊕A 1⊕τ⊕⊕1 // A⊕A⊕A⊕A where τ⊕A,B : A⊕B ∼= B⊕A
is the canonical symmetry isomorphism of the biproduct. Therefore it follows that for every
n ∈ N, Tn(A) :=

n⊕
i=0

A. For n = 2, T2(A) := A ⊕ A ⊕ A and the addition map is

σA := A⊕A⊕A
1⊕(π0+π1)// A⊕A . We denote this tangent structure as B (for biproduct).

That (X,B) is a tangent category follows from that fact that every category with finite
biproducts is in fact a Cartesian differential category (see Example 3.2).

I Proposition 21. Let X be a codifferential category with algebra modality (S, η, µ,∇, u) and
deriving transformation d, and suppose that X admits finite biproducts ⊕. Define the natural
transformation λA : S(A⊕ A)→ S(A)⊕ S(A) as the unique map that makes the following
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diagram commute:

S(A⊕A)
S(π0)

yy
λA

��

dA // S(A⊕A)⊗ (A⊕A)
S(π0)⊗π1// S(A)⊗A

1S(A)⊗ηA// S(A)⊗ S(A)

∇A

��
S(A) S(A)⊕ S(A)

π0
oo

π1
// S(A)

Equivalently, using the additive structure, λ := S(π0)ι0 + d(S(π0) ⊗ π1)(1 ⊗ η)∇ι1. Then
(S, µ, η, λ) is a tangent monad on (X,B).

Proof. See the extended version of this paper [15]. J

An immediate consequence of Proposition 20 and Proposition 21 is that (XS,B) is a
tangent category. Summarizing, we obtain one of the main results of this paper:

I Theorem 22. The Eilenberg-Moore category of a codifferential category with finite bi-
products is a tangent category.

In particular, the result of applying the tangent functor of (XS,B) to an S-algebra can be
simplified to T(A, ν) := (A⊕A, S(π0)νι0 + d(S(π0)⊗ π1)(ν ⊗ 1)∇νι1), which is an instance
of the S-algebra structure defined in [9, Theorem 4.1]. Denote the S-algebra structure of
T(A, ν) as ν[ : S(A⊕A)→ A⊕A. By [9, Proposition 5.4], the induced commutative monoid
structure on T(A, ν), generalizes that of the ring of dual numbers from Example 3.3:

∇ν
[

= (π0 ⊗ π0)∇νι0 + [(π0 ⊗ π1) + (π1 ⊗ π0)]∇νι1 uν
[

= uνι0

Thus, the above tangent structure on the Eilenberg-Moore category of a codifferential category
further highlights the relation between tangent structure and Weil algebras [32].

I Example 23. We conclude this section with some of the resulting tangent categories from
our main examples of codifferential categories:
1. For a field k, when applying the constructions of this section to Example 18.1, one recovers

precisely the tangent category from Example 3.3 induced by dual numbers, recalling that
VECSym

k
∼= CALGk.

2. For Example 18.2, the resulting tangent structure on the category of C∞-rings is particu-
larly important, since the ring of dual numbers plays a key role in models of synthetic
differential geometry based on C∞-rings [29, 39].

3. For a field k, one can also apply the constructions of this section to Example 16.3, which
implies that the opposite category of cocommutative k-coalgebras is a tangent category.

6 Representable Tangent Structure and Differential Categories

The goal of this section is to show that the coEilenberg-Moore category of a differential
category with biproducts is a tangent category, provided that it has certain equalizers. We
will also explain that in the case of a differential storage category, the coEilenberg-Moore
category is in fact a representable tangent category. To achieve this, we wish to apply
Theorem 4 to the tangent structure that we constructed in the previous section, which resides
on the Eilenberg-Moore category of a codifferential category.

In a category X with finite biproducts, the pullback powers of the projection pA := π0 are
Tn(A) =

n⊕
i=0

A. By the universality of the product and couniversality of the coproduct, each

Tn is its own adjoint, that is, Tn is a left adjoint to Tn. However in the Eilenberg-Moore
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category, Tn is not necessarily its own adjoint (in fact it is far from it in any of the examples
in this paper). Therefore we cannot use results about lifting adjunctions to Eilenberg-Moore
category on the nose such as in [25]. Instead we employ Johnstone’s left adjoint lifting
theorem [27, Theorem 2], which is a special case of the adjoint lifting theorem of Butler that
can be found in [2, Theorem 7.4], and it is at this point that we require the mild further
assumption that the Eilenberg-Moore category admits reflexive coequalizers. First recall that
a reflexive pair is a pair of parallel maps f, g : A→ B with a common section, that is, there
is a map h : B → A such that hf = 1B = hg. A reflexive coequalizer is a coequalizer of a
reflexive pair, and a category is said to have reflexive coequalizers if it has coequalizers of all
reflexive pairs. A famous result of Linton’s is that for a monad on a cocomplete category, the
Eilenberg-Moore category is cocomplete if and only if the Eilenberg-Moore category admits
all reflexive coequalizers [33].

I Proposition 24. [27, Theorem 2] Let λ be a distributive law of a functor R : X → X
over a monad (S, µ, η), and suppose that R has a left adjoint L. If XS admits reflexive
coequalizers then the lifting of R, R : XS → XS, has a left adjoint G : XS → XS such that
G(S(A), µA) = (SL(A), µL(A)).

Applying Proposition 24 to the Eilenberg-Moore category of a codifferential category, we
obtain the following result:

I Proposition 25. Let X be a codifferential category with algebra modality (S, η, µ,∇, u)
and deriving transformation d, and suppose that X admits finite biproducts and XS admits
reflexive coequalizers. Then for each n ∈ N, Tn : XS → XS has a left adjoint.

Applying Theorem 4 to the above proposition, we obtain the main result of this paper:

I Theorem 26. If the coEilenberg-Moore category of a differential category with finite bi-
products admits coreflexive equalizers (the dual of reflexive coequalizers), then the coEilenberg-
Moore category is a tangent category.

For differential storage categories, in order to show that the coEilenberg-Moore category
is a representable tangent category, we will need to look at the construction of Section 5
for codifferential categories with comonoidal algebra modalities. So let X be a codifferential
category with a comonoidal algebra modality (S, µ, η,∇, u, n, nK) such that X also admits
finite biproducts, noting that n and nK denote the comonoidal structure on S (Section 3).
Note that in X, it follows from distributivity between the biproduct and monoidal product
(which is automatic in any additive symmetric monoidal category) that for every n ∈ N one
has that Tn(A) =

n⊕
i=0

A ∼=
n⊕
i=0

(A⊗K) ∼= A⊗
n⊕
i=0

K = A⊗ Tn(K). In particular when n = 1,

T(A) ∼= A⊗ (K ⊕K). Recall that for a comonoidal algebra modality, ⊗ is a coproduct in
the Eilenberg-Moore category and there is a map nK : S(K)→ K making (K, nK) into an S-
algebra and an initial object. Then for every n ∈ N one has the following isomorphisms in the
Eilenberg-Moore category XS: Tn(A, ν) ∼= (A, ν)⊗ Tn(K, nK), and in particular, for n = 1,
T(A, ν) ∼= (A, ν) ⊗ T(K, nK) = (A, ν) ⊗ (K ⊕K, n[K) . If XS admits reflexive coequalizers
then by Proposition 25, each functor Tn ∼= − ⊗ Tn(K, nK) has a left adjoint. Dualizing,
this implies that − ⊗ Tn(K, nK) : (XS)op → (XS)op has a right adjoint and therefore that
Tn(K, nK) is an exponent object in (XS)op. Therefore, in view of Theorem 26, (XS)op is a
representable tangent category whose infinitesimal object is T(K, nK) = (K ⊕K, n[K).

Let us restate this result in terms of differential storage categories. Let X be a differential
storage category with coalgebra modality (!, δ, ε,∆, e) equipped with deriving transformation
dA : !(A) ⊗ A → !(A) and such that X has finite biproducts ⊕. Recall that the monoidal
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structure on ! includes a map mK : K → !(K) that makes (K,mK) into a !-coalgebra. If X!

admits coreflexive equalizers, then X! is a representable tangent category whose infinitesimal
object is (K ⊕K,m]

K), where m]
K : K ⊕K → !(K ⊕K) is defined as the unique map that

makes the following diagram commute (using the couniversal property of the coproduct):

K

mK

��

K ⊕K//ι0

m]
K

��

oo ι1 K
∼= // K ⊗K

mK⊗1K��
!(K)⊗K

!(ι0)⊗ι1��
!(K)

!(ι0)
// !(K ⊕K) !(K ⊕K)⊗ (K ⊕K)

dK⊕K

oo

We summarize this result for differential storage categories to obtain the final main result of
this paper:

I Theorem 27. If the coEilenberg-Moore category of a differential storage category admits
coreflexive equalizers, then the coEilenberg-Moore category is a representable tangent category.

I Example 28. We conclude this section by looking briefly at some examples.
1. For a field k and Example 18.1, recall once again that VECSym

k
∼= CALGk. It is well known

that CALGk is complete and cocomplete, and therefore VECSym
k admits reflexive coequal-

izers. Applying Theorem 27 to this example, one obtains precisely the tangent structure
on CALGopk from Example 7.3 (and described in full detail in [12, Proposition 5.16]), where
we recall that the infinitesimal object is the ring of dual numbers k[ε]. It is interesting
to note that for polynomial rings k[X] we have in CALGopk that k[X]k[ε] ∼= k[X]⊗ k[X].
In [35, 34], the third author generalized the tangent structure on the opposite of the
category of commutative k-algebras to the setting of certain codifferential categories,
using universal derivations [9], which generalize Kähler differentials.

2. Similarly for Example 16.3 (again for a field k) recall that VEC!
k is isomorphic to the

category of cocommutative k-coalgebras, which is both complete and cocomplete [40, 1].
Therefore, VEC!

k admits coreflexive equalizers and so by applying Theorem 27, VEC!
k is a

representable tangent category. Most interesting is that the infinitesimal object in this
case is again the ring of dual numbers k[ε] but seen as a cocommutative k-coalgebra with
comultiplication defined on the basis elements as 1 7→ 1⊗ 1 and ε 7→ 1⊗ ε+ ε⊗ 1. The
coalgebra k[ε] played an important role in [11].

3. For C∞-rings and Example 18.2, the Eilenberg-Moore category is the category of C∞-
rings. As it is the category of algebras for a Lawvere theory, the category of C∞-rings is
both complete and complete and therefore, in particular, admits reflexive coequalizers.
Hence it follows that the opposite of the category of C∞-rings is a tangent category. In
particular, for a smooth manifold M , the image of C∞(M) under the tangent functor in
this case is precisely C∞(T(M)), where T(M) is the standard tangent bundle over M .

7 Conclusion

Given that differential categories involve a comonad it seems obvious from a categorical
perspective that one should consider the coEilenberg-Moore category of coalgebras. That these
coEilenberg-Moore categories are tangent categories, assuming the existence of coreflexive
equalizers, provides an important way of generating tangent categories that is already “baked
in” to algebraic geometry and synthetic differential geometry. As there are many examples of
differential categories from various fields, this opens the door to studying new and interesting
tangent categories.
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However, viewing these structures at this level of generality raises a number of further
questions. Indeed, the fact that one has a tangent category begs the question of how various
devices from abstract differential geometry (such as vector fields, Lie algebras, connections,
solutions to differential equations, etc.) manifest in these settings. For example when and
how do “curve objects” and “line objects” appear in these settings? In any tangent category,
one can also consider differential objects, which are objects A such that T(A) ∼= A×A. Can
one characterize the differential objects in a coEilenberg-Moore category of a differential
category? The cofree !-coalgebras (!(A), δA) are always differential objects, but when are
these exactly the differential objects?

There is now much work to be done to examine the more detailed ramifications of the
constructions in this paper and to place specific results in a more general geography.
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1 Introduction

The use of derivatives and differentiation in programming and machine learning is becoming
ubiquitous. As a result, there has been an increased interest in axiomatic setups for
differentiation; in particular, categorical models for differentiation have become more central.
There are two types of derivative operations used in programming: the forward derivative
and the reverse derivative. From the programmer’s perspective, it is much more common for
the reverse derivative to play the central role due to its increased efficiency and improved
accuracy when computing with functions from Rn to R (due to the so called cheap gradient
principle). The importance of this principle was already recognized by Linnainmaa in 1976
[16] and was specifically used for back-propagation in multi-layer networks and deep learning.
This was further spelled out in detail in [18]. Also, Tensorflow, Google’s new interface for
expressing machine learning algorithms, uses the reverse mode of automatic differentiation
as the basic building block minimizing cost functions [1].

The categorical approaches to differentiation to date have all exclusively focused on the
abstract properties of the forward derivative [2]. This thus leaves a significant gap which
needs to be filled: an axiomatic categorical setting for reverse differentiation. The main
goal of this paper is to introduce such a structure and explore some of its properties and
consequences.

A “Cartesian reverse differential category” (a category equipped with a reverse derivative
operation as introduced in this paper) is already a Cartesian differential category (the
standard axiomatics for a category with a forward derivative). We show that a category
equipped with a reverse derivative also has a forward derivative (i.e., it has a Cartesian
differential structure). Moreover, a reverse differential category has a fibered dagger structure
on its subcategory of linear maps, a structure which does not automatically exist in a
Cartesian differential category. Suitably axiomatized, we show that having such a dagger
structure is enough to ensure that a Cartesian differential category structure gives a reverse
differential category. These results provide a starting point to build categorical semantics of
differential programming languages [17], as they provide axiomatically enough structure to
handle both forward and reverse derivatives.

The paper is structured as follows. In section 2, we recall the basic notation and definitions
of a Cartesian differential category (“a category equipped with a forward derivative”). We
do this first to acclimatize the reader to the general style of this categorical definition, and
to recall the structure of Cartesian left additive categories, which are necessary to define
both forward and reverse differential categories. In section 3, we introduce our definition
of a reverse differential category. We explore some of the important consequences of the
definition noted above: (a) Cartesian differential structure, (b) how to define and work with
linear maps in this setting, and (c) a dagger structure on the linear maps. In section 4, we
show how to go back: given a Cartesian differential category with a “contextual dagger”, we
build a Cartesian reverse differential category. There is much more work to be done with
this structure and these ideas: in section 5, we describe some of the ways in which this work
can be extended, including allowing partial functions.

As far as we are aware, this paper represents the first categorical axiomatization of the
reverse derivative. However, [11] does have some related ideas. There, the relationship
between the reverse derivative and coproducts was noticed, and the author specified an
internal category which satisfies some of the axioms of a Cartesian differential category in a
functional programming language. This work expands that observation by developing the
dagger biproduct structure using the reverse derivative and relating this to the dual of the
simple slice fibration.
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Full proofs of the theorems in this paper can be found in an expanded version [10], and
we have indicated in this version, the corresponding theorem number in the longer version.

2 Forward derivatives

The standard setting for a “category with a forward derivative” is a Cartesian differential
category, first introduced in [2]. Following that paper, we write composition in diagrammatic
order, so that f , followed by g, is written as fg.

2.1 Cartesian left additive categories
A Cartesian differential category first consists of a Cartesian left additive category, and so
we begin by recalling this notion. Recall that a category X is said to be Cartesian when
there are chosen binary products ×, with projection maps πi and pairing operation 〈−,−〉,
and a chosen terminal object 1, with unique maps ! to the terminal object.

I Definition 1. A left additive category [2, Definition 1.1.1] is a category X such that
each hom-set is a commutative monoid, with addition operation + and zero maps 0, such that
composition on the left preserves the additives structure in the sense that x(f + g) = xf + xg

and x0 = 0. Maps h which preserve the additive structure by composition on the right
((x+y)h = xh+yh and 0h = 0) are called additive. A Cartesian left additive category
[2, Definition 1.2.1] is a left additive category X which is Cartesian and such that all projection
maps πi are additive1.

Cartesian left additive categories can alternatively be defined as Cartesian categories in
which each object A canonically bears the structure of a commutative monoid with addition
+A : A×A −→ A and zero 0A : 1 −→ A.

I Example 2. Here are examples of Cartesian left additive categories that we will consider
throughout this paper:
1. Any category with finite biproducts is a Cartesian left additive category where every

map is additive. And conversely, in a Cartesian left additive category where every map is
additive, the finite product is a finite biproduct [2, Proposition 1.2.2].

2. Let R be a commutive rig (also known as a commutative semiring). Let POLYR be the
category of polynomials with coefficients in R; that is, the category whose objects are
the natural numbers n ∈ N and where a map n

P−−→ m is an m-tuple of polynomials
P := 〈p1(~x), . . . , pm(~x)〉, where pi(~x) ∈ R[x1, . . . , xn] (the polynomial ring in n-variables
over R). POLYR is a Cartesian left additive category where composition is given by the
standard composition of polynomials, the product on objects is given by the sum of
natural numbers, and the additive structure is given by the sum of polynomials.

3. Let R be the set of real numbers and let Smooth be the category of smooth real functions,
that is, the category whose objects are again the natural numbers n ∈ N and where a map
n

F−−→ m is a smooth function Rn F−−→ Rm. Smooth is a Cartesian left additive category
where composition is given by the standard composition of smooth functions, the product
on objects is given by the sum of natural numbers, and the additive structure is given
by the sum of smooth functions. Note that a smooth map Rn F−−→ Rm is actually an
m-tuple of smooth functions F = 〈f1, . . . , fm〉, where Rn fi−−→ R and therefore POLYR is
a sub-Cartesian left additive category of Smooth.

1 Note that this a slight variation on the definition of a Cartesian left additive category found in [2], but
it is indeed equivalent.
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As not every map in a Cartesian left additive category is additive, the product × is not a
coproduct, thus is not a biproduct. However, it is still possible to define injection maps. So in a
Cartesian left additive category, define ι0 := 〈1, 0〉 : A −→ A×B and ι1 := 〈0, 1〉 : B −→ A×B.
For maps A f−−→ C and B g−−→ C, we define 〈f |g〉 := π0f + π1g : A×B −→ C, and finally for
maps A h−−→ B and C k−−→ D we write h⊕ k := 〈hι0|kι1〉 : A×B −→ C ×D. Although this
notation is suggestive, we again stress this is not part of a coproduct or biproduct structure.
However, in what follows we will define the category of linear maps where the above will
witness a biproduct structure on that category. We leave the following lemma as an easy
exercise to the reader:

I Lemma 3. In a Cartesian left additive category, fι0 + gι1 = 〈f, g〉 and h⊕ k = h× k.

2.2 Cartesian differential categories

This section reviews Cartesian differential categories which provide the semantics for forward
differentiation [2].

I Definition 4. A Cartesian differential category [2] is a Cartesian left additive category
with a combinator D, called the differential combinator, which written as an inference
rule is given by:

A
f−−→ B

A×A −−−−→
D[f ]

B

where D[f ] is called the derivative of f , and such that the following equalities hold2:
[CDC.1] D[f + g] = D[f ] + D[g] and D[0] = 0;
[CDC.2] 〈a, b+ c〉D[f ] = 〈a, b〉D[f ] + 〈a, c〉D[f ] and 〈a, 0〉D[f ] = 0;
[CDC.3] D[1] = π1, D[π0] = π1π0, and D[π1] = π1π1;
[CDC.4] D[〈f, g〉] = 〈D[f ],D[g]〉;
[CDC.5] D[fg] = 〈π0f,D[f ]〉D[g];
[CDC.6] 〈〈a, b〉 , 〈0, c〉〉D[D[f ]] = 〈a, c〉D[f ];
[CDC.7] 〈〈a, b〉 , 〈c, d〉〉D[D[f ]] = 〈〈a, c〉 , 〈b, d〉〉D[D[f ]].

For an in-depth commentary on these axioms, we invite the reader to see the original
Cartesian differential category paper [2]. Briefly, [CDC.1] is that the derivative of a sum
is the sum of the derivatives, [CDC.2] states that derivatives are additive in their second
argument, [CDC.3] says that the identity and projection maps are linear (more on what
this means soon), [CDC.4] is that the derivative of a pairing is the pairing of the derivatives,
[CDC.5] is the famous chain rule, [CDC.6] says that the derivative is linear in its second
argument, and finally [CDC.7] is the symmetry of the mixed partial derivatives.

I Example 5. Here are some well-known examples of Cartesian differential categories.
1. Every category with finite biproducts is a Cartesian differential category where for a map

A
f−−→ B, its derivative A⊕A D[f ]−−−→ B is defined as D[f ] := A⊕A π1−−→ A

f−−→ B.

2 Note that the order of variables is different here than in [2]; here, we write the vector variable in the
second component, as this more closely aligns with standard differential calculus notation.
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2. Let R be a commutative rig. POLYR is a Cartesian differential category whose differential
combinator is given by the standard differentiation of polynomials. By [CDC.4], since
every map in POLYR is a tuple, it is sufficient to define the derivative of maps n p−−→ 1,
which are polynomials p(~x) ∈ R[x1, . . . , xn]. Then its derivative n× n D[p]−−−→ 1, viewed
as polynomials D[p](~x, ~y) ∈ R[x1, . . . , xn, y1, . . . , yn], is defined by the sum of partial
derivatives of p(~x):

D[p](~x, ~y) :=
n∑
i=1

∂p

∂xi
(~x)yi

For example, consider the polynomial p(x1, x2) = x2
1 + 3x1x2 + 5x2, so 2 p−−→ 1, then

4 D[p]−−−→ 1 is D[p](x1, x2, y1, y2) = (2x1 + 3x2)y1 + (3x1 + 5)y2. On the other hand, for
a map n

P−−→ m, which is a tuple P := 〈p1(~x), . . . , pm(~x)〉, its derivative is the tuple
D[P ] := 〈D[p1](~x, ~y), . . . ,D[pm](~x, ~y)〉.

3. The category Smooth is a Cartesian differential category where for a map n F−−→ m, which
is a smooth function Rn F−−→ Rm, its derivative Rn × Rn D[F ]−−−−→ Rm is defined as

D[F ](~x,~v) := JF (~x) · v

where JF (~x) is the Jacobian of F at ~x and where · is matrix multiplication. Of course,
similar to the previous example, as every F can be viewed as a tuple, by [CDC.4], it would
have also been sufficient to define the differential combinator for smooth maps Rn f−−→ R.
In this case, Jf (x) is better known as the gradient of f , ∇(f)(x) := 〈 ∂f∂x1

(~x), . . . , ∂f∂xn
(~x)〉,

and so Rn × Rn D[F ]−−−−→ R is:

D[f ](~x, ~y) := ∇(f)(~x) · ~y =
n∑
i=1

∂f

∂xi
(~x)yi

This clearly shows that POLYR is a sub-Cartesian differential category of Smooth.

We now provide a few lemmas that give alternative views on the axioms of a Cartesian
differential category; these will be helpful when comparing this structure to a reverse
differential category. Note that while the first lemma shows that [CDC.4] is actually
redundant, to keep the numbering of the equations consistent with past literature on
Cartesian differential categories, we chose to include it in the definition.

I Lemma 6. [15, Lemma 2.8] In a Cartesian differential category, [CDC.4] is redundant.

I Lemma 7. [9, Proposition 4.2] In a Cartesian left additive category:
1. If a combinator D satisfies [CDC.1-5,7], the axiom [CDC.6] is equivalent to:

〈1× π0, 0× π1〉D[D[f ]] = (1× π1)D[f ]

2. If a combinator D satisfies [CDC.1-6], the axiom [CDC.7] is equivalent to

exD[D[f ]] = D[D[f ]]

where ex : (A×B)× (C×D) −→ (A×C)× (B×D) is the exchange natural isomorphism
defined as ex := 〈π0 × π0, π1 × π1〉.
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In a Cartesian differential category, there are two important notions: that of partial
derivatives and that of linear maps. Beginning with partial derivatives, if A×B f−−→ C then
the partial derivative of f with respect to B is defined as follows:

DB [f ] := A× (B ×B) 〈1× π0, 0× π1〉−−−−−−−−−−−→ (A×B)× (A×B) D[f ]−−−→ C

This partial derivative definition induces a Cartesian differential category on the simple
slice categories. Recall that the simple slice category of X with respect to A, denoted X[A],
is the category with the same objects as X and where a map from B −→ C in X[A] is a
map f : A×B −→ C in X; that is, in terms of homsets, X[A](B,C) = X(A × B,C), and
composition of is given by 〈f, π1〉 g.

I Proposition 8. [2, Corollary 4.5.2] Let X be a Cartesian differential category and A any
object. Then X[A] is a Cartesian differential category and the derivative of f : A×B −→ C

is DB [f ].

Linear maps play a central role in the theory of Cartesian differential categories.

I Definition 9. A map f in a Cartesian differential category is linear when D[f ] = π1f .
Similarly, a map A×B f−−→ C is linear in B if the following diagram commutes:

A× (B ×B) C

A×B
1×π1

DB [f ]

f

Note that a map A × B f−−→ C is linear in B if and only if when regarded as a map
B

f−−→ C in X[A], it is linear with respect to the derivative in X[A].

I Example 10. Let us consider the linear maps in our examples of Cartesian differential
categories from Example 5:
1. In a category with finite biproducts, every map is linear by definition of the differential

combinator.
2. Let R be a commutative rig. In POLYR, a map n p−−→ 1 is linear if and only if p(~x) =

n∑
i=1

rixi for some ri ∈ R. And it follows that n P−−→ m, with P = 〈p1(~x), . . . , pn(~x)〉, is

linear if and only if each pi(~x) is. In other words, n P−−→ m is linear in the Cartesian
differential category sense if and only if it induces an R-linear map Rn −→ Rm.

3. Similar to the previous example, in Smooth the linear maps in the Cartesian differential
category sense are precisely the linear maps in the ordinary sense. Explicitly, n F−−→ m is
linear if and only if Rn F−−→ Rm is a linear transformation.

For a Cartesian differential category X, we can also form its subcategory of linear maps
Lin(X), and since every linear map is additive [2], it follows that:

I Proposition 11 ([2], Corollary 2.2.3). For a Cartesian differential category X, its subcategory
of linear maps Lin(X) has finite biproducts.

Finally, we conclude this section with the observation that linearity can also be expressed
in terms of injection maps:

I Lemma 12. In a Cartesian differential category,
A map A f−−→ B is linear if and only if ι1D[f ] = f .
A map A×B f−−→ C is linear in B if and only if (ι0 × ι1)D[f ] = f .
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3 Reverse derivatives

In this section we introduce our definition of a Cartesian reverse differential category. The
types of axioms are similar to those for Cartesian differential categories; however, after the
first two, the forms the axioms take are quite different.

I Definition 13. A Cartesian left additive category X has reverse derivatives in case
there is a combinator R, called the reverse differential combinator, which written as an
inference rule is given by:

A
f−−→ B

A×B −−−→
R[f ]

A

where R[f ] is called the reverse derivative of f , and such that the following coherences are
satisfied:
[RD.1] R[f + g] = R[f ] + R[g] and R[0] = 0;

[RD.2] 〈a, b+ c〉R[f ] = 〈a, b〉R[f ] + 〈a, c〉R[f ] and 〈a, 0〉R[f ] = 0
[RD.3] R[1] = π1, while for the projections, the following diagrams commute:

A×B π0−−→ A

(A×B)×A −−−−→
R[π0]

A×B
(A×B)×A A×B

A
π1

R[π0]

ι0

A×B π1−−→ B

(A×B)×B −−−−→
R[π1]

A×B
(A×B)×B A×B

B

π1

R[π1]

ι1

[RD.4] For a tupling of maps f and g, the following equality holds:

A
f−−→ B

A×B −−−→
R[f ]

A
A

g−−→ C
A× C −−−→

R[g]
A

A
〈f, g〉−−−−→ B × C

A× (B × C) −−−−−−→
R[〈f, g〉]

A

R[〈f, g〉] = (1× π0)R[f ] + (1× π1)R[g]

While for the unique map to the terminal object: !A : A −→ 1, the following equality holds:

R[!A] = 0

[RD.5] For composable maps f and g, the following diagram commutes:

A
f−−→ B

A×B −−−→
R[f ]

A
B

g−−→ C
B × C −−−→

R[g]
B

A
fg−−→ C

A× C −−−−→
R[fg]

A

A× C A

A× (B × C) A×B

R[fg]

〈π0,〈π0f,π1〉〉

1×R[g]

R[f ]

[RD.6] 〈1× π0, 0× π1〉 (ι0 × 1)R[R[R[f ]]]π1 = (1× π1)R[f ]
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[RD.7] (ι0 × 1)R[R[(ι0 × 1)R[R[f ]]π1]]π1 = ex(ι0 × 1)R[R[(ι0 × 1)R[R[f ]]π1]]π1
A Cartesian reverse differential category is a Cartesian left additive category with a
reverse differential combinator.

The axioms of the reverse differential combinator mirror those of a differential combinator.
[RD.1] states that the reverse derivative of a sum is the sum of the reverse derivatives
while [RD.2] says that the reverse derivative is additive in its second argument. [RD.3]
and [RD.4] respectively explain what the reverse derivatives of the identity, projection,
and tuples are. [RD.5] is the reverse derivative version of the chain rule. Lastly, [RD.6]
expresses that the reverse derivative is linear in its second argument and [RD.7] gives the
symmetry of the mixed partial reverse derivatives.

I Example 14. Here are some examples of reverse differential categories:
1. Let R be a commutative rig. POLYR is a reverse differential category whose reverse

differential combinator R is again defined using partial derivatives of polynomials. For a
map n P−−→ m, P := 〈p1(~x), . . . , pm(~x)〉 with pi(~x) ∈ R[x1, . . . , xn], its reverse derivative
n×m R[P ]−−−−→ n is the tuple:

R[P ] := 〈
m∑
i=1

∂pi
∂x1

(~x)yi, . . . ,
m∑
i=1

∂pi
∂xn

(~x)yi〉

where each component of R[P ] is a polynomial in R[x1, . . . , xn, y1, . . . , ym]. For example,
consider from before the polynomial p(x1, x2) = x2

1 + 3x1x2 + 5x2, then 3 R[p]−−−→ 2 is the
tuple of polynomials in 3 variables, R[p] = 〈(2x1 + 3x2)y, (3x1 + 5)y〉.

2. Smooth is a reverse differential category whose reverse differential combinator is defined
using the transpose of the Jacobian. For a map n F−−→ m, that is, a smooth function
Rn F−−→ Rm, its reverse derivative n×m R[F ]−−−−→ n is the smooth map Rn×Rm R[F ]−−−−→ Rn
defined as:

R[F ](~x, ~y) := (Jf (x))T · ~y

In particular for a smooth map Rn f−−→ R, its reverse derivative Rn × R R[f ]−−−→ Rn is
calculated out to be:

R[f ](~x, y) := 〈 ∂f
∂x1

(~x)y, . . . , ∂f
∂xn

(~x)y〉

And as before, POLYR is a sub-reverse differential category of Smooth.

The following lemma captures some basic properties of the reverse derivative.

I Lemma 15. In a Cartesian reverse differential category, the following equalities holds:
1. R[fg] = 〈π0, 〈π0f, π1〉R[g]〉R[f ];
2. R[ι0] = π1π0 and R[ι1] = π1π1;
3. R[π0f ] = (π0 × 1)R[f ]ι0 and R[π1f ] = (π1 × 1)R[f ]ι1;
4. R[fπ0] = (1× ι0)R[f ] and R[fπ1] = (1× ι1)R[f ];
5. R[f × g] = ex(R[f ]× R[g]);
6. R[ι0f ] = (ι0 × 1)R[f ]π0 and R[ι1f ] = (ι1 × 1)R[f ]π1;
7. R[fι0] = (1× π0)R[f ] and R[fι1] = (1× π1)R[f ];
8. R[〈f |g〉] = 〈D[fι0]|R[gι1]〉;
9. R[f ⊕ g] = ex(R[f ]× R[g]);

Proof. See the extended version [10] Lemma 15. J
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3.1 Forward Differential Structure
Here we explain how every reverse derivative operator induces a forward derivative operator,
that is, how every Cartesian reverse differential category is a Cartesian differential category.
The trick was noticed in [6]: the reverse derivative in Smooth is the transpose of the Jacobian,
which is linear, hence applying the reverse derivative again allows one to reconstruct the
forward derivative. We formalize this in an arbitrary Cartesian reverse differential category
as follows. Consider the resulting type of applying the reverse differential combinator twice:

A
f−−→ B

A×B R[f ]−−−→ A

(A×B)×A −−−−−→
R[R[f ]]

(A×B)

I Theorem 16. If X is a Cartesian reverse differential category, then X is a Cartesian
differential category with differential combinator D defined as follows (for any map A f−−→ B):

D[f ] := A×A (〈1, 0〉 × 1)−−−−−−−−→ (A×B)×A R[R[f ]]−−−−−→ A×B π1−−→ B

Proof. See [10] Theorem 16. J

I Example 17. For both POLYR and Smooth, applying Theorem 16 to their respective
reverse differential operators defined in Example 14 results precisely in their differential
combinators defined in Example 5. This follows from the fact that there is a bijective
correspondence between a reverse differential combinator and a differential combinator with
an involution operation, which we will discuss in Section 4.

3.2 Dagger Structure and Linear Maps
We now investigate the subcategory of linear maps of the induced Cartesian differential
category structure from Theorem 16 of a Cartesian reverse differential category. In particular
we will show that the subcategory of linear maps has a dagger structure.

I Definition 18. A †-category [19] is a category X with a stationary on objects involution

Xop ( )†−−−→ X. A †-category that also has finite biproducts ⊕, with projection maps πi and
injection maps ιi, is said to have †-biproducts [19] when π†i = ιi (or equivalently if ι†i = πi).

Note that having †-biproducts implies that 0† = 0 and (f + g)† = f† + g†. At this point
we can also point out that in the same way that every category with finite biproducts is a
Cartesian differential category, we have the following basic example of a reverse differential
category:

I Example 19. Every †-category with finite †-biproducts is a reverse differential category
where for a map A

f−−→ B, A ⊕ B R[f ]−−−→ A is defined as R[f ] := A ⊕ B π1−−→ B
f†−−→ A.

As a particular example, let R be a commutative rig and let MAT(R) be the category of
matrices over R, that is, the category whose objects are the natural numbers n ∈ N and
where a map n A−−→ m is an n×m-matrix A with coefficients in R. MAT(R) admits finite
biproducts where on objects n⊕m := n+m and where the projection and injection maps
are the obvious matrices. MAT(R) also admits a † defined as the transpose of matrices and
this makes MAT(R) into a †-category with finite †-biproducts.
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For any map A f−−→ B in a reverse differential category, we can define a map of opposite
type B f†−−→ A by f† := ι1R[f ]. As the following example shows, however, in general this
operation is neither functorial nor involutive.

I Example 20. With our standard example 2 p−−→ 1 in POLYR, p(x1, x2) = x2
1 + 3x1x2 + 5x2,

one computes that 1 p†−−→ 2 is the tuple of 1 variable polynomials p† = 〈0, 5x〉.

However, as we shall see, † is well behaved for linear maps.

I Lemma 21. With the preceding definition of † in a reverse differential category, one has
that π†i = ιi and ι†i = πi.

I Lemma 22. In a Cartesian reverse differential category, for any map A
f−−→ B, the

following are equivalent:
1. f is linear (Definition 9) with respect to the differential combinator of Theorem 16;
2. ι1(ι0 × 1)R[R[f ]]π1 = f ;
3. f†† = f .

Proof. That 1 ⇔ 2 follows from the fact that by definition, the left hand side of 2 can be
re-expressed as ι1(ι0×1)R[R[f ]]π1 = 〈0, 1〉D[f ], and so 2 holds precisely when 〈0, 1〉D[f ] = f ,
which by Lemma 12 is equivalent to D[f ] = π1f , that is, that f is linear. Next we show that
2 ⇔ 3. First note that ι1(ι0 × 1) = ι1(ι1 × 1) since:

ι1(ι0 × 1) = 〈0, 1〉 (〈1, 0〉 × 1) = 〈0, 1〉 = 〈0, 1〉 (〈0, 1〉 × 1) = ι1(ι1 × 1)

And then by Lemma 15.6, we have the following equality:

f†† = ι1R[ι1R[f ]] = ι1(ι1 × 1)R[R[f ]]π1 = ι1(ι0 × 1)R[R[f ]]π1

Then it immediately follows that f†† = f if and only if f = ι1(ι0 × 1)R[R[f ]]π1. J

I Lemma 23. In a Cartesian reverse differential category, for any A f−−→ B, its reverse
derivative A × B

R[f ]−−−→ A is linear in B (Definition 9) with respect to the differential
combinator of Theorem 16. Furthermore, the following diagram commutes:

((A×B)×A)× (A×B) (A×B)×A

A×B A

R(3)[f ]

π1

R[f ]

〈ι0,0〉×ι1

Proof. That A×B R[f ]−−−→ A is linear in B follows immediately from the [RD.6] (we leave
it as an exercise to re-express [RD.6] in terms of partial derivatives). Commutativity of the
diagram follows by applying Lemma 12 to R[f ]. J

I Proposition 24. For a Cartesian reverse differential category X, the category of linear
maps of the induced Cartesian differential category structure from Theorem 16, Lin(X), is a
†-category with finite †-biproducts.

Proof. By Proposition 11, we already know that Lin(X) has finite biproducts. We need to
show that Lin(X) also has a †. Lemma 22 shows that the linear maps are precisely those
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for which f†† = f , and thus if f is linear then f† is linear. Therefore † is well-defined and
involutive. We now show that † is a contravariant functor. First that † preserves the identity:

1† = ι1R[1] = ι1π1 = 1

Next, that † preserves composition (recall that if f is linear, then 0f = 0):

(fg)† = ι1R[fg] = ι1 〈π0, 〈π0f, π1〉R[g]〉R[f ] = 〈ι1π0, 〈ι1π0f, ι1π1〉R[g]〉R[f ]

= 〈0, 〈0f, 1〉R[g]〉R[f ] = 〈0, 〈0, 1〉R[g]〉R[f ] = 〈0, 1〉R[g] 〈0, 1〉R[f ] = g†f†

Note in the above that functoriality only relies on f preserving 0. Thus Lin(X) is a †-category.
Lastly by Lemma 21, Lin(X) also has †-biproducts. J

4 From forward derivatives to reverse derivatives

In the previous section, we showed that a Cartesian reverse differential category gives rise
to a Cartesian differential category in which the subcategory of linear maps has a dagger
biproduct structure. For the converse we need to develop Cartesian differential categories
where every simple slice linear map category is a dagger category with dagger biproducts.
The conceptual structure behind this is what we call a dagger fibration with fibered dagger
biproducts. We will show that when a Cartesian differential category’s linear map fibration
is such a dagger fibration then the category is also a Cartesian reverse differential category.

4.1 Review of Fibrations and the Dual Fibration
We first recall the notion of fibration (for example, see [13, Section 1.1]) and the lesser-
known idea of the dual of a fibration. These will be helpful concepts in which to frame
our characterization of reverse differential categories (Theorem 42) and to describe how the
reverse derivative is functorial (Proposition 31).

I Definition 25. Suppose that q : X −→ B is a functor.
1. Say that a morphism f : X −→ Y in X is over a morphism u : I −→ J in B if q(f) = u.
2. Say that a morphism f : X −→ Y in X is Cartesian over u : I −→ J in B if f is over

u, and for every g : Z −→ Y in X such that q(q) = wu for some w : q(Z) −→ I, there is a
unique h : Z −→ X in X over w such that hf = g:

Z

X Y

q(Z)

I J

h

g

f

w

q(g)

u

3. Say that q is a fibration if for every Y in X and every u : I −→ q(Y ) in B , there is a
Cartesian morphism f : X −→ Y in X above u.

4. Say that an arrow f : X −→ Y in X is vertical if f is over an identity map.
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5. For an object I in B, the fibre of q over I, denoted q−1(I), is the category whose objects
are those objects of X for which q(X) = I, and whose arrows are vertical morphisms
between them.

I Example 26. If X is a Cartesian category, then the simple fibration [13, Definition 1.3.1]
X̃ π−−→ X is described as follows: the total category X̃ has objects pairs of objects of X and a
map (I, A) (f, g)−−−−→ (J,B) is given by a pair of maps of type I f−−→ J and I ×A g−−→ B. The
identity of (I, A) is (1A, π1) while the composition of maps (I, A) (f, g)−−−−→ (J,B) and (J,B)

(f ′, g′)−−−−−→ (K,C) is defined as: (I f−−→ J
f ′−−→ K, I×A 〈π0f, g〉−−−−−−→ J ×B g′−−→ C). The fibration

X̃ π−−→ X is the functor which on objects is π(I, A) = I and on maps is π(f, g) := f . The
vertical arrows in X̃ are precisely those of the form (I, A) (1, g)−−−−→ (I,B) while the Cartesian
arrows are those of the form (I, A) (f, π1)−−−−−→ (J,A).

I Example 27. If X is a Cartesian differential category, we denote by L̃in(X) the simple
linear fibration, whose objects are pairs of objects in X and whose maps (I, A) f, g−−−→ (J,B)
are pairs of maps I f−−→ J and I×A g−−→ B where g is linear in B. Composition and identities
of L̃in(X) are defined as for the simple fibration. The fiber over A of this fibration is denoted
Lin(X)[A]. Note that by [2, Proposition 1.5.4], every fiber of L̃in(X) has biproducts.

I Definition 28. Suppose that X q−−→ B is a fibration. The dual fibration of q [5, 14] is a
fibration X∗ q∗−−→ B whose total category X∗ has the same objects as X and where a map X
−→ Y in X∗ is an equivalence class of spans

S Y

X

c

v

where v is vertical and c is Cartesian (over q(c)) under the equivalence relation (v, c) ∼ (v′, c′)
when there is a vertical isomorphism α that makes the following diagram commute.

S′

X S Y

αv′ c′

v c

To compose such spans, note that given a cospan S c−−→ X ′
v′←−− S′ with c cartesian and v′

vertical,that there is a cartesian arrow over q(c) with codomain S′, and this induces uniquely
a v′′ making the relevant square commute, and we get a span S

v′′←−−− S′′
ĉ−−→ S′ with v′′

vertical and ĉ cartesian; this span is used to from the composite of the spans (v, c)(v′, c′). For
more details, see [14]. The fibration q∗ is defined on objects as q∗(A) := q(A), and defined
on maps as q∗(v, c) := q(X) = q(S) q(C)−−−−→ q(Y ).

I Example 29. The dual of the simple fibration, X̃∗, can be described as the category with
objects pairs of objects of X and with maps (I, A) (f, g)−−−−→ (J,B) where I f−−→ J and a I ×B
g−−→ A. The identity on (I, A) is (1, π1), while composition of maps (I, A) (f, g)−−−−→ (J,B) and

(J,B) (f ′, g′)−−−−−→ (K,C) is defined to be

(I ff ′−−−→ K, I × C 〈π0, 〈π0f, π1〉〉−−−−−−−−−−→ (I × (J × C)) 1× g′−−−−−→ I ×B g−−→ A).
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I Example 30. The dual of the linear fibration, L̃in(X)
∗
, has again objects (I, A) but now

maps (I, A) (f, g)−−−−→ (J,B) consist of pairs of a map I f−−→ J and a map I × B g−−→ A such
that g is linear in B.

The dual of the linear fibration allows us to describe how the reverse derivative is
functorial:

I Proposition 31. For a Cartesian reverse differential category X, there is a product-
preserving functor X −→ L̃in(X)

∗
defined on objects as A 7→ (A,A) and on maps as f 7→

(f,R[f ]).

Proof. This follows from [RD.3] and [RD.5]. J

I Lemma 32. A fiber of the dual fibration is isomorphic to the opposite category of the
associated fiber of the starting fibration; that is, for any A in B, q∗-1(A) ' (q-1(A))op and
moreover the isomorphism is stationary on objects.

Proof. See [10] Lemma 32. J

Note that X and X∗∗ are also isomorphic as fibrations over B; see [14, Proposition 3.4].

4.2 Dagger fibrations
We now introduce the notion of a dagger fibration. First recall that a morphism of fibrations
(over a fixed base) is a commuting triangle:

X Y

B
p

h

q

where h carries Cartesian maps to Cartesian maps.

I Definition 33. A dagger fibration is given by a fibration X q−−→ B with a morphism of
fibrations X

( )†−−−→ X∗ such that

X X∗ X∗∗ = X

B

( )†

q

1X

q∗

( )†

q

and such that † is stationary on objects. A dagger fibration has a dagger cleavage when
( )† sends cloven cartesian arrows to cloven cartesian arrows.

Our main example of a dagger fibration will be the linear fibration of a Cartesian reverse
differential category. We begin by defining the required dagger (this is a more general form
of the dagger discussed earlier in Section 3.2):

I Definition 34. In a Cartesian reverse differential category X, for a map C × A f−−→ B,
define the contextual † of f , C ×B f†[C]

−−−−→ A, as follows:

f†[C] := C ×B ι0 × 1−−−−−→ (C ×A)×B R[f ]−−−→ C ×A π1−−→ A
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I Lemma 35. In a Cartesian reverse differential category, for any map C ×A f−−→ B, the
following are equivalent:
1. f is linear in A (Definition 9) with respect to the differential combinator of Theorem 16;
2. (ι0 × ι1)exD[f ] = f ;
3. f†[C]†[C] = f .

Proof. 1 ⇔ 2 follows from Lemma 12. To show that 2 ⇔ 3 requires a bit more work, but
the proof is essentially the same as in Lemma 22. J

I Corollary 36. Let X be a Cartesian reverse differential category and let I × A g−−→ B be
linear in A. Then I ×B g†[I]

−−−−→ A is linear in B.

I Theorem 37. If X is a Cartesian reverse differential category, then its associated linear
fibration is a dagger fibration, with dagger as in Definition 34.

Proof. See [10] Theorem 37. J

I Lemma 38. If X q−−→ B is a dagger fibration with a dagger cleavage, then each fiber q-1(A)
is a †-category, and reindexing preserves the dagger.

Proof. See [10] Lemma 38. J

4.3 Characterization of Cartesian reverse differential categories
We have seen in the previous sections that a Cartesian reverse differential category is a
Cartesian differential category whose associated linear fibration is a dagger fibration in which
each fibre has †-biproducts. In this final section, we show that this collection of structures
characterizes Cartesian reverse differential categories.

I Definition 39. Let X be a Cartesian differential category. We say that X has a contextual
linear dagger when the linear fibration is a dagger fibration

L̃in(X) L̃in(X)
∗

X
π

( )†

π∗

and each fiber category Lin(X)[A] has †-biproducts.

By Lemma 38, every fiber of such a fibration is a †-category, and reindexing functors
preserve the dagger. We denote the † in the fiber Lin(X)[A] by ( )†[A]. In particular we note
that ( )†[A] preserves the additive structure. Before giving the main theorems of this section,
we will need the following lemma:

I Lemma 40. Let X be a Cartesian differential category with a contextual linear dagger.
For any map A f−−→ B the following diagram commutes.

(A×B)×A A×B

A×A B

D[D[f ]†[A]]†[A×B]

π1〈1,0〉×1

D[f ]

Proof. See [10] Lemma 40. J
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I Theorem 41. A Cartesian differential category X with a contextual linear dagger is a
Cartesian reverse differential category with reverse differential combinator R defined as follows
(for a map A f−−→ B):

R[f ] := A×B D[f ]†[A]

−−−−−−→ B

Proof. See [10] Theorem 41. J

We conclude with the main result of this paper:

I Theorem 42. A Cartesian reverse differential category is precisely a Cartesian differential
category with a contextual linear dagger.

Proof. See [10] Theorem 42. J

5 Concluding remarks

This paper begins the story of categories with a reverse derivative; however, there is much more
that needs to be done in this area. Perhaps the most important next step is to add partiality
into this setting. One way to add partiality to categories is via a restriction structure [8]. The
paper [7] showed how to combine a Cartesian differential structure with a restriction structure
to obtain “differential restriction categories.” This provides an axiomatization for categories
of smooth partial maps. A key next step is then to combine reverse differential categories with
restriction structure, and check that many of the results that held for differential restriction
categories hold for “reverse differential restriction categories”. Such a structure would bring
us even closer to a true categorical semantics for differential programming.

Another important aspect to develop will be the term logic for reverse differential
categories. The term logic for Cartesian differential categories greatly facilitates the ability
to establish and prove results in that abstract setting; a term logic for reverse differential
categories is similarly important.

Tensors are another important aspect of differential programming, and form the founda-
tions on which modern, large scale machine learning platforms are based [1]. In [3], monoidal
structure was described in a way that interacts well with differentiation. In particular, V ⊗W
is the object for which bilinear maps V ×W −→ U correspond to linear maps V ⊗W −→ U .
Developing a similar structure for the reverse derivative will thus also be important. More
generally, there should be a notion of (monoidal) reverse differential category. These should
provide additional examples of Cartesian reverse differential categories: just as the coKleisli
category of a (monoidal) differential category [4] is a Cartesian differential category, so should
the coKleisli category of a monoidal reverse differential category be a Cartesian reverse
differential category.

Finally, an important generalization of Cartesian differential categories are tangent
categories [9], a categorical setting for differential geometry which axiomatizes the existence
of a “tangent bundle” for each object. Every Cartesian differential category gives rise to a
tangent category. A reverse derivative category should give a “category with a cotangent
bundle for each object”; defining such categories will be another important extension of this
work.
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conjunction, the predicate ls, and a natural guarded form of first-order quantification. We apply
our approach for its axiomatisation. As a by-product of our method, we also establish the exact
expressive power of this new logic and we show PSpace-completeness of its satisfiability problem.
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1 Introduction

The virtue of axiomatising program logics. Designing a Hilbert-style axiomatisation for
your favourite logic is usually quite challenging. This does not lead necessarily to optimal
decision procedures, but the completeness proof usually provides essential insights to better
understand the logic at hand. That is why many logics related to program verification have
been axiomatised, often requiring non-trivial completeness proofs. By way of example, there
exist axiomatisations for the linear-time µ-calculus [28, 19], the modal µ-calculus [39] or for
the alternating-time temporal logic ATL [23]. Concerning the separation logics that extend
Hoare-Floyd logic to verify programs with mutable data structures (see e.g. [34, 38, 27, 33, 37]),
a Hilbert-style axiomatisation of Boolean BI has been introduced in [21], but remained at the
abstract level of Boolean BI. More recently, HyBBI [8], a hybrid version of Boolean BI has
been introduced in order to axiomatise various classes of separation logics; HyBBI naturally
considers classes of abstract models (typically preordered partial monoids) but it does not fit
exactly the heaplet semantics of separation logics. Furthermore, the addition of nominals
(in the sense of hybrid modal logics, see e.g. [1]) extends substantially the object language.
Other frameworks to axiomatise classes of abstract separation logics can be found in [18]
and in [25], respectively with labelled tableaux calculi and with sequent-style proof systems.

Our motivations. Since the birth of separation logics, there has been a lot of interest in
the study of decidability and computational complexity issues, see e.g. [3, 10, 11, 7, 15, 32],
and comparatively a bit less attention to the design of proof systems, and even less with
the puristic approach that consists in discarding any external feature such as nominals or
labels in the calculi. The well-known advantages of such an approach include an exhaustive
understanding of the expressive power of the logic and discarding the use of any external

© Stéphane Demri, Etienne Lozes, and Alessio Mansutti;
licensed under Creative Commons License CC-BY

28th EACSL Annual Conference on Computer Science Logic (CSL 2020).
Editors: Maribel Fernández and Anca Muscholl; Article No. 19; pp. 19:1–19:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CSL.2020.19
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


19:2 Internal Calculi for Separation Logics

artifact referring to semantical objects. For instance, a complete tableaux calculus with labels
for quantifier-free separation logic is designed in [22] –with an extension of the calculus to
handle quantifiers, whereas Hilbert-style calculi for abstract separation logics with nominals
are defined in [8] (see also in [26] a proof system for a first-order abstract separation logic
with an abstracted version of the points-to predicate). Similarly, display calculi for bunched
logics are provided in [5] and such calculi extend Gentzen-style proof systems by allowing new
structural connectives. In this paper, we advocate a puristic approach and aim at designing
Hilbert-style proof systems for quantifier-free separation logic SL(∗,−∗) (which includes
the separating conjunction ∗ and implication −∗, as well as all Boolean connectives) and
more generally for other separation logics, while remaining within the very logical language.
Consequently, in this work we only focus on axiomatising the separation logics, and we have
no claim for practical applications in the field of program verification. Aiming at internal
calculi is a non-trivial task as the general frameworks for abstract separation logics make use
of labels, see e.g. [18, 25]. We cannot fully rely on label-free calculi for BI, see e.g. [36, 21],
as separation logics are usually understood as Boolean BI interpreted on models of heap
memory and therefore require calculi that handle specifically the stack-and-heap models.
Finally, we know translations from separation logics into logics/theories, see e.g. [9, 35, 4],
but completeness cannot always be inherited by sublogics as the proof system should only
use the sublogic and therefore their axiomatisation may lead to different methods.

Our contribution. Though our initial motivation is to design an internal Hilbert-style
axiomatisation for SL(∗,−∗), we go beyond this, and we propose a method to axiomatise other
separation logics assuming that key properties are satisfied. Hence, we consider a broader
perspective and we use our approach on two separation logics: quantifier-free separation
logic and a new separation logic that admits a form of guarded first-order quantification.
Our results are not limited to (internal) axiomatisation, as we provide a complexity analysis
based on the properties of the derivations in the proof system. Let us be a bit more precise.

In Section 3, we provide the first Hilbert-style proof system for SL(∗,−∗) that uses axiom
schemas and rules involving only formulae of this logic. Each formula of SL(∗,−∗) is equivalent
to a Boolean combination of core formulae: simple formulae of the logic expressing elementary
properties about the models [30]. Though core formulae (also called test formulae) have
been handy in several occasions for establishing complexity results for separation logics,
see e.g. [14, 15, 20], in the paper, these formulae are instrumental for the axiomatisation.
Indeed, we distinguish the axiomatisation of Boolean combinations of core formulae from the
transformation of formulae into such Boolean combinations. Thus, we show how to introduce
axioms to transform every formula into a Boolean combination of core formulae, together with
axioms to deal with these simple formulae. Schematically, for a valid formula ϕ, we conclude
` ϕ from ` ϕ′ and ` ϕ′ ⇔ ϕ, where ϕ′ is a Boolean combination of core formulae. Another
difficulty arises as we have to design an axiomatisation for such Boolean combinations. So,
the calculus is divided in three parts: the axiomatisation of Boolean combinations of core
formulae, axioms and inference rules to simulate a bottom-up elimination of separating
connectives, and finally axioms and inference rules from propositional calculus and Boolean
BI. Such an approach that consists in first axiomatising a syntactic fragment of the whole
logic (in our case, the core formulae), is best described in [19] (see also [39, 40, 31, 13]).

In Section 4, our intention is to add standard features to the logic such as first-order
quantification and inductive predicates, and to apply our method for axiomatisation. As
SL(∗,−∗, ls) (i.e. SL(∗,−∗) enriched with the predicate ls) is already non-finitely axioma-
tisable [16], we need to fine-tune the logical formalism. That is why, we introduce a new
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separation logic SL(∗,∃: ) that admits the separating conjunction ∗ (no −∗) and a guarded
form of first-order quantification. In the formula ∃z:〈x y〉ϕ, the variable z is existentially
quantified over the set of locations in the minimal non-empty path from x to y, if any. The
logic SL(∗,∃: ) contains the symbolic heap fragment [2, 11] but also richer logics such as
SL(∗, reach+) from [15]. Hence, the logic SL(∗,∃: ) captures the list segment predicate ls
but also allows us to quantify in a guarded form over locations in a minimal path, which makes
it a promising language. We provide an internal Hilbert-style axiomatisation for SL(∗,∃: ),
illustrating the flexibility of our method. It requires the design of an adequate family of
core formulae that captures SL(∗,∃: ). The axiomatisation of Boolean combinations of core
formulae reveals to be challenging, and the elimination of guarded quantification or separating
conjunction happens also to require complex developments. We analyse the derivations from
the calculus to establish a small model property for the logic and, together with a symbolic
model-checking algorithm, prove that the satisfiability problem for SL(∗,∃: ) is in PSpace.

2 Preliminaries

Quantifier-free separation logic SL(∗,−∗). We present the quantifier-free separation logic
SL(∗,−∗), that includes standard features such as the separating conjunction ∗ and the
separating implication −∗. Let VAR = {x, y, . . .} be a countably infinite set of program
variables. The formulae ϕ of SL(∗,−∗) and its atomic formulae π are built from the grammars
below (where x, y ∈ VAR and the connectives ⇒, ⇔ and ∨ are defined as usually).

π ::= x = y | x ↪→ y | emp ϕ ::= π | ¬ϕ | ϕ ∧ ϕ | ϕ ∗ ϕ | ϕ−∗ ϕ.

In the heaplet semantics, the formulae of SL(∗,−∗) are interpreted on memory states that
are pairs (s, h) where s : VAR→ LOC is a variable valuation (the store) from the set of
program variables to a countably infinite set of locations LOC = {`0, `1, `2, . . .} whereas
h : LOC→fin LOC is a partial function with finite domain (the heap). We write dom(h) to
denote its domain and ran(h) to denote its range. A memory cell of h is understood as a
pair of locations (`, `′) such that ` ∈ dom(h) and `′ = h(`). As usual, the heaps h1 and h2
are said to be disjoint, written h1 ⊥ h2, if dom(h1) ∩ dom(h2) = ∅; when this holds, we
write h1 + h2 to denote the heap corresponding to the disjoint union of the graphs of h1 and
h2, hence dom(h1 + h2) = dom(h1) ] dom(h2). Moreover, we write h′ v h to denote that
dom(h′) ⊆ dom(h) and for all locations ` ∈ dom(h′), we have h′(`) = h(`). Given a heap
h, we define a family of (hδ)δ∈N of partial functions such that h0 is the identity function
on LOC, h1 = h and for all δ ≥ 2 and ` ∈ LOC, we have hδ(`) def= h(hδ−1(`)), assuming that
hδ−1(`) is defined and belongs to dom(h), otherwise hδ(`) is undefined. The satisfaction
relation |= is defined as follows (omitting standard clauses for ¬, ∧):

(s, h) |= x = y def⇔ s(x) = s(y) (s, h) |= emp def⇔ dom(h) = ∅
(s, h) |= x↪→y def⇔ s(x) ∈ dom(h) and h(s(x)) = s(y)
(s, h) |= ϕ1 ∗ ϕ2

def⇔ ∃h1, h2. h1⊥h2, (h1 + h2) = h, (s, h1) |= ϕ1 and (s, h2) |= ϕ2

(s, h) |= ϕ1 −∗ ϕ2
def⇔ ∀h1. (h1⊥h and (s, h1) |= ϕ1) implies (s, h+ h1) |= ϕ2.

We denote with ⊥ the contradiction x 6= x, and with > its negation ¬⊥. The septraction
operator −~ (kind of dual of −∗), defined by ϕ−~ψ def= ¬(ϕ−∗¬ψ), has the following semantics:

(s, h) |= ϕ−~ ψ ⇔ there is a heap h′ such that h⊥h′, (s, h′) |= ϕ, and (s, h+ h′) |= ψ.

Moreover, we introduce the following (important) shortcuts:

alloc(x) which is satisfied by (s, h) iff s(x) ∈ dom(h). It is defined as (x ↪→ x)−∗ ⊥.

CSL 2020
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size ≥ β which is satisfied by (s, h) iff card(dom(h)) ≥ β, where β ∈ N and card(X)
denotes the cardinality of the set X. This shortcut is inductively defined as size ≥ 0 def= >,
size ≥ 1 def= ¬emp and, for each β ∈ N, size ≥ β+2 def= ¬emp ∗ size ≥ β+1.

We use size=β as a shorthand for size≥β ∧¬size≥β+1. A formula ϕ is valid if (s, h) |= ϕ

for all (s, h) (and we write |= ϕ). For a complete description of separation logic, see e.g. [38].

Hilbert-style proof systems. A Hilbert-style proof system H is defined as a set of derivation
step schemata ((Φ1, . . . ,Φn),Ψ) with n ≥ 0, where Φ1, . . . ,Φn,Ψ are formula schemata.
When n ≥ 1, ((Φ1, . . . ,Φn),Ψ) is called an inference rule, otherwise it is an axiom. As usual,
formula schemata generalise the notion of formulae by allowing metavariables for formulae
(typically ϕ,ψ, χ), for program variables (typically x, y, z) or for any type of syntactic objects
in formulae, depending on the context. The set of formulae derivable from H is the least set S
such that for all ((Φ1, . . . ,Φn),Ψ) ∈ H and for all substitutions σ such that Φ1σ, . . . ,Φnσ ∈ S,
Ψσ ∈ S. We write `H ϕ if ϕ is derivable from H. A proof system H is sound if all derivable
formulae are valid. H is complete if all valid formulae are derivable. H is strongly complete iff
for all sets of formulae Γ and formulae ϕ, we have Γ |= ϕ (semantical entailment) iff `H∪Γ ϕ.

Interestingly enough, there is no strongly complete proof system for separation logic,
as strong completeness implies compactness and separation logic is not compact. Indeed,
{size ≥ β | β ∈ N} is unsatisfiable, as heaps have finite domains, but all finite subsets
of it are satisfiable. Even for the weaker notion of completeness, deriving an Hilbert-style
axiomatisation for SL(∗,−∗) remains challenging. Indeed, the satisfiability problem for
SL(∗,−∗) reduces to its validity problem, making SL(∗,−∗) an unusual logic from a proof-
theoretical point of view. Let us develop a bit further this point. Let ϕ be a formula with
program variables in X ⊆fin VAR, and let ≈ be an equivalence relation on X. The formula
ψ≈

def= (emp∧
∧

x≈y x = y∧
∧

x6≈y x 6= y)⇒ (ϕ−~>) can be shown to be valid iff for every store
s agreeing on ≈, there is a heap h such that (s, h) |= ϕ. It is known that for all stores s, s′
agreeing on ≈, and every heap h, (s, h) and (s′, h) satisfy the same set of formulae having
variables from X. Since the antecedent of ψ≈ is satisfiable, we conclude that ψ≈ is valid iff
there are a store s agreeing on ≈ and a heap h such that (s, h) |= ϕ. To check whether ϕ is
satisfiable, it is sufficient to find an equivalence relation ≈ on X such that ψ≈ is valid. As the
number of equivalence relations on X is finite, we obtain a Turing reduction from satisfiability
to validity. Consequently, it is not possible to define sound and complete axiom systems
for any extension of SL(∗,−∗) admitting an undecidable validity problem (as long as there
is a reduction from satisfiability to validity, as above). A good example is SL(∗,−∗, ls) [16]
(extension of SL(∗,−∗) with ls). Indeed, in order to obtain a sound and complete axiom
system, the validity problem has to be recursively enumerable (r.e.). However, this would
imply that the satisfiability problem is also r.e.. As ϕ is not valid iff ¬ϕ is satisfiable, we
then conclude that the set of valid formulae is recursive, hence decidable, a contradiction.

It is worth also noting that quantifier-free SL(∗,−∗) axiomatised below admits a PSpace-
complete validity problem, see e.g. [10], and should not be confused with propositional
separation logic with the stack-heap models shown undecidable in [6, Corollary 5.1] (see
also [12]), in which there are propositional variables interpreted by sets of memory states.

3 Hilbert-style proof system for SL(∗,−∗)

We define a proof system for SL(∗,−∗), namely HC(∗,−∗), by relying on its core formulae:
simple SL(∗,−∗) formulae capturing essential properties of the models, see e.g. [29, 41]. It
is known that every SL(∗,−∗) formula is logically equivalent to a Boolean combination of
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(System 1) HC: Axioms for Boolean combinations of core formulae

(AC
1) x = x

(AC
2) ϕ ∧ x = y⇒ ϕ[y←x]

(AC
3) x ↪→ y⇒ alloc(x)

(AC
4) x ↪→ y ∧ x ↪→ z⇒ y = z

(IC
5) size ≥ β+1⇒ size ≥ β

(IC
6)
∧

x∈X(alloc(x) ∧
∧

y∈X\{x} x 6= y)⇒ size ≥ card(X)

(System 2) Axioms and inference rule for the separating conjunction

(A∗7) (ϕ ∗ ψ)⇔ (ψ ∗ ϕ)
(A∗8) (ϕ ∗ ψ) ∗ χ⇔ ϕ ∗ (ψ ∗ χ)
(I∗9) (ϕ ∨ ψ) ∗ χ⇒ (ϕ ∗ χ) ∨ (ψ ∗ χ)
(I∗10) (⊥ ∗ ϕ)⇔ ⊥
(A∗11) ϕ⇔ ϕ ∗ emp
(I∗12) alloc(x) ∗ > ⇒ alloc(x)
(I∗13) (alloc(x) ∗ alloc(x))⇔ ⊥

(A∗14) e ∗ > ⇒ e J[e is ¬emp, x = y, x 6= y or x ↪→ y]
(A∗15) ¬alloc(x) ∗ ¬alloc(x)⇒ ¬alloc(x)
(A∗16) (alloc(x) ∧ ¬x ↪→ y) ∗ > ⇒ ¬x ↪→ y
(A∗17) alloc(x)⇒ (alloc(x) ∧ size = 1) ∗ >
(A∗18) ¬emp⇒ size = 1 ∗ >
(A∗19) ¬size ≥ β1 ∗ ¬size ≥ β2 ⇒ ¬size ≥ β1+β2

.−1
(A∗20) alloc(x) ∧ alloc(y) ∧ x 6= y⇒ size ≥ 2

∗-Intro: ϕ⇒ χ
ϕ ∗ ψ ⇒ χ ∗ ψ where a .− b = a− b if a ≥ b, 0 otherwise.

(System 3) Axioms and inference rules for the separating implication

(A−∗21) (size = 1 ∧
∧

x∈X ¬alloc(x))−~> J[X ⊆fin VAR]
(A−∗22) ¬alloc(x)⇒ ((x ↪→ y ∧ size = 1)−~>)

∗-Adj: ϕ ∗ ψ ⇒ χ
ϕ⇒ (ψ −∗ χ) −∗-Adj: ϕ⇒ (ψ −∗ χ)

ϕ ∗ ψ ⇒ χ

(A−∗23) ¬alloc(x)⇒ ((alloc(x) ∧ size = 1 ∧
∧

y∈X ¬x ↪→ y)−~>) J[X ⊆fin VAR]

1 emp⇒ ¬size ≥ 1 (¬¬E) and def. of size ≥ 1
2 alloc(x) ∧ size = 1⇒ ¬size ≥ 2 (∧Er)
3 emp ∗ (alloc(x) ∧ size = 1)⇒ ¬size ≥ 1 ∗ ¬size ≥ 2 ∗-Ilr, 1, 2
4 ¬size ≥ 1 ∗ ¬size ≥ 2⇒ ¬size ≥ 2 (A∗19)
5

(
emp ∗ (alloc(x) ∧ size = 1)

)
⇒ ¬size ≥ 2 ⇒-Tr, 3, 4

6 emp⇒
(
(alloc(x) ∧ size = 1)−∗ ¬size ≥ 2

)
∗-Adj rule, 5

Figure 1 Proof of emp⇒
(
(alloc(x) ∧ size = 1)−∗ ¬size ≥ 2

)
.

core formulae [29]. However, as every core formula is an SL(∗,−∗) formula, we stay in
the original language and we can derive an axiomatisation of SL(∗,−∗) by extending the
axiom system of propositional calculus with three sets of axioms and inference rules: the
axioms and inference rules of the propositional logic of core formulae (System 1), the axioms
and inference rules witnessing that every formula of the form ϕ1 ∗ ϕ2, where ϕ1, ϕ2 are
Boolean combinations of core formulae is logically equivalent to a Boolean combination of
core formulae (System 2), and the axioms and inference rules to eliminate formulae whose
outermost connective is the separating implication −∗ (System 3). The core formulae are
expressions of the form x = y, alloc(x), x ↪→ y and size ≥ β, where x, y ∈ VAR and
β ∈ N. As previously shown, these formulae are from SL(∗,−∗) and are used in the axiom
system as abbreviations. Given X ⊆fin VAR and α ∈ N, we define Core(X, α) as the set
{x = y, alloc(x), x ↪→ y, size ≥ β | x, y ∈ X, β ∈ [0, α]}. Bool(Core(X, α)) is the set of
Boolean combinations of formulae from Core(X, α), whereas Conj(Core(X, α)) is the set of
conjunctions of literals built upon Core(X, α) (a literal being a core formula or its negation).
Given ϕ = L1 ∧ · · · ∧ Ln ∈ Conj(Core(X, α)), every Li being a literal, Lt(ϕ) def= {L1, . . . , Ln}.
ψ ⊆Lt ϕ stands for Lt(ψ) ⊆ Lt(ϕ). We write χ ⊆Lt {ϕ | ψ}, {ϕ | ψ} ⊆Lt χ and χ ⊆Lt {ϕ ; ψ}
for “χ ⊆Lt ϕ or χ ⊆Lt ψ”, “ϕ ⊆Lt χ or ψ ⊆Lt χ”, and “χ ⊆Lt ϕ and χ ⊆Lt ψ”, respectively.

Example. To show the flavour of the axioms and the rules, Figure 1 displays a proof in
HC(∗,−∗). In the proof, a line “j |χ A, i1, . . . , ik” states that χ is a theorem denoted by the
index j and derivable by the axiom or the rule A. If A is a rule, the indices i1, . . . , ik<j denote
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the theorems used as premises in order to derive χ. The example uses the rule ∗-Adj, which
together with −∗-Adj states that the ∗ and −∗ are adjoint operators, and the axiom (A∗19),
stating that card(dom(h)) ≤ β1+β2 holds whenever a heap h can be split into two subheaps
that have less than β1+1 and β2+1 memory cells, respectively. We also use the following
theorems and rules, which can be shown derivable/admissible in the forthcoming calculus:

(∧Er) ψ ∧ ϕ⇒ ϕ (¬¬E) ¬¬ϕ⇒ ϕ ∗-Ilr: ϕ⇒ ϕ′ ψ ⇒ ψ′

ϕ ∗ ψ ⇒ ϕ′ ∗ ψ′ ⇒-Tr: ϕ⇒ χ χ⇒ ψ
ϕ⇒ ψ

3.1 A simple calculus for the core formulae
To axiomatise SL(∗,−∗), we start by introducing the proof system HC (presented in System 1)
dedicated to Boolean combinations of core formulae. HC and all the subsequent proof
systems contain the axiom schemata and modus ponens for the propositional calculus.
The axioms I?

i in System n are necessary for the fragment the System n governs, but are
admissible when the axioms/rules from the System n+1 are present. In (AC

2), ϕ[y←x] is the
formula obtained from ϕ by replacing with x every occurrence of y. Let (s, h) be a memory
state. The axioms state that = is an equivalence relation (first two axioms), h(s(x))=s(y)
implies s(x) ∈ dom(h) (axiom (AC

3)) and that h is a (partial) function (axiom (AC
4)).

Furthermore, there are two intermediate axioms about size formulae: (IC
5) states that if

dom(h) has at least β+1 elements, then it has at least β elements, whereas (IC
6) states

that if there are β distinct memory cells corresponding to program variables, then indeed
dom(h) ≥ β. It is easy to check that HC is sound (right-to-left direction of Theorem 2, below).
In order to establish its completeness with respect to Bool(Core(X, α)), we first establish
that HC is complete for a fragment of Bool(Core(X, α)), made of core types. Let X⊆finVAR,
α ∈ N+ and α̂=α+card(X). We write CoreTypes(X, α) to denote the set of core types defined
by
{
ϕ ∈ Conj(Core(X, α̂))

∣∣ ∀ψ ∈ Core(X, α̂), {ψ | ¬ψ} ⊆Lt ϕ, and (ψ ∧ ¬ψ) 6⊆Lt ϕ
}
. Every formula in

this set is a conjunction having exactly one literal built upon ψ for every ψ ∈ Core(X, α̂).

I Lemma 1. Let ϕ ∈ CoreTypes(X, α). We have ¬ϕ is valid iff `HC ¬ϕ.

By classical reasoning, one can show that every ϕ ∈ Bool(Core(X, α)) is provably equivalent
to a disjunction of core types. Together with Lemma 1, this implies that HC is complete.

I Theorem 2. (Adequacy) A Boolean combination of core formulae ϕ is valid iff `HC ϕ.

3.2 A constructive elimination of ∗ to axiomatise SL(∗, alloc)

We enrich HC by adding axioms and inference rule that handle ∗ (System 2). The axioms
deal with the commutative monoid properties of (∗, emp) and its distributivity over ∨ (as
for Boolean BI, see e.g. [21]). In (A∗14), the notation ϕ J[B] refers to the axiom schema ϕ
assuming that the Boolean condition B holds. The rule ∗-Intro states that logical equivalence
is a congruence for ∗. This allows us to remove the intermediate axioms (IC

5) and (IC
6) from

the proof system. Hence, we call HC(∗) the proof system obtained from HC by adding all
schemata from System 2 and removing (IC

5) and (IC
6). It is easy to check that HC(∗) is sound.

More importantly, HC(∗) enjoys the ∗ elimination property with respect to core types.

I Lemma 3. Let ϕ and ψ in CoreTypes(X, α). There is a conjunction of core formulae
literals χ ∈ Conj(Core(X, 2α)) such that `HC(∗) ϕ ∗ ψ ⇔ χ.

Proof. (sketch) Let ϕ,ψ∈CoreTypes(X, α). If ϕ is unsatisfiable, then `HC ϕ⇒ ⊥, by Lemma 1.
By the rule ∗-Intro and the axiom (I∗10), we get `HC(∗) ϕ ∗ ψ ⇒ ⊥ and we take χ =⊥.
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Assume now both ϕ and ψ to be satisfiable. Then ϕ ∗ψ can be shown provably equivalent to:∧{
x ∼ y ⊆Lt {ϕ | ψ}

∣∣∼∈ {=, 6=}} ∧
∧
{alloc(x) ⊆Lt {ϕ | ψ}}

∧
∧
{x ↪→ y ⊆Lt {ϕ | ψ}} ∧

∧
{¬alloc(x) ⊆Lt {ϕ ; ψ}}

∧
∧{
⊥
∣∣ alloc(x) ⊆Lt {ϕ ; ψ}

}
∧
∧{
¬x ↪→ y

∣∣ alloc(x) ∧ ¬x ↪→ y ⊆Lt {ϕ | ψ}
}

∧
∧{

size ≥ β1+β2

∣∣∣∣ size ≥ β1 ⊆Lt ϕ
size ≥ β2 ⊆Lt ψ

}
∧
∧{

¬size ≥ β1+β2
.−1
∣∣∣∣ ¬size ≥ β1 ⊆Lt ϕ
¬size ≥ β2 ⊆Lt ψ

}
This equivalence is reminiscent to the one in [20, Lemma 3] that is proved semantically. In a
way, because HC(∗) will reveal to be complete, the restriction of the proof of [20, Lemma 3]
to SL(∗, alloc) can actually be replayed completely syntactically within HC(∗). J

By the distributivity axiom (I∗9), this result is extended from core types to arbitrary Boolean
combinations of core formulae. HC(∗) is therefore complete for SL(∗, alloc), i.e. the logic
obtained from SL(∗,−∗) by removing −∗ and adding the formulae alloc(x) (only core formulae
requiring −∗). Then, to prove that a formula ϕ ∈ SL(∗, alloc) is valid, we repeatedly apply
the ∗ elimination bottom-up obtaining a Boolean combination of core formulae ψ that is
equivalent to ϕ. We rely on the completeness of HC (Theorem 2) to prove that ψ is valid.

I Theorem 4. A formula ϕ in SL(∗, alloc) is valid iff `HC(∗) ϕ.

3.3 A constructive elimination of −∗ to axiomatise SL(∗,−∗)

The proof systemHC(∗,−∗) is defined asHC(∗) augmented with the axioms and inference rules
from System 3 dedicated to separating implication. The axioms involving −~ (kind of dual of
−∗ introduced in Section 2) express that it is always possible to extend a given heap with an
extra cell, and that the address and the content of this cell can be fixed arbitrarily (provided
it is not already allocated). The adjunction rules are from the Hilbert-style axiomatisation
of Boolean BI [21, Section 2]. One can observe that the axioms (I∗9), (I∗10), (I∗12) and (I∗13)
are derivable in HC(∗,−∗). It is easy to check that HC(∗,−∗) is sound. Analogously, HC(∗,−∗)
enjoys the −∗ elimination property, stated below by means of −~.

I Lemma 5. Let ϕ and ψ in CoreTypes(X, α). There is a conjunction of core formulae
literals χ ∈ Conj(Core(X, α)) such that `HC(∗,−∗) (ϕ−~ ψ)⇔ χ.

Proof. (sketch) If either ϕ or ψ is unsatisfiable, then one can show that `HC(∗,−∗) ϕ−~ψ ⇒ ⊥.
Otherwise, ϕ−~ ψ can be shown provably equivalent to∧{

x ∼ y ⊆Lt {ϕ | ψ}
∣∣∼∈ {=, 6=}} ∧

∧
{¬alloc(x) ⊆Lt ψ} ∧

∧
{¬x↪→y ⊆Lt ψ}

∧
∧{

alloc(x)
∣∣∣∣¬alloc(x) ⊆Lt ϕ

alloc(x) ⊆Lt ψ

}
∧
∧{

x ↪→ y

∣∣∣∣¬alloc(x) ⊆Lt ϕ
x ↪→ y ⊆Lt ψ

}
∧
∧{
¬alloc(x)

∣∣ alloc(x) ⊆Lt ϕ
}

∧
∧{

size ≥ β2+1 .−β1

∣∣∣∣¬size ≥ β1 ⊆Lt ϕ
size ≥ β2 ⊆Lt ψ

}
∧
∧{

⊥
∣∣∣∣ x ↪→ y ⊆Lt ϕ
¬x ↪→ y ⊆Lt ψ

}
∧
∧{

⊥
∣∣∣∣ alloc(x) ∧ ¬x ↪→ y ⊆Lt ϕ

x ↪→ y ⊆Lt ψ

}
∧
∧{

¬size ≥ β2
.−β1

∣∣∣∣ size ≥ β1 ⊆Lt ϕ
¬size ≥ β2 ⊆Lt ψ

}
∧
∧{

⊥
∣∣∣∣ alloc(x) ⊆Lt ϕ
¬alloc(x) ⊆Lt ψ

}
where a .− b stands for a− b if a ≥ b, 0 otherwise. Again, this equivalence is reminiscent to the
one in [20, Lemma 4] proved semantically. Herein, the proof is completely syntactical. J

Again, this result for core types can be extended to arbitrary Boolean combinations of core
formulae, as we show that the distributivity of −~ over disjunctions is provable in HC(∗,−∗).
As a consequence of this development, we achieve one of the main results of the paper.

I Theorem 6. HC(∗,−∗) is sound and complete for SL(∗,−∗).
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What’s next? To provide further evidence that our method is robust, we shall apply it to
axiomatise other separation logics, for instance by adding the list segment predicate ls [2]
(or inductive predicates in general) or first-order quantification. Of course, the set of valid
formulae must be r.e., which discards any attempt with SL(∗,−∗, ls) or with the first-order
version of SL(∗,−∗) [15, 4]. In Section 4, we introduce an extension of SL(∗, ls) and we
axiomatise it with our method, whose main ingredients are recalled below.

3.4 Ingredients of the method
The Hilbert-style axiomatisation of SL(∗,−∗) has culminated with Theorem 6 that states
the adequateness of HC(∗,−∗). Below, we would like to recapitulate the key ingredients of
the proposed method, not only to provide a vade-mecum for axiomatising other separation
logics (which we illustrate on the newly introduced logic SL(∗,∃: ) in Section 4), but also
to identify the essential features and where variations are still possible.

Core formulae. To axiomatise SL(∗,−∗) internally, the core formulae have played an essential
role. The main properties of these formulae is that their Boolean combinations capture the
full logic SL(∗,−∗) [29] and all the core formulae can be expressed in SL(∗,−∗). Generally
speaking, our axiom system naturally leads to a form of constructive completeness, as
advocated in [19, 31]: the axiomatisation provides proof-theoretical means to transform any
formula into an equivalent Boolean combination of core formulae, and it contains also a part
dedicated to the derivation of valid Boolean combinations of core formulae (understood as a
syntactical fragment of SL(∗,−∗)). What is specific to each logic is the design of the set of
core formulae and in the case of SL(∗,−∗), this was already known since [29].

Big-step vs. small-step axiom schemas. HC(∗,−∗) simulates the bottom-up elimination
of separating connectives (see Lemmata 3 and 5) when the arguments are two Boolean
combinations of core formulae. To do so, HC(∗,−∗) contains axiom schemas that perform
such an elimination in multiple “small-step” derivations, e.g. by deriving a single alloc(x)
predicate from alloc(x) ∗ > (axiom (I∗12)). Alternatively, it would have been possible to
include “big-step” axiom schemas that, given the two Boolean combinations of core formulae,
derive the equivalent formula in one single derivation step. Instances of this are given in the
proof sketch of Lemma 3, and later in Section 4 (axiom (∗48)). The main difference is that
small-step axioms provide a simpler understanding of the key properties of the logic.

4 How to axiomatise internally the separation logic SL(∗, ∃: )

Though core formulae are handful for several existing separation logics, see e.g. recently [15,
32, 20], we would like to test our method with first-order quantification and reachability
predicates, standard features in specifications. However, SL(∗,−∗, ls) is already known to
be non-finitely axiomatisable, see the developments in Section 2. So, we need to downgrade
our ambitions and we suggest to consider a new logic with guarded quantification and ls
and this is SL(∗,∃: ) presented below. Note that the idea of having guarded quantification
with second-order features is not new, see e.g. in [24] extensions of the guarded fragment of
first-order logic with fixed points, but herein, this is done in the framework of separation
logics and their axiomatisation. In short, we introduce the new separation logic SL(∗,∃: )
that admits the connective ∗, the list segment predicate ls (implicitly) and a guarded form
of first-order quantification involving ls. It contains the symbolic heap fragment [2, 11] but
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also richer logics such as SL(∗, reach+) (see e.g. [15]). As a by-product of our completeness
proof, we are able to characterise the complexity of the satisfiability problem for SL(∗,∃: ).

4.1 A guarded logic with ls: SL(∗, ∃: )
Formulae of SL(∗,∃: ) are defined according to the grammar below (where x, y, z ∈ VAR):

ϕ := x = y | x ↪→ y | emp | ¬ϕ | ϕ ∧ ϕ | ϕ ∗ ϕ | ∃z:〈x y〉ϕ

All the syntactic ingredients are standard except the quantifier (denoted with ∃: ). Intuitively
(the formal definition is provided below), ∃z:〈x y〉ϕ is a guarded form of quantification that
is intended to hold true whenever y is reachable from x in at least one step, and there is a
location ` along the minimal path between x and y so that the formula ϕ holds whenever ` is
assigned to z. Figure 2 highlights the possible assignments of z (arrows represent the heap).
Given a heap h and `1, `2 ∈ LOC, we define h[`1, `2[ as the set of locations in the shortest
path from `1 to `2 (`2 possibly excluded). Formally:

h[`1, `2[ def=
{
` ∈ LOC

∣∣∣∣ there are δ1 ≥ 0 and δ2 ≥ 1 such that hδ1(`1) = `,

hδ2(`) = `2 and, for every δ ∈ [1, δ1+δ2−1], hδ(`1) 6= `2

}
For example, h[`, `[ = ∅ holds iff ` is not in a cycle. Otherwise, h[`, `[ contains all the
locations in the cycle containing `. By definition, the minimal paths are preserved when
considering heap extensions. Then, the satisfaction relation |= is completed with

(s, h) |= ∃z:〈x y〉 ϕ def⇔ h[s(x), s(y)[ 6= ∅ and ∃` ∈ h[s(x), s(y)[ ∪ {s(y)} s.t. (s[z← `], h) |= ϕ.

We define ∀z:〈x y〉ϕ def= ¬∃z:〈x y〉¬ϕ. In a separation logic lingua admitting first-order
quantification of program variables over the set of locations LOC, and a predicate reach+(x, y)
(reachability in at least one step, as in [15]), the formula ∃z:〈x y〉ϕ is equivalent to

reach+(x, y)∧ ∃ z ϕ∧ (z = x∨ z = y∨ ((reach+(x, z)∧¬reach+(x, y)) ∗ reach+(z, y))).

Obviously, SL(∗,∃: ) does not allow unrestricted first-order quantification but it can faithfully
define the reachability predicates classically studied in separation logic [15, 38]. reach+(x, y)
is definable as ∃z:〈x y〉>, and allows us to define ls(x, y) and reach(x, y) as shown in [15]:
ls(x, y) def= (x = y ∧ emp) ∨ (x 6= y ∧ reach+(x, y) ∧ ¬(¬emp ∗ reach+(x, y))), whereas
reach(x, y) def= x = y ∨ reach+(x, y). There are two features of SL(∗,∃: ), we would like
to emphasize. First, it is possible to enforce a heap domain of exponential size. Indeed,
we define the formula Rn(x, y) of size linear in n, but enforcing the existence of a path of
length at least 2n between two distinct locations corresponding to x and y, respectively.
R0(x, y) def= x 6= y ∧ ∃z:〈x y〉>, whereas for n ≥ 0, Rn+1(x, y) is defined as

x6=y∧∃z:〈x y〉 ∀z′:〈x y〉 ∀z′′:〈x y〉 ((z′ = x ∧ z′′ = z) ∨ (z′ = z ∧ z′′ = y)⇒ Rn(z′, z′′)) .

Nevertheless, in Section 4.6 we show how the satisfiability and validity problems for SL(∗,∃: )
are in PSpace. Another interesting feature of SL(∗,∃: ) is illustrated by its ability to state
that from two locations corresponding to program variables (say x, y), it is possible to reach a
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19:10 Internal Calculi for Separation Logics

different location, which in turn reaches another location corresponding to a program variable
(say z). This can be done with the formula ∃w:〈x z〉(reach+(y, w)∧

∧
v∈{x,y,z} w 6= v). Thus,

the logic is able to express that two paths meet at a specific location. This naturally leads to
the notion of meet-points, introduced next in order to define the core formulae for SL(∗,∃: ).

4.2 Core formulae are back!

In order to axiomatise internally SL(∗,∃: ) with our method, we need to possess a set of core
formulae that captures SL(∗,∃: ). Below, we design such core formulae and establish its
appropriateness. They make intensive use of meet-point terms, a concept introduced in [15]
but that will play a crucial role herein. Informally, given a memory state (s, h), a meet-point
between s(x) and s(y) leading to s(z) is a location ` such that (I) ` reaches s(z), (II) both
locations s(x) and s(y) reach `, and (III) there is no location `′ satisfying these properties
and reachable from s(x) in strictly fewer steps. A meet-point term of the form mz(x, y),
where x, y, z ∈ VAR, is then an expression that, given a memory state (s, h), is intended to
be interpreted by a meet-point between s(x) and s(y) leading to s(z) (if it exists). Figure 3
shows some of the meet-points between x and other program variables, highlighting their
distribution in a memory state. In particular, notice how in the figure, mz(x, u) is different
from mz(u, x), which happens because of the condition (III) and as the two corresponding
locations are in a cycle. We call this type of meet-points asymmetric. We now formalise
these concepts. Given X ⊆ VAR, we write T(X) to denote the set X ∪ {mz(x, y) | x, y, z ∈ X}.
Elements of T(VAR) are called terms. Expressions mz(x, y) are syntactic constructs called
meet-point terms. Terms are denoted with t, t1, t2, . . . , when we do not need to distinguish
between variables and meet-point terms. To give a semantics to these objects, we interpret
the terms by means of the interpretation function J.Ks,h : T(VAR)→ LOC s.t. JxKs,h

def= s(x)
for x ∈ VAR, and Jmz(x, y)Ks,h is defined and takes the value ` iff there are δ1, δ2 ≥ 0 s.t.

hδ1(s(x)) = hδ2(s(y)) = ` and there is δ ≥ 0 such that hδ(`) = s(z);
for every δ′1 ∈ [0, δ1 − 1] and δ′2 ≥ 0, hδ′

1(s(x)) 6= hδ
′
2(s(y)).

One last object is needed in order to define the core formulae. Given a memory state (s, h) and
a finite set of pairs of terms P ⊆fin T(VAR)× T(VAR), we write RemP

s,h to denote the subset
of dom(h) made of the locations that are not in the path between two locations corresponding
to terms in a pair of P. Formally: RemP

s,h

def= dom(h) \
(⋃

(t1,t2)∈P h[Jt1Ks,h, Jt2Ks,h[
)
.

The core formulae are expressions of the form: t1 = t2, seesT(t1, t2)≥β+1 and remP≥β,
where t1, t2 ∈ T(VAR), T ⊆fin T(VAR), P ⊆fin T(VAR) × T(VAR) and β ∈ N. We write
seesT(t1, t2) for seesT(t1, t2)≥1. The satisfaction relation |= is extended to core formulae:

(s, h) |= t1 = t2
def⇔ Jt1Ks,h = Jt2Ks,h; (s, h) |= remP≥β

def⇔ card(RemP
s,h) ≥ β;

(s, h) |= seesT(t1, t2)≥β def⇔ there is δ ≥ β such that hδ(Jt1Ks,h) = Jt2Ks,h and for
all δ′ ∈ [1, δ − 1], hδ

′
(Jt1Ks,h) 6∈ {Jt2Ks,h} ∪ {JtKs,h | t∈T}.

As earlier in Section 3, we write Core(X, α) to denote the set of core formulae restricted
to terms from T(X), where X ⊆fin VAR and β is bounded above by α. In order to become
more familiar with these core formulae, let us consider the memory state (s, h) outlined
in Figure 4. Since both s(x) and s(y) reach s(z), Jmz(x, y)Ks,h is defined, or alternatively
(s, h) |= mz(x, y) = mz(x, y). Therefore, we have that (s, h) |= sees∅(x, mz(x, y)). We also note
that s(u) is a location in the minimal path from s(x) to Jmz(x, y)Ks,h. However, as s(u) is
distinct from these two locations, we conclude that (s, h) |= ¬sees{u}(x, mz(x, y)). Lastly,
let us take for example the sets of locations corresponding to the two paths highlighted in
yellow: h[s(x), s(u)[ and h[s(y), s(z)[. The location s(u) does not belong to any of these sets.
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As it is in dom(h), we conclude that (s, h) |= rem{(x,u),(y,z)}≥1.

Expressing core formulae in SL(∗, ∃: ). A crucial point for axiomatising SL(∗,−∗) is that
every core formula is a mere abbreviation for a formula of the logic. This is the property
that leads to an internal axiomatisation. The same holds for SL(∗,∃: ) as one can show
that every core formula can be defined in SL(∗,∃: ) and, in the forthcoming axiomatisation,
should be considered as an abbreviation. For example, the formula sees∅(x, y)≥β can be
shown equivalent to (strict(reach+(x, y)) ∧ size ≥ β) ∗ >, where strict(ϕ) is a shortcut
for ϕ ∧ ¬(¬emp ∗ ϕ) and states that ϕ holds in the current model, say (s, h) but does not
hold in any submodel (i.e. in (s, h′) where h′ @ h). Similarly, x = mu(y, z) is equivalent to

reach(x, u)∧ (reach(y, x) ∗ reach(z, x))∧ (reach+(x, x)⇒ (reach(y, x) ∗ reach+(x, x))),

whereas mz(x, y)=mw(u, v) is ∃j:〈x z〉(mz(x, y) = j∧ j = mw(u, v)), where j 6∈ {x, y, z, u, v, w}.

I Lemma 7. Every core formula is logically equivalent to a formula of SL(∗,∃: ).

4.3 Axiomatisation of the logic of core formulae
As done in Section 3, to axiomatise SL(∗,∃: ) we start by extending the axiom system
for the propositional calculus in order to obtain the proof system HC dedicated to Boolean
combinations of core formulae. The axioms, presented in System 4, are divided into axioms
for equalities between terms, whose name is of the form =C

i ; axioms essentially about the
predicates sees, whose name is of the form sC

i ; and axioms essentially about the predicates
rem, whose name is of the form rC

i . In order to obtain this axiom system, the two main
difficulties (which lead to very technical formulae) are given by the distribution of meet-
points within the memory state and the axiomatisation of the predicates sees. For the
former, it is important to distinguish between symmetric and asymmetric meet-points. For
this reason, System 4 uses the formulae def(mz(x, y)) def= mz(x, y)=mz(x, y), which checks if
a meet-point is defined, sym(mz(x, y)) def= mz(x, y)=mz(y, x) for symmetric meet-points, and
asym(mz(x, y)) def= def(mz(x, y)) ∧ ¬sym(mz(x, y)) for asymmetric ones. The definition of these
formulae, as well as the ones below, is extended on a variable x ∈ VAR simply by replacement
with the meet-point mx(x, x) (the two terms are always equivalent, see the axiom (=C

1)). So,
for example def(x) is defined as def(mx(x, x)). For sees predicates, an important distinction
is given by terms corresponding to different locations in the same tree (no cycle is involved)
and terms that correspond to different locations in the same cycle. Hence, we define the
abbreviations before(t1, t2) and samecycle(t1, t2) with the following meanings:
(s, h) |= before(t1, t2) iff Jt1Ks,h 6=Jt2Ks,h and, there is a path from Jt1Ks,h to Jt2Ks,h s.t.

the only location on the path that may belong to a cycle is Jt2Ks,h.
(s, h) |= samecycle(t1, t2) iff Jt1Ks,h 6= Jt2Ks,h and there is a cycle with both Jt1Ks,h and Jt2Ks,h.
They are defined as follows for meet-points (and extended for x ∈ VAR as shown for def(x))

The formulae before(mz(x, y), mv(x, u)) and before(mz(y, x), mv(x, u)) are both defined as
sym(mz(x, y)) ∧ def(mv(x, y)) ∧ def(mv(x, u)) ∧ mz(x, y) 6= mv(x, u) ∧ mz(x, y) 6= mv(y, u);
before(mz(x, y), mw(u, v)) def=

∨
a∈{u,v} before(mz(x, y), mw(x, a)) ∧ mw(x, a) = mw(u, v);

samecycle(mz(x, y), mw(u, v)) def= mz(x, y) = mw(x, u) ∧ mw(u, v) = mz(u, x) ∧ asym(mz(x, u)).

We write t ∈ T (finite set of terms T) to denote
∨

t2∈T t=t2. Like the axiom (AC
2), the ax-

iom (=C
3) performs a substitution of every occurrence of t1 with t2. We have to be careful here:

when substituting a variable x with a meet-point mu(y, z), we only substitute the occurrences
of x that are not inside meet-point terms. For example, sees{x,mx(x,x)}(x, mx(x, x))[x←mu(y, z)]
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is equal to sees{mu(y,z),mx(x,x)}(mu(y, z), mx(x, x)). By way of example, let us explain why all
the instances of the axiom (=C

6) are valid. Suppose (s, h) |= def(mz(x, y)) ∧ def(mu(x, y)).
Since Jmz(x, y)Ks,h is defined (say equal to `), there are δ1, δ2 ≥ 0 such that

hδ1(s(x)) = hδ2(s(y)) = ` and there is δ ≥ 0 such that hδ(`) = s(z);
for every δ′1 ∈ [0, δ1 − 1] and δ′2 ≥ 0, hδ′

1(s(x)) 6= hδ
′
2(s(y)).

Similarly, as Jmu(x, y)Ks,h is also defined (say equal to `′) , there are also γ1, γ2 ≥ 0 such that
hγ1(s(x)) = hγ2(s(y)) = `′ and there is δ′ ≥ 0 such that hδ′(`′) = s(u);
for every γ′1 ∈ [0, γ1 − 1] and γ′2 ≥ 0, hγ′

1(s(x)) 6= hγ
′
2(s(y)).

Combining the two types of inequality constraints, we can conclude that δ1 = γ1 and therefore
` = `′, i.e. (s, h) |= mz(x, y) = mu(x, y). Soundness of HC is certainly not immediate but this
can be done similarly to the above developments for the axiom (=C

6).

I Lemma 8. HC is sound.

As done in Section 3, in order to establish that HC is complete, we first show its
completeness with respect to core types, where CoreTypes(X, α) is here defined as the set of
formulae

{
ϕ ∈ Conj(Core(X, α))

∣∣∀ψ∈Core(X, α), {ψ | ¬ψ} ⊆Lt ϕ, and (ψ ∧ ¬ψ) 6⊆Lt ϕ
}
.

I Lemma 9. Let ϕ ∈ CoreTypes(X, α). We have ¬ϕ is valid iff `HC ¬ϕ. If `HC ¬ϕ is provable
then it has a proof where all derivation steps only have formulae from Bool(Core(X, α)).

Then, the proof of completeness of HC follows with the same arguments used for Theorem 2.

I Theorem 10. A Boolean combination of core formulae ϕ is valid iff `HC ϕ.

4.4 Constructive elimination of ∃: 
We write HC(∃: ) to denote the system HC augmented by the axioms and the inference
rule from System 5. In System 5, given an arbitrary object O (this can be a term, a set of
terms, a formula etc.), we write var(O) to denote the set of program variables occurring in O.
For instance, var(mz(x, y)) = {x, y, z}. Axioms from (∃40) to (∃42) and the introduction rule
are classical tautologies of first-order quantification, whereas the other axioms characterise
the peculiar semantics of ∃: . By way of example, let us explain why the axiom (∃45),
equal to sees∅(x, y) ∧ sees{y}(x, t1) ⇒ ∃z:〈x y〉 z = t1 (z 6∈ var({x, y, t1})) is sound.
Suppose (s, h) |= sees∅(x, y) ∧ sees{y}(x, t1). By the semantics of core formulae, we have
∅ 6= h[s(x), Jt1Ks,h[ ⊆ h[s(x), s(y)[ and therefore Jt1Ks,h is defined. Given z 6∈ var({x, y, t1}),
we have (s[z← Jt1Ks,h], h) |= z = t1. This holds because z 6∈ var(t1) as we want to guarantee
Jt1Ks,h = Jt1Ks[z←Jt1Ks,h],h. From ∅ 6= h[s(x), Jt1Ks,h[ ⊆ h[s(x), s(y)[, we conclude that
h[s(x), s(y)[ 6= ∅ and Jt1Ks,h ∈ h[s(x), s(y)[ ∪ {s(y)}. Therefore, (s, h) |= ∃z:〈x y〉 z = t1.
As done in Section 3 for ∗ and −∗, given a formula ∃z:〈x y〉ϕ, where ϕ is in CoreTypes(X, α),
we can show within HC(∃: ) that there is a conjunction χ from Conj(Core(X, 2α)) equivalent
to it. By the axiom (∃42), this applies when ϕ is a Boolean combination of core formulae.

I Lemma 11. Let ϕ ∈ Bool(Core(X ∪ {z}, α)) with z 6∈ X ⊇ {x, y}. There is a Boolean
combination of core formulae χ ∈ Bool(Core(X, 2α)) such that `HC(∃: ) ∃z:〈x y〉ϕ⇔ χ.

4.5 Eliminating ∗ with a big-step axiom
The proof system HC(∗,∃: ) for SL(∗,∃: ) is defined as HC(∃: ) augmented by the axioms
and the rule from System 6. Its main ingredient is given by the axiom (∗48) which, following
the description in Section 3.4, is clearly a big-step axiom. Indeed, as much as we would
like to give a set of small-step axioms as we did for SL(∗,−∗), we argue that producing
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(System 4) HC: Axioms for Boolean combinations of core formulae

(=C
1) x = mx(x, x)

(=C
2) t1 = t2 ⇒ t2 = t1

(=C
3) ϕ ∧ t1 = t2 ⇒ ϕ[t1←t2]

(=C
4) def(mx(x, y))⇒ x = mx(x, y)

(=C
5) def(mz(x, y))⇒ def(mz(y, x))

(=C
6) def(mz(x, y)) ∧ def(mu(x, y))⇒ mz(x, y) = mu(x, y)

(=C
7) mz(x, y) = mw(u, v)⇒ def(mw(x, y))

(=C
8) def(mz(x, y)) ∧ def(mv(z, z))⇒ def(mv(x, y))

(=C
9) def(mz(x, y)) ∧ def(mv(x, u))⇒ def(mv(z, z)) ∨ def(mz(v, v))

(=C
10) def(mz(x, y)) ∧ def(mz(u, v))⇒ def(mz(x, u))

(=C
11) sym(mz(x, y)) ∧ def(mz(x, u)) ∧ mz(x, u) 6= mz(y, u)⇒ (mz(x, y) = mz(x, u) ∨ mz(x, y) = mz(y, u))

(=C
12) mz(x, y) = mz(u, v)⇒ sym(mz(x, u)) ∧ (mz(x, y) = mz(x, u) ∨ mz(x, y) = mz(x, v))

(=C
13) sym(mz(x, y)) ∧ asym(mv(x, u))⇒ mv(y, u) = mv(x, u) ∧ mv(u, y) = mv(u, x)

(=C
14) asym(mz(x, y)) ∧ asym(mv(x, u))⇒ mz(x, y) = mv(x, u)

(sC
15) t=t′ ∧ sees{t}∪T(t1, t2)⇒ sees{t,t′}∪T(t1, t2) (sC

16) seesT∪{t}(t1, t2)≥β ⇒ seesT(t1, t2)≥β

(sC
17) seesT(t1, t2)≥β ⇒ seesT∪{t1,t2}(t1, t2)≥β (sC

18) seesT(t1, t2)≥β+2⇒seesT(t1, t2)≥β+1

(sC
19) sees{t3}(t1, t2) ∧ sees{t2}(t1, t3)⇒ t2 = t3 (sC

20) seesT(t1, t2)⇒ def(t1) ∧ def(t2)

(sC
21) sees∅(t1, t1)∧¬sees{t2}(t1, t1)⇔ samecycle(t1, t2) (sC

22) before(t1, t2)⇒ sees∅(t1, t2)

(sC
23) seesT(t1, t2)≥β ∧ seesT′ (t1, t2)≥β′ ⇒ seesT∪T′ (t1, t2)≥max(β, β′)

(sC
24) seesT(t1, t2)≥β1∧ seesT(t2, t3)≥β2 ∧ t2 6∈T∧ t3∈T⇒ seesT(t1, t3)≥β1+β2 ∧¬sees{t2}(t1, t3)

(sC
25) seesT(t1, t3)≥β ∧ ¬sees{t2}(t1, t3)⇒

∨
β1+β2=max(2,β)−2

(seesT(t1, t2)≥β1+1 ∧ seesT(t2, t3)≥β2+1)

(sC
26) seesT(mz(x, y), mw(u, v))⇒ def(mw(x, y))

(sC
27) seesT(mz(x, y), mw(u, v)) ∧ asym(mw(x, u))⇒ mw(u, v) = mw(u, x)

(sC
28) seesT(mz(x, y), mw(u, v)) ∧ sym(mw(x, u)) ∧ mz(x, y) 6= mw(u, v)⇒ before(mz(x, y), mw(u, v))

(sC
29) before(t1, t2) ∧ ¬sees{t3}(t1, t2)⇒ ¬sees∅(t2, t3) ∧ before(t1, t3)

(sC
30) samecycle(t1, t2) ∧ samecycle(t2, t3) ∧ t1 6= t3 ⇒ (sees{t2}(t1, t3)⇔ ¬sees{t2}(t3, t1))

(rC
31) remP≥0

(rC
32) remP≥β + 1⇒ remP≥β

(rC
33) rem{(t1,t2)}∪P≥β ⇒ remP≥β

(rC
34) t1 = t2 ∧ rem{(t1,t3)}∪P≥β ⇒ rem{(t1,t3),(t2,t3)}∪P≥β

(rC
35) t1 = t2 ∧ rem{(t3,t1)}∪P≥β ⇒ rem{(t3,t1),(t3,t2)}∪P≥β

(rC
36) ¬sees∅(t1, t2)≥β2+1 ∧ remP≥β1 ⇒ remP∪{(t1,t2)}≥β1

.−β2

(rC
37) seesT(t1, t2) ∧ ¬sees{t3}(t1, t2) ∧ rem{(t1,t3),(t3,t2)}∪P≥β ⇒ rem{(t1,t2)}∪P≥β

(rC
38) seesT(t1, t2) ∧ ¬sees{t3}(t1, t2) ∧ rem{(t1,t2)}∪P≥β ⇒ rem{(t1,t2),(t1,t3),(t3,t2)}∪P≥β

(rC
39)
(
sees∅(t1, t2)≥β2 ∧

∧
(t3,t4)∈P(sees∅(t3, t4)⇒ sees{t3,t4}(t1, t2) ∧ sees{t1,t2}(t3, t4) ∧ t3 6=t1)

∧ remP∪{(t1,t2)}≥β1
)
⇒ remP≥β1+β2

(System 5) Axioms and inference rule for the guarded quantification ∃: 

(∃40) ∃z:〈x y〉ϕ⇒ ∃u:〈x y〉(ϕ[z←u]) J[u 6∈ var(ϕ)]
(∃41) ∃z:〈x y〉(ϕ ∧ ψ)⇔ (∃z:〈x y〉ϕ) ∧ ψ J[z 6∈ var(ψ)]
(∃42) ∃z:〈x y〉(ϕ1 ∨ ϕ2)⇔ (∃z:〈x y〉ϕ1) ∨ (∃z:〈x y〉ϕ2)

∃-Intro: ϕ⇒ ψ
∃z:〈x y〉ϕ⇒ ∃z:〈x y〉ψ

(∃43) sees∅(x, y)⇒ ∃z:〈x y〉 z = x J[z 6∈ {x, y}] (∃44) ¬∃z:〈x y〉 ⊥
(∃45) sees∅(x, y) ∧ sees{y}(x, t1)⇒ ∃z:〈x y〉 z = t1 J[z 6∈ var({x, y, t1})]

(∃46) (x=t1 ∨ seesT′ (x, t1)) ∧ seesT(t1, t2)≥β1+β2 ∧ (t2=y ∨ seesT′′ (t2, y)) ∧ (y=t1 ⇒ x=y)
⇒ ∃z:〈x y〉(seesT(t1, z) ∼1 β1 ∧ seesT(z, t2) ∼2 β2 ∧ z 6∈ {t1, t2})

J
[
{x, y, t1, t2} ⊆ T,T′,T′′, z 6∈ var(T), β1, β2 ∈ N+, ≥ ∈ {∼1,∼2} ⊆ {≥,=}

]
(∃47) ¬∃z:〈x y〉((x 6= z ∧ y 6= z ∧ sees{x,z,y}(x, y)) ∨ ¬sees∅(x, y)) J[z 6∈ {x, y}]

(System 6) Axioms and inference rule for the separating conjunction

(∗48) Γsms(S1) ∗ Γsms(S2)⇔
∨

S s.t. +S(S1,S2,S)Γsms(S)

J[S1,S2 resp. over (X, α1) and (X, α2)]
∗-Intro: ϕ⇒ χ

ϕ ∗ ψ ⇒ χ ∗ ψ

(∗49) (ϕ ∨ ψ) ∗ χ⇒ (ϕ ∗ χ) ∨ (ψ ∗ χ) (∗50) (ϕ ∗ ψ)⇔ (ψ ∗ ϕ) (∗51) (⊥ ∗ ϕ)⇔ ⊥
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such an axiomatisation for SL(∗,∃: ) is unfeasible. In the proof system for SL(∗,−∗), we
found out that given two core types ϕ and ψ, ϕ ∗ ψ is equivalent to a conjunction of core
formulae literals (see the proof sketch of Lemma 3). Similar results hold for the separating
implication −∗ (Lemma 5) and the ∃: quantifier. This property of being equivalent to a
simple conjunction of core formulae literals facilitates the design of small-step axioms. This
is not the case for ∗ within SL(∗,∃: ): given two core types ϕ and ψ, the formula ϕ ∗ ψ is
equivalent to a non-trivial disjunction of possibly exponentially many conjunctions. Because
of this, small-step axioms are hard to obtain and some technical developments are needed in
order to produce an adequate axiom system. These developments are centered around the
notions of symbolic memory states and characteristic formulae. A symbolic memory state is
an abstraction on the memory state (s, h) that is guided by the definition of core formulae,
essentially highlighting the properties of (s, h) that are expressible through these formulae,
while removing the ones that are not expressible. Given X ⊆fin VAR and α ∈ N+, a symbolic
memory states S over (X, α) is defined as a finite structure (D, f, r) such that

D is a partition of a subset of T(X), encoding (dis)equalities. We introduce the partial
function [ . ]D : T(X)→ D such that given t ∈ T(X) returns T ∈ D and t ∈ T, if it exists;
f : D→ D× [1, α] is a partial function encoding paths between terms and their length;
r ∈ [0, α], encoding the number of memory cells (up to α) not in paths between terms.

We denote with SMSX
α the set of these structures. The abstraction SymbX

α(s, h) of a memory
state (s, h) is defined as the symbolic memory state (D, f, r) over (X, α) such that

D
def= {{t1 ∈ T(X) | (s, h) |= t1 = t2} | t2 ∈ T(X)};

f(T) = (T′, β) def⇔ there are t1∈T and t2∈T′ such that (s, h) |= seesT(X)(t1, t2)≥β and
if β < α then (s, h) |= ¬seesT(X)(t1, t2)≥β+1;

r = β
def⇔ (s, h) |= remT(X)×T(X)≥β and if β < α then (s, h) |= ¬remT(X)×T(X)≥β+1.

Thus, a symbolic memory state (D, f, r) over (X, α) simply stores the truth values for equalities,
sees and rem predicates with respect to a memory state. Its semantics is best given through
the characteristic formula Γsms(D, f, r) defined below (sets understood as conjunctions):{

remT(X)×T(X)∼r
∣∣ if r 6=α then (∼ is =) else (∼ is ≥)

} ∧ {t1 6= t2
∣∣ [t1]D or [t2]D undefined, or [t1]D 6= [t2]D

}
∧{t1 = t2

∣∣ [t1]D = [t2]D defined
} ∧ {¬seesT(X)(t1, t2)

∣∣ [t1]D undefined or ∀β ∈ [1, α] : f([t1]D) 6= ([t2]D, β)
}

∧{seesT(X)(t1, t2)=β
∣∣ f([t1]D) = ([t2]D, β) and β < α

} ∧ {seesT(X)(t1, t2)≥β
∣∣ f([t1]D) = ([t2]D, β) and β = α

}
From the definitions of Γsms(S) and SymbX

α(s, h), we can easily prove the following result.

I Lemma 12. For every (s, h) and every S ∈ SMSX
α, (s, h) |= Γsms(S) iff S = SymbX

α(s, h).

Thanks to this lemma, it is easy to see that every satisfiable characteristic formula Γsms(S) of a
symbolic memory state S over (X, α) is equivalent to exactly one core type in CoreTypes(X, α).
Indeed, by definition of core types, the conjunction ϕ ∧ ψ of two core types ϕ and ψ that
are not syntactically equivalent up to associativity and commutativity of ∧ is unsatisfiable.
Hence, by Lemma 12, if a core type ϕ ∈ CoreTypes(X, α) is satisfied by a memory state (s, h),
it must be equivalent to Γsms(SymbX

α(s, h)). By Theorem 10 this equivalence is provable in HC.
The fundamental reason for taking symbolic memory states over memory states is that,

given X and α, there are finitely many symbolic memory states in SMSX
α. This leads to the

definition of the axiom (∗48), which given two characteristic formulae ϕ and ψ computes a
finite disjunction of characteristic formulae that is equivalent to ϕ ∗ ψ. This disjunction is
defined over a new composition operator +S on symbolic memory states that mimicks the
disjoint union + on memory states. More precisely, the following property shall be satisfied.

For all (s, h) and all S1,S2 resp. over (X, α1) and (X, α2), +S(S1,S2, SymbX
α1+α2

(s, h))
iff there are h1 and h2 such that h1 + h2 = h, S1 = SymbX

α1
(s, h1) and S2 = SymbX

α2
(s, h2),
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where +S ⊆
∑

X,α1,α2
SMSX

α1
×SMSX

α2
×SMSX

α1+α2
, and S1, S2 have satisfiable characteristic

formulae. Defining +S is clearly challenging. Unlike the disjoint union of memory states, +S

is not functional on its first two components. For instance, let S = ({x, mx(x, x)}, ∅, 1) and
let us determine for which S′, we have +S(S,S,S′):
1. As S is the abstraction of the memory states (s, {`1 7→ `2}) and (s, {`2 7→ `1)}) where

s(x) = `1 6= `2, the abstraction of (s, {`1 7→ `2, `2 7→ `1}) must be a solution for S′. More
precisely, this abstraction is (T, {T 7→ (T, 2)}, 0) where T = {x, mx(x, x)}.

2. S is however also the abstraction of (s, {`1 7→ `2}) and (s, {`3 7→ `4)}) such that
s(x) 6∈ {`1, `3}. Then, the abstraction ({x, mx(x, x)}, ∅, 2) must also be a solution for S′.

The main challenge for defining +S is the composition of the two “garbage”: memory cells
that are abstracted with r1 and r2 in SymbX1

α1
(s, h1) and SymbX2

α2
(s, h2) may generate new paths

between program variables in h1 + h2. This possibility was depicted in the first case above.
The definition of +S can be found in [17] and is too long to be presented herein. Roughly
speaking, for ((D, f1, r1), (D, f2, r2), (D, f, r)) being in +S, one needs to witness two graph
homomorphisms from the graphs (D1, f1) and (D2, f2) to (D, f), together with the existence
of a partition that guarantees that paths that do not belong to the homomorphisms can be
generated using the memory cells from the garbage (abstracted by r1 and r2).

Together with the other axioms in System 6, which essentially allows to rewrite every
formula into a disjunction of ϕ∗ψ where ϕ and ψ are characteristic formulae, the axiom (∗48)
allows us to eliminate ∗, as done in Lemma 3 for SL(∗,−∗).

I Lemma 13. Let ϕ ∈ Bool(Core(X, α1)) and ψ ∈ Bool(Core(X, α2)). There is a Boolean
combination of core formulae χ ∈ Bool(Core(X, α1 + α2)) such that `HC(∗,∃: ) ϕ ∗ ψ ⇔ χ.

The adequacy of HC(∗,∃: ) then stems from Theorem 10 and Lemmata 11 and 13.

I Theorem 14. HC(∗,∃: ) is sound and complete for SL(∗,∃: ).

4.6 A PSpace upper bound for checking SL(∗, ∃: ) satisfiability
In this short section, we explain why the satisfiability problem for SL(∗,∃: ) is in PSpace.
Thememory size of a formula ϕ, written |ϕ|m, is defined inductively as: |x = y|m

def= |emp|m =1,
|x ↪→ y|m

def= 2, |∃z:〈x y〉ϕ|m
def= 2× |ϕ|m, |¬ψ|m

def= |ψ|m, |ψ1 ∗ ψ2|m
def= |ψ1|m + |ψ2|m and

|ψ1 ∧ ψ2|m
def= max(|ψ1|m , |ψ2|m). Given ϕ with tree height δ, |ϕ|m ≤ 2δ+1. Intuitively, |ϕ|m

provides an upper bound on the path length between terms and on the size of the garbage
on models for ϕ (above |ϕ|m, ϕ cannot see the difference). As a consequence of the proofs for
the elimination of the connectives ∃: and ∗ in the calculus, for each ϕ in SL(∗,∃: ), there
is a Boolean combination of core formulae from Core(var(ϕ), |ϕ|m) logically equivalent to ϕ.

SL(∗,∃: ) may require small memory states whose heap has an exponential amount of
memory cells, as shown in Section 4.1 with the formula Rn(x, y). So, to establish a PSpace
bound, we cannot rely on an algorithm that guesses a polynomial-size memory state and
performs model-checking on it without further refinements. Nevertheless, polynomial-size
symbolic memory states are able to abstract a garbage of exponential size or a path between
terms of exponential length by encoding these quantities in binary, which leads to PSpace.

I Theorem 15. The satisfiability problem for SL(∗,∃: ) is PSpace-complete.

PSpace-hardness is from [10]. To establish PSpace-easiness, there is a nondeterministic
polynomial-space algorithm that guesses a satisfiable S ∈ SMSvar(ϕ)

|ϕ|m
and that performs a

symbolic model-checking on S against ϕ. This works fine as ∗ and ∃: have symbolic
counterparts that can be decided in polynomial space.
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5 Conclusion

We presented a method to axiomatise internally separation logics based on the axiomatisation
of Boolean combinations of core formulae. We designed the first proof system for SL(∗,−∗)
that is completely internal and highlights the essential ingredients of the heaplet semantics.
To further illustrate our method, we provided an internal Hilbert-style axiomatisation for the
new separation logic SL(∗,∃: ). It contains the “list quantifier” ∃z:〈x y〉 that, we believe,
is of interest for its own sake as it allows to quantify over elements of a list. The completeness
proof, following our general pattern, still reveals to be very complex as not only we had
to invent the adequate family of core formulae but their axiomatisation was challenging.
As far as we know, this is the first axiomatisation of a separation logic having ls and a
guarded form of quantification. Moreover, through a small model property derived from
its proof system, we proved that SL(∗,∃: ) has a PSpace-complete satisfiability problem.
Obviously, our proof systems for separation logics are of theoretical interest, for instance to
grasp the essential features of the logics. It is open whether it can help for designing decision
procedures, e.g. to feed provers with axiom instances to speed-up the proof search.
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Abstract
The monitoring of event frequencies can be used to recognize behavioral anomalies, to identify trends,
and to deduce or discard hypotheses about the underlying system. For example, the performance of a
web server may be monitored based on the ratio of the total count of requests from the least and most
active clients. Exact frequency monitoring, however, can be prohibitively expensive; in the above
example it would require as many counters as there are clients. In this paper, we propose the efficient
probabilistic monitoring of common frequency properties, including the mode (i.e., the most common
event) and the median of an event sequence. We define a logic to express composite frequency
properties as a combination of atomic frequency properties. Our main contribution is an algorithm
that, under suitable probabilistic assumptions, can be used to monitor these important frequency
properties with four counters, independent of the number of different events. Our algorithm samples
longer and longer subwords of an infinite event sequence. We prove the almost-sure convergence of
our algorithm by generalizing ergodic theory from increasing-length prefixes to increasing-length
subwords of an infinite sequence. A similar algorithm could be used to learn a connected Markov
chain of a given structure from observing its outputs, to arbitrary precision, for a given confidence.
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In this paper we propose a new class of quantitative properties based on event frequencies,
called frequency properties, and study their monitoring problem. In particular, we define a
logic to express composite frequency properties as linear and Boolean combinations of atomic
frequency properties. While all such frequency properties are theoretically monitorable using
counter registers, there are, in general, no efficient monitoring algorithms in the case of large
or infinite input alphabets. As a motivating example we use the mode of a sequence over a
finite alphabet Σ. By definition, a ∈ Σ is the mode of an ω-word w if there exists a length n
such that each prefix of w longer than n contains more occurrences of a’s than occurrences of
any other letter b ∈ Σ. This frequency property can be monitored using a separate counter
for every event in Σ. However, the alphabet Σ is typically too large for this to be practical.1
We show that there is no shortcut to monitor the mode exactly and in real time: in general
|Σ| counters are needed for this task.

However, we are not always interested in monitoring exactly and in real time the mode
after every new event, and sometimes wish to estimate what the mode is expected to be
in the future. Perhaps surprisingly, we can then do much better. Let us assume that the
past, finite, observed behavior of an event sequence is representative of the future, infinite,
unknown behavior. This is the case for stochastic systems, for instance if the observation
sequence is generated by a Markov chain. We move from the real-time monitoring problem,
asking to compute or approximate, in real time, the value of a frequency property for each
observed prefix, to the limit monitoring problem, asking to estimate the future limit value of
the frequency property, if it exists. In particular, for the mode of a connected Markov chain,
the longer we observe a behavior, the higher our confidence in predicting its mode. While
every real-time monitor can be used as limit monitor, there can be limit monitors that use
dramatically fewer resources.

We present a simple, memory-efficient strategy to limit monitor frequency properties
of random ω-words. In particular, our mode monitor uses four counters only. Two of the
counters keep track of the number of occurrences of two letters at a time. The first letter is
the current mode prediction, say a. The second letter is the mode replacement candidate,
say b. We count the number of a’s and b’s over a given subword, until a certain number of
events, say 10, has been processed. The most frequent letter out of a and b in this 10-letter
subword, say a, wins the round and becomes the new mode prediction. The other letter
loses the round and is replaced by a letter sampled at random, say c. In the next round
the subword length will be increased, say to 11, and a will compete against c over the next
subword. We reuse two counters for the two letters, and the other two counters to keep
track of the current subword length and to stop counting when that length is reached. By
repeating the process we get increasingly higher confidence that a is indeed the mode. Even
if by random perturbation the mode a of the generating Markov chain was no longer the
current prediction, it would eventually get sampled again and statistically reappear, and
eventually remain, as the prediction.

The algorithm of our mode monitor easily transfers to an efficient monitor for the median.
Indeed, we also show that our results generalize to any property expressible as Boolean
combination of linear inequalities over frequencies of events. An application of our algorithmic
ideas is to learn the transition probabilities of a connected Markov chain of known structure
through the observation of subword frequencies.

1 Consider the IPv4 protocol alphabet with its 4,294,967,296 letters (addresses) and the UTF-8 encoding
alphabet with its 1,112,064 letters (code points).
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The main result of this paper is that, assuming the monitored system is a connected
Markov chain, our monitoring algorithm converges almost surely. The proof of this fact
calls for a new ergodic theory based on subwords as opposed to prefixes. This theory uses
as its main building block a variant of the law of large numbers over so-called triangular
random arrays of the form X1,1, X2,1, X2,2, X3,1, . . . and hinges on deep results from matrix
theory. The correctness of the algorithm can also be understood, in a weaker form, by
showing convergence in probability of its output. Assuming that the Markov chain starts in a
stationary distribution, the probability of a given word u occurring as subword of an ω-word
w at position i is independent of i. As a result, when the value of a function over prefixes
converges probabilistically, then the same limit is reached probabilistically over arbitrary
subwords.

In short, the main conceptual and technical contributions of this paper are the following:
1. We show that precise real-time monitoring is inherently resource-intensive (Section 4).
2. We propose the novel setting of limit monitoring (Section 3).
3. We provide a generic scheme for efficient limit monitoring (Section 5) and instantiate it

to specialized monitoring algorithms for the mode (Section 5.2) and median (Section 5.3).
4. We define a logic for composite frequency properties which combines atomic frequency

properties such that each formula of the logic can be limit monitored efficiently (Section 6).
5. We develop a new ergodic theory for connected Markov chains (Section 5.1) to prove our

monitoring algorithms correct.

1.1 Related Work
In the area of formal verification, probabilistic model checking [15, 16] and quantitative
verification [12] are concerned with the white-box static analysis of a probabilistic system.
Statistical model checking [1] tries to learn the probabilistic structure of a system by sampling
many executions, and thus also applies to black-box systems. These are in contrast to our
monitoring setting where a single execution of a black-box system is dynamically observed
during execution. Our work belongs specifically to the field of runtime verification [4], which is
concerned with the evaluation of temporal properties over program traces. While much of the
research in this domain assumes finite-state monitors, in this work we study an infinite-state
problem based on the model of counter monitors. The expressiveness of different register
machines and resource trade-offs for monitoring safety properties involving counters and
arithmetic registers is studied in [10]. Another infinite-state model for monitoring is that of
quantified event automata [3], which combine finite automata specifications with first-order
quantification. Other quantitative automata machines are surveyed in [7].

The computation of aggregates over an ongoing system execution in real time was
considered in various areas of computer science. Stream expressions [8, 9] and quantitative
regular expressions [2] provide frameworks for the specification of transducers over data
streams. The work on runtime verification and stream processing can be seen as solving
real-time monitoring problems, and very rarely assumes a probabilistic model. A notable
exception can be found in [22], who propose to use hypothesis testing to provide an interval
of confidence on the monitor outcome when evaluating some probabilistic property. In the
vast literature from runtime verification to online algorithms, the problem of limit monitoring
as defined, solved, and applied in this paper was, to the best of our knowledge, not studied
before.

It is well-known that certain common statistical indicators can be computed in real time.
For example, the average can be computed by simply maintaining the sum and sample size.
Perhaps more surprisingly, the variance and covariance of a sequence can also be computed
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in one pass through classical online algorithms [24]. However, other indicators, like the
median, are hard or impossible to compute in real time. Offline algorithms for the median
include selection algorithms (e.g., quickselect [13]) with O(n) run time (versus O(n logn) for
sorting), median of medians [5] (which is approximate), and the randomized algorithm of
Mitzenmacher & Upfal [18]. The best known online algorithm uses two heaps to store the
lower and higher half of values (i.e., all samples have to be stored), with an amortized cost
of O(logn) per input. To the best of our knowledge, no real-time algorithm to compute the
median exactly was proposed in the literature.

Statistical properties of subword frequencies in Markov chains are studied in [6]. In
Markov chain theory, the existence, uniqueness, and convergence results for stationary
distributions are among the most fundamental results [19]. The rate of convergence towards
a stationary distribution is called mixing time [17]. In general, the mixing time is controlled
by the spectral gap of the transition matrix, with precise results only know for particular
random processes, like card shuffling. These result do not lead to bounds on the convergence
rate of frequencies of events in labeled Markov chains.

An indirect (and somewhat degenerate) approach to monitoring would be to first learn
the monitored system, and then perform offline verification on the learned model. Learning
probabilistic generators was studied in the setting of automata learning [20], but requires
more powerful oracle queries like membership and equivalence. Rudich showed that the
structure and transition probabilities of a Markov chain can, in principle, be learned from a
single input sequence [21]. However, the algorithm is impractical as it essentially enumerates
all possible structures.

2 Definitions

Let Σ be a finite alphabet of events. Given a finite or infinite word or ω-word w ∈ Σ∗ ∪ Σω
and a position i, 1 ≤ i ≤ |w|, we denote by wi its i’th value. Given a pair of positions i
and j, i ≤ j, we denote by wi..j the infix of w from i to j, such that |wi..j | = j − i+ 1 and
(wi..j)k = wi+k−1 for all 1 ≤ k ≤ j − i + 1. We denote by w..i = w1..i the prefix of w of
length i. For any word w ∈ Σ∗ and letter a ∈ Σ we write |w|a for the number of occurrences
of a in w.

2.1 Sequential Statistics
We define a statistic to be any function that outputs an indicator for a given input word.

I Definition 1 (Statistic). Let Σ be a finite alphabet and Λ be an output domain. A statistic
is a function µ : Σ∗ → Λ.

In this paper we focus on statistics that are based on the frequency, or number of
occurrence, of events. Two typical examples are the mode, i.e. the most frequent event, and
the median, i.e., the value separating as evenly as possible the upper half from the lower half
of a data sample.

I Example 2 (Mode). We say that a ∈ Σ is the mode of w when |w|a > |w|σ for all
σ ∈ Σ \ {a}. We denote by mode : Σ∗ → Σ ] {⊥} the statistic that maps a word to its mode
if it exists, or to ⊥ otherwise.

I Example 3 (Median). Let Σ be ordered by ≺. We say that a ∈ Σ is the median of w when∑
σ�a |w|σ <

∑
σ4a |w|σ and

∑
σ≺a |w|σ <

∑
σ<a |w|σ. We denote by median : Σ∗ → Σ]{⊥}

the statistic that maps a word to its median if it exists, or to ⊥ otherwise.
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An example of a statistic that takes into account the order of events in a word is the
most frequent event that occurs right after some dedicated event.

2.2 Counter Monitors
The task of a monitor is to compute a statistic in real time. We define a variant of monitor
machines that allows us to classify a monitor based on the amount of resources it uses. We
adapt the definition of counter monitors set in [10] to our setting of monitoring frequencies.

Let X be a set of integer variables, called registers or counters. Registers can be read
and written according to relations and functions in the signature S = 〈0,+1,≤〉 as follows:

A test is a conjunction of atomic formulas over S and their negation;
An update is a mapping from variables to terms over S.

The set of tests and updates over X are denoted Φ(X) and Γ(X), respectively.

I Definition 4 (Counter Monitor). A counter monitor is a tuple A = (Σ,Λ, X,Q, λ, s,∆),
where Σ is an input alphabet, Λ is an output alphabet, X is a set of registers, Q is a set of
control locations, λ : Q× NX → Λ is an output function, s ∈ Q is the initial location, and
∆ ⊆ Q× Σ× Φ(X)× Γ(X)×Q is a transition relation such that for every location q ∈ Q,
event σ ∈ Σ, and valuation v : X → N there exists a unique edge (q, σ, φ, γ, q′) ∈ ∆ such that
v |= φ is satisfied. The sets Σ, X,Q,∆ are assumed to be finite.

A run of the monitor A over a word w ∈ Σ∗ ∪Σω is a sequence of transitions (q1, v1) w1−−→
(q2, v2) w2−−→ . . . labeled by w such that q1 = s and v1(x) = 0 for all x ∈ X. Here we
write (q, v) σ−→ (q′, v′) when there exists an edge (q, σ, φ, γ, q′) ∈ ∆ such that v |= φ and
v′(x) = v(γ(x)) for all x ∈ X. There exists exactly one run of a given counter monitor A
over a given word w.

I Definition 5 (Monitor Semantics). Every counter monitor A computes a statistic JAK :
Σ∗ → Λ, such that JAK(w) = λ(q, v) for (q, v) the final state in the run of A over w ∈ Σ∗.

We remark that the term “counter machine” has various different meanings in the
literature and designates machines with varying computational power. In our definition we
note the use of the constant 0 which enables resets. Such resets cannot be simulated in real
time. On the contrary, arbitrary increments are w.l.o.g., as shown in [11].

2.3 Probabilistic Generators
In this work we model systems as labeled Markov chains, whose executions generate random
ω-words.

I Definition 6 (Markov Chain). A (finite, connected, labeled) Markov chain is a tuple
M = (Σ, Q, λ, π, p), where Σ is a finite set of events, Q is a finite set of states, λ : Q→ Σ
is a labeling, π is an initial-state distribution over Q, and p : Q×Q→ [0, 1] is a transition
distribution with

∑
q′∈Q p(q, q′) = 1 for all q ∈ Q and whose set of edges (q, q′) such that

p(q, q′) > 0 forms a strongly connected graph.

In the rest of this paper, even when not explicitly stated, every Markov chain is assumed
to be finite and connected.

LetM = (Σ, Q, λ, π, p) be a Markov chain. A random infinite sequence (Xi)i≥1 of states
is an execution ofM, Markov(M) for short, if (i) X1 has distribution π and (ii) conditional
on Xi = q, Xi+1 has distribution q′ 7→ p(q, q′) and is independent of X1, . . . , Xi−1. By
extension, a random ω-word w is Markov(M) if wi = λ(Xi) for all i ≥ 1.
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We denote by Vq(k) =
∑k
i=1 1{Xi=q} the number of visits to state q within k steps, and

by Tq = inf{i > 1 | Xi = q} the first time of visiting state q (after the initial state). Then
mq = E(Tq | X1 = q) is the expected return time to state q. The ergodic theorem for Markov
chains states that the long-run proportion of time spent in each state q is the inverse of mq.
Thus we call fq = 1

mq
the (long-run) frequency of q.

I Theorem 7 (Ergodic Theorem [19]). LetM be a finite connected Markov chain. If (Xi)i≥1
is Markov(M) then Vq(n)/n a.s.−−→ fq as n→∞ for every state q.

Now summing the frequencies of all states mapped to a letter σ gives the expected
frequency of σ, fσ =

∑
q∈Q
λ(q)=σ

fq, as characterized by the following corollary.

I Corollary 8. Let M be a finite connected Markov chain. If w is Markov(M) then
|w..n|σ/n

a.s.−−→ fσ as n→∞ for every letter σ.

3 The Limit-Monitoring Problem

We want to monitor the value of a given statistic µ : Σ∗ → Λ over the execution of some
(probabilistic) process P. This execution is potentially infinite, forming an ω-word w ∈ Σω.
In practice, the statistic µ is often used as an estimator of some parameter v ∈ Λ of process
P. Such a parameter is always well-defined in the case where µ converges to v as follows.

I Definition 9 (Convergence). A statistic µ : Σ∗ → Λ (almost surely) converges to a value
v ∈ Λ over a random process P, written µ(P) = v, if Pw∼P(limn→∞ µ(w..n) = v) = 1.

Computing the value of the statistic µ over every finite prefix of w can be an objective
in itself. It gives us the most precise estimate of the parameter v when defined. A monitor
fulfilling this requirement is called real-time. Such a monitor is past-oriented, and is concerned
with computing accurately the value µ(w..n) of the statistic at step n, for all n.

I Definition 10 (Real-Time Monitoring). A monitor A is a real-time monitor of statistic µ,
if JAK = µ.

However, if the aim of the monitor is to serve as an estimator of the parameter v, then
it may not be strictly required to output the exact value of µ at every step, as long as its
output almost surely converges to v. A monitor that almost surely converges to v is qualified
as limit. Such a monitor is future-oriented, and is concerned with the asymptotic value of
the statistic µ as time tends to infinity, not necessarily computing its precise value over each
prefix of the computation.

I Definition 11 (Limit Monitoring). A monitor A is a limit monitor of statistic µ : Σ∗ → Λ
on process P, when JAK(P) = v if and only if µ(P) = v for all v ∈ Λ.

In other words, if the statistic converges then the limit monitor converges to the same
value, and if the statistic does not converge then neither does the monitor. To the best of our
knowledge, the notion of limit monitoring was not previously considered. By definition, every
real-time monitor is trivially also a limit monitor for the corresponding statistic. However,
in this paper we show that dedicated limit monitors can be much more efficient.

I Proposition 12. Every real-time monitor of some statistic µ is also a limit monitor of µ,
on arbitrary generating processes.

This is in clear contrast to a common trend in runtime verification, where past-oriented
monitoring (inherently deterministic) often turns out to be computationally easier than
future-oriented monitoring (requiring nondeterministic simulation).



T. Ferrère, T. A. Henzinger, and B. Kragl 20:7

4 Precise Real-Time Monitoring

In this section we study the real-time monitoring of statistics by counter monitors. Real-
time monitors can be seen as monitoring the past in a precise manner. We show that for
some common statistics such as the mode and median statistics this problem is inherently
resource-intensive. More precisely, we identify a class of statistical quantities that require at
least as many counters as there are events in the input alphabet.

To illustrate the difficulty of monitoring certain statistics in real time, recall the mode as
defined in Example 2. A straightforward real-time monitor for the mode counts the number
of occurrences of each letter σ in a separate counter xσ. Then σ is the mode if and only if
xσ > xρ for all ρ ∈ Σ \ {σ}. Hence |Σ| counters suffice to monitor the mode. But can we
do better? Intuitively it seems necessary to keep track of the exact number of occurrences
for each individual letter. Indeed, we show in this section that for real-time monitors this
number is tight: any real-time counter monitor of the mode must use at least |Σ| counters.
In many applications where the alphabet Σ is large this may be beyond the amount of
resources available for a monitor. While Proposition 12 implies that the mode can also be
limit monitored using |Σ| counters, we show in the next section that limit monitoring can be
much more resource-sparing.

To capture the hardness of real-time monitoring for a whole class of statistics, we start by
defining an equivalence relation over words relative to a statistic. Two words are µ-equivalent
if it is impossible for µ to distinguish them, even with an arbitrary suffix appended to both
words.

I Definition 13 (µ-Equivalence). Let µ be a statistic over Σ. Two words w1, w2 ∈ Σ∗ are
µ-equivalent, denoted w1 ≡µ w2, if µ(w1u) = µ(w2u) for all words u ∈ Σ∗.

Now we define the notion of a Σ-counting statistic, which states that two equivalent
words must have exactly the same number of occurrences per letter, modulo a constant shift
across all letters. Intuitively a Σ-counting statistic induces many equivalence classes, too
many to be possibly tracked by a counter monitor with less than |Σ| counters.

I Definition 14 (Σ-Counting). A statistic µ is Σ-counting if w ≡µ w′ implies that there
exists n ∈ Z such that |w|σ = |w′|σ + n for all σ ∈ Σ.

I Proposition 15. For any Σ such that |Σ| > 1 both the mode and the median statistics are
Σ-counting.

To illustrate the definition of Σ-counting, consider the mode-equivalent words aabc and a
over the alphabet Σ = {a, b, c}. The distance for all letter counts is one. Over the alphabet
with an additional letter d the two words are not mode-equivalent (for example, consider the
extensions aabcd and ad), since the distance for the count of d is zero.

We prove that Σ-counting statistics are expensive to monitor by showing that for large n
the number of µ-inequivalent words of length at most n is strictly greater than the number
of possible configurations reachable by a counter monitor with less than |Σ| − 1 counters
over words of length at most n.

I Theorem 16. Real-time counter monitors of a Σ-counting statistic require Ω(|Σ|) counters.

As a corollary of Proposition 15 and Theorem 16, we have that precisely monitoring
the mode and the median in real time requires roughly as many counters as the size of the
alphabet, which is prohibitive in many practical applications.
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5 Efficient Limit Monitoring

In this section we develop a new algorithmic framework for efficient limit monitoring of
frequency-based statistics. We first present a general monitoring scheme and then instantiate it
to derive efficient monitoring algorithms for both mode (Section 5.2) and median (Section 5.3).
In Section 6 we present a monitoring algorithm for a general class of frequency properties.
While corresponding real-time monitors require a number of counters proportional to the size
of the input alphabet, our limit monitors only use a constant number of counters (e.g., four for
the mode), independent of the alphabet size. The algorithmic ideas in our monitoring scheme
are simple and intuitive, which makes our algorithms easy to understand, implement, and
deploy. However, the correctness proofs are surprisingly hard and required us to develop a
new ergodic theory for Markov chains that takes limits over arbitrary subwords (Section 5.1).

Our high-level monitoring strategy comprises the following points:
1. Split the input sequence into subwords of increasing length.
2. In every subword, acquire partial information about the statistic.
3. Assemble global information about the statistic across different subwords.

The idea behind splitting the input sequence into subwords is that when the monitored
property involves frequencies of many events, then different events can be counted separately
over different subwords, which enables us to reuse registers. Because of the probabilistic
nature of the generator we can still ensure that, in the long run, the monitor value converges
to the limit of the statistic. As we will see, there is great flexibility in how exactly the
sequence is partitioned. In principle, the subwords can overlap or leave gaps arbitrarily, as
long as the length of the considered subwords grows “fast enough”.

5.1 An Ergodic Theorem over Infixes
Consider the following Markov chain on the left-hand side, and a random ω-word generated
by this Markov chain in the table on the right-hand side.

x y

z

1

1
3

2
3

1 ω-word x y z x y z x y x y z x y z x y . . .

Prefixes 0 .5 .33 .25 .4 .33 .29 .38 .33 .4 .36 .33 .38 .36 .33 .38 a.s.−−→ 3
8

Infixes 0 .5 .33 .5 .2 a.s.−−→ 3
8

The second row of the table shows the frequency of state y in prefixes of increasing length.
For example, after xyzx we have frequency 1

4 . The classic ergodic theorem (Theorem 7) tells
us that this frequency almost surely converges to fy = 3

8 , the inverse of the expected return
time to y. However, this theorem does not apply to take a limit over arbitrary subwords,
for example, the infixes of increasing length (indicated by vertical lines) in the third row of
the table. We prove a result that shows that also in this much more general case the limit
frequency of y is 3

8 .
The strong law of large numbers states that the empirical average of i.i.d. random variables

converges to their expected value, i.e., (X1 + · · ·+Xn)/n a.s.−−→ E(X1) as n→∞. The fact
that random variables are “reused” from the n’th to the (n+ 1)’st sample does matter in
this statement. Otherwise the mere existence of a mean value is not sufficient to guarantee
convergence. However, when the variance (or higher-order moment) is bounded, then this
“reuse” is no longer required. We now prove such a variant of the law of large numbers.2

2 Such a setting is sometimes called array of rowwise independent random variables in the literature,
see [14] in particular.
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I Theorem 17. Let {Xn,i : n, i ≥ 1} be a family of identically distributed random variables
with E(X1,1) = µ and E(X4

1,1) <∞, such that {Xn,i : i ≥ 1} are mutually independent for
every n ≥ 1. Let (sn)n≥1 be a sequence of indices with sn ≥ an for every n ≥ 1 and fixed
a > 0. Set Sn =

∑sn

i=1Xn,i. Then Sn/sn
a.s.−−→ µ as n→∞.

In our proof the combination of the fourth-moment bound and the linear increase of sn
leads to a converging geometric series. We believe that these assumptions could be slightly
relaxed to a second-moment bound or to sublinearly increasing sequences. Theorem 17
already gives a basis to reason about infix-convergence for i.i.d. processes. We now use it to
derive a corresponding result for Markov chains.

Let M be a Markov chain and (Xi)i≥1 be Markov(M). Given an offset function s :
N → N, we refer to Xs(n)+1Xs(n)+2 · · · as the n’th suffix of X. We denote by V nq (k) =∑k
i=1 1{Xs(n)+i=q} the number of visits to state q within k steps in the n’th suffix. We

generalize the classic ergodic theorem for Markov chains (Theorem 7) to take the limit over
arbitrary subwords.

I Theorem 18. Let M be a finite connected Markov chain and s an offset function. If
(Xi)i≥1 is Markov(M) then V nq (n)/n a.s.−−→ fq as n→∞ for every state q.

Our proof applies Theorem 17 to the i.i.d. excursion times between visiting state q within
the n’th suffix. This requires bounding the moments of excursion times and showing that the
time until visiting q for the first time in every subword becomes almost surely negligible for
increasing size subwords. As a corollary of Theorem 18 we get the following characterization
for the long-run frequencies of letters over infixes.

I Corollary 19. LetM be a finite connected Markov chain and s an offset function. If w is
Markov(M) then |ws(n)+1..s(n)+n|σ/n

a.s.−−→ fσ as n→∞ for every letter σ.

5.2 Monitoring the Mode
As we saw in Section 4, precisely monitoring the mode in real time requires at least |Σ|
counters. By contrast, we now show that the mode can be limit monitored using only four
counter registers. For convenience we also use two registers to store event letters; since we
assume Σ to be finite they can be emulated in the finite state component of the monitor.

The core idea of our monitoring algorithm is to split w into chunks, and for each chunk
only count the number of occurrences of two letters x and y. Letter x is considered the
current candidate for the mode and y is a randomly selected contender. If x does not occur
more frequently than y in the current chunk, y becomes the mode candidate for the next
chunk. The success of the monitor relies on two points: (i) it must be repeatably possible for
the true mode to end up in x, and (ii) it must be likely for the true mode to eventually remain
in x. The first point is achieved by taking y randomly, and the second point is achieved by
gradually increasing the chunk size. It is sufficient to increase the chunk size by one and
decompose w as follows:

σ1 σ2σ3 σ4σ5σ6 σ7σ8σ9σ10 σ11 · · ·

Formally, the decomposition of w into chunks is given by an offset function s : N → N
with s(n) = n(n−1)

2 , such that the n’th chunk starts at s(n) + 1 and ends at s(n) + n. For
convenience, we introduce a double indexing of w by n ≥ 1 and 1 ≤ i ≤ n, such that
wn,i = ws(n)+i is the i’th letter in the n’th chunk.
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Algorithm 1 Mode monitor.

1 Function Init(σ):
2 x, y := σ, σ

3 cx, cy := 0, 0
4 n, i := 2, 1
5 return x

6 Function Next(σ):
7 if i = 1 then
8 if cx ≤ cy then x := y

9 y := σ

10 cx, cy := 0, 0
11

12 if x = σ then cx := cx + 1
13 if y = σ then cy := cy + 1
14

15 if i = n then n, i := n+ 1, 1
16 else i := i+ 1
17 return x

Algorithm 2 Median monitor.

1 Function Init(σ):
2 x := σ

3 c1, c2, c3, c4 := 0, 0, 0, 0
4 n, i := 2, 1
5 return x

6 Function Next(σ):
7 if i = 1 then
8 if c1 ≥ c2 then x := pre≺(x)
9 if c3 ≥ c4 then x := succ≺(x)

10 c1, c2, c3, c4 := 0, 0, 0, 0
11 if σ < x then c1 := c1 + 1
12 if σ ≥ x then c2 := c2 + 1
13 if σ > x then c3 := c3 + 1
14 if σ ≤ x then c4 := c4 + 1
15 if i = n then n, i := n+ 1, 1
16 else i := i+ 1
17 return x

A formal description of our mode monitor is given in Algorithm 1. The counters n and
i keep track of the decomposition of w. For the very first letter σ, Init initializes both
registers x and y to σ (line 2). Then, for every subsequent letter, Next counts an occurrence
of x and y using counters cx and cy, respectively (line 12-13). At the beginning of every
chunk, x is replaced by y if it did not occur more frequently in the previous chunk (line 8),
and y is set to the first letter of the chunk (line 9). At every step, x is the current estimate
of the mode.

I Example 20. For alphabet Σ = {a, b, c} and probability distribution p with p(a) = 0.5,
p(b) = 0.3, and p(c) = 0.2, the following table shows a word w where every letter was
independently sampled from p, and the corresponding mode at every position in w.

w c b b a b a c a a b c a c a a a · · ·
mode c - b b b b b - a - - a a a a a · · ·

In this example, mode first switches between the different letters and undefined, but then
eventually seems to settle on a. We show that this is not an accident, but happens precisely
because a is the unique letter that p assigns the highest probability.

Now the following table shows the execution of Algorithm 1 on the same random word.

n 1 2 3 4 5 6 · · ·
i 1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 1 · · ·
σ c b b a b a c a a b c a c a a a · · ·
x c c b a a a · · ·
y c b a c c a · · ·
cx 1 0 0 0 1 1 0 1 2 2 0 1 1 2 3 1 · · ·
cy 1 1 2 1 1 2 1 1 1 1 1 1 2 2 2 1 · · ·

Initially c is considered the mode and compared to b in the second chunk, where b occurs
more frequently. Thus b is considered the mode and compared to a in the third chunk, where
a occurs more frequently. In the fourth and fifth chunk a is compared to c, where a occurs
more frequently in both chunks. Again, the algorithm seems to settle on a, the true mode.
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To prove the correctness of our algorithm according to Definition 11 requires us to first
characterize when a Markov chain has a mode, i.e., under which conditions the mode statistic
almost surely converges. For this it is illustrative to instantiate Definition 9 for the mode,
which states that a is the mode of an ω-word w if there exists a length n, such that for every
length n′ ≥ n, |w..n′ |a > |w..n′ |b for every b 6= a. In a Markov chain the ergodic theorem
characterizes the long-run frequencies of states, and thus the long-run frequencies of letters
(see Corollary 8). Hence a Markov chain has a mode if and only if its random ω-word almost
surely has a unique letter that occurs most frequently.

I Theorem 21. Over Markov chains, the mode statistic converges to a if and only if fa > fb
for all b 6= a.

Proof. Let M be a Markov chain and w be Markov(M). According to Corollary 8,
|w..n|σ/n

a.s.−−→ fσ as n→∞ for every σ ∈ Σ
Now assuming fa > fb for all b 6= a, we have for sufficiently large n that |w..n|a > |w..n|b

for all b 6= a, and thus a is the mode of w almost surely.
Conversely, if there are two distinct letters a, a′ with equal maximal frequencies fa, fa′ ,

then almost surely the mode switches infinitely often between a and a′, thus neither a nor a′
is the mode of w, and thus w does not have a mode. J

Now we can prove that Algorithm 1 is a limit monitor for the mode. The core of the
argument is that the probability of the true mode eventually staying in register x is lower-
bounded by the probability of a eventually being the most frequent letter in every subword
and a being eventually selected into y, which happens almost surely.

I Theorem 22. Algorithm 1 limit-monitors the mode over Markov chains.

Proof. Let w be Markov(M) and let a be the mode of w (the other case where w does not
have a mode is obvious). Let γn be the function that maps every letter to the number of
its occurrences in the n’th subword, i.e., γn(σ) = |ws(n)+1..s(n)+n|σ. To capture Algorithm 1
mathematically, we define the random variables

Yn = wn,1; X1 = w1,1; Xn+1 =
{
Xn, if γn(Xn) > γn(Yn);
Yn, if γn(Xn) ≤ γn(Yn).

That is, Xn and Yn are the values of x and y throughout the n’th subword. We need to show
that almost surely, eventually Xn = a forever, i.e., P(♦�Xn = a) = 1.3

It is more likely that a eventually stays in x forever as that a eventually is the most
frequent letter in every subword and that a is also eventually sampled into y:

P(♦�Xn = a)
≥ P(♦(�∀b 6= a : γn(b) < γn(a)) ∧ (♦Yn = a))
≥ P((�≥n0∀b 6= a : γn(b) < γn(a)) ∧ (♦≥n0Yn = a))

The last lower bound holds for any fixed n0 and we show that it converges to 1 as n0 →∞.

P((�≥n0∀b 6= a : γn(b) < γn(a)) ∧ (♦≥n0Yn = a))
≥ P(�≥n0∀b 6= a : γn(b) < γn(a)) · P(♦≥n0Yn = a)
= P(�≥n0∀b 6= a : γn(b) < γn(a))

3 In the interest of readability we use temporal (modal) logic notation ♦ and � meaning eventually and
forever, respectively.
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Since γn(σ)/n a.s.−−→ fσ (by Corollary 19) and a is the unique letter with highest frequency fa
(by Theorem 21), we have P(�≥n0∀b 6= a : γn(b) < γn(a)) = 1 for sufficiently large n0. Thus,
P(♦�Xn = a) = 1. J

Note that our policy of always selecting the mode contender y from the input is an
optimization, since we expect to see the mode often in the input. Our proof requires that
the true mode is selected into y infinitely often, which is the case because we update y at
irregular positions. Two other policies to update y would be (i) to always uniformly sample
from Σ, or (ii) to cycle deterministically through all elements of Σ.

5.3 Monitoring the Median
Recall from Example 3 that a is the median of a word w over a ≺-ordered alphabet Σ when∑

σ�a
|w|σ <

∑
σ4a

|w|σ (1)

on the one hand, and∑
σ≺a
|w|σ <

∑
σ<a

|w|σ (2)

on the other hand. These equations readily lead to our median limit-monitoring algorithm
shown in Algorithm 2, which we display next to our mode monitor to highlight their common
structure. The idea of the algorithm is to maintain a median candidate x and then use
four counters c1, c2, c3, c4 to compute the sums in inequality (1) and (2), for a = x, in every
subword (line 11-14). Whenever any of the two inequalities is not satisfied at the end of a
subword, a new median candidate is selected into x for the next subword. In particular, if
inequality (1) is violated then the next lower value in the ordering ≺ is selected (line 8), and
if inequality (2) is violated then the next higher value is selected (line 9). Notice that we
could eliminate the counters c3, c4, by alternating the computation of inequality (1) and (2)
over different subwords, and thus reusing c1, c2 to compute inequality (2).

I Theorem 23. Algorithm 2 limit-monitors the median over Markov chains.

6 Monitoring General Frequency Properties

In the previous section we presented high-level principles for efficient limit monitoring and
designed specialized monitoring algorithms for the mode and median statistic, which are both
derived from event frequencies. We postulate that our algorithmic ideas are straightforward
to adapt to obtain monitors for many other frequency-based statistics. However, we did not
yet precisely define what we mean by frequency property, nor demonstrated how efficiently
these can be limit monitored in general. In this section we provide a first step in this direction
by defining a simple language to specify frequency-based Boolean statistics, and showing
that all statistics definable in this language can be limit monitored over Markov chains with
four counters only.

From the defining equations of the mode and median we observe that a characteristic
construction is the formation of linear inequalities over the frequencies (or equivalently,
occurrence counts) of specific events. The key part of the argument for the correctness
of our monitoring algorithms is that since event frequencies almost surely converge, both
over prefixes and infixes, also these inequalities almost surely “stabilize”. We use the same
construction at the core of a language to define general frequency-based statistics. For
simplicity we focus on statistics that output a Boolean value.
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I Definition 24. A frequency formula over alphabet Σ is a Boolean combination of atomic
formulas of the form∑

σ∈Σ
ασ · fσ > α (3)

where all α’s are integer coefficients.

A frequency formula φ is built from linear inequalities over frequencies of events. The
evaluation of a frequency formula is as expected (we write w |= φ if φ evaluates to true over
w). Hence we see φ as defining the Boolean statistic JφK : Σ∗ → B, where

JφK(w) =
{

1, if w |= φ;
0, if w 6|= φ.

I Example 25. The existence of a mode is expressed as the frequency formula∨
a∈Σ

∧
σ∈Σ
σ 6=a

fa > fσ .

I Example 26. Consider a web server that favors certain client requests over others. Such a
malfunction could be observed by detecting that certain events are disproportionately more
frequent than others. The following frequency formula specifies that no event can occur
100-times more frequent than any other event:∧

a,b∈Σ
a6=b

fa < 100 · fb .

A frequency formula φ can be limit monitored by simply evaluating φ repeatedly over
longer and longer subwords. However, the key to save resources is to evaluate different atomic
subformulas of φ over different subwords, and thus only evaluating one subformula at a time.

I Theorem 27. Over Markov chains, every frequency formula can be limit monitored using
4 counters.

Proof. Let φ be a frequency formula with k atomic subformulas φ1, . . . , φk of the form (3).
The monitor partitions the input word w into infixes wn,i with |wn,i| = n, for n ≥ 1 and
1 ≤ i ≤ k, as follows:

. . . wn,1

φ1

wn,2

φ2

. . . wn,k

φk

φ

. . .

Keeping track of the increasing infix length n and the current position within an infix requires
two counters. Then over every infix wn,i the monitor uses two counters to compute φi, one
for positive and one for negative increments. At the end of wn,i we have a truth value for
φi that is used to partially evaluate φ. This evaluation is implemented in the final-state
component of the monitor, and the two counters are reused across all infixes. Then after
every k’th infix we have a new “estimate” of φ that in the long run converges the same way
as JφK. Hence the resulting automaton is a limit monitor of φ: by Corollary 19, the frequency
of each event over infixes of increasing length tends to its respective asymptotic frequency,
so that strict inequalities holding over empirical frequencies almost surely hold over infixes
of increasing length. J
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7 Conclusion

In this paper we have studied the monitoring of frequency properties of event sequences.
We observed that real-time monitoring can be surprisingly hard (i.e., resource-intensive)
for such properties, and introduced the alternative notion of limit monitoring. In this
limit-monitoring setting we showed that a simple algorithmic idea leads to resource-efficient
monitoring algorithms for frequency properties. To prove the correctness of our algorithms
we generalized the ergodic theory of Markov chains.

The results in this paper are a first indicator of the relevance and potential of limit
monitoring. We hope that future research broadens the understanding of this problem and
we close with a number of interesting directions.

First, we are interested in a tighter characterization of properties that can be efficiently
limit monitored. Let us remark that the results in this paper immediately generalize from
counting individual events to counting the occurrences of regular event patterns. This is the
case because regular expression matching can be performed in real time by the finite state
component of a counter monitor. We extended our frequency formulas with free variables
to support non-Boolean statistics, and quantification to reason about unknown alphabet
symbols. However, the shape and efficiency of a generic monitoring algorithm is not yet
clear. For examples, we saw that there are different policies to partition the input sequence
and different policies to obtain candidate values for the monitor output. Certain forms of
existential quantification can be translated to random sampling, but this does not seem
to hold in general since not all events in the alphabet may occur in the execution under
consideration. Going even further, it would be interesting to consider limit monitoring of
properties with temporal aspects (such as always and eventually modalities).

Second, it is well known (see e.g. [6]) that the asymptotic frequencies of k-long subwords
fully characterize a k-state connected Markov chain. Hence the transition probabilities of
a Markov chain (of known structure) can be inferred from the conditional probabilities of
events. Thus, assuming the structure of a Markov chain is known, frequency queries and
the algorithmic ideas in this paper can be used to learn its transition probabilities to an
arbitrary precision. It would be interesting to study more broadly “how much” of a system
can be learned from frequency properties (and similar observations).

Third, throughout this paper we used the term efficient to mean resource-efficient in
the amount of memory used by a monitor. However, there is the orthogonal question of
time-efficiency. For a limit monitor this means how quickly a monitor converges in relation
to the monitored statistic. We hope that future research can provide numerical guarantees
or estimates for convergence rates. For the simple setting of an i.i.d. word over a two-letter
alphabet, we proved that the mode statistic converges exponentially fast. More precisely, if w
is a random ω-word where every letter is i.i.d. according to a probability distribution p over
{a, b} with p(a) > p(b), then P(mode(w..n) = a) ≥ 1− (4p(a)p(b))bn

2 c. Since this depends on
the exact probabilities, the analytical expressions of the confidence value seem to become
intractable for three letters or more. In probability theory, there exist several different notions
of convergence of random variables. The results in this paper use the notion of almost-sure
convergence of a statistic µ (Definition 9), that is, Pw∼P(limn→∞ µ(wn..) = v) = 1. It would
be interesting to study also other notions, for example convergence in probability, that is,
limn→∞ Pw∼P(µ(wn..) = v) = 1.

Fourth, the correctness results we derived for our monitoring algorithms hold for systems
modeled as connected Markov chains. However, we believe that the algorithmic ideas of this
paper are more widely applicable. Thus it would be interesting to study limit monitoring
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for other types of systems, for example, Markov decision processes which are challenging
for our monitoring scheme because nondeterminism allows certain events to always occur
deliberately when the monitor is not watching for them. In the security context a monitored
system is usually assumed to be adversarial, not probabilistic. It could be interesting to
turn our deterministic monitors of probabilistic systems into probabilistic monitors for
nondeterministic systems.
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Abstract
In this paper we study the class EqP of automatic equivalence structures of the form E = (D, E)
where the domain D is a regular language of polynomial growth and E is an equivalence relation on
D. Our goal is to investigate the following two foundational problems (in the theory of automatic
structures) aimed for the class EqP . The first is to find algebraic characterizations of structures
from EqP , and the second is to investigate the isomorphism problem for the class EqP . We provide
full solutions to these two problems. First, we produce a characterization of structures from EqP

through multivariate polynomials. Second, we present two contrasting results. On the one hand, we
prove that the isomorphism problem for structures from the class EqP is undecidable. On the other
hand, we prove that the isomorphism problem is decidable for structures from EqP with domains of
quadratic growth.
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1 Introduction

Automatic structures are relational structures A = (D,R1, . . . , Rk) where the domain D is a
regular language and every relation Ri ⊆ Dri is recognized by a finite automaton with ri
many synchronous heads [3, 8]. They constitute a robust class of finitely presented structures
with good algorithmic and often algebraic properties; in particular, the model checking
problem for first-order logic (and some of its extensions such as (FO +∃∞)–logic) is decidable
over automatic structures [3, 7, 11]. However, going beyond first-order logic, problems quickly
become undecidable over automatic structures, e.g. the reachability problem is undecidable
for automatic structures.

An important problem in the theory of automatic structures is the isomorphism problem.
The problem asks to design an algorithm that given two automatic structures decides if the
structures are isomorphic. Blumensath and Grädel proved that the isomorphism problem
is undecidable [3]. Furthermore, it turns out that the isomorphism problem for automatic
structures is complete for the first level of the analytical hierarchy Σ1

1 [9]. In addition, Nies
[15] proved that the problem remains Σ1

1-complete for the class of undirected graphs and
partial orders, and Kuske, Liu and Lohrey [4] showed that the problem is Σ1

1-complete
for even automatic linear orders. In contrast, the isomorphism problem is decidable for
automatic ordinals [10] and Boolean algebras [9]. These decidability results follow from full
characterization results for automatic ordinals and Boolean algebras [10, 9]. Interestingly,
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full characterizations of isomorphism types do not immediately imply decidability of the
isomorphism problem for automatic structures. For instance, Thomas and Oliver [16] proved
that automata presented finitely generated groups are virtually abelian. However, it is still
unknown if the isomorphism problem for this class of automatic groups is decidable.

The class of equivalence structures, these are structures of the form (D,E) where E
is an equivalence relation on D, are among the simplest algebraic structures (in terms of
descriptions of the their isomorphism types). The isomorphism type of each such structure
(D,E) is fully characterized by the function f : N+ ∪ {∞} → N ∪ {∞} defined as follows:

f(n) = the number of equivalence classes of size n (1)

This description immediately implies that the isomorphism problem for automatic equivalence
structures is a Π0

1-predicate. It had been a long-standing open question if the isomorphism
problem for automatic equivalence structures is decidable. Kuske, Liu and Lohrey [4]
proved that the isomorphism problem over automatic equivalence structures is Π0

1-complete,
and hence undecidable. It is worth to mention the following simple observation from [4].
There is an algorithm that, given two automatic isomorphic equivalence structures, builds
a computable isomorphism between them. This is in spite the fact that the isomorphism
problem for automatic equivalence relations is undecidable.

In light of the (undecidability) results above, the following question arises. Find classes
of automatic structures for which the isomorphism problem is decidable. One approach to
address the question is to put algebraic restrictions on the class of automatic structures. For
instance, one can consider the classes of automatic torsion free abelian groups and ask if
the isomorphism problem for this class of structures is decidable. The second approach is to
consider classes of automatic structures whose domains belong to some robust class of regular
languages. For instance, in [2, 18, 13] automatic structures with unary domains are studied; it
is proved the isomorphism problem is decidable for unary automatic linear orders, equivalence
structures, and trees. Although, we still do not know if the isomorphism problem for unary
automatic structures is decidable. Bárány [1] initiated the study of automatic structures
with domains of polynomial growth. He provided examples of universal structures in this
class and proved that the isomorphism problem in this class of structures is undecidable. The
third way to address the problem is to combine the above two approaches by restricting both
the class of structures and the class of regular domains. This is exactly what we do in this
paper. We focus on automatic equivalence structures of the form (D,E) where D is a regular
language of polynomial growth and E is an equivalence relation on D. We denote this class
of automatic structures by EqP . The choice of this class is partly motivated by the facts
mentioned above: (1) The isomorphism types of equivalence structures have full descriptions,
and (2) the isomorphism problem for automatic equivalence structures is undecidable.

In this paper we thus address two foundational problems for the class EqP . The first is
to find algebraic characterizations of structures from EqP , and the second is to investigate
the isomorphism problem for the class EqP . We fully solve these two problems. First, we
produce a characterization of automatic equivalence structures from EqP in the language
of multivariate polynomials. Second, we present two contrasting results. On the one hand,
we prove that the isomorphism problem for automatic structures from the class EqP is
undecidable. On the other hand, we prove that the isomorphism problem is decidable for
structures from EqP with domains bounded by a quadratic growth.
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2 Summary of results

Let N = {0, 1, 2, . . . } and N+ = {1, 2, . . . } be the sets of nonnegative and positive integers.
Polynomials f ∈ N[x1, . . . , xk] are viewed as functions f : Nk → N. The number k is also
denoted by var(f); the degree of g is denoted by deg(f).

An equivalence structure E = (D,E) consists of a domain D and an equivalence relation
E on D. We denote by [x] = {y ∈ D | (x, y) ∈ E} the equivalence class of x ∈ D. As
described in (1), the isomorphism type of E can be described by specifying the number of
equivalence classes of every finite or infinite size. Since we will only deal with countable
domains, there is only one infinite cardinality. We defer the formal definition of automatic
structures to Section 3.

Let D be a regular language. Its growth is the function grD that for each n computes
the number of strings of length n that belong to D. We say that the language D has a
polynomial growth if its growth function grD is bounded by a polynomial in n. We denote
by EqP the class of all automatic equivalence structures (D,E) such that D is a regular
language of polynomial growth. Here is a simple yet an important example of a structure
from EqP :

I Example 1. Consider the equivalence structure E = (D,E) defined as follows: The domain
is D = 0∗1∗2∗3∗ and the equivalence relation E consists of pairs (u, v) from the domain
such that (u, v) ∈ E if and only if |u|0 + |u|1 = |v|0 + |v|1 and |u|2 + |u|3 = |v|2 + |v|3. Here,
|w|σ denotes the number of times σ appears in w. It is easy to see that the equivalence
structure E is automatic. A set of representatives is a subset R ⊆ D containing exactly one
element from each equivalence class. An example of a regular set of representatives of E
is the language 0∗2∗. Note that the class [0t02t2 ] has size (t0 + 1)(t2 + 1). One could say
that the polynomial g(t0, t2) = (t0 + 1)(t2 + 1) defines E up to isomorphism: for each tuple
(t0, t2) ∈ N2 it contains a class of size g(t0, t2).

This example suggests us to give the following definition (construction):

I Definition 2. For a function g : Nk → N, the equivalence structure E(g) is defined (up
to isomorphism) as follows. The number of classes of size s ∈ N+ in E(g) is given by the
cardinality |{t̄ ∈ Nk | g(t̄) = s}|. Furthermore E(g) has no infinite classes.

Note that E(g) can have infinitely many classes of a certain size s. For instance, if
g(t0, t1) = t0 is the polynomial in two variables t0, t1, then for all s ∈ N+ there are infinitely
many classes of size s in E(g). However, all classes in E(g) are finite. We remark that tuples
which are mapped to 0 are irrelevant for the definition of E(g). Our characterization theorem
for equivalence structures from the class EqP is the following:

I Theorem 3. Let E be an equivalence structure and k ∈ N. Then the following statements
are equivalent:
1. E is isomorphic to an automatic equivalence structure (D,E) where D has growth O(nk).
2. E is a finite disjoint union of equivalence structures E(g1), . . . ,E(gm) where each gi is

a polynomial with natural coefficients and var(gi) + deg(gi) ≤ k + 1 and a number of
infinite classes (which must be finitely many if k = 0).

Furthermore, this correspondence is effective.

The decomposition into equivalence structures E(gi) defined by polynomials gi is obtained
by applying a result from Woods [22] who characterized counting functions of Presburger
definable relations. The bound on the degree and the number of variables is obtained by a
growth argument.
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The characterization theorem provides us with two contrasting results. The first result is
undecidability of the isomorphism problem for the class EqP .

I Theorem 4. There exists a number k ≥ 0 such that it is Π0
1-complete to decide whether

two automatic equivalence structures of growth O(nk) are isomorphic.

The proof of Theorem 4 follows the ideas of the undecidability proof of [4], which uses
the MRDP-theorem [14]. The second result is decidability of the isomorphism problem for
structures from EqP of quadratic growth:

I Theorem 5. It is decidable whether two given automatic equivalence structures of growth
O(n2) are isomorphic.

The proof idea of Theorem 5 is to reduce it to equality of multisets defined by quadratic
polynomials, which can be decided with the help of the theory of quadratic Diophantine
equations. The outline of the paper is as follows. After giving the necessary definitions in
Section 3 we prove the characterization theorem (Theorem 3) in Section 4. In Section 5 we
prove the undecidability result (Theorem 4) and in Section 6 we prove Theorem 5.

3 Preliminaries

We presuppose basic definitions in regular languages and first-order logic. Let us recall
the definition of automatic structures. The convolution of k words v1, . . . , vk where vi =
ai,1 · · · ai,ni

is the word (a1,1, . . . , ak,1) · · · (a1,m, . . . , ak,m) of length m = max{n1, . . . , nk}
over the alphabet Σk

� = (Σ ∪ {�})k where ai,j = � for all nj < i ≤ m and 1 ≤ j ≤ k. It
is denoted by v1 ⊗ v2 ⊗ · · · ⊗ vk. A relation R ⊆ Dk over a language D is automatic if
⊗Ri = {v1⊗· · ·⊗vk | (v1, . . . , vk) ∈ R} is regular. A relational structure A = (D,R1, . . . , Rm)
is automatic if the domain D is a regular language and each relation Ri automatic. Given
an automatic structure A = (D,R1, . . . , Rm) and a first-order formula ϕ(x̄) with infinity
quantifiers ∃∞, one can compute an automaton recognizing ⊗{v̄ | A |= ϕ(v̄)}, see [8, 3].
Here a formula of the form ∃∞xϕ(x, ȳ) states that there are infinitely many elements x
satisfying ϕ(x, ȳ). In particular, if ϕ(x) is such a formula then the restriction of A to
{v ∈ D | A |= ϕ(v)} is also automatic.

The growth function of a language L is the function n 7→ |{w ∈ L | |w| = n}|. It is known
that a regular language has growth O(nk) if and only if it can be written as a finite union
of languages defined by regular expressions of the form x0y

∗
0 · · ·x`y∗`x`+1 where 0 ≤ ` ≤ k,

see [21]. Furthermore, we can compute such regular expressions such that the union is disjoint
and that each expression is unambiguous, i.e. the function (i0, . . . , i`) 7→ x0y

i0
0 · · ·x`y

i`
` x`+1

is injective, cf. [21, Proof of Lemma 3].

Semilinear sets and Presburger arithmetic. A set S ⊆ Nk is semilinear if it is a finite
union of linear sets

L = v̄0 + 〈v̄1, . . . , v̄n〉 = {v̄0 +
n∑
i=1

λiv̄i | λ1, . . . , λn ∈ N}.

A linear set is fundamental if the period vectors v̄1, . . . , v̄n are linearly independent in
Rk. It is known that every semilinear set is a finite disjoint union of fundamental linear sets
[6] and that such a representation can be computed effectively. In the one-dimensional case
this means that every semilinear set S ⊆ N is a finite disjoint union of singleton sets and
arithmetic progressions {a+ bn | n ∈ N} with a, b ∈ N, b 6= 0.
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An important theorem which connects context-free languages and semilinear sets is
Parikh’s theorem. For an ordered alphabet Σ = {a1, . . . , ak} the Parikh mapping Φ: Σ∗ → Nk
is defined by Φ(w) = (|w|a1 , . . . , |w|ak

). Parikh’s theorem states that for every context-free
language L ⊆ Σ∗ the Parikh image Φ(L) = {Φ(w) | w ∈ L} is effectively semilinear [17].
Recall that Presburger arithmetic is the first-order logic over the structure (N,+, 0,≤). It is
known that a relation R ⊆ Nk is definable by a Presburger formula ϕ(x1, . . . , xk) if and only
if R is semilinear, and this correspondence is effective [5].

Counting functions. Given a formula ϕ(s̄, t̄) of Presburger arithmetic, we will in our
arguments employ the counting function c(t̄) = |{s̄ | ϕ(s̄, t̄)}| where we assume that this
quantity is finite. For example, given the formula ϕ(s, t1, t2) = ∃x(s = x+x∧ t1 ≤ s∧s ≤ t2)
the function c(t1, t2) = |{s | ϕ(s, t1, t2)}| counts the number of even numbers s between t1
and t2.

We will also use quasi-polynomials. A quasi-polynomial is a function g : Nk → Q such
that there is a k-dimensional lattice Λ ⊆ Zk (that is, Λ is a finite index subgroup of
Zk) and polynomials qλ+Λ(t̄) such that g(t̄) = qλ+Λ(t̄) for all t̄ ∈ λ + Λ, where λ + Λ
belongs to the quotient set Zk/Λ. Notice that each coset λ + Λ ∈ Zk/Λ is semilinear. A
piecewise quasi-polynomial is a function g : Nk → Q such that there exist a finite partition⋃
i(Pi ∩Nk) = Nk with rational polyhedra Pi and quasi-polynomials gi such that g(t̄) = gi(t̄)

for all t̄ ∈ Pi ∩ Nk. Recall that a rational polyhedron is the finite intersection of half-spaces
{(x1, . . . , xk) ∈ Rk |

∑k
i=1 aixi ≤ b} where the coefficients a1, . . . , ak and the right hand

side b are integers. If P ⊆ Rk is a rational polyhedron then P ∩ Nk is clearly effectively
Presburger-definable and hence effectively semilinear.

We will need the following two theorems:

I Theorem 6 ([22]). For every Presburger formula ϕ(s̄, t̄) the function c(t̄) = |{s̄ | ϕ(s̄, t̄)}| is
piecewise quasi-polynomial. Furthermore, the representation of c can be effectively computed.

For example the counting function c(t1, t2) from above which counts the number of
even numbers between t1 and t2 can be seen to be piecewise quasi-polynomial: Choose the
polyhedron P = {(x1, x2) ∈ R2 | x1 ≤ x2} and the lattice Λ = 2Z× 2Z. Then c(t1, t2) = 0
for all (t1, t2) ∈ N2 \ P and

c(t1, t2) =


t2−t1

2 + 1, for (t1, t2) ∈ P ∩ Λ,
t2−t1+1

2 , for (t1, t2) ∈ P ∩ (((1, 0) + Λ) ∪ ((0, 1) + Λ)),
t2−t1

2 , for (t1, t2) ∈ P ∩ ((1, 1) + Λ).

Since every semilinear set is a disjoint union of fundamental linear sets for every counting
function c of a Presburger formula there exists a finite partition Nk =

⋃
i Li and polynomials

gi such that each Li is a fundamental linear set and the counting function c coincides with
gi on Li. Furthermore, this representation is effectively computable. Theorem 6 can be
strengthened for the special case where the tuple s̄ is a single variable:

I Theorem 7 ([20]). For every Presburger formula ϕ(y, z̄) there exists a formula ψ(x, z̄)
which states that x is the number of elements y such that ϕ(y, z̄) holds.

Multisets. A multiset over a set A is a function M : A → N∞ where N∞ = N ∪ {∞}.
The number M(a) is the multiplicity of a in M . The support of M is the set supp(M) =
{a ∈ A | M(a) > 0}. We call M finite if its support is finite and every multiplicity is
finite. If f : A → B is a function and X ⊆ A, then we define f(X) to be the multiset
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over B with f(X)(b) = |f−1({b}) ∩ X|. Instead of f(A) we also write Rg(f), which is
the range of f . The union and difference of two multisets M1,M2 : A → N∞ is defined
by (M1 ]M2)(a) = M1(a) + M2(a) and (M1 \M2)(a) = max(M1(a) −M2(a), 0) where
n−∞ = 0 for all n ∈ N∞. We define M1 ⊆ M2 iff M1(a) ≤ M2(a) for all a ∈ A. Given a
multiset M over A and a subset S ⊆ A, we define M � S as (M � S)(a) = M(a) if a ∈ S and
(M � S)(a) = 0 otherwise.

4 Characterization: Proof of Theorem 3

Our proof consists of several lemmas. To prove the implication (2)→ (1), we first observe
that the class of automatic equivalence structures with polynomially bounded growth is
closed under disjoint union.

I Lemma 8. Let E1 = (D1, E1) and E2 = (D2, E2) be two automatic equivalence structures.
Then there exists an automatic equivalence structure E = (D,E) isomorphic to the disjoint
union of E1 and E2. If D1 and D2 have growth O(nk) then also D has growth O(nk).

Proof. Say D1, D2 ⊆ Σ∗ and let #1,#2 /∈ Σ be fresh symbols. The disjoint union E1 ∪E2 is
isomorphic to (D,E) where D = #1D1 ∪#2D2 and E =

⋃
i∈{1,2}{(#iu,#iv) | (u, v) ∈ Ei}.

For n ≥ 1 we have |D ∩ Σn| = |D1 ∩ Σn−1|+ |D2 ∩ Σn−1| ≤ O(nk). J

To complete the proof of the implication (2) → (1), it suffices to consider equivalence
structures of the form E(g) and equivalence structures where all classes are infinite. If E
consists of n ∈ N infinite classes, then E is isomorphic to (0∗, E) where two words 0i and
0j are equivalent iff i and j are congruent mod n. If E consists of infinitely many infinite
classes then E is isomorphic to (0∗1∗, E) where two words are equivalent iff the number of
0’s is equal.

I Lemma 9. Given a non-zero polynomial g ∈ N[t1, . . . , tk] with degree d one can compute
an automatic equivalence structure (D,E) isomorphic to E(g) where the growth of D is
O(nk+d−1).

Proof. Kuske, Lohrey, Liu [4] construct a finite automaton A = (Q,Σ, I,∆, F ) over the
alphabet Σ = {1, . . . , k} such that the number of accepting runs of A on 1t1 · · · ktk is
g(t1, . . . , tk) for all t1, . . . , tk ∈ N. A run in A can be described as a sequence of transitions

(q0, a1, q1)(q1, a2, q2) · · · (qn−1, an, qn) ∈ ∆∗.

Let D ⊆ ∆∗ be the set of all accepting runs of A, which is a regular language, and let two
runs be E-equivalent iff they are runs on the same word. Notice that E is automatic and
(D,E) is isomorphic to E(g). The number of accepting runs of A on words of length n ∈ N
is bounded by∑

t1+···+tk=n
g(t1, . . . , tk) ≤ O(nk−1) · g(n, . . . , n) ≤ O(nk+d−1),

which concludes the proof. J

With respect to Lemma 8, note that the class EqP is closed under the product operation
(although this fact is not used in our arguments). Namely, let E1 = (D1, E1) and E2 = (D2, E2)
be two structures from EqP . Then the equivalence structure E1 · E2 = (D1 ×D2;E1 · E2),
where ((x, y), (x′, y′)) ∈ E1 · E2 iff (x, x′) ∈ E1 and (y, y′) ∈ E2, belong to EqP .
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In the rest of the section, we prove the implication (1)→ (2). We consider an automatic
equivalence structure E = (D,E) and show that it can be decomposed as stated in Theorem 3.
We will start with some preprocessing. First one can define the set of elements in finite
E-classes by the formula ϕfin(x) = ¬∃∞y Exy. Hence we can assume that all classes are
finite.

I Lemma 10. If D ⊆ 0∗ then E contains only finitely many infinite classes.

Proof. We call a set C ⊆ 0∗ eventually d-periodic (d ∈ N) if there exists a number t ∈ N
such that for all i ≥ t we have 0i ∈ C iff 0i+d ∈ C. Let A be a deterministic finite automaton
(DFA) for ⊗E with transition function δ. We claim that there are numbers t ≥ 0 and d ≥ 1
such that δ(q, (0, �)t) = δ(q, (0, �)t+d) for all states q in A. Clearly, for every state q there
are numbers tq ≥ 0 and dq ≥ 1 such that δ(q, (0, �)tq ) = δ(q, (0, �)tq+dq ). Then it suffices to
take the maximum over all tq and the product of all dq over all states q.

Let C be an equivalence class and let 0i ∈ C be the shortest word. By the property
above we have (0i, 0j) ∈ E iff (0i, 0j+d) ∈ E for all j ≥ i+ t, i.e. C is eventually d-periodic.
Any d+ 1 infinite eventually d-periodic sets cannot be pairwise disjoint, which proves the
claim. J

If D has growth O(nk), then we can assume that D ⊆ 0∗ · · · k∗ as stated in the next
lemma.

I Lemma 11 ([1]). If A = (D,R1, . . . , Rm) is an automatic structure where D has growth
O(nk) then there exists an automatic structure A′ = (D′, R′1, . . . , R′m) which is isomorphic
to A and D′ ⊆ 0∗1∗ · · · k∗.

In the following assume that D ⊆ 0∗ · · · k∗ and that every E-class is finite. Let R ⊆ D
be the set of minimal elements from the equivalence classes with respect to the length-
lexicographical order. A standard pumping argument shows that there exists a constant
b ∈ N such that the length difference between any two equivalent elements is bounded by b.

I Lemma 12. There exists b ∈ N such that (u, v) ∈ E implies ||u| − |v|| ≤ b.

Proof. Let b the number of states in an automaton A for ⊗E. Assume that |v| > |u|+ b

(the other case is symmetric). The word u ⊗ v is accepted by A and has a suffix of the
form �b+1 ⊗ w for some suffix w of v. In this suffix A visits some state twice, and hence a
nonempty infix of �b+1 ⊗ w can be pumped, yielding infinitely many equivalent elements to
u. This contradicts the assumption that all classes are finite. J

I Lemma 13. There is a Presburger formula ϕ(t0, . . . , tk, s0, . . . , sk) stating that r =
0t0 · · · ktk ∈ R, v = 0s0 · · · ksk ∈ D and (r, v) ∈ E.

Proof. Since E ∩R×D is an automatic relation the set L = ⊗(E ∩R×D) is by definition
a regular language over the alphabet Γ = {0, . . . , k, �}2. Notice that the restriction of the
Parikh mapping Φ to L is injective since the letters in words of L are naturally ordered. By
Parikh’s theorem Φ(L) is effectively semilinear and hence effectively definable by Presburger
formula. This allows to construct a formula ϕ stating that there exists a vector x ∈ Φ(L)
indexed by pairs in Γ such that∑

j∈{0,...,k,�} x(i,j) = ti for all 0 ≤ i ≤ k∑
i∈{0,...,k,�} x(i,j) = sj for all 0 ≤ j ≤ k.

This concludes the proof. J
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Now we are ready to finish the proof of Theorem 3. Let ϕ be the formula from Lemma 13.
By Theorem 6 the counting function c(t̄) = |{s̄ | ϕ(t̄, s̄)}| is a piecewise quasi-polynomial
function, and one can compute a representation of c. If r = 0t0 · · · ktk ∈ R then c(t0, . . . , tk)
is the size of the equivalence class of r; otherwise c(t0, . . . , tk) = 0. By definition of E(c) we
have E(c) ∼= E. It remains to decompose E(c) into equivalence structures E(hi) defined by
polynomials hi and prove that deg(hi) + var(hi) ≤ k + 1.

We can assume that c is presented by a finite partition Nk+1 =
⋃
i Li and polynomials gi

such that each Li is a fundamental linear set and c coincides with gi on Li [6]. Let hi be the
function obtained from gi by substituting the linear representation of vectors in Li into gi.
More formally, let Li = v̄0 + 〈v̄1, . . . , v̄`〉 where the period vectors are linearly independent
and let αi : N` → Nk+1 be defined by αi(λ1, . . . , λ`) = v̄0 +

∑`
j=1 λj v̄j . Then gi ◦ αi is a

polynomial and E is isomorphic to the disjoint union
⋃
i E(gi ◦ αi).

Now fix i and let hi = gi ◦ αi, which is a polynomial in the variables λ1, . . . , λ`. It
remains to show that deg(hi) + ` ≤ k + 1. Let Ri = R ∩ {0t0 · · · ktk | t̄ ∈ Li} and
Di = {v ∈ D | ∃r ∈ Ri : (v, r) ∈ E}. Then E(hi) is isomorphic to the restriction of E to Di.
The representatives in Ri of length n are

Ri,n = {0t0 · · · ktk | ∃λ̄ ∈ N` : αi(λ̄) = t̄,
∑
j

tj = n}.

Each r ∈ Ri,n is only equivalent to words of length at least n, since r is length-lexicographically
minimal in its class, and at most n+ b, by Lemma 12. Since b is a constant we know that
|{v ∈ Di | n ≤ |v| ≤ n+ b}| = O(nk) and hence∑

r∈Ri,n

|[r]| = |
⋃

r∈Ri,n

[r]| = O(nk). (2)

For a tuple λ̄ = (λ1, . . . , λ`) let len(λ̄) be the sum of all entries in αi(λ̄), which is an affine
function in λ̄, namely len(λ1, . . . , λ`) = a0 +

∑`
j=1 ajλj where aj ∈ N is the sum of all entries

in v̄i. Since αi is injective, none of the vectors v̄i can be the zero vector and therefore we
must have a1, . . . , a` ≥ 1. We obtain∑

len(λ1,...,λ`)=n

hi(λ1, . . . , λ`) =
∑

len(λ1,...,λ`)=n

gi(αi(λ1, . . . , λ`))

=
∑

0t0 ···ktk∈Ri,n

gi(t0, . . . , tk) =
∑

r∈Ri,n

c(r) (2)= O(nk).

Let a be the least common multiple of a1, . . . , a` and assume that n = a0 + a ·m for some
m ∈ N. We restrict the left handside to those tuples (λ1, . . . , λ`) where each ajλj is divisible
by a, i.e. aj · λj = a · µj for some µj . We get∑

µ1+···+µ`=m
hi(aµ1, . . . , aµ`) = O(nk).

The number of tuples (µ1, . . . , µ`) ∈ N` with m/(`− 1) ≤ µj for all j and µ1 + · · ·+ µ` = m

is Ω(m`−1) = Ω(n`−1) because in the coordinates 1 to ` − 1 we can pick any integer in
the interval [m/(`− 1),m/`] and pick µ` ≥ m/` such that the sum equals n. This implies
Ω(n`−1) · hi(am′, . . . , am′) ≤ O(nk) where m′ = m/(`− 1). Since m′ = Θ(n) the degree of
hi must satisfy `− 1 + deg(hi) ≤ k.
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5 Undecidability: Proof of Theorem 4

Using Theorem 3 we can state an equivalent formulation of the isomorphism problem for
automatic equivalence structures with growth O(nk). For this we define two sets. The first
set is the set of polynomials f such that the number of variables in f plus the degree of f is
not greater than k + 1:

Pk = {f ∈ N[x1, . . . , x`] | 0 ≤ ` ≤ k + 1, var(f) + deg(f) ≤ k + 1}.

The second set defines a collection of multi-sets determined by tuples of polynomials from
Pk. Formally:

Mk =
{

m⊎
i=1

Rg(fi) | f1, . . . , fm ∈ Pk, m ∈ N

}
.

I Definition 14. Let P be a set of polynomials. A P-representation for a multiset M over
N is a list of polynomials (f1, . . . , fm) ∈ Pm such that M =

⊎m
i=1 Rg(fi).

For example, the list (x, x2) is a representation of the multiset {0, 0, 1, 1, 2, 3, 4, 4, 5, 6, . . . }.
The decision problem P-Multiset-Eq asks whether two given P-representations define the
same multiset.

I Lemma 15. For each constant k ≥ 0, the isomorphism problem for automatic equivalence
structures of growth O(nk) is equivalent to Pk-Multiset-Eq.

Proof. The equivalence follows basically from Theorem 3. However, we need to pay attention
to infinite equivalence classes and multisets containing 0.

First we observe that the isomorphism problem for automatic equivalence structures
of growth O(nk) is equivalent to the question whether F � N+ = G � N+ for two given
multisets F,G ∈ Mk, i.e. we exclude 0 from the multisets. Let us call this decision
problem Pk-Pos-Multiset-Eq. To solve the isomorphism problem we first compute for
the given equivalence structures representative sets for the set of infinite equivalence classes
and compare their cardinality. If they are unequal, we reject. Otherwise we restrict
the equivalence structures to those elements which are contained in finite classes. By
Theorem 3 we can compute representations

⋃
i E(fi) and

⋃
i E(gi) for the restricted equivalence

structures where fi, gi ∈ Pk. Then the equivalence structures are isomorphic if and only if
(
⊎
i Rg(fi)) � N+ = (

⊎
i Rg(gi)) � N+. Conversely, given two Mk-multisets F =

⊎
i Rg(fi)

and G =
⊎
i Rg(gi), we have F � N+ = G � N+ if and only if

⋃
i E(fi) and

⋃
i E(gi) are

isomorphic. By Theorem 3 we can compute two automatic structures equivalent to
⋃
i E(fi)

and
⋃
i E(gi), respectively.

It remains to prove the equivalence of Pk-Pos-Multiset-Eq and Pk-Multiset-Eq.
Since Rg(x1) is the multiset containing 0 infinitely often, we have (

⊎
i Rg(fi)) � N+ =

(
⊎
i Rg(gi)) � N+ if and only if

⊎
i Rg(fi) ∪ Rg(x1) =

⊎
i Rg(gi) ∪ Rg(x1). This yields a

reduction from Pk-Pos-Multiset-Eq to Pk-Multiset-Eq. For the other direction, suppose
we are given two multisets F =

⊎
i Rg(fi) and G =

⊎
i Rg(gi) fromMk. Then F = G if and

only if F (0) = G(0) and F � N+ = G � N+. The latter is equivalent to the Pk-Multiset-
Eq-instance

⋃
i E(fi) =

⋃
i E(gi). To test F (0) = G(0) it suffices to show how to compute

Rg(g)(0) for a given polynomial g ∈ N[x1, . . . , x`]. First notice that Rg(g)(0) is the number
of solutions ū ∈ N` for g(ū) = 0. If ū, v̄ ∈ N` are tuples with the same non-zero coordinates
then g(ū) = 0 if and only if g(v̄) = 0. Hence g(ū) = 0 either has zero, one, or infinitely many
solutions, and it suffices to search for solutions in ū ∈ {0, 1}`. J
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We also consider the related problem over sets. Let us write Img(f) for the image of
a polynomial f ∈ N[x1, . . . , xk], i.e. the set {f(x̄) | x̄ ∈ Nk}. If P is a set of polynomials,
a P-representation for a set M ⊆ N is a list of polynomials (f1, . . . , fm) ∈ Pm such
that M =

⋃m
i=1 Img(fi). The decision problem P-Set-Eq asks whether two given P-

representations define the same set.

I Lemma 16. If k ∈ N, then Pk-Set-Eq is reducible to Pk+1-Multiset-Eq.

Proof. Let (f1, . . . , fm, g1, . . . , gm) be an instance for Pk-Set-Eq. If fi : Nk → N then let
f ′i : Nk+1 → N be the polynomial defined by f ′i(x̄, y) = fi(x̄) for all x̄ ∈ Nk, y ∈ N, and
similarly g′i. Since every element has either multiplicity 0 or ∞ in Rg(f ′i) and Rg(g′i) we have

m⋃
i=1

Img(fi) =
n⋃
i=1

Img(gi) ⇐⇒
m⊎
i=1

Rg(f ′i) =
n⊎
i=1

Rg(g′i).

The polynomials f ′i , g′i have one more variable and hence belong to Pk+1. J

Proof of Theorem 4. We use the MRDP-theorem [14] stating that a set of natural numbers
X ⊆ N is recursively enumerable if and only if it is Diophantine, i.e. there exists a polynomial
p(x, y1, . . . , yk) ∈ Z[x, y1, . . . , yk] such that

X = {a ∈ N | ∃y1, . . . , yk ∈ N : p(a, y1, . . . , yk) = 0}.

Let X ⊆ N be a Σ0
1-complete set and p ∈ Z[x, x1, . . . , xk] be a polynomial as above defining

X.1 By splitting p into its monomials with positive and negative coefficients we obtain
polynomials p1, p2 ∈ N[x, x1, . . . , xk] such that

a ∈ X ⇐⇒ ∃y1, . . . , yk ∈ N : p1(a, y1, . . . , yk) = p2(a, y1, . . . , yk). (3)

If we define N = {(x, y) | x 6= y ∈ N}, then a ∈ X is also equivalent to

{(p1(a, ȳ), p2(a, ȳ)) | ȳ ∈ Nk} 6⊆ N. (4)

Using the injective pairing function C(x, y) = (x+ y)2 + 3x+ y we can alternatively state
this by

Img(C(p1(a, ȳ), p2(a, ȳ))) 6⊆ Img(C(y, x+ y + 1)) ∪ Img(C(x+ y + 1, y)).

Since A 6⊆ B iff A 6= A ∪ B we obtain a reduction from X to the complement of Pm-Set-
Eq where m is bounded in a function of var(p) and deg(p). Hence Pm-Set-Eq is Π0

1-hard.
Therefore also Pm+1-Multiset-Eq and the isomorphism problem over automatic equivalence
structures of growth O(nm+1) is Π0

1-hard. J

6 Decidability: Proof of Theorem 5

Now we prove Theorem 5 by proving:

I Theorem 17. The problem P2-Multiset-Eq is decidable.

To prove Theorem 17 we proceed in three steps. First we reduce it to the case that the
multisets have only finite multiplicities. In the second step we test equality of the multisets
on their “unbounded linear part” and reduce the problem to testing equality of unions of
degree-two polynomial ranges. In the third step we provide a decision procedure for the
latter problem.

1 It is known that p can be chosen to have degree at most four [14, Section 1.2].
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6.1 Closure properties
I Lemma 18. If f ∈ N[x1, . . . , xk] has degree d and T ⊆ Nk is semilinear, then f(T ) is a
finite union of ranges Rg(gi) where var(gi) ≤ k and deg(gi) = d. The polynomials gi can be
computed effectively. In particular, f(T ) belongs effectively toMd+k−1.

Proof. Let T =
⋃
i Ti be a representation of T as a disjoint union of fundamental linear

sets Ti. Since f(T ) =
⊎
i f(Ti) we can assume that T is a fundamental linear set, say

T = v̄0 + 〈v̄1, . . . , v̄m〉 where the period vectors are linearly independent; in particular, we
have m ≤ k. Consider the polynomial g ∈ N[λ1, . . . , λm] defined by

g(λ1, . . . , λm) = f(v̄0 +
m∑
j=1

λj v̄j),

which satisfies f(T ) = Rg(g) and deg(g) = deg(f) = d. J

I Lemma 19. If F ∈M2 and S ⊆ N is semilinear, then F � S belongs effectively toM2.

Proof. Let F =
⊎m
i=1 Rg(fi) with f1, . . . , fm ∈ P2. Since F � S =

⊎m
i=1(Rg(fi) � S) we

can assume that F = Rg(f) for some f ∈ P2. First assume that deg(f) ≤ 1. Since S is
semilinear and f is an affine function, the set L = {t̄ | f(t̄) ∈ S} is effectively semilinear. By
Lemma 18 we know that Rg(f) � S = f(L) belongs toM2. Now assume that deg(f) = 2,
i.e. f(t) = at2 + bt+ c for some a 6= 0, b, c ∈ N. Since f is injective, the multiset F = Rg(f)
is a set, and therefore F � S = F ∩ S. Consider a representation of S as a finite disjoint
union S =

⋃
i Si of singleton sets and arithmetic progressions. Since F ∩ S =

⊎
i(F ∩ Si) we

can assume that S itself is either a singleton or an arithmetic progression. If S = {s} then
Rg(f) ∩ S is either empty or {s}, which can be decided. Assume S = {e+ dn | n ∈ N} for
some e ∈ N and d ≥ 1. It is enough to prove that T = {t ∈ N | ∃n ∈ N : at2 + bt+ c = e+dn}
is effectively semilinear, since then, Rg(f) ∩ S = f(T ) belongs toM2 by Lemma 18.

Notice that t ∈ T if and only if at2 + bt+ c is congruent to e mod d and at2 + bt+ c ≥ e.
Define the function h : Zd → Zd with h(t) = at2+bt+c. We obtain a semilinear representation
for {t ∈ N | f(t) ≡ e (mod d)} from h−1(e + Zd). Finally, we intersect this set with the
interval [t0,∞) where t0 is the smallest number with at20 + bt0 + c ≥ e to obtain T . J

6.2 Reduction to multisets with finite multiplicities
Let P2,fin ⊆ P2 be the set of all polynomials of the form:

f = a

f(t) = at2 + bt+ c where a 6= 0 or b 6= 0,
f(s, t) = as+ bt+ c where a, b 6= 0

Notice that Rg(g) of a polynomial g ∈ P2 has finite multiplicities, i.e. Rg(g)(a) < ∞ for
all a ∈ N, if and only if g ∈ P2,fin. LetM2,fin be the set of all multisets

⊎m
i=1 Rg(fi) where

f1, . . . , fm ∈ P2,fin. We will show that P2-Multiset-Eq is reducible to P2,fin-Multiset-Eq
and start with a useful lemma.

I Lemma 20. If F = Rg(f) with f ∈ P2, then one can construct a Presburger formula
ϕ(x, y) stating that F (x) = y <∞.

Proof. Suppose f has two variables, say f(s, t) = as+ bt+ c. If a = 0, then F contains every
number of the form bt + c infinitely often, and does not contain any other number. The
case b = 0 is similar. If both a 6= 0 and b 6= 0, then F has only finite multiplicities. Using
Theorem 7 we can count for a given number x the number |{s ∈ N | ∃t ∈ N : as+ bt+ c = x}|.
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Suppose f has one variable, say f(t) = at2 + bt + c. If a = b = 0, then F contains only c
infinitely often. Otherwise F contains each number of the form at2 + bt+ c exactly once. J

I Lemma 21. P2-Multiset-Eq is reducible to P2,fin-Multiset-Eq.

Proof. Given two multisets F,G ∈M2 and let F∞ = {n ∈ N | F (n) =∞} and G∞ = {n ∈
N | G(n) =∞}. We have

F = G ⇐⇒ F∞ = G∞ and (F � F∞ = G � G∞)

where the complements are taken with respect to N. Using Lemma 20 we can compute the
semilinear sets F∞ and G∞ and test whether F∞ = G∞. Using Lemma 19 we can compute
P2-representations for F � F∞ and G � G∞. J

6.3 Elimination of linear polynomials
Let P2,0 ⊆ P2 be the set of all polynomials f(t) = at2 + bt+ c where a 6= 0 and b, c ∈ N and
polynomials f = a, and letM2,0 be the corresponding set of multisets.

I Lemma 22. P2,fin-Multiset-Eq is reducible to P2,0-Multiset-Eq.

Proof. Given two multisets F,G ∈M2,fin where F =
⊎
i Rg(fi) and G =

⊎
i Rg(gi). Let F1

be the restriction of the union
⊎
i Rg(fi) to those polynomials fi with deg(fi) ≤ 1 and F2 be

the restriction to those polynomials of degree 2, and similarly G1, G2 for
⊎
i Rg(gi).

Since polynomials of degree 2 are injective, the maximum multiplicity in F2 and G2 is
bounded by the total number, say k, of polynomials fi and gi, respectively. Hence, if F = G

then |F1(a)−G1(a)| ≤ k for all a ∈ N. We can verify the latter property using the Presburger
formulas ϕF1(x, y) and ϕG1(x, y) from Lemma 20, and return a negative instance if either
one of the properties is violated (since F 6= G).

Now assume that the maximum multiplicity in F1 \G1 and in G1 \ F1 is bounded by k.
One can verify that F = G if and only if

(F1 \G1) ] F2 = (G1 \ F1) ]G2, (5)

using the definition of difference between two multisets. If both supp(F1\G1) and supp(G1\F1)
are finite, then also F1\G1 and G1\F1 are finite and we can return the instance (5). Otherwise
we claim that F 6= G, and hence we return a negative instance. Towards a contradiction
assume F = G and that supp(F1 \G1) is infinite. The set supp(F1 \G1) is in fact effectively
semilinear by Lemma 20 since

supp(F1 \G1) = {x ∈ N | F1(x) > G1(x)}.

Therefore the growth of supp(F1 \ G1) is Ω(n) whereas the growth of supp(G2) is O(
√
n)

because it is a finite union of ranges of quadratic polynomials and singletons. This contradicts
the fact that supp(F1 \G1) ⊆ supp(G2). J

6.4 Decicision procedure for degree-two polynomials
In preparation for the decidability proof of P2,0-Multiset-Eq we show the following lemma
concerning the solutions of quadratic Diophantine equations. The growth function of a subset
M ⊆ N is the function n 7→ |M ∩ [1, n]|.
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I Lemma 23. Let f, g ∈ N[x] with deg(f) = deg(g) = 2. Let S = {(x, y) ∈ N2 | f(x) = g(y)}
and Sx be the projection to the first component. Then exactly one of the following cases
holds:
1. the growth of Sx is Ω(n) and S is infinite and semilinear.
2. the growth of Sx is o(n).
It is decidable whether (1) or (2) holds. Moreover, if (1) holds then S can be effectively
computed.

Proof. We follow the analysis of quadratic bivariate Diophantine equations from [19]. Con-
sider the equation

ax2 + cy2 + dx+ ey + f = 0 (6)

where a, c 6= 0, d ≥ 0, e ≤ 0 and f ∈ N. Define D = −4ac 6= 0, E = −2ae, F = d2 − 4af
and Y = 2ax+ d. Then (6) implies DY 2 = (Dy + E)2 +DF − E2. If N = E2 −DF and
X = Dy + E then we obtain the generalized Pell equation

X2 −DY 2 = N. (7)

Let L be the set of solutions (X,Y ) ∈ N2 of (7) and let LY be the projection to the second
component. Notice that the transformation (x, y) 7→ (X,Y ) = (Dy + E, 2ax + d) is an
injective function from S to L, and that if the growth of Sx is Ω(n) then also the growth
of LY is Ω(n). Also notice that if X2 = DY 2 +N and Y ≥ 1 then X2 ≤ max(D, |N |) · Y 2,
hence X is linearly bounded in Y for all solutions (X,Y ) ∈ L.

We will do a case distinction:
1. If D < 0 then any solution (X,Y ) of (7) satisfies X2 + Y 2 ≤ N . Then L is finite, and

hence also S is finite.
2. If D > 0 is a square number then L is finite, hence also S is finite.
3. If D > 0 and N = 0, then (7) is solvable if and only if D is a square number. In this case

the solutions of (7) are L = {(
√
DY, Y ) | Y ∈ N}. Hence the solutions of (6) are of the

form

S = {(x, y) ∈ N2 | Dy + E =
√
D(2ax+ d)}.

From the equation we can compute a semilinear representation of S.
4. Now suppose that D > 0 is not a square number and N 6= 0. In this case we will

show that LY , and therefore also Sx, has growth o(n). Let t, u ∈ N be the smallest
solution of the Pell equation t2 − Du2 = 1, the so called fundamental solution. We
define an equivalence relation on Z2 where two pairs (X,Y ) and (X ′, Y ′) are equivalent
if X + Y

√
D = (X ′ + Y ′

√
D)(t+ u

√
D)m for some m ∈ Z. It is known that the set of

solutions of (7) over Z is a finite union of equivalence classes, see [12, Theorem 8-8, 8-9].
Hence the number of solutions (X,Y ) ∈ L with X +

√
DY ≤ n is bounded by O(logn).

Since X is linearly bounded in Y for all solutions (X,Y ) ∈ L, this implies that LY has
growth O(logn), which is contained in o(n).

This concludes the proof. J

I Theorem 24. P2,0-Multiset-Eq is decidable.

Proof. We will prove how to solve the following inclusion problem: Given polynomials
f, g1, . . . , gm ∈ P2,0, test whether

Rg(f) ⊆
m⊎
i=1

Rg(gi) (8)
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holds and, if so, compute a P2,0-representation for [
⊎m
i=1 Rg(gi)] \ Rg(f). Then, given an

instance (f1, . . . , fm, g1, . . . , gn) of P2,0-Multiset-Eq, we can test
⊎
i Rg(fi) ⊆

⊎
i Rg(gi) as

follows (the other inclusion is symmetric):
1. Initialize G0 =

⊎m
i=1 Rg(gi).

2. For all 1 ≤ k ≤ m:
a. Test whether Rg(fk) ⊆ Gk−1,
b. If so, compute Gk = Gk−1 \ Rg(fk) otherwise return “no”.

3. Return “yes”.

It remains to show how to solve the defined inclusion problem. We assume that the
polynomials gi are sorted by var(gi), i.e. there exists some 0 ≤ ` ≤ m such that var(gi) = 1
for all 1 ≤ i ≤ ` and var(gi) = 0 for all `+ 1 ≤ i ≤ m, i.e.

⊎m
i=`+1 Rg(gi) is a finite multiset.

Case 1. If f = a, then we can test whether there exists some i such that a ∈ Rg(gi). If
there is no such index, we reject. Otherwise pick such an index i. If 1 ≤ i ≤ ` then we
decompose Rg(gi) \ {a} into the finite set {gi(0), . . . , gi(x0 − 1)} and Rg(gi(x+ x0 + 1)).
If `+ 1 ≤ i ≤ m we can remove gi from the list.

Case 2. If f(x) = ax2 + bx+ c with a 6= 0 we test for each 1 ≤ i ≤ ` whether the solution set

Si = {(x, y) ∈ N2 | f(x) = gi(y)}

is infinite and semilinear, and, if so, compute a semilinear representation for it using
Lemma 23. Let Di = {x ∈ N | f(x) ∈ Rg(gi)} for all 1 ≤ i ≤ m. Notice that (8) is
equivalent to

⋃m
i=1Di = N. We rearrange the indices such that exactly the sets S1, . . . , Sk

are infinite and semilinear and hence by Lemma 23 the sets Dk+1, . . . , D` have growth
o(n). The sets D`+1, . . . , Dm have at most size 1. Define X =

⋃k
i=1Di, which is effectively

semilinear since each set Di is the projection of Si to the first component. We also define
subsets Xi ⊆ Di for all 1 ≤ i ≤ k by

Xi = Di \
i−1⋃
j=1

Xj ,

which form a disjoint union X1 ∪ · · · ∪Xk of X. Compute the semilinear sets Yi = {y ∈
N|∃x ∈ Xi : (x, y) ∈ Si} for 1 ≤ i ≤ k. Then we have f(Xi) = g(Yi) for all 1 ≤ i ≤ k. We
can rewrite (8) as

f(X) ] f(N \X) ⊆
k⊎
i=1

(gi(Yi) ] gi(N \ Yi)) ]
m⊎

i=k+1
Rg(gi).

Since f(Xi) = g(Yi) and f(N \X) is disjoint from all sets gi(N \ Yi), this is equivalent to

f(N \X) ⊆
m⊎

i=k+1
Rg(gi) =: G.

We will do a case distinction.
Case 2a. If N \X is finite, then we can test for each x ∈ N \X whether f(x) belongs to
G and compute a representation for G \ {f(x)}, as above in case 1.

Case 2b. If N \X is infinite we claim that X ∪Dk+1 ∪ · · · ∪Dm 6= N and hence (8) does
not hold. Assume that X∪Dk+1∪· · ·∪Dm = N and therefore N\X ⊆ Dk+1∪· · ·∪Dm.
Since N \ X is infinite and semilinear, its growth must be Ω(n). However, all sets
Dk+1, . . . , Dm have growth o(n), contradiction.

Notice that we can distinguish cases 2a and 2b since X is effectively semilinear. J
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7 Conclusion

We have characterized automatic equivalence structures over polynomially growing domains,
and have investigated the decidability of the isomorphism problem. Since equivalence
structures can be viewed as trees of height 2, as a next step one could study automatic trees
over polynomially growing domains. Also it is still open whether the isomorphism problem
over unary automatic structures is decidable (automatic structures whose domains are unary
regular languages).
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Abstract
Team semantics admits reasoning about large sets of data, modelled by sets of assignments (called
teams), with first-order syntax. This leads to high expressive power and complexity, particularly
in the presence of atomic dependency properties for such data sets. It is therefore interesting to
explore fragments and variants of logic with team semantics that permit model-theoretic tools and
algorithmic methods to control this explosion in expressive power and complexity.

We combine here the study of team semantics with the notion of guarded logics, which are
well-understood in the case of classical Tarski semantics, and known to strike a good balance between
expressive power and algorithmic manageability. In fact there are two strains of guardedness for
teams. Horizontal guardedness requires the individual assignments of the team to be guarded in
the usual sense of guarded logics. Vertical guardedness, on the other hand, posits an additional (or
definable) hypergraph structure on relational structures in order to interpret a constraint on the
component-wise variability of assignments within teams.

In this paper we investigate the horizontally guarded case. We study horizontally guarded
logics for teams and appropriate notions of guarded team bisimulation. In particular, we establish
characterisation theorems that relate invariance under guarded team bisimulation with guarded team
logics, but also with logics under classical Tarski semantics.
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1 Introduction

Team semantics, which originates in the work of the model theorist Wilfrid Hodges [18],
is based on the idea to evaluate logical formulae ϕ(x1, . . . , xn) not for single assignments
s : {x1, . . . , xn} → A from the free variables to elements of a structure A, but for sets of
such assignments. These sets, which may have arbitrary size, are now called teams. The
original motivation for team semantics has been to provide a compositional, model-theoretic
semantics of the independence-friendly logic (IF-logic) [22], for which one previously only
knew semantics based on either Skolem functions or on games of imperfect information.
Team semantics has then become important as the mathematical basis of the modern logics
of dependence and independence, which go back to the fundamental idea of Väänänen [25] to
treat dependencies not as annotations of quantifiers (as in IF-logic), but as atomic properties
of teams. Logics with team semantics for reasoning about dependence, independence, and
imperfect information have meanwhile been established as a lively interdisciplinary research
area, involving not just first-order logics, but also logics on the propositional and modal level,
see e.g. [1].
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22:2 Guarded Teams: The Horizontally Guarded Case

Team semantics admits reasoning about large sets of data, modelled by second-order
objects such as sets of assignments, with a first-order syntax that does not explicitly refer
to higher-order variables. In the presence of appropriate atomic team properties, such as
dependence, inclusion and exclusion, or independence properties, team semantics can boost
the expressiveness of first-order formalisms to the full power of existential second-order logic
(denoted Σ1

1) or, in the presence of further propositional operators such as different variants
of implication or negation, even to full second-order logic (SO). Beyond logics for dependence
and independence, team semantics may have broader applications. The idea of second-order
reasoning with first-order syntax appears also in certain logics used for program verification
(to reason about sets of variable assignments such as heaps, as in separation logic) or in
quantum information theory (to reason about superpositions of basic states). Currently there
are emerging new research directions that relate team semantics to such areas.

However, the ability of logics with team semantics to reason about second-order objects
increases not only the expressive power, but also the complexity, and makes it much more
difficult to understand the model theory of such formalisms and to handle them algorithmically.
It is therefore relevant to explore fragments or variants of logics with team semantics that
permit model-theoretic tools and algorithmic methods to control this explosion in expressive
power and complexity. In this paper we explore a promising idea in this direction, namely the
use of guarded teams and guarded logics. Guarded logics have been thoroughly investigated
in the context of classical logical formalisms, and guarded fragments of first-order logic,
fixed-point logics, and second-order logic have turned out to have very interesting and
convenient model-theoretic and algorithmic properties, see e.g. [3, 4, 5, 12, 13, 14, 17, 19, 24]
and our survey [15].

The basic guarded logic is the guarded fragment (GF) of first-order logic, introduced by
Andréka, van Benthem and Németi [2]. It is defined by restricting existential and universal
quantification in such a way that formulae only refer to guarded tuples, i.e., tuples of elements
that occur together in some atomic fact. Syntactically, this means that quantifiers are used
only in the form ∃ȳ(α∧ϕ) or ∀ȳ(α→ ϕ) where α is an atomic formula that must contain all
free variables of ϕ (and possibly more). An important motivation for introducing the guarded
fragment has been to explain and generalise the good algorithmic and model-theoretic
properties of modal logics (see [6, 11] for background on modal logic). Recall that modal logic
can be viewed as a fragment of first-order logic, via a standard translation that uses only two
variables and a restricted kind of guarded quantification. The guarded fragment generalises
the modal fragment enormously, dropping all restrictions (such as to use only two variables
and only monadic and binary predicates), except the restriction that quantification must
be guarded. It has turned out that almost all important algorithmic and model-theoretic
properties of modal logic do indeed extend to the guarded fragment. In particular, the
satisfiability problem for GF is decidable [2], GF has the finite model property, i.e., every
satisfiable formula in the guarded fragment has a finite model [12], and moreover, GF has a
generalised variant of the tree model property to the effect that every satisfiable formula has
a model that admits a tree decomposition into guarded substructures, which in particular
implies a bound on its tree width [12]. The tree model property paves the way to automata
based algorithmic procedures for guarded logics. Further, GF admits efficient evaluation
algorithms via model checking games of moderate size. There are similar results that hold
for more powerful guarded logics, which are obtained either by a more liberal interpretation
of guardedness (as in loosely guarded or clique guarded logics), by guarding negation instead
of quantifiers, and/or by moving to guarded variants of stronger logics such as fixed-point or
second-order logic.
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The crucial model-theoretic tool to investigate guarded logics is the notion of a guarded
bisimulation between two structures A and B, which we view here as a set Z of pairs of
guarded assignments (s, t) such that s 7→ t induces a local isomorphism, and Z satisfies
appropriate back-and-forth properties (cf. Section 4). Results of fundamental importance for
guarded logics are characterisation theorems such as the one due to Andréka, van Benthem
and Németi [2], saying that a first-order formula is invariant under guarded bisimulation if,
and only if, it is equivalent to a formula of the guarded fragment, in short FO/ ∼g ≡ GF.
There are several variants and extensions of this result, among them the finite model theory
variant [24] (in which both the invariance statements, and the equivalence to a guarded
formula are restricted to hold only over finite structures), as well as characterisation results
for stronger guarded logics such as the one for fixed-point logic from [14]. See again [15] for
a detailed discussion of guarded bisimulations in various contexts.

In this paper we aim at the development of the theory of guarded teams and guarded
logics with team semantics. There are in fact two completely different variants of guarded
teams. Horizontal guardedness requires all assignments in a team to be guarded in the
usual sense. On this basis, we define horizontally guarded team semantics and horizontally
guarded logics and relate them to the established classical framework of guarded logics. In
particular, the good algorithmic properties of guarded fragments of first-order logic such as
the decidability of the satisfiability problem, are easily seen to carry over to corresponding
problems for horizontally guarded team semantics, such as the question whether a given
guarded first-order formula is satisfiable by some nonempty team. However, corresponding
questions for stronger guarded logics, involving atomic dependencies, are open.

To investigate the power of guarded team semantics we introduce and study two different
notions of guarded team bisimulation, a weaker and a stronger one, and prove characterisation
theorems, which relate formulae that are invariant under guarded team bisimulation to
guarded team logics, but also to appropriate variants of logics with classical Tarski semantics.
These are the core results of this paper. We remark that a loosely related characterisation
theorem has been established in [20] for the much weaker context of modal team semantics.

Besides horizontal guardedness, there is also the rather different notion of vertical
guardedness of a team, based on an additional (or definable) hypergraph structure on
relational structures in order to interpret a constraint on the component-wise variability
of the assignments in teams. When a team X is viewed as a table whose rows are the
assignments of the team, then vertical guardedness imposes restraints to the effect that the
columns, i.e. the value sets X(x) are guarded. It turns out that this adds new and interesting
second-order features to the team semantics of the resulting logics. However, due to space
limitations we defer the development of this aspect to a future paper.

2 Team semantics

For a tuple ā = (a1, . . . , an) ∈ An we denote by [ā] the set {a1, . . . , an} of its components.
We write P(A) for the power set of A and set P+(A) := P(A) \ {∅}. An assignment to
variables x ∈ D into a set A 6= ∅ is a map s : D → A. We write s[x 7→ a] for the assignment
that extends, or updates, s by mapping x to a. We extend s in the obvious manner to tuples
over D, and write s(x̄) for (s(x1), . . . , s(xk)) ∈ Ak if x̄ = (x1, . . . , xk) ∈ Dk, and similarly
s(d) := {s(x) : x ∈ d} ⊆ A for subsets d ⊆ D.

I Definition 1. A team is set X of assignments s : D → A with a common finite domain
D = dom(X) of variables into a set A. Besides the empty team ∅ we also admit a unique
team {∅} with empty domain and empty assignment. For every k-tuple x̄ of variables
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22:4 Guarded Teams: The Horizontally Guarded Case

from the domain of X, let X(x̄) := {s(x̄) : s ∈ X} ⊆ Ak denote the set of values assumed
by x̄ in the team X. Thinking of an arbitrary but fixed enumeration of the finite domain
of a team X as dom(X) = {x1, . . . , xk} we often identify X with its relational encoding
[[X]] := X(x̄) = {s(x̄) : s ∈ X} ⊆ Ak.

Basic operations that possibly extend the domain of a given team to new variables are the
unrestricted generalisation over A, X[x 7→ A] := {s[x 7→ a] : s ∈ X, a ∈ A} and the Skolem-
extensions X[x 7→ F ] := {s[x 7→ a] : s ∈ X, a ∈ F (s)} for any function F : X → P+(A). Note
that X[x 7→ A] = X[x 7→ F ] for the constant function F : s 7→ A, and that x may or may not
be in the domain D of the original team X, but in any case the new team has domain D∪{x}.
Given teams X,Y with D ⊆ dom(X)∩dom(Y ) we write X ≡D Y if (X �D) = (Y �D) where
(X �D) := {s�D : s ∈ X}.

The traditional semantics (to which we refer as Tarski semantics) for first-order formulae
ϕ(x̄) is based on single assignments s whose domain must comprise the variables in free(ϕ);
we write A |= ϕ[s] for saying that A satisfies ϕ with the assignment s.

The team semantics for FO(τ) over τ -structures A instead is defined by inductive clauses
for the satisfaction relation A |=X ϕ saying that team X satisfies ϕ in A. Here X stands for
a team in A with domain D for which we tacitly always assume that dom(X) ⊇ free(ϕ).

if ϕ is a literal then A |=X ϕ if A |= ϕ[s] for all s ∈ X;
A |=X ϕ1 ∧ ϕ2 if A |=X ϕi for i = 1, 2;
A |=X ϕ1 ∨ ϕ2 if X = X1 ∪X2 for two teams Xi such that A |=Xi

ϕi;
A |=X ∀xϕ if A |=Y ϕ for the team Y = X[x 7→ A];
A |=X ∃xϕ if A |=Y ϕ for some team Y of the form Y = X[x 7→ F ], i.e., for some suitable
Skolem extension F : X → P(A) \ {∅}.

Note that there is no clause for negation (other than negation of atoms); we assume
formulae to be written in negation normal form unless explicitly noted otherwise. It is not
hard to see, through standard inductive arguments, that team semantics for FO satisfies the
following principles:
Locality: whether A |=X ϕ is determined by X � free(ϕ).
Downward closure: if Y ⊆ X, then A |=X ϕ implies A |=Y ϕ.
Flatness: A |=X ϕ if, and only if, A |={s} ϕ for all s ∈ X.
Empty team property: A |=∅ ϕ for all ϕ.
Union closure: if A |=Xi ϕ for all i ∈ I, then A |=X ϕ for X :=

⋃
i∈I Xi.

Other propositional connectives. For some purposes it is useful to consider a team semantic
interpretation of other natural propositional connectives.

Implication: A |=X ψ → ϕ if, for all teams Y ⊆ X with A |=Y ψ, also A |=Y ϕ.
Intuitionistic disjunction: A |=X ψ ⊗ ϕ if A |=X ψ or A |=X ϕ.
Classical negation: A |=X nonϕ if it is not the case that A |=X ϕ.
Nonemptiness: this is is a nullary connective or logical constant without a classical counter-

part, which we denote as NE, with A |=X NE if X 6= ∅.
Falsum: this is a nullary connective as in the classical setting. Keeping in mind the empty

team property, A |=X ⊥ for just X = ∅.

Regarding ordinary negation (¬) in team semantics, which we here only allow at the
atomic level, it is important to note that, in contrast to classical negation (non), it does not
support the classical principle of the excluded middle (tertium non datur). Clearly there are
teams that do not uniformly make up their mind between α and ¬α even for equalities or
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relational atoms α. The following logical equivalences between some of the above are easily
proved, for any atomic α and arbitrary ϕi

NE ≡ non⊥, ⊥ ≡ α ∧ ¬α, ϕ1 ⊗ ϕ2 ≡ non (nonϕ1 ∧ nonϕ2).

These mark out classical negation as an augmentation of FO in the team semantic setting,
which no longer satisfies any of the semantic criteria highlighted above, apart from locality.
We denote as FO(non) the extension of FO with strong classical negation; corresponding
notation for other choices of additional connectives, like FO(NE,⊗), is self-explanatory.

Logics of dependence and independence. Team semantics is particularly important as the
basis for logics that extend first-order logic by atomic team properties such as dependence,
inclusion, exclusion, independence, and others. The best studied such logic is dependence
logic [25], which extends first-order logic by dependency atoms of form dep(x̄, ȳ), saying that
the values for ȳ are functionally dependent on (i.e. completely determined by) the values for
x̄. Other important such logics include different variants of independence logics [16], further
inclusion logic FO(⊆), which is based on inclusion dependencies (x̄ ⊆ ȳ) saying that every
value for x̄ in the team also occurs as a value for ȳ, and dually, exclusion logic, based on
exclusion statements (x̄ | ȳ), saying that x̄ and ȳ have disjoint sets of values in the given
team.

One way to describe the expressive power of a logic with team semantics is to relate
it to some well-understood logic with classical Tarski semantics. One translates formulae
ϕ(x̄) from a logic L(τ) with team semantics into sentences ϕT , with Tarski semantics, of
vocabulary τ ∪̇ {T} where T is an additional relation symbol for the team, such that for
every structure A and every team X we have that

A |=X ϕ(x̄) ⇐⇒ (A, [[X]]) |= ϕT ,

where [[X]] is the relational encoding of the team X (see Definition 1). In all logics with
team semantics that extend first-order formulae by atomic dependencies that are themselves
first-order definable, and which do not make use of additional connectives beyond ∧,∨
and atomic negation, such a translation will always produce sentences in (a fragment of)
existential second-order logic Σ1

1. Understanding the expressive power of a logic L with team
semantics thus means to identify the fragment of Σ1

1 to which L is equivalent in the sense
just described.

(1) Dependence logic and exclusion logic are equivalent to the fragment of Σ1
1-sentences ψ(T )

in which the predicate T describing the team appears only negatively [21].
(2) Independence logic and inclusion-exclusion logic are equivalent with full Σ1

1 (and thus
can describe all NP-properties of teams) [9].

(3) Any fragment L ⊆ FO, without any dependence properties, corresponds by flatness to
the class [L]T of sentences of form ∀x̄(T x̄→ ϕ(x̄)) where ϕ(x̄) ∈ L does not contain T .

(4) Inclusion logic is equivalent to the set of sentences of form ∀x̄(Xx̄ → ψ(X, x̄)), where
ψ(X, x̄) is a formula in the posGFP-fragment of least fixed-point logic, in which X occurs
only positively [10].

In the presence of additional propositional connectives such as implication or strong
negation, such translations may produce sentences in full second-order logic (SO), rather
than its existential fragment Σ1

1.
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22:6 Guarded Teams: The Horizontally Guarded Case

3 Horizontally guarded first-order logic

We deal with purely relational, finite vocabularies τ . Every interpretation of the relations in
a τ -structure A = (A, (RA)R∈τ ) induces a notion of guarded subsets and guarded tuples.

I Definition 2. The set G(A) of guarded subsets of A is the downward closure of the
collection of all sets [ā] for any atomic fact Rā that holds in A, together with all singleton
subsets {a} ⊆ A. Formally G(A) =

{
B ⊆ [ā] : ā ∈ RA, R ∈ τ

}
∪
{
{a} : a ∈ A

}
. A tuple

ā = (a1, . . . , ak) ∈ Ak is guarded in A if the set of its components [ā] is. An assignment
s : D → A is guarded if s(D) ∈ G(A) which is the case if, and only if, s(x̄) is a guarded tuple
for any tuple of variables from D. A relation T ⊆ Ak is guarded in A if it only consists of
guarded tuples, and this is the case if, and only if, G((A, T )) = G(A), i.e. the expansion of
A by T does not introduce any new guarded subsets. A team X is horizontally guarded if it
only consists of guarded assignments. We write H(A) for the collection of all horizontally
guarded teams over A.

Note that H(A) is closed under subsets and restrictions of teams. The Skolem extensions
X[x 7→ F ] of a horizontally guarded team X will not in general be horizontally guarded, but
we have the following.

I Lemma 3. Every horizontally guarded team X ∈ H(A) possesses, for every variable x, a
unique maximal Skolem extension Y = X[x 7→ F ] ∈ H(A).

Proof. For D = dom(X) \ {x}, put Y := {s[x 7→ a] : s ∈ X, a ∈ A, s(D)∪{a} ∈ G(A)}. This
team is easily checked to be maximal among all teams Y ∈ H(A) with dom(Y ) = dom(X)∪{x}
and Y ≡D X. J

We are now ready to introduce the horizontally guarded team semantics A |=hg
X ϕ of

first-order formulae for τ -structures A and teams X ∈ H(A). For its definition we modify
the clauses in the standard definition of team semantics so as to restrict all relevant teams to
H(A). This modification is trivial for literals and conjunctions and obvious for disjunction
since H(A) is downward closed. For universal and existential quantification, the restriction is
more interesting.

A |=hg
X ϕ1 ∨ ϕ2 if X = X1 ∪X2 for two teams Xi ∈ H(A) such that A |=hg

Xi
ϕi;

A |=hg
X ∀xϕ if A |=Y ϕ for the maximal horizontally guarded Skolem extension of

X �(free(ϕ) \ {x});
A |=hg

X ∃xϕ if A |=Y ϕ for some horizontally guarded Skolem extension Y of X �
(free(ϕ) \ {x}).

Horizontally guarded first-order logic is the logic FOhg with usual syntax in negation
normal form and semantics for horizontally guarded teams as defined above. FOhg satisfies
the familiar properties of first-order team semantics, locality, downward closure, and flatness.

I Lemma 4. For every ϕ ∈ FOhg, every structure A, and every team X ∈ H(A) with
free(ϕ) ⊆ dom(X), we have
Locality: A |=hg

X ϕ⇔ A |=hg
Y ϕ whenever X ≡free(ϕ) Y .

Downward closure: If Y ⊆ X and A |=hg
X ϕ, then also A |=hg

Y ϕ.
Flatness: A |=hg

X ϕ if, and only if, A |=hg
{s} ϕ for all s ∈ X.

The difference between A |=hg
{s} ϕ (in the sense of FOhg) and A |= ϕ[s] (in the sense of

ordinary first-order logic) has nothing to do with team semantics but just with the implicit
relativisation to guarded assignments in |=hg. In the classical first-order setting for single
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assignments, this corresponds to the (explicit) relativisation to guarded assignments in the
guarded fragment GF(τ) ⊆ FO(τ). And indeed, there is a straightforward translation also in
the case of team semantics.

I Definition 5. The guarded fragment GF ⊆ FO is the syntactic fragment of FO generated
from atomic formulae by the boolean connectives and quantifications of the form ∃ȳ

(
α(x̄ȳ)∧

ϕ(x̄ȳ)
)
, and, dually, ∀ȳ

(
α(x̄ȳ)→ ϕ(x̄ȳ)

)
, where ϕ(x̄ȳ) ∈ GF has free variables among those

listed in x̄ȳ and α(x̄ȳ) is an atomic formula in which all the listed variables occur. The
formula α is called the guard of this quantification.1 The semantics of GF is that of FO.

It is obvious that GF(τ) ⊆ FO(τ) inherits from FO(τ) the locality, downward closure
and flatness properties for its team semantics. Note that GF(τ) involves, in the first-order
correspondent for universal guarded quantification, the use of implication as a propositional
connective and recall its team semantics, which is downward closed by definition. As the
classical equivalence α → ϕ ≡ ¬α ∨ ϕ only involves the negation of an atomic guard α, it
persists as an equivalence in team semantics. This remains true more generally in any context
where the team semantics of (¬)α is flat and that of ϕ is downward closed.

I Lemma 6. Assume that ϕ[A] = {X : A |=X ϕ} is downward closed and that the team
semantics of α and ¬α is flat. Then, for all teams X, A |=X α→ ϕ ⇔ A |=X ¬α∨ϕ. The
same logical equivalence holds in terms of horizontally guarded team semantics (keeping in
mind that the class of horizontally guarded teams is downward closed).

Recall that the set of guarded tuples ā = (a1, . . . , an) ∈ An is uniformly first-order
definable in τ -structures A, for any fixed length n > 1 and fixed finite relational τ , by a
formula

gd(x̄) :=
∧
i6n

xi = x1 ∨
∨
R∈τ
∃ȳ
(
Rȳ ∧

∧
i6n

∨
j6ar(R)

xi = yj

)
.

In the following we regard, for every finite τ and every x̄, the formula gd(x̄) as a new
atomic formula and in particular also allow its negation ¬gd(x̄) which is correspondingly
interpreted in the flat sense of [[X]] ∩G(A) = ∅:

A |=X ¬gd(x̄) if A |= ¬gd[s(x̄)] for all s ∈ X.

Note that, with this stipulation, gd(x̄) becomes a formula satisfying the requirements for
α in Lemma 6, so that, for any ϕ(x̄) whose team semantics is downward closed, we have the
usual (classical) equivalence gd(x̄)→ ϕ ≡ ¬gd(x̄) ∨ ϕ.

I Proposition 7. For finite relational τ , there is a translation ϕ(x̄) 7−→ ϕhg(x̄) from FO(τ)
to GF(τ) such that for all guarded assignments s, and all teams X ∈ H(A),

A |=hg
{s} ϕ ⇔ A |= ϕhg[s] and A |=hg

X ϕ ⇔ A |=X ϕhg.

An analogous translation works for extensions of FO and GF by arbitrary Σ1
1-definable atomic

dependence relations.

Proof. Define ϕ 7→ ϕhg by induction on ϕ ∈ FO(τ). The only non-trivial steps are those
for the quantifiers. For ϕ(x̄) = ∃yψ(x̄y), put ϕhg(x̄) := ∃y

(
gd(x̄y) ∧ ψhg(x̄y)

)
, and for

ϕ(x̄) = ∀yψ(x̄y), set

ϕhg(x̄) := ∀y
(
gd(x̄y)→ ψhg(x̄y)

)
≡ ∀y

(
¬gd(x̄y) ∨ ψhg(x̄y)

)
.

1 If x̄ȳ consists of a single variable symbol z, α can be the equality z=z.
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22:8 Guarded Teams: The Horizontally Guarded Case

It is straightforward to verify that these stipulations support the equivalence claim for
singleton teams. The equivalence claim for arbitrary teams follows by the flatness properties
for FOhg and FO. J

One also checks that A |=X ϕhg ⇔ A |=hg
X ϕhg, whence also A |=hg

X ϕ ⇔ A |=hg
X ϕhg,

so that the map ·hg provides a normal form for FO w.r.t. its horizontally guarded team
semantics.

Since most of the standard logics with team semantics have the empty team property,
the natural variants of satisfiability problems in this context ask whether a given a formula
ϕ admits a structure A and a nonempty team X such that A |=X ϕ. Notice that, by flatness,
the question whether a guarded first-order formula ϕ(x̄) ∈ GF is satisfiable in this sense is
equivalent to asking whether ϕ(x̄) is satisfiable in the usual sense of Tarski semantics, which
is well-known to be decidable [2, 12].

4 Two notions of guarded team bisimulation

The natural notion of back and forth equivalence for guarded logics is guarded bisimulation
equivalence. Just as the model theory of modal logics is governed by (modal) bisimulation
equivalence, the nice model-theoretic properties of guarded logics are closely related to its
invariance under guarded bisimulation equivalence ∼g and its finite approximations ∼`g. For
a detailed discussion of guarded bisimulation and beyond, we refer to [15]. In the context
investigated here it is convenient to view a guarded bisimulation between two structures
A and B as a set Z of pairs (s, t) of guarded assignments that induce local isomorphisms
between the two structures, and satisfy appropriate back and forth properties.

I Definition 8. A guarded bisimulation between τ -structures A and B is a set Z of pairs of
guarded assignments s : [x̄]→ A and t : [x̄]→ B, with dom(s) = dom(t), such that, for all
(s, t) ∈ Z:
(i) s 7→ t induces a local isomorphism from A to B. This means that for every atomic

formulae α with free(α) ⊆ dom(s) = dom(t) we have that A |= α[s] ⇐⇒ B |= α[t].
(ii) (back): for every guarded assignment t′ into B that coincides with t on dom(t′)∩dom(t)

there is a guarded assignment s′ into A that coincides with s on dom(s′)∩ dom(s) such
that (s′, t′) is also in Z.

(iii) (forth): for every guarded assignment s′ into A that coincides with s on dom(s′)∩dom(s)
there is a guarded assignment t′ into B that coincides with t on dom(t′) ∩ dom(t) such
that (s′, t′) is also in Z.

We write A, s ∼g B, t if there is a guarded bisimulation Z between A and B such that
(s, t) ∈ Z. Further we write A ∼g B if A,∅ ∼g B,∅.

There is an obvious game-theoretic presentation of this in terms of guarded bisimulation
games on (A,B) whose positions are the pairs (s, t) of guarded assignments that induce
a local isomorphism as described above. Then the available moves for the first player,
e.g. on the A-side, are to guarded assignments s′ such that s′(x) = s(x) for all variables
x ∈ dom(s′) ∩ dom(s). The second player then has to respond with a guarded assignment t′
with dom(t′) = dom(s′), such that t′(x) = t(x) for x ∈ dom(t′) ∩ dom(t), and (s′, t′) is again
a valid position of the game.

Finite approximations ∼`g of ∼g correspond to the existence of winning strategies for
the second player for ` rounds in the guarded bisimulation game, and ∼ωg is defined as the
common refinement of the finite levels ∼`g.
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One obtains natural variants of the first-order Ehrenfeucht–Fraïssé Theorem for GF. The
equivalence relations ≡`GF and ≡GF are defined as levels of elementary equivalence in GF,
where the ` in ≡`GF refers to the nesting depth of guarded quantification (which is typically
lower than the first-order quantifier rank, as guarded quantification may quantify over tuples
in a single step). The relation ≡∞GF similarly denotes equivalence w.r.t. the infinitary variant
of GF, with infinite disjunctions and conjunctions. For more details, we refer to [15].

I Theorem 9 (Ehrenfeucht–Fraïssé Theorems for GF). For finite relational vocabularies, and
for every ` ∈ N:

A, s ∼`g B, t ⇐⇒ A, s ≡`GF B, t and A, s ∼ωg B, t ⇐⇒ A, s ≡GF B, t.

Further, without restriction on the size of the vocabulary, A, s ∼g B, t ⇐⇒ A, s ≡∞GF B, t.

Just as in the classical first-order case (cf. [7, 8]) the implication from ≡`GF to ∼`g relies
on the fact that both equivalence relations have finite index, and that the ∼`g-equivalence
classes of A, s are naturally definable by characteristic formulae χ`A,s ∈ GF.

We now generalise the notion of guarded bisimulation equivalence from individual assign-
ments to teams. It turns out that there are two different ways to do this, a basic one and a
stronger one.

I Definition 10. Guarded team bisimulation equivalence, A, X ∼g B, Y and its finite
approximations A, X ∼`g B, Y are defined in a flat manner. Horizontally guarded teams
X ∈ H(A) and Y ∈ H(B), with the same domain, are guarded team bisimilar, A, X ∼g B, Y

if for every s ∈ X there is some t ∈ Y such that A, s ∼g B, t, and vice versa. Guarded team
`-bisimilarity, A, X ∼`g B, Y , is defined analogously.

Ordinary guarded bisimulation equivalences between individual assignments, like A, s ∼g
B, t, are captured in this definition via the encodings of tuples as singleton teams: A, {s} ∼g
B, {t}, and for naked structures, we have that A ∼g B if, and only if, A, {∅} ∼g B, {∅}.
For the empty team, however, the above definition says that A,∅ ∼g B,∅ 6∼g B, Y for any
Y 6= ∅ and all τ -structures A,B. It readily follows from the definition that GF and FOhg are
invariant under this notion of team bisimulation.

I Proposition 11. If A, X ∼g B, Y then A |=X ϕ ⇐⇒ B |=Y ϕ for any ϕ ∈ GF, and
A |=hg

X ϕ ⇐⇒ B |=hg
Y ϕ for every ϕ ∈ FO.

Beyond this essentially flat notion of guarded team bisimulation, there is a stronger one
which focuses on the relational encoding of those teams as guarded relations.

I Definition 12. Strong guarded team bisimulation equivalence, A, X ≈g B, Y is defined
for teams X ∈ H(A) and Y ∈ H(B) with the same finite domain by the condition that
(A, [[X]]) ∼g (B, [[Y ]]), in terms of ordinary guarded bisimulation equivalence between the
expansions of the two τ -structures by the relational encoding of the teams as (τ ∪̇ {T})-
structures for a new relation symbol T of the appropriate arity. Strong guarded team
`-bisimilarity, A, X ≈`g B, Y , is analogously defined.

Obviously A, X ≈g B, Y implies A, X ∼g B, Y , and A, X ≈`+1
g B, Y implies A, X ∼`g

B, Y , for every ` ∈ N (the formal offset of 1 in finite approximation levels is a consequence
of the fact that ≈0

g is trivial.) In particular, any team property that is ∼g invariant, is also
≈g-invariant. We shall see in Sect. 7 that the converse fails in general.
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5 The flatness of guarded team bisimulation

Horizontal guardedness is compatible with disjoint unions of relational structures (and teams).
For any τ -structures A1 and A2, we have G(A1 ⊕ A2) = G(A1) ∪ G(A2) and hence also
H(A1 ⊕ A2) =

{
X1 ∪X2 : Xi ∈ H(Ai) for i = 1, 2

}
.

Also, for any two pairs of τ -structures A1,A2 and B1,B2 with horizontally guarded
teams Xi ∈ H(Ai) and Yi ∈ H(Bi) such that Ai, Xi ∼`g Bi, Yi for i = 1, 2, it follows that

(A1 ⊕ A2), X1 ∪X2 ∼`g (B1 ⊕B2), Y1 ∪ Y2

and similarly for ∼g. The main point here is that every guarded assignment is fully contained
in one component: correspondingly, whenever the first player makes a move in one of the
disjoint unions that goes from one component to the other, so can the second player in the
opposite structure, since the assumptions in particular guarantee Ai ∼`g Bi for the naked
component structures.

Given a τ -structure A and a team X ∈ H(A), we write
⊕

s∈X
(
A, {s}

)
for the disjoint

union of copies of A together with the singleton teams {s} for the assignments s ∈ X. The
following observation is immediate from the definition of guarded team bisimulation.

I Proposition 13. For every structure A, we have A, X ∼g
⊕

s∈X
(
A, {s}

)
.

As a further illustration of the interesting interplay between guarded team bisimulation,
ordinary guarded bisimulation, flatness and downward closure, we may look at representatives
for∼`g- or∼g-classes that are built from singleton team configurations. We just formulate these
considerations for ∼`g, but the situation for ∼g is analogous (as long as we are not concerned
about definability in GF or FOhg). Let [A, X]` denote the ∼`g-class of the horizontally guarded
team configuration A, X within the class of τ -structures with horizontally guarded teams. Let
[A, s]` similarly stand for the ∼`g-class in the sense of ordinary guarded bisimulation within
the class of τ -structures with guarded assignments. Then, for a singleton team X = {s}, we
classically find

[A, s]` =
{
B, t : B, t ∼`g A, s

}
=
{
B, t : B, Y ∼`g A, {s}, t ∈ Y

}
=
{
B, t : B |= χ`A,s[t]

}
where this definability relies on the characteristic formulae in the standard proof of the
Ehrenfeucht–Fraïssé Theorem for GF, Theorem 9 above, and requires τ to be finite. On the
other hand, in team terms,

[A, {s}]` =
{
B, Y : B, Y ∼`g A, {s}

}
=
{
B, Y : B, t ∼`g A, s for all t ∈ Y

}
=
{
B, Y : B |=Y χ`A,s

}
,

where the last equality relies on flatness (for the adequacy of the team semantic reading)
and finiteness of τ (for the existence of the characteristic formulae χ, which we here use
in negation normal form). For an arbitrary horizontally guarded team configuration A, X,
correspondingly

[A, X]` =
{
B, Y : B, Y ∼`g A, X

}
=

{
B,
⋃
s∈X Ys : Ys 6= ∅ and, for all t ∈ Ys,B, t ∼`g A, s

}
=

{
B, Y : B |=Y

∨
s∈X

(
NE ∧ χ`A,s

)}
.

Note that the nonemptiness condition indicates that (as expected) team guarded bisimu-
lation equivalence does not respect downward closure. W.r.t. the last equality, finiteness of τ
also ensures that the disjunction is finite up to logical equivalence.
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The downward closure of [A, X]`, on the other hand, has the simpler form

[A, X]` ↓ =
{
B, Y ′ : Y ′ ⊆ Y for some B, Y ∼`g A, X

}
=

{
B,
⋃
s∈X Ys : for all t ∈ Ys,B, t ∼`g A, s

}
=

{
B, Y : B |=Y

∨
s∈X χ

`
A,s

}
,

where definability according to the last equality again is only good for finite τ for the
characteristic formulae χ`A,ā(x̄) ∈ GF. Their team semantic reading is again adequate by the
flatness of GF ⊆ FO and finiteness of τ also ensures that the disjunction is finite up to logical
equivalence. As the team semantics for plain first-order logic FO(τ) is flat, we also obtain
the following observation.

I Lemma 14. Let A and B be τ -structures with teams X in A and Y in B such that
for every s ∈ X there is some t ∈ Y such that A, s ≡qFO B, t, and vice versa. Then also
A, X ≡qFO B, Y , i.e., the two team configurations are indistinguishable by FO(τ)-formulae
ϕ(x̄) of quantifier rank up to q.

6 Expressive completeness for ∼g-invariance

The following upgrading of equivalences and semantic invariance conditions is a typical
ingredient in model-theoretic proofs of expressive completeness of some (fragment of a) logic
for some semantically characterised class of properties. Here we want to use it for team
properties that do not distinguish between guarded team-bisimilar situations. In relating
invariance of first-order definable team properties under full guarded team bisimilarity to
invariance under a sufficiently fine finite approximation of `-bisimilarity it also may be seen as
a compactness property, albeit one which does not rely on the classical compactness theorem
for first-order logic – as is amply demonstrated by the finite model theory reading.

Recall that, with a team X in A (with a particular fixed enumeration of its domain),
we associate the relation [[X]] = {s(x̄) : s ∈ X} over A. There are several natural notions of
first-order equivalence (up to a given quantifier rank q or unrestricted) between τ -structures
with teams. First,

A, X ≡qFO B, Y

holds if A, X and B, Y satisfy the same team properties that are definable in FOq, FO with
quantifier rank up to q, in terms of team semantics. Note that, due to flatness, A, X ≡qFO B, Y

just requires X and Y to agree on all those ϕ(x̄) ∈ FOq that are true or false across the
whole team. Testing this for the characteristic formulae χq(x̄) ∈ FOq (in negation normal
form), which characterise the full FOq-types of tuples over finite relational signatures, we see
that A, X ≡qFO B, Y implies that X and Y realise exactly the same FOq-types of tuples. The
seemingly stronger equivalence

A, X ≡qFO(non) B, Y

holds if A, X and B, Y are indistinguishable by FO(non)-formulae of quantifier rank up to q.
An analysis of the team semantics of FO(non) shows, however, that also A, X ≡qFO(non) B, Y

if, and only if, the two teams realise exactly the same FOq-types of tuples. So these two
notions of team equivalence coincide. (The flatness character of these team equivalences is
analogous to that of guarded team bisimulation ∼`g; it similarly casts the classical notion of
q-partial isomorphy 'q at the level of teams.)

(A, [[X]]) ≡qFOT (B, [[Y ]])
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on the other hand refers to standard first-order semantics in the T -expansions and says that
the (τ ∪̇ {T})-structures (A, [[X]]) and (B, [[Y ]]) satisfy the same first-order sentences up to
quantifier rank q, which by the classical Ehrenfeucht–Fraïssé theorem for finite relational
vocabularies is the same as q-partial isomorphy, (A, [[X]]) 'q (B, [[Y ]]). Simple Ehrenfeucht–
Fraïssé arguments show that for singleton teams also this distinction does not matter. In
specific situations below, this agreement can be extended further due to compatibility of 'q
with disjoint sums of structures.

I Lemma 15. For singleton teams X = {s} in A and Y = {t} in B, with s(x̄) = ā and
t(x̄) = b̄ such that A, ā ≡qFO B, b̄, we also have (A, X) = (A, {s}) ≡qFO(non) (B, {t}) = (B, Y )
as well as (A, [[X]]) = (A, {ā}) ≡qFOT (B, {b̄}) = (B, [[Y ]]).

We next show that, for suitable `, ordinary guarded team `-bisimulation equivalence ∼`g
can be upgraded to any one of these forms of first-order equivalence.

I Lemma 16. For any ` that is sufficiently large in relation to q, any τ -structures A and
B with horizontally guarded teams X ∈ H(A) and Y ∈ H(B) such that A, X ∼`g B, Y admit
∼g-equivalent team configurations Ã, X̃ ∼g A, X and B̃, Ỹ ∼g B, Y such that simultaneously
Ã, X̃ ≡qFO B̃, Ỹ , Ã, X̃ ≡qFO(non) B̃, Ỹ , and (Ã, [[X̃]]) ≡qFOT (B̃, [[Ỹ ]]). Moreover, for finite A

and B, Ã and B̃ can be chosen finite.

Proof. The proof essentially uses the flatness features of ordinary guarded team bisimulation
∼g as expressed in Proposition 13 together with locality and flatness properties for first-
order team semantics. This is combined with known model transformations that respect
ordinary guarded bisimulation equivalence (guarded team bisimulation for singleton teams)
and upgrade levels ∼`g to levels of ordinary first-order equivalence 'q or ≡qFO between
corresponding guarded tuples. The construction following [24] uses finite guarded bisimilar
coverings, i.e., homomorphisms, with finite fibres, of the form π : A∗ −→ A such that for
all guarded assignments s of A∗, A∗, s ∼g A, π(s) due to natural guarded back-and-forth
conditions for the map π. These finite coverings can be constructed such that, for any fixed
level q there is a level ` such that for two such coverings π : A∗ −→ A and π′ : B∗ −→ B and
guarded assignments s and t,

(†) A, π(s) ∼`g B, π(t) ⇒ A∗, s 'q B∗, t.

The combined upgrading steps are illustrated in Figure 1. The first stage (1) corresponds
to an application of Proposition 13, which scatters the members of the two teams so that
no two members are in the same component. The second stage (2) is by means of guarded
coverings according to the above. By (†) and Lemma 14 the resulting team configurations
are in fact first-order team equivalent up to level q. For each individual matching pair
of component structures A∗, s(x̄) ≡qFO B∗, t(x̄), by Lemma 15, the equivalence translates
into the corresponding equivalence at the level of FO(non) as well as for the T -expansions:
A∗, s(x̄) 'q B∗, t(x̄) implies (A∗, {s(x̄)}) 'q (B∗, {t(x̄)}) and the compositionality of the
Ehrenfeucht–Fraíssé game under disjoint sums then shows the desired equivalences. J

I Corollary 17.
(a) Let ϕ(x̄) ∈ FO or ϕ(x̄) ∈ FO(non) be invariant under guarded team bisimulation in the

sense that A, X ∼g B, Y implies A |=X ϕ⇔ B |=Y ϕ for any X ∈ H(A) and Y ∈ H(B).
Then ϕ is in fact already invariant under guarded team `-bisimulation ∼`g for some ` ∈ N,
i.e. A, X ∼`g B, Y suffices to imply A |=X ϕ⇔ B |=Y ϕ.
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A, X ∼`
g

∼g (1)

B, Y

∼g⊕
s∈X

(A, {s})

∼g

∼`
g

(2)

⊕
t∈Y

(B, {t})

∼g⊕
s∈X

(A∗, {s}) ≡q
FO

⊕
t∈Y

(B∗, {t})

Figure 1 Upgrading of equivalences through structural transformations. The bottom rung
simultaneously achieves q-equivalence at the level of FO(non) and FOT (cf. Lemmas 15/16).

(b) Any sentence ϕ ∈ FOT (τ) = FO(τ ∪̇ {T}) that is invariant under guarded team bisim-
ulation in the sense that A, X ∼g B, Y implies (A, [[X]]) |= ϕ ⇔ (B, [[Y ]]) |= ϕ for
any X ∈ H(A) and Y ∈ H(B), is in fact ∼`g-invariant for suitable ` such that already
A, X ∼`g B, Y implies (A, [[X]]) |= ϕ⇔ (B, [[Y ]]) |= ϕ.

Both assertions also hold true in the sense of finite model theory, i.e., if both the assumption
and the conclusion are limited to corresponding criteria for just finite structures A and B.

Proof. In the diagram of Figure 1, ϕ is preserved along the vertical axes due to its preservation
under guarded team bisimulation (∼g-invariance). Overall, the detour through these guarded
team bisimilar companions therefore shows that A |=X ϕ iff B |=Y ϕ, or that (A, [[X]]) |= ϕ

iff (B, [[Y ]]) |= ϕ, and thus establishes the desired ∼`g-invariance. J

We are now ready to formulate two characterisation theorems for guarded team bisimula-
tion and horizontally guarded team logics.

It follows from part (a) that any formula ϕ(x̄) ∈ FO(τ) that is invariant under ordinary
guarded team bisimulation ∼g is expressible in any logic with team semantic disjunction that
is sufficiently expressive to define the classes

[A, {s}]` ↓ =
{
B, Y ′ : Y ′ ⊆ Y for some B, Y ∼`g A, {s}

}
=

{
B, Y : B, t ∼`g A, s for all t ∈ Y

}
for every τ -structure A, every guarded assignment s, and every ` ∈ N. The reason is that
in this case ϕ(x̄), which we know to define both a flat team property and a ∼`g-closed team
property for suitable `, is then logically equivalent to the formula

∨{
χ`A,s : A, {s} |= ϕ

}
. Here

the formulae χ`A,s ∈ GF(τ) are from the proof of Theorem 9 and define, in team semantics,
the downward closures of the ∼g-equivalence classes [A, {s}]`. This conclusion holds true,
in particular, for the logics FO(τ) with horizontally guarded team semantics and for GF(τ)
with (horizontally guarded or general) team semantics. In other words, if C is a class of team
configurations A, X which is closed under ∼`g and downward closed and union closed for
teams, then C =

{
B, Y : B |=Y

∨
A,X∈C

∨
s∈X

(
χ`A,s(x̄)

)}
, and, in terms of FOT or GFT ,

C =
{
B, Y : (B, [[Y ]]) |=

∨
A,X∈C

∀x̄
(
T x̄→

∨
s∈X

χ`A,s(x̄)
)}
.

I Corollary 18 (First Characterisation Theorem for Guarded Team Semantics).

FO/∼g ≡ FOhg ≡ GF ≡ [GF]T ≡ [FO]T /∼g.
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This, and the following characterisation theorem, are to be read in the sense that these
logical formalisms define exactly the same properties of horizontally guarded teams. Recall
that, for any L ⊆ FO, [L]T denotes the set of all sentences ∀x̄(T x̄ → ϕ(x̄)) (with classical
Tarski semantics) such that ϕ(x̄) ∈ L, so the last two equivalences follow from classical results.
Similarly, part (b) of Corollary 17 shows the following for any team property expressed by a
sentence ϕ ∈ FO(τ ∪̇ {T}) in the classical first-order semantics with appeal to the relational
encoding [[X]] of teams X (which does not imply downward closure or flatness!). If ϕ is
invariant under guarded team bisimulation ∼g, then it is equivalently expressible in any logic
with ordinary disjunction that is sufficiently expressive to define all unions of classes

[A, X]` =
{
B, Y : B, Y ∼`g A, X

}
=

{
B,
⋃
s∈X Ys : Ys 6= ∅ and, for all t ∈ Ys,B, t ∼`g A, s

}
,

for every fixed ` ∈ N. As we saw above, the equivalence classes [A, X]` are definable, for
instance in the extension of FOhg or GF by nonemptiness NE by formulae

χ`A,X(x̄) =
∨
s∈X

(
NE ∧ χ`A,s(x̄)

)
≡
∨
s∈X

(
non⊥ ∧ χ`A,s(x̄)

)
derived from the classical characteristic formulae χ`A,s. In order to define the union of (finitely
many) such classes, however, we need to invoke the strong intuitionistic disjunction ⊗ at
the propositional level, as ordinary team disjunction would allow to mix team constituents
(corresponding to unions of teams rather than an alternative between them). Now FO(non)hg

and GF(non) are invariant under ∼g by Proposition 11, and sufficiently expressive for the
χ`A,s(x̄) as well as to express nonemptiness (NE ≡ non⊥) and intuitionistic disjunction
(ϕ1 ⊗ ϕ2 ≡ non (nonϕ1 ∧ nonϕ2)). If C is a class of team configurations A, X composed
of τ -structures A for fixed finite τ , with teams X ∈ H(A), which is ∼`g-closed, then C ={
B, Y : B |=Y

⊗
A,X∈C

∨
s∈X

(
NE ∧ χ`A,s(x̄)

)}
, and in terms of FOT or GFT ,

C =
{
B, Y : (B, [[Y ]]) |=

∨
A,X∈C

( ∧
s∈X ∃x̄

(
T x̄ ∧ χ`A,s(x̄)

)
∧ ∀x̄

(
T x̄→

∨
s∈X χ

`
A,s(x̄)

) )}.
I Corollary 19 (Second Characterisation Theorem for Guarded Team Semantics).

FOT /∼g ≡ GFT /∼g ≡ FOhg(non) ≡ GF(non) ≡ FO(non)/∼g.

It is tempting to assume that this is also equivalent to GFT , i.e. to sentences ψ(T ) ∈
GF(τ ∪̇ {T}) (with Tarski semantics). But this is not the case. As we shall see below, GFT is
only ≈g-invariant, and not ∼g-invariant.

7 Invariance under strong guarded team bisimulation

Recall that the strong guarded bisimulation equivalence A, X ≈`g B, Y is based, by definition,
on ordinary guarded bisimulation equivalence between the expansions of the underlying
τ -structures by the relational encodings of the teams, (A, [[X]]) ∼g (B, [[Y ]]). It is therefore
clear that GFT (τ), the classical guarded fragment applied to these same expansions, is
preserved under ≈g. The classical characterisation theorem of Andréka, van Benthem and
Németi as well as its finite model theory analogue from [24] can thus be phrased as follows.

I Proposition 20. FOT /≈g ≡ GFT (classically and in fmt).
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Note that these formalisms are more expressive than FO/≈g and GF, since they can
obviously express invariant team properties that are neither flat nor downward- or union-
closed.

Unlike its plain counterpart, strong bisimulation is a priori not a flat notion, and it is in
fact strictly stronger than ∼g. This is also witnessed by some important and familiar atomic
team properties.

I Proposition 21. Inclusion and exclusion dependencies (as well as their strong negations)
are GFT -definable, and thus ≈g-invariant. However, they are not ∼g-invariant.

Proof. For a team X with variables x, y, z̄, we have

A |=X (x ⊆ y) ⇐⇒ (A, X) |= ∀xyz̄(Txyz̄ → ∃uv̄Tuxv̄)
A |=X (x | y) ⇐⇒ (A, X) |= ∀xyz̄(Txyz̄ → ¬∃uv̄Tuxv̄).

This extends in the obvious way to general inclusion and exclusion atoms between arbitrary
tuples of variables to show that these are definable in GFT .

To prove that exclusion atoms are not ∼g-invariant, consider a graph A with ver-
tices a, b, c and edges (a, b) and (b, c), and the assignments s : (x, y) 7→ (a, b) and s′ :
(x, y) 7→ (b, c). On the other side let B be the graph with vertices u, v, u′, v′, w and edges
(u, v), (u′, v′), (v, w), (v′, w) with assignments t : (x, y) 7→ (u, v) and t′ : (x, y) 7→ (v′, w).
Clearly A, s ∼g B, t and A, s′ ∼g B, t′. For the teams X = {s, s′} and Y = {t, t′} we thus
have that A, X ∼g B, Y . However, B |=Y (x | y) but A 6|= (x | y). Notice, however, that
A, X 6≈g B, Y , and indeed, even A, X ≈2

g B, Y fails as the second player has no valid response
if the first player makes a move in (A, [[X]]) from the assignment s : (x, y) 7→ (a, b) ∈ X to
s′′ : (y, z) 7→ (b, c). An almost identical argument applies to inclusion atoms. J

On the other side, the two notions of bisimulation invariance coincide as far as flat team
properties are concerned. To prove this, we use the notion of guarded tree decompositions
cf. [14, 23, 24], which are available in the tree unravellings induced by guarded bisimulations.

I Proposition 22. If A and B are guarded tree-decomposable, then, for any two guarded
assignments s and t, we have A, s ∼g B, t ⇒ A, {s} ≈g B, {t}.

Proof. The second player can use a strategy whose trace in the underlying tree-like transition
system of guarded configurations (induced by the guarded tree decompositions, which are
themselves linked by a bisimulation), respects distances from the roots s(x̄) and t(x̄). J

I Proposition 23. Properties of guarded teams that are flat and ≈g-invariant are in fact
also ∼g-invariant.

Proof. Assume that ϕ defines a flat property of guarded teams that is preserved under ≈g,
and let A, X ∼g B, Y . We need to show that A |=X ϕ if, and only if, B |=Y ϕ. Assume
towards a contradiction that A |=X ϕ while B 6|=Y ϕ. Consider the guarded tree unfoldings
(A∗, [[X]]∗) and (B∗, [[Y ]]∗) of (A, [[X]]) and (B, [[Y ]]), respectively. Clearly

(A∗, [[X]]∗) ∼g (A, [[X]]) and (B∗, [[Y ]]∗) ∼g (B, [[Y ]])

imply that A∗, X∗ ≈g A, X and B∗, Y ∗ ≈g B, Y for the associated ‘unfolded teams’ X∗ and
Y ∗. By ≈g-invariance, therefore, A∗ |=X∗ ϕ and B∗ 6|=Y ∗ ϕ. By flatness of ϕ this implies on
one hand that B∗ 6|={t} ϕ for some t ∈ Y ∗. On the other hand there is some s ∈ X∗ such
that A∗, s ∼g B∗, t for which, also by flatness, A∗ |={s} ϕ. So A∗, s ∼g B∗, t while A∗ |={s} ϕ
but B∗ 6|={t} ϕ. In view of Proposition 22, this contradicts ≈g-invariance of ϕ. J
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I Corollary 24. FO/∼g ≡ FO/≈g (classically, open in fmt).

On the other hand, the interplay of ≈g- or ≈`g-invariance with team semantic constructs in
stronger logics than FO is far less clear-cut. Clearly (team) conjunction and strong negation
preserve ≈g-invariance. However, the following example shows that ≈g-invariance is not
compatible with team disjunction, not even for atomic team properties.

I Proposition 25. The formula (x | y) ∨ (x | y) is not ≈g-invariant.

Proof. Let Cn be the directed cycle of length n and let Xn be the team of all its edges.
The formula (x | y) ∨ (x | y) says that the team can be split in a bipartite manner. We
thus have that Cn |=Xn

(x | y) ∨ (x | y) if, and only if, n is even. On the other side, the
guarded assignments on graphs are just singletons, edges, and inverse edges, so obviously,
(Cn, Xn) ≈g (Cm, Xm) for all m,n > 2. J

Together with Proposition 21, this example shows that GFT is in particular not closed
under team disjunction.

From the characterisation theorem for guarded fixed-point logic µGF in [14] it follows that
µGFT ≡ GSO/≈g, for guarded second-order logic GSO. The question arises whether we can
also obtain a characterisation theorem that relates guarded inclusion logic with (a fragment
of) guarded fixed-point logic. From Proposition 7 we conclude that FOhg(⊆) ≡ GF(⊆), and
this can be translated, by [10], into sentences in µGFT of the form ∀x̄(T x̄→ ψ(T, x̄)) where
ψ(T, x̄) has only greatest fixed points and is positive in T .

Question: Is this fragment equivalent with GF(⊆) and/or FO(⊆)/ ≈g ?
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Abstract
We show that the expressive power of order-invariant first-order logic collapses to first-order logic
over hollow trees. A hollow tree is an unranked ordered tree where every non leaf node has at most
four adjacent nodes: two siblings (left and right) and its first and last children. In particular there is
no predicate for the linear order among siblings nor for the descendant relation. Moreover only the
first and last nodes of a siblinghood are linked to their parent node, and the parent-child relation
cannot be completely reconstructed in first-order.
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1 Introduction

First-order logic (FO) is a classical formalism for expressing properties over finite structures.
It is the building block of many other formalisms that are highly expressive such as MSO or
logics using fixpoints such as LFP. An important and desirable feature of FO, and of all its
extensions mentioned above, is that it expresses only intrinsic properties of the structure, i.e.
properties invariant under isomorphisms. A limitation of FO is that it cannot express some
simple properties. In particular, as it cannot distinguish between nodes that are related via
some automorphism, it cannot always go through all the nodes of a structure in order to
perform simple tasks such as counting them.

In many scenarios, in particular in computer science, the structures under investigation
are stored on a disk: this yields an implicit order among the elements of the structure. It
is then reasonable to use this order within the logical formalism. In the case of FO this
means adding a new binary predicate that is interpreted as a linear order. However, we
want to do this in such a way that closure under isomorphisms is retained: the expressible
properties should only depend on the structure and not on the way it is stored on the disk,
the latter being arbitrary and subject to change. When this property is verified we say that
the formula is order-invariant and we denote by < -inv FO the set of first-order formulas
that are order-invariant. We stress that being order-invariant is not a decidable property [4]
hence < -inv FO is not a recursive set of formulas.

Obtaining a “real” logic (in the sense of Gurevich, in particular with a recursive syntax)
that has exactly the same expressive power as < -inv FO is a challenging question. Solving
the same question for <-inv LFP would solve the longstanding quest of finding a logic for
PTime as it follows from Immermann-Vardi Theorem that <-inv LFP captures PTime.

In order to find a logic for < -inv FO, it is useful to understand a bit better its expressive
power; such is the goal of this paper.
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23:2 Order-Invariant First-Order Logic over Hollow Trees

An example, attributed to Gurevich, shows that < -inv FO is in general strictly more
expressive than FO [1]. Another key result shows that < -inv FO retains the local property
of FO [7]. It seems that it requires dense structures for < -inv FO to express strictly more
than FO. For instance when the structures are trees it has been shown that < -inv FO has
exactly the same expressive power than FO [4]. In [4] a “tree” is either a binary tree, where
every node has at most three neighbors: its parent, its left child and its right child or, an
unranked unordered tree where every node is related to its parent and all of its children, but
no order is assumed among siblings.

The question of whether < -inv FO = FO over any class of structures of bounded
treewidth was left open in [4], where it is only shown that, over structures of bounded
treewidth, < -inv FO can only express properties definable in MSO.

In order to show that < -inv FO collapses to FO over a class of structures of bounded
treewidth, it is tempting to reduce the case of bounded treewidth to the case of trees, using
tree decompositions. When trying this strategy one immediately faces two difficulties. The
first one is, given two FO similar structures (in this introduction we informally say that two
structures are “FO similar” if they satisfy the same FO sentences of quantifier rank k for
some k sufficiently large and depending on the context), to exhibit a tree decomposition for
each of them such that the resulting tree decompositions are FO similar. Once this is done,
we can apply the known result over trees showing that the tree decompositions actually agree
on all order-invariant properties of a given quantifier rank: they are < -inv FO similar. The
second difficulty is then to lift the order-invariance similarity from the tree decompositions
to the original structures.

The second difficulty could be solved easily if we could interpret the original structure
within its tree decomposition. Unfortunately this cannot be done in first-order (this requires
reachability as an element of the structure could appear in bags arbitrarily far away within
the tree decomposition). This problem can be eliminated by assuming “domino treewidth”,
i.e. that an element appears in a bounded number of bags, which is equivalent to assuming
bounded degree of the structure on top of bounded treewidth [5].

Even when assuming bounded degree, the first difficulty remains and we still do not know
the precise expressive power of < -inv FO over structures of bounded degree and pathwidth 2!
This paper is an attempt toward solving the pathwidth 2 case.

We show that < -inv FO collapses to FO over the class of hollow trees. Hollow trees are
first-order structures with two binary relations that are interpreted so that the resulting
structure is a tree with the following features: each node has at most four neighbors: its
first child, its last child and possibly a left and a right sibling. One of the binary relation
denotes the sibling relation while the other one denotes the partial parent-child relation. This
model strictly extends the case of binary trees as a node may have arbitrarily many children.
However it is less powerful than the unranked ordered model as a node is not directly related
to its parent, unless it is the first or last of its children. Note that because of its locality,
FO cannot reconstruct the complete parent-child relation of every node within a hollow tree
(this can be done in MSO or using the transitive closure of the sibling relation).

It is not immediate to see how hollow trees are related to structures of pathwidth 2 and
of bounded degree. It turns out that if in the model of hollow trees we only had one binary
relation and could not distinguishing between the (partial) parent-child relation and the
sibling one, then we would have a model that is FO equivalent to structures of bounded
degree and pathwidth 2 in the sense that there exist FO-interpretations from one to the
other (as depicted in the conclusion). In particular the collapse of < -inv FO to FO in one
of them would imply the collapse in the other as we explain in Section 2.4. We leave the
extension of our result to this class of structures as an open problem.
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Our proof follows a strategy similar to the case of binary trees: we first exhibit a set
of operations over hollow trees (actually over structures FO similar to hollow trees) that
preserve order-invariance similarity. We then show that if two hollow trees are FO similar
then one of them can be transformed using our set of operations into the other, lifting FO
similarity to < -inv FO similarity. The first part is standard and makes use of the locality
of < -inv FO [7]. The second part is more combinatorial and forms the main technical
contribution of this paper.

Related work. Besides the papers already mentioned above, there exist several other
publications related to our work. We will make use in our proof of the fact that < -inv FO ⊆
MSO over classes of graphs of bounded treewidth, which has been initially claimed in [4].
Another proof of this result, extended to a broader class called “decomposable structures”,
can be found in [6].

If testing order invariance is undecidable for FO it is decidable for its two variable
fragment [13].

Several authors considered order-invariance for more expressive logics (first-order with
modulo predicates [11], MSO [6]) or with more expressive numerical predicates [9, 8, 2, 12].
Our proof technique follows lines similar to [4, 11] but is mildly related to the others.

Due to space limitations many of the proofs are omitted or just sketched in this long
abstract. They can be found at https://hal.inria.fr/hal-02310749/document

2 Preliminaries

2.1 General notations
We consider relational structures and use classical terminology for them. We use Σ to denote
a relational schema and Σ-structure to denote a structure over Σ. Our structures are always
finite and are denoted through calligraphic upper-case letters and their domain through
the corresponding standard upper-case letter. For instance, A would denote the domain of
the structure A. For a relation symbol R ∈ Σ and a Σ-structure A, we denote by RA the
interpretation of R in A.

Given a relational signature Σ, first-order logic, FO(Σ), and monadic second-order
logic, MSO(Σ), are defined in the standard way (see, e.g., [10]). The main formalism of
interest here is order-invariant first-order logic, denoted < -inv FO(Σ). A sentence ϕ in
FO(Σ ∪ {<}) belongs to < -inv FO(Σ) if for every Σ-structure A, whether (A, <A) |= ϕ is
independent of the choice of the linear order <A on A. In that case, we write A |= ϕ. For
any L ∈ {FO(Σ),MSO(Σ), < -inv FO(Σ)} and two Σ-structures A and B, we write A ≡Lk B
to mean that A and B satisfy the same sentences of L of quantifier rank at most k. As usual
we omit Σ when it is clear from the context.

We use the standard notion of FO-interpretations in order to define a new structure
from an existing one. Given a FO-interpretation I, we call arity of I the number of free
variables in the formula of I which defines the domain of the new structure, and depth of I
the maximum among the quantifier ranks of the formulas defining the domain and the new
relations. It is a well known result that for every A,B, and I of arity a and depth d, and for
every k ∈ N, if A ≡Lak+d B then I(A) ≡Lk I(B).

Let A be a structure over a vocabulary containing the binary relation symbol R. We say
that U ⊆ A is R-stable if ∀x ∈ U,∀y ∈ A, (R(x, y) ∨R(y, x))→ y ∈ U .
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23:4 Order-Invariant First-Order Logic over Hollow Trees

For a set σ of symbols, we define the vocabulary Pσ := {Ps : s ∈ σ}, where every Ps is a
unary relation symbol.

As usual the Gaifman graph of a relational structure A is the (unoriented) graph whose
vertices are the elements of the domain of the structure and the edges relate two vertices
that appear in the same tuple of a relation of A. We denote by distA(x, y) the distance
between x and y in the Gaifman graph of A. Given two sets S and T of elements of A and
m ∈ N, we say that S and T are m-distant in A, if distA(x, y) ≥ m for all x ∈ S and all
y ∈ T . The k-neighborhood N k

A(x) of some x ∈ A is the substructure of A induced by
{y ∈ A : distA(x, y) ≤ k} together with an additional constant interpreted as x. The k-type
tpkA(x) of x in A is the isomorphism class of its k-neighborhood. We extend those definitions
to tuples of elements in the usual way, fixing the tuples pointwise.

For k ∈ N, we define the k-enrichment Ek(A) of a Σ-structure A as A itself where each
element has been recolored with its k-type. Ek(A) is a structure over the vocabulary Σ
augmented with a unary predicate for every k-type over Σ: there are a finite number of them
as long as we consider classes of structures of bounded degree.

2.2 Hollow trees

An unranked ordered tree is a tree with a successor relation among the children of any node.
We see unranked ordered trees as structures over the signature composed of two binary
relation symbols S and S′, where S is interpreted as the parent-child relation, and S′ as the
horizontal successor. A set of nodes that share the same parent is called a siblinghood.

We define a mapping H from the set of unranked ordered trees to structures over two
binary predicates S and E. Given an unranked ordered tree T , H(T ) is defined as follows:

its domain is T
H(T ) |= S(x, y) iff T |= S(x, y) and y is either the first or the last of its siblings
E is interpreted as the symmetrical closure of S′

The image of H is the set of hollow trees, denoted H. If P = H(T ) then T is the underlying
tree structure of P.

In other words, within a hollow tree, only the two children at the endpoints of a siblinghood
know their parent. Notice that we do not distinguish between the first and last child, nor do
we between the left and right sibling. This makes the model more general, as explained in
Section 2.4. An example of hollow tree is given in the left part of Figure 1.

•

• • • •

• • • • •

• •

•

• • • •

• • • • •

• •

Figure 1 An example of hollow tree (left) and of hollow quasitree (right). The dotted arrows
represent S and the plain (symmetrical) lines represent E.

Given a finite alphabet σ, we define Hσ, the set of hollow trees over σ, as the set of
colored extensions of hollow trees using the vocabulary Pσ, where the interpretations of the
predicates of Pσ partition the domain.
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2.3 Main result
If C is a class of structures, we say that < -inv FO = FO over C if for each property
definable in < -inv FO, there exists a first-order formula expressing this property over all
structures of C. Notice that for every σ, Hσ is a class of structures of treewidth 2. Therefore
< -inv FO ⊆MSO over Hσ [4]. The main result we prove in this paper is:

I Theorem 1. For all σ, < -inv FO = FO over Hσ

We outline the proof here, and give more details in the rest of this paper.

Proof sketch. Our goal is to find some function f such that, ∀α ∈ N,∀P,Q ∈ Hσ, if
P ≡FO

f(α) Q then P ≡<-inv FO
α Q. This means that the equivalence relation ≡FO

f(α) refines
≡<-inv FO
α . Both equivalence relations being of finite index and the former being definable in

FO for every fixed α, the result follows.
To show this we fix some α ∈ N and consider two hollow trees P and Q, such that

P ≡FO
f(α) Q for a large enough f(α). The general idea is to modify Q through some operations

that are invisible to all formulas of < -inv FO of quantifier rank less than α, until we reach P .
This will ensure that P ≡<-inv FO

α Q.
We will use two kinds of operations as described in Section 3: “swap operations”,

which preserve < -inv FO, and one which preserves MSO (and a fortiori < -inv FO as
< -inv FO ⊆MSO over Hσ by [4]).

The MSO-preserving operation will be used in Section 3.3, in order to pump Q to make
sure that every neighborhood type is present at least as many times in Q as in P.

Once this is done, we explain in Section 4 how to transform Q with swap operations in
order to include P into it. Since Q may be larger than P , there could be some extra material
in Q that we call “loops”. The last step is to remove those loops and this is the goal of
Section 6.

When performing the swap operations, there will be a constant need for reorganizing the
S-edges (in particular to make sure that the loops are S-stable). Section 5 and Section 6.3
compile the results that allow us to do so. J

2.4 Bi-FO-interpretations and corollaries
Before we give more details about the proof of our main result, we recall in this section a
classical tool for reducing the collapse of < -inv FO to FO from one class of structures to
another. We then state a few corollaries of Theorem 1.

Let C1, C2 be two classes of structures over the respective vocabularies τ1 and τ2.
We say that C1 is bi-FO-interpretable through C2 if there exist two FO-interpretations

I12 and I21, respectively from τ1 to τ2, and from τ2 to τ1, such that for every A ∈ C1,
I12(A) ∈ C2 and I21(I12(A)) ' A, where ' denotes the existence of an isomorphism between
two structures. The following result is rather straightforward:

I Lemma 2. If C1 is bi-FO-interpretable through C2 and < -inv FO = FO over C2, then
< -inv FO = FO over C1

Recall that in the definition of hollow trees the relation E is symmetric. This turns out
to be more general than choosing E as an arbitrary directed binary relation as shown in
the following result where a directed hollow tree is defined as for hollow trees but with
a directed binary relation E. Note that we do not assume that E is a successor relation
among siblings, the direction of E could be arbitrary, but the result below works in particular
when E is a successor relation. Via a simple bi-FO-interpretation which uses extra colors to
encode the direction of the edges, we get the following result:

CSL 2020
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I Corollary 3. For every σ, < -inv FO = FO on the class of σ directed hollow trees

Define a path over σ as a word over the alphabet σ, where the successor edges are
symmetrical (the argument used in the proof of Corollary 3 guarantees that paths are a
more general model than words). The class of paths over σ is obviously bi-FO-interpretable
through Hσ: just add a S-parent to the endpoints of the path, and then forget about it.
Thus we get:

I Corollary 4. For every alphabet σ, < -inv FO = FO on the class of paths over σ.

Similarly, a straightforward bi-FO-interpretation together with Theorem 1 give us back
the result from [4] that < -inv FO = FO on ranked trees.

3 Swaps and pumping

In this section we provide a few operations, denoted swaps, that preserve ≡<-inv FO
k . Although

the k-type of every element will be left unchanged, applying these operations may break the
somewhat rigid structure of hollow trees. In order to work with the intermediate structures,
we loosen the definition of hollow trees and define hollow quasitrees as follows:

I Definition 5. For k > 0 and σ a set of colors, we define the set of hollow k-quasitrees
on σ, quasi-Hkσ, as the set of all finite structures over {E,S} ∪ Pσ such that the k-type of
any of their elements is the k-type of some element in some hollow tree in Hσ, and which
are such that their relation E is acyclic.

In other words a hollow quasitree differs from a hollow tree by its relation S which may
not induce a tree structure: a node may have its S-children in two distinct siblinghoods and
a hollow quasitree may have cycles using the relation S (but not using only the relation E).
Note that by definition Hσ ⊆ quasi-Hkσ for every k. An example of what a hollow quasitree
could look like is given in the right part of Figure 1. Note that locally, it looks like a hollow
tree.

Let T ∈ quasi-Hkσ. We define the support of T as its restriction to the vocabulary
Pσ ∪ {E}. The n-enriched support of T , denoted Suppn(T ), is the support of its n-
enrichment (and not the other way around). Hence, it keeps in memory the local behavior
within T . The set End(T ) of endpoints of T is the set of elements of the support having
degree one. A connected component of the support of T is called a thread1. Note that by
E-acyclicity of T , each of its threads is a path, hence contains exactly two endpoints. We
say that a hollow k-quasitree has the matching endpoints property if the two endpoints
of each thread have the same S-parent. Note that a hollow tree has the matching endpoints
property. Notice also that in a hollow k-quasitree, any thread of length less than 2k + 1
has matching endpoints. For x, y ∈ T belonging to the same thread, [x, y] denotes the set
of elements that lie between them (formally, those who disconnect x from y in Supp0(T )),
including x and y. We naturally define [x, y[ as [x, y] \ {y}.

The following lemma, implicit in the proof of locality of < -inv FO by Grohe and
Schwentick [7], will allow us to prove that our operations preserve order-invariance equivalence:

I Lemma 6. Let Σ be a relational vocabulary and let p, α ∈ N. There exists oΣ
p (α) ∈ N such

that for every structure A over Σ, and for every p-tuples of elements ā, b̄ ∈ Ap that have the
same oΣ

p (α)-type in A, there are two orders <āb̄ and <b̄ā on A such that

1 A thread is nothing other than a siblinghood when the quasitree is a tree.
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(A, <āb̄) ≡FO
α (A, <b̄ā)

āb̄ is an initial segment of <āb̄
b̄ā is an initial segment of <b̄ā

Our operations are divided into three families depending on whether we modify the
relation S, the relation E, or whether we do a global pumping,

In the following, R is a hollow (m+ 1)-quasitree on σ.

3.1 crossing-S-swaps
Let a, a′, a′′, b, b′, b′′ ∈ R be such that S(a, a′), S(a, a′′), S(b, b′), S(b, b′′) and such that
tpmR(a, a′, a′′) = tpmR(b, b′, b′′). LetR− := R\{S(a, a′), S(a, a′′), S(b, b′), S(b, b′′)} and assume
that the sets {a′, a′′}, {b′, b′′} and {a, b} are pairwise (2m+ 3)-distant in R−.

Then R′ := R−∪{S(a, b′), S(a, b′′), S(b, a′), S(b, a′′)} is called the m-guarded crossing-
S-swap between a and b in R (see Figure 2).

a
•

a′ a′′

b
•

b′ b′′

−→
a
•

a′ a′′

b
•

b′ b′′

Figure 2 The crossing-S-swap between a and b.

I Note 7. A particular case where the distance condition is met is when distR(a, b) ≥ 2m+5.

I Lemma 8. For all α ∈ N there exists s(α) ∈ N such that for all m ≥ s(α), and every
hollow (m+ 1)-quasitree R,

if R′ is the m-guarded crossing-S-swap between a and b in R,
then R′ ≡<-inv FO

α R, and ∀x ∈ R, tpm+1
R′ (x) = tpm+1

R (x). Moreover R′ ∈ quasi-Hm+1
σ

and Suppm+1(R′) = Suppm+1(R).

Proof sketch. In order to prove that R′ ≡<-inv FO
α R we need to exhibit a linear order over

R and one over R′ such that we can play an α-round Ehrenfeucht-Fraïssé game between
the resulting ordered structures. The linear orders are constructed using Lemma 6 applied
to (a′, a′′) and (b′, b′′) and the structure R−. A simple FO-interpretation is then used to
transfer the corresponding orders onto R and R′. Proving that the type of an element is
unchanged is straightforward. J

3.2 E-swaps
We define four different kinds of E-swaps.

Let a, b, a′, b′ ∈ R be such that E(a, b), E(a′, b′), a, b and a′, b′ appear in two different
threads of R and such that {a, b, a′, b′} and End(R) are (2m + 3)-distant in Supp0(R).
Furthermore, assume that tpmR(a, b) = tpmR(a′, b′). Let R′ := R \ {E(a, b), E(a′, b′)} ∪
{E(a, b′), E(a′, b)}.

Then R′ is called the m-guarded crossing-E-swap between ab and a′b′ in R (c.f.
Figure 3).
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a b

a′ b′

� •

♦ ◦

| | | |

| | | |

−→
a b′

a′ b

� ◦

♦ •

| | | |

| | | |

Figure 3 Illustration of the m-guarded crossing-E-swap between ab and a′b′ in R.

Let a, b, b′, a′ ∈ R appear in that order in a single thread of R, such that E(a, b), E(a′, b′),
and such that {a, b, a′, b′} and End(R) are (2m + 3)-distant in Supp0(R). Furthermore,
assume that tpmR(a, b) = tpmR(a′, b′). Let R′ := R \ {E(a, b), E(a′, b′)} ∪ {E(a, b′), E(a′, b)}.
Then R′ is called the m-guarded mirror-E-swap at [b, b′] in R (c.f. Figure 4).

a b b′ a′

◦ •>>>| | | | | | −→
a b′ b a′

◦ •<<<| | | | | |

Figure 4 Illustration of the m-guarded mirror-E-swap at [b, b′] in R.

Consider now a, b, c, d, a′, b′, c′, d′ ∈ R appearing in that order in a single thread of R
such that E(a, b), E(c, d), E(a′, b′), E(c′, d′) and such that {a, b, c, d, a′, b′, c′, d′} and End(R)
are (2m + 3)-distant in Supp0(R). Furthermore, assume that tpmR(a, b) = tpmR(a′, b′) and
tpmR(c, d) = tpmR(c′, d′).
Let R′ := R \ {E(a, b), E(a′, b′), E(c, d), E(c′, d′)} ∪ {E(a, b′), E(a′, b), E(c, d′), E(c′, d)}. R′
is called the m-guarded segment-E-swap between [b, c] and [b′, c′] in R (c.f. Figure 5).

a b c d a′ b′ c′ d′

� • ~ ◦ ♦| | | | | | | | | | −→
a b′ c′ d a′ b c d′

� ◦ ~ • ♦| | | | | | | | | |

Figure 5 Illustration of the m-guarded segment-E-swap between [b, c] and [b′, c′] in R.

Finally, let a, b, a′, b′, a′′, b′′ be elements of R appearing in that order in a single thread of
R, such that E(a, b), E(a′, b′) and E(a′′, b′′) and {a, b, a′, b′, a′′, b′′} and End(R) are (2m+3)-
distant in Supp0(R). Furthermore, suppose that tpmR(a, b) = tpmR(a′, b′) = tpmR(a′′, b′′).

Let R′ := R \ {E(a, b), E(a′, b′), E(a′′, b′′)} ∪ {E(a, b′), E(a′, b′′), E(a′′, b)}. R′ is called
the m-guarded contiguous-segment-E-swap between [b, a′] and [b′, a′′] in R (c.f.
Figure 6).

As long as m is large enough, all the m-guarded E-swaps preserve ≡<-inv FO
α and the

(m+ 1)-type of every element:

I Lemma 9. For all α ∈ N there exists s(α) ∈ N such that for every m ≥ s(α) and every
hollow (m+ 1)-quasitree R, if R′ is either

the m-guarded crossing-E-swap between ab and a′b′ in R
the m-guarded mirror-E-swap at [b, b′] in R
the m-guarded contiguous-segment-E-swap between [b, a′] and [b′, a′′] in R
the m-guarded segment-E-swap between [b, c] and [b′, c′] in R

then R′ ≡<-inv FO
α R, ∀x ∈ R, tpm+1

R′ (x) = tpm+1
R (x) and R′ ∈ quasi-Hm+1

σ .

Proof sketch. The proof is a tedious case analysis. Basically it amounts to the following
idea: if the elements involved in the swap are far away from each other then we can use
Lemma 6 in the structure R minus the E-edges of interest, and get orders on R and R′
which make these structures similar as in the proof of Lemma 8.
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a b a′ b′ a′′ b′′

� • ◦ ♦| | | | | | | | −→
a b′ a′′ b a′ b′′

� ◦ • ♦| | | | | | | |

Figure 6 Illustration of the m-guarded contiguous-segment-E-swap between [b, a′] and [b′, a′′] in
R.

On the other hand, if the elements are close to each other, then the fact that they share
the same type induces some periodicity on their neighborhoods. These neighborhoods can
therefore be decomposed into several consecutive similar pieces. We can then apply Lemma 6
to these smaller components to conclude. J

3.3 Pumping
The next operation makes use of the fact that < -inv FO ⊆MSO over hollow trees. Hence
our hollow trees can be “pumped” in order to duplicate some of their parts.

Given a structure A and a k-type τ , we denote by |A|τ the number of elements of A whose
k-type is τ . We will essentially use 0-types as our structures will be enriched by recoloring
each element by its k-type. In view of this we denote by [[A]] the function τ 7→ |A|τ whose
domain is the set of 0-types over the considered vocabulary.

Let d,D ∈ N, and f, g be functions from a same domain to N. We say that f ≤Dd g if for
every x in the domain:

if f(x) ≤ d, then f(x) = g(x)
if f(x) 6= g(x), then g(x) ≥ f(x) +D

By f < g, we mean that ∀x, f(x) < g(x) or f(x) = g(x) = 0.

In the following proposition < -inv FO can be replaced by MSO.

I Proposition 10. ∀α, n, d ∈ N,∃M ∈ N,∀D ∈ N,∀P,Q ∈ Hσ, if P ≡FO
M Q, then there

exists Q′ ∈ Hσ such that Q′ ≡<-inv FO
α Q and [[En+1(P)]] ≤Dd [[En+1(Q′)]].

Proof sketch. This is a pumping argument: by setting M large enough, we make sure
in FO that if a (n + 1)-type has more occurrences in P than in Q, then it has enough
occurrences in Q so that we can find a context in Q containing at least one occurrence,
and no occurrence of a rare type, such that we can duplicate this context inside Q without
changing its MSO-type. J

4 Inclusion and pseudo-inclusion

Recall that our ultimate goal is to show that if two hollow trees agree on the same FO
sentences of quantifier rank f(α) then they agree on all < -inv FO sentences of quantifier
rank α. For this, we will show that if P and Q are hollow trees that agree on all FO sentences
of quantifier rank f(α) then we can use operations such as the swap operations described in
Section 3 to transform Q into P . As these operations preserve < -inv FO we get the desired
result.

In this section we perform the first step towards transforming Q into P. We show
that using the swap operations we can transform Q into Q′ so that Q′ “includes” P. The
resulting structure Q′ will be a hollow quasitree. In the next sections we will continue the
transformation and remove from Q′ all the extra material it contains, deriving P.
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In order to define what we mean by “inclusion” we need the notion of a n-abstract context
of a hollow quasitree. Intuitively this is a S-stable n-enriched substructure. More formally,
given a hollow quasitree T ∈ quasi-Hnσ and a set U of its domain that is S-stable, then
C := T|U , together with the function tpn(.) that maps x ∈ U to its n-type in T , is called a
n-abstract context denoted C = Ctxtn(T |U ). The set of n-abstract contexts is denoted
Ctxtnσ. Note that tpn(x) denotes tpnT (x) and not tpnC(x). We need to remember, at least
locally, how C was glued to the rest of T in order to preserve n-types when moving C to
some other place.

We are now ready to define the notion of “inclusion”. We actually define both “inclusions”
and “pseudo-inclusions”. We will need to pseudo-include a hollow quasitree into another
(Proposition 12), and then to include an abstract context into a hollow quasitree (Propos-
ition 13). Since a hollow k-quasitree T ∈ quasi-Hkσ can be seen as a k-abstract context
(T = Ctxtk(T |T )), we only need to define (pseudo-)inclusions from an abstract context into
a hollow quasitree.

I Definition 11. Let k ∈ N, U ∈ Ctxtkσ and Q ∈ quasi-Hkσ. We say that h : U → Q is a
k-pseudo-inclusion if h is injective and for all x, y, z ∈ U the following is verified:
1. tpkQ(h(x)) = tpk(x),
2. if x and y are in the same thread of U then h(x) and h(y) are also on the same thread of
Q and if moreover z ∈ [x, y] then h(z) ∈ [h(x), h(y)],

3. if U |= E(x, y) and t is the E-neighbor of h(x) in [h(x), h(y)] then t is the image of y
by an isomorphism (induced by the fact that they share the same k-type) between the
n-neighborhood of x and that of h(x).

If U |= E(x, y) and Q 6|= E(h(x), h(y)) then {x, y} is said to be a jumping pair for h,
and tpk−1

Q (h(x), t), where t is the E-neighbor of h(x) in [h(x), h(y)], is called its type.2
A k-pseudo-inclusion is said to be reduced if there is at most one jumping pair of a given

type.
A k-pseudo-inclusion is called a k-inclusion if it has no jumping pairs, that is if it

preserves E.

The last condition of pseudo-inclusion is a complication induced by the fact that E is not
oriented and that we thus cannot distinguish between the two siblings of a node. It ensures
that h preserves the neighborhoods in the right order. We can now state the main result of
this section. Note that the precondition that Q has more realizations for each type than U or
P will not be a problem in view of Proposition 10. The second proposition is stronger than
the first one as it derives inclusion instead of pseudo-inclusion, but it requires the stronger
hypothesis that every occurring type has strictly more realizations in Q than in U .

I Proposition 12. For every α,m ∈ N, there exists N ∈ N such that ∀P,Q ∈ quasi-HN+1
σ ,

if [[EN+1(P)]] ≤ [[EN+1(Q)]], then there exists Q′ ∈ quasi-Hm+1
σ such that Q′ ≡<-inv FO

α Q,
[[Em+1(Q′)]] = [[Em+1(Q)]] and h that is a (m+ 1)-pseudo-inclusion from P into Q′.

I Proposition 13. For every α,m ∈ N, there exists N ∈ N such that ∀U ∈ CtxtN+1
σ ,

∀Q ∈ quasi-HN+1
σ , if [[EN+1(U)]] < [[EN+1(Q)]], then there exists Q′ ∈ quasi-Hm+1

σ such that
Q′ ≡<-inv FO

α Q, [[Em+1(Q′)]] = [[Em+1(Q)]] and U is (m+ 1)-included in Q′.

Proof sketch. Both propositions have a similar proof: we first prove Proposition 12, and
explain afterwards how to move from pseudo-inclusions to inclusions.

2 This is an ease of notation; to be more precise, we should make the type of a jumping pair symmetrical.
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We define the pseudo-inclusion h step by step, extending the domain of h thread by
thread and, inside each thread, from one of its endpoint to the other. At each step we modify
Q using E-swaps, if necessary.

We give a special treatment to short threads and portions of the long threads that are
close to the endpoints: in that case, no modification of Q is required as the cardinality
precondition ensures the presence of the necessary sequences within Q. We then move to the
parts of the long threads that are far from the endpoints, adding them one node at a time to
the domain of the pseudo-inclusion. Note that as all the elements involved in the E-swaps to
come are distant from the endpoints, the E-swaps involved are guarded.

Let x′ be the last node of the current thread t that has been given an image by h, and
let x be the next node to which we want to extend the domain of h. By hypothesis, we know
that there exists a node y /∈ Im(h) far from any endpoint, that has the same (m+ 1)-type as
x. We denote by y′ the neighbor of y that has the same m-type as x′, and by x̂ the neighbor
of h(x′) having the same m-type as x.

We proceed to a case analysis depending on the relative position of y, y′, h(x′) and x̂. If
y′, y are on the same thread as h(x′), x̂ and in the same direction (in particular when y = x̂),
we simply set h(x) to y and we are done. If not, one of the E-swaps will place y to the
desired position.

For instance, if y′, y are on the same thread as h(x′), x̂ but in the reverse direction
(c.f. Figure 7, where the double line represents Im(h)), then we consider the m-guarded
mirror-E-swap at [x̂, y] in Q and extend h by setting h(x) to y.

h(x′) x̂ y y′

>>>| | | | | |
−→ h(x′) y

<<<| | | | | |

Figure 7 h(x′), x̂ and y′, y are in the same thread, but in reverse order: we use a mirror-E-swap.

Now, if y is on a thread that does not intersect Im(h) (c.f. Figure 8), we consider the
m-guarded crossing-E-swap between h(x′)x̂ and y′y in Q, and extend h by setting h(x) to y.

h(x′) x̂

y′ y

•

◦

| | | |

| | | |

−→

h(x′) y
◦

•

| | | |

| | | |

Figure 8 y is on a thread disjoint from Im(h): we use a crossing-E-swap.

If y′, y are in the same direction as h(x′), x̂, and are between h(z) and h(z′) where z and
z′ are consecutive node of the current thread (c.f. Figure 9).

Then we consider the m-guarded segment-E-swap between [u′, y′] and [h(z′), h(x′)] in Q,
and extend h by setting h(x) to y.

h(z)

u′

y′ y h(z′) h(x′)

x̂
• ◦| | | | | | | | | | −→

h(z)

h(z′)

h(x′)

y

u′ y′

•◦| | | | | | | | | |

Figure 9 y′, y are between the images of two already included neighbors: we use a segment-E-swap.

There are a few other cases that are treated similarly. This concludes the proof for
pseudo-inclusion.
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For Proposition 13, as we wish to construct an inclusion, we need to make sure that there
is no “jump” in the mapping.

Note that among all the previously mentioned cases, only one didn’t guarantee the absence
of a jump, namely when y′, y are on the same thread as h(x′), x̂ and in the right direction,
but when y 6= x̂. We then use the stronger hypothesis on the number of types in Q, which
guarantees that there also exist z, z′ verifying the same conditions as y, y′ (cf. Figure 10).
We consider the m-guarded contiguous-segment-E-swap between [x̂, y′] and [y, z′] in Q, and
extend h by setting h(x) to y. h is now an inclusion.

h(x′) x̂ y′ y z′ z
• ◦| | | | | | | |

−→ h(x′) y z
◦ •| | | | | | | |

Figure 10 y′, y, z′, z and h(x′), x̂ are on the same thread, in the same order: we use a contiguous-
segment-E-swap to avoid a jump in the inclusion.

J

5 Tools for reorganizing S-edges

In the previous section, we have seen how to “rewrite” Q using E-swap operations in order to
pseudo-include P into the resulting quasitree. By definition, the pseudo-inclusion h of P into
Q respects the enriched support but can be completely wild relatively to the S-edges. For
instance, in Q, the endpoints of a thread may not have the same S-parent. In this section
we show how to use S-swaps in order to ensure that our pseudo-inclusion mapping takes into
account (to various degrees) the S-edges. We say that two nodes of a quasitree are S-siblings
if they share the same S-parent.

In Section 5.1, we show how to make sure that the pseudo-inclusion respects the S-siblings
relation. In Section 5.2 we show how to ensure that the image of a pseudo-inclusion is S-stable.
S-stability is required to define and operate on the loops, as will be established in Section 6.

5.1 S-siblings re-association
The following Lemma shows how to modify a pseudo-inclusion in order for it to preserve the
S-siblings relation. Note that it doesn’t necessarily mean that the image structure has the
matching endpoint property because the initial structure itself may not have this property
as it is derived from a quasitree.

I Lemma 14. ∀α,m ∈ N,∃N ∈ N,∀W ∈ CtxtNσ ,∀Q ∈ quasi-HNσ , if h : W → Q is a N-
pseudo-inclusion, then there exists some Q′ ∈ quasi-Hm+1

σ and some (m+1)-pseudo-inclusion
h′ : W → Q′ such that Q′ ≡<-inv FO

α Q, Suppm+1(Q′) ' Suppm+1(Q) and, if x and y are
S-siblings in W, then so are h′(x) and h′(y) in Q′.

Proof sketch. We correct the S-edges two by two: let x, y be two S-siblings in W such that
h(x), h(y) are not S-siblings in Q, and let z ∈ Q be the S-sibling of h(x).

z and h(y) must have the same (N − 2)-type: we can use a crossing-E-swap or a mirror-
E-swap (depending on whether they are the endpoints of a same thread) to exchange their
positions and make sure h(x) and h(y) are S-siblings.

However, for these swaps to be guarded, we must operate far enough from the endpoints.
This can be done as long as we choose N large enough. J
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A particular case of the previous lemma is when W is a hollow tree and h is surjective:
then Q′ has the matching endpoints property. This result will be useful in the proof of
Proposition 18.

5.2 S-stabilization
The image of a pseudo-inclusion has no reason to be S-stable, thus neither has its complement.
However, this is a crucial requirement to apply the results presented in the next section,
Section 6, in order to remove the extra material not in the image of the pseudo-inclusion.

The next result provides a method to ensure that the image (and its complement) of a
pseudo-inclusion is S-stable.

Recall that a pseudo-inclusion is said to be reduced if there is at most one jumping pair
of a given type. At the end of this process, we get a reduced pseudo-inclusion, which will
allow us to minimize the complement of its image in Section 6.1.

I Proposition 15. For every α,m ∈ N, there exist N, d,D ∈ N such that, for every P ∈ Hσ,
Q ∈ quasi-HN+1

σ such that [[EN+1(P)]] ≤Dd [[EN+1(Q)]] and P is (N + 1)-pseudo-included
in Q through some h, there are some h′ and Q′ ∈ quasi-Hm+1

σ such that Q′ ≡<-inv FO
α Q,

Suppm+1(Q′) ' Suppm+1(Q), h′ is a reduced (m + 1)-pseudo-inclusion of P in Q′ and
Q′ \ Im(h′) is S-stable in Q′.

Proof sketch. We consider all the pairs of elements x, y which break the S-stability of Im(h),
i.e. such that S(x, y), x ∈ Im(h) and y 6∈ Im(h). If there are many of them, then at least two
of them are far from each other and we can apply a crossing-S-swap to correct the mapping h.
We end up with a bounded number of problematic pairs that can be corrected separately. J

6 Removing unnecessary material

In this section we show how to remove the material in Q that is not present in the image of
the pseudo-inclusion of P . From the previous section we can assume that the pseudo-inclusion
mapping preserves the S-siblings relation and that its image is S-stable. The remaining part
of Q is then a union of “loops” in the sense that they connect nodes that have the same type.
After defining properly the notion of loop, we will use in Section 6.1 a pumping argument in
order to reduce the size of the loop to some constant while preserving ≡<-inv FO

α . In Section 6.2
we then show how to remove small loops without affecting the order-invariant equivalence
class. Finally, in Section 6.3 we show that if a hollow tree and a hollow quasitree have the
same enriched support, then they are ≡<-inv FO

α : this concludes the proof of Theorem 1.
We start with the definition of an abstract loop.
Let n ∈ N. Let Typenσ[2] denote the set of (n − 1)-types for pairs over the vocabulary

Pσ ∪ {E,S}, of degree ≤ 4. Let Σn be the vocabulary enriching Pσ ∪ {E,S} with two unary
symbols J1

τ and J2
τ for every τ ∈ Typenσ[2].

Let h be a reduced n-pseudo-inclusion from P ∈ Hσ to Q ∈ quasi-Hnσ, such that
V := Q \ Im(h) is S-stable.

Let Q+ be an extension of Q to Σn obtained in the following way. Since h is reduced, for
every τ ∈ Typenσ[2], there is at most one jumping pair of type τ . If there isn’t, J1

τ and J2
τ are

interpreted as the empty set. Else, let {x, x′} be this pair, and u′ (resp. u) be the E-neighbor
of h(x) (resp. h(x′)) in [h(x), h(x′)]. Interpret J1

τ as {h(x), u′} and J2
τ as {h(x′), u} (the

assignments x 7→ 1 and x′ 7→ 2 are arbitrary). This is illustrated on the left part of Figure 11,
where the double line represents Im(h). We say that Q+ is a h-jump-extension of Q.
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We define V+ = Ctxtn(Q+|V ) as the extension of Ctxtn(Q|V ) to Σn where every J iτ is
defined consistently with Q+ (i.e. ∀x ∈ V,V+ |= J iτ (x) iff Q+ |= J iτ (x)). This process is
illustrated in Figure 11. V+ is called an n-abstract loop. Let Lnσ be the set of n-abstract
loops.

h(x) h(x′)
| | | | | |

| |

|
J1
τ J2

τ

| |

| |

|
J1
τ J2

τ

Figure 11 Example of a h-jump-extension Q+ of Q (on the left), and its associated abstract loop
V+ of support V := Q \ Im(h) (on the right).

Every Σn-structure will have a ’+’ symbol in its name. When we omit it, we mean
the reduction of the structure to Pσ ∪ {E,S} (for instance, from V+ ∈ Lnσ, we get V :=
Ctxtn(Q|V ) ∈ Ctxtnσ).

6.1 Loop minimization

It will be crucial to bound the size of the loops left by a pseudo-inclusion. The following
result does this using a simple pumping argument.

I Proposition 16. For every α, n ∈ N, there exists N ∈ N such that for every P ∈ Hσ,
Q ∈ quasi-Hnσ and reduced n-pseudo-inclusion h : P → Q, if V := Q \ Im(h) is S-stable then
there exists some Q′ ∈ quasi-Hnσ and a reduced n-pseudo-inclusion h′ : P → Q′ such that
Q′ ≡<-inv FO

α Q, U := Q′ \ Im(h′) is S-stable and |U | ≤ N .

6.2 Loop elimination

It now remains to get rid of the small loops. This is a consequence of the “aperiodicity”
of < -inv FO: we cannot distinguish in < -inv FO between k and k + 1 copies of the same
object if k is sufficiently large. Starting from a small loop, we can use the inclusion results
of Section 4 to recreate many copies of the loop within Q, then, according to the following
proposition, get rid of one copy using aperiodicity.

I Proposition 17. ∀α ∈ N,∃l ∈ N,∀m ∈ N,∃n ∈ N,∀M ∈ N,∃K ∈ N such that for every
abstract loop U+ ∈ Ln+1

σ and every Q ∈ quasi-Hn+1
σ such that |U | ≤M , (l+ 1) · [[En+1(U)]] <

[[En+1(Q)]] and such that for every (n+ 1)-type χ that occurs in U , |Q|χ ≥ K, there exists
Q′ ∈ quasi-Hmσ such that Q′ ≡<-inv FO

α Q and [[Em(Q)]] = [[Em(Q′)]] + [[Em(U)]]

Proof sketch. The proof is based on the well known result that first-order formulas of
quantifier-rank k cannot distinguish between a linear order of length 2k and a linear order of
length 2k + 1 (see, for instance, [10]). Hence if a loop is repeated at least 2k + 1 times, we
can eliminate one instance without changing the ≡<-inv FO

k class of the structure.
First, we include many copies of the loop in Q. The inclusion may not preserve S-edges:

the next step is to re-associate these S-edges with crossing-S-swaps in order for these copies
to be isomorphic. This is made possible by the hypothesis on the number of occurrences of
types appearing in U : it gives us room to make sure the crossing-S-swaps are guarded.

Once this is done, we can remove one copy in a < -inv FO-indistinguishable way. J
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6.3 S-parents re-association

We now turn to the last step of the proof of Theorem 1.
After the removal of the extra material in Q, we have transformed our initial hollow

tree Q into a hollow quasitree having the same number of occurrences of any type as the
initial P . They both have the same threads but may differ with their S-edges. The following
proposition states that they are ≡<-inv FO

α , thus ending the proof of Theorem 1.
The techniques used in the proof of the following proposition are strongly reminiscent of

those used in [3]; it requires a notion of vertical-S-swaps adapted to hollow trees.

I Proposition 18. ∀α ∈ N, there exists n1 ∈ N such that ∀P ∈ Hσ,∀Q ∈ quasi-Hn1
σ , if

Suppn1(P) ' Suppn1(Q) then P ≡<-inv FO
α Q.

7 Conclusion

We have shown that < -inv FO = FO over hollow trees. In order to lift this result to
structures of pathwidth 2 and bounded degree, it suffices to show that < -inv FO = FO
over structures that have the same underlying graph than hollows trees, but without the
possibility to distinguish a sibling from a child. In other words, there is only one binary
relation that is the union of E and S. It turns out that there is a bi-FO-interpretation from
structures of pathwidth 2 and bounded degree through this class of structures, as illustrated
in Figure 12.

x•
••

•

•
• •

•

•

12
3

4

5
6 7

8

9
←→

x

1 9

2 6 8

3 5

4

7

Figure 12 From a typical pathwidth 2 graph of degree 3 to a hollow tree where E and S are
indistinguishable.

Unfortunately our proof does not extend to this class of structures as it was crucial in
our proof to distinguish between E-swaps and S-swaps. We leave this generalization as an
open problem.

We also have no idea yet on what to do when the degree is not assumed to be bounded,
as we are then also facing the second difficulty mentioned in the introduction, namely
reinterpreting the initial structure within its tree representation.

In this paper we bypassed the first problem mentioned in the introduction, finding similar
tree decompositions given similar structures, by working directly on trees. This problem
seems unavoidable when working with graphs. There are examples of similar structures of
treewidth 2 that do not have any similar tree decompositions of width 2. It might even be
the case that for all k there are two similar structures of treewidth 2 that do not have similar
tree decomposition of width k. If that were true, completely new ideas would be needed to
solve the treewidth 2 case.
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Abstract
A Multiplicative-Exponential Linear Logic (MELL) proof-structure can be expanded into a set of
resource proof-structures: its Taylor expansion. We introduce a new criterion characterizing those
sets of resource proof-structures that are part of the Taylor expansion of some MELL proof-structure,
through a rewriting system acting both on resource and MELL proof-structures.
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1 Introduction

Resource λ-calculus and the Taylor expansion. Girard’s linear logic (LL, [15]) is a refine-
ment of intuitionistic and classical logic that isolates the infinitary parts of reasoning in two
(dual) modalities: the exponentials ! and ?. They give a logical status to the operations
of memory management such as copying and erasing: a linear proof corresponds – via
Curry–Howard isomorphism – to a program that uses its argument linearly, i.e. exactly once,
while an exponential proof corresponds to a program that can use its argument at will.

The intuition that linear programs are analogous to linear functions (as studied in linear
algebra) while exponential programs mirror a more general class of analytic functions got a
technical incarnation in Ehrhard’s work [9, 10] on LL-based denotational semantics for the
λ-calculus. This investigation has been then internalized in the syntax, yielding the resource
λ-calculus [5, 11, 14]: there, copying and erasing are forbidden and replaced by the possibility
to apply a function to a bag of resource λ-terms which specifies how many times an argument
can be linearly passed to the function, so as to represent only bounded computations.

The Taylor expansion associates with an ordinary λ-term a (generally infinite) set of
resource λ-terms, recursively approximating the usual application: the Taylor expansion of
the λ-term MN is made of resource λ-terms of the form t[u1, . . . , un], where t is a resource
λ-term in the Taylor expansion of M , and [u1, . . . , un] is a bag of arbitrarily finitely many
(possibly 0) resource λ-terms in the Taylor expansion of N . Roughly, the idea is to decompose
a program into a set of purely “resource-sensitive programs”, all of them containing only
bounded (although possibly non-linear) calls to inputs. The notion of Taylor expansion has
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many applications in the theory of the λ-calculus, e.g. in the study of linear head reduction
[12], normalization [24, 27], Böhm trees [4, 19], λ-theories [20], intersection types [22]. More
generally, understanding the relation between a program and its Taylor expansion renews the
logical approach to the quantitative analysis of computation started with the inception of LL.

A natural question is the inverse Taylor expansion problem: how to characterize which
sets of resource λ-terms are contained in the Taylor expansion of a same λ-term? Ehrhard and
Regnier [14] defined a simple coherence relation such that a finite set of resource λ-terms is
included in the Taylor expansion of a λ-term if and only if the elements of this set are pairwise
coherent. Coherence is crucial in many structural properties of the resource λ-calculus, such
as in the proof that in the λ-calculus normalization and Taylor expansion commute [12, 14].

We aim to solve the inverse Taylor expansion problem in the more general context of LL,
more precisely in the multiplicative-exponential fragment MELL of LL, being aware that for
MELL no coherence relation can solve the problem (see below).

Proof-nets, proof-structures and their Taylor expansion: seeing trees behind graphs. In
MELL, linearity and the sharp analysis of computations naturally lead to represent proofs
in a more general graph-like syntax instead of a term-like or tree-like one.1 Indeed, linear
negation is involutive and classical duality can be interpreted as the possibility of juggling
between different conclusions, without a distinguished output. Graphs representing proofs in
MELL are called proof-nets: their syntax is richer and more expressive than the λ-calculus.
Contrary to λ-terms, proof-nets are special inhabitants of the wider land of proof-structures:
they can be characterized, among proof-structures, by abstract (geometric) conditions called
correctness criteria [15]. The procedure of cut-elimination can be applied to proof-structures,
and proof-nets can also be seen as the proof-structures with a good behavior with respect to
cut-elimination [1]. Proof-structures can be interpreted in denotational models and proof-
nets can be characterized among them by semantic means [25]. It is then natural to attack
problems in the general framework of proof-structures. In this work, correctness plays no role
at all, hence we will consider proof-structures and not only proof-nets. MELL proof-structures
are a particular kind of graphs, whose edges are labeled by MELL formulæ and vertices by
MELL connectives, and for which special subgraphs are highlighted, the boxes, representing
the parts of the proof-structure that can be copied and discarded (i.e. called an unbounded
number of times). A box is delimited from the rest of a proof-structure by exponential
modalities: its border is made of one !-cell, its principal door, and arbitrarily many ?-cells,
its auxiliary doors. Boxes are nested or disjoint (they cannot partially overlap), so as to add
a tree-like structure to proof-structures aside from their graph-like nature.

As in λ-calculus, one can define [13] box-free resource proof-structures2, where !-cells make
resources available boundedly, and the Taylor expansion of MELL proof-structures into these
resource proof-structures, that recursively copies the content of the boxes an arbitrary number
of times. In fact, as somehow anticipated by Boudes [3], such a Taylor expansion operation can
be carried on any tree-like structure. This primitive, abstract, notion of Taylor expansion can
then be pulled back to the structure of interest, as shown in [18] and put forth again here.

The question of coherence for proof-structures. The inverse Taylor expansion problem
has a natural counterpart in the world of MELL proof-structures: given a set of resource
proof-structures, is there a MELL proof-structure the expansion of which contains the set?

1 A term-like object is essentially a tree, with one output (its root) and many inputs (its other leaves).
2 Also known as differential proof-structures [6] or differential nets [13, 21, 7] or simple nets [23].
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Pagani and Tasson [23] give the following answer: it is possible to decide whether a finite set of
resource proof-structures is a subset of the Taylor expansion of a same MELL proof-structure
(and even possible to do it in non-deterministic polynomial time); but unlike the λ-calculus,
the structure of the relation “being part of the Taylor expansion of a same proof-structure”
is much more complicated than a binary (or even n-ary) coherence. Indeed, for any n > 1, it
is possible to find n+ 1 resource proof-structures such that any n of them are in the Taylor
expansion of some MELL proof-structure, but there is no MELL proof-structure whose Taylor
expansion has all the n+1 as elements (see our Example 21 and [26, pp. 244-246]).

In this work, we introduce a new combinatorial criterion, glueability, for deciding whether
a set of resource proof-structures is a subset of the Taylor expansion of some MELL proof
structure, based on a rewriting system on sequences of MELL formulæ. Our criterion is more
general (and, we believe, simpler) than the one of [23], which is limited to the cut-free case with
atomic axioms and characterizes only finite sets: we do not have these limitations. We believe
that our criterion is a useful tool for studying proof-structures. We conjecture that it can be
used to show that, for a suitable geometric restriction, a binary coherence relation does exist
for resource proof-structures. It might also shed light on correctness and sequentialization.

As the proof-structures we consider are typed, an unrelated difficulty arises: a resource
proof-structure might not be in the Taylor expansion of any MELL proof-structure, not
because it does not respect the structure imposed by the Taylor expansion, but because its
type is impossible.3 To solve this issue we enrich the MELL proof-structure syntax with a
“universal” proof-structure: a special z-cell (daimon) that can have any number of outputs
of any types, and we allow it to appear inside a box, representing information plainly missing
(see Section 8 for more details and the way this matter is handled by Pagani and Tasson [23]).

2 Outline and technical issues

The rewritings. The essence of our rewriting system is not located on proof-structures but
on lists of MELL formulæ (Definition 9). In a very down-to-earth way, this rewriting system is
generated by elementary steps akin to rules of sequent calculus read from the bottom up: they
act on a list of conclusions, analogous to a monolaterous right-handed sequent. These steps are
actually more sequentialized than sequent calculus rules, as they do not allow for commutation.
For instance, the rule corresponding to the introduction of a ⊗ on the i-th formula, is defined
as ⊗i : (γ1, . . . , γi−1, A⊗B, γi+1, . . . , γn)→ (γ1, . . . , γi−1, A,B, γi+1, . . . , γn).

A A⊥

ax

⊗

A⊗A⊥

⊗1
A A⊥

ax

These rewrite steps then act on MELL proof-structures, coherently with their type, by
modifying (most of the times, erasing) the cells directly connected to the conclusion of the
proof-structure. Formally, this means that there is a functor qMELLz from the rewrite steps
into the category Rel of sets and relations, associating with a list of formulæ the set of MELL
proof-structures with these conclusions, and with a rewrite step a relation implementing it
(Definition 12). The rules deconstruct the proof-structure, starting from its conclusions. The
rule ⊗1 acts by removing a ⊗-cell on the first conclusion, replacing it by two conclusions.

3 Similarly, in the λ-calculus, there is no closed λ-term of type X → Y with X 6= Y atomic, but the
resource λ-term (λf.f)[ ] can be given that type: the empty bag [ ] kills any information on the argument.
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These rules can only act on specific proof-structures, and indeed, capture a lot of their
structure: ⊗i can be applied to a MELL proof-structure R if and only if R has a ⊗-cell in
the conclusion i (as opposed to, say, an axiom). So, in particular, every proof-structure is
completely characterized by any sequence rewriting it to the empty proof-structure.

Naturality. The same rules act also on sets of resource proof-structures, defining the
functor PqDiLLz0 from the rewrite steps into the category Rel (Definition 17). When
carefully defined, the Taylor expansion induces a natural transformation from PqDiLLz0 to
qMELLz (Theorem 18). By applying this naturality repeatedly, we get our characterization
(Theorem 20): a set of resource proof-structures Π is a subset of the Taylor expansion of a
MELL proof-structure iff there is a sequence rewriting Π to the singleton of the empty proof-
structure.

The naturality property is not only a mean to get our characterization, but also an
interesting result in itself: natural transformations can often be used to express fundamental
properties in a mathematical context. In this case, the Taylor expansion is natural with
respect to the possibility to build a (MELL or resource) proof-structure by adding a cell
to its conclusions or boxing it. Said differently, naturality of the Taylor expansion roughly
means that the rewrite rules that deconstruct a MELL proof-structure R and a set of resource
proof-structures in the Taylor expansion of R mimic each other.

Quasi-proof-structures and mix. Our rewrite rules consume proof-structures from their
conclusions. The rule corresponding to boxes in MELL opens a box by deleting its principal
door (a !-cell) and its border, while for a resource proof-structure it deletes a !-cell and
separates the different copies of the content of the box (possibly) represented by such a !-cell.
This operation is problematic in a twofold way. In a resource proof-structure, where the
border of boxes is not marked, it is not clear how to identify such copies. On the other side,
in a MELL proof-structure the content of a box is not to be treated as if it were at the same
level as what is outside of the box: it can be copied many times or erased, while what is
outside boxes cannot, and treating the content in the same way as the outside suppresses
this distinction, which is crucial in LL. So, we need to remember that the content of a box,
even if it is at depth 0 (i.e. not contained in any other box) after erasing the box wrapping
it by means of our rewrite rules, is not to be mixed with the rest of the structure at depth 0.

π

· · ·

In order for our proof-structures to provide this information, we need to generalize them
and consider that a proof-structure can have not just a tree of boxes, but a forest: this
yields the notion of quasi-proof-structure (Definition 1). In this way, according to our rewrite
rules, opening a box by deleting its principal door amounts to taking a box in the tree and
disconnecting it from its root, creating a new tree. We draw this in a quasi-proof-structure
by surrounding elements having the same root with a dashed line, open from the bottom,
remembering the phantom presence of the border of the box, even if it was erased. This allows
one to open the box only when it is “alone”, surrounded by a dashed line (see Definition 11).

This is not merely a technical remark, as this generalization gives a status to the mix
rule of LL: indeed, mixing two proofs amounts to taking two proofs and considering them
as one, without any other modifications. Here, it amounts to taking two proofs, each with
its box-tree, and considering them as one by merging the roots of their trees (see the mix
step in Definition 11). We embed this design decision up to the level of formulæ, which
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A A⊥ A B A B A · · · A A · · · A

X X⊥ 1 ⊥ A1 . . . Ap

ax
cut

1 ⊥
⊗

A⊗B

`
A`B

?

?A

!

!A

zp

Figure 1 Cells, with their labels and their typed inputs and outputs (ordered from left to right).

are segregated in different zones that have to be mixed before interacting (see the notion of
partition of a finite sequence of formulæ in Section 3).

Geometric invariance and emptiness: the filled Taylor expansion. The use of forests
instead of trees for the nesting structure of boxes, where the different roots are thought of
as the contents of long-gone boxes, has an interesting consequence in the Taylor expansion:
indeed, an element of the Taylor expansion of a proof-structure contains an arbitrary number
of copies of the contents of the boxes, in particular zero. If we think of the part at depth
0 of a MELL proof-structure as inside an invisible box, its content can be deleted in some
elements of the Taylor expansion just as any other box.4 As erasing completely conclusions
would cause the Taylor expansion not preserve the conclusions (which would lead to technical
complications), we introduce the filled Taylor expansion (Definition 8), which contains not
only the elements of the usual Taylor expansion, but also elements of the Taylor expansion
where one component has been erased and replaced by a z-cell (daimon), representing a
lack of information, apart from the number and types of the conclusions.

Atomic axioms. Our paper first focuses on the case where proof-structures are restricted
to atomic axioms. In Section 7 we sketch how to adapt our method to the non-atomic case.

3 Proof-structures and the Taylor expansion

MELL formulæ and (quasi-)proof-structures. Given a countably infinite set of proposi-
tional variables X,Y, Z, . . . , MELL formulæ are defined by the following inductive grammar:

A,B ::= X | X⊥ | 1 | ⊥ | A⊗B | A`B | !A | ?A

Linear negation is defined via De Morgan laws 1⊥ = ⊥, (A ⊗ B)⊥ = A⊥ ` B⊥ and
(!A)⊥ = ?A, so as to be involutive, i.e. A⊥⊥ = A. Given a list Γ = (A1, . . . , Am) of MELL
formulæ, a partition of Γ is a list (Γ1, . . . ,Γn) of lists of MELL formulæ such that there are
0 = i0 < · · · < in = m with Γj = (Aij−1+1, . . . , Aij ) for all 1 6 j 6 n; such a partition of Γ
is also denoted by (A1, . . . , Ai1 ; · · · ;Ain−1+1, . . . , Am), with lists separated by semi-colons.

We reuse the syntax of proof-structures given in [18] and sketch here its main features. We
suppose known definitions of (directed) graph, rooted tree, and morphism of these structures.
In what follows we will speak of tails in a graph: “hanging” edges with only one vertex. This
can be implemented either by adding special vertices or using [2]’s graphs.

If an edge e is incoming in (resp. outgoing from) a vertex v, we say that e is a input
(resp. output) of v. The reflexive-transitive closure of a tree τ is denoted by τ	: the operator
(·)	 lifts to a functor from the category of trees to the category of directed graphs.

4 The dual case, of copying the contents of a box, poses no problem in our approach.
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I Definition 1. A module M is a (finite) directed graph with:
vertices v labeled by `(v) ∈ {ax, cut,1,⊥,⊗,`, ?, !} ∪ {zp | p ∈ N}, the type of v;
edges e labeled by a MELL formula c(e), the type of e;
an order <M that is total on the tails of |M | and on the inputs of each vertex of type `,⊗.

Moreover, all the vertices verify the conditions of Figure 1.5
A quasi-proof-structure is a triple R = (|R|,F , box) where:
|R| is a module with no input tails, called the module of R;
F is a forest of rooted trees with no input tails, called the box-forest of R;
box : |R| → F	 is a morphism of directed graphs, the box-function of R, which induces a
partial bijection from the inputs of the vertices of type ! and the edges in F , and such that:

for any vertices v, v′ with an edge from v′ to v, if box(v) 6= box(v′) then `(v) ∈ {!, ?}.6
Moreover, for any output tails e1, e2, e3 in |R| which are outputs of the vertices v1, v2, v3,
respectively, if e1 <|R| e2 <|R| e3 then it is impossible that box(v1) = box(v3) 6= box(v2).7

A quasi-proof-structure R = (|R|,F , box) is:
1. MELLz if all vertices in |R| of type ! have exactly one input, and the partial bijection

induced by box from the inputs of the vertices of type ! in |R| and the edges in F is total.
2. MELL if it is MELLz and, for every vertex v in |R| of type z, one has box−1(box(v)) = {v}

and box(v) is not a root of the box-forest F of R.
3. DiLLz0 if the box-forest F of R is just a juxtaposition of roots.
4. DiLL0 (or resource) if it is DiLLz0 and there is no vertex in |R| of type z.
For the previous systems, a proof-structure is a quasi-proof-structure whose box-forest is a tree.

Our MELL proof-structure (i.e. a MELL quasi-proof-structure that is also a proof-structure)
corresponds to the usual notion of MELL proof-structure (as in [8]) except that we also allow
the presence of a box filled only by a daimon (i.e. a vertex of type z). The empty (DiLL0 and
MELL) proof-structure – whose module and box-forest are empty graphs – is denoted by ε.

Given a quasi-proof-structure R = (|R|,F , box), the output tails of |R| are the conclusions
of R. So, the pre-images of the roots of F via box partition the conclusions of R in a list of
lists of such conclusions. The type of R is the list of lists of the types of these conclusions.
We often identify the conclusions of R with a finite initial segment of N.

By definition of graph morphism, two conclusions in two distinct lists in the type of a
quasi-proof-structure R are in two distinct connected components of |R|; so, if R is not a
proof-structure then |R| contains several connected components. Thus, R can be seen as a
list of proof-structures, its components, one for each root in its box-forest.

A non-root vertex v in the box-forest F induces a subgraph of F	 of all vertices above it
and edges connecting them. The pre-image of this subgraph through box is the box of v and
the conditions on box in Definition 1 translate the usual nesting condition for LL boxes.

In quasi-proof-structures, we speak of cells instead of vertices, and, for a cell of type `, of
a `-cell. A z-cell is a zp-cell for some p ∈ N. An hypothesis cell is a cell without inputs.

I Example 2. The graph in Figure 2 is a MELL quasi-proof-structure. The colored areas
represent the pre-images of boxes, and the dashed boxes represent the pre-images of roots.

5 Note that there are no conditions on the types of the outputs of vertices of type z (i.e. of type zp for
some p ∈ N); and the outputs of vertices of type ax must have atomic types.

6 Roughly, it says that the border of a box is made of (inputs of) vertices of type ! or ?.
7 This is a technical condition that simplifies the definition of the rewrite rules in Section 4. Note that

box(v1), box(v2), box(v3) are necessarily roots in F , since box is a morphism of directed graphs.
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⊥ 1 Y Y ⊥

⊥ 1

X 1

X⊥

ax

ax

ax

!

!1

!
⊥ 1

!

!1

!
?

?⊥
?

?!1

⊗

X ⊗ ?⊥

?

?Y
`

?Y ` Y ⊥

!

!(?Y ` Y ⊥)

!

1

!

!1

! •

•

•

•

• •

Figure 2 A MELL quasi-proof-structure R, its box-forest FR (without dotted lines) and the
reflexive-transitive closure F	R of FR (with also dotted lines).

The Taylor expansion. Proof-structures have a tree structure made explicit by their box-
function. Following [18], the definition of the Taylor expansion uses this tree structure: first,
we define how to “expand” a tree – and more generally a forest – via a generalization of the
notion of thick subtree [3] (Definition 3; roughly, a thick subforest of a box-forest says the
number of copies of each box to be taken, iteratively), we then take all the expansions of the
tree structure of a proof-structure and we pull the approximations back to the underlying
graphs (Definition 5), finally we forget the tree structures associated with them (Definition 6).

I Definition 3 (thick subforest). Let τ be a forest of rooted trees. A thick subforest of τ is a
pair (σ, h) of a forest σ of rooted trees and a graph morphism h : σ → τ whose restriction to
the roots of σ is bijective.

I Example 4. The following is a graphical presentation of a thick subforest (τ, h) of the
box-forest F of the quasi-proof-structure in Figure 2, where the graph morphism h : τ → F
is depicted chromatically (same color means same image via h).

τ =

•

•

•

• •

• •

•

• • • • •
h−→

•

•

•

•

• •
= F

Intuitively, it means that τ is obtained from F by taking 3 copies of the blue box, 1 copy of
the red box and 4 copies of the orange box; in the first (resp. second; third) copy of the blue
box, 1 copy (resp. 0 copies; 2 copies) of the purple box has been taken.

I Definition 5 (proto-Taylor expansion). Let R = (|R|,FR, boxR) be a quasi-proof-structure.
The proto-Taylor expansion of R is the set T proto(R) of thick subforests of FR.

Let t = (τt, ht) ∈ T proto(R). The t-expansion of R is the pullback (Rt, pt, pR) below,
computed in the category of directed graphs and graph morphisms.

Rt τ	t

|R| F	R

pt

pR h	t

boxR
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⊥ 1 ⊥ 1 ⊥ 1 Y Y ⊥

⊥ 1 1 1

X 1 1 1 1

X⊥ !1

ax

ax

ax ax ax

!

!1

!

!1

!

⊥ 1 1 1

!

!1?

?⊥

?

?!1

⊗

X ⊗ ?⊥

?

?Y
`

?Y ` Y ⊥

!

!(?Y ` Y ⊥)

1 1 1 1

!

!1

• •

Figure 3 The element of the Taylor expansion of the MELL quasi-proof-structure R in Figure 2,
obtained from the element of T proto(R) depicted in Example 4.

Given a quasi-proof-structure R and t = (τt, ht) ∈ T proto(R), the directed graph Rt
inherits labels on vertices and edges by composition with the graph morphism pR : Rt → |R|.

Let [τt] be the forest made up of the roots of τt and ι : τt → [τt] be the graph morphism
sending each vertex of τt to the root below it; ι	 induces by post-composition a morphism
ht = ι	 ◦ pt : Rt → [τt]	. The triple (Rt, [τt], ht) is a DiLL0 quasi-proof-structure, and it is a
DiLL0 proof-structure if R is a proof-structure. We can then define the Taylor expansion T (R)
of a quasi-proof-structure R (an example of an element of a Taylor expansion is in Figure 3).

I Definition 6 (Taylor expansion). Let R be a quasi-proof-structure. The Taylor expansion of
R is the set of DiLL0 quasi-proof-structures T (R) = {(Rt, [τt], ht) | t = (τt, ht) ∈ T proto(R)}.

An element (Rt, [τt], ht) of the Taylor expansion of a quasi-proof-structure R has much
less structure than the pullback (Rt, pt, pR): the latter indeed is a DiLL0 quasi-proof-structure
Rt coming with its projections |R| pR←− Rt

pt−→ τ	t , which establish a precise correspondence
between cells and edges of Rt and cells and edges of R: a cell in Rt is labeled (via the
projections) by both the cell of |R| and the branch of the box-forest of R it arose from. But
(Rt, [τt], ht) where Rt is without its projections pt and pR loses the correspondence with R.
I Remark 7. By definition, the Taylor expansion preserves conclusions: there is a bijection
ϕ from the conclusions of a quasi-proof-structure R to the ones in each element ρ of T (R)
such that i and ϕ(i) have the same type and the same root (i.e. boxR(i) = boxρ(ϕ(i)) up to
isomorphism). Therefore, the types of R and ρ are the same (as a list of lists).

The filled Taylor expansion. As discussed in Section 2 (p. 5), our method needs to “rep-
resent” the emptiness introduced by the Taylor expansion (taking 0 copies of a box) so
as to preserve the conclusions. So, an element of the filled Taylor expansion T z(R) of a
quasi-proof-structure R (an example is in Figure 4) is obtained from an element of T (R)
where a whole component can be erased and replaced by a z-cell with the same conclusions
(hence T (R) ⊆ T z(R)).

I Definition 8 (filled Taylor expansion). An emptying of a DiLL0 quasi-proof-structure ρ =
(|ρ|,F , box) is the DiLL0 quasi-proof-structure with the same conclusions as ρ, obtained from ρ

by replacing each of the components of some roots of F with a z-cell whose outputs are tails.
The filled Taylor expansion T z(R) of a quasi-proof-structure R is the set of all the

emptyings of every element of its Taylor expansion T (R).
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1 1

X⊥ X ⊗ ?⊥ ?!1 !(?Y ` Y ⊥)

z !

1 1

!

!1

• •

Figure 4 An element of the filled Taylor expansion of the MELL quasi-proof-structure in Figure 2.

(Γ1; · · · ; Γk, c(i), c(i+1),Γ′k; · · · ; Γn) exci−−→ (Γ1; · · · ; Γk, c(i+1), c(i),Γ′k; · · · ; Γn)
(Γ1; · · · ; Γk, c(i), c(i+1),Γ′k; · · · ; Γn) mixi−−→ (Γ1; · · · ; Γk, c(i); c(i+1),Γ′k; · · · ; Γn)

(Γ1; · · · ; Γk; c(i), c(i+1); Γk+2; · · · ; Γn) axi−−→ (Γ1; · · · ; Γk; Γk+2; · · · ; Γn) with c(i) = A = c(i+1)⊥

(Γ1; · · · ; Γk; · · · ; Γn) cuti

−−→ (Γ1; · · · ; Γk, c(i), c(i+1); · · · ; Γn) with c(i) = A = c(i+1)⊥

(Γ1; · · · ; Γk; Γk+1, c(i); Γk+2; · · · ; Γn) zi−−→ (Γ1; · · · ; Γk; Γk+2; · · · ; Γn)
(Γ1; · · · ; Γk; c(i); Γk+2; · · · ; Γn) 1i−→ (Γ1; · · · ; Γk; Γk+2; · · · ; Γn) with c(i) = 1
(Γ1; · · · ; Γk; c(i); Γk+2; · · · ; Γn) ⊥i−−→ (Γ1; · · · ; Γk; Γk+2; · · · ; Γn) with c(i) = ⊥

(Γ1; · · · ; Γk, c(i); · · · ; Γn) ⊗i−−→ (Γ1; · · · ; Γk, A,B; · · · ; Γn) with c(i) = A⊗B
(Γ1; · · · ; Γk, c(i); · · · ; Γn) `i−−→ (Γ1; · · · ; Γk, A,B; · · · ; Γn) with c(i) = A`B

(Γ1; · · · ; Γk, c(i); · · · ; Γn) ?ci−→ (Γ1; · · · ; Γk, ?A, ?A; · · · ; Γn) with c(i) = ?A
(Γ1; · · · ; Γk, c(i); · · · ; Γn) ?di−→ (Γ1; · · · ; Γk, A; · · · ; Γn) with c(i) = ?A

(Γ1; · · · ; Γk; c(i); Γk+2; · · · ; Γn) ?wi−→ (Γ1; · · · ; Γk; Γk+2; · · · ; Γn) with c(i) = ?A
(Γ1; · · · ; ?Γk, c(i); · · · ; Γn) Boxi−−−→ (Γ1; · · · ; ?Γk, A; · · · ; Γn) with c(i) = !A

Figure 5 The generators of Path. In the source Γ = (A1, . . . , Ai1 ; · · · ;Aim−1+1, . . . , Ain ) of each
arrow, c(i) denotes the ith formula in the flattening (A1, . . . , Ai1 , . . . , Aim−1+1, . . . , Ain ) of Γ.

4 Means of destruction: unwinding MELL quasi-proof-structures

Our aim is to deconstruct proof-structures (be they MELLz or DiLL0) from their conclusions.
To do that, we introduce a category of rules of deconstruction. The morphisms of this category
are sequences of deconstructing rules, acting on lists of lists of formulæ. These morphisms
act through functors on quasi-proof-structures, exhibiting their sequential structure.

I Definition 9 (the category Path). Let Path be the category whose
objects are lists Γ = (Γ1; . . . ; Γn) of lists of MELL formulæ;
arrows are freely generated by the elementary paths in Figure 5.

We call a path any arrow ξ : Γ→ Γ′. We write the composition of paths without symbols and
in the diagrammatic order, so, if ξ : Γ→ Γ′ and ξ′ : Γ′ → Γ′′, ξξ′ : Γ→ Γ′′.

I Example 10. `1 `2 `3 ⊗1 ⊗3 exc1 exc2 mix2 ax1 exc2 mix2 ax1 ax1 is a path of type(
(X ⊗ Y ⊥) ` ((Y ⊗ Z⊥) ` (X⊥ ` Z))

)
−→ ε, where ε is the empty list of lists of formulæ.

We will tend to forget about exchanges and perform them silently (as it is customary, for
instance, in most presentations of sequent calculi).

The category Path acts on MELLz quasi-proof-structures, exhibiting a sequential struc-
ture in their construction. For Γ a list of lists of MELL formulæ, qMELLz(Γ) is the set of
MELLz quasi-proof-structures of type Γ. To ease the reading of the rewrite rules acting on a
MELLz quasi-proof-structures R, we will only draw the parts of R belonging to the relevant
component; e.g., if we are interested in an ax-cell whose outputs are the conclusions i and

i+1, and it is the only cell in a component, we will write i i+1

ax

ignoring the rest.
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Γk i i+1 Γ′
k

exci

Γk i+1 i Γ′
k

(a) Exchange.

Γk i i+1 Γ′
k

mixi

Γk i i+1 Γ′
k

(b) Mix.

· · · i i+1 · · ·

ax
axi

· · · · · ·

(c) Hypothesis (ax,z,1,⊥, ?w).

Γk

cut

cuti

i+1iΓk

(d) Cut.

Γk

⊗

i

⊗i

Γk i i+1

(e) Binary multiplicative (⊗,`).

Γk · · · · · ·

?

i

?ci

Γk · · ·

?

i

· · ·

?

i+1

(f) Contraction.

Γk

?

i

?di

Γk i

(g) Dereliction.

!

i

?

?Γk

Boxi

i

?

?Γk

(h) Box.

Figure 6 Actions of elementary paths on MELLz quasi-proof-structures.

I Definition 11 (action of paths on MELL quasi-proof-structures). An elementary path a : Γ→
Γ′ defines a relation a ⊆ qMELLz(Γ)× qMELLz(Γ′) (the action of a) as the smallest
relation containing all the cases in Figure 6, with the following remarks:
mix read in reverse, a quasi-proof-structure with two components is in relation with a quasi-

proof-structure with the same module but the two roots of such components merged.
hypothesis if a ∈ {axi,zi,1i,⊥i, ?wi}, the rules have all in common to act by deleting a cell

without inputs that is the only cell in its component. We have drawn the axiom case in
Figure 6c, the others vary only by their number of conclusions.

cut read in reverse, a quasi-proof-structure with two conclusions i and i+ 1 is in relation
with the quasi-proof-structure where these two conclusions are cut. This rule, from left to
right, is non-deterministic (as there are many possible cuts).

binary multiplicatives these rules delete a binary connective. We have only drawn the ⊗
case in Figure 6e, the ` case is similar.

contraction splits a ?-cell with h+k+2 inputs into two ?-cells with h+1 and k+1 inputs,
respectively.

dereliction only applies if the ?-cell (with 1 input) does not shift a level in the box-forest.
box only applies if a box (and its border) is alone in its component.

This definition of the rewrite system is extended to define a relation ξ ⊆ qMELLz(Γ)×
qMELLz(Γ′) (the action of any path ξ : Γ→ Γ′) by composition of relations.
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Given two MELLz quasi-proof-structures R and R′, we say that a rule a applies to R if
there is a finite sequence of exchanges exci1 · · · excin such that R exci1 ···excina R′.

I Definition 12 (the functor qMELLz). We define a functor qMELLz : Path→ Rel by:
on objects: qMELLz(Γ) is the set of MELLz quasi-proof-structures of type Γ;
on morphisms: for ξ : Γ→ Γ′, qMELLz(ξ) = ξ (see Definition 11).

Our rewrite rules enjoy two useful properties, expressed by Propositions 13 and 15.

I Proposition 13 (co-functionality). Let ξ : Γ→ Γ′ be a path. The relation ξ is a co-function
on the sets of underlying graphs, that is, a function ξ

op
: qMELLz(Γ′)→ qMELLz(Γ).

I Lemma 14 (applicability of rules). Let R be a non-empty MELLz quasi-proof-structure.
There exists a conclusion i such that:

either a rule in {axi,1i,⊥i,⊗i,`i, ?c i, ?d i, ?wi, cuti,zi,Boxi} applies to R;
or R mixi R′ (where the conclusions affected by mixi are i−k, . . . , i, i+1, . . . , i+`) and
i−k, . . . , i are all the conclusions of either a box or an hypothesis cell, and one of the
components of R′ coincides with this cell or box (and its border).

Proposition 13 and Lemma 14 are proven by simple inspection of the rewrite rules of Figure 6.

I Proposition 15 (termination). Let R be a MELLz quasi-proof-structure of type Γ. There
exists a path ξ : Γ→ ε such that R ξ ε.

To prove Proposition 15, it is enough to apply Lemma 14 and show that the size of MELLz

quasi-proof-structures decreases for each application of the rules in Figure 6, according to
the following definition of size. The size of a proof-structure R is the couple (p, q) where

p is the (finite) multiset of the number of inputs of each ?-cell in R;
q is the number of cells not labeled by z in R.

The size of a quasi-proof-structure R is the (finite) multiset of the sizes of its components.
Multisets are ordered as usual, couples are ordered lexicographically.

5 Naturality of unwinding DiLLz
0 quasi-proof-structures

For Γ a list of lists of MELL formulæ, qDiLLz0 (Γ) is the set of DiLLz0 quasi-proof-structures
of type Γ. For any set X, its powerset is denoted by P(X).

I Definition 16 (action of paths on DiLLz0 quasi-proof-structures). An elementary path
a : Γ → Γ′ defines a relation a ⊆ qDiLLz0 (Γ) ×P(qDiLLz0 (Γ′)) (the action of a) by the
rules in Figure 6 (except Figure 6h, and with all the already remarked notes) and in Figure 7.

We extend this relation on P(qDiLLz0 (Γ))×P(qDiLLz0 (Γ′)) by the monad multiplication
of X 7→ P(X) and define ξ (the action of any path ξ : Γ→ Γ′) by composition of relations.

Roughly, all the rewrite rules in Figure 7 – except Figure 7h – mimic the behavior of the
corresponding rule in Figure 6 using a z-cell. Note that in Figure 7g a z-cell is created.

The non-empty box rule in Figure 7h requires that, on the left of Boxi , ρj is not connected
to ρj′ for j 6= j′, except for the !-cell and the ?-cells in the conclusions. Read in reverse, the
rule associates with a non-empty finite set of DiLL0 quasi-proof-structures {ρ1, . . . , ρn} the
merging of ρ1, . . . , ρn, that is the DiLL0 quasi-proof-structure depicted on the left of Boxi .

I Definition 17 (the functor PqDiLLz0 ). We define a functor PqDiLLz0 : Path→ Rel by:
on objects: for Γ a list of lists of MELL formulæ, PqDiLLz0 (Γ) = P(qDiLLz0 (Γ)), the
set of sets of DiLLz0 quasi-proof-structures of type Γ;
on morphisms: for ξ : Γ→ Γ′, PqDiLLz0 (ξ) = ξ (see Definition 16).
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Γk i i+1 Γ′
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}

(a) Mix.

. . . i i+1 . . .

z
axi
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. . . . . .

}
(b) Hypothesis (ax,z,1,⊥, ?w).

Γk

z
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{
Γk i i+1
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}

(c) Cut.

Γk i

z ?ci

{
Γk i i+1

z
}

(d) Binary rule (⊗,`, ?c ).

Γk i

z ?di

{
Γk i

z
}

(e) Dereliction.

?Γk i

z
Boxi

{
?Γk i

z
}

(f) Daimoned box.

?Γk i

? !
Boxi

{
?Γk i

z
}

(g) Empty box.

. . .

ρn

ρ1

!

i

?

?Γk

Boxi


. . .ρj

i?

?Γk


16j6n

(h) Non-empty box (n > 0).

Figure 7 Actions of elementary paths on z-cells and on a box in qDiLLz0 .

I Theorem 18 (naturality). The filled Taylor expansion defines a natural transformation
Tz : PqDiLLz0 ⇒qMELLz : Path→Rel by: (Π, R)∈TzΓ iff Π⊆T z(R) and the type of
R is Γ. Moreover, if Π is a set of DiLL0 proof-structures with Π ξ Π′ and Π′ ⊆ T (R′), then
R is a MELL proof-structure and Π ⊆ T (R), where R is such that R ξ R′.8

In other words, the following diagram commutes for every path ξ : Γ→ Γ′.

PqDiLLz0 (Γ) PqDiLLz0 (Γ′)

qMELLz(Γ) qMELLz(Γ′)

PqDiLLz0 (ξ)

TzΓ

qMELLz(ξ)
TzΓ′

It means that given Π ξ Π′, where Π′ ⊆ T z(R′), we can simulate backwards the rewriting
to R (this is where the co-functionality of the rewriting steps expressed by Proposition 13

8 The part of the statement after “moreover” is our way to control the presence of z-cells.
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comes handy) so that R ξ R′ and Π ⊆ T z(R); and conversely, given R ξ R′, we can
simulate the rewriting for any Π ⊆ T z(R), so that Π ξ Π′ for some Π′ ⊆ T z(R′).

6 Glueability of DiLL0 quasi-proof-structures

Naturality (Theorem 18) allows us to characterize the sets of DiLL0 proof-structures that are
in the Taylor expansion of some MELL proof-structure (Theorem 20 below).

I Definition 19 (glueability). We say that a set Π of DiLLz0 quasi-proof-structures is glueable,
if there exists a path ξ such that Π ξ {ε}.

I Theorem 20 (glueability criterion). Let Π be a set of DiLL0 proof-structures: Π is glueable
if and only if Π ⊆ T (R) for some MELL proof-structure R.

Proof. If Π ⊆ T (R) for some MELL proof-structure R, then by termination (Proposition 15)
R ξ ε for some path ξ, and so Π ξ {ε} by naturality (Theorem 18, as T z(ε) = {ε}).

Conversely, if Π ξ {ε} for some path ξ, then by naturality (Theorem 18, as T (ε) = {ε}
and Π is a set of DiLL0 proof-structures) Π ⊆ T (R) for some MELL proof-structure R. J

I Example 21. The three DiLL0 proof-structures ρ1, ρ2, ρ3 below are not glueable as a
whole, but are glueable two by two. In fact, there is no MELL proof-structure whose Taylor
expansion contains ρ1, ρ2, ρ3, but any pair of them is in the Taylor expansion of some MELL
proof-structure. This is a slight variant of the example in [26, pp. 244-246].

1 1 1 1 ⊥ ⊥ ⊥ ⊥ ⊥

1 1 1 1 ⊥ ⊥ ⊥ ⊥ ⊥

!

!1

!

!1

!

!1

?

?⊥

?

?⊥

?

?⊥

1 1 1 1 ⊥ ⊥ ⊥ ⊥ ⊥

1 1 1 1 ⊥ ⊥ ⊥ ⊥ ⊥

!

!1

!

!1

!

!1

?

?⊥

?

?⊥

?

?⊥

1 1 1 1 ⊥ ⊥ ⊥ ⊥ ⊥

1 1 1 1 ⊥ ⊥ ⊥ ⊥ ⊥

!

!1

!

!1

!

!1

?

?⊥

?

?⊥

?

?⊥

An example of the action of a path starting from a DiLL0 proof-structure ρ and ending in
{ε} can be found in Figures 8 and 9. Note that it is by no means the shortest possible path.
When replayed backwards, it induces a MELL proof-structure R such that ρ ∈ T (R).

7 Non-atomic axioms

From now on, we relax the definition of quasi-proof-structure (Definition 1 and Figure 1) so
that the outputs of any ax-cell are labeled by dual MELL formulæ, not necessarily atomic. We
can extend our results to this more general setting, with some technical complications. Indeed,
the rewrite rule for contraction has to be modified. Consider a set of DiLL0 proof-structures
consisting of just a singleton which is a z-cell. The contraction rule rewrites it as:

!A⊥ !A⊥ ?A

z ?c3
{

!A⊥ !A⊥ ?A ?A

z }
which is then in the Taylor expansion of !A⊥ !A⊥ ?A ?A

ax
ax

on which no contraction rewrite rule ?c can be applied backwards, breaking the naturality.
The failure of the naturality is actually due to the failure of Proposition 13 in the case of the
rewrite rule ?c : ?c

op
(i.e. ?c read from the right to the left) is functional but not total.

The solution to this conundrum lies in changing the contraction rule for DiLLz0 quasi-
proof-structures, by explicitly adding ?-cells. Hence, the application of a contraction step ?c
in the DiLLz0 quasi-proof-structures precludes the possibility of anything else but a ?-cell on
the MELLz side, which allows the contraction step ?c to be applied backwards.

In turn, this forces us to change the definition of the filled Taylor expansion into a η-filled
Taylor expansion, which has to include elements where a z-cell (representing an empty
component) has some of its outputs connected to ?-cells.
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ρ =
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? ! }
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}
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{
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z z
}

Box2
⊥ ⊥ A⊥ A
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A⊥`A

⊥ ⊥

?

?⊥

`2
⊥ ⊥ A⊥ A

ax⊥ ⊥

?

?⊥

mix1
⊥ ⊥ A⊥ A

ax⊥ ⊥

?

?⊥

Figure 8 The path Box2 ?d1 Box2 `2 mix1 ax2 ?c 1 ?d2 mix1 ⊥2 ?d1⊥1 witnessing that ρ ∈ T (R) (to
be continued on Figure 9).

I Definition 22 (η-filled Taylor expansion). An η-emptying of a DiLL0 quasi-proof-structure
ρ = (|ρ|,F , box) is a DiLL0 quasi-proof-structure with the same conclusions as ρ, obtained
from ρ by replacing each of the components of some roots of F with a z-cell whose outputs
are either tails or inputs of a ?-cell whose output i is a tail, provided that i is the output tail
of a ?-cell in ρ.

The η-filled Taylor expansion T zη (R) of a quasi-proof-structure R is the set of all the
η-emptyings of every element of its Taylor expansion T (R).

Note that the η-filled Taylor expansion contains all the elements of the filled Taylor
expansion and some more, such as the one in Figure 10.

Functors qMELLz and PqDiLLz0 are defined as before (Def. 12 and 17, respectively),9
except that the image of PqDiLLz0 on the generator ?c i (Figure 7d) is changed to

?[Γk] i

z ?ci

{
?[Γk]

z

?

i

?

i+1

}

9 Remember that now, for Γ a list of lists of MELL formulæ, qMELLz(Γ) (resp. qDiLLz
0 (Γ)) is the set

of MELLz (resp. DiLLz
0 ) quasi-proof-structures of type Γ, possibly with non-atomic axioms.
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⊥
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Figure 9 The path Box2 ?d1 Box2 `2 mix1 ax2 ?c 1 ?d2 mix1 ⊥2 ?d1⊥1 witnessing that ρ ∈ T (R)
(continued from Figure 8).

X⊥ X ⊗ ?⊥ !1 !(?Y ` Y ⊥) 1 1

z

?

?!1

! 1 1

!

!1

• •

Figure 10 An element of the η-filled Taylor expansion of the MELL quasi-proof-structure in Fig. 2.

where ?[Γk] signifies that some of the conclusions of Γk might be connected to the z-cell
through a ?-cell. We can prove similarly our main results.

I Theorem 23 (naturality with η). The η-filled Taylor expansion defines a natural transform-
ation Tzη : PqDiLLz0 ⇒ qMELLz : Path→Rel by: (Π, R)∈Tzη Γ iff Π⊆T zη (R) and the
type of R is Γ. Moreover, if Π is a set of DiLL0 proof-structures with Π ξ Π′ and Π′ ⊆ T (R′),
then R is a MELL proof-structure and Π ⊆ T (R), where R is such that R ξ R′.

I Theorem 24 (glueability criterion with η). Let Π be a set of DiLL0 proof-structures, not
necessarily with atomic axioms: Π is glueable iff Π ⊆ T (R) for some MELL proof-structure R.

8 Conclusions and perspectives

z-cells inside boxes. Our glueability criterion (Theorem 20) solves the inverse Taylor
expansion problem in a “asymmetric” way: we characterize the sets of DiLL0 proof-structures
that are included in the Taylor expansion of some MELL proof-structure, but DiLL0 proof-
structures have no occurrences of z-cells, while a MELL proof-structure possibly contains
z-cells inside boxes (see Definition 1). Not only this asymmetry is technically inevitable, but
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it reflects on the fact that some glueable set of DiLL0 proof-structures might not contain any
information on the content of some box (which is reified in MELL by a z-cell), or worse that,
given the types, no content can fill that box. Think of the DiLL0 proof-structure ρ made only
of a !-cell with no inputs and one output of type !X, where X is atomic: {ρ} is glueable but
the only MELL proof-structure R such that {ρ} ⊆ T (R) is made of a box containing a z-cell.

This asymmetry is also present in Pagani and Tasson’s characterization [23], even if
not particularly emphasized: their Theorem 2 (analogous to the left-to-right part of our
Theorem 20) assumes not only that the rewriting starting from a finite set of DiLL0 proof-
structures terminates but also that it ends on a MELL proof-structure (without z-cells, which
ensures that there exists a MELL proof-structure without z-cells filling all the empty boxes).

The λ-calculus, connectedness and coherence. Our rewriting system and glueability
criterion should help to prove the existence of a binary coherence for elements of the Taylor
expansion of a fragment of MELL proof-structures (despite the impossibility for full MELL
proved in [26]), extending the one that exists for resource λ-terms. We can remark that our
glueability criterion is actually an extension of the criterion for resource λ-terms. Indeed,
in the case of the λ-calculus, there are three rewrite steps, corresponding to abstraction,
application and variable (which can be encoded in our rewrite steps), and coherence is defined
inductively: if a set of resource λ-terms is coherent, then any set of resource λ-term that
rewrites to it is also coherent.

Presented in this way, the main difference between the λ-calculus and MELL (concerning
the inverse Taylor expansion problem) would not be because of the rewriting system but
because the structure of any resource λ-term univocally determines the rewriting path, while,
for DiLL0 proof-structures, we have to quantify existentially over all possible paths. This is
an unavoidable consequence of the fact that proof-structures do not have a tree-structure,
contrary to λ-terms and resource λ-terms.

Moreover, it is possible to match and mix different sequences of rewriting. Indeed,
consider three DiLL0 proof-structures pairwise glueable. Proving that they are glueable as a
whole amounts to computing a rewriting path from the rewriting paths witnessing the three
glueabilities. Our paths were designed with that mixing-and-matching operation in mind, in
the particular case where the boxes are connected. This is reminiscent of [16], where we also
showed that a certain property enjoyed by the λ-calculus can be extended to proof-structures,
provided they are connected inside boxes. We leave that work to a subsequent paper.

Functoriality and naturality. Our functorial point of view on proof-structures might unify
many results. Let us cite two of them:

a sequent calculus proof of ` Γ can be translated into a path from the empty sequence
into Γ. This could be the starting point for the formulation of a new correctness criterion;
the category Path can be extended with higher structure, allowing to represent cut-
elimination. The functors qMELLz and PqDiLLz0 can also be extended to such higher
functors, proving via naturality that cut-elimination and the Taylor expansion commute.
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Abstract
We present syntactic characterisations for the union closed fragments of existential second-order
logic and of logics with team semantics. Since union closure is a semantical and undecidable
property, the normal form we introduce enables the handling and provides a better understanding
of this fragment. We also introduce inclusion-exclusion games that turn out to be precisely the
corresponding model-checking games. These games are not only interesting in their own right, but
they also are a key factor towards building a bridge between the semantic and syntactic fragments.
On the level of logics with team semantics we additionally present restrictions of inclusion-exclusion
logic to capture the union closed fragment. Moreover, we define a team based atom that when adding
it to first-order logic also precisely captures the union closed fragment of existential second-order
logic which answers an open question by Galliani and Hella.

2012 ACM Subject Classification Theory of computation → Higher order logic

Keywords and phrases Higher order logic, Existential second-order logic, Team semantics, Closure
properties, Union closure, Model-checking games, Syntactic charactisations of semantical fragments

Digital Object Identifier 10.4230/LIPIcs.CSL.2020.25

Related Version A full version of the paper is available at https://arxiv.org/abs/1910.06057.

Funding Matthias Hoelzel: This author is supported by the German Research Foundation (DFG).
Richard Wilke: This author is supported by the DFG, Research Training Group 2236 UnRAVeL.

1 Introduction

One branch of model theory engages with the characterisation of semantical fragments,
which typically are undecidable, as syntactical fragments of the logics under consideration.
Prominent examples are van Benthem’s Theorem characterising the bisimulation invariant
fragment of first-order logic as the modal-logic [10] or preservation theorems like the Łoś-
Tarski Theorem, which states that formulae preserved in substructures are equivalent to
universal formulae [6]. In this paper we consider formulae ϕ(X) of existential second-order
logic, Σ1

1, in a free relational variable X and investigate the property of being closed under
unions, meaning that whenever a family of relations Xi all satisfy ϕ, then their union

⋃
iXi

should also do so. Certainly closure under unions is an undecidable property. We provide
a syntactical characterisation of all formulae of existential second-order logic obeying this
property via a normal form called myopic-Σ1

1, a notion based on ideas of Galliani and Hella
[2]. By Fagin’s Theorem, Σ1

1 is the logical equivalent of the complexity class NP which
highlights the importance to understand its fragments. Towards this end we employ game
theoretic concepts and introduce a novel game type, called inclusion-exclusion games, suited
for formulae ϕ(X) with a free relational variable. In these games a strategy no longer is
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simply winning for one player – and hence proving whether a sentence is satisfied – but it is
moreover adequate for a certain relation Y over A showing that the formula is satisfied by A

and Y , in symbols A � ϕ(Y ). We construct myopic-Σ1
1 formulae that can define the winning

regions of specifically those inclusion-exclusion games that are (semantically) closed under
unions. Conceptually such games are eligible for any Σ1

1-formula, but since our interest lies
in those formulae that are closed under unions, we introduce a restricted version of such
games, called union games, that precisely correspond to the model-checking games of union
closed Σ1

1-formulae. Consequently, the notion of union closure is captured on the level of
formulae by the myopic fragment of Σ1

1 and on the game theoretic level by union games.

Existential second-order logic has a tight connection to modern logics of dependence
and independence that are based on the concept of teams, introduced by Hodges [7], and
later refined by Väänänen in 2007 [9]. In contrast to classical logics, formulae of such a
logic are evaluated against a set of assignments, called a team. One main characteristic of
these logics is that dependencies between variables, such as “x depends solely on y”, are
expressed as atomic properties of teams. Widely used dependency atoms include dependence
(=(x, y)), inclusion (x ⊆ y), exclusion (x | y) and independence (x⊥y). It is known that both
independence logic FO(⊥) and inclusion-exclusion logic FO(⊆, | ) have the same expressive
power as full existential second-order logic Σ1

1 [1]. The team in such logics corresponds to
the free relational variable in existential second-order formulae, enabling us to ask the same
questions about fragments with certain closure properties in both frameworks. One example
of a well understood closure property is downwards closure stating that if a formula is satisfied
by a team then it is also satisfied by all subteams (i.e. subsets of that team). It is well known
that exclusion logic FO( | ) corresponds to the downwards closed fragment of Σ1

1 [1, 8]. The
issue of union closure is different. Galliani and Hella have shown that inclusion logic FO(⊆)
corresponds to greatest fixed-point-logic GFP+ and, hence, by using the Immerman-Vardi
Theorem, it captures all Ptime computable queries on ordered structures [2]. They also
proved that every union closed dependency notion that itself is first-order definable (where
the formula has access to a predicate for the team) is already definable in inclusion logic.
However, there are union closed properties that are not definable in inclusion logic (think of
a union closed NP property). For a concrete example we refer to the atom R from [2]. Thus
Galliani and Hella asked the question whether there is a union closed atomic dependency
notion β, such that the logic FO(β) captures precisely the union closed fragment of FO(⊆, | ).
In the present work we answer this question positively with the aid of inclusion-exclusion
games. Furthermore, we present a syntactical restriction of all FO(⊆, | ) formulae that
also precisely describe the union closed fragment. This syntactical fragment corresponds to
myopic-Σ1

1 and is in harmony with the game theoretical view, which is described by union
games.

Sections 3, 4 and 5 deal with second-order logic, while the other sections, 6 and 7, address
logics with team semantics. In section three the central notion of this paper, inclusion-
exclusion games, are introduced, which are used in section four to characterise the union
closed fragment within existential second-order logic. Section five provides a restriction of
the games specifically suited for this fragment. The sections dealing with team semantics can
be read mostly independently of each other. Based on section four, section six describes the
union closed fragment of inclusion-exclusion logic in terms of syntactical restrictions. The
question of Galliani and Hella, whether there is a union closed atom that constitutes the
union closed fragment, is answered positively in section seven, for which the reader should
be familiar with union games introduced in section five.
Omitted proofs can be found in the full version or can be done without much effort.



M. Hoelzel and R. Wilke 25:3

2 Preliminaries

We assume familiarity with first-order logic and existential second-order logic, FO and Σ1
1

for short. For a background we refer to the textbook [4].
The neighbourhood of a vertex v in a graph G is denoted by NG(v). For a given τ -structure

A and formula ϕ(x̄) we define ϕA := {ā : A � ϕ(ā)}, free(ϕ) is the set of free first-order
variables and subf(ψ) is the set of subformulae of ψ. Notations like v̄, w̄ always indicate that
v̄ = (v1, . . . , vk) and w̄ = (w1, . . . , w`) are some (finite) tuples. Here k = |v̄| and ` = |w̄|, so
v̄ is a k-tuple while w̄ is an `-tuple. We write {v̄} or {v̄, w̄} as abbreviations for {v1, . . . , vk}
resp. {v1, . . . , vk, w1, . . . , w`} while {(v̄), (w̄)} is the set consisting of the two tuples v̄ and w̄
(as elements). The concatenation of v̄ and w̄ is (v̄, w̄) := (v1, . . . , vk, w1, . . . , w`). The power
set of a set A is denoted by P(A) and P+(A) := P(A) \ {∅}.

Team Semantics. A team X over A is a set of assignments mapping a common domain
dom(X) = {x̄} of variables into A.1 The restriction of X to some first-order formula ϕ(x̄)
is X�ϕ := {s ∈ X : A �s ϕ}. For a given subtuple ȳ = (y1, . . . , y`) ⊆ x̄ and every s ∈ X we
define s(ȳ) := (s(y1), . . . , s(y`)). Furthermore, we frequently use X(ȳ) := {s(ȳ) : s ∈ X},
which is an `-ary relation over A. For an assignment s, a variable x and a ∈ A we use
s[x 7→ a] to denote the assignment resulting from s by adding x to its domain (if it is not
already contained) and declaring a as the image of x.

I Definition 1. Let A be a τ -structure, X a team of A. In the following λ denotes a
first-order τ -literal and ϕ,ψ arbitrary formulae in negation normal form.

A �X λ :⇐⇒ A �s λ for all s ∈ X
A �X ϕ ∧ ψ :⇐⇒ A �X ϕ and A �X ψ

A �X ϕ ∨ ψ :⇐⇒ A �Y ϕ and A �Z ψ for some Y,Z ⊆ X such that Y ∪ Z = X

A �X ∀xϕ :⇐⇒ A �X[x 7→A] ϕ

A �X ∃xϕ :⇐⇒ A �X[x 7→F ] ϕ for some F : X → P+(A)
Here X[x 7→ A] := {s[x 7→ a] : s ∈ X, a ∈ A} and X[x 7→ F ] := {s[x 7→ a] : s ∈ X, a ∈
F (s)}.

Team semantics for a first-order formula ϕ (without any dependency concepts) boils down to
evaluating ϕ against every single assignment, i.e. more formally we have A �X ϕ ⇐⇒ A �s ϕ
for every s ∈ X (in usual Tarski semantics). This is also known as the flatness property of
FO. The reason for considering teams instead of single assignments is that they allow the
formalisation of dependency statements in the form of dependency atoms. Among the most
common atoms are the following.

A �X =(x̄, y) :⇐⇒ s(x̄) = s′(x̄) implies s(y) = s′(y) for all s, s′ ∈ X
A �X x̄ ⊆ ȳ :⇐⇒ X(x̄) ⊆ X(ȳ)
A �X x̄ | ȳ :⇐⇒ X(x̄) ∩X(ȳ) = ∅
A �X x̄⊥ȳ :⇐⇒ for all s, s′ ∈ X exists s′′ ∈ X s.t. s(x̄) = s′′(x̄) and s′(ȳ) = s′′(ȳ)

These are called dependence [9], inclusion, exclusion [1] and independence [5] atoms, re-
spectively. When we speak about a logic that may use certain atomic dependency notions,
for example inclusion, we denote it by writing FO(⊆) and so forth. These logics have the
empty team property, which means that A �∅ ϕ is always true. This is also the reason why
sentences are not evaluated against ∅ but rather against {∅}, which is the team consisting

1 We use the corresponding Latin letters to denote universes of structures.
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of the empty assignment. Let ϕ be a first-order formula and ψ be any formula of a logic
with team semantics. We define ϕ→ ψ as nnf(¬ϕ) ∨ (ϕ ∧ ψ) where nnf(¬ϕ) is the negation
normal form of ¬ϕ. It is easy to see that A �X ϕ→ ψ ⇐⇒ A �X�ϕ ψ.

Union Closure. A formula ϕ of a logic with team semantics is said to be union closed if
A �Xi ϕ for all i ∈ I implies A �X ϕ, where X =

⋃
i∈I Xi. Analogously, a formula ϕ(X) of

Σ1
1 with a free relational variable X is union closed if A � ϕ(Xi) for all i implies A � ϕ(X).

FO Interpretations. A first-order interpretation from σ to τ of arity k is a sequence
I = (δ, ε, (ψS)S∈τ ) of FO(σ)-formulae, called the domain, equality and relation formulae
respectively. We say that I interprets a τ -structure B in some σ-structure A and write
B ∼= I(A) if and only if there exists a surjective function h, called the coordinate map, that
maps δA = {ā ∈ Ak : A � δ(ā)} to B preserving and reflecting the equalities and relations
provided by ε and ψS , such that h induces an isomorphism between the quotient structure
(δA, (ψA

S )S∈τ )/εA and B. A more detailed explanation can be found in [4]. For a τ -formula
ϕ we associate the σ-formula ϕI by relativising quantifiers to δ, using ε as equality and
ψS instead of S. We extend this translation to Σ1

1 by the following rules for additional
free/quantified relation symbols S.

(∃Sϑ)I := ∃S?
(
∀x̄1 · · · x̄ar(S)

(
S?x̄1 · · · x̄ar(S) →

∧ar(S)
j=1 δ(x̄j)

)
∧ ϑI

)
,

(Sv1 · · · var(S))I := ∃w̄1 · · · w̄ar(S)
(∧ar(S)

j=1 (δ(w̄j) ∧ ε(v̄j , w̄j)) ∧ S?w̄1 · · · w̄ar(S)
)
.

An assignment s : {x̄1, . . . , x̄m} → A is well-formed (w.r.t. I), if s(x̄i) ∈ δA(= dom(h)) for
every i = 1, . . . ,m. Such an assignment encodes h ◦ s : {x1, . . . , xm} → B with (h ◦ s)(xi) :=
h(s(x̄i)) which is an assignment over B. Similarly, a relation Q is well-formed (w.r.t. I), if
Q ⊆ (δA)` where ` = ar(Q)

k ∈ N, and we define h(Q) := {(h(ā1), . . . , h(ā`)) : (ā1, . . . , ā`) ∈ Q},
which is the `-ary relation over B that was described by Q. The connection between ϕI and
ϕ is made precise in the well-known interpretation lemma.

I Lemma 2 (Interpretation Lemma for Σ1
1). Let ϕ(S1, . . . , Sn) ∈ Σ1

1. Let R?i ⊆ Ak·ar(Si)

for all i and s : {x̄1, . . . , x̄m} → A be well-formed. Then: (A, R?1, . . . , R?n) �s ϕI ⇐⇒
(B, h(R?1), . . . , h(R?n)) �h◦s ϕ.

3 Inclusion-Exclusion Games

Classical model-checking games are designed to express satisfiability of sentences, i.e. formulae
without free variables. Since our focus lies on formulae in a free relational variable we are in
need for a game that is able to not only express that a formula is satisfied, but moreover that
it is satisfied by a certain relation. In the games we are about to describe a set of designated
positions is present – called the target set – which corresponds to the full relation Ak (where
the free relational variable has arity k). A winning strategy is said to be adequate for a
subset X of the target positions, if the target vertices visited by it are X. On the level of
logics this matches the relation satisfying the corresponding formula, i.e. there is a winning
strategy adequate for X if and only if the formula is satisfied by X.

An inclusion-exclusion game G = (V, V0, V1, E, I, T, Eex) is played by two players 0 and 1
where

Vσ is the set of vertices of player σ,
V = V0 ·∪ V1,
E ⊆ V × V is a set of possible moves,
I ⊆ V is the (possibly empty) set of initial positions,
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T ⊆ V is the set of target vertices and
Eex ⊆ V ×V is the exclusion condition, which defines the winning condition for player 0.2

The edges going into T , that is Ein := E ∩ (V × T ), are called inclusion edges, while Eex is
the set of exclusion edges (sometimes also called conflicting pairs). Inclusion-exclusion games
are second-order games, so instead of single plays we are more interested in sets of plays that
are admitted by some winning strategy for player 0.

For a subset X ⊆ T the aim of player 0 is to provide a winning strategy (which can
be viewed as a set of plays respecting the exclusion condition and containing all possible
strategies of player 1) such that the vertices of T that are visited by this strategy correspond
precisely to X.

I Definition 3. A winning strategy (for player 0) S is a possibly empty subgraph S = (W,F )
of G = (V,E) ensuring the following four consistency conditions.
(i) For every v ∈W ∩ V0 holds NS(v) 6= ∅.
(ii) For every v ∈W ∩ V1 holds NS(v) = NG(v).
(iii) I ⊆W .
(iv) (W ×W ) ∩ Eex = ∅.
Intuitively, the conditions (i) and (ii) state that the strategy must provide at least one move
from each node of player 0 used by the strategy but does not make assumptions about the
moves that player 1 may make whenever the strategy plays a node belonging to player 1. In
particular, the strategy must not play any terminal vertices that are in V0. Furthermore,
(iii) enforces that at least the initial vertices are contained while (iv) disallows playing with
conflicting pairs (v, w) ∈ Eex, i.e. v and w must not coexist in any winning strategy for player
0. If I = ∅, then (∅,∅) is the trivial winning strategy. Since we do not have a notion for a
winning strategy for player 1, inclusion-exclusion games can be viewed as solitaire games.

Of course, the winning condition of an inclusion-exclusion game G is first-order definable.
The formula ϕwin(W,F ) has the property that G � ϕwin(W,F ) if and only if (W,F ) is a
winning strategy for player 0 in G, where

ϕwin(W,F ) := ∀v(Wv → ((V0v ∧ ∃w(Evw ∧Ww ∧ Fvw))∨
(V1v ∧ ∀w(Evw →Ww ∧ Fvw))))∧

∀v(Iv →Wv) ∧ ∀v∀w((Wv ∧Ww)→ ¬Eexvw)

describes the winning condition imposed on the graph (W,F ).
We are mainly interested in the subset of target vertices that are visited by a winning

strategy S = (W,F ). More formally, S induces T (S) := W ∩ T , which we also call the target
of S. This allows us to associate with every inclusion-exclusion game G the set of targets of
winning strategies: T (G) := {T (S) : S is a winning strategy for player 0 in G}.

Intuitively, as already pointed out, games of this kind will be the model-checking games
for Σ1

1-formulae ϕ(X) that have a free relational variable X. Given a structure A and such a
formula, we are interested in the possible relations Y that satisfy the formula, in symbols
(A, Y ) � ϕ(X). We will construct the game such that Y satisfies ϕ if and only if there is a
strategy of player 0 winning for the set Y ⊆ T , thus T (G) = {Y : (A, Y ) � ϕ}. It will be
more convenient for our purposes that the target vertices of an inclusion-exclusion game are
not required to be terminal positions. However it would be no restriction as it is easy to
transform any given game into one that agrees on the (possible) targets, in which all target
vertices are terminal.

2 Eex can always be replaced by the symmetric closure of Eex without altering its semantics.
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One can reduce the satisfiability problem of propositional logic to deciding whether player
0 has a winning strategy in an inclusion-exclusion game.

I Theorem 4. The problem of deciding whether X ∈ T (G) for a finite inclusion-exclusion
game G is NPcomplete.

3.1 Model-Checking Games for Existential Second-Order Logic
In this section we define model-checking games for formulae ϕ(X) ∈ Σ1

1 with a free relational
variable. These games are inclusion-exclusion games whose target sets are precisely the sets
of relations that satisfy ϕ(X).

I Definition 5. Let A be a τ -structure and ϕ(X) = ∃R̄ϕ′(X, R̄) ∈ Σ1
1 (in negation-normal

form) where ϕ′(X, R̄) ∈ FO(τ ∪ {X, R̄}) using a free relation symbol X of arity r := ar(X).
The game GX(A, ϕ) := (V, V0, V1, E, I, T, Eex) consists of the following components:

V := {(ϑ, s) : ϑ ∈ subf(ϕ′), s : free(ϑ)→ A} ∪Ar, I := {(ϕ′,∅)}, T := Ar,
V1 := {(ϑ, s) : ϑ = ∀yγ or ϑ = γ1 ∧ γ2} ∪ {(γ, s) : γ is a τ -literal and A �s γ}∪

{(γ, s) : γ = ¬Xx̄ or γ is a {R̄}-literal} ∪ T, V0 := V \ V1,

E := {((γ ◦ ϑ, s), (δ, s�free(δ))) : ◦ ∈ {∧,∨}, δ ∈ {γ, ϑ}}∪
{((Xx̄, s), s(x̄)) : Xx̄ ∈ subf(ϕ′)}∪
{((Qxγ, s), (γ, s′)) : Q ∈ {∃,∀}, s′ = s[x 7→ a], a ∈ A},

Eex := {((Rix̄, s), (¬Riȳ, s′)) : s(x̄) = s′(ȳ)} ∪ {((¬Xx̄, s), ā) : s(x̄) = ā}.
These games capture the behaviour of existential second-order formulae which provides us
with the following theorem.

I Theorem 6. (A, X) � ϕ(X) ⇐⇒ Player 0 has a winning strategy S in GX(A, ϕ) with
T (S) = X. Or, in other words: T (GX(A, ϕ)) = {X ⊆ Ar : (A, X) � ϕ(X)}.

4 Characterising the Union Closed Formulae within Existential
Second-Order Logic

In this section we investigate formulae ϕ(X) of existential second-order logic that are closed
under unions with respect to their free relational variableX. Union closure, being a semantical
property of formulae, is undecidable. However, we present a syntactical characterisation of
all such formulae via the following normal form.

I Definition 7. A formula ϕ(X) ∈ Σ1
1 is called myopic if ϕ(X) = ∀x̄(Xx̄→ ∃R̄ϕ′(X, R̄)),

where ϕ′ ∈ FO and X occurs only positively3 in ϕ′.

Variants of myopic formulae have already been considered for first-order logic [2, Definition
19] and for greatest fixed-point logics [3, Theorem 24 and Theorem 26], but to our knowledge
myopic Σ1

1-formulae have not been studied so far.
Let U denote the set of all union closed Σ1

1-formulae. To establish the claim that myopic
formuale are a normal form of U we need to show that all myopic formulae are indeed closed
under unions and, more importantly, that every union closed formula can be translated into
an equivalent myopic formula. This translation is in particular constructive.

3 That is under an even number of negations.
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I Theorem 8. ϕ(X) ∈ Σ1
1 is union closed if and only if ϕ(X) is equivalent to some myopic

Σ1
1-formula.

We split the proof into two parts, the direction from right to left is handled in Proposition 9
and from left to right in Theorem 11.

I Proposition 9. Every myopic formula is union closed.

Proof. Let ϕ = ∀x̄(Xx̄ → ∃R̄ϕ′(X, R̄)) and (A, Xi) � ϕ for all i ∈ I. We claim that
(A, X) � ϕ for X =

⋃
i∈I Xi. Let ā ∈ Xi ⊆ X. By assumption (A, Xi) �x̄ 7→ā ∃R̄ϕ′(X, R̄). A

fortiori (X occurs only positively in ϕ′), we obtain (A, X) �x̄7→ā ∃R̄ϕ′(X, R̄). Since ā was
chosen arbitrarily, this property holds for all ā ∈ X, hence the claim follows. J

For a fixed formula ϕ(X) the corresponding game GX can be constructed by a first-order
interpretation depending of course on the current structure.

I Lemma 10. Let ϕ(X) = ∃R̄ϕ′(X, R̄) ∈ Σ1
1 where ϕ′ ∈ FO(τ ∪ {X, R̄}) and r := ar(X).

Then there exists a quantifier-free interpretation I such that GX(A, ϕ) ∼= I(A) for every
structure A (with at least two elements).

I Theorem 11. For every union closed formula ϕ(X) ∈ Σ1
1 there is an equivalent myopic

formula µ(X) ∈ Σ1
1.

Proof. Let ϕ(X) = ∃R̄ϕ′(X, R̄) ∈ Σ1
1(τ) be closed under unions, A be a τ -structure and

G := GX(A, ϕ) be the corresponding game. W.l.o.g. A has at least two elements. By
Theorem 6, we have that T (G) = {Y ⊆ Ar : A � ϕ(Y )} where r := ar(X). Since ϕ(X) is
union closed, it follows that T (G) is closed under unions as well. Now we observe that T (G)
can be defined in the game G by the following myopic formula:

ϕT (X) :=∀x(Xx→ ψT (X,x)) where
ψT (X,x) :=∃W∃F (ϕwin(W,F ) ∧Wx ∧ ∀y(Wy ∧ Ty → Xy))

Here ϕwin is the first-order formula verifying winning strategies. Please note that ϕT is
indeed a myopic formula, since X occurs only positively in ψT .

B Claim 12. For every X ⊆ Ar, (G, X) � ϕT (X) ⇐⇒ X ∈ T (G).

Proof. Assume that (G, X) � ϕT (X). By construction of ϕT , for every ā ∈ X there exists
a winning strategy Sā = (Wā, Fā) with ā ∈ Wā and T (Sā) = Wā ∩ T ⊆ X. It follows that
X =

⋃
ā∈X T (Sā). Since T (G) is closed under unions, we also obtain that X ∈ T (G).

We want to remark that at this point the semantical property is translated into a
syntactical one, as the formula only describes the correct winning strategy because the initial
formula was closed under unions.

To conclude the proof of Claim 12, assume that X ∈ T (G). Then there exists a winning
strategy S = (W,F ) for player 0 with T (S) = X. Thus, for the quantifiers ∃W∃F we can
(for all ā ∈ X) choose S, which, obviously, satisfies the formula. C

There is a first-order interpretation I (of arity n+m) with I(A) ∼= G for some coordinate map
h : δA → V (G) and for every ā ∈ T (G), h−1(ā) = {(ū, ā, b̄) ∈ An+m : A � eT (ū), b̄ ∈ Am−r}
where eT (x1, . . . , xn) is some quantifier-free first-order formula (for more details, we refer to
the full version). By the interpretation lemma for Σ1

1 (Lemma 2), for every X ⊆ T (G),

(A, X?) � ϕIT (X?)⇐⇒ (G, X) � ϕT (X) (1)
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where X? := h−1(X) is a relation of arity (n+m). Recall that every variable x occurring in
ϕT is replaced by a tuple x̄ of length (n+m). Let x̄ = (ū, v̄, w̄) where |ū| = n, |v̄| = r and
|w̄| = m− r and let

µ(X) := ∀v̄(Xv̄ → ∀ū∀w̄(eT (ū)→ ψ?(X, ū, v̄, w̄)))

where ψ? is the formula that results from ψIT by replacing every occurrence of X?ū′v̄′w̄′

(where |ū′| = n, |v̄′| = r and |w̄′| = m − r) by the formula eT (ū′) ∧Xv̄′. By construction,
this is a myopic formula, because X occurred only positively in ψI and, hence, X? (resp. X)
occurs only positively in ψIT (resp. ψ?).

Recall that, in the game G ∼= I(A), every X ⊆ T (G) is a unary relation over G, while
the elements of T (G) themselves are r-tuples of A. Furthermore, we have that h−1(X) :=
{(ā, b̄, c̄) ∈ An ×Ar ×Am−r : A � eT (ā) and b̄ ∈ X}. Because of this and X? = h−1(X), it
follows that for every s : {ū′, v̄′, w̄′} → A holds

(A, X?) �s X?ū′v̄′w̄′ ⇐⇒ A � eT (s(ū′)) and s(v̄′) ∈ X ⇐⇒ (A, X) �s eT (ū′)∧Xv̄′. (2)

By construction of ψ?, these are the only subformulae in which ψIT and ψ? differ from each
other. As a result, the following claim is true:
B Claim 13. For every X ⊆ Ar and every assignment s : free(ψIT )→ A, holds

(A, X?) �s ψIT (X?, x̄) ⇐⇒ (A, X) �s ψ?(X, x̄).

Recall that x̄ = (ū, v̄, w̄) where |ū| = n, |v̄| = r and |w̄| = (m− r). Now we can see that

(A, X?) � ϕIT = ∀x̄(X?x̄→ ψIT (X?, x̄))
⇐⇒ (A, X?) �s ψIT (X?, x̄) for every s with s(x̄) ∈ X?

⇐⇒ (A, X) �s ψ?(X, x̄) for every s with s(x̄) ∈ X? (Claim 13)
⇐⇒ (A, X) �s ψ?(X, x̄) for every s with (A, X) �s eT (ū) ∧Xv̄ (due to (2))
⇐⇒ (A, X) � ∀ū∀v̄∀w̄((eT (ū) ∧Xv̄)→ ψ?(X, ū, v̄, w̄))) ≡ µ.

As a result, we have that (A, X) � µ(X) ⇐⇒ (A, X?) � ϕIT . Putting everything together
yields:

(A, X) � µ⇐⇒ (A, X?) � ϕIT
(1)⇐⇒ (G, X) � ϕT

(Claim 12)⇐⇒ X ∈ T (G) (Theorem 6)⇐⇒ (A, X) � ϕ

Thus, the constructed myopic formula µ(X) is indeed equivalent to ϕ(X). J

This construction can be applied to non union closed formulae as well, in which case
the statement becomes (A,

⋃
i∈I Xi) � µ ⇐⇒ (A, Xi) � ϕ for all i ∈ I. To see this replace

Claim 12 by “For every X ⊆ Ar, (G, X) � ϕT (X) ⇐⇒ X =
⋃
iXi for some Xi ∈ T (G)”.

5 Union Games

In the previous section we have characterised the union closed fragment of Σ1
1 by means of

a syntactic normal form. Now we aim at a game theoretic description, which leads to the
following restriction of inclusion-exclusion games that reveals how union closed properties
are assembled.
I Definition 14. A union game is an inclusion-exclusion game G = (V, V0, V1, E, I, T, Eex)
obeying the following restrictions. For every t ∈ T the subgraph reachable from t via the
edges E \ Ein, that are the edges of E that do not go back into T , is denoted by GMt .4 These

4 Recall that Ein := E ∩ (V × T ).
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t1 t2 tk

· · ·

GMt1 GMt2 GMtk

v w

x

y u
z

Figure 1 A drawing of a union game. The target positions T = {t1, . . . , tk} are at the top of the
components GMt , which are depicted by triangles. Recall that the inclusion edges, that are the edges
going into target vertices, do not account for the reachability of the components GMt . The exclusion
edges Eex are drawn as dashed arrows and, as seen here, are allowed only inside a component.

components must be disjoint, that is V (GMt ) ∩ V (GMt′ ) = ∅ for all t 6= t′ ∈ T . Furthermore,
exclusion edges are only allowed between vertices of the same component, that is Eex ⊆⋃
t∈T V (GMt )× V (GMt ). The set of initial positions is empty, i.e. I = ∅.

See Figure 1 for a graphical representation of a union game. Since the exclusion edges are
only inside a component we can in a way combine different strategies into one, which is the
reason the target set of a union game is closed under unions.

I Theorem 15. Let G be a union game and (Si)i∈J be a family of winning strategies for
player 0. Then there is a winning strategy S for player 0 such that T (S) =

⋃
i∈J T (Si). In

other words, the set T (G) is closed under unions.

Proof. Let Si = (Wi, Fi) for i ∈ J . Let U :=
⋃
i∈J T (Si) and f : U → J be a function such

that t ∈ T (Sf(t)) for all t ∈ U . Define S :=
⋃
t∈U (Sf(t)�V (GM

t ) + (E(Sf(t)) ∩ (V (GMt )× T ))).
In words, S is defined on every component GMt with t ∈ U as an arbitrary strategy St that is
defined on GMt , including the inclusion edges leaving this component. By definition T (S) = U

and, furthermore, S is indeed a winning strategy since it behaves on every component GMt
like Sf(t) and there are no exclusion edges between different components. J

I Definition 16. Let µ(X) = ∀x̄(Xx̄→ ∃R̄ϕ(X, R̄, x̄)) be a myopic τ -formula where ϕ is in
negation-normal form and A be a τ -structure. The union game G(A, µ) := (V, V0, V1, E, I =
∅, T = Aar(X), Eex) is defined similarly to Definition 5 with the difference being that for each
ā ∈ Aar(x̄) we have to play on a copy of the game, so positions are now of the form (ϑ, s, ā)
instead of (ϑ, s), where ϑ ∈ subf(ϕ). The target vertices are the roots of these components,
which is reflected by edges from ā to (ϕ, x̄ 7→ ā, ā). Because of this construction exclusion
edges can only occur inside a component.

Notice that there are still edges from (Xx̄, s, ā) to s(x̄) – the inclusion edges. It is also worth
mentioning that the empty set is always included in T (G(A, µ)) for all myopic µ because
(∅,∅) is a (trivial) winning strategy for player 0. This mimics the behaviour that in case
X = ∅, the formula ∀x̄(Xx̄→ ψ) is satisfied regardless of everything else. The analogue of
Theorem 6 holds for union games and myopic formulae.

I Proposition 17. Let A, µ and G(A, µ) be as in Definition 16. Then (A, X) � µ ⇐⇒ X ∈
T (G(A, µ)).

We want to end this section with the remark that for other fragments with certain closure
properties natural restrictions of inclusion-exclusion games exist. Especially, forbidding
exclusion edges at all leads to model-checking games for inclusion logic, while forbidding
inclusion edges results in games suited for exclusion logic.
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6 Myopic Fragment of Inclusion-Exclusion Logic

Similarly to the normal form of union closed Σ1
1-formulae (see Section 4) we present syntactic

restrictions of inclusion-exclusion logic FO(⊆, | ) that correspond precisely to the union
closed fragment U5. Analogously to myopic Σ1

1-formulae we will also present a normal form
for all union closed FO(⊆, | )-formulae.

I Definition 18. A formula ϕ(x̄) ∈ FO(⊆, | ) is x̄-myopic, if the following conditions are
satisfied:
(a) The variables from x̄ are never quantified in ϕ.
(b) Every exclusion atom occurring in ϕ is of the form x̄ȳ | x̄z̄.
(c) Every inclusion atom occurring in ϕ is of the form x̄ȳ ⊆ x̄z̄ or ȳ ⊆ x̄, where the latter is

only allowed if it is not in the scope of a disjunction.
Please note that ϕ(x̄) must not have any additional free variables besides x̄. We call atoms
of the form x̄ȳ ⊆ x̄z̄ or x̄ȳ | x̄z̄ (x̄-)guarded and ȳ ⊆ z̄, respectively ȳ | z̄, the corresponding
unguarded versions. Analogously, we call a formula ψ the unguarded version of ϕ, if ψ
emerges from ϕ by replacing every dependency atom by the respective unguarded version.

The intuition behind this definition is that every x̄-myopic formula can be evaluated com-
ponentwise on every team X�x̄=ā = {s ∈ X : s(x̄) = ā} for all ā ∈ X(x̄). For a formula ϕ
let Tϕ denote its syntax tree6. A (team-)labelling of Tϕ is a function λ mapping every node
vψ to a team λ(vψ) whose domain includes free(ψ). In the following we write λ(ψ) instead
of λ(vψ) if it is clear from the context which occurrence of the subformula ψ of ϕ is meant.
We call λ a witness for A �X ϕ, if λ(ϕ) = X and the semantical rules of Definition 1 are
satisfied (e.g. λ(ψ ∨ ϑ) = λ(ψ) ∪ λ(ϑ)) and for every literal β of ϕ we have A �λ(β) β. By
induction, if λ is a witness for A �X ϕ, then for every ψ ∈ subf(ϕ) we have A �λ(ψ) ψ and,
moreover, A �X ϕ if and only if there is a witness λ for A �X ϕ.

I Proposition 19. Let X be team over A with dom(X) ⊇ {x̄, v̄, w̄} and ϕ(x̄) be x̄-myopic.
1. A �X x̄v̄ ⊆ x̄w̄ ⇐⇒ A �X�x̄=ā v̄ ⊆ w̄ for all ā ∈ X(x̄)
2. A �X x̄v̄ | x̄w̄ ⇐⇒ A �X�x̄=ā

v̄ | w̄ for all ā ∈ X(x̄)
3. For every subformula v̄ ⊆ x̄ of ϕ and witness λ for A �X ϕ we have (λ(v̄ ⊆ x̄))(x̄) = X(x̄).

Like union games an x̄-myopic formula is evaluated componentwise, which leads to the union
closure of this fragment.

I Theorem 20. Let ϕ(x̄) ∈ FO(⊆, | ) be x̄-myopic and A �Xi ϕ for all i ∈ I. Then A �X ϕ

for X =
⋃
i∈I Xi.

It remains to prove that indeed every union closed formula ϕ of FO(⊆, | ) is equivalent to
some x̄-myopic formula. As we have already seen in Theorem 8, every union closed formula
of existential second-order logic is equivalent to some myopic Σ1

1-formula. Moreover, it is
well known that every FO(⊆, | )-formula can be translated into an equivalent Σ1

1-formula [1].
Such a formula can be expressed as an x̄-myopic one of the form ∃s̄(s̄ ⊆ x̄ ∧ ψ) where ψ uses
only x̄-guarded atoms.

5 We have defined U to be the set of all union closed Σ1
1-formulae, by slight abuse of notation we use the

same symbol here to denote the set of all FO(⊆, | )-formulae that are closed under unions.
6 Since we consider a tree instead of a DAG, identical subformulae may occur at different nodes.
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I Lemma 21. Let ϕ(x̄) ∈ FO(⊆, | ) be an x̄-myopic formula of the form ∃s̄(s̄ ⊆ x̄ ∧ ψ),
where in ψ no inclusion atoms of the form ȳ ⊆ x̄ occur. Then A �X ϕ if and only if there
exists F : X → P+(A|x̄|) such that F (s) ⊆ X(x̄) for every s ∈ X and A �X[s̄ 7→F ]�x̄=ā

ψ′ for
all ā ∈ X(x̄), where ψ′ is the unguarded version of ψ.

Proof. By induction on ψ and applying Proposition 19. J

We present two different proofs for the next theorem, which bring a myopic Σ1
1-formula

into this normal form. The following proof is based on methods of Galliani, Kontinen and
Väänänen [1, 8] while the other one resembles the proof of Theorem 11 and can be found in
the full version.

I Theorem 22. Let ϕ(X) be a myopic Σ1
1-formula. There is an equivalent x̄-myopic formula

of FO(⊆, | ) where |x̄| = ar(X).

Proof. First of all let us introduce a normal form of myopic Σ1
1-formulae. Since in myopic

formulae the variableX may occur only positively in the subformula ϕ′, we can transform every
∀x̄(Xx̄→ ∃R̄ϕ′(R̄,X, x̄)) into the equivalent formula ∀x̄(Xx̄→ ∃S(S ⊆ X ∧∃R̄ϕ′(R̄, S, x̄))),
where S ⊆ X is a shorthand for ∀ȳ(Sȳ → Xȳ). We now apply the Skolem-normal form of
Σ1

1-formulae to ∃R̄ϕ′(R̄, S, x̄), which yields the formula σ(S, x̄) := ∃f̄∀ȳ((f1(w̄) = f2(w̄)↔
Sw̄)∧ψ(f̄ , x̄, ȳ)), where ψ is a quantifier-free first-order formula and w̄ is a subtuple of ȳ and,
moreover, every fi occurs in σ only with a unique tuple w̄i (consisting of pairwise different
variables) as argument, that is fi(w̄i) (see [8] where an analogous construction is made). The
original formula can thus be transformed into ∀x̄(Xx̄→ ∃S(S ⊆ X ∧ σ(S, x̄))). Similarly to
[1] we embed σ(S, x̄) into inclusion-exclusion logic as ϑ(s̄, x̄) := ∀ȳ∃z̄

(∧
i =(x̄w̄i, zi)∧ ((x̄w̄ ⊆

x̄s̄∧z1 = z2)∨(x̄w̄ |x̄s̄∧z1 6= z2))∧ψ′(x̄, ȳ, z̄)
)
. Here ψ′ is obtained from ψ by simply replacing

every occurrence of fi(w̄i) = fj(w̄j) by zi = zj . The only difference in our case is that every
dependency atom is x̄-guarded due to the fact that the subformula at hand is inside the scope
of the universally quantified variables x̄ in ∀x̄(Xx̄→ . . . ). Notice that dependence atoms of
the form =(x̄w̄i, zi) can also be regarded as x̄-myopic. Formally, we can embed such an atom
into exclusion logic via the formula ∀v(x̄w̄iv | x̄w̄izi ∨ zi = v), which has the intended shape
[1]. The whole formula ϕ(X) thus translates into µ(x̄) := ∃s̄(s̄ ⊆ x̄ ∧ ϑ(s̄, x̄)). Let ϑ′(s̄, x̄)
be the unguarded version of ϑ(s̄, x̄). Analogously to the argumentation of Galliani [1] by
additionally making use of Proposition 19, we see that (A, Y �x̄=ā(s̄)) �x̄ 7→ā σ(S, x̄) if and only
if A �Y �x̄=ā ϑ

′(x̄) for ā ∈ Y (x̄), where Y is a team with domain {s̄, x̄} (here the variable S takes
the role of the team). Using Lemma 21 we have A �X µ(x̄) if and only if there is a function
F : X → P+(Aar(s̄)) such that F (s) ⊆ X(x̄) for every s ∈ X and A �X[s̄7→F ]�x̄=ā

ϑ′(s̄, x̄) for
all ā ∈ X(x̄), which again holds if and only if there exists such an F and (A, F (s)) �t σ(S, x̄)
for all t ∈ X, but this just means (A, X(x̄)) � ∀x̄(Xx̄→ ∃S(S ⊆ X ∧ σ(S, x̄))). J

I Corollary 23 (Normal form of myopic-FO(⊆, | )). Let ϕ(x̄) be a union closed formula of
FO(⊆, | ). There is a logically equivalent x̄-myopic formula ψ(x̄) = ∃s̄(s̄ ⊆ x̄∧ ϑ) where in ϑ
only x̄-guarded dependency atoms occur.

6.1 Optimality of the Myopic Fragment of Inclusion-Exclusion Logic
One might ask whether the restrictions of Definition 18 are actually imperative to capture the
union closed fragment. In this section, we will show that neither condition can be dropped
and that every single atom of Definition 18 is required to express all union closed properties.

We start by showing that neither condition can be dropped. First of all, it is pretty clear
that exclusion atoms have to be x̄-guarded, because x1 | x2 is not guarded and obviously
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Figure 2 The structures A and B. The structure A = (V, EA, FA, PA, QA) on the left side uses
two different kinds of edges: the dashed edges belong to F , while the other are E-edges. Furthermore,
A exhibits two predicates P, Q. The structure B = (V, EB) depicted on the right is just a directed
graph. Please notice that both structures are using the same universe V .

not closed under unions. Furthermore, it is clear that the variables among x̄ must not be
quantified. This points out the necessity of conditions (a) and (b) of Definition 18. In the
next example we demonstrate that neither restriction of condition (c) can be dropped.

I Example 24. Consider the structures A and B drawn in Figure 2 and the following
formulae:

ϕ(x) :=∃y∃z(Fxy ∧ Fxz ∧ xy | xz ∧ [(Py ∧ ϑ(x)) ∨ (Qy ∧ ϑ(x))])
where ϑ(x) := ∃v(Exv ∧ v ⊆ x)

ψ(x) :=∃y∃z(Exy ∧ Exz ∧ xy | xz ∧ ∃w(Eyw ∧ x ⊆ w))

Neither ϕ(x) nor ψ(x) is x-myopic, because the inclusion atom v ⊆ x from ϑ occurs inside the
scope of a disjunction (and it is not x-guarded), while the atom x ⊆ w is neither x-guarded
nor of the form that is allowed outside the scope of disjunctions, because x appears on the
wrong side of the inclusion atom.

For every v ∈ V let sv : {x} → V be the assignment with sv(x) := v. We define the
teams X1 := {sa, sb}, X2 := {sb, sc} and X := X1 ∪X2 = {sa, sb, sc}. It is not difficult to
verify that A �Xi

ϕ(x) and B �Xi
ψ(x) for i = 1, 2 but A 2X ϕ(x) and B 2X ψ(x). In

particular, neither ϕ(x) nor ψ(x) is closed under unions. This shows that the restrictions of
Definition 18 are indeed necessary.

Thus the atoms allowed in Definition 18 are sufficient to capture the union closed fragment
of FO(⊆, | ). On the contrary, one may ask whether the set of atoms given in Definition 18
is necessary. Let us argue for all rules of Definition 18.

Assume that all exclusion atoms are forbidden. Then every formula is already in inclusion
logic in which one cannot define every union closed property as was shown by Galliani and
Hella [2, p. 16].

If inclusion atoms were only allowed in the form x̄ȳ ⊆ x̄z̄, that means the atoms ȳ ⊆ x̄
are forbidden, the formulae become flat, as can be seen by considering Proposition 19, but
not all union closed properties are flat.

The case where inclusion atoms of form x̄ȳ ⊆ x̄z̄ are forbidden is a bit more delicate. To
prove that such a formula cannot express every union closed property consider the formula
µ(x) = ∃z(z ⊆ x ∧ ∀y(Exy → xy ⊆ xz)), where τ = {E} for a binary predicate symbol E.
This formula axiomatises the set of all teams X over a graph G = (V,E) such that whenever
v ∈ X(x) and (v, w) ∈ E, then already w ∈ X(x). The formula obviously describes a union
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closed property. Consider the graph G: ab c . Here, G �X µ(x) for precisely those
teams X that satisfy “a ∈ X(x) implies b, c ∈ X(x)”. For every v ∈ V (G) let sv be the
assignment x 7→ v and let Xv := {sv}. Furthermore, we define Xabc := {sa, sb, sc}.

Let ψ(x) be an x-myopic formula in which the construct xȳ ⊆ xz̄ does not appear. So
the only inclusion atoms occurring in ψ(x) are of the form z ⊆ x, which are not allowed
in the scope of disjunctions. Notice that z cannot be universally quantified, as the team
Xb = {sb} satisfies the described property, but not ∀z(z ⊆ x). Thus we may assume without
loss of generality that ψ(x) has the form ∃z(z ⊆ x ∧ ψ′(x, z)), where in ψ′(x, z) no atom
of the kind z′ ⊆ x occurs. We want to remark that the following argumentation can be
adapted to the slightly more general case that multiple atoms of form z ⊆ x occur, but
for sake of simplicity we only deal with one such atom. Let η(x, z) be the unguarded
version of ψ′(x, z). By Lemma 21, there is a function F : Xabc → P+(V (G)) such that
F (s) ⊆ Xabc(x) = V (G) for s ∈ Xabc and G �Xabc[z 7→F ]�x=v

η for every v ∈ Xabc(x). Please
notice that Xabc[z 7→ F ]�x=v = Xv[z 7→ F ]. Moreover, because in η(x, z) no inclusion atom
occurs it is downwards closed. Assume a ∈ F (sa). By downwards closure of η(x, z) we obtain
G �Xa[z 7→a] η, which, by Lemma 21, implies that G �Xa

ψ contradicting our assumption
that ψ describes the desired property. Otherwise, because of symmetry, b is in F (sa), and
hence G �Xa[z 7→b] η. Additionally, since G �Xb

ψ we know, by Lemma 21, that G �Xb[z 7→b] η.
Together this implies G �Xab[z 7→b]�x=v

η for v = a, b and, due to Lemma 21, we get G �Xab
ψ

which is again in conflict with our assumption about ψ describing the desired property.

7 An Atom capturing the Union Closed Fragment

The present work was motivated by a question of Galliani and Hella in 2013 [2]. Galliani and
Hella asked whether there is a union closed atomic dependency notion α that is definable
in existential second-order logic such that FO(α) corresponds precisely to all union closed
properties of FO(⊆, | ). In [2] they have already shown that inclusion logic does not suffice,
as there are union closed properties not definable in it. Moreover, they have established a
theorem stating that every union closed atomic property that is definable in first-order logic
(where the formula has access to the team via a predicate) is expressible in inclusion logic.
Thus, whatever atom characterises all union closed properties of FO(⊆, | ) must axiomatise
an inherently second-order property.

Intuitively speaking, as we have seen in Section 5, solving union games is a complete
problem for the class U . Therefore, a canonical solution to this question is to propose an
atomic formula that defines the winning regions in a union game. Towards this we must
describe how a game can be encoded into a team. This is not as straightforward as one
might think, because there is a technical pitfall we need to avoid. The union of two teams
describing union games, each won by player 0, might encode a game won by player 1, but by
union closure it must satisfy the atomic formula.

We encode union games in teams by using variable tuples for the respective components,
where we also encode the complementary relations in order to ensure that the union of two
different games cannot form a different game. For k ∈ N let Vk be the set of distinct k-tuples
of variables {ū, v̄0, v̄1, v̄, w̄, t̄, v̄ex, w̄ex, ε̄1, ε̄2, ū

{, v̄{, w̄{, t̄{, v̄{ex, w̄
{
ex, ε̄

{
1, ε̄
{
2}.

I Definition 25. Let X be a team with Vk ⊆ dom(X) and codomain A. We define ∼:=
X(ε̄1, ε̄2) and AX := (V, V0, V1, E, I, T, Eex) with the following components.
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V := X(ū)
V0 := X(v̄0)

V1 := X(v̄1)
E := X(v̄, w̄)

I := ∅
T := X(t̄)

Eex := X(v̄ex, w̄ex)

If the following consistency requirements are satisfied, then we define GAX := AX/∼.

1. X(ū{) = Ak \ V
2. X(v̄{, w̄{) = (Ak ×Ak) \ E
3. X(t̄{) = Ak \ T
4. X(v̄{ex, w̄

{
ex) = (Ak ×Ak) \ Eex

5. X(ε̄{1, ε̄{2) = (Ak ×Ak)\ ∼

6. V0 = V \ V1

7. AX is a structure7.

8. ∼ is a congruence on AX .

9. AX/∼ is a union game.

Otherwise, if any of these requirements is not fulfilled, we let GAX be undefined.

We call X complete (w.r.t. A), if X(ȳ)∪X(ȳ{) is Ak or Ak×Ak for every ȳ ∈ {(ū), (v̄, w̄), (t̄),
(v̄ex, w̄ex), (ε̄1, ε̄2)} and V = V0 ∪ V1, and incomplete otherwise. It is easy to observe that
GAX is undefined for every incomplete team X. Furthermore complete subteams of teams
describing a game actually describe the same game and the same congruence relation.

I Lemma 26. Let X,Y be teams with codomain A and Vk ⊆ dom(X) = dom(Y ). If X is
complete, X ⊆ Y and GAY is defined, then GAX = GAY and ∼X := X(ε̄1, ε̄2) = Y (ε̄1, ε̄2) =: ∼Y .

Now let us show that union games are definable in plain first-order logic with team semantics
in the sense of Definition 25.

I Lemma 27. Let ϕ(X) = ∀x̄(Xx̄→ ∃R̄ϕ′(X, R̄, x̄)) be a myopic Σ1
1-formula and ψ(Vk, x̄)

be a formula with team semantics (where k is large enough such that the game G(A, ϕ) can
be encoded). There is a formula ϑψϕ(x̄) such that A �X ϑψϕ ⇐⇒ A �Y ψ for some team Y

extending X with GAY ∼= G(A, ϕ) and X(x̄) = Y (x̄), for every τ -structure A.

Proof. Similar to Lemma 10, it is easy to construct a (quantifier-free) first-order inter-
pretation I := (δ, ε, ψV , ψV0 , ψV1 , ψE , ψI , ψT , ψEex ) with I(A) ∼= G(A, ϕ). Now let ϑψϕ(x̄) :=
∀Vk(γ(Vk)→ ψ(Vk, x̄)) where the formula

γ(Vk) := δ(ū) ∧ ψV0(v̄0) ∧ ψV1(v̄1) ∧ ψE(v̄, w̄) ∧ ψT (t̄) ∧ ψEex (v̄ex, w̄ex) ∧ ε(ε̄1, ε̄2)∧

¬δ(ū{) ∧ ¬ψE(v̄{, w̄{) ∧ ¬ψT (t̄{) ∧ ¬ψEex (v̄{ex, w̄
{
ex) ∧ ¬ε(ε̄{1, ε̄{2)

enforces that the game G(A, ϕ) will be “loaded” into the team. As long as none of these
conjuncts are unsatisfiable this construction is correct. This is safe to assume because one
can easily transform a union game into an equivalent one w.r.t. the target set such that none
of its components are empty. J

This knowledge enables us to finally define the atomic formula we sought after. For this we
need to show that the atom is union closed and its first-order closure can express all of U .

I Definition 28. The atomic team formula ∪−game(Vk, x̄) for the respective tuples of
variables has the following semantics. For non-empty teams X with Vk, x̄ ⊆ dom(X) we
define

A �X ∪−game(Vk, x̄):⇐⇒ X is complete and if GAX is defined, then X(x̄)/X(ε̄1,ε̄2) ∈ T (GAX)

and we set A �∅ ∪−game(Vk, x̄) to be always true (to ensure the empty team property).

7 This condition ensures that V0 ⊆ V and so forth.
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Note that this atom can be defined in existential second-order logic.

I Proposition 29. The atomic formula ∪−game is union closed.

Proof. Assume that A �Xi
∪−game(Vk, x̄) for i ∈ I. We prove that A �X ∪−game(Vk, x̄)

holds for the union X :=
⋃
i∈I Xi. If X = ∅, there is nothing to prove. Otherwise at least one

Xj is non-empty and, since A �Xj
∪−game(Vk, x̄), Xj must be complete implying that X is

also complete (because X ⊇ Xj). For the remainder of this proof, we assume w.l.o.g. that
all involved teams Xi (and X) are non-empty. If GAX is undefined, then A �X ∪−game(Vk, x̄)
follows from the definition of ∪−game. Otherwise, if GAX is defined, then we can use
Lemma 26 to obtain that GAX = GAXi

and ∼ := X(ε̄1, ε̄2) = Xi(ε̄1, ε̄2) for every i ∈ I. Since
A �Xi

∪−game(Vk, x̄), we can conclude that Xi(x̄)/∼ ∈ T (GAXi
) = T (GAX) for each i ∈ I. By

Theorem 15, X(x̄)/∼ =
⋃
i∈I Xi(x̄)/∼ ∈ T (GAX) and, hence, A �X ∪−game(Vk, x̄). J

I Theorem 30. Let ϕ ∈ FO(⊆, | ) be a union closed formula. There is a logically equivalent
formula ζ ∈ FO(∪−game). In other words, FO(∪−game) corresponds precisely to the union
closed fragment of FO(⊆, | ).

Proof. Let A be an arbitrary structure. Due to [1, Theorem 6.1] there exists a formula
ϕ′(X) ∈ Σ1

1 which is logically equivalent to ϕ(x̄) in the sense that A �X ϕ(x̄) ⇐⇒
(A, X(x̄)) � ϕ′(X) for every team X with x̄ ⊆ dom(X). By Theorem 8, there is a myopic
formula µ ≡ ϕ′. So, we have (A, X(x̄)) � µ(X) ⇐⇒ A �X ϕ(x̄).

The game G(A, µ) from Definition 16 is a union game and Lemma 27 allows us to load this
game into a team. Please notice, that Lemma 27 is using a similar first-order interpretation
I as Lemma 10, which encodes a target vertex ā ∈ T (G(A, µ)) by tuples of the form (ū, ā, w̄)
of length k = n+m where the n-tuple ū has the equality type eT while w̄ is an arbitrary
tuple of length m− |ā|. Let ψ(Vk, x̄) := ∀ū∀w̄(eT (ū)→ ∪−game(Vk, ūx̄w̄)) and ζ(x̄) := ϑψµ
be as in Lemma 27, that is ∀Vk(γ(Vk) → ψ(Vk, x̄)). So A �X ζ(x̄) ⇐⇒ A �Y ψ(Vk, x̄)
where Y = X[Vk 7→ A]�γ . As in Lemma 27, we have GAY ∼= I(A) ∼= G(A, µ) and X(x̄) = Y (x̄).
Furthermore, we have defined GAY = AY/∼ where ∼ := Y (ε̄1, ε̄2).

Because of the construction of ψ, we have A �Y ψ(Vk, x̄) ⇐⇒ A �Z ∪−game(Vk, ūx̄w̄)
where Z := Y [ū 7→ eAT , w̄ 7→ Am−|x̄|]. Since GAZ = GAY ∼= G(A, µ) is a well-defined union
game, this is equivalent to Z(ūx̄w̄)/∼ ∈ T (GAY ). Let h : δAI → V (G(A, µ)) be the coordinate
map for G(A, µ) ∼= I(A). By construction, h induces an isomorphism between AY/∼ and
G(A, µ). In particular each element of any equivalence class [(ū′, ā, w̄′)]∼ ∈ Z(ūx̄w̄)/∼ is
mapped by h to ā. Therefore, Z(ūx̄w̄)/∼ ∈ T (GAY ) ⇐⇒ Z(x̄) = X(x̄) ∈ T (G(A, µ)).
Thus we have A �X ζ(x̄) ⇐⇒ X(x̄) ∈ T (G(A, µ)). Putting everything together, we have
A �X ζ(x̄) ⇐⇒ X(x̄) ∈ T (G(A, µ)) ⇐⇒ (A, X(x̄)) � µ ⇐⇒ A �X ϕ(x̄) as desired. J

8 Concluding Remarks

Let us remark on the “naturalness” of the atom ∪−game. Certainly inclusion, exclusion and
the notions alike can be regarded as natural atomic dependency formulae, whereas the just
introduced atom has to be classified differently. Nevertheless, it is a canonical candidate
since it solves a complete problem of the desired class. Of course, a more natural – and more
usable – atom might be found, but it will not be as simplistic as e.g. inclusion for Galliani and
Hella have shown that every first-order definable union closed property is already expressible
in inclusion logic. Hence, whatever atom one proposes, it must make use of some inherently
second-order concepts. For concretely expressing properties, the introduced myopic fragments
of Σ1

1 and FO(⊆, | ) are more practical.
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The various syntactical characterisations of the union closed fragments presented in this
work now enables their further investigation. This could result in a complexity theoretical
analysis or a more detailed classification of Σ1

1.
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1 Introduction

A prominent example of the deep connection between bisimilarity and modal logic is the
Hennessy-Milner theorem: two states of an image-finite labelled transition system (LTS)
are behaviourally equivalent iff they satisfy the same formulas in a certain modal logic [13].
From left to right, this equivalence is sometimes referred to as adequacy of the logic w.r.t.
bisimilarity, and from right to left as expressivity. By proving both adequacy and expressivity,
the Hennessy-Milner theorem thus gives a logical characterisation of behavioural equivalence.

There are numerous variants and generalisations of this kind of result. For instance, a
state x of an LTS simulates a state y if every formula satisfied by x is also satisfied by y,
where the logic only has conjunction and diamond modalities; see [36] for this and many
other related results. Another class of examples is logical characterisations of quantitative
notions of equivalence, such as probabilistic bisimilarity and behavioural distances (e.g., [27,
8, 35, 19, 24, 37, 7]). In many such cases, including bisimilarity, the comparison between
states is coinductive, and the problem is thus to characterise a coinductively defined relation
(or distance) with a suitable modal logic.

Both coinduction and modal logic can be naturally and generally studied within the
theory of coalgebra, which provides an abstract, uniform study of state-based systems [32, 18].
Indeed, in the area of coalgebraic modal logic [26] there is a rich literature on deriving
expressive logics for behavioural equivalence between state-based systems, thus going well
beyond labelled transition systems [29, 33, 22]. However, such results focus almost exclusively
on behavioural equivalence or bisimilarity – a coalgebraic theory of logics for characterising
coinductive predicates other than bisimilarity is still missing. The aim of this paper is to
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accommodate the study of logical characterisation of coinductive predicates in a general
manner, and provide tools to prove adequacy and expressivity.

Our approach is based on universal coalgebra, to achieve results that apply generally to
state-based systems. Central to the approach are the following two ingredients.
1. Coinductive predicates in a fibration. To characterise coinductive predicates, we make use

of fibrations – this approach originates from the seminal work of Hermida and Jacobs [14].
The fibration is used to speak about predicates and relations on states. In this context,
liftings of the type functor of coalgebras uniformly determine coinductive predicates and
relations on such coalgebras. An important feature of this approach, advocated in [12],
is that it covers not only bisimilarity, but also other coinductive predicates including,
e.g., similarity of labelled transition systems and other coalgebras [16], behavioural
metrics [2, 4, 34], unary predicates such as divergence [5, 12], and many more.

2. Coalgebraic modal logic via dual adjunctions. We use an abstract formulation of coalgebraic
logic, which originated in [30, 22], building on a tradition of logics via duality (e.g., [25, 6]).
This framework is formulated in terms of a contravariant adjunction, which captures the
basic connection between states and theories, and a distributive law, which captures the
one-step semantics of the logic. It covers classical modal logics of course, but also easily
accommodates multi-valued logics, and, e.g., logics without propositional connectives,
where formulas can be thought of as basic tests on state-based systems. This makes the
framework suitable for an abstract formulation of Hennessy-Milner type theorems, where
formulas play the role of tests on state-based systems.

To formulate adequacy and expressivity with respect to general coinductive predicates, we
need to know how to compare collections of formulas. For instance, if the coinductive
predicate is similarity of LTSs, the associated logical theories of one state should be included
in the other, not necessarily equal. This amounts to stipulating a relation on truth values,
that extends to a relation between theories. In the quantitative case, we need a logical
distance between collections of formulas; this typically arises from a distance between truth
values (which, in this case, will typically be an interval in the real numbers). The fibrational
setting provides a convenient means for defining such an object for comparing theories.

With this in hand, we arrive at the main contributions of this paper: the formulation of
adequacy and expressivity of a coalgebraic modal logic with respect to a coinductive predicate
in a fibration, and sufficient conditions on the semantics of the logic that guarantee adequacy
and expressivity. We exemplify the approach through a range of examples, including logical
characterisations of a simple behavioural distance on deterministic automata, similarity of
labelled transition systems, and a logical characterisation of a unary predicate: divergence,
the set of states of an LTS which have an infinite path of outgoing τ -steps. The latter is
characterised, on image-finite LTSs, by a quantitative logic with only diamond formulas, i.e.,
the set of formulas is simply the set of words.

Related work

As mentioned above, there are numerous specific results on Hennessy-Milner theorems, which
– e.g., in the probabilistic setting as in [7] – can be highly non-trivial. A comprehensive
historical treatment is beyond the scope of this paper, which is, instead, broad: it aims at
studying these kinds of results in a general, coalgebraic setting.

The case of capturing bisimilarity and behavioural equivalence of coalgebras by modal
logics has been very well studied, see [26] for an overview. Expressiveness w.r.t. similarity
has been studied in [20], which is close in spirit to our approach, but focuses on the poset
case. On a detailed level, the logic for similarity is based on distributive lattices, hence it
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uses disjunction; this differs from our example, which only uses conjunction and diamond
modalities. Expressiveness of multi-valued coalgebraic logics w.r.t. behavioural equivalence
is studied in [3]. In [1], notions of equivalence are extracted from a logic through a variant of
Λ-bisimulation [11]. To the best of our knowledge, the current work is the first in the area
that connects general coinductive predicates in a fibration to coalgebraic logics.

In the recent [9], the authors prove Hennessy-Milner type theorems for coalgebras including,
but going significantly beyond bisimilarity. The logics are related to a semantics obtained
from graded monads, and the focus is exclusively on semantic equivalence of different types.
In that sense, the scope differs substantially from the current paper, which relates logic
to coinductive predicates and where it is essential to relate theories in different ways than
equivalence (to cover, e.g., similarity, divergence or logical distance). On the one hand, it
appears that none of our examples can be covered immediately in loc. cit.; on the other hand,
trace equivalence of various kinds can be covered in [9] but not in the current paper.

In [37] a characterisation theorem is shown for fuzzy modal logic, and in [24] for a wide
class of behavioural metrics. These papers are not aimed at other kinds of coinductive
predicates, and they do not cover the examples in Section 4 (including the behavioural metric
for deterministic automata, as we use a much simpler logic than in [24]). Conversely, the
question whether the logical characterisation results of [24] can be covered in the current
framework is left open. These papers also treat game-based characterisations of bisimilarity,
which are studied in a general setting in the recent [23]. The latter paper, however, does not
yet feature modal logic explicitly; in fact, the connection is posed there as future work.

2 Preliminaries

The category of sets and functions is denoted by Set. The powerset functor is denoted by
P : Set→ Set, and the finite powerset functor by Pω. The diagonal relation on a set X is
denoted by ∆X = {(x, x) | x ∈ X}.

Let C be a category, and B : C → C a functor. A (B)-coalgebra is a pair (X, γ) where X is
an object in C and γ : X → BX a morphism. A homomorphism from a coalgebra (X, γ) to a
coalgebra (Y, θ) is a morphism h : X → Y such that θ ◦ h = Bh ◦ γ. An algebra for a functor
L : D → D on a category D is a pair (A,α) of an object A in D and an arrow α : LA→ A.

I Example 1. A labelled transition system (LTS) over a set of labels A is a coalgebra (X, γ)
for the functor B : Set → Set, BX = (PX)A. For states x, x′ ∈ X and a label a ∈ A,
we sometimes write x a−→ x′ for x′ ∈ γ(x)(a). Image-finite labelled transition systems are
coalgebras for the functor BX = (PωX)A. A deterministic automaton over an alphabet A
is a coalgebra for the functor B : Set → Set, BX = 2 ×XA. For many other examples of
state-based systems modelled as coalgebras, see, e.g., [18, 32].

2.1 Coinductive Predicates in a Fibration
We recall the general approach to coinductive predicates in a fibration, starting by briefly
presenting how bisimilarity of Set coalgebras arises in this setting (see [12, 14, 18] for details).
Let Rel be the category where an object is a pair (X,R) consisting of a set X and a relation
R ⊆ X × X on it, and a morphism from (X,R) to (Y, S) is a map f : X → Y such that
x R y implies f(x) R f(y), for all x, y ∈ X. Below, we sometimes refer to an object (X,R)
only by the relation R ⊆ X × X. Any set functor B : Set → Set gives rise to a functor
Rel(B) : Rel→ Rel, defined by relation lifting:

Rel(B)(R ⊆ X ×X) = {((Bπ1)(z), (Bπ2)(z)) ∈ BX ×BX | z ∈ BR} . (1)
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26:4 Expressive Logics for Coinductive Predicates

Given a B-coalgebra (X, γ), a bisimulation is a relation R ⊆ X × X such that R ⊆
(γ × γ)−1(Rel(B)(R)), i.e., if x R y then γ(x) Rel(B)(R) γ(y). Bisimilarity is the greatest
such relation, and equivalently, the greatest fixed point of the monotone map R 7→ (γ ×
γ)−1(Rel(B)(R)) on the complete lattice of relations on X, ordered by inclusion.

The functor Rel(B) is a lifting of B: it maps a relation on X to a relation on BX. A
first step towards generalisation beyond bisimilarity is obtained by replacing Rel(B) by an
arbitrary lifting B : Rel→ Rel of B. For instance, for BX = (PωX)A one may take

B(R) = {(t1, t2) | ∀a ∈ A.∀x ∈ t1(a).∃y ∈ t2(a).(x, y) ∈ R} . (2)

Then, for an LTS γ : X → (PωX)A, the greatest fixed point of the monotone map R 7→
(γ × γ)−1 ◦ B(R) is similarity. In the same way, by varying the lifting B, one can define
many different coinductive relations on Set coalgebras.

Yet a further generalisation is obtained by replacing Set by a general category C, and Rel
by a category of “predicates” on C. A suitable categorical infrastructure for such predicates
on C is given by the notion of fibration. This allows us, for instance, to move beyond (Boolean,
binary) relations to quantitative relations (e.g., behavioural metrics) or unary predicates.
Such examples follow in Section 4; also see, e.g., [12, 5].

To define fibrations, it will be useful to fix some associated terminology first. Let p : E → C
be a functor. If p(R) = X then we say R is above X, and similarly for morphisms. The
collection of all objects R above a given object X and arrows above the identity idX form a
category, called the fibre above X and denoted by EX .

I Definition 2. A functor p : E → C is a (poset) fibration if
each fibre EX is a poset category (that is, at most one arrow between every two objects);
the corresponding order on objects is denoted by ≤;
for every f : X → Y in C and object S above Y there is a Cartesian morphism f̃S : f∗(S)→
S above f , with the property that for every arrow g : Z → X, every object R above Z and
arrow h : R → S above f ◦ g, there is a unique arrow k : R → f∗(S) above g such that
f̃S ◦ k = h.

R

k &&
h

++f∗(S)
f̃S

// S

Z

g &&

f◦g

++X
f

// Y

I Remark 3. In this paper we only consider poset fibrations, and refer to them simply as
fibrations. The usual definition of fibration is more general (e.g., [17]): normally, fibres are
not assumed to be posets. Poset fibrations have several good properties, mentioned below.
In the application to coinductive predicates, it is customary to work with poset fibrations.

For a morphism f : X → Y , the assignment R 7→ f∗(R) gives rise to a functorf∗ : EY →
EX , called reindexing along f . (Note that functors between poset categories are just monotone
maps.) We use a strengthening of poset fibrations, following [34, 23].

I Definition 4. A poset fibration p : E → C is called a CLat∧-fibration if (EX ,≤) is a complete
lattice for every X, and reindexing preserves arbitary meets.
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Any poset fibration p is split: we have (g ◦ f)∗ = f∗ ◦ g∗ for any morphisms f, g
that compose. Further, p is faithful. This captures the intuition that morphisms in E
are morphisms in C with a certain property; e.g., relation-preserving, or non-expansive
(Examples 5, 6). We note that CLat∧-fibrations are instances of topological functors [15]. We
use the former, in line with existing related work [12, 23]. This also has the advantage of
keeping our results amenable to possible future extensions to a wider class of examples.

I Example 5. Consider the relation fibration p : Rel → Set, where p(R ⊆ X × X) = X.
Reindexing is given by inverse image: for a map f : X → Y and a relation S ⊆ Y × Y , we
have f∗(S) = (f × f)−1(S). The functor p is a CLat∧-fibration.

Closely related is the predicate fibration p : Pred → Set. An object of Pred is a pair
(X,Γ) consisting of a set X and a subset Γ ⊆ X, and an arrow from (X,Γ) to (Y,Θ) is a
map f : X → Y such that x ∈ Γ implies f(x) ∈ Θ. The functor p is given by p(X,Γ) = X,
reindexing is given by inverse image, and p is a CLat∧-fibration as well.

In the relation fibration, we sometimes refer to an object (X,R ⊆ X2) simply by R, and
similarly in the predicate fibration.

I Example 6. Let V be a complete lattice. Define the category RelV as follows: an
object is a pair (X, d) where X is a set and a function d : X × X → V, and a morphism
from (X, d) to (Y, e) is a map f : X → Y such that d(x, y) ≤ e(f(x), f(y)). The forgetful
functor p : RelV → Set is a CLat∧-fibration, where reindexing along f : X → Y is given by
f∗(Y, e) = (X, e ◦ f × f).

For V = 2 = {0, 1} with the usual order 0 ≤ 1, RelV coincides with Rel. Another example
is given by the closed interval V = [0, 1], with the reverse order. Then, a morphism from
(X, d) to (Y, e) is a non-expansive map f : X → Y , that is, s.t. e(f(x), f(y)) ≤ d(x, y) (with
≤ the usual order, i.e., where 0 is the smallest). This instance will be denoted by Rel[0,1].

Liftings and Coinductive Predicates

Let p : E → C be a fibration, and B : C → C a functor. A functor B : E → E is called a lifting
of B if p ◦B = B ◦ p. In that case, B restricts to a functor BX : EX → EBX , for any X in C.

A lifting B of B gives rise to an abstract notion of coinductive predicate, as follows. For any
B-coalgebra (X, γ) there is the functor, i.e., monotone function defined by γ∗◦BX : EX → EX .
We think of post-fixed points of γ∗ ◦ BX as invariants, generalising bisimulations. If p is
a CLat∧-fibration, then γ∗ ◦ BX has a greatest fixed point ν(γ∗ ◦ BX), which is also the
greatest post-fixed point. It is referred to as the coinductive predicate defined by B on γ.

I Example 7. First, for a Set functor B : Set→ Set, recall the lifting Rel(B) of B defined
in the beginning of this section. We refer to Rel(B) as the canonical relation lifting of B.
For a coalgebra (X, γ), a post-fixed point of the operator γ∗ ◦ Rel(B)X is a bisimulation, as
explained above. The coinductive predicate ν(γ∗ ◦Rel(B)X) defined by Rel(B) is bisimilarity.
Another example is given by the lifting B for similarity defined in the beginning of this
section, which we further study in Section 4. In that section we also define a unary predicate,
divergence, making use of the predicate fibration. Coinductive predicates in the fibration
Rel[0,1] can be thought of as behavioural distances, providing a quantitative analogue of
bisimulations, measuring the distances between states. A simple example on deterministic
automata is studied in Section 4.1.

I Remark 8. In the quantitative examples, such as Rel[0,1], one can replace the latter by a
category with more structure, such as the category of pseudometrics and non-expansive maps.
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26:6 Expressive Logics for Coinductive Predicates

Similarly, one can replace Rel by the category of equivalence relations. Defining liftings then
requires slightly more work, and since we use fibrations to define coinductive predicates, this
unnecessarily complicates matters. Therefore, we do not use such categories in our examples.

We sometimes need the notion of fibration map: if B is a lifting of B, the pair (B,B) is
called a fibration map if (Bf)∗ ◦BY = BX ◦ f∗ for any arrow f : X → Y in C. If B preserves
weak pullbacks, then (Rel(B), B) is a fibration map [18] in the relation fibration (Example 5).

2.2 Coalgebraic Modal Logic
We recall a general approach to coalgebraic modal logic, in the context of a contravariant
adjunction [30, 22, 19]. We assume the following setting, involving an adjunction P a Q and
a natural transformation δ : BQ⇒ QL:

C
P

**
B

"" ⊥ Dop

Q

ii Ldd with BQ
δ +3 QL (3)

In this context, a logic for B-coalgebras is a pair (L, δ) as above. The functor L : D → D
represents the syntax of the modalities. It is assumed to have an initial algebra α : LΦ

∼=→
Φ, which represents the set (or other structure) of formulas of the logic. The natural
transformation δ gives the one-step semantics. It can equivalently be presented in terms of
its mate δ̂ : LP ⇒ PB, which is perhaps more common in the literature. However, we will
formulate adequacy and expressiveness in terms of the current presentation of δ.

Let (X, γ) be a B-coalgebra. The semantics J_K of a logic (L, δ) arises by initiality of α,
making use of the mate δ̂, as the unique map making the diagram on the left below commute.

LΦ
LJ_K //

α

��

LPX
δ̂ // PBX

Pγ

��

X
th //

γ

��

QΦ

Qα

��
Φ

∃!J_K // PX BX
Bth // BQΦ δ // QLΦ

The theory map th : X → QΦ is defined as the transpose of J_K. It is the unique map making
the diagram on the right above commute.

I Example 9. Let C = D = Set, P = Q = 2− the contravariant powerset functor, and
BX = 2 ×XA. We define a simple logic for B-coalgebras, where formulas are just words
over A. To this end, let LX = A×X + 1. The initial algebra of L is the set A∗ of words.
Define δ : BQ⇒ QL on a component X as follows:

δX : 2× (2X)A → 2A×X+1 δX(o, t)(u) =
{
o if u = ∗ ∈ 1
t(a)(x) if u = (a, x) ∈ A×X

For a coalgebra 〈o, t〉 : X → 2 ×XA, the associated theory map th : X → 2A∗ is given by
th(x)(ε) = o(x) and th(x)(aw) = th(t(x)(a))(w) for all x ∈ X, a ∈ A, w ∈ A∗. This is, of
course, the usual semantics of deterministic automata.

In the above example, the logic does not contain propositional connectives; this is reflected
by the choice D = Set. To add those, one chooses a category of algebras for D. For instance,
Boolean algebras are a standard choice for propositional logic, and in Section 4 we use the
category of semilattices to represent conjunction. In fact, if one is only interested in defining
the semantics of the logic, one can simply work with algebras for a signature; this is supported
by the adjunctions presented in the next subsection. We outline in the next subsection how
this can be used to represent the propositional part of a real-valued modal logic.
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2.3 Contravariant Adjunctions
In this subsection we discuss several adjunctions that we use for presenting coalgebraic logic
as above, and will allow us in Section 4 to demonstrate that a large variety of concrete
examples is covered by our framework. In all cases, the adjunctions that we use for the logic
are generated by an object Ω of “truth values”. In fact, we believe all of the dual adjunctions
listed in this section are instances of the so-called concrete dualities from [31] where Ω is the
dualising object inducing the adjunction.

For a simple but useful class of such adjunctions, let D be a category with products, and
Ω an object in D. Then there is an adjunction

P a Q : Set� Dop where PX = ΩX and QX = Hom(X,Ω) , (4)

where ΩX is the X-fold product of Ω.

I Example 10. To illustrate the usefulness of this simple adjunction, consider the real-valued
coalgebraic modal logics from [24]. The set Φ of formulas of these logics is given by the
following definition that is indexed by a set E of modal operators:

Φ ::= > | [e]ϕ, e ∈ E | min(ϕ1, ϕ2) | ¬ϕ | ϕ	 q, q ∈ Q ∩ [0,>]

where 	 is interpreted as truncated subtraction on [0,>] given by p 	 q := max(p − q, 0),
min is interpreted as minimum and where negation on [0,>] is defined as ¬q := > − q.
Describing the category of L-algebras that precisely represents a given logic (i.e., where the
initial algebra corresponds to the set of formulas modulo equivalence) is in general nontrivial.
For studying expressivity, however, it is sufficient to consider formulas and their semantics,
i.e., expressivity of a real-valued logic for B-coalgebras for some functor B : Set→ Set can
be studied by considering the dual adjunction

Set
P=[0,>]−

--
B

$$ ⊥ Alg(Σ)op

Q=Hom(−,[0,>])

jj Lcc

where ΣX = 1 +X2 +X +X × (Q∩ [0,>]) and L(A) = TΣ({[e]a | a ∈ A, e ∈ E}) with TΣ(G)
denoting the free Σ-algebra over a set G of generators.

Another class of adjunctions we use relates Rel to categories of algebras. To formulate it,
we assume:

V is a complete lattice of distance values,
Ω is a bounded poset of truth values,
Σ: Set→ Set is a functor,
aΩ : ΣΩ→ Ω is a Σ-algebra,
(Ω, RΩ : Ω× Ω→ V) ∈ RelV , and
Σ has a lifting Σ: RelV → RelV such that
1. there is a morphism aΩ : ΣRΩ → RΩ above aΩ and
2. for any (X,R), (Y, S) ∈ RelV there is a morphism stR,S : R× ΣS → Σ(R× S) above

the strength map stX,Y : X × ΣY → Σ(X × Y ) for the set functor Σ.

I Proposition 11. Under the above assumptions there is a dual adjunction

RelV

Hom(_,RΩ)
,,

⊥ Alg(Σ)op

Hom(_,aΩ)

kk (5)
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I Corollary 12. In the above scenario, assume that Σ is a polynomial functor and Σ: RelV →
RelV is interpreted to be the canonical lifting of Σ that interprets products and coproducts
occurring in Σ as products and coproducts in RelV , respectively. Then the condition on
stR,S is always satisfied and the dual adjunction from (5) exists if there is a morphism
aΩ : ΣRΩ → RΩ above aΩ.

The following remark is obvious, but at the same time useful for concrete examples.
I Remark 13. In the above cases, let C be a full subcategory of RelV and D a full subcategory
of Alg(Σ) such that Hom(−, aΩ) and Hom(−, RΩ) restrict to functors of type D → C and
of type C → D, respectively. Then the above dual adjunction restricts to a dual adjunction
between C and D.

3 Abstract Framework: Adequacy & Expressivity

In this section, we define when a logic is adequate and expressive with respect to a coin-
ductive predicate, and provide sufficient conditions on the logic. Coinductive predicates
are expressed abstractly via fibrations and functor lifting, and logic via a contravariant
adjunction. Therefore, we make the following assumptions.

I Assumption 14. Throughout this section, we assume:
1. (Type of coalgebra) An endofunctor B : C → C on a category C;
2. (Coinductive predicate) A CLat∧-fibration p : E → C and a lifting B : E → E of B;
3. (Coalgebraic logic) An adjunction P a Q : C � Dop, a functor L : D → D with an initial

algebra α : L(Φ)
∼=→ Φ, and a natural transformation δ : BQ⇒ QL.

As explained in the introduction, to formulate adequacy and expressiveness, we need
one more crucial ingredient: an object that stipulates how collections of formulas should
be compared. In the abstract fibrational setting, we assume an object above QΦ; more
systematically, a functor Q above Q.

I Definition 15 (Adequacy and Expressivity). Let Q : Dop → E be a functor such that p◦Q = Q.
We say the logic (L, δ) is

adequate if ν(γ∗ ◦BX) ≤ th∗(QΦ) for every B-coalgebra (X, γ);
expressive if ν(γ∗ ◦BX) ≥ th∗(QΦ) for every B-coalgebra (X, γ).

When we need to refer to the functors Q or B explicitly, we speak about adequacy and
expressivity via Q w.r.t. B. Examples follow in Section 3.2, where classical expressivity and
adequacy w.r.t. bisimilarity is recovered, and Section 4, where other instances are treated.
I Remark 16. Definition 15 can be generalised to arbitrary poset fibrations, not necessarily
assuming complete lattice structure on the fibres, as follows. Adequacy means that for any
B-coalgebra (X, γ), if R ≤ γ∗ ◦BX(R) then R ≤ th∗(QΦ). Expressivity means that for any
B-coalgebra (X, γ), we have th∗(QΦ) ≤ R for some R with R ≤ γ∗ ◦BX(R). In fact, with
these definitions, if (L, δ) is both adequate and expressive then γ∗ ◦BX has a greatest fixed
point, given by th∗(QΦ). We prefer to work with CLat∧-fibrations, since the definition is
slightly simpler, and it covers all our examples.

3.1 Sufficient conditions for expressivity and adequacy
The results below give conditions on B, Q and primarily the one-step semantics δ that
guarantee expressivity (Theorem 19) and adequacy (Theorem 18). For simplicity we fix the
functor Q.
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I Assumption 17. In the remainder of this section we assume a functor Q : Dop → E such
that p ◦Q = Q.

For adequacy, the main idea is to require sufficient conditions to lift δ to a logic for B.

I Theorem 18. Suppose that
1. BQX ≤ δ∗X(QLX) for every object X in D, and
2. the functor Q has a left adjoint.
Then (L, δ) is adequate.

Proof. The first assumption yields a natural transformation δ : BQ ⇒ QL, defined on a
component X by

δX =
(
BQX // δ∗X(QLX) δ̃ // QLX

)

where the left arrow is the inclusion BQX ≤ δ∗X(QLX), and the right arrow δ̃ is the Cartesian
morphism to QLX above δX . It follows that δX is above δX . Further, naturality follows
from p being faithful (as it is a poset fibration, see Section 2.1) and naturality of δ. Observe
that we have thus established (L, δ) as a logic for B-coalgebras, via the adjunction P a Q.

Now let (X, γ) be aB-coalgebra, andR = ν(γ∗◦BX). Then, in particular, R ≤ γ∗◦BX(R),
which is equivalent to a coalgebra γ : R→ BR above γ : X → BX. The logic (L, δ) gives us
a theory map th of (R, γ) as the unique map making the following diagram commute.

R
th //

γ

��

QΦ

Qα

��
BR

B th // BQΦ δ // QLΦ

Since p ◦ Q = Q and p(δΦ) = δΦ, it follows that p(th) equals the theory map th of (X, γ).
Hence R ≤ th∗(QΦ) as required. J

Expressivity requires the converse inequality of the one in Theorem 18, but only on one
component: the carrier Φ of the initial algebra. Further, the conditions include that (B,B)
is a fibration map. In particular, for the canonical relation lifting Rel(B) this means that B
should preserve weak pullbacks; this case is explained in more detail in Section 3.2.

I Theorem 19. Suppose (B,B) is a fibration map. If δ∗Φ(QLΦ) ≤ BQΦ then (L, δ) is
expressive.

Proof. Let (X, γ) be a B-coalgebra, with th the associated theory map. We show that
th∗(QΦ) is a post-fixed point of γ∗ ◦BX :

th∗(QΦ) = (Q(α−1) ◦ δΦ ◦Bth ◦ γ)∗(QΦ)
= γ∗ ◦ (Bth)∗ ◦ δ∗Φ ◦Q(α−1)∗(QΦ)
= γ∗ ◦ (Bth)∗ ◦ δ∗Φ(QLΦ) (follows from α−1 being an iso)
≤ γ∗ ◦ (Bth)∗(BQΦ) (assumption)
= γ∗ ◦BX ◦ th∗(QΦ) ((B,B) fibration map)

Expressivity follows since ν(γ∗ ◦BX) is the greatest post-fixed point. J
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3.2 Adequacy and Expressivity w.r.t. Bisimilarity
In the setting of coalgebraic modal logic recalled in Section 2.2, Klin [22] proved that
1. the theory map th of a coalgebra (X, γ) factors through coalgebra morphisms from (X, γ);
2. if δ has monic components, then th factors as a coalgebra morphism followed by a mono.
The first item can be seen as adequacy w.r.t. behavioural equivalence (i.e., identification by
a coalgebra morphism), and the second as expressivity.

In the current section we revisit this result for Set functors, as a sanity check of Defini-
tion 15. To this end, we focus on the canonical lifting Rel(B) : Rel→ Rel of a Set functor
B in the relation fibration, so that, for a coalgebra (X, γ), ν(γ∗ ◦ Rel(B)X) is coalgebraic
bisimilarity. We have to restrict to weak pullback preserving functors B. The reason is that
expressive logics typically capture behavioural equivalence rather than bisimilarity. As is
well-known, for weak pullback preserving functors, the two coincide [32].

To obtain the appropriate notion of adequacy and expressivity, we need to compare
collections of formulas for equality. Therefore, the functor Q in Definition 15 will be
instantiated with QX = (QX,∆QX) where ∆QX denotes the diagonal. Then, for a coalgebra
(X, γ), th∗(QΦ) is the set of all pairs of states (x, y) such that th(x) = th(y). Adequacy
then means that for every coalgebra (X, γ), bisimilarity is contained in th∗(QΦ), i.e., if x is
bisimilar to y then th(x) = th(y). Expressivity is the converse implication.

To state and prove the result, let Eq : Set→ Rel be the functor given by Eq(X) = ∆X .
This functor has a left adjoint Quot : Rel→ Set, which maps a relation R ⊆ X ×X to the
quotient of X by the least equivalence relation containing R (cf. [14]).
I Proposition 20 (Adequacy and expressivity w.r.t. bisimilarity). Consider the relation fibration
p : Rel→ Set, let B : Set→ Set be a weak pullback preserving functor, let P a Q : Set� Dop

for some category D, L : D → D a functor with an initial algebra and δ : BQ⇒ QL. Then
1. (L, δ) is adequate w.r.t. Rel(B);
2. if δ is componentwise injective, then (L, δ) is expressive w.r.t. Rel(B),
via Q = Eq ◦Q.
Proof. For adequacy, we use Theorem 18. By composition of adjoints, P ◦ Quot is a left
adjoint to Eq ◦Q. It will be useful to simplify Rel(B) ◦ Eq ◦QX and δ∗X(Eq ◦Q ◦ LX):

Rel(B) ◦ Eq ◦QX = Rel(B)(∆QX) = ∆BQX , (6)
δ∗X(Eq ◦Q ◦ LX) = (δX × δX)−1(∆QLX) , (7)

using that Rel(B) ◦ Eq = Eq ◦B in the first equality (e.g., [18]). The remaining hypothesis
of Theorem 18 is that Rel(B) ◦ Eq ◦ QX ≤ δ∗X(Eq ◦ Q ◦ LX) for all X, i.e., ∆BQX ⊆
(δX × δX)−1(∆QLX), which is trivial.

For expressivity, we use Theorem 19. Since B preserves weak pullbacks, (Rel(B), B) is a
fibration map. We need to prove that δ∗Φ(Eq ◦Q ◦ LΦ) ≤ Rel(B) ◦ Eq ◦QΦ, which amounts
to the inclusion

(δΦ × δΦ)−1(∆QLΦ) ⊆ ∆BQΦ

But this is equivalent to injectivity of δΦ. J

4 Examples

In this section we instantiate the abstract framework to three concrete examples: a behavioural
metric on deterministic automata (Section 4.1), captured by [0, 1]-valued tests; a unary
predicate on transition systems (Section 4.2); and similarity of transition systems, captured
by a logic with conjunction and diamond modalities (Section 4.3).
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4.1 Shortest distinguishing word distance
We study a simple behavioural distance on deterministic automata: for two states x, y and
a fixed constant c with 0 < c < 1, the distance is given by cn, where n is the length of the
smallest word accepted from one state but not the other. Following [4], this is referred to as
the shortest distinguishing word distance, and, for an automaton with state space X, denoted
by dsdw : X ×X → [0, 1].

Formally, fix a finite alphabet A, and consider the functor B : Set→ Set, BX = 2×XA

of deterministic automata. We make use of the fibration p : Rel[0,1] → Set, and define the
lifting B : Rel[0,1] → Rel[0,1] by

B(X, d) =
(
BX, ((o1, t1), (o2, t2)) 7→

{
1 if o1 6= o2

c ·maxa∈A{d(t1(a), t2(a))} otherwise

)

The shortest distinguishing word distance dsdw on a deterministic automaton γ : X → 2×XA

is the greatest fixed point ν(γ∗ ◦BX).
For an associated logic, we simply use words over A as formulas, and define a satisfaction

relation which is weighted in [0, 1]. Consider the following setting.

Set
P=[0,1]−

**
B=2×IdA

$$ ⊥ Setop

Q=[0,1]−
ii L=A×Id+1ff with B([0, 1]−) δ +3 [0, 1]L−

The initial algebra of L is the set of words A∗. The natural transformation δ is given by
δX : 2× ([0, 1]X)A → [0, 1]A×X+1,

δX(o, t)(u) =
{
o if u = ∗ ∈ 1
c · t(a)(x) if u = (a, x) ∈ A×X

which is a quantitative, discounted version of the Boolean-valued logic in Example 9. The
logic (L, δ) defines, for any deterministic automaton 〈o, t〉 : X → 2 × XA, a theory map
th : X → [0, 1]A∗ , given by

th(x)(ε) = o(x) and th(x)(aw) = c · th(t(x)(a))(w) ,

for all x ∈ X, a ∈ A, w ∈ A∗.
We characterise the shortest distinguishing word distance with the above logic, by

instantiating and proving adequacy and expressivity. Define

Q : Setop → Rel[0,1] , Q(X) =
(

[0, 1]X , (φ1, φ2) 7→ sup
x∈X
|φ1(x)− φ2(x)|

)
.

Technically, this functor is given by mapping a set X to the X-fold product of the object
[0, 1] = ([0, 1], (r, s) 7→ |r − s|). It follows immediately that Q has a left adjoint, mapping
(X, d) to Hom((X, d), [0, 1]), see Equation 4. This will be useful for proving adequacy below.

The functor Q yields a “logical distance” between states x, y ∈ X, given by th∗(QΦ). We
abbreviate it by dlog : X ×X → [0, 1]. Explicitly, we have

dlog(x, y) = sup
w∈A∗

|th(x)(w)− th(y)(w)| . (8)

Instantiating Definition 15, the logic (L, δ) is
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adequate if dsdw ≥ dlog, and
expressive if dsdw ≤ dlog.

Here ≤ is the usual order on [0, 1], with 0 the least element (the order in Rel[0,1] is reversed).
To prove adequacy and expressivity, we use Theorem 18 and Theorem 19. The functor Q

has a left adjoint, as explained above. Further, (B,B) is a fibration map [4]. We prove the
remaining hypotheses of both propositions by showing the equality BQX = δ∗X(QLX) for
every object X in D. To this end, we compute (suppressing the carrier set BQX):

δ∗X(QLX)
=

(
((o1, t1), (o2, t2)) 7→ supu∈A×X+1 |δX(o1, t1)(u)− δX(o2, t2)(u)|

)
=

(
(o1, t1), (o2, t2)) 7→

{
1 if o1 6= o2

supu∈A×X |δX(o1, t1)(u)− δX(o2, t2)(u)|) otherwise

)

=
(

(o1, t1), (o2, t2)) 7→
{

1 if o1 6= o2

sup(a,x)∈A×X |c · t1(a)(x)− c · t2(a)(x)|) otherwise

)

=
(

(o1, t1), (o2, t2)) 7→
{

1 if o1 6= o2

c ·maxa∈A supx∈X |t1(a)(x)− t2(a)(x)|) otherwise

)
= BQX

Hence, the logic (L, δ) is adequate and expressive w.r.t. the shortest distinguishing word
distance, i.e., dsdw coincides with the logical distance dlog given in Equation 8.

4.2 Divergence of processes
A state of an LTS is said to be diverging if there exists an infinite path of τ -transitions
starting at that state. To model this predicate, let B : Set→ Set, BX = (PωX)A, where A is
a set of labels containing the symbol τ ∈ A. Consider the predicate fibration p : Pred→ Set,
and define the lifting B : Pred→ Pred by

B(X,Γ) = ((PωX)A, {t | ∃x ∈ Γ. x ∈ t(τ)}) .

The coinductive predicate defined by B on a B-coalgebra (X, γ) is the set of diverging states:

ν(γ∗ ◦BX) = (X, {x | x is diverging}) .

Now, we want to prove in our framework of adequacy and expressivity that x is diverging
iff for every n ∈ N there is a finite path of τ -steps starting in x, i.e., x |= 〈τ〉n> for every n.
The proof relies on two main observations:

if x satisfies infinitely many formulas of 〈τ〉n>, then one of its τ -successors does, too;
if a state x satisfies 〈τ〉n> for some n then x satisfies 〈τ〉m> for all 0 ≤ m ≤ n.

Combined, one can then give a coinductive proof, showing that if the current state satisfies
all formulas of the form 〈τ〉n> then one of its τ -successors also satisfies all these formulas.

We make this argument precise by casting it into the abstract framework. First, for the
logic, we have the following setting:

Set
P=2−

**
B=(Pω−)A

$$ ⊥ Posop

Q=Hom(−,2)

ii L=Id>ff with BHom(−, 2) δ +3 Hom(L−, 2)

Here Pos is the category of posets and monotone maps, and 2 = {0, 1} is the poset given by
the order 0 ≤ 1. For a poset S, Hom(S, 2) is then the set of upwards closed subsets of S.
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The functor LS = S> is defined on a poset S by adjoining a new top element >, i.e., the
carrier is S + {>} and > is strictly above all elements of S. The initial algebra Φ of L is
the set of natural numbers, representing the formulas of the form 〈τ〉n>, linearly ordered,
with 0 the top element. The choice of Pos means that the set Hom(Φ, 2) used to represent
the theory of a state x ∈ X consists of upwards closed sets (so closed under lower natural
numbers in the usual ordering), corresponding to the second observation above concerning
the set of formulas satisfied by x.

The natural transformation δ is given by δS : (PωHom(S, 2))A → Hom(S>, 2),

δS(t)(x) =
{

1 if x = >∨
φ∈t(τ) φ(x) otherwise

.

To show that this is well-defined, suppose x, y ∈ S> with x ≤ y, and suppose δS(t)(x) = 1.
If x = > then y = >, so δS(t)(y) = 1. Otherwise, there is φ ∈ Hom(S, 2) such that φ ∈ t(τ)
and φ(x) = 1. Since φ is upwards closed, φ(y) = 1 and consequently δS(t)(y) = 1 as needed.

Now, the theory map th : X → Hom(Φ, 2) is given by th(x)(n) = 1 iff there exists a path
of τ -steps of length n from x. We define

Q : Posop → Pred , Q(S) = (Hom(S, 2), {φ | ∀x ∈ S. φ(x) = 1}) .

Instantiating Definition 15, adequacy means that if x is diverging, then x |= 〈τ〉n> for all n;
and expressivity is the converse.

We start with proving adequacy, using Theorem 18. The left adjoint P is given by
P (X,Γ) = (Hom((X,Γ), (2, {1})), {(φ1, φ2) | ∀x ∈ X.φ1(x) ≤ φ2(x)}). It remains to prove
that BQ(S) ≤ δ∗S(QLS) for all S. To this end, we observe BQS = (Pω(Hom(S, 2)))A and
compute:

δ∗S(QLS) = {t | δS(t) ∈ QLS}
= {t | ∀x ∈ S>. δS(t)(x) = 1}
= {t | ∀x ∈ S. δS(t)(x) = 1}

= {t | ∀x ∈ S.
∨

φ∈t(τ)

φ(x) = 1}

and BQ(S) = {t | (λx.1) ∈ t(τ)}. The needed inclusion is now trivial.
For expressivity we have to prove the reverse inclusion with S = Φ, i.e.,

{t ∈ (Pω(Hom(Φ, 2)))A | ∀x ∈ Φ.
∨

φ∈t(τ)

φ(x) = 1} ⊆ {t ∈ (Pω(Hom(Φ, 2)))A | (λx.1) ∈ t(τ)}.

To this end, let t be an element of the left-hand side, and suppose towards a contradiction
that for all φ with φ ∈ t(τ), there is an element xφ ∈ Φ with φ(xφ) = 0. Choosing an
assignment φ 7→ xφ of such elements, we get a finite set {xφ | φ ∈ t(τ)}. Let xφ be the
smallest element of that set (w.r.t. the order of Φ, i.e., the largest natural number), and let
ψ ∈ Hom(Φ, 2) be such that ψ(xφ) = 1; such a ψ exists by assumption on t. However, since
xφ ≤ xψ and ψ is upwards closed we have ψ(xψ) = 1, which gives a contradiction. Hence,
the inclusion holds as required. The lifting (B,B) is a fibration map. We thus conclude
from Theorem 19 that the logic is expressive.

4.3 Simulation of processes
Let B : Set→ Set, BX = (PωX)A, and let γ : X → (PωX)A be B-coalgebra, i.e., a labelled
transition system. Denote similarity by - ⊆ X ×X, defined more precisely below. Consider
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the logic with the following syntax:

ϕ,ψ ::= 〈a〉ϕ | ϕ ∧ ψ | > (9)

where a ranges over A, with the usual interpretation x |= ϕ for states x ∈ X. A classical
Hennessy-Milner theorem for similarity is:

x - y iff ∀ϕ. x |= ϕ→ y |= ϕ . (10)

We show how to formulate and prove this result within our abstract framework.
First, recall from Equation 2 in Section 2.1 the appropriate lifting B : Rel→ Rel in the

relation fibration p : Rel→ Set. A simulation on a B-coalgebra (X, γ) is a relation R such
that R ≤ γ∗ ◦BX(R), and similarity - is the greatest fixed point of γ∗ ◦BX .

For the logic, to incorporate finite conjunction, we instantiate D with the category SL
of bounded (meet)-semilattices, i.e., sets equipped with an associative, commutative and
idempotent binary operator ∧ and a top element >.

To add the modalities 〈a〉 for each a ∈ A, we proceed as follows. Let U : SL→ Set be the
forgetful functor. It has a left adjoint F : Set→ SL, mapping a set X to the meet-semilattice
Pω(X) with the top element given by ∅ and the meet by union. The functor L : SL→ SL is
given by LX = F(A× UX); its initial algebra Φ consists precisely of the logic presented in
Equation 9, quotiented by the semilattice equations. For the adjunction, we use:

Set
P=2−

**
B=(Pω−)A

$$ ⊥ SLop

Q=Hom(−,2)

ii L=F(A×U−)ee with BHom(−, 2) δ +3 Hom(L−, 2)

which is an instance of Equation 4. Here 2 = {0, 1} is the meet-semilattice given by the order
0 ≤ 1. For a semilattice S, the set Hom(S, 2) of semi-lattice morphisms is isomorphic to the
set of filters on S: subsets X ⊆ S such that > ∈ X, and x, y ∈ X iff x ∧ y ∈ X.

To define the natural transformation δS : (Pω(Hom(S, 2)))A → Hom(F(A× US), 2) on
a semilattice S, we use that for every map f : A × US → 2 there is a unique semilattice
homomorphism f ] : F(A× US)→ 2:

δS(t) = ((a, x) 7→
∨

φ∈t(a)

φ(x))] =

W 7→ ∧
(a,x)∈W

∨
φ∈t(a)

φ(x)

 .

For an LTS (X, γ), the associated theory map th : X → Hom(Φ, 2) maps a state to the
formulas in (9) that it accepts, with the usual semantics.

To recover (10), we need to relate logical theories appropriately. Define

Q : SLop → Rel , QS = (Hom(S, 2), {(φ1, φ2) | ∀x ∈ S. φ1(x) ≤ φ2(x)}) .

Then th∗(QΦ) = {(x, y) | ∀ϕ ∈ Φ. th(x)(ϕ) ≤ th(y)(ϕ)}, i.e., it relates all (x, y) such that
the set of formulas satisfied at x is included in the set of formulas satisfied at y. Thus,
instantiating Definition 15, adequacy - = ν(γ∗ ◦BX) ≤ th∗(QΦ) is the implication from left
to right in Equation 10, and expressivity is the converse.

We prove adequacy and expressivity. The functor Q has a left adjoint, given by
P (X,R) = Hom((X,R), 2), where 2 = (2, {(x, y) | x ≤ y}). This follows by a straight-
forward computation, or using Proposition 11 with Remark 13, with SL as a full subcategory
of the category of all algebras for the corresponding signature.
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Given a semilattice S, we compute δ∗S(QLS) ⊆ (BQS)2 = ((Pω(Hom(S, 2)))A)2:

δ∗S(QLS) = δ∗S({(φ1, φ2) | ∀W ∈ F(A× US). φ1(W ) ≤ φ2(W )})

= {(t1, t2) | ∀W ∈ F(A× US).
∧

(a,x)∈W

∨
φ∈t1(a)

φ(x) ≤
∧

(a,x)∈W

∨
φ∈t2(a)

φ(x)} .

Further, BQS = {(t1, t2) | ∀a ∈ A.∀φ1 ∈ t1(a).∃φ2 ∈ t2(a).∀x ∈ S. φ1(x) ≤ φ2(x)}.
For adequacy, we need to prove BQS ≤ δ∗S(QLS); but this is trivial, given the above
computations. For expressivity, let (t1, t2) ∈ δ∗S(QLS). We need to show that (t1, t2) ∈ BQS.
Suppose, towards a contradication, that (t1, t2) 6∈ BQS, i.e., there exist a ∈ A and φ1 ∈ t1(a)
such that for all φ2 ∈ t2(a), there is x ∈ S with φ1(x) = 1 and φ2(x) = 0. We choose
such an element xφ2 for every φ2 ∈ t2(a). Note that the collection {xφ2 | φ2 ∈ t2(a)}
is finite – here we make use of the image-finiteness captured by the functor B. Now,
consider the conjunction ψ =

∧
φ2∈t2(a) xφ2 ∈ S. Using that φ1 is a homomorphism, we have

φ1(ψ) = φ1(
∧
φ2∈t2(a) xφ2) =

∧
φ2∈t2(a) φ1(xφ2) = 1, and consequently

∨
φ∈t1(a) φ(ψ) = 1.

We also have
∨
φ∈t2(a) φ(ψ) =

∨
φ∈t2(a)

∧
φ2∈t2(a) φ(xφ2) = 0 since φ2(xφ2) = 0 for every

φ2 ∈ t2(a). Finally, to arrive at a contradiction, let W = {(a, ψ)}. Since (t1, t2) ∈ δ∗S(QLS)
this implies

∨
φ∈t1(a) φ(ψ) ≤

∨
φ∈t2(a) φ(ψ), which is in contradiction with the above. It is

easy to check that (B,B) is a fibration map (cf. [16]). Hence, we conclude expressivity from
Theorem 19.

5 Future work

We proposed suitable notions of expressivity and adequacy, connecting coinductive predicates
in a fibration to coalgebraic modal logic in a contravariant adjunction. Further, we gave
sufficient conditions on the one-step semantics that guarantee expressivity and adequacy,
and showed how to put these methods to work in concrete examples.

There are several avenues for future work. First, an intriguing question is whether the
characterisation of behavioural metrics in [24, 37] can be covered in the setting of this
paper, as well as logics for other distances such as the (abstract, coalgebraic) Wasserstein
distance. Those behavioural metrics are already framed in a fibrational setting [4, 34, 2, 23].
While all our examples are for coalgebras in Set, the fibrational framework allows different
base categories, which might be useful to treat, e.g., behavioural metrics for continuous
probabilistic systems [35].

A further natural question is whether we can automatically derive logics for a given
predicate. As mentioned in the introduction, there are various tools to find expressive
logics for behavioural equivalence. But extending this to the current general setting is
non-trivial. Finally, we note that our expressivity result requires the relevant lifting defining
the coinductive predicate to be a fibration map, which in particular implies weak pullback
preservation for the canonical relation lifting. This is natural, since the latter captures
bisimilarity, while logics capture coalgebraic behavioural equivalence. However, it remains
an interesting question whether we can use different liftings to obtain expressivity for
behavioural equivalence; perhaps based on the lifting in [21], techniques related to Λ-
bisimulations [11, 1, 10] or the lax relation lifting from [28].
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Abstract

Exact minimization of ω-automata is a difficult problem and heuristic algorithms are a subject of
current research. We propose several new approaches to reduce the state space of deterministic
parity automata. These are based on extracting information from structures within the automaton,
such as strongly connected components, coloring of the states, and equivalence classes of given
relations, to determine states that can safely be merged. We also establish a framework to generalize
the notion of quotient automata and uniformly describe such algorithms. The description of these
procedures consists of a theoretical analysis as well as data collected from experiments.
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1 Introduction

Finite automata on ω-words (one sided infinite words) have been introduced in [2] as a
formalism for a deciding a logical theory. Since then, such automata have turned out to be
a useful tool in verification of finite state-based systems. In particular, nondeterministic
Büchi automata (NBA) are a standard tool in model checking for expressing properties of
non-terminating systems, see [1]. In some applications, there are algorithms that require the
property to be represented by a deterministic automaton, like model checking of probabilistic
systems (see, e.g., [1, Section 10.3]), or synthesis of finite state systems from ω-regular
specifications (see [20] for an overview of the theory, and [12] for recent developments in
practice). Deterministic ω-automata require a more expressive acceptance condition than
nondeterministic Büchi automata in order to capture the same language class. One such
condition that is widely used because of its compact representation and its good algorithmic
properties is the parity condition that dates back to [13] (see the surveys [19, 21] on the
theory of ω-automata). In a parity automaton, each state is assigned a priority, which is a
natural number. We use here the convention that a run is accepting if the smallest priority
that is seen infinitely often is even.
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We consider here the problem of finding algorithms for reducing the state space of
deterministic parity automata (DPA). Such reduction algorithms can be used as a post
processing step that are applied after a determinization construction, and before the DPAs
are used in further algorithms.

While deterministic finite automata on finite words can be minimized very efficiently [9]
by merging language equivalent states, the problem becomes NP-hard even for deterministic
Büchi automata [17], which are the special case of DPAs using only priorities 0 and 1. While
language equivalence of states in DPAs can be computed in polynomial time by a simple
adaption of emptiness for Streett automata (see the “fair state problem” in [5]), merging
language equivalent states of DPAs does, in general, not preserve the language. Heuristic
approaches for reducing the state space of ω-automata, usually based on simulation relations,
have up to now mainly focused on NBAs, e.g., [18, 6, 11], or even on alternating Büchi or
parity automata [7, 8].

Because of the applications of DPAs in synthesis and probabilistic model checking, we
think that it is worth studying the problem of state space reduction also for DPAs. Typically,
state space reduction is done by identifying classes of equivalent states that can be merged,
and then constructing the quotient automaton in case of a congruence relation, or redirecting
all incoming transitions of a class to a representative of that class, and deleting all other
states. The most basic merge for DPAs is obtained by interpreting a DPA as a Moore
automaton with the priorities as output, which can then be minimized efficiently by merging
states that produce the same output for every input sequence [9]. In this context, we call the
equivalence relation which considers two states to be equivalent if they are merged by this
algorithm the Moore equivalence.

While we also take the basic approach of computing states that can be merged, we
sometimes need to be careful in the selection of representatives. For that reason, we introduce
the notion of “merger templates”, which map sets of states in the original DPA, called the
merge set, to other sets of states, called the candidate set. The easiest interpretation, which
we refer to as representative merge, allows us to merge all states from the merge set into any
single representative that is chosen from the candidate set.

We formulate some basic known reduction techniques for DPAs in this framework.
Furthermore, we analyze the known notion of delayed simulation for DPAs. Delayed simulation
has been introduced in [6] for nondeterministic Büchi automata. In [8] the notion has been
extended to alternating parity automata, but it is shown there that quotienting alternating
(and also nondeterministic) parity automata w.r.t. delayed simulation does not preserve the
language. For this reason, [8] introduces variants of delayed simulation that can be used
for merging. We revisit the definition of delayed simulation and show that for DPAs the
corresponding quotient preserves the language.

As our main contribution, we propose three new equivalence relations that can be used
for merging states in DPAs, which we call path refinement, threshold Moore, and labeled SCC
filter (LSF). All these techniques require a given equivalence relation ∼ over the state space
that implies language equivalence of states. This equivalence relation has to be computed
separately (it can be the full language equivalence relation, or just a subset of it). In our
experiments, we use a relation that is produced as a by-product of the determinization
construction.

If ∼ is a congruence (like full language equivalence), then path refinement refines one of
the congruence classes up to a point such that the remaining blocks can be merged. In the
threshold Moore technique, one computes the Moore equivalence of states, considering only
the priorities less than or equal to some k, and intersects this with ∼. All states of priority k
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that are equivalent in this intersection can be merged. Finally, the LSF merger template
removes states also based on the Moore equivalence up to k, but it merges states that are in
different SCCs of the DPA after removing all states up to priority k.

We illustrate all these new techniques on small examples, exhibit efficient algorithms
for computing the corresponding relations, and provide some experimental data showing
that they can achieve significant reductions on DPAs obtained from specifications from the
competition SYNTCOMP [10].

The remainder of this paper is structured as follows. In Section 2 we give basic definitions
and introduce the notion of merger template. In Section 3, we revisit the notion of delayed
simulation. In Sections 4–6 we present our three new approaches. The experimental evaluation
is given in Section 7, and in Section 8 we conclude.

2 Automata and Merger Templates

We consider deterministic parity automata (DPA), which are, syntactically, a specific type of
Moore automaton. A Moore automaton is of the form A = (Q,Σ, δ, f) with a finite set Q of
states, the input alphabet Σ, a transition function δ : Q× Σ→ Q, and an output function
f : Q→ Γ for some output alphabet Γ. Note that we define the automaton without initial
state because we are interested in reducing the number of states of automata by computing
equivalence relations on states. In this context, the initial state does not play any role.

We use the standard notations Σ∗ for all finite words w = a0a1 · · · an with all ai ∈ Σ,
and Σω for the set of infinite words α = a0a1a2 · · · with all ai ∈ Σ. We write α(i) for the
ith letter ai of α. When estimating the complexity of algorithms, we assume that |Σ| is a
constant.

A run of A from state q0 ∈ Q on an infinite input word α ∈ Σω is an infinite state
sequence ρ = q0q1q2 · · · ∈ Qω such that δ(qi, α(i)) = qi+1 for all i. The generated output of
A on α starting from q0 is the sequence f(ρ) = f(q0)f(q1) · · · of outputs at the states in
the run. Similarly, one defines runs and outputs for finite input words. As usual, we write
δ∗(q, w) for the state that is reached by the run on w that starts in q.

A DPA is a special Moore automaton A = (Q,Σ, δ, c), where the output function is of the
form c : Q→ N, and is called the priority function. For q ∈ Q, we refer to c(q) as the priority
of q, and for P ⊆ Q, we let c(P ) = {c(q) | q ∈ P}. A run ρ of a DPA is called accepting if in
c(ρ) the smallest priority that occurs infinitely often is even. The word α ∈ Σω is accepted
from q ∈ Q if the run of A on α from q is accepting. We write L(A, q) for the set of all words
accepted by A from q.

In the remainder of the paper, A with the above components is always a DPA if not
noted otherwise.

We consider several types of different relations, mostly over the state domain Q. A
relation R is a preorder if it is reflexive and transitive. R is an equivalence relation if it
is a symmetric preorder. R is a congruence relation if it is an equivalence relation that is
compatible with δ, i.e., if (p, q) ∈ R, then also (δ(p, a), δ(q, a)) ∈ R for all a ∈ Σ.

If ∼ is an equivalence relation and A is a DPA, we write C(∼) ⊆ 2Q for the set of
equivalence classes in A. We define two basic equivalence relations that are used throughout
the paper.

I Definition 1. The language equivalence relation is defined by p ≡L q iff L(A, p) = L(A, q).
The Moore equivalence relation is defined by p ≡M q iff c(δ∗(p, w)) = c(δ∗(q, w)) for all

finite words w ∈ Σ∗ (that is, for every input word, the sequence of priorities when starting in
p is the same as the one when starting in q).

CSL 2020
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Both of these relations are actually congruence relations. It is well known that merging
language equivalent states does not preserve the accepted language in general. Consider,
for example, the DPA from Figure 4 on page 10. All three states are language equivalent,
accepting the words with finitely many c and infinitely many a. But it is not possible to
merge any of the states as that would change the languages of the remaining states.

In contrast, Moore equivalent states can be merged without changing the language. The
main aim of this paper is to identify other conditions under which language equivalent states
can be merged. We say that a relation ∼ implies language equivalence if p ∼ q implies that
p ≡L q.

2.1 Merger Templates

The merge operations that we use are more general than quotient automata. Consider, for
example, the DPA in Figure 5 on page 12. As we explain in Section 6, it is possible to
remove the states q1, q2, and to redirect the incoming transitions of these states to q3 or q4
instead. We say that M = {q1, q2} is a merge set, and that C = {q3, q4} is the corresponding
candidate set.

We define the notion of a merger template, which maps a collection of such merge sets to
their corresponding candidate sets, and the notion of representative merge, which merges the
states in the merge sets into a single candidate, respectively.

I Definition 2. Let µ : D → (2Q \ {∅}) be a function for some D ⊆ 2Q. We call µ a merger
template if all sets in D are pairwise disjoint and for all sets M ∈ D, µ(M)∩ (

⋃
D \M) = ∅.

The latter condition means that the candidates µ(M) for M cannot be inside any other merge
set (but they can be inside M).

A representative merge A′ of A w.r.t. µ is constructed by choosing a representative
rM ∈ µ(M) for all M ∈ D and then removing all states in M \ {rM}. Transitions that
originally lead to one of the removed states are redirected to the representative rM instead.

The notion of quotient automaton w.r.t. a congruence relation is captured by a represent-
ative merge for the merger template that maps each congruence class to itself. We illustrate
this on the example of Moore equivalence.

I Definition 3. The Moore merger template is defined as µM : C(≡M ) → 2Q with
µM (κ) = κ for each κ ∈ C(≡M ).

Then, the following is an easy consequence of the definitions.

I Proposition 4. A representative merge of a DPA w.r.t. µM is language equivalent to the
original and isomorphic to the quotient automaton w.r.t. ≡M .

When we apply merge operations, we talk about language equivalence of the resulting
automaton to the original one (as in the above proposition). We have defined our automata
without initial states, so we need to fix our notion of language equivalence of two automata.

I Definition 5. Two DPAs A1 and A2 are called language equivalent if for each state p
in one of the DPAs, there is a state q in the other DPA such that from p and q the same
language is accepted (in the respective DPA).
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2.2 Schewe Merge
The main focus of this paper lies on techniques to generate merger templates such that a
representative merge produces a language equivalent DPA. However, in the remainder of this
section, we want to discuss a more involved merge operation than the representative merge.
This operation is based on [17], and we therefore call it Schewe merge. We do not use this
merge operation in the other sections. The aim is rather to illustrate that representative
merges are not the only option.

The Schewe merge works rather similar to the representative merge. In addition to
merging states from the merge sets into the chosen representative, it also redirects some
transitions to the candidate set. While this does not remove additional states on its own,
it simplifies the structure of the automaton to potentially improve the reduction of further
reduction algorithms that are applied after the Schewe merge.

I Definition 6. Let µ be a merger template. A Schewe merge of a DPA A w.r.t. µ is
constructed by first building a representative merge. Then, for all merge sets M in µ and all
transitions δ(p, a) = q in the original automaton, if q ∈ µ(M) and p is not reachable from q,
then the transition is redirected to rM instead.

A Schewe merge differs from the representative merge if there is more than one state from
the candidate set remaining, and the states are distributed over multiple SCCs. Whenever a
transition would move the automaton to a candidate while changing SCC at the same time,
that transition is instead redirected to the chosen representative state. One can imagine
that, for example, this potentially enhances the reduction of a consecutive Moore merger, as
more states now uniformly target the same representative.

It is not obvious if one can simply replace the representative merge with the Schewe
merge and still keep the same properties such as preservation of language. We can identify a
set of requirements that merger templates have to satisfy to be compatible with the Schewe
merge.

I Definition 7. For a representative merge A′ of A w.r.t. µ, we define the candidate relation
∼µC over the states of A′ by p ∼µC q if and only if p = q or there is a C ∈ µ(D) with p, q ∈ C.

We call µ Schewe suitable if for all representative merges A′, ∼µC is a congruence relation,
it implies language equivalence, and the reachability order restricted to any equivalence class
of ∼µC is symmetric (that is, if one state is reachable from another, they are in the same
SCC).

An example for a Schewe suitable merger template is µ−1,≡L

LSF from Section 6. This merger
template intuitively expresses that for each class of language equivalent states, one only needs
to keep those in a “latest” SCC. The Schewe merge then corresponds to Construction 12 of
[17] (where in [17] a notion of “almost equivalence” is used instead of language equivalence
because the operation is used in the context of automata on finite words).

I Theorem 8. Let µ be a Schewe suitable merger template and let A be a DPA. If a
representative merge and a Schewe merge of A are built with the same choices for the
representative states, then these two merge DPAs are language equivalent.

Proof. Let A′ be the representative merge and A′′ be the Schewe merge. Let q0 be some
starting state for the three runs ρ, ρ′, ρ′′ of the three automata on some word α. We claim
that ρ′ and ρ′′ have the same acceptance status.

CSL 2020
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Let K be the set of positions where ρ′′ uses a transition that does not exist in ρ′. We
can observe that for every equivalence class κ of ∼µC , there is at most one kκ in K. If there
would be two such positions kκ and lκ, then ρ′′(lκ− 1) would be reachable from ρ′′(kκ) which
contradicts the requirement for the redirection of that edge in the Schewe merge.

As K = {k1, . . . , kn} is finite, ρ′′ eventually only uses transitions that are also present in
ρ′. By induction on i, we can show that ρ′(ki + 1) ∼µC ρ′′(ki + 1), in particular for i = n. As
∼µC implies language equivalence by assumption, that means ρ′ and ρ′′ must have the same
acceptance status. J

3 Delayed Simulation

We adapt the notion of delayed simulation, which has been introduced for alternating parity
automata in [8], to DPAs. In the special case of DPAs, the computation of delayed simulation
becomes simpler, and it can directly be used for state space reduction, while alternating and
nondeterministic automata require more restricted variants for this purpose [8].

I Definition 9 (adapted from [8]). The delayed simulation equivalence relation is defined
as p ≡de q if and only if the following property holds for all w ∈ Σ∗: Let p′ = δ∗(p, w) and
q′ = δ∗(q, w). Every run in the automaton that starts in p′ or q′ eventually sees a priority
less than or equal to min{c(p′), c(q′)}.

It is easy to see that ≡de is a congruence relation that implies language equivalence.
However, states that are ≡de-equivalent do in general not have the same priority. In order to
correctly merge ≡de-equivalent states, one has to pick a representative of minimal priority
from each class.

I Definition 10. The delayed simulation merge template is µde : C(≡de) → 2Q with
µde(κ) = {q ∈ κ | c(q) = min c(κ)}.

I Theorem 11. A representative merge of a DPA A w.r.t. µde is language equivalent to the
original.

Proof. Consider an input word α, a run ρ = q0q1 · · · of A on α from some state q0, and the
corresponding run ρ′ starting in the ≡de-class of q0 of the DPA A′ obtained by a representative
merge. Since the merge picks from each class a representative with smallest priority, it is
clear that the priorities of states in ρ′ are at each position smaller than or equal to the
priorities in ρ. If ρ′ visits a state of priority k, then ρ visits a state of priority k now or later,
by definition of delayed simulation. Hence, the smallest priority that occurs infinitely often
is the same in both runs. J

In [8] it is shown that delayed simulation can be computed by solving a Büchi game. Since
we consider the special case of deterministic automata, we instead obtain just a deterministic
Büchi automaton for which one has to solve language universality in order to compute the
delayed simulation equivalence. The automaton is obtained by a product construction for
tracking two runs, and a third component that keeps track of the smallest priority that the
second state still has to match (see Lemma 13 below).

I Definition 12. Define the deterministic Büchi automaton Gde = (Qde,Σ, δde, Fde) as
Qde = Q×Q× (c(Q) ∪ {X})
δde((p, q, k), a) = (p′, q′, γ(c(p′), c(q′), k)), where p′ = δ(p, a) and q′ = δ(q, a)
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with obligation function

γ(i, j, k) =
{
X if j ≤ i and j ≤X k

min≤X{i, k} otherwise

where 0 ≤X 1 ≤X 2 ≤X · · · ≤X X.
Fde = Q×Q× {X}.

Now using this automaton, we can relate delayed simulation to the question of universal
language. A state is language universal if starting from it, every input word is accepted.

I Lemma 13. For two states p and q, let q0
de(p, q) = (p, q, γ(c(p), c(q),X)). Then p ≡de q if

and only if q0
de(p, q) and q0

de(q, p) are language universal states (all infinite words are accepted
from these states in Gde).

Proof. The run from q0
de(p, q) in Gde consists of the two runs from p and q in the original

DPA A, and the “obligations” in the third component. This obligation is the smallest number
k such that the run from p has seen priority k, and the run from q has since then not seen a
priority ≤ k. The obligation is X if no such number k exists. If the obligation becomes X
infinitely often, then for all priorities k seen in the run from p at some position i, the run
from q visits a priority ≤ k at position i or later. With this observation, it follows that the
condition from the lemma captures the definition of delayed simulation. J

I Theorem 14. µde can be computed in O(|Q|2 · |c(Q)|).

Proof. Assuming that we can compute ≡de in a suitable data structure in the described
time, building µde from that is rather trivial. To see how we compute ≡de, observe that
the size of Gde is O(|Q|2 · |c(Q)|). The set of language universal states in a DBA can be
computed in linear time: we are looking for loops in the subgraph that only consists of the
non-accepting states. Then, every state from which such a loop is reachable is not language
universal. These operations can all be done in linear time with classic graph algorithms such
as depth first search. J

4 Path Refinement

In this section, we present our first new technique, which we call path refinement. It starts
from a given congruence relation ∼ on the state space that implies language equivalence.
For path refinement, we pick one congruence class λ of ∼. We then define an equivalence
relation only on the states of λ, and merge the states in the corresponding equivalence
classes. For defining the equivalence relation of path refinement, we consider the set Lλ←↩
of non-empty finite words that, starting in a state in λ lead the DPA back to λ without an
intermediate visit to λ (note that the precise starting state inside λ does not matter because
∼ is a congruence):

Lλ←↩ := {w = a1 · · · an ∈ Σ+ | for all (or equivalently some) q ∈ λ: δ∗(q, w) ∈ λ, and
δ∗(q, a1 · · · ai) /∈ λ for all 1 ≤ i < n}.

Based on this language, we define the equivalence relation as follows.

I Definition 15. Let ∼ be a congruence relation that implies language equivalence, and let
λ ∈ C(∼) be an equivalence class. We define a relation Rλ on λ as (p, q) ∈ Rλ if and only if
for all w ∈ Lλ←↩, the smallest priority seen on the path induced by w is the same starting
from p and from q.
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PR .

We define path refinement equivalence ≡λPR on λ as the largest subset of Rλ such that
p ≡λPR q if and only if for all w ∈ Lλ←↩, δ∗(p, w) ≡λPR δ∗(q, w).

As an example, consider the DPA shown in Figure 1. For the relation ∼, we use exact
language equivalence between states. In this case, the language equivalent states are {q0, q1}
and {q2, q3}. They are separated, e.g., by the word aω. We choose λ = {q0, q1}.

The set Lλ←↩ is described by the regular expression a + c + b(a + b)∗c; reading any of
these words from either q0 or q1 will take the DPA back to λ again.

Since q0, q1 both have the lowest priority 0, on every path for a word in Lλ←↩, the lowest
priority that is seen is 0. Hence, q0 ≡λPR q1.

As for delayed simulation, the corresponding merger template defines for each class the
states with smallest priority as candidates:

IDefinition 16. The path refinement merger template is µλPR : C(≡λPR)→ 2Q with µλPR(κ) =
{q ∈ κ | c(q) = min c(κ)}.

Going back to the example, the merger template would assign µλPR({q0, q1}) = {q0, q1}.
The representative merge for the candidate q0 is shown in Figure 2.

Path refinement thus is able to remove one state from the automaton. In contrast, no
two different states are in the delayed simulation equivalence relation.

One can check that this automaton is equivalent to the original DPA. The fact that this
is true in general, is captured by the following theorem.

I Theorem 17. A representative merge of a DPA A w.r.t. µλPR is language equivalent to
the original.

Proof. Let A′ be the representative merge. Assume there is a starting state q0 ∈ Q′ and a
word α such that the acceptance of the runs ρ (of A starting in q0) and ρ′ (of A′ starting in
q0) differs. We will bring this assumption to a contradiction.

First, note that at every position i, ρ(i) and ρ′(i) must be ∼-equivalent, as ∼ is a
congruence relation. If in these runs, λ is visited only finitely often, there is a position j at
which it is visited for the last time. Then from j on, ρ′ only uses transitions that also exist
in the original DPA A. As ρ(j) ∼ ρ′(j), they must be language equivalent and therefore have
the same acceptance status. This contradicts the assumption.

Otherwise, λ is visited infinitely often. However, for two consecutive positions k and
k′ at which λ is seen, we can show that the smallest priorities in c(ρ(k)), . . . , c(ρ(k′)) and
c′(ρ′(k)), . . . , c′(ρ′(k′)) are the same. Then, it easily follows that the entire runs share the
same smallest priority that is seen infinitely often.

To observe that the two run segments see the same minimal priority, first observe that
ρ(k) ≡λPR ρ′(k) by induction on k. If k is the first position at which λ is visited, then ρ′(k)
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is the representative of the equivalence class of ρ(k) and therefore ≡λPR-equivalent to ρ(k).
Then, by definition of the path refinement equivalence, the same holds for k′ and therefore
all following positions.

Now that we have established ρ(k) ≡λPR ρ′(k), it follows directly from the definition of Rλ
that the smallest priorities in c(ρ(k)), . . . , c(ρ(k′)) and c′(ρ′(k)), . . . , c′(ρ′(k′)) are equal. J

We now turn to the question how to compute ≡λPR efficiently. In the naive approach, one
can build a product automaton similar to the one for delayed simulation, in which the third
component tracks the smallest priority so far and the component it was seen in. Then, at
every visit to λ, the tracked values need to coincide. An algorithm based on such a product
would have a complexity that is at least quadratic in the state space.

Instead, we build a Moore automaton of size |Q| · |c(Q)| that tracks only for single states
the smallest priority seen on paths from λ back to λ. Moore equivalence in this automaton
then corresponds to ≡λPR.

I Definition 18. Define the Moore automaton Avisit = (Qλvisit,Σ, δλvisit, f
λ
visit) by

Qλvisit = Q× (c(Q) ∪ {⊥})

δλvisit((q, k), a) =
{

(q′,min{c(q), c(q′)}) if q ∈ λ
(q′,min{k, c(q′)}) if q /∈ λ

, where q′ = δ(q, a)

fvisit((q, k)) =
{
k if q ∈ λ
⊥ if q /∈ λ

I Lemma 19. For a state q ∈ Q, let ιq = (q,max c(Q)) ∈ Qλvisit. Then, for all states p and
q, it holds that p ≡λPR q if and only if ιp ≡M ιq.

Proof. Our first observation is that for any state p ∈ λ, reading some w ∈ Lλ←↩ from (p, k)
ends in (q, k′), where k′ is the smallest priority that occurs on the run segment.

If p 6≡λPR q, then there is a w ∈ Lλ←↩ such that either the smallest priority when reading
w from p and q differs, or reading w moves to non-PR-equivalent states. If the former is true,
then reading w from ιp and ιq brings the visit graph to states with different priorities and
therefore ιp 6≡M ιq. If the former is false and the latter is true, then one has to repeatedly
apply this argument until at some point a state pair is reached at which the first case is
violated. This must happen eventually, as ≡λPR is defined as the largest subset satisfying its
conditions.

For the other direction, if ιp 6≡M ιq, there must be a w ∈ Σ∗ such that the priority differs
when reading w from ιp and ιq. As all states not in λ have the same output ⊥, we can
split w = v1 . . . vn such that all vi are words in Lλ←↩. Then, on the last segment, reading
vn sees different minimal priorities from the initial states, and therefore p and q cannot be
PR-equivalent. J

I Theorem 20. ≡λPR can be computed in O(|Q| · |c(Q)| · log |Q|).

Proof. Moore equivalence for automata with n states can be computed in time O(n logn)
[9]. The number of states of Avisit is in O(|Q| · |c(Q)|). As |c(Q)| is always at most |Q|, this
gives us the desired complexity. J

5 Threshold Moore

Similar to Section 4, we again start from an equivalence relation ∼ on the state set Q of the
DPA that implies language equivalence. In this section, ∼ does not have to be a congruence
relation. We then intersect ∼ with a weakened version of Moore equivalence, and show that
states that are equivalent in this intersection can be merged.
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I Definition 21. For a priority k, we define the threshold Moore equivalence relation as
p ≡≤kM q if and only if for all finite words w, δ∗(p, w) and δ∗(q, w) have the same priority or
both priorities are greater than k.

Let ∼ be an equivalence relation that implies language equivalence. We define the TM
equivalence relation as p ≡∼TM q if and only if p ∼ q, c(p) = c(q), and p ≡≤c(p)

M q.

Note that for each k, the relation ≡≤kM is a congruence but, in general, ≡∼TM is not a
congruence, even if ∼ is (as can be seen in the example below).

Figure 3 shows a DPA on which we want to illustrate the reduction process. For ∼, we
use exact language equivalence again. In this example, all four states are equivalent, as all
accept the language (a+ b+ c)∗(b∗a)ω.

The threshold Moore relation depends on the choice for parameter k. For k = 0, all four
states are equivalent because all states have priority greater than 0. For k = 1, there are
three equivalence classes, {q0, q1}, {q2}, and {q3}. For k > 1, the relation becomes the same
as ≡M and all states are separated. These observations together imply that q0 ≡∼TM q1, and
these are the only states that are equivalent w.r.t. ≡∼TM. Therefore, ≡∼TM is not a congruence
because, for example, δ(q0, a) = q2 and δ(q1, a) = q3.

The merger template for TM relation simply merges classes of ≡∼TM. Note that this is
not, however, a quotient automaton, as ≡∼TM is in general not a congruence relation.

I Definition 22. We define the TM merger template µ∼TM : C(≡∼TM)→ 2Q as µ∼TM(κ) = κ.

Continuing the example, the representative merge with the candidate q0 for the class
{q0, q1}, results in the automaton shown in Figure 4.

No distinct states are delayed simulation equivalent in this example. Furthermore, for the
only ∼-class λ = {q0, q1, q2, q3}, one can check that no two distinct states are ≡λPR-equivalent.

I Lemma 23. Let A be a DPA and let A′ be a representative merge w.r.t. a single equivalence
class κ ∈ C(µ∼TM). Then L(A, q) = L(A′, q) for all states q of A′. Furthermore, if k is the
priority of the states in κ, then for all states p, q of A′ with k ≥ c(p), c(q), we have p ≡≤kM q

in A if, and only if, p ≡≤kM q in A′.

Proof. We focus on the language equivalence first. Let ρ and ρ′ be the runs of the two
automata on some word α starting in q. We show that these two runs have the same
acceptance status.

Note that all states in ρ′ are also states of A. Since ≡L is a congruence relation and only
language equivalent states are merged, we have that ρ(i) ≡L ρ′(i) in A for all positions i.
The same is true for ≡≤kM .
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If ρ visits infinitely many states of priority at most k, then the two runs see the same
smallest priority l < k infinitely often, as c(ρ(i)) = l if and only if c′(ρ′(i)) = l. Thus, they
must have the same acceptance status.

If c(ρ) only visits finitely many states of priority at most k, then from some point j on in
ρ′, only transitions that also exist in A are taken. As ρ(j) ≡L ρ′(j) in A, we obtain that the
two runs have the same acceptance status.

Regarding the second claim of the lemma, let p, q be states with k ≥ c(p), c(q) such that
p, q are ≡≤kM -equivalent in A. Let α ∈ Σω, and consider the runs ρ, π of A on α from p, q, as
well as the run π′, ρ′ of A′ on α starting in p, q.

As ≡≤kM is a congruence relation, ρ(i) ≡≤kM ρ′(i) and π(i) ≡≤kM π′(i) in A for all positions
i. Furthermore, since p and q are ≡≤kM -equivalent in A, also ρ(i) ≡≤kM π(i) in A for all i. This
implies that ρ′(i) ≡≤kM π′(i) in A for all i.

Therefore, at the positions at which one of ρ′ and π′ visits a priority ≤ k, the other run
visits the same priority. Hence, p, q are ≡≤kM -equivalent in A′. J

I Theorem 24. A representative merge of a DPA w.r.t. µ∼TM is language equivalent to the
original.

Proof. Let κ1, . . . , κm be an enumeration of the equivalence classes in µ∼TM sorted by des-
cending priority. By Lemma 23, merging the states in κi will not change the equivalence
classes κi+1, . . . , κn. It is therefore a language preserving operation to merge all equivalence
classes in the given order. The resulting automaton is the same as a representative merge
w.r.t. µ∼TM. J

The computation of µ∼TM is rather straightforward.

I Theorem 25. For a given ∼ in a suitable data structure, µ∼TM can be computed in time
O(|Q| · |c(Q)| · log |Q|).

Proof. Assuming that ≡∼TM is known, computing µ∼TM is easy. For obtaining ≡∼TM, one needs
the relations ≡≤kM . For each k, this can be computed with just a slight adaption of usual
algorithms for Moore equivalence in time O(|Q| · log |Q|). This needs to be done for every k,
so |c(Q)| times. J

6 Labeled SCC Filter

The labeled SCC filter technique (LSF) is also based on the threshold Moore equivalence
from Definition 21. While in Section 5 only states of priority k could be merged based on
≡≤kM , we now consider states that are ≡≤kM -equivalent, have priority greater than k, and
are in different SCCs after removing all states with priority ≤ k. We then keep from each
equivalence class only those states that are in a “deepest” SCC in this restricted automaton,
in the sense that no other SCCs are reachable from it.

For that purpose, let A �c>k be the restriction of A to states with priority greater than k.
Furthermore, we let �k be a total preorder on the states in A �c>k that extends the reachability
preorder. More formally, if q is reachable from p in A �c>k, then p �k q; on the other hand, if
q is not reachable from p, then either p ≺k q or q ≺k p.

In other words, �k is a preorder whose equivalence classes are exactly the SCCs in A �c>k
and which is compatible with a topological sorting of the states.

I Definition 26. Let k ≥ −1 and let ∼ be an equivalence relation that implies language
equivalence. We define the LSF equivalence relation ≡k,∼LSF such that two states p and q are
equivalent if and only if
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LSF.

p = q; or
c(p) > k, c(q) > k, p ≡≤kM q, and p ∼ q.

Consider the DPA shown in Figure 5. As ∼, we use language equivalence as in the
previous examples. All five states are language equivalent. We choose k = 0. Since ∼ has
only one class, ≡0,∼

LSF is the same as the threshold Moore relation for k = 0, which consists of
the two equivalence classes {q0} and {q1, q2, q3, q4}, separated by the empty word.

The LSF merger template selects for each equivalence class the maximal elements w.r.t.
�k as candidates. Formally, we also need to treat the states with priority ≤ k, each of which
forms its own singleton equivalence class.

I Definition 27. For each equivalence class κ of ≡k,∼LSF: if κ = {q} for c(q) ≤ k, then
Mk
κ = Ckκ = {q}, and otherwise let

Ckκ = {r ∈ κ | p �k r for all p ∈ κ} and Mk
κ = κ \ Ckκ .

Define the LSF merger template by µk,∼LSF(Mk
κ ) = Ckκ for each equivalence class κ of ≡k,∼LSF.

We continue our example from before with the class κ = {q1, q2, q3, q4}. Keeping only
the states with priority greater than 0, i.e. removing q0 from the automaton, breaks it into
the two SCCs {q1, q2} and {q3, q4}. There is a transition from q2 to q4, so the relation �0 is
given by {q1, q2} ≺0 {q3, q4}.

The merger template therefore assigns µ0,∼
LSF({q1, q2}) = {q3, q4}. Deciding on q3 as the

representative, the resulting automaton after the merge is displayed in Figure 6.
None of the previous reduction algorithms, that is, delayed simulation, path refinement

based on ∼, or threshold Moore are able to remove a state from the original automaton.

I Lemma 28. Let A be a DPA and let A′ be a representative merge w.r.t. a single equivalence
class κ ∈ C(µk,∼LSF). Then, L(A, q) = L(A′, q) for all states q of A′. Furthermore, for all
states p, q of A′, we have p ≡k,∼LSF q in A if, and only if, p ≡k,∼LSF q in A′.

Proof. Let ρ and ρ′ be the runs of the two automata on some word α starting in q. We show
that these two runs have the same acceptance status. Since, by definition, ≡k,∼LSF⊆≡L, and
≡k,∼LSF⊆≡

≤k
M , we have that ρ(i) ≡L ρ′(i) and ρ(i) ≡≤kM ρ′(i) in A for all positions i (because

≡L and ≡≤kM are congruences). The definition of ≡≤kM implies that both runs visit priorities
≤ k at the same positions. If infinitely many such priorities ≤ k are visited, this implies
that both runs have the same acceptance status. If finitely many priorities ≤ k are visited,
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note that between two transitions in A′ that are not in A, there has to be a priority ≤ k by
definition of the merger template. Hence, in this case, ρ′ uses only finitely many transitions
that are not in A. Let j be some position such that ρ′ after j only uses transitions that
also exist in A. Since ρ(j) ≡L ρ′(j), as noted earlier, we obtain that ρ and ρ′ have the same
acceptance status.

Concerning the second statement, let p, q be states of A′ with p ≡k,∼LSF q in A. We show
that p ≡k,∼LSF q in A′ by proving p ≡≤kM q and p ≡L q in A′. Note that ∼ in A′ is just the
restriction of ∼ to the state set of A′, so showing p ≡L q in A′ also implies that p ∼ q.

Let α be an infinite word, and let π, π′ be the runs of A,A′ on α starting in p, and ρ, ρ′
be the runs of A,A′ on α starting in q. As explained above, we have π(i) ≡≤kM π′(i) and
ρ(i) ≡≤kM ρ′(i) in A for all i. Furthermore, p ≡k,∼LSF q in A implies that also π(i) ≡≤kM ρ(i) in
A for all i. By transitivity, we obtain that π′(i) ≡≤kM ρ′(i) in A. In particular, π′ and ρ′ are
at the same time in states of priority ≤ k. Since α was picked arbitrarily, we conclude that
p ≡≤kM q in A′.

For showing p ≡L q in A′, note that we have shown above (for the first claim of the
lemma) that from p the same words are accepted in A and A′, and from q the same words
are accepted in A and A′. Since p ≡L q in A, we can conclude that also p ≡L q in A′. J

I Theorem 29. A representative merge of a DPA w.r.t. µk,∼LSF is language equivalent to the
original.

Proof. Let κ1, . . . , κm be an enumeration of the equivalence classes of ≡k,∼LSF. When merging
Mk
κi

into Ckκi
, the language is preserved and the equivalence classes κi+1, . . . , κm do not

change by Lemma 28. Also the candidate sets Ckκj
themselves do not change, so we can safely

merge all Mk
κi

into Ckκi
. This is the same operation as performed by the merger template. J

Computation of the LSF merger consists of computing the threshold Moore equivalence
and a reachability analysis in the restricted graph.

I Theorem 30. For a given ∼ in a suitable data structure, µk,∼LSF can be computed in time
O(|Q| · log |Q|).

Proof. ∼ is already given and ≡≤kM can be computed in O(|Q| · log |Q|). Building ≡k,∼LSF is
an easy linear time intersection operation.

The second step to building µk,∼LSF is to compute Ckκ for each κ. For that, it suffices to
find the order �k and then select all the maximal elements from each equivalence class.
This order can be computed by a topological sorting on the SCCs of A �c>k which one can
construct in linear time. J

7 Experimental Data

All algorithms that have been presented in Sections 3–6 were also implemented by us in
C++ in order to evaluate them on larger examples. The test data set consisted of roughly
100 automata that were constructed from LTL specifications of the Reactive Synthesis
Competition (SYNTCOMP) [10].

The automata were constructed by translating the given LTL formulas into nondetermin-
istic Büchi automata using the Spot tool ([4]), followed by a conversion to a DPA using
nbautils ([14]). During the generation of these DPAs, several techniques for state reduction
are already applied, such as minimizing the number of priorities according to [3], and then
minimizing the DPA as Moore automata.
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Figure 7 Reduction of SYNTCOMP automata. (all techniques)
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Figure 8 Reduction of SYNTCOMP automata.
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Figure 9 Reduction of SYNTCOMP automata.
(only LSF)

The sizes of the testing automata range from 9 to 3575 states with a median of 48 and
an average of 202; the size of the alphabet Σ ranges from 4 to 2048 symbols with a median
of 16. There are three or four different priorities in most of the automata.

The techniques presented in Sections 4–6 require a given equivalence relation∼ that implies
language equivalence. Although language equivalence of states in DPAs can be computed in
polynomial time, the space and time complexity of the algorithm is in O(|Q|2|c(Q)|2), which
turns out to be too high for the larger examples. Instead, we use a relation ∼ that can be
produced as a side-effect of the determinization construction, as explained in the following.

Determinization constructions for Büchi automata, like the Safra construction [16, 15],
are refinements of the standard subset construction for NFAs. The set of states that could
have been reached in the NBA is tracked in combination with additional information on
visits to accepting states. So there are, in general, many states of the constructed DPA that
correspond to the same set S of Büchi states. All these states in the DPA that correspond to
the same set S are language equivalent, because from all of them precisely those words are
accepted that are accepted by the Büchi automaton from one of the states in S. Therefore,
the relation ∼ defined for states p, q of the DPA by p ∼ q iff p and q correspond to the same
set S of Büchi states, is a congruence relation that implies language equivalence. It can
therefore be used in the algorithms from Sections 4–6, and is obtained “for free” from the
determinization construction.
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Figure 7 shows a histogram of overall reduction that was achieved in our experiments.
As the generated DPAs can reach sizes of more than 1000, the low complexity of the new
techniques was very important. To obtain the histogram, all reduction techniques were
applied in succession, with the exception of delayed simulation which proved to be too
difficult for the largest automata with its quadratic complexity in both space and time.

The histogram shows a reduction between 14 and 34% of the states in most cases.
Individually, the two approaches showing most reduction were path refinement (Section 4)
and LSF (Section 6), both of which are analyzed in Figures 8 and 9.

Apart from these tests, we had our reduction also run on DPAs that were determinized
from randomly constructed NBAs. The results are rather similar to those shown here and
confirm our analysis. In addition to path refinement and LSF, also delayed simulation showed
great potential on automata small enough. We consider automata from actual specifications
to be of more relevance though, which is why we focus on the SYNTCOMP set here.

8 Conclusion

We have proposed three new ways of reducing the state space of DPAs, and analyzed the
known technique of delayed simulation from [6, 8] in the context of DPAs. For obtaining a
uniform way of describing the methods, we have introduced the notion of merger template,
in order to capture different types of merge operations.

The equivalence relations on which our reduction techniques are based can all be computed
very efficiently. Our experiments show that the new methods can further reduce the state
space of DPAs that have been obtained by determinizing Büchi automata, and that have
already been reduced with known techniques.

We therefore believe that the proposed methods provide interesting tools to be used
as post-processing after determinization constructions that produce DPAs. Since other
acceptance conditions, like Rabin or Streett automata, are also commonly used in algorithms,
a possible topic for future research would be to see if and how our methods can be adapted
to these conditions.
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Abstract
We provide a direct method for proving Craig interpolation for a range of modal and intuitionistic
logics, including those containing a “converse” modality. We demonstrate this method for classical
tense logic, its extensions with path axioms, and for bi-intuitionistic logic. These logics do not have
straightforward formalisations in the traditional Gentzen-style sequent calculus, but have all been
shown to have cut-free nested sequent calculi. The proof of the interpolation theorem uses these
calculi and is purely syntactic, without resorting to embeddings, semantic arguments, or interpreted
connectives external to the underlying logical language. A novel feature of our proof includes an
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1 Introduction

The Craig interpolation property for a logic L states that if A⇒ B ∈ L, then there exists a
formula C in the language of L such that A⇒ C ∈ L and C ⇒ B ∈ L, and every propositional
variable appearing in C appears in A and B. This property has many useful applications: it
can be used to prove Beth definability [11]; in computer-aided verification it can be used to
split a large problem involving A⇒ B into smaller problems involving A⇒ C and C ⇒ B [18];
and in knowledge representation (uniform) interpolation can be used to conceal or forget
irrelevant or confidential information in ontology querying [15]. Therefore, demonstrating
that a logic possesses the Craig interpolation property is of practical value.

Interpolation can be proved semantically or syntactically. In the semantic method, L is
the set of valid formulae, thereby requiring a semantics for L. In the syntactic method, often
known as Maehara’s method [17], L is the set of theorems, thereby requiring a proof-calculus.
The syntactic approach constructs the interpolant C by induction on the (usually cut-free)
derivation of A⇒ B, and usually also provides derivations witnessing A⇒ C and C ⇒ B.
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28:2 Syntactic Interpolation via Nested Sequents

Over the past forty years, Gentzen’s original sequent calculus has been extended in many
different ways to handle a plethora of logics. The four main extensions are hypersequent cal-
culi [2], display calculi [7], nested sequent calculi [1, 10, 21], and labelled calculi [19]. Various
interpolation results have been found using these calculi but the only general methodology that
we know of is the recent work of Kuznets [13] with Lellman [14]. Although they use extended
sequent calculi, binary-relational Kripke semantical arguments are crucial for their methodo-
logy, and extending their method to other semantics is left as further work. They also construct
the interpolants using a language containing (interpreted) meta-level connectives which are
external to the logic at hand, and do not handle logics containing converse modalities such as
tense logic. Finally, their method does not yield derivations witnessing A⇒ C and C ⇒ B.

We give a general, purely syntactic, methodology for proving Craig interpolation using
nested sequent calculi for a variety of propositional, non-classical logics including normal
tense logics, their extensions with path axioms, and bi-intuitionistic logic. Our methodology
does not utilise semantics, does not embed one logic into another, and does not utilise logical
connectives which are external to the underlying logical language.

The first novelty of our approach is a generalisation of the notion of interpolant from
formulas to sets of sequents. The second is a notion of orthogonality which gives rise to
a notion of duality via cut: if two interpolants are orthogonal, then the empty sequent is
derivable from the sequents in the interpolants using only the cut and the contraction rules.
This duality via cut allows us to relate our more general notion of interpolants (as sets of
sequents) to the usual notion of interpolants (as formulas). Moreover, given a derivation
of A ⇒ B, our orthogonality condition not only allows us to construct the interpolant C,
but also the derivations witnessing A⇒ C and C ⇒ B. This fact shows that our approach
possesses a distinct complexity-theoretic advantage over the semantic approach: to verify
that C is indeed the interpolant of A⇒ B, one need only check the derivations of A⇒ C

and C ⇒ B, which is a PTIME process. In the semantic approach, to verify that A⇒ C and
C ⇒ B are indeed valid (and that C is in fact an interpolant of A⇒ B) one must construct
proofs of the implications, which is generally much harder (e.g., finding a proof of a validity
in one of the tense logics presented in Sec. 3 is PSPACE complete).

Related work. Interpolation has been heavily investigated in the description logic com-
munity, where it is used to hide or forget information [23]. In this setting, the logic ALC is a
syntactic variant of the multimodal normal modal logic Kn while its extension with inverse
roles, ALCI, is a variant of the multimodal normal tense logic Ktn. Cate et al [23] utilise a
complexity-optimal tableau algorithm to prove interpolation for ALC via Maehara’s method.
They then embed ALCI into ALC and extend their interpolation result to ALCI.

By contrast, our methodology is direct: we obtain interpolation for the normal tense logic
Kt, and can then extract interpolation for the normal modal logic K by simply observing
that our nested sequent calculus obeys the separation property: if the end-sequent ⊢ A→ B

contains no occurrences of the black (converse) modalities, then neither does the interpolant.
As mentioned earlier, the work of Kuznets et al. [6, 13, 14] on interpolation for modal

logics in nested sequent calculi is closest to ours. Our construction of interpolants for tense
logics shares some similarity with theirs. One crucial difference is that our interpolants are
justified purely through syntactic and proof-theoretic means, whereas their interpolants are
justified via semantic arguments. Another important difference is that our method extends
to the bi-modal case and also (bi-)intuitionistic case, and it is straightforward to adapt our
work to the multi-modal case, e.g., using nested sequent calculi as in [24]. Kowalski and
Ono [12] showed interpolation for bi-intuitionistic logic using a sequent calculus with analytic
cut. In contrast, our proof is based on a cut-free nested sequent calculus [8].
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Outline of the paper. In Sec. 2 we give a brief overview of a typical interpolation proof
using the traditional sequent calculus, and highlight some issues of extending it to nested
sequent calculi, which motivates the generalisation of the interpolation theorem we adopt
in this paper. In Sec. 3 we show how the generalised notion of interpolants can be used to
prove the Craig interpolation theorem for classical tense logic and its extensions with path
axioms [9], covering all logics in the modal cube and more. We then show how our approach
can be extended to bi-intuitionistic logic in Sec. 4. In Sec. 5 we conclude and discuss future
work. Proofs of the main lemmas and theorems can be found in an extended version of this
paper [16].

2 Overview of our approach

We analyze a typical syntactic interpolation proof for Gentzen sequents, highlight the issues
of extending it to nested sequents, and motivate our syntactic approach for interpolation.

Consider, for example, a two-sided sequent calculus for classical logic such as G3c [25].
Interpolation holds when we can prove that for all Γ1, Γ2, ∆1, ∆2, if Γ1, Γ2 ⊢ ∆1, ∆2 is
provable in G3c, then so are both Γ1 ⊢ ∆1, C and C, Γ2 ⊢ ∆2, for some C containing only
propositional variables common to both Γ1, ∆1 and Γ2, ∆2.

The inductive construction of C can be encoded via inference rules over more expressive
sequents that specify the splitting of the contexts and the interpolant constructed thus
far. In G3c, we write Γ1 ∣ Γ2 ⊢ ∆1 ∣ ∆2 ∥ C to denote the sequent Γ1, Γ2 ⊢ ∆1, ∆2 with its
context split into Γ1 ⊢∆1 and Γ2 ⊢∆2, and with C the interpolant. Inference rules for this
extended sequent are similar to the usual ones, with variations encoding the different ways the
contexts may be split. For example, the initial rule Γ, p ⊢ p, ∆ has the following four variants
corresponding to the four splittings of where p can occur (with four different interpolants!):

Γ1, p ∣ Γ2 ⊢ p, ∆1 ∣ ∆2 ∥ � Γ1, p ∣ Γ2 ⊢∆1 ∣ p, ∆2 ∥ p

Γ1 ∣ Γ2, p ⊢ p, ∆1 ∣ ∆2 ∥ ¬p Γ1 ∣ Γ2, p ⊢∆1 ∣ p, ∆2 ∥ ⊺

Branching rules, such as the right-introduction rule for ∧, split into two variants, depending
on whether the principal formula is in the first or the second partition of the context:

Γ1 ∣ Γ2 ⊢ A, ∆1 ∣ ∆2 ∥ C Γ1 ∣ Γ2 ⊢ B, ∆1 ∣ ∆2 ∥ D

Γ1 ∣ Γ2 ⊢ A ∧B, ∆1 ∣ ∆2 ∥ C ∨D
∧R1

Γ1 ∣ Γ2 ⊢∆1 ∣ ∆2, A ∥ C Γ1 ∣ Γ2 ⊢∆1 ∣ ∆2, B ∥ D

Γ1 ∣ Γ2 ⊢∆1 ∣ ∆2, A ∧B ∥ C ∧D
∧R2

Observe that the interpolants of the conclusion sequents are composed from the interpolants
of the premises, but with the main connectives dual to one another: a disjunction in the ∧R1

rule and a conjunction in the ∧R2 rule. These observations also apply for the other rules
of G3c, with a slight subtlety for the implication-left rule: see [25]. Interpolation for G3c
can then be proved by a straightforward induction on the height of proofs.

Below we discuss some issues with extending this approach to proving interpolation for
modal/tense logics and bi-intuitionistic logic using nested sequent calculi, and how these
issues lead to the generalisation of the intermediate lemmas we need to prove (which amounts
to an interpolation theorem for sequents, rather than formulae).

CSL 2020
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Classical modal and tense logics

A nested sequent [10] can be seen as a tree of traditional Gentzen-style sequents. For classical
modal logics, single-sided sequents suffice, so a nested sequent in this case can be seen as a
nested multiset: i.e. a multiset whose elements can be formulae or multisets. Following the
notation in [9], a sequent nested inside another sequent is prefixed with a ○, which is the
structural proxy for the ◻ modal operator. For example, the nested sequent below first left,
with two sub-sequents {c, d} and {e, f}, represents the formula shown second left:

⊢ {a, b, ○{c, d}, ○{e, f}} a∨b∨�(c∨d)∨�(e∨f)
⊢ Γ, ○{A, ∆}
⊢ Γ,♦A, ○{∆}

⊢ ♦¬p, ○{p, q}
⊢ ♦¬p,♦p, ○{q}

Nested sequent calculi for modal logics [1, 9, 10] typically contain the propagation rule
for diamond shown third left above which “propagates” the A into the scope of ○, when
read upwards. Propagation rules complicate the adaptation of the interpolation proof from
traditional Gentzen sequent calculi. In particular, it is not sufficient to partition a context
into two disjoint multisets. That is, suppose a nested sequent ⊢ Γ, ∆ is provable, and we
would like to construct an interpolant C such that ⊢ Γ, C and ⊢ C, ∆ are provable, where C

is the negation normal form of ¬C. Suppose the proof of ⊢ Γ, ∆ ends with a propagation rule,
e.g., when Γ = ♦¬p,♦p and ∆ = ○{q} as shown above far right. In this case, by induction, we
can construct an interpolant D such that the splittings ⊢ ♦¬p, D and ⊢ D, ○{p, q} of the
premiss are provable, but it is in general not obvious how to construct the desired interpolant
C for the conclusion ⊢ ♦¬p,♦p, ○{q} from D. For this example, D should be �p, and C

should be ��, which does not mention p at all.
The above issue with propagation rules suggests that we need to strengthen the induction

hypothesis to construct interpolants, i.e., by considering splitting the sequent context at
every sub-sequent in the nested sequent. For example, the nested sequent ⊢ ♦¬p, ○{p, q}
above should be split into ⊢ ♦¬p, ○{p} and ⊢ ○{q} when applying the induction hypothesis.
Then, D = C = �� is indeed an interpolant: both ⊢ ♦¬p, ○{p},�� and ⊢ ♦⊺, ○{q} are
provable. Nevertheless, employing a formula interpolant is not enough to push through the
inductive argument in general. Consider, for example, the nested sequent ⊢ ○{p,¬p}, which
is provable with an identity rule, and its partition ⊢ ○{p} and ⊢ ○{¬p}. There is no formula
C such that both ⊢ ○{p}, C and ⊢ C, ○{¬p} are provable. One solution to this problem
is to generalise the interpolation statement to consider a nested sequent as an interpolant:
If a nested sequent ⊢ Γ is provable, then for every “partitioning” of ⊢ Γ into ⊢ Γ1 and
⊢ Γ2 (where the partitioning applies to every sub-sequent in a nested sequent; the precise
definition will be given in subsequent sections), there exists ⊢ ∆ (the interpolant), ⊢ Γ′1 and
⊢ Γ′2 such that
1. The propositional variables occuring in ⊢∆ are in both ⊢ Γ1 and ⊢ Γ2,
2. ⊢ Γ′1 splits into ⊢ Γ1 and ⊢ ∆, and ⊢ Γ′2 splits into ⊢ Γ2 and ⊢∆, where ⊢∆ denotes

the nested sequent ⊢∆ with all formula occurrences replaced with their negations, and
3. Both ⊢ Γ′1 and ⊢ Γ′2 are provable.
For example, the nested sequent ⊢ ○{p,¬p}, with partitions ⊢ ○{p} and ⊢ ○{¬p}, has the
interpolant ⊢∆ = ⊢ ○{¬p} (hence ⊢∆ = ⊢ ○{p}), and ⊢ Γ′1 = ⊢ Γ′2 = ⊢ ○{p,¬p}.

One remaining issue is that, since we now use a nested sequent as an interpolant, the
composition of interpolants needs to be adjusted as well. Recall that in the construction of
interpolants for G3c above, in the case involving the right-introduction for ∧, we constructed
either C ∨D or C ∧D as the interpolant for the conclusion. If C and D are nested sequents,
the expression C ∨D or C ∧D would not be well-formed. To solve this remaining issue, we
generalise the interpolant further to be a set of nested sequents.
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Fitting and Kuznets [6] similarly generalise the notion of interpolants, but instead of
generalising interpolants to a set of (nested) sequents, they introduce “meta” connectives for
conjunction and disjunction, applicable only to interpolants, and justified semantically. Our
notion of interpolants requires no new logical operators or semantical notions.

Propositional bi-intuionistic logic

Bi-intuitionistic logic is obtained from intuitionistic logic by adding a subtraction (or exclusion)
connective −< that is dual to implication. Its introduction rules are the mirror images of
those for implication; in the traditional sequent calculus, these take the form:

A ⊢ B, ∆
A−< B ⊢∆

−<L
Γ ⊢∆, A Γ, B ⊢∆

Γ ⊢∆, A−< B
−<R

However, as shown in [20], the cut rule cannot be entirely eliminated in a sequent calculus
featuring these rules, although they can be restricted to analytic cuts [12]. In [8], Postniece et
al. show how bi-intuitionistic logic can be formalised in a nested sequent calculus. Although
interpolation holds for intuitionistic logic, it does not generalise straightforwardly to bi-
intuitionistic logic, and only very recently has interpolation for bi-intuitionistic logic been
shown [12]. The proof for the interpolation theorem for intuitionistic logic is very similar to
the proof of the same theorem for classical logic; one simply needs to restrict the partitioning
of the sequent to the form Γ1 ∣ Γ2 ⊢ ∆1 ∣ ∆2 where ∆1 is empty and ∆2 contains at most
one formula occurrence. Since the (nested) sequent calculus for bi-intuitionistic logic uses
multiple-conclusion (nested) sequents, the proof for intuitionistic logic cannot be adapted to
the bi-intutionistic case. The problem already shows up in the very simple case involving the
identity rule: suppose we have a proof of the initial sequent p ⊢ p and we want to partition the
sequent as ⋅ ∣ p ⊢ p ∣ ⋅. It is not possible to find an interpolant C such that ⋅ ⊢ p, C and C, p ⊢ ⋅
(otherwise, one would be able to prove the excluded middle p ∨ (p ⊃ �), which is not valid in
bi-intuitionistic logic, using the cut formula p ∨C). In general, the inductive construction of
the interpolant for A ⊃ B may involve finding an interpolant C for the problematic partition
of the form ⋅ ∣ Γ ⊢∆ ∣ ⋅, where ∆ is non-empty. This case does not arise in the interpolation
proof for intuitionistic logic in [25], due to the restriction to single-conclusion sequents.

We show that the above issue with bi-intutionistic logic can be solved using the same
approach as in modal logic: simply extend the interpolant to a set of nested sequents. In
particular, for ⋅ ∣ p ⊢ p ∣ ⋅, the generalised interpolation statement only requires finding an
interpolating sequent Γ ⊢∆ and its “dual” Γ′ ⊢∆′ (see below) such that both Γ ⊢ p, ∆ and
Γ′, p ⊢∆′ are provable, which is achieved by letting Γ = {p}, ∆ = { }, Γ′ = { } and ∆′ = {p}.

Interpolating sequents and orthogonality

In a simplified form (e.g., sequent calculus), the generalised interpolation result we show can
be roughly summarised as follows: given a provable sequent Γ1, Γ2 ⊢∆1, ∆2, there exist two
sets of sequents I and I ′ such that
1. For every sequent (Σ ⊢ Θ) ∈ I, the sequent Γ1, Σ ⊢∆1, Θ is provable,
2. For every sequent (Σ′ ⊢ Θ′) ∈ I ′, the sequent Γ2, Σ′ ⊢∆2, Θ′ is provable,
3. The propositional variables in I and I ′ occur in both Γ1 ⊢∆1 and Γ2 ⊢∆2, and
4. The sequents in I and I ′ are orthogonal to each other, that is, the empty sequent ⊢ is

derivable from all sequents in I ∪ I ′ using only the cut rule and possibly structural rules
(contraction and/or weakening).

CSL 2020
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The set I is taken to be the (sequent) interpolant.
Last, the orthogonality condition, can be seen as a generalisation of duality. To see how

this is the case, consider a degenerate case where Γ1, Γ2 ⊢∆1, ∆2 is a classical sequent (e.g.,
in G3c). We show how one can convert a formula interpolant in the usual definition (i.e.,
formula C s.t. Γ1 ⊢ C, ∆1 and Γ2, C ⊢∆2 are provable) to a sequent interpolant satisfying
the four conditions above, and vice-versa. For the forward direction, simply let I = { ⊢ C}
and I ′ = {C ⊢ }. It is easy to see that I is orthogonal to I ′. For the converse direction,
suppose we have a sequent interpolant I and its orthogonal I ′. We illustrate how one can
construct a formula interpolant C. To simplify the discussion, let us assume that

I = {(p, q ⊢ r, s)} I ′ = {( ⊢ p), ( ⊢ q), (r ⊢ ) , (s ⊢ )}

and that the following sequents are provable:

(1) Γ1, p, q ⊢ r, s, ∆1 (2) Γ2 ⊢∆2, p (3) Γ2 ⊢∆2, q (4) Γ2, r ⊢∆2 (5) Γ2, s ⊢∆2

Let C = (p ∧ q) ⊃ (r ∨ s). Then it is easy to see that Γ1 ⊢ ∆1, C is provable given (1), and
Γ2, C ⊢∆2 is provable given (2) - (5). The formal statement and the proof of the generalised
interpolation theorem will be discussed in detail in the next two sections.

A note on notation

In what follows, we adopt a representation of nested sequents using restricted labelled
sequents where we use the labels and relational atoms to encode the tree structure of a nested
sequent. To clarify what we mean, consider the following nested sequent for tense logic [9]:

A, B, ○{C, D}, ○{E, F, ●{G, H}, ○{I}}

Graphically, the nested sequent can be represented as a tree (shown below left) with two
types of edges ○→ and ●→. Alternatively, the nested sequent can be represented as the polytree
shown below right with a single type of edge → and where the orientation of the edge encodes
the two types of structures ○{} and ●{} of the nested sequent (observe that the ●-edge from
E, F to G, H in the left diagram has been reversed in the right diagram).1

A, B

C, D

○

E, F

G, H

●

I

○

○
A, B

C, D E, F

G, H I

In the latter representation, the structure of the nested sequent can be encoded using a
single binary relation: we label each node of the tree corresponding to the nested sequent
(as shown above left) with unique labels x, y, z, . . ., encode each edge x

○→ y from a label
x to a label y with a relation Rxy, and encode each edge x

●→ y with a relation Ryx [3].
The above nested sequent can then be equivalently represented as a labelled sequent where
R = {Ruv, Ruw, Rxw, Rwy} and R is a relational symbol:

R ⊢ u ∶ A, u ∶ B, v ∶ C, v ∶ D, w ∶ E, w ∶ F, x ∶ G, x ∶ H, y ∶ I

1 A polytree is a directed graph such that its underlying graph – the graph obtained by ignoring the
orientation of the edges – is a tree.
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A∨��A A∨�♦A ♦(A∧B)∨♦A∨�B �(A∧B)∨�A∨�B
A
�A

�
A
�A

�

Figure 1 The minimal tense logic Kt consists of all classical propositional tautologies, modus
ponens, and is additionally extended with the above axioms and inference rules.

Inference rules in a nested sequent calculus can be trivially encoded as rules in a restricted
labelled calculus seen as a ‘data structure’ rather than a proper labelled sequent calculus.

We stress that our labelled notation to represent nested sequents is just a matter of
presentation: the labelled representation is notationally simpler for presenting inference rules
and composing nested sequents. For instance, the operation of merging two nested sequents
with isomorphic shapes is simply the union of the multiset of labelled formulae.

3 Interpolation for Tense Logics

As usual, we interpret �A as saying that A holds at every point in the immediate future,
and ♦A as saying that A holds at some point in the immediate future. Conversely, the �
and � modalities make reference to the past: �A says that A holds at every point in the
immediate past, and �A says that A holds at some point in the immediate past. Last, we
take p to be the negation of p, and use the notation [?] ∈ {�,�} and ⟨?⟩ ∈ {♦,�}.

We consider tense formulae in negation normal form (nnf) as this simplifies our calculi
while retaining the expressivity of the original language. The language for the tense logics
we consider is given via the following BNF grammar:

A ∶∶= p ∣ p ∣ (A ∧A) ∣ (A ∨A) ∣ (�A) ∣ (♦A) ∣ (�A) ∣ (�A).

Since our language excludes an explicit connective for negation, we define it formally below
(Def. 1). Using the definition, we may define an implication A→ B to be A ∨B.

I Definition 1. For a formula A, we define the negation A recursively on the structure of
A: if A = p then A ∶= p and if A = p then A ∶= p. The clauses concerning the connectives are
as follows: (1) B ∧C ∶= B ∨C, (2) [?]B ∶= ⟨?⟩B, (3) B ∨C ∶= B ∧C, and (4) ⟨?⟩B ∶= [?]B.

Path axioms are of the form [?]1[?]2⋯[?]n p̄ ∨ ⟨?⟩p (or, equivalently, ⟨?⟩1⋯⟨?⟩np→ ⟨?⟩p)
with n ∈ N. See [24] for an overview of path axioms.

The tense logics we consider are all extentions of the minimal tense logic Kt (Fig. 1) with
path axioms. Thus, KtΠ is the minimal extension of Kt with all axioms from the finite set Π
of path axioms.

The calculus for Kt, extended with a set of path axioms Π, is given in Fig. 2. Labelled
sequents are defined to be syntactic objects of the form R ⊢ Γ, where R is a multiset of
relational atoms of the form Rxy and Γ is a multiset of labelled formulae of the form x ∶ A,
with A a tense formula and labels from a countable set {x, y, z, . . .}.

Note that the side conditions xRΠy and yRΠx of the ♦ and � rules, respectively, depend
on the set Π of path axioms added to Kt. The definition of the relation RΠ is founded upon
various auxiliary concepts that fall outside the main scope of this paper. We therefore refer
the interested reader to App. A of [16] where the RΠ relation as well as the concepts needed
for its definition are explicitly provided. See also [9, 24] for details.

I Lemma 2. The contraction rules ctr, the weakening rules wk and cut1 are admissible,
and all inference rules are invertible in KtΠL.
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R ⊢ x ∶ p̄, x ∶ p, ∆ id
R ⊢ x ∶ A, x ∶ B, ∆
R ⊢ x ∶ A ∨B, ∆ ∨ R ⊢ x ∶ A, ∆ R ⊢ x ∶ B, ∆

R ⊢ x ∶ A ∧B, ∆ ∧

R ⊢ x ∶ ♦A, y ∶ A, ∆
R ⊢ x ∶ ♦A, ∆ ♦, xRΠy

R, Rxy ⊢ y ∶ A, ∆
R ⊢ x ∶ �A, ∆ �, y fresh

R ⊢ x ∶ �A, y ∶ A, ∆
R ⊢ x ∶ �A, ∆ �, yRΠx

R, Ryx ⊢ y ∶ A, ∆
R ⊢ x ∶ �A, ∆ �, y fresh

Figure 2 The calculus KtΠL for Kt extended with a set of path axioms Π.

Rxy, Ryz, Rzw ⊢ x ∶ ♦�q, w ∶ q, z ∶ q, y ∶ ♦p, w ∶ p, y ∶ ♦♦p, z ∶ ♦p, w ∶ p id

Rxy, Ryz, Rzw ⊢ x ∶ ♦�q, w ∶ q, z ∶ q, y ∶ ♦p, w ∶ p, y ∶ ♦♦p, z ∶ ♦p
♦

Rxy, Ryz, Rzw ⊢ x ∶ ♦�q, w ∶ q, z ∶ q, y ∶ ♦p, w ∶ p, y ∶ ♦♦p
♦

Rxy, Ryz, Rzw ⊢ x ∶ ♦�q, w ∶ q, z ∶ q, y ∶ ♦p, y ∶ ♦♦p
♦

Rxy, Ryz ⊢ x ∶ ♦�q, z ∶ �q, z ∶ q, y ∶ ♦p, y ∶ ♦♦p
�

Rxy, Ryz ⊢ x ∶ ♦�q, z ∶ q, y ∶ ♦p, y ∶ ♦♦p
♦

Rxy ⊢ x ∶ ♦�q, y ∶ �q, y ∶ ♦p, y ∶ ♦♦p
�

Rxy ⊢ x ∶ ♦�q, y ∶ ♦p, y ∶ ♦♦p
♦

Rxy ⊢ x ∶ ♦�q, y ∶ ♦p ∨ ♦♦p
∨

⊢ x ∶ ♦�q, x ∶ �(♦p ∨ ♦♦p) �

⊢ x ∶ ♦�q ∨�(♦p ∨ ♦♦p)
∨

Figure 3 A proof in KtΠL where Π = {��p ∨ ♦p}.

Proof. See Fig. 6 for rules2 and [9, 24] for details. J

I Example 3. Consider the formula �♦q → �(♦p ∨ ♦♦p), which is a theorem in the logic
KtΠ with Π = {��p ∨♦p}. A proof of this formula is provided in Fig. 3.

As stated in Sec. 2, we extend the notion of an interpolant to a set of nested sequents. In
our definition of interpolants, we are interested only in duality via cut. In particular, the
relational atoms (encoding the tree shape of a nested sequent) are not explicitly represented
in the interpolants since they can be recovered from the contexts of the sequents in which the
interpolants are used. We therefore define a flat sequent to be a sequent without relational
atoms. For classical tense logic, a flat sequent is thus a multiset of labelled formulas.

I Definition 4. An interpolant, denoted I, is a set of flat sequents.

For example, the set below is an interpolant in our context:

{( ⊢ x ∶ A, y ∶ B, z ∶ W ), ( ⊢ x ∶ C, y ∶ D), ( ⊢ u ∶ E)}.

Since our interpolant is no longer a formula, we need to define the dual of an interpolant
in order to generalise the statement of the interpolation result to sequents. We have
informally explained in Sec. 2 that duality in this case is defined via cut. Intuitively, given
an interpolant I1, its dual is any set of nested sequents I2 such that the empty sequent

2 Note that since KtΠL uses one sided sequents, we only consider instances of the rules where labelled
formulae occur solely on the right of the sequent arrow.
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can be derived from I1 and I2 using cut (possibly with contraction). For example, given
I1 = {( ⊢ x ∶ A, y ∶ B), ( ⊢ u ∶ C), ( ⊢ v ∶ D)}, there are several candidates for its dual:

I2 = {( ⊢ x ∶ A), ( ⊢ y ∶ B, u ∶ C, v ∶ D)}
I3 = {( ⊢ x ∶ A, u ∶ C, v ∶ D), ( ⊢ y ∶ B)}
I4 = {( ⊢ x ∶ A, u ∶ C), ( ⊢ x ∶ A, v ∶ D), ( ⊢ y ∶ B, u ∶ C), (y ∶ B, v ∶ D)}

The empty sequent can be derived from I1 ∪ Ii, for i = 2, 3, 4 using cut (and contraction, in
the case of I4). In principle, any of the dual candidates to I1 can be used, but to make the
construction of the interpolants deterministic, our definition below will always choose I4, as
it is relatively straightforward to define as a function of I1.

I Definition 5. For an interpolant I = { ⊢ Λ1, . . . , ⊢ Λn}, the orthogonal (I)� is defined as

(I)� = {( ⊢ x1 ∶ A1, . . . , xn ∶ An) ∣ ∀i ∈ {1, . . . , n}, xi ∶ Ai ∈ Λi}.

For example, the orthogonal of I = {( ⊢ x ∶ A, y ∶ B), ( ⊢ x ∶ C, z ∶ D)} is

(I)� = {( ⊢ x ∶ A, x ∶ C), ( ⊢ x ∶ A, z ∶ D), ( ⊢ y ∶ B, x ∶ C), ( ⊢ y ∶ B, z ∶ D)}.

I Definition 6. Let I be the interpolant

{( ⊢∆1, y ∶ B1,1, . . . , y ∶ B1,k1), . . . , ( ⊢∆n, y ∶ Bn,1, . . . , y ∶ Bn,kn)}

where y does not occur in ∆1, . . . , ∆n and define

[?]Iy
x ∶= {( ⊢∆1, x ∶ [?]

k1

⋁
j=1

B1,j), . . . , ( ⊢∆n, x ∶ [?]
kn

⋁
j=1

Bn,j)}

where an empty disjunction is �.

I Definition 7. We define an interpolation sequent to be a syntactic object of the form
R, Γ1 ∣ Γ2 ⊢ ∆1 ∣ ∆2 ∥ I, where R is a set of relational atoms, Γi and ∆i are multisets of
labelled formulae (for i ∈ {1, 2}), and I is an interpolant. Note that in the interpolation
calculus KtΠLI, Γ1 = Γ2 = ∅ (see Fig. 4).

The vertical bar ∣ in an interpolation sequent marks where the sequent will be partitioned,
with the left partition serving as the antecedent and the right partition serving as the
consequent in the interpolation statement. For example, the initial interpolation sequent
shown below left splits into the two sequents shown below right

R ⊢ Γ ∣ x ∶ p, x ∶ p, ∆ ∥ {(⊢ x ∶ ⊺)} id (R ⊢ Γ, x ∶ ⊺) (R ⊢ x ∶ �, x ∶ p, x ∶ p, ∆)

where the first member Γ of the split is placed in the left sequent and the second member
x ∶ p, x ∶ p, ∆ is placed in the right sequent (note that the relational atoms R are inherited by
both sequents). We think of the interpolant x ∶ ⊺ as being implied by the left sequent, and so,
we place it in the left sequent, and we think of the interpolant as implying the right sequent,
so we place its negation (viz. x ∶ �) in the right sequent. Observe that an application of cut1
between the two sequents, yields R ⊢ Γ, x ∶ p, x ∶ p, ∆ without the interpolant. Performing a
cut1 in this way syntactically establishes (without evoking the semantics) that the interpolant
is indeed an interpolant (so long as the interpolant satisfies certain other properties; cf.
Lem. 10 below).

The interpolation calculus KtΠLI (Fig. 4) uses interpolation sequents. More importantly,
the calculus succinctly represents our algorithm for constructing interpolants. Most of the rules
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R ⊢ Γ, x ∶ p̄ ∣ x ∶ p, ∆ ∥ {( ⊢ x ∶ p)} id R ⊢ Γ ∣ x ∶ p̄, x ∶ p, ∆ ∥ {( ⊢ x ∶ ⊺)} id
R ⊢ Γ ∣∆ ∥ I
R ⊢∆ ∣ Γ ∥ (I)� orth

R ⊢ Γ ∣ x ∶ A, x ∶ B, ∆ ∥ I
R ⊢ Γ ∣ x ∶ A ∨B, ∆ ∥ I

∨
R ⊢ Γ ∣ x ∶ A, ∆ ∥ I1 R ⊢ Γ ∣ x ∶ B, ∆ ∥ I2

R ⊢ Γ ∣ x ∶ A ∧B, ∆ ∥ I1 ∪ I2
∧

R ⊢ Γ ∣ x ∶ ♦A, y ∶ A, ∆ ∥ I
R ⊢ Γ ∣ x ∶ ♦A, ∆ ∥ I ♦, xRΠy

R, Rxy ⊢ Γ ∣ y ∶ A, ∆ ∥ I
R ⊢ Γ ∣ x ∶ �A, ∆ ∥ �Iy

x

�, y fresh

R ⊢ Γ ∣ x ∶ �A, y ∶ A, ∆ ∥ I
R ⊢ Γ ∣ x ∶ �A, ∆ ∥ I �, yRΠx

R, Ryx ⊢ Γ ∣ y ∶ A, ∆ ∥ I
R ⊢ Γ ∣ x ∶ �A, ∆ ∥ �Iy

x

�, y fresh

Figure 4 Calculus KtΠLI for constructing interpolants for Kt extended with path axioms Π.

are straightforward counterparts of the proof system in Fig. 2, except for the orthogonality
rule orth. The orthogonality rule is arguably the most novel aspect of our interpolation
calculus, as it imposes a strong requirement on our generalised notion of interpolants, that it
must respect the underlying duality in the logic. The key to the correctness of this rule is
given in the Persistence Lemma below, which shows that double-orthogonal transformation
always retains some sequents in the original interpolant.

I Lemma 8 (Persistence). If ⊢ Λ ∈ ((I)�)�, then there exists a ⊢ Λ′ ∈ I such that Λ′ ⊆ Λ.

Proof. Suppose otherwise, i.e., there exists ⊢ Λ ∈ ((I)�)� such that for all ⊢ Λ′ ∈ I, we have
Λ′ /⊆ Λ. Suppose I = { ⊢ Λ1, . . . , ⊢ Λn}. Then for each i, there must be a labelled formula
xi ∶ Ai ∈ Λi such that xi ∶ Ai /∈ Λ. Let Θ = {x1 ∶ A1, . . . , xn ∶ An}. By construction, we must
have that Θ ∩Λ = ∅. However, by Def. 5, we have Θ ∈ (I)�, and since Λ ∈ ((I)�)�, by Def. 5,
Θ ∩Λ /= ∅. Contradiction. J

Given a formula A, we define the set of propositional variables var(A) of A to be
the set {p ∣ p or p in A}. This notation extends straightforwardly to sets of formulae and
interpolants.

We write R  Γ, ∆ to denote that the sequent R ⊢ Γ, ∆ is provable in KtΠL. Similarly,
R  Γ ∣ ∆ ∥ I denotes that the sequent R ⊢ Γ ∣ ∆ ∥ I is provable in KtΠLI.

I Definition 9. A logic has the Craig interpolation property iff for every implication A⇒ B

in the logic, there is a formula C such that (i) var(C) ⊆ var(A) ∩ var(B) and (ii) A⇒ C

and C ⇒ B are in the logic, where ⇒ is taken to be the implication connective of the logic.

We now establish that each tense logic KtΠ possess the Craig interpolation property when
the implication connective is taken to be →. To achieve this, we begin by showing that an
interpolant sequent can be constructed from any cut-free proof.

I Lemma 10. If R  Γ, ∆, then there exists an I such that R  Γ ∣ ∆ ∥ I, var(I) ⊆
var(Γ) ∩ var(∆), and all labels occuring in I also occur in R, Γ or ∆.

Proof. Induction on the height of the proof of R ⊢ Γ, ∆ and by using the rules of KtΠLI. J

The next lemma establishes the correctness of the interpolants constructed from our
interpolation calculus in Fig. 4. Its proof can be found in [16].

I Lemma 11. For all R, Γ, ∆ and I, if R  Γ ∣ ∆ ∥ I, then
1. For all ( ⊢ Λ) ∈ I, we have R  Γ, Λ and
2. For all ( ⊢ Θ) ∈ (I)�, we have R  Θ, ∆.
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To prove Craig interpolation, we need to construct formula interpolants. Lem. 11 provides
sequent interpolants, so the next step is to show how one can derive a formula interpolant
from a sequent interpolant. This is possible if the formulas in an interpolant are all prefixed
with the same label. In that case, there is a straightforward interpretation of the interpolant
as a formula. More precisely, let I = {( ⊢ Λ1), . . . , ( ⊢ Λn)}, where Λi = {x ∶ Ai,1, . . . , x ∶ Ai,ki}
for all 1 ≤ i ≤ n. Then, its formula interpretation is given by ⋀n

i=1⋁ki

j=1 Ai,j . Given such an
interpolant I, we write ⋀⋁I to denote its formula interpretation. The following lemma is a
straightforward consequence of this interpretation.

I Lemma 12. Let I = { ⊢ Λ1, . . . , ⊢ Λn} be an interpolant with Λi = {x ∶ Ai,1, . . . , x ∶ Ai,ki}
for each 1 ≤ i ≤ n. For any multiset of relational atoms R and multiset of labelled formulae
Γ, if R  Γ, Λ for all ⊢ Λ ∈ I, then R  Γ, x ∶ ⋀⋁I.

However, the formula-interpolant derived in Lem. 12 gives only one-half of the full
picture, as one still needs to show that the orthogonal of a sequent interpolant admits a dual
interpretation as a formula. A key to this is the following Duality Lemma that shows that
orthogonality behaves like negation.

I Lemma 13 (Duality). Given an interpolant I, the empty sequent is derivable from I ∪(I)�
using the cut1 rule and the contraction rule.

An interesting consequence of Duality Lemma is that it translates into duality in the
above formula interpretation as well, as made precise in the following lemma.

I Lemma 14. Let I = { ⊢ Λ1, . . . , ⊢ Λn} be an interpolant with Λi = {x ∶ Ai,1, . . . , x ∶ Ai,ki}
for each 1 ≤ i ≤ n. For any multiset of relational atoms R and multiset of labelled formulae
∆, if R  Θ, ∆ for all ⊢ Θ ∈ (I)�, then R  x ∶ ⋀⋁I, ∆.

Proof. Suppose (I)� = {( ⊢ Θ1), . . . , ( ⊢ Θk)} for some k. By Lem. 13, we have a derivation
Ξ1 of the empty sequent from assumptions I ∪ (I)�.

⊢ Λ1 ⋯ ⊢ Λn ⊢ Θ1 ⋯ ⊢ Θk
⋮
⊢

Due to admissibility of weakening (Lem. 2), for each Λi, there is a proof Ψi of the sequent
R ⊢ Λi, x ∶ ⋀⋁I. Adding x ∶ ⋀⋁I to every leaf sequent in Ξ1 belonging to I gives us a
derivation Ξ2:

[R ⊢ x ∶ F, Λ1] ⋯ [R ⊢ x ∶ F, Λn] R ⊢ Θ1 ⋯ R ⊢ Θk

⋮
R ⊢ (x ∶ ⋀⋁I)∗

R ⊢ x ∶ ⋀⋁I
ctr∗

where F = ⋀⋁I and sequents in brackets are provable, and where ∗ denotes multiple copies
of sequents or rules. By the assumption we know that each R ⊢ Θi, ∆ is provable, so by
adding ∆ to each premise sequent in Ξ2, we get the following proof:

[R ⊢ x ∶ F, Λ1, ∆] ⋯ [R ⊢ x ∶ F, Λn, ∆] [R ⊢ Θ1, ∆] ⋯ [R ⊢ Θk, ∆]
⋮

R ⊢ (x ∶ ⋀⋁I)∗, ∆∗

R ⊢ x ∶ ⋀⋁I, ∆
ctr∗

J

I Theorem 15. If  x ∶ A→ B, then there exists a C such that (i) var(C) ⊆ var(A)∩var(B)
and (ii)  x ∶ A→ C and  x ∶ C → B.
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Rxy, Ryz, Rzw ⊢ x ∶ ♦�q, w ∶ q, z ∶ q ∣ y ∶ ♦p, w ∶ p, y ∶ ♦♦p, z ∶ ♦p, w ∶ p ∥ {( ⊢ w ∶ ⊺)} id

Rxy, Ryz, Rzw ⊢ x ∶ ♦�q, w ∶ q, z ∶ q ∣ y ∶ ♦p, w ∶ p, y ∶ ♦♦p, z ∶ ♦p ∥ {( ⊢ w ∶ ⊺)} ♦

Rxy, Ryz, Rzw ⊢ x ∶ ♦�q, w ∶ q, z ∶ q ∣ y ∶ ♦p, w ∶ p, y ∶ ♦♦p ∥ {( ⊢ w ∶ ⊺)} ♦

Rxy, Ryz, Rzw ⊢ x ∶ ♦�q, w ∶ q, z ∶ q ∣ y ∶ ♦p, y ∶ ♦♦p ∥ {( ⊢ w ∶ ⊺)} ♦

Rxy, Ryz, Rzw ⊢ y ∶ ♦p, y ∶ ♦♦p ∣ x ∶ ♦�q, w ∶ q, z ∶ q ∥ {( ⊢ w ∶ �)} orth

Rxy, Ryz ⊢ y ∶ ♦p, y ∶ ♦♦p ∣ x ∶ ♦�q, z ∶ �q, z ∶ q ∥ {( ⊢ z ∶ ��)} �

Rxy, Ryz ⊢ y ∶ ♦p, y ∶ ♦♦p ∣ x ∶ ♦�q, z ∶ q ∥ {( ⊢ z ∶ ��)} ♦

Rxy ⊢ y ∶ ♦p, y ∶ ♦♦p ∣ x ∶ ♦�q, y ∶ �q ∥ {( ⊢ y ∶ ���)} �

Rxy ⊢ y ∶ ♦p, y ∶ ♦♦p ∣ x ∶ ♦�q ∥ {( ⊢ y ∶ ���)} ♦

Rxy ⊢ x ∶ ♦�q ∣ y ∶ ♦p, y ∶ ♦♦p ∥ {( ⊢ y ∶ ♦♦⊺)} orth

Rxy ⊢ x ∶ ♦�q ∣ y ∶ ♦p ∨♦♦p ∥ {( ⊢ y ∶ ♦♦⊺)} ∨

⊢ x ∶ ♦�q ∣ x ∶ �(♦p ∨♦♦p) ∥ {( ⊢ x ∶ �♦♦⊺)} �

Figure 5 An example of the construction of tense interpolants.

R, Γ, Γ′, Γ′ ⊢ ∆
R, Γ, Γ′ ⊢ ∆ ctr

R, Γ ⊢ ∆, ∆′, ∆′

R, Γ ⊢ ∆, ∆′ ctr
R,R′,R′, Γ ⊢ ∆
R,R′, Γ ⊢ ∆ ctr

R, Γ ⊢ ∆
R, Γ ⊢ ∆, ∆′ wk

R, Γ ⊢ ∆
R, Γ, Γ′ ⊢ ∆ wk

R, Γ ⊢ ∆
R,R′, Γ ⊢ ∆ wk

R ⊢ Γ, x ∶ A R ⊢ Γ, x ∶ A

R ⊢ Γ cut1
R, Γ ⊢ ∆, x ∶ A R, x ∶ A, Γ ⊢ ∆

R, Γ ⊢ ∆
cut2

Figure 6 Admissible rules.

I Corollary 16. Every extension of the (minimal) tense logic Kt with a set Π of path axioms
has the Craig interpolation property.

I Example 17. Consider the formula given in example 3. By making use of its derivation
in Fig. 3, we can apply our interpolation algorithm as shown in Fig. 5 to construct an
interpolant for the formula.

4 Interpolation for Bi-Intuitionistic Logic

The language for bi-intuitionistic logic BiInt is given via the following BNF grammar:

A ∶∶= p ∣ ⊺ ∣ � ∣ (A ∧A) ∣ (A ∨A) ∣ (A ⊃ A) ∣ (A−< A)

For an axiomatic definition of BiInt consult [22] and for a semantic definition see [8, 20].
The calculus BiIntL for BiInt is given in Fig. 7. The calculus makes use of sequents of the

form R, Γ ⊢∆ with R a multiset of relational atoms of the form Rxy, Γ and ∆ multisets of
labelled formulae of the form x ∶ A (where A is a bi-intuitionistic formula), and all labels are
among a countable set {x, y, z, . . .}. Note that we need not restrict the consequent of sequents
to at most one formula on the right or left due to the eigenvariable condition imposed on
the ⊃R and −<L rules. Moreover, for a multiset R of relational atoms or a multiset Γ of
labelled formulae, we use the notation R[x/y] and Γ[x/y] to represent the multiset obtained
by replacing each occurrence of the label y for the label x. The monl and monr rules are
the natural way to capture monotonicity when nested sequents are represented using labels.

I Lemma 18. The calculus BiIntL enjoys the following: (1) admissibility of ctr, wk and
cut2 from Fig. 6; (2) invertibility of all inference rules from Fig. 7; (3) if R, Rxy, Γ  ∆,
then R[x/y], Γ[x/y] ∆[x/y], and (4) If Γ  ∆ where Γ and ∆ only contain formulae solely
labelled with y, then Γ[x/y] ∆[x/y] for any label x.



T. Lyon, A. Tiu, R. Goré, and R. Clouston 28:13

R, x ∶ p, Γ ⊢ ∆, x ∶ p
id

R, Γ ⊢ x ∶ ⊺, ∆
⊺

R, Γ, x ∶ � ⊢ ∆
�

R, Γ, x ∶ A ⊢ ∆ R, Γ, x ∶ B ⊢ ∆
R, Γ, x ∶ A ∨B ⊢ ∆

∨L
R, Γ ⊢ x ∶ A, x ∶ B, ∆
R, Γ ⊢ x ∶ A ∨B, ∆

∨R
R, Rxy, x ∶ A, y ∶ A, Γ ⊢ ∆
R, Rxy, x ∶ A, Γ ⊢ ∆ monl

R, Γ ⊢ x ∶ A, ∆ R, Γ ⊢ x ∶ B, ∆
R, Γ ⊢ x ∶ A ∧B, ∆

∧R
R, Γ, x ∶ A, x ∶ B ⊢ ∆
R, Γ, x ∶ A ∧B ⊢ ∆

∧L
R, Rxy, Γ ⊢ x ∶ A, y ∶ A, ∆
R, Rxy, Γ ⊢ y ∶ A, ∆

monr

R, Ryx, y ∶ A, Γ ⊢ y ∶ B, ∆
R, x ∶ A−< B, Γ ⊢ ∆

−<L, y fresh
R, x ∶ A ⊃ B, Γ ⊢ x ∶ A, ∆ R, x ∶ B, Γ ⊢ ∆

R, x ∶ A ⊃ B, Γ ⊢ ∆
⊃L

R, Γ ⊢ x ∶ A, ∆ R, x ∶ B, Γ ⊢ x ∶ A−< B, ∆
R, Γ ⊢ x ∶ A−< B, ∆

−<R
R, Rxy, Γ, y ∶ A ⊢ y ∶ B, ∆
R, Γ ⊢ x ∶ A ⊃ B, ∆

⊃R, y fresh

Figure 7 The calculus BiIntL for BiInt [20].

Proof. For proofs of (1)-(3), see [20, Section 3]. Statement (4) follows from the others. J

As in the case with tense logics, we define a generalised interpolant to be a set of two-sided
flat sequents. However, to ease the definition of orthogonal, we shall use an encoding of
two-sided sequents into single-sided sequents by annotating the left-hand side occurrence of
a formula with an L and the right-hand side occurrence with an R. In this way some results
concerning intuitionistic interpolants can be easily adapted from the classical counterparts.

I Definition 19. A polarised formula is a formula annotated with L (left-polarised) or R

(right-polarised). We write AL (AR) for the left-polarised (right-polarised) version of formula
A. A labelled polarised formula is a polarised formula further annotated with a label. We
write x ∶ AL (x ∶ AR) to denote a left-polarised (a right-polarised) formula labelled with x.

Given a polarised formula AL (resp. AR), its dual is defined as AL = AR and AR = AL. That
is, duality changes polarities (the side where the formula occurs), but not the actual formula.

I Definition 20. A polarised (flat) sequent is a single-sided (flat) sequent where all for-
mulas in the sequent are polarised. Given a two-sided sequent S =R, x1 ∶ A1, . . . , xm ∶ Am ⊢
y1 ∶ B1, . . . , yn ∶ Bn, its corresponding polarised sequent is the following

R ⊢ x1 ∶ AL
1 , . . . , xm ∶ AL

m, y1 ∶ BR
1 , . . . , yn ∶ BR

n .

Given a two-sided sequent S, we denote with P(S) its encoding as a polarised sequent.
Conversely, given a polarised sequent S, we denote with T(S) its two-sided counterpart. This
notation extends to sets of sequents by applying the encoding element-wise.

I Definition 21. An intuitionistic interpolant is a set of two-sided flat sequents. Given an
intuitionistic interpolant I, its orthogonal (I)� is defined as T((P(I))�).

I Example 22. Let I = {(x ∶ A ⊢ y ∶ B), ( ⊢ u ∶ C, v ∶ D)}. Then, (I)� is the set:

{(x ∶ A ⊢ u ∶ C), (x ∶ A ⊢ v ∶ D), ( ⊢ u ∶ C, y ∶ B), ( ⊢ v ∶ D, y ∶ B)}

By defining orthogonality via the embedding into polarised sequents, the Persistence
Lemma for the intuitionistic case comes for free, by appealing to Lem. 8. Note that for
sequents Γ1 ⊢∆1 and Γ2 ⊢∆2, we write Γ1 ⊢∆1 ⊆ Γ2 ⊢∆2 iff Γ1 ⊆ Γ2 and ∆1 ⊆ ∆2.

I Lemma 23 (Persistence). If Λ ∈ ((I)�)�, then there exists a Λ′ ∈ I such that Λ′ ⊆ Λ.

I Lemma 24 (Duality). Given an intuitionistic interpolant I, the empty sequent is derivable
from I ∪ (I)� using the cut2 rule and the contraction rule.

Proof. Similar to Lem. 13. J
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R, Γ1, x ∶ p ∣ Γ2 ⊢∆1 ∣ x ∶ p, ∆2 ∥ { ⊢ x ∶ p} id R, Γ1 ∣ x ∶ p, Γ2 ⊢∆1 ∣ x ∶ p, ∆2 ∥ { ⊢ x ∶ �} id

R, Γ1 ∣ Γ2 ⊢∆1 ∣ x ∶ ⊺, ∆2 ∥ { ⊢ x ∶ �}
⊺

R, Γ1 ∣ x ∶ �, Γ2 ⊢∆1 ∣∆2 ∥ { ⊢ x ∶ �}
�

R, Γ1 ∣ Γ2 ⊢∆1 ∣∆2 ∥ I
R, Γ2 ∣ Γ1 ⊢∆2 ∣∆1 ∥ (I)�

orth

R, Rxy, Γ1 ∣ x ∶ A, y ∶ A, Γ2 ⊢∆1 ∣∆2 ∥ I
R, Rxy, Γ1 ∣ x ∶ A, Γ2 ⊢∆1 ∣∆2 ∥ I

monl
R, Rxy, Γ1 ∣ Γ2 ⊢∆1 ∣ x ∶ A, y ∶ A, ∆2 ∥ I
R, Rxy, Γ1 ∣ Γ2 ⊢∆1 ∣ y ∶ A, ∆2 ∥ I

monr

R, Γ1 ∣ x ∶ A, Γ2 ⊢∆1 ∣∆2 ∥ I1 R, Γ1 ∣ x ∶ B, Γ2 ⊢∆1 ∣∆2 ∥ I2

R, Γ1 ∣ x ∶ A ∨B, Γ2 ⊢∆1 ∣∆2 ∥ I1 ∪ I2
∨L

R, Γ1 ∣ Γ2 ⊢∆1 ∣ x ∶ A, ∆2 ∥ I1 R, Γ1 ∣ Γ2 ⊢∆1 ∣ x ∶ B, ∆2 ∥ I2

R, Γ1 ∣ Γ2 ⊢∆1 ∣ x ∶ A ∧B, ∆2 ∥ I1 ∪ I2
∧R

R, Γ1 ∣ x ∶ A, x ∶ B, Γ2 ⊢∆1 ∣∆2 ∥ I
R, Γ1 ∣ x ∶ A ∧B, Γ2 ⊢∆1 ∣∆2 ∥ I

∧L
R, Γ1 ∣ Γ2 ⊢∆1 ∣ x ∶ A, x ∶ B, ∆2 ∥ I
R, Γ1 ∣ Γ2 ⊢∆1 ∣ x ∶ A ∨B, ∆2 ∥ I

∨R

R, Γ1 ∣ x ∶ A ⊃ B, Γ2 ⊢∆1 ∣ x ∶ A, ∆2 ∥ I2 R, Γ1 ∣ x ∶ B, Γ1 ⊢∆1 ∣∆2 ∥ I1

R, Γ1 ∣ x ∶ A ⊃ B, Γ2 ⊢∆1 ∣∆2 ∥ I1 ∪ I2
⊃L

R, Γ1 ∣ Γ2 ⊢∆1 ∣ x ∶ A, ∆2 ∥ I1 R, Γ1 ∣ x ∶ B, Γ2 ⊢∆1, x ∶ A−< B ∣∆2 ∥ I2

R, Γ1 ∣ Γ2 ⊢∆1 ∣ x ∶ A−< B, ∆2 ∥ I1 ∪ I2
−<R

R, Ryx, Γ1 ∣ y ∶ A, Γ2 ⊢∆1 ∣ y ∶ B, ∆2 ∥ I
R, Γ1 ∣ x ∶ A−< B, Γ2 ⊢∆1 ∣∆2 ∥ −< Iy

x

−<L
R, Rxy, Γ1 ∣ y ∶ A, Γ2 ⊢∆1 ∣ y ∶ B, ∆2 ∥ I
R, Γ1 ∣ Γ2 ⊢∆1 ∣ x ∶ A ⊃ B, ∆2 ∥ ⊃ Iy

x

⊃R

Figure 8 The calculus BiIntLI used to compute interpolants for BiInt. In ⊃R and −<L, y is fresh.

I Definition 25. Let I be the interpolant below:

{(Γ1, y ∶ C1,1, . . . , y ∶ C1,k1 ⊢∆1, y ∶ D1,1, . . . , y ∶ D1,j1), . . . ,

(Γn, y ∶ Cn,1, . . . , y ∶ Cn,kn ⊢∆n, y ∶ Dn,1, . . . , y ∶ Dn,jn)}

where y does not occur in Γ1, . . . , Γn, ∆1, . . . , ∆n. The interpolants −< Ix
y and ⊃ Ix

y are shown
below where empty conjunction denotes ⊺ and empty disjunction denotes �:

−< Ix
y = {(Γ1, x ∶

k1

⋀
i=1

C1,i−<
j1

⋁
i=1

D1,i ⊢∆1), . . . , (Γn, x ∶
kn

⋀
i=1

Cn,i−<
jn

⋁
i=1

Dn,i ⊢∆n)}

⊃ Ix
y = {(Γ1 ⊢∆1, x ∶

k1

⋀
i=1

C1,i ⊃
j1

⋁
i=1

D1,i), . . . , (Γn ⊢∆n, x ∶
kn

⋀
i=1

Cn,i ⊃
jn

⋁
i=1

Dn,i)}

The proof system BiIntLI for constructing intuitionistic interpolants is given in Fig. 8.

I Lemma 26. If R, Γ1, Γ2 ∆1, ∆2, then there exists an I such that R, Γ1 ∣ Γ2 ∆1 ∣ ∆2 ∥ I,
var(I) ⊆ var(Γ1, ∆1) ∩ var(Γ2, ∆2), and all labels in I also occur in R, Γ1, ∆1 or Γ2, ∆2.

Proof. Induction on the height of the proof of R, Γ1, Γ2 ⊢∆1, ∆2 using rules of BiIntLI. J

The main technical lemma below asserts that the interpolants constructed via the proof
system in Fig. 8 obey duality properties which are essential for proving the main theorem
(Thm. 30). The proof of this lemma can be found in [16].

I Lemma 27. For all R, Γ1, Γ2, ∆1, ∆2 and I, if R, Γ1 ∣ Γ2 ∆1 ∣ ∆2 ∥ I, then
1. For all (Σ ⊢ Θ) ∈ I, we have R, Γ1, Σ  Θ, ∆1 and
2. For all (Λ ⊢ Ω) ∈ (I)�, we have R, Γ2, Λ  Ω, ∆2.

Given a sequent Λ, we denote with ΛL (resp., ΛR) the multiset of labelled formulas on the
left (resp. right) hand side of Λ. The following two lemmas are counterparts of Lem. 12 and
Lem. 14. Lem. 28 essentially states that in a specific case, an interpolant can be interpreted
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straightforwardly as a conjunction of implications. Its proof is given in [16]. The proof of
Lem. 29 follows the same pattern as in the proof of Lem. 14.

I Lemma 28. Let I = {(Σ1 ⊢ Θ1), . . . , (Σn ⊢ Θn)} be an interpolant with

(Σi ⊢ Θi) = (x ∶ Ci,1, . . . , x ∶ Ci,ki ⊢ x ∶ Di,1, . . . , x ∶ Di,ji) for each 1 ≤ i ≤ n.

If Σi, Γ  Θi, for all (Σi ⊢ Θi) ∈ I, and every formula in Γ is labelled with x, then

Γ  x ∶
n

⋀
i=1

(
ki

⋀
m=1

Ci,m ⊃
ji

⋁
m=1

Di,m).

I Lemma 29. Let I = {(Σ1 ⊢ Θ1), . . . , (Σn ⊢ Θn)} be an interpolant with

(Σi ⊢ Θi) = (x ∶ Ci,1, . . . , x ∶ Ci,ki ⊢ x ∶ Di,1, . . . , x ∶ Di,ji) for each 1 ≤ i ≤ n.

If R, Σi, Γ ∆, Θi for all (Σi ⊢ Θi) ∈ (I)�, then

R, Γ, x ∶
n

⋀
i=1

(
ki

⋀
m=1

Ci,m ⊃
ji

⋁
m=1

Di,m) ∆.

Proof. Follows from Lem. 24 and is similar to Lem. 14.
J

I Theorem 30. If  x ∶ A ⊃ B, then there exists a C such that (i) var(C) ⊆ var(A)∩var(B)
and (ii)  x ∶ A ⊃ C and  x ∶ C ⊃ B.

I Corollary 31. The logic BiInt has the Craig interpolation property.

5 Conclusion and Future work

We have presented a novel approach to proving the interpolation theorem for a range of logics
possessing a nested sequent calculus. The key insight in our approach is the generalisation
of the interpolation theorem to allow sets of sequents as interpolants. There is a natural
definition of duality between interpolants via cut. We have shown that our method can be
used to prove interpolation for logics for which interpolation was known to be difficult to prove.

We intend to apply our approach to bi-intuitionistic linear logic (BiILL) [4]. Unlike tense
logics and bi-intuitionistic logic, there is no obvious Kripke semantics for BiILL, so Kuznets
et. al.’s approach is not immediately applicable, and it seems a proof-theoretic approach
like ours would offer some advantage. We conjecture that the key insight in our work, i.e.,
the generalisation of interpolants to sets of sequents and the use of orthogonality to define
duality between interpolants, can be extended to the linear logic setting; for example, via a
similar notion of orthogonality as in multiplicative linear logic [5].

References
1 Kai Brünnler. Deep sequent systems for modal logic. Arch. Math. Log., 48(6):551–577, 2009.
2 Agata Ciabattoni, Nikolaos Galatos, and Kazushige Terui. From Axioms to Analytic Rules in

Nonclassical Logics. In Proceedings of the Twenty-Third Annual IEEE Symposium on Logic in
Computer Science, LICS 2008, 24-27 June 2008, Pittsburgh, PA, USA, pages 229–240, 2008.
doi:10.1109/LICS.2008.39.

3 Agata Ciabattoni, Tim Lyon, and Revantha Ramanayake. From Display to Labelled Proofs for
Tense Logics. In Sergei Artemov and Anil Nerode, editors, Logical Foundations of Computer
Science, pages 120–139, Cham, 2018. Springer International Publishing.

CSL 2020

https://doi.org/10.1109/LICS.2008.39


28:16 Syntactic Interpolation via Nested Sequents

4 Ranald Clouston, Jeremy E. Dawson, Rajeev Goré, and Alwen Tiu. Annotation-Free Sequent
Calculi for Full Intuitionistic Linear Logic. In Computer Science Logic 2013 (CSL 2013),
CSL 2013, September 2-5, 2013, Torino, Italy, volume 23 of LIPIcs, pages 197–214. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2013. doi:10.4230/LIPIcs.CSL.2013.197.

5 Vincent Danos and Laurent Regnier. The structure of multiplicatives. Arch. Math. Log.,
28(3):181–203, 1989. doi:10.1007/BF01622878.

6 Melvin Fitting and Roman Kuznets. Modal interpolation via nested sequents. Ann. Pure
Appl. Logic, 166(3):274–305, 2015. doi:10.1016/j.apal.2014.11.002.

7 Rajeev Goré. Substructural Logics on Display. Logic Journal of the IGPL, 6(3):451–504, 1998.
8 Rajeev Goré, Linda Postniece, and Alwen Tiu. Cut-elimination and proof-search for bi-

intuitionistic logic using nested sequents. In Advances in Modal Logic 7, papers from the seventh
conference on “Advances in Modal Logic,” held in Nancy, France, 9-12 September 2008, pages
43–66, 2008. URL: http://www.aiml.net/volumes/volume7/Gore-Postniece-Tiu.pdf.

9 Rajeev Goré, Linda Postniece, and Alwen Tiu. On the correspondence between display
postulates and deep inference in nested sequent calculi for tense logics. Log. Methods Comput.
Sci., 7(2):2:8, 38, 2011.

10 Ryo Kashima. Cut-free sequent calculi for some tense logics. Studia Logica, 53(1):119–136,
1994. doi:10.1007/BF01053026.

11 Hitoshi Kihara and Hiroakira Ono. Interpolation Properties, Beth Definability Properties and
Amalgamation Properties for Substructural Logics. Journal of Logic and Computation, 20(4),
August 2010.

12 Tomasz Kowalski and Hiroakira Ono. Analytic Cut and interpolation for bi-intuitionistic
Logic. Rew. Symb. Logic, 10(2):259–283, 2017. doi:10.1017/S175502031600040X.

13 Roman Kuznets. Multicomponent proof-theoretic method for proving interpolation properties.
Ann. Pure Appl. Logic, 169(12):1369–1418, 2018.

14 Roman Kuznets and Björn Lellmann. Interpolation for Intermediate Logics via Hyper- and
Linear Nested Sequents. In Proc. AiML 2018. Kings College Publications, 2018.

15 Carsten Lutz and Frank Wolter. Foundations for Uniform Interpolation and Forgetting in
Expressive Description Logics. In IJCAI 2011, Proceedings of the 22nd International Joint
Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011, pages
989–995, 2011. doi:10.5591/978-1-57735-516-8/IJCAI11-170.

16 Tim Lyon, Alwen Tiu, Ranald Clouston, and Rajeev Goré. Syntactic Interpolation for Tense
Logics and Bi-Intuitionistic Logic via Nested Sequents. CoRR, abs/1910, 2019. arXiv:
1910.05215.

17 S. Maehara. Craig no interpolation theorem (in Japanese). Suugaku, 12:235–237, 1960.
18 Kenneth L. McMillan. Interpolation and Model Checking. In Handbook of Model Checking,

pages 421–446. Springer, 2018.
19 Sara Negri. Proof Analysis in Modal Logic. J. Philosophical Logic, 34(5-6):507–544, 2005.
20 Luís Pinto and Tarmo Uustalu. A proof-theoretic study of bi-intuitionistic propositional

sequent calculus. J. Log. Comput., 28(1):165–202, 2018. doi:10.1093/logcom/exx044.
21 Francesca Poggiolesi. A Cut-Free Simple Sequent Calculus for Modal Logic S5. Rew. Symb.

Logic, 1(1):3–15, 2008. doi:10.1017/S1755020308080040.
22 Cecylia Rauszer. An algebraic and Kripke-style approach to a certain extension of intuitionistic

logic. Instytut Matematyczny Polskiej Akademi Nauk, 1980. URL: http://eudml.org/doc/
268511.

23 Balder ten Cate, Enrico Franconi, and Inanç Seylan. Beth Definability in Expressive Description
Logics. J. Artif. Intell. Res., 48:347–414, 2013.

24 Alwen Tiu, Egor Ianovski, and Rajeev Goré. Grammar Logics in Nested Sequent Calculus:
Proof Theory and Decision Procedures. In Advances in Modal Logic 9, papers from the ninth
conference on “Advances in Modal Logic,” held in Copenhagen, Denmark, 22-25 August 2012,
pages 516–537, 2012 . URL: http://www.aiml.net/volumes/volume9/Tiu-Ianovski-Gore.
pdf.

25 Anne Troesltra and Helmut Schwichtenberg. Basic Proof Theory. CUP, 1996.

https://doi.org/10.4230/LIPIcs.CSL.2013.197
https://doi.org/10.1007/BF01622878
https://doi.org/10.1016/j.apal.2014.11.002
http://www.aiml.net/volumes/volume7/Gore-Postniece-Tiu.pdf
https://doi.org/10.1007/BF01053026
https://doi.org/10.1017/S175502031600040X
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-170
http://arxiv.org/abs/1910.05215
http://arxiv.org/abs/1910.05215
https://doi.org/10.1093/logcom/exx044
https://doi.org/10.1017/S1755020308080040
http://eudml.org/doc/268511
http://eudml.org/doc/268511
http://www.aiml.net/volumes/volume9/Tiu-Ianovski-Gore.pdf
http://www.aiml.net/volumes/volume9/Tiu-Ianovski-Gore.pdf


The Keys to Decidable HyperLTL Satisfiability:
Small Models or Very Simple Formulas
Corto Mascle
ENS Paris-Saclay, Cachan, France
corto.mascle@ens-paris-saclay.fr

Martin Zimmermann
University of Liverpool, Liverpool, United Kingdom
martin.zimmermann@liverpool.ac.uk

Abstract
HyperLTL, the extension of Linear Temporal Logic by trace quantifiers, is a uniform framework
for expressing information flow policies by relating multiple traces of a security-critical system.
HyperLTL has been successfully applied to express fundamental security policies like noninterference
and observational determinism, but has also found applications beyond security, e.g., distributed
protocols and coding theory. However, HyperLTL satisfiability is undecidable as soon as there
are existential quantifiers in the scope of a universal one. To overcome this severe limitation to
applicability, we investigate here restricted variants of the satisfiability problem to pinpoint the
decidability border.

First, we restrict the space of admissible models and show decidability when restricting the search
space to models of bounded size or to finitely representable ones. Second, we consider formulas with
restricted nesting of temporal operators and show that nesting depth one yields decidability for a
slightly larger class of quantifier prefixes. We provide tight complexity bounds in almost all cases.
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1 Introduction

The introduction of temporal logics for the specification of information flow policies [3] was
a significant milestone in the long and successful history of applying logics in computer
science [16]. Probably the most important representative of these logics is HyperLTL [3],
which extends Linear Temporal Logic (LTL) [23] by trace quantifiers. This addition allows
to express properties that relate multiple execution traces, which is typically necessary
to capture the flow of information [4]. In contrast, LTL, currently the most influential
specification language for reactive systems, is only able to express properties of single traces.

HyperLTL provides a uniform framework for expressing information flow policies in a
formalism with intuitive syntax and semantics, and for the automated verification of these
policies: A wide range of policies from the literature [15, 19, 20, 21, 22, 27] with specialized
verification algorithms is expressible in HyperLTL, i.e., universal HyperLTL verification
algorithms are applicable to all of them.

As an example, consider a system with a set I of inputs, which contains a hidden
input h ∈ I, and an output o. Now, noninterference [15] between h and o requires that no
information about h is leaked via o, i.e., for all execution traces π and π′, if the inputs in
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π and π′ only differ in h, then they have the same output at all times. Formally, this is
captured by the HyperLTL formula

∀π.∀π′.
(

G
∧

i∈I\{h}
(iπ ⇔ iπ′)

)
⇒ G (oπ ⇔ oπ′).

As another example, consider a system with a public output o and a secret output s (we
consider only one of each for simplicity). One may want to express that the behaviour of
the secret output cannot be inferred from the behaviour of the public one. HyperLTL can
express the property that for all executions of the system, there exists another execution
with the same behaviour of o but a different behaviour of s, using the formula

∀π.∃π′.G (oπ ⇔ oπ′) ∧ F¬(sπ ⇔ sπ′).

Today, there are tools for model checking HyperLTL properties [6, 13], for checking
satisfiability of HyperLTL properties [9, 11], for synthesizing reactive systems from HyperLTL
properties [10], and for runtime monitoring of HyperLTL properties [1, 2, 12]. Furthermore,
the extraordinary expressiveness of HyperLTL has been exhibited [14] and connections to
first and second-order predicate logics have been established [5, 14].

The major drawback of HyperLTL is the usual price one has to pay for great expressive-
ness: prohibitively high worst-case complexity. In particular, model checking finite Kripke
structures against HyperLTL formulas is nonelementary [3] and satisfiability is even undecid-
able [8]. These results have to be contrasted with model checking and satisfiability being
PSpace-complete for LTL [25], problems routinely solved in real-life applications [18].

Due to the sobering state of affairs, it is imperative to find fragments of the logic
with (more) tractable complexity. In this work, we focus on the satisfiability problem, the
most fundamental decision problem for a logic. Nevertheless, it has many applications in
verification, e.g., checking the equivalence and implication of specifications can be reduced to
satisfiability. Finally, the question whether a property given by some HyperLTL formula is
realizable by some system is also a satisfiability problem.

A classical attempt to overcome the undecidability of the satisfiability problem is to
restrict the number of quantifier alternations of the formulas under consideration. In fact, the
alternation depth is the measure underlying the nonelementary complexity of the HyperLTL
model checking problem [3]. However, the situation is different for the satisfiability problem:
It is undecidable even when restricted to ∀∃ formulas, i.e., formulas starting with one
universal quantifier followed by a single existential one [8]. All remaining prefix classes are
decidable by reductions to the LTL satisfiability problem, e.g., the satisfiability problem is
PSpace-complete for the alternation-free prefix classes ∃∗ and ∀∗ and ExpSpace-complete
for the class ∃∗∀∗ [8].

However, there are more complexity measures beyond the alternation depth that can
be restricted in order to obtain tractable satisfiability problems, both on formulas and on
models. The latter case is of particular interest, since it is known that not every satisfiable
HyperLTL has a “simple” model, for various formalizations of “simple” [14]. Thus, for those
formulas, such a restriction could make a significant difference. Furthermore, from a more
practical point of view, one is often interested in whether there is a, say, finite model while
the existence of an intricate infinite model may not be useful.

We study the satisfiability problem for formulas with restricted quantifier prefixes and
restricted temporal depth [7], which measures the nesting of temporal operators. Our main
result here shows that satisfiability is even undecidable for formulas of the form ∀2∃∗ϕ,
where ϕ has temporal depth one and only uses eventually F and always G , i.e., it is a
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Boolean combination of formulas Fϕ′ with propositional ϕ′. Thereby, we strengthen the
previous undecidability result for ∀∃ by bounding the temporal depth to one, but at the
price of a second universal quantifier. Moreover, we clarify the border between decidability
and undecidability at temporal depth two: Using only one universally quantified variable,
temporal depth one, and only F , G , and nested applications of next X leads to decidability.
Finally, we show that every HyperLTL formula can be transformed into an equisatisfiable
∀2∃∗ formula of temporal depth two, i.e., this fragment already captures the full complexity
of the satisfiability problem.

Thus, the overall picture is still rather bleak: if one only restricts the formula then the
islands of decidability are very small. Phrased differently, even very simple formulas are
extremely expressive and allow to encode computations of Turing-complete devices in their
models. However, note that such models are necessarily complex, as they need to be able to
encode an unbounded amount of information.

Thus, we also consider satisfiability problems for arbitrary formulas, but with respect to
restricted models which do not allow to encode such computations. In particular, we consider
three variants of increasing complexity: Checking whether a given HyperLTL formula has a
model of a given cardinality k is ExpSpace-complete, whether it has a model containing
only ultimately periodic traces of length at most k is N2ExpTime-complete, and checking
whether it has a model induced by a Kripke structure with k states is Tower-complete. The
last result is even true for a fixed Kripke structure, which therefore has implications for the
complexity of the model checking problem as well. Thus, the situation is more encouraging
when checking for the existence of small models: satisfiability becomes decidable, even with
(relatively) moderate complexity in the first two cases.

However, as argued above, all three approaches are (necessarily) incomplete: There
are satisfiable formulas that have only infinite models, satisfiable formulas that have only
non-ultimately periodic models, and satisfiable formulas that have no ω-regular models [14],
a class of models that includes all those that are induced by a finite Kripke structure.

All in all, our work shows that HyperLTL satisfiability remains a challenging problem,
but we have provided a complete classification of the tractable cases in terms of alternation
depth, temporal depth, and representation of the model (for formulas without until).

2 Definitions

Fix a finite set AP of atomic propositions. A valuation is a subset of AP. A trace over AP
is a map t : N → 2AP, denoted by t(0)t(1)t(2) · · · , i.e., an infinite sequence of valuations.
The set of all traces over AP is denoted by (2AP)ω. The projection of t to AP′ is the
trace (t(0) ∩ AP′)(t(1) ∩ AP′)(t(2) ∩ AP′) · · · over AP′. A trace t is ultimately periodic, if
t = x · yω for some x, y ∈ (2AP)+, i.e., there are s, p > 0 with t(n) = t(n+ p) for all n ≥ s.

The formulas of HyperLTL are given by the grammar

ϕ ::=∃π.ϕ | ∀π.ϕ | ψ
ψ ::= aπ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ

where a ranges over atomic propositions in AP and where π ranges over a fixed countable
set V of trace variables. Conjunction, implication, equivalence, and exclusive disjunction ⊕,
as well as the temporal operators eventually F and always G are derived as usual. A sentence
is a closed formula, i.e., a formula without free trace variables. The size of a formula ϕ,
denoted by |ϕ|, is its number of distinct subformulas.
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The semantics of HyperLTL is defined with respect to a trace assignment, a partial
mapping Π: V → (2AP)ω. The assignment with empty domain is denoted by Π∅. Given a
trace assignment Π, a trace variable π, and a trace t we denote by Π[π → t] the assignment
that coincides with Π everywhere but at π, which is mapped to t. We also use shorthand
notation like [π1 → t1, . . . , πn → tn] and [(πi → ti)1≤i≤n] for Π∅[π1 → t1] . . . [πn → tn], if
the πi are pairwise different. Furthermore, Π[j,∞) denotes the trace assignment mapping
every π in Π’s domain to Π(π)(j)Π(π)(j + 1)Π(π)(j + 2) · · · .

For sets T of traces and trace assignments Π we define
(T,Π) |= aπ, if a ∈ Π(π)(0),
(T,Π) |= ¬ψ, if (T,Π) 6|= ψ,
(T,Π) |= ψ1 ∨ ψ2, if (T,Π) |= ψ1 or (T,Π) |= ψ2,
(T,Π) |= Xψ, if (T,Π[1,∞)) |= ψ,
(T,Π) |= ψ1 Uψ2, if there is a j ≥ 0 such that (T,Π[j,∞)) |= ψ2 and for all 0 ≤ j′ < j:
(T,Π[j′,∞)) |= ψ1,
(T,Π) |= ∃π.ϕ, if there is a trace t ∈ T such that (T,Π[π → t]) |= ϕ, and
(T,Π) |= ∀π.ϕ, if for all traces t ∈ T : (T,Π[π → t]) |= ϕ.

We say that T satisfies a sentence ϕ if (T,Π∅) |= ϕ. In this case, we write T |= ϕ and say
that T is a model of ϕ. Conversely, satisfaction of quantifier-free formulas does not depend
on T . Hence, we say that Π satisfies a quantifier-free ψ if (∅,Π) |= ψ and write Π |= ψ

(assuming Π is defined on all trace variables that appear in ψ).
The alternation depth of a HyperLTL sentence ϕ, denoted by ad(ϕ), is defined as its

number of quantifier alternations. Its temporal depth, denoted by td(ϕ), is defined as the
maximal depth of the nesting of temporal operators in the sentence. Formally, td and ad are
defined as follows:

td(aπ) = 0
td(¬ψ) = td(ψ)
td(ψ1 ∨ ψ2) = max(td(ψ1), td(ψ2))
td(Xψ) = 1 + td(ψ)
td(ψ1 Uψ2) = 1 + max(td(ψ1), td(ψ2))
td(∃π.ϕ) = td(ϕ)
td(∀π.ϕ) = td(ϕ)

ad(∃π.ψ) = 0 for quantifier-free ψ
ad(∀π.ψ) = 0 for quantifier-free ψ
ad(∃π.∃π′.ϕ) = ad(∃π′.ϕ)
ad(∀π.∀π′.ϕ) = ad(∀π′.ϕ)
ad(∃π.∀π′.ϕ) = 1 + ad(∀π′.ϕ)
ad(∀π.∃π′.ϕ) = 1 + ad(∃π′.ϕ)

Although HyperLTL sentences are required to be in prenex normal form, they are closed
under Boolean combinations, which can easily be seen by transforming such formulas into
prenex normal form. Note that this transformation can be implemented such that it changes
neither the temporal nor alternation depth, and can be performed in polynomial time.

The fragment HyperLTL1(F,G) contains formulas of temporal depth one using only F
and G as temporal operators, and HyperLTL1(F,G,X∗) contains formulas using only F ,
G , and X as temporal operators and of temporal depth one, however we allow iterations of
the X operator. Formally, HyperLTL1(F,G,X∗) formulas are generated by the grammar

ϕ ::=∃π.ϕ | ∀π.ϕ | ψ
ψ ::=¬ψ | ψ ∨ ψ | ψ ∧ ψ | X nψ′ | Fψ′ | Gψ′ | ψ′

ψ′ ::= aπ | ¬ψ′ | ψ′ ∨ ψ′ | ψ′ ∧ ψ′

where n ranges over the natural numbers. The grammar for HyperLTL1(F,G) is obtained
by removing X nψ′ from the grammar above.
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Also, we use standard notation for classes of formulas with restricted quantifier prefixes,
e.g., ∀2∃∗ denotes the set of HyperLTL formulas in prenex normal form with two universal
quantifiers followed by an arbitrary number of existential quantifiers, but no other quantifiers.

Finally, we encounter various complexity classes, classical ones from NP to N2ExpTime,
as well as Tower (see, e.g., [24]). Intuitively, Tower is the set of problems that can be

solved by a Turing machine that, on an input of size n, stops in time 22 ...
2

, with the height
of the tower of exponents bounded by b(n), where b is a fixed elementary function. The
reductions presented in this work are polynomial time reductions unless otherwise stated.

3 Satisfiability for Restricted Classes of Models

The satisfiability problem “Given a HyperLTL sentence ϕ, does ϕ have a nonempty model?”
is undecidable, even when restricted to finite models [8]. Hence, one has to consider simpler
problems to regain decidability. In this section, we simplify the problem by checking only for
the existence of simple models, for the following three formalizations of simplicity, where the
bound k is always part of the input:

Models of cardinality at most k (Theorem 1).
Models containing only ultimately periodic traces xyω with |x|+ |y| ≤ k (Theorem 2).
Models induced by finite-state systems with at most k states (Theorem 3).

In every case, we allow arbitrary HyperLTL formulas as input and encode k in binary.
With the following result, we determine the complexity of checking satisfiability with

respect to models of bounded cardinality. The algorithm uses a technique introduced by
Finkbeiner and Hahn [8, Theorem 3] that allows us to replace existential and universal
quantification by disjunctions and conjunctions, if the model is finite. Similarly, the lower
bound also follows from Finkbeiner and Hahn.

I Theorem 1. The following problem is ExpSpace-complete: Given a HyperLTL sentence ϕ
and k ∈ N (in binary), does ϕ have a model with at most k traces?

Proof. For the ExpSpace upper bound, one can check, given ϕ and k, satisfiability of the
sentence ∃π1 . . . ∃πk.ϕ where ϕ is defined inductively as follows:

ϕ = ϕ if ϕ is quantifier-free.
∀π.ϕ =

∧k
i=1 ϕ[π ← πi].

∃π.ϕ =
∨k
i=1 ϕ[π ← πi].

Here, ϕ[π ← πi] is obtained from ϕ by replacing every occurrence of π by πi. This sentence
states the existence of at most k traces satisfying ϕ by replacing every quantifier by an
explicit conjunction or disjunction over the possible assignments.

The resulting sentence is of size at most |ϕ|k|ϕ| + k, which is exponential in the size of
the input and its satisfiability can be checked in polynomial space in the size of the resulting
formula [8]. As a result, the problem is in ExpSpace as well.

Finkbeiner and Hahn showed that satisfiability is ExpSpace-complete for sentences of
the form ∃∗∀∗ [8]. This implies ExpSpace-hardness of our problem, as if such a sentence,
say with k existential quantifiers, is satisfiable then it has a model with at most k traces. J

As the algorithm proceeds by a reduction to the satisfiability problem for ∃∗ formulas,
which in turn is reduced to LTL satisfiability, one can show that a HyperLTL sentence ϕ has
a model with k traces if and only if it has a model with k ultimately periodic traces.

Next, we consider another variant of the satisfiability problem, where we directly restrict
the space of possible models to ultimately periodic ones of the form xyω with |x|+ |y| ≤ k.

CSL 2020



29:6 The Keys to Decidable HyperLTL Satisfiability

As we encode k in binary, the length of those traces is exponential in the input and the
cardinality of the model is bounded doubly-exponentially. This explains the increase in
complexity in the following theorem in comparison to Theorem 1.

I Theorem 2. The following problem is N2ExpTime-complete: Given a HyperLTL sen-
tence ϕ and k ∈ N (in binary), does ϕ have a model whose elements are of the form xyω with
|x|+ |y| ≤ k?

As expected, the complexity of the satisfiability problem increases the more traces one has
at hand to encode computations. In Theorem 1, we have exponentially many; in Theorem 2,
we have doubly-exponentially many. In our last theorem, we consider infinite sets of traces
that are finitely representable by finite-state systems. Here, satisfiability becomes intractable,
yet still decidable, even when restricted to formulas of temporal depth one.

Formally, a Kripke structure K = (Q, δ,Q0, λ) consists of a finite set Q of states, a set Q0 ⊆
Q of initial states, a transition function δ : Q→ 2Q\{∅}, and a labelling function λ : Q→ 2AP.
A run of K is an infinite sequence q0q1q2 · · · of states starting with q0 ∈ Q0 and such that
qj+1 ∈ δ(qj) for all j ∈ N. A trace of K is the sequence of labels λ(q0)λ(q1)λ(q2) · · · associated
to a run q0q1q2 · · · of K. The set of traces of K is denoted by T(K).

I Theorem 3. The following problem is Tower-complete: Given a HyperLTL sentence ϕ
and k ∈ N (in binary), does ϕ have a model T (K) for some Kripke structure K with at most
k states?

Proof. Clarkson et al. presented a model-checking algorithm for HyperCTL∗ (and thus
for HyperLTL, which is a fragment of HyperCTL∗), and showed that its complexity is a
tower of exponentials whose height is the alternation depth of the input sentence [3]. Thus,
one can enumerate all Kripke structures with at most k states (up to isomorphism) and
model-check them one by one in Tower. This yields the desired upper bound, as there are
“only” exponentially many (in k) Kripke structures with k states.

The lower bound is obtained by a reduction from the universality problem for star-free
regular expressions with complementation. The equivalence problem for those expressions
is Tower-complete (under elementary reductions, which is standard for Tower-complete
problems), even for two-letter alphabets [24, 26]. As those expressions are closed by comple-
mentation and union, the universality problem is Tower-complete as well.

Star-free expressions with complementation over {a, b} are generated by the grammar

e ::= a | b | ε | ∅ | e+ e | ee | ¬e

and have the obvious semantics inducing a language over {a, b}∗, denoted by e as well.
Let e be such an expression. We construct a HyperLTL sentence ϕe and a Kripke

structure K such that T (K) is a model of ϕe if and only if e is universal. K does not depend
on e and is shown in Figure 1. As all sets of variables in K are singletons, we indifferently
use the notation a for the letter a and the singleton {a}. The set of traces induced by this
Kripke structure is

T (K) = lω + l∗(a+ b)ω + l∗(a+ b)∗rω + l∗#rω.

Given an expression e and a trace variable π, we inductively define a formula ψe,π which
expresses that when π is mapped by a trace assignment Π to a trace of K of the form lnwrω

with w ∈ {a, b}∗, then w ∈ e if and only if (T (K),Π) |= ψe,π.

ψ∅,π = aπ ∧ ¬aπ: No trace assignment satisfies ψ∅,π, just as the language of ∅ does not
contain any word.
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a

b

l r

#

Figure 1 The Kripke structure K (all states are initial).

ψε,π = G (lπ ∨ rπ): (T (K),Π) with Π(π) = lnwrω satisfies ψε,π if and only if w = ε.
ψa,π = ∃τ.(F #τ ) ∧ F (aπ) ∧G (lτ ⇔ lπ ∧ rτ ⇔ rπ) : The traces of K with an occurrence
of # are the traces of the form l∗#rω. Thus, (T (K),Π) with Π(π) = lnwrω satisfies ψa,π
if and only if lnwrω is a copy of such a trace with # replaced by a, i.e., if and only if
w = a.
ψb,π = ∃τ.(F #τ ) ∧ F (bπ) ∧G (lτ ⇔ lπ ∧ rτ ⇔ rπ): Similarly to ψa,π.
ψe1+e2,π = ψe1,π ∨ ψe2,π.
ψe1e2,π = ∃π1.∃π2.ψ ∧ ψ′ with

ψ = F rπ1 ∧ F rπ2 ∧G (¬#π1 ∧ ¬#π2) ∧ ψe1,π1 ∧ ψe2,π2

expressing that π1 and π2 are of the form ln1w1r
ω and ln2w2r

ω with w1 ∈ e1 and w2 ∈ e2,
and with

ψ′ = G (lπ2 ⇔ ¬rπ1) ∧G (aπ ⇔ (aπ1 ∨ aπ2) ∧ bπ ⇔ (bπ1 ∨ bπ2))

expressing that n2 = n1 + |w1| and that w = w1w2, where Π(π) = lnwrω. Thus, (T (K),Π)
satisfies ψe1e2,π if and only if there exist w1 ∈ e1, w2 ∈ e2 such that w = w1w2.
ψ¬e,π = ¬ψe,π.

Although this inductive definition does not necessarily give a formula in prenex normal
form, one can easily check that no quantifier is in the scope of a temporal operator, thus the
resulting formula can be turned into a HyperLTL formula.

To conclude, consider the sentence ϕe = ∀π.G¬rπ ∨ F #π ∨ ψe,π, which can again be
brought into prenex normal form. Further, note that no temporal operator is in the scope of
another one, thus ϕe has temporal depth one. The set T (K) is a model of ϕe if and only if all
its traces are in {a, b, l}ω, in l∗#rω, or of the form l∗wrω with w ∈ e. This is the case if and
only if all words w ∈ {a, b}∗ are in the language of e, i.e., if and only if e is universal. J

As the Kripke structure K in the lower bound proof above is fixed, we also obtain a novel
hardness result for model-checking.

I Corollary 4. HyperLTL model-checking a fixed Kripke structure with five states is Tower-
complete, even for sentences of temporal depth one.

Note that one could already infer the Tower-completeness of the model-checking problem
by carefully examining the proof of Theorem 5 of [3] concerning HyperCTL∗ model-checking.
The reduction from the satisfiability problem for QPTL presented there also works for
HyperLTL, albeit with temporal depth larger than one.
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Table 1 Complexity of HyperLTL satisfiability in terms of quantifier prefixes and temporal depth.
An asterisk ∗ denotes that the upper bound only holds for until-free formulas. All lower bounds in
the second column already hold for temporal depth two.

temporal depth one arbitrary temporal depth

∃∗ / ∀∗ NP-complete ([7]+[8]) PSpace-complete ([8]+[25])
∃∗∀∗ NExpTime-complete (Thm. 12) ExpSpace-complete ([8])
∃∗∀∃∗ in N2ExpTime∗ (Thm. 11) undecidable ([8])
∀2∃∗ undecidable (Thm. 9) undecidable

4 Satisfiability for Restricted Classes of Formulas

After studying the HyperLTL satisfiability problem for classes of restricted models, but
arbitrary formulas, we now consider restrictions on formulas, but arbitrary models. Recall
that Finkbeiner and Hahn presented a complete picture in terms of quantifier prefixes:
Satisfiability is PSpace-complete for the alternation-free fragments ∃∗ and ∀∗ as well as
ExpSpace-complete for ∃∗∀∗. In all other cases, the problem is undecidable, i.e., as soon as
there is a universal quantifier in front of an existential one.

In a sense, the decidable fragments are variants of LTL: Both alternation-free fragments
can easily be reduced to LTL satisfiability while the ∃∗∀∗ one is easily reducible to the ∃∗
fragment, with an exponential blowup. Thus, the decidable fragments barely exceed the
realm of LTL.

In this section, we consider another dimension to measure the complexity of formulas,
temporal depth, i.e., we restrict the nesting of temporal operators. The hope is that in
this setting, we can obtain decidability for larger quantifier prefix classes. However, a slight
adaptation of Finkbeiner and Hahn’s undecidability result for ∀∃, along with an application
of Lemma 6 proven below, already shows undecidability for ∀∃ formulas of temporal depth
two and without untils.

Thus, we have to restrict our search to fragments of temporal depth one, which contain
most of the information flow policies expressible in HyperLTL [3]. And indeed, we prove
satisfiability decidable for ∃∗∀∃∗ HyperLTL1(F,G,X∗) formulas. Thus, if the temporal
depth is one and untils are excluded, then one can allow a universal quantifier in front
of existential ones without losing decidability. This fragment includes, for example, the
noninference property [21], as well as the second example presented in the introduction.

However, even allowing the smallest possible extension, i.e., adding a second universal
quantifier, leads again to undecidability: HyperLTL satisfiability is undecidable for ∀2∃∗
formulas of temporal depth one using only F as temporal operator. Thus, satisfiability
remains hard, even when severely restricting the temporal depth of formulas. Our results for
temporal depth one are summarized in Table 1.

We begin this section by showing that every HyperLTL formula can be transformed in
polynomial time into an equisatisfiable one with quantifier prefix ∀2∃∗ with temporal depth
two. Thus, this fragment already captures the full complexity of the satisfiability problem.
This transformation is later used in several proofs.

I Theorem 5. For every HyperLTL sentence one can compute in polynomial time an
equisatisfiable sentence of the form ∀2∃∗ with temporal depth at most two.

We decompose the proof into three steps, formalized by the following three lemmas. We
begin by reducing the temporal depth to at most two by adapting a construction of Demri
and Schnoebelen, which associates to every LTL formula an equisatisfiable formula with
temporal depth at most two [7].
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I Lemma 6. For every HyperLTL sentence Q1π1 . . . Qnπn.ψ with quantifier-free ψ, one can
compute in polynomial time an equisatisfiable sentence Q1π1 . . . Qnπn.∃π.ψ′ with quantifier-
free ψ′ and temporal depth at most two.

The idea is to add atomic propositions to witness the satisfaction of subformulas ψ′ of ψ.
We express the existence, for every n-tuple of traces (t1, . . . , tn) of the model, of a witness
trace. For all j ∈ N, for all subformulas ψ′ of ψ, the valuation [(πi → ti[j,∞))1≤i≤n] satisfies
ψ′ if and only if the associated atomic proposition is satisfied at position j of the witness
trace.

Next, we turn the quantifier prefix into the form ∀∗∃∗ without increasing the temporal
depth.

I Lemma 7. For every HyperLTL sentence ϕ, one can compute in polynomial time an
equisatisfiable sentence ϕ′ of the form ∀∗∃∗ψ with td(ϕ′) = max(td(ϕ), 1).

Here the key idea is to move existential quantifiers in the scope of universal ones after
marking them with fresh atomic propositions: We can replace an ∃∀ by a ∀∃ if we require
that the existentially quantified variable is now uniquely marked by a proposition (and
therefore cannot depend on the universally quantified variable).

The construction presented in the proof of Lemma 7 may increase the number of universally
quantified variables, but we can decrease that number to two without increasing the temporal
or alternation depth. This step also completes the proof of Theorem 5.

I Lemma 8. For every HyperLTL sentence ϕ of the form ∀∗∃∗ψ with quantifier-free ψ, one
can compute in polynomial time an equisatisfiable sentence ϕ′ of the form ∀2∃∗ψ′ where ψ′
is quantifier-free and td(ϕ′) = max(td(ϕ), 1).

This can be achieved by merging several traces into one. To this end, we increase the set of
atomic propositions by considering as new atomic propositions tuples of the previous atomic
propositions, i.e., one trace now encodes a tuple of traces. However we cannot decrease the
number of universal quantifiers below two this way, as we need two universal quantifiers to
ensure that every possible combination of traces is represented in the model, i.e., any model
of the resulting formula is the set of mergings of traces of another model.

Thus, ∀2∃∗ formulas with temporal depth two capture the complete complexity of the
satisfiability problem for HyperLTL. As the latter problem is undecidable and as all reductions
presented above are effective, we immediately obtain that satisfiability for ∀2∃∗ formulas
with temporal depth two is also undecidable.

As alluded to above, an even stronger result can be obtained by strengthening the proof of
Finkbeiner and Hahn for ∀∃ formulas to only use temporal depth two.1 Thus, only formulas
of temporal depth one remain to be considered.

Before we start investigating this class let us quickly comment on why we disregard
temporal depth zero: Every such sentence can easily be turned to an equisatisfiable instance
of QBF, which is known to be solvable in polynomial space.

Thus, it only remains to consider formulas with arbitrary quantifier prefixes, but temporal
depth one. Our main result of this section shows that even this problem is undecidable, even
for HyperLTL1(F,G) formulas with alternation depth one. Due to the restriction on the
temporal depth, our encoding of a Minsky machine is more complicated than it would be
with arbitrary temporal depth.

1 Alternatively, one can also obtain a direct reduction from the Turing machine immortality problem [17]
to satisfiability of ∀∃ sentences of temporal depth two.
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I Theorem 9. The following problem is undecidable: Given a ∀2∃∗ HyperLTL1(F,G)
sentence ϕ, is ϕ satisfiable?

Proof. We reduce from the (non)-halting problem for 2-counter Minsky machines. Recall
that such a machine can be seen as a tupleM = (Q,∆, q0) where Q is a finite set of states,
q0 ∈ Q an initial state, and ∆ ⊆ Q × {1, 2} × OP × Q a set of transition rules, where
OP = {++, --, =0?}. A configuration ofM is an element of Q × N × N. For all n, n′ ∈ N,
op ∈ OP we write n op−→ n′ if:

op is ++ and n′ = n+ 1.
op is -- and n′ = n− 1 (note that this operation is only applicable if n > 0).
op is =0? and n′ = n = 0.

There is a transition from (q, n1, n2) to (q′, n′1, n′2) if and only if there is an i ∈ {1, 2} and
op ∈ OP with (q, i, op, q′) ∈ ∆, n3−i = n′3−i, and ni

op−→ n′i. It is undecidable whether such a
machine has an infinite computation (q0, 0, 0)→ (q1, n

1
1, n

1
2)→ (q2, n

2
1, n

2
2)→ · · · .

LetM = (Q,∆, q0) be a 2-counter Minsky machine. We use AP = Q ∪ {1, 2} as atomic
propositions. Given i ∈ {1, 2}, we denote by i the other proposition. Consider the formula
ψ1 = ∀π.∀π′.G (1π ⇒ 1π′) ∨G (1π′ ⇒ 1π). We define ψ2 with 2 ∈ AP analogously. In the
following, we only consider sets of traces that satisfy ψ1 ∧ ψ2.

For each trace t ∈ (2AP)ω and i ∈ {1, 2}, we define the i-set of t as Si(t) = {j ∈ N | i ∈
t(j)}. Now fix T ⊆ (2AP)ω that satisfies ψ1 ∧ψ2. We define the pre-order ≤i on T as follows:
for all t, t′ ∈ T , t ≤i t′ if and only if Si(t) ⊆ Si(t′). It is straightforward to verify that ≤i
is indeed reflexive and transitive. We write t <i t′ if Si(t) ( Si(t′). As T satisfies ψ1 ∧ ψ2,
the ≤i are total pre-orders on T . We also define for all t ∈ T and i ∈ {1, 2}, the rank of t
with respect to i as rki(t) = |{Si(t′) | t′ ∈ T and t′ <i t}|, which may be infinite. Note that
if Si(t) = ∅ then rki(t) = 0, and that if Si(t) = Si(t′) then rki(t) = rki(t′). Also, note that
the rank depends on the fixed set T of traces under consideration.

Finally, as ≤i is a total pre-order, if we have t <i t′, but there is no t′′ with t <i t′′ <i t′,
then rki(t′) = rki(t)+1. Note that this holds even when rki(t) is infinite, assuming∞+1 =∞.

We construct a HyperLTL1(F,G) formula ϕ that encodes the existence of an infinite
computation (q0, 0, 0) → (q1, n

1
1, n

1
2) → (q2, n

2
1, n

2
2) → · · · of M. In a model T of ϕ, a

configuration (q, n1, n2) is encoded by a trace t with t(0) ∩ Q = {q} and for i ∈ {1, 2},
rki(t) = ni. Then, ϕ states the existence of an initial trace t0, representing the configuration
(q0, 0, 0), as well as the existence of a successor t′ encoding (q′, n′1, n′2) for each trace t encoding
(q, n1, n2), i.e., we require (q, n1, n2)→ (q′, n′1, n′2). The latter is witnessed by the existence
of a transition (q, i, op, q′) such that:
1. t(0) ∩ Q = {q} and t′(0) ∩ Q = {q′}, i.e., t and t′ indeed encode the states of their

respective configurations correctly.
2. For all j ∈ N, i ∈ t(j) if and only if i ∈ t′(j), i.e. Si(t) = Si(t′). Thus, as argued above,

rki(t) = rki(t′), which implies ni = n′
i
.

3. If op is ++ then t <i t
′ and there does not exist any t′′ such that t <i t′′ <i t′, i.e.,

rki(t′) = rki(t) + 1, as ≤i is a total pre-oder. Then, we have n′i = ni + 1.
4. If op is -- then t >i t

′ and there does not exist any t′′ such that t >i t′′ >i t′, i.e.,
rki(t′) = rki(t)− 1, as ≤i is a total pre-oder. Then, we have n′i = ni − 1.

5. If op is =0? then for all j ∈ N, i /∈ t(j) and i /∈ t′(j). Hence, Si(t) = Si(t′) = ∅, i.e.,
rki(t) = rki(t′) = 0, which implies ni = n′i = 0.

We encode those conditions in ϕ, which is the conjunction of the following three sentences
and of ψ1 ∧ ψ2:

ϕ1 = ∀π.
∧
q 6=q′∈Q qπ ⇒ ¬q′π expresses that a trace is associated to at most one state.

ϕ2 = ∃π0.(q0)π0
∧G (¬1π0 ∧ ¬2π0) expresses the existence of a trace representing the

initial configuration (q0, 0, 0).
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ϕ3 = ∀π.∃π′.
∨

(q,i,op,q′)∈∆ qπ ∧ q′π′ ∧ ϕi,op ∧G (iπ ⇔ iπ′) expresses that all traces have a
successor obtained by faithfully simulating a transition of the machine.

Here, we use the formulas
ϕ1,++ = ∀π′′.π <1 π

′ ∧ (π′′ ≤1 π ∨ π′ ≤1 π
′′),

ϕ1,-- = ∀π′′.π >1 π
′ ∧ (π′′ ≥1 π ∨ π′ ≥1 π

′′), and
ϕ1,=0? = G (¬1π ∧ ¬1π′),

where π ≤1 π
′ = G (1π ⇒ 1π′) and π <1 π

′ = π ≤1 π
′ ∧F (¬1π ∧ 1π′). Finally, we define the

formulas ≤2, <2, and ϕ2,op analogously.
The sentence ϕ is not in prenex normal form. However, as no quantifier appears in the

scope of a temporal operator, it can be put in that form. Further, it is not of the form ∀2∃∗,
but we can apply Lemmas 7 and 8 to bring it into this form while preserving the temporal
depth, which is already one. We claim that ϕ is satisfiable if and only ifM has an infinite
computation starting in (q0, 0, 0).

Suppose ϕ is satisfied by a model T . The subformulas ϕ1 and ϕ2 enforce that T
contains a trace t0 encoding the initial configuration (q0, 0, 0) of M. Further, ϕ3 ex-
presses that every trace t encoding a configuration (q, n1, n2) has a successor t′ encoding
a configuration (q′, n′1, n′2) with (q, n1, n2) → (q′, n′1, n′2). Thus, there exists an infinite
sequence t0, t1, t2, . . . of traces encoding an infinite run ofM.

Conversely, supposeM has an infinite run (q0, 0, 0)→ (q1, n
1
1, n

1
2)→ (q2, n

2
1, n

2
2) · · · , then

for all j let tj be the trace whose projection to Q is {qj}∅ω, and whose projection to {i} is
{i}n

j
i ∅ω for i ∈ {1, 2}. One can then easily check that {tj | j ∈ N} is a model of ϕ. J

Thus, two universal quantifiers before some existential ones and using only F and G
without nesting yields undecidable satisfiability. Our next result shows that removing one of
the two universal quantifiers allows us to recover decidability, even when allowing nested
next operators and leading existential quantifiers.

As a first step in the proof, we show that the nested next operators can be eliminated
without introducing additional universal quantifiers. This is true, as we are only interested
in satisfiability.

I Lemma 10. For every ∃∗∀∃∗ HyperLTL1(F,G,X∗) sentence, one can construct in poly-
nomial time an equisatisfiable ∃∗∀∃∗ HyperLTL1(F,G) sentence.

Now, we are ready to prove our main decidability result in this section. Note that we do
not claim a matching lower bound here. We comment on this gap in the conclusion.

I Theorem 11. The following problem is in N2ExpTime: Given a HyperLTL1(F,G,X∗)
sentence ϕ of the form ∃∗∀∃∗, is ϕ satisfiable?

Proof. Let ϕ = ∃τ1 . . . τn.∀π.∃τn+1 . . . ∃τn+n′ .ψ be a HyperLTL1(F,G,X∗) sentence with
quantifier-free ψ. Due to Lemma 10, it is enough to consider the case where ψ is a Boolean
combination of formulas of the form Fβ for a Boolean combination β of atomic propositions.

Note that such a formula can only specify the appearance or non-appearance of combina-
tions of atomic propositions on the quantified traces, but not the order of these combinations.
Hence, to every tuple (t1, . . . , tk) of traces ti ∈ (2AP)ω, we associate a finite set of tuples of
valuations V (t1, . . . , tk) = {(t1(j), . . . , tk(j)) | j ∈ N} ⊆ (2AP)k, i.e., the set all the tuples of
valuations that appear eventually. The cardinality of V (t1, . . . , tk) is at most 2k|AP|.

Let β be a Boolean combination of atomic propositions over trace variables π1, . . . , πk.
Then, a trace assignment [(πi → ti)1≤i≤k] satisfies Fβ if and only if there exists j ∈ N such
that β is satisfied at position j of (t1, . . . , tk), i.e., there exists (v1, . . . , vk) ∈ V (t1, . . . , tk) such
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that (v1, . . . , vk) satisfies β (in the sense that any trace assignment Π such that Π(πi)(0) = vi
for all i satisfies β). Intuitively, we abstract a tuple of traces into a finite set of tuples of
valuations, and then abstract a model as a set of such finite representations. Then, we show
that satisfiability can be decided using such abstractions.

So, whether a given trace assignment [(πi → ti)1≤i≤k] satisfies a given Boolean combina-
tion ψ of formulas Fβ only depends on V (t1, . . . , tk), and given V ⊆ (2AP)k, one can check
in polynomial time whether a trace assignment yielding V satisfies ψ. If it is the case, we
say that V satisfies ψ.

To check the satisfiability of ϕ, we start by nondeterministically guessing a set S ⊆
2(2AP)n+n′+1 of sets of (n + n′ + 1)-tuples of valuations. This set is supposed to represent
a model of ϕ. The n first valuations represent the fixed values assigned to τ1, . . . , τn. The
(n + 1)-th represents the valuation of the universally quantified variable. Thus, for every
trace of the model there must exist a tuple in which that trace is represented at position
n+ 1. The valuations of positions n+ 2 to n+ n′ have to be such that ϕ is satisfied by all
tuples.

Thus, we check the following requirements:
1. For all V1, V2 ∈ S, {(v1, . . . , vn) | (v1, . . . , vn+n′+1) ∈ V1} is equal to {(v1, . . . , vn) |

(v1, . . . , vn+n′+1) ∈ V2}: The set of values taken by the traces assigned to τ1, . . . , τn
cannot depend on the values of the other variables. Thus, we ensure that these values
are fixed in the guessed model.

2. For all V ∈ S and 1 ≤ i ≤ n + n′ + 1, there exists V ′ ∈ S such that {(v1, . . . , vn, vi) |
(v1, . . . , vn+n′+1) ∈ V } = {(v1, . . . , vn+1) | (v1, . . . , vn+n′+1) ∈ V ′}. All the values taken
by the existentially quantified variables have to be taken by the universally quantified
one as well.

3. For all V ∈ S, V satisfies ψ.

If all requirements are satisfied, we accept, otherwise we reject. This procedure requires
nondeterministic doubly-exponential time as |S| ≤ 22|AP|+n+n′+1 .

Suppose ϕ is satisfiable and fix a model T . There exist t1, . . . , tn ∈ T such that
(T, [(τi → ti)1≤i≤n]) |= ∀π∃τn+1 . . . ∃τn+n′ .ψ. Furthermore, for a fixed t ∈ T there ex-
ist tn+1, . . . , tn+n′ ∈ T such that (T, [(τi → ti)1≤i≤n+n′ , π → t]) |= ψ. Let V ∗(t) =
{(t1(j), . . . , tn(j), t(j), tn+1(j), . . . , tn+n′(j)) | j ∈ N}.

Now, one can easily check that Requirements 1, 2, and 3 are satisfied by {V ∗(t) | t ∈ T}.
Thus, the algorithm accepts ϕ.

Conversely, suppose the algorithm accepts ϕ. Then, there exists some S satisfying all
three requirements above. We construct from S a model T of ϕ.

Let t1, . . . , tn be traces such that for all V ∈ S, {(v1, . . . , vn) | (v1, . . . , vn+n′+1) ∈ V } =
V (t1, . . . , tn), and for all (v1, . . . , vn+n′+1) ∈ V , (v1, . . . , vn) = (t1(j), . . . , tn(j)) for infinitely
many j, i.e., each of the valuations appears infinitely often in the traces. Those traces can
be constructed due to Requirement 1.

Let T0 = {t1, . . . , tn}. For all ` ∈ N we construct T` by induction on ` ∈ N, while
maintaining the following two invariants:
1. For all t ∈ T` there exists V ∈ S such that V (t1, . . . , tn, t) is equal to {(v1, . . . , vn+1) |

(v1, . . . , vn+n′+1) ∈ V }, and for all (v1, . . . , vn+n′+1) ∈ V , (v1, . . . , vn+1) is equal to
(t1(j), . . . , tn(j), t(j)) for infinitely many j, where the ti are the traces in T0.

2. If ` > 0 then for every t ∈ T`−1, there exist traces tn+1, . . . , tn+n′ ∈ T` such that
[(τi → ti)1≤i≤n+n′ , π → t] |= ψ.



C. Mascle and M. Zimmermann 29:13

By Requirement 2 and by construction, T0 satisfies Invariant 1, and it clearly satis-
fies Invariant 2. Let ` ∈ N, suppose T` has been constructed, and that it satisfies In-
variants 1 and 2. By Invariant 1, for all t ∈ T` we can construct traces tn+1, . . . , tn+n′

such that V (t1, . . . , tn, t, tn+1, . . . , tn+n′) ∈ S and for all (v1, . . . , vn, v, vn+1, . . . , vn+n′) ∈
V (t1, . . . , tn, t, tn+1, . . . , tn+n′), it is the case that (v1, . . . , vn, v, vn+1, . . . , vn+n′) is equal to
(t1(j), . . . , tn(j), t(j), tn+1(j), . . . , tn+n′(j)) for infinitely many j (as all the (v1, . . . , vn, v) ap-
pear infinitely many times in (t1, . . . , tn, t) by Invariant 1). Let I(t) = {tn+1, . . . , tn+n′}. Let
T`+1 =

⋃
t∈T I(t), which satisfies Invariant 1 by Requirement 2. It also satisfies Invariant 2

by definition. Furthermore, by Requirement 3, V (t1, . . . , tn, t, tn+1, . . . , tn+n′) satisfies ψ.
Finally, let T =

⋃
`∈N T` and let t ∈ T . Then, there exists an ` such that t ∈ T`. Thus,

there also exist tn+1, . . . , tn+n′ ∈ T`+1 such that [(τi → ti)1≤i≤n+n′ , π → t] satisfies ψ.
Therefore, T satisfies ϕ. J

Recall that satisfiability of ∃∗∀∗ formulas is ExpSpace-complete [8]. The proof of
Finkbeiner and Hahn can be slightly adapted to produce a formula of temporal depth two:
their approach states the existence of a trace representing a sequence of configurations
of an exponential-space bounded Turing machine. The only difficulty that can arise in
expressing the correctness of the run described by that trace is relating a position of one
of the configurations to the neighbouring positions in the next configuration (in order to
simulate the movement of the head). One may then require to combine an until and a next
in order to express this requirement, in the scope of an always expressing that it holds for
every position. This nesting can be removed by adding a fresh proposition p that is satisfied
on all positions of the first configuration, on none of the second one, and so on, i.e., its truth
value alternates between the configurations. One can then express the previous requirement
with a single until in the scope of an always, yielding temporal depth two.

Our next result shows that one obtains better complexity when restricting the temporal
depth of formulas to one.

I Theorem 12. The following problem is NExpTime-complete: Given an ∃∗∀∗ HyperLTL
sentence ϕ with temporal depth one, is ϕ satisfiable?

We adapt the proof of Finkbeiner and Hahn for ExpSpace-completeness of the problem
with arbitrary temporal depth [8], i.e., we turn the HyperLTL formula into an exponentially
larger equisatisfiable LTL one (cp. the proof of Theorem 1). The decrease in complexity is a
consequence of the switch from PSpace to NP of the complexity of LTL satisfiability when
restricting temporal depth to one [7].

We conclude by considering the satisfiability problem for HyperLTL1(F,G) with arbitrary
quantifier prefixes, but restricted to models induced by finite-state systems. The undecidability
of satisfiability for arbitrary formulas over finite-state systems can be easily inferred from the
proof of undecidability of satisfiability of Finkbeiner and Hahn, as the formulas they construct,
if satisfiable, have a finite and ultimately periodic model, which is therefore representable
by a finite-state system. For formulas of HyperLTL1(F,G), we leave decidability open, but
prove intractability.

I Theorem 13. The following problem is Tower-hard: Given a HyperLTL1(F,G) sen-
tence ϕ, does ϕ have a model T (K) for some Kripke structure K?

Let us conclude by remarking that the satisfiability problem for HyperLTL1(F,G) over
Kripke structures is different from the general one, i.e., there are satisfiable formulas which
are not satisfied by the set of traces of any Kripke structure. Consider for instance the
sentence ϕ = ∀π.∃π′.G (aπ ⇒ aπ′) ∧ F (¬aπ ∧ aπ′), which is satisfied by {a}∗∅ω.
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Suppose there exists a Kripke structure K with a set of traces satisfying this sentence.
We define inductively an increasing sequence of finite trace prefixes pn for n ∈ N as p0 = ε

and pn+1 = pn{a} if pn{a} is a prefix of a trace of K, and pn+1 = pn∅ otherwise. Let t be
the limit of the sequence (pn)n∈N, i.e., the unique trace with prefix pn for every n. As the pn
are prefixes of traces of K, t itself is a trace of K. As K satisfies ϕ, there exists t′ such that
for all j, if a ∈ t(j) then a ∈ t′(j) and there exists j∗ such that a ∈ t′(j∗) and a /∈ t(j∗). In
particular, there exists a minimal such j∗. Then pj∗+1 = pj∗∅, but pj∗{a} is a prefix of t′.
This contradicts the choice of pj∗+1, as we prefer to extend by {a} instead of ∅. Thus, the
satisfiable sentence ϕ is not satisfiable by the set of traces of a finite Kripke structure.

5 Conclusion

We have shown that HyperLTL satisfiability can be decidable, either if one restricts the space
of models one is interested in to sufficiently simple ones, or if one restricts the alternation
and temporal depth of the formulas under consideration. In particular, we have investigated
the formulas of temporal depth one without untils. An interesting open problem is to extend
the decidability result presented in Theorem 11 to formulas with untils. Also, we claimed no
lower bound on the problem solved in Theorem 11. We claim there is an ExpSpace lower
bound obtained by encoding exponential space Turing machines, but the exact complexity
of the problem is left open. Another interesting problem left open is the decidability of
HyperLTL1(F,G) over Kripke structures. We have presented a Tower lower bound in
Theorem 13, but it is open whether the problem is indeed decidable.

In general, restricting the space of models turns out to be more fruitful than to restrict the
formulas under consideration, as satisfiability is undecidable for extremely simple formulas
(simplicity being measured in alternation depth and temporal depth). An interesting challenge
pertains to finding other measures of simplicity that yield larger decidable fragments.
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Abstract
In an impressive series of papers, Krivine showed at the edge of the last decade how classical
realizability provides a surprising technique to build models for classical theories. In particular, he
proved that classical realizability subsumes Cohen’s forcing, and even more, gives rise to unexpected
models of set theories. Pursuing the algebraic analysis of these models that was first undertaken
by Streicher, Miquel recently proposed to lay the algebraic foundation of classical realizability
and forcing within new structures which he called implicative algebras. These structures are a
generalization of Boolean algebras based on an internal law representing the implication. Notably,
implicative algebras allow for the adequate interpretation of both programs (i.e. proofs) and their
types (i.e. formulas) in the same structure.

The very definition of implicative algebras takes position on a presentation of logic through
universal quantification and the implication and, computationally, relies on the call-by-name λ-
calculus. In this paper, we investigate the relevance of this choice, by introducing two similar
structures. On the one hand, we define disjunctive algebras, which rely on internal laws for the
negation and the disjunction and which we show to be particular cases of implicative algebras. On
the other hand, we introduce conjunctive algebras, which rather put the focus on conjunctions and
on the call-by-value evaluation strategy. We finally show how disjunctive and conjunctive algebras
algebraically reflect the well-known duality of computation between call-by-name and call-by-value.
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1 Introduction

It is well-known since Griffin’s seminal work [13] that a classical Curry-Howard correspondence
can be obtained by adding control operators to the λ-calculus. Several calculi were born
from this idea, amongst which Krivine λc-calculus [20], defined as the λ-calculus extended
with Scheme’s call/cc operator (for call-with-current-continuation). Elaborating on this
calculus, Krivine’s developed in the late 90s the theory of classical realizability [20], which
is a complete reformulation of its intuitionistic twin. Originally introduced to analyze the
computational content of classical programs, it turned out that classical realizability also
provides interesting semantics for classical theories. While it was first tailored to Peano
second-order arithmetic (i.e. second-order type systems), classical realizability actually scales
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30:2 Revisiting the Duality of Computation

to more complex classical theories like ZF [21], and gives rise to surprisingly new models. In
particular, its generalizes Cohen’s forcing [21, 30] and allows for the direct definition of a
model in which neither the continuum hypothesis nor the axiom of choice holds [23].

Algebraization of classical realizability. During the last decade, the algebraic structure of
the models that classical realizability induces has been actively studied. This line of work
was first initiated by Streicher, who proposed the concept of abstract Krivine structure [38],
followed among others by Ferrer, Frey, Guillermo, Malherbe and Miquel who introduced other
structures peculiar to classical realizability [8, 9, 6, 10, 11, 40]. In addition to the algebraic
study of classical realizability models, these works had the interest of building the bridge with
the algebraic structures arising from intuitionistic realizability. In particular, Streicher showed
in [38] how classical realizability could be analyzed in terms of triposes [37], the categorical
framework emerging from intuitionistic realizability models, while the later work of Ferrer et
al. [8, 9] connected it to Hofstra and Van Oosten’s notion of ordered combinatory algebras [16].
More recently, Alexandre Miquel introduced the concept of implicative algebra [31], which
appear to encompass the previous approaches and which we present in this paper.

Implicative algebras. In addition to providing an algebraic framework conducive to the
analysis of classical realizability, an important feature of implicative structures is that they
allow us to identify realizers (i.e. λ-terms) and truth values (i.e. formulas). Concretely,
implicative structures are complete lattices equipped with a binary operation a→ b satisfying
properties coming from the logical implication. As we will see, they indeed allow us to
interpret both the formulas and the terms in the same structure. For instance, the ordering
relation a 4 b will encompass different intuitions depending on whether we regard a and b as
formulas or as terms. Namely, a 4 b will be given the following meanings:

the formula a is a subtype of the formula b;
the term a is a realizer of the formula b;
the realizer a is more defined than the realizer b.

In terms of the Curry-Howard correspondence, this means that we not only identify types
with formulas and proofs with programs, but we also identify types and programs.

Side effects. Following Griffin’s discovery on control operators and classical logic, several
works have renewed the observation that within the proofs-as-programs correspondence, with
side effects come new reasoning principles [19, 18, 29, 14, 17]. More generally, it is now clear
that computational features of a calculus may have consequences on the models it induces.
For instance, computational proofs of the axiom of dependent choice can be obtained by
adding a quote instruction [19], using memoisation [15, 33] or with a bar recursor [25]. Yet,
such choices may also have an impact on the structures of the corresponding realizability
models: the non-deterministic operator t is known to make the model collapse on a forcing
situation [22], while the bar recursor requires some continuity properties [25].

If we start to have a deep understanding of the algebraic structure of classical realizability
models, the algebraic counterpart of side effects on these structures is still unclear. As a first
step towards this problem, it is natural to wonder: does the choice of an evaluation strategy
have algebraic consequences on realizability models? This paper aims at bringing new tools
for addressing this question.

Outline of the paper. We start by recalling the definition of Miquel’s implicative algebras
and their main properties in Section 2. We then introduce the notion of disjunctive algebras
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in Section 3, which naturally arises from the negative decomposition of the implication
A→ B = ¬A`B. We explain how this decomposition induces realizability models based on
a call-by-name fragment of Munch-Maccagnoni’s system L [35], and we show that disjunctive
algebras are in fact particular cases of implicative algebras. In Section 4, we explore the
positive dual decomposition A→ B = ¬(A⊗ ¬B), which naturally corresponds to a call-by-
value fragment of system L. We show the corresponding realizability models naturally induce
a notion of conjunctive algebras. Finally, in Section 5 we revisit the well-known duality of
computation through this algebraic structures. In particular, we show how to pass from
conjunctive to disjunctive algebras and vice-versa, while inducing isomorphic triposes.

Most of the proofs have been formalized in the Coq proof assistant, in which case their statements
include hyperlinks to their formalizations1.

2 Implicative algebras

2.1 Krivine classical realizability in a glimpse

We give here an overview of the main characteristics of Krivine realizability and of the models
it induces2. Krivine realizability models are usually built above the λc-calculus, a language of
abstract machines including a set of terms Λ and a set of stacks Π (i.e. evaluation contexts).
Processes t ? π in the abstract machine are given as pairs of a term t and a stack π.

Krivine realizability interprets a formula A as a set of closed terms |A| ⊆ Λ, called the
truth value of A, and whose elements are called the realizers of A. Unlike in intuitionistic
realizability models, this set is actually defined by orthogonality to a falsity value ‖A‖ made of
stacks, which intuitively represents a set of opponents to the formula A. Realizability models
are parameterized by a pole ⊥⊥, a set of processes in the underlying abstract machine which
somehow plays the role of a referee betweens terms and stacks. The pole allows us to define
the orthogonal set X⊥⊥ of any falsity value X ⊆ Π by: X⊥⊥ , {t ∈ Λ : ∀π ∈ X, t ? π ∈ ⊥⊥}.
Valid formulas A are then defined as the ones admitting a proof-like realizer3 t ∈ |A|.

Before defining implicative algebras, we would like to draw the reader’s attention on an
important observation about realizability: there is an omnipresent lattice structure, which
is reminiscent of the concept of subtyping [3]. Given a realizability model it is indeed
always possible to define a semantic notion of subtyping: A 4 B , ‖B‖ ⊆ ‖A‖. This
informally reads as “A is more precise than B”, in that A admits more opponents than B.
In this case, the relation 4 being induced from (reversed) set inclusions comes with a richer
structure of complete lattice, where the meet ∧ is defined as a union and the join ∨ as an
intersection. In particular, the interpretation of a universal quantifier ‖∀x.A‖ is given by
an union

⋃
n∈N ‖A[n/x]‖ =

c
n∈N ‖A[n/x]‖, while the logical connective ∧ is interpreted

as the type of pairs × i.e. with a computation content. As such, realizability corresponds
to the following picture: ∀ =

c
∧ = × . This is to compare with forcing, that can

be expressed in terms of Boolean algebras where both the universal quantifier and the
conjunction are interpreted by meets without any computational content: ∀ = ∧ =

c
[1].

1 Available at https://gitlab.com/emiquey/ImplicativeAlgebras/
2 For a detailed introduction on this topic, we refer the reader to [20] or [32].
3 One specificity of Krivine classical realizability is that the set of terms contains the control operator cc

and continuation constants kπ . Therefore, to preserve the consistency of the induced models, one has to
consider only proof-like terms, i.e. terms that do not contain any continuations constants see [20, 32].
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30:4 Revisiting the Duality of Computation

2.2 Implicative algebras
Implicative structures are tailored to represent both the formulas of second-order logic and
realizers arising from Krivine’s λc-calculus. For their logical facet, they are defined as
meet-complete lattices (for the universal quantification) with an internal binary operation
satisfying the properties of the implication:

I Definition 1. An implicative structure is a complete lattice (A,4) equipped with an
operation (a, b) 7→ (a→ b), such that for all a, a0, b, b0 ∈ A and any subset B ⊆ A:
1. If a0 4 a and b 4 b0 then (a→ b) 4 (a0 → b0).
2.

c
b∈B(a→ b) = a→

c
b∈B b

It is then immediate to embed any closed formula of second-order logic within any
implicative structure. Obviously, any complete Heyting algebra or any complete Boolean
algebra defines an implicative structure with the canonical arrow. More interestingly, any
ordered combinatory algebras, a structure arising naturally from realizability [16, 39, 38, 7],
also induces an implicative structure [34]. Last but not least, any classical realizability model
induces as expected an implicative structure on the lattice (P(Π),⊇) by considering the
arrow defined by4: a→ b , a⊥⊥ · b = {t · π : t ∈ a⊥⊥, π ∈ b} ([31, 34].

Interestingly, if any implicative structure A trivially provides us with an embedding of
second-order formulas, we can also encode λ-terms with the following definitions:

ab ,
k
{c : a 4 b→ c} λf ,

k

a∈A
(a→ f(a))

In both cases, one can understand the meet as a conjunction of all the possible approximations
of the desired term. From now on, we will denote by tA (resp. AA) the interpretation of the
closed λ-term t (resp. formula A). Notably, these embeddings are at the same time:
1. Sound with respect to the β-reduction, in the sense that (λf)a 4 f(a) (and more generally,

one can show that if t→β u implies tA 4 uA);
2. Adequate with respect to typing, in the sense that if t is of type A, then we have tA 4 AA

(which can reads as “t realizes A”).
In the case of certain combinators, including Hilbert’s combinator k and s, their interpreta-
tions as λ-term is even equal to the interpretation of their principal types, that is to say that
we have kA =

c
a,b∈A(a→ b→ a) and sA =

c
a,b,c∈A((a→ b→ c)→ (a→ b)→ a→ c). This

justifies the definition ccA ,
c
a,b(((a→ b)→ a)→ a).

Implicative structure are thus suited to interpret both terms and their types. To give an
account for realizability models, one then has to define a notion of validity:

I Definition 2 (Separator). Let (A,4,→) be an implicative structure. We call a separator
over A any set S ⊆ A such that for all a, b ∈ A, the following conditions hold:
1. If a ∈ S and a 4 b, then b ∈ S.
2. kA ∈ S, and sA ∈ S.

3. If (a→ b) ∈ S and a ∈ S, then b ∈ S.

A separator S is said to be classical if ccA ∈ S and consistent if ⊥ /∈ S. We call implicative
algebra any implicative structure (A,4,→,S) equipped with a separator S over A.

Intuitively, thinking of elements of an implicative structure as truth values, a separator
should be understood as the set which distinguishes the valid formulas (think of a filter in a

4 This is actually nothing more than the definition of the falsity value ‖A⇒ B‖.

https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeStructures.html#ImplicativeStructure
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeStructures.html#app
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeStructures.html#betarule
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.Adequacy.html#imp_betared
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.Adequacy.html#adequacy
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeAlgebras.html#separator
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Boolean algebra). Considering the elements as terms, it should rather be viewed as the set
of valid realizers. Indeed, conditions (2) and (3) ensure that all closed λ-terms are in any
separator5. Reading a 4 b as “the formula a is a subtype of the formula b”, condition (2)
ensures the validity of semantic subtyping. Thinking of the ordering as “a is a realizer of the
formula b”, condition (2) states that if a formula is realized, then it is in the separator.

I Example 3. Any Krivine realizability model induces an implicative structure (A,4,→)
where A = P(Π), a 4 b⇔ a ⊇ b and a→ b = a⊥⊥ · b. The set of realized formulas, namely
S = {a ∈ A : ∃t ∈ a⊥⊥, t proof-like}, defines a valid separator [31].

2.3 Internal logic & implicative tripos
In order to study the internal logic of implicative algebras, we define an entailment relation:
we say that a entails b and we write a `S b if a→ b ∈ S. This relation induces a preorder
on A. Then, by defining products a× b and sums a+ b through their usual impredicative
encodings in System F6, we recover a structure of pre-Heyting algebra with respect to the
entailment relation: a `S b→ c if and only if a× b `S c.

In order to recover a Heyting algebra, it suffices to consider the quotient H = A/∼=S
by the equivalence relation ∼=S induced by `S , which is naturally equipped with an order
relation: [a] 4H [b] , a `S b (where we write [a] for the equivalence class of a ∈ A).
Likewise, we can extend the product, the sum and the arrow to equivalences classes to obtain
a Heyting algebra (H,4H,∧H,∨H,→H).

Given any implicative algebra, we can define construction of the implicative tripos is
quite similar. Recall that a (set-based) tripos is a first-order hyperdoctrine T : Setop → HA
which admits a generic predicate. To define a tripos, we roughly consider the functor of
the form I ∈ Setop 7→ AI . Again, to recover a Heyting algebra we quotient the product AI
(which defines an implicative structure) by the uniform separator S[I] defined by:

S[I] , {a ∈ AI : ∃s ∈ S.∀i ∈ I.s 4 ai}

I Theorem 4 (Implicative tripos [31]). Let (A,4,→,S) be an implicative algebra. The
following functor (where f : J → I) defines a tripos:

T : I 7→ AI/S[I] T (f) :
{
AI/S[I] → AJ/S[J ]

[(ai)i∈I ] 7→ [(af(j))j∈J ]

Observe that we could also quotient the product AI by the separator product SI . Actually,
the quotientAI/SI is in bijection with (A/S)I , and in the case where S is a classical separator,
A/S is actually a Boolean algebra, so that the product (A/S)I is nothing more than a
Boolean-valued model (as in the case of forcing). Since S[I] ⊆ SI , the realizability models
that can not be obtained by forcing are exactly those for which S[I] 6= SI (see [31]).

3 Decomposing the arrow: disjunctive algebras

We shall now introduce the notion of disjunctive algebra, which is a structure primarily
based on disjunctions, negations (for the connectives) and meets (for the universal quantifier).
Our main purpose is to draw the comparison with implicative algebras, as an attempt to

5 The latter indeed implies the closure of separators under application.
6 That is to say that we define a× b ,

c
c∈A((a→ b→ c)→ c) and a+ b ,

c
c∈A((a→ c)→ (b→ c)→ c).
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justify eventually that the latter are more general than the former, and to lay the bases
for a dualizable definition. In the seminal paper introducing linear logic [12], Girard refines
the structure of the sequent calculus LK, introducing in particular negative and positive
connectives for disjunctions and conjunctions7. With this finer set of connectives, the usual
implication can be retrieved using either the negative disjunction: A→ B , ¬A`B or the
positive conjunction: A→ B , ¬(A⊗ ¬B).

In 2009, Munch-Maccagnoni gave a computational account of Girard’s presentation for
classical logic [35]. In his calculus, named L, each connective corresponds to the type of a
particular constructor (or destructor). While L is in essence close to Curien and Herbelin’s
λµµ̃-calculus [4] (in particular it is presented with the same paradigm of duality between
proofs and contexts), the syntax of terms does not include λ-abstraction (and neither does
the syntax of formulas includes an implication). The two decompositions of the arrow
evoked above are precisely reflected in decompositions of λ-abstractions (and dually, of
stacks) in terms of L constructors. Notably, the choice of a decomposition corresponds to a
particular choice of an evaluation strategy8 for the encoded λ-calculus: picking the negative
` connective corresponds to call-by-name, while the decomposition using the ⊗ connective
reduces in a call-by-value fashion.

We shall begin by considering the call-by-name case, which is closer to the situation of
implicative algebras. The definition of disjunctive structures and algebras are guided by an
analysis of the realizability model induced by L̀ , that is Munch-Maccagnoni’s system L restric-
ted to the fragment corresponding to negative formulas: A,B := X | A`B | ¬A | ∀X.A [35].
To leave room for more details on disjunctive algebras, we elude here the introduction of L̀
and its relation to the call-by-name λ-calculus, we refer the interested reader to the extended
version.

3.1 Disjunctive structures
We are now going to define the notion of disjunctive structure. Since we choose negative
connectives and in particular a universal quantifier, we should define commutations with
respect to arbitrary meets. The realizability interpretation for L̀ provides us with a safeguard
in this regard, since in the corresponding models, if X /∈ FV (B) the following equalities9
hold:
1. ‖∀X.(A`B)‖V = ‖(∀X.A) `B‖.
2. ‖∀X.(B `A)‖V = ‖B ` (∀X.A)‖.

3. ‖¬(∀X.A)‖V =
⋂
S∈P(V0) ‖¬A{X := Ṡ}‖V

Algebraically, the previous proposition advocates for the following definition (remember that
the order is defined as the reversed inclusion of primitive falsity values (whence ∩ is

b
) and

that the ∀ quantifier is interpreted by
c
):

I Definition 5 (Disjunctive structure). A disjunctive structure is a complete lattice (A,4)
equipped with a binary operation (a, b) 7→ a ` b, together with a unary operation a 7→ ¬a,
such that for all a, a′, b, b′ ∈ A and for any B ⊆ A:
1. if a 4 a′ then ¬a′ 4 ¬a
2. if a 4 a′ and b 4 b′ then a` b 4 a′ ` b′

3.
c
b∈B(b` a) = (

c
b∈B b) ` a

4.
c
b∈B(a` b) = a` (

c
b∈B b)

5. ¬
c
a∈A a =

b
a∈A ¬a

7 We insist on the fact that even though we use linear notations afterwards, nothing will be linear here.
8 Phrased differently, this observation can be traced back to different works, for instance by Blain-Levy [28,
Fig. 5.10], Laurent [26] or Danos, Joinet and Schellinx [5].

9 Technically, V0 is the set of closed values which, in this setting, are evaluation contexts (think of Π in
usual Krivine models), and ‖A‖V ∈ P(V0) is the (ground) falsity value of a formula A.

https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ParAlgebras.html#ParStructure
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Observe that the commutation laws imply the value of the internal laws when applied to the
maximal element>: 1. >` a = > 2. a`> = > 3. ¬> = ⊥

We give here some examples of disjunctive structures.

I Example 6 (Dummy disjunctive structure). Given any complete lattice (L,4), defining
a` b , > and ¬a , ⊥ gives rise to a dummy structure that fulfills the required properties.

I Example 7 (Complete Boolean algebras). Let B be a complete Boolean algebra. It encom-
passes a disjunctive structure defined by:

A , B a 4 b , a 4 b a` b , a ∨ b ¬a , ¬a

I Example 8 (L̀ realizability models). Given a realizability interpretation of L̀ , we define:

A , P(V0)
a 4 b , a ⊇ b

a` b , {(V1, V2) : V1 ∈ a ∧ V2 ∈ b}
¬a , [a⊥⊥] = {[t] : t ∈ a⊥⊥}

where ⊥⊥ is the pole, V0 is the set of closed values9, and (·, ·) and [·] are the maps corresponding
to ` and ¬. The resulting quadruple (A,4,`,¬) is a disjunctive structure.

Following the interpretation of the λ-terms in implicative structures, we can embed
L̀ terms within disjunctive structures. We do not have the necessary space here to fully
introduce here10, but it is worth mentioning that the orthogonality relation t⊥⊥e is interpreted
via the ordering tA 4 eA (as suggested in [8, Theorem 5.13] by the definition of an abstract
Krivine structure and its pole from an ordered combinatory algebra).

3.2 The induced implicative structure

As expected, any disjunctive structure directly induces an implicative structure through the
definition a →̀ b , ¬a` b:

I Proposition 9. If (A,4,`,¬) is a disjunctive structure, then (A,4, →̀) is an implicative
structure.

Therefore, we can again define for all a, b of A the application ab as well as the abstraction
λf for any function f from A to A; and we get for free the properties of these encodings in
implicative structures.

Up to this point, we have two ways of interpreting a λ-term into a disjunctive structure:
either through the implicative structure which is induced by the disjunctive one, or by
embedding into the L̀ -calculus which is then interpreted within the disjunctive structure.
As a sanity check, we verify that both coincide:

I Proposition 10 (λ-calculus). Let A` = (A,4,`,¬) be a disjunctive structure, and A→ =
(A,4, →̀) the implicative structure it canonically defines, we write ι for the corresponding
inclusion. Let t be a closed λ-term (with parameter in A), and JtK his embedding in L̀ . Then
we have ι(tA→) = JtKA

` .

10 See the extended version for more details.
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3.3 Disjunctive algebras
We shall now introduce the notion of disjunctive separator. To this purpose, we adapt
the definition of implicative separators, using standard axioms11 for the disjunction and
the negation instead of Hilbert’s combinators s and k. We thus consider the following
combinators:

s̀1 ,
c
a∈A [(a` a)→ a]

s̀2 ,
c
a,b∈A [a→ (a` b)]

s̀3 ,
c
a,b∈A [(a` b)→ b` a]

s̀4 ,
c
a,b,c∈A [(a→ b)→ (c` a)→ (c` b)]

s̀5 ,
c
a,b,c∈A [(a` (b` c))→ ((a` b) ` c)]

Separators for A are defined similarly to the separators for implicative structures, replacing
the combinators k, s and cc by the previous ones.

I Definition 11 (Separator). We call separator for the disjunctive structure A any subset
S ⊆ A that fulfills the following conditions for all a, b ∈ A:

1. If a ∈ S and a 4 b then b ∈ S.
2. s̀1, s̀2, s̀3, s̀4 and s̀5 are in S.

3. If a→ b ∈ S and a ∈ S then b ∈ S.

A separator S is said to be consistent if ⊥ /∈ S. We call disjunctive algebra the given of
a disjunctive structure together with a separator S ⊆ A.

I Remark 12. The reader may notice that in this section, we do not distinguish between
classical and intuitionistic separators. Indeed, L̀ and the corresponding fragment of the
sequent calculus are intrinsically classical. As we shall see thereafter, so are the disjunctive
algebras: the negation is always involutive modulo the equivalence ∼=S (Proposition 16).

I Remark 13 (Generalized modus ponens). The modus ponens, that is the unique deduc-
tion rule we have, is actually compatible with meets. Consider a set I and two families
(ai)i∈I , (bi)i∈I ∈ AI , we have:

a `I b `I a
`I b

where we write a `I b for (
c
i∈I ai → bi) ∈ S and `I a for (

c
i∈I ai) ∈ S. As our axioms are

themselves expressed as meets, the results that we will obtain internally (that is by deduction
from the separator’s axioms) can all be generalized to meets.

I Example 14 (Complete Boolean algebras). Once again, if B is a complete Boolean algebra,
B induces a disjunctive structure in which it is easy to verify that the combinators s̀1, s̀3, s̀3, s̀4
and s̀5 are equal to the maximal element >. Therefore, the singleton {>} is a valid separator
for the induced disjunctive structure. In fact, the filters for B are exactly its separators.

I Example 15 (L̀ realizability model). Remember from Example 8 that any model of classical
realizability based on the L̀ -calculus induces a disjunctive structure. As in the implicative
case, the set of formulas realized by a closed term12 defines a valid separator.

11These axioms can be found for instance in Whitehead and Russell’s presentation of logic [41]. In fact,
the fifth axiom is deducible from the first four as was later shown by Bernays [2]. For simplicity reasons,
we preferred to keep it as an axiom.

12Proof-like terms in L̀ simply correspond to closed terms.
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3.4 Internal logic
As in the case of implicative algebras, we say that a entails b and write a `S b if a→ b ∈ S.
Through this relation, which is again a preorder relation, we can relate the primitive negation
and disjunction to the negation and sum type induced by the underlying implicative structure:

a+ b ,
k

c∈A
((a→ c)→ (b→ c)→ c) (∀a, b ∈ A)

In particular, we show that from the point of view of the separator the principle of double
negation elimination is valid and the disjunction and this sum type are equivalent:

I Proposition 16 (Implicative connectives). For all a, b ∈ A, the following holds:
1. ¬a `S a→ ⊥
2. a→ ⊥ `S ¬a

3. a `S ¬¬a
4. ¬¬a `S a

5. a` b `S a+ b

6. a+ b `S a` b

3.5 Induced implicative algebras
In order to show that any disjunctive algebra is a particular case of implicative algebra, we
first verify that Hilbert’s combinators belong to any disjunctive separator:

I Proposition 17 (Combinators). We have: 1. kA ∈ S 2. sA ∈ S 3. ccA ∈ S

As a consequence, we get the expected theorem:

I Theorem 18. Any disjunctive algebra is a classical implicative algebra.

Since any disjunctive algebra is actually a particular case of implicative algebra, the con-
struction leading to the implicative tripos can be rephrased entirely in this framework. In
particular, the same criteria allows us to determine whether the implicative tripos is iso-
morphic to a forcing tripos. Notably, a disjunctive algebra admitting an extra-commutation
rule the negation ¬ with arbitrary joins (¬

b
a∈A a =

c
a∈A ¬a) will induce an implicative

algebra where the arrow commutes with arbitrary joins. In that case, the induced tripos
would collapse to a forcing situation (see [31]).

4 A positive decomposition: conjunctive algebras

4.1 Call-by-value realizability models
While there exists now several models build of classical theories constructed via Krivine
realizability [22, 24, 25, 29], they all have in common that they rely on a presentation of
logic based on negative connectives/quantifiers. If this might not seem shocking from a
mathematical perspective, it has the computational counterpart that these models all build
on a call-by-name calculus, namely the λc-calculus13. In light of the logical consequences
that computational choices have on the induced theory, it is natural to wonder whether the
choice of a call-by-name evaluation strategy is anecdotal or fundamental.

As a first step in this direction, we analyze here the algebraic structure of realizability
models based on the L⊗ calculus, the positive fragment of Munch-Maccagnoni’s system L

13Actually, there is two occurrences of realizability interpretations for call-by-value calculus, including
Munch-Maccagnoni’s system L, but both are focused on the analysis of the computational behavior of
programs rather than constructing models of a given logic [35, 27].

CSL 2020

https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ParAlgebras.html#lm:pc6
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ParAlgebras.html
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ParAlgebras.html#neg_imp_bot
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ParAlgebras.html#imp_bot_neg
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ParAlgebras.html#dni_entails
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ParAlgebras.html#dne_entails
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ParAlgebras.html#par_or
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ParAlgebras.html#or_par
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ParAlgebras.html
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ParAlgebras.html#psep_K
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ParAlgebras.html#psep_S
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ParAlgebras.html#psep_cc
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ParAlgebras.html#PA_IA


30:10 Revisiting the Duality of Computation

corresponding to the formulas defined by: A,B ::= X | ¬A | A ⊗ B | ∃X.A. Through the
well-known duality between terms and evaluation contexts [4, 35], this fragment is dual to
the L̀ calculus and it naturally allows to embed the λ-terms evaluated in a call-by-value
fashion. We shall now reproduce the approach we had for L̀ : guided by the analysis of the
realizability models induced by the L⊗ calculus, we first define conjunctive structures. We
then show how these structures can be equipped with a separator and how the resulting
conjunctive algebras lead to the construction of a conjunctive tripos. We will finally show in
the next section how conjunctive and disjunctive algebras are related by an algebraic duality.

4.2 Conjunctive structures
As in the previous section, we will not introduce here the L⊗ calculus and the corresponding
realizability models (see the extended version for details). Their main characteristic is that,
being build on top of a call-by-value calculus, a formula A is primitively interpreted by its
ground truth value |A|v ∈ P(VO) which is a set of values. Its falsity and truth values are then
defined by orthogonality [35, 27]. Once again, we can observe the existing commutations in
these realizability models. Insofar as we are in a structure centered on positive connectives,
we especially pay attention to the commutations with joins. As a matter of fact, in any L⊗

realizability model, we have that if X /∈ FV (B):

1. |∃X.(A⊗B)|V = |(∃X.A)⊗B|V .
2. |∃X.(B ⊗A)|V = |B ⊗ (∃X.A)|V .

3. |¬(∃X.A)|V =
⋂
S∈P(V0) |¬A{X := Ṡ}|V

Since we are now interested in primitive truth values, which are logically ordered by inclusion
(in particular, the existential quantifier is interpreted by unions, thus joins), the previous
proposition advocates for the following definition:

I Definition 19 (Conjunctive structure). A conjunctive structure is a complete join-semilattice
(A,4) equipped with a binary operation (a, b) 7→ a⊗ b, and a unary operation a 7→ ¬a, such
that for all a, a′, b, b′ ∈ A and for all subset B ⊆ A we have:
1. if a 4 a′ then ¬a′ 4 ¬a
2. if a 4 a′ and b 4 b′ then a⊗ b 4 a′ ⊗ b′
3.

b
b∈B(a⊗ b) = a⊗ (

b
b∈B b)

4.
b
b∈B(b⊗ a) = (

b
b∈B b)⊗ a

5. ¬
b
a∈A a =

c
a∈A ¬a

As in the cases of implicative and disjunctive structures, the commutation rules imply
that: 1. ⊥⊗a = ⊥ 2. a⊗⊥ = ⊥ 3. ¬⊥ = >

I Example 20 (Dummy conjunctive structure). Given a complete lattice L, the following
definitions give rise to a dummy conjunctive structure: a⊗ b , ⊥ ¬a , >.

I Example 21 (Complete Boolean algebras). Let B be a complete Boolean algebra. It embodies
a conjunctive structure, that is defined by:
A , B a 4 b , a 4 b a⊗ b , a ∧ b ¬a , ¬a

I Example 22 (L⊗ realizability models). As for the disjunctive case, we can abstract the
structure of the realizability interpretation of L⊗ to define:

A , P(V0)
a⊗ b , {(V1, V2) : V1 ∈ a ∧ V2 ∈ b}

a 4 b , a ⊆ b
¬a , [a⊥⊥] = {[e] : e ∈ a⊥⊥}

where ⊥⊥ is the pole, V0 is the set of closed values and (·, ·) and [·] are the maps corresponding
to ⊗ and ¬. The resulting quadruple (A,4,⊗,¬) is a conjunctive structure.
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It is worth noting that even though we can define an arrow by a ⊗→ b , ¬(a⊗¬b), it does
not induce an implicative structure: indeed, the distributivity law is not true in general14. In
turns, we have another distributivity law which is usually wrong in implicative structure:

(
j

a∈A
a) ⊗→ b =

k

a∈A
(a ⊗→ b)

k

b∈B

(a ⊗→ b) 64 a ⊗→ (
k

b∈B

b)

Actually, implicative structures where both are true corresponds precisely to a degenerated
forcing situation.

Here again, we can define an embedding of L⊗ into any conjunctive structure which is
sound with respect to typing and reductions15.

4.3 Conjunctive algebras

The definition of conjunctive separators turns out to be more subtle than in the disjunctive
case. Among others things, conjunctive structures mainly axiomatize joins, while the
combinators or usual mathematical axioms that we could wish to have in a separator are
more naturally expressed via universal quantifications, hence meets. Yet, an analysis of
the sequent calculus underlying L⊗ type system15, shows that we could consider a tensorial
calculus where deduction systematically involves a conclusion of the shape ¬A. This justifies
to consider the following combinators16:

s⊗1 ,
c
a∈A ¬ [¬(a⊗ a)⊗ a]

s⊗2 ,
c
a,b∈A ¬ [¬a⊗ (a⊗ b)]

s⊗3 ,
c
a,b∈A ¬ [¬(a⊗ b)⊗ (b⊗ a)]

s⊗4 ,
c
a,b,c∈A ¬ [¬(¬a⊗ b)⊗ (¬(c⊗ a)⊗ (c⊗ b))]

s⊗5 ,
c
a,b,c∈A ¬ [¬(a⊗ (b⊗ c))⊗ ((a⊗ b)⊗ c)]

and to define conjunctive separators as follows:

I Definition 23 (Separator). We call separator for the disjunctive structure A any subset
S ⊆ A that fulfills the following conditions for all a, b ∈ A:

1. If a ∈ S and a 4 b then b ∈ S.
2. s⊗1 , s

⊗
2 , s

⊗
3 , s

⊗
4 and s⊗5 are in S.

3. If ¬(a⊗ b) ∈ S and a ∈ S then ¬b ∈ S.
4. If a ∈ S and b ∈ S then a⊗ b ∈ S.

A separator S is said to be classical if besides ¬¬a ∈ S implies a ∈ S.

I Remark 24 (Modus Ponens). If the separator is classical, it is easy to see that the modus
ponens is valid: if a ⊗→ b ∈ S and a ∈ S, then ¬¬b ∈ S by (3) and thus b ∈ S.

I Example 25 (Complete Boolean algebras). Once again, if B is a complete Boolean algebra, B
induces a conjunctive structure in which it is easy to verify that the combinators s̀1, s̀3, s̀3, s̀4
and s̀5 are equal to the maximal element >. Therefore, the singleton {>} is a valid separator.

I Example 26 (L⊗realizability model). As expected, the set of realized formulas by a proof-like
term: defines a valid separator for the conjunctive structures induced by L⊗ realizability
models.

14For instance, it is false in L⊗ realizability models.
15 See the extended version for more details.
16Observe that are directly dual to the combinators for disjunctive separators and that they can be

alternatively given the shape ¬
b

_∈A ....
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I Example 27 (Kleene realizability). We do not want to enter into too much details here, but
it is worth mentioning that realizability interpretations à la Kleene of intuitionistic calculi
equipped with primitive pairs (e.g. (partial) combinatory algebras, the λ-calculus) induce
conjunctive algebras. Insofar as many Kleene realizability models takes position against
classical reasoning (for ∀X.X ∨ ¬X is not realized and hence its negation is), these algebras
have the interesting properties of not being classical (and are even incompatible with a classical
completion).

I Remark 28 (Generalized axioms). Once again, the axioms (3) and (4) generalize to meet
of families (ai)i∈I , (bi)i∈I :

`I ¬(a⊗ b) `I a
`I ¬b

`I a `I b
`I a⊗ b

where we write `I a for (
c
i∈I ai) ∈ S and where the negation and conjunction of families

are taken pointwise. Once again, the axioms being themselves expressed as meets, this means
that any result obtained from the separator’s axioms (but the classical one) can be generalized
to meets.

4.4 Internal logic
As before, we consider the entailment relation defined by a `S b , (a ⊗→ b) ∈ S. Observe
that if the separator is not classical, we do not have that a `S b and a ∈ S entails17 b ∈ S.
Nonetheless, this relation still defines a preorder in the sense that:

I Proposition 29 (Preorder). For any a, b, c ∈ A, we have:
1. a `S a 2. If a `S b and b `S c then a `S c

Intuitively, this reflects the fact that despite we may not be able to extract the value of a
computation, we can always chain it with another computation expecting a value.

Here again, we can relate the negation ¬a to the one induced by the arrow a ⊗→ ⊥:

I Proposition 30 (Implicative negation). For all a ∈ A, the following holds:
1. ¬a `S a ⊗→ ⊥ 2. a ⊗→ ⊥ `S ¬a 3. a `S ¬¬a 4. ¬¬a `S a

As in implicative structures, we can define the abstraction and application of the λ-
calculus:

λf ,
k

a∈A
(a ⊗→ f(a)) ab ,

k
{¬¬c : a 4 b ⊗→ c}

Observe that here we need to add a double negation, since intuitively ab is a computation of
type ¬¬c rather than a value of type c. In other words, values are not stable by applications,
and extracting a value from a computation requires a form of classical control. Nevertheless,
for any separator we have:

I Proposition 31. If a ∈ S and b ∈ S then ab ∈ S.

Similarly, the beta reduction rule now involves a double-negation on the reduced term:

17Actually we can consider a different relation a `¬ b , ¬(a⊗ b) for which a `¬ b and a ∈ S entails ¬b.
This one turns out to be useful to ease proofs, but from a logical perspective, the significant entailment
is the one given by a `S b.
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I Proposition 32. (λf)a 4 ¬¬f(a)

We show that Hilbert’s combinators k and s belong to any conjunctive separator:

I Proposition 33 (k and s). We have:
1. (λxy.x)A ∈ S 2. (λxyz.x z (y z))A ∈ S

By combinatorial completeness, for any closed λ-term t we thus have the a combinatorial
term t0 (i.e. a composition of k and s) such that t0 →∗ t. Since S is closed under application,
tA0 also belong to S. Besides, since for each reduction step tn → tn+1, we have tAn 4 ¬¬tAn+1,
if the separator is classical18, we can thus deduce that it contains the interpretation of t :

I Theorem 34 (λ-calculus). If S is classical and t is a closed λ-term, then tA ∈ S.

Once more, the entailment relation induces a structure of (pre)-Heyting algebra, whose
conjunction and disjunction are naturally given by a× b , a⊗ b and a+ b , ¬(¬a⊗ ¬b):

I Proposition 35 (Heyting Algebra). For any a, b, c ∈ A For any a, b, c ∈ A, we have:

1. a× b `S a
2. a× b `S b

3. a `S a+ b

4. b `S a+ b

5. a `S b ⊗→ c iff a×b `S c

We can thus quotient the algebra by the equivalence relation ∼=S and extend the previous
operation to equivalence classes in order to obtain a Heyting algebra A/ ∼=S . In particular,
this allows us to obtain a tripos out of a conjunctive algebra by reproducing the construction
of the implicative tripos in our setting:

I Theorem 36 (Conjunctive tripos). Let (A,4,→,S) be a classical19 conjunctive algebra.
The following functor (where f : J → I) defines a tripos:

T : I 7→ AI/S[I] T (f) :
{
AI/S[I] → AJ/S[J ]

[(ai)i∈I ] 7→ [(af(j))j∈J ]

5 The duality of computation, algebraically

In [4], Curien and Herbelin introduce the λµµ̃ in order to emphasize the so-called duality
of computation between terms and evaluation contexts. They define a simple translation
inverting the role of terms and stacks within the calculus, which has the notable consequence
of translating a call-by-value calculus into a call-by-name calculus and vice-versa. The
very same translation can be expressed within L, in particular it corresponds to the trivial
translation from mapping every constructor on terms (resp. destructors) in L⊗ to the
corresponding constructor on stacks (resp. destructors) in L̀ . We shall now see how this
fundamental duality of computation can be retrieved algebraically between disjunctive and
conjunctive algebras.

We first show that we can simply pass from one structure to another by reversing the
order relation. We know that reversing the order in a complete lattice yields a complete

18Actually, since we always have that if ¬¬¬¬a ∈ S then ¬¬a ∈ S, the same proof shows that in the
intuitionistic case we have at ¬¬tA ∈ S.

19For technical reasons, we only give the proof in case where the separator is classical (recall that it allows
to directly use λ-terms), but as explained, by adding double negation everywhere the same reasoning
should work for the general case as well. Yet, this is enough to express our main result in the next
section which only deals with the classical case.
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lattice in which meets and joins are exchanged. Therefore, it only remains to verify that the
axioms of disjunctive and conjunctive structures can be deduced through this duality one
from each other, which is the case.
I Proposition 37. Let (A,4,`,¬) be a disjunctive structure. Let us define:
A⊗ , A` a / b , b 4 a a⊗ b , a` b ¬a , ¬a

then (A⊗, /,⊗,¬) is a conjunctive structure.
I Proposition 38. Let (A,4,⊗,¬) be a conjunctive structure. Let us define:
A` , A⊗ a / b , b 4 a a` b , a⊗ b ¬a , ¬a

then (A⊗, /,⊗,¬) is a disjunctive structure.
Intuitively, by considering stacks as realizers, we somehow reverse the algebraic structure,

and we consider as valid formulas the ones whose orthogonals were valid. In terms of
separator, it means that when reversing a structure we should consider the separator defined
as the preimage through the negation of the original separator.
I Theorem 39. Let (A⊗,S⊗) be a conjunctive algebra, the set S` , {a ∈ A : ¬a ∈ S⊗}
defines a valid separator for the dual disjunctive structure A`.
I Theorem 40. Let (A`,S`) be a disjunctive algebra. The set S⊗ , {a ∈ A : ¬a ∈ S`}
defines a classical separator for the dual conjunctive structure A⊗.

It is worth noting that reversing in both cases, the dual separator is classical. This is
to connect with the fact that classical reasoning principles are true on negated formulas.
Moreover, starting from a non-classical conjunctive algebra, one can reverse it twice to get a
classical algebra. This corresponds to a classical completion of the original separator S: it is
easy to see that a ∈ S implies ¬¬a ∈ S, hence S ⊆ {a : ¬¬a ∈ S}.

Actually, the duality between disjunctive and (classical) conjunctive algebras is even
stronger, in the sense that through the translation, the induced triposes are isomorphic.
Remember that an isomorphism ϕ between two (Set-based) triposes T , T ′ is defined as
a natural isomorphism T ⇒ T ′ in the category HA, that is as a family of isomorphisms
ϕI : T (I) ∼→ T ′(I) (indexed by all I ∈ Set) that is natural in I.
I Theorem 41 (Main result). Let (A,S) be a disjunctive algebra and (Ā, S̄) its dual con-
junctive algebra. The following family of maps defines a tripos isomorphism:

ϕI :
{
Ā/S̄[I] → A/S[I]

[ai] 7→ [¬ai]

6 Conclusion

6.1 An algebraic view on the duality of computation
To sum up, in this paper we saw how the two decompositions of the arrow a→ b as ¬a` b

and ¬(a⊗¬b), which respectively induce decompositions of a call-by-name and call–by-value
λ-calculi within Munch-Maccagnoni’s system L [35], yield two different algebraic structures
reflecting the corresponding realizability models. Namely, call-by-name models give rise to
disjunctive algebras, which are particular cases of Miquel’s implicative algebras [31]; while
conjunctive algebras correspond to call-by-value realizability models.

The well-known duality of computation between terms and contexts is reflected here by
simple translations from conjunctive to disjunctive algebras and vice-versa, where the under-
lying lattices are simply reversed. Besides, we showed that (classical) conjunctive algebras
induce triposes that are isomorphic to disjunctive triposes. The situation is summarized in
Figure 1, where ⊗¬¬ denotes classical conjunctive algebras.
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6.2 From Kleene to Krivine via negative translation

We could now re-read within our algebraic landscape the result of Oliva and Streicher
stating that Krivine realizability models for PA2 can be obtained as a composition of Kleene
realizability for HA2 and Friedman’s negative translation [36, 30]. Interestingly, in this
setting the fragment of formulas that is interpreted in HA2 correspond exactly to the positive
formulas of L⊗, so that it gives rise to an (intuitionistic) conjunctive algebra. Friedman’s
translation is then used to encode the type of stacks within this fragment via a negation. In the
end, realized formulas are precisely the ones that are realized through Friedman’s translation:
the whole construction exactly matches the passage from a intuitionistic conjunctive structure
defined by Kleene realizability to a classical implicative algebras through the arrow from
⊗-algebras to →-algebras via `-algebras.

6.3 Future work

While Theorem 41 implies that call-by-value and call-by-name models based on the L⊗ and
L̀ calculi are equivalents, it does not provide us with a definitive answer to our original
question. Indeed, just as (by-name) implicative algebras are more general than disjunctive
algebras, it could be the case that there exists a notion of (by-value) implicative algebras
that is strictly more general than conjunctive algebras and which is not isomorphic to a
by-name situation.

Also, if we managed to obtain various results about conjunctive algebras, there is still
a lot to understand about them. Notably, the interpretation we have of the λ-calculus is
a bit disappointing in that it does not provide us with an adequacy result as nice as in
implicative algebras. In particular, the fact that each application implicitly gives rise to a
double negation breaks the compositionality. This is of course to connect with the definition
of truth values in by-value models which requires three layers and a double orthogonal. We
thus feel that many things remain to understand about the underlying structure of by-value
realizability models.

Finally, on a long-term perspective, the next step would be to understand the algebraic
impact of more sophisticated evaluation strategy (e.g., call-by-need) or side effects (e.g., a
monotonic memory). While both have been used in concrete cases to give a computational
content to certain axioms (e.g., the axiom of dependent choice [15]) or model constructions
(e.g., forcing [21]), for the time being we have no idea on how to interpret them in the realm
of implicative algebras.
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Abstract
Nominal sets provide a foundation for reasoning about names. They are used primarily in syntax
with binders, but also, e.g., to model automata over infinite alphabets. In this paper, nominal sets
are related to nominal renaming sets, which involve arbitrary substitutions rather than permutations,
through a categorical adjunction. In particular, the left adjoint relates the separated product of
nominal sets to the Cartesian product of nominal renaming sets. Based on these results, we define
the new notion of separated nominal automata. We show that these automata can be exponentially
smaller than classical nominal automata, if the semantics is closed under substitutions.
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1 Introduction

Nominal sets are abstract sets which allow one to reason over sets with names, in terms of
permutations and symmetries. Since their introduction in computer science [11], they have
been widely used for implementing and reasoning over syntax with binders [22]. Further,
nominal techniques have been related to computability theory [4] and automata theory [3],
where they provide an elegant means of studying languages over infinite alphabets. This
embeds nominal techniques in a broader setting of symmetry aware computation [24].

Gabbay, one of the pioneers of nominal techniques described a variation on the theme:
nominal renaming sets [9, 10]. Nominal renaming sets are equipped with a monoid action of
arbitrary (possibly non-injective) substitution of names, in contrast to nominal sets, which
only involve a group action of permutations.

In this paper, we further investigate the relationship between nominal renaming sets and
nominal sets, and apply the results to nominal automata theory. We start by establishing a
categorical adjunction (Section 3):

Pm-Nom
F

,,
⊥ Sb-Nom
U

kk ,

where Pm-Nom is the usual category of nominal sets and Sb-Nom the category of nominal
renaming sets. The right adjoint U simply forgets the action of non-injective substitutions.
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The functor F was presented by Dowek and Gabbay [6]; it freely extends a nominal set
with elements representing the application of such substitutions. For instance, F maps the
nominal set A(∗) of all words consisting of distinct atoms to the nominal renaming set A∗
consisting of all words over the atoms.

In fact, the latter equivalence is a consequence of one of the main results of this paper:
the left adjoint F maps the separated product X ∗Y of nominal sets to the Cartesian product
of nominal renaming sets (Theorem 3.6 & 3.7). The separated product consists of those pairs
whose elements have disjoint supports. This is relevant for name abstraction [22], and has
also been studied in the setting of presheaf categories, aimed towards separation logic [21].
As a further consequence, under certain conditions, U maps the exponent to the magic wand
X −∗ Y , which is the right adjoint of the separated product.

We apply these connections between nominal sets and renaming sets in the context of
automata theory. In terms of expressivity, nominal automata and the more classical register
automata are equivalent, but nominal automata have appealing properties that register
automata lack, such as unique minimal automata [2]. Unfortunately, moving from register
automata to nominal automata can lead to an exponential blow-up in the number of states.1

As a motivating example, we consider a language modelling an n-bounded FIFO queue.
The input alphabet is given by Σ = {Put(a) | a ∈ A} ∪ {Pop}, and the output alphabet by
O = A ∪ {⊥} (here, ⊥ is a null value). The (generalised) language Ln : Σ∗ → O maps a
sequence of queue operations to the resulting top element when starting from the empty
queue, or to ⊥ if this is undefined. The language Ln can be recognised by a nominal
(Moore) automaton, but this requires an exponential number of states in n, as the automaton
distinguishes internally between all possible equalities among elements in the queue [20].

Based on the observation that Ln is closed under substitutions, we can come up with a
linear automata-theoretic representation. To this end, we define the new notion of separated
nominal automaton, where the transition function is only defined for pairs of states and
letters with a disjoint support (Section 4). Using the aforementioned categorical framework,
we can go back and forth between languages from separated automata and languages which
are closed under substitutions. In the FIFO example, the separated automaton obtained
from the original nominal automaton has only n+ 2 states, thus dramatically reducing the
number of states. We expect that such a reduction is useful in many applications, such as
active learning of register automata [20].

2 Monoid actions and nominal sets

In order to capture both the standard notion of nominal sets [22] and sets with more general
renaming actions [10], we start by defining monoid actions.

I Definition 2.1. Let (M, ·, 1) be a monoid. An M -set is a set X together with a function
· : M × X → X such that 1 · x = x and m · (n · x) = (m · n) · x for all m,n ∈ M and
x ∈ X. The function · is called an M -action and m · x is often written by juxtaposition mx.
A function f : X → Y between two M-sets is M -equivariant if m · f(x) = f(m · x) for all
m ∈ M and x ∈ X. The class of M-sets together with equivariant maps forms a category
M -Set.

1 Here, “number of states” refers to the number of orbits in the state space.
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Let A = {a, b, c, . . .} be a countable infinite set of atoms. The two main instances of M
considered in this paper are the monoid

Sb = {m : A→ A | m(a) 6= a for finitely many a}

of all (finite) substitutions (with composition as multiplication), and the monoid

Pm = {g ∈ Sb | g is a bijection}

of all (finite) permutations. Since Pm is a submonoid of Sb, any Sb-set is also a Pm-set; and
any Sb-equivariant map is also Pm-equivariant. This gives rise to a forgetful functor

U : Sb-Set→ Pm-Set. (1)

The set A is an Sb-set by defining m · a = m(a). Given an M -set X, the set P(X) of
subsets of X is an M -set, with the action defined by direct image.

For a Pm-set X, the orbit of an element x is the set orb(x) = {g · x | g ∈ Pm}. We say X
is orbit-finite if the set {orb(x) | x ∈ X} is finite.

For any monoid M , the category M -Set is symmetric monoidal closed. The product of
two M -sets is given by the Cartesian product, with the action defined pointwise: m · (x, y) =
(m · x,m · y). In M -Set, the exponent X →M Y is given by the set {f : M × X → Y |
f is equivariant}.2 The action on such an f : M × X → Y is defined by (m · f)(n, x) =
f(mn, x). A good introduction to the construction of the exponent is given by Simmons [28].
If M is a group, a simpler description of the exponent may be given, carried by the set of all
functions f : X → Y , with the action given by (g · f)(x) = g · f(g−1 · x).

2.1 Nominal M -sets
The notion of nominal set is usually defined w.r.t. a Pm-action. Here, we use the generalisation
to Sb-actions from [10]. Throughout this section, let M denote a submonoid of Sb.

I Definition 2.2. Let X be an M-set, and x ∈ X an element. A set C ⊂ A is an (M)-
support of x if for all m1,m2 ∈M s.t. m1|C = m2|C we have m1x = m2x. An M -set X is
called nominal if every element x has a finite M -support.

Nominal M -sets and equivariant maps form a full subcategory of M -Set, denoted by
M -Nom. The M -set A of atoms is nominal. The powerset P(X) of a nominal set is not
nominal in general; the restriction to finitely supported elements is.

If M is a group, then the notion of support can be simplified by using inverses. To see
this, first note that, given elements g1, g2 ∈M , g1|C = g2|C can equivalently be written as
g−1

2 g1|C = id |C . Second, the statement g1x = g2x can be expressed as g−1
2 g1x = x. Hence,

C is a support iff g|C = idC implies gx = x for all g, which is the standard definition for
nominal sets over a group [3, 22]. Surprisingly, a similar characterisation also holds for
Sb-sets [10]. Moreover, recall that every Sb-set is also a Pm-set; the associated notions of
support coincide on nominal Sb-sets, as shown by the following result. In particular, this
means that the forgetful functor (1) restricts to U : Sb-Nom→ Pm-Nom.

I Lemma 2.3. [9, Theorem 4.8] Let X be a nominal Sb-set, x ∈ X, and C ⊂ A. Then C is
an Sb-support of x iff it is a Pm-support of x.

2 If we write a regular arrow →, then we mean a map in the category. Exponent objects will always be
denoted by annotated arrows.
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I Remark 2.4. It is not true that any Pm-support is an Sb-support. The condition that
X is nominal, in the above lemma, is crucial. Let X = A ∪ {∗} and define the following
Sb-action: m · a = m(a) if m is injective, m · a = ∗ if m is non-injective, and m · ∗ = ∗. This
is a well-defined Sb-set, but is not nominal. Now consider U(X); this is the Pm-set A ∪ {∗}
with the natural action, which is a nominal Pm-set! In particular, as a Pm-set each element
has a finite support, but as a Sb-set the supports are infinite.

This counterexample is similar to the “exploding nominal sets” in [9], but even worse
behaved. We like to call them nuclear sets, since an element will collapse when hit by a
non-injective map, no matter how far away the non-injectivity occurs.

For M ∈ {Sb,Pm}, any element x ∈ X of a nominal M -set X has a least finite support
(w.r.t. set inclusion). We denote the least finite support of an element x ∈ X by supp(x). Note
that by Lemma 2.3, the set supp(x) is independent of whether a nominal Sb-set X is viewed
as an Sb-set or a Pm-set. The dimension of X is given by dim(X) = max{|supp(x)| | x ∈ X},
where |supp(x)| is the cardinality of supp(x).

We list some basic properties of nominal M -sets, which have known counterparts for the
case that M is a group [3], and when M = Sb [10].

I Lemma 2.5. Let X be an M-nominal set. If C supports an element x ∈ X, then
m · C supports m · x for all m ∈ M . Moreover, any g ∈ Pm preserves least supports:
g · supp(x) = supp(gx).

The latter equality does not hold in general for a monoidM . For instance, the “exploding”
nominal renaming sets [10] give counterexamples for M = Sb.

I Lemma 2.6. Given M-nominal sets X,Y and a map f : X → Y , if f is M-equivariant
and C supports an element x ∈ X, then C supports f(x).

The category M -Nom is symmetric monoidal closed, with the product inherited from
M -Set, thus simply given by Cartesian product. The exponent is given by the restriction
of the exponent X →M Y in M -Set to the set of finitely supported functions, denoted by
X →M

fs Y . This is similar to the exponents of nominal sets with 01-substitutions from [23].
I Remark 2.7. In [10] a different presentation of the exponent in M -Nom is given, based
on a certain extension of partial functions. We prefer the previous characterisation, as it is
derived in a straightforward way from the exponent in M -Set.

2.2 Separated product
I Definition 2.8. Let X and Y be Pm-nominal sets. Two elements x ∈ X, y ∈ Y are called
separated, denoted by x# y, if there are disjoint sets C1, C2 ⊂ A such that C1 supports x
and C2 supports y. The separated product of Pm-nominal sets X and Y is defined as

X ∗Y = {(x, y) ∈ X × Y | x# y}.

We extend the separated product to the separated power, defined by X(0) = 1 and
X(n+1) = X(n) ∗X, and the set of separated words X(∗) =

⋃
iX

(i). The separated product
is an equivariant subset X ∗Y ⊆ X × Y . Consequently, we have equivariant projection maps
X ∗Y → X and X ∗Y → Y .

I Example 2.9. Two finite sets C,D ∈ P(A) are separated precisely when they are disjoint.
An important example is the set A(∗) of separated words over the atoms: it consists of those
words where all letters are distinct.
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The separated product gives rise to another symmetric closed monoidal structure on
Pm-Nom, with 1 as unit, and the exponential object given by magic wand X −∗ Y . An
explicit characterisation of X −∗ Y is not needed in the remainder of this paper, but for a
complete presentation we briefly recall the description from [26] (see also [22] and [5]). First,
define a Pm-action on the set of partial functions f : X ⇀ Y by (g · f)(x) = g · f(g−1 · x)
if f(g−1 · x) is defined. Now, such a partial function f : X ⇀ Y is called separating if f is
finitely supported, f(x) is defined iff f #x, and supp(f) =

⋃
x∈dom(f) supp(f(x)) \ supp(x).

Finally, X −∗ Y = {f : X ⇀ Y | f is separating}. See [26] for a proof and explanation.
I Remark 2.10. The special case A −∗ Y coincides with [A]Y , the set of name abstractions [22].
The latter is generalised to [X]Y in [8]. In [5] it is shown that the coincidence [X]Y ∼= (X −∗ Y )
only holds under strong assumptions (including that X is single-orbit).
I Remark 2.11. An analogue of the separated product does not seem to exist for nominal
Sb-sets. For instance, consider the set A× A. As a Pm-set, it has four equivariant subsets:
∅, {(a, a) | a ∈ A}, A ∗A, and A × A. However, the set A ∗A is not an equivariant subset
when considering A× A as an Sb-set.

3 A monoidal construction from Pm-sets to Sb-sets

In this section, we provide a free construction, extending nominal Pm-sets to nominal Sb-sets.
We use this as a basis to relate the separated product and exponent (in Pm-Nom) to the
product and exponent in Sb-Nom. The main results are:
1. Theorem 3.6: the forgetful functor U : Sb-Nom→ Pm-Nom has a left adjoint F ;
2. Theorem 3.7: this F is monoidal: it maps separated products to products;
3. Theorem 3.13 and Corollary 3.14: U maps the exponent object in Sb-Nom to the right

adjoint −∗ of the separated product, if the domain has dimension smaller or equal to 1.
Together, these results form the categorical infrastructure to relate nominal languages to
separated languages and automata in Section 4.

I Definition 3.1 (From [6]). Given a Pm-nominal set X, we define a nominal Sb-set F (X)
as follows. Define the set

F (X) = {(m,x) | m ∈ Sb, x ∈ X}/∼,

where ∼ is the least equivalence relation containing:

(m, gx) ∼ (mg, x), (2)
(m,x) ∼ (m′, x) if m|C = m′|C for a Pm-support C of x, (3)

for all x ∈ X, m,m′ ∈ Sb and g ∈ Pm. Note that mg = m ◦ g, i.e., simply the monoid
operation of Sb. The equivalence class of a pair (m,x) is denoted by [m,x]. We define an
Sb-action on F (X) as n · [m,x] = [nm, x].

Well-definedness is proved as part of Proposition 3.5 below. Informally, an equivalence class
[m,x] ∈ F (X) behaves “as if m acted on x.” The first equation (2) ensures compatibility
with the Pm-action on x, and the second equation (3) ensures that [m,x] only depends the
relevant part of m.

I Example 3.2. Here are a few examples of the application of F . We do not give direct proofs,
but the first two will be treated more systematically later in this section (see Corollary 3.12).
For the third, note that A× A consist of two orbits, A ∗A and the diagonal {(a, a) | a ∈ A}.
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F (A) ∼= A.
F (A(∗)) ∼= A∗.
F (A× A) ∼= A2 + A.

The first example is also given in [6], where it is additionally shown that F does not
preserve products. As we will see in Section 3.1, F does preserve a different monoidal
structure, namely the separated product. The following characterisation of ∼ is useful in
proofs. This lemma is proven in [19].

I Lemma 3.3. We have (m1, x1) ∼ (m2, x2) iff there is a permutation g ∈ Pm such that
gx1 = x2 and m1|C = m2g|C , for C some Pm-support of x1.

I Remark 3.4. The first relation (2) in Definition 3.1 comes from the construction of “extension
of scalars” in commutative algebra [1]. In that context, one has a ring homomorphism
f : A→ B and an A-module M and wishes to obtain a B-module. This is constructed by
the tensor product B ⊗AM and it is here that the relation (b, am) ∼ (ba,m) is used (B is a
right A-module via f).

In [6] it is stated that F is a functor, and a proof outline for well-definedness on arrows is
given. Here we give a full proof, including well-definedness on objects.

I Proposition 3.5. The construction F in Definition 3.1 extends to a functor

F : Pm-Nom→ Sb-Nom ,

defined on an equivariant map f : X → Y by F (f)([m,x]) = [m, f(x)] ∈ F (Y ).

Proof. We first prove well-definedness and then the functoriality.
F (X) is an Sb-set. To this end we check that the Sb-action is well-defined. Let

[m1, x1] = [m2, x2] ∈ F (X) and let m ∈ Sb. By Lemma 3.3, there is some permutation g such
that gx1 = x2 and m1|C = m2g|C for some support C of x1. By post-composition with m
we get mm1|C = mm2g|C , which means (again by the lemma) that [mm1, x1] = [mm2, x2].
Thus m[m1, x1] = m[m2, x2], which concludes well-definedness.

For associativity and unitality of the Sb-action, we note that it is directly defined by left
multiplication of Sb which is associative and unital. This concludes that F (X) is an Sb-set.

F (X) is a nominal Sb set. Given an element [m,x] ∈ F (X) and a Pm-support C of x,
we will prove that m ·C is an Sb-support for [m,x]. Suppose that we have m1,m2 ∈ Sb such
that m1|m·C = m2|m·C . By pre-composition with m we get m1m|C = m2m|C and this leads
us to conclude [m1m,x] = [m2m,x]. So m1[m,x] = m2[m,x] as required.

Functoriality. Let f : X → Y be a Pm-equivariant map. To see that F (f) is well-defined
consider [m1, x1] = [m2, x2]. By Lemma 3.3, there is a permutation g such that gx1 = x2
and m1|C = m2g|C for some support C of x1. Applying F (f) gives on one hand [m1, f(x1)]
and on the other hand [m2, f(x2)] = [m2, f(gx1)] = [m2, gf(x1)] = [m2g, f(x1)] (we used
equivariance in the second step). Since m1|C = m2g|C and f preserves supports we have
[m2g, f(x1)] = [m1, f(x1)].

For Sb-equivariance we consider both n · F (f)([m,x]) = n[m, f(x)] = [nm, f(x)] and
F (f)(n · [m,x]) = F (f)([nm, x]) = [nm, f(x)]. This shows nF (f)([m,x]) = F (f)(n[m,x])
and concludes that we have a map F (f) : F (X)→ F (Y ).

Preservation of the identity function and composition follows from the definition. J

I Theorem 3.6. The functor F is left adjoint to U :

Pm-Nom
F

,,
⊥ Sb-Nom
U

kk
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Proof. We define, for every nominal set X, a map ηX : X → UF (X) with the necessary
universal property: for every Pm-equivariant f : X → U(Y ) there is a unique Sb-equivariant
map f ] : FX → Y such that U(f ]) ◦ ηX = f . Define ηX(x) = [id, x]. This is equivariant:
g · ηX(x) = g[id, x] = [g, x] = [id, gx] = ηX(gx). Now, for f : X → U(Y ), define f ]([m,x]) =
m · f(x) for x ∈ X and m ∈ Sb. Then U(f ]) ◦ ηX(x) = f ]([id, x]) = id ·f(x) = f(x).

For well-definedness of f ], consider [m1, x1] = [m2, x2] (we have to prove that m1 ·f(x1) =
m2 · f(x2)). By Lemma 3.3, there is a g ∈ Pm such that gx1 = x2 and m2g|C = m1|C for a
Pm-support C of x1. Now C is also a Pm-support for f(x) and hence it is an Sb-support
of f(x) (Lemma 2.3). Thus m2 · f(x2) = m2 · f(gx1) = m2g · f(x1) = m1 · f(x1) (we use
Pm-equivariance in the one but last step and Sb-support in the last step). For Sb-equivariance,
we compute n · f ]([m,x]) = nm · f(x) = f ]([nm, x]) = f ](n[m,x]). For uniqueness, suppose
h : FX → Y is such that U(h)◦ηX = f , i.e., h([id, x]) = f(x). Then h([m,x]) = h(m[id, x]) =
m · h([id, x]) = m · f(x) = m · f ]([id, x]) = f ](m · [id, x]) = f ]([m,x]). J

The counit ε : FU(Y ) → Y is given by ε([m,x]) = m · x. For the inverse of −], let
g : F (X)→ Y be an Sb-equivariant map; then g[ : X → U(Y ) is given by g[(x) = g([id, x]).
Note that the unit η is a Pm-equivariant map, hence it preserves supports (i.e., any support
of x also supports [id, x]). This also means that if C is a support of x, then m ·C is a support
of [m,x] (by Lemma 2.5).

3.1 On (separated) products
The functor F not only preserves coproducts, being a left adjoint, but it also maps the
separated product to products:

I Theorem 3.7. The functor F is strong monoidal, from the monoidal category
(Pm-Nom, ∗, 1) to (Sb-Nom,×, 1). In particular, the map p given by

p = 〈F (π1), F (π2)〉 : F (X ∗Y )→ F (X)× F (Y )

is an isomorphism, natural in X and Y .

Proof. We prove that p is an isomorphism. It suffices to show that p is injective and surjective.
Note that p([m, (x, y)]) = ([m,x], [m, y]).

Surjectivity. Let ([m1, x], [m2, y]) be an element of F (X)× F (Y ). We take an element
y′ ∈ Y such that y′#x and y′ = gy for some g ∈ Pm. Now we have an element (x, y′) ∈ X ∗Y .
By Lemma 2.5, we have supp(y′) = g supp(y). Define the map

m(a) =


m1(a) if a ∈ supp(x)
m2(g−1(a)) if a ∈ supp(y′)
a otherwise.

(Observe that supp(x) # supp(y′), so the cases are not overlapping.) The map m is an element
of Sb. Now consider the element z = [m, (x, y′)] ∈ F (X ∗Y ). Applying p to z gives the
element ([m,x], [m, y′]). First, we note that [m,x] = [m1, x] by the definition of m. Second,
we show that [m, y′] = [m2, y]. Observe that mg|supp(y) = m2|supp(y) by definition of m. Since
supp(y) is a support of y, we have [mg, y] = [m2, y], and since [mg, y] = [m, gy] = [m, y′] we
are done. Hence p([m, (x, y′)]) = ([m,x], [m, y′]) = ([m1, x], [m2, y]), so p is surjective.

Injectivity. Let [m1, (x1, y1)] and [m2, (x2, y2)] be two elements. Suppose that they are
mapped to the same element, i.e., [m1, x1] = [m2, x2] and [m1, y1] = [m2, y2]. Then there
are permutations gx, gy such that x2 = gxx1 and y2 = gyy1. Moreover, let C = supp(x1) and
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31:8 Separation and Renaming in Nominal Sets

D = supp(y1); then we have m1|C = m2gx|C and m1|D = m2gy|D. In order to show the two
original elements are equal, we have to provide a single permutation g. Define for, z ∈ C ∪D,

g0(z) =
{
gx(z) if z ∈ C
gy(z) if z ∈ D.

(Again, C and D are disjoint.) The function g0 is injective since the least supports of x2
and y2 are disjoint. Hence g0 defines a local isomorphism from C ∪ D to g0(C ∪ D). By
homogeneity [22], the map g0 extends to a permutation g ∈ Pm with g(z) = gx(z) for z ∈ C
and g(z) = gy(z) for z ∈ D. In particular we get (x2, y2) = g(x1, y1). We also obtain
m1|C∪D = m2g|C∪D. Thus [m1, (x1, y1)] = [m2, (x2, y2)], and so the map p is injective.

Unit and coherence. To show that F preserves the unit, we note that [m, 1] = [m′, 1]
for every m,m′ ∈ Sb, as the empty set supports 1 and so m|∅ = m′|∅ vacuously holds. We
conclude F (1) is a singleton. J

Since F also preserves coproducts (being a left adjoint), we obtain that F maps the set
of separated words to the set of all words.

I Corollary 3.8. For any Pm-nominal set X, we have F (X(∗)) ∼= (FX)∗.

As we will show below, the functor F preserves the set A of atoms. This is an instance of
a more general result about preservation of one-dimensional objects.

I Proposition 3.9. The functors F and U are equivalences on ≤ 1-dimensional objects.
Concretely, for X ∈ Pm-Nom and Y ∈ Sb-Nom:
1. If dim(X) ≤ 1, then the unit η : X → UF (X) is an isomorphism.
2. If dim(Y ) ≤ 1, then the co-unit ε : FU(Y )→ Y is an isomorphism.

In the proof, we will use the following property of Sb-sets with dimension ≤ 1.

I Lemma 3.10. Let Y be a nominal Sb-set. If an element y ∈ Y is supported by a singleton
set (or even the empty set), then

{my | m ∈ Sb} = {gy | g ∈ Pm} .

Proof. Let y ∈ Y be supported by {a} and let m ∈ Sb. Now consider b = m(a) and the
bijection g = (a b). Now m|{a} = g|{a}, meaning that my = gy. So the set {my | m ∈ Sb}
is contained in {gy | g ∈ Pm}. The inclusion the other way is trivial, which means
{my | m ∈ Sb} = {gy | g ∈ Pm}. J

Proof of Proposition 3.9. It is easy to see that η : x 7→ [id, x] is injective. Now to see that η
is surjective, let [m,x] ∈ UF (X) and consider a support {a} of x (this is a singleton or empty
since dim(X) ≤ 1). Let b = m(a) and consider the swap g = (a b). Now [m,x] = [mg−1, gx]
and note that {b} supports gx andmg−1|{b} = id |{b}. We conclude with [mg−1, gx] = [id, gx],
which implies that gx is the preimage of [m,x]. Hence η is an isomorphism.

To see that ε : [m, y] 7→ my is surjective, just consider m = id. To see that ε is injective,
let [m, y], [m′, y′] ∈ FU(Y ) be two elements such that my = m′y′. Then by using Lemma 3.10
we find g, g′ ∈ Pm such that gy = my = m′y′ = g′y′. This means that y and y′ are in
the same orbit (of U(Y )) and have the same dimension. Case 1: supp(y) = supp(y′) = ∅,
then [m, y] = [id, y] = [id, y′] = [m′, y′]. Case 2: supp(y) = {a} and supp(y′) = {b}, then
supp(gy) = {g(a)} (Lemma 2.5). In particular we have that m and g map a to c = g(a),
likewise m′ and g′ map b to c. Now [m, y] = [m, g−1g′y′] = [mg−1g′, y′] = [m′, y′], where we
usedmg−1g(b) = c = m′(b) in the last step. Thus ε is injective and hence an isomorphism. J
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By Proposition 3.9, we may consider the set A as both Sb-set and Pm-set (abusing
notation). And we get an isomorphism F (A) ∼= A of nominal Sb-sets. To appreciate the
above results, we give a concrete characterisation of one-dimensional nominal sets:

I Lemma 3.11. Let X be a nominal M -set, for M ∈ {Sb,Pm}. Then dim(X) ≤ 1 iff there
exist discrete3 sets Y and I such that X ∼= Y +

∐
I A.

In particular, the one-dimensional objects include the alphabets used for data words,
consisting of a product S ×A of a discrete set S of action labels and the set of atoms. These
alphabets are very common in the study of register automata (see, e.g., [13]).

By the above and Theorem 3.7, F maps separated powers of A to powers, and the set of
separated words over A to the Sb-set of words over A.

I Corollary 3.12. We have F (A(n)) ∼= An and F (A(∗)) ∼= A∗.

3.2 On exponents
We have described how F and U interact with (separated) products. Next, we establish
a relationship between the magic wand (−∗) and the exponent of nominal Sb-sets (→Sb

fs ).
These results on exponents will be useful in Section 4.1, where we discuss automata using
coalgebras.

I Theorem 3.13. The sets X −∗ U(Y ) and U(F (X) →Sb
fs Y ) are naturally isomorphic as

nominal Pm-sets.

Proof. We have the composite adjunctions

F ◦ (X ∗−) a (X −∗ −) ◦ U and (FX ×−) ◦ F a U ◦ (FX →Sb
fs −) .

Theorem 3.7 gives a natural isomorphism between the left adjoints. Hence, the right adjoints
are also isomorphic, which is the desired result. J

Note that this theorem gives an alternative characterisation of the magic wand in terms of
the exponent in Sb-Nom, if the codomain is U(Y ). Moreover, for a 1-dimensional object X in
Sb-Nom, we obtain the following special case of the theorem (using the co-unit isomorphism
from Proposition 3.9):

I Corollary 3.14. Let X,Y be nominal Sb-sets. For 1-dimensional X, the nominal Pm-set
U(X) −∗ U(Y ) is naturally isomorphic to U(X →Sb

fs Y ).

I Remark 3.15. The set A −∗ U(X) coincides with the atom abstraction [A]UX (Remark 2.10).
Hence, as a special case of Corollary 3.14, we recover [10, Theorem 34], which states a bijective
correspondence between [A]UX and U(A→Sb

fs X).

4 Nominal and separated automata

In this section, we study nominal (Moore) automata, which recognise languages over infinite
alphabets. After recalling the basic definitions, we introduce a new variant of automata
based on the separating product, which we call separated nominal automata. These automata

3 Any set Z can be equipped with a trivial action m · x = x, which makes Z a nominal set. Such sets are
called discrete.
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31:10 Separation and Renaming in Nominal Sets

represent nominal languages which are Sb-equivariant, essentially meaning they are closed
under substitution. Our main result is that, if a “classical” nominal automaton (over Pm)
represents a language L which is Sb-equivariant, then L can also be represented by a separated
nominal automaton. The latter can be exponentially smaller (in number of orbits) than the
original automaton, as we show in a concrete example.
I Remark 4.1. We will work with a general output set O instead of just acceptance. The
reason for this is that Sb-equivariant functions L : A(∗) → 2 are not very interesting: they
are defined purely by the length of the input. By using more general output O, we may still
capture interesting behaviour, e.g., the language in Example 4.3.

I Definition 4.2. Let Σ, O be Pm-sets, called input/output alphabet respectively.
A (Pm)-nominal language is an equivariant map of the form L : Σ∗ → O.
A nominal (Moore) automaton A = (Q, δ, o, q0) consists of a nominal set of states Q, an
equivariant transition function δ : Q× Σ→ Q, an equivariant output function o : Q→ O,
and an initial state q0 ∈ Q with an empty support.
The language semantics is the map l : Q× Σ∗ → O, defined inductively by

l(x, ε) = o(x) , l(x, aw) = l(δ(x, a), w)

for all x ∈ Q, a ∈ Σ and w ∈ Σ∗.
For l[ : Q→ (Σ∗ →Pm

fs O) the transpose of l, we have that l[(q0) : Σ∗ → O is equivariant;
this is called the language accepted by A.

Note that the language accepted by an automaton can equivalently be characterised by
considering paths through the automaton from the initial state.

If the state space Q and the alphabets Σ, O are orbit finite, this allows us to run algorithms
(reachability, minimisation, etc.) on such automata [3], but there is no need to assume this
for now. For an automaton A = (Q, δ, o, q0), we define the set of reachable states as the least
set R(A) ⊆ Q such that q0 ∈ R(A) and for all x ∈ R(A) and a ∈ Σ, δ(x, a) ∈ R(A).

I Example 4.3. We model a bounded FIFO queue of size n as a nominal Moore automaton,
explicitly handling the data in the automaton structure.4 The input alphabet Σ and output
alphabet O are as follows:

Σ = {Put(a) | a ∈ A} ∪ {Pop}, O = A ∪ {⊥}.

The input alphabet encodes two actions: putting a new value on the queue and popping
a value. The output is either a value (the front of the queue) or ⊥ if the queue is empty. A
queue of size n is modelled by the automaton (Q, δ, o, q0) defined as follows.

Q = A≤n ∪ {⊥} q0 = ε o(a1 . . . ak) =
{
a1 if k ≥ 1
⊥ otherwise

δ(a1 . . . ak,Put(b)) =
{
a1 . . . akb if k < n

⊥ otherwise
δ(⊥, x) =⊥

δ(a1 . . . ak,Pop) =
{
a2 . . . ak if k > 0
⊥ otherwise

4 We use a reactive version of the queue data structure, which slightly differs from the versions in [20, 13].



J. Moerman and J. Rot 31:11

ε

o = ⊥
a

o = a
ab

o = a
abc
o = a

⊥
o = ⊥

Put(a)
Pop

Pop

Put(b)

Pop
goes to b

Put(c)

Pop
goes to bc

Put(d)

Σ

Figure 1 The FIFO automaton from Example 4.3 with n = 3. The right-most state consists of
five orbits as we can take a, b, c distinct, all the same, or two of them equal in three different ways.
Consequently, the complete state space has ten orbits. The output of each state is denoted in the
lower part.

The automaton is depicted in Figure 1 for the case n = 3. The language accepted by this
automaton assigns to a word w the first element of the queue after executing the instructions
in w from left to right, and ⊥ if the input is ill-behaved, i.e., Pop is applied to an empty
queue or Put(a) to a full queue.

I Definition 4.4. Let Σ, O be Pm-sets. A separated language is an equivariant map of the
form Σ(∗) → O. A separated automaton A = (Q, δ, o, q0) consists of Q, o and q0 defined as
in a nominal automaton, and an equivariant transition function δ : Q ∗Σ→ Q.

The separated language semantics of such an automaton A is given by the function
s : Q ∗Σ(∗) → O, defined inductively by

s(x, ε) = o(x) , s(x, aw) = s(δ(x, a), w)

for all x ∈ Q, a ∈ Σ and w ∈ Σ(∗) such that x# aw and a#w.
Let s[ : Q→ (Σ(∗) −∗ O) be the transpose of s. Then s[(q0) : Σ(∗) → O corresponds to a

separated language; this is called the separated language accepted by A.

By definition of the separated product, the transition function is only defined on a state
x and letter a ∈ Σ if x# a. In Example 4.10 below, we describe the bounded FIFO as a
separated automaton, and describe its accepted language.

First, we show how the language semantics of separated nominal automata extends to a
language over all words, provided that both the input alphabet Σ and the output alphabet
O are Sb-sets.

I Definition 4.5. Let Σ and O be nominal Sb-sets. An Sb-equivariant function L : Σ∗ → O

is called an Sb-language.

Notice the difference between an Sb-language L : Σ∗ → O and a Pm-language L′ : (UΣ)∗ →
U(O). They are both functions from Σ∗ to O, but the latter is only Pm-equivariant, while the
former satisfies the stronger property of Sb-equivariance. Languages over separated words,
and Sb-languages, are connected as follows.

CSL 2020



31:12 Separation and Renaming in Nominal Sets

I Proposition 4.6. Suppose Σ, O are both nominal Sb-sets, and suppose dim(Σ) ≤ 1. There
is a one-to-one correspondence

S : (UΣ)(∗) → UO Pm-equivariant
S : Σ∗ → O Sb-equivariant

between separated languages and Sb-nominal languages. From S to S, this is given by
application of the forgetful functor and restricting to the subset of separated words.

For the converse direction, given w = a1 . . . an ∈ Σ∗, let b1, . . . , bn ∈ Σ such that w# bi
for all i, and bi # bj for all i, j with i 6= j. Define m ∈ Sb by

m(a) =
{
ai if a = bi for some i
a otherwise

Then S(a1a2a3 · · · an) = m · S(b1b2b3 · · · bn).

Proof. There is the following chain of one-to-one correspondences, from the results of the
previous section:

(UΣ)(∗) → UO
by Theorem 3.6

F (UΣ)(∗) → O
by Corollary 3.8

(FUΣ)∗ → O
by Proposition 3.9Σ∗ → O

J

Thus, every separated automaton over U(Σ), U(O) gives rise to an Sb-language S, corres-
ponding to the language S accepted by the automaton.

Any nominal automaton A restricts to a separated automaton, formally described in
Definition 4.7. It turns out that if the (Pm)-language accepted by A is actually an Sb-
language, then the restricted automaton already represents this language, as the extension S
of the associated separated language S (Proposition 4.8). Hence, in such a case, the restricted
separated automaton suffices to describe the language of A.

I Definition 4.7. Let i : Q ∗U(Σ) ↪→ Q × U(Σ) be the natural inclusion map. A nominal
automaton A = (Q, δ, o, q0) induces a separated automaton A∗, by setting A∗ = (Q, δ◦i, o, q0).

I Proposition 4.8. Suppose Σ, O are both Sb-sets, and suppose dim(Σ) ≤ 1. Let L : (UΣ)∗ →
UO be the Pm-nominal language accepted by a nominal automaton A, and suppose L is
Sb-equivariant. Let S be the separated language accepted by A∗. Then L = U(S).

Proof. It follows from the one-to-one correspondence in Proposition 4.6: on the bottom
there are two languages (L and U(S)), while there is only the restriction of L on the top.
We conclude that L = U(S). J

As we will see in Example 4.10, separated automata allow us to represent Sb-languages in
a smaller way than nominal automata. Given a nominal automaton A, a smaller separated
automaton can be obtained by computing the reachable part of the restriction A∗. The
reachable part is defined similarly (but only where δ is defined) and also denoted by R(A∗).

I Lemma 4.9. For any nominal automaton A, we have R(A∗) ⊆ R(A).

The converse inclusion of the above proposition does certainly not hold, as shown by the
following example.
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I Example 4.10. Let A be the automaton modelling a bounded FIFO queue (for some n),
from Example 4.3. The Pm-nominal language L accepted by A is Sb-equivariant: it is closed
under application of arbitrary substitutions.

The separated automaton A∗ is given simply by restricting the transition function to
Q ∗Σ, i.e., a Put(a)-transition from a state w ∈ Q exists only if a does not occur in w. The
separated language S accepted by this new automaton is the restriction of the nominal
language of A to separated words. By Proposition 4.8, we have L = U(S). Hence, the
separated automaton A∗ represents L, essentially by closing the associated separated language
S under all substitutions.

The reachable part of A∗ is given by

RA∗ = A(≤n) ∪ {⊥} .

Clearly, restricting A∗ to the reachable part does not affect the accepted language. However,
while the original state space Q has exponentially many orbits in n, RA∗ has only n + 2
orbits! Thus, taking the reachable part of RA∗ yields a separated automaton which represents
the FIFO language L in a much smaller way than the original automaton.

4.1 Separated automata: coalgebraic perspective
Nominal automata and separated automata can be presented as coalgebras on the category
of Pm-nominal sets. In this section we revisit the above results from this perspective, and
generalise from (equivariant) languages to finitely supported languages. In particular, we
retrieve the extension from separated languages to Sb-languages, by establishing Sb-languages
as a final separated automaton. The latter result follows by instantiating a well-known
technique for lifting adjunctions to categories of coalgebras, using the results of Section 3.
We assume familiarity with the theory of coalgebras, see, e.g., [14, 25].

I Definition 4.11. Let M be a submonoid of Sb, and let Σ, O be nominal M -sets, referred to
as the input and output alphabet respectively. Define the functor BM : M -Nom→M -Nom
by BM (X) = O × (Σ→M

fs X). An (M)-nominal (Moore) automaton is a BM -coalgebra.

A BM -coalgebra can be presented as a nominal set Q together with the pairing

〈o, δ[〉 : Q→ O × (Σ→M
fs Q)

of an equivariant output function o : Q→ O, and (the transpose of) an equivariant transition
function δ : Q×Σ→ Q. In case M = Pm, this coincides with the automata of Definition 4.2,
omitting initial states. The language semantics is generalised accordingly, as follows. Given
such a BM -coalgebra (Q, 〈o, δ[〉), the language semantics l : Q× Σ∗ → O is given by

l(x, ε) = o(x) , l(x, aw) = l(δ(x, a), w) (4)

for all x ∈ S, a ∈ Σ and w ∈ Σ∗.

I Proposition 4.12. Let M be a submonoid of Sb, let Σ, O be nominal M -sets. The nominal
M-set Σ∗ →M

fs O extends to a final BM -coalgebra (Σ∗ →M
fs O, ζ), such that the unique

homomorphism from a given BM -coalgebra is the transpose l[ of the language semantics (4).

A separated automaton (Definition 4.4, without initial states) corresponds to a coalgebra
for the functor B∗ : Pm-Nom→ Pm-Nom given by B∗(X) = O × (Σ −∗ X). The separated
language semantics arises by finality.

CSL 2020
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I Proposition 4.13. The set Σ(∗) −∗ O is the carrier of a final B∗-coalgebra, such that the
unique coalgebra homomorphism from a given B∗-coalgebra (Q, 〈o, δ〉) is the transpose s[ of
the separated language semantics s : Q ∗Σ(∗) → O (Definition 4.4).

Next, we provide an alternative description of the final B∗-coalgebra which assigns Sb-
nominal languages to states of separated nominal automata. The essence is to obtain a final
B∗-coalgebra from the final BSb-coalgebra. In order to prove this, we use a technique to lift
adjunctions to categories of coalgebras. This technique occurs regularly in the coalgebraic
study of automata [15, 17, 16].

I Theorem 4.14. Let Σ be a Pm-set, and O an Sb-set. Define B∗ and BSb accordingly, as
B∗(X) = UO × (Σ −∗ X) and BSb(X) = O × (FΣ→Sb

fs X). There is an adjunction

CoAlg(B∗)
F

,,
⊥ CoAlg(BSb)

U

ll

where F and U coincide with F and U respectively on carriers.

Proof. There is a natural isomorphism λ : B∗U ⇒ UBSb given by

λ : UO × (Σ −∗ UX) id×φ−−−→ UO × U(FΣ→Sb
fs X)

∼=−→ U(O × (FΣ→Sb
fs X)) ,

where φ is the isomorphism from Theorem 3.13 and the isomorphism on the right comes from
U being a right adjoint. The result now follows from Theorem 2.14 in [12]. In particular,
U(X, γ) = (UX, λ−1 ◦ U(γ)). J

Since right adjoints preserve limits, and final objects in particular, we obtain the following,
giving semantics of separated automata through finality.

I Corollary 4.15. Let ((FΣ)∗ →Sb
fs O, ζ) be the final BSb-coalgebra (Proposition 4.12). Then

the B∗-coalgebra U(Σ∗ →Sb
fs O, ζ) is final and carried by the set (FΣ)∗ →Sb

fs O of Sb-nominal
languages.

5 Relation to (pre)sheaf categories

Fiore and Turi described a similar adjunction between certain presheaf categories [7]. However,
Staton describes in his thesis that the usage of presheaves allows for many degenerate models
and one should look at sheaves instead [29]. The category of sheaves is equivalent to the
category of nominal sets. We will describe these equivalences in this section.

Let us define the index categories I and F. Both categories have finite subsets C ⊂ A
as objects. The morphisms in I are all injective functions between those sets, and for F
we take all functions. The presheaves Fiore and Turi considered are SetI and SetF. The
interpretation of an object X ∈ SetI is that X(C) is the set of elements supported by C.
Although very similar to nominal sets, the categories are not equivalent. The inclusion I ⊆ F
induces a forgetful functor SetF → SetI. It has a left adjoint, which can be defined by a Kan
extension [7].

The subcategory of functors I→ Set which preserve pullbacks is a sheaf category Sh(I).5
(For the precise sheaf conditions, see Staton’s thesis [29].) The category Sh(I) is equivalent
to Nom. Similarly, there is a sheaf category Sh(F) ⊆ SetF and Staton has shown that the
adjunction SetI � SetF restricts to an adjunction Sh(I)� Sh(F).

5 We use the notation from [29], since we only deal with covariant functors here.
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How does this compare to the adjunction described in this paper? Staton defines a
category of nominal sets with a substitution operator, defined by certain axioms. This fits
in the theory of universal algebra on nominal sets, as described by Kurz and Petris,an [18].
This category NomSub is equivalent to Sh(F), and most likely equivalent to Sb-Nom as
defined here. These equivalences then give an abstract way of defining the adjunction from
Theorem 3.6. Together with the fact that the separated product is a Day convolution (this
fact is hinted at in [5] and [21]), one might obtain Theorem 3.7 from abstract reasoning alone
(using the fact that both the left adjoint and the separated product are left Kan extensions).
Nevertheless, we think that the explicit constructions and proofs given in this paper are
useful, as they provide a concrete interpretation of the abstract concepts.

6 Related and future work

An interesting line of research is the generalisation to other symmetries by Bojańczyk et al. [3].
In particular, the total order symmetry is relevant, since it allows one to compare elements
on their order, as often used in data words. In this case the symmetries are given by the
group of all monotone bijections. Many results of nominal sets generalise to this symmetry.
For monotone substitutions, however, the situation seems more subtle. For example, we note
that a substitution which maps two values to the same value actually maps all the values
in between to that value. Whether the adjunction from Theorem 3.6 generalises to other
symmetries is left as future work.

This research was motivated by learning register automata. If we know a register
automaton recognises an Sb-language, then we are better off learning a separated automaton
instead of a nominal automaton. From the Sb-semantics of separated automata, it follows
that we have a Myhill-Nerode theorem, which means that learning is feasible. We expect
that this can be useful, since we can achieve an exponential reduction this way.

Bojańczyk et al. prove that nominal automata are equivalent to register automata in
terms of expressiveness [3]. However, when translating from register automata with n states
to nominal automata, we may get exponentially many orbits. This happens for instance
in the FIFO automaton (Example 4.3). We have shown that the exponential blow-up is
avoidable by using separated automata, for this example and in general for Sb-equivariant
languages. Such languages come from register automata which manipulate data but where
do control flow does not depend on comparisons. This typically occurs in data structures.

An important open problem is whether the latter requirement can be relaxed, by adding
separated transitions only locally in a nominal automaton. A possible step in this direction is
to consider the monad T = UF on Pm-Nom and incorporate it in the automaton model. We
believe that this is the hypothesised “substitution monad” from [20]. The monad is monoidal
(sending separated products to Cartesian products) and if X is an orbit-finite nominal set,
then so is T (X). This means that we can consider nominal T -automata and we can perhaps
determinise them using coalgebraic methods [27].
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Abstract
Recently, five quasi-polynomial-time algorithms solving parity games were proposed. We elaborate
on one of the algorithms, by Lehtinen (2018).

Czerwiński et al. (2019) observe that four of the algorithms can be expressed as constructions of
separating automata (of quasi-polynomial size), that is, automata that accept all plays decisively
won by one of the players, and rejecting all plays decisively won by the other player. The separating
automata corresponding to three of the algorithms are deterministic, and it is clear that deterministic
separating automata can be used to solve parity games. The separating automaton corresponding
to the algorithm of Lehtinen is nondeterministic, though. While this particular automaton can be
used to solve parity games, this is not true for every nondeterministic separating automaton. As a
first (more conceptual) contribution, we specify when a nondeterministic separating automaton can
be used to solve parity games.

We also repeat the correctness proof of the Lehtinen’s algorithm, using separating automata. In
this part, we prove that her construction actually leads to a faster algorithm than originally claimed
in her paper: its complexity is nO(log n) rather than nO(log d·log n) (where n is the number of nodes,
and d the number of priorities of a considered parity game), which is similar to complexities of the
other quasi-polynomial-time algorithms.
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1 Introduction

Parity games have played a fundamental role in automata theory, logic, and their applications
to verification and synthesis since early 1990’s. The algorithmic problem of finding the winner
in parity games can be seen as the algorithmic backend to problems in automated verification
and controller synthesis. It is polynomial-time equivalent to the emptiness problem for
nondeterministic automata on infinite trees with parity acceptance conditions, and to the
model-checking problem for modal µ-calculus [12]. Also, decision problems like validity or
satisfiability for modal logics can be reduced to parity game solving. Moreover, it lies at the
heart of algorithmic solutions to the Church’s synthesis problem [28]. The impact of parity
games reaches relatively far areas of computer science, like Markov decision processes [13]
and linear programming [16].

The problem of solving parity games has interesting complexity-theoretic status. It is a
long-standing open question whether parity games can be solved in polynomial-time. Several
results show that they belong to some classes “slightly above” polynomial time. Namely,
deciding the winner of parity games was shown to be in NP∩coNP [12], and in UP∩coUP [20],
while computing winning strategies is in PLS, PPAD, and even in their subclass CLS [10]. The
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same holds for other kinds of games: mean-payoff games [33], discounted games, and simple
stochastic games [8]; parity games, however, are the easiest among them, in the sense that
there are polynomial-time reductions from parity games to the other kinds of games [20, 33],
but no reductions in the opposite direction are known.

For almost three decades researchers were trying to cutback the complexity of solving
parity games, which resulted in a series of algorithms, all of which were either exponential [32,
5, 30, 21, 31, 29, 1], or mildly subexponential [3, 23]. The next era came unexpectedly in
2017 with a breakthrough result of Calude, Jain, Khoussainov, Li, and Stephan [6] (see
also [17, 24]), who designed an algorithm working in quasi-polynomial time (QPT for short).
This invoked a series of QPT algorithms, which appeared soon after [22, 14, 25, 27].

Four of the QPT algorithms [6, 22, 14, 25], at first glance being quite different, actually
proceed along a similar line – as observed by Bojańczyk and Czerwiński [4, Section 3] and
Czerwiński et al. [9]. Namely, out of all the four algorithms one can extract a construction of
a PG separator, that is, a safety automaton (nondeterministic in the case of Lehtinen [25],
and deterministic in the other algorithms), which accepts all words encoding plays that are
decisively won by one of the players (more precisely: plays consistent with some positional
winning strategy), and rejects all words encoding plays in which the player loses (for plays
that are won by the player, but not decisively, the automaton can behave arbitrarily). The
PG separator does not depend at all on the game graph; it depends only on its size. Having
a PG separator, it is not difficult to convert the original parity game into an equivalent
safety game (by taking a “product” of the parity game and the PG separator), which can
be solved easily – and all the four algorithms actually proceed this way, even if it is not
stated explicitly that a PG separator is constructed. As shown in Czerwiński et al. [9] (see
also Colcombet and Fijalkow [7] for another view on this proof), all PG separators have to
look very similar: their states have to be leaves of some so-called universal tree; particular
papers propose different constructions of these trees, and of the resulting PG separators (of
quasi-polynomial size). Moreover, Czerwiński et al. [9] show a quasi-polynomial lower bound
for the size of a PG separator. Let us also mention that, beside of the four algorithms, there
is a fifth QPT algorithm [27] obtained by speeding up the Zielonka’s recursive algorithm [32];
this algorithm does not fit into the separator approach of Czerwiński et al. [9].

Of course the idea of converting a parity game into an equivalent safety game is itself much
older than QPT algorithms for parity games (see e.g. Bernet, Janin, and Walukiewicz [2]),
and was applied not only to finite games, but also to pushdown and collapsible pushdown
games [15, 18].

In this paper we deliberate on the Lehtinen’s algorithm [25]. As already said, PG
separators corresponding to the other algorithms [6, 22, 14] are deterministic; in such a
situation it is straightforward that the product game (obtained from an original parity game
and the PG separator) is equivalent to the original game (see, e.g., [9, Proposition 3.2]). The
PG separator corresponding to the Lehtinen’s algorithm [25] is nondeterministic, though,
and in general while taking a product of a game with a nondeterministic automaton we do
not obtain an equivalent game. Actually, a notion of good-for-games (GFG) automata was
introduced [19]; this is a subclass of nondeterministic automata for which it is guaranteed
that the product game remains equivalent. But one can see that the Lehtinen’s separator
is not GFG; in consequence, the fact that the Lehtinen’s algorithm actually works is quite
intriguing. As a first contribution we explain this phenomenon. Namely, we define a notion
of suitable-for-parity-games (SFPG) separators, which is more comprehensive that the GFG
notion (but, unlike GFG, applies only to parity games, not to arbitrary games), and which
covers the Lehtinen’s separator. We then prove that the winner does not change while taking
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a product of a parity game with an arbitrary SFPG separator, which means that every SFPG
separator can be used to solve parity games. In this way, we establish a framework for solving
parity games via nondeterministic PG separators.

As a second contribution, we improve the complexity of the Lehtinen’s algorithm. Let us
recall that the algorithm converts the original parity game with n nodes and d priorities into
a parity game with nO(log d) nodes and O(logn) priorities (which is actually a product of the
original game and of an appropriate SFPG separator). Once the new game is created, it has
to be solved, say by the small progress measures algorithm [21], which is exponential in the
number of priorities: the resulting complexity is nO(log d·logn).1 We observe here that the
resulting parity game is of a special form – it is possible to win the game without seeing n
opponent’s priorities in a row – and in consequence it can be solved faster: in time nO(logn).
This locates the complexity of the Lehtinen’s algorithm much closer to the complexity of the
other QPT algorithms [6, 22, 14, 27], which is nO(log d) (being the same for d close to n, but
better for games with a small number of priorities).

Our paper is structured as follows. In Section 2 we give all necessary definitions. In
Section 3 we define SFPG separators, and we prove that they can be used to solve parity
games. In Section 4 we recall the Lehtinen’s separator, and we prove that the product game
is of a special form. In Section 5 we prove that this product game can be solved quickly.

2 Preliminaries

Parity Games. Parity games are played on game graphs of the form G = (V, V�, V4, vI , E),
where V is a set of nodes, (V�, V4) is a partition of V (which satisfies V� ∪ V4 = V and
V� ∩ V4 = ∅), vI ∈ V is a starting node, and E ⊆ V × {1, 2, . . . , d} × V is a set of directed
edges labeled by numbers called priorities. Typically, we assume that V = {1, 2, . . . , n} for
some natural number n. We use d to denote an upper bound for priorities of edges. Without
loss of generality, we assume that every node has at least one outgoing edge.

The game is played by two players who are called Even and Odd. A play starts at the
starting node vI and then the players move by following outgoing edges forever, thus forming
an infinite path. Every node of the graph is owned by one of the two players: nodes from V�
and V4 belong to Even and Odd, respectively. It is always the owner of the node who moves
by following an outgoing edge from the current node to a next one.

The outcome of the two players interacting in a parity game by making moves is an
infinite path in the game graph. We identify such infinite paths with sequences of edges
constituting these paths; thus an infinite path is an infinite word over the alphabet Σn,d =
{1, 2, . . . , n} × {1, 2, . . . , d} × {1, 2, . . . , n} ⊇ E. The set of all infinite words over Σn,d is
denoted Σωn,d.

We write LimsupEvenn,d for the set of infinite words w ∈ Σω
n,d in which the largest

number that occurs infinitely many times in the priority component of the letters is even, and
we write LimsupOddn,d for the set of infinite words w ∈ Σωn,d in which that number is odd.
Observe that the sets LimsupEvenn,d and LimsupOddn,d form a partition of the set Σωn,d of
all infinite words over the alphabet Σn,d. An infinite path in a game graph with n nodes and
edge priorities not exceeding d is won by Even if and only if the play is in LimsupEvenn,d.

A positional strategy for Even is a set of edges that go out of nodes she owns – exactly
one such edge for each of her nodes. Even uses such a strategy by always – if the current

1 A better complexity can be obtained by using one of the other QPT algorithms to solve the resulting
game.
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node is owned by her – following the unique outgoing edge that is in the strategy. Note that
when Even uses a positional strategy, her moves depend only on the current node – they
are oblivious to what choices were made by the players so far. If Even wins the game by
following such a strategy, no matter what edges her opponent Odd follows whenever it is
her turn to move, then such a strategy is called winning. Analogously we define a positional
(winning) strategy for Odd. A basic result for parity games that has notable implications
is their positional determinacy [11, 26]: exactly one of the players has a positional winning
strategy.

The strategy subgraph of a game graph G with respect to a positional strategy for Even is
the subgraph of G that includes all outgoing edges from nodes owned by Odd and exactly
those outgoing edges from nodes owned by Even that are in the positional strategy. Observe
that the set of plays that arise from Even playing her positional strategy is exactly the set of
all plays in the strategy subgraph.

Let PosEvenn,d and PosOddn,d be the sets of all plays that arise from positional winning
strategies for Even and Odd, respectively, in some game graph with n nodes and priorities
up to d. Clearly PosEvenn,d ⊆ LimsupEvenn,d and PosOddn,d ⊆ LimsupOddn,d. The
difference between PosEvenn,d and LimsupEvenn,d is not only in words that are not valid
paths (where the target of some edge does not match the source of the next edge); in
LimsupEvenn,d \ PosEvenn,d we have for example the path ((1, 2, 1)(1, 1, 2)(2, 2, 2)(2, 1, 1))ω
(if this path follows a positional strategy for Even in some game graph, then ((1, 1, 2)(2, 1, 1))ω
follows such a strategy as well, but the latter path is won by Odd).

Parity and Safety Automata. We consider here only automata reading plays of parity
games, so we assume that the input alphabet is Σn,d for some n and d. We use d′ to
denote an upper bound for priorities emitted by parity automata. A non-deterministic parity
automaton is a tuple A = (Q, sI ,∆), where Q is a finite set of states, sI ∈ Q is an initial state,
and ∆ ⊆ Q×Σn,d × {1, 2, . . . , d′} ×Q is a transition relation. Without loss of generality, we
assume that the transition relation is total, that is, for every state s and letter e, there is
some priority p and some state s′, such that the tuple (s, e, p, s′) is in the transition relation.

Such a parity automaton can be seen as a directed graph, where (s, e, p, s′) ∈ ∆ is an
edge labeled by a letter e and by a priority p. An infinite path in this graph, starting in the
initial state, is called a run of A. The word read by such a run (being a word over Σn,d) is
obtained by projecting every edge of the run to its second component. A run is accepting
if the largest priority that labels infinitely many edges of the run is even. If an accepting
run reading a word w exists, we say that w is accepted, and we write L(A) for the set of all
words accepted by A.

A parity automaton is called a safety automaton if d′ = 2, and there is a set of rejecting
states such that

if (s, e, 1, s′) ∈ ∆, then s′ is rejecting, and
if s is rejecting then all transitions (s, e, p, s′) ∈ ∆ are such that p = 1 and s′ is rejecting.

We notice that a run of a safety automaton is accepting if it does not visit rejecting states.

3 Product Games and SFPG Separators

We first recall the notion of product games and separators considered in Czerwiński et al. [9].

I Definition 3.1. Given a game graph G = (V, V�, V4, vI , E) with at most n nodes and
priorities up to d, and a parity automaton A = (Q, sI ,∆) with input alphabet Σn,d, we define
a game graph G×A, called a synchronized product of G and A, in which
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the set of nodes is (V ∪ E)×Q, and the starting node is (vI , sI);
ownership of nodes in V ×Q is inherited from the parity game G, and all nodes in E×Q
belong to Even;
for every edge e = (u, p, v) ∈ E and every state s ∈ Q, there is an edge ((u, s), 1, (e, s));
for every edge e = (u, p, v) ∈ E and every transition (s, e, p′, s′) ∈ ∆, there is an edge
((e, s), p′, (v, s′));
there are no other edges except those specified above.

In other words, the players of G×A play in the parity game G, and the automaton A is
fed the edges corresponding to moves made by the players. After every move in G, Even
resolves non-deterministic choices in A. In order to win in G×A, Even has to ensure that
the run of A reading the play from G is accepting.

It is easy to see that if A is deterministic, and L(A) equals LimsupEvenn,d (i.e., the
winning condition in G), then the games G and G×A have the same winner. The crux of
the QPT algorithms is that instead of an automaton recognizing LimsupEvenn,d, we can use
a PG separator.

I Definition 3.2. Let A be a parity automaton with input alphabet Σn,d. We say that A is a
parity games separator (PG separator) if it accepts all words from PosEvenn,d, and rejects
all words from PosOddn,d. If it additionally rejects all words from LimsupOddn,d, it is a
strong PG separator.

While for solving parity games (i.e., for the equivalence between G and G×A described
below) it is enough to have a PG separator, the separators corresponding to the QPT
algorithms [6, 22, 14, 25] are actually strong PG separators (cf. [9, Section 4]).

If A is a PG separator, and Odd can win in G, then she can also win in G×A: she can
ensure that the play from G belongs to PosOddn,d, and such a play is rejected by A. The
same holds for Even, assuming that A is deterministic. If A is nondeterministic, however, it
is possible that Even wins in G but Odd wins in G×A. Indeed, if Even wins in G, she can
only ensure that the resulting play is accepted by A. But in G×A her task is more difficult:
she has to resolve nondeterministic choices of A as they arise, without knowing the whole
play from G. The abilities of Even are described by transition strategies.

IDefinition 3.3. A transition strategy for an automaton A is a function σ : Σ∗n,d×Q×Σn,d →
∆ such that σ(w, s, e) is of the form (s, e, p, s′) for all (w, s, e) ∈ Σ∗n,d ×Q× Σn,d. We use
such a strategy to resolve non-deterministic choices: if the word read so far is w, the state
of A is s, and the next letter to be read is e, then we proceed using the transition f(w, s, e).
We say that a transition strategy σ is winning for a set of words L ⊆ L(A) if for every word
w ∈ L, the run obtained by following σ while reading the word w is accepting.

Henzinger and Piterman [19] proposed a notion of good-for-games automata: an automa-
ton A is good for games (GFG) if in A there exists a transition strategy that is winning for
L(A). If A is GFG, then Even can use a winning strategy from G and a transition strategy
winning for L(A) to win in G×A. We observe, though, that it is not a problem for Even to
have a transition strategy that depends on G, and on her winning strategy in G. This way
we come to a more comprehensive definition of SFPG separators.

I Definition 3.4. A PG separator A with input alphabet Σn,d is suitable for parity games
(SFPG) if for every game graph G with n nodes and priorities up to d, and for every
positional winning strategy τ for Even in G, the automaton A has a transition strategy σ
winning for the set of all plays in G that arise from τ .

CSL 2020



32:6 Parity Games: Another View on Lehtinen’s Algorithm

Notice that every deterministic automaton A is good for games: the transition strategy
that in every situation chooses the only available transition allows to accept all words from
L(A). Moreover, every good-for-games PG separator A is SFPG: for every G and τ as
in Definition 3.4, all plays in G that arise from τ are accepted by A (because A is a PG
separator), and thus the transition strategy that is winning for the whole L(A) (existing
because A is GFG) can be used for the set of these plays. In the next section we present the
PG separator corresponding to Lehtinen’s algorithm; it is neither deterministic nor good for
games, but it is SFPG.

We now prove that by producting a parity game with an SFPG separator, we obtain an
equivalent game.

I Theorem 3.5. If G is a game graph with n nodes and priorities up to d, and A is an
SFPG separator with input alphabet Σn,d, then Even has a winning strategy in G if and only
if she has a winning strategy in the synchronized product G×A.

Proof. Suppose first that Even has a winning strategy in G. Then, by positional determinacy,
she also has a positional winning strategy τ in G. Because the separator A is SFPG, it
has a transition strategy σ that is winning for the set of all plays in G that arise from τ .
Using τ and σ we define an Even’s strategy in G × A: she plays according to τ in the G
component, and according to σ in the A component. An infinite play of G ×A following
this strategy is a pair: a play w in G following τ , and a run ρ of A reading w and following
σ. By assumption on σ, because w is a play in G that arises from τ , we obtain that ρ is
accepting. This implies that the considered play of G × A is won by Even, and thus the
considered strategy is winning for Even.

Next, suppose that Even does not have a winning strategy in G. Then, by positional
determinacy, Odd has a positional winning strategy τ in G. This strategy can be also used
in G ×A, as Odd takes decisions only in the G part of G ×A. Consider a play of G ×A
following this strategy; it consists of a play w in G following τ , and of a run ρ of A reading w.
Because τ is a positional winning strategy for Odd, we have w ∈ PosOddn,d, hence, because
the PG separator A rejects all words from PosOddn,d, the run ρ is rejecting; the play is won
by Odd. This implies that Even does not have a winning strategy in G×A. J

Notice that the product game G × A is larger, but potentially simpler, than G. For
example, if A is a safety automaton, out of a parity game we obtain a safety game; the latter
can be solved in linear time.

We remark that Colcombet and Fijalkow in their recent work [7] define a similar notion
of good-for-small-games automata: an automaton A is good for (n, d)-parity games if it
satisfies our Theorem 3.5, that is, if for every game graph G with n nodes and priorities up
to d, the games G and G×A are equivalent. Such a definition is purely semantical; it does
not give any hint which automata are indeed good for (n, d)-parity games. Our definition of
SFPG separators is more concrete: it specifies particular conditions on an automaton (what
it should accept / reject, and in which way). In Theorem 3.5 we then prove that every SFPG
separator can be indeed used to solve parity games (i.e., that it is good for (n, d)-parity
games, in the terminology of Colcombet and Fijalkow).

4 Register Automata

In this section we express Lehtinen’s construction [25] as an SFPG separator Rn,d. Recall
that out of a parity game G she constructs an equivalent parity game, which is essentially
G×Rn,d.
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The idea of the construction is to store some recently visited priorities in some number of
registers. Let us denote rn(n) = 1 + blog2 nc; this is the number of registers needed to solve
games with n nodes. In Lehtinen’s work, rn(n) is called a register index.2

For all positive numbers n and d, such that d is even, we define a non-deterministic parity
automaton Rn,d in the following way.

The set of states of Rn,d is the set of non-increasing rn(n)-sequences 〈rrn(n), . . . , r2, r1〉
of “registers” that hold numbers in {1, 2, . . . , d}. The initial state is 〈1, 1, . . . , 1〉.
For every state s = 〈rrn(n), . . . , r2, r1〉 and letter e = (u, p, v) ∈ Σn,d, we define the update
of s by e to be the state 〈rrn(n), . . . , rk+1, p, . . . , p〉, where k is the greatest index such
that r1, . . . , rk < p.
For every state s = 〈rrn(n), . . . , r2, r1〉 and for every k, 1 ≤ k ≤ rn(n), we define the
k-reset of s to be the state 〈rrn(n), . . . , rk+1, rk−1, . . . , r2, 1〉. We say that this k-reset is
even (odd) if rk is even (odd, respectively).
For every state s and letter e ∈ Σn,d, if s′ is the update of s by e, then in the transition
relation there is a transition (s, e, 1, s′), called a non-reset transition.
For every state s, letter e ∈ Σn,d, and for every k, 1 ≤ k ≤ rn(n), if s′ is the update of s
by e, and s′′ is the even k-reset of s′, then in the transition relation there is a transition
(s, e, 2k, s′′), called an even reset of register k.
For every state s, letter e ∈ Σn,d, and for every k, 1 ≤ k ≤ rn(n), if s′ is the update of s
by e, and s′′ is the odd k-reset of s′, then in the transition relation there is a transition
(s, e, 2k + 1, s′′), called an odd reset of register k.
There are no other transitions in Rn,d except those specified above.

In Theorem 4.2 we prove that Rn,d is indeed an SFPG separator. Moreover, we prove
that its runs are of a special form, as specified by Definition 4.1; this is useful in Section 5,
where we argue that the product game G×Rn,d can be solved faster than an arbitrary parity
game.

I Definition 4.1. Let ρ be a run of a parity automaton. We define bad(ρ) to be the greatest
number m such that in ρ there is an infix containing m transitions emitting some odd priority
p and no transitions emitting higher priority.

I Theorem 4.2. The automaton Rn,d is a strong SFPG separator. Moreover, for every game
graph G with n nodes and priorities up to d, for every Even’s positional winning strategy τ in
G, and for every run ρ of Rn,d that follows the transition strategy existing by Definition 3.4
and that reads a play in G arising from τ , it holds that bad(ρ) ≤ n− 1.

We now prove Theorem 4.2. We start with the easier part, saying that A rejects all
words from LimsupOddn,d. Consider thus a word w ∈ LimsupOddn,d, and a run ρ of Rn,d
reading this word. If from some moment there are no more resets in this run, then indeed ρ
is rejecting. Otherwise, consider the greatest (odd) priority p occurring in w infinitely often,
and consider the greatest index k such that there are infinitely many resets of register k in ρ.
From some moment on, in ρ no priority higher than p is read, and there is no reset of any
register l > k. A little bit later, after k resets of register k, the value of register k is at most
p for the rest of the run. Then, infinitely many times the priority p is read, it is stored to
register k, never overwritten by anything larger, and then reset. This means that there are
infinitely many odd resets of register k, emitting priority 2k + 1, while no higher priorities
are emitted (except in the finite prefix that we have skipped). In consequence, ρ is rejecting.

2 While there exist games with n nodes that can be solved using less registers (i.e., games with a smaller
register index), 1 + blog2 nc is the upper bound.
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Figure 1 An example of a strategy subgraph, together with the corresponding game tree. Dashed
circles depict nodes of the game tree: the largest circle is the root (3, S), inside it we have two
children (2, S1), (2, S2), ordered left to right, and so on; additionally, every node x of the graph also
constitutes a node (0, {x}) (i.e., a leaf) of the game tree. Notice that edges with odd priorities can
only go right. This is a strategy subgraph, so nodes belonging originally to Even have here only a
single successor.

For the remaining part of the proof, fix a game graph G, and an Even’s positional winning
strategy τ . Let Gτ be the strategy subgraph of G with respect to τ , and let Vτ be the set
of those nodes of Gτ that are reachable from the starting node. For a priority p, and for
S ⊆ Vτ , let GS,p be the subgraph of Gτ that contains only nodes that belong to S and only
edges of priority not larger than p.

We now define a game tree of Gτ in a top-down fashion. The root of this tree is (dd/2e, Vτ ).
Let now (k, S) be an (already defined) node of this tree such that k ≥ 1, and let S1, S2, . . . , Sm
be (the sets of nodes of) all the strongly connected components of GS,2k−1. We assume that
S1, S2, . . . , Sm are sorted topologically, that is, that in GS,2k−1 there are no edges to Si from
Sj when i < j (if there are multiple such orders of S1, S2, . . . , Sm, we fix one of them). In
such a case, (k − 1, S1), (k − 1, S2), . . . , (k − 1, Sm) are children of (k, S), in this order. An
example of a game tree is presented in Figure 1.

Notice that if Si is a strongly connected component of GS,2k−1, then it does not contain
edges of priority 2k−1. Indeed, if such an edge existed inside a strongly connected component,
there would be a cycle in GS,2k−1 (i.e., in Gτ ) on which the maximal priority would be 2k− 1
(odd); by reaching such a cycle (recall that S ⊆ Vτ contains only nodes reachable in Gτ from
the starting node) and repeating it forever, we would obtain a play won by Odd, while all
plays in Gτ are, by assumption, won by Even. It follows that Si is actually also a strongly
connected component of GS,2k−2. In other words, GSi,2k−2 = GSi,2k−1.

For a node (k, S) of the game tree, and for l < k, let fstl(S) = S′ for (l, S′) being the
leftmost descendant of (k, S) located on level l.

The following lemma states our thesis in a form suitable for induction. It uses a notion
of a partial run, which is defined like a run, but it needs not to start in the initial state, and
it needs not to be infinite.

I Lemma 4.3. Let (k, S) be a node of the game tree of Gτ , let s be a state of Rn,d, and let
ξ be a nonempty (finite or infinite) path in GS,2k starting in a node v. Assume that if an odd
number 2l + 1 (where l ≥ 1) is contained in some of the registers 1, 2, . . . , rn(|S|) of s, then
l < k and v 6∈ fstl(S). Under these assumptions, there exists a partial run ρ from s reading
ξ, such that
1. in ρ there are no resets of registers above rn(|S|),
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2. if the register rn(|S|) in s contains an even number not smaller than 2k, then in ρ there
are no odd resets of the register rn(|S|),

3. bad(ρ) ≤ |S| − 1, and
4. ρ follows a transition strategy (that may depend on G, τ, k, S, s): in every step, the non-

determinism is resolved basing only on the prefix of ξ read so far and on the next edge of
ξ that should be read.

In order to finish the proof of Theorem 4.2, we simply use Lemma 4.3 for (k, S) =
(dd/2e, Vτ ), and for s = 〈1, 1, . . . , 1〉 (i.e., for the initial state of Rn,d). Indeed, every play
w in G that arises from the strategy τ is a path in GVτ ,2dd/2e; thus the lemma gives is a
run ρ reading w. By Point 3, bad(ρ) is finite, which implies that ρ is accepting. Because
this holds for all G and τ , and because A rejects all words from LimsupOddn,d (as shown at
the beginning), we already know that A is a strong PG separator. Point 4 says that ρ is
constructed following a transition strategy, so A is SFPG. The condition bad(ρ) ≤ |Vτ | − 1
from Point 3 gives us the second part of the theorem’s statement.

Proof of Lemma 4.3. We proceed by induction on k. If k = 0, then there is no nonempty
path ξ in GS,2k (this graph has no edges), so the lemma trivially holds.

For the rest of the proof, suppose that k ≥ 1. Let (k − 1, S1), . . . , (k − 1, Sm) be the
children of (k, S). By definition, S1, . . . , Sm form a division of S. Obviously |Si| ≤ |S|, so
rn(|Si|) ≤ rn(|S|), for all i ∈ {1, . . . ,m}.

Notice first that no matter how ρ is constructed, none of its last rn(|S|) registers contains
an odd number greater than 2k, in all states of ρ – call this property (♠). This holds because
the condition is satisfied in the first state s of ρ, and then only edges of priority up to 2k are
read.

We construct a run ρ reading ξ by repeating the following steps:
in the remaining part of ξ, let ξ′ be the maximal prefix that stays in GSi,2k−1 (i.e., in
GSi,2k−2) for some i (possibly |ξ′| = 0, i.e., already the first edge leaves GSi,2k−1);
if i ≥ 2, then

let j1 < j2 < · · · < jr be the numbers of registers among 1, . . . , rn(|Si|) which, in the
current state, contain an odd priority higher than 1;
while reading the first min(r, |ξ′|) edges of ξ′, we perform resets of the registers
j1, j2, . . . , jmin(r,|ξ′|), consecutively – call these transitions preparatory transitions;

let ξ′′ be the part of ξ′ that remains to be read;
if |ξ′′| > 0, then we use the induction assumption with k − 1 as k and with Si as S to
construct a fragment of a run that reads ξ′′ (we prove below that the induction assumption
can indeed be used) – call the fragment of ρ obtained this way a block of local transitions;
we have now read the whole ξ′;
if ξ already ended, we stop the construction;
otherwise, the next edge of ξ leads outside GSi,2k−1;
if this edge has priority 2k, we reset the register rn(|S|) while reading this edge – call
this a valuable transition;
otherwise, we perform a non-reset transition reading this edge – call this a regressive
transition;
we repeat the procedure from the beginning.

We have to prove that indeed the induction assumption can be used above. To this end,
consider the state s′ from which we are about to start a block of local transitions reading
a path ξ′′ in GSi,2k−2, and let v′ be the first node of this path. Suppose that some of the
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registers 1, 2, . . . , rn(|Si|) of s′ contains an odd number 2l+ 1, where l ≥ 1. We have to prove
that l < k − 1, and that v′ 6∈ fstl(Si). By Property (♠), l < k. There are three cases:

Suppose that i = 1 and this is the first time when the loop is used. Then there are no
preparatory transitions, so s′ = s and v′ = v. By assumptions of the lemma, v 6∈ fstl(S).
If l = k − 1, we would have v 6∈ fstl(S) = S1, while v ∈ Si = S1; thus l < k − 1. We then
have v′ = v 6∈ fstl(S) = fstl(S1).
Suppose that i = 1 and ξ′′ is preceded in ξ by some edge. This edge is not an edge of
GS1,2k−1, by maximality of the previous block of local transitions. By the definition
of a game tree, there are no edges in GS,2k−1 coming to S1 from S \ S1 (S1, . . . , Sm
are topologically sorted strongly connected components of GS,2k−1). Thus, the edge
preceding ξ′′ has priority 2k. After reading this edge, all registers contain value 2k or
higher, or 1 (if there was a reset); they cannot contain 2l + 1 with 1 ≤ l < k.
Otherwise, i ≥ 2. Then, we are just after preparatory transitions. All odd values (greater
than 1) present before these transitions were reset to 1. Thus, priority 2l+ 1 appears in a
register of s′ because it was read during preparatory transitions, and later no edges with
priority higher than 2l + 1 were read. This already implies that l < k − 1, because only
edges of priority up to 2k − 2 are read during preparatory transitions. Edges of priority
up to 2l + 1 cannot lead to fstl(Si) from Si \ fstl(Si): by the definition of the game tree,
for every level j with l ≤ j ≤ k − 2, there are no edges of priority up to 2j + 1 leading to
fstj(Si) from its (following) siblings. Moreover, there are no edges of priority 2l+ 1 inside
fstl(Si). Thus, after reading an edge of priority 2l + 1, and then some edges of priority
up to 2l + 1, we cannot end inside fstl(Si).

We now have to check Points 1-4 from the statement of the lemma. Point 1 is immediate:
preparatory and valuable transitions reset only registers up to rn(|S|), regressive transitions
do not reset anything, and local transitions, by Point 1 of the induction assumption, also
reset only registers up to rn(|S|) (recall that rn(|Si|) ≤ rn(|S|)).

Point 4 is also immediate: by definition we create ρ in a deterministic way.
While proving Points 2-3 we assume that |S| ≥ 2; the degenerate case of |S| = 1 is

handled at the very end.
We now prove Point 2 saying that in ρ there are no odd resets of the register rn(|S|) if this

register in the first state of ρ contains an even number not smaller than 2k. Simultaneously,
we prove that odd resets of the register rn(|S|) can appear in ρ only before the first valuable
transition – call this property (♣). Notice first that when we visit some Si such that
rn(|Si|) < rn(|S|), then neither preparatory transitions, nor local transitions (by Point 1 of
the induction assumption) reset the register rn(|S|). On the other hand, rn(|Si|) = rn(|S|)
implies that |Si| > |S|/2, which is possible only for one component Si; call it Smax. Regressive
transitions do not reset anything.

It remains to handle valuable transitions, and transitions reading edges from GSmax,2k−2
in the case of rn(|Smax|) = rn(|S|); these transitions may reset the register rn(|S|). Recall
that, in all states of ρ, none of the last rn(|S|) registers can contain an odd number greater
than 2k (Property (♠)). Consider a valuable transition. After the update by priority 2k, the
registers rn(|S|) and rn(|S|)− 1 contain even numbers not smaller than 2k (we put there 2k
during the update, unless a larger even priority is already there). Thus, when we reset the
register rn(|S|) during a valuable transition, its value is even. Moreover, after this transition,
the register rn(|S|) still contains an even number not smaller than 2k, moved there from the
register rn(|S|) − 1 (here it is important that rn(|S|) ≥ 2, so that the register rn(|S|) − 1
indeed exists).
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By the definition of a game tree, if we leave GSmax,2k−1, then before entering GSmax,2k−1
again there is an edge of priority 2k, resulting in a valuable transition (edges of priority
up to 2k − 1 cannot go to Si from Sj when i < j). Assuming that the register rn(|S|) of
s (i.e., of the state from which we start ρ) contains an even number not smaller than 2k,
it follows that whenever we reach Smax, the register rn(|S|) contains an even number not
smaller than 2k (either existing there from the beginning of ρ, or since the last valuable
transition). Thus, the register rn(|S|) is not reset during preparatory transitions, and by
Point 2 of the induction assumption, there are no odd resets during the considered block of
local transitions for Smax; we obtain Point 2.

For Property (♣), we do not have the assumption that at the very beginning the register
rn(|S|) contains an even number not smaller than 2k. In consequence, there may be odd
resets of the register rn(|S|) while Smax is visited for the first time, but later, after the first
valuable transition, such resets are again impossible.

Next, concentrate on Point 3. We need to prove that:
for every r, in every infix of ρ without resets of registers above r, there are at most |S| − 1
odd resets of the register r, and
in every infix of ρ without any resets, there are at most |S| − 1 (non-reset) transitions.

For r > rn(|S|) there are no r-resets at all (Point 1). Take some r ≤ rn(|S|), and consider
an infix ρ′ of ρ without any resets of registers above r; let ξ′ be the path read by ρ′. We
are about to bound the number of odd resets of the register r in ρ′. If r < rn(|S|), the infix
ρ′ does not contain valuable transitions, as they reset the register rn(|S|), being above the
register r. If r = rn(|S|), we can also assume that ρ′ does not contain valuable transitions, as
anyway, by Property (♣), after the first valuable transition there are no more odd resets of
the register rn(|S|). In consequence, ξ′ is a path in GS,2k−1. By the definition of a game tree,
such a path can visit components S1, S2, . . . , Sm only in an ascending order; every GSi,2k−1
is visited by ξ′ at most once. By Point 3 of the induction assumption, in the block of local
transitions in ρ′ visiting Si there are at most |Si| − 1 odd resets of the register r without any
resets of registers above r in between. Moreover, in every block of preparatory transitions,
we reset the register r at most once, and there are m− 1 such blocks: before S2, S3, . . . , Sm,
but not before S1. Together, there are at most

∑m
i=1(|Si| − 1) +m− 1 = |S| − 1 odd resets

of the register r in ρ′, as wanted.
The situation is similar when we consider an infix ρ′ of ρ without any resets, and we want

to bound its length. Again, it visits every GSi,2k−1 at most once. In every Si there are at
most |Si| − 1 non-reset transitions in a row, by Point 3 of the induction assumption, and we
have at most m− 1 regressive transitions.

This finishes the proof when |S| ≥ 2. It remains to prove Points 2-3 in the degenerate
case of |S| = 1, when rn(|S|) = 1. In this case, all edges in GS,2k are loops around the only
node in S. None of them can have an odd priority, because by reaching this node and then
repeating this loop we would obtain a play won by Odd, while by assumption all plays in
Gτ are won by Even. Moreover, by assumption, if the register 1 of s (i.e., of the state from
which we start ρ) contained an odd number 2l + 1, then l < k and v 6∈ fstl(S). But, because
|S| = 1, we have fstl(S) = S, and v ∈ S. Thus, the register 1 of s contains an even number.
In consequence, in all states of ρ the last register (the register number rn(|S|)) contains either
an even number or 1; we then update it by an even number (so it cannot contain 1 after this
update), and then we possibly reset it. This means that we can only have even resets of the
register rn(|S|), which gives Point 2. For Point 3, we also need to know that there are no
non-reset transitions. But observe that for |S| = 1 there are no regressive transitions (all
edges of priority up to 2k − 1 stay inside GS1,2k−1), and there are no non-reset transitions
among local transitions, by Point 3 of the induction assumption. J
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We remark that the proof presented above is based on Lehtinen’s work [25]. We only
prove a slightly stronger property, and we expand some details that in Lehtinen’s paper are
treated in a quite sketchy way.

Because states of Rn,d consist of non-increasing rn(n)-sequences of priorities in {1, . . . , d},
and because rn(n) = 1 + blog2 nc, the number of states of Rn,d is

ηn,d =
(

rn(n) + d− 1
rn(n)

)
= dO(logn) = nO(log d) ;

from every state the automaton has rn(n) + 1 transitions reading every letter e ∈ Σn,d (a
non-reset transition, and a reset transition for every register). In consequence, for a game
graph G with n nodes, m edges, and priorities up to d, the product game G × Rn,d has
(n+m) · ηn,d nodes, m · ηn,d · (rn(n) + 2) edges, and uses 2 · rn(n) + 1 priorities. Using a
standard (i.e., not quasi-polynomial-time) algorithm to solve such a game, the number of
priorities goes to the exponent, thus we obtain complexity nO(log d·logn).

5 Safety Register Automata

In the final section we show that the property bad(ρ) ≤ n− 1 obtained in Theorem 4.2 allows
us to solve the product game G×Rn,d faster: in time nO(logn) instead of nO(log d·logn). We
could prove this directly, but instead we modify the parity automaton Rn,d into a safety
automaton Sn,d.

We define the safety automaton Sn,d in the following way:
The set of states of Sn,d is the set of pairs: the first component is a state of the
automaton Rn,d and the other component is an (rn(n) + 1)-sequence 〈crn(n), . . . , c1, c0〉
of counters with values in {1, . . . , n}; additionally, in Sn,d we have a designated rejecting
state rej.
Throughout this definition, c always stands for the sequence 〈crn(n), . . . , c1, c0〉.
The initial state is (s0, c0), where s0 is the initial state of Rn,d and c0 = 〈n, n, . . . , n〉.
For each transition (s, e, 2k, s′) in Rn,d that is an even reset of the register k, we have a
transition

(
(s, c), e, 2, (s′, c′)

)
in Sn,d, where c′ = 〈crn(n), . . . , ck+1, ck, n, . . . , n〉.

For each transition (s, e, 2k + 1, s′) in Rn,d that has an odd priority (i.e., is a non-reset
transition, or is an odd reset of the register k), we have a transition

(
(s, c), e, 2, (s′, c′)

)
in Sn,d, where c′ = 〈crn(n), . . . , ck+1, ck − 1, n, . . . , n〉, if ck > 1.
For each transition (s, e, 2k + 1, s′) in Rn,d that has an odd priority we have a transition(
(s, c), e, 1, rej

)
in Sn,d, where ck = 1.

Moreover, for every letter e, we have a transition (rej, e, 1, rej) in Sn,d.
There are no other transitions in Sn,d except those specified above.

I Theorem 5.1. The automaton Sn,d is a strong SFPG separator.

Proof. Consider first a word w ∈ LimsupOddn,d, and a run ρS of Sn,d reading this word; we
have to prove that ρS is rejecting. While projecting every state of ρS to its first component,
we obtain a run ρR of Rn,d also reading w. By Theorem 4.2, Rn,d is a strong SFPG separator,
so it rejects all words from LimsupOddn,d (cf. Definition 3.2); ρR is rejecting. Let p be the
largest priority emitted by ρR infinitely often; p is odd. Consider the suffix of ρR in which
no larger priority is emitted. Concentrate now on ρS . Emitting the priority p by ρR results
in decreasing the counter (p− 1)/2 by 1, while emitting priorities lower than p leaves the
counter (p− 1)/2 unchanged. Thus, after n transitions emitting the priority p the rejecting
state is reached; ρS is rejecting.
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Next, consider a game graph G with n nodes and priorities up to d, and an Even’s
positional winning strategy τ in G. Let σR be the transition strategy in Rn,d that is
winning for the set of all plays in G that arise from τ , existing because Rn,d is SFPG
(cf. Definition 3.4). We extend σR to a transition strategy σS for automaton Sn,d: in σS we
resolve nondeterministic choices in the same way as in σR; the difference is only that in Sn,d
we additionally update the counters (in a deterministic way). We have to prove that σS is
winning for the set of all plays in G that arise from τ . To this end, consider such a play; let
ρS be the run of Sn,d that follows σS and reads this play. Let ρR be the corresponding run
of Rn,d, obtained by projecting every state of ρS to its first component. By Theorem 4.2,
bad(ρR) ≤ n− 1. Notice that when ρR emits an odd priority 2k+ 1, we decrease the counter
k by 1, and when it emits any higher priority, we reset the counter k to n. Because priority
2k+ 1 is emitted at most n− 1 times without emitting any higher priority in between (by the
condition bad(ρR) ≤ n− 1), we obtain that the rejecting state is not reached. In consequence
ρS is accepting, which finishes the proof. J

We see that Sn,d has ξn,d = ηn,d · nrn(n)+1 + 1 states, and that from every state it has at
most rn(n) + 1 transitions reading every letter. Thus, for a game graph G with n nodes, m
edges, and priorities up to d, the product game G×Sn,d has (n+m) · ξn,d nodes and no more
than m · ξn,d · (rn(n) + 2) edges. This safety game can be solved in linear time. Without loss
of generality we can assume that d ≤ n, so the running time is of the form nO(logn).

I Remark 5.2. Let us underline two aspects of the definition of SFPG separators that are
important for the proofs of Theorems 4.2 and 5.1. First, the transition strategies that we
create actually depend on G and τ (unlike in the definition of good-for-games automata).
Second, in our transition strategies we choose a next transition basing not only on the priority
of an edge to be read, but also basing on its target. For this reason, we use automata that
read edges (i.e., triples: source, priority, target), not just priorities, nor pairs: source node of
an edge, priority of the edge (as in Bojańczyk and Czerwiński [4, Section 3]).

We believe that it is possible to construct a transition strategy that does not depend on
G and τ , and that chooses a next transition basing only on priorities (i.e., without knowing
which nodes are visited). The proof of existence of such a transition strategy would be more
involved than the proof presented above, however.

Nevertheless, Rn,d and Sn,d are not good for games, due to some words (not being
in PosEvenn,d) that can be accepted by these automata, but not in a deterministic way.
Interestingly, Rn,d accepts exactly LimsupEvenn,d, the set of winning plays (while L(Sn,d)
is smaller).
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1 Introduction

Originally motivated by philosophical concerns about the meaning of logical symbols such
as ∨ and ∃, intuitionistic logic has been increasingly influential in computer science due to
its constructive nature: in contexts of implementation, the abstract existence of a solution
(roughly corresponding to the classical interpretation of ∃) is often less useful than the ability
to construct such a solution (roughly corresponding to the intuitionistic interpretation of ∃).

As a consequence, we can see that computational systems used as automated theorem
provers or proof assistants use constructive logic as their underlying logic (see, e.g., Wiedijk’s
discussion in [28, 127–129]).

However, you cannot just add mathematical axioms to a constructive logic and expect
that the resulting system remains constructive: the most famous example of this is the
fact that even in the context of intuitionistic logic, the Axiom of Choice proves the law of
excluded middle, thus giving full classical logic [6, 159–160].

It is therefore important to determine which axiomatic frameworks for mathematics
preserve which constructive logical systems. More formally, if T is any mathematical theory,
we let L(T ) be the propositional logic consisting of all propositional formulas ϕ such that
all substitution instances of ϕ with sentences of the appropriate language are theorems
of T (i.e., T ` ϕσ for all substitutions σ of propositional letters for T -sentences). We are
interested in determining for well-known constructive foundational systems T whether L(T ) is
intuitionistic propositional logic IPC or not. This property is known as de Jongh’s Theorem
for T .

The main result of this paper is that both intuitionistic Zermelo-Fraenkel set theory IZF
and constructive Zermelo-Fraenkel set theory CZF satisfy de Jongh’s Theorem.
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33:2 De Jongh’s Theorem for IZF and CZF

Background: de Jongh’s theorem and the de Jongh property. The questions and basic
concepts of this work originated in arithmetic; we give a brief historical overview. Heyting
arithmetic HA, the intuitionistic counterpart to Peano arithmetic, is constructed on the basis
of intuitionistic logic by adding certain arithmetical axioms and axiom schemes. Having
defined the theory in this way, it follows immediately that the propositional validities of HA
contain all of intuitionistic propositional logic IPC, i.e., IPC ⊆ L(HA). De Jongh [7] proved
that L(HA) = IPC, i.e., that adding the axioms of HA does not entail any logical principle
that goes beyond IPC.

That results like this are not obvious can be illustrated with an example of an arithmetical
theory that does not satisfy de Jongh’s theorem: Consider the theory HA + MP + ECT0, i.e.,
Heyting arithmetic extended with Markov’s Principle (MP) and Extended Church’s Thesis
(ECT0). Even though these principles are generally considered constructive, one can show
that the propositional logic of this theory contains principles that are not provable in IPC
but it can also not prove all of classical logic CPC, i.e., IPC ( L(HA+MP+ECT0) ( CPC
(this follows from results of Rose [22] and McCarty [17]; for details see the discussion at the
end of [9, Section 2]). The essence of this example is that – even though we construct the
theory HA + MP + ECT0 on the basis of intuitionistic logic – its propositional logic contains
principles that are not intuitionistically valid. Hence, the theory HA + MP + ECT0 does not
satisfy de Jongh’s theorem.

These arithmetical examples illustrate that de Jongh-style theorems are important as they
guarantee that the logics of constructive systems are not strengthened by the mathematical
axioms of the system. An in-depth history of de Jongh’s theorem can be found in the paper
[9] of de Jongh, Verbrugge and Visser.

Related Work. Starting with de Jongh’s classical result [7] that the propositional logic of
Heyting Arithmetic HA is intuitionistic logic IPC, there has been an intensive examination
of this phenomenon in arithmetic. Many authors (see, e.g., [5, 8, 23, 26, 27]) have refined
and generalised de Jongh’s original work for more logics or stronger arithmetical theories.

The de Jongh property was introduced and analysed for Heyting arithmetic by de Jongh,
Verbrugge and Visser [9]: It is an interesting generalisation of de Jongh’s theorem. Given
an intuitionistic theory T and a propositional logic J , we can obtain a strengthened system
T (J) by adding all substitution instances of the rules in J to T . We then say that T has the
de Jongh property with respect to the intermediate logic J whenever L(T (J)) = J . We can
think of the theory T (J) as being constructed on the basis of intuitionistic logic enriched
with the propositional principles from J .

In this article, we shall investigate the propositional logics of constructive set theory
CZF and intuitionistic set theory IZF. In particular Aczel’s constructive set theory CZF
[1, 2, 3] has the status of a standard theory for constructive mathematics, also due to its
type-theoretic interpretation (see [4]). The metamathematical properties of CZF have also
been investigated: Rathjen [21] proved that CZF possesses the disjunction property, the
numerical existence property and other common metamathematical properties, however Swan
[24] showed that CZF does not have the existence property (the definitions can be found in
the respective papers).

The blended Kripke models that we construct for the purpose of this article are inspired
by the constructions of Iemhoff [10] and Lubarsky [13, 14, 15, 16], and combine Kripke
semantics with classical models of set theory.

Bounded constructive set theory BCZF is obtained from CZF by restricting the collection
schemes to bounded formulas. The present author used Iemhoff’s construction to prove
that BCZF has the de Jongh property with respect to every Kripke-complete logic (see [20]).
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With the techniques used there, it was (provably) not possible to extend the result to CZF.
However, in the present work we will be able to derive a result for CZF as a corollary of the
result for IZF.

Moreover, the author [19, Chapter 4] proved that the propositional logic of those of
Lubarsky’s models that are based on a Kripke frame with leaves contains the intermediate
logic KC (axiomatised by ¬ϕ ∨ ¬¬ϕ). Consequently, the Lubarsky models based on such a
frame cannot be used to prove de Jongh properties with respect to logics weaker than KC,
such as IPC.

The blended models have more flexibility than Lubarsky’s models and model a stronger
set theory than Iemhoff’s models, and can therefore be used to prove de Jongh’s theorem for
IZF and CZF. We will discuss the relation of Lubarsky’s models and the blended models at
the end of Section 3.1.

Organisation of the Article. The main result of this article are de Jongh theorems for
the set theories CZF and IZF. That is, L(IZF) = IPC and L(CZF) = IPC. To prove these
results, we introduce a new semantics for IZF, the so-called blended Kripke models, or blended
models for short, that allow for controlling the logic of the set-theoretic Kripke model in a
very precise way. To prove our results, it will be enough to refute one substitution instance
of every propositional formula that is not intuitionistically valid. We will do so by imitating
valuations on Kripke frames for propositional logic through set-theoretic sentences in a
corresponding blended model.

Using our blended Kripke models, we show that intuitionistic set theory IZF has the de
Jongh property with respect to every intermediate logic J that is characterised by a class of
finite trees (see Definition 10 and Theorem 31). Examples of such logics are intuitionistic
propositional logic IPC, Dummett’s logic LC, the Gabbay-de Jongh logics Tn and the logics
BDn of bounded depth n (see Example 7 for the definitions of these logics). As constructive
set theory CZF is a subtheory of IZF, all of these results also apply for CZF (see Corollary 35).

Section 2 discusses the preliminaries for our work. We introduce blended Kripke models
in Section 3 and prove that they satisfy intuitionistic set theory IZF. In Section 4, we consider
the propositional logic of blended Kripke models and prove de Jongh’s theorem for IZF. We
draw some conclusions and state a few questions for further research in Section 5.

2 Preliminaries

In this section, we will discuss the preliminaries for the later sections. After briefly discussing
notation and intermediate logics in Section 2.1 and Section 2.2, respectively, we will introduce
Kripke semantics for intuitionistic propositional logic in Section 2.3. We will then discuss
the de Jongh property in Section 2.4.

2.1 Notation and Meta-Theory
We adopt the following notational policy: The symbol  will be used for the forcing relation
of Kripke models. As usual, we will use � for the classical modelling relation, and ` for the
provability relation.

The meta-theory of this article is ZFC + “there is a countable transitive model of ZFC”,
a theory that is strictly in strength between ZFC + Cons(ZFC) and ZFC + “there is an
inaccessible cardinal”.

Note that a countable transitive model of ZFC is a countable set M � ZFC (where ∈ is
interpreted as usual set-membership) such that whenever y ∈ x ∈M , then y ∈M . The class
of ordinals OrdM of such a countable transitive model M of ZFC is a countable ordinal in
the meta-universe, i.e., OrdM ∈ Ord. We also refer to OrdM as the ordinal height of M .

CSL 2020
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2.2 Intuitionistic and Intermediate Logics
We fix a countable set Prop of propositional variables for the scope of this article, and identify
propositional logics J with the set of formulas they prove (i.e., J ` ϕ if and only if ϕ ∈ J).
As usual, we denote intuitionistic propositional logic by IPC, and classical propositional
logic by CPC. We say that a logic J is an intermediate logic if IPC ⊆ J ⊆ CPC (in
particular, IPC and CPC are considered intermediate logics here). Intuitionistic predicate
logic is called IQC.

2.3 Kripke Frames and Kripke Models
We will now introduce Kripke frames for intuitionistic logic. In particular, we will focus on
Kripke frames that are trees.

I Definition 1. A Kripke frame (K,≤) is a partial order. We call a Kripke frame (K,≤) a
tree if for every v ∈ K, the set K≤v = {w ∈ K |w ≤ v} is well-ordered by ≤, and moreover,
if there is a node r ∈ K such that r ≤ v for all v ∈ K (i.e., K is rooted, and r is its root).
A Kripke frame is called finite whenever K is finite.

All finite trees can be constructed recursively according to the following rules: First,
every reflexive partial order with only one point is a finite tree. Second, given finitely many
finite trees Ti with roots ri, the partial order T obtained as the disjoint union of the Ti with
an additional element r such that r ≤ x for all x ∈ T , is a tree. This recursive definition
allows us to prove facts about trees by induction on construction complexity.

I Definition 2. Given a Kripke frame (K,≤), we say that a node e is a leaf if e is maximal
with respect to ≤. We denote the set of leaves of (K,≤) by EK . A Kripke frame (K,≤) with
leaves is a Kripke frame such that for every v ∈ K there is some e ∈ EK with v ≤ e. Given
a node v ∈ K, let Ev denote the set of all leaves e ∈ K such that v ≤ e.

The following combinatorial proposition will be useful later when we will determine the
propositional logic of certain Kripke models. An up-set X in a Kripke frame (K,≤) is a set
X ⊆ K such that v ∈ X and v ≤ w implies w ∈ X. Given a finite tree (K,≤) and a node
v ∈ K, let Uv be the number of up-sets X ⊆ K≥v, where K≥v = {w ∈ K |w ≥ v}.

I Proposition 3. In a finite tree (K,≤), every node v is uniquely determined by Uv and Ev.

Proof. This is an easy induction on the construction complexity of finite trees. J

A valuation on a Kripke frame (K,≤) is a function V : Prop→ P(K) that is persistent,
i.e., if w ∈ V (p) and w ≤ v, then v ∈ V (p). A Kripke model for IPC is a triple (K,≤, V )
such that (K,≤) is a Kripke frame. We can now define, by induction on propositional
formulas, the forcing relation  for propositional logic at a node v ∈ K in the following way:

1. K,V, v  p if and only if v ∈ V (p),
2. K,V, v  ϕ ∧ ψ if and only if K,V, v  ϕ and K,V, v  ψ,
3. K,V, v  ϕ ∨ ψ if and only if K,V, v  ϕ or K,V, v  ψ,
4. K,V, v  ϕ→ ψ if and only if for all w ≥ v, K,V,w  ϕ implies K,V,w  ψ,
5. K,V, v  ⊥ never holds.

Sometimes we will write v  ϕ instead of K,V, v  ϕ, and K,V  ϕ if K,V, v  ϕ holds
for all v ∈ K. A formula ϕ is valid in K if K,V, v  ϕ holds for all valuations V on K and
v ∈ K, and ϕ is valid if it is valid in every Kripke frame K.
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I Proposition 4 (Persistence). Let (K,≤, V ) be a Kripke model for IPC, v ∈ K, and ϕ be
a propositional formula such that K, v  ϕ holds. Then K,w  ϕ holds for all w ≥ v.

Proof. By induction on formulas. The base case follows from the definition of a valuation,
and the other cases follow easily. J

We can now define the logic of a Kripke frame and of a class of Kripke frames.

I Definition 5. If (K,≤) is a Kripke frame for IPC, we define the propositional logic
L(K,≤) to be the set of all propositional formulas that are valid in K. For a class K of
Kripke frames, we define the propositional logic L(K) to be the set of all propositional
formulas that are valid in all Kripke frames (K,≤) in K. Given an intermediate logic J , we
say that K characterises J if L(K) = J .

If ≤ is clear from the context, we shall write L(K) for L(K,≤). Let us conclude this
section with a few examples of intermediate logics and some classes of Kripke frames that
characterise them. For proofs we refer to the literature. The following important proposition
is well-known.

I Proposition 6 (e.g., [25, Theorem 6.12]). Intuitionistic propositional logic IPC is charac-
terised by the class of all finite trees.

I Example 7. We present some examples of logics from the paper of de Jongh, Verbrugge
and Visser [9] that are characterised by classes of finite trees.

Dummett’s logic The logic LC is obtained by extending IPC with the axiom

(p→ q) ∨ (q → p).

The logic LC is characterised by the class of finite linear orders.
Gabbay-de Jongh Logics The logics Tn, for n ∈ N, are characterised by the class of finite

trees which have splittings of exactly n, i.e., every node is either a leaf or has exactly n
successors. T1 coincides with LC, and the logics Tn are axiomatised by the following
formulas:

∧
k≤n+1

ϕk → ∧
j 6=k

ϕj

→ ∧
j 6=k

ϕj

→ ∧
k≤n+1

ϕk.

Logics of Bounded Depth n The logics BDn, for n ∈ N, are characterised by the finite
trees of depth n. The logic of depth 1, BD1 is classical logic CPC axiomatised by Peirce’s
law,

β1 = ((ϕ1 → ψ)→ ϕ1)→ ϕ1.

For every n ∈ N, the logic BDn is axiomatised by βn as obtained recursively via:

βn+1 = ((ϕn+1 → βn)→ ϕn+1)→ ϕn+1.

2.4 The de Jongh Property
Let ϕ be a propositional formula and let σ : Prop → Lsent an assignment of propositional
variables to sentences in a language L. By ϕσ we denote the L-sentence obtained from ϕ by
replacing each propositional variable p with the sentence σ(p).

CSL 2020
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I Theorem 8 (de Jongh, [7]). Let ϕ be a formula of propositional logic. Then HA ` ϕσ for
all σ : Prop→ Lsent

HA if and only if IPC ` ϕ.

Given a theory based on intuitionistic logic, we may consider its propositional logic, i.e.,
the set of propositional formulas that are derivable after substituting the propositional letters
by arbitrary sentences in the language of the theory.

I Definition 9. Let T be a theory in intuitionistic predicate logic, formulated in a language L.
A propositional formula ϕ will be called T -valid if and only if T ` ϕσ for all σ : Prop→ Lsent.
The propositional logic L(T ) is the set of all T -valid formulas.

Given a theory T and an intermediate logic J , we denote by T (J) the theory obtained by
closing T under J .

I Definition 10. We say that a theory T has the de Jongh property if L(T ) = IPC. The
theory T has the de Jongh property with respect to an intermediate logic J if L(T (J)) = J .

De Jongh’s theorem is equivalent to the assertion that Heyting arithmetic has the de
Jongh property. As explained in the introduction, the theory HA + MP + ECT0 does not
have the de Jongh property.

3 Blended Models

This section introduces the new model construction for intuitionistic set theory IZF: the
blended models. We will now construct blended Kripke models in Section 3.1, observe some of
their basic properties in Section 3.2 and show that they satisfy intuitionistic Zermelo-Fraenkel
set theory IZF in Section 3.3. Finally, Section 3.4 contains a simple example of a blended
model.

3.1 Constructing Blended Models
For the sake of this construction, we fix a Kripke frame (K,≤) with leaves. Transitive models
of ZFC have an ordinal height Ω; in our construction all models assigned will have the same
ordinal height. To each leaf e ∈ K, we assign a transitive model Me � ZFC of height Ω. Note
that Ω denotes the same ordinal in the meta-universe for all e ∈ EK ; we can therefore refer
to this ordinal by Ω without specifying a particular e ∈ EK .

Before giving the technical details of the construction, let us spark the readers intuition.
We need to define a collection Dv of v-sets at every node v ∈ K of the Kripke model. A
v-set x will be a function that assigns to every node w ≥ v a collection of previously defined
w-sets; x(w) is the extension of x at the node w. Note that these assignments shall not be
random but must happen in a coherent way: at every leaf e, the extension x(e) must be a set
of the transitive model Me associated to the leaf e. Moreover, the extensions of x should be
monotone along the ≤-relation of the Kripke frame to account for the persistence required in
Kripke models for intuitionistic theories – once a member of x, always a member of x. More
formally, we shall require for any y ∈ x(v) that y � K≥w ∈ x(w). The truncation of y to
y � K≥w is necessary to obtain the w-set y � K≥w from the v-set y.

The formal construction of blended models is conducted in three steps. We begin by
constructing the collection of domains 〈Dv | v ∈ K〉: first the domains for the leaves and,
secondly, for all remaining nodes of the Kripke frame. The third step is to define the
semantics.
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Step 1. Domains for leaves. Let e ∈ EK be a leaf, and Me be the transitive model asso-
ciated to it. Instead of directly assigning the transitive model Me as the domain at
the node e, we will transform this model into a domain De of functions that is iso-
morphic to the original model. We define a function fe : Me → ran(f) by ∈-recursion via
fe(x) = (e, fe[x]).
Then define De = fe[Me]. Hence, each De is a set of functions x : K≥e → ran(x) (where
K≥e = {e}). Moreover, for α ∈ OrdM , let Dαe = fe[(Vα)Me ]. Then D0

e = ∅ and it holds
that ⋃

α∈OrdM

Dαe = De.

In Proposition 14 below, we will see that the domains of the leaves of a blended model
are isomorphic to the classical model of set theory associated to the node (with respect
to the equality and membership relations).

Step 2. Domains for all nodes. Now we are ready to define the domains at the remaining
nodes. We do this simultaneously for all v ∈ K \ EK by induction on α ∈ Ω. Let Dαv
consist of the functions x : K≥v → ran(x) such that the following properties hold:

(i) for all leaves e ≥ v, we have x � {e} ∈ Dαe ,
(ii) for all non-leaves w ≥ v, we have x(w) ⊆

⋃
β<αDβw, and

(iii) for all nodes u ≥ w ≥ v we have that {y � K≥u | y ∈ x(w)} ⊆ x(u).

We define the domain Dv at the node v to be the set

Dv =
⋃

α∈OrdM

Dαv .

For completing the definition of the domains of our model, we still require transition
functions fvw : Dv → Dw such that fwu ◦ fvw = fvu. The transition functions explain
how the elements at a node v should be interpreted at a later node w ≥ v (see also step
3). For this purpose, we use the restriction maps fvw with x 7→ x � K≥w as transition
functions. Note that these maps are well-defined by the definition of the domains.
Moreover, by the definition of the maps fvw, it is clear that condition (i) is just a special
case of condition (iii). We state it separately as it requires special attention when working
with blended models.

Step 3. Defining the semantics. We define, by induction on L∈-formulas, the forcing rela-
tion at every node of the Kripke model in the following way, where ϕ and ψ are formulas
with all free variables shown, and, moreover, ȳ = y0, . . . , yn−1 are elements of Dv for the
node v considered on the left side:

1. (K,≤,D), v  ⊥ never holds,
2. (K,≤,D), v  ϕ(ȳ) ∧ ψ(ȳ) if and only if (K,≤,D), v  ϕ(ȳ) and (K,≤,D), v  ψ(ȳ),
3. (K,≤,D), v  ϕ(ȳ) ∨ ψ(ȳ) if and only if (K,≤,D), v  ϕ(ȳ) or (K,≤,D), v  ψ(ȳ),
4. (K,≤,D), v  ϕ(ȳ) → ψ(ȳ) if and only if for all w ≥ v, (K,≤,D), w  ϕ(fvw(ȳ))

implies (K,≤,D), w  ψ(fvw(ȳ)),
5. (K,≤,D), v  x ∈ y if and only if x ∈ y(v),
6. (K,≤,D), v  a = b if and only if a = b,
7. (K,≤,D), v  ∃xϕ(x, ȳ) if and only if there is some a ∈ Dv with (K,≤,D), v  ϕ(a, ȳ),
8. (K,≤,D), v  ∀xϕ(x, ȳ) if and only if for all w ≥ v and a ∈ Dw, w  ϕ(a, fvw(ȳ)).

CSL 2020
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The negation ¬ϕ is an abbreviation for ϕ→ ⊥.

I Definition 11. We call (K,≤,D) the blended Kripke model obtained from 〈Me | e ∈ EK〉.

This finishes the definition of the blended models. If the collection 〈Me | e ∈ EK〉 is either
clear from the context, or if it does not matter, we will also say that (K,≤,D) is a blended
Kripke model. We will usually say blended model instead of blended Kripke model. Moreover,
we might refer to an element x ∈ Dv as a v-set, and to x(w) as the extension of x at w.

An L∈-formula ϕ is valid in (K,≤,D) if v  ϕ holds for all v ∈ K, and ϕ is valid if it is
valid in every Kripke frame K. We will call (K,≤) the underlying Kripke frame of (K,≤,D),
or the frame that (K,≤,D) is based on. Moreover, let us call JϕK(K,≤,D) = {v ∈ K | v  ϕ}
the truth set of a sentence ϕ in the language of set theory in a blended model (K,≤, D).
When the model is clear from the context, we will also write JϕKK or just JϕK.

Before we continue with some basic properties of the blended models, let us briefly
discuss this construction in comparison to Lubarsky’s Kripke models [13, 14, 15, 16], which
are constructed in a similar way. The crucial difference, however, is that our models are
constructed in a top-down manner that allows to choose any (finite) collection of classical
models of set theory of the same ordinal height at the leaves, whereas Lubarsky’s bottom-up
construction requires elementary equivalence of the models involved.

3.2 Basic Properties
We will now observe some basic properties of the blended models.

I Proposition 12 (Persistence). Let (K,≤,D) be a blended model and ϕ a formula in the lan-
guage of set theory. If v  ϕ(a0, . . . , an−1) and w ≥ v, then w  ϕ(fvw(a0), . . . , fvw(an−1)).

Proof. This is proved by induction on L∈-formulas. J

I Proposition 13. The blended models are sound with respect to IQC.

Proof. This follows from the more general soundness result for Kripke models for predicate
logics with respect to IQC. See, for example, [25, Theorem 6.6]. J

We will now make the essential observation that the domains at the leaves are isomorphic
to the models they were obtained from.

I Proposition 14. Let (K,≤,D) be a blended model, and e ∈ EK a leaf. Then (K,≤,D), e 
ϕ(fe(a0), . . . , fe(an−1)) if and only if Me � ϕ(a0, . . . , an−1) for all elements a0, . . . , an−1 ∈
Me.

Proof. Let us first argue that the function fe : Me → De as introduced in Step 1 is a bijection.
Define g by ∈-recursion with (e, x) 7→ g[x]. It follows by induction that g ◦ fe = idMe and
fe ◦ g = idDe

. Hence, fe is a bijection.
It suffices to prove the claim for the atomic cases: equality and set-membership. The case

for equality follows from the definition of the semantics and the fact that f is bijective. For set-
membership observe that if Me � x ∈ y, then fe(x) ∈ fe(y)(e) and hence e  fe(x) ∈ fe(y).
Conversely, if e  fe(x) ∈ fe(y), then fe(x) ∈ fe(y)(e) and hence x = g(fe(x)) ∈ g(fe(y)) = y.
The other cases follow trivially as the intuitionistic interpretation of the logical symbols in a
leaf coincides with the classical interpretation in the model Me. J
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Extensionality ∀a∀b (∀x (x ∈ a↔ x ∈ b)→ a = b)
Empty set ∃a ∀x ∈ a⊥
Pairing ∀a ∀b∃y ∀x (x ∈ y ↔ (x = a ∨ x = b))
Union ∀a∃y ∀x (x ∈ y ↔ ∃u(u ∈ a ∧ x ∈ u))
Power set ∀a ∃y ∀x (x ∈ y ↔ x ⊆ a)
Infinity ∃a (∃xx ∈ a ∧ ∀x ∈ a∃y ∈ a x ∈ y)
Set Induction ∀a (∀x ∈ aϕ(x)→ ϕ(a))→ ∀aϕ(a), for all formulas ϕ(x).
Separation ∀a ∃y ∀x (x ∈ y ↔ (x ∈ a ∧ ϕ(x))), for all formulas ϕ(x).
Collection ∀a (∀x ∈ a ∃y ϕ(x, y)→ ∃b∀x ∈ a ∃y ∈ b ϕ(x, y)), for all formulas ϕ(x, y), where

b is not free in ϕ(x, y).

Figure 1 The axioms of IZF. Note that the formulas ϕ(x) appearing in the axiom schemes are
allowed to have parameters.

3.3 Intuitionistic Set Theory Holds in Blended Models
In this section, we will show that the axioms of IZF (see Figure 1) hold in blended models.
For the sake of this section, let (K,≤,D) be a blended model obtained from 〈Me | e ∈ EK〉.

Intuitionistic set theory IZF is classically equivalent to ZF set theory. With Proposition 14
we note that IZF holds true at every leaf because the models associated with the leaves are
models of ZF set theory and classical logic holds in the leaves.

B Claim 15. The model (K,≤,D) satisfies the axiom of extensionality.

Proof. Let v ∈ K and a, b ∈ Dv. We have to show that

v  ∀x(x ∈ a↔ x ∈ b)→ a = b.

So assume that w  ∀x(x ∈ a↔ x ∈ b) for all w ≥ v, i.e., a(w) = b(w) for all w ≥ v. Hence,
a and b are equal as functions with domain K≥v, and so they are equal. C

B Claim 16. The model (K,≤,D) satisfies the axiom of pairing.

Proof. Let v ∈ K and a, b ∈ Dv. Let c be the function with c(w) = {fvw(a), fvw(b)} for all
w ≥ v.

Let us first show that c ∈ Dv. For condition (i), let e ≥ v be a leaf. As a, b ∈ Dv it
follows from the definition that fve(a), fve(b) ∈ De. Hence, by pairing in Me, we have that
c � {e} ∈ De, where c(e) = {fve(a), fve(b)}. Conditions (ii) and (iii) of the definition of Dv
follow directly from the definition of c.

Now it is straightforward to check that c constitutes a witness for the axiom of pairing
for a and b at the node v. C

B Claim 17. The model (K,≤,D) satisfies the axiom of union.

Proof. Let v ∈ K and a ∈ Dv. Define a function b with domainK≥v with b(w) =
⋃
c∈a(w) c(w)

for all w ≥ v.
Again, we need to show that b ∈ Dv. For condition (i), observe that fve(a) ∈ De for every

leaf e ≥ v. As the axiom of union holds in Me, it follows that there is a witness b′ ∈ De. By
transitivity of Me, it must then hold that b � {e} = b′ ∈ De. As in the previous proposition,
conditions (ii) and (iii) follow directly from the definition of b. Then b witnesses the axiom
of union for a. C
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B Claim 18. The model (K,≤,D) satisfies the axiom of empty set.

Proof. For every v ∈ K consider the function 0v with domain K≥v such that 0v(w) = ∅ for
all w ≥ v. This is an element of Dv and witnesses the axiom of empty set. C

B Claim 19. The model (K,≤,D) satisfies the axiom of infinity.

Proof. By recursion on natural numbers, we will define elements nv ∈ Dv simultaneously for
every v ∈ K. Let 0v be the empty set as defined in the proof of Claim 18. Then, if mv has
been defined for all m < n, let nv be the function with nv(w) = {0w, . . . , (n− 1)w} for all
w ≥ v. This finishes the recursive definition. It follows inductively that every nv ∈ Dv, again
paying special attention at the leaves: the sets ne correspond to the finite ordinal n ∈Me.

Finally, let ωv(w) = {nw |n < ω} for all w ≥ v. To see that ωv ∈ Dv note that, for every
leaf e ≥ v, fve(ωv) = ωe ∈ De as Me satisfies the axiom of infinity.

It follows that ωv is a witness for the axiom of infinity at the node v. C

B Claim 20. The model (K,≤,D) satisfies the axiom scheme of separation.

Proof. Let ϕ(x, y0, . . . , yn) be a formula with all free variables shown. Let v ∈ K, a ∈ Dv
and b0, . . . , bn ∈ Dv. Define c to be the function with domain K≥v such that

c(w) = {d ∈ a(w) |w  ϕ(d, b0, . . . , bn)}

holds for all w ≥ v. We have that c ∈ Dv by the definition of the domains Dv. Again,
property (i) follows from the fact that separation holds in Me for every leaf model Me.
Moreover, property (iii) follows by persistence. Finally, c witnesses separation from a by ϕ
with parameters bi. C

B Claim 21. If K is finite, then the model (K,≤,D) satisfies the axiom scheme of collection.

Proof. Let v ∈ K, ϕ(x, y) be a formula (possibly with parameters), and a ∈ Dv. We need to
show that:

v  ∀x ∈ a∃y ϕ(x, y)→ ∃b∀x ∈ a∃y ∈ b ϕ(x, y).

Without loss of generality, assume that v  ∀x ∈ a∃yϕ(x, y). In particular, by persistence,
for every w ≥ v and every x ∈ a(w) there exists some y ∈ Dw such that w  ϕ(x, y). Let α
be the minimal ordinal such that for every w ≥ v and x ∈ a(w), there is some y ∈ Dαw with
w  ϕ(x, y). Note that α < Ω as K is finite. Define b to be the function with domain K≥v
such that b(w) = Dαw. It follows that b ∈ Dv, where the case for leaves e follows from the
fact that (Vα)Me is a set in Me. Hence, b is a witness for the above instance of the collection
scheme. C

B Claim 22. The model (K,≤,D) satisfies the powerset axiom.

Proof. Let v ∈ K and a ∈ Dv. Define a function b with domain K≥v such that

b(w) = {c ∈ Dw |w  c ⊆ fvw(a)}

for all w ≥ v. We have to show that b ∈ Dv. Observe that for every leaf e ≥ v, fve(b)
corresponds to (P(a))Me , and hence condition (i) is satisfied. Conditions (ii) and (iii) follow
easily. C

B Claim 23. The model (K,≤,D) satisfies the axiom scheme of set induction.
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Proof. We shall show that the set-induction scheme holds for all v ∈ K, i.e., that

v  ∀a (∀x ∈ aϕ(x)→ ϕ(a))→ ∀aϕ(a),

holds for all formulas ϕ(x) and v ∈ K. So assume that v  ∀a (∀x ∈ aϕ(x) → ϕ(a)). We
have to show that v  ∀aϕ(a), i.e., for all a ∈ Dv we have that v  ϕ(a). To do so, we will
proceed by a simultaneous induction for all v ∈ K on the rank of a ∈ Dv, i.e., the minimal
α < Ω such that a ∈ Dα+1

v \ Dαv .
The only v-set of rank 0 is the function x that assigns the empty set to every node

w ≥ v, so the assumption of set-induction applies and we have v  ϕ(x). For the induction
step, observe that the members of a v-set x of rank α are w-sets (for some w ≥ v) of lower
rank. Hence, the induction hypothesis applies and it follows by using the assumption of
set-induction that v  ϕ(x). This finishes the induction, and the proof of the claim. C

Let us summarise the results of this section in the following theorem.

I Theorem 24. If K is finite, then the model (K,≤,D) satisfies IZF. For arbitrary K, the
model (K,≤,D) satisfies IZF− Collection.

We do not know whether there is an example of an infinite Kripke frame K and a model
(K,≤,D) based on K that does not satisfy the collection scheme.

3.4 An Example
To illustrate our construction above, we will construct a Kripke model (K,≤,D) such that
(K,≤,D) 6 CH ∨ ¬CH, where CH is the continuum hypothesis. Take (K,≤) to be the three
element Kripke frame (K,≤) with K = {v, e0, e1} with ≤ being the reflexive closure of the
relation defined by v ≤ e0 and v ≤ e1.

Now, let M be any countable transitive model of ZFC + CH, and take G to be generic
for Cohen forcing over M . Then we associate the model M with node e0, and M [G] with
e1, i.e., Me0 = M and Me1 = M [G]. By our construction above and Proposition 14, we
know that (K,≤,D), e0  CH and (K,≤,D), e1  ¬CH. Hence, persistence implies that
(K,≤,D), v 6 CH ∨ ¬CH.

In particular, observe that JCHK = {e0}, J¬CHK = {e1}, JCH ∨ ¬CHK = {e0, e1} and
J>K = K. Hence, every up-set and therefore any valuation on K can be imitated with
sentences in the language of set-theory evaluated in the blended model.

Moreover, this example also shows that IZF 6` CH ∨ ¬CH, i.e., the law of excluded middle
does not hold for assertions regarding the continuum. One can easily generalise the above
argument to obtain the following proposition.

I Proposition 25. If ϕ is a sentence in the language of set theory such that there are models
M and N of ZFC with the same ordinals such that M � ϕ and N � ¬ϕ, then IZF 6` ϕ ∨ ¬ϕ.

Of course, this result also follows from the fact that IZF is a subtheory of ZFC having the
disjunction property (see [18, Corollary 1]).

4 The Propositional Logic of Blended Models

In this section, we will analyse the propositional logic of blended models and prove the de
Jongh property for IZF with respect to intermediate logics that are characterised by a class
of finite trees.
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4.1 Faithful Blended Models
The aim of this section is to show that we can find a blended model based on every finite
tree Kripke frame (K,≤) that allows us to imitate every valuation on (K,≤). Let us begin
with a definition and several useful observations.

I Definition 26. A blended model (K,≤,D) is called faithful if for every valuation V on
the Kripke frame (K,≤) and every propositional letter p ∈ Prop, there is an L∈-formula ϕp
such that JϕpK(K,≤,D) = V (p).

This notion was first introduced in [19]. For further discussion and connections to the de
Jongh property, see also [20].

Given a natural number n, let Γn be the following sentence1 in the language of set theory:

∀x0, . . . , xn−1

 ∧
i<n

(∀y ∈ xi∀z ∈ y⊥)→
∨

i<j<n

xi = xj

 .

Informally, this sentence asserts that given n subsets of 1 = {∅}, at least 2 of them are
equal. The power set of 1 is crucial for distinguishing models of non-classical set theories; it
is consistent with CZF that the power set of 1 is a proper class (see [13]). Note that Γ1 is
inconsistent and Γ2 is a theorem of ZF set theory. If Γ2 is not a theorem, then classical logic
does not hold.

Recall that we defined Uv in Section 2.3 to be the number of up-sets X ⊆ K≥v. The
following proposition holds for all Kripke frames with leaves and not only for finite trees.
We also do not need to assume that Uv is finite.

I Proposition 27. Let (K,≤) be a Kripke frame with leaves, (K,≤,D) be a blended model,
and v ∈ K. For every natural number n, we have that v  Γn+1 if and only if n ≥ Uv.

Proof. Given any up-set X ⊆ K≥v, we define the element 1vX to be the function

K≥v →
⋃
w≥v

Dw, w 7→

{
{0w}, if w ∈ X,
∅, otherwise.

Observe that 1vX ∈ Dv as it is monotone because X is an up-set. Further, we have 1vX 6= 1vY
for up-sets X 6= Y and therefore, v 6 1vX = 1vY . It follows that v  ∀y ∈ 1vX∀z ∈ y⊥ for all
up-sets X because 1vX(w) is either empty or contains the empty set for w ≥ v. We conclude
that v 6 Γn+1 for n < Uv taking the 1vX as witnesses.

Conversely, assume that n ≥ Uv. We will first show that whenever v  ∀y ∈ x∀z ∈ y⊥ for
some x ∈ Dv, then x is actually of the form 1vX for some up-set X ⊆ K≥v. For contradiction,
assume that x was not of the form 1vX for some up-set X. Then there is a node w ≥ v such
that x(w) contains an element y different from 0w. But then there must be a node u ≥ w
such that y(w) is non-empty. This is a contradiction to v  ∀y ∈ x∀z ∈ y⊥, and hence,
every element x ∈ Dv satisfying the above formula must be of the form 1vX . As there are
only Uv-many elements 1vX , we know that the conclusion of Γn+1 must be true at the node v.
Hence, v  Γn+1. J

1 The sentences Γn were also used in yet unpublished joint work with Lorenzo Galeotti and Benedikt
Löwe on the logics of algebra-valued models of set theory; see also the discussion after Theorem 13 of
[12]. We adapt them here for the case of Kripke semantics.
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The following proposition is a special case of a more general proposition for Kripke models
of predicate logic.

I Proposition 28. Let (K,≤) be a Kripke frame with leaves, (K,≤,D) be a blended model
and v ∈ K. If e 6 ϕ for all leaves e ≥ v, then v  ¬ϕ.

Proof. By the definition of our semantics, we know that v  ¬ϕ if and only if w 6 ϕ for
all w ≥ v. Assume that there was a node w ≥ v such that w  ϕ. By persistence we can
conclude that e  ϕ for every leaf e ≥ w. Hence, w 6 ϕ for all w ≥ v, so v  ¬ϕ. J

I Theorem 29. Let (K,≤,D) be a blended model based on a finite tree (K,≤) with leaves
e0, . . . , en−1. If there is a collection of ∈-sentences ϕi for i < n such that ej  ϕi if and only
if i = j, then (K,≤,D) is faithful.

Proof. Let (K,≤,D) be a blended model based on a finite tree (K,≤) with leaves e0, . . . , en−1
such that there is a collection of ∈-sentences ϕi for i < n such that ej  ϕi if and only if
i = j.

As (K,≤) is a finite tree, we know by Proposition 3 that every node v ∈ K is uniquely
determined by Uv and the set of leaves e ≥ v.

Let V be a valuation on (K,≤). For every p ∈ Prop, we need to find a sentence ρp in the
language of set theory such that JρpK(K,≤,D) = V (p). Due to the finiteness of K, it suffices to
consider up-sets of the form K≥v for some v ∈ K because general up-sets can be constructed
by finitely many disjunctions.

We will now prove for every v ∈ K that there is a sentence χv in the language of set
theory such that (K,≤,D), w  χv if and only if w ≥ v (i.e., w ∈ K≥v). Let χv be the
following sentence, where n = Uv + 1:

Γn ∧
∧
v 6≤ei

¬ϕi

By Proposition 27 and Proposition 28 it is clear that w  χv for all w ≥ v. For the converse
direction, let w ∈ K such that w 6≥ v. There are two cases.

First, if w < v, then Uw > Uv = n and hence w 6 Γn by Proposition 27. Hence, it follows
that w 6 χv.

Second, if w 6< v, then there must be a leaf ei ≥ w such that ei 6≥ v. By assumption
ei  ϕi and hence, w 6 ¬ϕi. But this means that w 6 χv.

This concludes the proof of the theorem. J

I Theorem 30. Let (K,≤) be a finite tree. Then there is a faithful blended model (K,≤,D)
based on (K,≤).

Proof. Let e0, . . . , en−1 be the set of leaves of (K,≤). Let M be a countable transitive
model of ZFC set theory. By set-theoretic forcing, we can obtain generic extensions M [Gi] of
M such that M [Gi] � 2ℵ0 = ℵi+1 for every i < n (see, e.g., [11, Theorem 6.17] for details).
Let Mei

= M [Gi], and (K,≤,D) be the blended model obtained from 〈Mi | i < n〉. Clearly,
Mei
� 2ℵ0 = ℵj+1 if and only if i = j. This implies, by Proposition 14, that ei  2ℵ0 = ℵj+1

if and only if i = j. In this situation, we can apply Theorem 29 to conclude that (K,≤,D) is
faithful. J
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4.2 The de Jongh Property for IZF and CZF
In this section, we will draw conclusions regarding the de Jongh property for IZF and CZF
from the main result of the previous section.

I Theorem 31. Intuitionistic set theory IZF has the de Jongh property with respect to every
intermediate logic J that is characterised by a class of finite trees.

Proof. Let J be an intermediate logic with L(K) = J , where K is a class of finite trees. We
have to show that L(IZF(J)) = J , i.e., for every propositional formula, we have that:

J ` ϕ if and only if IZF(J) ` ϕσ for all substitutions σ : Prop→ Lsent
∈ .

The direction from left to right is immediate from the definition of IZF(J). We will prove
the converse direction by contraposition.

Assume that there is ϕ such that J 6` ϕ. As J is characterised by K, there is a frame
(K,≤) ∈ K and a valuation V such that (K,≤), V 6 ϕ. By Theorem 30 and the assumption
that K consists of finite trees, we can find a faithful blended model (K,≤,D) based on (K,≤).
For every propositional letter p ∈ Prop, let ψp be a sentence in the language of set theory
such that JψpK(K,≤,D) = V (p). Define an assignment σ : Prop→ Lsent

∈ by σ(p) = ψp.
We prove by induction on propositional formulas χ, simultaneously for all v ∈ K that:

(K,≤), v  χ if and only if (K,≤,D), v  χσ.

The base case for propositional letters follows directly from the definition of σ. Further-
more, the induction cases for the connectives →, ∧ and ∨ follow directly from the fact that
their semantics coincide in Kripke models for IPC and in blended models. This finishes the
induction.

Hence, it follows from the induction that (K,≤,D) 6 ϕσ, and therefore, ϕ /∈ L(IZF(J)).
This finishes the proof of the theorem. J

I Corollary 32. Intuitionistic set theory IZF has the de Jongh property.

Proof. By Proposition 6, we know that IPC is complete with respect to the class of all finite
trees, i.e., this class characterises IPC. By the previous Theorem 31, this implies that IZF
has the de Jongh property. J

More examples of logics that are characterised by classes of finite trees are Gödel-
Dummett logic LC, the Gabbay-de Jongh logics Tn, and the logics of bounded depth BDn

(see Example 7).

I Corollary 33. Intuitionistic set theory IZF has the de Jongh property with respect to the
logics LC, Tn and BDn.

I Lemma 34. If a theory T has the de Jongh property with respect to a logic J , then any
theory S ⊆ T has the de Jongh property with respect to J .

Proof. We have to show that J ` ϕ if and only if S(J) ` ϕσ for all σ : Prop→ Lsent
∈ . The

implication from left to right is trivial. We prove the other direction by contraposition. So
assume that J 6` ϕ. By assumption, T has the de Jongh property with respect to J and
hence there is some σ such that T (J) 6` ϕσ. As S ⊆ T , it follows that S(J) 6` ϕσ. J

I Corollary 35. Constructive set theory CZF has the de Jongh property with respect to every
intermediate logic J that is characterised by a class of finite trees. In particular, CZF has the
de Jongh property with respect to the logics IPC, LC, Tn and BDn.
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In fact, Lemma 34 implies that Corollary 35 holds for any set theory T ⊆ IZF based
on intuitionistic logic. Indeed, any set theory T that is weaker than IZF has the de Jongh
property with respect to every intermediate logic J that is characterised by a class of finite
trees.

5 Open Questions

In this paper, we defined a class of Kripke models for intuitionistic set theory IZF, the blended
Kripke models. We then used these models to prove a range of de Jongh properties for
IZF and CZF. It would certainly be interesting to find a constructive proof of the results
presented in this paper.

I Question 36. Does intuitionistic set theory IZF have the de Jongh property with respect to
every intermediate logic?

Lubarsky used his Kripke models for independence results for CZF and IZF. For example,
he proved that it is consistent with CZF that the power set of 1 is a proper class (see [13];
for more results in this area see, e.g., [14, 15, 16]). We wonder whether our blended models
can be used for similar purposes.

I Question 37. Can we obtain independence results for IZF with blended models?

I Question 38. Is it possible to vary the construction of blended models to provide proper
models of CZF (i.e., models of CZF that are not also models of IZF)?
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Abstract
According to Haar’s Theorem, every compact topological group G admits a unique (regular, right
and) left-invariant Borel probability measure µG. Let the Haar integral (of G) denote the functional∫

G
: C(G) 3 f 7→

∫
f dµG integrating any continuous function f : G → R with respect to µG. This

generalizes, and recovers for the additive group G = [0; 1) mod 1, the usual Riemann integral:
computable (cmp. Weihrauch 2000, Theorem 6.4.1), and of computational cost characterizing
complexity class #P1 (cmp. Ko 1991, Theorem 5.32).

We establish that in fact, every computably compact computable metric group renders the Haar
measure/integral computable: once using an elegant synthetic argument, exploiting uniqueness in a
computably compact space of probability measures; and once presenting and analyzing an explicit,
imperative algorithm based on “maximum packings” with rigorous error bounds and guaranteed
convergence. Regarding computational complexity, for the groups SO(3) and SU(2), we reduce the
Haar integral to and from Euclidean/Riemann integration. In particular both also characterize #P1.
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34:2 Computing Haar Measures

I Fact 1. Let (G, e, ◦, ·−1) denote a group and (G, d) a compact metric space such that the
group operation ◦ and inverse operation ·−1 are continuous with respect to d (that is, form a
topological group). There exists a unique left-invariant Borel probability measure µG, called
Haar measure, on G. Moreover, µG is right-invariant and regular.

We refrain from expanding on generalizations to locally-compact Hausdorff spaces. Recall
that a left-invariant measure satisfies µ(U) = µ(g ◦ U) for every g ∈ G and every measurable
U ⊆ G. For the additive group [0; 1) mod 1, its Haar measure recovers the standard Lebesgue
measure λ, corresponding to the angular measure divided by 2π on the complex unit circle
group U(1) ∼= SO(2).

Each of the categories involved in Fact 1 has a standard computable strengthening, cmp.
[34, 30, 5]; and our first main result establishes them to combine nicely:

I Theorem 2. Let X be a computably compact computable metric space with a computable
group operation ◦ : X×X→ X. Then the corresponding Haar measure µ is computable.

That the Haar measure is computable means that we can approximate the measure of any
given open subset of X from below, and implies that we can compute the integral of any
given continuous function from X into R.

In contrast, recall that other classical results in Calculus, such as Brouwer’s Fixed Point
Theorem [19, 2] or Peano’s Theorem [27], do not carry over to computability that nicely.
And also common classical “constructive” existence proofs of the Haar measure [11, §58]
do employ limits without rate of convergence, well-known since Specker [31, 32] to possibly
leave the computable realm:

I Fact 3. For non-empty A,B ⊆ X let [A : B] denote the least number of left translates of
B that cover A. Then µ(A) = limB

[A:B]
[X:B] holds for every compact A ⊆ X, where the limit

exists in the sense of a net of open neighborhoods B of e.

In addition to the possibly uncomputable limit, the least integer defining [A : B] depends
discontinuously and uncomputably on the underlying data A,B.

We establish Theorem 2 with elegant arguments following the “synthetic” (i.e. implicit,
functional) approach to Computable Analysis developed in [21]. It follows the following
general strategy [7] (also explained in [21, Section 9]) for proving computability of some
object Ω living in an admissibly represented space by three steps:

I) Obtain a definition of Ω as the element of a computably closed set.
II) Obtain a computably compact set containing Ω.
III) Find a classical proof that (I) and (II) uniquely determine Ω.
As warm-up let us illustrate this approach to assert computability of the group unit e from
the hypothesis of Theorem 2: For any fixed computable element a ∈ G, (I) e belongs to
the computably closed set {y : a ◦ y = a} and (II) to the compact set Ω = X and (III) is
uniquely determined by (I) and (II). Similarly, for every x ∈ G, its inverse x−1 (I) belongs to
{y : x◦y = e} and (II) to the compact set Ω = X and (III) is uniquely defined by x◦x−1 = e.
Note that this proof does not immediately yield an algorithm computing e or x 7→ x−1.

In this spirit, Section 3 establishes Theorem 2. The challenge consists in (I) obtaining a
computable definition of the Haar measure µ: The inequality µ̃(U) 6= µ̃(xU) expressing a
candidate measure ũ to violate invariance is not even recognizable, since µ̃(U) is in general
only a lower real. Subsection 3.1 avoids that by allowing to consider pairs of sets in Lemma 12.
Section 4 complements Section 3 by devising and analyzing an explicit, imperative algorithm
for computing Haar integrals C(f) 7→

∫
X
f dµ. It is based on “maximal packings”: finite sets

Tn ⊆ X of points with pairwise distance > 2−n. Intuitively, the ratio |Tn ∩A|/|Tn| of those
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points contained in a given set A should approximate its measure µ(A); however, rigorously,
this is wrong – and counting is uncomputable anyway. Subsections 4.1 and 4.2 describe a
combination of mathematical and algorithmic approaches that avoid these obstacles. The
superficially different hypotheses to Sections 4 and 3 are compared in Section 5. There we
also give some examples showing that these requirements are not dispensable; and analyze
which information of a compact metric group determines its Haar measure.

Having thus asserted computability, the natural next question is for efficiency. We consider
here the non-uniform computational cost of the Haar integral functional∫

G

: C(G) 3 f 7→
∫
f dµG ∈ R (1)

integrating continuous real functions f : G→ R. For the arguably most important additive
groups G = [0; 1)d mod 1 with Lebesgue measure λd, this amounts to Euclidean/Riemann
integration – whose complexity had been shown to characterize the discrete class #P1 [14,
Theorem 5.32] cmp. [8, 33]: indicating that standard quadrature methods, although taking
runtime exponential in n to achieve guaranteed absolute output error 2−n, are likely optimal.
And Section 6 extends this numerical characterization of #P1 to the arguably next-most
important compact metric groups:

I Theorem 4. Let G denote any of the following compact groups, considered as subsets of
Euclidean space and equipped with the intrinsic/path metric:
i) SO(3) ⊆ R9 of orthogonal real 3× 3 matrices of determinant 1,
ii) O(3) ⊆ R9 of orthogonal real 3× 3 matrices,
iii) SU(2) ⊆ R8 of unitary complex 2× 2 matrices of determinant 1,
iv) U(2) ⊆ R8 of unitary complex 2× 2 matrices.

a) For every polynomial-time computable f ∈ C(G),
∫
G
f ∈ R is computable in polynomial

space (and exponential time).
b) If FP1 = #P1 and f ∈ C(G) is polynomial-time computable, then so is

∫
G
f ∈ R.

c) There exists a polynomial-time computable f ∈ C(G) such that polynomial-time computab-
ility of

∫
G
f ∈ R implies FP1 = #P1.

The proof of this result proceeds by mutual polynomial-time continuous (i.e. Weihrauch)
reduction from and to Euclidean/Riemann integration. Subsection 6.1 describes our im-
plementation and empirical evaluation of rigorous integration on SU(2) in the iRRAM C++
library.

2 Background

In the following, we give a brief introduction to the key notions from computable analysis we
need. For a formal treatment, we refer to [21]. Further standard references for Computable
Analysis are [35, 1].

Computable analysis is concerned with represented spaces, which equip a set with a
notion of computability by coding its elements as infinite binary sequences. We have
various constructions of new represented spaces available, and use in particular the derived
spaces O(X) of open subsets of X (characterized by making membership recognizable) and
C(X,Y) of continuous functions from X to Y, characterized by making function evaluation
computable.

Computable compactness and computable overtness of a space are characterized by
making universal and existential quantification preserve computable open predicates. We
also use that admissibility of a space means that from a compact singleton we can extract the
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34:4 Computing Haar Measures

point [29]. A space is computably Hausdorff, if inequality is semidecidable. It is computably
separable, if it has a computable dense sequence. Being computably separable implies being
computably overt.

A particular convenient class of represented space are the computable metric spaces
(CMS). We can start with a designated dense sequence on which the metric is computable
(given indices), and then represent arbitrary points as limits of fast converging sequences.
CMSs are in particular computably Hausdorff and computably separable. The prototypic
example of a CMS are the reals R. We write CCCMS for computably compact computable
metric space.

There is a further relevant represented space with the reals as underlying set, namely
the space of lower reals R. Here a real is represented as the supremum of a sequence of
rational numbers (without any limitation on convergence rates). This space is relevant for
us as we can introduce the computability structure of the space of (probability) measures
on an arbitrary represented space X by considering them as the subspace of C(O(X),R<)
of functions satisfying the properties of a (probability) measure. More precisely, these
correspond to continuous valuations. Let PM(X) denotes the space of probability measures
on X.

A useful theorem is that for a CCCMS X, also PM(X) is a CCCMS. Here we can use
the Wasserstein-Kantorovich-Rubinstein metric

W (µ, ν) = sup
{∣∣ ∫ f dµ −

∫
f dν

∣∣ : f : X → R, ∀x, y ∈ X : |f(x)− f(y)| ≤ d(x, y)
}

If X a complete metric space, PM(X) is again a complete metric space; and convergence
w.r.t. W is equivalent to weak convergence. For an introduction to computable probability
theory, see [4]. Some further results are found in [24].

Regarding computational complexity of real numbers and real functions on compact
metric spaces, we refer to [14] and [13].

Recall that #P1 is the class of all integer functions ϕ : {0}∗ → N with unary arguments
counting the number of witnesses

ϕ(0n) = Card
{
~w ∈ {0, 1}poly(n) : 0n 1 ~w ∈ P

}
to a polynomial-time decidable predicate P ⊆ {0, 1}∗; a class commonly conjectured to lie
strictly between (the integer function versions of) NP1 and PSPACE [20, §18].

3 The Haar measure is computable

In this section we shall establish Theorem 2 using the approach to computable analysis
via synthetic topology [6] outlined in [21]. To this end, we first obtain a more technical
result stating that left-invariance of a Radon probability measure for some continuous binary
operation constitutes a computably closed predicate:

I Theorem 5. Let X be a computable metric space. For µ ∈ PM(X) and g ∈ C(X×X,X)
the following predicate is computably closed:

∀U ∈ O(X), ∀x ∈ X µ(U) = µ({y ∈ X g(x, y) ∈ U})

In view of the general strategy for computability proofs from Section 1, this establishes (I).
Regarding (II) recall [9, §2.5] that, if X is a computably compact computable metric space,
then so is PM(X). Finally, uniqueness in Haar’s theorem takes care of Condition (III).
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3.1 Disjoint pairs of open sets

Prima facie, the condition in Theorem 5 appears to be complicated. As measures of open
sets are only available as lower reals, we cannot even recognize inequality. The workaround
consists in considering pairs of disjoint open sets rather than individual open sets. We shall
see that quantification over such pairs is unproblematic for the spaces we are interested in
here.

Given a represented space X, we define the space DPO(X) as the subspace {(U, V ) |
U ∩ V = ∅} ⊆ O(X)×O(X).

I Observation 6. X is computably overt iff DPO(X) is a computable element of A(O(X)×
O(X)).

Proof. If X is computably overt, then U ∩ V 6= ∅ is a recognizable property given (U, V ) ∈
O(X)×O(X). Conversely, we find that (U,X) /∈ DPO(X) iff U 6= ∅. J

I Corollary 7. If X is computably overt, then DPO(X) is computably compact.

Proof. The space O(X) is computably compact, as it contains ∅ as a computable bottom
element. Then O(X) × O(X) is computably compact as a product, and finally the claim
follows by noting that a computably closed subspace of a computably compact space is
computably compact and invoking Observation 6. J

I Lemma 8. If X is computably separable, effectively countably based and computably
Hausdorff, then DPO(X) is a computable element of V(O(X)×O(X)).

Proof. It is shown in [25] that under the given conditions, we can obtain an adequate formal
disjointness notion on basic open sets. We can then obtain a dense sequence in DPO(X) by
constructing pairs of finite unions of basic open sets with the additional requirements that
each basic open set is formally disjoint from all basic open sets listed in the opposite finite
union. J

I Corollary 9. If X is computably separable, effectively countably based and computably
Hausdorff, then DPO(X) is computably compact and computably overt.

I Definition 10. Given f ∈ C(X,X), (U, V ) ∈ DPO(X) and µ ∈ PM(X), we say that
(U, V ) is µ-invariant under f , iff:

µ(U) + µ(f−1(V )) ≤ 1

I Observation 11. (U, V ) being µ-invariant under f is a computably closed property.

I Lemma 12. Let X be computably separable, effectively countably based and computably
Hausdorff. Then “all pairs from DPO(X) are µ-invariant under f” is a computably closed
property in µ ∈ PM(X) and f ∈ C(X,X).

Proof. Computably closed properties are closed under universal quantification over comput-
ably overt sets. So we just combine Observation 11 and Corollary 9. J
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34:6 Computing Haar Measures

3.2 Proof of Theorem 5
To be able to invoke the results of the previous subsection we need to relate invariance of
disjoint pairs of open sets to invariance of individual open sets.

I Lemma 13. For a computable metric space X, µ ∈ PM(X) and f ∈ C(X,X) the following
are equivalent:
1. All pairs from DPO(X) are µ-invariant under f .
2. For all U ∈ O(X) it holds that µ(U) = µ(f−1(U)).

Proof. 2. implies

µ(U) + µ
(
f−1(V )

)
= µ

(
f−1(U)

)
+ µ

(
f−1(V )

) (∗)= µ
(
f−1(U) ∪ f−1(V )

)
≤ 1

with (*) since f−1(U) and f−1(V ) are disjoint.

For the converse, assume that U witnesses that f is not invariant, i.e. µ(U) 6= µ(f−1(U)).
We shall argue that this implies the existence of a disjoint pair of open sets which is not
µ-invariant under f . Let δ = 1

3 |µ(U)− µ(f−1(U))|. Consider the sets B−ε(U) = {x ∈ X |
d(x, UC) > ε}. Since U =

⋃
ε>0 B−ε(U) is a nested union and f is continuous, we find

that µ(U) = supε>0 µ(B−ε(U)) and µ(f−1(U)) = supε>0 µ(f−1(B−ε(U))). Consequently,
there exists some ε0 such that for all ε < ε0 it holds that |µ(U) − µ(B−ε(U))| < δ and
|µ(f−1(U))− µ(f−1(B−ε(U)))| < δ.

Next, consider the sets D−ε(U) := {x ∈ X | d(x, UC) = ε}. Since for different ε these
sets are disjoint, we know that for only countably many ε can it hold that µ(D−ε(U)) > 0.
The sets f−1(D−ε(U)) are disjoint, too, and thus the same argument applies. We can
thus select some ε1 < ε0 such that µ(D−ε1(U)) = µ(f−1(D−ε1(U))) = 0. This ensures
that µ(B−ε1(U)) + µ((B−ε1(U)C)◦) = 1 and µ(f−1(B−ε1(U))) + µ(f−1((B−ε1(U))C)◦) = 1.
Moreover, we know that |µ(B−ε1(U))− µ(f−1(B−ε1(U)))| > δ from ε1 < ε0, so depending
on the sign of the difference, either (B−ε1(U), (B−ε1(U)C)◦) or ((B−ε1(U)C)◦, B−ε1(U)) is
not µ-invariant under f . J

Proof of Theorem 5. By Lemma 13 we can replace the invariance for open sets by invariance
for disjoint pairs of open sets. By Lemma 12, this is a computably closed property for each
fixed choice of continuous function y 7→ g(x, y). The additional universal quantification over
the computably overt space X preserves being a computably closed predicate. J

4 Explicit computation of the Haar measure

The synthetic arguments from Section 3 establishing computability (Theorem 2) do not
immediately exhibit an actual algorithm. To this end, the present section takes a more
explicit approach. Its assumptions superficially differ but will be shown equivalent (in a
sense to be formalized) in Section 5. Among others, we suppose computability of the size
of maximum packings. This is a notion asymptotically related to, yet in detail (maximum
packing vs. minimum covering, open vs. closed balls) subtly different from, Kolmogorov’s
metric entropy [16], to the separation bound from [36, Definition 6.2], and to the capacity
from [13, Definition 12]. All three notions can be regarded as integer Skolemizations (i.e.
moduli) of total boundedness [15, Def 17.106].

I Definition 14. For any compact metric space (X, d) and its subset U ⊆ X,
1. T ⊆ U is called an n-packing of U if ∀x, y ∈ T (x 6= y)→ d(x, y) > 2−n.
2. An n-packing T is maximum if |T | ≥ |S| for every n-packing S of U .
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3. {Tn}∞n=1 is a sequence of maximum packings if each Tn is a maximum n-packing.
4. κU : N→ N is the size of maximum packings of U if κU (n) = |Tn| where Tn is a maximum

n-packing.
If U = X, the term “of U” is omitted.

Our definition features strict inequality of pairwise distances: this asserts that a maximum
n-packing Tn can be found algorithmically by exhaustive search, provided that its size is
given/computable.

I Theorem 15. Let (X, d) be a computable metric space and (X, e, ◦, ·−1) a compact topolo-
gical group. Suppose that the metric d is bi-invariant:

∀a, b, c ∈ X : d(a ◦ c, b ◦ c) = d(a, b) = d(c ◦ a, c ◦ b)

And suppose that the size of maximum packings κX : N→ N is computable. Then the Haar
integral C(X) 3 f 7→

∫
X
f dµ is computable.

Recall [35, §8.1] that a computable metric space (X, d) comes with a dense sequence ξ : N→ X

such that the real double sequence d : N× N 3 (a, b) 7→ d
(
ξ(a), ξ(b)

)
is computable. Note

that, as opposed to Theorem 2, we do not suppose the group operation ◦ (nor neutral
element nor inversion) to be computable but instead require the metric to be bi-invariant.
See Section 5 for a comparison between the different hypotheses.

4.1 Mathematical Estimates of Haar Measures
Invariance of both metric d and Haar measure µ implies that the content µ(B) of an open ball
B = Br(c) depends only on its radius r, but not on its center c. Intuitively, for a sufficiently
large maximum packing T , said volume should be approximated by the ratio of points in
B to the total number of points (Definition 18). If Br(c) contains significantly smaller a
fraction, then by double counting some other Br(c′) would need to “compensate” with a
larger fraction, hence invariance suggests that more points can be added to T at B(r, c) as
well, contradicting maximality. Lemma 17 below formalizes this idea both in its statement
and proof.

I Definition 16. For a metric space (X, d) and its subset U ⊆ X, we introduce the outer
generalized closed ball as Br(U) := {x ∈ X | d(x, U) ≤ r}. Similarly, the inner generalized
closed ball is introduced as B−r(U) = {x ∈ X : d(x, U c) ≥ r}.

For 0 ≤ r, s it holds

B+r(B−r(U)) ⊆ U ⊆ B−r(B+r(U)), B+r(B+s(U)) ⊆ B+r+s(U) (2)

I Lemma 17. Suppose (X, d, ◦) is a compact topological group with bi-invariant metric d
and a maximum n-packing Tn of size κX(n). Then for any x ∈ X and measurable U ⊆ X it
holds:

κB−2−n (U)(n) ≤ |Tn ∩ xU | ≤ κB2−n (U)(n)

I Definition 18. Abbreviate µT := 1
|T |
∑
p∈T δp where δp denotes the Dirac measure.

I Lemma 19. Let (X, d, ◦) be a compact topological group with bi-invariant metric d and
Haar measure µ, and Tn a maximum n-packing. Then for any U ⊆ X:

µ
(
B−2−n+2(U)

)
≤ µTn

(
B−2−n+1(U)

)
≤ µ(U) ≤ µTn

(
B2−n+1(U)

)
≤ µ

(
B2−n+2(U)

)
For the illustration of Lemma 19, see Figure 1.
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34:8 Computing Haar Measures

Figure 1 Illustration of Lemma 19. A blue rectangle represents the space. Blue points represent
the maximum n-packing. A black shape represents U . Blue colored shapes represent inner and outer
generalized balls. Counting cross-marked points and dividing it by the number of (any) points gives
µTn

(
B−2−n+1 (U)

)
and µTn

(
B2−n+1 (U)

)
.

4.2 Algorithmic Approximation of Haar Measures
Our strategy to compute µ(U) with Lemma 19 is to compute µTn

and assert that the sequence
of intervals

{ [
µTn

(
B−2−n+1(U)

)
, µTn

(
B2−n+1(U)

) ] }∞
n=1 include µ(U), and that its length

converges to zero. However, there are two obstacles:
1. µT is discrete (i.e. the value of µT (U) can jump even by a small perturbation to U),

which makes it uncomputable.
2. If limr→0 µ(Br(U)) = µ(U), then Lemma 19 guarantees that the length of the interval

converges. However, the hypothesis may not hold in general.
This section works around these obstacles and gives an algorithm that can compute the
measure of sufficiently rich a class of sets to perform the integration.

The first thing to address is µT . It is not computable, but procedure pseudoCount below
can bound its measure on closed sets whose distances to any given points is computable.
The latter condition is known as being (Turing-) located [10]:

I Definition 20. A closed subset S of a computable metric space (X, d) is located if the
continuous function X 3 p 7→ d(p, S) ∈ R is computable.

Located sets are sometimes called computably closed sets, but being located is different from
being a computable element of A(X).

Our workaround to the second obstacle is, instead of trying to compute the measure of
every closed set, to effectively “approximate” the given set by those satisfying the convergence
condition and to compute their measure. Let us define such sets first:

I Definition 21. On a topological space (X, τ) with a Borel measure µ, call a measurable
set U co-inner regular iff

µ(U) = sup
{
µ(V ) | V ⊆ U open and measurable

}
.

On a compact metric group (X, d, ◦) with the Haar measure µ where d is bi-invariant, a real
number r > 0 is a co-inner regular radius iff for some/all p ∈ X, the ball Br(p) is co-inner
regular.

Indeed, invariance of d and µ implies that Br(p) is co-inner regular iff Br(q) is. Note that
since Haar measures are regular, on a compact metric group with a bi-invariant metric and a
Haar measure, if a set U is co-inner regular, then µ(∂U) = 0, giving limr→0 µ(Br(U)) = µ(U).

I Lemma 22. Let (X, d, ◦) be a compact topological group with bi-invariant metric d, Haar
measure µ, and computable size κX of maximum packings. If the closure of U is located and
co-inner regular, then the procedure computeMeasure computes its measure µ(U).
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Procedure computeMeasure(U , {Tm}∞m=1, n).
Data: U located co-inner regular set, {Tm}∞m=1 computable sequence of maximum

packings, n target precision
Result: A rational number q s.t. |q − µ(S)| ≤ 2−n.
error ← ∞;
m← 0;
while error > 2−n do

r ← 2−m;
a← pseudoCount(B−r(U), Tm, m+ 1));
b← pseudoCount(Br/2(U), Tm, m+ 1));
error ← b− a ;
m← m+ 1;

end
return any p ∈ interval

Procedure pseudoCount(S, T , n).
Data: S a located set, T a finite set of points, n error parameter, dist(p, S,m)

approximate distance between p ∈ T and S up to 2−m.
Result: A rational q where µT (S) ≤ q ≤ µT (B2−n(S))
count← 0;
foreach p ∈ T do

if dist(p,S,n+ 2) < 2−n−1 then
count← count + 1;

end
end
return count

|T |

Note that computeMeasure in turn calls pseudoCount(p, S, n).
Not every closed ball is co-inner regular, but “sufficiently” many are: Co-inner

regular radii can be effectively found to compute Haar measures in the form of
the Haar integral by findCoInnerRegularRadius. Figure 2 illustrates the procedure
findCoInnerRegularRadius. λx.findCoInnerRegularRadius(a, b, {Tm}∞m=1, x) is a nested
sequence of intervals that converges to a co-inner regular radius.
findCoInnerRegularRadius achieves this by recursively dividing and outputting the inter-
val. That is, findCoInnerRegularRadius(a, b, {Tm}∞m=1, n) first computes the (n − 1)-th
interval (findCoInnerRegularRadius(a, b, {Tm}∞m=1, n− 1)) and outputs the n-th interval
by dividing it. The procedure divides the (n−1)-th interval into two parts [r1, r5] and [r5, r9],
computes corresponding measures µ(Br1), µ(Br5), µ(Br9), and picks the interval which has
smaller difference of measures. In this case, since µ(Br5)−µ(Br1) ≤ µ(Br9)−µ(Br5), [r1, r5]
is picked. This strategy makes the difference of measures converges to zero since it is always,
at least, halved on each iterations. This gives a co-inner regular radius, because in fact
co-inner regular radii are continuity points of the function r 7→ µ(Br).

I Lemma 23. Procedure findCoInnerRegularRadius computes a co-inner regular radius
in the form of λx.findCoInnerRegularRadius(a, b, {Tm}∞m=1, x).
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r1

µ(Br1)

r5

µ(Br5)

r9

µ(Br9)

Figure 2 Illustration of procedure findCoInnerRegularRadius. Here, an example graph of
the discontinuous function r 7→ µ(Br) is shown. Note that µ(Br(p)) = µ(Br(q)) because of the
invariance of the metric and the Haar measure.

Procedure findCoInnerRegularRadius(a, b, {Tm}∞m=1, n).
Data: a < b rational bounds between which to look for a co-inner regular radius,

{Tm}∞m=1 sequence of maximum packings, n target precision.
Result: Rational bounds an, bn s.t. (a < an−1 < an < bn < bn−1 < b) ∧ (bn − an ≤

2−n) ∧ |µ(Ban(p))− µ(Bbn(p))| ≤ 2−n for any/all p ∈ X.
(an−1, bn−1)← findCoInnerRegularRadius(a, b, {Tm}∞m=1, n− 1);
r1, r5, r9 ← 9an−1+1bn−1

10 , 5an−1+5bn−1
10 , 1an−1+9bn−1

10 ;
Pick sufficiently large N s.t. 2−N+2 ≤ bn−1−an−1

10 ;
Compute an element p ∈ X using the fact that X is a computable metric space;
m1,m5,m9 ← pseudoCount(Br1(p), TN , N), pseudoCount(Br5(p), TN , N),
pseudoCount(Br9(p), TN , N);
ε← bn−1−an−1

10 ;
if m9 −m5 ≤ m5 −m1 then return [r1 + ε, r5 − ε] else return [r5 + ε, r9 − ε];

Proof. λx.findCoInnerRegularRadius(a, b, {Tm}∞m=1, x) represents r := limn→∞ an, where
an is the first element of the interval that findCoInnerRegularRadius outputs. r is a co-
inner regular radius because the fact r ∈ (an, bn) makes ∂Br(p) ⊆ Bbn

(p) \Ban
(p), which

leads to µ(∂Br(p)) ≤ |µ(Bbn
(p))− µ(Ban

(p))| ≤ 2−n for any n. This implies µ(∂Br(p)) = 0.
Now it is sufficient to prove the postconditions. Let us only prove µ(Ban(p))− µ(Bbn(p))

≤ 2−n, since others are straightforward. Let ri := ian−1+(10−i)bn−1
10 and mi := µ(Bri

(p)).
Because of Lemma 19 and the fact that N is sufficiently large, µ(Bri

(p)) ≤ µTN
(Bri+1(p)) ≤

mi+1 ≤ µTN
(Bri+1+2−N (p)) ≤ µ(Bri+2(p)). Then since 2−n+1 ≥ |µ(Ban−1(p))−µ(Bbn−1(p))|

≥ |m9 −m1| ≥ |m9 −m5| + |m5 −m1|, WLOG |m5 −m1| ≤ 2−n. Then |µ(Br5−ε(p)) −
µ(Br1+ε(p))| ≤ |m5 −m1| ≤ 2−n. J

4.3 Main Algorithm for Haar Integration

Explicit algorithm of Theorem 15. The procedure computeIntegral computes the Haar
integral

∫
X
f dµ. Generalizing classical Riemann sums, it partitions X into subsets Ui, i ≤ N ,

of sufficiently small diameter (see Figure 3): given by a modulus of continuity such that
f on each Ui varies by at most 2−n. Then it sums those values of f |Ui

, each weighted
by the measure of Ui. In order to invoke computeMeasure, we want the Ui to be located
and co-inner regular: as provided by findNicePartition. Specifically, each Ui will be
of the form Ui = BR(pi) \

⋃
j<iBR(pj) for p1, . . . , pN ∈ Tm and real R > 0 provided by

findCoInnerRegularRadius.
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Figure 3 Consider the whole rectangle as the whole space. Then this is how the procedure
computeIntegral partitions the space. For example, the subset containing p1 is BR(p1). Similarly,
the subset containing p2 is BR(p2) \BR(p1), the subset containing p3 is BR(p3) \ (BR(p1) ∪BR(p2)),
and so on. Then the subsets of the partition are of the form BR(pi) \

⋃
j<i

BR(pj).

Procedure computeIntegral(f , {Tm}∞m=1, n).
Data: real function f , sequence of maximum packings {Tm}∞m=1, target precision n
Result: a rational number q s.t. |q −

∫
X
fdµ| ≤ 2−n

mf ← modulus(f , n+ 1) ; // modulus is from [14, Definition 2.12]
{Ui}Ni=1 ← findNicePartition({Tm}∞m=1, mf);
M ← bound(|f |);
foreach Ui in {Ui}Ni=1 do

pi ← center(Ui);
mi ←computeMeasure(Ui, {Tm}∞m=1, n+ 1 + i+ logM);

end
return

∑N
i=1 mif(pi)

Recall the comment after Definition 14 that we may suppose a sequence Tm of maximum
packings is given. J

5 Discussion of Hypotheses

While the requirements of Theorem 2 and Theorem 15 appear to be very different, it turns
out that actually, both theorems are applicable in the very same cases.

For one direction, suppose we have a computably compact computable metric space (X, d)
with a computable group operation ◦. Then1

d′(a, b) := supx∈X supy∈X d(x ◦ a ◦ y, x ◦ b ◦ y)

constitutes a topologically equivalent and also computable, but now bi-invariant, metric. The
size of maximum packings may be non-computable for a CCCMS. However, for any CCCMS
there is a computable sequence of radii converging to zero for which we can compute the
maximum packings. It is straightforward to see that this suffices for Theorem 15. As such,
we see that the requirements for Theorem 15 are implied by those of Theorem 2.

1 We appreciate relevant discussion on MathOverflow [22].
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Procedure findNicePartition({Tm}∞m=1, n).
Data: {Tm}∞m=1 is a sequence of maximum packings, n is the target precision
Result: A partition P = {Ui}Ni=1 s.t. each Ui is a located co-inner regular set of the

form Ui = BR(pi) \
⋃
j<iBR(pj).

P ← {};
R← λx. findCoInnerRegularRadius((2−n−1, 2−n), {Tm}∞m=1, x);
foreach pi in Tn+1 do

Ui ← BR(pi) \
⋃
U∈P U ;

P ← P ∪ {Ui};
end
return P

For the converse direction, note that Theorem 15 does not suppose the group operation
◦ (nor neutral element nor inversion) to be computable. Indeed, a group operation on a
CCCMS can have a computable bi-invariant metric but fail to be computable itself. This
is due to the potential for many different group operations to have the same bi-invariant
metric:

I Example 24. Fix some A ⊆ N. Let Gn := IZp2
n
if n ∈ A, and let Gn := Zpn × Zpn if

n /∈ A, where pn is the n-th prime. Note that both have cardinality p2
n but are not isomorphic

as additive groups yet both have the same Haar measure under the bi-invariant discrete
metric. Now let GA := Πn∈AGn, equipped with the Baire space metric. For A 6= B we find
that GA and GB are not homeomorphic. The group operation on GA is computable iff A is
decidable. However, both the bi-invariant metric structure on GA and the Haar measure are
all independent of A, and computable.

Interestingly, the Haar measure on a compact group is determined already by an invariant
metric and independent of the potentially many different underlying group operations:

I Corollary 25. Consider a compact metric space (X, d) with two group operations ◦ and ◦′
both rendering d left-invariant. Then (X, ◦) and (X, ◦′) induce the same Haar measure.

Proof. In the metric case, the net of neighborhoods B of e from Fact 3 becomes a sequence
of open balls B1/2n(e). Left-invariance implies that all translates q ·Br(e) = Br(q) have the
same measure; and by the group property, every open ball Br(q) is a translate of Br(e): for
both ◦ and ◦′. In particular, [X : B1/2n ] = κX(n). J

On the other hand the collection of different group operations ◦ to a given bi-invariant metric
d is “tame”:

I Lemma 26. Let (X, d) be a CCCMS. The set O ⊆ C(X × X,X) of group operations
rendering d bi-invariant is a computably compact set.

Proof. If d is bi-invariant for ◦ ∈ C(X×X,X), the triangle inequality gives

d(a ◦ x, b ◦ y) ≤ d(a ◦ x, b ◦ x) + d(b ◦ x, b ◦ y) = d(a, b) + d(x, y) ≤ 2d((a, x), (b, y)) ;

rendering ◦ 2-Lipschitz with respect to the maximum metric on X ×X. By the effective
Arzelà-Ascoli theorem, the subset of 2-Lipschitz f ∈ C(X×X,X) is computably compact.
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Within this set, we are interested in those satisfying the bi-invariance and group axioms:

∀a, b, c : d
(
f(c, a), f(c, b)

)
= d(a, b) = d

(
f(a, c), f(b, c)

)
∃e, a′ : f(a, e) = a = f(e, a) ∧ f(f(a, b), c) = f(a, f(b, c)) ∧ f(a, a′) = e = f(a′, a)

These are computably closed predicates since the quantification is over the computably
compact and computably overt space X. This ends the proof, since a computably closed
subset of a computably compact set is computably compact. J

We can combine Corollary 25 and Lemma 26 to see that Theorem 5 also implies that from
a CCCMS (X, d) such that some group operation is bi-invariant for d we can compute the
Haar measure for any such group operation.

To conclude this section, we shall consider a family of examples that show that we need
more computability requirements than that of the metric and of the group operation. We
consider the closed subgroups of (2N,⊕), where ⊕ denotes the componentwise exclusive or.
These subgroups are of the form

GA := {p ∈ 2N | ∀n ∈ A p(n) = 0}

for some A ⊆ N. Each GA inherits compactness, computable metrizability and the comput-
ability of the group operation from (2N,⊕).

GA is computably compact iff A is c.e., and effectively separable (and thus a computable
metric space) iff A is co-c.e. Now if we have the Haar measure µA on GA, we can recover
A since µA({p ∈ GA | p(n) = 1}) = 1

2 iff n /∈ A and µA({p ∈ GA | p(n) = 1}) = 0 iff n ∈ A.
We thus see that GA is a CCCMS iff µA is computable – so neither computable compactness
or computable separability are dispensable for the computability of the Haar measure.

If we already have a bi-invariant metric, computable compactness is even necessary:

I Theorem 27. Let (X, d) be a computable metric space with computable probability measure
µ such that µ(Br(x)) depends only on r but not on x. Then X is computably compact.

6 Computational Complexity of the Haar Integral

We now move beyond mere computability of the Haar measure, and consider the computational
complexity of this task for the groups G = SO(3), G = O(3), G = SU(2), and G = U(2). In
each case, the complexity turns out to be closely related to the complexity class #P1. We
prove Theorem 4, namely

a) For every polynomial-time computable f ∈ C(G),
∫
G
f ∈ R is computable in polynomial

space (and exponential time).
b) If FP1 = #P1 and f ∈ C(G) is polynomial-time computable, then so is

∫
G
f ∈ R.

c) There exists a polynomial-time computable f ∈ C(G) such that polynomial-time comput-
ability of

∫
G
f ∈ R implies FP1 = #P1.

To this end recall [14, Theorem 5.32] that (a), (b), and (c) are known for definite Riemann
integration

C[0; 1] 3 f̃ 7→
∫ 1

0
f̃(t) dt ∈ R .

Moreover, Item (c) remains true for f̃ ∈ C∞0 [0; 1]: the class of smooth (infinitely often
differentiable) f̃ : [0; 1]→ R such that f̃(0) = 0 = f̃(1); cmp. [8, 33].
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Before proceeding to the groups SO(3), O(3), SU(2), U(2), recall the argument for the
case U(1) =

{
exp(2πit) : 0 ≤ 1 ≤ 1

}
equipped with complex multiplication and the Haar

integral

C
(
U(1)

)
3 f 7→

∫ 1

0
f
(

exp(2πit)
)
dt :

So to see (c), consider the polynomial-time computable embedding

C0[0; 1] 3 f̃ 7→
(

exp(2πit) 7→ f̃(t)
)
∈ C

(
U(1)

)
.

And to see (a) and (b) for G = U(1), consider the polynomial-time computable embedding

C
(
U(1)

)
3 f 7→

(
t 7→ f(exp(2πit))

)
∈ C[0; 1] .

This also covers SO(2) ∼= U(1); and integration over O(2) ∼= SO(2)× {±1} amounts to two
integrals over SO(2).

Let H = {α+ iβ + jγ + kδ : α, β, γ, δ ∈ R} denote the quaternions, parameterized as real
quadruples with respect to units 1, i, j, k. The group SU(2) is well-known, and easily verified
to be, isomorphic to the multiplicative group H1 of quaternions of norm 1 (aka versors) via
isomorphism

H1 3 α+ iβ + jγ + kδ 7→
(
α+ iβ −γ + iδ

γ + iδ α− iβ

)
∈ SU(2) (3)

with |α|2 + |β|2 + |γ|2 + |δ|2 = 1. Reparameterize H1 in generalized spherical coordinates

[0;π)× [0;π)× [0; 2π) 3 (η, ϑ, ϕ) 7→ Ψ(η, ϑ, ϕ) :=
cos(η) + i sin(η) cos(ϑ) + j sin(η) sin(ϑ) cos(ϕ) + k sin(η) sin(ϑ) sin(ϕ) ∈ H1

with Jacobian determinant
∣∣det

(
Ψ′(η, ϑ, ϕ)

)∣∣ = sin2(η) sin(ϑ), and verify that integration
by change-of-variables

C(H1) 3 f 7→
∫ 2π

0

∫ π

0

∫ π

0
f
(
Ψ(η, ϑ, ϕ)

)
· | det Ψ′(η, ϑ, ϕ)| dη dϑ dϕ (4)

is left-invariant, hence must coincide with the Haar integral on SU(2). Items (a) and (b)
thus follow by polynomial-time reduction to Euclidean/Riemann integration according to
Equation (4). And Item (c) follows by polynomial-time embedding

C
(
U(1)

)
3 f 7→ f̃ ∈ C(H1) ∼= C

(
SU(2)

)
, where

f̃ : H1 3 α+ iβ + jγ + kδ 7→ f
(
(α+ iβ)/

√
α2 + β2

)
·
√
α2 + β2 ∈ R .

Since continuous f on compact H1 is bounded, f
(
(α + iβ)/

√
α2 + β2

)
·
√
α2 + β2 → 0 as

α2 + β2 ↘ 0. Hence f̃ is indeed well-defined and remains polynomial-time computable by
continuous extension also for α2 + β2 = 0.

SO(3) is doubly-covered by H1, identifying q ∈ H1 with special orthogonal linear map

R3 3 (β, γ, δ) 7→ (β′, γ′, δ′) : iβ′ + jγ′ + kδ′
!=
(
q · (iβ + jγ + kδ) · q−1) .

Moreover O(3) ∼= SO(3)× {±1} and U(2) ∼= SU(2)× U(1). J
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6.1 Implementation and Evaluation
Based on the above reduction to ordinary Riemann integration, we have implemented
integration on SU(2) in the iRRAM C++ library [18]. The source code is available at
http://github.com/realcomputation/irramplus/tree/master/HAAR. Its empirical eval-
uation produced the following timing results:
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Figure 4 Empirical evaluation of rigorous integration on SU(2).

Specifically, we chose the Lipschitz-continuous function H1 3 w + xi + yj + zk 7→
|w| + |x| + |y| + |z| ∈ R to integrate without letting the algorithm exploit its particular
symbolic form and symmetry. Time measurements were performed on the virtual machine
that has Ubuntu 64-bit with 4 cores and 8GB RAM by VMware Workstation 15 Player.
The underlying computer has Intel(R) Core(TM) i7-7700K CPU 4.20GHz and 16GB RAM.
Execution time for each precision is the average execution time of 5 executions.

Note that the y-axis records the logarithm of the execution time in seconds. This time is
confirmed to grow exponentially with the output precision parameter n: as expected for a
#P1-complete problem.

7 Conclusion and Future Work

We have devised a computable version of Haar’s Theorem: proven once using the elegant
synthetic (implicit) approach and once developing and analyzing an explicit, imperative
algorithm. And we have established the computational complexity of the Haar integral
to characterize #P1 for each of the compact groups U(1),U(2),O(2),O(3),SU(2),SO(3).
Moreover, we implemented the algorithm for SU(2) in Exact Real Computation [3] and
confirmed that the experiment coincides with the complexity theorem. In fact, our proof
shows them mutually second-order polynomial-time Weihrauch reducible [12].

Future work will generalize the above complexity considerations to SO(4), to SO(d),
and to further classes of compact metric groups; and improve the implementation to achieve
practical performance.

On the abstract side of our work, an immediate question is whether we can generalize
from compact groups to locally compact groups (as was done for the classical Haar’s theorem).
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The price to pay for this generalization in the classic setting is that we no longer obtain a
unique probability measure, but merely a locally finite measure identified up to a constant
scaling factor. A notion of effective local compactness is available (see [23]), but any such
generalization seems to require new proof techniques beyond those employed in this article.
Recently, Davorin Lešnik has shown that this one can be done in synthetic topology, provided
that one is willing to relax the requirement that measures take values in the lower reals to
values in the Borel reals [17].
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The lambda-calculus with generalized applications is the Curry-Howard counterpart to the system
of natural deduction with generalized elimination rules for intuitionistic implicational logic. In this
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and standardization. In the end, we show that the cbn and cbv variants of the system simulate each
other via mappings based on extensions of the “protecting-by-a-lambda” compilation technique.

2012 ACM Subject Classification Theory of computation → Proof theory; Theory of computation
→ Lambda calculus

Keywords and phrases Generalized applications, Natural deduction, Strong normalization, Stand-
ardization, Call-by-name, Call-by-value, Protecting-by-a-lambda

Digital Object Identifier 10.4230/LIPIcs.CSL.2020.35

Funding The author was supported by Fundação para a Ciência e a Tecnologia (FCT) through
project UID/MAT/00013/2013.

1 Introduction

The λ-calculus with generalized applications [8], named system ΛJ , or λJ-calculus, cor-
responds, under the Curry-Howard isomorphism, to the system of natural deduction with
generalized elimination rules [10, 16], in the setting of intuitionistic implicational logic. As a
variant of the λ-calculus, ΛJ can be qualified naively as being a call-by-name (cbn) system,
simply because its β-rule prescribes that, in functional application, functions are called
without prior evaluation of arguments. In this paper we propose a call-by-value (cbv) variant
of system ΛJ and prove some of its properties. With this, we develop the cbv side of natural
deduction.

The novel system is named system ΛJv, or the λJv-calculus. Notably, the syntax of proof
terms remains the same as that of system ΛJ - and our purpose is to define cbv reduction
rules appropriate for this syntax. Moreover, the reduction rules of ΛJv will look like those of
ΛJ : there is a β-rule (corresponding to a “detour” conversion rule) and a π (corresponding to
a commuting conversion rule), the latter in fact unchanged w.r.t. ΛJ ; the notion of β-redex
is also unchanged; the only thing that will change is the concept of substitution.

Plotkin [11] sets a criterion for a calculus to be qualified as call-by-value: it should
enjoy a standardization theorem, and the notion of standard reduction sequence should
be based on a notion of call-by-value evaluation. We will prove a standardization theorem
for ΛJv that makes an explicit link to a notion of cbv evaluation. We also prove the main
rewriting-theoretic properties: confluence and strong normalization.

Plotkin [11] shows that cbn and cbv calculi based on the syntax of ordinary λ-terms
simulate each other via cps translations. The need to resort to cps translations is justified in
[11] by the fact that the “protecting-by-a-lambda” compilation technique (which easily gives
a simulation of cbn by cbv) does not extend to a simulation in the opposite direction. Here we
show that, when the syntax allows generalized applications, cps translations are not needed to
obtain simulation in both ways, as both simulations can be based on “protecting-by-a-lambda”.
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35:2 The Call-By-Value Lambda-Calculus with Generalized Applications

Plan of the paper. Section 2 reviews Λ, Plotkin’s Λv, and ΛJ . Section 3 introduces ΛJv.
Sections 4 and 5 prove strong normalization and confluence, respectively. Section 6 proves
standardization. Section 7 simulates the cbn and cbv variants into each other. Section 8
summarizes our contributions and concludes.

2 Background

System Λ. The ordinary λ-calculus is denoted Λ. The λ-terms are given by:

(Terms) M,N,P,Q ::= V |MN (Values) V,W ::= x |λx.M

We work modulo α-equivalence and assume silent renaming of bound variables as needed.
We write x /∈M to say that x does not occur free in M . Substitution is denoted [N/x]M .

Λ is equipped with the β-rule (λx.M)N → [N/x]M , which generates the relation →β

- the compatible closure of β. We use the common notations →=
β , →

+
β , →∗β , and =β for,

respectively, the reflexive, transitive, reflexive-transitive, and equivalence closures of→β (and
similarly for any other reduction rule in any other calculus in this paper).

An important role is played by λ-terms with holes. A hole, denoted [·], is a special
place-holder that can be filled with a λ-term. We will only consider terms with a single hole,
and call them contexts. If C is a context, the C[M ] denotes the λ-term resulting from filling
the single hole of C with M . Notice contexts allow an alternative definition of →β : P →β Q

iff P = C[(λx.M)N ] and Q = C[[N/x]M ], for some C.
We consider the familiar, Curry-style typing system, for assigning simple types to λ-terms.

Types, ranged over by A, B, C, etc. are formulas of implicational logic, which can either
be an atom p or an implication A ⊃ B. A sequent is an expression Γ ` M : A, where Γ
and M are called the base and the subject of the sequent, respectively. A base Γ is a set of
assignments x : A of types to variables, so that no variable is assigned two different types.
The familiar typing rules, which we refrain to repeat, determine the derivable sequents, and
define a natural deduction system for intuitionitic implicational logic. A λ-term M is typable
if there is a derivable sequent with M as subject.

System Λv. Plotkin’s cbv λ-calculus [11] is here named Λv. The terms of Λv are the
same λ-terms of Λ, but now the system is equipped with a variant of the β-rule, named βv:
(λx.M)V → [V/x]M . Here, for the function λx.M to be called, the argument is required to
be a value. Again, the compatible closure →βv of βv may be defined by C[(λx.M)V ] →βv

C[[V/x]M ]. For the typed version of the system, we employ the same typing system as for Λ.
Several authors [13, 6] have proposed extra reduction principles for Λv. Two of them will

be central in the present paper:

(ρ1) (λx.M)NQ → (λx.MQ)N
(ρ2) (λy.P )((λx.M)N) → (λx.(λy.P )M)N

The first is one of Regnier’s σ-rules [12]. The author has studied these rules in [3, 4], allowing
the second one in a more general form: P ((λx.M)N) → (λx.PM)N . A common idea to
ρ1 and ρ2 is to rearrange the term to reveal (potential) redexes: MQ in the former case,
(λy.P )M in the latter case1. We let ρ := ρ1 ∪ ρ2.

1 The name ρ intends to be mnemonic of this action of rearranging to reveal redexes. We find ρ preferable
to σ for two reasons: first, σ is a name one wishes to reserve to substitution rules; second, ρ2 is not one
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System ΛJ . The λ-calculus with generalized applications [8] is here named system ΛJ , or
the λJ-calculus. The λJ-terms are given by:

(Terms) M,N,P,Q ::= V |M(N, x.P ) (Values) V,W ::= x |λx.M

The constructor M(N, x.P ) is called generalized application; in it, “x.” is a binder of x, so x
is bound in P . Consistent with the generalized application terminology is to call (N, x.P )
the generalized argument of that application.

ΛJ is equipped with two rules:

(β) (λx.M)(N, y.P ) → [[N/x]M/y]P
(π) M(N, x.P )(N ′, y.P ′) → M(N, x.P (N ′, y.P ′))

The version of π adopted is the same as in [8]. One could have considered an “eager” version,
with contractum M(N, x.P@(N ′, y.P ′)), where operator @ is defined by

V@(N ′, y.P ′) = V (N ′, y.P ′)
M(N, x.P )@(N ′, y.P ′) = M(N, x.P@(N ′, y.P ′))

In this version of the rule, the generalized argument (N ′, y.P ′) is eagerly pushed in, until a
value is found. Operator @ will be used again in Section 5.

The typing system of ΛJ is obtained from the one for Λ by adopting the following rule
for typing generalized applications:

Γ `M : A ⊃ B Γ ` N : A Γ, x : B ` P : C
Γ `M(N, x.P ) : C GE ⊃

Such typing system defines a system of natural deduction with generalized elimination rules
[16]. Rule π is a “commutative conversion” caused by the repetition of formula C in GE ⊃.

3 The call-by-value variant

This section is dedicated to the call-by-value variant of ΛJ we introduce, named ΛJv. We
first motivate the system. In the second part of the section, we define the system.

3.1 Motivation
Consider the β-redex (λx.M)N . We will define a new contractum for this redex, making use
of a syntax where application is generalized. The contractum is again a substitution, but one
whose definition will express call-by-value - let us denote it by [N\x]M .

If N = V , no doubt we want to substitute ordinarily, as in Plotkin’s Λv, so we put

[V \x]M = [V/x]M (1)

But if N = M ′N ′, we want to postpone the call of λx.M and evaluate N first. Making use
of generalized application, we rewrite the original β-redex as M ′(N ′, x.M). Notice M ′N ′ is
actually M ′(N ′, z.z), so we want

[M ′(N ′, z.z)\x]M = M ′(N ′, x.M) (2)

of Regnier’s σ-rules. In [3, 4] these rules were called π1 and π2. There is some point in that choice of
names, even knowing that π is the name used in [8] for one of the reduction rules of ΛJ - a convention
we will maintain here. Still, we found it preferable to abandon π1 and π2 and give the rules a fresh and
useful name for the present paper.

CSL 2020
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How to complete the definition of [N\x]M , for the case N = M ′(N ′, z.P ′)? Just put

[M ′(N ′, z.P ′)\x]M = M ′(N ′, z.[P ′\x]M) (3)

Then we get (2) from (3) and (1).
Finally, how about starting off with (λx.M)(N, y.P )? As in ΛJ , the contractum consists

of two substitutions, but both of the new kind we have just defined.

3.2 System ΛJv

We now define system ΛJv, or λJv-calculus. The λJv-terms are the same as the λJ-terms.
Ordinary substitution will be used only in the form [V/x]M , with the actual parameter a
value V . We introduce left substitution, denoted [N\x]M , defined by recursion on N as
follows:

[V \x]M = [V/x]M
[N(Q, y.P )\x]M = N(Q, y.[P\x]M)

ΛJv has two reduction rules:

(βv) (λx.M)(N, y.P ) → [[N\x]M\y]P
(π) M(N, x.P )(N ′, y.P ′) → M(N, x.P (N ′, y.P ′))

Rule π is the same as ΛJ , rule βv is new. However, there is a formal similarity with rule β
from ΛJ - the only difference is in the substitution operator employed.

The typing system for ΛJv is the same as the typing system for ΛJ , with left substitution
being typed by the same admissible rule that types ordinary substitution. A λJv-term is
typable if it is the subject of some derivable sequent.

A routine result is subject reduction, already known for →π, and which also extends to
→βv . Perhaps more important is to recast rule βv as a proof normalization rule in natural
deduction with generalized elimination rules - this is done in Fig. 1.

We finish this section with some technical lemmas.

I Lemma 1 (Substitution lemma). In ΛJv:
1. [V/x][N\y]M = [[V/x]N\y][V/x]M , provided y /∈ V .
2. [N\x][N ′\y]M = [[N\x]N ′\y]M , provided x /∈M,y /∈ N .

Proof. Routine. J

I Lemma 2 (Parallelism). The following rules are admissible:

V →∗π V ′ M →∗π M ′

[V/x]M →∗π [V ′/x]M ′
(i)

M →∗π M ′

[N\x]M →∗π [N\x]M ′
(ii)

N →∗π N ′ M →∗π M ′

[N\x]M →∗π [N ′\x]M ′
(iii)

Proof. (i) Known. (ii) Proved by induction on N and uses (i). (iii) Follows easily from the
version of (iii) where the first premiss is N →π N

′, and the latter is proved by induction on
N →π N

′, using (i) and (ii). J

4 Strong normalization

We define a map from λJ-terms to λ-terms

x] = x (λx.M)] = λx.M ] M(N, x.P )] = (λx.P ])(M ]N ])

This map is to be promoted to a homomorphism ΛJv → Λv. First, the technical lemma:
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Figure 1 Rule βv as a proof normalization rule in natural deduction with generalized elimination
rules. Meta-variables for λJ-terms and values are used to denote derivations. V and W denote
derivations whose last inference is not an elimination. The maximal formula is in boldface. The
numbers n and m may be 0. D11, D12, Dm1, Dm2, F11, F12, Fn1, Fn2 are formulas. For each
1 ≤ i ≤ n, Fi1 = Fi2 ⊃ F ′

i2, for some formula F ′
i2. For each 1 ≤ i ≤ m, Di1 = Di2 ⊃ D′

i2, for
some formula D′

i2. Hypothesis cancelation by elimination inferences marked with Ei or E′
i is not

displayed.

I Lemma 3. (λx.M ])N ] →+
βvρ2

([N\x]M)].

Proof. By induction on N . The cases N = y and N = λy.N ′ require the lemma [V ]/x]M ] =
([V/x]M)], which is proved by a straightforward induction on M . J

I Proposition 4 (Strict simulation).
1. If M1 →βv M2 in ΛJv then M ]

1 →
+
βvρ2

M ]
2 in Λv.

2. If M1 →π M2 in ΛJv then M ]
1 →+

ρ M
]
2 in Λv.

CSL 2020
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Proof. Both items by induction on M1 →M2. The base case of the first item uses Lemma
3 twice. The base case of the second item is proved by a direct calculation. The inductive
cases are routine. J

I Theorem 5 (SN). If M ∈ ΛJv is typable, then M is βvπ-SN.

Proof. Suppose M is typable. It is easy to see that M ] has to be typable. By strong
normalization for Λ, M ] is β-SN. By the main result in [4], M ] is βρ-SN, and so is βvρ-SN.
Given the strict simulation obtained in Proposition 4 (M1 →βvπ M2 implies M ]

1 →
+
βvρ

M ]
2),

we conclude that M is βvπ-SN. J

5 Confluence

In this section we prove that →βvπ is confluent. We follow the approach in [8], pointing out
where the differences are. In this section, we abbreviate →βvπ as →. So →∗ denotes →∗βvπ

.
Given a binary relation ; on ΛJ-terms and a function f from ΛJ-terms to ΛJ-terms, we

say ; and f satisfy the triangle property [15, 8] if M ;M ′ implies M ′ ; f(M). Hence,
every 1-step ;-reduct of M does one ;-step to a common term that depends on M solely;
and therefore, ; satisfies the diamond property.

Given a binary relation ; on ΛJ-terms, we say ; is a βvπ-development, or just a
development, if →⊆;⊆→∗ and ; and f satisfy the triangle property, for some f (which
is then called a complete βvπ-development, or just a development). Notice that, if
there is a development ;, then → is confluent. Proof: ; satisfies the diamond property,
hence so does ;∗. But ;∗=→∗ (because →⊆;⊆→∗). Therefore →∗ satisfies the diamond
property, that is, → is confluent.

For M a ΛJ-term, the π-normal form Mπ is defined2 by recursion on M as follows:

xπ = x

(λx.M)π = λx.Mπ

(M(N, x.P ))π = Mπ@(Nπ, x.Pπ)

I Lemma 6. →∗π and (_)π satisfy the triangle property.

Proof. In [8]. J

Given that →π⊂→∗π=→∗π, we may call (_)π a complete π-development.
Next we introduce a new pair that will satisfy the triangle property, containing a new

binary relation and a complete βv-development. The binary relation ⇒v on ΛJ is defined in
Fig. 2. It is immediate to show that: (i) ⇒v is reflexive; (ii) →βv⊆⇒v; (iii) ⇒v⊆→∗βv

.

I Lemma 7 (Parallelism). The following rules are admissible:

V ⇒v V
′ M ⇒v M

′

[V/x]M ⇒v [V ′/x]M ′
(i) N ⇒v N

′ M ⇒v M
′

[N\x]M ⇒v [N ′\x]M ′
(ii)

Proof. The proof of (i) is by induction on M ⇒v M
′. Case BETA uses item 1 of Lemma 1.

The proof of (ii) is by induction on N ⇒v N
′. Cases VAR and ABS use (i). Case BETA

uses item 2 of Lemma 1. J

2 The operator @ we are employing in this paper is slightly different from the one employed in [8], but
the function Mπ is the same.
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x⇒v x
V AR

M ⇒v M
′

λx.M ⇒v λx.M
′ ABS

M ⇒v M
′ N ⇒v N

′ P ⇒v P
′

M(N, x.P )⇒v M
′(N ′, x.P ′) APL

M ⇒v M
′ N ⇒v N

′ P ⇒v P
′

(λx.M)(N, y.P )⇒v [[N ′\x]M ′\y]P ′ BETA

Figure 2 βv-development.

For M a ΛJ-term, define Mβv by recursion on M as follows:

xβv = x

(λx.M)βv = λx.Mβv

(M(N, y.P ))βv =
{

[[Nβv\x]Mβv
0 \y]P βv if M = λx.M0

Mβv(Nβv , y.P βv) otherwise

I Lemma 8. ⇒v and (_)π satisfy the triangle property.

Proof. Once we have the parallelism property of ⇒v w.r.t. left substitution (item (ii) of
Lemma 7), we can repeat the proof in [8]. J

Given that →βv⊆⇒v→∗βv
, we may call (_)βv a complete βv-development.

I Lemma 9 (Commutation). If M ⇒v N1 and M →∗π N2 then there is P such that N1 →∗π P
and N2 ⇒v P .

Proof. We can repeat the proof in [8], since →∗π is also parallel in the sense of Lemma 2. J

I Theorem 10. →βvπ is confluent.

Proof. The two triangle properties (Lemmas 6 and 8) and the commutation property (Lemma
9) imply that the relation →∗π ◦⇒v and the function (_)π ◦ (_)βv have the triangle property
(this composition of triangle properties is easily proved - see [8]). Moreover, it is obvious that
→βvπ⊆→∗π ◦⇒v⊆→∗βvπ

. This means that →∗π ◦⇒v is a development (and that (_)π ◦ (_)βv

is a complete development). Hence → is confluent. J

6 Standardization

In this section we prove the mandatory [11] standardization theorem for ΛJv. Contrary to
many proofs [11, 6], our proof does not handle directly standard reduction sequences - in
this we follow [8]. On the other hand, we do not rely on vector notation either; instead we
make explicit the contribution of call-by-value evaluation to the standard reduction relation.
The definition of cbv evaluation is interesting on its own.

The definition of cbv evaluation is in terms of cbv evaluation contexts:

E ::= [·] | E(N, x.P )

Then call-by-value evalution, denoted 7→v, is defined as E [M ] 7→v E [M ] where (M,M ′) ∈
βv ∪ π (in other words, M → M ′ is a root βvπ-reduction). The familiar, alternative and
equivalent definition is to say that 7→v is inductively defined by βv ∪ π and the closure rule:
M →M ′ implies M(N, x.P )→M ′(N, x.P ).

CSL 2020
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x⇒ x V AR
M ⇒M ′

λx.M ⇒ λx.M ′
ABS

M ⇒M ′ N ⇒ N ′ P ⇒ P ′

M(N, x.P )⇒M ′(N ′, x.P ′) APL

M 7→∗v λx.M ′ [[N\x]M ′\y]P ⇒ Q

M(N, y.P )⇒ Q
BETA

M 7→∗v M ′(N ′, x.P ′) M ′(N ′, x.(P ′(N, y.P )))⇒ Q

M(N, y.P )⇒ Q
PI

Figure 3 Standard reduction.

So we employ the single closure we would employ if we were defining call-by-name
evaluation - the whole difference is in the β-rule. Notice that, due to rule π, evaluation is
not a deterministic (univocal) relation.

Standard reduction, denoted M ⇒M ′, is defined in Fig. 3.
A simple induction shows that ⇒⊆→∗βvπ

. Despite its simplicity, this remark is important
because its proof builds a βvπ-reduction sequence from M to M ′, given that M ⇒M ′. We
refer to reduction sequences thus built as standard reduction sequences. If M ⇒M ′ is
proved by V AR, ABS or APL, the outer constructor of M is frozen forever. For instance, if
M = λx.M0, then M ′ = λx.M ′0 and the reduction sequence given by induction hypothesis
will have all of its members prefixed by λx. On the other hand, if M ⇒ M ′ is proved by
BETA, we prefix the reduction sequence (not its members) given by induction hypothesis by a
sequence of cbv evaluation steps, namely the ones leading fromM(N, y.P ) to (λx.M ′)(N, y.P )
followed by the step (λx.M ′)(N, y.P ) 7→v [[N\x]M ′\y]P implicit in rule BETA. Similar
remarks apply to rule PI. The general description of a standard reduction sequence is this:
it contains an initial segment performing cbv evaluation, until one decides to freeze the outer
constructor of the last term obtained, and the standard reduction sequence proceeds by
reducing in parallel the immediate sub-terms.

The converse of ⇒⊆→∗βvπ
is a kind of completeness of ⇒.

I Theorem 11 (Standardization). →∗βvπ
⊆⇒.

Proof. We show successively the closure rules I to VII in Fig. 4. The theorem follows from
rule VII (together with rule I). We also need substitutivity of evaluation: If M 7→∗v M ′

then [V/x]M 7→∗v [V ′/x]M ′. This is an easy consequence of: If M 7→v M
′ then [V/x]M 7→v

[V ′/x]M ′. The latter is proved by induction on M 7→v M
′.

Rule I is proved by an easy induction on M . Rule II is proved by induction on M 7→v M
′.

Rule III is an easy consequence of II. Rule IV is proved by induction on M ⇒M ′ (the case
relative to BETA requires substitutivity of evaluation). Rule V is proved by induction on
N ⇒ N ′ and uses rule IV. Rule VII is an easy consequence of Rule VI. Rule VI is the rule
with most delicate proof. It is proved by induction on M ⇒M ′. The case relative to APP
splits into several cases determined by a reduction step of the form M ′(N ′, y.P ′) →βvπ Q.
Two of them are proved with a sub-induction and use rules III and V. J

7 Call-by-name and call-by-value

In this section, we show simulations between ΛJ and ΛJv. For emphasis, we denote ΛJ
by ΛJn, and β by βn. Both simulation employ the “protecting-by-a-lambda” technique;
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M ⇒M
I

M 7→v M
′ ⇒ Q

M ⇒ Q
II

M 7→∗v M ′ ⇒ Q

M ⇒ Q
III

V ⇒ V ′ M ⇒M ′

[V/x]M ⇒ [V ′/x]M ′ IV
N ⇒ N ′ M ⇒M ′

[N\x]M ⇒ [N ′\x]M ′ V

M ⇒M ′ →βvπ Q

M ⇒ Q
V I

M ⇒M ′ →∗βvπ
Q

M ⇒ Q
V II

Figure 4 Additional closure rules.

and, in their typed version, the simulations employ the same type translation, namely the
replacement of A by > ⊃ A at appropriate places. So, we need neither cps-translations, nor
type translations based on the insertion of double negations, in order to translate between
the cbn and cbv variants of ΛJ .

We will use I to denote the combinator λx.x; and MI will abbreviate M(I, x.x). Also,
λd.M will stand for a vacuous abstraction (d is a “dummy” variable, i.e. d /∈ M). We fix
some type variable X and put > := X ⊃ X.

7.1 Simulation of cbn by cbv
For M ∈ ΛJn, M◦ is defined by recursion on M as follows:

x◦ = xI

(λx.M)◦ = λxλd.M◦

(M(N, y.P ))◦ = M◦(λd.N◦, y.P ◦)

This compilation is a variation on the “protecting-by-a-lambda” technique [11], now
extended to deal with generalized applications. When translating these, the argument is
protected by a vacuous abstraction, to pretend to be a value. Accordingly, variables are
applied to a dummy argument. The generality of generalized applications commutes with
the translation, but some novelty is observed in the translation of abstractions, where an
unexpected, extra, vacuous abstraction shows up.

This surprise has a counterpart in the typed version of this translation, at the level of
types. The type A◦ is defined by recursion on A by:

X◦ = X

(A ⊃ B)◦ = A ⊃ B

where A = > ⊃ A◦. The surprise is that (A ⊃ B)◦ is not defined as A ⊃ B◦, as one
would expect, if this was just the usual “protecting-by-a-lambda”, or “thunk-introduction”
compilation (see e.g. [7, 5]).

As usual, Γ = {(x : A)|(x : A) ∈ Γ}. It is straightforward to show:

I Proposition 12. If Γ `M : A then Γ `M◦ : A◦.

I Lemma 13. (λd.M)I →βv M .
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Proof. By a simple calculation, using the fact [M\x]x = M . J

I Lemma 14. [λd.N◦/x]M◦ →∗βv
([N/x]M)◦.

Proof. By induction on M . The case M = x uses the previous lemma, and is where the
βv-steps are generated. J

I Theorem 15 (Simulation of ΛJn by ΛJv).
1. If M →βn N in ΛJn then M◦ →+

βv
N◦ in ΛJv.

2. If M →π N in ΛJn then M◦ →π N
◦ in ΛJv.

Proof. Both items by induction on M → N . The inductive cases are routine. The base case
of the first item (case βn) uses Lemma 14. The base case of the second item (case π) is a
straightforward calculation. J

7.2 Simulation of cbv by cbn
In the 1970’s [11], the need for cps-translations was justified by the fact that the compilation
technique “protecting-by-a-lambda” did not extend to give a simulation of cbv by cbn. Next
we show that this is not the case when cbn and cbv are given with generalized applications.

For V,M ∈ ΛJv, V • and M are defined by simultaneous recursion on V and M as follows:

x• = x

(λx.M)• = λx.M

V = λd.V •

M(N, y.P ) = M(I,m.N(I, n.m(n, z.z(I, y.P ))))

This time, it is values which are wrapped with vacuous abstractions, and dummy argu-
ments I are used in the translation of application to manipulate the flow of the computation;
and even if the translation of applications is reminiscent of cps, the typed version confirms
the type structure of this translation is still based on a top level given by > ⊃ A, and not by
a double negation.

The type A• is defined by recursion on A by:

X• = X

(A ⊃ B)• = A ⊃ B

where A = > ⊃ A•. Indeed A• = A◦ and A = A.
As usual, Γ• = {(x : A•)|(x : A) ∈ Γ}. It is straightforward to show:

I Proposition 16.
1. If Γ `M : A then Γ• `M : A.
2. If Γ ` V : A then Γ• ` V • : A•.

I Lemma 17.
1. [V •/x]M = [V/x]M .
2. λd.[V •/x]W • = [V/x]W .

Proof. By simultaneous induction on M and V . J

In order to motivate the next two lemmas, observe that the term I(M,x.P ) behaves
like an explicit substitution, both in ΛJn and ΛJv. In the former case, the term reduces
to [M/x]P ; in the latter, it reduces to [M\x]P . We would like to have terms that, in ΛJn,
reduce to [M\x]P and [[N\x]M\y]P .
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I Lemma 18. M(I, x.P )→+
βnπ

[M\x]P .

Proof. By induction on M . The case M = V uses Lemma 17. J

I Lemma 19. N(I, n.(λx.M)(n, z.z(I, y.P )))→+
βnπ

[[N\x]M\y]P .

Proof. By induction on N . The case N = V uses Lemmas 17 and 18. J

I Theorem 20 (Simulation of ΛJv by ΛJn).
1. If M →βv N in ΛJv then M →+

βnπ
N in ΛJn.

2. If M →π N in ΛJv then M →π N in ΛJn.

Proof. Both items by indunction on M → N . The inductive cases are routine. The base
case of the first item (case βv) uses Lemma 19. The base case of the second item (case π) is
a straightforward calculation. J

8 Final remarks

We identified a call-by-value variant ΛJv of system ΛJ , sharing the set of terms with the
original, cbn variant, and only differing in the definition of substitution. We established the
main rewriting-theoretic properties (strong normalization and confluence), and proved the
standardization theorem in a way that makes evident the contribution of call-by-value evalu-
ation for standard reduction. Finally, we proved that the cbn and cbv variant simulate each
other, not via cps-translations, but rather via the technique of “protecting-by-a-lambda”[11],
or “thunk-introduction”[7], which is here shown for the first time to extend to a simulation
of cbv by cbn.

In [5] one sees the simulation of the cbn, ordinary λ-calculus and of Plotkin’s cbv λ-calculus
into a common modal language, via modal embeddings: cps-translations are dispensed with,
because use can be made of the extra facilities of the modal target. But here, no extension
of the logic is required, we never leave intuitionistic implicational logic. Instead, use is made
of the structural extension provided by generalized applications.

Our goal was to define the cbv variant of ΛJ and the cbv variant of natural deduction
with generalized elimination rules: we believe this was not attempted before, we made a
proposal and studied it. On the other hand, the study of cbv λ-calculi is an active field of
research, with new calculi being proposed for decades ([11, 9, 13, 14, 2, 1, 6]). Although this
was not our primary goal, we believe we made a contribution to this line of work, since ΛJv

seems to have a singular place among the panoply of systems in the literature, for various
reasons: first, it is strongly anchored in proof theory; second: it is extremely simple; third, it
exploits the original syntactic idea of fusing into a single constructor (generalized application)
ordinary application with let-expressions.

Finally, there may be another reason for studying ΛJv further: contrary to, say, Plotkin’s
cbv λ-calculus, β-redexes in ΛJv always reduce, never get stuck. Now this may turn the
system suitable for “open” call-by-value [1] - but that remains future work.
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1 Introduction

Parameterised complexity studies aspects of problems that make them computationally hard.
The main interest has been in the class FPT which subsumes all problems that can be solved
in time f(k)poly(|x|) for an input x with a parameter k ∈ N and a computable function f .
In recent work, much smaller parameterised classes have been studied, derived from classical
classes in a uniform way by replacing the requirement of a polynomial bound of e.g. the
circuit size (time, space, . . . , respectively) by a bound of the form f(k)poly(|x|). In this
fashion classical circuit classes ACi and NCi naturally translate to parameterised classes
para-ACi and para-NCi. The lowest of these classes, para-AC0 corresponds to the class AC0

of problems computable by uniform families of constant-depth, polynomial size circuits with
∧-, ∨- and ¬-gates of unbounded fan-in [19, 3].
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This paper adds the aspect of changing inputs and dynamic maintenance of results to
the exploration of the landscape between para-AC0 and FPT.

The study of low-level complexity classes under dynamic aspects was started in [30, 15]
in the context of dynamically maintaining the result of database queries. Similarly, as for
dynamic algorithms, in this setting a dynamic program can make use of auxiliary relations
that can store knowledge about the current input data (database). After a small change of
the database (most often: insertion or deletion of a tuple), the program needs to compute
the query result for the modified database in very short parallel time. To capture the
problems/queries, for which this is possible, Patnaik and Immerman introduced the class
DynFO [30]. Here, “FO” stands for first-order logic, which is equivalent to AC0, in the
presence of arithmetic [7, 24].

In this paper, we study dynamic programs that have additional resources in a “paramet-
erised sense”. We explore two such resources, which can be described as parameterised space
and parameterised time, respectively. For ease of exposition, we discuss these two resources
in the context of AC0 first.

One way to strengthen AC0 circuit families is to allow circuits of size f(k)poly(|x|).
We denote the class thus obtained as para-S-AC0 (even though it corresponds to the class
para-AC0). A second dimension is to let the depth of circuits depend on the parameter. As
the depth of circuits corresponds to the (parallel) time the circuits need for a computation,
we denote the class of problems captured by such circuits by para-T-AC0. Of course, both
dimensions can also be combined, yielding the parameterised class para-ST-AC0.

Surprisingly, several parameterised versions of NP-complete problems can even be solved in
para-S-AC0. Examples are the vertex cover problem and the hitting set problem parameterised
by the size of the vertex cover and the hitting set, respectively [4]. However, classical circuit
lower bounds unconditionally imply that this is not possible for all FPT-problems. For
instance, in [3] it was observed that the existence of simple paths of length k (the parameter)
cannot be tested in para-S-AC0. Likewise, the feedback vertex set problem with the size of
the feedback vertex set as parameter cannot be solved in para-ST-AC0.

When translated from circuits to logical formulas, depth roughly translates into iteration
of formulas [24, Theorem 5.22], whereas size translates into the size of an additional structure
by which the database is extended before formulas are evaluated. Slightly more formally,
para-T-AC0 corresponds to the class para-T-FO consisting of problems that can be defined by
iterating a formula f(k) many times. The class para-S-AC0 corresponds to the class para-S-FO
where formulas are evaluated on structures D extended by an advice structure whose size
depends on the parameter only. In the class para-ST-FO both dimensions are combined. The
parameterised dynamic classes that we study in this paper are obtained from DynFO just like
the above classes are obtained from FO: para-S-DynFO, para-T-DynFO and para-ST-DynFO
extend DynFO by an additional structure of parameterised size, f(k) iterations of formulas,
or both, respectively.

As our first main contribution, we introduce a uniform framework for small dynamic,
parameterised complexity classes (Section 3) based on advice structures (corresponding to
additional space) or iterations of formulas (corresponding to additional time) and investigate
how the resulting classes relate to each other and to other non-dynamic (and even non-
parameterised) complexity classes (Section 4).

As our second main contribution, we explore how methods for parameterised algorithms
can be applied in this framework through case studies for various parameterised problems
(Section 5). Due to space limitations, many proofs are omitted and can be found in the full
version of this paper.
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Related work. There is a rich literature on parameterised dynamic algorithms, e.g. [23, 16,
28, 8, 1]. Closer to our work is the investigation of (static) parameterised small (parallel)
complexity classes that was initiated 20 years ago in [9]. Later, in [19], parameterised versions
of space and circuit classes were defined and several known parameterised problems were
shown to be complete for these classes. Also in [3] it was shown, by applying the colour-coding
technique, that several parameterised problems belong in para-AC0. Furthermore Chen and
Flum [10] presented some unconditional proofs showing that some parameterised problems
do not belong in para-AC0.

The descriptive complexity of parameterised classes has also been investigated in the
past. For example Flum and Grohe [20] and Bannach and Tantau [6] presented syntactic
descriptions of parameterised complexity classes using logical formulas. Additionally Chen,
Flum and Huang [11] showed that the k-slices of several problems can be defined using
FO-formulas of quantifier rank independent of k and explored the connection between the
quantifier rank of FO-sentences and the depth of AC0-circuits.

2 Preliminaries

By [n] we denote the set {1, . . . , n}. We assume familiarity with first-order logic FO and
refer to [27] for basics of finite model theory. A (relational) schema τ consists of a set of
relation symbols with a corresponding arity. A structure D over schema τ with domain D
has, for every relation symbol R ∈ τ , a relation over D with the same arity as R. Throughout
this work domains are finite. A k-ary query Q on τ -structures is a mapping that assigns a
subset of Dk to every τ -structure over domain D and commutes with isomorphisms. Each
first-order formula ϕ(x̄) over schema τ defines a query Q whose result on a τ -structure D is
{ā | D |= ϕ(ā)}. Queries of arity 0 are also called Boolean queries or problems.

We mainly consider first-order formulas that have access to arithmetic, that is to a linear
order < on the domain as well as suitable, compatible addition + and multiplication ×. We
require that the result of the formulas is invariant1 under the choice of the linear order <.
This logic is referred to as order-invariant first-order logic with arithmetic and denoted
by FO(+,×). In linearly ordered domains, we often identify domain elements with natural
numbers, the smallest element representing 1.

Dynamic Complexity. We work in the dynamic complexity framework as introduced by
Patnaik and Immerman [30], and refer to [32] for details. In a nutshell, dynamic programs
answer a query for an input structure that is subjected to a sequence of changes. To this end
they maintain an auxiliary structure using logical formulas.

By ∆τ we denote the set of single-tuple change operations for a schema τ , which consists
of the insertion operations insR and the deletion operations delR for each relation R ∈ τ .
For example, insE(a, b) could add edge (a, b) to a graph. A dynamic query (Q,∆) consists
of a query Q over some input schema τin and a set ∆ ⊆ ∆τin . Later on we will sometimes
consider slightly more general change operations.

A dynamic program P for a dynamic query (Q,∆) continuously answers Q on an input
structure I over some input schema τin under changes of the input structure from ∆. The
domain D of I is fixed and in particular changes cannot introduce new elements.2 The
program P maintains an auxiliary structure A over some auxiliary schema τaux with the

1 In our scenario it is not relevant that invariance is undecidable for first-order formulas.
2 We note that this is not a severe restriction, see e.g. [12, Theorem 17].
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same domain as I. We call (I,A) a state of P and consider it as one relational structure.
The auxiliary structure includes one particular query relation ans that is supposed to contain
the answer of Q over I. For each auxiliary relation S ∈ τaux and each change operation
δ ∈ ∆, P has an update rule that specifies how S is updated after a change. It is of the form
on change δ(p̄) update S(x̄) as φSδ (p̄; x̄) where the update formula φSδ (p̄; x̄) is a formula
over τin ∪ τaux. For example, if the tuple ā is inserted into an input relation R, each auxiliary
relation S is replaced by the relation {b̄ | (I,A) |= φSinsR

(ā; b̄)}. By α(I) we denote the input
structure that results from I by applying a sequence α of changes, and by Pα(I,A) the
state (α(I),A′) of P that results from (I,A) after processing α. The dynamic program P
maintains (Q,∆) if the relation ans in Pα(I0,A0) equals the query result Q(α(I0)), for each
sequence α of changes over ∆, each initial input structure I0 with arbitrary (finite) domain
and empty relations, and the auxiliary structure A0 with empty relations.

The class DynFO is the set of dynamic queries that can be maintained by a dynamic
program with first-order update formulas. The class DynFO(+,×) is defined analogously
via FO(+,×) update formulas. We note that in the case of DynFO(+,×), we consider the
arithmetic relations to be part of the input structure I, but they can not be modified.
Technically, an additional schema τarith contains the arithmetic predicates and the update
formulas are over τin ∪ τaux ∪ τarith. Note that τarith cannot be used for defining a query.

Parameterised Complexity. A parameterised query is a pair (Q, κ), where Q is a query over
some schema τ and κ is a function, called the parameterisation, that assigns a parameter
from N to every τ -structure. The well-known parameterised complexity class FPT contains all
Boolean parameterised queries (Q, κ) having an algorithm that decides for each τ -structure
D whether D ∈ Q in time f(κ(D))|D|c, for some constant c and computable function
f : N→ N [17]. Like [5], we demand that κ is first-order definable, which is always the case
if the parameter is explicitly given in the input.

I Example 1. p-VertexCover is a well-studied parameterised query. Formally it is the set
Q of pairs (G, k), where G is an undirected graph that has a vertex cover of size k, together
with the parameterisation κ : (G, k) 7→ k. In more accessible notation:

Problem: p-VertexCover
Input: An undirected graph G = (V,E) and k ∈ N, Parameter: k

Question: Is there a set S ⊆ V such that |S| = k and u ∈ S or v ∈ S for every (u, v) ∈ E?

The search-tree based algorithm for p-VertexCover is a classical parameterised al-
gorithm. It is based on the simple observation that, for each edge (u, v) of a graph, each
vertex cover needs to contain u or v (or both). On input (G, k) the algorithm recursively
constructs the search tree as follows, starting from the root of an otherwise empty tree. If E
is empty it accepts, otherwise it rejects if k = 0. If k > 0 it chooses some edge (u, v) ∈ E,
labels the current node with (u, v), and constructs two new tree nodes below the current node.
It then continues recursively, from both children starting from the instance (G− u, k − 1) in
the first child, and from (G− v, k − 1) in the second child. The algorithm accepts if any of
its branches accepts. Since the inner nodes of the tree have two children and its depth is
bounded by k, it can have at most 2k+1 − 1 tree nodes. The overall running time can be
bounded by O(2kn2). Thus p-VertexCover ∈ FPT.
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3 A Framework for Parameterised, Dynamic Complexity

We first present a uniform point of view on parameterised first-order logic. As explained in
the introduction, formulas can be parameterised with respect to (at least) two dimensions:
additional time by iterating formulas with the number of iterations depending on the
parameter; additional space by advice structures whose size depends on the parameter.

A first-order program F over schema τ is a tuple (Ψ, ϕ) where Ψ is a set of FO(+,×)-
formulas over schema τ ] τΨ and ϕ ∈ Ψ is supposed to compute the final result of the
program. Here, τΨ is a schema that contains a fresh relation symbol Rψ for each formula
ψ ∈ Ψ of the same arity as ψ. The semantics of F on a τ -structure D is based on inductively
defined τΨ-structures D(`)

Ψ . Initially, in D(0)
Ψ , all relations R(0)

ψ are empty. The `-step result
D(`)

Ψ of F , for ` > 0, is defined via R`ψ
def= {ā | (D,D(`−1)

Ψ ) |= ψ(ā)}. Finally, the result F(D)
is R(`)

ϕ if D(`−1)
Ψ = D(`)

Ψ , for some `. In this case, we say that the program reaches a fixed
point after ` steps. Otherwise, F(D) is the empty set.

We now define how first-order programs can use advice. An τadv-advice π is a computable
mapping from N to τadv-structures for some fixed advice schema τadv. Suppose that F is a
first-order program over schema τ ] τadv. The result of F for a τ -structure D with advice π
and parameter k ∈ N is simply the result of F on the structure D ] π(k).

For two computable functions f, g : N → R and a parameterised query (Q, κ) over a
schema τ , an (f, g)-parameterised first-order program for (Q, κ) is a tuple (F , π) where F is
a first-order program over schema τ ] τadv and π is an τadv-advice such that
(a) the result of F with advice π is Q(D), for all τ -structures D;
(b) |π(κ(D))| ≤ f(κ(D)) for all τ -structures D; and
(c) F always reaches a fixed point and does so after at most g(κ(D)) steps.

For computable functions f and g let para-ST-FO(f, g) be the class of parameterised
queries definable by an (f, g)-parameterised first-order program. We note that these programs
use FO(+,×) formulas, and thus have access to arithmetic3 over the domain of D ] π(k). We
do not make this explicit in our naming scheme. We use the following abbreviations:

para-ST-FO def=
⋃
f,g para-ST-FO(f, g),

para-S-FO def=
⋃
f para-ST-FO(f, 1),

para-T-FO def=
⋃
g para-ST-FO(0, g).

The class para-S-FO is in fact the same as para-AC0, and para-ST-FO corresponds to the
class para-AC0↑ in [3]. To the best of our knowledge, para-T-FO has not been studied in the
context of first-order logic before.

I Example 2. We sketch a first-order program F = (Ψ, ϕ) that witnesses p-VertexCover ∈
para-T-FO. Recall the search-tree based parameterised algorithm for p-VertexCover from
Example 1. Intuitively, the formulas ψ ∈ Ψ are used to traverse the search tree in a depth-first
manner. At any moment, the auxiliary relations contain information about the path from
the root to the current node. In particular, the candidate set of the current node, i.e., the set
of vertices selected along its path is available. Each application of these formulas simulates
one elementary step of the search: either a new child is added to the current path, or, if the
current node has maximal depth or if all possible children were already added, the current
node is discarded and a backtrack step to its parent is performed. If the candidate set is a
vertex cover, the search ends. Since each edge of the search tree needs to be traversed at
most twice, 2k+2 iterative steps suffice. More detail is given in the full version.

3 In particular, “+|D|” induces a correspondence between D and π(k).
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The following lemma basically states that every boolean parameterised query can be
answered in para-S-FO on instances whose domain size is bounded by a function in the
parameter.

I Lemma 3. Let f : N → N be a computable function and (Q, κ) a boolean parameterised
query with decidable Q. There is a computable function g and a (g, 1)-parameterised first-order
program (ϕ, π) that answers Q correctly on instances D of size at most f(κ(D)).

Proof idea. We explain the proof idea for input structures consisting of a graph G of size n
and a parameter value k with n ≤ f(k). The advice π produces an advice structure with
domain [2f(k)2 ]. It has a ternary relation E′ that contains, for every i ∈ [2f(k)2 ] all tuples
(i, j1, j2), for which the i-th graph over [f(k)] in some canonical enumeration has an edge
(j1, j2). It further contains a unary relation F that contains all numbers i, for which the
i-th graph is a yes-instance of Q. The formula ϕ simply determines with the help of E′ and
built-in arithmetic the number i of G (as a graph over [n]) and tests whether F (i) holds. J

Parameterised Dynamic Complexity. We study parameterised queries in a dynamic con-
text. Formally, a dynamic parameterised query (Q, κ,∆) consists of a parameterised query
(Q, κ) and a set ∆ of change operations. We say that a parameterised query (Q, κ) has
an explicit parameter, if Q consists of pairs I = (I ′, k), where I ′ is a structure, k is
a suitably encoded number, and κ(I) = k. All concrete parameterised queries we con-
sider in this paper have an explicit parameter. For example, we often consider the dy-
namic variant (p-VertexCover,∆E ∪ ±1) of the parameterised vertex cover query, where
∆E

def= {insE ,delE} and ±1 def= {+1,−1} denotes the set of change operations that increment
or decrement the given number k by one, as long as k stays in the admissible range. So, given
some graph G with n vertices, +1(G, k) def= (G, k + 1) if k < n, and −1(G, k) def= (G, k − 1) if
k > 1, and otherwise the changes have no effect.

For most queries4 in this paper only parameter values in {1, . . . , n} are meaningful and
we only allow such values. They can be represented by elements of the domain.

Similarly as parameterised first-order programs generalise first-order formulas, paramet-
erised dynamic programs extend conventional dynamic programs in two directions: (1) they
may use an advice structure whose size depends on the parameter, and (2) they may use
first-order programs of parameterised iteration depth.

A dynamic program with iteration and advice is a tuple (P, π) where P is a dynamic
program where auxiliary relations are updated with first-order programs and π is an τadv-
advice for an advice schema τadv. For a dynamic parameterised query (Q, κ,∆), the program P
has update rules of the form on change δ(p̄) update S(x̄) as (ΨS , ϕS) for every δ ∈ ∆,
where (ΨS , ϕS) is a first-order program over schema τin ∪ τaux ∪ τadv such that ϕS has the
same arity as S. States of the program P are of the form (D ]Dadv, I,A,Aadv) where I
is the input structure, A the auxiliary structure, and Aadv is an advice structure over a
schema τadv. Tuples of the auxiliary structure A may range over the domain D ]Dadv.

For two computable functions f, g : N→ R, an (f, g)-parameterised dynamic program is
a dynamic program (P, π) with iteration and advice such that |π(k)| ≤ f(k) for all k ∈ N
and all first-order programs of P always reach a fixed point after at most g(κ(I)) steps. The
initial state of such a program depends on an initial input structure I0 and a number k ∈ N.
It is given as (D ∪Dadv, I0,A0,Akadv) where Akadv

def= π(k), D and Dadv are the domains of
I0 and π(k), respectively, and A0 is an empty τaux-structure.

4 The only exception is p-Knapsack in Section 5.4.
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A dynamic parameterised query (Q, κ,∆) is maintained by (P, π) if a distinguished relation
ans in Pα(D ∪Dadv, I0,A0,Akadv) equals Q(α(I0)), for all empty5 input structures I0, all
k ∈ N, and all sequences α of changes over ∆ such that κ(α′(I0)) ≤ k for all prefixes α′ of α.
So, the dynamic program (P, π) only needs to maintain (Q, κ,∆) as long as the parameter
value is bounded by the initially given number k; nevertheless the program needs to work for
arbitrary values of k. We denote this number k in the following as kmax.

For computable functions f, g : N → R we define para-ST-DynFO(f, g) as the class of
dynamic parameterised queries that can be maintained by an (f, g)-parameterised dynamic
program. We define:

para-ST-DynFO def=
⋃
f,g para-ST-DynFO(f, g),

para-S-DynFO def=
⋃
f para-ST-DynFO(f, 1),

para-T-DynFO def=
⋃
g para-ST-DynFO(0, g),

Since the purpose of this article is to explore the basic principles of parameterised, dynamic
complexity, we keep the setting simple, in particular with respect to the following two aspects.
First, dynamic programs get a bound kmax for the parameter values at initialisation time
and the program then only needs to deal with changes that obey this parameter bound.
This ensures that the advice structure does not change throughout the dynamic process.
Second, we assume the presence of arithmetic throughout. In non-parameterised dynamic
complexity, it is known that under mild assumptions on the query, arithmetic relations can
be constructed by a dynamic program on the fly [12]. Similar techniques can be applied for
the parameterised setting, yet we ignore this aspect here and assume that I0 ] π(k) comes
with relations <, +, and × over D ]Dadv.

For some first intuition we provide a parameterised dynamic program that shows that
(p-VertexCover, {insE}∪±1) is in para-S-DynFO via the search-tree based approach. This
result is not surprising, as it is known that p-VertexCover ∈ para-S-FO [11, 4]. However,
the dynamic program for maintaining search trees is conceptually very simple.

I Example 4. We recall the search-tree based parameterised algorithm for p-VertexCover
from Example 1. The first-order program of Example 2 witnesses p-VertexCover ∈
para-T-FO (and thus also in para-T-DynFO) by constructing a search tree from scratch. In
contrast, a dynamic program witnessing (p-VertexCover, {insE} ∪ ±1) ∈ para-S-DynFO
can maintain a search tree. To this end, for a given bound kmax, its advice structure Akmax

adv
stores a full binary “background” tree T of depth kmax. Its auxiliary structure represents the
actual search tree T ′ by maintaining an upward closed set of nodes and the candidate sets of
each of those nodes. As in the search tree algorithm from Example 1, in every inner node x
of T ′ a branching on the endpoints of some edge e of G is being simulated and in each of x’s
two children one vertex of e is added to the candidate set. A node x of T is a leaf of T ′, if the
assigned candidate set of x is an actual vertex cover of G or if x is in level kmax of T . The
program then only needs to check whether there is a leaf representing a valid vertex cover at
a level below the current value of k. Maintenance under changes from ±1 is therefore easy.

Maintaining T ′ under insertion of an edge (u, v) is easy as well: for each leaf of T ′ that is
not at level kmax, and whose candidate set does not cover (u, v), the program adds u to the
left child and v to the right child (assuming u < v). Leaves at level kmax are not modified,
but it might happen that a former vertex cover attached to such a leaf becomes invalid by
not covering (u, v). Maintaining T ′ under edge deletions is slightly more subtle and will be
considered in the proof of Proposition 10.

5 For queries with explicit parameter, we require only that in I0 = (I′0, k), I′0 is empty, but k can be
non-zero.
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{(Q, κ) | κ(x) = |x|,
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{(Q, κ) | Q ∈ PSPACE}

6⊂=⊃

6=

6=6=

6=

6= 6=

6⊆

6⊆ 6⊂=⊃

6⊂=⊃

6⊂=⊃

Figure 1 Inclusion diagram of the main classes. Solid lines indicate inclusions. Dashed lines
marked with 6⊂=⊃ indicate that the two classes are incomparable. A directed, dotted edge marked with
6⊆ from C to C′ indicates C \ C′ 6= ∅. If C is a dynamic class and C′ a static class, C ⊆ C′ means that
for each (Q,κ,∆) ∈ C with exhaustive ∆ it holds that (Q,κ) ∈ C′, and C′ ⊆ C means that for each
(Q,κ) ∈ C′ it holds that (Q,κ,∆) ∈ C, for arbitrary ∆.

4 Relationships between Parameterised Classes

In this section we examine how parameterised dynamic and static complexity classes relate
to each other. These relationships are summarised in Figure 1.

As a sanity check, we show first that every parameterised query (Q, κ) with (Q, κ,∆) ∈
para-ST-DynFO is in FPT. For queries in para-T-DynFO the respective algorithm only needs
polynomial space. Both statements require that ∆ is exhaustive, i.e., that it contains the
single-tuple insertion operation insR for every input relations R. This ensures that every
possible input structure for Q can be obtained by a change sequence.6

I Proposition 5.
(a) For every (Q, κ,∆) ∈ para-ST-DynFO with exhaustive ∆ it holds that (Q, κ) ∈ FPT.
(b) For every (Q, κ,∆) ∈ para-T-DynFO with exhaustive ∆, the parameterised query (Q, κ)

can be solved by an FPT-algorithm that uses at most polynomial space with respect to the
input size. In particular, Q ∈ PSPACE.

Statement (b) does not hold for parameterised classes with advice, as we formalise with
the next proposition, which is an immediate consequence of Lemma 3.

I Proposition 6. Every parameterised query (Q, κ) with decidable Q and κ(x) = |x| is in
para-S-FO.

I Proposition 7. For any (Q, κ) ∈ para-S-FO and any ∆ ⊆ ∆τin (or ∆ ⊆ ∆τin ∪±1) it holds
that (Q, κ,∆) ∈ para-S-DynFO.

6 Clearly, a more general definition would be possible here, but we avoid that in the interest of simplicity.



J. Schmidt, T. Schwentick, N. Vortmeier, T. Zeume, and I. Kokkinis 36:9

Proof sketch. Let (Q, κ) ∈ para-S-FO by some (f, 1)-parameterised FO program F . In
principle, a parameterised dynamic program can simulate F from scratch after each change.
However, since the parameter of I might change, it might need different advice structures
from F . However, there is an easy solution for this. For the given kmax, the dynamic program
gets as its advice all advice structures π(1), . . . , π(kmax) of F . J

The same argument can be applied for para-ST-FO and para-ST-DynFO.
In addition to the above inclusions and those that are immediate from the definitions, we

observe the following separations between parameterised classes (also see Figure 1). Some
proofs are deferred to the next section.

I Proposition 8.
(a) There is a (Q, κ) ∈ para-S-FO such that (Q, κ,∆) 6∈ para-T-DynFO, for any exhaustive

∆.
(b) There is a (Q, κ) ∈ para-T-FO such that (Q, κ) 6∈ para-S-FO.
(c) There is a (Q, κ,∆) ∈ para-T-DynFO with exhaustive ∆ such that (Q, κ) 6∈ para-ST-FO.
(d) There is a (Q, κ,∆) ∈ para-S-DynFO with exhaustive ∆ such that (Q, κ) 6∈ para-ST-FO.

Proof sketch. Part (a) is a consequence of Proposition 5 and Proposition 6, and witnessed
by any parameterised problem (Q, κ) with decidable Q 6∈ PSPACE and κ(x) = |x|. Part (b) is
witnessed by the problem p-LongestPath which is not in para-S-FO [3], but in para-T-FO
as we will see in Proposition 9. For (c) we observe that p-FeedbackVertexSet is not
in para-ST-FO, as otherwise the restriction to inputs with parameter k = 0 would yield a
first-order formula that expresses acyclicity of undirected graphs. In Proposition 12 we will
show that (p-FeedbackVertexSet,∆E ∪ ±1) is in para-T-DynFO. The separation for (d)
can be shown with the help of connectivity of undirected graphs. To this end, we consider
the parameterisation by the maximal node degree. It is well-known that even for fixed k = 2
this property is not expressible in FO(+,×), see [21], and thus it is not in para-ST-FO. On the
other hand, towards (d), the unparameterised version is in DynFO and thus the parameterised
version is in para-S-DynFO.7 J

5 Methods for Parameterised Complexity

The goal of this section is to explore the transferability of known methods from the realm
of parameterised algorithms to dynamic parameterised complexity. We are thus not always
interested in “best algorithms” but rather want to exemplify how sequential algorithmic
methods for static problems translate into the dynamic (highly parallel) setting.

We start by describing colour-coding, since it turns out as particularly useful in the
dynamic context and we use it in many other subsections. Then we consider three classical
methods for parameterised algorithms, bounded search trees, kernelisation and dynamic
programming. Afterwards we give an example for the iterated compression method, which
uses an adaption of a technique from dynamic complexity.

5.1 Colour-Coding
In this subsection, we establish the usefulness of the colour-coding technique, as presented
in [2], in our setting by a concrete example, p-LongestPath.

7 Of course, this argument could have been used for (c) as well, but there we prefer a more “natural”
parameterisation.
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Problem: p-LongestPath
Input: An undirected graph G = (V,E), s, t ∈ V and ` ∈ N, Parameter: `

Question: Is there a (simple) path from s to t of length `?

This problem can be solved with the help of universal colouring families. Such a family is a
small set of functions that map nodes to colours such that if a path of length ` exists, one of
these functions colours the nodes of the path with a fixed sequence of `+1 colours. A parallel
algorithm for p-LongestPath therefore only needs to test in parallel, for each function of a
universal colouring family, whether it produces such a coloured path from s to t.

More precisely, a (n, k, c)-universal colouring family Λ has, for every subset S ⊆ [n] of
size k and for every mapping µ : S → [c], at least one function λ ∈ Λ with λ(s) = µ(s), for
every s ∈ S. In [3, Theorem 3.2] a family Λn,k,c of such functions is defined. The definition
can be found in the full version. In the presence of arithmetic, these functions are easily
first-order definable and can be enumerated in a first-order fashion.

I Proposition 9.
(a) p-LongestPath ∈ para-S-DynFO.
(b) p-LongestPath ∈ para-T-FO.

Proof sketch. In both parts of the proof, we use the colour-coding approach as sketched
above. For a graph G, a colouring function λ, and a set C of colours, a C-coloured path
under λ is a path whose nodes are mapped to C in a one-one fashion by λ.

For solving the p-LongestPath problem with parameter `, we consider the (n, k, k)-
universal colouring family Λ def= Λn,k,k with k def= `+ 1. Then a graph has a simple path of
length ` from s to t if and only if there is a [k]-coloured path from s to t under some λ ∈ Λ.

We first show p-LongestPath ∈ para-S-DynFO. The dynamic program uses a dynamic
programming approach (in the classical sense of this term). It stores, for each λ ∈ Λ and
each pair (u, v) of nodes, the set C of color sets C, for which there is a C-coloured path from
u to v under λ.

That p-LongestPath ∈ para-T-FO can be shown with the help of the same universal
colouring family Λ as above, which consists of f(k)poly(n) colourings. The idea for the
program is to test, in f(k) iterations and in each iteration for poly(n) colourings in parallel,
whether there is a [k]-coloured path from s to t under the current colouring. A suitably
coloured path can be found in k iterations. J

5.2 Bounded-depth search trees
Bounded-depth search trees are a classical technique in parameterised complexity. Already
in Example 4 we outlined that search trees are a viable tool also in the dynamic context by
showing how a search tree for p-VertexCover can be maintained under edge insertions. Here
we provide more examples. First we extend Example 4 towards edge deletions. Afterwards
we consider two further problems, for which the known search-tree based algorithms can
be adapted to place them in para-T-FO or para-T-DynFO, respectively: p-ClosestString
and p-FeedbackVertexSet. Although we conjecture that these problems are also in
para-S-DynFO, we were not able to prove it.

I Proposition 10. (p-VertexCover,∆E ∪ ±1) ∈ para-S-DynFO by a search-tree-based
dynamic program.

Proof sketch. Let T and T ′ be defined as in Example 4. It remains to explain how edge
deletions can be handled. If an edge (u, v) is deleted, and a node x of T ′ used (u, v) for its
branching step, the induced subtree of x can be replaced by the induced subtree of its left
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(c) New subtree of node z = z0 at depth d < kmax − 1. In
each node zi the edge (u,wi) for some wi 6= v is covered.
Since all uncovered edges contain u, all z′i represent vertex
covers. The node zd′ represents a vertex cover if and only
if d′ = `, since then all ` edges that are not covered in z are
covered by w1, . . . , w`.

Figure 2 Modification of the search tree for p-VertexCover after deletion of an edge (u, v).
The new sub-trees T ′u′ , T ′v′ of x are obtained from Tu′ , Tv′ respectively, by adding two new children
to leaves that do not represent a vertex cover.

child y, see Figure 2.8 More precisely, the children u′ and v′ of y become the new children of
x, and in all candidate sets below u′ and v′ the vertex u is removed.

The subtree of x might now (1) have leaves of depth kmax − 1 that do not represent an
actual vertex cover, since the modification reduces the depth of all nodes in the subtree of x,
and (2) have leaves at a smaller depth d < kmax−1 which do not represent a vertex cover,
since u is removed from the candidate sets and thus edges adjacent to u may not be covered
any more. These defects can be corrected successively.

First, for each of the leaves from (1), two new children are added, with the help of the
lexicographically smallest uncovered edge (u′′, v′′).

Regarding a leave z with property (2), observe that its candidate set can miss only edges
of the form (u,w), where w 6= v. It is easy to see that the subtree rooted at z can be chosen
in the following shape. Let W = {w1, . . . , w`} be the set of vertices with an uncovered edge
(u,wi), i ∈ [`]. The new subtree having depth d′ = min{`, kmax − d} consists of a path with
nodes z0, . . . , zd′ such that z0 = z and for each i ≥ 0, the left child of zi is a leaf obtained by
adding u to the candidate set and for the right child zi+1, wi+1 is added to the candidate set.

This new subtree can be defined in a first-order fashion with the help of colour coding. Let
U be the candidate set of z. ThenW consists of all neighbours of u that are not in U , soW is
easily FO-definable. To define the subtree, d′ vertices have to be chosen from W . To this end,
we consider colourings of W that map W to [`]. With the help of an (n, kmax, kmax)-universal
colouring family, one can quantify over such colourings and by picking (a canonical) one,
the new subtree can be defined by choosing each wi as the node coloured with i, for every
i ∈ [d′]. All these updates can be expressed by first-order formulas. J

For the closest string problem, we fix an alphabet Σ, and let dH(s1, s2) denote the
Hamming distance of s1 and s2, i.e. the number of positions where s1 and s2 differ.

8 Of course, the right child would work equally well.
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Problem: p-ClosestString
Input: Strings s1, . . . , sn ∈ Σn for some n ∈ N, and d ∈ N, Parameter: d

Question: Is there a string s ∈ Σn such that dH(s, si) ≤ d?

An input to p-ClosestString with strings of length n is represented by a structure
with domain [n]. It has the natural linear order on [n] and, for every σ ∈ Σ a relation Rσ(i, j)
with the meaning si[j] = σ, i.e. string si has symbol σ at position j.

A search tree (see [29, Section 8.5]) of depth at most d and degree at most d+ 1 gradually
adapts a candidate string s, which is initially set to s1. If an input string si is “far apart”
from s, the tree branches on the first d+ 1 differences and changes s towards si.

I Proposition 11. p-ClosestString ∈ para-T-FO.

The construction is quite straightforward and can be found in the full version.
Next, we explore the parameterised problem p-FeedbackVertexSet. Given a graph

G = (V,E), a feedback vertex set (FVS) for G is a set S ⊆ V such that for every cycle C
in G, S ∩ C 6= ∅ holds, i.e. G− S is a forest.

Problem: p-FeedbackVertexSet
Input: An undirected graph G, Parameter: k

Question: Does G have a feedback vertex set of size k?

I Proposition 12. (p-FeedbackVertexSet,∆E ∪ ±1) ∈ para-T-DynFO.

Proof idea. We show that p-FeedbackVertexSet can be maintained in para-T-DynFO
using a depth-bounded search tree, similarly as for p-VertexCover. The result uses a
well-known approach relying on the fact that if a graph of minimum degree 3 has a FVS of
size k then the length of its minimal cycle is bounded by 2k (e.g. [18]). A branching step
consists of two phases: removing vertices of degree 1 or 2, and finding a small cycle. Then,
each branch selects one of these cycle vertices for the FVS candidate. At the leaves of the
search tree it has to be checked if the graph obtained by deleting the chosen vertices of the
current branch is acyclic. A cycle exists, if there exists an edge (u, v) and u is reachable from
v in G− (u, v), thus this can be decided with the transitive closure of the edge relation. The
latter can be maintained in DynFO under edge insertions and deletions [12] and, as we show
in the full version of this paper, also under vertex deletions (simulated by removing all edges
of a vertex). J

5.3 Kernelisation
Bannach and Tantau [5, Theorem 2.3] show that the famous meta-theorem “a problem is
fixed parameter tractable if and only if a kernel for it can be computed in polynomial time”
can be adapted to connect the AC-hierarchy with its parameterised counterpart. In this
section we (partially) translate this relationship to the parameterised, dynamic setting.

A kernelisation of a Boolean parameterised query (Q, κ) over schema τ is a self-reduction
K from τ -structures to τ -structures such that (1) I ∈ Q if and only if K(I) ∈ Q, and (2)
|K(I)| ≤ h(κ(I)), for all τ -structures I and some fixed computable function h : N → N.
The images of a kernelisation K are called kernels. We say that a kernel of (Q, κ) can be
maintained in some class C under some set ∆ of change operations, if the kernels with respect
to some kernelisation K can be maintained in C under changes from ∆.
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I Theorem 13. Let (Q, κ,∆) be a Boolean parameterised dynamic query of τ -structures.
(a) If a kernel for (Q, κ) can be maintained under ∆ in DynFO(+,×) then (Q, κ,∆) is in

para-S-DynFO. In addition, if (Q, κ) has an explicit parameter and ∆ = ∆τ ∪ ±1 then
also the converse holds.

(b) If Q ∈ PSPACE and a kernel for (Q, κ) can be maintained under ∆ in DynFO(+,×) then
(Q, κ,∆) is in para-T-DynFO.

Proof sketch. Towards proving (a), suppose that a kernel of (Q, κ) with respect to a ker-
nelisation K can be maintained under ∆ by a DynFO(+,×)-program P. A para-S-DynFO-
program P ′ for (Q, κ,∆) maintains a kernel for the current input structure by simulating P .
The kernel K(I) of an input structure I is represented by at most h(κ(I)) elements, where h
is the function from the second condition of the definition of the kernelisation K. Therefore
P ′ can check whether K(I) ∈ Q by Lemma 3 and Proposition 7.

For proving the converse of (a) under the stated assumptions, suppose that (Q, κ) has
an explicit parameter and that ∆ = ∆τ ∪ ±1. We construct, from a para-S-DynFO-program
P with advice π that maintains (Q, κ,∆), a DynFO(+,×)-program P ′ that maintains a
kernel for (Q, κ). The idea is to use a standard trick from parameterised complexity, a
case distinction between small and large parameters. If the parameter is small enough in
comparison to the domain size, P ′ can compute the advice structure of P at initialisation
time and can simulate P from then on. If the parameter is large, P ′ uses the “small” input
instance as a trivial kernel.

Towards proving (b), suppose that a kernel of (Q, κ) with respect to a kernelisation K
can be maintained under ∆ by a DynFO(+,×)-program P, and that Q ∈ PSPACE. Recall
that unlimited (or equivalently exponential) iteration of FO-formulas captures PSPACE over
ordered structures (see, e.g., [24, Theorem 10.13]). A para-T-DynFO-program can maintain
the current kernel K(I) by simulating P. After updating the kernel after a change, it
computes the result of Q for K(I) by iterating the first-order formulas of the PSPACE
algorithm with a parameterised first-order program. Since at most 2|K(I)|O(1) iterations
are necessary, it follows that the first-order program only needs a parameterised number of
iterations. J

The assumptions for the proof of the second part of (a) are chosen because they are easy
to state and satisfied by many natural parameterised dynamic queries. They can be relaxed
though and, as an example, the result also holds for the standard change operations and the
non-explicit parameter “maximal node degree” for graphs.

We now give an example of an algorithm whose underlying kernelisation can be simulated
in DynFO(+,×). For a set of points in Nd, for some d ≥ 2, a cover is a set of lines such
that each of the points is on at least one line. For a fixed dimension d ≥ 2, the problem
p-d-PointLineCover (“PointLineCover”) is defined as follows:

Problem: p-d-PointLineCover
Input: Distinct points p̄1, . . . , p̄n ∈ Nd, Parameter: k

Question: Is there a cover of the points of size k?

Each point p̄i with i ∈ [n] is given by d coordinates p1
i , . . . , p

d
i of n bits each. To encode

these numbers, we identify the domain of size n with the set [n] and use d binary relations
X1, . . . , Xd. We let (i, j) ∈ X` if the j-th bit of p`i is 1.

A classical kernel (see e.g. [25] or [26]) for p-d-PointLineCover can be obtained by
realising that if a line contains at least k+1 points then it has to be used in a cover. Otherwise
the points on this line can only be covered by using at least k + 1 distinct lines. A kernel
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for an instance can now be constructed by iteratively applying the following rule as long as
possible: remove all points that belong to a simple line that contains at least k+ 1 points and
reduce k by 1. If, in the end, more than k2 points remain, there is no line cover with k lines.

In [5] it was observed that the above reduction can be performed in parallel, since
removing all points of a line removes at most one point from any other line. This immediately
yields that p-d-PointLineCover is in para-TC0, since lines with at least k + 1 points can
be identified in TC0. The problem, however, is not in para-AC0 = para-S-FO [5] due to the
bottleneck that collinearity of n-bit points cannot be tested in AC0.

We show that with an oracle for testing whether three points are collinear, a kernel of
p-d-PointLineCover can be actually expressed in FO(+,×). Since collinearity of three
points can be maintained in DynFO(+,×) under bit changes of points, a kernel can be
maintained in DynFO(+,×). Here the allowed changes are to modify single bits of the points
p̄1, . . . , p̄n, to enable or disable a point, and to change the number k. To allow that points
can be enabled or disabled, we add an additional unary relation P to structures that contains
i if p̄i is part of the current instance, that is, if it is enabled.

I Lemma 14. Collinearity of three d-dimensional points with n-bit coordinates can be
maintained in DynFO(+,×) under changes of single bits, for each fixed d ∈ N.

I Theorem 15. Let ∆ def= ∆{X1,...,Xd,P} ∪ {±1}.
(a) (p-d-PointLineCover,∆) ∈ para-S-DynFO
(b) (p-d-PointLineCover,∆) ∈ para-T-DynFO

Proof idea. By the previous lemma, a dynamic program can maintain a relation C that
contains a triple (i1, i2, i3) if the points p̄i1 , p̄i2 , p̄i3 are collinear, using Lemma 14. The
statement now follows from Theorem 13 and the observation that a kernel can be defined in
FO(+,×) from C.

If k ≥ logn, the input structure I itself is a kernel of size at most f(k). Otherwise, the
counting abilities of FO(+,×) (see for example [14]) can be used to define a kernel. Since
k < logn, the set L of lines with at least k + 1 enabled points can be defined in FO(+,×),
as well as the number |L| of such lines. Additionally, the set P of enabled points that are
not on any line from L is definable, and it can be determined in FO(+,×) whether there are
more than k2 of these points. Then the current kernel is defined as follows. If |L| > k, or
|L| ≤ k and |P | > k2, then it outputs a constant no-instance. Otherwise the kernel is the set
P with the parameter k − |L|. J

5.4 Dynamic programming
Dynamic programming is a fundamental technique in algorithm design and as such it has
been applied in the field of parameterised algorithms many times (e.g., [29, Section 9]). A
classical parameterised algorithm with dynamic programming shows p-Knapsack ∈ FPT.

Problem: p-Knapsack
Input: A set of n items with profits p1, . . . , pn and weights w1, . . . , wn, a capacity

bound B and a profit threshold T , Parameter: B

Question: Is there a subset S ⊆ [n] such that
∑

i∈S
pi ≥ T and

∑
i∈S

wi ≤ B?

All numbers are from N and given as n-bit numbers. We choose a similar input encoding
as for p-d-PointLineCover in Subsection 5.3: we identify the domain of size n with the
set [n], encode the profits pi using a binary relation P such that (i, j) ∈ P if the j-th bit of
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pi is 1, and analogously encode the weights wi and the numbers B, T by a binary relation W
and unary relations B, T , respectively.9

I Proposition 16. (p-Knapsack,∆KS) ∈ para-S-DynFO.

Here, ∆KS denotes the set of changes that can arbitrarily replace the profit and the weight
of one item, and set a number B or T to any value.

Proof sketch. The program combines the usual static algorithm with an idea that was used
to capture regular languages in DynFO [22]. Intuitively, it maintains a three-dimensional
table A such that A(i, j, b) gives the maximum profit one can achieve by picking items with
overall weight exactly b from {i, . . . , j}. This table is encoded by a relation Abit of arity four
in a straightforward manner. J

5.5 Iterative compression
The iterative compression method (introduced in [31], see also [29, Section 11.3]) is used to
obtain fixed parameter tractable algorithms for minimisation problems which are paramet-
erised by the solution size. It can roughly be described as follows: First, a trivial solution
is computed for a very small fraction of the input instance. Afterwards, the fraction is
continuously increased and each time a straightforwardly updated (but maybe too big)
solution is constructed and improved (“compressed”) afterwards (if necessary), until the
input instance is completed and a valid solution is constructed. We illustrate the transfer of
this technique to the dynamic setting with p-VertexCover. First we describe intuitively,
how the static algorithm described in [29, Subsection 11.3.2] can be adapted to the dynamic
setting.

Let G = (V,E) and G′ = (V,E′) be two input graphs, where G′ results from G by
inserting one edge e = (u, v). Let us assume that C0 is an optimal vertex cover for G of
size k. The set C = C0 ∪ {u} of size k + 1 is trivially a vertex cover for G′, but the optimal
one C ′ might have size k. The crucial observation is that if C ′ = Z ∪ Z ′ has size k, for a
subset Z of C and a set Z ′ disjoint from C, then Z ′ must consist of all neighbours of vertices
in C − Z that are not in Z. By a combination of colour coding with an adaptation of a
technique from [13] for the parameterised setting, a dynamic program with advice (for the
universal colouring family) can basically try out all subsets of C for Z.

I Proposition 17. (p-VertexCover,∆E∪±1) ∈ para-S-FO by a compression-based dynamic
program.

6 Conclusion

In this work we started to investigate dynamic complexity from a parameterised algorithms
point of view. Besides the definition of the framework, we explored how well-known techniques
from parameterised algorithms translate to our setting. Kernelisation and colour-coding
worked quite well for both settings. Search-tree based techniques translated well to the setting
with parameterised time and were more challenging for parameterised space. On the other
hand, dynamic programming (with superpolynomial parameter values) seems better suited
for parameterised space. The compression-based program for p-VertexCover translates,

9 We note that this restricts the possible weights and profits to numbers bounded by 2n−1. Larger values
can be achieved by a larger domain, where additionally represented items have profit and weight 0.
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in principle, also to para-T-DynFO but the handling of instances with large minimal vertex
cover basically requires an additional implementation of some other method and therefore
makes this approach a bit pointless. We also considered greedy localisation and algorithms
for structures with bounded tree-width, but did not find any meaningful applications in the
dynamic setting, as discussed in the full version of this paper.

Particular open questions are whether p-ClosestString or p-FeedbackVertexSet
can be maintained with parameterised space and whether para-ST-DynFO is more expressive
than para-S-DynFO.
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Abstract
Given a graph whose nodes may be coloured red, the parity of the number of red nodes can easily
be maintained with first-order update rules in the dynamic complexity framework DynFO of Patnaik
and Immerman. Can this be generalised to other or even all queries that are definable in first-order
logic extended by parity quantifiers? We consider the query that asks whether the number of nodes
that have an edge to a red node is odd. Already this simple query of quantifier structure parity-exists
is a major roadblock for dynamically capturing extensions of first-order logic.

We show that this query cannot be maintained with quantifier-free first-order update rules, and
that variants induce a hierarchy for such update rules with respect to the arity of the maintained
auxiliary relations. Towards maintaining the query with full first-order update rules, it is shown
that degree-restricted variants can be maintained.
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1 Introduction

The query Parity – given a unary relation U , does U contain an odd number of elements? –
cannot be expressed in first-order logic, even with arbitrary numerical built-in relations [2, 9].
However, it can easily be maintained in a dynamic scenario where single elements can be
inserted into and removed from U , and helpful information for answering the query is stored
and updated by first-order definable update rules upon changes. Whenever a new element is
inserted into or an existing element is removed from U , then a stored bit P is flipped1. In
the dynamic complexity framework by Patnaik and Immerman [13] this can be expressed by
the following first-order update rules:

on insert a into U update P as (¬U(a) ∧ ¬P ) ∨ (U(a) ∧ P )
on delete a from U update P as (U(a) ∧ ¬P ) ∨ (¬U(a) ∧ P )

1 This bit is preserved if a change re-inserts an element that already is in U , or tries to delete an element
that is not in U .
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This simple program proves that Parity is in the dynamic complexity class DynFO which
contains all queries that can be maintained via first-order formulas that use (and update)
some additional stored auxiliary relations.

Motivated by applications in database theory and complexity theory, the class DynFO
has been studied extensively in the last three decades. In database theory it is well-known
that first-order logic corresponds to the relational core of SQL (see, e.g., [1]). Thus, if a
query can be maintained with first-order update rules then, in particular, it can be updated
using SQL queries. From a complexity theoretic point of view, first-order logic with built-in
arithmetic corresponds to the circuit complexity class uniform AC0 [3]. Hence queries in
DynFO can be evaluated in a highly parallel fashion in dynamic scenarios.

The focus of research on DynFO has been its expressive power. The parity query is a first
witness that DynFO is more expressive than FO (the class of queries expressible by first-order
formulas in the standard, non-dynamic setting), but it is not the only witness. Further
examples include the reachability query for general directed graphs [4], another textbook
query that is not in FO but complete for the complexity class NL, which can be characterised
(on ordered structures) by the extension of first-order logic with a transitive closure operator.
On (classes of) graphs of bounded treewidth, DynFO includes all queries that can be defined
in monadic second-order logic [5], which extends first-order logic by quantification over sets.
In particular, on strings DynFO also contains all MSO-definable Boolean queries, that is, all
regular languages. Actually for strings the update rules do not need any quantifiers [10]
proving that regular languages are even in the dynamic complexity class DynProp which is
defined via quantifier-free first-order update rules.

These examples show that dynamically first-order logic can, in some cases, sidestep
quantifiers and operators which it cannot express statically: parity and set quantifiers, as well
as transitive closure operators. Immediately the question arises whether first-order update
rules can dynamically maintain all queries that are statically expressible in extensions of
first-order logic by one of these quantifiers or operators. Note that this does not follow easily,
for instance, from the result that the NL-complete reachability query is in DynFO, because
the notions of reductions that are available in the dynamic setting are too weak [13].

The extension FO+Parity of first-order logic by parity quantifiers is the natural starting
point for a more thorough investigation of how DynFO relates to extensions of FO, as it is
arguably the simplest natural extension that extends the expressive power. Unfortunately,
however, a result of the form FO+Parity ⊆ DynFO is not in sight2. While Parity is in
DynFO, already for slightly more complex queries expressible in FO+Parity it seems not to
be easy to show that they are in DynFO. In this paper we are particularly interested in the
following generalisation of the parity query:
ParityExists: Given a graph whose nodes may be coloured red. Is the number of nodes

connected to a red node odd? Edges can be inserted and deleted; nodes can be coloured
or uncoloured.

As it is still unknown whether ParityExists is in DynFO, this query is a roadblock for
showing that DynFO captures (large subclasses of) FO+Parity. For this reason we study
the dynamic complexity of ParityExists. We focus on the following two directions: (1)
its relation to the well-understood quantifier-free fragment DynProp of DynFO, and (2) the
dynamic complexity of degree-restricted variants.

2 Formally one has to be a little more precise. For technical reasons, one cannot express the query
“The size of the domain is even.” in DynFO. Therefore we are interested in results of this form for
domain-independent queries, that is, queries whose result does not change when isolated elements are
added to the domain.
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The update rules given above witness that Parity is in DynProp. We show that this is
not the case any more for ParityExists.

I Theorem 1. ParityExists 6∈ DynProp.

A fine-grained analysis of the quantifier-free complexity is the main contribution of
this paper, which also implies Theorem 1. Let ParityExistsdeg≤k be the variant of the
ParityExists query that asks whether the number of nodes that have both an edge to a
red node and degree at most k is odd, for some fixed number k ∈ N.

I Theorem 2. ParityExistsdeg≤k can be maintained in DynProp with auxiliary relations
of arity k, but not with auxiliary relations of arity k − 1, for any k ≥ 3.

This result actually has an impact beyond the lower bound given by Theorem 1. It
clarifies the structure of DynProp, as it shows that auxiliary relations with higher arities
increase the expressive power of quantifier-free update formulas.

Already Dong and Su showed that DynFO has an arity hierarchy [6], i.e., that for each
k ∈ N there is a query qk that can be maintained using first-order update rules and k-ary
auxiliary relations, but not using (k − 1)-ary auxiliary relations. The query qk from [6] is a
k-ary query qk that is evaluated over a (6k + 1)-ary relation T and returns all k-ary tuples ā
such that the number of (5k + 1)-ary tuples b̄ with (ā, b̄) ∈ T is divisible by 4. Dong and Su
ask whether the arity of the relation T can be reduced to 3k, k, or even to 2. Their question
for reducing it below 3k was motivated by a known reduction of the arity to 3k + 1 [7].

An arity hierarchy for DynProp follows because the query qk from [6] can be maintained
with quantifier-free update rules, though again only for input relations whose arity depends
on k. Some progress towards an arity hierarchy for Boolean graph queries was made in [17],
where the arities up to k = 3 where separated for such queries. If only insertions are allowed,
then DynProp is known to have an arity hierarchy for Boolean graph queries [16].

An arity hierarchy for quantifier-free update rules and Boolean graph properties is now
an immediate consequence of Theorem 2, in connection with the results for k ≤ 3 from [17].

I Corollary 3. DynProp has a strict arity hierarchy for Boolean graph queries.

Such an arity hierarchy does not exist for DynProp when we consider not graphs as inputs but
strings. Gelade et al. show that the class of Boolean queries on strings that are in DynProp
are exactly the regular languages, and that every such language can be maintained with
binary auxiliary relations [10]. So, relations of higher arity are never necessary in this case.

With respect to DynFO, we cannot answer the question whether ParityExists ∈ DynFO,
but we can generalise the result of Theorem 2 to restrictions beyond fixed numbers k, at least
if the update formulas have access to additional built-in relations. Let ParityExistsdeg≤logn
be the query that asks for the parity of the number of nodes that are connected to a red node
and have degree at most logn, where n is the number of nodes of the graph. The binary
BIT predicate essentially gives the bit encoding of natural numbers.

I Theorem 4. ParityExistsdeg≤logn can be maintained in DynFO with binary auxiliary
relations in the presence of a linear order and BIT.

In particular, the queries ParityExistsdeg≤k, for k ∈ N, do not induce an arity hierarchy
for DynFO. For fixed k, essentially already unary auxiliary relations suffice.

I Theorem 5. ParityExistsdeg≤k can be maintained in DynFO with unary auxiliary rela-
tions in the presence of a linear order, for every k ∈ N.
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In both results, Theorem 4 and 5, the assumption on the presence of a built-in linear
order and the BIT predicate can be lifted when the degree bound of ParityExistsdeg≤logn
refers to the active domain instead of the whole domain; see Section 4 for a discussion.

Finally, we complement our results by a discussion of how queries expressible in FO
extended by arbitrary modulo quantifiers can be maintained in an extension of DynFO.
This observation is based on discussions with Samir Datta, Raghav Kulkarni, and Anish
Mukherjee.

Outline. After recalling the dynamic descriptive complexity scenario in Section 2, we prove
Theorem 2 in Section 3, followed by Theorem 4 and Theorem 5 in Section 4. We conclude in
Section 5.

2 Preliminaries: A short introduction to dynamic complexity

We shortly recapitulate the dynamic complexity framework as introduced by Patnaik and
Immerman [13], and refer to [15] for details.

In this framework, a (relational, finite) structure I over some schema σin can be changed
by inserting a tuple into or removing a tuple from a relation of I. A change α = δ(ā)
consists of an (abstract) change operation δ, which is either insR or delR for a relation
symbol R ∈ σin, and a tuple ā over the domain of I. The change insR(ā) inserts ā into the
relation R of I, and delR(ā) deletes ā from that relation. We denote by α(I) the structure
that results from applying a change α to the structure I.

A dynamic program P stores an input structure I as well as an auxiliary structure A
over some auxiliary schema σaux. For each change operation δ and each auxiliary relation
S ∈ σaux, the dynamic program has a first-order update rule that specifies how S is updated
after a change. Each such rule is of the form on change δ(p̄) update S(x̄) as ϕSδ (p̄, x̄)
where the update formula ϕSδ is over the combined schema σin ∪ σaux of I and A. Now, for
instance, if a tuple ā is inserted into an input relation R, the auxiliary relation S is updated
to {b̄ | (I,A) |= ϕSinsR

(ā, b̄)}. In the standard scenario, all relations in both I and A are
empty initially.

A k-ary query q on σ-structures, for some schema σ, maps each σ-structure with some
domain D to a subset of Dk, and commutes with isomorphism. A query q is maintained by
P if A has one distinguished relation Ans which, after each sequence of changes, contains
the result of q for the current input structure I.

The class DynFO contains all queries that can be maintained by first-order update rules.
The class DynProp likewise contains the queries that can be maintained by quantifier-free
update rules. We say that a query q is in k-ary DynFO (DynProp), for some number k ∈ N, if
it is in DynFO (DynProp) via a dynamic program that uses at most k-ary auxiliary relations.

Sometimes we allow the update formulas to access built-in relations, as for example a
predefined linear order ≤ and the BIT predicate. We then assume that the input provides a
linear order ≤, which allows to identify the domain with a prefix of the natural numbers, and
a binary relation BIT that contains a tuple (i, j) if the j-th bit in the binary representation
of i is 1. Both relations cannot be changed.

For expressibility results we will use the standard scenario from [13] that uses initial
input and auxiliary structures with empty relations. Our inexpressibility results are stated
for the more powerful scenario where the auxiliary structure is initialised arbitrarily. See
also [17] for a discussion of these different scenarios.
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Already quantifier-free programs are surprisingly expressive, as they can maintain, for
instance, all regular languages [10] and the transitive closure of deterministic graphs [11]. As
we have seen in the introduction, also the query Parity can be maintained by quantifier-free
update rules. The following example illustrates a standard technique for maintaining queries
with quantifier-free update rules which will also be exploited later.

I Example 6. For fixed k ∈ N let in-deg-k be the unary query that, given a graph G,
returns the set of nodes with in-degree k. This query is easily definable in FO for each k. We
show here that in-deg-k can be maintained by a DynProp-program P.

The dynamic program we construct uses k-lists, a slight extension of the list technique
introduced in [10]. The list technique was used in [17] to maintain emptiness of a unary
relation U under insertions and deletions of single elements with quantifier-free formulas. To
this end a binary relation List which encodes a linked list of the elements in U in the order
of their insertion is maintained. Additionally, two unary relations mark the first and the last
element of the list. The key insight is that a quantifier-free formula can figure out whether
the relation U becomes empty when an element a is deleted by checking whether a is both
the first and the last element of the list.

To maintain in-deg-k the quantifier-free dynamic program P stores, for every node v ∈ V ,
a list of all nodes u with (u, v) ∈ E, using a ternary relation List1. More precisely, if
u1, . . . , um are the in-neighbours of v then List1 contains the tuples (v, uij , uij+1) where
j1, . . . , jm is some permutation of {1, . . . ,m}. Additionally, the program uses ternary relations
List2, . . . ,Listk such that Listi describes paths of length i in the linked list List1. For
example, if (v, u1, u2), (v, u2, u3) and (v, u3, u4) are tuples in List1, then (v, u1, u4) ∈ List3.
The list List1 comes with 2k binary relations First1, . . . ,Firstk,Last1, · · · ,Lastk that
mark, for each v ∈ V , the first and the last k elements of the list of in-neighbours of v, as
well as with k + 2 unary relations Is0, · · · , Isk, Is>k that count the number of in-neighbours
for each v ∈ V up to k. We call nodes u with (v, u) ∈ Firsti or (v, u) ∈ Lasti the i-first or
the i-last element for v, respectively.

Using these relations, the query can be answered easily: the result is the set of nodes v
with v ∈ Isk. We show how to maintain the auxiliary relations under insertions and deletions
of single edges, and assume for ease of presentation of the update formulas that if a change
insE(u, v) occurs then (u, v) /∈ E before the change, and a change delE(u, v) only happens
if (u, v) ∈ E before the change.

Insertions of edges. When an edge (u, v) is inserted, then the node u needs to be inserted
into the list of v. This node u also becomes the last element of the list (encoded by a tuple
(v, u) ∈ Last1), and the i-last node u′ for v becomes the (i+ 1)-last one, for i < k. If only
i elements are in the list for v before the change, u becomes the (i+ 1)-first element for v.
The update formulas are as follows:

ϕListi
insE

(u, v;x, y, z) def= Listi(x, y, z) ∨
(
v = x ∧ Lasti(x, y) ∧ u = z

)
for i ∈ {1, . . . , k}

ϕLast1
insE

(u, v;x, y) def=
(
v 6= x ∧ Last1(x, y)

)
∨
(
v = x ∧ u = y

)
ϕLasti

insE
(u, v;x, y) def=

(
v 6= x ∧ Lasti(x, y)

)
∨
(
v = x ∧ Lasti−1(y)

)
for i ∈ {2, . . . , k}

ϕFirsti
insE

(u, v;x, y) def= Firsti(x, y) ∨
(
v = x ∧ u = y ∧ Isi−1(x)

)
for i ∈ {1, . . . , k}

ϕIs0
insE

(u, v;x) def=
(
v 6= x ∧ Is0(x)

)
ϕIsi

insE
(u, v;x) def=

(
v 6= x ∧ Isi(x)

)
∨
(
v = x ∧ Isi−1(x)

)
for i ∈ {1, . . . , k}

ϕ
Is>k
insE

(u, v;x) def= Is>k(x) ∨
(
v = x ∧ Isk(x)

)
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Deletions of edges. When an edge (u, v) is deleted, the hardest task for quantifier-free
update formulas is to determine whether, if the in-degree of v was at least k + 1 before the
change, the in-degree of v is now exactly k. We use that if an element u is the j-first and at
the same time the j′-last element for v, then the list for v contains exactly j+ j′− 1 elements.
If u is removed from the list, j + j′ − 2 elements remain. So, using the relations Firstj and
Lastj′ , the exact number m of elements after the change can be determined, if m ≤ 2k − 2.
The relations Firsti (and, symmetrically the relations Lasti) can be maintained using the
relations Listj : if the i′-first element u is removed from the list for v, u′ becomes the i-first
element for i′ ≤ i ≤ k if (v, u, u′) ∈ Listi−i′+1. The update formulas exploit these insights:

ϕListi
delE

(u, v;x, y, z) def= (v 6= x) ∧ Listi(x, y, z)

∨
(
v = x ∧ u 6= y ∧

∧
i′≤i

¬Listi′(x, y, u) ∧ Listi(x, y, z)
)

∨
(
v = x ∧

∨
j,j′

j+j′=i+1

Listj(x, y, u) ∧ Listj′(x, u, z)
)

for i ∈ {1, . . . , k}

ϕLasti
delE

(u, v;x, y) def=
(
v 6= x ∧ Lasti(x, y)

)
∨
(
v = x ∧

∧
i′≤i

¬Lasti′(u) ∧ Lasti(y)
)

∨
(
v = x ∧

∨
i′≤i

(
Lasti′(u) ∧ Listi−i′+1(x, y, u)

))
for i ∈ {1, . . . , k}

ϕFirsti
delE

(u, v;x, y) def=
(
v 6= x ∧ Firsti(x, y)

)
∨
(
v = x ∧

∧
i′≤i

¬Firsti′(u) ∧ Firsti(y)
)

∨
(
v = x ∧

∨
i′≤i

(
Firsti′(u) ∧ Listi−i′+1(x, u, y)

))
for i ∈ {1, . . . , k}

ϕIsi
delE

(u, v;x) def=
(
v 6= x ∧ Isi(x)

)
∨
(
v = x ∧

∨
j,j′

j+j′−2=i

Firstj(x, u) ∧ Lastj′(x, u)
)

for i ∈ {0, . . . , k}

ϕ
Is>k
delE

(u, v;x) def=
(
v 6= x ∧ Is>k(x)

)
∨
(
v = x ∧ Is>k(x) ∧

∧
j,j′

j+j′−2=k

(
¬Firstj(x, u) ∨ ¬Lastj′(x, u)

))

3 ParityExists and quantifier-free updates

In this section we start our examination of the ParityExists query in the context of
quantifier-free update rules. Let us first formalize the query. It is evaluated over coloured
graphs, that is, directed graphs (V,E) with an additional unary relation R that encodes a
set of (red-)coloured nodes.3 A node w of such a graph is said to be covered if there is a
coloured node v ∈ R with (v, w) ∈ E. The query ParityExists asks, given a coloured
graph, whether the number of covered nodes is odd.

3 We note that the additional relation R is for convenience of exposition. All our results are also valid
for pure graphs: instead of using the relation R one could consider a node v coloured if it has a
self-loop (v, v) ∈ E.
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As stated in the introduction, ParityExists cannot be maintained with quantifier-
free update rules. A closer examination reveals a close connection between a variant of
this query and the arity structure of DynProp. Let k be a natural number. The variant
ParityExistsdeg≤k of ParityExists asks whether the number of covered nodes that
additionally have in-degree at most k is odd. Note that ParityExistsdeg≤k is a query on
general coloured graphs, not only on graphs with bounded degree.

I Theorem 2. ParityExistsdeg≤k can be maintained in DynProp with auxiliary relations
of arity k, but not with auxiliary relations of arity k − 1, for any k ≥ 3.

We repeat two immediate consequences which have already been stated in the introduction.

I Theorem 1. ParityExists 6∈ DynProp.

I Corollary 3. DynProp has a strict arity hierarchy for Boolean graph queries.

Proof. For every k ≥ 1 we give a Boolean graph query that can be maintained using k-ary
auxiliary relations, but not with (k − 1)-ary relations.

For k ≥ 3, we choose the query ParityExistsdeg≤k which satisfies the conditions by
Theorem 2.

For k = 2, already [17, Proposition 4.10] shows that the query s-t-TwoPath which asks
whether there exists a path of length 2 between two distinguished vertices s and t separates
unary DynProp from binary DynProp.

For k = 1, we consider the Boolean graph query ParityDegreeDiv3 that asks whether
the number of nodes whose degree is divisible by 3 is odd. This query can easily be maintained
in DynProp using only unary auxiliary relations. In a nutshell, a dynamic program can
maintain for each node v the degree of v modulo 3. So, it maintains three unary relations
M0,M1,M2 with the intention that v ∈ Mi if the degree of v is congruent to i modulo 3.
These relations can easily be updated under edge insertions and deletions. Similar as for
Parity, a bit P that gives the parity of |M0| can easily be maintained.

On the other hand, ParityDegreeDiv3 cannot be maintained in DynProp using nullary
auxiliary relations. Suppose, towards a contradiction, that it can be maintained by some dy-
namic program P that only uses nullary auxiliary relations, and consider an input instance that
contains five node V = {u1, u2, v1, v2, v3} as well as edges E = {(u1, v1), (u1, v2), (u2, v1)}.
No matter the auxiliary database, P needs to give the same answer after the changes
α1

def= insE(u1, v3) and α2
def= insE(u2, v3), as it cannot distinguish these tuples using

quantifier-free first-order formulas. But α1 leads to a yes-instance for ParityDegreeDiv3,
and α2 does not. So, P does not maintain ParityDegreeDiv3. J

The rest of this section is devoted to the proof of Theorem 2. First, in Subsection 3.1, we
show that ParityExistsdeg≤k can be maintained with k-ary auxiliary relations, for k ≥ 3.
Here we employ the list technique introduced in Example 6. Afterwards, in Subsection 3.2,
we prove that auxiliary relations of arity k − 1 do not suffice. This proof relies on a known
tool for proving lower bounds for DynProp that exploits upper and lower bounds for Ramsey
numbers [16].

3.1 Maintaining ParityExistsdeg≤k

We start by proving that ParityExistsdeg≤k can be maintained in DynProp using k-ary
auxiliary relations. In Subsection 3.2 we show that this arity is optimal.

I Proposition 7. For every k ≥ 3, ParityExistsdeg≤k is in k-ary DynProp.
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In the following proof, we write [n] for the set {1, . . . , n} of natural numbers.

Proof. Let k ≥ 3 be some fixed natural number. We show how a DynProp-program P can
maintain ParityExistsdeg≤k using at most k-ary auxiliary relations.

The idea is as follows. Whenever a formerly uncoloured node v gets coloured, a certain
number c(v) of nodes become covered: v has edges to all these nodes, but no other coloured
node has. Because the number c(v) can be arbitrary, the program P necessarily has to store
for each uncoloured node v the parity of c(v) to update the query result. But this is not
sufficient. Suppose that another node v′ is coloured by a change and that, as a result, a
number c(v′) of nodes become covered, because they have an edge from v′ and so far no
incoming edge from another coloured neighbour. Some of these nodes, say, c(v, v′) many,
also have an incoming edge from v. Of course these nodes do not become covered any more
when afterwards v is coloured, because they are already covered. So, whenever a node v′
gets coloured, the program P needs to update the (parity of the) number c(v), based on
the (parity of the) number c(v, v′). In turn, the (parity of the) latter number needs to be
updated whenever another node v′′ is coloured, using the (parity of the) analogously defined
number c(v, v′, v′′), and so on.

It seems that this reasoning does not lead to a construction idea for a dynamic program, as
information for more and more nodes needs to be stored, but observe that only those covered
nodes are relevant for the query that have in-degree at most k. So, a number c(v1, . . . , vk)
does not need to be updated when some other node vk+1 gets coloured, because no relevant
node has edges from all nodes v1, . . . , vk+1.

We now present the construction in more detail. A node w is called active if its in-
degree in-deg(w) is at most k. Let A = {a1, . . . , a`} be a set of coloured nodes and let
B = {b1, . . . , bm} be a set of uncoloured nodes, with `+m ≤ k. By N •◦G (A,B) we denote
the set of active nodes w of the coloured graph G whose coloured (in-)neighbours are exactly
the nodes in A and that have (possibly amongst others) the nodes in B as uncoloured
(in-)neighbours. So, w ∈ N •◦G (A,B) if (1) in-deg(w) ≤ k, (2) (v, w) ∈ E for all v ∈ A ∪ B,
and (3) there is no edge (v′, w) ∈ E from a coloured node v′ ∈ R with v′ /∈ A. We omit the
subscript G and just write N •◦(A,B) if the graph G is clear from the context. The dynamic
program P maintains the parity of |N •◦G (A,B)| for all such sets A,B.

Whenever a change α = insR(v) colours a node v of G, the update is as follows. We
distinguish the three cases (1) v ∈ A, (2) v ∈ B and (3) v /∈ A ∪ B. In case (1), the set
N •◦α(G)(A,B) equals the set N •◦G (A \ {v}, B ∪{v}), and the existing auxiliary information can
be copied. In case (2), actually N •◦α(G)(A,B) = ∅, as B contains a coloured node. The parity
of the cardinality 0 of ∅ is even. For case (3) we distinguish two further cases. If |A∪B| = k,
no active node w can have incoming edges from every node in A∪B ∪{v} as w has in-degree
at most k, so N •◦α(G)(A,B) = N •◦G (A,B) and the existing auxiliary information is taken over.
If |A ∪ B| < k, then N •◦α(G)(A,B) = N •◦G (A,B) \ N •◦G (A,B ∪ {v}) and P can combine the
existing auxiliary information.

When a change α = delR(v) uncolours a node v of G, the necessary updates are
symmetrical. The case v ∈ A is similar to case (2) above: N •◦α(G)(A,B) = ∅, because
A contains an uncoloured node. The case v ∈ B is handled similarly as case (1) above,
as we have N •◦α(G)(A,B) = N •◦G (A ∪ {v}, B \ {v}). The third case v /∈ A ∪ B is treated
analogously as case (3) above, but in the sub-case |A ∪B| < k we have that N •◦α(G)(A,B) =
N •◦G (A,B) ∪N •◦G (A ∪ {v}, B).

Edge insertions and deletions are conceptionally easy to handle, as they change the sets
N •◦(A,B) by at most one element. Given all nodes of A and B and the endpoints of the
changed edge as parameters, quantifier-free formulas can easily determine whether this is the
case for specific sets A,B.
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We now present P formally. For every ` ≤ k + 1 the program maintains unary relations
N` and N•` with the indented meaning that for a node w it holds w ∈ N` if in-deg(w) = `

and w ∈ N•` if w has exactly ` coloured in-neighbours. These relations can be maintained as
presented in Example 6, requiring some additional, ternary auxiliary relations. We also use a
relation Active def= N1 ∪ · · · ∪Nk that contains all active nodes with at least one edge.

For every `,m ≥ 0 with 1 ≤ ` + m ≤ k the programs maintains (` + m)-ary auxiliary
relations P`,m with the intended meaning that a tuple (a1, . . . , a`, b1, . . . , bm) is contained in
P`,m if and only if

the nodes a1, . . . , a`, b1, . . . , bm are pairwise distinct,
ai ∈ R and bj /∈ R for i ∈ [`], j ∈ [m], and
the set N •◦(A,B) has an odd number of elements, where A = {a1, . . . , a`} and B =
{b1, . . . , bm}.

The following formula θ`,m checks the first two conditions:

θ`,m(x1, . . . , x`, y1, . . . , ym) def=
∧

i6=j∈[`]

xi 6= xj ∧
∧

i6=j∈[m]

yi 6= yj ∧
∧
i∈[`]

R(xi) ∧
∧
i∈[m]

¬R(yi)

Of course, P also maintains the Boolean query relation Ans.
We now describe the update formulas of P for the relations P`,m and Ans, assuming that

each change actually alters the input graph, so, for example, no changes insE(v, w) occur
such that the edge (v, w) already exists.

Let ϕ⊕ ψ def= (ϕ ∧ ¬ψ) ∨ (¬ϕ ∧ ψ) denote the Boolean exclusive-or connector.

Colouring a node v. A change insR(v) increases the total number of active, covered nodes
by the number of active nodes that have so far no coloured in-neighbour, but an edge from v.
That is, this number is increased by |N •◦(∅, {v})|. The update formula for Ans is therefore

ϕAns
insR

(v) def= Ans⊕ P0,1(v).

We only spell out the more interesting update formulas for the relations P`,m, for different
values of `,m. These formulas list the conditions for tuples ā = a1, . . . , a` and b̄ = b1, . . . , bm
that N •◦({a1, . . . , a`}, {b1, . . . , bm}) is of odd size after a change. The other update formulas
are simple variants.

ϕ
P`,m

insR
(v;x1, . . . , x`, y1, . . . , ym) def=∨
i∈[`]

(
v = xi ∧ P`−1,m+1(x1, . . . , xi−1, xi+1, . . . , x`, ȳ, v)

)
∨
( ∧
i∈[`]

v 6= xi ∧
∧
i∈[m]

v 6= yi ∧
(
P`,m(x̄, ȳ)⊕ P`,m+1(x̄, ȳ, v)

))
for ` ≥ 1, ` + m < k

ϕ
P`,m

insR
(v;x1, . . . , x`, y1, . . . , ym) def=∨
i∈[`]

(
v = xi ∧ P`−1,m+1(x1, . . . , xi−1, xi+1, . . . , x`, ȳ, v)

)
∨
( ∧
i∈[`]

v 6= xi ∧
∧
i∈[m]

v 6= yi ∧ P`,m(x̄, ȳ)
)

for ` ≥ 1, ` + m = k

Uncolouring a node v. The update formulas for a change delR(v) are analogous to the
update formulas for a change insR(v) as seen above; they are provided in the full version.
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Inserting an edge (v, w). When an edge (v, w) is inserted, the number of active, covered
nodes can change at most by one. At first, a covered node w might become inactive. This
happens when w had in-degree k before the insertion. Or, an active node w becomes covered.
This happens if v is coloured and w had no coloured in-neighbour and in-degree at most
k − 1 before the change. The update formula for Ans is accordingly

ϕAns
insE

(v, w) def= Ans⊕
((
Nk(w) ∧

∨
i∈[k]

N•i (w)
)
∨
(
R(v) ∧N•0 (w) ∧

∨
i∈[k]

Ni−1(w)
))
.

The necessary updated for relations P`,m are conceptionally very similar. We list the
conditions that characterize whether the membership of w in N •◦(A,B) changes, for a set
A = {x1, . . . , x`} of coloured nodes and a set B = {y1, . . . , ym} of uncoloured nodes.

Before the change, w ∈ N •◦(A,B) holds, but not afterwards. This is either because w
becomes inactive or because the new edge (v, w) connects w with another coloured node
v. This case is expressed by the formula

ψ1
def=

∧
i∈[`]

E(xi, w) ∧N•` (w) ∧
∧
i∈[m]

E(yi, w) ∧
(
Nk(w) ∨R(v)

)
.

Before the change, w ∈ N •◦(A,B) does not hold, but it does afterwards. Then w needs
to be active and to have an incoming edge from all but one node from A ∪ B, and v

is that one node. Additionally, w has no other coloured in-neighbours. The following
formulas ψ2, ψ3 express these conditions for the cases v ∈ A and v ∈ B, respectively.

ψ2
def=

∨
i∈[`]

(
v = xi ∧

∧
j∈[`]\{i}

E(xj , w) ∧
∧
j∈[m]

E(yj , w) ∧N•`−1(w) ∧
∨
j∈[k]

Nj−1(w)
)

ψ3
def=

∨
i∈[m]

(
v = yi ∧

∧
j∈[`]\{i}

E(yj , w) ∧
∧
j∈[`]

E(xj , w) ∧N•` (w) ∧
∨
j∈[k]

Nj−1(w)
)

The update formula for P`,m is then

ϕ
P`,m

insE
(v, w;x1, . . . , x`, y1, . . . , ym) def= θ`,m(x̄, ȳ) ∧

(
P`,m(x̄, ȳ)⊕ (ψ1 ∨ ψ2 ∨ ψ3)

)
.

Deleting an edge (v, w). The ideas to construct the update formulas for changes delE(v, w)
are symmetrical to the constructions for changes insE(v, w). When an edge (v, w) is deleted,
the node w becomes active if its in-degree before the change was k + 1. It is (still) covered,
and then is a new active and covered node, if it has coloured in-neighbours other than v.
This is the case if w has at least two coloured in-neighbours before the change, or if it has at
least one coloured in-neighbour and v is not coloured.

On the other hand, if v was the only coloured in-neighbour of an active node w, this node
is not covered any more.

Details are provided in the full version. J

Our proof does not go through for k < 3, as we use ternary auxiliary relations to maintain
whether a node has degree at most k, see Example 6.

3.2 Inexpressibility results for ParityExistsdeg≤k

In this subsection we prove that k-ary auxiliary relations are not sufficient to maintain
ParityExistsdeg≤k+1, for every k ∈ N. The proof technique we use, and formalise as
Lemma 8, is a reformulation of the proof technique of [16], which combines techniques from
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[10] and [17] with insights regarding upper and lower bounds for Ramsey numbers. We
actually use a special case of the formalisation from [14, Lemma 7.4], which is sufficient for
our application.

The technique consists of a sufficient condition under which a Boolean query q cannot
be maintained in DynProp with at most k-ary auxiliary relations. The condition basically
requires that for each collection B of subsets of size k+1 of a set {1, . . . , n}, for an arbitrary n,
there is a structure I and a sequence α(x1), . . . , α(xk+1) of changes such that (1) the elements
1, . . . , n cannot be distinguished by quantifier-free formulas, and (2) the structure that results
from I by applying the changes α(i1), . . . , α(ik+1) in that order is a positive instance for q
exactly if {i1, . . . , ik+1} ∈ B.

In the following, we denote the set {1, . . . , n} by [n] and write (I, ā) ≡0 (I, b̄) if ā and b̄
have the same length and agree on their quantifier-free type in I, that is, I |= ψ(ā) if and
only if I |= ψ(b̄) for all quantifier-free formulas ψ. We denote the set of all subsets of size k
of a set A by

(
A
k

)
.

I Lemma 8 ([14]). Let q be a Boolean query of σ-structures. Then q is not in k-ary DynProp,
even with arbitrary initialisation, if for each n ∈ N and all subsets B ⊆

( [n]
k+1
)
there exist

a σ-structure I and a set P = {p1, . . . , pn} of distinct elements such that
P is a subset of the domain of I,
(I, pi1 , . . . , pik+1) ≡0 (I, pj1 , . . . , pjk+1) for all strictly increasing sequences i1, . . . , ik+1
and j1, . . . , jk+1 over [n], and

a sequence α(x1), . . . , α(xk+1) of changes

such that for all strictly increasing sequences i1, . . . , ik+1 over [n]:

(α(pi1) ◦ . . . ◦ α(pik+1))(I) ∈ q ⇐⇒ {i1, . . . , ik+1} ∈ B.

With the help of Lemma 8 we can show the desired inexpressibility result.

I Proposition 9. For every k ≥ 0, ParityExistsdeg≤k+1 is not in k-ary DynProp, even
with arbitrary initialisation.

In the following, for a graph G = (V,E) and some set X ⊆ V of nodes we write N→(X)
for the set {v | ∃u ∈ X : E(u, v)} of out-neighbours of nodes in X. For singleton sets X = {x}
we just write N→(x) instead of N→({x}).

Proof. Let k ∈ N be fixed. We apply Lemma 8 to show that ParityExistsdeg≤k+1 is not
in k-ary DynProp.

The basic proof idea is simple. Given a collection B ⊆
( [n]
k+1
)
, we construct a graph

G = (V,E) with distinguished nodes P = {p1, . . . , pn} ⊆ V such that (1) each node has
in-degree at most k + 1 and (2) for each B ∈

( [n]
k+1
)
the set N→({pi | i ∈ B}) is of odd size

if and only if B ∈ B. Then applying a change sequence α which colours all nodes pi with
i ∈ B to G results in a positive instance of ParityExistsdeg≤k+1 if and only if B ∈ B. An
invocation of Lemma 8 yields the intended lower bound.

It remains to construct the graph G. Let S be the set of all non-empty subsets of [n] of
size at most k + 1. We choose the node set V of G as the union of P and S. Only nodes in
P will be coloured, and only nodes from S will be covered. A first attempt to realise the
idea mentioned above might be to consider an edge set Ek+1

def= {(pi, B) | B ∈ B, i ∈ B}:
then, having fixed some set B ∈ B, the node B becomes covered whenever the nodes pi
with i ∈ B are coloured. However, also some nodes B′ 6= B will be covered, namely if
B′ ∩ B 6= ∅, and the number of these nodes influences the query result. We ensure that
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BP S

p1

p2

p3

p4

{1}

{2}

{3}

{4}

{1, 2}

{1, 3}

{1, 4}

{2, 3}

{2, 4}

{3, 4}

{1, 2, 3}

{1, 2, 4}

{1, 3, 4}

{2, 3, 4} ([n]
3
)

([n]
2
)

([n]
1
)

Figure 1 Example for the construction in the proof of Proposition 9, with k = 2 and n = 4.

the set of nodes B′ 6= B that are covered by {pi | i ∈ B} is of even size, so that the parity
of |N→({pi | i ∈ B})| is determined by whether B ∈ B holds. This will be achieved by
introducing edges to nodes

([n]
i

)
∈ S for i ≤ k such that for every subset P ′ of P of size at

most k the number of nodes from S that have an incoming edge from all nodes from P ′

is even. By an inclusion-exclusion argument we conclude that for any set P̂ ∈
(
P
k+1
)
the

number of nodes from S that have an incoming edge from some node of P̂ , but not from all
of them, is even. It follows that whenever k + 1 nodes pi1 , . . . , pik+1 are marked, the number
of covered nodes is odd precisely if there is one node in S that has an edge from all nodes
pi1 , . . . , pik+1 , which is the case exactly if {i1, . . . , ik+1} ∈ B.

We now make this precise. Let n be arbitrary and let P = {p1, . . . , pn}. For a set X ⊆ [n]
we write PX for the set {pi | i ∈ X}.

The structure I we construct consists of a coloured graph G = (V,E) with nodes
V

def= P ∪ S, where S def=
([n]

1
)
∪ · · · ∪

( [n]
k+1
)
, and initially empty set R def= ∅ of coloured nodes.

The edge set E = E1 ∪ · · · ∪ Ek+1 is constructed iteratively in k + 1 steps. We first define
the set Ek+1 and define the set Ej based on the set E>j

def=
⋃k+1
j′=j+1 Ej′ .

The set Ek+1 consists of all edges (pi, B) such that B ∈ B and i ∈ B. For the construction
of the set Ej with j ∈ {1, . . . , k} we assume that all sets Ej′ with j′ > j have already been
constructed. Let X ∈

([n]
j

)
be a set and let m be the number of nodes Y ∈ S for which there

are already edges (pi, Y ) ∈ E>j for all nodes pi in PX . If m is odd, then there is so far an
odd number of nodes from S that have an incoming edge from all pi ∈ PX . As we want this
number to be even, we let Ej contain edges (pi, X) for all i ∈ X. If m is even, no edges are
added to Ej . See Figure 1 for an example of this construction. Note that for each X ∈

([n]
i

)
,

for i ∈ {1, . . . , k + 1}, the degree of X in G is at most i, and therefore also at most k + 1.

We now show that for a set B ∈
( [n]
k+1
)
the cardinality of N→(PB) is indeed odd if and

only if B ∈ B. This follows by an inclusion-exclusion argument. For a set X ⊆ [n] the set
N→(PX) contains all nodes with an incoming edge from a node in PX . It is therefore equal
to the union

⋃
i∈X N→(pi). When we sum up the cardinalities of these sets N→(pi), any

node in N→(PX) with edges to both pi and pj , for numbers i, j ∈ X, is accounted for twice.
Continuing this argument, the cardinality of N→(X) can be computed as follows.
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∣∣N→(PX)
∣∣ =

∑
i∈X

∣∣N→(pi)
∣∣− ∑

i,j∈X
i<j

∣∣N→(pi) ∩N→(pj)
∣∣+ · · ·+ (−1)|X|−1∣∣ ⋂

i∈X
N→(pi)

∣∣
By construction of G, the set

⋂
i∈Y N→(pi) is of even size, for all sets Y ⊆ [n] of size

at most k. Consequently, for each X ∈
( [n]
k+1
)
the parity of

∣∣N→(PX)
∣∣ is determined by the

parity of
∣∣⋂

i∈X N→(pi)
∣∣, the last term in the above equation. Only the node X can possibly

have incoming edges from all nodes pi in PX , and these edges exist if and only if X ∈ B.
Let α(x1), . . . , α(xk+1) be the change sequence insR(x1), . . . , insR(xk+1) that colours the

nodes x1, . . . , xk+1. Let B ∈
( [n]
k+1
)
be of the form {i1, . . . , ik+1} with i1 < · · · < ik+1. The

change sequence αB
def= α(pi1) · · ·α(pik+1) results in a graph where the set of coloured nodes

is exactly PB . As all nodes in N→(PB) have degree at most k + 1 and the set N→(PB) is of
odd size exactly if B ∈ B, we have that αB(I) is a positive instance of ParityExistsdeg≤k+1
if and only if B ∈ B. J

4 ParityExists and first-order updates

As discussed in the introduction, the Parity query can be easily maintained with first-
order update rules. So far we have seen that its generalisation ParityExists can only be
maintained with quantifier-free update rules if the in-degree of covered nodes is bounded by a
constant. Now we show that with first-order update rules, this query can be maintained if the
in-degree is bounded by logn, where n is the number of nodes in the graph. We emphasise
that only the in-degree of covered nodes is bounded, while a coloured node v can cover
arbitrarily many nodes. If also the out-degree of coloured node is restricted, maintenance in
DynFO becomes trivial.

We start by providing a dynamic program with first-order update rules that maintains
ParityExistsdeg≤k, for a constant k, and only uses unary relations apart from a linear
order. Thus, in contrast to quantifier-free update rules, this query cannot be used to obtain
an arity hierarchy for graph queries for first-order update rules. Afterwards we will exploit
the technique used here to maintain ParityExistsdeg≤logn with binary auxiliary relations.

I Theorem 5. ParityExistsdeg≤k can be maintained in DynFO with unary auxiliary rela-
tions in the presence of a linear order, for every k ∈ N.

An intuitive reason why quantifier-free dynamic programs need auxiliary relations of
growing arity to maintain ParityExistsdeg≤k is that for checking whether some change, for
instance the colouring of a node v, is “relevant” for some node w, it needs to have access
to all of w’s “important” neighbours. Without quantification, the only way to do this is to
explicitly list them as elements of the tuple for which the update formula decides whether to
include it in the auxiliary relation.

With quantification and a linear order, sets of neighbours can be defined more easily,
if the total number of neighbours is bounded by a constant. Let us fix a node w with at
most k (in-)neighbours, for some constant k. Thanks to the linear order, the neighbours can
be distinguished as first, second, . . . , k-th neighbour of w, and any subset of these nodes
is uniquely determined and can be defined in FO by the node w and a set I ⊆ {1, . . . , k}
that indexes the neighbours. With this idea, the proof of Proposition 7 can be adjusted
appropriately for Theorem 5.
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N←{1,2,3}(w3)

N •◦(N←{1,2,3}(w3))

v1 v2 v3 v4 v5 v6 v7

w1 w2 w3 w4 w5

Figure 2 An illustration of the notation used in the proof of Theorem 5. The set N •◦G (N←{1,2,3}(w3))
does not include w1, as there is no edge (v5, w1), and it does not include w5, as there is an edge
(v7, w5) for a coloured node v7 6∈ N←{1,2,3}(w3).

Proof sketch (of Theorem 5). Let k ∈ N be some constant. Again, we call a node active
if its in-degree is at most k. We sketch a dynamic program that uses a linear order on the
nodes and otherwise at most unary auxiliary relations.

Let I be a non-empty subset of {1, . . . , k}, and let w be an active node with at least
max(I) in-neighbours. The set N←I (w) of I-indexed in-neighbours of w includes a node v
if and only if (v, w) is an edge in the input graph and v is the i-th in-neighbour of w with
respect to the linear order, for some i ∈ I. The following notation is similar as in the proof
of Proposition 7. For a graph G and an arbitrary set C of (coloured and uncoloured) nodes,
we denote the set of active nodes that have an incoming edge from every node in C and no
coloured in-neighbour that is not in C by N •◦G (C). An example for these notions is depicted
in Figure 2.

For every I ⊆ {1, . . . , k} with I 6= ∅ we introduce an auxiliary relation PI with the
following intended meaning. An active node w with at least max(I) neighbours is in PI if
and only if (1) w has no coloured in-neighbours that are not contained in N←I (w), and (2)
the set N •◦G (N←I (w)) has odd size. Note that (1) implies that w ∈ N •◦G (N←I (w)).

An auxiliary relation PI basically replaces the relations P`,m with `+m = |I| from the
proof of Proposition 7, and the updates are mostly analogous.

We explain how the query relation Ans and the relations PI are updated when a
modification to the input graph occurs. When a node v is coloured, the query relation is
only changed if v becomes the only coloured neighbour of an odd number of active nodes.
This is the case if and only if there actually is an active and previously uncovered node w
that v has an edge to and if w ∈ PI for the set I def= {i}, where i is the number such that v
is the i-th in-neighbour of w with respect to the linear order.

The update of a relation PI after the colouring of a node v is as follows. Let G be
the graph before the change is applied, and G′ the changed graph. Let w be any active
node. If v is an I-indexed in-neighbour of w, no change regarding w ∈ PI is necessary.
Otherwise, some nodes in N •◦G (N←I (w)) might now have a coloured neighbour v that is not
contained in N←I (w), and therefore are not contained in N •◦G′ (N←I (w)). Let w′ be such a
node, that is, a node with an edge from v and every node in N←I (w), and let I ′ be such that
N←I′ (w′) = N←I (w)∪{v}. The parity of the number of nodes in N •◦G (N←I (w))\N •◦G′ (N←I (w))
is odd if and only if w′ ∈ PI′ . This can be used to update PI .

We do not present the updates for the remaining changes as they can be easily constructed
along the same lines. J
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It is easy to maintain a linear order on the non-isolated nodes of an input graph [8],
which is all that is needed for the proof of Theorem 5. So, ParityExistsdeg≤k can also be
maintained in DynFO without a predefined linear order, at the expense of binary auxiliary
relations.

Unfortunately we cannot generalise the technique from Theorem 2 for ParityExistsdeg≤k
to ParityExists, but only to ParityExistsdeg≤logn, which asks for the parity of the number
of covered nodes with in-degree at most logn. Here, n is the number of nodes of the graph.

I Theorem 4. ParityExistsdeg≤logn can be maintained in DynFO with binary auxiliary
relations in the presence of a linear order and BIT.

Proof sketch. With the help of the linear order we identify the node set V of size n of
the input graph with the numbers {0, . . . , n− 1}, and use BIT to access the bit encoding
of these numbers. Any node v ∈ V then naturally encodes a set I(v) ⊆ {1, . . . , logn}:
i ∈ {1, . . . , logn} is contained in I(v) if and only if the i-th bit in the bit encoding of v is 1.

The proof of Theorem 5 constructs a dynamic program that maintains unary relations
PI with I ⊆ {1, . . . , k}, and w ∈ PI holds if w ∈ N •◦G (N←I (w)) and if |N •◦G (N←I (w))| is odd.
We replace these relations by a single binary relation P , with the intended meaning that
(v, w) ∈ P if w ∈ N •◦G (N←I(v)(w)) and if |N •◦G (N←I(v)(w))| is odd.

A dynamic program that maintains ParityExistsdeg≤logn can then be constructed along
the same lines as in the proof of Theorem 5. J

In addition to a linear order, [8] also shows how corresponding relations addition and
multiplication can be maintained for the active domain of a structure. As BIT is first-
order definable in the presence of addition and multiplication, and vice versa (see e.g. [12,
Theorem 1.17]), both a linear order and BIT on the active domain can be maintained,
still using only binary auxiliary relations. So, the variant of ParityExistsdeg≤logn that
considers n to be the number of non-isolated nodes, instead of the number of all nodes, can
be maintained in binary DynFO without assuming built-in relations.

5 Conclusion

We studied the dynamic complexity of the query ParityExists as well as its bounded
degree variants. While it remains open whether ParityExists is in DynFO, we showed that
ParityExistsdeg≤logn is in DynFO and that ParityExistsdeg≤k is in DynProp, for fixed
k ∈ N. The latter result is the basis for an arity hierarchy for DynProp for Boolean graph
queries. Several open questions remain.

I Open question. Can ParityExists be maintained with first-order updates rules? If so,
are all (domain-independent) queries from FO+Parity also in DynFO?

I Open question. Is there an arity hierarchy for DynFO for Boolean graph queries?

Orthogonally to the perspectives taken in this work, one can ask how many auxiliary
bits are necessary to maintain the query ParityExists or, more generally, all queries
expressible in first-order logic extended by modulo quantifiers. It is convenient to switch the
view point from first-order updates to updates computed by AC0 circuits for discussing the
amount of auxiliary bits. The class DynFO corresponds to (uniform) DynAC0, and allows for
polynomially many auxiliary bits. It is not hard to see that if one allows quasi-polynomially
many auxiliary bits and update circuits of quasi-polynomial size, then all queries expressible
in first-order logic extended by modulo quantifiers can be maintained. This was observed in
discussions with Samir Datta, Raghav Kulkarni and Anish Mukherjee. A proof sketch is
provided in the full version of this paper.
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