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Editor’s Preface

The annual conference of the European Association for Computer Science Logic (EACSL),
CSL’13, was held in Torino, Italy, from September 2 to September 5, 2013. CSL started as a
series of international workshops on Computer Science Logic, and became at its sixth meeting
the Annual Conference of the EACSL. This conference was the 27th workshop and 22th
EACSL conference; it was organized by the Dipartimento di Informatica of the Universita di
Torino (UNITO).

The Ackermann Award is the EACSL Outstanding Dissertation Award for Logic in
Computer Science. This year, the jury decided to give the Ackermann Award for 2013
to Matteo Mio. The awards were officially presented at the conference (September 3).
The citation of the awards, an abstract of the thesis, and a biographical sketch of the
recipients written by Anuj Dawar, Tom Henzinger and Damian Niwinski may be found in
the proceedings.

A total of 130 abstracts were registered and 108 of these were followed by full papers
submitted to CSL’13. After a two weeks electronic meeting, the Program Committee selected
37 papers for presentation at the conference and publication in these proceedings. Each
paper was assigned to at least three PC members. The overall quality of the submissions
was really high. The program committee did not fix a strict a priori limit on the number of
accepted papers and wished to accept as many good papers as possible. However, at the end
some of them had to be rejected due to lack of space.

In addition to the contributed talks, CSL’13 had four invited speakers: Nachum Dershovitz
(Tel Aviv University), Jean Yves Girard (CNRS, Marseille), Isabel Oitavem (Universidade
Lisboa), Lidia Tendera (University of Opolskiego). Abstracts of the invited talks are included
in the proceedings. A welcome talk by Piergiorgio Odifreddi has been held on September 1,
but it is not included in these proceedings.

I wish to warmly thank the PC and all external reviewers for their precious help in
reviewing the papers. Our thanks also go to the members of the Organizing Committee, for
their considerable efforts in organizing the conference, to Luca Padovani for his great work
in preparing the proceedings, and to Marc Herbstritt (Dagstuhl Publishing) for his technical
help.

The conference received support from the Dipartimento di Informatica of the Universita
di Torino, from the EACSL, from the GNSAGA group of INDAM (Istituto Nazionale di Alta
Matematica “F.Severi”), from the Regione Piemonte, which offered the conference location,
and from the Universita di Torino, which offered the location for the welcome talk and the
associated aperitif. I thank these organizations for their generous supports.

September 2013 Simona Ronchi Della Rocca
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The Ackermann Award 2013

Anuj Dawar, Thomas A. Henzinger, and Damian Niwinski

Members of EACSL Jury of the Ackermann Award

The ninth Ackermann Award is presented at CSL’13, held in Turin, Italy. This year, as
in the previous three years, the EACSL Ackermann Award is generously sponsored by the
Kurt Godel Society. Besides providing financial support for the Ackermann Award, the Kurt
Godel Society has also committed to inviting the recipient of the Award for a special lecture
to be given to the Society in Vienna.

The 2013 Ackermann Award was open to PhD dissertations in topics specified by the
CSL and LICS conferences, which were formally accepted as theses for the award of a PhD
degree at a university or equivalent institution between 1 January 2011 and 31 December
2012. The Jury received fifteen nominations for the Ackermann Award 2013. The candidates
came from a number of different countries across the world. The institutions at which the
nominees obtained their doctorates represent nine countries in Europe, North America, and
the Middle East.

All submissions were of a very high standard and contained remarkable contributions
to their particular fields. The Jury wishes to extend its congratulations to all nominated
candidates for their outstanding work. The Jury encourages them to continue their scientific
careers and hopes to see more of their work in the future.

With such an outstanding field of nominees, the task of the jury was difficult. In the end,
after much discussion, one thesis stood out. The 2013 Ackermann Award winner is:

Matteo Mio from Italy, for his thesis

Game Semantics for Probabilistic Modal p-Calculi

approved by the University of Edinburgh, UK, in 2012,

supervised by Alex Simpson.

Matteo Mio

Citation. Matteo Mio receives the 2013 Ackermann Award of the European Association of
Computer Science Logic (EACSL) for his thesis

Game Semantics for Probabilistic Modal p-Calculi.

His thesis builds an extension of the modal p-calculus suitable for reasoning about non-
deterministic probabilistic systems. It advances previous approaches, and adds a quantitative
dimension to the game semantics of fixed-point logics, via a novel concept of a tree game,
integrating randomness and concurrency.

Background of the Thesis. The modal p-calculus lies at the very heart of logics and
algorithms for computer-aided verification: it provides a powerful framework for comparing
specification formalisms and devising model-checking algorithms for discrete dynamical
systems, such as hardware and software systems. In order to model uncertainty in the
behavior of such systems, it is natural to extend both state transition models and property
specification languages with probabilistic aspects; the first such probabilistic temporal logic
was introduced by Hansson and Jonsson in the early 1990s, and probabilistic extensions of
the modal p-calculus followed quickly. The resulting field of “probabilistic verification” has
received much attention in the past two decades, which saw the solution of many probabilistic
model-checking problems, the development of corresponding verification tools, and their
application to case studies ranging from networking to systems biology. Yet the field still lacks

© Anuj Dawar, Thomas A. Henzinger, and Damian Niwinski;
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The Ackermann Award 2013

a convincing canonical and foundational framework for specifying and comparing probabilistic
properties. The thesis by Mio presents a promising step in this direction.

Mio’s Thesis. In his thesis, Matteo Mio adopts a quantitative approach to temporal
logics over probabilistic transition systems, introduced by Huth and Kwiatkowska, and
independently by Morgan and Mclver, where a formula holds in a state with some probability.
An interpretation of a formula is therefore a mapping from the set of states to [0,1]. In the
probabilistic p-calculus pLy introduced by Morgan and Mclver, conjunction and disjunction
are interpreted as min and max over reals, respectively. The first contribution of the thesis
extends to all models the equivalence between denotational and game semantics of the logic
pLu, established previously by Morgan and Mclver for finite models. The logic pLu, however,
is not a completely satisfactory generalization of its classical counterpart to the probabilistic
setting. Indeed, in contrast to the propositional p-calculus Ly, which subsumes most of the
temporal logics known in the literature, pLu fails to contain the probabilistic version of the
most basic temporal logic CTL as its sublogic. A remedy proposed by Mio consists in using
different real extensions of the Boolean operators and and or and combining them in a single
logic. These interpretations have been already considered by Huth and Kwiatkowska as
alternatives: in addition to min and max used in pLy, also product gy (for and), and its
dual co-product

TOYy = Tty—zxy
(for or), as well as the strong conjunction and disjunction of the Lukasiewicz logic

20y = max(0,z+y—1)
r Dy

min(1, z + y).

Mio shows that with all these operators one can express the probabilistic version of CTL,
whereas the first two suffice for the qualitative fragment of this logic. Thus a new powerful
fixed-point logic has emerged, whose expressive power and algorithmic properties are not
yet completely understood. This will likely be the subject of active research in future years.
What Matteo Mio contributes in his thesis is the game semantics for the new logic.

A known feature of p-calculi is that, in contrast to, e.g., first-order logic or temporal
logic, they did not arise as a formalization of natural language constructs, but rather as
equational systems. As a result, fixed-point formulas are relatively hard to understand by
humans. This difficulty only increases for a probabilistic version of the logic involving three
variants of conjunction and disjunction. In the classical case, a helpful way of understanding
the p-calculus formulas is via games. More specifically, a formula ¢ of Lu and a model
M induce a perfect-information two-person game of possibly infinite duration, a so-called
parity game, such that the satisfaction M = ¢ is equivalent to the existence of a winning
strategy for the proponent in this game. This characterization is also at the basis of many
model-checking algorithms, which thus boil down to solving games. As we have already
mentioned, the thesis settles a similar characterization for the probabilistic u-calculus pLu.
However, the main contribution of the thesis consists in establishing the game semantics
for the full probabilistic u-calculus pL,ug described above. A priori it is not obvious that
this is possible, as the real functions used in this p-calculus do not have any apparent game
interpretation. Now Matteo Mio makes an unexpected twist in the very paradigm of game
playing. He admits that a play need not be a linear process, but can instead split in several
threads, which form of a tree. This tree can serve as an arena of a new (inner) game, and the
payoff of the original (outer) game is defined in terms of winning the inner game. Here, the
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outer game is usually stochastic, whereas the inner game is a perfect-information game. This
construction, referred to by the author as a tree game, leads to the concept of meta games,
parametrized by the class of inner games. The game semantics of the extended probabilistic
p-calculus is provided by meta parity games.

Mio also discovers a number of remarkable properties of tree games, which make this
concept interesting in its own right. In particular, the tree games turn out to comprise (under
suitable encoding) the Blackwell games, which is a class of infinite stochastic games with
imperfect information that is well-studied in game theory. The determinacy of Blackwell
games established by Donald Martin in 1998 is considered to be one of the strongest
determinacy results provable in ZFC. Another feature of tree games is that they can be
derandomized; i.e., the stochastic player Nature can be eliminated, its role taken by the
concurrent branching mechanism.

The game semantics of the p-calculus pLug relies on the determinacy result for the meta
parity games. This is the most technically difficult part of the thesis. Indeed, the argument
requires some properties of sets in A2, which do not, in general, hold in ZFC. Therefore, the
author proves his results in ZFC extended by the Martin axiom for the first uncountable
cardinal, MAy, .

Biographical Sketch. Matteo Mio was born on 5 July 1983. He was a student at the
University of Udine in Italy during the period 2002-2007, studying for the Laurea Triennale
and Laurea Specialistica in Computer Science. In 2007 he joined the University of Edinburgh
in Scotland to pursue a PhD degree, which he completed in February 2012. Since then,
he has spent a year as a postdoctoral researcher at the Ecole Polytechnique in Paris and
is currently a postdoctoral researcher at the Centrum Wiskunde & Informatica (CWI) in
Amsterdam, funded by an ERCIM Alain Bensoussan fellowship.

Jury

The Jury for the Ackermann Award 2013 consisted of eight members, two of them ex
officio, namely, the president and the vice-president of EACSL. A member of the LICS
organising committee is also normally a member of the jury. On this occasion, this member
withdrew owing to a conflict of interest and a replacement was named.

The members of the jury were:

Thierry Coquand (Chalmers University of Gothenburg),

Anuj Dawar (University of Cambridge), the president of EACSL,

Thomas A. Henzinger (IST Austria),

Daniel Leivant (Indiana University, Bloomington),

Damian Niwinski (University of Warsaw),

Catuscia Palamidessi (Ecole Polytechnique, Paris),

Simona Ronchi della Rocca (University of Torino), the vice-president of EACSL,
Wolfgang Thomas (RWTH, Aachen).

Previous winners

Previous winners of the Ackermann Award were
2005, Oxford:
Mikotaj Bojanczyk from Poland,

CSL’13
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Konstantin Korovin from Russia, and
Nathan Segerlind from the USA.
2006, Szeged:
Balder ten Cate from The Netherlands, and
Stefan Milius from Germany.
2007, Lausanne:
Dietmar Berwanger from Germany and Romania,
Stéphane Lengrand from France, and
Ting Zhang from the People’s Republic of China.
2008, Bertinoro:
Krishnendu Chatterjee from India.
2009, Coimbra:
Jakob Nordstréom from Sweden.
2010, Brno:
No award given.
2011, Bergen:
Benjamin Rossman from USA.
2012, Fontainebleau:
Andrew Polonsky from Ukraine, and
Szymon Torunczyk from Poland.

Detailed reports on their work appeared in the CSL proceedings and are also available on
the EACSL homepage.



Res Publica: The Universal Model of
Computation

Nachum Dershowitz

School of Computer Science, Tel Aviv University, Ramat Aviv, Israel
nachum.dershowitz@cs.tau.ac.il

—— Abstract

We proffer a model of computation that encompasses a broad variety of contemporary generic
models, such as cellular automata—including dynamic ones, and abstract state machines—
incorporating, as they do, interaction and parallelism. We ponder what it means for such an
intertwined system to be effective and note that the suggested framework is ideal for represent-
ing continuous-time and asynchronous systems.
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The nature of the process is truly characterized by Glaucon,

when he describes himself as a companion who is not good for much in an
investigation, but can see what he is shown, and may, perhaps, give the answer
to a question more fluently than another.

—Plato, The Republic

1 Purpose

The goal of this study is to design a model of computation that encompasses various and
sundry generic models, such as dynamic cellular automata [1], as well as interactive and
parallel abstract state machines [2, 3]. Furthermore, the model should be capable of dealing
with continuous-time and asynchronous systems.

We employ a political metaphor.

2 The State Model

Blocs. A bloc is an interconnected collection of states that evolve over time. The number
of states in a bloc may be finite or infinite. States communicate with each other via
(communication) channels. Not only do the internals of states evolve, but their connections
may be reorganized. Furthermore, it may be possible for new states to be created and
connected to existing ones.

Maps. We draw channels as pipes (looking like hoses) emanating from the client state (on
the requesting end) and connected to the serving state (which owns the data that is being
made public). A serving state may allow its clients to update sections of the shared data.
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Arrows along the channel can be used to indicate that data flows along a channel in one
direction only.

States. FEach state is a logical structure (consisting of a domain, first-order vocabulary,
and interpretations for the operations in its vocabulary) whose evolution is governed by its
native policy—which may be natural (fixed by laws), algorithmic (dictated by a program),
or arbitrary (controlled by some external agency)—and may react to its environment. As
such, a state contains interpretations for the functions in its vocabulary (constants may be
viewed as scalar functions and relations as truth-valued functions). Only the interpretations
given by a state to its functions may change during evolution; the domain and vocabulary
are fixed throughout.

Domains. All states in a bloc share the same domain, but can have different vocabularies.
Domains may be finite (automata), countably infinite (machines), or uncountable (processes).

Names. States have (unique) identifying names, taken from a namespace that is included
in the domains of states. Pipes in a graphical representation of this model of computation
depict the use of names.

Resources. A subset of each state’s vocabulary are designated public. Their values are
made visible to other states; private functions are not. A resource is a (named) state along
with one of its public functions. One can consider a framework in which public resources
can be accessed but not modified by others; think of them as (read-only) communiqués.
Alternatively, some resources can be designated shared and allow for modification by foreign
states. No bound is placed on the number of channels connected to a state or the number of
shared resources.

Assets and Agents. From the point of view of the client of a resource, a shared resource to
which it is connected is its agent, while a public resource that is not modifiable is an asset of
its.

Vassals. A state can only modify the values of its own functions or of shared resources to
which it has access. To provide differential access to its public data, a state can set up vassals
(or “satellites”), each of which connects to it by a private one-way channel, keeping the name
of the controlling state secret (not publicly available). The vassal state can continuously
retrieve the relevant part of the data from its master state and pass it on to whichever states
are connected to it, the vassal.

Realignments. The topology of a bloc can change due to modifications of (the values of)
its channels. In particular, if the value of a resource is itself a name, then a state can change
an outgoing channel to refer to the state named by the resource.

Locations. Locations in a state are determined by function symbols (from the vocabulary)
and domain values for its arguments (as per the arity of the symbol); it is the contents of
locations that change when an interpretation is updated.

Puppets. A state may also create a puppet, which is a state with the same domain and
vocabulary, running the same policy. Before releasing the puppet to run on its own, the
controlling state may set various values in the puppet; all other locations in the puppet will
retain their default values.
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3 State Evolution

Time. States evolve over time, where time T, in general, can be any linearly-ordered domain,
with ordering < and minimal element, denoted 0. Let S be the initial intervals [0,t) for all
teT.

Discrete Time. For discrete systems, time is the natural numbers N, with initial segments
S =10..n), for n € N.

Continuous Time. For continuous behavior, time T would be the non-negative reals.

Signals. Each resource to which a state is connected provides it with a signal, which is a
function from an interval in S to the domain of the bloc. A signal defined for an interval
[0,t) has length t. Concatenation of a signal of length s with one of length ¢ gives a signal of
length s+t in the obvious way.

Interaction. Channels provide a means for communication between states, but there is no
special mechanism for explicitly responding to requests. Clearly, the signal emitted by one
resource may depend on signals emitted by others. That is the nature of interaction.

Environments. The ensemble of signals reaching a state constitutes its environment. Let
the possible environments, 3, be all tuples of signals of the same length. The width of an
environment the number of components in the tuple. The concatenation o3 of environments
a, B € 3 of the same width is the tuple of concatenated signals. Write o < v if there exists a
08 such that af = ~.

Evolutions. Policies are described by transition functions 7 (perhaps multivalued) that
map states and environments to states. That is, 7: X x ¥ = X. The evolution of a state x
for a given environment v is the sequence of states obtained in this way: {7.(2)}a<~-

Causality. Let 7 be a transition function. Transitions must be causal (“retrospective”),
depending only on the past, so that 7,5(z) = 73(7a(2)) for all states z, where af is a
concatenated environment. If 7 is multivalued, then 75 should be understood as extended to
sets. Put differently, 7,3 = 7, o 73, as relations.

Federations. One can view a subset of the states as one federated state. The transitions of
the federation depend on its external environment, mediated by channels from the outside.

Globe. The global federation consists of the totality of states, or at least those states that
are governed by programs or processes.

4 State Programs

Programs. Algorithmic policies may be described by programs. Programs operating in
discrete time must define the one-step transition relation. This may be done in the basic
language of abstract state machines [6], which includes the following at a minimum:
general assignments: f(s1,...,8;) :=t (terms s;, ¢ in the vocabulary of the state)
conditionals: if ¢ then P (Boolean term c¢ and program P), and
parallel composition: P || Q (programs P, Q).
In addition, we want
higher-order assignments: f := g, where f and g are functions (of the state vocabulary)
of the same arity, and
serial composition: P;@Q (programs P, Q).

CSL’13
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Channels. A channel is a name-valued location. A foreign location is indicated by an
expression of the form p.¢, where p is a channel and ¢ is a location. Only local locations and
shared resources may appear on the left of assignments. A foreign resource on the left of an
assignment is an agent; if it only appears on the right side or in conditions, it is an asset
(that is read-only).

Dependence. A new state may be conceived with a

creation assignment: p := new f,g,... allow h,k,....
The new puppet state, pointed to by p, with have public functions f,g,...,h,k, ..., with
the second half of the list shared freely. When launched, the puppet will run the same
programmed policy as its parent. Assignments may be made to locations in unlaunched
puppets (high-level assignments are of help here); flags can be used to specialize the behavior
of puppets.

Independence. The

launch command: free p
activates the program in the puppet pointed to by p, at which point the parent can no longer
modify it on its own. The puppet is now independent.

Federations. The program of the federation as a whole is just the union of the programs of
its constituent states, with functions disambiguated by the name of the state they reside in.
(Of course, some states might not be governed by programs, but rather provide measurements
of natural phenomena like temperature and barometric pressure.) Whereas an individual
programmed state has a bounded number of channels it owns, a federation can create more
and more new states, each of which is connected to non-federated states.

Flows. For continuous-time systems, the discrete programming language is extended with
continuous (explicit) assignments: f(s1,...,s;) = t,
which stay in force until a new assignment is made to the same term by some program.

Jumps. Jumps are effected by conditionals. Additional constraints on algorithmic evolution
make sense in the continuous context. These include that tests should test for conditions
that have non-zero duration and that the dynamics of a system change only finitely often in
a finite period of time.

Flows and Jumps. A jump in the evolution of a continuous-time state is a change in its
dynamics, in contrast with flows, during which the dynamics are fixed. See [5].

Conflicts. Programs as described above can cause conflicts (“clashes”) when different
(discrete or continuous) assignments (in one or more state programs) attempt to assign
different values (at one and the same moment) to a single location. The outcome of such a
conflict is any one of the possibilities. (These nondeterministic semantics are preferable to a
system crash.)

Continuity.  Continuous assignments may involve infinitesimal time, dt, provided the
outcome is independent of the choice for dt. This is a continuity requirement of sorts. One
can conceive of implicit specifications of continuous behavior, as well.

5 State Policies

Clocks. To achieve synchronous behavior in a continuous-time environment, there would
need to be a global clock to which other states are connected, directly or indirectly.



N. Dershowitz

Archives. When foreign locations provide only read-only resources, write abilities to a public
(but not shared) memory need to be achieved via requests—as in modern hardware. A state
p can allocate resources for requests r, addresses a, and values v, which it makes available
to a memory module. The latter runs a program of the sort if p.r then m(p.a) := p.v, for
some “storage” function m. A similar setup may be used to serve stored values.

Queues. When unboundedly many states use the same controlled archive, some queueing
mechanism needs to be set up, by means of which individual states can place requests while
the archive deals with them one at a time.

Data. If (automata) states share a finite domain (as in cellular models [1]), then unbounded
memory is achievable by means an unbounded number of connected states, in which case an
unbounded number of steps may be needed to access a particular datum.

Interfaces. To model a physical or biological system in which units are each governed by
rules, but adjacent units exchange values or signals, one could represent their interface as a
channel. For example, the temperature of a wall would be a public function over R? of one
side or the other.

Effectiveness. In general, for a system to be deemed effective, not only should its transitions
and evolutions be describable by a finite text, but also the initial states with the operations
they are endowed with. For a bloc to be effective, it should have finitely many states, each
governed by an effective algorithm [4]. The number of states and their inter-connections may
grow unboundedly during its evolution.

Positions. This model does not directly model positions in space (of physical or biological
systems). Each state might keep track of its own position; neighboring states would need to
be in contact to avoid overlap.

Delays. There could be a time delay between a request for a value from a serving state and
its receipt by the client. This would hold up execution of that part of the client process that
awaits the requested value.

6 Conclusion

We believe that most of the usual and unusual models of computation are instances of this
paradigm.
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—— Abstract

Whether we deal with foundations or computation, logic relates questions and answers, typically

formulas and proofs: a very entangled relation due to the abuse of presuppositions.

In order to analyse syntax, we should step out from language, which is quite impossible.
However, it is enough to step out from meaning: this is why our first lighting of logic is that
of answers: it is possible to deal with them as meaningless artifacts assuming two basic states,
implicit and explicit. The process of explicitation (a.k.a. normalisation, execution), which aims
at making explicit what is only implicit, is fundamentally hazardous.

The second light is that of questions whose choice involves a formatting ensuring the conver-
gence of explicitation, i.e., the existence of “normal forms”. This formatting can be seen as the
emergence of meaning. It is indeed a necessary nuisance; either too laxist or too coercitive, there
is no just format. Logic should avoid the pitfall of Prussian, axiomatic, formats by trying to
understand which deontic dialogue is hidden behind logical restrictions.

The third lighting, certainty deals with the adequation between answers and questions: how
do we know that an answer actually matches a question? Apodictic certainty — beyond a
reasonable doubt — is out of reach: we can only hope for epidictic, i.e., limited, reasonable,
certainty. Under the second light (questions), we see that the format is made of two opposite
parts, namely rights and duties, and that logical deduction relies on a strict balance between
these two opposite terms, expressed by the identity group “A is A and conversely”. The issue of
certainty thus becomes the interrogation: “Can we afford the rights of our duties?”
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1  First light: what is an answer?

1.1 Implicit vs. explicit

A simple-minded approach to answers would reduce them to something completely explicit,
e.g., yes or ||| (the number 3 in Cro-Magnon numeration). However, implicit answers, those
given by programs or proofs, are more interesting, since portable. Indeed, the two sorts
of answers, implicit and explicit are linked by explicitation: the execution of a program
(cut-elimination, normalisation) reduces the implicit to the explicit. To sum up, an implicit
answer is a program before execution.

Explicit answers form the solid ground for logic, the ultimate reality, which is made
possible by the fact that they convey strictly no meaning. But how do we reckon that
something is explicit? Is explicit what belongs in the realm of constatation, i.e., what
is analytic. On a traditional typing machine, all keys are constative: they can but add
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new text, typically the “d ” key which opens a new line. On a computer, keys can also
assume a performative function: “J ” launches programs. The two aspects, constative and
performative, are mingled to the point that one easily launches a program by accident.
In logic, the constative and performative aspects of implication were mingled in XIX"
century syntax (Axiom + Rules): Modus Ponens. The XX' century reading (sequent
calculus) distinguishes carefully between implication = which is handled by the constative
left introduction and entailment - which is handled by the performative cut rule.

The distinction between implicit and explicit is purely subjective: we decide that an
object is finished, i.e., explicit enough for our taste. A cheque is the typical implicit answer:
we must cash it, then spend the money, both operations being hazardous. But we can decide
— say, it is a cheque of Paul Erdés — to pin it above the desk. In the same way, a program
need not be executed: it can be frozen, or opened with a developer. In logic, a cut on A can
be replaced with an left introduction of A = A F (or - A® ~A)!. This shows that there is
no real distinction between, say, programs and data: they all belong to the same analytic
space in which explicitation takes place; indeed, the program of explicitation itself must be
part of the space.

Although negated by totalitarian ideologies, starting with Bentham’s panoptic prototype
of Big Brother, the distinction between implicit and explicit is basic and incompressible. The
first evidence is to be found in incompleteness: there are questions without answers, typically
the Godel sentence. This evidence is however bridled by the iron discipline of formal systems;
we should concentrate on all means of producing explicit answers, including those proscribed
by logic. In this lax context, Turing’s undecidability yields a partial recursive function
that cannot be extended into a total one, thus forbidding us to foretell the convergence of
execution, i.e., explicitation. By the way, computational complexity deals with a less brutal
approach to the distinction between implicit and explicit: some answers are more implicit
(harder to compute) than others.

Almost anything can serve as analytic space, for instance the binary integers used in
machine code. However, in view of the necessary relation to be made with questions, some
choices are more interesting than others. In particular, explicitation should be as natural as
possible, so that implicit answers look as much as possible as as their own ezxecution — and
not as data to which an external program is applied.

A good candidate for an analytic space remains pure A-calculus; among its good properties,
Church-Rosser which states that the implicit contents, if any, is unique. The rewriting style
(basically one equation), although external, remains very natural. The limitations are those
of the functional paradigm with no direct access to other types of data, e.g., pairs. Also, the
treatment of bound variables (a-conversion, substitution) is particularily ad hoc. A-calculus
is indeed already too formated: the only abnormality is that of a never-ending normalisation.
The absence of deadlocks in pure A-calculus is both a measure of its intrinsic qualities and of
its limitations as an analytic space: deadlocks do exist!

Experience, that of linear logic and parallel computation, compels us to find a more
primitive notion, free from functionality, but still deterministic. The various versions of
Geometry of Interaction eventually stabilised into an analytic space based upon Herbrand’s
technique of unification, which is more primitive, less ad hoc, than rewriting: execution can
be seen as a sort of physical plugging. This was, by the way, the strongest point in the late
Logic Programming.

1 This remark can, surprinsingly, be traced back to Lewis Carroll who made a mess of it.
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1.2 Stars and galaxies
1.2.1 Unification

Consider a term language with infinitely many functional symbols of each arity. An equation
t = u between terms can be solved by means of substitutions: t,u are unifiable when t = uf
for some unifier 6. The point is that substitutions do compose, hence:

» Theorem 1 (Herbrand, 1930). If ¢, u are unifiable, there is a mother 6y of all unifiers for
t,u: any unifier 6 for ¢, u can be uniquely written 6y6’.

1.2.2 Flows

A flow is an expression t+t' where t,t' are terms with quite the same variables. These
common variables are internal to the flow, in other terms bound. In particular, when combining
two flows, one must always rename the variables so as to make them distinct. Composition
between t+—t' and u+ v’ is obtained by matching t' and u: matching is the particular
case of unification where the terms have no variable in common, what is the case when the
variables of t', u have been made distinct. If € is the principal unifier, we define composition
by (t —t')(u+—u') := td —u'6. Composition is thus a partial operation; if we formally add
an empty flow 0 to take care of a possible failure of the matching: (t—t')(u—u') := 0,
composition becomes associative, with neutral I := z < z.

If T is the set of closed terms, then any functional term ¢ induces a subset [t] C T,
namely the set of all closed ¢y which unify with ¢; ¢,t" are disjoint when [¢t] N [t'] = 0. Any
flow ¢t —t' induces a partial bijection [t — '] between the subsets [¢'] and [t] of 7. Let us
fix a copnstant ¢; if ¢ is closed, then [t < t']ty is defined when (¢t —¢')(¢o — ¢) # 0, in case
it writes [t — t']to < c. The condition “quite the same variables” ensures that [t — t']tg is
closed and that [t —¢'] is injective. Any flow u+ u is idempotent; its associated function is
the identity of the subset [u] C T.

1.2.3 The convolution algebra

One can introduce the convolution algebra of the monoid, i.e., the set of finite formal sums
> Ai¢; where the ¢; are flows and the A; are complex coefficients, the improper flow 0 being
identified with the empty sum. This algebra acts on the Hilbert space ¢2(7T) by means
implemented by the usual adjunction. The idempotents ¢t — ¢ correspond to the projections
on the subspaces ¢2([t]) and t <t induces a partial isometry of source ¢?([t']) and target
¢%([t]). The early versions of Gol did associate to proofs finite sums of flows. These sums
were partial isometries; u = t; ~—t} is a partial isometry (i.e., vu*u = u) if the targets ¢;
are pairwise disjoint, not unifiable, idem for the t;. The operators of Gol are indeed partial
symmetries (u = u® = u*): typically the identity axioms (t+—t') + (#' ~—1t) (t,t' disjoint).
The unification algebra internalises the major algebraic constructions.

Matrixes

If I is a finite set of closed terms, the I x I matrix (\;;) can be naturally represented by

Zij Aij (i j)-
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Direct sums

The flows P := p(z) ~— z,Q := q(x) ~— x induce an isometric embedding of ¢?(7) @ ¢*(T) in
2(T): 2®y +— [Plz+[Q)y. The isometricity comes from P*P = Q*Q = I, P*Q = Q*P = 0.
The embedding is not surjective: this would require PP* 4+ QQ* = I, in other terms that
every term matches either p(z) or ¢(z).

P and @ have been heavily used in the early Gol, in particular for multiplicatives —
and, modulo tensorisation with I, for contraction. They enable one to change the size
of matrices in a flexible way. Usually, the only possibility is to divide the size, typically
Minn(C) =~ M, (M, (C)) replaces a mn X mn matrix with a m x m matrix whose entries
are n X n matrices, i.e., blocks of size n x n. Thanks to P, @, one can replace a 3 X 3 matrix
with a 2 x 2 one (with four “blocks” of sizes 2 x 2,2 x 1,1 x 2,1 x 1).

Tensor products

The tensor product of two flows makes use of a binary function “-” and is defined by
(t—t)® (u—u') =t -u+ ¢ -u; the variables of the two flows must first be made distinct.
This corresponds to an internalisation of the tensor product, which plays an essential role in
the handling of exponentials, i.e., of repetition. The flow T := (z-y)-z — z-(y-z) compensates
the want of associativity of the internal tensor: T*(((t—1t) ® (u—v')) ® (v+=v'))T =
(t=t") © ((u=u) @ (v=0)).

Crown products

In the same style as T, the flow
o =a1- (2 (. (Tp1 - Tn) . 0)) = Toq) - (@o(2) - (- (Tona1) * To(n))---)) induces a
permutation of the constituents af a n-ary tensor.

1.3 Stars and galaxies
1.3.1 Stars

A star [t1,...,tn+1] consists in n 4+ 1 terms; these terms, the rays of the star, must be
pairwise disjoint, i.e., not matchable, which is strictly stronger than not unifiable.

Stars generalise the unification algebra; thus, the axiom link (¢t —¢t') + (¢’ —t) becomes
[t,t']. However, since our objects are no longer operators, there are some difficulties in
defining the analogue of composition. For this we shall use coloured stars. We select pairs
of complementary colours, e.g., (green,magenta) together with the neutral colour black;
a coloured star is a star in which each ray has been given a colour: typically, [¢, u,v,w].
Disjointness is required only for rays of the same colour, which comes from the fact that
coloured stars are not yet another notion, just a shorthand: indeed, consider three unary
functions g, m,b and replace [¢,u,v,w] with [g(t),g(u),b(v),m(w)]. t is thus a priori
disjoint from wu.

1.3.2 Galaxies

A galazy is a finite set of coloured stars. Cut-free proofs will be represented by black galaxies,
whereas the cut-rule will make use of complementary colours. The implicit thus lies in the
use of colours, this explains why it is relative and contextual: by making everything black,
a galaxy becomes explicit at no cost. Colours thus indicate that we consider the data as
unfinished, thus initiating a normalisation process.
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In order to normalise a galaxy, we first form its diagrams. By this I mean any tree (in
the topological acception) obtained by attaching N + 1 stars of the galaxy by means of N
vertices. By a vertexr, I mean a pair ¢t = u of rays of complementary colours. Since the same
star may be used several times in a diagram, a galaxy is likely to generate infinitely many
diagrams.

The unification of a diagram consists in unifying its vertices, so that
t0 = uf becomes an actual equality. Most unifications will fail; we are basically concerned
with correct diagrams, those for which unification succeeds.

1.3.3 Normalisation

In usual Gol, the cut-rule is handled by a partial symmetry o; the normal form of the proof
(u,0) is given by:

(I —o®)u(l —ou) (I —o?)

Here o corresponds to the swapping of complementary colours: ¢ exchanges green and
magenta and “kills” black. Under reasonable hypotheses (nilpotency), u(I — ou)~! can be
written as a finite sum u + uou + uocuou + . . ., which corresponds to the plugging of u with
itself through complementary colours. The two I — o2 correspond to the restriction to the
“black stars”.

Strong normalisation) generalise the nilpotency of ou:

1. There are only finitely many correct diagrams. In other terms, for an appropriate N, all
diagrams of size N + 1 fail; this finite N accounts for strong normalisation.

2. No correct diagram is closed, i.e., without a free ray. The condition thus excludes the
closed diagram {[¢],[t]} (vertex ¢t = t).

3. In a correct diagram, identify complementary colours, e.g., replace magenta with green;
then the free rays are disjoint. The simplest diagram thus excluded consists of a single
binary star: {[¢,u]}, with ¢,u not disjoint.

The normal form is obtained by collecting the correct diagrams whose free rays are black.

And to replace them with their residual star, i.e., the star whose rays are their free rays.

A galaxy G is isometric when rays of the same colour occurring in G are pairwise disjoint.

The normal form of an isometric galaxy is easily shown to be isometric.

1.3.4 Church-Rosser

In the presence of two pairs of complementary colours, there are three possible ways of
normalising:

1. Identify green = blue,magenta = yellow and normalise.
2. Normalise the cuts blue/yellow, then the residual cuts green/magenta.

3. Normalise the cuts green/magenta, then the residual cuts blue/yellow.

The Church-Rosser property equates (in any possible sense) these three possibilities. This
property will later be used to show the compositionality of cut, hence to develop various
functional, i.e., category-theoretic, interpretations. Hence one pair of colours is enough, at
least for theoretical considerations.
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2 Second light: what is a question?

2.1 Formatted vs. informal

An implicit answer, a program, may have no explicit contents: normalisation may diverge.
Fixing that point amounts at formatting; the emergence of meaning wholly lies in this
formatting. A synonym for meaning is question: the meaning of the answer is the question
it is supposed to solve. Now, there is a great divide between the formatted, typed, logical
approach and the unformal, untyped, “free” approach.

The lesson of incompleteness is that the format is a necessary nuisance, think of Family,
Justice, Police, etc. Indeed, the informal approach to logic is inconsistant — if we prefer, the
untyped approach to computation does not normalise: this account for the “necessary”. On
the other hand, a typing discipline always misses something. This remark is already present
in Richard’s Paradox (1905): “The smallest integer not definable in less than twenty words”.
The informal acception of “definable” makes it inconsistent, while a formated version — say
DEFINABLE — avoids the pitfall while producing a definition out of the scope of “DEFINABLE”.

The same totalitarian ideologies that claim that everything is explicit, transparent, would
consistently vouch for informality: witness the various qualunquists (libertarians, populists,
etc.) which pretend to approach politics without politicians, taxes, laws. When in charge,
these people turn out to be worse than the politicians they were opposing to. This is due
the fact that one cannot escape formatting: and then, better an explicit than a hidden one!

The real question is thus not that of the necessity of a format, but that of its nature, its
emergence. XIX*™ logic solved the problem by means of aziomatics, i.e., principles that one
cannot discuss. There must be something of the like, but we should at least understand what
we accept: axiomatics is too Prussian to be honest?. In logic, the format is usually invisible;
besides the choice of a language to avoid inconsistencies, it also occurs in the form preserved
by category-theoretic morphisms or in the rule of game-theoretic semantics. Can we discuss
these choices, or better: is this discussion part of logic?

The situation of an opaque deontic, normative?, kernel did not change till the invention
of linear logic in the mid eighties. Indeed, the existing formats, especially natural deduction,
were satisfactory enough to make us forget their axiomatic, Prussian, character. Linear logic,
with the introduction of classical features — basically an involutive negation — within the
constructive universe, posed a novel question, namely the handling of several simultaneous
conclusions, a problem hitherto avoided by the tree-like format which pinpoints both the
conclusion and the last rule applied. In proof-nets, the last rule is implicit to the point that
it is not even uniquely defined. What makes a proof-net correct, i.e., what compels it to have
a last rule and, this recursively, is a purely deontic question.

The question was not quite novel, since Herbrand’s theorem solved it in the limited
context of quantification. In a prenex form, the existentials should be given as functions
y; = t[x1,...,2,] of the universals. Assuming we forgot the step-by-step construction of ¢,
Herbrand replaces « with f(y) in the case of a formula JyVaz; if z actually occurs in ¢, then
we get a cycle (failed unification) y = ¢[f(y)].

The sort of dialogue at work in Herbrand’s theorem — more generally in proof-nets — is
not basically designed to tell truth from falsity, but what is permitted from what is illegal. This
dialogue is deontic (instead of alethic): it deals with permissions, obligations, and not with

2 In modern Greek, aziomatikos means “officer”!
3 This adjective may convey a derogatory approach to the format; “deontic” is more neutral.
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truth. A typical deontic dialogue is “Objection your Honor! Objection sustained/overruled”.
The dialogue has nothing to do with the truth/falsity of the statement under discussion: it
concerns its relevance to the case. One perfectly understands that not every question should
be taken into consideration; but also that this necessary deontic dialogue may be a way to
sweep things under the carpet.

Popper’s notion of falsifiablity is a limited form of deontic dialogue accounting for purely
universal, I19, formulas of arithmetic, e.g., Vz (z + 1)? = 22 + 2z + 1. Falsifiability does
not hold beyond II{ complexity, for the simple reason that falsifiability is itself II{: “for all
tests...”. Beyond the IIY case, the deontic dialogues becomes completely symmetric: if an
objection is overruled, something goes wrong, but we cannot foretell which side “is right”:
when the judge says “sustained”, he may be dismissed!

2.2 Vehicles and gabarits

We restrict our presentation to the familiar multiplicative case of linear logic.

2.2.1 Proof-nets

We should get rid of syntactical decorations so as to describe multiplicative proof-nets in
a purely locative way: in order to represent a proof of - A, B, C' unary functions pa, pp, pc
will be used to distinguish between the various locations available in the sequent; I could as
well use p1, p2, p3, but this would compel me into a systematic reindexing.

2.2.2 Vehicles: cut-free case

Let us choose, once for all, distinct constants 1,r and a binary function letter “-”. To each
proof ™ we associate its vehicle, i.e., a galaxy 7°®; this galaxy is black in the cut-free case.

Identity axiom: if 7 is the axiom - A, ~A, then 7* := {[pa(z),p~a(x)]}.
Z%-rule: if the proof m of FI', A% B has been obtained from a proof v of FT', A, B, then
m® := v* in which p4 and pp are now defined by
pa(®) :==pagp(l- ), pp(r) == pags(r- ).
®-rule: if the proof w of FI'; A ® B has been obtained from proofs v of FT', A and pu of
F B, A, then 7® := v®* U u®, with pa,pp defined by
pa(®) = panp(1l- ), pp(r) = panp(r - ).
The vehicle is thus a galaxy of axiom-links, seen as stars. The rules %, ® have been
used to relocate these links. For instance, the axiom [pa(z),p~a(x)] may relocate as

[[pAi’S’(NA@B)(l : x),pAi’?(NAQ@B)(r “(1-2)) ]

2.2.3 Vehicles: general case

In presence of cuts, coloured functions will be needed. We shall use a pair of complementary

colours, typically pp,p~p and pgp,p~p. The interpretation 7® now looks as a union V U C:

V (in black and green) is the vehicle proper, C — its feedback — is easily identified as the

magenta part of the vehicle.

Cut rule: if the proof 7 of FT has been obtained from proofs v of FI', A and p of F~A; A,
then 7° := v* U u® U {[pa(z),p~a(x)]}; furthermore, in v* U u®, pa,p~a have been
painted green: pa(t) — pa(t), poa(t) = poalt).

17
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2.2.4 Gabarits (1)

We must now make sense of the lower part of the proof-net, the one dealing with the %, ®
and Cut links. The main problem is to give a precise definition of the switching discipline
leading to the correctness condition. Indeed, to each switch, we shall associate an ordeal, i.e.,
a coloured galaxy. This finite set of ordeals is called the gabarit.

We already defined the unary functions p(z) for each formula and subformula of the
proof-net. We now introduce ga(z) := pa(g - ), where g is yet another constant. The
replacement of p4 with ¢4 in the context of gabarits is due to the fact that pagp(x) is not
disjoint from pa(x) := pagp(1l - x), whereas gagp(x) and ga(z) are disjoint: the ga provide
disjoint locations for the formulas occurring in the lower part of the proof-net.

Given a proof-net of conclusions I', a switch L/R of its %-links induces an ordeal, namely
the coloured galaxy made of the following stars:

X,~X: [pa(x),qa(z)] when A is a literal X,Y,~X,~Y,... ...

®: [qae5(2),q94(x), qp(2)].

Br: [gans(x),qa(z)] and [gp(z)]. In terms of graphs, [¢s(z)] “terminates” all [¢p(¢)].
Br: [qans(x),qp(x)] and [ga(z)] which “terminates” all [ qa(t)].

Cut: [ga(z),quna(z)].

Conclusion: [qa(x),pa(z)] when A €T, i.e., is a conclusion.

An ordeal thus normalises into a galaxy in black (conclusions) and blue (literals).

2.2.5 Correctness, a.k.a. completeness

Let V be V painted yellow. The correctness criterion thus writes as:
For any ordeal S, the galaxy VU S strongly normalises into {[pa(z) ; A €T']}.

This condition is obviously necessary; its sufficiency is the most elaborate form of completeness
that one can imagine, since it relates the symbolic testing by means of the ordeals with the
proofs in a logical system.

The main technical problem with completeness is that usual proof-nets are, so to speak,
“preconstrained”: the identity links relate complementary formulas A, ~A, whereas nothing
of the kind has been so far required. In other terms, our treatment of literals is completely
indistinct: X, ~X,Y are the same, up to their locations. How can we force an axiom link to
relate X with a ~X (and not a Y, nay another X)?

Here, we must remember that predicate or propositional calculi are convenient structures,
but that part of them belongs in the worst kind of a priori. Typically, the so-called
propositional “constants” X,Y and their negations: we are embarrassed since they mean
nothing by themselves. The real logic is a second order system — a sort of system F — in
which there is no propositional constants, but in which formulas are closed. What we call
first order logic indeed corresponds to those formulas VX5 ...VX, A, with A quantifier-free:
the behaviour of such formulas is extremely simple, especially in view of completeness issues,
e.g., the subformula property. The restriction to those formulas renders the universal prefix
compulsory —hence the possibility to omit it. To make the long story short, when dealing
with a proof-net, we must take into account the implicit second order quantification VX on
all propositional “constants”. What follows is a glimpse of the future treatment of second
order logic; indeed the easy case of the quantifier VX.

Every propositional “constant” must be switched; each switch has three positions, so
that n propositional constants induce 3™ possibilities. The switching corresponds to the
choice ® of a substitution X; ~» c; for each of the “constants” X;, the c; ranging over the
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three possibilities a,a ® b,a % b, where a, b are propositional letters. Now, to switch our
net consists in:

1. First switch the constants, thus yielding a substitution .

2. Then switch ©(I") as explained above.

This should be enough to ensure that literals are linked according to the book. As to general

axiom links (not between literals) an argument based upon nxpansion should exclude “illegal”
links.

2.2.6 Gabarits (I1): virtual switches

Let us turn our attention towards an exotic multiplicative, namely the “linear affine” im-
plication A — B. “—” yields a purely multiplicative second-order reduction of additives:
ADB:=VX((A—oX)— ((B—X)— X))~

Indeed, A — B is an intuitionistic implication without reuse of premises; this is why
it interests us. The associated disjunction A x B := ~A — B is problematic in terms of
gabarits. Indeed, the x-link:

is problematic: the premise A (written [A] for this reason®) might be absent, hence the
switch “L” is hazardous: it may destroy everything in case of absence. On the other hand,
we cannot content ourselves with the sole “R”, hence the idea of a wvirtual switch, i.e., a sort
of compensation for the missing switch.

Virtual switches are inspired from the proof by Mogbil and de Naurois of the NL
complexity of multiplicative proof-nets; improving the idea of contractibility introduced by
Danos, the authors show that it is enough to switch % on one side, e.g., always “R”; an
additional order condition (3 below) compensates for the missing switches. The point is that
this alternative approach can be used in case we cannot switch the % on “L”, typically if the
actual presence of the premise A is dubious. This is the case with the marginal connective
X, a multiplicative which actually needs virtual switches.

A wirtual switch is a star [t;uy, ..., u, ], with a distinguished ray, its root t. uy,...,u,
must be pairwise disjoint; each variable occurring in ¢ must still occur in the wu;.

The notion of ordeal is modified as follows, so as to include an auxiliary galaxy of virtual
switches. Typically, in the case of A x B, besides [qawp(z),¢p(x)] and [ga(x)], we add
the auxiliary stars [ qawp(z);qa(z)].

Consider the unique correct diagram in VU S, and let us unify it, so as to get a galaxy G.
For each virtual switch [¢;uq, ..., u, ], consider all rays obtained by unification from some
u;; since u;0 = u;6’ implies t0 = t6’, each such ray “comes from” a specific instanciation of ¢,
its “root”. We require that:

1. If u;0 € G, then its root t0 occurs in G.
2. wu;0 is “upwards connected” to t0, i.e., the connection does not transit through the vertex
t101 = t0.

4 Instead of VX ((A — X) = (B — X) = X)).
5 The graphism is reminiscent of the discharged hypotheses of natural deduction.
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For each t0 in G, we can consider the set G;y of all rays standing in between ¢0 and some
u;0" with root t6 (i.e., s.t. t0 = t6) including extremities; G;y is this a sort of tree, rooted in
t0. We define t16; =y ta0s by t101 € Gip,. If < is the reflexive and transitive closure of =<y,
we require that:

3. < is an order relation.

These conditions (especially 3) are clearly cO-NL, hence their complexity-theoretic import.
To understand how virtual switches work, let us assume that the ordeal S € G switches the
% link with conclusion A % B on “R” and that its virtual part contains [qamg(x),qa(z)];
we can get rid of this virtual switch by adding to G the ordeal S’, namely the twin of S with
the same % switched on “L”: conditions 1 — 3 precisely allow for this replacement. We can
thus eliminate the virtual switch [ganp(z),ga(2z)] from G at the price of a duplication of
the number of its ordeals.

Virtual switches are well-adapted to weakening, since they cope with the possible uncer-
tainty as to the presence of a specific premise. Moreover, since u; may contain variables not
in ¢, there is no limitation as to the number of u;#’ rooted in a given t6: the extra variables
thus account for contraction. The treatment of exponentials and additives makes a heavy
use of virtual switches.

3 Third light: what conveys certainty?

3.1 Epidictic vs. apodictic

The main difference between XIX'*" century, pre-Gédelian, and XX century logics is perhaps
the issue of certainty. Before incompleteness, a proof was supposed to be valid beyond any
doubt; hence the adjective apodictic, which corresponds to this absence of doubt, but whose
etymology is simply “proven”. Incompleteness opens the possibility of a reasonable doubt,
hence to a change of status for proofs: they are no longer apodictic, they can only be epidictic,
i.e., they only guarantee a reasonable form of certainty. Common sense can explain this
failure: deduction is a rational form of prediction, but prediction cannot be 100% rational.
Just like rating agencies were unable to prevent the subprime crisis, there is no absolute
certainty as to cheques, before cashing. The only absolutely reliable bank is completely
explicit: it directly delivers the goods you are looking for, the cow and the butter: but then,
forget money! In the same way, the only absolutely reliable formal system would be purely
analytic, limited to down to earth constatations of the form 2 + 2 = 4.

How come that our certainty is no longer that certain? We must remember that it never
occurred to XIX™ century logicians, e.g., Russell, Hilbert, that the logical format could “miss”
some “truth”, unless the definition was intentionally ambiguous. For instance, Euclide’s
Postulate left open the question of parallels, but this was made explicit by alternative models,
the sphere or the one-sheet hyperboloid; this question being fixed, nothing else was “missing”.
In the case of incompleteness, nothing specific is actually missing in the sense that it would
suffice to add it. But there is a definite shortage of counter models: nobody has ever seen
the tail of a refutation of the Godel sentence — the book says that such a refutation must
exist — but this “evidence” follows from incompleteness, while it should establish it. This is
why this “model” is styled non standard, i.e., good for nothing.

Back in the 1920s, the only possibility was that of proving too much, like in Burali-Forti’s
or Russell’s antinomies. Hence the reduction of certainty to consistency: if a deductive
system cannot prove A and —A, then it should be perfectly sound, i.e., conveys certainty.
However, PA + =G, Peano Arithmetic extended with the negation of the Godel sentence is
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equi-consistent with PA, although plainly wrong! An analogy: many criminals are found

“not guilty” on the grounds of some legal trick, say a statute of limitations; but an acquittal

based on a deontic use of Law can by no means restore confidence. In other terms, although

the negation =G avoids inconsistency, it is still far from plausible: consistency does not entail
certainty.

We must however reckon that consistency is (a minor) part of certainty. Here the second
incompleteness destroys the ultimate illusion of XIX* century logic: consistency itself cannot
be established beyond a reasonable doubt.

Godel’s incompleteness is the final firework of XIX'" logic. XX logic begins with
Gentzen’s cut-elimination (the distinction implicit/explicit), Herbrand’s theorem (the emer-
gence of format) and the “functional” interpretation of proofs, a.k.a. BHKS. Typically,
a proof of Vz A[z] is a function associating to each integer n a proof f(n) of A[n]. The
definition is interesting and problematic under the three lights:

Answers: f cannot be quite a function, since a function is an infinite object. It must thus
be a finite artifact, a program yielding the output f(n) when feeding it with n.

Questions: f must be of the right kind, i.e., associate to each n a proof of A[n], whatever
that means. Deontically speaking, this means that f must pass infinitely many tests:
first choose n, then test whether f(n) is a proof of A[n]. Something of the like occurs
with Popper’s falsifiablity.

Certainty: how do we know that the proof is actually a proof, in other terms, that it passes
the deontic tests which are infinetely many? In the II{ case, this proof that the proof is a
proof is indeed the proof irself: the function, something like f(n) := true is known in
advance, so the only thing at stake is to determine whether A[n] = true for all n, i.e.,
Vo Alz].

BHK can thus be seen as an archaic prefiguration the most recent developments in terms of

answers and questions: in that respect, it fully belongs in XX*™ century logic. It also poses

the problem of certainty: and, to start with, how come, in XX*" century terms, that we lost
absolute certainty?

3.2 Derealism
3.2.1 Proof-nets and certainty

The correctness criterion for proof-nets yields a form of apodictic certainty: yes, we can be

sure that a would-be proof is actually a proof. This is due to the combination of several

facts:

Finiteness: correction relates a vehicle with a gabarit. This involves finitely many finite
verifications, leaving no room for reasonable doubt.

Compositionality: the gabarit for A and the gabarit for ~A do match so as to ensure the
identity group, especially cut-elimination.

The great divide of logic is between first and second order. Indeed, if we take a second order

approach to logic (with quantifiers on predicates or propositions), the first order part is the

one in which second order quantifiers occur as universal prefixes VX ...V.X,: the formula

X = X is thus a shorthand for VX (X = X). Using the Dedekind translation of natural

numbers, arithmetic becomes part of second order logic: indeed, II{ formulas involve second

order existentials. First order is complete and apodictic, while second order proper — i.e.,

using 3X — is incomplete and can only be epidictic.

6 Indeed Brouwer-Heyting-Kolmogorov.
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Something puzzling is that the proof-net technology basically applies to full logic. The
fact that we lose certainty must be ascribed to second order quantification, more precisely, to
the the existential quantifier. The study of system F shows that this quantifier concentrates
most of the logical complexity: its interpretation through candidats de réductibilité involves
comprehension axioms, which cannot convey absolute certainty.

Indeed, in a second-order proof-net, we must indicate the existential witnesses T' cor-
responding to the rules deducing 3X A[X] from A[T]. And, relative to these witnesses T
(which carry their own gabarits), we can get absolute certainty, at least on the grounds of
finiteness. The issue of compositionality is, however, a cat of a different colour: indeed, X
occurs several times in A[X], in practice both positively and negatively. This means that we
must provide gabarits for both 7" and ~T. But how do we know that they actually match?

We already mentioned, concerning Popper, that his approach was too simplistic: like
in the Gospel, the judges must be judged. This means that the matching between the
normativity for T" and the normativity for ~T" is the most intricate thing one can imagine,
surely something not of this world. The reasonable doubts and the reasonable certainties as
to reasoning concentrate in this hazardous matching.

3.2.2 Epures

The deontic pair T/ ~T corresponds to the rights and duties attached to T. The identity
axiom T + T, or, better, - ~T,T is still valid when we relinquish our rights — and/or
exaggerate our duties. But the cut rule enables to pass from - ', T and - A, ~T, to - T, A
on the basis that we have the rights (T) of our duties (~T'). By the way, replacing T with
~T will not alter the pattern, since the rights of ~T are the duties of T

This schizophrenic approach to deduction first occurred in Schiitte’s partial valuations, in
other terms, three-valued models. The fact that one can relinquish our rights is expressed by
a third value, 4. Hence, in terms of rights, A is not false, while in terms of duties, A is true.
The fact that “true” implies “not false” accounts for the identity axiom. But the cut rule
requires the reverse implication, which is the case only in the usual, two-valued case. This
semantics is, as far as I know, the unique legitimate occurence of an exotic truth value. Its
technical interest is almost void: since ¢ = ¢ = ¢, the third value has a propension to swallow
the real ones. .. and what is the use of a model where almost everything takes the value 47
The only interest of the third value is that of a sort of “side wheels” helping us from mixing
rights and duties.

A much better incarnation of the same idea is the category-theoretic notion of dinaturality:
the entailment A F A between rights and duties becomes a morphism. And the failure of
compositionality can be ascribed the want of commutativity of certain “hexagons”. But this
is still semantics, not yet the real thing.

The French “épure” means the representation of an object through three planar projections.
I propose to use this term for the combination V + G of a vehicle and a gabarit: indeed, both
an object and several ways (the ordeals of G) of structuring it. The inclusion of a gabarit as
part of the épure renders quantification over gabarits possible: this should answer for the
problematic aspects of second order logic. By the way, if a proof is an épure, the missing
“auxiliary proof” of BHK is its gabarit.

3.2.3 The derealistic program

If we except first order quantification and equality, our understanding of first order logic is
quite satisfactory. This is not the case with second order logic, especially under the light
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of certainty. The new approach — épures — should improve the the existing systems and
their interpretations: in particular, fix the limitations of the the usual realistic, semantic,
approach which collapsed in front of natural numbers. By introducing deontic components
— the gabarits at work in the épures —, we should able to find derealist integers explaining
— say — why the Gddel sentence is not provable.

As to certainty, the final pattern should look like:

A solid, i.e., non-deductive, analytic, rock in which reasoning takes place as a combination

of épures.

Depending upon the choice of the right gabarits, the access to a reasonable form of

deduction.
Certainty can only be epidictic, i.e., rely upon a covenant between rights and duties: such a
pact belongs in the realm of beliefs. But the day of true believers, of axiomatic certainty is
over: the idea of an épure is to make everything, including the covenant, part of the logical
artifact. Making suppositions part of the object is a way to get, once for all, rid of these
presuppositions which so badly hinder logic.
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—— Abstract
Our goal is to approach the classes of computational complexity P, NP, and Pspace in a recursion-
theoretic manner. Here we emphasize the connection between the structure of the recursion
schemes and the underlying models of computation.
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1 Introduction

P, NP and Pspace are well-known classes of computational complexity that can be described
following different approaches. Here we describe them in a machine independent manner,
using recursion schemes, which turn the known inclusions P C NP C Pspace obvious. This
work contributes to a better understanding of the involved classes, but no separation result
is foreseen.

Recursion-theoretic approaches lead to classes of functions instead of predicates (or
boolean functions). Therefore, instead of P and Pspace we reach the classes FPtime and
FPspace. As a class of functions corresponding to NP we choose F'Ptime U NP, and we adopt
the notation FNP.

Our strategy is, as always in recursion-theoretic contexts, to start with a set of initial
functions — which should be basic from the complexity point of view — and to close it under
composition and recursion schemes. The recursion schemes can be bounded or unbounded
depending on the chosen approach. In the first case we consider the Cobham characterization
of FPtime [3], in the second case we consider the Bellantoni-Cook characterization of FPtime
[2]. In both cases we work over W, instead of N, where W is interpreted over the set of 0-1
words. € stands for the empty word, and Sy and Sy stand for concatenation, respectively,
with 0 and 1. Therefore, as initial functions one considers €, Sy, S1, P (binary predecessor)
and C (case distinction).

We look to these three classes of complexity — FPtime, FNP and FPspace — as
resulting from three different models of computation — deterministic, non-deterministic
and alternating Turing machines (as described in [1]) — and imposing the same resource
constraint, polynomial time. Thus the adopted recursion schemes should somehow reflect

© Isabel Oitavem;
Bv licensed under Creative Commons License CC-BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca ; pp. 24-27

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


http://dx.doi.org/10.4230/LIPIcs.CSL.2013.24
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

l. Oitavem 25

the “increasing” computational power of the computation model. For FNP, besides the
calibration of the recursion schemes, we have an additional problem since one is dealing with
a class which, in principle, is not closed under composition (because NP is, in principle, not
closed under negation).

2 Bounded recursion schemes

Bounded recursion schemes are recursion schemes where the length of the outputs are, at
every step, bounded. In the cases we treat here, the bound of the lengths is polynomial.
The bounds are functions explicitly definable from €, Sy, S1, string concatenation and string
product (corresponding to the smash function of Buss). The bound is, at each step of the
recursion, imposed via truncation. We use x|, to denote = truncated to the length of y.

2.1 FPtime

The bounded recursion scheme for FPtime described below is based on Cohbam’s work [C64]
and reproduces the sequential structure of deterministic computations. We denote it by
bounded recursion over W (BR):

f(ea'f) = g(ea‘i)
f(y07i') = h(ij, f(yvi'))lt(yo,i)
f(ylvj) = h(y17f7 f(yvj))ﬁ(yl,i)

Notice that, for instance, the definition of f(11) by BR (based on g and h and t) leads to
h(11,h(1,g(e))) (¢ is omitted), which corresponds to the sequence

h

|
h
|
9

2.2 FPspace

It is well-known that: a function f (over W) is computable in polynomial space if, and only
if, f is bitwise computable by an alternating Turing machine in polynomial time, and the
length of the outputs of f is polynomial in the length of the inputs.

Alternating Turing machines lead to trees of computation. Therefore, the corresponding
recursion scheme, instead of a sequential structure, has a tree structure. It is defined
analogously to BR, but we double the recursive call and we distinguish them from each other
via a pointer (denoted by p).

Bounded tree recursion over W(BTR), also called bounded recursion with pointers:

f(p,&,7) = g(p, € 1)
f(p7 y07£‘) = h(pa Y0, z, f(p07 yva_j)v f(playa f))|i§(p,y(),:1?)
f(pvy]-v‘i') = h(pvy]-vfia f(poa yv‘i.)7 f(p]-7ya j))|t(1/),yl,f)

If f(e,11) is defined by BTR on its second input based on g, h and ¢, then (omitting, once
more, the bound t) one obtains h(e, h(0, g(00), g(01)), h(1, g(10), g(11))). The corresponding
tree is
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he

N
h0 i

A A\
g00 ¢g01 g¢10 g11

The mentioned input is the pointer, and it gives the address from the root of the tree to
the current node. The tree structure of BTR is clear. It is also clear that if h and g do not
depend on their first input (the pointer), then the tree structure collapses to a sequential
one. Therefore, BTR trivially extends BR.

More about this characterization of FPspace can be found in [4].

2.3 FNP

Non-deterministic Turing machines can be seen, simultaneously, as an extension of the
concept of deterministic Turing machines and a restriction of alternating Turing machines.
Thus our goal is, also simultaneously, to extend BR and restrict BTR in an appropriated
way.

We would like to do it via a single recursion scheme, however so far that was not achieved.
This issue is also related with the restricted form of composition one may have in FNP.

What we describe here is a recursion scheme which should be taken in addition to BR. We
call it TR[V] because it results from BTR by fixing the step function h — h is the disjunction
of its last two inputs (the recursive calls). More precisely, disjunctive tree recursion over W
( TR[V]) is the scheme:

f(p,6,7) = g(p, €, 7)
f(p,9y0,2) = V(f(p0,y,), f(pl,y,))
f(p,y1,2) = V(f(p0,y,z), f(pl,y,Z)),

where V(u,v) returns 1 if at least one of its inputs ends with 1, and 0 otherwise.

Notice that there is no need of imposing bounds — a single bit is returned at every step
of the recursion (with possible exception of the base level, where g is computed).

Let us look at our example once more. If f(e,11) is defined by TR[V] based on g, then
one has V(e, V(0,¢(00),¢(01)), V(1,g(10), g(11))), which corresponds to the tree

Vv

A

V \Y

A A\
g00 ¢g01 g¢10 g11

Therefore one gets a tree structure as before, but only the addresses of the leaves are
available. All internal nodes have the same (disjunctive) label. The parallel with non-
deterministic Turing machines is obvious.

Notice that if, in TR[V], g does not depend on the pointer, then the scheme loses his tree
structure. However, since the step function is fixed (it is V) this scheme does not extend BR.
As mentioned above, TR[V] is taken in addition to BR.

See [5] for more about this characterization of FNP.
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3 Final considerations

With a simple example one is able to illustrate the structure of the recursion schemes used to
describe the classes of computational complexity FPtime, FNP and FPspace. The connection
between the structure of the recursion and the underlying model of computation is of interest
and it might deserve some further thoughts. Some work is being developed concerning the
levels of the polynomial hierarchy of time.

FPtime, FNP and FPspace are reached in a recursion-theoretic manner by successively
“extending” the characterization of FPtime given in 1964 by Cobham. That is achieved by
introducing pointers in the recursion schemes. Recursion with pointers can be understood
as a restrict form of recursion with substitution. Leivant and Marion have work in this
direction.

What is here stated using recursion schemes with bounds can be done in other frameworks.
The polynomial bounds explicitly address the resource constraint of the studied complexity
classes. There exist several ways of enriching the syntax, in order to build in the classes
some internal control on the growth of the functions terms. This can be done, for instance,
via ranks (which measure the syntactical complexity of the functions terms), distinguishing
sorts of variables (Leivant style), or sorts of input-positions (Bellantoni-Cook style).

Acknowledgements. I want to thank the funding of the projects PTDC/MAT/104716/2008
and PEst-OE/MAT/UI0209/2011, from Fundagdo para a Ciéncia e a Tecnologia.
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—— Abstract

In this talk we survey recent work in the quest for expressive logics with good algorithmic
properties, starting from the two-variable fragment of first-order logic and the guarded fragment.
While tracing the boundary between decidable and undecidable fragments we describe their
power, limitations, similarities and differences in order to stress out key properties responsible
for their good or bad behaviour. We also highlight tools and techniques that have proven most
effective for designing optimal algorithms, special attention giving to the more universal ones.
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Category Invited Talk

1 Overview

In Computer Science, the use of logical formalisms to describe, query or manipulate structured
data is now firmly embedded in both theory and practice. Having data described/specified
within a logical formalism we often want such a specification to undergo static analysis —
an automated procedure that optimizes the specification with respect to some correctness
and efficiency criteria. Static analysis of specifications described in logical formalism often
boils down to verifying one of the two basic logical properties, namely satisfiability and finite
satisfiability.

Undecidability of the classical decision problem (=the satisfiability problem for first-
order logic) results in two possible responses. The first one is to develop programs to test
satisfiability of arbitrary collection of first-order formulas, accepting that, however well they
generally work in practise, there will always be problem instances that defeat them. The
second is to restrict attention to a fragment of first-order logic for which the satisfiability
problem is decidable, exploiting the fact that in many real-life situations, the formulas we
encounter fit comfortably into such fragments.

In this talk we overview recent work in the quest for expressive logics with good algorithmic
properties. We concentrate mainly on fragments of first-order logic defined by restricting the
number of variables (to gain decidability — to two [9, 7]) and usage of quantifiers to guarded
quantification [1], and their variants or extensions motivated by real-life applications. We
are equally interested in satisfiability and finite satisfiability, as in many application areas we
want to model systems and computation to be essentially finite.

While tracing the boundary between decidable and undecidable fragments we study their
similarities and differences to understand their power and limitations and to stress out key
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properties responsible for (un)decidability or (in)tractability. We give examples of fragments
enjoying the finite model property: any satisfiable formula is true in some finite structure, and
the tree model property: any satisfiable formula is true is some tree-like structure. We present
fragments for which these two key properties led to optimal decision procedures (e.g. [4], [3],
[11]) and contrast these fragments with their extensions where more sophisticated reasoning
is required (e.g. [6, 5, 10]). We give special attention to linear and integer programming
techniques that have recently proved useful to design optimal algorithms to decide uniformly
both, the finite and the unrestricted satisfiability problems for certain expressive fragments.

The talk involves recent and ongoing work with Emanuel Kieronski, Jakub Michaliszyn,
Tan Pratt-Hartmann, Wiestaw Szwast, Georg Gottlob and Andreas Pieris.

The title of the talk has been inspired by Quine [8].
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—— Abstract

The closure ordinal of a formula of modal p-calculus pX ¢ is the least ordinal «, if it exists, such
that the denotation of the formula and the x-th iteration of the monotone operator induced by
¢ coincide across all transition systems (finite and infinite). It is known that for every a < w?
there is a formula ¢ of modal logic such that uX¢ has closure ordinal o [3]. We prove that
the closure ordinals arising from the alternation-free fragment of modal p-calculus (the syntactic
class capturing ¥» N II,) are bounded by w?. In this logic satisfaction can be characterised in
terms of the existence of tableaux, trees generated by systematically breaking down formule into
their constituents according to the semantics of the calculus. To obtain optimal upper bounds
we utilise the connection between closure ordinals of formulse and embedded order-types of the
corresponding tableaux.
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1 Introduction

Modal p-calculus is often referred to as the “mother of all temporal logics”. Indeed the
majority of temporal logics, including LTL (Linear Time Logic), CTL (Computational Tree
Logic) and their various extensions, can be easily interpreted and analysed in p-calculus
making the study of this logic of high interest in the research community. The defining
feature of the modal p-calculus is the expression of fixpoints. In this calculus the syntax
of modal logic is extended by least and greatest fixpoint quantifiers (x4 and v) that bind
propositional variables. The formulse uX¢p and v X are interpreted respectively as the
least and greatest fixpoints of the monotone operator induced by ¢. In analogy to the
hierarchies defined in second order logic, one can alternate the fixpoint quantifiers to define
a hierarchy of formule. Although we have a relatively good understanding of least and
greatest fixpoints, when nested their meaning and behaviour is easily lost. As a result many
fundamental properties of this calculus have remained unanswered even after decades of
attention from logicians and computer scientists.

An interesting open problem for p-calculus is that of closure ordinals, the number of
iterations required for a fixpoint to close across all structures. Given an arbitrary formula,
its closure ordinal may not exist, such as in the case of pX0OX. On the other hand mere
syntactic analysis suggests that the fixpoint iterations in this context cannot exhaust the
power of ordinals beyond certain levels. Hence one may ask the following question.
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For which ordinals « is there a formula of modal p-calculus with closure ordinal o ?

In the case of finite ordinals the formulee puX.(OX A O" 1)V OL, which express that
all paths in a model of the formula have length at most n, are guaranteed to close across
all structures after n iterations. By expressing the existence of arbitrarily long finite paths,
through the formula pX.<OX vV OL for example, transfinite closure ordinals are obtained.
In fact it is known that for every oo < w? there is a formula ¢ of modal logic such that X
has closure ordinal « [3].

In this paper we establish optimal upper bounds on closure ordinals, showing that no
formula of the alternation-free fragment can have a closure ordinal equal or greater than
w?, even if iterations of all quantifiers occurring in the formula are taken into account. We
begin with a syntactic analysis on a fragment of the ¥;-formule in section 2. This study,
despite applying only to operators induced by particular formule of modal logic, provides
the motivation for the general solution. The main result of the paper is given in section
3 and consists of a semantic analysis of the problem by means of tableaux constructions.
We present a strong characterisation of closure ordinals in terms of order-types of tableaux
for formulee without genuine dependencies between their alternating fixpoint quantifiers.
This correspondence will prove sufficient to bound closure ordinals of these formulz by their
logical complexity.

1.1 Syntax and semantics of modal ;-formulae

Let VAR be an infinite set of propositional variables and PROP an infinite set of propositional
constants. The set of u-formulee is defined inductively as follows.

e=p|p|X|eANo|leVe|Op|Cp|uXep|vXep

where p € PROP and X € VAR. Also define | :=pApand T := pVp for some propositional
constant p. A variable X in ¢ is called a p-variable (respectively, v-variable) if the quantifier
uX (resp. vX) occurs in . We assume that all quantifiers occur uniquely. This can be
achieved through implicit a-conversion.

A transition system is a tuple T = (S,—,\) where (S,—) is a directed graph and
A: S — P(PROP) is an assignment of propositional constants to states. Given a transition
system T = (S,—,\) and a valuation V: VAR — P(S) of free variables, the set of states
satisfying a formula ¢, denoted by |¢[{, is defined inductively as follows.

Il ={z €S :pe i)}

16l ={z€S:p& )}

X5 = V(X)

le AL = lelbnlvly

lo VoI5 = lelf U el

1005 ={z € S:Vyl@ —y=yclelb)}
[Cp]h ={z €S :yx—ynryeleli)}
X () = (UU € S 1lGx 0 € U
lvXe(X)I% =U{U € S:U Clelyixont

In the above V[X — U] is the valuation that maps X into U and agrees with V on all

other variables. Note that a formula ¢ gives rise to a function f,: P(S) — P(S) given by
U—{zeS:zec ||<p(X)\|‘T,[X._>U]}. As f, is a monotone function on the powerset lattice
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(P(S),C), by the Knaster-Tarski Theorem its least (and greatest) fixpoint exists, and is
equal to the least prefixed point (resp. greatest postfixed point) of f,, the set |uX¢|%

(resp. [vXo]y).

1.2 Alternation-free fragment

The alternation of fixpoint quantifiers is the major source of potency, and a fundamental
measure of logical strength in the study of fragments of u-calculus. The number of genuine
alternations between least and greatest fixpoint quantifiers is called the depth of the formula.
Bradfield [1] showed that there are modal fixpoint properties which require arbitrarily large
depth, and hence the modal p-calculus alternation hierarchy is strict. Formally, the Niwinski
hierarchy is defined as follows. A formula ¢ is in the classes IIy and X if it contains no
fixpoint quantifiers, i.e. it is a formula of modal logic. The class 3,1 (IT,41) is the closure
of ¥, UII, under the following rules.

If o, € Epy1 (Ip41), then @ A, Vb, 0p, O € 3By (Tlh41).

If p € i1 (Tpg), then pXp € X1 (WX €11,41).

If o, € Xpy1 (T4q), then p(¢) € X401 (1), provided the free variables of v do
not become bound by quantifiers in .

In comparison the alternation-free fragment of the modal p-calculus is the class of for-
mulee with no real dependencies between alternating fixpoint quantifiers. This fragment is
the closure of ¥; UIl; under Boolean and modal operators and substitutions that preserve
the alternation depth. Despite the restrictions imposed, this class of properties still forms
a remarkably expressive fragment encompassing the majority of logics used in the verific-
ation of systems. It is known that this class coincides with the collection of all formulee
semantically equivalent to both a 3a-formula and a ITp-formula [5]. Moreover, this fragment
is the limit of the weak index hierarchy as introduced in [6]; thus, the languages defined by
alternation-free formula are also referred to as weakly definable languages.

1.3 Trees

A tree is a pair t = (V,—) with a distinguished node p; such that (V,—) is a connected
directed graph, there are no transitions into p; and for every v € V' \ {p;} there is exactly
one vy € V such that vg — v. The node p; is referred to as the root of the tree and any
node without outgoing transitions is called a leaf. For a tree t and a node v in ¢, we write
tl, to denote the sub-tree rooted at v. If there is no cause for confusion we identify a tree
with its domain. Tree ty = (Vp, ) is a pruning of t = (V,—) if Vi CV, —o=— NV and
ifu—vé¢Vythen {w e Vy:u—ow} =0

A path through a tree t = (V,—) is an enumerable set P C V such that p; € P, if
vg — v € P then vy € P, and for every v € P either v is a leaf or there exists exactly one
u € V such that v — u and v € P. For a path P given by a sequence p; = vg — v; —
vy = ... = v, —> ..., we write P(n) to denote v,. For nodes u,v € t we write u <; v
(resp. u <; v) if for some path P through ¢ and ¢ < j (resp. i < j), P(i) = u and P(j) = v.

A tree transition system (TTS) is a transition system T = (S, —, \) for which (S, —) is
a tree. We say a TTS T satisfies ¢, written T |= ¢, if pr € |¢|L. In this case T is a model
of ¢ and ¢ is satisfiable. Note that modal p-calculus has the tree model property, namely
every satisfiable formula has a model which is a TTS (see e.g. [2]).
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1.4 Closure ordinals

The definition of semantics for p-formulae can be generalised to also take into account ap-
proximations to fixpoint variables. For each formula ¢, set of bound variables X’ occurring in
¢ and ordinal «, we define a set || by induction on . Let T = (S, —, \) be a transition
system and V a valuation on T. For every «, define

lp* [ = 1Pl
Ip° % = 17l
|2} =Vv(2)

(e AL = 11T N w5
(e V)L = le*IL U lv>]%
()L ={z €S :Vy(lx = y=ye€|e*|E)}
[(C)E ={z € S:Fyx > yAy e |e|D)}
(

" ,UXSO)O‘"?; _ U'y<a ”SD[NX‘P/X]VHL if X e &,
X e, otherwise.
T .
lwx oy = | Mhea lerXe/ X, i X € &,
lvX 9, otherwise.
For every formula ¢ there exists an ordinal x such that ||gp||$; = ng“”g = ||90HHH¥;-

The least such k is called the closure ordinal of ¢ with respect to T and X and is denoted
COr x(p). Note that a formula may have different closure ordinals depending on the trans-
ition system on which it is evaluated as well as the particular collection of variables analysed.
For example the formula p X 0OX is satisfied by all well-founded trees; its closure ordinal with
respect to { X} in each case is the order-type of the tree.

» Definition 1.1 (Closure Ordinal). The closure ordinal of a closed formula ¢ with respect to
a non-empty set X of variables, denoted by COx(¢), is the ordinal supy COp x (), if this
ordinal exists.

2  Syntactic analysis

Let PrROP := {p : p € PrOP} and Py, P{, P», P}, ..., P, P be finite subsets of PROPUPROP.
Each such set, when referred to as a formula, denotes the conjunction of its elements. We
say a formula of modal logic is primary if it is of the form

(PLAOP{AV1X)V (P AOPSAV2X)V ...V (P, ANOP, AV, X)VOL (1)

where V; € {<, 0O} for each i. Czarnecki’s analysis in [3] establishes that every ordinal below
w? is the closure ordinal of the least fixpoint of some primary formula. In this section we
establish a strong converse: if the primary formula given in (1) has closure ordinal a, then
a < w.(n+ 1). For the following let ¢ denote the formula in (1) and ¢ = pX1.

» Lemma 2.1. Fix a transition system 7" and a valuation V. Suppose « is a limit ordinal. If
z € "L\ Jo* |, then there is no j < n such that = € |P; AOP] AV;@"|}, and V; = <.

Proof. Suppose T = (S, —, A) and let |¢®| abbreviate |¢*|%. Suppose z € [T\ ["].
By way of contradiction suppose also z € [P; A OP] A V;¢"| and V; = & for some j < n.
If {y € S:2— y} =0 then z € |p!| C |¢"| which cannot be, so let + — y be such that
y € |¢™|. Thus there exists v <  such that y € |¢7|, and hence x € || C |¢"| yielding
a contradiction. <
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Ta, T, T
Tu (av k) Qk
|
| |
‘ ‘ (0(7 2) QQ
(07 2) Q2 (a + 1, 2) QQ
(071) Ql ((‘M+1,1) Ql ((1,1) Ql

Figure 1 Ty, Toy1 and T, (in the case a = sup, «;) in the proof of lemma 2.3.

» Corollary 2.2. If V; = < for every i < n then the closure ordinal of ;X1 exists and is no
greater than w.

» Lemma 2.3. Suppose there exist consistent sets of propositions @1, Qa,. . .,Qk+1 and num-
bers i1, iz, ...,ix < n such that P;, A DPi’j AV, X is a subformula of ¢ with P;; C @); and
Pi’j C @j+1 for each j < k. Furthermore, suppose V;, = O and there is no j < n such that
P; C Qp, P]( C Qi1 and V; = O, If Qi1 = Q1, then X does not have a closure ordinal.

Proof. Let A: ON x {i : i < k+ 1} — P(Propr), where ON is the class of all ordinals, be
defined by p € A((«, 7)) if and only if p € Q;. Furthermore, let T = (5§, —§, A) be the
TTS where

5o ={(,j) : 0<j <k},
=0 = {((,4),(a,j +1)) : 0 < j < k}.

For each countable ordinal o we define a tree T, as follows. Let Tp = T3 and Thy1 =
(Sat1, —at1;A) where Sqpq = S§T U S, and —ar1=—51 U =4 U{((a + 1, k), (o, 1))}
If a is a limit ordinal, then S, = S§UUs_,, S and —o=—§ Uz, =5 U{(a, k), (8,1))
B < al.

Let f be the function k — k.x. We will show that for each k < aand 0 < j < k,

(K K — 5) € |l T Lo\ pf 47| Lo (2)

whereby it will be clear that the formula ¢ does not possess a closure ordinal. The argument
proceeds by transfinite induction on x < « with an auxiliary induction on j < k. If j # 0
then (2) follows from the fact that (k,k — (j — 1)) is the unique successor of (k, k — j) and
the definition of A. Thus suppose j = 0, whence three sub-cases manifest:

k =0. Then f(k) =0 and (k, k) is a leaf of T, so (2) trivially holds.

t = k' + 1. By the definition of T, (k, k) has a unique successor, namely (x’, 1), whence

(2) follows from the induction hypothesis

# limit. The successors of (k,k — j) in this case are the nodes (v, 1) for v < k. By the

induction hypothesis we know (v, 1) € |/ D | T2\ |/ D +E=1| T for each v < . Notice
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k

that |/ (|7 - U, lo?@ |, Since P;, € Qp, P/, € @ and V,, = O, it follows

that (k,k) € [/ W+ T 1f, however, (k, k) € |/ |5, then (k, k) € ||<pf(7)+k\|€“ for

some v < k. But then (7,1) € [o/M*++=1|T by the assumption on ¢. <
» Proposition 2.4. The closure ordinal of ¢ is strictly less than w?.

Proof. Let a be the closure ordinal of ¢ and suppose o > w?. Fix N > 2/¢I*1 where
|| denotes the number of symbols occurring in . Let T be a TTS such that for every
i < N, [¢*?|% is a proper subset of [¢*“T!|L. Then there exists a path P through T,
my <mpy_1 < -+ <mg<w and a function f: w X w — w such that for every i < N and
j<m;—myy1, f(4,7) <nand

P(m; — j) € |Pyigy) A BPp 5y A Vian @ DN\ e 5.

Define for each j < w, Q; = Ar(P(j)) U{p : p & Ar(P(j))}. For some ig < iy < N it must
be the case that

Qm;, N PROP, = @y, N PROP,

where PrROP, = J;,,(P;UP;). The sequence Q. , - .., Qm,, therefore fulfils the hypothesis
of lemma 2.3 whence, contrary to our assumption, ¢ does not have a closure ordinal. <

The above analysis can also be applied to formule of the form
(W1 AVIX)V (P2 AV X)V ...V (Y, AV,X)VOL (3)

where 1, ..., 1, are closed formule of modal logic. Replacing literals with arbitrary modal
formule in each disjunct alters the “proposition paths” that can occur. Therefore, in order
to find a repetition as in the proof of proposition 2.4, one will need to look at larger segments
of a suitable model. As such a proof would be technically cumbersome, in the next section
we will employ a semantic analysis which will include (3) and extend the bounds to formulee
of the alternation-free fragment of p-calculus.

3 Semantic analysis

For the remainder of the paper, formule are assumed to be closed and guarded unless
otherwise stated. A formula ¢ is guarded if in every subformula ¢Z.1) of ¢, every occurrence
of the bound variable Z in 1 appears within the scope of a modal operator. The restriction
to the guarded fragment is not significant as every formula is equivalent to one in guarded
form (see e.g. [7]). Moreover, by following the approach of [4] it is possible to carry out the
analysis below for unguarded formulee.!

Upper-case Greek letters such as I' and A denote sequents, finite sets of formule. O
abbreviates the set {0y : ¢ € T'} and OT is defined analogously. We write T', ¢ for I' U {¢},
and T', A to denote I' U A. The Fischer-Ladner closure of a formula ¢, denoted by FL(y),
is the smallest set such that

¢ € FL(p),

if 19 o 91 € FL(¢) where o € {V, A} then 1,91 € FL(y),

if Vi € FL(p) where V € {<, 0} then ¢ € FL(yp),

if c X1 € FL(p) where o € {p,v} then ¥[c X/ X] € FL(y).

Note that |FL(p)| < |¢| where || denotes the number of symbols occurring in . For a
sequent I' we set FL(I') = |, o FL(7).

! We would like to thank the anonymous referee for drawing our attention to [4].
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3.1 Tableaux

» Definition 3.1. Given a TTS T and a sequent T', a pre-tableau for (T,T) is a tree t = (V, —)
together with functions 7: t — T and A;: t — P(FL(T")) such that the following conditions
are satisfied.

7i(pt) = pr and A(py) =T

If v € t is a leaf then \;(v) = OZ, 0 where © C PROP U PROP, and either = = () or 7¢(v)
is a leaf of T.

If 7¢(u) = 7¢(v) then either u <; v or v <; w.

For every v € t, \¢(v) N PROP C Ar(7:(v)) C {p € PROP : p & At(v)}.

For every vg — vy € t with 74(v;) = x; and A\ (v;) = T'y, one of the following conditions
hold.

(A) zp = 21 and there are formulee g, ¢1 such that g A p1 € Ty and T’y = (T \ {¢o A
©1 - U{po, @1} The formula pg Ay is called active at vy and both g and ¢y residual
at v1.

(V) g = x1 and there are formulae ¢g, @1 such that pgV p; € Tp and Ty = (T \ {po V
©1}) U{¢i}. The formula g V ¢ is called active at vg and ¢; residual at vy.

(0X) zp = x1 and there is a formula ¢ and o € {u,v} such that cX¢ € T’y and I'; =
(To \ {oXp}) U{plcXp/X]}. The formula o X is called active at vy and (o X p)
residual at v1.

(mod) zg =1 x; and Ty = OZ, A, 0 with © C PROPUPROP and Z C Ty C ZUA. All
formulee in I'y are considered active at vy and all formulse in 'y residual at v.
In the cases (A), (V) and (6X) above, [{u : vg — u}| = 1, while in the case of (mod),
Uy s At(w) =ZUA and {7 (u) : vo — u} = {y : 20 =7 y}.

» Remark 3.2. Exactly one of the four conditions (A), (V), (¢ X) and (mod) can apply to a
non-leaf node of a pre-tableau; henceforth we will refer to them as tableauz rules. Note that
in a pre-tableau branching only occurs at a (mod)-rule and may be infinite.

Suppose t is a pre-tableau for (T,T') and ¥ = {(;,v;) : 4 € [} C FL(T") x t where I is an
initial segment of natural numbers. ¥ is called a trace from (¢, v) if (o, v0) = (¥, v) and
there exists a path P in ¢ and natural number n such that for every i € I,

v; = P(n + 1),
wi S At(vi)7
if v; is a leaf or ¢; € PROP U PROP is active at v; then i + 1 ¢ I,

if i +1 € I and 1); is active at v; then ;41 is an immediate subformula of v; that is
residual at v;41,

if i+ 1 € I and v; is not active at v; then ;11 = ;.

In each infinite trace (i.e. if I is infinite) there exists a variable that appears infinitely
often and subsumes all other infinitely occurring variables. If this unique variable is a
p-variable then the trace is called a p-trace; otherwise it is a v-trace.

» Definition 3.3. A pre-tableau for (T, T) is a tableau if every infinite trace is a v-trace.

The following theorem which provides a characterisation of satisfaction in terms of the
existence of tableaux is folklore; see for example [7].

» Theorem 3.4. T |= AT if and only if there is a tableau for (T,T).
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3.2 Order-types of tableaux

Fix a TTS T and a sequent I". To each tableau for (T,T') and set of p-variables X one can
assign an order-type with respect to X’ in a natural way. The order-type of ¥ at a node v,
denoted by a4, x, is defined recursively as follows. If there exists a trace U = {(¢;,v;) 17 €
I} from (3, v) such that for infinitely many ¢ € I, ¢; has the form pXv’ for some X € X,
or there are no traces ¥ = {(¢;,v;) : i € I} from (¢, v) for which t; has the form pXv’ for
some 7 € [ and X € X, then ay , » = 0. Otherwise,

if o = pX' is active at v and X € X then ay ., x = ay o x + 1 where u is the unique
successor of v in the tableau,

if ¢ is not of the form pXv' for some X € X or not active at v then ay , x is the
supremum of ., », & for which there exists a trace ¥ = {(¢;,v;) : ¢ € I} from (¢, v).

» Definition 3.5. The order-type with respect to X of a tableau t for (T,T') is the ordinal
sup{a p,x 1 @ € T} A tableau is an a-tableau with respect to X if its order-type with
respect to X’ is no greater than «.

To establish the connection between the closure ordinal of a formula and order-types of
the corresponding tableaux we show that if ¢ is alternation-free and X a set of u-variables,

x € || iff there exists an a-tableau for (T'[, , @) with respect to X.

We will prove the result for X = {X}; the above statement is a direct generalisation of the
next lemma.

» Lemma 3.6. Suppose ¥(Y) is a formula with at most Y free and X a variable not occurring
in 1. Let X = {X} and T be a TTS. Then z € [¢(uX¢)*|% if and only if there exists an
a-tableau for (T'I, ,1(uXp)) with respect to X.

Proof. By transfinite induction on «. For the base case suppose a = 0. We want to show
x € H?/J(Z)"?;[ZH@] iff there exists a 0-tableau (7|, ,¢(uXg)).

Notice & € [4(Z)[{z. g if and only if there is a tableau for (T'l,,%(L)). Consider
a tableau for (T{w ,¢(J_)). Since 1 cannot appear in the label of any node, this tableau
can be used to create a tableau for (T, ,19(uX¢)) in a trivial way: replace L by uX¢ at
relevant positions. The order-type of the emerging tableau is 0 as X ¢ can never appear in
any trace. Conversely, since a tableau of order-type 0 means the (uX)-rule is never applied,
replacing occurrences of uX¢ by L in a tableau for (T'],,1%(uX¢)) yields a tableau for
(L),

For the successor case we want to show
x € [ (uX @)L iff there exists an (a + 1)-tableau (T12, ¢ (uXep)).

Note that = € [¢(uX¢@)*T|$ if and only if z € (¥ o ) (X )|, if and only if there
exists an a-tableau for (T los (Vo) (uX gp)) by the induction hypothesis. Hence it suffices
to show how to construct an (a + 1)-tableau for (T'[,,¥(uX¢)) from an a-tableau for
(T [o,%o0 go(qua)) and vice versa. Given an a-tableau t for (T lo,0 @(MXL,@)), along every
path look for the first node v with A¢(v) =T, p(uX¢) for some T, and replace all occurrences
of p(uXp) by uX¢ in nodes u <; v. The sequent at v has therefore become T', uX¢.
Between v and its successors, insert a new node labelled by T', ¢ (uX ). The added transition
is a valid (11X )-rule so the resulting tableau is readily seen to be a tableau for (T'], , (uX¢)).
Moreover, all traces from (uX,v) have order-type at most o + 1 and indeed, the tableau
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for (T [y (pX cp)) has order-type a + 1. Similarly, by replacing occurrences of uXy by
¢(1X ) at the relevant nodes in an (a+1)-tableau for (T'], , (X)) and removing the first
application of a (uX)-rule on every trace one obtains an a-tableau for (T [z, 0 p(pX gp))

For the limit case suppose z € | (uX <p)0‘||$ Let ¢ be a fresh proposition and T? a new
TTS obtained by adjusting the labelling so that ¢ holds at all nodes belonging to (X ¢)*[%
ie.

() = { AT(@) Uk if 2 € |(uXp)|5,
' Ar(z), otherwise.

Since | (uX ) |5 = |v(g)|5" and v(q) is closed, there is a tableau ¢ for (7], ,v(q)) of
order-type 0. It is possible that there are nodes of this tableau at which ¢ is active. The key
to obtaining a tableau for (T le s (uX gp)) lies in replacing the occurrences of ¢ at these nodes
by tableaux for pX ¢ of the relevant order-type. Suppose A;(v) = OT', CA,0,q, 7:(v) =y, q
is active at v and for no u <; v is q active at u. Let 8 < a be such that y € |(uX¢)?|%. By
the main induction hypothesis there is a S-tableau for (T'[, ,uX¢). We can combine this
tableau with the sub-tableau t[, to obtain a g-tableau ¢, for (T[, , 0T, CA, 0, uX¢). Now
we replace t[, by t, in t, substitute each occurrence of ¢ by uX in the trace from the root
to (g,v) and repeat the procedure. In the limit a tableau for (T'[,, ¥ (uX¢)) is obtained.
Moreover, the order-type of this tableau can be no greater than a.

The converse direction is equally straight forward. <

» Corollary 3.7. Suppose ¢ is a closed formula and & a set of p-variables occurring in . For
an arbitrary TTS T, set ar to be 0 if T [~ ¢, and otherwise the infimum of the order-types
of all possible tableaux for (T, ¢) with respect to X. Then COx(¢) = sup{ar : T a TTS}.

With corollary 3.7 in mind, in order to rule out certain ordinals being closure ordinals
we require a notion of minimality of order-types for tableaux.

» Definition 3.8. A tableau ¢ for (T,T) is minimal if there are no tableau for (7,T") with
smaller order-type, and absolutely minimal if for every node v € t, t[, is a minimal tableau

for (Trn(v) 7)‘t(v))'

» Remark 3.9. If T' |= ¢ then a minimal tableau ¢ for (T, ) exists. Moreover, as T'[, () =
A At(v) for each v € t, the existence of an absolutely minimal tableau for (T, ) is also
guaranteed.

As a refinement of lemma 3.6 for limit ordinals we have the following.

» Proposition 3.10. Suppose ¢ is a formula with closure ordinal w.a > 0 with respect to a
set X of p-variables. Then there exists a TTS T and a minimal tableau for (7',0¢) with
order-type w.a with respect to X.

Proof. By corollary 3.7, for every 8 < w.a there exists a T'TS Tz such that every tableau for
(T3, ) has order-type greater than 8. Let T be the TTS obtained by extending the disjoint
union of {75 : B < w.a} by a fresh node pr whose immediate successors are {pr, : 8 < w.a}.
As T |= Op, there exists a tableau for (T, Op). Moreover, every minimal tableau for (T, O¢)
has order-type w.a with respect to X. |

3.3 Closure ordinals for the alternation-free fragment

In this section we determine upper bounds on the closure ordinals of alternation-free formulae.
The analysis breaks into two parts. First we prove that if an alternation-free formula ¢ has
closure ordinal strictly less than w? with respect to its external p-variables, then this ordinal
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92/¢1%2, Although primary formulse can yield ordinals arbitrary close to w?

is bounded by w.
(from below), in the second part we show that the closure ordinal of any alternation-free
formula is strictly less than w?.

We need only consider order-types for tableaux with respect to particular classes of u-
variables. Given a formula ¢, a set of variables X of ¢ is called principal if whenever X € X
appears within the scope of a quantifier oY in ¢, also Y € X. Let X, denote the largest
principal set containing only p-variables of .

An ordinal assignment on a tree t is a function o: ¢ — ON such that if =,y are nodes in
t and z <; y then o(y) < o(z). A tableau ¢ for (T,T") induces a natural ordinal assignment
on itself, denoted oy, setting o;(u) = sup{ayp . : ¥ € M(u)} for every u € ¢, where
Ar = U@GF X,. Furthermore, the same tableau induces an ordinal assignment on 7', also
denoted oy, by defining o,(z) = sup{o;(u) : v € t ATy (u) = z} for each x € T. The order-type
of a tableau t, denoted o(t), is the ordinal o:(p;). A tableau is an a-tableau if its order-type
is no greater than «.

» Lemma 3.11. If T |= ¢ is a TTS with an infinite path 21 <7 z3 <r --- then there exists
k such that for every I' C FL(y), every absolutely minimal tableau ¢ for (7,T') and every
I >k, o(x;) =0.

Proof. Suppose the contrary, namely for every i there exists I'; C FL(y) and absolutely
minimal tableau ¢; for (T, T';) such that o, (x;) > 0. For each m and ¢, let A" C P(FL(¢))
be the collection of sequents that are associated with x,, by t;,

AT ={A : Ju € t;(1, () = T A Ay, (u) = A)

For each m, there exists an infinite set I C w with A" = A;” for every i, j € I. Thus it
is possible to define a sequence (S, )necw such that for each m,

1. S, is an infinite set,
2. Serl Cc Sma
3. forevery i, j € Sy, A" = AT".

As for each 7 the tableau t; is absolutely minimal, we have in fact
Vi, j € Sm oy, (Tm) = 0t (Tm)

for every m. Let f: w — Sy be a strictly increasing function such that f(m) € S,, for every
m and set am = 0., (zym). Then the sequence (u,)mew is & weakly decreasing sequence
of ordinals as

Qm+1 = Ot (i1 (Tm+1)
< Ot f(mt1) (xm)a since Ty, <T Tm+1,
= Oty (Tm); since Sy11 C S,y

= Q.

As f(m) > m, we also have that a., = o4, (Tm) > 01, (Tf@m)) > 0. Thus, the

sequence (. |o|)mew forms an infinite, strictly decreasing sequence of ordinals. <

Given T, T and a non-empty collection S of tableaux for (T, T'), we define the S-pruning
of T to be the TTS T’ that alters T by setting, for each propositional constant g not
appearing in I', ¢ € Ay () iff for some s € S and all y <t x, 05(y) > 0. If S is the collection
of all absolutely minimal tableaux for (T,T), we write I' x T for the S-pruning of T
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» Lemma 3.12 (Well-foundedness lemma). If T'is a TTS, I is a finite set of formulee all satisfied
by T and ¢ is a propositional constant not occurring in " then {x € T T : ¢ & Aryr(2)}
forms a well-founded initial sub-tree of 7'

Proof. Immediate consequence of lemma 3.11. <

The next three lemmata relate tableaux on I'x T and 7. Let T be a TTS, I' a sequent
and ¢ a propositional constant not occurring in I'.

» Lemma 3.13. If y € T and o5(y) < « for every absolutely minimal tableau s for (T,T")
then the set {x € T'x T : ¢ & Aryr(z) Ay <r 2z} forms a well-founded tree of order-type no
greater than |T'|.(1 + ).

Proof. By transfinite induction on «. Notice that if 75(u) = y and os(u) > 0 then every
trace in s[, must pass through a (uX)-rule for which uX¢ is active, within the first |T'|
occurrences of a (mod)-rule. <

> Lemma 3.14. If {z e T* T : ¢ € Arur(2) Ay <7 2} forms a non-empty (well-founded)
tree of order-type w.ar then

1. for every A C T and every absolutely minimal tableau ¢ for (T, A), o:(y) < w.a,
2. there exists an absolutely minimal tableau s for (T, T') such that os(y) = w.c.

Proof. 1 can be proved via transfinite induction, noting that since I' is a set of guarded
formulee, between any two applications of the (oY ')-rule on the same trace, the (mod)-rule
must have been applied.

We prove 2. Suppose, in search of a contradiction, that for every absolutely minimal
tableau s for (T,T"), 05(y) < w.a. Consider the ordinal

d = sup{os(y) : s is an absolutely minimal tableau for (T,T')}.

By lemma 3.13 it must be the case that § = w.a. But then for every 8 < a there exists
an absolutely minimal tableau s for (7, T") such that 8 < 0s(y) < 0; contradiction. <

For a formula ¢ € I, let ¢, denote the formula resulting from replacing in ¢ each X € &,
by g A X, and set 'y = {¢,: p €T'}.

» Lemma 3.15. There exists an a-tableau for (7', T) iff there is an a-tableau for (I'x T, T).

Proof. Suppose t is an a-tableau for (T,T). Then there exists an absolutely minimal tableau
t' for (T,T) with o(¢') < a. An o(t')-tableau for (I'« T,T';) can be readily constructed from
t’. For the converse, let ¢ be a tableau for (I'xT,T';). By the definition of ', it follows that
if o;(y) >0 theny € {x eT*T :q ¢ Ar,r(x)} whence ¢t can be modified to yield a tableau
for (T,T') with the same order-type. <

Lemma 3.15 together with lemma 3.14 provide immediate upper bounds on the order-
types of sub-tableaux for (I'x T',T';). We can now expand on these properties to obtain a
more fine-grained version of lemma 3.14.

If B is a collection of nodes in a tableau s, ee write v <, B if for some v € B, v <; u.
Let s be an arbitrary tableau, sg a pruning of s and suppose A C s is the collection of
leaves of sg that are inner nodes of s. A filter over (s, sg) is a set B C A such that for every
v <gs Bif {u:v—4uandu<; A} is infinite, so is {u : v =5 u and u <; B}. An ordinal
for the filter B is any « such that for every v <; B, if {u : v <4 u € A} is infinite then for
every 5 < « there is w € A such that v <; w and 8 < o4(w). It follows that for any tableau
s and pruning sg:
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Figure 2 Tableaux ¢ and ¢ in the proof of lemma 3.18.

» Lemma 3.16. If o(s) < a + o(sp) then there is no filter over s with ordinal a 4 w.

» Lemma 3.17. If every ordinal for every filter over s is bounded by «, then o(s) < a+o(so).

Proof. Both lemmata are proved by transfinite induction on o(s). For the second lemma,
notice that for v <; B, if 0s,(u) = w.f and for every v > u, 04, (v) < w., then for
0s(u) > a4+ o4, (u) to be the case we must have 04(v) > a + 04, (u) for some v >, u. <

We are now ready to prove the core lemma.

» Lemma 3.18. Let N = 22”'"”_ If there is a minimal tableau for (T, ) of order-type
o € [w.N,w?) then there exists a TTS 7' and a minimal tableau for (7', ) with order-type
strictly greater than a.

Proof. Suppose a = w.m; + mo and q is a constant not appearing in ¢. Let 7" = @ x T.
For each 1 < my define

Fi={yeT {zeT:q¢ \r(x) Ay <7 2} is a tree of order-type w.i}.

Since there is a minimal tableau for (T, ¢) of order-type o > w.N, the set F; is non-
empty for every ¢ < N. Moreover, by lemma 3.15 there exists a tableau for (1", ¢,) with
order-type precisely . Denote this tableau by ¢ and set Ff = {v € t : 7(v) € F;}. Let

A; = {A : there exists v € | and an w.i-tableau for (1], () , Ag)}-

Notice A; is non-empty for each 0 < i < N. Moreover, as A; C P(FL(p)) and m; > N,
there exists 0 < i < j < my such that Ag; = As; and Agz;—1 = Ag;_1. To each v € F, is
therefore associated a node c(v) € F§; such that for every A C FL(y),

1. there is a tableau for (T"[,, (), Ay) if and only if there is a tableau for (T"[,, (c(v)) s Aq),
2. there exists an w.(3i—1)-tableau for (T"[,, () , A,) if and only if there exists an w.(3j—1)-
tableau for (1”17, (c(v)) » Aq)-

Let 7 be the tableau obtained from t by replacing each node v € Ft, by te(w)- tis a
tableau for (7', ¢,) where T is obtained from T’ by replacing the sub-tree at each 7(v) € Fa;
by T"1+, (c(v))- Denote by A the set of nodes of ¢ corresponding to this change.

Let 4 be an absolutely minimal tableau for (7', ) and A = {u € § : Jv € A 75(u) = 7;(v)}.
It suffices to prove that o(8) > a = w.mq + ma. Since (As;, Azi_1) = (As;, Aszj_1),
lemma 3.14 implies that for every u € A there is a tableau, say t,, for (T 7 (u) » As(u)) with
o(ty) < w.3i, and o(t,) < w.(3i — 1) if 0z(u) < w.(3j — 1). From § we define a new tableau
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s for (T, p4) replacing the sub-tableau 8, by ¢, for each u € A. We remark that s and §
have a common initial part, namely the pruning sgp = sN{v: v <g Fa;}.

Assume o(8) < a. Every ordinal for a filter over (s,sg) is no greater than w.3i by
lemma 3.14, so by lemma 3.17, o(sg) > w.(m; — 3i) + ms. Notice also that o(sg) < w.(m1 —
3i) +w. But then o(8) < w.mi +ms < w.(3i+1) + o(sp) and lemma 3.16 implies that every
ordinal for a filter over § is strictly below w.(3¢ + 2). Since 3i +2 < 3j — 1, in forming s a
sub-tableau of order-type < w.(3i+2) at A is replaced by a tableau of order-type w.(3i —1).
Therefore every filter over (s, sp) has ordinal < w.(3¢ — 1), whence

0(s) < w.(3i — 1) + o(so)
<w.(3i—1)+w.(m —3i)+w<a

Thus by lemma 3.15 there exists a tableau for (T, ¢) with order-type 8 < «, yielding a
contradiction. |

» Corollary 3.19. Let ¢ be a closed formula of alternation-free u-calculus. If ¢ has closure
ordinal o < w? with respect to X,, in fact o < w.N where N = 921172,

Proof. Suppose COx, () = o € [w.N,w?). Proposition 3.10 implies the existence of a TTS
T and an absolutely minimal tableau ¢ for (T, O¢) with order-type . By lemma 3.18 there
exists a TTS T' = Oy and a minimal tableau 3 for (', O¢) with order-type greater than o,
whence lemma 3.6 implies COx, (¢) > CO; 5 () > a. <

It remains to rule out closure ordinals of w? or greater. To achieve this a more general
version of the argument in the preceding proof is required.

» Lemma 3.20. If ¢ is a minimal tableau for (7, ) and o(t) > w?, then there exists a TTS
T and a minimal tableau for (7', ¢) with order-type strictly greater than o(t).

Proof. Suppose t is a minimal tableau for (7, ¢) and w? < w.ay < o(t) < w.(ay + 1).

Set Ty = @ xT. Let ¢ not appear in ¢ and for each k£ < w let the set Fj be defined

analogously to the previous lemma as the collection of nodes in ¢ T such that the sub-tree

{x € Ty : ¢ € A, (y) ANy <7 x} has order-type w.k. Now F}, is non-empty for every k < w, so

there exist infinitely many indices, 0 < ¢ < 7(1) < j(2) < ... such that j(n + 1) > j(n) + 2

and (Aj, Ai—1) = (Ajm), Ajn)—1) for every n. Let cp: Fi — Fjm) be the function such

that for each « € F;, A C FL(p) and every m < w,

1. there is a tableau for (Tp[. ,4,) if and only if there is a tableau for (To[e,, (), Aq),

2. there is a tableau for (Ty[, , A,) with order-type w.(i —1) if and only if there is a tableau
for (Tole,,(z) » Aq) With order-type w.(j(m) — 1).

Beginning with c¢,,, one can define iterated versions, cg, for each a: for ¢ € Fj with k > 4,
O (x) = Tol, and c. (z) is defined to be the result of replacing in Tp [, each node y € F; by
1 (x) in which each node y € F; is replaced by ¢%,(y);

the tree ¢, (y); cTt(z) is the tree cl,
for a limit ordinal «, ¢ () is the tree ¢’ (z) in which, given a bijection go: F; — w,
w-y+g0(y) (y)

if & = w.y7 + w then each node y € F; is replaced by the tree Coo()
if @ = w.qg, ap is a limit ordinal and ¢;: F; — g is a bijection, then each node y € F;

is replaced by the tree c:(;f;)(y)(y).

C

The following two lemmata are obtained by generalising the argument in lemma 3.18
making essential use of lemmata 3.16 and 3.17.

(0%

» Sub-lemma 1. There exists a tableau for (%,

for (TO rcm(a:) s Aq)

(x),A,) if and only if there exists a tableau
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» Sub-lemma 2. If © € F; and there exists a tableau for (¢%, (x), A,) with order-type < w.«
then there exists an w.(i — 1)-tableau for (Ty[,,A,).

The construction of the trees ¢%,(x) and the two previous sub-lemmata suffice to prove
the main lemma. By lemma 3.15, ¢t naturally induces an absolutely minimal tableau for
(To,¢q) of the same order-type. Let T5"* be the tree obtained by replacing each sub-tree
Tol, for y € F; by ¢t (y). It is easy to see that T3 = ¢ A ¢q.

Let § be an arbitrary absolutely minimal tableau for (I7", ¢,) and s the collapse of § to
a tableau for (Tp,@4): on each path replace the first v € 8 such that T¢" [, ) = e (y)
for some y € F; by the tableau for (Tp[, , As(v)) given by sub-lemma 2, if 0;(v) < w.ay +w,
and by sub-lemma 1 otherwise. Let Sy denote the collection of absolutely minimal tableaux
for Tp, and set S} to be the collection of tableaux for (Tp, ¢,) that arise as the collapse, in
the manner described above, of an absolutely minimal tableau for (Tj",¢,). If there is a
minimal tableau for (7', ¢,) with order-type strictly greater than o(t) then we are done.
Otherwise, for every r' € S there exists r € Sy such that for all z, if o,/(z) = w.i then
or(x) > w.i. Now set T1 to be the Sj-pruning of Ty. 77 has the same domain as Ty and
hence T'. Moreover, if {z € T1 : ¢ € A, (2) Az <p z} has order-type w.i then there exists
x <r y such that the tree {z € Ty : ¢ € A1, (2) Ay <r z} has order-type w.i. Let the set
S1 comprise all absolutely minimal tableaux for (T4, ¢q). Any r € S; is also a tableau for
(To, ¢4) and hence also for (T, ). Thus consider tableaux for (17", ¢,) and set S{ to be the
collection of tableaux that are obtained from the collapse of absolutely minimal tableaux
for (7", ¢,). Define Sy to be the set of absolutely minimal tableaux for the Sj-pruning
of T1. Similarly define Ss, Sy, etc. Every tableau in S,; “moves” the w.i-frontier of T
closer to the root. Thus, either for some n there exists a minimal tableau for (7%, ¢ ) with
order-type strictly greater than o(t), or for every n there exists « € T' and tableau s; € S}
for every j < n such that o,,(x) < o5, ,(x). As the latter will yield a contradiction, we are
done. <

As a consequence of lemmata 3.18 and 3.20 the closure ordinals of p-formulee will be
sufficiently bounded.

» Theorem 3.21. Let X be a principal set of u-variables for a closed and alternation-free

formula . Then the closure ordinal of ¢ with respect to X, if it exists, is strictly less than
lp|+2
w.22 .

» Corollary 3.22. Suppose ¢ is a closed formula in the alternation-free fragment of the pu-
calculus and X is a principal set of v-variables only. Then COx(p) < w22
ordinal exists.

if the former

Proof. Let ¢ denote the dual of ¢ and let X be a set of v-variables principal in ¢. That
COx(p) = COx(p) follows from the dual semantics of the p-calculus, whence theorem 3.21
implies COx(p) < w2277 <

» Theorem 3.23. Let ¢ be a closed alternation-free formula in guarded form and let X be
the set of variables occurring in ¢. If COx () exists then COx(p) < w?.

Proof sketch. Suppose ¢ € 3,11 in the weak hierarchy has closure ordinal £ with respect
to the set of all variables in ¢. By theorem 3.21 all p-variables that do not appear under

2. Moreover, the structure of ¢

the scope of a v-variable close off at some ordinal o < w
will induce, for each closed weak II,, sub-formula 1, a particular class of transition systems,
say T, such that ¢ has closure ordinal k with respect to trees in 7. In the case n = 1, by

relativising the previous arguments to the class 7, one may deduce 1 has closure ordinal,
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say oy, strictly less than w? with respect to 7. As the closure ordinal of ¢ is no greater
than the sum of a and ordinals o, COx(p) < w?. <

A profound consequence of lemma 3.20 and corollary 3.22 and one that also applies
to theorem 3.23, is that there is no essential dependency between closure ordinals and
alternation depth for the alternation-free fragment: the choice of N in these results depends
only on the logical complexity of ¢ and the dependency on the alternation depth of ¢ is
essentially trivial, necessitating a smaller increase in bounds than for the connectives and
quantifiers. Whether this remains the case for formulee outside the alternation-free fragment
is unclear.
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—— Abstract

We present a new Curry-Howard correspondence for HA + EMy, constructive Heyting Arithmetic
with the excluded middle on X9-formulas. We add to the lambda calculus an operator ||, which
represents, from the viewpoint of programming, an exception operator with a delimited scope,
and from the viewpoint of logic, a restricted version of the excluded middle. We motivate the
restriction of the excluded middle by its use in proof mining; we introduce new techniques to prove
strong normalization for HA + EM; and the witness property for simply existential statements.

One may consider our results as an application of the ideas of Interactive realizability, which we
have adapted to the new setting and used to prove our main theorems.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Interactive realizability, classical Arithmetic, witness extraction, delim-
ited exceptions

Digital Object ldentifier 10.4230/LIPIcs.CSL.2013.45

1 Introduction

From the beginning of proof theory many results have been obtained which clearly show
that classical proofs have a constructive content. The seminal results are Hilbert’s epsilon
substitution method (see e.g [23]) and Gentzen’s cut elimination [12]. Then, several other
techniques have been introduced: among them, Godel’s double negation translation followed
either by the Gédel functional interpretation [11] or Kreisel’s modified realizability [18] and
Friedman’s translation [10]; the Curry-Howard correspondence between natural deduction
and programming languages (see e.g. [27]).

In this paper we follow the Curry-Howard line of research. But what does it mean to
extract constructive content from a natural deduction proof? Essentially, it means interpreting
the positive connectives V, 3 as positively as possible, that is, recovering information about
truth as much as possible. The problem is that, even in intuitionistic Arithmetic, a disjunction
AV B can be proven without explicitly proving A or proving B; a proof of an existential
statement 3o A may be accepted even if it does not directly provide a witness, i.e. a number
n and a proof that A[n/a] holds. It is the very shape of the natural deduction rules that
allows that: there are not only inference rules for direct arguments — introduction rules — but
also indirect elimination rules. One can then prove a disjunction by an elimination rule, for
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example as a consequence of a general inductive argument for a formula Yo¥. A(a) V B(a)
and then conclude A(0) vV B(0). It is a remarkable result of proof theory that it is possible
to give a complete simple classification of the detours that can occur in an intuitionistic
arithmetical proof, which are small pieces of indirect reasoning that can be readily eliminated
through a simple proof transformation. Once this detours are eliminated, one obtains direct
proofs of disjunctions or existential statements (see Prawitz [26]).

For classical Arithmetic, the situation may appear desperate: the double negation
elimination rule =—A — A is a so indirect way of arguing, that seems impossible to be
eliminated; the excluded middle A V = A allows a disjunction to be asserted without having
the slightest idea of which side holds. Indeed, for a long time, there has not been a set of
reduction rules, nor a notion of classical detour, that worked for proofs containing all the
logical connectives. It was Griffin [15] who gave a very elegant reduction rule for eliminating
the double negation elimination. If A is concluded from ——A and then used to prove L, then
one can capture the part of the proof that surrounds A to obtain a proof of = A and give it
to the premiss =—A in order to get a more direct proof of 1. While this idea was initially
applied only to negative fragments of Arithmetic, it became clear that it could be adapted
even to a full set of connectives.

It was in that way that control operators entered the scene. The proof reductions
for classical Arithmetic can be implemented by a Curry-Howard correspondence between
proofs and functional languages enriched with operators that can capture the computational
context. Several languages have been put forward for that aim. Griffin proposed the lambda
calculus plus call/cc, solution that has been developed and extended by Krivine [21, 22] with
remarkable success. Parigot [25] put forward the Ap-calculus, which enjoys many of the nice
properties of the lambda calculus that are instead lost when using call/cc; de Groote [14]
extended the Ap-calculus in order to interpret primitively all the logical connectives.

After these works, it became evident that enriching functional languages with other "less
pure" computational constructs would allow to implement reduction rules for many mathem-
atical axioms. For example, Krivine used the instruction quote to provide computational
content to the axiom of dependent choice. Recently, Herbelin [16] has used the mechanism
of delimited exceptions to give special reduction rules for Markov’s principle.

The goal of this paper is to use a new combination of known computational constructs in
order to interpret Heyting Arithmetic HA with the excluded middle schema EM;, Va'P v
JoP*, where P is any atomic decidable predicate (see [1]) and P+ denotes the atomic
decidable predicate which is its complement. We shall give new reduction rules for HA + EMy,
and introduce a realizability semantics in order to investigate, describe and prove properties of
their behavior. We shall use delimited exceptions, and permutative conversions for disjunction
elimination. Permutative rules were introduced by Prawitz (see [26]) to obtain the subformula
property in first-order natural deductions: in our framework, they will naturally express
control operators. Delimited exceptions were used by de Groote [13] in order to interpret the
excluded middle in classical propositional logic with implication; by Herbelin [16], in order to
pass witnesses to some existential formula when a falsification of its negation is encountered.
We shall use exceptions in a similar way, and our work may be seen as a modification and
extension of some of de Groote’s and Herbelin’s techniques. Our reduction rules for the
classical principle EM; are inspired by Interactive realizability [2, 3] for HA + EM;, which
describes classical programs as programs that make hypotheses, test them and learn by
refuting the incorrect ones. The interest of EM; lies in the fact that this classical principle is
logically simple, yet it may formalize many classical proofs: for instance, proofs of Euclidean
geometry (like Sylvester conjecture, see J. von Plato [28]), of Algebra (like Dickson’s Lemma,
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see S. Berardi [7]) and of Analysis (those using Koenig’s Lemma, see Kohlenbach [17]).
We now give an high level explanation of our contributions and of how they compare to
other interpretations of classical proofs.

1.1 Excluded Middle versus Double Negation Elimination

As we have said, control operators have been mainly used to interpret primitively double
negation elimination, or some related principle (as the Pierce law: (-4 — A) — A). To
interpret the excluded middle with this approach, one first proves intuitionistically L (and
thus EM) from —EM and then applies the rules of double negation elimination or Pierce
law to obtain a proof term for EM. In this way, however, one does not address directly the
excluded middle and sticks to an implicit negative translation which eliminates it. But what
is classical logic if not the conception that formulas speak about models, and a formula is
either true or false? It is also evident that the real idea behind the constructivization of
classical logic is concealed in the proof of =—EM: it is there that it is really determined what
is the use of the continuations produced by control operators and why it is needed.

In this paper, we give direct reduction rules for the excluded middle EM;. We treat it as
an elimination rule, as in [13] and in the actual mathematical practice:

La:Va'PFu:C [a:3Pttov:C
F'Fulsv:C

This inference is nothing but a familiar disjunction elimination rule, where the main premise
EM; has been cut, since, being a classical axiom, it has no computational content in itself.
The proof terms u, v are both kept as possible alternatives, since one is not able to decide
which branch is going to be executed at the end. A problem thus arises when C' is employed
as the main premise of an elimination rule to obtain some new conclusion. For example,
when C = A — B, and I' F w : A, one may form the proof term (u ||, v)w of type B. In
this case, one may not be able to solve the dilemma of choosing between u and v, and the
computation may not evolve further: one is stuck.

1.2 Permutation Rules for EM;

We solve the problem as in [13] by adding permutation rules, as usual with disjunction. For
example, (u ||, v)w reduces to uw ||, vw. In this way, one obtains two important results:
first, one may explore both the possibilities, VoP is true or 3a"P~ is true, and evaluate uw
and vw; second, one duplicates the applicative context []w, which will be needed in case
of backtracking from the branch uw to vw. If C = A A B, one may form the proof term

mo(u || v), which reduces to mou ||, mov, and has the effect of duplicating the context mg|].

Similar standard considerations hold for the other connectives. Thus permutation rules act
similarly to the rules for p in the Ap-calculus, but are only used to duplicate step-by-step
the context and produce implicitly the continuation. Anyway, || behaves like a control-like
operator.

1.3 Delimited Exceptions

The reductions that we put forward for the new proof terms u ||, v are inspired by the
informal idea of learning by making falsifiable hypotheses. When normalizing a term u ||, v,
we shall consider u as the active branch. The reason is that the hypothesis Va'P has
no computational content, and it is only a certificate serving to guarantee the correctness
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of u. Therefore, one can “run” u making the hypothesis Yo'P without the risk that the
computation will be blocked; on the contrary, the branch v cannot a priori be executed
without that risk, because the hypothesis 3P+ has a computational content (a witness)
that may be requested in order to go on with the computation. That does not mean that
one is not free to first perform reductions inside v, but rather that one may not expect to
necessarily get useful results in that branch.

The informal idea expressed by our reductions is thus to assume YoP and try to produce
some proof of C' out of u by reducing inside u. The crucial intuition — recurring again
and again in proof theory — is that when C is a concrete statement, for example a simple
existential formula, one actually needs only a finite number of instances of VoP to prove
it. Whenever u needs the truth of an instance P[n/a] of the assumption Va!P, it checks
it, and if it is true, it replaces it by its canonical proof which is just a computation. If all
instances P[n/a] of Vo P being checked are true, and no assumption Vo P is left (this is the
non-trivial part), then the normal form «’ of u is independent from YaP and we found some
u’ : C. Remark that, in this case, we do not know whether Va"P is true or false, because u
only checked finitely many instances of it: all we do know is that the full hypothesis Ya"P
is unnecessary in proving C. If instead some assumption of VoP is left in u we are stuck.
There is only one way out of this impasse and can occur at any moment: v may find some
instance P[n/a] which is false, and thus refute the assumption YaP. In this case the attempt
of proving C from Va"P fails, we obtain PL[n/a] and u raises the exception n; from the
knowledge that PL[n/a] holds, a canonical proof term P+ is formed and passed to v: a
proof term for C' has now been obtained and it can be executed.

In order to implement those reductions we shall use constant terms of the form H"*P,
whose task is to take a numeral n and reduce to True if P[n/a] holds, otherwise raise an
exception. We shall also use a constant ELL denoting some unknown proof term for EIaNPl,
whose task is to catch the exception raised by H'*P. Actually, these terms will occur only
through typing rules of the form

[ a:Va'P F [a]H"*P : Va'P [a: 3P+ [a}wa‘lpL : Ja"Pt

where a is used just as a name of a communication channel for exceptions: if in u occurs a

H"*Pn where the closed expression P[n/a] is false, then u ||, v reduces

WaapL

subterm of the form [a]
to v[a := n], which denotes the result of the replacement of [a] in v with the proof term
(n, True). From the viewpoint of programming, that is a delimited exception mechanism (see
de Groote [13] and Herbelin [16] for a comparison). The scope of an exception has the form
u||q v: C, with u the “ordinary” part of the computation and v the “exceptional” part. As
pointed out to us by H. Herbelin, the whole term u ||, v can also be expressed in a standard

way by the constructs raise and try...with... in the CAML programming language.

1.4 Realizability and Prawitz Validity

We now have a set of detour conversions for HA + EM;: which notion of construction does
it determine? The normalization process, even in intuitionistic logic, tends to be obscure:
while the local meaning of reduction steps is clear, the global behaviour of the procedure is
harder to grasp. This is the reason why it is important to define proof-theoretic semantics,
in particular those who have the task of explaining what is a construction in intuitionistic
or classical sense. Realizability is one of those semantics. In analogy with the discussion in
Prawitz [26] about validity, one may classify realizabilities in two groups: those who give
priority to introduction rules and those who rather privilege elimination rules in order to
give meaning to logical connectives.
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Realizabilities based on introduction rules. In this case, one explains a logical constant
in term of the construction given by an introduction rule for that constant. For example,
a realizer of A A B is a pair made by a realizer of A and a realizer B; a realizer of AV B
contains either a realizer of A or a realizer of B together with an indication of which formula
is realized. Of course, this approach tends to work with constructive logics, which have
the disjunction and numerical existence properties. Prawitz’s notion of validity and Kreisel
modified realizability are witness to that. There is one exception: Interactive realizability
[3, 4], which explains positive classical connectives with introduction rules thanks to the use
of the concept of state of knowledge.

Realizability based on elimination rules. In this case, one describes the meaning of a logical
constant in terms of “performability of operations” or in terms of what can be obtained by the
elimination rules for that constant. This approach works very well for negative connectives,
and in fact is not very different from the one given by introduction rules: but since it has
a semantical flavor, it is usually the preferred one. At the time of Prawitz [26], it seemed
impossible that this approach could work also for positive connectives, given the circularity
involved in the elimination rules (in terms of logical complexity). It was only after Girard’s
reducibility [9], and the work of Krivine [19, 21], that the second order definition of AV B
as VX. (A — X) — (B — X) — X has been exploited for defining a realizability based
on elimination rules. While remarkable, this result makes classical realizabilities based on
elimination rules equivalent to some negative translation, re-proposing at the semantical
level the issue which is eliminated on the syntactical one. Indeed, all realizabilities proposed
for languages based on control operators are equivalent to some negative translation [24]
(not surprisingly, since these operators were originally devised to interpret directly double
negation elimination).

In this paper, we shall present a classical realizability borrowing ideas from both groups.

The treatment of negative logical constants will be & la Kreisel, while the positive ones will
be treated a la Prawitz. In particular the set of realizers of AV B and of Ja"A will be
constructed by an inductive definition whose base case is an introduction rule; the atomic
realizers will represent proofs in “extended” Post systems. This gives, first, an adaptation
of Interactive realizability to a language with exceptions and control operators; second, an
extension of Prawitz’s notion of validity to a system with classical principles. We find these
achievements interesting in their own right, because of the semantical meaning of validity
given by Prawitz [26]. It seems also that our approach is not equivalent in any straightforward
sense to a negative translation, in line with our desire of interpreting positive connectives as
positively as possible.

1.5 Witness Extraction and Strong Normalization

Thanks to realizability, we shall provide a new semantical proof of a normal form result
syntactically proven by Birolo [8], expressing that any closed normal proof term whose type is
a simply existential formula 3P provides a witness through the process sketched above (that
is, one never gets stuck with simply existential formulas); and a new strong normalization
result, proving that all reduction paths terminate into a normal form. We anticipate that in
our calculus all the reduction strategies are allowed, therefore strong normalization is not
the same thing as weak normalization, as for example in Krivine’s realizability [19]. This
freedom is desirable, because it avoids artificial programming constraints which complicate
the writing of realizers.

We remark that we cannot prove the witness property for all existential statements of
HA + EM;. Indeed, using EM; we may prove paradoxical statements like the drinker principle

49

CSL’13



50

Realizability and Strong Normalization for HA + EM1

FoM VBN, P(a) — P(B), for P primitive recursive, but for some P there is no map computable
in the parameters of P providing some n such that V8Y. P(n) — P(3). However we prove
the witness property for all II9-statements of HA + EM;, which include all statements about
convergence of algorithms, therefore all statements more interesting for Computer Science.
The witness property we prove is a particular case of the witness property which holds for
the entire classical arithmetic by the results of Godel: the interest of our results lies in the
new reduction set we provide and in their semantics.

1.6 Non-Determinism

We anticipate that our set of reductions is non-deterministic, i.e. non-confluent. Whenever
there are two false instances P[n/a], P[m/a] of an hypothesis Va"P in some EM;-rule u ||, v,
in u it may be raised either the exception n related to P[n/aj, or the exception m related to
P[m/a]. The computation is converging in both cases, and the witness we get for a simple
existential conclusion C is correct in both cases: however, we may obtain a different witness
in the two cases. The interest of the non-deterministic approach is that it does not impose
arbitrary restrictions ruling out potentially interesting computations: there are classical
proofs whose non-deterministic interpretation is in a sense canonical (see [6], p. 40-50 for
examples). Alternatively, with techniques introduced in [2], we may provide in a simple
and natural way confluent evaluation rules. It is an interesting aspect of our framework
that non-determinism arises just because one may generate during computation different
refutations of EM;-hypotheses, so any strategy for choosing between them re-establishes
confluence. For reason of space, we shall not address this matter in the present paper.

1.7 Plan of the Paper

This is the plan of the paper. In §2 we introduce a type theoretical version of intuitionistic
arithmetic HA extended with EM;. In §3 we introduce a realizability semantics for HA + EM;.
Then in §4, 5 we prove that this semantics is sound for HA + EM;. As a corollary, we deduce
that HA 4+ EM is strongly normalizing and that any proof of a simply existential ¥9-formula
provides a witness.

2 The System HA + EM,

In this section we formalize intuitionistic Arithmetic HA, and we add an operator || formalizing
EM;. We start with the language of formulas.

» Definition 1 (Language of HA + EM;). The language £ of HA + EM; is defined as follows.

1. The terms of £ are inductively defined as either variables a, 3, ... or 0 or S(t) with t € L.
A numeral is a term of the form S...S0.

2. There is one symbol P for every primitive recursive relation over N; with P we denote
the symbol for the complement of the relation denoted by P. The atomic formulas of £
are all the expressions of the form P(t1,...,t,) such that ¢q,... ¢, are terms of £ and n
is the arity of P. Atomic formulas will also be denoted as P, Q, P;, .. ..

3. The formulas of £ are built from atomic formulas of £ by the connectives V, A, —,V, 3 as
usual, with quantifiers ranging over numeric variables o, gY, .. ..

From now on, if P is any closed atomic formula, we will write P = True (P = False) if
the formula is true (false) in the standard interpretation, that is, if P = R(nq,...,nx) and
the sequence of numerals (nq,...,n;) belongs (does not belong) to the primitive recursive
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relation denoted by R. We now define in figure 1 a set of untyped proof terms, then a type
assignment for them.

It is a standard natural deduction system with introduction and elimination rules for
each connective and induction rules for integers, together with a term assignment in the
spirit of Curry-Howard correspondence (see [27], for example).

Grammar of Untyped Proof Terms
tu,v = x| tu | tm | Azu | Aau | (¢ u) | mou | miu | ww) | u(uw) | tlrw,yo] | (m,t) | (o, z).u]

YaP JaPt

| [a]w

where m ranges over terms of £, x over proof terms variables and a over hypothesis variables. We
also assume that in the term u ||q v, there is some atomic formula P, such that a occurs free in u only

| w|le v | [a]H | True | Ruvm | rt1 ...ty

in subterms of the form [a]H"*" and @ occurs free in v only in subterms of the form [a]WHD‘PL, and the

occurrences of the variables in P different from « are free in both v and v.

Contexts With I" we denote contexts of the form e; : A1,..., e, : Apn, where each e; is either a proof-term
variable x,y, z ... or a EM; hypothesis variable a,b, ..., and e; # e; for ¢ # j.

Axioms T,z:AFz:A Ia:VYa"P F [aH"P : val'P Ia:3a"PLF [a]wa"‘PL :3MPt
Coniuncti I'tu:A T'Ht:B I'tu:AANB I'u:AAB

onjunction 'k (u,t): ANB I'kmu:A '-mu:B
Implicati I'Ft:A—-B TFu:A Tx:AFu:B

mplication TFtu:B TFitu:A— B

'Fu:A 'tu:B

Disjunction Intro. T'Fuw(u):AVB 'Fu(u):AVB

T'Fu:AVvB Tiz:Atwi :C T,z:BFwy:C
TFulzw,zws]: C

Disjunction Elimination

I'Fu:Va'A 'tu:A

Universal Quantification TFum:Am/a] TF hau: Yo' A

where m is any term of the language £ and « does not occur free in any formula B occurring in I'.

I'Fu: Alm/a] F'Fu:3d"A T,z:AFt:C

Existential Quantification TF (mu): 3" A TF (@, 2)4: C

where « is not free in C' nor in any formula B occurring in I'.

I'Fu:A(0) TFwv:Va' A(a) = A(S())
T+ Ruvt : A(t)

where ¢ is any term of the language L.

Induction

F}—ulzPl Fl—uQZPQ F}—un:Pn

I'Fu:P
where Py, P2, ..., Py, P are atomic formulas and the rule is a Post rule for equality, for a Peano axiom
or a primitive recursive relation and if n > 0, w is ruj ... un,, otherwise u is True.

Post Rules

T,a:Va"P Fw; : C F,a:EIa"PJ‘FwQ:C

EM1 TFwi [[qw2:C

Figure 1 Term Assignment Rules for HA + EM;.
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We replace purely universal axioms (i.e., I1J-axioms) with Post rules (as in Prawitz [26]),
which are inferences of the form

I'HPy THPy .- THP,

T'EP
where Pi,...,P,,P are atomic formulas of L such that for every substitution
o = [t1/oa,...,tx/ag] of closed terms t1,...,tx of L, P1o = ... = P,o = True implies
Po = True. Let now eq be the symbol for the binary relation of equality between natural
numbers (“=" will also be used). Among the Post rules, we have the Peano axioms
T+ eq(Sty, Sto) T+ eq(0,St)
erq(tl,tg) ' 1

and axioms of equality

Fl—eq(tl,tg) Fl—eq(tg,tg) Fl—P[tl/a] Fl—eq(tl,tg)
I+ eq(t,t) I+ eq(ty, t3) T Plta/q]

We also have a Post rule for the defining axioms of each primitive recursive relation, for
example the false relation L, addition, multiplication:

'L F"Qdd(tl,tg,tg)
TFP T+ add(t,0, t) T+ add(ty, St2, St3)

'k mu|t(t1,t2,t3) '+ add(tg,tl,t4)
I' F mult(¢,0,0) T F mult(ty, Sto, t4)

For simplifying the representation of proofs, we assume also to have a Post rule for each true
closed atomic formula P:

TFP

From the 1-rule for atomic formulas we may derive the L-rule for all formulas. We assume
that in the proof terms three distinct classes of variables appear: one for proof terms, denoted
usually as x,y,...; one for quantified variables of the formula language £ of HA + EM,
denoted usually as «, 3, .. .; one for the pair of hypotheses bound by EMy, denoted usually
as a,b,.... In the term u ||, v, any free occurrence of @ in u occurs in an expression [a]H P
and denotes an assumption Va'P. Any free occurrence of a in v occurs in an expression
¥pL  All the occurrences of @ in u and v are bound,
and we assume the usual renaming rules and alpha equivalences to avoid capture of variables
in the reduction rules that we shall give. Alternatively, [a]H"*" is the thrower of an exception
a and [a}waapL
of the form u ||, v; we shall use this notation whenever our considerations will not depend
on which is exactly the variable a. Terms of the form ((u || v1) || v2)...) || vn for any n >0
will be denoted as u || vy || ... || v, or as EM[u]. In the terms [a]H"*F and [a}WHO‘PL the free
variables are a and those of P minus a.

Assume that I' is a context, ¢ an untyped proof term and A a formula, and I' - ¢ : A:
then ¢ is said to be a typed proof term. Typing assignment satisfies Weakening, Exchange

[a]w?*P" | and denotes an assumption Jov

is the catcher of the same exception a. With u || v we denote a generic term

and Thinning, as usual. SN is the set of strongly normalizing untyped proof terms and
NF is the set of normal untyped proof terms, as usual in lambda calculus ([27]). PNF is
the inductively defined set of the Post normal forms (intuitively, normal terms representing
closed proof trees made only of Post rules whose leaves are universal hypothesis followed by
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Reduction Rules for HA
(Az.u)t — uft/z] (Aa.u)t — ult/a]
mi(uo, u1) — u;, for i=0,1
Li(u)[fm.thxz.tz] — ti[u/xi}, for i=0,1
(n,uw)[(a, z).v] = v[n/a][u/z], for each numeral n
Ruv0 — u
Ruv(Sn) — vn(Ruwvn), for each numeral n
Permutation Rules for EM4
(u ||l¢ v)w — vw ||q vw, if a does not occur free in w
mi(u ||a v) = T ||a TV
(u ||a v)[zw1, yw2] = ulz.wi, yws] ||la v|z.w,y.ws)], if a does not occur free in wi,ws
(u |la v)[(a, ). w] = ul(a, ).w] ||a v[(e, x).w], if a does not occur free in w1, w2
Reduction Rules for EM
([aJH"*")n s True, if P[n/a] is closed and P[n/a] = True
U ||la v = u, if a does not occur free in u

HVaP

U la v v[a:=mn], if [a] n occurs in u, P[n/a] is closed and P[n/a] = False

Figure 2 Reduction Rules for HA 4+ EM;.

an elimination rule), that is: True € PNF; for every closed term n of £, if [a]H"*Pn € NF,
then [a]H"*Pn € PNF; if ¢y,...,t, € PNF, then rt; ...t, € PNF,

We are now going to explain the reduction rules for the proof terms of HA4+EM);, which are
given in figure 2 (with —* we shall denote the reflexive and transitive closure of the one-step
reduction —). We find among them the ordinary reductions of Intuitionistic Arithmetic
for the logical connectives and induction. Permutation Rules for EM; are an instance of
Prawitz’s permutation rules for V-elimination, as explained in the introduction. Raising an

waaPL

exception n in u ||, v removes all occurrences of assumptions [a] in v; we define first

an operation removing them, and denoted v[a := n).

» Definition 2 (Witness Substitution). Suppose v is any term and n a closed term of £. We
define

waaPL

as the term obtained from v by replacing each subterm [a] corresponding to a free

occurrence of a in v by (n, True), if P[n/a] = False, and by (n, [a]H"®*=°S0), otherwise.

» Remark. An exception is raised only when P[n/a] = False. Therefore the substitution of

(]3P by (n, [a]H**=0S0) will never occur in the reductions rules that we have defined.

However, the general case of the substitution will be needed to define realizability, and
namely because we want it to be suitable to prove strong normalization.

The rules for EM; translate the informal idea of learning by trial and error we sketched
in the introduction, that is:

1. The first EM;-reduction: ([a]H"*F)n — True if P[n/a] = True, says that whenever we
use a closed instance P[n/a] of the assumption YaP, we check it, and if the instance is
true we replace it with its canonical proof.

2. The second EM;-reduction: w ||, v — u, says that if, using the first reduction, we are able
to remove all the instances of the assumption [a]H"*P : Vo P in u, then the assumption is
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unnecessary and the proof term u ||, v may be simplified to u. In this case the exceptional
part v of u ||, v is never used.

3. The third EMj-reduction: wu|,v + wvla := n], if [a]H"Pn occurs in v and
P[n/a] = False, says that if we check a closed instance [a]H"*Pn : P[n/a] of the as-
sumption Va'P, and we find that the assumption is wrong, then we raise in u the
exception n and we start the exceptional part v[a := n] of u ||, v. Raising an exception is
a non-deterministic operation (we may have two or more exceptions to choose) and has
no effect outside u ||, v.

We claim that the reductions satisfy subject reduction: if ' - ¢ : A and t — u then
'k t: A. The proof is by induction over t. For the reduction rule u ||, v — u we use the
fact that a is not free in u and the Thinning rule. For the reduction rule w ||, v — v[a := n]
we use the fact that a is not free in v[a := n] and Thinning rule again.

As usual, neutral terms are terms that are not “values”, and need to be further computed.
We also introduce the important concept of quasi-closed term, which intuitively is a term
behaving as a closed one, in the sense that it can be executed, but that contains some free
hypotheses on which its correctness depends.

» Definition 3 (Neutrality, Quasi-Closed terms).

1. An untyped proof term is neutral if it is not of the form Az u or Aau or (u,t) or t;(u) or
(t,u) or [a]H"P or u ||, v.

2. If t is an untyped proof term which contains as free variables only EM;-hypothesis
variables ai, ... ,a,, such that each occurrence of them is of the form [a;]H"*" for some
P;, then t is said to be quasi-closed.

3 A Realizability interpretation for HA + EM;

In this section we define a realizability semantics for HA 4+ EMy, in which realizers may
be interpreted as algorithms learning by trial and error a correct value. With respect to
the Interactive realizability semantics in [2], the main difference is that we have no formal
notion of knowledge state here. Informally, the counterpart of a knowledge state here would
be the set of the free EM; hypothesis variables occurring in a term and the collection of
all assignments [a := n] produced by some reduction u ||, v — v[a := n] performed in the
computation of the term.

Realizers will be deduced to be strongly normalizing terms, and the soundness of this
realizability semantics will have strong normalization as a corollary. As in [21], realizers may
be untyped terms, and also quasi-closed. With respect to the usual notion of intuitionistic
realizability, there is a special case for atomic formulas, and one special case t = u ||, v for
the connectives V, 3.

» Definition 4 (Realizability for HA + EM;). Assume ¢ is a quasi-closed term in the grammar
of untyped proof terms of HA + EM; and C is a closed formula. We define the relation ¢ I+ C
by induction on C' and for each fixed formula by a generalized inductive definition.
1. ¢ I P if and only if one of the following holds:
i) t € PNF and P = False implies ¢ contains a subterm [a]H"*%n with Q[n/a] = False;
ii) t ¢ NF and for all ¢/, ¢ — ¢’ implies ¢’ I+ P
2. t I AA B if and only if mgt I A and mt - B
3. t I A— B ifand only if for all u, if u I+ A, then tu I+ B
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4. t IF AV B if and only if one of the following holds:
i)t =1(u) and u IF Aort=1;(u) and v I+ B;
ii)t=u|qvandul- AV B and v[a :=m] IF AV B for every numeral m;
iii) ¢ ¢ NF is neutral and for all ¢/, ¢t — ¢’ implies ¢’ I+ AV B.

5. t IF Va"A if and only if for every closed term n of £, tn I+ A[n/a]

6. t I Ja"A if and only if one of the following holds:
i) t = (n,u) for some numeral n and u I+ A[n/al;
ii) t =u ||, vand u IF Ja"A and v[a := m] IF JaMA for every numeral m;
iii) ¢ ¢ NF is neutral and for all ¢, ¢ — ¢’ implies ¢ I+ JaVA.

» Remark. A realizer is a quasi-closed term, which is interpreted as a program which has
made hypotheses in order to decide some instances of EM;. Its free EM; hypothesis variables
do not influence the evolution of the term; they represent the assumptions on which the
correctness of the computation depend, and they may raise an exception when the term is
placed in a context of the form u ||, v.

The definition of the realizability relation for the negative connectives A, —,V is standard
and it determines the notion of test, that is, the kind of input that must be provided to the
realizer.

The definition of the realizability relation for the positive connectives V, 3 determines
the notion of answer. We shall see in the crucial Proposition 2 that indeed every realizer
does provide an answer, under the form of prediction (a possibly unsafe answer): a realizer
of AV B normalizes to a term containing a realizer of A or a realizer of B and a realizer of
Jo A normalizes to a term containing a realizer of A[n/a]. However, these realizers are only
quasi-closed, therefore their correctness depends on extra hypotheses and is not guaranteed:
only in the case of closed realizers and of Y{-formulas we will prove a true disjunction
property and a true witness property. The style of the definition of realizability for AV B,
JaM A is inspired from Prawitz strong validity [26] and its main feature is that it depends not
only on the formula, but also on the shape of the term; since it is an inductive definition, a
term is a realizer if one can deduce it by means of a finite number of applications of the three
subclauses 1), ii), iii) of the definition. We observe that the base case i) of the definition is the
one of intuitionistic realizability, even if we are in a classical setting: the deep reason of this
phenomenon is that in the definition of u ||, v I AV B, even if u may contain an hypothesis
term [a]H"*P that becomes free, this term does not “stop” the computation inside u, and u
can nevertheless realize AV B, i.e. reach eventually a form ;(w), after steps of normalization
(applications of iii)) or at the end of whatever paths one has followed by applications of ii).

In the case of an atomic formula Q, the definition is analogous to the one of Interactive
realizability (see [3] for many intuitions): a proof-term should represent a proof made only of
Post-rules (a calculation), possibly with the aid of some hypothesis Ya"P; if the formula Q is
false, than a counterexample to some hypothesis should be contained in the realizer.

» Example 5 (Realizer of the Excluded Middle). Any closed instance
Va'P v 3aiPt

of EM; is provable in HA 4+ EM; by a straightforward application of the EM;-rule. It shall
then be a consequence of the Adequacy Theorem 7 that any instance of EM; is realizable. It
is however instructive to construct and examine right now a realizer. We define:

Ep = to([a]H"P) ||4 u ([a]W?*P)
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This realizer first tries with Vo P, and if some exception is raised, switches to FaPt. In

order to show that
Ep I+ Va'P v 3a'Pt

by definition 4 of realizability, we have to prove:

1. [aH"*P I Va¥P, that is, for all numerals n, [a]H"*Pn IF P[n/a]. P[n/a] is closed because
we assumed Va'P closed. If P[n/a] = True then [a]H"*Pn + True, and True I+ P[n/a]
by definition 4.1.(i), therefore [aJH"*Pn IF P[n/a] by definition 4.1.(ii). If P[n/a] = False
then [a]H"*Pn IF P[n/a] by definition 4.1.(i).

2. for all numerals n, [a]wa‘lpL [a :=n] IF 3a"P+. By definition 2, this amounts to show
that (n,True) I+ 3o P*, when P[n/a] = False, that is True |- P*[n/a], and that
(n, [aJH7**=9S0) |- Ja"P* otherwise, that is [a]H"**=°S0 I+ P*[n/a]. In the first
case we have P*[n/a] = True, in the second one the realizer contains an occurrence of
[a]HY* =050, having (a = 0)[a/S0] = False. In both case we apply definition 4.1.(i).

4 Basic Properties of Realizers

In this section we prove that the set of realizers of a given formula C satisfies the usual
properties for a Girard’s reducibility candidate.

» Definition 6. Extending the approach of [9], we define four properties (CR1), (CR2),
(CR3), (CRA) of realizers t of a formula A plus an inhabitation property (CR5) for A:

(CR1) If t | A, then ¢ € SN.
(CR2) If t IF A and ¢t —* ¢/, then ¢’ |- A.

(CR3) If ¢t ¢ NF is neutral and for every ¢/, ¢ — ¢’ implies t' |- A, then ¢ I+ A.
(CR4) If t=u|q v, u IF A and v[a:=m] IF A for every numeral m, then ¢ I+ A.
(CR5) There is a u such that u IF A.

All properties listed above hold.

» Proposition 1. Every term ¢ has the properties (CR1), (CR2), (CR3), (CR4) and the
inhabitation property (CR5) holds.

As we pointed out in the introduction, we cannot prove that any realizer of a disjunction
or an existential contains a correct witness, but we may prove some weakening of this property:
in some sense, surprisingly, also classical logic enjoys the disjunction and numerical existence
properties. Namely, a realizer of AV B contains a realizer of A or a realizer of B and a
realizer of Ja¥ A contains a realizer of A[n/a]. The point is that n is not necessarily a true
witness, but rather a prediction based on the universal assumptions contained in the realizer.

» Proposition 2 (Weak Disjunction and Numerical Existence Properties).

1. Suppose t IF AV B. Then either ¢t =* EM|ip(u)] and u IF A or t —»* EM[y1(u)] and
u |l B.

2. Suppose t IF JaNA. Then t —* EM|[(n,u)] for some numeral n such that u 1= A[n/a].

Proof.
1. Since t € SN by (CR1), let ¢’ be such that ¢t —* ¢’ € NF. By (CR2), ¢ I+ AV B. If
t' = p(u), we are done. The only possibility left is that ¢’ = v || vy || v2... || vn, With v

not of the form wy || wy. By definition 4.4.(ii) we have v I AV B, and since v is normal
and not of the form wy || wy, by definition 4.4.(i) we have either v = 1(u), with u I+ A,
or v =y (u), with u I+ B.

2. Similar to 1. <
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We observe that in a realizer v ||q, v1 |lay U2« - |la, vn of AV B, the further we move on the
left, the larger is the set of hypotheses becoming free. This is indeed the price payed to
construct a realizer of A or B, which is contained in v: hypotheses have to be made.

The next task is to prove that all introduction and elimination rules of HA + EM; define
a realizer from a list of realizers for all premises. In some case this is true by definition of
realizer, we list below some non-trivial cases we have to prove.

» Proposition 3.

1. If for every t I A, u[t/z] I+ B, then \xu IF A — B.

2. If for every closed term m of £, u[m/a] IF B[m/a], then Aau I+ Vo' B.

3. fulr Ap and v IF Ay, then m;{u,v) IF A;.

4. If wolrg.up, z1.u1] F C and for all numerals n, w;[xo.ug, z1.u1][a := n] IF C, then

(wo ||la w1)[zo-u0, x1.u1] IF C.

Ift IF Ag VvV Ay and for every t; |- A; it holds w;[t;/x;] F C, then t[zg.ug, z1.u1] I+ C.

6. Ift IF 3a"A and for every term n of £ and v IF A[n/a] it holds u[n/a][v/z] IF C, then
t[(a,2).u] IF C.

(&,

5 The Adequacy Theorem

In this section we prove that the realizability semantics we defined in §3 is sound for HA+EM;,
and we derive strong normalization as a corollary. The witness property for X{-formulas,
instead, may be derived directly from the basic properties of realizers (§4).

» Theorem 7 (Adequacy Theorem). Suppose that T' - w : A in the system HA + EMy, with
F=x21:A,...,0,: Ap,ay : 3a]=Py, ... ap Hafnﬂpm,bl Vo Qq, ..., by Va?Ql

and that the free variables of the formulas occurring in I' and A are among ay, . ..,ax. For
all closed terms rq,...,r, of L, if there are terms tq,...,t, such that

fori=1,...,n, t; Ik Aj[r1/as - rp/ag]
then

Wt /a1ty fTn T1/00 TR Qg A1 =0 Q= ) B Ao Tk ]
for every numerals i1, ..., %y,.

» Corollary 8 (Strong Normalization of HA+EM1). All terms of HA + EM; are strongly
normalizing.

Proof. From Theorem 7 and (CR5) we derive that for all proof-terms ¢ : A we have some
substitution ¢ such that ¢ |- A. From (CR1) we conclude that ¢’ is strongly normalizing:
as a corollary, ¢ itself is strongly normalizing. |

Our last task is to prove that all proofs of simply existential statements include a witness.

» Theorem 9 (Normal Form Property and Existential Witness Extraction). Suppose t is closed,
t |- 3P and t —=* t' € NF. Then t' = (n,u) for some numeral n such that P[n/a] = True.

Proof. By proposition 2, there is some numeral n such that ¢’ = EM|[(n,u)] and u I+ P[n/a].
So

t'=(n,u) [lay v1 lay v2- - lla, vm
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Since t' is closed, u is quasi-closed and all its free variables are among ai,as, ..., a,,. We
observe that u must be closed. Otherwise, by definition 4.1.(i) and u I P[n/a] we deduce
that v € PNF, and thus u should contain a subterm [a;]H"*@n; moreover, Q[n/a] = False
otherwise u would not be normal; but then we would have either m # 0 and ¢’ ¢ NF because
t' — vifar :=n] |lay v2 ... ||la,, Um, or m =0 and ' non-closed. Since u is closed, we obtain
t' = (n,u), for otherwise t' — (n,u) ||y v2- - |la,, vm and ¢ ¢ NF. Since u IF P[n/a], by
definition 4.1.(i) it must be P[n/a] = True. <

By the Adequacy Theorem 7 and Theorem 9, whenever HA 4+ EM; proves a closed formula
of the shape VaY...Vo) 36" P, one can extract a realizer ¢ with the property that, for
every numerals nq,...,ng, there is some numeral n such that ¢tn; ...n; —* (n,True) and
P[ni/aq -+ ng/agn/B] = True. For example, from a proof of Vol Va8 38" add(ay, as, 8), one
can extract a term computing the sum of natural numbers, even if the proposition has been
proved classically.

6 Conclusions

From the point of view of classical Curry-Howard correspondence, the main contribution of
this paper is a new decomposition of the EM; reduction rules in terms of delimited exceptions
and permutation rules. The expert may at this point have noticed that some deterministic
restriction of our conversions may be quite directly simulated in Ap-calculus and, less directly,
in Krivine’s A.-calculus. However, as it is quite often the case in proof theory, a variation in
the rules of a system may be crucial to gain better results and understanding. In our case,
with our approach we obtain several new results.
Markov’s Principle and Restricted EM;. The mechanism of delimited exceptions allows to
obtain quite refined results about systems containing Markov’s principle, showing directly
that its addition on top of intuitionistic logic preserves the disjunction and numerical
existence properties [16]. Of course, Markov’s principle is provable in HA + EMy, by the
most restricted version of the EM; rules, where the conclusion of the rule must be a
Yi-formula. We shall show in a future paper that also our system enjoys the disjunction
and numerical existence properties, when it is only allowed to use the restricted excluded
middle sufficient to prove Markov’s principle.
Ezxtension of Prawitz validity to classical proofs. The double negation is in some sense
hardwired in the Ap and in the A, calculi. As the cognoscenti know, this forces Krivine’s
realizability of a formula A for these calculi to have the form =A — L, where —A is the
type of stacks and L is interpreted by 1. Loosely speaking, in this way double negation
elimination becomes a tautology: (—m—A) — —A — L. Our priority is instead given to
EM1, and our reduction rules allow to extend an introductions-based Prawitz validity to
a classical system. Such a result would not have been possible in the context of Ay or A..
Weak disjunction and existence properties for realizability. Thanks to the essentially
positive flavor of our realizability definition for positive connectives, we have shown
(Proposition 2) that our notion of realizability satisfies a remarkable property: a realizer
of a disjunction contains a realizer of one of the disjuncts, and a realizer of an existential
statement contains a realizer of an instance of it. Similar insights seem not possible to be
easily expressed in the framework of Au-calculus or Krivine’s realizability (or at least,
similar properties have never been noticed). It is instead the explanation of classical
programs as making hypotheses, testing them and learning, that has led to our results:
our realizers behave like they do precisely because they want to achieve the disjunction
and numerical existence properties during computations.
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—— Abstract

Given two structures G and H distinguishable in FO* (first-order logic with & variables), let
A¥ (G, H) denote the minimum alternation depth of a FO* formula distinguishing G from H. Let
A¥(n) be the maximum value of A¥(G, H) over n-element structures. We prove the strictness of
the quantifier alternation hierarchy of FO%ina strong quantitative form, namely A?(n) > n/8—2,
which is tight up to a constant factor. For each k > 2, it holds that A*(n) > log;,,n — 2 even
over colored trees, which is also tight up to a constant factor if £k > 3. For k£ > 3 the last lower
bound holds also over uncolored trees, while the alternation hierarchy of FO? collapses even over
all uncolored graphs.

We also show examples of colored graphs G and H on n vertices that can be distinguished
in FO? much more succinctly if the alternation number is increased just by one: while in ¥; it
is possible to distinguish G from H with bounded quantifier depth, in IT; this requires quantifier
depth Q(n?). The quadratic lower bound is best possible here because, if G and H can be
distinguished in FO* with i quantifier alternations, this can be done with quantifier depth n?*=2,
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Keywords and phrases Alternation hierarchy, finite-variable logic

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.61

1 Introduction

Given structures G and H over vocabulary o and a first-order formula ¢ over the same
vocabulary, we say that & distinguishes G from H if ® is true on G but false on H. By
alternation depth of ® we mean the maximum length of a sequence of nested alternating
quantifiers in ®. Obviously, this parameter is bounded from above by the quantifier depth of ®.
We will examine the maximum alternation depth and quantifier depth needed to distinguish
two structures for restrictions of first-order logic and particular classes of structures.

For a fragment L of first-order logic, by Az(G, H) we denote the minimum alternation
depth of a formula ® € £ distinguishing G from H. Similarly, we let D, (G, H) denote the
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minimum quantifier depth of such ®. Obviously, Az (G, H) < D-(G, H). We define the
alternation function Az (n) to be equal to the maximum value of Az (G, H) taken over all
pairs of n-element structures G and H distinguishable in L.

Our interest in this function is motivated by the observation that if the quantifier
alternation hierarchy of £ collapses, then A, (n) = O(1). More specifically, Az (n) < a if the
alternation hierarchy collapses to its a-th level ¥, UIl,. Thus, showing that

lim Az (n) = oo (1)

n—oo
is a way of proving that the hierarchy is strict.

Note that Condition (1) is, in general, formally stronger than a hierarchy result. For
example, while the alternation hierarchy of first-order logic FO is strict over colored directed
trees by Chandra and Harel [3], we have Apo(n) = 1 for any class of structures over a fixed
vocabulary.

An example of this nature also exists when we restrict our logic to two variables: While
the alternation hierarchy of F02[<] is strict over words in an infinite alphabet by Immerman
and Weis [10], we have Apg2(n) = 1 for words in any alphabet.

Moreover, the rate of growth of Ag(n) can be naturally regarded as a quality of the
strictness of the alternation hierarchy. Note that any pair of structures G and H with
Az (G, H) = a can serve as a certificate that the first a levels of the alternation hierarchy of
L are distinct. Indeed, if G is distinguished from H by a formula ® € £ of the minimum
alternation depth a, then the set of structures L = {S: S |= ®} is not definable in £ with
less than a quantifier alternations. Thus, the larger the value of Az (n) is, the more levels of
the alternation hierarchy can be separated by a certificate of size n.

Results that we now know about the function A.z(n) are displayed in Figure 1. The
upper bound Apgk(n) < n*~! 4+ 1 holds true even for the quantifier depth. It follows from
the relationship of the distinguishability in FO* to the (k — 1)-dimensional color refinement
(Weisfeiler-Lehman) procedure discovered in [6, 2] and the standard color stabilization
argument; see [8]. The logarithmic upper bound for trees (Theorem 3.4) holds true also for
the quantifier depth.

Class of structures  Logic Bounds for Az (n)
uncolored trees L =FO? <2 Theorem 3.3
L=FO" k>3 >log,,n—2 Theorem 3.2
< (k+3)log,n Theorem 3.4
colored trees L=FO" k>2 > log; 1 n—2 Theorems 3.1 and 3.2
L=FO* k>3 < (k+3)logyn Theorem 3.4
uncolored graphs £ =F0O? <2 Theorem 3.3
L=FOF k>3 > logy ;m —2 Theorem 3.2
<nF 141 cf. [8]
colored graphs £ =FO? >n/8—2 Theorem 4.1
<n+1 cf. [6]
L=FOF k>3 > logy, 1 mn—2 Theorem 3.2
<nFTl 41 cf. [8]

Figure 1 Results about A, (n).
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Additionally, in Section 5 we show that the ¥; fragment of FO? is not only strictly more
expressive than the ¥; 1 fragment but also more succinct in the following sense: There are
colored graphs G and H on n vertices such that they can be distinguished in ¥;_; NFO? and,
moreover, this is possible with bounded quantifier depth in 3; N FO? while in II; N FO? this
requires quantifier depth Q(n?). The quadratic lower bound is best possible here because, if
G and H can be distinguished in FO* with i quantifier alternations, this can be done with

quantifier depth n?¢=2,

2 Preliminaries

We consider first-order formulas only in the negation normal form (i.e., any negation stands
in front of a relation symbol and otherwise only monotone Boolean connectives are used).
For each ¢ > 1, let 3; (resp. II;) denote the set of (not necessary prenex) formulas where any
sequence of nested quantifiers has at most ¢ — 1 quantifier alternations and begins 