
Computer Science Logic 2013

22nd Annual Conference of the EACSL
CSL’13, September 2–5, 2013, Torino, Italy

Edited by

Simona Ronchi Della Rocca

LIPIcs – Vo l . 23 – CSL’13 www.dagstuh l .de/ l ip i c s

Editor
Simona Ronchi Della Rocca
Dipartimento di Informatica
Università di Torino
ronchi@di.unito.it

ACM Classification 1998
A.0 Conference Proceedings, F Theory of Computation, C.2.4 Distributed Systems,
D.2.4 Software/ Programs Verifications, D.3.1 Formal Definitions and Theory,
D.3.3 Languages Constructs and Features, I.2.4 Knowledge Representations Formalisms and Methods

ISBN 978-3-939897-60-6

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-939897-60-6.

Publication date
September, 2013

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.CSL.2013.i

ISBN 978-3-939897-60-6 ISSN 1868-8969 http://www.dagstuhl.de/lipics

http://www.dagstuhl.de/dagpub/978-3-939897-60-6
http://www.dagstuhl.de/dagpub/978-3-939897-60-6
http://dnb.d-nb.de
http://dx.doi.org/10.4230/LIPIcs.CSL.2013.i
http://www.dagstuhl.de/dagpub/978-3-939897-60-6
http://drops.dagstuhl.de/lipics
http://www.dagstuhl.de/lipics

iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Susanne Albers (Humboldt University Berlin)
Chris Hankin (Imperial College London)
Deepak Kapur (University of New Mexico)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Catuscia Palamidessi (INRIA)
Wolfgang Thomas (RWTH Aachen)
Pascal Weil (Chair, University Bordeaux)
Reinhard Wilhelm (Saarland University, Schloss Dagstuhl)

ISSN 1868-8969

www.dagstuhl.de/lipics

CSL’13

http://drops.dagstuhl.de/lipics
http://www.dagstuhl.de/lipics

Contents

Editor’s Preface . ix

Conference Organization . xi

External Reviewers . xiii

Report on the Ackermann Award 2013

The Ackermann Award 2013
Anuj Dawar, Thomas A. Henzinger, and Damian Niwiński . 1

Abstracts of Invited Talks

Res Publica: The Universal Model of Computation
Nachum Dershowitz . 5

Three lightings of logic
Jean-Yves Girard . 11

From determinism, non-determinism and alternation to recursion schemes for
P, NP and Pspace

Isabel Oitavem . 24

Means and Limits of Decision
Lidia Tendera . 28

Contributed Papers

On closure ordinals for the modal mu-calculus
Bahareh Afshari and Graham E. Leigh . 30

Realizability and Strong Normalization for a Curry-Howard Interpretation of
HA + EM1

Federico Aschieri, Stefano Berardi, and Giovanni Birolo . 45

Bounds for the quantifier depth in finite-variable logics: Alternation hierarchy
Christoph Berkholz, Andreas Krebs, and Oleg Verbitsky . 61

Unambiguity and uniformization problems on infinite trees
Marcin Bilkowski and Michał Skrzypczak . 81

A characterization of the Taylor expansion of λ-terms
Pierre Boudes, Fanny He, and Michele Pagani . 101

Team building in dependence
Julian Bradfield . 116

Saturation-Based Model Checking of Higher-Order Recursion Schemes
Christopher Broadbent and Naoki Kobayashi . 129

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

vi Contents

Descriptive complexity of approximate counting CSPs
Andrei Bulatov, Victor Dalmau, and Marc Thurley . 149

What is Decidable about Partially Observable Markov Decision Processes with
omega-Regular Objectives

Krishnendu Chatterjee, Martin Chmelik, and Mathieu Tracol . 165

Infinite-state games with finitary conditions
Krishnendu Chatterjee and Nathanaël Fijalkow . 181

Annotation-Free Sequent Calculi for Full Intuitionistic Linear Logic
Ranald Clouston, Jeremy Dawson, Rajeev Goré, and Alwen Tiu 197

Deciding the weak definability of Büchi definable tree languages
Thomas Colcombet, Denis Kuperberg, Christof Löding, and Michael Vanden Boom 215

Innocent Game Semantics via Intersection Type Assignment Systems
Pietro Di Gianantonio and Marina Lenisa . 231

Cuts for circular proofs: semantics and cut-elimination
Jérôme Fortier and Luigi Santocanale . 248

Hierarchies in independence logic
Pietro Galliani, Miika Hannula, and Juha Kontinen . 263

Inclusion Logic and Fixed Point Logic
Pietro Galliani and Lauri Hella . 281

Theories for Subexponential-size Bounded-depth Frege Proofs
Kaveh Ghasemloo and Stephen A. Cook . 296

The Structure of Interaction
Stéphane Gimenez and Georg Moser . 316

The Fixed-Parameter Tractability of Model Checking Concurrent Systems
Stefan Göller . 332

One-variable first-order linear temporal logics with counting
Christopher Hampson and Agi Kurucz . 348

On the locality of arb-invariant first-order logic with modulo counting quantifiers
Frederik Harwath and Nicole Schweikardt . 363

When is Metric Temporal Logic Expressively Complete?
Paul Hunter . 380

Proving Strong Normalisation via Non-deterministic Translations into
Klop’s Extended λ-Calculus

Kentaro Kikuchi . 395

Kleene Algebra with Products and Iteration Theories
Dexter Kozen and Konstantinos Mamouras . 415

Internalizing Relational Parametricity in the Extensional Calculus of Constructions
Neelakantan R. Krishnaswami and Derek Dreyer . 432

Modal Logic and Distributed Message Passing Automata
Antti Kuusisto . 452

Contents vii

Global semantic typing for inductive and coinductive computing
Daniel Leivant . 469

Two-Variable Logic on 2-Dimensional Structures
Amaldev Manuel and Thomas Zeume . 484

Categorical Duality Theory: With Applications to Domains, Convexity, and the
Distribution Monad

Yoshihiro Maruyama . 500

Axiomatizing Subtyped Delimited Continuations
Marek Materzok . 521

On dialogue games and coherent strategies
Paul-André Melliès . 540

Elementary Modal Logics over Transitive Structures
Jakub Michaliszyn and Jan Otop . 563

A Fully Abstract Game Semantics for Parallelism with Non-Blocking Synchronization
on Shared Variables

Susumu Nishimura . 578

Extracting Herbrand trees in classical realizability using forcing
Lionel Rieg . 597

The Complexity of Abduction for Equality Constraint Languages
Johannes Schmidt and Michał Wrona . 615

A New Type Assignment for Strongly Normalizable Terms
Rick Statman . 634

Semantics of Intensional Type Theory extended with Decidable Equational Theories
Qian Wang and Bruno Barras . 653

CSL’13

Editor’s Preface

The annual conference of the European Association for Computer Science Logic (EACSL),
CSL’13, was held in Torino, Italy, from September 2 to September 5, 2013. CSL started as a
series of international workshops on Computer Science Logic, and became at its sixth meeting
the Annual Conference of the EACSL. This conference was the 27th workshop and 22th
EACSL conference; it was organized by the Dipartimento di Informatica of the Università di
Torino (UNITO).

The Ackermann Award is the EACSL Outstanding Dissertation Award for Logic in
Computer Science. This year, the jury decided to give the Ackermann Award for 2013
to Matteo Mio. The awards were officially presented at the conference (September 3).
The citation of the awards, an abstract of the thesis, and a biographical sketch of the
recipients written by Anuj Dawar, Tom Henzinger and Damian Niwinski may be found in
the proceedings.

A total of 130 abstracts were registered and 108 of these were followed by full papers
submitted to CSL’13. After a two weeks electronic meeting, the Program Committee selected
37 papers for presentation at the conference and publication in these proceedings. Each
paper was assigned to at least three PC members. The overall quality of the submissions
was really high. The program committee did not fix a strict a priori limit on the number of
accepted papers and wished to accept as many good papers as possible. However, at the end
some of them had to be rejected due to lack of space.

In addition to the contributed talks, CSL’13 had four invited speakers: Nachum Dershovitz
(Tel Aviv University), Jean Yves Girard (CNRS, Marseille), Isabel Oitavem (Universidade
Lisboa), Lidia Tendera (University of Opolskiego). Abstracts of the invited talks are included
in the proceedings. A welcome talk by Piergiorgio Odifreddi has been held on September 1,
but it is not included in these proceedings.

I wish to warmly thank the PC and all external reviewers for their precious help in
reviewing the papers. Our thanks also go to the members of the Organizing Committee, for
their considerable efforts in organizing the conference, to Luca Padovani for his great work
in preparing the proceedings, and to Marc Herbstritt (Dagstuhl Publishing) for his technical
help.

The conference received support from the Dipartimento di Informatica of the Università
di Torino, from the EACSL, from the GNSAGA group of INDAM (Istituto Nazionale di Alta
Matematica “F.Severi”), from the Regione Piemonte, which offered the conference location,
and from the Università di Torino, which offered the location for the welcome talk and the
associated aperitif. I thank these organizations for their generous supports.

September 2013 Simona Ronchi Della Rocca

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

Conference Organization

Program Committee

Zena Ariola University of Oregon
Arnon Avron Tel-Aviv University
Roberto Bagnara University of Parma and BUGSENG srl
Christel Baier Technical University of Dresden
Marc Bezem University of Bergen
Paola Bruscoli University of Bath
Agata Ciabattoni TU Wien
Thierry Coquand Chalmers University
Ugo Dal Lago Università di Bologna
Valeria De Paiva Nuance Communications
Reinhard Kahle Universidade Nova de Lisboa
Stephan Kreutzer Technical University Berlin
Olivier Laurent CNRS - ENS Lyon
Carsten Lutz Universität Bremen
Jean-Yves Marion Université de Lorraine
Damian Niwinski Warsaw University
Frank Pfenning Carnegie Mellon University
Elaine Pimentel Universidade Federal de Minas Gerais
Ruzica Piskac MPI-SWS Saarbrücken
Simona Ronchi Della Rocca (chair) Università di Torino
Jan Rutten CWI Amsterdam
Helmut Schwichtenberg LMU Munich
Phil Scott University of Ottawa
Peter Selinger Dalhousie University
Makoto Tatsuta NII Tokyo
Tachio Terauchi Nagoya University

Organizing Committee

Erika De Benedetti Università di Torino - ENS Lyon
Luca Paolini Università di Torino
Paola Giannini Università del Piemonte Orientale
Simona Ronchi Della Rocca Università di Torino
Mauro Piccolo Università di Bologna
Luca Roversi Università di Torino
Luca Padovani Università di Torino
Angelo Troina Università di Torino

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

External Reviewers

Abel, Andreas
Abramsky, Samson
Accattoli, Beniamino
Aczel, Peter
Adamek, Jiri
Alama, Jesse
Arbiser, Ariel
Asperti, Andrea
Atserias, Albert
Autexier, Serge
Baelde, David
Baillot, Patrick
Balabonski, Thibaut
Bartha, Miklos
Ben-Amram, Amir
Berardi, Stefano
Berger, Ulrich
Bernardy, Jean-Philippe
Berwanger, Dietmar
Bodirsky, Manuel
Bollig, Benedikt
Bonfante, Guillaume
Boudes, Pierre
Bradfield, Julian
Brotherston, James
Buchholz, Wilfried
Buss, Sam
Cardone, Felice
Chaudhuri, Kaustuv
Clairambault, Pierre
Cleaveland, Rance
Cockett, Robin
Colcombet, Thomas
D’Agostino, Giovanna
Dal Palù, Alessandro
Dawar, Anuj
De Freitas, Renata
De Nivelle, Hans
de Vries, Fer-Jan
de’Liguoro, Ugo
Decker, Normann
Demri, Stéphane
Dimitrova, Rayna
Dittmann, Christoph
Dubslaff, Clemens
Durand, Arnaud
Dyer, Martin
Ehlers, Ruediger
Faber, Wolfgang
Facchini, Alessandro
Fearnley, John

Fiore, Marcelo
Gabbrielli, Maurizio
Gaboardi, Marco
Galesi, Nicola
Geuvers, Herman
Ghica, Dan
Gimbert, Hugo
Goncharov, Sergey
Goyet, Alexis
Graham-Lengrand, Stéphane
Grigorieff, Serge
Grädel, Erich
Guerrini, Stefano
Göller, Stefan
Hardin, Thérèse
Harwath, Frederik
Haveraaen, Magne
Heijltjes, Willem
Hirschkoff, Daniel
Hodkinson, Ian
Hofstra, Pieter
Hovland, Dag
Hyvernat, Pierre
Ilik, Danko
Immerman, Neil
Jacobs, Bart
Jahren, Eivind
Jeřábek, Emil
Johannsen, Jan
Jonsson, Peter
Kameyama, Yukiyoshi
Kartzow, Alexander
Kashev, Alexander
Kieronski, Emanuel
Kimura, Daisuke
Klop, Jan Willem
Klüeppelholz, Sascha
Konev, Boris
Kontchakov, Roman
Krivine, Jean-Louis
Krupski, Vladimir
Kullmann, Oliver
Kupferman, Orna
Kuske, Dietrich
Kuznets, Roman
La Torre, Salvatore
Laird, James
Lee, Gyesik
Lenzi, Giacomo
Lescanne, Pierre
Levy, Jordi

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

xiv External Reviewers

Levy, Paul Blain
Löding, Christof
Makowsky, Johann
Mann, Allen
Mastroeni, Isabella
Matthes, Ralph
Mazza, Damiano
McCusker, Guy
McKinley, Richard
Merz, Stephan
Michalewski, Henryk
Mio, Matteo
Mueller, Moritz
Nakazawa, Koji
Nigam, Vivek
Niksic, Filip
Norman, Gethin
Normann, Dag
Olarte, Carlos
Oliva, Paulo
Ong, Luke
Otto, Martin
Paolini, Luca
Parys, Pawel
Pattinson, Dirk
Pedicini, Marco
Petrić, Zoran
Piccolo, Mauro
Piecha, Thomas
Pilipczuk, Michal
Pinna, Giovanni Michele
Polonsky, Andrew
Pottier, François
Pous, Damien
Pédrot, Pierre-Marie
Quaas, Karin
Rabinovich, Alex
Ramanayake, Revantha
Ramirez, Carlos
Ranise, Silvio
Razborov, Alexander
Reus, Bernhard
Reynolds, Mark
Riba, Colin
Rose, Kristoffer
Sacerdoti Coen, Claudio
Salibra, Nino
Salzer, Gernot
Sandu, Gabriel
Saurin, Alexis
Schnoor, Henning
Seiller, Thomas
Setzer, Anton
Shan, Chung-chieh

Shavrukov, Volodya
Siebertz, Sebastian
Simmons, Robert
Skalka, Christian
Spendier, Lara
Spiwack, Arnaud
Straßburger, Lutz
Suter, Philippe
Sznajder, Nathalie
Sørensen, Morten Heine
Tasson, Christine
Tendera, Lidia
Terui, Kazushige
Thapen, Neil
Thomas, Wolfgang
Tiu, Alwen
Tolmach, Andrew
Tsukada, Takeshi
Tzevelekos, Nikos
Urzyczyn, Pawel
Uustalu, Tarmo
Valeriote, Matt
Van Breugel, Franck
Varacca, Daniele
Vaux, Lionel
Veith, Helmut
Vianu, Victor
Vickers, Steve
Viswanathan, Mahesh
Vollmer, Heribert
Walukiewicz, Igor
Wang, Bow-Yaw
Weirich, Stephanie
Weis, Philipp
Weller, Daniel
Westerbaan, Bram
Wies, Thomas
Witkowski, Piotr
Wooldridge, Michael
Zanuttini, Bruno
Zeilberger, Noam
Zhou, Chunlai
Zuliani, Paolo

The Ackermann Award 2013
Anuj Dawar, Thomas A. Henzinger, and Damian Niwiński
Members of EACSL Jury of the Ackermann Award

The ninth Ackermann Award is presented at CSL’13, held in Turin, Italy. This year, as
in the previous three years, the EACSL Ackermann Award is generously sponsored by the
Kurt Gödel Society. Besides providing financial support for the Ackermann Award, the Kurt
Gödel Society has also committed to inviting the recipient of the Award for a special lecture
to be given to the Society in Vienna.

The 2013 Ackermann Award was open to PhD dissertations in topics specified by the
CSL and LICS conferences, which were formally accepted as theses for the award of a PhD
degree at a university or equivalent institution between 1 January 2011 and 31 December
2012. The Jury received fifteen nominations for the Ackermann Award 2013. The candidates
came from a number of different countries across the world. The institutions at which the
nominees obtained their doctorates represent nine countries in Europe, North America, and
the Middle East.

All submissions were of a very high standard and contained remarkable contributions
to their particular fields. The Jury wishes to extend its congratulations to all nominated
candidates for their outstanding work. The Jury encourages them to continue their scientific
careers and hopes to see more of their work in the future.

With such an outstanding field of nominees, the task of the jury was difficult. In the end,
after much discussion, one thesis stood out. The 2013 Ackermann Award winner is:

Matteo Mio from Italy, for his thesis
Game Semantics for Probabilistic Modal µ-Calculi
approved by the University of Edinburgh, UK, in 2012,
supervised by Alex Simpson.

Matteo Mio
Citation. Matteo Mio receives the 2013 Ackermann Award of the European Association of
Computer Science Logic (EACSL) for his thesis

Game Semantics for Probabilistic Modal µ-Calculi.

His thesis builds an extension of the modal µ-calculus suitable for reasoning about non-
deterministic probabilistic systems. It advances previous approaches, and adds a quantitative
dimension to the game semantics of fixed-point logics, via a novel concept of a tree game,
integrating randomness and concurrency.

Background of the Thesis. The modal µ-calculus lies at the very heart of logics and
algorithms for computer-aided verification: it provides a powerful framework for comparing
specification formalisms and devising model-checking algorithms for discrete dynamical
systems, such as hardware and software systems. In order to model uncertainty in the
behavior of such systems, it is natural to extend both state transition models and property
specification languages with probabilistic aspects; the first such probabilistic temporal logic
was introduced by Hansson and Jonsson in the early 1990s, and probabilistic extensions of
the modal µ-calculus followed quickly. The resulting field of “probabilistic verification” has
received much attention in the past two decades, which saw the solution of many probabilistic
model-checking problems, the development of corresponding verification tools, and their
application to case studies ranging from networking to systems biology. Yet the field still lacks

© Anuj Dawar, Thomas A. Henzinger, and Damian Niwiński;
licensed under Creative Commons License CC-BY

Computer Science Logic 2013 (CSL’13). doi: 10.4230/LIPIcs.CSL.2013.i.
Editor: Simona Ronchi Della Rocca; pp. 1–4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4230/LIPIcs.CSL.2013.i
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 The Ackermann Award 2013

a convincing canonical and foundational framework for specifying and comparing probabilistic
properties. The thesis by Mio presents a promising step in this direction.

Mio’s Thesis. In his thesis, Matteo Mio adopts a quantitative approach to temporal
logics over probabilistic transition systems, introduced by Huth and Kwiatkowska, and
independently by Morgan and McIver, where a formula holds in a state with some probability.
An interpretation of a formula is therefore a mapping from the set of states to [0, 1]. In the
probabilistic µ-calculus pLµ introduced by Morgan and McIver, conjunction and disjunction
are interpreted as min and max over reals, respectively. The first contribution of the thesis
extends to all models the equivalence between denotational and game semantics of the logic
pLµ, established previously by Morgan and McIver for finite models. The logic pLµ, however,
is not a completely satisfactory generalization of its classical counterpart to the probabilistic
setting. Indeed, in contrast to the propositional µ-calculus Lµ, which subsumes most of the
temporal logics known in the literature, pLµ fails to contain the probabilistic version of the
most basic temporal logic CTL as its sublogic. A remedy proposed by Mio consists in using
different real extensions of the Boolean operators and and or and combining them in a single
logic. These interpretations have been already considered by Huth and Kwiatkowska as
alternatives: in addition to min and max used in pLµ, also product xẏ (for and), and its
dual co-product

x� y = x+ y − xy

(for or), as well as the strong conjunction and disjunction of the Łukasiewicz logic

x	 y = max(0, x+ y − 1)
x⊕ y = min(1, x+ y).

Mio shows that with all these operators one can express the probabilistic version of CTL,
whereas the first two suffice for the qualitative fragment of this logic. Thus a new powerful
fixed-point logic has emerged, whose expressive power and algorithmic properties are not
yet completely understood. This will likely be the subject of active research in future years.
What Matteo Mio contributes in his thesis is the game semantics for the new logic.

A known feature of µ-calculi is that, in contrast to, e.g., first-order logic or temporal
logic, they did not arise as a formalization of natural language constructs, but rather as
equational systems. As a result, fixed-point formulas are relatively hard to understand by
humans. This difficulty only increases for a probabilistic version of the logic involving three
variants of conjunction and disjunction. In the classical case, a helpful way of understanding
the µ-calculus formulas is via games. More specifically, a formula ϕ of Lµ and a model
M induce a perfect-information two-person game of possibly infinite duration, a so-called
parity game, such that the satisfaction M |= ϕ is equivalent to the existence of a winning
strategy for the proponent in this game. This characterization is also at the basis of many
model-checking algorithms, which thus boil down to solving games. As we have already
mentioned, the thesis settles a similar characterization for the probabilistic µ-calculus pLµ.
However, the main contribution of the thesis consists in establishing the game semantics
for the full probabilistic µ-calculus pLµ�⊕ described above. A priori it is not obvious that
this is possible, as the real functions used in this µ-calculus do not have any apparent game
interpretation. Now Matteo Mio makes an unexpected twist in the very paradigm of game
playing. He admits that a play need not be a linear process, but can instead split in several
threads, which form of a tree. This tree can serve as an arena of a new (inner) game, and the
payoff of the original (outer) game is defined in terms of winning the inner game. Here, the

A. Dawar, T. A. Henzinger, and D. Niwiński 3

outer game is usually stochastic, whereas the inner game is a perfect-information game. This
construction, referred to by the author as a tree game, leads to the concept of meta games,
parametrized by the class of inner games. The game semantics of the extended probabilistic
µ-calculus is provided by meta parity games.

Mio also discovers a number of remarkable properties of tree games, which make this
concept interesting in its own right. In particular, the tree games turn out to comprise (under
suitable encoding) the Blackwell games, which is a class of infinite stochastic games with
imperfect information that is well-studied in game theory. The determinacy of Blackwell
games established by Donald Martin in 1998 is considered to be one of the strongest
determinacy results provable in ZFC. Another feature of tree games is that they can be
derandomized; i.e., the stochastic player Nature can be eliminated, its role taken by the
concurrent branching mechanism.

The game semantics of the µ-calculus pLµ�⊕ relies on the determinacy result for the meta
parity games. This is the most technically difficult part of the thesis. Indeed, the argument
requires some properties of sets in ∆2

1, which do not, in general, hold in ZFC. Therefore, the
author proves his results in ZFC extended by the Martin axiom for the first uncountable
cardinal, MAℵ1 .

Biographical Sketch. Matteo Mio was born on 5 July 1983. He was a student at the
University of Udine in Italy during the period 2002-2007, studying for the Laurea Triennale
and Laurea Specialistica in Computer Science. In 2007 he joined the University of Edinburgh
in Scotland to pursue a PhD degree, which he completed in February 2012. Since then,
he has spent a year as a postdoctoral researcher at the École Polytechnique in Paris and
is currently a postdoctoral researcher at the Centrum Wiskunde & Informatica (CWI) in
Amsterdam, funded by an ERCIM Alain Bensoussan fellowship.

Jury
The Jury for the Ackermann Award 2013 consisted of eight members, two of them ex
officio, namely, the president and the vice-president of EACSL. A member of the LICS
organising committee is also normally a member of the jury. On this occasion, this member
withdrew owing to a conflict of interest and a replacement was named.

The members of the jury were:

Thierry Coquand (Chalmers University of Gothenburg),
Anuj Dawar (University of Cambridge), the president of EACSL,
Thomas A. Henzinger (IST Austria),
Daniel Leivant (Indiana University, Bloomington),
Damian Niwiński (University of Warsaw),
Catuscia Palamidessi (École Polytechnique, Paris),
Simona Ronchi della Rocca (University of Torino), the vice-president of EACSL,
Wolfgang Thomas (RWTH, Aachen).

Previous winners
Previous winners of the Ackermann Award were
2005, Oxford:

Mikołaj Bojańczyk from Poland,

CSL’13

4 The Ackermann Award 2013

Konstantin Korovin from Russia, and
Nathan Segerlind from the USA.

2006, Szeged:
Balder ten Cate from The Netherlands, and
Stefan Milius from Germany.

2007, Lausanne:
Dietmar Berwanger from Germany and Romania,
Stéphane Lengrand from France, and
Ting Zhang from the People’s Republic of China.

2008, Bertinoro:
Krishnendu Chatterjee from India.

2009, Coimbra:
Jakob Nordström from Sweden.

2010, Brno:
No award given.

2011, Bergen:
Benjamin Rossman from USA.

2012, Fontainebleau:
Andrew Polonsky from Ukraine, and
Szymon Toruńczyk from Poland.

Detailed reports on their work appeared in the CSL proceedings and are also available on
the EACSL homepage.

Res Publica: The Universal Model of
Computation
Nachum Dershowitz

School of Computer Science, Tel Aviv University, Ramat Aviv, Israel
nachum.dershowitz@cs.tau.ac.il

Abstract
We proffer a model of computation that encompasses a broad variety of contemporary generic
models, such as cellular automata—including dynamic ones, and abstract state machines—
incorporating, as they do, interaction and parallelism. We ponder what it means for such an
intertwined system to be effective and note that the suggested framework is ideal for represent-
ing continuous-time and asynchronous systems.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Models of computation, cellular automata, abstract state machines,
causal dynamics, interaction

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.5

Category Invited Talk

The nature of the process is truly characterized by Glaucon,
when he describes himself as a companion who is not good for much in an

investigation, but can see what he is shown, and may, perhaps, give the answer
to a question more fluently than another.

—Plato, The Republic

1 Purpose

The goal of this study is to design a model of computation that encompasses various and
sundry generic models, such as dynamic cellular automata [1], as well as interactive and
parallel abstract state machines [2, 3]. Furthermore, the model should be capable of dealing
with continuous-time and asynchronous systems.

We employ a political metaphor.

2 The State Model

Blocs. A bloc is an interconnected collection of states that evolve over time. The number
of states in a bloc may be finite or infinite. States communicate with each other via
(communication) channels. Not only do the internals of states evolve, but their connections
may be reorganized. Furthermore, it may be possible for new states to be created and
connected to existing ones.

Maps. We draw channels as pipes (looking like hoses) emanating from the client state (on
the requesting end) and connected to the serving state (which owns the data that is being
made public). A serving state may allow its clients to update sections of the shared data.

© Nachum Dershowitz;
licensed under Creative Commons License CC-BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca ; pp. 5–10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

nachum.dershowitz@cs.tau.ac.il
http://dx.doi.org/10.4230/LIPIcs.CSL.2013.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

6 Res Publica: The Universal Model of Computation

Arrows along the channel can be used to indicate that data flows along a channel in one
direction only.

States. Each state is a logical structure (consisting of a domain, first-order vocabulary,
and interpretations for the operations in its vocabulary) whose evolution is governed by its
native policy—which may be natural (fixed by laws), algorithmic (dictated by a program),
or arbitrary (controlled by some external agency)—and may react to its environment. As
such, a state contains interpretations for the functions in its vocabulary (constants may be
viewed as scalar functions and relations as truth-valued functions). Only the interpretations
given by a state to its functions may change during evolution; the domain and vocabulary
are fixed throughout.

Domains. All states in a bloc share the same domain, but can have different vocabularies.
Domains may be finite (automata), countably infinite (machines), or uncountable (processes).

Names. States have (unique) identifying names, taken from a namespace that is included
in the domains of states. Pipes in a graphical representation of this model of computation
depict the use of names.

Resources. A subset of each state’s vocabulary are designated public. Their values are
made visible to other states; private functions are not. A resource is a (named) state along
with one of its public functions. One can consider a framework in which public resources
can be accessed but not modified by others; think of them as (read-only) communiqués.
Alternatively, some resources can be designated shared and allow for modification by foreign
states. No bound is placed on the number of channels connected to a state or the number of
shared resources.

Assets and Agents. From the point of view of the client of a resource, a shared resource to
which it is connected is its agent, while a public resource that is not modifiable is an asset of
its.

Vassals. A state can only modify the values of its own functions or of shared resources to
which it has access. To provide differential access to its public data, a state can set up vassals
(or “satellites”), each of which connects to it by a private one-way channel, keeping the name
of the controlling state secret (not publicly available). The vassal state can continuously
retrieve the relevant part of the data from its master state and pass it on to whichever states
are connected to it, the vassal.

Realignments. The topology of a bloc can change due to modifications of (the values of)
its channels. In particular, if the value of a resource is itself a name, then a state can change
an outgoing channel to refer to the state named by the resource.

Locations. Locations in a state are determined by function symbols (from the vocabulary)
and domain values for its arguments (as per the arity of the symbol); it is the contents of
locations that change when an interpretation is updated.

Puppets. A state may also create a puppet, which is a state with the same domain and
vocabulary, running the same policy. Before releasing the puppet to run on its own, the
controlling state may set various values in the puppet; all other locations in the puppet will
retain their default values.

N. Dershowitz 7

3 State Evolution

Time. States evolve over time, where time T, in general, can be any linearly-ordered domain,
with ordering ≤ and minimal element, denoted 0. Let S be the initial intervals [0, t) for all
t ∈ T.

Discrete Time. For discrete systems, time is the natural numbers N, with initial segments
S = [0..n), for n ∈ N.

Continuous Time. For continuous behavior, time T would be the non-negative reals.

Signals. Each resource to which a state is connected provides it with a signal, which is a
function from an interval in S to the domain of the bloc. A signal defined for an interval
[0, t) has length t. Concatenation of a signal of length s with one of length t gives a signal of
length s+ t in the obvious way.

Interaction. Channels provide a means for communication between states, but there is no
special mechanism for explicitly responding to requests. Clearly, the signal emitted by one
resource may depend on signals emitted by others. That is the nature of interaction.

Environments. The ensemble of signals reaching a state constitutes its environment. Let
the possible environments, Σ, be all tuples of signals of the same length. The width of an
environment the number of components in the tuple. The concatenation αβ of environments
α, β ∈ Σ of the same width is the tuple of concatenated signals. Write α ≤ γ if there exists a
β such that αβ = γ.

Evolutions. Policies are described by transition functions τ (perhaps multivalued) that
map states and environments to states. That is, τ : X × Σ ⇒ X. The evolution of a state x
for a given environment γ is the sequence of states obtained in this way: {τα(x)}α≤γ .

Causality. Let τ be a transition function. Transitions must be causal (“retrospective”),
depending only on the past, so that ταβ(x) = τβ(τα(x)) for all states x, where αβ is a
concatenated environment. If τ is multivalued, then τβ should be understood as extended to
sets. Put differently, ταβ = τα ◦ τβ , as relations.

Federations. One can view a subset of the states as one federated state. The transitions of
the federation depend on its external environment, mediated by channels from the outside.

Globe. The global federation consists of the totality of states, or at least those states that
are governed by programs or processes.

4 State Programs

Programs. Algorithmic policies may be described by programs. Programs operating in
discrete time must define the one-step transition relation. This may be done in the basic
language of abstract state machines [6], which includes the following at a minimum:

general assignments: f(s1, . . . , sk) := t (terms si, t in the vocabulary of the state)
conditionals: if c then P (Boolean term c and program P), and
parallel composition: P ‖Q (programs P , Q).

In addition, we want
higher-order assignments: f := g, where f and g are functions (of the state vocabulary)
of the same arity, and
serial composition: P ;Q (programs P , Q).

CSL’13

8 Res Publica: The Universal Model of Computation

Channels. A channel is a name-valued location. A foreign location is indicated by an
expression of the form p.`, where p is a channel and ` is a location. Only local locations and
shared resources may appear on the left of assignments. A foreign resource on the left of an
assignment is an agent; if it only appears on the right side or in conditions, it is an asset
(that is read-only).

Dependence. A new state may be conceived with a
creation assignment: p := new f, g, . . . allow h, k,

The new puppet state, pointed to by p, with have public functions f, g, . . . , h, k, . . . , with
the second half of the list shared freely. When launched, the puppet will run the same
programmed policy as its parent. Assignments may be made to locations in unlaunched
puppets (high-level assignments are of help here); flags can be used to specialize the behavior
of puppets.

Independence. The
launch command: free p

activates the program in the puppet pointed to by p, at which point the parent can no longer
modify it on its own. The puppet is now independent.

Federations. The program of the federation as a whole is just the union of the programs of
its constituent states, with functions disambiguated by the name of the state they reside in.
(Of course, some states might not be governed by programs, but rather provide measurements
of natural phenomena like temperature and barometric pressure.) Whereas an individual
programmed state has a bounded number of channels it owns, a federation can create more
and more new states, each of which is connected to non-federated states.

Flows. For continuous-time systems, the discrete programming language is extended with
continuous (explicit) assignments: f(s1, . . . , sk) :≈ t,

which stay in force until a new assignment is made to the same term by some program.

Jumps. Jumps are effected by conditionals. Additional constraints on algorithmic evolution
make sense in the continuous context. These include that tests should test for conditions
that have non-zero duration and that the dynamics of a system change only finitely often in
a finite period of time.

Flows and Jumps. A jump in the evolution of a continuous-time state is a change in its
dynamics, in contrast with flows, during which the dynamics are fixed. See [5].

Conflicts. Programs as described above can cause conflicts (“clashes”) when different
(discrete or continuous) assignments (in one or more state programs) attempt to assign
different values (at one and the same moment) to a single location. The outcome of such a
conflict is any one of the possibilities. (These nondeterministic semantics are preferable to a
system crash.)

Continuity. Continuous assignments may involve infinitesimal time, dt, provided the
outcome is independent of the choice for dt. This is a continuity requirement of sorts. One
can conceive of implicit specifications of continuous behavior, as well.

5 State Policies

Clocks. To achieve synchronous behavior in a continuous-time environment, there would
need to be a global clock to which other states are connected, directly or indirectly.

N. Dershowitz 9

Archives. When foreign locations provide only read-only resources, write abilities to a public
(but not shared) memory need to be achieved via requests—as in modern hardware. A state
p can allocate resources for requests r, addresses a, and values v, which it makes available
to a memory module. The latter runs a program of the sort if p.r then m(p.a) := p.v, for
some “storage” function m. A similar setup may be used to serve stored values.

Queues. When unboundedly many states use the same controlled archive, some queueing
mechanism needs to be set up, by means of which individual states can place requests while
the archive deals with them one at a time.

Data. If (automata) states share a finite domain (as in cellular models [1]), then unbounded
memory is achievable by means an unbounded number of connected states, in which case an
unbounded number of steps may be needed to access a particular datum.

Interfaces. To model a physical or biological system in which units are each governed by
rules, but adjacent units exchange values or signals, one could represent their interface as a
channel. For example, the temperature of a wall would be a public function over R2 of one
side or the other.

Effectiveness. In general, for a system to be deemed effective, not only should its transitions
and evolutions be describable by a finite text, but also the initial states with the operations
they are endowed with. For a bloc to be effective, it should have finitely many states, each
governed by an effective algorithm [4]. The number of states and their inter-connections may
grow unboundedly during its evolution.

Positions. This model does not directly model positions in space (of physical or biological
systems). Each state might keep track of its own position; neighboring states would need to
be in contact to avoid overlap.

Delays. There could be a time delay between a request for a value from a serving state and
its receipt by the client. This would hold up execution of that part of the client process that
awaits the requested value.

6 Conclusion

We believe that most of the usual and unusual models of computation are instances of this
paradigm.

References

1 Pablo Arrighi and Gilles Dowek, July 2012, “Causal graph dynamics”, Proceedings of the
39th International Colloquium on Automata, Languages, and Programming (ICALP 2012),
Warwick, UK, Lecture Notes in Computer Science, vol. 7392, Part II, pp. 54–66. Available
at http://arxiv.org/pdf/1202.1098v3 (viewed July 10, 2013).

2 Andreas Blass and Yuri Gurevich, 2006, “Ordinary interactive small-step algorithms,
Part I”. ACM Transactions on Computational Logic, 7(2), pp. 363–419. Available at
http://tocl.acm.org/accepted/blass04.ps (viewed July 10, 2013).

3 Andreas Blass and Yuri Gurevich, June 2008, “Abstract state machines capture parallel
algorithms: Correction and extension”, ACM Transactions on Computation Logic, 9(3),
Article 19. Available at http://research.microsoft.com/en-us/um/people/gurevich/
Opera/157-2.pdf (viewed July 10, 2013).

CSL’13

http://arxiv.org/pdf/1202.1098v3
http://tocl.acm.org/accepted/blass04.ps
http://research.microsoft.com/en-us/um/people/gurevich/Opera/157-2.pdf
http://research.microsoft.com/en-us/um/people/gurevich/Opera/157-2.pdf

10 Res Publica: The Universal Model of Computation

4 Udi Boker and Nachum Dershowitz, August 2010, “Three paths to effectiveness”, in
Andreas Blass, Nachum Dershowitz, and Wolfgang Reisig, editors, Fields of Logic and
Computation: Essays Dedicated to Yuri Gurevich on the Occasion of His 70th Birthday,
volume 6300 of Lecture Notes in Computer Science, pp. 36–47, Springer, Berlin. Available at
http://nachum.org/papers/ThreePathsToEffectiveness.pdf (viewed July 10, 2013).

5 Olivier Bournez, Nachum Dershowitz, and Evgenia Falkovich, May 2012, “Towards an
axiomatization of simple analog algorithms”, in Manindra Agrawal, S. Barry Cooper, and
Angsheng Li, editors, Proceedings of the 9th Annual Conference on Theory and Applications
of Models of Computation (TAMC 2012, Beijing, China), volume 7287 of Lecture Notes
in Computer Science, pp. 525–536. Springer, Berlin. Available at http://nachum.org/
papers/SimpleAnalog.pdf (viewed July 11, 2012).

6 Yuri Gurevich, 1995, “Evolving algebras 1993: Lipari guide”, in Egon Börger, editor,
Specification and Validation Methods, pp. 9–36. Oxford University Press. Available at
http://research.microsoft.com/~gurevich/opera/103.pdf (viewed July 10, 2012).

http://nachum.org/papers/ThreePathsToEffectiveness.pdf
http://nachum.org/papers/SimpleAnalog.pdf
http://nachum.org/papers/SimpleAnalog.pdf
http://research.microsoft.com/~gurevich/opera/103.pdf

Three lightings of logic
Jean-Yves Girard

CNRS, Institut de Mathématiques de Luminy
UMR 6206, 163 Avenue de Luminy, Case 907, 13288 Marseille Cedex 09, France
girard@iml.univ-mrs.fr

Abstract
Whether we deal with foundations or computation, logic relates questions and answers, typically
formulas and proofs: a very entangled relation due to the abuse of presuppositions.

In order to analyse syntax, we should step out from language, which is quite impossible.
However, it is enough to step out from meaning: this is why our first lighting of logic is that
of answers: it is possible to deal with them as meaningless artifacts assuming two basic states,
implicit and explicit. The process of explicitation (a.k.a. normalisation, execution), which aims
at making explicit what is only implicit, is fundamentally hazardous.

The second light is that of questions whose choice involves a formatting ensuring the conver-
gence of explicitation, i.e., the existence of “normal forms”. This formatting can be seen as the
emergence of meaning. It is indeed a necessary nuisance; either too laxist or too coercitive, there
is no just format. Logic should avoid the pitfall of Prussian, axiomatic, formats by trying to
understand which deontic dialogue is hidden behind logical restrictions.

The third lighting, certainty deals with the adequation between answers and questions: how
do we know that an answer actually matches a question? Apodictic certainty — beyond a
reasonable doubt — is out of reach: we can only hope for epidictic, i.e., limited, reasonable,
certainty. Under the second light (questions), we see that the format is made of two opposite
parts, namely rights and duties, and that logical deduction relies on a strict balance between
these two opposite terms, expressed by the identity group “A is A and conversely”. The issue of
certainty thus becomes the interrogation: “Can we afford the rights of our duties?”

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Proof theory

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.11

Category Invited Talk

1 First light: what is an answer?

1.1 Implicit vs. explicit
A simple-minded approach to answers would reduce them to something completely explicit,
e.g., yes or ||| (the number 3 in Cro-Magnon numeration). However, implicit answers, those
given by programs or proofs, are more interesting, since portable. Indeed, the two sorts
of answers, implicit and explicit are linked by explicitation: the execution of a program
(cut-elimination, normalisation) reduces the implicit to the explicit. To sum up, an implicit
answer is a program before execution.

Explicit answers form the solid ground for logic, the ultimate reality, which is made
possible by the fact that they convey strictly no meaning. But how do we reckon that
something is explicit? Is explicit what belongs in the realm of constatation, i.e., what
is analytic. On a traditional typing machine, all keys are constative: they can but add

© Jean-Yves Girard;
licensed under Creative Commons License CC-BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca; pp. 11–23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

12 Three lightings of logic

new text, typically the “

�

” key which opens a new line. On a computer, keys can also
assume a performative function: “

�

” launches programs. The two aspects, constative and
performative, are mingled to the point that one easily launches a program by accident.
In logic, the constative and performative aspects of implication were mingled in XIXth

century syntax (Axiom + Rules): Modus Ponens. The XXth century reading (sequent
calculus) distinguishes carefully between implication ⇒ which is handled by the constative
left introduction and entailment ` which is handled by the performative cut rule.

The distinction between implicit and explicit is purely subjective: we decide that an
object is finished, i.e., explicit enough for our taste. A cheque is the typical implicit answer:
we must cash it, then spend the money, both operations being hazardous. But we can decide
— say, it is a cheque of Paul Erdös — to pin it above the desk. In the same way, a program
need not be executed: it can be frozen, or opened with a developer. In logic, a cut on A can
be replaced with an left introduction of A⇒ A ` (or ` A⊗∼A)1. This shows that there is
no real distinction between, say, programs and data: they all belong to the same analytic
space in which explicitation takes place; indeed, the program of explicitation itself must be
part of the space.

Although negated by totalitarian ideologies, starting with Bentham’s panoptic prototype
of Big Brother, the distinction between implicit and explicit is basic and incompressible. The
first evidence is to be found in incompleteness: there are questions without answers, typically
the Gödel sentence. This evidence is however bridled by the iron discipline of formal systems;
we should concentrate on all means of producing explicit answers, including those proscribed
by logic. In this lax context, Turing’s undecidability yields a partial recursive function
that cannot be extended into a total one, thus forbidding us to foretell the convergence of
execution, i.e., explicitation. By the way, computational complexity deals with a less brutal
approach to the distinction between implicit and explicit: some answers are more implicit
(harder to compute) than others.

Almost anything can serve as analytic space, for instance the binary integers used in
machine code. However, in view of the necessary relation to be made with questions, some
choices are more interesting than others. In particular, explicitation should be as natural as
possible, so that implicit answers look as much as possible as as their own execution — and
not as data to which an external program is applied.

A good candidate for an analytic space remains pure λ-calculus; among its good properties,
Church-Rosser which states that the implicit contents, if any, is unique. The rewriting style
(basically one equation), although external, remains very natural. The limitations are those
of the functional paradigm with no direct access to other types of data, e.g., pairs. Also, the
treatment of bound variables (α-conversion, substitution) is particularily ad hoc. λ-calculus
is indeed already too formated: the only abnormality is that of a never-ending normalisation.
The absence of deadlocks in pure λ-calculus is both a measure of its intrinsic qualities and of
its limitations as an analytic space: deadlocks do exist!

Experience, that of linear logic and parallel computation, compels us to find a more
primitive notion, free from functionality, but still deterministic. The various versions of
Geometry of Interaction eventually stabilised into an analytic space based upon Herbrand’s
technique of unification, which is more primitive, less ad hoc, than rewriting: execution can
be seen as a sort of physical plugging. This was, by the way, the strongest point in the late
Logic Programming.

1 This remark can, surprinsingly, be traced back to Lewis Carroll who made a mess of it.

J.-Y. Girard 13

1.2 Stars and galaxies

1.2.1 Unification

Consider a term language with infinitely many functional symbols of each arity. An equation
t = u between terms can be solved by means of substitutions: t, u are unifiable when tθ = uθ

for some unifier θ. The point is that substitutions do compose, hence:

I Theorem 1 (Herbrand, 1930). If t, u are unifiable, there is a mother θ0 of all unifiers for
t, u: any unifier θ for t, u can be uniquely written θ0θ

′.

1.2.2 Flows

A flow is an expression t↼ t′ where t, t′ are terms with quite the same variables. These
common variables are internal to the flow, in other terms bound. In particular, when combining
two flows, one must always rename the variables so as to make them distinct. Composition
between t↼ t′ and u↼u′ is obtained by matching t′ and u: matching is the particular
case of unification where the terms have no variable in common, what is the case when the
variables of t′, u have been made distinct. If θ is the principal unifier, we define composition
by (t↼ t′)(u↼u′) := tθ↼u′θ. Composition is thus a partial operation; if we formally add
an empty flow 0 to take care of a possible failure of the matching: (t↼ t′)(u↼u′) := 0,
composition becomes associative, with neutral I := x↼x.

If T is the set of closed terms, then any functional term t induces a subset [t] ⊂ T ,
namely the set of all closed t0 which unify with t; t, t′ are disjoint when [t] ∩ [t′] = ∅. Any
flow t↼ t′ induces a partial bijection [t↼ t′] between the subsets [t′] and [t] of T . Let us
fix a copnstant c; if t0 is closed, then [t↼ t′]t0 is defined when (t↼ t′)(t0 ↼c) 6= 0, in case
it writes [t↼ t′]t0 ↼c. The condition “quite the same variables” ensures that [t↼ t′]t0 is
closed and that [t↼ t′] is injective. Any flow u↼u is idempotent; its associated function is
the identity of the subset [u] ⊂ T .

1.2.3 The convolution algebra

One can introduce the convolution algebra of the monoid, i.e., the set of finite formal sums∑
λiφi where the φi are flows and the λi are complex coefficients, the improper flow 0 being

identified with the empty sum. This algebra acts on the Hilbert space `2(T) by means
of (t↼ t′)(

∑
i λiti) :=

∑
i λi[t↼ t′]ti. The involution (

∑
λi(ti↼t′i))∗ :=

∑
λ̄i(t′i↼ti) is

implemented by the usual adjunction. The idempotents t↼ t correspond to the projections
on the subspaces `2([t]) and t↼ t′ induces a partial isometry of source `2([t′]) and target
`2([t]). The early versions of GoI did associate to proofs finite sums of flows. These sums
were partial isometries; u =

∑
ti↼t′i is a partial isometry (i.e., uu∗u = u) if the targets ti

are pairwise disjoint, not unifiable, idem for the t′i. The operators of GoI are indeed partial
symmetries (u = u3 = u∗): typically the identity axioms (t↼ t′) + (t′↼t) (t, t′ disjoint).

The unification algebra internalises the major algebraic constructions.

Matrixes

If I is a finite set of closed terms, the I × I matrix (λij) can be naturally represented by∑
ij λij (i↼ j).

CSL’13

14 Three lightings of logic

Direct sums

The flows P := p(x)↼x,Q := q(x)↼x induce an isometric embedding of `2(T)⊕ `2(T) in
`2(T): x⊕y 7→ [P]x+ [Q]y. The isometricity comes from P ∗P = Q∗Q = I, P ∗Q = Q∗P = 0.
The embedding is not surjective: this would require PP ∗ +QQ∗ = I, in other terms that
every term matches either p(x) or q(x).

P and Q have been heavily used in the early GoI, in particular for multiplicatives —
and, modulo tensorisation with I, for contraction. They enable one to change the size
of matrices in a flexible way. Usually, the only possibility is to divide the size, typically
Mmn(C) 'Mm(Mn(C)) replaces a mn×mn matrix with a m×m matrix whose entries
are n× n matrices, i.e., blocks of size n× n. Thanks to P,Q, one can replace a 3× 3 matrix
with a 2× 2 one (with four “blocks” of sizes 2× 2, 2× 1, 1× 2, 1× 1).

Tensor products

The tensor product of two flows makes use of a binary function “·” and is defined by
(t↼ t′)⊗ (u↼u′) := t · u ↼ t′ · u′; the variables of the two flows must first be made distinct.
This corresponds to an internalisation of the tensor product, which plays an essential role in
the handling of exponentials, i.e., of repetition. The flow T := (x·y)·z ↼ x·(y·z) compensates
the want of associativity of the internal tensor: T ∗(((t↼ t′) ⊗ (u↼u′)) ⊗ (v↼v′))T =
(t↼ t′)⊗ ((u↼u′)⊗ (v↼v′)).

Crown products

In the same style as T , the flow
σ := x1 · (x2 · (. . . (xn−1 · xn) . . .)) ↼ xσ(1) · (xσ(2) · (. . . (xσ(n−1) · xσ(n)) . . .)) induces a
permutation of the constituents af a n-ary tensor.

1.3 Stars and galaxies
1.3.1 Stars
A star J t1, . . . , tn+1 K consists in n + 1 terms; these terms, the rays of the star, must be
pairwise disjoint, i.e., not matchable, which is strictly stronger than not unifiable.

Stars generalise the unification algebra; thus, the axiom link (t↼ t′) + (t′↼t) becomes
J t, t′ K. However, since our objects are no longer operators, there are some difficulties in
defining the analogue of composition. For this we shall use coloured stars. We select pairs
of complementary colours, e.g., (green, magenta) together with the neutral colour black;
a coloured star is a star in which each ray has been given a colour: typically, J t, u, v, w K.
Disjointness is required only for rays of the same colour, which comes from the fact that
coloured stars are not yet another notion, just a shorthand: indeed, consider three unary
functions g,m, b and replace J t, u, v, w K with J g(t), g(u), b(v),m(w) K. t is thus a priori
disjoint from u.

1.3.2 Galaxies
A galaxy is a finite set of coloured stars. Cut-free proofs will be represented by black galaxies,
whereas the cut-rule will make use of complementary colours. The implicit thus lies in the
use of colours, this explains why it is relative and contextual: by making everything black,
a galaxy becomes explicit at no cost. Colours thus indicate that we consider the data as
unfinished, thus initiating a normalisation process.

J.-Y. Girard 15

In order to normalise a galaxy, we first form its diagrams. By this I mean any tree (in
the topological acception) obtained by attaching N + 1 stars of the galaxy by means of N
vertices. By a vertex, I mean a pair t = u of rays of complementary colours. Since the same
star may be used several times in a diagram, a galaxy is likely to generate infinitely many
diagrams.

The unification of a diagram consists in unifying its vertices, so that
tθ = uθ becomes an actual equality. Most unifications will fail; we are basically concerned
with correct diagrams, those for which unification succeeds.

1.3.3 Normalisation

In usual GoI, the cut-rule is handled by a partial symmetry σ; the normal form of the proof
(u, σ) is given by:

(I − σ2)u(I − σu)−1(I − σ2)

Here σ corresponds to the swapping of complementary colours: σ exchanges green and
magenta and “kills” black. Under reasonable hypotheses (nilpotency), u(I − σu)−1 can be
written as a finite sum u+ uσu+ uσuσu+ . . ., which corresponds to the plugging of u with
itself through complementary colours. The two I − σ2 correspond to the restriction to the
“black stars”.

Strong normalisation) generalise the nilpotency of σu:
1. There are only finitely many correct diagrams. In other terms, for an appropriate N , all

diagrams of size N + 1 fail; this finite N accounts for strong normalisation.
2. No correct diagram is closed, i.e., without a free ray. The condition thus excludes the

closed diagram {J t K, J t K} (vertex t = t).
3. In a correct diagram, identify complementary colours, e.g., replace magenta with green;

then the free rays are disjoint. The simplest diagram thus excluded consists of a single
binary star: {J t, u K}, with t, u not disjoint.

The normal form is obtained by collecting the correct diagrams whose free rays are black.
And to replace them with their residual star, i.e., the star whose rays are their free rays.

A galaxy G is isometric when rays of the same colour occurring in G are pairwise disjoint.
The normal form of an isometric galaxy is easily shown to be isometric.

1.3.4 Church-Rosser

In the presence of two pairs of complementary colours, there are three possible ways of
normalising:
1. Identify green = blue, magenta = yellow and normalise.
2. Normalise the cuts blue/yellow, then the residual cuts green/magenta.
3. Normalise the cuts green/magenta, then the residual cuts blue/yellow.

The Church-Rosser property equates (in any possible sense) these three possibilities. This
property will later be used to show the compositionality of cut, hence to develop various
functional, i.e., category-theoretic, interpretations. Hence one pair of colours is enough, at
least for theoretical considerations.

CSL’13

16 Three lightings of logic

2 Second light: what is a question?

2.1 Formatted vs. informal

An implicit answer, a program, may have no explicit contents: normalisation may diverge.
Fixing that point amounts at formatting; the emergence of meaning wholly lies in this
formatting. A synonym for meaning is question: the meaning of the answer is the question
it is supposed to solve. Now, there is a great divide between the formatted, typed, logical
approach and the unformal, untyped, “free” approach.

The lesson of incompleteness is that the format is a necessary nuisance, think of Family,
Justice, Police, etc. Indeed, the informal approach to logic is inconsistant — if we prefer, the
untyped approach to computation does not normalise: this account for the “necessary”. On
the other hand, a typing discipline always misses something. This remark is already present
in Richard’s Paradox (1905): “The smallest integer not definable in less than twenty words”.
The informal acception of “definable” makes it inconsistent, while a formated version — say
definable — avoids the pitfall while producing a definition out of the scope of “definable”.

The same totalitarian ideologies that claim that everything is explicit, transparent, would
consistently vouch for informality: witness the various qualunquists (libertarians, populists,
etc.) which pretend to approach politics without politicians, taxes, laws. When in charge,
these people turn out to be worse than the politicians they were opposing to. This is due
the fact that one cannot escape formatting: and then, better an explicit than a hidden one!

The real question is thus not that of the necessity of a format, but that of its nature, its
emergence. XIXth logic solved the problem by means of axiomatics, i.e., principles that one
cannot discuss. There must be something of the like, but we should at least understand what
we accept: axiomatics is too Prussian to be honest2. In logic, the format is usually invisible;
besides the choice of a language to avoid inconsistencies, it also occurs in the form preserved
by category-theoretic morphisms or in the rule of game-theoretic semantics. Can we discuss
these choices, or better: is this discussion part of logic?

The situation of an opaque deontic, normative3, kernel did not change till the invention
of linear logic in the mid eighties. Indeed, the existing formats, especially natural deduction,
were satisfactory enough to make us forget their axiomatic, Prussian, character. Linear logic,
with the introduction of classical features — basically an involutive negation — within the
constructive universe, posed a novel question, namely the handling of several simultaneous
conclusions, a problem hitherto avoided by the tree-like format which pinpoints both the
conclusion and the last rule applied. In proof-nets, the last rule is implicit to the point that
it is not even uniquely defined. What makes a proof-net correct, i.e., what compels it to have
a last rule and, this recursively, is a purely deontic question.

The question was not quite novel, since Herbrand’s theorem solved it in the limited
context of quantification. In a prenex form, the existentials should be given as functions
yi = t[x1, . . . , xn] of the universals. Assuming we forgot the step-by-step construction of t,
Herbrand replaces x with f(y) in the case of a formula ∃y∀x; if x actually occurs in t, then
we get a cycle (failed unification) y = t[f(y)].

The sort of dialogue at work in Herbrand’s theorem — more generally in proof-nets — is
not basically designed to tell truth from falsity, but what is permitted from what is illegal. This
dialogue is deontic (instead of alethic): it deals with permissions, obligations, and not with

2 In modern Greek, axiomatikos means “officer”!
3 This adjective may convey a derogatory approach to the format; “deontic” is more neutral.

J.-Y. Girard 17

truth. A typical deontic dialogue is “Objection your Honor! Objection sustained/overruled”.
The dialogue has nothing to do with the truth/falsity of the statement under discussion: it
concerns its relevance to the case. One perfectly understands that not every question should
be taken into consideration; but also that this necessary deontic dialogue may be a way to
sweep things under the carpet.

Popper’s notion of falsifiablity is a limited form of deontic dialogue accounting for purely
universal, Π0

1, formulas of arithmetic, e.g., ∀x (x + 1)2 = x2 + 2x + 1. Falsifiability does
not hold beyond Π0

1 complexity, for the simple reason that falsifiability is itself Π0
1: “for all

tests. . . ”. Beyond the Π0
1 case, the deontic dialogues becomes completely symmetric: if an

objection is overruled, something goes wrong, but we cannot foretell which side “is right”:
when the judge says “sustained”, he may be dismissed!

2.2 Vehicles and gabarits
We restrict our presentation to the familiar multiplicative case of linear logic.

2.2.1 Proof-nets
We should get rid of syntactical decorations so as to describe multiplicative proof-nets in
a purely locative way: in order to represent a proof of `A,B,C unary functions pA, pB , pC
will be used to distinguish between the various locations available in the sequent; I could as
well use p1, p2, p3, but this would compel me into a systematic reindexing.

2.2.2 Vehicles: cut-free case
Let us choose, once for all, distinct constants l, r and a binary function letter “·”. To each
proof π we associate its vehicle, i.e., a galaxy π•; this galaxy is black in the cut-free case.

Identity axiom: if π is the axiom `A,∼A, then π• := {J pA(x), p∼A(x) K}.
`-rule: if the proof π of `Γ, A ` B has been obtained from a proof ν of `Γ, A,B, then

π• := ν• in which pA and pB are now defined by
pA(x) := pA⊗B(l · x), pB(x) := pA⊗B(r · x).

⊗-rule: if the proof π of `Γ, A ⊗ B has been obtained from proofs ν of `Γ, A and µ of
`B,∆, then π• := ν• ∪ µ•, with pA, pB defined by
pA(x) := pA`B(l · x), pB(x) := pA`B(r · x).

The vehicle is thus a galaxy of axiom-links, seen as stars. The rules `,⊗ have been
used to relocate these links. For instance, the axiom J pA(x), p∼A(x) K may relocate as
J pA`(∼A⊗B)(l · x), pA`(∼A⊗B)(r · (l · x)) K.

2.2.3 Vehicles: general case
In presence of cuts, coloured functions will be needed. We shall use a pair of complementary
colours, typically pB , p∼B and pB , p∼B. The interpretation π• now looks as a union V ∪ C:
V (in black and green) is the vehicle proper, C — its feedback — is easily identified as the
magenta part of the vehicle.
Cut rule: if the proof π of `Γ has been obtained from proofs ν of `Γ, A and µ of `∼A,∆,

then π• := ν• ∪ µ• ∪ {J pA(x), p∼A(x) K}; furthermore, in ν• ∪ µ•, pA, p∼A have been
painted green: pA(t) 7→ pA(t), p∼A(t) 7→ p∼A(t).

CSL’13

18 Three lightings of logic

2.2.4 Gabarits (I)
We must now make sense of the lower part of the proof-net, the one dealing with the `,⊗
and Cut links. The main problem is to give a precise definition of the switching discipline
leading to the correctness condition. Indeed, to each switch, we shall associate an ordeal, i.e.,
a coloured galaxy. This finite set of ordeals is called the gabarit.

We already defined the unary functions pA(x) for each formula and subformula of the
proof-net. We now introduce qA(x) := pA(g · x), where g is yet another constant. The
replacement of pA with qA in the context of gabarits is due to the fact that pA⊗B(x) is not
disjoint from pA(x) := pA⊗B(l · x), whereas qA⊗B(x) and qA(x) are disjoint: the qA provide
disjoint locations for the formulas occurring in the lower part of the proof-net.

Given a proof-net of conclusions Γ, a switch L/R of its `-links induces an ordeal, namely
the coloured galaxy made of the following stars:
X, ∼X: J pA(x), qA(x) K when A is a literal X,Y,∼X,∼Y,
⊗: J qA⊗B(x), qA(x), qB(x) K.
`L: J qA`B(x), qA(x) K and J qB(x) K. In terms of graphs, J qB(x) K “terminates” all J qB(t) K.
`R: J qA`B(x), qB(x) K and J qA(x) K which “terminates” all J qA(t) K.
Cut: J qA(x), q∼A(x) K.
Conclusion: J qA(x), pA(x) K when A ∈ Γ, i.e., is a conclusion.
An ordeal thus normalises into a galaxy in black (conclusions) and blue (literals).

2.2.5 Correctness, a.k.a. completeness
Let V be V painted yellow. The correctness criterion thus writes as:

For any ordeal S, the galaxy V ∪ S strongly normalises into {J pA(x) ; A ∈ Γ K}.

This condition is obviously necessary; its sufficiency is the most elaborate form of completeness
that one can imagine, since it relates the symbolic testing by means of the ordeals with the
proofs in a logical system.

The main technical problem with completeness is that usual proof-nets are, so to speak,
“preconstrained”: the identity links relate complementary formulas A,∼A, whereas nothing
of the kind has been so far required. In other terms, our treatment of literals is completely
indistinct: X,∼X,Y are the same, up to their locations. How can we force an axiom link to
relate X with a ∼X (and not a Y , nay another X)?

Here, we must remember that predicate or propositional calculi are convenient structures,
but that part of them belongs in the worst kind of a priori. Typically, the so-called
propositional “constants” X,Y and their negations: we are embarrassed since they mean
nothing by themselves. The real logic is a second order system — a sort of system F — in
which there is no propositional constants, but in which formulas are closed. What we call
first order logic indeed corresponds to those formulas ∀X1 . . . ∀XnA, with A quantifier-free:
the behaviour of such formulas is extremely simple, especially in view of completeness issues,
e.g., the subformula property. The restriction to those formulas renders the universal prefix
compulsory —hence the possibility to omit it. To make the long story short, when dealing
with a proof-net, we must take into account the implicit second order quantification ∀X on
all propositional “constants”. What follows is a glimpse of the future treatment of second
order logic; indeed the easy case of the quantifier ∀X.

Every propositional “constant” must be switched; each switch has three positions, so
that n propositional constants induce 3n possibilities. The switching corresponds to the
choice Θ of a substitution Xi ci for each of the “constants” Xi, the ci ranging over the

J.-Y. Girard 19

three possibilities a,a ⊗ b,a ` b, where a,b are propositional letters. Now, to switch our
net consists in:
1. First switch the constants, thus yielding a substitution Θ.
2. Then switch Θ(Γ) as explained above.
This should be enough to ensure that literals are linked according to the book. As to general
axiom links (not between literals) an argument based upon ηxpansion should exclude “illegal”
links.

2.2.6 Gabarits (II): virtual switches
Let us turn our attention towards an exotic multiplicative, namely the “linear affine” im-
plication A _ B. “_” yields a purely multiplicative second-order reduction of additives:
A⊕B := ∀X((A(X) _ ((B(X) _ X))4.

Indeed, A _ B is an intuitionistic implication without reuse of premises; this is why
it interests us. The associated disjunction A n B := ∼A _ B is problematic in terms of
gabarits. Indeed, the n-link:

[A] B

AnB

is problematic: the premise A (written [A] for this reason5) might be absent, hence the
switch “L” is hazardous: it may destroy everything in case of absence. On the other hand,
we cannot content ourselves with the sole “R”, hence the idea of a virtual switch, i.e., a sort
of compensation for the missing switch.

Virtual switches are inspired from the proof by Mogbil and de Naurois of the NL
complexity of multiplicative proof-nets; improving the idea of contractibility introduced by
Danos, the authors show that it is enough to switch ` on one side, e.g., always “R”; an
additional order condition (3 below) compensates for the missing switches. The point is that
this alternative approach can be used in case we cannot switch the ` on “L”, typically if the
actual presence of the premise A is dubious. This is the case with the marginal connective
n, a multiplicative which actually needs virtual switches.

A virtual switch is a star J t;u1, . . . , un K, with a distinguished ray, its root t. u1, . . . , un
must be pairwise disjoint; each variable occurring in t must still occur in the ui.

The notion of ordeal is modified as follows, so as to include an auxiliary galaxy of virtual
switches. Typically, in the case of An B, besides J qAnB(x), qB(x) K and J qA(x) K, we add
the auxiliary stars J qAnB(x); qA(x) K.

Consider the unique correct diagram in V ∪ S, and let us unify it, so as to get a galaxy G.
For each virtual switch J t;u1, . . . , un K, consider all rays obtained by unification from some
ui; since uiθ = uiθ

′ implies tθ = tθ′, each such ray “comes from” a specific instanciation of t,
its “root”. We require that:
1. If uiθ ∈ G, then its root tθ occurs in G.
2. uiθ is “upwards connected” to tθ, i.e., the connection does not transit through the vertex

t1θ1 = tθ.

4 Instead of ∀X((A(X) ⇒ ((B (X) ⇒ X)).
5 The graphism is reminiscent of the discharged hypotheses of natural deduction.

CSL’13

20 Three lightings of logic

For each tθ in G, we can consider the set Gtθ of all rays standing in between tθ and some
uiθ
′ with root tθ (i.e., s.t. tθ = tθ′) including extremities; Gtθ is this a sort of tree, rooted in

tθ. We define t1θ1 �1 t2θ2 by t1θ1 ∈ Gt2θ2 . If � is the reflexive and transitive closure of �1,
we require that:
3. � is an order relation.

These conditions (especially 3) are clearly co-NL, hence their complexity-theoretic import.
To understand how virtual switches work, let us assume that the ordeal S ∈ G switches the
` link with conclusion A` B on “R” and that its virtual part contains J qA`B(x), qA(x) K;
we can get rid of this virtual switch by adding to G the ordeal S ′, namely the twin of S with
the same ` switched on “L”: conditions 1 – 3 precisely allow for this replacement. We can
thus eliminate the virtual switch J qA`B(x), qA(x) K from G at the price of a duplication of
the number of its ordeals.

Virtual switches are well-adapted to weakening, since they cope with the possible uncer-
tainty as to the presence of a specific premise. Moreover, since ui may contain variables not
in t, there is no limitation as to the number of uiθ′ rooted in a given tθ: the extra variables
thus account for contraction. The treatment of exponentials and additives makes a heavy
use of virtual switches.

3 Third light: what conveys certainty?

3.1 Epidictic vs. apodictic
The main difference between XIXth century, pre-Gödelian, and XXth century logics is perhaps
the issue of certainty. Before incompleteness, a proof was supposed to be valid beyond any
doubt; hence the adjective apodictic, which corresponds to this absence of doubt, but whose
etymology is simply “proven”. Incompleteness opens the possibility of a reasonable doubt,
hence to a change of status for proofs: they are no longer apodictic, they can only be epidictic,
i.e., they only guarantee a reasonable form of certainty. Common sense can explain this
failure: deduction is a rational form of prediction, but prediction cannot be 100% rational.
Just like rating agencies were unable to prevent the subprime crisis, there is no absolute
certainty as to cheques, before cashing. The only absolutely reliable bank is completely
explicit: it directly delivers the goods you are looking for, the cow and the butter: but then,
forget money! In the same way, the only absolutely reliable formal system would be purely
analytic, limited to down to earth constatations of the form 2 + 2 = 4.

How come that our certainty is no longer that certain? We must remember that it never
occurred to XIXth century logicians, e.g., Russell, Hilbert, that the logical format could “miss”
some “truth”, unless the definition was intentionally ambiguous. For instance, Euclide’s
Postulate left open the question of parallels, but this was made explicit by alternative models,
the sphere or the one-sheet hyperboloid; this question being fixed, nothing else was “missing”.
In the case of incompleteness, nothing specific is actually missing in the sense that it would
suffice to add it. But there is a definite shortage of counter models: nobody has ever seen
the tail of a refutation of the Gödel sentence — the book says that such a refutation must
exist — but this “evidence” follows from incompleteness, while it should establish it. This is
why this “model” is styled non standard, i.e., good for nothing.

Back in the 1920s, the only possibility was that of proving too much, like in Burali-Forti’s
or Russell’s antinomies. Hence the reduction of certainty to consistency: if a deductive
system cannot prove A and ¬A, then it should be perfectly sound, i.e., conveys certainty.
However, PA + ¬G, Peano Arithmetic extended with the negation of the Gödel sentence is

J.-Y. Girard 21

equi-consistent with PA, although plainly wrong! An analogy: many criminals are found
“not guilty” on the grounds of some legal trick, say a statute of limitations; but an acquittal
based on a deontic use of Law can by no means restore confidence. In other terms, although
the negation ¬G avoids inconsistency, it is still far from plausible: consistency does not entail
certainty.

We must however reckon that consistency is (a minor) part of certainty. Here the second
incompleteness destroys the ultimate illusion of XIXth century logic: consistency itself cannot
be established beyond a reasonable doubt.

Gödel’s incompleteness is the final firework of XIXth logic. XXth logic begins with
Gentzen’s cut-elimination (the distinction implicit/explicit), Herbrand’s theorem (the emer-
gence of format) and the “functional” interpretation of proofs, a.k.a. BHK6. Typically,
a proof of ∀x A[x] is a function associating to each integer n a proof f(n) of A[n]. The
definition is interesting and problematic under the three lights:
Answers: f cannot be quite a function, since a function is an infinite object. It must thus

be a finite artifact, a program yielding the output f(n) when feeding it with n.
Questions: f must be of the right kind, i.e., associate to each n a proof of A[n], whatever

that means. Deontically speaking, this means that f must pass infinitely many tests:
first choose n, then test whether f(n) is a proof of A[n]. Something of the like occurs
with Popper’s falsifiablity.

Certainty: how do we know that the proof is actually a proof, in other terms, that it passes
the deontic tests which are infinetely many? In the Π0

1 case, this proof that the proof is a
proof is indeed the proof irself: the function, something like f(n) := true is known in
advance, so the only thing at stake is to determine whether A[n] = true for all n, i.e.,
∀x A[x].

BHK can thus be seen as an archaic prefiguration the most recent developments in terms of
answers and questions: in that respect, it fully belongs in XXth century logic. It also poses
the problem of certainty: and, to start with, how come, in XXth century terms, that we lost
absolute certainty?

3.2 Derealism
3.2.1 Proof-nets and certainty
The correctness criterion for proof-nets yields a form of apodictic certainty: yes, we can be
sure that a would-be proof is actually a proof. This is due to the combination of several
facts:
Finiteness: correction relates a vehicle with a gabarit. This involves finitely many finite

verifications, leaving no room for reasonable doubt.
Compositionality: the gabarit for A and the gabarit for ∼A do match so as to ensure the

identity group, especially cut-elimination.
The great divide of logic is between first and second order. Indeed, if we take a second order
approach to logic (with quantifiers on predicates or propositions), the first order part is the
one in which second order quantifiers occur as universal prefixes ∀X1 . . . ∀Xn: the formula
X ⇒ X is thus a shorthand for ∀X (X ⇒ X). Using the Dedekind translation of natural
numbers, arithmetic becomes part of second order logic: indeed, Π0

1 formulas involve second
order existentials. First order is complete and apodictic, while second order proper — i.e.,
using ∃X — is incomplete and can only be epidictic.

6 Indeed Brouwer-Heyting-Kolmogorov.

CSL’13

22 Three lightings of logic

Something puzzling is that the proof-net technology basically applies to full logic. The
fact that we lose certainty must be ascribed to second order quantification, more precisely, to
the the existential quantifier. The study of system F shows that this quantifier concentrates
most of the logical complexity: its interpretation through candidats de réductibilité involves
comprehension axioms, which cannot convey absolute certainty.

Indeed, in a second-order proof-net, we must indicate the existential witnesses T cor-
responding to the rules deducing ∃X A[X] from A[T]. And, relative to these witnesses T
(which carry their own gabarits), we can get absolute certainty, at least on the grounds of
finiteness. The issue of compositionality is, however, a cat of a different colour: indeed, X
occurs several times in A[X], in practice both positively and negatively. This means that we
must provide gabarits for both T and ∼T . But how do we know that they actually match?

We already mentioned, concerning Popper, that his approach was too simplistic: like
in the Gospel, the judges must be judged. This means that the matching between the
normativity for T and the normativity for ∼T is the most intricate thing one can imagine,
surely something not of this world. The reasonable doubts and the reasonable certainties as
to reasoning concentrate in this hazardous matching.

3.2.2 Épures
The deontic pair T/∼T corresponds to the rights and duties attached to T . The identity
axiom T ` T , or, better, ` ∼T, T is still valid when we relinquish our rights — and/or
exaggerate our duties. But the cut rule enables to pass from ` Γ, T and ` ∆,∼T , to ` Γ,∆
on the basis that we have the rights (T) of our duties (∼T). By the way, replacing T with
∼T will not alter the pattern, since the rights of ∼T are the duties of T .

This schizophrenic approach to deduction first occurred in Schütte’s partial valuations, in
other terms, three-valued models. The fact that one can relinquish our rights is expressed by
a third value, i. Hence, in terms of rights, A is not false, while in terms of duties, A is true.
The fact that “true” implies “not false” accounts for the identity axiom. But the cut rule
requires the reverse implication, which is the case only in the usual, two-valued case. This
semantics is, as far as I know, the unique legitimate occurence of an exotic truth value. Its
technical interest is almost void: since i⇒ i = i, the third value has a propension to swallow
the real ones. . . and what is the use of a model where almost everything takes the value i?
The only interest of the third value is that of a sort of “side wheels” helping us from mixing
rights and duties.

A much better incarnation of the same idea is the category-theoretic notion of dinaturality:
the entailment A ` A between rights and duties becomes a morphism. And the failure of
compositionality can be ascribed the want of commutativity of certain “hexagons”. But this
is still semantics, not yet the real thing.

The French “épure” means the representation of an object through three planar projections.
I propose to use this term for the combination V + G of a vehicle and a gabarit: indeed, both
an object and several ways (the ordeals of G) of structuring it. The inclusion of a gabarit as
part of the épure renders quantification over gabarits possible: this should answer for the
problematic aspects of second order logic. By the way, if a proof is an épure, the missing
“auxiliary proof” of BHK is its gabarit.

3.2.3 The derealistic program
If we except first order quantification and equality, our understanding of first order logic is
quite satisfactory. This is not the case with second order logic, especially under the light

J.-Y. Girard 23

of certainty. The new approach — épures — should improve the the existing systems and
their interpretations: in particular, fix the limitations of the the usual realistic, semantic,
approach which collapsed in front of natural numbers. By introducing deontic components
— the gabarits at work in the épures —, we should able to find derealist integers explaining
— say — why the Gödel sentence is not provable.

As to certainty, the final pattern should look like:
A solid, i.e., non-deductive, analytic, rock in which reasoning takes place as a combination
of épures.
Depending upon the choice of the right gabarits, the access to a reasonable form of
deduction.

Certainty can only be epidictic, i.e., rely upon a covenant between rights and duties: such a
pact belongs in the realm of beliefs. But the day of true believers, of axiomatic certainty is
over: the idea of an épure is to make everything, including the covenant, part of the logical
artifact. Making suppositions part of the object is a way to get, once for all, rid of these
presuppositions which so badly hinder logic.

References
1 J.-Y. Girard. The Blind Spot: lectures on logic. European Mathematical Society,

Zürich, 2011. 550 pp.

Institut de Mathématiques de Luminy,
UMR 6206 – CNRS,

163, Avenue de Luminy, Case 907,
F-13288 Marseille Cedex 09

girard@iml.univ-mrs.fr

NON SI NON LA

CSL’13

From determinism, non-determinism and
alternation to recursion schemes for P, NP and
Pspace
Isabel Oitavem

CMAF, Universidade de Lisboa and
DM, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa
2829-516 Caparica, Portugal
oitavem@fct.unl.pt

Abstract
Our goal is to approach the classes of computational complexity P, NP, and Pspace in a recursion-
theoretic manner. Here we emphasize the connection between the structure of the recursion
schemes and the underlying models of computation.

1998 ACM Subject Classification F.4.1 Mathematical Logic, F.1.1 Models of Computation,
F.1.2 Modes of Computation, F.1.3 Complexity Measures and Classes

Keywords and phrases Computational complexity, Recursion schemes, P, NP, Pspace

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.24

Category Invited Talk

1 Introduction

P, NP and Pspace are well-known classes of computational complexity that can be described
following different approaches. Here we describe them in a machine independent manner,
using recursion schemes, which turn the known inclusions P ⊆ NP ⊆ Pspace obvious. This
work contributes to a better understanding of the involved classes, but no separation result
is foreseen.

Recursion-theoretic approaches lead to classes of functions instead of predicates (or
boolean functions). Therefore, instead of P and Pspace we reach the classes FPtime and
FPspace. As a class of functions corresponding to NP we choose FPtime∪NP, and we adopt
the notation FNP.

Our strategy is, as always in recursion-theoretic contexts, to start with a set of initial
functions — which should be basic from the complexity point of view — and to close it under
composition and recursion schemes. The recursion schemes can be bounded or unbounded
depending on the chosen approach. In the first case we consider the Cobham characterization
of FPtime [3], in the second case we consider the Bellantoni-Cook characterization of FPtime
[2]. In both cases we work over W, instead of N, where W is interpreted over the set of 0-1
words. ε stands for the empty word, and S0 and S1 stand for concatenation, respectively,
with 0 and 1. Therefore, as initial functions one considers ε, S0, S1, P (binary predecessor)
and C (case distinction).

We look to these three classes of complexity — FPtime, FNP and FPspace — as
resulting from three different models of computation — deterministic, non-deterministic
and alternating Turing machines (as described in [1]) — and imposing the same resource
constraint, polynomial time. Thus the adopted recursion schemes should somehow reflect

© Isabel Oitavem;
licensed under Creative Commons License CC-BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca ; pp. 24–27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.24
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

I. Oitavem 25

the “increasing” computational power of the computation model. For FNP, besides the
calibration of the recursion schemes, we have an additional problem since one is dealing with
a class which, in principle, is not closed under composition (because NP is, in principle, not
closed under negation).

2 Bounded recursion schemes

Bounded recursion schemes are recursion schemes where the length of the outputs are, at
every step, bounded. In the cases we treat here, the bound of the lengths is polynomial.
The bounds are functions explicitly definable from ε, S0, S1, string concatenation and string
product (corresponding to the smash function of Buss). The bound is, at each step of the
recursion, imposed via truncation. We use x|y to denote x truncated to the length of y.

2.1 FPtime
The bounded recursion scheme for FPtime described below is based on Cohbam’s work [C64]
and reproduces the sequential structure of deterministic computations. We denote it by
bounded recursion over W (BR):

f(ε, x̄) = g(ε, x̄)
f(y0, x̄) = h(y0, x̄, f(y, x̄))|t(y0,x̄)

f(y1, x̄) = h(y1, x̄, f(y, x̄))|t(y1,x̄)

Notice that, for instance, the definition of f(11) by BR (based on g and h and t) leads to
h(11, h(1, g(ε))) (t is omitted), which corresponds to the sequence

h

|
h

|
g

2.2 FPspace
It is well-known that: a function f (over W) is computable in polynomial space if, and only
if, f is bitwise computable by an alternating Turing machine in polynomial time, and the
length of the outputs of f is polynomial in the length of the inputs.

Alternating Turing machines lead to trees of computation. Therefore, the corresponding
recursion scheme, instead of a sequential structure, has a tree structure. It is defined
analogously to BR, but we double the recursive call and we distinguish them from each other
via a pointer (denoted by p).

Bounded tree recursion over W(BTR), also called bounded recursion with pointers:

f(p, ε, x̄) = g(p, ε, x̄)
f(p, y0, x̄) = h(p, y0, x̄, f(p0, y, x̄), f(p1, y, x̄))|t(p,y0,x̄)

f(p, y1, x̄) = h(p, y1, x̄, f(p0, y, x̄), f(p1, y, x̄))|t(p,y1,x̄)

If f(ε, 11) is defined by BTR on its second input based on g, h and t, then (omitting, once
more, the bound t) one obtains h(ε, h(0, g(00), g(01)), h(1, g(10), g(11))). The corresponding
tree is

CSL’13

26 P, NP and Pspace

hε∧
h0 h1∧ ∧

g00 g01 g10 g11

The mentioned input is the pointer, and it gives the address from the root of the tree to
the current node. The tree structure of BTR is clear. It is also clear that if h and g do not
depend on their first input (the pointer), then the tree structure collapses to a sequential
one. Therefore, BTR trivially extends BR.

More about this characterization of FPspace can be found in [4].

2.3 FNP

Non-deterministic Turing machines can be seen, simultaneously, as an extension of the
concept of deterministic Turing machines and a restriction of alternating Turing machines.
Thus our goal is, also simultaneously, to extend BR and restrict BTR in an appropriated
way.

We would like to do it via a single recursion scheme, however so far that was not achieved.
This issue is also related with the restricted form of composition one may have in FNP.

What we describe here is a recursion scheme which should be taken in addition to BR. We
call it TR[∨] because it results from BTR by fixing the step function h — h is the disjunction
of its last two inputs (the recursive calls). More precisely, disjunctive tree recursion over W
(TR[∨]) is the scheme:

f(p, ε, x̄) = g(p, ε, x̄)
f(p, y0, x̄) = ∨(f(p0, y, x̄), f(p1, y, x̄))
f(p, y1, x̄) = ∨(f(p0, y, x̄), f(p1, y, x̄)),

where ∨(u, v) returns 1 if at least one of its inputs ends with 1, and 0 otherwise.
Notice that there is no need of imposing bounds — a single bit is returned at every step

of the recursion (with possible exception of the base level, where g is computed).
Let us look at our example once more. If f(ε, 11) is defined by TR[∨] based on g, then

one has ∨(ε,∨(0, g(00), g(01)),∨(1, g(10), g(11))), which corresponds to the tree

∨∧
∨ ∨∧ ∧

g00 g01 g10 g11

Therefore one gets a tree structure as before, but only the addresses of the leaves are
available. All internal nodes have the same (disjunctive) label. The parallel with non-
deterministic Turing machines is obvious.

Notice that if, in TR[∨], g does not depend on the pointer, then the scheme loses his tree
structure. However, since the step function is fixed (it is ∨) this scheme does not extend BR.
As mentioned above, TR[∨] is taken in addition to BR.

See [5] for more about this characterization of FNP.

I. Oitavem 27

3 Final considerations

With a simple example one is able to illustrate the structure of the recursion schemes used to
describe the classes of computational complexity FPtime, FNP and FPspace. The connection
between the structure of the recursion and the underlying model of computation is of interest
and it might deserve some further thoughts. Some work is being developed concerning the
levels of the polynomial hierarchy of time.

FPtime, FNP and FPspace are reached in a recursion-theoretic manner by successively
“extending” the characterization of FPtime given in 1964 by Cobham. That is achieved by
introducing pointers in the recursion schemes. Recursion with pointers can be understood
as a restrict form of recursion with substitution. Leivant and Marion have work in this
direction.

What is here stated using recursion schemes with bounds can be done in other frameworks.
The polynomial bounds explicitly address the resource constraint of the studied complexity
classes. There exist several ways of enriching the syntax, in order to build in the classes
some internal control on the growth of the functions terms. This can be done, for instance,
via ranks (which measure the syntactical complexity of the functions terms), distinguishing
sorts of variables (Leivant style), or sorts of input-positions (Bellantoni-Cook style).

Acknowledgements. I want to thank the funding of the projects PTDC/MAT/104716/2008
and PEst-OE/MAT/UI0209/2011, from Fundação para a Ciência e a Tecnologia.

References
1 J. L. Balcázar, J. Díaz, J. Gabarró, Structural Complexity I and II, Springer-Verlag, (1990)
2 S. Bellantoni and S. Cook, A new recursion-theoretic characterization of Polytime functions,

Computational Complexity, vol. 2 (1992), pp. 97–110.
3 A. Cobham, The intrinsic computational difficulty of functions, Proc. of the 1964 Interna-

tional Congress for Logic, Methodology, and the Philosophy of Science, ed. Y. Bar-Hillel,
North Holland, Amsterdam (1965), pp. 24–30.

4 I. Oitavem, Characterizing Pspace with pointers, Mathematical Logic Quarterly, vol. 54
(2008), no. 3, pp. 317–323.

5 I. Oitavem, A recursion-theoretic approach to NP, Annals of Pure and Applied Logic,
vol. 162 (2011), no. 8, pp. 661–666.

CSL’13

Means and Limits of Decision
Lidia Tendera

Institute of Mathematics and Informatics
Opole University, Poland
tendera@math.uni.opole.pl

Abstract
In this talk we survey recent work in the quest for expressive logics with good algorithmic
properties, starting from the two-variable fragment of first-order logic and the guarded fragment.
While tracing the boundary between decidable and undecidable fragments we describe their
power, limitations, similarities and differences in order to stress out key properties responsible
for their good or bad behaviour. We also highlight tools and techniques that have proven most
effective for designing optimal algorithms, special attention giving to the more universal ones.

1998 ACM Subject Classification F.4.1 Mathematical Logic, F.1.1 Models of Computation,
F.4.3 Formal Languages

Keywords and phrases classical decision problem, decidability, computational complexity, two-
variable first-order logic, guarded logic

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.28

Category Invited Talk

1 Overview

In Computer Science, the use of logical formalisms to describe, query or manipulate structured
data is now firmly embedded in both theory and practice. Having data described/specified
within a logical formalism we often want such a specification to undergo static analysis –
an automated procedure that optimizes the specification with respect to some correctness
and efficiency criteria. Static analysis of specifications described in logical formalism often
boils down to verifying one of the two basic logical properties, namely satisfiability and finite
satisfiability.

Undecidability of the classical decision problem (=the satisfiability problem for first-
order logic) results in two possible responses. The first one is to develop programs to test
satisfiability of arbitrary collection of first-order formulas, accepting that, however well they
generally work in practise, there will always be problem instances that defeat them. The
second is to restrict attention to a fragment of first-order logic for which the satisfiability
problem is decidable, exploiting the fact that in many real-life situations, the formulas we
encounter fit comfortably into such fragments.

In this talk we overview recent work in the quest for expressive logics with good algorithmic
properties. We concentrate mainly on fragments of first-order logic defined by restricting the
number of variables (to gain decidability – to two [9, 7]) and usage of quantifiers to guarded
quantification [1], and their variants or extensions motivated by real-life applications. We
are equally interested in satisfiability and finite satisfiability, as in many application areas we
want to model systems and computation to be essentially finite.

While tracing the boundary between decidable and undecidable fragments we study their
similarities and differences to understand their power and limitations and to stress out key

© Lidia Tendera;
licensed under Creative Commons License CC-BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca; pp. 28–29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.28
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

L. Tendera 29

properties responsible for (un)decidability or (in)tractability. We give examples of fragments
enjoying the finite model property: any satisfiable formula is true in some finite structure, and
the tree model property: any satisfiable formula is true is some tree-like structure. We present
fragments for which these two key properties led to optimal decision procedures (e.g. [4], [3],
[11]) and contrast these fragments with their extensions where more sophisticated reasoning
is required (e.g. [6, 5, 10]). We give special attention to linear and integer programming
techniques that have recently proved useful to design optimal algorithms to decide uniformly
both, the finite and the unrestricted satisfiability problems for certain expressive fragments.

The talk involves recent and ongoing work with Emanuel Kieroński, Jakub Michaliszyn,
Ian Pratt-Hartmann, Wiesław Szwast, Georg Gottlob and Andreas Pieris.

The title of the talk has been inspired by Quine [8].

References
1 H. Andréka, J. van Benthem, and I. Németi. Modal languages and bounded fragments

of predicate logic. ILLC Research Report ML-1996-03, University of Amsterdam, 1996.
Journal version in: J. Philos. Logic, 27 (1998), no. 3, 217–274.

2 G. Gottlob, A. Pieris, and L. Tendera. Qyerying the guarded fragment. In ICALP, pages
293–304, 2013.

3 E. Grädel. Decision procedures for guarded logics. In 16th International Conference in
Artificial Intelligence, volume LNCS 1932, pages 31–51. Springer, 1999.

4 E. Grädel, P. Kolaitis, and M. Vardi. On the decision problem for two-variable first-order
logic. Bull. of Symb. Logic, 3(1):53–69, 1997.

5 E. Kieroński, J. Michaliszyn, I. Pratt-Hartmann, and L. Tendera. Two-variable first-order
logic with equivalence closure. In Proc. of LICS2012, pages 431–440. IEEE, 2012.

6 E. Kieroński and L. Tendera. On finite satisfiability of two-variable first-order logic with
equivalence relations. In Proc. of LICS2009, pages 123–132, 2009.

7 M. Mortimer. On languages with two variables. Zeitschr. f. Logik und Grundlagen d. Math.,
21:135–140, 1975.

8 W. V. Quine. Theories and Things, chapter On the Limits of Decision, pages 156–163.
Harvard University Press, Cambridge, MA, 1981. A shorter version of this paper appeared
in the Akten des XIV. internationalen Kongresses für Philosophie, vol. 3, 1969.

9 D. Scott. A decision method for validity of sentences in two variables. J. Symb. Logic,
27:477, 1962.

10 W. Szwast and L. Tendera. FO2 with one transitive relation is decidable. In Natacha
Portier and Thomas Wilke, editors, STACS, volume 20 of LIPIcs, pages 317–328. Schloss
Dagstuhl – Leibniz-Zentrum fuer Informatik, 2013.

11 M. Y. Vardi. Why is modal logic so robustly decidable? DIMACS Series in Discrete
Mathematics and Theoretical Computer Science,, 31:149–184, 1997.

CSL’13

On closure ordinals for the modal µ-calculus
Bahareh Afshari1 and Graham E. Leigh2

1 Department of Computer Science, University of Oxford, Parks Road, Oxford
OX1 3QD, UK
bahareh.afshari@cs.ox.ac.uk

2 Faculty of Philosophy, University of Oxford, Woodstock Road, Oxford OX2
6GG, UK
graham.leigh@philosophy.ox.ac.uk

Abstract
The closure ordinal of a formula of modal µ-calculus µXϕ is the least ordinal κ, if it exists, such
that the denotation of the formula and the κ-th iteration of the monotone operator induced by
ϕ coincide across all transition systems (finite and infinite). It is known that for every α < ω2

there is a formula ϕ of modal logic such that µXϕ has closure ordinal α [3]. We prove that
the closure ordinals arising from the alternation-free fragment of modal µ-calculus (the syntactic
class capturing Σ2 ∩ Π2) are bounded by ω2. In this logic satisfaction can be characterised in
terms of the existence of tableaux, trees generated by systematically breaking down formulæ into
their constituents according to the semantics of the calculus. To obtain optimal upper bounds
we utilise the connection between closure ordinals of formulæ and embedded order-types of the
corresponding tableaux.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Closure ordinals, Modal mu-calculus, Tableaux

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.30

1 Introduction

Modal µ-calculus is often referred to as the “mother of all temporal logics”. Indeed the
majority of temporal logics, including LTL (Linear Time Logic), CTL (Computational Tree
Logic) and their various extensions, can be easily interpreted and analysed in µ-calculus
making the study of this logic of high interest in the research community. The defining
feature of the modal µ-calculus is the expression of fixpoints. In this calculus the syntax
of modal logic is extended by least and greatest fixpoint quantifiers (µ and ν) that bind
propositional variables. The formulæ µXϕ and νXϕ are interpreted respectively as the
least and greatest fixpoints of the monotone operator induced by ϕ. In analogy to the
hierarchies defined in second order logic, one can alternate the fixpoint quantifiers to define
a hierarchy of formulæ. Although we have a relatively good understanding of least and
greatest fixpoints, when nested their meaning and behaviour is easily lost. As a result many
fundamental properties of this calculus have remained unanswered even after decades of
attention from logicians and computer scientists.

An interesting open problem for µ-calculus is that of closure ordinals, the number of
iterations required for a fixpoint to close across all structures. Given an arbitrary formula,
its closure ordinal may not exist, such as in the case of µX2X. On the other hand mere
syntactic analysis suggests that the fixpoint iterations in this context cannot exhaust the
power of ordinals beyond certain levels. Hence one may ask the following question.

© Bahareh Afshari and Graham E. Leigh;
licensed under Creative Commons License CC-BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca ; pp. 30–44

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.30
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

B. Afshari and G.E. Leigh 31

For which ordinals α is there a formula of modal µ-calculus with closure ordinal α?

In the case of finite ordinals the formulæ µX. (3X ∧ 2n⊥) ∨ 2⊥, which express that
all paths in a model of the formula have length at most n, are guaranteed to close across
all structures after n iterations. By expressing the existence of arbitrarily long finite paths,
through the formula µX.3X ∨ 2⊥ for example, transfinite closure ordinals are obtained.
In fact it is known that for every α < ω2 there is a formula ϕ of modal logic such that µXϕ
has closure ordinal α [3].

In this paper we establish optimal upper bounds on closure ordinals, showing that no
formula of the alternation-free fragment can have a closure ordinal equal or greater than
ω2, even if iterations of all quantifiers occurring in the formula are taken into account. We
begin with a syntactic analysis on a fragment of the Σ1-formulæ in section 2. This study,
despite applying only to operators induced by particular formulæ of modal logic, provides
the motivation for the general solution. The main result of the paper is given in section
3 and consists of a semantic analysis of the problem by means of tableaux constructions.
We present a strong characterisation of closure ordinals in terms of order-types of tableaux
for formulæ without genuine dependencies between their alternating fixpoint quantifiers.
This correspondence will prove sufficient to bound closure ordinals of these formulæ by their
logical complexity.

1.1 Syntax and semantics of modal µ-formulæ
Let Var be an infinite set of propositional variables and Prop an infinite set of propositional
constants. The set of µ-formulæ is defined inductively as follows.

ϕ := p | p̄ | X | ϕ ∧ ϕ | ϕ ∨ ϕ | 2ϕ | 3ϕ | µX ϕ | νX ϕ

where p ∈ Prop and X ∈ Var. Also define ⊥ := p∧ p̄ and > := p∨ p̄ for some propositional
constant p. A variable X in ϕ is called a µ-variable (respectively, ν-variable) if the quantifier
µX (resp. νX) occurs in ϕ. We assume that all quantifiers occur uniquely. This can be
achieved through implicit α-conversion.

A transition system is a tuple T = (S,→, λ) where (S,→) is a directed graph and
λ : S → P(Prop) is an assignment of propositional constants to states. Given a transition
system T = (S,→, λ) and a valuation V : Var → P(S) of free variables, the set of states
satisfying a formula ϕ, denoted by ||ϕ||TV , is defined inductively as follows.

||p||TV = {x ∈ S : p ∈ λ(x)}
||p̄||TV = {x ∈ S : p 6∈ λ(x)}
||X||TV = V(X)
||ϕ ∧ ψ||TV = ||ϕ||TV∩||ψ||TV
||ϕ ∨ ψ||TV = ||ϕ||TV ∪ ||ψ||TV
||2ϕ||TV = {x ∈ S : ∀y(x→ y ⇒ y ∈ ||ϕ||TV)}
||3ϕ||TV = {x ∈ S : ∃y(x→ y ∧ y ∈ ||ϕ||TV)}
||µXϕ(X)||TV =

⋂
{U ⊆ S : ||ϕ||TV[X 7→U] ⊆ U}

||νXϕ(X)||TV =
⋃
{U ⊆ S : U ⊆ ||ϕ||TV[X 7→U]}

In the above V[X 7→ U] is the valuation that maps X into U and agrees with V on all
other variables. Note that a formula ϕ gives rise to a function fϕ : P(S) → P(S) given by
U 7→ {x ∈ S : x ∈ ||ϕ(X)||TV[X 7→U]}. As fϕ is a monotone function on the powerset lattice

CSL’13

32 On closure ordinals for the modal µ-calculus

〈P(S),⊆〉, by the Knaster-Tarski Theorem its least (and greatest) fixpoint exists, and is
equal to the least prefixed point (resp. greatest postfixed point) of fϕ, the set ||µXϕ||TV
(resp. ||νXϕ||TV).

1.2 Alternation-free fragment

The alternation of fixpoint quantifiers is the major source of potency, and a fundamental
measure of logical strength in the study of fragments of µ-calculus. The number of genuine
alternations between least and greatest fixpoint quantifiers is called the depth of the formula.
Bradfield [1] showed that there are modal fixpoint properties which require arbitrarily large
depth, and hence the modal µ-calculus alternation hierarchy is strict. Formally, the Niwiński
hierarchy is defined as follows. A formula ϕ is in the classes Π0 and Σ0 if it contains no
fixpoint quantifiers, i.e. it is a formula of modal logic. The class Σn+1 (Πn+1) is the closure
of Σn ∪Πn under the following rules.

If ϕ,ψ ∈ Σn+1 (Πn+1), then ϕ ∧ ψ,ϕ ∨ ψ,2ϕ,3ϕ ∈ Σn+1 (Πn+1).
If ϕ ∈ Σn+1 (Πn+1), then µXϕ ∈ Σn+1 (νXϕ ∈ Πn+1).
If ϕ,ψ ∈ Σn+1 (Πn+1), then ϕ(ψ) ∈ Σn+1 (Πn+1), provided the free variables of ψ do
not become bound by quantifiers in ϕ.

In comparison the alternation-free fragment of the modal µ-calculus is the class of for-
mulæ with no real dependencies between alternating fixpoint quantifiers. This fragment is
the closure of Σ1 ∪ Π1 under Boolean and modal operators and substitutions that preserve
the alternation depth. Despite the restrictions imposed, this class of properties still forms
a remarkably expressive fragment encompassing the majority of logics used in the verific-
ation of systems. It is known that this class coincides with the collection of all formulæ
semantically equivalent to both a Σ2-formula and a Π2-formula [5]. Moreover, this fragment
is the limit of the weak index hierarchy as introduced in [6]; thus, the languages defined by
alternation-free formulæ are also referred to as weakly definable languages.

1.3 Trees

A tree is a pair t = (V,→) with a distinguished node ρt such that (V,→) is a connected
directed graph, there are no transitions into ρt and for every v ∈ V \ {ρt} there is exactly
one v0 ∈ V such that v0 → v. The node ρt is referred to as the root of the tree and any
node without outgoing transitions is called a leaf. For a tree t and a node v in t, we write
t�v to denote the sub-tree rooted at v. If there is no cause for confusion we identify a tree
with its domain. Tree t0 = (V0,→0) is a pruning of t = (V,→) if V0 ⊆ V , →0=→ ∩V 2

0 and
if u→ v /∈ V0 then {w ∈ V0 : u→0 w} = ∅.

A path through a tree t = (V,→) is an enumerable set P ⊆ V such that ρt ∈ P, if
v0 → v ∈ P then v0 ∈ P, and for every v ∈ P either v is a leaf or there exists exactly one
u ∈ V such that v → u and u ∈ P. For a path P given by a sequence ρt = v0 → v1 →
v2 → . . . → vn → . . ., we write P(n) to denote vn. For nodes u, v ∈ t we write u <t v

(resp. u ≤t v) if for some path P through t and i < j (resp. i ≤ j), P(i) = u and P(j) = v.
A tree transition system (TTS) is a transition system T = (S,→, λ) for which (S,→) is

a tree. We say a TTS T satisfies ϕ, written T |= ϕ, if ρT ∈ ||ϕ||TV . In this case T is a model
of ϕ and ϕ is satisfiable. Note that modal µ-calculus has the tree model property, namely
every satisfiable formula has a model which is a TTS (see e.g. [2]).

B. Afshari and G.E. Leigh 33

1.4 Closure ordinals
The definition of semantics for µ-formulæ can be generalised to also take into account ap-
proximations to fixpoint variables. For each formula ϕ, set of bound variables X occurring in
ϕ and ordinal α, we define a set ||ϕα||TV by induction on α. Let T = (S,→, λ) be a transition
system and V a valuation on T . For every α, define

||pα||TV = ||p||TV
||p̄α||TV = ||p̄||TV
||Zα||TV = V(Z)
||(ϕ ∧ ψ)α||TV = ||ϕα||TV ∩ ||ψα||TV
||(ϕ ∨ ψ)α||TV = ||ϕα||TV ∪ ||ψα||TV
||(2ϕ)α||TV = {x ∈ S : ∀y(x→ y ⇒ y ∈ ||ϕα||TV)}
||(3ϕ)α||TV = {x ∈ S : ∃y(x→ y ∧ y ∈ ||ϕα||TV)}

||(µXϕ)α||TV =
{⋃

γ<α ||ϕ[µXϕ/X]γ ||TV , if X ∈ X ,
||µXϕα||TV , otherwise.

||(νXϕ)α||TV =
{⋂

γ<α ||ϕ[νXϕ/X]γ ||TV , if X ∈ X ,
||νXϕα||TV , otherwise.

For every formula ϕ there exists an ordinal κ such that ||ϕ||TV = ||ϕκ||TV = ||ϕκ+1||TV .
The least such κ is called the closure ordinal of ϕ with respect to T and X and is denoted
COT,X (ϕ). Note that a formula may have different closure ordinals depending on the trans-
ition system on which it is evaluated as well as the particular collection of variables analysed.
For example the formula µX2X is satisfied by all well-founded trees; its closure ordinal with
respect to {X} in each case is the order-type of the tree.
I Definition 1.1 (Closure Ordinal). The closure ordinal of a closed formula ϕ with respect to
a non-empty set X of variables, denoted by COX (ϕ), is the ordinal supT COT,X (ϕ), if this
ordinal exists.

2 Syntactic analysis

Let Prop := {p̄ : p ∈ Prop} and P1, P
′
1, P2, P

′
2, . . . , Pn, P

′
n be finite subsets of Prop∪Prop.

Each such set, when referred to as a formula, denotes the conjunction of its elements. We
say a formula of modal logic is primary if it is of the form

(P1 ∧2P ′1 ∧∇1X) ∨ (P2 ∧2P ′2 ∧∇2X) ∨ . . . ∨ (Pn ∧2P ′n ∧∇nX) ∨2⊥ (1)

where ∇i ∈ {3,2} for each i. Czarnecki’s analysis in [3] establishes that every ordinal below
ω2 is the closure ordinal of the least fixpoint of some primary formula. In this section we
establish a strong converse: if the primary formula given in (1) has closure ordinal α, then
α < ω.(n+ 1). For the following let ψ denote the formula in (1) and ϕ = µXψ.
I Lemma 2.1. Fix a transition system T and a valuation V. Suppose κ is a limit ordinal. If
x ∈ ||ϕκ+1||TV \ ||ϕκ||TV , then there is no j ≤ n such that x ∈ ||Pj ∧2P ′j ∧∇jϕκ||TV and ∇j = 3.

Proof. Suppose T = (S,→, λ) and let ||ϕα|| abbreviate ||ϕα||TV . Suppose x ∈ ||ϕκ+1|| \ ||ϕκ||.
By way of contradiction suppose also x ∈ ||Pj ∧ 2P ′j ∧ ∇jϕκ|| and ∇j = 3 for some j ≤ n.
If {y ∈ S : x → y} = ∅ then x ∈ ||ϕ1|| ⊆ ||ϕκ|| which cannot be, so let x → y be such that
y ∈ ||ϕκ||. Thus there exists γ < κ such that y ∈ ||ϕγ ||, and hence x ∈ ||ϕγ+1|| ⊆ ||ϕκ|| yielding
a contradiction. J

CSL’13

34 On closure ordinals for the modal µ-calculus

(0, 1) Q1

(0, 2) Q2

...

(0, k) Qk

(α+ 1, 1) Q1

(α+ 1, 2) Q2

...

(α+ 1, k) Qk

Tα

(α, 1) Q1

(α, 2) Q2

...

(α, k) Qk

Tα1 Tα2 Tαi

Figure 1 T0, Tα+1 and Tα (in the case α = supi αi) in the proof of lemma 2.3.

I Corollary 2.2. If ∇i = 3 for every i ≤ n then the closure ordinal of µXψ exists and is no
greater than ω.
I Lemma 2.3. Suppose there exist consistent sets of propositions Q1, Q2,. . .,Qk+1 and num-
bers i1, i2, . . . , ik < n such that Pij ∧ 2P ′ij ∧ ∇ijX is a subformula of ψ with Pij ⊆ Qj and
P ′ij ⊆ Qj+1 for each j ≤ k. Furthermore, suppose ∇ik = 2 and there is no j ≤ n such that
Pj ⊆ Qk, P ′j ⊆ Qk+1 and ∇j = 3. If Qk+1 = Q1, then µXψ does not have a closure ordinal.

Proof. Let λ : On × {i : i ≤ k + 1} → P(Prop), where On is the class of all ordinals, be
defined by p ∈ λ((α, j)) if and only if p ∈ Qj . Furthermore, let Tα0 = (Sα0 ,→α

0 , λ) be the
TTS where

Sα0 = {(α, j) : 0 < j ≤ k},
→α

0 = {((α, j), (α, j + 1)) : 0 < j < k}.

For each countable ordinal α we define a tree Tα as follows. Let T0 = T 0
0 and Tα+1 =

(Sα+1,→α+1, λ) where Sα+1 = Sα+1
0 ∪ Sα and →α+1=→α+1

0 ∪ →α ∪{((α + 1, k), (α, 1))}.
If α is a limit ordinal, then Sα = Sα0 ∪

⋃
β<α Sβ and →α=→α

0 ∪
⋃
β<α →β ∪{(α, k), (β, 1)) :

β < α}.
Let f be the function κ 7→ k.κ. We will show that for each κ ≤ α and 0 ≤ j < k,

(κ, k − j) ∈ ||ϕf(κ)+j+1||TαV \ ||ϕ
f(κ)+j ||TαV (2)

whereby it will be clear that the formula ϕ does not possess a closure ordinal. The argument
proceeds by transfinite induction on κ ≤ α with an auxiliary induction on j < k. If j 6= 0
then (2) follows from the fact that (κ, k − (j − 1)) is the unique successor of (κ, k − j) and
the definition of λ. Thus suppose j = 0, whence three sub-cases manifest:

κ = 0. Then f(κ) = 0 and (κ, k) is a leaf of Tα, so (2) trivially holds.
κ = κ′+ 1. By the definition of Tα, (κ, k) has a unique successor, namely (κ′, 1), whence
(2) follows from the induction hypothesis
κ limit. The successors of (κ, k − j) in this case are the nodes (γ, 1) for γ < κ. By the
induction hypothesis we know (γ, 1) ∈ ||ϕf(γ+1)||TαV \||ϕf(γ)+k−1||TαV for each γ < κ. Notice

B. Afshari and G.E. Leigh 35

that ||ϕf(κ)||TαV =
⋃
γ<κ ||ϕf(γ)||TαV . Since Pik ⊆ Qk, P ′ik ⊆ Q1 and ∇ik = 2, it follows

that (κ, k) ∈ ||ϕf(κ)+1||TαV . If, however, (κ, k) ∈ ||ϕf(κ)||TαV , then (κ, k) ∈ ||ϕf(γ)+k||TαV for
some γ < κ. But then (γ, 1) ∈ ||ϕf(γ)+k−1||TαV by the assumption on ϕ. J

I Proposition 2.4. The closure ordinal of ϕ is strictly less than ω2.

Proof. Let α be the closure ordinal of ϕ and suppose α ≥ ω2. Fix N ≥ 2|ϕ|+1 where
|ϕ| denotes the number of symbols occurring in ϕ. Let T be a TTS such that for every
i ≤ N , ||ϕω.i||TV is a proper subset of ||ϕω.i+1||TV . Then there exists a path P through T ,
mN < mN−1 < · · · < m0 < ω and a function f : ω × ω → ω such that for every i ≤ N and
j < mi −mi+1, f(i, j) ≤ n and

P(mi − j) ∈ ||Pf(i,j) ∧2P ′f(i,j) ∧∇f(i,j)ϕ
ω.i+j ||TV \ ||ϕω.i+j ||TV .

Define for each j < ω, Qj = λT (P(j)) ∪ {p̄ : p /∈ λT (P(j))}. For some i0 < i1 ≤ N it must
be the case that

Qmi0 ∩Propϕ = Qmi1 ∩Propϕ
where Propϕ =

⋃
i≤n(Pi∪P ′i). The sequence Qmi1 , . . . , Qmi0 therefore fulfils the hypothesis

of lemma 2.3 whence, contrary to our assumption, ϕ does not have a closure ordinal. J

The above analysis can also be applied to formulæ of the form

(ψ1 ∧∇1X) ∨ (ψ2 ∧∇2X) ∨ . . . ∨ (ψn ∧∇nX) ∨2⊥ (3)

where ψ1, . . . , ψn are closed formulæ of modal logic. Replacing literals with arbitrary modal
formulæ in each disjunct alters the “proposition paths” that can occur. Therefore, in order
to find a repetition as in the proof of proposition 2.4, one will need to look at larger segments
of a suitable model. As such a proof would be technically cumbersome, in the next section
we will employ a semantic analysis which will include (3) and extend the bounds to formulæ
of the alternation-free fragment of µ-calculus.

3 Semantic analysis

For the remainder of the paper, formulæ are assumed to be closed and guarded unless
otherwise stated. A formula ϕ is guarded if in every subformula σZ.ψ of ϕ, every occurrence
of the bound variable Z in ψ appears within the scope of a modal operator. The restriction
to the guarded fragment is not significant as every formula is equivalent to one in guarded
form (see e.g. [7]). Moreover, by following the approach of [4] it is possible to carry out the
analysis below for unguarded formulæ.1

Upper-case Greek letters such as Γ and ∆ denote sequents, finite sets of formulæ. 2Γ
abbreviates the set {2ϕ : ϕ ∈ Γ} and 3Γ is defined analogously. We write Γ, ϕ for Γ∪ {ϕ},
and Γ,∆ to denote Γ ∪∆. The Fischer-Ladner closure of a formula ϕ, denoted by FL(ϕ),
is the smallest set such that

ϕ ∈ FL(ϕ),
if ψ0 ◦ ψ1 ∈ FL(ϕ) where ◦ ∈ {∨,∧} then ψ0, ψ1 ∈ FL(ϕ),
if ∇ψ ∈ FL(ϕ) where ∇ ∈ {3,2} then ψ ∈ FL(ϕ),
if σXψ ∈ FL(ϕ) where σ ∈ {µ, ν} then ψ[σXψ/X] ∈ FL(ϕ).

Note that |FL(ϕ)| ≤ |ϕ| where |ϕ| denotes the number of symbols occurring in ϕ. For a
sequent Γ we set FL(Γ) =

⋃
γ∈Γ FL(γ).

1 We would like to thank the anonymous referee for drawing our attention to [4].

CSL’13

36 On closure ordinals for the modal µ-calculus

3.1 Tableaux

I Definition 3.1. Given a TTS T and a sequent Γ, a pre-tableau for (T,Γ) is a tree t = (V,→)
together with functions τt : t→ T and λt : t→ P(FL(Γ)) such that the following conditions
are satisfied.

τt(ρt) = ρT and λt(ρt) = Γ.
If v ∈ t is a leaf then λt(v) = 2Ξ,Θ where Θ ⊆ Prop∪Prop, and either Ξ = ∅ or τt(v)
is a leaf of T .
If τt(u) = τt(v) then either u ≤t v or v ≤t u.
For every v ∈ t, λt(v) ∩Prop ⊆ λT (τt(v)) ⊆ {p ∈ Prop : p̄ /∈ λt(v)}.
For every v0 → v1 ∈ t with τt(vi) = xi and λt(vi) = Γi, one of the following conditions
hold.

(∧) x0 = x1 and there are formulæ ϕ0, ϕ1 such that ϕ0 ∧ ϕ1 ∈ Γ0 and Γ1 = (Γ0 \ {ϕ0 ∧
ϕ1})∪{ϕ0, ϕ1}. The formula ϕ0∧ϕ1 is called active at v0 and both ϕ0 and ϕ1 residual
at v1.

(∨) x0 = x1 and there are formulæ ϕ0, ϕ1 such that ϕ0 ∨ ϕ1 ∈ Γ0 and Γ1 = (Γ0 \ {ϕ0 ∨
ϕ1}) ∪ {ϕi}. The formula ϕ0 ∨ ϕ1 is called active at v0 and ϕi residual at v1.

(σX) x0 = x1 and there is a formula ϕ and σ ∈ {µ, ν} such that σXϕ ∈ Γ0 and Γ1 =
(Γ0 \ {σXϕ}) ∪ {ϕ[σXϕ/X]}. The formula σXϕ is called active at v0 and ϕ(σXϕ)
residual at v1.

(mod) x0 →T x1 and Γ0 = 2Ξ,3∆,Θ with Θ ⊆ Prop ∪ Prop and Ξ ⊆ Γ1 ⊆ Ξ ∪ ∆. All
formulæ in Γ0 are considered active at v0 and all formulæ in Γ1 residual at v1.

In the cases (∧), (∨) and (σX) above, |{u : v0 → u}| = 1, while in the case of (mod),⋃
v0→u λt(u) = Ξ ∪∆ and {τt(u) : v0 → u} = {y : x0 →T y}.

I Remark 3.2. Exactly one of the four conditions (∧), (∨), (σX) and (mod) can apply to a
non-leaf node of a pre-tableau; henceforth we will refer to them as tableaux rules. Note that
in a pre-tableau branching only occurs at a (mod)-rule and may be infinite.

Suppose t is a pre-tableau for (T,Γ) and Ψ = {(ψi, vi) : i ∈ I} ⊆ FL(Γ)× t where I is an
initial segment of natural numbers. Ψ is called a trace from (ψ, v) if (ψ0, v0) = (ψ, v) and
there exists a path P in t and natural number n such that for every i ∈ I,

vi = P(n+ i),
ψi ∈ λt(vi),
if vi is a leaf or ψi ∈ Prop ∪Prop is active at vi then i+ 1 /∈ I,
if i + 1 ∈ I and ψi is active at vi then ψi+1 is an immediate subformula of ψi that is
residual at vi+1,
if i+ 1 ∈ I and ψi is not active at vi then ψi+1 = ψi.

In each infinite trace (i.e. if I is infinite) there exists a variable that appears infinitely
often and subsumes all other infinitely occurring variables. If this unique variable is a
µ-variable then the trace is called a µ-trace; otherwise it is a ν-trace.

I Definition 3.3. A pre-tableau for (T,Γ) is a tableau if every infinite trace is a ν-trace.

The following theorem which provides a characterisation of satisfaction in terms of the
existence of tableaux is folklore; see for example [7].

I Theorem 3.4. T |=
∧

Γ if and only if there is a tableau for (T,Γ).

B. Afshari and G.E. Leigh 37

3.2 Order-types of tableaux
Fix a TTS T and a sequent Γ. To each tableau for (T,Γ) and set of µ-variables X one can
assign an order-type with respect to X in a natural way. The order-type of ψ at a node v,
denoted by αψ,v,X , is defined recursively as follows. If there exists a trace Ψ = {(ψi, vi) : i ∈
I} from (ψ, v) such that for infinitely many i ∈ I, ψi has the form µXψ′ for some X ∈ X ,
or there are no traces Ψ = {(ψi, vi) : i ∈ I} from (ψ, v) for which ψi has the form µXψ′ for
some i ∈ I and X ∈ X , then αψ,v,X = 0. Otherwise,

if ψ = µXψ′ is active at v and X ∈ X then αψ,v,X = αψ′,u,X + 1 where u is the unique
successor of v in the tableau,
if ψ is not of the form µXψ′ for some X ∈ X or not active at v then αψ,v,X is the
supremum of αψ1,v1,X for which there exists a trace Ψ = {(ψi, vi) : i ∈ I} from (ψ, v).

I Definition 3.5. The order-type with respect to X of a tableau t for (T,Γ) is the ordinal
sup{αϕ,ρt,X : ϕ ∈ Γ}. A tableau is an α-tableau with respect to X if its order-type with
respect to X is no greater than α.

To establish the connection between the closure ordinal of a formula and order-types of
the corresponding tableaux we show that if ϕ is alternation-free and X a set of µ-variables,

x ∈ ||ϕα||TV iff there exists an α-tableau for (T �x , ϕ) with respect to X .

We will prove the result for X = {X}; the above statement is a direct generalisation of the
next lemma.
I Lemma 3.6. Suppose ψ(Y) is a formula with at most Y free and X a variable not occurring
in ψ. Let X = {X} and T be a TTS. Then x ∈ ||ψ(µXϕ)α||TV if and only if there exists an
α-tableau for

(
T �x , ψ(µXϕ)

)
with respect to X .

Proof. By transfinite induction on α. For the base case suppose α = 0. We want to show

x ∈ ||ψ(Z)||TV[Z 7→∅] iff there exists a 0-tableau
(
T �x , ψ(µXϕ)

)
.

Notice x ∈ ||ψ(Z)||TV[Z 7→∅] if and only if there is a tableau for
(
T �x , ψ(⊥)

)
. Consider

a tableau for
(
T �x , ψ(⊥)

)
. Since ⊥ cannot appear in the label of any node, this tableau

can be used to create a tableau for
(
T �x , ψ(µXϕ)

)
in a trivial way: replace ⊥ by µXϕ at

relevant positions. The order-type of the emerging tableau is 0 as µXϕ can never appear in
any trace. Conversely, since a tableau of order-type 0 means the (µX)-rule is never applied,
replacing occurrences of µXϕ by ⊥ in a tableau for

(
T �x , ψ(µXϕ)

)
yields a tableau for

ψ(⊥).
For the successor case we want to show

x ∈ ||ψ(µXϕ)α+1||TV iff there exists an (α+ 1)-tableau
(
T �x , ψ(µXϕ)

)
.

Note that x ∈ ||ψ(µXϕ)α+1||TV if and only if x ∈ ||(ψ ◦ ϕ)(µXϕ)α||TV , if and only if there
exists an α-tableau for

(
T �x , (ψ ◦ ϕ)(µXϕ)

)
by the induction hypothesis. Hence it suffices

to show how to construct an (α + 1)-tableau for
(
T �x , ψ(µXϕ)

)
from an α-tableau for(

T �x , ψ ◦ϕ(µXϕ)
)
and vice versa. Given an α-tableau t for

(
T �x , ψ ◦ϕ(µXϕ)

)
, along every

path look for the first node v with λt(v) = Γ, ϕ(µXϕ) for some Γ, and replace all occurrences
of ϕ(µXϕ) by µXϕ in nodes u ≤t v. The sequent at v has therefore become Γ, µXϕ.
Between v and its successors, insert a new node labelled by Γ, ϕ(µXϕ). The added transition
is a valid (µX)-rule so the resulting tableau is readily seen to be a tableau for

(
T �x , ψ(µXϕ)

)
.

Moreover, all traces from (µXϕ, v) have order-type at most α + 1 and indeed, the tableau

CSL’13

38 On closure ordinals for the modal µ-calculus

for
(
T �x , ψ(µXϕ)

)
has order-type α + 1. Similarly, by replacing occurrences of µXϕ by

ϕ(µXϕ) at the relevant nodes in an (α+1)-tableau for
(
T �x , ψ(µXϕ)

)
and removing the first

application of a (µX)-rule on every trace one obtains an α-tableau for
(
T �x , ψ ◦ ϕ(µXϕ)

)
.

For the limit case suppose x ∈ ||ψ(µXϕ)α||TV . Let q be a fresh proposition and T q a new
TTS obtained by adjusting the labelling so that q holds at all nodes belonging to ||(µXϕ)α||TV
i.e.

λT q (x) =
{
λT (x) ∪ {q}, if x ∈ ||(µXϕ)α||TV ,
λT (x), otherwise.

Since ||ψ(µXϕ)α||TV = ||ψ(q)||T qV and ψ(q) is closed, there is a tableau t for (T q�x , ψ(q)) of
order-type 0. It is possible that there are nodes of this tableau at which q is active. The key
to obtaining a tableau for

(
T �x , ψ(µXϕ)

)
lies in replacing the occurrences of q at these nodes

by tableaux for µXϕ of the relevant order-type. Suppose λt(v) = 2Γ,3∆,Θ, q, τt(v) = y, q
is active at v and for no u <t v is q active at u. Let β < α be such that y ∈ ||(µXϕ)β ||TV . By
the main induction hypothesis there is a β-tableau for (T �y , µXϕ). We can combine this
tableau with the sub-tableau t�v to obtain a β-tableau tv for (T q�y ,2Γ,3∆,Θ, µXϕ). Now
we replace t�v by tv in t, substitute each occurrence of q by µXϕ in the trace from the root
to (q, v) and repeat the procedure. In the limit a tableau for (T �x , ψ(µXϕ)) is obtained.
Moreover, the order-type of this tableau can be no greater than α.

The converse direction is equally straight forward. J

I Corollary 3.7. Suppose ϕ is a closed formula and X a set of µ-variables occurring in ϕ. For
an arbitrary TTS T , set αT to be 0 if T 6|= ϕ, and otherwise the infimum of the order-types
of all possible tableaux for (T, ϕ) with respect to X . Then COX (ϕ) = sup{αT : T a TTS}.

With corollary 3.7 in mind, in order to rule out certain ordinals being closure ordinals
we require a notion of minimality of order-types for tableaux.
I Definition 3.8. A tableau t for (T,Γ) is minimal if there are no tableau for (T,Γ) with
smaller order-type, and absolutely minimal if for every node v ∈ t, t�v is a minimal tableau
for (T �τt(v) , λt(v)).
I Remark 3.9. If T |= ϕ then a minimal tableau t for (T, ϕ) exists. Moreover, as T �τt(v) |=∧
λt(v) for each v ∈ t, the existence of an absolutely minimal tableau for (T, ϕ) is also

guaranteed.
As a refinement of lemma 3.6 for limit ordinals we have the following.

I Proposition 3.10. Suppose ϕ is a formula with closure ordinal ω.α > 0 with respect to a
set X of µ-variables. Then there exists a TTS T and a minimal tableau for (T,2ϕ) with
order-type ω.α with respect to X .

Proof. By corollary 3.7, for every β < ω.α there exists a TTS Tβ such that every tableau for
(Tβ , ϕ) has order-type greater than β. Let T be the TTS obtained by extending the disjoint
union of {Tβ : β < ω.α} by a fresh node ρT whose immediate successors are {ρTβ : β < ω.α}.
As T |= 2ϕ, there exists a tableau for (T,2ϕ). Moreover, every minimal tableau for (T,2ϕ)
has order-type ω.α with respect to X . J

3.3 Closure ordinals for the alternation-free fragment
In this section we determine upper bounds on the closure ordinals of alternation-free formulæ.
The analysis breaks into two parts. First we prove that if an alternation-free formula ϕ has
closure ordinal strictly less than ω2 with respect to its external µ-variables, then this ordinal

B. Afshari and G.E. Leigh 39

is bounded by ω.22|ϕ|+2 . Although primary formulæ can yield ordinals arbitrary close to ω2

(from below), in the second part we show that the closure ordinal of any alternation-free
formula is strictly less than ω2.

We need only consider order-types for tableaux with respect to particular classes of µ-
variables. Given a formula ϕ, a set of variables X of ϕ is called principal if whenever X ∈ X
appears within the scope of a quantifier σY in ϕ, also Y ∈ X . Let Xϕ denote the largest
principal set containing only µ-variables of ϕ.

An ordinal assignment on a tree t is a function o : t→ On such that if x, y are nodes in
t and x ≤t y then o(y) ≤ o(x). A tableau t for (T,Γ) induces a natural ordinal assignment
on itself, denoted ot, setting ot(u) = sup{αψ,u,XΓ : ψ ∈ λt(u)} for every u ∈ t, where
XΓ =

⋃
ϕ∈Γ Xϕ. Furthermore, the same tableau induces an ordinal assignment on T , also

denoted ot, by defining ot(x) = sup{ot(u) : u ∈ t∧τt(u) = x} for each x ∈ T . The order-type
of a tableau t, denoted o(t), is the ordinal ot(ρt). A tableau is an α-tableau if its order-type
is no greater than α.
I Lemma 3.11. If T |= ϕ is a TTS with an infinite path x1 <T x2 <T · · · then there exists
k such that for every Γ ⊆ FL(ϕ), every absolutely minimal tableau t for (T,Γ) and every
l > k, ot(xl) = 0.

Proof. Suppose the contrary, namely for every i there exists Γi ⊆ FL(ϕ) and absolutely
minimal tableau ti for (T,Γi) such that oti(xi) > 0. For each m and i, let ∆m

i ⊆ P(FL(ϕ))
be the collection of sequents that are associated with xm by ti,

∆m
i = {∆ : ∃u ∈ ti(τti(u) = xm ∧ λti(u) = ∆)}.

For each m, there exists an infinite set I ⊆ ω with ∆m
i = ∆m

j for every i, j ∈ I. Thus it
is possible to define a sequence (Sm)n∈ω such that for each m,
1. Sm is an infinite set,
2. Sm+1 ⊆ Sm,
3. for every i, j ∈ Sm, ∆m

i = ∆m
j .

As for each i the tableau ti is absolutely minimal, we have in fact

∀i, j ∈ Sm oti(xm) = otj (xm)

for every m. Let f : ω → S0 be a strictly increasing function such that f(m) ∈ Sm for every
m and set αm = otf(m)(xm). Then the sequence (αm)m∈ω is a weakly decreasing sequence
of ordinals as

αm+1 = otf(m+1)(xm+1)
≤ otf(m+1)(xm), since xm <T xm+1,
= otf(m)(xm), since Sm+1 ⊆ Sm,
= αm.

As f(m) ≥ m, we also have that αm = otf(m)(xm) ≥ otf(m)(xf(m)) > 0. Thus, the
sequence (αm.|ϕ|)m∈ω forms an infinite, strictly decreasing sequence of ordinals. J

Given T , Γ and a non-empty collection S of tableaux for (T,Γ), we define the S-pruning
of T to be the TTS T ′ that alters T by setting, for each propositional constant q not
appearing in Γ, q 6∈ λT ′(x) iff for some s ∈ S and all y <T x, os(y) > 0. If S is the collection
of all absolutely minimal tableaux for (T,Γ), we write Γ ? T for the S-pruning of T .

CSL’13

40 On closure ordinals for the modal µ-calculus

I Lemma 3.12 (Well-foundedness lemma). If T is a TTS, Γ is a finite set of formulæ all satisfied
by T and q is a propositional constant not occurring in Γ then {x ∈ Γ ? T : q 6∈ λΓ?T (x)}
forms a well-founded initial sub-tree of T .

Proof. Immediate consequence of lemma 3.11. J

The next three lemmata relate tableaux on Γ ? T and T . Let T be a TTS, Γ a sequent
and q a propositional constant not occurring in Γ.
I Lemma 3.13. If y ∈ T and os(y) ≤ α for every absolutely minimal tableau s for (T,Γ)
then the set {x ∈ Γ ? T : q 6∈ λΓ?T (x) ∧ y ≤T x} forms a well-founded tree of order-type no
greater than |Γ|.(1 + α).

Proof. By transfinite induction on α. Notice that if τs(u) = y and os(u) > 0 then every
trace in s�u must pass through a (µX)-rule for which µXϕ is active, within the first |Γ|
occurrences of a (mod)-rule. J

I Lemma 3.14. If {x ∈ Γ ? T : q 6∈ λΓ?T (x) ∧ y ≤T x} forms a non-empty (well-founded)
tree of order-type ω.α then
1. for every ∆ ⊆ Γ and every absolutely minimal tableau t for (T,∆), ot(y) ≤ ω.α,
2. there exists an absolutely minimal tableau s for (T,Γ) such that os(y) = ω.α.

Proof. 1 can be proved via transfinite induction, noting that since Γ is a set of guarded
formulæ, between any two applications of the (σY)-rule on the same trace, the (mod)-rule
must have been applied.

We prove 2. Suppose, in search of a contradiction, that for every absolutely minimal
tableau s for (T,Γ), os(y) < ω.α. Consider the ordinal

δ = sup{os(y) : s is an absolutely minimal tableau for (T,Γ)}.

By lemma 3.13 it must be the case that δ = ω.α. But then for every β < α there exists
an absolutely minimal tableau s for (T,Γ) such that β < os(y) < δ; contradiction. J

For a formula ϕ ∈ Γ, let ϕq denote the formula resulting from replacing in ϕ each X ∈ Xϕ
by q̄ ∧X, and set Γq = {ϕq : ϕ ∈ Γ}.
I Lemma 3.15. There exists an α-tableau for (T,Γ) iff there is an α-tableau for (Γ ? T,Γq).

Proof. Suppose t is an α-tableau for (T,Γ). Then there exists an absolutely minimal tableau
t′ for (T,Γ) with o(t′) ≤ α. An o(t′)-tableau for (Γ ? T,Γq) can be readily constructed from
t′. For the converse, let t be a tableau for (Γ ?T,Γq). By the definition of Γq, it follows that
if ot(y) > 0 then y ∈ {x ∈ Γ ? T : q 6∈ λΓ?T (x)} whence t can be modified to yield a tableau
for (T,Γ) with the same order-type. J

Lemma 3.15 together with lemma 3.14 provide immediate upper bounds on the order-
types of sub-tableaux for (Γ ? T,Γq). We can now expand on these properties to obtain a
more fine-grained version of lemma 3.14.

If B is a collection of nodes in a tableau s, ee write v ≤s B if for some u ∈ B, v ≤s u.
Let s be an arbitrary tableau, s0 a pruning of s and suppose A ⊆ s0 is the collection of
leaves of s0 that are inner nodes of s. A filter over (s, s0) is a set B ⊆ A such that for every
v ≤s B if {u : v →s u and u ≤s A} is infinite, so is {u : v →s u and u ≤s B}. An ordinal
for the filter B is any α such that for every v ≤s B, if {u : v ≤s u ∈ A} is infinite then for
every β < α there is w ∈ A such that v ≤s w and β ≤ os(w). It follows that for any tableau
s and pruning s0:

B. Afshari and G.E. Leigh 41

F t
3i

F t
3j

v

c(v)

F t
3i

c(v1) c(v2)
c(v3)

Figure 2 Tableaux t and t̂ in the proof of lemma 3.18.

I Lemma 3.16. If o(s) < α+ o(s0) then there is no filter over s with ordinal α+ ω.

I Lemma 3.17. If every ordinal for every filter over s is bounded by α, then o(s) ≤ α+o(s0).

Proof. Both lemmata are proved by transfinite induction on o(s). For the second lemma,
notice that for u ≤s B, if os0(u) = ω.β and for every v > u, os0(v) < ω.β, then for
os(u) > α+ os0(u) to be the case we must have os(v) > α+ os0(u) for some v ≥s0 u. J

We are now ready to prove the core lemma.

I Lemma 3.18. Let N = 22|ϕ|+2 . If there is a minimal tableau for (T, ϕ) of order-type
α ∈ [ω.N, ω2) then there exists a TTS T̂ and a minimal tableau for (T̂ , ϕ) with order-type
strictly greater than α.

Proof. Suppose α = ω.m1 + m2 and q is a constant not appearing in ϕ. Let T ′ = ϕ ? T .
For each i ≤ m1 define

Fi = {y ∈ T ′ : {x ∈ T : q /∈ λT ′(x) ∧ y ≤T x} is a tree of order-type ω.i}.

Since there is a minimal tableau for (T, ϕ) of order-type α ≥ ω.N , the set Fi is non-
empty for every i ≤ N . Moreover, by lemma 3.15 there exists a tableau for (T ′, ϕq) with
order-type precisely α. Denote this tableau by t and set F ti = {v ∈ t : τt(v) ∈ Fi}. Let

∆i = {∆ : there exists v ∈ F ti and an ω.i-tableau for (T ′�τt(v) ,∆q)}.

Notice ∆i is non-empty for each 0 < i ≤ N . Moreover, as ∆i ⊆ P(FL(ϕ)) and m1 ≥ N ,
there exists 0 < i < j ≤ m1 such that ∆3i = ∆3j and ∆3i−1 = ∆3j−1. To each v ∈ F t3i is
therefore associated a node c(v) ∈ F t3j such that for every ∆ ⊆ FL(ϕ),
1. there is a tableau for (T ′�τt(v) ,∆q) if and only if there is a tableau for (T ′�τt(c(v)) ,∆q),
2. there exists an ω.(3i−1)-tableau for (T ′�τt(v) ,∆q) if and only if there exists an ω.(3j−1)-

tableau for (T ′�τt(c(v)) ,∆q).

Let t̂ be the tableau obtained from t by replacing each node v ∈ F t3i by t�c(v). t̂ is a
tableau for (T̂ , ϕq) where T̂ is obtained from T ′ by replacing the sub-tree at each τt(v) ∈ F3i
by T ′�τt(c(v)). Denote by A the set of nodes of t̂ corresponding to this change.

Let ŝ be an absolutely minimal tableau for (T̂ , ϕ) and Â = {u ∈ ŝ : ∃v ∈ A τŝ(u) = τt̂(v)}.
It suffices to prove that o(ŝ) > α = ω.m1 + m2. Since (∆3i,∆3i−1) = (∆3j ,∆3j−1),
lemma 3.14 implies that for every u ∈ Â there is a tableau, say tu, for (T ′�τŝ(u) , λŝ(u)) with
o(tu) ≤ ω.3i, and o(tu) ≤ ω.(3i− 1) if oŝ(u) ≤ ω.(3j − 1). From ŝ we define a new tableau

CSL’13

42 On closure ordinals for the modal µ-calculus

s for (T ′, ϕq) replacing the sub-tableau ŝ�u by tu for each u ∈ Â. We remark that s and ŝ
have a common initial part, namely the pruning s0 = s ∩ {v : v ≤s F3i}.

Assume o(ŝ) ≤ α. Every ordinal for a filter over (s, s0) is no greater than ω.3i by
lemma 3.14, so by lemma 3.17, o(s0) ≥ ω.(m1− 3i) +m2. Notice also that o(s0) < ω.(m1−
3i) +ω. But then o(ŝ) ≤ ω.m1 +m2 < ω.(3i+ 1) + o(s0) and lemma 3.16 implies that every
ordinal for a filter over ŝ is strictly below ω.(3i + 2). Since 3i + 2 ≤ 3j − 1, in forming s a
sub-tableau of order-type < ω.(3i+ 2) at A is replaced by a tableau of order-type ω.(3i−1).
Therefore every filter over (s, s0) has ordinal ≤ ω.(3i− 1), whence

o(s) ≤ ω.(3i− 1) + o(s0)
< ω.(3i− 1) + ω.(m1 − 3i) + ω ≤ α

Thus by lemma 3.15 there exists a tableau for (T, ϕ) with order-type β < α, yielding a
contradiction. J

I Corollary 3.19. Let ϕ be a closed formula of alternation-free µ-calculus. If ϕ has closure
ordinal α < ω2 with respect to Xϕ, in fact α < ω.N where N = 22|ϕ|+2 .

Proof. Suppose COXϕ(ϕ) = α ∈ [ω.N, ω2). Proposition 3.10 implies the existence of a TTS
T and an absolutely minimal tableau t for (T,2ϕ) with order-type α. By lemma 3.18 there
exists a TTS T̂ |= 2ϕ and a minimal tableau ŝ for (T̂ ,2ϕ) with order-type greater than α,
whence lemma 3.6 implies COXϕ(ϕ) ≥ COT̂ ,Xϕ(ϕ) > α. J

It remains to rule out closure ordinals of ω2 or greater. To achieve this a more general
version of the argument in the preceding proof is required.
I Lemma 3.20. If t is a minimal tableau for (T, ϕ) and o(t) ≥ ω2, then there exists a TTS
T̂ and a minimal tableau for (T̂ , ϕ) with order-type strictly greater than o(t).

Proof. Suppose t is a minimal tableau for (T, ϕ) and ω2 ≤ ω.αt ≤ o(t) < ω.(αt + 1).
Set T0 = ϕ ? T . Let q not appear in ϕ and for each k < ω let the set Fk be defined
analogously to the previous lemma as the collection of nodes in ϕ?T such that the sub-tree
{x ∈ T0 : q 6∈ λT0(y)∧y ≤T x} has order-type ω.k. Now Fk is non-empty for every k < ω, so
there exist infinitely many indices, 0 < i < j(1) < j(2) < . . . such that j(n+ 1) ≥ j(n) + 2
and (∆i,∆i−1) = (∆j(n),∆j(n)−1) for every n. Let cm : Fi → Fj(m) be the function such
that for each x ∈ Fi, ∆ ⊆ FL(ϕ) and every m < ω,
1. there is a tableau for (T0�x ,∆q) if and only if there is a tableau for (T0�cm(x) ,∆q),
2. there is a tableau for (T0�x ,∆q) with order-type ω.(i−1) if and only if there is a tableau

for (T0�cm(x) ,∆q) with order-type ω.(j(m)− 1).

Beginning with cm, one can define iterated versions, cαm for each α: for i ∈ Fk with k ≥ i,
c0m(x) = T0�x and c1m(x) is defined to be the result of replacing in T0�x each node y ∈ Fi by
the tree cm(y); cα+1

m (x) is the tree c1m(x) in which each node y ∈ Fi is replaced by cαm(y);
for a limit ordinal α, cαm(x) is the tree c1m(x) in which, given a bijection g0 : Fi → ω,

if α = ω.γ + ω then each node y ∈ Fi is replaced by the tree cω.γ+g0(y)
g0(y) (y),

if α = ω.α0, α0 is a limit ordinal and g1 : Fi → α0 is a bijection, then each node y ∈ Fi
is replaced by the tree cω.g1(y)

g0(y) (y).

The following two lemmata are obtained by generalising the argument in lemma 3.18
making essential use of lemmata 3.16 and 3.17.
I Sub-lemma 1. There exists a tableau for (cαm(x),∆q) if and only if there exists a tableau
for (T0�cm(x) ,∆q).

B. Afshari and G.E. Leigh 43

I Sub-lemma 2. If x ∈ Fi and there exists a tableau for (cαm(x),∆q) with order-type < ω.α

then there exists an ω.(i− 1)-tableau for (T0�x ,∆q).
The construction of the trees cαm(x) and the two previous sub-lemmata suffice to prove

the main lemma. By lemma 3.15, t naturally induces an absolutely minimal tableau for
(T0, ϕq) of the same order-type. Let Tαt0 be the tree obtained by replacing each sub-tree
T0�y for y ∈ Fi by cαt+ωi (y). It is easy to see that Tαt0 |= ϕ ∧ ϕq.

Let ŝ be an arbitrary absolutely minimal tableau for (Tαt0 , ϕq) and s the collapse of ŝ to
a tableau for (T0, ϕq): on each path replace the first v ∈ ŝ such that Tαt0 �τŝ(v) = cαt+ωi (y)
for some y ∈ Fi by the tableau for (T0�y , λŝ(v)) given by sub-lemma 2, if oŝ(v) < ω.αt + ω,
and by sub-lemma 1 otherwise. Let S0 denote the collection of absolutely minimal tableaux
for T0, and set S′0 to be the collection of tableaux for (T0, ϕq) that arise as the collapse, in
the manner described above, of an absolutely minimal tableau for (Tαt0 , ϕq). If there is a
minimal tableau for (Tαt0 , ϕq) with order-type strictly greater than o(t) then we are done.
Otherwise, for every r′ ∈ S′0 there exists r ∈ S0 such that for all x, if or′(x) = ω.i then
or(x) > ω.i. Now set T1 to be the S′0-pruning of T0. T1 has the same domain as T0 and
hence T . Moreover, if {z ∈ T1 : q 6∈ λT1(z) ∧ x ≤T z} has order-type ω.i then there exists
x <T y such that the tree {z ∈ T0 : q 6∈ λT0(z) ∧ y ≤T z} has order-type ω.i. Let the set
S1 comprise all absolutely minimal tableaux for (T1, ϕq). Any r ∈ S1 is also a tableau for
(T0, ϕq) and hence also for (T, ϕ). Thus consider tableaux for (Tαt1 , ϕq) and set S′1 to be the
collection of tableaux that are obtained from the collapse of absolutely minimal tableaux
for (Tαt1 , ϕq). Define S2 to be the set of absolutely minimal tableaux for the S′1-pruning
of T1. Similarly define S3, S4, etc. Every tableau in Sn+1 “moves” the ω.i-frontier of T
closer to the root. Thus, either for some n there exists a minimal tableau for (Tαtn , ϕq) with
order-type strictly greater than o(t), or for every n there exists x ∈ T and tableau sj ∈ Sj
for every j ≤ n such that osj (x) < osj+1(x). As the latter will yield a contradiction, we are
done. J

As a consequence of lemmata 3.18 and 3.20 the closure ordinals of µ-formulæ will be
sufficiently bounded.

I Theorem 3.21. Let X be a principal set of µ-variables for a closed and alternation-free
formula ϕ. Then the closure ordinal of ϕ with respect to X , if it exists, is strictly less than
ω.22|ϕ|+2 .

I Corollary 3.22. Suppose ϕ is a closed formula in the alternation-free fragment of the µ-
calculus and X is a principal set of ν-variables only. Then COX (ϕ) < ω.22|ϕ|+2 if the former
ordinal exists.

Proof. Let ϕ̄ denote the dual of ϕ and let X be a set of ν-variables principal in ϕ. That
COX (ϕ) = COX (ϕ̄) follows from the dual semantics of the µ-calculus, whence theorem 3.21
implies COX (ϕ) < ω.22|ϕ|+2 . J

I Theorem 3.23. Let ϕ be a closed alternation-free formula in guarded form and let X be
the set of variables occurring in ϕ. If COX (ϕ) exists then COX (ϕ) < ω2.

Proof sketch. Suppose ϕ ∈ Σn+1 in the weak hierarchy has closure ordinal κ with respect
to the set of all variables in ϕ. By theorem 3.21 all µ-variables that do not appear under
the scope of a ν-variable close off at some ordinal α < ω2. Moreover, the structure of ϕ
will induce, for each closed weak Πn sub-formula ψ, a particular class of transition systems,
say T , such that ψ has closure ordinal κ with respect to trees in T . In the case n = 1, by
relativising the previous arguments to the class T , one may deduce ψ has closure ordinal,

CSL’13

44 On closure ordinals for the modal µ-calculus

say αψ, strictly less than ω2 with respect to T . As the closure ordinal of ϕ is no greater
than the sum of α and ordinals αψ, COX (ϕ) < ω2. J

A profound consequence of lemma 3.20 and corollary 3.22 and one that also applies
to theorem 3.23, is that there is no essential dependency between closure ordinals and
alternation depth for the alternation-free fragment: the choice of N in these results depends
only on the logical complexity of ϕ and the dependency on the alternation depth of ϕ is
essentially trivial, necessitating a smaller increase in bounds than for the connectives and
quantifiers. Whether this remains the case for formulæ outside the alternation-free fragment
is unclear.

Acknowledgements. The authors’ research was supported by the Engineering and Phys-
ical Sciences Research Council UK (EP/G012962/1 & EP/F036361/1) and the Arts and
Humanities Research Council UK (AH/H039791/1) respectively. The authors also wish to
thank the anonymous referees for their insightful comments.

References
1 J.C. Bradfield. The modal mu-calculus alternation hierarchy is strict. Theoretical Computer

Science 195(2)(1998), 133–153.
2 J.C. Bradfield and C. Stirling. Modal mu-calculi. In: P. Blackburn, J. Van Benthem and

F. Wolter eds. Handbook of Modal Logic, Studies in Logic and Practical Reasoning 3,
Elsevier, 721–756, 2006.

3 M. Czarnecki. How fast can the fixpoints in modal µ-calculus be reached? In: L. San-
tocanale, ed. Fixed Points in Computer Science 2010, Brno, August 2010, 35–39, 2010.

4 O. Friedmann and M. Lange. The modal µ-calculus caught off guard. In: K. Brünnler and
G. Metcalfe eds. Proceedings of the 20th International Conference on Automated Reasoning
with Analytic Tableaux and Related Methods, Bern, July 2011, LNCS 6793, 149–163, 2011.

5 O. Kupferman and M.Y. Vardi. Π2 ∩ Σ2 ≡ AFMC. In: J.C.M. Baeten, J.K. Lenstra,
J. Parrow and G.J. Woeginger, eds. Proceedings of the 30th International Colloquium
on Automata, Languages and Programming, Eindhoven, July 2003, LNCS 2719, 697–713,
2003.

6 D.E. Muller, A. Saoudi and P.E. Schupp. Alternating automata, the weak monadic theory
of the tree, and its complexity. In: L. Kott, ed. Proceedings of the 13th International
Colloquium on Automata, Languages and Programming, Rennes, July 1986, LNCS 226,
275–283, 1986.

7 D. Niwiński and I. Walukiewicz. Games for the µ-calculus. Theoretical Computer Science
163(1–2)(1996), 99–116.

Realizability and Strong Normalization for a
Curry-Howard Interpretation of HA + EM1
Federico Aschieri∗1, Stefano Berardi2, and Giovanni Birolo3

1 Laboratoire de l’Informatique du Parallélisme (UMR 5668, CNRS, UCBL)
École Normale Supérieure de Lyon – Université de Lyon, France

2 Dipartimento di Informatica, Università di Torino, Italy
3 Dipartimento di Matematica, Università di Torino, Italy

Abstract
We present a new Curry-Howard correspondence for HA + EM1, constructive Heyting Arithmetic
with the excluded middle on Σ0

1-formulas. We add to the lambda calculus an operator ‖a which
represents, from the viewpoint of programming, an exception operator with a delimited scope,
and from the viewpoint of logic, a restricted version of the excluded middle. We motivate the
restriction of the excluded middle by its use in proof mining; we introduce new techniques to prove
strong normalization for HA + EM1 and the witness property for simply existential statements.
One may consider our results as an application of the ideas of Interactive realizability, which we
have adapted to the new setting and used to prove our main theorems.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Interactive realizability, classical Arithmetic, witness extraction, delim-
ited exceptions

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.45

1 Introduction

From the beginning of proof theory many results have been obtained which clearly show
that classical proofs have a constructive content. The seminal results are Hilbert’s epsilon
substitution method (see e.g [23]) and Gentzen’s cut elimination [12]. Then, several other
techniques have been introduced: among them, Gödel’s double negation translation followed
either by the Gödel functional interpretation [11] or Kreisel’s modified realizability [18] and
Friedman’s translation [10]; the Curry-Howard correspondence between natural deduction
and programming languages (see e.g. [27]).

In this paper we follow the Curry-Howard line of research. But what does it mean to
extract constructive content from a natural deduction proof? Essentially, it means interpreting
the positive connectives ∨,∃ as positively as possible, that is, recovering information about
truth as much as possible. The problem is that, even in intuitionistic Arithmetic, a disjunction
A ∨ B can be proven without explicitly proving A or proving B; a proof of an existential
statement ∃αNA may be accepted even if it does not directly provide a witness, i.e. a number
n and a proof that A[n/α] holds. It is the very shape of the natural deduction rules that
allows that: there are not only inference rules for direct arguments – introduction rules – but
also indirect elimination rules. One can then prove a disjunction by an elimination rule, for

∗ This work was supported by the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within
the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research
Agency (ANR)

© Federico Aschieri, Stefano Berardi, and Giovanni Birolo;
licensed under Creative Commons License CC-BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca ; pp. 45–60

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.45
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

46 Realizability and Strong Normalization for HA + EM1

example as a consequence of a general inductive argument for a formula ∀αN. A(α) ∨B(α)
and then conclude A(0) ∨B(0). It is a remarkable result of proof theory that it is possible
to give a complete simple classification of the detours that can occur in an intuitionistic
arithmetical proof, which are small pieces of indirect reasoning that can be readily eliminated
through a simple proof transformation. Once this detours are eliminated, one obtains direct
proofs of disjunctions or existential statements (see Prawitz [26]).

For classical Arithmetic, the situation may appear desperate: the double negation
elimination rule ¬¬A → A is a so indirect way of arguing, that seems impossible to be
eliminated; the excluded middle A ∨ ¬A allows a disjunction to be asserted without having
the slightest idea of which side holds. Indeed, for a long time, there has not been a set of
reduction rules, nor a notion of classical detour, that worked for proofs containing all the
logical connectives. It was Griffin [15] who gave a very elegant reduction rule for eliminating
the double negation elimination. If A is concluded from ¬¬A and then used to prove ⊥, then
one can capture the part of the proof that surrounds A to obtain a proof of ¬A and give it
to the premiss ¬¬A in order to get a more direct proof of ⊥. While this idea was initially
applied only to negative fragments of Arithmetic, it became clear that it could be adapted
even to a full set of connectives.

It was in that way that control operators entered the scene. The proof reductions
for classical Arithmetic can be implemented by a Curry-Howard correspondence between
proofs and functional languages enriched with operators that can capture the computational
context. Several languages have been put forward for that aim. Griffin proposed the lambda
calculus plus call/cc, solution that has been developed and extended by Krivine [21, 22] with
remarkable success. Parigot [25] put forward the λµ-calculus, which enjoys many of the nice
properties of the lambda calculus that are instead lost when using call/cc; de Groote [14]
extended the λµ-calculus in order to interpret primitively all the logical connectives.

After these works, it became evident that enriching functional languages with other "less
pure" computational constructs would allow to implement reduction rules for many mathem-
atical axioms. For example, Krivine used the instruction quote to provide computational
content to the axiom of dependent choice. Recently, Herbelin [16] has used the mechanism
of delimited exceptions to give special reduction rules for Markov’s principle.

The goal of this paper is to use a new combination of known computational constructs in
order to interpret Heyting Arithmetic HA with the excluded middle schema EM1, ∀αNP ∨
∃αNP⊥, where P is any atomic decidable predicate (see [1]) and P⊥ denotes the atomic
decidable predicate which is its complement. We shall give new reduction rules for HA + EM1,
and introduce a realizability semantics in order to investigate, describe and prove properties of
their behavior. We shall use delimited exceptions, and permutative conversions for disjunction
elimination. Permutative rules were introduced by Prawitz (see [26]) to obtain the subformula
property in first-order natural deductions: in our framework, they will naturally express
control operators. Delimited exceptions were used by de Groote [13] in order to interpret the
excluded middle in classical propositional logic with implication; by Herbelin [16], in order to
pass witnesses to some existential formula when a falsification of its negation is encountered.
We shall use exceptions in a similar way, and our work may be seen as a modification and
extension of some of de Groote’s and Herbelin’s techniques. Our reduction rules for the
classical principle EM1 are inspired by Interactive realizability [2, 3] for HA + EM1, which
describes classical programs as programs that make hypotheses, test them and learn by
refuting the incorrect ones. The interest of EM1 lies in the fact that this classical principle is
logically simple, yet it may formalize many classical proofs: for instance, proofs of Euclidean
geometry (like Sylvester conjecture, see J. von Plato [28]), of Algebra (like Dickson’s Lemma,

F. Aschieri, S. Berardi, and G. Birolo 47

see S. Berardi [7]) and of Analysis (those using Koenig’s Lemma, see Kohlenbach [17]).
We now give an high level explanation of our contributions and of how they compare to

other interpretations of classical proofs.

1.1 Excluded Middle versus Double Negation Elimination
As we have said, control operators have been mainly used to interpret primitively double
negation elimination, or some related principle (as the Pierce law: (¬A → A) → A). To
interpret the excluded middle with this approach, one first proves intuitionistically ⊥ (and
thus EM) from ¬EM and then applies the rules of double negation elimination or Pierce
law to obtain a proof term for EM. In this way, however, one does not address directly the
excluded middle and sticks to an implicit negative translation which eliminates it. But what
is classical logic if not the conception that formulas speak about models, and a formula is
either true or false? It is also evident that the real idea behind the constructivization of
classical logic is concealed in the proof of ¬¬EM: it is there that it is really determined what
is the use of the continuations produced by control operators and why it is needed.

In this paper, we give direct reduction rules for the excluded middle EM1. We treat it as
an elimination rule, as in [13] and in the actual mathematical practice:

Γ, a : ∀αNP ` u : C Γ, a : ∃αNP⊥ ` v : C
Γ ` u ‖a v : C

This inference is nothing but a familiar disjunction elimination rule, where the main premise
EM1 has been cut, since, being a classical axiom, it has no computational content in itself.
The proof terms u, v are both kept as possible alternatives, since one is not able to decide
which branch is going to be executed at the end. A problem thus arises when C is employed
as the main premise of an elimination rule to obtain some new conclusion. For example,
when C = A → B, and Γ ` w : A, one may form the proof term (u ‖a v)w of type B. In
this case, one may not be able to solve the dilemma of choosing between u and v, and the
computation may not evolve further: one is stuck.

1.2 Permutation Rules for EM1

We solve the problem as in [13] by adding permutation rules, as usual with disjunction. For
example, (u ‖a v)w reduces to uw ‖a vw. In this way, one obtains two important results:
first, one may explore both the possibilities, ∀αNP is true or ∃αNP⊥ is true, and evaluate uw
and vw; second, one duplicates the applicative context []w, which will be needed in case
of backtracking from the branch uw to vw. If C = A ∧ B, one may form the proof term
π0(u ‖a v), which reduces to π0u ‖a π0v, and has the effect of duplicating the context π0[].
Similar standard considerations hold for the other connectives. Thus permutation rules act
similarly to the rules for µ in the λµ-calculus, but are only used to duplicate step-by-step
the context and produce implicitly the continuation. Anyway, ‖ behaves like a control-like
operator.

1.3 Delimited Exceptions
The reductions that we put forward for the new proof terms u ‖a v are inspired by the
informal idea of learning by making falsifiable hypotheses. When normalizing a term u ‖a v,
we shall consider u as the active branch. The reason is that the hypothesis ∀αNP has
no computational content, and it is only a certificate serving to guarantee the correctness

CSL’13

48 Realizability and Strong Normalization for HA + EM1

of u. Therefore, one can “run” u making the hypothesis ∀αNP without the risk that the
computation will be blocked; on the contrary, the branch v cannot a priori be executed
without that risk, because the hypothesis ∃αNP⊥ has a computational content (a witness)
that may be requested in order to go on with the computation. That does not mean that
one is not free to first perform reductions inside v, but rather that one may not expect to
necessarily get useful results in that branch.

The informal idea expressed by our reductions is thus to assume ∀αNP and try to produce
some proof of C out of u by reducing inside u. The crucial intuition – recurring again
and again in proof theory – is that when C is a concrete statement, for example a simple
existential formula, one actually needs only a finite number of instances of ∀αNP to prove
it. Whenever u needs the truth of an instance P[n/α] of the assumption ∀αNP, it checks
it, and if it is true, it replaces it by its canonical proof which is just a computation. If all
instances P[n/α] of ∀αNP being checked are true, and no assumption ∀αNP is left (this is the
non-trivial part), then the normal form u′ of u is independent from ∀αNP and we found some
u′ : C. Remark that, in this case, we do not know whether ∀αNP is true or false, because u
only checked finitely many instances of it: all we do know is that the full hypothesis ∀αNP
is unnecessary in proving C. If instead some assumption of ∀αNP is left in u we are stuck.
There is only one way out of this impasse and can occur at any moment: u may find some
instance P[n/α] which is false, and thus refute the assumption ∀αNP. In this case the attempt
of proving C from ∀αNP fails, we obtain P⊥[n/α] and u raises the exception n; from the
knowledge that P⊥[n/α] holds, a canonical proof term ∃αNP⊥ is formed and passed to v: a
proof term for C has now been obtained and it can be executed.

In order to implement those reductions we shall use constant terms of the form H∀αP,
whose task is to take a numeral n and reduce to True if P[n/α] holds, otherwise raise an
exception. We shall also use a constant W∃αP⊥ denoting some unknown proof term for ∃αNP⊥,
whose task is to catch the exception raised by H∀αP. Actually, these terms will occur only
through typing rules of the form

Γ, a : ∀αNP ` [a]H∀αP : ∀αNP Γ, a : ∃αNP⊥ ` [a]W∃αP⊥ : ∃αNP⊥

where a is used just as a name of a communication channel for exceptions: if in u occurs a
subterm of the form [a]H∀αPn, where the closed expression P[n/α] is false, then u ‖a v reduces
to v[a := n], which denotes the result of the replacement of [a]W∃αP⊥ in v with the proof term
(n, True). From the viewpoint of programming, that is a delimited exception mechanism (see
de Groote [13] and Herbelin [16] for a comparison). The scope of an exception has the form
u ‖a v : C, with u the “ordinary” part of the computation and v the “exceptional” part. As
pointed out to us by H. Herbelin, the whole term u ‖a v can also be expressed in a standard
way by the constructs raise and try . . .with . . . in the CAML programming language.

1.4 Realizability and Prawitz Validity
We now have a set of detour conversions for HA + EM1: which notion of construction does
it determine? The normalization process, even in intuitionistic logic, tends to be obscure:
while the local meaning of reduction steps is clear, the global behaviour of the procedure is
harder to grasp. This is the reason why it is important to define proof-theoretic semantics,
in particular those who have the task of explaining what is a construction in intuitionistic
or classical sense. Realizability is one of those semantics. In analogy with the discussion in
Prawitz [26] about validity, one may classify realizabilities in two groups: those who give
priority to introduction rules and those who rather privilege elimination rules in order to
give meaning to logical connectives.

F. Aschieri, S. Berardi, and G. Birolo 49

Realizabilities based on introduction rules. In this case, one explains a logical constant
in term of the construction given by an introduction rule for that constant. For example,
a realizer of A ∧ B is a pair made by a realizer of A and a realizer B; a realizer of A ∨ B
contains either a realizer of A or a realizer of B together with an indication of which formula
is realized. Of course, this approach tends to work with constructive logics, which have
the disjunction and numerical existence properties. Prawitz’s notion of validity and Kreisel
modified realizability are witness to that. There is one exception: Interactive realizability
[3, 4], which explains positive classical connectives with introduction rules thanks to the use
of the concept of state of knowledge.

Realizability based on elimination rules. In this case, one describes the meaning of a logical
constant in terms of “performability of operations” or in terms of what can be obtained by the
elimination rules for that constant. This approach works very well for negative connectives,
and in fact is not very different from the one given by introduction rules: but since it has
a semantical flavor, it is usually the preferred one. At the time of Prawitz [26], it seemed
impossible that this approach could work also for positive connectives, given the circularity
involved in the elimination rules (in terms of logical complexity). It was only after Girard’s
reducibility [9], and the work of Krivine [19, 21], that the second order definition of A ∨B
as ∀X. (A → X) → (B → X) → X has been exploited for defining a realizability based
on elimination rules. While remarkable, this result makes classical realizabilities based on
elimination rules equivalent to some negative translation, re-proposing at the semantical
level the issue which is eliminated on the syntactical one. Indeed, all realizabilities proposed
for languages based on control operators are equivalent to some negative translation [24]
(not surprisingly, since these operators were originally devised to interpret directly double
negation elimination).

In this paper, we shall present a classical realizability borrowing ideas from both groups.
The treatment of negative logical constants will be à la Kreisel, while the positive ones will
be treated à la Prawitz. In particular the set of realizers of A ∨ B and of ∃αNA will be
constructed by an inductive definition whose base case is an introduction rule; the atomic
realizers will represent proofs in “extended” Post systems. This gives, first, an adaptation
of Interactive realizability to a language with exceptions and control operators; second, an
extension of Prawitz’s notion of validity to a system with classical principles. We find these
achievements interesting in their own right, because of the semantical meaning of validity
given by Prawitz [26]. It seems also that our approach is not equivalent in any straightforward
sense to a negative translation, in line with our desire of interpreting positive connectives as
positively as possible.

1.5 Witness Extraction and Strong Normalization
Thanks to realizability, we shall provide a new semantical proof of a normal form result
syntactically proven by Birolo [8], expressing that any closed normal proof term whose type is
a simply existential formula ∃αNP provides a witness through the process sketched above (that
is, one never gets stuck with simply existential formulas); and a new strong normalization
result, proving that all reduction paths terminate into a normal form. We anticipate that in
our calculus all the reduction strategies are allowed, therefore strong normalization is not
the same thing as weak normalization, as for example in Krivine’s realizability [19]. This
freedom is desirable, because it avoids artificial programming constraints which complicate
the writing of realizers.

We remark that we cannot prove the witness property for all existential statements of
HA+EM1. Indeed, using EM1 we may prove paradoxical statements like the drinker principle

CSL’13

50 Realizability and Strong Normalization for HA + EM1

∃αN ∀βN.P(α)→ P(β), for P primitive recursive, but for some P there is no map computable
in the parameters of P providing some n such that ∀βN.P(n) → P(β). However we prove
the witness property for all Π0

2-statements of HA + EM1, which include all statements about
convergence of algorithms, therefore all statements more interesting for Computer Science.
The witness property we prove is a particular case of the witness property which holds for
the entire classical arithmetic by the results of Gödel: the interest of our results lies in the
new reduction set we provide and in their semantics.

1.6 Non-Determinism
We anticipate that our set of reductions is non-deterministic, i.e. non-confluent. Whenever
there are two false instances P[n/α], P[m/α] of an hypothesis ∀αNP in some EM1-rule u ‖a v,
in u it may be raised either the exception n related to P[n/α], or the exception m related to
P[m/α]. The computation is converging in both cases, and the witness we get for a simple
existential conclusion C is correct in both cases: however, we may obtain a different witness
in the two cases. The interest of the non-deterministic approach is that it does not impose
arbitrary restrictions ruling out potentially interesting computations: there are classical
proofs whose non-deterministic interpretation is in a sense canonical (see [6], p. 40-50 for
examples). Alternatively, with techniques introduced in [2], we may provide in a simple
and natural way confluent evaluation rules. It is an interesting aspect of our framework
that non-determinism arises just because one may generate during computation different
refutations of EM1-hypotheses, so any strategy for choosing between them re-establishes
confluence. For reason of space, we shall not address this matter in the present paper.

1.7 Plan of the Paper
This is the plan of the paper. In §2 we introduce a type theoretical version of intuitionistic
arithmetic HA extended with EM1. In §3 we introduce a realizability semantics for HA+EM1.
Then in §4, 5 we prove that this semantics is sound for HA + EM1. As a corollary, we deduce
that HA + EM1 is strongly normalizing and that any proof of a simply existential Σ0

1-formula
provides a witness.

2 The System HA + EM1

In this section we formalize intuitionistic Arithmetic HA, and we add an operator ‖ formalizing
EM1. We start with the language of formulas.

I Definition 1 (Language of HA + EM1). The language L of HA + EM1 is defined as follows.
1. The terms of L are inductively defined as either variables α, β, . . . or 0 or S(t) with t ∈ L.

A numeral is a term of the form S . . . S0.
2. There is one symbol P for every primitive recursive relation over N; with P⊥ we denote

the symbol for the complement of the relation denoted by P. The atomic formulas of L
are all the expressions of the form P(t1, . . . , tn) such that t1, . . . , tn are terms of L and n
is the arity of P. Atomic formulas will also be denoted as P,Q,Pi,

3. The formulas of L are built from atomic formulas of L by the connectives ∨,∧,→,∀,∃ as
usual, with quantifiers ranging over numeric variables αN, βN,

From now on, if P is any closed atomic formula, we will write P ≡ True (P ≡ False) if
the formula is true (false) in the standard interpretation, that is, if P = R(n1, . . . , nk) and
the sequence of numerals (n1, . . . , nk) belongs (does not belong) to the primitive recursive

F. Aschieri, S. Berardi, and G. Birolo 51

relation denoted by R. We now define in figure 1 a set of untyped proof terms, then a type
assignment for them.

It is a standard natural deduction system with introduction and elimination rules for
each connective and induction rules for integers, together with a term assignment in the
spirit of Curry-Howard correspondence (see [27], for example).

Grammar of Untyped Proof Terms

t, u, v ::= x | tu | tm | λxu | λαu | 〈t, u〉 | π0u | π1u | ι0(u) | ι1(u) | t[x.u, y.v] | (m, t) | t[(α, x).u]

| u ‖a v | [a]H∀αP | [a]W∃αP⊥
| True | Ruvm | rt1 . . . tn

where m ranges over terms of L, x over proof terms variables and a over hypothesis variables. We
also assume that in the term u ‖a v, there is some atomic formula P, such that a occurs free in u only
in subterms of the form [a]H∀αP and a occurs free in v only in subterms of the form [a]W∃αP⊥

, and the
occurrences of the variables in P different from α are free in both u and v.

Contexts With Γ we denote contexts of the form e1 : A1, . . . , en : An, where each ei is either a proof-term
variable x, y, z . . . or a EM1 hypothesis variable a, b, . . ., and ei 6= ej for i 6= j.

Axioms Γ, x : A ` x : A Γ, a : ∀αNP ` [a]H∀αP : ∀αNP Γ, a : ∃αNP⊥ ` [a]W∃αP⊥
: ∃αNP⊥

Conjunction Γ ` u : A Γ ` t : B
Γ ` 〈u, t〉 : A ∧B

Γ ` u : A ∧B
Γ ` π0u : A

Γ ` u : A ∧B
Γ ` π1u : B

Implication Γ ` t : A→ B Γ ` u : A
Γ ` tu : B

Γ, x : A ` u : B
Γ ` λxu : A→ B

Disjunction Intro. Γ ` u : A
Γ ` ι0(u) : A ∨B

Γ ` u : B
Γ ` ι1(u) : A ∨B

Disjunction Elimination Γ ` u : A ∨B Γ, x : A ` w1 : C Γ, x : B ` w2 : C
Γ ` u[x.w1, x.w2] : C

Universal Quantification Γ ` u : ∀αNA
Γ ` um : A[m/α]

Γ ` u : A
Γ ` λαu : ∀αNA

where m is any term of the language L and α does not occur free in any formula B occurring in Γ.

Existential Quantification Γ ` u : A[m/α]
Γ ` (m,u) : ∃αN.A

Γ ` u : ∃αNA Γ, x : A ` t : C
Γ ` u[(α, x).t] : C

where α is not free in C nor in any formula B occurring in Γ.

Induction Γ ` u : A(0) Γ ` v : ∀αN. A(α)→ A(S(α))
Γ ` Ruvt : A(t)

where t is any term of the language L.

Post Rules Γ ` u1 : P1 Γ ` u2 : P2 · · · Γ ` un : Pn
Γ ` u : P

where P1,P2, . . . ,Pn,P are atomic formulas and the rule is a Post rule for equality, for a Peano axiom
or a primitive recursive relation and if n > 0, u is ru1 . . . un, otherwise u is True.

EM1 Γ, a : ∀αNP ` w1 : C Γ, a : ∃αNP⊥ ` w2 : C
Γ ` w1 ‖a w2 : C

Figure 1 Term Assignment Rules for HA + EM1.

CSL’13

52 Realizability and Strong Normalization for HA + EM1

We replace purely universal axioms (i.e., Π0
1-axioms) with Post rules (as in Prawitz [26]),

which are inferences of the form

Γ ` P1 Γ ` P2 · · · Γ ` Pn
Γ ` P

where P1, . . . ,Pn,P are atomic formulas of L such that for every substitution
σ = [t1/α1, . . . , tk/αk] of closed terms t1, . . . , tk of L, P1σ = . . . = Pnσ ≡ True implies
Pσ ≡ True. Let now eq be the symbol for the binary relation of equality between natural
numbers (“=” will also be used). Among the Post rules, we have the Peano axioms

Γ ` eq(St1,St2)
Γ ` eq(t1, t2)

Γ ` eq(0, St)
Γ ` ⊥

and axioms of equality

Γ ` eq(t, t)
Γ ` eq(t1, t2) Γ ` eq(t2, t3)

Γ ` eq(t1, t3)
Γ ` P[t1/α] Γ ` eq(t1, t2)

Γ ` P[t2/α]

We also have a Post rule for the defining axioms of each primitive recursive relation, for
example the false relation ⊥, addition, multiplication:

Γ ` ⊥
Γ ` P Γ ` add(t, 0, t)

Γ ` add(t1, t2, t3)
Γ ` add(t1, St2,St3)

Γ ` mult(t, 0, 0)
Γ ` mult(t1, t2, t3) Γ ` add(t3, t1, t4)

Γ ` mult(t1, St2, t4)

For simplifying the representation of proofs, we assume also to have a Post rule for each true
closed atomic formula P:

Γ ` P

From the ⊥-rule for atomic formulas we may derive the ⊥-rule for all formulas. We assume
that in the proof terms three distinct classes of variables appear: one for proof terms, denoted
usually as x, y, . . .; one for quantified variables of the formula language L of HA + EM1,
denoted usually as α, β, . . .; one for the pair of hypotheses bound by EM1, denoted usually
as a, b, In the term u ‖a v, any free occurrence of a in u occurs in an expression [a]H∀αP,
and denotes an assumption ∀αNP. Any free occurrence of a in v occurs in an expression
[a]W∃αP⊥ , and denotes an assumption ∃αNP⊥. All the occurrences of a in u and v are bound,
and we assume the usual renaming rules and alpha equivalences to avoid capture of variables
in the reduction rules that we shall give. Alternatively, [a]H∀αP is the thrower of an exception
a and [a]W∃αP⊥ is the catcher of the same exception a. With u ‖ v we denote a generic term
of the form u ‖a v; we shall use this notation whenever our considerations will not depend
on which is exactly the variable a. Terms of the form ((u ‖ v1) ‖ v2) . . .) ‖ vn for any n ≥ 0
will be denoted as u ‖ v1 ‖ . . . ‖ vn or as EM[u]. In the terms [a]H∀αP and [a]W∃αP⊥ the free
variables are a and those of P minus α.

Assume that Γ is a context, t an untyped proof term and A a formula, and Γ ` t : A:
then t is said to be a typed proof term. Typing assignment satisfies Weakening, Exchange
and Thinning, as usual. SN is the set of strongly normalizing untyped proof terms and
NF is the set of normal untyped proof terms, as usual in lambda calculus ([27]). PNF is
the inductively defined set of the Post normal forms (intuitively, normal terms representing
closed proof trees made only of Post rules whose leaves are universal hypothesis followed by

F. Aschieri, S. Berardi, and G. Birolo 53

Reduction Rules for HA

(λx.u)t 7→ u[t/x] (λα.u)t 7→ u[t/α]

πi〈u0, u1〉 7→ ui, for i=0,1
ιi(u)[x1.t1, x2.t2] 7→ ti[u/xi], for i=0,1
(n, u)[(α, x).v] 7→ v[n/α][u/x], for each numeral n
Ruv0 7→ u

Ruv(Sn) 7→ vn(Ruvn), for each numeral n
Permutation Rules for EM1

(u ‖a v)w 7→ uw ‖a vw, if a does not occur free in w

πi(u ‖a v) 7→ πiu ‖a πiv
(u ‖a v)[x.w1, y.w2] 7→ u[x.w1, y.w2] ‖a v[x.w1, y.w2], if a does not occur free in w1, w2

(u ‖a v)[(α, x).w] 7→ u[(α, x).w] ‖a v[(α, x).w], if a does not occur free in w1, w2

Reduction Rules for EM1

([a]H∀αP)n 7→ True, if P[n/α] is closed and P[n/α] ≡ True

u ‖a v 7→ u, if a does not occur free in u
u ‖a v 7→ v[a := n], if [a]H∀αPn occurs in u, P[n/α] is closed and P[n/α] ≡ False

Figure 2 Reduction Rules for HA + EM1.

an elimination rule), that is: True ∈ PNF; for every closed term n of L, if [a]H∀αPn ∈ NF,
then [a]H∀αPn ∈ PNF; if t1, . . . , tn ∈ PNF, then rt1 . . . tn ∈ PNF.

We are now going to explain the reduction rules for the proof terms of HA+EM1, which are
given in figure 2 (with 7→∗ we shall denote the reflexive and transitive closure of the one-step
reduction 7→). We find among them the ordinary reductions of Intuitionistic Arithmetic
for the logical connectives and induction. Permutation Rules for EM1 are an instance of
Prawitz’s permutation rules for ∨-elimination, as explained in the introduction. Raising an
exception n in u ‖a v removes all occurrences of assumptions [a]W∃αP⊥ in v; we define first
an operation removing them, and denoted v[a := n].

I Definition 2 (Witness Substitution). Suppose v is any term and n a closed term of L. We
define

v[a := n]

as the term obtained from v by replacing each subterm [a]W∃αP⊥ corresponding to a free
occurrence of a in v by (n, True), if P[n/α] ≡ False, and by (n, [a]H∀αα=0S0), otherwise.

I Remark. An exception is raised only when P[n/α] ≡ False. Therefore the substitution of
[a]W∃αP⊥ by (n, [a]H∀αα=0S0) will never occur in the reductions rules that we have defined.
However, the general case of the substitution will be needed to define realizability, and
namely because we want it to be suitable to prove strong normalization.

The rules for EM1 translate the informal idea of learning by trial and error we sketched
in the introduction, that is:

1. The first EM1-reduction: ([a]H∀αP)n 7→ True if P[n/α] ≡ True, says that whenever we
use a closed instance P[n/α] of the assumption ∀αNP, we check it, and if the instance is
true we replace it with its canonical proof.

2. The second EM1-reduction: u ‖a v 7→ u, says that if, using the first reduction, we are able
to remove all the instances of the assumption [a]H∀αP : ∀αNP in u, then the assumption is

CSL’13

54 Realizability and Strong Normalization for HA + EM1

unnecessary and the proof term u ‖a v may be simplified to u. In this case the exceptional
part v of u ‖a v is never used.

3. The third EM1-reduction: u ‖a v 7→ v[a := n], if [a]H∀αPn occurs in u and
P[n/α] ≡ False, says that if we check a closed instance [a]H∀αPn : P[n/α] of the as-
sumption ∀αNP, and we find that the assumption is wrong, then we raise in u the
exception n and we start the exceptional part v[a := n] of u ‖a v. Raising an exception is
a non-deterministic operation (we may have two or more exceptions to choose) and has
no effect outside u ‖a v.

We claim that the reductions satisfy subject reduction: if Γ ` t : A and t 7→ u then
Γ ` t : A. The proof is by induction over t. For the reduction rule u ‖a v 7→ u we use the
fact that a is not free in u and the Thinning rule. For the reduction rule u ‖a v 7→ v[a := n]
we use the fact that a is not free in v[a := n] and Thinning rule again.

As usual, neutral terms are terms that are not “values”, and need to be further computed.
We also introduce the important concept of quasi-closed term, which intuitively is a term
behaving as a closed one, in the sense that it can be executed, but that contains some free
hypotheses on which its correctness depends.

I Definition 3 (Neutrality, Quasi-Closed terms).
1. An untyped proof term is neutral if it is not of the form λxu or λαu or 〈u, t〉 or ιi(u) or

(t, u) or [a]H∀aP or u ‖a v.
2. If t is an untyped proof term which contains as free variables only EM1-hypothesis

variables a1, . . . , an, such that each occurrence of them is of the form [ai]H∀αPi for some
Pi, then t is said to be quasi-closed.

3 A Realizability interpretation for HA + EM1

In this section we define a realizability semantics for HA + EM1, in which realizers may
be interpreted as algorithms learning by trial and error a correct value. With respect to
the Interactive realizability semantics in [2], the main difference is that we have no formal
notion of knowledge state here. Informally, the counterpart of a knowledge state here would
be the set of the free EM1 hypothesis variables occurring in a term and the collection of
all assignments [a := n] produced by some reduction u ‖a v 7→ v[a := n] performed in the
computation of the term.

Realizers will be deduced to be strongly normalizing terms, and the soundness of this
realizability semantics will have strong normalization as a corollary. As in [21], realizers may
be untyped terms, and also quasi-closed. With respect to the usual notion of intuitionistic
realizability, there is a special case for atomic formulas, and one special case t = u ‖a v for
the connectives ∨,∃.

I Definition 4 (Realizability for HA + EM1). Assume t is a quasi-closed term in the grammar
of untyped proof terms of HA + EM1 and C is a closed formula. We define the relation t
 C

by induction on C and for each fixed formula by a generalized inductive definition.
1. t
 P if and only if one of the following holds:

i) t ∈ PNF and P ≡ False implies t contains a subterm [a]H∀αQn with Q[n/α] ≡ False;
ii) t /∈ NF and for all t′, t 7→ t′ implies t′
 P

2. t
 A ∧B if and only if π0t
 A and π1t
 B

3. t
 A→ B if and only if for all u, if u
 A, then tu
 B

F. Aschieri, S. Berardi, and G. Birolo 55

4. t
 A ∨B if and only if one of the following holds:
i) t = ι0(u) and u
 A or t = ι1(u) and u
 B;
ii) t = u ‖a v and u
 A ∨B and v[a := m]
 A ∨B for every numeral m;
iii) t /∈ NF is neutral and for all t′, t 7→ t′ implies t′
 A ∨B.

5. t
 ∀αNA if and only if for every closed term n of L, tn
 A[n/α]
6. t
 ∃αNA if and only if one of the following holds:

i) t = (n, u) for some numeral n and u
 A[n/α];
ii) t = u ‖a v and u
 ∃αNA and v[a := m]
 ∃αNA for every numeral m;
iii) t /∈ NF is neutral and for all t′, t 7→ t′ implies t′
 ∃αNA.

I Remark. A realizer is a quasi-closed term, which is interpreted as a program which has
made hypotheses in order to decide some instances of EM1. Its free EM1 hypothesis variables
do not influence the evolution of the term; they represent the assumptions on which the
correctness of the computation depend, and they may raise an exception when the term is
placed in a context of the form u ‖a v.

The definition of the realizability relation for the negative connectives ∧,→,∀ is standard
and it determines the notion of test, that is, the kind of input that must be provided to the
realizer.

The definition of the realizability relation for the positive connectives ∨,∃ determines
the notion of answer. We shall see in the crucial Proposition 2 that indeed every realizer
does provide an answer, under the form of prediction (a possibly unsafe answer): a realizer
of A ∨B normalizes to a term containing a realizer of A or a realizer of B and a realizer of
∃αNA normalizes to a term containing a realizer of A[n/α]. However, these realizers are only
quasi-closed, therefore their correctness depends on extra hypotheses and is not guaranteed:
only in the case of closed realizers and of Σ0

1-formulas we will prove a true disjunction
property and a true witness property. The style of the definition of realizability for A ∨B,
∃αNA is inspired from Prawitz strong validity [26] and its main feature is that it depends not
only on the formula, but also on the shape of the term; since it is an inductive definition, a
term is a realizer if one can deduce it by means of a finite number of applications of the three
subclauses i), ii), iii) of the definition. We observe that the base case i) of the definition is the
one of intuitionistic realizability, even if we are in a classical setting: the deep reason of this
phenomenon is that in the definition of u ‖a v
 A∨B, even if u may contain an hypothesis
term [a]H∀αP that becomes free, this term does not “stop” the computation inside u, and u
can nevertheless realize A∨B, i.e. reach eventually a form ιi(w), after steps of normalization
(applications of iii)) or at the end of whatever paths one has followed by applications of ii).

In the case of an atomic formula Q, the definition is analogous to the one of Interactive
realizability (see [3] for many intuitions): a proof-term should represent a proof made only of
Post-rules (a calculation), possibly with the aid of some hypothesis ∀αNP; if the formula Q is
false, than a counterexample to some hypothesis should be contained in the realizer.

I Example 5 (Realizer of the Excluded Middle). Any closed instance

∀αNP ∨ ∃αNP⊥

of EM1 is provable in HA + EM1 by a straightforward application of the EM1-rule. It shall
then be a consequence of the Adequacy Theorem 7 that any instance of EM1 is realizable. It
is however instructive to construct and examine right now a realizer. We define:

EP := ι0([a]H∀αP) ‖a ι1([a]W∃αP⊥
)

CSL’13

56 Realizability and Strong Normalization for HA + EM1

This realizer first tries with ∀αNP, and if some exception is raised, switches to ∃NαP⊥. In
order to show that

EP
 ∀αNP ∨ ∃αNP⊥

by definition 4 of realizability, we have to prove:

1. [a]H∀αP
 ∀αNP, that is, for all numerals n, [a]H∀αPn
 P[n/α]. P[n/α] is closed because
we assumed ∀αNP closed. If P[n/α] ≡ True then [a]H∀αPn 7→ True, and True
 P[n/α]
by definition 4.1.(i), therefore [a]H∀αPn
 P[n/α] by definition 4.1.(ii). If P[n/α] ≡ False
then [a]H∀αPn
 P[n/α] by definition 4.1.(i).

2. for all numerals n, [a]W∃αP⊥ [a := n]
 ∃αNP⊥. By definition 2, this amounts to show
that (n, True)
 ∃αNP⊥, when P[n/α] ≡ False, that is True
 P⊥[n/α], and that
(n, [a]H∀αα=0S0)
 ∃αNP⊥ otherwise, that is [a]H∀αα=0S0
 P⊥[n/α]. In the first
case we have P⊥[n/α] ≡ True, in the second one the realizer contains an occurrence of
[a]H∀αα=0S0, having (α = 0)[α/S0] ≡ False. In both case we apply definition 4.1.(i).

4 Basic Properties of Realizers

In this section we prove that the set of realizers of a given formula C satisfies the usual
properties for a Girard’s reducibility candidate.

I Definition 6. Extending the approach of [9], we define four properties (CR1), (CR2),
(CR3), (CR4) of realizers t of a formula A plus an inhabitation property (CR5) for A:

(CR1) If t
 A, then t ∈ SN.
(CR2) If t
 A and t 7→∗ t′, then t′
 A.
(CR3) If t /∈ NF is neutral and for every t′, t 7→ t′ implies t′
 A, then t
 A.
(CR4) If t = u ‖a v, u
 A and v[a := m]
 A for every numeral m, then t
 A.
(CR5) There is a u such that u
 A.

All properties listed above hold.
I Proposition 1. Every term t has the properties (CR1), (CR2), (CR3), (CR4) and the
inhabitation property (CR5) holds.

As we pointed out in the introduction, we cannot prove that any realizer of a disjunction
or an existential contains a correct witness, but we may prove some weakening of this property:
in some sense, surprisingly, also classical logic enjoys the disjunction and numerical existence
properties. Namely, a realizer of A ∨ B contains a realizer of A or a realizer of B and a
realizer of ∃αNA contains a realizer of A[n/α]. The point is that n is not necessarily a true
witness, but rather a prediction based on the universal assumptions contained in the realizer.
I Proposition 2 (Weak Disjunction and Numerical Existence Properties).
1. Suppose t
 A ∨ B. Then either t 7→∗ EM[ι0(u)] and u
 A or t 7→∗ EM[ι1(u)] and

u
 B.
2. Suppose t
 ∃αNA. Then t 7→∗ EM[(n, u)] for some numeral n such that u
 A[n/α].

Proof.
1. Since t ∈ SN by (CR1), let t′ be such that t 7→∗ t′ ∈ NF. By (CR2), t′
 A ∨ B. If

t′ = ι0(u), we are done. The only possibility left is that t′ = v ‖ v1 ‖ v2 . . . ‖ vn, with v
not of the form w0 ‖ w1. By definition 4.4.(ii) we have v
 A ∨B, and since v is normal
and not of the form w0 ‖ w1, by definition 4.4.(i) we have either v = ι0(u), with u
 A,
or v = ι1(u), with u
 B.

2. Similar to 1. J

F. Aschieri, S. Berardi, and G. Birolo 57

We observe that in a realizer v ‖a1 v1 ‖a2 v2 . . . ‖an vn of A ∨B, the further we move on the
left, the larger is the set of hypotheses becoming free. This is indeed the price payed to
construct a realizer of A or B, which is contained in v: hypotheses have to be made.

The next task is to prove that all introduction and elimination rules of HA + EM1 define
a realizer from a list of realizers for all premises. In some case this is true by definition of
realizer, we list below some non-trivial cases we have to prove.
I Proposition 3.
1. If for every t
 A, u[t/x]
 B, then λxu
 A→ B.
2. If for every closed term m of L, u[m/α]
 B[m/α], then λαu
 ∀αNB.
3. If u
 A0 and v
 A1, then πi〈u, v〉
 Ai.
4. If w0[x0.u0, x1.u1]
 C and for all numerals n, w1[x0.u0, x1.u1][a := n]
 C, then

(w0 ‖a w1)[x0.u0, x1.u1]
 C.
5. If t
 A0 ∨A1 and for every ti
 Ai it holds ui[ti/xi]
 C, then t[x0.u0, x1.u1]
 C.
6. If t
 ∃αNA and for every term n of L and v
 A[n/α] it holds u[n/α][v/x]
 C, then

t[(α, x).u]
 C.

5 The Adequacy Theorem

In this section we prove that the realizability semantics we defined in §3 is sound for HA+EM1,
and we derive strong normalization as a corollary. The witness property for Σ0

1-formulas,
instead, may be derived directly from the basic properties of realizers (§4).

I Theorem 7 (Adequacy Theorem). Suppose that Γ ` w : A in the system HA + EM1, with

Γ = x1 : A1, . . . , xn : An, a1 : ∃αN
1¬P1, . . . , am : ∃αN

m¬Pm, b1 : ∀αN
1Q1, . . . , bl : ∀αN

lQl

and that the free variables of the formulas occurring in Γ and A are among α1, . . . , αk. For
all closed terms r1, . . . , rk of L, if there are terms t1, . . . , tn such that

for i = 1, . . . , n, ti
 Ai[r1/α1 · · · rk/αk]

then

w[t1/x1 · · · tn/xn r1/α1 · · · rk/αk a1 := i1 · · · am := im]
 A[r1/α1 · · · rk/αk]

for every numerals i1, . . . , im.

I Corollary 8 (Strong Normalization of HA+EM1). All terms of HA + EM1 are strongly
normalizing.

Proof. From Theorem 7 and (CR5) we derive that for all proof-terms t : A we have some
substitution t′ such that t′
 A. From (CR1) we conclude that t′ is strongly normalizing:
as a corollary, t itself is strongly normalizing. J

Our last task is to prove that all proofs of simply existential statements include a witness.

I Theorem 9 (Normal Form Property and Existential Witness Extraction). Suppose t is closed,
t
 ∃αNP and t 7→∗ t′ ∈ NF. Then t′ = (n, u) for some numeral n such that P[n/α] ≡ True.

Proof. By proposition 2, there is some numeral n such that t′ = EM[(n, u)] and u
 P[n/α].
So

t′ = (n, u) ‖a1 v1 ‖a2 v2 . . . ‖am
vm

CSL’13

58 Realizability and Strong Normalization for HA + EM1

Since t′ is closed, u is quasi-closed and all its free variables are among a1, a2, . . . , am. We
observe that u must be closed. Otherwise, by definition 4.1.(i) and u
 P[n/α] we deduce
that u ∈ PNF, and thus u should contain a subterm [ai]H∀αQn; moreover, Q[n/α] ≡ False
otherwise u would not be normal; but then we would have either m 6= 0 and t′ /∈ NF because
t′ 7→ v1[a1 := n] ‖a2 v2 . . . ‖am

vm, or m = 0 and t′ non-closed. Since u is closed, we obtain
t′ = (n, u), for otherwise t′ 7→ (n, u) ‖a2 v2 . . . ‖am vm and t′ /∈ NF. Since u
 P[n/α], by
definition 4.1.(i) it must be P[n/α] ≡ True. J

By the Adequacy Theorem 7 and Theorem 9, whenever HA + EM1 proves a closed formula
of the shape ∀αN

1 . . . ∀αN
k ∃βN P, one can extract a realizer t with the property that, for

every numerals n1, . . . , nk, there is some numeral n such that tn1 . . . nk 7→∗ (n, True) and
P[n1/α1 · · ·nk/αk n/β] ≡ True. For example, from a proof of ∀αN

1 ∀αN
2 ∃βN add(α1, α2, β), one

can extract a term computing the sum of natural numbers, even if the proposition has been
proved classically.

6 Conclusions

From the point of view of classical Curry-Howard correspondence, the main contribution of
this paper is a new decomposition of the EM1 reduction rules in terms of delimited exceptions
and permutation rules. The expert may at this point have noticed that some deterministic
restriction of our conversions may be quite directly simulated in λµ-calculus and, less directly,
in Krivine’s λc-calculus. However, as it is quite often the case in proof theory, a variation in
the rules of a system may be crucial to gain better results and understanding. In our case,
with our approach we obtain several new results.

Markov’s Principle and Restricted EM1. The mechanism of delimited exceptions allows to
obtain quite refined results about systems containing Markov’s principle, showing directly
that its addition on top of intuitionistic logic preserves the disjunction and numerical
existence properties [16]. Of course, Markov’s principle is provable in HA + EM1, by the
most restricted version of the EM1 rules, where the conclusion of the rule must be a
Σ1

0-formula. We shall show in a future paper that also our system enjoys the disjunction
and numerical existence properties, when it is only allowed to use the restricted excluded
middle sufficient to prove Markov’s principle.
Extension of Prawitz validity to classical proofs. The double negation is in some sense
hardwired in the λµ and in the λc calculi. As the cognoscenti know, this forces Krivine’s
realizability of a formula A for these calculi to have the form ¬A→ ⊥, where ¬A is the
type of stacks and ⊥ is interpreted by ⊥⊥. Loosely speaking, in this way double negation
elimination becomes a tautology: (¬¬A) → ¬A → ⊥. Our priority is instead given to
EM1, and our reduction rules allow to extend an introductions-based Prawitz validity to
a classical system. Such a result would not have been possible in the context of λµ or λc.
Weak disjunction and existence properties for realizability. Thanks to the essentially
positive flavor of our realizability definition for positive connectives, we have shown
(Proposition 2) that our notion of realizability satisfies a remarkable property: a realizer
of a disjunction contains a realizer of one of the disjuncts, and a realizer of an existential
statement contains a realizer of an instance of it. Similar insights seem not possible to be
easily expressed in the framework of λµ-calculus or Krivine’s realizability (or at least,
similar properties have never been noticed). It is instead the explanation of classical
programs as making hypotheses, testing them and learning, that has led to our results:
our realizers behave like they do precisely because they want to achieve the disjunction
and numerical existence properties during computations.

F. Aschieri, S. Berardi, and G. Birolo 59

References
1 Akama, Y. and Berardi, S. and Hayashi S. and Kohlenbach, U., An Arithmetical Hierarchy

of the Law of Excluded Middle and Related Principles. LICS 2004, pages 192–201.
2 F. Aschieri, S. Berardi, Interactive Learning-Based Realizability for Heyting Arithmetic with

EM1, Logical Methods in Computer Science, 2010.
3 F. Aschieri, S. Berardi, A New Use of Friedman’s Translation: Interactive Realizability, in:

Logic, Construction, Computation, Berger et al. eds, Ontos-Verlag Series in Mathematical
Logic, 2012.

4 F. Aschieri, Interactive Realizability for Classical Peano Arithmetic with Skolem Axioms.
Proceedings of Computer Science Logic 2012, Leibniz International Proceedings in Inform-
atics (LIPIcs), vol. 16, Schloss Dagstuhl, 2012.

5 F. Aschieri, Interactive Realizability for Second-Order Heyting Arithmetic with EM1 and
SK1, Technical Report, http://hal.inria.fr/hal-00657054.

6 S. Berardi, An Interactive Realizability Semantics for non-constructive proofs, Chambery
Summer school of Realization, Chambery, 14–17 June, 2011.
http://www.di.unito.it/~stefano/Berardi-RealizationChambery-13Giugno2011.
pdf

7 S. Berardi, Some intuitionistic equivalents of classical principles for degree 2 formulas. Ann.
Pure Appl. Logic 139(1–3): 185–200 (2006)

8 G. Birolo: Interactive Realizability, Monads and Witness Extraction, Ph.D. thesis, April,
15, 2013, Università di Torino (http://arxiv.org/abs/1304.4091)

9 J.-Y. Girard and Y. Lafont and P. Taylor.: Proofs and Types. Cambridge University Press
(1989).

10 H. Friedman, Classically and Intuitionistically Provable Recursive Functions, Lecture Notes
in Mathematics, 1978, Volume 669/1978, 21–27.

11 K. Gödel, Uber eine bisher noch nicht benutzte Erweiterung des finiten Standpunktes, Dia-
lectica 12, pp. 280–287 (1958).

12 G. Gentzen, Die Widerspruchsfreiheit der reinen Zahlentheorie. Mathematische Annalen,
1935.

13 P. de Groote, A Simple Calculus of Exception Handling, Proc. of TLCA 1995: 201–215.
14 P. de Groote, Strong Normalization for Classical Natural Deduction with Disjunction, Pro-

ceedings of TLCA 2001: 182–196.
15 T. Griffin, A Formulae-as-Type Notion of Control, Proc. of POPL, 1990.
16 H. Herbelin, An Intuitionistic Logic that Proves Markov’s Principle, Proceedings of LICS

2010: 50-56.
17 U. Kohlenbach, On uniform weak König’s lemma. Annals of Pure and Applied Logic, 114(1–

3) (2002).
18 G. Kreisel, On Weak Completeness of Intuitionistic Predicate Logic, Journal of Symbolic

Logic, vol. 27, 1962.
19 J.-L. Krivine, Lambda-calcul types et modèles, Studies in Logic and Foundations of Math-

ematics (1990) 1–176. Masson, Paris.
20 J.-L. Krivine, Dependent Choiche, “Quote” and the Clock, Theoretical Computer Science

308(1-3), 2003, 259–276.
21 J.-L. Krivine, Classical Realizability. In Interactive models of computation and program

behavior. Panoramas et synthèses , 2009, 197–229. Société Mathématique de France.
22 J.-L. Krivine, Realizability Algebras II: new models of ZF + DC, Logical Methods in Com-

puter Science, 2012.
23 G. Mints, S. Tupailo, W. Bucholz, Epsilon Substitution Method for Elementary Analysis,

Archive for Mathematical Logic, volume 35, 1996

CSL’13

http://www.di.unito.it/~stefano/Berardi-RealizationChambery-13Giugno2011.pdf
http://www.di.unito.it/~stefano/Berardi-RealizationChambery-13Giugno2011.pdf
http://arxiv.org/abs/1304.4091

60 Realizability and Strong Normalization for HA + EM1

24 A. Miquel, Existential witness extraction in classical realizability and via a negative trans-
lation. Logical Methods in Computer Science 7(2) (2011)

25 M. Parigot, Lambda-My-Calculus: An Algorithmic Interpretation of Classical Natural De-
duction. LPAR 1992: 190–201.

26 D. Prawitz: Ideas and Results in Proof Theory. In Proceedings of the Second Scandinavian
Logic Symposiuum (1971).

27 M. H. Sorensen, P. Urzyczyn, Lectures on the Curry-Howard isomorphism, Studies in Logic
and the Foundations of Mathematics, vol. 149, Elsevier, 2006.

28 J. von Plato: A Constructive Approach to Sylvester’s Conjecture. J. UCS 11(12): 2165–2178
(2005)

Bounds for the quantifier depth
in finite-variable logics: Alternation hierarchy
Christoph Berkholz1, Andreas Krebs2, and Oleg Verbitsky∗3

1 RWTH Aachen University, Institut für Informatik
D-52056 Aachen, Germany
berkholz@informatik.rwth-aachen.de

2 Wilhelm-Schickard-Institut, Universität Tübingen
Sand 13, 72076 Tübingen, Germany
mail@krebs-net.de

3 Humboldt-Universität zu Berlin, Institut für Informatik
Unter den Linden 6, D-10099 Berlin, Germany
verbitsk@informatik.hu-berlin.de

Abstract
Given two structures G and H distinguishable in FOk (first-order logic with k variables), let
Ak(G,H) denote the minimum alternation depth of a FOk formula distinguishing G from H. Let
Ak(n) be the maximum value of Ak(G,H) over n-element structures. We prove the strictness of
the quantifier alternation hierarchy of FO2 in a strong quantitative form, namely A2(n) ≥ n/8−2,
which is tight up to a constant factor. For each k ≥ 2, it holds that Ak(n) > logk+1 n − 2 even
over colored trees, which is also tight up to a constant factor if k ≥ 3. For k ≥ 3 the last lower
bound holds also over uncolored trees, while the alternation hierarchy of FO2 collapses even over
all uncolored graphs.

We also show examples of colored graphs G and H on n vertices that can be distinguished
in FO2 much more succinctly if the alternation number is increased just by one: while in Σi it
is possible to distinguish G from H with bounded quantifier depth, in Πi this requires quantifier
depth Ω(n2). The quadratic lower bound is best possible here because, if G and H can be
distinguished in FOk with i quantifier alternations, this can be done with quantifier depth n2k−2.

1998 ACM Subject Classification F.4.1 Finite model theory

Keywords and phrases Alternation hierarchy, finite-variable logic

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.61

1 Introduction

Given structures G and H over vocabulary σ and a first-order formula Φ over the same
vocabulary, we say that Φ distinguishes G from H if Φ is true on G but false on H. By
alternation depth of Φ we mean the maximum length of a sequence of nested alternating
quantifiers in Φ. Obviously, this parameter is bounded from above by the quantifier depth of Φ.
We will examine the maximum alternation depth and quantifier depth needed to distinguish
two structures for restrictions of first-order logic and particular classes of structures.

For a fragment L of first-order logic, by AL(G,H) we denote the minimum alternation
depth of a formula Φ ∈ L distinguishing G from H. Similarly, we let DL(G,H) denote the

∗ Supported by DFG grant VE 652/1–1. On leave from the Institute for Applied Problems of Mechanics
and Mathematics, Lviv, Ukraine.

© Christoph Berkholz, Andreas Krebs, and Oleg Verbitsky;
licensed under Creative Commons License CC-BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca; pp. 61–80

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.61
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

62 Bounds for the quantifier depth in finite-variable logics: Alternation hierarchy

minimum quantifier depth of such Φ. Obviously, AL(G,H) ≤ DL(G,H). We define the
alternation function AL(n) to be equal to the maximum value of AL(G,H) taken over all
pairs of n-element structures G and H distinguishable in L.

Our interest in this function is motivated by the observation that if the quantifier
alternation hierarchy of L collapses, then AL(n) = O(1). More specifically, AL(n) ≤ a if the
alternation hierarchy collapses to its a-th level Σa ∪Πa. Thus, showing that

lim
n→∞

AL(n) =∞ (1)

is a way of proving that the hierarchy is strict.
Note that Condition (1) is, in general, formally stronger than a hierarchy result. For

example, while the alternation hierarchy of first-order logic FO is strict over colored directed
trees by Chandra and Harel [3], we have AFO(n) = 1 for any class of structures over a fixed
vocabulary.

An example of this nature also exists when we restrict our logic to two variables: While
the alternation hierarchy of FO2[<] is strict over words in an infinite alphabet by Immerman
and Weis [10], we have AFO2(n) = 1 for words in any alphabet.

Moreover, the rate of growth of AL(n) can be naturally regarded as a quality of the
strictness of the alternation hierarchy. Note that any pair of structures G and H with
AL(G,H) = a can serve as a certificate that the first a levels of the alternation hierarchy of
L are distinct. Indeed, if G is distinguished from H by a formula Φ ∈ L of the minimum
alternation depth a, then the set of structures L = {S : S |= Φ} is not definable in L with
less than a quantifier alternations. Thus, the larger the value of AL(n) is, the more levels of
the alternation hierarchy can be separated by a certificate of size n.

Results that we now know about the function AL(n) are displayed in Figure 1. The
upper bound AFOk (n) ≤ nk−1 + 1 holds true even for the quantifier depth. It follows from
the relationship of the distinguishability in FOk to the (k − 1)-dimensional color refinement
(Weisfeiler-Lehman) procedure discovered in [6, 2] and the standard color stabilization
argument; see [8]. The logarithmic upper bound for trees (Theorem 3.4) holds true also for
the quantifier depth.

Class of structures Logic Bounds for AL(n)

uncolored trees L = FO2 ≤ 2 Theorem 3.3

L = FOk, k ≥ 3 > logk+1 n− 2 Theorem 3.2

< (k + 3) log2 n Theorem 3.4

colored trees L = FOk, k ≥ 2 > logk+1 n− 2 Theorems 3.1 and 3.2

L = FOk, k ≥ 3 < (k + 3) log2 n Theorem 3.4

uncolored graphs L = FO2 ≤ 2 Theorem 3.3

L = FOk, k ≥ 3 > logk+1 n− 2 Theorem 3.2

≤ nk−1 + 1 cf. [8]

colored graphs L = FO2 > n/8− 2 Theorem 4.1

≤ n + 1 cf. [6]

L = FOk, k ≥ 3 > logk+1 n− 2 Theorem 3.2

≤ nk−1 + 1 cf. [8]

Figure 1 Results about AL(n).

C. Berkholz, A. Krebs, and O. Verbitsky 63

Additionally, in Section 5 we show that the Σi fragment of FO2 is not only strictly more
expressive than the Σi−1 fragment but also more succinct in the following sense: There are
colored graphs G and H on n vertices such that they can be distinguished in Σi−1∩FO2 and,
moreover, this is possible with bounded quantifier depth in Σi ∩ FO2 while in Πi ∩ FO2 this
requires quantifier depth Ω(n2). The quadratic lower bound is best possible here because, if
G and H can be distinguished in FOk with i quantifier alternations, this can be done with
quantifier depth n2k−2.

2 Preliminaries

We consider first-order formulas only in the negation normal form (i.e., any negation stands
in front of a relation symbol and otherwise only monotone Boolean connectives are used).
For each i ≥ 1, let Σi (resp. Πi) denote the set of (not necessary prenex) formulas where any
sequence of nested quantifiers has at most i−1 quantifier alternations and begins with ∃ (resp.
∀). In particular, existential logic Σ1 consists of formulas without universal quantification.
Up to logical equivalence, Σi ∪ Πi ⊂ Σi+1 ∩ Πi+1. By the quantifier alternation hierarchy
we mean the interlacing chains Σ1 ⊂ Σ2 ⊂ . . . and Π1 ⊂ Π2 ⊂ We are interested in the
corresponding fragments of a finite-variable logic.

As a short notation we use Dk
L(G,H) = DL∩FOk (G,H) and Ak

L(G,H) = AL∩FOk (G,H).
The subscript FO can be dropped; for example, Dk(G,H) = Dk

FO(G,H) and Ak(n) =
Ak

FO(n). Sometimes we will write Dk
∃(G,H) in place of Dk

Σ1
(G,H).

The universe of a structure G will be denoted by V (G), and the number of elements
in V (G) will be denoted by v(G). Since binary structures can be regarded as vertex- and
edge-colored directed graphs, the elements of V (G) will also be called vertices. A vertex in a
simple undirected graph is universal if it is adjacent to all other vertices.

The k-pebble Ehrenfeucht-Fraïssé game on structures G and H, is played by two players,
Spoiler and Duplicator, to whom we will refer as he and she respectively. The players have
equal sets of k pairwise different pebbles. A round consists of a move of Spoiler followed by
a move of Duplicator. Spoiler takes a pebble and puts it on a vertex in G or in H. Then
Duplicator has to put her copy of this pebble on a vertex of the other graph. Duplicator’s
objective is to keep the following condition true after each round: the pebbling should
determine a partial isomorphism between G and H. The variant of the game where Spoiler
starts playing in G and is allowed to jump from one graph to the other less than i times
during the game will be referred to as the Σi game. In the Πi game Spoiler starts in H.

For each positive integer r, the r-round Ehrenfeucht-Fraïssé game (as well as its Σi and
Πi variants) is a two-person game of perfect information with a finite number of positions.
Therefore, either Spoiler or Duplicator has a winning strategy in this game, that is, a strategy
winning against every strategy of the opponent.

I Lemma 2.1 (e.g., [10]). Dk
Σi

(G,H) ≤ r if and only if Spoiler has a winning strategy in
the r-round k-pebble Σi game on G and H.

The lifting construction

Note that separation of the ground floor of the alternation hierarchy for FO2 costs nothing.
We can take graphs G and H with three isolated vertices each, color one vertex of G in red,
and color the other vertices of G and all vertices of H in blue. Obviously, D2

∃(G,H) = 1
while D2

∀(G,H) =∞. It turns out that any separation example can be lifted to higher floors
in a rather general way.

CSL’13

64 Bounds for the quantifier depth in finite-variable logics: Alternation hierarchy

The lifting gadget provided by Lemma 2.2 below is a reminiscence of the classical
construction designed by Chandra and Harel to prove the strictness of the first-order
alternation hierarchy. The Chandra-Harel construction is applicable to other logics (see,
e.g., [5, Section 8.6.3]) and can be used as a general scheme for obtaining hierarchy results.
This approach was also used by Oleg Pikhurko (personal communication, 2007) to construct,
for each i, a sequence of pairs of trees Gn and Hn such that DΣi(Gn, Hn) = O(1) while
DΠi

(Gn, Hn)→∞ as n→∞.
Given colored graphs G0 and H0, we recursively construct graphs Gi and Hi as shown in

Fig. 2. H1 consists of three disjoint copies of H0 and an extra universal vertex, that will be
referred to as the root vertex of H1. The root vertex is colored in a new color absent in G0
and H0, say, in gray. The graph G1 is constructed similarly but, instead of three H0-branches,
it has two H0-branches and one G0-branch. Suppose that i ≥ 1 and the rooted graphs Gi

and Hi are already constructed. The graph Hi+1 consists of three disjoint copies of Gi and
the gray root vertex adjacent to the root of each Gi-part. The graph Gi+1 is constructed
similarly but, instead of three Gi-branches, it has two Gi-branches and one Hi-branch.

We will say that Spoiler plays continuously if, after each of his moves, the two pebbled
vertices are adjacent.

I Lemma 2.2. Assume that Spoiler has a continuous strategy allowing him to win the
2-pebble Σ1 game on G0 and H0 in r moves. Then, for each i ≥ 1,
1. D2

Σi
(Gi, Hi) < r + i;

2. D2
Σi

(Gi, Hi) ≥ D2
Πi+1

(Gi, Hi) ≥ D2
∃(G0, H0);

3. D2
Πi

(Gi, Hi) =∞;
4. If, moreover, Spoiler has a continuous strategy allowing him to win the 2-pebble Σ2 game

on G0 and H0 in s moves, then D2
Σi+1

(Gi, Hi) < s+ i.

Proof. 1. In the base case of i = 1 Spoiler is able to win the Σ1 game on G1 and H1 in r
moves. He forces the Σ1 game on G0 and H0 by playing continuously inside the G0-part of
G1 and wins by assumption. Furthermore, we recursively describe a strategy for Spoiler in
the Σi+1 game on Gi+1 and Hi+1 and inductively prove that it is winning. For each i, the
strategy will be continuous, and the vertex pebbled in the first round will be adjacent to the
root. Note that this is true in the base case.

In the first round Spoiler pebbles the root of the Hi-branch of Gi+1. Duplicator is forced
to pebble the root of one of the Gi-branches of Hi+1. Indeed, if she pebbles a gray vertex at
the different distance from the root of Hi+1, then Spoiler pebbles a shortest possible path
upwards in Gi+1 or Hi+1 and wins once he reaches a non-gray vertex. In the second round

G1

G0 H0 H0

H1

H0 H0 H0

Gi+1

Gi Gi Hi

Hi+1

Gi Gi Gi

Figure 2 The lifting construction.

C. Berkholz, A. Krebs, and O. Verbitsky 65

Spoiler jumps to this Gi-branch and, starting from this point, forces the Σi game on Gi and
Hi by playing recursively and, hence, continuously. The only possibility for Duplicator to
avoid the recursive play and not to lose immediately is to pebble a gray vertex below. In
this case Spoiler wins in altogether i+ 1 moves by pebbling a path upwards in the graph
where he stays, as already explained. If the game goes recursively, then by the induction
assumption Spoiler needs less than 1 + r + i moves to win.

2. In the base case of i = 1 we have to design a strategy for Duplicator in the Π2 game
on G1 and H1. First of all, Duplicator pebbles the gray vertex always when Spoiler does so.
Furthermore, whenever Spoiler pebbles a vertex in an H0-branch of G1 or H1, Duplicator
pebbles the same vertex in an H0-branch of the other graph. It is important that, if the
pebbles are in two different H0-branches of G1 or H1, Duplicator has a possibility to pebble
different H0-branches in the other graph. It remains to describe Duplicator’s strategy in the
case that Spoiler moves in the G0-branch of G1. Note that once Spoiler does so, he cannot
change the graph any more. In this case, Duplicator chooses a free H0-branch in H1 and
follows her optimal strategy in the Σ1 game on G0 and H0. Since the gray vertex is universal
in both graphs and the G0- and H0-branches are isolated from each other, Spoiler wins only
when he wins the Σ1 game on G0 and H0, which is possible in D2

∃(G0, H0) moves at the
earliest.

In the Πi+2 game on Gi+1 and Hi+1 Duplicator plays similarly. She always respects the
root vertex, the Gi-branches, and takes care that the pebbled vertices are either in the same
or in distinct Gi-branches in both graphs. Once Spoiler moves in the Hi-branch of Gi+1,
Duplicator invokes her optimal strategy in the Σi+1 game on Hi and Gi, what is the same
as the Πi+1 game on Gi and Hi. There is no other way for Spoiler to win than to win this
subgame. By the induction assumption, this takes at least D2

∃(G0, H0) moves.
3. By induction on i, we show that Duplicator has a strategy allowing her to resist

arbitrarily long in the Πi game on Gi and Hi. An important feature of the strategy is that
Duplicator will always respect the distance of a pebbled gray vertex from the root. In the
base case of i = 1, such a strategy exists because in G1 there are two copies of H0, where
Duplicator can mirror Spoiler’s moves. In the Πi+1 game on Gi+1 and Hi+1, Duplicator
makes use of the existence of two copies of Gi in both graphs. Whenever Spoiler pebbles
the root vertex or moves in a Gi-part in any of Gi+1 and Hi+1, Duplicator mirrors this
move in the other graph. Whenever Spoiler moves for the first time in the Hi-part of Gi+1,
Duplicator responds in a free Gi-part of Hi+1 according to her level-preserving strategy for
the Πi game on Gi and Hi, that exists by the induction assumption. When Spoiler moves in
the Hi-part also with the other pebble, Duplicator continues playing in the same Gi-part of
Hi+1 following the same strategy.

4. Spoiler has a recursive winning strategy for the Σi+1 game on Gi and Hi similarly to
the proof of part 1. J

3 Alternation function for FOk over trees

I Theorem 3.1. A2(n) > log3 n− 2 over colored trees.

Proof. Applying the lifting construction described in Section 2 to a pair of single-vertex,
differently colored graphs G0 and H0, we obtain the sequence of pairs of colored trees Gi

and Hi with v(Gi) = v(Hi) as shown in Fig. 3. For i ≥ 1, we have D2
Σi

(Gi, Hi) ≤ i by part
1 of Lemma 2.2 and D2

Πi
(Gi, Hi) =∞ by part 3 of this lemma. It follows that A2(ni) ≥ i

for ni = v(Gi). Note that ni = 3ni−1 + 1, where n0 = 1. Therefore ni = 3i + 3i−1
2 , which

implies that A2(ni) > log3 ni − 1.

CSL’13

66 Bounds for the quantifier depth in finite-variable logics: Alternation hierarchy

G1 H1 G2 H2

G3 H3

Figure 3 Proof of Theorem 3.1.

Consider now an arbitrary n and suppose that ni ≤ n < ni+1, i.e., ni ≤ n ≤ 3ni. We can
increase the number of vertices in Gi and Hi to n by attaching n− ni new gray leaves at
the root. Since this does not change the parameters D2

Σi
(Gi, Hi) and D2

Πi
(Gi, Hi), we get

A2(n) ≥ A2(ni) > log3 n− 2. J

Theorem 3.1 generalizes to any k-variable logic and, if k > 2, then no vertex coloring is
needed any more.

I Theorem 3.2. If k ≥ 3, then Ak(n) > logk+1 n− 2 over uncolored trees.

Proof. Notice that the lifting construction of Lemma 2.2 generalizes to k ≥ 3 variables by
adding k− 2 extra copies of H0 in G1 and H1 and k− 2 extra copies of Gi in Gi+1 and Hi+1.
Similarly to Theorem 3.1, this immediately gives us colored trees Gi+1 and Hi+1 such that
D2

Σi
(Gi, Hi) ≤ i and Dk

Πi
(Gi, Hi) =∞ for all i ≥ 1.

In order to remove colors from Gi and Hi, we construct these graphs recursively in the
same way but now, instead of red and blue one-vertex graphs, we start with G0 = and
H0 = ; see Fig. 4. Note that in the course of construction G0 and H0 will be handled as
rooted trees (otherwise they are isomorphic).

We now claim that for the uncolored trees Gi and Hi it holds D3
Σi

(Gi, Hi) ≤ i+ 5 and
Dk

Πi
(Gi, Hi) = ∞. The latter claim is true exactly by the same reasons as in the colored

case: since the number of Spoiler’s jumps is bounded, Duplicator is always able to ensure
playing on isomorphic branches. To prove the former bound, we will show that Spoiler can
win similarly to the colored case playing with 3 pebbles.

Note that in the uncolored version of Gi and Hi, all formerly gray vertices have degree
k + 1, red vertices have degree 3, and blue vertices have degree 2. A typical ending of the
game on the colored trees was that Spoiler pebbles a red vertex while Duplicator is forced
to pebble a blue one. Now this corresponds to pebbling a vertex u of degree 3 by Spoiler
and a vertex v of degree 2 by Duplicator. Having 4 pebbles, Spoiler would win by pebbling
the three neighbors of u. Having only 3 pebbles, Spoiler first pebbles two neighbors u1 and

G1 H1

Figure 4 Proof of Theorem 3.2. The uncolored versions of G1 and H1 for 3-variable logic.

C. Berkholz, A. Krebs, and O. Verbitsky 67

u2 of u (in fact, one neighbor is already pebbled immediately before u). Duplicator must
respond with the two neighbors v1 and v2 of v. In the next round Spoiler moves the pebble
from u to its third neighbor u3. Duplicator must remove the pebble from v and place it on
some vertex v3 non-adjacent to both v1 and v2. Note that, while the distance between any
two vertices of u1, u2, and u3 equals 2, there is a pair of indices s and t such that vs and vt

are at the distance more than 2. Spoiler now wins by moving the pebble from uq to u, where
{q} = {1, 2, 3} \ {s, t}.

It remains to note that with 3 pebbles Spoiler is able to force climbing upwards in the
trees and, hence, he can follow essentially the same winning strategy as in the colored case.
Duplicator can deviate from this scenario only in the first round. Recall that in this round
Spoiler pebbles a vertex u at the distance 1 from the root level, having degree at least 3.
Suppose that Duplicator responds with pebbling a vertex v at the distance more than 1 from
the root level. If i = 1, then v is of degree at most 2, and Spoiler wins as explained above. If
i ≥ 2, then v can have degree 3 or k + 1. In this case Spoiler forces climbing up and wins by
pebbling a leaf above a formerly blue vertex because by this point Duplicator has already
reached the highest possible level. Suppose now that in the first round Duplicator pebbles
the root vertex. Then Spoiler puts a second pebble on the root of his graph, Duplicator is
forced to pebble a vertex one level higher, and Spoiler again wins by forcing climbing up
from the root to the highest leaf level.

Thus, we have shown that Ak(ni) ≥ i for ni = v(Gi). Since ni = (k + 1)ni−1 + 1 and
n0 = 3, we have ni = 3(k + 1)i + (k+1)i−1

k , which implies that A2(ni) > logk+1 ni − 1. Like
to the proof of Theorem 3.1, this bound extends to all n at the cost of decreasing it by 1. J

Theorems 3.1 and 3.2 are optimal in the sense that they cannot be extended to FO2

over uncolored trees. The reason is that the quantifier alternation hierarchy of FO2 over
uncolored graphs collapses to the second level.

I Theorem 3.3. If a class of uncolored graphs is definable by a first-order formula with two
variables, then it is definable by a first-order formula with two variables and one quantifier
alternation.

We now show that the bound of Theorem 3.2 is tight up to a constant factor. The
following theorem implies that, if k ≥ 3, then Ak(n) < (k + 3) log2 n over colored trees. The
proof easily extends to the class of all binary structures whose Gaifman graph is a tree.

I Theorem 3.4. Let k ≥ 3. If Dk(T, T ′) <∞ for colored trees T and T ′, then

Dk(T, T ′) < (k + 3) log2 n (2)

where n denotes the number of vertices in T .

Proof. Let T − v denote the result of removal of a vertex v from the tree T . The component
of T − v containing a neighbor u of v will be denoted by Tvu and considered a rooted tree
with the root at u. A similar notation will apply also to T ′. The rooted trees Tvu will be
called branches of T at the vertex v. Let τ(v) denote the maximum number of pairwise
isomorphic branches at v. We define the branching index of T by τ(T) = maxv τ(v). In
order to prove the theorem, we will show that the bound (2) is true for any non-isomorphic
colored trees with branching index at most k and that Dk(T, T ′) = Dk(T mod k, T ′ mod k)
for T mod k and T ′ mod k being “truncated” versions of T and T ′ whose branching index is
bounded by k. We first handle the latter task.

CSL’13

68 Bounds for the quantifier depth in finite-variable logics: Alternation hierarchy

The following fact easily follows from the trivial observation that k pebbles can be placed
on at most k isomorphic branches.

Claim A. Let T be a colored tree. Suppose that T has more than k isomorphic branches
at a vertex v. Remove all but k of them from T and denote the resulting tree by T̂ . Then
Dk(T,G) = Dk(T̂ , G) for any colored graph G. /

The truncated tree T mod k is obtained from T by a series of truncations as in Claim
A. The truncations steps should be done from the top to the bottom in order to exclude
appearance of new isomorphic branches in the course of the procedure. In order to define the
“top and bottom” formally, recall that the eccentricity of a vertex v in a graph G is defined
by e(v) = maxu dist(v, u), where dist(v, u) denotes the distance between the two vertices.
The diameter and the radius of G are defined by d(G) = maxv e(v) and r(G) = minv e(v)
respectively. A vertex v is central if e(v) = r(G). For trees it is well known (e.g., [7, Chapter
4.2]) that if d(T) is even, then T has a unique central vertex c. If d(T) is odd, then T has
exactly two central vertices c1 and c2, that are adjacent. Let us regard the central vertices
as lying on the bottom level and the tree T as growing upwards. The height of a vertex is
then its distance to the nearest central vertex. Starting from the highest level and going
downwards, for each vertex v we cut off extra branches at v if their number exceeds k. Note
that this operation can increase the number of isomorphic branches from vertices in lower
levels but cannot do this for vertices in higher levels. Therefore, the resulting tree T mod k
has branching index at most k.

Applying repeatedly Claim A, we arrive at the equality Dk(T, T ′) = Dk(T mod k, T ′ mod
k). Note that T mod k 6∼= T ′ mod k because it is assumed that Dk(T, T ′) < ∞. Thus, we
have reduced proving the bound (2) to the case that T and T ′ are non-isomorphic and both
have branching index at most k. Therefore, below we make this assumption.

We have to show that Spoiler is able to win the k-pebble game on such T and T ′ in less
than (k + 3) log2 n moves. Below we will actively exploit the following fact ensured by a
standard halving strategy for Spoiler.

Claim B. Suppose that in the 3-pebble Ehrenfeucht-Fraïssé game on graphs G and H some
two vertices x, y ∈ V (G) at distance n are pebbled so that their counterparts x′, y′ ∈ V (H)
are at a strictly larger distance. Then Spoiler can win in at most dlogne extra moves. /

Every tree T has a single-vertex separator, that is, a vertex v such that no branch of T
at v has more than n/2 vertices; see, e.g., [7, Chapter 4.2]. The idea of Spoiler’s strategy
is to pebble such a vertex and to force further play on some non-isomorphic branches of T
and T ′, where the same strategy can be applied recursively. This scenario was realized in [8,
Theorem 5.2] for first-order logic with counting quantifiers. Without counting, we have to
use some additional tricks that are based on boundedness of the branching index. Below, by
N(v) we will denote the neighborhood of a vertex v.

Thus, in the first round Spoiler pebbles a separator v in T and Duplicator responds with
a vertex v′ somewhere in T ′. Since T 6∼= T ′, there is an isomorphism type B of a branch of T
at v that appears with different multiplicity among the branches of T ′ at v′. Spoiler can use
this fact to force pebbling vertices u ∈ N(v) and u′ ∈ N(v′) so that the rooted trees Tvu and
T ′v′u′ are non-isomorphic (the pebbles on v and v′ can be reused but, finally, v and v′ have
to remain pebbled as well). This is easy to do if the multiplicity of B in one of the trees is at
most k − 2. If this multiplicity is k − 1 in one tree and k in the other, then Spoiler can do it
still with k pebbles like as in the proof of Theorem 3.2. This phase of the game can take
k + 2 rounds.

C. Berkholz, A. Krebs, and O. Verbitsky 69

The next goal of Spoiler is to force pebbling adjacent vertices v1 and u1 in Tvu and
adjacent vertices v′1 and u′1 in T ′v′u′ so that Tv1u1 6∼= T ′v′1u′1

and

v(Tv1u1) ≤ v(Tvu)/2 or v(T ′v′1u′1
) ≤ v(Tvu)/2. (3)

Once this is done, the same will be repeated recursively (with the roles of T and T ′ swapped
if only the second inequality in (3) is true).

To make the transition from Tvu to Tv1u1 , Spoiler first pebbles a separator w of Tvu. Note
that Duplicator is forced to respond with a vertex w′ in T ′v′u′ . Otherwise we would have
dist(w, u) = dist(w, v) − 1 while dist(w′, u′) = dist(w′, v′) + 1. Therefore, some distances
among the three pebbled vertices would be different in T and in T ′ and Spoiler could win in
less than log v(Tvu) + 1 moves by Claim B.

Let Tw\u denote the rooted tree obtained by removing from T the branch at w containing
u and rooting the resulting tree at w. Note that V (Tw\u) ⊂ V (Tvu). We consider a few
cases.

Case 1: Tw\u 6∼= T ′w′\u′ . In the trees Tw\u and T ′w′\u′ we will consider branches at their
roots w and w′.

Subcase 1-a: Tw\u contains a branch of isomorphism type B that has different multiplicity
in T ′w′\u′ . As above, Spoiler can use k pebbles and k + 1 moves to force pebbling vertices
x ∈ N(w) and x′ ∈ N(w′) such that Twx 6∼= T ′w′x′ and

Twx ∈ B or T ′w′x′ ∈ B. (4)

The pebbles occupying v, v′ and u, u′ can be released. The pebbles on w and w′ can also be
reused but, finally, w and w′ have to remain pebbled. The branches Twx and T ′w′x′ will now
serve as Tv1u1 and T ′v′1u′1

. Condition (3) follows from (4) because w is a separator of Tvu.
Subcase 1-b: Tw\u does not contain any branch as in Subcase 1-a. In this subcase there is

a vertex x′ ∈ N(w′) such that T ′w′x′ is a branch of T ′w′\u′ and the isomorphism type of T ′w′x′
does not appear in Tw\u. Spoiler moves the pebble from v′ to x′. Suppose that Duplicator
responds with x ∈ N(w). If x lies on the path between u and w (while x′ does not lie on the
path between u′ and w′), then equality of distances among the pebbled vertices cannot be
preserved, and Spoiler wins by Claim B. If x does not lie between u and w, then Twx is a
branch of Tvu at the vertex w. The first equality in Condition (3) is then true because w is a
separator of Tvu. In this case, Twx and T ′w′x′ can serve as Tv1u1 and T ′v′1u′1

.
Case 2: Tw\u ∼= T ′w′\u′ . We assume that dist(u,w) = dist(u′, w′) because otherwise

Spoiler wins by Claim B. For a vertex y on the path between u and w, let Ty\u,w denote the
rooted tree obtained by removing from T the branches at y containing u and w and rooting
the resulting tree at y. The rooted tree Tu\v,w is defined similarly. Note that Tu\v,w and each
Ty\u,w are parts of a branch of Tvu at the vertex w and, therefore, have at most v(Tvu)/2
vertices. Given y between u and w, by y′ we will denote the vertex lying between u′ and w′
at the same distance to these vertices as y to u and w. Since Tvu 6∼= T ′v′u′ , we must have

Ty\u,w 6∼= T ′y′\u′,w′ for some y or (5)
Tu\v,w 6∼= T ′u′\v′,w′ . (6)

Assume that Condition (5) is true and fix such y.
Subcase 2-a: Ty\u,w contains a branch of isomorphism type B that has different multiplicity

in T ′y′\u′,w′ . Spoiler moves the pebble from v to y. Duplicator is forced to move the pebble
from v′ to y′. The pebbles occupying u, u′ and w,w′ can now be released. Spoiler proceeds

CSL’13

70 Bounds for the quantifier depth in finite-variable logics: Alternation hierarchy

similarly to Subcase 1-a and forces pebbling vertices z ∈ N(y) and z′ ∈ N(y′) such that
Tyz 6∼= T ′y′z′ and one of these trees has isomorphism type B and, hence, is as small as desired.

Subcase 2-b: Ty\u,w does not contain any branch as in Subcase 2-a. In this subcase there
is a vertex z′ ∈ N(y′) such that T ′y′z′ is a branch of T ′y′\u′,w′ whose isomorphism type does
not appear in Ty\u,w. Similarly to Subcase 1-b, Spoiler aims to pebble y′ and z′ while forcing
Duplicator to respond with y and z ∈ N(y) such that Tyz is a part of Ty\u,w. This will
ensure that Tyz 6∼= T ′y′z′ and that Tyz is small enough. Now Spoiler’s task is more complicated
because he has to prevent Duplicator from pebbling z on the path between u and w. Since
this requires keeping the pebbles on u, u′ and w,w′, Spoiler cannot pebble both y′ and z′ if
there are only k = 3 pebbles. In this case he first pebbles the vertex z′ by the pebble released
from v. Let z be Duplicator’s response. If z is in N(y) and does not lie between u and w,
Spoiler succeeds by moving the pebble from u′ to y′. Duplicator is forced to move the pebble
from u to y because w′ remains pebbled and, therefore, the position of y is determined by
the distances to z and w. If z is not in N(y) or lies between u and w, then Spoiler wins
because dist(z, u) 6= dist(z′, u′) or dist(z, w) 6= dist(z′, w′)

An analysis of the case (6) is quite similar. The role of the triple (u, y, w) is now played
by the triple (v, u, w).

Note that the transition from Tvu to Tv1u1 takes at most k + 3 rounds. Also, 2 rounds
suffice to win the game once the current subtree Tvu has at most 2 vertices. The number of
transitions from the initial branch of order at most n/2 to one with at most 2 vertices is
bounded by log2 n−1 because v(Tvu) becomes twice smaller each time. It follows that Spoiler
wins the game on T and T ′ in less than k + 2 + (log2 n− 1)(k + 3) + 2 ≤ (k + 3) log2 n+ 1
moves. The additive term of 1 can be dropped because if pebbling the initial branch takes
no less than k + 2 moves, then the size of this branch will actually not exceed n/k. J

4 Alternation function for FO2 over colored graphs

Theorem 3.1 gives us a logarithmic lower bound on the alternation function A2(n), which is
true even for trees. Over all colored graphs, we now prove a linear lower bound. Along with
the general upper bound A2(n) ≤ n+ 1, it shows that A2(n) has a linear growth.

I Theorem 4.1. A2(n) > n/8− 2.

Proof. For each integer m ≥ 2, we will construct colored graphs G and H, both with
n = 8m − 4 vertices, that can be distinguished in FO2 with m − 2, but no less than that,
alternations. The graph G = 2Gm is the union of two disjoint copies of the same graph
Gm and, similarly, H = 2Hm where Gm and Hm are defined as follows. Each of Gm and
Hm is obtained by merging two building blocks Am and Bm shown in Fig. 5. The colored
graph Am is a “ladder” with m horizontal rungs, each having 2 vertices. The vertices on
the bottom rung are colored in green, the vertices on the top rung are colored one in red
and the other in blue, the remaining 2m− 4 vertices are white (uncolored). The graph Bm

is obtained from Am by recoloring red in apricot and blue in cyan. Am and Bm are glued
together at the green vertices. There are two ways to do this, and the resulting graphs Gm

and Hm are non-isomorphic. Let α+ (resp. α−) denote the partial isomorphism from Gm to
Hm identifying the Am-parts (resp. the Bm-parts) of these graphs.

We will design a strategy allowing Spoiler to win the (m− 2)-alternation (i.e., Σm−1 or
Πm−1) 2-pebble Ehrenfeucht-Fraïssé game on G and H and a strategy allowing Duplicator
to win the (m− 3)-alternation game. Before playing on G and H, we analyse the 2-pebble
game on Gm and Hm. Spoiler can win this game as follows. In the first round he pebbles the

C. Berkholz, A. Krebs, and O. Verbitsky 71

A4 B4

G4 H4

Figure 5 Proof of Theorem 4.1.

left green vertex in Gm; see Fig. 5. Not to lose immediately, Duplicator responds either with
the left or with the right green vertex in Hm. The corresponding partial isomorphism can be
extended to α+ in the former case and to α− in the latter case (but not to both α+ and α−).
These two cases are similar, and we consider the latter of them, where there is no extension
to α+ and hence Spoiler has a chance to win playing in the Am-parts of Gm and Hm.

In the second round Spoiler pebbles the upright neighbor of the left green vertex in Gm.
His goal in subsequent rounds is to force pebbling, one by one, edges along the upright paths
to the red vertex in Gm and to the blue vertex in Hm. If Duplicator makes a step down,
Spoiler wins by reaching the top rung sooner than Duplicator. If Duplicator moves all the
time upward, starting from the third round of the game she has a possibility to slant. Spoiler
prevents this by changing the graph. Note that in one of the graphs there is only one way
upstairs, and Spoiler always leaves this graph for Duplicator. In this way Spoiler wins by
making m moves and alternating between the graphs m− 2 times.

The strategy we just described is inoptimal with respect to the alternation number. In
fact, Spoiler can win the game on Gm and Hm with no alternation at all by pebbling in the
first round the right green vertex in Gm. If Duplicator responds with the left green vertex
in Hm, Spoiler puts the second pebble on the non-adjacent vertex in the next upper rung.
Duplicator is forced to play in a different rung of Hm because otherwise she would violate
the non-adjacency relation. If in the first round Duplicator responds with the right green
vertex, Spoiler plays similarly, but in the lower rung of Gm. In any case, the second pebble is
closer to the red or to the apricot vertex in Gm than in Hm, which makes Spoiler’s win easy.

Nevertheless, the former, (m− 2)-alternation strategy has an advantage: Spoiler ensures
that the two pebbled vertices are always adjacent. By this reason, the same strategy can be
used by Spoiler to win also the game on G = 2Gm and H = 2Hm. Once Duplicator steps
aside to another copy of Gm or Hm, she immediately loses.

The partial isomorphism α+ from Gm to Hm determines two partial isomorphisms α+
0 and

α+
1 from G = 2Gm to H = 2Hm identifying the two Am-parts of G with the two Am-parts

of H. Similarly, α− gives rise to two partial isomorphisms α−0 and α−1 .
We now show that the number of alternations m− 2 is optimal for the game on G and

H. Fix an integer a such that Spoiler has a winning strategy in the a-alternation 2-pebble
game on G and H. For this game, let us fix an arbitrary winning strategy for Spoiler and a
strategy for Duplicator satisfying the following conditions.

CSL’13

72 Bounds for the quantifier depth in finite-variable logics: Alternation hierarchy

Duplicator always respects vertex rungs.
Additionally, Duplicator respects adjacency.
Duplicator respects also non-adjacency. Moreover, whenever Spoiler violates adjacency of
the vertices pebbled in one graph, Duplicator responds so that the vertices pebbled in the
other graph are not only non-adjacent but even lie in different Gm- or Hm-components.
If Spoiler pebbles a vertex above the green rung and the three preceding rules still do not
determine Duplicator’s response uniquely, then she responds according to α+

0 or α+
1 ; in a

similar situation below the green rung, she plays according to α−0 or α−1 .
Note that these rules uniquely determine Duplicator’s moves on non-green vertices provided
one pebble is already on the board. In particular, the choice of α+

0 or α+
1 in the last rule

depends on the component where this pebble is placed.
Let ui ∈ V (G) and vi ∈ V (H) denote the vertices pebbled in the i-th round of the

game. We now highlight a crucial property of Duplicator’s strategy. Suppose that ui, vi and
ui+1, vi+1 are in the Am-parts of G and H and that ui+1 and vi+1 are non-green. Then the
following conditions are met.

If ui and ui+1 are non-adjacent, then α+
s (ui+1) = vi+1 for s = 0 or s = 1.

If ui and ui+1 (as well as vi and vi+1) are adjacent and α+
s (ui) = vi for s = 0 or s = 1,

then α+
s (ui+1) = vi+1 for the same s.

The similar property holds if the pebbles are in the Bm parts.
Suppose that Spoiler wins in the r-th round. Note that Duplicator’s strategy allows

Spoiler to win only when ur and vr are on the top or on the bottom rungs and have different
colors. Since the two cases are similar, assume that Spoiler wins on the top.

Let p be the smallest index such that all vertices in the sequence up, vp, . . . , ur, vr are
above the green level. By assumption, α+

s (ur) 6= vr for both s = 0, 1. The aforementioned
property of Duplicator’s strategy implies that, furthermore,

α+
0 (ui) 6= vi and α+

1 (ui) 6= vi for all i ≥ p. (7)

Therefore, ui+1 and ui as well as vi+1 and vi are adjacent for all i ≥ p (for else Duplicator
plays so that α+

s (ui+1) = vi+1 for s = 0 or s = 1). By the same reason, p > 1 and up−1 and
up are also adjacent. It follows that up−1 and vp−1 are green and α+

s (up−1) 6= vp−1 for both
s = 0, 1.

Another consequence of (7) is that both vertex sequences up−1, up, . . . , ur and vp−1, vp, . . . ,

vr lie on upright paths. This follows from the fact that either from ui or from vi there is
only one edge emanating upstairs (also downstairs), and it is upright.

It remains to notice that after each transition to the adjoining rung (i.e., from ui, vi to
ui+1, vi+1 for i ≥ p− 1) Spoiler has to jump to the other graph because otherwise Duplicator
will choose the neighbor that ensures α+

s (ui+2) = vi+2 for some value of s = 0, 1. This
observation readily implies that the number of alternations a cannot be smaller than m− 2.

We have shown that A2(n) ≥ m− 1 if n = 8m− 4. Adding up to seven isolated vertices
to both G and H, we get the same bound also for n = 8m − 3, . . . , 8m + 3. Therefore,
A2(n) ≥ (n− 11)/8 for all n. J

5 Succinctness results

Since Dk
Σi

(G,H) = Dk
Πi

(H,G), the following result holds true as well for Πi ∩ FOk.

I Theorem 5.1. Let G and H be structures over the same vocabulary. If G is distinguishable
from H in Σi ∩ FOk, then Dk

Σi
(G,H) ≤ (v(G)v(H))k−1 + 1.

C. Berkholz, A. Krebs, and O. Verbitsky 73

In particular, if binary structures G and H have n elements each and G is distinguishable
from H in existential two-variable logic, then D2

∃(G,H) ≤ n2 + 1. We now show that this
bound is tight up to a constant factor. For the existential-positive fragment of FO2, a
quadratic lower bound can be obtained from the benchmark instances for the arc consistency
problem going back to [4, 9]; see [1] where also an alternative approach is suggested. We
here elaborate on the construction presented in [1]. To implement this idea for existential
two-variable logic, we need to undertake a more delicate analysis as the existential-positive
fragment is more restricted and simpler.

I Theorem 5.2. There are infinitely many colored graphs G and H, both on n vertices, such
that G is distinguishable from H in existential two-variable logic and D2

∃(G,H) > n2/11.

Proof. Our construction will depend on an integer parameter m ≥ 2. We construct a pair
of colored graphs Gm and Hm such that Gm is distinguishable from Hm in the existential
two-variable logic, both v(Gm) = O(m) and v(Hm) = O(m), and D2

∃(Gm, Hm) = Ω(m2).
Though v(Gm) < v(Hm), later we will be able to increase the number of vertices in Gm to
v(Hm).

The graphs have vertices of 4 colors, namely apricot, blue, cyan, and dandelion. Gm

contains a cycle of length 3(2m− 1) where apricot, blue, and cyan alternate in this order;
see Fig. 6. Hm contains a similar cycle of length 3 · 2m. Successive apricot, blue, and cyan
vertices will be denoted by ai, bi, and ci in Gm, where 0 ≤ i < 2m− 1, and by a′i, b′i, and c′i
in Hm, where 0 ≤ i ≤ 2m− 1. Furthermore, the vertex a0 is adjacent to a dandelion vertex
d0, and every a′i except for i = m is adjacent to a dandelion vertex d′i. This completes the
description of the graphs.

By Lemma 2.1, we have to show that Spoiler is able to win the 2-pebble Σ1 game on Gm

and Hm and that Duplicator is able to prevent losing the game for Ω(m2) rounds.
Note that, once the pair (a0, a

′
m) is pebbled, Spoiler wins in the next move by pebbling d0.

He is able to force pebbling (a0, a
′
m) as follows. In the first round he pebbles a0. Suppose that

Duplicator responds with a′s, where 0 ≤ s < m. In a series of subsequent moves, Spoiler goes
around the whole circle in Gm, visiting c2m−2, b2m−2, a2m−2, c2m−2, . . . and using the two
pebbles alternately (if m < s < 2m, he does the same but in the other direction). As Spoiler
comes back to a0, Duplicator is forced to arrive at a′s+1. The next Spoiler’s tour around the
circle brings Duplicator to a′s+2 and so forth. Thus, the most successful moves for Duplicator
in the first round is a′0. Then Spoiler needs to play 1 +m · 3(2m− 1) + 1 = 6m2 − 3m+ 2
rounds in order to win.

Our next task is to design a strategy for Duplicator allowing her to survive Ω(m2) rounds,
no matter how Spoiler plays. We will show that Duplicator is able to force Spoiler to pass

G3

a0

H3

a′3

Figure 6 Proof of Theorem 5.2.

CSL’13

74 Bounds for the quantifier depth in finite-variable logics: Alternation hierarchy

around the cycle in Gm many times. A crucial observation is that (a0, a
′
m) is the only pair

whose pebbling allows Spoiler to win in one extra move.
Let us regard the additive group Z2m as a cycle graph with i and j adjacent iff i− j = ±1.

Denote the distance between vertices in this graph by ∆. The same letter will denote the
following partial function ∆ : V (Gm) × V (Hm) → Z. For two vertices of the same color,
say, for ai and a′j , we set ∆(ai, a

′
j) = ∆(i, j). Note that ∆(a0, a

′
m) = m, which is the largest

possible value. Duplicator’ strategy will be to keep the value of the ∆-function on the pebbled
pair as small as possible.

Specifically, in the first round Duplicator responds to Spoiler’s move x with pebbling a
vertex x′ such that ∆(x, x′) = 0 (that is, if x = ai, bi, ci, d0, then x′ = a′i, b

′
i, c
′
i, d
′
0 respectively).

Suppose that a pair (y, y′) is pebbled in the preceding round and Duplicator is still alive. If
Spoiler pebbles x in the current round, Duplicator chooses her response x′ by the following
criteria. Below, ∼ denotes the adjacency relation.

x′ should have the same color as x and, moreover, x′ ∼ y′ iff x ∼ y (this is always possible
unless (y, y′) = (a0, a

′
m) and x = d0);

if there is still more than one choice, x′ should minimize the parameter ∆(x, x′).
We do not consider the cases when x = y or when x is pebbled by the pebble removed from
y because, in our analysis, we can assume that Spoiler uses an optimal strategy, allowing him
to win the 2-pebble Σ1 game on Gm and Hm from the initial position (y, y′) in the smallest
possible number of rounds (if he does not play optimally, Duplicator survives even longer).

Claim C. If x 6∼ y and x 6= y, then ∆(x, x′) ≤ 1.
Proof of Claim C. Assume first that x 6= d0 and y 6= d0. W.l.o.g., suppose that y and y′
are apricot and, specifically, y′ = a′j (the blue and the cyan cases are symmetric to the
apricot case). Not to lose immediately, Duplicator cannot pebble x′ in {c′j−1, a

′
j , b
′
j}, where

j − 1 is supposed to be an element of Z2m. This can obstruct attaining ∆(x, x′) = 0 (if
x ∈ {cj−1, aj , bj}), but then there is a choice of x′ with ∆(x, x′) = 1.

Assume now that x = d0. Then x′ = d′0 if y′ 6= a′0 and x′ = d′1 otherwise. In both cases
∆(x, x′) ≤ 1. Finally, let y = d0 and y′ = d′j . Then the value x′ = a′j is forbidden and, if this
prevents ∆(x, x′) = 0, then we have ∆(x, x′) = 1. /

Consider now the dynamical behaviour of ∆(x, x′), assuming that Duplicator uses the
above strategy and Spoiler follows an optimal winning strategy. We have ∆(x, x′) = 0 at
the beginning of the game and ∆(x, x′) = m at the end (that is, in the round immediately
before Spoiler wins). Consider the last round of the game where ∆(x, x′) ≤ 1. By Claim C,
starting from the next round Spoiler always moves along an edge in Gm. Note that, from
now on, visiting d0 earlier than in the very last round would be inoptimal. Therefore, Spoiler
walks along the circle. Another consequence of optimality is that he moves always in the
same direction.

W.l.o.g., we can suppose that Spoiler moves in the ascending order of indices. Note that
∆(x, x′) increases by 1 only under the transition from x = a2m−2 to x = a0 (at this point, the
index of x makes a jump in Z2m, while the index of x′ moves along Z2m always continuously).
In order to increase ∆(x, x′) from 1 to m, the edge a2m−2a0 must be passed m− 1 times. It
follows that, before Spoiler wins, the game lasts at least 2+(m−2)·3(2m−1) = 6m2−15m+8
rounds.

Note that v(Gm) = 6m−2 and v(Hm) = 8m−1. In order to make the number of vertices
in both graphs n = 8m− 1, let m be multiple of 3 and add two new connected components
to Gm, namely the cycle of length 2m with alternating colors apricot, blue, and cyan and
one isolated vertex of any color. Spoiler can still win by playing in the old component. Since

C. Berkholz, A. Krebs, and O. Verbitsky 75

playing in the new components does not help him, the game on the modified Gm and the
same Hm lasts at least 6m2 − 15m+ 8 = 3

32 n
2 −O(n) rounds. J

Lifting it higher

Since D2
Σi

(G,H) = D2
Πi

(H,G), the following results hold true as well for Πi ∩ FO2.

I Theorem 5.3. Let i ≥ 1. There are infinitely many colored graphs G and H, both on n
vertices, such that G is distinguishable from H in Σi∩FO2 and D2

Σi
(G;H) > 1

11·9i n
2− 1

11·3in.

Proof. For infinitely many values of an integer parameter n0, Theorem 5.2 provides us with
colored graphs G0 and H0 on n0 vertices each such that Spoiler has a continuous winning
strategy in the 2-pebble Σ1 game on G0 and H0, and D2

∃(G0, H0) > 1
11 n

2
0. Let Gi and Hi

be now the graphs obtained from G0 and H0 by the lifting construction described in Section
2. Note that v(Gi) = 3 v(Gi−1) + 1, where G0 = G. It follows that n = v(Gi) = 3in0 + 3i−1

2 .
The graph Gi is distinguishable from Hi in Σi ∩ FO2 by part 1 of Lemma 2.2. By part 2 of
this lemma, we have D2

Σi
(Gi, Hi) > 1

11 n
2
0, which implies the bound stated in terms of n. J

Using a similar sequence of graphs, we can also show that Σi ∩FO2 is more succinct than
Σi−1 ∩ FO2. Given i, let us construct Gi and Hi starting from the same G0 as in the proof
of Theorem 5.3 and a slightly modified H0. Specifically, we make all dandelion vertices in
H0 adjacent; see Fig. 6 for G0 and H0, where H0 is still unmodified. This makes part 4 of
Lemma 2.2 applicable, which along with part 2 gives us the following result.

I Theorem 5.4. For each i ≥ 2 there are infinitely many colored graphs G and H, both on
n vertices, such that D2

Σi
(G,H) = O(1) while D2

Σi−1
(G,H) <∞ and D2

Πi
(G,H) = Ω(n2).

References
1 Christoph Berkholz and Oleg Verbitsky. On the speed of constraint propagation and the

time complexity of arc consistency testing. In K. Chatterjee and J. Sgall, editors, MFCS’13,
volume 8087 of the Lecture Notes in Computer Science, pages 159–170. Springer, 2013.

2 Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of
variables for graph identifications. Combinatorica, 12(4):389–410, 1992.

3 Ashok K. Chandra and David Harel. Structure and complexity of relational queries. J.
Comput. Syst. Sci., 25(1):99–128, 1982.

4 Rina Dechter and Judea Pearl. A problem simplification approach that generates heuris-
tics for constraint-satisfaction problems. Technical report, Cognitive Systems Laboratory,
Computer Science Department, University of California, Los Angeles, 1985.

5 Heinz-Dieter Ebbinghaus and Jörg Flum. Finite model theory. Springer, 1995.
6 Neil Immerman and Eric Lander. Describing graphs: A first-order approach to graph

canonization. In A. Selman, editor, Complexity Theory Retrospective, pages 59–81. Springer,
1990.

7 Øystein Ore. Theory of graphs, volume 38 of Colloquium Publications. AMS, Providence,
R.I., 1962.

8 Oleg Pikhurko and Oleg Verbitsky. Logical complexity of graphs: a survey. In M. Grohe
and J. Makowsky, editors, Model theoretic methods in finite combinatorics, volume 558 of
Contemporary Mathematics, pages 129–179. AMS, Providence, RI, 2011.

9 Ashok Samal and Tom Henderson. Parallel consistent labeling algorithms. International
Journal of Parallel Programming, 16:341–364, 1987.

10 Philipp Weis and Neil Immerman. Structure theorem and strict alternation hierarchy for
FO2 on words. Logical Methods in Computer Science, 5(3), 2009.

CSL’13

76 Bounds for the quantifier depth in finite-variable logics: Alternation hierarchy

A The proof of Theorem 3.3

The complement of a graph G is the graph on the same vertex set V (G) with any two vertices
adjacent if and only if they are not adjacent in G. We call a graph normal if it has neither
isolated nor universal vertex. Note that a graph is normal iff its complement is normal. For
every graph G with at least 2 vertices we inductively define its rank rkG.

Graphs of rank 1 are exactly the empty, the complete, and the normal graphs.
Graphs of rank 2 are exactly the graphs obtained by adding universal vertices to empty
graphs, or isolated vertices to complete graphs, or either universal or isolated vertices to
normal graphs.
If i ≥ 2, disconnected graphs of rank i+ 1 are obtained from connected graphs of rank i
by adding a number of isolated vertices.
For every i, connected graphs of rank i are exactly complements of disconnected graphs
of rank i.

A simple inductive argument on the number of vertices shows that all graphs with at
least two vertices get ranked. Indeed, if a graph G is normal, complete, or empty, it receives
rank 1. This includes the case that G has two vertices. If G does not belong to any of these
three classes, it has either isolated or universal vertices. Since graphs with universal vertices
are connected and are the complements of graphs with isolated vertices, it suffices to consider
the case that G has isolated vertices. Remove all of them from G and denote the result by
G′. Note that G′ has less vertices than G but still more than one vertex. By the induction
assumption, G′ is ranked. If rkG′ = 1, then rkG = 2 by definition. If rkG′ > 1, then G′
must be connected (for else it would be normal). Therefore, rkG = rkG′ + 1 by definition.

We now introduce a ranking of vertices in a graph G. If rkG = 1, then all vertices of G
get rank 1. Suppose that rkG > 1. If G is disconnected, it has at least one isolated vertex;
if G is connected, there is at least one universal vertex. Denote the set of such vertices by
∂G. Every vertex in ∂G is assigned rank 1. If u /∈ ∂G, then it is assigned rank one greater
than the rank of u in the graph G − ∂G. The rank of a vertex u in G will be denoted by
rk u. It ranges from the lowest value 1 to the highest value rkG. Note that a vertex u with
rk u < rkG has the same adjacency to all other vertices of equal or higher rank.

Given an integer m ≥ 1 and a graph G with rkG > m, we define the m-tail type of G to
be the sequence (t0, t1, . . . , tm) where t0 ∈ {conn, disc} depending on whether G is connected
or disconnected and, for i ≥ 1, ti ∈ {thin, thick} depending on whether G has one or more
vertices of rank i.

Furthermore, we define the kernel of a graph G to be its subgraph induced on the vertices
of rank rkG. Note that the kernel of any G is a graph of rank 1. We define the head type of
G to be empty, compl, or norma depending on the kernel. We say that graphs G and H are
of the same type if rkG = rkH, G and H have the same head type, and if rkG > 1, then
they also have the same m-tail type for m = rkG− 1. The single-vertex graph has its own
type.

I Lemma 1.1.
1. If G and H are of the same type, then D2(G,H) =∞.
2. If G and H have the same m-tail type, then D2(G,H) ≥ m.

I Lemma 1.2.
1. For each m-tail type, the class of graphs of this type is definable by a first-order formula

with two variables and one quantifier alternation.
2. For each G, the class of graphs of the same type as G is definable by a first-order formula

with two variables and one quantifier alternation.

C. Berkholz, A. Krebs, and O. Verbitsky 77

Let C be a class of graphs definable by a formula with two variables of quantifier depth
less than m. By Lemma 1.1, C is the union of finitely many classes of graphs of the same
type (each of rank at most m) and finitely many classes of graphs of the same m-tail type.
By Lemma 1.2, C is therefore definable by a first-order formula with two variables and one
quantifier alternation. To complete the proof of Theorem 3.3, it remains to prove the lemmas.

Proof of Lemma 1.1. 1. Let rkG = rkH = m + 1. Let V (G) = U1 ∪ . . . Um+1 and
V (H) = V1 ∪ . . . Vm+1 be the partitions of the vertex sets of G and H according to the
ranking of vertices. We will describe a winning strategy for Duplicator in the two-pebble
game on G and H. We will call a pair of pebbled vertices (u, v) ∈ V (G)× V (H) straight if
u ∈ Ui and v ∈ Vi for the same i. Note that both the kernels Um+1 and Vm+1 contain at
least 2 vertices and, since G and H are of the same type, |Ui| = 1 iff |Vi| = 1. This allows
Duplicator to play so that the vertices pebbled in each round form a straight pair and the
equality relation is never violated. If the head type of G and H is empty or compl, this
strategy is winning because the adjacency of vertices u ∈ Ui and u′ ∈ Uj depends only on
the indices i and j and is the same as the adjacency of any vertices v ∈ Vi and v′ ∈ Vj . It
remains to notice that Duplicator can resist also when the game is played inside the normal
kernels Um+1 and Vm+1. In this case she never loses because, for every vertex in a normal
graph, she can find another adjacent or non-adjacent vertex, as she desires.

2. We have to show that Duplicator can survive in at least m− 1 rounds. Note that both
rkG ≥ m+1 and rkH ≥ m+1. Similarly to part 1, consider partitions V (G) = U1∪ . . . Um+1
and V (H) = V1 ∪ . . . Vm+1, where Um+1 and Vm+1 now consist of the vertices whose rank
is higher than m. In the first round Duplicator plays so that the pebbled vertices form a
straight pair. However, starting from the second round it can be for her no more possible
to keep the pebbled pairs straight. Call a pair of pebbled vertices (u, v) ∈ V (G) × V (H)
skew if u ∈ Ui and v ∈ Vj for different i and j. Assume that Spoiler uses his two pebbles
alternatingly (playing with the same pebble in two successive rounds gives him no advantage).
Let (ur, vr) denote the pair of vertices pebbled the r-th round. If (ur, vr) is skew, let Sr

denote the minimum s such that ur ∈ Us or vr ∈ Vs. If (ur, vr) is straight, we set Sr = m+ 1.
Our goal is to show that, if Sr = m+ 1, then Duplicator has a non-losing move in the next
round such that Sr+1 ≥ m− 1 and that, as long as 1 < Sr ≤ m, she has a non-losing move
such that Sr+1 ≥ Sr − 1. This readily implies that Duplicator does not lose the first m− 1
rounds.

To avoid multiple treatment of symmetric cases, we use the following notation. Let
{G1, G2} = {G,H}. Let y1 ∈ G1 and y2 ∈ G2 denote the vertices being pebbled in the round
r + 1, and let x1 ∈ G1 and x2 ∈ G2 be the vertices pebbled in the round r (in the previous
notation, {x1, x2} = {ur, vr} and {y1, y2} = {ur+1, vr+1}).

Suppose first that {x1, x2} is a straight pair contained in the slice Ui ∪ Vi. If i ≤ m, it
makes no problem for Duplicator to move so that the pair {y1, y2} is also straight. This holds
true also if i = m + 1 and Spoiler pebbles ya ∈ Uj ∪ Vj with j ≤ m. Thus, in these cases
Sr+1 = Sr = m+ 1. However, if i = j = m+ 1, moving straight can be always Duplicator’s
loss. In this case she survives by pebbling a vertex y3−a of rank m or m− 1, depending on
the adjacency relation between xa and ya. In this case Sr+1 ≥ m− 1.

Let us accentuate the property of the vertex ranking that is beneficial to Duplicator in
the last case. Recall that, if a vertex u is not in the graph kernel, it has the same adjacency
to all other vertices of equal or higher rank. If u is adjacent to all such vertices, we say that
u is of universal type; otherwise we say that it is of isolated type. Duplicator uses the fact
that the type of a vertex gets flipped when its rank increases by one.

Suppose now that {x1, x2} is a skew pair. Let x1 ∈ Ui ∪Vi and x2 ∈ Uj ∪Vj and, w.l.o.g.,

CSL’13

78 Bounds for the quantifier depth in finite-variable logics: Alternation hierarchy

assume that i > j. Since j = Sr, it is supposed that j > 1. We consider three cases depending
on Spoiler’s move ya. In the most favorable for Duplicator case, rk ya < j. Then Duplicator
responds with a vertex y3−a of the same rank, resetting Sr+1 back to the initial value m+ 1.
If Spoiler pebbles a vertex y2 of rk y2 ≥ j, then Duplicator responds with a vertex y1 of
rk y1 = j, keeping Sr+1 ≥ j = Sr (unchanged or reset to m+ 1). Finally, consider the case
when Spoiler pebbles a vertex y1 of rk y1 ≥ j. Assume that x2 is of universal type (the other
case is symmetric). If y1 and x1 are adjacent, then Duplicator responds with a vertex y2
of rk y2 = i, keeping Sr+1 ≥ Sr. If y1 and x1 are not adjacent, then Duplicator responds
with y2 of rk y2 = j − 1, which is of isolated type. This is the only case when Sr+1 = Sr − 1
decreases. J

Proof of Lemma 1.2. 1. Consider an m-tail type (t0, t1, . . . , tm). Assume that t0 = conn
(the case of t0 = disc is similar). Let ∼ denote the adjacency relation. We inductively define
a sequence of formulas Φs(x) with occurrences of two variables x and y and with one free
variable:

Φ1(x) def= ∀y (y ∼ x ∨ y = x),
Φ2k(x) def= ∀y (Φ2k−1(y) ∨ y 6∼ x),

Φ2k+1(x) def= ∀y (Φ2k(y) ∨ y ∼ x ∨ y = x).

Here Φ2k−1(y) is obtained from Φ2k−1(x) by swapping x and y. A simple inductive argument
shows that, if G is a connected graph and rkG is greater than an odd (resp. even) integer s,
then G, v |= Φs(x) exactly when the vertex v is of universal (resp. isolated) type and rk v ≤ s.

Furthermore, we define a sequence of closed formulas Ψs with alternation number 1:

Ψ1
def= ∃xΦ1(x) ∧ ∃x¬Φ1(x),

Ψ2
def= ∃xΦ1(x) ∧ ∃xΦ2(x) ∧ ∃x(¬Φ1(x) ∧ ¬Φ2(x)),

Ψs
def= ∃xΦ1(x) ∧ ∃xΦ2(x) ∧

s∧
i=3

(Φi(x) ∧ ¬Φi−2(x)) ∧ ∃x(¬Φs−1(x) ∧ ¬Φs(x)), s ≥ 3.

Note that a graph G satisfies Ψs if and only if G is connected and rkG > s.
We are now able to define the class of graphs of m-tail type (t0, t1, . . . , tm) by the

conjunction

Ψm ∧
m∧

i=1
Ti,

where
Ti

def= ∃x∃y (x 6= y ∧ Φi(x) ∧ ¬Φi−2(x) ∧ Φi(y) ∧ ¬Φi−2(y))

if ti = thick and

Ti
def= ∀x∀y (¬Φi(x) ∨ ¬Φi(y) ∨ Φi−2(x) ∨ Φi−2(y) ∨ x = y)

if ti = thin (if i ≤ 2, the subformulas with non-positive indices should be ignored).
2. The single-vertex graph is defined by a formula ∀x∀y (x = y). The three classes of

graphs of rank 1 are defined by the following three formulas:

∃x∃y (x 6= y) ∧ ∀x∀y (x 6∼ y),
∃x∃y (x 6= y) ∧ ∀x∀y (x = y ∨ x ∼ y),
∀x∃y (x ∼ y) ∧ ∀x∃y (x 6= y ∨ x 6∼ y).

C. Berkholz, A. Krebs, and O. Verbitsky 79

Suppose that rkG = m+ 1 and m ≥ 1. Let (t0, t1, . . . , tm) be the m-tail type of G. Assume
that G is connected, that is, t0 = conn (the disconnected case is similar). We use the formulas
Φs(x), Ψs, and Ti constructed in the first part. If the head type of G is compl or empty (the
former is possible if m is even and the latter if m is odd), then the type of G is defined by

Ψm ∧
m∧

i=1
Ti ∧ ∀xΦm+1(x).

If the head type of G is norma, then the type of G is defined by

Ψm ∧
m∧

i=1
Ti ∧ ¬∃xΦm+1(x).

Indeed, Ψm∧
∧m

i=1 Ti is true on a graph H if and only if H has the m-tail type (t0, t1, . . . , tm)
and rkH ≥ m+ 1. Let Q ⊂ V (H) denote the set of vertices not in the tail part. Then Q is
a homogeneous set exactly when H satisfies ∀xΦm+1(x), and Q spans a normal subgraph
exactly when H satisfies ¬∃xΦm+1(x). J

B Proof of Theorem 5.1

By Lemma 2.1, we have to prove that, if Spoiler has a winning strategy in the r-round
k-pebble Σi game on G and H for some r, then he has a winning strategy in the game with
v(G)v(H) + 1 rounds.

The proof is based on a general game-theoretic argument. Consider a two-person game,
where the players follow some fixed strategies and one of them wins. Then the length of the
game cannot exceed the total number of all possible positions because once a position occurs
twice, the play falls into an endless loop. Here it is assumed that the players’ strategies
are positional, that is, that a strategy of a player maps a current position (rather than the
sequence of all previous positions) to one of the moves available for the player.

Implementing this scenario for the Σi game, we have to overcome two complications.
First, we have to “reduce” the space V (G)k × V (H)k of all possible positions in the game,
which has size (v(G)v(H))k. Second, we have take care of the fact that, if i > 1, then
Spoiler’s play can hardly be absolutely memoryless in the sense that he apparently has to
remember the number of jumps left to him or, at least, the graph in which he moved in the
preceding round.

We begin with some notation. Let ū and v̄ be tuples of vertices in G and H, respectively,
having the same length no more than k. Given Ξ ∈ {Σ,Π} and a ≥ 1, let R(Ξ, a, ū, v̄) be the
minimum r such that Spoiler has a winning strategy in the Ξa game on G and H starting
from the initial position (ū, v̄). Given a k-tuple w̄ and j ≤ k, let σjw̄ denote the (k− 1)-tuple
obtained from w̄ by removal of the j-th coordinate. Note that, if ū ∈ V (G)k and v̄ ∈ V (H)k,
then

R(Ξ, a, ū, v̄) = min
1≤j≤k

R(Ξ, a, σj ū, σj v̄). (8)

In order to estimate the length of the k-pebble Σi game on G and H, we fix a strategy
for Duplicator arbitrarily and consider the strategy for Spoiler as described below. For i ≥ 1,
we will say that C̄s = (Ξs, as, ūs, v̄s) is the position after the s-th round if

Ξs = Σ if in the s-th round Spoiler moved in G and Ξs = Π if he moved in H;
during the first s rounds Spoiler jumped from one graph to another i− as times;

CSL’13

80 Bounds for the quantifier depth in finite-variable logics: Alternation hierarchy

after the s-th round the pebbles p1, . . . , pk are placed on the vertices ū ∈ V (G)k and
v̄ ∈ V (H)k (we suppose that in the first round Spoiler puts all k pebbles on one vertex).

Furthermore, we will say that C̃s = (Ξs, as, ũs, ṽs) is the position before the (s+ 1)-th move
if in the (s+ 1)-th round Spoiler moves the pebble pj and ũs = σj ūs and ṽs = σj v̄s.

Let us describe Spoiler’s strategy. He makes the first move according to an arbitrarily
prescribed strategy that is winning for him in the Dk

Σi
(G,H)-round k-pebble Σi game on G

and H. If this move is in G, let Ξ1 = Σ and a1 = i; otherwise Ξ1 = Π and a1 = i− 1. After
Duplicator responses, the position C̄1 is specified. Note that R(C̄1) < Dk

Σi
(G,H).

Suppose that the s-th round has been played and after this we have the position C̄s =
(Ξs, as, ūs, v̄s). In the next round Spoiler plays with the pebble pj for the smallest value of j
such that

R(C̃s) = R(C̄s). (9)

Such index j exists by (8). Spoiler makes his move according to a prescribed strategy that
is winning for him in the R(C̄s)-round k-pebble (Ξs)as

game on G and H with the initial
position (ũs, ṽs). If he moves in the same graph as in the s-th round, then Ξs+1 = Ξs and
as+1 = as; otherwise Ξs+1 gets flipped and as+1 = as − 1.

Note that as+1 ≤ as and, if Ξs+1 6= Ξs, then as+1 < as. Since Spoiler in each round uses
a strategy optimal for the rest of the game,

R(C̄s+1) < R(C̄s). (10)

It follows that the described strategy allows Spoiler to win the Σi game on G and H in at
most Dk

Σi
(G,H) moves.

We now estimate the length of the game from above. Suppose that after the t-th round
Duplicator is still alive. Due to (9) and (10),

R(C̃1) > R(C̃2) > . . . > R(C̃t).

It follows that the elements of the sequence C̃1, C̃2, . . . , C̃t are pairwise distinct. We con-
clude from here that the elements of the sequence (ũ1, ṽ1), (ũ2, ṽ2), . . . , (ũt, ṽt) are pair-
wise distinct too. Indeed, let s′ > s. If as′ = as, then Ξs = Ξs′ . Since C̃s 6= C̃s′ ,
we have (ũs, ṽs) 6= (ũs′ , ṽs′). If as′ < as, the same inequality follows from the fact that
R(Ξ, a, ũ, ṽ) ≤ R(Ξ′, a′, ũ, ṽ) whenever a′ < a.

Since (ũs, ṽs) ranges over V (G)k−1×V (H)k−1, we conclude that t ≤ (v(G)v(H))k−1 and,
therefore, Spoiler wins in the round (v(G)v(H))k−1 + 1 at latest.

Unambiguity and uniformization problems on
infinite trees
Marcin Bilkowski∗ and Michał Skrzypczak†

University of Warsaw
Banacha 2, 02-097 Warsaw, Poland
{m.bilkowski,mskrzypczak}@mimuw.edu.pl

Abstract
A nondeterministic automaton is called unambiguous if it has at most one accepting run on
every input. A regular language is called unambiguous if there exists an unambiguous automaton
recognizing this language. Currently, the class of unambiguous languages of infinite trees is not
well-understood. In particular, there is no known decision procedure verifying if a given regular
tree language is unambiguous. In this work we study the self-dual class of bi-unambiguous
languages — languages that are unambiguous and their complement is also unambiguous. It
turns out that thin trees (trees with only countably many branches) emerge naturally in this
context.

We propose a procedure P designed to decide if a given tree automaton recognizes a bi-
unambiguous language. The procedure is sound for every input. It is also complete for languages
recognisable by deterministic automata. We conjecture that P is complete for all inputs but
this depends on a new conjecture stating that there is no MSO-definable choice function on thin
trees. This would extend a result by Gurevich and Shelah on the undefinability of choice on the
binary tree.

We provide a couple of equivalent statements to our conjecture, we also give several related
results about uniformizability on thin trees. In particular, we provide a new example of a language
that is not unambiguous, namely the language of all thin trees. The main tool in our studies are
algebras that can be seen as an adaptation of Wilke algebras to the case of infinite trees.

1998 ACM Subject Classification F.4.3 Formal Languages

Keywords and phrases nondeterministic automata, infinite trees, MSO logic

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.81

1 Introduction

Infinite trees form a rich class of models, one infinite tree may encode whole set of finite words
or a strategy in an infinite duration game. Therefore, the decidability of Monadic Second-
Order (MSO) logic over infinite trees [19] is often called the mother of all decidability results.
The proof of this decidability result follows a similar line as in the case of finite words [27]
— we find a model of automata that are equivalent in expressive power with MSO logic and
have decidable emptiness problem.

The proof of Rabin’s theorem deals with nondeterministic automata as deterministic ones
have strictly smaller expressive power. It is one of the main reasons why many problems
about regular languages of infinite trees are very hard. For example, no algorithm is known

∗ This paper has been partially supported by the Polish Ministry of Science grant no. N206 567840.
† Author supported by ERC Starting Grant “Sosna” no. 239850.

© Marcin Bilkowski and Michał Skrzypczak;
licensed under Creative Commons License CC-BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca; pp. 81–100

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

{m.bilkowski, mskrzypczak}@mimuw.edu.pl
http://dx.doi.org/10.4230/LIPIcs.CSL.2013.81
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

82 Unambiguity and uniformization problems on infinite trees

to decide the parity index in the class of all regular tree languages. On the other hand,
there are many results for the restricted class of deterministic languages [11, 15, 16, 17, 13].
Unambiguous automata can be seen as a natural intermediate class between deterministic
and nondeterministic ones. An automaton is unambiguous if it has at most one accepting
run on every input. In some settings [25, 3] unambiguous automata admit faster algorithms
than general nondeterministic automata.

The unambiguous automata do not capture the class of all regular languages of infinite
trees. As shown in [5], the language Lb of trees containing at least one letter b cannot be
recognised by any unambiguous automaton. The proof uses a result by Gurevich and She-
lah [8] stating that there is no MSO-definable choice function on the full binary tree (see [5]
for a simpler proof of this result). To the authors’ best knowledge, the non-definability of
choice has been so far the only method to show that a tree language is ambiguous (i.e. not
unambiguous).

The class of unambiguous languages of infinite trees is not well-understood. In partic-
ular, there is no effective procedure known that decides whether a given nondeterministic
automaton recognises an unambiguous language. Additionally, unambiguous languages lack
some natural properties. As witnessed by the language Lb, a complement of an unambiguous
(and even deterministic) language may be ambiguous. Also, as shown in Proposition 2 of
this work, a sum of two deterministic languages may be ambiguous.

Due to the above reasons we concentrate on the class of languages such that both the
language and its complement are unambiguous. We call these languages bi-unambiguous. An
easy argument shows that this class is effectively closed under boolean operations. Moreover,
the class is rich enough to contain languages beyond the σ-algebra generated by Π1

1 sets
(see [9]). In particular, there are bi-unambiguous languages that are topologically harder
than all deterministic languages.

Our motivating problem is to find an effective procedure that verifies if a given regular
tree language is bi-unambiguous. Unfortunately, we are unable to solve this problem in full
generality. We have a candidate P for such a procedure and we prove that P is sound —
if P returns YES then the language is bi-unambiguous. Also, P is complete for determ-
inistic languages — if L is deterministic and bi-unambiguous then P returns YES. The
completeness of P in the general case relies on a new conjecture (Conjecture 1 below).

Interestingly, the class of thin trees (trees containing only countably many branches,
see [12, 21, 2]) emerges naturally in this context. The crucial technical tool of the procedure
P can be seen as an application of the algebra designed for thin trees [10, 2] in the setting
of all trees. For this purpose a class of prophetic thin algebras is introduced. Basing on
algebraic observations we show that P is complete if the following conjecture holds.

I Conjecture 1 (Undefinability of a choice function on thin trees). There is no MSO formula in
the language of trees ϕ(x,X) such that for every non-empty set X ⊆ {l, r}∗ that is contained
in a thin tree, ϕ(x,X) holds for exactly one vertex x and such a vertex x belongs to X.

To the authors’ best knowledge the above conjecture is new. It is a strengthening of the
result of Gurevich and Shelah [8] as we restrict the class of allowed sets X.

We find this conjecture interesting in its own right. A number of equivalent statements
is provided. Also, it turns out that, assuming Conjecture 1, the class of finite prophetic thin
algebras has many good properties (e.g. it is a pseudo-variety of algebras corresponding
exactly to the class of bi-unambiguous languages).

Conjecture 1 can be seen as an instance of a more general problem of uniformization. We
provide some related results on uniformizability on thin trees. In particular, we show that
there exists some non-uniformizable formula on thin trees. It can be seen as an alternative

M. Bilkowski and M. Skrzypczak 83

to [8] answer to Rabin’s Uniformization Problem. Also, we show that the language of all thin
trees is ambiguous, thus providing an essentially new example of an ambiguous language.

We begin by introducing some basic definitions and notions. In Section 3 we define the
procedure P and show its properties. Section 4 is devoted to the analysis of the choice
problem on thin trees. In Section 5 we study related uniformization problems on thin trees.

2 Basic notions

2.1 Trees
For technical reasons we work with ranked alphabets A = (N,L) where N (like nodes)
contains binary symbols and L (like leafs) contains nullary symbols. We assume that both
sets N and L are finite and nonempty. We say that t is a tree over the alphabet (N,L) if
t is a function from its nonempty domain dom(t) ⊆ {l, r}∗ into N ∪ L in such a way that
dom(t) is prefix-closed and for every vertex w ∈ dom(t) either:

w is an (internal) node of t (i.e. wl,wr ∈ dom(t)) and t(w) ∈ N , or
w is a leaf of t (i.e. wl,wr /∈ dom(t)) and t(w) ∈ L.

The set of all trees over an alphabet A is denoted as TrA. A tree containing no leaf is
full. If t ∈ TrA is a tree and w ∈ dom(t) is a vertex of t then by t �w∈ TrA we denote the
subtree of t rooted in w. By � we denote the prefix-order on elements of {l, r}≤ω.

A sequence π ∈ {l, r}ω is an infinite branch of a tree t if for every w ≺ π we have that
w ∈ dom(t). An element d ∈ {l, r} is called a direction, the opposite direction is denoted as
d̄. The empty sequence ε is called the root of a tree t. If π is an infinite branch of a tree t
and w 6≺ π but w is a child of a vertex on π then we say that w is off π.

A tree t ∈ TrA is thin if there are only countably many infinite branches of t. The set
of all thin trees is denoted by ThA. A tree that is not thin is thick. A tree is regular if it
has only finitely many different subtrees. For a ∈ N by a(tl, tr) ∈ TrA we denote the tree
consisting of the root ε labelled by the letter a and two subtrees tl, tr ∈ TrA respectively.

A multi-context over an alphabet A = (N,L) is a tree c ∈ Tr(N,Lt{�}). A vertex
w ∈ dom(c) such that c(w) = � is called a hole of c. For every tree t ∈ TrA the composition
of c and t, denoted c · t ∈ TrA, is obtained by plugging copies of t in all the holes of c.

If a multi-context c has exactly one hole not in the root then it is called a context. The
set of all contexts over the alphabet A is denoted as ConA. The set of all contexts over A
that are thin as trees is denoted by ThConA. For t ∈ TrA and w ∈ dom(t), by t[�/w] we
denote the context obtained from t by putting the hole in w.

Let tA ∈ TrA and M be a ranked alphabet. We say that tM ∈ TrM is a labelling of tA if
dom(tM) = dom(tA). In that case we define the tree (tA, tM) ∈ TrA×M in the natural way.

2.2 Automata
A nondeterministic parity tree automaton is a tuple A = (Q,A, δ, I,Ω) where

Q is a finite set of states,
A = (N,L) is a ranked alphabet,
δ = δ2 t δ0 is a transition relation: δ2 ⊆ Q ×Q ×N ×Q contains transitions for nodes
(q, ql, a, qr) and δ0 ⊆ Q× L contains transitions for leafs (q, b),
I ⊆ Q is a set of initial states,
Ω: Q→ N is a priority function.

CSL’13

84 Unambiguity and uniformization problems on infinite trees

A run of an automaton A on a tree t ∈ TrA is a labelling ρ of t over the ranked alphabet
(Q,Q) such that for every vertex w of t

if w is a node of t then (ρ(w), ρ(wl), t(w), ρ(wr)) ∈ δ2,
if w is a leaf of t then (ρ(w), t(w)) ∈ δ0.

A run ρ is consistent if for every infinite branch π of t the lim sup of values of Ω on states
along π is even: lim supn→∞ Ω(ρ(π �n)) ≡ 0 mod 2. The state ρ(ε) is called the value of ρ.

Similarly one can define a run ρ on a context c with the hole w, the only difference is
that there is no constraint on the value ρ(w) in the hole of c.

A run ρ is accepting if it is consistent and ρ(ε) ∈ I. A tree t ∈ TrA is accepted by A
if there exists an accepting run ρ of A on t. The set of trees accepted by A is called the
language recognised by A and is denoted by L(A). A language L ⊆ TrA is regular if there
exists an automaton recognising L.

We say that an automaton A is deterministic if I = {qI} and for every state q ∈ Q

and letter a ∈ N there is at most one transition (q, ql, a, qr) ∈ δ2. An automaton A is
unambiguous if for every tree t ∈ L(A) there is exactly one accepting run of A on t. A
language L ⊆ TrA is deterministic (resp. unambiguous) if there exists a deterministic (resp.
unambiguous) automaton recognising L. A language that is not unambiguous is called
ambiguous. A deterministic language is, by the definition, unambiguous. A language L is
bi-unambiguous if both L and TrA \ L are unambiguous.

We finish this section with an observation showing that unambiguous languages are not
closed under finite union.

I Proposition 2. There exist deterministic languages L1, L2 such that L1 ∪L2 is ambiguous.

2.3 Logic
We use the standard notion of Monadic Second-Order (MSO) logic (see [26]). The syntax of
this logic allows quantification over elements and subsets of the domain, boolean connectives,
predicates for the letters in a given alphabet, and two relations l-child, r-child.

For a given MSO formula ϕ(~P) over an alphabetA = (N,L) with n parameters P1, . . . , Pn
by L(ϕ(~P)) we denote the set of trees over the alphabet (N × {0, 1}n, L× {0, 1}n) that
satisfy ϕ when parameters P are decoded from their characteristic functions.

The crucial property of MSO logic is expressed by the following theorem.

I Theorem 3 (Rabin [19]). A language L ⊆ TrA is regular if and only if there exists an MSO
formula ϕ such that L = L(ϕ). There are effective procedures translating MSO formulas into
equivalent automata and vice versa.

3 Bi-unambiguous languages

In this section we concentrate on the following decision problem.

I Problem 4. The input is a nondeterministic parity tree automaton A. The output should
be YES if the language L(A) is bi-unambiguous. Otherwise, the output should be NO.

We construct a procedure P with the following properties.

I Theorem 5. Let A be a nondeterministic tree automaton.
1. P (A) terminates.
2. If P (A) = YES then L(A) is bi-unambiguous.

M. Bilkowski and M. Skrzypczak 85

3. If L(A) is deterministic and P (A) = NO then L(A) is not bi-unambiguous1.
4. If Conjecture 1 is true and P (A) = NO then L(A) is not bi-unambiguous.

Recall that it is decidable whether a given regular tree language is recognisable by a
deterministic tree automaton (see [17]). Therefore, the above assumption that L(A) is
deterministic can be effectively checked given some representation of L(A). The rest of this
section is devoted to defining P and showing the above theorem.

3.1 Thin algebra
The crucial tool in the construction of the procedure P is a variant of thin forest algebra [2],
called thin algebra. Thin algebra can be seen as a natural extension of Wilke algebra [28, 30]
and Wilke tree algebra [29] to the case of infinite trees.

Let us fix a ranked alphabet A = (N,L). A thin algebra over A is a two-sorted algebra
(H,V) with a number of operations:

u · v ∈ V for u, v ∈ V ,
v · h ∈ H for v ∈ V, h ∈ H,
v∞ ∈ H for v ∈ V ,
Node(a, d, h) ∈ V for a ∈ N , d ∈ {l, r}, and h ∈ H,
Leaf(b) ∈ H for b ∈ L.

Note that the first three operations are the same as in the case of Wilke algebras. The
last two operations allow to operate on trees. For simplicity, we write a(�, h) instead
of Node(a, l, h) and a(h,�) instead of Node(a, r, h). Similarly, b() stands for Leaf(b) and
a(hl, hr) ∈ H denotes the result of a(hl,�) · hr.

The axioms of thin algebra are axioms of Wilke algebra and one additional axiom:
a(�, hr) · hl = a(hl,�) · hr.

I Fact 6. Let (H,V) be a thin algebra and let (vi)i∈N be any sequence of elements of V .
There exists a unique value

∏
i vi ∈ H for which: if j0 < j1 < . . . is a sequence of numbers

and s, e ∈ V are types such that:
v0 · . . . · vj0 = s,
for all i ≥ 0 vji+1 · . . . · vji+1 = e

then s · e∞ =
∏
i vi. Also, the following holds

∏
i≥0 vi = v0 ·

∏
i≥1 vi.

Proof. The same as in the case of Wilke algebra, see [18]. J

It is easy to verify that the pair (TrA,ConA) has a natural structure of a thin algebra.
In particular, the operation c∞ constructs the tree c∞ from a context c by looping the hole
of c to the root of c. The subalgebra of (TrA,ConA) consisting of thin regular trees and
thin regular contexts is free in the class of thin algebras over the alphabet A. The algebra
(TrA,ConA) is not free.

A homomorphism α : (H,V) → (H ′, V ′) between two thin algebras over the same al-
phabet A is defined in the usual way: α should be a function mapping elements of H into
H ′ and elements of V into V ′ that preserves all the operations of thin algebra. Such a
homomorphism is surjective if α(H) = H ′ and α(V) = V ′.

Since (TrA,ConA) is not free in the class of thin algebras, we need to define one additional
requirement for homomorphisms α : (TrA,ConA)→ (H,V). Let A = (N,L) and put AtH =

1 What is equivalent to ambiguity of the complement of L(A).

CSL’13

86 Unambiguity and uniformization problems on infinite trees

(N,L tH). Consider any tree c ∈ TrAtH and t ∈ TrA. We say that t is an extension of c
if dom(c) ⊆ dom(t) and for every w ∈ dom(c) either:

c(w) ∈ N ∪ L and c(w) = t(w),
c(w) ∈ H and c(w) = α(t�w).

That is, t is supposed to agree with c on all the letters in N ∪ L and whenever c declared
some type h ∈ H in a leaf w then the subtree t�w has α-type h (i.e. α(t�w) = h).

I Definition 7. We say that α : (TrA,ConA) → (H,V) is compositional if there exists a
function ᾱ : TrAtH → H such that if t ∈ TrA is an extension of c ∈ TrAtH then ᾱ(c) = α(t).

Let L ⊆ TrA be a language of trees. We say that a homomorphism α : (TrA,ConA) →
(H,V) recognises L if α is compositional and there is a set F ⊆ H such that L = α−1(F).

I Fact 8. Since every context c ∈ ConA can be obtained as a finite combination of trees
t ∈ TrA using the operation Node, if α1, α2 : (TrA,ConA)→ (H,V) are two homomorphisms
that agree on TrA then α1 = α2.

The following theorem introduces the notion of syntactic morphism for a given language.
It is an adaptation of a similar theorem for the case of thin forest algebras, see [10] for a
deeper explanation. For the sake of completeness, a sketch of a proof is given in Appendix A.

I Theorem 9. For every regular tree language L there exists a syntactic morphism for L:
a finite thin algebra SL = (H,V) (called a syntactic algebra of L) and a homomorphism
αL : (TrA,ConA)→ SL such that:

αL is surjective, compositional, and recognises L,
for every h ∈ H the language Lh := α−1

L ({h}) is regular,
if α : (TrA,ConA) → S is surjective and recognises L then there is exactly one homo-
morphism β : S → SL such that β ◦ α = αL.

A syntactic algebra SL and languages Lh can be effectively computed basing on a non-
deterministic automaton recognising L.

Note that by the last bullet, all syntactic morphisms for a given language are isomorphic
— there are homomorphisms β that make the respective diagrams commute. Therefore, a
syntactic morphism can be seen as a unique representation of a language.

An intermediate step in this proof requires a definition of some finite thin algebra SA =
(HA, VA) that recognises the language L(A) for a given automaton A. The constructed
algebra is called the automaton algebra for A. The definition of SA is the same as in [10].
The homomorphism into SA that recognises L(A) is based on the following operation that
will be used later:

QA(t) = {q ∈ Q : ∃ρ ρ is a consistent run of A on t with value q} ⊆ 2Q. (1)

If A is known from the context, we write just Q(t). By τA(t) we denote the labelling of t
defined τA(t)(w) = QA(t�w).

What is important in Theorem 9 is that we explicitly fix the homomorphism αL. Usually
(e.g. in the case of monoids) there is a unique such homomorphism for a fixed interpretation
of the alphabet. It turns out that this is not the case for thin algebras and all binary trees.
Therefore, to fully describe a given language we need an algebra SL, a set F ⊆ H, and a
homomorphism αL (it can be represented by the languages Lh).

M. Bilkowski and M. Skrzypczak 87

3.2 Prophetic algebras
The situation when there are multiple homomorphisms from all trees into a given thin
algebra comes from the fact that the algebra may not be prophetic. In this section we
formally introduce this notion.

Let (H,V) be a thin algebra over an alphabet A = (N,L). Let t ∈ TrA be a tree. A
labelling τ ∈ Tr(H,H) of t is a marking of t by types in H if:

for every node w of t we have τ(w) = t(w)(τ(wl), τ(wr)),
for every leaf w of t we have τ(w) = t(w)().

A marking τ is consistent if it is consistent on every infinite branch π of t. Let π = d0d1 . . .

and let w0 ≺ w1 ≺ . . . be the sequence of vertices of t along π. The sequence of types of
contexts vi = Node(t(wi), di, τ(wid̄i)) is called the decomposition of τ along π. Now, τ is
consistent on π if for every i ∈ N we have

τ(wi) =
∏
j≥i

vj . (2)

Informally speaking, a marking τ is consistent along π if the types of τ along π agree
with the types that can be computed using

∏
basing on the types of vertices that are off π.

By the definition of a marking, it is enough to require (2) for infinitely many i ∈ N in the
definition of consistency.

Note that if a homomorphism α : (TrA,ConA) → S is fixed, for every tree t ∈ TrA the
marking τα(t)(w) := α(t�w) (called the marking induced by α on t) is consistent.

I Example 10. Fix the alphabet Ab = ({n}, {b}). Let Lb ⊆ TrAb
contain exactly these

trees which have at least one leaf. One may verify that the syntactic morphism for Lb can
be defined as follows: HLb

= {ha, hb}, VLb
= {va, vb}, and αLb

(t) = hb (resp. αLb
(c) = vb)

if and only if a tree t (resp. a context c) contains any leaf (not counting the hole of c).
Let tn be the full binary tree equal everywhere n. Observe that tn does not belong to Lb

and the marking ταLb
(tn) induced by αLb

on tn equals ha in every vertex. Consider another
marking τ ′ of tn that equals hb everywhere. Note that τ ′ is consistent — it looks like a
consistent marking along every branch. Therefore, t has two consistent markings.

Going further, one can construct a compositional homomorphism α′ : (TrAb
,ConAb

) →
(HLb

, VLb
) that assigns hb to the tree tn. Therefore, there are two distinct compositional

homomorphisms from (TrAb
,ConAb

) to (HLb
, VLb

).

Recall that the language Lb used above is known to be ambiguous, see [14].
The following fact follows from [2], the proof goes via induction on rank of thin trees.

I Fact 11. If t ∈ TrA is a thin tree and (H,V) is a finite thin algebra over the alphabet A
then there exists exactly one consistent marking τ of t.

The following definition is crucial for the procedure P . The term prophetic is motivated
by [6].

I Definition 12. We say that a thin algebra (H,V) over an alphabet A is prophetic if for
every tree t ∈ TrA there exists at most one consistent marking of t by types in H.

Note that if α : (TrA,ConA)→ S is a homomorphism and S is prophetic then, for every
tree t ∈ TrA, the only consistent marking of t is the marking induced by α. In particular,
there is at most one homomorphism from (TrA,ConA) into S, see Fact 8.

Since the property that a given finite thin algebra is prophetic can be expressed in MSO
over the full binary tree, so we obtain the following fact.

CSL’13

88 Unambiguity and uniformization problems on infinite trees

I Fact 13. It is decidable whether a given finite thin algebra (H,V) is prophetic.
I Fact 14. By the definition, a subalgebra of a prophetic thin algebra is also prophetic.
Similarly, a product of two prophetic thin algebras is also prophetic.

3.3 Semi-characterisation
The following theorem gives a connection between bi-unambiguous languages and prophetic
algebras.

I Theorem 15. A language L ⊆ TrA is bi-unambiguous if and only if there exists a surjective
homomorphism α : (TrA,ConA) → (H,V) that recognises L such that (H,V) is a finite
prophetic thin algebra over the alphabet A.

First assume that L is a bi-unambiguous language. Let A,B be a pair of unambiguous
automata recognising L and TrA \ L respectively. We describe how to construct a finite
prophetic thin algebra (HU , VU) recognising L.

The first step can be expressed as the following fact.
I Fact 16. Assume that A is an unambiguous automaton over an alphabet A and t ∈ TrA.
Assume that τ is a consistent marking of t by types in the automaton algebra SA. Then
there is at most one run ρ of A on t such that ρ(ε) ∈ IA and ∀w∈dom(t) ρ(w) ∈ τ(w).

Using the above observation and properties of the automaton algebra, we can entail
that for every consistent marking τ of a given tree t and for every q ∈ τA(t)(ε) there is a
consistent run of A on t with value q. Therefore, for every consistent marking τ of t we
have ∀w∈dom(t) τ(w) ⊆ τA(t)(w). Our aim is to put some additional constraints on τ that
imply equality in the above formula. This is obtained by the second step of the reasoning,
as expressed in the following lemma. The idea to use pairs of sets of states in this context
was suggested by Igor Walukiewicz.

I Lemma 17. Let A,B be a pair of unambiguous automata recognising L and TrA \ L
respectively. Let R = {(QA(t), QB(t)) : t ∈ TrA}. Then the set R ordered coordinate-wise
by inclusion is an antichain.

Now let t ∈ TrA and assume that we have consistent markings τ1, τ2 of t with respect to
algebras SA, SB respectively. Assume that for every w ∈ dom(t) we have (τ1(w), τ2(w)) ∈ R.
Then τ1(w) ⊆ τA(t)(w), τ2(w) ⊆ τB(t)(w), and by the above lemma τ = τA(t), τ ′ = τB(t).
This shows that the product of algebras SA and SB is prophetic.

The following lemma implies the opposite direction of Theorem 15.

I Lemma 18. Let α : (TrA,ConA)→ (H,V) be a compositional homomorphism into a finite
prophetic thin algebra (H,V) and h0 ∈ H. The language Lh0 = α−1(h0) is unambiguous.

Using this lemma, if α recognises a language L then L and TrA \ L are finite disjoint
unions of unambiguous languages Lh0 so L is bi-unambiguous.

The construction of an unambiguous automaton C recognising L goes as follows: let C
guess some marking τ of a given tree t by types in H. Then, C verifies that the root is
labelled by h0 and the marking τ is consistent. Since consistency of a marking is a branch-
wise ω-regular condition, so it can be verified by a deterministic top-down automaton. Since
(H,V) is prophetic, so the only possible consistent marking of t is the marking induced by
α. So C has at most one accepting run on t and it accepts t if and only if α(t) = h0.

Theorem 15 implies the following lemma, that can also be proved without use of algebra.
I Remark. The class of bi-unambiguous languages is closed under boolean operations and
language quotients c−1 · L = {t : c · t ∈ L} for contexts c.

M. Bilkowski and M. Skrzypczak 89

3.4 The procedure P
Now we can formally define our procedure P . This procedure consists of three steps:
1. Read a nondeterministic automaton A recognising a regular tree language L.
2. Compute the syntactic thin algebra SL of L.
3. Answer YES if SL is prophetic, otherwise answer NO.

By Theorem 9 and Fact 13 both operations undertaken by P are effective. Therefore, P
is well-defined and always terminates. Note that if SL is prophetic then, by Theorem 15, the
language L is bi-unambiguous. Therefore, Item 5 of Theorem 5 holds. The only remaining
possibility of failure of the procedure P is when L is bi-unambiguous but the syntactic algebra
SL is not prophetic. Our aim is to exclude this possibility. In general, Conjecture 1 implies
that the syntactic algebra of a bi-unambiguous language is prophetic, see Remark 4.1. This
shows that Item 5 of Theorem 5 holds. The following theorem implies Item 5 of Theorem 5.

I Theorem 19. If L is deterministic and bi-unambiguous then the algebra SL is prophetic.

The rest of this section is devoted to proving this theorem. Let D be a deterministic
tree automaton recognising L ⊆ TrA. A state q ∈ QD is nontrivial if there is a tree t not
accepted by D from q (i.e. there is no consistent run of D on t with value q). Let t ∈ L
be a tree and ρ be the accepting run of D on t. Let TD(t) ⊆ {l, r}∗ be the set of vertices
w ∈ dom(t) such that ρ(w) is a nontrivial state of D. Note that TD(t) is a prefix-closed
subset of dom(t). We start with the following lemma.

I Lemma 20. If D is a deterministic tree automaton and TrA \ L(D) is unambiguous then
for every tree t ∈ L(D) the set TD(t) is thin.

Proof. Assume contrary and fix a regular tree t ∈ L such that T = TD(t) is thick. Let
ρ be the run of D on t. Let A by an unambiguous automaton recognising TrA \ L(D).
Now observe that for every w ∈ T there exists a tree tw not accepted by D from the state
ρ(w). Let X ⊆ T be any prefix-free set. Let t(X) be the tree obtained from t by plugging
simultaneously subtrees tw under w for every w ∈ X. Note that if X 6= ∅ then t(X) /∈ L(D)
— the run ρ does not extend to accepting run under any w ∈ X. Therefore, we obtain

t(∅) /∈ L(A) and ∀X⊆T (X is prefix-free and nonempty ⇒ t(X) ∈ L(A)) . (3)

Now we construct an automaton Ā for the language Lb (see Example 10). The transitions
of Ā simulate transitions of A on T . Whenever Ā reaches a leaf, it simulates the behaviour
of A on the respective tree tw. Since A is unambiguous, so is Ā. And, by (3) L(Ā) = Lb.
This gives us a contradiction with the fact that Lb is ambiguous. J

I Fact 21. Let D be a deterministic automaton and t ∈ L(D) ⊆ TrA. Assume that t′ ∈ TrA
is a tree satisfying w ∈ dom(t′) and t′(w) = t(w) for every w ∈ TD(t). Then t′ ∈ L(D).

Proof. The accepting run of D on vertices in TD(t) can be extended to t′ by triviality of
the states outside TD(t). J

Now we can finish the proof of Theorem 19.

Proof. Assume contrary that the syntactic algebra SL of L is not prophetic. Let t be a tree
and τ, τ ′ be a pair of distinct consistent markings of t. Let h = τ(ε) and h′ = τ ′(ε). We
can assume that h 6= h′ (otherwise instead of t we take t �w where w is a node for which
τ(w) 6= τ ′(w)). Since h 6= h′ so there exists a multi-context c such that (by symmetry)

CSL’13

90 Unambiguity and uniformization problems on infinite trees

c · t ∈ L and c · t′ /∈ L. Let w0, w1, . . . be the list of holes of c. Since c · t ∈ L so we can
consider the set T = TD(c · t) ⊆ {l, r}∗.

By Lemma 20 we know that T is thin, in particular Ti := T �wi
is thin for every i. Let

t̄i be the tree obtained from t by substituting some tree of αL-type τ ′(w) instead of t�w for
every minimal w /∈ Ti. Since Ti is thin and αL-types of subtrees of t̄i agree with τ ′ outside Ti
so αL(t̄i) = h′ — we use the fact that Ti is thin. Let t̄ be the tree obtained from c by putting
t̄i instead of the hole wi. Then, by compositionality of αL we obtain that αL(t̄) = αL(c · t′),
so t̄ /∈ L. But c · t and t̄ agree on TD(t) so by Fact 21 t̄ ∈ L, a contradiction. J

4 (Un)definability of choice on thin trees

In this section we study Conjecture 1, we show a couple of equivalent statements and prove
some of its consequences (in particular Item 5 of Theorem 5). We start by formulating the
choice problem as a instance of a more general question.

I Definition 22. Let ϕ(X, ~P) be a MSO formula on A-labelled trees with monadic paramet-
ers X and ~P = P1, . . . , Pn. We say that ψ(X, ~P) is an uniformization of ϕ if the following
conditions are satisfied for every tree t, values of parameters ~P , and sets X1, X2 ⊆ dom(t):(

∃X ϕ(X, ~P)
)
⇔

(
∃X ψ(X, ~P)

)
ψ(X1, ~P) ⇒ ϕ(X1, ~P)(

ψ(X1, ~P) ∧ ψ(X2, ~P)
)
⇒ X1 = X2

That is, whenever it is possible to pick some X satisfying ϕ(X, ~P) then ψ chooses exactly
one such X. For simplicity, we allow a (possible empty) list of additional parameters ~P and
we assume that the first variable is the one that is supposed to be uniformized.

Now, Conjecture 1 says that the following formula does not have uniformization:

CHOICE(x,X) := the given tree is thin and x ∈ X.

A simple interpretation argument shows that Conjecture 1 is equivalent to the non-
uniformizability of the following simpler formula.

LEAF− CHOICE(x) := the given tree is thin and x is a leaf.

The following proposition expresses the crucial technical condition, allowing to entail
properties of thin algebras using Conjecture 1.

I Proposition 23 (assuming Conjecture 1). Assume that α : (H,V)→ (H ′, V ′) is a surjective
homomorphism between two finite thin algebras. Let t be a tree and τ ′ be a consist-
ent marking of t by H ′. Then there exists a consistent marking τ of t by H such that
∀w∈dom(t) α(τ(w)) = τ ′(w).

Sketch of the proof: assume contrary and fix a regular pair (t0, τ ′) such that there is no
marking τ as above. Consider the standard automaton-pathfinder game, where the auto-
maton proposes a marking τ and the pathfinder picks directions to show that τ does not
satisfy the above conditions. Since there is no such τ , so pathfinder has a finite memory
winning strategy σ. Now, given a thin tree t we can define the unique consistent marking
τ that satisfies α(τ) = τ ′ on t. The play resulting in pathfinder playing σ and automaton
playing τ must end in a leaf of t. J

M. Bilkowski and M. Skrzypczak 91

The second important tool in our analysis enables to make a connection between uniformized
relations and induced markings. A formal definition of a transducer and a proof of the
following theorem are given in Appendix B.

I Theorem 24. Assume that LA ⊆ TrA, LM ⊆ TrA×M are regular languages of trees
for two ranked alphabets A,M such that LA is a projection of LM onto A. Assume that
∀tA∈LA

∃!tM∈TrM
(tA, tM) ∈ LM . Then, there exist:

a compositional homomorphism α : (TrA,ConA)→ S into a finite thin algebra S,
a deterministic finite state transducer that reads the marking induced by α on a given
tree tA and outputs the labelling tM such that (tA, tM) ∈ LM , whenever such tM exists.

Now we can present two algebraic statements that are equivalent to Conjecture 1.

I Theorem 25. The following conditions are equivalent:
1. Conjecture 1 holds.
2. For every finite thin algebra (H,V) over an alphabet A = (N,L) and every tree t ∈ TrA

there exists a consistent marking of t by types in H.
3. For every finite thin algebra (H,V) over the alphabet Ab = ({n}, {b}) there exists a

consistent marking of the full tree tn ∈ TrAb
by types in H.

Note that in the above theorem algebras (H,V) come without any homomorphism from
(TrA,ConA), so there is no notion of the induced marking.

Proof. First we show 1⇒ 2. Let (H,V) be a finite thin algebra over an alphabet A = (N,L).
Let (H ′, V ′) = ({h0}, {v0}) be the singleton thin algebra with b() = h0 for every b ∈ L. There
is a unique homomorphism α : (H,V) → (H ′, V ′). Take any tree t ∈ TrA. Let τ ′ be the
consistent marking of t that is constant equal h0 on dom(t). By Proposition 23 there exists
a consistent marking of t by types in H.

Of course Item 3 follows from Item 2.
For 3 ⇒ 1 we assume that ψ(x) is an MSO formula uniformizing LEAF− CHOICE.

Using Theorem 24 we find a deterministic transducer T that reads types of subtrees of a
given thin tree (with respect to some homomorphism α into a finite thin algebra (H,V))
and outputs directions towards the chosen leaf. Let (H ′, V ′) be the subalgebra of (H,V)
containing α-types of (ThA,ThConA). By Item 3 there is a consistent marking τ of the full
tree tn by types in H ′. We can consider the sequence of directions π given by T on (tn, τ).
Since t does not have any leaf, so π is infinite. Now, we can substitute all subtrees that are
not on π by thin trees of the respective types given by τ . The result is a thin tree t′ such
that the directions produced by T do not reach any leaf of t′ — a contradiction. J

4.1 Prophetic thin algebras
It turns out that (assuming Conjecture 1) the class of finite prophetic thin algebras has
a number of nice properties. Most of them can be read as properties of the class of bi-
unambiguous languages. To emphasise that we work under the assumption of Conjecture 1,
we explicitly put it as a pre-assumption in the statements.

I Theorem 26 (Conjecture 1). Let (H,V) be a prophetic thin algebra over an alphabet
A. There exists a unique homomorphism α : (TrA,ConA) → (H,V). Additionally, α is
compositional.

CSL’13

92 Unambiguity and uniformization problems on infinite trees

Proof. The uniqueness of the homomorphism was observed in Section 3.2. By Theorem 25
and the fact that (H,V) is prophetic, every tree t ∈ TrA has exactly one consistent marking
τt by types in H. Let us define α(t) = τt(ε). Clearly α is a compositional homomorphism
— if t is an extension of c then the consistent marking τt must agree with the types in the
leafs of c. J

I Theorem 27 (Conjecture 1). Let β : S → S′ be a surjective homomorphism between two
finite thin algebras. If S is prophetic then S′ is also prophetic.

Proof. First fix the homomorphism α : (TrA,ConA) → S given by Theorem 26. Note that
β ◦ α : (TrA,ConA) → (H,V) is a compositional homomorphism. Assume that S′ is not
prophetic, so there exists a tree t with two consistent markings σ, σ′ by types of S′. Without
loss of generality we can assume that σ is the marking induced by β ◦ α and σ′(ε) 6= σ(ε).
Let τ be the marking by types in S induced by α on t. Observe that pointwise β(τ) = σ.
By Proposition 23 there exists a consistent marking τ ′ of t such that pointwise β(τ ′) = σ′.
Therefore, τ, τ ′ are two distinct consistent markings of t by types inH — a contradiction. J

The following remark ends the proof of Item 5 of Theorem 5.
I Remark (Conjecture 1). If L ⊆ TrA is bi-unambiguous then SL is prophetic.

Proof. Since L is bi-unambiguous so by Theorem 15 there exists a surjective homomorphism
α : (TrA,ConA) → (H,V) that recognises L such that (H,V) is a finite prophetic thin
algebra. Since SL is a syntactic algebra of L so there exists a surjective homomorphism
β : (H,V)→ SL. By Theorem 27 we obtain that SL is also prophetic. J

The next statement shows that prophetic thin algebras form a robust class from the
point of view of universal algebra (see [4] for an introduction to this field). The proof
follows directly from Theorem 27 and Fact 14.
I Remark (Conjecture 1). The class of finite prophetic thin algebras is a pseudo-variety: it
is closed under homomorphic images, subalgebras, and finite direct products.

5 Uniformizability results on thin trees

In this section we study Conjecture 1 in the context of related uniformization problems on
thin trees. One of the notions we concentrate on are skeletons of thin trees, introduced in [2].

I Definition 28. Let t ∈ TrA be a tree. We say that σ ⊆ dom(t) is a skeleton of t if ε /∈ σ
and the following conditions are satisfied:

if w ∈ dom(t) is an internal node of t then σ contains exactly one of the vertices wl,wr,
if π is an infinite branch of t then all but finitely many vertices on π belong to σ.

We identify a set σ ⊆ dom(t) with its characteristic function σ ∈ Tr({0,1},{0,1}). By SKEL(σ)
we denote the MSO formula expressing the above properties.

The following proposition expresses the crucial property of skeletons, see [2].
I Proposition 29 ([2]). A tree t is thin if and only if there exists a skeleton of t.

Note that a thin tree may have multiple skeletons. The main idea behind skeletons is that
they provide decompositions of thin trees: every skeleton σ of a thin tree t defines the main
branch of σ that follows σ from the root of t and along this branch simpler thin trees are
plugged. The second bullet in the definition of skeletons means that such a decomposition
is well-founded — we can go off the main branch only finitely many times.

M. Bilkowski and M. Skrzypczak 93

5.1 Non-uniformizability
In this section we give the following two negative results.

I Theorem 30. There is no MSO formula uniformizing SKEL(σ).

I Theorem 31. The language ThAb
⊂ TrAb

of thin trees over the alphabet Ab is ambiguous.

The above theorem can be seen as complementing the following theorem from [2] (ad-
justed to the case of trees instead of forests).

I Theorem 32 (Theorem 12 from [2]). For every regular language L ⊆ TrA that contains
only thin trees there exists a nondeterministic automaton A such that L(A)∩ThA = L and
A has at most one accepting run on every thin tree.

Therefore, every regular tree language containing only thin trees is unambiguous relat-
ively to thin trees. But, by Theorem 31, it is the best we can get: even the language of all
thin trees is ambiguous among all trees.

The proofs base on two observations, first of them is the existence of transducers, see
Theorem 24. The second ingredient is a weaker version of Item 2 in Theorem 25. It is
motivated by a similar result on preclones, see [1].

I Theorem 33. For every finite thin algebra (H,V) over an alphabet A = (N,L) there exists
a thick tree t ∈ TrA and a consistent marking τ of t by types in H.

The proof uses Green’s relations [7] in the monoid V of a given thin algebra to find an
appropriate idempotent e ∈ V that enables to construct a tree t . The constructed tree is
thick but it is not full — many subtrees of t are thin and contain leafs.

Now we can present a sketch of the proof of Theorem 30.

Proof. Assume that ψ(σ) is a uniformization of SKEL(σ). Using Theorem 24 we find: a
homomorphism α : (TrA,ConA)→ (H,V) info a finite thin algebra and a transducer T . Let
(H ′, V ′) be the subalgebra of (H,V) that is the image of (ThA,ThConA) under α.

Using Theorem 33 we construct a thick tree t with a consistent marking τ by types in
H ′. We run the transducer T on (t, τ) what results in a labelling tM of t. Since t is not thin
so it has no skeleton. Therefore, one of the conditions for skeletons is not satisfied by tM .
Assume that there exists a branch π of t such that tM labels infinitely many vertices on π
by 0. The other possibility is similar but simpler. Now we can plug thin trees of types given
by τ along π obtaining t′. By the construction, t′ is thin and τ equals along π the marking
of t′ induced by α. Therefore, we can run T on (t′, τα(t)) obtaining a result t′M that agrees
with tM on π. It is a contradiction since T is supposed to produce a correct skeleton for
every thin tree and t′M violates assumptions of skeleton on π. J

5.2 Degrees of uniformization
In this section we study relationships between uniformization problems on thin trees. The
results of this section were found as answers to questions posed by Alexander Rabinovich.

The following definition is motivated by degrees of selection studied in [22].

I Definition 34. We say that a formula ϕ(X, ~P) has higher degree of uniformization than
ϕ′(Y, ~R) (denoted ϕ′(Y, ~R) �uni ϕ(X, ~P)) if there exists a formula ψ(Y, ~R) that is defined
in MSO extended by an additional predicate U(X, ~P) and ψ(Y, ~R) uniformizes ϕ(Y, ~R)
whenever U is interpreted as any relation uniformizing ϕ(X, ~P).

CSL’13

94 Unambiguity and uniformization problems on infinite trees

I Fact 35. The relation �uni is transitive and reflexive. If ϕ′(X, ~P) �uni ϕ(Y, ~R) and
ϕ(Y, ~R) is uniformizable then so is ϕ′(X, ~P).

We say that ϕ is on thin trees if ϕ is satisfied only on thin trees. The following theorem
implies that SKEL(σ) is maximal with respect to �uni among MSO formulas on thin trees.

I Theorem 36. For every formula ϕ(X, ~P) on thin trees there exists a formula ϕ′(X, ~P , σ)
that uniformizes ϕ̄(X, ~P , σ) := ϕ(X, ~P) ∧ SKEL(σ).

The proof is based on the fact that every MSO-definable relation on ω-words is uniform-
izable, see [24, 12, 20]. Since every skeleton gives a decomposition of a given tree as disjoint
branches, so we can uniformize the given formula ϕ independently on these branches. By
well-foundedness of skeletons the result is well-defined. The above theorem can also be
derived from the proof of Theorem 6.7 in [12] but in a less explicit way.

It turns out that uniformization of SKEL(σ) is connected with definability of well-
orderings on thin trees. We say that a formula ψ(x, y) defines well-order on thin trees
if for every thin tree t ∈ TrAb

the relation <ψ defined as (x <ψ y ⇔ ψ(x, y)) is a linear order
on dom(t) and there is no infinite descending sequence of <ψ. In the rest of this section we
show that uniformizations of skeletons and definable well-orderings are equivalent — it is
possible to define one of them basing on the other.

One direction is simple : the structure of a skeleton gives a natural lexicographic well-
order of vertices of a given thin tree. The other direction is a bit more involved: given any
definable well-order of a given thin tree t we need to define a skeleton of t.

I Theorem 37. If there exists an MSO-definable well-order on thin trees then there exists
a uniformization of SKEL(σ).

The following remark follows from Theorem 30 and Theorem 37. It should be connected
with a result of [5] stating that the MSO theory of the full binary tree extended with any
well-order is undecidable.
I Remark. There is no MSO formula ψ(x, y) that defines well-order on thin trees.

Acknowledgements. The authors would like to thank Mikołaj Bojańczyk, Henryk
Michalewski, Damian Niwiński, Alexander Rabinovich, and Igor Walukiewicz for fruitful
discussions on the subject.

References
1 Mikołaj Bojańczyk. Algebra for trees. A draft version of a chapter that will appear in the

AutomathA handbook, 2010.
2 Mikołaj Bojańczyk, Tomasz Idziaszek, and Michał Skrzypczak. Regular languages of thin

trees. In STACS 2013, volume 20 of LIPIcs, pages 562–573, 2013.
3 Nicolas Bousquet and Christof Löding. Equivalence and inclusion problem for strongly

unambiguous Büchi automata. In LATA, pages 118–129, 2010.
4 Stanley Burris and H. P. Sankappanavar. A Course in Universal Algebra. Number 78 in

Graduate Texts in Mathematics. Springer-Verlag, 1981.
5 Arnaud Carayol, Christof Löding, Damian Niwiński, and Igor Walukiewicz. Choice func-

tions and well-orderings over the infinite binary tree. Cent. Europ. J. of Math., 8:662–682,
2010.

6 Olivier Carton, Dominique Perrin, and Jean Éric Pin. Automata and semigroups recog-
nizing infinite words. In Logic and Automata, History and Perspectives, pages 133–167,
2007.

M. Bilkowski and M. Skrzypczak 95

7 James Alexander Green. On the structure of semigroups. Annals of Mathematics,
54(1):163–172, 1951.

8 Yuri Gurevich and Saharon Shelah. Rabin’s uniformization problem. J. Symb. Log.,
48(4):1105–1119, 1983.

9 Szczepan Hummel. Unambiguous tree languages are topologically harder than deterministic
ones. In GandALF, pages 247–260, 2012.

10 Tomasz Idziaszek. Algebraic methods in the theory of infinite trees. PhD thesis, University
of Warsaw, 2012. unpublished.

11 Orna Kupferman, Shmuel Safra, and Moshe Y. Vardi. Relating word and tree automata.
In LICS, pages 322–332. IEEE Computer Society, 1996.

12 Shmuel Lifsches and Saharon Shelah. Uniformization and skolem functions in the class of
trees. J. Symb. Log., 63(1):103–127, 1998.

13 Filip Murlak. The Wadge hierarchy of deterministic tree languages. Logical Methods in
Computer Science, 4(4), 2008.

14 Damian Niwiński and Igor Walukiewicz. Ambiguity problem for automata on infinite trees.
unpublished, 1996.

15 Damian Niwiński and Igor Walukiewicz. Relating hierarchies of word and tree automata.
In STACS, pages 320–331, 1998.

16 Damian Niwiński and Igor Walukiewicz. A gap property of deterministic tree languages.
Theor. Comput. Sci., 1(303):215–231, 2003.

17 Damian Niwiński and Igor Walukiewicz. Deciding nondeterministic hierarchy of determin-
istic tree automata. Electr. Notes Theor. Comput. Sci., 123:195–208, 2005.

18 Dominique Perrin and Jean Éric Pin. Infinite Words: Automata, Semigroups, Logic and
Games. Elsevier, 2004.

19 Michael O. Rabin. Decidability of second-order theories and automata on infinite trees.
Trans. of the American Math. Soc., 141:1–35, 1969.

20 Alexander Rabinovich. On decidability of monadic logic of order over the naturals extended
by monadic predicates. Information and Computation, 205(6):870–889, 2007.

21 Alexander Rabinovich and Sasha Rubin. Interpretations in trees with countably many
branches. In LICS, pages 551–560. IEEE, 2012.

22 Alexander Rabinovich and Amit Shomrat. Selection in the monadic theory of a countable
ordinal. J. Symb. Log., 73(3):783–816, 2008.

23 Saharon Shelah. The monadic theory of order. The Annals of Mathematics, 102(3):379–419,
1975.

24 Dirk Siefkes. The recursive sets in certain monadic second order fragments of arithmetic.
Arch. Math. Logik, 17(1–2):71–80, 1975.

25 Richard Edwin Stearns and Harry B. Hunt III. On the equivalence and containment prob-
lems for unambiguous regular expressions, regular grammars and finite automata. SIAM
J. Comput., 14(3):598–611, 1985.

26 Wolfgang Thomas. Languages, automata and logics. Technical Report 9607, Institut für
Informatik und Praktische Mathematik, Christian-Albsechts-Universität, Kiel, Germany,
1996.

27 Boris A. Trakhtenbrot. Finite automata and the monadic predicate calculus. Siberian
Mathematical Journal, 3(1):103–131, 1962.

28 Thomas Wilke. An algebraic theory for regular languages of finite and infinite words. Int.
J. Alg. Comput., 3:447–489, 1993.

29 Thomas Wilke. An algebraic characterization of frontier testable tree languages. Theor.
Comput. Sci., 154(1):85–106, 1996.

30 Thomas Wilke. Classifying discrete temporal properties. Habilitationsschrift, Universitat
Kiel, apr. 1998.

CSL’13

96 Unambiguity and uniformization problems on infinite trees

A Thin algebra

First, let us write explicitly all the axioms of thin algebra (we assume that h, hl, hr ∈ H and
u, v, w ∈ V):
1. (u · v) · w = u · (v · w),
2. (u · v) · h = u · (v · h),
3. (uv)∞ = u(vu)∞,
4. (vn)∞ = v∞ for every n ≥ 1,
5. a(hl,�) · hr = a(�, hr) · hl.

Let RA be the set of all regular thin trees over a ranked alphabet A = (N,L). Let CA
be the set of all regular thin contexts over A. Note that (RA, CA) has the natural structure
of a thin algebra over A.

I Fact 38. (RA, CA) is the free algebra in the class of thin algebras over the alphabet A.

Proof. See [10] for the proof of this fact in the context of forests. J

The rest of this section is devoted to showing the following theorem.

I Theorem 9. For every regular tree language L there exists a syntactic morphism for L:
a finite thin algebra SL = (H,V) (called a syntactic algebra of L) and a homomorphism
αL : (TrA,ConA)→ SL such that:

αL is surjective, compositional, and recognises L,
for every h ∈ H the language Lh := α−1

L ({h}) is regular,
if α : (TrA,ConA) → S is surjective and recognises L then there is exactly one homo-
morphism β : S → SL such that β ◦ α = αL.

A syntactic algebra SL and languages Lh can be effectively computed basing on a non-
deterministic automaton recognising L.

A syntactic algebra SL of a given language L can be constructed using standard tools of
universal algebra (namely the congruence∼L). What remains is to show that the constructed
algebra is finite. For this purpose we provide some homomorphism α : (TrA,ConA)→ (H,V)
that recognises L (see Theorem 41 of [10]) and such that (H,V) is a finite thin algebra. Then,
by the universal property of the syntactic algebra, SL is a surjective image of (H,V), thus
SL is finite.

Let us define a relation ∼L on the sets TrA and ConA. We assume that t, t′ ∈ TrA,
c, c′ ∈ ConA, and D denotes the set of all multi-contexts over the alphabet A.

t ∼L t′ ⇐⇒ for every d ∈ D we have (d · t ∈ L⇔ d · t′ ∈ L)
c ∼L c′ ⇐⇒ for every d ∈ D and s ∈ TrA we have (d · (c · s) ∈ L⇔ d · (c′ · s) ∈ L)

I Fact 39. The relation ∼L is a congruence on (TrA,ConA) with respect to the operations of
thin algebra. Moreover, if α : (TrA,ConA)→ (H,V) recognises L then (by compositionality
of α)

α(t) = α(t′) =⇒ t ∼L t′ and α(c) = α(c′) =⇒ c ∼L c′. (4)

We define SL = (HL, VL) as the quotient of (TrA,ConA) by the relation ∼L defined
above. Since ∼L is a congruence, so SL has a structure of thin algebra. We define αL as
the quotient morphism of ∼L.

M. Bilkowski and M. Skrzypczak 97

Now we construct some finite thin algebra recognising L. Let A be a nondeterministic
automaton over an alphabet A with states Q such that A recognises L. Assume that A uses
priorities {0, . . . , k}. First, recall the definition of QA(t) from (1):

QA(t) = {q ∈ Q : ∃ρ ρ is a consistent run of A on t with value q} ⊆ 2Q.

Similarly, if c is a context over A then let ∆A(c) contain those pairs (q, i, p) ∈ Q×{0, . . . , k}×
Q such that there exists a consistent run ρ of A on c with the value q, the value in the hole
p, and the maximal priority on the path from the root to the hole equal i.

Now consider the function

αA : (TrA,ConA)→ (2Q, 2Q×{0,...,k}×Q)

that assigns to a tree t ∈ TrA the set QA(t) and assigns to a context c ∈ ConA the set
∆A(c).
I Fact 40. The function αA induces uniquely the structure of thin algebra on its image
SA := (HA, VA) ⊆ (2Q, 2Q×{0,...,k}×Q) in such a way that αA becomes a compositional
homomorphism of thin algebras. Moreover, αA recognises L(A), since

L(A) = α−1
A
(
{h ∈ HA : h ∩ IA 6= ∅}

)
.

The algebra SA along with the homomorphism αA defined above is called the automaton
algebra for A. The following lemma presents an important feature of this algebra.

I Lemma 41. Assume that A is a nondeterministic tree automaton over an alphabet A,
t ∈ TrA is a tree, and τ is a consistent marking of t by types in HA. Let q ∈ QA be a state
of A. The following conditions are equivalent:

q ∈ τ(ε)
There exists a run (possibly not consistent) ρ of A on t with value q such that for every
vertex w ∈ dom(t) we have ρ(w) ∈ τ(w). Additionally, for every infinite branch π of t
there exists a run ρπ as above that is consistent on π.

Proof. First assume that q ∈ τ(ε). We inductively show that there exists a run of A on t
satisfying ρ(w) ∈ τ(w). Assume that t = a(tl, tr) for a pair of trees tl, tr. Let h = τ(ε),
hl = τ(l), and hr = τ(r). We need to find a transition (q, ql, a, qr) ∈ δA2 such that ql ∈ hl
and qr ∈ hr. Let t′l, t′r be trees that are mapped by αA to hl, hr respectively. Observe that

q ∈ h = a(hl, hr) = αA (a(t′l, t′r)) ,

therefore there exists a consistent run with value q on a(t′l, t′r). The first transition used by
this run gives us the states ql ∈ hl, qr ∈ hr. Note that if w is a leaf of t and q ∈ τ(w) then
(q, t(w)) ∈ δ0, so the constructed run is also consistent in leafs.

Using the above observation, it is enough to construct a run ρ along π that satisfies
ρ(w) ∈ τ(w) for every w that is off π — it will extend to a run on the subtree t �w.
The existence of such a run follows from the definition of operations of thin algebra, see
Section 4.4.1 of [10] — the fact that q ∈ τ(ε) comes from the fact that for every Ramsey
decomposition s · e∞ of the contexts along the branch π, there is a loop of transitions in
s · e∞ starting in q and satisfying the parity condition.

Now assume that the second bullet of the statement is satisfied. We want to show that
q ∈ τ(ε). If the tree t is finite then q ∈ τ(ε) by induction on the height of t. Otherwise,
there exists an infinite branch π of t and similarly as above, any run ρπ consistent on π is a
witness that q ∈ h. J

CSL’13

98 Unambiguity and uniformization problems on infinite trees

I Lemma 42. The automaton morphism αA : (TrA,ConA)→ (HA, VA) can be computed ef-
fectively basing on A. The syntactic algebra SL for L = L(A) and the unique homomorphism
β : (HA, VA)→ SL are computable effectively basing on αL.

Proof. The homomorphism αA and the structure of thin algebra of (HA, VA) can be written
by hand, see Section 4.4.1 from [10].

The homomorphism β can be computed using Moore’s algorithm, see Lemma 23 of
the cited thesis. The construction is similar to the minimisation of a finite deterministic
automaton: we mark pairs of elements of HA and VA as non-equivalent. We start with all
the pairs in F ×(HA\F) where α−1

A (F) = L. Then we iteratively add a pair (s, s′) whenever
there is an operation of thin algebra (with some parameters fixed) that maps s, s′ into r, r′
respectively and (r, r′) is a marked pair. After a finite number of steps no new pair can be
marked and the set of non-marked pairs is a congruence ∼ on (HA, VA). β can be defined
as the quotient morphism induced by ∼. J

B Transducer for an uniformized relation

Let A = (N,L),M = (M2,M0) be a pair of ranked alphabets. Let B = N tL. A transducer
from A to M is a deterministic device T = (Q, δ, qI) such that:
1. Q is a finite set of states,
2. qI ∈ Q is an initial state,
3. δ is a pair of functions δ2, δ0,
4. δ2 : Q×B ×N ×B → Q×M2 ×Q determines transitions in internal nodes,
5. δ0 : Q× L→M0 determines transitions in leafs.

Note that a transition in an internal node w takes three letters as the input: the letter
in wl, w, and wr.

For every tree t ∈ TrA a transducer T defines inductively the labelling T (t) of t by
letters in M . The definition is inductive. We start in w = ε in the state qI . Assume
that the transducer reached a vertex w ∈ dom(t) in a state q. If w is a leaf then we put
T (t)(w) = δ0(q, t(w)). Otherwise, let al, a, ar be letters of t in wl, w, wr respectively. Then
let δ2(q, al, a, ar) = (ql,m, qr), put T (t)(w) = m, and continue in wl,wr in states ql, qr
respectively.

I Fact 43. The value T (t)(w) in a vertex w ∈ dom(t) depends on the letters of t in vertices
of the form v, vl, vr for v ≺ w. That is, if t, t′ agree on all vertices v, vl, vr for v ≺ w then
T (t)(w) = T (t′)(w).

I Theorem 24. Assume that LA ⊆ TrA, LM ⊆ TrA×M are regular languages of trees
for two ranked alphabets A,M such that LA is a projection of LM onto A. Assume that
∀tA∈LA

∃!tM∈TrM
(tA, tM) ∈ LM . Then, there exist:

a compositional homomorphism α : (TrA,ConA)→ S into a finite thin algebra S,
a deterministic finite state transducer that reads the marking induced by α on a given
tree tA and outputs the labelling tM such that (tA, tM) ∈ LM , whenever such tM exists.

I Example 44. Let A be an unambiguous tree automaton. Let LA = L(A) and LM contain
pairs (t, ρ) where ρ is an accepting run of A on t ∈ TrA. Then, the above theorem states
that there exists a transducer that reads the marking induced by some homomorphism α on
a given tree t ∈ L(A) and produces the accepting run of A on t.

M. Bilkowski and M. Skrzypczak 99

A simple proof of the above theorem can be given using the composition method (see [23]).
This proof was suggested by Mikołaj Bojańczyk as a simplification of an earlier proof given
by the authors. However, since we are focused on automata, we only sketch it here and
give a longer self-contained proof below. Assume that there is an MSO formula defining
language LM that has quantifier depth n. Let |M | = k and let α : (TrA,ConA) → (H,V)
be a homomorphism that recognises all the (n+k+1)-types of MSO over A. In a vertex w
the transducer T can store in its memory the (n+m+1)-type of the currently read context.
Then, given (n+k+1)-types of both subtrees under w, it can compute the (n+k)-type of
the tree t[x := w] with the current vertex w denoted by an additional variable x. The
(n+k)-type of t[x := w] is enough to ask about the truth value of the following formulas
(for every a ∈M2):

there is a labelling tM ∈ LM of t[x := w] such that tM (x) = a.

If there is any such labelling tM , then the above formula is true for exactly one letter a ∈M2.
The transducer T outputs this letter in w and proceeds in wl,wr updating the type of the
context.

The rest of this section is devoted to an automata-based proof of Theorem 24.
Let A be some nondeterministic tree automaton recognising the language LM . Let Q be

the set of states of A. Consider a modification Ā of the automaton A where letters of M
used in transitions are removed. Formally, Ā is a projection of A from the alphabet A×M
to A. Note that L(Ā) = LA. Let us fix the alphabet G = (2Q, 2Q).

Let αĀ be the automaton morphism into the automaton algebra (HĀ, VĀ) for Ā. Let
tA ∈ TrA be a tree. Let τ(tA) = τĀ(tA) be the marking induced by the automaton morphism
αĀ on tA, that is τ(tA)(w) = QA(tA �w).

The construction goes as follows. The input alphabet is A×G. The set of states QT of
T is 2Q. The state ∅ ∈ QT is a sink state reached if the given tree does not belong to LA.

The invariant for non-sink states is: if T is in a vertex w and it have assigned letters
mv ∈M to all vertices v ≺ w then the state Sw of T in w satisfies:

Sw = {q ∈ Q : exists an accepting run of Ā on tA using letters mv in vertices v ≺ w}. (5)

We will show that the invariant can be preserved. Let us fix a moment during the
computation of T : we are in a vertex w ∈ dom(tA). We can assume that w is an internal
node of tA. We have already assigned letters mv ∈ M to all nodes v ≺ w. The marking
τ(tA) gives us sets Qwl, Qwr ⊆ Q in nodes wl,wr respectively. The current state of T is a
set of states Sw ⊆ Q.

Consider the following set of letters:

Pw =
{
m ∈M2 : ∃(q,ql,(tA(w),m),qr)∈δA

2
q ∈ Sw ∧ ql ∈ Qwl ∧ qr ∈ Qwr

}
.

If Pw = ∅ then let T fall in a sink state ∅ ∈ 2Q and from that point on output some fixed
letters (of arity 2 and 0 respectively) (m2,m0) ∈M . We will show that during the run of T
on any tree tA ∈ LA the sets Pw are nonempty. But first we show the following lemma.

I Lemma 45. The set Pw contains at most one letter.

Proof. Let t(w) = a. Assume contrary that there are two letters m,m′ ∈ Pw. Consider
the respective transitions (q, ql, (a,m), qr) and (q, q′l, (a,m′), q′r). Since q, q′ ∈ Sw so by (5)
there are two accepting runs ρ, ρ′ of Ā on tA[�/w] that assign letters mv to v ≺ w and have
values q, q′ respectively in the hole w.

CSL’13

100 Unambiguity and uniformization problems on infinite trees

For d ∈ {l, r} let td, t′d ∈ TrM be trees and ρd, ρ′d be consistent runs of A that witness
that qd, q′d ∈ Qwd, i.e. ρd is a consistent run of A on (tA �wd, td) with value qd, similarly for
t′d, ρ′d, q′d.

Consider now two trees over the alphabet A×M ×Q:

t = (tA[�/w], ρ) · (a,m, q)((tA �wl, tl, ρl), (tA �wr, tr, ρr)),
t′ = (tA[�/w], ρ′) · (a,m′, q′)((tA �wl, t′l, ρ′l), (tA �wr, t′r, ρ′r)).

Note that:
both t, t′ equal tA on the A’th coordinate,
they differ in vertex w on the M ’th coordinate,
the Q’th coordinate of t, t′ denotes an accepting run of A on the A×M coordinates.

Therefore, we have a contradiction: tA has two different labellings tM , t′M (one with m and
the other with m′ in w) such that (tA, tM) ∈ LM and (tA, t′M) ∈ LM . J

Let T select as the letter mw the only element of Pw whenever Pw 6= ∅. By the definition
of Pw, the invariant (5) holds in the vertices wl,wr.

Now take any tree tA ∈ LA and consider the result tR = T (tA, τ(tA)). Let tM be the
unique labelling of tA such that (tA, tM) ∈ LM . Let ρ be an accepting run of A on (tA, tM).
We show inductively that tR = tM what finishes the proof. Let w be a node of tA and
assume that for all v ≺ w we have tR(v) = tM (v). Let (q, ql, (a,m), qr) be the transition
used by ρ in w. By the definition of Pw this transition is a witness that m ∈ Pw. Therefore,
Pw is not empty and tR(w) = m = tM (w).

A characterization of the Taylor expansion of
λ-terms∗

Pierre Boudes, Fanny He, and Michele Pagani

LIPN – University Paris 13
Villetaneuse, France
{boudes, he, pagani}@lipn.univ-paris13.fr

Abstract
The Taylor expansion of λ-terms, as introduced by Ehrhard and Regnier, expresses a λ-term as a
series of multi-linear terms, called simple terms, which capture bounded computations. Normal
forms of Taylor expansions give a notion of infinitary normal forms, refining the notion of Böhm
trees in a quantitative setting.

We give the algebraic conditions over a set of normal simple terms which characterize the
property of being the normal form of the Taylor expansion of a λ-term. From this full com-
pleteness result, we give further conditions which semantically describe normalizable and total
λ-terms.

1998 ACM Subject Classification F.4.1 Lambda calculus and related systems, F.3.2 Denota-
tional semantics

Keywords and phrases Lambda-Calculus, Böhm trees, Differential Lambda-Calculus, Linear
Logic

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.101

1 Introduction

Recently various semantics of linear logic and λ-calculus have been proposed (e.g. [5, 6]),
where morphisms are infinitely differentiable functions between vector spaces (or more
generally, modules). In fact, one can define the Taylor expansion of a function as an infinite
sum of terms that are calculated from the values of the function’s n-th derivatives at a given
point. These models subsequently provide an intriguing way to describe the regularity of the
behavior of a λ-term — the functions interpreting λ-terms are analytic, i.e. they are equal to
their Taylor expansion at any point of their domain.

The main interest of Taylor expansion for the λ-calculus lies in the analogy that can be
drawn between the usual notion of differentiation and its computational meaning. In fact,
applying the derivative at 0 of the λ-term M on the argument N corresponds to passing
the input N to M exactly once. This can be formalized in the setting of the differential
λ-calculus [7] — an extension of the λ-calculus with a syntactic derivative operator, allowing
to compute the optimal approximation of a program when applied to depletable arguments.
The Taylor formula yields a natural notion of linear approximation of the ordinary application
of λ-calculus. Let M and N be two λ-terms and assume (DnM · Nn)0 denotes the n-th
derivative of M at 0 applied to N (as in the usual notation f (n)(0) · xn with M as function
f , N as argument x, and 0 as non-linear argument). Then the application of the term M to

∗ This work was supported by the ANR 12 JS02 006 01 project COQUAS: Computing with quantitative
semantics.

© Pierre Boudes, Fanny He, and Michele Pagani;
licensed under Creative Commons License CC-BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca; pp. 101–115

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.101
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

102 Characterizing the Taylor expansion of λ-terms

the term N becomes:

(M)N =
∞∑
n=0

1
n! (D

nM ·Nn)0 . (1)

Basically, (DnM · Nn)0 expresses an evaluation of the application (M)N using exactly n
linear copies of N . The coefficient 1

n! is there to take care of the number of permutations on
the argument of DnM .

More generally, if one fully develops each application occurring in a λ-term M into its
corresponding Taylor expansion, one expresses the term as an infinite sum M∗ of purely
“differential programs”, all of which containing only multi-linear applications and applications
to 0. Ehrhard and Regnier develop a convenient notation for expressing such “differential
programs”, calling them simple terms [8, 9]. Also, the authors define a rewriting system
inspired by the standard rules for computing derivatives of polynomials which allow to give
a normal form NF(M∗) to a Taylor series M∗.

We denote by ∆NF the set of normal simple terms (Equation (10)) and by Q+[[∆NF]] the
formal linear combinations of terms in ∆NF taking coefficients in the semi-ring of positive
rational numbers. The combinations of Q+[[∆NF]] allow to express the normal forms of the
Taylor expansion of λ-terms, however not all formal combinations can be associated with a
λ-term. We propose here a characterization of the image of the λ-calculus into Q+[[∆NF]].

Let us underline that the space Q+[[∆NF]] is an example of syntax-based semantics of the
untyped λ-calculus (as well as of its differential extension) — the interpretation being given
by the function M 7→ NF(M∗), and the composition being assured by a notion of linear
substitution (see Equation (5)). Roughly speaking, such a model is a quantitative refinement
of the model provided by Böhm trees [1, §10] and it is crucial to the study of vectors based
semantics, exactly as Böhm trees are at the core of domain-based denotational semantics.
Our result basically amounts to defining a sub-model of Q+[[∆NF]] which is fully complete
for the untyped λ-calculus.

Fortunately, the problem is significantly simplified by Ehrhard and Regnier’s result. In
particular, they prove [9, Corollary 35] that the normal form of the Taylor expansion of a
λ-term M can be defined as:

NF(M∗) =
∑

t∈NF(τ(M))

1
m(t) t (2)

where: m(t) is a natural number (called multiplicity coefficient) univocally defined by t, and
NF(τ(M)) is the support of the normal form of the Taylor expansion of M , i.e. the set of the
simple terms appearing with a non-zero coefficient in NF(M∗). The open issue is then to
characterize the sets of simple terms which are of the form NF(τ(M)), for some λ-term M .

We give three conditions which are necessary and sufficient for a subset T of ∆NF to be
equal to NF(τ(M)), for some λ-term M (Theorem 25): (i) the set of free variables occurring
in T must be finite; (ii) T must be recursively enumerable; (iii) T must be an ideal with
respect to a definedness relation (Definition 9).

Our characterization is based on two previous results: a theorem by Ehrhard and Regnier
stating that Taylor expansion and normalization (λ-terms via Böhm trees; and sets of simple
terms via the NF operator) commute (here Theorem 8), and Barendregt’s characterization of
the Böhm-like trees which are Böhm trees of λ-terms (here Theorem 5). Conditions (i) and
(ii) are in fact an adaptation of Barendregt’s characterization, but they are not sufficient to
characterize Taylor expansions since the Taylor expansion gives a more atomic decomposition
of λ-terms than that obtained from Böhm trees. Condition (iii) is a completeness condition,

P. Boudes, F. He, and M. Pagani 103

assuring that there is no hole in the description of the support of a Taylor expansion. This
condition looks like the usual one characterizing the set of finite approximants of a tree
as an ideal with respect to the subtree order relation. However, the fine grained notion of
approximant given by the simple terms makes our definedness relation a bit subtler than a
subtree relation, in fact it is not even a preorder relation.

Our result concerns only the supports of the formal combinations in Q+[[∆NF]], i.e. the
subsets of ∆NF, the issue about coefficients being completely accomplished by Equation 2.
Actually, the powerset of ∆NF has an interest by its own. In fact, the powerset of ∆NF can
be formally seen as the space Bool[[∆NF]] of the formal combinations with coefficients in the
boolean ring Bool = ({0, 1},max,min, 0, 1). The Taylor expansion of a λ-term M into the
space Bool[[∆NF]] is the support τ(M) of the Taylor expansion of M into Q+[[∆NF]]. Let us
remark that Bool[[∆NF]] gives another syntax-based quantitative semantics of the λ-calculus,
and our result characterizes the image of the λ-calculus into Bool[[∆NF]].

Related works. The question of characterizing the support of Ehrhard and Regnier’s Taylor
expansion has already been addressed by Pagani and Tasson in the setting of the simply
typed linear logic proof-nets [12]. In that paper, the authors define a rewriting algorithm
taking as input a finite set of cut-free differential nets (corresponding here to the normal
simple terms) and either returning a cut-free proof-net or falling in a deadlock. Although
related, our approach is different from that of [12] in various points. First, we are considering
the untyped λ-calculus, while [12] deals with a simply typed (hence strongly normalizing)
framework. Second, the criterion proposed by [12] is the termination of a rewriting relation
in a proof-net. In the present setting, this will amount to refer to the termination of an
algorithm which starts with a set T of simple terms and tries to compute a λ-term M

such that T ⊆ NF(τ(M)). We are giving more abstract conditions without referring to the
termination of a computation. Finally, [12] characterizes the property of being a finite subset
of the support of the Taylor expansion, while we are capturing here the property of being
the whole support (T = NF(τ(M))).

Structure of the paper. Section 2 recalls the standard notions on λ-calculus and Böhm
trees needed in the sequel. In particular, Definition 2 introduces Böhm-like trees and
Theorem 5 states Barendregt’s characterization of the set of Böhm-like trees corresponding
to λ-terms. Section 3 defines Ehrhard and Regnier’s resource λ-calculus, the normal form
operator NF and the support τ(M) of the Taylor expansion of a λ-term M (Equation 8).
Theorem 8 recalls the commutation of the Taylor expansion with Böhm trees. Finally,
Section 4 contains the original results of the paper. Our characterization of the normal forms
of the Taylor expansions of λ-terms is given in Theorem 25. Corollary 28 gives an answer to
what the maximal cliques of simple terms correspond to, a question addressed in [9]. Finally,
Corollary 29 states the conditions characterizing the property of being a normalizable λ-term.

2 Λ-Calculus and Böhm trees

We denote by Λ the set of λ-terms, written using Krivine’s convention [11]:

Λ : M, N ::= x | (M)N | λx.M,

where x ranges over a countable set Var of variables. As usual, we suppose that application
associates to the left and λ-abstraction to the right. The α-conversion and the set FV(M)
of free variables of M are defined following [11]. A term M is closed whenever FV(M) = ∅.

CSL’13

104 Characterizing the Taylor expansion of λ-terms

Given two terms M,N , we denote by M{N/x} the term obtained by simultaneously
substituting N to all free occurrences of x in M , subject to the usual proviso about renaming
bound variables in M to avoid capture of free variables in N .

Hereafter terms are considered up to α-conversion. We define the following terms:

I := λx.x, S := λxyz.((x)z)(y)z, Ω := (λx.(x)x)λx.(x)x,
Θf := λx.(f)(x)x, Θ := λf.(Θf)Θf .

The β-reduction β→ is the smallest relation over Λ containing the β-step (λx.M)N β→M{N/x}
and closed under the following context rules (supposing M β→M ′):

(abs) : λx.M β→ λx.M ′, (fun) : (M)N β→ (M ′)N, (arg) : (N)M β→ (N)M ′. (3)

We denote by β∗→ the reflexive and transitive closure of β→. A β-normal form is a normal form
for β→. The reduction β→ is confluent which implies that the β-normal form of a λ-term is
unique, whenever it exists. However, β→ is not normalizing, i.e. there are λ-terms M without
a β-normal form, e.g. Ω and Θ. Indeed, Ω reduces only to itself, i.e. Ω β→ Ω, while Θ yields
the infinite reduction sequence Θ β→ λf.(f)(Θf)Θf

β→ λf.(f)(f)(Θf)Θf
β→

Notice however that Ω and Θ are quite different. Any application (Ω)M0 . . .Mn−1
gives a non-normalizing λ-term, independently from M0, . . . , Mn−1. In that sense Ω
represents the everywhere undefined function. On the contrary, Θ is a fundamental term
producing a potentially infinite iteration of its first argument, i.e. (Θ)M0 . . .Mn−1

β∗→
(M0)(Θ)M0M1 . . .Mn−1

β∗→ (M0)(M0)(Θ)M0M1 . . .Mn−1
β∗→ . . . , and so it converges for

certain M0, . . . , Mn−1 for appropriate reduction strategies. Böhm trees are introduced in [1,
§10] and provide a notion of infinitary normal form allowing to distinguish between totally
undefined terms, like Ω, and terms like Θ, which are not normalizing but can interact with
their arguments giving convergent computations.

The Böhm tree of a term is defined by using the head reduction h→, a deterministic
restriction of β→ obtained by forbidding (arg) in the set of rules (3) and by restricting the
(fun) rule to the case where M is not an abstraction. A head normal form is a normal form
for the reduction h→, and it always has the shape: λx0 . . . xm−1.(y)M0 . . .Mn−1, for n,m ≥ 0,
x0, . . . , xm−1, y variables, and M0, . . . , Mn−1 λ-terms. The variable y is called the head
variable, and M0, . . . , Mn−1 its arguments.

Notice that Ω has no head normal form, while λf.(f)(Θf)Θf is a head normal form of
Θ. Basically, the Böhm tree BT(M) of a λ-term M is a (possibly infinite) nesting of head
normal forms: ifM is β-normalizable, then BT(M) is just the applicative tree of its β-normal
form (e.g. Figure 1a, 1c), otherwise it can be either infinite in depth (e.g. Figure 1d) or with
“holes” denoting totally undefined sub-terms (e.g. Figure 1b) or both (e.g. Figure 1e).

We recall some definitions of [1, §10]. We introduce the set of Böhm-like trees (Definition 2),
which is the codomain of the function BT(). In general, a labelled tree can be represented as
a partial function from the set N∗ of finite sequences of integers to the set of possible labels.
In the case of Böhm-like trees, a label is a pair (λx0 . . . xm−1.y, n), where λx0 . . . xm−1.y

represents the λ-prefix and the head variable of a head normal form, and n the number
of its arguments, which is also a bound to the number of children of the node labelled by
(λx0 . . . xm−1.y, n). Definition 4 associates with any λ-termM a Böhm-like tree BT(M). Not
every Böhm-like tree is the Böhm tree of a λ-term, and we recall in Theorem 5 Barendregt’s
characterization of the image set of BT().

P. Boudes, F. He, and M. Pagani 105

I Notation 1. Greek letters α, β, γ will vary over N∗, the set of finite sequences of natural
numbers. We denote by @ the concatenation operator, by < the strict prefix order, by
length(α) the length of a sequence α ∈ N∗, and by 〈n1, . . . , nk〉 the sequence of n1, . . . , nk.
In particular, 〈 〉 is the empty sequence. For example 〈1, 2〉 < 〈1, 2, 3〉 = 〈1〉@〈2, 3〉.
We recall that, when f is a partial function, f(x) ↓ means that f(x) is defined and that
f(x) ↑ means that f(x) is undefined.

I Definition 2. Let Σ 4= {λx0 . . . xm−1.y ; m ∈ N, xi, y ∈ Var}. A Böhm-like tree1 is a
partial function B from N∗ to Σ× N such that:

if B(α) ↓ and β < α, then B(β) ↓,
if B(α) = (a, n), then ∀k ≥ n, B(α@〈k〉) ↑.

Actually, a sequence α in the domain of B describes a path from the root to a node
labelled by B(α). Notice that the enumeration of the children of a node allows some holes,
representing the presence of totally undefined arguments in the head normal form associated
with such a node. Figure 1 gives examples of a convenient graphical representation of
Böhm-like trees, where the number n of a label (a, n) is encoded by using pending edges.
More precisely,

Figure 1a is the function 〈 〉 7→ (λx.x, 0),
Figure 1b is the function 〈 〉 7→ (λx.x, 1),
Figure 1c is the function 〈 〉 7→ (λxyz.x, 2), 〈0〉 7→ (z, 0), 〈1〉 7→ (y, 1), 〈10〉 7→ (z, 0),
Figure 1d is the function 〈 〉 7→ (λf.f, 1), 〈0〉 7→ (f, 1), 〈00〉 7→ (f, 1), 〈000〉 7→ (f, 1) . . . ,
Figure 1e is the function 〈 〉 7→ (f, 2), 〈1〉 7→ (f, 2), 〈11〉 7→ (f, 2), 〈111〉 7→ (f, 2)

The height of a Böhm-like tree B is defined by: height(B) 4= sup{1 + length(α) | B(α) ↓}.
Remark that the domain of B can be empty and in that case it has a zero height, otherwise
the height is positive or infinite. Given h ∈ N, the restriction of B to h is the Böhm-like tree
B|h defined by cutting off subtrees at height h: B|h(α) = B(α) if length(α) < h, otherwise
B|h(α) ↑. Moreover, if B(〈 〉) = (a, n) and i < n, we define the i-th subtree Bi of B as:
Bi(α) = B(〈i〉@α).

Trees can be seen as ordered by the set-theoretical inclusion on the graph of their functions.
With respect to this order {B|h}h∈N is a chain whose limit is B, i.e. B =

⋃
h∈N B|h. Such

a remark is useful for proofs and definitions on infinite Böhm-like trees. For example, the
set FV(B) of free variables of a Böhm-like tree is defined as follows: if height(B) = 0, then
FV(B) 4= ∅; if height(B) = h + 1, let B(〈 〉) = (λx0 . . . xm−1.y, n), then FV(B) 4= ({y} ∪⋃n−1
i=0 FV(Bi)) \ {x0, . . . , xm−1}; finally, if height(B) =∞, then FV(B) 4=

⋃
h∈N FV(B|h).

I Definition 3. A Böhm-like tree B is recursively enumerable, r.e. for short, if B is a partial
recursive function (after some coding of Σ).

I Definition 4. The Böhm tree BT(M) of a λ-term M is defined as follows:
if M h∗→ λx0 . . . xm−1.(y)M0 . . .Mn−1, then,

BT(M)(〈 〉) 4= (λx0 . . . xm−1.y, n)

BT(M)(〈i〉@α) 4= BT(Mi)(α) if i < n,
BT(M)(〈i〉@α) ↑ otherwise.

Otherwise, BT(M) is the totally undefined function.

1 This is called an effective Böhm-like tree in [1, Def. 10.1.9].

CSL’13

106 Characterizing the Taylor expansion of λ-terms

(a) BT(I)

λx.x

(b) BT(λx.(x)(Ω)y)

λx.x

(c) BT(S)

λxyz.x

z y

z

(d) BT(Θ)

λf.f

f

f

(e) BT((Θ)(f)Ω)

f

f

f

Figure 1 Some examples of Böhm trees.

Figure 1 gives examples of BT() values. A Böhm-like tree which is not in the image of a
λ-term is the infinite branch

ε 7→ (x0, 1), 〈0〉 7→ (x1, 1), 〈00〉 7→ (x2, 1), 〈000〉 7→ (x3, 1) . . .

for x0, x1, x2, x3, . . . pairwise distinct variables.

I Theorem 5 ([1, Theorem 10.1.23]). Let B be a Böhm-like tree. There is a λ-term M such
that BT(M) = B if, and only if, FV(B) is finite and B is r.e..

The left-to-right direction is a straight consequence of the remark that FV(BT(M)) ⊆ FV(M)
and of the fact that the definition of BT(M) is effective (hence by Church’s Thesis it is
r.e.). The proof of the right-to-left direction is more involved. Essentially, it uses a theorem
stating that the set Λ0 of closed λ-terms can be enumerated in such a way that there are
two λ-terms E and F such that ∀M ∈ Λ0, denoting by M the Church numeral associated
with M by the enumeration, we have (E)M =β M and, vice versa, (F)M =β M . We refer
to [1, 10] for more details.

3 Taylor expansion

We recall the resource calculus as presented in [8, 9]. Let us warn the reader that the name
“resource calculus” also refers in the literature to slightly different calculi. In particular, we
have the calculus by Boudol et al.’s in [3], which is a resource-sensitive extension of the lazy
call-by-value λ-calculus, and Tranquilli’s resource λ-calculus [13] which is basically a different
notation for Ehrhard and Regnier’s differential λ-calculus. The resource calculus of [8, 9],
which we briefly recall here, is a fragment of Tranquilli’s calculus.

We define the set ∆ of the simple terms (Grammar (4)), a rewriting relation r→ over the
finite powerset of ∆ (rules (5) and (6)), and a normal form operator NF over the (finite and
infinite) powerset of ∆ (Equation 7). Concerning the discussion in the Introduction, the
simple terms in ∆ are a notation that express the terms in a Taylor series (Equation 2) and
the subsets of ∆ are the supports of such series.

Equation (8) defines the Taylor expansion of the λ-calculus and Equation (9) extends it
to Böhm-like trees. Theorem 8 states Ehrhard and Regnier’s correspondence between the
resource reduction on the Taylor expansion of λ-terms and their Böhm trees.

Resource calculus. The set ∆ of simple terms is defined by:

∆ : t ::= x | λx.t | 〈t〉µ, (4)

where x ranges over the set Var of variables, and µ is a finite multiset of simple terms, called
bag. Small Latin letters like s, t, u will vary on simple terms, and small Greek letters µ, ν, ρ

P. Boudes, F. He, and M. Pagani 107

on bags. We recall that we adopt Krivine’s notation [11], so, in particular, 〈t〉µ1 . . . µn is a
shortcut for 〈. . . 〈〈t〉µ1〉. . .〉µn.

I Notation 6. We recall that for any set E, a multiset on E is a function µ : E → N. The
support |µ| of µ is the set of all elements e of E such that µ(e) 6= 0, and µ is called a finite
multiset when |µ| is a finite set. We denote by M(E) the set of multisets on E and by
Mf (E) the set of finite multisets on E. A multiplicative notation is used for bags, 1 is the
empty bag and µ · ν is the disjoint union of µ and ν. The bag [t] is the singleton containing
exactly one occurrence of the simple term t. More occurrences of t can be written as a power:
[t3] = [t, t, t] = [t] · [t] · [t].

Free and bound variables and the α-equivalence ≡α are defined as in the λ-calculus.
The symbols S, T ,U will vary over the powerset P(∆NF). By notational convention, we

extend all the constructs of the grammar of ∆ as point-wise operations on (possibly infinite)
sets of simple terms, like for example

λx.T 4= {λx.t | t ∈ T }, 〈S〉[T 2,U] 4= {〈s〉[t1, t2, u] | s ∈ S, t1, t2 ∈ T , u ∈ U}.

The number of free occurrences of x in t, called degree of x in t, is written degx(t). A redex is
a simple term of the shape 〈λx.t〉[s1, . . . , sn]. Its reduction gives a finite set of simple terms,
which is empty whenever degx(t) 6= n, otherwise it is the set of all possible simple terms
obtained by linearly replacing each free occurrence of x with exactly one si, for i = 1, . . . , n.
Formally,

〈λx.t〉[s1, . . . , sn] r→

{
{t{sσ(1)/x1, . . . , sσ(n)/xn} | σ ∈ Sn} if degx(t) = n,

∅ otherwise.
(5)

where Sn is the group of permutations over n = {1, . . . , n} and x1, . . . , xn is any enumeration
of the free occurrences of x in t, so that t{sσ(i)/xi} denotes the term obtained from t by
replacing the i-th free occurrence of x with the term sσ(i).

The relation r→⊆ ∆× Pf (∆) is extended to Pf (∆)× Pf (∆) by context closure, i.e. r→
is the smallest relation on Pf (∆)× Pf (∆) satisfying Equation 5 and such that, whenever
t
r→ T and S ∈ Pf (∆), we have:

λx.t
r→ λx.T , 〈t〉µ r→ 〈T 〉µ, 〈s〉[t] · µ r→ 〈s〉[T] · µ, {t} ∪ S r→ T ∪ S. (6)

Notice that the size (i.e. the number of symbols) of each simple term in T is strictly less than
the size of t, whenever t r→ T . Therefore, r→ is strongly normalizing on Pf (∆). Moreover,
one can easily check that r→ is weakly confluent, thus confluent by Newman’s lemma.

I Proposition 7. The relation r→ is strongly normalizing and confluent on Pf (∆).

In particular, given any simple term t, its unique normal form NF(t) is always well-defined.
Such an operator is extended over P(∆NF) by:

NF(T) 4=
⋃
t∈T

NF(t). (7)

We also extend over the notation for free variables by setting FV(T) 4=
⋃
t∈T {FV(t)}.

CSL’13

108 Characterizing the Taylor expansion of λ-terms

Taylor expansion. We define the map τ from Λ to Pf (∆) by structural induction on the
λ-terms. As said in the Introduction, τ is the support of the Taylor expansion described in
[7, 9], from the λ-calculus to the infinite formal linear combinations in Q+[[∆]], as well as the
Taylor expansion into Bool[[∆]].

τ(x) 4= x, τ(λx.M) 4= λx.τ(M), τ((M)N) 4=
∞⋃
n=0
〈τ(M)〉[τ(N)n]. (8)

For example, we have

τ(I) 4= {λx.x},

τ(S) 4= {λxyz.〈x〉[zn0][〈y〉[zn1], . . . , 〈y〉[znk]] ; k, n0, . . . , nk ∈ N},

τ(Ω) 4= {〈λx.〈x〉[xn0]〉[λx.〈x〉[xn1], . . . , λx.〈x〉[xnk]] ; k, n0, . . . , nk ∈ N},

τ(Θ) 4= {λf.〈λx.〈f〉[〈x〉[xn1], . . . , 〈x〉[xnk]]〉[λx.〈f〉[〈x〉[xn1,1], . . . , 〈x〉[xn1,k1]], . . . ,
λx.〈f〉[〈x〉[xnh,1], . . . , 〈x〉[xnh,kh]]] ; k, ni, h, ni,j ∈ N}

The Taylor expansion of a β-redex contains resource redexes. If one looks for an invariant
under β-reduction, one should consider the normal forms of the Taylor expansions. By
induction on the size of the simple terms, one can for example prove that NF(τ(Ω)) = ∅,
while

NF(τ(Θ)) = {λf.〈f〉1, λf.〈f〉[(〈f〉1)n], λf.〈f〉[〈f〉[(〈f〉1)n1], . . . , 〈f〉[(〈f〉1)nk]], . . . }.

Indeed, notice that these examples can be seen as a thick version [2] of the finite approximants
of the Böhm tree of the corresponding λ-terms, where each sub-tree has been recursively
replaced by a finite multiset of copies of it. We recall the following Theorem 8, stating a
commutation between the resource reduction and the Taylor expansion through the Böhm
tree operator. To do this, we need to extend the notion of Taylor expansion to Böhm-like
trees:

τ(B) 4=


∅ if height(B) = 0,
{λx0 . . . xm−1.〈y〉µ0 . . . µn−1 ; µi ∈MF (τ(Bi))} if height(B) = h+ 1 and

B(〈 〉) = (λx0 . . . xm−1.y, n),⋃
h τ(B|h) if height(B) =∞.

(9)

I Theorem 8 ([8, Theorem 2]). For every λ-term M , NF(τ(M)) = τ(BT(M)).

4 Characterizing the Taylor expansion

In this section, we prove our main result (Theorem 25), an algebraic characterization of the
normal forms of the Taylor expansion of Λ. Definitions 9 and 10 give the two crucial notions
(a notion of ideal and a notion of effective element) for such a characterization.

Let ∆NF be the set of the simple terms which are normal forms with respect to r→. They
have the following shape:

∆NF : t ::= λx0 . . . xm−1.〈y〉µ0 . . . µn−1 (10)

where m,n ≥ 0 and each µi is a bag of simple terms in normal form.

P. Boudes, F. He, and M. Pagani 109

I Definition 9 (Definedness). The definedness relation � on ∆NF is given as follows:

λx0 . . . xm−1.〈y〉µ0 . . . µn−1 � t iff
{
t = λx0 . . . xm−1.〈y〉ν0 . . . νn−1 and
∀i < n, |µi| 6= ∅ =⇒ ∃v ∈ |νi|,∀u ∈ |µi|, u � v.

Given T ∈ P(∆NF) we say that:
T is downward closed whenever ∀t s.t. ∃t′ ∈ T , t � t′, we have t ∈ T ;
T is directed, whenever ∀t, t′ ∈ T , we have ∃t′′ ∈ T , s.t. t, t′ � t′′;
T is an ideal whenever it is downward closed and directed.

Notice that the relation � is transitive but not reflexive (i.e. it is not a preorder). For
instance, 〈y〉[〈y〉1[y], 〈y〉[y]1] 6� 〈y〉[〈y〉1[y], 〈y〉[y]1], as 〈y〉1[y] 6� 〈y〉[y]1 as well as 〈y〉[y]1 6�
〈y〉1[y]. It is not antireflexive either, for example 〈y〉[x] � 〈y〉[x]. Moreover, it is neither
symmetric nor antisymmetric. We have 〈y〉[x]1 � 〈y〉[x][x], but 〈y〉[x][x] 6� 〈y〉[x]1, and
〈y〉[t] � 〈y〉[t, t], 〈y〉[t, t] � 〈y〉[t] but 〈y〉[t] 6= 〈y〉[t, t]. However, on the simple terms having
bags of at most one element, � is an order relation.

We need to formalize what is an “effective element” of P(∆NF). In order to do that,
we use the notion of a recursively enumerable subset of N and an encoding of ∆NF into
N. Let G be any effective bijection between ∆NF/ ≡α and N. One way of defining G is
by using the De Bruijn notation [4], which gives a system of canonical representatives for
the α-equivalence. We will omit such details, so we fix once and for all a recursive Gödel
numbering G : ∆NF 7→ N.

I Definition 10 (Effectiveness). An element T of P(∆NF]) is recursively enumerable, r.e.
for short, whenever the set G(T) 4= {G(t) ; t ∈ T } ⊆ N is recursively enumerable, i.e. either
T = ∅, or there exists a total recursive function φ : N 7→ N such that G(T) = {φ(n) ; n ∈ N}.

Notice that the notion of a r.e. element of P(∆NF) does not depend on the chosen Gödel
enumeration of ∆NF.

I Definition 11. We say that a set T ∈ P(∆NF) is single-headed with width n, whenever
there exist m ∈ N, x0, . . . , xm−1, y ∈ Var, J ⊆ N and, for each i < n, a family (µji)j∈J of
bags such that :

T = {λx0 . . . xm−1.〈y〉µj0 . . . µ
j
n−1 | j ∈ J}. (11)

For each i, we denote by T̂i the set {µji | j ∈ J} and simply by Ti the set
⋃
j∈J |µ

j
i |. Notice

that T̂i ⊆MF (Ti).

I Lemma 12. If T is directed then T is single-headed and Ti is directed (for every i less
than the width of T). Let T ∈ P(∆NF) be non-empty. If T is single-headed with width n ∈ N
and downward closed then Ti is downward closed (for every i < n).

Proof. It is straightforward to check that T directed implies T single-headed.
From now on assume T is single-headed of width n and let us prove that Ti is downward

closed (resp. directed) whenever T is downward closed (resp. directed).
Let u′ � u ∈ Ti. This means that there is t = λx0 . . . xm−1.〈y〉µ0 . . . µn−1 ∈ T , such

that u ∈ |µi|. Define t′ 4= λx0 . . . xm−1.〈y〉1 . . . 1[u′]1 . . . 1 and notice that t′ � t. By the
downward closedness of T we conclude t′ ∈ T , so u′ ∈ Ti and hence Ti is downward closed.

Let u1, u2 ∈ Ti. We have in T two elements t1 = λx0 . . . xm−1.〈y〉µ1
0 . . . µ

1
n−1 and

t2 = λx0 . . . xm−1.〈y〉µ2
0 . . . µ

2
n−1, such that u1 ∈ |µ1

i | and u2 ∈ |µ2
i |. By directedness of T ,

CSL’13

110 Characterizing the Taylor expansion of λ-terms

there is an element t3 = λx0 . . . xm−1.〈y〉µ3
0 . . . µ

3
n−1 ∈ T such that t1, t2 � t3. So, there

is v1, v2 ∈ |µ3
i |, such that u1 � v1 and u2 � v2. Again by directedness of T , there exists

t4 = λx0 . . . xm−1.〈y〉µ4
0 . . . µ

4
n−1 ∈ T such that t3 � t4, so there exists w ∈ |µ4

i |, such that
v1, v2 � w. We have w ∈ Ti and by transitivity, u1, u2 � w. Hence Ti is directed. J

We now define a coherence relation on normal simple terms, originally introduced in [9],
which will mainly be used to approximate the notion of ideal. Indeed, we will show that every
ideal is a clique (Proposition 16) and every clique is included in an ideal (Proposition 20).

I Definition 13 (Coherence, [9, §3]). The coherence relation ¨ on ∆NF is defined by:

λx0 . . . xm−1.〈y〉µ0 . . . µn−1 ¨ t iff
{
t = λx0 . . . xm−1.〈y〉ν0 . . . νn−1 and
∀i < n,∀u, u′ ∈ |µi · νi|, u ¨ u′.

We call T ∈ P(∆NF) a clique whenever ∀t, t′ ∈ T , t ¨ t′.

Notice that ¨ is symmetric, but not reflexive. For example, 〈y〉[x, z] 6¨ 〈y〉[x, z]. Let us stress,
however, that the previous example 〈y〉[〈y〉1[y], 〈y〉[y]1] showing the non-reflexivity of �, is
indeed coherent with itself. Furthermore, ¨ is not transitive. We have 〈y〉[x][z] ¨ 〈y〉[x]1
and 〈y〉[x][y] ¨ 〈y〉[x]1 but 〈y〉[x][z] 6¨ 〈y〉[x][y].

As a direct consequence of the definition of coherence we get the following lemma.

I Lemma 14 (Hereditary characterization of cliques). Let C ∈ P(∆NF), C is a clique iff C is
single-headed of a certain width n and for each i < n, Ci is a clique.

Hereafter, we will often use the induction of the following notion of height, analogous to
the definition of height of a Böhm-like tree.

I Definition 15 (Height). Given a simple normal form t = λx0 . . . xm−1.〈y〉µ0 . . . µn−1, we
define height(t) = 1 + maxi(maxti∈|µi| height(ti)). The height of a set T ∈ P(∆NF) is
height(T) = supt∈T (height(t)). We define T |h = {t ∈ T | height(t) < h}.

Notice that height(t) = 1 if and only if t has only empty bags. Of course, the height of a
set of simple normal forms T can be infinite. For example, height(NF(τ(Θ))) =∞, while
height(NF(τ(S))) = 3.

I Proposition 16 (Ideals are cliques). If D ∈ P(∆NF) is an ideal then D is a clique.

Proof. It is enough to check that, for every two terms t1, t2 ∈ ∆NF, if there exists an ideal
D′ such that t1, t2 ∈ D′ then t1 ¨ t2. Let us prove this claim by induction on the maximal
height among t1 and t2. Since D′ is an ideal there exists t3 ∈ D′ such that t1, t2 � t3 and,
by Lemma 12, D′ is single-headed of a certain width n, so there exist bags µji such that

tj = λx0 . . . xm−1.〈y〉µj0 . . . µ
j
n−1(for each j = 1, 2, 3),

moreover each D′i is directed.
If max(height(t1),height(t2)) = 1 then t1 = t2 = λx0 . . . xm−1.〈y〉1 . . . 1 and this term

is coherent with itself. Now let h = max(height(t1),height(t2)). In order to prove t1 ¨ t2
we have to prove that for each i < n, for every u1, u2 ∈ |µ1

i · µ2
i |, we have u1 ¨ u2. But

max(height(u1),height(u2)) ≤ h− 1 and u1, u2 belong to D′i which is directed. We conclude
by induction hypothesis. J

In fact, every subset of an ideal is a clique (just check that the proof above does not use the
downward closure).

P. Boudes, F. He, and M. Pagani 111

I Definition 17 (Linearization). Let C be a non-empty clique of finite height. The linearization
of C, defined by induction on height(C), is the simple term L(C) 4= λx0 . . . xm−1.〈y〉ξ0 . . . ξn−1
where, for every i < n, ξi = [L(Ci)] if Ci non-empty, otherwise ξi = 1.

I Lemma 18. Let C ⊆ D be two non-empty cliques of finite height. We have: height(L(C)) =
height(C), L(C) � L(D) and, finally, ∀t ∈ C, t � L(C).

Proof. Let C and D satisfying the hypothesis. By Lemma 14, C and D are single headed with
same width n. For any i < n, notice that Ci ⊆ Di. We proceed by induction on height(C). If
height(C) = 1, then C = {L(C) = λx0 . . . xm−1.〈y〉1 . . . 1}. Clearly, one gets the statement.
Otherwise, let height(C) > 1. Then L(C) is defined as in the equation of Definition 17. By
Lemma 14, Di and Ci are cliques. Hence, whenever Ci is non-empty, we have by induction
hypothesis that L(Ci) satisfies the statement of the lemma for Ci and Di. One can then easily
conclude that height(L(C)) = height(C), and L(C) � L(D) and, finally, ∀t ∈ C, t � L(C). J

I Lemma 19. Let D be an ideal and let C ⊆ D be a non-empty clique of finite height. Then,
L(C) ∈ D.

Proof. Let D and C satisfying the hypothesis. By Lemma 12, D (and hence C) are single
headed and of same width n. The proof of L(C) ∈ D is by induction on height(C).

Let I be the set of indices i < n such that Ci is non-empty. If I is empty, then
L(C) = λx0 . . . xm−1.〈y〉1 . . . 1, and one can deduce that L(C) ∈ D since D is downward
closed and L(C) is � to any element of D. If otherwise I is non-empty, then for every i ∈ I,
we have that Ci ⊆ Di, as well as that Ci is a clique (Lemma 14). By induction hypothesis we
can suppose L(Ci) ∈ Di. This means that there is wi ∈ D, wi = λx0 . . . xm−1.〈y〉ρ0 . . . ρn−1,
and L(Ci) ∈ |ρi|. As D is directed and � is transitive, we can construct w ∈ D such that
wi � w, for every i ∈ I. We remark that L(C) � w ∈ D, therefore L(C) ∈ D. J

I Proposition 20 (Cliques can be ideals). Let C be a clique. Then:
1. the set I(C) 4= {t | ∃h > 0, t � L(C|h)} is an ideal;
2. This set I(C) is the smallest ideal containing C.

Proof. Obviously I(C) is downward closed. Moreover, by Lemma 18, {L(C|h)}h∈N is a
chain (in fact C|h ⊆ C|h+1), hence directed. We conclude that I(C) is directed because the
downward closure of a directed set is directed (� being a transitive relation).

As for item 2, first, we prove that C ⊆ I(C). By Lemma 18, C|h ⊆ I(C), for every h. We
conclude because C =

⋃
h C|h. Second, let D be an ideal containing C, it is enough to prove

L(C|h) ∈ D for every h for concluding C ⊆ D. This is a consequence of Lemma 19. J

I Corollary 21. Let C be a maximal clique. Then, C is an ideal.

Proof. Let C be a maximal clique. By Proposition 20, I(C) is an ideal and C ⊆ I(C). And
by Proposition 16, I(C) is a clique. So we conclude by maximality of C, that C is equal to
the ideal I(C). J

Recall from Section 2 that we consider Böhm-like trees ordered by the set-theoretical
inclusion on the graph of their functions. Indeed, such an order is reflected in their Taylor
expansion.

I Lemma 22. If B,B′ are Böhm-like trees, τ(B) ⊆ τ(B′) iff B ⊆ B′. Moreover, height(B) =
height(τ(B)).

CSL’13

112 Characterizing the Taylor expansion of λ-terms

Proof. =⇒ We suppose that τ(B) ⊆ τ(B′). By induction on length(α), for any α ∈ N∗, we
show that B(α) = B′(α), whenever B(α) is defined.

If B(〈 〉) = (λx0 . . . xm−1.y, n), then λx0 . . . xm−1.〈y〉1 . . . 1 ∈ τ(B) ⊆ τ(B′), therefore by
definition B′(〈 〉) = (λx0 . . . xm−1.y, n). The induction case follows because τ(B) ⊆ τ(B′)
implies τ(Bi) ⊆ τ(B′i) for every i < n. Then, B(〈i〉@α) = Bi(α) which, by induction
hypothesis, is equal to B′i(α) = B′(〈i〉@α).
⇐= We suppose that B ⊆ B′. Let t ∈ τ(B), by induction on height(t), one shows that

t ∈ τ(B′). The reasoning is similar to the left-to-right implication.
The last statement regarding the height is trivial. J

I Lemma 23. Let T ∈ P(∆NF). There is a Böhm-like tree B such that τ(B) = T iff T is
an ideal.

Proof. =⇒ The proof depends whether height(B) is finite or infinite.
If height(B) is finite, we proceed by induction on height(B). If B(〈 〉) = (λx0 . . . xm−1.y, n),
then τ(B) = {λx0 . . . xm−1.〈y〉µ0 . . . µn−1 | i < n, µi ∈MF (τ(Bi))}.
Downward closure. Let t � t′ ∈ τ(B). Since t′ ∈ τ(B) we have t′ of the shape

t′ = λx0 . . . xm−1.〈y〉µ′0 . . . µ′n−1. (12)

Then, since t � t′, t is of the form

t = λx0 . . . xm−1.〈y〉µ0 . . . µn−1, (13)

such that, for every i < n, either µi = 1 ∈MF (τ(Bi)), or there exists u′ ∈ µ′i such that
for any u ∈ µi, u � u′. Notice that u′ ∈ τ(Bi), so by induction hypothesis u ∈ τ(Bi).
Since this is the case for every u ∈ µi, we get µi ∈MF (τ(Bi)). We conclude t ∈ τ(B).

Directedness. Let t, t′ ∈ τ(B), and let us find t′′ such that t, t′ � t′′. The terms t and t′ are
as in Equation (13) and (12), respectively.
For i < n, µi ·µ′i ∈MF (τ(Bi)). By induction hypothesis, τ(Bi) is directed. Since µi ·µ′i is
finite (and � is transitive), if µi · µ′i is non-empty, then there exists ti ∈ τ(Bi), such that
for any u ∈ µi · µ′i, u � ti. Then, define ξi = [ti] if µi · µ′i non-empty, otherwise ξi = 1.
We set t′′ = λx0 . . . xm−1.〈y〉ξ0 . . . ξn−1. Notice that t′′ ∈ τ(B), since ξi ∈ MF (τ(Bi)),
and t, t′ � t′′.

Now let us consider the case height(B) =∞. By definition τ(B) =
⋃
h∈N τ(B|h). Notice that

τ(B|h) is a Böhm-like tree of finite height, so, by the previous reasoning, we can conclude
that τ(B|h) is an ideal. Since {B|h}h∈N is a chain, we can easily conclude that the whole
τ(B) is an ideal.

⇐= In this case, we also split in two subcases, depending whether height(T) is finite or
infinite. In the first case our induction is on height(T).

If height(T) = 0, then T = ∅ and we choose the Böhm-like tree undefined everywhere.
Otherwise, T is non-empty and we can write it as in Equation (11), by Lemma 12. Moreover,
for any i < n, Ti is an ideal. By induction hypothesis, we can assume that there exists a
Böhm-like tree Bi such that τ(Bi) = Ti (notice that Bi is the everywhere undefined function
whenever Ti = ∅). Define then B(〈〉) 4= (λx0 . . . xm−1.y, n) and B(〈i〉@α) = Bi(α). Note that
in particular Bi = Bi.

In order to prove τ(B) = T , we must show that T̂i =MF (τ(Bi)), for every i < n. By
Lemma 12, we only know that T̂i ⊆MF (Ti) =MF (τ(Bi)) =MF (τ(Bi)). Let µi ∈MF (Ti),
we prove that µi ∈ T̂i. Actually, we prove that the term tµi

4= λx0 . . . xm−1.〈y〉1 . . . 1µi1 . . . 1 ∈
T , which is enough to conclude.

P. Boudes, F. He, and M. Pagani 113

If µi = 1 then the bags in tµi are all empty and so one concludes by the downward
closure of T , remarking that tµi

is � to any element in T . Otherwise, we have that |µi| is
a non-empty sub-set of Ti of finite height (since it has finite cardinality). Moreover, since
Ti is an ideal, Ti, and hence |µi|, are cliques (Proposition 16). We first apply Lemma 19 to
C = |µi| ⊆ Ti. We then obtain L(|µi|) ∈ Ti, so there exists t ∈ T whose i-th bag contains
L(|µi|). We further apply Lemma 18, arguing that ∀u ∈ |µi|, u � L(|µi|). This induces that
tµi
� t, so finally, tµi

∈ T .
We now suppose that height(T) = ∞. Recall Definition 15, and notice that T |h ⊆ T

is downward closed because t � t′ implies height(t) ≤ height(t′). We now show that T |h
is directed. In fact, take any two t1, t2 ∈ T |h. Set C = {t1, t2} ⊆ T . By Proposition 16,
T and C are cliques, so by Lemma 18 and 19, L({t1, t2}) ∈ T , t1, t2 � L({t1, t2}) and
height(L({t1, t2})) ≤ h. We conclude L({t1, t2}) ∈ T |h.

We can then apply the reasoning for sets of finite heights and conclude that there exists
Bh such that τ(Bh) = T |h. As {T |h}h∈N is by definition a chain, we conclude with Lemma 22
that {Bh}h∈N is a chain. Let B =

⋃
h∈N Bh, we have that B is a Böhm-like tree. Remark that

B|h = Bh, as for any h ∈ N, the difference between Bh and Bh+1 lies only on the sequences
of length h, which are undefined for Bh. Finally τ(B) 4=

⋃
h∈N τ(B|h) =

⋃
h∈N τ(Bh) =⋃

h∈N T |h = T . J

I Lemma 24. Let B be a Böhm-like tree, then
FV(B) = FV(τ(B)),
B is r.e. iff τ(B) is r.e.

Proof. The only difficulty is to prove that τ(B) r.e. implies B r.e. Observe that an element
t of τ(B) defines a kind of subtree of B (in fact, a rooted thick subtree [2]) which can be
used to define a partial function ft : N∗ → Σ× N such that, whenever ft(α) is defined, ft(α)
equals B(α). Moreover for every α ∈ N∗, such that B(α) is defined, there exists t ∈ τ(B)
such that ft(α) is defined. Hence, given an effective enumeration of τ(B), one can compute
B(α) by iterating over τ(B) with t until ft(α) is defined (if B(α) is undefined this will never
end). J

I Theorem 25. Let T ∈ P(∆NF). There is a λ-term M such that NF(τ(M)) = T iff the
following conditions hold:
1. FV(T) is finite,
2. T is r.e.,
3. T is an ideal wrt �.

Proof. By Theorem 8, the equality NF(τ(M)) = T can be replaced by τ(BT(M)) = T .
Then, by Theorem 5 the condition at the left-hand side of the iff can be replaced by “there is
a Böhm-like tree B such that (i) FV(B) is finite, (ii) B is r.e., (iii) τ(B) = T ”. The equivalence
is then achieved by Lemma 23 and 24. J

In [9], Ehrhard and Regnier noticed that the Taylor expansion of normal forms are
maximal cliques with respect to the set-theoretical inclusion. However, not every maximal
clique T represents a normalizable λ-term, even if T enjoys the conditions of Theorem 25.
For example, NF(τ(Θ)) is a maximal clique. We define the total λ-terms (called ⊥-free in [1,
Definition 10.1.12]) and prove that they correspond to the property of being a maximal clique
in P(∆NF).

CSL’13

114 Characterizing the Taylor expansion of λ-terms

I Definition 26 (Totality). A Böhm-like tree B is total whenever B(〈 〉) ↓ and B(α) =
(a, n) implies that for all i < n, B(α@〈i〉) ↓. A λ-term M is total whenever M h∗→
λx0 . . . xm−1.(y)M0 . . .Mn−1 and M0, . . .Mn−1 are total, i.e. BT(M) is total.

I Lemma 27. Let B be a Böhm-like tree. The set τ(B) is a maximal clique (with respect to
the set-theoretical inclusion) iff B is total.

Proof. One proves the equivalent statement: there exists t ∈ ∆NF, t 6∈ τ(B), coherent with
any element of τ(B), iff B is not total. The left-to-right direction is by induction on height(t),
noticing that if a subtree Bi is not total, then B is not total. The converse direction is
by induction on length(α) for a sequence α such that B(α) = (a, n) but there is i < n,
B(α@〈i〉) ↑. J

I Corollary 28. Let T ∈ P(∆NF). There is a total λ-term M such that NF(τ(M)) = T iff
1. FV(T) is finite,
2. T is r.e.,
3. T is a maximal clique.

Proof. =⇒ By Theorem 25, we get 1 and 2. Condition 3 is a consequence of Theorem 8
and Lemma 27.
⇐= By Lemma 21 and Theorem 25 we get a λ-term M such that NF(τ(M)) = T . By

Theorem 8 and Lemma 27 we conclude that M is total. J

Of course, one would like to characterize the property of having a β-normal form.

I Corollary 29. Let T ∈ P(∆NF). There is a normalizable λ-term M such that NF(τ(M)) =
T iff
1. height(T) is finite,
2. T is a maximal clique.

Proof. =⇒ Remark that if M is normalizable, then BT(M) is total and of finite height. In
fact, BT(M) is the applicative tree of the normal form of M . By Corollary 28, NF(τ(M)) is
a maximal clique. By Theorem 8 and Lemma 22 we get that height(NF(τ(M))) is finite.
⇐= Consider the simple term L(T). One can easily prove that L(T) does not contain

empty bags, otherwise T would not be maximal. Moreover, by induction of height(L(T)), one
also proves that the λ-termM obtained from L(T) by replacing any resource application 〈t〉[u]
with a λ-calculus application (t)u is such that L(T) ∈ τ(M). Let us prove that T = τ(M).
By Proposition 20, I({L(T)}) is the smallest ideal containing L(T), so I({L(T)}) ⊆ τ(M).
By Lemma 18, for every t ∈ T , t � L(T), hence T ⊆ I({L(T)}) ⊆ τ(M). By the maximality
of T we conclude T = τ(M). J

Let us notice that the simple term L(T) used in the proof of Corollary 29 for proving the
existence of a β-normal form M s.t. τ(M) = T is called the linearization of M in [9].

5 Conclusion

The main Theorem 25, combined with Ehrhard and Regnier’s Equation 2, gives a charac-
terization of the support NF(τ(M)) of NF(M∗) that can be extended to a characterization
of NF(M∗) itself (with positive rational coefficients instead of booleans). This refinement
can be done by requiring in addition that the coefficient of each non-zero element t of the
formal combination should exactly be the so-called multiplicity coefficient m(t) of t, a number
defined by induction on t through the use of a generalization of binomial coefficients to

P. Boudes, F. He, and M. Pagani 115

multisets (see [9]). Roughly speaking the multiplicity coefficient of a simple term t expresses
the various ways t can be recombined into itself by varying enumeration of multisets.

Such a strict correspondence between supports and coefficients is lost in a non-deterministic
setting. Ehrhard and Regnier’s Equation 2 is due to the fact that the supports of the Taylor
expansions of the λ-terms are cliques, and this is false as soon as one allows to superpose
programs (e.g. by adding an or constructor, or a random operator). An open issue is then
to capture the convergence of formal combinations of simple terms to non-deterministic, or
probabilistic λ-terms.

Acknowledgement. We thank the reviewers for their useful and detailed comments on
improving the quality of this publication.

References
1 Henk Barendregt. The lambda calculus: its syntax and semantics. North-Holland, Amster-

dam, 1984.
2 Pierre Boudes. Thick subtrees, games and experiments. In Pierre-Louis Curien, editor,

Proceedings of TLCA 2009, number 5608 in Lecture Notes in Computer Sciences, pages
65–79. Springer Verlag, 2009.

3 Gérard Boudol, Pierre-Louis Curien, and Carolina Lavatelli. A semantics for lambda calculi
with resources. Mathematical Structures in Computer Science, 9(4):437–482, 1999.

4 N.G. de Bruijn. A survey of the project automath. In J.H. Geuvers R.P. Nederpelt and
R.C. de Vrijer, editors, Selected Papers on Automath, volume 133 of Studies in Logic and
the Foundations of Mathematics, pages 141 – 161. Elsevier, 1994.

5 Thomas Ehrhard. On Köthe sequence spaces and linear logic. Mathematical Structures in
Computer Science, 12(5):579–623, 2003.

6 Thomas Ehrhard. Finiteness spaces. Mathematical Structures in Computer Science,
15(4):615–646, 2005.

7 Thomas Ehrhard and Laurent Regnier. The differential lambda-calculus. Theoretical Com-
puter Science, 309(1):1–41, 2003.

8 Thomas Ehrhard and Laurent Regnier. Böhm trees, Krivine’s machine and the Taylor
expansion of lambda-terms. In Arnold Beckmann, Ulrich Berger, Benedikt Löwe, and
John V. Tucker, editors, CiE, volume 3988 of Lecture Notes in Computer Science, pages
186–197. Springer, 2006.

9 Thomas Ehrhard and Laurent Regnier. Uniformity and the Taylor Expansion of Ordinary
Lambda-Terms. Theor. Comput. Sci., 403(2-3):347–372, 2008.

10 Fanny He. On the Characterization of the Taylor Expansion of λ-terms. Master’s thesis,
LMFI – Paris VII, France, October 2012.

11 Jean-Louis Krivine. Lambda-calcul: types et modèles. Études et recherches en informatique.
Masson, 1990.

12 Michele Pagani and Christine Tasson. The Taylor Expansion Inverse Problem in Linear
Logic. In Andrew Pitts, editor, Proceedings of the Twenty-Fourth Annual IEEE Symposium
on Logic in Computer Science (LICS 2009), pages 222–231. IEEE Computer Society Press,
2009.

13 Paolo Tranquilli. Intuitionistic differential nets and lambda-calculus. Theorical Computer
Science, 412(20):1979–1997, 2011.

CSL’13

Team building in dependence
Julian Bradfield

Laboratory for Foundations of Computer Science, University of Edinburgh,
10 Crichton St, Edinburgh, EH8 9AB, U.K.
jcb@inf.ed.ac.uk

Abstract
Hintikka and Sandu’s Independence-Friendly Logic was introduced as a logic for partially ordered
quantification, in which the independence of (existential) quantifiers from previous (universal)
quantifiers is written by explicit syntax. It was originally given a semantics by games of imperfect
information; Hodges then gave a (necessarily) second-order Tarskian semantics. More recently,
Väänänen (2007) has proposed that the many curious features of IF logic can be better understood
in his Dependence Logic, in which the (in)dependence of variables is stated in atomic formula,
rather than by changing the definition of quantifier; he gives semantics in Tarskian form, via
imperfect information games, and via a routine second-order perfect information game. He then
defines Team Logic, where classical negation is added to the mix, resulting in a full second-order
expressive logic. He remarks that no game semantics appears possible (other than by playing
at second order). In this article, we explore an alternative approach to game semantics for DL,
where we avoid imperfect information, yet stay locally apparently first-order, by sweeping the
second-order information into longer games (infinite games in the case of countable models).
Extending the game to Team Logic is not possible in standard games, but we conjecture a move
to transfinite games may achieve a ‘natural’ game for Team Logic.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases partially ordered quantification, independence-friendly logic, game se-
mantics

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.116

1 Introduction

In the 60s, Henkin [9] introduced partially ordered quantifiers, which extend first-order logic
(FOL) by quantifiers such as ∀x ∃y

∀u ∃v, where the existential choice of y is to be made without
knowing the value of u, and similarly v is chosen independently of x. Subsequent work
[8, 17] establish some basic properties, such as the equi-expressiveness of such quantifiers
with existential second-order logic (ESOL), but little more was done. Then Hintikka and
Sandu [10] gave new life to the topic with a provocative paper, which introduced a new
linear syntax with the independence explicitly noted (∀x.∀u.∃y/u.∃v/x), gave it a semantics
by extending Hintikka’s celebrated games for FOL to be games of imperfect information,
so that truth and falsity are defined to be the existence of a winning strategy one or other
of the two players, demonstrated a number of surprising properties of the logic, and argued
that it should displace FOL as the foundation of mathematics. Although the last claim has
been generally politely ignored, a community has grown up exploring the ramifications of
independence, and the properties of Independence-Friendly Logic (IFL) have continued to
surprise us – the recent textbook [13] provides a comprehensive survey of the mainstream of
IFL research. Branching off from the IFL river are a number of tributary streams, including
logics for agent-based systems [14], and work by myself and colleagues on the relationship
of IFL to logics for concurrency [6, 4]. One extension of IFL studied by Kreutzer and myself

© Julian C. Bradfield;
licensed under Creative Commons License CC-BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca; pp. 116–128

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.116
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

J.C. Bradfield 117

[5] was the IF version of Least Fixpoint Logic (IF-LFP), in which the least fixpoint operator
on relations is added. At that time, we were able to show, by roundabout means, that this
extension is very powerful, and on finite models includes all of SOL. Our semantics there
was the fixpoint extension of Hodges’ [11] Tarskian semantics for IFL, a semantics which is
second-order in nature, as it must be to describe the power of IF.

More recently, Väänänen has been developing the thesis that IFL is perhaps not the best
notation for understanding the problems posed by independent quantification. This work is
collected, up to 2007, in the textbook [16]. Väänänen proposes that, instead of annotating
quantifiers with (in)dependence requirements, one should leave them alone, and instead use,
as atomic formulae, dependence atoms of the form D(~x, y), which means that the value of y is
functional in the values of ~x (and is therefore independent of any other variables that may be
in scope). So instead of ∀x.∀u.∃y/u.∃v/x. . . . , we write ∀x.∀u.∃y.∃v.D(x, y)∧D(u, v)∧
This he calls Dependence Logic (DL). The primary semantics for DL is a Tarskian semantics,
necessarily second-order, which is essentially the semantics given by Hodges for IFL; however,
as he does not need to deal with the slashed quantifiers of IFL, the semantics is considerably
easier to use in proving results about DL (such as the extremely high undecidability of its
validity problem). There are two derived semantics: an imperfect information game which
reconstructs the Hintikka game, though it appears less natural, and a perfect information
game, which of course has second order moves and is basically the standard Hintikka SOL
game for the semantics.

One of the bugbears throughout the history of research on IF and its descendants is
negation. There are two ways of understanding negation: in the game-theoretic understand-
ing of IFL, it is natural to think of negation via the game-theoretic duality familiar from
the FOL game: negation corresponds to swapping the roles of the two players. However,
this is not the same as negation in the classical sense. As the IF games are of imperfect
information, they are not determined, and so a formula may be neither true nor false in
the usual understanding (for example, ∀x.∃y/x.x = y is not true on a 2-element domain,
but neither is its dual ∃x.∀y/x.x 6= y). Hintikka considered forming the boolean closure of
IFL, and Hodges [11] introduced a technique for dealing with classical negation in a limited
sense.

True classical negation corresponds to saying (in the game view) that a player ‘does not
have a winning strategy’. It is therefore apparently a firmly second order operator. In the
DL framework, Väänänen’s primary semantics is already second-order, and it is therefore
immediate to add classical negation: a team satisfies ‘not φ’ if it does not satisfy φ. The
result is a logic with full second order power, and the ability easily to say highly complex
properties.

Väänänen considered that as Team Logic expresses SOL, it was hard to imagine a game
theoretic semantics (other than the trivial semantics by playing games directly at second
order in the meta-language). In this article, we introduce a novel game semantics for DL, and
discuss how one can imagine extending it to TL, although imagination has yet to be made
real. Of course, such games have very high complexity to solve, but they fit conceptually
within the game semantics of IF logic.

We will start the paper by introducing, completely but very concisely, the notations
and concepts of IFL and DL, and also explain the intuitions which underly them – a long-
standing feature of IF research has been that it is truly philosophical logic, not just formal
symbol shuffling. We will then describe the intuition behind our alternative game semantics,
and then proceed to its formal definition and proof of correctness.

CSL’13

118 Team building in dependence

2 Preliminaries

Notation and terminology is not entirely standardized. Where there are several options, I
shall generally follow Väänänen, but sometimes Hodges. I shall use standard concepts such
as free and bound variables without further explanation. Formulae are always considered as
abstract syntax trees, and words such as ‘earlier’ and ‘above’ should be so interpreted.

An important convention is that ‘subformula’ always means ‘node in the abstract syntax
tree’, and includes the formula itself; unlike FOL, in IF logics one may need to treat different
occurrences of the same textual subformula differently.

Throughout we assume some structure M with a domain M of values which may be
bound to variables of the logics. All the logics may be defined to include constants, function
symbols and terms built thereby, and interpreted by operations in M , but to reduce notation,
we shall generally state definitions without them.

We will start by, as Hintikka did originally, ignoring negation, and working entirely in
negation normal form with both ∧ and ∨, and both ∀ and ∃. After introducing IF and DL
in this form, we will discuss negation.

2.1 IF logic syntax and semantics

The syntax is that of FOL in negation normal form (where, as usual, we shall let x, y, · · · ∈
Var denote variables, and P,Q, · · · ∈ Prop denote relational atoms) – we write \P for negated
atoms. The equality symbol is usually included, but for our purposes may be treated as a
relational atom rather than a distinct primitive. In addition, there are ‘slashed quantifiers’
∃x/~y and ∀x/~y, where ~y is a subset of the variables bound earlier in the formula (or, in
general, of those variables and the free variables of the formula). ‘/~y ’ does not bind the ~y.

The semantics of a sentence φ (the original presentation does not account for open
formulae) is given by a game between two players, Eloise and Abelard. The game is played
just as for the standard Hintikka game for FOL: at ∃x.ψ (∀x.ψ), Eloise (Abelard) chooses a
value for x; at ψ0 ∨ψ1 (ψ0 ∧ψ1), Eloise (Abelard) chooses to proceed to ψ0 or ψ1. At atoms
and negated atoms, Eloise (Abelard) wins iff the formula is true (false) with the current
binding of variables to values.

At a slashed quantifier ∃x/~y (∀x/~y), Eloise (Abelard) is required to make her (his) choice
of y without knowing the currently bound values of ~y.

φ is said to be true iff Eloise has a winning strategy in this game of imperfect information;
false iff Abelard does; and undetermined otherwise.

An alternative, and more mathematically tractable, way of phrasing the semantics is to
drop any reference to ‘imperfect information’ in the moves of the game, and instead say
that the players are subject to constraints in the strategies they are allowed to use: their
strategies at slashed quantifiers must be uniform in the ~y.

2.2 DL syntax and semantics

DL has the syntax of FOL (in negation normal form for the present), with addition of
dependence atoms D(~x, y) and negated dependence atoms \D(~x, y)

An assignment s is a mapping from a set dom(s) of variables to values in M . s(v/y)
denotes the assignment s extended (or updated) to map y to v.

A team is a set of assignments with a common domain. If X is a team, X(M/y) denotes
the team {s(v/y) : s ∈ X, v ∈M}, i.e.X extended by all possible choices for y. If F : X →M

J.C. Bradfield 119

is a function choosing one value for each member ofX,X(F/y) denotes the team {s(F (s)/y) :
s ∈ X}, i.e. X extended by one choice of y for each member of the team.

A triple is a tuple (φ,X, d) where d is 0 or 1. The intended interpretation is that (φ,X, 1)
means that the team X makes the formula φ true, and (φ,X, 0) means that X makes φ false
– as with IF logic, it may be that neither holds.

The semantics of DL is given by defining the set T of triples that hold in M . T is defined
inductively as follows, where ‘dually’ means ‘by exchanging 0 and 1 in the definition’. For
relational atoms P (~x), (P (~x), X, 1) ∈ T iff P (s(~x)) holds in M for every s ∈ X, and
(P (~x), X, 0) ∈ T iff P (s(~x)) fails in M for every s ∈ X; and dually for \P .

For the ‘boolean’ operators, the rules are (ψ0 ∧ ψ1, X, 1) ∈ T iff (ψ0, X, 1) ∈ T) and
(ψ1, X, 1) ∈ T); (ψ0∧ψ1, X, 0) ∈ T iff there are Xi such that X = X0∪X1 and (ψi, Xi, 0) ∈
T for both i; and dually for ∨.

For the quantifiers, (∃x.ψ,X, 1) ∈ T iff (ψ,X(F/x), 1) ∈ T for some choice function F ;
and (∃x.ψ,X, 0) ∈ T iff (ψ,X(M/x), 0) ∈ T ; and dually for ∀.

So far, the semantics looks like the natural lifting of FOL to teams, and indeed the
semantics is, so far, equivalent to the FOL semantics.

The extension comes with the dependence atoms. The rule for positive dependence atoms
is: (D(~x, y), X, 1) ∈ T iff X makes y functional in ~x: that is, if s, s′ ∈ X agree on ~x, they
must also agree on y; and (D(~x, y),∅, 0) ∈ T ; and dually for \D .

It is hard to give a good intuition for the semantics of \D ; it is never true, except in the
artifical vacuous case of the empty team (a purely technical requirement). Conversely D is
never false (except vacuously), which one can perhaps best understand by considering that
a non-functional team can always be made functional by ejecting some of its members, and
it is a core property of the logic that if a team makes a formula true (or false), so does any
subteam.

Note that a consequence of these rules is that the empty team makes every formula both
true and false; but since it is impossible to give any intuitive meaning to a formula in the
absence of any assigment, this technicality is not overly obtrusive.

On the other hand, the team consisting solely of the empty assignment, i.e. the unique
non-empty team on no variables, X = {∅}, plays a major role. A sentence φ is true in M

if (φ, {∅}, 1) ∈ T .
In Väänänen’s terminology, we say X has type ψ iff (ψ,X, 1) ∈ T .

2.3 Negation

As adumbrated in the introduction, the problem is that there are two natural understandings
of negation, and though they coincide on FOL, they differ on IF. The first understanding is
game negation: this corresponds to exchanging the roles of the players. Thus, for example,
the game negation of an undetermined sentence is also undetermined, while the game nega-
tion of a true sentence is false, and vice versa. Game negation, in both the IF game semantics
and the DL semantics, obeys the familiar De Morgan dualities.

The second understanding is classical negation: a classically negated sentence is true iff it
is not the case that the unnegated sentence is true. Hence the negation of an undetermined
sentence is true, thereby introducing an asymmetry.

The first careful analysis of these issues was done by Hodges [11], who also showed
that classical negation could be defined in terms of game negation and an independently
justifiable ‘flattening’ operation. In that article, Hodges used ∼ for game negation, and ¬
for classical negation. Rather unfortunately, Väänänen [16] reversed this notation. I shall

CSL’13

120 Team building in dependence

follow Hodges’ notation, as it is more mnemonic (∼ is smooth and symmetrical, like game
negation, and ¬ is flat and asymmetrical, like classical negation).

As will be apparent from our description of the semantics in negation normal form, the
‘standard’ negation in IF and DL is the game negation. If it is included as a primitive, then
the rule is (∼ψ,X, d) ∈ T iff (ψ,X, 1 − d) ∈ T , and then ∧ can be defined in terms of ∨
and ∀ in terms of ∃ by the usual dualities, and our negated atoms \P and \D are just ∼P and
∼D .

We defer further discussion of classical negation until after we have introduced team-
building games for the simpler case of DL.

3 Team-building games for DL

The idea is simple: although IFL and DL require either imperfect information, restrictions
to uniform strategies, or games with explicit second order moves, one can consider building
finite approximations to these second-order objects incrementally, essentially expressing the
construction as a fixpoint operator, which we have previously studied in the context of IF;
thereby, although the players build actual teams in the limit, each move in the game looks
like a first-order game move.

Henceforth, we consider only countable models.

3.1 Game definition
As with the games for IFL, we shall define our games only for sentences. Throughout the
rest of this section, let φ be a sentence of DL in negation normal form. Let Φ be the set
of subformulas of φ; let Var be restricted to mean the variables occurring in φ. For a
subformula ψ, let Var(ψ) be the variables in scope in ψ (regardless of whether they occur
in ψ). Let ψ′ 4 ψ mean ψ′ is a subformula of ψ.

An annotated assignment, or aa for short, is an assignment s together with a subformula
ψ. It serves to record how the assignment was used.

A crowd is a set of annotated assignments, not necessarily with the same domains.
A position in the game comprises a subformula ψ, a crowd X, and an assignment s. s

behaves exactly as in a first-order Hintikka game, and the crowd handles the dependency
aspects.

The initial position is (φ,∅,∅).
The game looks like repeated plays of the first-order game, but with the addition that

Eloise remembers how she played last time, and is required to play consistently with her
earlier choices. The rules are:

At position (ψ0 ∨ ψ1, X, s), Eloise checks to see whether there is (s′, ψ′) ∈ X such that
ψ′ 4 ψi for some i, and s′�Var(ψ0 ∨ ψ1) = s. If so, there will be only one such i (which
will follow from the rules), and she must choose it. Otherwise, she chooses freely i = 0, 1.
Play moves to (ψi, X, s).
For (ψ0 ∧ ψ1, X, s), Abelard chooses freely whether to move to ψ0 or ψ1.
At position (∃x.ψ,X, s), Eloise checks to see whether there is (s′, ψ′) ∈ X such that
ψ′ 4 ψ and s′�Var(∃x.ψ) = s. If so, she chooses v = s′(x); otherwise she has a free
choice of v. Play moves to (ψ,X, s(v/x)).
For (∀x.ψ,X, s), Abelard has a free choice of value for x.
At a (negated) relational atom R (\R), play stops, and Eloise wins the play iff s satisfies
(fails) R.

J.C. Bradfield 121

At a dependency atom ψ = D(~x, y), we check whether team built so far for ψ (recorded
in the crowd X) is functional. We take the crowd X ′ = X ∪ { (s, ψ) }, and consider the
team Y = {s′ : (s′, ψ) ∈ X ′}. If Y does not satisfy ψ – i.e. y is not functional in ~x – then
Abelard wins. Otherwise, if (s, ψ) ∈ X, then Eloise wins. Otherwise, Abelard challenges
by moving to (φ,X ′,∅).
At a negated dependency atom ψ = \D(~x, y), Abelard wins.

The intuition for the D rule is that during the current play, Eloise builds up a series
of choices which together make a team satisfying the dependency atom. However, Abelard
should have challenged her with all his possibilities; if he has exhausted his choices (in the
finite case), or unnecessarily repeated something he tried earlier, he loses. (This feature is
not necessary; it serves merely to force the game to be finite on a finite domain.)

The game as defined so far may, in the case of an infinite domain, not terminate, as play
may pass indefinitely through dependency atoms. On such a play, Eloise wins.

This completes the definition of the game.

3.2 Remarks
The positions of the game are all finite objects, and hence the moves and finite-winning
conditions are all recursive (relative to the intepretations of relational atoms), even if the
domain is infinite.

As noted, if φ is a formula without dependence atoms (i.e. is FOL), then the game is
exactly the usual Hintikka game with some additional book-keeping that is not used.

For non-FOL formulae, if the sentence φ is true, Eloise builds up incrementally on each
play a team required to satisfy the dependency atoms, which in the DL semantics are
constructed at one swoop by the quantifier semantics. In the case of a finite domain, Eloise’s
strategy in this game amounts to building her full strategy for the second-order DL game
– on every play of this game. The consequence is that a winning strategy for Eloise in this
game gives a winning strategy for DL (or for the IF game), but the same is not true for
Abelard.

The game has perfect information, has simple (Büchi) winning conditions, and is there-
fore determined. Consequently it is clear that this game does not match the IF game. In
fact, our asymmetrical treatment of the players in the rules and winning conditions amounts
to making this the game simulate the second order game for the skolemized sentence, rather
than the IF imperfect information game.

Because the winning conditions are Büchi, it also follows that if a player has a winning
strategy, they have a history-free winning strategy, i.e. one that depends only on the current
position in the game. In particular, the order in which aas are added to the crowd need not
be remembered.

Since we have included a repetition detection in the winning conditions, which is not
actually necessary, the game always terminates on finite domains.

3.3 Examples
3.3.1 A simple ‘Snap’ game
First, consider the (IF non-determined) sentence mentioned in the introduction, representing
the game where Eloise and Abelard independently choose a boolean value in M = {0, 1},
and Eloise wins iff the two values are the same. In IFL, this is ∀x.∃y/x.x = y; in DL, it is
∀x.∃y.D(y) ∧ x = y.

CSL’13

122 Team building in dependence

A sample play of the game is: A chooses 0; E chooses 0; A chooses the dependency atom,
X is functional, so play continues: A chooses 1, E chooses 1, and then A will again challenge
D, and E will lose because the crowd is now non-functional. This strategy of repeatedly
challenging until either the accumulated crowd is non-functional or E chooses a y 6= x is
winning for Abelard; contrast with the IF game, where Abelard has no winning strategy.

3.3.2 An infinite game
A more interesting example arises by borrowing a well known trick for expressing the in-
finitude of the domain in IFL (and so incidentally demonstrating the non-FOL expressivity
of IFL). In DL, the formula is

∃c.∀x.∀u.∃y.∃v.D(x, y) ∧D(u, v) ∧ (y = v ∨ x 6= u) ∧ (x = u ∨ y 6= v) ∧ (y 6= c)

To understand this formula, see that it asserts the existence of y that is f(x), and v that
is g(u), and moreover f = g, by the first FOL clause (which says x = u → y = v), and f
is injective, by the second FOL clause (which says y = v → x = u), and moreover f never
takes the value c.

In the IFL version, the formula is true on an infinite domain, but undetermined on a
finite domain of size > 2 – although Eloise can’t win, she may, by blind chance, escape
Abelard’s attempts to detect a failure of the main clause.

Consider the team-building game in the case of an infinite domain. Eloise has a winning
strategy – indeed, uncountably many winning strategies – just as in the IF game, as follows.
After choosing c, she keeps in her head a suitable function f – for example, she enumerates
the domain starting at c, and maps each element to the next in the enumeration. After
Abelard chooses x and u, she chooses y = f(x) and v = f(u). Now Abelard has no chance
to win in the boolean clauses, so his only hope is to challenge the dependency atoms. But
whichever one he challenges, the past choices of y or v, as recorded in the crowd, are
functional; so either he repeats himself and loses, or he plays for ever, and loses.

Now consider a finite domain, say M = (0, 1, 2). Now Eloise cannot win; but Abelard
can win, because by repeating the challenge at dependency atoms, he can force Eloise into
violating either functionality, injectivity, or not hitting c.

This illustrates the theorem we shall shortly prove: Eloise wins the team-building game
iff she wins the IF game, and thus iff the DL sentence is true.

3.3.3 Team-building and game negation
If our game were perfectly symmetric, we would have a contradiction (since the IF game is
not determined) – how does the asymmetry we introduced solve the problem?

To see this, consider some examples involving game negation. First, consider the ‘Snap’
formula. If we negate the formula in DL, and push negations through to the atoms, we
get ∃x.∀y. \D(y) ∨ x 6= y. Clearly Eloise cannot win this game: she can’t win at \D , and
Abelard will choose y to equal x. This is, indeed, a winning strategy for Abelard, although
the formula is not false in IFL or DL.

Now consider the infinity example. The game negation of the formula is

∀c.∃x.∃u.∀y.∀v. \D(x, y) ∨ \D(u, v) ∨ (y 6= v ∧ x = u) ∨ (x 6= u ∧ y = v) ∨ (y = c)

Suppose the domain is infinite. Eloise cannot win at the negated dependency atoms. If she
chooses u = x, Abelard chooses his y = v 6= c and wins; if she chooses u 6= x, Abelard
chooses y 6= v and y 6= c and wins. Here we have Abelard winning a false sentence.

J.C. Bradfield 123

In the case of a finite domain, the same strategy suffices for Abelard.
To sum up, by the introduction of the asymmetry, we have arranged that Eloise wins φ iff

φ is true (in the DL or IFL sense); and Eloise wins ∼φ iff φ is false; and if φ is undetermined,
Abelard wins both φ and ∼φ.

3.4 Correctness
The underlying core of the correctness theorem for the team-building game is (the dual of)
Kleene’s theorem that Σ0

1-IND = Π1
1. However, the details require some attention.

I Theorem 1. If Eloise has a winning strategy in the team-building game for φ, then φ is
DL-true, and vice versa.

Proof. Suppose then that Eloise has a winning strategy in the team-building game for φ.
For each subformula ψ we will construct a team X(ψ) that has the type of ψ, and so that
∅ is in the team for φ. To do this, we will construct choice functions for Eloise, essentially
giving her strategy in the second-order game for DL. The team-building game strategy does
not necessarily define a unique winning strategy in the second-order game; we shall build
one particular strategy.

We first make an auxiliary definition. Let X be a crowd, and ψ a formula. X�ψ denotes
the team given as

{s�Var(ψ) : (s, ψ′) ∈ Xand ψ′ is a subformula of ψ}

Now let T be the game tree that results from playing all Abelard’s choices against Eloise’s
strategy. We will need to traverse this tree in a particular well-behaved order. Wlog we
may assume that M = N (the finite case is strictly easier). A node in the game tree can
be uniquely defined by a sequence of integers, giving the choices made by the players: the
value of v at quantifiers, and 0 or 1 at boolean operators (although, of course, there is no
Eloise branching in this tree). Order the nodes lexicographically according to this sequence
(an ordering which may have length ωω). Call this ordering ζ : ωω → T .

We could define suitable teams for the first-order part directly from the semantics, so
our concern is with the dependency atoms. By the rules of the game, every crowd X that
appears on a dependency atom node satisfies the atom; but any such crowd has dealt with
only a finite number of Abelard’s possible plays. Since the union of functional teams is not
necessarily functional, we need to take care when combining crowds. We will achieve this
by the ordered traversal of the tree.

We will proceed by building up a crowd that contains the information required to produce
teams for the DL semantics of φ, starting with the empty crowd.

Consider the last Abelard choice in the node labels of T (as defined above). We will
explore all the possible choices, for fixed values of the earlier choices, by following an ‘almost
leftmost’ path through T . Specifically, starting from the root, we follow a path in T by taking
at each Abelard choice the leftmost unexplored choice. After making the last Abelard choice
and following any subsequent Eloise choices, we are at an atomic node (ψ,X, s). If ψ is a
relational atom, then s satisfies it; we backtrack to the point of the last Abelard choice, and
explore the next choice. ψ cannot be a negated dependency atom, as no such nodes occur in
the tree. If ψ is a dependency atom, we add s to the crowd (per the game rules), and follow
on down T , repeating the earlier choices, and then exploring the next possibility for the final
Abelard choice. Note that the game rules mean that Eloise cannot change her mind about
her response to any of the pre-final Abelard choices, as they will be recorded in the crowd.

CSL’13

124 Team building in dependence

In the case of a finite domain, we reach a leaf, and take the crowd X1 at that leaf. In the
case of an infinite domain, this procedure may involve traversing an infinite path through T .
In that case, we take X1 to be the union of all the crowds at atomic nodes on the path. The
resulting crowd does satisfy all the dependency atoms occurring on path: suppose not, then
there is a dependency atom ψ = D(~x, y) on the path, and two assignments s, s′ annotated
with ψ, such that s and s′ agree on ~x but differ on y. But since X1 is a union of a increasing
chain of crowds, there is some ψ-node on the path at which both s and s′ already occur,
and is therefore false, which is a contradiction.

Having generated X1, we now restart the game with crowd X1, and explore all the final
Abelard choices for the next value of the pre-final Abelard choice. It is not immediate
that Eloise’s strategy can still win starting with an infinite crowd (that therefore does not
appear anywhere in the actual team-building game); however, we can show that she can.
Suppose not. Then Abelard has a winning play. However, all Abelard-winning plays are
finite; therefore his winning play uses only a finite amount of information about the crowd,
and so he can also win with this play against the finite crowd, which does appear in T .

Thus we obtain X2 ⊇ X1. We then repeat the procedure until we have exhausted the
pre-final Abelard choices; then back up to consider the pre-pre-final choice for Abelard, and
so on until we have exhausted all the Abelard choices. This gives a crowd X, from which
Eloise can win the team-building game for φ; but as the crowd is exhausted, all her choices
are pre-made, and the game will terminate after one round. This then gives the choices
for the DL semantics: at ∃x.ψ, the choice function F is extracted from the crowd, and at
disjunctions, the choice of disjunct is extracted from the crowd.

This completes the proof of the interesting direction.
The other direction is almost immediate: if φ is true, then the choice functions F at

existential nodes, and the split X = X0 ∪ X1 (with an arbitrary choice to make the split
disjoint) give a strategy for Eloise in the team-building game. J

I Corollary 2. Eloise wins the team-building game for ∼φ iff φ is false.

Proof. Game negation in the DL semantics is exactly the swapping of 1 triples and 0 triples.
J

I Corollary 3. If φ is undetermined, then Abelard wins the team-building game for φ and
also for ∼φ.

3.5 Further examples and remarks

3.5.1 The infinite game again

The infinite game of subsection 3.3.2 illustrates the proof in both directions. If we know
the DL formula is true, then Eloise has choice functions defined by her ‘secret’ function f ,
and the obvious choice function at the disjunctions. On the other hand, if she is playing
the team-building game, she does not even have to have the function f in her head: all she
needs to do is, in each round, is to choose any y and v which will satisfy the relational part,
and maintain consistency with her previous choices, thus building up the function f . Note
that there is no a priori need for her to build the same function along different branches of
the game tree; most of the work in the correctness proof was in showing that even if she
doesn’t, we can extract a single choice function from a modified tree.

J.C. Bradfield 125

3.5.2 Constraints on Abelard
In the original IFL, only ∃ quantifiers could be slashed, and only on ∀ variables: Abelard
had no memory loss, and Eloise always remembered her own choices. Later work adopted
the symmetrical approach, but many people (including myself) found it hard to hard to
understand constrained Abelard choices intuitively as a logical property. The intuition that
Abelard also has restricted knowledge at choices is simple enough, but one (or at least I)
naturally imagines such a restriction should make it easier for Eloise to win; for, in the
formal game semantics, she surely now only has to win against Abelard’s uniform strategies,
which should be easier than winning against all strategies.

However, this intuition is misleading: consider ∃x.∀y/x.ψ. Eloise only has to win against
uniform Abelard strategies – but since she doesn’t know which uniform strategy Abelard is
playing, that’s the same as winning against any strategy. In other words, slashing Abelard
variables makes it harder for Abelard to win, but not easier for Eloise to win. (As a referee
put it, one needs to lose the ‘truth bias’ and consider truth and falsity on equal terms.) This
is perhaps more easily seen in DL, thus:

In dependence logic, the dependence atoms know nothing about whether variables belong
to Eloise or Abelard, and one can perfectly well write, e.g., ∃x.∀y.D(x, y) ∨ x 6= y. This
sentence is true: in the DL semantics, E’s choice function at ∃ selects an arbitrary element
v for x, and then at the ∨ she splits the team with (v, v) on the left and all other (v, v′)
on the right. In the team-building game, she chooses v (which will thus be fixed in the
crowd for the rest of the play), and plays left or right at ∨ similarly. In this case, the game
will terminate after at most two rounds, owing to our optimizing termination criterion for
repeated Abelard challenges.

Here we have the alternative explanation of why Abelard slashing has been found con-
fusing in IFL. Consider again the Snap formula: ∀x.∃y/x.x = y in IFL; ∀x.∃y.D(y)∧ x = y

in DL. One naturally defines that the negation of the IF formula will be ∃x.∀y/x.x 6= y.
However, DL negation shows us that this means ∃x.∀y. \D(y) ∨ x 6= y, and since negated
dependency atoms are never true, the Abelard slashing has no effect on truth, only on
falsity.

3.5.3 Team-building for IFL
Since there is a simple translation from IFL (assuming that variables are not re-used) into
DL, by ∃y/~x.ψ mapping to ∃y.D(Var(ψ)\~x, y)∧ψ, and dually for ∀, the team-building game
for DL immediately gives one for IFL. We can avoid the explicit translation by saying that
immediately after a slashed existential quantifier, Abelard has the choice to proceed into ψ,
or to start the next round. (Nothing new happens after a slashed universal quantifier, for
the reasons just explained.)

4 Negation and Team Logic

4.1 Team Logic
When Väänänen defined DL, he did not use the nnf formulation that we have been using.
Rather, he took game negation ∼ as a primitive, along with ∃ and ∨, and defined ∀ and
∧ via De Morgan dualities with ∼. The semantics with fundamental triples is designed to
maintain both the ‘truth’ and ‘falsity’ semantics at the same time, via the flag d = 0, 1.

However, when he extended DL to Team Logic (TL) by adding classical negation, he
reverted to a traditional asymmetrical semantics, in which the denotation of a formula is a

CSL’13

126 Team building in dependence

set of teams, rather than a set of fundamental triples. Consequently, the game duals are no
longer maintained automatically, and so in TL game negation does not appear explicitly,
and the game dual connectives are defined as primitives, while classical ¬ is added as a
primitive with its usual semantics.

To add to the confusion, TL changes the notation used for connectives, owing to a
(slightly distorted) analogy with linear logic, and because he wishes to maintain the usual
De Morgan dualities when considering classical rather than game negation. So the DL and
IFL ∨ is instead written ⊗, and the IFL and DL ∀ is instead written ! (by analogy with the
linear logic ‘of course’ operator). Then ∨ is reused for the classical dual of ∧, and ∀ for the
classical dual of ∃. (The real link between TL and linear logic is explained in [2] – it is partly
linear, and partly intuitionistic.) The justification for this is perhaps that TL is really a
first-order logic about teams, which involves statements about their members, whereas DL
and IFL intend to be logics about members, which need teams to express certain properties.

We hope to avoid the confusion within this article by leaving our existing DL notations
alone, so as not to have to reformulate the game rules, and then when required we will use
subscripted versions for the new TL classical operators.

4.2 Negation in the team-building game
The team building game has the property that Eloise winning characterises truth, and
Abelard winning characterises non-truth, so that at the level of entire sentences, swapping
players corresponds to classical negation. However, we know from [16] that adding classical
negation as a primitive to DL greatly increases its complexity, taking it to full second-order
power. It is therefore interesting to explore what happens to the team-building game when
we apply the usual methods of incorporating negation into a model-checking game.

Before doing so, we make one simplification to the team-building game: we drop the
condition at dependence atoms that says “if s ∈ X and X is functional, then Eloise wins”.
As already noted, this condition is just an optimization for the case of finite domains; its
job can also be done by the “Eloise wins infinite plays” condition.

The usual way to incorporate negation into a model-checking game for a logic (e.g. in
modal mu-calculus games, see e.g. [7]) is to add the De Morgan duals (w.r.t. the negation in
question) of all the operators in the logic (if not there already), dualize the rules for the new
operators, and dualize the winning conditions, and then deal with formulae in nnf (w.r.t.
the negation in question). If we apply this methodology:

We need the classical duals of the ‘boolean’ operators (where we already have both game
duals in the logic). The classical dual of ∧ we write as ∨T ([16] writes ∨); of ∨ we write
∧T ([16] writes ⊕).
In the semantics of TL, the DL ∀ and ∃ are self-dual under classical negation, and so no
new operators are needed.
For the relational atoms, the interpretation of ¬ is the same as that of ∼, so we need no
new symbols.
For dependency atoms, D under an odd number of negations is written D̄ , and a \D is
written \̄D .

The rules for the operators are dualized by exchanging ‘Eloise’ and ‘Abelard’.
Dualizing the winning conditions raises a number of obstacles in the classically negated

dependencies D̄ . The natural dualized rule would have Eloise winning as soon as a functional
crowd (i.e. a crowd not satisfying the atom) is constructed. This, of course, is wrong – the
first time through the atom, there will be one aa in the crowd, which is necessarily functional.

J.C. Bradfield 127

Instead, we need to allow Eloise to keep trying to construct a non-functional team; if she
fails forever, then Abelard will win. So the rule for D̄ simply moves the game to the start
of the next round.

The real problem comes from the infinite plays. The team-building game has Eloise
winning on infinite plays involving D . We did not need to worry about which particular D

occurs infinitely often, because if Abelard can break any allegedly functional Eloise team, he
can do it in finite time, and his best strategy is to do so. However, if Abelard needs to win
infinite plays involving D̄ , we are faced with the problem of plays involving both infinitely
many Ds and infinitely many D̄s. While one might think that a sufficiently clever inter-
twining might solve the problem, it is in fact possible to prove that there is no (reasonable)
solution to this problem.

I Theorem 4. Given an extended team-building game as indicated, then there is no first-
order, or even uniform second-order, way to define winning infinite plays such that the game
captures Team Logic.

Proof. It is a standard theorem (see, e.g. [12]) that if the winning conditions of a (standard)
perfect information game are Σ1

n, then the winning sets for the game are at most Π1
n+1.

Since TL expresses all second-order properties, no second-order winning condition of fixed
quantifier depth suffices. J

However, while it is impossible to reach SOL with standard games, it may be possible
with richer games (other than by going back to imperfect information). We
I Conjecture 5. The team-building game can be extended to a game with transfinitely (but
still countably) long plays, with first-order winning conditions, so as to capture Team Logic.

5 Conclusion

In this article, we have shown how it is possible to design a game semantics for DL (and
hence IFL) that preserves the intuition of first-order games, but does not resort to imperfect
information. The game is thus determined, and so characterizes truth and non-truth, rather
than truth and falsehood.

We discussed why the natural attempts to extend such games to full Team Logic must
fail, and conjectured that nonetheless they can be extended with the (already studied) idea
of transfinite plays.

Future work is to investigate the conjecture further, and also explore the use of similar
team-building games in the logic IF-LFP (independence logic with fixpoints), a logic which
is also second-order expressive, and has not received any game characterization previously.

Acknowledgements. This paper grew out of the Dagstuhl Seminar 13071 ‘Dependence
Logic: Theory and Applications’.

I thank an anonymous referee for helpful corrections and suggestions.

CSL’13

128 Team building in dependence

References
1 S. Abramsky, J. Kontinen, J Väänanen, H. Vollmer, Dependence Logic: Theory and Applic-

ations (Dagstuhl Seminar 13071), Dagstuhl Reports, 3(2) 45–54, Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, http://dx.doi.org/10.4230/DagRep.3.2.45 (2013).

2 S. Abramsky, J. A. Väänanen, From IF to BI: a tale of dependence and separation. CoRR
abs/1102.1388 (2011)

3 J. C. Bradfield, The modal mu-calculus alternation hierarchy is strict, Theor. Comput. Sci.
195 133–153 (1997).

4 J. C. Bradfield, Independence: logics and concurrency. In: Tuomo Aho and Ahti-Veikko
Pietarinen (eds). Truth and Games: Essays in Honour of Gabriel Sandu (Acta Philosophica
Fennica 78) 47–70. Helsinki: Societas Philosophica Fennica. (2006)

5 J. C. Bradfield and S. Kreutzer, The complexity of independence-friendly fixpoint logic,
in: Stefan Bold, Benedikt Löwe, Thoralf Räsch, Johan van Benthem (eds.), Foundations
of the Formal Sciences V, Infinite Games 39-62. [Studies in Logic 11]. London: College
Publications (2007).

6 J. C. Bradfield and S. B. Fröschle, Independence-friendly modal logic and true concurrency,
Nordic J. Computing 9 102–117 (2002).

7 J. C. Bradfield and C. Stirling, Modal Mu-Calculi, in P. Blackburn, J. van Benthem and
F. Wolter, Handbook of Modal Logic,721–756, Elsevier (2007).

8 H. B. Enderton, Finite partially ordered quantifiers, Z. für Math. Logik u. Grundl. Math.
16 393–397 (1970).

9 L. Henkin, Some remarks on infinitely long formulas, Infinitistic Methods, Pergamon Press,
Oxford and PAN, Warsaw, 167–183 (1961).

10 J. Hintikka and G. Sandu, A revolution in logic?, Nordic J. Philos. Logic 1(2) 169–183
(1996).

11 W. Hodges, Compositional semantics for a language of imperfect information, Int. J. IGPL
5(4), 539–563.

12 Y. N. Moschovakis, Descriptive set theory. North-Holland, Amsterdam & New York (1980).
13 A. L. Mann, G. Sandu and M. Sevenster, Independence-Friendly Logic – A Game Theoretic

Approach, Cambridge University Press (2011).
14 Marc Pauly, Logic for Social Software. Ph.D. Thesis, Universiteit van Amsterdam (2001).
15 G. Sandu, On the logic of information independence and its applications, J. Philos. Logic

22 361-372 (1993).
16 J. Väänänen, Dependence Logic. Cambridge University Press (2007).
17 W. J. Walkoe, Jr, Finite partially-ordered quantification. J. Symbolic Logic 35 535–555

(1970).

http://dx.doi.org/10.4230/DagRep.3.2.45

Saturation-Based Model Checking of
Higher-Order Recursion Schemes
Christopher Broadbent1 and Naoki Kobayashi2

1 The Technische Universität München
broadben@in.tum.de

2 The University of Tokyo
koba@is.s.u-tokyo.ac.jp

Abstract
Model checking of higher-order recursion schemes (HORS) has recently been studied extensively
and applied to higher-order program verification. Despite recent efforts, obtaining a scalable
model checker for HORS remains a big challenge. We propose a new model checking algorithm
for HORS, which combines two previous, independent approaches to higher-order model check-
ing. Like previous type-based algorithms for HORS, it directly analyzes HORS and outputs
intersection types as a certificate, but like Broadbent et al.’s saturation algorithm for collapsible
pushdown systems (CPDS), it propagates information backward, in the sense that it starts with
target configurations and iteratively computes their pre-images. We have implemented the new
algorithm and confirmed that the prototype often outperforms TRecS and CSHORe, the state-of-
the-art model checkers for HORS.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Programs

Keywords and phrases Model checking, higher-order recursion schemes, intersection types

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.129

1 Introduction

The model checking of higher-order recursion schemes (higher-order model checking for
short) [10, 22] is a generalization of finite-state and pushdown model checking, and has
recently been applied to automated verification of higher-order programs [13, 23, 19]. Higher-
order recursion schemes (HORS) are higher-order grammars describing possibly infinite
trees, and can also be seen as simply-typed functional programs with recursion and tree
constructors. Thus they serve as natural models for higher-order programs, and various
verification problems for functional programs can be easily reduced to higher-order model
checking [13, 11, 23, 26].

Despite the very bad worst-case complexity of higher-order model checking (k-EXPTIME
complete for order-k HORS [22, 18]), several practical model checking algorithms [11, 14, 21, 4]
have been developed, which do not immediately suffer from the hyper-exponential bottleneck.
The state-of-the-art model checker TRecS can handle a few hundred lines of HORS generated
from various program verification problems. It is, however, not scalable enough to support
automated verification of thousands or millions of lines of code. Thus, obtaining a better
higher-order model checker is a grand challenge in the field, and that is also the general goal
of the present work.

The previous algorithms for higher-order model checking can be roughly classified into
two radically different approaches, as shown in Table 1. The algorithms of Kobayashi [11, 14]
and Neatherway et al. [21] directly work on HORS and check properties expressed by trivial

© Christopher Broadbent and Naoki Kobayashi;
licensed under Creative Commons License CC-BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca; pp. 129–148

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.129
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

130 Saturation-Based Model Checking of HORS

Table 1 Classification of higher-order model checking algorithms.

algorithms models properties state representation propagation
Type-based approach [11, 14, 21] HORS trivial types forward
Saturation-based approach [4, 5] CPDS co-trivial stack automata backward
HorSat HORS co-trivial types/automata backward
HorSatT HORS trivial types/automata backward

tree automata [1] (Büchi tree automata where all the states are accepting, which can be used
for describing safety properties stating that certain (bad) states are unreachable). They use
intersection types [13, 17] to finitely represent infinite states. Information is propagated in
the forward direction, in the sense that they start from the requirement that the start symbol
must have the initial state of the trivial automaton as its type, and compute the “post-image”
to collect type information needed to conclude that bad states are unreachable. On the other
hand, the recent algorithm of Broadbent et al. [4, 5] works on collapsible pushdown systems
(CPDS) (which are equi-expressive with HORS although the mutual translations are rather
complex [9, 6]) and deals with properties expressed by co-trivial tree automata (Büchi tree
automata where no states are accepting, which can be used for describing the complement of
a safety property, stating that certain (bad) states are reachable). Their algorithm generalizes
the saturation algorithm for pushdown system model checking [2, 7]. It finitely represents
infinite states of CPDS by using stack automata, and propagates information in the backward
direction, in the sense that it starts with final (bad) states, computes the “pre-image”, and
checks whether the start state is in the pre-image. Broadbent et al. [5] recently report that
with an optimization based on forward static analysis, a saturation-based model checker
CSHORe can compete with TRecS [11, 12]. Due to the huge gap as summarized in Table 1,
however, the two approaches have been of independent use, and it was difficult to transfer or
integrate the techniques.

The present paper fills the gap between the two approaches, and proposes a new model-
checking algorithm HorSat and its variation HorSatT for HORS. As indicated in Table 1,
the new algorithms are classified somewhere between the two approaches. Like the previous
algorithms of Kobayashi and Neatherway et al., HorSat works directly on HORS. Like
Broadbent et al.’s saturation algorithm for CPDS [4, 5], however, HorSat deals with co-trivial
automata, and propagates information backwards, starting from final states and iteratively
computing the pre-image. We use intersection types to represent the pre-image, but they
can equally be interpreted as alternating tree automata accepting (tree representations of)
the terms in the pre-image, which are somehow related to the stack automata representation
used in Broadbent et al.’s saturation algorithm. We have implemented the new algorithms
and obtained promising experimental results.

Besides filling the gap, the main advantage of the new algorithms over the previous
algorithms for HORS model checking is the efficiency (both in theory and in practice). Unlike
TRecS [11] or TravMC [21], they satisfy the fixed-parameter polynomial time complexity;
thus it is expected to scale to large inputs better than TRecS. The previous fixed-parameter
polynomial time algorithms GTRecS [14] for HORS did not scale well due to a large constant
factor. According to the experiments, the new algorithm clearly outperforms GTRecS.

Compared with the saturation algorithm for CPDS [4, 5], the new algorithms have the
following advantages:

C. Broadbent and N. Kobayashi 131

– The new algorithms are much easier to understand, implement, and optimize. For
example, the saturation algorithm for CPDS [4] uses non-standard automata called stack
automata to represent a set of CPDS states, while we can use standard tree automata (or
equivalently intersection types) to represent a set of states (which are just applicative terms).

– It is much easier to verify the result of model checking HORS. It is partly because
our algorithm works directly on HORS without a detour to CPDS, but also because the
variant HorSatT of our algorithm can generate intersection types as a certificate, which is
completely compatible with the certificate used by other model checking algorithms [11, 14],
and whose validity can be easily checked (by an independent tool) based on the type-based
characterization of trivial automata model checking [13].

In Section 2 we recall the nomenclature and foundational results of model checking
with intersection types. Section 3 introduces the HorSat algorithm and its application to
co-trivial automata model-checking. We then proceed in Section 4 to the variant HorSatT,
which can be used in the trivial case and generates a certificate when the HORS is safe. We
follow up with some experimental results in Section 5.

2 Preliminaries

In this section, we review HORS, and tree automata (for infinite trees). We then define
trivial/co-trivial automata model checking of HORS, and provide their characterizations in
terms of intersection types.

We write dom(f) and codom(f) for the domain and co-domain of a map f . A ranked
alphabet, denoted often by Σ, is a mapping from symbols to their arities. An (unlabeled) tree D
is a subset of {1, . . . ,m}∗ such that ε ∈ D, and for every π ∈ {1, . . . ,m}∗ and k ∈ {1, . . . ,m},
πk ∈ D implies {π} ∪ {πi | 1 ≤ i ≤ k} ⊆ D. For a set S of symbols, an S-labeled tree is a
map from a tree to S. For a ranked alphabet Σ, a Σ-labeled ranked tree T is a dom(Σ)-labeled
tree such that for every π ∈ dom(T), {k | πk ∈ dom(T)} = {k | 1 ≤ k ≤ Σ(T (π))}.

Next we define applicative terms. The set of sorts is:

κ (sorts) ::= o | κ1 → κ2

Here, the sort o describes ranked trees. The order and arity of a sort κ, written ord(κ) and
ar(κ) respectively, are:

ord(o) = 0 ord(κ1 → κ2) = max(ord(κ1) + 1, ord(κ2))
ar(o) = 0 ar(κ1 → κ2) = ar(κ2) + 1

A sort environment is a finite map from variables to sorts. The set ATermsΓ,Σ,κ of
applicative terms having sort κ under a sort environment K is defined inductively by: (i)
a ∈ ATermsK,Σ,o→ · · · → o︸ ︷︷ ︸

Σ(a)

→ o, (ii) x ∈ ATermsK,Σ,κ if K(x) = κ, and (iii) t1t2 ∈

ATermsK,Σ,κ if t1 ∈ ATermsK,Σ,κ′→κ and t2 ∈ ATermsK,Σ,κ′ for some κ′.

I Definition 1 (HORS). A (deterministic) higher-order recursion scheme (HORS), written
G, is a quadruple (Σ,N ,R, S), where

1. Σ is a ranked alphabet. The elements of dom(Σ) are called terminals.
2. N is a map from a finite set of symbols called non-terminals to sorts. dom(Σ) and

dom(N) must be disjoint.

CSL’13

132 Saturation-Based Model Checking of HORS

a

c a

b

c

a

b

b

c

a

· · · · · ·

(ε, q0)

(2, q0)

(22, q0)

(221, q0)

(2211, q1)

Figure 1 Tree(G1) (left) and a run-tree of A1 over Tree(G1) (right).

3. R is a map from the set of non-terminals (i.e. dom(N)) to terms of the form λx1. · · ·λx`.t,
where t is an applicative term. For each F ∈ dom(N), if R(F) = λx1. · · ·λx`.t, then
N (F) must be of the form κ1 → · · · → κ` → o, and t ∈ ATermsN∪{x1 7→κ1,...,x` 7→κ`},Σ,o.

4. S is a non-terminal called the start symbol. We require that S ∈ dom(N) and N (S) = o.
The order of a non-terminal F , written ord(F), is the order of its sort, i.e. ord(N (F)). The
order of a HORS G = (Σ,N ,R, S), written ord(G), is the highest order of its non-terminals.

Intuitively, a HORS G = (Σ,N , {F1 7→ t1, . . . , Fk 7→ tk}, F1) is a tree-generating, simply-
typed call-by-name functional program, given by the recursive function definitions F1 =
t1, . . . , Fk = tk with the main function F1 and the tree constructors Σ. We sometimes write
ΣG ,NG ,RG , SG for the four components of G. The reduction relation −→R on terms of sort
o is defined by:

F t1 · · · tk −→R [t1/x1, . . . , tk/xk]t if R(F) = λx1. · · ·λxk.t
a t1, · · · ti · · · tk −→R a t1, · · · t′i · · · tk if ti −→R t′i

Here, [t1/x1, . . . , tk/xk]t denotes the term obtained from t by replacing all the (free) oc-
currences of x1, . . . , xk with t1, . . . , tk respectively. When G = (Σ,N ,R, S), we also write
s −→G t for s −→R t.

For an applicative term t of sort o, the (Σ ∪ {⊥ 7→ 0})-labeled tree t⊥ (in the term
representation) is defined by: (i) (a t1 · · · tk)⊥ = a t⊥1 · · · t⊥k and (ii) (F t1 · · · tk)⊥ = ⊥. The
value tree [22] of G, written Tree(G), is the Σ ∪ {⊥ 7→ 0})-labeled ranked tree obtained as
the least upper bound of the set {t⊥ | S −→G t} with respect to the least precongruence v
that satisfies ⊥ v T for every tree T .

I Example 2. Consider G1 = (Σ = {a 7→ 2, b 7→ 1, c 7→ 0},N ,R, S) where:

N = {S 7→ o, F 7→ o→ o} R = {S 7→ F c, F 7→ λx.ax (F (bx))}

S is reduced as follows, generating the tree in Figure 1.

S −→G1 F c −→G1 a c (F (b c)) −→G1 · · · J

Next, we introduce tree automata, which are used for describing properties on trees.

C. Broadbent and N. Kobayashi 133

I Definition 3 (trivial/co-trivial ATA). An alternating tree automaton (ATA) is a quadruple
A = (Σ, Q,∆, qI), where Σ is a ranked alphabet, Q is a set of states, qI ∈ Q is the initial
state, and ∆ ⊂ Q × dom(Σ) × 2{1,...,m}×Q is a transition function where m is the largest
arity in Σ. We require that if (q, a, S) ∈ ∆, then S ⊆ {1, . . . ,Σ(a)} × Q. For a (possibly
infinite) Σ-labeled ranked tree T , a (dom(T)×Q)-labeled tree R is a run-tree of A over T
if (i) R(ε) = (ε, qI), and (ii) if R(π) = (π′, q), then there exists S = {(j1, qk1), . . . , (j`, qk`

)}
such that (q, T (π′), S) ∈ ∆ and {i | πi ∈ dom(R)} = {1, . . . , `} with R(πi) = (π′ji, qki

) for
each i ∈ {1, . . . , `}. A (possibly infinite) Σ-labeled ranked tree T is accepted by A in trivial
mode if there is a (possibly infinite) run-tree of A over T , and T is accepted by A in co-trivial
mode if there is a finite run-tree of A over T . An ATA is called trivial (resp. co-trivial) if it
accepts input trees in trivial (resp. co-trivial) mode. For an ATA A = (Σ, Q,∆, qI) (with
⊥ 6∈ dom(Σ)), we write A> for the ATA (Σ ∪ {⊥ 7→ 0}, Q,∆ ∪ {(q,⊥, ∅) | q ∈ Q}, qI), and
A⊥ for (Σ ∪ {⊥ 7→ 0}, Q,∆, qI),

I Example 4. Let A1 = (Σ, {q0, q1},∆1, q0) where Σ = {a 7→ 2, b 7→ 1, c 7→ 0} and

∆1 = {(q0, a, {(1, q0)}), (q0, a, {(2, q0)}), (q0, b, {(1, q1)}),
(q1, b, ∅), (q1, a, {(1, q0)}), (q1, a, {(2, q0)})}.

In the co-trivial mode, A1 accepts trees that have a path containing two consecutive
occurrences of b. Figure 1 shows a run-tree of A1 over Tree(G1). In the trivial mode, A1
additionally accepts trees having an infinite path. J

I Remark 5. A trivial (co-trivial) ATA is a special case of alternating parity tree auto-
maton [8], where all the states have priority 0 (resp. 1). Therefore, from a trivial automaton
A, one can construct a co-trivial automaton A that accepts the complement of the trees
accepted by A, and vice versa.

I Example 6. Recall ATA A1 in Example 4. A tree is accepted by A1 in the co-trivial (resp.
trivial) mode if and only if it is not accepted by the following ATA A1 = (Σ, {q0, q1},∆1, q0)
in the trivial (resp. co-trivial) mode.

∆1 = {(q0, a, {(1, q0), (2, q0)}), (q0, b, {(1, q1)}), (q0, c, ∅), (q1, a, {(1, q0), (2, q0)}), (q1, c, ∅)}

In the present paper, we are interested in the following model checking problems.

I Definition 7 (trivial/co-trivial ATA model checking). A trivial (resp. co-trivial) ATA model
checking problem for HORS is the decision problem: “Given a HORS G and an ATA A as
input, is Tree(G) accepted by A> (resp. A⊥) in trivial (resp. co-trivial) mode?”

By Remark 5, the decidability of trivial/co-trivial ATA model checking follows immediately
from that of alternating parity tree automata (APT) model checking for HORS [22], and a
trivial ATA model checking problem can be reduced to a co-trivial ATA model checking, and
vice versa.

Following Kobayashi and Ong’s type systems for HORS [13, 17], we provide below a
type-based characterization of trivial/co-trivial ATA model checking for HORS. Fix an ATA
A = (Σ, Q,∆, qI). The set of types is given by:

τ (types) ::= q | σ → τ σ (intersections) ::=
∧
{τ1, . . . , τk}

Intuitively, the type q ∈ Q describes a tree accepted by A from the state q (i.e., accepted by
(Σ, Q,∆, q)). The type σ → τ describes a function that takes an element of (intersection) type

CSL’13

134 Saturation-Based Model Checking of HORS

σ as input, and returns an element of type τ . The intersection
∧
{τ1, . . . , τk} (where k may

be 0) describes an element of the intersection of the sets denoted by τ1, . . . , τk. When k = 0,
we write > for

∧
{τ1, . . . , τk}. We often write τ1 ∧ · · · ∧ τk or

∧
i∈{1,...,k} τi for

∧
{τ1, . . . , τk}.

We assume that
∧

binds tighter than →, so that q0 ∧ q1 → q2 means (q0 ∧ q1)→ q2.
A type τ is called a refinement of a sort κ, written τ :: κ if τ :: κ is derivable by the

following rules:
q ∈ Q
q :: o

τ :: κ τi :: κ′ for each i ∈ I
(
∧
i∈I τi → τ) :: κ′ → κ

A type environment is a set of type bindings of the form x : τ . For a type environment
Γ, We write dom(Γ) for the set {x | x : τ ∈ Γ}. Unlike ordinary type systems, a type
environment may contain multiple type bindings for the variable, like {x : q0, x : q1}. We
sometimes omit curly brackets and just write x1 : τ1, . . . , xn : τn for {x1 : τ1, . . . , xn : τn}.
When σ =

∧
{τ1, . . . , τn}, we also write x : σ for x : τ1, . . . , x : τn.

The rules for a type judgment Γ `A,G t : τ are:

Γ ∪ {x : τ} `A,G x : τ
(T-Var)

(q, a, {(i, qj) | 1 ≤ i ≤ Σ(a), j ∈ Ii}) ∈ ∆A
Γ `A,G a :

∧
j∈I1 qj → · · · → · · ·

∧
j∈IΣ(a)

qj → q

(T-Con)

Γ `A,G t1 :
∧
i∈I τi → τ

Γ `A,G t2 : τi (for each i ∈ I)
Γ `A,G t1t2 : τ

(T-App)

{xi : τj | 1 ≤ i ≤ k, j ∈ Ii} `A,G t : q
RG(F) = λx1. · · ·λxk.t

(
∧
j∈I1 τj → · · · →

∧
j∈Ik

τj → q) ::NG(F)
Γ `A,G F :

∧
j∈I1 τj → · · · →

∧
j∈Ik

τj → q
(T-NT)

We sometimes omit the subscripts A and G when they are clear from the context.
The following are special cases of the soundness and completeness of Kobayashi and

Ong’s type system for APT model checking [17] (where the priorities are restricted to 0 and
1 respectively for Clauses (i) and (ii) of Theorem 8.1

I Theorem 8. (i) Tree(G) is accepted by A> in the trivial mode if and only if there is a
possibly infinite derivation tree for ∅ `A,G S : qI . (ii) Tree(G) is accepted by A⊥ in the
co-trivial mode if and only if there is a finite derivation tree for ∅ `A,G S : qI .

The existing practical2 model checking algorithms for HORS [11, 14, 21] deal with trivial
ATA model checking, and try to construct an infinite derivation tree for ∅ `A,G S : qI [21], or
infer a set of types of non-terminals occurring in such a derivation tree [11, 14]. All of the
algorithms run in the forward direction, in the sense that they start with S : qI , and expand
non-terminals to construct types/derivation trees while checking that invalid trees cannot be
generated from S.

3 Co-Trivial ATA Model Checking

This section presents a co-trivial ATA model checking algorithm that runs in the backward
manner. We first note the following property (see Appendix B for a proof).

1 Kobayashi and Ong [17] do not consider HORS’s that generate trees containing ⊥; see Section A in
Appendix on how to derive the result below for ⊥-generating HORS.

2 Since the worst-case complexity of trivial/co-trivial ATA model checking is n-EXPTIME complete [22, 18],
we call a model checking algorithm practical if it terminates in a realistic time (say, in a few minutes,
rather than in several years) for typical inputs.

C. Broadbent and N. Kobayashi 135

I Lemma 9. Let G = (Σ,N ,R, S) be a HORS. Tree(G) is accepted by a co-trivial ATA A⊥
if and only if there exists a term t such that S −→∗G t and t⊥ is accepted by A⊥.

By the lemma above, for co-trivial ATA model checking, it suffices to start with the set
of terms T0 = {t ∈ ATermsN ,Σ,o | t⊥ is accepted by A⊥ in the co-trivial mode}, expand it
to the set T of all the terms that can be reduced to a term in T0, and check whether S ∈ T .
Since T may be infinite in general, we represent a (possibly infinite) set of terms by using a
finite type environment Γ for non-terminals. We write TermsΓ for the set {t | Γ `−A t : qI}
of terms. Here, Γ `−A t : τ means that there is a finite derivation for Γ `A,G t : τ that
does not use rule T-NT (so that G does not matter), where non-terminals are treated as
variables. Then, the initial set T0 above is represented by the empty type environment ∅, i.e.,
Terms∅ = T0, as stated by the following lemma: see Appendix B for a proof.

I Lemma 10. ∅ `−A t : qI if and only if t⊥ is accepted by A⊥ in the co-trivial mode.

We shall construct below a monotonic function F on type environments that satisfies the
following conditions:

(I) {t ∈ ATermsN ,Σ,o | ∃t′.t −→G t′ ∈ TermsΓ}⊆ TermsF(Γ); and
(II) TermsFi(∅) ⊆ {t | ∃t′.t −→∗G t′ ∈ T0} for every i.

Then, we have Terms⋃
i∈ω
Fi(∅) = T . Since F is monotonic and a type environment

ranges over a finite set {Γ | dom(Γ) ⊆ dom(N) and ∀F : τ ∈ Γ.τ ::N (F)}, we can obtain⋃
i∈ω F i(∅) by computing F(∅), F2(∅), F3(∅), . . . until it converges; we can then check

whether S : qI ∈
⋃
i∈ω F i(∅) holds to decide whether Tree(G) is accepted by A⊥ in the

co-trivial mode, as stated below.

I Lemma 11. Suppose that a monotonic function F on type environments satisfies the two
conditions above. Then, S : qI ∈

⋃
i∈ω F i(∅) if and only if Tree(G) is accepted by A.

Proof. By the first condition of F , we have {t | ∃t′.t −→i
G t
′ ∈ Terms∅} ⊆ TermsFi(∅).

Thus, we have T = Terms⋃
i∈ω
Fi(∅). The required result follows by Lemma 9. J

It remains to construct F that satisfies the conditions (I) and (II) above. The following
lemma provides a clue as to how to construct F . It states that typing is closed under the
inverse of substitutions: see Section B for a proof.

I Lemma 12. Suppose s ∈ ATermsK∪{x1:κ1,...,x`:κ`},Σ,o and ti ∈ ATermsK,Σ,κi
for each

i ∈ {1, . . . , `}. If Γ `−A [t1/x1, . . . , t`/x`]s : q with Γ :: K, then there exist (possibly empty)
sets Ii and {τj | j ∈ Ii} for each i ∈ {1, . . . , `} such that: (i) Γ ∪ {xi : τj | i ∈ {1, . . . , `}, j ∈
Ii} `−A s : q; (ii) Γ `−A ti : τj for each i ∈ {1, . . . , `} and j ∈ Ii; and (iii) τj :: κi for every
j ∈ Ii.

The above lemma implies that if F t1 · · · t` −→G [t1/x1, . . . , t`/x`]s and
Γ `−A [t1/x1, . . . , t`/x`]s : q, then Γ ∪ {F :

∧
j∈I1 τ1 → · · · →

∧
j∈I`

τj → q} `A F t1 · · · t` : q
holds, where Ii and τj are as given by the lemma above. This motivates us to define FG,A,R
(where R ⊆ RG) as follows.

FG,A,R(Γ) = Γ ∪ {F : Γ′(x1)→ · · · → Γ′(x`)→ q | R(F) = λx1. · · ·λx`.t,
N (F) = κ1 → · · · → κ` → o, and x1 : κ1, . . . , x` : κ`; Γ `A t : q ⇒ Γ′}.

Here, Γ(x) is an abbreviation of
∧
{τ | x : τ ∈ Γ}. The relation K; ΓN `A t : τ ⇒ ΓV

(where ΓN and ΓV are meta-variables for type environments on non-terminals and variables
respectively) is defined by:

CSL’13

136 Saturation-Based Model Checking of HORS

Γ := ∅;
while not(FG,A(Γ)=Γ) do (Γ := FG,A(Γ); if S : qI ∈ Γ then return TRUE);
return FALSE

Figure 2 Co-trivial ATA model checking algorithm HorSat.

x : τ ∈ Inhabited(K,ΓN)
K; ΓN `A x : τ ⇒ x : τ

∅ `A,G a : τ
K; ΓN `A a : τ ⇒ ∅ K; ΓN ∪ {F : τ} `A F : τ ⇒ ∅

K; ΓN `A t1 :
∧
i∈I τi → τ ⇒ Γ0 K; ΓN `A t2 : τi ⇒ Γi (for each i ∈ I)

Γ0 ∪
⋃
i∈I Γi ∈ Inhabited(K,Γ)

K; ΓN `A t1t2 : τ ⇒ Γ0 ∪
⋃
i∈I Γi

Here, Inhabited(K,ΓN) is the set of type environments for which the corresponding term
environments can be constructed from non-terminals in ΓN , i.e.:

{Γ | Γ ::K and ∀x ∈ dom(Γ).∃s ∈ ATermsN ,Σ,K(x).∀x : τ ∈ Γ.ΓN `−A s : τ}.

The relation K; ΓN `A t : τ ⇒ ΓV intuitively means that ΓN ,ΓV ` t : τ holds and that ΓV
is inhabited, as stated by the following lemma (which follows by straightforward induction).

I Lemma 13. If K; ΓN ` t : τ ⇒ ΓV , then ΓN ∪ ΓV ` t : τ and ΓV ∈ Inhabited(K,ΓN).
Conversely, if ΓN ∪ ΓV `−A t : τ and ΓV ∈ Inhabited(K,ΓN), then K; ΓN ` t : τ ⇒ Γ′V for
some Γ′V such that Γ′V ⊆ ΓV .

Reading the rules for K; ΓN `A t : τ ⇒ ΓV in a bottom-up manner, we can interpret them
as an algorithm which, given K,ΓN and τ as input, outputs ΓV such that ΓN ,ΓV `−A t : τ
and ΓV ∈ Inhabited(K,ΓN). For checking the inhabitance condition Γ ∈ Inhabited(K,ΓN),
we can use Rehof and Urzyczyn’s reduction to the emptiness problem of alternating tree
automata [25]: see Appendix C.

We write FG,A for FG,A,RG , and also omit the subscripts when they are clear from the
context. The following lemma justifies the definition of FG,A,R.

I Lemma 14. Suppose G = (Σ,N ,R′, S) and R ⊆ R′. If Γ `−A t : q and s −→R t, then
FG,A,R(Γ) `−A s : q.

Proof. The proof proceeds by induction on the derivation of t −→R t′. Since the induction
step is trivial, we show only the base case, where t = F t1 · · · t` and t′ = [t1/x1, . . . , t`/x`]s
with λx1. · · ·λx`.s = R(F). Let N (F) = κ1 → · · · → κ` → o. By Lemma 12, we have:

Γ ∪ {xi : τj | i ∈ {1, . . . , `}, j ∈ Ii} `−A s : q Γ `−A ti : τj for each i ∈ {1, . . . , `}, j ∈ Ii

and τj :: κi for every j ∈ Ii. By Lemma 13, there exists ΓV such that

{x1 : κ1, . . . , x` : κ`}; Γ `−A s : q ⇒ ΓV Γ `−A ti : τ for each xi : τ ∈ ΓV .

Thus, we have F : ΓV (x1)→ · · · → ΓV (x`)→ q ∈ FG,A,R(Γ), which implies FG,A,R(Γ) `−A
F t1 · · · t` : q as required. J

The whole algorithm is given in Figure 2. The following theorem guarantees the soundness
and completeness of the algorithm.

C. Broadbent and N. Kobayashi 137

I Theorem 15. Let the function FG,A be as defined above. Then, S : qI ∈
⋃
i∈ω F iG,A(∅) if

and only if Tree(G) is accepted by A⊥ in the co-trivial mode.

Proof. By Lemma 11, it suffices to show that F = FG,A satisfies the two conditions (I) and
(II). Condition (I) follows immediately from Lemma 14.

To check condition (II), suppose t ∈ TermsFm(∅), i.e., Fm(∅) `−A t : qI . We construct
the following HORS G(m) as an approximation of G:

G(m) = (Σ ∪ {⊥ 7→ 0},N (m),R(m), F
(m)
1) N (m) = {F (j)

i | i ∈ {1, . . . , n}, j ∈ {0, . . . ,m}}
R(m) = {F (0)

i 7→ λx1. · · ·λx`.⊥ | ar(N (Fi)) = `}
∪{F (j)

i 7→ [F (j−1)
1 /F1, . . . , F

(j−1)
n /Fn]R(Fi) | j ≥ 1}

G(m) is a HORS without recursion, obtained by unfolding non-terminals of G. We write t(m)

for the term obtained by replacing each non-terminal F in t with F (m). By the assumption
Fm(∅) `−A t : qI , we have ∅ `A⊥,G(m) t(m) : qI : see Lemma 27 in Appendix B. By the strong
normalization of the simply-typed λ-calculus, we have t(m) −→∗G(m) u for some (Σ∪{⊥ 7→ 0})-
labeled tree (in the term representation) u. By the type preservation property (Lemma 29
in Appendix B), we have ∅ `A⊥,G(m) u : qI . By Lemma 10, u is accepted by A⊥. By the
construction of t(m), there exists a term t′ such that t −→∗G t′ and t′

⊥ = u. Thus, we have
t ∈ {s | ∃t′.s −→∗G t′ ∈ T0} as required. J

I Example 16. Let G be G1 in Example 2 and A be A1 in Example 4. Then, since
∅ `A ax (F (bx)) : q0 ⇒ x : q0 and ∅ `A ax (F (bx)) : q1 ⇒ x : q0, we have:

F(∅) = {F : q0 → q0, F : q0 → q1}.

Similarly, F2(∅),F3(∅), . . . are computed as follows.

F2(∅) = F(∅) ∪ {F : q1 → q0, F : q1 → q1} F3(∅) = F2(∅) ∪ {F :> → q0, F :> → q1}
F4(∅) = F3(∅) ∪ {S : q0, S : q1} = F5(∅)

Thus,
⋃
i∈ω F i(∅) = F4(∅) contains S : q0, which implies that Tree(G1) is accepted by A1 in

the co-trivial mode. J

I Remark 17. The inhabitance check needed for computing F(Γ) can be quite costly: in fact,
the inhabitance problem is EXPTIME-complete [25]. In order to avoid the drawback, we can
actually replace Inhabited(K,ΓN) in the rules for the relation K; ΓN `A t : τ ⇒ ΓV with an
over-approximation Inhabited ′(K,ΓN), such that

Inhabited(K,ΓN) ⊆ Inhabited ′(K,ΓN) ⊆ {Γ | Γ ::K}.

By the proof of Theorem 15, our co-trivial model checking algorithm remains sound and
complete for any such over-approximation.

I Remark 18. Like Kobayashi’s GTRecS algorithm [14], the co-trivial ATA model checking
algorithm above runs in time polynomial in the size of HORS under the assumption that the
other parameters (the size of the co-trivial automaton, the order of HORS, and the largest
arity of non-terminals in HORS) are fixed. First, the number of iterations is also linear in
the size of HORS since the largest size of type environments is linear in the size of HORS
(under the fixed-parameter assumption above). The cost for computing F(Γ) is also linear
in the size of HORS, as the inhabitance check can be performed in a constant time (again,
under the fixed-parameter assumption above): see Appendix C.

CSL’13

138 Saturation-Based Model Checking of HORS

4 Trivial ATA Model Checking

This section presents a saturation-based algorithm for trivial ATA model checking. Co-
trivial model checking is more natural for the saturation-based method, but many typical
program verification problems are reduced to trivial ATA model checking problems for
HORS [13, 11, 19], so that a program is safe if and only if the tree generated by a corresponding
HORS is accepted by a trivial ATA. Although trivial ATA model checking can be reduced
to co-trivial model checking by negating the trivial ATA (so that the co-trivial ATA accepts
“error configurations” of a program), that approach is not good at certifying that a co-trivial
property is not satisfied. When a co-trivial property is satisfied, then based on Theorem 8,
one can generate a derivation tree for ∅ `A,G S : qI or the types of non-terminals required in
the derivation tree as a certificate. When a co-trivial property is not satisfied, however, the
possible witness is a fixedpoint of F , which can be very large. It is also difficult to validate
the witness independently of the model checking algorithm, especially when the saturation
algorithm is combined with other static analyses as in [5] and our implementation reported
in Section 5. This is in contrast with the existing trivial automata model checking algorithms
for HORS [11, 14, 21], which can output the types of non-terminals as a certificate when a
property is satisfied. Checking the certificates amounts to type checking for an intersection
type system, which can be performed independently of the model checking algorithms. This
section modifies the saturation-based algorithm so that it can deal with trivial model checking
directly (rather than negating the property) and generate certificates.

We first clarify the notion of “certificates”. Define the function ShrinkG on type environ-
ments by:

ShrinkG(Γ) =
{F : σ1 → · · · → σk → q ∈ Γ | R(F) = λx1. · · ·λx`.t and Γ, x1 : σ1, . . . , x` : σ` `A t : q}.

Intuitively, ShrinkG(Γ) picks each type binding F : σ1 → · · · → σk → q in Γ, checks whether
it is valid in the sense that the body of F has the same type, and filters out invalid ones.
We omit the subscript G when it is clear from context. We write ` G : Γ if ShrinkG(Γ) = Γ,
We also write Γ ` (G, t) : τ if ` G : Γ and Γ ` t : τ hold. The following theorem is due to
Kobayashi [13]. It also follows immediately from Theorem 8: see Appendix B.

I Theorem 19. Tree(G) is accepted by A> in trivial mode if and only if Γ ` (G, S) : qI for
some Γ.

Based on Theorem 19, a type environment Γ such that Γ ` (G, S) : qI serves as a certificate
for Tree(G) being accepted by A.

I Example 20. Recall G1 in Example 2. Let A2 = ({a 7→ 2, b 7→ 1, c 7→ 0}, {q0, q1},∆2, q0)
where ∆2 = {(q0, a, {(1, q0), (2, q0)}), (q0, b, {(1, q1)}), (q0, c, ∅), (q1, b, {(1, q1)}), (q1, c, ∅)}.
A2 describes the property that a cannot occur below b. Tree(G1) is accepted by A2, and
the type environment {S : q0, F : q0 ∧ q1 → q0} serves as a certificate. J

The existing algorithms for trivial automata model checking [11, 14] first compute an
overapproximation Γ′ of a possible certificate, compute the fixedpoint Γ =

⋂
j∈ω Shrinkj(Γ′),

and check whether S : qI ∈ Γ. We show below that such an overapproximation Γ′ can be
computed by using F . For that purpose, we just need to replace the initial type environment
∅ with the type environment Γ0 = {F :> → · · · → >︸ ︷︷ ︸

ar(N (F))

→ q | F ∈ dom(N)}. TermsΓ0 is the

set of terms t such that t⊥ is accepted by A>. Thus, for Γ′ =
⋃
i∈ω F i(Γ0), TermsΓ′ is

C. Broadbent and N. Kobayashi 139

Γ′ := Γ0;
while not(FG,A(Γ′)=Γ′) do

(Γ′ := FG,A(Γ′); Γ := Γ′; (while not(Shrink(Γ)=Γ) do Γ := Shrink(Γ));
if S : qI ∈ Γ then return Γ);

return FALSE

Figure 3 Trivial ATA model checking algorithm HorSatT.

the set {t | t −→∗G t′ and t′
⊥ is accepted by A>}. The type environment Γ′ itself is not a

certificate: in fact, any term t that has a non-terminal as its head is an element of TermsΓ′ ,
since t⊥ = ⊥ and ⊥ is accepted by A>. As the following theorem shows, however, Γ′ serves
as an overapproximation of a possible certificate.

I Theorem 21. S : qI ∈
⋂
j∈ω Shrinkj(

⋃
i∈ω F i(Γ0)) if and only if Tree(G) is accepted by

A> in the trivial mode.

Based on the theorem, we obtain the trivial ATA model checking algorithm shown in
Figure 3. The outer loop repeatedly computes F(Γ0),F2(Γ0), . . ., until it converges to a
fixedpoint, or finds a certificate. The inner loop computes Γ =

⋂
j∈ω Shrinkj(F i(Γ0)). If

S : qI ∈ Γ then the algorithm terminates and returns Γ as a certificate. Otherwise, the
algorithm eventually returns FALSE when a fixedpoint of F is reached but S : qI ∈ Γ does not
hold. Like the co-trivial ATA model checking algorithm in Figure 2, the algorithm terminates
as soon as a certificate is found.

I Example 22. Recall G1 in Example 2 and A2 in Example 20. Γ0,F(Γ0),F2(Γ0), . . . are
computed as follows.

Γ0 = {S : q0, S : q1, F :> → q0, F :> → q1}
F(Γ0) = Γ0 ∪ {F : q0 → q0} F2(Γ0) = F(Γ0) ∪ {F : q0 ∧ q1 → q0} = F3(Γ0)

For Γ′ = F2(Γ0), Shrinki(Γ′)(i = 1, 2, . . .) are:

Shrink(Γ′) = {S : q0, S : q1, F : q0 → q0, F : q0 ∧ q1 → q0}
Shrink2(Γ′) = {S : q0, F : q0 ∧ q1 → q0} = Shrink3(Γ′).

Since S : q0 ∈ Shrink2(Γ′) =
⋂
j∈ω Shrinkj(Γ′), we can conclude that Tree(G) is accepted by

A2 in trivial mode.

I Remark 23. GTRecS algorithm [14] is obtained by replacing F in Figure 3 with the
function Expand in [14]. The functions Expand and F are quite different, however; the
former uses a game-semantic idea [14, 24] to propagate the requirement that S should have
type qI in the forward direction, while the latter propagates information backwards using
purely type-based techniques. Although both algorithms enjoy the fixed-parameter linear time
complexity [14], according to experiments (see Section 5), GTRecS tends to be much slower.
This is attributed to the game-semantics interpretation of intersection types. For example, a
function of type q1 → · · · → qn → q may have any type of the form σ1 → · · · → σn → q for
σi ∈ {>, qi} in the interpretation of [14]; thus the number of possible types blows up.

5 Experiments

We have implemented a new higher-order model checker incorporating both the co-trivial
HorSat and trivial HorSatT model checking algorithms described respectively in Sections 3

CSL’13

140 Saturation-Based Model Checking of HORS

and 4. As in [5], we have optimized the algorithms by using forward flow analysis, to exclude
irrelevant type bindings; more precisely, the definition of Inhabited(K,ΓN) in Section 3 has
been replaced by

{Γ | Γ ::K and ∀x ∈ dom(Γ).∃s ∈ ATermsN ,Σ,K(x)∩Flow(x).∀x : τ ∈ Γ.ΓN `−A s : τ}.

where Flow(x) is an overapproximation of the terms that may flow to x in a reduction
sequence from the start symbol S. We use 0CFA to compute Flow(x). The implementation
was compared to other type-based model checkers for HORS: TRecS [11], GTRecS2 [15]
(which is a successor of GTRecS [14]) and TravMC [21], and a saturation-based model
checker CSHORe [5] for CPDS. Since GTRecS2 has different variants of the algorithm for
proving safety properties and their complements (eventually giving up if it cannot prove the
property) we only ran the appropriate version of GTRecS2 on each example.

The benchmark suite consists of five categories of inputs (separated by horizontal lines),
which have been collected from different applications of trivial automata model checking of
HORS [20, 23, 19, 26, 16]: the first one from the HMTT verification tool [20], the second
from software model checker MoCHi [19], the third from the PMRS model checker [23], the
fourth from exact flow analysis [26], and the fifth from applications to data compression [16].
The inputs have been automatically generated from program verification problems except for
those in the fifth category. We have chosen relatively large programs from each category,
so the benchmarks represent “hard instances”. The benchmarks marked by “(neg)” expect
the output of model checking to be “No”; “Yes” is expected for the others. Some tools such
as TRecS and TravMC can take certain extensions of HORS as input; benchmarks with
such extensions were reformulated as a pure HORS in every case, which might result in a
longer run-time than on the original. The implementation and benchmarks are available at
http://www-kb.is.s.u-tokyo.ac.jp/~koba/horsat/.

We ran the experiments on an Acer Aspire TimeLineX 4820T laptop computer with an
Intel Core i5 M430 CPU and 4GB of RAM. The operating system was GNU/Linux (Fedora
17) with kernel version 3.6.2-4. TRecS, GTRecS2 and HorSat were compiled with OCaml
version 3.12.1, CSHORe was run with OpenJDK IcedTea version 1.7.0 and TravMC using
Mono version 3.0.2. A memout of 2GB and a timeout of 300s was given to each tool for each
run. The order and size of the HORS are respectively listed in the O and Sz columns (where
the size of a HORS is defined as the total number of occurrences of symbols in the righthand
side of the rewriting rules). The T, G, TMC and C columns give the total run-times (in
seconds) for the TRecS, GTRecS2, TravMC and CSHORe tools as each tool reports for
itself. The HS and HST columns give the run-times as reported by HorSat and HorSatT.

Overall the benchmark results are favorable to our new algorithms HorSat and HorSatT.
They are the best two tools in terms of the number of time-outs, although the state-of-the-art
model checker TRecS is often better in terms of the run-times when it terminates. (The
only time-out of HorSat is for fibstring, which is a pathological case where a huge string
is concisely expressed by a HORS.) HorSat outperforms another saturation-based model
checker CSHORe except for one instance (fold_right); this confirms the advantage of directly
working on HORS without a detour to CPDS. According to further experiments (by Steven
Ramsay) using the benchmark Gm,n [14], the running time of HorSat is not linear in the
size of Gm,n, even if we exclude out the time for 0CFA (whose worst case complexity is
cubic time) to compute Flow(x). We believe that this is due the naiveness of the current
implementation, and that an improved implementation would make the running time almost
linear in the size of Gm,n.

http://www-kb.is.s.u-tokyo.ac.jp/~koba/horsat/

C. Broadbent and N. Kobayashi 141

Table 2 Comparison of model-checking tools.

Benchmark file Ord Sz T G TMC C HS HST
jwig-cal_main 2 7627 0.090 0.902 0.081 — 13.137 5.306
specialize_cps 3 2731 — — — 5.145 1.702 0.956
xhtmlf-div-2 (neg) 2 3003 0.327 51.8 — — 12.392 2.697
xhtmlf-m-ch 2 3027 0.331 18.558 — — 9.282 2.496
fold_fun_list 7 1346 0.724 — — 4.152 0.180 0.729
fold_right 5 1310 — — — 2.996 34.796 7.958
search-e-ch (neg) 6 837 0.011 — 0.489 9.547 0.403 0.921
zip 4 2952 — — — 19.299 3.501 —
filepath 2 5956 — — — 1.059 0.586 6.860
filter-nonzero (neg) 5 482 0.008 0.486 0.206 3.337 0.067 0.147
filter-nonzero-1 5 888 0.272 — — 11.116 0.223 1.203
map-plusone-2 5 704 1.227 — 20.080 5.518 0.113 0.609
cfa-life2 14 7648 — — — — 2.860 —
cfa-matrix-1 8 2944 — — — — 0.450 5.345
cfa-psdes 7 1819 — — — 6.761 0.185 1.410
tak (neg) 8 451 — — 7.763 — 1.570 0.429
dna 2 411 0.029 0.072 0.467 — 0.126 0.335
g45 4 55 — 2.576 — — 0.019 0.017
fibstring 4 29 — 0.179 102.583 — — —
l 3 35 — 0.010 23.322 0.439 0.002 0.006

6 Related Work

Early model-checking algorithms for HORS [10, 1, 22, 9] were mainly used for showing
the decidability of model checking problems, and suffer from the k-EXPTIME worst-case
complexity [22] for almost all inputs. To our knowledge, Kobayashi [11] proposed the first
practical algorithm for trivial automata model checking, and implemented a model checker
TRecS [12]. His algorithm reduces the start symbol S in a finite number of steps, and infers
the types of non-terminals by observing how each non-terminal symbol is used in the partial
reduction sequence. The inferred type environment is then used as an over-approximation of
the fixedpoint of Shrink in Section 4. Some other practical algorithms [14, 21] have since been
developed. Except GTRecS in a pathological case (the fifth category in the benchmark),
however, they failed to show a clear practical advantage over TRecS. Those algorithms
are all based on a type-based characterization of the problem, and propagate information
forwards, starting with the goal to prove that S has type qI . Broadbent et al. [4, 5] have
recently proposed a quite different algorithm for CPDS, which uses backward propagation.

As already noted in Section 1, our new algorithms HorSat and HorSatT bridge the
gap between the two families of model checking algorithms mentioned above. On the one
hand, HorSat and HorSatT are strongly related to the type-based algorithms in that
they use Kobayashi’s type-based characterization of model checking [13], and the algorithms
can be viewed as an (optimized) fixed-point computation for a function on intersection
type environments. On the other hand, HorSat is also related to the saturation algorithm
for CPDS, in that both propagate information backwards, starting from the set of error
configurations. Our representation of a set of terms as a type environment is superficially

CSL’13

142 Saturation-Based Model Checking of HORS

quite different from Broadbent et al.’s stack automata used to represent CPDS configurations
(which are variations of alternating automata). Based on Rehof and Urzyczyn’s result [25],
however, a type environment can also be regarded as an alternating tree automaton that
accepts the set TermsΓ of terms well-typed under Γ (see Section C in Appendix). Thus,
both approaches essentially represent the set of states reachable to accepting configurations
by using (variants of) alternating automata. A more precise connection on this point will be
discussed in a companion paper [3], by using a streamlined version of CPDS.

As mentioned in Section 1, the model checking of HORS has recently been applied to
automated program analysis and verification [13, 11, 23, 26]. Those applications should
benefit from the performance advantage of HorSat; in fact, we have recently replaced the
underlying model checker TRecS with HorSat in the work on exact flow analysis [26] and
observed a speed up by an order of magnitude in several cases.

7 Conclusion

We have presented the first algorithm for model-checking HORS using intersection types
that employs a backward mode of inference, à la saturation algorithm for CPDS [4]; previous
type-based algorithms use forward inference. We have also implemented a prototype model
checker and confirmed that it often outperforms previous model checkers for HORS.

This paper lays the foundation for further work on backward mode saturation-like
algorithms using types. It is worth mentioning that the set of (forwards)-reachable terms
is irregular (when viewed as a language consisting of abstract syntax trees) and existing
forward-mode algorithms must in some sense approximate the set of reachable terms. On
the other hand, Rehof and Urzyczyn’s construction [25] applied to the type environment
computed by saturation shows that the set of terms backward-reachable from error-terms is
regular. In this respect backward algorithms are arguably more natural.

Acknowledgment. We thank anonymous referees for useful comments. This work was
partially supported by Kakenhi 23220001. The first author was supported by JSPS and AvH
Postdoc. Fellowships.

References
1 Klaus Aehlig. A finite semantics of simply-typed lambda terms for infinite runs of automata.

Logical Methods in Computer Science, 3(3), 2007.
2 A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata:

Application to model-checking. In International Conference on Concurrency Theory, pages
135–150, 1997.

3 Christopher Broadbent and Naoki Kobayashi. Streamlining collapsible pushdown systems
and their model checking, 2013. Draft.

4 Christopher H. Broadbent, Arnaud Carayol, Matthew Hague, and Olivier Serre. A satur-
ation method for collapsible pushdown systems. In Proceedings of ICALP 2012, volume
7392 of LNCS, pages 165–176. Springer-Verlag, 2012.

5 Christopher H. Broadbent, Arnaud Carayol, Matthew Hague, and Olivier Serre. C-SHORe:
A collapsible approach to verifying higher-order programs. In Proceedings of ICFP 2013,
2013.

6 Arnaud Carayol and Olivier Serre. Collapsible pushdown automata and labeled recursion
schemes: Equivalence, safety and effective selection. In Proceedings of LICS 2012, pages
165–174. IEEE, 2012.

C. Broadbent and N. Kobayashi 143

7 A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to model checking
pushdown systems. In Proc. 2nd Int. Workshop on Verification of Infinite State Systems
(INFINITY’97), Bologna, Italy, July 11–12, 1997, volume 9 of ENTCS. Elsevier, 1997.

8 Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and In-
finite Games: A Guide to Current Research, volume 2500 of LNCS. Springer-Verlag, 2002.

9 Matthew Hague, Andrzej Murawski, C.-H. Luke Ong, and Olivier Serre. Collapsible push-
down automata and recursion schemes. In Proceedings of 23rd Annual IEEE Symposium
on Logic in Computer Science, pages 452–461. IEEE Computer Society, 2008.

10 Teodor Knapik, Damian Niwinski, and Pawel Urzyczyn. Higher-order pushdown trees are
easy. In FoSSaCS 2002, volume 2303 of LNCS, pages 205–222. Springer-Verlag, 2002.

11 Naoki Kobayashi. Model-checking higher-order functions. In Proceedings of PPDP 2009,
pages 25–36. ACM Press, 2009.

12 Naoki Kobayashi. TRecS: A type-based model checker for recursion schemes. http:
//www-kb.is.s.u-tokyo.ac.jp/~koba/trecs/, 2009.

13 Naoki Kobayashi. Types and higher-order recursion schemes for verification of higher-order
programs. In Proc. of POPL, pages 416–428, 2009.

14 Naoki Kobayashi. A practical linear time algorithm for trivial automata model checking of
higher-order recursion schemes. In Proceedings of FoSSaCS 2011, volume 6604 of LNCS,
pages 260–274. Springer-Verlag, 2011.

15 Naoki Kobayashi. GTRecS2: A model checker for recursion schemes based on games and
types. A tool available at http://www-kb.is.s.u-tokyo.ac.jp/~koba/gtrecs2/, 2012.

16 Naoki Kobayashi, Kazutaka Matsuda, Ayumi Shinohara, and Kazuya Yaguchi. Functional
programs as compressed data. Higher-Order and Symbolic Computation, 2013. To appear.
A preliminary version appeared in Proceedings of PEPM12.

17 Naoki Kobayashi and C.-H. Luke Ong. A type system equivalent to the modal mu-calculus
model checking of higher-order recursion schemes. In Proceedings of LICS 2009, pages
179–188. IEEE Computer Society Press, 2009.

18 Naoki Kobayashi and C.-H. Luke Ong. Complexity of model checking recursion schemes
for fragments of the modal mu-calculus. Logical Methods in Computer Science, 7(4), 2011.

19 Naoki Kobayashi, Ryosuke Sato, and Hiroshi Unno. Predicate abstraction and CEGAR for
higher-order model checking. In Proc. of PLDI, pages 222–233, 2011.

20 Naoki Kobayashi, Naoshi Tabuchi, and Hiroshi Unno. Higher-order multi-parameter tree
transducers and recursion schemes for program verification. In Proc. of POPL, pages 495–
508, 2010.

21 Robin P. Neatherway, Steven James Ramsay, and C.-H. Luke Ong. A traversal-based
algorithm for higher-order model checking. In ACM SIGPLAN International Conference
on Functional Programming (ICFP ’12), pages 353–364, 2012.

22 C.-H. Luke Ong. On model-checking trees generated by higher-order recursion schemes. In
LICS 2006, pages 81–90. IEEE Computer Society Press, 2006.

23 C.-H. Luke Ong and Steven Ramsay. Verifying higher-order programs with pattern-
matching algebraic data types. In Proc. of POPL, pages 587–598, 2011.

24 C.-H. Luke Ong and Takeshi Tsukada. Two-level game semantics, intersection types, and
recursion schemes. In Proceedings of ICALP 2012, volume 7392 of LNCS, pages 325–336.
Springer-Verlag, 2012.

25 Jakob Rehof and Pawel Urzyczyn. Finite combinatory logic with intersection types. In
Proceedings of TLCA 2011, volume 6690 of LNCS, pages 169–183. Springer, 2011.

26 Yoshihiro Tobita, Takeshi Tsukada, and Naoki Kobayashi. Exact flow analysis by higher-
order model checking. In Proceedings of FLOPS 2012, volume 7294 of LNCS, pages 275–289.
Springer, 2012.

CSL’13

http://www-kb.is.s.u-tokyo.ac.jp/~koba/trecs/
http://www-kb.is.s.u-tokyo.ac.jp/~koba/trecs/
http://www-kb.is.s.u-tokyo.ac.jp/~koba/gtrecs2/

144 Saturation-Based Model Checking of HORS

A On Theorem 8

Kobayashi and Ong’s result [17] directly imply the following special cases of Theorem 8.

I Theorem 24. Suppose Tree(G) does not contain ⊥. Then, Tree(G) is accepted by A in
the trivial mode if and only if there is a possibly infinite derivation tree for ∅ `A,G S : qI .

I Theorem 25. Suppose Tree(G) does not contain ⊥. Then, Tree(G) is accepted by A in
the co-trivial mode if and only if there is a finite derivation tree for ∅ `A,G S : qI .

We sketch how to derive Theorem 8 from Theorems 24 and 25. Suppose Tree(G) may
contain ⊥. Let G′ be a HORS that is obtained by adding a special terminal loop of arity
1, and replacing each rule F x1 · · · xk → t of G with F x1 · · · xk → loop(t). Then, Tree(G′)
does not contain ⊥, and Tree(G) is obtained from Tree(G′) by removing every infinite
sequence loop with ⊥ and removing other occurrences of loop. Let A′ be the ATA obtained
from A by adding the transition rule (q, loop, {(1, q)}) for every state q. Then, we have:

Tree(G) is accepted by A in the co-trivial mode
⇔ Tree(G′) is accepted by A′ in the co-trivial mode
⇔ there is a finite derivation for ∅ `A′,G′ S : qI .
⇔ there is a finite derivation for ∅ `A,G S : qI .

Similarly, we have:

Tree(G) is accepted by A in the trivial mode
⇔ Tree(G′) is accepted by A′ in the trivial mode
⇔ there is a possibly infinite derivation for ∅ `A′,G′ S : qI .
⇔ there is a possibly infinite derivation for ∅ `A,G S : qI .

B Proofs

B.1 Proofs for Section 3
Proof of Lemma 9

Suppose that Tree(G) is accepted by A. Then there exists a finite run-tree R of A over
Tree(G). Let D be the relevant part of the domain of Tree(G), i.e., D = {π | (π, a) ∈
codom(R)}. By the definition of Tree(G)(=

⊔
{t⊥ | S −→∗G t}), there exists t such that

S −→∗G t and U ⊆ dom(t⊥) with Tree(G)(π) = t⊥(π) for every π ∈ U . Then, R is also a
run-tree of A⊥ over t⊥. Thus, t satisfies the required property.

Conversely, suppose that S −→∗G t and t⊥ is accepted by A⊥. Since A⊥ has no transition
rule on ⊥, a run-tree of A⊥ over t⊥ must also be a run-tree of A over Tree(G). Thus,
Tree(G) is accepted by A. J

Proof of Lemma 10

Let A = (Σ, Q,∆, qI). We show that ∅ `−A t : q if and only if t⊥ is accepted by (Σ, Q,∆, q),
by induction on the structure of t. If ∅ `−A t : q, then t must be of the form a t1 · · · tk and:

(q, a, {(i, qj) | i ∈ {1, . . . , k}, j ∈ Ii}) ∈ ∆ ∅ `−A ti : qj for each i ∈ {1, . . . , k}, j ∈ Ii

By the induction hypothesis, ti⊥ is accepted by (Σ, Q,∆, qj) for each i ∈ {1, . . . , k}, j ∈ Ii.
Thus, t⊥ = a t1

⊥ · · · tk⊥ is accepted by (Σ, Q,∆, q).

C. Broadbent and N. Kobayashi 145

Conversely, suppose that t⊥ is accepted by (Σ, Q,∆, q). Then t must be of the form
a t1 · · · tk. So, we have: (q, a, {(i, qj) | i ∈ {1, . . . , k}, j ∈ Ii}) ∈ ∆ for some I1, . . . , Ik and
ti
⊥ is accepted by (Σ, Q,∆, qj) for each i ∈ {1, . . . , k}, j ∈ Ii. By the induction hypothesis,
∅ `−A ti : qj for each i ∈ {1, . . . , k}, j ∈ Ii. Thus, we have ∅ `−A t : q as required. J

I Lemma 26. Let s and t be applicative terms. If Γ `−A [t/x]s : τ , then there exist a (possibly
empty) set I and {τi | i ∈ I} (where ` may be 0) such that Γ ∪ {x : τi | i ∈ I} `−A s : τ and
Γ `−A t : τi for each i ∈ I.

Proof. The proof proceeds by induction on the structure of s.
Case s = a or s = y 6= x: The required result holds for I = ∅.
Case s = x: The result holds for I = {1} and τ1 = τ .
Case s = s1s2: In this case, we have

Γ `−A [t/x]s1 :
∧
j∈J τ

′
j → τ Γ `−A [t/x]s2 : τ ′j for each j ∈ J

By the induction hypothesis, we have:

Γ ∪ {x : τi | i ∈ I0} `−A s1 :
∧
j∈J τ

′
j → τ Γ ∪ {x : τi | i ∈ Ij} `−A s2 : τ ′j for each j ∈ J

Γ `−A t : τi for each i ∈ I ∪
⋃
j∈J Ij .

Let I = I0 ∪
⋃
j∈J Ij . Then, we have Γ ∪ {x : τi | i ∈ I} `−A s : τ as required.

J

Proof of Lemma 12

This follows by repeated applications of Lemma 26. J

I Lemma 27. Let G(m) and t(m) as defined in the proof of Theorem 15. If Fm(∅)∪Γ `−A t : τ
then Γ `A⊥,G(m) t(m) : τ .

Proof. This follows by double induction on m and the derivation of Fm(∅) `−A t : τ , with
case analysis on the last rule used for deriving Fm(∅) ∪ Γ `−A t : τ . Since the other cases are
trivial, we show only the case where t = F , with F : τ 6∈ Γ. In this case, F : τ ∈ Fm(∅) holds
for some m ≥ 1. By the definition of F and Lemmas 13, we have

τ = ΓV (x1)→ · · · → ΓV (xk)→ q R(F) = λx1. · · ·λx`.s Fm−1(∅) ∪ ΓV `−A t : q

By the induction hypothesis, we have ΓV `A⊥,G t
(m−1) : q. By using T-NT, we obtain

Γ `A⊥,G F
(m) : τ as required. J

I Lemma 28 (substitution). If Γ ∪ {x : τi | i ∈ I} `A,G s : q and Γ `A,G t : τi for every i ∈ I,
with x 6∈ dom(Γ), then Γ `A,G [t/x]s : q.

Proof. This follows by straightforward induction on the structure of s. J

I Lemma 29 (type preservation). If ∅ `A,G t : q and t −→G t′, then ∅ `A,G t′ : q.

Proof. This follows by induction on the derivation of t −→G t′. Since the induction step
is trivial, we show only the case where t = F t1 · · · tk and t′ = [t1/x1, . . . , tk/xk]s with
R(F) = λx1. · · ·λxk.s. In this case, we have:

{xi : τj | i ∈ {1, . . . , k}, j ∈ Ii} `−A Gs : q ∅ `−A Gti : τj for each i ∈ {1, . . . , k}, j ∈ Ii

By the substitution lemma (Lemma 28), we have ∅ `−A G[t1/x1, . . . , tk/xk]s : q as required. J

CSL’13

146 Saturation-Based Model Checking of HORS

B.2 Proofs for Section 4
Proof of Theorem 19

This follows immediately from Theorem 8. Note that there is a fixedpoint Γ of ShrinkG such
that S : qI ∈ Γ if and only if there is a possibly infinite derivation tree for ∅ `A S : qI . To
see this, note that if there is a possibly infinite derivation tree for ∅ `A S : qI , then the set
{F : τ | ∅ `A F : τ occurs in the derivation tree} is a fixed-point of Shrink, and conversely,
one can construct an infinite derivation tree for ∅ `A S : qI from a fixedpoint of Shrink. J

The rest of this subsection is devoted to the proof of Theorem 21.

I Lemma 30. Suppose G = (Σ,N ,R′, S) and R ⊆ R′. If Γ ` (G, t) : q and s −→R t, then
FG,A,R(Γ) ` (G, s) : q.

Proof. By Lemma 14, we have FG,A,R(Γ) ` s : q. So, it remains to show Shrink(FG,A,R(Γ))
= FG,A,R(Γ). Suppose F : σ1 → · · · → σk → q ∈ FG,A,R(Γ) \ Γ and R(F) = λx1. · · ·λx`.t.
By the definition of F and Lemma 13, we have Γ, x1 : σ1, . . . , x` : σ` `A t : q. Thus, we have
FG,A,R(Γ), x1 : σ1, . . . , x` : σ` `A t : q as required. J

I Lemma 31. If Tree(G) is accepted by A> in the trivial mode, then S : qI is an element of⋂
j∈ω Shrinkj(

⋃
i∈ω F i(Γ0)).

Proof. Let G be (Σ,N ,R, S), where dom(N) = {F1, . . . , Fn} and S = F1. Let Γmax be
the largest type environment that conforms to N , i.e., {F : τ | τ :: N (F)}. Let m be the
number of type bindings |Γmax|. Let G(m) be the HORS (Σ ∪ {⊥ 7→ 0},N (m),R(m), F

(m)
1)

constructed as an approximation of G in the proof of Theorem 15. Let R′(m) be the following
subset of R(m):

R′(m) = {F (j)
i 7→ [F (j−1)

1 /F1, . . . , F
(j−1)
n /Fn]R(Fi)}

By the strong normalization of the simply-typed λ-calculus, F (m)
1 −→∗R′(m) t 6−→R′(m) for some

t, and there is a corresponding reduction sequence F1 −→∗G t′ of G such that t′⊥ = t⊥. Thus,
t⊥ is accepted by A>. By Lemma 10, we have ∅ `−A t⊥ : qI . Thus, we have Γ(0)

0 `−A t : qI ,
where Γ(0)

0 = {F (0) : τ | F : τ ∈ Γ0}. By Lemma 30, we have Γ′ ` (G(m), F
(m)
1) : qI for

Γ′ =
⋃
i∈ω F iG(m),A>,R′(m)(Γ

(0)
0). Let Γ′j be: {Fi : τ | F (j′)

i : τ ∈ Γ′ ∧ j′ ≥ j}. By the
condition Γ′ =

⋃
i∈ω F iG(m),APT>,R′(m)(Γ

(0)
0), we have Γ′0 ⊆

⋃
i∈ω F iG,A,R(Γ0). Furthermore,

Γ′j forms a monotonically decreasing sequence: Γ′0 ⊇ Γ′1 ⊇ · · · ⊇ Γ′m. Since |Γ′0| ≤ m and
|Γ′m| ≥ |{F

(m)
1 : qI}| = 1, there exists k (< m) such that Γ′k = Γ′k+1. By the condition

Γ′ ` (G(m), F
(m)
1) : qI , we have ` G(m) : Γ′, which implies:

Γ↓{F (k)
1 ,...,F

(k)
n }, x1 : σ1, . . . , x` : σ` `−A [F (k)

1 /F1, . . . , F
(k)
n /Fn]t : τ

for every F (k+1) : τ ∈ Γ′ and R(F) = λx1. · · ·λx`.t. Here, Γ↓S denotes {F : τ ∈ Γ | F ∈ S}.
Since Γ′k = Γ′k+1, the above condition implies: Γ′k, x1 : σ1, . . . , x` : σ` `−A t : τ for every
F : τ ∈ Γ′k and R(F) = λx1. · · ·λx`.t, i.e., ShrinkG(Γ′k) = Γ′k. Therefore, we have:

S : qI ∈ Γ′m
⊆ Γ′k =

⋂
j∈ω Shrinkj(Γ′k) ⊆

⋂
j∈ω Shrinkj(Γ′0) ⊆

⋂
j∈ω Shrinkj(

⋃
i∈ω F i(Γ0))).

J

C. Broadbent and N. Kobayashi 147

Proof of Theorem 21

The “only if” direction follows immediately from Theorem 19. The “if” direction follows
from Lemma 31. J

C An algorithm to check the inhabitance condition

C.1 The construction
Computing F(Γ) requires a procedure to check Γ

?
∈ Inhabited(K,ΓN). Following Rehof and

Urzyczyn [25], we can reduce it the emptiness problem for an alternating tree automaton. This
also serves to demonstrate how our algorithm can be interpreted as manipulating alternating
tree automata (the stack automata manipulated by the CPDS algorithm can also be seen as
a kind of alternating tree automaton). Given ΓN , define an ATA A′ = (Σ′, Q′,∆′, q′I) by:

Σ′ = {a 7→ 0 | a ∈ dom(Σ)} ∪ {F 7→ 0 | F ∈ dom(N)}
∪{@ 7→ 2}

Q′ = {(τ, κ) | τ :: κ, and τ occurs (as a sub-expression)
in ΓN or a type of a constant}

∆′ = {((τ, κ), a, ∅) | ∅ `−A a : τ and κ = o→ · · · → o︸ ︷︷ ︸
Σ(a)

→ o}

∪{((τ,N (F)), F, ∅) | F : τ ∈ ΓN}
∪{((τ, κ),@,
{(1, (

∧
i∈I τi → τ, κ′ → κ))} ∪ {(2, (τi, κ′)) | i ∈ I})

| (
∧
i∈I τi → τ, κ′ → κ) ∈ Q}

q′I = (qI , o)

By the construction, t] is accepted by (Σ′, Q′,∆′, (τ, κ)) if and only if t ∈ ATermsN ,Σ,κ
and ΓN `−A t : τ , where t] is the tree representation of term t, with an application t1t2 is
expressed by a tree:

@

t]1 t]2

Thus, to check Γ∈Inhabited(K,ΓN), it suffices to check that for every x ∈ dom(Γ), the
intersection:⋂

x:τ∈Γ
L(Σ′, Q′,∆′, (τ,K(x)))

is non-empty, where L(A) denotes the set of trees accepted by A (in the co-trivial mode).
During the computation of Fm(∅) (wherem = 1, 2, . . .), the automatonA′ for ΓN = Fm(∅)

can be constructed incrementally.

C.2 A remark on the complexity of the emptiness check
For the purposes of HORS model-checking, we are interested in the complexity of our
algorithms when the arity of sorts (and hence types) and the sizes of the property automaton
(and in particular Q) are bounded. This is because these tend to be small compared to the
size of the HORS itself.

In this subsection we explain why the inhabitance check used in the HorSat algorithm can
be regarded (under the assumptions above) as a constant-time operation when considering the

CSL’13

148 Saturation-Based Model Checking of HORS

theoretical worst-case complexity. However, this is not intended as a practical algorithm (the
constant is still generally very large) but just to demonstrate that theoretically inhabitance
checking does not negate the fixed parameter tractability of the algorithm.

First observe that, for the purposes of inhabitance checking, it is only necessary to have a
single non-terminal bound to any given type. More precisely, let ΓN be a set of type bindings
for non-terminals, and K a kind-environment such that ΓN :: K. Suppose for each sort κ and
each set T ⊆ ITypesκ we have a fresh non-terminal Fκ,T . Define:

UK,ΓN
:= {Fκ,T : κ | ∃G.∀τ ∈ T.G : τ ∈ ΓN with τ :: κ}
∪ {Fκ,T : κ | ∃a ∈ dom(Σ).∀τ ∈ T.∅ `A,G a : τ with τ :: κ}

∆K,ΓN
:= {Fκ,T : τ | Fκ,T ∈ dom(UK,ΓN

) and τ ∈ T}

It should be clear that

Inhabited(K,ΓN) = Inhabited(UK,ΓN
,∆K,ΓN

)

After all, given a term t witnessing {x : τ | τ ∈ T} ∈ Inhabited(K,ΓN) we can construct
a term t′ witnessing {x : τ | τ ∈ T} ∈ Inhabited(UK,ΓN

,∆K,ΓN
) by replacing each non-

terminal G occurring in t with Fκ,R where R is the maximal set satisfying {G : τ | τ ∈
R} ⊆ Γ and R :: κ, and replacing every terminal a with Fκ,R where R is the maximal
set satisfying ∅ `A,G a : τ for every τ ∈ R, with R :: κ. Conversely, given a term t′

witnessing {x : τ | τ ∈ T} ∈ Inhabited(UK,ΓN
,∆K,ΓN

), we can construct a term t witnessing
{x : τ | τ ∈ T} ∈ Inhabited(K,ΓN) by replacing every occurrence Fκ,R in t′ by either a G
such that G : τ ∈ Γ for every τ ∈ R or a ∈ dom(Σ) such that ∅ `A,G a : τ for every τ ∈ R
(one of which must exist by definition).

Note that the size of ∆K,ΓN
is bounded by a constant, namely the number of different well-

sorted sets of intersection types. Thus in particular the emptiness of
Inhabited(UK,ΓN

,∆K,ΓN
) can be determined in constant time (for example by the algorithm

sketched in the previous section whose run-time depends only on |∆K,ΓN
| and the number of

intersection types). So assuming that ∆K,ΓN
has already been computed, Inhabited(K,ΓN)

can be computed in constant time.
We now observe how ∆K,ΓN

can be grown incrementally together with ΓN as the algorithm
progresses (rather than being recomputed on each inhabitance check). Since ΓN := ∅ at the
start of the algorithm, ∆K,ΓN

is correspondingly initialized to ∆∅,∅.
As an aid the HorSat algorithm could maintain a table H with dom(N) as keys where:

H(G) = {P ⊆ ITypesκ | G : κ ∈ K and ∀τ ∈ P.G : τ ∈ Γ}

This table grows as ΓN is grown with the progression of the HorSat algorithm. Whenever
a new set P ′ is added to H(G) for some G ∈ dom(N) ∪ dom(Σ), P ′ is also added to ∆K,ΓN

.
Whenever a new type binding for a non-terminal G : τ is added to ΓN , this must be

processed against every member P of H(G) with P ∪ {τ} then being added to H(G).
Since the number of intersection types is fixed (and so the number of sets of intersection

types is fixed) this must involve only constantly many comparisons. Thus assuming that
H(G) can be looked up in constant time, the overhead to HorSat for maintaining H(G)
would also only be constant for each addition to ΓN (and it is only upon each addition to
ΓN that the inhabitance check is performed).

Descriptive complexity of approximate counting
CSPs
Andrei Bulatov∗1, Victor Dalmau†2, and Marc Thurley3

1 School of Computing Science, Simon Fraser University, Burnaby, Canada
abulatov@sfu.ca

2 Department of Information and Communication Technologies, Universitat
Pompeu Fabra, Barcelona, Spain
victor.dalmau@upf.edu

3 Oracle, Buenos Aires, Argentina
marc.thurley@googlemail.com

Abstract
Motivated by Fagin’s characterization of NP, Saluja et al. have introduced a logic based frame-
work for expressing counting problems. In this setting, a counting problem (seen as a mapping
C from structures to non-negative integers) is ’defined’ by a first-order sentence ϕ if for every
instance A of the problem, the number of possible satisfying assignments of the variables of ϕ
in A is equal to C(A). The logic RHΠ1 has been introduced by Dyer et al. in their study of
the counting complexity class #BIS. The interest in the class #BIS stems from the fact that,
it is quite plausible that the problems in #BIS are not #P-hard, nor they admit a fully poly-
nomial randomized approximation scheme. In the present paper we investigate which counting
constraint satisfaction problems #CSP(H) are definable in the monotone fragment of RHΠ1. We
prove that #CSP(H) is definable in monotone RHΠ1 whenever H is invariant under meet and
join operations of a distributive lattice. We prove that the converse also holds if H contains the
equality relation. We also prove similar results for counting CSPs expressible by linear Datalog.
The results in this case are very similar to those for monotone RHΠ1, with the addition that H
has, additionally, > (the greatest element of the lattice) as a polymorphism.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes, F.4.1 Mathematical
Logic

Keywords and phrases Constraint Satisfaction Problems, Approximate Counting, Descriptive
Complexity.

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.149

1 Introduction

Constraint Satisfaction Problems (CSPs) form a rich class of algorithmic problems with
applications in many areas of computer science. In a CSP the goal is to find an assignment
to variables subject to specified constraints. It has been observed by Feder and Vardi [19]
that CSPs can be viewed as homomorphisms problems: given two relational structures A
and H, decide if there is a homomorphism from A to H.

In this paper we consider counting constraint satisfaction problems (#CSPs), in which the
problem of computing the number of solutions of a given CSP instance. Substantial amount

∗ supported by NSERC Discovery grant
† supported by MICINN grant TIN2010-20967-C04-02

© Andrei Bulatov, Victor Dalmau, and Marc Thurley;
licensed under Creative Commons License CC-BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca; pp. 149–164

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.149
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

150 Descriptive complexity of approximate counting CSPs

of attention has been paid in the last decade to the complexity and algorithms for problems of
the form CSP(H) (see, for example, [1, 3, 5, 8, 23]) and #CSP(H) [4, 6, 7, 10, 16, 17, 18, 21],
in which the target structure H is fixed. In the case of exact counting, there is a complete
complexity classification of problems #CSP(H) [4, 17, 18], which states that every problem
of this form is either solvable in polynomial time, or complete in #P. This classification was
recently extended to computing partition functions of weighted homomorphisms [10, 21].

Very few non-trivial counting problems can be solved using a polynomial-time determ-
inistic algorithm. When efficient exact counting is not possible one might try to find a good
approximation. Dyer et al. [14] argued that the most natural model of efficient approxima-
tion is the one by means of fully polynomial randomized approximation schemes (FPRAS),
where the desired approximation error is a part of input, randomization is allowed, and the
algorithm must stop within time polynomial in the size of the input and the bound on the
approximation error. The approximation complexity of counting problems is then measured
through approximation preserving, or AP-reductions, designed so that the class of problems
solvable by FPRAS is closed under AP-reductions (more details can be found in §2.3).

The approximation complexity of #CSP(H) for 2-element structures H is determined
in [15]. It turns out that, along with problems admitting a FPRAS (indeed, even solvable
exactly in polynomial-time) and #P-hard problems, there are also problems that apparently
do not fall into any of these two categories. Furthermore, all the problems that seemingly
lie strictly between the class of problems admitting an FPRAS and the class of #P-hard
problems are interreducible with each other and with other natural and well-studied prob-
lems (see also [14]) such as the problem of counting independent sets in a bipartite graph,
denoted #BIS. It is argued in [14] that the set of problems interreducible with #BIS form a
separate complexity class different from both FPRAS and #P. This class includes the prob-
lem of finding the number of downsets and the problem of finding the number of antichains
in a partially ordered set, SAT-based problems such as finding the number of satisfying
assignments of a CNF in which every clause is an implication or a unit clause, certain graph
homomorphism problems, e.g., BeachConfig [14], and many others.

In this paper we shed light on the complexity of approximate counting CSPs by studying
its descriptive complexity. We follow Saluja et al.’s framework [27] for studying the logical
definability of counting problems. Let ϕ be a first-order formula that can have first and
second-order free variables. In the setting of [27], a counting problem C (seen as a mapping
from structures over a finite signature τ to non-negative integers) is defined by formula
ϕ if, for every structure A with signature τ , C(A) is equal to the number of different
interpretations of the free variables that make ϕ true on A.

For example, the problem #IS of counting the number of independent sets of a graph
G = (V,E) is defined by the sentence

∀x, y (¬E(x, y) ∨ ¬I(x) ∨ ¬I(y)),

where I is a monadic second order free variable.
It is shown in [27] that, on ordered structures, the class #P coincides with the class #FO

of counting problems definable by a first-order formula. Furthermore it is also shown that
the expressiveness of subclasses of #FO obtained by restricting the quantifier alternation
depth form the strict hierarchy

#Σ0 = #Π0 ⊂ #Σ1 ⊂ #Π1 ⊂ #Σ2 ⊂ #Π2 = #FO,

where #L denotes the set of counting problems definable by a formula in L.

A. Bulatov, V. Dalmau, and M. Thurley 151

A different approach to expressing counting problems over graphs in logical terms has
been developed in a series of papers by Makowsky et al. (see [24] and the references therein).
The framework there is more liberal allowing to define a wide range of graph invariants and
polynomials, such as the the chromatic polynomial, various generalizations of the Tutte
polynomial, matching polynomials, interlace polynomials, and many others.

Dyer et al. have introduced the logic RHΠ1 ⊆ Π1 (to be defined below) in their study
of the class of problems AP-interreducible with #BIS. It is shown in [14] that all problems
in #RHΠ1 are AP-reducible to #BIS. Also, many problems AP-interreducible with #BIS
(for example all problems listed in §2.3.1) are known to be in #RHΠ1. The logic RHΠ1
contains all first-order formulas of the form ∀yψ, where ψ is a quantifier-free CNF, in which
every clause has at most one occurrence of a unnegated second-order variable and at most
one occurrence of a negated second-order variable.

Our main result concerns the monotone fragment of RHΠ1, namely, the subset of RHΠ1
containing all formulas in which every relation from τ (the signature of the input structure)
appears only negatively. It is natural to consider monotone logics in the context of CSP
as for every input structure A of #CSP(H), every atomic formula with a predicate from τ

holding in A makes the existence of a homomorphism from A to H less likely. Furthermore,
it follows from the results of [20] that in the decision variant (that is, if our goal is merely
to decide if the number of homomorphisms is greater than zero) monotone RHΠ1 is as
expressive as full RHΠ1.

To tackle our question we consider the algebraic invariance properties of the relations in
H, namely, so-called polymorphisms of H (see §2.1). This approach has lead to impressive
progress in the study of the complexity of CSP(H) and of #CSP(H).

We prove that #CSP(H) is definable by a monotone RHΠ1 formula whenever H has, as
polymorphisms, the meet and join operations of a distributive lattice. We also show that this
is the best-possible considering only the algebraic invariants of H. In particular, we prove
that if #CSP(H) is definable in monotone RHΠ1 and H contains one relation interpreted as
the equality then H must be invariant under the meet and join operations of a distributive
lattice. Since the set of polymorphisms of a structure does not change if one adds the
equality relation to it, our results imply a complete characterization for the definability of
#CSPs in monotone RHΠ1 under the assumption that every pair of structures H and H′
with the same polymorphisms give rise to counting CSPs, #CSP(H) and #CSP(H′) that
are both definable or both undefinable in monotone RHΠ1. Although the majority of the
properties of CSPs investigated so far are completely determined by the algebraic invariants
(see [26]), there are some which are not [25].

As a byproduct of our main result we obtain a similar characterization of definability
on the fragment of monotone RHΠ1 known as linear Datalog. Linear Datalog has been
investigated in the decision CSPs as a tool to show the membership in NL [2, 11, 12, 13].
For our purposes, linear Datalog is precisely the class of monotone RHΠ1-formulas that
do not contain free first-order variables and where every clause of its quantifier-free part
contains an unnegated second-order variable. We show that #CSP(H) is definable in linear
Datalog if H has, as polymorphisms, the join, meet, and top operations of a distributive
lattice and that the converse holds whenever H contains the equality relation.

CSL’13

152 Descriptive complexity of approximate counting CSPs

2 Preliminaries

2.1 Basic definitions
Let A be a finite set. A k-ary tuple (a1, . . . , ak) over A is any element of Ak. We shall
use boldface letters to denote tuples of any length. A k-ary relation on A is a collection of
k-ary tuples over A or, alternatively, a subset of Ak. A relational signature (also relational
vocabulary) τ is a collection of relational symbols (also called predicates), in which every
symbol has an associated arity. A (relational) structure A with signature τ (also called
τ -structure) consists of a set A called the universe of A, and for each symbol R ∈ τ , say of
arity k, a k-ary relation RA on A, called the intepretation of R in A. We shall use the same
boldfaced and slanted capital letters to denote a structure and its universe, respectively. In
this paper all signatures and structures are finite. A fact of a relational structure is any
atomic formula holding in it. Sometimes we will regard relational structures as a universe
and a collection of facts on it.

Let R be a relation on a set A and f : An → A an n-ary operation on the same set.
Operation f is said to be a polymorphism of R if for any choice a1, . . . ,an of tuples from
R the tuple f(a1, . . . ,an) obtained by applying f component-wise also belongs to R. Then,
it is also said that R is invariant under f . Operation f is a polymorphism of a relational
structure A if it is a polymorphism of every relation in A.

Let A,B be finite sets and let f : A→ B. For every tuple a on A we use f(a) to denote
the tuple on B obtained by applying f to a component-wise. Similarly, for every relation R
on A we use f(R) to denote {f(a) | a ∈ R}. Let A,B be relational structures of the same
signature with universes A and B, respectively. Mapping f is said to be a homomorphism
from A to B if for any symbol R from τ , f(RA) ⊆ RB. If, furthermore, B ⊆ A and f acts
as the identity on B then f is said to be a retraction. A homomorphism f from A to B is
said to be an isomorphism if it is bijective and f−1 is a homomorphism from B to A.

A lattice H is a structure with a universe H equipped with two binary operations
u,t : H × H → H (see, e.g., [22]) satisfying the following conditions for any x, y, z ∈ H:
(1) x u x = x t x = x, (2) x u y = y u x, x t y = y t x, (3) x u (y u z) = (x u y) u z,
xt (yt z) = (xt y)t z, (4) xu (xt y) = xt (xu y) = x. Lattice H is said to be distributive
if it satisfies an additional equation x u (y t z) = (x u y) t (x u z). Every lattice has an
associated partial order ≤ on its universe given by x ≤ y if and only if x u y = x.

2.2 Constraint satisfaction problem
For a relational structure H an instance of the constraint satisfaction problem CSP(H) is a
structure A of the same signature. The goal in CSP(H) is to decide whether or not there is
a homomorphism from A to H. In the counting constraint satisfaction problem #CSP(H)
the objective is to find the number of such homomorphisms.

I Example 1. In a 3-SAT problem we are given a propositional formula ϕ in conjunctive
normal form whose clauses contain 3 literals (3-CNF). The task is to decide if ϕ is satisfiable.
As is easily seen, the 3-SAT problem is equivalent to CSP(H3−SAT), where H3−SAT is the
relational structure with universe {0, 1} that contains, for every a, b, c ∈ {0, 1}, the relation
Ra,b,c = {0, 1}3 \ {(a, b, c)}. In the counting version of 3-SAT, denoted #3-SAT, the goal is
to find the number of satisfying assignments of a 3-CNF formula. Clearly, this problem can
be represented as #CSP(H3−SAT).

I Example 2. Let F be a finite field. The LINEAR SYSTEM(F) problem over F is the
problem of checking the consistency of a given system of linear equations over F . This

A. Bulatov, V. Dalmau, and M. Thurley 153

b

a

c

d

Figure 1 The HBIS graph.

problem cannot be represented as a CSP because the set of possible linear equations that
can appear in an instance is infinite, while we only allow finite structures. However, for any
system of linear equations one can easily obtain an equivalent system in which every equation
contains at most 3 variables (although it may be necessary to introduce new variables).
Hence, LINEAR SYSTEM(F) reduces to the restricted problem 3-LINEAR SYSTEM(F),
in which only equations with 3 variables are allowed. For every α, β, γ, δ ∈ F , denote by
Rαβγδ, the ternary relation that contains all tuples (x, y, z) ∈ F 3 satisfying the equation
αx + βy + γz = δ. Then the 3-LINEAR SYSTEM(F) problem can be represented as
CSP(HLIN), where HLIN is the relational structure with universe F equipped with all relations
Rαβγδ, α, β, γ, δ ∈ F . The counting version of this problem, #CSP(HLIN), concerns finding
the number of solutions of a system of linear equations.

2.3 Counting and approximation
Counting CSPs is a particular case of counting problems. For every problem L in NP,
one can associate a corresponding counting problem; namely, the problem of counting the
accepting paths of a nondeterministic Turing machine deciding L in polynomial time. The
set of problems defined this way is denoted by #P.

I Example 3. In the counting Bipartite Independent Set problem (#BIS) we are given
a bipartite graph G and asked to find the number of independent sets in G. Let HBIS
be the digraph shown in Fig. 1. Given a bipartite graph G with bipartition (V1, V2) let
G′ be the digraph obtained by orienting all edges from V1 to V2. As is easily seen, the
number of homomorphisms from G′ to HBIS equals the number of independent sets in G,
as the preimage of {a, c} is an independent set of G. Thus, #BIS can be easily ‘reduced’ to
#CSP(HBIS), but it is not clear if it can be represented as a counting CSP.

Algorithms and the complexity of counting problems, including counting CSPs, have
attracted considerable amount of attention starting from the seminal paper by Valiant [28].
The complexity of exact counting CSPs is largely known, see, [4, 17, 18]. Every problem
of the form #CSP(H) is either solvable in polynomial time or is complete in #P under
polynomial time reductions1.

The approximation complexity of #CSP(H) is much more diverse. Let C be a counting
problem and, for an instance I of C, let us denote the solution of I by #I. For ε > 0, a
randomized algorithm Alg is said to be an ε-approximating algorithm for the problem C if
for any instance I of C it returns a number Alg(I) such that

Pr
[
e−ε <

Alg(I)
#I < eε

]
≥ 2

3 .

1 In fact, the class #P is not closed under polynomial time reductions; therefore it is technically more
correct to say that these problems are complete in FP#P

CSL’13

154 Descriptive complexity of approximate counting CSPs

Arguably, the most general, but still practical type of approximation algorithm for counting
problems is fully polynomial randomized approximation schemes (FPRAS): An algorithm
Alg is said to be an FPRAS for a counting problem C if it takes as input an instance I of C
and a number ε > 0, outputs a number Alg(I, ε) satisfying the inequality above, and works
in time polynomial in |I| and log 1

ε . To compare the relative complexity of approximating
counting problems one uses approximation preserving reduction (or AP-reduction for short).
If A and B are counting problems, an AP-reduction from A to B is a probabilistic algorithm
Alg, using B as an oracle, that takes as input a pair (I, ε) where I is an instance of A and
0 < ε < 1, and satisfies the following three conditions: (i) every oracle call made by Alg
is of the form (I ′, δ), where I ′ is an instance of B, and 0 < δ < 1 is an error bound such
that log 1

δ is bounded by a polynomial in the size of I and log 1
ε ; (ii) the algorithm Alg

meets the specifications for being approximation scheme for A whenever the oracle meets
the specification for being approximation scheme for B; and (iii) the running time of Alg
is polynomial in the size of I and log 1

ε . If an AP-reduction from A to B exists we write
A ≤AP B, and say that A is AP-reducible to B.

2.3.1 The class of problems AP-interreducible with #BIS

The two most natural approximation complexity classes are FPRAS, the class of problems
solvable by an FPRAS, and the class FP#P, the class of problems AP-interreducible with
#SAT (note that #P is not closed under AP-reductions). In [14] Dyer et al. argued that
#BIS (see Example 3) defines a class of its own: No FPRAS is known for this problem, and
it is not believed to be interreducible with #SAT. There are many natural and well studied
problems that are AP-interreducible with #BIS. The following list contains some examples:

#DOWNSET. A downset in a partial order (P,≤) is a set A ⊆ P such that whenever
b ∈ A and a ≤ b, the element a belongs to A. The #DOWNSET problem asks, given a
partial order (P,≤) to find the number of downsets in P .
#ANTICHAIN. An antichain in a partial order (P,≤) is a set C ⊆ P such that a ≤ b for
no a, b ∈ C. In the #ANTICHAIN problem we are required, given a partial order (P,≤),
to find the number of antichains. #ANTICHAIN and #DOWNSET are essentially the
same problem. Clearly, every downset A ⊆ P is determined by the set of its maximal
elements that form an antichain. Conversely, if C ⊆ P is an antichain then the set
{a ∈ P | a ≤ b for some b ∈ C} is a downset.
#IMPLICATION. Let ϕ be a 2-CNF, in which every clause is of the form ¬x ∨ y, or,
equivalently, x → y. In the #IMPLICATION problem, given such a 2-CNF, the goal
is to compute the number of its satisfying assignments. There are easy AP-reductions
between #DOWNSET and #IMPLICATION. In one direction, the downsets of a partial
order (P,≤) are exactly the satisfying assignments of the formula that includes clause
b → a for every pair a, b ∈ P with a ≤ b. For the opposite direction, every instance
ϕ of #IMPLICATION can be represented as a digraph G(ϕ), in which the nodes are
the variables of ϕ and edges (x, y) correspond to clauses x → y. The set of strongly
connected components P (ϕ) of G(ϕ) can be equipped with the natural partial order:
U1 ≤ U2 for U1, U2 ∈ P (ϕ) if and only if there is a directed path from a node from U2 to
a node from U1. It is straightforward to see that the number of satisfying assignments
of ϕ equals the number of downsets in P (ϕ).
Also, #IMPLICATION is precisely #CSP(HIMP), where HIMP is the digraph shown in
Fig. 2.

A. Bulatov, V. Dalmau, and M. Thurley 155

0 1

Figure 2 The HIMP digraph.

A classification of problems of the form #CSP(H) for 2-element structures H according to
their approximation complexity given in [15] provides another evidence of the significance of
#BIS. Indeed, every such problem turns out to be either solvable exactly in polynomial time
(and so belongs to FPRAS), or is AP-interreducible with #SAT, or else is AP-interreducible
with #BIS.

2.4 Descriptive complexity of (approximate) counting problems
Motivated by Fagin’s characterization of NP, Saluja et al. [27] have introduced a logic based
framework for expressing counting problems. In what follows we describe the setting of [27].

Let τ and σ be finite signatures, let C be a counting problem (seen as a mapping from
τ -structures to non-negative integers), let ϕ(z) be a first-order formula with signature τ ∪ σ
with free (first-order) variables z, and let A be a τ -structure. Formula ϕ is monadic if all
predicates in σ have arity at most one. An A-assignment for ϕ (or just an assignment, if A
and ϕ are clear) is a pair (T,a) where T and a are interpretations of σ and z, respectively,
over the universe, A, of A. We write (A,T) to denote the (τ ∪ σ)-structure with universe
A where every R ∈ τ is interpreted as in A and every I ∈ σ is interpreted as in T. We say
that (T,a) satisfies ϕ if (A,T) |= ϕ(a) that is, if ϕ(a) is true on the structure (A,T). We
say that ϕ defines C if for every τ -structure A

C(A) = |{(T,a) | (A,T) |= ϕ(a)}|

We note here that we deviate—although only formally—from the framework in Sajula et al.
in the following sense: we use predicate symbols in σ to represent second-order variables.
Hence, our first-order formulas only have, formally, first-order free variables.

We shall denote by #FO the set of all counting problems definable by a first-order
formula. For every fragment L of FO we define #L as the set of all counting problems
definable by a formula in L. An structure A is ordered if it has a binary relation that is
interpreted as a total order on the universe.

I Theorem 4 ([27]). On ordered structures, the class #P coincides with the class #FO. In
fact, #P is the class of all counting problems definable with a Π2 formula.

Saluja et al. [27] study the expressiveness of subclasses of #FO obtained by restricting
the quantifier alternation depth obtaining the strict hierarchy

#Σ0 = #Π0 ⊂ #Σ1 ⊂ #Π1 ⊂ #Σ2 ⊂ #Π2 = #FO

Dyer et al. [14] introduced the fragment RHΠ1 ⊆ Π1 in their study of the complexity
class of problems AP-interreducible with #BIS. A first-order formula ϕ(z) with signature
τ ∪ σ is in RHΠ1 if it is of the form ∀yψ(y, z) where ψ is a quantifier-free CNF in which
every clause has at most one occurrence of an unnegated relation symbol from σ and at most
one occurrence of a negated symbol from σ. The part Π1 in notation #RHΠ1 indicates that
the formula involves only universal quantification, and RH indicates that ψ is in ‘restricted
Horn’ form.

CSL’13

156 Descriptive complexity of approximate counting CSPs

It is shown in [14] that all problems in #RHΠ1 are AP-reducible to #BIS. Also, many
problems AP-interreducible with #BIS (for example all problems listed in §2.3.1) are known
to be in #RHΠ1.

I Example 5. Consider the problem #DOWNSET. By encoding a partial order (P,≤) as
a structure with a binary relation we can define #DOWNSET with the RHΠ1-sentence

∀x, y (I(x) ∨ ¬(x ≤ y) ∨ ¬I(y))

Our ultimate goal is to characterize under which circumstances #CSP(H) belongs to
#RHΠ1. Towards this end, in this paper we consider the fragment of RHΠ1 obtained by
requiring that, in addition, the predicates from τ occur only negatively. The resulting logic
is called monotone RHΠ1.

It makes sense to restrict to monotone formulas in the context of problems of the form
#CSP(H) as the addition of more facts to an input structure cannot increase the number
of homomorphisms. Indeed, all problems listed in §2.3.1 are also definable by a formula
in monotone RHΠ1. Furthermore, it follows from the results of [20] that, if our goal is
merely to decide if the number of homomorphisms is greater than zero, monotone RHΠ1 is
as expressive as RHΠ1. Additionally we will deal exclusively with unordered structures as
the analysis for ordered structures becomes much more complicated.

We say that a τ -structure H contains equality if τ contains a binary relational symbol
eq that is interpreted as the equality on the set H (that is, Heq = {(b, b) | b ∈ H}). Note
that we do not require that eq is interpreted as the equality in the instances of #CSP(H).

We are now in a position to state the main result of the paper.

I Theorem 6. For every structure H the following holds:
1. If H has polymorphisms xu y and xt y for some distributive lattice (H;u,t) then there

exists a monotone RHΠ1-formula defining #CSP(H).
2. Furthermore, if H contains equality then the converse also holds.

Observe that since the set of polymorphisms of a structure H does not change if one
adds the equality relation to it, it follows that the sufficient condition of Theorem 6 is the
best it can be achieved by considering only the algebraic invariants of H. Also, note that it
follows from Theorem 6 that the problem of deciding whether for a relational structure H
containing equality the problem #CSP(H) is definable in monotone RHΠ1 belongs to NP.
Indeed, after guessing lattice operation u,t on the universe of H, it is polynomial time to
verify that these binary operations are polymorphisms of the structure.

3 Reduction to the monadic case

In this section, as a first step toward proving the necessary condition of Theorem 6, we prove
the following proposition.

I Proposition 7. For every structure H, if #CSP(H) is definable in monotone RHΠ1 then
it is also definable by a monadic monotone formula from RHΠ1 without free variables.

In what follows, τ and σ are finite vocabularies, H is a τ -structure, and ϕ(z) is a monotone
RHΠ1-formula with signature τ ∪ σ defining #CSP(H).

For every n ≥ 1, define Isoln (from isolated nodes) to be the τ -structure with universe
{1, . . . , n}, where all relations are interpreted as the empty set.

I Lemma 8. ϕ is a sentence (i.e, has no free variables).

A. Bulatov, V. Dalmau, and M. Thurley 157

Proof. Consider structure Isolp where p is a prime number that does not divide |H|. Let k
be the number of free variables of ϕ and for every a ∈ Ak let n(a) be

|{(T,a) | (Isolp,T) |= ϕ(a)}|

Clearly
∑

a∈Ak n(a) = |H|p. Consider the following equivalence relation θ on Ak: two tuples
a,a′ ∈ Ak are θ-related if a′ = h(a) for some bijection h : A → A. Clearly, if a and a′ are
θ-related then n(a) = n(a′).

For every a ∈ Ak we shall denote by aθ the θ-class containing a. Hence |H|p =∑
a∈Ak n(a) =

∑
aθ∈(Ak)θ |aθ| · n(a), where (Ak)θ denotes the set of all θ-classes. Note

that |aθ| = p(p − 1) · · · (p −m + 1), where m is the number of different elements in a. We
are in a position to show that k = 0. If k > 0 then p divides |aθ| for any a and hence p
divides

∑
a∈Ak n(a) = |H|p, but p does not divide |H|, a contradiction. J

Consequently, from now on we can assume that ϕ is a sentence. Let A be a τ -structure
and let T be any A-assignment. It will be convenient to regard, alternatively, T as the
collection of all atomic formulas I(a) that hold in T.

The following lemma is a direct consequence of the fact that every clause of an RHΠ1-
formula has at most one occurrence of an unnegated relation symbol from σ and at most
one occurrence of a negated symbol from σ.

I Lemma 9. Let A be a τ -structure. The set of all A-assignments (seen as a collection of
facts) satisfying ϕ is closed under union and intersection.

I Lemma 10. Let I be any predicate in σ with arity k ≥ 2. Then

ϕ |= ∀x1, . . . , xk, y1, . . . , yk ¬(xi = yi) ∨ ¬I(x1, . . . , xk) ∨ I(y1, . . . , yk)

for some 1 ≤ i ≤ k

Proof. For every L ⊆ {1, . . . , k}, we define µL to be the sentence

∀x1, . . . , xk, y1, . . . , yk (
∨
i∈L
¬(xi = yi)) ∨ ¬I(x1, . . . , xk) ∨ I(y1, . . . , yk).

Observe that µL expresses the fact that I(z1, . . . , zk) only depends on the variables zi, i ∈ L.
It follows easily that µJ ∧ µK |= µL for every J,K,L ⊆ {1, . . . , k} with J ∩ K ⊆ L.

Note that the sentences appearing in the statement of the lemma are precisely the class of
all sentences of the form µL where L is a singleton. Hence, the lemma follows by a direct
application of the above property provided we are able to show the following:

For every different i, j ∈ {1, . . . , k} there exists L with {i, j} 6⊆ L and such that ϕ |= µL.

To simplify the notation we shall prove the claim only for i = k− 1 and j = k. Consider
the structure Isol2n+k−2 with n large enough. Let X be the set containing all atomic
formulas of the form I(1, . . . , k − 2, a, b) where a ∈ {k − 1, . . . , n+ k − 2} and b ∈ {n+ k −
1, . . . , 2n+ k − 2}.

We claim that there exists some atomic formula I(1, . . . , k− 2, a, b) ∈ X such that every
satisfying assignment containing I(1, . . . , k−2, a, b) contains also some other atomic formula
in X. Indeed, otherwise, since the set of satisfying assignments is closed under union, we
could construct for every non-empty subset Y ⊆ X a satisfying assignment containing all
atomic predicates from Y and none of the atomic predicates from Y \X. This would lead
to a contradiction, as the set of satisfying assignments would be at least 2n2 , which grows

CSL’13

158 Descriptive complexity of approximate counting CSPs

asymptotically faster than |H|2n+k−2 (the number of homomorphisms from Isol2n+k−2 to
H).

Thus there exists an atomic formula I(1, . . . , k − 2, a, b) ∈ X such that every satisfying
assignment containing I(1, . . . , k − 2, a, b) contains also some other atomic formula in X.
Consider first the case in which there exists at at least one satisfying assignment containing
I(1, . . . , k − 2, a, b). Then, the smallest, with respect to inclusion, satisfying assignment
containing I(1, . . . , k − 2, a, b) (by Lemma 9 such an assignment exists) also contains some
other atomic predicate I(1, . . . , k − 2, a′, b′) in X. By the monotonicity of ϕ it follows that
ϕ implies

∀v1, . . . , v2n+k−2 ¬I(v1, . . . , vk−2, va, vb) ∨ I(v1, . . . , vk−2, va′ , vb′),

which after renaming variables is equivalent to µL for L = {1, . . . , k − 2, k − 1} or L =
{1, . . . , k − 2, k}. Secondly, assume that there is no satisfying assignment containing
I(1, . . . , k − 2, a, b). Then

ϕ |= ∀v1, . . . , v2n+k−2 ¬I(v1, . . . , vk−2, va, vb).

It follows easily that, in this case, ϕ implies any formula of the form µL. J

Proof of Proposition 7. Let H be a τ -structure and let ϕ be a monotone RHΠ1-formula
with signature τ ∪ σ defining #CSP(H). By Lemma 8, ϕ has no free variables.

Pick any predicate I in σ with arity k ≥ 2. By Lemma 10

ϕ |= ∀x1, . . . , xk, y1, . . . , yk ¬(xi = yi) ∨ ¬I(x1, . . . , xk) ∨ I(y1, . . . , yk)

for some 1 ≤ i ≤ k. Let σ′ be obtained from σ by replacing I by a new unary predicate I ′,
and let ϕ′ be the sentence with signature τ ∪ σ′ obtained from ϕ by replacing every atomic
formula of the form I(z1, . . . , zk) by I ′(zi). It follows easily that ϕ′ has the same number
of satisfying assignments as ϕ and one non-monadic predicate less. Iterating we obtain a
sentence that contains only monadic predicates. J

4 Necessary condition

We start with proving item (2) of Theorem 6. In what follows H is a τ -structure and ϕ

is a monadic monotone RHΠ1-sentence with signature τ ∪ σ defining #CSP(H). It will be
convenient to assume that σ does not contain 0-ary predicate symbols. This can be achieved
by replacing every 0-ary relation symbol I ∈ σ with a new unary relation symbol I ′, adding
to ϕ the clause ¬I ′(x)∨ I ′(y), and replacing every atomic formula of the form R() in ϕ with
R′(x) (x and y are bound variables in ϕ).

Let A be a τ -structure. Since all the predicate symbols in σ are unary one can establish
a bijection from the set of all A-assignments to the set of mappings from A to 2σ. In
particular, we associate with every A-assignment T a mapping h : A→ 2σ where for every
a ∈ A

h(a) = {I ∈ σ | I(a) holds in T}.

We shall use Th to denote the A-assignment associated with a mapping h. Let also Sol(A, ϕ)
is given by

Sol(A, ϕ) = {h : A→ 2σ | (A,Th) |= ϕ}.

A. Bulatov, V. Dalmau, and M. Thurley 159

I Lemma 11. Let A, B be τ -structures and let g be a homomorphism from A to B. For
every f : B → 2σ the following holds:
1. If f ∈ Sol(B, ϕ) then f ◦ g ∈ Sol(A, ϕ).
2. If g(A) = B and | Sol(B, ϕ)| = | Sol(A, ϕ)|, then for any h ∈ Sol(A, ϕ) there is f ∈

Sol(B, ϕ) such that h = f ◦ g.

Proof. (1) Follows directly from the monotonicity of ϕ. (2) Since g(A) = B the set {f ◦
g | f ∈ Sol(B, ϕ)} contains |Sol(B, ϕ)| different mappings and, consequently, Sol(A, ϕ)
cannot contain any other one. J

I Lemma 12. Let A be a τ -structure, let a, a′ ∈ A, and let B be the τ -structure obtained
by adding the fact eq(a, a′) to A. For every f : A→ 2σ the following holds:

f ∈ Sol(B, ϕ) if and only if f ∈ Sol(A, ϕ) and f(a) = f(a′)

Proof. We can assume wlog. that A (and hence B) contains equalities eq(a, a) and eq(a′, a′)
as the addition of eq(a, a) and eq(a′, a′) does not alter hom(A,H) or hom(B,H), and,
consequently, it cannot alter Sol(A, ϕ) or Sol(B, ϕ) either.

(⇒) Assume f ∈ Sol(B, ϕ). It follows directly from Lemma 11(1) that f ∈ Sol(A, ϕ) so
it only remains to show that f(a) = f(a′). Again by Lemma 11(1) it is only necessary to
prove the statement in the case when A does not contain any other fact besides the equalities
eq(a, a) and eq(a′, a′). Indeed, if the claim is true for such structure A′ then the identity
homomorphisms from A′ to A witnesses, with help of Lemma 11(1), that it is also true for
A. Let g : A→ A\{a′} be the mapping that sends a′ to a and acts as the identify otherwise.
Lemma 11(2) implies that f = h ◦ g for some h ∈ Sol(g(B), ϕ) and hence f(a) = f(a′).

(⇐) Let ϕ = ∀yψ(y), let n be the number of variables in y, and let C be the τ -structure
obtained by adding to A the chain of equalities

eq(a, a1), eq(a1, a2), . . . , eq(an, an+1), eq(an+1, a
′),

where a1, . . . , an+1 are new elements not occurring in A. Assume that f ∈ Sol(A, ϕ) and
f(a) = f(a′), and let h : C → 2σ be the extension of f that sets h(ai) = f(a) for every
i = 1, . . . , n+ 1.

We claim that h ∈ Sol(C, ϕ). Let c be any instantiation of y over C. There exists some
element ai that does not appear in c. Let C′ be obtained by removing from C the equalities
involving ai. There is a retraction g from C′ to A that maps aj to a if j ≤ i and to a′
otherwise. By Lemma 11(1) h = f ◦ g belongs to Sol(C′, ϕ) and, hence, (Th,C′) |= ψ(c).
Since ai does not appear in c we have (Th,C) |= ψ(c) as well. Since (Th,C) |= ψ(c) holds
for every instantiation c of y, the claim follows.

Let g be any retraction from C to B with g(ai) ∈ {a, a′} for every i = 1, . . . , n+1. Since
h = f ◦ g it follows from Lemma 11(2) that f ∈ Sol(B, ϕ). J

For every R ∈ τ of arity, say, k, let JR be the τ -structure with universe {1, . . . , k}
containing only fact R(1, . . . , k). Recall the definition of Isoln in the beginning of §3. We
define Jϕ to be the τ -structure with universe Jϕ = {h(1) | h ∈ Sol(Isol1, ϕ)} such that for
every R ∈ τ

RJϕ = {(h(1), . . . , h(k)) | h ∈ Sol(JR, ϕ)}

The next two lemmas follow directly from the definition of Jϕ.

I Lemma 13. Let A be any τ -structure and let f ∈ Sol(A, ϕ). Then f is a homomorphism
from A to Jϕ.

CSL’13

160 Descriptive complexity of approximate counting CSPs

Proof. First, let a ∈ A, and g : Isol1 → A taking 1 to a. By Lemma 11, f ◦g ∈ Sol(Isol1, ϕ),
implying f(a) belongs to the universe of Jϕ. Similarly, let R ∈ τ and let (a1, . . . , ak) ∈ RA.
The mapping i

g7→ ai defines a homomorphism from JR to A. By Lemma 11, f ◦ g ∈
Sol(JR, ϕ), which is equivalent to say that R(f(a1), . . . , f(ak)) holds in Jϕ. J

I Lemma 14. If H contains equality then H and Jϕ are isomorphic.

Proof. LetX and Y be sets, let F be a collection of mappings fromX to Y , and let equiv(X)
be the set of all equivalence relations in X. For every θ ∈ equiv(X) we denote by Fθ the
collection of all f ∈ F such that f(i) = f(j) whenever i and j are θ-related.

Let A be any τ -structure. For every θ ∈ equiv(A) we define Aθ to be the structure that
is obtained by adding to A all facts of the form eq(a, a′) where a and a′ are θ-related. For
every θ ∈ equiv(A) we have

| Sol(A, ϕ)θ| = | Sol(Aθ, ϕ)| = | hom(Aθ,H)| = | hom(A,H)θ|,

where the first equality follows from Lemma 12 and the other equalities follow directly
from the definitions. Consequently, Sol(A, ϕ) and hom(A,H) contain the same number of
injective mappings. This follows from the fact that the number of injective mappings in
Sol(A, ϕ) and the number of injective mappings in hom(A,H) are completely determined
by the values | Sol(A, ϕ)θ|, θ ∈ equiv(A), and | hom(A,H)θ|, θ ∈ equiv(A), respectively,
according to the Möbius inversion formula. By setting A = H we infer that Sol(H, ϕ)
contains an injective mapping h that, by Lemma 13, is an homomorphism from H to Jϕ.
Since |H| = | Jϕ |, homomorphism h must be, in fact, a bijective homomorphism. For every
relation symbol R ∈ τ , we have h(RH) ⊆ RJϕ , because h is a homomorphism. We also
have |RJϕ | = |RH| = |h(RH)| where the first equality follows from the definition of Jϕ and
the second one follows from the fact that h is a bijection. It follows that h(RH) = RJϕ .
Consequently, h is an isomorphism. J

Proof of Theorem 6(2). Let H be a τ -structure that contains equality such that #CSP(H)
is definable in monotone RHΠ1. By Lemma 14 H is isomorphic to Jϕ. Since by Lemma 9
Jϕ has polymorphisms x ∩ y and x ∪ y, the theorem follows. J

Lemma 14 fails if H does not contain equality as the following example shows. Let H
be the digraph with universe {0, 1} containing only edge (0, 1). Consider the monotone
RHΠ1-sentence ϕ with σ = {I}

∀x, y, z (¬E(x, y) ∨ I(x)) ∧ (¬E(x, y) ∨ I(y)) ∧ (¬E(x, y) ∨ ¬E(y, z))

It is not difficult to see that ϕ defines #CSP(H) and that H is not isomorphic to Jϕ. Still,
H is invariant under the meet and join of a distributive lattice, namely, ({0, 1},∨,∧).

5 Sufficient condition

In this section we shall prove item (1) of Theorem 6. Throughout this section τ is a finite
signature and H is a τ -structure with polymorphisms x u y and x t y for some distributive
lattice (H;u,t). Our goal is to show that there exists a monotone (monadic) RHΠ1-sentence
ϕ defining #CSP(H).

It is well known (see, e.g., [22, Theorem 9, Corollary 11, Corollary 14, Ch. II.1]) that,
since (H;u,t) is distributive, there is an isomorphism g from (H;u,t) to a sublattice of the

A. Bulatov, V. Dalmau, and M. Thurley 161

lattice of subsets of some finite set S. It will be convenient to assume wlog. that g(>) = S

and g(⊥) 6= ∅ where > and ⊥ are the top and bottom elements, respectively, of (H;u,t).
Let k be the maximum arity of a relation in τ , and let us define σ to have one monadic

predicate for each symbol in S. To simplify notation we shall use the same symbol to
represent a member of S and its associate predicate in σ. Sentence ϕ is defined to be the
monotone monadic RHΠ1-sentence ∀x ψ(x) with signature τ ∪ σ, where x has size k and
ψ(x) contains all clauses χ(x) with at most one occurrence of an unnegated symbol from
σ and at most one occurrence of a negated symbol from σ such that (H,Tg) |= ∀x χ(x)
(recall the definition of Tg given in the beginning of §4). For every I ∈ σ we shall denote
by TI

g the interpretation of I in Tg, that is, the relation {a ∈ H | I ∈ g(a)}.

I Lemma 15. Let b, b′ ∈ H and let X = TI
g for some I ∈ σ. Then:

1. b t b′ ∈ X ⇔ b ∈ X or b′ ∈ X
2. b u b′ ∈ X ⇔ b ∈ X and b′ ∈ X

Proof. Follows directly from the definitions. J

I Lemma 16. Let A be a τ -structure and let h ∈ Sol(A, ϕ). Then g−1 ◦ h is well defined
and belongs to hom(A,H).

Proof. Let a ∈ A and let Y be a nonempty collection of subsets of H. Y is said to be
consistent with h(a) if for every I ∈ σ the following holds:

I ∈ h(a)⇔ Y ⊆ TI
g for some Y ∈ Y.

We claim that if there is a set Y consistent with h(a) then g−1(h(a)) is well defined and
is equal to tY ∈Y u Y , where uY denotes the meet of all elements from Y . To see this, let
b = tY ∈Y u Y . It follows from the definition of consistency and Lemma 15 that for every
I ∈ σ

I ∈ h(a)⇔ b ∈ TI
g,

which is equivalent to saying that g(b) = h(a).
For every a ∈ A, let Ya be the set {TI

g | I ∈ h(a)}. We have ∅ 6= g(⊥) ⊆ h(a), and hence
Ya is non-empty. We claim that Ya is consistent with h(a). Let I ∈ σ and consider the two
cases:

I ∈ h(a). In this case Ya contains TI
g and we are done.

I 6∈ h(a). Assume, towards a contradiction that TJ
g ⊆ TI

g for some J ∈ h(a). This
implies, by the definition of ϕ, that ϕ contains the clause ¬J(x)∨ I(x), in contradiction
with the fact that I 6∈ h(a) and J ∈ h(a).

Since for every a ∈ A, Ya is a nonempty collection of sets consistent with h(a), it follows
that g−1 ◦ h is well defined. Now, let us prove that g−1 ◦ h ∈ hom(A,H).

Let R ∈ τ and let (a1, . . . , ak) ∈ AR. For every i = 1, . . . , k and every I ∈ h(ai), let Yi,I
be the set of all tuples (b1, . . . , bk) ∈ RH where bi ∈ TI

g. The set Yi,I satisfies the following
two claims:

Claim 1: Yi,I 6= ∅. Otherwise, ∀x (¬R(x1, . . . , xk) ∨ ¬I(xi)) holds in (H,Tg), which
implies that ϕ contains the clause ¬R(x1, . . . , xk) ∨ ¬I(xi), in contradiction with the fact
that (a1, . . . , ak) ∈ AR and I ∈ h(ai).

Claim 2: For every j = 1, . . . , k and every J 6∈ h(aj), set Yi,I contains a tuple with
bj 6∈ TJ

g . Otherwise, ∀x (¬R(x1, . . . , xk) ∨ ¬I(xi) ∨ I(xj)) holds in (H,Tg), which implies
that ϕ contains the clause ¬R(x1, . . . , xk) ∨ ¬I(xi) ∨ J(xj), in contradiction with the fact
that (a1, . . . , ak) ∈ AR, I ∈ h(ai), and J 6∈ h(aj).

CSL’13

162 Descriptive complexity of approximate counting CSPs

Let
c = (c1, . . . , ck) =

⊔
1≤i≤k,I∈h(ai)

uYi,I

Since g(⊥) ⊆ h(ai), Claim 1 above guarantees that the right term is not void. It follows
from Claims 1 and 2 above that for every j = 1, . . . , k the set {projj Yi,I | 1 ≤ i ≤ k, I ∈
h(ai)} (where projj Yi,I denotes the projection of Yi,I to its jth coordinate) is consistent
with h(aj). This implies that cj = (g−1 ◦ h)(aj) for every j = 1, . . . , k. Since c is obtained
by iterative application of t and u to tuples in RH we conclude that c ∈ RH and we are
done. J

Proof of Theorem 6(1). Let A be any τ -structure. It follows from the definition of ϕ that
(H,Tg) |= ϕ or, equivalently, that g ∈ Sol(H, ϕ). Then, by Lemma 11(1) f 7→ g ◦ f defines
a mapping from hom(A,H) and Sol(A, ϕ). This mapping is injective (because so is g) and
exhaustive (by Lemma 16). J

6 Counting problems and linear Datalog

Datalog has a long and successful history as a tool in database theory and the study of the
decision CSP (see [9] and the references therein). In this section we show how Datalog is also
related to counting CSPs, and, more generally, to counting problems. As a byproduct of the
proof of Theorem 6 we obtain a characterization of counting CSPs that can be represented
through certain Datalog programs.

Datalog is a language of logic programs primarily developed in database theory. Let
τ and σ be finite signatures. Symbols from τ are called EDBs (for Extensional DataBase
symbols), and symbols from σ are called IDBs (for Intensional DataBase symbols). Every
Datalog program is a collection of rules of the form

ψ1 : −ψ2, . . . , ψm,

where ψ1, . . . , ψm are atomic formulas using predicates from τ ∪ σ. The left side of the rule
is called the head of the rule, and the predicate symbol occurring in it must be an IDB. The
right hand side is called the body of the rule and might contain both IDBs and EDBs. A rule
is called linear if its body contains at most one occurrence of an IDB. A Datalog program
is said to be linear if all its rules are linear. The linear fragment of Datalog has been used
for decision CSPs (see [2, 11, 12, 13]). In particular, the decision CSPs expressible through
linear Datalog belong to the class NL. Moreover, it is conjectured that the converse is also
true.

A Datalog program P is applied to a τ -structure A using the semantics of fixed points.
Let T be an interpretation of the IDBs on the universe A of A. Then T is said to be a fixed
point of P on A if for every rule the following holds: for every interpretation of the variables
of the rule that makes the body of the rule true given the intepretation of the IDBs (in T)
and of the EDBs (in A), the head of the rule must hold in T. Since the intersection of two
fixed points is again a fixed point, there is always a least fixed point of a Datalog program.
To express a decision CSP in terms of Datalog one should consider programs that contain
a distinguished ‘goal’ IDB (usually null-ary). The corresponding CSP has no solution on
input A if and only if the least fixed point of the program on A contains the goal IDB. The
link to counting CSPs works in a different way. Here we consider not only the least fixed
point, but all fixed points of a Datalog program. For a τ -structure H we say that a Datalog
program P with EDBs from τ defines the problem #CSP(H) if for any τ -structure A the
number of homomorphisms from A to H equals the number of fixed points of P on A.

A. Bulatov, V. Dalmau, and M. Thurley 163

For the purpose of this paper, however, we do not have to define the semantics of Datalog
as above. Instead, we view linear Datalog as a fragment of monotone RHΠ1 and fixed points
as satisfying assignments of the corresponding formulas.

I Lemma 17. Every linear Datalog program is equivalent to a monotone RHΠ1 sentence
in which each clause contains an unnegated predicate symbol from σ (equivalently, an IDB).
Conversely, every monotone RHΠ1 formula of this kind is equivalent to a Datalog program.

Proof. The lemma easily follows from the observation that every rule ψ1 : −ψ2, . . . , ψm of
Datalog is equivalent to the clause ψ1 ∨ ¬ψ2 ∨ · · · ∨ ¬ψm of a monotone RHΠ1 sentence.
Note that the clause contains a positive occurrence (namely the symbol in ψ1) of an IDB.
Conversely, every clause like that with exactly one unnegated predicate from σ can be
translated into a Datalog rule. J

Since Datalog is a proper subset of monotone RHΠ1, it is likely to be less expressive.

I Theorem 18. For every structure B the following holds:
1. If H has polymorphisms x u y and x t y for some distributive lattice (H;u,t) and the

nullary operation > (returning the greatest element of the lattice) then there is a linear
Datalog program that defines #CSP(H)

2. Furthermore, if H contains equality then the converse also holds.

Proof. (1) It has been show in §5 that, under the hypothesis of item (1), #CSP(H) is
definable by a monadic monotone RHΠ1-sentence ϕ. Recall the definitions of ϕ, g, S, σ,
and Tg from §5.

Assume now, additionally, that H is invariant under the nullary operation > returning
the top element of the lattice. Let ψ(x) be any clause in ϕ. We just need to show that
some relation symbol from σ occurs unnegated in ψ(x). We have g(>) = S by assumption
(here and during the rest of the proof we shall slightly abuse the notation by using > to
denote also the element in H that > returns). It follows that > ∈ TI

g for every I ∈ σ.
Also, since H is invariant under > it follows that (>, . . . ,>) ∈ HR for every R ∈ τ . By
definition (H,Tg) |= ∀x χ(x). Hence, if one instantiates all variables in x to > then one
obtains an assigment that falsifies all negated atomic formulas in χ. Consequently, χ(x)
must contain one unnegated atomic formula. Since χ(x) is monotone the predicate symbol
of this unnegated atomic formula must be from σ.

(2) Recall the definition of Jϕ from §4. It has been show in §4 that Jϕ is invariant
under set-theoretic union and intersection and that, under the hypothesis of item (2), H
is isomorphic to Jϕ. Assume now that ϕ is a linear Datalog program. It is only necessary
to show that, additionally, Jϕ is invariant under the nullary operation returning σ (the top
element in the lattice (Jϕ,∩,∪)). Let R be any predicate symbol in τ . Since every clause of
ϕ has an occurrence of an unnegated predicate symbol from σ it follows that the mapping
{1, . . . , k} 7→ σ belongs to Sol(JR, ϕ). Hence, by definition (σ, . . . , σ) ∈ RJϕ . J

References
1 Libor Barto and Marcin Kozik. Constraint satisfaction problems of bounded width. In

FOCS, pages 595–603, 2009.
2 Libor Barto, Marcin Kozik, and Ross Willard. Near unanimity constraints have bounded

pathwidth duality. In LICS, pages 125–134, 2012.
3 Andrei A. Bulatov. A dichotomy theorem for constraint satisfaction problems on a 3-

element set. J. ACM, 53(1):66–120, 2006.
4 Andrei A. Bulatov. The complexity of the counting constraint satisfaction problem. In

ICALP (1), pages 646–661, 2008.

CSL’13

164 Descriptive complexity of approximate counting CSPs

5 Andrei A. Bulatov. Complexity of conservative constraint satisfaction problems. ACM
Trans. Comput. Log., 12(4):24, 2011.

6 Andrei A. Bulatov and Víctor Dalmau. Towards a dichotomy theorem for the counting
constraint satisfaction problem. Information and Computation, 205(5):651–678, 2007.

7 Andrei A. Bulatov and Martin Grohe. The complexity of partition functions. Theor.
Comput. Sci., 348(2-3):148–186, 2005.

8 Andrei A. Bulatov, Peter Jeavons, and Andrei A. Krokhin. Classifying the complexity of
constraints using finite algebras. SIAM J. Comput., 34(3):720–742, 2005.

9 Andrei A. Bulatov, Andrei A. Krokhin, and Benoit Larose. Dualities for constraint satis-
faction problems. In Complexity of Constraints, pages 93–124, 2008.

10 Jin-Yi Cai and Xi Chen. Complexity of counting CSP with complex weights. In STOC,
pages 909–920, 2012.

11 Catarina Carvalho, Víctor Dalmau, and Andrei A. Krokhin. CSP duality and trees of
bounded pathwidth. Theor. Comput. Sci., 411(34-36):3188–3208, 2010.

12 Víctor Dalmau. Linear datalog and bounded path duality of relational structures. Logical
Methods in Computer Science, 1(1), 2005.

13 Víctor Dalmau and Andrei A. Krokhin. Majority constraints have bounded pathwidth
duality. Eur. J. Comb., 29(4):821–837, 2008.

14 Martin E. Dyer, Leslie Ann Goldberg, Catherine S. Greenhill, and Mark Jerrum. The
relative complexity of approximate counting problems. Algorithmica, 38(3):471–500, 2003.

15 Martin E. Dyer, Leslie Ann Goldberg, and Mark Jerrum. An approximation trichotomy
for Boolean #CSP. J. Comput. Syst. Sci., 76(3-4):267–277, 2010.

16 Martin E. Dyer, Leslie Ann Goldberg, and Mike Paterson. On counting homomorphisms
to directed acyclic graphs. J. ACM, 54(6), 2007.

17 Martin E. Dyer and David Richerby. On the complexity of #CSP. In STOC, pages 725–734,
2010.

18 Martin E. Dyer and David Richerby. The #CSP dichotomy is decidable. In STACS, pages
261–272, 2011.

19 Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: A study through Datalog and group theory. SIAM J. Comput.,
28(1):57–104, 1998.

20 Tomás Feder and Moshe Y. Vardi. Homomorphism closed vs existential positive. In LICS,
pages 311–320, 2003.

21 Leslie Ann Goldberg, Martin Grohe, Mark Jerrum, and Marc Thurley. A complexity
dichotomy for partition functions with mixed signs. In STACS, pages 493–504, 2009.

22 G. Grätzer. General Lattice Theory. Birkhäuser Verlag, Basel, 2003.
23 Pawel M. Idziak, Petar Markovic, Ralph McKenzie, Matthew Valeriote, and Ross Willard.

Tractability and learnability arising from algebras with few subpowers. SIAM J. Comput.,
39(7):3023–3037, 2010.

24 Tomer Kotek and Johann Makowsky. Connection matrices and the definability of graph
parameters. In CSL, pages 411–425, 2009.

25 Benoit Larose, Cynthia Loten, and Claude Tardif. A characterisation of first-order con-
straint satisfaction problems. Logical Methods in Computer Science, 3(4), 2007.

26 Benoit Larose and Pascal Tesson. Universal algebra and hardness results for constraint
satisfaction problems. Theor. Comput. Sci., 410(18):1629–1647, 2009.

27 Sanjeev Saluja, K. V. Subrahmanyam, and Madhukar N. Thakur. Descriptive complexity
of #P functions. J. Comput. Syst. Sci., 50(3):493–505, 1995.

28 L. Valiant. The complexity of enumeration and reliability problems. SIAM Journal on
Computing, 8(3):410–421, 1979.

What is Decidable about Partially Observable
Markov Decision Processes with omega-Regular
Objectives∗

Krishnendu Chatterjee, Martin Chmelik, and Mathieu Tracol

IST Austria
Klosterneuburg, Austria

Abstract
We consider partially observable Markov decision processes (POMDPs) with ω-regular conditions
specified as parity objectives. The qualitative analysis problem given a POMDP and a parity
objective asks whether there is a strategy to ensure that the objective is satisfied with probability 1
(resp. positive probability). While the qualitative analysis problems are known to be undecidable
even for very special cases of parity objectives, we establish decidability (with optimal EXPTIME-
complete complexity) of the qualitative analysis problems for POMDPs with all parity objectives
under finite-memory strategies. We also establish optimal (exponential) memory bounds.

1998 ACM Subject Classification D.2.4 Formal methods

Keywords and phrases POMDPs, Omega-regular objectives, Parity objectives, Qualitative ana-
lysis

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.165

1 Introduction

Partially observable Markov decision processes (POMDPs). Markov decision processes
(MDPs) are standard models for probabilistic systems that exhibit both probabilistic and
nondeterministic behavior [16]. MDPs have been used to model and solve control prob-
lems for stochastic systems [13]: nondeterminism represents the freedom of the controller
to choose a control action, while the probabilistic component of the behavior describes the
system response to control actions. In perfect-observation (or perfect-information) MDPs
(PIMDPs) the controller can observe the current state of the system to choose the next
control actions, whereas in partially observable MDPs (POMDPs) the state space is parti-
tioned according to observations that the controller can observe i.e., given the current state,
the controller can only view the observation of the state (the partition the state belongs
to), but not the precise state [22]. POMDPs provide the appropriate model to study a wide
variety of applications such as in computational biology [12], speech processing [21], software
verification [6], robot planning [17], to name a few. In verification of probabilistic systems,
MDPs have been adopted as models for concurrent probabilistic systems [10], under-specified
probabilistic systems [4], and applied in diverse domains [3, 18]. POMDPs also subsume
many other powerful computational models such as probabilistic automata [25, 23] (since
probabilistic automata are a special case of POMDPs with a single observation).

∗ The research was supported by Austrian Science Fund (FWF) Grant No P 23499- N23, FWF NFN
Grant No S11407-N23 (RiSE), ERC Start grant (279307: Graph Games), and Microsoft faculty fellows
award.

© Krishnendu Chatterjee and Martin Chmelik and Mathieu Tracol;
licensed under Creative Commons License CC-BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca; pp. 165–180

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.165
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

166 What is Decidable about POMDPs with omega-Regular Objectives

The class of ω-regular objectives. An objective specifies the desired set of behaviors (or
paths) for the controller. In verification and control of stochastic systems an objective
is typically an ω-regular set of paths. The class of ω-regular languages extends classical
regular languages to infinite strings, and provides a robust specification language to express
all commonly used specifications [28]. In a parity objective, every state of the MDP is
mapped to a non-negative integer priority (or color) and the goal is to ensure that the
minimum priority (or color) visited infinitely often is even. Parity objectives are a canonical
way to define such ω-regular specifications. Thus POMDPs with parity objectives provide
the theoretical framework to study problems such as the verification and control of stochastic
systems.
Qualitative and quantitative analysis. The analysis of POMDPs with parity objectives
can be classified into qualitative and quantitative analysis. Given a POMDP with a parity
objective and a start state, the qualitative analysis asks whether the objective can be ensured
with probability 1 (almost-sure winning) or positive probability (positive winning); whereas
the quantitative analysis asks whether the objective can be satisfied with probability at least
λ for a given threshold λ ∈ (0, 1).
Importance of qualitative analysis. The qualitative analysis of MDPs is an important
problem in verification that is of interest independent of the quantitative analysis problem.
There are many applications where we need to know whether the correct behavior arises
with probability 1. For instance, when analyzing a randomized embedded scheduler, we
are interested in whether every thread progresses with probability 1 [11]. Even in settings
where it suffices to satisfy certain specifications with probability λ < 1, the correct choice
of λ is a challenging problem, due to the simplifications introduced during modeling. For
example, in the analysis of randomized distributed algorithms it is quite common to require
correctness with probability 1 (see, e.g., [24, 27]). Furthermore, in contrast to quantitative
analysis, qualitative analysis is robust to numerical perturbations and modeling errors in
the transition probabilities. Thus qualitative analysis of POMDPs with parity objectives is
a fundamental theoretical problem in verification and analysis of probabilistic systems.
Previous results. On one hand POMDPs with parity objectives provide a rich framework
to model a wide variety of practical problems, on the other hand, most theoretical results
established for POMDPs are negative (undecidability) results. There are several deep unde-
cidability results established for the special case of probabilistic automata (that immediately
imply undecidability for the more general case of POMDPs). The basic undecidability res-
ults are for probabilistic automata over finite words (that can be considered as a special
case of parity objectives). The quantitative analysis problem is undecidable for probabilistic
automata over finite words [25, 23]; and it was shown in [19] that even the following approx-
imation version is undecidable: for any fixed 0 < ε < 1

2 , given a probabilistic automaton
and the guarantee that either (a) there is a word accepted with probability at least 1− ε; or
(ii) all words are accepted with probability at most ε; decide whether it is case (i) or case (ii).
The almost-sure (resp. positive) problem for probabilistic automata over finite words re-
duces to the non-emptiness question of universal (resp. non-deterministic) automata over
finite words and is PSPACE-complete (resp. solvable in polynomial time). However, an-
other related decision question whether for every ε > 0 there is a word that is accepted with
probability at least 1 − ε (the value 1 problem) is undecidable for probabilistic automata
over finite words [14]. Also observe that all undecidability results for probabilistic automata
over finite words carry over to POMDPs where the controller is restricted to finite-memory
strategies. In [20], the authors consider POMDPs with finite-memory strategies under ex-
pected rewards, but the general problem remains undecidable. For qualitative analysis of

K. Chatterjee, M. Chmelik, and M. Tracol 167

POMDPs with parity objectives, deep undecidability results were shown for very special
cases of parity objectives (even in the special case of probabilistic automata). It was shown
in [2] that the almost-sure (resp. positive) problem is undecidable for probabilistic automata
with coBüchi (resp. Büchi) objectives which are special cases of parity objectives that use
only two priorities. In summary the most important theoretical results are negative (they
establish undecidability results).

Our contributions. The undecidability proofs for the qualitative analysis of POMDPs with
parity objectives crucially require the use of infinite-memory strategies for the controller. In
all practical applications, the controller must be a finite-state controller to be implementable.
Thus for all practical purposes the relevant question is the existence of finite-memory con-
trollers. The quantitative analysis problem remains undecidable even under finite-memory
controllers as the undecidability results are established for probabilistic automata over fi-
nite words. In this work we study the most prominent remaining theoretical open question
(that is also of practical relevance) for POMDPs with parity objectives that whether the
qualitative analysis of POMDPs with parity objectives is decidable or undecidable for finite-
memory strategies (i.e., finite-memory controllers). Our main result is the positive result
that the qualitative analysis of POMDPs with parity objectives is decidable under finite-
memory strategies. Moreover, for qualitative analysis of POMDPs with parity objectives
under finite-memory strategies, we establish optimal complexity bounds both for strategy
complexity as well as computational complexity. Our contributions are as follows (summar-
ized in Table 1):
1. (Strategy complexity). Our first result shows that belief-based stationary strategies are

not sufficient (where a belief-based stationary strategy is based on the subset construction
that remembers the possible set of current states): we show that there exist POMDPs
with coBüchi objectives where finite-memory almost-sure winning strategy exists but
there exists no randomized belief-based stationary almost-sure winning strategy. All
previous results about decidability for almost-sure winning in sub-classes of POMDPs
crucially relied on the sufficiency of randomized belief-based stationary strategies that
allowed standard techniques like subset construction to establish decidability. However,
our counter-example shows that previous techniques based on simple subset construction
(to construct an exponential size PIMDP) are not adequate to solve the problem. Before
the result for parity objectives, we consider a slightly more general form of objectives,
called Muller objectives. For a Muller objective a set F of subsets of colors is given and
the set of colors visited infinitely often must belong to F . We show our main result
that given a POMDP with |S| states and a Muller objective with d colors (priorities), if
there is a finite-memory almost-sure (resp. positive) winning strategy, then there is an
almost-sure (resp. positive) winning strategy that uses at most Mem∗ = 22·|S| · (22d)|S|
memory. Developing on our result for Muller objectives, for POMDPs with parity
objectives we show that if there is a finite-memory almost-sure (resp. positive) winning
strategy, then there is an almost-sure (resp. positive) winning strategy that uses at
most 23·d·|S| memory. Our exponential memory upper bound for parity objectives
is optimal as it is shown in [8] that almost-sure winning strategies require at least
exponential memory even for the very special case of reachability objectives in POMDPs.

2. (Computational complexity). We present an exponential time algorithm for the qualit-
ative analysis of POMDPs with parity objectives under finite-memory strategies, and
thus obtain an EXPTIME upper bound. The EXPTIME-hardness follows from [8] for

CSL’13

168 What is Decidable about POMDPs with omega-Regular Objectives

Table 1 Strategy and computational complexity for POMDPs. UB:Upper bound; LB: Lower
bound. New results in bold fonts.

Objectives Almost-sure Positive

Inf. Mem. Fin. Mem. Inf. Mem. Fin. Mem.

Büchi
Strategy Exp . (belief) Exp . (belief) Inf. mem. UB: Exp. 26·|S|

LB: Exp. (belief not suf.)

Complexity EXP-c. EXP-c. Undec. EXP-c.

coBüchi
Strategy Inf. mem UB: Exp. 26·|S| UB: Exp. UB: Exp.

LB: Exp. (belief not suf.) LB: Exp. (belief not suf.) LB: Exp. (belief not suf.)

Complexity Undec. EXP-c. EXP-c. EXP-c.

Parity
Strategy Inf. mem UB: Exp. 23·d·|S|

Inf. mem UB: Exp. 23·d·|S|

LB: Exp. (belief not suf.) LB: Exp. (belief not suf.)

Complexity Undec. EXP-c. Undec. EXP-c.

the special case of reachability and safety objectives, and thus we obtain the optimal
EXPTIME-complete computational complexity result.1

Technical contributions. The key technical contribution for the decidability result is as fol-
lows. Since belief-based stationary strategies are not sufficient, standard subset construction
techniques do not work. For an arbitrary finite-memory strategy we construct a projected
strategy that collapses memory states based on a projection graph construction given the
strategy. The projected strategy at a collapsed memory state plays uniformly over actions
that were played at all the corresponding memory states of the original strategy. The projec-
ted strategy thus plays more actions with positive probability. The key challenge is to show
the bound on the size of the projection graph, and to show that the projected strategy, even
though plays more actions, does not destroy the structure of the recurrent classes of the ori-
ginal strategy. For parity objectives, we show a reduction from general parity objectives to
parity objectives with two priorities on a polynomially larger POMDP and from our general
result for Muller objectives obtain the optimal memory complexity bounds for parity ob-
jectives. For the computational complexity result, we show how to construct an exponential
size special class of POMDPs (which we call belief-observation POMDPs where the belief
is always the current observation) and present polynomial time algorithms for the qualitat-
ive analysis of the special belief-observation POMDPs of our construction. Full proofs are
available as technical report, Feb 20, 2013, https://repository.ist.ac.at/109/.

2 Definitions

In this section we present the basic definitions of POMDPs, strategies (policies), ω-regular
objectives, and the winning modes.
Notations. For a finite set X, we denote by P(X) the set of subsets of X (the power set of
X). A probability distribution f on X is a function f : X → [0, 1] such that

∑
x∈X f(x) = 1,

and we denote by D(X) the set of all probability distributions on X. For f ∈ D(X) we
denote by Supp(f) = {x ∈ X | f(x) > 0} the support of f .

I Definition 1 (POMDPs). A Partially Observable Markov Decision Process (POMDP) is a
tuple G = (S,A, δ,O, γ, s0) where: (i) S is a finite set of states; (ii) A is a finite alphabet of

1 Recently, Nain and Vardi (personal communication, to appear LICS 2013) considered the finite-memory
strategies problem for one-sided partial-observation games and established 2EXPTIME upper bound.
Our work is independent and establishes optimal (EXPTIME-complete) complexity bounds for POM-
DPs.

https://repository.ist.ac.at/109/

K. Chatterjee, M. Chmelik, and M. Tracol 169

actions; (iii) δ : S ×A→ D(S) is a probabilistic transition function that given a state s and
an action a ∈ A gives the probability distribution over the successor states, i.e., δ(s, a)(s′)
denotes the transition probability from state s to state s′ given action a; (iv) O is a finite
set of observations; (v) γ : S → O is an observation function that maps every state to an
observation; and (vi) s0 is the initial state.
Given s, s′ ∈ S and a ∈ A, we also write δ(s′|s, a) for δ(s, a)(s′). For an observation o, we
denote by γ−1(o) = {s ∈ S | γ(s) = o} the set of states with observation o. For a set U ⊆ S
of states and O ⊆ O of observations we denote γ(U) = {o ∈ O | ∃s ∈ U. γ(s) = o} and
γ−1(O) =

⋃
o∈O γ

−1(o). For technical convenience we consider that the initial state s0 has
a unique observation.
Plays, cones and belief-updates. A play (or a path) in a POMDP is an infinite sequence
(s0, a0, s1, a1, s2, a2, . . .) of states and actions such that for all i ≥ 0 we have δ(si, ai)(si+1) >
0. We write Ω for the set of all plays. For a finite prefix w ∈ (S ·A)∗ ·S of a play, we denote
by Cone(w) the set of plays with w as the prefix (i.e., the cone or cylinder of the prefix
w), and denote by Last(w) the last state of w. For a finite prefix w = (s0, a0, s1, a1, . . . , sn)
we denote by γ(w) = (γ(s0), a0, γ(s1), a1, . . . , γ(sn)) the observation and action sequence
associated with w. For a finite sequence ρ = (o0, a0, o1, a1, . . . , on) of observations and
actions, the belief B(ρ) after the prefix ρ is the set of states in which a finite prefix of a
play can be after the sequence ρ of observations and actions, i.e., B(ρ) = {sn = Last(w) |
w = (s0, a0, s1, a1, . . . , sn), w is a prefix of a play, and for all 0 ≤ i ≤ n. γ(si) = oi}. The
belief-updates associated with finite-prefixes are as follows: for prefixes w and w′ = w · a · s
the belief update is defined inductively as B(γ(w′)) =

(⋃
s1∈B(γ(w)) Supp(δ(s1, a))

)
∩γ−1(s).

Strategies. A strategy (or a policy) is a recipe to extend prefixes of plays and is a function σ :
(S·A)∗·S → D(A) that given a finite history (i.e., a finite prefix of a play) selects a probability
distribution over the actions. Since we consider POMDPs, strategies are observation-based,
i.e., for all histories w = (s0, a0, s1, a1, . . . , an−1, sn) and w′ = (s′0, a0, s

′
1, a1, . . . , an−1, s

′
n)

such that for all 0 ≤ i ≤ n we have γ(si) = γ(s′i) (i.e., γ(w) = γ(w′)), we must have σ(w) =
σ(w′). In other words, if the observation sequence is the same, then the strategy cannot
distinguish between the prefixes and must play the same. We now present an equivalent
definition of strategies such that the memory is explicit.
I Definition 2 (Strategies with memory and memoryless strategies). A strategy with memory
is a tuple σ = (σu, σn,M,m0) where: (i) (Memory set). M is a denumerable set (finite
or infinite) of memory elements (or memory states). (ii) (Action selection function). The
function σn : M → D(A) is the action selection function that given the current memory
state gives the probability distribution over actions. (iii) (Memory update function). The
function σu : M × O × A → D(M) is the memory update function that given the current
memory state, the current observation and action, updates the memory state probabilist-
ically. (iv) (Initial memory). The memory state m0 ∈ M is the initial memory state. A
strategy is a finite-memory strategy if the set M of memory elements is finite. A strategy
is pure (or deterministic) if the memory update function and the action selection function
are deterministic. A strategy is memoryless (or stationary) if it is independent of the his-
tory but depends only on the current observation, and can be represented as a function
σ : O → D(A).
I Remark. It was shown in [7] that in POMDPs pure strategies are as powerful as randomized
strategies, hence in sequel we omit discussions about pure strategies.
Probability measure. Given a strategy σ, the unique probability measure obtained given
σ is denoted as Pσ(·). We first define the measure µσ(·) on cones. For w = s0 we have

CSL’13

170 What is Decidable about POMDPs with omega-Regular Objectives

µσ(Cone(w)) = 1, and for w = s where s 6= s0 we have µσ(Cone(w)) = 0; and for w′ =
w ·a · s we have µσ(Cone(w′)) = µσ(Cone(w)) ·σ(w)(a) · δ(Last(w), a)(s). By Caratheódary’s
extension theorem, the function µσ(·) can be uniquely extended to a probability measure
Pσ(·) over Borel sets of infinite plays [5].
Objectives. An objective in a POMDP G is a measureable set ϕ ⊆ Ω of plays. For a play
ρ = (s0, a0, s1, a1, s2 . . .), we denote by Inf(ρ) = {s ∈ S | ∀i ≥ 0 · ∃j ≥ i : sj = s} the set of
states that occur infinitely often in ρ. We consider the following objectives.

Reachability and safety objectives. Given a set T ⊆ S of target states, the reachability
objective Reach(T) = {(s0, a0, s1, a1, s2 . . .) ∈ Ω | ∃k ≥ 0 : sk ∈ T } requires that
a target state in T is visited at least once. Dually, the safety objective Safe(T) =
{(s0, a0, s1, a1, s2 . . .) ∈ Ω | ∀k ≥ 0 : sk ∈ T } requires that only states in T are visited.
Büchi and coBüchi objectives. Given a set T ⊆ S of target states, the Büchi objective
Buchi(T) = {ρ ∈ Ω | Inf(ρ)∩T 6= ∅} requires that a state in T is visited infinitely often.
Dually, the coBüchi objective coBuchi(T) = {ρ ∈ Ω | Inf(ρ) ⊆ T } requires that only
states in T are visited infinitely often.
Parity objectives. For d ∈ N, let p : S → {0, 1, . . . , d} be a priority function that maps
each state to a non-negative integer priority. The parity objective Parity(p) = {ρ ∈ Ω |
min{p(s) | s ∈ Inf(ρ)} is even} requires that the smallest priority that appears infinitely
often is even.
Muller objectives. Let D be a set of colors, and col : S → D be a color mapping function
that maps every state to a color. A Muller objective F consists of a set of subsets of colors
and requires that the set of colors visited infinitely often belongs to F , i.e., F ∈ P(P(D))
and Muller(F) = {ρ ∈ Ω | {col(s) | s ∈ Inf(ρ)} ∈ F}.

Given a set U ⊆ S we will denote by p(U) the set of priorities of the set U given by the
priority function p, i.e., p(U) = {p(s) | s ∈ U}, and similarly col(U) = {col(s) | s ∈ U}.
Büchi and coBüchi objectives are parity objectives with two priorities; and parity objectives
are a special case of Muller objectives. However, given a POMDP with a Muller objective
with color set D, an equivalent POMDP with |S| · |D|! states and a parity objective with
|D|2 priorities can be constructed with the latest appearance record (LAR) construction
of [15].
Winning modes. Given a POMDP, an objective ϕ, and a class C of strategies, we say
that: a strategy σ ∈ C is almost-sure winning (resp. positive winning) if Pσ(ϕ) = 1 (resp.
Pσ(ϕ) > 0); and a strategy σ ∈ C is quantitative winning, for a threshold λ ∈ (0, 1), if
Pσ(ϕ) ≥ λ. We first precisely summarize related works in the following Theorem.

I Theorem 3 (Previous results [25, 23, 2, 26, 8]). The following assertions hold for POMDPs
with the class C of all infinite-memory (randomized or pure) strategies: (1) The quantitative
winning problem is undecidable for safety, reachability, Büchi, coBüchi, parity, and Muller
objectives. (2) The almost-sure winning problem is EXPTIME-complete for safety, reach-
ability, and Büchi objectives; and undecidable for coBüchi, parity, and Muller objectives.
(3) The positive winning problem is PTIME-complete for reachability objectives, EXPTIME-
complete for safety and coBüchi objectives; and undecidable for Büchi, parity, and Muller
objectives.

Explanation of the previous results and implications under finite-memory strategies. All the
undecidability results follow from the special case of probabilistic automata: the undecid-
ability of the quantitative problem for probabilistic automata follows from [25, 23, 9]. The
undecidability for positive winning for Büchi and almost-sure winning for coBüchi objectives
was established in [1, 2]. For the decidable results, the optimal complexity results for safety

K. Chatterjee, M. Chmelik, and M. Tracol 171

objectives can be obtained from the results of [26] and all the other results follow from [8, 2].
If the classes of strategies are restricted to finite-memory strategies, then the undecidability
results for quantitative winning still hold, as they are established for reachability objectives
and for reachability objectives finite-memory suffices. The most prominent and important
open question is whether the almost-sure and positive winning problems are decidable for
parity and Muller objectives in POMDPs under finite-memory strategies.

3 Strategy Complexity

In this section we will first show that belief-based stationary strategies are not sufficient for
finite-memory almost-sure winning strategies in POMDPs with coBüchi objectives; and then
present the upper bound on memory size required for finite-memory almost-sure and positive
winning strategies in POMDPs with Muller objectives, and finally for parity objectives. We
start with some basic results about Markov chains.
Markov chains, recurrent classes, and reachability. A Markov chain G = (S, δ) consists of a
finite set S of states and a probabilistic transition function δ : S → D(S). Given the Markov
chain, we consider the graph (S,E) where E = {(s, s′) | δ(s′ | s) > 0}. A recurrent class
C ⊆ S of the Markov chain is a bottom strongly connected component (scc) in the graph
(S,E) (a bottom scc is an scc with no edges out of the scc). We denote by Rec(G) the set
of recurrent classes of the Markov chain, i.e., Rec(G) = {C | C is a recurrent class}. Given
a state s and a set U of states, we say that U is reachable from s if there is a path from s

to some state in U in the graph (S,E). Given a state s of the Markov chain we denote by
Rec(G)(s) ⊆ Rec(G) the subset of the recurrent classes reachable from s in G. A state is
recurrent if it belongs to a recurrent class.

I Lemma 4. For a Markov chain G = (S, δ) with Muller objective Muller(F) (or parity
objective Parity(p)), a state s is almost-sure winning (resp. positive winning) if for all
recurrent classes C ∈ Rec(G)(s) (resp. for some recurrent class C ∈ Rec(G)(s)) reachable
from s we have col(C) ∈ F (min(p(C)) is even for the parity objective).

Markov chains G � σ under finite-memory strategies σ. We now define Markov chains
obtained by fixing finite-memory strategies in a POMDP G. A finite-memory strategy
σ = (σu, σn,M,m0) induces a finite-state Markov chain (S ×M, δσ), denoted G � σ, with
the probabilistic transition function δσ : S×M → D(S×M): given s, s′ ∈ S andm,m′ ∈M ,
the transition δσ

(
(s′,m′) | (s,m)

)
is the probability to go from state (s,m) to state (s′,m′)

in one step under the strategy σ. The probability of transition can be decomposed as follows:
(i) First an action a ∈ A is sampled according to the distribution σn(m); (ii) then the next
state s′ is sampled according to the distribution δ(s, a); and (iii) finally the new memory
m′ is sampled according to the distribution σu(m, γ(s′), a) (i.e., the new memory is sampled
according to σu given the old memory, new observation and the action). More formally, we
have: δσ

(
(s′,m′) | (s,m)

)
=
∑
a∈A σn(m)(a) · δ(s, a)(s′) · σu(m, γ(s′), a)(m′).

Belief-based stationary strategies not sufficient. For all previous decidability results for
almost-sure winning in POMDPs, the key was to show that belief-based stationary strategies
are sufficient. In POMDPs with Büchi objectives, belief-based stationary strategies are suf-
ficient for almost-sure winning, and we now show that in POMDPs with coBüchi objectives
finite-memory almost-sure winning strategies may exist whereas no belief-based stationary
ones.

I Example 5. We consider a POMDP G with state space {s0, X,X
′, Y, Y ′, Z, Z ′} and action

set {a, b}, and let U = {X,X ′, Y, Y ′, Z, Z ′}. From the initial state s0 all the other states

CSL’13

172 What is Decidable about POMDPs with omega-Regular Objectives

X X ′

Y Y ′

Z Z ′

a

b

b

a

a

b

a
b

a,b a,b

a,b a,b

1
2

1
2

POMDP G

X X ′

Y Y ′

Z Z ′

1
2

1
2

MC G � σ1

Rec: {X,X ′, Y, Y ′, Z, Z ′}

X X ′

Y Y ′

Z Z ′

1
2

1
2

Rec: {X,X ′, Y, Y ′, Z, Z ′}

MC G � σ2

Figure 1 Belief is not sufficient.

are reached with uniform probability in one-step, i.e., for all s′ ∈ U = {X,X ′, Y, Y ′, Z, Z ′}
we have δ(s0, a)(s′) = δ(s0, b)(s′) = 1

6 . The transitions from the other states (shown in
Figure 1) are as follows: (i) δ(X, a)(X ′) = 1 and δ(X, b)(Y) = 1; (ii) δ(X ′, a)(Y ′) = 1
and δ(X ′, b)(X) = 1; (iii) δ(Z, a)(Y) = 1 and δ(Z, b)(Z ′) = 1; (iv) δ(Z ′, a)(Z) = 1
and δ(Z ′, b)(Y ′) = 1; (v) δ(Y, a)(X) = δ(Y, b)(X) = δ(Y, a)(Z) = δ(Y, b)(Z) = 1

2 ; and
(vi) δ(Y ′, a)(X ′) = δ(Y ′, b)(X ′) = δ(Y ′, a)(Z ′) = δ(Y ′, b)(Z ′) = 1

2 . All states in U have
the same observation. The coBüchi objective is given by the target set {X,X ′, Z, Z ′}, i.e.,
Y and Y ′ must be visited only finitely often. The belief initially after one-step is the set
U since from s0 all of them are reached with positive probability. The belief is always the
set U since every state has an input edge for every action, i.e., if the current belief is U
(i.e., the set of states that the POMDP is currently in with positive probability is U), then
irrespective of whether a or b is chosen all states of U are reached with positive probability
and hence the belief set is again U . There are three belief-based stationary strategies: (i) σ1
that plays always a; (ii) σ2 that plays always b; or (iii) σ3 that plays both a and b with
positive probability. For all the three strategies, the Markov chains obtained have the whole
set U as the recurrent class (see Figure 1 for the Markov chains G � σ1 and G � σ2), and
hence both Y and Y ′ are visited infinitely often with probability 1 violating the coBüchi
objective. The strategy σ4 that plays action a and b alternately gives rise to the Markov
chain G � σ4 shown in Figure 2 (i.e., σ4 has two memory states a and b, in memory state
a it plays action a and switches to memory state b, and in memory state b it plays action
b and switches to memory state a). The recurrent classes do not intersect with (Y,m) or
(Y ′,m), for memory state m ∈ {a, b}, and hence σ4 is a finite-memory almost-sure winning
strategy. J

Upper bound on memory. For the following of the section, we fix a POMDP G =
(S,A, δ,O, γ, s0), with a Muller objective Muller(F) with the set D of colors and a color
mapping function col. We will denote by D the powerset of the powerset of the set D of
colors, i.e., D = P(P(D)); and note that |D| = 22d , where d = |D|. Our goal is to prove
the following fact: given a finite-memory almost-sure (resp. positive) winning strategy σ

on G there exists a finite-memory almost-sure (resp. positive) winning strategy σ′ on G, of
memory size at most Mem∗ = 2|S| · 2|S| · |D||S|.
Overview of the proof. We first present an overview of our proof. (i) Given an arbitrary
finite-memory strategy σ we will consider the Markov chain G � σ arising by fixing the

K. Chatterjee, M. Chmelik, and M. Tracol 173

Xa X ′b

Y b Y ′a

Za Z ′b

Rec: {Xa,X ′b}

Zb Z ′a

Y ′bY a

X ′aXb

Rec: {Zb, Z ′a}

Figure 2 The Markov chain G � σ4.

strategy. (ii) Given the Markov chain we will define a projection graph that depends on
the recurrent classes of the Markov chain. The projection graph is of size at most Mem∗.
(iii) Given the projection graph we will construct a projected strategy with memory size at
most Mem∗ that preserves the recurrent classes of the Markov chain G � σ.
Notations. Given Z ∈ D|S| and given s ∈ S, we write Z(s) (which is in D = P(P(D))) for
the s-component of Z. For two sets U1 and U2 and U ⊆ U1 ×U2, we denote by Proji(U) for
i ∈ {1, 2} the projection of U on the i-th component.
Basic definitions for the projection graph. We now introduce notions associated with the
finite Markov chain G � σ that will be essential in defining the projection graph.

I Definition 6 (Recurrence set functions). Let σ be a finite-memory strategy with memory
M on G for the Muller objective with the set D of colors, and let m ∈M .

(Function set recurrence). The function SetRecσ(m) : S → D maps every state s ∈ S to
the projections of colors of recurrent classes reachable from (s,m) in G � σ. Formally,
SetRecσ(m)(s) = {col(Proj1(U)) | U ∈ Rec(G � σ)((s,m))}, i.e., we consider the set
Rec(G � σ)((s,m)) of recurrent classes reachable from the state (s,m) in G � σ, obtain
the projections on the state space S and consider the colors of states in the projected
set. We will in sequel consider SetRecσ(m) ∈ D|S|.
(Function boolean recurrence). The function BoolRecσ(m) : S → {0, 1} is such that for
all s ∈ S, we have BoolRecσ(m)(s) = 1 if there exists U ∈ Rec(G � σ)((s,m)) such that
(s,m) ∈ U , and 0 if not. Intuitively, BoolRecσ(m)(s) = 1 if (s,m) belongs to a recurrent
class in G � σ and 0 otherwise. In sequel we will consider BoolRecσ(m) ∈ {0, 1}|S|.

I Lemma 7. Let s, s′ ∈ S and m,m′ ∈ M be such that (s′,m′) is reachable from (s,m) in
G � σ. Then SetRecσ(m′)(s′) ⊆ SetRecσ(m)(s).

I Definition 8 (Projection graph). Let σ be a finite-memory strategy. We define the projec-
tion graph PrGr(σ) = (V,E) associated to σ as follows:

(Vertex set). The set of vertices is V = {(U,BoolRecσ(m),SetRecσ(m)) | U ⊆ S and m ∈
M}.
(Edge labels). The edges are labeled by actions in A.
(Edge set). Let U ⊆ S, m ∈ M and a ∈ Supp(σn(m)). Let U =

⋃
s∈U Supp(δ(s, a))

denote the set of possible successors of states in U given action a. We add the following
set of edges in E: Given (U ′,m′) such that there exists o ∈ O with γ−1(o) ∩ U =
U ′ and m′ ∈ Supp(σu(m, o, a)), we add the edge (U,BoolRecσ(m),SetRecσ(m)) a→
(U ′,BoolRecσ(m′),SetRecσ(m′)) to E. Intuitively, the update from U to U ′ is the update
of the belief, i.e., if the previous belief is the set U of states, and the current observation

CSL’13

174 What is Decidable about POMDPs with omega-Regular Objectives

is o, then the new belief is U ′; the update of m to m′ is according to the support of the
memory update function; and the BoolRec and SetRec functions for the memories are
given by σ.
(Initial vertex). The initial vertex of PrGr(σ) is the vertex
({s0},BoolRecσ(m0),SetRecσ(m0)).

Note that V ⊆ P(S) × {0, 1}|S| ×D|S|, and hence |V | ≤ Mem∗. For the rest of the section
we fix a finite-memory strategy σ that uses memory M . We now define projected strategies:
intuitively the projected strategy collapses memory with same BoolRec and SetRec functions,
and at a collapsed memory state plays uniformly the union of the actions played at the
corresponding memory states.

I Definition 9 (Projected strategy proj(σ)). Let PrGr(σ) = (V,E) be the projection graph
of σ. We define the following projected strategy σ′ = proj(σ) = (σ′u, σ′n,M ′,m′0):

(Memory set). The memory set of proj(σ) isM ′ = V = {(U,BoolRecσ(m),SetRecσ(m)) |
U ⊆ S and m ∈M}.
(Initial memory). The initial memory state of proj(σ) is m′0 =
({s0},BoolRecσ(m0),SetRecσ(m0)).
(Memory update). Let m = (U,B,L) ∈ M ′, o ∈ O and a ∈ A. Then σ′u(m, o, a) is
the uniform distribution over the set {m′ = (U ′, B′, L′) ∈ M ′ | m a→ m′ ∈ E and U ′ ⊆
γ−1(o)}.
(Action selection). Given m ∈ M ′, the action selection function σ′n(m) is the uniform
distribution over {a ∈ A | ∃m′ ∈M ′ s.t. m a→ m′ ∈ E}.

Let (V,E) = PrGr(σ) be the projection graph, and let σ′ = proj(σ) be the projected strategy.
The chain G � σ′ is a finite-state Markov chain, with state space S ×M ′, which is a subset
of S × P(S)× {0, 1}|S| ×D|S|.
Random variable notations. For all n ≥ 0 we write Xn, Yn, Cn, Zn,Wn for the random
variables which correspond respectively to the projection of the n-th state of the Markov
chain G � σ′ on the S component, the P(S) component, the {0, 1}|S| component, the D|S|

component, and the n-th action, respectively.

Run of the Markov chain G � σ′. A run on G � σ′ is a sequence r = (X0, Y0, C0, Z0) W0→
(X1, Y1, C1, Z1) W1→ ... such that each finite prefix of r is generated with positive probab-
ility on the chain, i.e., for all i ≥ 0, we have (i) Wi ∈ Supp(σ′n(Yi, Ci, Zi)); (ii) Xi+1 ∈
Supp(δ(Xi,Wi)); and (iii) (Yi+1, Ci+1, Zi+1) ∈ Supp(σ′u((Yi, Ci, Zi), γ(Xi+1),Wi)).

In the following lemma we show that reachability in the Markov chain G � σ implies
reachability in the Markov chain G � σ′. Intuitively, the result follows from the fact that the
projected strategy σ′ plays in the collapsed memory state uniformly all actions that were
played at all the corresponding memory states of the original strategy σ.

I Lemma 10. Let σ′ = proj(σ) be the projected strategy of σ. Given s, s′ ∈ S and
m,m′ ∈ M , if (s′,m′) is reachable from (s,m) in G � σ, then for all Y ⊆ S such
that (s, Y,BoolRecσ(m),SetRecσ(m)) is a state of G � σ′, there exists Y ′ ⊆ S such
that (s′, Y ′,BoolRecσ(m′),SetRecσ(m′)) is reachable from (s, Y,BoolRecσ(m),SetRecσ(m))
in G � σ′.

Proof. Suppose first that (s′,m′) is reachable from (s,m) in G � σ in one step. Let
Y ⊆ S be such that (s, Y,BoolRecσ(m),SetRecσ(m)) is a state of G � σ′. Then there
exists an edge in the projection graph of σ from (Y,BoolRecσ(m),SetRecσ(m)) to an-
other vertex (Y ′,BoolRecσ(m′),SetRecσ(m′)). As a consequence, there exists Y ′ ⊆ S such

K. Chatterjee, M. Chmelik, and M. Tracol 175

that (s′, Y ′,BoolRecσ(m′),SetRecσ(m′)) is reachable from (s, Y,BoolRecσ(m),SetRecσ(m))
in G � σ′.

We conclude the proof by induction: if (s′,m′) is reachable from (s,m) in G � σ, then
there exists a sequence of couples (s1,m1), (s2,m2), ..., (si,mi) such that (s1,m1) = (s,m),
(si,mi) = (s′,m′), and for all j ∈ {1, ..., i− 1} we have that (sj+1,mj+1) is reachable from
(sj ,mj) in one step. Using the proof for an elementary step (or one step) inductively on
such a sequence, we get the result. J

In the following lemma we establish the crucial properties of the Markov chain obtained
from the projected strategy.

I Lemma 11. Let X0 ∈ S, Y0 ∈ P(S), C0 ∈ {0, 1}|S| and Z0 ∈ D|S|, and let
r = (X0, Y0, C0, Z0) W0→ (X1, Y1, C1, Z1) W1→ ... be a run on G � σ′ with a starting state
(X0, Y0, C0, Z0). Then for all n ≥ 0 the following assertions hold:

Xn+1 ∈ Supp(δ(Xn,Wn)).
Zn(Xn) is not empty.
Zn+1(Xn+1) ⊆ Zn(Xn).
(Yn, Cn, Zn) Wn→ (Yn+1, Cn+1, Zn+1) is an edge in E, where (V,E) = PrGr(σ).
If Cn(Xn) = 1, then Cn+1(Xn+1) = 1.
If Cn(Xn) = 1, then |Zn(Xn)| = 1; and if {Z} = Zn(Xn), then for all j ≥ 0 we have
col(Xn+j) ∈ Z.

Proof. We prove the last point. Suppose (Xn, Yn, Cn, Zn) is such that Cn(Xn) = 1. Let
m ∈M be an arbitrary memory state such that Cn = BoolRecσ(m) and Zn = SetRecσ(m).
By hypothesis, since Cn(Xn) = 1, it follows that (Xn,m) is a recurrent state in the Markov
chain G � σ. As a consequence, only one recurrent class R ⊆ S ×M of G � σ is reachable
from (Xn,m), and (Xn,m) belongs to this class. Hence Zn(Xn) = {col(Proj1(R))}, and
thus |Zn(Xn)| = 1. It also follows that all states (X ′,m′) reachable in one step from
(Xn,m) also belong to the recurrent class R. It follows that Xn+1 ∈ Proj1(R) and hence
col(Xn+1) ∈ col(Proj1(R)). By induction for all j ≥ 0 we have col(Xn+j) ∈ col(Proj1(R)).
The desired result follows. J

We now introduce the final notion that is required to complete the proof. The notion
is that of a pseudo-recurrent state. Intuitively a state (X,Y,C, Z) is pseudo-recurrent if Z
contains exactly one recurrent subset, X belongs to the subset and it will follow that for
some memory m ∈M (of certain desired property) (X,m) is a recurrent state in the Markov
chain G � σ. The important property that is useful is that once a pseudo-recurrent state is
reached, then C and Z remain invariant (follows from Lemma 11).

I Definition 12 (Pseudo-recurrent states). Let X ∈ S, Y ⊆ S, C ∈ {0, 1}|S|, and Z ∈ D|S|.
Then the state (X,Y,C, Z) is called pseudo-recurrent if there exists Z∞ ⊆ D such that:
(i) Z(X) = {Z∞}, (ii) col(X) ∈ Z∞, and (iii) C(X) = 1.

I Lemma 13. Let (X,Y,C, Z) be a pseudo-recurrent state. If (X ′, Y ′, C ′, Z ′) is reach-
able from (X,Y,C, Z) in G � σ′, then (X ′, Y ′, C ′, Z ′) is also a pseudo-recurrent state and
Z ′(X ′) = Z(X).

We establish the following key properties of pseudo-recurrent states with the aid of the
properties of Lemma 11. Firstly, with probability 1 a run of a Markov chain G � σ′ reaches
a pseudo-recurrent state.

CSL’13

176 What is Decidable about POMDPs with omega-Regular Objectives

I Lemma 14. Let X ∈ S, Y ∈ P(S), C ∈ {0, 1}|S|, and Z ∈ D|S|. Then almost-surely (with
probability 1) a run on G � σ′ from any starting state (X,Y,C, Z) reaches a pseudo-recurrent
state.

Proof. We show that given (X,Y,C, Z) there exists a pseudo-recurrent state (X ′, Y ′, C ′, Z ′)
which is reachable from (X,Y,C, Z) in G � σ′. First let us consider the Markov chain G � σ
obtained from the original finite-memory strategy σ with memory M . Let m ∈ M be
such that C = BoolRecσ(m) and Z = SetRecσ(m). We will now show that the result is
a consequence of Lemma 10. First we know that there exists t ∈ S and m′ ∈ M such
that (t,m′) is recurrent and reachable from (X,m) with positive probability in G � σ. Let
R ⊆ S ×M be the unique recurrent class such that (t,m′) ∈ R, and Z∞ = {col(Proj1(R))}.
By Lemma 10, this implies that from (X,Y,C, Z) we can reach a state (X ′, Y ′, C ′, Z ′) such
that (i) X ′ = t; (ii) Z ′(X ′) = {Z∞}; (iii) col(X ′) ∈ Z∞; and (iv) C ′(X ′) = 1. Hence
(X ′, Y ′, C ′, Z ′) is a pseudo-recurrent state. This shows that from all states with positive
probability a pseudo-recurrent state is reached, and since it holds for all states with positive
probability, it follows that it holds for all states with probability 1. J

Moreover, for every projection ZB of a reachable recurrent class in the Markov chain
G � σ, there exists a pseudo-recurrent state (X ′, Y ′, C ′, Z ′) reachable in G � σ′ such that
Z ′(X ′) = {ZB}.

I Lemma 15. Let (X,Y,C, Z) be a state of G � σ′, and let ZB ∈ Z(X). Then there exists
a pseudo-recurrent state (X ′, Y ′, C ′, Z ′) which is reachable from (X,Y,C, Z) and such that
Z ′(X ′) = {ZB}.

Finally, if we consider a pseudo-recurrent state, and consider the projection on the state
space of the POMDP G of the recurrent classes reachable and consider the colors, then they
coincide with Z(X).

I Lemma 16. Let (X,Y,C, Z) be a pseudo-recurrent state, then we have Z(X) =
SetRecσ′(m′)(X), where m′ = (Y,C, Z).

Proof. Let (X,Y,C, Z) be a pseudo-recurrent state, and let Z∞ be such that Z(X) = {Z∞}.
First, by Lemma 13, we know that if (X ′, Y ′, C ′, Z ′) is reachable from (X,Y,C, Z) in G � σ′,
then col(X ′) ∈ Z∞. This implies that for all ZB ∈ SetRecσ′(m′)(X), where m′ = (Y,C, Z),
we have ZB ⊆ Z∞. Second, by Lemma 10, if (X ′, Y ′, C ′, Z ′) is reachable from (X,Y,C, Z) in
G � σ′ and ` ∈ Z∞, then there exists (X ′′, Y ′′, C ′′, Z ′′) reachable from (X ′, Y ′, C ′, Z ′) such
that col(X ′′) = `. This implies that for all ZB ∈ SetRecσ′(m′)(X), where m′ = (Y,C, Z),
we have Z∞ ⊆ ZB . Thus, SetRecσ′(m′)(X) = {Z∞} = Z(X). J

With the key properties we prove the main lemma (Lemma 17) which shows that the
color sets of the projections of the recurrent classes on the state space of the POMDP
coincide for σ and σ′ = proj(σ). Lemma 17 and Lemma 4 yield Theorem 18.

I Lemma 17. Consider a finite-memory strategy σ = (σu, σn,M,m0) and the pro-
jected strategy σ′ = proj(σ) = (σ′u, σ′n,M ′,m′0). Then we have SetRecσ′(m′0)(s0) =
SetRecσ(m0)(s0); i.e., the colors of the projections of the recurrent classes of the two
strategies on the state space of the POMDP G coincide.

Proof. For the proof, let X = s0, Y = {s0}, C = BoolRecσ(m0), Z = SetRecσ(m0). We
need to show that SetRecσ′(m′0)(X) = Z(X), where m′0 = (Y,C, Z). We show inclusion in
both directions.

K. Chatterjee, M. Chmelik, and M. Tracol 177

First inclusion:(Z(X) ⊆ SetRecσ′(m′0)(X)). Let ZB ∈ Z(X). By Lemma 15, there exists
(X ′, Y ′, C ′, Z ′) which is reachable in G � σ′ from (X,Y,C, Z), which is pseudo-recurrent,
and such that Z ′(X ′) = {ZB}. By Lemma 16, we have Z ′(X ′) = SetRecσ′(m′)(X ′) where
m′ = (Y ′, C ′, Z ′). By Lemma 7, we have SetRecσ′(m′)(X ′) ⊆ SetRecσ′(m′0)(X). This proves
that ZB ∈ SetRecσ′(m′0)(X).
Second inclusion: (SetRecσ′(m′0)(X) ⊆ Z(X)). Conversely, let ZB ∈ SetRecσ′(m′0)(X).
Since G � σ′ is a finite Markov chain, there exists (X ′, Y ′, C ′, Z ′) which is reachable from
(X,Y,C, Z) in G � σ′ and such that:
{ZB} = SetRecσ′(m′)(X ′), where m′ = (Y ′, C ′, Z ′).
For all (X ′′, Y ′′, C ′′, Z ′′) reachable from (X ′, Y ′, C ′, Z ′) in G � σ′ we have {ZB} =
SetRecσ′(m′′)(X ′′) where m′′ = (Y ′′, C ′′, Z ′′).

The above follows from the following property of a finite Markov chain: given a state s of
a finite Markov chain and a recurrent class R reachable from s, from all states t of R the
recurrent class reachable from t isR only. The condition is preserved by a projection on colors
of states in R. By Lemma 14, there exists a pseudo-recurrent state (X ′′, Y ′′, C ′′, Z ′′) which
is reachable from (X ′, Y ′, C ′, Z ′,W ′) in G � σ′. By Lemma 16, we know that Z ′′(X ′′) =
SetRecσ′(m′′)(X ′′) where m′′ = (Y ′′, C ′′, Z ′′). Since SetRecσ′(m′′)(X ′′) = {ZB}, and since
by Lemma 11 (third point) we have Z ′′(X ′′) ⊆ Z ′(X ′) ⊆ Z(X), we get that ZB ∈ Z(X). J

I Theorem 18. Given a POMDP G and a Muller objective Muller(F) with the set D of
colors, if there is a finite-memory almost-sure (resp. positive) winning strategy σ, then
the projected strategy proj(σ), with memory of size at most Mem∗ = 22·|S| · |D||S| (where
D = P(P(D))), is also an almost-sure (resp. positive) winning strategy.

Büchi and coBüchi objectives are parity (thus Muller) objectives with 2 priorities (or colors)
(i.e., d = 2), and from Theorem 18 we obtain an upper bound of 26·|S| on memory size for
them. However, applying the result of Theorem 18 for Muller objectives to parity objectives
we obtain a double exponential bound. We establish Theorem 19: for item (1), we present a
reduction (details in appendix) that for almost-sure (resp. positive) winning given a POMDP
with |S| states and a parity objective with 2 · d priorities constructs an equivalent POMDP
with d · |S| states with coBüchi (resp. Büchi) objectives (and thus applying Theorem 18 we
obtain the 23·d·|S| upper bound); and item (2) follows from Example 5 (and [8] for lower
bounds for reachability and safety objectives).

I Theorem 19. Given a POMDP G and a parity objective Parity(p) with the set D of d
priorities, the following assertions hold: (1) If there is a finite-memory almost-sure (resp.
positive) winning strategy, then there is an almost-sure (resp. positive) winning strategy with
memory of size at most 23·d·|S|. (2) Finite-memory almost-sure (resp. positive) winning
strategies require exponential memory in general, and belief-based stationary strategies are
not sufficient in general for finite-memory almost-sure (resp. positive) winning strategies.

4 Computational Complexity

We will present an exponential time algorithm to solve almost-sure winning in POMDPs
with coBüchi objectives under finite-memory strategies (and our polynomial time reduction
for parity objectives to coBüchi objectives for POMDPs allows our results to carry over to
parity objectives). The results for positive Büchi is similar. The naive algorithm would be
to enumerate over all finite-memory strategies with memory bounded by 26·|S|, this leads
to an algorithm that runs in double-exponential time. Instead our algorithm consists of
two steps: (1) given a POMDP G we first construct a special kind of a POMDP Ĝ such

CSL’13

178 What is Decidable about POMDPs with omega-Regular Objectives

that there is a finite-memory winning strategy in G iff there is a randomized memoryless
winning strategy in Ĝ; and (2) then show how to solve the special kind of POMDPs under
randomized memoryless strategies in time polynomial in the size of Ĝ. We introduce the
special kind of POMDPs which we call belief-observation POMDPs which satisfy that the
current belief is always the set of states with current observation.

I Definition 20. A POMDP G = (S,A, δ,O, γ, s0) is a belief-observation POMDP iff for
every finite prefix w = (s0, a0, s1, a1, . . . , sn) with the observation sequence ρ = γ(w), the
belief B(ρ) is equal to the set of states with the observation γ(sn), i.e., B(ρ) = {s ∈ S |
γ(s) = γ(sn)}.

POMDPs to belief-observation POMDPs. We will construct a belief-observation POMDP Ĝ

from a POMDP G for almost-sure winning with coBüchi objectives. Since we are interested
in coBüchi objectives, for the sequel of this section we will denote byM = 2S×{0, 1}|S|×D|S|,
i.e., all the possible beliefs B, BoolRec and SetRec functions (recall that D is P(P({1, 2}))
for coBüchi objectives). If there exists a finite-memory almost-sure winning strategy σ, then
the projected strategy σ′ = proj(σ) is also a finite-memory almost-sure winning strategy
(by Theorem 18) and will use memory M ′ ⊆ M . The size of the constructed POMDP
Ĝ will be exponential in the size of the original POMDP G and polynomial in the size of
the memory set M (and |M | = 26·|S| is exponential in the size of the POMDP G). We
define the set McoBuchi ⊆ M as the memory elements, where for all states s in the belief
component of the memory, the set SetRec(s) contains only a set with priority two, i.e., there
is no state with priority 1 in the reachable recurrent classes according to SetRec. Formally,
McoBuchi = {(Y,B,L) ∈ M | ∀s ∈ Y,L(s) = {{2}}}. The POMDP Ĝ is constructed
such that it allows all possible ways that a projected strategy of a finite-memory almost-
sure winning strategy could play in G. Informally, since beliefs are part of states of Ĝ
it is belief-observation; and since possible memory states of projected strategies are part
of the state space, we only need to consider memoryless strategies. We will now present
a polynomial time algorithm for the computation of the almost-sure winning set for the
belief-observation POMDP Ĝ with state space Ŝ for coBüchi objectives under randomized
memoryless strategies.
Almost-sure winning observations. For an objective ϕ, we denote by Almost(ϕ) = {o ∈ O |
there exists a randomized memoryless strategy σ such that for all s ∈ γ−1(o). Pσs (ϕ) = 1}
the set of observations such that there is a randomized memoryless strategy to ensure winning
with probability 1 from all states of the observation. Also note that since we consider
belief-observation POMDPs we can only consider beliefs that correspond to all states of an
observation.
Almost-sure winning for coBüchi objectives. We show that the computation can be achieved
by computing almost-sure winning regions for safety and reachability objectives. The steps
of the computation are as follows: (Step 1). Let F ⊆ Ŝ be the set of states of Ĝ where some
actions can be played consistent with a projected strategy of a finite-memory strategy, and
we first compute Almost(Safe(F)). (Step 2). Let Ŝwpr ⊆ Ŝ denote the subset of states that
intuitively correspond to winning pseudo-recurrent (wpr) states, i.e., formally it is defined
as follows: Ŝwpr = {(s, (Y,B,L)) | B(s) = 1, L(s) = {{2}} and p̂(s) = 2}. In the POMDP
restricted to Almost(Safe(F)) we compute the set of observationsW2 = Almost(Reach(Ŝwpr)).
We show that W2 = Almost(coBuchi(p̂−1(2))), and then show that in belief-observation
POMDPs almost-sure safety and reachability sets can be computed in polynomial time (and
thus obtain Theorem 23).

I Lemma 21. Almost(coBuchi(p̂−1(2))) = W2.

K. Chatterjee, M. Chmelik, and M. Tracol 179

Proof. We prove the inclusion W2 ⊆ Almost(coBuchi(p̂−1(2))). Let o ∈ W2 be an observa-
tion in W2, and we show how to construct a randomized memoryless almost-sure winning
strategy ensuring that o ∈ Almost(coBuchi(p̂−1(2))). Let σ be the strategy produced by
the computation of Almost(Reach(Ŝwpr)). We will show that the same strategy ensures also
Almost(coBuchi(p̂−1(2))). As in every observation o the strategy σ plays only a subset of
actions that are available in the POMDP restricted to Almost(Safe(F) (to ensure safety in
F), where F = Ŝ \ ŝb, the loosing absorbing state ŝb is not reachable. Intuitively, the state
ŝb is reached whenever a strategy violates the structure of a projected strategy. Also with
probability 1 the set Ŝwpr is reached. We show that for all states (s, (Y,B,L)) ∈ Ŝwpr that
all the states reachable from (s, (Y,B,L)) have priority 2 according to p̂. Therefore ensuring
that all recurrent classes reachable from Ŝwpr have minimal priority 2. In the construc-
tion of the POMDP Ĝ, the only actions allowed in a state (s, (Y,B,L)) satisfy that for all
states ŝ ∈ Y if B(ŝ) = 1, L(ŝ) = {Z∞} and p̂(s) ∈ Z∞ for some Z∞ ⊆ {1, 2}, then for
all states ŝ′ ∈ Supp(δ(s, a)) we have that p(ŝ′) ∈ Z∞. As all states in (s, (Y,B,L)) ∈ Ŝwpr
have L(s) = {{2}}, it follows that any state reachable in the next step has priority 2.
Let (s′, Y ′, (Y,B,L), a) be an arbitrary state reachable from (s, (Y,B,L)) in one step. By
the previous argument we have that the priority p̂((s′, Y ′, (Y,B,L), a)) = 2. Similarly the
only allowed memory-update actions (Y ′, B′, L′) from state (s′, Y ′, (Y,B,L), a) satisfy that
whenever ŝ ∈ Y and B(ŝ) = 1, then for all ŝ′ ∈ Supp(δ(ŝ, a)), we have that B′(ŝ′) = 1
and similarly we have that L′(s′) is a non-empty subset of L(s), i.e., L′(s′) = {{2}}.
Therefore the next reachable state (s′, (Y ′, B′, L′)) is again in Ŝwpr . In other words, from
states (s, (Y,B,L)) in Ŝwpr in all future steps only states with priority 2 are visited, i.e.,
Safe(p̂−1(2)) is ensured which ensures the coBüchi objective. As the states in Ŝwpr are
reached with probability 1 and from them all recurrent classes reachable have only states
that have priority 2, the desired result follows. J

I Lemma 22. For T ⊆ S and F ⊆ S, the set Y ∗ = Almost(Safe(F)) can be computed in
linear time; and the set Z∗ = Almost(Buchi(T)) and Almost(Reach(T)) can be computed in
quadratic time for belief-observation POMDPs.

I Theorem 23. (1) Given a POMDP G with |S| states and a parity objective with d

priorities, the decision problem of the existence (and the construction if one exists) of a
finite-memory almost-sure (resp. positive) winning strategy can be solved in 2O(|S|·d) time.
(2) The decision problem of given a POMDP and a parity objective whether there exists a
finite-memory almost-sure (resp. positive) winning strategy is EXPTIME-complete.

Concluding remarks. Our EXPTIME-algorithm for parity objectives, and the LAR reduction
of Muller objectives to parity objectives [15] give an 2O(d!·d2·|S|) time algorithm for Muller
objectives with d colors for POMDPs with |S| states, i.e., exponential in |S| and double
exponential in d. Note that the Muller objective specified by the set F maybe in general
itself double exponential in d.

Acknowledgement. We thank Sumit Nain and Moshe Vardi for sharing their work with
us.

References
1 C. Baier, N. Bertrand, and M. Größer. On decision problems for probabilistic Büchi auto-

mata. In FoSSaCS, LNCS 4962, pages 287–301. Springer, 2008.
2 C. Baier, M. Größer, and N. Bertrand. Probabilistic omega-automata. J. ACM, 59(1),

2012.

CSL’13

180 What is Decidable about POMDPs with omega-Regular Objectives

3 C. Baier and J-P. Katoen. Principles of Model Checking. MIT Press, 2008.
4 A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic systems.

In FSTTCS 95, volume 1026 of LNCS, pages 499–513. Springer-Verlag, 1995.
5 P. Billingsley, editor. Probability and Measure. Wiley-Interscience, 1995.
6 P. Cerný, K. Chatterjee, T. A. Henzinger, A. Radhakrishna, and R. Singh. Quantitative

synthesis for concurrent programs. In Proc. of CAV, LNCS 6806, pages 243–259. Springer,
2011.

7 K. Chatterjee, L. Doyen, H. Gimbert, and T. A. Henzinger. Randomness for free. In MFCS,
2010.

8 K. Chatterjee, L. Doyen, and T. A. Henzinger. Qualitative analysis of partially-observable
Markov decision processes. In MFCS, pages 258–269, 2010.

9 A. Condon and R. J. Lipton. On the complexity of space bounded interactive proofs. In
FOCS, pages 462–467, 1989.

10 C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification. Journal
of the ACM, 42(4):857–907, 1995.

11 L. de Alfaro, M. Faella, R. Majumdar, and V. Raman. Code-aware resource management.
In EMSOFT 05. ACM, 2005.

12 R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological sequence analysis: probabilistic
models of proteins and nucleic acids. Cambridge Univ. Press, 1998.

13 J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer-Verlag, 1997.
14 H. Gimbert and Y. Oualhadj. Probabilistic automata on finite words: Decidable and

undecidable problems. In Proc. of ICALP, LNCS 6199, pages 527–538. Springer, 2010.
15 Y. Gurevich and L. Harrington. Trees, automata, and games. In STOC’82, pages 60–65,

1982.
16 H. Howard. Dynamic Programming and Markov Processes. MIT Press, 1960.
17 H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. Temporal-logic-based reactive mission

and motion planning. IEEE Transactions on Robotics, 25(6):1370–1381, 2009.
18 M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic symbolic model

checker. In TOOLS’ 02, pages 200–204. LNCS 2324, Springer, 2002.
19 O. Madani, S. Hanks, and A. Condon. On the undecidability of probabilistic planning and

related stochastic optimization problems. Artif. Intell., 147(1-2):5–34, 2003.
20 N. Meuleau, K-E. Kim, L. P. Kaelbling, and A.R. Cassandra. Solving pomdps by searching

the space of finite policies. In UAI, pages 417–426, 1999.
21 M. Mohri. Finite-state transducers in language and speech processing. Computational

Linguistics, 23(2):269–311, 1997.
22 C. H. Papadimitriou and J. N. Tsitsiklis. The complexity of Markov decision processes.

Mathematics of Operations Research, 12:441–450, 1987.
23 A. Paz. Introduction to probabilistic automata. Academic Press, 1971.
24 A. Pogosyants, R. Segala, and N. Lynch. Verification of the randomized consensus algorithm

of Aspnes and Herlihy: a case study. Distributed Computing, 13(3):155–186, 2000.
25 M.O. Rabin. Probabilistic automata. Information and Control, 6:230–245, 1963.
26 J. H. Reif. The complexity of two-player games of incomplete information. JCSS, 29, 1984.
27 M.I.A. Stoelinga. Fun with FireWire: Experiments with verifying the IEEE1394 root

contention protocol. In Formal Aspects of Computing, 2002.
28 W. Thomas. Languages, automata, and logic. In G. Rozenberg and A. Salomaa, edit-

ors, Handbook of Formal Languages, volume 3, Beyond Words, chapter 7, pages 389–455.
Springer, 1997.

Infinite-state games with finitary conditions∗

Krishnendu Chatterjee1 and Nathanaël Fijalkow2

1 IST Austria, Klosterneuburg, Austria
krishnendu.chatterjee@ist.ac.at

2 LIAFA, Université Denis Diderot-Paris 7, France
Institute of Informatics, University of Warsaw, Poland
nath@mimuw.edu.pl

Abstract
We study two-player zero-sum games over infinite-state graphs equipped with ωB and finitary
conditions.

Our first contribution is about the strategy complexity, i.e the memory required for winning
strategies: we prove that over general infinite-state graphs, memoryless strategies are sufficient
for finitary Büchi, and finite-memory suffices for finitary parity games.

We then study pushdown games with boundedness conditions, with two contributions. First
we prove a collapse result for pushdown games with ωB-conditions, implying the decidability of
solving these games. Second we consider pushdown games with finitary parity along with stack
boundedness conditions, and show that solving these games is EXPTIME-complete.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Two-player games, Infinite-state systems, Pushdown games, Bounds in
omega-regularity, Synthesis

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.181

1 Introduction

Games on graphs. Two-player games played on graphs is a powerful mathematical frame-
work to analyze several problems in computer science as well as mathematics. In particular,
when the vertices of the graph represent the states of a reactive system and the edges represent
the transitions, then the synthesis problem (Church’s problem) asks for the construction of a
winning strategy in a game played on the graph [12, 30]. Game-theoretic formulations have
also proved useful for the verification, refinement, and compatibility checking of reactive
systems [4]; and has deep connection with automata theory and logic, e.g the celebrated
decidability result of monadic second-order logic over infinite trees due to Rabin [33].
Omega-regular conditions: strengths and weaknesses. In the literature, two-player games
on finite-state graphs with ω-regular conditions have been extensively studied [21, 22, 25, 26].
The class of ω-regular languages provides a robust specification language for solving control
and verification problems (see, e.g, [32]). Every ω-regular condition can be decomposed into
a safety part and a liveness part [2]. The safety part ensures that the component will not
do anything “bad” (such as violate an invariant) within any finite number of transitions.
The liveness part ensures that the component will do something “good” (such as proceed, or

∗ The first author was supported by Austrian Science Fund (FWF) Grant No P23499 – N23, FWF
NFN Grant No S11407-N23 (RiSE), ERC Start grant (279307: Graph Games), and Microsoft faculty
fellows award. The second author has received funding from the European Union’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement n° 259454 (GALE) and n° 239850 (SOSNA).

© Krishnendu Chatterjee and Nathanaël Fijalkow;
licensed under Creative Commons License CC-BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca ; pp. 181–196

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.181
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

182 Infinite-state games with finitary conditions

respond, or terminate) in the long-run. Liveness can be violated only in the limit, by infinite
sequences of transitions, as no bound is stipulated on when the “good” thing must happen.
This infinitary, classical formulation of liveness has both strengths and weaknesses. A main
strength is robustness, in particular, independence from the chosen granularity of transitions.
Another important strength is simplicity, allowing liveness to serve as an abstraction for
complicated safety conditions. For example, a component may always respond in a number
of transitions that depends, in some complicated manner, on the exact size of the stimulus.
Yet for correctness, we may be interested only that the component will respond “eventually”.
However, these strengths also point to a weakness of the classical definition of liveness: it
can be satisfied by components that in practice are quite unsatisfactory because no bound
can be put on their response time.

Stronger notion of liveness: finitary conditions. For the weakness of the infinitary for-
mulation of liveness, alternative and stronger formulations of liveness have been proposed.
One of these is finitary liveness [3]: it is satisfied if there exists a bound N such that every
stimulus is followed by a response within N transitions. Note that it does not insist on a
response within a known bound N (i.e, every stimulus is followed by a response within N
transitions), but on response within some unknown bound, which can be arbitrarily large;
in other words, the response time must not grow forever from one stimulus to the next. In
this way, finitary liveness still maintains the robustness (independence of step granularity)
and simplicity (abstraction of complicated safety conditions) of traditional liveness, while
removing unsatisfactory implementations.

All ω-regular languages can be defined by a deterministic parity automaton; the parity
condition assigns to each state an integer representing a priority, and requires that in the
limit, every odd priority is followed by a lower even priority. Its finitary counterpart, the
finitary parity condition, strenghtens this by requiring the existence of a bound N such that
in the limit every odd priority is followed by a lower even priority within N transitions.

Games with finitary conditions. Games over finite graphs with finitary conditions have
been studied in [15], leading to very efficient algorithms: finitary parity games can be solved in
polynomial time. In this paper, we study games over infinite graphs with finitary conditions,
and then focus on the widely studied class of pushdown games, which model sequential
programs with recursion. This line of work belongs to the tradition of infinite-state systems
and games, (see e.g [1, 11]). Pushdown games with the classical reachability and parity
conditions have been studied in [5, 37]. It has been established in [37] that the problem of
deciding the winner in pushdown parity games is EXPTIME-complete. However, little is
known about pushdown games with boundedness conditions; one notable exception is parity
and stack boundedness conditions [10, 24]. The stack boundedness condition naturally arises
with the synthesis problem in mind, since bounding the stack amounts to control the depth
of recursion calls of the sequential program.

Bounds in ω-regularity. The finitary conditions are closely related to the line of work
initiated by Bojańczyk in [7], where the MSO + B logic was defined, generalizing MSO over
infinite words by adding a bounding quantifier B. The satisfiability problem for this logic
has been deeply investigated (see for instance [7, 8, 9]), but the decidability for the general
case is still open. A fragment of MSO + B over infinite words was shown to be decidable
in [8], by introducing the model of ωB-automata, which manipulate counters. They perform
three kind of actions on counters: increment (i), reset (r) or nothing (ε). The relation
with finitary conditions has been investigated in [13], where it is shown that automata with
finitary conditions exactly correspond to star-free ωB-expressions.

K. Chatterjee and N. Fijalkow 183

Regular cost-functions. A different perspective for bounds in ω-regularity was developed
by Colcombet in [16] with functions instead of languages, giving rise to the theory of regular
cost-functions and cost-MSO. The decidability of cost-MSO over finite trees was established
in [20], but its extension over infinite trees is still open, and would imply the decidability of
the index of the non-deterministic Mostowski hierarchy [19], a problem open for decades. A
subclass of cost-MSO called temporal cost logic was introduced in [18] and is the counterpart
of finitary conditions for regular cost-functions [13].
Quantification order. The essential difference between the approaches underlying the logics
MSO + B and cost-MSO is a quantifier switch. We illustrate this in the context of games: a
typical property expressed in MSO + B is “there exists a strategy, such that for all plays,
there exists a bound on the counter values”, while cost-MSO allows to express properties like
“there exists a strategy, there exists a bound N , such that for all plays, the counter values
are bounded by N”. In other words, MSO + B expresses non-uniform bounds while bounds
in cost-MSO are uniform.
Memoryless determinacy for infinite-state games. Colcombet pointed out in [17] that
the remaining difficulty to establish the decidability of cost-MSO over infinite trees is a
good understanding of cost-games, and more specifically the cornerstone is to extend the
memoryless determinacy of parity games over infinite arenas, following [21, 22, 26].

This paper investigates the subcase of finitary conditions.
Our contributions. We study two questions about infinite-state games with finitary con-
ditions: the memory requirements of winning strategies and the decidability of solving a
pushdown game.
Strategy complexity. We give (non-effective) characterizations of the winning regions for
finitary games over countably infinite graphs, implying a complete picture of the strategy
complexity. Most importantly, we show that for finitary Büchi conditions memoryless
strategies suffice, and that for finitary parity conditions, memory of size d/2 + 1 suffices,
where d is the number of priorities of the parity condition.
Pushdown games. We present two contributions.

First we consider pushdown games with ωB-conditions and prove the equivalence between
the following: “there exists a strategy, such that for all plays, there exists a bound on the
counter values” and “there exists a strategy, there exists a bound N , such that for all plays,
eventually the counter values are bounded by N”. We refer to this as a collapse result, as it
reduces a quantification with non-uniform bounds (in the fashion of MSO + B) to one with
uniform bounds (à la cost-MSO). Using this, we obtain the decidability of determining the
winner in such games relying on previous results [6, 7].

Second we consider pushdown games with finitary parity along with stack boundedness
conditions, and establish that solving these games is EXPTIME-complete.
All proofs are omitted, but can be found in the technical report [14].

2 Definitions

Arenas and games. The games we consider are played on an arena A = (V, (VE , VA), E),
which consists of a (potentially infinite but countable) graph (V,E) and a partition (VE , VA)
of the vertex set V . A vertex is controlled by Eve and depicted by a circle if it belongs to
VE and controlled by Adam and depicted by a square if it belongs to VA. Playing consists in
moving a pebble along the edges: initially placed on a vertex v0, the pebble is sent along an
edge chosen by the player who controls the vertex. From this infinite interaction results a play
π, which is an infinite sequence of vertices v0, v1, . . . where for all i, we have (vi, vi+1) ∈ E, i.e

CSL’13

184 Infinite-state games with finitary conditions

π is an infinite path in the graph. We denote by Π the set of all plays, and define conditions
for a player by sets of winning plays Ω ⊆ Π. The games are zero-sum, which means that
if Eve’s condition is Ω, then Adam’s condition is Π \ Ω, usually denoted by “CoΩ” (the
conditions are opposite). Formally, a game is given by G = (A,Ω) where A is an arena and
Ω a condition. A condition Ω is prefix-independent if it is closed under adding and removing
prefixes.
Strategies. A strategy for a player is a function that prescribes, given a finite history of the
play, the next move. Formally, a strategy for Eve is a function σ : V ∗ · VE → V such that for
a finite history w ∈ V ∗ and a current vertex v ∈ VE , the prescribed move is legal, i.e along
an edge: (v, σ(w · v)) ∈ E. Strategies for Adam are defined similarly, and usually denoted
by τ . Once a game G = (A,Ω), a starting vertex v0 and strategies σ for Eve and τ for Adam
are fixed, there is a unique play denoted by π(v0, σ, τ), which is said to be winning for Eve if
it belongs to Ω. The sentence “Eve wins from v0” means that she has a winning strategy
from v0, that is a strategy σ such that for all strategies τ for Adam, the play π(v0, σ, τ)
is winning. By “solving the game”, we mean (algorithmically) determine the winner. We
denote by WE(G) the set of vertices from which Eve wins, also referred to as winning set,
or winning region, and analogously WA(G) for Adam. A very important theorem in game
theory, due to Martin [29], states that Borel games (that is, where the condition is Borel) are
determined, i.e we have WE(G) ∪WA(G) = V , i.e from any vertex, exactly one of the two
players has a winning strategy. Throughout this paper, we only consider Borel conditions,
hence our games are determined.
Memory structures. We define memory structures and strategies relying on memory struc-
tures. A memory structure M = (M,m0, µ) for an arena A consists of a set M of memory
states, an initial memory state m0 ∈M , and an update function µ : M ×E →M . A memory
structure is similar to an automaton synchronized with the arena: it starts from m0 and
reads the sequence of edges produced by the arena. Whenever an edge is taken, the current
memory state is updated using the update function µ. A strategy relying on a memory
structureM, whenever it picks the next move, considers only the current vertex and the
current memory state: it is thus given by a next-move function ν : VE ×M → V . Formally,
given a memory structureM and a next-move function ν, we can define a strategy σ for
Eve by σ(w · v) = ν(v, µ∗(w · v)), where µ is extended to µ∗ : V + → M . A strategy with
memory structureM has finite memory if M is a finite set. It is memoryless, or positional
if M is a singleton: in this case, the choice for the next move only depends on the current
vertex, and can be described as a function σ : VE → V .
Attractors. Given F ⊆ V , define Pre(F) as the union of {u ∈ VE | ∃(u, v) ∈ E, v ∈ F} and
{u ∈ VA | ∀(u, v) ∈ E, v ∈ F}. The attractor sequence is the step-by-step computation of
the least fixpoint of the monotone function X 7→ F ∪ Pre(X):{

AttrE
0 (F) = F

AttrE
k+1(F) = AttrE

k (F) ∪ Pre(AttrE
k (F))

The sequence (AttrE
k (F))k≥0 is increasing with respect to set inclusion, so it has a limit,

denoted AttrE(F), the attractor to F . An attractor strategy to F ⊆ V for Eve is a memoryless
strategy that ensures from AttrE(F) to reach F within a finite number of steps. Specifically,
an attractor strategy to F from AttrE

N (F) ensures to reach F within the next N steps.
ω-regular conditions. We define the Büchi and parity conditions. We equip the arena with
a coloring function c : V → [d] where [d] = {0, . . . , d} is the set of colors or priorities. For
a play π, let Inf(π) ⊆ [d] be the set of colors that appear infinitely often in π. The parity

K. Chatterjee and N. Fijalkow 185

condition is defined by Parity(c) = {π | min(Inf(π)) is even}, i.e it is satisfied if the lowest
color visited infinitely often is even. Here, the color set [d] is interpreted as a set of priorities,
even priorities being “good” and odd priorities “bad”, and lower priorities preferable to
higher ones. As a special case, the class of Büchi conditions are defined using the color set
[1] = {0, 1} (i.e d = 1). Setting F as c−1(0) ⊆ V , we define Büchi(F) = {π | 0 ∈ Inf(π)}, i.e
the Büchi condition Büchi(F) requires that infinitely many times vertices in F are reached.
We usually call F the Büchi set and say that a vertex is Büchi if it belongs to F . The dual
is CoBüchi(F) condition, which requires that finitely many times vertices in F are reached.
ωB-conditions. We equip the arena with k counters and an update function C : E →
{ε, i, r}k, associating to each edge an action for each counter. The value of a counter along a
play is incremented by the action i, reset by r and left unchanged by ε. We say that a counter
is bounded along a play if the set of values assumed is finite, and denote by Bounded the set
of plays where all counters are bounded, and Bounded(N) if bounded by N . Conditions of
the form Bounded ∩ Parity(c) are called ωB-conditions.

Note that the bound requirement is not uniform: a strategy is winning if for all plays,
there exists a bound N such that the counters are bounded by N and the parity condition is
satisfied. In other words, the bound N depends on the path. The sentence “Eve wins for
the bound N” means that Eve has a strategy which ensures the bound N uniformly: for all
plays, the counters are bounded by the same N . Similarly, the sentence “the strategy (for
Adam) breaks the bound N” means that it ensures that for all plays, either some counter
reaches the value N or the parity condition is not satisfied.
Finitary conditions. Finitary conditions add bounds requirements over ω-regular condi-
tions [3]. Given a coloring function c : V → [d], and a position k we define:

distk(π, c) = inf
k′≥k

{
k′ − k | c(πk′) is even, and

c(πk′) ≤ c(πk)

}
;

i.e distk(π, c) is the “waiting time” by means of number of steps from the kth vertex
to a preferable priority (that is, even and lower). The finitary parity winning condition
FinParity(c) was defined as follows in [15]: FinParity(c) = {π | lim supk distk(π, c) < ∞},
i.e the finitary parity condition requires that the supremum limit of the distance sequence is
bounded. In the special case where d = 1, this defines the finitary Büchi condition: setting
F = c−1(0), we denote distk(π, F) = inf{k′ − k | k′ ≥ k, πk′ ∈ F}, i.e distk(π, F) is the
number of transitions followed from the kth vertex before reaching the next Büchi vertex.
Then FinBüchi(F) = {π | lim supk distk(π, F) <∞}. In the context of finitary conditions,
the sentence “the strategy (for Adam) breaks the bound N” means that the strategy ensures
that for all plays, there exists a position k such that distk(π, c) > N .
I Remark. As defined, finitary conditions do not form a subclass of ωB-conditions; how-
ever, one can easily show that there exists a deterministic ωB-automaton which recognize
FinParity(c) (see e.g [13]), so finitary parity games easily reduce to ωB games by composing
with this deterministic automaton.

I Example 1. We conclude this section by an example witnessing the difference between
playing a Büchi condition and a finitary Büchi condition over an infinite arena. This is in
contrast to the case of finite arenas, where winning for Büchi and finitary Büchi conditions
are equivalent. Figure 1 presents an infinite arena where only Adam has moves; he loses the
Büchi game but wins for the finitary Büchi game. We give two representations: on the left
as a pushdown game (defined in Section 4), and on the right as an infinite-state game.

A play consists in rounds, each starting whenever the pebble hits the leftmost vertex.
In a round, Adam follows the top path, remaining in Büchi vertices; he may decide at any

CSL’13

186 Infinite-state games with finitary conditions

F

⊥

push(a) pop(a)

F

F F F . . .

. . .

Figure 1 Adam loses the Büchi game but wins the finitary Büchi game.

point to follow an edge down, following the bottom Büchi-free path before geting back to
the leftmost vertex. Whatever Adam does, infinitely many Büchi vertices will be visited, so
Adam loses the Büchi game. However, by going further and further to the right (e.g for i
steps in the ith round), Adam ensures longer and longer paths without Büchi vertices, hence
wins the finitary Büchi game.

3 Strategy complexity for finitary conditions over infinite-state games

In this section we give characterizations of the winning regions for finitary conditions over
infinite arenas, and use them to establish the strategy complexity.

Our motivation to prove the existence of finite-memory strategies comes from automata
theory, where several constructions rely on the existence of memoryless winning strategies
(for parity games): for instance to complement tree automata [22], or to simulate alternating
two-way tree automata by non-deterministic ones [36]. For this, one needs to prove the
existence of finite-memory strategies whose size only depends on the condition. We present
such a result in the following theorem.

I Theorem 2 (Strategy complexity for finitary games). The following assertions hold:
1. For all finitary Büchi games, there exists a memoryless winning strategy for Eve from

her winning set.
2. For all finitary parity games, there exists a winning strategy for Eve from her winning set

that uses at most d/2 + 1 memory states, where d is the number of colors.

3.1 Bounded and uniform conditions
To obtain Theorem 2, we take five steps, summarized in Figure 2, which involve two variants
of finitary conditions: uniform and bounded.

bounded
uniform
Büchi

uniform
Büchi

finitary
Büchi

bounded
parity

finitary
parity

Figure 2 Results implications.

Uniform conditions. The bound N ∈ N is made explicit; for instance the uniform Büchi
condition is Büchi(F,N) = {π | lim supk distk(π, F) ≤ N}.
Bounded conditions. The requirement is not in the limit, but from the start of the play, i.e
the distance function is bounded rather than eventually bounded; for instance the bounded
parity condition is BndParity(c) = {π | supk distk(π, c) <∞}.

The two variants can be combined, for instance the bounded uniform Büchi condition
is BndBüchi(F,N) = {π | supk distk(π, F) ≤ N}. Let us point out that in the special case

K. Chatterjee and N. Fijalkow 187

of Büchi conditions, we have BndBüchi(F) = FinBüchi(F), hence we can refer to these
conditions either as bounded Büchi or as finitary Büchi.

3.2 Strategy complexity for bounded uniform Büchi games
Our first step is the study of bounded uniform Büchi games.

I Theorem 3 (Strategy complexity for bounded uniform Büchi games). For all bounded uniform
Büchi games with bound N , there exists a memoryless winning strategy for Eve from her
winning set.

We show that Eve’s winning set can be described using a greatest fixpoint, which allows
to define a winning memoryless strategy. We define a sequence (Zk)k≥0 of subsets of V :{

Z0 = V

Zk+1 = AttrE
N (F ∩ Pre(Zk))

As this sequence is decreasing with respect to set inclusion, it has a limit1, equivalently
defined as the greatest fixpoint of the monotone function X 7→ AttrE

N (F ∩ Pre(X)): we
denote it by Z.

I Lemma 4. Z =WE(BndBüchi(F,N))

The crucial point is the left-to-right inclusion, which consists in constructing a winning
strategy for Eve from Z. Roughly speaking, the strategy is obtained by nesting attractor
strategies on the slices defined by the sets (Zk)k≥0, and this strategy is memoryless.

3.3 From bounded uniform Büchi games to finitary Büchi games
We sketch the second step. The bounded uniform Büchi conditions are the prefix-dependent
counterpart of the uniform Büchi conditions: Büchi(F,N) = V ∗ ·BndBüchi(F,N). However,
this equality does not imply the equality between WE(Büchi(F,N)) and the attractor of
WE(BndBüchi(F,N)). The following properties hold:
1. WE(BndBüchi(F,N)) ⊆ WE(Büchi(F,N)),
2. if WE(BndBüchi(F,N)) is empty then WE(Büchi(F,N)) is empty.
We sketch the proof of the second item. Assume that Eve wins nowhere for BndBüchi(F,N),
then WA(BndBüchi(F,N)) is the set of all vertices: from everywhere Adam can break the
bound N once. Repeating such a strategy, he can break the bound N infinitely often, so
Adam wins everywhere for the condition Büchi(F,N), which implies WE(Büchi(F,N)) = ∅.

The two properties above imply that the uniform Büchi winning set is obtained by a
least fixpoint iteration using the bounded uniform Büchi winning set. In particular, the
memoryless determinacy transfers from bounded uniform Büchi to uniform Büchi.

This technique will be used several times in the paper (see e.g [27] for similar fixpoint
iterations). It consists in decomposing the uniform Büchi winning set into a sequence of
disjoint subarenas called “slices”, and define a positional strategy for each slice. Aggregating
all those strategies yields a positional winning strategy for the uniform Büchi condition. The
first slice is the attractor of the bounded uniform Büchi winning set, for which Eve has a

1 This follows from our assumption that the arenas have a countable set of vertices. Here we could
drop this assumption and define the sequence indexed by ordinals, which we avoided for the sake of
readability.

CSL’13

188 Infinite-state games with finitary conditions

F

F F . . . F . . .

F
F

F . . .

n

Figure 3 An infinite arena where Eve cannot predict the bound.

positional winning strategy for the uniform Büchi condition. We remove the first slice and
proceed inductively with the remaining arena. The key observation is that a play consistent
with the obtained strategy can only go down the slices, so eventually remains in one slice.
We sketch the third step. Denote by U the operator that associates to an arena the set of
vertices AttrE (

⋃
NWE(Büchi(F,N))). For the sake of readability, we also see U as a set of

vertices once an arena is fixed. We first show how to obtain a memoryless strategy that
wins for the condition FinBüchi(F) from U . This requires us to compose several memoryless
strategies into one:

I Lemma 5 (Union and memoryless strategies [24]). Let (Ωn)n∈N be a family of Borel
conditions, and assume ∪nΩn is prefix-independent. If for all n, Eve wins positionally for
the condition Ωn from Vn, then she wins positionally for the condition ∪nΩn from ∪nVn.

Intuitively, U is the set of vertices where Eve has a strategy to attract in a region won
for some uniform Büchi condition. That is, from some point onwards, Eve can announce a
bound N and claim “I will win for the condition Büchi(F,N)”. However, it may be that even
if Eve wins, she is never able to announce a bound: such a situation happens in Example 6.

I Example 6. Figure 3 presents an infinite one-player arena, where Eve wins yet is not able
to announce a bound. A loop labeled n denotes a loop of length n, where a Büchi vertex is
visited every n steps. In this game, as long as Adam decides to remain in the top path, Eve
cannot claim that she will win for some uniform Büchi condition.

The following properties hold:
1. U ⊆ WE(FinBüchi(F)),
2. if U is empty then WE(FinBüchi(F)) is empty.
We sketch the second item. Assume that for all N , the winning set WE(Büchi(F,N)) is
empty, so Adam wins for the condition CoBüchi(F,N) from everywhere: let τN be a winning
strategy for Adam. From any vertex, the strategy τN ensures that at some point, there will
be a sequence of N consecutive non-Büchi vertices. Playing in turns τ1 until such a sequence
occurs, then τ2, and so on, ensures that the condition FinBüchi(F) is spoiled. Hence Adam
wins everywhere for the condition CoFinBüchi(F), which implies WE(FinBüchi(F)) = ∅.

As for the second step, the winning region for finitary Büchi is obtained as the least
fixpoint of the operator U , implying the memoryless determinacy for finitary Büchi.

We summarize in the following theorem the winning sets characterizations obtained for
the three variants of Büchi conditions, using mu-calculus formulae with infinite disjunction.

I Theorem 7 (Characterizations of the winning set).

WE(BndBüchi(F,N)) = νZ ·AttrE
N (F ∩ Pre(Z))

WE(Büchi(F,N)) = µY · νZ ·AttrE
N ((F ∪ Y) ∩ Pre(Z))

WE(FinBüchi(F)) = µX ·

(⋃
N∈N

µY · νZ ·AttrE
N ((F ∪ Y ∪X) ∩ Pre(Z))

)

K. Chatterjee and N. Fijalkow 189

vn

1

3

0

2

n

to vn+1

Figure 4 An infinite arena where Eve needs memory to win BndParity(c).

3.4 From finitary Büchi to finitary parity games
We sketch the fourth step, which is a reduction from bounded parity games to bounded
Büchi games. We consider a coloring function c : V → [d], and assume d is even. Define the
memory structureM = ({1, 3, . . . , d− 1} ∪ {d},m0, µ), where:

µ(m, (v, v′)) =


m if c(v′) ≥ m
c(v′) if c(v′) < m and c(v′) is odd
d if c(v′) < m and c(v′) is even

The initial memory state m0 is c(v0) if c(v0) is odd, and d otherwise. Intuitively, this memory
structure keeps track of the most urgent pending request.

Let F = {(v, d) | c(v) is even}. We argue that G = (A,BndParity(c)) is equivalent to
G ×M = (A×M,BndBüchi(F)). This follows from the equivalence:

π ∈ BndParity(c) if and only if π̃ ∈ BndBüchi(F),

where π̃ is the play in G ×M corresponding to π. Since Eve has a memoryless winning
strategy in any bounded Büchi game, which implies that she has a winning strategy using
M as memory structure in the original bounded parity game G.

I Example 8. Figure 4 presents an infinite arena, where for condition BndParity(c), Eve
needs two memory states to win. This is in contrast with finite arenas, where she has
memoryless winning strategies [15]. The label n on an edge indicates that the length of the
path is n. A play is divided in rounds, and a round is as follows: first Adam makes a request,
either 1 or 3, and then Eve either answers both requests and proceeds to the next round, or
stops the play visiting color 2. Assume Eve uses a memoryless strategy, and consider two
cases: either she chooses always 0, then Adam wins by choosing always 3, ensuring that
the response time grows unbounded, or at some round she chooses 2, then Adam wins by
choosing 1 at this particular round, ensuring that this last request will never be responded.
However, if Eve answers correctly – that is choosing color 0 for the request 1, and color 2 for
the request 3 – the bounded parity condition is satisfied; this requires two memory states.

The fifth step is very similar to the second, and is omitted here.

4 Pushdown ωB games

In this section we consider pushdown ωB games and prove a collapse result. Along with
previous results [6, 7], this implies that determining the winner in such games is decidable.

Pushdown arenas. A pushdown process is a finite-state machine which features a stack:
it is described as (Q,Γ,∆) where Q is a finite set of control states, Γ is the stack alphabet
and ∆ is the transition relation. There is a special stack symbol denoted ⊥ which does not

CSL’13

190 Infinite-state games with finitary conditions

belong to Γ; we denote by Γ⊥ the alphabet Γ ∪ {⊥}. A configuration is a pair (q, u⊥) (the
top stack symbol is the leftmost symbol of u). There are three kinds of transitions in ∆:

(p, a,push(b), q): allowed if the top stack element is a ∈ Γ⊥, the symbol b ∈ Γ is pushed
onto the stack.
(p,pop(a), q): allowed if the top stack element is a ∈ Γ, the top stack symbol a is popped
from the stack.
(p, a, skip, q): allowed if the top stack element is a ∈ Γ⊥, the stack remains unchanged.

The symbol ⊥ is never pushed onto, nor popped from the stack. The pushdown arena of a
pushdown process is defined as (Q× Γ∗⊥, (QE × Γ∗⊥, QA × Γ∗⊥), E), where (QE , QA) is a
partition of Q and E is given by the transition relation ∆. For instance if (p, a,push(b), q) ∈ ∆,
then ((p, aw⊥), (q, baw⊥)) ∈ E, for all words w in Γ∗.

Conditions. The parity conditions for pushdown arenas are specified over the control states,
i.e do not depend on the stack content. Formally, a coloring function is given by c : Q→ [d],
and extended to c : Q× Γ∗⊥ → [d] by c(q, u⊥) = c(q).

We begin this section by giving an example witnessing an interesting phenomenon of
pushdown games with ωB-conditions.

I Example 9. Figure 5 presents a pushdown ωB game where Eve wins but with arbitrarily
large value of the counter, depending on Adam. Let us first look at the two bottom states:
in the left-hand state at the bottom, Adam can push as many b’s as he wishes, and moves
the token to the state to its right, where all those b’s are popped one at a time, incrementing
the counter each time. In other words, each visit of the two bottom states allows Adam to
announce a number N and to increment the counter by N . We now look at the states on the
top line: the initial state is the leftmost one, where Adam can push an arbitrary number of
a’s. We see those a’s as credits: from the central state, Adam can use one credit (i.e pop an
a) to pay a visit to the two bottom states. When he runs out of credit, which will eventually
happen, he moves the token to the rightmost state, where nothing happens anymore.

F

F

Fpush(a)

push(b)
pop(b)

i

pop(a) ⊥

Figure 5 A pushdown ωB game where Eve wins but with arbitrarily large counter value.

P-automata. We will use alternating P-automata to recognize sets of configurations: an
alternating P-automaton B = (S, δ, F) for the pushdown process (Q,Γ,∆) is a classical
alternating automaton over finite words: S is a finite set of control states, δ : S ×Γ→ B+(S)
is the transition function (the notation B+(S) denotes the positive boolean formulae over S)
and F is the subset of S of final states. We assume that the set of states S contains Q. A
configuration (q, u⊥) is accepted by B if it is accepted with q ∈ Q ⊆ S as initial state and
the classical alternating semantics. A set of configurations is called regular if it is accepted
by an alternating P-automaton.
The following theorem shows that the winning region is regular for a wide class of condi-
tions [34, 35].

K. Chatterjee and N. Fijalkow 191

I Theorem 10 ([35]). For all pushdown games, for all winning conditions Ω ⊆ Qω that are
Borel and prefix-independent, the set WE(Ω) is a regular set of configurations recognized by
an alternating P-automaton of size |Q|.

4.1 The collapse result
We denote that LimitBounded(N) the set of plays which contain a suffix for which the
counters are bounded by N .

I Theorem 11 (The forgetful property). For all pushdown ωB games, for all initial configur-
ations, the following are equivalent:
∃σ strategy for Eve, ∀π plays, ∃N ∈ N, π ∈ Bounded(N) ∩ Parity(c),
∃σ strategy for Eve, ∃N ∈ N, ∀π plays, π ∈ LimitBounded(N) ∩ Parity(c).

The intuition behind the name forgetful property is the following: even if a configuration
carries an unbounded amount of information (since the stack may be arbitrarily large), this
information cannot be forever transmitted along a play. Indeed, to increase the counter values
significantly, Adam has to use the stack, consuming or forgetting its original information.
Example 9 shows that the content of the stack can be used as “credit” for Adam, but also
that if Eve wins then from some point onwards this credit vanishes.

We sketch the proof of the forgetful property. We abbreviate WE(LimitBounded(N) ∩
Parity(c)) by WE(N) and WE(Bounded ∩ Parity(c)) by WE . The following properties hold:
1. WE(0) ⊆ WE(1) ⊆ WE(2) ⊆ · · · ⊆ WE .
2. There exists N such that WE(N) =WE(N + 1) = · · · .
3. For such N , we have V \WE(N) ⊆ WA, hence WE =WE(N).

The first item is clear. For the second we rely on Theorem 10. For every N there exists
BN an alternating P-automaton of size |Q| recognizing WE(N). Since there are finitely
many alternating P-automata of size |Q|, the increasing sequence of the set of configurations
they recognize is ultimately constant, i.e there exists N such that BN = BN+1 = We
now argue that the third item holds. From the complement of WE(N), Adam can ensure to
break the bound N , but also N + 1, and so on, yet remaining there. Iterating such strategies
ensures that the ωB-condition is spoiled, which concludes the proof.
I Remark. The above proof does not give a bound on N ; indeed, the sequence (BN)N∈N is
ultimately constant, but the fact that two consecutive automata recognize the same set of
configurations does not imply that from there on the sequence is constant. It follows that N
can be a priori arbitrarily large.

We refer to [14] for examples showing that the bound N is at least doubly-exponential in
the number of vertices, and exponential in the stack alphabet.

4.2 Decidability of pushdown ωB games
We give two proofs of decidability of solving pushdown games:

First, we prove the decidability of solving pushdown finitary games, relying on the
finite-memory results of Section 3 (Theorem 2), the collapse result (Theorem 11), and [7].
Second, we prove the decidability of solving pushdown ωB games, generalizing the first
item. This relies on the collapse result (Theorem 11) and [6].

We begin by proving the decidability of pushdown finitary games. Note that the second
property in Theorem 11, namely:

∃σ strategy for Eve,∃N ∈ N,∀π plays, π ∈ LimitBounded(N) ∩ Parity(c) ,

CSL’13

192 Infinite-state games with finitary conditions

can be written as an existential bounding formula over infinite trees, whose satisfiability
was proved decidable in [7]. This relies on an MSO interpretation of pushdown graphs into
infinite trees, following [31]. Indeed, thanks to Theorem 2, Eve has a memoryless winning
strategy in G ×M = (A×M,FinParity(c)) from her winning set, and such a strategy can
be described as a set of edges, hence as a monadic second-order variable.

The second proof relies on [6], where it is shown that the membership problem for two-way
alternating parity cost-automata over regular trees is decidable; we reduce our problem
to this. The first step is to reduce the problem of solving a pushdown ωB game to the
membership problem for two-way alternating ωB automata over regular trees, following [28].
Let A be the two-way alternating ωB automaton obtained and t the regular tree. Now
Theorem 11 implies that Eve wins the pushdown ωB game if and only if:

∃N ∈ N,∃σ strategy for Eve,∀π plays, π ∈ LimitBounded(N) ∩ Parity(c) .

We construct a two-way alternating cost-automaton A′ from A such that A′ accepts t
(as a cost-automaton) if and only if A accepts t (as an ωB automaton). The automaton
A′ is obtained by adding at each step the ability to reset all counters at the price of
visiting a very bad color for the parity condition, which takes care of the difference between
LimitBounded(N) and Bounded(N).

The main result of this section follows:

I Theorem 12. Solving a pushdown ωB-game is decidable.

5 Pushdown games with finitary and stack boundedness conditions

In this section, we consider pushdown games with finitary parity along with stack boundedness
conditions, following [10, 24]. We prove that solving such games is EXPTIME-complete.
This is achieved by a reduction which relies on two ideas, that we present separately; the
first is a reduction from finitary parity to bounded parity, and the second a collapse result
for finitary Büchi along with stack boundedness conditions. We then show how to combine
them to obtain a complete reduction, with an optimal complexity.

We denote by BndSt the stack boundedness condition:

BndSt = {π | ∃N, all configurations in π have
stack height less than N } .

5.1 A reduction from finitary parity to bounded parity
The reduction relies on a restart gadget. We consider a pushdown finitary parity game, given
by the coloring function c : Q→ [d], where we assume d to be odd. Between every transition
we add a restart gadget, where Eve can choose either to follow the transition, or to restart:
this entails that first a state with priority 0 is visited, where Adam can push on the stack a
new symbol] an arbitrary number of times, and then go to a state with priority d, where he
pops all the] symbols from the stack, before following the original transition. The intuition
is the following: whenever Eve chooses to restart, visiting the vertex with priority 0 answers
all previous requests, but this comes with the cost that Adam will be able to stay for an
arbitrary long time on a state of odd priority. Therefore, Eve can restart only finitely many
times. The gadget is represented in Figure 6.

I Lemma 13. Eve wins the finitary parity game if and only if she wins the reduced bounded
parity game.

K. Chatterjee and N. Fijalkow 193

p q

cq

0 d

push(♯) pop(♯)

Figure 6 The restart gadget.

5.2 The special case of Büchi conditions
In the study of finitary games over finite graphs [15], the following observation is made:
finitary Büchi coincide with Büchi, while finitary parity differs from parity as soon as three
colors are involved. Over pushdown arenas, even finitary Büchi differs from Büchi, as noted
in Example 1. Yet when intersected with the stack boundedness condition, we show that the
case of finitary Büchi specializes again and collapses to Büchi.

I Lemma 14. For all pushdown games,

WE(FinBüchi(F) ∩ BndSt) =WE(Büchi(F) ∩ BndSt) .

The left-to-right inclusion is clear, since FinBüchi(F) ⊂ Büchi(F). We prove the converse
inclusion relying on memoryless determinacy for the condition Büchi(F)∩BndSt [10]: assume
that σ is a memoryless strategy ensuring Büchi(F) ∩ BndSt, and let π be a play consistent
with σ. First note that between two visits of the same configuration, there must be a Büchi
configuration, otherwise iterating this loop would be a play consistent with σ yet losing.
The second observation is that since the stack height remains smaller than a bound N , the
number of different configurations visited in π is finite and bounded by a function of N . The
combination of these two arguments imply that π satisfies FinBüchi(F).

5.3 The complete reduction
We show how to use both ideas to handle pushdown games with finitary parity and stack
boundedness conditions. We present a three-step reduction, illustrated in Figure 7.

FinParity(c)
and

BndSt

BndParity(c)
and

BndSt(Q)

FinBüchi(F)
and

BndSt(Q)

Büchi(F)
and

BndSt(Q)

restart ×M collapse

Figure 7 Sequence of reductions.

The first step is to adapt the reduction from finitary parity to bounded parity, now
intersected with the stack boundedness condition. To this end, we need to modify the stack
boundedness condition so that it ignores the configurations in the restart gadget; we define
its restriction to Q:

BndSt(Q) = {π | ∃N,
all configurations in π
with control state in Q

have stack height less than N
} .

CSL’13

194 Infinite-state games with finitary conditions

Now the reduction is from finitary parity and stack boundedness to bounded parity and
restricted stack boundedness.

The second step is to compose with the memory structure from the fourth step of Section 3,
giving an equivalent pushdown game with the condition finitary Büchi and restricted stack
boundedness.

The third step is the collapse of finitary Büchi to Büchi. Note that the collapse stated in
Lemma 14 deals with stack boundedness, not restricted to a subset of states. Indeed, the
result does not hold in general for this modified stack boundedness condition, but it does
hold here due to the special form of the restart gadget, that is used only finitely many times.

This three-step reduction produces in linear time an equivalent pushdown game with the
condition Büchi and stack boundedness restricted to Q. It has been shown in [10, 24] that
deciding the winner in a pushdown game with condition Büchi and stack boundedness is
EXPTIME-complete; a slight modification of their techniques extends this to the restricted
definition of stack boundedness.

I Theorem 15. Determining the winner in a pushdown game with finitary parity and stack
boundedness conditions is EXPTIME-complete.

Conclusion. We studied boundedness games over infinite arenas, and investigated two
questions. First, the strategy complexity over general infinite arenas; we proved that finite-
memory winning strategies exist for finitary parity games. It remains open to extend this
to cost-parity games [23]. Second, the decidability of pushdown games; we proved that
pushdown ωB-games are decidable, and pushdown games with finitary parity along with
stack boundedness conditions are EXPTIME-complete.

Acknowledgments. We thank Denis Kuperberg and Thomas Colcombet for sharing and
explaining [6], Damian Niwinski for raising the question of pushdown finitary games, Olivier
Serre for many inspiring discussions and Florian Horn for interesting suggestions. We are
grateful to the anonymous reviewers for their valuable comments.

References
1 Parosh Aziz Abdulla, Ahmed Bouajjani, and Julien d’Orso. Monotonic and downward

closed games. J. Log. Comput., 18(1):153–169, 2008.
2 Bowen Alpern and Fred B. Schneider. Defining liveness. Inf. Process. Lett., 21(4):181–185,

1985.
3 Rajeev Alur and Thomas A. Henzinger. Finitary fairness. ACM Trans. Program. Lang.

Syst., 20(6):1171–1194, 1998.
4 Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time temporal logic.

J. ACM, 49(5):672–713, 2002.
5 Rajeev Alur, Salvatore La Torre, and P. Madhusudan. Modular strategies for recursive

game graphs. Theor. Comput. Sci., 354(2):230–249, 2006.
6 Achim Blumensath, Thomas Colcombet, Denis Kuperberg, and Michael Vanden Boom,

2013. Personal communication.
7 Mikołaj Bojańczyk. A bounding quantifier. In CSL, pages 41–55, 2004.
8 Mikołaj Bojańczyk and Thomas Colcombet. Bounds in ω-regularity. In LICS, pages 285–

296, 2006.
9 Mikołaj Bojańczyk and Szymon Toruńczyk. Weak MSO+U over infinite trees. In STACS,

pages 648–660, 2012.

K. Chatterjee and N. Fijalkow 195

10 Alexis-Julien Bouquet, Olivier Serre, and Igor Walukiewicz. Pushdown games with unboun-
dedness and regular conditions. In FSTTCS, pages 88–99, 2003.

11 Tomás Brázdil, Petr Jancar, and Antonín Kucera. Reachability games on extended vector
addition systems with states. In ICALP (2), pages 478–489, 2010.

12 J. Richard Büchi and Lawrence H. Landweber. Definability in the monadic second-order
theory of successor. J. Symb. Log., 34(2):166–170, 1969.

13 Krishnendu Chatterjee and Nathanaël Fijalkow. Finitary languages. In LATA, pages 216–
226, 2011.

14 Krishnendu Chatterjee and Nathanaël Fijalkow. Infinite-state games with finitary condi-
tions. CoRR, abs/1301.2661, 2013.

15 Krishnendu Chatterjee, Thomas A. Henzinger, and Florian Horn. Finitary winning in
omega-regular games. ACM Trans. Comput. Log., 11(1), 2009.

16 Thomas Colcombet. The theory of stabilisation monoids and regular cost functions. In
ICALP (2), pages 139–150, 2009.

17 Thomas Colcombet. Fonctions régulières de coût. Habilitation Thesis (in French), 2013.
18 Thomas Colcombet, Denis Kuperberg, and Sylvain Lombardy. Regular temporal cost func-

tions. In ICALP (2), pages 563–574, 2010.
19 Thomas Colcombet and Christof Löding. The non-deterministic Mostowski hierarchy and

distance-parity automata. In ICALP (2), pages 398–409, 2008.
20 Thomas Colcombet and Christof Löding. Regular cost functions over finite trees. In LICS,

pages 70–79, 2010.
21 E. Allen Emerson and Charanjit S. Jutla. The complexity of tree automata and logics of

programs (extended abstract). In FOCS, pages 328–337, 1988.
22 E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus and determinacy

(extended abstract). In FOCS, pages 368–377, 1991.
23 Nathanaël Fijalkow and Martin Zimmermann. Cost-parity and cost-streett games. In

FSTTCS, pages 124–135, 2012.
24 Hugo Gimbert. Parity and exploration games on infinite graphs. In CSL, pages 56–70,

2004.
25 Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and In-

finite Games, volume 2500 of Lecture Notes in Computer Science. Springer, 2002.
26 Yuri Gurevich and Leo Harrington. Trees, automata, and games. In STOC, pages 60–65,

1982.
27 Eryk Kopczyński. Half-positional determinacy of infinite games. In ICALP (2), pages

336–347, 2006.
28 Orna Kupferman and Moshe Y. Vardi. An automata-theoretic approach to reasoning about

infinite-state systems. In CAV, pages 36–52, 2000.
29 Donald A. Martin. Borel determinacy. Annals of Mathematics, 102(2):363–371, 1975.
30 Robert McNaughton. Infinite games played on finite graphs. Ann. Pure Appl. Logic,

65(2):149–184, 1993.
31 David E. Muller and Paul E. Schupp. The theory of ends, pushdown automata, and second-

order logic. Theor. Comput. Sci., 37:51–75, 1985.
32 Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In POPL, pages

179–190, 1989.
33 Michael O. Rabin. Decidability of second-order theories and automata on infinite trees.

Transactions of the AMS, 141:1–23, 1969.
34 Olivier Serre. Note on winning positions on pushdown games with ω-regular conditions.

Inf. Process. Lett., 85(6):285–291, 2003.
35 Olivier Serre. Contribution à l’étude des jeux sur des graphes de processus à pile. PhD

thesis, Université Paris 7 - Denis Diderot, 2006.

CSL’13

196 Infinite-state games with finitary conditions

36 Moshe Y. Vardi. Reasoning about the past with two-way automata. In ICALP, pages
628–641, 1998.

37 Igor Walukiewicz. Pushdown processes: Games and model-checking. Inf. Comput.,
164(2):234–263, 2001.

Annotation-Free Sequent Calculi for Full
Intuitionistic Linear Logic∗

Ranald Clouston, Jeremy Dawson, Rajeev Goré, and Alwen Tiu

Logic and Computation Group, Research School of Computer Science,
The Australian National University, Canberra ACT 0200, Australia

Abstract
Full Intuitionistic Linear Logic (FILL) is multiplicative intuitionistic linear logic extended with
par. Its proof theory has been notoriously difficult to get right, and existing sequent calculi all
involve inference rules with complex annotations to guarantee soundness and cut-elimination. We
give a simple and annotation-free display calculus for FILL which satisfies Belnap’s generic cut-
elimination theorem. To do so, our display calculus actually handles an extension of FILL, called
Bi-Intuitionistic Linear Logic (BiILL), with an ‘exclusion’ connective defined via an adjunction
with par. We refine our display calculus for BiILL into a cut-free nested sequent calculus with
deep inference in which the explicit structural rules of the display calculus become admissible.
A separation property guarantees that proofs of FILL formulae in the deep inference calculus
contain no trace of exclusion. Each such rule is sound for the semantics of FILL, thus our deep
inference calculus and display calculus are conservative over FILL. The deep inference calculus
also enjoys the subformula property and terminating backward proof search, which gives the
NP-completeness of BiILL and FILL.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Linear logic, display calculus, nested sequent calculus, deep inference

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.197

1 Introduction

Multiplicative Intuitionistic Linear Logic (MILL) contains as connectives only tensor ⊗, its
unit I, and its residual ⊸, where we use I rather than the usual 1 to avoid a clash with the
categorical notation for terminal object. The connective par ` and its unit � are traditionally
only introduced when we move to classical Multiplicative Linear Logic (MLL), but Hyland
and de Paiva’s Full Intuitionistic Linear Logic (FILL) [20] shows that a sensible notion of
par can be added to MILL without collapse to classicality. FILL’s semantics are categorical,
with the interaction between the (⊗, I,⊸) and (`,�) fragments entirely described by the
equivalent formulae shown below:

(p⊗ (q ` r)) ⊸ ((p⊗ q)` r) ((p⊸ q)` r) ⊸ (p⊸ (q ` r)) (1)

The first formula is variously called weak distributivity [20, 11], linear distributivity [12], and
dissociativity [14]. The second we call Grishin (b) [16]. Its converse, called Grishin (a), is
not FILL-valid, and indeed adding it to FILL recovers MLL.

From a traditional sequent calculus perspective, FILL is the logic specified by taking a
two-sided sequent calculus for MLL, which enjoys cut-elimination, and restricting its (⊸ R2)

∗ We gratefully acknowledge the comments of the anonymous reviewers. This work is partly supported
by the ARC Discovery Projects DP110103173 and DP120101244.

© Ranald Clouston, Jeremy Dawson, Rajeev Goré, and Alwen Tiu;
licensed under Creative Commons License CC-BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca; pp. 197–214

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.197
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

198 Annotation-Free Sequent Calculi for Full Intuitionistic Linear Logic

rule to apply only to “singletons on the right”, giving (⊸ R1), as shown below:

Γ,A ⊢ B(⊸ R1) Γ ⊢ A⊸ B

Γ,A ⊢ B,∆(⊸ R2) Γ ⊢ A⊸ B,∆

Since exactly this restriction converts Gentzen’s LK for ordinary classical logic to Gentzen’s
LJ for intuitionistic logic, FILL arises very naturally. Unfortunately the resulting calculus
fails cut-elimination [26]. (Note that there is also work on natural deduction and proof nets
for FILL [12, 1, 24, 13]. In this setting the problems of cut-elimination are side-stepped; see
the discussion of “essential cuts” in [12] in particular.)

Hyland and de Paiva [20] therefore sought a middle ground between the too weak (⊸ R1)
and the unsound (⊸ R2) by annotating formulae with term assignments, and using them to
restrict the application of (⊸ R2) - the restriction requires that the variable typed by A not
appear free in the terms typed by ∆. Reasoning with freeness in the presence of variable
binders is notoriously tricky, and a bug was subsequently found by Bierman [4] which meant
that the proof of the sequent below requires a cut that is not eliminable:

(a` b)` c ⊢ a, (b` c⊸ d)` e⊸ d` e (2)

Bierman [4] presented two possible corrections to the term assignment system, one due to
Bellin. These were subsequently refined by Bräuner and de Paiva [6] to replace the term
assignments by rules annotated with a binary relation between formulae on the left and
on the right of the turnstile, which effectively trace variable occurrence. The only existing
annotation-free sequent calculi for FILL [15, 16] are incorrect. The first [15] uses (⊸ R2)
without the required annotations, making it unsound, and also contains other transcription
errors. The second [16] identifies FILL with ‘Bi-Linear Logic’, which fails weak distributivity
and has an extra connective called ‘exclusion’, of which more shortly.

The existing correct annotated sequent calculi [4, 6] have some weaknesses. First, the
introduction rules for a connective do not define that connective in isolation, as was Gentzen’s
ideal. Instead, they introduce ⊸ on the right only when the context in which the rule
sits obeys the rule’s side-condition. A consequence is that they cannot be used for naive
backward proof search since we must apply the rule upwards blindly, and then check the
side-conditions once we have a putative derivation. Second, the term-calculus that results
from the annotations has not been shown to have any computational content since its sole
purpose is to block unsound inferences by tracking variable occurrence [6]. Thus, FILL’s close
relationship with other logics is obscured by these complex annotational devices, leading to
it being described as proof-theoretically “curious” [12], and leading others to conclude that
FILL “does not have a satisfactory proof theory” [9].

We believe these difficulties arise because efforts have focused on an ‘unbalanced’ logic.
We show that adding an ‘exclusion’ connective *, dual to ⊸, gives a fully ‘balanced’ logic,
which we call Bi-Intuitionistic Linear Logic (BiILL). The beauty of BiILL is that it has a
simple display calculus [3, 16] BiILLdc that inherits Belnap’s general cut-elimination theorem
“for free”. A similar situation has already been observed in classical modal logic, where it has
proved impossible to extend traditional Gentzen sequents to a uniform and general proof-
theory encompassing the numerous extensions of normal modal logic K. Display calculi
capture a large class of such modal extensions uniformly and modularly [27, 22] by viewing
them as fragments of (the display calculi for) tense logics, which conservatively extend modal
logic with two modalities ⧫ and ∎, respectively adjoint to the original ◻ and ◇.

In tense logics, the conservativity result is trivial since both modal and tense logics are
defined with respect to the same Kripke semantics. With BiILL and FILL, however, there is

R. Clouston, J. Dawson, R. Goré, and A. Tiu 199

no such existing conservativity result via semantics. The conservativity of BiILL over FILL
would follow if we could show that a derivation of a FILL formula in BiILLdc preserved
FILL-validity downwards: unfortunately, this does not hold, as explained next.

Belnap’s generic cut-elimination procedure applies to BiILLdc because of the “display
property”, whereby any substructure of a sequent can be displayed as the whole of either
the antecedent or succedent. The display property for BiILLdc is obtained via certain re-
versible structural rules, called display rules, which encode the various adjunctions between
the connectives, such as the one between par and exclusion. Any BiILLdc-derivation of a
FILL formula that uses this adjunction to display a substructure contains occurrences of a
structural connective which is an exact proxy for exclusion. That is, a BiILLdc-derivation of
a FILL formula may require inference steps that have no meaning in FILL, thus we cannot
use our display calculus BiILLdc directly to show conservativity of BiILL over FILL. We cir-
cumvent this problem by showing that the structural rules to maintain the display property
become admissible, provided one uses deep inference.

Following a methodology established for bi-intuitionistic and tense logics [17, 18], we
show that the display calculus for BiILL can be refined to a nested sequent calculus [21, 7],
called BiILLdn, which contains no explicit structural rules, and hence no cut rule, as long
as its introduction rules can act “deeply” on any substructure in a given structure. To
prove that BiILLdn is sound and complete for BiILL, we use an intermediate nested sequent
calculus called BiILLsn which, similar to our display calculus, has explicit structural rules,
including cut, and uses shallow inference rules that apply only to the topmost sequent in a
nested sequent. Our shallow inference calculus BiILLsn can simulate cut-free proofs of our
display calculus BiILLdc, and vice versa. It enjoys cut-elimination, the display property and
coincides with the deep-inference calculus BiILLdn with respect to (cut-free) derivability.
Together these imply that BiILLdn is sound and (cut-free) complete for BiILL. Our deep
nested sequent calculus BiILLdn also enjoys a separation property: a BiILLdn-derivation of
a formula A uses only introduction rules for the connectives appearing in A. By selecting
from BiILLdn only the introduction rules for the connectives in FILL, we obtain a nested
(cut-free and deep inference) calculus FILLdn which is complete for FILL. We then show
that the rules of FILLdn are also sound for the semantics of FILL. The conservativity of
BiILL over FILL follows since a FILL formula A which is valid in BiILL will be cut-free
derivable in BiILLdc, and hence in BiILLdn, and hence in FILLdn, and hence valid in FILL.

Viewed upwards, introduction rules for display calculi use shallow inference and can
require disassembling structures into an appropriate form using the display rules, meaning
that display calculi do not enjoy a “substructure property”. The modularity of display
calculi also demands explicit structural rules for associativity, commutativity and weak-
distributivity. These necessary aspects of display calculi make them unsuitable for proof
search since the various structural rules and reversible rules can be applied indiscriminately.
As structural rules are admissible in the nested deep inference calculus BiILLdn, proof search
in it is easier to manage than in the display calculus. Using BiILLdn, we show that the
tautology problem for BiILL and FILL are in fact NP-complete.

For full proof details we refer readers to the extended version of this paper [10].

CSL’13

200 Annotation-Free Sequent Calculi for Full Intuitionistic Linear Logic

2 Display Calculi

2.1 Syntax
I Definition 1. BiILL-formulae are defined using the grammar below where p is from some
fixed set of propositional variables

A ∶∶= p ∣ I ∣ � ∣ A⊗A ∣ A`A ∣ A⊸ A ∣ A *A

Antecedent and succedent BiILL-structures (also known as antecedent and succedent parts)
are defined by mutual induction, where Φ is a structural constant and A is a BiILL-formula:

Xa ∶∶= A ∣ Φ ∣Xa,Xa ∣Xa <Xs Xs ∶∶= A ∣ Φ ∣Xs,Xs ∣Xa >Xs

FILL-formulae are BiILL-formulae with no occurrence of the exclusion connective *. FILL-
structures are BiILL-structures with no occurrence of <, and containing only FILL-formulae.
We stipulate that ⊗ and ` bind tighter than ⊸ and *, that comma binds tighter than >
and <, and resolve A⊸ B ⊸ C as A⊸ (B ⊸ C). A BiILL- (resp. FILL-) sequent is a pair
comprising an antecedent and a succedent BiILL- (resp. FILL-) structure, written Xa ⊢Xs.

I Definition 2. We can translate sequents X ⊢ Y into formulae as τa(X) ⊸ τs(Y), given
the mutually inductively defined antecedent and succedent τ -translations:

A Φ X,Y X > Y X < Y
τa A I τa(X) ⊗ τa(Y) τa(X) * τs(Y)
τs A � τs(X)` τs(Y) τa(X) ⊸ τs(Y)

Hence Φ and comma are overloaded to be translated into different connectives depending on
their position. By uniformly replacing our structural connective < with >, we could have also
overloaded > to stand for ⊸ and *, which would have avoided the blank spaces in the above
table, but we have opted to use different connectives to help visually emphasise whether a
given structure lives in BiILL or its fragment FILL.

The display calculi for FILL and BiILL are given in Fig. 1.
I Remark. For conciseness, we treat comma-separated structures as multisets and usually
omit explicit use of (Ass ⊢), (⊢ Ass), (Com ⊢) and (⊢ Com). The residuated pair and dual
residuated pair rules (rp) and (drp) are the display postulates which give Thm. 3 below. Our
display postulates build in commutativity of comma, so the two (Com) rules are derivable.
If we wanted to drop commutativity [12], we would have to use the more general display
postulates from [16]. Note that (drp) may create the structure < which has no meaning in
FILL, so we will return to this issue. For now, observe that proofs of even apparently trivial
FILL-sequents such as (p` q)` r ⊢ p, (q` r) require (drp) to ‘move p out the way’ so (⊢ `)
can be applied. Another (drp) then eliminates the < to restore p to the right. The rule (⊢
Grnb) is the structural version of Grishin (b), the right hand formula of (1); the rule (Grnb
⊢) is equivalent. Fig. 2 gives a cut-free proof of the example from Bierman (2).

I Theorem 3 (Display Property). For every structure Z which is an antecedent (resp. suc-
cedent) part of the sequent X ⊢ Y , there is a sequent Z ⊢ Y ′ (resp. X ′ ⊢ Z) obtainable from
X ⊢ Y using only (rp) and (drp), thereby displaying the Z as the whole of one side.

I Theorem 4 (Cut-Admissibility). From cut-free BiILLdc-derivations of X ⊢ A and A ⊢ Y
there is an effective procedure to obtain a cut-free BiILLdc-derivation of X ⊢ Y .

Proof. BiILLdc obeys Belnap’s conditions for cut-admissibility [3]: see App. A. J

R. Clouston, J. Dawson, R. Goré, and A. Tiu 201

Cut and identity:

(id) p ⊢ p X ⊢ A A ⊢ Y(cut)
X ⊢ Y

Logical rules:
Φ ⊢X(I ⊢)
I ⊢X (⊢ I) Φ ⊢ I

(� ⊢) � ⊢ Φ X ⊢ Φ(⊢ �)
X ⊢ �

A,B ⊢X(⊗ ⊢)
A⊗B ⊢X

X ⊢ A Y ⊢ B(⊢ ⊗)
X,Y ⊢ A⊗B

A ⊢X B ⊢ Y(` ⊢)
A`B ⊢X,Y

X ⊢ A,B(⊢ `)
X ⊢ A`B

X ⊢ A B ⊢ Y(⊸⊢)
A⊸ B ⊢X > Y

X ⊢ A > B(⊢⊸)
X ⊢ A⊸ B

Structural rules:

X ⊢ Y > Z(rp)
X,Y ⊢ Z

X,Y ⊢ Z
(rp)

Y ⊢X > Z
X < Y ⊢ Z(drp)
X ⊢ Y,Z

X ⊢ Y,Z
(drp)

X < Z ⊢ Y
X,Φ ⊢ Y

(Φ ⊢)
X ⊢ Y

X ⊢ Φ, Y
(⊢ Φ)

X ⊢ Y
W, (X,Y) ⊢ Z

(Ass ⊢)
(W,X), Y ⊢ Z

W ⊢ (X,Y), Z
(⊢ Ass)

W ⊢X, (Y,Z)
X,Y ⊢ Z(Com ⊢)
Y,X ⊢ Z

X ⊢ Y,Z(⊢ Com)
X ⊢ Z,Y

W, (X < Y) ⊢ Z
(Grnb ⊢)

(W,X) < Y ⊢ Z
W ⊢ (X > Y), Z

(⊢ Grnb)
W ⊢X > (Y,Z)

Further logical rules for BiILLdc:
A < B ⊢X(* ⊢)
A *B ⊢X

X ⊢ A B ⊢ Y(⊢ *)
X < Y ⊢ A *B

Figure 1 FILLdc and BiILLdc: display calculi for FILL and BiILL.

2.2 Semantics

I Definition 5. A FILL-category is a category equipped with
a symmetric monoidal closed structure (⊗, I,⊸)
a symmetric monoidal structure (`,�)
a natural family of weak distributivity arrows A⊗ (B `C) → (A⊗B)`C.

A BiILL-category is a FILL-category where the ` bifunctor has a co-closure *, so there is
a natural isomorphism between arrows A→ B `C and A *B → C.

IDefinition 6. The free FILL- (resp. BiILL-) category has FILL- (resp. BiILL-) formulae as
objects and the following arrows (quotiented by certain equations) where we are given objects
A,A′,A′′,B,B′ and arrows f ∶ A → A′, f ′ ∶ A′ → A′′, g ∶ B → B′, (♡,K) ∈ {(⊗, I), (`,�)},
and where the co-closure arrows exist in the free BiILL-category only:

Category: A
id // A A

f ′○f // A′′

Symmetric Monoidal: A♡B
f♡g // A′♡B′ (A♡B)♡C

α // A♡(B♡C)
α−1
oo

K♡A
λ // A
λ−1
oo A♡K

ρ // A
ρ−1
oo A♡B

γ // B♡A

CSL’13

202 Annotation-Free Sequent Calculi for Full Intuitionistic Linear Logic

a ⊢ a b ⊢ b(` ⊢)
a` b ⊢ a, b c ⊢ c

(` ⊢)
(a` b)` c ⊢ a, b, c

(drp)
(a` b)` c < a ⊢ b, c

(⊢ `)
(a` b)` c < a ⊢ b` c d ⊢ d

(⊸⊢)
b` c⊸ d ⊢ ((a` b)` c < a) > d e ⊢ e

(` ⊢)
(b` c⊸ d)` e ⊢ (((a` b)` c < a) > d), e

(⊢ Grnb)
(b` c⊸ d)` e ⊢ ((a` b)` c < a) > d, e

(rp)
(b` c⊸ d)` e, ((a` b)` c < a) ⊢ d, e

(⊢ `)
(b` c⊸ d)` e, ((a` b)` c < a) ⊢ d` e

(rp)
(a` b)` c < a ⊢ (b` c⊸ d)` e > d` e

(⊢⊸)
(a` b)` c < a ⊢ (b` c⊸ d)` e⊸ d` e

(drp)
(a` b)` c ⊢ a, (b` c⊸ d)` e⊸ d` e

Figure 2 The cut-free FILLdc-derivation of the example from Bierman.

Closed: A⊸ B
A⊸g // A⊸ B′ (A⊸ B) ⊗A ε // B A

η // B ⊸ A⊗B

Weak Distributivity: A⊗ (A′ `A′′) ω // (A⊗A′)`A′′

Co-Closed: A *B
f*B // A′ *B A`B *A ε // B A

η // B ` (A *B)

We will suppress explicit reference to the associativity and symmetry arrows.

I Definition 7. A FILL- (resp. BiILL-) sequent X ⊢ Y is satisfied by a FILL- (resp. BiILL-)
category if, given any valuation of its propositional variables as objects, there exists an arrow
I → τa(X) ⊸ τs(Y). It is FILL- (resp. BiILL-) valid if it is satisfied by all such categories.
In fact, we only need to check the free categories under their generic valuations.

I Remark. Those familiar with categorical logic will note that our use of category theory
here is rather shallow, looking only at whether hom-sets are populated, and not at the rich
structure of equivalences between proofs that categorical logic supports. This is an adequate
basis for this work because the question of FILL-validity alone has proved so vexed.

I Theorem 8. BiILLdc (Fig. 1) is sound and cut-free complete for BiILL-validity.

Proof. BiILLdc-proof rules and the arrows of the free BiILL-category are interdefinable. J

I Corollary 9. The display calculus FILLdc is cut-free complete for FILL-validity.

Proof. Because BiILL-categories are FILL-categories, and BiILLdc proofs of FILL-sequents
are FILLdc proofs. J

We will return to the question of soundness for FILLdc in Sec. 4.

3 Deep Inference and Proof Search

We now present a refinement of the display calculus BiILLdc, in the form of a nested sequent
calculus, that is more suitable for proof search. A nested sequent is essentially just a
structure in display calculus, but presented in a more sequent-like notation. This change
of notation allows us to present the proof systems much more concisely. The proof system
we are interested in is the deep inference system in Sec. 3.2, but we shall first present an
intermediate system, BiILLsn, which is closer to display calculus, and which eases the proof
of correspondence between the deep inference calculus and the display calculus for BiILL.

R. Clouston, J. Dawson, R. Goré, and A. Tiu 203

3.1 The Shallow Inference Calculus
The syntax of nested sequents is given by the grammar below where Ai and Bj are formulae.

S T ∶∶= S1, . . . , Sk,A1, . . . ,Am ⇒ B1, . . . ,Bn, T1, . . . , Tl

We use Γ and ∆ for multisets of formulae and use P , Q, S, T , X, Y , etc., for sequents, and
S, X , etc., for multisets of sequents and formulae. The empty multiset is ⋅ (‘dot’).

A nested sequent can naturally be represented as a tree structure as follows. The nodes
of the tree are traditional two-sided sequents (i.e., pairs of multisets). The edges between
nodes are labelled with either a −, denoting nesting to the left of the sequent arrow, or a +,
denoting nesting to the right of the sequent arrow. For example, the nested sequent below
can be visualised as the tree in Fig. 3 (i):

(e, f ⇒ g), (p, (u, v⇒ x, y) ⇒ q, r), a, b⇒ c, d, (⋅ ⇒ s) (3)

A display sequent can be seen as a nested sequent, where ⊢, > and < are all replaced by
⇒ and the unit Φ is represented by the empty multiset. The definition of a nested sequent
incorporates implicitly the associativity and commutativity of comma, and the effects of its
unit, via the multiset structure.

I Definition 10. Following Def. 2, we can translate nested sequents into equivalence classes
of BiILL-formulae (modulo associativity, commutativity, and unit laws) via τ -translations:

τa(S1, . . . , Sk,A1, . . . ,Am ⇒ B1, . . . ,Bn, T1, . . . , Tl)
= (τa(S1) ⊗⋯⊗ τa(Sk) ⊗A1 ⊗⋯⊗Am) * (B1 `⋯`Bn ` τs(T1)`⋯` τs(Tl))

τs(S1, . . . , Sk,A1, . . . ,Am ⇒ B1, . . . ,Bn, T1, . . . , Tl)
= (τa(S1) ⊗⋯⊗ τa(Sk) ⊗A1 ⊗⋯⊗Am) ⊸ (B1 `⋯`Bn ` τs(T1)`⋯` τs(Tl)).

The translations τa and τs differ only in their translation of the sequent symbol ⇒ to ⊸
and * respectively. Where m = 0, A1 ⊗⋯⊗Am translates to I, and similarly B1 `⋯`Bn
translates to � when n = 0. These translations each extend to a map from multisets of
nested sequents and formulae to formulae: τa (resp. τs) acts on each sequent as above,
leaves formulae unchanged, and connects the resulting formulae with ⊗ (resp. `). Empty
multisets are mapped to I (resp. �).

A context is either a ‘hole’ [], called the empty context, or a sequent where exactly one
node has been replaced by a hole []. Contexts are denoted by X[]. We write X[S] to
denote a sequent resulting from replacing the hole [] in X[] with the sequent S. A non-
empty context X[] is positive if the hole [] occurs immediately to the right of a sequent
arrow ⇒, and negative otherwise. This simple definition of polarities of a context is made
possible by the use of the same symbol ⇒ to denote the structural counterparts of ⊸ and
*. As we shall see in Sec. 3.2, this overloading of ⇒ allows a presentation of deep inference
rules that ignores context polarity.

The shallow inference system BiILLsn for BiILL is given in Fig. 4. The main difference
from BiILLdc is that we allow multiple-conclusion logical rules. This implicitly builds the
Grishin (b) rules into the logical rules (see [10]).

I Theorem 11. A formula is cut-free BiILLsn-provable iff it is cut-free BiILLdc-provable.

I Corollary 12. The cut rule is admissible in BiILLsn.

Just as in display calculus (Thm. 3), the display property holds for BiILLsn.

CSL’13

204 Annotation-Free Sequent Calculi for Full Intuitionistic Linear Logic

a, b⇒ c, d
−
yy −

��
+
$$

e, f ⇒ g p⇒ q, r

−
��

⋅ ⇒ s

u, v⇒ x, y

a⇒ c
−
|| −��

+
!!

e⇒ g p⇒
−��

⋅ ⇒ ⋅

u⇒ x

b⇒ d
−
|| −

��
+
""

f ⇒ ⋅ ⋅ ⇒ q, r

−
��

⋅ ⇒ s

v⇒ y

(i) (ii) (iii)

Figure 3 A tree representation of a nested sequent (i), and its partitions (ii and iii).

Cut and identity: p⇒ p id
S ⇒ S ′,A A,T ⇒ T ′

S,T ⇒ S ′,T ′
cut

Structural rules:

S ⇒ T ,T ′

(S ⇒ T) ⇒ T ′
drp1

S,T ⇒ T ′

S ⇒ (T ⇒ T ′)
rp1

(S ⇒ S ′),T ⇒ T ′

(S,T ⇒ S ′) ⇒ T ′
gl

(S ⇒ T) ⇒ T ′

S ⇒ T ,T ′
drp2

S ⇒ (T ⇒ T ′)
S,T ⇒ T ′

rp2
S ⇒ (S ′ ⇒ T ′),T
S ⇒ (S ′ ⇒ T ′,T)

gr

Logical rules:

� ⇒ ⋅ �l
S ⇒ T
S ⇒ T ,� �r

S ⇒ T
S, I⇒ T Il ⋅ ⇒ I Ir

S,A,B ⇒ T
S,A⊗B ⇒ T

⊗l

S ⇒ A,T S ′ ⇒ B,T ′

S,S ′ ⇒ A⊗B,T ,T ′
⊗r

S,A⇒ T S ′,B ⇒ T ′

S,S ′,A`B ⇒ T ,T ′
`l

S ⇒ A,B,T
S ⇒ A`B,T `r

S ⇒ A,T S ′,B ⇒ T ′

S,S ′,A⊸ B ⇒ T ,T ′
⊸l

S ⇒ T , (A⇒ B)
S ⇒ T ,A⊸ B

⊸r

S, (A⇒ B) ⇒ T
S,A *B ⇒ T

*l

S ⇒ A,T S ′,B ⇒ T ′

S,S ′ ⇒ A *B,T ,T ′
*r

Figure 4 The shallow inference system BiILLsn, where gl and gr capture Grishin (b).

I Proposition 13 (Display property). Let X[] be a positive (negative) context. For every
S, there exists T such that T ⇒ S (respectively S ⇒ T) is derivable from X[S] using only
the structural rules from {drp1, drp2, rp1, rp2}. Thus S is “displayed” in T ⇒ S (S ⇒ T).

3.2 The Deep Inference Calculus
A deep inference rule can be applied to any sequent within a nested sequent. This poses a
problem in formalising context splitting rules, e.g., ⊗ on the right. To be sound, we need to
consider a context splitting that splits an entire tree of sequents, as formalised next.

Given two sequents X1 and X2, their merge set X1 ●X2 is defined inductively as:

X1 ●X2 = { (Γ1,Γ2, Y1, . . . , Ym ⇒∆1,∆2, Z1, . . . , Zn) ∣
X1 = (Γ1, P1, . . . , Pm ⇒∆1,Q1, . . . ,Qn) and
X2 = (Γ2, S1, . . . , Sm ⇒∆2, T1, . . . , Tn) and
Yi ∈ Pi ● Si for 1 ≤ i ≤m and Zj ∈ Qj ● Tj for 1 ≤ j ≤ n }

Note that the merge set of two sequents may not always be defined since mergeable
sequents need to have the same structure. Note also that, because there can be more than

R. Clouston, J. Dawson, R. Goré, and A. Tiu 205

Propagation rules:

X[S ⇒ (A,S ′ ⇒ T ′),T]
X[S,A⇒ (S ′ ⇒ T ′),T]

pl1
X[(S ⇒ T ,A),S ′ ⇒ T ′]
X[(S ⇒ T),S ′ ⇒ A,T ′]

pr1

X[S,A, (S ′ ⇒ T ′) ⇒ T]
X[S, (S ′,A⇒ T ′) ⇒ T]

pl2
X[S ⇒ T ,A, (S ′ ⇒ T ′)]
X[S ⇒ T , (S ′ ⇒ T ′,A)]

pr2

Identity and logical rules: In branching rules, X[] ∈X1[] ●X2[], S ∈ S1 ● S2 and T ∈ T1 ● T2.

X[], U and V are hollow.
X[U , p⇒ p,V] idd

X[], U and V are hollow.
X[�,U ⇒ V] �d

l

X[S ⇒ T]
X[S ⇒ T ,�] �d

r

X[S ⇒ T]
X[S, I⇒ T] Id

l

X[], U and V are hollow.
X[U ⇒ I,V] Id

r

X[S,A,B ⇒ T]
X[S,A⊗B ⇒ T] ⊗d

l

X1[S1 ⇒ A,T1] X2[S2 ⇒ B,T2]
X[S ⇒ A⊗B,T] ⊗d

r

X1[S1 ⇒ A,T1] X2[S2,B ⇒ T2]
X[S,A⊸ B ⇒ T] ⊸d

l

X[S ⇒ T , (A⇒ B)]
X[S ⇒ T ,A⊸ B] ⊸d

r

X1[S1,A⇒ T1] X2[S2,B ⇒ T2]
X[S,A`B ⇒ T] `d

l

X[S ⇒ A,B,T]
X[S ⇒ A`B,T] `d

r

X[S, (A⇒ B) ⇒ T]
X[S,A *B ⇒ T] *d

l

X1[S1 ⇒ A,T1] X2[S2,B ⇒ T2]
X[S ⇒ A *B,T] *d

r

Figure 5 The deep inference system BiILLdn.

one way to enumerate elements of a multiset in the left/right hand side of a sequent, the
result of the merging of two nested sequents is a set, rather than a single nested sequent.
When X ∈ X1 ●X2, we say that X1 and X2 are a partition of X. Fig. 3 (ii) and (iii) show
a partitioning of the nested sequent (3) in the tree representation. Note that the partitions
(ii) and (iii) must have the same tree structure as the original sequent (i).

Given two contexts X1[] and X2[] their merge set X1[] ●X2[] is defined as follows:
If X1[] = [] and X2[] = [] then X1[] ●X2[] = {[]}
If X1[] = (Γ1, Y1[], P1, . . . , Pm ⇒∆1,Q1, . . . ,Qn) and
X2[] = (Γ2, Y2[], S1, . . . , Sm ⇒∆2, T1, . . . , Tn) then

X1[] ●X2[] = { (Γ1,Γ2, Y [], U1, . . . , Um ⇒∆1,∆2, V1, . . . , Vn) ∣
Y [] ∈ Y1[] ● Y2[] and Ui ∈ Pi ● Si for 1 ≤ i ≤m and
Vj ∈ Qj ● Tj for 1 ≤ j ≤ n }

If X1[] = (Γ1, P1, . . . , Pm ⇒∆1, Y1[],Q1, . . . ,Qn) and
X2[] = (Γ2, S1, . . . , Sm ⇒∆2, Y2[], T1, . . . , Tn) then

X1[] ●X2[] = { (Γ1,Γ2, U1, . . . , Um ⇒∆1,∆2, Y [], V1, . . . , Vn) ∣
Y [] ∈ Y1[] ● Y2[] and Ui ∈ Pi ● Si for 1 ≤ i ≤m and
Vj ∈ Qj ● Tj for 1 ≤ j ≤ n }

If X[] =X1[] ●X2[] we say X1[] and X2[] are a partition of X[].
We extend the notion of a merge set between multisets of formulae and sequents as

follows. Given X = Γ ∪ {X1, . . . ,Xn} and Y = ∆ ∪ {Y1, . . . , Yn} their merge set contains all
multisets of the form: Γ ∪∆ ∪ {Z1, . . . , Zn} where Zi ∈Xi ● Yi.

A nested sequent X (resp. a context X[]) is said to be hollow iff it contains no occur-
rences of formulae. For example, (⋅ ⇒ ⋅) ⇒ (⋅ ⇒ []), (⋅ ⇒ ⋅) is a hollow context.

The deep inference system for BiILL, called BiILLdn, is given in Fig. 5. Fig. 6 shows a
cut-free derivation of Bierman’s example in BiILLdn.

CSL’13

206 Annotation-Free Sequent Calculi for Full Intuitionistic Linear Logic

a⇒ a, (⋅ ⇒ ⋅) id
d
⋅ ⇒ (b⇒ b) id

d

b⇒ (⋅ ⇒ b)
pl1

a ` b⇒ a, (⋅ ⇒ b)
`d

l

⋅ ⇒ (c⇒ c) id
d

c⇒ (⋅ ⇒ c)
pl1

(a ` b)` c⇒ a, (⋅ ⇒ b, c)
`d

l

(a` b)` c⇒ a, (⋅ ⇒ b ` c) `d
r ⋅ ⇒ (d⇒ d) id

d

(a` b)` c⇒ a, (b ` c⊸ d⇒ d)
⊸d

l ⋅ ⇒ (e⇒ e) id
d

(a` b)` c⇒ a, ((b ` c⊸ d)` e⇒ d, e)
`d

l

(a` b)` c⇒ a, ((b` c⊸ d)` e⇒ d ` e) `d
r

(a` b)` c⇒ a, (b ` c⊸ d)` e⊸ d ` e ⊸d
r

Figure 6 A cut-free derivation of Bierman’s example in BiILLdn.

3.3 The Equivalence of the Deep and Shallow Nested Sequent Calculi
From BiILLdn to BiILLsn, it is enough to show that every deep inference rule is cut-free
derivable in BiILLsn. For the identity and the constant rules, this follows from the fact that
hollow structures can be weakened away, as they add nothing to provability (see [10]). For
the other logical rules, a key idea to their soundness is that the context splitting operation
is derivable in BiILLsn. This is a consequence of the following lemma (see [10]).

I Lemma 14. The following rules are derivable in BiILLsn without cut:

(X1 ⇒ Y1), (X2 ⇒ Y2),U ⇒ V
(X1,X2 ⇒ Y1,Y2),U ⇒ V

distl
U ⇒ V, (X1 ⇒ Y1), (X2 ⇒ Y2)
U ⇒ V, (X1,X2 ⇒ Y1,Y2)

distr

Intuitively, these rules embody the weak distributivity formalised by the Grishin (b) rule.

I Lemma 15. If X ∈ X1 ● X2 then the rules below are cut-free derivable in BiILLsn:

X1,X2,U ⇒ V
X ,U ⇒ V

ml
U ⇒ V,X1,X2
U ⇒ V,X

mr

Proof. This follows straightforwardly from Lem. 14. J

I Lemma 16. Suppose X[] ∈X1[] ●X2[] and suppose there exists Y [] such that for any
U and any ρ ∈ {drp1, drp2, rp1, rp2}, the figure below left is a valid inference rule in BiILLsn:

Y [U]
X[U]

ρ
Y1[U]
X1[U]

ρ
Y2[U]
X2[U]

ρ

Then there exists Y1[] and Y2[] such that Y [] ∈ Y1[] ● Y2[] and the second and the third
figures above are also valid instances of ρ in BiILLsn.

Proof. This follows from the fact that X[], X1[] and X2[] have exactly the same nested
structure, so whatever display rule applies to one also applies to the others. J

I Theorem 17. If a sequent X is provable in BiILLdn then it is cut-free provable in BiILLsn.

Proof. We show that every rule of BiILLdn is cut-free derivable in BiILLsn. We show here
a derivation of the rule ⊸d

l ; the rest can be proved similarly. So suppose the conclusion of
the rule is X[S,A ⊸ B ⇒ T], and the premises are X1[S1 ⇒ A,T1] and X2[S2,B ⇒ T2],
where X[] ∈ X1[] ●X2[], S ∈ S1 ● S2 and T ∈ T1 ● T2. There are two cases to consider,

R. Clouston, J. Dawson, R. Goré, and A. Tiu 207

depending on whether X[] is positive or negative. We show here the former case, as the
latter case is similar. Prop. 13 entails that X[S,A ⊸ B ⇒ T] is display equivalent to
U ⇒ (S,A ⊸ B ⇒ T) for some U . By Lem. 16, we have U1 and U2 such that U ∈ U1 ● U2,
and (U1 ⇒ V) and (U2 ⇒ V) are display equivalent to, respectively, X1[V] and X2[V], for
any V. The derivation of ⊸d

l in BiILLsn is thus constructed as follows:

X1[S1 ⇒ A,T1]
U1 ⇒ (S1 ⇒ A,T1)

Lem. 16

U1,S1 ⇒ A,T1
rp2

X2[S2,B ⇒ T2]
U2 ⇒ (S2,B ⇒ T2)

Lem. 16

U2,S2,B ⇒ T2
rp2

U1,U2,S1,S2,A⊸ B ⇒ T1,T2
⊸l

U ,S,A⊸ B ⇒ T ml;ml;mr

U ⇒ (S,A⊸ B ⇒ T)
rp1

X[S,A⊸ B ⇒ T]
Prop. 13

J

The other direction of the equivalence is proved by a permutation argument: we first add
the structural rules to BiILLdn, then we show that these structural rules permute up over all
(non-constant) logical rules of BiILLdn. Then when the structural rules appear just below
the idd or the constant rules, they become redundant. There are quite a number of cases
to consider, but they are not difficult once one observes the following property of BiILLdn:
in every rule, every context in the premise(s) has the same tree structure as the context
in the conclusion of the rule. This observation takes care of permuting up structural rules
that affect only the context. The non-trivial cases are those where the application of the
structural rules changes the sequent where the logical rule is applied. We illustrate a case
in the following lemma. The detailed proof can be found in [10].

I Lemma 18. The rules drp1, rp1, drp2, rp2, gl, and gr permute up over all logical rules
of BiILLdn.

Proof. (Outline) We illustrate here a non-trivial interaction between a structural rule and
⊸l, where the conclusion sequent of ⊸l is changed by that structural rule. The other non-
trivial cases follow the same pattern, i.e., propagation rules are used to move the principal
formula to the required structural context.

S1,T1 ⇒ C,U1 S2,T2,B ⇒ U2

S, C ⊸ B,T ⇒ U
⊸l

S, C ⊸ B ⇒ (T ⇒ U)
rp1

↝

S1,T1 ⇒ C,U1

S1 ⇒ (T1 ⇒ C,U1)
rp1

S2,T2,B ⇒ U2

S2 ⇒ (T2,B ⇒ U2)
rp1

S ⇒ (C ⊸ B,T ⇒ U)
⊸l

S, C ⊸ B ⇒ (T ⇒ U)
pl1

J

I Theorem 19. If a sequent X is cut-free BiILLsn-derivable then it is also BiILLdn-derivable.

I Corollary 20. A formula is cut-free BiILLdc-derivable iff it is BiILLdn-derivable.

4 Separation, Conservativity, and Decidability

In this section we return our attention to the relationship between our calculi and the
categorical semantics (Defs. 5 and 6). Def. 10 gave a translation of nested sequents to
formulae; we can hence define validity for nested sequents.

CSL’13

208 Annotation-Free Sequent Calculi for Full Intuitionistic Linear Logic

I Definition 21. A nested sequent S is BiILL-valid if there is an arrow I → τs(S) in the
free BiILL-category.

A nested sequent is a (nested) FILL-sequent if it has no nesting of sequents on the left
of ⇒, and no occurrences of * at all. The formula translation of Def. 10 hence maps FILL-
sequents to FILL-formulae. Such a sequent S is FILL-valid if there is an arrow I → τs(S)
in the free FILL-category.

The calculus BiILLdn enjoys a ‘separation’ property between the FILL fragment using
only �, I, ⊗, `, and ⊸ and the dual fragment using only �, I, ⊗, `, *. Let us define FILLdn
as the proof system obtained from BiILLdn by restricting to FILL-sequents and removing
the rules pr1, pl2, *dl and *dr .

I Theorem 22 (Separation). Nested FILL-sequents are FILLdn-provable iff they are BiILLdn-
provable.

Proof. One direction, from FILLdn to BiILLdn, is easy. The other holds because every
sequent in a BiILLdn derivation of a FILL-sequent is also a FILL-sequent. J

Thm. 22 tells us that every deep inference proof of a FILL-sequent is entirely constructed
from FILL-sequents, each with a τ -translation to FILL-formulae. This contrasts with display
calculus proofs, which must introduce the FILL-untranslatable < even for simple theorems.
By separation, and the equivalence of BiILLdc and BiILLdn (Cor. 20), the conservativity of
BiILL over FILL reduces to checking the soundness of each rule of FILLdn.

I Lemma 23. An arrow A⊗B → C exists in the free FILL-category iff an arrow A→ B ⊸ C

exists. Further, arrows of the following types exist for all formulae A,B,C:
(i) A⊸ B ⊸ C → A⊗B ⊸ C and A⊗B ⊸ C → A⊸ B ⊸ C

(ii) (A⊸ B)`C → A⊸ B `C.

In the proofs below we will abuse notation by omitting explicit reference to τa and τs,
writing Γ1 ⊸∆1 for τa(Γ1) ⊸ τs(∆1) for example.

I Lemma 24. Let X[] be a positive FILL-context. If there exists an arrow f ∶ τs(S) →
τs(T) in the free FILL-category then there also exists an arrow τs(X[S]) → τs(X[T]).
Hence if X[S] is FILL-valid then so is X[T].

I Lemma 25. Given a multiset V of hollow FILL-sequents, there exists an arrow � → τs(V)
in the free FILL-category.

Proof. We will prove this for a single sequent first, by induction on its size. The base case
is the sequent ⋅ ⇒ ⋅, whose τs-translation is I ⊸ �. The existence of an arrow � → I ⊸ � is,
by Lem. 23, equivalent to the existence of �⊗ I → �; this is the unit arrow ρ. The induction
case involves the sequent ⋅ → T1, . . . , Tl, with each Ti hollow; the required arrow exists by
composing the arrows given by the induction hypothesis with � → �`⋯` �. The multiset
case then follows easily by considering the cases where V is empty and non-empty. J

I Lemma 26. Given a multiset T ∈ T1 ● T2 of sequents and formulae, there is an arrow
τs(T1)` τs(T2) → τs(T) in the free FILL-category.

Proof. We prove this for a single sequent first, by induction on its size. The base case
requires an arrow (Γ1 ⊸ ∆1)` (Γ2 ⊸ ∆2) → Γ1 ⊗ Γ2 ⊸ ∆1 ` ∆2 (ref. Lem. 14), which
exists by Lem. 23(ii) and (i). The induction case follows similarly. The multiset case then
follows easily by considering the cases where T is empty and non-empty. J

R. Clouston, J. Dawson, R. Goré, and A. Tiu 209

I Lemma 27. Take X[] ∈ X1[] ●X2[] and T ∈ T1 ● T2. Then the following arrows exist
in the free FILL-category for all A,B,Γ1 and Γ2:
(i) τs(X1[Γ1 ⇒ A,T1]) ⊗ τs(X2[Γ2 ⇒ B,T2]) → τs(X[Γ1,Γ2 ⇒ A⊗B,T]);
(ii) τs(X1[Γ1 ⇒ A,T1]) ⊗ τs(X2[Γ2,B ⇒ T2]) → τs(X[Γ1,Γ2,A⊸ B ⇒ T]);
(iii) τs(X1[Γ1,A⇒ T1]) ⊗ τs(X2[Γ2,B ⇒ T2]) → τs(X[Γ1,Γ2,A`B ⇒ T]);

Proof. All three cases follow by induction on the size of X[]. In all three cases the induction
step is easy, and so we focus on the base cases. By Lem. 23 the base case for (i) requires an
arrow:

(Γ1 ⊸ A` T1) ⊗ (Γ2 ⊸ B ` T2) ⊗ Γ1 ⊗ Γ2 → (A⊗B)` T . (4)

By the ‘evaluation’ arrows ε there is an arrow from the left hand side of (4) to (A` T1) ⊗
(B`T2). Composing this with weak distributivity takes us to ((A`T1)⊗B)`T2, and then
to (A⊗B)` T1 ` T2. Lem. 26 completes the result. The base cases for (ii) and (iii) follow
by similar arguments (App. B). J

I Theorem 28. For every rule of FILLdn, if the premises are FILL-valid then so is the
conclusion.

Proof. As FILL-sequents nest no sequents to the left of⇒, we can modify the rules of Fig. 5
to replace the multisets S,S ′ of sequents and formulae with multisets Γ,Γ′ of formulae only,
and remove the hollow multisets of sequents U entirely (see App. B).

Therefore by Lem. 24 the soundness of pl1 amounts to the existence in the free FILL-
category of an arrow

Γ⊸ (A⊗ Γ′ ⊸ T ′)` T → Γ⊗A⊸ (Γ′ ⊸ T ′)` T .
This follows by two uses of Lem. 23(i). Similarly pr2 requires an arrow

Γ⊸ T `A` (Γ′ ⊸ T ′) → Γ⊸ T ` (Γ′ ⊸ T ′ `A)

which exists by Lem. 23(ii).
idd: by induction on the size of X[]. The base case requires an arrow I → p ⊸ p` V,

which exists by Lems. 25 and 23. Induction involves a sequent ⋅ ⇒X[p⇒ p,V],T ′, with T ′
hollow, and hence requires an arrow I → I ⊸ X[p⇒ p,V]` T ′. By Lem. 23 and the arrow
I ⊗ I → I we need an arrow I → X[p ⇒ p,V] ` T ′; by the induction hypothesis we have
I →X[p⇒ p,V]; this extends to I →X[p⇒ p,V]` �; Lem. 25 completes the proof.

�dl : by another induction on X[]. The base case I → �⊸ V follows by Lems. 23 and 25;
induction follows as with idd.

�dr : By Lem. 24 and the unit property of �.
Idl : By Lem. 24 we need an arrow (Γ⊸ T)⊗Γ⊗ I → T ; this exists by the unit property

of I and the ‘evaluation’ arrow ε.
Idr : another induction on X[]. The base case arrow I → I ⊸ I ` V exists by Lems. 23

and 25; induction follows as with idd.
⊗dl , ⊸d

r , and `dr are trivial by the formula translation.
⊗dr : compose the arrow I → I⊗I with the arrows defined by the validity of the premises,

then use Lem. 27(i). ⊸d
l and `dr follow similarly via Lem. 27(ii) and (iii). J

I Theorem 29. A FILL-formula is FILL-valid iff it is FILLdn-provable, and BiILL is con-
servative over FILL.

Proof. By Cors. 9 and 20 and Thms. 22 and 28. J

CSL’13

210 Annotation-Free Sequent Calculi for Full Intuitionistic Linear Logic

Note that it is also possible to prove soundness of FILLdn w.r.t. FILL syntactically, i.e.,
via a translation into Schellinx’s sequent calculus for FILL [26]. See [10] for details.

Thm. 29 gives us a sound and complete calculus for FILL that enjoys a genuine subfor-
mula property. This in turn allows one to prove NP-completeness of the tautology problem
for FILL (i.e., deciding whether a formula is provable or not), as we show next. The com-
plexity does not in fact change even when one adds exclusion to FILL.

I Theorem 30. The tautology problems for BiILL and FILL are NP-complete.

Proof. (Outline.) Membership in NP is proved by showing that every cut-free proof of a
formula A in BiILLdn can be checked in PTIME in the size of A. This is not difficult to
prove given that each connective in A is introduced exactly once in the proof. NP-hardness is
proved by encoding Constants-Only MLL (COMLL), which is NP-hard [23], in FILLdn. J

5 Conclusion

We have given three cut-free sequent calculi for FILL without complex annotations, showing
that, far from being a curiosity that demands new approaches to proof theory, FILL is in a
broad family of linear and substructural logics captured by display calculi.

Various substructural logics can be defined by using a (possibly non-associative or non-
commutative) multiplicative conjunction and its left and right residual(s) (implications).
Many of these logics have cut-free sequent calculi with comma-separated structures in the
antecedent and a single formula in the succedent. Each of these logics has a dual logic with
disjunction and its residual(s) (exclusions); their proof theory requires sequents built out of
comma-separated structures in the succedent and a single formula in the antecedent. These
logics can then be combined using numerous “distribution principles” [19, 25], of which weak
distributivity is but one example. However, obtaining an adequate sequent calculus for these
combinations is often non-trivial. On the other hand, display calculi for these logics, their
duals, and their combinations, are extremely easy to obtain using the known methodology
for building display calculi [3, 16]. We followed this methodology to obtain BiILL in this
paper, but needed a conservativity result to ensure the resulting calculus BiILLdc was sound
for FILL. We finally note some specific variations on FILL deserving particular attention.
Grishin (a). Adding the converse of Grishin (b) to FILL recovers MLL. For example
(B ⊸ �) ` C ⊢ B ⊸ C is provable using Grn(b), but its converse requires Grn(a). Thus
there is another ‘full’ non-classical extension of MILL with Grishin (a) as its interaction
principle instead of (b). We do not know what significance this logic may have.
Mix rules. It is easy to give structural rules for the mix sequents A,B ⊢ A,B and Φ ⊢ Φ
which have been studied in FILL [12, 1] and so it is natural to ask if the results of this paper
can be extended to them. Intriguingly, our new structural connectives suggest a new mix
rule with sequent form A < B ⊢ B > A which, given Grishin (b), is stronger than the mix
rule for comma (given Grishin (a), it is weaker).
Exponentials. Adding exponentials [5] to our display calculus for FILL may be possible [2].
Additives. While it has been suggested that FILL could be extended with additives, the
only attempt in the literature is erroneous [15]. It is not clear how easy this extension would
be [8, Sec. 1]; it is certainly not straightforward with the display calculus. The problem
is most easily seen through the categorical semantics: additive conjunction ∧ and its unit
⊺ are limits, and p ` - is a right adjoint in BiILL but is not necessarily so in FILL. But
right adjoints preserve limits. Then BiILL plus additives is not conservative over FILL plus
additives, because the sequents (p`q)∧(p`r) ⊢ p, (q∧r) and ⊺ ⊢ p,⊺ are valid in the former
but not the latter, despite the absence of * or <. We are currently investigating solutions.

R. Clouston, J. Dawson, R. Goré, and A. Tiu 211

References
1 Gianluigi Bellin. Subnets of proof-nets in multiplicative linear logic with MIX. Mathematical

Structures in Computer Science, 7(6):663–669, 1997.
2 N D Belnap. Linear logic displayed. Notre Dame Journal of Formal Logic, 31:15–25, 1990.
3 Nuel D Belnap. Display logic. Journal of Philosophical Logic, 11:375–417, 1982.
4 Gavin M. Bierman. A note on full intuitionistic linear logic. APAL, 79(3):281–287, 1996.
5 Torben Bräuner and Valeria de Paiva. Cut-elimination for full intuitionistic linear logic.

Technical Report RS-96-10, Basic Research in Computer Science, 1996.
6 Torben Bräuner and Valeria de Paiva. A formulation of linear logic based on dependency-

relations. In CSL ’97, volume 1414 of LNCS, pages 129–148, 1997.
7 Kai Brünnler. Deep sequent systems for modal logic. Archive for Mathematical Logic,

48(6):551–577, 2009.
8 Bor-Yuh Evan Chang, Kaustuv Chaudhuri, and Frank Pfenning. A judgmental analysis of

linear logic. Technical Report CMU-CS-03-131R, Carnegie Mellon University, 2003.
9 Kaustuv Chaudhuri. The inverse method for intuitionistic linear logic. Technical Report

CMU-CS-03-140, Carnegie Mellon University, 2004.
10 Ranald Clouston, Jeremy Dawson, Rajeev Goré, and Alwen Tiu. Annotation-free sequent

calculi for full intuitionistic linear logic – extended version. arXiv:1307.0289, 2013.
11 J.R.B. Cockett and R.A.G. Seely. Weakly distributive categories. In Applications of Cat-

egories in Computer Science, volume 177 of London Math. Soc. Lect. Note Series, pages
45–65, 1992.

12 J.R.B. Cockett and R.A.G. Seely. Proof theory for full intuitionistic linear logic, bilinear
logic, and MIX categories. Theory and Applications of Categories, 3(5):85–131, 1997.

13 Valeria de Paiva and Eike Ritter. A Parigot-style linear λ-calculus for full intuitionistic
linear logic. Theory and Applications of Categories, 17(3):30–48, 2006.

14 Kosta Došen and Zoran Petrić. Proof-Theoretical Coherence, volume 1 of Studies in Logic.
College Publications, 2004.

15 Didier Galmiche and Eric Boudinet. Proofs, concurrent objects, and computations in a
FILL framework. In OBPDC, volume 1107 of LNCS, pages 148–167. Springer, 1995.

16 Rajeev Goré. Substructural logics on display. Log. J. IGPL, 6(3):451–504, 1998.
17 Rajeev Goré, Linda Postniece, and Alwen Tiu. Cut-elimination and proof search for bi-

intuitionistic tense logic. In Advances in Modal Logic, pages 156–177. College Publications,
2010.

18 Rajeev Goré, Linda Postniece, and Alwen Tiu. On the correspondence between display
postulates and deep inference in nested sequent calculi for tense logics. LMCS, 7(2), 2011.

19 V N Grishin. On a generalization of the Ajdukiewicz-Lambek system. In Studies in Non-
classical Logics and Formal Systems, pages 315–343. Nauka, 1983.

20 Martin Hyland and Valeria de Paiva. Full intuitionistic linear logic (extended abstract).
Ann. Pure Appl. Logic, 64(3):273–291, 1993.

21 Ryo Kashima. Cut-free sequent calculi for some tense logics. Studia Log., 53:119–135, 1994.
22 Marcus Kracht. Power and weakness of the modal display calculus. In Heinrich Wansing,

editor, Proof Theory of Modal Logics, pages 92–121. Kluwer, 1996.
23 Patrick Lincoln and Timothy C. Winkler. Constant-only multiplicative linear logic is NP-

complete. TCS, 135(1):155–169, 1994.
24 Simone Martini and Andrea Masini. Experiments in linear natural deduction. TCS, 176(1-

2):159–173, 1997.
25 Michael Moortgat. Symmetric categorial grammar. J. Philosophical Logic, 38(6):681–710,

2009.
26 Harold Schellinx. Some syntactical observations on linear logic. JLC, 1(4):537–559, 1991.
27 Heinrich Wansing. Sequent calculi for normal modal proposisional logics. JLC, 4(2):125–

142, 1994.

CSL’13

212 Annotation-Free Sequent Calculi for Full Intuitionistic Linear Logic

Propagation rules:

X[Γ⇒ (A,Γ′ ⇒ T ′),T]
X[Γ,A⇒ (Γ′ ⇒ T ′),T]

pl1
X[Γ⇒ T ,A, (Γ′ ⇒ T ′)]
X[Γ⇒ T , (Γ′ ⇒ T ′,A)]

pr2

Identity and logical rules: In branching rules, X[] ∈X1[] ●X2[] and T ∈ T1 ● T2.

X[] and V are hollow.
X[p⇒ p,V] idd

X[] and V are hollow.
X[� ⇒ V] �d

l

X[Γ⇒ T]
X[Γ⇒ T ,�] �d

r

X[Γ⇒ T]
X[Γ, I⇒ T] Id

l

X[] and V are hollow.
X[⋅ ⇒ I,V] Id

r

X[Γ,A,B ⇒ T]
X[Γ,A⊗B ⇒ T] ⊗d

l

X1[Γ1 ⇒ A,T1] X2[Γ2 ⇒ B,T2]
X[Γ1,Γ2 ⇒ A⊗B,T] ⊗d

r

X1[Γ1 ⇒ A,T1] X2[Γ2,B ⇒ T2]
X[Γ1,Γ2,A⊸ B ⇒ T] ⊸d

l

X[Γ⇒ T , (A⇒ B)]
X[Γ⇒ T ,A⊸ B] ⊸d

r

X1[Γ1,A⇒ T1] X2[Γ2,B ⇒ T2]
X[Γ1,Γ2,A`B ⇒ T] `d

l

X[Γ⇒ A,B,T]
X[Γ⇒ A`B,T] `d

r

Figure 7 The deep inference system FILLdn.

A Display Calculus

We outline the conditions that are easily checked to confirm that display calculi enjoy cut-
admissibility (Thm. 4):

IDefinition 31 (Belnap’s Conditions C1-C8). The set of display conditions appears in various
guises in the literature. Here we follow the presentation given in Kracht [22].
(C1) Each formula variable occurring in some premise of a rule ρ is a subformula of some

formula in the conclusion of ρ.
(C2) Congruent parameters is a relation between parameters of the identical structure vari-

able occurring in the premise and conclusion sequents.
(C3) Each parameter is congruent to at most one structure variable in the conclusion.

Equivalently, no two structure variables in the conclusion are congruent to each other.
(C4) Congruent parameters are either all antecedent or all succedent parts of their respective

sequent.
(C5) A formula in the conclusion of a rule ρ is either the entire antecedent or the entire

succedent. Such a formula is called a principal formula of ρ.
(C6/7) Each rule is closed under simultaneous substitution of arbitrary structures for con-

gruent parameters.
(C8) If there are rules ρ and σ with respective conclusions X ⊢ A and A ⊢ Y with formula

A principal in both inferences (in the sense of C5) and if cut is applied to yield X ⊢ Y ,
then either X ⊢ Y is identical to either X ⊢ A or A ⊢ Y ; or it is possible to pass from
the premises of ρ and σ to X ⊢ Y by means of inferences falling under cut where the
cut-formula always is a proper subformula of A.

B Conservativity of BiILL over FILL

Fig. 7 explicitly gives the proof rules for FILLdn, the nested sequent calculus with deep
inference for FILL. These are easily derived from BiILLdn (Fig. 5).

R. Clouston, J. Dawson, R. Goré, and A. Tiu 213

Proof of Lemma 23. This is basic category theory; we give one example to illustrate the
techniques used. Given an arrow f ∶ A ⊗ B → C, we get a new arrow A → B ⊸ C by
composing B ⊸ f with the ‘co-evaluation’ arrow η ∶ A→ B ⊸ (A⊗B). J

Proof of Lemma 24. By induction on the size of X[]. The base case, where X[] is a hole,
is trivial. The induction case involves a context Γ⇒X[],T and hence requires an arrow

Γ⊸X[S]` T → Γ⊸X[T]` T .
This exists by the induction hypothesis and the inductive definitions of Lem. 6. The validity
of X[S] then transfers to X[T] via composition with the arrow I →X[S]. J

Proof of Lemma 27(ii) and (iii). (ii): The base case requires an arrow

(Γ1 ⊸ A` T1) ⊗ (Γ2 ⊗B ⊸ T2) ⊗ Γ1 ⊗ Γ2 ⊗ (A⊸ B) → T . (5)

Applying an evaluation to the left of (5) gives (A` T1) ⊗ (Γ2 ⊗B ⊸ T2) ⊗ Γ2 ⊗ (A ⊸ B);
weak distributivity gives T1 ` (A ⊗ (Γ2 ⊗B ⊸ T2) ⊗ Γ2 ⊗ (A ⊸ B)); two more evaluations
give T1 ` T2 and Lem. 26 completes the result.

(iii): The base case requires an arrow

(Γ1 ⊗A⊸ T1) ⊗ (Γ2 ⊗B ⊸ T2) ⊗ Γ1 ⊗ Γ2 ⊗ (A`B) → T . (6)

Two applications of weak distributivity map the left of (6) to

((Γ1 ⊗A⊸ T1) ⊗ Γ1 ⊗A)` ((Γ2 ⊗B ⊸ T2) ⊗ Γ2 ⊗B).

Two evaluations and Lem. 26 complete the result. J

C Annotated Sequent Calculi Proofs

On the next page we present cut-free proofs of the Bierman example (2) in the style of the
three cut-free annotated sequent calculi in the literature: that due to Bierman [4]; that due
to Bellin reported in [4], and that due to Bräuner and de Paiva [6]. Note that all three
proofs contain the same sequence of proof rules; strip out the annotations and they are
MLL proofs of the sequent. The difference between the calculi lies in the nature of their
annotations, all of which come into play to verify that the final rule application, of (⊸ R),
is legal. The reader is invited to compare these proofs to those presented in the paper using
display calculus (Fig. 2) and deep inference (Fig. 6).

CSL’13

214 Annotation-Free Sequent Calculi for Full Intuitionistic Linear Logic

B
ie
rm

an
-s
ty
le

pr
oo

f;
(⊸

R
)
is

le
ga
lb

ec
au

se
v
an

d
(w

`x
⊸
y
)`

z
sh
ar
e
no

fr
ee

va
ria

bl
es
.

v
∶a
⊢
v
∶a

w
∶b
⊢
w
∶b

v
`w

∶a
`b
⊢
v
∶a
,w

∶b
x
∶c
⊢
x
∶c

(v
`w

)`
x
∶(
a
`b

)`
c
⊢
v
∶a
,w

∶b
,x

∶c
(v

`w
)`

x
∶(
a
`b

)`
c
⊢
v
∶a
,w

`x
∶b

`c
y
∶d
⊢
y
∶d

(v
`w

)`
x
∶(
a
`b

)`
c,
w
`x

⊸
y
∶b

`c
⊸
d
⊢
v
∶a
,y
∶d

z
∶e
⊢
z
∶e

(v
`w

)`
x
∶(
a
`b

)`
c,

(w
`x

⊸
y
)`

z
∶(
b
`c
⊸
d
)`

e
⊢
v
∶a
,y
∶d
,z
∶e

(v
`w

)`
x
∶(
a
`b

)`
c,

(w
`x

⊸
y
)`

z
∶(
b
`c
⊸
d
)`

e
⊢
v
∶a
,y

`z
∶d

`e
(v

`w
)`

x
∶(
a
`b

)`
c
⊢
v
∶a
,λ

(w
`x

⊸
y
)`

z
(b
`c
⊸
d
)`
e
.(
y
`z

)
∶(
b
`c
⊸
d
)`

e
⊸
d
`e

B
el
lin

-s
ty
le

pr
oo

f;
(⊸

R
)
is

le
ga
lb

ec
au

se
r
is

no
t
fr
ee

in
le
t
t
be

u
`-

in
le
t
u
be

v
`-

in
v
.
W
e
ap

ol
og
ise

fo
r
th
e
ex
tr
em

el
y
sm

al
lf
on

t
siz

e
ne
ce
ss
ar
y
to

fit
th
is

pr
oo

fo
n
th
e
pa

ge
.

v
∶a
⊢
v
∶a

w
∶b
⊢
w
∶b

u
∶a

`
b
⊢

le
t
u

b
e
v

`
-

in
v
∶a
,

le
t
u

b
e

-
`
w

in
w
∶b

x
∶c
⊢
x
∶c

t
∶(
a

`
b
)`

c
⊢

le
t
t

b
e
u

`
-

in
le

t
u

b
e
v

`
-

in
v
∶a
,

le
t
t

b
e
u

`
-

in
le

t
u

b
e

-
`
w

in
w
∶b
,

le
t
t

b
e

-
`
x

in
x
∶c

t
∶(
a

`
b
)`

c
⊢

le
t
t

b
e
u

`
-

in
le

t
u

b
e
v

`
-

in
v
∶a
,
(l

et
t

b
e
u

`
-

in
le

t
u

b
e

-
`
w

in
w
)`

(l
et
t

b
e

-
`
x

in
x
)∶
b
`
c

y
∶d
⊢
y
∶d

t
∶(
a

`
b
)`

c
,
s
∶b

`
c
⊸
d
⊢

le
t
t

b
e
u

`
-

in
le

t
u

b
e
v

`
-

in
v
∶a
,
(s
(l

et
t

b
e
u

`
-

in
le

t
u

b
e

-
`
w

in
w
)`

(l
et
t

b
e

-
`
x

in
x
))
∶d

z
∶e
⊢
z
∶e

t
∶(
a

`
b
)`

c
,
r
∶(
b
`
c
⊸
d
)`

e
⊢

le
t
t

b
e
u

`
-

in
le

t
u

b
e
v

`
-

in
v
∶a
,

le
t
r

b
e
s
`

-
in
(s
(l

et
t

b
e
u

`
-

in
le

t
u

b
e

-
`
w

in
w
)`

(l
et
t

b
e

-
`
x

in
x
))
∶d
,

le
t
s

b
e

-
`
z

in
z
∶e

t
∶(
a

`
b
)`

c
,
r
∶(
b
`
c
⊸
d
)`

e
⊢

le
t
t

b
e
u

`
-

in
le

t
u

b
e
v

`
-

in
v
∶a
,
(l

et
r

b
e
s
`

-
in
(s
(l

et
t

b
e
u

`
-

in
le

t
u

b
e

-
`
w

in
w
)`

(l
et
t

b
e

-
`
x

in
x
))
)`

(l
et
s

b
e

-
`
z

in
z
)∶
d
`
e

t
∶(
a

`
b
)`

c
⊢

le
t
t

b
e
u

`
-

in
le

t
u

b
e
v

`
-

in
v
∶a
,
λ
r
(b

`c
⊸
d
)`
e
.(

le
t
r

b
e
s
`

-
in
(s
(l

et
t

b
e
u

`
-

in
le

t
u

b
e

-
`
w

in
w
)`

(l
et
t

b
e

-
`
x

in
x
))
)`

(l
et
s

b
e

-
`
z

in
z
)∶
(b

`
c
⊸
d
)`

e
⊸
d
`
e

B
rä
un

er
an

d
de

Pa
iv
a-
st
yl
e
pr
oo

f;
(⊸

R
)
is

le
ga
lb

ec
au

se
(b

`c
⊸
d
)`

e
is

no
t
re
la
te
d
to
a
.

(a
,a

)
a
⊢
a

(b
,b

)
b
⊢
b

(a
`b

,a
),

(a
`b

,b
)

a
`b
⊢
a
,b

(c
,c

)
c
⊢
c

((
a
`b

)`
c,
a
),

((
a
`b

)`
c,
b)
,(

(a
`b

)`
c,
c)

(a
`b

)`
c
⊢
a
,b
,c

((
a
`b

)`
c,
a
),

((
a
`b

)`
c,
b
`c

)
(a

`b
)`

c
⊢
a
,b

`c
(d
,d

)
d
⊢
d

((
a
`b

)`
c,
a
),

((
a
`b

)`
c,
d
),

(b
`c
⊸
d
,d

)
(a

`b
)`

c,
b
`c
⊸
d
⊢
a
,d

(e
,e

)
e
⊢
e

((
a
`b

)`
c,
a
),

((
a
`b

)`
c,
d
),

((
b
`c
⊸
d
)`

e,
d
),

((
b
`c
⊸
d
)`

e,
e)

(a
`b

)`
c,

(b
`c
⊸
d
)`

e
⊢
a
,d
,e

((
a
`b

)`
c,
a
),

((
a
`b

)`
c,
d
`e

),
((
b
`c
⊸
d
)`

e,
d
`e

)
(a

`b
)`

c,
(b

`c
⊸
d
)`

e
⊢
a
,d

`e
((
a
`b

)`
c,
a
),

((
a
`b

)`
c,

(b
`c
⊸
d
)`

e
⊸
d
`e

)
(a

`b
)`

c
⊢
a
,(
b
`c
⊸
d
)`

e
⊸
d
`e

Deciding the weak definability of Büchi definable
tree languages∗

Thomas Colcombet1, Denis Kuperberg2, Christof Löding3, and
Michael Vanden Boom4

1,2 CNRS and LIAFA, Université Paris Diderot
Paris, France
{thomas.colcombet,denis.kuperberg}@liafa.univ-paris-diderot.fr

3 Informatik 7, RWTH Aachen University
Aachen, Germany
loeding@cs.rwth-aachen.de

4 Department of Computer Science, University of Oxford
Oxford, England
michael.vandenboom@cs.ox.ac.uk

Abstract
Weakly definable languages of infinite trees are an expressive subclass of regular tree languages
definable in terms of weak monadic second-order logic, or equivalently weak alternating automata.
Our main result is that given a Büchi automaton, it is decidable whether the language is weakly
definable. We also show that given a parity automaton, it is decidable whether the language is
recognizable by a nondeterministic co-Büchi automaton.

The decidability proofs build on recent results about cost automata over infinite trees. These
automata use counters to define functions from infinite trees to the natural numbers extended
with infinity. We reduce to testing whether the functions defined by certain “quasi-weak” cost
automata are bounded by a finite value.

1998 ACM Subject Classification F.4.3 Formal Languages

Keywords and phrases Tree automata, weak definability, decidability, cost automata, bounded-
ness

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.215

1 Introduction

Infinite trees are often used as a model for representing the possible behaviours of a system.
Various classes of automata and logic have been introduced in order to reason effectively
about the properties of such systems. In particular, regular tree languages capture a rich class
of properties which can be defined using logic (monadic second-order logic, or a fixpoint logic
called the modal mu-calculus) and automata (including nondeterministic parity automata).

The weakly definable languages are a proper subclass of regular tree languages. These
languages can be expressed in weak monadic second-order logic (in which second-order
quantification is restricted only to finite sets), but they can be described in many other
ways. For instance, Rabin [20] proved that they are precisely the languages for which the

∗ The research leading to these results has received funding from the European Union’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement no259454 and the project Anr 2010 Blan 0202
02 Frec.

© Thomas Colcombet, Denis Kuperberg, Christof Löding, and Michael Vanden Boom;
licensed under Creative Commons License CC-BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca; pp. 215–230

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.215
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

216 Deciding the weak definability of Büchi definable tree languages

language and its complement are recognizable by nondeterministic Büchi automata. Arnold
and Niwiński [2] showed that they can also be defined using the alternation-free mu-calculus.
Muller et al. [15] showed that these languages can be equivalently defined by a form of
alternating automata, called weak automata.

One reason these languages are so well studied is that they subsume temporal logics
like CTL but still admit efficient (linear time) model-checking. Hence, they represent an
expressive class of languages with good computational properties.

Given some regular language of infinite trees in the form of, say, an arbitrary parity
automaton, it would be helpful to be able to decide whether it is weakly definable. We call
this the weak definability problem.

Related work
The weak definability problem is related to the nondeterministic parity index problem or
Mostowski index problem, which asks, given a regular language L of infinite trees and a
finite set of priorities P , is there a nondeterministic parity automaton using only priorities P
that recognizes L.1 A nondeterministic parity automaton assigns to each state a priority.
A run is a labelling of the tree with states, and a run is accepting if the highest priority
occurring infinitely often on each branch is even. We say that a language L is P definable if
there is a nondeterministic parity automaton using priorities P accepting exactly the trees
in L. In the special case that P = {1, 2} (respectively, P = {0, 1}), we say the language is
Büchi definable (respectively, co-Büchi definable), since a nondeterministic parity automaton
using priorities P can be viewed as a nondeterministic Büchi automaton (respectively,
nondeterministic co-Büchi automaton).

Decidability of the nondeterministic parity index problem is known when P is restricted
to a single priority (see [13]). More interesting, Niwiński and Walukiewicz [18] established
decidability for any P as long as the input language is a deterministic tree language (a proper
decidable subclass of regular tree languages).

This parity index problem is connected to the weak definability problem because of
Rabin’s characterization of weakly definable languages: a regular tree language is weakly
definable if and only if the language and its complement are Büchi definable [20]. Since
an automaton recognizing the complement of a regular language can be found effectively
[19, 7], the weak definability problem reduces to determining whether the language and
its complement are Büchi definable. Hence, one route to proving the decidability of weak
definability would be to prove the decidability of Büchi definability. Although Karpiński
reported such a solution already in the 1970s, there is no known written proof [9]. Hence,
the weak definability problem is decidable when the input is a deterministic tree language,
but is open in general.

Colcombet and Löding [5] proposed an alternative approach to solving this problem using
cost automata. Cost automata are traditional finite state automata enriched with a finite
set of counters. Instead of only accepting or rejecting some input structure, cost automata
assign a value based on the evolution of counter values during the run. A cost automaton
A can be viewed as defining a function [[A]] from the set of structures under consideration
to the natural numbers (extended with a special infinity symbol ∞). The idea is that cost
automata can count some behaviour within the input.

1 This is called the nondeterministic parity index problem since the desired automaton is nondeterministic.
There are variants of this problem for different models of automata. See [13] for an overview.

T. Colcombet, D. Kuperberg, C. Löding, and M. Vanden Boom 217

The exact values of the function defined by a cost automaton do not matter. Instead, the
functions are only considered up to an equivalence relation ≈ called the boundedness relation
which ignores exact values but preserves all boundedness properties of the function.

Variants of these automata were famously used by Hashiguchi [8], and later Kirsten [10],
to show the decidability of the star height problem over finite words. The idea is that a
question about language theory like the star height problem is reduced to deciding whether
the function defined by a cost automaton is limited, i.e. whether there is a natural number
bounding the output over all accepted inputs. This is a special case of deciding whether two
functions defined by cost automata are equivalent up to ≈. Because the boundedness relation
is decidable for functions defined using cost automata over finite words ([3, 4]), this work on
cost automata provided an alternative proof for a large part of the proof of decidability of
the star height problem.

In this paper, we are dealing with cost automata working over infinite trees rather than
finite words. Colcombet and Löding [5] provided a reduction of the decidability of the
nondeterministic parity index problem to the decidability of ≈ for cost-parity automata:
parity automata over infinite trees enriched with counters. Unfortunately, the decidability
of ≈ for this richer class of cost-parity automata over infinite trees is open, so the general
parity index problem remains open.

Independently, Afshari and Quickert also gave a reduction of the weak definability problem
for Büchi definable languages to a question of boundedness, but decidability is also open
using their approach [1].

Contributions
Our contribution is to show that recent results developed for the cost automata over infinite
trees can be applied to solving a special case of the weak definability problem when the
input language (or its complement) is Büchi definable. This subsumes the previously known
decidability result for deterministic input. Along the way, we also point out an application
to deciding whether a language is co-Büchi definable.

In other words, we show that the following problems are decidable:
Given an alternating parity automaton over infinite trees, is there a nondeterministic
co-Büchi automaton recognizing the same language? (Theorem 9)
Given an alternating Büchi automaton, alternating co-Büchi automaton, or deterministic
parity automaton over infinite trees, is there a weak automaton recognizing the same
language? (Theorem 10)

The constructions make use of quasi-weak cost automata, which were introduced in [11].
This form of automaton is a new variant of weak automaton with counters, and we believe
this application demonstrates the utility of this new automaton model.

Notation and Conventions
We write N for the set of non-negative integers and N∞ for the set N ∪ {∞}, ordered by
0 < 1 < · · · <∞.

We work with an arbitrary finite alphabet A. The set of finite (respectively, infinite)
words over A is A∗ (respectively, Aω) and the empty word is ε. For notational simplicity we
work only with infinite binary trees. Let T = {0, 1}∗ be the unlabelled infinite binary tree.
The set TA of complete A-labelled binary trees is composed of mappings t : T → A. A branch
π is a word {0, 1}ω. A frontier E is a set of positions in T such that for all branches π in
T , E ∩ π is a singleton. For frontiers E and E′, we write E < E′ if for every branch π, if

CSL’13

218 Deciding the weak definability of Büchi definable tree languages

{x} = E ∩ π and {x′} = E′ ∩ π, then x is a strict ancestor of x′. If x, y are nodes in T , with
x a strict ancestor of y, we write [x, y) for the set of nodes that are strict ancestors of y and
descendants of x, including x itself.

2 Cost automata and cost functions

2.1 Cost automata
The automata that we consider are traditional automata over infinite trees equipped with
a finite set of counters Γ which can be incremented ic, reset r, or left unchanged ε (but
cannot be used to affect the flow of the automaton). Let B := {ic, r, ε} denote this alphabet
of counter actions. Each counter starts with value zero, and the value of a sequence of
actions is the supremum of the values achieved during this sequence. For instance the finite
sequence (ic)(ic)rε(ic)ε has value 2, the infinite sequence ((ic)r)ω has value 1, and the
infinite sequence (ic)r(ic)2r(ic)3r . . . has value ∞. If there are several counters, only the
sequence with the maximal value is taken into account.

Formally, an (alternating) B-Büchi automaton 〈Q,A, q0,Γ, F, δ〉 on infinite trees has a
finite set of statesQ, alphabet A, initial state q0 ∈ Q, a finite set Γ of counters, accepting states
F ⊆ Q, and transition function δ : Q×A→ B+({0, 1}×BΓ×Q), where B+({0, 1}×BΓ×Q)
is the set of positive boolean combinations, written as a disjunction of conjunctions, of
elements (d, ν, q) ∈ {0, 1} × BΓ ×Q.

We view running a B-automaton A on an input tree t as a game A × t between two
players: Eve is in charge of the disjunctive choices and tries to minimize counter values while
satisfying the acceptance condition, and Adam is in charge of the conjunctive choices and
tries to maximize counter values or show the acceptance condition is not satisfied. Because
the transition function is given as a disjunction of conjunctions, we can consider that at each
position, Eve first chooses a disjunct, and then Adam chooses a single tuple (d, ν, q) in this
disjunct.

A play of A on input t is a sequence q0, (d1, ν1, q1), (d2, ν2, q2), . . . compatible with t and
δ, i.e. q0 is initial, and for all i ∈ N, (di+1, νi+1, qi+1) appears in δ(qi, t(d1 . . . di)).

A strategy for Eve (respectively, Adam) in the game A× t is a function that fixes the
next choice of Eve (respectively, Adam), based on the history of the play (respectively, the
history of the play and Eve’s choice of disjunct). Notice that choosing a strategy for Eve and
a strategy for Adam fixes a play in A× t. We say a play π is compatible with a strategy σ
for Eve if there is some strategy σ′ for Adam such that σ and σ′ yield the play π.

A play π is accepting for the Büchi condition specified by F if there is q ∈ F appearing
infinitely often in π. Given a play π from a B-automaton A, the value of π is ∞ if π is not
accepting and is the supremum of the counter values achieved during the play otherwise.

We assign a value to a strategy σ for Eve by taking

value(σ) := sup {value(π) : π is compatible with σ} .

Likewise, the value assigned to the game A× t is

value(A× t) := inf {value(σ) : σ is a strategy for Eve in the game A× t} .

We view A as defining a function [[A]] : TA → N∞ such that [[A]](t) := value(A× t). Hence, in
a B-automaton like this, Eve’s goal is to satisfy the acceptance condition while minimizing
the counter values.

If for all (q, a) ∈ Q× A, δ(q, a) is of the form
∨
i(0, ν0

i , q
0
i) ∧ (1, ν1

i , q
1
i), then we say the

automaton is nondeterministic. We define a run to be the set of possible plays compatible

T. Colcombet, D. Kuperberg, C. Löding, and M. Vanden Boom 219

with some fixed strategy of Eve. Since the only choices of Adam are in the branching, a run
labels the entire binary tree with states, and choosing a branch yields a unique play of the
automaton. A run is accepting if it is accepting on all branches, and the value assigned to a
run of a B-automaton is the supremum of the values across all branches. For nondeterministic
automata, the choices of Eve and Adam in the game described above can be viewed as
Eve picking some (0, ν0

i , q
0
i) ∧ (1, ν1

i , q
1
i), and Adam choosing a direction (which uniquely

determines which atom Adam picks from the conjunction). Note that unless otherwise
indicated, we assume automata are alternating.

We can define other types of cost automata simply by varying the acceptance condition.
Given a set F ⊆ Q, a play is accepting for a co-Büchi condition specified by F if states from
F occur only finitely often on the play. Given a set of priorities P and a mapping Ω : Q→ P

assigning a priority to every state, a play is accepting for the parity condition specified by Ω
if the maximum priority occurring infinitely often on the play is even. B-automata with these
acceptance conditions will be called B-parity or B-co-Büchi automata as expected. Cost
automata is a more general term that includes all of these types of automata with counters.

I Example 1. Let A = {a, b, c}. We describe an alternating B-Büchi automaton A which
computes the function g : TA → N∞ defined by g(t) = 0 if some branch of t has infinitely
many a, and g(t) = sup {|π|b : π is a branch of t} otherwise, where |π|b denotes the number
of b-labelled nodes on the branch π.

Informally, Eve has an initial choice between trying to find a branch with infinitely
many a’s, or counting the number of b’s on a branch chosen by Adam. Formally, let
A = 〈{q0, qa, fa, fb} ,A, q0, {γ} , {fa, fb} , δ〉. For any letter x ∈ A, we have δ(q0, x) =
[(0, ε, qa) ∨ (1, ε, qa)] ∨ [(0, ε, fb) ∧ (1, ε, fb)].

Then, one of the following automata is deterministically executed, the first one on a
branch chosen by Eve, the second one on a branch chosen by Adam.

qa fa fb

b, c : ε
a : ε

a : ε

b, c : ε

a, c : ε

b : ic

For instance, δ(qa, a) = (0, ε, fa) ∨ (1, ε, fa), and δ(fb, b) = (0, ic, fb) ∧ (1, ic, fb).
Notice that if the letter labelling the root is b, the counter is not incremented. This can

result in a difference of 1 between g(t) and [[A]](t). We will see in Section 2.3 that we can
still consider that A defines g, up to some equivalence relation between functions (noted
[[A]] ≈ g).

2.2 Variants of weakness for cost automata
Traditional weak automata are alternating Büchi automata with a restriction that no cycle
of the automaton visits both accepting and rejecting states (this is equivalent to the original
definition in [15]).

In the cost setting, there are two natural variants of weakness. We say an alternating
B-Büchi automaton is

B-weak if in all cycles, either all states are accepting or all states are rejecting;
B-quasi-weak if in all cycles that contain both an accepting state and a rejecting state,
there is a counter that is incremented but not reset.

CSL’13

220 Deciding the weak definability of Büchi definable tree languages

The weakness property is the traditional notion of weakness, and implies that every play
in the game associated with this automaton has to eventually stabilise, either in a strongly
connected component where all states are accepting (so the play is winning for Eve), or in a
strongly connected component where no state is accepting (so the play is winning for Adam).
In fact, this stabilisation occurs after at most |Q|-many changes of mode between accepting
states and rejecting states (where Q is the set of states of the automaton). B-weak automata
were studied in [22].

Similarly, the quasi-weakness property implies that any play that does not stabilise after
kn-changes of mode (for some constant k depending on the automaton but not depending
on the input structure) has a counter with value greater than n. Hence, a play with some
bounded value n ∈ N must have stabilised in accepting states. B-quasi-weak automata
were introduced in [11] where they were shown to be strictly more expressive than B-weak
automata, but not as expressive as general B-parity automata.

Thus, the difference between these models is in the number of allowed mode changes:
unrestricted for B-Büchi automata; bounded by some function of the value for B-quasi-weak
automata; and bounded by some constant for B-weak automata.
I Remark. By definition, a B-weak or B-quasi-weak automaton is a special type of alternating
B-Büchi automaton. However, a B-weak or B-quasi-weak automaton can always be converted
to a B-co-Büchi automaton defining the same function. This can be accomplished by simply
complementing the set F of accepting states in the original B-quasi-weak automaton, and
then viewing the automaton as an alternating B-co-Büchi automaton; the transition function
does not change at all.

We can switch so easily between the Büchi form and co-Büchi form because the only
difference between the Büchi and co-Büchi semantics occurs when the play switches infinitely
many times between accepting and rejecting states. This is impossible in B-weak automata,
and occurs only in plays of infinite counter value in B-quasi-weak automata (when the value
of the play is ∞, regardless of the acceptance condition).

2.3 Cost function equivalence
Let D be some domain of input structures, and FD the set of functions : D → N∞. We
say a function f : D→ N∞ is bounded on some set U ⊆ D if there is some n ∈ N such that
f(u) ≤ n for all u ∈ U .

The domination relation 4 and boundedness relation ≈ are defined as follows. Given
f, g : D→ N∞,

f 4 g if for all U ⊆ D, if g is bounded on U then f is bounded on U.

Likewise, f ≈ g if f 4 g and g 4 f . In other words,

f ≈ g if for all U ⊆ D, f is bounded on U if and only if g is bounded on U.

This means that f and g satisfying f ≈ g may not agree on exact values but do agree on
boundedness properties across all subsets of the domain of input structures.

I Example 2. Let D = TA for A = {a, b, c}.
Consider the functions | · |a and | · |b mapping a tree t ∈ TA to the number of a-labelled
nodes and b-labelled nodes, respectively, in t. Then | · |a ≈ 2| · |a since a set of trees has
bounded output via | · |a if and only if it has bounded output via the function 2| · |a.
However, | · |a 6≈ | · |b since the family of trees (ti)i∈N where ti has no occurrences of a

T. Colcombet, D. Kuperberg, C. Löding, and M. Vanden Boom 221

and i occurrences of b has a bounded output via | · |a but unbounded output via | · |b. We
can also take the singleton {tb} as a witness, where tb is the full binary tree labelled only
with b’s: | · |a is bounded on {tb} but | · |b is not, since value ∞ is considered unbounded.
Given L ⊆ TA, let χL denote the characteristic function that maps everything in L to 0
and everything else to ∞. Then for K,L ⊆ TA, we have χL 4 χK if and only if K ⊆ L.
Likewise, for L ⊆ TA and f : TA → N∞, f ≈ χL if and only if f is bounded on L and
f(t) =∞ for all t /∈ L.

A cost function over D is an equivalence class of FD/≈, so we also refer to ≈ as cost
function equivalence. In practice, a cost function (denoted f, g, . . .) will be represented by
one of its elements in FD. In this paper, D will usually be TA. The function [[A]] defined by a
cost automaton A will always be considered as a cost function, i.e. only considered up to ≈.

3 Expressivity of traditional automata on infinite trees

For readers who are unfamiliar with regular tree languages, we briefly review in this section
some results about traditional automata over infinite trees. We refer the reader to [21, 6] for
more information.

By setting Γ = ∅, the definitions in the previous section correspond to the traditional
definitions of automata over infinite trees. In this case, L(A) ⊆ TA denotes the set of trees
t for which there exists a strategy for Eve in A× t such that every play π in this strategy
satisfies the acceptance condition. We say A recognizes the language L(A). The function
[[A]] defined by A is χL(A) (recall that χL is the characteristic function of L mapping every
tree in L to 0 and all other trees to ∞). Given some language L ⊆ TA, we write L for the
complement TA \ L of L.

In terms of expressivity, parity automata (in either their alternating or nondeterministic
form) capture all regular languages of infinite trees. Languages recognized by alternating
and nondeterministic Büchi and co-Büchi automata are strict subclasses of the regular
tree languages. Deterministic parity automata are strictly less expressive than alternating
co-Büchi automata.

Alternating automata can be easily complemented through dualization. The dual Ũ of
an alternating automaton U is obtained by switching conjunctions and disjunctions in the
transition formulas, and dualizing the acceptance condition. For the parity condition, this
amounts to incrementing each priority by 1. Likewise, the dual of a Büchi (respectively,
co-Büchi) condition specified by F is a co-Büchi (respectively, Büchi) condition specified by
F . In each case, the dual automaton Ũ recognizes the complement of U [16].

Thanks to the so-called “breakpoint construction” [14], alternating Büchi automata are
expressively equivalent to nondeterministic Büchi automata. Therefore, a tree language is
Büchi definable if it is recognizable using either a nondeterministic or alternating Büchi
automaton. On the other hand, alternating co-Büchi automata are strictly more expressive
than nondeterministic co-Büchi automata (what we call co-Büchi definable). This means
that the complement of a co-Büchi definable language is Büchi definable. The complement
of a Büchi definable language can be recognized by an alternating co-Büchi automaton but
is not necessarily co-Büchi definable.

A language is weakly definable if it is recognizable by a weak automaton, i.e. an alternating
Büchi automaton satisfying the weakness condition described earlier. Equivalently, a language
L is weakly definable if and only if L and L are Büchi definable [20, 12]. Stated in terms of
alternating automata, the weakly definable languages are precisely the languages recognizable

CSL’13

222 Deciding the weak definability of Büchi definable tree languages

by both alternating Büchi and alternating co-Büchi automata. The dual of a weak automaton
is weak, so weakly definable languages are closed under complement [15].

We pause to mention some well-known examples of weakly definable and Büchi definable
languages.

I Example 3. Let A = {a, b}. Consider L1, L2 ⊆ TA such that L1 is the language of trees
with infinitely many a’s on every branch and L2 is the language of trees with infinitely many
a’s on some branch.

L1 and L1 are weakly definable and Büchi definable.
L2 is Büchi definable but not weakly definable.
L2 is neither Büchi definable nor weakly definable, but is co-Büchi definable.

4 Reducing to cost function equivalence

4.1 Description of the contribution
We seek to reduce questions about language definability to deciding cost function equivalence
for functions defined by cost automata.

Colcombet and Löding [5] provided such a reduction for the parity index problem.

I Theorem 4 ([5]2). Given a parity automaton A and a desired set of priorities P , there
exists effectively a nondeterministic B-parity automaton E using priorities P such that the
following are equivalent:

L(A) is recognizable by a nondeterministic parity automaton using priorities P ,
[[E]] ≈ χL(A).

The rough idea behind the construction is that the automaton E “guesses” a run of A
(in fact, a run of a special normalized form for A) and tries to map the priorities in A to
the desired set of priorities P . The counters are used as a way to measure mistakes in this
mapping, and it turns out that the function defined by E has a bounded value for all t ∈ L(A)
if and only if L(A) is actually recognizable by a nondeterministic parity automaton using
priorities P .

Our main contribution in this paper is to provide a reduction of the weak definability
problem for Büchi definable languages to the decidability of ≈ for B-quasi-weak automata.

I Theorem 5. Given a nondeterministic Büchi automaton U with L = L(U), there exists
effectively a B-quasi-weak automaton B such that the following are equivalent:

L is weakly definable,
[[B]] ≈ χL.

Recall that early work by Rabin [20] characterized weak definability in terms of Büchi
definability of the language and its complement. Kupferman and Vardi [12] built on Rabin’s
work by providing an explicit construction of a weak automaton from two complementary
nondeterministic Büchi automata.

Our construction is derived from this work. However, here we are only given a single
Büchi automaton to start, so the constructed cost automaton “guesses” information about the

2 The notation and terminology used in [5] is different than in this paper. The “distance-parity” automata
in that work are B-parity automata here. The reduction is to the uniform universality problem of an
automaton Uij , which asks whether [[Uij]] is equivalent to the constant function 0 (i.e. whether it is
universal, and has a bounded value across all inputs). The construction of Uij uses an automaton Aij ,
which corresponds to E here.

T. Colcombet, D. Kuperberg, C. Löding, and M. Vanden Boom 223

complementary automaton, and uses the counters to determine whether this complementary
automaton is also Büchi (and therefore if the language is weak). Although this reduction
was inspired by Theorem 4, it does not rely on it and the proof ideas are quite different.

We start by giving a brief description of the construction in [12], before proceeding to
our reduction.

4.2 Proof from Kupferman and Vardi
The proofs in [20] and [12] begin with an analysis of composed runs of two nondeterministic Bü-
chi automata U = 〈QU ,A, qU0 , FU , δU 〉 and U ′ = 〈QU ′ ,A, qU ′

0 , FU ′ , δU ′〉. LetM := |QU | · |QU ′ |.
Recall that a frontier E is a set of nodes of t such that for any branch π of t, E ∩ π is a

singleton. Frontiers can be compared: we write E < E′ if for any branch π, the only node in
π ∩ E is a strict ancestor of the one in π ∩ E′. Kupferman and Vardi [12] define a trap for
U and U ′ to be a strictly increasing sequence of frontiers {ε} = E0 < E1 < · · · < EM such
that there exists a tree t, a run R of U on t, and a run R′ of U ′ on t satisfying the following
properties: for all 0 ≤ i < M and for all branches π in t, there exists x, x′ ∈ [eπi , eπi+1) such
that R(x) ∈ FU and R′(x′) ∈ FU ′ where eπ0 < · · · < eπM is the set of nodes from E0, . . . , EM
induced by π. The set of positions [eπi , eπi+1) can be viewed as an accepting block that
witnesses an accepting state from both U and U ′.

A pumping argument from [20] shows that the existence of a trap implies L(U) ∩ L(U ′) 6= ∅.
We use this property in our proof below and therefore state it as a lemma.

I Lemma 6 ([20],[12]). If there is a trap for two nondeterministic Büchi automata U and
U ′, then L(U) ∩ L(U ′) 6= ∅.

Now assume that U and U ′ are nondeterministic Büchi automata such that L(U ′) is the
complement of L(U). In this case, the existence of a trap implies a contradiction (which is
why it is called a trap in [12]).

By taking advantage of this trap condition, Kupferman and Vardi [12] show how to use
the complementary nondeterministic Büchi automata U and U ′ in order to construct a weak
automaton W recognizing L(U). The general idea is that Eve (respectively, Adam) selects
a run of U (respectively, U ′). The acceptance condition in W requires that any time an
accepting state from U ′ is seen, an accepting state from U is eventually seen. Because the
existence of a trap is impossible, these accepting blocks only need to be counted up to M
times before the automaton is allowed to enter an accepting sink state. Hence, the automaton
W keeps track of the number of blocks (up to M) in the state. Since each block contains at
most two changes of mode between accepting and rejecting states, this means there is no
cycle visiting both accepting and rejecting states, so W is weak.

The idea for the proof of correctness is that if t ∈ L(U), then Eve has a strategy to play
in the game W × t (i.e. play the accepting run of U). On the other hand, if t ∈ L(U ′) and
we assume for the sake of contradiction that Eve has a winning strategy in W × t, then this
strategy and the accepting run of U ′ can be used to build a trap, which is impossible.

We now turn to our construction and the proof of Theorem 5.

4.3 Construction
Let us now describe the construction of the automaton B in Theorem 5, which bears a
resemblance to the construction in [12]. However, the construction from [12] explicitly uses a
Büchi automaton U ′ for the complement of U , and furthermore uses an explicit counter in
the state space to count up to value M (the value used in the definition of a trap, see above).

CSL’13

224 Deciding the weak definability of Büchi definable tree languages

We only use the existence of such an automaton U ′ in one direction of the correctness proof,
and replace the explicit counting by a single B-counter.

Let U = 〈QU ,A, qU0 , FU , δU 〉 be a nondeterministic Büchi automaton without counters. Let
Ũ be the dual of U , obtained by exchanging conjunctions and disjunctions in the transition
formulas of U , and changing the acceptance condition from a Büchi condition specified
by F to a co-Büchi condition specified by the same F . The automaton Ũ recognizes the
complement of U [16]. Note that dualization of an automaton U also results in the dualization
of the game U × t: the roles of Adam and Eve exchange (we use this fact in the proof below).

The construction of B can roughly be described as follows. It consists of two copies
of Ũ , the states of the first of these copies are non-accepting, the states of the second
copy are accepting. In the first copy, the transition function of Ũ is extended to allow a
nondeterministic choice between staying inside the first copy or jumping to the second copy
(so each transition of Ũ is doubled in a nondeterministic way). In the second copy, the
transitions from states in FU go back to the first copy and perform an increment on the
counter. The other transitions of the second copy, from states not in FU , stay in the second
copy and do not increment the counter.

Formally, define the B-Büchi automaton B := 〈QB,A, qB0 , {γalt}, FB, δB〉 with the following
components. QB = QU × {R,A} (R and A for rejecting and accepting), qB0 = 〈qU0 , R〉, and
FB = QU × {A}.

For q ∈ QU and a ∈ A with δU (q, a) =
∨nq

i=0(0, q0
i) ∧ (1, q1

i), we define δB as follows:

δB(〈q,R〉, a) =
∧nq

i=0(0, ε, 〈q0
i , R〉) ∨ (0, ε, 〈q0

i , A〉) ∨ (1, ε, 〈q1
i , R〉) ∨ (1, ε, 〈q1

i , A〉).

If q /∈ FU then

δB(〈q, A〉, a) =
∧nq

i=0(0, ε, 〈q0
i , A〉) ∨ (1, ε, 〈q1

i , A〉)

and if q ∈ FU then

δB(〈q, A〉, a) =
∧nq

i=0(0, ic, 〈q0
i , R〉) ∨ (1, ic, 〈q1

i , R〉).

Note that the two copies of U that are used in B have the structure of Ũ with the additional
branching between the two copies, as described above. We use this fact in the proof below to
copy strategies of Eve or Adam in Ũ × t to B × t.

4.4 Proof of correctness
It is easy to see that B is quasi-weak: any cycle going through both accepting and rejecting
states has to take a transition from the second copy of Ũ to the first one, thereby incrementing
the single counter γalt of B (which is never reset). It remains to prove that B has the property
claimed in Theorem 5, namely that [[B]] ≈ χL if and only if L is weakly definable.

For one direction, assume that [[B]] ≈ χL. Then there exists N ∈ N such that for all t ∈ L,
there is an accepting run ρ of B on t with value(ρ) ≤ N . Hence, there is a weak automaton
B′ based on B that simulates γalt in the state up to value N , and enters a special rejecting
state as soon as it would exceed this bound. Then L(B′) = L, and the dual of B′ is a weak
automaton defining L. Notice that this part does not depend on how B is built: the existence
of any quasi-weak automaton A with [[A]] ≈ χL or [[A]] ≈ χL would imply that L is weakly
definable.

For the other direction, assume that L is weakly definable. We first show that B has
value ∞ on all trees from L (this does not use the fact that L is weakly definable). So let
t ∈ L be a tree. Then Eve has a strategy in U × t that ensures that FU is visited infinitely

T. Colcombet, D. Kuperberg, C. Löding, and M. Vanden Boom 225

often. It follows that in the dual game Ũ × t Adam has a strategy σ that ensures that FU
is visited infinitely often. Adam can use this strategy in B × t, regardless of which copy is
currently used. Note that if the current copy is R, it is Eve who can choose to stay in R or
to switch to A. However when the current copy is A, the plays goes back to R as soon as a
state from FU is seen, which depends on Adam’s choices. A resulting play will either stay in
R eventually, or it alternates infinitely often between A and R because σ ensures that FU is
visited infinitely often. In both cases, the value of the resulting play is ∞.

We now finish the correctness proof by showing that B is bounded on L. Since L is weakly
definable, there is a nondeterministic Büchi automaton U ′ for L. Let M := |QU | · |QU ′ |.

Fix some t ∈ L. We consider a game that in some sense corresponds to the game
(U ′ × Ũ)× t. Accordingly, the positions of the game are QU ′ ×QU × {0, 1}∗. One round of
the game consists of the following moves, assuming the current position is (q′, q, x):

1. Eve chooses a transition of U ′, that is, a conjunction (0, p′0) ∧ (1, p′1) that appears in
δU ′(q′, t(x)).

2. Adam chooses a transition of U , that is, a conjunction (0, p0) ∧ (1, p1) that appears in
δU (q, t(x)).

3. Eve chooses a direction d ∈ {0, 1}.

As usual, the game continues from (p′d, pd, xd). Note that the moves 2 and 3 are the
moves from U × t with the roles of Eve and Adam exchanged, and thus correspond to the
moves in Ũ × t.

Because t ∈ L, Eve has a strategy σ to ensure that FU ′ is visited infinitely often. Assume
that Adam has a strategy τ against such a σ that enforces in each compatible play more
than M many alternations between FU ′ and FU . Since Eve is choosing the directions, τ
works along all branches of t, and therefore would define a trap for U , U ′, and t. Since
L(U) ∩ L(U ′) = ∅, this would contradict Lemma 6. We can conclude that Eve has a strategy
σ that visits FU ′ infinitely often and at the same time keeps the number of alternations
between FU ′ and FU bounded by M (here, we use the determinacy of the game with the
corresponding winning condition for Eve).

From σ we can derive a strategy in B × t for Eve that accepts t with value bounded by
M . Recall that the moves 2 and 3 correspond to the game Ũ × t and thus Eve can use σ in B
(keeping track of her moves in U ′ in her memory). We only have to define when Eve switches
from QU × {R} to QU × {A}. She does this whenever the state of U ′ in the original game is
in FU ′ . If she plays according to this strategy, then each play switches from QU × {R} to
QU × {A} eventually, because σ ensures infinitely many visits to FU ′ . Furthermore, Adam
can switch back to QU × {R} at most M times, because σ ensures at most M alternations
between FU ′ and FU . Hence, each play eventually remains in QU × {A} and has value at
most M ∈ N . Since this is true for all t ∈ L, B is bounded on L as desired.

This finishes the correctness proof for the construction of B and thus the proof of
Theorem 5.

5 Deciding special cases of cost function equivalence

5.1 Special cases of cost function equivalence over infinite trees
Although we do not know how to decide 4 for all cost functions over infinite trees, we can
show it is decidable in some cases.

I Theorem 7. Let f, g be cost functions over infinite trees. Then f 4 g is decidable if these
two conditions are satisfied:

CSL’13

226 Deciding the weak definability of Büchi definable tree languages

f is given by a parity automaton (without counters) or a B-co-Büchi automaton;
g is given by a parity automaton (without counters), B-Büchi automaton, or nondetermin-
istic B-parity automaton.

This is a slight extension of the decidability of cost function equivalence reported in [22]
and [11], but the proof method is the same. The procedure tries to find a witness showing
f 64 g. Such a witness is a family of trees with bounded value via g but unbounded value
via f . In order to do this, the automata are first converted into nondeterministic forms
(so these witnesses can be “guessed”). B-automata are good for g because a single run
of a nondeterministic B-automaton can witness a low value. There is a dual form called
S-automata which are good for f since they can witness a high value with a single run.
We will not describe this dual form here (we refer to the appendix for some details on this
model). The types of automata appearing in Theorem 7 describe when we know when we
can convert alternating cost automata into these required forms. From there, deciding 4 can
be reduced to solving parity games on finite graphs. We refer the interested reader to [23]
for more information.

Because B-quasi-weak automata can be viewed as either B-co-Büchi or B-Büchi automata
(see the Remark at the end of Section 2.2), this means that f ≈ g is decidable when f and g
are given by B-quasi-weak automata.

I Corollary 8. Let f, g be cost functions over infinite trees. Then f ≈ g is decidable if
each function is given by either a parity automaton (without counters) or a B-quasi-weak
automaton.

In the remainder of this section, we state the decidability results that follow from
Theorem 7 and Corollary 8 and the reductions given in Theorem 4 and Theorem 5.

5.2 Deciding co-Büchi definability
In this section we show that it is decidable for a given parity automaton whether there exists
an equivalent nondeterministic co-Büchi automaton.

The decidability of co-Büchi definability is a corollary of Theorem 7 and Theorem 4.

I Theorem 9. Given a parity automaton A over infinite trees, it is decidable whether or
not there is a nondeterministic co-Büchi automaton A′ such that L(A) = L(A′).

Proof. Given A we apply Theorem 4 with P = {0, 1} to obtain a nondeterministic B-
co-Büchi automaton E such that [[E]] ≈ χL(A) if and only if L(A) is recognizable by a
nondeterministic co-Büchi automaton. According to Theorem 7 it is decidable whether
[[E]] ≈ χL(A) because the types of the automata A and E are such that both directions,
[[E]] 4 χL(A) and χL(A) 4 [[E]] can be decided. J

One route to proving the decidability of the full parity index problem would be to prove
a more general decidability result for ≈, for arbitrary alternating B-parity automata, but
this problem remains open.

5.3 Deciding weak definability of Büchi definable languages
We now turn to the main result, deciding weakness for Büchi definable languages. This
follows from Corollary 8 and the reduction in Theorem 5.

T. Colcombet, D. Kuperberg, C. Löding, and M. Vanden Boom 227

I Theorem 10. Given an alternating Büchi automaton, alternating co-Büchi automaton,
or deterministic parity automaton A with L = L(A), it is decidable whether there is a weak
automaton W such that L(W) = L, or equivalently whether L is definable in weak monadic
second-order logic.

Proof. Note that Corollary 8 implies that [[B]] ≈ χL is decidable when B is B-quasi-weak.
Hence, Theorem 5 implies the decidability of the weak definability problem when the input
is a nondeterministic Büchi automaton. The other inputs can all be transformed into a
nondeterministic Büchi automaton for the language or its complement.

If the input is an alternating Büchi automaton, then an equivalent nondeterministic Büchi
automaton can be constructed ([14, 17]), and Theorem 5 can be applied. If the input is an
alternating co-Büchi automaton, then the complement is an alternating Büchi automaton and
we can use the previous case to decide whether L is weak. Since weakly definable languages
are closed under complement, L is weak if and only if L is weak.

Finally, if the input is a deterministic parity automaton (not necessarily Büchi), then we
reduce to other cases since a nondeterministic Büchi automaton can be constructed for the
complement language: the nondeterministic Büchi automaton guesses a branch in the run of
the deterministic parity automaton and checks that it is rejecting. As mentioned earlier, the
decidability of this case was known already from [18] using different methods. J

6 Conclusion

We showed that given a Büchi automaton, it is decidable whether the language it recognizes
is weak. We also showed that it is decidable whether a regular tree language is recognizable
by a nondeterministic co-Büchi automaton, for arbitrary input. These are particular cases of
the Mostowski index problem, for which very few intermediate results are known.

We used the recent formalism of quasi-weak automata to prove these results. We believe
this shows that this model is flexible and well-suited for the weak definability problem.
Moreover, it provides additional motivation to develop the theory of cost functions, since we
demonstrated that it can give rise to new decidability procedures.

The current understanding of the theory of cost functions over infinite trees does not
allow us to state a more general theorem, because decidability of the boundedness problem
for such cost functions is still open in general. The inherent difficulty of this problem can
be explained by the complex interplay between classic acceptance conditions and counter
behaviour.

References
1 Bahareh Afshari and Sandra Quickert. Personal communication, 2012.
2 André Arnold and Damian Niwiński. Fixed point characterization of weak monadic logic

definable sets of trees. In Tree Automata and Languages, pages 159–188. 1992.
3 Mikołaj Bojańczyk and Thomas Colcombet. Bounds in ω-regularity. In LICS, pages 285–

296. IEEE Computer Society, 2006.
4 Thomas Colcombet. The theory of stabilisation monoids and regular cost functions. In

ICALP (2), volume 5556 of LNCS, pages 139–150. Springer, 2009.
5 Thomas Colcombet and Christof Löding. The non-deterministic Mostowski hierarchy and

distance-parity automata. In Luca Aceto, Ivan Damgard, Leslie Ann Goldberg, Magnús M.
Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP (2), volume 5126
of LNCS, pages 398–409. Springer, 2008.

CSL’13

228 Deciding the weak definability of Büchi definable tree languages

6 Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and In-
finite Games: A Guide to Current Research, volume 2500 of LNCS. Springer, 2002.

7 Yuri Gurevich and Leo Harrington. Trees, automata, and games. In Harry R. Lewis,
Barbara B. Simons, Walter A. Burkhard, and Lawrence H. Landweber, editors, STOC,
pages 60–65. ACM, 1982.

8 Kosaburo Hashiguchi. Relative star height, star height and finite automata with distance
functions. In Jean-Éric Pin, editor, Formal Properties of Finite Automata and Applications,
volume 386 of LNCS, pages 74–88. Springer, 1988.

9 Karpiński. Personal communication, 2008.
10 Daniel Kirsten. Distance desert automata and the star height problem. ITA, 39(3):455–509,

2005.
11 Denis Kuperberg and Michael Vanden Boom. Quasi-weak cost automata: a new variant

of weakness. In Supratik Chakraborty and Amit Kumar, editors, FSTTCS, volume 13 of
LIPIcs, pages 66–77. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2011. Online at
http://www.liafa.jussieu.fr/~dkuperbe/.

12 Orna Kupferman and Moshe Y. Vardi. The weakness of self- complementation. In Christoph
Meinel and Sophie Tison, editors, STACS, volume 1563 of LNCS, pages 455–466. Springer,
1999.

13 Christop Löding. Logic and automata over infinite trees. Habilitation thesis, RWTH Aachen
University, 2009.

14 Satoru Miyano and Takeshi Hayashi. Alternating finite automata on omega-words. Theor.
Comput. Sci., 32:321–330, 1984.

15 David E. Muller, Ahmed Saoudi, and Paul E. Schupp. Alternating automata. The weak
monadic theory of the tree, and its complexity. In Laurent Kott, editor, ICALP, volume
226 of LNCS, pages 275–283. Springer, 1986.

16 David E. Muller and Paul E. Schupp. Alternating automata on infinite trees. Theor.
Comput. Sci., 54:267–276, 1987.

17 David E. Muller and Paul E. Schupp. Simulating alternating tree automata by nondetermin-
istic automata: New results and new proofs of the theorems of Rabin, McNaughton and
Safra. Theor. Comput. Sci., 141(1&2):69–107, 1995.

18 Damian Niwiński and Igor Walukiewicz. Deciding nondeterministic hierarchy of determin-
istic tree automata. Electr. Notes Theor. Comput. Sci., 123:195–208, 2005.

19 Michael O. Rabin. Decidability of second-order theories and automata on infinite trees.
Trans. Amer. Math. Soc., 141:1–35, 1969.

20 Michael O. Rabin. Weakly definable relations and special automata. In Mathematical
Logic and Foundations of Set Theory (Proc. Internat. Colloq., Jerusalem, 1968), pages
1–23. North-Holland, Amsterdam, 1970.

21 Wolfgang Thomas. Languages, automata, and logic. In G. Rozenberg and A. Salomaa,
editors, Handbook of Formal Languages, volume 3, pages 389–455. Springer, 1997.

22 Michael Vanden Boom. Weak cost monadic logic over infinite trees. In Filip Murlak and
Piotr Sankowski, editors, MFCS, volume 6907 of LNCS, pages 580–591. Springer, 2011.

23 Michael Vanden Boom. Weak Cost Automata over Infinite Trees. PhD thesis, University
of Oxford, 2012. Online at http://www.cs.ox.ac.uk/people/michael.vandenboom/.

http://www.liafa.jussieu.fr/~dkuperbe/
http://www.cs.ox.ac.uk/people/michael.vandenboom/

T. Colcombet, D. Kuperberg, C. Löding, and M. Vanden Boom 229

A Appendix

There is another form of cost automata called S-automata that is dual to B-automata. We
briefly describe the definition of S-automata and its relationship to the B-automata used in
the body of the paper.

A.1 S-automata
S-automata have atomic actions increment i, no change ε, reset r, and check-reset cr.
Let S := {i, ε, cr, r}. Given a sequence of counter actions u ∈ Sω, let C(u) denote the
values of the counter at the moment(s) when a check-reset cr occurs. For instance, if
u = i100criεicr(ir)ω, then C(u) = {2, 100}. Likewise, for a set of counters Γ, and a word
u ∈ (SΓ)ω, let C(u) =

⋃
γ∈Γ C(uγ) where uγ is the γ-projection of u. The S-value of such a

sequence is inf C(u) (the minimum checked counter value).
An (alternating) S-Büchi automaton 〈Q,A, q0,Γ, F, δ〉 on infinite trees has a finite set of

states Q, alphabet A, initial state q0 ∈ Q, accepting states F , finite set Γ of counters, and
transition function δ : Q × A → B+({0, 1} × SΓ × Q). S-automata with other acceptance
conditions can be defined as expected. The notion of plays and strategies is the same as in
B-automata.

Given a play π from a S-automaton A, the value of π is 0 if π is not accepting and
inf C(u) otherwise, where u is the sequence of counter actions from π. For a strategy σ for
Eve, value(σ) is the infimum over the values from all plays consistent with the strategy. For
the corresponding game A× t, value(A× t) is

sup {value(σ) : σ is a strategy for Eve in the game A× t}

and [[A]](t) = value(A× t). The idea is that in an S-automaton Eve is trying to satisfy the
acceptance condition while maximizing the values of the counters (whereas, in a B-automaton
Eve is trying to satisfy the acceptance condition and minimize the values of the counters).

A.2 Duality and simulation
Switching between the B and S forms of cost automata takes the place of complementing
classical automata.

Indeed, let L be the language recognized by some traditional automaton A without
counters. If we view this automaton as a B-automaton then it defines the function χL (the
characteristic function for the language), and if we view it as an S-automaton, then it defines
the function χL (the characteristic function for the complement of the language). This means
that we can always find both a B and S form for cost functions of the form χL for L a
regular language recognized by some automaton A (the S-form for χL can be obtained by
complementing A).

Using alternating cost automata, we can switch between B and S forms too.

I Theorem 11 ([22]). Alternating B-parity and alternating S-parity automata are effectively
equivalent.

A closer examination of the proof shows that in the conversion between B-parity and
S-parity automata, the priorities are shifted by one (see [23] for more information), which
parallels the classical complementation procedure for alternating parity automata. This
means that Büchi automata become co-Büchi automata, and vice versa.

CSL’13

230 Deciding the weak definability of Büchi definable tree languages

I Corollary 12. Alternating B-Büchi and alternating S-co-Büchi automata are effectively
equivalent.

Alternating S-Büchi automata and alternating B-co-Büchi automata are effectively equi-
valent.

Alternating B-Büchi and alternating S-Büchi automata can also be simulated with
nondeterministic versions. This parallels the classical result that alternating Büchi automata
are equivalent to nondeterministic Büchi automata. The B-part of this result was stated
in [22]. The S-part was not stated clearly there, but the proof technique is the same. The
details of both of these proofs can be found in [23].

I Theorem 13 ([22],[23]). Alternating B-Büchi and nondeterministic B-Büchi automata
are effectively equivalent.

Alternating S-Büchi and nondeterministic S-Büchi automata are effectively equivalent.

The following corollary summarizes these results.

I Corollary 14. Alternating B-co-Büchi automata, alternating S-Büchi automata, and
nondeterministic S-Büchi automata are effectively equivalent.

Alternating S-co-Büchi automata, alternating B-Büchi automata, and nondeterministic
B-Büchi automata are effectively equivalent.

In [11], B-quasi-weak automata were characterized as precisely the cost functions that
are definable by both nondeterministic B-Büchi and nondeterministic S-Büchi automata.

A.3 Decidability
The decidability of cost function equivalence over infinite trees was originally stated in terms
of B and S automata.

I Theorem 15 ([22]). For cost functions f and g over infinite trees, the relation f 4 g is
decidable if

f is given by a nondeterministic S-parity automaton, and
g is given by a nondeterministic B-parity automaton.

Theorem 7 can be viewed as a restatement of these results, using Corollary 14 to write it
in terms of B-automata only.

Innocent Game Semantics via Intersection Type
Assignment Systems∗

Pietro Di Gianantonio and Marina Lenisa

Dipartimento di Matematica e Informatica, Università di Udine, Italy
{pietro.digianantonio,marina.lenisa}@uniud.it

Abstract
The aim of this work is to correlate two different approaches to the semantics of programming
languages: game semantics and intersection type assignment systems (ITAS). Namely, we present
an ITAS that provides the description of the semantic interpretation of a typed lambda calculus
in a game model based on innocent strategies. Compared to the traditional ITAS used to describe
the semantic interpretation in domain theoretic models, the ITAS presented in this paper has
two main differences: the introduction of a notion of labelling on moves, and the omission of
several rules, i.e. the subtyping rules and some structural rules.

1998 ACM Subject Classification F.3.2 Semantics of Programming Languages. Denotational
semantics

Keywords and phrases Game Semantics, Intersection Type Assignment System, Lambda Cal-
culus.

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.231

1 Introduction

Game semantics has been proved a powerful and flexible tool to describe the semantics of
programming languages. Its main idea is to define the behaviour of a program as a sequence
of elementary interactions between the program and the environment. Intersection types
have first been used to provide logical descriptions of domain theory models of λ-calculus
[7, 8], but they can be applied to general programming languages. The approach can be
outlined as follows. The semantics of the λ-calculus can be given in two forms: a term can
be interpreted either denotationally by a point in a particular domain, or logically by a set of
properties. Stone-duality, as presented in [1], establishes an equivalence between these two
alternative descriptions for suitable categories of domains. In the ITAS approach, properties
of terms are normally called “types”. The logical semantics consists of the set of rules which
allow to derive the properties satisfied by a term. ITAS can be used to provide concrete,
finitary approximations of the semantics of a term.

The present work continues the line of research of [10], aiming at correlating the game
semantics and ITAS. These two approaches to the semantics of programming languages
seem, at first sight, quite distant one from the other, establishing a relation can enlighten
a different perspective on them. Moreover, compared to game semantics, intersection types
have a simpler and more direct presentation, so it is interesting to consider what aspects
of game semantics can be described through them. In [10], the authors have considered a

∗ Work partially supported by the Italian MIUR PRIN Project CINA 2010LHT4KM, and by the ICT
COST Action BETTY IC1201.

© Pietro Di Gianantonio and Marina Lenisa;
licensed under Creative Commons License CC-BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca; pp. 231–247

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.231
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

232 Innocent Game Semantics via Intersection Type Assignment Systems

simply-typed λ-calculus, a game model for it, based on games à la Abramsky-Jagadeesan-
Malacaria [2] (AJM games), and a corresponding ITAS. It has been shown that such ITAS
gives a precise description of the interpretation of λ-terms in the AJM-game model. In par-
ticular, a type t for a termM describes a set of moves that the Proponent and the Opponent
may exchange in some phases of the interaction of the term M with the environment, and
the set of types assigned to a term gives a complete description of the history-free strategy
of the term, seen as a partial function on moves. However, some aspects of game semantics
are not captured by the ITAS description of AJM-games, for example in AJM-games the
same strategies have several possible descriptions, differing by the use of indexes on moves.
In order to capture the equivalence relation between strategies, a notion of equivariance
between plays has been introduced. However, in the ITAS description, it is not clear how
to capture this equivalence relation in a natural and simple way.

In the present work, the aim is to extend results presented in [10], by enlarging the
aspects of game semantics that can be described through ITAS, and by considering altern-
ative paradigms of game semantics. In particular, we obtain an ITAS description of innocent
games, i.e. games based on innocent strategies. In this way, we show that the ITAS ap-
proach can be used for different paradigms of game semantics. Moreover, for innocent games,
each strategy has a single representation, therefore a drawback of the ITAS description of
AJM-games, namely the missing equivalence relation between alternative representations of
the same strategy, is avoided. In more detail, we show that, by introducing in the ITAS
a limited set of structural rules, it is possible to describe the interpretation of λ-terms in
the framework of innocent games. The structural rules considered state that the ∧ operator
satisfies the associative and commutative properties, but not the idempotency. So, from
an ITAS perspective, the difference between the two main paradigms of game semantics is
reflected by the presence/absence of some structural rules. Technically, intersection types
for innocent games carry more structure, since they represent sets of moves which are par-
titioned via a suitable labelling, and are (implicitly) endowed with justification pointers.
Non-idempotent intersection types have been also considered in [15, 16, 9]. In particular, in
[15, 16], it has be shown that in non-idempotent ITAS, any term t has a principal type τ
that gives a complete description of the normal form of t.

In this paper, we chose, for the sake of simplicity, as target language unary PCF, and
we provide an innocent game model for it. The ITAS presentation of this model exploit an
alternative description of innocent strategies via partitioned positions, which we introduce
in this paper. Given a play on a game A, by forgetting the linear order along with moves
are played, one obtains a set of moves together with justification pointers. We call this kind
of structure position. A partitioned position is a play where only part of the information
concerning the order in which the moves have been laid down has been omitted. In the ITAS
that we present, types correspond to partitioned positions. The induced type semantics
turns out to provide the same theory of the game semantics. When simple positions without
partitions are considered, the corresponding types and ITAS result simplified, however the
theory induced by the game semantics is strictly included in that induced by the type
semantics.

The idea to remove, partially or completely, the order information on games has been
considered several times in the literature [3, 12, 14, 4, 6]. In [3], timeless games are used to
build a model for classical linear logic. In timeless games the order on plays is completely
forgotten as in the presentation of innocent strategies via simple positions. In [4], it has
been shown that the operation of forgetting the time order can be described by a suitable
functor. In [14], it has been shown that, for the particular class of asynchronous games, a

P. Di Gianantonio and M. Lenisa 233

strategy can be completely characterized by the set of its positions. In [12, 6], a faithful
functor from the category of games to a category of relations is presented, that forgets part
of the time order along with moves are played.
Synopsis. In Section 2, we recall basic definitions and constructions on arenas and innocent
strategies. In particular, we provide a characterisation of innocent strategies via partitioned
positions. In Section 3, we present a game model of unary PCF. In Section 4, we introduce
and study an ITAS giving a finitary description of the model of Section 3. In Section 5, we
establish the connection between the ITAS and the game model of unary PCF. Finally, in
Section 6, we discuss further developments.

Acknowledgements. The authors thank the anonymous referees for their comments, which
allowed to improve the presentation of the paper.

2 The Category of Arenas and Innocent Strategies

In this section, we recall basic notions and constructions on arenas and innocent strategies
in the style of [11]. Notice that we define justification sequences as containing exactly one
initial move.

The following are the usual definitions of arena and strategy:

I Definition 1 (Arena). An arena has two participants: the Proponent and the Opponent.
An arena is specified by a triple A = (MA, λA,`A), where

MA is the set of moves.
λA : MA → {OQ,OA,PQ,PA} is the labelling function: it tells us if a move is taken by
the Opponent or by the Proponent, and if it is a question or an answer. We denote by
− the function which exchanges Proponent and Opponent.
`A is a relation between MA + {?} and MA, called enabling, which satisfies
? `A a =⇒ (b `A a⇔ b = ?) ∧ λA(a) = OQ, and
a `A b ∧ a 6= ? =⇒ a is a question, i.e. π2 ◦λA(a) = Q, and π1 ◦λA(a) 6= π1 ◦λA(b).

The enabling relation tells us either that a move a is initial and needs no justification
(? `A a), or that it can be justified by another move b, if b has been played (b `A a).

I Definition 2.
A justified sequence s of moves in an arena A is a sequence of moves together with
justification pointers such that: the first move is the only initial move, and for each
other move a in s there is a pointer to an earlier move b of s such that b `A a. We say
that the move b justifies the move a, and we extend this terminology to say that a move
b hereditary justifies a if the chain of pointers back from a passes through b.
Given a justified sequence s, the view of s, view(s), also called P-view, is defined as
follows: view(ε) = ε, where ε denotes the empty sequence, view(s · a) = a, if s = ε or a
is an initial move, view(s · a · t · b) = view(s) · a · b, if the move b is justified by a.
If s is a justified sequence containing a move a, we say that a is visible at s if a appears
in view(s).
A non-empty justified sequence s is a play iff
O moves first: s = as′ and π1 ◦ λ(a) = O

s is alternating: if s = s1abs2 then π1 ◦ λ(a) 6= π1 ◦ λ(b)
the visibility condition holds: if s = s1as2, and a is not initial, then the justifier of a
is visible at s1

CSL’13

234 Innocent Game Semantics via Intersection Type Assignment Systems

the well-bracketing condition holds: if s = s1as2, and a is an answer, then it must be
justified by the most recent unanswered question.

The set of plays of an arena A is denoted by PA.

Notice that the above definition is slightly different from the standard one: plays are not
empty, and the initial move is unique. This presentation will provide a better correspondence
with the intersection type assignment system.

I Definition 3 (Strategy). A strategy for the Proponent on an arena A is a set σ ⊆ P even
A

of plays of even length such that: sab ∈ σ =⇒ s ∈ σ and sab, sac ∈ σ =⇒ b = c .

A strategy σ on an arena A is innocent if for all sab, t ∈ σ, if ta ∈ PA and
view(sa) = view(ta), then also tab ∈ σ, with b justified by the same element of
view(ta) = view(sa) as in sab.

A strategy can be seen as a set of rules which tells the Proponent which move to take
after the last move by the Opponent. Innocent strategies are strategies which depend only
on the view.

Constructions on Arenas

I Definition 4 (Product). Given arenas A and B, the product A × B is the arena defined
as follows:

MA×B = MA +MB

λA×B = [λA, λB]
? `A×B m ⇐⇒ ? `A m ∨ ? `B m and m `A×B n ⇐⇒ m `A n ∨m `B n.

Here + denotes disjoint union of sets, that is A+B = {(l, a) | a ∈ A} ∪ {(r, b) | b ∈ B},
and [−,−] is the usual (unique) decomposition of a function defined on disjoint unions.

The unit for × is I = (∅, ∅, ∅).

I Definition 5 (Implication). Given games A and B, the compound game A→ B is defined
as follows:

MA→B = MA +MB

λA→B = [λA, λB]
? `A→B m ⇐⇒ ? `B m and
m `A→B n ⇐⇒ m `A n ∨m `B n ∨ (? `B m ∧ ? `A n).

The Game Category G
Objects: arenas.
Morphisms: a morphism between arenas A and B is an innocent strategy σ on A→ B.
Composition: given innocent strategies σ : A → B and τ : B → C, τ ◦ σ : A → C is
defined by: τ ◦ σ = {s � (A,C) | s ∈ σ||τ}even , where σ||τ = {s ∈ (MA + MB + MC)∗ |
s�(A,B) ⊆ σ & s�(B,C) ∈ τ}, with s�(A,B) denoting the subsequence of s consisting of
moves in A and B.
Identity: idA : A→ A, idA = {s ∈ P even

A | ∀t even-length prefix of s. t�1 = t�2} ,
where t�1 (t�2) denotes the restriction of s to the first (second) A component.

The arena constructions of product and implication can be made functorial, in such a
way that

I Proposition 6. The category G is cartesian closed with × as cartesian product and → as
exponential. The arena I is the terminal object of the category G.

P. Di Gianantonio and M. Lenisa 235

2.1 An Alternative Description of Innocent Strategies
The type assignment system we present describes the strategies associated to λ-terms in an
indirect way. To establish the connection between ITAS and games semantics interpretation
it is necessary to introduce an alternative description of strategies. Instead of describing
an innocent strategy by a set of plays, we describe it by a set of partitioned positions.
Given a play on a game A, by forgetting the linear order along with moves are played, one
obtains a set of moves together with justification pointers for all moves but one (the initial
move). We call this kind of structure position. For a particular class of games, i.e. the
asynchronous games, Melliès [14] shows that a strategy is completely characterised by the
set of its positions. This result is not anymore true for generic innocent games. We therefore
introduce the new concept of partitioned position. A partitioned position is a play where
only part of the information concerning the order in which the moves have been laid down
has been omitted. The innocence condition on strategies assures that using the reduced
information allows to reconstruct the original full description of the strategy.

I Definition 7 (Partitioned Position). Let A be an arena.
We define a position on the arena A as an unordered tree, whose nodes are (instances)
of moves on A and such that
1. the root is an initial move,
2. for any node n, all children of n are moves enabled by n.
We denote by (m, {p1, . . . , pn}) the position with root m and subtrees p1, . . . , pn.
A partitioned position is a pair (p,Ep), formed by a position p and a partition Ep on
the nodes of p. On partitioned positions we consider the partial order j given by
(p,Ep) j (p,E′p) if Ep is a partition finer than E′p, i.e. each equivalence class of Ep

is contained in an equivalence class of E′p. Since a partition Ep can be also seen as an
equivalence relation, for convenience, in some definitions, we will treat Ep as an equival-
ence relation.

I Definition 8 (Position from Play).
Given a play s on the arena A, we denote by [s]∗ the partitioned position (p,Ep), where

the position p is formed by the moves in s together with their justification pointers (a
move n is a child of a move m in p if and only if n is justified by m in s);
two distinct moves m,n lie in the same set of the partition Ep if and only if m is an
Opponent move, and n is the Proponent move immediately following m in the play s.

Given a strategy σ on the arena A, we denote with [σ]∗ the set of partitioned positions
{(p,Ep) | ∃s ∈ σ . [s]∗ j (p,Ep)}.

The function []∗ on plays is not injective, that is there can be two distinct plays s and t
generating the same partitioned position. This is due to the fact that from the partitioned
position [s]∗ it is not possible to completely recover the linear order of moves in a play s.
However, the function []∗ is injective on P-views, in fact, given a P-view s and any move m
in [s]∗, it is possible to define the predecessor of m in s: if m is a Proponent move then its
predecessor is the Opponent move laying in the same partition, while if m is an Opponent
move, by P-view definition, the predecessor of m is its parent in the tree. Since an innocent
strategy is uniquely determined by the set of P-views that it contains ([11], Section 5.2), it
follows that the function []∗ is injective on innocent strategies. Moreover, from the set [σ]∗,
it is possible to reconstruct the innocent strategy σ. In fact, given a partitioned position
(p,E), it is decidable to check if (p,E) is the image of a P-view s along []∗, and in this case
to reconstruct the P-view s. Therefore, from [σ]∗, it is possible to define the set of P-views

CSL’13

236 Innocent Game Semantics via Intersection Type Assignment Systems

of σ, and using the construction presented in [11] Section 5.2, from the set of P-views one
can define the set of plays of σ.

On the sets of partitioned positions it is possible to define an operation of composition
in the following way. A partitioned position (q, Eq) on the arena A→ B can be decomposed
in a partitioned position on B, denoted by (q, Eq) � B, and in a multiset of partitioned
positions in A, denoted by (q, Eq)�A. In more detail, if q = (m, {p1, . . . , pm, q1, . . . , qn})
with p1, . . . , pm having moves in B and q1, . . . , qn having moves in A, (p,Ep) � B is the
position (m, {p1, . . . , pm}) with the inherited partition. The multiset (p,Ep)�A is composed
of the multiset of positions {q1, . . . , qn} with the inherited partitions.

I Definition 9 (Composition).
A finite multiset of partitioned positions {(q1, Eq1), . . . , (qn, Eqn

)} in A→ B and a parti-
tioned position (p,Ep) in B → C compose if (p,Ep)�B = {(q1, Eq1)�B, . . . , (qn, Eqn)�B}.
In this case, the composition {(q1, Eq1) . . . (qn, Eqn

)} ◦ (p,Ep) is defined as the position:

(m, {p1, . . . , pm} ∪
⋃

i∈{1,...,n}

{qi,1, . . . , qi,ni}) ,

under the hypothesis that (p,Ep) � C = ((m, {p1, . . . , pm}), Ep′) and (qi, Eqi
) � A =

{(qi,1, Eqi,1), . . . , (qi,ni
, Eqi,ni

)}.
On the above position we define a partition E as follows: two nodes m,n are related by
E iff one of the following conditions holds:
– the nodes m,n are related either by Ep or by Eqi ;
– there exist an index i and a node m′ in the arena B such that (m,m′) ∈ Ep and
(n,m′) ∈ Eqi ;
– there exist indexes i, j and nodes m′, n′ in the arena B such that (m,m′) ∈ Eqi

,
(n, n′) ∈ Eqj

, and (m′, n′) ∈ Ep.
Given two sets of partitioned positions S in B → C and T in A → B, the composition
S ◦ T is defined by

{{(q1, Eq1), . . . , (qn, Eqn
)}◦(p,Ep) | {(q1, Eq1), . . . , (qn, Eqn

)} ⊆ S, (p,Ep) ∈ T compose}.

With the above definition of composition, arenas and sets of partitioned positions form
the objects and the arrows of a category. It is possible to refine the notion of partitioned
position by defining the notion of well-formed partitioned position characterizing those po-
sitions that are the image, along []∗, of a play. Then one can further define a subcategory
having as arrows sets of well-formed partitioned positions. In this subcategory the function
[]∗ defines the arrow part of a faithful functor from the category of innocent strategies to
the one of sets of partitioned positions. However, in the present work we omit this lengthy
definition of the category, and we just prove the main property that will be used in the
rest of the paper: the function []∗ on strategies preserves composition. The proof of the
proposition below appears in the Appendix.

I Proposition 10. For any pair of innocent strategies σ : A → B and τ : B → C, we have
that [τ ◦ σ]∗ = [τ]∗ ◦ [σ]∗.

2.2 Timeless Games
It is worthwhile to notice that the construction presented above can be repeated using the
simpler notion of position, instead of partitioned position. Along this line, one can define
a notion of composition between sets of positions, and a function []• that associates to

P. Di Gianantonio and M. Lenisa 237

a strategy the set of positions of its plays. As corollary of Proposition 10, one can show
that also the function []• preserves composition. Although presented in different form, the
function []• appears in [4]. In this work, positions are described as relations, and it has
been shown that []• constitutes the arrow part of a functor from the category of arenas and
innocent strategies to a suitable category of sets and relations. It turns out that positions
are not sufficient to describe innocent strategies, in that it can be the case that two different
innocent strategies are mapped to the same set of positions, see at the end of Section 3
below for an example.

3 A Game Model of Unary PCF

In this section, we define a game model of unary PCF. We chose to consider unary PCF,
since it is a simple language, with a minimal set of constants, and it allows for a concise
presentation of our ITAS. However, the ideas presented in this paper can be immediately
extended to more elaborated functional languages with call-by-name reduction.

Models of unary PCF have been extensively studied in the literature, especially exten-
sional ones, see e.g. [13, 5]. Here we are interested in the intensional game model arising
from the Sierpinski arena, which induces the theory of normal forms. In Section 4, we will
provide a description of this model via a type assignment system.

We recall that unary PCF is a typed λ-calculus with two ground constants, ⊥,>, and a
sequential composition constant &1, which takes two arguments of ground type: if its first
argument is >, then & returns its second argument, otherwise, if its first argument is ⊥,
then & returns ⊥.

Unary PCF

I Definition 11. The class SimType of simple types over a ground type o is defined by:

(SimType 3) A ::= o | A→ A .

Raw Terms are defined as follows:

Λ 3 M ::= ⊥ | > | & | x | λx :A.M | MM ,

where ⊥,>,& are constants, and x ∈ Var. We denote by Λ0 the set of closed λ-terms.
Well-typed terms. We introduce a proof system for deriving typing judgements of the form
∆ ` M : A, where ∆ is a type environment, i.e. a finite set x1 : A1, . . . , xk : Ak. The rules
of the proof system are the following:

∆ `⊥: o ∆ ` > : o ∆ ` & : o→ o→ o ∆, x : A ` x : A

∆, x : A `M : B
∆ ` λx :A.M : A→ B

∆ `M : A→ B ∆ ` N : A
∆ `MN : B

Conversion rules. The conversion relation between well-typed terms is the least relation
generated by the following rules together with the rules for congruence closure (which we
omit):
∆ ` (λx :A.M)N = M [N/x]
∆ ` &⊥M = ⊥ ∆ ` &>M = M ∆ ` &M> = M

1 In the literature, this constant is usually denoted by ∧; here we prefer to denote it by &, since the
symbol ∧ is used in the intersection type assignment system.

CSL’13

238 Innocent Game Semantics via Intersection Type Assignment Systems

Notice that the conversion rules for & include reductions where the first or the second
argument is >, but only the reduction where the first argument is ⊥. The reduction in
the case the second argument is ⊥ is omitted, in order to keep the correspondence between
normal forms and strategies (see Theorem 15 below).

Game Model

In the cartesian closed category G, simple types are interpreted by the hierarchy of arenas
over the following Sierpinski arena:

I Definition 12 (Sierpinski Arena). The arena O is defined as follows:
MO = {q, a}
λO(q) = OQ λO(a) = PA

? `O q and q `O a

In the game model, terms in contexts are interpreted as innocent strategies in the usual
way, using standard categorical combinators, i.e. x1 : A1, . . . , xk : Ak `M : A is interpreted
as a strategy on the arena [[A1]]G × . . .× [[Ak]]G → [[A]]G . Before giving the formal interpret-
ation of terms, we first need to define the interpretation of constants.

Interpretation of the basic constants. The
interpretation of the constants ⊥, > is
given by the two strategies on the Sierpinski
arena: [[⊥]]G is the empty strategy, while
[[>]]G = {qa}. The interpretation of the
constant & is the strategy [[&]]G on the arena
O → O → O, defined by the set of plays gen-
erated by the even-prefix closure of the play
(r, (r, q))(l, q)(l, a)(r, (l, q))(r, (l, a))(r, (r, a))
(where justification pointers are omitted).

[[&]]G : O −→ O −→ O

q

q

//

n l i g e c a

a

JJ�

q

==

�
�

�
�

~

a

JJ�

a

LL

$

"

!

�
�

�

�

Given an arena A, we denote by !A the unique empty strategy from the arena A to the
terminal arena I. With the obvious isomorphism, a strategy on the arena A can also be
seen as a strategy on the arena I → A.

The complete definition of the type and term interpretation in the model is the following:

I Definition 13 (Type and Term Interpretation).
Type interpretation:

[[o]]G = O [[A→ B]]G = [[A]]G → [[B]]G .
Term interpretation:

[[x1 : A1, . . . , xk : Ak ` c : A]]G = [[c]]G◦![[A1]]G×...×[[Ak]]G if c is a constant.
[[x1 : A1, . . . , xk : Ak ` xi : Ai]]G = πi : [[A1]]G × . . .× [[Ak]]G → [[Ai]]G
[[∆ ` λx :A.M : A→ B]]G = Λ([[∆, x : A `M : B]]G)
[[∆ `MN : B]]G = ev ◦ 〈[[∆ `M : A→ B]]G , [[∆ ` N : A]]G〉

where πi denotes the i-th projection, ev denotes the natural transformation, and Λ denotes
the functor characterizing G as cartesian closed category.

Using standard methods, one can prove that the theory induced by the game model is
the theory of βη-normal forms. The notions of β-normal forms and βη-normal forms on
unary PCF are the following:

P. Di Gianantonio and M. Lenisa 239

I Definition 14 (β-normal forms, βη-normal forms).
(i) A typed term ∆ `M : A is in β-normal form if

M ≡ λx1 : A1 . . . xn : An. ⊥ or
M ≡ λx1 : A1 . . . xn : An.> or
M ≡ λx1 : A1 . . . xn : An.&MM ′, where M,M ′ are in β-normal form, M 6= ⊥,>, and
M ′ 6= >, or
M ≡ λx1 : A1 . . . xn : An.xiM1 . . .Mqi

, where M1, . . . ,Mqi
are in β-normal form.

(ii) A typed term ∆ ` M : A is in βη-normal form if it is in β-normal form and each
occurrence of a variable x of type B1 → . . .→ Bk → o inM appears applied to k arguments
of types B1, . . . , Bk, respectively.

We omit the proof of the following theorem, which is standard:

I Theorem 15. The theory ThG induced by the game model [[]]G is the βη-theory.

In view of the results in [13], the extensional quotient of the above game model is universal
for the observational equivalence on unary PCF (see [13] for more details).

I Example 16. We conclude this section by providing an example of two different innocent
strategies with the same set of positions. Namely, let us consider the terms P ≡ λx : o →
o→ o.λy :o.x(x⊥(& y⊥))(x⊥⊥) and Q ≡ λx :o→ o→ o.λy :o.x(x⊥⊥)(x(& y⊥)⊥). Then,
the strategies σP and σQ interpreting P and Q are different for only two plays:
σP : (O → O → O) → O → O

q

q

//

p m j g d b _

q

//

p m j g d b _

q

66

�
~

{
w

t
q

n

q

00
}

o e

q

EE

�
�

�
�

�

�

σQ : (O → O → O) → O → O

q

q

//

p m j g d b _

q

00
}

o e

q

66

�
~

{
w

t
q

n

q

//

p m j g d b _

q

EE

�
�

�
�

�

�

The first play is contained in σP but not in σQ, while the second one is contained in σQ but
not in σP . However, the two plays above induce the same position, so as all plays extending
them, and hence the strategies interpreting P and Q have the same sets of positions.

4 The Type Assignment System

In this section, we introduce and study a type assignment system, which gives a finitary
description of the game model of Section 3. The types involved are essentially the standard
intersection types, where some structural rules are missing. Our approach to intersection
types is “typed”, i.e. intersection types are built inductively over arenas. The usual untyped
intersection semantics (for the untyped λ-calculus) can be recovered as a special case of the
typed case.

Intuitively, a type on an arena A represents a partitioned position induced by a play on A.
Types on the Sierpinski arena are just sets of moves contained in the possible plays on this
arena. As a further ingredient, moves in types are indexed on natural numbers. Indexes are
used to describe partitions: two moves lie in the same partition if and only if they have the
same index. A type (t1 ∧ . . .∧ tn)→ t on the arena A→ B represents a partitioned position
composed by a partitioned position on B, described by t, and several partitioned positions

CSL’13

240 Innocent Game Semantics via Intersection Type Assignment Systems

on A, described by the types t1, . . . , tn. In this approach, the intersection type constructor
(∧) is used to build types on exponential arenas, possibly having multiple instances of the
same move. Consequently, the ∧ constructor is not idempotent.

The formal correspondence between the type semantics and the game semantics is es-
tablished in Section 5.

We define a syntax for types that is more complex than the standard one for intersection
types. The extra conditions we put on types reflect the alternating and well-bracketing
conditions on plays. Namely, for each arena A, we define the set of corresponding intersection
types, which divides into P-types (tAP) and O-types (tAO), i.e. types representing partitioned
positions where the Proponent is next to move and types representing partitioned positions
where the Opponent is next to move, respectively. Moreover, O-types are divided into
“resolved types” (tAOr), which are intended to represent plays with no pending questions,
and “pending types” (tAOp), which represent plays with pending questions. Notice that all
P-types are pending types in this sense.

I Definition 17 (Types). We define two families of types, i.e. Proponent types (P-types),
{TypeA

P }A, and Opponent types (O-types), {TypeA
O}A, these latter are divided into Opponent

resolved types and Opponent pending types, by induction on the structure of the arena A via
the following abstract syntax:

Types on Sierpinski arena:

(TypeOP 3) tOP ::= {qi} (TypeOO 3) tOOr ::= {qi, aj} i, j ∈ N

Types on arrow arenas:

(TypeA→B
P 3) tA→B

P ::= t!AOr → tBP | t!AOp → tBP

(TypeA→B
O 3) tA→B

Or ::= t!AOr → tBOr

(TypeA→B
O 3) tA→B

Op ::= t!AOr → tBOp | t!AOp → tBOp | t!AP → tBP

where

(MType!A
O 3) t!AOr ::= tAOr | ∅A | t!AOr ∧ t!AOr

(MType!A
O 3) t!AOp ::= tAOp | t!AOp ∧ t!AOp | t!AOp ∧ t!AOr

(MType!A
P 3) t!AP ::= tAP | t!AOr ∧ t!AP | t!AOp ∧ t!AP

∅A denotes the empty type on A, and MType!A
P (MType!A

O) denotes the set of Proponent
multiple types (Opponent multiple types).

Moreover, we define TypeA = TypeA
P ∪ TypeA

O, MType!A = MType!A
P ∪MType!A

O , Type =⋃
A TypeA, and MType =

⋃
!A MType!A. We use the symbols tA, uA, and t!A, u!A to denote

types and multiple types respectively, and the symbols tAP , uA
P (t!AP , u!A

P) and tAO, uA
O (t!AO , u!A

O)
to denote P (multiple) types and O (multiple) types, respectively.

Finally, we endow the types with the equivalence relation induced by:

∅A ∧ t!A = t!A (identity) t!A1 ∧ t!A2 = t!A2 ∧ t!A1 (commutativity)
(t!A1 ∧ t!A2) ∧ t!A3 = t!A1 ∧ (t!A2 ∧ t!A3) (associativity) .

In the definition of types, justification pointers are not explicitly represented, but they
can be recovered from the structure of types.

P. Di Gianantonio and M. Lenisa 241

I Example 18. The partitioned positions describing the copycat strategy on the arena
O → O are induced by the types {q0} → {q0} and {q0, a1} → {q0, a1}.

Notice that, since the type {q0, a1} → {q0, a1} contains as subexpression the type
{q0, a1}, the grammar for types needs to generate also types where all indexes are distinct.

To make a more complex example, the two plays that differentiate the strategies σP and
σQ in Example 16 are described by the types:

(({q1} → ∅O → {q0}) ∧ (∅O → {q2} → {q1}))→ {q2} → {q0}
(({q2} → ∅O → {q1}) ∧ (∅O → {q1} → {q0}))→ {q2} → {q0}

Notice that types on the arena O → O containing a single move are P-types in the form
∅ → {qi}, while types containing two moves are either Opponent resolved types in the form
∅ → {qi, aj} or Opponent pending types in the form {qj} → {qi}.

Since the grammar does not contain the production t!AP ∧t!AP , the type ({q0}∧{q1})→ {q0}
does not belong to the grammar; this type describes a play not respecting the alternating
condition.

Since the grammar does not contain the production t!AOp
→ tBOr

, the type ({q1} → {q0})→
{q0, a1}) does not belong to the grammar; this type describes a play not respecting the
bracketing condition.

I Definition 19 (Environments).
Environments Γ are finite sets {x1 : t!A1

1 , . . . , xk : t!Ak

k } with the variables x1, . . . , xk all
distinct. For simplicity, we omit braces in writing the environments.
The symbol Γ∅ stands for an environment in the form x1 : ∅A1 , . . . , xk : ∅Ak .
Given two environments Γ,Γ′ in the form Γ = x1 : t!A1

1 , . . . , xk : t!Ak

k and Γ′ = x1 :
t

′!A1
1 , . . . , xk : t

′!Ak

k , we define Γ∧Γ′ as the environment x1 : t!A1
1 ∧t

′!A1
1 , . . . , xk : t!Ak

k ∧t
′!Ak

k

We introduce a typing system for deriving judgements of the shape x1 : t!A1
1 , . . . , xk :

t!Ak

k `M : tA, whose intended meaning is to represent a partitioned position in the strategy
interpreting the term M in the game model of Section 3.

I Definition 20 (Typing System). The typing rules for deriving judgements x1 : t!A1
1 , . . . , xk :

t!Ak

k `M : tA are the following:

i ∈ N
Γ∅ ` > : {qi, ai}

(>)

i ∈ N
Γ∅ ` & : {qi} → ∅O → {qi}

(&1)

i, j ∈ N
Γ∅ ` & : {qi, aj} → {qj} → {qi}

(&2)

i, j, k ∈ N
Γ∅ ` & : {qi, aj} → {qj , ak} → {qi, ak}

(&3)

tA ∈ TypeA

Γ∅, x : tA ` x : tA
(var)

CSL’13

242 Innocent Game Semantics via Intersection Type Assignment Systems

Γ, x : u!A `M : tB

Γ ` λx :A.M : u!A → tB
(abs)

Γ `M : uA
1 ∧ . . . ∧ uA

n → tB Γ1 ` N : uA
1 . . . Γn ` N : uA

n

Γ ∧ Γ1 ∧ . . . ∧ Γn `MN : tB
(app)

Γ `M : ∅A → tB Γ ` N : A
Γ `MN : tB

(app’)

where Γ denotes the simple type environment induced by Γ.

Notice that, in the judgements derivable in the typing system above there is a clear
separation between types appearing in the left part (i.e. in the environment) and types
appearing in the right part: namely, the types in the left part are multiple types, while in
the right part only (arrow) types appear.

The extra rule for application (app′) is necessary because the expression ∅A only belongs
to the grammar of multiple types but not to the grammar of types.

I Example 21. By the axioms:
x : ∅O→O→O, y : ∅O ` & : {q2} → ∅O → {q2} ,
x : ∅O→O→O, y : {q2} ` y : {q2} ,
x : ∅O → {q2} → {q1}, y : ∅O ` x : ∅O → {q2} → {q1} ,
x : {q1} → ∅O → {q0}, y : ∅O ` x : {q1} → ∅O → {q0} ,
using the rules (app) and (app′), we get x : ∅, y : {q2} ` &y⊥ : {q2} .
Again by the rules (app′) and (app), x : ∅O → {q2} → {q1}, y : {q2} ` x⊥(&y⊥) : {q1} .
By the rules (app) and (app′),
x : ({q1} → ∅O → {q0} ∧ ∅O → {q2} → {q1}), y : {q2} ` x(x⊥(&y⊥))(x⊥⊥) : {q0} ,
and by a double application of the rule (abs),
` λx : o → o → o.λy : o.x(x⊥ (& y⊥))(x⊥⊥) : (({q1} → ∅O → {q0}) ∧ (∅O → {q2} →

{q1}))→ {q2} → {q0} .

Notice that the following rule is admissible:

Γ `M : tA φ : N→ N
Γφ `M : tAφ

(sub)

where φ is a generic a function on natural numbers and tAφ denotes the type tA where all
indexes on moves are substituted according to the function φ. The rule (sub) can be usefully
employed on the premises of the rule (app), in order to derive premises sharing identical
indexes on the corresponding types. Notice that, to obtain this result, it can be necessary
to identify different indexes, and so the function φ, used as parameter in sub, needs to be a
general function and not simply a permutation.

The fact that the types in any derivable judgement are well-formed intersection types
follows from Lemma 22 below. This lemma can be easily proved by induction on derivations.

I Lemma 22. If x1 : t!A1
1 , . . . , xk : t!Ak

k `M : tA is derivable, then:
if tA is a resolved O-type, then all t!A1

1 , . . . , t!Ak

k are resolved O-types;
if tA is a pending O-type, then all t!A1

1 , . . . , t!Ak

k are O-types;
if tA is a P-type, then at most one of the types in t!A1

1 , . . . , t!Ak

k is a P-type.

As a consequence, we have:

P. Di Gianantonio and M. Lenisa 243

I Proposition 23. If x1 : t!A1
1 , . . . , xk : t!Ak

k ` M : tA is derivable, then (t!A1
1 → (t!A2

2 →
. . . (t!Ak

k → tA))) ∈ Type(A1→(A2→...(Ak→A))).

The type assignment system immediately induces a semantics of λ-calculus based on
types, whereby any term in context is interpreted by a set of tuples of types as follows:

I Definition 24 (Type Semantics). Let [[]]T be the interpretation function defined by:
[[x1 : A1, . . . , xk : Ak `M : A]]T = {(t!A1

1 , . . . , t!Ak

k , tA) | x1 : t!A1
1 , . . . , xk : t!Ak

k `M : tA}.

5 From Types to Games

In this section, we show that the type semantics coincides with the game semantics. This
result follows from the fact that the types appearing in judgements derivable in the in-
tersection type system correspond to partitioned positions in the strategy interpreting the
term.

In order to formally state this correspondence, it is useful to introduce the notion of
indexed position, which is a position where moves are indexed. Clearly, any indexed position
determines a partitioned position, where two moves belong to the same partition if and only
if they have the same index; we denote by U : IP → PP the natural map from indexed
to partitioned positions. Vice versa, any partitioned position determines a class of indexed
positions, differing by an injective renaming of indexes. Notice that it would have been
possible to use only the notion of indexed position, but we have preferred to introduce also
partitioned positions, which provide canonical representatives for strategies.

One can easily define a natural map EA : TypeA → IPA, for any set of types TypeA:

I Definition 25. For any set of intersection types TypeA, we define EA : TypeA → IPA, by
induction on the arena A:
EO({qi}) = (qi, ∅) EO({qi, aj}) = (qi, {(aj , ∅)}).
EA→B(t!A → tB) = (m′, {p′1, . . . , p′k, EA(tA1), . . . , EA(tAn)}),
where
t!A = tA1 ∧ . . . ∧ tAn ,
EB(tB) = (m′, {p′1, . . . , p′k}),
EA(tAi) denotes the position where the polarity of moves has been reversed,
the move names in (m′, {p′1, . . . , p′k, EA(tA1), . . . , EA(tAn)}) are taken up to the obvious
injection in MA +MB .

The maps EA can be extended to k + 1-tuple of types (t!A1
1 , . . . , t!Ak

k , tA) as follows:

I Definition 26. For all MType!A1 , . . . ,MType!Ak ,TypeA, for any k ≥ 0, we define a map
EA1×...×Ak→A : MType!A1 × . . .×MType!Ak ×TypeA → IPA1×...×Ak→A by induction on the
arenas A1, . . . , Ak, A as follows:

for k = 0, EA(tA) is defined as in Definition 25;
for k > 0, EA1×...×Ak→A(t!A1

1 , . . . , t!Ak

k , tA) =
(m′, {p′1, . . . , p′h, EA1(tA1

11), . . . , EA1(tA1
1n1

), . . . , EAk (tAk

k1), . . . , EAk (tAk

knk
)}) ,

where
t!Ai
i = tAi

i1 ∧ . . . ∧ t
Ai
ini

, for all i,
EA(tA) = (m′, {p′1, . . . , p′h}),
EAi(tAi

ij), for all i, j, denotes the position where the polarity of moves has been re-
versed,

CSL’13

244 Innocent Game Semantics via Intersection Type Assignment Systems

move names in (m′, {p′1, . . . , p′h, EA1(tA1
11), . . . , EA1(tA1

1n1
), . . . , EAk (tAk

k1), . . . , EAk (tAk

knk
)})

are taken up to the obvious injection in MA1 + . . .+MAk
+MA.

The maps EA and U determine a correspondence between the type semantics and the
game semantics, namely:

I Definition 27. We define
F([[x1 : A1, . . . , xk : Ak `M : A]]T) =

{U ◦ EA1×...×Ak→A(t!A1
1 , . . . , t!Ak

k , tA) | x1 : t!A1
1 , . . . , xk : t!Ak

k `M : tA} .

Then, we have the following theorem (whose proof appears in the Appendix):

I Theorem 28.
(i) For any well-typed term ∆ `M : A, F([[∆ `M : A]]T) = [[[∆ `M : A]]G]∗ .
(ii) The type semantics and the game semantics induce the same theory.

5.1 ITAS without Indexes
A simplified model for unary PCF can be obtained by using an alternative version of ITAS
where types are without indexes. In this alternative version the type semantics of a term
M defines the set of positions (and not of partitioned positions) in the strategy [[M]]G .

It turns out that the simplified model does not provide the theory of the game model.
The terms P and Q considered in the Example 16 are interpreted in the game model by
two different strategies, σP , σQ, containing the same set of positions. More precisely, the
theory of the simplified model is intermediate between the theory of the game model and
its extensional collapse.

Intersection types without idempotency and without indexes have been considered also
in [15, 16]. In these works, it has been shown that two terms having the same set of types
have also the same normal form. This result is in contrast with what happen in the above
sketched ITAS without indexes, where terms P and Q have different normal forms but the
same set of types. This difference can be explained by the fact that in our setting the set of
types without indexes contains too few elements; in particular on the Sierpinski arena just
three types are definable. In contrast, in [15], the untyped lambda calculus and types built
over a countable set of type variables are considered. A posteriori, one can argue that, in
order to precisely characterize the normal forms of terms, it is necessary to have a sufficiently
rich set of types, and the introduction of indexes on types can be seen not only as a way to
encode part of the time order on moves, but also as a way to obtain a richer set of types.

6 Conclusions and Further Work

In this work we have shown how a type assignment system can be used to determine the in-
terpretation of λ-terms in an innocent game model. An interesting aspect that has emerged
is that using very similar ITAS, essentially differing among them by the use of structural
rules, it is possible to capture a large variety of denotational models: various domain the-
oretic and game models. It will be interesting to systematically investigate the relations
between structural rules and the model counterpart.

As a further result, we hope to construct, in the type semantics setting, fully abstract
models of programming languages. In game semantics, fully abstract models are obtained
by extensional collapse, exploiting full definability results. To repeat the same construction
in the type semantics, it is necessary to obtain an analogous result of full definability. This
will imply to find a concrete characterisation of semantical objects, that is to characterise

P. Di Gianantonio and M. Lenisa 245

those sets of types which are interpretations of terms, or, by the full definability of innocent
strategies, to characterise those sets of types corresponding to innocent strategies. In a
different setting, a similar result has been obtained by Mellies, in [14], for asynchronous
games. There, it has been shown that an innocent strategy can be described by the set
of its positions; moreover, it has been presented a direct characterisation of those sets
of positions which correspond to innocent strategies. An analogous characterisation for
partitioned positions could be studied. Since in our setting positions are described by types,
this is the sort of result we are looking for.

In general, there are several other aspects in game semantics that arguably can be ex-
pressed in terms of intersection types. Game semantics is a quite sophisticated theory and
so far we have formulated just one part of it in the ITAS approach. Thus, it is natural to
investigate what will be a suitable translation of other game semantics concepts.

References
1 S. Abramsky. Domain theory in logical form. In Annals of Pure and Applied Logic,

volume 51, pages 1–77, 1991.
2 S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstraction for PCF. Information and

Computation, 163:409–470, 2000.
3 P. Baillot, V. Danos, T. Ehrhard, and L. Regnier. Timeless games. In M. Nielsen et al.,

editor, CSL, volume 1414 of LNCS, pages 56–77. Springer, 1997.
4 P. Boudes. Thick subtrees, games and experiments. In Typed Lambda Calculi and Ap-

plications: Proc. 9th Int. Conf. TLCA 2009, pages 65–79. Springer-Verlag, 2009. LNCS
Vol. 5608.

5 A. Bucciarelli, B. Leperchey, and V. Padovani. Relative definability and models of unary
PCF. In TLCA’03, volume 2701 of LNCS, pages 75–89. Springer, 2003.

6 A. Calderon and G. McCusker. Understanding game semantics through coherence spaces.
Electr. Notes Theor. Comput. Sci., 265:231–244, 2010.

7 M. Coppo and M. Dezani-Ciancaglini. An extension of the basic functionality theory for
the λ-calculus. Notre Dame J. Formal Logic, 21(4):685–693, 1980.

8 M. Coppo, M. Dezani-Ciancaglini, F. Honsell, and G. Longo. Extended type structure and
filter lambda models. In G. Lolli, G. Longo, and A. Marcja, editors, Logic Colloquium ’82,
pages 241–262. Elsevier Science Publishers B.V. (North-Holland), 1984.

9 D. de Carvalho. Execution Time of Lambda-Terms via Denotational Semantics and Inter-
section Types. Mathematical Structure in Computer Science, 1991. To appear.

10 P. Di Gianantonio, F. Honsell, and M. Lenisa. A type assignment system for game se-
mantics. Theor. Comput. Sci., 398(1-3):150–169, 2008.

11 J. M. E. Hyland and C.-H. L. Ong. On full abstraction for PCF. Information and Compu-
tation, 163:285–408, 2000.

12 M. Hyland and A. Schalk. Abstract games for linear logic. ENTCS, 29:127–150, 1999.
13 J. Laird. A fully abstract bidomain model of unary PCF. In TLCA’03, volume 2701 of

LNCS, pages 211–225. Springer, 2003.
14 P.A. Melliès. Asynchronous games 2: The true concurrency of innocence. Theor. Comput.

Sci., 358(2-3):200–228, 2006.
15 P. M. Neergaard and H. G. Mairson. Types, potency, and idempotency: Why nonlinearity

and amnesia make a type system work. In Proc. 9th Int. Conf. Functional Programming.
ACM Press, 2004.

16 S. Salvati. On the membership problem for non-linear abstract categorical grammars.
Journal of Logic, Language and Information, 19(2):163 – 183, 2010.

CSL’13

246 Innocent Game Semantics via Intersection Type Assignment Systems

A Proofs

Proof of Proposition 10. First we prove that the first set of partitioned positions is in-
cluded in the second one. Given a play s ∈ τ◦σ, by the definition of composition of strategies,
there exist a set of plays s1, . . . , sn ∈ σ and a play t ∈ τ , whose interleaving composition
gives s. Let (p,Ep) = [t]∗, (qi, Eqi

) = [si]∗. Starting from the partition Ep, we build a
coarser partition E′p by considering each pair of Opponent-Proponent moves m,n belonging
to the arena B and forming a partition of Eqi

, the corresponding instances are contained in
separated partitions of Ep, the two instances are equated in E′p. In a symmetric fashion, we
build a set of partitions E′qi

k Eqi
. It is not difficult to verify that the partitioned positions

(p,E′p) and {(qi, E
′
qi

) | i ∈ I} compose and their composition coincides with [s]∗. This fact
proves that [s]∗ ∈ [τ]∗ ◦ [σ]∗. Moreover any other partitioned position (q, Eq) k [s]∗, can be
shown to belong to [τ]∗ ◦ [σ]∗ by repeating the above construction using suitable partitioned
position (p,E′′p) k (p,E′p) and (qi, E

′′
qi

) k (qi, E
′
qi

).
The proof of the reverse inclusion is more complex. From the hypothesis (p,Ep) ∈

[τ]∗ ◦ [σ]∗, by definition, it follows that there exists a set of plays s1, . . . , sn ∈ σ, a play
t ∈ τ and a set of partitioned positions (q1, Eq1), . . . , (qn, Eqn), (p′, Ep′) such that: [si]∗ j
(qi, Eqi

), [t]∗ j (p′, Ep′), (p,E) � C = (p′, Ep′) � C, (p,E) � A =
⋃

i∈1..n(qi, Eqi
) � A, and

(p′, Ep′)�B =
⋃

i∈1..n(qi, Eqi)�B.
Since the plays s1, . . . sn, and t not necessarily have an interleaving composition, using

the innocence hypothesis for the strategies σ and τ , we need to construct a second set
of plays s′1, . . . , s′n and t′, that do have an interleaving composition and such that [s′i]∗ j
(qi, Eqi

), [t′]∗ j (p′, Ep′). Essentially s′1, . . . , s′n and t′ coincide with s1, . . . , sn and t on the
components A and C, while on B the move following a move m is determined by considering
the behaviour of the Proponent in either the plays s1, . . . , sn or in the play t.

In more detail, the plays s′1, . . . , s′n and t′ are defined incrementally as follows. First, one
considers a bijection j between the B moves in s1, . . . , sn and the B moves in t induced by
the equality (p′, Ep′)�B =

⋃
i∈1..n(qi, Eqi

)�B. Since (p′, Ep′)�B is a multiset, the bijection
j is not unique.

The initial sequence of t′ coincides with the initial sequence t1 of t till the first instance
of a move b1 in the arena B; b1 must be a Proponent move. Then one considers the move b1
associated to b1 by j; assume that b1 lies in the plays si, next, one considers the subsequence
si,1 of si starting from b1 till the next move b2 in the arena B. The sequence si,1 forms
the initial sequence of s′i. Notice that si,1 can be composed by just two moves, but can
also contain moves in A. Notice moreover that b1 is an Opponent move, while b2 must be
a Proponent move. The construction goes on considering the move b2 in t associated to b2
by j and the subsequence t2 of t starting from b2 till the next move b3 in the arena B. The
concatenation t1t2 defines the initial sequence of t′. Notice that b2 and b3 are, respectively,
Opponent and Proponent moves.

Repeating the steps presented above, one considers the move b3, associated to b3 by
j. If, by chance, b3 is contained in the play si, one considers the subsequence si,2 of s1
starting from the move b3 to the next move b4 in the arena B, the concatenation si,1si,2
forms the initial sequence of s′i. If b3 lies in a different sequence sh, the subsequence from
b3 to b4 defines the initial sequence of s′h. The construction carries on in this way, moving
continuously from the play t to the plays s1, . . . , sn, till all moves have been considered. It
is immediate to check that the constructed plays t′ and s′1, . . . , s′n compose. It remains to
prove that the the plays t′ and s′1, . . . , s′n satisfy the visibility condition and belong to the
innocent strategies τ , σ. The plays t′ and s′1, . . . , s′n belong to the innocent strategies since

P. Di Gianantonio and M. Lenisa 247

the Proponent view of a move in t′ and s′1, . . . , s′n coincides with the Proponent view of the
corresponding moves in t and s1, . . . , sn. The visibility condition is satisfied since, for any
B move, the Proponent view in t′ coincides with the Opponent view in s′1, . . . , s′n, and vice
versa. To conclude the proof, from t′, s′1, . . . , s

′
n one constructs a play s in the strategy τ ◦σ

such that (p,Ep) k [s]∗. J

Proof of Theorem 15. Clearly, two βη-equivalent terms have the same interpretation in
the model. Vice versa, if two terms at a given type have different βη-normal forms, then,
by induction on the structure of them, one can show that the corresponding strategies are
different. First of all notice that any normal form λ~x : ~A.&MM ′ must be of the shape
λ~x : ~A.&(. . . (&(xi

~M)M ′1) . . .)M ′k, i.e. there is a subterm xi
~M , and hence the strategy

interpreting the whole normal form interrogates the variable xi, and it is not constant.
Therefore, the strategies interpreting the normal forms λ~x :~A.⊥ and λ~x :~A.>, being constant,
are different from all strategies interpreting other normal forms. Moreover, if the normal
forms are of the shape λ~x : ~A.&(. . . (&(xi

~M)M ′1) . . .)M ′k and λ~x : ~A. xj
~N , then, if i 6= j, the

corresponding strategies are extensionally different (e.g., when xi is ⊥ and xj is > of the
appropriate types, they provide different results). If i = j, then, when xi is >, the strategy
corresponding to the second term yields immediately >, while the strategy corresponding
to the first term would yield > immediately only if the strategy interpreting the second
argument would be the >-strategy. But, by induction hypothesis, this means that the
second argument is >, which cannot be by hypothesis. Now, if the two normal forms are
of the shape λ~x :~A.&M1M2 and λ~x :~A.&N1N2, then the strategies interpreting them would
be Λ ◦ ev ◦ 〈ev ◦ 〈[[&]]G , f1〉, f2〉 and Λ ◦ ev ◦ 〈ev ◦ 〈[[&]]G , g1〉, g2〉, where f1, f2, g1, g2 are the
interpretations ofM1,M2, N1, N2 in the appropriate environments. By induction hypothesis,
f1 6= g1 or f2 6= g2. Notice that the strategy interpreting & starts by interrogating the first
argument and, if this provides an answer, it interrogates the second one. But, since the
first argument is different from ⊥, it must provide an answer. Hence, from the fact that
f1 6= g1 or f2 6= g2, we can conclude that the strategies interpreting the the two normal
forms are different. Finally, if the normal forms are of the shape λ~x : ~A.xiM1 . . .Mqi

and λ~x :
~A.xjM

′
1 . . .M

′
qj
, and the head variable is different, then the strategies are different, because

the first starts by interrogating the i-th argument, while the second starts by interrogating
the j-th argument. If the head variable is the same in the two terms, but the strategies
interpreting one of the arguments are different, i.e. [[∆ ` λ~x : ~A.xiM1 . . .Mqi

: B]]G = Λn ◦
ev ◦ 〈. . . 〈ev ◦ 〈πn

i , g1〉, g2〉 . . . , gqi
〉 and [[∆ ` λ~x : ~A.xiM

′
1 . . .M

′
qi

: B]]G = Λn ◦ ev ◦ 〈. . . 〈ev ◦
〈πn

i , g
′
1〉, g′2〉 . . . , gq′

i
〉 with gj 6= g′j for some j, then, by definition of ev, πn

i and 〈 , 〉, one can
easily check that the overall strategies are also different. J

Proof of Theorem 28.
(i) The proof proceeds by induction on the derivation of ∆ ` M : A, by showing that
F([[∆ `M : A]]T) is the set of partitioned positions of the strategy [[∆ `M : A]]G . For
M the ground constants ⊥,>,& or a variable, the thesis directly follows from the defin-
itions of type assignment system and game semantics. For ∆ ` λx : A.M : A→ B, the
thesis easily follows by induction hypothesis. For ∆ `MN : B, applying the induction
hypothesis, we have that F([[∆ `M : A→ B]]T) is the set of partitioned positions of
the strategy [[∆ `M : A→ B]]G , while F([[∆ ` N : A]]T) is the set of partitioned posi-
tions of the strategy [[∆ ` N : A]]G . Then, the thesis follows by rule (app) of the type
assignment system, and by the characterisation of strategy application when strategies
are viewed as sets of partitioned positions (see Section 2.1).

(ii) By item (i), since both []∗ and F are injective maps, ThT = ThG . J

CSL’13

Cuts for circular proofs: semantics and
cut-elimination
Jérôme Fortier1 and Luigi Santocanale2

1 LaCIM, UQAM / LIF, AMU
Montréal, Canada / Marseille, France
jerome.fortier@lif.univ-mrs.fr

2 LIF, AMU
Marseille, France
luigi.santocanale@lif.univ-mrs.fr

Abstract
One of the authors introduced in [16] a calculus of circular proofs for studying the computab-
ility arising from the following categorical operations: finite products, finite coproducts, initial
algebras, final coalgebras. The calculus presented [16] is cut-free; even if sound and complete
for provability, it lacked an important property for the semantics of proofs, namely fullness w.r.t.
the class of intended categorical models (called µ-bicomplete categories in [18]).

In this paper we fix this problem by adding the cut rule to the calculus and by modifying
accordingly the syntactical constraint ensuring soundness of proofs. The enhanced proof system
fully represents arrows of the canonical model (a free µ-bicomplete category). We also describe
a cut-elimination procedure as a a model of computation arising from the above mentioned
categorical operations. The procedure constructs a cut-free proof-tree with possibly infinite
branches out of a finite circular proof with cuts.

1998 ACM Subject Classification F.1.1 Models of Computation, F.4.1 Mathematical Logic

Keywords and phrases categorical proof-theory, fixpoints, initial and final (co)algebras, induct-
ive and coinductive types

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.248

1 Introduction

Many researchers have studied fixed-point logics with, explicitly or implicitly, a proof-theoretic
approach. Such a spread interest for the proof-theory of these logics stem from different
fields of theoretical computer science: model-checking and the logics of computation such as
modal µ-calculi [9, 12, 19, 20], logic programming and proof search [1, 3], computer aided
verification via proof-assistants and its mathematical counterpart, mainly type theory with
inductive and coinductive types [2, 7, 11], coalgebras [14] and categorical programming [6].

The calculus of circular proofs was introduced in [16] with, as main aim, that of lifting
from provability to the level of proof-theory the game-theoretic machinery developed in the
context of the lattice µ-calculus [17]. From a semantic and algebraic perspective, moving
from provability to proof-theory meant sliding the focus from posetal structures to categorical
structures; and as far as theoretical computer science is concerned, the reason for taking this
step was to investigate fixed-point theory from the point of view of semantics of computation
in the style of the Curry-Howard-Lawvere isomorphisms. We aim therefore with the present
research at investigating the kind of computability arising from the following categorical
operations: finite products and coproducts, initial algebras and final coalgebras. This can be

© Jérôme Fortier and Luigi Santocanale;
licensed under Creative Commons License BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca ; pp. 248–262

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.248
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

J. Fortier and L. Santocanale 249

roughly rephrased in type theoretic terms, by saying that we aim at investigating product
and sum types, as well as inductive and coinductive types.

In our first proposal [16] we exhibited a cut-free calculus. A circular proof was a finite
pointed graph labeled by left or right introduction rules (the rules for additives of linear
logic, as well as the fixed point rules, regenerating variables to their bindings) satisfying some
constraints on cycles. The cut rule was no part of the calculus and the constraints on cycles
were suggested from the theory of parity games in verification. A circular-proof could also
be thought as a regular cut-free infinite proof-tree. The proposed calculus enjoyed some nice
and non-obvious properties: a sound algebraic semantics and a way to compose two circular
proofs into a new circular proof, a construction that could be assimilated to a cut-elimination
procedure. However the calculus was not full—a fact of which we were conscious already in
[16]—meaning that it was not expressive enough to denote all the arrows in the intended
model, a free µ-bicomplete category, cf. [18]. Unfulness could be interpreted as evidence that
we could not really dispense of the cut rule.

We fix, with the present work, the lack observed some years ago. We add the cut rule
to the set of Gentzen-type rules; such a modification implies rethinking in some coherent
way the condition on cycles for being a circular proof. A first main result presented here
is the soundness of the proof-system: this amounts to rigorously define the semantics via a
theorem asserting the existence and uniqueness of solutions for a certain class of systems of
equations. We then prove the fullness of the refined calculus.

A second part of this work provides a cut-elimination procedure for circular proofs. The
cut elimination procedure constructs a cut-free, infinite (not necessarily regular), finitely
branching proof-tree, thus with infinite branches. This result can be read now as stating
that we can actually dispense of the cut rule, but at the cost of giving away regularity of the
infinite proof-tree.

2 Preliminaries and notation

Transition systems. A transition system is a tuple G = 〈V,A, ς〉 where V is a set called
the support of G, A is a set called the alphabet and ς ⊆ V ×A× V is called the transition
relation. By abuse language, the support V is thereby named G like the transition system
itself and its elements are called vertices.

Transition systems are often seen as labelled oriented graphs. The notation u
a→ v

means (u, a, v) ∈ ς. The out-degree of u ∈ G, denoted deg(u), is the cardinality of the set
{v ∈ G : ∃a ∈ A such that u a→ v}. We say that G is deterministic if u a→ v and u

a→ v′

implies v = v′. In that case, we can also write v = ςau. If, moreover, deg(u) = 1, then we
shall write u→ v and v = ςu without ambiguity. Paths and cycles are defined in the obvious
way and the composition of two paths Γ0,Γ1, when defined, is denoted Γ0 ·Γ1. For u ∈ G, let
Vu denote the set of all targets of some path from u in G and let G, u = 〈Vu, A, ς�Vu×A×Vu〉.
G, u is called the reachable graph from u.
Categories. The reader might consult [10] for basic notions about categories. For f : a −→ b

and g : b −→ c arrows of some category, we shall mostly use f · g to denote their composition;
notice however that, with respect to usual notation, we have f · g = g ◦ f .

3 The calculus of circular proofs

Terms are constructed from a fixed set of variables V using the binary function symbols
×,+ and the constants 1, 0; the set of terms will be denoted by TERMS. The set of

CSL’13

250 Cuts for circular proofs

Identity,
Cut, Assumption

Id
t ` t

s ` u u ` t
Cut

s ` t
A

s ` t

L R

Products RAx
t ` 1

si ` t
L×i i = 0, 1

s0 × s1 ` t

s ` t0 s ` t1
R×

s ` t0 × t1

Coproducts LAx
0 ` t

s0 ` t s1 ` t
L+

s0 + s1 ` t

s ` ti
R +i i = 0, 1

s ` t0 + t1

Fixpoints
τ(x) ` t

Lµx
x ` t

s ` τ(x)
Rµx

s ` x

τ(x) ` t
Lνx

x ` t

s ` τ(x)
Rνx

s ` x

Figure 1 Inference rules over a system S.

subterms of (resp. variables appearing in) a term t will be denoted ST(t) (resp. VAR(t)).
A directed systems of equations is a tuple S = 〈X, τ, π〉, where X is a finite subset of
V, τ : X −→ TERMS, and π : X −→ N. For such a system S, we let BD(S) := X and
FV(S) :=

⋃
x∈X VAR(τ(x)) \ BD(S).

Intuitively, we think of the tuple S as the system of equations {x =θ(π(x)) τ(x) | x ∈ X }
where θ(n) = µ (least solution) if n is odd and θ(n) = ν (greatest solution) otherwise. The
priority function π shall also specify the order by which we solve this system of equations (cf.
Section 4).

A sequent is here a pair (s, t) of terms. As usual we shall use the turnstile symbol, that is
we write the sequent as s ` t, to separate its left part s from its right part t. We shall use SEQ
to denote the set of sequents. For a fixed directed system of equations S, the inference rules
over S are (instances of) the formal expressions appearing in Figure 1. Notice that the rules
in the column L act on the left part of a sequent while those R act on the right. Accordingly,
we group (labels of) the rules in two families L and R and set Σ := L ∪R ∪ {Id, Cut, A}.

I Definition 1. A pre-proof over S is a tuple Π = 〈G, ρ, σ〉 where G is a deterministic
transition system over the alphabet {0, 1}, ρ : G → Σ, and σ = (σL, σR) : G → SEQ;
moreover, for each v ∈ G, deg(v) ≤ 2 and the expression (1) is an inference rule over S.

σ(ς0v) . . . σ(ςdeg(v)−1v)
ρ(v)

σ(v)
(1)

J. Fortier and L. Santocanale 251

In order to be called a proof, a pre-proof must satisfy an additional syntactic constraint.
The constraint is originally inspired by the theory of parity games: it actually codes, in a
proof-theoretic setting, the winning condition on infinite paths. Scientists with a background
in type theory might perceive the similarity with the productivity constraint of [7, §2.3]. The
syntactic constraint turns out to be the key ingredient to ensure soundness of the proof
system and local termination of the cut elimination procedure.

Let Π = 〈G, ρ, σ〉 be a pre-proof. We say that a path Γ in G is left-traceable if, for
all n, if ρ(Γ(n)) = Cut, then Γ(n + 1) = ς0(Γ(n)). Similarly, Γ is right-traceable if, for all
n, if ρ(Γ(n)) = Cut, then Γ(n + 1) = ς1(Γ(n)). We say that Γ has a left µ-trace if Γ is
left-traceable, it contains a left fixpoint rule, and the highest priority of its left fixpoint rules
is odd. Similarly, we say that Γ has a right ν-trace if Γ is right-traceable, it contains a right
fixpoint rule, and the highest priority of its right fixpoint rules is even.

I Condition 2 (The Guard condition on cycles). Every cycle in G either has a left µ-trace or
a right ν-trace.

I Condition 3 (The Guard condition on infinite paths). Every infinite path Γ in G can be
written Γ = Γ0 ·Γ1 where Γ0 is finite, Γ1 either has a left µ-trace or a right ν-trace and every
fixpoint rule in Γ1 occurs infinitely often.

It is easily seen that if G is a finite graph, then conditions 2 and 3 are equivalent.

I Definition 4. A circular proof is a pre-proof Π = 〈G, ρ, σ〉 satisfying the guard conditions,
with G a finite graph.

The assumption rule A is a technical tool that is needed to prove soundness of the
system—the reader might have noticed that any sequent can be justified using this rule.
Therfore, let AΠ := {v ∈ G : ρ(v) = A} and CΠ := G \AΠ: AΠ is the set of assumptions of
Π, while CΠ is the set of its conclusions. A circular proof is ground if AΠ = ∅. Even if we
often draw a circular proof in the form of a tree with back-edges having a specified root (cf.
Figure 3), we consider all the vertexes of the proof as potential conclusions. On the other
hand, we can also easily define circular proofs with a root: a rooted circular proof is a pair
〈Π, v〉 where Π is a ground circular proof and v ∈ G.

4 Semantics of the calculus

The intended use of circular proofs is to describe functions between (possibly nested) inductive
and coinductive types. Before going into the technical details, let us give a few examples.

Recall that a natural numbers object is the object part of an initial algebra of the functor
F (x) = 1 + x (such an object can be seen as the least categorical solution of the functorial
equation x = 1 + x); of course, in Set, such an initial algebra is given by the usual data,
1 + N {0,suc}−−−−→ N. The function double : N→ N that sends n to 2n is represented as the root
of the proof in Figure 2. The L+ instruction can be understood as destructively reading an
input and branching according to its constructor (0 or suc). The right rules, on the other
hand, represent the choices of constructors for the output. The back edge marks the recursive
call of the function to itself.

The fact that reading the input is destructive is a problem that can be partially dismissed
with the cut rule. For instance, the interpretation of the circular proof in Figure 3 in Set
is the diagonal mapping ∆ : N→ N2 defined by ∆(n) = (n, n). It was constructed by the
method given below (see Fullness and Figure 5) since ∆ is the initial algebra morphism
to the algebra {(0, 0), suc× suc} : 1 + N2 → N2. It was mentioned in [15] that there is no
cut-free circular proof with this interpretation.

CSL’13

252 Cuts for circular proofs

RAx
1 ` 1

R+0
1 ` 1 + x

Rµx
1 ` x

x ` x
R+1

x ` 1 + x
Rµx

x ` x
R+1

x ` 1 + x
Rµx

x ` x
L+

1 + x ` x
Lµx

x ` x

double(n) ={
0 if n = 0;
suc(suc(double(n′))) if n = suc(n′).

Figure 2 Rooted circular proof denoting the function double : N→ N.

S :=
{
y =1 x+ y

x =1 1 + x

}

RAx
1 ` 1

R+0
1 ` 1 + y

x ` y
R+1

x ` 1 + y
L+

1 + x ` 1 + y

RAx
1 ` 1

R+1
1 ` x+ 1

Rµx
1 ` x

R+0
1 ` x+ y

Rµy
1 ` y

RAx
1 ` 1

R+0
1 ` 1 + x

Rµx
1 ` x

R+1
1 ` 1 + x

Rµx
1 ` x

x ` x
R+1

x ` 1 + x
Rµx

x ` x
L+

1 + x ` x
Lµx

x ` x
R+0

x ` x+ y
Rµy

x ` y
R+1

x ` x+ y
Rµy

x ` y

y ` y
R+1

y ` x+ y
Rµy

y ` y
L+

x+ y ` y
Lµy

y ` y
L+

1 + y ` y
Cut

1 + x ` y
Lµx

x ` y

Figure 3 Rooted circular proof denoting the diagonal mapping ∆ : N −→ N2.

Interpreting the terms. µ-bicomplete categories were defined in previous work on the
subject, mainly in [18]. In this paper it was also argued about the equivalence among
possible definitions of this notion, via a scalar µ-calculus or via a vectorial one. Roughly
speaking µ-bicomplete categories are categories with finite products and finite coproducts
(i.e. bicartesian categories) with enough initial algebras and final coalgebras to solve directed
systems of equations. Examples of µ-bicomplete categories include the locally presentable
categories such as the category of sets, categories of algebras for a finitary signature, and
categories of presheaves and sheaves.

LetM be a µ-bicomplete category and S be a directed system of equations. The definition
of the semantics is achieved in three steps: first we define the obvious functorial semantics of
terms; then we define the semantics of S as a canonical solution to the system of equations
it represents; finally, we evalute terms inM by means of the bound variables of S.

Given t ∈ TERMS and a finite subset X with VAR(t) ⊆ X, the semantics of t, denoted
|t|X , is a functor fromMX toM. Let us denote byMX the category of functors fromMX

to M with natural transformations as arrows. Recall that this is a bicartesian category,
limits being computed pointwise, see [10, Chapter V]. The formal definition of |t|X is by
induction on the structure of t as follows:

if t = x ∈ X, then |x|X is the projection functor on the x component (thus |x|X = prXx);
|0|X (resp. |1|X) is the initial (resp. terminal) object in the categoryMX ;

J. Fortier and L. Santocanale 253

if t = t1 × t2 (resp. t = t1 + t2), then |t|X is the product |t1|X × |t2|X (resp. coproduct
|t1|X + |t2|X) in the categoryMX .

Given n ≥ 0 and a system S, let Xn = {x ∈ BD(S) | π(x) ≤ n } and let Sn be the
restriction of S to Xn, namely Sn = 〈Xn, τ�Xn , π�Xn〉. In particular, if M = max{π(x) | x ∈
BD(S) }, then we define MAX(S) := {x ∈ BD(S) | π(x) = M }, LOW(S) := XM−1, and let
P (S), the predecessor system, be SM−1.

Assuming that X is finite and that FV(S) ⊆ X and BD(S) ∩X = ∅, the semantics of S,
noted by JSKX , is a functor fromMX toMBD(S). The definition is as follows:

I Definition 5. If BD(S) = ∅, then MBD(S) is the terminal category (with just one
object and its identity arrow), so that we let JSKX be the unique functor from MX to
the terminal category. Otherwise, consider the predecessor system P (S) and observe that
FV(P (S)) ⊆ MAX(S) ∪ FV(S) ⊆ MAX(S) ∪ X and (MAX(S) ∪ X) ∩ BD(P (S)) = ∅; as
card(BD(P (S))) < card(BD(S)), JP (S)KX∪MAX(S) is defined as a functor fromMX∪MAX(S)

toMBD(P (S)). Let G and H be the functors so defined:

G := 〈|τ(x)|BD(S)∪X | x ∈ MAX(S)〉 :MBD(S)∪X −→MMAX(S) ,

H := 〈 G , JP (S)KMAX(S)∪X ◦ prBD(S)∪X
MAX(S)∪X 〉 :

MBD(S) ×MX =MBD(S)∪X −−−→MMAX(S) ×MBD(P (S)) =MBD(S) .

If π(MAX(S)) is odd, then we let JSKX be the parametrized initial algebra of H; and if
π(MAX(S)) is even, then we let JSKX be the parametrized final coalgebra of H.

I Remark. The existence of an initial algebra and of a final coalgebra in the previous
definition is ensured by the assumption thatM is a µ-bicomplete category.
Finally, given a system S, a term t, and a finite subset X with FV(S)∪(VAR(t)\BD(S)) ⊆ X,
the value of t w.r.t. S, noted JtKX , is the functor fromMX toM defined below:

JtKX :=
(
MX

〈id,JSKX〉 //MX ×MBD(S) =MX∪BD(S)
|t|X∪BD(S) //M

)
.

We leave the reader to verify that if X ⊆ Y , then |t|Y (resp. JSKY , JtKY) is obtained from
|t|X (resp. JSKX , JtKX) by precomposing the latter with the projection fromMY toMX .
The previous observation allows us to be sloppy with the notation and to omit the subscript
X, which shall be understood from the context as the least set of variables satisfying some
required constraints. For example, if we are considering a set of terms E = { t1, . . . , tn }
with t ∈ E, then we shall have JtK := JtKX with X = FV(S)∪ (

⋃
i=1,...,n VAR(ti) \BD(S)). It

might be necessary, on the other hand, to evaluate a term with respect to different systems
S and T ; we shall then write the system in superscript, so to have JtKS and JtKT .

Let M = π(MAX(S)); let us remark that if M is odd, then for all x ∈ BD(S) there is (by
definition of JSK) a canonical invertible arrow ζx : Jτ(x)K −→ JxK; however, if π(x) < M , then
we can assume that ζx is the identity while JxK(Y) = JxKS�π(x)(JZK, Y) where Y = FV(S)
and Z = { z ∈ BD(S) | π(z) > π(z) } (see Proposition 2.2 in [18] with F := JP (S)K, G := G,
C :=MMAX(S), and D :=MLOW(S)). Similarly, if x ∈ BD(S) and π(MAX(S)) is odd, then
there exists a canonical invertible arrow ξx : JxK −→ Jτ(x)K; if π(x) < M , then we can assume
that ξx is the identity and that JxK(Y) = JxKS�π(x)(JZK, Y). An easy induction shall therefore
prove the following statement:

I Proposition 6. For each x ∈ BD(S), if π(x) is odd, then there exists a canonical invertible
arrow ζx : Jτ(x)K −→ JxK; if π(x) is even, then there exists a canonical invertible arrow
ξx : JxK −→ Jτ(x)K.

CSL’13

254 Cuts for circular proofs

Identity,
Cut

Id
JtK

idJtK−−−→ JtK

JsK f−→ JuK JuK g−→ JtK
Cut

JsK f ·g−−→ JtK

Products RAx
JtK

!JtK−−→ J1K

JsiK
f−→ JtK

L×i i = 0, 1
Js0 × s1K

pri·f−−−→ JtK

JsK f−→ Jt0K JsK g−→ Jt1K
R×

JsK
〈f,g〉−−−→ Jt0 × t1K

Coproducts LAx
J0K

?JtK−−→ JtK

Js0K
f−→ JtK Js1K

g−→ JtK
L+

Js0 + s1K
{f,g}−−−→ JtK

JsK f−→ JtiK
R +i i = 0, 1

JsK f ·ini−−−→ Jt0 + t1K

Fixpoints
Jτ(x)K f−→ JtK

Lµx

JxK
ζ−1

x ·f−−−−→ JtK

JsK f−→ Jτ(x)K
Rµx

JsK f ·ζx−−−→ JxK

Jτ(x)K f−→ JtK
Lνx

JxK ξx·f−−−→ JtK

JsK f−→ Jτ(x)K
Rνx

JsK
f ·ξ−1

x−−−→ JxK

Figure 4 Semantics of rules.

Interpreting the rules. From now on our goal shall be that of associating to a circular proof
Π over a system S its semantics; this shall be a collection of arrows (one for each conclusion
of Π) in some µ-bicomplete category. If Π is ground and does not have cycles, then this
task is easily achieved using induction; namely, we start from the leaves and, by interpreting
the rules of the calculus as specifying how to construct new arrows from given ones via the
categorical operations, we build more complex arrows. Such interpretation of rules is given
in Figure 4. For each vertex v ∈ Π with σ(v) = s ` t, the construcion gives an arrow fv
from JsKX to JtKX in the categoryMX ; that is, fv is a natural transformation from JsKX to
the functor JtKX .

Thus, if we writeMX(F,G) for the set of arrows from F to G in the categoryMX , each
rule Rule, with assumptions si ` ti and conclusion s ` t, can be intertpreted as a function
from

∏
i=1,...,nMX(JsiK, JtiK) to MX(JsK, JtK). We notice, however, that for F,G ∈ MX ,

the similar expressionM(F,G) denotes the following functor:

(MX)op ×MX F op×G−−−−−→Mop ×M M(_,_)−−−−−→ Set .

With exception of Id and Cut, all the rules can also be interpreted as defining natural
transformations of these generalized hom-functors:

dRuleeX,X′ :
∏

i=1,...,n
M(JsiK, JtiK) −→M(JsK, JtK) : (MX)op ×MX −→ Set . (2)

J. Fortier and L. Santocanale 255

The following Lemma relates the two possible semantical interpretations of rules.

I Lemma 7. Let α :
∏
i=1,...,nM(Fi, Gi) −→ M(F,G) be a natural transformation and

suppose that, for each i = 1, . . . n, we are given a natural transformation βi ∈MX(Fi, Gi).
Then the collection of arrows αc,c(β1

c , . . . , β
n
c) : Fc −→ Gc, c an object ofMX , is a natural

transformation from F to G.

We notice next that even the cut rule can be given a semantics as a natural transformation
of hom-functors. Namely, given a natural transformation β : JuK −→ JtK, we can define the
semantics of a cut as the natural transformation

dCut, βe :M(JsK, JuK) −→M(JsK, JtK) (3)

sending f : JsK(c) −→ JuK(d) to f · βd : JsK(c) −→ JtK(d). Similarly, given γ : JsK −→ JsK, we
can define the semantics of a cut as follows:

dγ, Cute :M(JuK, JtK) −→M(JsK, JtK) , dγ, Cute(f) = γc · f : JsK(c) −→ JtK(d) . (4)

Interpreting some derived inference rules. Motivated by the previous observations about
the semantics of certain rules, we shall make sense of a large collection of circular-proofs as
derived inference rules whose interpretation is a natural transformation between hom-set
functors.

I Definition 8. A circular proof Π is homogeneous if it does not contain the rule Id and, for
each v ∈ Π with ρ(v) = Cut, at least one among ς0v and ς1v is an assumption of Π.

It was argued in [16] that we can associate to an identity-free and cut-free circular proof Π a
system of equations dΠe; it was then shown that Π has a unique solution dΠe†, thus defining
the semantics of Π via this unique solution. We generalize here this result to homogeneous
circular proofs. For each v ∈ Π with ρ(v) = Cut, let χ(v) ∈ { 0, 1 } such that ςχ(v)v ∈ AΠ; let
therefore Ac

Π := { ςχ(v)v ∈ AΠ | ρ(v) = Cut } and As
Π := AΠ \Ac

Π (w.l.o.g., we assume that if
v ∈ AΠ, then v has just one predecessor in G). Given a collection of natural transformations
β = {βv : JσL(v)K −→ JσR(v)K | v ∈ Ac

Π }, the system dΠβe is defined as

dΠβe :=
{
v = dρ(v)βe(CΠ, A

s
Π)
}
v∈CΠ

. (5)

In the definition of dΠβe above, if ρ(v) 6= Cut, then dρ(v)βe := dρ(v)e is as in (2); if
ρ(v) = Cut, then: if ς1v ∈ AΠ, then dρ(v)βe = dCut, βς1ve as in (3); if ς0v ∈ AΠ, then
dρ(v)βe = dβς0v, Cute as in (4). Furthermore the defining equation (5) emphasizes that each
dρ(v)βe depends on two kinds of variables, those coming from CΠ and those coming from
As

Π. Therefore, the system has the conclusions of Π as bound variables and depends on
parameters coming from As

Π. We identify such a system with the natural transformation

dΠβe :
∏
v∈CΠ

M(JσL(v)K, JσR(v)K)×
∏
v∈As

Π

M(JσL(v)K, JσR(v)K)→
∏
v∈CΠ

M(JσL(v)K, JσR(v)K) ,

which is an arrow of the category of functors from (Mop)X ×MX to Set. Notice that, to a
certain degree, we are abusing of language, as some circular proof might be considered to be
over different systems S and T . If it we need to specify the system S, we can write the more
explicit dΠeS (and dΠeS†) in place of dΠe.

CSL’13

256 Cuts for circular proofs

I Theorem 9. For each homogeneous circular proof Π and each collection of natural trans-
formations {βv : JσL(v)K → JσR(v)K | v ∈ Ac

Π }, the system dΠβe admits a unique natural
solution

dΠβe† :
∏
v∈As

Π

M(JσL(v)K, JσR(v)K) −−−−−→
∏
v∈CΠ

M(JσL(v)K, JσR(v)K) .

The proof of the Theorem mostly depends on the Bekić Lemma, as well as on the following
kind of categorical fixed point Lemma. The Lemma can be understood as giving a categorical
interpretation to Mendler’s style recursion, see [11, §2].

I Lemma 10. Let W,C,D be three categories, of which C has products; let F : C×W −→ C,
G : D −→ C, Q : Cop×Wop×D −→ Set be functors; let ζw : F (xw, w) −→ xw be a parametrized
initial algebra of F . Consider an arbitrary natural transformation

α : C(_, G)×Q −→ C(F,G) : Cop ×Wop × D −→ Set .

For each w ∈W , d ∈ D and q ∈ Q(xw, w, d), there exists a unique fw,d : xw −→ Gd which is
a solution of the equation

f = ζ−1
w · αxw,w,d(f, q) .

Moreover, the map sending q ∈ Q(xw, w, d) to fw,d ∈ C(F (xw, w), Gd) is natural in w and d.

Semantics of rooted circular proofs (soundness). Let 〈Π, v〉 be a rooted circular proof with
σ(v) = s ` t; we can now define JΠ, vK : JsK −→ JtK, the natural transformation interpreting
〈Π, v〉 (with respect to a system S), by induction, almost as usual. The induction is now
on the well-founded structure of maximal strongly connected components of the underlying
graph of Π. The key observation is that if C is such a non trivial component of Π (i.e. there
exists v, u ∈ C and a non-null path from v to u), then the restriction of Π to C can be made
into an homogeneous circular proof. More formally, we can define Π � C by choosing v0 ∈ C
and putting

AC := { ςiv | v ∈ C, ςiv 6∈ C } , Π � C := Π, v0
AC
, v0 .

The inductive definition is as follows. If v belongs to a trivial component, then we can define
the semantics of 〈Π, v〉 as in the non-circular case. Otherwise, we dispose by induction of two
collections β = { JΠ, vK | v ∈ Ac

Π�C } and γ = { JΠ, vK | v ∈ As
Π�C }; by Theorem 9 we dispose

of a natural transformation d(Π � C)βe† between the appropriate hom-functors; Lemma 7
ensure that we can pointwise apply d(Π � C)βe† to the natural transformations in γ to obtain
a new collection of natural transformations indexed by elements of C. We define therefore

JΠ, vK :=
(
d(Π � C)βe†(γ)

)
· prv .

Fullness. We show that this interpretation of rooted circular proods is full. That means
that ifM is a free µ-bicomplete category over a set of generators, then, for every arrow f of
M, there is a rooted circular proof 〈Π, v〉 such that JΠ, vK = f .

The proof of this fact is a lengthy induction. However, the only non-trivial case is the
closure of the class of definable arrows under canonical maps from initial algebras (and
dually, behaviour maps to final coalgebras); let us exemplify this point. Suppose S is a
system with just one bound variable x of maximal priority; if this priority is odd, then

J. Fortier and L. Santocanale 257

F (JxK) F (JtK)

JxK JtK

ζx

F (f)

f

η

f = ζ−1
x · F (f) · η

⇒

x ` t
····

Γ[t/y]
τ(x) ` τ(x)[t/x]

····
Π[t/x]

τ(x)[t/x] ` t
Cut

τ(x) ` t
Lµx

x ` t

Figure 5 Construction of maps from the initial algebra.

F = Jτ(x)KP (S) :M−→M while JxKS is the initial F -algebra. Suppose now that we are given
a system T which contains an exact copy of P (S), with the exception that the variable x is
bound to some term t. If we dispose of a rooted circular proof 〈Π, v〉 on T with σ(v) = τ(x) ` t,
then Jτ(x)KT = Jτ(x)KP (S)(JtKT) = F (JtKT), that is η := JΠ, vK : F (JtKT) −→ JtKT is an F -
algebra. We notice that the canonical natural transformation Fx,y :M(x, y) −→M(Fx, Fy)
is definable via a cut-free circular proof Γ (using a language of game theory, Γ is the copycat
strategy). Let T ′ be a system which is a disjoint copy of S and T , with the variable x of T
being renamed to y. The circular proof on the right of Figure 5, on the system T ′, shall then
denote the unique algebra morphism from the initial one.

5 Cut elimination

We give in this section an algorithm that, given as input a pointed circular proof 〈Π, v〉,
outputs a cut-free pre-proof with possibly infinite branches (yet, a finitely branching tree).
A refinement of the technique used to prove Theorem 12 below can also be used to prove
that the output tree satisfies the Guard condition 3. This justifies saying that the output
tree is an infinite proof-tree.

Just like in the classical case for Gentzen’s system (see [8], for instance) the procedure
consists in “pushing” every cut away from the root. However, in our case, the output tree
must be computed with a lazy (outermost) rather than eager (innermost) strategy; this is
because not every path in Π leads to a leaf, so that we have to eliminate cuts by performing
a breadth-first search of Π from the root. A problem that arises by using this strategy is
that we might need to permute a cut with another cut. We temporarily dismiss the problem
by merging consecutive cuts together into a sort of n-ary cut.

t0 ` t1 t1 ` t2 . . . tn−1 ` tn
Cut

t0 ` tn

Therefore, the algorithm grows an output tree whose pending leaves contain objects that can
be thought of as n-ary cuts between vertices of Π, waiting to be pushed forward. We call
these objects tapes.

I Definition 11. A tape is a finite list M := [u1, . . . , un] of vertices of Π such that for all
i = 1 . . . n− 1, σR(ui) = σL(ui+1).

Analogously to the behaviour of higher order pushdown automata, the algorithm can also
be understood as a non-deterministic automaton disposing of a tape as its internal data
structure; the tape can be thought of as a generalized stack. The automaton tries to build
up a branch of the proof-tree; when the proof-tree branches, the automaton forks into several
automata so to construct all the branches; equivalently, we can think that the automaton

CSL’13

258 Cuts for circular proofs

undeterministically chooses which branch to continue constructing. The automaton grows up
the branch by means of commutative cut reductions (called here flips) at the extremities of
the tape; if all the cuts in the tape are principal, the automaton undeterministically chooses
one and reduces it, without constructing a new node on the branch. While in principle the
construction of a complete branch might fail, due to the fact that we cannot operate flips,
we shall see that this does not actually happen.

5.1 Primitive operations
Internal operations. What we call internal operations on tapes are functions that take
(M, i) as input (with some assumptions on M and i) and return a new tape.

Elimination of identities. The first thing we can do is to eliminate identities since they
bring nothing to the semantics. Thus, if ρ(ui) = Id, we define IdElim(M, i) as the tape
obtained by removing ui from M .

. . . ti−1 ` s
Id

s ` s s ` ti+2 . . .
Cut

t0 ` tn

IdElim=⇒
. . . ti−1 ` s s ` ti+2 . . .

Cut
t0 ` tn

Merging cuts. Since the tape represents the fusion of some consecutive cuts, we need an
operation for merging new cuts into the tape, thus expanding its size. So if M = [. . . , ui, . . .]
and ρ(ui) = Cut, we define Merge(M, i) = [. . . , ς0ui, ς1ui, . . .]. Schematically:

. . .

ti ` s s ` ti+1
Cut

ti ` ti+1 . . .
Cut

t0 ` tn

Merge=⇒
. . . ti ` s s ` ti+1 . . .

Cut
t0 ` tn

Essential reductions. The last internal operation is a bit more subtle. Suppose ρ(ui) ∈ R

and ρ(ui+1) ∈ L for some i. Note that ti := σR(ui) = σL(ui+1) and that this common term is
either a product, a sum, a bound variable or a constant. But ρ(ui) ∈ R implies ti 6= 0 and
ρ(ui) ∈ R implies ti 6= 1, so ti is not a constant. Hence there are actually three possible
scenarios for the values of ρ(ui) and ρ(ui+1): they can be both product rules, both coproduct
rules or both fixpoint rules of the same variable. In each case, we can find successors of ui
and ui+1 with compatible sequents. We can then reduce ui with ui+1 and substitute them in
M with their appropriate successors. More precisely:

If ρ(ui) = R×, ρ(ui+1) = L×k, k ∈ {0, 1}, then Reduce(M, i) = [. . . , ςui, ςkui+1, . . .].

. . .

ti−1 ` s0 ti−1 ` s1
R×

ti−1 ` s0 × s1

sk ` ti+1
L×k

s0 × s1 ` ti+1 . . .
Cut

t0 ` tn

Reduce=⇒
. . . ti−1 ` sk sk ` ti+1 . . .

Cut
t0 ` tn

If ρ(ui) = R+k, ρ(ui+1) = L+, k ∈ {0, 1}, then Reduce(M, i) = [. . . , ςkui, ςui+1, . . .].

. . .

ti−1 ` sk
R+k

ti−1 ` s0 + s1

s0 ` ti+1 s1 ` ti+1
L+

s0 + s1 ` ti+1 . . .
Cut

t0 ` tn

Reduce=⇒
. . . ti−1 ` sk sk ` ti+1 . . .

Cut
t0 ` tn

If ρ(ui) = Rθx, ρ(ui+1) = Lθx, x ∈ BD(S), then Reduce(M, i) = [. . . , ςui, ςui+1, . . .].

. . .

ti−1 ` τ(x)
Rθx

ti−1 ` x

τ(x) ` ti+1
Lθx

x ` ti+1 . . .
Cut

t1 ` tn

Reduce=⇒
. . . ti−1 ` τ(x) τ(x) ` ti+1 . . .

Cut
t0 ` tn

J. Fortier and L. Santocanale 259

Productions (external operations, flips). We call productions functions that take a tape
M as input and return a tuple (r, s, L) where r is a rule name, s is a sequent that will be used
to create a new vertex of the output tree, and L is a list of tapes that will be the successors
of that new vertex.

The simplest case is when M = [u] with ρ(u) = Id. In that case, let IdOut(M) =
(Id, σ(u), []). Otherwise, productions can only happen when there is a left rule on the left of
M or a right rule on its right. In these cases, we can perform a commutative reduction, or
flip just like in the classical case.

If ρ(u0) = LAx, then LFlip(M) = (LAx, 0 ` tn, []).

LAx
0 ` t1 t1 ` t2 . . .

Cut
0 ` tn

LFlip=⇒ LAx
0 ` tn

If ρ(u0) = L×k for k ∈ {0, 1}, then LFlip(M) = (L×k, t0 ` tn, [[ςu0, u1 . . .]]).
sk ` t1

L×k
s0 × s1 ` t1 t1 ` t2 . . .

Cut
s0 × s1 ` tn

LFlip=⇒
sk ` t1 t1 ` t2 . . .

Cut
sk ` tn

L×k
s0 × s1 ` tn

If ρ(u0) = L+, then LFlip(M) = (L+, t0 ` tn, [[ς0u0, u1, . . .], [ς1u0, u1 . . .]]).
s0 ` t1 s1 ` t1

L+
s0 + s1 ` t1 t1 ` t2 . . .

Cut
s0 + s1 ` tn

LFlip=⇒
s0 ` t1 t1 ` t2 . . .

Cut
s0 ` tn

s1 ` t1 t1 ` t2 . . .
Cut

s1 ` tn
L+

s0 + s1 ` tn
If ρ(u0) = Lθx, x ∈ BD(S), θ ∈ {µ, ν}, then LFlip(M) = (Lθx, x ` tn, [[ςu0, u1 . . .]]).

τ(x) ` t1
Lθx

x ` t1 t1 ` t2 . . .
Cut

x ` tn

LFlip=⇒
τ(x) ` t1 t1 ` t2 . . .

Cut
τ(x) ` tn

Lθx
x ` tn

Right flips are defined dually to left flips, so we present them without the schemas.
If ρ(un) = RAx, then RFlip(M) = (RAx, t0 ` 1, []).
If ρ(un) = R×, then RFlip(M) = (R×, t0 ` tn, [[. . . , un−1, ς0un], [. . . un−1, ς1un]]).
If ρ(un) = R+k for k ∈ {0, 1}, then RFlip(M) = (R+k, t0 ` tn, [[. . . un−1, ςun]]).
If ρ(un) = Rθx, x ∈ BD(S), θ ∈ {µ, ν}, then RFlip(M) = (Rθx, t0 ` x, [[. . . un−1, ςun]]).

5.2 The cut-elimination algorithm
In order to produce a segment of the output tree, we need a tape with a left rule on the left
or a right rule on the right (call such a tape reduced). The treatment phase of a tape M
consists in executing internal operations until the tape is reduced.

Algorithm 1 defines a tree with transitions labelled by {0, 1} along with two mappings
ρ : Λ → Σ, and σ = Λ → SEQ that make it into a possibly infinite proof-tree. In the
algorithm, v ∈ Π is fixed and Q is a queue whose elements are of the form (w,M) where
w ∈ Λ was previously computed and M is a tape.

It may not be clear that the computation of Treat(M) always halts. After all, once
a pair of consecutive nodes in the tape is reduced, it is replaced by another pair of nodes
that could, in principle, still be labelled by right and left rules, respectively. Even worse:
when a new cut is encountered, the tape grows, thus the number of pairs left to be reduced
may enlarge. So why does it stop? It is a consequence of the fact that Π satisfies the Guard
condition.

CSL’13

260 Cuts for circular proofs

Function Treat(M)
while ρ(fst(M)) 6∈ L and ρ(lst(M)) 6∈ R

do
if |M | > 1 and ∃i : ρ(ui) = Id then

M ← IdElim(M, i);
else if ∃i : ρ(ui) = Cut then

M ←Merge(M, i);
else if ∃i : ρ(ui−1) ∈ R and ρ(ui) ∈ L

then
M ← Reduce(M, i);

return M ;

Algorithm 1: Cut-elimination
Initialization: Λ← ∅; Q← [(ε, [v])];
while Q 6= [] do

(w,M)← pull(Q);
Λ← Λ ∪ {w};
M ← Treat(M);
if |M | = 1 and ρ(fst(M)) = Id then

(ρ(w), σ(w), L)← IdOut(M);
else if ρ(fst(M)) ∈ L then

(ρ(w), σ(w), L)← LFlip(M);
else if ρ(lst(M)) ∈ R then

(ρ(w), σ(w), L)← RFlip(M);
if L = [M ′] then

push((w0,M ′), Q);
else if L = [M ′0,M ′1] then

push((w0,M ′0), Q);
push((w1,M ′1), Q);

Figure 6 The cut-elimination algorithm.

I Theorem 12. For every input tape M , the computation of Treat(M) halts.

Proof. We suppose, for a contradiction, that there is an entry tape M on which the
computation of Treat(M) loops forever. For all i ≥ 1, let Mi be the tape in memory before
the i-th turn of the loop (so that M = M1). Consider that tapes are words and that they
are generated from one another according to some context dependent grammar; we wish
therefore to consider a sort of infinite parse tree. To that end, we define the full trace of
the algorithm as the reachable graph T = T ′, (0, 0), where T ′ is a transition system over the
alphabet N ∪ {⊥} with support N× N and the following transitions:

For 1 ≤ i ≤ |M1|, (0, 0) i→ (1, i).
If Mn+1 = IdElim(Mn, i), then for k < i, (n, k) ⊥→ (n + 1, k) and for k > i, (n, k) ⊥→
(n+ 1, k − 1).
If Mn+1 = Merge(Mn, i), then for k < i, (n, k) ⊥→ (n + 1, k) and for k > i, (n, k) ⊥→
(n+ 1, k + 1). Moreover (n, i) 1→ (n+ 1, i) and (n, i) 2→ (n+ 1, i+ 1).
If Mn+1 = Reduce(Mn, i), then for k ∈ {i, i + 1}, (n, k) 0→ (n + 1, k) and otherwise
(n, k) ⊥→ (n+ 1, k).

For (n, k) ∈ T \ (0, 0), let g(n, k) ∈ Π denote the k-th element of Mn. Basically, the paths
in T represent the history of the vertices of Π that occur in the tapes. Transitions labelled
by ⊥ mean that such a vertex has not evolved at a given stage, while the other labels encode
the operation that made them evolve. In order to exploit the Guard condition, we shall
collapse the transitions labelled by ⊥ to get a correspondence with paths in Π. We then get
the real trace Ψ of the algorithm.

It should be clear that Ψ is an infinite, finitely branching labelled tree. The prefix order
on such a tree is denoted v and the lexicographical order is denoted � (see [13]). A maximal
(finite or infinite) path in Ψ is called a branch and it can be shown that the set of branches

J. Fortier and L. Santocanale 261

of Ψ ordered lexicographically is a complete lattice. Note that by Kőnig’s lemma, the set of
infinite branches is nonempty and it is easy to see that its infimum is an infinite branch itself.

Given an infinite branch β, we say that β is a µ-branch (resp. ν-branch) if the path Γ in
Π formed by the transitions between vertices of β can be written Γ = Γ0 · Γ1 where Γ0 is
finite, Γ1 has a left µ-trace (resp. right ν-trace) and every fixpoint rule in Γ1 occurs infinitely
often. Since Π satisfies the Guard condition 3, it follows that every infinite branch β is either
a µ-branch or a ν-branch. We shall use the lexicographical order to compare them. Note
that by the Guard condition, a µ-branch (resp. ν-branch) can only admit finitely many right
(resp. left) cuts.

I Lemma 13.
1. The least infinite branch of Ψ is a ν-branch.
2. Let E be a nonempty collection of ν-branches and let γ =

∨
E. Then γ is a ν-branch.

3. If β is a ν-branch, then there exists another ν-branch β′ � β.

The key observation to prove Lemma 13 is the following. Recall that each time
Mn+1 = Reduce(Mn, i), a pair (u, v) of elements of Ψ is created, such that u ≺ v and
ρ(g(u)) ∈ R , ρ(g(v)) ∈ L are rules of the same nature (product, coproduct or fixpoint on
the same variable). u and v are then called twins of each other. Conversely, every u ∈ Ψ
that is not the root, a leaf or a cut occurs in such a pair.

Now, let β0 be the least infinite branch of Ψ. If β0 were a µ-branch, then it would admit
infinitely many left rules. The twins of those rules would then generate an infinite subtree
on the left β0, contradicting the minimality and proving part 1. For part 2, the case γ ∈ E
is trivial, and otherwise, one must analyze how the supremum is computed to observe that
infinitely many right cuts are necessary. Therefore, γ must be a ν-branch. Finally, for
part 3, it suffices to prove that if β is a ν-branch and β′ is a µ-branch, such that β ≺ β′ are
consecutive, then after a finite time, all the forementioned pairs (u, v) are such that u @ β if
and only if v @ β′. Therefore, the variables x ∈ BD(S) for which the fixpoint rule is applied
infinitely often in those two branches are the same. But then, the highest priority of such a
variable should be both even and odd, a contradiction.

To conclude, we reach the fundamental contradiction of the proof. Let E be the collection
of all the ν-branches. By part 1 of Lemma 13, E is nonempty. Let γ =

∨
E. By part 2 of

the same Lemma, γ is a ν-branch. Hence by part 3 of the Lemma, there is another ν-branch
γ′ � γ. But then, by definition of E, we should have γ′ ∈ E and therefore γ′ �

∨
E = γ. J

6 Conclusions and perspectives

We consider this work as a starting point for future research—the more we develop it, the
more are the questions. A main motivation for this work was the following problem about the
computability by means of initial and final coalgebras: since that all the primitive recursive
functions are definable by circular proofs [5] and some function space can be constructed
via final coalgebras, can we also define more complex set-theoretic functions such as the
Ackermann function? The growing knowledge about hierarchies of infinite trees [4] suggested
a concrete way to tackle the problem and encouraged us to pursue this work. A concrete
step to be taken is now to compare the expressive power of the calculus with respect to
these existing hierarchies. For example, can we simulate higher order pushdown automata
by means of our tape automaton?

CSL’13

262 Cuts for circular proofs

References
1 D. Baelde. Least and greatest fixed points in linear logic. ACM Trans. Comput. Log.,

13(1):2, 2012.
2 Y. Bertot and E. Komendantskaya. Inductive and coinductive components of corecursive

functions in Coq. Electr. Notes Theor. Comput. Sci., 203(5):25–47, 2008.
3 J. Brotherston and A. Simpson. Sequent calculi for induction and infinite descent. J. Log.

Comput., 21(6):1177–1216, 2011.
4 D. Caucal. On infinite transition graphs having a decidable monadic theory. Theor. Comput.

Sci., 290(1):79–115, 2003.
5 J. R. B. Cockett and L. Santocanale. Induction, coinduction, and adjoints. Electr. Notes

Theor. Comput. Sci., 69:101–119, 2002.
6 J. R. B. Cockett and D. Spencer. Strong categorical datatypes II: A term logic for categor-

ical programming. Theor. Comput. Sci., 139(1&2):69–113, 1995.
7 T. Coquand. Infinite objects in type theory. In H. Barendregt and T. Nipkow, editors,

TYPES, volume 806 of Lecture Notes in Computer Science, pages 62–78. Springer, 1993.
8 R. David, K. Nour, and C. Raffalli. Introduction à la logique. Dunod, 2nd edition, 2004.
9 C. Dax, M. Hofmann, and M. Lange. A proof system for the linear time µ-calculus. In

S. Arun-Kumar and N. Garg, editors, FSTTCS, volume 4337 of Lecture Notes in Computer
Science, pages 273–284. Springer, 2006.

10 S. Mac Lane. Categories for the working mathematician. Springer-Verlag, New York, second
edition, 1998.

11 N. P. Mendler. Inductive types and type constraints in the second-order lambda calculus.
Ann. Pure Appl. Logic, 51(1-2):159–172, 1991.

12 D. Niwinski and I. Walukiewicz. Games for the mu-calculus. Theor. Comput. Sci.,
163(1&2):99–116, 1996.

13 D. Perrin and J.-E. Pin. Infinite Words, Automata, Semigroups, Logic and Games, volume
141. Elsevier, 2004.

14 G. Rosu and D. Lucanu. Circular coinduction: A proof theoretical foundation. In A. Kurz,
M. Lenisa, and A. Tarlecki, editors, CALCO, volume 5728 of Lecture Notes in Computer
Science, pages 127–144. Springer, 2009.

15 L. Santocanale. A calculus of circular proofs and its categorical semantics. Technical Report
RS-01-15, BRICS, daimi, May 2001. 30 pp.

16 L. Santocanale. A calculus of circular proofs and its categorical semantics. In M. Nielsen
and U. Engberg, editors, FoSSaCS, volume 2303 of Lecture Notes in Computer Science,
pages 357–371. Springer, 2002.

17 L. Santocanale. Free µ-lattices. J. of Pure and Appl. Algebra, 168(2-3):227–264, Mar. 2002.
18 L. Santocanale. µ-bicomplete categories and parity games. Theoretical Informatics and

Applications, 36:195–227, Sept. 2002.
19 T. Studer. On the proof theory of the modal mu-calculus. Studia Logica, 89(3):343–363,

2008.
20 I. Walukiewicz. Completeness of Kozen’s Axiomatisation of the Propositional µ-Calculus.

Inf. Comput., 157(1-2):142–182, 2000.

Hierarchies in independence logic∗

Pietro Galliani, Miika Hannula, and Juha Kontinen

University of Helsinki, Department of Mathematics and Statistics,
P.O. Box 68, 00014 Helsinki, Finland
pgallian@gmail.com, {miika.hannula,juha.kontinen}@helsinki.fi

Abstract
We study the expressive power of fragments of inclusion and independence logic defined either by
restricting the number of universal quantifiers or the arity of inclusion and independence atoms
in formulas. Assuming the so-called lax semantics for these logics, we relate these fragments of
inclusion and independence logic to familiar sublogics of existential second-order logic. We also
show that, with respect to the stronger strict semantics, inclusion logic is equivalent to existential
second-order logic.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Existential second-order logic, Independence logic, Inclusion logic, Ex-
pressiveness hierarchies

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.263

1 Introduction

Independence logic [15] and inclusion logic [11] are recent variants of dependence logic.
Dependence logic [20] extends first-order logic by dependence atomic formulas

=(x1, . . . , xn) (1)

the meaning of which is that the value of xn is completely determined by the values of
x1, . . . , xn−1. The semantics of dependence logic is defined using sets of assignments rather
than a single assignment as in first-order logic. Independence logic replaces the dependence
atoms by independence atoms ~y⊥~x~z, the intuitive meaning of which is that, with respect to
any fixed value of ~x, the variables ~y are totally independent of the variables ~z. In inclusion
logic dependence atoms are replaced by inclusion atoms ~x ⊆ ~y, meaning that all the values
of ~x appear also as values for ~y. We study the expressive power of the syntactic fragments of
these logics defined either by restricting the number of universal quantifiers or the arity of
the independence and inclusion atoms in sentences. These results are proved with respect
to lax semantics. We also show that, under strict semantics, inclusion logic is equivalent to
existential second-order logic ESO while, by a recent result of Hella and Galliani [3], with
lax semantics inclusion logic is equivalent to greatest fixed point logic, and hence to LFP
(and PTIME) over finite (ordered) structures.

Since the introduction of dependence logic (D) in 2007 many interesting variants of it
have been introduced. In fact the team semantics of dependence logic has turned into a
general framework for logics in which various notions of dependence and independence can
be formalized. Dependence logic has a very intimate and well understood connection to ESO
dating back to the results of [17, 8, 22] on Henkin quantifiers. For some of the new variants

∗ The authors were supported by grant 264917 of the Academy of Finland.

© Pietro Galliani, Miika Hannula, and Juha Kontinen;
licensed under Creative Commons License CC-BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca; pp. 263–280

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.263
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

264 Hierarchies in independence logic

and concepts in this area the correspondence to ESO does not hold. We briefly mention
some related work on the complexity theoretic aspects of these logics:

The extension of dependence logic by so-called intuitionistic implication → (introduced
in [1]) increases the expressive power of dependence logic to full second-order logic [23].
The model checking problem of full dependence logic, and many of its variants, was
recently shown to be NEXPTIME-complete. In fact, for any variant of dependence
logic whose atoms are PTIME-computable, the corresponding model checking problem is
contained in NEXPTIME [13].
The non-classical interpretation of disjunction in dependence logic has the effect that the
model checking problems of φ1 := =(x, y)∨ =(u, v) and φ2 := =(x, y)∨ =(u, v)∨ =(u, v)
are already NL-complete and NP-complete, respectively [18].

While dependence logic and independence logic are both equivalent to ESO in expressive
power [20, 15], for inclusion logic only containment in ESO has been shown [11]. Furthermore,
the expressive power of various natural syntactic fragments of independence and inclusion
logics is not understood at the moment. The starting point of our work were the results of
[7] on the fragments D(k∀) and D(k-dep) of dependence logic. The fragment D(k∀) contains
those D-formulas in which at most k variables have been universally quantified, and in the
formulas of D(k-dep) dependence atoms of arity at most k may appear (atoms of the form
=(x1, . . . , xn) satisfying n ≤ k + 1). The following results were shown in [7]:
1. D(k-dep) = ESOf (k-ary),
2. D(k∀) ≤ ESOf (k∀) ≤ D(2k∀)
where ESOf (k-ary) is the fragment of ESO in which the quantified functions and relations
have arity at most k, and ESOf (k∀) consists of ESO-sentences that are in Skolem Normal
Form and contain at most k universal first-order quantifiers. The equivalence in (1) was used
to show that in D(k-dep) even cardinality of a k + 1-ary relation cannot be expressed using
the result of Ajtai [2]. On the other hand, since

ESOf (k∀) = NTIMERAM(nk) < NTIMERAM(nk+1)

by [14] and [6], an infinite expressivity hierarchy for the fragments D(k∀) was shown using 2.
Above NTIMERAM(nk) denotes the family of classes of τ -structures that can be recognized
by a non-deterministic RAM in time O(nk).

In [11] it was observed that independence logic and inclusion logic can be given two
alternative semantics called strict and lax semantics. For dependence logic these two semantics
coincide in the sense that the meaning of any D-formula is the same under both interpretations.
For independence and inclusion logic formulas this is not the case as shown in [11]. In fact,
we will show that, with respect to strict semantics, inclusion logic is equivalent to ESO, while
by a recent result of Hella and Galliani [3], with lax semantics inclusion logic is equivalent
to greatest fixed point logic. In the rest of the article we consider the expressive power
of fragments of independence logic and inclusion logic with lax semantics. First we look
at fragments defined analogously to D(k-dep) of dependence logic. We let FO(⊥c)(k-ind)
contain those independence logic sentences in which independence atoms with at most k + 1
different variables may appear. Similarly in the sentences of FO(⊆)(k-inc) only inclusion
atoms of the form ~a ⊆ ~b, where |~a| = |~b| ≤ k may appear. Our results show that

FO(⊆)(k-inc) ≤ ESOf (k-ary) = FO(⊥c)(k-ind).

Then we consider the analogoues of D(k∀) in the case of FO(⊥) = FO(⊥c) [21], which is the
sublogic of independence logic allowing only so-called pure atoms ~y⊥~z, and FO(⊥,⊆). We
show that

P. Galliani, M. Hannula, and J. Kontinen 265

FO(⊥)(2∀) = FO(⊥),
FO(⊥,⊆)(1∀) = FO(⊥,⊆).

This article is organized as follows. In Section 2 we review some basic properties and
results regarding dependence logic and its variants. In Section 3 we compare the strict and
lax semantics and in Section 4.1 relate the arity fragments of independence logic and inclusion
logic with that of ESO. Finally, in Section 4.2 we consider fragments defined by restricting
the number of universally quantified variables.

2 Preliminaries

2.1 Team Semantics

Team semantics is a generalization of Tarski semantics in which formulas are interpreted
by sets of assignments, called teams, rather than by single assignments. In this subsection,
we will recall the definition of team semantics for first order logic. We will assume that all
our formulas are in negation normal form. Also, all structures considered in the paper are
assumed to have at least two elements.

I Definition 2. LetM be a first-order model and V a finite set of variables. Then
a team X over M with domain Dom(X) = V is a finite set of assignments from V to
the domain M ofM;
for a tuple ~v of variables in V , we write X(~v) for the set {s(~v) : s ∈ X} of all values that
~v takes in X, where s(~v) := (s(v1), . . . , s(vn));
for a subset W of V , we write X �W for the team obtained by restricting all assignments
of X to the variables in W .
For a formula φ, the set of free variables of φ is denoted by Fr(φ).

There exist two variants of team semantics, called respectively strict and lax, which differ
with respect to the interpretation of disjunction and existential quantification. Informally
speaking, the choice between strict and lax semantics corresponds to the choice between
disallowing or allowing nondeterministic strategies in the corresponding semantic games.1

We first give the definition of the lax version of team semantics; later, we will discuss
some of the ways in which strict semantics differs from it.

I Definition 3 (Team Semantics). Let M be any first-order model and let X be any team
over it. Then
TS-lit: For all first-order literals α,M |=X α if and only if, for all s ∈ X,M |=s α in the

usual Tarski semantics sense;
TS-∨: For all ψ and θ,M |=X ψ ∨ θ if and only if X = Y ∪ Z for two subteams Y and Z

such thatM |=Y ψ andM |=Z θ;
TS-∧: For all ψ and θ,M |=X ψ ∧ θ if and only ifM |=X ψ andM |=X θ;
TS-∃: For all ψ and all variables v, M |=X ∃vψ if and only if there exists a function H :

X → P(M)\{∅} such thatM |=X[H/v] ψ, where X[H/v] = {s[m/v] : s ∈ X,m ∈ H(s)};
TS-∀ : For all ψ and all variables v, M |=X ∀vψ if and only if M |=X[M/v] ψ, where

X[M/v] = {s[m/v] : s ∈ X,m ∈M}.

1 See [10] and [13] for details.

CSL’13

266 Hierarchies in independence logic

IfM |=X φ, we say that X satisfies φ inM; and if a sentence (that is, a formula with no
free variables) φ is satisfied by the team {∅},2 we say that φ is true in M and we write
M |= φ.

In the team semantics setting, formulas φ and ψ are said to be logically equivalent, φ ≡ ψ,
if for all models M and teams X, with Fr(φ) ∪ Fr(ψ) ⊆ Dom(X), M |=X φ ⇔ M |=X ψ.
Logics L and L′ are said to be equivalent, L = L′, if every L-sentence φ is equivalent to some
L′-sentence ψ, and vice versa.

The following result can be proved by structural induction on the formula φ:

I Theorem 4 (Flatness). For all first order formulas φ and all suitable modelsM and teams
X, the following are equivalent:
1. M |=X φ;
2. For all s ∈ X,M |={s} φ;
3. For all s ∈ X,M |=s φ according to Tarski semantics.

2.2 Dependencies in Team Semantics

The advantage of team semantics, and the reason for its development, is that it allows us
to extend first-order logic by new atoms and operators. For the purposes of this paper,
the following atoms, inspired by database-theoretic dependency notions3, are of particular
interest:

I Definition 5. Let ~x be a tuple of variables and let y be another variable. Then =(~x, y)
is a dependence atom, with the semantic rule
TS-dep: M |=X=(~x, y) if and only if any two s, s′ ∈ X which assign the same value to
~x also assign the same value to y;

Let ~x, ~y, and ~z be tuples of variables (not necessarily of the same length). Then ~y ⊥~x ~z
is a conditional independence atom, with the semantic rule
TS-ind: M |=X ~y ⊥~x ~z if and only if for any two s, s′ ∈ X which assign the same value

to ~x there exists a s′′ ∈ X which agrees with s with respect to ~x and ~y and with s′ with
respect to ~z.

Furthermore, we will write ~x ⊥ ~y as a shorthand for ~x ⊥∅ ~y, and call it a pure independ-
ence atom;
Let ~x and ~y be two tuples of variables of the same length. Then ~x ⊆ ~y is an inclusion
atom, with the semantic rule
TS-inc: M |=X ~x ⊆ ~y if and only if X(~x) ⊆ X(~y);

Given a collection C ⊆ {=(. . .),⊥c,⊆} of atoms, we will write FO(C) (omitting the set
parenthesis of C) for the logic obtained by adding them to the language of first-order logic.
With this notation dependence logic, independence logic and inclusion logic are denoted by
FO(=(. . .)), FO(⊥c) and FO(⊆), respectively. We will also write FO(⊥) for the fragment of
independence logic containing only pure independence atoms.

2 {∅} is the team containing the empty assignment. Of course, this is different from the empty team ∅,
containing no assignments.

3 More precisely, dependence atoms correspond to functional dependencies [4], independence atoms to
embedded multivalued dependencies and conditional dependency conditions as in [12, 19], and inclusion
atoms to inclusion dependencies [9, 5].

P. Galliani, M. Hannula, and J. Kontinen 267

All formulas of all the above-mentioned logics satisfy the two following properties:

I Proposition 6 (Empty Team Property). For all modelsM and φ ∈ FO(=(. . .),⊥c,⊆) over
the signature ofM,M |=∅ φ.

I Proposition 7 (Locality). Let φ be a formula of FO(=(. . .),⊥c,⊆) whose free variables
Fr(φ) are contained in V . Then, for all models M and teams X, M |=X φ if and only if
M |=X�V φ.

Furthermore, we have the two following results for dependence logic:

I Proposition 8 (Downwards Closure). For all modelsM, dependence logic formulas φ and
teams X, ifM |=X φ thenM |=Y φ for all Y ⊆ X.

I Theorem 9 ([22, 8, 20]). Any dependence logic sentence φ is logically equivalent to some
ESO sentence φ∗, and vice versa.

What about independence logic? As shown in [15], a dependence atom =(~x, y) is logically
equivalent to the independence atom y ⊥~x y, and, since independence logic is clearly contained
in ESO, we have at once that

I Theorem 10 ([15]). Any independence logic sentence φ is logically equivalent to some
ESO sentence φ∗, and vice versa.

Furthermore,

I Theorem 11 ([21]). Any independence logic formula is equivalent to some pure independ-
ence logic formula.

For inclusion logic the following is known.

I Theorem 12.
1. An inclusion atom ~x ⊆ ~y is equivalent to the FO(⊥) expression

∀v1v2~z((~z 6= ~x ∧ ~z 6= ~x) ∨ (v1 6= v2 ∧ ~z 6= ~y) ∨ ((v1 = v2 ∨ ~z = ~y) ∧ ~z ⊥ v1v2))

where v1, v2 and ~z are new variables [11].
2. Any inclusion logic sentence φ is logically equivalent to some positive greatest fixpoint

logic sentence φ∗, and vice versa [3].

We conclude this subsection with two novel results, a characterization of dependence in
terms of pure independence and a prenex normal form theorem for formulas of our logics.

I Theorem 13. For all modelsM and teams X

M |=X=(~x, y)⇔M |=X ∀~z∃w((~z = ~x→ w = y) ∧ ~xy⊥~zw).

I Lemma 14. Let φ, ψ ∈ FO(=(. . .),⊥c,⊆) and let x be a variable not occurring free in ψ.
Then the following equivalences hold:
1. ∃xφ ∧ ψ ≡ ∃x(φ ∧ ψ),
2. ∃xφ ∨ ψ ≡ ∃x(φ ∨ ψ),
3. ∀xφ ∧ ψ ≡ ∀x(φ ∧ ψ),
4. ∀xφ ∨ ψ ≡ ∃a∃b∀x((φ ∧ a = b) ∨ (ψ ∧ a 6= b)) where a and b are new variables.

Lemma 14 allows us to show the following.

I Theorem 15. Any formula φ ∈ FO(=(. . .),⊥c,⊆) is logically equivalent to some formula
φ′ such that
1. φ′ is of the form Q1x1 . . . Qkxkψ, where ψ is quantifier-free;
2. Any literal or non-first-order atom which occurs in φ′ occurred already in φ;
3. The number of universal quantifiers in φ′ is the same as the number of universal quantifiers

in φ.

CSL’13

268 Hierarchies in independence logic

3 Comparing strict and lax semantics

As we mentioned, there exists an alternative variant of lax semantics, called strict semantics.
It differs from lax semantics in the definition of the semantic rules for disjunction and
existential quantification, which are replaced respectively by
STS-∨: For all ψ and θ,M |=X ψ ∨ θ if and only if Y and Z exist such that Y ∪ Z = X,

Y ∩ Z = ∅,M |=Y ψ andM |=Z θ;
STS-∃: For all ψ and all variables v, M |=X ∃vψ if and only if there exists a function

F : X →M such thatM |=X[F/v] ψ, where X[F/v] = {s[F (s)/v] : s ∈ X}.
In the original version of dependence logic lax disjunction and strict existential quantification
were used [20]. However, since dependence logic is downwards closed, it does not make any
difference whether strict or lax version of disjunction (or existential quantification) is used.
In general the following holds.

I Proposition 16. IfM |=X φ according to strict team semantics, thenM |=X φ according
to lax team semantics.

For downwards closed logics, such as dependence logic, the converse is then also true.

I Proposition 17 ([11]). For all dependence logic formulas φ, models M and teams X,
M |=X φ holds wrt strict team semantics if and only if it holds wrt lax team semantics.

However, the same is false for both inclusion logic and independence logic. In particular, as
we will now see, inclusion logic with strict semantics is equivalent to full existential second
order logic, in contrast with the second item of Theorem 12.

By Theorem 9, it suffices to show that every dependence logic sentence is equivalent
to some inclusion logic sentence (with strict semantics). In order to do so, we will use the
following normal form theorem from [20]:

I Theorem 18 ([20]). Every dependence logic sentence is equivalent to some sentence of the
form

φ := ∀~x∃~y

∧
yi∈~y

=(~vi, ~yi) ∧ θ

 (19)

where for all i, ~vi is contained in ~x and where θ is a quantifier-free first-order formula.

As we will now show, in strict semantics the dependence atoms in (19) can be replaced by
equivalent inclusion logic subformulas; and, therefore, it follows at once that (strict) inclusion
logic is equivalent to dependence logic (and, therefore, to ESO) over sentences.

I Definition 20. LetM be a model and X a team, and let ~x be a tuple of variables in its
domain. We say that X is ~x-universal if for all tuples of elements ~m with |~m| = |~x|, there
exists one and only one s ∈ X with s(~x) = ~m.

I Lemma 21. If X is of the form {∅}[M/~x][~F/~y] then X is ~x-universal.

Proof. Obvious (but note that if the ~F were replaced by nondeterministic choice functions
~H, as in the case of the lax semantics, this would not hold). J

I Proposition 22. Let M be a model and X a ~x-universal team. Suppose also that y 6∈ ~x,
~v ⊆ ~x, and ~w = ~x\~v (that is, ~w lists, without repetitions, all variables occurring in ~x but not
in ~v). Then

M |=X=(~v, y)⇔M |=X ∀~q(~q~vy ⊆ ~w~vy).

P. Galliani, M. Hannula, and J. Kontinen 269

Proof. Suppose that M |=X=(~v, y), and let h = s[~m/~q] ∈ X[M/~q], where s ∈ X. Since
X is ~x-universal and ~x = ~v ∪ ~w, there exists an assignment s′ ∈ X such that s′(~w) = ~m

and s′(~v) = s(~v). Since y is a function of ~v alone, this implies that s′(y) = s(y). Finally,
h′ = s′[~m/~q] ∈ X[M/~q], and h′(~w~vy) = ~ms(~vy) = h(~q~vy), as required.

Conversely, suppose thatM |=X ∀~q(~q~vy ⊆ ~w~vy), and let s, s′ ∈ X be such that s(~v) =
s′(~v). Now let ~m = s′(~w), and consider h = s[~m/~q] ∈ X[M/~q]. By hypothesis, there exists
a h′ ∈ X[M/~q] such that h′(~w) = h(~q) = ~m and h′(~vy) = h(~vy) = s(~vy). This h′ is of
the form s′′[~m′/~q] for some s′′ ∈ X; and for this s′′, we have that s′′(~v) = s(~v) = s′(~v),
s′′(~w) = ~m = s′(~w) and s′′(y) = s(~y). Now, ~x = ~v ∪ ~w, and s′′ coincides with s′ over it, and
X is ~x-universal; therefore, we have to conclude that s′′ = s′. But then s′(y) = s′′(y) = s(y),
and therefore s′′ and s coincide over y too. J

I Corollary 23. With strict semantics inclusion logic is equivalent to ESO.

Proof. By Lemma 21 and the Proposition 22, any sentence of the form (19) can be expressed
in inclusion logic as

∀~x∃~y

∧
yi∈~y

(∀~qi(~qi~viy ⊆ ~wi~viy)) ∧ θ

 (24)

where for all i, ~wi = ~x\~vi; and this implies our result. J

The analogue of Theorem 7 (locality) for inclusion logic with strict semantics fails. As
an especially surprising example of such an failure we now show that one can find inclusion
logic sentences that count the number of assignments in a team:

I Theorem 25. For each natural number n there is a sentence φ ∈ FO(⊆) such that for all
modelsM and teams X where X 6= ∅ and the variables in Dom(X) do not appear in φ,

M |=X φ if and only if |X| ≥ n.

The failure of locality in non-downwards closed logics with strict semantics is somewhat
problematic, as it causes the interpretation of a formula to depend on the values that our
assignments take on variables which do not occur in it. As a consequence, in the rest of this
work we will focus on logics with lax semantics.

4 The expressive power of fragments

The purpose of this section is to generalize the classification of the expressive power of
fragments of dependence logic of [7] to the case of other variants (with respect to lax
semantics). We will consider the following fragments.

I Definition 26. Let C be a subset of {=(. . .),⊥c,⊥,⊆} and let k ∈ N. Then
1. FO(C)(k−dep) is the class of sentences of FO(C) in which dependence atoms of the form

=(~z, y), where ~z is of length at most k, may appear.
2. FO(C)(k−ind) is the class of sentences of FO(C) in which independence atoms of the

form ~y⊥~x~z, where ~x~y~z has at most k + 1 distinct variables, may appear.
3. FO(C)(k−inc) is the class of sentences of FO(C) in which inclusion atoms of the form

~a ⊆ ~b, where ~a and ~b are of length at most k, may appear.
4. FO(C)(k∀) is the class of sentences of FO(C) in which at most k universal quantifiers

occur.
As in [7], we will write D(k-dep) and D(k∀) for FO(=(. . .))(k−dep) and FO(=(. . .))(k∀),
respectively.

CSL’13

270 Hierarchies in independence logic

4.1 Arity hierarchies
In this section we will prove that FO(⊥c)(k-ind) = ESOf (k-ary). In particular this also
implies that FO(⊥c)(k-ind) = D(k-dep) [7]. We will also prove that FO(⊆)(k-inc) ≤
ESOf (k-ary). The direction from ESOf (k-ary) to FO(⊥c)(k-ind) is straightforward.

I Proposition 27. ESOf (k-ary) ≤ FO(⊥c)(k-ind).

Proof. Let φ ∈ ESOf (k-ary). By [7] there exists a φ′ ∈ D(k-dep) equivalent to φ and of the
form

Q1x1 . . . Q
mxm∃y1 . . . ∃yn(

∧
1≤j≤n

=(~zj , yj) ∧ θ)

where ~zj , for 1 ≤ j ≤ n, is a sequence of length at most k. By [15] each dependence atom
=(~z, y) is equivalent to the independence atom y ⊥~z y. Therefore we can present φ′ in the
following independence logic form

Q1x1 . . . Q
mxm∃y1 . . . ∃yn(

∧
1≤j≤n

yj⊥~zj
yj ∧ θ)

where ~zjyj , for 1 ≤ j ≤ n, is a sequence of at most k + 1 different variables. J

We will next show the other direction.

I Lemma 28. Let ~b⊥~a~c be an independence atom where ~a, ~b and ~c are tuples of variables.
If ~b0 lists the variables in ~b−~a∪~c, ~c0 lists the variables in ~c−~a∪~b, and ~d lists the variables
in ~b ∩ ~c− ~a, then

~b⊥~a~c ≡ ~b0⊥~a ~c0 ∧
∧
d∈~d

=(~a, d).

Now we can prove the following proposition. In the proof we will present a translation
from independence logic to ESO, where independence atoms are coded by relation variables
preserving the arity of the atoms. Note that the translation presented in [15] does not
preserve this property.

I Proposition 29. FO(⊥c)(k-ind) ≤ ESOf (k-ary).

Proof. Let φ ∈ FO(⊥c)(k-ind). By Theorem 15 we may assume that φ is in prenex normal
form Q1x1 . . . Q

nxnθ where θ is a quantifier-free formula. By Lemma 28 we may assume
that each independence atom in θ is either of the form =(~z, y) or ~b⊥~a~c where

y is not listed in ~z,
~a, ~b and ~c do not share any variables,
|~z| ≤ k and |~a~b~c| ≤ k + 1.

Let us next consider the subformulas of θ. We will enumerate the subformulas of θ by
θ~i where ~i is a binary sequence encoding the location of the subformula in θ. Let θλ := θ

where λ is the empty sequence. If θ~i is a conjunction (or a disjunction), then we denote its
conjuncts (or the disjuncts) as θ~i0 and θ~i1. Now let S := {~i | θ~i is a subformula of θ}, and
let D and I be the subsets of S consisting of sequences ~i for which θ~i is a dependence atom
or an independence atom, respectively. Let ≤ be a partial order in S where ~i ≤ ~j if ~i~k = ~j

for some binary ~k. Then ~i ≤ ~j if and only if θ~j is a subformula of θ~i.
Next we will define a Φ ∈ ESOf (k-ary) equivalent to φ. First we define ϕ~i for each ~i ∈ S

inductively as follows:
ϕ~i := θ~i if θ~i is a first-order atom,

P. Galliani, M. Hannula, and J. Kontinen 271

ϕ~i := S~i(~a~b) ∧ T~i(~a~c) if θ~i is ~b ⊥~a ~c,
ϕ~i := f~i(~z) = y if θ~i is =(~z, y),
ϕ~i := ϕ~i0 ∧ ϕ~i1 if θ~i is θ~i0 ∧ θ~i1,
ϕ~i := ϕ~i0 ∨ ϕ~i1 if θ~i is θ~i0 ∨ θ~i1.

Now let ϕ := ϕλ. Then ϕ is a quantifier-free first-order formula sharing the structure of θ
where the dependence and independence atoms are interpreted using new function symbols
f~i and relation symbols S~i and T~i, respectively. Let ~z~i, for ~i ∈ I, list the variables in
{x1, . . . , xn} \ Fr(θ̃i). In the following, for example, ∃(S~i)~i∈I denotes the prefix ∃S~i1 . . . ∃S~im
where ~i1, . . . ,~im enumerates I. So let us define Φ as

∃(S~i)~i∈I(T~i)~i∈I(f~i)~i∈D(Q1x1 . . . Q
nxnϕ ∧ Ω) (30)

where

Ω :=
∧
~i∈I

[∀~a~b~c(S~i(~a~b) ∧ T~i(~a~c))→ ∃~z~i(
∧
~j≤~i

ϕ~j ∧Q
1x′1 . . . Q

nx′n(ϕ′ ∧ χ))] (31)

where ϕ′ := ϕ(x′1/x1) . . . (x′n/xn) and

χ :=
∧

1≤k≤n
Qk=∃

(x1 = x′1 ∧ . . . ∧ xk−1 = x′k−1)→ xk = x′k. (32)

The idea behind Φ is that the relation variables S~i and T~i, for ~i ∈ I, encode a subteam
X~i that satisfies ~b ⊥~a ~c. Then Ω will ensure that for each s, s′ ∈ X~i with s(~a) = s′(~a) there
is s′′ corresponding to the values of ~a~b~c and ~z~i such that s′′(~a~b~c) = s(~a~b)s′(~b). The variables
x′i and χ will ensure that s′′ ∈ X~i. We will now prove that

M |= φ⇔M |= Φ.

Only if-part: Assume thatM |= φ. Then there are functions

Fi : X[F1/x1] . . . [Fi−1/xi−1]→ P(M) \ {∅},

for 1 ≤ i ≤ n, such that
M |=Y θ

when Y := {∅}[F1/x1] . . . [Fn/xn]. Note that Fi(s) = M if Qi = ∀.
Let us then construct teams Y~i, for ~i ∈ S, such thatM |=Y~i

θ~i, as follows. Let Yλ := Y .
Assume thatM |=Y~i

θ~i where θ~i = θ~i0 ∧ θ~i1. Then Y~i0 := Y~i and Y~i1 := Y~i.
Assume that M |=Y~i

θ~i where θ~i = θ~i0 ∨ θ~i1. Then choose Y~i0 ∪ Y~i1 = Y~i so that
M |=Y~i0

θ~i0 andM |=Y~i1
θ~i1.

We then note that

M |=Y~i

~b ⊥~a ~c if θ~i is ~b ⊥~a ~c, (33)
M |=Y~i

=(~z, y) if θ~i is =(~z, y). (34)

Now, for θ~i of the form ~b ⊥~a ~c, the interpretations of S~i and T~i will be the following:

SM~i := {s(~a~b) | s ∈ Y~i},
TM~i := {s(~a~c) | s ∈ Y~i}.

CSL’13

272 Hierarchies in independence logic

For θ~i of the form =(~z, y) we interpret f~i as follows:

fM~i (~a) :=
{
b if s(~zy) = ~ab for some s ∈ Y~i,
0 otherwise

where 0 ∈M is arbitrary. Now f~i is well defined by (34). Let thenM∗ := (M, ~SM, ~TM, ~fM).
We will show that

M∗ |= Q1x1 . . . Q
nxnϕ ∧ Ω.

Consider the first conjunct. For each xi with Qi = ∃ we can choose a value for it so that the
values of x1, . . . , xi agree with some s ∈ Y . Thus it suffices to show that, for s ∈ Y ,

M∗ |=s ϕ.

Since ϕ is a first-order formula, by Theorem 4 it suffices to show thatM∗ |=Y ϕ. This can
be done inductively: For each atomic ϕ~i,M∗ |=Y~i

ϕ~i by the definitions. IfM∗ |=Y~i0
ϕ~i0 and

M∗ |=Y~i1
ϕ~i1, and ϕ~i is either disjunction or conjunction of ϕ~i0 and ϕ~i1, thenM∗ |=Y~i

ϕ~i by
the construction of Y~i. This concludes the claim and thus the first conjunct part.

Next we will to show thatM∗ |= Ω where Ω is the formula∧
~i∈I

[∀~a~b~c(S~i(~a~b) ∧ T~i(~a~c))→ ∃~z~i(
∧
~j≤~i

ϕ~j ∧Q
1x′1 . . . Q

nx′n(ϕ′ ∧ χ))].

Let~i ∈ I and assume that θ~i = ~b ⊥~a ~c. Let ~α~β~γ be such that ~α~β ∈ SM~i and ~α~γ ∈ TM~i . Then
there are s, s′ ∈ Y~i such that s(~a~b) = ~α~β and s′(~a~c) = ~α~γ. By (33) we can choose s′′ ∈ Y~i
such that s′′(~a~b~c) = s(~a~b)s′(~c). Let us then choose the values for ~z~i according to s′′. Then
all the values of x1, . . . , xn agree with s′′. Now, sinceM∗ |=Y~j

ϕ~j for all ~j, and s′′ ∈ Y~j for
~j ≤~i, it follows by Theorem 4

M∗ |=s′′

∧
~j≤~i

ϕ~j .

Now it suffices to show that

M∗ |=s′′ Q
1x′1 . . . Q

nx′n(ϕ′ ∧ χ).

For each x′i with Qi = ∃ we choose a value for it so that, for some t ∈ Y , the values of
x′1, . . . , x

′
i are t(x1), . . . , t(xi). In particular, if the values of x′1, . . . , x′i−1 agree with s′′, then

we choose x′i according to s′′ also. Let s∗ be an extension of s′′ which is constructed according
to these rules. Now using the fact thatM∗ |=t ϕ for all t ∈ Y , and the way s∗ was chosen,
we get

M∗ |=s∗ ϕ
′ ∧ χ.

HenceM |= Φ. This concludes the only if-part.
If-part: Assume thatM |= Φ. Then we can find interpretations ~SM, ~TM and ~fM such

that
M∗ |= Q1x1 . . . Q

nxnϕ ∧ Ω

when M∗ := (M, ~SM, ~TM, ~fM). Consider the usual semantic game for first-order logic
where player ∃ plays the role of verifier and player ∀ plays the role of falsifier. Then there
is a winning strategy for player ∃ in the semantic game for Q1x1 . . . Q

nxnϕ ∧ Ω overM∗.
Let Y consist of assignments s : {x1, . . . , xn} → M corresponding to every possible play
of x1, . . . , xn where player ∃ follows her winning strategy. Analogously, let Y ′ consist of

P. Galliani, M. Hannula, and J. Kontinen 273

assignments s : {x1, . . . , xn} →M that correspond to every possible play of x′1, . . . , x′n where
player ∃ follows her winning strategy. Let X := Y ∪ Y ′. We will show that

M |=X θ.

We know thatM∗ |=X ϕ. Let us now define X~i, for ~i ∈ S, as follows. Recall that ϕλ = ϕ

where λ is the empty sequence. We also let Xλ := X.
IfM∗ |=X~i

ϕ~i where ϕ~i = ϕ~i0 ∧ ϕ~i1, then we let X~i0 := X~i and X~i1 := X~i.
If M∗ |=X~i

ϕ~i where ϕ~i = ϕ~i0 ∨ ϕ~i1, then we let X~i0 := {s ∈ X~i | M∗ |=s ϕ~i0} and
X~i1 := {s ∈ X~i | M∗ |=s ϕ~i1}.

From the construction it follows thatM∗ |=X~i
ϕ~i, for ~i ∈ S, and that X~i0 ∪X~i1 = X~i if ϕ~i

is a disjunction. We will now show that for each atomic θ~i,M |=X~i
θ~i:

1. If θ~i is a first-order atom, then the claim follows from θ~i = ϕ~i.
2. If θ~i is =(~z, y), then the claim follows fromM∗ |=X~i

f~i(~z) = y.
3. Assume that θ~i is ~b ⊥~a ~c. Then M∗ |=X~i

S~i(~a~b) ∧ T~i(~a~c). Let s, s′ ∈ X~i be such that
s(~a) = s′(~a). We have to show that there is s′′ ∈ X~i such that s′′(~a~b~c) = s(~a)s(~b)s′(~c).
NowM∗ |= Ω, so consider a play in the semantic game where player ∀ chooses first the
conjunct with index ~i from Ω, and then chooses s(~a)s(~b)s′(~c) as values for ~a~b~c. Since
s(~a)s(~b) ∈ SM~i and s(~a)s′(~c) ∈ TM~i , then player ∃ plays according to her strategy and
chooses values for ~z~i so that

M∗ |=s′′

∧
~j≤~i

ϕ~j ∧Q
1x′1 . . . Q

nx′n(ϕ′ ∧ χ)

where s′′ is the assignment agreeing with the chosen values for ~a~b~c and ~z~i. Now we let
player ∀ play each x′i with Qi = ∀ as s′′(xi). Then because of χ (defined in (32)) player
∃ must also play each x′i with Qi = ∃ as s′′(xi). Hence s′′ corresponds to a play of
x′1, . . . , x

′
n, and thus s′′ ∈ X.

Since M∗ |=s′′
∧
~j≤~i ϕ~j , it is a straightforward induction to show that s′′ ∈ X~i. This

concludes the step 3.
Now using the previous, a straightforward backward induction shows thatM |=X θ. It then
suffices to show that there are functions

Fi : {∅}[F1/x1] . . . [Fi−1/xi−1]→ P(M) \ {∅}

such that Fi(s) = M if Qi = ∀, and that

X = {∅}[F1/x1] . . . [Fn/xn].

We define these functions inductively so that {∅}[F1/x1] . . . [Fi/xi] = X � {x1, . . . , xi}, for
1 ≤ i ≤ n. Assume that we have defined F1, . . . , Fi successfully. We will define Fi+1 as
wanted. Assume first that Qi+1 = ∃. Then for s ∈ {∅}[F1/x1] . . . [Fi/xi], we let

Fi+1(s) = {t(xi+1) | t ∈ X, t � {x1, . . . , xi} = s}.

By the induction assumption Fi+1(s) is non-empty, though it may not be singleton in case
there are multiple plays where values of x1, . . . , xi (or x′1, . . . , x′i) agree with s. We note that

{∅}[F1/x1] . . . [Fi+1/xi+1] = X � {x1, . . . , xi+1}.

Assume then that Qi+1 = ∀. For s ∈ {∅}[F1/x1] . . . [Fi/xi], we let Fi+1(s) = P(M) and
note that

X � {x1, . . . , xi+1} ⊆ {∅}[F1/x1] . . . [Fi+1/xi+1].

CSL’13

274 Hierarchies in independence logic

For the other direction, assume that s ∈ {∅}[F1/x1] . . . [Fi/xi] and let a ∈M . We show that
s(a/x) ∈ X � {x1, . . . , xi+1}. By the induction assumption s ∈ X � {x1, . . . , xi}, and thus
there is a play of x1, . . . , xn (or x′1, . . . , x′n) that agrees with s in the first i variables. Let s′
be the assignment corresponding to this play. Now instead of choosing s′(xi+1) (or s′(x′i+1))
at move i + 1, player ∀ can choose a for xi+1 (or for x′i+1). Let t be an assignment that
corresponds to some play with these moves for the first i + 1 variables. Then t ∈ X and
t � {x1, . . . , xi+1} = s(a/xi+1). This concludes the proof, and thus also the only if-part.

Note that in Φ each function or relation variable has an arity at most k. This concludes
the proof. J

I Theorem 35. ESOf (k-ary) = FO(⊥c)(k-ind).

Proof. Follows from Propositions 27 and 29. J

This gives us immediately a corollary regarding inclusion logic. Recall that FO(⊆)(k-inc)
denotes the class of inclusion logic sentences in which inclusion atoms of width at most k
(i.e. atoms of the form ~a ⊆ ~b where |~a| = |~b| ≤ k) may appear.

I Theorem 36. Assume k ≥ 2. Then FO(⊆)(k-inc) ≤ ESOf (k-ary).

Proof. Using item 1 of Theorem 12, we first translate inclusion logic sentences to independence
logic, and then apply Proposition 29. It is easy to check that this translation takes us to
ESOf (k′-ary), where k′ = max{k, 2}. J

There is no hope of proving the other direction, since, e.g., even cardinality cannot be
expressed in FO(⊆) [3], but it is expressible in ESOf (1-ary). Next we will show that
ESOf (k-ary) ≤ FO(⊥)(2k + 2-ind).

I Theorem 37. ESOf (k-ary) ≤ FO(⊥)(2k + 1-ind) ≤ ESOf (2k + 1-ary).

Proof. For the first inequality, note that ESOf (k-ary) = D(k-dep) by [7], and D(k-dep) ≤
FO(⊥)(2k + 1-ind) by Theorem 13. The second inequality follows from Theorem 35. J

4.2 ∀-hierarchies
In this section, we will examine the fragments FO(C)(k∀). We will prove that, contrary to
the case of the fragments D(k∀) [7], the following holds:
1. If {⊥,⊆} ⊆ C then the hierarchy collapses at level 1: FO(C) = FO(C)(1∀);
2. If ⊥ ∈ C then it collapses at level 2: FO(C) = FO(C)(2∀).

We will use the following result from [21]:

I Proposition 38. Let φ be a FO(⊥) sentence. Then φ is equivalent to an formula of the
form ∀~x∃~y(θ ∧ χ), where θ is a conjunction of pure independence atoms and χ is first-order
and quantifier-free.

Since, as we saw in the Preliminaries, we can define inclusion atoms and conditional inde-
pendence atoms in terms of pure independence atoms, it follows at once that any sentence of
FO(=(. . .),⊥c,⊆) is equivalent to some sentence of the above form.

Using this, we will prove that

I Theorem 39. FO(⊥,⊆)(1∀) = FO(=(. . .),⊥c,⊆).

P. Galliani, M. Hannula, and J. Kontinen 275

Proof. Let φ ∈ FO(=(. . .),⊥c,⊆). We will show that there exists a φ′ ∈ FO(⊥,⊆)(1∀) equi-
valent to it. As we said, we can assume that φ is of the form ∀x1 . . . ∀xm∃xm+1 . . . ∃xm+n(θ∧
χ), where θ is a conjunction of pure independence atoms and χ is first-order and quantifier-free.
Let us then define φ′ as

∀x1∃x2 . . . ∃xm∃xm+1 . . . ∃xm+n(
∧

2≤i≤m
(x1 ⊆ xi ∧ x1 . . . xi−1⊥xi) ∧ θ ∧ χ).

We claim that φ′ is equivalent to φ. Assume first that M |= φ. Then there are, for
m+ 1 ≤ i ≤ m+ n, functions

Fi : {∅}[M/x1] . . . [M/xn][Fm+1/xm+1] . . . [Fi−1/xi−1]→ P(M) \ {∅}

such thatM |=X θ ∧χ when X := [M/x1] . . . [M/xn][Fm+1/xm+1] . . . [Fm+n/xm+n]. Let Fi,
for 2 ≤ i ≤ m, be the constant function mapping each assignment to M . Then

X = {∅}[M/x1][F2/x2] . . . [Fm+n/xm+n].

ClearlyM |=X

∧
2≤i≤m(x1 ⊆ xi ∧ x1 . . . xi−1⊥xi), and henceM |= φ′.

For the other direction, assume that M |= φ′. Then there are, for 2 ≤ i ≤ m + n,
functions

Fi : {∅}[M/x1][F2/x2] . . . [Fi−1/xi−1]→ P(M) \ {∅}

such thatM |=X

∧
2≤i≤m(x1 ⊆ xi ∧ x1 . . . xi−1⊥xi) when

X := {∅}[M/x1][F2/x2] . . . [Fm+n/xm+n].

Define, for 2 ≤ i ≤ m,
Xi := {∅}[M/x1][F2/x2] . . . [Fi/xi]

and
Yi := {∅}[M/x1][M/x2] . . . [M/xi].

It suffices to show that Xi = Yi for 2 ≤ i ≤ m.
First let us prove the claim for i = 2. Let s ∈ Y2. It suffices to show that s ∈ X2. By

Proposition 7, M |=X2 x1 ⊆ x2 ∧ x1⊥x2. Let s′ ∈ X2 be such that s′(x1) = s(x2). Since
M |=X2 x1 ⊆ x2, we can find a t ∈ X2 such that t(x2) = s′(x1). Now let t′ ∈ X2 be such
that t′(x1) = s(x1). BecauseM |=X2 x1⊥x2, we can find a t′′ ∈ X2 such that t′′(x1) = t′(x1)
and t′′(x2) = t(x2). Then t′′ = s which concludes the claim for i = 2.

The induction step is proved analogously. This concludes the claim and the proof. J

Let us now prove our second claim.

I Theorem 40. FO(⊥)(2∀) = FO(=(. . .),⊥c,⊆).

Proof. Let φ ∈ FO(=(. . .),⊥c,⊆). Again, we can assume that φ is of the form ∀~xψ, where
~x = x1 . . . xn and ψ is of the form ∃~yθ for θ quantifier-free and in FO(⊥). Let now p, q be
two variables not occurring in φ. We state that φ is equivalent to

φ∗ = ∀p∀q∃~x
((

p = q →
n∧
i=1

xi = p

)
∧
n−1∧
i=1

(x1 . . . xi⊥xi+1) ∧ ψ
)
.

Indeed, letM be a model and X = {∅}[M/p][M/q], and let the tuple of (nondeterministic)
choice functions ~U for ~x be such that

~U(s) =
{

(m, . . . ,m) if s(p) = s(q) = m;
Mn otherwise

CSL’13

276 Hierarchies in independence logic

and let Y = X[~U/~x]. It is obvious that M |=Y (p = q →
∧n
i=1 xi = p); and M |=Y ψ,

because Y (~x) = Mn and p, q do not occur in ψ. Finally, it is also true that Y satisfies
all independence atoms x1 . . . xi⊥xi+1, since Y (x1 . . . xixi+1) = M i+1 (assuming that our
model contains two distinct elements). ThereforeM |= φ∗, as required.

Conversely, supposeM |= φ∗ when there exists a ~U such that, for Y = {∅}[M/pq][~U/~x],
M |=Y (p = q →

∧n
i=1 xi = p)∧

∧n−1
i=1 (x1 . . . xi⊥xi+1)∧ψ. We will show that Y (x1 . . . xn) is

Mn, that is, that all possible tuples m1 . . .mn of elements of our models are possible values
for x1 . . . xn in Y .

First of all, let us observe that for all m ∈M there exists a hm ∈ Y such that hm(xi) = m

for all i. Indeed, we can find a sm ∈ X such that sm(p) = sm(q) = m and then pick an
arbitrary hm ∈ sm[~U/~x] ⊆ Y . Since M |=Y p = q →

∧
i xi = p, we have at once that

hm(xi) = hm(p) = m, as required.
Now we prove, by induction on i = 1 . . . n, that there exists a hi ∈ Y such that

hi(x1 . . . xi) = m1 . . .mi.
Base Case: Let h1 be hm1 ∈ Y . Then hm1(x1) = m1, as required.
Induction Case: Suppose that hi(x1 . . . xi) = m1 . . .mi, and consider hmi+1 . As we saw,

hmi+1 ∈ Y and hmi+1(xi+1) = mi+1. But M |=Y x1 . . . xi⊥xi+1; and therefore there
exists a hi+1 ∈ Y with hi+1(x1 . . . xi) = hi(x1 . . . xi) = m1 . . .mi and hi+1(xi+1) =
hmi+1(xi+1) = mi+1. Hence, hi+1(x1 . . . xi+1) = m1 . . .mi+1.

In particular, this implies that hn(x1 . . . xn) = m1 . . .mn; and since we started from an
arbitrary choice of m1 . . .mn, we can conclude that Y (~x) = M |~x|. But then the restriction
of Y to ~x is precisely {∅}[M/~x]; and sinceM |=Y ψ, by locality we have thatM |= ∀~xψ, as
required. J

Conclusion

In this paper, we examined the expressive power of fragments of inclusion and independence
logic obtained by restricting the arity of non first-order atoms or the number of universal
quantifiers. For the first kind of restriction, we adapted and extended the hierarchy theorems
of [7] to this new setting; but for the second kind of restriction, we showed that the hierarchy
collapses at a very low level if our logic contains at least pure independence atoms.

A question which is still open is whether the fragments FO(⊆)(k∀) of inclusion logic give
rise to an infinite expressivity hierarchy. Another issue that requires further investigation is
to which degree our results can be adapted to the case of strict semantics. The exact nature
of the relationship between strict and lax semantics is a matter which is of no small interest
for the further development of the area, and a comparison of the properties of our fragments
in these two settings might prove itself of great value.

References

1 Samson Abramsky and Jouko Väänänen. From IF to BI. Synthese, 167:207–230, 2009.
10.1007/s11229-008-9415-6.

2 Miklos Ajtai. Σ1
1-formulae on finite structures. Ann. Pure Appl. Logic, 4(1):1 – 48, 1983.

3 Pietro Galliani Lauri Hella. Inclusion logic and fixpoints. Manuscript, 2013.
4 William W. Armstrong. Dependency Structures of Data Base Relationships. In Proc. of

IFIP World Computer Congress, pages 580–583, 1974.
5 Marco A. Casanova, Ronald Fagin, and Christos H. Papadimitriou. Inclusion dependencies

and their interaction with functional dependencies. In Proceedings of the 1st ACM SIGACT-

P. Galliani, M. Hannula, and J. Kontinen 277

SIGMOD symposium on Principles of database systems, PODS ’82, pages 171–176, New
York, NY, USA, 1982. ACM.

6 Stephen A. Cook. A hierarchy for nondeterministic time complexity. In Conference Record,
Fourth Annual ACM Symposium on Theory of Computing, pages 187–192. ACM, 1972.

7 Arnaud Durand and Juha Kontinen. Hierarchies in dependence logic. ACM Transactions
on Computational Logic (TOCL), 13(4):31, 2012.

8 Herbert B. Enderton. Finite partially-ordered quantifiers. Mathematical Logic Quarterly,
16(8):393–397, 1970.

9 Ronald Fagin. A normal form for relational databases that is based on domains and keys.
ACM Transactions on Database Systems, 6:387–415, September 1981.

10 Pietro Galliani. The Dynamics of Imperfect Information. PhD thesis, University of Ams-
terdam, September 2012.

11 Pietro Galliani. Inclusion and exclusion dependencies in team semantics: On some logics
of imperfect information. Annals of Pure and Applied Logic, 163(1):68 – 84, 2012.

12 Dan Geiger, Azaria Paz, and Judea Pearl. Axioms and algorithms for inferences involving
probabilistic independence. Information and Computation, 91(1):128–141, 1991.

13 Erich Grädel. Model-checking games for logics of imperfect information. Theoretical Com-
puter Science (to appear), 2012.

14 Etienne Grandjean and Frédéric Olive. Graph properties checkable in linear time in the
number of vertices. J. Comput. Syst. Sci., 68(3):546–597, 2004.

15 Erich Grädel and Jouko Väänänen. Dependence and independence. Studia Logica,
101(2):399–410, 2013.

16 Miika Hannula. Axiomatizing first-order consequences in independence logic. Manuscript,
2012.

17 Leon Henkin. Some Remarks on Infinitely Long Formulas. In Infinitistic Methods. Proc.
Symposium on Foundations of Mathematics, pages 167–183. Pergamon Press, 1961.

18 Jarmo Kontinen. Coherence and computational complexity of quantifier-free dependence
logic formulas. Studia Logica, 101(2):267–291, 2013.

19 Pavel Naumov and Brittany Nicholls. R.E. axiomatization of conditional independence. To
appear, 2013.

20 Jouko Väänänen. Dependence Logic. Cambridge University Press, 2007.
21 Jouko Väänänen and Pietro Galliani. On dependence logic. In Preparation, 2013.
22 Wilbur John Walkoe. Finite partially-ordered quantification. The Journal of Symbolic

Logic, 35(4):pp. 535–555, 1970.
23 Fan Yang. Expressing Second-order Sentences in Intuitionistic Dependence Logic. Studia

Logica, 101(2):323–342, 2013.

5 Appendix

This secrtion contains the proof omitted in the main part of the paper.

I Theorem 13. For all modelsM and teams X

M |=X=(~x, y)⇔M |=X ∀~z∃w((~z = ~x→ w = y) ∧ ~xy⊥~zw).

Proof. Suppose first that M |=X=(~x, y). Then there exists a function f : M |~x| → M

such that f(s(~x)) = s(y) for all s ∈ X. Then for Y = X[M/~z], define the choice function
H : Y → P(M) \ {∅} so that

H(s) = {f(s(~z))}

CSL’13

278 Hierarchies in independence logic

for all s ∈ Y , and let Z = Y [H/w]. If we can verify that M |=Z ~z = ~x → w = y and
that M |=Z ~xy⊥~zw, the left-to-right direction of our proof is done. Now, if h ∈ Z then
h(w) = f(h(~z)) and h(y) = f(h(~x)), and thereforeM |=Z ~z = ~x→ w = y. Furthermore, for
h, h′ ∈ Z, we have that h′′ = h[h′(~z)/~z][h′(w)/w] ∈ Z, since our choice of w depends only on
~z, and thereforeM |=Z ~xy⊥~zw.

Conversely, suppose that there exists a function H : X[M/~z] → P(M)\{∅} such that,
for Z = X[M/~z][H/w], M |=Z ~z = ~x → w = y ∧ ~xy⊥~zw. Now let s, s′ ∈ X be such that
s(~x) = s′(~x) = ~m, let a = s(y) and let b = s′(y): we need to prove that a = b.

Take h ∈ s[~m/~z][H/w] ⊆ Z: since M |=Z ~z = ~x → w = y, we must have that
h(w) = s(y) = a. Similarly, for h′ ∈ s′[~m/~z][H/w] ⊆ Z, we must have that h′(w) = s′(y) = b.
But M |=Z ~xy⊥~zw, so there exists a h′′ ∈ Z such that h′′(~xy) = h(~xy) = ~ma and
h′′(~zw) = h′(~zw) = ~mb. Since, again, M |=Z ~z = ~x → w = y, the only possibility is that
a = b, as required. J

I Lemma 14. Let φ, ψ ∈ FO(=(. . .),⊥c,⊆) and let x be a variable not occurring free in ψ.
Then the following equivalences hold:
1. ∃xφ ∧ ψ ≡ ∃x(φ ∧ ψ),
2. ∃xφ ∨ ψ ≡ ∃x(φ ∨ ψ),
3. ∀xφ ∧ ψ ≡ ∀x(φ ∧ ψ),
4. ∀xφ ∨ ψ ≡ ∃a∃b∀x((φ ∧ a = b) ∨ (ψ ∧ a 6= b)) where a and b are new variables.

Proof. The cases 1, 2 and 3 are proved as in Lemma 12 in [16]. We prove number 4. By
Proposition 7 it is enough to prove the equivalence for teams X with Dom(X) = Fr(∀xφ∨ψ).

Assume first that M |=X ∀xφ ∨ ψ and x does not occur free in ψ. Then there are
Y ∪ Z = X such that M |=Y [M/x] φ and M |=Z ψ. Let 0, 1 ∈ M be distinct. We extend
each s ∈ X with a 7→ 0 and b 7→ 0, for s ∈ Y , and with a 7→ 0 and b 7→ 1, for s ∈ Z, and we
let X ′ consist of these extended assignments. So each s ∈ X has either one or two extensions
in X ′. Let Y ′ := {s ∈ X ′[M/x] | s(a) = s(b)} and Z ′ := {s ∈ X ′[M/x] | s(a) 6= s(b)}. Then
by Proposition 7, M |=Y ′ φ ∧ a = b and M |=Z′ ψ ∧ a 6= b. Hence M |=X′[M/x] (φ ∧ a =
b) ∨ (ψ ∧ a 6= b), and we conclude thatM |=X ∃a∃b∀x((φ ∧ a = b) ∨ (ψ ∧ a 6= b)).

Assume then thatM |=X ∃a∃b∀x((φ ∧ a = b) ∨ (ψ ∧ a 6= b)). Let Fa : X → P(M) and
Fb : X[Fa/a] → P(M) be such that if X ′ := X[Fa/a][Fb/b][M/x], then M |=X′ (φ ∧ a =
b) ∨ (ψ ∧ a 6= b). Let Y ′ ∪ Z ′ = X ′ be such thatM |=Y ′ φ ∧ a = b andM |=Z′ ψ ∧ a 6= b.
Let Y := Y ′ � Dom(X) and Z := Z ′ � Dom(X). Then Y [M/x] = Y ′ � (Dom(X) ∪ {x}), and
thus by Proposition 7M |=Y [M/x] φ. Also by Proposition 7M |=Z ψ. Since Y ∪ Z = X, we
conclude thatM |= ∀xφ ∨ ψ. J

I Theorem 25. For each natural number n there is a sentence φ ∈ FO(⊆) such that for all
modelsM and teams X where X 6= ∅ and the variables in Dom(X) do not appear in φ,

M |=X φ if and only if |X| ≥ n.

Proof. Let n be a natural number. We may assume that n ≥ 2 because in the case n = 1 we
can just choose φ := >. Let ~xi, for 0 ≤ i ≤ n− 1, list variables xi,0, . . . , xi,l where l =log(n).
Let

φ := ∃~x0 . . . ∃~xn−1(
∧

0≤i≤n−1
~xi ⊆ ~x0 ∧

∧
0≤i<j≤n−1

~xi 6= ~xj)

where
~xi 6= ~xj :=

∨
0≤k≤l

xi,k 6= xj,k.

P. Galliani, M. Hannula, and J. Kontinen 279

Now φ is as wanted:
Assume first thatM |=X φ. Then there are, for 0 ≤ i ≤ n− 1, functions

Fi : X[F0/~x0] . . . [Fi−1/~xi−1]→M l+1

such that

M |=X′

∧
0≤i≤n−1

~xi ⊆ ~x0 ∧
∧

0≤i<j≤n−1
~xi 6= ~xj (41)

when X ′ := X[F0/~x0] . . . [Fn−1/~xn−1]. Let s ∈ X ′ be some arbitrary assignment. From (41)
it follows that X ′ must include assignments si, for 0 ≤ i ≤ n− 1, such that si(~x0) = s(~xi).
Also from (41) it follows that s(~xi) 6= s(~xj), for 0 ≤ i < j ≤ n− 1. Thus the assignments si
are distinct and therefore |X ′| ≥ n. Because existential quantification of new variables in
strict semantics preserves the cardinality of a team we deduce that X ≥ n.

Suppose then X ≥ n. By the assumption n ≥ 2, and thus we may deduce that |M | ≥ 2.
Let 0 and 1 be two different members of M , and let i be the binary representation (of length
l + 1) of i, for 0 ≤ i ≤ n− 1, in terms of these 0 and 1. Choose then n different assignments
s0, . . . , sn−1 from X. We define, for 0 ≤ i ≤ n− 1, Fi : X[F0/~x0] . . . [Fi−1/~xi−1]→M l+1 as
follows:

Fi(s) :=
{
j + i if s � Dom(X) = sj , for 0 ≤ j ≤ n− 1,
i otherwise

where j + i is mod n. By the assumption, the variables in Dom(X) are not listed in
~x0 . . . ~xn−1, and thus the functions Fi are consistent with the definition of existential quan-
tification for strict semantics. Without the assumption it could be the case that differ-
ent si and sj would collapse into one assignment in the quantification procedure. Let
X ′ := X[F0/~x0] . . . [Fn−1/~xn−1]. Then sj , for 0 ≤ j ≤ n− 1, is extended in X ′ to

sj(j/~x~0)(j + 1/~x1) . . . (j − 2/~xn−2)(j − 1/~xn−1),

and each t ∈ X \ {sj | 0 ≤ j ≤ n− 1} is extended in X ′ analogously to s0. So for each s ∈ X ′
and 0 ≤ i < j ≤ n− 1 it holds that s(~xi) 6= s(~xj). Also

{s(~x0) | s ∈ X ′} = {i | 0 ≤ i ≤ n− 1} =
⋃

0≤i≤n−1
{s(~xi) | s ∈ X ′},

and thus

M |=X′

∧
0≤i≤n−1

~xi ⊆ ~x0 ∧
∧

0≤i<j≤n−1
~xi 6= ~xj

which concludes the proof. J

I Lemma 28. Let ~b⊥~a~c be an independence atom where ~a, ~b and ~c are tuples of variables.
If ~b0 lists the variables in ~b−~a∪~c, ~c0 lists the variables in ~c−~a∪~b, and ~d lists the variables
in ~b ∩ ~c− ~a, then

~b⊥~a~c ≡ ~b0⊥~a ~c0 ∧
∧
d∈~d

=(~a, d).

Proof. Assume that M |=X
~b⊥~a~c. Then clearly ~b0⊥~a ~c0. For

∧
d∈~d =(~a, d), let d ∈ ~d and

s, s′ ∈ X be such that s(~a) = s′(~a). Then by the assumption there is s′′ ∈ X such that
s′′(~a~b~c) = s(~a~b)s′(~c). Because d is listed in both ~b and ~c, it follows that s(d) = s′(d).

CSL’13

280 Hierarchies in independence logic

Suppose then M |=X
~b0⊥~a ~c0 ∧

∧
d∈~d =(~a, d). Let s, s′ ∈ X be such that s(~a) = s′(~a).

By the assumption there is s′′ ∈ X such that s′′(~a~b0~c0) = s(~a~b0)s′(~c0). We want to show
that s′′(~a~b~c) = s(~a~b)s′(~c). Consider first variables x listed in ~b−~b0. If x is listed in ~a, then
s′′(x) = s(x) as wanted. Assume that x is listed in ~c−~a. Then x ∈ ~d, and thus s′′(x) = s(x)
follows from s′′(~a) = s(~a).

For variables x is listed in ~c−~c0 the proof of s′′(x) = s′(x) is analogous because s(~a) = s′(~a).
This concludes the proof. J

Inclusion Logic and Fixed Point Logic
Pietro Galliani1 and Lauri Hella2

1 University of Helsinki
pgallian@gmail.com

2 University of Tampere
lauri.hella@uta.fi

Abstract
We investigate the properties of Inclusion Logic, that is, First Order Logic with Team Semantics
extended with inclusion dependencies. We prove that Inclusion Logic is equivalent to Greatest
Fixed Point Logic, and we prove that all union-closed first-order definable properties of relations
are definable in it. We also provide an Ehrenfeucht-Fraïssé game for Inclusion Logic, and give an
example illustrating its use.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Dependence Logic, Team Semantics, Fixpoint Logic, Inclusion

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.281

1 Introduction

Inclusion Logic [10], FO(⊆), is a novel logical formalism designed for expressing inclusion
dependencies between variables. It is closely related to Dependence Logic [24], FO(D),
which is the extension of First Order Logic by functional dependencies between variables.
Dependence Logic initially arose as a variant of Branching Quantifier Logic [13] and of
Independence-Friendly Logic [14, 22], and its study has sparked the development of a whole
family of logics obtained by adding various dependency conditions to First Order Logic.

All these logics are based on Team Semantics [16, 24] which is a generalization of Tarski
Semantics. In Team Semantics, formulas are satisfied or not satisfied by sets of assignments,
called teams, rather than by single assignments. This semantics was introduced in [16] for
the purpose of defining a compositional equivalent for the Game Theoretic Semantics of
Independence-Friendly Logic [14, 22], but it was soon found out to be of independent interest.
See [9] for a, mostly up-to-date, account of the research on Team Semantics.

Like Branching Quantifier Logic and Independence-Friendly Logic, Dependence Logic has
the same expressive power as Existential Second Order Logic Σ1

1: every FO(D)-sentence is
equivalent to some Σ1

1-sentence, and vice versa [24]. The semantics of Dependence Logic is
downwards closed in the sense that if a team X satisfies a formula φ in a model M , then all
subteams Y ⊆ X also satisfy φ in M . The equivalence between FO(D) and Σ1

1 was extended
to formulas in [19], where it was proved that FO(D) captures exactly the downwards closed
Σ1

1-definable properties of teams.
Other variants of Dependence Logic that have been studied are Conditional Independence

Logic FO(⊥c) [12], Independence Logic FO(⊥) [12, 25], Exclusion Logic FO(|) [10] and
Inclusion/Exclusion Logic FO(⊆, |) [10]. All the logics in this family arise from dependency
notions that have been studied in Database Theory. In particular, FO(D) is based on func-
tional dependencies introduced by Armstrong [1], FO(⊆) is based on inclusion dependencies
[8, 3], FO(|) is based on exclusion dependencies [4], and FO(⊥) is based on independence
conditions [11].

© Pietro Galliani and Lauri Hella;
licensed under Creative Commons License CC-BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca; pp. 281–295

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.281
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

282 Inclusion Logic and Fixed Point Logic

The expressive power of all these logics, with the exception of FO(⊆), is well understood.
It is known that, with respect to sentences, they are all equivalent with Σ1

1. With respect to
formulas, FO(|) is equivalent with FO(D) [10]; and FO(⊆, |), FO(⊥c) and FO(⊥) are all
equivalent to each other [10, 25]. Moreover, FO(⊥c) (and hence also FO(⊆, |) and FO(⊥))
captures all Σ1

1-definable properties of teams [10].
On the other hand, relatively little is known about the expressive power of Inclusion

Logic, and the main purpose of the present work is precisely to remedy this. What little
is known about this formalism can be found in [10], and amounts to the following: With
respect to formulas, FO(⊆) is strictly weaker than Σ1

1 ≡ FO(⊥c) and incomparable with
FO(D) ≡ FO(|). This is simply because the semantics of FO(⊆) is not downwards closed,
but is closed under unions: if both teams X and Y satisfy a formula φ in a model M , then
X ∪ Y also satisfies φ in M . Moreover, FO(⊆) is stronger than First Order Logic over
sentences, and it is contained in Σ1

1; but it was unknown whether it is equivalent to Σ1
1, or

whether FO(⊆)-formulas could define all union closed Σ1
1-definable properties of teams.

In this paper we show that the answer to both of these problems is negative. In fact,
we give a complete characterization for the expressive power of FO(⊆) in terms of Positive
Greatest Fixed Point Logic GFP+: We prove that every FO(⊆)-sentence is equivalent to
some GFP+-sentence, and vice versa (Corollary 17).

Fixed point logics have a central role in the area of Descriptive Complexity Theory. By
the famous result of Immerman [17] and Vardi [26], Least Fixed Point Logic LFP captures
PTIME on the class of ordered finite models. Furthermore, it is well known that on finite
models, LFP is equivalent to GFP+. Thus, we obtain a novel characterization for PTIME:
a class of ordered finite models is in PTIME if and only if it is definable by a sentence of
FO(⊆).

In addition to the equivalence with GFP+, we prove that all union-closed first-order
definable properties of teams are definable in Inclusion Logic (Corollary 26). Thus, it is not
possible to increase the expressive power of FO(⊆) by adding first-order definable union-closed
dependencies. On the other hand, it is an interesting open problem, whether FO(⊆) can
be extended by some natural set D of union-closed dependencies such that the extension
FO(⊆,D) captures all union-closed Σ1

1-definable properties of teams.
We also introduce a new Ehrenfeucht-Fraïssé game that characterizes the expressive power

of Inclusion Logic (Theorem 29). Our game is a modification of the EF game for Dependence
Logic defined in [24]. Although the EF game has a clear second order flavour, it is still
more manageable than the usual EF game for Σ1

1; we illustrate this by describing a concrete
winning strategy for Duplicator in the case of models with empty signature (Proposition 30).
Due to the equivalence between FO(⊆) and GFP+ we see that the EF game for Inclusion
Logic is also a novel EF game for GFP+; it is quite different in structure from the one
introduced in [2]. It may be hoped that this new game and its variants could be of some use
for studying the expressive power of fixed point logics.

2 Preliminaries

2.1 Team Semantics
In this section, we will recall the definition of the Team Semantics for First Order Logic. For
simplicity reasons, we will assume that all our expressions are in negation normal form.

I Definition 1. Let M be a first order model and let V be a set of variables. A team X

over M with domain Dom(X) = V is a set of assignments s : V → Dom(M). Given a tuple

P. Galliani and L. Hella 283

~t = (t1, . . . , tn) of terms with variables in V and an assignment s ∈ X, we write ~t〈s〉 for the
tuple (t1〈s〉, . . . , tn〈s〉), where t〈s〉 denotes the value of the term t with respect to s in the
model M . Furthermore, we write X(~t) for the relation {~t〈s〉 : s ∈ X}.

A (non-deterministic) choice function for a team X over a set A is a function H : X →
P(A) \ {∅}. The set of all choice functions for X over A is denoted by C(X,A).

I Definition 2 (Team Semantics for First Order Logic1). Let M be a first order model and
let X be a team over it. Then, for all first-order literals α, variables v, and formulas φ and ψ
over the signature of M and with free variables in Dom(X),
TS-lit: M |=X α iff for all s ∈ X, M |=s α in the usual Tarski Semantics sense;
TS-∨: M |=X φ ∨ ψ iff X = Y ∪ Z for some Y and Z such that M |=Y φ and M |=Z ψ;
TS-∧: M |=X φ ∧ ψ iff M |=X φ and M |=X ψ;
TS-∃: M |=X ∃vφ iff there exists a function H ∈ C(X, Dom(M)) such that M |=X[H/v] ψ,

where X[H/v] = {s[m/v] : s ∈ X,m ∈ H(s)};
TS-∀: M |=X ∀vφ iff M |=X[M/v] φ, where X[M/v] = {s[m/v] : s ∈ X,m ∈ Dom(M)}.

The next theorem can be proved by structural induction on φ:

I Theorem 3 (Team Semantics and Tarski Semantics). For all first order formulas φ(~v), all
models M and all teams X, M |=X φ if and only if for all s ∈ X, M |=s φ with respect to
Tarski Semantics.

Thus, in the case of First Order Logic it is possible to reduce Team Semantics to Tarski
Semantics. What is then the point of working with the technically more complicated Team
Semantics? As we will see in the next subsection, the answer is that Team Semantics allows
us to extend First Order Logic in novel and interesting ways.

Note that on every model M , there are two teams with empty domain: the empty team
∅, and the team {∅} containing the empty assignment ∅. All the logics that we consider in
this paper have the empty team property: M |=∅ φ for every formula φ and model M . Thus,
we say that a sentence φ is true in a model M if M |={∅} φ. If this is the case, we drop the
subscript {∅}, and write just M |= φ.

2.2 Dependencies in Team Semantics
As we saw, in Team Semantics formulas are satisfied or not satisfied by sets of assignments,
called teams; and a team corresponds in a natural way to a relation over the domain of the
model. Therefore, any property of relations can be made to correspond to some property of
teams, which we can then add to our language as a new atomic formula. In particular, we
can do so for database-theoretic dependency notions, thus obtaining the following generalized
atoms:2

I Definition 4 (Dependence Atoms). Let ~t1, ~t2, ~t3 be tuples of terms over some vocabulary.
Then, for all models M and all teams X over M whose domain contains the variables of
~t1~t2~t3,
TS-fdep: M |=X =(~t1,~t2) if and only if, for all s, s′ ∈ X, ~t1〈s〉 = ~t1〈s′〉 ⇒ ~t2〈s〉 = ~t2〈s′〉;
TS-exc: For |~t1| = |~t2|, M |=X ~t1 | ~t2 if and only if X(~t1) ∩X(~t2) = ∅;

1 What we present here is the so-called lax version of Team Semantics. There also exists a strict version,
with somewhat different rules for disjunction and existential quantification. As discussed in [10], the lax
semantics has more convenient properties for the case of Inclusion Logic.

2 The notion of “generalized atom” is defined formally in [20].

CSL’13

284 Inclusion Logic and Fixed Point Logic

TS-inc: For |~t1| = |~t2|, M |=X ~t1 ⊆ ~t2 if and only if X(~t1) ⊆ X(~t2);
TS-ind: M |=X ~t1⊥~t2 if and only if for all s, s′ ∈ X there exists an s′′ ∈ X with ~t1〈s′′〉 = ~t1〈s〉

and ~t2〈s′′〉 = ~t2〈s′〉;
TS-cond-ind: M |=X ~t2⊥~t1~t3 if and only if for all s, s′ ∈ X with ~t1〈s〉 = ~t1〈s′〉 there exists

an s′′ ∈ X with (~t1~t2)〈s′′〉 = (~t1~t2)〈s〉 and (~t1~t3)〈s′′〉 = (~t1~t3)〈s′〉.

These atoms correspond respectively to functional dependencies [1], to exclusion depend-
encies [4], to inclusion dependencies [8, 3], to independence conditions [11], and to conditional
independence conditions3; and by adding them to the language of First Order Logic we can
obtain various logics, whose principal known properties we will now briefly recall.

Dependence Logic FO(D) is obtained by adding functional dependence atoms to the
language of First Order Logic. It is the oldest and the most studied among the logics that we
will discuss in this work, having been introduced in the seminal book [24] as an alternative
approach to the study of Branching [13] and Independence-Friendly [14, 22] Quantification.
It is downwards closed, in the sense that, for all models M , Dependence Logic formulas φ
and teams X, if M |=X φ then M |=Y φ for all subsets Y of X.

On the level of sentences, Dependence Logic has the same expressive power as Existential
Second Order Logic Σ1

1.

I Theorem 5 ([27, 6, 24]). Every FO(D)-sentence is equivalent to some Σ1
1-sentence, and

vice versa. In particular, FO(D) captures NP on finite models.

The equivalence between FO(D) and Σ1
1 was extended to formulas by Kontinen and

Väänänen, who proved the following characterization:

I Theorem 6 ([19]). Let φ be a FO(D)-formula with free variables in ~v. Then there exists a
Σ1

1-sentence Φ(R), where R is a |~v|-ary relation symbol which occurs only negatively in Φ,
such that

M |=X φ ⇐⇒ (M,X(~v)) |= Φ(R) for all models M and teams X 6= ∅.

Conversely, for any such Φ(R) there exists an FO(D)-formula φ such that the above holds.

Thus, FO(D) is the strongest logic that can be obtained by adding Σ1
1-definable downwards-

closed dependence conditions to First-Order Logic. Indeed, any such condition will be
expressible as ∃S(X(~v) ⊆ S ∧ Φ(S)) for some Φ in Σ1

1, and therefore it will be equivalent to
some FO(D)-formula.

Exclusion Logic FO(|), on the other hand, is the logic obtained by adding exclusion
atoms to First-Order Logic. It was introduced in [10], where it was shown to be equivalent
to Dependence Logic with respect to formulas.

Conditional Independence Logic FO(⊥c), which was introduced in [12], adds con-
ditional independence atoms ~t2⊥~t1~t3 to the language of First Order Logic. Like FO(D),
FO(⊥c) is equivalent to Σ1

1 with respect to sentences, and also with respect to formulas:

I Theorem 7 ([12]). Every FO(⊥c)-sentence is equivalent to some Σ1
1-sentence, and vice

versa.

I Theorem 8 ([10]). A class of relations is definable in Conditional Independence Logic if
and only if it contains the empty relation and it is Σ1

1-definable.

3 As observed in [7], conditional independence atoms also correspond to embedded multivalued dependencies.

P. Galliani and L. Hella 285

Therefore, Conditional Independence Logic is the strongest logic that can be obtained by
adding Σ1

1-definable dependencies which are true of the empty relation to First Order Logic.
In particular, this implies that every FO(D) formula (and, therefore, every FO(|) formula)
is equivalent to some FO(⊥c) formula.4 However, the converse is not true, since FO(⊥c)
formulas are not, in general, downwards closed.

Furthermore, Inclusion/Exclusion Logic FO(⊆, |) – that is, the logic obtained by
adding inclusion and exclusion dependencies to First Order Logic – was proved in [10] to be
equivalent with FO(⊥c) with respect to formulas.

Finally, Independence Logic FO(⊥) is the logic obtained by adding only non-conditional
dependence atoms ~t1⊥~t2 to First Order Logic. As proved in [25], Independence Logic and
Conditional Independence Logic are also equivalent with respect to formulas.

Inclusion Logic FO(⊆) is obtained by adding inclusion atoms to First Order Logic.
It is not downwards closed, but it is closed under unions in the following sense: if φ is an
FO(⊆)-formula, M is a model, and Xi, i ∈ I, are teams on M such that M |=Xi φ for all
i ∈ I, then M |=X φ, where X =

⋃
i∈I Xi. (For a proof, see [10]).

Relatively little is known about the expressive power of FO(⊆), and the main purpose of
the present work is precisely to remedy this. Here we recall the following results from [10]:
1. On the level of formulas, FO(⊆) is strictly weaker than FO(⊥c) ≡ FO(⊥) ≡ Σ1

1, and
incomparable with FO(D) ≡ FO(|).

2. The complement of the transitive closure of any first-order formula φ(~x, ~y) is definable in
FO(⊆); hence, FO(⊆) is strictly stronger than First Order Logic on sentences.

3. On the level of sentences, FO(⊆) is contained in Σ1
1.

We give next a couple of further examples of the expressive power of FO(⊆).

I Example 9. (a) Consider the sentence φ := ∃x∃y(y ⊆ x∧Exy). LetM = (Dom(M), EM) be
a finite model. Then M |= φ if and only if EM contains a cycle, i.e., there are a0, . . . , an−1 ∈
Dom(M) such that (ai, ai+1) ∈ EM for all i < n− 1, and (an−1, a0) ∈ EM .

The idea here is the following: the first existential quantifier gives a set C of values for x,
and the formula ∃y(y ⊆ x ∧ Exy) then says that for every a ∈ C there is a b ∈ C such that
(a, b) ∈ EM .

(b) Let ψ be the FO(⊆)-sentence ∃w(∃u(Pu ∧ u ⊆ w) ∧ ∀u(Ewu→ ∃v(Euv ∧ v ⊆ w))).
Then M |= ψ if and only if player I has a winning strategy in the following game G(M):
Player I starts by choosing some element a0 ∈ PM . In each odd round i+ 1, player II chooses
an element ai+1 such that (ai, ai+1) ∈ EM . In each even round i + 1, player I chooses an
element ai+1 such that (ai, ai+1) ∈ EM . The first player unable to move according to the
rules, loses the game. Player I wins all infinite plays of the game.

The class K of all finite models M such that player II has a winning strategy in G(M) is
an equivalent to Immerman’s alternating graph accessibility problem, AGAP. It is well known
that AGAP is a complete problem for PTIME with respect to quantifier free reductions ([18]).

2.3 Greatest Fixed Point Logic
Let ψ(R, ~x) be a first-order formula such that the arity of R, ar(R), is equal to the length
k = |~x| of the tuple ~x. If M is a model, then ψ defines an operation Γ = ΓM,ψ on the set

4 This was already shown in [12], in which it was shown that any dependence atom =(~t1,~t2) is equivalent
to the conditional independence atom ~t2⊥~t1

~t2.

CSL’13

286 Inclusion Logic and Fixed Point Logic

P(Dom(M)k) of k-ary relations on Dom(M) as follows:

Γ(P) := {~a : (M,P) |=s[~a/~x] ψ(R, ~x)} for each P ∈ P(Dom(M)k).

A relation P is a fixed point of the operation ΓM,ψ on M if Γ(P) = P . Furthermore, P is the
greatest fixed point (least fixed point) of ΓM,ψ if Q ⊆ P (P ⊆ Q, respectively) for all fixed
points Q of ΓM,ψ.

It is well known that if R occurs only positively in ψ, then for every model M , ΓM,ψ has
a greatest fixed point (and a least fixed point). Moreover, the greatest fixed point P of ΓM,ψ

has the following characterization: P =
⋃
{Q ⊆ Dom(M)k : Q ⊆ ΓM,ψ(Q)} (see, e.g. [21]).

IDefinition 10. Greatest Fixpoint Logic, GFP, is obtained by adding to First Order Logic the
greatest fixed point operator [gfpR,~xψ(R, ~x)]~t, where R is a relation variable with ar(R) = |~x|,
ψ(R, ~x) is a formula in which R occurs only positively, and ~t is a tuple of terms with |~t| = |~x|.
The semantics of the operator gfp is defined by the clause:

M |=s [gfpR,~xψ(R, ~x)]~t if and only if ~t〈s〉 is in the greatest fixed point of ΓM,ψ.

Positive Greatest Fixed Point Logic, GFP+, is the fragment of Greatest Fixed Point Logic
in which fixed point operators occur only positively.

Least Fixpoint Logic, LFP, similarly, introduces an operator [lfpR,~xψ(R, ~x)]~t, again for R
occurring only positively in ψ, such that M |= [lfpR,~xψ(R, ~x)]~t if and only if ~t〈s〉 is in the
least fixed point of ΓM,ψ.

Fixed point logics have been the object of a vast amount of research, especially because of
their applications in Finite Model Theory and Descriptive Complexity Theory. In particular,
Least Fixed Point Logic captures the complexity class PTIME that consists of all problems
that are solvable in polynomial time:

I Theorem 11 ([17, 26]). A class of linearly ordered finite models is definable in LFP if and
only if it can be recognized in PTIME.

Another important result is that on finite models, Greatest Fixed Point Logic has the
same expressive power as Least Fixed Point Logic.

I Theorem 12 ([17]). Over finite models, GFP+ (as well as GFP) is equivalent to LFP.

We will also make use of the following normal form result for Positive Greatest Fixed
Point Logic:

I Theorem 13 ([23, 17]). Every GFP+-sentence φ is equivalent to a GFP+-sentence of the
form ∃~z [gfpR,~x ψ(R, ~x)]~z, where ψ is a first-order formula.

3 Inclusion Logic captures GFP+

We will now prove that Inclusion Logic has exactly the same expressive power as Positive
Greatest Fixed Point Logic. Since the semantics of GFP+ is defined in terms of single
assignments instead of teams, the equivalence of FO(⊆) and GFP+ on formulas has to be
formulated in a bit indirect way; see Theorems 15 and 16 below.

We start with a lemma that connects teams and the greatest fixed point operator:

I Lemma 14. Let ψ(S, ~x) be a GFP+-formula with free variables in ~x = (x1, . . . , xn) such
that S is n-ary and occurs only positively in ψ, let M be a model, and let Y a team on M .
(a) If (M,Y (~x)) |=s ψ(S, ~x) for all s ∈ Y , then M |=s [gfpS,~x ψ(S, ~x)]~x for all s ∈ Y .

P. Galliani and L. Hella 287

(b) If Y is a maximal team such that M |=s [gfpS,~x ψ(S, ~x)]~x for all s ∈ Y , then
(M,Y (~x)) |=s ψ(S, ~x) for all s ∈ Y .

Proof. Note that (M,Y (~x)) |=s ψ(S, ~x) for all s ∈ Y if and only if Y (~x) ⊆ ΓM,ψ(Y (~x)).
Thus, claim (a) follows from the fact that the greatest fixed point of ΓM,ψ is the union of
all relations Q such that Q ⊆ ΓM,ψ(Q). Claim (b) follows from the observation that if Y is
a maximal team such that M |=s [gfpS,~x ψ(S, ~x)]~x for all s ∈ Y , then Y (~x) is the greatest
fixed point of ΓM,ψ. J

We will next prove that every FO(⊆)-formula can be expressed in GFP+.

I Theorem 15. For every FO(⊆)-formula φ(~x) with free variables in ~x = (x1, . . . , xn) there
is a GFP+-formula φ∗ = φ∗(R, ~x) such that ar(R) = |~x|, R occurs only positively in φ∗, and

M |=X φ(~x) ⇐⇒ (M,X(~x)) |=s φ
∗(R, ~x) for all s ∈ X

holds for all models M and teams X with Dom(X) = {x1, . . . , xn}.

Proof. The proof is by structural induction on φ.
1. If φ(~x) is a first-order literal, let φ∗(R, ~x) be just φ(~x). Then we have

M |=X φ(~x) ⇐⇒ M |=s φ(~x) for all s ∈ X
⇐⇒ (M,X(~x)) |=s φ(~x) for all s ∈ X.

2. If φ(~x) is an inclusion atom ~t1 ⊆ ~t2, let φ∗(R, ~x) be ∃~z(R~z ∧ ~t1(~x) = ~t2(~z)), where ~z
is a tuple of new variables. Note that (M,X(~x)) |=h ~t1(~x) = ~t2(~z) for an assignment
h defined on ~x~z if and only if there are two assignments s, s′ defined on ~x such that
~t1〈s〉 = ~t2〈s′〉 and h = s ∪ (s′ ◦ f), where f is the function f(zi) = xi. Thus, we see that
(M,X(~x)) |=s φ

∗(R, ~x) for all s ∈ X if and only if for every s ∈ X there is an s′ ∈ X
such that ~t1〈s〉 = ~t2〈s′〉, as desired.

3. Assume next that φ(~x) is of the form ψ(~x) ∨ θ(~x). Then we define

φ∗(R, ~x) := [gfpS,~x (R~x ∧ ψ∗(S, ~x))]~x ∨ [gfpT,~x (R~x ∧ θ∗(T, ~x))]~x.

If M |=X φ(~x), then there exist teams Y and Z such that X = Y ∪ Z, M |=Y

ψ(~x) and M |=Z θ(~x). By induction hypothesis, (M,Y (~x)) |=s ψ∗(S, ~x), and con-
sequently (M,X(~x), Y (~x)) |=s R~x ∧ ψ∗(S, ~x), holds for all s ∈ Y . Hence, by Lemma 14,
(M,X(~x)) |=s [gfpS,~x (R~x ∧ ψ∗(S, ~x))]~x holds for all s ∈ Y .
In the same way we see that (M,X(~x)) |=s [gfpT,~x (R~x ∧ θ∗(T, ~x))]~x holds for all s ∈ Z.
Thus, we conclude that (M,X(~x)) |=s φ

∗(R, ~x) for all s ∈ X.
To prove the converse, assume that (M,X(~x)) |=s φ

∗(R, ~x) for all s ∈ X. Let Y be the
set of all assignments s ∈ X that satisfy the first disjunct of φ∗(R, ~x), and let Z be the set
of assignments s ∈ X that satisfy the second disjunct. Then Y is the maximal team such
that, for all s ∈ Y , (M,X(~x)) |=s [gfpS,~x (R~x ∧ ψ∗(S, ~x))]~x. It follows from Lemma 14
that (M,X(~x), Y (~x)) |=s R~x ∧ ψ∗(S, ~x) for all s ∈ Y . Thus, (M,Y (~x)) |=s ψ

∗(S, ~x) for
all s ∈ Y , and by induction hypothesis, M |=Y ψ(~x). In the same way we see that
M |=Z θ(~x). Finally, since X = Y ∪ Z, we conclude that M |=X φ(~x).

4. If φ(~x) = ψ(~x)∧θ(~x), we define simply φ∗(R, ~x) := ψ∗(R, ~x)∧θ∗(R, ~x). The claim follows
then directly from the induction hypothesis.

5. If φ(~x) is of the form ∃v ψ(~xv), let φ∗(R, ~x) be ∃v[gfpS,~xv (R~x ∧ ψ∗(S, ~xv))]~xv. Then
M |=X φ(~x) if and only if there is a function H ∈ C(X, Dom(M)) such that M |=Y ψ(~xv),

CSL’13

288 Inclusion Logic and Fixed Point Logic

where Y = X[H/v]. By the induction hypothesis, this is equivalent to (M,Y (~xv)) |=h

ψ∗(S, ~xv) being true for all h ∈ Y . This, in turn, is equivalent with the condition

(M,X(~x), Y (~xv)) |=h R~x ∧ ψ∗(S, ~xv) for all h ∈ Y . (1)

If condition (1) holds, then by Lemma 14, (M,X(~x)) |=h [gfpS,~xv (R~x ∧ ψ∗(S, ~xv))]~xv
holds for all h ∈ Y . Since every s ∈ X has an extension h ∈ Y , it follows that
(M,X(~x)) |=s φ

∗(R, ~x) for all s ∈ X.
On the other hand, if (M,X(~x)) |=s φ

∗(R, ~x) for all s ∈ X, we define H ∈ C(X, Dom(M))
to be the function such that

H(s) := {a ∈ Dom(M) : (M,X(~x)) |=s[a/v] [gfpS,~xv (R~x ∧ ψ∗(S, ~xv))]~xv},

and let Y = X[H/v]. Then Y is the maximal team such that

(M,X(~x)) |=h [gfpS,~xv (R~x ∧ ψ∗(S, ~xv))]~xv

for all h ∈ Y , whence condition (1) follows from Lemma 14.
6. If φ(~x) is of the form ∀v ψ(~xv), let φ∗(R, ~x) be ∀v[gfpS,~xv (R~x ∧ ψ∗(S, ~xv))](~xv). The

proof of the claim is similar to the case of existential quantification.
J

In proving that GFP+-sentences can be expressed in FO(⊆) we will use the normal form
given in Theorem 13. Thus, it suffices to find translations for first-order formulas, and
formulas obtained by a single application of the gfp-operator to first-order formulas.

I Theorem 16. Let η(R, ~x, ~y) be a first-order formula such that R occurs only positively in
η, ar(R) = |~x| = n, and the free variables of η are in ~x~y.
(a) There exists an FO(⊆)-formula η+(~x, ~y) such that for all models M and teams X on M

M |=X η+(~x, ~y) ⇐⇒ (M,X(~x)) |=s η(R, ~x, ~y) for every s ∈ X

(b) If ~y is empty, and ~z is an n-tuple of variables not occurring in η, then there exists an
FO(⊆)-formula η̃(~z) such that for all models M and teams X on M

M |=X η̃(~z) ⇐⇒ M |=s [gfpR,~x η(R, ~x)]~z for every s ∈ X

Proof. (a) We prove the claim by structural induction on η.
1. If η(R, ~x, ~y) is a first-order literal not containing the relation symbol R, we define η+ := η.

Then M |=X η+ if and only if M |=s η for every s ∈ X. Since R does not occur in η, this
is equivalent with (M,X(~x)) |=s η for all s ∈ X, as required.

2. If η is of the form R~t, we define η+(~x, ~y) := ~t ⊆ ~x. Then we have

M |=X η+(~x, ~y) ⇐⇒ ∀s ∈ X ∃s′ ∈ X : ~t〈s〉 = ~x〈s′〉
⇐⇒ ∀s ∈ X : ~t〈s〉 ∈ X(~x)
⇐⇒ ∀s ∈ X : (M,X(~x)) |=s R~t.

3. If η is of the form α(R, ~x, ~y) ∨ β(R, ~x, ~y), let ~u = (u1, . . . , un) be a tuple of new variables
and let η+(~x, ~y) be the formula ∃~u

(
(~u ⊆ ~x) ∧ (α+(~u, ~x~y) ∨ β+(~u, ~x~y))

)
. Here we assume

as induction hypothesis that M |=Y α+(~u, ~x~y) if and only if (M,Y (~u)) |=h α(R, ~x, ~y) for
all h ∈ Y , and similarly for β+(~u, ~x~y) and β(R, ~x, ~y).
Suppose first that M |=X η+(~x, ~y). Then there is a function H ∈ C(X, Dom(M)n) such
that X[H/~u](~u) ⊆ X(~x), and furthermore, X[H/~u] can be split into two subteams Y

P. Galliani and L. Hella 289

and Z such that M |=Y α+(~u, ~x~y) and M |=Z β+(~u, ~x~y). Now take any s ∈ X and
let h ∈ X[H/~u] be an extension of s. If h ∈ Y then (M,Y (~u)) |=h α(R, ~x, ~y). Since
Y (~u) ⊆ X[H/~u](~u) ⊆ X(~x), ~x~y〈h〉 = ~x~y〈s〉 and R occurs only positively in α, we have
(M,X(~x)) |=s α(R, ~x, ~y). Similarly, if h ∈ Z then (M,X(~x)) |=s β(R, ~x, ~y). Thus,
(M,X(~x)) |=s α(R, ~x, ~y) ∨ β(R, ~x, ~y) for all s ∈ X, as required.
Conversely, suppose that for any s ∈ X, (M,X(~x)) |=s α(R, ~x, ~y) ∨ β(R, ~x, ~y). Now let
H ∈ C(X, Dom(M)n) be the function such that H(s) = X(~x) for all s ∈ X. Note first
that clearly M |=X[H/~u] ~u ⊆ ~x. Let Y = {h ∈ X[H/~u] : (M,X(~x)) |=h α(R, ~x, ~y)} and
Z = {h ∈ X[H/~u] : (M,X(~x)) |=h β(R, ~x, ~y)}. By hypothesis, X[H/~u] = Y ∪ Z.
If Y 6= ∅, then Y (~u) = X[H/~u](~u) = X(~x): indeed, if (M,X(~x)) |=h α(R, ~x, ~y) then
the same holds for all h′ which differ from h only with respect to ~u, since ~u is not free
in α. Therefore (M,Y (~u)) |=h α(R, ~x, ~y) for all h ∈ Y , and thus M |=Y α+(~u, ~x~y). If
instead Y = ∅, then M |=Y α+(~u, ~x~y) trivially. Similarly, M |=Z β

+(~u, ~x~y), and therefore
M |=X[H/~u] α

+(~u, ~x~y) ∨ β+(~u, ~x~y), whence the function H witnesses that M |=X η+.
4. If η is α(R, ~x, ~y) ∧ β(R, ~x, ~y), let η+(~x, ~y) be α+(~x, ~y) ∧ β+(~x, ~y). Then the claim follows

directly from the induction hypothesis.
5. If η(R, ~x, ~y) is ∃v α(R, ~x, ~yv), let η+(~x, ~y) be ∃v α+(~x, ~yv); here we assume w.l.o.g. that

v is not among the variables in ~x~y. Then M |=X η+(~x, ~y) if and only if there is a
function H ∈ C(X, Dom(M)) such that M |=X[H/v] α

+(~x, ~yv). Since X[H/v](~x) = X(~x),
by induction hypothesis this is equivalent with the condition

(M,X(~x)) |=h α(R, ~x, ~yv) holds for all h ∈ X[H/v]. (2)

If condition (2) is true, then clearly (M,X(~x)) |=s η(R, ~x, ~y) for all s ∈ X. Conversely, if
(M,X(~x)) |=s η(R, ~x, ~y) holds for all s ∈ X, then (2) is true for the function H such that
H(s) = {a ∈ Dom(M) : (M,X(~x)) |=s[a/v] α(R, ~x, ~yv)}.

6. If η(~R, ~x, ~y) is ∀v α(~R, ~x, ~yv), let η+(~x, ~y) be ∀v α+(~x, ~yv). The proof of the claim is
similar as in the previous case.

(b) Let ~z be an n-tuple of variables not occurring in η. We define η̃(~z) to be the formula
∃~x(~z ⊆ ~x ∧ η+(~x)), where η+ is the FO(⊆)-formula corresponding to η(R, ~x), as given in
claim (a). Suppose first that M |=X η̃(~z). Then there is a function H ∈ C(X, Dom(M)n)
such that M |=Y η+(~x), and ~z〈h〉 ∈ Y (~x) for all h ∈ Y , where Y = X[H/~x]. Thus, by
claim (a), (M,Y (~x)) |=h η(R, ~x) holds for all h ∈ Y . It follows now from Lemma 14 that
M |=h [gfpR,~x η(R, ~x)]~x for all h ∈ Y . Since every s ∈ X has an extension h ∈ Y , and
~z〈s〉 = ~z〈h〉 ∈ Y (~x), we conclude that M |=s [gfpR,~x η(R, ~x)]~z for all s ∈ X.

To prove the converse, assume that M |=s [gfpR,~x η(R, ~x)]~z for all s ∈ X. Let P be the
greatest fixed point of the formula η(R, ~x) (with respect to R and ~x) on the model M , and let
H ∈ C(X, Dom(M)n) be the function such that H(s) = P for every s ∈ X. Let Y = X[H/~x].
Then (M,Y (~x)) |=h η(R, ~x) for all h ∈ Y , whence by claim (a), we have M |=Y η+(~x).
Moreover, ~z〈h〉 ∈ Y (~x) = P for all h ∈ H, whence M |=Y ~z ⊆ ~x. Thus, the function H

witnesses that M |=X ∃~x(~z ⊆ ~x ∧ η+(~x)). J

Note that in the case of disjunction above, it was necessary to “store” the possible values
of ~x into the values of a new tuple ~u of variables: otherwise, by splitting the team X into
two subteams we could have lost information about X(~x).

The equivalence of FO(⊆) and GFP+ follows now from the two theorems above:

I Corollary 17. For any FO(⊆)-sentence φ there exists an equivalent GFP+-sentence θ, and
vice versa.

CSL’13

290 Inclusion Logic and Fixed Point Logic

Proof. If φ is an FO(⊆)-sentence, then by Theorem 15, there is a formula φ∗(R, x) such that
for all models M and teams X, M |=X φ if and only if (M,X(x)) |=s φ

∗(R, x) for all s ∈ X.
Thus, M |= φ if and only if M |= ∀x [gfpR,x φ∗(R, x)]x.

On the other hand, if ψ is a GFP+-sentence, then by Theorem 13, we can assume that
it is of the form ∃~z [gfpR,~x η(R, ~x)]~z, where η is a first-order formula. It follows now from
Theorem 16(b) that ψ is equivalent to the FO(⊆)-sentence ∃~z η̃(~z). J

I Corollary 18. A class of linearly ordered finite models is definable in FO(⊆) if and only if
it can be recognized in PTIME.

This connection between Inclusion Logic, Fixed Point Logic and descriptive complexity
may be of great value for the further development of the area. In particular, it implies that
fragments and extensions of FO(⊆) can be made to correspond to various fragments and
extensions of PTIME. Hence, results concerning their relationships may lead to insights
which may be valuable in complexity theory, and vice versa.

4 First-Order Union Closed Properties

From Corollary 17 it follows immediately that Inclusion Logic is strictly weaker than Σ1
1. As

an immediate consequence, not all Σ1
1-definable union-closed properties of relations can be

expressed in Inclusion Logic. For example, consider the atom
TS-R: M |= R(xyzw) if and only if there exist two functions f, g : Dom(M)→ Dom(M) such

that, for all a, b ∈ Dom(M), (a, f(a), b, g(b)) ∈ X(xyzw).

It is easy to see that the atom R is union-closed. On the other hand, it can be seen
that that the sentence ∀x∃y∀z∃w(R(xyzw) ∧ (x = z ↔ y = w) ∧ (y = z → x = w) ∧ x 6= y)
holds in a finite model if and only if it contains an even number of elements.5 Since even
cardinality is not definable in GFP, it follows that R is not definable in FO(⊆).

But what about first order definable union-closed properties? As we will now see, all such
properties are indeed definable in Inclusion Logic; and, therefore, it is not possible to increase
the expressive power of Inclusion Logic by adding any first order definable union-closed
dependency.

I Definition 19. A sentence φ(R) is myopic if it is of the form ∀~x(R~x→ θ(R, ~x)) for some
first-order formula θ in which R occurs only positively.

It follows at once from Theorem 16 that myopic sentences correspond to Inclusion
Logic-definable properties:

I Proposition 20. Let φ(R) = ∀~x(R~x→ θ(R, ~x)) be a myopic sentence. Then there exists
an FO(⊆)-formula φ+(~x) such that, for all models M and teams X,

M |=X φ+(~x) if and only if (M,X(~x)) |= φ(R).

Proof. Consider θ(R, ~x): by Theorem 16(a), there exists an FO(⊆)-formula θ+(~x) such that
for all models M and teams X,

M |=X θ+(~x) ⇐⇒ ∀s ∈ X : (M,X(~x)) |=s θ(R, ~x)
⇐⇒ (M,X(~x)) |= ∀~x(R~x→ θ(R, ~x)),

as required. J

5 The proof of this fact mirrors that of the example in [24], §4.1. In brief, the sentence asserts that
the function f mapping x to y is the same as the function g mapping z to w, that this function is an
involution, and that this function has no fixed points.

P. Galliani and L. Hella 291

It is also easy to see that all myopic properties are union-closed. We will now prove the
converse implication: if φ(R) is a first order sentence that defines a union-closed property of
relations, then it is equivalent to some myopic sentence. From this preservation theorem it
will follow at once that all union-closed first-order properties of relations are definable in
Inclusion Logic.

First, let us recall some model-theoretic machinery:

I Definition 21 (ω-big models). A model A of signature Σ is ω-big if for all finite tuples ~a
of elements of it and for all models (B,~b, S) such that (A,~a) ≡ (B,~b) there exists a relation
P over A such that (A,~a, P) ≡ (B,~b, S).

I Definition 22 (ω-saturated models). A model A is ω-saturated if for every finite set C of
elements of A, all complete 1-types over C with respect to A are realized in A.

The proofs of the following model-theoretic results can be found in [15].

I Theorem 23 ([15], Theorem 8.2.1). Let A be a model. Then A has an ω-big elementary
extension.

I Theorem 24 ([15], Lemma 8.3.4). Let A and B be ω-saturated structures over a finite
signature and such that, for all sentences χ(R) in which R occurs only positively,

A |= χ(R) =⇒ B |= χ(R).

Then there are elementary substructures C and D of A and B and a bijective homomorphism
f : C → D which fixes all relation symbols except R.

I Theorem 25 (Essentially [15], Theorem 8.1.2). Suppose that A is ω-big and ~a is a finite
tuple of elements. Then (A,~a) is ω-saturated.

Using these results, we can prove our representation theorem:

I Theorem 26. Let φ(R) be a first order sentence that defines a union-closed property of
R. Then φ is equivalent to some myopic sentence. Consequently, every first-order definable
union-closed property of relations is definable in FO(⊆).

Proof. Let T = {φ′(R) : φ′(R) is myopic, φ(R) |= φ′(R)}. If we can show that T |= φ(R),
we are done: indeed, by compactness this implies that φ is equivalent to a finite conjunction
∀~x(R~x → θ1(R, ~x)) ∧ . . . ∧ ∀~x(R~x → θn(R, ~x)) of myopic sentences, which of course is
equivalent to ∀~x(R~x→ (θ1(R, ~x) ∧ . . . ∧ θn(R, ~x))).

So, let B′ be a model satisfying T , and let B be an ω-big elementary extension of B′. We
need to show that B |= φ(R) (and, therefore, B′ |= φ(R)).

Now choose an arbitrary tuple ~b of elements such that B |= R~b, and let Γ be the theory

Γ = {R~a, φ(R)} ∪ {ψ(R,~a) : R only negative in ψ,B |= ψ(R,~b)}.

Γ is satisfiable: indeed, if it were not then by compactness there would be formulas
ψ1(R, ~x), . . . , ψn(R, ~x) in which R occurs only negatively such that

φ(R) |= ∀~x
(
R~x→

∨
1≤i≤n

¬ψi(R, ~x)
)
.

But this is a myopic formula, and therefore it would have to hold in B, which is a contradiction
since B |= ψi(R,~b) for all 1 ≤ i ≤ n.

CSL’13

292 Inclusion Logic and Fixed Point Logic

Now let (A,~a) be an ω-saturated model of Γ. If R occurs only positively in χ(R, ~x) and
A |= χ(R,~a), then B |= χ(R,~b); otherwise ¬χ(R,~a) would be in Γ. Furthermore, since B is
ω-big, (B,~b) is ω-saturated. Thus, there are elementary substructures (C,~a) and (D,~b) of
(A,~a) and (B,~b) and a bijective homomorphism f : C → D that fixes all relations except R.

Let S = f(RC). Then S ⊆ RD, since f is an homomorphism; and f is actually an
isomorphism between (C,~a) and (D[S/R],~b), since f fixes even R between these two models.
Now, C |= R~a ∧ φ(R), whence D |= S~b ∧ φ(S). Furthermore, since S ⊆ R we have that
D |= ∀~x(S~x→ R~x).

Now, (D,~b) is an elementary substructure of (B,~b) and B is a ω-big model: therefore,
there exists a relation P over B such that (D,~b, S) ≡ (B,~b, P). In particular, this implies
that B |= P~b ∧ φ(P) ∧ P ⊆ R: there is a subset of RB which contains ~b and satisfies φ.

But we chose ~b as an arbitrary tuple in RB . So we have that RB is the union of a family
of relations P~b, where ~b ranges over R

B ; and B |= φ(P~b) for all such ~b. Since φ(R) is closed
under unions, this implies that B |= φ(R), as required. J

5 An EF Game for Inclusion Logic

We will now define an Ehrenfeucht-Fraïssé game for Inclusion Logic. This game is an obvious
variant of the one defined in [24] for Dependence Logic:

I Definition 27. Let A and B be two models over the same signature, let n ∈ N, and let X
and Y be two teams with the same domain over A and B, respectively. Then the two-player
game Gn(A,X,B, Y) is defined as follows:
1. The initial position p0 is (X,Y);
2. For each i ∈ {1, . . . , n}, let pi−1 be (Xi−1, Yi−1). Then Spoiler makes a move of one of

the following types:
Splitting: Spoiler chooses two teams X ′, X ′′ such that Xi−1 = X ′∪X ′′. Then Duplicator

chooses two teams Y ′, Y ′′ such that Yi−1 = Y ′ ∪ Y ′′. Then Spoiler chooses whether
the next position pi is (X ′, Y ′) or (X ′′, Y ′′).

Supplementing: Spoiler chooses a variable v and a function H : Xi−1 → P(Dom(A))\{∅}.
Then Duplicator chooses a function K : Yi−1 → P(Dom(B))\{∅}, and the new position
pi is (Xi−1[H/v], Yi−1[K/v]).

Duplication: Spoiler chooses a variable v. The next position pi is (Xi−1[A/v], Yi−1[B/v]).
3. The final position pn = (Xn, Yn) is winning for Spoiler if and only if there exists a formula

α which is either a first-order literal, or an inclusion atom, such that A |=Xn
α, but

B 6|=Yn
α. Otherwise, the final position is winning for Duplicator.

The rank of an Inclusion Logic formula is also defined much in the same way as the rank of
a Dependence Logic formula:

I Definition 28. Let φ be an FO(⊆)-formula. Then we define its rank rk(φ) ∈ N by
structural induction on φ, as follows:
1. If φ is a first-order literal or an inclusion atom, rk(φ) = 0;
2. rk(ψ ∧ θ) = max(rk(ψ), rk(θ));
3. rk(ψ ∨ θ) = max(rk(ψ), rk(θ)) + 1;
4. rk(∃vψ) = rk(∀vψ) = rk(ψ) + 1.

The next theorem shows that our games behave as required with respect to our notion of
rank. Its proof is practically the same as for the EF game for FO(D) in [24].

P. Galliani and L. Hella 293

I Theorem 29. Let A and B be models and X and Y teams on A and B. Then Duplicator
has a winning strategy in Gn(A,X,B, Y) if and only if

A |=X φ =⇒ B |=Y φ

holds for all FO(⊆)-formulas φ with rk(φ) ≤ n.

Due to the equivalence between FO(⊆) and GFP+ we can conclude at once that the EF
game for Inclusion Logic is also a novel EF game for GFP+, rather different in structure
from the one introduced in [2]. It may be hoped that this new game and its variants could
be of some use for studying the expressive power of fixed point logics.

Although the EF game for Inclusion Logic has a clear second order flavour, it is still
manageable: we will next show that Duplicator has a concrete winning strategy, when the
models are simple enough.

I Proposition 30. Let A = {1, . . . , n} and B = {1, . . . , n+ 1} be two finite models over the
empty signature. Then for all FO(⊆)-sentences φ of rank ≤ n,

A |= φ =⇒ B |= φ.

Proof. It suffices to specify a winning strategy for Duplicator in the game Gn(A, {∅}, B, {∅}).
Our aim for such a strategy is to preserve the following property for n turns:

If the current position is (X,Y) then

Y =
⋃
{π[X] : π ∈ I(A,B)}, (3)

where I(A,B) is the set of all 1-1 functions A→ B, π[X] = {π(s) : s ∈ X} and π(s) denotes
the assignment π ◦ s.

The property (3) is trivially true for ({∅}, {∅}). Furthermore, as long as (3) holds, Spoiler
does not win. Indeed, if α is a first-order literal such that A |=s α for all s ∈ X, then, since
all s′ ∈ Y are of the form π(s) for some s ∈ X and the signature is empty, we have B |=s′ α

for all s′ ∈ Y . Similarly, suppose that A |=X ~u ⊆ ~w, and let s′ ∈ Y . Then s′ = π(s) for some
s ∈ X and some π ∈ I(A,B), and there exists a h ∈ X such that ~u〈s〉 = ~w〈h〉. But then
π(h) ∈ Y , and ~w〈π(h)〉 = ~u〈π(s)〉 = ~u〈s′〉, as required.

Thus, we only need to verify that Duplicator can maintain property (3) for n rounds.
Suppose that at round i < n the current position (X,Y) has property (3), and let us consider
the possible moves of Spoiler:
Splitting: Suppose that Spoiler splits X into X1 and X2. Then let Duplicator reply by

splitting Y into Yj = {s′ ∈ Y : ∃π ∈ I(A,B)∃s ∈ Xj such that π(s) = s′} for j ∈ {1, 2}.
Then Y = Y1∪Y2, and it is straightforward to check that both possible successors (X1, Y1)
and (X2, Y2) have property (3).

Supplementing: Suppose that Spoiler chooses a function H ∈ C(X,A). Then let Duplicator
reply with the function K ∈ C(Y,B) defined as

K(s′) = {π(a) : ∃π ∈ I(A,B)∃s ∈ X such that π(s) = s′ and
a ∈ H(s)}

for each s′ ∈ Y . We leave it to the reader to verify that the next position (X[H/v], Y [K/v])
has property (3).

Duplication: If Spoiler chooses a duplication move, the next position is (X[M/v], Y [M/v]).
We check that this new position satisfies property (3).

CSL’13

294 Inclusion Logic and Fixed Point Logic

Let s[a/v] ∈ X[A/v] and let π ∈ I(A,B). Since s ∈ X, we have that π(s) ∈ Y , and
therefore π(s)[π(a)/v] = π(s[a/v]) ∈ Y [B/v].
Conversely, let s′ ∈ Y and let b be any element of B. We need to show that s′[b/v] =
π(s[a/v]) for some π ∈ I(A,B), s ∈ X and a ∈ Dom(A).
By induction hypothesis, there exists π ∈ I(A,B) and s ∈ X such that π(s) = s′. If b
is in the range of π, then s′[b/v] = π(s[a/v]), where a = π−1(b). On the other hand, if
b is not in the range of π, then since i < n, there is an element a ∈ A which is not in
the range of s. Now s[a/v] ∈ X[A/v], and s′[b/v] = π′(s[a/v]), where π′ ∈ I(A,B) is a
function such that π′(a) = b and π′(c) = π(c) for all c in the range of s. J

From Proposition 30 it immediately follows that even cardinality (and other similar cardinality
properties) of finite models is not definable in Inclusion Logic. This, of course, follows already
from the equivalence of FO(⊆) and GFP+, as it is well-known that non-trivial cardinality
properties are not definable in fixed point logics.

6 Conclusions and Further Work

In this work, we proved a number of results concerning the expressive power of inclusion
Logic. We showed that this logic is strictly weaker than Σ1

1, and corresponds in fact to
Positive Greatest Fixed Point Logic. Furthermore, we showed that all union-closed first-order
properties of relations correspond to the satisfaction conditions of Inclusion Logic formulas,
and we also defined a new Ehrenfeucht-Fraïssé game for it.

Due to the connection between Inclusion Logic and fixed point logics, the study of this
formalism may have interesting applications in descriptive complexity theory. In [5], Durand
and Kontinen established some correspondences between fragments of Dependence Logic and
fragments of NP; in the same way, one may hope to find correspondences between fragments
of Inclusion Logic and fragments of PTIME.

Furthermore, we may inquire about extensions of Inclusion Logic. For example, is there
any natural union-closed dependency notion D such that FO(⊆,D) defines all Σ1

1 union-
closed properties of relations? By the results in Section 4, we know that if this is the case,
then D is not first-order.

Acknowledgements. Pietro Galliani gratefully acknowledges the support of grant 264917
of the Academy of Finland. We thank Erich Grädel, Miika Hannula, Juha Kontinen and
Jouko Väänänen for a number of highly useful suggestions and comments. We especially
thank Miika Hannula for pointing out an error in a previous version of the paper. Finally,
we thank the referees for a number of useful suggestions and comments.

References

1 William W. Armstrong. Dependency Structures of Data Base Relationships. In Proc. of
IFIP World Computer Congress, pages 580–583, 1974.

2 Uwe Bosse. An “Ehrenfeucht-Fraïssé game” for fixpoint logic and stratified fixpoint logic.
In Computer science logic, pages 100–114. Springer, 1993.

3 Marco A. Casanova, Ronald Fagin, and Christos H. Papadimitriou. Inclusion dependencies
and their interaction with functional dependencies. In Proceedings of the 1st ACM SIGACT-
SIGMOD symposium on Principles of database systems, PODS ’82, pages 171–176, New
York, NY, USA, 1982. ACM.

P. Galliani and L. Hella 295

4 Marco A. Casanova and Vânia M. P. Vidal. Towards a sound view integration methodology.
In Proceedings of the 2nd ACM SIGACT-SIGMOD symposium on Principles of database
systems, PODS ’83, pages 36–47, New York, NY, USA, 1983. ACM.

5 Arnaud Durand and Juha Kontinen. Hierarchies in dependence logic. ACM Trans. Comput.
Log., 13(4), 2012, 31 pages.

6 Herbert B. Enderton. Finite partially-ordered quantifiers. Mathematical Logic Quarterly,
16(8):393–397, 1970.

7 Fredrik Engström. Generalized quantifiers in dependence logic. Journal of Logic, Language
and Information, 21(3):299–324, 2012.

8 Ronald Fagin. A normal form for relational databases that is based on domains and keys.
ACM Transactions on Database Systems, 6:387–415, September 1981.

9 Pietro Galliani. The Dynamics of Imperfect Information. PhD thesis, University of Ams-
terdam, September 2012.

10 Pietro Galliani. Inclusion and exclusion dependencies in team semantics: On some logics
of imperfect information. Annals of Pure and Applied Logic, 163(1):68 – 84, 2012.

11 Dan Geiger, Azaria Paz, and Judea Pearl. Axioms and algorithms for inferences involving
probabilistic independence. Information and Computation, 91(1):128–141, 1991.

12 Erich Grädel and Jouko Väänänen. Dependence and Independence. Studia Logica,
101(2):399–410, 2013.

13 Leon Henkin. Some Remarks on Infinitely Long Formulas. In Infinitistic Methods. Proc.
Symposium on Foundations of Mathematics, pages 167–183. Pergamon Press, 1961.

14 Jaakko Hintikka and Gabriel Sandu. Informational independence as a semantic phe-
nomenon. In J.E Fenstad, I.T Frolov, and R. Hilpinen, editors, Logic, methodology and
philosophy of science, pages 571–589. Elsevier, 1989.

15 Wilfrid Hodges. A Shorter Model Theory. Cambridge University Press, 1997.
16 Wilfrid Hodges. Compositional Semantics for a Language of Imperfect Information. Journal

of the Interest Group in Pure and Applied Logics, 5 (4):539–563, 1997.
17 Neil Immerman. Relational queries computable in polynomial time. Information and

control, 68(1):86–104, 1986.
18 Neil Immerman. Languages That Capture Complexity Classes. SIAM Journal of Comput-

ing, 16:760–778, 1987.
19 Juha Kontinen and Jouko Väänänen. On definability in dependence logic. Journal of Logic,

Language and Information, 3(18):317–332, 2009.
20 Antti Kuusisto. Defining a double team semantics for generalized quantifiers.

URN:ISBN:978-951-44-8882-5, 2012.
21 Leonid Libkin. Elements of Finite Model Theory. Springer, 2004.
22 Allen L. Mann, Gabriel Sandu, and Merlijn Sevenster. Independence-Friendly Logic: A

Game-Theoretic Approach. Cambridge University Press, 2011.
23 Yannis Moschovakis. Elementary Induction on Abstract Structures. North Holland, 1974.
24 Jouko Väänänen. Dependence Logic. Cambridge University Press, 2007.
25 Jouko Väänänen and Pietro Galliani. On dependence logic. ArXiv:1305.5948, 2013.
26 Moshe Y. Vardi. The complexity of relational query languages. In Proceedings of the

fourteenth annual ACM symposium on Theory of computing, pages 137–146. ACM, 1982.
27 Wilbur John Walkoe. Finite partially-ordered quantification. The Journal of Symbolic

Logic, 35(4):pp. 535–555, 1970.

CSL’13

Theories for Subexponential-size Bounded-depth
Frege Proofs∗

Kaveh Ghasemloo and Stephen A. Cook

Department of Computer Science, University of Toronto,
Toronto, ON M5S 3G4, Canada
{[first name],sacook}@cs.toronto.edu

Abstract
This paper is a contribution to our understanding of the relationship between uniform and
nonuniform proof complexity. The latter studies the lengths of proofs in various propositional
proof systems such as Frege and bounded-depth Frege systems, and the former studies the strength
of the corresponding logical theories such as VNC1 and V0 in [7]. A superpolynomial lower bound
on the length of proofs in a propositional proof system for a family of tautologies expressing a
result like the pigeonhole principle implies that the result is not provable in the theory associated
with the propositional proof system.

We define a new class of bounded arithmetic theories nε-ioV∞ for ε < 1 and show that they
correspond to complexity classes AltTime(O(1), O(nε)), uniform classes of subexponential-size
bounded-depth circuits DepthSize(O(1), 2O(nε)). To accomplish this we introduce the novel idea
of using types to control the amount of composition in our bounded arithmetic theories. This
allows our theories to capture complexity classes that have weaker closure properties and are not
closed under composition. We show that the proofs of ΣB0 -theorems in our theories translate to
subexponential-size bounded-depth Frege proofs.

We use these theories to formalize the complexity theory result that problems in uniform NC1

circuits can be computed by uniform subexponential bounded-depth circuits in [1]. We prove that
our theories contain a variation of the theory VNC1 for the complexity class NC1. We formalize
Buss’s proof in [4] that the (unbalanced) Boolean Formula Evaluation problem is in NC1 and use
it to prove the soundness of Frege systems. As a corollary, we obtain an alternative proof of [10]
that polynomial-size Frege proofs can be simulated by subexponential-size bounded-depth Frege
proofs.

Our results can be extended to theories corresponding to other nice complexity classes inside
NTimeSpace(nO(1), no(1)) such as NL. This is achieved by essentially formalizing the containment

NTimeSpace(nO(1), no(1)) ⊆ AltTime(O(1), O(nε))

for all ε > 0.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems - Complexity
of proof procedures, F.4.1 Mathematical Logic – Proof theory

Keywords and phrases Computational Complexity Theory, Proof Complexity, Bounded Arith-
metic, NC1-Frege, AC0-Frege

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.296

∗ Supported by NSERC. The research leading to these results has received funding from the European
Union’s Seventh Framework Programme [FP7/2007-2013] under grant agreement no 238381.

© Kaveh Ghasemloo and Stephen A. Cook;
licensed under Creative Commons License CC-BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca ; pp. 296–315

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.296
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

K. Ghasemloo and S.A. Cook 297

1 Introduction

In [7] a general method is presented for associating a theory VC of bounded arithmetic and a
(quantified) propositional proof system C-Frege with a complexity subclass C of the functions
computable in polynomial time FP. The base complexity class is AC0 of functions computable
by a uniform family of polynomial-size bounded-depth Boolean circuits. The associated
theory is V0 and the associated proof system is bounded-depth Frege (bdFrege)1. Another
important example is the complexity class NC1 of functions computable by a uniform family
of polynomial-size O(lgn)-depth circuits (equivalently polynomial-size Boolean formulas),
where the theory is VNC1 and a Frege system serves as the associated proof system2.

In general VC is obtained by adding a comprehension axiom for a function complete for C
to the base theory V0 [7]. Similarly, the proof system C-Frege is obtained by adding the cut
rule for formulas in nonuniform C to the base proof system bdFrege [7, 11]. Moreover there
are witnessing theorems stating that certain proofs in VC can be witnessed using C functions,
and proofs in polynomial-size quantified C-Frege can be witnessed by nonuniform C functions.
The witnessing theorems can be used to relate the functions in C and nonuniform C to the
definable functions in VC and C-Frege [7, 8].

There is a two-fold connection between the theory VC and the propositional proof system
C-Frege:
1. VC proves the soundness of C-Frege.
2. Any ΣB0 theorem (essentially a universal theorem) of VC, translates into a polynomial-size

family of tautologies with polynomial-size C-Frege proofs. For example the pigeonhole
principle is provable in VNC1, therefore its propositional translation has polynomial-size
Frege proofs.

The second connection provides a universality condition that complements the first connection:
C-Frege is maximal among propositional proof systems whose soundness can be proven in
VC. More formally, C-Frege can efficiently prove any tautology family which is efficiently
provable in any propositional proof system whose soundness is provable in VC [16, 6, 7].
Here a tautology family is efficiently provable in a proof system iff it has a polynomial-size
proof family in the proof system, and polynomial size means polynomial size in the length of
formulas being proven.

With this perspective, we consider the ΣB0 fragment of the theory VC as a uniform version
of the associated propositional proof system C-Frege.

One motivation for the present paper is the [FPS’11] result that Frege proofs can be
simulated by subexponential-size bdFrege proofs. We wish to generalize this result and prove
it in a uniform setting. The first step is to find a theory whose provably total functions are
those computable by uniform families of bounded-depth subexponential-size circuits.

But here we run into a fundamental obstacle. A function f is subexponential3 iff
f(n) = 2O(nε) for some ε < 1. But the class of subexponential functions is not closed under
composition, and not closed even under composition with polynomials. For example, if we
compose the subexponential function n 7→ 2O(n

1
2) with the polynomial function n 7→ n2 the

resulting function is n 7→ 2n, which is not subexponential. On the other hand, the provably

1 bdFrege is also referred to as AC0-Frege.
2 Frege is also referred to as NC1-Frege.
3 There are other definitions of subexponential functions in the literature. The definition given here is

the largest class among them. Using this version is required since even in computational complexity
theory it is not known if the bounded-depth circuit classes of smaller size contain NC1.

CSL’13

298 Theories for Subexponential-size Bounded-depth Frege Proofs

total functions in theories which extend the base theory V0 are closed under composition4.
To deal with this issue, we introduce two types of variables: input type and output type.

The idea is that for a fast growing function f , the arguments of f have input types and are
small, while the value of f has output type and might be large. This allows us to control the
compositions of the provably total functions of theories. We refer to these typed theories
as io-typed theories. We can then explicitly allow a limited amount of composition if we
want. For example, since subexponential functions are closed under composition with linear
functions, we can allow this limited amount of composition in a theory corresponding to
subexponential size circuits by conversion axioms defined below in section 2.3.

The propositional proof translations from V0 to bdFrege in [7] can be adapted for trans-
lating proofs from its io-typed version ioV0 to bdFrege. In addition, it is possible to prove the
soundness of these proof systems in ioV0: we have enough comprehension to define the truth
of a sequent in a propositional proof, and we have enough induction to show that sequents in
a proof are true under an arbitrary assignment.

Next, we define an extension nε-ioV∞ of ioV0 (for any ε < 1 of the form 1/d) whose
provably total functions are those computed by AltTime(O(1), O(nε)), a uniform succinct
subclass of size 2O(nε) bounded-depth circuits. We provide a translation from nε-ioV∞ to
polynomial size proofs in the quantified proof system nε-bdG∞, and also to subexponential-
size bdFrege proofs. In addition, nε-ioV∞ can prove the soundness of nε-bdG∞ proofs.

We observe that in general, for proving the soundness of line-based propositional proof
systems like C-Frege we use the following two ingredients:

Evaluate the sequents in a proof, and state their truth under a given truth assignment.
Use induction to prove the sequents in proofs are true under an arbitrary truth assignment.

The comprehension and induction axioms in our theories provide these ingredients.
The central role of soundness tautologies for proof complexity is similar to the central

role of complete problems for computational complexity theory. The complete problems for
complexity classes provide universal problems that can be used to solve any problem in those
classes (over a class of reductions). A similar universal role is played by soundness tautologies
in proof complexity: the soundness tautologies for that propositional proof system can be
made to serve as axioms for the proof system.

Finally, we show that nε-ioV∞ contains ioVNC1 and ioVNL, the io-typed versions of
VNC1 and VNL. It follows that nε-ioV∞ proves the soundness of Frege, and this gives us a
uniform version of result in [10] that we can simulate Frege proofs with subexponential-size
bdFrege proofs. The inclusion ioVNC1 ⊆ nε-ioV∞ (and similar results) is proven essentially
by formalizing inside nε-ioV∞ the following theorem5 from computational complexity theory
(for all ε < 1):

NTimeSpace(nO(1), no(1)) ⊆ AltTime(O(1), O(nε)).

The rest of the paper is organized as follows:
Section 2 We define our io-typed theories. We start with the base theory ioV0, the io-typed

version of V0. We then extend ioV0 to ioVNC1, the io-typed version of VNC1, which
corresponds to the complexity class NC1. Our theories nε-ioV∞ corresponding to (uniform)
subexponential-size bounded-depth circuits are also defined in this section.

Section 3 We provide the background information about propositional proof systems. We
introduce proof classes and define the proof class polynomial-size nε-bdG∞.

4 This obstacle also arises in attempts to design a theory that corresponds to small classes like fixed-depth
circuits and propositional proof systems like Resolution.

5 The result is a similar to Nepomnjaščij’s theorem [15, 5].

K. Ghasemloo and S.A. Cook 299

Section 4 We provide a propositional translation from nε-ioV∞ to nε-bdG∞ and subexponential-
size bdFrege.

Section 5 We discuss the soundness of bdFrege, Frege, and nε-bdG∞ in io-typed theories.
We discuss the provability of Buss’s result [4] that Boolean Formula Evaluation can be
computed in NC1 in our theory ioVNC1 and use it to show that ioVNC1 can prove the
soundness of Frege.

Section 6 We show that nε-ioV∞ contains ioVNC1. Theorem 28 is our proof complexity ver-
sion of the computational complexity theory result that the uniform NC1 can be computed
by AltTime(O(1), O(nε)), a uniform complexity class corresponding to subexponential-size
bounded-depth circuits [1]. It is also a uniform version of [10] that polynomial-size Frege
proofs can be simulated by subexponential-size bdFrege proofs.

Nonuniform Uniform
Computational
Complexity

NC1/poly ⊆ DepthSize(O(1/ε), 2O(nε))
(Folklore)

NC1 ⊆ AltTime(O(1), O(nε))
[1], (Omitted Appendix)

Proof
Complexity

FregeSize(nO(1)) ⊆ O(1/ε)-FregeSize(2O(nε))
[10]

ioVNC1 ⊆ nε-ioV∞
(Theorem 28)

Section 7 We combine the results in the previous sections to show that polynomial-size Frege
proofs are simulated by subexponential-size bdFrege proofs and to provide an alternative
proof of [10].6

2 A Theory for Subexponential-Size Bounded-Depth Circuits

We start by defining an io-typed version of LK and the base theory 2Basic for two-sorted
bounded arithmetic in [7].

2.1 Two-Sorted io-Typed Bounded Arithmetics

Our language L2 have two sorts: num for (unary) numbers, and str for (binary) strings7. In
addition, we will syntactically type the terms of the language as8: i for input type, and o for
output type. The input types are subtypes of the output types, i.e. every object of input
type is also an object of output type: numi ⊆ numo = num, stri ⊆ stro = str.

We refer to the free variables of a formula as its parameters. The idea here is that the
input-type terms are going to be small (of linear size in the parameters) while the output-type
terms can be large (of polynomial size in the parameters, like the original two-sorted theories
of bounded arithmetic).

Lower-case letters denote numbers: a, b, c denote input-type numbers, and x, y, z denote
output-type numbers. Upper-case letters denote strings: A,B,C denote input-type strings,
and X,Y, Z denote output-type strings. We use f, g for number-valued functions; D,F,G
for string-valued functions; s, t for number-values terms; T for string-valued terms; ϕ, ψ, etc.
for formulas; Σ,Γ,∆,Π for set of formulas; S for sequents; and T for sets of sequents, i.e.
theories.

6 A similar result is obtained independently in [14] using model theoretic methods.
7 Or equivalently, finite sets of natural numbers with explicit (strict) upper bounds on the their members.

For example, the string 01100 is equivalent to the finite set {2, 3} with the explicit upper bound 5.
8 We can view our theory as having a two-sorted theory with two types. Each object has a sort and a
type. The sorts are: (unary) numbers and (binary) strings. The types are: input and output. Finally,
the input type is a subtype of the output type. Alternatively, we can define it as a four-sorted language
with appropriate axioms expressing the relation between them.

CSL’13

300 Theories for Subexponential-size Bounded-depth Frege Proofs

The language L2 has function symbols 0, 1, + (addition), · (multiplication), pd (prede-
cessor), | | (length), and relation symbols = (equality), ≤ (comparison), and ∈ (member-
ship/bit). All of these symbols except ∈ and | | apply to terms of number sort and have the
obvious intended interpretations. The membership relation y ∈ X means that the yth bit of
the string X is one9. The length function |X| returns the length of the string X as a number.
We consider the size of a number to be the number itself. The size of a string is its length.

An L2 -stricture has four sets for interpreting num, numi, str, and stri, where numi ⊆ num
and stri ⊆ str. The standard model N2 for L2 is given by interpreting num and numi as
0∗10∗ and str and stri as {0, 1}∗ . Note that we encode unary numbers using binary strings
with a single 1 bit whose location index from right determines the number 10. We use m, and
n for numbers and M and N for strings in the standard model. The operations and relations
of L2 has the usual interpretations as explained above. Note that m ∈ N is 0 for |N | ≤ m.

A linear term is a term built from constants 0 and 1, variables, and +. A function has
provably linear growth if the size of its output is provably bounded with a linear term in the
size of its inputs.

Every term in the language is an output-type term. The input-type terms of the language
are a subset of output-type terms and have provably linear growth. Input-type variables
are input-type terms, and when functions 0, 1, | |, +, pd are applied to input-type terms,
the result is also of input-type. Formally, the input-type terms are defined inductively:
input-type terms include input-type variables and constants 0 and 1; input-type terms are
closed under | |, +, and pd.

Unless stated otherwise, by quantifiers we mean quantifiers of both types. In one-sorted
theories, the bounded formulas with at most i alternations of number quantifiers comprise
the union of the classes Σbi and Πb

i . In two-sorted theories, these classes are defined similarly
and do not have any string quantifiers, but can have free string variables. We will often be
interested in the class of number bounded formulas ΣB0 . A formula is ΣB0 if it does not have
any string quantifiers and all number quantifiers in it are bounded by terms in the language.
We abbreviate |X| = y and |X| ≤ y by X = y and X ≤ y. A bounded string quantifier is a
string quantifier with an explicitly given size e.g. ∃X = y. Bounded formulas with at most i
alternations of string quantifiers comprise the union of the classes ΣB

i and ΠB
i . We define

ΣB
∞ =

⋃
i ΣB

i . Let Φ be a class of formulas. The formula class ∃BΦ consists of formulas
starting with bounded existential string quantifiers followed by a formula in Φ. We will be
using a subclass of bounded formulas which we call ΣB∞(t(n)).

I Definition 1 (ΣB
∞(t(n))). We call a formula ΣB

∞(t(~n)) iff it is ΣB
∞ and all of its string

quantifiers are bounded by number terms of size O(t(~n)) where ~n is the size of its free
variables. We often refer to this class simply as ΣB∞(t(n)) in place of ΣB∞(t(~n)). In such cases
n can be considered to be the total size of free variables.

Note that every formula ΣB0 represents a relation R(~x, ~X) in its free variables in the standard
model. These relations comprise the complexity class AC0 = AltTime(O(1), O(lgn)) [7].

9 Our semantics differs slightly from [7] where the second sort objects are finite subsets of N, and
technically are binary strings starting with 1. Our second sort objects are finite binary strings, where
the most significant bit does not need to be 1.

10 This more complex encoding is needed since otherwise we cannot consider nonconstant number-valued
functions in nonuniform models of computation. We need to be able to represent different unary number
with the same number of bits. The reason for choosing this particular encoding is its efficiency for
performing operations like checking the value of a given unary number. We discard the leading zeros
when considering these strings as numbers. For example, 00010 and 010 both represent number 1 and
are equal.

K. Ghasemloo and S.A. Cook 301

We adopt the sequent calculus LK of [7] with quantifier introduction rules to respect
the types. In the quantifier introduction rules for input types the target term must be an
input-type term. Similarly, if the quantifier variable is of output type, the eigenvariable must
be an output-type variable. The intuition here is that if we are deriving the existence of a
small object with some property, we must have a small object satisfying the property; or if
we are deriving that a property holds for all objects, the property must hold for an arbitrary
object, not just small ones.

More formally, in ∃R and ∀L rules, if the quantification variable is of input type then the
target term must be also of input type. Similarly, in ∀R and ∃L rules, if the quantification
variable is of output type, then the eigenvariable must be also of output type. These
restrictions make sure that we cannot derive ∀a ϕ(a)⇒ ∀x ϕ(x) and ∃x ϕ(x)⇒ ∃a ϕ(a).
The implications in the other direction are still provable as expected: input types are subsets
of output types, so ∀x ϕ(x)⇒ ∀a ϕ(a) and ∃a ϕ(a)⇒ ∃x ϕ(x) are valid.

We write π : T ` ϕ for “π is a LK-proof of ϕ in the theory T”, and T ` ϕ for “ϕ has an
LK-proof in the theory T”. We refer to the free variables of the end-sequent of an LK proof
as its parameters.

Let Φ be a set of formulas (for example take Φ = ∃BΣB0). We say that a set is Φ-definable
(over the standard model) iff there is a formula ϕ ∈ Φ which defines the set over the standard
model. The graph of a function f is defined as {(~n, ~N,m) ∈ N2 | f(~n, ~N) = m}. We say that
a function f is Φ-definable in T iff its graph is Φ-definable using a formula ϕ(~x, ~X, z) ∈ Φ
and T proves that ϕ defines a function, i.e. T ` ∃!y ϕ(~x, ~X, y).

Let F be string-valued. The bit-graph of F is defined as {(~n, ~N,m) ∈ N2 | m ∈ F (~n, ~N)}.
We say a string-valued function F is Φ-bit-definable in a theory T iff there is a formula
ϕ(~x, ~X, z) ∈ Φ and a number term p(~x, ~y) such that11

|F (~n, ~N)| = p(~n, | ~N |),
ϕ defines the bit-graph of the function F (over the standard model), and
T proves that ϕ and p define a total function, i.e.

T ` ∃!Y = p(~x, | ~X|) ∀z < p(~x, | ~X|)
(
z ∈ Y ↔ ϕ(~x, ~X, z)

)
.

Notice that the size of F depends only on the size of its arguments. We say that a
function is provably total in a theory T if the function is Φ-definable in T, for the appropriate
choice of the function class Φ. The choice of Φ depends on the theory T: We want the
provably total functions in T to be those in the complexity class associated with T. For
two-sorted theories associated with complexity classes contained in polynomial time (such as
ioV0 defined below), the right choice is Φ = ∃BΣB0 [7]. For the theory t(n)-ioV∞ defined in
Section 2.4 we choose Φ to be a larger class.

When a function is provably total in a theory T, we can add a new function symbol to the
language for it and include its definition as an axiom to our theory to obtain a conservative
extension of T. This extends the language and possible formulas. We are interested in
whether axiom schemas like comprehension continue to hold for the extended class of formulas.
For cases of interest in this paper the techniques presented in [7] suffice to show this.

When we extend the language by adding a new provably total function symbol, if we can
prove that the function has linear growth, then we can extend input type terms to be closed
under the new function symbol.

11 Note that in circuit complexity, the size of output of a function must only depend on the size of its
inputs.

CSL’13

302 Theories for Subexponential-size Bounded-depth Frege Proofs

Table 1 io2Basic.

B1 x+ 1 6= 0
B2 x+ 1 = y + 1→ x = y

B3 x+ 0 = x

B4 x+ (y + 1) = (x+ y) + 1
B5 x·0 = 0
B6 x·(y + 1) = x·y + x

B7 x ≤ y ∧ y ≤ x→ x = y

B8 x ≤ x+ y

B9 0 ≤ x
B10 x ≤ y ∨ y ≤ x
B11 x ≤ y ↔ x < y + 1
B12 pd(0) = 0 ∧ (x 6= 0→ pd(x) + 1 = x)

L y ∈ X → y < |X|

The class of io-typed provably total functions of a theory T are those functions that T
can prove to be total when the inputs to the functions are of input type. More formally, the
free variables in ϕ corresponding to inputs have input type. In other words, it is sufficient for
the function to be total over input-type objects. This is the class of functions we associate
with a theory. Note that this class is a possibly larger class than the usual class of provably
total functions of a theory since every input-type object is also an output-type object.

Equality for strings, X = Y , is an abbreviation for |X| = |Y | ∧∀x ≤ |X| x ∈ X ↔ x ∈ Y .
The notations X[y, z] and X[i; l] abbreviate the substring of X starting from bit y up of
length z, and ith substring block of X of length l:

x ∈ X[y, z] := x < z ∧ y + x ∈ X, |X[y, z]| := z, X[i; l] := X[i·l, l].

2.2 Theory io2Basic
The axioms of io2Basic are given in table 1.

Note that unlike the original 2Basic in [7], our length function | | gives only an upper
bound on the size of binary numbers. In this sense our axioms are similar to the second-order
theories in [2]. A binary string is determined by its length and its bits. This change doesn’t
make any essential difference in the presence of number induction for ΣB

0 formulas: the
original version of the length function is definable.

Let d be a fixed positive integer. The fractional power bx 1
d c, which we will write simply

as x 1
d , is definable using x 1

d = y ↔ yd ≤ x < (y + 1)d.

2.3 Theory ioV0 for AC0

Our theory ioV0 is an io-typed version of the base theory V0 of [7]. Besides the axioms for
io2Basic, we need an io-typed axiom for induction, an io-typed axiom scheme for comprehen-
sion, and two conversion axioms (one for each sort). All free variables in the axioms below
which are not displayed are of input type12.

Ind: 0 ∈ X,∀y < z (y ∈ X → y + 1 ∈ X)⇒ z ∈ X
ϕ-CA: ⇒ ∃Y = z ∀x < z (x ∈ Y ↔ ϕ(x,A))

Although we do not want to allow arbitrary compositions, we may want to allow some
under specific conditions. The main condition of interest for us here is to avoid increasing
the size of the input strings. Therefore, we will add conversion axioms that would allow us
to create composition when the size of the computed intermediate values are small13.

12 We could have used a stronger version of ΣB0 -CA where the free variables have output type. In that case
the input-type variable free part of the theory will be the same as V0. The simpler axiom is sufficient
and allows a conceptually and technically cleaner treatment.

13 There are other ways of expressing this axiom e.g. a comprehension axiom from output types to input
types, however these variations do not affect our results and we take this simpler from.

K. Ghasemloo and S.A. Cook 303

oiConvnum: ⇒ ∃b ≤ a (b = x ≤ a) ∨ (b = a ≤ x)
oiConvstr: ⇒ ∃B = a ∀z < a (z ∈ B ↔ y + z ∈ X)

We refer to these two axioms together as oiConv. The first axiom tells us that the minimum
of two numbers is small when at least one of them is small. The second axiom tells us that a
small substring of an output type string is small. These axioms allow us to compose definable
functions if the intermediate results are small in some input variables.

The theory ioV0 is obtained from io2Basic by adding the comprehension axiom for ΣB
0

formulas, the induction axiom, and the conversion axioms.

I Definition 2. ioV0 = io2Basic + Ind + ΣB0 -CA + oiConv.

As noted earlier the sets in AltTime(O(1), O(lgn)) = LH = FO = AC0 are precisely the
sets definable by ΣB

0 formulas. Since ioV0 has comprehension for these sets, p-bounded
functions with bit graphs in these sets are ∃BΣB

0 definable functions in the theory. By a
witnessing theorem, they are the only ∃BΣB

0 definable functions in the theory. Thus the
provable total functions in ioV0 coincide with the AC0 functions, where we take the class Φ
associated with this theory to be ∃BΣB0 . As a general rule, the comprehension axiom of any
of our theories will determine its computational power.

2.4 Theory ioVC
We can define io-typed versions of other theories built upon V0. However, simply adding
the same comprehension axiom used for VC in [7] might not be sufficient. The io-typed
version of these theories can be weaker than their original version. The io-types do not
allow arbitrary compositions of the provably total functions of a theory. Therefore, adding
the comprehension axiom for a problem complete with respect to AC0 reductions might not
capture the complexity class. This is intentional and necessary since we are going to deal
with complexity classes which are not closed under composition (they are not closed even
under composition with AC0 reductions from the right, e.g. consider the subexponential-
size bounded-depth circuits where their AC0 closure contains all functions via padding).
Therefore, we cannot define an io-typed theory assuming that the provably total functions
of the theory are closed under composition. For example, the theory VTC0 captures TC0

because every TC0 function can be built by composing a finite number of MAJ14 and AC0

functions, TC0 = MAJ + AC0. This result is not useful for defining the io-typed version of
the theory. Or the theory VNC1 captures NC1 because NC1 = MBBFE ◦ AC0 where MBBFE
is the Monotone Balanced Boolean Formula Evaluation problem.

With this in mind we have to be careful about the representations of complexity classes
we use in the comprehension axiom. The main requirement for a reasonable theory ioVC
for computational complexity class C is that ioVC has enough comprehension to evaluate
problems in C and the provably total functions of ioVC are exactly the functions in C.

2.5 Theory ioVNC1

I Definition 3. The io-typed version of the theory VNC1, ioVNC1 is defined as ioV +
ΣB0 (MBBFE)-CA, where ΣB0 (MBBFE)-CA is

∃Y = 2s ∃Z = 2s [∀x < 2s (x ∈ Z ↔ ϕ(x,A)) ∧ “Y is the computation of Z”]

14 The function MAJ computes the majority for the rows of a given matrix.

CSL’13

304 Theories for Subexponential-size Bounded-depth Frege Proofs

We think of Z as an instance of MBBFE and its second half gives inputs to the formula.
“Y is the computation of Z” is a shorthand for

∀z < s [(z ∈ Z → (z ∈ Y ↔ 2z ∈ Y ∧ 2z + 1 ∈ Y))∧

(z /∈ Z → (z ∈ Y ↔ 2z ∈ Y ∨ 2z + 1 ∈ Y))]

The theory ioVNC1 corresponds to NC1. We will look at ∃BΣB0 theorems where the free
variables have input type and existentially quantified string variables have output-type. For
example, consider the identity function that maps an input string to an output string of the
same value. This can be expressed by the formula ∃X X = A. This formula is provable in
ioV0 using the comprehension axiom. We have the following theorem:

I Theorem 4. The ∃BΣB0 definable functions of ioVNC1 are precisely NC1 functions.

Proof. The proof is similar to the proof for VNC1 in [7]. For one direction we note that the
witnessing theorem still applies.

For the other direction any NC1 function is can be obtained by composing MBBFE with
an AC0 function. We can express this using a ∃BΣB

0 formula: ΣB
0 (MBBFE) without the

leftmost quantifier and with a suitable ϕ defining the AC0 function. By comprehension axiom
for ΣB0 (MBBFE) the function is provably total. J

2.6 Theory t(n)-ioV∞

Next, we define our theory for the complexity classes AltTime(O(1), O(t(n))). We are
interested in t(n) = nε where ε = 1

d < 1 for some fixed d. Functions in AltTime(O(1), O(t(n)))
can be computed by uniform families of subexponential-size bounded-depth circuits. Note
that every function in AltTime(O(1), O(t(n))) is definable by a ΣB

∞(t(n)) formula, i.e. a
formula with string quantifiers bounded by a term of size O(t(n)) where n is a bound on the
size of inputs. The complexity class AltTime(O(1), O(nε)) corresponds to ΣB∞(nε) in a similar
way that the complexity class AltTime(O(1), O(lgn)) = AC0 corresponds to ΣB∞(lgn) = ΣB0 .
The complexity class AltTime(O(1), O(nε)) is a nice uniform version of subexponential-size
bounded-depth circuits. We will include the comprehension axiom ΣB

∞(t(n))-CA for this
class of functions to provide the necessary computational power. Note that t(n) is a term of
number sort and input-type which bounds the quantified string variables in ϕ. The term t(n)
cannot contain any output-type variable. We will consider cases where t(n) is not a term in
the original language but an AC0 function definable in the base theory ioV0 with at most
linear growth. In these cases we can easily extend the language to contain the new function
and add the defining axiom of the function to the theory, e.g. t(n) = n

1
d where n = |A|.

We define our theory t(n)-ioV∞ as follows:

I Definition 5. t(n)-ioV∞ = ioV0 + ΣB∞(t(n))-CA

It is easy to see that ioV0 is equivalent to lgn-ioV∞ since we can convert unary numbers
to binary numbers of logarithmic size and vice versa in AC0. Using ΣB0 -CA and definability
of Bit in ioV0 we can prove ΣB∞(lgn) = ΣB0 .

We take the provably total functions in t(n)-ioV∞ to be the Φ-definable functions, where
Φ = ∃BΣB∞(t(n)).

I Theorem 6 (Provably Total Functions of t(n)-ioV∞). The provably total functions of the
theory t(n)-ioV∞ are exactly those in AltTime(O(1), O(t(n))) of size nO(1), where n is the
size of the arguments.

K. Ghasemloo and S.A. Cook 305

Proof Outline. The proof is similar to the proof for V0: functions in AltTime(O(1), O(t(n)))
are definable and provably total using the comprehension axiom for ΣB

∞(t(n)). On the
other hand, by a witnessing theorem every provably total function of t(n)-ioV∞ is in
AltTime(O(1), O(t(n))). J

3 Proof Systems and nε-bdG∞ Proofs

We use lower-case letters like p and q for propositional variables; and α, β, γ for propositional
function symbols. We use ϕ, ψ, etc. for formulas (propositional, quantified propositional,
and first-order).

We say that a term is free in a formula iff all of its variables are free in the formula.
Expressions like ϕ[p/q] denote the formula resulting from substituting q for p in ϕ. The
usual restrictions on substitution apply, e.g. only free occurrences are replaced, and new
variables must not become bound after substitution.

We allow unbounded
∧

and
∨

connectives in propositional formulas. The (logical) depth
of a propositional formula denoted by ldepth() is defined as the depth of the formula tree.
The size of a propositional formula denoted by size() is the number of nodes in its tree15.
Quantified propositional formulas are defined by allowing quantification over propositional
variables of propositional formulas. We allow a single quantifier to quantify over multiple
propositional variables. For quantified propositional formulas the depth is defined as the
depth of their quantifier-free part. The quantifier depth of a quantified propositional formula
is defined as the maximum depth of formula tree counting only quantifier nodes and is
denoted by qdepth(). The size of a proof is the total size of its formulas. The depth of a
proof is the maximum depth of its formulas. The quantifier depth of a proof is the maximum
quantifier depth of its formulas. The class of quantified propositional formulas with quantifier
depth i starting with an existential quantifier is denoted by Σqi . Σq∞ is their union.

3.1 Proof Systems and Proof Classes
Let L denote a class of formulas, e.g. propositional formulas or quantified propositional
formulas. Let τ be a truth assignment for free variables, i.e. a function from free variables to
{0, 1}. We sometimes call τ an evaluation context. We use τ � ϕ to express that a formula
ϕ ∈ L is true under the truth assignment τ . When ϕ is true under all truth assignments we
write � ϕ and say that ϕ is valid. We refer to the set of valid formulas in L as L-tautologies
and denoted it by TAUTL.

Let Q be a relation with two inputs. We say π is a Q-proof for ϕ iff Q(π, ϕ) accepts, in
which case we write π : Q ` ϕ. We say ϕ is provable in Q iff ϕ has a Q-proof. An relation Q
is a(n) (efficient) proof system for L iff

efficiency: Q is computable in polynomial time,
completeness: every L-tautology is provable in Q,
soundness: every L-formula provable in Q is an L-tautology.

In propositional proof complexity we want to study families of proofs for families of
formulas. We say a proof family {πn}n is a Q-proof for a formula family {ϕn}n iff for all
n, πn : Q ` ϕn. We define proof classes in a similar way to nonuniform computational
complexity classes. Let Q be a proof system. A Q-proof class is a set of Q-proof families.

15 If we encode formulas as binary strings there will be a constant factor of the number of nodes in the
tree.

CSL’13

306 Theories for Subexponential-size Bounded-depth Frege Proofs

Similar to bounded-depth circuits, bounded-depth Frege (bdFrege) proof class is defined
as the set of Frege-proof families where the depth of cut formulas is O(1). Polynomial-size
bdFrege is the subclass of bdFrege where the size of the proofs are polynomial in the size
of the proven formula. If F is a proof class, we write F ` {ϕn}n to state that {ϕn}n has
a F-proof. For example, the pigeon-hole principle PHP = {PHPn}n has polynomial-size
Frege proofs [7, 12] but it does not have polynomial-size bdFrege proofs [12].

The proof class bdFrege is sometimes defined as the union of proof systems d-Frege for
d ∈ N, where d-Frege is a subsystem of Frege obtained by restricting cuts to depth d formulas.
It is easy to see that this gives the same bdFrege proof class we defined above. Note that
bdFrege is not a proof system, The proof system obtained from taking the union of proof
systems d-Frege for d ∈ N is not bdFrege but Frege. In fact, it doesn’t make much sense to
say a single proof has a bounded depth.

3.2 Standard Proof Systems and Proof Classes: bdFrege, Frege, and G
Our reference is [7]. PK is the classical sequent calculus propositional proof system. For
d ∈ N, the propositional proof system d-PK is PK with cuts restricted to depth d formulas.
bdPK is the proof class resulting from taking the union of d-PKs, i.e. proof families with
the depth O(1) cut formulas. Frege denotes any Frege proof system, e.g. PK. Bounded-
depth Frege denoted by bdFrege (a.k.a. AC0-Frege) is the Frege where cuts are restricted to
bounded-depth formulas.

Next, we define proof systems for quantified propositional calculus. The proof system G
is obtained from PK by adding the Boolean quantifier introduction rules. In the rules ∀R and
∃L, p is a free variable called eigenvariable and does not appear in the bottom sequent. In
the rules ∀L and ∃R, ϕ[q/ψ] is the result of substituting ψ for q in ϕ. The formula ψ is called
the target formula of the rule and may be any quantifier-free formula16. The formulas ∃q ϕ

and ∀q ϕ are called the principal formulas and the corresponding ϕ[q/ψ] or ϕ[q/p] formulas
on top are called the auxiliary formulas. Gi is a subsystem of G where the cuts are restricted
to formulas of quantifier depth i. For d ∈ N, the proof class d-Gi is Gi where the depth of
the quantifier free part of cut formulas is bounded by d. bdGi is the union of these proof
systems, i.e. the depth of the cut formulas in the proofs are bounded by a constant. G00 is a
conservative extension of Frege and bdG0 is a conservative extension of bdFrege [7, 12].

In our systems, we allow the introduction of a quantifier over multiple propositional
variables in a single step. For example, we can derive ∃~p ϕ(~p) is a single step from ϕ(~ψ).
Similarly, we allow the introduction of conjunction/disjunction of multiple formulas in a
single step. These modifications do not change the power of the proof systems, but will be
convenient to assume to obtain a nicer correspondence with first-order proofs.

In general, a proof can be a DAG and does not need to be a tree. We use a superscript ∗
to denote proofs which are trees [7, p. 195].

3.3 Proof Systems nε-bdG∞ and H
Let bdΣq∞(t(n)) denote the class of those Σq∞ formula families where the number of quantified
propositional variables is bounded by O(t(n)) and the depth of quantifier-free part is bounded.

16 The exact class of formulas for these rules is not important. By [7, VII.3.6, p.176], we can assume that
the target formulas are arbitrary formulas and need not to be quantifier free. Similarly, we can restrict
them to be only > or ⊥. These modifications does not change the power of the proof system. Following
[7], we use the definition of G (and its subsystems) that does not restrict all formulas but only the cut
formulas.

K. Ghasemloo and S.A. Cook 307

I Definition 7 (t(n)-bdG∞). The proof class t(m)-bdG∞ is the class of bdG∞ proofs for
formula families where cuts are restricted to bdΣq

∞(t(m)) formulas where m is the size of
proven formula. In addition we will assume that17 the total number of eigenvariables in each
sequent of in t(m)-bdG∞ proofs must not exceed t(m).

I Definition 8 (H). The proof system H is an extension of G obtained by allowing proposi-
tional function symbols (denoted by α, β, γ) as atomic formulas and including the following
extensionality axiom for them18 Ext: ~p↔ ~q ⇒ α(~p)↔ α(~q)

We will use the propositional function symbols to remove quantifiers from the axioms and
obtain Skolemized axioms. We will consider proofs with non-logical axioms.

4 From Uniform to Nonuniform

4.1 Translation of Terms and Formulas
In this section, we define a translation from first-order terms and bounded formulas to families
of sequences of propositional formulas and quantified propositional formulas, respectively.

We use (w)i to refer to the ith item in the sequence w. For example, if ~p = (p0, . . . , pk−1)
is a sequence of propositional variables, then (~p)i is pi for i < k (and is ⊥ if i ≥ k). Recall
that s and t denote number terms and T denotes a string term.

Let V ar be the set of variables. Let σ be a function that determines the size of variables,
i.e. σ : V ar → N assigns a numeric value to each variable. We refer to σ as a translation
context. The notation σ[x 7→ n] is used for the function obtained from σ by mapping x to
n. The propositional translation of a term t and a formula ϕ under translation parameters
σ are denoted by [[t]]σ and [[ϕ]]σ. We sometimes use [[t]]~n and [[ϕ]]~n in place of [[t]][~x7→~n] and
[[ϕ]][~x7→~n] when it is clear which variables ~x are being mapped.

The terms are translated recursively. The main difference from the usual propositional
translations is that we have function symbols that we translate to propositional function
symbols. We translate a function symbol into a sequence of propositional function symbols.
Each of these propositional function symbols will correspond to a bit of the original function
symbol. The number of propositional function symbols is the length of the original function
symbol. We can translate functions of the theory that are AC0 computable into reasonable
AC0 circuits computing them (sequences of AC0 formulas).

We first need to extend the translation context σ to all terms in the language. We will
use σ to determine the size of sequences used for the translation of the terms. The number
of bits used for translating a term may only depend on the size of its variables. Note that
every function symbol in our languages has an explicit size in terms of the size of its inputs.
We denote the size of a function symbol by adding a superscript σ. The translation context
σ distributes over sequences, i.e. σ(tk, . . . , t0) = σ(tk), . . . , σ(t0).

I Definition 9 (Extended translation context). Let σ be a translation context. The extended
translation context is given in table 2. For any term t, σ(t) is bounded by a polynomial in σ.
If a variable x occurs in t, then σ(t) ≥ σ(x).

17 This assumption simplifies some arguments significantly. However, we think that the results hold also
without this assumption.

18 A similar system is presented in [9].

CSL’13

308 Theories for Subexponential-size Bounded-depth Frege Proofs
Table 2 Extended Translation Context σ and Translation of Terms.

σ(0) = 0
σ(1) = 1
σ(t+ s) = σ(t) + σ(s)

σ(t·s) = σ(t)·σ(s)

σ(pd(t)) = σ(t)

σ(|T |) = σ(T)
σ(f(~t, ~T)) = fσ(σ(~t), σ(~T))
σ(F (~t, ~T)) = Fσ(σ(~t), σ(~T))

[[x]]σ = (>,

σ(x) times︷ ︸︸ ︷
⊥, . . . ,⊥)

[[X]]σ = (pXσ(X)−1, . . . , p
X
0)

[[0]]σ = (>)
[[1]]σ = (>,⊥)
[[s+ t]]σ = (oσ(s+t), . . . , o0)
where ok = ([[s+ t]]σ)k =

∨
i≤σ(s),j≤σ(t)

i+j=k

([[s]]σ)i ∧ ([[t]]σ)j

[[s·t]]σ = (oσ(s·t), . . . , o0)
where ok = ([[s·t]]σ)k =

∨
i≤σ(s),j≤σ(t)

i·j=k

([[s]]σ)i ∧ ([[t]]σ)j

[[pd(s)]]σ = (oσ(pd(t)), . . . , o0)

where ok = ([[pd(t)]]σ)k =

{
([[t]]σ)0 ∨ ([[t]]σ)1 k = 0
([[t]]σ)k+1 o.w.

[[|T |]]σ = [[σ(T)]]σ
[[f(~t, ~T)]]σ = (fσ(f(~t,~T))([[~t]]σ, [[~T]]σ), . . . , f0([[~t]]σ, [[~T]]σ))
[[F (~t, ~T)]]σ = (Fσ(F (~t,~T))−1([[~t]]σ, [[~T]]σ), . . . , F0([[~t]]σ, [[~T]]σ))

Terms are translated recursively: a number term t is translated to a sequence of size
σ(t) + 1, and a string terms T is translated to a sequence of size σ(T). A unary number n
is represented by >⊥n, i.e. the a sequence of size n+ 1 where only the nth bit19 is >. We
can use any reasonable AC0 formula for the translation of the functions of L2 . The main
requirement is that the translation of the axioms in io2Basic must have simple propositional
proofs. The translation distributes over sequences, i.e. [[tk, . . . , t0]]σ = [[tk]]σ, . . . , [[t0]]σ.

I Definition 10 (Translation of terms). Let σ be a translation context. The translation for
terms is given in table 2. For any term t, size([[t]]σ) is bounded by a polynomial in σ. If a
variable x occurs in t, then size([[t]]σ) ≥ σ(x). In addition, ldepth([[t]]σ) = O(1).

We can translate terms containing a string-valued function F which is defined by a
monotone non-decreasing term p and a formula ϕ (see Section 2.2) as20 |F (~x, ~X)| = p(~x, | ~X|),
and y ∈ F (~x, ~X) ↔ ϕ(~x, ~X, y), using σ(F (~t, ~T)) = p(σ(~t), σ(~T)), and ([[F (~t, ~T)]]σ)k =
[[ϕ(~t, ~T , y)]]σ[y 7→k]. Similarly, for number-valued functions f defined by f(~x) ≤ p(~x), and
f(~x) = y ↔ ϕ(~x, y) we can use σ(f(~t)) = p(σ(~t)), ([[f(~t)]]σ)k = [[ϕ(~t, y)]]σ[y 7→k].

For example, if we include substring function T [s, t] in the language defined in Section
2.1, we can translate it using σ(T [s, t]) = σ(t) and ([[T [s, t]]]σ)k = [[x < t ∧ s+ x ∈ X]]σ[x 7→k].

Formulas are also translated recursively: atomic formulas are translated directly to
AC0 formulas such that the axioms about them have simple propositional proofs. Logical
connective are translated to themselves. Bounded number quantifiers are translated to

∧
and

∨
. Bounded string quantifiers are translated to propositional quantifiers. The number

of quantified propositional variables will be equal to the bound.

I Definition 11 (Translation of formulas). Let σ be a translation context. The translation of
bounded formulas is given in table 3. For any formula ϕ, size([[ϕ]]σ) is bounded by a polynomial
in σ. If a variable x occurs freely in ϕ, then size([[ϕ]]σ) ≥ σ(x). Also ldepth([[ϕ]]σ) = O(1)
and qdepth([[ϕ]]σ) = O(1). The number of quantified propositional variables is determined
by the translation of the bounding terms for the string quantifiers.

19 The index of the rightmost bit is 0.
20 For the translation to work we need the size of the functions to depend only on the size of their inputs.

If we want to include in our translation functions like msb whose size is not determined by the size of
its inputs we need to use a language that has a length operation for numbers.

K. Ghasemloo and S.A. Cook 309
Table 3 Translation of Formulas

[[s = t]]σ =
∨

i≤σ(s),σ(t)
([[s]]σ)i ∧ ([[t]]σ)i

[[s ≤ t]]σ =
∨

i≤σ(s)

∨
i≤j≤σ(t)

([[s]]σ)i ∧ ([[t]]σ)j

[[t ∈ T]]σ =
∨

i≤σ(T)
([[T]]σ)i ∧ ([[t]]σ)i

[[⊥]]σ = ⊥
[[>]]σ = >
[[¬ϕ]]σ = ¬[[ϕ]]σ
[[ψ ∧ ϕ]]σ = [[ψ]]σ ∧ [[ϕ]]σ
[[ψ ∨ ϕ]]σ = [[ψ]]σ ∨ [[ϕ]]σ
[[∃x ≤ t ϕ]]σ =

∨
i≤σ(t)

[[x ≤ t ∧ ϕ]]σ[x 7→i]

[[∀x ≤ t ϕ]]σ =
∧

i≤σ(t)
[[x ≤ t→ ϕ]]σ[x 7→i]

[[∃X = t ϕ]]σ = ∃[[X]]τ [[X = t ∧ ϕ]]τ
[[∀X = t ϕ]]σ = ∀[[X]]τ [[X = t→ ϕ]]τ .
where τ = σ[X 7→ σ(t)]

Recall that bounded string quantifiers of the form ∃X ≤ t ϕ and ∀X ≤ t ϕ are equivalent
to ∃y ≤ t ∃X = y ϕ and ∀y ≤ t ∀X = y ϕ and can be translated as such.

Using induction on the structure of formulas we can prove that [[ϕ]]σ is a tautology iff
~x = σ(~x), | ~X| = σ(~X)⇒ ϕ is true in the standard model.

4.2 Translation of Proofs
In this section, we provide a translation from proofs in the theory nε-ioV∞ to polynomial-size
nε-bdG∞ and subexponential-size bdG0 proofs. We will consider proofs in nε-ioV∞ where
ε = 1

d < 1 is fixed.

I Theorem 12 (Propositional Translation). If ϕ ∈ ΣB0 is provable in nε-ioV∞, then {[[ϕ]]~n}~n
has polynomial-size nε-bdG∞.

Assume that nε-ioV∞ ` ϕ. If ϕ has no free variables its translation is a fixed formula
and has a size O(1) depth O(1) proof and we are done. So assume that ϕ has at least one
free variable.

Without loss of generality, we can assume that all free variables in ϕ have input type: if ϕ
is provable then so is ϕ[~x, ~X/~a, ~A], which has the same translation. We refer to ~n = σ(~a, ~A)
as translation parameters where ~a and ~A are ϕ’s free variables. Let m~n = size([[ϕ]]~n).

Since ϕ has at least one free variable we have m~n = size([[ϕ]]~n) = Ω(~n). Therefore, if
prove that some entity like the size of a proof for ϕ is bounded by a monotone non-decreasing
function of ~n, the bound will also apply with ~n replaced by ~m. With this in mind, we will
study proof size, proof depth, etc. in terms of the translation parameters ~n.

The propositional translation has three steps. In the first step, we Skolemize conversion
and comprehension axioms to remove the initial existential string quantifiers from them.
We denote the Skolemized version of these axioms by adding a ∗ superscript. The Skolem
functions for comprehension axioms return output-type values while the Skolem function for
the conversion axiom returns input-type values. In other words, the type of value returned
by a Skolem function matches the type of quantified variable it is witnessing. Note that
axioms determine the size of the functions symbols.

oiConvstr: ⇒ ∃B = a ∀z < a (z ∈ B ↔ y + z ∈ X),
oiConv∗str: ⇒ |F oiConv(a, y,X)| = a ∧ ∀z < a (z ∈ F oiConv(a, y,X)↔ y + z ∈ X).
ϕ-CA: ⇒ ∃Y = z ∀x < z (x ∈ Y ↔ ϕ(x,A)),
ϕ-CA∗: ⇒ |Fϕ-CA(z,A)| = z ∧ ∀x < z

(
x ∈ Fϕ-CA(z,A)↔ ϕ(x,A)

)
.

Let’s call the resulting theory ̂nε-ioV∞. Note that the theory still has the nice properties
of the original theory. In particular, the size of an input-type term is still bounded by a
linear function of the size of its input-type variables. We have:

CSL’13

310 Theories for Subexponential-size Bounded-depth Frege Proofs

I Lemma 13 (Step 1). If nε-ioV∞ ` ϕ then ̂nε-ioV∞ ` ϕ.

Proof of Step 1. We only need to derive the axioms of nε-ioV∞ in ̂nε-ioV∞. The original
axioms are derivable from the Skolemized versions using a single application of the ∃R. J

Next, we translate proofs in ̂nε-ioV∞ to proof families in H with non-logical axioms.

I Lemma 14 (Step 2). If π : ̂nε-ioV∞ ` ϕ, then there is a H-proof {[[π]]~n}~n of {[[ϕ]]~n}~n
using the translation of the axioms in ̂nε-ioV∞ as non-logical axioms. Moreover, size([[π]]~n) =
O(poly(~n)), ldepth([[π]]~n) = O(1), qdepth([[π]]~n) = O(1), the proof contains only cuts over
Σq∞(nε) formulas, and the number of eigenvariables in each sequent is O(nε).

Proof of Step 2. We first convert the proof π into a proof in free-variable free-cut free
normal form. The resulting proof only contains subformulas of ϕ and the axioms. Since ϕ
does not have any string quantifier, all cut formulas with string quantifiers are subformulas
of the Skolemized comprehension axiom. By lemma 15 below, we can bound the size of free
input-type string variables in the proof by linear size terms in parameters of the proof ~n.
Therefore, all formulas in the proof are ΣB∞(nε).

We translate the proof to a propositional proof in H recursively starting from the end-
sequent. The translation is straightforward. The rules in H correspond to rules in LK. The
only interesting cases are the number quantifier rules which need to be replaced by rules for∨

and
∧

. For ∃L and ∀R, we extend the translation context to assign values to the eigen

variable for all possible values less than the bound. All terms have at most polynomial size
in their free variables. Therefore, we will construct a polynomial number of them.

For example, consider ∀R. The sequent Γ ⇒ ∆,∀x ≤ t ψ is translated to [[Γ]]σ ⇒
[[∆]]σ,

∧
i≤σ(t)[[x ≤ t→ ψ]]σ[x 7→i]. We recursively obtain the proofs for the translations of

Γ⇒ ∆, x ≤ t→ ψ under translation contexts σ[x 7→ i] for all i ≤ σ(t), and use
∧

R to obtain

Γ⇒ ∆, x ≤ t→ ψ
∀R

Γ⇒ ∆,∀x ≤ t ψ

{[[Γ]]σ ⇒ [[∆]]σ, [[x ≤ t→ ψ]]σ[x7→i]}i≤σ(t) ∧R
[[Γ]]σ ⇒ [[∆]]σ,∧i≤σ(t)[[x ≤ t→ ψ]]σ[x 7→i]

The axioms are translated to non-logical quantified propositional axioms. It is easy
to check that the depth and quantifier depth of the proof are O(1) and size of the proof
is O(poly(~n)). Formulas in ΣB

∞(nε) are translated to Σq
∞(nε) formulas, so cuts formulas

are Σq
∞(nε). Each sequent in the translated proof is a translation of a first-order sequent.

Therefore, the number of formulas in each sequent is constant and the total number of
eigenvariables in each sequent is O(nε). J

I Lemma 15 (Linear Type Bounds). The size of free input-type string variables in the proof
can be bounded by linear terms in ~n.

Proof Idea. The proof is similar to Parikh’s theorem. J

In the third step, we remove the function symbols and non-logical axioms from the proof
to obtain a polynomial-size nε-bdG∞ proof.

I Lemma 16 (Step 3). If ̂nε-ioV∞ ` ϕ then {[[ϕ]]~n}~n has a polynomial-size nε-bdG∞ proof.

Proof Step 3. Consider the proof obtained in step 2. To obtain a nε-bdG∞-proof we need
to provide

polynomial-size explicit witnessing formulas for the function symbols, and
polynomial-size nε-bdG∞ proofs for the non-logical axioms.

K. Ghasemloo and S.A. Cook 311

Note that the translations of the axioms of io2Basic have simple polynomial-size bdG0 proofs.
The the translation of the induction axiom becomes

[[0 ∈ X]]σ,
∧

i≤σ(z)

[[y ≤ z]]σ[y 7→i] → ([[y ∈ X]]σ[y 7→i] → [[y + 1 ∈ X]]σ[y 7→i])⇒ [[z ∈ X]]σ

which has a simple proof of polynomial size and bounded depth: We provide proofs for
[[y + 1 ∈ X]]σ[y 7→i] ⇒ [[y ∈ X]]σ[y 7→i+1] and then combine these using ∨L to obtain the proof.

We use substring functions to witness the conversion axiom. To remove the conversion
axiom, we replace [[F oiConvstr (a, y,X)]]n with [[X[y, a]]]n. The axiom becomes

⇒ [[|X[y, a]| = a]]n ∧
∧

i≤σ(a)

[[x ∈ X[y, a]↔ y + x ∈ X]]n,[x 7→i]

which has a bdG0-proof of polynomial size and bounded depth.
We will use the defining formula of the comprehension axioms to witness the comprehension

function symbols. To remove the comprehension function symbols, we replace ([[Fϕ-CA(A)]]σ)n
with [[ϕ(x,A)]]n,[x 7→i]. The comprehension axioms become

⇒
∧

i≤σ(t)

(
[[ϕ(x,A)]]n,[x 7→i] ↔ [[ϕ(x,A)]]n,[x 7→i]

)
which have bdG0 cut-free proofs of polynomial size. J

Finally, we expand the ΣB∞(nε) formulas to bounded-depth formulas of size 2O(nε). As a
result, we get size 2O(nε) bdG0 proofs.

I Theorem 17 (Subexpoential-Size Bounded-Depth G0 Proofs). If {[[ϕ]]~n}~n has a polynomial-
size nε-bdG∞ proof then {[[ϕ]]~n}~n has a size 2O(nε) bdG0 proof.

Proof of Corollary 17. We convert the proof by replacing propositional quantifiers with
∧

and
∨

and quantifier introduction rules by their
∧

and
∨

counterparts. The result is a valid
proof with no quantifiers. The depth of the formulas in the proof is still O(1). Sine the
number of quantified variables in any formula was O(nε) the size of new formulas is 2O(nε).
Moreover, since the number of eigen variables in each sequent is O(nε), we only need to
make 2O(nε) copies of them in total for replacing the quantifier introduction rules. Therefore,
the size of the resulting proof is 2O(nε). J

5 From Nonuniform to Uniform

The other half of the relation between a bounded arithmetic theory and a propositional proof
system is given by the provability of the soundness of the propositional proof system (or proof
class) inside the corresponding theory. The soundness statement for a proof system Q states
that for every ϕ, π, and τ , if π is a Q-proof of the formula ϕ, and τ is a truth assignment for
ϕ, then τ satisfies ϕ: ∀ϕ, π, τ (π : Q ` ϕ⇒ τ � ϕ). For a proof class that is obtained from
taking the union of an indexed family of proof systems the soundness statement is defined as
the set of soundness statements for each proof system in the family. For example, we say
that a theory proves the the soundness of bdFrege iff it proves {Sound(d-Frege) | d ∈ N}.

The importance of soundness statements are their universal role in proof complexity
similar to complete problems in complexity theory, i.e. proof classes can be characterized
as the set of tautology families derivable from the soundness tautology families in a weak
propositional proof system like resolution.

CSL’13

312 Theories for Subexponential-size Bounded-depth Frege Proofs

Let T be a theory extending ioV0 and F be a proof class containing polynomial-size
bdFrege and closed under cuts over bdΣq

0 formulas. Assume that F proves the translation of
ΣB0 theorems of T. We have

I Theorem 18. If T proves the soundness of F′, then F′ ⊆ F.

Proof. First, if {πn}n : F′ ` {ϕn}n, then this family has a polynomial-size bdFrege proof.
Second, {(τ � ϕn)⇒ ϕn(τ)}n has a polynomial-size bdFrege proof. Now, since the soundness
of F′ is provable in T, the translation of the soundness of F′, {πn ` ϕn ⇒ τ � ϕn}n , is
provable in F. F is closed under bdΣq0 cuts, and proves {πn : F′ ` ϕn}n, therefore {τ � ϕi}i is
provable in F. Which means {ϕn(τ)}n is provable in F. To make the argument complete, we
need discuss the accepting computations of the proof system containing F and the evaluation
of formulas. See [13, 12] for details. J

I Theorem 19. Let F be a Q-proof class satisfying conditions mentioned above. If the
soundness of a proof system Q′ is provable in F, then Q simulates Q′ with F proofs. If the
F-proofs are soundness of Q′ are effectively given, then the simulation is effective.

Proof. The proof is similar to the proof of Theorem 18. J

5.1 ioV0 Proves Soundness of bdFrege
I Theorem 20 ([7]). The soundness of the proof class bdFrege is provable in V0.

In soundness statements, the proof is given to us as an input. Since the size of the formulas
in the proof are bounded by the size of the proof, we can easily evaluate these formulas in
ioV0 using the comprehension axiom. Similarly, the size of the proof is an input-type number,
so we can use the induction axiom to prove that all sequents in the proof are true under a
given assignment. At no point in the argument do we need to compute large values, so the
provability of soundness of bdFrege works in ioV0. Therefore

I Theorem 21. The soundness of bdFrege is provable in ioV0.

5.2 ioVNC1 Proves Soundness of (Unbalanced) Frege
The comprehension axiom of ioVNC1 can be used to evaluate balanced formulas and therefore
ioVNC1 can prove the soundness of Frege proofs where formulas in the proof are balanced.

I Theorem 22. ioVNC1 ` Sound(BalancedFrege).

But that does not necessarily imply that ioVNC1 can prove the soundness of (unbalanced)
Frege proofs. We need to balance formulas and provably so in ioVNC1. It turns out that
ioVNC1 can prove the Buss’s result [3, 4] that (unbalanced) Boolean formulas can be evaluated
in ALogTime (which is equivalent to uniform NC1). The Buss’s proof [4] is formalized in
VNC1, see [7, pp. 410-424].

I Theorem 23. ioVNC1 proves the totality and correctness of Buss’s ALogTime algorithm
[4] for unbalanced Boolean formula evaluation problem.

Proof. The goal is to prove that we can evaluate unbalanced formulas, i.e. for a formula and
a truth assignment given in A and B, there is a Y which is a computation of A on B. Note
that the computation doesn’t need to encode the values obtained for gates, the evaluation
is correct, i.e. it distributes over logical operations and correctly computes the value of >

K. Ghasemloo and S.A. Cook 313

and ⊥. We can use an AC0 function to build a balanced formula Z from A using Buss’s
algorithm, and then apply MBBFE to Z and obtain a computation Y of it. Note that the
ΣB0 (MBBFE)-CA axiom allows this. The game tree of Buss’s algorithm only depends on the
size of the formula. The part of the balanced formula that depends on the formula is a TC0

functions that given a game play and a formula decides the winner. We attach a balanced
Boolean formula computing this TC0 function to the leaves of the game tree.

Note that for correctness we don’t need to compute any global function of output-type
objects. So the argument in [7] still works. J

I Corollary 24. The (unbalanced) Boolean formula evaluation is provably total in ioVNC1.

Now, following the standard argument we can prove the soundness of (unbalanced) Frege
in ioVNC1.

I Theorem 25. ioVNC1 proves the soundness of (unbalanced) Frege

Proof. Let π : Frege ` ϕ be a Frege proof of ϕ. We show that ϕ is true. Let τ be an arbitrary
truth assignment for the formulas in π. We show by induction on the size of π that the
sequents in π are true under τ . For the base case, we have to verify that the axioms are true
which is straight forward. For the induction step, we have to show that the rules preserver
truth of sequents. The correctness of all rules can be verified by case analysis. We use
Theorem 24 to show the correctness of the cut rule. J

5.3 nε-ioV∞ Proves Soundness of nε-bdG∞

First note that as a corollary of Theorem 21 we have

I Corollary 26. The soundness of bdFrege is provable in nε-ioV∞.

I Theorem 27. The soundness of nε-bdG∞ is provable in nε-ioV∞.

Proof Idea. The argument follows the same structure of provably of soundness results. J

6 ioVNC1 ⊆ nε-ioV∞

In this section, we prove that nε-ioV∞ ` ioVNC1 which is essentially formalizing and proving
correctness of NC1 ⊆ AltTime(O(1),O(nε)). The argument also applies to other nice classes
in NTimeSpace(nO(1), no(1)) like NL.

I Theorem 28. The theories nε-ioV∞ contain the theory ioVNC1.

Proof of Theorem 28. We only need to derive ΣB
0 (MBBFE)-CA in nε-ioV∞. Our goal is

to show that there is a ΣB
∞(nε) formula ψ(x,A) which provably gives the bit graph of

the computation Y of circuit Z in ΣB
0 (MBBFE)-CA. In other words, ψ(x,A) iff the value

computed for gate x of the circuit Z is one. Therefore by ΣB
∞(nε)-CA the computation of

circuit Z exists and we are done. Let’s fix ϕ and s in ΣB0 (MBBFE)-CA Note that s is bounded
by a polynomial term in the size of free variables of the formula.

We think of ϕ as representing the graph of an AC0 function. Abusing the notation, we use
ϕ(A) to denote this function. Consider a given A of length n. We can prove the existence of
the Z = ϕ(A) using the comprehension axiom in ioV0. Let;s assume that Z and x are given.

Formula ψ is similar to Buss’s algorithm. We describe it as a game between two players
with k rounds. The first player claims that the correct value of gate x is 1 while the second
player claims that is not the case. We refer to them as P (Prover) and C (Challenger).

CSL’13

314 Theories for Subexponential-size Bounded-depth Frege Proofs

Let Z be a balanced Boolean formula of size s and x a gate in Z. We divide Z into k levels.
This results in subformulas of size O(s1/k). We look at each of these small subformulas as a
possible round in the game. The game tree has depth k and branching O(s1/k). Each of these
small formulas can be described by a path from the root to it. We index the subformulas,
their inputs, and their computation using sequences of number w = (i1, i2, · · · , il) where
0 ≤ l < k and each number is less than s1/k. For example, the subformula in the root is
indexed as Z(). The subformulas below it are index as Z(1), Z(2), Each round is played
in one of these subformulas, starting at the root subformula. After each step we will move to
one of the subformulas below the current one. The game is finished when we reach a leave.

The game starts by the P giving a computation of the top subformula including the
inputs to that subformula. If the computation is not correct P loses. Otherwise C challenges
one of the inputs to the subformula whose output is the challenged input for the previous
subformula. The games continues by moving to that subformula. The game ends when we
reach the original input bits. At which point we can check if all claims (the claimed values
for gates in each subcircuit are consistent and the value of the output gate of each subcircuit
is equal to the value of the challenged input bit of the upper subcircuit) by P are correct, in
which case P wins. Otherwise C wins.

The player P represents existential string quantifiers of size O(s1/k). The player C
represents universal number quantifiers of size O(s1/k). Note that given a circuit, an input,
and a computation, the fact that computation is correct is expressible as a ΣB0 formula. We
have k blocks of these quantifier followed by a ΣB

0 formula that checks if the claims are
correct: 1. for each subformula in a game; the computation given for that subformula is
compatible with the gates for that subformula; 2. the value of root for each subformula is
equal the value of the leaf challenged in the previous round by C; 3. gate x belongs to one of
the subformulas in the game; 4. the value of gate x is 1. If we pick k = lg s

ε lgn then s1/k ≤ nε

and ψ is a ΣB∞(nε) formula. Note that φ is a σB0 formula giving the bit graph of Z and we
can easily replace membership in and length of Z by ϕ and s.

Now that we have defined our ΣB0 formula for ϕ and s, we have to show that it gives the
bits of the computation of Z according to the definition in ΣB

0 (MBBFE)-CA, i.e. the value
for each gate should be compatible with the type of the gate and the values for its children.
This is mainly case analysis: either the gate is inside a subformula, in which case it is the
case, or it is on the boarder between two level, in which case it is assigned the same values
in both subformula computations. This completes the proof. J

7 Simulation of Frege proofs with bdFrege proofs

In this section, we combine the results from previous sections to provide an alternative proof
of [10] that Frege proofs can be simulated by bdFrege proofs with a 2O(nε) increase in proof
size , i.e. size 2O(nε)bdFrege simulates polynomial-size Frege. These results also hold for size
2O(nε)bdFrege replaced with size 2O(nε)bdG0.

Combining nε-ioV∞ ` ioVNC1 from theorem 28 and ioVNC1 ` Sound(Frege) from theorem
25 we obtain the following corollary:

I Corollary 29. The proof class nε-ioV∞ proves the soundness of the Frege proof system.

Now, by Theorems 18 and 19 we have:

I Corollary 30. The proof class polynomial size nε-bdG∞ contains the proof class polynomial-
size Frege. The proof system G effectively simulates proof system Frege by polynomial-size
nε-bdG∞ proofs.

K. Ghasemloo and S.A. Cook 315

As a corollary of Theorem 17 that size 2O(nε) bdFrege contains nε-bdG∞ we get

I Corollary 31. The proof class size 2O(nε)bdFrege contains the proof class polynomial-
size Frege. Size 2O(nε)bdFrege simulates polynomial-size Frege. The proof system bdFrege
effectively simulates Frege by proofs of size 2O(nnε

).

Acknowledgements. We would like to thank Phuong The Nguyen for many helpful discus-
sions during the last two years. The idea for a uniform version of [10] came up during a
discussion with Yuval Filmus, Toniann Pitassi, and Rahul Santhanam. We would like to
thank the anonymous referees for their pointing out several sections which were unclear, and
for their detailed and constructive comments and suggestions. The proofs of some lemmas
are omitted because of length restrictions. Some sections of the current version may need
further clarification. An earlier version of this work was presented in Fall 2011 by the first
author while attending MALOA’s special semester on Logic and Complexity in Prague. He
would like to thank the organizers and participants, in particular Jan Krajíček, for creating
a lovely environment for research and exchange of ideas.

References
1 Eric Allender and Michal Koucký. Amplifying lower bounds by means of self-reducibility.

J. ACM, 57(3):14:1 – 14:36, 2010.
2 Samuel R. Buss. Bounded Arithmetic. Bibliopolis, 1986.
3 Samuel R. Buss. The boolean formula value problem is in alogtime. In Alfred V. Aho,

editor, STOC, pages 123–131. ACM, 1987.
4 Samuel R. Buss. Algorithms for boolean formula evaluation and for tree-contraction. In

P. Clote and J. Krajicek, editors, Proof Theory, Complexity, and Arithmetic, pages 95–115.
Oxford University Press, 1993.

5 Samuel R. Buss and Ryan Williams. Limits on alternation-trading proofs for time-space
lower bounds. In IEEE Conference on Computational Complexity, pages 181–191. IEEE,
2012.

6 Stepehn A. Cook. Feasibly constructive proofs and propositional calculus. In Annual ACM
Symposium on Theory of Computing, volume 7, pages 83–97, 1975.

7 Stepehn A. Cook and Phoung Nguyen. Logical Fouondations of Proof Complexity. Cam-
bridge University Press, 2010.

8 Stephen Cook and Tsuyoshi Morioka. Quantified propositional calculus and a second-order
theory for NC1. Archive for Mathematical Logic, 44(6):711–749, 2005.

9 Stephen A. Cook. Relativized propositional calculus. Manuscript, 2012.
10 Y. Filmus, T. Pitassi, and R. Santhanam. Exponential lower bounds for ac-frege imply

superpolynomial frege lower bounds. Proceedings ICALP, 2011:618–629, 1.
11 Emil Jeřábek. Dual weak pigeonhole principle, Boolean complexity, and derandomization.

Annals of Pure and Applied Logic, 129:1–37, 2004.
12 Jan Krajíček. Bounded Arithmetic, Propositional Logic, and Complexity Theory. Cambridge

University Press, 1995.
13 Jan Krajíček. A note on sat algorithms and proof complexity. Information Processing

Letters, 112(12):490–493, June 2012.
14 Sebastian Müller. Polylogarithmic cuts in models of V 0. LMCS, 9:2013, 2013.
15 V.A. Nepomnjascij. Rudimentary predicates and turing calculations. Doklady AN SSSR,

195, 1970.
16 J. Paris and A. Wilkie. Counting problems in bounded arithmetic. In CarlosAugusto Prisco,

editor, Methods in Mathematical Logic, volume 1130 of Lecture Notes in Mathematics, pages
317–340. Springer Berlin Heidelberg, 1985.

CSL’13

The Structure of Interaction∗

Stéphane Gimenez and Georg Moser

Institute of Computer Science
University of Innsbruck, Austria
{stephane.gimenez,georg.moser}@uibk.ac.at

Abstract
Interaction nets form a local and strongly confluent model of computation that is per se paral-
lel. We introduce a Curry–Howard correspondence between well-formed interaction nets and a
deep-inference deduction system based on linear logic. In particular, linear logic itself is easily ex-
pressed in the system and its computational aspects materialise though the correspondence. The
system of interaction nets obtained is a typed variant of already well-known sharing graphs. Due
to a strong confluence property, strong normalisation for this system follows from weak normal-
isation. The latter is obtained via an adaptation of Girard’s reducibility method. The approach
is modular, readily gives rise to generalisations (e.g. second order, known as polymorphism to
the programmer) and could therefore be extended to various systems of interaction nets.

1998 ACM Subject Classification F.1.2 Modes of Computation, F.4.1 Mathematical Logic

Keywords and phrases Interaction Nets, Linear Logic, Curry–Howard Correspondence, Deep
Inference, Calculus of Structures, Strong Normalisation, Reducibility

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.316

1 Introduction

We introduce a deep-inference deduction system based on multiplicative-exponential linear
logic (MELL for short) [4] and provide a direct correspondence with interaction nets sys-
tems [11], among which sharing graphs [12, 5, 6] play a key role. Our calculus was directly
inspired by, and is in large parts identical to, an earlier presentation of MELL in the calculus
of structures given by Guglielmi and Straßburger [16, 15]. We thus unveil a Curry–Howard
correspondence between deep-inference formalisms of linear logic and the simple, almost
canonical, parallel computation model portrayed by interaction nets. On the one hand,
the deep-inference deduction system fulfills the role of a long-awaited enhanced type sys-
tem for nets: the additional structure conferred to nets through typing ensures correctness,
and can furthermore, under some reasonable assumptions, guarantee termination. On the
other hand, interaction nets provide an answer to the unsettled topic of a computational
interpretation for proof normalization steps in deep-inference systems.

Interaction nets, introduced by Lafont in [11], form an abstract model of computation
based on graph rewriting [18]. Reduction of interaction nets is strongly confluent: pairs of
interacting agents can not only be contracted locally but also independently, and therefore
any peak can be joined immediately. This gives rise to an elegant formalism to express par-
allel computations. These and other merits make interaction nets a promising programming
paradigm, either as an execution platform for functional programs, or as a conceptional
device for the (optimal) implementation of the λ-calculus [6, 13, 7]. However, the elegance

∗ This work is partially supported by FWF (Austrian Science Fund) project I-603-N18.

© Stéphane Gimenez and Georg Moser;
licensed under Creative Commons License CC-BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca; pp. 316–331

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.316
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

S. Gimenez and G. Moser 317

of nets has always been undermined by the lack of a versatile framework to guarantee basic
correctness assumptions.

I Example 1.1. As an illustration, we reuse the difference lists example from [11], an
implementation of lists that allows constant time concatenation. The two nets pictured
below describe the concatenation of integer lists [1, 2] and [3, 4], before and after evaluation.
Node cons is used as a standard list constructor, and bind creates a difference list from links
to the tail and to the head of a standard list.

d-cat

bind bind

cons cons

1 3cons cons

2 4

bind

cons

1 cons

2 cons

3 cons

4

The computation is performed by means of the following rewriting rules:

d-cat

bind

dlist

dlistdlist

list list

−→
bind unbd

listlist list

dlist dlist

unbd

bind

dlist

listlist

list list

−→

list

list

After two reduction steps, reduction of the initial net yields the given normal form.

Such simple examples suffice to understand that interaction nets crucially miss struc-
ture, making reasoning about them difficult. Individual portions of nets found in left and
right hand side of reduction rules are not standardly considered valid, even though they are
subnets of valid nets. The reason being that usual net-construction rules available for this
system, which are inherited from sequent-calculus inference rules, are too coarse-grained.
Without preserving additional typing information, the inherent well-foundness of such re-
writing rules could not be formulated directly [11]; a proof of a correctness preservation
property would have to be conducted globally for the full reduction relation. The corres-
pondence proposed in this paper allows for a finer analysis of nets, keeping track of their
substantial structure, and is able to do so even in the most delicate case of sharing graphs.

Deep-inference deduction systems allow inference rules to modify formulas inside an
arbitrary context. For most logics deep-inference presentations have been established [16, 9,
17, 8]. Their flexibility enables us to type and to ensure proper combination of individual
cell-components of a net. We can fuse through this type system the essential properties
of interaction nets and MELL. From nets we inherit strong confluence and from MELL

CSL’13

318 The Structure of Interaction

we inherit weak normalisation. Technically we adapt Girard’s reducibility method to the
context of deep-inference formalism to obtain weak normalisation. The proof is modular
and can easily be extended, for instance, to additive connectives (which are used to type
conditionals) or to second-order (polymorphism).

This work is related to very recent work on computational interpretations of deep-
inference systems. In [10] Gundersen, Heijltjes and Parigot introduce the atomic lambda
calculus as a typed λ-calculus that admits some particular form of sharing and preserves
strong normalisation. The atomic lambda calculus provides (among others) a computational
interpretation of the medial rule of calculi of structures [17]. Furthermore, recently, Pagani
and Tortora de Falco established in [14] the very tedious and technical standardisation
theorem required to prove strong normalisation of second-order linear logic. Its “delicate
but boring” proof had been postponed but Girard’s reducibility method however suffices in
showing weak normalisation. When adapted to our framework, thanks to strong confluence,
weak normalisation automatically promotes to a strong normalisation theorem.

This paper is structured as follows. In Section 2 we provide the proposed deep-inference
presentation of MELL together with an embedding of its standard sequent calculus present-
ation. Section 3 defines the system of interaction nets which is of interest, picturing the
direct correspondance with this presentation of MELL. In Section 4, we define reduction
steps on the logic side, in a way that preserves strong confluence from nets. Section 5 ad-
apts Girard’s reducibility method to this setting and establishes weak normalisation (and
thus strong normalisation). Finally, we conclude in Section 6 and mention potential future
work.

2 A Convenient Presentation of Linear Logic with Structures

Structures. We define structures as follows:

σ ::= ?
∣∣ σ ; σ

∣∣ ◦ ∣∣ σ , σ
∣∣ @σ

∣∣ ♦σ ∣∣ A

This syntax is then quotiented so that binary connectives ‹ ; › and ‹ , › are associative,
commutative, respectively admit ‹ ? › and ‹ ◦ › as neutral elements, and so that ? = @?
and ◦ = ♦◦. Connectives ? and ◦ can conveniently be thought of and referred to as “true”
and “false” respectively. Last, A ranges over linear logic formulas:

A ::= 1
∣∣ A⊗A

∣∣ ⊥ ∣∣ A`A
∣∣ !A

∣∣ ?A
∣∣ α

∣∣ ᾱ

where α ranges over some arbitrary set of base types.
Negation σ⊥ of a structure σ is an involutive operation defined on linear logic formulas

according to the usual de Morgan laws, and naturally extended to structures with:

?⊥ = ◦ (σ ; τ)⊥ = σ⊥ , τ⊥ (@σ)⊥ = ♦(σ⊥)

Our approach is similar in concept to other calculus of structures presentations [16, 1, 9,
10]. Among modifications introduced, a “computational layer” now appears underneath the
“structural layer”. This will allow for a direct correspondence with interaction nets systems.

Derivations. A derivation π from σ to τ , written π : σ → τ , is a sequence of structures
whose first element is σ and last element is τ , such that every succession of two structures
in this sequence is associated with a derivation rule. Basic derivation rules are split into
three main categories.

S. Gimenez and G. Moser 319

Core structural rules

?
axiom

σ⊥ , σ

σ ; σ⊥
cut

◦
ω ; (σ , τ)

switch
(ω ; σ) , τ

@σ ; @τ
merge

@(σ ; τ)

Administrative rules

@σ
erase�

?

@σ
duplicate�

@σ ; @σ
@σ

open�
σ

@σ
nest�

@@σ

Computational rules (we restrict here ourselves to the following set of rules which is
sufficient to externalise linear logic)

?
one�

1
◦

bottom�
⊥

A ; B
tensor�

A⊗B
A , B

par�
A`B

@A
of-course�

!A
♦A

why-not�
?A

For reasons that follow, the following rule is admissible:

@(σ , τ)
select

@σ , ♦τ
:=

@(σ , τ)
− ;axiom

@(σ , τ) ; (@τ⊥ , ♦τ)
switch

(@(σ , τ) ; @τ⊥) , ♦τ
merge ,−

@((σ , τ) ; τ⊥) , ♦τ
@switch ,−

@(σ , (τ ; τ⊥)) , ♦τ
@(− ,cut) ,−

@σ , ♦τ

Deep inference. All basic deduction rules can be applied inside a structural context. If
ρ : σ → τ is a basic deduction rule and ν is a structural context (a structure with one hole),
then ν[ρ] : ν[σ] → ν[τ] is also accepted as a deduction rule. For example, tensor� can be
applied inside disjunctive, conjunctive or exponential contexts, as well as any combination
thereof, as follows:

σ , (A ; B)
− ,tensor�

σ , A⊗B
σ ; A ; B

− ;tensor�
σ ; A⊗B

@(A ; B)
@tensor�

@(A⊗B)

Symmetry. Besides, all rules can be turned upside-down: each rule ρ : σ → τ is to be
paired with a matching ρ⊥ : τ⊥ → σ⊥ rule (calculus of structures implements contraposition
natively). Core structural rules are paired with core structural rules, in particular axiom
and cut are paired together and switch happens to be self-symmetric. Introduction rules
(labeled with an arrow oriented downwards) are turned into elimination rules (labeled with
an arrow oriented upwards) and vice versa. For example, symmetric variants of tensor�,
duplicate� and merge write as follows:

A`B
tensor�

A , B

♦σ , ♦σ
duplicate�

♦σ

♦(σ , τ)
merge

♦σ , ♦τ

Given any structure ω, an empty sequence derives ω to ω itself. Such derivations are
denoted by idω . Composition of two derivations π1 : σ → ω and π2 : ω → τ is written
π1 · π2 : σ → τ . This defines a category whose objects are structures and whose morphisms
are derivations.

CSL’13

320 The Structure of Interaction

Relaxed derivations. We quotient previously defined derivations by a few trivialities (and
their symmetric variants, which are not listed), which are natural consequences of the quo-
tient on structures.

?
axiom

? , ◦
≡ ?

id
?

? ; (σ , τ)
switch

(? ; σ) , τ
≡ σ , τ

id
σ , τ

@? ; @ω
merge

@(? ; ω)
≡ @ω

id
@ω

@?
erase�

?
≡ @?

duplicate�
@? ; @?

≡ @?
open�

?
≡ @?

nest�
@@?

≡ ?
id

?

We moreover allow rules with disjoint scopes to freely pass each other. For example,
given ρ1 : σ1 → τ1 and ρ2 : σ2 → τ2:

σ1 ; σ2
ρ1 ;−

τ1 ; σ2
− ;ρ2

τ1 ; τ2

≡
σ1 ; σ2

− ;ρ2
σ1 ; τ2

ρ1 ;−
τ1 ; τ2

This, extended to arbitrary derivations π1 : σ1 → τ1 and π2 : σ2 → τ2, enables us to
define contextual conjunction of derivations π1 ; π2 : σ1 ; σ2 → τ1 ; τ2, as well as disjunction
π1 , π2 : σ1 , σ2 → τ1 , τ2 unambiguously. Given π : σ → τ , we use similarly @π : @σ → @τ
and ♦π : ♦σ → ♦τ to denote the use of a derivation π inside an exponential context.

Other equivalences occur when the scope of one rule is captured within one structural
variable of an adjacent core structural rule. We provide the following, given an arbitrary
rule ρ : σ → τ , as an illustration:

ω ; (σ , ω′)
− ;(ρ,−)

ω ; (τ , ω′)
switch

(ω ; τ) , ω′
≡

ω ; (σ , ω′)
switch

(ω ; σ) , ω′
(− ;ρ) ,−

(ω ; τ) , ω′

Given that the use of structural variables in rules axiom and cut is also linear in some
sense, similar commutations are considered. Those are however slightly less straightforward
as they reverse orientation of rules.

?
axiom

σ , σ⊥
ρ,−

τ , σ⊥

≡
?

axiom
τ , τ⊥

− ,ρ⊥
τ , σ⊥

σ ; τ⊥
ρ ;−

τ ; τ⊥
cut

◦

≡
σ ; τ⊥

− ;ρ⊥
σ ; σ⊥

cut
◦

In fact, all definitions and properties about derivations mentioned in the sequel are
compatible with these equivalences. From now on, the term derivation will be used to refer
to equivalence classes, which abstract away the irrelevant sequentiality found in concrete
syntactic derivations.

An embedding of the sequent calculus. Any sequent calculus proof Π of formula A in
MELL can be translated to a derivation π : ?→ A, which we consider a proof of formula A
in calculus of structures. The basic idea is to combine all formulas found inside hypothesis
or conclusion sequents using ‹ , › connectives and combine hypothesis sequents themselves
with ‹ ; › connectives. Inference rules from the one-sided sequent calculus are of shape (a):

(a) ` A1, . . . , An . . . ` B1, . . . , Bm

` C1, . . . , Ck
(b)

(A1 , · · · , An) ; · · · ; (B1 , · · · , Bm)
...

C1 , · · · , Ck

S. Gimenez and G. Moser 321

Every specific inference rule will be encoded as a derivation of shape (b). Since derivations
associated to branches of an arborescent proof may be combined by means of structural
contexts, the tree structure of sequent-calculus proofs is then easily embedded inside a
sequential derivation.

The encoding of individual rules goes as follows (whenever Γ or ∆ is used to denote a
disjunction of formulas in sequents, γ or δ denotes the same disjunction in structures):

Multiplicatives

` Γ, A ` B,∆
` Γ, A⊗B,∆

tensor 7→
(γ , A) ; (B , δ)

switch(×2)
γ , (A ; B) , δ

− ,tensor� ,−
γ , A⊗B , δ

` 1
one 7→ ?

one�
1

` A,B,Γ
` A`B,Γ

par 7→ A , B , γ
par� ,−

A`B , γ

` Γ
` ⊥,Γ

bottom 7→ γ
bottom� ,−

⊥ , γ

Identities

` A,A⊥
axiom 7→ ?

axiom
A , A⊥

` A,Γ ` A⊥,∆
` Γ,∆

cut 7→
(γ , A) ; (A⊥ , δ)

switch(×2)
γ , (A ; A⊥) , δ

− ,cut ,−
γ , δ

Exponentials

` Γ
` ?A,Γ

weakening 7→
γ

erase� ,−
♦A , γ

why-not� ,−
?A , γ

` ?A, ?A,Γ
` ?A,Γ

contraction 7→

?A , ?A , γ
of-course� ,of-course� ,−

♦A , ♦A , γ
duplicate� ,−

♦A , γ
why-not� ,−

?A , γ

` A,Γ
` ?A,Γ

dereliction 7→
A , γ

open� ,−
♦A , γ

why-not� ,−
?A , γ

` ??A,Γ
` ?A,Γ

digging 7→

??A , γ
of-course� ,−

♦?A , γ
♦of-course� ,−

♦♦A , γ
nest� ,−

♦A , γ
why-not� ,−

?A , γ

Last, we give an encoding of functorial promotion; any non-functorial promotion can as
usual be encoded as a composition of one functorial promotion and diggings. A functorial
promotion is encoded in one step together with the whole proof of its premise Π. Assuming
(inductively) that Π 7→ π, the promoted branch is encoded as follows:

CSL’13

322 The Structure of Interaction

` A,B1, . . . , Bn
Π

` !A, ?B1, . . . , ?Bn
functorial-
promotion

7→

?
@π

@(A , B1 , · · · , Bn)
select

@A , ♦(B1 , · · · , Bn)
− ,merge(×n)

@A , ♦B1 , · · · , ♦Bn
of-course� ,why-not� , ··· ,why-not�

!A , ?B1 , · · · , ?Bn

I Lemma 2.1. A linear-logic formula A admits a proof Π in the standard sequent-calculus-
style presentation of MELL if and only if there exists a derivation π : ?→ A in the present
calculus of structures.

Proof. One direction follows directly from the provided encoding. For the other direction,
one can reuse the (simple) inductive argument in [16]. J

Provability-wise this system is also equivalent to previous calculus of structure systems
for linear logic which were studied by Straßburger [16].

3 The Underlying Computational Model

Translation from structures to interaction nets. Any derivation π : σ → τ projects into
a net, as shown in (a):

(a) N

A1 ... An

B1 ... Bm

(b)
N1

N2

A1 ... An

B1 ... Bm

Input wires are typed with formulas A1, . . . , An found in σ and output wires are typed
with formulas B1, . . . , Bm found in τ . The composition of any two derivations π1 : σ → ω

and π2 : ω → τ , whose respective projections are assumed to be N1 and N2, projects as (b).
Computational rules are translated by single-cell nets, as described below. These rules

may be used inside structural contexts, in which case one wire has to be added to their
translations for every formula that appears in the context.

A ; B
tensor�

A⊗B
7→ ⊗

A ⊗ B

A B

?
one�

1
7→

1

1

A`B
tensor�

A , B
7→

⊗

A ` B

A B

⊥
one�

◦
7→

1

⊥

A , B
par�

A`B
7→ `

A ` B

A B

◦
bottom�

⊥
7→

⊥

⊥

S. Gimenez and G. Moser 323

A⊗B
par�

A ; B
7→

`

A ⊗ B

A B

1
bottom�

?
7→

⊥

1

We use a special notation for exponential cells, to distinguish them from standard derel-
iction (and co-dereliction) notation. A special marker is added to ports which were originally
typed with a structural exponential connective.

@A
of-course�

!A
7→ !

A

!A

♦A
why-not�

?A
7→ ?

A

?A

?A
of-course�

♦A
7→ !

?A

A

!A
why-not�

@A
7→ ?

!A

A

Rules from the identity fragment allow reversing the direction of wires:

?
axiom

σ⊥ , σ
7→ ︸ ︷︷ ︸

σ⊥
︸ ︷︷ ︸

σ

σ ; σ⊥
cut

◦
7→

σ︷ ︸︸ ︷ σ⊥︷ ︸︸ ︷

Other core structural rules are simple wirings that reflect implicit permutations of for-
mulas. For example:

τ ; σ
id

σ ; τ
7→

τ︷ ︸︸ ︷ σ︷ ︸︸ ︷
︸ ︷︷ ︸

σ
︸ ︷︷ ︸

τ

(σ , τ) ; ω
switch

(σ ; ω) , τ
7→

σ︷ ︸︸ ︷ τ︷ ︸︸ ︷ ω︷ ︸︸ ︷
︸ ︷︷ ︸

σ
︸ ︷︷ ︸

ω
︸ ︷︷ ︸

τ

Only the translation of administrative rules duplicate, erase, open and nest requires
particular cells, which are indexed by the number k of structural exponential connectives
these derivation rules are applied beneath:

♦ω , ♦ω
duplicate�

♦ω
7→ δk δk δk

ω︷ ︸︸ ︷ ω︷ ︸︸ ︷

︸ ︷︷ ︸
ω

◦
erase�

♦ω
7→

εk εk εk

︸ ︷︷ ︸
ω

CSL’13

324 The Structure of Interaction

ω
open�

♦ω
7→ ok ok ok

ω︷ ︸︸ ︷

︸ ︷︷ ︸
ω

♦♦ω
nest�

♦ω
7→ ιk ιk ιk

ω︷ ︸︸ ︷

︸ ︷︷ ︸
ω

All structural connectives are lost during the projection. Formulas that appear inside
structures can however be used to label wires in accordance with traditional “shallow” typing
practices in interaction nets. Derivations appear as an “enriched” form of typing for nets
and expose additional information about their structure.

A reduction for the interaction nets system we thus obtained could be defined directly and
would be very similar to sharing graphs’ reduction. The choice of an appropriate reduction
rule when two δ-cells (which correspond to “fan” cells in sharing-graphs terminology) interact
would rely on their assigned indexes, which are in fact the only piece of data extracted from
the structure of nets that is really needed for computation purposes. But, more conveniently,
all the necessary reduction rules can be enriched with structure and written within the deep-
inference framework itself, as presented in Section 4. In particular, this automatically ensures
the preservation of “enriched” type information after every reduction step.

Type systems for specialised interaction nets. Interaction nets from Example 1.1 can
similarly be assigned a type system. This system is simple in the sense that concatenation
of difference lists does not require duplication of data. Typing will therefore in this case
not rely on structural exponential connectives. Adapting [11], it can be enriched with the
following structure (where dlist , list and int are used as base types):

dlist
unbd�

¯list , list
dlist

d-cat�
dlist , ¯dlist

¯list , list
bind�

dlist
int ; list

cons�
list

?
n�

int

The initial net from our example types as follows:

?
axiom ;axiom

(¯list , list) ; (¯list , list)
(− ,cons_2�);(− ,cons_4�)

(¯list , list) ; (¯list , list)
(− ,cons_1�);(− ,cons_3�)

(¯list , list) ; (¯list , list)
bind� ;bind�

dlist ; dlist
d-cat� ;−

(dlist , ¯dlist) ; dlist
switch

dlist , (¯dlist ; dlist)
− ;cut

dlist

where:

list
cons_n�

list
:=

list
n� ;−

int ; list
cons�

list

Projections of derivations built with the multiplicative structural fragment and the above-
provided five rules are correctly built, meaning they are subnets of nets standardly considered
as valid. Moreover, it can be shown that any valid net accepts such a derivation.

The fact that reduction preserves correctness of nets is automatically deduced from the
fact that known reduction rules for this system of interaction nets can be enriched with

S. Gimenez and G. Moser 325

structure as well. For example, the first reduction rule types as follows:

¯list , list
bind�

dlist
d-cat�

dlist , ¯dlist

−→

¯list , list
− ;axiom

(¯list , list) ; (¯list , list)
switch(×2)¯list , list , (list ; ¯list)

bind� ,unbd�
dlist , ¯dlist

4 Reduction within the Deep-Inference Formalism

Considering Curry–Howard correspondences between natural-deduction proof formalisms
and several λ-calculus variants, it is natural to understand introduction rules as data con-
structions and elimination rules as data deconstructions; also to notice that computation
arises from the interaction of the former with the latter.

Computation steps. Reduction can be defined in a similar fashion within our calculus by
solving every potential interaction between an introduction (a downward-oriented rule) and
a matching elimination (an upward-oriented rule) according to rewriting rules of this shape:

σ
�

ω
�

τ

−→
σ
...
τ

In particular, interfaces (hypothesis and conclusion) of derivations are preserved during
reduction, which means that computation can be performed deep inside a structural context
as well as inside a derivation context.

Our system for linear logic includes the following simple computation steps (symmetric
variants are, and will always be, omitted):

?
one�

1
bottom�

?

−→ ?
id

?

A ; B
tensor�

A⊗B
par�

A ; B

−→ A ; B
id

A ; B

@A
of-course�

!A
why-not�

@A

−→ @A
id

@A

Administrative reduction steps. In order to concretise any potential interaction between
two computational rules, we will force introduction rules downwards and elimination rules
upwards, relying on a few reduction rules which are described hereafter and which are to be
considered additionally to commutations already assumed by the equivalence on derivations.

First, we explicit direct interactions of administrative deduction rules with merge:

@σ ; @τ
merge

@(σ ; τ)
erase�

?

−→ @σ ; @τ
erase� ;erase�

?

CSL’13

326 The Structure of Interaction

@σ ; @τ
merge

@(σ ; τ)
duplicate�

@(σ ; τ) ; @(σ ; τ)
−→

@σ ; @τ
duplicate� ;duplicate�

@σ ; @σ ; @τ ; @τ
id

@σ ; @τ ; @σ ; @τ
merge ;merge

@(σ ; τ) ; @(σ ; τ)

@σ ; @τ
merge

@(σ ; τ)
open�

σ ; τ

−→ @σ ; @τ
open� ;open�

σ ; τ

@σ ; @τ
merge

@(σ ; τ)
nest�

@@(σ ; τ)
−→

@σ ; @τ
nest� ;nest�

@@σ ; @@τ
merge

@(@σ ; @τ)
@merge

@@(σ ; τ)

Remaining administrative steps take care of promoted content found under exponential
contexts. We use the symbol ρ̌ : σ → τ to range over blocks of several structural rules whose
projections as nets do not link together two inputs with a wire (for instance a single cut rule
is excluded) or to range over a single introduction rule. Labels @ρ̌ used in left-hand sides
of the following reduction steps denote any such deduction pattern used in a context that
admits a box connective as top-level connective:

@σ
@ρ̌

@τ
erase�

?

−→ @σ
erase�

?

@σ
@ρ̌

@τ
duplicate�

@τ ; @τ

−→
@σ

duplicate�
@σ ; @σ

@ρ̌ ;@ρ̌
@τ ; @τ

@σ
@ρ̌

@τ
open�

τ

−→
@σ

open�
σ

ρ̌

τ

@σ
@ρ̌

@τ
nest�

@@τ

−→
@σ

nest�
@@σ

@@ρ̌
@@τ

When σ = ?, the above reduction steps applied to blocks of core structural rules corres-
pond, in the interaction-net formalism, to final steps of administrative reductions performed
on nets that are purely made of wires.

Normal forms. A derivation in normal form is a derivation which can be written π̂ · π̄ · π̌,
where π̂, π̄ and π̌ respectively contain eliminations, core structural rules and introductions
only (all other configurations can be reduced).
I Remark. Although potential interaction between rules axiom and cut may be considered
an artefact (because it leaves the underlying computation model unaffected, wirings are
normal forms in interaction nets), we have reasons to believe they could be substituted
with oriented variants axiom� and cut� to induce a call for further-simplified derivations.
Those two rules were however left in the core structural fragment as we unfortunately do not
know yet how to properly resolve those interactions when other structural rules interpose.
For example, in the following simple case, reduction is possible given that both hand sides
project to the same net:

ω
− ;axiom�

ω ; (ω⊥ , ω)
switch

(ω ; ω⊥) , ω
cut� ,−

ω

−→ ω
id

ω

S. Gimenez and G. Moser 327

But generalisation seems difficult and it would require introduction of additional core struc-
tural rules, would we ever want to perform the reduction through local steps. Specifically,
the following pairs (and their symmetric variants) cannot be commuted directly:

ω ; (ω⊥ , τ)
switch

(ω ; ω⊥) , τ
cut� ,−

τ

@ω ; @ω⊥
merge

@(ω ; ω⊥)
@cut�

◦

Daimons. For technical purposes, we introduce a new pair of basic deduction rules used
to wrap up computations, together with an associated computation residual. Those may be
understood computationally as an input/output mechanism.

?
daimon�

τ

σ
daimon�

◦
?

done
◦

They obviously break the consistency of the logic and are therefore not expected to be
found in any acceptable proof. They are only used as a tool to prove normalisation of our
system. Reduction-wise, daimons “collect” interacting rules as follows:

σ
ρ̌

τ
daimon�

◦

−→ σ
daimon�

◦

?
daimon�

ω
daimon�

◦

−→ ?
done

◦

Ultimately, given any derivation π : σ → τ , if the reduction process terminates, daimon�·
π · daimon� is expected to reduce to done, a normal form which marks the completion of
the evaluation.

Strong confluence. Notice that in this system, redexes for administrative reductions may
overlap with one another (for example, a single duplication or a daimon rule may have
distinct interactions with each of several rules that commute), however, just like in the
interaction-net formalism, peaks can be joined immediately and this system therefore enjoys
the diamond property as well. In such a strong confluence setting, existence of a reduction
path from a given derivation to a normal form (weak normalisation property) is equivalent
to all rewriting paths from this derivation leading to a normal form (strong normalisation
property). The normal form is moreover unique.

I Lemma 4.1. Assuming π : ?→ ω admits π′ as normal form:
@π · duplicate� reduces to normal form @π′ ; @π′

@π · erase� reduces to normal form id?
@π · open� reduces to normal form π′

@π · nest� reduces to normal form @@π′

Proof. Inner reduction of π is followed by successive reduction steps on π′ which, as a
normal form, can be written π̄ · π̌, where π̄ : ? → σ contains core structural rules only and
π̌ : σ → ω contains introduction rules only. Introduction rules are handled inductively. The
final reduction against π̄ is an instance of an administrative reduction step applied to a
block of core structural rules without hypothesis formulas. J

CSL’13

328 The Structure of Interaction

5 An Extensible Normalisation Proof via the Reducibility Technique

Let O be the set of normalisable derivations. A set of derivations from ? to ω is called
an ω-initialiser set and a set of derivations from ω to ◦ is called an ω-finaliser set. The
orthogonal of a given ω-initialiser set I is the ω-finaliser set defined as follows:

I∨ := {ψ : ω → ◦ | ∀π ∈ I, π · ψ ∈ O }

Symmetrically, to any ω-finaliser set F , we associate an orthogonal ω-initialiser set F∧:

F∧ := {φ : ?→ ω | ∀π ∈ F , φ · π ∈ O }

These definitions come with the following properties:

I∨∧∨ = I∨ F∧∨∧ = F∧

I ⊆ I∨∧ F ⊆ F∧∨

By definition, an ω-initialiser behaviour is an ω-initialiser set I such that I = I∨∧, and
an ω-finaliser behaviour is an ω-finaliser set F such that F = F∧∨. Initialiser candidates
bωc and finaliser candidates dωe are respectively ω-initialiser and ω-finaliser behaviours
which are defined inductively, altogether, over ω. Hereafter, we provide inductive definition
bodies for initialiser candidates in the case of top-level positive connectives.

Structural layers

b?c := {daimon� }∨∧ bσ1 ; σ2c := {π1 ; π2 | π1 ∈ bσ1c, π2 ∈ bσ2c }∨∧

b@σc := {@π | π ∈ bσc }∨∧

Computational layers

b1c := {π · one� | π ∈ b?c }∨∧ bA⊗Bc := {π · tensor� | π ∈ bA ; Bc }∨∧

b!Ac := {π · of-course� | π ∈ bAc }∨∧

Base types

bαc := {daimon� }∨∧

Finaliser candidates definitions for negative connectives (and base types) are handled
symmetrically. Initialiser candidates for negative connectives and finaliser candidates for
positive connectives are then defined as orthogonals to the former, so that bωc = dωe∧ and
dωe = bωc∨ globally holds. This inductive definition is well founded.

I Definition 5.1. A derivation π : σ → τ is said to be reducible when:

∀φ ∈ bσc, ∀ψ ∈ dτe, φ · π · ψ ∈ O

Notice that equivalently, π : σ → τ is reducible iff ∀φ ∈ bσc, φ · π ∈ bτc, or, symmetrically,
iff ∀ψ ∈ dτe, π · ψ ∈ dσe.

I Lemma 5.2. For any structure ω, candidates dωe and bωc contain normalisable nets only,
and moreover daimon� ∈ dωe and daimon� ∈ bωc.

Proof. Valid at base types, this combination of statements propagates to all structures by
induction. J

I Lemma 5.3. Every derivation is reducible.

S. Gimenez and G. Moser 329

Proof. By induction on the derivation; we address all derivation constructions separately.
The definition of reducibility being symmetric, the number of cases to consider is reduced.

Identity. Given φ ∈ bσc and ψ ∈ dσe, the derivation φ · idσ · ψ = φ · ψ normalises as a
composition of two derivations which belong to dual candidates.

Composition. Given two reducible derivations π1 : σ → ω and π2 : ω → τ , using properties
∀φ ∈ bσc, φ ·π1 ∈ bωc and ∀ψ ∈ dτe, π2 ·ψ ∈ dωe, we obtain that any derivation φ ·π1 ·π2 ·ψ
such that φ ∈ bσc and ψ ∈ dτe normalises. We have thus shown reducibility of π1 · π2.

Contexts
Conjunctions. Given reducible derivations π1 : σ1 → τ1 and π2 : σ2 → τ2, we show
that π1 ; π2 : σ1 ; σ2 → τ1 ; τ2 is reducible, written as follows: for all ψ ∈ dτ1 ; τ2e we
have (π1 ; π2) · ψ ∈ dσ1 ; σ2e. Given that dσ1 ; σ2e = {π1 ; π2 | π1 ∈ bσ1c, π2 ∈ bσ2c }∨,
according to orthogonality’s definition, this is equivalent to showing that for all φ1 ∈ bσ1c
and φ2 ∈ bσ2c we have (φ1 ; φ2) · (π1 ; π2) = (φ1 · π1) ; (φ2 · π2) ∈ bτ1 ; τ2c. This holds
by definition since by reducibility of π1 and π2 we have φ1 · π1 ∈ bτ1c and φ2 · π2 ∈ bτ2c.
Box. Given a reducible derivation π : σ → τ , we show that @π : @σ → @τ is reducible,
written as follows: for all ψ ∈ d@τe we have @π · ψ ∈ d@σe. Given that d@σe =
{@π | π ∈ bσc }∨, this is equivalent to showing that for all φ0 ∈ bσc, we have @φ0 ·@π =
@(φ0 · π) ∈ b@τc. This holds by definition since φ0 · π ∈ bτc, by reducibility of π.

Core structural rules
Axiom. We show for all φ ∈ b?c that φ ·axiom ∈ bσ⊥ , σc, or equivalently that derivation
axiom · (ψ⊥1 , ψ2) normalises for all ψ1 ∈ bσc and ψ2 ∈ dσe. This derivation equivalently
writes ψ1 · ψ2, which normalises.
Switch. We show for all φ ∈ bω ; (σ , τ)c that φ · switch ∈ b(ω ; σ) , τc, or equivalently
that switch · (ψ1 , ψ2) ∈ dω ; (σ , τ)e for all ψ1 ∈ dω ; σe and ψ2 ∈ dτe, which in turn
is equivalent to showing that (φ1 ; φ2) · switch · (ψ1 , ψ2) normalises for all φ1 ∈ bωc,
φ2 ∈ bσ , τc, ψ1 ∈ dω ; σe and ψ2 ∈ dτe. Given that φ1 : ?→ ω and ψ2 : τ → ◦, this last
derivation equivalently writes π1 · π2 where π1 = φ2 · (idσ , ψ2) and π2 = (φ1 ; idσ) · ψ1;
it normalises because π1 ∈ bσc and π2 ∈ dσe.
Merge. We show for all ψ ∈ d@(σ ; τ)e that merge · ψ ∈ d@σ ; @τe, or equivalently that:

(φ1 ; φ2) ·merge · ψ normalises for all φ1 ∈ b@σc, φ2 ∈ b@τc, ψ ∈ d@(σ ; τ)e
(φ1 ; id@τ) ·merge · ψ ∈ d@τe for all φ1 ∈ b@σc, ψ ∈ d@(σ ; τ)e
(φ1 ; @φ′2) ·merge · ψ normalises for all φ1 ∈ b@σc, φ′2 ∈ bτc, ψ ∈ d@(σ ; τ)e
(id@σ ; @φ′2) ·merge · ψ ∈ d@σe for all φ′2 ∈ bτc, ψ ∈ d@(σ ; τ)e
(@φ′1 ; @φ′2) ·merge · ψ normalises for all φ′1 ∈ bσc, φ′2 ∈ bτc, ψ ∈ d@(σ ; τ)e.

The last derivation writes @(φ′1 ; φ′2) · ψ and normalises since @(φ′1 ; φ′2) ∈ b@(σ ; τ)c.

Administrative rules
Duplicate. We show for all ψ ∈ d@σ ; @σe that duplicate� ·ψ ∈ d@σe, or equivalently that
@φ0 · duplicate� · ψ normalises for all φ0 ∈ bσc. By Lemma 4.1, this derivation reduces
to (@φ0 ; @φ0) · ψ, which normalises since @φ0 ; @φ0 ∈ b@σ ; @σc.
Erase, Open, Nest. Similar to the Duplicate case.

CSL’13

330 The Structure of Interaction

Computational rules
Tensor. We obtain φ · tensor� ∈ bA⊗Bc for all φ ∈ bA ; Bc directly from the candidate
definition. This shows reducibility of tensor� derivations.
One, Of-course. Similar to the Tensor case.
Par. Reducibility of par� holds iff for all φ ∈ bA , Bc, we have φ · par� ∈ bA ` Bc.
Unfolding the candidate definition, it suffices to show that φ ·par� · tensor� ·ψ normalises
for all ψ ∈ dA , Be. This holds because reduced derivations φ · ψ normalise.
Bottom, Why-not. Similar to the Par case. J

I Theorem 5.4. All derivations normalise.

Proof. By the previous lemma, any derivation π : σ → τ is reducible, hence daimon� · π ·
daimon� normalises and so does π. J

Discussion about modularity and possible extensions. In the present development, we
handled base types as purely abstract types which cannot be introduced or eliminated,
these could only be passed around. In practice, we may want to use base types to represent
primitive types which come together with associated primitive operations. Our develop-
ments could be extended to take those into account by adding related data constructions to
respective candidate definitions. Normalisation remains of course ultimately dependent on
primitives’ behaviour, since associated inductive cases appear in the proof. Base types can
also implement type variables used in second-order quantifiers (the reader is referred to the
original proof by Girard [4] as for how to handle these).

6 Conclusion

In this paper we have introduced a Curry–Howard correspondence between well-formed
interaction nets and a deep-inference deduction system based on multiplicative-exponential
linear logic. Linear logic itself can be expressed in the system and its computational aspects
materialise though the correspondence as a system of sharing graphs. The enriched type
system for nets that stems from this correspondence not only sheds additional light upon the
structure of multiplicatives [2], but moreover encompasses the exponential layer and could
easily be extended further.

Our approach fuses the essential properties of strong confluence (interaction nets) and
weak normalisation (via Girard’s reducibility method) to obtain a consice, modular and ex-
tensible proof of strong normalisation. However, it currently relies on a somewhat unortho-
dox notion of normal form, which does not consider interactions between identity rules. As
the sought computational interpretation is unaffected this seems to be negligible, but we
will study this peculiarity in more detail in future work.

Furthermore, we are interested in extending the method to stronger logics: additive,
second-order, inductive constructions, etc. Extensions towards differential linear logic, which
was introduced by Ehrhard and Regnier and features further symmetry [3], will also be
investigated in these studies.

References
1 Kai Brünnler. Deep inference and its normal form of derivations. In CiE, volume 3988 of

LNCS, pages 65–74, 2006.
2 Vincent Danos and Laurent Regnier. The structure of multiplicatives. Arch. Math. Logic,

28:181–203, 1989.

S. Gimenez and G. Moser 331

3 Thomas Ehrhard and Laurent Regnier. Differential interaction nets. Theor. Comput. Sci.,
364(2):166–195, 2006.

4 Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987.
5 G. Gonthier, M. Abadi, and J.-J. Lévy. The geometry of optimal lambda reduction. In

Proc. 19th POPL, pages 15–26. ACM Press, 1992.
6 Georges Gonthier, Martín Abadi, and Jean-Jacques Lévy. Linear logic without boxes. In

Proc. 7th LICS, pages 223–34, 1992.
7 S. Guerrini, S. Martini, and A. Masini. Coherence for sharing proof-nets. Theor. Com-

put. Sci., 294(3):379–409, 2003.
8 A. Guglielmi. A system of interaction and structure. ACM Trans. Comput. Log., 8(1),

2007.
9 A. Guglielmi and L. Straßburger. Non-commutativity and MELL in the calculus of struc-

tures. In Proc. 10th CSL, volume 2142 of LNCS, pages 54–68, 2001.
10 T. Gundersen, W. Heijltjes, and M. Parigo. Atomic lambda calculus – a typed lambda

calculus with explicit sharing. In Proc. 28th LICS, 2013. To appear.
11 Yves Lafont. Interaction nets. Proc. 17th POPL, pages 95–108, 1990.
12 J. Lamping. An algorithm for optimal lambda calculus reduction. In Proc. 7th POPL,

pages 16–30. ACM Press, 1990.
13 I. Mackie. Interaction nets for linear logic. Theor. Comput. Sci., 247(1-2):83–140, 2000.
14 Michele Pagani and Lorenzo Tortora de Falco. Strong normalization property for second

order linear logic. Theor. Comput. Sci., 411(2):410–444, 2010.
15 Lutz Straßburger and Alessio Guglielmi. A system of interaction and structure IV: The

exponentials and decomposition. ACM Trans. Comput. Log., 12(4):23, 2011.
16 Lutz Straßburger. MELL in the calculus of structures. Theor. Comput. Sci., 309:213–285,

2003.
17 A. Tiu. A local system for intuitionistic logic. In Proc. 13th LPAR, volume 4246 of LNCS,

pages 242–256, 2006.
18 C.P. Wadsworth. Semantics and Pragmatics of the Lambda-Calculus. PhD thesis, Univer-

sity of Oxford, 1971.

CSL’13

The Fixed-Parameter Tractability of Model
Checking Concurrent Systems ∗

Stefan Göller

LIAFA/CNRS, Paris 7, France
Universität Bremen, Fachbereich Mathematik und Informatik, Germany
goeller@informatik.uni-bremen.de

Abstract
We study the fixed-parameter complexity of model checking temporal logics on concurrent sys-
tems that are modeled as the product of finite systems and where the size of the formula is the
parameter. We distinguish between asynchronous product and synchronous product. Sometimes
it is possible to show that there is an algorithm for this with running time (

∑
i |Ti|)

O(1) · f(|ϕ|),
where the Ti are the component systems and ϕ is the formula and f is computable function, thus
model checking is fixed-parameter tractable when the size of the formula is the parameter.

In this paper we concern ourselves with the question, provided fixed-parameter tractability
is known, whether it holds for an elementary function f . Negative answers to this question are
provided for modal logic and EF logic: Depending on the mode of synchronization we show the
non-existence of such an elementary function f under different assumptions from (parameterized)
complexity theory.

1998 ACM Subject Classification F.4.1 Mathematical Logic, F.2.0 Analysis of Algorithms and
Problem Complexity: General

Keywords and phrases Model Checking, Concurrent Systems, Parameterized Complexity

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.332

1 Introduction

Model checking is one of the most successful approaches in formal verification; it asks to verify
if a given specification is satisfied in a given system [5, 2]. The computational complexity of
model checking finite systems is very well understood (beginning with the pioneer work [15]),
but model checking the modal µ-calculus is an exception: The best-known upper bound in
UP ∩ co-UP and the lower bound is P. In general it turns out that typically the source of
hardness of model checking lies in the size of the formula and not in the size of the input
system. Indeed, the complexity of model checking the modal µ-calculus lies in P for every
fixed formula. Another such famous example is model checking of linear temporal logic LTL
that is generally PSPACE-complete but which can be solved in time |T |O(1) · 2|ϕ|, where T is
the (transition) system and ϕ is the formula [12]. Measuring the complexity only in the size
of the system and not in the size of the specification is indeed justified since typically the
specification is small and the system is big.

Yet, model checking tools have to deal with a combinatorial blowup of the state space
of the input system, commonly known as the state explosion problem, that can be seen as
one of the biggest challenges in real-world problems. Different sources of explosion arise, for

∗ The research leading to these results has received funding from the European Union’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement n◦ 259454.

© Stefan Göller;
licensed under Creative Commons License CC-BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca; pp. 332–347

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.332
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

S. Göller 333

instance the number of program variables or clocks, the number of concurrently running
components, or the number of different subroutines, just to mention few of them. Technically
speaking, this can be seen that the input consists of systems T1, . . . , Td (the components), but
the actual system of interest is the product of these systems; independent on the underlying
synchronization mechanism, we refer to such systems as concurrent systems in the following.

Parameterized complexity theory allows for a fine-grained complexity investigation of
problems where certain sizes of the input are declared as a parameter. A central class in
this theory is the class FPT consisting of all problems that can be solved in time nO(1) · f(k)
for some computable function f , where n is the input size and k is the parameter. For
instance, the above-mentioned model checking problem of LTL is in FPT when the size of
the formula is the parameter. Although their exact definitions are not relevant here, we list
the parameterized complexity classes that are subject of this paper

FPT ⊆ AW[∗] ⊆ AW[SAT],

where none of the inclusions is known but believed to be strict. The class AW[∗] can be
seen as fixed parameter tractability plus parameter bounded alternating nondeterminism
[4] and AW[SAT] is the set of all problems that are (FPT)-reducible to a variant of QBF,
where quantification is restricted to a partition of the variables and in which the number of
variables that are assigned to true in each quantifier block plus the number of partitions of
the variables is the parameter. We refer to [8] for more details on parameterized complexity
theory.

The parameterized complexity of model checking synchronous concurrent systems has
intensively been studied by Demri, Laroussinie and Schnoebelen [7]. Among their results it is
shown that already very simple questions like reachability or model checking modal logic are
not fixed-parameter tractable when the number of components and the size of the formula
is the parameter, respectively. More precisely in [7] it is shown that (i) already when the
number of components d is the parameter it is AWT[SAT]-hard to decide reachability of a
synchronous product of d transition systems, already when transitions can only synchronize
over a binary alphabet and (ii) when the size of the formula is the parameter, model checking
the synchronous product of systems with respect to modal logic is AW[∗]-complete. Since the
above-mentioned parameterized complexity classes are believed to be strict, we have that (i)
and (ii) show that already these two basic model checking problems are not fixed-parameter
tractable unless FPT coincides with them.

It is important to mention that in [7] the technical reason for AW[∗]-hardness for model
checking modal logic on the synchronous product lies in the fact the transitions can synchronize
over a transition alphabet that is independent of the size of the formula. Thus, the question
arises whether fixed-parameter tractability can be gained when the transition alphabet is
bounded by the size of the formula (which is natural if one considers multi-modal logic, for
instance). Too, the question arises whether fixed-parameter tractability can be gained when
we restrict the synchronization mechanism to be the asynchronous product.

Unfortunately still, in both cases under the assumption FPT 6= AWT[SAT], already for
powerful branching-time logics like CTL, the answer to both questions is negative since
reachability of synchronous product [7] can easily be encoded. However, the compositional
method à la Feferman and Vaught, which has recently been developed for the fragments
modal logic and EF logic by Rabinovich [14], gives positive answers to the above questions: In
certain cases, one can show that for model checking the product of given systems T1, . . . , Td
against a given formula ϕ there is an algorithm with running time (

∑
i |Ti|)O(1) · f(|ϕ|) for

a primitive recursive function f , thus being fixed-parameter tractable. Unfortunately, the

CSL’13

334 The Fixed-Parameter Tractability of Model Checking Concurrent Systems

compositional method yields an algorithm whose running time is bounded by a nonelementary
function f ; moreover this is not avoidable as recently proven [11, 10].

In this paper we concern ourselves with the question, provided fixed-parameter tractability
for model checking concurrent systems is known, whether one can hope for any algorithm
witnessing fixed-parameter tractability with an elementarily growing function f . The main
results of this paper answer this question negatively under different assumptions from
(parameterized) complexity theory depending on the logic and the synchronization mode
under consideration.

Our contribution. We revisit briefly that the compositional method allows to model check
given systems T1, . . . , Td and a formula ϕ in time (

∑
i |Ti|)O(1) · f(|ϕ|) in case either (i) ϕ is

a formula of modal logic and the asynchronous product of the T1, . . . , Td is considered, (ii) ϕ
is a formula of EF logic and the asynchronous product of the T1, . . . , Td is considered, or (iii)
ϕ is a formula of modal logic and the synchronous product of the T1, . . . , Td is considered.
For (i) we show that there is no algorithm for this that runs in time (

∑
i |Ti|)O(1) · f(|ϕ|)

for any elementary function f unless FPT = AW[∗]. For (ii) and (iii) we prove that there is
no algorithm for this that runs in time (

∑
i |Ti|)O(1) · f(|ϕ|) for any elementary function f

unless P = NP. We remark that the assumption FPT 6= AW[∗] is a stronger assumption than
P 6= NP. The overall picture of the fixed-parameter tractability of model checking modal
logic and EF logic on concurrent systems is summarized in Table 1.

Related work. The parameterized complexity of various problems in formal verification
has been investigated in [7, 13] and we refer to the reference therein and to [8] for more
information on parameterized complexity. The parameterized complexity of model checking
first-order logic and monadic second-order logic over words has been studied in [9] and in fact
we give a reduction from model checking first-order logic over words to model checking modal
logic on the asynchronous product of systems in this paper. The parameterized complexity
of satisfiability of modal logic under various parameters of the input formulas has been
investigated in [1].

Organization of this paper. Preliminaries, the compositional method and upper bounds
are content of Section 2. Section 3 provides technical tools that allow us to compare trees
that encode large numbers with small formulas. In Section 4 we discuss the proof strategies of
our main results. In Section 5 we show that fixed-parameter tractability is not possible with
an elementary running time in the size of the formula for model checking modal logic on the
asynchronous product unless FPT = AW[∗]. We show in Section 6 that for model checking
modal logic on the synchronous product and for model checking EF on the asynchronous
product fixed-parameter tractability is not possible with an elementary running time in the
size of the formula unless P = NP. We conclude in Section 7. Missing proofs due to space
restrictions can be found in the appendix.

2 Preliminaries

The exact definitions of the parameterized complexity classes that appear in this paper
are not important, we refer the reader to [8] for more details. For two integers i and j,
we define the interval [i, j] def= {i, i + 1, . . . , j}. By N def= {0, 1, 2, . . . , } we denote the set of
non-negative integers. The tower function Tower : N×N→ N is defined as Tower(0, n) def= n

and Tower(` + 1, n) def= 2Tower(`,n) for each ` ∈ N and each n ∈ N. We also introduce the
tower function in one parameter as Tower(`) def= Tower(`, 2) for each ` ∈ N. Define the

S. Göller 335

Table 1 The fixed-parameter tractability of model checking the product of finite systems T1, . . . , Td

against a formula ϕ of modal logic or of EF logic, where |ϕ| is the parameter.

Asynchronous product (
⊗

) Synchronous Product (
∏

)

ML upper
(
∑

i∈[1,d] |Ti|)O(1) · f(|ϕ|) for some
primitive recursive f by Theorem 2

([14])

(
∑

i∈[1,d] |Ti|)O(1) · f(|ϕ|) for some
primitive recursive f by Theorem 2

([14])

lower
not in (

∑
i∈[1,d] |Ti|)O(1) · f(|ϕ|)

for any elementary f unless
FPT = AW[∗] by Theorem 8

not in (
∑

i∈[1,d] |Ti|)O(1) · f(|ϕ|)
for any elementary f unless

P = NP by Theorem 9

EF upper
(
∑

i∈[1,d] |Ti|)O(1) · f(|ϕ|) for some
primitive recursive f by Theorem 2

([14])

lower
not in (

∑
i∈[1,d] |Ti|)O(1) · f(|ϕ|)

for any elementary f unless
P = NP by Theorem 10

not in FPT unless
FPT = AW[SAT] by Theorem 3

(Theorem 5.1 in [7])

inverse function log∗ as log∗(n) def= min{` ∈ N | Tower(`) ≥ n}. Let f, g : N → N be
functions. We say f is bounded by g if f(n) ≤ g(n) for all but finitely many n ∈ N. A
function f : N→ N is elementary if it can be formed from the successor function, addition,
subtraction, and multiplication using compositions, projections, bounded additions and
bounded multiplications (of the form

∑
z≤y g(x, z) and

∏
z≤y g(x, z)). For our purposes it

will only be important that a function f : N→ N is bounded by an elementary function if
and only if there is some ` ∈ N such that f is bounded by the function n 7→ Tower(`, n).

Throughout the paper, let us fix a countable set of atomic propositions P and a countable
set of atomic actions A. A signature is a pair (P,A), where P ⊆ P is a finite set of atomic
propositions and where A ⊆ A is a finite set of atomic actions. A transition system is a
tuple T = (S, {Sp | p ∈ P}, { a−→| a ∈ A}), where (P,A) is some signature, S is a set of states,
Sp ⊆ S is a valuation of the atomic propositions for each p ∈ P, and a−→⊆ S × S is a binary
transition relation for each a ∈ A. All transition systems that appear in this paper have
finite state sets, thus we denote by |T | def= |S|+ |P|+ |A| the size of T . A pointed transition
system is a pair (s, T), where T is a transition system and s is a state of T that we also
denote by the point of T . We sometimes write T to denote (s, T) whenever s has been fixed
from the context.

Formulas ϕ of the logic EF are given by the following grammar, where p ∈ P and a ∈ A:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈a〉ϕ | EFϕ

The size |ϕ| of a formula ϕ is inductively defined as |p| def= 1 for each p ∈ P, |¬ϕ| def= |EFϕ| def=
|〈a〉ϕ| def= |ϕ| + 1, and |ϕ1 ∧ ϕ2|

def= |ϕ1| + |ϕ2| + 1. We introduce the usual abbreviations
ϕ1 ∨ ϕ2

def= ¬(¬ϕ1 ∧ ¬ϕ2), ϕ1 → ϕ2
def= ¬ϕ1 ∨ ϕ2, ϕ1 ↔ ϕ2

def= (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1),
[a]ϕ def= ¬〈a〉¬ϕ for each a ∈ A and finally AGϕ def= ¬EF¬ϕ. (Multi-) Modal logic (ML) is the
fragment of EF, where the EF-operator does not occur. Given a signature (P,A) and an
EF-formula ϕ, we say that ϕ is defined over (P,A) if P (resp. A) contains the set of atomic
propositions (resp. atomic actions) that appear in ϕ.

Given a transition system T = (S, {Sp | p ∈ P}, { a−→| a ∈ A}), a state s ∈ S, and an
EF-formula ϕ over (P,A), we define (s, T) |= ϕ by structural induction on the formula ϕ
as follows (1) (s, T) |= p if and only if s ∈ Sp, (2) (s, T) |= ¬ϕ if and only if (s, T) 6|= ϕ,
(3) (s, T) |= ϕ1 ∧ ϕ2 if and only if (s, T) |= ϕ1 and (s, T) |= ϕ2, (4) (s, T) |= 〈a〉ϕ if and

CSL’13

336 The Fixed-Parameter Tractability of Model Checking Concurrent Systems

only if (s′, T) |= ϕ for some s′ ∈ S with s a−→ s′ and finally (5) (s, T) |= EFϕ if and only if
(s′, T) |= ϕ for some s′ ∈ S with s→∗ s′, where →=

⋃
a∈A

a−→.

Products and the compositional method. Let d ≥ 1 and let us assume a transition system
Ti = (Si, {Sp,i | p ∈ Pi}, {

a−→i| a ∈ Ai}) over the signature (Pi,Ai) for each i ∈ [1, d], where Pi
and Pj (resp. Ai and Aj) could possibly have non-empty intersection for different i, j ∈ [1, d].
Assume P to be the union of all the Pi and assume A to be the union of all the Ai.

We define their asynchronous product as
⊗

i∈[1,d] Ti
def= (S, {Sp | p ∈ P}, { a−→| a ∈ A}),

where S def=
∏
i∈[1,d] Si, for each (s1, . . . , sd) ∈ S and each p ∈ P we have (s1, . . . , sd) ∈ Sp if

and only if si ∈ Sp,i for some i ∈ [1, d], for each (s1, . . . , sd), (s′1, . . . , s′d) ∈ S and each a ∈ A
we have (s1, . . . , sd)

a−→ (s′1, . . . , s′d) if and only if there is some i ∈ [1, d] such that si
a−→i s

′
i

in Ti and sj = s′j for each j ∈ [1, d] with j 6= i.
We define their synchronous product1 as

∏
i∈[1,d] Ti

def= (S, {Sp | p ∈ P}, { a−→| a ∈ A}),
where S and the Sp are defined as for the asynchronous product, but where the transition
relation is defined as follows: For each (s1, . . . , sd), (s′1, . . . , s′d) ∈ S and each a ∈ A we have
(s1, . . . , sd)

a−→ (s′1, . . . , s′d) if and only if for all i ∈ [1, d] we have si
a−→i s

′
i in Ti.

Let us state the compositional method for ML and EF as proven in [14]. Here, we state
it for EF logic and the asynchronous product. Also note that in [14] it has been proven for
more general interpretations of the atomic propositions and more general products.

I Theorem 1 ([14],Theorem 21). The following is primitive recursive:
INPUT: An EF formula ϕ over (P,A), where P =

⋃d
i=1 Pi and A =

⋃d
i=1 Ai for a d ≥ 1.

OUTPUT: A tuple (Ψ1, . . . ,Ψd, β), where Ψi = {ψji | j ∈ Ji} is a finite set of EF formulas
over (Pi,Ai), and a boolean formula β with variables from X

def= {xji | i ∈ [1, d], j ∈ Ji} such
that for every transition system Ti = (Si, {Sp,i | p ∈ Pi}, {

a−→i| a ∈ Ai}) over (Pi,Ai) and
every state si of Ti (i ∈ [1, d]) it holds:(

〈s1, . . . , sd〉,
d⊗
i=1
Ti

)
|= ϕ ⇐⇒ µ |= β

Here, µ : X → {0, 1} is defined by µ(xji) = 1 if and only if (si, Ti) |= ψji . Moreover, we have
|D(ϕ, d)| ≤ g(d+|ϕ|) for some primitive recursive function g, where D(ϕ, d) def= (Ψ1, . . . ,Ψd, β)
is the decomposition of ϕ and its size is |D(ϕ, d)| def= |β|+

∑
i∈[1,d]

∑
j∈Ji
|ψji |.

I Remark. In [14] an analog of Theorem 1 has also been shown for the following cases: (i) ϕ
and each formula in

⋃
i∈[1,d] Ψi is an ML formula, or (ii) ϕ and each formula in

⋃
i∈[1,d] Ψi is

an ML formula and the asynchronous product
⊗

is replaced by the synchronous product∏
. Moreover, in [14] it is shown that for EF and the synchronous product such desirable

decompositions as stated in Theorem 1 do not exist in general (even when the computability
requirement is dropped).

Since model checking of EF and ML is decidable in polynomial time, Theorem 1 (whenever
applicable) delivers a running time for model checking the product of finite systems in time

(
∑
i∈[1,d]

|Ti|)O(1) · f(d+ |ϕ|)

1 also known as strong synchronization, e.g. [7]

S. Göller 337

for a primitive recursive function f and is thus fixed-parameter tractable when d + |ϕ| is
the parameter. The following theorem states that it is even fixed-parameter tractable when
only |ϕ| is the parameter. Although not explictly stated in [14] (Corollary 22 of [14] requires
d+ |ϕ| to be the parameter), its proof can be deduced from a refined analysis of Theorem 21
in [14] by using the notions of generalized product that were defined in [14].

I Theorem 2 (A consequence from [14]). Let op ∈ {
⊗
,
∏
} either stand for the asynchronous

or synchronous product. Given a formula ϕ over (P,A) (where P =
⋃d
i=1 Pi and A =

⋃d
i=1 Ai)

and transition systems (Ti)i∈[1,d] and a state s of opdi=1Ti, one can decide
(
s, opdi=1Ti

)
|= ϕ

in time (
∑
i∈[1,d] |Ti|)O(1) · f(|ϕ|) for some primitive recursive function f in either of the

following cases: (i) ϕ is some ML formula and op =
∏
, or (ii) ϕ is some ML formula and

op =
⊗

, or (iii) ϕ is some EF formula and op =
⊗

.

The question of fixed-parameter tractability of model checking EF for synchronous product
has already been answered negatively for reachability in [7] (unless FPT = AWT[SAT]) and
moreover reflects the non-decomposability of EF for synchronous product as mentioned in
the end of Remark 2.

I Theorem 3 (Theorem 5.1 in [7]). Given transition systems T1, . . . , Td over a common
signature (A,P) and two states s, t in

∏d
i=1 Ti, there is no algorithm that decides s→∗ t in∏d

i=1 Ti in time (
∑d
i=1 |Ti|)O(1) ·f(d) for any computable function f unless FPT = AWT[SAT].

3 Encoding huge numbers via sibling-ordered trees

In this section we show how one can represent numbers of size O(n) by sibling-ordered trees
of size O(n) of depth O(log∗(n)).

The idea of using wide trees of small height for proving nonelementary lower bounds has
already been considered before in the literature: such wide trees, as discussed in [8], have
been used in [1, 6, 9] to prove nonelementary lower bounds for parameterized complexity
of satisfiability for modal logic, nonelementary lower bounds on the sizes of several normal
forms of first-order logic formulas, and for the parameterized complexity of model checking
first-order logic. More discussion on the particular choice of our sibling-ordered trees follows
in Section 4.

In the following, let P`
def= {bi | i ∈ [0, `+ 1]} and A`

def= {ai | i ∈ [0, `]} ∪ {⇒,⇐} for each
` ∈ N. For each ` ∈ N a pointed `-sotree (for sibling-ordered tree) that is either 0-pointed (i.e.
the point does not satisfy proposition b`+1) or 1-pointed (i.e. the point satisfies proposition
b`+1) and that has a value from [0,Tower(`)− 1] is a pointed transition system over (P`,A`)
that is defined inductively on `:

Base case when ` = 0: A pointed 0-sotree is one of the following four pointed transition
systems each with point • over (P0,A0):

•

•

The 0-pointed 0-sotree

of value 0.

a0

•

•b0

a0

The 0-pointed 0-sotree

of value 1.

•b1

•

a0

The 1-pointed 0-sotree

of value 0.

•b1

•b0

a0

The 1-pointed 0-sotree

of value 1.

CSL’13

338 The Fixed-Parameter Tractability of Model Checking Concurrent Systems

Inductive step for ` + 1: A pointed (` + 1)-sotree is a pointed transition system
(r`+1, T`+1) over (P`+1,A`+1) that can be obtained as follows:

(1) The point r`+1 does not satisfy any of the propositions b0, . . . , b`.
(2) The states of T`+1 are obtained by the union of {r`+1} and for each j ∈ [0,Tower(`)−1]

exactly one of the possible two `-sotrees of value j (either 0-pointed or 1-pointed), let
us denote it by (r`(j), T`(j)).

(3) Add the a`-labeled transitions {(r`+1, r`(j)) | j ∈ [0,Tower(`)− 1]} to T`+1.
(4) Add the ⇐-labeled transitions {(r`(j), r`(j′)) | j, j′ ∈ [0,Tower(`)− 1], j > j′} and the

⇒-labeled transitions {(r`(j), r`(j′)) | j, j′ ∈ [0,Tower(`)− 1], j < j′} between siblings.
(5) Define the value of (r`+1, T`+1) as

val(r`+1, T`+1) def=
∑{

2j | j ∈ [0,Tower(`)− 1] : (r`(j), T`(j)) is 1-pointed
}
.

Note that val(r`+1, T`+1) ∈ [0,Tower(`+ 1)− 1].
(6) In case r`+1 satisfies b`+1 we say (r`+1, T`+1) is 1-pointed, otherwise we say (r`+1, T`+1)

is 0-pointed.
Again recall that, up to isomorphism, for each j ∈ [0,Tower(`+ 1)− 1] there are exactly
two `+ 1-sotrees of value j, one being 0-pointed and one being 1-pointed.

Figure 1 shows an example 2-sotree. Let size(`) denote the number of nodes of each
`-sotree. Note size(`) can be expressed by the recurrence

size(0) = 2 and size(`+ 1) = Tower(`) · size(`) + 1.

I Lemma 4. For each ` ≥ 3 we have size(`+ 1) ≤ Tower(`)2.

Recall that the value of each `-sotree lies in the interval [0,Tower(`)− 1] and for every value
in this interval there is an `-sotree with this value. In the following, for each j, ` ∈ N with
j ∈ [0,Tower(`)− 1] we define Υ`(j)

def= (r`(j), T`(j)) to be the (unique) 0-pointed `-sotree of
value j.

Next, we aim at defining formulas that allow us to compare the values of `-sotrees with
small formulas.

Let (s, T) be a pointed transition system with T = (S, {Sp | p ∈ P}, { a−→| a ∈ A}) and let
α be some label. We define the asynchronous α-extension of T to be the pointed transition
system with point s over the signature ({α} × P, {α} × A) that can be obtained from T
by setting S(α,p)

def= Sp and by setting (α,a)−−−→def= a−→. Likewise, we define the synchronous α-
extension of T to be the pointed transition system with point s over the signature ({α}×P,A)
that can be obtained from T by setting S(α,p)

def= Sp and keeping a−→ as it is. The value val of
each asynchronous/synchronous α-extension of a pointed `-sotree (r, T) is inherited from
val(r, T).

The following lemma states that one can construct ML formulas of size O(log∗(n)) that
allow us to compare the value of the asynchronous product of an asynchronous α-extension
and an asynchronous β-extension of `-sotrees of value O(n). The formulas are inspired from
[10], but, as will be discussed in Section 4, we require the additional transitions ⇐ and ⇒
for expressing order.

I Lemma 5 (Formulas for the asynchronous product of `-sotrees). For each ` ∈ N and labels
α, β there are formulas (eq⊗` (α, β))`∈N =(eq⊗`)`∈N and (less⊗` (α, β))`∈N = (less⊗`)`∈N, each
over the signature ({α, β}×P`, {α, β}×A`) and each of size 2O(`) such that the asynchronous
α-extension (r, T) of each pointed `-sotree the asynchronous β-extension (r′, T ′) of each
pointed `-sotree the following holds:

S. Göller 339

•

•

a0

•

b0•

a0

•
a1 a1

b1•

•

a0

•

b0•

a0

•
a1 a1

•

•

a0

b1•

b0•

a0

b2•
a1 a1

b1•

•

a0

b1•

b0•

a0

b2•
a1 a1

b3 •
a2 a2

a2 a2

Figure 1 The 1-pointed 2-sotree of value 12, where the horizontal transitions ⇒ and ⇐ between
siblings are omitted.

(1) (r, T)⊗ (r′, T ′) |= eq⊗` if and only if val(r, T) = val(r′, T ′),
(2) (r, T)⊗ (r′, T ′) |= less⊗` if and only if val(r, T) < val(r′, T ′), and
(3) (r, T)⊗ (r′, T ′) |= succ⊗` if and only if val(r, T) + 1 = val(r′, T ′).

Proof. We define the formulas by induction on `. For the induction base ` = 0 we put:
(1) eq⊗0

def= 〈α, a0〉〈β, a0〉 ((α, b0)↔ (β, b0)).
(2,3) less⊗0

def= succ⊗0
def= 〈α, a0〉〈β, a0〉 (¬(α, b0) ∧ (β, b0)).

For the induction step, we define:

(1) eq⊗`+1
def= [α, a`+1][β, a`+1]

(
eq⊗` −→ ((α, b`)↔ (β, b`))

)
.

(2) less⊗`+1
def= 〈α, a`+1〉〈β, a`+1〉ϕ⊗`+1, where

ϕ⊗`+1
def=
(
eq⊗` ∧ ¬(α, b`) ∧ (β, b`) ∧ [α,⇒][β,⇒]

(
eq⊗` → ((α, b`)↔ (β, b`))

))
,

thus expressing that there is an i ∈ [0,Tower(`)− 1] such that the ith bit of val(r, T) is
not set, the ith bit of val(r′, T ′) is set and moreover val(r, T) and val(r′, T ′) agree on
the jth bit for all i < j ≤ Tower(`)− 1.

(3) succ⊗`+1
def= 〈α, a`+1〉〈β, a`+1〉(ϕ⊗`+1 ∧ [α,⇐](α, b`) ∧ [β,⇐]¬(β, b`)), thus expressing that

there is an i ∈ [0,Tower(`)− 1] such that the ith bit of val(r, T) is not set, the ith bit of
val(r′, T ′) is set, val(r, T) and val(r′, T ′) agree on the jth bit for all i < j ≤ Tower(`)− 1
and finally the jth bit of val(r, T) is set whereas the jth bit of val(r′, T ′) is not set for
each 0 ≤ j < i. J

Similar formulas as in Lemma 5 can be shown for the synchronous product.

I Lemma 6 (Formulas for the synchronous product of `-sotrees). For each ` ∈ N and labels
α, β there are formulas (eq×` (α, β))`∈N = (eq×`)`∈N, (succ×` (α, β))`∈N = (succ×`)`∈N, and
(less×` (α, β))`∈N = (less×`)`∈N, each over the signature ({α, β} × P`,A`) and each of size 2O(`)

such that for the synchronous α-extension (r, T) of each pointed `-sotree and the synchronous
β-extension (r′, T ′) of each pointed `-sotree the following holds:
(1) (r, T)× (r′, T ′) |= eq×` if and only if val(r, T) = val(r′, T ′),
(2) (r, T)× (r′, T ′) |= less×` if and only if val(r, T) < val(r′, T ′), and
(3) (r, T)× (r′, T ′) |= succ×` if and only if val(r, T) + 1 = val(r′, T ′).

4 Overview of the proofs

The reason for choosing our particular encoding via sibling-ordered trees from Section 3 is
that we would like to provide possibly short proofs for our main results. Let us discuss this
in more detail.

CSL’13

340 The Fixed-Parameter Tractability of Model Checking Concurrent Systems

For showing, unless FPT = AW[∗], that for given systems T1, . . . , Td and an ML formula ϕ
there is no algorithm that decides whether ϕ holds in the asynchronous product of T1, . . . , Td
and runs in time (

∑
i |Ti|)O(1) · f(|ϕ|) for any elementary function f , we reduce from model

checking first-order logic on finite words with order from [9] (which has been shown not be
decidable in time |W|O(1) · f(|ϕ|) for any elementary function unless FPT = AW[∗] in [9]).
In fact, it might be possible to prove our result directly by working with the asynchronous
product of trees from [8] but this would have involved a complicated encoding of 3-CNF
formulas as in [9] and hence result in a proof that is technically much more involved than
our current proof. Moreover it would not shed new light into the problem.

In our reduction from model checking first-order logic over words we encode each position
of the input word by one of our sibling-ordered trees (from Section 3) and present the whole
word by an asynchronous product of these sibling-ordered trees such that ML formulas of size
O(log∗(n)) can test whether two such marked trees are related by the order. For encoding
this we cannot use trees that were used in [10] for proving nonelementary lower bounds for
satisfiability checking two-dimensional modal logic since it is not at all clear how to simulate
the above-mentioned order relation between an asynchronous product between two of them
(in [10] only the successor relation was simulated with involved technical machinery).

We are able to prove under the weaker assumption P 6= NP that there is neither such
an algorithm that runs in time (

∑
i |Ti|)O(1) · f(|ϕ|) for elementary function f for model

checking ML on the synchronous product of systems nor one for model checking EF on the
asynchronous product of systems. To obtain this, one possibility could have been to reduce
from the model checking problem of monadic second-order logic over finite words (which has
been shown not to be decidable in time |W|O(1) · f(|ϕ|) for any elementary function f unless
P = NP in [9]) but for this result it turned out that a direct proof is simpler than to encode
monadic second-order quantification. We reduce from the NP-complete n× n-tiling problem.

Let us point out the crucial differences to model checking the asynchronous product
and why we are able to weaken our complexity-theoretic assumption from FPT 6= AW[∗] to
P 6= NP when considering the synchronous product. The asynchronous product of systems
T1, . . . , Td is generally also exponentially big in the input size, but the out-degree in ⊗iTi is
only polynomially bounded. When encoding the NP-hard n× n-tiling problem as instances
of model checking modal logic on the synchronous product (and thus assuming the weaker
P 6= NP assumption), the idea is to use for each of the n2 coordinates (x, y) one sibling-ordered
tree Tx,y for representing this coordinate to be colored with a tile type. Guessing one coloring
(of the exponentially many) to the tiling problem can be achieved in one step by an ML
formula in the synchronous product, whereas it would take exponentially many steps in
the asynchronous product (thus, the lower bound cannot be applied to the asynchronous
product). Hence, as mentioned above, for proving lower bounds for the asynchronous product,
we had to make a stronger complexity theoretic assumption, namely FPT 6= AW[∗].

5 Model Checking ML on the asynchronous product

In this section we prove that model checking ML for asynchronous product is not fixed-
parameter tractable with an elementary function in the size of the formula unless FPT = AW[∗].
We reduce from an orthogonal hardness result for model checking first-order logic on words
from [9].

Given a finite alphabet Σ the signature of first-order (FO) formulas for words over Σ
is (Σ, <), where each a ∈ Σ is a unary symbol (the letter predicate) and < (the order on
positions). We use the following lower bound result from model checking first-order logic on
words.

S. Göller 341

I Theorem 7 ([9]). Let f be an elementary function. Then there is no algorithm that decides
INPUT: A word W and some FO sentence ϕ each over some alphabet Σ.
QUESTION: W |= ϕ?

in time |W|O(1) · f(|ϕ|) unless FPT = AW[∗].

We can now present the main result of this section.

I Theorem 8. Let f be an elementary function. Then there is no algorithm that decides
INPUT: Transition systems T1, . . . , Td, a state s of

⊗d
i=1 Ti and an ML formula ψ.

QUESTION: (s,
⊗

i∈[1,d] Ti) |= ψ?
in time (

∑d
i=1 |Ti|)O(1) · f(|ψ|) unless FPT = AW[∗].

Proof. The idea is to show that the existence of such an elementary function f contradicts
Theorem 7. So for the sake of contradiction, let us assume that there were an elementary
function f and an algorithm that decides the model checking problem for a given ML
formula ψ and a state s in the asynchronous product of d finite systems T1, . . . , Td in time
(
∑
i∈[1,d] |Ti|)O(1) · f(|ψ|). Let us show that this algorithm can be used for model checking

FO over words. For this, let W = a0 · · · an−1, where ai ∈ Σ for each i ∈ [0, n − 1] and
let ϕ = ∃x1∀x2 · · · ∃x2k−1∀x2kψ(x1, . . . , x2k) be an FO sentence over Σ in prenex normal
form with alternating quantifiers without loss of generality. We will compute some d ≥ 1,
transition systems T1, . . . , Td, some state s of T def=

⊗d
i=1 Ti and some ML formula ψ such

that
(i) W |= ϕ if and only if (s, T) |= ψ,
(ii) d ≤ O(|ϕ|),
(iii) |Ti| ≤ |W|O(1) for each i ∈ [1, d],
(iv) |ψ| ≤ O(|ϕ|) · 2O(log∗(|W|)), and
(v) each Ti, s and ψ is computable in time |W|O(1) · g(|ϕ|) for an elementary g.
Before we show how to compute the Ti, s and ψ, let us start with the desired contradiction.
Note that an elementary computation of such Ti, s and ψ as stated above would lead to an
algorithm that decides W |= ϕ in time |W|O(1) · g(|ϕ|) (for the reduction, Point (v) from
above) plus

(
∑
i∈[1,d]

|Ti|)O(1) · f(|ψ|)

(iii),(iv)
≤ (d · |W|O(1))O(1) · f(O(|ϕ|) · 2O(log∗(|W|)))
≤ |W|O(1) · dO(1) · f(O(|ϕ|) · 2O(log∗(|W|)))
(ii)
≤ |W|O(1) · |ϕ|O(1) · f(O(|ϕ|) · 2O(log∗(|W|)))

by the binomial theorem. Furthermore, it is easy to see that there exist elementary functions
f1, f2 such that the latter is bounded by

|W|O(1) · f1(|ϕ|) · f2(2O(| log∗(|W|))) ≤ |W|O(1) · f1(|ϕ|)

since f2(2O(log∗(|W|))) is bounded by a sublinearly growing function in |W| (and is thus in
particular bounded by |W|O(1)). The latter contradicts Theorem 7. This concludes the
analysis of the overall running time of our reduction.

Let us conclude to show that we can compute transition systems T1, . . . , Td, state s of
T def=

⊗d
i=1 Ti and some ML formula ψ such that moreover Points (i) to (v) from above

CSL’13

342 The Fixed-Parameter Tractability of Model Checking Concurrent Systems

hold. Recall that W = a0 · · · an−1. Let us first compute the smallest ` ≥ 1 such that
Tower(`− 1) < n ≤ Tower(`). Note that ` ≤ O(log∗(n)) ≤ O(log∗(|W|)). Let us compute the
0-pointed `-sotrees Υ`(0), . . . ,Υ`(n− 1), with their points r`(0), . . . , r`(n− 1), respectively.

Recall that each pointed `-sotree was defined over the signature (P`,A`). Without loss of
generality we assume that Σ ∩ P` = ∅.

Let U be the pointed transition system over (P` ∪ Σ,A` ∪ {γ}) that one obtains from the
disjoint union of Υ`(0), . . . ,Υ`(n− 1) and some fresh state s (which will be the point of U)
and by adding the atomic proposition aj ∈ Σ to U ’s state r`(j) and connecting s with r`(j)
with a γ-labeled transition for each j ∈ [0, n − 1]. Recall that ϕ = ∃x1∀x2 · · · ∃x2k−1∀x2k

ψ(x1, . . . , x2k) is our input FO formula. We set d def= 2k, hence d ≤ O(|ϕ|) and thus Point (ii)
is shown. We define Ti to be the asynchronous i-extension of U for each i ∈ [1, 2k]. Recall
that size(`) denotes the size of each Υ`(j). Hence

|Ti| ≤ O(n · size(`))
Lemma 4
≤ O(n · Tower(`− 1)2) ≤ O(n3) ≤ |W|O(1)

for each i ∈ [1, d] and thus (iii) is shown. We define the pointed transition system T def=⊗
i∈[1,2k] Ti with point s def= (s, . . . , s). The intuition is that each position j ∈ [0, n− 1] of W

will be presented by Υ`(j) and U will correspond to W . The transition system T consists of
the asynchronous product of d = 2k copies of U since ϕ consists of 2k quantifiers. Thus, the
pointed transition system Ti will handle the position where variable xi will be bound to, for
each i ∈ [1, 2k].
Finally, we define the ML-formula ψ as follows

ψ
def= 〈1, γ〉[2, γ] · · · 〈2k − 1, γ〉[2k, γ] ψ̂,

where the ML formula ψ̂ is obtained from ϕ by replacing each occurrence of a(xi) by (i, a)
and by replacing each occurrence of xi < xi′ by less⊗` (i, i′), where each formula less⊗` (i, i′) is
taken from Lemma 5 for α = i and β = i′. It is straightforward to verify that we haveW |= ϕ

if and only if
(
s,
⊗d

i=1 Ti
)
|= ψ, which delivers Point (i). Recall that ` ≤ O(log∗(|W|))

and the size of each formula less⊗` (i, i′) is bounded by 2O(`) by Lemma 5, thus Point (iv)
holds. Point (v) is easy to see by the fact that each Ti is computable in time |Ti|O(1) and the
formula ψ is computable in time |ψ|O(1) and by using Points (ii), (iii) and (iv) and analogous
arguments as for the above running time analysis. J

An adaption of the latter proof can be carried out for model checking ML on the syn-
chronous product. Remarkably, for model checking the synchronous product the complexity-
theoretic assumption can be indeed be weakened to P 6= NP as will be shown in the next
section.

6 Model checking ML on the synchronous product and model
checking EF on the asynchronous product

In this section we prove that the fixed-parameter tractability of model checking ML for syn-
chronous product and EF for asynchronous product is cannot be witnessed by an elementary
running time in the size of the formula unless P = NP.

We recall tiling systems for this. A tiling system is a tuple S = (Θ,H,V), where Θ is a
finite set of tile types, H ⊆ Θ×Θ is a horizontal matching relation, and V ⊆ Θ×Θ is a vertical
matching relation. A mapping σ : [0, n− 1]2 → Θ (where n ≥ 0) is an n× n-solution for S if
for all x, y ∈ [0, n− 1] the following holds: (i) if x < n− 1, σ(x, y) = θ, and σ(x+ 1, y) = θ′,

S. Göller 343

•
•

T (θ1, x, y)

•

· · ·
T (θk, x, y)

a a

Figure 2 The pointed transition system Tx,y for each x ∈ [0, n− 1] and each y ∈ [1, n− 1].

then (θ, θ′) ∈ H, and (ii) if y < n− 1, σ(x, y) = θ, and σ(x, y + 1) = θ′, then (θ, θ′) ∈ V. Let
W = θ0 · · · θn−1 ∈ Θn be a word. By Soln(S,W) we denote the set of all n× n-solutions σ
for S such that σ(x, 0) = θx for all x ∈ [0, n− 1]. For a fixed tiling system S, its n× n-tiling
problem asks for a given word W ∈ Θn, whether Soln(S,W) 6= ∅ holds. It is folklore that
there exists a fixed tiling system S0 whose n× n-tiling problem is NP-hard; see also [3]. Let
us fix such a tiling system S0 = (Θ0,H0,V0) for the rest of this section.

I Theorem 9. Let f be an elementary function. Then there is no algorithm that decides
INPUT: Transition systems T1, . . . , Td, a state s of

∏d
i=1 Ti and an ML formula ψ.

QUESTION: (s,
∏d
i=1 Ti) |= ψ?

in time (
∑d
i=1 |Ti|)O(1) · f(|ψ|) unless P = NP.

Proof. The idea is to show that the existence of such an elementary function f implies that
the n× n-tiling problem for S0 is in P and thus P = NP. So for the sake of contradiction,
let us assume that there were an elementary function f and an algorithm that decides
the model checking problem for a given ML formula ψ and a state s in the synchronous
product of d finite systems T1, . . . , Td in time (

∑d
i=1 |Ti|)O(1) · f(|ψ|). Let us show that

this algorithm can be used for deciding the n× n-tiling problem for S0 in polynomial time.
Recall S0 = (Θ0,H0,V0). Let us assume Θ0 = {θ1, . . . , θk}. Let W = W0 · · ·Wn−1 ∈ Θn

0
be an input word to the n× n-tiling problem for S0. We will compute transition systems
{Tx,y | x, y ∈ [0, n − 1]}, some state s of

∏
x,y∈[0,n−1] Tx,y and some ML formula ψ such

that
(i) Soln(S0,W) 6= ∅ if and only if (s,

∏
x,y∈[0,n−1] Tx,y) |= ψ,

(ii) |Tx,y| ≤ |W|O(1) for each x, y ∈ [0, n− 1],
(iii) |ψ| ≤ 2O(log∗(|W|)), and
(iv) each Tx,y, s and ψ is computable in time |W|O(1).
The proof that Points (i) to (iv) lead to an overall algorithm that decides the non-emptiness
of Soln(S0,W) in time |W|O(1) works analogously as the proof of Theorem 8 and is therefore
omitted. Recall that W =W0 · · ·Wn−1 ∈ Θn and let us assume without loss of generality
that n ≥ 3.

Let us first compute the smallest ` ≥ 1 such that Tower(`− 1) < n ≤ Tower(`). Note that
` ≤ O(log∗(n)) ≤ O(log∗(|W|)). Recall that Υ`(j) denotes the 0-pointed `-sotree of value j
for each j ∈ [0,Tower(`)− 1]. Let Υα

` (i) (resp. Υβ
` (i)) denote the synchronous α-extension

(resp. synchronous β-extension) of Υ`(j) for each j ∈ [0,Tower(`)− 1].
We will call each pointed transition system Tx,y a component of the product transition

system T def=
∏
x,y∈[0,n−1] Tx,y. Let us mention the purpose of the pointed transition systems

Tx,y. With points denoted by•, Figure 2 shows the pointed transition system Tx,y whenever
1 ≤ y ≤ n−1 and Figure 3 shows them whenever y = 0, where the pointed transition systems

CSL’13

344 The Fixed-Parameter Tractability of Model Checking Concurrent Systems

•

•

T (Wx, x, y)

a

Figure 3 The pointed transition system Tx,y for each x ∈ [0, n− 1] and y = 0.

Υα
ℓ (x) Υα

ℓ (y)

(α, pH)• (α, pV)•

(α, θ) •

λ λ

Υβ
ℓ (x) Υβ

ℓ (y)

(β, pH)• (β, pV) •

(β, θ)•

λ λ

♠

p1•

p2•

p3•

κ
κ
κ

γ γ

• µ

♥

µ

•κ

•

λ, a0, . . . , aℓ

γ

Figure 4 The pointed transition system T (θ, x, y) for each θ ∈ Θ0 and each x, y ∈ [0, n− 1].

T (θ, x, y) for each θ ∈ Θ0 and each x, y ∈ [0, n− 1] will be described in more detail below.
Note that we have hereby specified the point s of T =

∏
x,y∈[0,n−1] Tx,y. Each a-successor

of s in T hence corresponds to a choice function from [0, n − 1] × [0, n − 1] to Θ0, thus
selecting for each (x, y) ∈ [0, n− 1]× [0, n− 1], some tile type θx,y from Θ0 (by taking in the
component Tx,y the a-successor to the point of T (θx,y, x, y)); however for each (x, y) with
y = 0 we only allow to choose θx,y =Wx, since we would like to restrict ourselves to choice
functions ρ with ρ(x, 0) =Wx for each x ∈ [0, n− 1].

Having selected a choice function that respects our input word W, let us now comment
on the pointed transition systems T (θ, x, y) with point • as depicted in Figure 4. Let
assume, for the moment, that for each T (θ, x, y) we are either in state ♥ or in state ♠.
Then in the corresponding pointed synchronous product transition system the formula
ϕtwo

def= 〈κ〉(p1 ∧ p2) ∧ ¬〈κ〉(p1 ∧ p2 ∧ p3) holds if and only if exactly two components are

in state ♠. Note that since k = |Θ0| is a fixed constant we have |Tx,y| ≤ O(size(`))
Lemma 4
≤

O(Tower(`− 1)2) ≤ O(n2) ≤ |W|O(1) for each x, y ∈ [0, n− 1] and thus (ii) is shown.

Let us define the auxiliary formulas ϕα
def=
∨
θ∈Θ0

(α, θ) and ϕβ
def=
∨
θ∈Θ0

(β, θ). Let us
list our final formula ψ before we comment on it below.

S. Göller 345

〈a〉[µ]
[
ϕtwo → [γ]

(
ϕα ∧ ϕβ

∧ 〈λ〉((α, pH) ∧ (β, pH) ∧ eq×` (α, β))

∧ 〈λ〉((α, pV) ∧ (β, pV) ∧ succ×` (α, β))
)
→ ϕV

]

∧
[
ϕtwo → [γ]

(
ϕα ∧ ϕβ

∧ 〈λ〉((α, pH) ∧ (β, pH) ∧ succ×` (α, β))

∧ 〈λ〉((α, pV) ∧ (β, pV) ∧ eq×` (α, β))
)
→ ϕH

]
where

ϕV
def=

∨
(θ,θ′)∈V0

(α, θ) ∧ (β, θ′) and ϕH
def=

∨
(θ,θ′)∈H0

(α, θ) ∧ (β, θ′).

When evaluating it from (s,
∏
x,y∈[0,n−1] Tx,y), the formula ψ can be read as follows: There

is a choice function ρ ∈ Θ[0,n−1]×[0,n−1]
0 that respects our input word W (this corresponds to

the part 〈a〉) such that whenever we choose (this corresponds to [µ]) precisely two (this is
realized by going to ♥ and ♠ and is is controlled by the formula ϕtwo) different elements
(x, y) and (x′, y′) from [0, n− 1]× [0, n− 1] and exactly one of these two is “colored” with α
and the other with β (by going along the transition γ and checking the formula ϕα ∧ ϕβ) we
have that, firstly, x = x′ and y′ = y + 1 implies that (ρ(x, y), ρ(x′, y′)) ∈ V0 and, secondly,
x′ = x + 1 and y = y′ implies that (ρ(x, y), ρ(x′, y′)) ∈ H0. Thus Sol(S0,W) 6= ∅ if and
only if (s,

∏
x,y∈[0,n−1] Tx,y) |= ψ, thus Point (i) holds. The definition of ψ shows that

|ψ| ≤ 2O(`) ≤ 2O(log∗(|W|)) by Lemma 6 and thus Point (iii) follows. The reader easily verifies
that the transition systems Tx,y, the state s of T and the formula ψ can in total be computed
in time |W|O(1), which delivers Point (iv) and completes the proof of the theorem. J

The following theorem states an analogous result for model checking EF on the asynchron-
ous product. One can recycle the proof of Theorem 9, replace the synchronous α/β-extension
by asynchronous α/β-extension, respectively, replacing the succ×` (α, β) by succ⊗` (α, β), repla-
cing 〈e〉 by EF and [e] by AG in a relativized fashion by introducing fresh atomic propositions
that allow us to correctly mimick one transition in the synchronous product by a sequence of
transitions in the asynchronous product. Recall that each transition system Tx,y is essentially
a tree (almost) except for the substructures of the form Υα/β

` (x/y). Simulating each modality
〈z〉, where z ∈ {a, µ, κ, γ, δ}, in the synchronous product can be simulated by the modality EF
in the asynchronous product in addition to some formula that expresses (1) each asynchronous
component can no longer execute z and (2) we have not moved too far down in the tree than
just along one z-labeled transition.

I Theorem 10. Let f be an elementary function. Then there is no algorithm that decides
INPUT: Transition systems T1, . . . , Td, a state s of

⊗d
i=1 Ti and an EF formula ϕ.

QUESTION: (s,
⊗d

i=1 Ti) |= ϕ?
in time (

∑d
i=1 |Ti|)O(1) · f(|ϕ|) unless P = NP.

CSL’13

346 The Fixed-Parameter Tractability of Model Checking Concurrent Systems

7 Conclusion

In this paper we considered the fixed-parameter tractability of model checking modal logic
and EF logic on concurrent systems that are modeled as the asynchronous or synchronous
product of finite systems when the size of the input formula is the parameter. We showed that
although these model checking problems are often fixed-parameter tractable one cannot hope
for any FPT algorithm that runs elementary in the size of formula. It turned out that for
model checking modal logic the mode of synchronization plays a role: for the asynchronous
product we had to assume FPT 6= AWT[∗], whereas we were able to weaken our assumption
for the synchronous product to P 6= NP. Let us conclude with some questions that we would
like to answer in the full version of this paper. In analogy to [9] it would be interesting to
study the question if even weaker complexity theoretic assumptions such as P 6= PSPACE can
be assumed. Moreover, we remark that some of our lower bound proofs also hold even when
d+ |ϕ| (instead of |ϕ|) is the parameter; it seems worth investigating when this strengthening
is possible. Too, the question arises what (elementary) bounds one can prove for transition
systems of bounded degree.

References
1 Antonis Achilleos, Michael Lampis, and Valia Mitsou. Parameterized Modal Satisfiability.

In ICALP (2), volume 6199 of Lecture Notes in Computer Science, pages 369–380. Springer,
2010.

2 Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.
3 Egon Börger, Erich Grädel, and Yuri Gurevich. The classical decision problem. Universitext.

Springer-Verlag, Berlin, 2001.
4 Yijia Chen, Jörg Flum, and Martin Grohe. Bounded nondeterminism and alternation in

parameterized complexity theory. In IEEE Conference on Computational Complexity, pages
13–29. IEEE Computer Society, 2003.

5 E. M. Clarke and E. A. Emerson. Model Checking. MIT Press, 1999.
6 Anuj Dawar, Martin Grohe, Stephan Kreutzer, and Nicole Schweikardt. Model Theory

Makes Formulas Large. In Proc. of ICALP, volume 4596 of Lecture Notes in Computer
Science. Springer, 2007.

7 Stéphane Demri, François Laroussinie, and Ph. Schnoebelen. A parametric analysis of the
state-explosion problem in model checking. J. Comput. Syst. Sci., 72(4):547–575, 2006.

8 Jörg Flum and Martin Grohe. Parametrized Complexity Theory. Springer, 2006.
9 Markus Frick and Martin Grohe. The complexity of first-order and monadic second-order

logic revisited. Ann. Pure Appl. Logic, 130(1-3):3–31, 2004.
10 Stefan Göller, Jean Christoph Jung, and Markus Lohrey. The Complexity of Decomposing

Modal and First-Order Theories. In LICS, pages 325–334. IEEE, 2012.
11 Stefan Göller and Anthony Widjaja Lin. Concurrency Makes Simple Theories Hard. In

STACS, volume 14 of LIPIcs, pages 148–159. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2012.

12 Orna Lichtenstein and Amir Pnueli. Checking that finite state concurrent programs satisfy
their linear specification. In POPL, pages 97–107. ACM Press, 1985.

13 M. Praveen. Parametrized Complexity of some Problems in Concurrency and Verification.
PhD thesis, Homi Bhabha National Institute, 2011.

14 Alexander Rabinovich. On compositionality and its limitations. ACM Trans. Comput. Log.,
8(1), 2007.

15 A. Prasad Sistla and Edmund M. Clarke. The complexity of propositional linear temporal
logics. J. ACM, 32(3), 1985.

S. Göller 347

A Proof of Lemma 4

Proof. One easily proves via induction on n that n2 + 1 ≤ 2n for each n ≥ 5. We prove the
lemma by induction on ` ≥ 3. For the induction base ` = 3 we have

size(4) = Tower(3) · size(3) + 1 = Tower(3) · (Tower(2) · size(2) + 1) + 1

Figure 1= 216 · (16 · 21 + 1) + 1 = 216 · 337 < (216)2 = Tower(3)2.

For the induction step, we have for each ` ≥ 3

size(`+ 1) = Tower(`) · size(`) + 1
IH
≤ Tower(`) · Tower(`− 1)2 + 1
≤ Tower(`) · (Tower(`− 1)2 + 1)

Tower(`−1)≥5
≤ Tower(`) · 2Tower(`−1)

= Tower(`)2.

J

B Proof of Lemma 6

Proof. We define the formulas by induction on `. For the induction base ` = 0 we put:
(1) eq×0

def= 〈a0〉 ((α, b0)↔ (β, b0)).
(2) less×0

def= 〈a0〉 (¬(α, b0) ∧ (β, b0)).
(3) succ×0

def= less×0 .
For the induction step, we define:
(1) eq×`+1

def= [a`+1]
(
eq×` −→ ((α, b`)↔ (β, b`))

)
.

(2) less×`+1
def= 〈a`+1〉ϕ×`+1, where

ϕ×`+1
def= (eq×` ∧ ¬(α, b`) ∧ (β, b`) ∧ [⇒](eq×` → ((α, b`)↔ (β, b`))).

(3) succ×`+1
def= 〈a`+1〉(ϕ×`+1 ∧ [⇐](α, b`) ∧ [⇐]¬(β, b`)).

J

CSL’13

One-variable first-order linear temporal logics with
counting
Christopher Hampson and Agi Kurucz

Department of Informatics
King’s College London

Abstract
First-order temporal logics are notorious for their bad computational behaviour. It is known that
even the two-variable monadic fragment is highly undecidable over various timelines. However,
following the introduction of the monodic formulas (where temporal operators can be applied only
to subformulas with at most one free variable), there has been a renewed interest in understanding
extensions of the one-variable fragment and identifying those that are decidable. Here we analyse
the one-variable fragment of temporal logic extended with counting (to two), interpreted in
models with constant, decreasing, and expanding first-order domains. We show that over most
classes of linear orders these logics are (sometimes highly) undecidable, even without constant
and function symbols, and with the sole temporal operator ‘eventually’. A more general result
says that the bimodal logic of commuting linear and pseudo-equivalence relations is undecidable.
The proofs are by reductions of various counter machine problems.

1998 ACM Subject Classification F.4.1 Mathematical Logic: Temporal logic, modal logic

Keywords and phrases modal and temporal logic, counting, decision procedures

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.348

1 Introduction and results

Though first-order temporal logics are natural and expressive languages for querying temporal
databases [3, 4] and reasoning about knowledge that changes in time [15], their practical use
has been discouraged by their high computational complexity. It is well-known that even
the two-variable monadic fragment is undecidable over various timelines, and Π1

1-hard over
the natural numbers [27, 28, 19, 6, 7]. In contrast to classical first-order logic where the
decision problems of its fragments were studied in great detail [2], there have been only a few
attempts on finding well-behaved decidable fragments of first-order temporal logics, mostly
by restricting the available quantifier patterns [4, 14, 15].

In this paper we contribute to this research line by studying the one-variable ‘future’
fragment of linear temporal logic with counting (to two), interpreted in models over various
timelines, and having constant, decreasing, or expanding first-order domains. Our language
FOLTL6= is strong enough to express uniqueness of a property of domain elements (∃=1x),
and the ‘elsewhere’ quantifier (∀6=x). However, FOLTL6= has no equality, no constant or
function symbols, and its only temporal operators are ‘eventually’ and ‘always in the future’.
FOLTL6= is weaker than the two-variable monadic monodic fragment with equality, where
temporal operators can be applied only to subformulas with at most one free variable. (This
fragment with the ‘next time’ operator is known to be Π1

1-hard over the natural numbers
[31, 5].) FOLTL 6= is connected to bimodal product logics [8, 7], and to the temporalisation
of the expressive description logic CQ with one global universal role [30]. Here are some
examples of FOLTL 6=-formulas:

© Christopher Hampson and Agi Kurucz;
licensed under Creative Commons License CC-BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca; pp. 348–362

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.348
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

C. Hampson and A. Kurucz 349

[4] “An order can only be submitted once:” ∀x�F
(
Subm(x)→ �F¬Subm(x)

)
.

The Barcan formula: ∃x♦FP(x)↔ ♦F∃xP(x).
“Every day has its unique dog:” �F∃=1x

(
Dog(x) ∧�F¬Dog(x)

)
.

“It’s only me who is always unlucky:” ∀6=x♦FLucky(x).

While the addition of ‘elsewhere’ quantifiers to the two-variable fragment of classical
first-order logic does not increase the coNEXPTIME complexity of its validity problem
[12, 21], we show that adding the same feature to the (decidable) one-variable fragment of
first-order temporal logic results in (sometimes highly) undecidable logics over most timelines,
not only in models with constant domains, but even those with decreasing and expanding
first-order domains. Our main results on the FOLTL 6=-validity problem are summarised in
the following table:

〈ω, <〉 all finite all all modally discrete
linear orders linear orders linear orders

constant Π1
1-hard Π0

1-hard undecidable, r.e. Π1
1-hard

domains Theorem 1 Theorem 2 Theorems 5, 10 Theorem 8

decreasing Π0
1-hard Π0

1-hard undecidable, r.e. Π1
1-hard

domains Theorem 2 Theorem 2 Theorems 7, 10 Theorem 8

expanding undecidable decidable decidable? decidable?
domains r.e.? Ackermann-hard r.e. r.e.?

Theorem 4 Theorems 11, 3 Theorem 10

The structure of the paper is as follows. In Section 2 we provide the definitions of
the studied logics. In Section 3 we introduce counter machines, and show several ways of
simulating their behaviour in FOLTL6=. In Sections 4–6, with the help of the techniques
developed in Section 3, we reduce various counter machine problems to FOLTL6=-satisfiability
over different timelines and first-order domain settings. In Section 7 we discuss the connection
between FOLTL 6= and propositional bimodal logics, and give a general undecidability result
(Theorem 12). Finally, in Section 8 we formulate some open problems. Complete proofs will
appear in the full paper.

2 Definitions and basic properties

We define FOLTL 6=-formulas by the following grammar:

φ :: P(x) | ¬φ | φ ∧ ψ | ∃xφ | ∃≥2xφ | ♦Fφ

where P ranges over an infinite set P of monadic predicate symbols. We use the usual
abbreviations ∨, →, ↔, ∀x , �F , and also �+

Fφ := φ ∧�Fφ.
A FOLTL-model is a tuple M =

〈
〈T,<〉, Dt, I

〉
t∈T , where 〈T,<〉 is a linear order1,

representing the timeline, Dt is a non-empty set, the domain at moment t, for each t ∈ T ,
and I is a function associating with every t ∈ T a first-order structure I(t) = 〈Dt,PI(t)〉P∈P .
We say that M is based on the linear order 〈T,<〉. M is a constant (resp. decreasing,
expanding) domain model, if Dt = Dt′ , (resp. Dt ⊇ Dt′ , Dt ⊆ Dt′) whenever t, t′ ∈ T and

1 By a linear order we mean a strict one. This is for simplifying the presentation only. For reflexive
orders, see the ‘interval trick’ in Section 5.

CSL’13

350 One-variable first-order linear temporal logics with counting

t < t′. A constant domain model is clearly both a decreasing and expanding domain model
as well, and can be represented as a triple

〈
〈T,<〉, D, I

〉
.

The truth-relation (M, t) |=a φ (or simply t |=a φ if M is understood) is defined, for all
t ∈ T and a ∈ Dt, by induction on φ as follows:

t |=a P(x) iff a ∈ PI(t), t |=a ¬φ iff t 6|=a φ, t |=a φ ∧ ψ iff t |=a φ and t |=a ψ,
t |=a ∃xφ iff there exists b ∈ Dt with t |=b φ,
t |=a ∃≥2xφ iff there exist b, b′ ∈ Dt with b 6= b′, t |=b φ and t |=b′

φ,
t |=a ♦Fφ iff there is t′ ∈ T such that t′ > t, a ∈ Dt′ and t′ |=a φ.

We say that φ is true (satisfiable) in M, if t |=a φ holds for all (some) t ∈ T and a ∈ Dt.
Given a class C of linear orders, we say that φ is FOLTL6=-valid in constant (decreasing,
expanding) domain models over C, if φ is true in every constant (decreasing, expanding)
domain FOLTL-model based on some linear order from C. It is not hard to see that for
every class C of linear orders, FOLTL6=-validity in decreasing (expanding) domain models
over C is reducible to FOLTL 6=-validity in constant domain models over C.

We introduce the following abbreviations:

∃=1xφ :: ∃xφ ∧ ¬∃≥2xφ, ∃6=xφ :: (¬φ ∧ ∃xφ) ∨ ∃≥2xφ, ∀6=xφ :: ¬∃6=x¬φ.

It is straightforward to see that they have the intended semantics:
t |=a ∃=1xφ iff there exists a unique b ∈ Dt with t |=b φ,
t |=a ∀6=xφ iff t |=b φ, for every b ∈ Dt with b 6= a.

Further, we could have chosen ∃6=x as our primary connective instead of ∃x and ∃≥2x, as

∃xφ↔ φ ∨ ∃ 6=xφ and ∃≥2xφ↔ ∃x (φ ∧ ∃ 6=xφ). (1)

3 Encoding counter machines in FOLTL-models

AMinsky or counter machineM is described by a finite setQ of states, a setH ⊆ Q of terminal
states, a finite set C = {c0, . . . , cN−1} of counters, a finite nonempty set Iq ⊆ OpC ×Q of
instructions, for each q ∈ Q−H, where each operation in OpC is one of the following forms,
for some i < N :

c++
i —increment counter ci by one,
c−−i —decrement counter ci by one,
c??
i —test whether counter ci is empty.

A configuration of M is a tuple 〈q, c〉 with q ∈ Q representing the current state, and an N -
tuple c = 〈c0, . . . , cN−1〉 of natural numbers representing the current contents of the counters.
We say that there is a (reliable) step between configurations σ = 〈q, c〉 and σ′ = 〈q′, c′〉
(written σ→σ′) iff there is i < N such that

either c′i = ci + 1, c′j = cj for j 6= i, j < N , and 〈c++
i , q′〉 ∈ Iq,

or c′i = ci − 1, c′j = cj for j 6= i, j < N , and 〈c−−i , q′〉 ∈ Iq,
or c′i = ci = 0, c′j = cj for j < N , and 〈c??

i , q
′〉 ∈ Iq.

We write σ→lossy σ
′ if there are configurations σ1 = 〈q, c1〉 and σ2 = 〈q′, c2〉 such that

σ1→σ2, ci ≥ c1
i and c2

i ≥ c′i for every i < N . A sequence 〈σn : n < B〉 of configurations,
with 0 < B ≤ ω, is called a run (resp. lossy run), if σn−1→σn (resp. σn−1→lossy σn) holds
for every 0 < n < B.

FOLTL6= does not have the ‘next time’ temporal operator. So in order to simulate the
behaviour of counter machines in FOLTL-models, first we generate an infinite ‘diagonal’,
using two monadic predicate symbols, N (for ‘next’) and S (for ‘state’). The limited counting

C. Hampson and A. Kurucz 351

capabilities of FOLTL 6= will be used in forcing the uniqueness of the diagonal. To this end,
let diagdec∞ be the conjunction of the following formulas:

S(x) ∧ ∀x�+
F

(
S(x)→ ∃6=xN(x)

)
,

∀x�+
F

[
N(x)→

(
∀6=x¬N(x) ∧ ♦FS(x) ∧�F�F¬S(x)

)]
, (2)

∀x�+
F

[
S(x)→

(
∀6=x¬S(x) ∧�F¬S(x)

)]
. (3)

The formula diagdec∞ forces a unique infinite diagonal not only in constant but also in decreasing
domain models. A straightforward induction proves the following:
I Lemma 1. Suppose that t0 |=a0 diagdec∞ in some decreasing domain FOLTL-model〈
〈T,<〉, Dt, I

〉
t∈T . Then there are sequences 〈tn ∈ T : n < ω〉 and 〈an ∈ Dtn : n < ω〉

such that the following hold, for all n < ω and a ∈ Dtn : if n > 0 then tn is the immediate
<-successor of tn−1, tn |=a S(x) iff a = an, and tn |=a N(x) iff a = an+1.

Observe that in Lemma 1, if 〈T,<〉 is 〈ω,<〉 and t0 = 0, then tn = n for all n < ω.
Constant domain models. We begin by showing how to encode runs that start with all-0
counters by going forward along the created diagonal. For each counter i < N , we take two
fresh predicate symbols C+

i and C−i that will be used to mark those domain points where
M increments and decrements counter ci at each moment of time. The actual content of
counter ci is represented by those domain points where C+

i (x)∧¬C−i (x) holds. The following
formula ensures that each point of our constant domain is used only once, and only previously
incremented points can be decremented:∧

i<N

∀x�+
F

[(
C+
i (x)→ �FC+

i (x)
)
∧
(
C−i (x)→ �FC−i (x)

)
∧
(
C−i (x)→ C+

i (x)
)]
. (4)

For each i < N , the following formulas simulate the possible changes in the counters:

Fixi :: ∀x
(
�FC+

i (x)→ C+
i (x)

)
∧ ∀x

(
�FC−i (x)→ C−i (x)

)
,

Inci :: ∃=1x
(
¬C+

i (x) ∧�FC+
i (x)

)
∧ ∀x

(
�FC−i (x)→ C−i (x)

)
,

Deci :: ∃=1x
(
C+
i (x) ∧ ¬C−i (x) ∧�FC−i (x)

)
∧ ∀x

(
�FC+

i (x)→ C+
i (x)

)
.

Using these formulas, we can encode the steps of M . For each ι ∈ OpC , we define the formula
doι by taking

doι ::



Inci ∧
∧

i 6=j<N
Fixj , if ι = c++

i ,

Deci ∧
∧

i 6=j<N
Fixj , if ι = c−−i ,

∀x
(
C+
i (x)→ C−i (x)

)
∧
∧
j<N

Fixj , if ι = c??
i .

Now we can encode runs that start with all-0 counters. For each q ∈ Q, we take a fresh
predicate symbol Sq, and define ϕM to be the conjunction of (4) and the following formulas:∧

i<N

∀x
(
¬C+

i (x) ∧ ¬C−i (x)
)
,

∀x�+
F

[
S(x)↔

∨
q∈Q

(
Sq(x) ∧

∧
q 6=q′∈Q

¬Sq′(x)
)]
, (5)

∀x�+
F

∧
q∈Q−H

[
Sq(x)→

∨
〈ι,q′〉∈Iq

(
doι ∧ ∀x

[
N(x)→ �F

(
S(x)→ Sq′(x)

)])]
.

The following lemma says that in constant domain models, going forward along the
diagonal points generated in Lemma 1, we can force (finite or infinite) runs of M :

CSL’13

352 One-variable first-order linear temporal logics with counting

I Lemma 2. Suppose t0 |=a0 diagdec∞ ∧ ϕM in some constant domain FOLTL-model〈
〈T,<〉, D, I

〉
. For all n < ω and i < N , let

qn := q, if tn |=an Sq(x), ci(n) := |{a ∈ D : tn |=a C+
i (x) ∧ ¬C−i (x)}|.

Then
〈
〈qn, c(n)〉 : n < B

〉
is a well-defined run of M starting with all-0 counters, whenever

0 < B ≤ ω is such that tn |=an
∧
h∈H ¬Sh(x), for every n < B.

Decreasing domain models. We can also encode runs that start with all-0 counters by
going backward along the diagonal. Moreover, this way we have more control over the points
representing the content of the counters, and so we can simulate runs not only in constant
but also in decreasing domain models.

We take a fresh predicate symbol start, intended to mark the start of runs and being
constant along each first-order domain. In decreasing domain models we can say this by

∀x�+
F

(
start(x)→ ∀x start(x)

)
. (6)

For each counter i < N , we take a fresh predicate symbol Ci. The actual content of counter
ci will be represented by those points where Ci(x) holds. We want to force these points
only to be among the domain points an generated in Lemma 1. We can achieve this by the
following formulas, simulating the possible changes in the counters:

AllCi(x) :: ♦FN(x) ∧�F
(
N(x) ∨ ♦FN(x)→ Ci(x)

)
,

Fixbwi :: ∀x
(
Ci(x)↔ AllCi(x)

)
, (7)

Incbwi :: ∀x
[
Ci(x)↔

(
N(x) ∨ AllCi(x)

)]
, (8)

Decbwi :: ∀x
(
Ci(x)→ AllCi(x)

)
∧ ∃=1x

(
¬Ci(x) ∧ AllCi(x)

)
. (9)

Next, we encode the steps of M , going backward along the diagonal. For every ι ∈ OpC , we
define the formula dobwι by taking

dobwι ::



Incbwi ∧
∧

i 6=j<N
Fixbwj , if ι = c++

i ,

Decbwi ∧
∧

i 6=j<N
Fixbwj , if ι = c−−i ,

∀x¬Ci(x) ∧
∧
j<N

Fixbwj , if ι = c??
i .

Finally, it remains to encode runs that start with all-0 counters, by going backward along
the diagonal. Given a counter machine M , we define ϕbw-decM to be the conjunction of (5),
(6), and the following formulas:

∀x�+
F

(
S(x) ∧ start(x)→

∧
i<N

∀x¬Ci(x)
)
,

∀x�+
F

∧
q∈Q−H

[(
S(x) ∧ ¬start(x) ∧ ∃x

(
N(x) ∧ ♦FSq(x)

))
→

∨
〈ι,q′〉∈Iq

(
dobwι ∧ Sq′(x)

)]
.

The next lemma says that in decreasing domain models, starting at a ‘start’ point and
going backward along the diagonal generated in Lemma 1, we can force finite runs of M :
I Lemma 3. Suppose t0 |=a0 diagdec∞ ∧ ϕbw-decM in some decreasing domain FOLTL-model〈
〈T,<〉, Dt, I

〉
t∈T . For all n < ω and i < N , let

qn := q, if tn |=an Sq(x), ci(n) := |{a ∈ Dtn : tn |=a Ci(x)}|, σn := 〈qn, c(n)〉. (10)

C. Hampson and A. Kurucz 353

Then 〈σn2 , σn2−1, . . . σn1〉 is a well-defined run of M starting with all-0 counters, whenever
n1 ≤ n2 < ω is such that tn2 |=an2 start(x) and tn |=an ¬start(x) ∧

∧
h∈H ¬Sh(x), for every

n with n1 ≤ n < n2.
Expanding domain models. We can still say something about counter machine runs by
going backward along the diagonal in expanding domain models. However, in this case some
of the content of the counters might get lost as the runs progress, so we can force only lossy
runs. To this end, let diagexp∞ and ϕbw-expM be obtained from diagdec∞ and ϕbw-decM , respectively,
by simultaneously replacing all occurrences of the prefix ∀x�+

F with �+
F∀x . Then let ϕlossyM

be obtained from ϕbw-expM by replacing all occurrences of the formulas (7)–(9) by their ‘lossy
versions’:

Fixbw-lossyi :: ∀x
(
Ci(x)→ AllCi(x)

)
,

Incbw-lossyi :: ∀x
[
Ci(x)→

(
N(x) ∨ AllCi(x)

)]
,

Decbw-lossyi :: ∀x
(
Ci(x)→ AllCi(x)

)
∧ ∃x

(
¬Ci(x) ∧ AllCi(x)

)
.

Then we have the expanding domain version of Lemma 1 for diagexp∞ , and the following ‘lossy
analogue’ of Lemma 3:
I Lemma 4. Suppose t0 |=a0 diagexp∞ ∧ ϕlossyM in an expanding domain FOLTL-model〈
〈T,<〉, Dt, I

〉
t∈T . Then 〈σn2 , σn2−1, . . . σn1〉, as defined in (10), is a well-defined lossy run

of M starting with all-0 counters, whenever n1 ≤ n2 < ω is such that tn2 |=an2 start(x) and
tn |=an ¬start(x) ∧

∧
h∈H ¬Sh(x), for every n with n1 ≤ n < n2.

Observe that in this case the counting capabilities of FOLTL 6= are only used in forcing
the uniqueness of the diagonal in the expanding domain version of Lemma 1.

4 FOLTL 6= over 〈ω, <〉 and finite linear orders

I Theorem 1. FOLTL 6=-validity is Π1
1-hard in constant domain models over 〈ω,<〉.

We prove this theorem by reducing the following Σ1
1-complete [1] problem to FOLTL 6=-

satisfiability in constant domain models over 〈ω,<〉:
CM recurrence:

Given a counter machine M and two states q0, qr, is there a run starting from 〈q0,0〉
and visiting qr infinitely often?

The following claim is a straightforward consequence of Lemma 2:
I Claim 1.1. Suppose diagdec∞ ∧ ϕM ∧ Sq0(x) ∧ ∀x�+

F

∧
h∈H ¬Sh(x) is satisfiable in some

constant domain FOLTL-model. Then M has an infinite run starting from 〈q0,0〉.
Now it clearly follows from Claim 1.1 that if

diagdec∞ ∧ ϕM ∧ Sq0(x) ∧ ∀x�+
F

∧
h∈H

¬Sh(x) ∧�F♦F∃xSqr (x) (11)

is satisfiable in some constant domain FOLTL-model based on 〈ω,<〉, then M has a run
starting from 〈q0,0〉 and visiting qr infinitely often. (Observe that this is not necessarily true
for models based on arbitrary timelines.)

On the other hand, if M has a run
〈
〈qn, c(n)〉 : n < ω

〉
that visits qr infinitely often and

c(0) = 0, then we define a constant domain FOLTL-model Mfw
∞ =

〈
〈ω,<〉, ω, I

〉
as follows.

For all n < ω and q ∈ Q, let

SI(n) := {n}, NI(n) := {n+ 1} and SI(n)
q :=

{
{n}, if q = qn,

∅, otherwise. (12)

CSL’13

354 One-variable first-order linear temporal logics with counting

Further, for all i < N and n < ω, we define inductively the sets C+I(n)
i and C−I(n)

i . We let
C+I(0)
i = C−I(0)

i := ∅, and then

C+I(n+1)
i :=

{
C+I(n)
i ∪ {n}, if ci(n+ 1) = ci(n) + 1,

C+I(n)
i , otherwise.

(13)

C−I(n+1)
i :=

{
C−I(n)
i ∪ {min (C+I(n)

i)}, if ci(n+ 1) = ci(n)− 1,
C−I(n)
i , otherwise.

(14)

Then it is easy to check that (Mfw
∞, 0) |=0 (11), proving Theorem 1.

I Theorem 2. FOLTL 6=-validity is Π0
1-hard

1. in decreasing domain models over 〈ω,<〉,
2. in decreasing domain models over the class of all finite linear orders,
3. in models with finite decreasing domains over 〈ω,<〉.

We prove the theorem using a reduction of the following Σ0
1-complete [20] problem:

CM reachability:
Given a counter machine M and two states q0, qr, is there a run from 〈q0,0〉 to some
configuration 〈qr, c〉?

In order to prove 1, define the formula reachdec by taking

reachdec :: Sqr
(x) ∧ ∀x�+

F

[
∃x♦F start(x)→

(
¬start(x) ∧ ∀x

∧
h∈H

¬Sh(x)
)]
∧

∀x�+
F

(
S(x) ∧ start(x) → Sq0(x)

)
.

The following claim is a consequence of Lemma 3:
I Claim 2.1. Suppose diagdec∞ ∧ϕbw-decM ∧ reachdec ∧∃x

(
start(x)∨♦F start(x)

)
is satisfiable in

some decreasing domain FOLTL-model based on 〈ω,<〉. Then there is a run of M starting
with 〈q0,0〉 and reaching qr.

On the other hand, if M has a run
〈
〈qn, c(n)〉 : n ≤ K

〉
with c(0) = 0 and qK = qr, then

we define a constant domain FOLTL-model
〈
〈ω,<〉, ω, I

〉
as follows. For all n < ω, q ∈ Q,

SI(n) := {n}, NI(n) := {n+ 1} and SI(n)
q :=


{n}, if n ≤ K and q = qK−n,

{n}, if n > K and q = qh,

∅, otherwise,
(15)

for some fixed h ∈ H. Further, for all i < N and n < ω, we define inductively the sets CI(n)
i .

We let CI(n)
i := ∅ whenever n ≥ K, and then for every n < K, we let

CI(K−n−1)
i :=


CI(K−n)
i ∪ {K − n}, if ci(n+ 1) = ci(n) + 1,

CI(K−n)
i − {min (CI(K−n)

i)}, if ci(n+ 1) = ci(n)− 1,
CI(K−n)
i , otherwise.

(16)

Finally, let startI(K) := ω, and startI(n) := ∅ for all n 6= K, n < ω. Then it is not hard to
check that diagdec∞ ∧ ϕbw-decM ∧ reachdec ∧ ∃x

(
start(x)∨♦F start(x)

)
is satisfiable in this model.

However, diagdec∞ is clearly not satisfiable in models based on finite timelines, or in models
with finite domains. Let diagdecfin be obtained from diagdec∞ by replacing the conjunct (2) with

∀x�+
F

(
N(x)→ ∀6=x¬N(x)

)
∧ ∀x�+

F

[
N(x) ∧ ¬start(x)→

(
♦FS(x) ∧�F�F¬S(x)

)]
.

C. Hampson and A. Kurucz 355

Now it is easy to see that diagdecfin ∧ ϕbw-decM ∧ reachdec is satisfiable in a decreasing domain
FOLTL-model where either its timeline or all its domains are finite iff M has a run starting
with 〈q0,0〉 and reaching qr, completing the proof of Theorem 2.

I Theorem 3. FOLTL 6=-validity is Ackermann-hard in expanding domain models over the
class of all finite linear orders.

The decidability (and the finite expanding domain property) of this logic follows from its
reducibility to certain propositional bimodal logics, see Theorem 11 in Section 7. Here we
prove the lower bound in Theorem 3 by a reduction the following problem:
LCM reachability:

Given a counter machine M , a configuration σ0 = 〈q0,0〉, and a state qr, is there a lossy
run from σ0 to some configuration 〈qr, c〉?

It is shown in [24] that this problem, without the restriction that σ0 has all-0 counters, is
Ackermann-hard. It is not hard to see that this restriction does not matter: For every M
and σ0 one can define a machine Mσ0 that first performs incrementation steps filling the
counters up to their ‘σ0-level’, and then performs M ’s actions. Then M has a lossy run from
σ0 reaching qr iff Mσ0 has a lossy run starting with all-0 counters and reaching qr.

Let diagexpfin and reachexp obtained from diagdecfin and reachdec, respectively, by replacing all
occurrences of the prefix ∀x�+

F with �+
F∀x . The next claim is a consequence of Lemma 4:

I Claim 3.1. If diagexpfin ∧ϕ
lossy
M ∧reachexp is satisfiable in an expanding domain FOLTL-model

based on a finite linear order, then M has a lossy run starting with 〈q0,0〉 and reaching qr.
On the other hand, suppose M has a lossy run

〈
〈qn, c(n)〉 : n ≤ K

〉
with c(0) = 0

and qK = qr. Then we can define a constant domain FOLTL-model
〈
〈T,<〉, D, I

〉
that

satisfies diagexpfin ∧ ϕ
lossy
M ∧ reachexp by taking T = D = {0, . . . ,K}, the restriction of (15),

startI(K) := D, startI(n) := ∅ for all n < K, CI(K)
i := ∅ for all i < N , and the following in

place of (16), for all i < N and n < K:

CI(K−n−1)
i :=

{
CI(K−n)
i ∪ {K − n}, if ci(n+ 1) = ci(n) + 1,

any subset of CI(K−n)
i of size ci(n+ 1), if ci(n+ 1) ≤ ci(n).

This completes the proof of Theorem 3.

I Theorem 4. FOLTL 6=-validity is undecidable in expanding domain models over 〈ω,<〉.

We prove the theorem by a reduction of the following Π0
1-complete problem [16, 18, 23]

to the FOLTL 6=-satisfiability problem in question:
LCM ω-reachability:

Given a counter machine M , a configuration σ0 = 〈q0,0〉 and a state qr, is it the case
that for every n < ω M has a lossy run starting with σ0 and visiting qr at least n times?

(The idea of our reduction is similar to the one used in [16] for a formalism more expressive
than FOLTL6=.) Take a fresh predicate symbol R, and define recfw as the conjunction of the
following formulas:

�F♦F start(x) ∧�F∀x
(
start(x)→ ∀x start(x)

)
,

�F∀x
(

start(x)→ ∃x
[
R(x) ∧ ♦FS(x) ∧�F

(
♦FS(x)→ ¬start(x)

)])
,

�F∀x
[
R(x)→ �F

(
S(x)→ Sqr (x)

)]
,

CSL’13

356 One-variable first-order linear temporal logics with counting

�F∀x
[
Sqr

(x)→ ∃x
(

R(x) ∧ ♦F
(
start(x) ∧ ♦FS(x)

)
∧

�F
[
start(x) ∧ ♦FS(x)→ �F

(
♦FS(x)→ ¬start(x)

)])]
,

�+
F∀x

(
R(x)→ �F¬R(x)

)
.

I Claim 4.1. If diagexp∞ ∧ recfw is satisfiable in some expanding domain FOLTL-model based
on 〈ω,<〉, then there is an infinite sequence 〈kn < ω : n < ω〉 such that, for all n < ω,
kn |= ∀x start(x), and if n > 0 then |{k : kn−1 < k ≤ kn and k |=ak Sqr

(x)}| ≥ n.
(Observe that Claim 4.1 is not necessarily true for models based on arbitrary timelines.)

Now the following claim is a consequence of Claim 4.1 and Lemma 4:
I Claim 4.2. Suppose that the formula

diagexp∞ ∧ ϕlossyM ∧ recfw ∧�F∀x
(
S(x) ∧ start(x)→ Sq0(x)

)
∧�F∀x

∧
h∈H

¬Sh(x) (17)

is satisfiable in an expanding domain FOLTL-model based on 〈ω,<〉. Then, for every n < ω,
M has a lossy run starting with 〈q0,0〉 and visiting qr at least n times.

On the other hand, if for every n < ω, M has a lossy run ρn of M starting with 〈q0,0〉
and visiting qr at least n times, then (17) is satisfiable in the constant domain FOLTL-model
sketched in Fig. 1, completing the proof of Theorem 4.

-︸ ︷︷ ︸
← ρ1

start
↓

��
��

�
��

�
��

�
��

�
��
�

r r r r r r r r r

︸ ︷︷ ︸
← ρ2

start
↓

︸ ︷︷ ︸
← ρ3

start
↓

start
↓

. . .

. . .

. . .
〈ω,<〉

rR

rR
rR

rR
rR

rR

Sqr

Sq0

Sqr

Sqr

Sq0

Sqr

Sqr

Sqr

Sq0

Figure 1 Sketch of a constant domain FOLTL-model based on 〈ω, <〉 satisfying the formula (17).

5 FOLTL 6= over arbitrary linear orders

As FOLTL6=-validity in constant (expanding, decreasing) domain models over the class of all
linear orders is recursively enumerable (see Theorem 10), we cannot expect ‘CM reachability’
or ‘CM recurrence’ to be reduced to its satisfiability problem. However, in the constant
domain case at least, we can still reduce the following undecidable [20] problem:
CM non-termination:

Given a counter machine M and a state q0, is there an infinite run starting from 〈q0,0〉?

Then Claim 1.1 and a FOLTL-model defined as in (12)–(14) give us the following:

I Theorem 5. FOLTL6=-validity is undecidable in constant domain models over the class of
all linear orders.

Observe that a formula of the form ♦FS(x) ∧�F�F¬S(x) is clearly not satisfiable in any
FOLTL-model based on a dense linear order, and so our formulas generating diagonals are
not satisfiable in such a model either. However, below we show that the formulas used in
Sections 3 and 4 can be modified to prove the following generalisation of Theorem 5:

C. Hampson and A. Kurucz 357

I Theorem 6. FOLTL6=-validity is undecidable in constant domain models over any class
of linear orders containing a linear order that has an infinite ascending chain.

We use a version of the ‘interval trick’ suggested in [22, 26, 9]. Take a fresh predicate
symbol Tick and define a new temporal operator �F and its dual �F by setting, for any
FOLTL 6=-formula ψ(x),

�Fψ(x) ::
[
Tick(x)→ ♦F

(
¬Tick(x) ∧ (ψ(x) ∨ ♦Fψ(x))

)]
∧
[
¬Tick(x) → ♦F

(
Tick(x) ∧ (ψ(x) ∨ ♦Fψ(x))

)]
.

In order to properly simulate ‘next time’, we need the following property of Tick(x):(
∃xTick(x)↔ ∀xTick(x)

)
∧�F

(
∃xTick(x)↔ ∀xTick(x)

)
. (18)

Suppose that r |= (18) in some constant domain FOLTL-model
〈
〈T,<〉, D, I

〉
. We define a

new relation ≺ on Tr = {t ∈ T : r < t} by taking, for all t, t′ ∈ Tr,

t ≺ t′ iff ∃z
[
t < z ≤ t′ and, for all a ∈ D,

(
t |=a Tick(x) ↔ z |=a ¬Tick(x)

)]
.

It is straightforward to check that for all t ∈ Tr and a ∈ D, t |=a �Fψ iff there is t′ ∈ Tr with
t ≺ t′ and t′ |=a ψ. Also, ≺ is transitive and asymmetric, but 〈Tr,≺〉 is not necessarily a linear
order. Instead of trichotomy, we only have that either t ≺ t′ or t′ ≺ t or t ∼ t′ hold, where ∼
is the following equivalence relation on Tr: t ∼ t′ iff for all z with min(t, t′) ≤ z ≤ max(t, t′)
and all a ∈ D,

(
z |=a Tick(x) ↔ min(t, t′) |=a Tick(x)

)
. We would like our predicates to

be constant in any ∼-class. To achieve this, for a predicate symbol P, let intervalP denote
conjunction of (18) and the following formulas:

∀x�F
(
P(x)→ �F¬P(x)

)
,

∀x�F
(
♦FP(x) ∧�F¬P(x)→ P(x)

)
,

∀x�F
(
P(x) ∧ ¬�F>(x)→ �FP(x)

)
,

∀x�F
(
P(x) ∧ �F>(x)→ �FPnext(x)

)
,

∀x�F
(
P(x)→ �F (�FPnext(x)→ P(x))

)
,

where Pnext is a fresh predicate symbol, and >(x) is a shorthand for P(x) ∨ ¬P(x).
I Claim 6.1. Suppose that r |= intervalP, and take t, t′ ∈ Tr with t < t′ and t ∼ t′. Then,
for all a ∈ D, t |=a P(x) iff t′ |=a P(x).

Now we have the following generalisation of Claim 1.1:
I Claim 6.2. Let φM be obtained from diagdec∞ ∧ ϕM ∧ Sq0(x) ∧ ∀x�+

F

∧
h∈H ¬Sh(x) by

replacing each occurrence of ♦F and �F with �F and �F , and adding the conjuncts intervalP
for each occurring predicate symbol P. If t0 |=a0 φM in some constant domain FOLTL-model
based on a linear order having an infinite ascending chain starting at t0, then M has an
infinite run starting from 〈q0,0〉.

For the other direction, suppose thatM has an infinite run starting from 〈q0,0〉. Let 〈T,<〉
be a linear order in our class containing an infinite ascending chain t0 < · · · < tn < Take
the constant domain FOLTL-model Mfw

∞ defined in (12)–(14). We define a constant domain
model Nfw

∞ =
〈
〈T,<〉, ω, J

〉
by taking, for all t ∈ T and P ∈ {N,S,C+

i ,C
−
i ,Sq}i<N, q∈Q,

TickJ(t) =
{
ω, if tn+1 < t ≤ tn, n is even,
∅, otherwise, PJ(t) =

{
PI(n), if tn+1 < t ≤ tn,
∅, otherwise,

PJ(t)
next =

{
PI(n), if either n > 0 and tn < t ≤ tn−1, or n = 0 and t > t0,

∅, otherwise.

Then (Nfw
∞, t0) |=0 φM , completing the proof of Theorem 6.

CSL’13

358 One-variable first-order linear temporal logics with counting

6 FOLTL 6= over timelines with infinite descending chains

We say that a linear order 〈T,<〉 has a rooted infinite descending chain if there exists
〈tn ∈ T : n ≤ ω〉 with tω < · · · < tn < · · · < t0. In this section we show that, in FOLTL-
models based on such linear orders, we can also simulate counter machine runs along a
diagonal that is generated backward. Let diagbw-dec∞ be the conjunction of (2)–(3) and the
following formulas:

♦F
(
S(x) ∧ start(x) ∧ ∀x�F¬S(x)

)
,

∀x♦FN(x),
∀x�F

(
N(x)→ ∃x S(x)

)
,

and recall the formula ϕbw-decM from Section 3. Then we have the following analogues of
Lemmas 1 and 3:
I Lemma 5. Suppose that r |=α0 diagbw-dec∞ in some decreasing domain FOLTL-model〈
〈T,<〉, Dt, I

〉
t∈T . Then there are sequences 〈τn ∈ T : n < ω〉 and 〈αn ∈ Dτn

: n < ω〉
such that τ0 |=α0 start(x), t |=a ¬S(x) for all t > τ0 and a ∈ Dt, and the following hold,
for all n < ω and a ∈ Dτn

: r < τn, if n > 0 then τn−1 is the immediate <-successor of τn,
τn |=a S(x) iff a = αn, and tn |=a N(x) iff n > 0 and a = αn−1.
I Lemma 6. Suppose r |=α0 diagbw-dec∞ ∧ ϕbw-decM in a decreasing domain FOLTL-model〈
〈T,<〉, Dt, I

〉
t∈T . For all i < N and all n < ω, let

qn := q, if τn |=αn Sq(x), ci(n) := |{a ∈ Dτn
: τn |=a Ci(x)}|.

Then
〈
〈qn, c(n)〉 : n < B

〉
is a well-defined run of M starting with all-0 counters, whenever

B ≤ ω is such that τn |=αn ¬start(x) ∧
∧
h∈H ¬Sh(x), for every n < B.

Using these lemmas, first we prove the following generalisation of Theorem 5:

I Theorem 7. FOLTL6=-validity is undecidable in decreasing domain models over the class
of all linear orders.

We reduce the ‘CM non-termination’ problem to FOLTL6=-satisfiability in the above
class of models. On the one hand, Lemma 6 implies the ‘backward’ analogue of Claim 1.1:
I Claim 7.1. Suppose χM is satisfiable in a decreasing domain FOLTL-model, where

χM :: diagbw-dec∞ ∧ ϕbw-decM ∧ ∀x�F
(
S(x) ∧ start(x)→ Sq0(x)

)
∧ ∀x�+

F

∧
h∈H

¬Sh(x)

∧ ∀x�F
(
start(x) → �F¬start(x)

)
. (19)

Then M has an infinite run starting from 〈q0,0〉.
On the other hand, if M has an infinite run

〈
〈qn, c(n)〉 : n < ω

〉
with c(0) = 0, then we

define a constant domain FOLTL-model Nbw
∞ =

〈
〈ω + 1, >〉, ω, I

〉
as follows. Let PI(ω) = ∅,

for all P ∈ {N,S,Ci,Sq}i<N, q∈Q, and for all n < ω and q ∈ Q, let

SI(n) := {n}, NI(n) :=
{
{n− 1}, if n > 0,
∅, if n = 0, and SI(n)

q :=
{
{n}, if qn = q,

∅, otherwise. (20)

Further, for all i < N , n < ω, we define inductively the sets CI(n)
i . We let CI(0)

i := ∅, and

CI(n+1)
i :=


CI(n)
i ∪ {n}, if ci(n+ 1) = ci(n) + 1,

CI(n)
i − {min (CI(n)

i)}, if ci(n+ 1) = ci(n)− 1,
CI(n)
i , otherwise.

(21)

C. Hampson and A. Kurucz 359

Finally, let startI(0) = ω, and startI(n) = ∅ for all 0 < n ≤ ω. Then it is easy to check that
(Nbw
∞ , ω) |=0 (19), completing the proof of Theorem 7.

The proof of our next theorem uses the same counter machine problem, ‘CM recurrence’,
as the proof of Theorem 1. We call a linear order modally discrete if there is no infinite
sequence 〈tn ∈ T : n ≤ ω〉 with t0 < t1 < · · · < tn < · · · < tω. Note that as the only temporal
operators of FOLTL 6= are ♦F and �F , ‘full’ discreteness (that is, having no two points with
infinitely many points in between) is not FOLTL6=-expressible, but modal discreteness is (see
e.g. [11]). Special cases of modally discrete linear orders are Noetherian orders (no ascending
chains of points) and arbitrary models of the ‘♦F�F -theory’ of 〈ω,<〉.

I Theorem 8. FOLTL 6=-validity is Π1
1-hard in decreasing domain models over any class of

modally discrete linear orders containing a linear order that has a rooted infinite descending
chain.

We define the formula recbw as the conjunction of the following formulas:

∀x�F
(
S(x)→ ∃xR(x)

)
,

∀x�F
(
R(x)→ �F¬S(x)

)
,

∀x
(
♦FR(x)→ �F (S(x)→ Sqr

(x))
)
,

∀6=x�F
(
S(x)→ ∃xN(x)

)
.

In the following claim we use the diagonal generated backward in Lemma 5:
I Claim 8.1. Suppose that r |=α0 diagbw-dec∞ ∧ recbw in some decreasing domain FOLTL-
model based on a modally discrete linear order. Then there are infinitely many n such that
τn |=αn Sqr

(x).
So by Claims 7.1 and 8.1, if (19)∧ recbw is satisfiable in some decreasing domain FOLTL-

model based on a modally discrete linear order, then M has a run starting from 〈q0,0〉 and
visiting qr infinitely often.

On the other hand, suppose that M has run
〈
〈qn, c(n)〉 : n < ω

〉
such that c(0) = 0

and qkn
= qr for an infinite sequence 〈kn : n < ω〉. Let 〈T,<〉 be a modally discrete linear

order in our class that has a rooted infinite descending chain τω < · · · < τn < · · · < τ0.
We may assume that τn is the immediate <-successor of τn+1, for all n < ω. Take the
constant domain FOLTL-model Nbw

∞ defined in (20)–(21). We define a constant domain
model N =

〈
〈T,<〉, ω, J

〉
by taking, for all t ∈ T , P ∈ {N,S,Ci, start,Sq}i<N, q∈Q,

PJ(t) =
{

PI(n), if t = τn, n < ω,

∅, otherwise, RJ(t) =
{
{kn}, if t = τn, n < ω,

∅, otherwise.

Then (N, τω) |=0(19)∧ recbw, completing the proof of Theorem 8.

7 FOLTL 6= and propositional bimodal logics

There is a well-known connection between finite variable fragments of first-order temporal
logics and propositional multimodal logics where the first-order quantifiers are simulated by
S5-modalities [7]. Here we describe this connection for the version of FOLTL6= that has
∃6=x as its sole quantifier (see (1)).

Bimodal formulas are defined by the following grammar:

ϕ :: P | ¬ϕ | ϕ ∧ ψ | ♦0ϕ | ♦1ϕ

CSL’13

360 One-variable first-order linear temporal logics with counting

where (with a slight abuse of notation) P ranges over an infinite set P of propositional
variables. Then clearly there is a bijection ? from FOLTL 6=-formulas to bimodal formulas,
mapping each P(x) to P, ♦Fφ to ♦0φ

?, ∃6=xφ to ♦1φ
?, and commuting with the Booleans.

Bimodal formulas are evaluated in models M = 〈W,R0, R1, ν〉, where R0, R1 are binary
relations over a nonempty set W , and ν is function from P to the subsets of W . We say that
such an M is a model over the bi-relational structure 〈W,R0, R1〉. For any model M, w ∈W ,
and formula ϕ, we define the truth-relation M, w |= ϕ (or just w |= ϕ is M is understood) by
induction on ϕ:

w |= P iff w ∈ ν(P), w |= ¬ϕ iff w 6|= ϕ, w |= ϕ ∧ ψ iff w |= ϕ and w |= ψ,
w |= ♦iϕ iff there is v ∈W such that wRiv and v |= ϕ, for i = 0, 1.

We say that ϕ is true in a model M, whenever M, w |= ϕ holds for all w ∈W . If for some
set L of bimodal formulas, ϕ is true in M for every ϕ in L, then we say that M is a model
of L. Given a class C of models, the logic of C, denoted by Log C, is the set of all bimodal
formulas that are true in each model from C.

Every FOLTL-model M =
〈
〈T,<〉, Dt, I

〉
t∈T can be transformed to a modal model

M? = 〈W,R0, R1, ν〉, where W = {〈t, a〉 : t ∈ T, a ∈ Dt}, 〈t, a〉R0〈t′, a′〉 iff t < t′ and a = a′,
〈t, a〉R1〈t′, a′〉 iff a 6= a′ and t = t′, ν(P) = {〈t, a〉 : t |=a P(x)}. Such an R0 is always
transitive and weakly connected2, and R1 is a pseudo-equivalence relation3. So M? is a
model of the fusion (or independent join) K4.3⊕Diff of the unimodal logics K4.3 (the logic
of all models over transitive and weakly connected relations) and Diff (the logic of all models
over pseudo-equivalence relations [25]). Using the methods of [17], it can be shown that in
fact K4.3⊕Diff = Log{M? : M is a FOLTL-model}, and so for any FOLTL 6=-formula φ,
φ is FOLTL6=-valid in arbitrary domain FOLTL-models over the class of all linear orders iff
φ? belongs to the bimodal logic K4.3⊕Diff . Therefore, the following theorem follows from
the results of Wolter [29] and Spaan [26] on fusions:

I Theorem 9. FOLTL6=-validity is decidable and PSPACE-hard in arbitrary domain models
over the class of all linear orders.

If M is a (decreasing, expanding) constant domain FOLTL-model, then M? is what is
called in the literature [8, 7, 10, 17] a (decreasing, expanding) product model. So it is not hard
to see that Log{M? : M is a constant domain FOLTL-model} coincides with the product
logic K4.3×Diff , and so by Theorem 5 this bimodal logic is undecidable. Also, by similar
results on modal product logics (see [8] or [7, Thm.3.17]), we obtain the following general
theorem:

I Theorem 10. If C is a class of linear orders that is definable by a recursive set of first-order
sentences (in the language with a binary predicate and equality), then FOLTL 6=-validity is
recursively enumerable in constant, decreasing, or expanding domain models over C.

Further, Theorem 1 in [10] implies the following:

I Theorem 11. FOLTL6=-validity is decidable and has the finite domain property in ex-
panding domain models over the class of all finite linear orders.

2 A relation R is called weakly connected if ∀xyz
(
xRy ∧ xRz → (y = z ∨ yRz ∨ zRy)

)
.

3 A relation R is called a pseudo-equivalence if it is symmetric and ∀xyz
(
xRy ∧ yRz → (xRz ∨ x = z)

)
.

C. Hampson and A. Kurucz 361

Observe that if M is a constant domain FOLTL-model, then the two relations R0 and
R1 of M? commute. So M? is a model of the bimodal logic

[K4.3,Diff] := Log{〈W,R0, R1, ν〉 : R0 is transitive and weakly connected,
R1 is a pseudo-equivalence, R0 and R1 commute}.

However, [K4.3,Diff] is far from being equal to K4.3×Diff . In fact, there are infinitely
many logics in between, see [13]. So the following theorem generalises Theorem 5:

I Theorem 12. No bimodal logic between [K4.3,Diff] and K4.3×Diff is decidable.

8 Conclusion and open problems

We have shown that FOLTL6= is very complex over various classes of linear orders, whenever
the models have constant, decreasing, or expanding domains. Several questions about
expanding domain cases are left unanswered:
1) Is FOLTL 6= decidable in expanding domain models over the class of all linear orders?
2) Is FOLTL 6=-validity recursively enumerable in expanding domain models over 〈ω,<〉?
3) Is FOLTL6=-validity decidable or recursively enumerable in expanding domain models

over the class of all modally discrete linear orders?
By generalising our techniques to the propositional bimodal setting, we have shown that the
bimodal logic of commuting linear and pseudo-equivalence relations is undecidable. Related
open questions are the following:
4) Is one half of commutativity between the K4.3 and Diff modalities enough to obtain

undecidability?
5) Is the bimodal logic [K4,Diff] of commuting transitive and pseudo-equivalence relations

decidable? Is the product logic K4×Diff decidable?
6) The bimodal reformulation of 1): Is the expanding product logic K4.3×expDiff decidable?
In our proofs we used reductions of counter machine problems. Other lower bound results
about bimodal logics with grid-like models use reductions of tiling or Turing machine problems
[7, 9, 22]. On the one hand, it is not hard to re-prove the same results using counter machine
reductions. On the other, it seems tiling and Turing machine techniques require more control
over the ω×ω-grid than the limited expressivity of FOLTL6= provides. In order to understand
the boundary of each technique, it would be interesting to find tiling or Turing machine
reductions for the results of the present paper.

References
1 R. Alur and T. Henzinger. A really temporal logic. J. ACM, 41:181–204, 1994.
2 E. Börger, E. Grädel, and Yu. Gurevich. The Classical Decision Problem. Perspectives in

Mathematical Logic. Springer, 1997.
3 J. Chomicki. Temporal query languages: a survey. In D. Gabbay and H.J. Ohlbach, editors,

Procs. ICTL-1994), volume 827 of LNCS, pages 506–534. Springer, 1994.
4 J. Chomicki and D. Niwinski. On the feasibility of checking temporal integrity constraints.

J. Computer and Systems Sciences, 51:523–535, 1995.
5 A. Degtyarev, M. Fisher, and A. Lisitsa. Equality and monodic first-order temporal logic.

Studia Logica, 72:147–156, 2002.
6 D. Gabbay, I. Hodkinson, and M. Reynolds. Temporal Logic: Mathematical Foundations

and Computational Aspects, Volume 1. Oxford University Press, 1994.
7 D. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-Dimensional Modal Logics:

Theory and Applications, volume 148 of Studies in Logic. Elsevier, 2003.

CSL’13

362 One-variable first-order linear temporal logics with counting

8 D. Gabbay and V. Shehtman. Products of modal logics. Part I. Journal of the IGPL,
6:73–146, 1998.

9 D. Gabelaia, A. Kurucz, F. Wolter, and M. Zakharyaschev. Products of ‘transitive’ modal
logics. J. Symbolic Logic, 70:993–1021, 2005.

10 D. Gabelaia, A. Kurucz, F. Wolter, and M. Zakharyaschev. Non-primitive recursive de-
cidability of products of modal logics with expanding domains. Ann. Pure Appl. Logic,
142:245–268, 2006.

11 R. Goldblatt. Logics of Time and Computation. CSLI Lecture Notes, 1987.
12 E. Grädel, P. Kolaitis, and M. Vardi. On the decision problem for two-variable first order

logic. Bulletin of Symbolic Logic, 3:53–69, 1997.
13 C. Hampson and A. Kurucz. Axiomatisation and decision problems of modal product logics

with the difference operator. (manuscript), 2012.
14 I. Hodkinson, F. Wolter, and M. Zakharyaschev. Decidable fragments of first-order temporal

logics. Ann. Pure Appl. Logic, 106:85–134, 2000.
15 I. Hodkinson, F. Wolter, and M. Zakharyaschev. Monodic fragments of first-order temporal

logics: 2000–2001 A.D. In Logic for Programming, Artificial Intelligence and Reasoning,
number 2250 in LNAI, pages 1–23. Springer, 2001.

16 B. Konev, F. Wolter, and M. Zakharyaschev. Temporal logics over transitive states. In
R. Nieuwenhuis, editor, Procs. CADE-20, volume 3632 of LNCS, pages 182–203, 2005.

17 A. Kurucz and M. Zakharyaschev. A note on relativised products of modal logics. In
P. Balbiani, N-Y. Suzuki., F. Wolter, and M. Zakharyaschev, editors, Advances in Modal
Logic, Volume 4, pages 221–242. College Publications, 2003.

18 R. Mayr. Undecidable problems in unreliable computations. In G.H. Gonnet, D. Panario,
and A. Viola, editors, Procs. LATIN-2000, volume 1776 of LNCS, pages 377–386, 2000.

19 S. Merz. Decidability and incompleteness results for first-order temporal logics of linear
time. J. Applied Non-Classical Logics, 2:139–156, 1992.

20 M. Minsky. Finite and infinite machines. Prentice-Hall, 1967.
21 L. Pacholski, W. Szwast, and L. Tendera. Complexity results for first-order two-variable

logic with counting. SIAM J. Comput., 29:1083–1117, 2000.
22 M. Reynolds and M. Zakharyaschev. On the products of linear modal logics. J. Logic and

Computation, 11:909–931, 2001.
23 P. Schnoebelen. Lossy counter machines decidability cheat sheet. In A. Kucera and I. Po-

tapov, editors, Procs. RP-2010, volume 6227 of LNCS, pages 51–75. Springer, 2010.
24 P. Schnoebelen. Revisiting Ackermann-hardness for lossy counter machines and reset Petri

nets. In P. Hlinený and A. Kucera, editors, Procs. MFCS-2010, volume 6281 of LNCS,
pages 616–628. Springer, 2010.

25 K. Segerberg. A note on the logic of elsewhere. Theoria, 46:183–187, 1980.
26 E. Spaan. Complexity of Modal Logics. PhD thesis, Department of Mathematics and

Computer Science, University of Amsterdam, 1993.
27 A. Szałas. Concerning the semantic consequence relation in first-order temporal logic.

Theor. Comput. Sci., 47(3):329–334, 1986.
28 A. Szałas and L. Holenderski. Incompleteness of first-order temporal logic with until. Theor.

Comput. Sci., 57:317–325, 1988.
29 F. Wolter. Fusions of modal logics revisited. In M. Kracht, M. de Rijke, H. Wansing,

and M. Zakharyaschev, editors, Advances in Modal Logic, Volume 1, pages 361–379. CSLI
Publications, 1998.

30 F. Wolter and M. Zakharyaschev. Modal description logics: modalizing roles. Fundamenta
Informaticae, 39:411–438, 1999.

31 F. Wolter and M. Zakharyaschev. Axiomatizing the monodic fragment of first-order tem-
poral logic. Ann. Pure Appl. Logic, 118:133–145, 2002.

On the locality of arb-invariant first-order logic
with modulo counting quantifiers
Frederik Harwath and Nicole Schweikardt

Institut für Informatik, Goethe-Universität Frankfurt, Germany
{harwath,schweika}@cs.uni-frankfurt.de

Abstract
We study Gaifman and Hanf locality of an extension of first-order logic with modulo p counting
quantifiers (FO+MODp, for short) with arbitrary numerical predicates. We require that the
validity of formulas is independent of the particular interpretation of the numerical predicates
and refer to such formulas as arb-invariant formulas. This paper gives a detailed picture of
locality and non-locality properties of arb-invariant FO+MODp. For example, on the class of
all finite structures, for any p > 2, arb-invariant FO+MODp is neither Hanf nor Gaifman local
with respect to a sublinear locality radius. However, in case that p is an odd prime power, it is
weakly Gaifman local with a polylogarithmic locality radius. And when restricting attention to
the class of string structures, for odd prime powers p, arb-invariant FO+MODp is both Hanf and
Gaifman local with a polylogarithmic locality radius. Our negative results build on examples of
order-invariant FO+MODp formulas presented in Niemistö’s PhD thesis. Our positive results
make use of the close connection between FO+MODp and Boolean circuits built from NOT-gates
and AND-, OR-, and MODp-gates of arbitrary fan-in.

1998 ACM Subject Classification F.4.1 Mathematical Logic, H.2.3 Languages (Query Lan-
guages), F.1.3 Complexity Measures and Classes

Keywords and phrases finite model theory, Gaifman and Hanf locality, first-order logic with
modulo counting quantifiers, order-invariant and arb-invariant formulas, lower bounds in circuit
complexity

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.363

1 Introduction

Expressibility of logics over finite structures plays an important role in various areas of
computer science. In descriptive complexity, logics are used to characterise complexity classes,
and concerning databases, common query languages have well-known logical equivalents.
These applications have motivated a systematic study of the expressive powers of logics on
finite structures. The classical inexpressibility arguments for logics over finite structures
(i.e., back-and-forth systems or Ehrenfeucht-Fraïssé games; cf. [9]) often involve nontrivial
combinatorics. Notions of locality have been proposed as an alternative that allows to contain
much of the hard combinatorial work in generic results.

The two best known notions of locality are Gaifman locality and Hanf locality, introduced
in [8, 6]. A k-ary query is called Gaifman local with locality radius f(n) if in a structure of
cardinality n, the question whether a given tuple satisfies the query only depends on the
isomorphism type of the tuple’s neighbourhood of radius f(n). A Boolean query is Hanf
local with locality radius f(n) if the question whether a structure of size n satisfies the query
only depends on the number of occurrences of isomorphism types of neighbourhoods of
radius f(n). If a given logic is capable of defining only Gaifman or Hanf local queries with a
sublinear locality radius, then this logic cannot express “non-local” queries such as, e.g., the

© Frederik Harwath and Nicole Schweikardt;
licensed under Creative Commons License CC-BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca; pp. 363–379

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.363
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

364 Locality of arb-invariant FO with modulo counting quantifiers

query asking whether two nodes of a graph are connected by a path, or the query asking
whether a graph is acyclic (cf., e.g., the textbook [9]). It is well-known that first-order logic
FO, as well as extensions of FO by various kinds of counting quantifiers, are Gaifman local
and Hanf local with a constant locality radius [8, 6]. Also, locality properties of extensions
of FO by invariant uses of order and arithmetic have been considered [7, 1].

Order-invariant and arb-invariant logics1 were introduced to capture the data independ-
ence principle in databases: An implementation of a database query may exploit the order
in which the database elements are stored in memory, and thus identify the elements with
natural numbers on which arithmetic can be performed. But the use of order and arithmetic
should be restricted in such a way that the result of the query does not depend on the
particular order in which the data is stored. Arb-invariant formulas are formulas that can
make use, apart from the relations present in a given structure, also of a linear order < and
arithmetic predicates such as + or × induced by <, but only in such a way that the answer is
independent of the particular linear order on a structure chosen for <. Arb-invariant formulas
that only use the linear order, but no further arithmetic predicates, are called order-invariant.
In [7] it was shown that order-invariant FO can express only queries that are Gaifman local
with a constant locality radius, and from [1] we know that arb-invariant FO can express
only queries that are Gaifman local with a polylogarithmic locality radius. The proof of [1]
relies on a reduction using strong lower bound results from circuit complexity, concerning
AC0-circuits. Similar lower bounds are known also for the extension of AC0-circuits by
modulo p counting gates, for a prime power p [13]. This naturally raises the question whether
the locality results from [1] can be generalised to the extension of FO by modulo p counting
quantifiers (FO+MODp, for short), which precisely corresponds to AC0-circuits with modulo
p counting gates [3]. This question was the starting point for the investigations carried out
in the present paper. Our results give a detailed picture of the locality and non-locality
properties of order-invariant and arb-invariant FO+MODp.

For every natural number p > 2, order-invariant FO+MODp is neither Hanf nor Gaifman
local with a sublinear locality radius (Section 4 and Proposition 3.2). For even numbers
p > 2, order-invariant FO+MODp is not even weakly Gaifman local with a sublinear locality
radius (Proposition 3.4). Here, weak Gaifman locality is a relaxed notion of Gaifman locality
referring only to tuples with disjoint neighbourhoods (cf., [9]). However, for odd prime powers
p we can show that arb-invariant FO+MODp is weakly Gaifman local with a polylogarithmic
locality radius (Theorem 3.5). For showing the latter result, we introduce a new locality
notion called shift locality, for which we can prove for all prime powers p that arb-invariant
FO+MODp is shift local with a polylogarithmic locality radius (Theorem 3.7). Our proof
relies on Smolensky’s circuit lower bound [13]. Generalising our result from prime powers p to
arbitrary numbers p can be expected to be difficult, since it would solve long-standing open
questions in circuit complexity (Remark 3.13). When restricting attention to the class of string
structures, we obtain for odd prime powers p that arb-invariant FO+MODp is both Hanf
and Gaifman local with a polylogarithmic locality radius (Theorem 4.3 and Corollary 4.4).
On the other hand, for even numbers p > 2, already order-invariant FO+MODp on string
structures is neither Gaifman nor Hanf local with a sublinear locality radius (Proposition 3.4
and Section 4). This, in particular, implies that order-invariant FO+MODp is strictly more
expressive on strings than FO+MODp, refuting a conjecture of Benedikt and Segoufin [4].

The remainder of this paper is structured as follows: Section 2 fixes the basic notation,

1 Strictly speaking, arb-invariant first-order logic is a “logical system” rather than a “logic”, as its syntax
is undecidable.

F. Harwath and N. Schweikardt 365

introduces the notions of order-invariant and arb-invariant FO+MODp and recalls two
examples of order-invariant FO+MODp-formulas from Niemistö’s PhD-thesis [11]. Section 3
presents our results concerning Gaifman locality, weak Gaifman locality, and shift locality.
Section 4 deals with Hanf locality on finite structures, and with Gaifman and Hanf locality
on string structures.

Several details had to be omitted from this paper due to lack of space. These can be
found in the full version of this paper, available at the authors’ websites.

2 Preliminaries

Basic notation. We write N for the set of non-negative integers and let N>1 := N \ {0}. For
n ∈ N>1 we write [n] for the set {i ∈ N : 0 6 i < n}, i.e., [n] = {0, . . . , n−1}. For integers
i, j, p with p > 2, we write i ≡ j mod p (and say that i is congruent j modulo p) iff there
exists an integer k such that i = j + kp. For integers i, i′, the term (i+i′ mod p) denotes the
number j ∈ [p] such that i+i′ ≡ j mod p. Two natural numbers i and j are coprime if their
greatest common divisor is 1. A number p is called a prime power if p = p̂i for a prime p̂
and an integer i > 1, and p is called an odd prime power if p’s prime factor is different from
2 (i.e., p is odd). A number r ∈ N>1 is called a factor of a natural number s, if there is a
t ∈ N such that s = rt. We write logn to denote the logarithm of a number n with respect
to base 2, and we often simply write logn instead of blognc.

For a finite set A we write |A| to denote the cardinality of A. By 2A we denote the power
set of A, i.e., the set {Y : Y ⊆ A}. The set of all non-empty finite strings built from symbols
in A is denoted A+. We write |w| for the length of a string w ∈ A+. For an a ∈ A we write
|w|a for the number of occurrences of the letter a in the string w.

Structures. A signature σ is a set of relation symbols R, each of them associated with a
fixed arity ar(R) ∈ N>1. Throughout this paper, σ will usually denote a fixed finite signature.

A σ-structure A consists of a non-empty set A called the universe of A, and a relation
RA ⊆ Aar(R) for each relation symbol R ∈ σ. The cardinality of a σ-structure A is the
cardinality of its universe. Finite σ-structures are σ-structures of finite cardinality. For
σ-structures A and B and tuples a = (a1, . . . , ak) ∈ Ak and b = (b1, . . . , bk) ∈ Bk we write
(A, a) ∼= (B, b) to indicate that there is an isomorphism π from A to B that maps a to b (i.e.,
π(ai) = bi for each i 6 k).

We represent strings over a finite alphabet Σ by successor-based structures as follows:
We choose σΣ := {E} ∪ {Pa : a ∈ Σ}, where E is a binary relation symbol and Pa is a
unary relation symbol, for each a ∈ Σ. We represent a non-empty string w ∈ Σ+ by the
σΣ-structure Sw, where the universe of Sw is the set {1, . . . , |w|} of positions of w, the edge
relation ESw is the successor relation, i.e., ESw = {(i, i + 1) : 1 6 i < |w|}, and for each
a ∈ Σ, the set PSw

a consists of all positions of w that carry the letter a. Structures of the
form Sw (for a string w) are called string structures.

In this paper, all classes C of finite σ-structures will be closed under isomorphism, i.e.,
if A and B are isomorphic σ-structures, then A ∈ C iff B ∈ C. We will write Σ-strings to
denote the class of all σΣ-structures that represent strings in Σ+ (i.e., Σ-strings is the closure
under isomorphisms of the set {Sw : w ∈ Σ+}).

First-order logic with modulo counting quantifiers. We assume that the reader is familiar
with basic concepts and notations concerning first-order logic and extensions thereof (cf.,
e.g., the textbooks [9, 5]). By free(ϕ) we denote the set of all free variables of a formula

CSL’13

366 Locality of arb-invariant FO with modulo counting quantifiers

ϕ. A sentence is a formula ϕ with free(ϕ) = ∅. We often write ϕ(x), for x = (x1, . . . , xk),
to indicate that free(ϕ) = {x1, . . . , xk}. If A is a σ-structure and a = (a1, . . . , ak) ∈ Ak, we
write A |= ϕ[a] to indicate that the formula ϕ(x) is satisfied in A when interpreting the free
occurrences of the variables x1, . . . , xk with the elements a1, . . . , ak.

We write FO(σ) to denote the class of all first-order formulas of signature σ. In this
paper, we consider the extension of FO(σ) by modulo counting quantifiers, defined as follows:
Let p be a natural number with p > 2. A modulo p counting quantifier is of the form ∃i mod p

for some i ∈ [p]. A formula of the form ∃i mod pxϕ(x, y) is satisfied by a σ-structure A
and an interpretation b ∈ Ak of the variables y iff the number of elements a ∈ A such that
A |= ϕ[a, b] is congruent i modulo p.

For a fixed natural number p > 2 we write FO+MODp(σ) to denote the extension of
FO(σ) by modulo p counting quantifiers. I.e., FO+MODp(σ) is built from atomic formulas of
the form x1=x2 and R(x1, . . . , xar(R)), for R ∈ σ and variables x1, x2, . . . , xar(R), and closed
under Boolean connectives ∧, ∨, ¬, existential and universal first-order quantifiers ∃, ∀, and
modulo p counting quantifiers ∃i mod p, for i ∈ [p]. This logic has been studied in depth, see
e.g., [14, 8, 3]. Note that if m is a multiple of p, then FO+MODm can express modulo p
counting quantifiers, since ∃i mod px ϕ(x, y) is equivalent to

∨
06j<m/p ∃jp+i mod mx ϕ(x, y).

Arb-invariant logics. We can extend the expressive power of a logic by allowing formulas
to use, apart from the relation symbols present in the signature σ, also a linear order <,
arithmetic predicates such as + or ×, or arbitrary numerical predicates. By definition, an
r-ary numerical predicate PN is an r-ary relation on N (i.e., PN ⊆ Nr). Two examples of
numerical predicates are the linear order <N consisting of all tuples (a, b) ∈ N2 with a < b,
and the addition predicate +N consisting of all triples (a, b, c) ∈ N3 with a+ b = c.

To allow formulas to use numerical predicates, we fix the following notation: For every
r ∈ N>1 and every r-ary numerical predicate PN, let P be a new relation symbol of arity r
(“new” meaning that P does not belong to σ). We write ηarb to denote the set of all the
relation symbols P obtained this way, and let σarb := σ ∪ ηarb (the subscript “arb” stands
for “arbitrary numerical predicates”).

Next, we would like to allow FO+MODp(σarb)-formulas to make meaningful statements
about finite σ-structures. To this end, for a finite σ-structure A, we consider embeddings ι of
the universe of A into the initial segment of N of size n = |A|, i.e., the set [n] = {0, . . . , n−1}.

I Definition 2.1 (Embedding). Let A be a finite σ-structure, and let n := |A|.
An embedding ι of A is a bijection ι : A→ [n].

Given a finite σ-structure A and an embedding ι of A, we can translate r-ary numerical
predicates PN into r-ary predicates on A as follows: PN induces the r-ary predicate P ι on
A, consisting of all r-tuples a = (a1, . . . , ar) ∈ Ar where ι(a) = (ι(a1), . . . , ι(ar)) ∈ PN. In
particular, the linear order <N induces the linear order <ι on A where for all a, b ∈ A we
have a <ι b iff ι(a) < ι(b).

The σarb-structure Aι associated with A and ι is the expansion of A by the predicates
P ι for all P ∈ ηarb. I.e., Aι has the same universe as A, all relation symbols R ∈ σ are
interpreted in Aι in the same way as in A, and every numerical symbol P ∈ ηarb is interpreted
by the relation P ι.

To ensure that an FO+MODp(σarb)-formula ϕ makes a meaningful statement about a
σ-structure A, we evaluate ϕ in Aι, and we restrict attention to those formulas whose truth
value is independent of the particular choice of the embedding ι. This is formalised by the
following notion.

F. Harwath and N. Schweikardt 367

I Definition 2.2 (Arb-invariance). Let ϕ(x) be an FO+MODp(σarb)-formula with k free
variables, and let A be a finite σ-structure. The formula ϕ(x) is arb-invariant on A if for all
embeddings ι1 and ι2 of A and for all tuples a ∈ Ak we have: Aι1 |= ϕ[a] ⇐⇒ Aι2 |= ϕ[a].

Let ϕ(x) be arb-invariant on A. We write A |= ϕ[a], if Aι |= ϕ[a] for some (and hence
every) embedding ι of A.

I Definition 2.3 (arb-inv-FO+MODp). An FO+MODp(σarb)-formula ϕ(x) is arb-invariant
on a class C of finite σ-structures, if ϕ(x) is arb-invariant on every A ∈ C. By
arb-inv-FO+MODC

p (σ) we denote the set of all FO+MODp(σarb)-formulas that are arb-
invariant on C.

ϕ(x) is called arb-invariant if it is arb-invariant on the class of all finite σ-structures. We
write arb-inv-FO+MODp(σ) to denote the set of all arb-invariant FO+MODp(σarb)-formulas.

I Definition 2.4 (Order-invariance and <-inv-FO+MODp).
An arb-invariant formula that only uses the numerical predicate <N is called order-invariant.
By <-inv-FO+MODp(σ) we denote the set of all arb-invariant FO+MODp(σ∪{<})-formulas.

Next, we present two examples of <-inv-FO+MODp(σ)-sentences that were developed
by Niemistö in [11] and that will be used later on in this paper.

I Example 2.5 (Niemistö (Proposition 6.22 in [11])). Let σ = {E} be the signature consisting
of a binary relation symbol E. Proposition 6.22 of [11] presents an <-inv-FO+MOD2(σ)-
sentence ϕeven cycles that is satisfied by exactly those finite σ-structures A that are disjoint
unions of directed cycles where the number of cycles of even length is even.

I Example 2.6 (Niemistö (Proposition 6.20 in [11])). Let σ = {E1, E2} be the signature
consisting of two binary relation symbols E1 and E2 and let h,w ∈ N with h,w > 2. The
torus Ah,w and the twisted torus Bh,w of height h and width w are the σ-structures defined
as follows (illustrations can be found on the left and in the middle of Figure 1).
The torus of height h and width w is the σ-structure Ah,w with universe [h]× [w] and relations

E
Ah,w

1 := {
(
(i, j), (i+1 mod h, j)

)
: i ∈ [h], j ∈ [w] }

E
Ah,w

2 := Fh,w ∪ {
(
(i, w−1), (i, 0)

)
: i ∈ [h] }

with Fh,w := {
(
(i, j), (i, j+1)

)
: i ∈ [h], j ∈ [w−1] }.

The twisted torus of height h and width w is the σ-structure Bh,w with universe [h]× [w] and
relations

E
Bh,w

1 := E
Ah,w

1

E
Bh,w

2 := Fh,w ∪ {
(
(i, w−1), (i+1 mod h, 0)

)
: i ∈ [h] }.

Proposition 6.20 in [11] presents, for every h ∈ N with h > 2, an <-inv-FO+MODh(σ)-
sentence ϕh-torus which, for every w ∈ N with w > 2, is satisfied by the torus Ah,w, but not
by the twisted torus Bh,w.

3 Locality of queries

A k-ary query q is a mapping that associates with every finite σ-structure A a k-ary relation
q(A) ⊆ Ak, which is invariant under isomorphisms, i.e., if π is an isomorphism from a
σ-structure A to a σ-structure B, then for all a = (a1, . . . , ak) ∈ Ak we have a ∈ q(A)
iff π(a) = (π(a1), . . . , π(ak)) ∈ q(B). If C is a class of finite σ-structures, then every

CSL’13

368 Locality of arb-invariant FO with modulo counting quantifiers

arb-inv-FO+MODC
p (σ)-formula ϕ(x) with k free variables defines a k-ary query qϕ on C via

qϕ(A) = {a ∈ Ak : A |= ϕ[a]}, for every σ-structure A ∈ C.
The Gaifman graph of a σ-structure A is the undirected graph G(A) with vertex set A,

where for any a, b ∈ A with a 6= b there is an undirected edge between a and b iff there is
an R ∈ σ and a tuple (a1, . . . , aar(R)) ∈ RA such that a, b ∈ {a1, . . . , aar(R)}. The distance
distA(a, b) between two elements a, b ∈ A is the length of a shortest path between a and b in
G(A). The distance distA(b, a) between an element b ∈ A and a tuple a = (a1, . . . , ak) ∈ Ak
is the the minimum of distA(b, ai) for all i ∈ {1, . . . , k}. For every r ∈ N, the r-ball NAr (a)
around a tuple a ∈ Ak is the set of all elements b with distA(b, a) 6 r. The r-neighbourhood
of a is the induced substructure NAr (a) of A on NAr (a).

3.1 Gaifman locality
The notion of Gaifman locality is a standard tool for showing that particular queries are not
definable in certain logics (cf., e.g., the textbook [9] for an overview).

I Definition 3.1 (Gaifman locality). Let C be a class of finite σ-structures, k ∈ N>1 and
f : N→ N. A k-ary query q is Gaifman f(n)-local on C if there is an n0 ∈ N such that for
every n ∈ N with n > n0 and every σ-structure A ∈ C with |A| = n, the following is true for
all k-tuples a, b ∈ Ak with (NAf(n)(a), a) ∼= (NAf(n)(b), b): a ∈ q(A) ⇐⇒ b ∈ q(A).
The query q is Gaifman f(n)-local if it is Gaifman f(n)-local on the class of all finite
σ-structures.

I.e., in a σ-structure of cardinality n, a query that is Gaifman f(n)-local cannot distinguish
between k-tuples of nodes whose neighbourhoods of radius f(n) are isomorphic. The function
f(n) is called the locality radius of the query. It is well-known that queries definable in FO
or FO+MODp (for any p > 2) are Gaifman local with a constant locality radius [8]. The
articles [7] and [1] generalised this to order-invariant FO (for constant locality radius) and
arb-invariant FO (for polylogarithmic locality radius) in the following sense: Let k ∈ N>1,
and let q be a k-ary query. If q is definable in <-inv-FO(σ), then there is a c ∈ N such that
q is Gaifman c-local. If q is definable in arb-inv-FO(σ), then there is a c ∈ N such that q is
Gaifman (logn)c-local. However, for every d ∈ N there is a unary query qd that is definable
in arb-inv-FO({E}) and that is not Gaifman (logn)d-local.

Somewhat surprisingly, using Example 2.6 one obtains that the Gaifman locality result
cannot be generalised to order- or arb-invariant FO+MODp. In fact, <-inv-FO+MODp can
define queries that are not even Gaifman local with locality radius as big as (nh−2), for the
smallest prime divisor h of p:

I Proposition 3.2. Let h ∈ N with h > 2, and let σ = {R,E1, E2} be a signature consisting
of a unary relation symbol R and two binary relation symbols E1, E2. There exists a unary
query q that is not Gaifman (nh−2)-local, but definable in <-inv-FO+MODp(σ), for every
multiple p > 2 of h.

Proof. Recall the {E1, E2}-structures Ah,w and Bh,w from Example 2.6 called torus and
twisted torus, and recall the definition of the relation Fh,w. For w ∈ N with w > 2, the
pre-torus of height h and width w is the σ-structure Ch,w with universe [h]× [w] and relations
RCh,w := { (0, w−1) }, ECh,w

1 := E
Ah,w

1 , and ECh,w

2 := Fh,w (see the rightmost part of Figure 1
for an illustration).

From Example 2.6 we obtain an <-inv-FO+MODh({E1, E2})-sentence ϕh-torus which,
for every width w ∈ N with w > 2, is satisfied by Ah,w, but not by Bh,w. We modify ϕh-torus
in such a way that we obtain an <-inv-FO+MODh(σ)-formula ψ(x) which, when evaluated

F. Harwath and N. Schweikardt 369

Figure 1 The torus A3,4 (left), the twisted torus B3,4 (middle), and the pre-torus C3,4 (right) of
height 3 and width 4. The E1- and E2-edges are depicted by solid arcs and dotted arcs, respectively.
The unique node in the relation RC3,4 of the pre-torus is the rightmost node in the top row, depicted
by a red star.

in the pre-torus Ch,w with x interpreted as the element a := (0, 0) (resp., as b := (1, 0)),
simulates ϕh-torus evaluated on Ah,w (resp., on Bh,w). To this end, we let ψ(x) state that
each of the following is satisfied:

There is a unique element y0 satisfying R(y0),
there are elements y1, . . . , yh−1 such that E1(yi, yi+1 mod h) is true for all i ∈ [h],
there are elements x0, . . . , xh−1 such that x0=x and E1(xi, xi+1 mod h) is true for all
i ∈ [h],
the formula ϕ′ is satisfied, where ϕ′ is obtained from ϕh-torus by replacing every atom of
the form E2(u, v) by the formula

(
E2(u, v) ∨

∨
06i<h

(
u=yi ∧ v=xi

))
.

Clearly, Ch,w |= ψ[a] (since Ah,w |= ϕh-torus), and Ch,w 6|= ψ[b] (since Bh,w 6|= ϕh-torus). Thus,
a ∈ qψ(Ch,w) and b 6∈ qψ(Ch,w). Note that the (w−2)-neighbourhoods of a and b in the
pre-torus Ch,w are isomorphic, i.e., (N Ch,w

w−2 (a), a) ∼= (N Ch,w

w−2 (b), b). The cardinality of Ch,w
is n := hw, and hence w−2 = n

h−2. Thus, the query defined by ψ(x) is not Gaifman
(nh−2)-local.

By Example 2.6, ϕh-torus is order-invariant on the class of all finite {E1, E2}-structures.
Therefore, the formula ψ(x) is order-invariant on the class of all finite σ-structures. Note
that ψ(x) is definable in <-inv-FO+MODh(σ), and hence also in <-inv-FO+MODp(σ), for
every multiple p of h. J

3.2 Weak Gaifman locality
Weak Gaifman locality (cf., [9]) is a relaxed notion of Gaifman locality where “a ∈ q(A) ⇐⇒
b ∈ q(A)” needs to be true only for those tuples a and b whose f(n)-neighbourhoods are
disjoint.

I Definition 3.3 (Weak Gaifman locality). Let C be a class of finite σ-structures, k ∈ N>1 and
f : N→ N. A k-ary query q is weakly Gaifman f(n)-local on C if there is an n0 ∈ N such that
for every n ∈ N with n > n0 and every σ-structure A ∈ C with |A| = n, the following is true
for all k-tuples a, b ∈ Ak with (NAf(n)(a), a) ∼= (NAf(n)(b), b) and NAf(n)(a) ∩NAf(n)(b) = ∅:
a ∈ q(A) ⇐⇒ b ∈ q(A). The query q is weakly Gaifman f(n)-local if it is weakly Gaifman
f(n)-local on the class of all finite σ-structures.

Note that the example presented in the proof of Proposition 3.2 does not provide a
counter-example to weak Gaifman locality, since the elements a and b considered in the proof
of Proposition 3.2 are of distance 1, and thus their f(n)-neighbourhoods are not disjoint.
However, using Example 2.5, one obtains a counter-example to weak Gaifman locality for

CSL’13

370 Locality of arb-invariant FO with modulo counting quantifiers

<-inv-FO+MODp for even numbers p; see Proposition 6.23 in [11]. Here, we present a
refinement of Niemistö’s proof which provides a counter-example to weak Gaifman locality
already for the restricted case of string structures.

I Proposition 3.4. Let Σ := {0, 1}, and let σΣ = {E,P0, P1} be the signature used for
representing strings over Σ. There exists a unary query q that is not weakly Gaifman
(n4−1)-local on Σ-strings, but definable in <-inv-FO+MODp(σΣ), for every even number
p > 2.

Proof. For every ` ∈ N>1, let A` and B` be {E}-structures whose universe consists of 2`
vertices, the edge relation of A` consists of two directed cycles of length `, and the edge
relation of B` consists of a single directed cycle of length 2`. Furthermore, we choose w` to
be the string 1` 0` 1` 0`, and we let a` := ` be the rightmost position of the first block of 1s,
and b` := 3` the rightmost position of the second block of 1s.

From Example 2.5 we obtain an <-inv-FO+MOD2({E})-sentence ϕeven cycles that is
satisfied by a finite {E}-structure A iff A is a disjoint union of directed cycles where the
number of cycles of even length is even. Thus, for every ` ∈ N>1 we have: A` |= ϕeven cycles
and B` 6|= ϕeven cycles. We modify the formula ϕeven cycles in such a way that we obtain
an <-inv-FO+MOD2(σΣ)-formula ψ(x) which, when evaluated in the σΣ-structure Sw`

representing the string w` with x interpreted as the position a` (respectively, the position
b`), simulates ϕeven cycles evaluated on A` (respectively, on B`). To this end, we let ψ(x) be
a formula stating that each of the following is satisfied:

There is a unique position x′ 6= x that carries the letter 1 such that the position directly
to the right of x′ carries the letter 0.
There is a unique position y of in-degree 0, and this position carries the letter 1. Fur-
thermore, there is a unique position y′ that carries the letter 1, such that the position
directly to the left of y′ carries the letter 0.
The formula ϕ′ is satisfied, where ϕ′ is obtained from ϕeven cycles by relativisation of all
quantifiers to positions that carry the letter 1, and by replacing every atom of the form
E(u, v) by the formula

(
E(u, v) ∨

(
u=x ∧ v=y

)
∨
(
u=x′ ∧ v=y′

))
.

Clearly, for every ` ∈ N>1 we have: Sw`
|= ψ[a`] (since A` |= ϕeven cycles), and Sw`

6|= ψ[b`]
(since B` 6|= ϕeven cycles). Thus, a` ∈ qψ(Sw`

) and b` 6∈ qψ(Sw`
). Note that the (`−1)-

neighbourhoods of a` and b` in Sw`
are disjoint and isomorphic. The cardinality of Sw`

is
n := 4`, and hence `−1 = n

4−1. Thus, the query defined by ψ(x) is not weakly Gaifman
(n4−1)-local. Since ϕeven cycles is order-invariant on all finite {E}-structures, the formula
ψ(x) is order-invariant on the class of all finite σΣ-structures. Note that ψ(x) is definable
in <-inv-FO+MOD2(σΣ), and hence also in <-inv-FO+MODp(σΣ), for every multiple p of
2. J

In light of Proposition 3.4 it is somewhat surprising that for odd numbers p, unary queries
definable in <-inv-FO+MODp are weakly Gaifman local with constant locality radius —
this is a result obtained by Niemistö (see Corollary 6.37 in [11]). For odd prime powers
p we can generalise this to k-ary queries definable in arb-inv-FO+MODp, when allowing
polylogarithmic locality radius (note that we cannot hope for a smaller locality radius, since
[1] provides, for every d ∈ N, a unary query definable in arb-inv-FO({E}) that is not weakly
Gaifman (logn)d-local).

I Theorem 3.5. Let C be a class of finite σ-structures. Let k ∈ N>1, let q be a k-ary query,
and let p be an odd prime power. If q is definable in arb-inv-FO+MODC

p (σ) on C, then there
is a c ∈ N such that q is weakly Gaifman (logn)c-local on C.

F. Harwath and N. Schweikardt 371

The proof of this theorem will be given in the next subsection, as an easy consequence of
Theorem 3.7 below. A generalisation of Theorem 3.5 from odd prime powers to arbitrary
odd numbers p would lead to new separations concerning circuit complexity classes and can
therefore be expected to be rather difficult (see Remark 3.13).

3.3 Shift locality
The following notion of shift locality is a generalisation of the notion of alternating Gaifman
locality introduced by Niemistö in [11].

I Definition 3.6 (Shift locality). Let C be a class of finite σ-structures. Let k, t ∈ N>1 with
t > 2, and let f : N → N. A kt-ary query q is shift f(n)-local w.r.t. t on C if there is an
n0 ∈ N such that for every n ∈ N with n > n0 and every σ-structure A ∈ C with |A| = n,
the following is true for all k-tuples a0, . . . , at−1 ∈ Ak with (NAf(n)(ai), ai) ∼= (NAf(n)(aj), aj)
and NAf(n)(ai) ∩NAf(n)(aj) = ∅ for all i, j ∈ [t] with i 6= j: (a0, a1 . . . , at−1) ∈ q(A) ⇐⇒
(a1, . . . , at−1, a0) ∈ q(A).
Query q is shift f(n)-local w.r.t. t if it is shift f(n)-local w.r.t. t on the class of all finite
σ-structures.

In a technical lemma (Lemma 6.36 in [11]), Niemistö shows that for k = 1 and p, t ∈ N
with p, t > 2 and p and t coprime, for every t-ary query q definable in <-inv-FO+MODp(σ),
there is a c ∈ N such that q is shift c-local w.r.t. t. Our next result deals with the general
case of shift locality and the more expressive logic arb-inv-FO+MODp(σ), when allowing
polylogarithmic locality radius.

I Theorem 3.7. Let C be a class of finite σ-structures. Let k, t ∈ N>1 with t > 2, let q be a
kt-ary query, and let p be a prime power such that p and t are coprime. If q is definable in
arb-inv-FO+MODC

p (σ) on C, then there is a c ∈ N such that q is shift (logn)c-local w.r.t. t
on C.

Our proof of Theorem 3.7 relies on lower bounds achieved in circuit complexity. A
generalisation of Theorem 3.7 from prime powers to arbitrary numbers p > 2 would lead
to new separations of circuit complexity classes and can therefore be expected to be rather
difficult (see Remark 3.13). Before giving the proof of Theorem 3.7, let us first point out
that it immediately implies Theorem 3.5.

Proof of Theorem 3.5 (using Theorem 3.7). Let ϕ(x) be an arb-inv-FO+MODC
p (σ)-

formula with k free variables x = (x1, . . . , xk), defining a k-ary query qϕ on C. Let
y = (y1, . . . , yk) be k variables different from the variables in x. Then, ψ(x, y) :=(
ϕ(x) ∧

∧
16i6k yi=yi) is an arb-inv-FO+MODC

p (σ)-formula that defines a 2k-ary query
qψ. By Theorem 3.7, there exists a c ∈ N such that qψ is shift (logn)c-local w.r.t. t := 2 on
C. It is straightforward to see that the shift (logn)c-locality of qψ w.r.t. t = 2 implies that
the query qϕ is weakly Gaifman (logn)c-local. J

The remainder of this subsection is devoted to the proof of Theorem 3.7. We follow the
overall method of [1] for the case of disjoint neighbourhoods (see [12] for an overview) and
make use of the connection between arb-inv-FO+MODp and MODp-circuits [3], along with
a circuit lower bound by Smolensky [13].

We assume that the reader is familiar with basic notions and results in circuit complexity
(cf., e.g., the textbook [2]). A MODp-gate returns the value 1 iff the number of ones at its
inputs is congruent 0 modulo p. We consider Boolean MODp-circuits consisting of AND-,

CSL’13

372 Locality of arb-invariant FO with modulo counting quantifiers

OR-, and MODp-gates of unbounded fan-in, input gates, negated input gates, and constant
gates 0 and 1. More precisely, a MODp-circuit with m input bits is a directed acyclic graph
whose vertices without ingoing edges are called input gates and are labelled with either 0,
1, wν , or ¬wν for ν ∈ {1, . . . ,m}, whose internal nodes are called gates and are labelled
either AND or OR or MODp, and which has a distinguished vertex without outgoing edges
called the output gate. A MODp-circuit C with m input bits naturally defines a function
from {0, 1}m to {0, 1}. For an input string w ∈ {0, 1}m we say that C accepts w if C(w) = 1.
Accordingly, C rejects w if C(w) = 0. The size of a circuit is the number of gates it contains,
and the depth is the length of the longest path from the output gate to one of the input
gates.

Our proof of Theorem 3.7 relies on Smolensky’s following circuit lower bound.

I Theorem 3.8 (Smolensky [13] (see also [14])). Let p be a prime power.
There exist numbers ε, ` > 0 such that for every d ∈ N>1 there is an md ∈ N>1 such that for
every m ∈ N with m > md the following is true for every number r that has a prime factor
different from p’s prime factor: No MODp-circuit of depth d and size at most 2ε `d

√
m accepts

exactly those bitstrings w ∈ {0, 1}m that contain a number of ones congruent 0 modulo r.

In the literature, Smolensky’s theorem is usually stated only for primes p. Note, however,
that (for each fixed k ∈ N>1) MODpk -gates can easily be simulated by MODp-circuits of
constant depth and polynomial size (cf., [14]), and hence Smolensky’s theorem also holds for
prime powers p, as stated in Theorem 3.8. It is still open whether an analogous result also
holds for numbers p composed of more than one prime factor (see Chapter VIII of [14] and
Chapter 14.4 of [2] for discussions on this).

To establish the connection between MODp-circuits and arb-inv-FO+MODp(σ), we need
to represent σ-structures A and K-tuples a ∈ AK (for K ∈ N) by bitstrings. This is done in
a straightforward way: Let σ = {R1, . . . , R|σ|} and let ri := ar(Ri) for each i 6 |σ|. Consider
a finite σ-structure A with |A| = n. Let ι be an embedding of A into [n]. For each Ri ∈ σ we
let Repι(RAi) be the bitstring of length nri whose j-th bit is 1 iff the j-th smallest element in
Ari w.r.t. the lexicographic order associated with <ι belongs to the relation RAi . Similarly,
for each component ai of a K-tuple a = (a1, . . . , aK) ∈ AK we let Repι(ai) be the bitstring
of length n whose j-th bit is 1 iff ai is the j-th smallest element of A w.r.t. <ι. Finally, we let

Repι(A, a) := Repι(RA1) · · · Repι(RA|σ|) Repι(a1) · · · Repι(aK)

be the binary representation of (A, a) w.r.t. ι. Note that, independently of ι, the length of
the bitstring Repι(A, a) is λσK(n) :=

∑|σ|
i=1 n

ri +Kn.
The connection between FO+MODp(σarb) and MODp-circuits is obtained by the following

result.

I Theorem 3.9 (implicit in [3] (see also [14])). Let σ be a finite relational signature, let
K ∈ N, and let p ∈ N with p > 2. For every FO+MODp(σarb)-formula ϕ(x) with K free
variables there exist numbers d, s ∈ N such that for every n ∈ N>1 there is a MODp-circuit Cn
with λσK(n) input bits, depth d, and size ns such that the following is true for all σ-structures
A with |A| = n, all a ∈ AK , and all embeddings ι of A into [n]: Cn accepts Repι(A, a)
⇐⇒ Aι |= ϕ[a].

Our proof of Theorem 3.7 uses the next two technical lemmas. To simplify notation, let
~a(0) := (a0, a1, . . . , at−1) and ~a(i) := (ai, ai+1, . . . , at−1, a0, a1, . . . , ai−1), for all i ∈ [t] with
i > 1.

F. Harwath and N. Schweikardt 373

a0
a1
a2

0 1 0 1

a0
a1
a2

w = 1 1 0 1

a0
a1
a2

w =

Figure 2 Illustration of a structure A (left) and structures Aw for two different bitstrings w.

I Lemma 3.10. Let m, k, t ∈ N>1 with t > 2. Let A be a finite σ-structure with n := |A|.
For each i ∈ [t] let ai ∈ Ak such that for all i, j ∈ [t] with i 6= j we have (NAm (ai), ai) ∼=
(NAm (aj), aj) and NAm(ai) ∩NAm(aj) = ∅. Let p ∈ N with p > 2. Let C be a MODp-circuit
with λσkt(n) input bits such that: (a) C accepts Repι1(A,~a(i)) iff it accepts Repι2(A,~a(i)),
for all embeddings ι1 and ι2 of A and for every i ∈ [t], and (b) C accepts Repι(A,~a(0)) and
rejects Repι(A,~a(1)), for every embedding ι of A.

There exists a MODp-circuit C̃ with m input bits, such that: (c) C̃ has the same depth
and size as C, (d) for all w,w′ ∈ {0, 1}m with |w|1 ≡ |w′|1 mod t, C̃ accepts w iff it accepts
w′, and (e) C̃ accepts all w ∈ {0, 1}m with |w|1 ≡ 0 mod t and rejects all w ∈ {0, 1}m with
|w|1 ≡ 1 mod t.

Proof. Let I ⊂ [t] be the set containing i ∈ [t] iff C accepts Repι1(A,~a(i)) for some (i.e., due
to property (a) of C, every) embedding ι1 of A. By property (b) of C, we know that 0 ∈ I
and 1 /∈ I.

For the remainder of this proof, fix an embedding ι of A into [n]. Note that ι is also an
embedding of any other σ-structure that has the same universe as A. For every w ∈ {0, 1}m,
we will define a σ-structure Aw with the same universe as A, which has the following property
for every i ∈ [t]:

If |w|1 ≡ i mod t, then (Aw,~a(0)) ∼= (A,~a(i)). (1)

Note that if (Aw,~a(0)) ∼= (A,~a(i)), then there is an embedding ι1 such that Repι1(A,~a(i)) =
Repι(Aw,~a(0)). Hence, due to property (a), C accepts Repι(Aw,~a(0)) iff it accepts
Repι(A,~a(i)).

The circuit C̃ will be constructed so that on input w ∈ {0, 1}m it does the same as circuit
C does on input Repι(Aw,~a(0)). Thus, the following is true for every w ∈ {0, 1}m and the
particular number i ∈ [t] such that |w|1 ≡ i mod t:

C̃ accepts w ⇐⇒ C accepts Repι(Aw,~a(0)) ⇐⇒ C accepts Repι(A,~a(i)) ⇐⇒ i ∈ I.

This immediately implies that C̃ satisfies property (d); and since 0 ∈ I and 1 /∈ I, the circuit
C̃ also satisfies property (e).

Definition of Aw: For each j ∈ [t], we partition NAm(aj) into shells Sν(aj) := {x ∈ A :
distA(x, aj) = ν}, for all ν ∈ {0, . . . ,m}. We write Sν for the set Sν(a0)∪ · · · ∪Sν(at−1). For
each j ∈ [t] let πj be an isomorphism from (NAm (aj), aj) to (NAm (a(j+1 mod t)), a(j+1 mod t)).
Note that πj(Sν(aj)) = Sν(a(j+1 mod t)) for each j ∈ [t] and each ν 6 m.

For a bitstring w = w1 · · ·wm ∈ {0, 1}m the structure Aw has the same universe as A.
For each R ∈ σ of arity r, the relation RAw is obtained from RA as follows: We start with
RAw := ∅, and then for each tuple c ∈ RA we insert the tuple cw into RAw , where cw is
defined as follows:

If c /∈ (Sν−1 ∪ Sν)r for any ν 6 m, or c ∈ Srν for some ν 6 m, then cw := c.
Otherwise, if c ∈ (Sν−1 ∪ Sν)r for some ν 6 m, then note that (since c ∈ RA), there is a
unique j ∈ [t] such that c ∈ (Sν−1(aj) ∪ Sν(aj))r (since NAm(aj) ∩NAm(aj′) = ∅, for all

CSL’13

374 Locality of arb-invariant FO with modulo counting quantifiers

j, j′ ∈ [t] with j 6= j′). To keep the notation simple, assume that c = (cν−1, cν), where
all elements of cν−1 belong to Sν−1(aj) and all elements of cν belong to Sν(aj). We
define cw depending on the ν-th bit wν of w: If wν = 0, then cw := c. If wν = 1, then
cw := (cν−1, πj(cν)).

Note that for every ν ∈ {1, . . . ,m} with wν = 1, this construction enforces that the role that
was formerly played by shell Sν(aj) is afterwards played by shell Sν(a(j+1 mod t)); see Figure 2
for an illustration. It is easy to verify that if |w|1 ≡ i mod t, then (Aw,~a(0)) ∼= (A,~a(i)).

Construction of C̃: The circuit C̃ is obtained from C by replacing the input gates of C
in a way that mirrors the construction of Aw above, in the same way as done in [1]: Each
input gate g of C is replaced either by a constant gate 0 or 1 or by a new input gate wν or
its negation ¬wν . In particular, C̃ has the same depth as C, and the size of C̃ is smaller
than or equal to the size of C. J

I Lemma 3.11. Let m, d,M, t, p ∈ N>1 with m > 9 and p, t > 2 such that p and t are coprime.
Let C̃ be a MODp-circuit of depth d and size M which has the property that for all words
w,w′ ∈ {0, 1}m with |w|1 ≡ |w′|1 mod t, it accepts w iff it accepts w′. Furthermore, let C̃
accept all w ∈ {0, 1}m with |w|1 ≡ 0 mod t, and reject all w ∈ {0, 1}m with |w|1 ≡ 1 mod t.

There is a MODp-circuit Ĉ of depth (d+6) and size (tM+2mt) which, for some factor
r > 2 of t, accepts exactly those bitstrings w ∈ {0, 1}m where |w|1 ≡ 0 mod r.

Proof. We let b = b0b1 · · · bt−1 be the bitstring of length t where, for every j ∈ [t] we have
bj = 1 iff C̃ accepts bitstrings w ∈ {0, 1}m with |w|1 ≡ j mod t.

For a bitstring w ∈ {0, 1}m with |w|0 > t−1, we let pattern(w) = a0a1 · · · at−1 ∈ {0, 1}t
with aj = 1 iff C̃ accepts the bitstring obtained from w by replacing the first j zeros with
ones. Note that if |w|1 ≡ i mod t, then pattern(w) = bibi+1 · · · bt−1b0 · · · bi−1.

I Claim. There is a factor r > 2 of t such that for all w ∈ {0, 1}m with |w|0 > t−1 we have:
pattern(w) = b ⇐⇒ |w|1 ≡ 0 mod r.

Proof. In case that pattern(w) = b iff |w|1 ≡ 0 mod t, we are done by choosing r := t.
In case that there is a w with pattern(w) = b and |w|1 ≡ i mod t for an i ∈ {1, . . . , t−1},
we know that b0b1 · · · bt−1 = bibi+1 · · · bt−1b0 · · · bi−1. Thus, for x := b0 · · · bi−1 and y :=
bi · · · bt−1 we have b = xy = yx, and x, y ∈ {0, 1}+.

A basic result in word combinatorics (see Proposition 1.3.2 in [10]) states that two words
x, y ∈ {0, 1}+ commute (i.e., xy = yx) iff they are powers of the same word (i.e., there is a
z ∈ {0, 1}+ and ν, µ ∈ N>1 such that x = zν and y = zµ). We choose z ∈ {0, 1}+ of minimal
length such that b = zs for some s ∈ N. Clearly, |z| > 2, since by assumption we have
b0b1 = 10.

Since z is of minimal length, it is straightforward to see that for every w ∈ {0, 1}m with
|w|0 > t−1 we have: pattern(w) = zs ⇐⇒ |w|1 ≡ 0 mod |z|. J

We choose r according to the claim. Obviously, the following is true for every w ∈ {0, 1}m:

|w|1 ≡ 0 mod r ⇐⇒
{

(1) |w|0 > t−1 and pattern(w) = b, or
(2) there is a j ∈ [t−1] with m−j ≡ 0 mod r such that |w|0 = j.

To complete the proof of Lemma 3.11, it therefore suffices to construct circuits C(1) and C(2)
testing for (1) and (2), respectively, and to let Ĉ be the disjunction of C(1) and C(2). It is an
easy exercise to construct these circuits, using the given circuit C̃, in such a way that the
resulting circuit Ĉ has depth 6 (d+6) and size 6 (tM + 2mt). J

F. Harwath and N. Schweikardt 375

We are now ready for the proof of Theorem 3.7.

Proof of Theorem 3.7. Let q be a kt-ary query defined on C by an arb-inv-FO+MODC
p (σ)-

formula ϕ(x0, . . . , xt−1), where xi is a k-tuple of variables, for each i ∈ [t]. By Theorem 3.9,
there exist numbers d, s ∈ N such that for every n ∈ N>1 there is a MODp-circuit Cn with
λσkt(n) input bits, depth d, and size ns such that the following is true for all σ-structures
A ∈ C with |A| = n, all k-tuples a0, . . . , at−1 ∈ Ak, and all embeddings ι of A into [n]:

Cn accepts Repι(A, a0, . . . , at−1) ⇐⇒ Aι |= ϕ[a0, . . . , at−1] ⇐⇒ A |= ϕ[a0, . . . , at−1].

For contradiction, assume that for every c ∈ N the query q is not shift (logn)c-local w.r.t.
t on C. Thus, in particular for c := 2`(d+6) (with ` chosen as in Theorem 3.8), we obtain
that for all n0 ∈ N there is an n > n0, and a σ-structure A ∈ C with |A| = n, and k-tuples
a0, . . . , at−1 ∈ Ak such that for m := (logn)c = (logn)2`(d+6) we have:

(NAm (ai), ai) ∼= (NAm (aj), aj) and NAm(ai)∩NAm(aj) = ∅ for all i, j ∈ [t] with i 6= j, and
A |= ϕ[a0, a1, . . . , at−1] and A 6|= ϕ[a1, . . . , at−1, a0].

We fix n ∈ N sufficiently large such that, for d̂ := (d+6) and ε and md̂ chosen as in
Theorem 3.8, we have for m = (logn)c that m > 9, m > md̂, and nε logn > tns + 2(logn)ct.

Clearly, Cn is a MODp-circuit with λσkt(n) input bits which, for every i ∈ [t] and all
embeddings ι1 and ι2 of A accepts Repι1(A,~a(i)) iff it accepts Repι2(A,~a(i)). Furthermore,
Cn accepts Repι(A,~a(0)) and rejects Repι(A,~a(1)), for every embedding ι of A. Thus, from
Lemma 3.10 we obtain a MODp-circuit C̃ on m input bits, with depth d and size ns, such
that C̃ has the property that for all words w,w′ ∈ {0, 1}m with |w|1 ≡ |w′|1 mod t, it accepts
w iff it accepts w′. Furthermore, C̃ accepts all w ∈ {0, 1}m with |w| ≡ 0 mod t and rejects
all w ∈ {0, 1}m with |w| ≡ 1 mod t. From Lemma 3.11, we therefore obtain a MODp-circuit
Ĉ of depth d̂ := (d+6) and size (tns + 2mt) = (tns + 2(logn)ct) which, for some factor r > 2
of t, accepts exactly those bitstrings w ∈ {0, 1}m where |w|1 ≡ 0 mod r.

Since p and t are coprime by assumption, and r > 2 is a factor of t, we know that r
has a prime factor different from p’s prime factor. Thus, from Theorem 3.8 (for ε, `,md̂

chosen as in Theorem 3.8, and for m > md̂) we know that the size (tns + 2(logn)ct) of
Ĉ must be bigger than 2ε `d̂

√
m. However, we chose m = (logn)c = (logn)2`d̂, and hence

2ε `d̂
√
m = 2ε·(logn)2 = nε·logn > tns + 2(logn)ct for all sufficiently large n — a contradiction!

Thus, the proof of Theorem 3.7 is complete. J

3.4 Applications
In the same way as Gaifman locality (cf., e.g., [9]), also shift locality can be used for showing
that certain queries are not expressible in particular logics. The first example query we
consider here is the reachability query reach which associates, with every finite directed graph
A = (A,EA), the relation

reach(A) := {(a, b) : A contains a directed path from node a to node b}.

I Proposition 3.12. Let σ = {E} consist of a binary relation symbol E. Let p, t ∈ N with
p, t > 2 be chosen such that every t-ary query q definable in arb-inv-FO+MODp(σ) is shift
fq(n)-local w.r.t. t, for a function fq : N→ N where fq(n) 6 (n2t−

1
2) for all sufficiently large

n. Then, the reachability query is not definable in arb-inv-FO+MODp(σ).

Proof. Assume, for contradiction, that reach is definable by an arb-inv-FO+MODp(σ)-
formula %(x, y). Then, ψ(x0, . . . , xt−1) := %(x0, x1) ∧ %(x1, x2) ∧ · · · ∧ %(xt−2, xt−1) is

CSL’13

376 Locality of arb-invariant FO with modulo counting quantifiers

an arb-inv-FO+MODp(σ)-formula expressing in a finite graph A, that there is a directed
path from node xi to node xi+1, for every i ∈ [t−1]. Let q be the t-ary query defined by
ψ(x0, . . . , xt−1). By assumption, this query is shift fq(n)-local w.r.t. t, for a function fq with
fq(n) 6 n

2t−
1
2 for all sufficiently large n.

Now, consider for each ` ∈ N>1 the graph A` consisting of a single directed path
v1 → v2 → · · · → vt(2`+1) on t·(2`+1) nodes. For each i ∈ [t] let ai := vi(2`+1)+(`+1).
Then, the `-neighbourhoods of the ai, for i ∈ [t], are pairwise disjoint and isomorphic. The
cardinality of A` is n := t·(2`+1), and thus ` = n

2t−
1
2 > fq(n). Since q is shift fq(n)-local

w.r.t. t, we obtain that A` |= ψ[a0, a1, . . . , at−1] ⇐⇒ A` |= ψ[a1, . . . , at−1, a0]. But in
A` there is a directed path from ai to ai+1 for every i ∈ [t−1], but there is no directed
path from at−1 to a0. Due to the choice of ψ, we have that A` |= ψ[a0, a1, . . . , at−1] but
A` 6|= ψ[a1, . . . , at−1, a0] — a contradiction! J

As an immediate consequence of Proposition 3.12 and Theorem 3.7 we obtain (the known
fact) that the reachability query is not definable in arb-inv-FO+MODp({E}), for any prime
power p. Using similar constructions, it is an easy exercise to show that none of the following
queries is definable in arb-inv-FO+MODp({E}), for any prime power p:

cycle(A) := {a ∈ A : a is a node that lies on a cycle of the graph A = (A,EA)},
triangle-reach(A) := {a ∈ A : a is reachable from a triangle in the graph A = (A,EA)},
same-distance(A) := {(a, b, c) ∈ A3 : distA(a, c) = distA(b, c)}.

We close with a remark explaining why it can be expected to be difficult to generalise
Theorem 3.5 and Theorem 3.7 from prime powers p to arbitrary numbers p > 2.

I Remark 3.13. Assume, we could generalise Theorem 3.7 from prime powers p to arbitrary
numbers p > 2. By Proposition 3.12, we would then obtain that the reachability query
is not definable in arb-inv-FO+MODp({E}), for any p ∈ N with p > 2. The “opposite
direction” of Theorem 3.9, obtained in [3], would then tell us that the reachability query
is not computable in ACC0. Here, ACC0 =

⋃
p>2 AC

0[p], where AC0[p] is the class of all
problems computable by a family of constant depth, polynomial size MODp-circuits. Since
the reachability query can be computed in nondeterministic logarithmic space, we would
thus obtain that NLOGSPACE 6⊆ ACC0. This would constitute a major breakthrough in
computational complexity: The current state-of-the-art (see [15] for a recent survey) states
that NEXP 6⊆ ACC0, but does not know a problem in PTIME that provably does not belong
to ACC0.

Similarly, a generalisation of Theorem 3.5 to all odd numbers p would imply that the
reachability query is not definable in AC0[p], for any odd number p. Also this is currently
not known.

4 Hanf locality and locality on string structures

For giving the precise definition of Hanf locality, we need the following notation: As in
[9], for σ-structures A and B, for k-tuples a ∈ Ak and b ∈ Bk, and for an r ∈ N, we write
(A, a)�r (B, b) (or simply A�r B in case that k=0) if there is a bijection β : A→ B such
that (NAr (ac), ac) ∼= (NBr (bβ(c)), bβ(c)) is true for every c ∈ A.

I Definition 4.1 (Hanf locality). Let C be a class of finite σ-structures, k ∈ N, and f : N→ N.
A k-ary query q is Hanf f(n)-local on C if there is an n0 ∈ N such that for every n ∈ N with
n > n0 and all σ-structures A,B ∈ C with |A| = |B| = n, the following is true for all k-tuples
a ∈ Ak and b ∈ Bk with (A, a)�f(n) (B, b): a ∈ q(A) ⇐⇒ b ∈ q(B).

F. Harwath and N. Schweikardt 377

The query q is called Hanf f(n)-local if it is Hanf f(n)-local on the class of all finite
σ-structures.

Hanf locality is an even stronger locality notion than Gaifman locality:

I Theorem 4.2 (Hella, Libkin, Nurmonen [8]). Let C be a class of finite σ-structures and let
f : N→ N. Let k ∈ N>1 and let q be a k-ary query. If q is Hanf f(n)-local on C, then q is
Gaifman (3f(n)+1)-local on C.

It is well-known that queries definable in FO or FO+MODp (for any p > 2) are Hanf local
with a constant locality radius [6, 8]. For order-invariant or arb-invariant FO it is still open
whether they are Hanf local with respect to any sublinear locality radius. As an immediate
consequence of Proposition 3.2 and Theorem 4.2 one obtains for every p ∈ N with p > 2 that
order-invariant FO+MODp is not Hanf local with respect to any sublinear locality radius.

For the restricted case of string structures, Benedikt and Segoufin [4] have shown that on
Σ-strings order-invariant FO has the same expressive power as FO and thus is Hanf local
with constant locality radius (in fact, [4] obtains the same result also for finite labelled ranked
trees). In [1] it was shown that every query definable in arb-invariant FO on Σ-strings is
Hanf local with polylogarithmic locality radius, and that in the worst case the locality radius
can indeed be of polylogarithmic size. As an immediate consequence of Proposition 3.4 and
Theorem 4.2 we obtain that for Σ := {0, 1} there is a unary query q that is not Hanf (n4−1)-
local on Σ-strings, but definable in <-inv-FO+MODp(σΣ) for every even number p > 2. A
modification of the proof of Proposition 3.4 also leads to an example of a Boolean query
(i.e., a 0-ary query) that is not Hanf (n−1

8)-local on Σ-strings for Σ := {0, 1, 2}. Together
with the Hanf locality of FO+MODp, this implies that the result of Benedikt and Segoufin
[4] cannot be lifted from order-invariant FO to order-invariant FO+MODp on Σ-strings, for
even numbers p > 2, thus refuting a conjecture of [4].

From Niemistö’s Corollary 7.25 in [11] it follows that for odd numbers p, order-invariant
FO+MODp(σΣ) on Σ-strings has exactly the same expressive power as FO+MODPFC(p)(σΣ),
where PFC(p) is the set of all numbers whose prime factors are prime factors of p, and
FO+MODPFC(p) is first-order logic with modulo m counting quantifiers for all m ∈ PFC(p).

The present section’s main result shows that for odd prime powers p, the Hanf locality
result of [1] can be generalised from arb-invariant FO to arb-invariant FO+MODp on
Σ-strings:

I Theorem 4.3. Let Σ be a finite alphabet. Let k ∈ N, let q be a k-ary query, and let p be
an odd prime power. If q is definable in arb-inv-FO+MODΣ-strings

p (σΣ) on Σ-strings, then
there is a c ∈ N such that q is Hanf (logn)c-local on Σ-strings.

Together with Theorem 4.2 this implies (general instead of weak) Gaifman locality on
Σ-strings:

I Corollary 4.4. Let Σ be a finite alphabet. Let k ∈ N>1, let q be a k-ary query, and let p be
an odd prime power. If q is definable in arb-inv-FO+MODΣ-strings

p (σΣ) on Σ-strings, then
there is a c ∈ N such that q is Gaifman (logn)c-local on Σ-strings.

Note that this corollary does not contradict the non-locality result of Proposition 3.2, as
the counter-example given in the proof of that proposition is not a string structure.

The remainder of this section is devoted to the proof of Theorem 4.3. We follow the
overall approach of [1]. The crucial step is to prove Theorem 4.3 for queries q of arity k = 0;
the case for queries of arity k > 1 can easily be reduced to the case for queries of arity 0 by
adding k extra symbols to the alphabet (see Section 5.3 in [1] for details).

CSL’13

378 Locality of arb-invariant FO with modulo counting quantifiers

Note that a 0-ary query q defines the string-language Lq := {w ∈ Σ+ : () ∈ q(Sw)},
where () denotes the unique tuple of arity 0. The language Lq is called Hanf f(n)-local iff q
is Hanf f(n)-local on Σ-strings. For proving Theorem 4.3 for the case k = 0, we consider the
following notion.

I Definition 4.5 (Disjoint swaps [1]). Let r ∈ N and let w ∈ Σ+ be a string over a finite
alphabet Σ. A string w′ ∈ Σ+ is obtained from w by a disjoint r-swap operation if there
exist strings x, u, y, v, z such that w = xuyvz and w′ = xvyuz, and for the positions i, j, i′, j′
of w just before u, y, v, z the following is true: The neighbourhoods NSw

r (i), NSw
r (j),

NSw
r (i′), NSw

r (j′) are pairwise disjoint, and (NSw
r (i), i) ∼= (NSw

r (i′), i′) and (NSw
r (j), j) ∼=

(NSw
r (j′), j′).
Let f : N → N. A string-language L ⊆ Σ+ is closed under disjoint f(n)-swaps if

there exists an n0 ∈ N such that for every n ∈ N>1 with n > n0, all strings w ∈ Σ+ of
length n, and all strings w′ obtained from w by a disjoint f(n)-swap operation, we have:
w ∈ L ⇐⇒ w′ ∈ L.

It was shown in [1] (see Proposition 5.7, Lemma 5.2, and the proof of Theorem 5.1 in [1])
that if a language L ⊆ Σ+ is closed under disjoint (logn)d-swaps, for some d ∈ N, then it is
Hanf (logn)c-local on Σ-strings, for some c > d. Hence, the following lemma immediately
implies Theorem 4.3 for the case k = 0.

I Lemma 4.6. Let Σ be a finite alphabet, let L ⊆ Σ+, and let p be an odd prime power. If L
is definable, on Σ-strings, by an arb-inv-FO+MODΣ-strings

p (σΣ)-sentence, then there exists a
constant d ∈ N such that L is closed under disjoint (logn)d-swaps.

Proof sketch. We proceed in the same way as in the proof of Proposition 5.5 in [1], which
obtained the analogue of Lemma 4.6 for arb-inv-FOΣ-strings(σΣ)-sentences. By contradiction,
assume that there does not exist any d ∈ N such that the language L is closed under disjoint
(logn)d-swaps. Then, for any choice of d, n0 ∈ N there exist strings w and w′ of length
n > n0 which witness the violation of the “closure under disjoint (logn)d-swaps” property.

The proof of [1] then proceeds as follows: Choose an appropriate extension σ̃ of the
signature σΣ, define a suitable σ̃-structure Aw, and modify the sentence ϕ defining L to
obtain a formula ψ(x), so that for suitably chosen tuples a and a′ of elements in Aw, the
following is true: On Aw, the formula ψ(x) simulates the evaluation of ϕ in Sw (resp., Sw′)
when assigning the values a (resp., a′) to the variables x. In [1], ψ(x) and Aw are constructed
in such a way that a and a′ witness a violation of the Gaifman locality (with a polylogarithmic
locality radius) of arb-invariant FO(σ̃).

However, in the present case we consider arb-invariant FO+MODp(σ̃), and thus we only
have available the weak Gaifman locality result stated in Theorem 3.5. Therefore, we have
to choose Aw and ψ(x) more carefully, so that we can conclude by using only weak Gaifman
locality. J

References
1 M. Anderson, D. van Melkebeek, N. Schweikardt, and L. Segoufin. Locality from circuit

lower bounds. SIAM Journal on Computing, 41(6):1481–1523, 2012.
2 S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge Univ.

Press, 2009.
3 D. A. M. Barrington, N. Immerman, and H. Straubing. On uniformity within NC1. J.

Comput. Syst. Sci., 41(3):274–306, 1990.

F. Harwath and N. Schweikardt 379

4 M. Benedikt and L. Segoufin. Towards a characterization of order-invariant queries over
tame structures. Journal of Symbolic Logic, 74(1):168–186, 2009.

5 H.-D. Ebbinghaus and J. Flum. Finite model theory. Springer, 1999.
6 R. Fagin, L. J. Stockmeyer, and M. Y. Vardi. On Monadic NP vs. Monadic co-NP. Inform-

ation and Computation, 120(1):78–92, 1995.
7 M. Grohe and T. Schwentick. Locality of order-invariant first-order formulas. ACM Trans-

actions on Computational Logic, 1(1):112–130, 2000.
8 L. Hella, L. Libkin, and J. Nurmonen. Notions of locality and their logical characterizations

over finite models. Journal of Symbolic Logic, 64(4):1751–1773, 1999.
9 L. Libkin. Elements of Finite Model Theory. Springer, 2004.
10 M. Lothaire. Combinatorics on words. Cambridge University Press, 1984.
11 H. Niemistö. Locality and Order-Invariant Logics. PhD thesis, Department of Mathematics

and Statistics, University of Helsinki, 2007.
12 N. Schweikardt. A short tutorial on order-invariant first-order logic. In Proc. 8th Int’l

Computer Science Symposium in Russia (CSR’13), pages 112–126, 2013.
13 R. Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit com-

plexity. In Proc. STOC’87, pages 77–82, 1987.
14 H. Straubing. Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser, 1994.
15 R. Williams. Guest column: A casual tour around a circuit complexity bound. SIGACT

News, 42(3):54–76, 2011.

CSL’13

When is Metric Temporal Logic Expressively
Complete?∗

Paul Hunter

Department of Computer Science
Université Libre de Bruxelles
Belgium
paul.hunter@ulb.ac.be

Abstract
A seminal result of Kamp is that over the reals Linear Temporal Logic (LTL) has the same
expressive power as first-order logic with binary order relation < and monadic predicates. A key
question is whether there exists an analogue of Kamp’s theorem for Metric Temporal Logic (MTL)
– a generalization of LTL in which the Until and Since modalities are annotated with intervals
that express metric constraints. Hirshfeld and Rabinovich gave a negative answer, showing that
first-order logic with binary order relation < and unary function +1 is strictly more expressive
than MTL with integer constants. However, a recent result of Hunter, Ouaknine and Worrell
shows that when rational timing constants are added to both languages, MTL has the same
expressive power as first-order logic, giving a positive answer. In this paper we generalize these
results by giving a precise characterization of those sets of constants for which MTL and first-
order logic have the same expressive power. We also show that full first-order expressiveness
can be recovered with the addition of counting modalities, strongly supporting the assertion
of Hirshfeld and Rabinovich that Q2MLO is one of the most expressive decidable fragments of
FO(<,+1).

1998 ACM Subject Classification F.4.1 Mathematical Logic, I.2.4 Knowledge Representation
Formalisms and Methods

Keywords and phrases Metric Temporal Logic, Expressive power, First-order logic

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.380

1 Introduction

One of the best-known and most widely studied logics in specification and verification is
Linear Temporal Logic (LTL): temporal logic with the modalities Until and Since. For
discrete-time systems one considers interpretations of LTL over the integers (Z, <), and for
continuous-time systems one considers interpretations over the reals (R, <). A celebrated
result of Kamp [14] is that, over both (Z, <) and (R, <), LTL has the same expressiveness
as the Monadic Logic of Order (FO(<)): first-order logic with binary order relation < and
uninterpreted monadic predicates. Thus we can benefit from the appealing variable-free
syntax and elementary decision procedures of LTL, while retaining the expressiveness and
canonicity of first-order logic.

Over the reals FO(<) cannot express quantitative properties such as “every request is
followed by a response within one time unit”. This motivates the introduction of Monadic
Logic of Order and Metric, which augments FO(<) with a family of unary function symbols

∗ This work was supported by the ERC inVEST project.

© Paul Hunter;
licensed under Creative Commons License CC-BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca ; pp. 380–394

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.380
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

P. Hunter 381

+c, for all c ∈ R. We consider fragments of this logic by restricting the unary functions to
some set K ⊆ R of timing constants, and we denote this by FOK. The traditional choice
for K is Z (or, equivalently, {1}); however it seems more natural in the continuous time
setting to have sets of timing constants that are not discrete. In [13] Hunter et al. considered
rational timing constants, but sets of constants involving irrationals such as {1,

√
2} or R

have practical application: for example, in the specification of systems with two or more
timing devices which are initially synchronized but have independent unit time length. In
this paper we consider arbitrary subsets of R for K; however we observe that with simple
arithmetic any integer linear combination of elements in K can be derived as a unary function.
Thus we restrict our attention to sets that are closed under integer linear combinations, that
is, additive subgroups of R.

There have been a variety of proposals for quantitative temporal logics, with modalities
definable in FOK (see, e.g., [1, 2, 3, 7, 8, 9, 13]). Typically these temporal logics can be
seen as quantitative extensions of LTL. However, until [13] there was no fully satisfactory
counterpart to Kamp’s theorem in the quantitative setting.

The best-known quantitative temporal logic is Metric Temporal Logic (MTL), introduced
over 20 years ago in [15]. MTL arises by annotating the temporal modalities of LTL with
real intervals representing metric constraints. Again we consider fragments by restricting the
endpoints of the intervals to some K ⊆ R, and as we are interested in various choices of K
we denote this as MTLK. Since the MTLK operators are definable in FOK, it is immediate
that one can translate MTLK into FOK. The main question addressed by this paper is when
does the converse apply?

Several previous results, illustrating that the question is non-trivial, can be succinctly
specified with our notation:

Kamp [14]: MTL{0} = LTL = FO(<) = FO{0}.
Hirshfeld and Rabinovich [11]: MTLZ 6= FO{1} = FOZ.
Hunter, Ouaknine and Worrell [13]: MTLQ = FOQ.

The first main result of this paper generalizes these results by giving a precise character-
ization of when MTLK is expressively complete.

I Theorem 1. Let K be an additive subgroup of R. Then MTLK = FOK if and only if K is
dense.

Two consequences of this theorem are that MTLR is expressively complete (for the
Monadic Logic of Order and Metric), and, in contrast to MTLZ 6= FO{1}, MTL with interval
endpoints taken from Z[

√
2] = {a+ b

√
2 : a, b ∈ Z} is able to express all of FO{1,√2}.

Our proof for the “if” part of this theorem is similar to the strategy used in [13]: we
prove expressive completeness for bounded formulas and then use a generalization of the
concept of separation, introduced by Gabbay [4], to extend this to all formulas. However
our proof departs significantly from that result in a number of areas. In [13], the authors
used scaling to reduce the problem from FOQ formulas to FOZ formulas. For general sets of
constants however, this is not always possible: both in the scaling operation, which may no
longer be reversible, and in the reduction to FOZ. We overcome this by introducing a more
general notion of separability in Lemma 13 which can account for unary functions other
than +1. Secondly, the regularity of the integers was exploited to remove occurrences of the
+1 function, resulting in FO{0} formulas restricted to unit intervals. In our setting there is
no obvious interval length that will achieve this. Instead we introduce a normal form for
FOK formulas that enables us to remove the +c functions and reduce the problem to FO{0}
formulas restricted to bounded intervals.

CSL’13

382 When is Metric Temporal Logic Expressively Complete?

It follows from our proof of Theorem 1 and the result of [11] that if MTLK 6= FOK
then even with a (possibly infinite) set of arbitrary additional modal operators of bounded
quantifier depth the inequality remains. Examples of separating formula are Cn ϕ and
Cn ϕ, for sufficiently large n, where Cn is the modal operator which asserts that a formula
is satisfied at least n distinct times in the next time interval and Cn is its temporal dual.
Our second main result is to show that for expressive completeness it is sufficient to add
the (infinite) set of these counting operators. That is, if we define MTLZ+C as the logic of
MTLZ with the additional operators {Cn,Cn: n ∈ N}, then

I Theorem 2. MTLZ+C has the same expressive power as FOZ.

In [9] Hirshfeld and Rabinovich considered the addition of counting modalities to MITL:
Metric Temporal Logic without singleton (punctual) intervals. They showed the resulting
logic had the same expressive power as Q2MLO, a decidable fragment of FO{1}. Our result
supports their claim that Q2MLO is one of the most expressive decidable fragments of FO{1}:
by adding the operators 3{1}X (X occurs in exactly one time unit) and -3{1}X (X occurred
exactly one time unit ago) the resulting logic has the full expressive power of FO{1}.

2 Preliminaries

In this section we define the concepts and notation used throughout the paper.
We say K ⊆ R is an additive subgroup of R if it is non-empty and closed under addition

and unary minus, and we say K is dense if for all a < b ∈ K, there exists c ∈ K such that
a < c < b. We write K≥0 for the set {c : c ∈ K and c ≥ 0}.

First-order logic
Formulas of Monadic Logic of Order and Metric with constants K (FOK) are first-order
formulas over a signature with a binary relation symbol <, an infinite collection of unary
predicate symbols P1, P2, . . ., and a (possibly infinite) family of unary function symbols +c,
c ∈ K. Formally, the terms of FOK are generated by the grammar t ::= x | t+ c, where x is
a variable and c ∈ K. Formulas of FOK are given by the following syntax:

ϕ ::= true | Pi(t) | t = t | t < t | ϕ ∧ ϕ | ¬ϕ | ∃xϕ ,

where x denotes a variable and t a term. When K is an additive subgroup it suffices to
consider only terms of the form x+ c, c ∈ K.

We consider interpretations of FOK over the real line, R, with the natural interpretations
of < and +c. It follows that a structure for FOK is determined by an interpretation of the
monadic predicates.

Given terms t1 = x1 + c1 and t2 = x2 + c2, we define BetK(t1, t2) to consist of the
FOK∪{c1,c2} formulas in which

(i) each subformula ∃z ψ has the form ∃z ((t1 < z < t2) ∧ χ), i.e., each quantifier is
relativized to the open interval between t1 and t2;

(ii) in each atomic subformula P (t) the term t is a bound occurrence of a variable;
(iii) For i ∈ {1, 2}, if ci /∈ K then +ci only occurs in ti.

These conditions ensure that a formula in BetK(t1, t2) is essentially a FOK formula that
only refers to the values of monadic predicates on points in the open interval (t1, t2). Clause
(iii) allows us to use endpoints not necessarily definable in FOK. We say that a formula ϕ(x)
in BetK(x−N, x+N) is N -bounded.

P. Hunter 383

Metric Temporal Logic
Given a set P of atomic propositions, the formulas of Metric Temporal Logic with constants
K (MTLK) are built from P using boolean connectives and time-constrained versions of the
Until and Since operators U and S as follows:

ϕ ::= true | P | ϕ ∧ ϕ | ¬ϕ | ϕ UI ϕ | ϕ SI ϕ ,

where P ∈ P and I ⊆ (0,∞) is an interval with endpoints in K≥0 ∪ {∞}.
Intuitively, the meaning of ϕ1 UI ϕ2 is that ϕ2 will hold at some time in the interval

I, and until then ϕ1 holds. More precisely, the semantics of MTLK are defined as follows.
A signal is a function f : R → 2P . Given a signal f and r ∈ R, we define the satisfaction
relation f, r |= ϕ by induction over ϕ as follows:

f, r |= p iff p ∈ f(r),
f, r |= ¬ϕ iff f, r 6|= ϕ,
f, r |= ϕ1 ∧ ϕ2 iff f, r |= ϕ1 and f, r |= ϕ2,
f, r |= ϕ1 UI ϕ2 iff there exists t > r such that t− r ∈ I, f, t |= ϕ2 and f, u |= ϕ1 for all
u ∈ (r, t),
f, r |= ϕ1 SI ϕ2 iff there exists t < r such that r − t ∈ I, f, t |= ϕ2 and f, u |= ϕ1 for all
u ∈ (t, r).

LTL can be seen as a restriction of MTL with only the interval I = (0,∞), so in particular
LTL = MTL{0}. MITL is a restriction of MTLZ where singleton intervals, that is intervals
of the form {c}, do not occur in the U and S operators.

We say the UI and SI operators are bounded if I is bounded, otherwise we say that the
operators are unbounded.

We introduce the derived connectives 3Iϕ := true UI ϕ (ϕ will be true at some point in
interval I) and -3Iϕ := true SI ϕ (ϕ was true at some point in interval I in the past). We
also have the dual connectives 2Iϕ := ¬3I¬ϕ (ϕ will hold at all times in interval I in the
future) and -2I := ¬ -3I¬ϕ (ϕ was true at all times in interval I in the past).

Counting modalities

The counting modalities Cn ϕ and Cn ϕ are defined for all n ∈ N and are interpreted as ϕ
will be true for at least n distinct occasions in the next/previous time unit. That is, for any
signal f and r ∈ R:

f, r |=Cn ϕ iff there exists r1 < · · · < rn ∈ (r, r + 1) with f, ri |= ϕ for all i.
f, r |=Cn ϕ iff there exists r1 < · · · < rn ∈ (r − 1, r) with f, ri |= ϕ for all i.

We define MTLK with counting (MTLK+C) to be the extension of MTLK by the operations
{Cn,Cn: n ∈ N}.

Expressive Equivalence
Given a set P = {P1, . . . , Pm} of monadic predicates, a signal f : R → 2P defines an
interpretation of each Pi, where Pi(r) iff Pi ∈ f(r). As observed earlier, this is sufficient to
define the model-theoretic semantics of FOK, enabling us to relate the semantics of FOK
and MTLK.

Let ϕ(x) be an FOK formula with one free variable and ψ an MTLK formula. We say ϕ
and ψ are equivalent if for all signals f and r ∈ R:

f |= ϕ[r]⇐⇒ f, r |= ψ.

CSL’13

384 When is Metric Temporal Logic Expressively Complete?

We say MTLK and FOK have the same expressive power, written MTLK = FOK, if for all
formulas with one free variable ϕ(x) ∈ FOK there is an equivalent formula ϕ† ∈ MTLK and
vice versa.

3 Characterization of expressively complete MTL

The goal of this section is to prove:

I Theorem 1. Let K be an additive subgroup of R. Then MTLK = FOK if and only if K is
dense.

First we consider the “only if” direction. Central to this is the following easily proven
result:

I Lemma 3. Let K be an additive subgroup of R. If K is not dense then K = εZ for some
ε > 0.

It now follows by a simple scaling argument and the result MTLZ 6= FOZ [11] that if K
is not dense then MTLK 6= FOK. We refer the reader to the full version of the paper for
details.

In fact [11] showed a much stronger result: even with (possibly infinite) additional
arbitrary modal operators of bounded quantifier depth MTLZ cannot fully express FOZ. This
result clearly carries over to K = εZ, thus in the non-dense case MTLK is “quite far” from
FOK.

I Corollary 4. Let K be a non-dense additive subgroup of R. With additional arbitrary modal
operators of bounded quantifier depth MTLK cannot fully express FOK.

Returning to the “if” direction in the proof of Theorem 1, we focus on the non-trivial case
(K infinite), as the trivial case K = {0} is covered by Kamp’s theorem [14]. As mentioned
earlier, our strategy parallels the proof of expressive completeness of MTLQ in [13]: we first
show expressive completeness for bounded formulas, and then, using a refinement of syntactic
separation [4, 5, 13], extend this to all FOK formulas.

3.1 Expressive completeness for bounded formulas

To show that bounded FOK formulas can be expressed by MTLK we proceed in a similar
manner to [13].

Step 1. We first remove any occurrence of a unary +c function applied to a bound variable.
Step 2. Using a composition argument (see e.g. [6, 10]) we then reduce the problem to

showing expressive completeness for formulas in Bet{0}(x, x+ c).
Step 3. Exploiting a normal form of [6] and the denseness of K we show how an MTLK

formula can express any formula in Bet{0}(x, x+c), and hence any bounded formula.
Our proof differs significantly to that of [13] notably at Steps 1 and 2. In [13] the authors
were able to scale FOQ formulas to FO{1} and then use the regularity of the integers to reduce
the problem to formulas in Bet{0}(x, x+ 1) (so-called unit-formulas). For more general K
however neither of these steps are applicable so instead we introduce a normal form for FOK
formulas which simplifies the removal of the unary functions.

P. Hunter 385

Step 1. Removing unary functions
Given an N -bounded FOK formula with one free variable x, we show that it is equivalent to
a N ′-bounded formula (over a possibly larger set of monadic predicates, suitably interpreted)
in which the unary functions are only applied to x. We can remove occurrences of unary
functions within the scope of monadic predicates by introducing new predicates. That is, we
replace P (y+ c) with P c(y), the intended interpretation of P c being {r : r+ c ∈ P}. We will
later replace P c(y) with 3{c}P when completing the translation to MTLK. Thus it suffices
to demonstrate how to remove the unary functions from the scope of the < relation. For
this we introduce a normal form where all inequality constraints are replaced with interval
inclusions and the intervals satisfy the following hierarchical condition: if y is quantified to
(x+ c, z+ c′) then all intervals involving y and a variable that was free when y was quantified
are affine translations of (x + c, y) or (y, z + c′). We note that the results of this section
apply for any additive subgroup K ⊆ R.

I Definition 5. An interval-guarded formula is a FOK-formula such that all quantifiers are
of the form ∃x ∈ (y + c, y′ + c′) where y, y′ are free variables and c, c′ ∈ K. A Hierarchical
Interval Formula (HIF) is an interval-guarded FOK-formula defined inductively as follows.

Any <-free, quantifier-free FOK-formula is a HIF;
If ϕ1, ϕ2 are HIFs then so are ¬ϕ1 and ϕ1 ∨ ϕ2; and
If ϕ(x, y) is a HIF and there exists xl, xr ∈ x and cl, cr ∈ K such that the only intervals
in ϕ involving y and a free variable are of the form (xl + cl + c, y+ c) or (y+ c, xr + cr + c)
for some c ∈ K, then ∃y ∈ (xl + cl, xr + cr).ϕ(x, y) is a HIF.

Note that if ϕ(x, y) is a HIF then so is ϕ(x, u) for any term u involving variables from x.
As an example, consider the following interval-guarded FO{1}-formula:

ϕ(x) = ∃y ∈ (x, x+ 1).∃z ∈ (y, y + 1).ψ(x, y, z).

This is not a HIF as neither endpoint of the interval (y, y + 1) corresponds to an endpoint of
(x, x+ 1), the interval defining y. However, it is easy to see that ϕ(x) is equivalent to:

ϕ′(x) = ∃y ∈ (x, x+1).
(
∃z ∈ (y, x+1).ψ(x, y, z)∨ψ(x, y, x+1)∨∃z ∈ (x+1, y+1).ψ(x, y, z)

)
which is a HIF. Indeed, HIFs are a normal form for N -bounded FOK formulas with one free
variable:

I Lemma 6. Every N -bounded FOK formula with one free variable is equivalent to a HIF.

To prove this, the following property of HIFs that allows us to break up intervals will be
useful:

I Lemma 7. Let ϕ(x) = ∃y ∈ (s, t).ψ(x, y) be a HIF. Then for any term u involving variables
from x, the following equivalence holds:

u ∈ (s, t) ∧ ϕ(x) ←→ u ∈ (s, t) ∧
(
θ<(x) ∨ θ=(x) ∨ θ>(x)

)
where θ<(x) = ∃y ∈ (s, u).ψ<(x, y) and θ>(x) = ∃y ∈ (u, t).ψ>(x, y) are HIFs and θ=(x) is
a HIF with strictly smaller quantifier depth than ϕ.

Proof. Clearly u ∈ (s, t) ∧ ϕ(x) is equivalent to

u ∈ (s, t) ∧
(
∃y ∈ (s, u).ψ(x, y) ∨ ψ(x, u) ∨ ∃y ∈ (u, t).ψ(x, y)

)
.

CSL’13

386 When is Metric Temporal Logic Expressively Complete?

As ψ has strictly smaller quantifier depth than ϕ, defining θ=(x) = ψ(x, u) suffices. We focus
on the first disjunct to define θ<, the definition of θ> from the third disjunct is analogous.
We proceed by induction on the quantifier depth of ψ. If ψ is quantifier-free then it is a HIF
so set θ< = ∃y ∈ (s, u).ψ. As ϕ is a HIF, the only inductive case that is not straightforward
is if ψ = ∃z ∈ (y+ c, t+ c).χ(x, y, z) for some c ∈ K (the case ψ = ∀z ∈ (y+ c, t+ c).χ(x, y, z)
is also handled similarly). Applying the induction hypothesis yields:

u ∈ (s, t) ∧ y ∈ (s, u) ∧ ψ ≡ u ∈ (s, t) ∧ u+ c ∈ (y + c, t+ c) ∧ s < y ∧ ψ
≡ u ∈ (s, t) ∧ u+ c ∈ (y + c, t+ c) ∧ s < y ∧(

∃z ∈ (y + c, u+ c).η< ∨ η= ∨ ∃z ∈ (u+ c, t+ c).η>
)

≡ u ∈ (s, t) ∧ y ∈ (s, u) ∧(
∃z ∈ (y + c, u+ c)η< ∨ η= ∨ ∃z ∈ (u+ c, t+ c)η>

)
where η<, η= and η> are HIFs. It follows that θ< = ∃y ∈ (s, u).ψ is equivalent to a HIF. J

We now show that every N -bounded FOK formula with one free variable is equivalent to
a HIF. As with the example above, the idea is to successively break up bad intervals from
the innermost quantified variables, using Lemma 7 to ensure that such breaking up does not
introduce more bad intervals on already processed subformulas. To simplify the procedure,
we start with a more general statement.

I Lemma 8. Every FOK formula ψ(x) ∈ BetK(x0−N, x0 +N) is equivalent to a disjunction∨
i

(
κi(x) ∧ ϕi(x)

)
where each κi is a conjunction of constraints of the form xj + c < xk + c′

and each ϕi is a HIF.

Proof. We prove this by induction on the quantifier depth of ψ. We can remove the equality
predicate by substitution (and induction on the number of variables), so for simplicity we
assume that all inequalities are strict and occur within the scope of an even number of
negations. In particular, we see that if the result holds for ψ then it also holds for ¬ψ as
negations of inequality constraints are also inequality constraints and negations of HIFs are
also HIFs. Now if ψ is quantifier-free the result follows by taking a disjunctive normal form
of ψ. So suppose ψ = ∃yϕ(x, y). By the induction hypothesis we have ϕ(x, y) is equivalent
to
∨
i(κi(x, y) ∧ ϕi(x, y)), so ψ is equivalent to

∨
i

(κ′i(x) ∧ ∃y
n∧
j=0

y < xj + cj ∧
n∧
j=0

y > xj + c′j ∧ ϕi(x, y)).

For technical reasons that will become clear shortly, we need to remove from each ϕi intervals
of the form (y + c, y + c′). To do this, we observe that, by the pigeon-hole principle,
x0 + n(c′ − c) ∈ (y + c, y + c′) for some n ∈ Z. As ψ ∈ BetK(x0 − N, x0 + N) we have
c−N < n(c′− c) < c′+N , so there are a finite number of possibilities for n, and as c, c′ ∈ K,
n(c′ − c) ∈ K. Thus for each interval I = (y + c, y + c′) occurring in ϕi we take a disjunction
over all integers n in (c−Nc′−c ,

c′+N
c′−c), add the constraints y + c < x0 + n(c− c′) < y + c′, and

use Lemma 7 to remove I. We also assume that all constraints amongst x and y implicitly
defined1 by ϕi are included in the conjunction of inequalities κ′i.

The idea is to now take a disjunction over all possible choices for the greatest lower bound,
xl + cl, and the least upper bound, xr + c′r, for y. This adds some additional constraints (e.g.

1 For example ∃z ∈ (x, y) implicitly implies x < y

P. Hunter 387

xl + cl > xj + cj for all j 6= l) which we add to κ′i in each disjunct. Now ψ is equivalent to∨
i′

(κ′′i′(x) ∧ ∃y ∈ (xl + cl, xr + c′r)ϕi(x, y)).

We next apply Lemma 7 to transform ∃y ∈ (xl + cl, xr + c′r)ϕi(x, y) into a HIF. Technically
we apply it several times, once for each interval defined by free variables bounded above
by y + c and not bounded below by xl + cl + c and once for each interval defined by free
variables bounded below by y + c and not bounded above by xr + c′r. The assumptions that
there is no interval of the form (y + c, y + c′) and that all constraints implicitly defined by
ϕi are included in κi together with the additional constraints imposed by the choice of xl
and xr guarantee that xl + cl + c is an element of any interval bounded above by y + c and
xr + c′r + c is an element of any interval bounded below by y + c. Thus Lemma 7 guarantees
that in the resulting HIF, ϕ′i, all intervals involving y and some free variable are either of
the form (xl + cl + c, y + c) or (y + c, xr + c′r + c). Thus ∃y ∈ (xl + cl, xr + c′r)ϕ′i(x, y) is a
HIF. J

Lemma 6 now follows as a corollary as inequality constraints over one variable can be
trivially resolved.

The final stage of this step is to remove the application of unary functions to all bound
variables.

I Lemma 9. Let K be an additive subgroup of R and ϕ(x) be an N -bounded FOK formula
with one free variable. Then ϕ(x) is equivalent to an N ′-bounded FOK formula ϕ′(x) in
which the unary functions are only applied to x.

Proof. Let us say there is a violation if a unary function is applied to a variable other than
x. Following Lemma 6 and the comments at the start of the section it suffices to consider
HIFs and remove all violations from intervals. We proceed from any maximal subformula
of ϕ(x), ψ(x, y) = ∃z ∈ (s, t).θ(x, y, z) where there is a violation, say t = yj + c (the case
for s = yj + c being similar). Consider ψ′ = ∃z′ ∈ (s− c, t− c).θ(x, y, z′ + c). ψ′ is clearly
equivalent to ψ and is (N + c)-bounded. It suffices to show that s− c is not a violation as
this implies all violations in ψ′ occur in proper subformulas and the result then follows by
induction. The critical case is if s = yk + c′. Then, as ϕ is a HIF and yj and yk are bound in
ϕ, it follows that j 6= k. Suppose j < k. Then yj + c− c′ must have been an endpoint on the
interval constraining yk at the point where yk was quantified. As ψ is maximal, it follows
that c = c′. Likewise if k < j. Therefore s− c is not a violation. J

Step 2. Reduction to Bet{0}(x, x + c) formulas
Suppose now ϕ(x) is an N -bounded FOK formula in which the unary functions are only
applied to x. Let c0 < c1 < . . . < cn be the constants in K (including 0) corresponding
to the unary functions that are applied to x. Let ϕ′(z) be the formula resulting from
replacing each term x + ci with a new variable zi. Then ϕ(x) is equivalent to ∃z.(z0 <

· · · < zn) ∧ ϕ′(z) ∧
∧

(zi = x+ ci). Moreover, ϕ′ does not contain any unary functions and
is thus a formula of FO{0}. A standard model-theoretic argument (see [14, 6, 10]) shows
that (z0 < · · · < zn) ∧ ϕ′(z) can be written as a finite disjunction of formulas of the form∧n
i=0 ψi(zi)∧

∧n−1
i=0 χi(zi, zi+1) where each ψi is a boolean combination of monadic predicates

and each χi ∈ Bet{0}(zi, zi+1). Thus ϕ(x) can be written as a finite disjunction of formulas
of the form

n∧
i=0

ψi(x+ ci) ∧
n−1∧
i=0

χi(x+ ci, x+ ci+1).

CSL’13

388 When is Metric Temporal Logic Expressively Complete?

Now ψi(x + ci) is clearly expressible by the MTLK formula 3{ci}ψ
†
i , where ψ†i is the

obvious translation of ψi(x) to MTLK. Likewise, if χ†i were an MTLK formula expressing
χi(x, x+ ci+1 − ci) then 3{ci}χ

†
i would be an MTLK formula expressing χi(x+ ci, x+ ci+1).

Thus we have reduced the problem of expressing N -bounded FOK formulas to expressing
every formula in Bet{0}(x, x+ c).

Step 3. Expressive completeness for bounded formulas
Critical to this step is the following definition and lemma from [6].

A decomposition formula δ(x, y) is any formula of the form

x < y ∧ ∃z0 . . . ∃zn (x = z0 < · · · < zn = y)

∧
∧
{ϕi(zi) : 0 < i < n}

∧
∧
{∀u ((zi−1 < u < zi)→ ψi(u)) : 0 < i ≤ n}

where ϕi and ψi are LTL formulas regarded as unary predicates.

I Lemma 10 ([6]). Over any domain with a complete linear order, every formula ψ(x, y) in
Bet{0}(x, y) is equivalent to a boolean combination of decomposition formulas δ(x, y).

It follows that it suffices to show MTLK is able to express a decomposition formula. The
proof of this result very closely follows the proof in [13], so we only outline the ideas and
refer the reader to the full version of the paper for the details.

I Lemma 11. Any decomposition formula δ(x, x+ c) is equivalent to an MTLK formula.

Proof (sketch). The proof is by induction on n, the number of existential quantifiers in
δ(x, x + c). We divide the interval (x, x + c) into small intervals of width ν ∈ K where
0 < ν ≤ c

2n . The fact that K is non-trivial and dense guarantees that ν exists. We then
consider three cases depending on where the witnesses for the existential quantifiers of δ lie
(taking a disjunction to cover all cases). If all witnesses lie in a single interval in the first
half of (x, x + c) then we can assert in MTLK: ψ1 holds until some point in the interval,
then subsequent witness points occur within ν time units of the previous one. If instead all
witnesses lie in a single interval in the second half of (x, x+ c) we assert: In c time units ψn
would have held since a point in the interval, and each witness point was preceded within ν
time units by another. Finally, if there is some k such that x+ kν separates the witnesses,
we divide δ(x, x+ c) into a Bet{0}(x, x+ kν) formula and a Bet{0}(x+ kν, x+ c) formula
and apply the inductive hypothesis. J

Combining Kamp’s Theorem [14] and the results of this section yields:

I Lemma 12. Let K be a dense additive subgroup of R. Any N -bounded FOK formula with
one free variable is equivalent to an MTLK formula.

3.2 Syntactic separation of MTLK

Having established that MTLK can express N -bounded FOK formulas when K is dense
we now turn to extending the result to all FOK. Our results for this section hold for all
non-trivial additive subgroups K.

The notion of separation was introduced by Gabbay in [4] where he showed that every
LTL formula can be equivalently rewritten as a boolean combination of formulas, each of

P. Hunter 389

which depends only on the past, present or future. This was later extended to LTL over the
reals in [5]. Hunter, Ouaknine and Worrell [13] extended this idea for the metric setting,
showing that each MTLQ formula can be equivalently rewritten as a boolean combination of
formulas, each of which depends only on the distant past, bounded present, or distant future.

Here we use a similar approach; however we need to refine the definition of distant past
and distant future in order to use the separation property in Section 3.3. This refinement is,
however, simple enough that the proof of separability of MTLQ in [13] can largely be used
and we need only indicate the two places where adjustments need to be made to account for
our more general setting. The complete proof can be found in the full version of the paper.

Recall from [13] the inductive definitions of future-reach fr : MTLK → K ∪ {∞} and
past-reach pr : MTLK → K ∪ {∞}

fr(p) = pr(p) = 0 for all propositions p,
fr(true) = pr(true) = 0,
fr(¬ϕ) = fr(ϕ), pr(¬ϕ) = pr(ϕ),
fr(ϕ ∧ ψ) = max{fr(ϕ), fr(ψ)},
pr(ϕ ∧ ψ) = max{pr(ϕ), pr(ψ)},
If n = inf(I) and m = sup(I):

fr(ϕ UI ψ) = m+ max{fr(ϕ), fr(ψ)},
pr(ϕ SI ψ) = m+ max{pr(ϕ), pr(ψ)},
fr(ϕ SI ψ) = max{fr(ϕ), fr(ψ)− n},
pr(ϕ UI ψ) = max{pr(ϕ), pr(ψ)− n}.

Our separation result is then:

I Lemma 13. Let K be a non-trivial additive subgroup of R. For any c ∈ K≥0, every MTLK
formula is equivalent to a boolean combination of:

3{N}ϕ where pr(ϕ) < N − c for some N ∈ K,
-3{N}ϕ where fr(ϕ) < N − c for some N ∈ K, and
ϕ where all intervals occurring in the temporal operators are bounded.

Proof (sketch). The proof follows directly from the proof of the separability of MTLQ in [13]
as only few assumptions were made about the underlying set of constants, which we now
address.

For the equivalence defining K+ and K− as bounded formulas, we instead need to use:
K+(ϕ) ↔ ¬(¬ϕ U<ν true) and K−(ϕ) ↔ ¬(¬ϕ S<ν true), where ν ∈ K is such that
ν > 0. Note that as K is non-trivial such a ν exists.
In Step 3 (Completing the separation) N was chosen so that N > pr(θ) + 1. Now we
choose N ∈ K such that N > pr(θ) + c. Note that again as K is non-trivial such a choice
is always possible.

J

3.3 Expressive completeness for FOK

We now use Lemmas 12 and 13 to complete the proof of Theorem 1. Our argument is
similar to other expressive completeness results based on separation – we refer the reader
to [5, 12, 13]. Let ϕ(x) be a FOK formula. We prove by induction on the quantifier depth of
ϕ(x) that it is equivalent to an MTLK formula.

Base case

All atoms are of the form Pi(x), x = x, x < x, x + c = x. We replace these by Pi, true,
false, false respectively and obtain an MTLK formula which is clearly equivalent to ϕ.

CSL’13

390 When is Metric Temporal Logic Expressively Complete?

Inductive case

Without loss of generality we may assume ϕ = ∃y.ψ(x, y). We would like to remove x from
ψ. To this end we take a disjunction over all possible choices for γ : {P1(x), . . . Pm(x)} →
{true, false}, and use γ to determine the value of Pi(x) in each disjunct via the formula θγ :=∧m
i=1(Pi(x)↔ γ(Pi)). Thus we can equivalently write ϕ in the form

∨
γ

(
θγ(x)∧∃y.ψγ(x, y)

)
,

where the propositions Pi(x) do not appear in the ψγ .
Now in each ψγ , we may assume, after some arithmetic, x appears only in atoms of the

form x = z, x < z, x > z and x+ c = z for some variable z. We next introduce new monadic
propositions P=, P<, P>, and Fc for all c such that there is an atom x+ c = z, and replace
each of the atoms containing x in ψγ with the corresponding proposition. That is, x = z

becomes P=(z), x < z becomes P<(z) and so on. This yields a formula ψ′γ(y) in which x does
not occur, such that ψ′γ(y) has the same truth value as ψγ(x, y) for suitable interpretations
of the new propositions.

By the induction hypothesis, for each γ there is an MTLK formula θ†γ equivalent to θγ(x),
and an MTLK formula ψ†γ equivalent to ψ′γ(y). Then our original formula ϕ has the same
truth value at each point x as

ϕ′ :=
∨
γ

(
θ†γ ∧ (-3ψ†γ ∨ ψ†γ ∨3ψ†γ)

)
for suitable interpretations of P=, P<, P> and the Fc.

Let cmax ∈ K be the largest, in absolute value, element of K for which the propositional
variable Fc was introduced. By Lemma 13, ϕ′ is equivalent to a boolean combination of
formulas

(I) 3{N}θ where pr(θ) < N − |cmax|,
(II) -3{N}θ where fr(θ) < N − |cmax|, and
(III) θ where all intervals occurring in the temporal operators are bounded.
Now in formulas of type (I) above, we know the intended value of each of the propositional
variables P=, P<, P> and Fc: they are all false except P<, which is true. So we can replace
these propositional atoms by true and false as appropriate and obtain an equivalent MTLK
formula which does not mention the new variables. Likewise we know the value of each of
propositional variables in formulas of type (II): all are false except P>, which is true; so we
can again obtain an equivalent MTLK formula which does not mention the new variables. It
remains to deal with each of the bounded formulas, θ. As MTLK is definable in FOK, there
exists a formula θ∗(x) ∈ FOK, with predicates from {P=, P<, P>, Fc}, equivalent to θ. It is
clear that as θ is bounded, there is an N such that θ∗ is N -bounded. We now unsubstitute
each of the introduced propositional variables. That is, replace in θ∗(x) all occurrences of
P=(z) with z = x, all occurrences of P<(z) with x < z etc. The result is an equivalent
formula θ+(x) ∈ FOK, which is still N -bounded as we have not removed any constraints on
the variables of θ∗. From Lemma 12, it follows that there exists an MTLK formula δ that is
equivalent to θ+, i.e., equivalent to θ.

4 Expressive completeness of MTLZ with counting

In this section we show

I Theorem 2. MTLZ+C has the same expressive power as FOZ.

In fact we show a slightly stronger result involving an extension of Q2MLO (see [10]) by
punctuality quantifiers.

P. Hunter 391

I Definition 14. Q2MLO with punctuality (PQ2MLO) is an extension of FO{0} (and a
restriction of FO{1}) defined by the following syntax:

ϕ ::= true | Pi(x) | x < y | ϕ ∧ ϕ | ¬ϕ | ∃xϕ | ∃x+1
x y ψ | ∃xx−1y ψ | 3x

1y. χ | -3x
1y. χ ,

where x and y denote variables, ψ denotes a PQ2MLO formula with two free variables x and
y, and χ denotes a PQ2MLO formula with one free variable, y. Q2MLO is the restriction of
PQ2MLO to formulas that do not contain the punctual quantifiers 3x

1 and -3x
1 .

The quantifiers ∃x+1
x y, ∃xx−1y, 3x

1y and -3x
1y are interpreted as ∃y ∈ (x, x+1), ∃y ∈ (x−1, x),

∃y. (y = x+ 1) and ∃y. (y = x− 1) respectively.

I Theorem 15. FOZ, PQ2MLO and MTLZ+C all have the same expressive power.

It is clear that FOZ is at least as expressive as the other two. To show the equivalence of
PQ2MLO and MTLZ+C we use the following result of [10].

I Theorem 16 ([10]). MITL with counting has the same expressive power as Q2MLO.

We also observe that if ϕ(y) is a formula of PQ2MLO that is equivalent to ϕ′ ∈ MTLZ+C
then 3x

1yϕ(y) is equivalent to 3{1}ϕ
′ and -3x

1yϕ(y) is equivalent to -3{1}ϕ′. The result then
follows by induction on the nesting depth of the punctual operators (3x

1y / -3x
1y and 3{1} /

-3{1}) and Theorem 16.
It remains to show any formula in FOZ has an equivalent PQ2MLO formula. Using

similar arguments to the previous section, it is sufficient to derive analogues of Lemma 11
for FO{1} formulas and Lemma 13 for MTLZ+C.

4.1 Expressive equivalence of bounded formulas
In order to show every bounded FOZ formula can be expressed by a PQ2MLO formula,
the results of Section 3.1 imply that we need only consider FO{1} formulas of the form
δ(x) = δ(x, x+ 1) where:

δ(x, y) = ∃z0 . . . ∃zn (x = z0 < · · · < zn = y)

∧
∧
{ϕi(zi) : 0 < i < n}

∧
∧
{∀u ((zi−1 < u < zi)→ ψi(u)) : 0 < i ≤ n}.

Now for 1 ≤ j ≤ 2n− 1 let

δj(x, y) = ∃z0 . . . ∃zk (x = z0 < · · · < zk = y)

∧
∧
{ϕi(zi) : 0 < i ≤ b j2c}

∧
∧
{∀u ((zi−1 < u < zi)→ ψi(u)) : 0 < i ≤ k},

where k = d j2e. That is, δj(x, y) is the formula obtained by restricting δ(x) to the first j
formulas of ψ1, ϕ1, ψ2, ϕ2, . . . , ψn. Now consider the PQ2MLO formula:

δ′(x) = ∀x+1
x u.

2n−1∨
i=1

δi(x, u) ∧ 3x
1y.∃

y
y−1u.δ(u, y).

The following result provides the suitable analogue of Lemma 11.

CSL’13

392 When is Metric Temporal Logic Expressively Complete?

I Lemma 17. δ(x) is equivalent to δ′(x).

Proof. δ(x)⇒ δ′(x). Let x0, . . . , xn ∈ [x, x+ 1] be witnesses for the existential quantifiers in
δ. From the definition of δi, if u ∈ (xi, xi+1) (for 0 ≤ i < n) then δ2i+1(x, u) holds. Further,
if u = xi (for 1 ≤ i < n) then δ2i(x, u) holds. Thus the first conjunct of δ′ is satisfied for
all u ∈ (x, x + 1). Any u ∈ (x, x1) is a witness for ∃x+1

x u.δ(u, x + 1), and as x1 ≤ x + 1,
u ∈ (y − 1, y) where y = x+ 1. Thus the second conjunct holds and δ′(z) is satisfied.

δ′(x)⇒ δ(x). From the second conjunct of δ′, δ(u, x+1) is satisfied for some u ∈ (x, x+1).
Let x0, . . . , xn ∈ [x, x + 1] be the witnesses for δ(u, x + 1). Now take any v ∈ (xn−1, xn).
From the first conjunct of δ′, there is some r ≤ 2n− 1 such that δr(x, v) is satisfied. Note
that if r = 2n− 1 then as ψn(x) holds for all y ∈ (xn−1, xn) and v ∈ (xn−1, xn), δ2n−1(x, v)
can be extended to the whole interval [x, x+ 1), and thus δ(x) holds. So assume r < 2n− 1,
and let x′0, . . . , x′r′ ∈ [x, v] be the witnesses for δr(x, v) where r′ = d r2e < n. Let m be the
smallest index such that xm < x′m. As xn−1 < v = x′r′ such an index must exist. Then we
claim that x, x′1, . . . , x′m−1, xm, xm+1, . . . , xn−1, x+ 1 are witnesses for δ(x). Every interval
I defined by these witnesses, except (x′m−1, xm), is either an interval defined by witnesses of
δr(x, x+ 1) or an interval defined by witnesses of δ(u, x+ 1), so all points in I satisfy ψi or
ϕi as required. For the remaining interval, we observe that (x′m−1, xm) ⊆ (x′m−1, x

′
m), thus

all points satisfy ψm−1 as required. Thus δ(x) is satisfied.
J

4.2 Syntactic separation of MTLZ+C

We now derive an extension of Lemma 13 for MTLZ with counting. We first extend the
past-reach and future-reach functions as follows:

fr(Cn ϕ) = 1 + fr(ϕ) and fr(Cn ϕ) = fr(ϕ) for all n.
pr(Cn ϕ) = pr(ϕ) and pr(Cn ϕ) = 1 + pr(ϕ) for all n.

Our separation result for MTLK with counting is a generalization of Lemma 13 for any set
K such that 1 ∈ K (so that fr and pr are correctly defined).

I Lemma 18. Let K be an additive subgroup of R such that 1 ∈ K. For any c ∈ K, every
MTLK+C formula is equivalent to a boolean combination of:

3{N}ϕ where pr(ϕ) < N − c,
-3{N}ϕ where fr(ϕ) < N − c, and
ϕ where all intervals occurring in the temporal operators are bounded.

The proof of Lemma 18 proceeds in the same way as the proof of Lemma 13. In that
proof, the unbounded temporal operators were removed from the scope of bounded temporal
operators, then the separation result of Gabbay [4] is applied treating the formulas in the
scope of bounded temporal operators as atomic propositions. Here we also include formulas
in the scope of the counting modalities as atomic propositions, thus it suffices to show
how unbounded until and since operators can be removed from the scope of the counting
modalities. This follows by induction from the following observation:

I Lemma 19. For all n ∈ N, the following equivalences and their temporal duals hold over
all signals.

(i) C1 ϕ ←→ 31ϕ

P. Hunter 393

(ii) Cn

(
χ ∧ (ϕ U ψ)

)
←→

Cn

(
χ ∧ (ϕ U<1 ψ)

)
∨

3{1}
(
ϕ ∧ (ϕ U ψ)

)
∧∨n−1

k=0
[

Ck

(
χ ∧ (ϕ U<1 ψ)

)
∧ Cn−k

(
χ ∧2<1(ϕ ∧ ¬ψ)

)]
(iii) Cn (χ ∧2ϕ) ←→ Cn (χ ∧2<1ϕ) ∧2[1,∞)ϕ

(iv) Cn

(
χ ∧ (ϕ S ψ)

)
←→

Cn

(
χ ∧ (ϕ S<1 ψ)

)
∨(

ϕ ∧ (ϕ S ψ)
)
∧∨n−1

k=0
[

Ck

(
χ ∧ (ϕ S<1 ψ)

)
∧ Cn−k

(
χ ∧ -2<1(ϕ ∧ ¬ψ)

)]
(v) Cn (χ ∧ -2ϕ) ←→ Cn (χ ∧ -2<1ϕ) ∧ ϕ ∧ -2ϕ

4.3 Equivalence of MTLZ+C, PQ2MLO and FOZ

To complete the proof of Theorem 15 and hence Theorem 2 we apply the arguments of
Section 3.3 together with Lemmas 17 and 18. We need only observe that MTLZ+C formulas
of type (III), that is where all intervals occurring in the temporal operators are bounded,
are themselves bounded when translated to FOZ. However, this follows directly from the
definition of the counting modalities as they are defined by bounded formulas.

5 Conclusion and further work

We have given a precise characterization of the sets of timing constants K for which MTLK and
FOK have the same expressive power. We have also shown that adding counting modalities
to MTLZ (and punctuality modalities to Q2MLO) yields the full expressive power of FOZ.
This result can also be extended to other MTLK that are not as expressive as their first-order
counterparts by adding the ability to count in the smallest definable non-zero interval (which,
from the characterization, is known to exist).

Whilst most logics considered here have undecidable satisfaction tests, the cost of the
translation in terms of formula size would still be an interesting area of exploration. Another
area of ongoing work is an exploration of the notion of metric separation, and whether a
suitable analogue of Gabbay’s Theorem [4] can be derived.

References
1 R. Alur and T. A. Henzinger. Logics and models of real time: A survey. In REX Workshop,

volume 600 of Lecture Notes in Computer Science. Springer, 1991.
2 R. Alur and T. A. Henzinger. Real-time logics: Complexity and expressiveness. Information

and Computation, 104(1):35–77, 1993.
3 R. Alur and T. A. Henzinger. A really temporal logic. Journal of the ACM, 41(1):181–204,

1994.
4 D. M. Gabbay. Expressive functional completeness in tense logic. In U. Monnich, editor,

Aspects of Philosophical Logic, pages 91–117. Reidel, 1981.
5 D. M. Gabbay, I. M. Hodkinson, and M. A. Reynolds. Temporal Logic: Mathematical

Foundations and Computational Aspects, volume 1. Clarendon Press, Oxford, 1994.

CSL’13

394 When is Metric Temporal Logic Expressively Complete?

6 D. M. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal basis of fairness. In
Proceedings of POPL. ACM Press, 1980.

7 T. A. Henzinger. It’s about time: Real-time logics reviewed. In Proceedings of CONCUR
98, volume 1466 of Lecture Notes in Computer Science, pages 439–454. Springer, 1998.

8 T. A. Henzinger, J.-F. Raskin, and P.-Y. Schobbens. The regular real-time languages. In
Proceedings of ICALP 98, volume 1443 of Lecture Notes in Computer Science. Springer,
1998.

9 Y. Hirshfeld and A. Rabinovich. Logics for real time: Decidability and complexity. Fundam.
Inform., 62(1), 2004.

10 Y. Hirshfeld and A. Rabinovich. An expressive temporal logic for real time. In Proceedings
of MFCS 06, pages 492–504, 2006.

11 Y. Hirshfeld and A. Rabinovich. Expressiveness of metric modalities for continuous time.
Logical Methods in Computer Science, 3(1), 2007.

12 I. M. Hodkinson and M. A. Reynolds. Separation - past, present, and future. In We Will
Show Them! (2), pages 117–142. College Publications, 2005.

13 P. Hunter, J. Ouaknine, and J. Worrell. Expressive completeness for metric temporal logic.
In Proceedings of LICS, pages 349–357, 2013.

14 H. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, University of California,
1968.

15 R. Koymans. Specifying real-time properties with Metric Temporal Logic. Real-Time
Systems, 2(4), 1990.

Proving Strong Normalisation via
Non-deterministic Translations into Klop’s
Extended λ-Calculus
Kentaro Kikuchi

RIEC, Tohoku University,
Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
kentaro@nue.riec.tohoku.ac.jp

Abstract
In this paper we present strong normalisation proofs using a technique of non-deterministic
translations into Klop’s extended λ-calculus. We first illustrate the technique by showing strong
normalisation of a typed calculus that corresponds to natural deduction with general elimination
rules. Then we study its explicit substitution version, the type-free calculus of which does not
satisfy PSN with respect to reduction of the original calculus; nevertheless it is shown that typed
terms are strongly normalising with respect to reduction of the explicit substitution calculus. In
the same framework we prove strong normalisation of Sørensen and Urzyczyn’s cut-elimination
system in intuitionistic sequent calculus.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Strong normalisation, Klop’s extended λ-calculus, Explicit substitution,
Cut-elimination

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.395

1 Introduction

It is common to prove strong normalisation of a reduction system by a mapping into a
set equipped with a well-founded order, e.g. (N, >). In the field of λ-calculus, it is also
common to use a translation from terms of a calculus into λ-terms that are known to be
strongly normalising, e.g. simply typed λ-terms. Such a translation is usually a (deterministic)
function, and sometimes gives rise to difficulty in preserving a reduction step of the original
calculus in one or more reduction steps of λ-calculus, in particular when the translation
involves substitution.

In [19, 20], Lengrand developed a technique to cope with this sort of problem, where
the translation from terms of the original calculus is not into λ-terms but into λI[,]-terms
of [18] with additional pairing constructs. Moreover, it is defined to be non-deterministic
(i.e. to be a relation rather than a function) so that an arbitrary term can be added as the
second element of the pairing constructs inserted at random places. One can thus retain
those terms which would disappear if translated by a function, and preserve reduction steps
that take place within those terms. (For a survey on different techniques concerning λI[,] to
infer normalisation properties, see, e.g. [8].)

In this paper we first illustrate the technique by proving strong normalisation of typed
terms of a calculus that corresponds to natural deduction with general elimination rules [26].
Although the same result has already been shown by different methods (e.g. [12, 22, 24]),
our proof will help the reader to understand the contents of the later part of the paper with
results that have not been obtained by those methods.

© Kentaro Kikuchi;
licensed under Creative Commons License CC-BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca; pp. 395–414

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.395
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

396 Proving SN via Non-deterministic Translations into Klop’s Extended λ-Calculus

In the latter half of the paper, we apply the technique to systems with explicit sub-
stitutions [1]. We study a modification of the explicit substitution calculus introduced by
Nakazawa [22], for which he mentioned the difficulty in proving strong normalisation of typed
terms. We explain why the method in [22] does not work for the modified system, and prove
strong normalisation of typed terms using a non-deterministic translation into λI[,]-calculus.
The proof method provides a general framework for showing strong normalisation of systems
with various reduction rules on the same terms, which include proof terms for intuitionistic
sequent calculus. We illustrate the framework with an extension of Sørensen and Urzyczyn’s
cut-elimination system [27].

Since Melliès [21] gave an unexpected counter-example, strong normalisation for explicit
substitution calculi has been widely studied. For composition-free systems, the methods
in [6, 4, 5] are standard. They work even for type-free calculi to prove the Preservation of
Strong Normalisation (PSN) property, which states that if a term is strongly normalising in
the original calculus without explicit substitutions then it is also strongly normalising in the
explicit substitution calculus. This property, however, does not hold for the calculi we treat
in this paper. So we use techniques from [19, 20] to prove strong normalisation of typed terms
in the explicit substitution calculus, without relying on the result of the original calculus.
A similar proof can be found in [16] for the restricted case of proof terms for intuitionistic
sequent calculus. In this paper, the definition of the non-deterministic translation is extended
and improved from the one in [16]. In [27], a method closely related to the one in [16] has
been developed. However, it introduces Klop’s pairing constructs not only for λ-terms but
also for proof terms for sequent calculus, which leads to complications.

In this paper we will refer to the modification of the system in [22] as λxg, which makes
substitution of the original calculus λg explicit in the style of λx [6]. As mentioned above,
the calculus λxg does not satisfy PSN with respect to λg, but it does not mean a flaw of λxg.
To put it briefly, the reason is that λg only implements some specific strategies. (For more
details, see Remark in Subsection 3.2.)

The main subject of the paper is the technique of non-deterministic translations into λI[,]-
calculus. The technique was originally developed for proving PSN of an explicit substitution
calculus with composition [14], and later applied to a local cut-elimination procedure that
simulates β-reduction [16]. However, the proofs for those systems are not so accessible
to readers who are working in other fields. In this paper we explain the key ideas of the
technique, separating them from the formalism of explicit substitution calculi. This amounts
to extending the range of application of the technique, e.g. to proof of strong normalisation
for λµ-calculus [25], solving the so-called erasing continuation problem [23]. (cf. [17])

The paper is organised as follows. In Section 2 we recall the definitions of λg-calculus
and λI[,]-calculus, and prove strong normalisation of typed λg-terms. In Section 3 we extend
the syntax of λg-calculus by explicit substitution, and prove strong normalisation of typed
terms by extending the method in Section 2. In Section 4 we apply the proof method to
Sørensen and Urzyczyn’s cut-elimination system.

2 Strong normalisation for λg-calculus

This section provides a survey of the method of proving strong normalisation through a
non-deterministic translation into Klop’s λI[,]-calculus. Although the original formalisation
by Lengrand was explained using an explicit substitution calculus with composition [14]
(which is the only example to which the technique is applied in [19, 20]), here we apply the
method to simply typed λg-calculus without explicit substitution.

K. Kikuchi 397

2.1 λg-calculus
λg-calculus is introduced as a term calculus corresponding to natural deduction with general
elimination rules [26]. It has been studied, e.g. in [11, 22]. Typed terms of the calculus can
also be seen as term representation of proofs in a fragment of intuitionistic sequent calculus.
We first define the syntax of the type-free version of the calculus.

I Definition 1 (Grammar of λg). The set Λg of terms of the λg-calculus is defined by the
following grammar:

M,N,P ::= x | λx.M |M [N, x.P]

An element of Λg is called a λg-term. The notions of free and bound variables are defined as
usual, with an additional clause that the variable x in M [N, x.P] binds the free occurrences
of x in P . The set of free variables of a λg-term M is denoted by FV(M). The symbol ≡
denotes syntactical equality modulo α-conversion, and { / } is used for usual capture-free
substitution.

I Definition 2 (Reduction system of λg). The reduction rules are:

(βg) (λx.M)[N, y.P] → {{N/x}M/y}P
(πg) M [N, y.P][N ′, y′.P ′] → M [N, y.P [N ′, y′.P ′]]

The reduction relation −→βg,πg is defined by the contextual closure of the rules (βg) and (πg).
We use −→+

βg,πg
for its transitive closure, and −→∗βg,πg

for its reflexive transitive closure.
The set of λg-terms that are strongly normalising with respect to −→βg,πg is denoted by
SNβg,πg . These kinds of notations are also used for the notions of other reductions in this
paper.

The type assignment system for λg-terms is defined by the rules in Figure 1. A typing
context is defined as a finite set of pairs {x1 : A1, . . . , xn : An} where the variables are
pairwise distinct. The typing context Γ, x : A denotes the union Γ ∪ {x : A} where x does
not appear in Γ . We write Γ `λg

M :A if Γ `M : A is derivable with the rules of Figure 1.
We also write Γ `λ t :A if Γ ` t : A is derivable with the standard rules of the simply typed
λ-calculus.

Γ, x : A ` x : A (Var) Γ, x : A `M : B
Γ ` λx.M : A→ B

(Abs)

Γ `M : A→ B Γ ` N : A Γ, y : B ` P : C
Γ `M [N, y.P] : C

(GApp)

Figure 1 Type assignment system for λg-terms.

The reduction rules (βg) and (πg), when applied to typed terms, correspond to trans-
formation of typing derivations. In Figure 2 we show the transformation corresponding
to (πg).

2.2 λI[,]-calculus
In this subsection we recall the definition and some properties of Klop’s extended λ-calculus,
which is referred to as λI[,] in [18].

CSL’13

398 Proving SN via Non-deterministic Translations into Klop’s Extended λ-Calculus

Γ `M : A→ B Γ ` N : A Γ, y : B ` P : C → D

Γ `M [N, y.P] : C → D Γ ` N ′ : C Γ, y′ : D ` P ′ : E
Γ `M [N, y.P][N ′, y′.P ′] : E

is transformed into

Γ `M : A→ B Γ ` N : A
Γ, y : B ` P : C → D Γ ′ ` N ′ : C Γ ′, y′ : D ` P ′ : E

Γ, y : B ` P [N ′, y′.P ′] : E
Γ `M [N, y.P [N ′, y′.P ′]] : E

where Γ ′ = Γ, y : B and y : B is added by weakening.

Figure 2 Derivation transformation corresponding to (πg).

I Definition 3 (Grammar of λI[,]). The set ΛI[,] of terms of the λI[,]-calculus is defined by
the following grammar:

T,U ::= x | λx.T | T U | [T,U]

with the additional restriction that every abstraction λx.T satisfies x ∈ FV(T).

We denote lists of λI[,]-terms using vectors, and if −→T = T1, . . . , Tn then [U,−→T] denotes
[. . . [U, T1], . . . , Tn] when n ≥ 1, and U when n = 0.

The following property is straightforward by induction on terms.

I Lemma 4 (Stability under substitution [18]).
If T,U ∈ ΛI[,], then {U/x}T ∈ ΛI[,].

I Definition 5 (Reduction system of λI[,]). The reduction rules are:

(β) (λx.T)U → {U/x}T
(π) [T,U]T ′ → [T T ′, U]

The following remark is straightforward [18]:

I Lemma 6. If T −→β,π T
′ then FV(T) = FV(T ′) and {T/x}U−→+

β,π {T ′/x}U provided
that x ∈ FV(U).

Now we recall from [19, 20] an encoding of λ-calculus into λI[,]:

I Definition 7 (Encoding of λ-calculus into λI[,]). We encode the λ-calculus into λI[,] as
follows:

i(x) := x

i(λx.t) := λx.i(t) if x ∈ FV(t)
i(λx.t) := λx.[i(t), x] if x /∈ FV(t)
i(t u) := i(t)i(u)

Note that this encoding is different from Klop’s ι [18] in that the latter does not make the
case distinction for abstractions.

A crucial property of the encoding, on which all strong normalisation results in this paper
depend, is the following:

I Theorem 8 ([19, 20]). For any λ-term t, if t ∈ SNβ then i(t) ∈ SNβ,π.

K. Kikuchi 399

2.3 Strong normalisation of typed λg-terms
Our aim of this section is to show that all typed λg-terms are strong normalising with respect
to βg, πg-reduction. The result has already been proved in several ways (e.g. [12, 22, 24]), but
the strong normalisation results in later sections have not been obtained by those methods.

A naive attempt is to reduce the problem to the strong normalisation of β-reduction in
the simply typed λ-calculus, using the translation F that maps all terms M [N, y.P] into
{F(M)F(N)/y}F(P). However, this translation does not necessarily preserve one or more
reduction steps; for instance, if M −→βg,πg M ′ then M [N, y.z] −→βg,πg M ′[N, y.z], but
F(M [N, y.z]) ≡ z ≡ F(M ′[N, y.z]). So for our purpose some modification of the translation
is needed. Here we introduce the following one, taking account of the free occurrences of y
in P for M [N, y.P].

I Definition 9 (Encoding of λg into λ-calculus). We encode the λg into λ-calculus as follows:

G(x) := x

G(λx.M) := λx.G(M)
G(M [N, y.P]) := {G(M)G(N)/y}G(P) if y ∈ FV(P)
G(M [N, y.P]) := (λy.G(P))(G(M)G(N)) if y /∈ FV(P)

Unfortunately, this encoding does not allow simulation of reduction.

I Example 10. Let M1 ≡ m[n, y.(λx.z)[y[z, w.w], v.v]] and N1 ≡ m[n, y.z]. Then M1 −→βg

N1 holds, but for their encodings G(M1) ≡ (λx.z)(mnz) and G(N1) ≡ (λy.z)(mn), the former
cannot reduce to the latter.

The above encoding will be used not for simulation of reduction but for the lifting of a
λg-term to be proved strongly normalising. For simulation, we use as the target calculus λI[,]

instead of λ-calculus, and the translation is now defined to be non-deterministic. In Figure 3
we give the inductive definition of the relation H between λg-terms and λI[,]-terms.

x H x
M H T N H U P H S
M [N, y.P] H {T U/y}S

y ∈ FV(S)

M H T
λx.M H λx.T

x ∈ FV(T) M H T
M H [T,U]

U ∈ ΛI[,]

Figure 3 Relation between λg & λI[,].

I Lemma 11. If M H T , then
1. FV(M) ⊆ FV(T)
2. T ∈ ΛI[,]

3. x /∈ FV(M) and U ∈ ΛI[,] implies M H {U/x}T
4. {y/x}M H {y/x}T

I Example 12. M1 ≡ m[n, y.(λx.z)[y[z, w.w], v.v]] H (λx.[z, x])(mnz) andN1 ≡ m[n, y.z] H
[z,mnz] as shown in Figures 4 and 5. Note that (λx.[z, x])(mnz) β-reduces to [z,mnz] in
contrast with the encodings in Example 10. The point is that yz, which corresponds to
y[z, w.w] discarded by βg-reduction from M1, is retained in the λI[,]-term [z, yz] in Figure 5.

CSL’13

400 Proving SN via Non-deterministic Translations into Klop’s Extended λ-Calculus

m H m n H n

z H z
z H [z, x]

λx.z H λx.[z, x]
y H y z H z w H w

y[z, w.w] H {yz/w}w v H v

(λx.z)[y[z, w.w], v.v] H {(λx.[z, x])(yz)/v}v
m[n, y.(λx.z)[y[z, w.w], v.v]] H {mn/y}((λx.[z, x])(yz))

Figure 4 Derivation of m[n, y.(λx.z)[y[z, w.w], v.v]] H (λx.[z, x])(mnz).

m H m n H n
z H z

z H [z, yz]
m[n, y.z] H {mn/y}[z, yz]

Figure 5 Derivation of m[n, y.z] H [z,mnz].

Now our aim is to show that reduction in λg is simulated in λI[,] through H . For this
we need the following lemma.

I Lemma 13. If M H T and N H U , then {N/x}M H {U/x}T .

Proof. By induction on the derivation of M H T . Here we only consider the case where the
last applied rule of the derivation is

M ′ H T ′ N ′ H U ′ P H S
M ′[N ′, y.P] H {T ′U ′/y}S

y ∈ FV(S)

Then we have

I.H.
{N/x}M ′ H {U/x}T ′

I.H.
{N/x}N ′ H {U/x}U ′

I.H.
{N/x}P H {U/x}S

{N/x}M ′[{N/x}N ′, y.{N/x}P] H {{U/x}T ′{U/x}U ′/y}{U/x}S

≡

{N/x}(M ′[N ′, y.P]) H {U/x}{T ′U ′/y}S

J

Now we are in a position to prove the simulation theorem in λI[,].

I Theorem 14 (Simulation in λI[,]). Suppose M H T .
1. If M −→βg N then there exists U such that N H U and T−→+

β,π U .
2. If M −→πg

N then N H T .

Proof. By induction on the derivation of M H T .
The case of the rule

x H x

is vacuous.
For the rule

M H T
M H [T,U]

U ∈ ΛI[,]

we simply apply the induction hypothesis.

K. Kikuchi 401

For the rule
M H T

λx.M H λx.T
x ∈ FV(T)

the reduction must take place within M , so we can apply the induction hypothesis,
remembering that reduction in λI[,] preserves free variables (Lemma 6), so the side-
condition remains satisfied.
The interesting case is

M H T N H U P H S
M [N, y.P] H {T U/y}S

y ∈ FV(S)

If the reduction takes place within M , N or P , we apply the induction hypothesis again,
and the side-condition remains satisfied. Moreover, a βg-reduction step in M or N is
simulated by at least one reduction step from T or U and that step is preserved in the
reduction of {T U/y}S since y ∈ FV(S).
Otherwise, the reduction takes place at the root. We inspect the two cases, noting that
the form of the last part of the derivation is determined by the redex.
1. (λx.M)[N, y.P] −→βg

{{N/x}M/y}P . Then the derivation has the form

M H T
λx.M H λx.T

x ∈ FV(T)

λx.M H [λx.T,−→R] N H U P H S

(λx.M)[N, y.P] H {[λx.T,−→R]U/y}S
y ∈ FV(S)

By applying Lemma 13 twice, we have

N H U M H T
{N/x}M H {U/x}T Lemma 13

{N/x}M H [{U/x}T,−→R] P H S

{{N/x}M/y}P H {[{U/x}T,−→R]/y}S
Lemma 13

Since y ∈ FV(S), we have {[λx.T,−→R]U/y}S−→+
β,π {[{U/x}T,

−→
R]/y}S as required.

2. M [N, y.P][N ′, y′.P ′] −→πg
M [N, y.P [N ′, y′.P ′]]. In this case, the derivation has the

form
M H T N H U P H S
M [N, y.P] H {T U/y}S

y ∈ FV(S)

M [N, y.P] H [{T U/y}S,−→R] N ′ H U ′ P ′ H S′

M [N, y.P][N ′, y′.P ′] H {[{T U/y}S,−→R]U ′/y′}S′
y′ ∈ FV(S′)

Then we have

M H T N H U

P H S

P H [S,−→R] N ′ H U ′ P ′ H S′

P [N ′, y′.P ′] H {[S,−→R]U ′/y′}S′
y′ ∈ FV(S′)

M [N, y.P [N ′, y′.P ′]] H {T U/y}{[S,−→R]U ′/y′}S′
y ∈ FV(S′′)

≡

M [N, y.P [N ′, y′.P ′]] H {[{T U/y}S,−→R]U ′/y′}S′

where S′′ ≡ {[S,−→R]U ′/y′}S′. Since y′ ∈ FV(S′) and y ∈ FV(S), we have y ∈ FV(S′′).
J

CSL’13

402 Proving SN via Non-deterministic Translations into Klop’s Extended λ-Calculus

To prove the strong normalisation of any typed λg-term, we lift it to a λI[,]-term through
the encodings G and i.

I Lemma 15. For any λg-term M , there exists a λI[,]-term T such that M H T and
i(G(M))−→∗β,π T .

Proof. By induction on M . (For the details, see Appendix A.) J

Finally we show that πg-reduction is strongly normalising.

I Lemma 16. −→πg
is strongly normalising.

Proof. We define a map h : Λg −→ N as follows: h(x) := 1, h(λx.M) := h(M), and
h(M [N, y.P]) := h(M) × (h(N) + h(P)). Then observe that if M −→πg N then h(M) >
h(N). J

Now we can prove the strong normalisation theorem of typed λg-terms.

I Theorem 17 (Strong normalisation).
For any λg-term M , if Γ `λg

M :A then M ∈ SNβg,πg .

Proof. Suppose there is an infinite βg, πg-reduction sequence from M . Since πg-reduction is
strongly normalising (Lemma 16), the sequence has infinitely many βg-reduction steps.

Now, from Γ `λg
M :A, we have Γ `λ G(M) :A, so by the strong normalisation of typed

λ-terms, G(M) ∈ SNβ . Hence by Theorem 8, i(G(M)) ∈ SNβ,π.
By Lemma 15, there is a λI[,]-term T such that M H T and i(G(M))−→∗β,π T . Then,

applying Theorem 14 to each βg, πg-reduction step of the infinite reduction sequence from
M , we have an infinite β, π-reduction sequence

T−→+
β,π T1−→+

β,π T2−→+
β,π · · ·

which is a contradiction. J

3 Strong normalisation for λxg-calculus

In the following we extend the syntax of λg-calculus by explicit substitution and study
properties of the calculus. Strong normalisation of typed terms is proved using an extension
of the non-deterministic translation in the previous section.

3.1 λxg-calculus
In this subsection we introduce a modification of the explicit substitution calculus in [22],
which we call λxg-calculus. As shown in [22], typed terms of the calculus are isomorphic to
proofs in intuitionistic sequent calculus modulo a term quotient. First we define the syntax
of the type-free calculus.

I Definition 18 (Grammar of λxg). The set Λxg of terms of the λxg-calculus is defined by
the following grammar:

M,N,P ::= x | λx.M |M [N, x.P] | 〈M/x〉N

The notions of free and bound variables are extended from those for λg by the clause that
the variable x in 〈M/x〉N binds the free occurrences of x in N .

K. Kikuchi 403

I Definition 19 (Reduction system of λxg). The reduction rules are:

(1) 〈M/x〉y → y (x 6≡ y)
(2) 〈M/x〉x→M

(3) 〈M/x〉(λy.N)→ λy.〈M/x〉N
(4) 〈M/x〉(y[N, z.P])→ y[〈M/x〉N, z.〈M/x〉P] (x 6≡ y)
(5) 〈M/x〉(x[N, z.P])→M [〈M/x〉N, z.〈M/x〉P] (x ∈ FV([N, z.P]))
(6) 〈M/x〉(Q[N, z.P])→ (〈M/x〉Q)[〈M/x〉N, z.〈M/x〉P] (Q is not a variable)
(7) 〈M/x〉(x[N, z.P])→M [N, z.P] (x /∈ FV([N, z.P]))
(B1) (λy.M)[N, z.P]→ 〈N/y〉〈M/z〉P
(B2) (λy.M)[N, z.P]→ 〈〈N/y〉M/z〉P
(Pi) M [N, z.P][N ′, z′.P ′]→M [N, z.P [N ′, z′.P ′]]

The reduction relation −→λxg
is defined by the contextual closure of all the reduction rules.

We define two subsystems of λxg: the system B consists of the rules (B1) and (B2), and the
system x consists of the rules (1)-(7) and (Pi).
I Remark. The reduction rules of Λgx in [22] are the rules (1)-(7), (B1) and the following:

(Pi′) M [N, z.P][N ′, z′.P ′]→M [N, z.〈P/x〉(x[N ′, z′.P ′])] (x /∈ FV([N ′, z′.P ′]))

Note that the system x in [22] does not include the above rule (Pi′), while our system x
includes the rule (Pi).

The type assignment system for λxg-terms is defined by the rules in Figure 1 and the
following:

Γ `M : A Γ, x : A ` N : B
Γ ` 〈M/x〉N : B

(Sub)

We write Γ `λxg
M :A if Γ `M : A is derivable with those rules.

When applied to typed terms, the reduction rules correspond to transformation of typing
derivations. In Figure 6 we show the transformation corresponding to (B1) and (B2).

Γ, y : A `M : B
Γ ` λy.M : A→ B Γ ` N : A Γ, z : B ` P : C

Γ ` (λy.M)[N, z.P] : C
is transformed into

Γ ` N : A
Γ, y : A `M : B Γ, y : A, z : B ` P : C

Γ, y : A ` 〈M/z〉P : B
Γ ` 〈N/y〉〈M/z〉P : C

by (B1)

and
Γ ` N : A Γ, y : A `M : B

Γ ` 〈N/y〉M : B Γ, z : B ` P : C
Γ ` 〈〈N/y〉M/z〉P : C

by (B2)

Figure 6 Derivation transformation corresponding to (B1) and (B2).

3.2 Failure of PSN with respect to βg, πg-reduction
The main result of this paper is the strong normalisation theorem of typed λxg-terms. It has
been proved by Nakazawa [22] for the case where the reduction system does not include the

CSL’13

404 Proving SN via Non-deterministic Translations into Klop’s Extended λ-Calculus

rule (B2). He also mentioned the difficulty in proving strong normalisation in the presence of
(B2). In this subsection we explain why the method in [22] does not work for the system
with (B2).

A standard method of proving strong normalisation of explicit substitution calculi [6, 4, 5]
uses projection onto normal forms of the substitution subcalculus. Those normal forms are
terms without explicit substitution, and the proof relies on the strong normalisation result
of the original calculus without explicit substitution. Such a proof works even for type-free
calculi to show the property called Preservation of Strong Normalisation (PSN), which states
that if a term is strongly normalising with respect to reduction of the original calculus then
it is also strongly normalising in the explicit substitution calculus. However, this property
does not hold between λg-calculus and λxg-calculus.

I Example 20. λxg-calculus does not satisfy PSN with respect to βg, πg-reduction as the
following example shows. Let ω ≡ λy.y[y, v.v]. Then

ω[ω, z.x] −→βg {{ω/y}(y[y, v.v])/z}x ≡ x

Since this is the only βg, πg-reduction sequence from ω[ω, z.x], it is in SNβg,πg . However,

ω[ω, z.x] −→B2 〈〈ω/y〉(y[y, v.v])/z〉x
−→∗λxg

〈ω[ω, v.v]/z〉x
−→B2 · · ·

Hence ω[ω, z.x] /∈ SNλxg .

In spite of the above fact, strong normalisation of typed λxg-terms may be proved,
but then one cannot use a proof method that would yield at the same time PSN of the
type-free calculus with respect to βg, πg-reduction. Specifically, a standard method as in [22],
which projects λxg-terms onto λg-terms and relies on the result of strong normalisation of
βg, πg-reduction, does not work.

I Remark. An intended meaning of the βg-rule (λy.M)[N, z.P] → {{N/y}M/z}P of λg-
calculus is that the function λy.M is applied to the argument N and then the result of
the application is passed to the continuation z.P . In the type-free case, the computation
of the application may not produce any result as seen in the example above, but even so,
the term {N/y}M is substituted for z in P ; in particular, when z does not occur free in
P , the term {N/y}M is discarded. This means that λg-calculus can not express a natural
operational semantics that passes to the continuation the result of the application after
computing it, but only implement some specific strategies. On the other hand, λxg-calculus
and other formalisms like λµµ̃ [7] allow for such a natural operational semantics. (Those
calculi do not satisfy PSN with respect to βg, πg-reduction, but they satisfy PSN with respect
to β-reduction in an isomorphic image of the λ-calculus through appropriate embeddings.)

3.3 Strong normalisation of typed λxg-terms
Our proof of strong normalisation of typed λxg-terms proceeds in a similar pattern to
Section 2 except for the treatment of explicit substitution. To deal with explicit substitution
we use another technique from [19, 20] with the notions of safe and minimal reductions.

I Definition 21. A reduction step is minimal if every proper subterm of the redex is in
SNλxg . A minimal reduction step is safe if the redex itself is in SNλxg , and unsafe if not.

K. Kikuchi 405

We can restrict infinite λxg-reduction sequences to those consisting only of minimal
reduction steps.

I Lemma 22. If M /∈ SNλxg then there exists an infinite λxg-reduction sequence starting
from M such that all the reduction steps are minimal.

Proof. It suffices to take in each reduction step an innermost redex of the ones that preserve
the possibility of infinite reduction. (Such a reduction sequence is called a minimal infinite
reduction sequence, e.g. in [3].) J

I Definition 23. Let h be a subsystem of λxg, and let M −→h N . We write M −→minh N

(resp. M −→safeh N) to denote that the reduction step M −→h N is minimal (resp. safe)
(where minimality is with respect to SNλxg and not for the subsystem h).

A crucial point of our proof is that we divide minimal reduction steps into two kinds:
One is those which are simulated in λI[,] so that one or more reduction steps are preserved,
as βg-reduction steps in Section 2. The other is those which are strongly normalising in
λxg and simulated in λI[,] where one or more reduction steps are not necessarily preserved,
as πg-reduction steps in Section 2. In this section we take unsafe B-reduction steps as the
former and the rest (i.e. reduction steps by −→safeB,minx) as the latter.

To show that −→safeB,minx is strongly normalising, we briefly recall the lexicographic path
ordering [13]. For a more detailed description and proofs, the reader is referred to, e.g. [2].

I Definition 24 (Lexicographic path ordering). Let � be a transitive and irreflexive ordering
on the set of function symbols in a first-order signature, and let s ≡ f(s1, . . . , sm) and
t ≡ g(t1, . . . , tn) be terms over the signature. Then s >lpo t, if one of the following holds:
1. si ≡ t or si >lpo t for some i = 1, . . . ,m,
2. f � g and s >lpo tj for all j = 1, . . . , n,
3. f ≡ g, s >lpo tj for all j = 1, . . . , n, and s1 ≡ t1, . . . , si−1 ≡ ti−1, si >lpo ti for some

i = 1, . . . ,m.

I Theorem 25. >lpo is well-founded if and only if � is well-founded.

Now we encode λxg-terms into a first-order syntax given by the following ordered infinite
signature:

sub(_,_) � gapp(_,_,_) � abs(_) � c(m,n)

where for everym,n ∈ N, there is a constant c(m,n). Those constants are all below abs(_), and
the precedence between them is given by c(m,n) � c(m′,n′) if (m,n) > (m′, n′) lexicographically.
Then the precedence relation is well-founded, and so >lpo induced on the first-order terms is
also well-founded.

Let M be a λxg-term with M ∈ SNλxg . We define w(M) as (maxred(M), |M |) where
maxred(M) is the maximal length of all λxg-reduction sequences starting from M , and |M |
is the size of M . Then the aforementioned encoding is given in Figure 7.

I Lemma 26. If M −→safeB,minx M ′ then M >lpo M ′. Hence, −→safeB,minx is strongly
normalising.

Proof. By induction on the derivation of the reduction step. For the details, see Appendix B.
J

The relation H between λxg-terms and λI[,]-terms is inductively defined by the rules in
Figure 3 and the following:

M H T N H U
〈M/x〉N H {T/x}U x ∈ FV(U) ∨M ∈ SNλxg

CSL’13

406 Proving SN via Non-deterministic Translations into Klop’s Extended λ-Calculus

M := cw(M) if M ∈ SNλxg

otherwise
λx.M := abs(M)
M [N, y.P] := gapp(M,N,P)
〈M/x〉N := sub(M,N)

Figure 7 Encoding of λxg into a first-order syntax.

The side-condition of the above rule is designed so that an unsafe B-reduction step in M is
simulated by at least one reduction step in {T/x}U (cf. the first paragraph of page 413). It
is also closely related to the notion of decent term in [27, Definition 4.4]. Note that in the
presence of the above rule, Lemma 11 (0a) no longer holds.

I Theorem 27 (Simulation in λI[,]). Suppose M H T .
1. If M −→minB N and the reduction step is unsafe then there exists U such that N H U

and T−→+
β,π U .

2. If M −→minB N and the reduction step is safe then there exists U such that N H U

and T−→∗β,π U .
3. If M −→minx N then N H T .

Proof. By induction on the derivation of M H T . A detailed proof is found in Appendix B.
J

I Definition 28 (Encoding of λxg into λ-calculus). We encode λxg into λ-calculus, extending
the definition of G (Definition 9) by

G(〈M/x〉N) := {G(M)/x}G(N) if x ∈ FV(N)
G(〈M/x〉N) := (λx.G(N))G(M) if x /∈ FV(N)

As in the previous section, we lift any λxg-term to a λI[,]-term through G and i.

I Lemma 29. For any λxg-term M , there exists a λI[,]-term T such that M H T and
i(G(M))−→∗β,π T .

Proof. By induction on M . (For the details, see Appendix B.) J

Now we can prove the strong normalisation theorem of typed λxg-terms.

I Theorem 30 (Strong normalisation).
For any λxg-term M , if Γ `λxg

M :A then M ∈ SNλxg .

Proof. Suppose M /∈ SNλxg . Then by Lemma 22, there exists an infinite λxg-reduction
sequence starting from M such that all the reduction steps are minimal. Since −→safeB,minx is
strongly normalising (Lemma 26), the sequence has infinitely many unsafe B-reduction steps.

Now, from Γ `λxg
M :A, we have Γ `λ G(M) :A, so by the strong normalisation of typed

λ-terms, G(M) ∈ SNβ . Hence by Theorem 8, i(G(M)) ∈ SNβ,π.
By Lemma 29, there is a λI[,]-term T such that M H T and i(G(M))−→∗β,π T . Then,

applying Theorem 27 to each minimal reduction step of the infinite λxg-reduction sequence
from M , we have an infinite β, π-reduction sequence, which is a contradiction. J

K. Kikuchi 407

4 Application to other systems

The proof method in the previous section provides a general framework for showing strong
normalisation of systems on λxg-terms with various reduction rules. In this section we
illustrate that with an extension of Sørensen and Urzyczyn’s cut-elimination system in
intuitionistic sequent calculus [27].

I Definition 31 (Reduction system of λxSU
g). The reduction rules of λxSU

g are the rules (1)-(4)
of λxg (Definition 19) and the following:

(8) 〈y/x〉(x[N, z.P])→ 〈y/x〉(y[N, z.P])
(9) 〈y[N, z.P]/x〉(x[N ′, z′.P ′])→ y[N, z.〈P/x〉(x[N ′, z′.P ′])]
(B3) 〈λy.M/x〉(x[N, z.P])→ 〈λy.M/x〉〈〈N/y〉M/z〉P

The reduction relation −→λxSU
g

is defined by the contextual closure of those reduction rules.
The subsystem xSU consists of the rules (1)-(4), (8) and (9).
I Remark. The reduction rules of the system in [27, page 920] are the same as those of λxSU

g ,
but the terms are restricted to those such that M is a variable in M [N, y.P].

The notions of minimal, safe and unsafe reductions and the encoding into the first-order
syntax are defined as in the case of λxg. We define d(M) as the number of subterms of
M that have the form 〈y/x〉(x[N, z.P]). Then we can prove the following lemma and the
simulation theorem.

I Lemma 32. Let h := safeB3,minxSU. If M −→h M
′ then M >lpo M ′ or M = M ′ and

d(M) > d(M ′). Hence, −→h is strongly normalising.

Proof. By induction on the derivation of the reduction step. J

I Theorem 33 (Simulation in λI[,]). Suppose M H T .
1. If M −→minB3 N and the reduction step is unsafe then there exists U such that N H U

and T−→+
β,π U .

2. If M −→minB3 N and the reduction step is safe then there exists U such that N H U

and T−→∗β,π U .
3. If M −→minxSU N then N H T .

Proof. By induction on the derivation of M H T . J

Using the above lemma and theorem, we can prove strong normalisation of typed λxg-terms
with respect to reduction of λxSU

g .

I Theorem 34 (Strong normalisation).
For any λxg-term M , if Γ `λxg

M :A then M ∈ SNλxSU
g .

Proof. Similar to the proof of Theorem 30. J

Since proof terms for intuitionistic sequent calculus have the same type in the type
assignment system of [27] and in ours, it follows that the cut-elimination procedure is
strongly normalising.

As we have seen, in our framework, proving strong normalisation of systems with various
reduction rules on λxg-terms consists in

taking an appropriate subsystem h that is strongly normalising, as in Lemma 32
proving the simulation theorem in λI[,]

CSL’13

408 Proving SN via Non-deterministic Translations into Klop’s Extended λ-Calculus

In the case of λxg and λxSU
g , we can in fact prove a stronger result than Theorems 30

and 34 that typed λxg-terms are strongly normalising with respect to −→λxg,λxSU
g
, taking

h := safe(B,B3),min(x, xSU).

5 Conclusion and related work

We have presented proofs of strong normalisation of typed terms using non-deterministic
translations into Klop’s λI[,]-calculus. The method has worked for the explicit substitution
calculus in [22] extended with the rule (B2) as well as the cut-elimination system in [27].
The proof method provides a general framework for showing strong normalisation of various
reduction systems on λxg-terms.

As regards related work, the CGPS-translation [22, 9] has been used for proving strong
normalisation of calculi that correspond to proof systems with general elimination rules.
(Those calculi do not have step-by-step reduction of explicit substitutions.) It aims to
simulate every reduction step of the calculi by at least one β-reduction step in the λ-calculus.
On the other hand, the method in this paper makes such reduction steps as few as possible,
i.e., in the case of λxg, only unsafe B-reduction steps have to be simulated by at least one
β, π-reduction step in λI[,] (cf. the remark after Definition 23). This is an essential part of
our proof of strong normalisation for explicit substitution calculi.

The cut-elimination system in [27] is not intended to simulate β-reduction and was so
far difficult to classify among, and relate to, other cut-elimination procedures for sequent
calculus. Our proof of strong normalisation in the general framework helps to shed some
light on such an exotic system. The strong normalisation proof in [27] introduces Klop’s
pairing constructs not only for λ-terms but also for proof terms for sequent calculus. This
leads to complications, and in this sense, our approach is simpler than theirs.

Recent work by Espírito Santo and Pinto [10] has introduced some variants of intuitionistic
sequent calculi (without step-by-step reduction of explicit substitutions). Reduction of those
calculi is directly simulated by the explicit substitution calculus in [15], so that strong
normalisation of the calculi follows from that of the calculus in [15]. On the other hand, the
explicit substitution calculi we studied in this paper do not seem to be directly simulated
by the calculus in [15], since it is not easy to simulate a local cut-elimination procedure in
sequent calculus by an explicit substitution calculus for the usual λ-calculus.

Acknowledgements. I would like to thank the anonymous reviewers for valuable comments.
I also thank Stéphane Lengrand for valuable discussions. The figures of the derivations have
been drawn using Makoto Tatsuta’s proof.sty macros.

References
1 M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions. J. Funct.

Programming, 1(4):375–416, 1991.
2 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,

1998.
3 Z. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degli. λυ, a calculus of explicit substi-

tutions which preserves strong normalisation. J. Funct. Programming, 6(5):699–722, 1996.
4 R. Bloo. Preservation of Termination for Explicit Substitution. PhD thesis, Eindhoven

University of Technology, 1997.
5 R. Bloo and H. Geuvers. Explicit substitution: On the edge of strong normalization.

Theoret. Comput. Sci., 211(1-2):375–395, 1999.

K. Kikuchi 409

6 R. Bloo and K. H. Rose. Preservation of strong normalisation in named lambda calculi
with explicit substitution and garbage collection. In Proc. of CSN’95 (Computing Science
in the Netherlands), 62–72, 1995.

7 P.-L. Curien and H. Herbelin. The duality of computation. In Proc. of ICFP’00, 233–243,
2000.

8 I. L. Gørtz, S. Reuss, and M. H. Sørensen. Strong normalization from weak normalization by
translation into the lambda-I-calculus. Higher-Order and Symbolic Computation, 16(3):253–
285, 2003.

9 J. Espírito Santo, R. Matthes, and L. Pinto. Continuation-passing style and strong nor-
malisation for intuitionistic sequent calculi. Logical Methods in Computer Science, 5(2),
2009.

10 J. Espírito Santo and L. Pinto. A calculus of multiary sequent terms. ACM Trans. Comput.
Log., 12(3):22, 2011.

11 F. Joachimski and R. Matthes. Standardization and confluence for a lambda calculus with
generalized applications. In Proc. of RTA’00, LNCS 1833, 141–155, 2000.

12 F. Joachimski and R. Matthes. Short proofs of normalization for the simply-typed λ-
calculus, permutative conversions and Gödel’s T. Arch. Math. Log., 42(1):59–87, 2003.

13 S. Kamin and J.-J. Lévy. Attempts for generalizing the recursive path orderings. 1980.
Handwritten paper, University of Illinois.

14 D. Kesner and S. Lengrand. Resource operators for λ-calculus. Inform. and Comput.,
205(4):419–473, 2007.

15 D. Kesner A theory of explicit substitutions with safe and full composition. Logical Methods
in Computer Science, 5(3), 2009.

16 K. Kikuchi and S. Lengrand. Strong normalisation of cut-elimination that simulates β-
reduction. In Proc. of FoSSaCS’08, LNCS 4962, 380–394, 2008.

17 K. Kikuchi. Non-deterministic CPS-translation for λµ-calculus. 2013. Manuscript. Available
at http://www.nue.riec.tohoku.ac.jp/user/kentaro/cpslm.

18 J. W. Klop. Combinatory Reduction Systems, volume 127 of Mathematical Centre Tracts.
CWI, 1980. PhD Thesis.

19 S. Lengrand. Induction principles as the foundation of the theory of normalisation: con-
cepts and techniques. Technical report, Université Paris 7, March 2005. Available at
http://hal.ccsd.cnrs.fr/ccsd-00004358.

20 S. Lengrand. Normalisation & Equivalence in Proof Theory & Type Theory. PhD thesis,
Université Paris 7 & University of St Andrews, 2006.

21 P.-A. Melliès. Typed λ-calculi with explicit substitution may not terminate. In Proc. of
TLCA’95, LNCS 902, 328–334, 1995.

22 K. Nakazawa. An isomorphism between cut-elimination procedure and proof reduction. In
Proc. of TLCA’07, LNCS 4583, 336–350, 2007.

23 K. Nakazawa and M. Tatsuta. Strong normalization proof with CPS-translation for second
order classical natural deduction. J. of Symbolic Logic, 68(3):851–859, 2003. Corrigendum:
vol. 68 (2003), no. 4, pp. 1415–1416.

24 K. Nakazawa and M. Tatsuta. Strong normalization of classical natural deduction with
disjunctions. Ann. Pure Appl. Logic, 153(1–3):21–37, 2008.

25 M. Parigot. λµ-calculus: An algorithmic interpretation of classical natural deduction. In
Proc. of LPAR’92, LNCS 624, 190–201, 1992.

26 J. von Plato. Natural deduction with general elimination rules. Arch. Math. Log., 40(7):541–
567, 2001.

27 M. H. Sørensen and P. Urzyczyn. Strong cut-elimination in sequent calculus using Klop’s
ι-translation and perpetual reductions. J. of Symbolic Logic, 73(3):919–932, 2008.

CSL’13

410 Proving SN via Non-deterministic Translations into Klop’s Extended λ-Calculus

A Proof in Section 2

In this appendix we give a proof of Lemma 15 in Section 2.
First, note the following facts:
For any λg-term M , FV(G(M)) = FV(M).
For any λ-term t, FV(i(t)) = FV(t).
For any λ-terms t and u, i({u/x}t) = {i(u)/x}i(t).

I Lemma 15. For any λg-term M , there exists a λI[,]-term T such that M H T and
i(G(M))−→∗β,π T .

Proof. By induction on M . The case where M is a variable is straightforward. We consider
the remaining two cases.

For λx.M , we have

i(G(λx.M)) = i(λx.G(M)) =
{
λx.i(G(M)) if x ∈ FV(G(M))
λx.[i(G(M)), x] if x /∈ FV(G(M))

By the induction hypothesis, there is a λI[,]-term T such thatM H T and i(G(M))−→∗β,π T .
If x ∈ FV(G(M)) then i(G(λx.M)) = λx.i(G(M))−→∗β,π λx.T , and since FV(G(M)) =
FV(i(G(M))) = FV(T), we have x ∈ FV(T). From M H T , we have λx.M H λx.T .
If x /∈ FV(G(M)) then i(G(λx.M)) = λx.[i(G(M)), x]−→∗β,π λx.[T, x]. From M H T ,
we have M H [T, x], and hence λx.M H λx.[T, x].

For M [N, y.P], we have

i(G(M [N, y.P])) =
{
{i(G(M)) i(G(N))/y}i(G(P)) if y ∈ FV(P)
(λy.[i(G(P)), y])(i(G(M)) i(G(N))) if y /∈ FV(P)

By the induction hypothesis, there are λI[,]-terms T , U and S such that (a) M H T and
i(G(M))−→∗β,π T , (b) N H U and i(G(N))−→∗β,π U , and (c) P H S and i(G(P))−→∗β,π S.

If y ∈ FV(P) then i(G(M [N, y.P])) = {i(G(M)) i(G(N))/y}i(G(P))−→∗β,π {T U/y}S.
Since FV(P) = FV(i(G(P))) = FV(S), we have y ∈ FV(S). Hence, from (a), (b) and
(c), we have M [N, y.P] H {T U/y}S.
If y /∈ FV(P) then i(G(M [N, y.P])) = (λy.[i(G(P)), y])(i(G(M)) i(G(N)))−→∗β,π
(λy.[S, y])(T U) −→β {T U/y}[S, y]. From (c), we have P H [S, y] and hence
M [N, y.P] H {T U/y}[S, y].

J

B Proofs in Section 3

In this appendix we give proofs of Lemmas 26 and 29, and Theorem 27 in Section 3.
In the proof below we use the following fact:
If N is a proper subterm of M then w(M) > w(N) and hence cw(M) > cw(N).

I Lemma 26. If M −→safeB,minx M ′ then M >lpo M ′. Hence, −→safeB,minx is strongly
normalising.

Proof. By induction on the derivation of the reduction step. First we consider the cases
where the reduction takes place at the root. If the reduction step is safe, i.e. if the redex
itself is in SNλxg , then M ≡ cw(M) >lpo cw(M ′) ≡ M ′. So let the reduction step be −→minx
where the redex is not in SNλxg .

K. Kikuchi 411

(1) 〈M/x〉y −→minx y (x 6≡ y)

LHS : 〈M/x〉y = sub(M,y)

RHS : y = y

(2) 〈M/x〉x −→minx M

LHS : 〈M/x〉x = sub(M,x)

RHS : M = M

(3) 〈M/x〉(λy.N) −→minx λy.〈M/x〉N

LHS : 〈M/x〉(λy.N) = sub(M,λy.N)

= sub(M, cw(λy.N))

RHS : λy.〈M/x〉N = abs(〈M/x〉N)

= abs(sub(M,N))

= abs(sub(M, cw(N)))

(4) 〈M/x〉(y[N, z.P]) −→minx y[〈M/x〉N, z.〈M/x〉P] (x 6≡ y)

LHS : 〈M/x〉(y[N, z.P]) = sub(M,y[N, z.P])

= sub(M, cw(y[N,z.P]))

RHS : y[〈M/x〉N, z.〈M/x〉P] ≤ gapp(y, 〈M/x〉N, 〈M/x〉P)

≤ gapp(y, sub(M,N), sub(M,P))

= gapp(cw(y), sub(M, cw(N)), sub(M, cw(P)))
where ≤ is used for = ∪ <lpo to deal with the cases where some of the subterms of RHS
are already in SNλxg , in which cases those subterms M are encoded as cw(M).

(5) 〈M/x〉(x[N, z.P]) −→minx M [〈M/x〉N, z.〈M/x〉P] (x ∈ FV([N, z.P]))

LHS : 〈M/x〉(x[N, z.P]) = sub(M,x[N, y.P])

= sub(M, cw(x[N,y.P]))

RHS : M [〈M/x〉N, z.〈M/x〉P] ≤ gapp(M, 〈M/x〉N, 〈M/x〉P)

≤ gapp(M, sub(M,N), sub(M,P))

= gapp(M, sub(M, cw(N)), sub(M, cw(P))))

(6) 〈M/x〉(Q[N, z.P]) −→minx (〈M/x〉Q)[〈M/x〉N, z.〈M/x〉P] (Q is not a variable)

LHS : 〈M/x〉(Q[N, z.P]) = sub(M,Q[N, y.P])

= sub(M, cw(Q[N,y.P]))

RHS : (〈M/x〉Q)[〈M/x〉N, z.〈M/x〉P] ≤ gapp(〈M/x〉Q, 〈M/x〉N, 〈M/x〉P)

≤ gapp(sub(M,Q), sub(M,N), sub(M,P))

= gapp(sub(M, cw(Q)), sub(M, cw(N)), sub(M, cw(P)))

(7) 〈M/x〉(x[N, z.P]) −→minx M [N, z.P] (x /∈ FV([N, z.P]))

LHS : 〈M/x〉(x[N, z.P]) = sub(M,x[N, z.P])

= sub(M, cw(x[N,z.P]))

RHS : M [N, z.P] ≤ gapp(M,N,P)

= gapp(M, cw(N), cw(P))

CSL’13

412 Proving SN via Non-deterministic Translations into Klop’s Extended λ-Calculus

(Pi) M [N, z.P][N ′, z′.P ′] −→minx M [N, z.P [N ′, z′.P ′]]

LHS : M [N, z.P][N ′, z′.P ′] = gapp(M [N, z.P], N ′, P ′)

= gapp(cw(M [N,z.P]), N ′, P ′)

RHS : M [N, z.P [N ′, z′.P ′]] ≤ gapp(M,N,P [N ′, z′.P ′])

≤ gapp(M,N, gapp(P ,N ′, P ′))

= gapp(cw(M), cw(N), gapp(cw(P), N ′, P ′))

The cases where the reduction is not at the root are easily proved by the induction hypothesis,
since >lpo is context-closed. J

I Theorem 27 (Simulation in λI[,]). Suppose M H T .
1. If M −→minB N and the reduction step is unsafe then there exists U such that N H U

and T−→+
β,π U .

2. If M −→minB N and the reduction step is safe then there exists U such that N H U

and T−→∗β,π U .
3. If M −→minx N then N H T .

Proof. By induction on the derivation of M H T . Here we consider the cases where the
reduction takes place at the root and those where the derivation ends with the rule for explicit
substitution. (The other cases are proved in the same way as in the proof of Theorem 14.)

First we inspect the case where one of (B1), (B2) and (Pi) takes place at the root. Note
that, by minimality, M , N and P (in the rules below) are in SNλxg .
(B1) (λy.M)[N, z.P] −→minB 〈N/y〉〈M/z〉P . In this case, the derivation has the form

M H T
λy.M H λy.T

y ∈ FV(T)

λy.M H [λy.T,−→R] N H U P H S

(λy.M)[N, z.P] H {[λy.T,−→R]U/z}S
z ∈ FV(S)

Then we have

N H U

M H T

M H [T,−→R] P H S

〈M/z〉P H {[T,−→R]/z}S

〈N/y〉〈M/z〉P H {U/y}{[T,−→R]/z}S ≡ {[{U/y}T,−→R]/z}S

Since z ∈ FV(S), we have {[λy.T,−→R]U/z}S−→+
β,π {[{U/y}T,

−→
R]/z}S as required.

(B2) (λy.M)[N, z.P] −→minB 〈〈N/y〉M/z〉P . In this case, the derivation has the same form
as the case (B1). Then we have

N H U M H T
〈N/y〉M H {U/y}T

〈N/y〉M H [{U/y}T,−→R] P H S

〈〈N/y〉M/z〉P H {[{U/y}T,−→R]/z}S

Again, since z ∈ FV(S), we have {[λy.T,−→R]U/z}S−→+
β,π {[{U/y}T,

−→
R]/z}S as required.

(Pi) M [N, z.P][N ′, z′.P ′] −→minx M [N, z.P [N ′, z′.P ′]]. This case is proved in the same way
as the case (πg) in the proof of Theorem 14.

K. Kikuchi 413

Next we consider the case where the last applied rule of the derivation is
M H T N H U
〈M/x〉N H {T/x}U x ∈ FV(U) ∨M ∈ SNλxg

If the reduction takes place within M or N , we apply the induction hypothesis, remembering
that reduction in λI[,] preserves free variables (Lemma 6), so the side-condition remains
satisfied. Moreover, an unsafe B-reduction in M is simulated by at least one reduction step
from T . (Indeed, since the B-reduction is unsafe, we know that M /∈ SNλxg and hence we
must have x ∈ FV(U).) The simulating reduction step from T is therefore preserved in the
reduction of {T/x}U . This is the precise point where the distinction between safe and unsafe
reductions plays its role.

Otherwise, we have a (minimal) root reduction and the case analysis below inspects some
of the rules. Note that, by minimality, both M and N (in the rule above) are in SNλxg .
(1) 〈M/x〉y −→minx y (x 6≡ y). In this case, the derivation has the form

M H T

y H y

y H [y,−→R]

〈M/x〉y H {T/x}[y,−→R] ≡ [y, {T/x}−→R]

Then we have
y H y

y H [y, {T/x}−→R]
(2) 〈M/x〉x −→minx M . In this case, the derivation has the form

M H T

x H x

x H [x,−→R]

〈M/x〉x H {T/x}[x,−→R] ≡ [T, {T/x}−→R]

Then we have
M H T

M H [T, {T/x}−→R]
(3) 〈M/x〉(λy.N) −→minx λy.〈M/x〉N . In this case, the derivation has the form

M H T

N H U
λy.N H λy.U

y ∈ FV(U)

λy.N H [λy.U,−→R]

〈M/x〉(λy.N) H {T/x}[λy.U,−→R] ≡ [λy.{T/x}U, {T/x}−→R]

Then we have
M H T N H U
〈M/x〉N H {T/x}U

λy.〈M/x〉N H λy.{T/x}U
y ∈ FV({T/x}U)

λy.〈M/x〉N H [λy.{T/x}U, {T/x}−→R]
(6) 〈M/x〉(Q[N, z.P]) −→minx (〈M/x〉Q)[〈M/x〉N, z.〈M/x〉P] (Q is not a variable). In this
case, the derivation has the form

M H T

Q H T ′ N H U P H S

Q[N, z.P] H {T ′U/z}S
z ∈ FV(S)

Q[N, z.P] H [{T ′U/z}S,−→R]

〈M/x〉(Q[N, z.P]) H {T/x}[{T ′U/z}S,−→R]

CSL’13

414 Proving SN via Non-deterministic Translations into Klop’s Extended λ-Calculus

Then we have

M H T Q H T ′

〈M/x〉Q H {T/x}T ′
M H T N H U
〈M/x〉N H {T/x}U

M H T P H S
〈M/x〉P H {T/x}S

(〈M/x〉Q)[〈M/x〉N, z.〈M/x〉P] H {{T/x}T ′{T/x}U/z}{T/x}S
z ∈ FV({T/x}S)

(〈M/x〉Q)[〈M/x〉N, z.〈M/x〉P] H [{{T/x}T ′{T/x}U/z}{T/x}S, {T/x}−→R]

≡

(〈M/x〉Q)[〈M/x〉N, z.〈M/x〉P] H {T/x}[{T ′U/z}S,−→R]

(7) 〈M/x〉(x[N, z.P]) −→minx M [N, z.P] (x /∈ FV([N, z.P])). In this case, the derivation
has the form

M H T

x H T ′ N H U P H S
x[N, z.P] H {T ′U/z}S

z ∈ FV(S)

x[N, z.P] H [{T ′U/z}S,−→R]

〈M/x〉(x[N, z.P]) H {T/x}[{T ′U/z}S,−→R]

where T ′ ≡ [x,
−→
R′]. Then we have

M H T

M H [T, {T/x}
−→
R′]

≡

M H {T/x}T ′
N H U

N H {T/x}U
Lemma 11 (0c) P H S

P H {T/x}S
Lemma 11 (0c)

M [N, z.P] H {{T/x}T ′{T/x}U/z}{T/x}S
z ∈ FV({T/x}S)

M [N, z.P] H [{{T/x}T ′{T/x}U/z}{T/x}S, {T/x}−→R]

≡

M [N, z.P] H {T/x}[{T ′U/z}S,−→R]

J

I Lemma 29. For any λxg-term M , there exists a λI[,]-term T such that M H T and
i(G(M))−→∗β,π T .

Proof. By induction on M . Here we consider the case of explicit substitution. (The other
cases are proved in the same way as in the proof of Lemma 15.) Then we have

i(G(〈M/x〉N)) =
{
{i(G(M))/x}i(G(N)) if x ∈ FV(N)
(λx.[i(G(N)), x]) i(G(M)) if x /∈ FV(N)

By the induction hypothesis, there are λI[,]-terms T and U such that (a) M H T and
i(G(M))−→∗β,π T , and (b) N H U and i(G(N))−→∗β,π U .

If x ∈ FV(N) then i(G(〈M/x〉N)) = {i(G(M))/x}i(G(N))−→∗β,π {T/x}U . Since FV(N) =
FV(i(G(N))) = FV(U), we have x ∈ FV(U). Hence, from (a) and (b), we have
〈M/x〉N H {T/x}U .
If x /∈ FV(N) then i(G(〈M/x〉N)) = (λx.[i(G(N)), x]) i(G(M))−→∗β,π (λx.[U, x])T −→β

{T/x}[U, x]. From (b), we have N H [U, x] and hence 〈M/x〉N H {T/x}[U, x].
J

Kleene Algebra with Products and Iteration
Theories

Dexter Kozen and Konstantinos Mamouras

Computer Science Department, Cornell University, Ithaca, NY 14853, USA
{kozen,mamouras}@cs.cornell.edu

Abstract
We develop a typed equational system that subsumes both iteration theories and typed Kleene
algebra in a common framework. Our approach is based on cartesian categories endowed with
commutative strong monads to handle nondeterminism.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Programs

Keywords and phrases Kleene algebra, typed Kleene algebra, iteration theories

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.415

1 Introduction

In the realm of equational systems for reasoning about iteration, two chief complementary
bodies of work stand out. One of these is iteration theories (IT), the subject of the extensive
monograph of Bloom and Ésik [4] as well as many other authors (see the cited literature).
The primary motivation for iteration theories is to capture in abstract form the equational
properties of iteration on structures that arise in domain theory and program semantics,
such as continuous functions on ordered sets. Of central interest is the dagger operation †, a
kind of parameterized least fixpoint operator, that when applied to an object representing
a simultaneous system of equations gives an object representing the least solution of those
equations. Much of the work on iteration theories involves axiomatizing or otherwise
characterizing the equational theory of iteration as captured by †. Complete axiomatizations
have been provided [7, 9, 10] as well as other algebraic and categorical characterizations [2, 3].

Bloom and Ésik claim that “. . . the notion of an iteration theory seems to axiomatize the
equational properties of all computationally interesting structures. . . ” [6]. This is true to a
certain extent, certainly if one is interested only in structures that arise in domain theory
and programming language semantics. However, it is not the entire story.

Another approach to equational reasoning about iteration that has met with some success
over the years is the notion of Kleene algebra (KA), the algebra of regular expressions. KA
has a long history going back to the original paper of Kleene [12] and was further developed
by Conway, who coined the name Kleene algebra in his 1971 monograph [8]. It has since been
studied by many authors. KA relies on an iteration operator ∗ that characterizes iteration in
a different way from †. Its principal models are not those of domain theory, but rather basic
algebraic objects such as sets of strings (in which ∗ gives the Kleene asterate operation),
binary relations (in which ∗ gives reflexive transitive closure), and other structures with
applications in shortest path algorithms on graphs and geometry of convex sets. Complete
axiomatizations and complexity analyses have been given; the regular sets of strings over
an alphabet A form the free KA on generators A in much the same way that the rational
Σ⊥-trees form the free IT on a signature Σ.

© Dexter Kozen and Konstantinos Mamouras;
licensed under Creative Commons License CC-BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca ; pp. 415–431

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.415
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

416 Kleene Algebra with Products and Iteration Theories

Although the two systems fulfill many of the same objectives and are related at some
level, there are many technical and stylistic differences. Whereas iteration theories are based
on Lawvere theories, a categorical concept, Kleene algebra operates primarily at a level of
abstraction one click down. For this reason, KA may be somewhat more accessible. KA
has been shown to be useful in several nontrivial static analysis and verification tasks (see
e.g. [16, 23]). Also, KA can model nondeterministic computation, whereas IT is primarily
deterministic.

Nevertheless, both systems have claimed to capture the notion of iteration in a fundamental
way, and it is interesting to ask whether they can somehow be reconciled. This is the
investigation that we have undertaken in this paper. We start with the observation that ITs
use the objects of a category to represent types. Technically the objects of interest in ITs are
morphisms f : n→ m in a category whose objects are natural numbers, and the morphism
f : n→ m is meant to model functions f : Am → An (the arrows are reversed for technical
reasons). Thus ITs might be captured by a version of KA with types. Although the primary
version of KA is untyped, there is a notion of typed KA [21], although it only has types of
the form A→ B, whereas to subsume IT it would need products as well. The presence of
products allow ITs to capture parameterized fixpoints through the rule

f : n→ n+m

f† : n→ m
giving the parameterized least fixpoint f† : Am → An of a parameterized function f :
Am × An → An. This would be possible to capture in KA if the typed version had
products, which it does not. On the other hand, KA allows the modeling of nondeterministic
computation, which IT does not, at least not in any obvious way. Thus to capture both
systems, it would seem that we need to extend the type system of typed KA, or extend the
categorical framework of IT to handle nondeterminism, or both.

The result of our investigation is a common categorical framework based on cartesian
categories (categories with products) combined with a monadic treatment of nondeterminism.
Types are represented by objects in the category, and we identify the appropriate axioms
in the form of typed equations that allow equational reasoning on the morphisms. Our
framework captures iteration as represented in ITs and KAs in a common language. We
show how to define the KA operations as enrichments on the morphisms and how to define †
in terms of ∗. Our main contributions are as follows.

Commutative strong monads. To accommodate nondeterminism, we need to lift
the computation to the Kleisli category of a monad representing nondeterminate values.
However, the ordinary powerset monad does not suffice for this purpose, as it does not
interact well with non-strictness. We axiomatize the relevant properties for an arbitrary
commutative strong monad, where (i) the property of commutativity captures the idea that
the computation of a pair can be done in either order, and (ii) strength refers to tensorial
strength, which axiomatizes the interaction of pairs with the nondeterminism monad.

Lazy pairs. We need to model non-strict (lazy) evaluation of programs in the presence
of products. Ordinarily, a pair 〈x,⊥〉 would be ⊥ by strictness. This requires the development
of the concept of lazy pairs and its categorical axiomatization. Intuitively, in the case of
eager pairs, the computation of a pair 〈v,⊥〉, where v is a value and ⊥ denotes a diverging
computation, would also be diverging, i.e., 〈v,⊥〉 = ⊥. This makes it impossible to recover
the left component v of the pair: 〈v,⊥〉;π1 = ⊥.

Simplified axiomatization of commutative strong monads and lazy pairs.
We have given a simplified axiomatization of commutative monads with lazy pairs in terms
of a certain operator ψ that captures the interaction of these concepts in a very concise form,
much simpler than the axiomatizations of the two of them separately. This is an adaptation

D. Kozen and K. Mamouras 417

of a construction that can be found in the work of Kock in the 1970s [13, 15]. We use this
extensively in our development to simplify arguments.

Deterministic arrows. Certain properties work only for deterministic computations.
We show how to capture the necessary properties of determinism in the Kleisli category. A
separate syntactic arrow provides a convenient notation for reasoning about deterministic
computation in the underlying category when working in the Kleisli category, and we provide
an axiomatization of the necessary properties.

Lifting the cartesian structure. We show how the cartesian structure (pairing
and projections) in the underlying category can be lifted in a smooth way to corresponding
operations in the Kleisli category.

Capturing nondeterminism. We give three equivalent ways of capturing (angelic)
nondeterminism in the homsets of the Kleisli category of a monad. These characterizations
make essential use of cartesian structure of the base category.

Capturing IT and KA. We show how to enrich the homsets of the Kleisli category
with the KA operations, including ∗, to obtain typed KA with products, and that all the
axioms of KA (except the strictness axiom) are satisfied. Sequential composition is modeled
by Kleisli composition. We also show that Park theories [9] are subsumed by KA with
products. This is our main result.

Model theory. Finally, we show that two particular monads, the lowerset monad and
the ideal completion monad, provide natural concrete models in that they are commutative
strong monads with lazy pairs. The ideal completion monad involves ideal completion in
ω-complete partial orders (ω-CPOs) and models nondeterminism in those structures.

2 Commutative Strong Monads with Lazy Pairs

As a first step in the development of our category-theoretic framework, we define axiomatically
the base cartesian category of “non-strict functions and values”, where the notion of divergence
is made explicit. We handle nondeterminism with a commutative strong monad, for which
the formation of lazy pairs is implemented with just one very natural axiom that intuitively
says: “forming a pair of a non-diverging computation with a diverging computation allows
one to recover the non-diverging component”. The Kleisli category of the monad, which we
think of as a category of “non-strict programs and computations”, is symmetric monoidal. In
fact, it possesses more structure, which we will exploit by making the notion of deterministic
arrow explicit.

In order to model non-strict (lazy) evaluation of programs and lazy pairs we consider
our base category to be a cartesian category C with bottom elements. For an object X, we
write the identity for X as idX : X → X. The composition operation is written as ; and the
operands are given in diagrammatic order: the composite of the two arrows f : X → Y and
g : Y → Z is written f ; g : X → Z. For objects X and Y , we denote by X × Y their product
with corresponding left and right projections πXY1 : X × Y → X and πXY2 : X × Y → Y

respectively. The pairing operation 〈·, ·〉 takes two arrows f : X → Y and g : X → Z with
the same domain and produces an arrow 〈f, g〉 : X → Y ×Z. The terminal object is denoted
by 1. We write ⊥X : X → 1 for the unique arrow from X to 1. The equational axioms

〈f, g〉;π1 = f 〈f, g〉;π2 = g 〈h;π1, h;π2〉 = h f = ⊥X
say that the operations ×, π1, π2, 〈·, ·〉,1,⊥ endow C with cartesian structure. For every
object X, the bottom element of X is written as ⊥1X : 1 → X. Define the bottom
morphism ⊥XY from X to Y by ⊥XY := ⊥X ;⊥1Y . The bottom morphisms satisfy the
axiom f ;⊥Y Z = ⊥XZ : X → Z. An arrow f : X → Y satisfying the equation ⊥1X ; f = ⊥1Y

CSL’13

418 Kleene Algebra with Products and Iteration Theories

X × PY

P (X × Y) PY

t

π2

Pπ2

X × Y X × PY

P (X × Y)

id× η

η
t

(X × Y)× PZ

X × (Y × PZ)

X × P (Y × Z)

P ((X × Y)× Z)

P (X × (Y × Z))

t

α

id× t
t

Pα

X × P 2Y X × PY

P (X × PY)

P 2(X × Y) P (X × Y)

id× µ

t

Pt µ

t

Figure 1 Axioms for tensorial strength t : X × PY → P (X × Y) of the monad (P, η, µ).

PX × PY P (PX × Y) P 2(X × Y)

P (X × PY) P 2(X × Y) P (X × Y)

tP X,Y

τX,P Y

PτX,Y

µX×Y

PtX,Y
µX×Y

ψX,Y

X × PY X

P (X × Y) PX

t

π1

η
Pπ1

PX × Y Y

P (X × Y) PY

τ

π2

η
Pπ2

Figure 2 Commutativity axiom for the strong monad (P, η, µ), t (diagram on the left), and lazy
pairs axiom in terms of t and equivalently in terms of τ (two diagrams on the right).

is called strict.
A monad (P, η, µ) over C consists of an endofunctor P : C → C, and natural transforma-

tions ηX : X → PX and µX : P 2X → PX, called the unit and multiplication of the monad
respectively, that satisfy: PµX ;µX = µPX ;µX , ηPX ;µX = idPX , and PηX ;µX = idPX .

A monad (P, η, µ) is strong with tensorial strength tX,Y : X × PY → P (X × Y) if t is a
natural transformation satisfying the axioms of Figure 1. The arrow αX,Y,Z : (X×Y)×Z →
X × (Y × Z) is the natural isomorphism defined as α := 〈π1;π1, 〈π1;π2, π2〉〉. We define the
dual tensorial strength τX,Y : PX × Y → P (X × Y) as τX,Y = sPX,Y ; tY,X ;P sY,X , where
sX,Y : X × Y → Y ×X is the natural isomorphism given by sX,Y = 〈π2, π1〉. The properties
satisfied by t imply that τ is also a natural transformation and it satisfies the obvious
dual axioms. For all objects X,Y define the morphism ψX,Y : PX × PY → P (X × Y) as
ψX,Y = tPX,Y ;PτX,Y ;µX×Y . Using the fact that t and τ are natural transformations, it can
be shown that ψ is also a natural transformation.

A strong monad (P, η, µ), t is commutative if the diagram on the left side of Fig. 2
commutes. Intuitively, the commutativity condition says that when computing a pair it does
not matter in which order the components are computed. We are interested in strong monads
that model lazy pairs. In the case of eager pairs, the computation of a pair 〈v,⊥〉, where v is
a value and ⊥ denotes a diverging computation, would also be diverging, i.e., 〈v,⊥〉 = ⊥.
Therefore, it is not possible to recover the left component v of the pair: 〈v,⊥〉;π1 = ⊥. So,
for lazy pairs we need an additional axiom, which can be given equivalently in terms of t or
τ . The “lazy pairs” axiom says that the two diagrams on the right side of Fig. 2 commute.

I Definition 1. We say that (P, η, µ), t is a commutative strong monad with lazy pairs over C
if (P, η, µ) is a monad with tensorial strength t so that the commutativity axiom of Figure 2
and the lazy pairs axiom of Figure 2 hold.

A commutative monad with lazy pairs can be equivalently given in terms of ψ. In
Figure 3 we give properties that ψ satisfies, when it is defined in terms of t (see [13]).
Conversely, we consider a monad (P, η, µ) over C together with a natural transformation
ψ : PX × PY → P (X × Y) satisfying the axioms of Figure 3. Then, we can define t as
tX,Y = (ηX × idPY);ψX,Y and recover all the axioms we had given for (P, η, µ), t (see [15]).
It has been proved by Anders Kock in [14] (Theorem 2.1) that for a commutative strong
monad the axiom ψ; 〈Pπ1, Pπ2〉 = id is equivalent to P1 ∼= 1, which says that P preserves
final objects. We have opted for the former axiom in our definition, because it corresponds
immediately to the intuition for the formation of lazy pairs.

The Kleisli category CP has the same objects as C. For all objects X,Y the homset
CP (X,Y) is equal to the homset C(X,PY). We use the notation f : X ⇀ Y for an arrow in

D. Kozen and K. Mamouras 419

PX × PY P (X × Y)

PX × PY

ψ

id
〈Pπ1, Pπ2〉

(PX × PY)× PZ P (X × Y)× PZ P ((X × Y)× Z)

PX × (PY × PZ) PX × P (Y × Z) P (X × (Y × Z))
α

ψ × id ψ

Pαid× ψ ψ

X × Y PX × PY

P (X × Y)

η × η

η
ψ

P 2X × P 2Y

PX × PY

P (PX × PY) P 2(X × Y)

P (X × Y)
µ× µ

ψ Pψ

µψX,Y

PX × PY PY × PX

P (Y ×X)P (X × Y)

s

ψ ψ
P s

Figure 3 Commutative strong monad with lazy pairs (given in terms of ψ).

CP (X,Y). The composition operation in CP is the Kleisli composition operation, denoted ; ,
and defined as f ; g := f ;Pg;µZ : X ⇀ Z. For object X, the identity in CP is ηX : X ⇀ X.
The equations ηX ; f = f = f ; ηY and (f ; g);h = f ; (g;h) state that CP is a category and
they can be shown from the definitions and the monad axioms.

We define the map H = (−; η) from the category C to the Kleisli category CP by HX := X

and Hf := f ; ηY : X ⇀ Y . We verify that H is a functor. First, note that it sends the
identity idX : X → X of C to the identity HidX = ηX : X ⇀ X of CP . Moreover, the
equation H(f ; g) = Hf ;Hg : X ⇀ Z holds, which says that H commutes with composition.
So, H is a functor from C to CP , which we will call here the unit functor of the monad. The
functor H is the left adjoint of the Kleisli adjunction for the monad.

We say that an arrow f : X ⇀ Y of CP is a deterministic arrow if there exists an arrow
f ′ : X → Y of C such that f = f ′; ηY = Hf ′ : X → PY . So, the deterministic arrows of
the Kleisli category are exactly the image of the arrows of C under the unit functor H. We
indicate that f is a deterministic arrow of CP by writing f : X _ Y . The Kleisli composite of
two deterministic arrows is also deterministic. In our notation, if f : X _ Y and g : Y _ Z

then f ; g : X _ Z. The identity ηX : X _ X is a deterministic arrow because ηX = HidX .
For the rest of this section, we assume that (P, η, µ), t is a commutative strong monad

over C with lazy pairs. We will define “Kleisli versions” of projections, the pairing operation,
and the product functor. We will prove useful properties that they satisfy. The notion of
deterministic arrow turns out to be relevant.

We define the Kleisli pairing operation 〈〈·, ·〉〉 in CP and the Kleisli projections (left and
right) as follows: 〈〈f, g〉〉 := 〈f, g〉;ψ : X ⇀ Y × Z for f : X ⇀ Y , g : X ⇀ Z, and
$1 := Hπ1 : X×Y _ X, $2 := Hπ2 : X×Y _ Y . The Kleisli projections are deterministic
arrows. If f : X _ Y and g : X _ Z are deterministic arrows, then so is 〈〈f, g〉〉. This is an
immediate consequence of the equation H〈f, g〉 = 〈〈Hf,Hg〉〉 : X ⇀ Y ×Z, which states that
H commutes with the pairing operation.

I Theorem 2. The following typed equations for Kleisli projections/pairing hold:
〈〈f, g〉〉;$1 = f : X ⇀ Y 〈〈h;$1, h;$2〉〉 = h : X _ Y × Z
〈〈f, g〉〉;$2 = g : X ⇀ Z f ; 〈〈g1, g2〉〉 = 〈〈f ; g1, f ; g2〉〉 : X ⇀ Z1 × Z2

For the bottom-right equation, there is the extra hypothesis that f : X _ Y is deterministic.

We define the operation ⊗ on CP , which we call Kleisli product functor, by f1 ⊗ f2 :=
(f1 × f2);ψ : X1 × X2 ⇀ Y1 × Y2. Equivalently, we can define the Kleisli product as
f1 ⊗ f2 = 〈〈$1; f1, $2; f2〉〉. We observe that H commutes with the product functor, that is,
H(f × g) = Hf ⊗Hg. An easy consequence of the above results is that the Kleisli category
CP has symmetric monoidal structure given by ⊗ (tensor or monoidal product), 1 (identity
object), Hα : (X ⊗ Y) ⊗ Z _ X ⊗ (Y ⊗ Z) (associator), $2 : 1 ⊗ X _ X (left unitor),
$1 : X ⊗ 1 _ X (right unitor), and HsX,Y : X ⊗ Y _ Y ⊗X (commutativity constraint).

CSL’13

420 Kleene Algebra with Products and Iteration Theories

(PX × PX)× PX

PX × (PX × PX)

PX × PX

PX × PX

PX

u× id

α

id× u u

u

1× PX PX × PX PX × 1

PX

⊥⊥× id

π2

id×⊥⊥

π1
u

PX × PX PX × PX

PX

s

u
u

PX PX × PX

PX

〈id, id〉

id
u

P 2X × P 2X

PX × PX

P 2X

PX

uP X

µ× µ u
µ

P (PX × PX)

P 2X × P 2X

P 2X

P 2X

PX

Pu

〈Pπ1, Pπ2〉

uP X µX

µX

(X ×X)×X

X × (X ×X)

PX × PX

P 2X

PX × PX

P 2X

PX

d× η

α

η × d

dP X µ

dP X

µ

1× PX PX × PX PX × 1

P 2X

PX

⊥⊥× id

π2

id×⊥⊥

π1

dP X

µ

X ×X X ×X

PX

s

d
d

X X ×X

PX

〈id, id〉

η d

P (X ×X) PX × PX P 2X

P 2X PX

Pd

〈Pπ1, Pπ2〉 dP X

µ
µ

Figure 4 Axioms for uX : PX × PX → PX (left side) and for dX : X ×X → PX (right side).

3 Nondeterministic Monads

In this section we look at three equivalent ways of endowing with (angelic) nondeterministic
structure the homsets of the Kleisli category of a monad. See also [11], where the similar
notion of additive monad is considered. The proofs of equivalence we present make essential
use of the cartesian structure of the base category. The axiomatizations are simple and
intuitive in that they correspond to familiar properties of the elementary operations of
“binary union” and “formation of unordered pair”, thus allowing us to easily identify models.

I Definition 3. Let (P, η, µ) be a monad over the category C, let ⊥⊥XY : X → PY be a family
of morphisms, and + be a binary operation on C(X,PY) which we call (nondeterministic)
choice. We say that (P, η, µ),+,⊥⊥ is a nondeterministic monad if the axioms

(f + g) + h = f + (g + h) f +⊥⊥ = f f ; (g1 + g2) = f ; g1 + f ; g2 f ;⊥⊥ = ⊥⊥
f + g = g + f f + f = f (f1 + f2); g = f1; g + f2; g

are satisfied. The above axioms state that every homset C(X,PY) is a commutative
idempotent monoid w.r.t. + and ⊥⊥. Additionally, + distributes over Kleisli composition,
and ⊥⊥ is a right annihilator for ; .

Assuming the category C is cartesian, we will give an equivalent definition of the nonde-
terministic monad in terms of a natural transformation uX : PX×PX → PX, which we can
intuitively think of as binary union. Then, we will also derive another equivalent definition of
the nondeterministic monad in terms of a natural transformation dX : X ×X → PX, which
we think of as an operation that forms an unordered pair of two elements.

I Theorem 4. Let C be a category with cartesian structure given by ×, π1, π2, 〈·, ·〉,1,⊥.
Suppose (P, η, µ),+,⊥⊥ is a nondeterministic monad. Define uX := π1 + π2 : PX ×

PX → PX. Then, uX is natural and the diagrams on the left side of Figure 4 commute.
Conversely, suppose that (P, η, µ) is a monad, uX : PX × PX → PX is natural, and

⊥⊥1X : 1→ PX is a family of morphisms, so that the axioms on the left side of Figure 4 are
satisfied. Define the operation + on the homset C(X,PY) by f + g := 〈f, g〉; uY : X → PY ,
and ⊥⊥XY := ⊥X ;⊥⊥1Y : X → PY . Then, (P, η, µ),+,⊥⊥ is a nondeterministic monad.

It is easy to see that the two constructions described in Theorem 4 are mutually inverse.
From the choice operation + we obtain uX = π1 + π2 : PX × PX → PX and then a new

D. Kozen and K. Mamouras 421

choice operation ∨ given by f ∨ g = 〈f, g〉; uX . But we have that f ∨ g = 〈f, g〉; (π1 + π2) =(
〈f, g〉; η

)
; (π1 + π2) = 〈f, g〉;π1 + 〈f, g〉;π2 = f + g. For the other direction, we notice that

from uX : PX × PX → PX we obtain a choice operation + and then a new binary union
natural transformation ûX = π1 + π2 = 〈π1, π2〉; uX = id; uX = uX .

I Theorem 5. Let C be a category with cartesian structure given by ×, π1, π2, 〈·, ·〉,1,⊥. Let
(P, η, µ) be a monad over C, and ⊥⊥1X : 1→ PX be a family of morphisms.

Suppose that uX : PX × PX → PX is natural and the diagrams on the left side of
Figure 4 commute. Define dX := (ηX × ηX); uX : X ×X → PX. Then, dX is natural
and satisfies the axioms on the right side of Figure 4.
Conversely, suppose that dX : X ×X → PX is natural and the diagrams on the right
side of Figure 4 commute. Define uX := dPX ;µX : PX ×PX → PX. Then, u is natural
and satisfies the axioms on the left side of Figure 4.

Again, the constructions described in Theorem 5 are mutually inverse. In one direction,
we have uX 7→ dX = (ηX × ηX); uX 7→ ûX = dPX ;µX , where ûX = (ηPX × ηPX); uPX ;µX =
(ηPX × ηPX); (µX × µX); uX = uX using one of the axioms for u. In the other direction, we
have dX 7→ uX = dPX ;µX 7→ d̂X = (ηX ×ηX); uX and therefore d̂X = (ηX ×ηX); dPX ;µX =
dX ;PηX ;µX = dX , since d is a natural transformation.

4 Nondeterministic Strong Monad with Iteration

In §3 we investigated the nondeterministic structure of the Kleisli category of a monad in
isolation from products. This is not sufficient for our purposes, because we also want to
capture the interaction between nondeterminism and products. For example, we would expect
to be able to derive the property 〈a+ b, c〉 = 〈a, c〉+ 〈b, c〉 for pairs with a nondeterminate
component. So, we consider an additional axiom that relates the tensorial strength with the
nondeterministic structure (Theorem 6). Then, we proceed to give our main definition of a
nondeterministic strong monad with iteration, which puts together the axioms for all the
symbols of our algebraic signature, including those for iteration (taken from [18]). The rest
of the section is devoted to identifying models. We first consider the lowerset monad over
pointed posets, which generalizes the familiar relational semantics of programs to the setting
of lazy evaluation with lazy pairs. Then, we investigate the ideal completion monad over
ω-CPOs, which is a kind of lower powerdomain construction. We derive several properties
for this monad that will be essential for the main technical result of this paper: embedding
the theory of † in KA with products.

I Theorem 6. Let C be a category with cartesian structure given by ×, π1, π2, 〈·, ·〉,1,⊥. Let
(P, η, µ), t be a commutative strong monad over C with tensorial strength tX,Y : X × PY →
P (X × Y). Assume additionally that (P, η, µ) is a nondeterministic monad together with +
and ⊥⊥, and also that the axiom 〈id, f + g〉; t = 〈id, f〉; t+ 〈id, g〉; t holds. Then, the equations
〈〈f1 + f2, g〉〉 = 〈〈f1, g〉〉+ 〈〈f2, g〉〉 and 〈〈f, g1 + g2〉〉 = 〈〈f, g1〉〉+ 〈〈f, g2〉〉 hold.

The stipulated axiom 〈id, f + g〉; t = 〈id, f〉; t + 〈id, g〉; t in Theorem 6 relates the non-
deterministic structure, as given by the choice operation +, with the tensorial strength
t : X × PY → P (X × Y). An equivalent characterization can be given in terms of
the natural transformation uX : PX × PX → PX as shown in Figure 5, where κ =
〈id × π1, id × π2〉 : X × (Y × Z) → (X × Y) × (X × Z). In the set-theoretic models that
we will consider, the equation corresponding to the right diagram of Figure 5 simply states
that A × (B ∪ C) = (A × B) ∪ (A × C) for sets A,B,C. Similarly, we can also give an

CSL’13

422 Kleene Algebra with Products and Iteration Theories

X × (PY × PY)

(X × PY)× (X × PY)

P (X × Y)× P (X × Y)

X × PY

P (X × Y)

id× u

κ

t× t u

t

PX × (PY × PY)

(PX × PY)× (PX × PY)

P (X × Y)× P (X × Y)

PX × PY

P (X × Y)

id× u

κ

ψ × ψ u

ψ

Figure 5 Axiom relating the binary union natural transformation uX : PX × PX → PX with
the tensorial strength t : X × PY → P (X × Y) or, equivalently, with ψ : PX × PY → P (X × Y).

Table 1 Kleisli category of a nondeterministic strong monad with iteration.

ηX ; f = f 〈〈f1, f2〉〉;$i = fi f = ⊥⊥X1

f ; ηY = f 〈〈h;$1, h;$2〉〉 = h (h det.) f ;⊥⊥Y Z = ⊥⊥XZ

(f ; g);h = f ; (g;h) f det.: f ; 〈〈g1, g2〉〉 = 〈〈f ; g1, f ; g2〉〉
(f1 ⊗ f2); (g1 ⊗ g2) = (f1; g1)⊗ (f2; g2)

(f + g) + h = f + (g + h) f ; (g1 + g2) = f ; g1 + f ; g2 ηX + f ; f∗ ≤ f∗

f + g = g + f (f1 + f2); g = f1; g + f2; g ηX + f∗; f ≤ f∗

f +⊥⊥ = f 〈〈h;$1, h;$2〉〉 ≥ h f ; g ≤ g ⇒ f∗; g ≤ g
f + f = f 〈〈f1 + f2, g〉〉 = 〈〈f1, g〉〉+ 〈〈f2, g〉〉 g; f ≤ g ⇒ g; f∗ ≤ g

〈〈f, g1 + g2〉〉 = 〈〈f, g1〉〉+ 〈〈f, g2〉〉

equivalent characterization in terms of dX : X × X → PX according to the equation
(idX × dY); tX,Y = κ; dX×Y : X × (Y × Y)→ P (X × Y).

I Definition 7. Let C be a category with cartesian structure and bottom elements. We say
that (P, η, µ), ψ, u,∗ is a nondeterministic strong monad with iteration if:
(i) (P, η, µ), ψ is a commutative strong monad with lazy pairs.
(ii) (P, η, µ), u,⊥⊥ is a nondeterministic monad, where ⊥⊥XY = ⊥XY ; ηY : X → PY .
(iii) For all f, g : X → PY , the equation 〈id, f + g〉; t = 〈id, f〉; t+ 〈id, g〉; t holds, where t is

the tensorial strength induced by ψ and + is the choice operation induced by u.
(iv) The axiom idP (X×Y) ≤ 〈Pπ1, Pπ2〉;ψ holds, where ≤ is the order induced by +.
(v) The iteration operation ∗ sends f : X → PX to f∗ : X → PX. The axioms

f : X ⇀ X

ηX + f ; f∗ ≤ f∗
f : X ⇀ X

ηX + f∗; f ≤ f∗
f : X ⇀ X g : X ⇀ Y

f ; g ≤ g ⇒ f∗; g ≤ g
g : X ⇀ Y f : Y ⇀ Y

g; f ≤ g ⇒ g; f∗ ≤ g
are satisfied. These are the axioms for the Kleene star operation introduced in [18, 19].

I Theorem 8. Let C be a category with cartesian structure and bottom elements. Let
(P, η, µ), ψ, u,∗ be a nondeterministic strong monad with iteration. The Kleisli category CP
with composition ; and identities η, together with the operations $1, $2, 〈〈·, ·〉〉,⊥⊥,+,∗ (Kleisli
projections, pairing, bottoms, choice, and iteration) satisfies the axioms of Table 1.

A reasonable question to consider is whether there is any interaction between the iteration
operation ∗ and the tensorial strength. Even though it is not necessary for our purposes here,
we note that two extra very natural axioms for the interaction between (non)determinism
and Kleisli products together with the ∗ axioms are sufficient to capture the interaction
between ∗ and ψ considered in [11]. We elaborate on this in the appendix.

4.1 The Lowerset Monad
In the usual relational interpretation of programs, a (strict) nondeterministic program
f : X ⇀ Y is interpreted as a morphism in the category Rel of sets and binary relations.
The category Rel is isomorphic to the Kleisli category Set℘ of the powerset monad ℘ over
the category Set of sets and total functions. In order to model lazy evaluation, the category
Set℘ (together with the operations of Kleisli composition and cartesian product) is not
appropriate, since we need an explicit notion of divergence, non-strictness, and lazy pairs.

D. Kozen and K. Mamouras 423

Instead, we consider the category Pposet of pointed posets (partial orders with a bottom
element) and monotone functions, in which we can interpret non-strict deterministic programs
that form lazy pairs. The bottom element ⊥X of a pointed poset X denotes divergence. The
arrows in Pposet can be partial, in the sense that they can send a non-bottom element
to bottom. For an object (X,≤) of Pposet, we understand the partial order ≤ as follows:
x ≤ y intuitively means that x “has more diverging components” than y.

Pposet is a cartesian category with bottom elements. The product X × Y of two
objects X,Y is the cartesian product together with the pointwise partial order. So, the
bottom element of X × Y is ⊥X×Y = 〈⊥X ,⊥Y 〉. The projections π1 and π2 are given by
πi(x1, x2) = xi. The pairing operation 〈·, ·〉 is defined as 〈f, g〉 = λx ∈ X.〈f(x), g(x)〉 for
f : X → Y and g : X → Z. The terminal object is some singleton poset 1 = {⊥1}. The
bottom global element ⊥1X : 1→ X is the map that sends ⊥1 to the bottom ⊥X of X. So,
⊥XY = ⊥X ;⊥1Y is the function that always diverges. We define the pointwise partial order
≤ on every homset Pposet(X,Y). Then, ⊥XY is the bottom element of Pposet(X,Y).

I Definition 9 (lowerset monad). Let (X,≤) be a pointed poset, the bottom element of
which is denoted ⊥X . For a subset S ⊆ X define ↓S = {y ∈ X | y ≤ x for some x ∈ S}
to be the lowerset of X generated by S. For x ∈ X, we write ↓x to mean ↓{x}. Define
℘↓X to be the set of all non-empty lowersets of X. We observe that ℘↓X is a complete
lattice w.r.t. set inclusion. The top element is X and the bottom is {⊥X}. The join is
set-theoretic union and the meet is set-theoretic intersection. It follows that the homset
Pposet(X,℘↓Y) (w.r.t. the pointwise order induced by ℘↓Y,⊆) is also a complete lattice.
We extend ℘↓ to an endofunctor Pposet→ Pposet by putting (℘↓f)(S) := ↓{f(x) | x ∈ S}
for every S ∈ ℘↓X. Together with the families of maps ηX : x ∈ X 7→ ↓x ∈ ℘↓X and
µX : S ∈ ℘2

↓X 7→
⋃
S ∈ ℘↓X it forms a monad over Pposet. We call (℘↓, η, µ) the lowerset

monad over Pposet. Kleisli composition is given by (f ; g)(x) =
⋃
y∈f(x) g(y).

I Theorem 10. Define ψX,Y : ℘↓X × ℘↓Y → ℘↓(X × Y) by (S1, S2) 7→ S1 × S2 and
uX : ℘↓X × ℘↓X → ℘↓X by (S1, S2) 7→ S1 ∪ S2. For f : X → ℘↓X, define f i : X → ℘↓X

by induction: f0 = ηX and f i+1 = f i; f . Put f∗ :=
∨
i<ω f

i = λx ∈ X.
⋃
i<ω f

i(x), where∨
is the join of the complete lattice Pposet(X,℘↓X). The lowerset monad (℘↓, η, µ) over

Pposet, together with ψ, u,∗, is a nondeterministic strong monad with iteration.

4.2 The Ideal Completion Monad
An ω-complete partial order (ω-CPO) is a partially ordered set (X,≤) that has a least element
⊥X and is ω-complete in the sense that every ω-chain (countable chain) x0 ≤ x1 ≤ · · ·
has a supremum supi xi. A function f : X → Y between ω-CPOs is called ω-continuous
if it preserves suprema of ω-chains. That is, for every ω-chain x0 ≤ x1 ≤ · · · in X,
f(supi xi) = supi f(xi). An ω-continuous function is monotone. An ω-continuous function is
strict if f(⊥) = ⊥. If X,Y are ω-CPOs, then so is their cartesian product X × Y under the
componentwise order: (x1, x2) ≤ (y1, y2) iff x1 ≤ y1 ∧ x2 ≤ y2. The least element is ⊥X×Y =
(⊥X ,⊥Y). For an ω-chain (x0, y0) ≤ (x1, y1) ≤ · · · in X × Y , supi(xi, yi) = (supi xi, supi yi).
We denote by [X → Y] the ω-CPO of all ω-continuous functions from X to Y ordered
pointwise: f ≤ g iff ∀x ∈ P. f(x) ≤ g(x). The bottom element is ⊥XY = λx ∈ X.⊥Y . The
supremum of a chain f0 ≤ f1 ≤ · · · in [X → Y] is supi fi = λx ∈ X. supi fi(x) and it is
ω-continuous. The operations ; and 〈·, ·〉 are monotone in all arguments. The ω-continuous
functions on ω-CPOs are closed under well-typed composition and pairing and contain
all identities and projections. Thus, ω-CPOs and ω-continuous functions form a cartesian
category with bottom elements denoted CPO.

CSL’13

424 Kleene Algebra with Products and Iteration Theories

Table 2 Typing rules for KA with products.

f : X _ Y

f : X ⇀ Y

f : X ⇀ Y g : Y ⇀ Z

f ; g : X ⇀ Z

f : X ⇀ Y g : X ⇀ Z

〈f, g〉 : X ⇀ Y × Z
f, g : X ⇀ Y

f + g : X ⇀ Y

f : X _ Y g : Y _ Z

f ; g : X _ Z

f : X _ Y g : X _ Z

〈f, g〉 : X _ Y × Z
f : X ⇀ X

f∗ : X ⇀ X

Let (X,≤) be an ω-CPO. A subset I ⊆ X is called an ideal of X if it is a non-empty
lower set and is closed under suprema of ω-chains. The set of all ideals of X is denoted IX.
We denote by clX(S) the smallest ideal containing S ⊆ X. This is an operation of type
clX : ℘X → IX. We also write cl(S) instead of clX(S) when no confusion arises. We say
that cl(S) is the ideal generated by S. The set ↓x is an ideal and we call it the principal ideal
generated by x. If x1 ≤ x2 ≤ . . . is an ω-chain in X, then cl[{x1, x2, . . .}] = ↓ supi xi. The
set IX of all ideals of an ω-CPO X is a complete lattice w.r.t. set-theoretic inclusion. The
meet

∧
is set-theoretic intersection and the join

∨
is the ideal generated by the set-theoretic

union. The bottom element is {⊥X} and the top element is X. If I, J are ideals of X, then
so is I ∪ J . In particular, cl(S1 ∪ S2) = cl(S1)∪ cl(S2). Let X,Y be ω-CPOs. If I is an ideal
of X and J is an ideal of Y , then I × J is an ideal of the ω-CPO X × Y . If K is an ideal of
X × Y , then the left and right projections of K are ideals of X and Y respectively.

I Definition 11 (the ideal completion monad). We extend I to an endofunctor CPO→ CPO
by putting (If)(S) := clY [f(S)] = clY {f(x) | x ∈ S}, for every S ∈ IX, where f : X → Y .
We define the family of functions ηX : X → IX by ηX(x) := ↓x, and µX : I2X → IX by
µX(S) :=

∨
S. Now, we claim that (I, η, µ) is a monad, called the ideal completion monad

of CPO. Kleisli composition can be given as (f ; g)(x) =
∨
y∈f(x) g(y).

I Theorem 12. Define ψX,Y : IX×IY → I(X×Y) as (I, J) 7→ I×J and uX : IX×IX →
IX as (I, J) 7→ I ∪ J . Also define the iteration operation by f∗ :=

∨
i<ω f

i = λx ∈
X.

∨
i<ω f

i(x). The ideal completion monad (I, η, µ) over the category CPO, together with
ψ, u,∗, is a nondeterministic strong monad with iteration.

5 Typed Kleene Algebra with Products

Let Ω be a set of atomic types. Let 1 /∈ Ω be a special constant called the unit type. The set
of types over Ω, denoted Types(Ω), is the set of terms freely generated by Ω and 1 under
the binary product type constructor ×. The terms of the language are typed. The types of
terms are expressions of the form X ⇀ Y , where X,Y ∈ Types(Ω). We indicate the type
of a term by writing f : X ⇀ Y . Some of the terms will be designated as deterministic by
writing f : X _ Y . We think of X _ Y as a subtype of X ⇀ Y and hence we include the
typing rule given in the first column of Table 2.

Let H be a set of atomic arrows, each endowed with a fixed type h : X ⇀ Y . We write
h : X _ Y for a deterministic atomic arrow of H. Let id, π1, π2, ⊥ be special deterministic
polymorphic constants called identities, left projections, right projections, and bottoms,
respectively. Where necessary, we use subscripts or superscripts to denote the specialization
at a particular type; e.g., idX : X _ X, πXY1 : X × Y _ X, or ⊥XY : X _ Y . Let ; and
〈·, ·〉 be polymorphic constructors called composition and pairing, respectively, satisfying the
typing rules shown in Table 2. Note that compositions f ; g are written in diagrammatic order.
Composition and pairing preserve determinism. We add to the language the polymorphic
constructors + and ∗, called (nondeterministic) choice and iteration respectively, with the
typing rules given in Table 2. Choice and iteration introduce nondeterminism.

D. Kozen and K. Mamouras 425

Table 3 Axioms of Park and KA.

Park KA
f ≤ g ∧ g ≤ h⇒ f ≤ h f + (g + h) = (f + g) + h
f ≤ g ∧ g ≤ f ⇒ f = g f + g = g + f
⊥ ≤ f and f ≤ f f +⊥ = f = f + f
f ; (g;h) = (f ; g);h f ; (g;h) = (f ; g);h
id; f = f = f ; id f ; id = f = f ; id
g1 ≤ g2 ⇒ f ; g1 ≤ f ; g2 f ; (g1 + g2) = f ; g1 + f ; g2
f1 ≤ f2 ⇒ f1; g ≤ f2; g (f1 + f2); g = f1; g + f2; g

f ;⊥ = ⊥
〈f†, idY 〉; f ≤ f† id + f ; f∗ ≤ f∗ f ; g ≤ g → f∗; g ≤ g
〈g, idY 〉; f ≤ g ⇒ f† ≤ g id + f∗; f ≤ f∗ g; f ≤ g → g; f∗ ≤ g
g; f† ≤ [(idX × g); f]†
f = ⊥X : X → 1 〈h;π1, h;π2〉 = h f = ⊥X : X → 1 〈h;π1, h;π2〉 = h (det. h)
〈f1, f2〉;πi = fi 〈f1, f2〉;πi = fi

(f1 × f2); (g1 × g2) = (f1; g1)× (f2; g2)
h ≤ 〈h;π1, h;π2〉
f ; 〈g1, g2〉 = 〈f ; g1, f ; g2〉 (det. f)

f1 ≤ f2 ⇒ 〈f1, g〉 ≤ 〈f2, g〉 〈f1 + f2, g〉 = 〈f1, g〉+ 〈f2, g〉
g1 ≤ g2 ⇒ 〈f, g1〉 ≤ 〈f, g2〉 〈f, g1 + g2〉 = 〈f, g1〉+ 〈f, g2〉

I Definition 13. A typed Kleene algebra with products is a multi-sorted algebraic structure
K =

(
K0,×,1,K1,Kd1, dom, cod,+, ; ,∗ ,⊥, id, 〈·, ·〉, π1, π2

)
, where K0 is the set of objects, K1

is the set of arrows or elements, and Kd1 ⊆ K1 is the set of deterministic arrows.
The operations dom and cod (called domain and codomain) map arrows to objects.
The type of an element f of K is the expression X ⇀ Y , where X = domf and Y = codf .
We write f : X ⇀ Y to denote this. If f ∈ Kd1, we write f : X _ Y .
The distinguished product operation × is a function × : K0 × K0 → K0. The object
1 ∈ K0 is the distinguished terminal object of the structure.
The polymorphic operations and constants +, ;, ∗, ⊥, id, 〈·, ·〉, π1, and π2 satisfy the
expected typing rules.
Additionally, the structure is a model of the well-typed instances of the axioms given in
the second column of Table 3. The partial order ≤ is induced by +: f ≤ g iff f + g = g.
The product × is defined by: f × g = 〈π1; f, π2; g〉.

We have included all the axioms of KA [18, 19] except for the strictness axiom ⊥; f = ⊥.

We will denote by KA the quasi-equational system of typed Kleene algebra with products.
Notice that (up to a slight change in notation to make it less cumbersome), the axioms
satisfied by a typed Kleene algebra with products are exactly those given in Table 1. So, any
small subcategory of the Kleisli category of a nondeterministic strong monad with iteration
that is closed under the appropriate operations is a typed Kleene algebra with products.

6 Iteration Theories

The language of iteration theories consists of atomic typed actions h : n→ m, where n,m
are natural numbers, and polymorphic operation symbols ; (composition), id (identity),
ι (injection), [−,−, · · · ,−] (cotupling), ⊥ (bottom), † (dagger). The typing rules for the
language are the following: idn : n→ n, ιni : 1→ n, ⊥nm : n→ m, and

f : n→ m g : m→ p

f ; g : n→ p

fi : 1→ m i = 1, . . . , n
[f1, f2, . . . , fn] : n→ m

f : n→ n+ p

f† : n→ p
The typed terms f : n → m of the language are built from the atomic actions and the
operation symbols according to the typing rules.

CSL’13

426 Kleene Algebra with Products and Iteration Theories

Consider now the category CPO of ω-CPOs and ω-continuous maps, which will provide
the standard interpretation for the language of iteration theories. An interpretation J·K
in CPO consists of an ω-CPO A and a mapping of every atomic symbol h : n → m to
a morphism JhK : Am → An in CPO, where Ak denotes the k-fold associative cartesian
product of A. The identity symbol idn : n → n is interpreted as the identity function
JidnK : An → An. The injection symbol ιni : 1 → n is interpreted as the i-th projection
Jιni K : An → A. The bottom symbol ⊥nm : n → m is interpreted as the least function
J⊥nmK : Am → An of CPO(Am, An). Now, ; and [−,−, · · · ,−] are interpreted as function
composition and tupling respectively. For functions fi : 1 → m, i = 1, . . . , n, the function
denoted by [f1, . . . , fn] : n → m is given by J[f1, . . . , fn]K(x̄) := 〈Jf1K(x̄), . . . , JfnK(x̄)〉, for
every x̄ ∈ Am. Every ω-continuous function φ : X → X in CPO has a least fixpoint, which
is the supremum of the ω-chain ⊥ ≤ φ(⊥) ≤ φ2(⊥) ≤ · · · ≤ φn(⊥) ≤ · · · , where φ0 = id and
φn+1 = φn;φ. We denote the least fixpoint of φ by µ(φ) = supi φi(⊥). For an ω-continuous
function φ : X×Y → X, we define the function φ† : Y → X by φ†(y) := µ(φy) = supi φiy(⊥),
where φy = λx ∈ X.φ(x, y) : X → X. The function φ† : Y → X is also ω-continuous. We
call † the parametric fixpoint operation. The operation † is monotone. We interpret the
dagger symbol † of the language as parametric fixpoint †: for f : n → n + p we define
Jf†K =

(
JfK : An ×Ap → An

)† : Ap → An.
Every homset CPO(X,Y) is equipped with the pointwise partial order ≤. For terms

s, t we write CPO |= s ≤ t to mean that JsK ≤ JtK for every interpretation J·K of the
language in CPO. Define Th(CPO) to be the set of all valid inequalities over CPO, that
is, Th(CPO) := {s ≤ t | CPO |= s ≤ t}, where s, t are terms of the language of iteration
theories. Th(CPO) is the “(in)equational theory of iteration”, in the words of Ésik [9].

I Definition 14. Define Park to be the universal Horn system (including equality) with:
axioms for categories, axioms asserting that ι, [−,−, · · · ,−], and ⊥ give associative categorical
coproducts, axioms stating that ≤ is a partial order, that ; and [−,−, · · · ,−] are motonone
in all arguments w.r.t. ≤, and that ⊥nm : n → m is the least element of Hom(n,m), and
axioms for the dagger operation:

f : n→ n+ p

f ; [f†, idp] ≤ f† : n→ p

f : n→ n+ p g : n→ p

f ; [g, idp] ≤ g ⇒ f† ≤ g
f : n→ n+ p g : p→ q

f†; g ≤ [f ; (idn ⊕ g)]† : n→ q
where the copairing operation [−,−] is induced by the cotupling operation [−,−, . . . ,−] in
the obvious way. The three dagger axioms are called pre-fixpoint inequality, least pre-fixpoint
implication or Park induction rule, and parameter inequality respectively.

I Theorem 15 (Ésik [9]). Park axiomatizes Th(CPO), that is, CPO |= t1 ≤ t2 iff Park `
t1 ≤ t2, for all terms t1, t2 in the language of iteration theories.

The choice of a language with coproducts and copairing/injection symbols is confusing,
because the standard models we are interested in here are models of functions where the
symbols are interpreted as products and pairing/projections respectively. Moreover, there is
no reason to collapse isomorphic products, such as X× (Y ×Z) ∼= (X×Y)×Z or 1×X ∼= X.
In fact, this only complicates the technical presentation of proofs.

So, we consider for the rest of the paper (as is also done in [6, 26]) that the language
of iteration theories is instead as follows: For a set Ω of atomic types, let Types(Ω) be
the set freely generated by Ω, 1 /∈ Ω, and the product constructor ×. The terms of the
language are typed, e.g., f : X → Y , where X,Y ∈ Types(Ω). Each atomic arrow has a fixed
type h : X → Y . We have polymorphic constants πXY1 , πXY2 , idX , ⊥XY and polymorphic
constructors ;, 〈·, ·〉, †. The typing rules are as usual with the exception of the rule for †: for
f : X × Y → X we have f† : Y → X. Now, a standard interpretation J·K in CPO assigns

D. Kozen and K. Mamouras 427

an ω-CPO to each base type and an ω-continuous function to each atomic action. This
extends in the obvious way to all terms of the language. In particular, the dagger symbol is
interpreted as parametric fixpoint, e.g., Jf†K = JfK† : JY K→ JXK for f : X × Y → X. See
the first column of Table 3 for the axioms of Park in the language with products.

7 Embedding the Equational Theory of Iteration in KA

We augment the system of KA that we presented in Section 5 with an additional typing rule
about the preservation of determinism:

g : X _ Y f : Y _ Y g ≤ g; f : X ⇀ Y

g; f∗ : X _ Y
. (7)

We note that this rule is not valid in all Kleene algebras, but it is valid in the Kleisli category
CPOI of the ideal completion monad over CPO. For a term f : X × Y ⇀ X of KA,
we define the abbreviation f‡ := 〈⊥Y X , idY 〉; 〈f, π2〉∗;π1 : Y ⇀ X. We call ‡ the derived
dagger operation in KA. Using the rule (7) we can derive in KA the dagger typing rule: if
f : X × Y _ X then f‡ : Y _ X. The dagger typing rule states that the derived dagger
operation preserves determinism.

I Definition 16 (translation). We define a translation [·] from the language of iteration
theories to the language of KA with products. All atomic action symbols and atomic
constants are translated as deterministic symbols of the same type. E.g., for h : X → Y we
have [h] = h : X _ Y , and [π1] = π1 : X × Y _ X. The dagger is translated as

[f†] := f‡ = 〈⊥, id〉; 〈[f], π2〉∗;π1 : Y _ X

The translation function [·] commutes with the rest of the operation symbols.

I Theorem 17 (Completeness and soundness). Let t ≤ t′ be an inequality in the language of
Park. Then, CPO |= t ≤ t′ iff KA ` [t] ≤ [t′].

Proof sketch. For completeness we use Theorem 15 and show how to obtain the Park axioms
in KA. For soundness we exhibit an operation-preserving embedding of CPO in CPOI. J

Even though the above result was developed using Park theories, which have a universal
Horn axiomatization, we also obtain a result for the equational theory of iteration theories.
Recall the definition (see e.g. [7]): an iteration theory is a cartesian category with a dagger
operation that satisfies the equations valid in CPO. So, the above theorem also says that
the equational theory of iteration theories is embedded in KA.

8 Related Work

The work by Goncharov [11] is closely related to ours. He defines additive (strong) monads
and Kleene monads axiomatically. Calculi for an extended metalanguage of effects are defined
and completeness/incompleteness results are obtained. Our notion of a “nondeterministic
strong monad with iteration” is different from that of a Kleene monad: we consider non-
strict programs that form lazy pairs, and we axiomatize iteration quasi-equationally. The
absence of the strictness axiom ⊥; f = ⊥ from our axiomatization and the use of lazy
pairs are essential for our encoding of fixpoints. In particular, the axioms stipulated
in [11] would force all the parametric fixpoints to be equal to ⊥, because in that system
〈⊥, id〉; 〈f, π2〉∗;π1 = ⊥; 〈f, π2〉∗;π1 = ⊥. So, the models we are investigating in the present
work are crucially different from the models considered in [11].

The work on Hoare powerdomains [1, 25], which give models of angelic nondeterministic
computations, is related. The (lower) Hoare powerdomain of a domain is formed by taking

CSL’13

428 Kleene Algebra with Products and Iteration Theories

all the ideals of the domain, where by ideal we mean here the nonempty Scott-closed subsets
of the domain. In the present work, we identify models of the axiomatically defined “nonde-
terministic monad with iteration,” which are similar to and simpler than the construction of
Hoare powerdomains over DCPOs. We first identify a simple model: the lowerset monad over
the category of posets with bottom elements. Then, we also prove that the ideal completion
monad over the category of ω-CPOs is a model.

There is a long line of work, primarily by Bloom and Ésik, under the name of “iteration
theories” or the “(in)equational theory of iteration” (see e.g. [4, 6, 7, 9, 26] and references
therein), which is intimately related to the work on Kleene algebra [8, 16–23] in general
and the present work in particular. The axioms of iteration theories capture the equational
properties of fixpoints in several classes of structures relevant to computer science. For
example, they capture the equational theory of ω-continuous functions between ω-CPOs,
where the algebraic signature includes symbols for composition, pairing, and parametric
fixpoints. Several different equational axiomatizations have been considered in the literature,
all of which require substantial effort to parse and understand. By allowing quasi-equations,
simpler axiomatizations can be found. Many examples of iteration theories involve functions
on posets, so it is a natural question to look for complete axiomatizations of the valid
inequalities over classes of structures that are of interest, e.g., structures of ω-continuous
functions over ω-CPOs. One such universal Horn axiomatization is given in [9]. This
axiomatization includes two inequalities and one implication for the † operation, which are
both intuitive and easy to memorize. We note that in the work on iteration theories, the
issue of how (non)determinism interacts with pairs, which is central in the present work, is
not handled at all.

Of particular relevance to the relationship between iteration theories and Kleene algebra
are the works on the so-called “matrix iteration theories” [4, 5, 7]. They are cartesian
categories in which the homsets are commutative monoids with respect to an operation
+, which distributes over composition. This also induces cocartesian structure and allows
an easy translation between the dagger (parametric fixpoint) operation and Kleene star.
However, this translation is not sound for the classes of structures we consider. In particular,
the + symbol cannot be interpreted as nondeterministic choice when 〈·, ·〉 is interpreted as
pairing: the axioms imply the property 〈a,⊥〉+ 〈⊥, b〉 = 〈a, b〉, which is not meaningful for
programs. The translation of the dagger operation in the language of KA that we give here
is crucially different, and is in fact sound for the class of matrix iteration theories as well.

There is a connection between our characterizations of nondeterministic structure and
the work of Plotkin and Power on algebraic operations (see e.g. [24] for an overview). The
theory of algebraic operations provides a uniform semantics of computational effects by
considering primitive operations of type fX : (PX)n → PX that are the source of effects.
The binary union operation uX : PX×PX → PX that we consider is an algebraic operation
in this sense. Our purpose here, however, is very different: we axiomatize uX and establish
equivalence with other axiomatizations of nondeterministic structure that do not fit in the
framework of algebraic operations, e.g., with dX : X × X → PX. In particular, for the
equivalence results that we develop here, there does not seem to be any known fact about
algebraic operations that can be invoked to simplify our proofs.

Our work here builds directly upon the existing work on Kleene algebra [8, 17–20, 22].
The crucial axioms for the iteration operation ∗ are taken from [18]. The system of KA we
present is a typed Kleene algebra in the sense of [21] extended with products that satisfy
weaker axioms than those of categorical products.

D. Kozen and K. Mamouras 429

9 Conclusion and Future Work

In the present work we reconcile the notions of iteration captured by the star operation ∗ of
KA and the dagger operation † of IT. We present and investigate a system of typed KA with
products, in which the notion of a deterministic program turns out to be of importance. We
work in the framework of cartesian categories combined with commutative strong monads to
treat (angelic) nondeterminism. We have adapted an axiomatization of commutative strong
monads from the work of Kock [13, 15] to our setting. We have described three equivalent
ways, in the presence of cartesian structure, of capturing nondeterminism. We have identified
two concrete monads, the monad of lowersets of pointed posets and the monad of ideals of
ω-CPOs, as models. The main technical result of our paper is a translation of † in terms of
∗ that gives an embedding of the (in)equational theory of † in KA.

The present work has been a first step in presenting a higher-order system of typed Kleene
algebra. We would like to investigate what properties of recursion can be captured in such a
higher-order system and how this would relate to the investigations of [6].

References
1 Samson Abramsky and Achim Jung. Domain theory, 1994.
2 J. Adámek, S. Milius, and J. Velebil. Elgot algebras. Log. Meth. Comp. Sci., 2:1–31, 2006.
3 J. Adámek, S. Milius, and J. Velebil. Elgot theories: a new perspective of the equational

properties of iteration. Math. Structures Comput. Sci., 21(2):417–480, 2011.
4 S. L. Bloom and Z. Ésik. Iteration Theories. Springer, 1993.
5 S. L. Bloom and Z. Ésik. Matrix and matricial iteration theories, part I. Journal of

Computer and System Sciences, 46(3):381 – 408, 1993.
6 S. L. Bloom and Z. Ésik. Fixed-point operations on ccc’s. part I. TCS, 155(1):1–38, 1996.
7 S. L. Bloom and Z. Ésik. The equational logic of fixed points. TCS, 179(1–2):1–60, 1997.
8 John Horton Conway. Regular Algebra and Finite Machines. Chapman and Hall, 1971.
9 Z. Ésik. Completeness of Park induction. Theor. Comput. Sci., 177(1):217–283, 1997.
10 S. Ginali. Regular trees and the free iterative theory. JCSS, 18:228–242, 1979.
11 Sergey Goncharov. Kleene Monads. PhD thesis, Universität Bremen, 2010.
12 S. C. Kleene. Representation of events in nerve nets and finite automata. Automata Studies,

1956.
13 A. Kock. Monads on symmetric monoidal closed categories. Ar. der Math., 21:1–10, 1970.
14 A. Kock. Bilinearity and cartesian closed monads. Mathematica Scand., 29:161–174, 1971.
15 A. Kock. Strong functors and monoidal monads. Archiv der Math., 23:113–120, 1972.
16 L. Kot and D. Kozen. Kleene algebra and bytecode verification. ENTCS, 141(1):221–236,

2005.
17 D. Kozen. On Kleene algebras and closed semirings. MFCS ’90, pages 26–47, 1990.
18 D. Kozen. A completeness theorem for Kleene algebras and the algebra of regular events.

In Proceedings of 6th Annual IEEE Symp. on Logic in Comp. Sci., pages 214–225, 1991.
19 D. Kozen. A completeness theorem for Kleene algebras and the algebra of regular events.

Information and Computation, 110(2):366–390, 1994.
20 D. Kozen. Kleene algebra with tests. ACM Trans. Prog. Lang. Syst., 19(3):427–443, 1997.
21 D. Kozen. Typed Kleene algebra. Technical report, Cornell University, 1998.
22 D. Kozen. On Hoare logic and Kleene algebra with tests. TOCL, 1(1):60–76, 2000.
23 D. Kozen and M.-C. Patron. Certification of compiler optimizations using Kleene algebra

with tests. In Proceed. of the First Intern. Conf. on Comput. Logic, pages 568–582, 2000.
24 G. Plotkin and J. Power. Computational effects and operations. ENTCS, 73:149–163, 2004.
25 Gordon Plotkin. Domains, 1983. Pisa notes on domain theory.
26 A. Simpson and G. Plotkin. Complete axioms for categorical fixed-point operators. In

Proceedings of 15th Annual IEEE Symp. on Logic in Comp. Sci., pages 30 –41, 2000.

CSL’13

430 Kleene Algebra with Products and Iteration Theories

A Interaction between tensorial strength and iteration

In [11] an axiom is considered that relates the iteration operation µ with the tensorial strength
of the nondeterministic monad:

µf.
(
(idX × p); tX,Y + f ; (idX × q); tX,Y

)
=
(
idX × µf.(p+ f ; q)

)
; tX,Y ,

where p : X → PY and q : Y → PY (composition ; binds tighter than Kleisli composition ; ,
which in turn binds tighter than +). We rewrite the above axiom in terms of ψ using the
property tX,Y = (ηX × id);ψX,Y :

µf.
(
(ηX × p);ψX,Y + f ; (ηX × q);ψX,Y

)
=
(
ηX × µf.(p+ f ; q)

)
;ψX,Y .

Recall the definition of the Kleisli product functor: f ⊗ g = (f × g);ψ. So, we can rewrite
the above equation as

µf.
(
(ηX ⊗ p) + f ; (ηX ⊗ q)

)
= ηX ⊗ µf.(p+ f ; q).

The expression µf.φ(f) is meant to denote the least fixpoint of the map f 7→ φ(f). So,
we think intuitively of the expression µf.(p+ f ; q) as denoting the supremum of the chain
p ≤ p+ p; q ≤ p+ p; q + p; q; q ≤ · · · , which in our language would be represented by p; q∗.
Using this correspondence, the axiom finally becomes

(ηX ⊗ p); (ηX ⊗ q)∗ = ηX ⊗ p; q∗

in the language of KA. We will identify two very fundamental axioms that together with the
KA axioms allow us to prove the above equation.

Before we state the result, we give some intuition for the extra axioms we will assume. In
the categorical models we have been investigating the uniqueness property 〈〈h;$1, h;$2〉〉 = h

holds whenever the arrow h : X ⇀ Y × Z is deterministic, but does not hold for arbitrary h.
The reason for this is illustrated by the following example:

S = {(a, c), (b, d)} : 1→ P (X × Y) S;$1 = {a, b} : 1→ PX

S;$2 = {c, d} : 1→ PY

and 〈〈S;$1, S;$2〉〉 = {(a, c), (a, d), (b, c), (b, d)} 6= S. However, if we change the example so
that S;$1 is deterministic, then the uniqueness axiom is satisfied.

S = {(a, c), (a, d)} : 1→ P (X × Y) S;$1 = {a} : 1→ PX

S;$2 = {c, d} : 1→ PY

Notice that S;$1 = {a} is deterministic and 〈〈S;$1, S;$2〉〉 = S, even though S is not
deterministic. This example motivates the rules of Table 4.

I Proposition 18. Every nondeterministic monad with iteration that additionally satisfies
the two rules of Table 4 also satisfies the equation

(ηX ⊗ p); (ηX ⊗ q)∗ = ηX ⊗ p; q∗.

Table 4 Additional rules for the interaction between (non)determinism and Kleisli products.

f : X ⇀ Y × Z f ;$1 : X _ Y

〈〈f ;$1, f ;$2〉〉 = f : X ⇀ Y × Z
f : X ⇀ Y × Z f ;$2 : X _ Z

〈〈f ;$1, f ;$2〉〉 = f : X ⇀ Y × Z

D. Kozen and K. Mamouras 431

Proof. Call L the left-hand side and R the right-hand side of the equation we have to prove.
The inequality L ≤ R is easily seen to be provable from the axioms for ∗. It suffices to show
that ηX ⊗ p ≤ ηX ⊗ p; q∗, which holds because p ≤ p; q∗, and also that

(ηX ⊗ p; q∗); (ηX ⊗ q) = ηX ; ηX ⊗ p; q∗; q [⊗ functor]
≤ ηX ⊗ p; q∗. [star axiom]

We will see now that the inequality R ≤ L is also provable from the star axioms, by making
use of the rules given in Table 4. First, we claim that

L;$1 = (ηX ⊗ p); (ηX ⊗ q)∗;$1 = $1.

Since (ηX⊗q);$1 = $1; ηX = $1, we have that (ηX⊗q);$1 ≤ $1 and hence (ηX⊗q)∗;$1 ≤
$1. It follows that L;$1 ≤ (ηX ⊗ p);$1 = $1. Moreover,

$1 = (ηX ⊗ p);$1 ≤ (ηX ⊗ p); (ηX ⊗ q)∗;$1 = L;$1.

We have thus shown that L;$1 = $1 is deterministic. So, the first rule of Table 4 gives us
that

(ηX ⊗ p); (ηX ⊗ q)∗ = 〈〈$1, (ηX ⊗ p); (ηX ⊗ q)∗;$2〉〉.

We also have by definition of ⊗ that ηX ⊗ p; q∗ = 〈〈$1, $2; p; q∗〉〉. It suffices to show that

$2; p; q∗ ≤ (ηX ⊗ p); (ηX ⊗ q)∗;$2 ⇐= (ηX ⊗ p);$2; q∗ ≤ (ηX ⊗ p); (ηX ⊗ q)∗;$2

⇐= $2; q∗ ≤ (ηX ⊗ q)∗;$2,

which is implied by $2 ≤ (ηX ⊗ q)∗;$2 (it clearly holds) and

(ηX ⊗ q)∗;$2; q = (ηX ⊗ q)∗; (ηX ⊗ q);$2 ≤ (ηX ⊗ q)∗;$2. J

So, the above proposition says, somewhat informally, that the interaction between iteration
and tensorial strength that is stipulated in [11] is a consequence of the properties of ∗ and
of two fundamental axioms that involve only determinism judgments and Kleisli products.
The axioms of Table 4 are sound for the models we consider here, as well as for the powerset
monad ℘ over Set, which is a model of the axioms considered in [11]. We have not included
these axioms in the definition of a nondeterministic strong monad with iteration, because
they are not necessary for our investigations.

CSL’13

Internalizing Relational Parametricity
in the Extensional Calculus of Constructions
Neelakantan R. Krishnaswami and Derek Dreyer

Max Planck Institute for Software Systems (MPI-SWS)
Kaiserslautern and Saarbrücken, Germany
{neelk,dreyer}@mpi-sws.org

Abstract
We give the first relationally parametric model of the extensional calculus of constructions. Our
model remains as simple as traditional PER models of types, but unlike them, it additionally
permits the relating of terms that implement abstract types in different ways. Using our model,
we can validate the soundness of quotient types, as well as derive strong equality axioms for
Church-encoded data, such as the usual induction principles for Church naturals and booleans,
and the eta law for strong dependent pair types. Furthermore, we show that such equivalences,
justified by relationally parametric reasoning, may soundly be internalized (i.e., added as equality
axioms to our type theory). Thus, we demonstrate that it is possible to interpret equality
in a dependently-typed setting using parametricity. The key idea behind our approach is to
interpret types as so-called quasi-PERs (or zigzag-complete relations), which enable us to model
the symmetry and transitivity of equality while at the same time allowing abstract types with
different representations to be equated.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Programs

Keywords and phrases Relational parametricity, dependent types, quasi-PERs

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.432

1 Introduction

Reynolds [23] famously introduced the concept of relational parametricity with a fable about
data abstraction. Professors Bessel and Descartes, each teaching a class on complex numbers,
defined them differently in the first lecture, the former using polar coordinates and the latter
using (of course) cartesian coordinates. But despite accidentally trading sections after the
first lecture, they never taught their students anything false, since after the first class, both
professors proved all their theorems in terms of the defined operations on complex numbers,
and never in terms of their underlying coordinate representation.

Reynolds formalized this idea by giving a semantics for System F in which each type
denoted not just a set of well-formed terms, but a logical relation between them, defined
recursively on the type structure of the language. Then, the fact that well-typed client
programs were insensitive to a specific choice of implementation could be formalized in terms
of their taking logically related inputs to logically related results. Since the two constructions
of the complex numbers share the same interface, and it is easy to show they are logically
related at that interface, any client of the interface must return equivalent results regardless of
which implementation of the interface is used. Hence, parametricity gives a way of modelling
a general notion of representation-independent program equivalence, significantly coarser
(and thus more flexible) than standard notions of set-theoretic equality.

Subsequently, Plotkin and Abadi [22] showed how to build a logic in which parametricity
could be used to prove the equivalence of System F programs. Plotkin-Abadi logic is a

© Neelakantan R. Krishnaswami and Derek Dreyer;
licensed under Creative Commons License CC-BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca; pp. 432–451

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.432
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

N.R. Krishnaswami and D. Dreyer 433

system in the LCF tradition, where an external logic is used to reason about the behavior
of programs written in a particular programming language. This logic lets us prove, for
example, that the polar and cartesian representations of the complex numbers are indeed
equal at a suitable existential type.

More recently, there has been a great deal of interest in unifying programming languages
with their program logic, by means of dependent type theory [21]. Dependent type systems
allow types to mention program terms and thereby state strong invariants about the behavior
of programs. The ability to put strong preconditions on functions means that we can
support operations that might be unsafe in general (e.g., unchecked array access) without
compromising the safety of the programming language.

However, the notion of equality available in dependent type theory has historically been
limited. In intensional type theories (e.g., [2]), equality is given purely as the β-equality of
terms. Even the more generous approach of extensional type theory [20, 1] still equips each
set with an intrinsic notion of equality at the time of its definition. The approach of fixing
a notion of equality is at odds with the “outside view” of equality suggested by relational
parametricity, where equivalence is determined relative to the operations exported to a client.
This limitation is especially galling given the recent work of Bernardy et al. [6], who show that
the syntax of type theory is wholly compatible with parametricity—every well-typed term in
the calculus of constructions respects the relationally parametric interpretation associated
with its type—but there is no way to internalize this fact.

As a result, though it is possible to define many types such as existentials, coproducts,
and dependent pairs, it is not possible to prove that they satisfy the expected equational
properties (e.g., η-rules). This is particularly frustrating in a dependently-typed setting,
where being able to internalize parametricity properties would greatly facilitate verification.

In this paper, we give the first relationally parametric model of an extensional variant
of the calculus of constructions [11], by means of a realizability-style interpretation of type
theory [14]. Our model lets us prove equalities and induction principles using parametricity-
based reasoning, then internalize these properties as new axioms. In other words, we can
internalize relational parametricity into our dependent type theory.

We interpret the types of the calculus of constructions by means of a logical relations
model, and interpret the identity type using the relations our model defines. However, an
off-the-shelf logical relation is only guaranteed to be a reflexive congruence for well-typed
terms (the fundamental property). Logical relations in general are not necessarily symmetric
or transitive, both of which are needed to use the relation as a model of equality.

A common approach to gaining symmetry and transitivity is to require the relations
interpreting types to be partial equivalence relations (PERs), which are symmetric and
transitive by definition. However, we pay a high price for mandating symmetry: relating
terms with different representations (e.g., Peano and binary numbers) is no longer possible,
since we can no longer relate different things on each side of the relation. Consequently, we
can no longer prove representation independence results in a natural way.

Traditionally, this difficulty is resolved by giving a Reynolds-style relational semantics for
the language together with a PER model in a mutually recursive construction, and proving a
correspondence between the two (the identity extension lemma). However, this approach
more than doubles the work involved in defining a model, which hits particularly hard when
facing the complex models of dependent type theory. Moreover, to our knowledge, no such
parametric PER models of dependent type theory have yet been developed.

Our key innovation is to model types instead using so-called quasi-PERs (a.k.a. difunc-
tional relations, or zigzag-complete relations), which generalize PERs to the asymmetric

CSL’13

434 Internalizing Relational Parametricity in the Extensional Calculus of Constructions

κ ::= ∗ | Πx : X. κ | Πα : κ. κ′ Kinds
X,A ::= Πα : κ. X | Πx : X. Y | e =X e′ Types

| λx : X. A | A e | λα : κ. A | A B | α
e ::= x | λx : X. e | e e | λα : κ. e | e A | refl Terms
v ::= λx : X. e | λα : κ. e | refl Values
Γ ::= · | Γ, x : X | Γ, α : κ Contexts

Figure 1 Syntax.

case. Using quasi-PERs, we give a single relational model which supports symmetry and
transitivity of equality as well as the relating of terms with differing type representations.

To illustrate this point, we show how to state parametricity axioms for some types familiar
from System F such as Church numerals and existentials. Exploiting the presence of type
dependency, we also show how parametricity can be used to recover strong dependent pairs
(i.e., Σx : X. Y with π1 and π2 projections) from a Church encoding, as well as showing the
soundness of quotient types in our model. Proof details can be found in the accompanying
extended technical appendix, available online at http://www.mpi-sws.org/~dreyer/.

2 Syntax, Typing and Operational Semantics

Our overall system is an explicitly-typed version of the calculus of constructions, extended
with an identity type and an elimination rule for equality based on equality reflection. We
use extensional type theory to make equality axioms (e.g., η for Church encodings of pairs)
behave well. In an intensional system, equality axioms make subject reduction fail, since
the eliminator for the equality type gets stuck. Extensional type theory makes equality
elimination implicit, and so has better computational behavior. In Figure 1, we give the
syntactic categories of our type system, and in Figure 2, we list the judgements in our system.
Most of the kinding and typing rules are standard, as is the standard call-by-name evaluation
semantics, and so we omit them for space (they can be found in the appendix).

We present our system with distinct syntactic categories for kinds (ranged over by
metavariables κ), types (ranged over by metavariables X,Y,A,B,C, and type variables α, β)
and terms (ranged over by metavariables e, and term variables x, y, z). We typically adopt
the convention of using A, B, and C for type constructors of arbitrary kind, and X and
Y for type constructors of base kind. Almost all of the typing rules are standard for the
calculus of constructions, and we discuss only our variations in detail.

Our treatment of equality follows extensional type theory. We introduce identities with
refl when two terms are equal, and so the definitional equality for identity types satisfies
the uniqueness of identity proofs property (a.k.a. Axiom K [17]). We also support equality
reflection: if Γ ` ep : e =X e′, then Γ ` e ≡ e′ : X. This rule makes typechecking undecidable,
as typing derivations may need to invent equality proofs. To summarize, our definitional
equality is just the βη-theory of the lambda calculus plus rules for equality types. For
expository reasons, we have not included any parametricity properties in definitional equality,
saving these for Section 5.

3 Semantics

Our overall semantics is a realizability model, in which types are interpreted as relations
between closed terms e. However, since the syntactic types appearing within terms are

N.R. Krishnaswami and D. Dreyer 435

Γ ok Context Well-formedness Γ ` κ : kind Kind Well-formedness
Γ ` A : κ Kinding of Type Constructors Γ ` e : X Typing of Terms
Γ ` κ ≡ κ′ : kind Kind Equality Γ ` A ≡ A′ : κ Type Equality
Γ ` e ≡ e′ : X Term Equality e 7→ e′ Operational Semantics

Figure 2 Summary of Judgments.

computationally irrelevant, we simplify matters by working with relations over Exp, the set
of equivalence classes of closed terms modulo differences in syntactic types. That is, in the
model, we consider λx : X. e = λx : Y . e, λα : κ. e = λα : κ′. e, and e A = e B, for arbitrary
X, Y , κ, κ′, A, B. This is analogous to building the model with type-erased terms, and we
will sometimes write _ in place of (irrelevant) type annotations and arguments.

3.1 Quasi-PERs
The primary technical innovation in our work is to switch from a PER semantics of types to
an interpretation based on quasi-PERs, which generalize PERs to the asymmetric case.

I Definition 1. (Quasi-PER) A quasi-PER between two sets X̂ and Ŷ is a zigzag-complete
relation R ⊆ X̂ × Ŷ : if (x, y) ∈ R, and (x′, y′) ∈ R and (x′, y) ∈ R, then (x, y′) ∈ R.

The zigzag condition is best visualized pictorially:

x y

x′ y′

So if R tells us that two elements of X̂ are related to a given y, then they are related to all
the same elements of Ŷ . Indeed, given a QPER R ⊆ X̂ × Ŷ , both R ◦R−1 is a PER on X̂,
and R−1 ◦R is a PER on Ŷ . (All QPERs arise in this way, and so this could equivalently be
taken as a definition of quasi-PERs.)

Like PERs, QPERs form a complete lattice. The meet of two QPERs is the intersection,
and indeed they are closed under arbitrary intersections. As a result, they also have arbitrary
joins, with the join

⊔
R defined as the intersection of every QPER containing

⋃
R. The join

will, in general, have more elements that the union, best illustrated by the direct construction
of the join:⊔

0R =
⋃
R⊔

k+1R =
⊔
kR∪ {(x, y′) | (x, y) ∈

⊔
kR ∧ (x′, y′) ∈

⊔
kR ∧ (x′, y) ∈

⊔
kR}⊔

R =
⋃
k∈N

⊔
kR

So the join takes the union and fills in all the missing zigzags.
Our reason for using QPERs in our semantics of types is quite simple. When giving

a relational type interpretation, we are pulled in two contrary directions. First, we want
to use the relation to model representation independence: we want to be able to say that
two different implementations of the same interface are equal. For this, we need to consider
relations between different sets. Second, we also want to use our logical relation to define
equality at each type. For this, we (seemingly) need symmetry and transitivity properties

CSL’13

436 Internalizing Relational Parametricity in the Extensional Calculus of Constructions

on the relations we use to interpret types. These apparently conflicting demands can be
reconciled by interpreting types as QPERs. While QPERs are capable of relating terms of
different types, they also induce a canonical equivalence relation, which we can use in turn
to model equality. The trick is that this equivalence relation is not a relation on terms, but
on pairs of related terms.

To see how this works, first suppose we have two well-typed terms e and t at some
type X. The fundamental property of logical relations will tell us that (e1, e2) ∈ JXK and
(t1, t2) ∈ JXK, where (e1, e2) and (t1, t2) are essentially e and t under different, but related,
environments. The model of e ≡ t : X will then be the proposition that (e1, t2) ∈ JXK.

For the relation to model symmetry, i.e., that e ≡ t implies t ≡ e for e, t : X, we will
need to show that (e1, t2) ∈ JXK (together with the knowledge that (e1, e2) and (t1, t2) are
in JXK, thanks to the fundamental property) implies (t1, e2) ∈ JXK. But this is precisely the
definition of zigzag closure!

Similarly, we can show that transitivity holds for well-typed terms. Consider the diagram:

a1 a2

b1 b2

c1 c2

Here, (a1, a2), (b1, b2), and (c1, c2) can again be thought of as programs a, b, c under different
(but related) environments. Given that (a1, b2) and (b1, c2) are in JXK, the zigzag closure
lets us derive (a1, c2) ∈ JXK, as required for transitivity.

Consequently, each QPER Q ⊆ R× S may also be viewed as a PER on the set R× S:

I Definition 2. (Canonically induced PER) Every QPER Q ⊆ R×S induces an equivalence
relation ∼Q ⊆ Q × Q (and hence a PER on R × S), defined as (a1, a2) ∼Q (b1, b2) iff the
zigzag {(a1, a2), (b1, b2), (a1, b2), (b1, a2)} ⊆ Q. (We write ∼ as shorthand for ∼Q if Q is
evident from context.)

Hence, a QPER provides a way of telling when pairs of related terms are equivalent. In this
sense, our approach reverses the usual method of building parametric models. Instead of
building a PER model of types as well as a relational model between such PERs, we use
QPERs to directly define a relational model, from which a canonical PER model can then
be derived after the fact.

3.2 A Comparison with PER Models
Readers familiar with traditional parametric models may be surprised with the QPER
structure: since the composition of a QPER with itself is a PER, shouldn’t QPERs have
merely the same expressive power as PERs? In fact, QPERs give rise to a significantly
coarser notion of program equivalence than PERs.

Traditional PER models are symmetric, and therefore cannot relate different implementa-
tions of the same type (e.g., PER models cannot show that Peano and binary representations
of the natural numbers are equivalent). This deficiency is then rectified by giving a second
relational model. However, the asymmetry inherent in QPERs allows us to relate different
implementations, without having to give two models — indeed, our model seems to validate
all of the program equivalences provable in Plotkin-Abadi logic.

N.R. Krishnaswami and D. Dreyer 437

Cand ,

R ∈ Qper(Exp,Exp)

∣∣∣∣∣∣
∀(e1, e2) ∈ R. e1 ↓ ∧ e2 ↓ ∧
∀(e1, e2) ∈ R, (e′1, e′2) ∈ Exp2.

e1 ↔∗ e′1 ∧ e2 ↔∗ e′2 =⇒ (e′1, e′2) ∈ R


Figure 3 Candidate Relations.

3.3 The Semantic Interpretation
With these preliminaries in place, we can move on to a description of the model.

3.3.1 Contexts
The interpretation of the Γ ok judgment is the set of grounding environments γ that satisfy
it. We give the interpretation in Figure 4.

An environment γ is in the interpretation of the empty context iff it is the empty
environment. It is in the interpretation of the context Γ, x : X ok iff it is an element of JΓ okK,
together with a pair (e, e′) of closed terms from the interpretation of Γ ` X : ∗. Finally,
γ is in the interpretation of the context Γ, α : κ ok iff it is an element of JΓ okK, together
with a tuple ((A,A′), R). Here, A and A′ are closed syntactic types, and R is the semantic
interpretation of the type. Note that there are no well-formedness constraints on the syntactic
types A and A′: we do not need them, since the operational semantics never examines a type
constructor, and the relation R carries all the necessary semantic constraints.

In Figure 4, we also define a notion of equivalence γ ∼Γ ok γ
′ on environments. This

relation says that the relations R and R′ to which γ and γ′ map the same type variable
α must be equal, and that pairs of terms (e1, e

′
1)/x and (e2, e

′
2)/x must lie in the same

equivalence class of the relation. The ∼Γ ok relation is indeed a PER, but actually proving
that fact can only be done after the proof of soundness of the interpretation of types and
kinds. This is due to the fact that the definition is “biased”—the second line asymmetrically
uses JΓ ` X : ∗K γ1 on the right-hand side.

In Figure 5, we give notation concerning environments that we will use in the sequel.
γ contains left- and right-bindings for each of the variables in its domain; γ1 is the left
projection of the environment, and γ2 is the right projection. We write γ(e) to indicate the
pair of terms we get from the left and right projections of γ applied to e.

3.3.2 Kinds
We give the semantics of kinds in Figure 7. We begin by giving a “pre-interpretation”
function ‖·‖ (defined in Figure 6), which gives an approximate interpretation of kinds,
without reference to term or type arguments. This interpretation is less precise than we
want, but is a useful device to simplify the argument that our main interpretation function
J·K is well-defined. That main interpretation of kinds, JΓ ` κ : kindK, on the other hand, is
relative to a context γ. The interpretation of the base kind Γ ` ∗ : kind, given in Figure 3,
is a slight restriction of the set of quasi-PERs on terms. Namely, we restrict ourselves to
quasi-PERs of terminating terms, closed under expansion and reduction.

The interpretation of the higher kind Γ ` Πα : κ. κ′ : kind is morally a currying of the
interpretation Γ, α : κ ` κ′ : kind. In particular, it is the subset of functions ‖κ‖ → ‖κ′‖, such
that (1) we ignore the syntactic part of an argument triple ((X1, X2), R) (the condition in
the first line of the interpretation in Figure 7), and (2) on any argument R ∈ JΓ ` κ : kindK γ,
the result is in JΓ, α : κ ` κ′ : kindK (γ, ((A1, A2), R)/α) (the second and third lines of the

CSL’13

438 Internalizing Relational Parametricity in the Extensional Calculus of Constructions

JΓ okK ∈ P(‖Γ‖)
J· okK = {〈〉}
JΓ, x : X okK = {(γ, (e, e′)/x) | γ ∈ JΓ okK ∧ (e, e′) ∈ JΓ ` X : ∗K γ}
JΓ, α : κ okK =

{
(γ, ((X,X ′), R)/α)

∣∣ γ ∈ JΓ okK ∧ ((X,X ′), R) ∈ Type2 × JΓ ` κ : kindK γ
}

〈〉 ∼· ok 〈〉 ⇐⇒ always
(γ1, (e1, e

′
1)/x) ∼(Γ,x:X ok) (γ2, (e2, e

′
2)/x) ⇐⇒ γ1 ∼Γ ok γ2 ∧ (e1, e

′
1) ∼JΓ`X:∗K γ1 (e2, e

′
2)

(γ1, (A,R1)/α) ∼(Γ,α:κ ok) (γ2, (B,R2)/α) ⇐⇒ γ1 ∼Γ ok γ2 ∧R1 = R2

Figure 4 Interpretations of Contexts and Environment Equivalence.

(〈〉)i = 〈〉
(γ, (e1, e2) /x)i = γi, ei/x

(γ, ((A1, A2), R)/α)i = γi, Ai/α

γ(e) = (γ1(e), γ2(e))
γ(A) = (γ1(A), γ2(A))
γ(κ) = (γ1(κ), γ2(κ))

Figure 5 Notation.

interpreting clause in Figure 7). On anything outside the dependent domain, we force the
result to be a fixed (“dummy”) element !κ′ ∈ ‖κ′‖ (the fourth line). While not technically
necessary, this last condition simplifies the proof, by freeing us of the need to quotient by the
irrelevant possible values of a kind outside the domain of the context. Similarly, elements
of Γ ` Πx : X. κ′ : kind are the currying of the interpretation Γ, x : X ` κ′ : kind, with the
condition that elements return the same result for all equivalent pairs (e1, e2) ∼X̂ (e′1, e′2),
where X̂ = JΓ ` X : ∗K γ is the relational interpretation of X.

3.3.3 Type Constructors
In Figure 8, we give the interpretation of the type constructors of our language, as a function
that takes a kinding derivation and returns an element of the appropriate semantic kind.
The first line of the definition says that the interpretation of Γ ` α : κ proceeds by looking
up α in the environment argument γ, and returning the relation component of the triple.
(Here and elsewhere, we use overbar notation to denote pairs, e.g., A denotes (A,A′).)

The interpretation of a lambda-abstraction λα : κ. A is just a function that takes an
argument in κ, and returns the result of interpreting A in an extended environment. Likewise,
a type constructor application A B takes the meaning of A, and passes it the syntax and
semantics of B. Similarly, a term abstraction λx : X. A just returns a function which takes a
pair (e, e′), and returns the interpretation of A in an extended environment, and application
A e passes γ(e), the pair of related instantiations of e, to the interpretation of A.

When the kind conversion rule is used to replace the kind of the constructor with an
equivalent one, we simply interpret the subderivation and return that as our answer. As a
result, however, we need an easy-to-prove coherence property for our semantic interpretations,
stating that the interpretation of A is the same at any kind it inhabits (see the appendix).

Next, we give the interpretations of types of base kind. The kinding interpretation
requires that such types be interpreted as relations (specifically, QPERs) between terms.
The interpretation of the function type Πx : X. Y is the set of (terminating) terms that take
related arguments in X to related results in Y , in the context extended by the argument
pair. This is essentially the usual rule for function types in logical relations, adjusted to
support dependency. The interpretation of the polymorphic type Πα : κ. X puts a pair of

N.R. Krishnaswami and D. Dreyer 439

‖∗‖ = Rel(Exp,Exp)
‖Πx : X. κ‖ = Exp2 → ‖κ‖
‖Πα : κ. κ′‖ = (Type2 × ‖κ‖)→ ‖κ′‖

‖·‖ = {〈〉}
‖Γ, x : X‖ =

{
(γ, e/x)

∣∣ γ ∈ ‖Γ‖ ∧ e ∈ Exp2}
‖Γ, α : κ‖ =

(γ, (A,R)/α)

∣∣∣∣∣∣
γ ∈ ‖Γ‖ ∧
A ∈ Type2 ∧
R ∈ ‖κ‖


!∗ = ∅
!Πx:X. κ = λ(e, e′) ∈ Exp2. !κ
!Πα:κ. κ′ = λ(A,R) ∈ Type2 × ‖κ‖. !κ′

Figure 6 Pre-Interpretations of Kinds and Contexts.

JΓ ` κ : kindK ∈ ‖Γ‖ → P(‖κ‖)

JΓ ` ∗ : kindK γ = Cand

JΓ ` Πα : κ. κ′ : kindK γ =

T ∈ ‖Πα : κ. κ′‖

∣∣∣∣∣∣∣
∀A,B,R ∈ ‖κ‖ . T (A,R) = T (B,R) ∧
∀A,R ∈ JΓ ` κ : kindK γ.
T (A,R) ∈ JΓ, α : κ ` κ′ : kindK (γ, (A,R)/α)
∧ ∀A,R 6∈ JΓ ` κ : kindK γ. T (A,R) = !κ′


JΓ ` Πx : X. κ : kindK γ = let X̂ = JΓ ` X : ∗K γ inR ∈ ‖Πx : X. κ‖

∣∣∣∣∣∣
∀e, e′ ∈ X̂. e ∼X̂ e′ =⇒ R e = R e′ ∧
∀e ∈ X̂. R e ∈ JΓ, x : X ` κ : kindK (γ, e/x) ∧
∀e 6∈ X̂.R e = !κ


Figure 7 Interpretations of Kinds.

type abstractions in the relation, if for each relation R in kind κ, their bodies are related at
the term relation for X, in the environment augmented with R for α.

A pair of terms reducing to (refl, refl) inhabit the identity type e1 =X e2 only when
γ1(e1) and γ2(e2) are related at X (alternatively, γ(e1) ∼X̂ γ(e2)). Since the identity type is
interpreted by a relation containing at most one pair of values, we validate axiom K.

4 Soundness

Our main theorem is a proof of Reynolds’ fundamental property for our language. By
induction over derivations, we can show that every well-typed term is related to itself by the
relational interpretation of its type. Our proof proceeds in two stages.
1. Using the pre-interpretation of contexts and kinds given in Figure 6, which are clearly well-

defined, we first show basic structural properties of the main semantic
interpretation—namely, that it is well-defined, that it is coherent, and that it satis-
fies semantic weakening and substitution properties. (For space reasons, we do not state
the exact lemmas in this extended abstract, but the lemmas and their proofs can be
found in the appendix.)

2. Then, we prove the fundamental property. This is a large structural induction over the
syntax of kind, type, and term derivations, as well as equality derivations. We state the
fundamental property below, and give the complete proof in the appendix.

4.1 The Pre-Interpretation and Structural Properties
The pre-interpretation of kinds ‖κ‖ (Figure 6) interprets κ as a set, by induction on the syntax
of κ, ignoring term and type indices. The pre-interpretation ‖Γ‖ merely characterizes the
shape of environments that semantically realize Γ, without placing any interesting invariants

CSL’13

440 Internalizing Relational Parametricity in the Extensional Calculus of Constructions

JΓ ` A : κK ∈ ‖Γ‖ → ‖κ‖

JΓ, α : κ,Γ′ ` α : κK γ = R if γ(α) = (A,R)

JΓ ` λα : κ. A : Πα : κ. κ′K γ = λ(B,R).
{

JΓ, α : κ ` A : κ′K (γ, (B,R)/α) if R ∈ JΓ ` κ : kindK γ
!κ′ otherwise

JΓ ` A B : [B/α]κ′K γ = JΓ ` A : Πα : κ. κ′K γ (γ(B), JΓ ` B : κK γ)

JΓ ` λx : X. A : Πx : X. κK γ = λe.

{
JΓ, x : X ` A : κK (γ, e/x) if e ∈ JΓ ` X : ∗K γ
!κ otherwise

JΓ ` A e : [e/x]κK γ = JΓ ` A : Πx : X. κK γ γ(e)
JΓ ` A : κK γ = JΓ ` A : κ′K γ (when Γ ` κ ≡ κ′ : kind)

JΓ ` Πx : X. Y : ∗K γ =

(e1, e
′
1)

∣∣∣∣∣∣
e1 ↓ ∧ e′1 ↓ ∧
∀ (e2, e

′
2) ∈ JΓ ` X : ∗K γ.

(e1 e2, e
′
1 e
′
2) ∈ JΓ, x : X ` Y : ∗K (γ, (e2, e

′
2)/x)


JΓ ` Πα : κ. X : ∗K γ =

(e, e′)

∣∣∣∣∣∣
e ↓ ∧ e′ ↓ ∧
∀A,A′, R ∈ JΓ ` κ : kindK γ.

(e A, e′ A′) ∈ JΓ, α : κ ` X : ∗K (γ, ((A,A′), R)/α)


JΓ ` e1 =X e2 : ∗K γ = {(e, e′) | e 7→∗ refl ∧ e′ 7→∗ refl ∧ (γ1(e1), γ2(e2)) ∈ JΓ ` X : ∗K γ}

Figure 8 Interpretations of Type Constructors.

on them. This turns out to be sufficient for “bootstrapping” purposes (i.e., for defining the
main semantic interpretations J·K), as well as for proving various properties like semantic
weakening and substitution. By virtue of their being hygienic and structural, these properties
hold under the assumption that the environments they quantify over merely belong to the
pre-interpretation of contexts rather than the main interpretation. As a result, we can
establish these properties independently of the fundamental theorem, and thus rely on them
freely (not just inductively) when proving the fundamental theorem.

4.2 Fundamental Property
Like the structural properties, we show the fundamental theorem by an inductive case
analysis of the typing derivation. Unlike the structural properties, the fundamental theorem
does require that environments γ be semantically well-formed (i.e., are elements of JΓ okK).
Furthermore, we will need to show that the interpretations are appropriately invariant with
respect to environment equivalence (γ ∼Γ ok γ

′). Since there are many different judgment
forms, we have to give clauses for each judgment form.

I Theorem 3 (Fundamental Property).
Suppose Γ ok, and γ, γ′ ∈ JΓ okK such that γ ∼ γ′. Then:
1. If D :: Γ ` κ : kind, then JDK γ = JDK γ′.
2. If D :: Γ ` A : κ, then JDK γ = JDK γ′.
3. If D :: Γ ` e : X then γ(e) ∼ γ′(e) ∈ JΓ ` X : ∗K γ.
4. If D :: Γ ` A : κ, then JDK γ ∈ JΓ ` κ : kindK γ.
5. If Γ ` κ ≡ κ′ : kind, then JΓ ` κ : kindK γ = JΓ ` κ′ : kindK γ′.
6. If Γ ` A ≡ A′ : κ, then JΓ ` A : κK γ = JΓ ` A′ : κK γ′.
7. If Γ ` e1 ≡ e2 : X, then γ(e1) ∼ γ′(e2) ∈ JΓ ` X : ∗K γ.

This theorem justifies the use of parametricity reasoning about our language, since all
well-typed terms are self-related by the corresponding relational interpretations of types. As
a corollary, parametricity implies consistency: since the relational interpretation of the type
Πα : ∗. α is empty, it must also be a syntactically uninhabited type.

N.R. Krishnaswami and D. Dreyer 441

5 Examples

In all of the following proofs we assume Γ is well-formed, and that environment γ inhabits
JΓ okK in order to appeal to the fundamental property.

5.1 Sums and Natural Numbers
Recall the Church encodings of some the basic data types in System F — the empty type 0 as
Πα : ∗. α, the sum type A+B as Πα : ∗. (A→ α)→ (B → α)→ α, and the natural numbers
N as Πα : ∗. α→ (α→ α)→ α. Our model validates the expected β and η properties for
these types. The proofs follow on the standard lines, and so we leave the details to the
appendix. It is also possible to use parametricity to internalize the induction principles. This
is more convenient to state with dependent records, so we will give that example next.

5.2 Dependent Records
Cartesian products can be defined in the usual way, and there are no surprises with them.
More interesting is the fact that dependent records (Σ-types) are realizable in our model.

Σx : X. Y , Πα : ∗. (Πx : X. Y → α)→ α

with the introduction form:

pair x y , λα : ∗. λk : Πx : X. Y → α. k x y

However, when it comes to eliminators, this type looks like a weak pair type, corresponding
to a type with an eliminator let (x, y) = p in e′, rather than projective eliminators like π1(p)
and π2(p). In the absence of parametricity, this is correct, but it is a remarkable fact [12]
that in a parametric model, we can realize strong eliminators for this type, defined as follows:

fst : (Σx : X. Y)→ X = λp. p X (λx. λy. x)
snd : Πp : (Σx : X. Y). [fst p/x]Y = λp. p (Σx : X. Y) pair ([fst p/x]Y) (λx. λy. y)

Note that the projective eliminator snd is not syntactically well-typed. Instead, we will use
our parametric model to show that it has the correct semantic type and equations, and so it
realizes the projective eliminator. This means it is safe to add as an axiom to our system,
and that it will have good computational behavior.
I Lemma 4. (Normal forms for eta-expanded pairs)
If (p, p′) ∈ JΓ ` Σx : X. Y : ∗K γ, then there exist terms u, u′, t, t′ such that (u, u′) ∈
JΓ ` X : ∗K γ and (t, t′) ∈ JΓ, x : X ` Y : ∗K (γ, (u, u′)/x) such that p _ pair↔∗ pair u t and
p′ _ pair↔∗ pair u′ t′.
I Lemma 5. (Weak eta for pairs)
If (p, p′) ∈ JΓ ` Σx : X. Y : ∗K γ, then (p, p′) ∼ (p _ pair, p′ _ pair).
The proofs of these two lemmas are essentially standard, and together imply that this type
correctly encodes a weak pair. We use these facts to show snd has the correct semantic type:
I Lemma 6. (Semantic well-typedness for snd)
We have that (snd, snd) ∈ JΓ ` Πq : (Σx : X. Y). [fst q/x]Y : ∗K γ.
This proof is direct, but it relies critically on the context and environment being well-formed,
since it appeals to the fundamental property in several places.
I Corollary 7. (Projective eta for Σ-types)
If (p, p′) ∈ JΓ ` Σx : X. Y : ∗K γ, then (p, p′) ∼ (pair (fst p) (snd p), pair (fst p′) (snd p′)).
This follows easily with the previous three lemmas in hand.

CSL’13

442 Internalizing Relational Parametricity in the Extensional Calculus of Constructions

5.3 Induction for the Natural Numbers
Though Church numerals are directly definable with polymorphism, their induction principle
is not. That is, there is no syntactically typable term

ind : ΠP : N→ ∗. P (z)→ (Πn : N. P (n)→ P (s n))→ Πn : N. P (n)

However, we can show that this type is realizable within our model. That is, we can show
that the term

λP, i, f, n. let o = pair z i in
let h = λp. pair (s (fst p)) (f (fst p) (snd p)) in
snd (n (Σx : N. P (x)) o h)

is related to itself at the type above. By using a dependent pair, we we can package up
the two arguments of Πn : N. P (n)→ P (s n) into a single argument, which is what the step
function in the Church encoding expects. We then use parametricity to prove that for all n,
applying the iterator n (Σx : N. P (x)) o h gives us a record whose first component is n, and
so whose second component must be of type P (n). Details are given in the appendix.

5.4 Existential Types
Our model supports the standard encoding of existential types:

∃α : κ. X(α) , Πβ : ∗. (Πα : κ. X(α)→ β)→ β

pack : Πα : κ. X(α)→ ∃α : κ. X(α)
pack = λα : κ. λx. (λβ : ∗. λk. k α x)

We can easily validate the expected β and η laws for existentials, as well as the represent-
ation independence principle, which allows existential packages with different but related
implementations to be proven equivalent. Again, the proofs are standard (e.g., see [4]), and
we leave them for the appendix. More interestingly, and perhaps surprisingly, we can show
the soundness of an existential equality principle similar to the one from Plotkin-Abadi logic
(left-to-right direction of Theorem 7 of [22]):
I Proposition 8 (Existential equality). If (e, e′) ∈ JΓ ` ∃α : κ. X : ∗K γ, then there exist
1. A,A′ ∈ Type,
2. R ∈ JΓ ` κ : kindK γ
3. (t, t′) ∈ JΓ, α : κ ` X : ∗K (γ, ((A,A′), R)/α)
such that (e, e′) ∼JΓ`∃α:κ. X:∗K γ (pack A t, pack A′ t′).
This says that any two terms (e, e′) related at existential type must be equivalent to some
packages (pack A t, pack A′ t′) that are related by a representation independence argument.

Proof. First consider the pair (e, e′), and the application (e _, e′ _). Starting from
(e, e′) ∈ JΓ ` ∃α : κ. X : ∗K γ, we instantiate the type abstraction on both sides and choose
the relational interpretation of the abstract type to be the following, defined by a QPER join:

S ,
⊔

R∈JκK γ

{
(packA e, packA′ e′)

∣∣∣∣ (A,A′) ∈ Type2 ∧
(e, e′) ∈ JΓ, α : κ ` X : ∗K (γ, ((A,A′), R)/α)

}†
We write T † to indicate the reduction and expansion-closure of a relation on terms T . Next,
we verify that (pack, pack) ∈ JΓ, β : ∗ ` Πα : κ. X → β : ∗K (γ, (_, S)/β). From this we get:

(e _ pack, e′ _ pack) ∈ S

N.R. Krishnaswami and D. Dreyer 443

Note that these terms are eta-expansions of (e, e′), which must therefore be equivalent to
(pack _ s, pack _ s′) for some s and s′.

Ideally, we would like to use the fact that (pack _ s, pack _ s′) ∈ S to conclude there
is a QPER R such that (s, s′) ∈ JΓ, α : κ ` X : ∗K (γ, (_, R)/α). However, the QPER-join
adds elements that are not in the union, so this does not immediately follow. Instead, we do
induction on the join to show that there is some (pack _ t, pack _ t′) ∼ (pack _ s, pack _ s′)
such that (t, t′) ∈ JΓ, α : κ ` X : ∗K (γ, (_, R)/α). Then, by the eta-rule for existentials, and
transitivity of ∼JΓ`∃α:κ. X:∗K γ , we can conclude that (e, e′) ∼ (pack _ t, pack _ t′). J

That is, the two terms that witness the relation are not necessarily the exact terms that
e and e′ evaluate to, but rather are equivalent to them. (The same caveat holds for the
existential equality principle in Plotkin-Abadi logic.) Because of this issue, we cannot give a
direct realizer internalizing this reasoning principle in our type theory, as we need to extend
the type theory with a form of proof-irrelevance first: knowing two existential packages are
equal does not tell us which relation witnesses that equality! This we leave for future work.

However, we can still of course add equality axioms for particular instances of representa-
tion independence. For example, consider the following two existential packages:

X , ∃α : ∗. α× (α→ α)× (α→ bool)
M : X = packN (z, s, (λn. n bool true (λk. false)))
O : X = pack bool (true, (λb. false), (λb. b))

This package exports a seed value, an operation on it, and a test that says whether the
argument is the seed or not. Since M and O behave the same, we can relate them at
existential type, and add refl : M =X N as an axiom to our system.

5.5 Quotient Types
While not an application of parametricity in the sense of theorems for free [28], we can also
show the realizability of quotient types [15] in our semantics. Quotient types, give a way to
define new types by taking an existing type, and quotienting it by an equivalence relation.

To do this, we first define the auxiliary predicate EqX , which formalizes the notion of an
equivalence relation. They are relations R : X → X → ∗, satisfying:

EqX(R) , Πx : X. R x x ×
Πx : X, y : X. R x y ↔ R y x ×
Πx : X, y : X, z : X. R x y → R y z → R x z

Next, we can show the realizability of the following datatype:

X/R , ∃β : ∗,
Σinj : X → β.

Σapp : Πγ : ∗. Πf : X → γ.

(Πa : X, a′ : X. R a a′ → f a =γ f a
′)→ (β → γ).

Πa : X, a′ : X. R a a′ → inj(a) =β inj(a′) ×
Πγ. Πf, pf, x. app γ f pf (inj x) =γ f x

What we are doing is defining an existential type, such that if X is a type and R is an
equivalence relation on it, we return a new type β and two operations inj and app.

The inj is the injection into the quotient type. It takes an X, and returns a β, with the
property that if a and a′ are related by R, then inj a = inj a′. The app function then lifts
any function f from X → γ into one on β → γ, provided that f respects the equivalence

CSL’13

444 Internalizing Relational Parametricity in the Extensional Calculus of Constructions

relation R. The last two lines give the equational theory of the quotient type. First, if a
and a′ are related by R, then inj a = inj a′. Second, if we lift a function f to operate on
quotients, and we pass it the argument inj x, then the application of the lifted function
should equal f x.

Proof. (Sketch) The proof of the soundness of the axiom proceeds quite directly. First, we
define the following relation:

S = {(e1, e
′
2) | ∃e′1, e2, q. (e1, e

′
1) ∈ JXK ∧ (e2, e

′
2) ∈ JXK ∧ q ∈ JRK (e1, e

′
1) (e2, e

′
2)}

As an abuse of notation, we suppress most of the context and environment arguments from
the definition. By making use of the fact that we have a proof of EqX(R), we can show that
S is a QPER, and then use it as our witness for showing the existential type is inhabited.
We can define inj and app as:

inj = λx : X. x
app = λγ : ∗. λf : X → γ, pf : . . . , x : X. f x

and give two dummy realizers for the proofs:
equiv = λa, a′, r. refl
appok = λγ. λf, pf, x. refl

With these, we can then show the semantic well-typedness of the term

packX pair inj (pair app (pair equiv appok))

by showing it is related to itself at the witness relation S. Note that this term is not
well-typed in the syntactic system, but that it does inhabit the appropriate semantic type.
In terms of the operational semantics of the underlying realizers, quotienting is a no-op: no
representation changes are needed to protect the quotient type’s invariant: data abstraction
is enough. J

5.6 A Note on the Constructivity of the Axioms
In this section, we have frequently introduced axioms into the type theory, justified by
reasoning about the model construction. Readers may worry that these axioms may ruin
the computational properties of the language, by blocking reduction. Fortunately, all of the
axioms we introduce have computational content. Since our model is a realizability-style
construction, we show that an axiom is sound by giving untyped terms inhabiting the semantic
interpretation of that axiom’s type. As a result, all the axioms we add are constructive, since
they necessarily have realizers equipping them with computational content.

6 Discussion and Related Work

6.1 Quasi-PERs
The earliest use of quasi-PERs to to model data abstraction we have found is by Tennent and
Takeyama [26], who were studying program equivalences in the context of data refinement.
In this e-mail, they sketched a logical relations model of the simply-typed lambda calculus
in terms of quasi-PERs (which they called “zigzag-complete relations”). The term “quasi-
PER” was coined by Hofmann [16], who gave a logical relations model of a simply-typed
functional language, augmented with first-order state (i.e., references to integers). Though
this language had no polymorphism, it did have effect annotations, and so Hofmann needed

N.R. Krishnaswami and D. Dreyer 445

to prove representation independence to show the equivalence of programs with possibly-
differing sets of effects (i.e., “effect masking” [19]). Our work greatly extends the reach of
quasi-PERs to support polymorphism, higher kinds, and type dependency, showing that the
simple idea of quasi-PERs scales up even to a wide array of type-theoretic features.

Hutton and Voermans [18] studied a relational version of Squiggol [9], in which the
category of sets and relations was replaced with the category of PERs and saturated relations
In this setting, they observed that the functional relations were precisely the difunctionals.
Many useful properties of quasi-PERs are worked out in this paper, even though their
application of them is rather different from our own.

6.2 Semantic Models for Parametricity

The standard approach to building parametric models is to begin with a non-parametric
model of the language, and then give a second interpretation of types as relations over
the non-parametric semantic types. This approach is used in Bainbridge et al. [5], and an
abstract characterization of it was given by Rosolini [24] using categories of reflexive graphs,
which both Dunphy and Reddy [13] and Birkedal et al. [10] have developed further.

Our model does not immediately fit into this framework, since we give a relational se-
mantics directly, without first building a non-parametric model. This represents a considerable
simplification of the metatheory: we only need one semantics, rather than two.

Both Vytiniotis and Weirich [27] and Atkey [4] give parametric models of Fω, which is
equivalent to the calculus of constructions minus dependency. The work in [27] also gives
a term model, and as such they need to prove a coherence theorem for the interpretation
of kinds. In contrast, Atkey [4] does not need to prove such a coherence theorem, since he
defines his relation over extensional semantic objects. He does, however, need to prove the
identity extension lemma, to connect his base semantics with his relational semantics.

The way we set things up means our proofs are overall a bit easier than either of these
two approaches (modulo the additional overhead imposed by type dependency). In [27],
great care is taken to ensure that their relations only mention well-formed type constructors.
We do not bother maintaining this invariant: since the operational semantics never examines
a type argument, there is no need for the model to worry if a type argument is well formed
or not. By moving to a realizability-based view, we also make it possible to add realizable
axioms: we can add any axioms we want, as long as those axioms have (possibly syntactically
ill-typed) lambda terms as realizers for their computational behavior.

Even stating the identity extension property for higher kinds requires equipping each
kind with a distinguished notion of identity relation, to connect the base and relational
interpretations. We do not need to do this, since we only have a relational semantics. We
still need to ensure that our interpretation of higher kinds respects the equalities (quasi-PER)
on types, but found this easier to work with than identity extension, since we only need to
consider the base kind.

Concurrently with our work, Atkey, Ghani and Johann [3] have extended the reflexive
graph model of parametricity to a model of dependent types using the families fibration
over Set. This approach naturally handles parametricity properties for indexed data types,
something we have not yet looked at in our model. A natural next step would be to redo
their construction using relations over terms rather than sets, which would permit a direct
comparison of quasi-PERs with the standard model of parametricity.

CSL’13

446 Internalizing Relational Parametricity in the Extensional Calculus of Constructions

6.3 Internalizations of Parametricity
In recent work, Bernardy et al. [6] demonstrate how to generalize Reynolds’ relational
interpretation to systems of dependent types, and show that for sufficiently rich type theories,
the image of the relational interpretation lies within the original type theory. This gives a
syntax-directed embedding of a parametric interpretation of type theory into itself.

The translational approach is wholly syntactic, as opposed to our more semantic approach.
One benefit of their method is that it yields concrete proof terms for parametricity properties.
The two principal limitations of the translational approach are that (1) parametricity
properties only apply to closed terms, and (2) there is no way to use parametricity to
internalize program equivalences as equalities.

In [7], Bernardy and Moulin relax the first restriction by extending the syntax of type
theory with operators to represent appeals to parametricity. Though the syntactic modific-
ations they make to type theory are quite complex, the fundamental idea is quite simple:
they are using indices to indicate the “color” of different subterms [8], and parametricity
lets them show that different colors do not interfere with one another. However, the second
restriction remains, and intentionally so. They support inductive definitions in the style of
Coq and Agda, which permits internalizing the conversion relation by defining the Martin-Löf
identity type as an inductive type. This inherently limits what equality can contain: the
Church booleans cannot be shown to be equal to true or false, unless the conversion relation
contains it. This approach might be described as “Strachey-style” [25], where the uniformity
of parametric computations allows deriving powerful and elegant erasure properties.

The strengths and weaknesses of our approach are reversed. We do not give full proof
terms, due to our use of equality reflection, but we can support parametricity arguments for
open terms, and can internalize parametric program equivalences as equalities. Our approach
can be viewed as “Reynolds-style” parametricity, where the emphasis is on the relational
character of parametricity, leading to a focus on representation independence and eta-laws.
A natural question is whether it is possible to combine the strengths of these two approaches,
and gain the decidability advantages of their approach while retaining the simple interface to
parametricity we can support.

References
1 S.F. Allen, M. Bickford, R.L. Constable, R. Eaton, C. Kreitz, L. Lorigo, and E. Moran.

Innovations in computational type theory using Nuprl. Journal of Applied Logic, 4(4), 2006.
2 Thorsten Altenkirch. Constructions, Inductive Types and Strong Normalization. PhD

thesis, University of Edinburgh, November 1993.
3 Bob Atkey, Neil Ghani, and Patricia Johann. A relationally parametric model of dependent

type theory. Unpublished draft, 2013.
4 Robert Atkey. Relational parametricity for higher kinds. In CSL, 2012.
5 E. S. Bainbridge, Peter J. Freyd, Andre Scedrov, and Philip J. Scott. Functorial poly-

morphism. Theor. Comput. Sci., 70(1), 1990.
6 Jean-Philippe Bernardy, Patrik Jansson, and Ross Paterson. Parametricity and dependent

types. In ICFP, 2010.
7 Jean-Philippe Bernardy and Guilhem Moulin. A computational interpretation of paramet-

ricity. In LICS, 2012.
8 Jean-Philippe Bernardy and Guilhem Moulin. Type-theory in color. In ICFP, 2013.
9 Richard Bird and Oege de Moor. Algebra of Programming. International Series in Comput-

ing Science, Vol. 100. Prentice Hall, 1997.

N.R. Krishnaswami and D. Dreyer 447

10 Lars Birkedal, Rasmus Ejlers Møgelberg, and Rasmus Lerchedahl Petersen. Domain-
theoretical models of parametric polymorphism. Theor. Comput. Sci., 388(1-3), 2007.

11 Thierry Coquand and Gerard Huet. The calculus of constructions. Inf. Comput., 76(2-3),
February 1988.

12 Dan Doel. Proving induction principles via free theorems from parametricity. Agda code at
http://code.haskell.org/~dolio/agda-share/html/ParamInduction.html, 4 April 2012.

13 Brian P. Dunphy and Uday S. Reddy. Parametric limits. In LICS, 2004.
14 Robert Harper. Constructing type systems over an operational semantics. Journal of

Symbolic Computation, 14(1):71–84, 1992.
15 Martin Hofmann. A simple model for quotient types. In TLCA, 1995.
16 Martin Hofmann. Correctness of effect-based program transformations. In O. Grumberg,

T. Nipkow, and C. Pfaller, editors, Formal Logical Methods for System Security and Cor-
rectness, volume 14. IOS Press, 2008.

17 Martin Hofmann and Thomas Streicher. The groupoid interpretation of type theory. In
Twenty-five Years of Constructive Type Theory. Oxford University Press, 1998.

18 Graham Hutton and Ed Voermans. Making Functionality More General. In Glasgow
Workshop on Functional Programming, Skye, Scotland, 1992.

19 J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In POPL, 1988.
20 Per Martin-Löf. Intuitionistic type theory. Bibliopolis Naples, Italy, 1984.
21 James McKinna. Why dependent types matter. In POPL, 2006.
22 Gordon D. Plotkin and Martín Abadi. A logic for parametric polymorphism. In TLCA,

1993.
23 John C. Reynolds. Types, abstraction and parametric polymorphism. In IFIP Congress,

1983.
24 E. P. Robinson and Giuseppe Rosolini. Reflexive graphs and parametric polymorphism. In

LICS, 1994.
25 C. Strachey. Fundamental concepts in programming languages. HOSC, 13(1), 2000 (original

lectures in 1967).
26 Robert Tennent and Makoto Takeyama. What is a data refinement relation? E-mail to

data-refinement@etl.gp.jp, January 1996.
27 Dimitrios Vytiniotis and Stephanie Weirich. Parametricity, type equality, and higher-order

polymorphism. J. Functional Programming, 20(2), March 2010.
28 Philip Wadler. Theorems for free! In FPCA, 1989.

A Appendix

A.1 Typing Rules
In this section, we give the full typing rules for the language we consider. In Figures 9 and 10,
we give the well-formedness conditions for contexts, kinds, types, and terms. In Figures 11
and 12, we give the equality rules for kinds, types, and terms.

A.2 Metatheory
In this section, we give the full statements of the omitted lemmas needed to prove the
fundamental theorem (Section 4.2). Their full proofs are given in the online extended
appendix. These lemmas build up to proving the well-definedness, coherence, weakening,
and substitution properties of context, kind, and type interpretations, starting with their
pre-interpretations.

CSL’13

448 Internalizing Relational Parametricity in the Extensional Calculus of Constructions

Since the pre-interpretation is defined solely on syntax, we can prove the following two
lemmas about it:

I Lemma 9 (Kind Pre-interpretations Ignore Term Substitutions).
For all kinds κ and terms e, ‖κ‖ = ‖[e/x]κ‖.

I Lemma 10 (Kind Pre-interpretations Ignore Type Substitutions).
For all kinds κ and types A, ‖κ‖ = ‖[A/α]κ‖.

This implies the following trivial coherence property.

I Theorem 11 (Kind Coherence). If Γ ` κ ≡ κ′ : kind, then ‖κ‖ = ‖κ′‖.

Once we have this property in place, we can prove the following well-definedness conditions
for the interpretations of the context, kind, and type judgements.

I Theorem 12 (Well-Definedness).
1. If D :: Γ ok, then JDK ∈ P(‖Γ‖).
2. If D :: Γ ` κ : kind, then JDK ∈ ‖Γ‖ → P(‖κ‖).
3. If D :: Γ ` A : κ, then JDK ∈ ‖Γ‖ → ‖κ‖.

Now that we know that we have a well-formed definition, we can prove coherence property
for the kind and type interpretations.

I Theorem 13 (Coherence for Kind and Type Interpretations).
1. If D :: Γ ` κ : kind and D′ :: Γ ` κ : kind and γ ∈ ‖Γ‖, then JDK γ = JD′K γ.
2. If D :: Γ ` A : κ and D′ :: Γ ` A : κ′ and γ ∈ ‖Γ‖, then JDK γ = JD′K γ.

This immediately implies the following corollary:

I Corollary 14 (Coherence for Context Interpretation).
If D :: Γ ok and D′ :: Γ ok, then JD :: Γ okK = JD′ :: Γ okK.

Now we can prove weakening and substitution.

I Theorem 15 (Weakening of Kinding and Typing).
1. If D :: Γ0,Γ2 ` κ : kind then there exists D′ :: Γ0,Γ1,Γ2 ` κ : kind such that

for all (γ0, γ1, γ2) ∈ ‖Γ0,Γ1,Γ2‖, we have JDK (γ0, γ2) = JD′K (γ0, γ1, γ2).
2. If D :: Γ0,Γ2 ` A : κ then there exists D′ :: Γ0,Γ1,Γ2 ` A : κ such that

for all (γ0, γ1, γ2) ∈ ‖Γ0,Γ1,Γ2‖, we have JDK (γ0, γ2) = JD′K (γ0, γ1, γ2).

I Theorem 16 (Substitution in Pre-Contexts).
1. If Γ ` e : X, and (γ, γ(e)/x, γ′) ∈ ‖Γ, x : X,Γ′‖, then (γ, γ′) ∈ ‖Γ, [e/x]Γ′‖.
2. If Γ ` A : κ, and (γ, (γ(A), R)/α, γ′) ∈ ‖Γ, α : κ,Γ′‖, then (γ, γ′) ∈ ‖Γ, [A/α]Γ′‖.

I Theorem 17 (Substitution of Terms).
Suppose that Γ ` e : X and (γ, γ(e)/x, γ′) ∈ ‖Γ, x : X,Γ′‖. Then:
1. For all D :: Γ, x : X,Γ′ ` κ0 : kind, there exists D′ :: Γ, [e/x]Γ′ ` [e/x]κ0 : kind

such that JDK (γ, γ(e)/x, γ′) = JD′K (γ, γ′).
2. For all D :: Γ, x : X,Γ′ ` C : κ0, there exists D′ :: Γ, [e/x]Γ′ ` [e/x]C : [e/x]κ0

such that JDK (γ, γ(e)/x, γ′) = JD′K (γ, γ′).

I Theorem 18 (Substitution of Types).
Suppose that D1 :: Γ ` A : κ and (γ, (γ(A), JD1K γ)/α, γ′) ∈ ‖Γ, α : κ,Γ′‖. Then:
1. For all D :: Γ, α : κ,Γ′ ` κ0 : kind, there exists D′ :: Γ, [A/α]Γ′ ` [A/α]κ0 : kind

such that JDK (γ, (γ(A), JD1K γ)/α, γ′) = JD′K (γ, γ′).
2. For all D :: Γ, α : κ,Γ′ ` C : κ0, there exists D′ :: Γ, [A/α]Γ′ ` [A/α]C : [A/α]κ0

such that JDK (γ, (γ(A), JD1K γ)/α, γ′) = JD′K (γ, γ′).

N.R. Krishnaswami and D. Dreyer 449

Γ ok

· ok
Γ ok Γ ` X : ∗

Γ, x : X ok
Γ ok Γ ` κ : kind

Γ, α : κ ok

Γ ` κ : kind

Γ ` ∗ : kind
Γ ` X : ∗ Γ, x : X ` κ : kind

Γ ` Πx : X. κ : kind
Γ ` κ : kind Γ, α : κ ` κ′ : kind

Γ ` Πα : κ. κ′ : kind

Figure 9 Context and Kind Well-formedness.

Γ ` A : κ

Γ ` κ : kind Γ, α : κ ` Y : ∗
Γ ` Πα : κ. Y : ∗

Γ ` X : ∗ Γ, x : X ` Y : ∗
Γ ` Πx : X. Y : ∗

Γ ` e : X Γ ` e′ : X
Γ ` e =X e′ : ∗

α : κ ∈ Γ
Γ ` α : κ

Γ ` X : ∗ Γ, x : X ` A : κ
Γ ` λx : X. A : Πx : X. κ

Γ ` κ : kind Γ, α : κ ` A : κ′

Γ ` λα : κ. A : Πα : κ. κ′

Γ ` A : Πx : X. κ Γ ` e : X
Γ ` A e : [e/x]κ

Γ ` A : Πα : κ. κ′ Γ ` A′ : κ
Γ ` A A′ : [A′/α]κ′

Γ ` A : κ′ Γ ` κ ≡ κ′ : kind
Γ ` A : κ

Γ ` e : X

x : X ∈ Γ
Γ ` x : X

Γ ` e : Y Γ ` X ≡ Y : ∗
Γ ` e : X

Γ ` κ : kind Γ, α : κ ` e : Y
Γ ` λα : κ. e : Πα : κ. Y

Γ ` e : Πα : κ. Y Γ ` A : κ
Γ ` e A : [A/α]Y

Γ, x : X ` e : Y
Γ ` λx : X. e : Πx : X. Y

Γ ` e : Πx : X. Y Γ ` e′ : X
Γ ` e e′ : [e′/x]Y

Γ ` e1 ≡ e2 : X
Γ ` refl : e1 =X e2

Figure 10 Type and Term Well-formedness.

CSL’13

450 Internalizing Relational Parametricity in the Extensional Calculus of Constructions

Γ ` κ ≡ κ′ : kind

Γ ` e ≡ e′ : X Γ, x : X ` κ : kind
Γ ` [e/x]κ ≡ [e′/x]κ : kind

Γ ` A ≡ A′ : κ Γ, α : κ ` κ′ : kind
Γ ` [A/α]κ′ ≡ [A′/α]κ′ : kind

Γ ` κ1 ≡ κ′1 : kind Γ, α : κ1 ` κ2 ≡ κ′2 : kind
Γ ` Πα : κ1. κ2 ≡ Πα : κ′1. κ′2 : kind

Γ ` X ≡ X ′ : ∗ Γ, x : X ` κ ≡ κ′ : kind
Γ ` Πx : X. κ ≡ Πx : X ′. κ′ : kind

Γ ` κ : kind
Γ ` κ ≡ κ : kind

Γ ` κ ≡ κ′ : kind
Γ ` κ′ ≡ κ : kind

Γ ` κ1 ≡ κ2 : kind Γ ` κ2 ≡ κ3 : kind
Γ ` κ1 ≡ κ3 : kind

Γ ` A ≡ A′ : κ

Γ ` e ≡ e′ : X Γ, x : X ` A : κ
Γ ` [e/x]A ≡ [e′/x]A : [e/x]κ

Γ ` A ≡ A′ : κ Γ, α : κ ` B : κ′

Γ ` [A/α]B ≡ [A′/α]B : [A/α]κ′

Γ ` A ≡ A′ : κ′ Γ ` κ ≡ κ′ : kind
Γ ` A ≡ A′ : κ

Γ ` A : κ
Γ ` A ≡ A : κ

Γ ` A ≡ A′ : κ
Γ ` A′ ≡ A : κ

Γ ` A1 ≡ A2 : κ Γ ` A2 ≡ A3 : κ
Γ ` A1 ≡ A3 : κ

Γ ` κ ≡ κ′ : kind Γ, α : κ ` X ≡ X ′ : ∗
Γ ` Πα : κ. X ≡ Πα : κ′. X ′ : ∗

Γ ` X ≡ X ′ : kind Γ, x : X ` Y ≡ Y ′ : ∗
Γ ` Πx : X. Y ≡ Πx : X ′. Y ′ : ∗

Γ ` κ ≡ κ′ : kind Γ, α : κ ` B ≡ B′ : κ′′

Γ ` λα : κ. B ≡ λα : κ′. B′ : Πα : κ. κ′′
Γ ` X ≡ X ′ : ∗ Γ, x : X ` B ≡ B′ : κ
Γ ` λx : X. B ≡ λx : X ′. B′ : Πx : X. κ

Γ ` C ≡ C ′ : Πα : κ. κ′ Γ ` A ≡ A′ : κ
Γ ` C A ≡ C ′ A′ : [A/α]C

Γ ` C ≡ C ′ : Πx : X. κ Γ ` e ≡ e′ : X
Γ ` C e ≡ C ′ e′ : [e/x]κ

Γ ` λx : X. A : Πx : X. κ Γ ` e : X
Γ ` (λx : X. A) e ≡ [e/x]A : [e/x]κ

Γ ` λα : κ. A : Πα : κ. κ′ Γ ` A′ : κ′

Γ ` (λα : κ. A) A′ ≡ [A′/α]A : [A′/α]κ′

Γ, x : X ` A x ≡ A′ x : κ Γ ` A : Πx : X. κ Γ ` A′ : Πx : X. κ
Γ ` A ≡ A′ : Πx : X. κ

Γ, α : κ ` A α ≡ A′ α : κ′ Γ ` A : Πα : κ. κ′ Γ ` A′ : Πα : κ. κ′

Γ ` A ≡ A′ : Πα : κ. κ′

Figure 11 Kind and Type Equality.

N.R. Krishnaswami and D. Dreyer 451

Γ ` e1 ≡ e2 : X

Γ ` ep : e =X e′

Γ ` e ≡ e′ : X
Γ ` e ≡ e′ : Y Γ ` X ≡ Y : ∗

Γ ` e ≡ e′ : X

Γ ` e0 ≡ e′0 : Y Γ, x : Y ` e : X
Γ ` [e0/x]e ≡ [e′0/x]e : [e0/x]X

Γ ` A ≡ A′ : κ Γ, α : κ ` e : X
Γ ` [A/α]e ≡ [A′/α]e : [A/α]X

Γ ` e : X
Γ ` e ≡ e : X

Γ ` e ≡ e′ : X
Γ ` e′ ≡ e : X

Γ ` e1 ≡ e2 : X Γ ` e2 ≡ e3 : X
Γ ` e1 ≡ e3 : X

Γ ` λα : κ. e : Πα : κ. X Γ ` A : κ
Γ ` (λα : κ. e)A ≡ [A/α]e : [A/α]X

Γ, α : κ ` e α ≡ e′ α : Y Γ ` e : Πα : κ. Y Γ ` e′ : Πα : κ. Y
Γ ` e ≡ e′ : Πα : κ. Y

Γ ` λx : X. e : Πx : X. Y Γ ` e′ : X
Γ ` (λx : X. e) e′ ≡ [e′/x]e : [e′/x]Y

Γ, x : X ` e x ≡ e′ x : Y Γ ` e : Πx : X. Y Γ ` e′ : Πx : X. Y
Γ ` e ≡ e′ : Πx : X. Y

Γ ` e : e1 =X e2 Γ ` e′ : e1 =X e2

Γ ` e ≡ e′ : e1 =X e2

Γ ` κ ≡ κ′ : kind Γ, α : κ ` e ≡ e′ : Y
Γ ` λα : κ. e ≡ λα : κ′. e′ : Πα : κ. Πα : κ. Y

Γ ` X ≡ X ′ : ∗ Γ, x : X ` e ≡ e′ : Y
Γ ` λx : X. e ≡ λx : X ′. e′ : Πx : X. Y

Γ ` e ≡ e′ : Πα : κ. Y Γ ` A ≡ A′ : κ
Γ ` e A ≡ e′ A′ : [A/α]Y

Γ ` t ≡ t′ : Πx : X. Y Γ ` e ≡ e′ : X
Γ ` t e ≡ t′ e′ : [e/x]Y

Figure 12 Term Equality.

CSL’13

Modal Logic and Distributed Message Passing
Automata
Antti Kuusisto

Institute of Computer Science
University of Wrocław
antti.j.kuusisto@gmail.com

Abstract
In a recent article, Lauri Hella and co-authors identify a canonical connection between modal logic
and deterministic distributed constant-time algorithms. The paper reports a variety of highly
natural logical characterizations of classes of distributed message passing automata that run in
constant time. The article leaves open the question of identifying related logical characterizations
when the constant running time limitation is lifted. We obtain such a characterization for a class
of finite message passing automata in terms of a recursive bisimulation invariant logic which we
call modal substitution calculus (MSC). We also give a logical characterization of the related
class A of infinite message passing automata by showing that classes of labelled directed graphs
recognizable by automata in A are exactly the classes co-definable by a modal theory. A class
C is co-definable by a modal theory if the complement of C is definable by a possibly infinite set
of modal formulae. We also briefly discuss expressivity and decidability issues concerning MSC.
We establish that MSC contains the Σµ1 fragment of the modal µ-calculus in the finite. We also
observe that the single variable fragment MSC1 of MSC is not contained in MSO, and that the
SAT and FINSAT problems of MSC1 are complete for PSPACE.

1998 ACM Subject Classification F.1.1 Models of Computation, F.4.1 Mathematical Logic,
C.2.4 Distributed Systems

Keywords and phrases Modal logic, message passing automata, descriptive characterizations,
distributed computing

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.452

1 Introduction

Distributed computing concerns itself with the investigation of computation processes carried
out by computer networks. In addition to performing local computation tasks, computers or
processors in the network communicate with each other by sending messages back and forth.
A distributed system can be modelled by a graph, where the nodes correspond to individual
computers and the edges are communication channels through which messages can be sent,
see [10]. For example, a distributed system can easily determine the sets of nodes that are
directly linked to another node that has a local property P: each node with the property P
simply sends a message “I have property P” to each of of its neighbours. Much of the theory
of distributed computing abstracts away details related to local computation, concentrating
on investigations concerning the network topology.

In the recent article [7], Hella and co-authors identify a highly natural connection between
modal logic [2] and local distributed algorithms. While modal logic has been successfully
applied in the distributed computing context before, the perspective in [7] is a radical
departure from most of the traditional approaches, where the domain elements of a Kripke
model correspond to possible states of a distributed computation process. In the framework

© Antti Kuusisto;
licensed under Creative Commons License CC-BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca; pp. 452–468

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.452
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

A. Kuusisto 453

of [7], a distributed system is a Kripke model, where the domain elements are individual
computers and the arrows of the accessibility relation are communication channels. While
such an interpretation is of course always possible, it turns out to be particularly helpful
in the study of weak models of distributed computing (see [7, 11]). The article [7] identifies
descriptive characterizations for a comprehensive collection of complexity classes of distributed
computing in terms of modal logics. For example, it is shown that the class SB(1) is captured—
in the sense of descriptive complexity theory [6, 4, 8]— by ordinary modal logic ML. A graph
property is in SB(1) iff it can be defined by a formula of ML. Various other characterizations
are also obtained. For example the class MB(1) is captured by graded modal logic, i.e.,
a modal logic which can count the number of accessible nodes. Furthermore, the logical
characterizations enable the use of logical tools in the investigation of distributed complexity
classes. The article [7] provides a complete classification of the investigated complexity classes
with respect to their computational capacities. The proofs behind the related separation
results make significant use of logical methods. In particular, the notion of bisimulation
turns out to be very useful in this context.

While there are various characterization results in classical descriptive complexity theory,
separation results are rare, and related questions have proved very difficult. Therefore the
separation results in [7] are rather delightful, since they nicely demonstrate the potential of
the descriptive complexity approach in the framework of non-classical computing.

A local algorithm [11] is a distributed constant-time algorithm that distributed systems
carry out by executing a fixed finite number of synchronized communication rounds. Our
example above concerning the property P is an example of a trivial local algorithm. The
characterizations in [7] concern local algorithms carried out by message passing automata
that run in constant time. The article leaves open the question of identifying related logical
characterizations when the constant running time limitation is lifted. We obtain such a char-
acterization for a class of finite message passing automata in terms of a recursive bisimulation
invariant logic which we call modal substitution calculus (MSC). The characterization extends
directly to multimodal contexts and to systems with graded modalities, and thereby provides
a nice characterization of cellular automata. We also give a logical characterization of the
related class A of general (possibly infinite) message passing automata by showing that classes
of labelled directed graphs recognizable by automata in A are exactly the classes co-definable
by a modal theory. A class C is is co-definable by a modal theory if the complement of C is
definable by a possibly infinite set of modal formulae. In distributed computing attention is
often directed towards understanding issues concerning network topologies of distributed
systems, and therefore it is often convenient to study infinite message passing automata with
even non-recursive local computation capacities. See [5] for further elaborations on related
matters.

In addition to logical characterizations, we briefly discuss expressivity and decidability
issues concerning MSC. We establish that MSC contains the Σµ

1 fragment of the modal
µ-calculus in the finite. We also observe that the single-variable fragment MSC1 of MSC is
not contained in MSO, and that the SAT and FINSAT problems of MSC1 are complete for
PSPACE.

The aim of this article is two-fold. On one hand, we wish to investigate further the
intimate link between distributed computing and modal logic identified in [7]. Advancing the
understanding of this link can ideally be beneficial to both research on distributed computing
and research on (modal) logic. Bringing together these two seemingly unrelated research
fields could turn out to be a fruitful and refreshing research programme. For example, it
seems that the local model [10, 9] of distributed computing is intimately related to hybrid

CSL’13

454 Modal Logic and Distributed Message Passing Automata

logic [1]. On the other hand, we aim to promote the potential of the descriptive complexity
approach in the framework on non-classical computing.

2 Preliminaries

Let S be an arbitrary set. We let
⋃
S denote the set of elements x such that x ∈ L for some

L ∈ S. We let Pow(S) denote the power set of S.
Let Π be an arbitrary set of proposition symbols p ∈ Π. The language ML(Π) of ordinary

modal logic is generated by the grammar

ϕ ::= > | p | ¬ϕ | (ϕ ∧ ϕ) | ♦ϕ,

where p ∈ Π and > is a logical constant symbol. Formulae in ML(Π) are called Π-formulae.
We define the abbreviations ⊥ = ¬> and � = ¬♦¬. We also use the symbols ∨, → and ↔
in the usual way.

A Kripke model of the vocabulary Π (Π-model) is a structure M = (W,R, V), where W
is a nonempty set, called the domain of the model, R ⊆ W ×W is a binary relation, and
V : Π→ Pow(W) is a valuation function. The semantics of ML(Π) is defined with respect
to pointed Π-models (M,w), where M = (W,R, V) is a Kripke model of the vocabulary Π
and w ∈W a point or a node in the domain W of the Kripke model. For p ∈ Π, we define
(M,w) |= p iff w ∈ V (p). We also define (M,w) |= >. For the connectives, we define

(M,w) |= ¬ϕ ⇔ (M,w) 6|= ϕ,

(M,w) |= (ϕ ∧ ψ) ⇔
(
(M,w) |= ϕ and (M,w) |= ψ

)
,

(M,w) |= ♦ϕ ⇔ ∃v ∈W
(
wRv and (M, v) |= ϕ

)
.

The set of subformulae of a formula ϕ is defined in the standard way and denoted by
SUBF(ϕ). The modal depth md(ϕ) of a formula is defined recursively such that md(>) =
md(p) = 0, md(¬ψ) = md(ψ), md(ψ∧χ) = max{md(ψ),md(χ)}, and md(♦ψ) = md(ψ)+1.
In a Kripke model

(
(W,R, V), w

)
, the set succ(w) of successors of w is the set { u ∈W | wRu }.

The set { u ∈W | uRw } is the set of predecessors of w. If ϕ is a modal formula and M a
Kripke model, we let ||ϕ||M to the the set of points w such that (M,w) |= ϕ.

Let Π be a set of proposition symbols. Define the set S := { Xi | i ∈ N } of schema
variable symbols. Let K ⊆ S. The set of (Π,K)-schemata of modal substitution calculus
(MSC) is the set generated by the grammar

ϕ ::= > | p | Xi | ¬ϕ | (ϕ ∧ ϕ) | ♦ϕ,

where p ∈ Π, Xi ∈ K, and > is a logical constant symbol. A terminal clause of the vocabulary
Π of modal substitution calculus is a string of the form Xi(0) : − ϕ, where Xi ∈ S is a
schema variable and ϕ a formula of ML(Π). An iteration clause of the vocabulary Π of modal
substitution calculus is a string of the form Xi : − ψ, where Xi ∈ S is a schema variable
and ψ is a (Π,K)-schema for some set K ⊆ S of schema variable symbols. The symbol Xi of
a terminal clause Xi(0) : − ϕ or an iteration clause Xi : − ψ is called the head predicate of
the clause, and the formulae ϕ and ψ are the bodies of the clauses. Let K = {Y1, ..., Yn } ⊆ S
be a finite nonempty set of n distinct schema variable symbols. A (Π,K)-program Λ of MSC
consists of a pair

A. Kuusisto 455

Y1(0) : − ϕ1 Y1 : − ψ1
. .

. .

. .

Yn(0) : − ϕn Yn : − ψn

of lists of clauses, where the first list contains n terminal clauses Yi(0) : − ϕi of the
vocabulary Π, and the other list contains n iteration clauses Yi : − ψi such that each ψi
is a (Π,K)-schema. Furthermore, the (Π,K)-program Λ specifies a set A ⊆ K of appointed
predicates, so formally Λ is a triple (G, I,A), where G and I are the lists of terminal clauses
and iteration clauses, respectively, and A is an arbitrary subset of K specifying the appointed
predicates of Λ. A program Λ is a Π-program if Λ is a (Π,K)-program for some K ⊆ S.

We let ATOM(Λ) be the set of symbols s ∈ Π ∪ {>} that occur in the clauses of Λ. The
set HEAD(Λ) is the set of schema variable symbols that occur in the clauses of Λ. The set
SUBS(ϕ) of subschemata of a schema ϕ is defined in the obvious way. The set SUBS(Λ)
of subschemata of Λ is defined to be the smallest set such that HEAD(Λ) ⊆ SUBS(Λ) and
SUBS(ϕ) ⊆ SUBS(Λ) for each ϕ that occurs as a body of any clause (terminal or iteration)
of Λ. We define SUBF(Λ) to be the set of all schemata ϕ ∈ SUBS(Λ) that do not contain
any schema variable symbols, i.e., SUBF(Λ) is the set of subformulae of Λ.

For each variable Yi ∈ HEAD(Λ) of Λ, we let Y 0
i denote the right hand side of the

terminal clause Yi(0) : − ϕi. Recursively, assume we have defined an ML(Π)-formula Y ni for
each Yi ∈ HEAD(Λ). Let Yj : − ϕj be the iteration clause corresponding to the variable Yj .
We define Y n+1

j to be the ML(Π)-formula obtained by simultaneously replacing each variable
Yi of the schema ϕj by the formula Y ni . Let ϕ be an arbitrary schema in SUBS(Λ). We let
ϕn denote the ML(Π)-formula obtained from ϕ by simultaneously replacing each variable
Yi ∈ HEAD(Λ) in ϕ by the formula Y ni .

Let (M,w) be a pointed Π-model and Λ a Π-program of MSC. We define that (M,w) |= Λ
if there is an appointed variable Y of Λ such that for some n ∈ N, we have (M,w) |= Y n.
We say that Λ is true in (M,w), or that (M,w) satisfies Λ.

Let Π be a finite set of proposition symbols. A message passing automaton A of the
vocabulary Π is a tuple (Q,M, π, δ, µ, F). The object Q is a nonempty set of states. The set
Q can be finite or countably infinite. The object M is a nonempty set of messages. The set
M can be finite or countably infinite. The object π : Pow(Π) −→ Q is an initial transition
function that determines the beginning state of A. The object δ : Pow(M)×Q −→ Q is a
transition function that constructs a new state in Q based on a set N ∈ Pow(M) of messages
received and a previous state in Q. The object µ : Q −→ M is a message construction
function that constructs a message for the automaton to send forward based on the state
of the automaton. The object F ⊆ Q is a set of accepting states of the automaton. A
message passing automaton such that the sets Q and M are finite, is a finite message passing
automaton FMPA. (MPA stands for a message passing automaton.)

A message passing automaton A of a vocabulary Π is run on a Kripke model
(
W,R, V) of

the vocabulary Π, considered to be a distributed system. Intuitively, we put a copy (A,w) of
the automaton to each node w ∈W . Then, each automaton (A,w) first scans the propositional
information of the node w, and then makes a transition to a beginning state based on this.
Then, the automata (A, u), where u ∈W , begin running in synchronized steps. During each
step, each automaton first broadcasts a message to each of its neighbours with respect to R,
and then updates its state based on the set of messages it receives from its neighbours. More
formally, the automaton A and Kripke model (W,R, V) define a synchronized distributed

CSL’13

456 Modal Logic and Distributed Message Passing Automata

system which executes an omega-sequence of communication rounds defined as follows. Each
round n ∈ N defines a global configuration fn : W −→ Q. The configuration of the zeroth
round is the function f0 such that f0(w) = π({ p ∈ Π | w ∈ V (p) }). Recursively, assume
that we have defined fn, and call N =

{
m ∈ M | m = µ(fn(v)), v ∈ succ(w)

}
. Then

fn+1(w) = δ
(
N, fn(w)

)
.

Notice that the automaton A at node w receives messages from its successors, so messages
flow in the direction opposite to the arrows (or pairs) of the relation R. This may seem
strange at first, and indeed a more natural definition would stipulate that messages flow
in the direction of the arrows. The reason behind the choice here is mainly technical, and
related to the technical relationship between message passing automata and modal logic.
An alternative approach would be to consider modal logics with only backwards looking
diamonds, or to define a Kripke structure M corresponding to a distributed system S such
that M would be obtained from S by reversing the arrows of S.

When we talk about the state of an automaton A at the node w in round n, we mean
the state fn(w). We define that an automaton A accepts a pointed model (M,w) if there
exists some n ∈ N such that fn(w) ∈ F , in other words, if the automaton A at w visits an
accepting state during the execution of the distributed system. Note that the automaton A
at w does not stop passing messages even if it has visited an accepting state. Therefore this
model of computing can be regarded as a kind of a semidecision framework for distributed
computation: an accepting node will eventually know it has accepted, but a nonaccepting
node can keep running forever without knowledge of acceptance. These kinds of asymmetric
acceptance conditions are common in distributed computing (see for example [7]). It would
be natural to consider even more complex acceptance conditions, for example we could define
a subset G ⊆ Q of rejecting states. For the sake of space limitations, we shall not consider
such possibilities here. However, the considerations below can easily be adapted to deal with
various more complex acceptance scenarios.

3 MSC captures FMPA-recognizability

3.1 Specifying FMPAs in MSC
Let (M,w) = ((W,R, V), w) be a pointed model and A an automaton of the same vocabulary
as M . Let Q be the set of states of A. For each u ∈W , let A

(
(M,u), n) denote the state of

A at u in round n. The set { q ∈ Q | q = A
(
(M,u), n

)
for some u ∈ succ(w) } is called the

set of states defined by the successors of w in round n.

I Theorem 1. Let Π be a finite set of proposition symbols. Let A be a finite message passing
automaton of the vocabulary Π. There exists a Π-program ΛA of MSC such that for all
pointed Π-models (M,w), the automaton A accepts (M,w) iff (M,w) |= ΛA.

Proof. Let A = (Q,M, π, δ, µ, F). Define a formula variable Xq for each state q ∈ Q. For
each q ∈ Q, define the terminal clause

Xq(0) : −
∨

P ⊆Π, π(P) = q

(∧
p∈P

p ∧
∧

p∈Π\P

¬ p
)
. (1)

(Note that
∨
∅ = ⊥ and

∧
∅ = >.) Let S ⊆ Q be a set of states. Define the schema

ϕS :=
∧
q∈S
♦Xq ∧

∧
q 6∈S

¬♦Xq.

A. Kuusisto 457

If S ⊆ Q is a set of states, we denote the set { µ(q) | q ∈ S } by µ(S). We defineM(q, q′) to
be the set of exactly all sets S ⊆ Q such that δ(µ(S), q) = q′. For each state q′ ∈ Q, define
the iteration clause

Xq′ : −
∧
q∈Q

(
Xq →

∨
S ∈M(q,q′)

ϕS
)
. (2)

The program ΛA is the Π-program defined by the terminal clauses given by Equation 1 above
and the iteration clauses given by Equation 2. The set of appointed predicates is the set of
symbols Xq such that q ∈ F .

Let M = (W,R) be a Kripke model of the vocabulary Π. We will show that for each
node v ∈W , each state q ∈ Q, and each round n ∈ N, the state of the automaton A at node
v in round n is q if and only if (M,v) |= Xn

q . This is shown by an induction on n. The case
for n = 0 follows immediately by the definition of the initial transition function π and the
definition of Xq(0).

Assume that (M,w) |= Xn+1
q′ . Thus

(M,w) |=
∧
q∈Q

(
Xn
q →

∨
S ∈M(q,q′)

ϕnS
)
.

Let r ∈ Q be the state of A at w in round n. By the induction hypothesis, we have
(M,w) |= Xn

r , and therefore
(M,w) |=

∨
S ∈M(r,q′)

ϕnS .

Thus (M,w) |= ϕnS for some S ∈M(r, q′). By the definition of schema ϕS , each formula Xn
q

such that q ∈ S is satisfied by some successor of w, and there exists no successor of w that
satisfies a formula Xn

q such that q 6∈ S. Therefore, by the induction hypothesis, the set of
states defined by succ(w) in round n is S. Since S ∈M(r, q′), we conclude that the state of
the automaton at w in round n+ 1 is q′.

For the converse, assume that the state of A at w in round n+ 1 is q′. Let r be the state
of A at w in round n. Let S be the set of states defined by succ(w) in round n. Hence, by
the induction hypothesis, we have (M,w) |= ϕnS . We also have S ∈M(r, q′) by the definition
of r, q′ and S. Therefore

(M,w) |=
∨

S ∈M(r,q′)

ϕnS .

We also know, by the induction hypothesis, that for all q ∈ Q, (M,w) |= Xn
q iff q = r.

Therefore
(M,w) |=

∧
q∈Q

(
Xn
q →

∨
S ∈M(q,q′)

ϕS
)
,

and thus (M,w) |= Xn+1
q′ , as desired. J

3.2 Simulating MSC programs by FMPAs
Let Λ be a program of MSC, and let HEAD(Λ) = {Y1, ..., Ym }. For each n ∈ N, we define
md(Λ, n) = max{md(Y n1), ...,md(Y nm) }. We let mdt(Λ) denote the maximum modal depth
of the body formulae in the terminal clauses of Λ. Similarly, we let mdi(Λ) denote the
maximum modal depth of the body schemata of the iteration clauses of Λ.

Define scope(Λ, 0) = md(Λ, 0) and scope(Λ, n + 1) = scope(Λ, n) + max{1,mdi(Λ)}. If
(M,w) |= Λ, then the scope of Λ at w is the number scope(Λ, n), where n is the smallest

CSL’13

458 Modal Logic and Distributed Message Passing Automata

number k ∈ N such that we have (M,w) |= Y ki for some appointed predicate Yi. If (M,w) 6|= Λ,
the scope of Λ at w is ω. Scope is a relatively natural spatio-temporal complexity measure
for the execution of an MSC program, when the execution is done by first evaluating each
formula Y 0

i , then each formula Y 1
i , and so on. Notice that even if mdi(Λ) = 0, scope is

increased after each iteration step. It is of course possible to define other natural complexity
measures for MSC programs.

Let A be an automaton and (M,w) a pointed model. If A accepts (M,w), then the
decision time of A at w is the smallest number k such that the state of A at w is an accepting
state in round k. If A does not accept (M,w), the decision time of A at w is ω.

Next we show how to define, when given a program Λ of MSC, a corresponding automaton
AΛ that accepts exactly the pointed models (M,w) such that (M,w) |= Λ. Furthermore,
the decision time of AΛ at each node w will be equal to the scope of Λ at w. Roughly, the
states of AΛ will encode finite sets of formulae satisfied by nodes of the underlying model.
For more of the intuition behind the definition of AΛ, see the proof of Theorem 2.

Let Π be a finite set of proposition symbols and fix a Π-program Λ of MSC. We assume
that mdi(Λ) ≥ 1. The pathological case where mdi(Λ) = 0 is discussed separately.

The set QΛ of states of AΛ contains all pairs (S,m), wherem ≤ mdi(Λ)−1 is a nonnegative
integer and S ⊆ SUBS(Λ) a set of schemata ϕ such that md(ϕ) ≤ m. The set QΛ also
contains all triples (S,m, f), where m ≤ mdt(Λ)− 1 is a nonnegative integer, S ⊆ SUBF(Λ)
is a set of formulae ϕ such that md(ϕ) ≤ m, and f is simply a symbol indicating that
this state encodes sets of formulae in SUBF(Λ). There are no other states in QΛ. The set
of messages MΛ is Pow

(
SUBS(Λ)

)
. (Some states and some messages may turn out to be

irrelevant for the computation of AΛ.)
We then define the transition function π of AΛ. Assume first that mdt(Λ) ≥ 1. Let

P ⊆ Π be a set of proposition symbols. Define a set U ⊆ SUBF(Λ) to be the smallest set
such that the following conditions hold.
1.
(
P ∩ SUBF(Λ)

)
∪
(
{>} ∩ SUBF(Λ)

)
⊆ U .

2. For each ¬ϕ ∈ SUBF(Λ) of the modal depth 0, ¬ϕ ∈ U iff ϕ 6∈ U .
3. For each (ϕ ∧ ψ) ∈ SUBF(Λ) of the modal depth 0, (ϕ ∧ ψ) ∈ U iff both ϕ ∈ U and

ψ ∈ U .
We define π(P) = (U, 0, f). If mdt(Λ) = 0, we define π(P) for the set P ⊆ Π of proposition
symbols differently. First define a set T ⊆ SUBF(Λ) to be the smallest set such that the
following conditions hold.
1.
(
P ∩ SUBF(Λ)

)
∪
(
{>} ∩ SUBF(Λ)

)
⊆ T .

2. For each formula ¬ϕ ∈ SUBF(Λ) of the modal depth 0, we have ¬ϕ ∈ T iff ϕ 6∈ T .
3. For each formula (ϕ ∧ ψ) ∈ SUBF(Λ) of the modal depth 0, we have (ϕ ∧ ψ) ∈ T iff both

ϕ ∈ T and ψ ∈ T .
Now let T ′ be the set of symbols in ATOM(Λ) ∪HEAD(Λ) of the modal depth 0 such that
the following conditions hold.
1. For each X ∈ HEAD(Λ), we have X ∈ T ′ iff X0 ∈ T .
2. For each ϕ ∈ ATOM(Λ), we have ϕ ∈ T ′ iff ϕ ∈ T .
Define U to be the set of schemata in SUBS(Λ) of the modal depth 0 such that the following
conditions hold.
1. For each ϕ ∈ ATOM(Λ) ∪ HEAD(Λ), ϕ ∈ U iff ϕ ∈ T ′.
2. For each schema ¬ϕ ∈ SUBS(Λ) of the modal depth 0, ¬ϕ ∈ U iff ϕ 6∈ U .
3. For each schema (ϕ ∧ ψ) ∈ SUBS(Λ) of the modal depth 0, (ϕ ∧ ψ) ∈ U iff both ϕ ∈ U

and ψ ∈ U .

A. Kuusisto 459

We define π(P) = (U, 0).
We then define the transition function δ of AΛ. Let (S,m) be a state of AΛ. Let N ⊆MΛ

be a set of messages. Assume that m < mdi(Λ)− 1. Assume there exists a smallest set U
such that the following conditions hold.
1. For each schema ϕ ∈ SUBS(Λ) such that md(ϕ) < m+ 1, we have ϕ ∈ U iff ϕ ∈ S.
2. For each schema ♦ϕ ∈ SUBS(Λ) such that md(♦ϕ) ≤ m+1, we have ♦ϕ ∈ U iff ϕ ∈

⋃
N .

3. For each schema (ϕ ∧ ψ) ∈ SUBS(Λ) such that md(ϕ ∧ ψ) ≤ m+ 1, we have (ϕ ∧ ψ) ∈ U
iff both ϕ ∈ U and ψ ∈ U .

4. For each schema ¬ϕ ∈ SUBS(Λ) such that md(¬ϕ) ≤ m+ 1, we have ¬ϕ ∈ U iff ϕ 6∈ U .
We then define δ

(
N, (S,m)

)
to be the state (U,m + 1). If no set U satifying the above

conditions exists, we define δ
(
N, (S,m)

)
arbitrarily.

If m = mdi(Λ)− 1, we define δ
(
N, (S,m)) differently. Assume there exists a smallest set

T ⊆ SUBS(Λ) such that the following conditions hold. (If no such set T exists, δ((S,m), N)
is defined arbitrarily.)
1. For each schema ϕ ∈ SUBS(Λ) such that md(ϕ) < m+ 1, we have ϕ ∈ T iff ϕ ∈ S.
2. For each schema ♦ϕ ∈ SUBS(Λ) such that md(♦ϕ) ≤ m+1, we have ♦ϕ ∈ T iff ϕ ∈

⋃
N .

3. For each schema (ϕ ∧ ψ) ∈ SUBS(Λ) such that md(ϕ ∧ ψ) ≤ m+ 1, we have (ϕ ∧ ψ) ∈ T
iff both ϕ ∈ T and ψ ∈ T .

4. For each schema ¬ϕ ∈ SUBS(Λ) such that md(¬ϕ) ≤ m+ 1, we have ¬ϕ ∈ T iff ϕ 6∈ T .
Now define a set T ′ ⊆ HEAD(Λ) ∪ ATOM(Λ) such that the following conditions hold.
1. For each X ∈ HEAD(Λ), we have X ∈ T ′ iff ϕ ∈ T , where ϕ is the body of the iteration

clause for X.
2. For each ϕ ∈ ATOM(Λ), we have ϕ ∈ T ′ iff ϕ ∈ T .
Define U to be the set of schemata of the modal depth 0 in SUBS(Λ) such that the following
conditions hold.
1. For each ϕ ∈ ATOM(Λ) ∪ HEAD(Λ), ϕ ∈ U iff ϕ ∈ T ′.
2. For each ¬ϕ ∈ SUBS(Λ) of the modal depth 0, ¬ϕ ∈ U iff ϕ 6∈ U .
3. For (ϕ ∧ ψ) ∈ SUBS(Λ) of the modal depth 0, (ϕ ∧ ψ) ∈ U iff both ϕ ∈ U and ψ ∈ U .
Then δ(N, (S,m)) is defined to be the state (U, 0).

Let (S,m, f) be state of AΛ. Let N ⊆ MΛ be a set of messages. Assume that m <

mdt(Λ)− 1. Assume there exists a smallest set U such that the following conditions hold.
1. For each formula ϕ ∈ SUBF(Λ) such that md(ϕ) < m+ 1, we have ϕ ∈ U iff ϕ ∈ S.
2. For each formula ♦ϕ ∈ SUBF(Λ) such that md(♦ϕ) ≤ m + 1, we have ♦ϕ ∈ U iff

ϕ ∈
⋃
N .

3. For each formula (ϕ∧ψ) ∈ SUBF(Λ) such that md(ϕ∧ψ) ≤ m+ 1, we have (ϕ∧ψ) ∈ U
iff both ϕ ∈ U and ψ ∈ U .

4. For each formula ¬ϕ ∈ SUBF(Λ) such that md(¬ϕ) ≤ m+ 1, we have ¬ϕ ∈ U iff ϕ 6∈ U .
We then define δ

(
N, (S,m, f)

)
to be the state (U,m+ 1, f). If no set U satifying the above

conditions exists, we define δ
(
N, (S,m, f)

)
arbitrarily.

If m = mdt(Λ)−1, we define δ
(
N, (S,m, f)) differently. Assume there exists a smallest set

T ⊆ SUBS(Λ) such that the following conditions hold. (If no such set T exists, δ(N, (S,m, f))
is defined arbitrarily.)
1. For each formula ϕ ∈ SUBF(Λ) such that md(ϕ) < m+ 1, we have ϕ ∈ T iff ϕ ∈ S.
2. For each formula ♦ϕ ∈ SUBF(Λ) such that md(♦ϕ) ≤ m+1, we have ♦ϕ ∈ T iff ϕ ∈

⋃
N .

3. For each formula (ϕ∧ψ) ∈ SUBF(Λ) such that md(ϕ∧ψ) ≤ m+ 1, we have (ϕ∧ψ) ∈ T
iff both ϕ ∈ T and ψ ∈ T .

4. For each formula ¬ϕ ∈ SUBF(Λ) such that md(¬ϕ) ≤ m+ 1, we have ¬ϕ ∈ T iff ϕ 6∈ T .
Now define a set T ′ ⊆ HEAD(Λ) ∪ ATOM(Λ) such that the following conditions hold.

CSL’13

460 Modal Logic and Distributed Message Passing Automata

1. For each X ∈ HEAD(Λ), we have X ∈ T ′ iff X0 ∈ T .
2. For each ϕ ∈ ATOM(Λ), we have ϕ ∈ T ′ iff ϕ ∈ T .
Define U to be the set of schemata in SUBS(Λ) of the modal depth 0 such that the following
conditions hold.
1. For each ϕ ∈ ATOM(Λ) ∪ HEAD(Λ), ϕ ∈ U iff ϕ ∈ T ′.
2. For each ¬ϕ ∈ SUBS(Λ) of the modal depth 0, ¬ϕ ∈ U iff ϕ 6∈ U .
3. For all (ϕ ∧ ψ) ∈ SUBS(Λ) of the modal depth 0, (ϕ ∧ ψ) ∈ U iff both ϕ ∈ U and ψ ∈ U .
Then δ(N, (S,m, f)) is defined to be the state (U, 0).

The message construction function µ of AΛ is defined such that µ
(
(S,m)

)
= S and

µ
(
(S,m, f)

)
= S. The set F of accepting states of AΛ is the set of states (S, 0) such that

we have Y ∈ S for some appointed head predicate of Λ.
We have now defined the automaton AΛ, assuming that mdi(Λ) 6= 0. The definition of

AΛ in the pathological case where mdi(Λ) = 0 is discussed in the proof of Theorem 2.

I Theorem 2. Let Π be a finite set of proposition symbols. Let Λ be a Π-program of MSC.
Let (M,w) be a pointed Π-model. We have (M,w) |= Λ if and only if AΛ accepts (M,w).
Furthermore, the scope of Λ at w equals the decision time of AΛ at w.

Proof. We begin by describing the idea of the proof. Let W be the domain of M . The
automata AΛ at the nodes u ∈W first compute the extensions ||X0||M of formulae X0 for
each X ∈ HEAD(Λ). The automata then operate in cycles of communication rounds. During
a cycle, the automata compute the extensions of formulae Xn+1 based on the extensions of
formulae Xn computed during the previous cycle. The communication steps during the cycle
contribute to the information about extensions of formulae of greater and greater modal
depths. The proof will proceed by induction on the iteration number n, and each step of the
induction will be a subinduction on modal depth of schemata. We assume that mdi(Λ) 6= 0.
The case where mdi(Λ) = 0 will be briefly discussed at the end of the proof.

Define a set C0 such that C0 = {−1} × {0, ...,mdt(Λ)− 1} if mdt(Λ) 6= 0, and C0 = ∅ if
mdt(Λ) = 0. Define also C1 = N× {0, ...,mdi(Λ)− 1}. Let C = C0 ∪ C1. Order the pairs in
C lexicographically, i.e., (i, j) < (i′, j′) ⇔ (i < i′ ∨ (i = i′ ∧ j < j′)). Let <C denote this
order. Let g be the isomorphism from (C,<C) to (N, <). We let Qv(i, j) denote the set of
schemata ϕ occurring in the state (S,m) or (S,m, f) of the automaton AΛ at node v in the
round g((i, j)). Observe that Qv(i, j) contains schemata of the modal depth up to j.

We will show by induction on n that the equivalence

(M, v) |= ϕn iff ϕ ∈ Qv
(
n, 0
)

holds for all v ∈W , all n ∈ N, and all schemata ϕ ∈ SUBS(Λ) of the modal depth 0. Each
step of the induction is a subinduction on the modal depth of schemata.

Let n = 0. Some of the details of the case n = 0 are straightforward or rather similar to
corresponding details of the case n > 0, and therefore omitted here. (See the appendix for
the omitted cases.) The case n > 0 is discussed in detail, and the omitted details for the
case n = 0 can be easily constructed from the corresponding arguments for the case n > 0.

Assume that mdt(Λ) 6= 0. For the case mdt(Λ) = 0, see the appendix. Call Φ =
SUBF(Λ) ∩ Π. By the definition of the transition function π, we have (M, v) |= p ⇔ p ∈
π
(
{ p ∈ Π | v ∈ V (p) }

)
for each p ∈ Φ. Therefore, for each atomic formula ϕ ∈ ATOM(Λ),

we have (M,v) |= ϕ ⇔ ϕ ∈ Qv(−1, 0). Hence, since every formula ϕ ∈ SUBF(Λ)
of the modal depth 0 is a Boolean combination of formulae in ϕ ∈ ATOM(Λ), we have
(M,v) |= ϕ ⇔ ϕ ∈ Qv(−1, 0) for all ϕ ∈ SUBF(Λ) of the modal depth 0.

A. Kuusisto 461

We then need to establish that the equivalence (M,v) |= ψ ⇔ ψ ∈ Qv
(
−1,mdt(Λ)− 1

)
holds for each v ∈W and each ψ ∈ SUBF(Λ) such that md(ψ) ≤ mdt(Λ)− 1. If mdt(Λ) = 1,
we are done. If not, the equivalence can be proved by induction on the modal depth of
formulae. We shall omit the details here (see the appendix). Once we have established
that (M,v) |= ψ ⇔ ψ ∈ Qv(−1,mdt(Λ)− 1), we can show that therefore (M,v) |= ϕ0 ⇔
ϕ ∈ Qv

(
0, 0) for all schemata ϕ ∈ SUBS(Λ) of the modal depth 0 and all v ∈ W , thereby

concluding the argument for the case n = 0. We omit the details here (see the appendix).
Now assume the claim of the main induction holds for n ∈ N, and consider the case for

n+ 1. By the induction hypothesis, we have (M,v) |= ϕn ⇔ ϕ ∈ Qv(n, 0) for all v ∈ W
and all ϕ ∈ SUBS(Λ) of the modal depth 0. We need to prove that

(M, v) |= ϕn+1 ⇔ ϕ ∈ Qv(n+ 1, 0)

for all v ∈W and all schemata in SUBS(Λ) of the modal depth 0. In order to show this, we
shall first establish that (M,v) |= ϕn ⇔ ϕ ∈ Qv(n, k) for all v ∈W and all ϕ ∈ SUBS(Λ)
of the modal depth k such that 0 ≤ k ≤ mdi(Λ)− 1. This is proved by by induction on the
modal depth k of schemata.

Since we already know that (M, v) |= ϕn ⇔ ϕ ∈ Qv(n, 0) for all v ∈ W and all
ϕ ∈ SUBS(Λ) of the modal depth 0, the basis of the subinduction on modal depth is clear. In
the case mdi(Λ) = 1, this suffices, and no subinduction is actually needed. Therefore assume
that mdi(Λ) > 1 and let k ∈ { 0 , ... , mdi(Λ)−2 }. Assume that (M,v) |= ϕn ⇔ ϕ ∈ Qv(n, k)
for all schemata in SUBF(Λ) of the modal depth up to k and all v ∈W . Let ϕ ∈ SUBS(Λ)
be a schema of the modal depth k + 1. The schema ϕ is a Boolean combination of schemata
♦ψ, where md(ψ) ≤ k. It therefore suffices to show that for each such schema ♦ψ, we have
(M,v) |= ♦ψn ⇔ ♦ψ ∈ Qv(n, k + 1).

Assume first that (M, v) |= ♦ψn. Therefore some successor u of v satisfies (M,u) |= ψn.
By the induction hypothesis, ψ ∈ Qu(n, k). Therefore the automaton AΛ at u sends a message
L such that ψ ∈ L to its predecessors in round g((n, k + 1)). Thus ♦ψ ∈ Qv(n, k + 1).

Conversely, assume that ♦ψ ∈ Qv(n, k + 1). Therefore v receives a message L such that
ψ ∈ L from some successor u in round g((n, k + 1)) = g((n, k)) + 1. Hence ψ ∈ Qu(n, k). By
the induction hypothesis, (M,u) |= ψn. Therefore (M,v) |= ♦ψn.

We have now established that (M,v) |= ϕn ⇔ ϕ ∈ Qv(n, k) for all v ∈ W and all
ϕ ∈ SUBS(Λ) of the modal depth k such that 0 ≤ k ≤ mdi(Λ)− 1. We shall next show that
therefore (M, v) |= ϕn+1 ⇔ ϕ ∈ Qv(n + 1, 0) for all v ∈ W and all ϕ ∈ SUBS(Λ) of the
modal depth 0.

Recall the definition of the sets T , T ′ and U in the definition of δ on input states (S,m)
in the case where m = mdi(Λ)− 1. We shall first show that (M,w) |= ϕn ⇔ ϕ ∈ T holds
for each ϕ ∈ SUBS(Λ) such that md(ϕ) ≤ mdi(Λ).

Let ϕ ∈ SUBS(Λ) be a schema such that md(ϕ) ≤ mdi(Λ). The schema ϕ is a Boolean
combination of schemata ♦ψ, where md(ψ) < mdi(Λ). It therefore suffices to show that for
each such schema ♦ψ, we have (M,v) |= ♦ψn ⇔ ♦ψ ∈ T. This is shown by an argument
analogous to the corresponding argument discussed above. (See the appendix.)

We can now conclude that (M,v) |= Xn+1 ⇔ X ∈ T ′ for all head symbols X ∈
HEAD(Λ), and also (M,v) |= ϕ ⇔ ϕ ∈ T ′ for all atomic formulae ϕ ∈ ATOM(Λ). Therefore,
since every schema ϕ ∈ SUBS(Λ) of the modal depth 0 is a Boolean combination of formulae
in ATOM(Λ) and head symbols in HEAD(Λ), we have (M,v) |= ϕn+1 ⇔ ϕ ∈ Qv(n+ 1, 0)
for all v ∈W and all ϕ ∈ SUBS(Λ) of the modal depth 0, as required.

Finally, if mdi(Λ) = 0, it is easy to define an automaton Λ that satisfies the requirements
of the Theorem. The number |HEAD(Λ)| of different head predicates is finite, so there

CSL’13

462 Modal Logic and Distributed Message Passing Automata

are finitely many different truth distributions that the set of head predicates can obtain.
Therefore, once we have computed the extensions of the formulae X0, we can directly check
at each node, without further communication with neighbouring automata, whether any
iteration Xn of any appointed head predicate X of Λ is true. This holds because the Boolean
combinations obtained by the head predicate set must begin repeating periodically after
sufficiently many iterations. J

4 Modal theories capture complements of MPA-recognizable classes

Let Π be a finite set of proposition symbols. Let C be the class of pointed Π-models. A
class K ⊆ C of pointed Π-models is said to be definable by a modal theory if there exists a
set Φ of modal Π-formulae (Π-theory) such that for all (M,w) ∈ C, we have (M,w) |= Φ iff
(M,w) ∈ K. By (M,w) |= Φ we mean that (M,w) |= ϕ for all ϕ ∈ Φ. A class K′ ⊆ C is said
to be co-definable by a modal theory Φ if C \ K′ is definable by the modal theory Φ.

Let Π be a finite set of proposition symbols. The set T0 of Π-types of the modal depth 0
is defined to be the set containing a conjunction∧

p∈S
p ∧

∧
p 6∈S

¬ p

for each set S ⊆ Π, and no other formulae. We assume some canonical bracketing and
ordering of conjuncts, so that there is exactly one conjunction for each set S in T0. Note
also that

∧
∅ = >. The type τ(M,w),0 of a pointed Π-model (M,w) is the unique formula ϕ

in T0 such that (M,w) |= ϕ.
Assume then that we have defined the set Tn of Π-types of the modal depth n. Assume

that Tn is finite, and assume also that each pointed Π-model (M,w) satisfies exactly one
type τ(M,w),n of the modal depth n. Define

τ(M,w),n+1 := τ(M,w),n ∧
∧
{ ♦τ | τ ∈ Tn, (M,w) |= ♦τ }

∧
∧
{ ¬♦τ | τ ∈ Tn, (M,w) 6|= ♦τ }.

The formula τ(M,w),n+1 is the Π-type of the modal depth n + 1 of (M,w). We assume
some standard ordering of conjuncts and bracketing, so that if two types τ(M,w),n+1 and
τ(N,v),n+1 are equivalent, they are actually the same formula. We define Tn+1 to be the set
{ τ(M,w),n+1 | (M,w) is a pointed Π-model }. We observe that the set Tn+1 is finite, and that
for each pointed Π-model (M,w), there is exactly one type τ ∈ Tn+1 such that (M,w) |= τ .

It is easy to show that each Π-formula ϕ of modal logic is equivalent to the disjunction of
exactly all Π-types τ of the modal depth md(ϕ) such that τ |= ϕ. By τ |= ϕ we mean that
for all pointed Π-models (M,w), we have (M,w) |= τ ⇒ (M,w) |= ϕ. (Note that

∨
∅ = ⊥).

Define a type automaton A for Π to be message passing automaton whose set of states is
exactly the set T of all Π-types. The set of messages is also the set T . Furthermore, the
initial transition function π is defined such that the state of A at (M,w) in round n = 0 is
the type τ(M,w),0. Let N be a set of types. If all types in N are types of the same modal
depth n, and if τ is a type of the modal depth n, we define δ(N, τ) to be the type

τn+1 = τ ∧
∧
σ∈N

♦σ ∧
∧

σ ∈Tn\N

¬♦σ.

On other inputs, δ is defined arbitrarily. The message construction function µ is defined
such that µ(τ) = τ . The set of accepting states can be defined differently for different type

A. Kuusisto 463

automata A of the vocabulary Π. It is easy to see that the state of any type automaton A at
(M,v) in round n is τ iff the type of the modal depth n of (M,v) is τ .

I Theorem 3. Let Π be a finite set of proposition symbols. Each class of pointed Π-models
co-definable by a modal Π-theory is recognizable by a message passing automaton.

Proof. Let K be a class of Π-models co-definable by a modal Π-theory Φ. Let ϕ be an
arbitrary formula in Φ. The formula ¬ϕ is equivalent to the disjunction of Π-types τ of
the modal depth md(ϕ) such that τ |= ¬ϕ. Let D(¬ϕ) denote the disjunction. We write
τ ∈ D(¬ϕ) in order to indicate that τ is one of the disjuncts of D(¬ϕ).

Let T denote the set of exactly all Π-types. Define a Π-type automaton A such that the
set of accepting states is the set { τ ∈ T | τ ∈ D(¬ϕ) for some ϕ ∈ Φ }. It is straightforward
to show that the automaton accepts exactly the class K of pointed Π-models. J

I Theorem 4. Let Π be a finite set of proposition symbols. Each class of pointed Π-models
recognizable by a message passing automaton is co-definable by a modal theory.

Proof. Let (M,w) be a pointed Π-model. Let A be a message passing automaton whose
set of proposition symbols is Π. Let n ∈ N. We let A

(
(M,w), n

)
denote the state of the

automaton A at the node w in round n. We shall begin the proof by showing that the
following statements are equivalent for all pointed Π-models (M,w) and (N, v) and all n ∈ N.
1. The models (M,w) and (N, v) satisfy exactly the same Π-type of the depth n.
2. A

(
(M,w), k

)
= A

(
(N, v), k

)
for each k ≤ n and each message passing automaton A

whose set of proposition symbols is Π.
We prove the claim by induction on n. For n = 0, the claim holds trivially by definition of
the transition function π.

Let (M,w) and (N, v) be pointed Π-models that satisfy exactly the same Π-types of
the modal depth n + 1. Let A be an automaton and δ the transition function of A. Call
qn = A

(
(M,w), n

)
and qn+1 = A

(
(M,w), n+ 1

)
. Let σ1, ..., σk enumerate the Π-types of the

modal depth n and assume that

τ(M,w),n+1 = τ(M,w),n ∧
∧

i∈{1,...,m}

♦σi ∧
∧

i∈{m+1,...,k}

¬♦σi

Since (M,w) and (N, v) satisfy the same Π-type τ(M,w),n+1 of the depth n+ 1, they also
satisfy the same Π-type τ(M,w),n of the depth n. By the induction hypothesis, we therefore
conclude that A

(
(N, v), n

)
= qn. Also, since (M,w) and (N, v) satisfy the same type of the

depth n+ 1, the set of types of the depth n satisfied by the successors of w is the same as
the set satisfied by the successors of v. That set is {σ1, ..., σm } in both cases. Therefore, by
the induction hypothesis, the set of states defined by succ(w) in round n is exactly the same
as the set of states defined by succ(v) in round n. Therefore the set of messages received by
w in round n+ 1 is exactly the same as the set of messages received by v in round n+ 1.
Therefore, since A

(
(N, v), n

)
= qn, we conclude that A

(
(N, v), n+ 1

)
= qn+1, as required.

Let (M,w) and (N, v) be pointed Π-models and assume that A
(
(M,w), k

)
= A

(
(N, v), k

)
for each k ≤ n+ 1 and each message passing automaton A whose set of proposition symbols
is Π. Since this is true for an arbitrary automaton A of the vocabulary Π, this holds for
any type automaton of the vocabulary Π. Hence (M,w) and (N, v) satisfy exactly the same
Π-types of the depth n+ 1.

We have now established equivalence of the conditions 1 and 2 above. We are ready
to show that each class of pointed Π-models recognizable by an automaton can also be
co-defined by a modal theory.

CSL’13

464 Modal Logic and Distributed Message Passing Automata

Let A be an arbitrary Π-automaton. Let C be the class of exactly all pointed Π-models
accepted by A. Define T to be the collection of exactly all Π-types. Let Φ denote the set
of exactly all Π-types τ ∈ T such that for some n, the type τ is the Π-type of the depth
n of some pointed Π-model (M,w), and furthermore, the automaton A accepts (M,w) in
round n. Define the infinite disjunction

∨
Φ. We shall establish that for all pointed Π-models

(M,w), we have (M,w) |=
∨

Φ iff A accepts (M,w).
Assume that (M,w) |=

∨
Φ. Thus (M,w) |= τn for some type τn of the depth n of some

pointed model (M ′, w′) accepted by A in round n. Now (M,w) and (M ′, w′) satisfy the
same type τn, so by the equivalence of the conditions 1 and 2 above, (M,w) and (M ′, w′)
must both be accepted by A in round n.

Assume that (M,w) is accepted by the automaton A. The pointed model (M,w) is
accepted in some round n, and thus the type of the depth n of (M,w) is one of the disjuncts
of Φ. Therefore (M,w) |=

∨
Φ. The modal theory { ¬ τ | τ ∈ Φ } co-defines the class C of

pointed Π-models accepted by A. J

5 Expressivity and Decidability

In this section we very briefly investigate expressivity and decidability issues concerning MSC.
We first investigate the single variable fragment MSC1 of MSC. This fragment contains the
programs Λ such that |HEAD(Λ)| = 1. In the finite, the single variable fragment MSC1 can
simulate formulae of the µ-calculus of the type µX.ϕ, where ϕ is free of fixed point operators
(see the proof of Proposition 7). Also, MSC1 is not contained in MSO (proof of Proposition
6). It turns out that decidability and PSPACE-completeness of the satisfiability and finite
satisfiability problems of MSC1 follow rather trivially by the following delightful argument.

I Proposition 5. The SAT and FINSAT problems for MSC1 are PSPACE-complete.

Proof. Let Λ be a program of MSC1. Let X be the appointed head predicate symbol of Λ.
(If Λ has no appointed symbol, Λ is not satisfiable.) We first check whether the formula X0

is satisfiable by using a decision algorithm for ordinary modal logic. If not, we check whether
the formula X1 is satisfiable, again using a decision algorithm for ordinary modal logic. If
not, we know that Λ is not satisfiable, for the following simple reason.

Let (M,w) = ((W,R, V), w) be an arbitrary model of the same vocabulary as Λ. Let
ϕ be the schema such that the iteration clause of Λ for X is X : − ϕ. Define the function
F : Pow(W)→ Pow(W) such that F (U) = { u ∈W |

(
(W,R, V [X 7→ U]), u

)
|= ϕ }. Since

||X0||M = ||X1||M = ∅, we observe that F (∅) = ∅. Since ||Xn+1||M = F (||Xn||M) for all
n ∈ N, we conclude that no formula Xk is satisfied by any node of M .

The claim of the current proposition now follows from the PSPACE-completeness of
ordinary modal logic. J

We leave the question of decidability of MSC open at this stage, and sketch some proofs
concerning expressivity instead. The µ-calculus (µML) is a bisimulation invariant logic that
expands modal logic with a recursion mechanism based on least and greatest fixed point
operators µX and νX. For the semantics and basic properties of µML, see [3].

I Proposition 6. MSC1 6≤ µML. This holds already in the finite.

Proof Sketch. (Note that we only sketch a proof of this proposition.) Define a program Λ
of MSC1 which is true in (M,w) iff the following conditions hold.
1. There exists some n ∈ N such that there is a directed path of the length n from w to a

point v without successors. We call v a dead-end.

A. Kuusisto 465

2. There are no directed paths shorter than n from w to a dead-end, and each directed path
of the length n originating from w ends in a dead-end.

If a pointed model (M,w) satisfies the above property, with n being the unique distance to a
dead-end, we say that (M,w) has the n-path property.

Define X0 : − �⊥ and X : − ♦X ∧�X. It is easy to show by induction on n that for
all pointed models (M,w), the model (M,w) satisfies the n-path property iff (M,w) |= Xn.

If a pointed model has the n-path property for some n ∈ N, we say that (M,w) has the
centre point property. The class of pointed models with the centre point property is not
definable by any formula of µML. This is shown by establishing that there exists no formula
ϕ(x) of MSO such that M |= ϕ(w) iff (M,w) has the centre point property. The claim that
MSC1 6≤ µML in the finite then follows, as it is well known that µML < MSO.

Assume, for the sake of contradiction, that there exists a formula ϕ(x) of MSO that defines
the centre point property. Therefore MSO can define the corresponding property in restriction
to the class of rooted finite ranked trees with two successor relations. By the pumping lemma
for tree languages it is then trivial to establish that this is a contradiction. J

Alternation of µ and ν-operators is a tricky issue in µ-calculus, and alternation hierarchies
have been defined in various ways. We define Σµ1 to be the fragment of µ-calculus without
ν-operators and with negations on the atomic level, i.e., the language built from literals with
∧,∨,♦ and �, and µX when X occurs only positively in the scope of µX. We define Πµ

1
analogously.

I Proposition 7. Σµ1 < MSC in the finite.

Proof Sketch. (Note that we only sketch the proof of this proposition.) It is folklore that
µ-calculus can be defined with or without the capacity of using simultaneous fixed points,
without change in expressive power. There are translations both ways, from standard
µ-calculus into one with simultaneous fixed points and back. It is also folklore that µ-
calculus can be defined in terms of modal equation systems (see [3]). For instance, a formula
µX.ψ

(
X, µY.ϕ(X,Y)

)
translates to the equation block

X : − ψ(X,Y)
Y : − ϕ(X,Y),

where ψ(X,Y) is the formula obtained from the formula ψ
(
X, µY.ϕ(X,Y)

)
by replacing

the subformula µY.ϕ(X,Y) by the variable Y . For a more concrete example, the formula
µX.

(
�X ∨ µY.(p ∨ ♦(Y ∨X))

)
translates to the block

X : − �X ∨ Y
Y : − p ∨ ♦(Y ∨X).

If M = (W,R) is a model, the block

X : − ψ(X,Y)
Y : − ϕ(X,Y)

defines a monotone function F : (Pow(W))2 −→ (Pow(W))2 such that

F (U, V) =
(
||ψ(U, V)||M , ||ϕ(U, V)||M

)
.

The least fixed point F∞(∅, ∅) of this monotone operator is a pair (X∞, Y∞) such that
X∞ = ||µX.ψ

(
X, µY.ϕ(X,Y)

)
||M .

CSL’13

466 Modal Logic and Distributed Message Passing Automata

An arbitrary formula ϕ of Σµ
1 translates into an equation block with a finite number

of equations. We may assume that ϕ is of the form µX.ψ. (If not, we may use a dummy
variable X.) The set X∞ is then exactly the set ||ϕ||M . The very same equation block also
defines a program Λϕ of MSC, with the terminal clause corresponding to each variable Z
being Z(0) : − ⊥, and the set of appointed variables being {X}. Now, Λϕ is true in a finite
model M exactly in the nodes belonging to X∞. This follows immediately, since there is a
finite number n ∈ N such that FnM (∅, ..., ∅) = Fn+1

M (∅, ..., ∅), i.e., the closure ordinal of F is
finite. Therefore, for all w ∈W , we have w ∈ X∞ iff there is some n ∈ N such that we have
(M,w) |= Xn for the appointed variable X of Λ.

The strictness of the inclusion Σµ1 < MSC in the finite follows by Proposition 6. J

I Proposition 8. Πµ
1 6≤ MSC. This holds already in the finite.

Proof. MSC cannot define non-reachability: there exists no program of MSC true in exactly
those pointed models (M,w) where there is no directed path to, say, a point v without
successors, i.e., a dead-end. Assume that such a program exists. Run it in a directed successor
ring, i.e, a connected finite model (W,R), where R is a binary relation and where both the
out-degree and in-degree of each node is one. Let w be a node of the ring. If non-reachability
is definable, there is an automaton A such that if we run it on the ring, it accepts w in some
finite number n of rounds. However, let (N,S) be a finite model, where S is a successor
ordering of N and |N | ≥ n+ 10. Let u be the least element of N with respect to S. It is
straightforward to show that in the n-th round of running A, the state of A at w is exactly
the same as at u. Therefore A accepts ((N,S), u), which is a contradiction.

The formula νX.(♦> ∧�X) states that a deadend cannot be reached from the point of
observation. J

Finally, it is worth noting that the model checking problem for MSC is clearly decidable,
as the sequence of global configurations defined by an FMPA and a finite model must
eventually loop. With an MPA it is possible to recognize, with respect to the class of finite
pointed Kripke models, even undecidable classes of models.

References
1 C. Areces and B. ten Cate. Hybrid Logics. In P. Blackburn, F. Wolter and J. van Benthem

(eds.), Handbook of Modal Logic, Elsevier, 2006.
2 P. Blackburn, M. de Rijke and Y. Venema. Modal Logic. Cambridge University Press, 2011.
3 J. Bradfield and C. Stirling. Modal mu-calculi. In P. Blackburn, J. van Benthem and F.

Wolter (eds.), The Handbook of Modal Logic, Elsevier, 2006.
4 H. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 2nd edition, 2005.
5 P. Fraigniaud, M. Göös, A. Korman and Jukka Suomela. What can be decided locally

without identifiers? arXiv:1302.2570, 2013.
6 N. Immerman. Descriptive Complexity. Springer, 1999.
7 L. Hella, M. Järvisalo, A. Kuusisto, J. Laurinharju, T. Lempiäinen, K. Luosto, J. Suomela

and J. Virtema. Weak models of distributed computing, with connections to modal logic.
In Proc. 31st ACM Symposium on Principles of Distributed Computing (PODC), 2012.

8 L. Libkin. Elements of Finite Model Theory. Springer, 2004.
9 N. Linial. Locality in distributed graph algorithms. SIAM Journal on Computing, 21(1):193-

201, 1992.
10 D. Peleg. Distributed Computing: A Locality-Sensitive Approach. Society for Industrial and

Applied Mathematics, Philadelphia, PA, USA, 2000.
11 J. Suomela. Survey of local algorithms. ACM Computing Surveys 45, 2013.

A. Kuusisto 467

A Appendix

A.1 Addenda to the proof of Theorem 2

Argument for the special case where n = 0 and mdt(Λ) = 0

Recall the definition of the sets T , T ′ and U in the definition of π on initial inputs P ⊆ Π
for the case where mdt(Λ) = 0. Let V be the valuation of M . Call Φ = SUBF(Λ) ∩ Π.
By the definition π, we have (M, v) |= p iff p ∈ π

(
{ p ∈ Π | v ∈ V (p) }

)
for each p ∈ Φ,

and therefore, the equivalence (M,v) |= ϕ iff ϕ ∈ T holds for each atomic formula
ϕ ∈ ATOM(Λ). Hence, since every formula ϕ ∈ SUBF(Λ) of the modal depth 0 is a Boolean
combination of formulae in ATOM(Λ), we have (M, v) |= ϕ iff ϕ ∈ T for all formulae
ϕ ∈ SUBF(Λ) of the modal depth 0. Hence we have (M,v) |= X0 iff X ∈ T ′ for all schema
variable symbols X ∈ HEAD(Λ), and also (M,v) |= ϕ iff ϕ ∈ T ′ for all atomic formulae
ϕ ∈ ATOM(Λ). Therefore, since every schema ϕ ∈ SUBS(Λ) of the modal depth 0 is a
Boolean combination of formulae in ATOM(Λ) and head predicate symbols in HEAD(Λ),
the equivalence (M,v) |= ϕ0 iff ϕ ∈ Qv(0, 0) holds for all schemata ϕ ∈ SUBS(Λ) of the
modal depth 0, as required.

(M, v) |= ψ ⇔ ψ ∈ Qv(−1,mdt(Λ)− 1)

We have (M,v) |= ϕ iff ϕ ∈ Qv(−1, 0) for all v ∈ W and all ϕ ∈ SUBF(Λ) of the modal
depth 0, so the base step of the induction is clear. Let k ∈ N such that k ≤ mdt(Λ)− 2, and
assume that the equivalence (M, v) |= ψ iff ψ ∈ Qv(−1, k) holds for each v ∈W and each
ψ ∈ SUBF(Λ) such that md(ψ) ≤ k. Let v ∈W and let ϕ ∈ SUBF(Λ) be a formula of the
modal depth k + 1. We must show that (M,v) |= ϕ iff ϕ ∈ Qv(−1, k + 1). The formula ϕ
is a Boolean combination of formulae ♦ψ, where md(ψ) ≤ k. It therefore suffices to show
that for each such formula ♦ψ, we have (M,v) |= ♦ψ iff ♦ψ ∈ Qv(−1, k + 1).

Assume first that (M, v) |= ♦ψ. Therefore some successor u of v satisfies (M,u) |= ψ.
By the induction hypothesis, ψ ∈ Qu(−1, k). Hence, in round k + 1, the automaton A at u
sends a message L such that ψ ∈ L to the predecessors of u. Thus ♦ψ ∈ Qv(−1, k + 1).

Assume then that ♦ψ ∈ Qv(−1, k+ 1). Therefore the automaton AΛ at node v receives a
message L such that ψ ∈ L from some successor u in round k + 1. Therefore ψ ∈ Qu(−1, k).
By the induction hypothesis, (M,u) |= ψ. Therefore (M, v) |= ♦ψ.

(M,v) |= ϕ0 ⇔ ϕ ∈ Qv
(
0, 0)

Recall the definition of the sets T , T ′ and U in the definition of δ on input states (S,m, f)
in the case where m = mdt(Λ)− 1. We shall first show that (M, v) |= ϕ iff ϕ ∈ T holds for
each v ∈W and each formula ϕ ∈ SUBF(Λ) such that md(ϕ) ≤ mdt(Λ).

Let v ∈W . Let ϕ ∈ SUBF(Λ) be a formula such that md(ϕ) ≤ mdt(Λ). The formula ϕ
is a Boolean combination of formulae ♦ψ, where md(ψ) < mdt(Λ). By the definition of T , it
suffices to show that for each such formula ♦ψ, we have (M, v) |= ♦ψ iff ♦ψ ∈ T.

Assume first that (M, v) |= ♦ψ. Therefore some successor u of v satisfies (M,u) |= ψ.
Therefore, since md(ψ) < mdt(Λ), we know that ψ ∈ Qu

(
−1,mdt(Λ) − 1

)
. Thus the

automaton AΛ at u sends a message L such that ψ ∈ L to its predecessors in round mdt(Λ).
Thus ♦ψ ∈ T .

CSL’13

468 Modal Logic and Distributed Message Passing Automata

Conversely, assume that ♦ψ ∈ T . Therefore v receives a message L such that ψ ∈ L from
some successor u in round mdt(Λ). Hence we have ψ ∈ Qu

(
−1,mdi(Λ)− 1

)
. Therefore we

know that (M,u) |= ψ. Thus (M,v) |= ♦ψ.
We have now established that (M,v) |= ϕ ⇔ ϕ ∈ T for all v ∈ W and all formulae

ϕ ∈ SUBF(Λ) of the modal depth up to mdt(Λ). Thus (M,v) |= X0 ⇔ X ∈ T ′ for all head
predicate symbols X ∈ HEAD(Λ), and also (M, v) |= ϕ iff ϕ ∈ T ′ for all atomic formulae
ϕ ∈ ATOM(Λ). Therefore, since every schema ϕ ∈ SUBS(Λ) of the modal depth 0 is a
Boolean combination of formulae in ϕ ∈ ATOM(Λ) and head predicate symbols in HEAD(Λ),
we have (M,v) |= ϕ0 iff ϕ ∈ Qv

(
0, 0) for all v ∈ W and all schemata in ϕ ∈ SUBS(Λ) of

the modal depth 0, as required. This concludes the base case of our argument by induction
on n.

(M,v) |= ♦ψn ⇔ ♦ψ ∈ T

Assume first that (M, v) |= ♦ψn. Therefore some successor u of v satisfies (M,u) |= ψn.
Hence, since md(ψ) < mdi(Λ), we know that ψ ∈ Qu

(
n,mdi(Λ) − 1

)
. Therefore the

automaton AΛ at u sends a message L such that ψ ∈ L to its predecessors in round
g(n+ 1, 0). Thus ♦ψ ∈ T .

Conversely, assume that ♦ψ ∈ T . Therefore v receives a message L such that ψ ∈ L from
some successor u in round g(n+ 1, 0). Hence, ψ ∈ Qu

(
n,mdi(Λ)− 1

)
. Therefore we know

that (M,u) |= ψn. Therefore (M,v) |= ♦ψn.

Global semantic typing for inductive and
coinductive computing
Daniel Leivant

Indiana University Bloomington
leivant@indiana.edu

Abstract
Common data-types, such as N, can be identified with term algebras. Thus each type can be
construed as a global set; e.g. for N this global set is instantiated in each structure S to the
denotations in S of the unary numerals. We can then consider each declarative program as an
axiomatic theory, and assigns to it a semantic (Curry-style) type in each structure. This leads
to the intrinsic theories of [18], which provide a purely logical framework for reasoning about
programs and their types. The framework is of interest because of its close fit with syntactic,
semantic, and proof theoretic fundamentals of formal logic.

This paper extends the framework to data given by coinductive as well as inductive declara-
tions. We prove a Canonicity Theorem, stating that the denotational semantics of an equational
program P , understood operationally, has type τ over the canonical model iff P , understood as
a formula has type τ in every “data-correct” structure. In addition we show that every intrinsic
theory is interpretable in a conservative extension of first-order arithmetic.

1998 ACM Subject Classification F.3 Logics and meanings of programs

Keywords and phrases Inductive and coinductive types, equational programs, intrinsic theories,
global model theory

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.469

1 Introduction

The notion of program typing, first introduced by Curry [5, 32], views types as semantic
properties of pre-existing untyped objects. A function f has type τ→σ if it maps objects
of type τ to objects of type σ; f may well be defined for input values that are not of type
τ . In contrast, Church [4] considered types as inherent properties of objects: a function
has type τ → σ when its domain consists of the objects of τ , and its codomain consists of
objects of type σ. The difference between semantic and inherent typing is thus ontologically
significant in a way that phrases such as “explicit" and “implicit" do not convey.

A distinction between inherent and semantic typing can also be made for inductive data
types T , such as the booleans, natural numbers, and strings. While each such data-type
has a canonical intended meaning, it is isomorphic to the term algebra over some set C
of constructors. That syntactic representation suggests a global semantics for such types.
Namely, T is a global predicate, that is a mapping that to each structure S (for a vocabulary
V containing C) assigns the set of denotations of closed C-terms.

(Recall that global semantics is an organizing principle for descriptive and computational
devices over a class of structures, such as all finite graphs [6, 9]. An example is Fagin’s
celebrated result that a global relation over finite structures is NP iff it is definable by an
existential second-order formula [7].)

The global viewpoint is of particular interest with respect to programs over inductive
data. Each such program P may be of type T→T in one V -structure and not in another;

© Daniel Leivant;
licensed under Creative Commons License CC-BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca; pp. 469–483

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.469
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

470 Global coinductive typing

e.g. if P is non-total on N, then it is of type N → N in the flat-domain structure with N
interpreted as N⊥, but not when N is interpreted as N. Already this simple observation
resolves the status of an incorrect proposal by Herbrand, by which a set of equations P is
said to compute a function f : N→N iff f is the unique solution of P .1

This proposal was corrected by Gödel [8], who replaced the Tarskian semantics of a
set of equations (i.e. true or false in a given structure) by an operational semantics. But
in fact Herbrand was right to equate operational semantics with Tarskian semantics, with
one caveat: P computes f in the standard structure iff f has, by Tarskian semantics, type
N→N in every model of P . We elaborate on this below.

Within the global framework, it makes sense to consider formal V -theories for proving
global typing properties of equational programs. We adopt as programming model equa-
tional programs, since these mesh directly with formal reasoning: a program’s equations can
be construed as axioms, computations as derivations in equational logic, and types as formu-
las. Moreover, equational programs are amenable to term-model constructions, which turn
out to be a useful meta-mathematical tool. Theories for reasoning directly about equational
programs were developed in [18], where they were dubbed intrinsic theories. Among other
benefits, they support attractive proof-theoretic characterizations of major function classes,
such as the provable functions of Peano Arithmetic and the primitive recursive functions
[18, 19].

In this paper we generalize the global semantics approach of [18] to data-systems, that
is collections of data-types generated by both inductive and coinductive definitions. To do
so we shall start by describing a syntactic framework, in analogy to the term algebras, in
which a syntactic representation of the intended data-types is possible. We shall continue by
giving an operational semantics for equational programs over data-systems, i.e. when data-
objects may be infinite. We then prove a generalized Canonicity Theorem, which states that
a program over a data-system is correctly typed in the standard structure (e.g. terminating
for inductive output and fair for coinductive output) just in case such typing is correct by
Tarskian semantics in all structures. Finally we show that the obvious first-order theories
for proving correct-typing of equational programs are no stronger than Peano Arithmetic.

2 Data systems

2.1 Symbolic data
A constructor-vocabulary is a finite set C of function identifiers, referred to as constructors,
each assigned an arity ≥ 0; as usual, constructors of arity 0 are object-identifiers. We’ll
posit the presence of a master constructor-vocabulary, and consider its sub-vocabularies.
Given a constructor-vocabulary C, the replete term-set for C is the set RC consisting of all
finite or infinite ordered trees of constructors, where each node with constructor c of arity
r has exactly r children. Obviously RC is definable coinductively, but we will be interested
primarily in its subsets, defined both inductively and coinductively.

The replete C-structure is the structure RC with2

1 Actually, Herbrand’s proposal also called < for a constructive proof that a solution exists and is
unique. But that < additional condition is ill-formed, and cannot be replaced by provability in <
some intuitionistic theory, since that would imply that the computable total functions < form a semi-
decidable collection.

2 We use typewriter font for actual identifiers, boldface for meta-level variables ranging over syntactic
objects, and italics for other meta-level variables.

D. Leivant 471

1. C as vocabulary (i.e. similarity-type);
2. RC as universe; and
3. a syntactic interpretation of the constructors: for an r-ary c ∈ C [[c]](a1 . . . ar) is the

tree with c at the root and a1 . . . ar as immediate sub-trees.

2.2 Equational programs
In addition to the set C of constructors we posit an infinite set X of variables, and an infinite
set F of function-identifiers, dubbed program-functions, and assigned arities ≥ 0 as well. The
sets C, X and F are, of course, disjoint. If E is a set consisting of function-identifiers and
(possibly) variables, we write Ē for the set of terms generated from E by application: if
g ∈ E is a function-identifier of arity r, and t1 . . . tr are terms, then so is g t1 · · · tr. We use
informally the parenthesized notation g(t1, . . . , tr), when convenient.3 We refer to elements
of C, C ∪ X and C ∪ X ∪ F as data-terms, base-terms, and program-terms, respectively.4

We adopt equational programs, in the style of Herbrand-Gödel, as computation model.
There are easy inter-translations between equational programs and program-terms such as
those of FLR0 [21]. We prefer however to focus on equational programs because they inte-
grate easily into logical calculi, and are naturally construed as axioms. Codifying equations
by terms is a conceptual detour, since the computational behavior of such terms is itself
spelled out using equations or rewrite-rules.

A program-equation is an equation of the form f(t1, . . . , tk) = q, where f is a program-
function of arity k ≥ 0, t1 . . . tk are base-terms, and q is a program-term. Two program-
equations are compatible if their left-hand sides cannot be unified. A program-body is a finite
set of pairwise-compatible program-equations. A program (P, f) (of arity k) consists of a
program-body P and a program-function f (of arity k) dubbed the program’s principal-
function. We identify each program with its program-body when in no danger of confusion.

Programs of arity 0 can be used to define objects. For example, the singleton program
T consisting of the equation t = sss0 defines 3, in the sense that in every model S of T
the interpretation of the identifier t is the same as that of the numeral for 3. Consider
instead a 0-ary program defining an infinite term such as singleton program I consisting of
ind = s(ind). This does not have any solution in the free algebra of the unary numerals,
that is: the free algebra cannot be expanded into the richer vocabulary with ind as a new
identifier, so as to satisfy the equation I.5 But I is modeled, for example, in any structure
where s is interpreted as identity, and ind as any structure element. Also, I is modeled over
any ordinal α � ω, with s interpreted as the function x 7→ 1 +x and I as any infinite β ∈ α.

2.3 Operational semantics of programs
If (P, f) is a program over the set C̄ of data-terms (which are all finite) then we can say
that it computes the partial function g : C̄ ⇀ C̄ when g(p) = q iff the equation f(p) =
q is derivable from P in equational logic. But non-trivial replete term-structures have
infinite terms, so the output of a program over RC must be computed piecemeal from finite
information about the input values.

To express piecemeal computation of infinite data, without using extra constants or tools,
we posit that each program over C has defining equations for destructors and a discriminator.

3 In particular, when g is of arity 0, it is itself a term, whereas with parentheses we’d have g().
4 Data-terms are often referred to as values, and base-terms as patterns.
5 As usual, when a structure is an expansion of another they have the same universe.

CSL’13

472 Global coinductive typing

That is, if the given vocabulary’s k constructors are c1 . . . ck, withm the maximal arity, then
the program-functions include the unary identifiers πi,m (i = 1..m) and δ, and all programs
contain the equations (for c an r-ary constructor)

πi,m(c(x1, . . . , xr)) = xi (i = 1..r)
πi,m(c(x1, . . . , xr)) = c(x1, . . . , xr) (i = r+1..m)
δ(ci(~t), x1, . . . , xk) = xi (i = 1..k)

We call a repeated composition of destructors a deep destructor. For a ∈ RC and variable
v let ∆a/v consist of all statements δ(Π(v), x1, . . . , xk) = xi where Π is a deep destructor,
that are true when v = a. That is, ∆a/v conveys, node by node, the structure of the
syntactic tree a, using v as a name for a.

I Definition 1. We say that a unary program (P, f) computes the partial function g :
RC ⇀ RC when for every a, b ∈ RC we have g(a) = b iff for each deep-destructor Π the
equation δ(Π(f(v)), ~x) = xi is derivable in equational logic from P and ∆a/v, where ci

is the main constructor of Π(b).
That is, one can establish in equational logic the equality of f(a) and of b at each

“address" Π, given unbounded information about the structure of a.
The definition for programs of arity > 1 is similar.

Note that the piecemeal definition of computability is made necessary only by the pres-
ence of infinite data:
I Proposition 2. If, in definition (1) above, the terms a, b are finite, then g(a) = b just in
case f(a) = b is derivable from P in equational logic. J

The proof is straightforward, and omitted here since Proposition 2 is not used in the
sequel.

2.4 Inductive Data systems
To motivate the general definition, let us consider first purely inductive types. One defines
a single type by its closure rules: the natural numbers are given by the two rules N(0)
and N(x) → N(s(x)). Similarly, words in {0, 1} can be construed as terms using unary
constructors 0 and 1, as well as nullary constructor e, and generated by the rules W(e),
W(x) → W(0(x)) and W(x) → W(1(x)). If G names a given type G, then the type of binary
trees with leaves in G is generated by the rules G(x)→ T(x), and T(x) ∧ T(y)→ T(p(x, y)).

We can similarly generate types jointly (i.e. simultaneously). For example, the following
rules generate the 01-strings with no adjacent 1’s, by defining jointly the set (denoted by
E) of such strings that start with 1, and the set (denoted by Z) of those that don’t: Z(e),
Z(x)→ Z(0(x)), Z(x)→ E(1(x)), and E(x)→ Z(0(x)).

Generally, a definition of inductive types from given types ~G consists of:
1. A list ~D of unary relation-identifiers, dubbed type identifiers;
2. a set of composition rules, of the form

Q1(x1) · · · Qr(xr)
Di(cx1 · · ·xr)

where c is a constructor, and each Q` is one of the data-predicates in ~G, ~D.
These rules delineate the intended meaning of inductive ~D from below. Namely, elements of
Di are built up by the composition rules. Thus the data-predicates in ~D are defined jointly,
potentially using also the given types ~G.

D. Leivant 473

Conjuncting the composition rules, we obtain a single rule, consisting of the the universal
closure of conjunctions of implications into the data-type being defined.

2.5 Coinductive decomposition rules
Inductive composition rules state sufficient reasons to assert that a term has a given type,
implied by the types of its immediate sub-terms. The intended semantics of an inductive
type D is thus the smallest set of terms closed under those rules. Coinductive decomposition
rules state necessary conditions for a term to have a given type, by implying the types of
its immediate sub-terms. The intended semantics is the largest set of terms satisfying those
conditions.

For instance, the type of ω-words over 0/1 is given by the decomposition rule

Wω(x)→ (∃y Wω(y) ∧ x = 0y) ∨ (∃y Wω(y) ∧ x = 1y) (1)

This is not quite captured by the implications Wω(0x)→ Wω(x) and Wω(1x)→ Wω(x),
since these do not guarantee that every element of Wω is of the right form.

The implication Wω(x) → Wω(π1,1(x)) also fails to capture the rules (1), as shown by
the following example. In analogy to the inductive definition above of the words with no
adjacent 1’s, the ω-words over 0/1 with no adjacent 1’s are delineated jointly by the two
decomposition rules

Z(x) → (∃y Z(y) ∧ x = 0(y)) ∨ (∃y E(y) ∧ x = 0(y))

and
E(x) → ∃y Z(y) ∧ x = 1(y)

These rules cannot be captured using destructors, since those do not differentiate between
cases for the input’s main constructor.

These observations justify the following definition.

I Definition 3. A decomposition definition of coinductive types from given types ~G consists
of:
1. A list ~D of type identifiers;
2. for each of the types Di in ~D a decomposition rule, of the form

Di(x) → ψ1 ∨ · · · ∨ ψk

where each ψi is of the form

∃y1 . . . yr x = c(~y) ∧ Q1(y1) ∧ · · · ∧Qr(yr)

Here c is a constructor of arity r, and each Q` is one of the data-predicates in ~G, ~D.
Thus, the single decomposition rule for each Di is an implication from Di to the disjunction
of existential statements.

2.6 Data systems
We now define data-systems, where data-types can be defined by any combination of in-
duction and coinduction. Descriptive and deductive tools for such definitions were studied
extensively, e.g. referring to typed lambda calculi, with operators µ for smallest fixpoint and

CSL’13

474 Global coinductive typing

ν for greatest fixpoint. For instance, the Common Algebraic Specification Language Casl
has been used as a unifying standard in the algebraic specification community, and extended
to coalgebraic data [27, 29, 22, 30]. Several frameworks combining inductive and coinductive
data, such as [24], strive to be comprehensive, including various syntactic distinctions and
categories, in contrast to our minimalistic approach.

I Definition 4. A data-system D over a set C of constructors consists of:
1. A double-list ~D1 . . . ~Dk (the order matters) of unary relation-identifiers, dubbed type-

identifiers, where each ~Di is dubbed a data-bundle, and designated as either inductive
or coinductive.

2. For each inductive data-bundle ~Di an inductive definition given as a (finite) set of data-
composition rules of the form

(
∧

`=1..r

Q`(x`))→ Dij(cx1 · · ·xr)

where each Q` is one of the data-predicates in ~D1 . . . ~Di. Note that r may be 0.
These rules delineate the intended meaning of inductive ~Di from below. Namely, elements
of Dij are built up by the data-introduction rules. Thus the data-predicates in each ~Di

are defined simultaneously, potentially using also previously defined predicates among
~D1 . . . ~Di−1.

3. For each coinductive data-predicate Dij a coinductive definition consisting of a data-
decomposition rule, of the form

Dij(x) → ψ1 ∨ · · · ∨ ψk

where each ψ` is of the form

∃y1 . . . yr x = c(~y) ∧ Q1(y1) ∧ · · · ∧ Qr(yr)

with c a constructor, and each Q` in ~Dj , j ≤ i.

2.7 Examples of data-systems
1. Let C consist of the identifiers 0, 1, e, s, and c, of arities 0,0,0,1, and 2, respectively.

Consider the following data-system, for the double list ((B), (N), (F, S), (L)) with inductive
B and N (booleans and natural numbers), coinductive F and S (streams with alternating
boolean and numeral entries starting with booleans (respectively, with natural num-
bers)), and finally an inductive L for lists of such streams.

B(0) B(1)

N(0) N(x)→ N(sx)

F(x)→ ∃y, z (x = cyz) ∧ B(y) ∧ S(z)
S(x)→ ∃y, z (x = cyz) ∧ N(y) ∧ F(z)

L(0) L(e) F(x) ∧ L(y)→ L(cxy) S(x) ∧ L(y)→ L(cxy)

Note that constructors are reused for different data-types. This is in agreement with our
untyped, generic approach, where the intended type information is conveyed by the data-
predicates, and the data-objects are untyped. In other words, data-types are semantic
(Curry style) rather than ontological (Church style).

D. Leivant 475

2. Here is a data system with a type for infinite binary trees with nodes decorated by
finite/infinite binary trees with booleans as leaves. The constructors are 0, 1, p, and
d of arities 0,0,2 and 3 respectively. The data-predicates are an inductive B, and two
coinductive D (for trees) and T (for trees of trees). The composition rules for B are

B(0) and B(1)

The decomposition rules for T and D (as a single bundle) are

D(x)→ B(x) ∨ ∃y1, y2 x = p(y1, y2) ∧ D(y1) ∧ D(y2)

and
T(x)→ ∃u, y1, y2 x = d(u, y1, y2) ∧ D(u) ∧ T(y1) ∧ T(y2)

2.8 Computational completeness of equational programs
The equivalence of equational programs over N with the µ-recursive functions was implicit
already in [8], and explicit in [13]. Their equivalence with λ-definability [3, 14] and hence
with Turing computability [35] followed quickly. When equational programs are used over
infinite data, a match with Turing machines must be based on an adequate representation
of infinite data by functions over inductive data. For instance, each infinite 0/1 word w can
be identified with the function ŵ : N → B defined by ŵ(k) = the k’th constructor
of w. Similarly, infinite binary trees with node decorated with 0/1 can be identified with
functions from W = {0, 1}∗ to {0, 1}. Conversely, a function f : N → B can be identified
with the ω-word f̌ whose n’th entry is f(n).

It follows that a functional g : (N→ B)→ (N→ B) can be identified with the function
ǧ : Bω → Bω, defined by ǧ(w) = (g(ŵ))∨. Conversely, a function h : Bω → Bω can be
identified with the functional ĥ : (N→ B)→ (N→ B) defined by ĥ(f) = (h(f̌))∧.

We state without proof the straightforward, albeit tedious, observation that the two
notions are equivalent. (The Theorem and its proof are unrelated to other parts of the
present paper.)

I Theorem 5. A partial function h : Bω → Bω is computable by an equational program iff
the functional ĥ is computable by some oracle Turing machine.

Dually, a functional g : (N→ B)→ (N→ B) is computable by an oracle Turing machine
iff the function ǧ is computable by an equational program.

3 A Canonicity Theorem: operational semantic is equivalent to
Tarskian semantic

3.1 Data-correct expansions and the canonical structure
Let D be a data-system with C as constructor-set, and S a structure over a vocabulary that
includes all identifiers in C, but not the type-identifiers of D. The data-correct expansion6
of S is the expansion to the full vocabulary of D, with the data-predicates Dij interpreted
as follows. (Recall that the interpretation of the constructors is already given in S.)

6 As usual, we say that a structure S is an expansion of a structure Q if S differs from Q only in
interpreting additional vocabulary identifiers. E.g. N with addition and multiplication is an expansion
of N with addition only.

CSL’13

476 Global coinductive typing

1. If ~Di is inductive, then the sets [[Dij]] are obtained from [[~D1]] . . . [[~Di−1]] by the data
composition rules for ~Di. That is, each inductive bundle is interpreted as the minimal
subsets of the RC closed under the bundle’s composition rules.

2. Dually, if ~Di is coinductive, then [[Dij]] are the sets of finite and infinite terms obtained
from [[~D1]] . . . [[~Di−1]] by the decomposition rules for ~Di. That is, each coinductive data-
bundle is interpreted as the maximal vector of subsets of RC for which the decomposition
rules are applicable (i.e. every element is subject to a decomposition rule) and true.

The canonical model A ≡ AD = [[D]] of a data-system D is the data-correct expansion of
the replete structure RC .

3.2 Typing statements
Suppose (P, f) is a program (unary, say) over C. The program computes a partial function
g : RC ⇀ RC .

I Definition 6. Given a data-system D over C, with D and E among its data-predicates,
we say that g is of type D → E if for every a ∈ [[D]]A the function g is defined for input
a, and g(a) ∈ [[E]]A. We also say in that case that P is of type D → E. The definition for
(P, f) of arity > 1 is similar.

Note that each function, including the constructors, can have multiple types. Also, a
program may compute a non-total mapping over RC , and still be of type D → E, i.e.
compute a total function from type D to type E. To adequately capture the computational
behavior of equational programs, multiple representations of divergence might be necessary;
see [18] for examples and discussion.

The partiality of computable functions is commonly addressed either by allowing par-
tial structures [16, 1, 23], or by considering semantic domains, with an object ⊥ denoting
divergence. The approach here is based instead on the “global" behavior of programs in all
structures.

When a function f : RC → RC fails to be of a type D→E then the restriction of f to
D is a partial function. That is, values f(a) ∈ RC − [[E]] correspond to the divergence of the
program for input a ∈ RC .

3.3 Canonicity for inductive data
Definition 1 provides the computational semantics of a program (P, f). But as a set of
equations a program can be construed simply as a first-order formula, namely the conjunction
of the universal closure of those equations. As such, a program has its Tarskian semantic,
referring to arbitrary structures for the vocabulary in hand, that is the constructors and
the program-functions used in P . A model of P is then just a structure that satisfies each
equation in P .

Herbrand proposed to define the computable functions (over N) as those that are unique
solutions of equational programs.7 It is rather easy to show that every computable function
is indeed the unique solution of a set of equations. But the converse fails, as illustrated by
the following example.8 Let G[x] ≡ ∃y. G0(x, y) be undecidable, with G0 decidable. Clearly

7 This proposal was made to Gödel in personal communication, and reported in [8]. A modified proposal,
incorporating an operational-semantics ingredient, was made in [11].

8 The first counter-example to Herbrand’s proposal is probably due to Kalmar [12]. The example given
here is a simplification of an example of Kreisel, quoted in [28].

D. Leivant 477

there is a program for the function f defined by

f(x, v) =
{

1 if ∃y < v. G0(x, y)
2 · f(x, v + 1) otherwise

If, for a given x, ∃y. G0(x, y), then λv.f(x, v) has a unique solution, with f(x, 0) > 0.
Otherwise f(x, v) = 0 is the unique solution. So if f were computable, then G would be
decidable.

In fact, Herbrand’s definition yields precisely the hyper-arithmetical functions [28]. But
Herbrand was not far off: he only needed to refer collectively to all data-correct structures:

I Theorem 7. (Canonicity Theorem for N) [18] An equational program (P, f) over N com-
putes a total function iff the formula N(x) → N(f(x)) is true in every data-correct model
of P .

3.4 Canonicity Theorem for Data Systems
We generalize Theorem 7 to all data-systems. Let D be a data-system for a constructor
set C.

I Theorem 8. (Canonicity Theorem for Data Systems) An equational program (P, f) over C
computes a function f : D→E (using the operational semantics of equational logic) iff the
formula D(x)→ E(f(x)) is true (in the sense of Tarskian semantic of first-order formulas)
in every data-correct model of P .

We present the proof in the rest of the present subsection. Given a program (P, f) over a
data-system D, we construct a canonical modelM(P) to serve as a “test-structure" for the
program. Let C′ consist of the program-functions in P , and T(P) be RB for the vocabulary
B = C ∪ C′. Thus the elements of T(P) are finite and infinite terms built using both the
constructors and the program-functions used in P . (Using only terms with a finite number
of program-functions along each branch would suffice, but this restriction, albeit natural, is
immaterial here.) Let ≈P be the binary relation over T(P) that holds between two terms
t, t′ ∈ T (P) iff P `= Πt = Πt′ for every deep destructor Π; that is, the pointwise equality of
t and t′ can be proved from P in equational logic. This is trivially an equivalence relation.

Now define B(P) to be the structure for the vocabulary C ∪C′ whose universe is the quo-
tient T(P)/ ≈P , and where each function-identifier is interpreted as symbolic application:
a function-identifier g, unary say, maps each equivalence class [t]≈ to the equivalence class
[g(t)]≈; and similarly for arities > 1.

LetM(P) be the data-correct expansion of B(P). The following observation implies an
alternative, more direct, definition ofM(P).

I Lemma 9. Each data-predicate D is interpreted inM(P) as {[a]≈ | a ∈ [[D]]A }.

Proof. The closure conditions defining the sets [[D]]M(P) for data-predicates D of D are the
same as for the canonical model A = RC . J

Theorem 8 now follows from the following Lemma.

I Lemma 10. The following are equivalent.
1. The program (P, f) computes a function g : D→ E.
2. M(P) |= ∀x D(x) → E(f(x)).
3. S |= ∀x D(x) → E(f(x)) for every data-correct structure S.
The equivalence above lifts to arities > 1.

CSL’13

478 Global coinductive typing

Proof. (1) implies (3) since the equational computation of P over [[D]] remains correct in
every data-correct model of P .

(3) implies (2), sinceM(P) is data-correct by definition.
Finally, towards proving that (2) implies (1), assume (2). Let g : RC → RC be the

function computed by (P, f), unary say. Taking an input a ∈ RC such that a ∈ [[D]]A, we
have [a]≈ ∈ [[D]]M(P), by Lemma 9. This implies by (2) that [f(a)] ∈ [[E]]M(P). But by
Lemma 9 again, this implies that f(a) ≈ b for some b ∈ [[E]]S , establishing (1). J

4 Intrinsic theories

4.1 Intrinsic theories for inductive data
Intrinsic theories for inductive data-types were introduced in [18]. They support unob-
structed reference to partial functions and to non-denoting terms, common in functional
and equational programming. Each intrinsic theory is intended to be a framework for rea-
soning about the typing properties of programs, including their termination and fairness.
In particular, declarative programs are considered as formal theories. This contrasts with
two longstanding approaches to reasoning about programs and their termination, namely
programs as modal operators [31, 25, 10], and programs (and their computation traces) as
explicit mathematical objects [15, 16].

Let D be a data-system consisting of a single inductive bundle ~D. The intrinsic theory
for D, is a first order theory over the vocabulary of D, whose axioms are

The closure rules of D.
Inductive delineation (data-elimination, Induction), which are the dual of the
closure rules. Namely, if a vector ~ϕ[x] of first order formulas satisfies the composition
rules for ~D, then it contains ~D:

Comp[~ϕ] → ∧i∀x Di(x)→ ϕi[x]

where Comp[~ϕ] is the conjunction of the composition rules for the bundle, with each
Di(t) replaced by ϕi[t].
Separation Axioms, stating that every constructor is injective, and c(~x) 6= d(~y) for
all distinct constructors c and d. These imply that all data-terms are distinct. The
Separation Axioms are superfluous for

Examples: N, i.e. A(0, s).
The Intrinsic theory for N has for vocabulary the constructors 0 and s, and a unary

relation identifier N . The axioms, given as natural deduction rules, are
Data-introduction:

N(0)
N(x)
N(sx)

Data-elimination:

N(t) ϕ[0]

{ϕ[z]}
· · ·

ϕ[s(z)]
ϕ(t)

Identifying W = {0, 1}∗ with the free algebra generated from the nullary constructor ε
and the unary 0 and 1, the intrinsic theory IT(W) has as vocabulary these constructors and
a unary data-predicate W . The deductive rules are:

D. Leivant 479

Data-introduction:

W (ε)
W (t)

W (0(t))
W (t)

W (1(t))

Data-elimination:

W (t) ϕ[ε]

{ϕ[z]}
· · ·

ϕ[0(z)]

{ϕ[z]}
· · ·

ϕ[1(z)]
ϕ(t)

4.2 Provable typing in intrinsic theories
I Definition 11. A unary program (P, f) is provably of type D → E in a theory T if
D(x)→ E(f(x) is provable in T from the universal closure of the equations in P .

For example, consider the doubling function dbl over N defined by the program dbl(0) =
0, dbl(s(x)) = s(s(dbl(x))). The following is a proof of N(x)→ N(dbl(x)), using induction
on the predicate ϕ[z] ≡ N(dbl(z)). The double-bars indicate the omission of trivial steps.

N(0)
N(dbl(0))

∀x dbl(s(x)) = s(s(dbl(x)))
dbl(s(z)) = s(s(dbl(z)))

N(dbl(z))
N(s(s(dbl(z))))

N(dbl(s(z)))
N(dbl(x))

In fact, we have:

I Theorem 12. [18]. The provable programs of the intrinsic theory IT(N) for the natural
numbers are precisely the provably-recursive programs of Peano’s Arithmetic.

Note that Theorem 12 gives a characterization of the provable functions of PA without
involving any particular choice of base functions (such as additional and multiplication).

4.3 Intrinsic theories for arbitrary data-systems
Let D be a data-system. The intrinsic theory for D, denoted IT(D), is a first order theory
over the vocabulary of D, whose axioms are the inductive composition rule and coinductive
decomposition rules of D, as well as their duals:

Inductive delineation (data-elimination, Induction): If a vector ~ϕ[x] of first order
formulas satisfies the composition rules for an inductive bundle ~D, then it contains ~D:

Comp[~ϕ] → ∧i∀x Di(x)→ ϕi[x]

where Comp[~ϕ] is the conjunction of the composition rules for the bundle, with each
Di(t) replaced by ϕi[t].
Coinductive delineation (data-introduction, Coinduction): If a vector ~ϕ[x] of
first order formulas satisfies the decomposition rule for a coinductive bundle ~D, then it
is contained in ~D:

Dec[~ϕ] → ∧i∀x ϕi[x]→ Di(x)

where Dec[~ϕ] is the conjunction of the decomposition rules for the bundle, with each
Di(t) replaced by ϕi[t].
Separation axioms, stating that every constructor is injective, and c(~x) 6= d(~y) for all
distinct constructors c and d.

CSL’13

480 Global coinductive typing

5 Proof theoretic strength

Our general intrinsic theories refer to infinite basic objects (coinductive data), in contrast
to intrinsic theories for inductive data only, as well as traditional arithmetical theories.
However, the deductive machinery itself does not imply the existence of any particular
coinductive object, as would be the case, for example, in the presence of some form of the
Axiom of Choice or of a comprehension principle. As a consequence, any intrinsic theory,
merging inductive and coinductive constructions in any way, is interpretable in a formal
theory which proof theoretically is no stronger than Peano Arithmetic.

Consider the formalism PRA of Primitive Recursive Arithmetic, with function identifiers
for all primitive recursive functions, and their defining equations as axioms. In addition, we
have the Separation Axioms for N (as above), and the schema of Induction for all formulas.9
Let PRA∗ be PRA augmented with function variables and quantifiers over them. The
schema of Induction applies now to all formulas in the extended language, but otherwise
there are no axioms stipulating the existence of additional functions. It is well known that
PRA is interpretable in Peano’s Arithmetic (where only addition and multiplication are
given as functions with their defining equations).

I Lemma 13. The theory PRA∗ is conservative over PRA. That is, if a formula in the
language of PRA is provable in PRA∗, then it is provable already in PRA.

The proof is a simplified version of the proof in [34, §2.4.8] that the hereditarily recursive
operators form a model of arithmetic in all finite types. Here it suffices to observe that the
function quantifiers in PRA∗ can be interpreted as ranging over the computable (or even
the PR) functions.

Lemma 13 implies, in particular, that PRA∗ is not proof-theoretically stronger than PA.

I Theorem 14. (Arithmetic interpretability) Every intrinsic theory is interpretable in
PRA∗.

Proof. Each t ∈ RC can be represented by a function ft : N → N, that maps addresses
a = 〈b1 · · · bk〉 ∈ N to the code c] of the constructor c at address 〈b1 . . . bk〉 of t, if such a
constructor exists, and to a reserved code (0 say) if t has no constructor at address a. For
instance, if t = p(e, 0(e)) then ft〈〉 = p], ft〈0〉 = e], ft〈1〉 = 0], ft〈1, 0〉 = e], and ft(a) = 0
for every other address a.

Suppose D is a data-system over RC , with successive bundles ~D1, ..., ~Dk. If ~D1 =
〈D11 . . .D1`〉 is inductive, then we can define Σ0

1 formulas D1 . . . D`, with a single free
unary-function variable f , such that Di[f] is true just in case f codes a tree t ∈ RC which
is in Di.

If ~D1 is coinductive, then the same holds with the formulas Di taken to be Π0
1. Next,

we can define formulas ~D2 in the second level of the arithmetical hierarchy, with a free
unary-function variable f , which are true of f iff it codes some t ∈ RC in the bundle ~D2.
Thus, the entire data-system can be interpreted in PRA∗ by formulas of some level ≤ k in
the arithmetical hierarchy.

We can then define, for each (first-order) formula ϕ of an intrinsic theory T, a formula
ϕ? of PRA∗, such that ϕ is true in the canonical model of the data-system iff ϕ? is true in
the standard model of PRA.

9 See e.g. [33] for details and related discussions.

D. Leivant 481

Next we show that if ϕ is provable in the intrinsic theory, then ϕ? is provable in PRA∗.
Indeed, it is easy to observe that induction for inductive data can be proved, for the ?-
interpreted formulas, by induction. More interestingly, coinduction for coinductive data is
also provable, for the interpretable formulas, by induction. For example, consider coinduc-
tion for the binary ω-words, represented by the data-predicate W:

ϕ[t] ∀x ϕ[x]→ ∃y ϕ[y] ∧ (x = 0(y) ∨ x = 1(y))
W(t)

For the Π0
1 formula W interpreting W, we need to prove W [t?] from the formula

∀f (ϕ?[f]→ ∃g ϕ?[g] ∧ (f = 〈0〉 ∗ g ∨ f = 〈1〉 ∗ g)) (2)

(Here 〈u〉 ∗ g is the function that maps the root to u and an address 0`+1 to g(0`).) But
recall that W [t?] states for every address a that the function denoted by t?, has at each
address a a certain (trivial) local property. This can now be proved by induction on the
height n of a, using (2). The induction basis needs only the value of the function t? at the
root, which is given by (2). The induction’s step is similar.

Note that although we refer here to the iterated tails of t?, thus seemingly to infinitely
many functions, any function h among these can be referred to indirectly via ∃u h =
u ∗ t?. J

6 Applications and further developments

Intrinsic theories provide a minimalist framework for reasoning about data and computa-
tion. The benefits were already evident when dealing with inductive data only, including
a characterization of the provable functions of Peano’s Arithmetic without singling out
any functions beyond the constructors, a particularly simple proof of Kreisel’s Theorem
that classical arithmetic is Π0

2-conservative over intuitionistic arithmetic [18], and a particu-
larly simple characterization of the primitive-recursive functions [19]. The latter application
guided a dual characterization of the primitive corecursive functions in terms of intrinsic
theories with positive coinduction [20].

Intrinsic theories are also related to type theories, via Curry-Howard morphisms, pro-
viding an attractive framework for extraction of computational contents from proofs, using
functional interpretations and realizability methods. The natural extension of the framework
to coinductive methods, described here, suggests new directions in extracting such methods
for coinductive data as well.

Finally, intrinsic theories are naturally amenable to ramification, leading to a transparent
Curry-Howard link with ramified recurrence [2, 17] as well as ramified corecurrence [26].

References
1 Egidio Astesiano, Michel Bidoit, Hélène Kirchner, Bernd Krieg-Brückner, Peter D. Mosses,

Donald Sannella, and Andrzej Tarlecki. CASL: the common algebraic specification lan-
guage. Theor. Comput. Sci., 286(2):153–196, 2002.

2 Stephen Bellantoni and Stephen Cook. A new recursion-theoretic characterization of the
poly-time functions, 1992.

3 Alonzo Church. An unsolvable problem of elementary number theory. American Journal
of Mathematics, 58:345–363, 1936.

4 Alonzo Church. A formulation of the simple theory of types. The Journal of Symbolic
Logic, 5:56––68, 1940.

CSL’13

482 Global coinductive typing

5 Haskell Curry. First properties of functionality in combinatory logic. Tohoku Mathematical
Journal, 41:371–401, 1936.

6 H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer-Verlag, Berlin, 1995.
7 Ronald Fagin. Generalized first order spectra and polynomial time recognizable sets. In

R. Karp, editor, Complexity of Computation, pages 43–73. SIAM-AMS, 1974.
8 Kurt Gödel. On undecidable propositions of formal mathematical systems. In Martin

Davis, editor, The Undecidable. Raven, New York, 1965. Lecture notes taken by Kleene
and Rosser at the Institute for Advanced Study, 1934.

9 Yuri Gurevich. Logic and the challenge of computer science. In trends in theoretical
computer science, pages 1–57. Computer Science Press, Rockville, MD, 1988.

10 David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. MIT Press, Cabridge, MA,
2000.

11 Jacque Herbrand. Sur la non-contradiction de l’arithmétique. Journal für die reine und
angewandte Mathematik, 1932:1—-8, 1932. English translation in [36] 618–628.

12 László Kalmár. Über ein Problem betreffend die Definition des Begriffes des allgemeine-
rekursiven Funktion. Zeit. mathematische Logik u Grund. der Mathematik, 1:93–96, 1955.

13 Stephen C. Kleene. General recursive functions of natural numbers. Mathematische an-
nalen, 112:727–742, 1936.

14 Stephen C. Kleene. Lambda definability and recursiveness. Duke Mathematical Journal,
2:340–353, 1936.

15 Stephen C. Kleene. Introduction to Metamathematics. Wolters-Noordhof, Groningen, 1952.
16 Stephen C. Kleene. Formalized Recursive Functions and Formalized Realizability, volume 89

of Memoirs of the AMS. American Mathematical Society, Providence, 1969.
17 Daniel Leivant. Ramified recurrence and computational complexity I: Word recurrence

and poly-time. In Peter Clote and Jeffrey Remmel, editors, Feasible Mathematics II,
Perspectives in Computer Science, pages 320–343. Birkhauser-Boston, New York, 1994.
www.cs.indiana.edu/∼leivant/papers.

18 Daniel Leivant. Intrinsic reasoning about functional programs I: First order theories. Annals
of Pure and Applied Logic, 114:117–153, 2002.

19 Daniel Leivant. Intrinsic reasoning about functional programs II: Unipolar induction and
primitive-recursion. Theor. Comput. Sci., 318(1-2):181–196, 2004.

20 Daniel Leivant and Ramyaa Ramyaa. Implicit complexity for coinductive data: a charac-
terization of corecurrence. In Jean-Yves Marion, editor, DICE, volume 75 of EPTCS, pages
1–14, 2011.

21 Yiannis N. Moschovakis. The formal language of recursion. J. Symb. Log., 54(4):1216–1252,
1989.

22 Till Mossakowski, Lutz Schröder, Markus Roggenbach, and Horst Reichel. Algebraic-
coalgebraic specification in CoCasl. J. Log. Algebr. Program., 67(1-2):146–197, 2006.

23 Peter D. Mosses. CASL Reference Manual, The Complete Documentation of the Com-
mon Algebraic Specification Language, volume 2960 of Lecture Notes in Computer Science.
Springer, 2004.

24 Peter Padawitz. Swinging types=functions+relations+transition systems. Theor. Comput.
Sci., 243(1-2):93–165, 2000.

25 Vaughan R. Pratt. Semantical considerations on floyd-hoare logic. In FOCS, pages 109–121.
IEEE Computer Society, 1976.

26 Ramyaa Ramyaa and Daniel Leivant. Ramified corecurrence and logspace. Electr. Notes
Theor. Comput. Sci., 276:247–261, 2011.

27 Horst Reichel. A uniform model theory for the specification of data and process types.
In Didier Bert, Christine Choppy, and Peter D. Mosses, editors, WADT, volume 1827 of
Lecture Notes in Computer Science, pages 348–365. Springer, 1999.

D. Leivant 483

28 H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-Hill, New
York, 1967.

29 Jan Rothe, Hendrik Tews, and Bart Jacobs. The coalgebraic class specification language
CCSL. J. UCS, 7(2):175–193, 2001.

30 Lutz Schröder. Bootstrapping inductive and coinductive types in HasCASL. Logical Meth-
ods in Computer Science, 4(4), 2008.

31 Krister Segerberg. A completeness theorem in the modal logic of programs (preliminary
report). Notices American matheamtical society, 24:A–552, 1977.

32 Jonathan Seldin. Curry’s anticipation of the types used in programming languages. In
Proceedings of the Annual Meeting of the Canadian Society for History and Philosophy of
Mathematics, pages 143–163, Toronto, 2002.

33 S. Simpson. Subsystems of Second-Order Arithmetic. Springer-Verlag, Berlin, 1999.
34 A. S. Troelstra. Metamathematical Investigation of Intuitionistic Arithmetic and Analysis.

Volume 344 of LNM. Springer-Verlag, Berlin, 1973.
35 Alan M. Turing. Computability and lambda-definability. Journal of Symbolic Logic, 2:153–

163, 1937.
36 J. van Heijenoort. From Frege to Gödel, A Source Book in Mathematical Logic. Harvard

University Press, Cambridge, MA, 1967.

CSL’13

Two-Variable Logic on 2-Dimensional Structures
Amaldev Manuel1 and Thomas Zeume2

1 LIAFA, Université Paris Diderot
amal@liafa.univ-paris-diderot.fr

2 TU Dortmund University
thomas.zeume@cs.tu-dortmund.de

Abstract
This paper continues the study of the two-variable fragment of first-order logic (FO2) over two-
dimensional structures, more precisely structures with two orders, their induced successor rela-
tions and arbitrarily many unary relations. Our main focus is on ordered data words which are
finite sequences from the set Σ×D where Σ is a finite alphabet and D is an ordered domain. These
are naturally represented as labelled finite sets with a linear order ≤l and a total preorder ≤p .

We introduce ordered data automata, an automaton model for ordered data words. An
ordered data automaton is a composition of a finite state transducer and a finite state automaton
over the product Boolean algebra of finite and cofinite subsets of N. We show that ordered data
automata are equivalent to the closure of FO2(+1l ,≤p ,+1p) under existential quantification of
unary relations. Using this automaton model we prove that the finite satisfiability problem for
this logic is decidable on structures where the ≤p -equivalence classes are of bounded size. As
a corollary, we obtain that finite satisfiability of FO2 is decidable (and it is equivalent to the
reachability problem of vector addition systems) on structures with two linear order successors
and a linear order corresponding to one of the successors. Further we prove undecidability of
FO2 on several other two-dimensional structures.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases FO2, Data words, Satisfiability, Decidability, Automata

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.484

1 Introduction

The undecidability of the satisfiability and finite satisfiability problem for first-order logic
[6, 32, 31] lead to a quest for decidable yet expressive fragments (see for example [3, 15]).

Here we continue the study of the two-variable fragment of first order logic (two-variable
logic or FO2 for short). This fragment is known to be reasonably expressive and its
satisfiability and finite satisfiability problems are decidable [25], in fact they are complete for
NExpTime [11]. Unfortunately many important properties as for example transitivity cannot
be expressed in two-variable logic. This shortcoming led to an examination of extensions of
two-variable logic by special relation symbols that are interpreted as equivalence relations or
orders [26, 1, 19, 20, 18, 28, 30].

In this paper we are interested in extensions of two-variable logics by two orders and
their induced successors. This can be seen as two-variable logic on 2-dimensional structures.
We restrict our attention to linear orders and preorders1. This setting yields some interesting
applications.

1 Informally, a preorder is an equivalence relation whose equivalence classes are ordered by a linear order.

© Amaldev Manuel and Thomas Zeume;
licensed under Creative Commons License CC-BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca; pp. 484–499

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.484
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

A. Manuel and T. Zeume 485

Data words, introduced in [4], extend usual words by assigning data values to every
position. Applications of data words arise for example in verification, where they can be used
for modeling runs of infinite state systems, and in database theory, where XML trees can
be modeled by data trees. Data words with a linearly ordered data domain can be seen as
finite structures with a linear order on the positions and a preorder on the positions induced
by the linear order of the data domain. Those relations, as well as their induced successor
relations, can then be referred to by two-variable logic on data words [1].

Two other logics closely related to two-dimensional two-variable logic are compass logic
and interval temporal logic. In compass logic two-dimensional temporal operators allow for
moving north, south, east and west along a grid [33]. In interval temporal logic operators like
’after’, ’during’ and ’begins’ allow for moving along intervals [14]. The connection of intervals
to the two-dimensional setting becomes clear when one interprets an interval [a, b] as point
(a, b). In [27] decidability results for two-variable logic in the two-dimensional setting have
been transferred to those two logics.

Those applications motivate working towards a thorough understanding of 2-dimensional
two-variable logic in general, and the decidability frontier for the finite satisfiability problem
in this setting in particular. Next we discuss the state-of-the-art in this area and how our
results fit in. All those results are summarized in Figure 3.

The frontier for decidability of the finite satisfiability problem for the extension of
two-variable logic by two linear order relations and their induced successor relations is
well-understood. It is undecidable when all those relations can be accessed by the logic. It is
decidable when only the two successor relations can be accessed [23]. This paper contains a
gap (the reduction to Presburger automata is wrong) which can, however, be fixed using the
same technique. In [10] an optimal decision procedure is given that uses a different approach;
and more recently the result has been generalized to two-variable logic with counting on
structures with two trees using yet another approach [5]. When two linear orders and one of
their successors can be accessed the problem is decidable as well [27]. We prove that the
remaining open case of two successors and one corresponding linear order is decidable.

The addition of two preorders to two-variable logic yields an undecidable finite satisfiability
problem [27]. We prove that also the other cases, that is (1) adding two preorder successor
relations and (2) adding one preorder relation and one (possibly non-corresponding) preorder
successor yield an undecidable finite satisfiability problems.

For the extension of two-variable logic with one linear order, one preorder and their
induced successors the picture is not that clear. However, many of the results from above
translate immediately, because in two-variable logic one can express that a preorder relation is
a linear order. Besides those inherited results the following is known for the finite satisfiability
problem. If the access is restricted to one linear order as well as a preorder and its successor,
then it is decidable in ExpSpace [27]. Access to a linear order with its successor and either
preorder or preorder successor yields undecidability. The former is proved in [2], the latter is
an easy adaption. The only remaining open case is when one linear successor, one preorder
successor and (possibly) the corresponding preorder can be accessed. We attack this case, and
show that when the preorder is restricted to have equivalence classes of bounded size, then
the finite satisfiability problem is decidable. The general case was shown to be undecidable
after the submission of this work, see Section 7.

Contributions. Besides the above mentioned results, we contribute as follows:
We introduce ordered data automata, an automaton model for structures with one successor
relation (of an underlying linear order) and a preorder and its accompanying successor

CSL’13

486 Two-Variable Logic on 2-Dimensional Structures

relation. This model is an adaption of data automata, introduced in [2], to data words
with an ordered data domain.
Ordered data automata are shown to be equivalent to the existential two-variable fragment
of monadic second order logic (EMSO2) over such structures.
We prove that the emptiness problem for this automaton model is decidable, when
the equivalence classes of the preorder contain a bounded number of elements. The
decidability of the finite satisfiability problem of two-variable logic over structures with
two linear successor relations and one of their corresponding orders is a corollary.

Organization. After some basic definitions in Section 2, we introduce ordered data automata
in Section 3 and prove that they are expressively equivalent to
EMSO2(+1l ,+1p ,≤p) in Section 4. Section 5 is devoted to proving decidability of the
emptiness problem for ordered data automata when the equivalence classes of ≤p are
bounded. In Section 6 lower bounds for several variants are proved. We conclude with a
discussion of recent developments as well as open problems in Section 7. Due to the space
limit, most proofs will only be available in the full version of the paper.
Acknowledgements. We thank Thomas Schwentick for introducing us to two-variable logic
and for many helpful discussions. The first author was supported by funding from European
Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement n◦ 259454.
The second author acknowledges the financial support by the German DFG under grant
SCHW 678/6-1.

2 Preliminaries

We denote the set {0, 1, . . .} of natural numbers by N and {1, . . . , n}, for n ∈ N by [n].
A binary relation ≤p over a finite set A is a preorder2 if it is reflexive, transitive and

total, that is, if for all elements u,v and w from A (i) u ≤p u (ii) u ≤p v and v ≤p w implies
u ≤p w and (iii) u ≤p v or v ≤p u holds. A linear order ≤l on A is an antisymmetric total
preorder, that is, if u ≤l v and v ≤l u then u = v. Thus, the essential difference between a
total preorder and a linear order is that the former allows for two distinct elements u and v
that both u ≤p v and v ≤p u hold. We call two such elements equivalent with respect to ≤p
and denote this by u ∼p v. Hence, a total preorder can be seen as an equivalence relation ∼p
whose equivalence classes are linearly ordered by a linear order. Clearly, every linear order
is a total preorder with equivalence classes of size one. We write u <l v if u ≤l v but not
v ≤l u, analogously for a preorder order ≤p . Further, if C and C ′ are the equivalence classes
of u and v, respectively, then we write C ≤p C ′ if u ≤p v.

For a linear order ≤l an induced successor relation +1l can be defined in the usual
way, namely by letting +1l(u, v) if and only if u <l v and there is no w with u <l w <l v.
Similarly a preorder ≤p induces a successor relation +1p based on the linear order on its
equivalence classes, i.e. +1p(u, v) if and only if u <p v and there is no w with u <p w <p v.
Thus an element can have several successor elements in +1p .

Two elements u and v are called ≤p-close (alternatively +1p-close), if either +1p(u, v) or
u ∼p v or +1p(v, u). They are called ≤p-adjacent (alternatively +1p-adjacent) if they are
≤p-close but u ∼p v does not hold. Analogously for +1l-close, ≤l-close, +1l-adjacent and
≤l -adjacent. The elements u and v are far away with respect to ≤p if they are not ≤p -close
etc. By u�p v we denote that u and v are ≤p-far away and u ≤p v.

2 In this paper all preorders are total.

A. Manuel and T. Zeume 487

In this paper, linear orders and their induced successor relations will be denoted by
≤l ,≤l1 ,≤l2 , . . . and +1l ,+1l1 ,+1l2 , Analogously preorders and their induced successor
relations will be denoted by ≤p ,≤p1 ,≤p2 , . . . and +1p ,+1p1 ,+1p2 ,

Ordered Structures, Words and Preorder Words. In this article, an ordered structure is a
finite structure with non-empty universe and some linear orders, some total preorders, some
successor relations and some unary relations. An O-structure is a structure with some unary
relations and some binary relations indicated by O. For example, a (+1l ,+1p ,≤p)-structure
has some unary relations and a linear order, a preorder successor and its corresponding
preorder. An O-structure is a structure from FinOrd(O).

A word w over an alphabet Σ = {σ1, . . . , σk} is a finite sequence τ1 . . . τn of letters from
Σ. One can think of w as a linear order over [n] where each element i is labeled by letter
τi from Σ. Thus there is a natural correspondence between words and ≤l-structures (or,
alternatively, +1l-structures or (+1l ,≤l)-structures). Also every +1l-structure naturally
corresponds to some word.

Note that words over alphabet Σ = {σ1, . . . , σk} correspond to +1l -structures with unary
relations P = (Pσ1 , . . . , Pσk

}. On the other hand, +1l-structures with unary relations P
correspond to words over alphabet 2P . Here, and in the following, we will ignore this and
assume that appropriate alphabets and unary relations are chosen when necessary.

A preorder word w is a sequence ~v1 . . . ~vl of tuples from NΣ. A preorder word w can
be identified with a preorder ≤p with Σ-labeled elements where each ~vi = (nσ1 , . . . , nσk

) is
identified with one equivalence class Ci of ≤p . The class Ci contains

∑
j nσj

many elements
and nσj

of those elements are labeled σj . Thus a preorder word can be thought of as a
word where every position can contain several elements (as opposed to one element in usual
words). The identification of tuples with equivalence classes allows for reusing notions for
preorders in the context of preorder words, by thinking of ~vi as an equivalence class. For
example, we will say say that ~vi contains a σi-labeled element u, if nσi

> 0. Note that
there is a natural correspondence between preorder words and ordered +1p-structures (or,
alternatively, ≤p-structures or (+1p ,≤p)-structures).

Ordered Data Words. Fix a finite alphabet Σ = {σ1, . . . , σk} and an infinite set D of data
values (the data domain) which is totally ordered by a linear order ≤D

l . For the purpose of
this paper, it is sufficient to think of D as the set N of natural numbers and of ≤D

l as the
natural order on N.

An ordered data word w is a sequence of pairs from Σ×D. We introduce some important no-
tions for ordered data words. In the following fix an ordered data word w = (σ1, d1) . . . (σn, dn).
A preorder ≤p on [n] is induced by the data values of w by i ≤p j if di ≤D

l dj . A class of
w is an equivalence class of ≤p , i.e. a maximal subset C ⊆ [n] of positions of w such that
di = dj for all i, j ∈ C. Let, in the following, C1 ≤p . . . ≤p Cl be the classes of w. The
string projection of w is the word σ1 . . . σn over Σ and is denoted by sp(w). The preorder
projection pp(w) is the preorder word that corresponds to ≤p , that is pp(w) = ~c1 . . .~cl where
each ~ci = (nσ1 , . . . , nσk

) with nσj is the number of σj-labeled elements in Ci. Ordered
data words naturally correspond to (+1l ,+1p ,≤p)-structures (again with many alternative
representations). See Figure 1 for an example.

Two-Variable Logic on Ordered Structures. Existential monadic second order logic EMSO
extends predicate logic by existential quantification of unary relations. The two-variable
fragment of EMSO, denoted by EMSO2, contains all EMSO-formulas whose first-order part
uses at most two distinct variables x and y. Two-variable logic FO2 is the restriction of first
order logic to formulas with at most two distinct variable x and y.

CSL’13

488 Two-Variable Logic on 2-Dimensional Structures

Figure 1 The ordered structure represent-
ing the ordered data word (b, 3)(a, 5)(c, 1)(b, 5)
(c, 2)(a, 3)(a, 2)(b, 1)(a, 1)(c, 2)(c, 5). The classes are
{3, 8, 9} ≤p {5, 7, 10} ≤p {1, 6} ≤p {2, 4, 11}, the
string projection is bacbcaabacca, and the preorder
projection is (1, 1, 1)(1, 0, 2)(1, 1, 0)(1, 1, 1) where, e.g.,
(1, 0, 2) indicates that in class {5, 7, 10} there is one
a-labeled element, no b-labeled element and two c-
labeled elements. ≤l

≤p

1
2
3
4
5
6

1 2 3 4 5 6 7 8 9 10 11

b

a

c

b

c

a

a

b a

c

c

Denote by EMSO(O) existential monadic second order logic over a vocabulary that
contains some unary relation symbols and binary relation symbols from O which have to
be interpreted by O-structures. For example, formulas in EMSO(+1l) can use some unary
relation symbols and the binary relation symbol +1l , and +1l has to be interpreted as a
linear successor. Similar notation will be used for FO2.

Words, that is +1l-structures, can be seen as interpretations for EMSO(+1l)-formulas.
Similarly preorder words and ordered data words are interpretations for EMSO(+1p ,≤p)-
and EMSO(+1l ,+1p ,≤p)-formulas, respectively.

The language L(ϕ) of ϕ ∈ EMSO2(+1l) is the set of words, more precisely their corres-
ponding +1l-structures, that satisfy ϕ. Similarly for other sets of relations. The classical
theorem of Büchi, Elgot and Trakhtenbrot states that EMSO(+1l ,≤l) is equivalent to finite
state automata. This holds even for EMSO2(+1l). In the next section we introduce an
automaton model which is equivalent to EMSO2(+1l ,+1p ,≤p).

I Example 1. Let L1 be the language that contains all data words w over Σ = {a, b} such
that the data value of every a-labeled position in w is smaller than the data values of all
b-labeled positions. Let L2 be the language that contains all data words w such that the
a-labeled elements with the largest data value are immediately to the left of a b-labeled
element. Then the following EMSO2(+1l ,+1p ,≤p)-formulas ϕ1 and ϕ2 define L1 and L2:

ϕ1 = ∀x∀y
(
(a(x) ∧ b(y))→ (x ≤p y ∧ ¬y ≤p x)

)
ϕ2 = ∀x

((
a(x) ∧ ¬∃y(a(y) ∧ (x ≤p y ∧ ¬y ≤p x))

)
→ ∃y

(
b(y) ∧+1l(x, y)

))
3 An Automaton Model for Ordered Data Words

In this section we introduce ordered data automata, an automaton model for structures with
one linear successor relation +1l (of an underlying linear order ≤l) and one preorder relation
≤p accompanied by its successor relation +1p . This automaton model is an adaption of data
automata as introduced in [2]. In the next section ordered data automata are shown to be
equivalent to EMSO2(+1l ,+1p ,≤p).

Very roughly, ordered data automata process a (+1l ,≤p ,+1p)-structure by reading it
once in linear-order-direction and once in preorder-direction. Therefore an essential part of
an ordered data automaton is an automaton capable of reading preorder words. We introduce
an automaton model for preorder words first.

Preorder Automata. Roughly speaking, preorder automata are finite state automata that
read preorder words w = ~w1 . . . ~wn. When reading some ~wi, a transition of such an automaton
can be applied if the transition matches the current state and the components of ~wi satisfy
interval constraints specified by the transition. We formalize this.

A. Manuel and T. Zeume 489

An interval I = (l, r) where l ∈ N and r ∈ N ∪ {∞} contains all i ∈ N with l ≤ i < r. A
Σ-constraint ~c assigns an interval to every σ ∈ Σ, i.e. it is a tuple from (N,N ∪ {∞})Σ. A
tuple ~w ∈ NΣ satisfies a Σ-constraint ~c, if every component nσ of ~w is in the interval (l, r)
asigned to σ by ~c.

A preorder automaton A is a tuple (Q,Σ,∆, qI , F), where the states Q, the input alphabet
Σ, the initial state qI ∈ Q and the final states F ⊆ Q are as in usual finite state automata.
The transition relation ∆ is a finite subset of Q× C ×Q where C is a set of Σ-constraints.

The semantics is as follows. When p is a state of A and ~w is a letter from NΣ, then a
transition (p,~c, q) ∈ ∆ can be applied if ~w satisfies ~c. A run of the automaton A over a word
~w1 . . . ~wn is a sequence of transitions δ1 . . . δn with δi = (pi−1,~ci, pi) such that δi is applicable
to ~wi. The run is accepting if p0 = qI and pn ∈ F . The language L(A) accepted by A is the
set of all preorder words with an accepting run of A.

I Example 2. Let L be the language of preorder words w over Σ = {a, b} where every letter
~wi of w contains an a-labeled element and at most two b-labeled elements. The preorder
automaton A with two states s and e, transitions {(s, ((1,∞), (0, 3)), s), (s, ((0, 1), (0,∞)), e),
(s, ((0,∞), (3,∞)), e)}, initial state s and single finite state s accepts L.

Preorder automata can be seen as a normal form of finite state automata over the product
Boolean algebra of finite and cofinite subsets of N This observation yields immediately:

I Lemma 3. Preorder automata are closed under union, intersection, complementation and
letter-to-letter projection.

The Theorem of Büchi, Elgot and Trakhtenbrot translates to preorder automata. The
proof is along similar lines.

I Theorem 4. For a language L of preorder words, the following statements are equivalent:
There is a preorder automaton that accepts L.
There is an EMSO2(+1p)-formula that defines L.

Ordered Data Automata. The marked string projection of an ordered data word is its
string projection annotated by information about the relationship of data values of adjacent
positions. Formally, let w = (σ1, d1) . . . (σn, dn) be an ordered data word. Then the marking
m(i) = (m,m′) of position i is a tuple from ΣM = {−∞,−1, 0, 1,∞,−}2 and is defined as
follows. If i = 1 (or i = n) then m = − (or m′ = −). Otherwise let C1 ≤p . . . ≤p Cr be
the classes of w. If Ck, Cl and Cs are the classes of di−1, di and di+1, respectively, then

m(i) =


−∞ if l > k + 1
−1 if l = k + 1

0 if l = k

1 if l = k − 1
∞ if l < k − 1

m′(i) =


−∞ if l > s+ 1
−1 if l = s+ 1

0 if l = s

1 if l = s− 1
∞ if l < s− 1

The marked string projection of w is the string (σ1,m(1)) . . . (σn,m(n)) over Σ × ΣM

and is denoted by msp(w).
An ordered data automata (short: ODA) A = (B, C) over Σ consists of a non-deterministic

letter-to-letter finite state transducer (short: string transducer) B with input alphabet Σ×ΣM
and output alphabet Σ′, and a preorder automaton C with input alphabet Σ′.

An ODA A = (B, C) works as follows. First, for a given ordered data word w, the
transducer B reads the marked string projection of w. A run ρB of the transducer defines a

CSL’13

490 Two-Variable Logic on 2-Dimensional Structures

unique (for each run) new labelling of each position. Let w′ be the ordered data word thus
obtained from w. Second, the preorder automaton C runs over the preorder projection of w′
yielding a run ρC . The run ρA = (ρB , ρC) of A is accepting, if both ρB and ρC are accepting.
The automaton A accepts w if there is an accepting run of A on w. The set of ordered data
words accepted by A is denoted by L(A).

I Example 5. The language L1 from Example 1 can be decided by an ODA A = (B, C) with
Σ = Σ′ = {a, b} as follows. Let w be an ordered data word. The string transducer B does
not relabel any position. Thus the input preorder word of the preorder automaton C is the
preorder projection ~w1 . . . ~wm of w. The preorder automaton C verifies that after the first ~wi
containing an b-labeled element, no a-labeled element occurs in any ~wj with j ≥ i.

The language L2 can be decided by an ODA A = (B, C) with Σ = {a, b} and Σ′ =
{a, b} × {0, 1} as follows. Let w = (σ1, d1) . . . (σn, dn) be an ordered data word. The
automaton A processes w as follows. The string transducer B guesses the a-labeled positions
with the largest data value, relabels them with (a, 1) and checks that the following position
is b-labeled. All other letters σ are relabeled by (σ, 0). Let w′ be the ordered data word
thus obtained. The input of C is the preorder projection ~w′1 . . . ~w

′
m of w′, and C verifies that

(a, 1)-labeled elements occur only in ~w′m.

I Lemma 6. Languages accepted by ODA are closed under union, intersection and letter-to-
letter projection.

The following proposition can be proved like Lemma 3 in [23].

I Proposition 1. Languages accepted by ODA are not closed under complementation.

4 Ordered Data Automata and EMSO2(+1l , +1p ,≤p) are equivalent

In this section we prove

I Theorem 7. For a language L of ordered data words, the following statements are equival-
ent:

L is accepted by an ordered data automaton.
L is definable in EMSO2(+1l ,+1p ,≤p).

This equivalence transfers to the case where the preorder is a linear order (i.e. every
equivalence class of the preorder is of size one).

The construction of a formula from an automaton is straightforward. The other direction
proceeds by translating a given EMSO2-formula ϕ into an equivalent formula in Scott Normal
Form, i.e. into a formula of the form ∃X1 . . . Xn(∀x∀y ψ ∧

∧
i ∀x∃y χi) where ψ and χi are

quantifier-free formulas (see e.g. [12] for the translation). Since ODA are closed under union,
intersection and renaming it is sufficient to show that for every formula of the form ∀x∀y ψ
and ∀x∃y χ there is an equivalent ODA.

The proofs of the following lemmas use the abbreviations

∆= = {x = y, x 6= y},
∆l = {+1l(x, y),¬+1l(x, y),+1l(y, x),¬+1l(y, x)},
∆p = {+1p(x, y),+1p(y, x), x ∼p y, x�p y, y �p x}.

I Lemma 8. For every formula of the form ∀x∀y ψ with quantifier-free ψ there is an
equivalent ODA.

A. Manuel and T. Zeume 491

Proof. We first write ψ in conjunctive normal form and distribute the universal quantifier
over the conjunction. Therefore, again due to the closure of ODA under intersection, we can
restrict our attention to formulas of the form

ϕ = ∀x∀y(α(x) ∨ β(y) ∨ δ=(x, y) ∨ δl(x, y) ∨ δp(x, y))

where α, β are unary formulas and δ=(x, y), δl(x, y) and δp(x, y) are as follows. Denote by
Disj(Φ) the set of disjunctive formulas over a set of formulas Φ. The formulas δ=(x, y), δl(x, y)
and δp(x, y) are in Disj(∆=), Disj(∆l) and Disj(∆p), respectively. Note that ∆p contains only
positive formulas since negation of any formula in ∆p can be replaced by a disjunction of
formulas from ∆p.

Without loss of generality we assume that neither δ=(x, y), δl(x, y) nor δp(x, y) are the
empty disjunction. (Assume that δ=(x, y) = ⊥, then δ=(x, y) ≡ x = y ∧ x 6= y. Distributing
x = y ∧ x 6= y yields two formulas of the required form.)

In the following we do an exhaustive case analysis. If ϕ is a tautology, then there is an
equivalent ODA. Therefore we assume from now on that ϕ is not a tautology.

When ϕ is not a tautology then δ= is either x 6= y or x = y. If δ= is x 6= y then we can
write ϕ as ∀x∀y

(
(α′(x) ∧ β′(y) ∧ x = y)→ γ(x, y)

)
where α′ and β′ are the negations of the

unary formulas α and β and γ(x, y) = δl(x, y) ∨ δp(x, y). Substituting x = y in γ yields a
formula that is equivalent to True or to False. Thus the property expressed by ϕ can be
checked by the string transducer of an ODA. Hence from now on we assume that δ= is the
formula x = y.

The formula δl can either contain a negative formula from ∆l or it does not contain any
negative formula. If δl contains a negative formula from ∆l we rewrite ϕ as

∀x∀y
(
(α′(x) ∧ β′(y) ∧ x 6= y ∧ δ′l(x, y))→ δp(x, y)

)
where δ′l is the negation of δl. Since δ′l is a conjunction that contains a positive formula from
∆l it is logically equivalent to a positive formula from ∆l, that is, it is equivalent either
to +1l(y, x) or to +1l(x, y). In this case the formula ϕ expresses a regular property over
the marked string projection of the structure. Hence it can be seen immediately that the
property expressed by ϕ can be checked by the string transducer of an ODA. Hence from
now on we assume that δl contains no negative formula from ∆l.

Then δl is either +1l(x, y)∨+1l(y, x) or +1l(y, x) or +1l(y, x). In this case we rewrite ϕ
as ∀x∀y

(
(α′(x)∧ β′(y)∧x 6= y ∧ δ′p(x, y))→ δl(x, y)

)
where δ′p is the negation of δp(x, y). As

noted before, the conjunction δ′p(x, y) can be expressed as a disjunction of formulas from ∆p.
Hence ϕ is equivalent to ∀x∀y

(
(α′(x) ∧ β′(y) ∧ x 6= y ∧ δ′′p (x, y))→ δl(x, y)

)
where δ′′p (x, y)

is a disjunction of formulas in ∆p. Distributing this disjunction yields a formula of the form
∀x∀y

∧(
(α′(x) ∧ β′(y) ∧ x 6= y ∧ δ′′′p (x, y))→ δl(x, y)

)
where δ′′′p (x, y) is a formula from ∆p.

By distributing the conjunction over the ∀-quantifiers and by using the closure of ODA
under intersection, it is sufficient to show that there is an equivalent ODA for formulas of
the form χ = ∀x∀y

(
(α′(x) ∧ β′(y) ∧ x 6= y ∧ δp(x, y))→ δl(x, y)

)
where δp(x, y) is a formula

from ∆p and δl is positive.
For the following, we assume that δl is the formula +1l(x, y) ∨ +1l(y, x). The cases

δl = +1l(x, y) and δl = +1l(y, x) are similar. We do a case analysis for δp(x, y).
Let δp = +1p(x, y). Assume that Ci and Ci+1 are two adjacent ≤p-classes. Then the

formula χ states that whenever Ci contains an α′-labeled element u and Ci+1 contains
a β′-labeled element v, then u and v are adjacent with respect to ≤l . This implies that
the number of α′-labeled elements in Ci and β′-labeled elements in Ci+1 is at most three.
Moreover those elements are adjacent in the linear order.

CSL’13

492 Two-Variable Logic on 2-Dimensional Structures

Thus, an ODA verifying this property can be constructed as follows. The string transducer
annotates every α′-labeled element u by the number of β′-labeled elements v with +1p(u, v)
and either +1l(u, v) or +1l(v, u). Analogously the string transducer annotates every β′-
labeled element by the number of adjacent α′-labeled elements in the preceding ≤p-class.

Then the preorder automaton verifies for each ≤p-class Ci and its successor ≤p-class
Ci+1 that either

Ci contains no α′-labeled elements or Ci+1 contains no β′-labeled elements, or
Ci contains an α′-labeled element and Ci+1 contains a β′-labeled element and
Ci and Ci+1 contain more than three of those elements (then the preorder automaton
rejects)
Ci and Ci+1 contain less than three of those elements. Then it checks that those three
are adjacent by using the annotation given by the transducer (and accepts or rejects
accordingly).

The cases δp = x ∼p y and δp = x�py are very similar. J

I Lemma 9. For every formula of the form ∀x∃y χ with quantifier-free χ there is an
equivalent ODA.

The proof of Lemma 9 will be presented in the full version of the paper. This completes
the proof of Theorem 7.

5 Deciding Emptiness for Ordered Data Automata on k-bounded
Ordered Data Words

An ordered data word w is k-bounded if each class of w contains at most k elements. In this
case the preorder projection of w is a k-bounded preorder word and can be seen as a word
over the finite alphabet {0, . . . , k}|Σ|. Hence an ODA restricted to k-bounded ordered data
words can be seen as a composition of a finite state transducer and a finite state automaton.
We call such automata k-bounded ODA.

Since k-boundedness can be expressed in EMSO2(+1l ,+1p ,≤p) we can conclude that
the result from the previous section carry over to the case of k-bounded ordered data words,
i.e. a language L of k-bounded ordered data words is accepted by a k-bounded ODA if and
only if it can be defined by an EMSO2(+1l ,+1p ,≤p) formula ϕ.

The rest of this section is devoted to the proof of the following theorem.

I Theorem 10. The finite satisfiability problem for EMSO2(+1l ,+1p ,≤p) on k-bounded
data words is decidable.

I Corollary 11. The finite satisfiability problem for EMSO2(+1l1 ,+1l2 ,≤l2) is decidable.

This generalizes Theorem 3 from [23], where the finite satisfiability problem of
FO2(+1l1 ,+1l2) was shown to be decidable. We sketch the proof of Theorem 10; a de-
tailed proof will appear in the full paper. By the above remarks it is sufficient to show that
the emptiness problem of k-bounded ODA is decidable. We reduce the emptiness problem for
k-bounded ODA to the emptiness problem for multicounter automata. The latter is known
to be decidable [24, 21]. The idea is as follows. From a k-bounded ODA A = (B, C) we will
construct a multicounter automatonM such that L(A) is non-empty if and only if L(M) is
non-empty. Intuitively,M will be constructed such that if A accepts a k-bounded ordered
data word w then M accepts a word w′ which is the preorder projection of w annotated

A. Manuel and T. Zeume 493

≤l

≤p

B 1

L

R−

L+

B 2
R−

B
3L+

R

Figure 2 Blocks in
the ordered-structure-
representation of a 3-
bounded ordered data word
w. Each represents one
element of w, the ≤l -axis
represents positions whereas
the ≤p -axis represents data
values. Labels are omitted
for clarity.

by lots of extra information3. On the other hand ifM accepts an annotated word w′ then
an ordered data word w and an accepting run of A on w can be reconstructed from the
information encoded in w′. ThereforeM reads a k-bounded preorder word w′ = ~w′1 . . . ~w

′
m

and simultaneously verifies
that the extra information in w′ encodes an accepting run of C on w′.
that the elements occuring in w′ can be dynamically (that is while reading ~w′1, ~w

′
2, . . .)

arranged to a word x such that x encodes
a marked string y whose marking is consistent with w′ (and therefore allows for the
construction of an ordered data word w from w′ and y), and
an accepting run of B on y.

We will need the following notions for ordered data words. A block B of an ordered data
word w is a maximal subword of w such that all successive positions in B are ≤p -close in w.
See Figure 2 for an example of blocks.

Since w is k-bounded, every class of w intersects with at most k many blocks. It is easy
to see, that one can color each block B of w with a number N(B) from {1, . . . , 2k} such that
N(B) 6= N(B′) if B and B′ are ≤l -adjacent blocks or ≤p -adjacent blocks. Even more, such
a coloring can be uniquely obtained from w (for example by coloring lexicographically).

In the following we describe how to annotate every element of an ordered data word w with
extra information. A block label (N,X) with block number N and block position X is a letter
from ΣB = {1, . . . , 2k}× ({L,L+, L−, C}×{R,R+, R−, C}). Let A = (B, C) be a k-bounded
ODA with input alphabet Σ, intermediate alphabet Σ′ and let QB and QC be the states of
B and C respectively. A run label (σ′, rB, rC , rB) is a letter from ΣR = Σ′ ×Q2

B ×Q2
C ×Q2

B
where rB, rC and bB are called B-label, C-label and B-block label, respectively.

An annotated ordered data word is an ordered data word over Σ× ΣM × ΣB × ΣR where
ΣM is the alphabet {−∞,−1, 0, 1,∞,−}2 of markings. Likewise an annotated preorder word
is a preorder word over Σ× ΣM × ΣB × ΣR. The preorder projection of an annotated data
word is a preorder word over Σ× ΣM × ΣB × ΣR.

The annotation ann(w, ρ) of an ordered data word w = w1 . . . wn with respect to a run
ρ = (ρB, ρC) of an ODA A = (B, C) on w is an annotated ordered data word that labels every
element wi with its marking m; a block label τ according to the position of wi in its block;
and a run label π describing the output of B on run ρ when reading wi, the states of B and
C according to run ρ, and the states where B enters and leaves the block of wi in run ρ. The
preorder projection of the annotation of an ordered data word w is denoted by annpp(w, ρ).

3 Recall that the preorder projection of a k-bounded ordered data word is a k-bounded preorder word, i.e.
a word over {0, . . . , k}|Σ|.

CSL’13

494 Two-Variable Logic on 2-Dimensional Structures

Intuitively maximal contiguous subwords of annpp(w, ρ) with the same block number N
correspond to a block in w. Therefore such contiguous subwords of annotated preorder words
are called symbolic N -blocks.

We now state the proof idea of Theorem 10 more precisely. From an ordered data
automaton A = (B, C) we construct a multicounter automaton M that reads annotated
k-bounded preorder words such that

If A accepts a k-bounded ordered data word w via run ρ thenM accepts annpp(w, ρ).
IfM accepts an annotated k-bounded preorder word w′ then a k-bounded ordered data
word w can be constructed from w′ which is accepted by A.

Given an annotated k-bounded preorder word w′ = ~w′1 . . . ~w
′
n, the multicounter automaton

M tries to reconstruct a k-ordered data word w from w′ such that w is accepted by A.
Every symbolic block B′ in w′ will represent a block B in w. We will prove that such a
reconstruction is possible whenever the following conditions (C0) – (C3) are satisfied:

(C0) a) The block position label and the label from ΣM are consistent for every element of
w′.

b) Every symbolic block B′ of w′ contains exactly one {L,L−, L+}-labeled element
and one {R,R−, R+}-labeled element.

c) All elements of a letter ~w′i have the same C-label..
d) The B- and C-labels are consistent with the Σ- and Σ′-labels for every element u

of w′.
(C1) The C-labels in w′ encode an accepting run of C.
(C2) For every symbolic block B′ = ~w′l . . . ~w

′
m of w′ there is an annotated ordered data word

B with data values from the set {l, . . . ,m} ⊂ N such that
a) B is a single block and pp(B) = B′. Further, the data value of an element u of B

is d when u corresponds to an element contained in ~w′d in B′.
b) The first position of B carries block position label L, L+ or L−. The last position

of B carries block position label R, R+ or R−. All other positions carry block
position label C.

c) All elements of B′ carry the same B-block label (p, q).
d) There is a run of B on B that starts in p, ends in q and is consistent with the
B-labels of B.

(C3) Let B′1, . . . , B′m be the symbolic blocks of w′. Further let ~w′si
be the position of B′i,

that contains4 the {L,L−, L+}-labeled element li of B′i. Analogously let ~w′ti be the
position of B′i, that contains the {R,R−, R+}-labeled element ri of B′i. There is a
permutation π of {1, . . . ,m} such that
a) If (p, q) is the B-block label of lπ(1), then p is the start state of B. Further the

block position label of lπ(1) is L.
b) If (p, q) is the B-block label of rπ(m) then q is a final state of B. Further the block

position label of rπ(m) is R.
c) If (p, q) and (p′, q′) are the B-block labels of B′π(i) and B′π(i+1), respectively, then

q = p′.
d) If ri is labeled with R+, then li+1 is labeled with L−. Further ti�psi+1.
e) Likewise if ri is labeled with R−, then li+1 is labeled with L+. Further si+1�pti.

4 Recall that ~w′
si

can be identified with the equivalence class of the preorder corresponding to B′
i.

A. Manuel and T. Zeume 495

Intuitively, the Conditions (C2) help to reconstruct runs from C. Runs of B are recon-
structed with the help of Conditions (C2) and (C3), where (C2) helps reconstructing runs of
B on blocks whereas (C3) helps reconstructing the order of blocks.

Recall that k-bounded preorder words over Σ can be seen as a word over the finite
alphabet {0, . . . , k}|Σ|.

I Lemma 12. For every k-bounded ODA A there is a finite state automatonM that accepts
exactly the annotated k-bounded preorder words that satisfy conditions (C0) and (C1) from
above.

I Lemma 13. For every k-bounded ODA A = (B, C) there is a finite state automaton M
that accepts exactly the annotated k-bounded preorder words that satisfy condition (C2).

I Lemma 14. For every k-bounded ODA A there is a multicounter automaton M that
accepts exactly the annotated k-bounded preorder words that satisfy conditions (C3).

Using the previous lemmata we can now complete the proof of Theorem 10.

Proof of Theorem 10. For a given k-bounded ODA A = (B, C) letM1,M2 andM3 be the
multicounter automata from Lemmata 12, 13 and 14, respectively. Let M be the intersection
multicounter automaton for those three automata.

We prove that L(A) is empty if and only if L(M) is empty. The statement of Theorem 10
follows from this. First, let w be a k-bounded ordered data word accepted by A. Then there
is an accepting run ρ = (ρB, ρC) of A on w. The word w′ = annpp(w, ρ) satisfies conditions
(C0) – (C3) and is therefore accepted byM due to Lemmata 12, 13 and 14.

Second, let w′ = ~w′1 . . . ~w
′
m be a k-bounded preorder word accepted byM. We construct

a k-bounded data word w ∈ L(A) and an accepting run ρ = (ρB, ρC) of A on w with
annpp(w, ρ) = w′. Therefor let B′1, . . . , B′l be the symbolic blocks of w′. Condition (C2)
guarantees the existence of annotated data words B1, . . . , Bl with pp(Bi) = B′i and data
values from {li, . . . , ri} when B′i = w′li . . . w

′
ri
. By Condition (C2d) there is a run ρi for each

Bi starting in pi and ending in qi where (pi, qi) is the B-label of B′i.
Now let π the permutation from Condition (C3). We define the ordered data word

w = Dπ(1) . . . Dπ(l) where Dπ(i) is obtained from Bπ(i) by removing the annotations. Note
that the Dπ(i) are blocks by Conditions (C2a), (C2b), (C3d) and (C3e). The concatenation
ρB of the runs ρπ(1), . . . , ρπ(l) is an accepting run of B on w by Conditions (C3a), (C3b) and
(C3c). An accepting run of C on the output of ρB exists by Condition (C1). J

6 Hardness Results for Two-Dimensional Ordered Structures

This section aims at filling the remaining gaps for finite satisfiability of two-variable logic on
two-dimensional ordered structures. We refer the reader to Figure 3 for a summary of the
results obtained in the literature and here.

We start with a matching lower bound for the finite satisfiability problem of
EMSO2(+1l ,+1p ,≤p) over k-bounded structures. This bound already holds for
FO2(+1l1 ,+1l2 ,≤l2).

I Theorem 15. Finite satisfiability of FO2(+1l1 ,+1l2 ,≤l2) is at least as hard as the empti-
ness problem for multicounter automata.

I Corollary 16. Finite satisfiability of FO2(+1l ,+1p ,≤p) over k-bounded ordered data words
is at least as hard as the emptiness problem for multicounter automata.

CSL’13

496 Two-Variable Logic on 2-Dimensional Structures

It is not surprising that the finite satisfiability problem of FO2 with two additional
preorder successor relations is undecidable, as those allow for encoding a grid. A minor
technical difficulty arises when the corresponding equivalence relations are not available.
Undecidability even holds for 2-bounded preorder successor relations.

I Theorem 17. Finite satisfiability of two-variable logic with two additional 2-bounded
preorder successor relations is undecidable.

We denote the relation +1l2 by +2l . The following slightly improves Theorem 4 in [23].

I Corollary 18. Finite satisfiability of FO2(+1l1 ,+2l1 ,+1l2 ,+2l2) is undecidable.

The following theorems complement results from [2] and [28]. The proofs use similar
methods as used in those works.

I Theorem 19. Finite satisfiability of FO2(+1l ,≤l ,+1p) is undecidable.

I Theorem 20. Finite satisfiability of FO2(+1p1 ,≤p2), i.e. two-variable logic with one
additional preorder successor relation and one additional preorder relation, is undecidable.

7 Discussion

The current status of research on two-variable logic with additional successor and order
relations is summarized in Figure 3.

We saw that EMSO2 with a linear order successor, a k-bounded preorder relation and its
induced successor relation is decidable.

After submission of this work, the finite satisfiability problem of FO2(+1l ,+1p) has been
shown to be undecidable by Thomas Schwentick and the authors of this work [22], but has
not been peer reviewed yet. We strongly conjecture that finite satisfiability for the other
remaining open case, namely FO2(+1l ,≤p), is decidable. We are actually working on the
details of the proof and plan to include both results into the full version of this paper.

It remains open whether there is some m such that FO2(+1l1 , . . . ,+1lm) is undecid-
able. A method for proving undecidability of FO2(+1l1 , . . . ,+1lm) should not extend to
FO2(F1, . . . , Fm) where F1, . . . , Fm are binary predicates that are interpreted as permuta-
tions. A successor relation +1l can be seen as a permutation with only one cycle and one
label that marks the first element. Finite satisfiability of FO2(F1, . . . , Fm) is decidable since
one can express that some arbitrary interpreted binary predicate R is a permutation by using
two-variable logic with counting quantifiers which in turn is decidable by [13]. This is an
observation by Juha Kontinen.
I Open Question 1. Is there an m such that FO2(+1l1 , . . . ,+1lm) is undecidable?
Temporal logics on data words have seen much research recently [7, 8, 16]. However, to the
best of our knowledge, most of those logics have been restricted in the sense that comparison
of data values was only allowed with respect to equality. In [29] a temporal logic that allows
for comparing ordered data values was introduced. The authors intend to use the techniques
and results obtained for two-variable logic with additional successors and orders to investigate
temporal logics on data values that allow more structure on the data value side.
I Open Question 2. Are there expressive but still decidable temporal logics on data words
with successor and order relations on the data values?

5 Under elementary reductions.

A. Manuel and T. Zeume 497

Logic Complexity (lower/upper) Comments
One linear order

FO2(+1l) NExpTime-complete [9]
FO2(≤l) NExpTime-complete [26, 9]
FO2(+1l ,≤l) NExpTime-complete [9]

One total preorder
FO2(+1p) ExpSpace-complete ExpCorridorTiling
FO2(≤p) NExpTime/ExpSpace
FO2(+1p ,≤p) ExpSpace-complete [28]

Two linear orders
FO2(+1l1 ,+1l2) NExpTime-complete [23, 10, 5]
FO2(+1l1 ,≤l2) NExpTime/ExpSpace [28]
FO2(+1l1 ,+1l2 ,≤l2) Multicounter-Emptiness5 F, Corollary 11 and Theorem 15
FO2(+1l1 ,≤l1 ,≤l2) NExpTime/ExpSpace [28]
FO2(+1l1 ,≤l1 ,+1l2 ,≤l2) Undecidable [23]

Two total preorders
FO2(+1p1 ,+1p2) Undecidable F, Theorem 17
FO2(+1p1 ,≤p2) Undecidable F, Theorem 20
FO2(≤p1 ,≤p2) Undecidable [27]

One linear order and one total preorder
FO2(+1l ,+1p) ? (see discussion) F Special case: Theorem 10
FO2(+1l ,≤p) ? (see discussion) F Special case: Theorem 10
FO2(+1l ,≤l ,+1p) Undecidable F, Theorem 19
FO2(+1l ,≤l ,≤p) Undecidable [2]
FO2(+1l ,+1p ,≤p) ? (see discussion) F, Special case: Theorem 10
FO2(≤l ,+1p ,≤p) ExpSpace-complete [28]

Many orders
FO2(≤l1 ,≤l2 ,≤l3) Undecidable [17]
FO2(+1l1 ,+1l2 ,+1l3) ?
FO2(+1l1 ,+1l2 ,+1l3 , . . .) ?

Figure 3 Summary of results on finite satisfiability of FO2 with successor and order relations.
Cases that are symmetric and where undecidability is implied are omitted. Results in this paper are
marked by F.

We conclude with highlighting a small difference in treating successor relations for data words.
In this paper, the preorder successor is complete in the sense that every element (except for
elements contained in the last preorder equivalence class) has a preorder successor. In many
data domains, especially in those that are subject to change, it is sufficient to interpret the
preorder successor relation with respect to those data values present in the structure. Such
domains are for example the words in the English language, ISBN numbers etc.

However, for data words over the natural numbers it can be useful that some data values
are not present in a data word, i.e. that the successor relation can be incomplete. As a
complete successor relation can be axiomatized given an incomplete successor relation, this
is a more general setting. This setting is used in [28].

References
1 Mikolaj Bojańczyk, Claire David, Anca Muscholl, Thomas Schwentick, and Luc Segoufin.

Two-variable logic on data words. ACM Trans. Comput. Logic, 12(4):27:1–27:26, July 2011.
2 Mikolaj Bojanczyk, Anca Muscholl, Thomas Schwentick, Luc Segoufin, and Claire David.

Two-variable logic on words with data. In LICS, pages 7–16. IEEE Computer Society, 2006.
3 Egon Börger, Erich Grädel, and Yuri Gurevich. The classical decision problem. Springer

Verlag, 2001.
4 Patricia Bouyer. A logical characterization of data languages. Inf. Process. Lett., 84(2):75–

85, 2002.

CSL’13

498 Two-Variable Logic on 2-Dimensional Structures

5 Witold Charatonik and Piotr Witkowski. Two-variable logic with counting and trees. In
LICS, 2013 (To appear).

6 Alonzo Church. A note on the Entscheidungsproblem. J. Symb. Log., 1(1):40–41, 1936.
7 Stéphane Demri, Deepak D’Souza, and Régis Gascon. A decidable temporal logic of repeat-

ing values. In LFCS, volume 4514 of Lecture Notes in Computer Science, pages 180–194.
Springer, 2007.

8 Stéphane Demri and Ranko Lazic. LTL with the freeze quantifier and register automata.
ACM Trans. Comput. Log., 10(3), 2009.

9 Kousha Etessami, Moshe Y. Vardi, and Thomas Wilke. First-order logic with two variables
and unary temporal logic. Information and Computation, 179(2):279 – 295, 2002.

10 Diego Figueira. Satisfiability for two-variable logic with two successor relations on finite
linear orders. CoRR, abs/1204.2495, 2012.

11 Erich Grädel, Phokion G. Kolaitis, and Moshe Y. Vardi. On the decision problem for
two-variable first-order logic. Bulletin of Symbolic Logic, 3(1):53–69, 1997.

12 Erich Grädel and Martin Otto. On logics with two variables. Theor. Comput. Sci., 224(1-
2):73–113, 1999.

13 Erich Grädel, Martin Otto, and Eric Rosen. Two-variable logic with counting is decidable.
In LICS, pages 306–317, 1997.

14 Joseph Y Halpern and Yoav Shoham. A propositional modal logic of time intervals. Journal
of the ACM (JACM), 38(4):935–962, 1991.

15 Ullrich Hustadt, Renate A Schmidt, and Lilia Georgieva. A survey of decidable first-order
fragments and description logics. Journal of Relational Methods in Computer Science,
1(251-276):3, 2004.

16 Ahmet Kara, Thomas Schwentick, and Thomas Zeume. Temporal logics on words with
multiple data values. In FSTTCS, volume 8 of LIPIcs, pages 481–492. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2010.

17 Emanuel Kieronski. Decidability issues for two-variable logics with several linear orders. In
Marc Bezem, editor, CSL, volume 12 of LIPIcs, pages 337–351. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2011.

18 Emanuel Kieronski, Jakub Michaliszyn, Ian Pratt-Hartmann, and Lidia Tendera. Two-
variable first-order logic with equivalence closure. In LICS, pages 431–440, 2012.

19 Emanuel Kieronski and Martin Otto. Small substructures and decidability issues for first-
order logic with two variables. In LICS, pages 448–457, 2005.

20 Emanuel Kieronski and Lidia Tendera. On finite satisfiability of two-variable first-order
logic with equivalence relations. In LICS, pages 123–132, 2009.

21 S Rao Kosaraju. Decidability of reachability in vector addition systems (preliminary ver-
sion). In Proceedings of the fourteenth annual ACM symposium on Theory of computing,
pages 267–281. ACM, 1982.

22 Amal Manuel, Thomas Schwentick, and Thomas Zeume. A Short Note on Two-Variable
Logic with a Linear Order Successor and a Preorder Successor. ArXiv e-prints, June 2013.

23 Amaldev Manuel. Two orders and two variables. In MFCS, volume 6281 of Lecture Notes
in Computer Science, pages 513–524, 2010.

24 Ernst W Mayr. An algorithm for the general petri net reachability problem. SIAM Journal
on computing, 13(3):441–460, 1984.

25 Michael Mortimer. On languages with two variables. Zeitschr. f. math. Logik u. Grundlagen
d. Math., 21:135–140, 1975.

26 Martin Otto. Two variable first-order logic over ordered domains. J. Symb. Log., 66(2):685–
702, 2001.

27 Thomas Schwentick and Thomas Zeume. Two-variable logic with two order relations. In
CSL, volume 6247 of Lecture Notes in Computer Science, pages 499–513, 2010.

A. Manuel and T. Zeume 499

28 Thomas Schwentick and Thomas Zeume. Two-variable logic with two order relations. Lo-
gical Methods in Computer Science, 8(1), 2012.

29 Luc Segoufin and Szymon Torunczyk. Automata based verification over linearly ordered
data domains. In STACS, volume 9 of LIPIcs, pages 81–92. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2011.

30 Wieslaw Szwast and Lidia Tendera. FO2 with one transitive relation is decidable. pages
317–328, 2013.

31 Boris Trakhtenbrot. The impossibilty of an algorithm for the decision problem for finite
models. Doklady Akademii NaukSSR, 70(2):569–572, 1950.

32 Alan M. Turing. On computable numbers, with an application to the Entscheidungsproblem.
Proceedings of the London mathematical society, 42(2):230–265, 1936.

33 Yde Venema. Expressiveness and completeness of an interval tense logic. Notre Dame
Journal of Formal Logic, 31(4):529–547, 1990.

CSL’13

Categorical Duality Theory: With Applications to
Domains, Convexity, and the Distribution Monad
Yoshihiro Maruyama∗

Quantum Group, Department of Computer Science, University of Oxford
Wolfson Building, Parks Road, Oxford, OX1 3QD, UK
maruyama@cs.ox.ac.uk
http://researchmap.jp/ymaruyama/

Abstract
Utilising and expanding concepts from categorical topology and algebra, we contrive a moderately
general theory of dualities between algebraic, point-free spaces and set-theoretical, point-set
spaces, which encompasses infinitary Stone dualities, such as the well-known duality between
frames (aka. locales) and topological spaces, and a duality between σ-complete Boolean algebras
and measurable spaces, as well as the classic finitary Stone, Gelfand, and Pontryagin dualities.
Among different applications of our theory, we focus upon domain-convexity duality in particular:
from the theory we derive a duality between Scott’s continuous lattices and convexity spaces, and
exploit the resulting insights to identify intrinsically the dual equivalence part of a dual adjunction
for algebras of the distribution monad; the dual adjunction was uncovered by Bart Jacobs, but
with no characterisation of the induced equivalence, which we do give here. In the Appendix, we
place categorical duality in a wider context, and elucidate philosophical underpinnings of duality.

1998 ACM Subject Classification F.3.2 Semantics of Programming Languages

Keywords and phrases duality, monad, categorical topology, domain theory, convex structure

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.500

1 Introduction

There are two conceptions of space: one comes from the ontic idea that the ultimate
constituents of space are points with no extension; the other does not presuppose the concept
of points in the first place, and starts with an epistemically more certain concept such
as regions or observable properties. For instance, a topological space is an incarnation of
the former idea of space, and a frame (or locale) is an embodiment of the latter. Duality
often exists between point-free and point-set conceptions of space (to put it differently,
between epistemology and ontology of space; see the Appendix as well), as exemplified by
the well-known duality between frames and topological spaces (see, e.g., Johnstone [12]).

The most general duality theorem is this: any category C is dually equivalent to the
opposite category Cop. It, of course, makes no substantial sense; however, note that it
prescribes a generic form of duality in a non-obvious way (we say “non-obvious” because
there may be different conceptions of a generic form of duality, some of which may not be
based upon category theory at all). In this paper, we attempt to avoid such triviality by
focusing upon a more specific context: we aim at developing a moderately general theory

∗ I am grateful to Samson Abramsky and Bob Coecke for discussions and encouragements. Special thanks
to Jiri Velebil for telling me about categorical topology, which made my earlier, naïve concept of point-set
space more sophisticated. I would like to express my gratitude to Hilary Priestley for discussions on
Johnstone’s dual adjunction theorem. This work was supported by the Nakajima Foundation.

© Yoshihiro Maruyama;
licensed under Creative Commons License CC-BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca ; pp. 500–520

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.500
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Y. Maruyama 501

of dualities between point-free and point-set spaces, whilst having in mind applications to
domain-convexity duality, where domains are seen as point-free convex structures.

Our general theory of dualities between point-free and point-set spaces builds upon the
celebrated idea of a duality induced by a Janusian (aka. schizophrenic) object: “a potential
duality arises when a single object lives in two different categories” (Lawvere’s words quoted
in Barr et al. [3]). Note that in this paper we mean by dualities dual adjunctions in general;
dual equivalences are understood as special cases. There are different theories of dualities
based upon the same idea (see, e.g., [3, 5, 12, 17]); some of them use universal algebra,
whilst others are categorical. Our theory is in between universal algebra and category theory
(although we use categorical terminology, nevertheless, everything can be recasted in terms
of universal algebra and of general point-set spaces introduced in Maruyama [15]). More
detailed comparison with related work is given below.

Our duality theory allows us to derive a number of concrete dualities, including infinitary
Stone dualities, such as the aforementioned duality in point-free topology, and a certain
duality between σ-complete Boolean algebras and measurable spaces, as well as the classic
finitary Stone, Gelfand, and Pontryagin dualities (since the Pontryagin duality is a self-duality,
how to treat it is slightly different from how to do the others as noted below).

In the present paper we focus, inter alia, upon dualities between point-free and point-set
convex structures. On the one hand, we consider Scott’s continuous lattices to represent
point-free convex structures for certain reasons explained later, in Subsection 3.1. On the
other hand, there are two kinds of point-set convex structures: i.e., convexity spaces (see van
de Vel [18] or Coppel [6]; the definition is given in Preliminaries in Section 2) and algebras of
the distribution monad (aka. barycentric algebras; see Fritz [8]).

Our general theory tells us that there is a duality between continuous lattices and convexity
spaces. In contrast, Jacobs [11] shows a dual adjunction between preframes and algebras of
the distribution monad, which can be reformulated as a dual adjunction between continuous
lattices and algebras of the distribution monad. Although Jacobs [11] left it open to identify
intrinsically the induced dual equivalence, in this paper, we give an intrinsic characterisation
of the dual equivalence part of the dual adjunction for algebras of the distribution monad.
Technical Summary. In our duality theory, we mainly rely upon concrete category theory
as in Adámek et al. [1], especially concepts from categorical topology (see also [2, 4]) and
categorical algebra (in particular the theory of monads).

We start with a category C monadic over Set (which is equivalent to possibly infinitary
varieties in terms of universal algebra) and with a topological category D of certain type,
and then assume that there is a Janusian object Ω living in both C and D. In passing, we
introduce the new concept of classical topological axiom, and use it to identify a certain
class of those full subcategories of a functor-structured category that represent categories
of point-set spaces. Under the assumption of what we call the harmony condition, which
basically means that algebraic operations are continuous in a suitable sense, we finally show
that there is a dual adjunction between C and D, given by homming into Ω.

The dual adjunction formally restricts to a dual equivalence via the standard method of
taking those objects of C and D that are fixed under the unit and counit of the adjunction;
to put it intuitively, the objects whose double duals are isomorphic to themselves. At the
same time, however, it is often highly non-trivial to identify intrinsically the dual equivalence
part of a dual adjunction in a concrete situation, as Porst-Tholen [17] remark, “This can be
a very hard problem, and this is where categorical guidance comes to an end.”1

1 To exemplify what is meant here, consider the dual adjunction between frames and spaces, which

CSL’13

502 Categorical Duality Theory

Using specialised, context-dependent methods, rather than the generic one mentioned
above, we give intrinsic characterisations of dual equivalences induced by the dual adjunction
for convexity spaces, and by the dual adjunction for algebras of the distribution monad. The
concept of polytopes plays a crucial role in the characterisations, and in understanding how
semilattices involve convex structures.

Comparison with Related Work. Our general theory of dualities may be compared with
other duality theories as follows. Clark-Davey’s theory of natural dualities [5] is based upon
the same idea of a duality induced by a Janusian object. However, our theory is more
comprehensive than natural duality theory, in that whilst natural duality theory specialises
in dualities for finitary algebras, our theory is intended to encompass infinitary algebras as
well (e.g., frames, σ-complete Boolean algebras, and continuous lattices). Our theory thus
encompasses both finitary and infinitary Stone-type dualities.

Johnstone’s general concrete duality [12, VI.4] and Porst-Tholen’s natural dual adjunction
[17] are more akin to ours.2 A crucial difference is, however, that we stick to the practice
of Stone-type dualities as far as possible. In their theories, there is no concrete concern
with how to equip the “spectrum” of an “algebra” with a “topology” or how to equip the
(collection of) “functions” on a “space” with an “algebraic” structure.

We consider that the processes of algebraisation and topologisation are essential in the
practice of Stone-type dualities. In particular, algebraisation and topologisation are strikingly
different processes in the practice; in spite of this, the two processes are treated in their
theories as being in parallel and symmetric at a level of abstraction, which looks like an
excessive abstraction from our perspective of the practice of duality.

We put a strong emphasis on the asymmetry between the two processes of algebraisation
and topologisation in the practice of Stone-type dualities, and thus aim at simulating the
processes within our theory, thereby representing the practice of duality in an adequate
manner. In order to achieve this goal, our theory cannot and should not be so general as to
symmetrise the asymmetry; this is the reason why we call our theory “moderately” general.

In comparison with Maruyama [15], which discusses a theory of T1-type dualities based
upon Chu spaces and a generic concept of closure conditions, the present paper aims at a
theory of sober-type dualities; an example of duality of T1-type is a (not very well known)
duality between T1 spaces and coatomistic frames (a subtlety is frame morphisms must be
“maximal” to dualise continuous maps; see [15]). Sober-type dualities are based upon prime
spectra, whilst T1-type dualities are based upon maximal spectra. Affine varieties (except
singletons) in Cn with Zariski topologies are non-sober T1 spaces; they are homeomorphic to
the maximal spectra of their coordinate rings. Both the former and the latter theories can
be applied to different sorts of spaces, yielding T1-type and sober-type dualities respectively.

Jacobs [11] and Maruyama [14] independently unveiled (different) dualities for convexity
(convexity algebras in [14] are replaced in this paper by continuous lattices), and the present
paper is meant to elucidate a precise link between them, which remained unclear so far. The
two dualities turn out to be essentially the same in spite of their rather different outlooks.

restricts to a dual equivalence between the frames and spaces whose double duals are isomorphic to
themselves; this is trivial. Nevertheless, it is not trivial at all to notice that those frames are exactly the
frames with enough points (i.e., spatial frames), and those spaces are precisely the spaces in which any
non-empty irreducible closet set is the closure of a unique point (i.e., sober spaces).

2 Johnstone’s dual adjunction (Lemma VI.4.2) seems to be not very rigorous because he dares to say “we
choose not to involve ourselves in giving a precise meaning to the word ‘commute’ in the last sentence”
(p. 254), and the dual adjunction result actually relies upon the assumption of that commutativity. In
this paper, we precisely formulate the concept of commutativity as what we call the harmony condition.

Y. Maruyama 503

2 General Duality Theory

After preliminaries, we first review categorical topology, and then get into a general theory of
dualities based upon the concepts of monad, functor-(co)structured category, and topological
(co)axiom. Among other things, we introduce the new concept of classical topological axiom
with the aim of treating different sorts of point-set spaces in a unified way.
Preliminaries. For a category C and a faithful functor U : C→ Set, a tuple (C, U) is called
a concrete category, where Set denotes the category of sets and functions. U is called the
underlying functor of the concrete category. For simplicity, we often omit and make implicit
the functor U of a concrete category (C, U). We can also define the notion of a concrete
category over a general category. For a category C and a faithful functor U : C→ D, (C, U)
is called a concrete category over D. A concrete category (over Set) in this paper is called a
construct in [1]. Top denotes the category of topological spaces and continuous functions.
Conv denotes the category of convexity spaces and convexity preserving maps, where a
convexity space is a tuple (X, C) such that X is a set and C is a subset of the powerset of
X that is closed under directed unions and arbitrary intersections; a convexity-preserving
map is such that the inverse image of any convex set under it is again convex (see van de
Vel [18] and Coppel [6], which develop substantial amount of convex geometry based upon
this general concept of convexity space). Meas denotes the category of measurable spaces
and measurable functions. Frm denotes the category of frames and their homomorphisms.
ContLat denotes the category of continuous lattices and their homomorphisms (i.e., maps
preserving directed joins and arbitrary meets). BAσ denotes the category of σ-complete
Boolean algebras with σ-distributivity and their homomorphisms, where σ-distributivity
means that countable joins distribute over countable meets. Q : Setop → Set denotes the
contravariant powerset functor.

2.1 A Categorical Conception of Point-Set Spaces
Here we introduce a general concept of space that encompasses topological spaces, convexity
spaces, and measurable spaces. Our duality theory shall be developed based upon that
concept of (generalised) space. For the fundamentals of functor-(co)structured category
and topological (co)axiom, we refer to Adámek et al. [1]. We first review the notion of
functor-structured category. Let (C, U : C→ Set) be a concrete category in the following.
I Definition 2.1 ([1]). A category Spa(U) is defined as follows.
1. An object of Spa(U) is a tuple (C,O) where C ∈ C and O ⊂ U(C).
2. An arrow of Spa(U) from (C,O) to (C ′,O′) is an arrow f : C → C ′ of C such that

U(f)[O] ⊂ O′.
A category of the form Spa(U) is called a functor-structured category. A category of the
form (Spa(U))op is called a functor-costructured category.

We consider Spa(U) as a concrete category equipped with a faithful functor U ◦ F :
Spa(U)→ Set where F : Spa(U)→ C is the forgetful functor that maps (C,O) to C.

Then we can show the following (for the definition of topological category, see [1]; although
there are different notions of a topological category, we follow the terminology of [1]).
I Proposition 2.2 ([1]). Both a functor-structured category Spa(U) and a functor-costructured
category (Spa(U))op are topological.

The concept of topological (co)axiom is defined as follows.
I Definition 2.3 ([1]). A topological axiom in (C, U) is defined as an arrow p : C → C ′ of
C such that

CSL’13

504 Categorical Duality Theory

1. U(C) = U(C ′);
2. U(p) : U(C)→ U(C) is the identity morphism on U(C).
An object C of C satisfies a topological axiom p : D → D′ in (C, U) iff, for any arrow
f : D → C of C, there is an arrow f ′ : D′ → C of C such that U(f) = U(f ′).

A topological coaxiom is defined as a topological axiom with the following concept of
satisfaction. An object C of C satisfies a topological coaxiom p : D′ → D in (C, U) iff, for
any arrow f : C → D of C, there is an arrow f : C → D′ of C such that U(f) = U(f ′).

Topological axioms and coaxioms are the same, but the corresponding notions of satisfac-
tion are dual to each other. For examples of topological (co)axiom, we refer to [1].

I Definition 2.4 ([1]). Let X be a class of topological (co)axioms in a concrete category C.
A full subcategory D of C is definable by X in C iff the objects of D coincide with those
objects of C that satisfy all the topological (co)axioms in X.

As in the following proposition, we can show a topological analogue of the Birkhoff
theorem in universal algebra (for more details, see Theorem 22.3 and Corollary 22.4 in [1]).

I Proposition 2.5 ([1]). Let C be a concrete category. The following are equivalent:
1. C is fibre-small and topological;
2. C is isomorphic to a subcategory of a functor-structured category that is definable by a

class of topological axioms in the functor-structured category.
3. C can be embedded into a functor-structured category as a full subcategory that is closed

under the formation of products, initial subobjects, and indiscrete objects.

Now we introduce the new concept of classical topological (co)axiom, which shall play a
crucial role in formulating our dual adjunction theorem.

I Definition 2.6. A classical topological axiom in Spa(U) is defined as a topological axiom
p : (C,O)→ (C ′,O′) in Spa(U) such that

Any element of O′ \O can be expressed as a (possibly infinitary) Boolean combination of
elements of O.

A classical topological coaxiom in (Spa(U))op is defined as a topological coaxiom p : (C,O)→
(C ′,O′) in (Spa(U))op such that

Any element of O \O′ can be expressed as a (possibly infinitary) Boolean combination of
elements of O′.

Let Q : Setop → Set denote the contravariant powerset functor. Any of the category
Top of topological spaces, the category Conv of convexity spaces, and the category Meas of
measurable spaces is a full subcategory of (Spa(Q))op that is definable by a class of classical
topological coaxioms as in the following proposition, which can be shown just by spelling out
the definitions involved.

I Proposition 2.7. Top is definable by the following class of classical topological coaxioms in
(Spa(Q))op:

1S : (S, {∅, S}) → (S, ∅)
1S : (S, {X,Y,X ∩ Y }) → (S, {X,Y })

1S : (S,O ∪ {
⋃
O}) → (S,O)

for all sets S, all subsets X,Y of S and all subsets O of the powerset of S.
Conv is definable by the following class of classical topological coaxioms in (Spa(Q))op:

(i) 1S : (S, {∅, S})→ (S, ∅); (ii) 1S : (S, C∪{
⋂
C})→ (S, C); (iii) 1S : (S, C′∪{

⋃
C′})→ (S, C′)

Y. Maruyama 505

for all sets S, all subsets C of the powerset of S, and all those subsets C′ of the powerset of S
that are directed with respect to inclusion.

Meas is definable by the following class of classical topological coaxioms in (Spa(Q))op: (i)
1S : (S, {∅, S})→ (S, ∅); (ii) 1S : (S, {X,Xc})→ (S, {X}); (iii) 1S : (S,B ∪ {

⋃
B})→ (S,B)

for all sets S, all subsets X of S, and all those subsets B of the powerset of S that are of
cardinality ≤ ω.

In order to develop a general duality theory, thus, we shall focus upon a full subcategory
Spa of (Spa(Q))op that is definable by a class of classical topological coaxioms in (Spa(Q))op.

We call (S,O) ∈ Spa a generalised space and O a generalised topology.
Given a subset P of the powerset of a set S, we can generate a topology on S from P,

which is the weakest topology containing P. We can also do the same thing in the case of
generalised topology.
I Proposition 2.8. For a set S, let P be a subset of the powerset of S. Then, there is a
weakest generalised topology on S containing P in Spa, i.e., there is (S,O) ∈ Spa such that,
if P ⊂ O′ for (S,O′) ∈ Spa, then O ⊂ O′. We then say that O is generated in Spa by P.

Proof. Define O =
⋂
{X ; P ⊂ X and (S,X) ∈ Spa}. It is sufficient to show that O is

a generalised topology on S in Spa, i.e., (S,O) satisfies the class of topological coaxioms
that define Spa. Assume that p : (X,B′) → (X,B) is one of such coaxioms and that
f : (S,O) → (X,B) is an arrow in (Spa(Q))op. For B ∈ B′ \ B, we have f−1(B) ∈
X for any X with P ⊂ X and (S,X) ∈ Spa, which implies that f−1(B) ∈ O. J

2.2 Dual Adjunction via Harmony Condition
Throughout this subsection, let

Alg denote a full subcategory of the Eilenberg-Moore category of a monad T on Set;
Spa denote a full subcategory of (Spa(Q))op that is definable by a class of classical
topological coaxioms in (Spa(Q))op.

We aim at establishing a dual adjunction between Alg and Spa under the two assumptions:
there is an object Ω living in both Alg and Spa, i.e., there is Ω ∈ Set both with a
structure map hΩ : T (Ω)→ Ω such that (Ω, hΩ) ∈ Alg and with a generalised topology
OΩ ⊂ Q(Ω) such that (Ω,OΩ) ∈ Spa;
(Alg,Spa,Ω) satisfies the harmony condition in Definition 2.9 below.
Ω is intuitively a set of truth values, and shall work as a so-called dualising object (we

do not use the term “schizophrenic”, since it has a different technical meaning in a certain
context). We simply write Ω instead of (Ω, hΩ) or (Ω,OΩ) when there is no confusion.

The harmony condition intuitively means that the algebraic structure of Alg and the
geometric structure of Spa are in harmony via Ω. The precise definition is given below.
I Definition 2.9. (Alg,Spa,Ω) is said to satisfy the harmony condition iff, for each S ∈ Spa,

(HomSpa(S,Ω), hS : T (HomSpa(S,Ω))→ HomSpa(S,Ω))

is an object in Alg such that, for any s ∈ S (let ps be the corresponding projection from
HomSpa(S,Ω) to Ω), the following diagram commutes:

.

T (HomSpa(S,Ω)) HomSpa(S,Ω)

T (Ω) Ω
?

T (ps)

-
hS

?

ps

-
hΩ

CSL’13

506 Categorical Duality Theory

I Remark 2.10. The commutative diagram above means that the induced operations of
HomSpa(S,Ω) are defined pointwise. The harmony condition then consists of the two
parts:
(i) HomSpa(S,Ω) is closed under the pointwise operations;
(ii) HomSpa(S,Ω) with the pointwise operations is in Alg.
Here, (ii) is not so important for the reason that we can drop condition (ii) if Alg is the
Eilenberg-Moore category of a monad on Set, rather than a full subcategory of it; this
follows from the fact that, since Alg is then closed under products and subalgebras, we have
a product ΩS in Alg, and hence HomSpa(S,Ω) in Alg as a subalgebra of ΩS (obviously, it
actually suffices to assume that Alg is a quasi-variety or an implicational full subcategory of
the Eilenberg-Moore category of a monad on Set in the sense of [1]). Regarding HomSpa(S,Ω)
as the collection of generalised continuous functions on S, (i) above means that the continuous
functions are closed under the algebraic operations defined pointwise, which is the most
important part of the harmony condition, and after which the “harmony” condition is named.

We assume the harmony condition in the following part of this subsection.
The geometric structure of HomAlg(A,Ω) for A ∈ Alg can be provided as follows. By

Proposition 2.8, equip HomAlg(A,Ω) with the generalised topology generated (in Spa) by

{〈a〉O ; a ∈ A and O ∈ OΩ}

where
〈a〉O := {v ∈ HomAlg(A,Ω) ; v(a) ∈ O}.

The algebraic structure of HomSpa(S,Ω) is provided by hS above.
The induced contravariant Hom-functors HomAlg(-,Ω) : Alg→ Spa and HomSpa(-,Ω) :

Spa→ Alg can be shown to be well defined and form a dual adjunction between categories
Alg and Spa, i.e., we have the following dual adjunction theorem:

I Theorem 2.11. There is a dual adjunction between Alg and Spa, given by contravariant
functros HomAlg(-,Ω) and HomSpa(-,Ω). To be precise, HomAlg(-,Ω) is left adjoint to
HomSpa(-,Ω)op.

A proof of the theorem is given soon after the following remark.

I Remark 2.12. The theorem encompasses the well-known dual adjunction between frames
and topological spaces; in this case, Ω is the two element frame with the Sierpinski topology,
and the harmony condition boils down to the obvious fact that the collection of open sets is
closed under the operations of arbitrary unions and finite intersections. The frame-space
duality is thus an immediate corollary of the theorem above; this exhibits a sharp contrast to
those general theories of dualities that require substantial work in deriving concrete results.
Our theory is for duality in context, contrived to be effective in concrete situations.

In a similar way, we can derive a dual adjunction between σ-complete Boolean algebras
and measurable spaces by letting Ω be the two element algebra with the discrete topology
(in fact, any algebra with the discrete topology works as Ω), where σ-complete Boolean
algebras may be seen as point-free measurable spaces. In Section 3, we discuss in detail a
dual adjunction between continuous lattices and convexity spaces.

The most plain case is the dual adjunction between Set and Set, induced by the two
element set as a dualising object Ω (any set actually works); the harmony condition is nothing
in this case. The discrete Stone adjunction between Boolean algebras and Set is well known.
The theorem above gives us a vast generalisation of it: there is a dual adjunction between
any algebraic category (or variety in terms of universal algebra) and Set, induced by any

Y. Maruyama 507

Ω ∈ Alg; the harmony condition is nothing in this case as well, thanks to the discrete nature
of Set (i.e., the set of all functions f : S → Ω are closed under arbitrary operations on it).

Furthermore, the theorem above encompasses the topological Stone adjunction between
Boolean algebras and topological spaces, its diverse extensions for distributive lattices, MV-
algebras ([0, 1] works as a dualising object in this case), and algebras of substructural logics,
and the Gelfand adjunction between commutative C∗-algebras with units 1 and topological
spaces; note that the category of commutative C∗-algebras with 1 is monadic over Set (see
[16]). Any dual adjunction automatically cuts down to a dual equivalence as explained below,
and the method can be applied to all the dual adjunctions mentioned above in order to
obtain dual equivalences (still it often is not that easy to give intrinsic characterisations of
the resulting dual equivalences as already discussed in Section 1).

Let us think of the Pontryagin self-duality for locally compact Abelian groups. Although
for simplicity we did not assume a topological structure on Alg and an algebraic structure
on Spa in our set-up, this gets relevant in order to treat the Pontryagin duality within our
framework. It is indeed straightforward: we start with topological Alg and algebraic Spa,
and assume two harmony conditions; and the following proof can easily be adapted to that
situation (just repeat the same arguments for the additional structures on Alg and Spa).

2.2.1 Proof of Dual Adjunction Theorem
We first show that the two Hom-functors are well defined.

I Lemma 2.13. The contravariant functor HomAlg(-,Ω) : Alg→ Spa is well defined.

Proof. The object part is well defined by Proposition 2.8. We show that the arrow part
is well defined. Let f : A → A′ be an arrow in Alg. We prove that HomAlg(f,Ω) :
HomAlg(A′,Ω)→ HomAlg(A,Ω) is an arrow in Spa. For a ∈ A and O ∈ OΩ, we have:

HomAlg(f,Ω)−1(〈a〉O) = {v ∈ HomAlg(A′,Ω) ; HomAlg(f,Ω)(v) ∈ 〈a〉O}
= {v ∈ HomAlg(A′,Ω) ; v ◦ f(a) ∈ O}
= 〈f(a)〉O.

Since Spa is definable by a class of Boolean topological coaxioms and since Boolean set
operations are preserved by the inverse image function f−1, this implies that HomAlg(f,Ω)
is an arrow in Spa. J

I Lemma 2.14. The contravariant functor HomSpa(-,Ω) : Spa→ Alg is well defined.

Proof. The object part is well defined by the harmony condition (or can be verified as in (i)
or (ii) in Remark 2.10 if we employ either of the other two definitions of Alg).

We show that the arrow part is well defined. Let f : S → S′ be an arrow in Spa. We
prove that HomSpa(f,Ω) : HomSpa(S′,Ω) → HomSpa(S,Ω) is an arrow in Alg, i.e., the
following diagram commutes:

.

T (HomSpa(S′,Ω)) HomSpa(S′,Ω)

T (HomSpa(S,Ω)) HomSpa(S,Ω)
?

T (HomSpa(f,Ω))

-hS′

?

HomSpa(f,Ω)

-
hS

CSL’13

508 Categorical Duality Theory

By the harmony condition applied to S (or the commutativity of the lower square in the
figure below), this is equivalent to the commutativity of the outermost square in the following
diagram for any s ∈ S:

T (HomSpa(S′,Ω)) HomSpa(S′,Ω)

T (HomSpa(S,Ω)) HomSpa(S,Ω)

T (Ω) Ω

?

T (HomSpa(f,Ω))

-hS′

?

HomSpa(f,Ω)

?

T (ps)

-
hS

?

ps

-
hΩ

where recall that ps denotes the corresponding projection. By the harmony condition applied
to S′, we have: for any s′ ∈ S′, hΩ◦T (ps′) = ps′ ◦hS′ . By taking s′ = f(s) in this equation, we
have hΩ ◦T (pf(s)) = pf(s) ◦hS′ . It is straightforward to verify that pf(s) = ps ◦HomSpa(f,Ω).
Thus we obtain hΩ ◦ T (ps ◦HomSpa(f,Ω)) = ps ◦HomSpa(f,Ω) ◦ hS′ . Since T is a functor,
this yields the commutativity of the outermost square above. Hence, the arrow part is well
defined. J

Now we define two natural transformations in order to show the dual adjunction.

I Definition 2.15. Natural transformations

Φ : 1Alg → HomSpa(HomAlg(-,Ω),Ω)

and
Ψ : 1Spa → HomAlg(HomSpa(-,Ω),Ω)

are defined as follows. For A ∈ Alg, define ΦA by ΦA(a)(v) = v(a) where a ∈ A and
v ∈ HomAlg(A,Ω). For S ∈ Spa, define ΨS by ΨS(x)(f) = f(x) where x ∈ S and
f ∈ HomSpa(S,Ω).

We have to show that Φ and Ψ are well defined.

I Lemma 2.16. For A ∈ Alg and a ∈ A, ΦA(a) is an arrow in Spa.

Proof. For O ∈ OΩ, we have

ΦA(a)−1(O) = {v ∈ HomAlg(A,Ω) ; ΦA(a)(v) ∈ O} = 〈a〉O.

Thus, ΦA(a) is an arrow in Spa. J

I Lemma 2.17. For S ∈ Spa and x ∈ S, ΨS(x) is an arrow in Alg.

Proof. This lemma follows immediately from the harmony condition applied to HomSpa(S,Ω)
together with the fact that px = ΨS(x). J

We also have to show that ΦA is an arrow in Alg and that ΨS is an arrow in Spa.

Y. Maruyama 509

I Lemma 2.18. For A ∈ Alg, ΦA is an arrow in Alg.

Proof. Let hA : T (A)→ A denote the structure map of A. For the simplicity of description,
let H(A) denote HomAlg(A,Ω) and H ◦ H(A) denote HomSpa(HomAlg(A,Ω),Ω). In order
to show the commutativity of the upper square in the diagram below, it is sufficient to
prove that the outermost square is commutative for any v ∈ H(A), since the lower square is
commutative because of the harmony condition applied to H ◦H(A).

.

T (A) A

T (H ◦H(A)) H ◦H(A)

T (Ω) Ω

?

T (ΦA)

-hA

?

ΦA

?

T (pv)

-
hH(A)

?

pv

-
hΩ

It is straightforward to verify that pv◦ΦA = v. Then, it suffices to show that v◦hA = hΩ◦T (v).
This is nothing but the fact that v ∈ H(A). J

I Lemma 2.19. For S ∈ Spa, ΨS is an arrow in Spa.

Proof. For f ∈ HomAlg(HomSpa(-,Ω),Ω) and O ∈ OΩ, we have

Ψ−1
S (〈f〉O) = {x ∈ S ; ΨS(x) ∈ 〈f〉O} = f−1(O).

Since Spa is definable by a class of Boolean topological coaxioms and since Boolean set
operations are preserved by the inverse image function Ψ−1

S , this implies that ΨS is an arrow
in Spa. J

Now it is straightforward to verify that Φ and Ψ are actually natural transformations.
We finally give a proof of the dual adjunction theorem, Theorem 2.11: HomAlg(-,Ω) is

left adjoint to HomSpa(-,Ω)op with Φ the unit and Ψop the counit of the adjunction.

Proof. Let A ∈ Alg and S ∈ Spa. It is enough to show that, for any f : A→ HomSpa(S,Ω)
in Alg, there is a unique g : S → HomAlg(A,Ω) in Spa such that the following diagram
commutes:

H ◦H(A) H(S)

A

-H(g)

6
ΦA

�
�
�
��3

f

where H(S) denotes HomSpa(S,Ω), H(g) denotes HomSpa(g,Ω), H(A) denotes HomAlg(A,Ω)
and H ◦H(A) denotes HomSpa(HomAlg(A,Ω),Ω). We first show that such g exists. Define
g : S → HomAlg(A,Ω) by g(x)(a) = ΨS(x)(f(a)) where x ∈ S and a ∈ A. Then we have

(HomSpa(g,Ω) ◦ ΦA(a))(x) = (ΦA(a) ◦ g)(x) = g(x)(a)
= ΨS(x)(f(a)) = f(a)(x).

CSL’13

510 Categorical Duality Theory

Thus, the above diagram commutes for this g. It remains to show that g is an arrow in Spa.
For a ∈ A and O ∈ OΩ, we have

g−1(〈a〉O) = {x ∈ S ; g(x) ∈ 〈a〉O}
= {x ∈ S ; g(x)(a) ∈ O}
= {x ∈ S ; f(a)(x) ∈ O}
= f(a)−1(O).

Since f(a) ∈ HomSpa(S,Ω) and since Spa is definable by a class of Boolean topological
coaxioms, this implies that g is an arrow in Spa.

Finally, in order to show the uniqueness of such g, we assume that g′ : S → HomAlg(A,Ω)
in Spa makes the above diagram commute. Then we have

f(a)(x) = (HomSpa(g′,Ω) ◦ ΦA(a))(x) = (ΦA(a) ◦ g′)(x) = g′(x)(a).

Since we also have f(a)(x) = g(x)(a), it follows that g = g′. This completes the proof. J

2.2.2 Deriving Equivalence from Adjunction
We briefly review standard methods to derive a (dual) equivalence from a (dual) adjunction.
Assume that F : C→ D is left adjoint to G : D→ C with Φ and Ψ the unit and the counit
of the adjunction, respectively.

I Definition 2.20. Fix(C) is a full subcategory of C such that C ∈ Fix(C) iff ΦC is an
isomorphism in C. Fix(D) is a full subcategory of D such that D ∈ Fix(D) iff ΨD is an
isomorphism in D.

I Proposition 2.21. Fix(C) and Fix(D) are categorically equivalent. Moreover, this equival-
ence is the maximal one that can be derived from the adjunction between C and D.

If we require a condition about the original adjunction, we have another way to describe
Fix(C) and Fix(D). We first introduce the following notations.

I Definition 2.22. Img(C) is a full subcategory of C such that C ∈ Img(C) iff C ' G(D)
for some D ∈ D. Img(D) is a full subcategory of D such that D ∈ Img(D) iff D ' F (C) for
some C ∈ C.

I Proposition 2.23. Assume that F (C) ∈ Fix(D) for any C ∈ C and that G(D) ∈ Fix(C)
for any D ∈ D. It then holds that Img(C) = Fix(C) and Img(D) = Fix(D). Hence, Img(C)
and Img(D) are categorically equivalent.

Note that the above assumption is satisfied in the case of the duality between spatial
frames and sober topological spaces, and also in the case of a duality between spatial
continuous lattices and sober convexity spaces, which is presented below.

3 Domain-Convexity Duality

In this section, we apply the general theory to obtain a dual adjunction between continuous
lattices and convexity spaces, and then refine the dual adjunction into a dual equivalence
between algebraic lattices and sober convexity spaces, which allows us to characterise the
dual equivalence part of Jacobs’ dual adjunction for algebras of the distribution monad, with
the help of the notion of idempotency for those algebras.

Y. Maruyama 511

3.1 Convexity-Theoretical Duality for Scott’s Continuous Lattices
The concept of a continuous lattice is usually defined in terms of way-below relations: i.e., a
continuous lattice is a complete lattice in which any element can be expressed as the join of
those elements that are way-below it. From our perspective of duality between point-free
and point-set spaces, another characterisation of continuous lattices is helpful:
I Proposition 3.1 (Theorem I-2.7 in [7])). A poset is a continuous lattice iff it satisfies the
following: (i) it has directed joins including 0; (ii) it has arbitrary meets including 1; (iii)
arbitrary meets distribute over directed joins.

The proposition above suggests that continuous lattices may be considered to be point-free
convexity spaces; recall that a convexity space is a tuple (S, C) where S is a set, and C is a
subset of P(S) that is closed under directed unions and arbitrary intersections; C is called
the convexity of the space. Many theorems in convex geometry such as Helly-type theorems
(see [9]) can be treated in terms of convexity spaces with suitable conditions (see [6, 18]).

Just as a frame is a point-free abstraction of a topological space, so a continuous lattice
is a point-free abstraction of a convexity space; this is what the proposition above tells
us. Note that item 1 above is mathematically redundant, but suggests the definition of a
homomorphism, which preserves directed joins and arbitrary meets.

This idea in turn suggests that there is a duality between ContLat and Conv. To apply
our duality theory, recall that the continuous lattices are the algebras of the filter monad
on Set (see [7]), and that the convexity spaces can be expressed as a full subcategory of
(Spa(Q))op that is definable by a class of classical topological coaxioms.

We can see 2 (i.e., {0, 1}) as a continuous lattice by its natural ordering 0 < 1 and also as
a convexity space by equipping it with the Sierpinski convexity {∅, {1},2}. In order to show
that homming into 2 gives us a dual adjunction between continuous lattices and convexity
spaces, it suffices to verify the harmony condition. It is immediate because the harmony
condition in this case boils down to the fact that HomConv(S,2), which can be seen as the
set of convex sets in S, forms a continuous lattice. We then obtain the following theorem.
I Theorem 3.2. There is a dual adjunction between ContLat and Conv, given by contrav-
ariant functors HomConv(-,2) and HomContLat(-,2).

We can formally refine the dual adjunction into a dual equivalence in the canonical way
as already discussed. It is non-trivial, however, to find an intrinsic description of the induced
dual equivalence. We shall achieve it in the following. Although we do not have space to give
proofs in this subsection, relevant proofs can be found in Maruyama [14]; note that it causes
no essential change in proofs to replace convexity algebras in [14] with continuous lattices.

HomConv(X,2) can be seen as the collection of convex sets in X, so we write Conv(-)
for HomConv(-,2). Likewise, we write Spec(-) for HomContLat(-,2), for the reason that
HomContLat(L,2) can be seen as the collection of Scott-open meet-complete filters of L
where meet-completeness is defined as closedness under arbitrary meets.
I Definition 3.3. We denote by Φ : IdContLat → Conv◦Spec and Ψ : IdConv → Spec◦Conv
the unit and counit of the dual adjunction between ContLat and Conv, respectively.

The question is when the unit Φ and the counit Ψ give isomorphisms.
We define the notion of spatiality of continuous lattices as the existence of enough

Scott-open meet-complete filters:
I Definition 3.4. A continuous lattice L is spatial iff, for any a, b ∈ L with a � b, there is a
Scott-open meet-complete filter P of L such that a ∈ P and b /∈ P .

The following proposition is crucial.

CSL’13

512 Categorical Duality Theory

I Proposition 3.5. A continuous lattice L is spatial iff ΦL : L → Conv ◦ Spec(L) is an
isomorphism.

Spatiality is characterised as algebraicity.
I Proposition 3.6. Let L be a continuous lattice. Then, L is spatial iff L is algebraic (i.e.,
every element can be expressed as the join of a directed set of compact elements).

Sober convexity spaces are defined in terms of polytopes, which make sense in general
convexity spaces as follows.
I Definition 3.7. The convex hull ch(Y) of a subset Y of a convexity space (X, C) is defined
as

⋂
{Z | Z ∈ C and Y ⊂ Z}. Then, a polytope in a convexity space is defined as the convex

hull of a set of finitely many points in it.
A convex set C in C is said to be directed-irreducible iff if C =

⋃
i∈I Ci for a directed

subset {Ci ; i ∈ I} of C then there exists i ∈ I such that C = Ci.
I Proposition 3.8. A convex subset of a convexity space is directed-irreducible iff it is a
polytope.

Polytopes form a canonical basis for any convexity (if we assume the axiom of choice):
I Proposition 3.9. Any convex set in a convexity space can be expressed as the union of a
directed set of polytopes.

Sobriety is defined as follows (polytopes may be replaced with directed-irreducible sets).
I Definition 3.10. A convexity space is sober iff every polytope in it is the convex hull of a
unique point.

In contrast to the first impression, sobriety is a natural concept. Let us see examples.
I Definition 3.11. Given a convexity space S, we can equip the set of polytopes in S with
the ideal convexity: i.e., a convex set is an ideal of the lattice of polytopes.

The space of polytopes is then sober, and gives the soberification of the original space.
The space of polytopes corresponds to the space of irreducible varieties in algebraic geometry;
to put it differently, “a unique point” above plays, in convex geometry, the role of “a generic
point” in terms of algebraic geometry.

In algebraic geometry, we soberify a variety by adding irreducible varieties as additional
generic points (in other words, the prime spectrum of the coordinate ring of a variety gives the
soberification). In convex geometry, we soberify a space by adding polytopes as generic points
(in other words, the prime spectrum of the lattice of convex sets gives the soberification).
Here recall that polytopes can be characterised by directed-irreducibility.
I Proposition 3.12. For a convexity space S, S is sober iff ΨS is an isomorphism in Conv.

Let SobConv denote the category of sober convexity spaces and convexity preserving
maps, AlgLat the category of algebraic lattices and homomorphisms, and SpaContLat the
category of spatial continuous lattices and homomorphisms. We finally obtain the following.
I Theorem 3.13. AlgLat (= SpaContLat) and SobConv are dually equivalent.

3.2 Jacobs Duality for Algebras of the Distribution Monad
Let D : Set→ Set be the distribution monad on Set. The object part is defined by:

D(X) :=
{
f : X → [0, 1] |

∑
x∈X

f(x) = 1 and f has a finite support
}
.

Y. Maruyama 513

The arrow part is defined by:

D(f : X → Y)(g : X → [0, 1])(y) =
∑

f(x)=y

g(x).

As in [8, 11], algebras of D can concretely be described as barycentric algebras, which are
basically sets with convex combination operations; the precise definition is given below.

Jacobs [11] shows a dual adjunction between preframes and algebras of D. We first
observe that we can restrict the category of preframes into the category of continuous lattices,
since the dual of an algebra of D (i.e., PF(X) below) is actually a continuous lattice. And
then we characterise the induced dual equivalence via the concept of idempotent algebras
of D.
I Definition 3.14. A D-algebra (aka. barycentric algebra) is a set X with a ternary function

〈-, -, -〉 : [0, 1]×X ×X → X

such that
1. 〈r, x, x〉 = x;
2. 〈0, x, y〉 = y;
3. 〈r, x, y〉 = 〈1− r, y, x〉;
4. 〈r, x, 〈s, y, z〉〉 = 〈r + (1− r)s, 〈r/(r + (1− r)s), x, y〉, z〉.
Morphisms of D-algebras are affine maps, i.e., maps f preserving 〈-, -, -〉 in the following way:

f(〈r, x, y〉) = 〈r, f(x), f(y)〉.

Alg(D) denotes the category of D-algebras and affine maps.
Alg(D) in the sense above is equivalent to the Eilenberg-Moore category of the distribution

monad (see [11, 8]).
Semilattices can be regarded as D-algebras in a canonical way.

I Proposition 3.15. Any meet-semilattice L forms a D-algebra: define 〈-, -, -〉 : [0, 1]×L×L→
L by

〈r, x, y〉 = x ∧ y

if r ∈ (0, 1); otherwise, define 〈r, x, y〉 = x if r = 1, and 〈r, x, y〉 = y if r = 0. Similarly, any
join-semilattice forms a D-algebra (by replacing ∧ above with ∨).

In the following, we suppose any semilattice is equipped with the convex structure defined
in the proposition above. We review the following concepts from Jacobs [11].
I Definition 3.16. For a D-algebra (X, 〈-, -, -〉), a subset Y of X is defined as

a subalgebra iff y1, y2 ∈ Y implies that for any r ∈ [0, 1], 〈r, y1, y2〉 ∈ Y ;
a filter iff 〈r, x1, x2〉 ∈ Y and r 6= 0, 1 together imply both x1 ∈ Y and x2 ∈ Y ;
a prime filter iff it is both a subalgebra and a filter.

Let us define a contravariant functor

PF(-) : Alg(D)op → ContLat.

For a D-algebra X, PF(X) is the lattice of prime filters of X. For an affine map f , we let
PF(f) = f−1.

We define a contravariant functor

Sp(-) : ContLatop → Alg(D)

CSL’13

514 Categorical Duality Theory

as follows. For a continuous lattice L, define Sp(L) as the set of Scott-open meet-complete
filters of L, equipped with a meet-semilattice structure by finite intersections, and hence with
a D-algebra structure (see Proposition 3.15). For a homomorphism f , we let Sp(f) = f−1.

Since PF(X) always forms a continuous lattice, the methods of Jacobs [11] completely
work in the present situation, thus yielding the following dual adjunction theorem.

I Theorem 3.17. There is a dual adjunction between ContLat and Alg(D), given by
Sp : ContLatop → Alg(D) and PF : Alg(D)op → ContLat.

In the following, we aim at identifying the dual equivalence induced by the dual adjunction
above. Towards this end, we introduce the concept of idempotent D-algebras.

I Definition 3.18. A D-algebra (X, 〈-, -, -〉) is idempotent iff for any x, y ∈ X, and for any
r, s ∈ (0, 1) (i.e., the open unit interval),

〈r, x, y〉 = 〈s, x, y〉.

It is straightforward to see the following.

I Proposition 3.19. Any meet-semilattice and join-semilattice form an idempotent D-algebra.
In particular, Sp(L) is an idempotent D-algebra.

I Proposition 3.20. For a D-algebra X, PF(X) is an algebraic lattice.

Proof. This follows from the fact that PF(X) is a subalgebra of the powerset algebraic
lattice P(X) with respect to directed unions and arbitrary intersections, and that the class
of all algebraic lattices is closed under subalgebras. J

I Proposition 3.21. If L is an algebraic lattice, then L is isomorphic to PF ◦ Sp(L).

Proof. Firstly, Sp(L) can be regarded as HomContLat(L,2) by identifying subsets with their
characteristic functions. Likewise, PF ◦ Sp(L) can be thought of as HomConv(Sp(L),2).
Then, the previously obtained duality between algebraic lattices and sober convexity spaces
immediately tells us that L is indeed isomorphic to PF ◦ Sp(L). J

I Proposition 3.22. If X is an idempotent D-algebra, then X is isomorphic to Sp ◦ PF(X).

Proof. For x, y ∈ X, define x ∧ y by 〈1/2, x, y〉. By idempotency, X with ∧ forms a meet-
semilattice. Since Sp ◦ PF(X) is an idempotent D-algebra by Proposition 3.19, Sp ◦ PF(X)
also forms a meet-semilattice in the same way. It holds that if the meet-semilattices of two
idempotent D-algebras are isomorphic, then the original D-algebras are isomorphic as well.
Thus, it suffices to prove that X is isomorphic to Sp ◦ PF(X) as a meet-semilattice.

Now, X can in turn be equipped with the ideal convexity: the convex sets are defined
as the ideals of X. Then, X is a sober convexity space (with the convex sets of X forming
an algebraic lattice). The polytopes of X, denoted Poly(X), form a join-semilattice: for
two polytopes ch(X) and ch(Y) with X,Y finite, their join is defined as ch(X ∪ Y), where
recall ch(-) denotes the convex hull operation. And then Poly(X)op, the order dual of the
polytope join-semilattice Poly(X), is actually isomorphic to X as a meet-semilattice; this
holds for any meet-semilattice X by an equivalence between the categories of join-semilattices
and of sober convexity spaces as remarked in Maruyama [14]. Since PF(X) is the lattice of
ideals of X, it turns out that Sp ◦ PF(X) is the meet-semilattice of compact (aka. directed-
irreducible) elements of the ideal lattice, which is precisely Poly(X)op (see Proposition 3.8);
recall Poly(X)op is isomorphic to X, and the proof is done. J

Y. Maruyama 515

Let IdemAlg(D) denote the category of idempotent D-algebras. Propositions 3.21 and
3.22 above finally give us the following theorem identifying the dual equivalence part of the
dual adjunction between ContLat and Alg(D).
I Theorem 3.23. The dual adjunction between ContLat and Alg(D) restricts to a dual
equivalence between AlgLat and IdemAlg(D). This is the largest dual equivalence induced
by the dual adjunction.

Since the converses of Propositions 3.21 and 3.22 hold by Propositions 3.19 and 3.20
respectively, the theorem above gives the maximal dual equivalence that can result from
restricting the dual adjunction between ContLat and Alg(D). Although we do not have
space to work out details, the duality above is closely related to the classic Hofmann-Mislove-
Stralka duality [10]; indeed, the duality above reveals a convexity-theoretical aspect of the
Hofmann-Mislove-Stralka duality.

Summing up, we have obtained the following dualities in this section:

IdemAlg(D) ' AlgLatop ' SobConv.

It thus follows that IdemAlg(D) ' SobConv; behind the equivalence, we actually have an
adjunction between IdemAlg(D) and Conv. And the functor from Conv to IdemAlg(D)
has clear meaning in terms of polytopes: it maps a convexity space S to the D-algebra of
Poly(S)op, i.e., the order dual of the polytope join-semilattice of S. These domain-convexity
dualities tell us that domain theory and convex geometry are naturally intertwined in the
(sometimes beautiful, sometimes insane) universe of mathematics.

References
1 J. Adámek, H. Herrlich, and G. E. Strecker, Abstract and Concrete Categories, John Wiley

and Sons, Inc., 1990.
2 J. Adámek and J. Reiterman, Topological categories presented by small sets of axioms,

Journal of Pure and Applied Algebra 42 (1986) 1-14.
3 M. Barr, J. F. Kennison and R. Raphael, Isbell duality, Theory and Applications of Cat-

egories 20 (2008) 504-542.
4 G. C. L. Brümmer, Topological categories, Topology and its Applications, 18 (1984) 27-41.
5 D. M. Clark and B. A. Davey, Natural Dualities for the Working Algebraist, CUP, 1998.

Ann. Math. Artif. Intell. 56 (2009) 339-360.
6 W. A. Coppel, Foundations of Convex Geometry, CUP, 1998.
7 G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. W. Mislove, and D. S. Scott,

Continuous Lattices and Domains, CUP, 2003.
8 T. Fritz, Convex Spaces I: Definition and Examples, arXiv:0903.5522.
9 P. M. Gruber and J. M. Wills (eds.), Handbook of Convex Geometry Vol. A. B, North-

Holland, 1993.
10 K. H. Hofmann, M. Mislove and A. Stralka, The Pontryagin Duality of Compact 0-

Dimensional Semilattices and its Applications, Lecture Notes in Math. 394, Springer, 1974.
11 B. Jacobs, Convexity, Duality, and Effects, Proc. of 6th IFIP International Conference on

Theoretical Computer Science (2010) 1-19.
12 P. T. Johnstone, Stone Spaces, CUP, 1986.
13 E. G. Manes, Algebraic Theories, Springer, 1976.
14 Y. Maruyama, Fundamental results for pointfree convex geometry, Ann. Pure Appl. Logic

161 (2010) 1486-1501.
15 Y. Maruyama, From operational duality to coalgebraic quantum symmetry, Proc. of

CALCO’13, Springer LNCS 8089 (2013) 220-235.

CSL’13

516 Categorical Duality Theory

16 J. W. Pelletier and J. Rosický, Generating the equational theory of C∗-algebras and related
categories, Proc. of Conference on Categorical Topology (1989) 163-180.

17 H.-E. Porst and W. Tholen, Concrete dualities, Category Theory at Work (1991) 111-136.
18 M. L. J. van de Vel, Theory of Convex Structures, North-Holland, 1993.

A Categorical Duality as Philosophy of Space

We finally speculate on categorical duality in a broader context, and attempt to elucidate
conceptual foundations of categorical duality, especially in relation to philosophy of space.
Let us start with the following (rough) picture of categorical dualities in diverse disciplines,
almost all of which may be conceived of as arising between the epistemological and the
ontological. The concept of duality between ontology and epistemology, we think, yields a
unifying perspective on categorical dualities in wide-ranging fields; it is like “duality between
the conceptual and the formal” in Lawvere’s terms in his seminal hyperdoctrine paper
“Adjointness in Foundations” (more links with other thinkers shall be pursued afterwards).

Ontological Epistemological Duality
Logic Model Theory Stone

Algebraic Logic Algebraic Semantics Logical System Tarski
Complex Geometry Riemann Surface Algebraic Function Field Riemann
Classical Alg. Geom. Variety over k k-Algebra Hilbert
Modern Alg. Geom. Scheme Ring Grothendieck

Representation Theory Group Representation Pontryagin
Topology Point Open Set Isbell, Papert

Convex Geometry Point Convex Set Maruyama
Galois Theory (Profinite) G-set Algebra Extension Galois

Program Semantics Denotation of Program Observable Property Abramsky
System Science Computer System Its Behaviour Coalg|Alg

General Relativity Spacetime Manifold Field Weyl
Quantum Physics State Observable Gelfand

The aforementioned duality between denotations and observable properties of programs
basically amounts to domain-theoretical variants of infinitary Stone dualities, such as the
Isbell-Papert one. The duality theory of the present paper is relevant to finitary and infinitary
Stone, Gelfand, Pontryagin, and even Hilbert dualities (because Hilbert and Stone dualities
are closely related as discussed below). The above duality between computer systems and
their behaviours boils down to algebra-coalgebra duality in mathematical terms. The most
basic case is the Abramksy duality between modal algebras and coalgebras of the Vietoris
endofunctor on the category of Stone spaces, which was later rediscovered and explicated by
Kupke-Kurz-Venema. A universal-algebraic general theory of such algebra-coalgebra dualities
is developed in the author’s previous paper “Natural Duality, Modality, and Coalgebra” in
Journal of Pure and Applied Algebra.

Some of the dualities above are tightly intertwined as a matter of fact. The Stone duality
for classical logic is precisely equivalent to a Hilbert duality for geometry over GF(2) (i.e., the
prime field of two elements). Furthermore, logical completeness for classical logic corresponds
to Nullstellensatz for geometry over GF(2), in a mathematically rigorous manner; note
that this is different from the model-theoretic correspondence between logic and algebraic
geometry. Here it should be noted that logical completeness tells us a poset duality between
models and theories, and Nullstellensatz a poset duality between affine varieties and radical
ideals, which can be upgraded into the corresponding categorical dualities, namely the Stone

Y. Maruyama 517

duality and the Hilbert duality, respectively (note that the Stone duality is a generalisation of
completeness, the syntax-semantics equivalence, in a mathematically precise sense). In this
sense, completeness and Nullstellensatz may be said to be “predualities.” The correspondence
between logic and algebraic geometry may be summarised as follows:

Logic Algebraic Geometry
Algebra Formulae Polnomials
Spectrum Models Variety

Poset Duality Completeness Nullstellensatz
Categorical Duality Stone Duality Hilbert Duality

The author’s recent investigation shows that this correspondence between logic and algebraic
geometry extends to GF(pn)-valued logic and geometry over GF(pn) where p is a prime
number, and n is an integer more than 1 (and GF(pn) is the Galois field of order pn).

The concept of space has undergone a revolution in the modernisation of mathematics,
shifting the emphasis from underlying point-set spaces to algebraic structures upon them, to
put it more concretely, from topological spaces to locales (or formal topology as predicate
locales), toposes, schemes (i.e., sheaves of rings), and non-commutative point-free spaces
(such as C∗ and von Neumann algebras). Categorical duality has supported and eased this
shift from point-set to point-free space, since it basically tells us the algebraic point-free
structure on a point-set space keeps the same amount of information as the original point-set
space, allowing us to recover the points as the spectrum of the algebraic structure.

Having seen different categorical dualities seemingly share certain conceptual essence, it
would be natural to ask where the (mathematical) origin of those dualities lie, even though
there may be no single origin, and the concept of origin per se may be misguided. Since
duality allows us to regard algebra itself as (point-free) space, another relevant question is
where the origin of the shift from point-set to point-free space is.

The first mathematician who elucidated the point could be Riemann, who proved (what
is now called) a Riemann surface can be recovered from its function field. At the same time,
however, we may think of several serious contenders, especially Kronecker and Dedekind-
Weber on the one hand, who are considered (e.g., by Harold Edwards) to be precursors of
arithmetic geometry, and Brouwer on the other. Whilst it seems Riemann did not take algebra
itself to be space, Kronecker and Dedekind-Weber indeed algebraised complex geometry (e.g.,
the Riemann-Roch theorem), considering algebraic function fields per se to be (equivalents
of) spaces (and uncovering a grand link with algebraic number theory, the crucial analogy
between algebraic number fields and function fields). Brouwer, even though coming into the
scene later than them, vigorously formulated and articulated, in terms of so-called spreads
and choice sequences, the notion of continuums that does not presuppose point, transforming
a bare, speculative idea into a full-fledged, mathematically substantial enterprise.

Comparable shifts seem to have been caused in philosophy as well. Whitehead’s process
philosophy puts more emphasis on dynamic processes than static substances. His philosophy
of space is, in its spirit, very akin to the idea of point-free topology:

Whitehead’s basic thought was that we obtain the abstract idea of a spatial point
by considering the limit of a real-life series of volumes extending over each other, for
example in much the same way that we might consider a nested series of Russian dolls
or a nested series of pots and pans. However, it would be a mistake to think of a
spatial point as being anything more than an abstraction.

This is from Irvine’s Stanford Encyclopedia of Philosophy article on Whitehead, and may
indeed be read as a brilliant illustration of the idea of prime ideals (or filter) as points in

CSL’13

518 Categorical Duality Theory

duality theory and algebraic geometry: recall that the open neigbourhoods of a point in a
topological space form a completely prime filter of its open set locale, with the complement
yielding a prime ideal. Although Whitehead’s philosophy of space tends to be discussed in
the context of mereology, which is sort of peculiar mathematics, nevertheless, it is indeed
highly relevant to the core idea of modern geometry in mainstream mathematics; the idea of
points as prime ideals is particularly important in algebraic and non-commutative geometry.

Whitehead’s process philosophy would be relevant to category theory in general: for
example, John Baez asserts “a category is the simplest framework where we can talk
about systems (objects) and processes (morphisms)” in his paper “Physics, Topology, Logic
and Computation: A Rosetta Stone.” Abramsky-Coecke’s categorical quantum mechanics
follows a similar line of idea, regarding a †-compact category as a “universe” of quantum
processes expressed in an intuitively meaningful graphical language; this is Bob Coecke’s
quantum picturalism. At the same time, however, we must be aware of the possibility that
formalisation distorts or misses a crucial point of an original philosophical idea. Indeed,
Whitehead’s concept of process would ultimately be unformalisable by its nature. This
remark is applicable throughout the whole discussion here, and we have to be cautious of
distortion via formalisation, a common mistake the mathematician or logician tends to make.

Yet another point-free philosopher of space is Wittgenstein: “What makes it apparent
that space is not a collection of points, but the realization of a law?” (Philosophical Remarks,
p. 216). Wittgenstein’s intensional view on space is a compelling consequence of his persistent
disagreement with the set-theoretical extensional view of mathematics:

Mathematics is ridden through and through with the pernicious idioms of set theory.
One example of this is the way people speak of a line as composed of points. A line is
a law and isn’t composed of anything at all (Philosophical Grammar, p. 211).

What does he mean by “law”? Brouwer defined his concept of a spread as a certain law to
approximate a “point”, and this could possibly be a particular case of Brouwer’s influence
on Wittgenstein’s philosophy. More detailed discussion is in my paper: “Wittgenstein’s
Conception of Space and the Modernist Transformation of Geometry via Duality”, Papers of
36th International Wittgenstein Symposium, Austrian Wittgenstein Society, 2013.

Where is the philosophical origin of such a mode of thinking? Just as remarked in the case
of the mathematical origin, there may be no single origin, and it might even be wrong to seek
an origin at all. Certain postmodern philosophers assert that the idea of the original tends to
be invented through a number of copies: after all, there may only be copies having no origin
or essence in common. Anyway, we could just envisage a bunch of family-resemblant copies
(possibly sharing no genuine feature in common at all) in the form of a series of dichotomies:

Cassirer Shift Substance Function
Whitehead Shift Material Process
Brouwer Shift Point Choice Sequence

Wittgenstein Shift Tractatus Investigations
Bohr Shift Classical Realism Complementarity
Gödel Shift Right Left

Lawvere Duality Conceptual Formal
Granger Duality Object Operation
Zeno Paradox Continuous Discrete

Aristotle Matter Form
Natural Philosophy Newton Leibniz

Kant Thing Itself Appearance
Phenomenology Object Subject

Theory of Meaning Davidson Dummett

Y. Maruyama 519

“Shift” means that each thinker emphasises in his dichotomy the shift from a concept on
the left-hand side to that on the right-hand side. Cassirer could possibly be a philosophical
origin of the modernist shift discussed so far. In contrast with “shift”, “duality” does not
imply anything on which concept is prior to the other; rather, it does suggest equivalence
between two views concerned. Finally, no uniform relationships are intended to hold between
two concepts in each of the rest of dichotomies, which do not particularly focus upon shifting
from one concept to the other. It would be of conceptual significance to reflect upon the
table of categorical dualities in the light of these philosophical dichotomies.

Duality is more than dualism, just as categorical duality in point-free geometry starts
with the dualism of space and then tells us that the two conceptions of space are equivalent
via functors (in a sense reducing dualism to monism; or it could be called monism on the
top of dualism). Category theory often goes beyond dualism. Other sorts of dualism include
“geometry vs. algebra”, and “model-theoretic vs. proof-theoretic semantics.” For instance,
the concept of algebras of monads even encompasses geometric structures such as topological
spaces and convex structures. Categorical logic tells us model-theoretic semantics amounts
to interpreting logic in set-based categories, and proof-theoretic semantics to interpreting
logic in so-called syntactic categories. We may thus say category theory transcends dualism.

Gödel’s shift from “right” to “left” would need to be explicated. In his “The modern
development of the foundations of mathematics in the light of philosophy”, Gödel says:

[T]he development of philosophy since the Renaissance has by and large gone from
right to left [...] Particularly in physics, this development has reached a peak in our
own time, in that, to a large extent, the possibility of knowledge of the objectivisable
states of affairs is denied, and it is asserted that we must be content to predict results
of observations. This is really the end of all theoretical science in the usual sense [...]

In the physical context, thus, Gödel’s “right" means the emphasis of reality, substance, and
the like, and “left" something like observational phenomena. Turning into other contexts,
Gödel says metaphysics is “right”, and formal logic is “left” in his terminology.

We finally articulate three senses of foundations of mathematics, thereby arguing that
philosophy of space counts as foundations mathematics in one of the three senses. A popular,
prevailing conception of foundations of mathematics is what may be called a “Reductive
Absolute Foundation”, which reduces everything to one framework, giving an absolute,
domain-independent context to work in. The most popular one is (currently) set-theoretical
foundations, but category theory (e.g., Lawvere’s ETCS and toposes) can do the job as well.

Category theory can give another sense of foundation. That is a “Structural Relative
Foundation”, which changes a framework according to our structural focus (and see what
remains invariant, and what does not), and gives a relative, domain-specific context to work in:
e.g., ribbon categories for foundations of knot theory and †-compact categories for foundations
of quantum mechanics and information (in these two cases, certain monoidal or linear logical
structures are shared and invariant). Recall Grothendieck’s relative point of view, and that
change of base is a fundamental idea of category theory. The reductive-structural distinction
is taken from Prawitz’ notions of reductive and structural proof theory.

Philosophy of space as discussed above, we believe, counts as a “Conceptual Foundation of
Mathematics”, which aims at elucidating the nature of fundamental concepts in mathematics,
and, presumably, are compelling for the working mathematician as well (where we basically
mean mathematical space rather than physical or intuitive space). In this strand, the author’s
Categorical Universal Logic proposes a logical universal concept of space to unify toposes and
quantum space categories in terms of monad-relativised Lawvere hyperdoctrines, allowing us

CSL’13

520 Categorical Duality Theory

to reconcile Abramsky-Coecke’s categorical quantum mechanics and Birkhoff-von Neumann’s
traditional quantum logic, which have (slightly misleadingly) been claimed to be in conflict
with each other (several papers on CUL are available on the author’s webpage).

Axiomatizing Subtyped Delimited Continuations
Marek Materzok

University of Wrocław
Wrocław, Poland
marek.materzok@cs.uni.wroc.pl

Abstract
We present direct equational axiomatizations of the call-by-value lambda calculus with the control
operators shift0 and reset0 that generalize Danvy and Filinski’s shift and reset in that they allow
for abstracting control beyond the top-most delimited continuation. We address an untyped
version of the calculus as well as a typed version with effect subtyping. For each of the calculi
we present a set of axioms that we prove sound and complete with respect to the corresponding
CPS translation.

1998 ACM Subject Classification D.3.3 Language Constructs and Features

Keywords and phrases Delimited Continuations, Continuation Passing Style, Axiomatization

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.521

1 Introduction

Control operators for delimited continuations allow to alter the control flow of programs by
capturing the current continuation as a first-class value, which can be activated later. The
most well-known are shift/reset, introduced by Danvy and Filinski in [3]. They have many
important applications, including representing monads, partial evaluation, mobile computing,
linguistics and operating systems [8].

The shift0/reset0 control operators were first introduced besides the well-known shift/reset
by Danvy and Filinski in [3]. The operators were recently found to have many desirable
properties [8]. They can, like shift/reset, be described with a CPS translation. They have
an interesting type system, which distinguishes between side-effect free and effectful terms.
They can express the whole CPS hierarchy, in both typed and untyped settings [9]. And
they recently helped to construct a theory of multiple prompts [4].

We are interested in the problem of reasoning directly about code using the shift0/reset0
control operators. Specifically, we look for a set of equational axioms which are sound and
complete with respect to the CPS translation – and thus allow for the same reasoning which
is possible on the CPS code. Previously, Sabry and Felleisen have given such axioms for
call-by-value lambda calculus with call/cc [10][12]. Kameyama and Hasegawa solved the
problem for shift/reset control operators [6]. Axioms for the CPS Hierarchy were given by
Kameyama [5].

In this paper, we present the axiomatization for shift0/reset0 control operators, and prove
soundness and completeness with respect to the CPS translation. We do this both in the
untyped setting and in the typed setting with effect subtyping, where we use a type-directed
selective CPS translation which takes subtyping into account. The proof method is a variation
of the one presented by Sabry in [11]. Crucial for the proof is the $ control operator, which
was described and formalized in [9].

The paper is organized as follows. We introduce the λS0 and λ$ languages and their CPS
translations in Section 2. Our untyped axiomatizations for the two languages are given in

© Marek Materzok;
licensed under Creative Commons License BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca; pp. 521–539

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.521
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

522 Axiomatizing Subtyped Delimited Continuations

CJxK = λk. k x

CJλx. eK = λk. k (λx. CJeK)
CJe1 e2K = λk. CJe1K (λf. CJe2K (λx. f x k))
CJS0k. eK = λk. CJeK
CJ〈e〉K = CJeK (λx. λk. k x) for λS0

CJe1 $ e2K = λk. CJe1K (λf. CJe2K f k) for λ$

Figure 1 CPS translations for λS0 and λ$.

Section 3. We describe the typed variants of the two languages, λ≤S0
and λ≤$, in Section 4.

We present the typed axiomatizations in Section 5. In Section 6 we discuss the axioms and
relate them to axioms for different systems of delimited continuations. Finally, we conclude
in Section 7.

2 The languages λS0 and λ$

Before we present the main results of the paper, we need to introduce and formally describe
the languages used.

2.1 The language λS0 (shift0/reset0)
First, we define syntactic categories for expressions, values and evaluation contexts in the
language λS0 :

e ::= v | S0x. e | e e | 〈e〉 v ::= x |λx. e E ::= • |E e | v E

The evaluation contexts are represented inside-out, which is formalized by the following
definition of plugging a term inside a context:

•[e] = e (E e2)[e] = E[e e2] (v E)[e] = E[v e]

The shift0 operator S0x. · captures the surrounding context up to (and including) the
nearest dynamically surrounding delimiter 〈·〉, which is then removed. The delimiter can
also be removed when the enclosed expression is a value. This is displayed by the following
reduction rules:

〈E[S0x. e]〉 → e[λx. 〈E[x]〉/x] 〈v〉 → v

The language has also the standard beta and eta reductions. We will not concern ourselves
more about the reduction rules, because the subject of this paper is the CPS semantics.

The CPS translation for the language λS0 is shown in Figure 1. (Please ignore for the
moment the line marked “for λ$”.) This is the untyped CPS translation first defined in [8]
and proven correct with respect to the reduction rules.

The idea behind the translation is that the successive lambda abstractions (introduced
by the translation of shift0) bind continuations delimited by successive reset0’s. It can be
thought of as an infinitely-iterated (on the final answer position, like in the CPS Hierarchy)
CPS translation, but eta reduced. In other words, we have potentially infinite number of
continuation „levels”, and shift0/reset0 operators allow us to change the current level.

M. Materzok 523

2.2 The language λ$ (shift0/$)
The language λ$ was first defined in [9]. It is a generalization of λS0 , a variant of which was
explored by Kiselyov and Shan in [7]. The language plays a vital role in proving completeness
of the axioms for λS0 , and it is very interesting on its own. We describe it in this subsection.

As with λS0 , we begin with introducing syntactic categories for expressions, values and
evaluation contexts:

e ::= v | S0x. e | e e | e $ e v ::= x |λx. e E ::= • |E e | v E |E $ e

We see that the reset0 operator 〈·〉 from λS0 was replaced by the (right-associative) binary
operator $. It is a generalization of reset0: while the expression 〈e〉 means “evaluate e inside
a new, empty context”, e1 $ e2 means “evaluate e2 inside a context terminated with e1”. We
can express reset0 using $ by writing (λx. x) $ e instead of 〈e〉.

The $ operator allows to easily restore captured contexts: the expression S0k. k $ e (where
k 6∈ V(e)) means the same as e. (We will make this statement formal in the following section.)

We define plugging terms inside evaluation contexts as follows:

•[e] = e (v E)[e] = E[v e]
(E e2)[e] = E[e e2] (E $ e2)[e] = E[e $ e2]

We have the following reduction rules for shift0/$, which generalize the reduction rules
for shift0/reset0:

v $E[S0x. e] → e[λx. v $E[x]/x] v1 $ v2 → v1 v2

Again, as with λS0 , we give the meaning of λ$ terms with a CPS translation. It is shown in
Figure 1.

The translation differs from the one for λS0 (shown in the same figure) only on the rule
for the delimiter: while in the translation for reset0 the translated subexpression has the
(CPS-translated) identity function applied to it, in the translation for $ the translated left
subexpression is evaluated and applied to the translated right subexpression.

3 Untyped axiomatization

In this section we present sound and complete (with respect to the untyped translations of
Figure 1) equational axiomatizations of λS0 and λ$.

3.1 The axioms for λS0

The axioms for λS0 are presented in Figure 2. The first two (βv and ηv) are the standard beta-
value conversions. The third (βΩ) is a beta-conversion restricted to evaluation contexts. The
fourth and fifth (〈S0〉 and 〈v〉) are equational versions of the reductions from the reduction
semantics. These five axioms are standard and expected, the last two are interesting.

The axiom η〈·〉 says that it is always possible to capture a continuation and restore
it without changing the meaning of the expression. The axiom implies the existence of a
potentially infinite tower of reset0’s outside any expression. This is expected – the untyped
CPS translation of Figure 1 is related to infinitely-iterated standard CPS translation, as
discussed before in Section 2.1. The axiom is similar to Kameyama and Hasegawa’s S-elim;
we discuss the connection in Section 6.1.

The last axiom, 〈λ〉, asserts that in expressions of the form 〈(λx. e1) e2〉 we know that the
topmost continuation for e1 must be empty, and we can always throw it away and replace it
with a new empty continuation.

CSL’13

524 Axiomatizing Subtyped Delimited Continuations

(λx. e) v = e[v/x] (βv)
λx. v x = v x 6∈ V(v) (ηv)

(λx.E[x]) e = E[e] x 6∈ V(E) (βΩ)
〈E[S0x. e]〉 = e[λx. 〈E[x]〉/x] x 6∈ V(E) (〈S0〉)

〈v〉 = v (〈v〉)
S0k. 〈(λx.S0z. k x) e〉 = e k 6∈ V(e) (η〈·〉)
〈(λx.S0k. 〈e1〉) e2〉 = 〈(λx. e1) e2〉 k 6∈ V(e1) (〈λ〉)

Figure 2 Axioms for λS0 .

(λx. e) v = e[v/x] (βv) S0x. x $ e = e x 6∈ V(e) (η$)
λx. v x = v x 6∈ V(v) (ηv) v1 $ v2 = v1 v2 ($v)

v $S0x. e = e[v/x] (β$) v $E[e] = (λx. v $E[x]) $ e ($E)

Figure 3 Axioms for λ$.

3.2 The axioms for λ$

We present the axioms for λ$ in Figure 3. They are conceptually very different than the
axioms for λS0 , which may be surprising. But they are very regular and reveal the conceptual
elegance of the λ$ language.

The first two axioms (βv and ηv) are, as before, the standard beta-value conversions. The
third one, β$, says that when we capture an empty context terminated with v, we get v back.
The fourth, η$, means that we can always capture the top context, and then put it back as
the terminating value on the delimiter. The two axioms can be thought of as beta and eta
conversion axioms for shift0 and $ operators.

The fifth axiom, $v, says that if the inside of the context is a value, we can just apply it
to the terminating value on the delimiter. This is an equational version of the reduction rule
v1 $ v2 → v1 v2.

The last axiom, $E , says that we can move a suffix of the evaluation context delimited
with $ to the terminating value.

Please take notice that there is no axiom corresponding directly to the reduction rule
v $E[S0x. e]→ e[λx. v $E[x]/x]. But the corresponding equation is still valid:

λ$ ` v $E[S0x. e] = (λx. v $E[x]) $S0x. e = e[λx. v $E[x]/x]

The βΩ axiom also turned out to be redundant.

3.3 Reducing λS0 to λ$

In this subsection we show that the axioms for λS0 are sound and complete if and only if the
axioms for λ$ are sound and complete. To achieve this, let us define a pair of translations –
DJ·K from λS0 to λ$, and D−1J·K in the other direction:

DJ〈e〉K = (λx. x) $DJeK
D−1Je1 $ e2K = (λf. 〈(λx.S0z. f x)D−1Je2K〉)D−1Je1K

The remainder of the translations is defined homomorphically.
The translations have the following properties (λ consists of full β and η axioms):

M. Materzok 525

GJxK = S0k. k x PJxK = x

GJλx. eK = S0k. k (λx.GJeK) PJλx. eK = λx.PJeK
GJe1 e2K = S0k. (λf. (λx. k $ f x) $GJe2K) $GJe1K PJv1 v2K = PJv1KPJv2K
GJS0k. eK = S0k.GJeK PJS0x. eK = λx.PJeK
GJe1 $ e2K = S0k. (λf. k $ f $GJe2K) $GJe1K PJv $ eK = PJeKPJvK

Figure 4 CGS translation of λ$ to λG
$; translation of λG

$ to λ.

I Property 1. We have the following:
1. For every λS0 term e we have λS0 ` D−1JDJeKK = e.
2. For every λ$ term e we have λ$ ` DJD−1JeKK = e.
3. For every λS0 term e we have λ ` CJeK = CJDJeKK.
4. For every λ$ term e we have λ ` CJeK = CJD−1JeKK.
5. λS0 ` e1 = e2 implies λ$ ` DJe1K = DJe2K.
6. λ$ ` e1 = e2 implies λS0 ` D−1Je1K = D−1Je2K.

I Theorem 2. The axioms for λS0 are sound iff the axioms for λ$ are sound.

Proof. Suppose that the axioms for λS0 are sound. Assume λ$ ` e1 = e2. By Property 1.6
we have λS0 ` D−1Je1K = D−1Je2K. Using the assumed soundness of λS0 axioms gives
λ ` CJD−1Je1KK = CJD−1Je2KK. From Property 1.4 we get λ ` CJe1K = CJe2K. The other
direction is analogous. J

I Theorem 3. The axioms for λS0 are complete iff the axioms for λS0 are complete.

Proof. Suppose that the axioms for λS0 are complete. Assume λ ` CJe1K = CJe2K. From
Property 1.4 we get λ ` CJD−1Je1KK = CJD−1Je2KK. Using the assumed completeness of λS0

axioms we get λS0 ` D−1Je1K = D−1Je2K. By Property 1.6 we have λ$ ` DJD−1Je1KK =
DJD−1Je2KK. From Property 1.2 follows the thesis. The other direction is analogous. J

3.4 CGS translation
Following the approach of Sabry [11], we show soundness and completeness of λ$ axioms in
two steps. We introduce a translation from λ$ targeting a certain syntactical subset of λ$,
which we call λG$. We first prove soundness and completeness of λ$ with respect to λG$, and
then of λG$ with respect to λ.

The language λG$ is defined as follows:

e ::= S0x. e | v v | v $ e v ::= x |λx. e

In other words, we only allow applications with values on both sides and $ with a value on
the left side. Please also notice that the syntactic categories of expressions and values are
separate in λG$.

The translation is described in Figure 4. It is very similar to the CPS translation shown
in Figure 1. The difference is that in the translation introduced in this section we use shift0
and $ instead of function abstraction and application for passing the continuation. We call
this translation continuation-grabbing style (CGS) translation, because (as in the Sabry’s
translation) the terms actively „grab” their surrounding continuation, instead of passively
waiting for it using a lambda abstraction, as is the case in the CPS translation.

CSL’13

526 Axiomatizing Subtyped Delimited Continuations

The translation has an important property that by replacing shift0 by λ and $ by function
application in target terms (Figure 4), we obtain the CPS translation from Figure 1:
I Property 4 (CPS-translation). CJeK = PJGJeKK

CGS terms are closed on β, η, β$ and η$ reductions. The equalities generated by these
four reductions, restricted so that one cannot obtain non-CGS terms by expansion, form an
axiomatization of λG$.

We can easily prove soundness of λ$ axioms with respect to λG$:

I Lemma 5. If λ$ ` e1 = e2, then λG
$ ` GJe1K = GJe2K.

In order to prove completeness, we need another important property of the CGS translation
– that the target terms are equal in λ$ to the source terms:

I Lemma 6. For every λ$ term e we have λ$ ` e = GJeK.

We also make the observation that every pair of λG$ terms equal in λG$ is also equal in λ$:

I Lemma 7. If λG
$ ` e1 = e2, then λ$ ` e1 = e2.

We can now easily prove completeness of λ$ axioms with respect to λG$:

I Lemma 8. If λG
$ ` GJe1K = GJe2K, then λ$ ` e1 = e2.

Proof. Assume that λG$ ` GJe1K = GJe2K. By Lemma 7 we have λ$ ` GJe1K = GJe2K. The
thesis follows from Lemma 6. J

3.5 From λG
$ to λ

Soundness of λG$ axioms with respect to λ is trivial:

I Lemma 9. If λG
$ ` e1 = e2, then λ ` PJe1K = PJe2K.

We still need to prove completeness of λG$ axioms with respect to λ. This seems to be
an easy task, but there is one important complication. Take a look at the translation in
Figure 4. The translation replaces the $ operator with function applications and the shift0
operator with lambda abstractions. This causes new redexes to appear in the image of PJ·K;
for example,

λ ` PJλx. x $ eK = λx.PJeKx = PJeK

But the λG$ terms λx. x $ e and e are in separate syntactical categories – the one is a value,
the other is an expression, and in λG$ values are not expressions.

We introduce an intermediate language, λI$, defined as follows:

e ::= S0x. e | v v | v $ e | iv[v] v ::= x |λx. e | ie[e]

The language is a syntactic extension of λG$, which additionally allows using an expression as
a value (and vice versa) with an explicit injection. Then we define two translations – PIJ·K
from λI$ to λ, and IJ·K from λI$ to λG$:

PIJiv[v]K = PIJvK IJiv[v]K = S0k. IJvK k
PIJie[e]K = PIJeK IJie[e]K = λx. x $ IJeK

The translation PIJ·K is based on PJ·K, but ignores the explicit injections. The other
translation, IJ·K, leaves most of the term unchanged (the cases not mentioned are defined
homomorphically), but expands the injections so that the result is a valid λG$ term. The
expansions have the property that their translations to λ can be eta-reduced. Thus we have
the following:

M. Materzok 527

τ ≤ τ ′ σ ≤ σ′

τ σ ≤ τ ′ σ′ α ≤ α
τ ′1 ≤ τ1 τ2 σ ≤ τ ′2 σ′

τ1
σ−→ τ2 ≤ τ ′1 σ′−→ τ ′2

ε ≤ ε
τ1 σ1 ≤ τ2 σ2

ε ≤ [τ1 σ1] τ2 σ2

τ ′1 σ
′
1 ≤ τ1 σ1 τ2 σ2 ≤ τ ′2 σ′2

[τ1 σ1] τ2 σ2 ≤ [τ ′1 σ′1] τ ′2 σ′2

Γ, x : τ1 ` x : τ1
var

Γ ` e : τ σ τ σ ≤ τ ′ σ′

Γ ` e : τ ′ σ′
sub

Γ, x : τ1 ` e : τ2 σ
Γ ` λx : τ1. e : τ1 σ−→ τ2

abs

Γ, x : τ1 σ−→ τ2 ` e : τ3 σ′

Γ ` S0x : τ1 σ−→ τ2. e : τ1 [τ2 σ] τ3 σ′
sft

Γ ` e1 : τ1 σ−→ τ2 Γ ` e2 : τ1
Γ ` e1 e2 : τ2 σ

papp

Γ ` e1 : τ1
[τ′4 σ

′
4] τ′3 σ

′
3−−−−−−−→ τ2 [τ ′2 σ′2] τ ′1 σ′1 Γ ` e2 : τ1 [τ ′3 σ′3] τ ′2 σ′2
Γ ` e1 e2 : τ2 [τ ′4 σ′4] τ ′1 σ′1

app

Rule for λS0 : Γ ` e : τ ′ [τ ′] τ σ
Γ ` 〈e〉 : τ σ

rst

Rules for λ$: Γ ` e1 : τ1 σ−→ τ2 Γ ` e2 : τ1 [τ2 σ] τ3 σ′

Γ ` e1 $ e2 : τ3 σ′
pdol

Γ ` e1 : τ1 σ−→ τ2 [τ ′2 σ′2] τ ′1 σ′1 Γ ` e2 : τ1 [τ2 σ] τ3 [τ ′3 σ′3] τ ′2 σ′2
Γ ` e1 $ e2 : τ3 [τ ′3 σ′3] τ ′1 σ′1

dol

Figure 5 The type systems λ≤S0
and λ≤$ (with subtyping).

I Property 10. For any λI$ term e we have λ ` PIJeK = PJIJeKK.
I Property 11. For any λG$ term e we have PIJeK = PJeK and IJeK = e.
The equational theory for λI$ consists of βv, ηv, β$, η$ and the following two equalities:

iv[v] = S0x. v x (iv) ie[e] = λx. x $ e (ie)

The following lemma is trivial:

I Lemma 12. For every two λI
$ terms e1 and e2, if λI

$ ` e1 = e2, then λG
$ ` IJe1K = IJe2K.

Thanks to the injections, we can prove the completeness lemma for λI$:

I Lemma 13. For every two λI
$ expressions e1 and e2, if λ ` PIJe1K = PIJe2K, then

λI
$ ` e1 = e2. The same holds for values.

We can use it to prove completeness for λG$:

I Lemma 14. For every two λG
$ terms e1 and e2, if λ ` PJe1K = PJe2K, then λG

$ ` e1 = e2.

Proof. Suppose that λ ` PJe1K = PJe2K. By Property 11, we have λ ` PIJe1K = PIJe2K.
Using Lemma 13 we get λI$ ` e1 = e2, Lemma 12 gives us λG$ ` IJe1K = IJe2K. By
Property 11, we have λG$ ` e1 = e2. J

We can now finally prove soundness and completeness of the λ$ axioms:

I Theorem 15 (Soundness). If λ$ ` e1 = e2, then λ ` CJe1K = CJe2K.

I Theorem 16 (Completeness). If λ ` CJe1K = CJe2K, then λ$ ` e1 = e2.

CSL’13

528 Axiomatizing Subtyped Delimited Continuations

CJeKsub(τ σ≤τ ′ σ′,D) = CJτ σ ≤ τ ′ σ′K[CJeKD]
CJxKvar = x

CJλx. eKabs(D) = λx. CJeKD
CJe1 e2Kpapp(D1,D2) = CJe1KD1 CJe2KD2

CJe1 e2Kapp(D1,D2) = λk. CJe1KD1 (λf. CJe2KD2 (λx. f x k))
CJS0x. eKsft(D) = λx. CJeKD

CJe1 $ e2Kpdol(D1,D2) = CJe2KD2 CJe1KD1 for λ≤$
CJe1 $ e2Kdol(D1,D2) = λk. CJe1KD1 (λf. CJe2KD2 f k) for λ≤$

CJ〈e〉Krst(D) = CJeKD (λx. x) for λ≤S0

CJα ≤ αK[e] = e

CJτ ′1
σ1−→ τ1 ≤ τ ′2

σ2−→ τ2K[e] = λx. CJτ1 σ1 ≤ τ2 σ2K[e CJτ ′2 ≤ τ ′1K[x]]
CJτ1 ε ≤ τ2 εK[e] = CJτ1 ≤ τ2K[e]

CJτ ε ≤ τ ′ [τ1 σ1] τ2 σ2K[e] = λk. CJτ1 σ1 ≤ τ2 σ2K[k CJτ ≤ τ ′K[e]]
CJτ [τ1 σ1] τ2 σ2 ≤ τ ′ [τ ′1 σ′1] τ ′2 σ′2K[e] = λk. CJτ ′1 σ′1 ≤ τ ′2 σ′2K[e

(λx. CJτ ′1 σ′1 ≤ τ1 σ1K[k CJτ ≤ τ ′K[x]])]

Figure 6 Type-directed selective CPS translations for λ≤S0
to λ≤$.

4 Typed languages λ≤S0 and λ≤$

We now take a break from equational axiomatizations and describe typed versions of λS0 and
λ$, called λ≤S0

and λ≤$. We present sound and complete axiomatizations for these languages
in the next section.

In this work we use explicit type annotations on bound variables. This style of presentation
of typed languages is called „de Bruijn style” by Barendregt [1]. Thus the syntax of the
λ≤S0

and λ≤$ languages is the same as for λS0 and λ$, with the following changes (τ is the
syntactic category of types):

e ::= v | S0x : τ. e | . . . v ::= x |λx : τ. e

We often omit the type annotations for clarity, but they are still implicitly present.

4.1 Type systems
The description is shortened because of space limitations; for more details, see [8] and [9].
First let us define syntactic categories of types and effect annotations:

τ ::= α | τ σ−→ τ σ ::= ε | [τ σ] τ σ

An effect annotation can only be given meaning together with the type it annotates. The
typing judgment Γ ` e : τ ′1 [τ1 σ1] . . . τ ′n [τn σn] τ ε means “the expression e, when evaluated
inside contexts of types τ ′1

σ1−→ τ1, . . . , τ
′
n

σn−→ τn, gives an answer of type τ . In particular, the
judgment Γ ` e : τ ε means “the expression e has no control effects and, when evaluated,
yields a value of type τ”. We will often omit ε where it leads to no confusion.

The type systems are shown in Figure 5. The type system for λ≤$ is the one presented
in [9]. The type system for λ≤S0

differs slightly only in the rule papp from the one from [8].
The modification does not change the expressiveness of the type system, but helps with the
proofs.

M. Materzok 529

(λx. e) p = e[p/x] (βp)
λx. p x = p x 6∈ V(p) (ηp)

(λx.E[x]) e = E[e] x 6∈ V(E) (βΩ)
〈E[S0x. e]〉 = e[λx. 〈E[x]〉/x] x 6∈ V(E) (〈S0〉)

〈p〉 = p (〈p〉)
S0k. 〈(λx.S0z. k x) e〉 = e k 6∈ V(e) (η〈·〉)
〈(λx.S0k. 〈e1〉) e2〉 = 〈(λx. e1) e2〉 k 6∈ V(e1) (〈λ〉)

Figure 7 Axioms for λ≤S0
.

(λx. e) p = e[p/x] (βp) S0x. x $ e = e x 6∈ V(e) (η$)
λx. p x = p x 6∈ V(p) (ηp) p1 $ p2 = p1 p2 ($p)

p $S0x. e = e[p/x] (βp$) p $E[e] = (λx. p $E[x]) $ e ($E)

Figure 8 Axioms for λ≤$.

The type systems include three subtyping relations, defined on types, effect annotations
and annotated types, which are also defined in Figure 5. The subtyping relations are partial
orders: they are reflexive, weakly antisymmetric and transitive. We also have the following:

I Property 17. Every derivable subtyping judgment has only one derivation.

The property allows us to identify a subtyping judgment with its only derivation, which is
important for our proofs.

4.2 Selective CPS translations
For the typed languages λ≤S0

and λ≤$ we can define different translations than these defined
in Figure 1. The type information can be used to preserve pure (or control effect free) code
without changes and CPS-translate only the impure parts. The translations are shown in
Figure 6. The translation for λ≤S0

is the one from [8]; the one for λ≤$ is derived from it.
These translations preserve types in the following sense. Let us define translations from

λ≤S0
types and typed annotations to simple types of λ→:

CJαK = α CJτ εK = CJτK
CJτ ′ σ−→ τK = CJτ ′K−→CJτ σK CJτ [τ1 σ1] τ2 σ2K = (CJτK−→CJτ1 σ1K)−→CJτ2 σ2K

We have the following:

I Property 18 (Type preservation). If D is a derivation of Γ ` e : τ σ in λ≤S0
, then CJΓK `

CJeKD : CJτ σK in λ→. This also holds for λ≤$.

5 Typed axiomatization

In this section we present sound and complete (with respect to the type-directed selective
translation of Figure 6) equational axiomatizations of λ≤S0

and λ≤$. The development mostly
follows the untyped one, but there are a few surprises, starting with the axioms themselves.

CSL’13

530 Axiomatizing Subtyped Delimited Continuations

5.1 The typed axioms for λ≤S0 and λ≤$

We present the axioms in Figure 7 and Figure 8. We use the letter p to denote pure expressions
(the ones which can be typed with the empty effect annotation ε). The axioms seem similar
to the untyped ones, but several things need to be noted.

First, because the axioms themselves are typed, they can only be used when the types
match. For example, the typed η$ axiom cannot be typed pure, so it is only applicable on
terms with an impure type. (Therefore the implicit infinite tower of resets, which is present
in the untyped languages, disappears in typed ones.)

Second, the dependence on types makes it important to mention the typing context,
which gives types to variables. Because the subtyping rule allows the same term to have
different types, the concrete type which we consider needs also to be mentioned. Thus we
use the notation λ≤S0

; Γ ` e1 = e2 : τ σ when talking about equality modulo the axioms.
Third, in the typed axioms the syntactical value restriction present in the untyped axioms

βv, ηv, β$, 〈v〉 and $v is replaced by type-dependent purity restriction. This change is caused
by the fact that the CPS translations considered are selective – they leave the pure terms
unchanged. The typed axioms are more general, because every value has a pure typing.

Finally, we point out that the axioms give a call-by-name interpretation to pure sub-
programs. This is not problematic because the language considered is terminating and has
no side effects other than capturing of delimited contexts by shift0.

5.2 Reducing λ≤S0 to λ≤$

Similar to the untyped case, the axioms for λ≤S0
and λ≤$ are related by the following theorem.

We omit the proof because of space limitations.

I Theorem 19. The axioms for λ≤S0
are sound (complete) iff the axioms for λ≤$ are sound

(complete).

5.3 Typed CGS translation
Analogously to the untyped case, we present a translation from λ≤$ which targets a certain
subset of it, called λ→$. Differently to the untyped case, we will define this subset not by
restricting syntax, but by using a simpler type system, which consists of rules var, abs, sft,
papp and pdol (Figure 5).

It is worth notice that the restrictions imposed by the restricted type system for λ→$ are
analogous to the syntactic restrictions on λG$: the restriction of being a value in the untyped
case corresponds to the restriction of having a pure typing in the typed case. Another
interesting point is that there is no subtyping in the type system. The rules for impure
application and impure $ are also gone, and with good reason: without subtyping, these
rules fail subject reduction.

The axioms βp, ηp, βp$ and η$ form an axiomatization of λ→$. Take notice that the type
system of λ→$ makes the full beta reduction valid, because it forces the type of the function
argument to be pure. Therefore, as in the untyped case, the typed CGS language is evaluation
order independent.

We present the typed CGS translation in Figure 9. The translation is derived from the
typed CPS translation in Figure 6 using the same principles as with the untyped one. As
before, replacing the occurrences of shift0 with lambda abstractions and occurrences of $ with
function applications (as in Figure 4, but extended to work on terms with type annotations).
in the result terms of GJ·K· gives us the CPS translation:

M. Materzok 531

GJeKsub(τ σ≤τ ′ σ′,D) = GJτ σ ≤ τ ′ σ′K[GJeKD]
GJxKvar = x

GJλx. eKabs(D) = λx.GJeKD
GJe1 e2Kpapp(D1,D2) = GJe1KD1 GJe2KD2

GJe1 e2Kapp(D1,D2) = S0k. (λf. (λx. k $ f x) $GJe2KD2) $GJe1KD1

GJS0x. eKsft(D) = S0x.GJeKD
GJe1 $ e2Kpdol(D1,D2) = GJe1KD1 $GJe2KD2

GJe1 $ e2Kdol(D1,D2) = S0k. (λf. k $ f $GJe2KD2) $GJe1KD1

GJα ≤ αK[e] = e

GJτ ′1
σ1−→ τ1 ≤ τ ′2

σ2−→ τ2K[e] = λx.GJτ1 σ1 ≤ τ2 σ2K[eGJτ ′2 ≤ τ ′1K[x]]
GJτ1 ε ≤ τ2 εK[e] = GJτ1 ≤ τ2K[e]

GJτ ε ≤ τ ′ [τ1 σ1] τ2 σ2K[e] = S0k.GJτ1 σ1 ≤ τ2 σ2K[k GJτ ≤ τ ′K[e]]
GJτ [τ1 σ1] τ2 σ2 ≤ τ ′ [τ ′1 σ′1] τ ′2 σ′2K[e] = S0k.GJτ ′1 σ′1 ≤ τ ′2 σ′2K[

(λx.GJτ ′1 σ′1 ≤ τ1 σ1K[k GJτ ≤ τ ′K[x]]) $ e]

Figure 9 Type-directed selective CGS translation of λ≤$ to λ→$.

I Property 20 (CPS translation). CJeKD = PJGJeKDK

In contrast to the untyped case, the soundness of λ≤$ axioms is not trivial. The reason is
that the typed CGS (and CPS) translation depends on the typing derivation. It is easy to
show that every axiom is sound in some particular derivation, but we need to have them
sound in any derivation to have soundness. Therefore, we need coherence – the property
that, no matter the derivation, the terms resulting from the translation are equal.

I Theorem 21 (Coherence). For every two derivations D1, D2 of the same typing judgment
Γ ` e : τ σ λ≤$ we have λ→$; Γ ` GJeKD1 = GJeKD2 .

Proof. In the appendix. J

We can now prove soundness for λ≤$ with respect to the typed CGS translation:

I Lemma 22. Suppose that for some two λ≤$ terms e1 and e2 we have λ≤$; Γ ` e1 = e2 : τ σ.
Then for every two derivations D1 and D2 for Γ ` e1 : τ σ and Γ ` e2 : τ σ we have
λ→$; Γ ` GJe1KD1 = GJe2KD2 .

As in the untyped case, we can prove that the target terms of the typed CGS translation
are equal in λ≤$ to the source terms:

I Lemma 23. For every derivation D of Γ ` e : τ σ we have λ→$; Γ ` e = GJeKD.

Every equality in λ→$ is also valid in λ≤$:

I Lemma 24. If λ→$; Γ ` e1 = e2 and Γ ` e1 : τ σ, then λ≤$; Γ ` e1 = e2 : τ σ.

We can now prove completeness of λ≤$ axioms with respect to λ→$:

I Lemma 25. If D1 and D2 are derivations of Γ ` e1 : τ σ and Γ ` e2 : τ σ, and
λ→$; Γ ` GJe1KD1 = GJe2KD2 , then λ

≤
$; Γ ` e1 = e2 : τ σ.

CSL’13

532 Axiomatizing Subtyped Delimited Continuations

lnf$(Γ, x : τ1) e : τ2 σ
lnf$(Γ) λx : τ1. e : τ1 σ−→ τ2

lnf$(Γ, x : τ1 σ−→ τ2) e : τ σ′

lnf$(Γ) S0x : τ1 σ−→ τ2. e : τ1 [τ2 σ] τ σ′
lnf$↓(Γ) e : α
lnf$(Γ) e : α

lnf$↓(Γ, x : τ) x : τ
lnf$↓(Γ) e1 : τ1 σ−→ τ2 lnf$(Γ) e2 : τ1

lnf$↓(Γ) e1 e2 : τ2 σ

lnf$(Γ) e1 : τ1 σ−→ τ2 lnf$↓(Γ) e2 : τ1 [τ2 σ] τ σ′

lnf$↓(Γ) e1 $ e2 : τ σ′

Figure 10 $-beta eta long form.

5.4 From λ→$ to λ→

We can easily prove soundness of the typed CGS axioms with respect to λ→:

I Lemma 26. For any two λ→$ terms e1, e2 and any typing environment Γ such that
λ→$; Γ ` e1 = e2 we have λ→; CJΓK ` PJe1K = PJe2K.

Proving completeness of λ→$ is done differently than in the untyped case. We still get
unwanted redexes when translating with PJ·K. For example, if Γ ` e : τ1 [τ2 σ] τ ′ σ′, then
Γ ` λx. x $ e : (τ1 σ−→ τ2) σ′−→ τ ′ – but their translations are equal in λ→:

λ→; CJΓK ` PJλx. x $ eK = λx.PJeKx = PJeK

The problem exists only for eta reductions and beta expansions: every beta reduction in
the translated term corresponds to a βp or βp$ reduction in the source term, and similarly,
every eta expansion in the translated term corresponds to a ηp or η$ expansion in the source
term.1 We can use beta eta long forms [1] to solve this issue. Let us define lnf(Γ) e : τ to
mean “in the type environment Γ the expression e has type τ and is in beta eta long form”.
We have the following:
I Property 27. If λ→; Γ ` e1 = e2, then there exists a λ→ term e, in beta eta long form, such
that e1 and e2 both reduce to e using only beta reductions and eta expansions.
We can easily prove the following:

I Lemma 28. If λ→$ term e1 is typable in Γ and PJe1K reduces to e in CJΓK using only
beta reductions and eta expansions, then there exists a λ→$ term e2 such that e = PJe2K and
λ→$; Γ ` e1 = e2.

But this lemma alone cannot be used to prove completeness. Applying the lemma to the two
reduction sequences from Property 27 give us two λ→$ terms which translate to the same λ→
term, but we do not know yet if they are equal. Fortunately, we can use the fact that their
translation is in beta eta long form to give a positive answer to this question.

Let us begin with presenting the syntax of the λ→$ analogue of the beta eta long forms,
we call them $-beta eta long forms (Figure 10). We prove that if the translated λ→$ term is
in the beta eta long form, then the original term is in the $-beta eta long form:

I Lemma 29. If lnf(CJΓK) PJeK : CJτ σK, then lnf$(Γ) e : τ σ.

1 Conventionally, we define βp, βp
$, ηp and η$ reductions as left-to-right directed versions of the corres-

ponding equations.

M. Materzok 533

Then we prove that if we have two λ→$ terms in $-beta eta long forms which translate to the
same λ→ term, then they are (syntactically) equal:

I Lemma 30. If lnf$(Γ) e1 : τ σ, lnf$(Γ) e2 : τ σ and PJe1K = PJe2K, then e1 = e2.

Now we can prove completeness of λ→$:

I Lemma 31. If we have λ→; CJΓK ` PJe1K = PJe2K, then λ→$; Γ ` e1 = e2.

Proof. Suppose that λ→; CJΓK ` PJe1K = PJe2K : τ σ. Using Property 27 we get a λ→ term
e in eta long form such that both PJe1K and PJe2K reduce to e using only beta reductions
and eta expansions. Applying Lemma 28 we get λ→$; Γ ` e1 = e′1, λ→$; Γ ` e2 = e′2 and
PJe′1K = PJe′2K = e. By Lemma 29 we get that e′1 and e′2 are in $-beta eta long form.
Lemma 30 gives us e′1 = e′2, which finishes the proof. J

We can now prove soundness and completeness for λ≤$:

I Theorem 32 (Soundness). Suppose that for some two λ≤$ terms e1 and e2 we have
λ≤$; Γ ` e1 = e2 : τ σ. Then for every two derivations D1 and D2 for Γ ` e1 : τ σ and
Γ ` e2 : τ σ we have λ→; CJΓK ` CJe1KD1 = CJe2KD2 .

I Theorem 33 (Completeness). For every two derivations D1, D2 of Γ ` e1τ σ and Γ ` e2τ σ,
if λ→; CJΓK ` CJe1KD1 = CJe2KD2 , then λ

≤
$; Γ ` e1 = e2 : τ σ.

6 Related work

6.1 Kameyama and Hasegawa’s axioms for shift/reset
We can express the shift/reset control operators in λS0 by leaving the occurrences of reset
without changes and replacing the occurrences of the shift operator Sk. e with S0k. 〈e〉. It is
an interesting question if the axioms of Kameyama and Hasegawa [6] can be validated in
this embedding using the axioms for λS0 .

The answer is negative. The axioms reset-lift, S-elim and S-reset cannot be validated.
The reason is that the shift0 operator, in contrast to shift, can reach beyond the nearest
delimiter; the three equations above significantly change the structure of delimiters, which
can be distinguished by repeated uses of shift0.

Our axioms βv, ηv, βΩ and 〈v〉 are identical to corresponding Kameyama and Hasegawa’s
axioms. The axiom 〈S0〉 is taken from the reduction semantics for shift0. The remaining two
axioms η〈·〉 and 〈λ〉 are different, but are related to S-elim and reset-lift.

The Kameyama and Hasegawa’s S-elim axiom Sk. k e = e is unsound in λS0 . To see why,
take a look at the λS0 term 〈f 〈g e〉〉. If we apply the S-elim-derived equality S0k. 〈k e〉 = e

right-to-left on g, we get:

〈f 〈(S0k. 〈k g〉) e〉〉 → 〈f 〈(λx. 〈x e〉) g〉〉 → 〈f 〈〈g e〉〉〉

We see that one of the reset0’s got duplicated. The reset0 operator is not idempotent, so the
equation must be unsound. To fix the equation, we need to ensure the superfluous reset0
gets removed in the course of evaluation. This way we obtain the axiom η〈·〉. Let us check
this using our previous example:

〈f 〈(S0k. 〈(λx.S0z. k x) g〉) e〉〉 → 〈f 〈(λx.S0z. (λy. 〈y e〉)x) g〉〉
→ 〈f 〈S0z. (λy. 〈y e〉) g〉〉 → 〈f ((λy. 〈y e〉) g)〉 → 〈f 〈g e〉〉

CSL’13

534 Axiomatizing Subtyped Delimited Continuations

The Kameyama and Hasegawa’s reset-lift axiom 〈(λx. e1) 〈e2〉〉 = (λx. 〈e1〉) 〈e2〉 is invalid
in λS0 . Notice that the main fact stated by the axiom is that the subexpression e1 is always
evaluated in an empty context. The same fact is the basis for the 〈λ〉 axiom.

6.2 Kameyama and Hasegawa’s axioms in the typed setting
It is shown in [8] that the typed shift/reset [2] can be embedded in λ≤S0

so that the type-
directed CPS translation for this embedding gives terms which are beta eta equal to the
standard CPS translation for shift/reset. This means that the axioms of Kameyama and
Hasegawa are validated for this embedding by the axioms for λ≤S0

.
How is this possible, even though the embedding is the same on the term level as the

untyped embedding? The answer, of course, lies in the types. Consider, for example, the
Kameyama and Hasegawa’s reset-lift axiom (〈(λx. e1) 〈e2〉〉 = (λx. 〈e1〉) 〈e2〉). In the untyped
setting, this is obviously invalid – the left hand side and the right hand side have obviously
different structure of delimiters, which can be distinguished by two shift0’s. But in the
typed setting, we know that the types in the derivations generated by the embedding are
shallow: the typing annotations are only of the form ε or [τ1] τ2. This means that any term
in the target of the embedding which has the form 〈e〉 has a pure typing. So the following is
derivable (we use the βp axiom):

λ≤S0
; Γ ` 〈(λx. e1) 〈e2〉〉 = 〈e1[〈e2〉/x]〉 = (λx. 〈e1〉) 〈e2〉

Let us see another example – the S-elim axiom (Sk. k e = e). It is embedded into λ≤S0
in the

form S0k. 〈k e〉 = e. We have the following:

λ≤S0
; Γ ` S0k. 〈k e〉 = S0k. 〈(λx. k x) e〉 = S0k. 〈(λx.S0z. 〈k x〉) e〉

= S0k. 〈(λx.S0z. k x) e〉 = e

We used, in sequence, the axioms ηp, 〈λ〉, 〈p〉 and η〈·〉. Notice that the use of the axiom
〈p〉 was correct only because the return type of k was pure. So the equality is not valid in
general, but it is valid in the image of the embedding of typed shift/reset.

The conclusion is as follows: the type system of λ≤S0
tracks how the program accesses the

context stack, and the typed axioms can use the type information to make some reasoning
valid which is not valid in general. The typed axioms of Kameyama and Hasegawa are valid
in λ≤S0

when the type annotations are shallow.

6.3 Connection with the axioms for the CPS Hierarchy
We can embed the CPS Hierarchy λH [3] in the calculus λ$, as shown in [9]. A natural
question is whether Kameyama’s axioms for the CPS Hierarchy [5] are validated by the
axioms for λ$. The answer is yes. Let CHJ·K be the CPS translation for the CPS Hierarchy
and HJ·K be the embedding of λH inside λ$. In [9] it is proven that λ ` CHJeK = CJHJeKK.
So the following sequence of equivalences is true:

λH ` e1 = e2 ⇔ λ ` CHJe1K = CHJe2K⇔ λ ` CJHJe1KK = CJHJe2KK⇔ λ$ ` HJe1K = HJe2K

Because Kameyama’s axioms specialized for the first level coincide with the axioms of
Kameyama and Hasegawa for shift/reset, the result may seem paradoxical: we said in
Section 6.1 that these axioms are not valid in shift0/reset0! There is no paradox because
HJ·K gives a different embedding of shift/reset than the one used in Section 6.1:

HJS1x. eK = S0k. 〈e[λx.S0f.S0g. (λy. g $ f y) $ k x/x]〉
HJ〈e〉1K = S0f.S0g. (λx. g $ f x) $ 〈HJeK〉

M. Materzok 535

7 Conclusion

We have presented sound and complete axioms for untyped languages λS0 and λ$ and typed
languages with subtyping λ≤S0

and λ≤$. In future work we will explore polymorphic and
call-by-name variants of the languages considered.

Acknowledgments. Many thanks to Dariusz Biernacki, Maciej Piróg and the anonymous
referees for their valuable comments. This work was funded by Polish NCN grant DEC-
2011/03/B/ST6/00348, and co-funded by the European Social Fund.

References

1 Henk Barendregt. Lambda calculi with types. In Samson Abramsky, Dov M. Gabbay,
and T. S. E. Maibaum, editors, Handbook of Logic in Computer Science, Vol. 2, chapter 2,
pages 118–309. Oxford University Press, Oxford, 1992.

2 Olivier Danvy and Andrzej Filinski. A functional abstraction of typed contexts. DIKU Rap-
port 89/12, DIKU, Computer Science Department, University of Copenhagen, Copenhagen,
Denmark, July 1989.

3 Olivier Danvy and Andrzej Filinski. Abstracting control. In Mitchell Wand, editor, Pro-
ceedings of the 1990 ACM Conference on Lisp and Functional Programming, pages 151–160,
Nice, France, June 1990. ACM Press.

4 Paul Downen and Zena M. Ariola. A systematic approach to delimited control with multiple
prompts. In Helmut Seidl, editor, ESOP’12, Lecture Notes in Computer Science, pages 234–
253, Tallinn, Estonia, April 2012. Springer-Verlag.

5 Yukiyoshi Kameyama. Axioms for control operators in the CPS hierarchy. Higher-Order
and Symbolic Computation, 20(4):339–369, 2007. A preliminary version was presented at
the Fourth ACM SIGPLAN Workshop on Continuations (CW’04).

6 Yukiyoshi Kameyama and Masahito Hasegawa. A sound and complete axiomatization of
delimited continuations. In Olin Shivers, editor, ICFP’03, SIGPLAN Notices, Vol. 38,
No. 9, pages 177–188, Uppsala, Sweden, August 2003. ACM Press.

7 Oleg Kiselyov and Chung-chieh Shan. A substructural type system for delimited continu-
ations. In Simona Ronchi Della Rocca, editor, TLCA’07, number 4583 in Lecture Notes in
Computer Science, pages 223–239, Paris, France, June 2007. Springer-Verlag.

8 Marek Materzok and Dariusz Biernacki. Subtyping delimited continuations. In Oliver
Danvy, editor, ICFP’11, pages 81–93, Tokyo, Japan, September 2011. ACM Press.

9 Marek Materzok and Dariusz Biernacki. A dynamic interpretation of the CPS hierarchy.
In Ranjit Jhala and Atsushi Igarashi, editors, APLAS’12, number 7705 in Lecture Notes
in Computer Science, pages 296–311, Kyoto, Japan, December 2012.

10 Amr Sabry. The Formal Relationship between Direct and Continuation-Passing Style Op-
timizing Compilers: A Synthesis of Two Paradigms. PhD thesis, Computer Science De-
partment, Rice University, Houston, Texas, August 1994. Technical report 94-242.

11 Amr Sabry. Note on axiomatizing the semantics of control operators. Technical Report
CIS-TR-96-03, Department of Computer and Information Science, University of Oregon,
1996.

12 Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-passing
style. Lisp and Symbolic Computation, 6(3/4):289–360, 1993. A preliminary version was
presented at the 1992 ACM Conference on Lisp and Functional Programming (LFP 1992).

CSL’13

536 Axiomatizing Subtyped Delimited Continuations

A Useful lemmas

I Lemma 34 ($Rβ). λ$ ` k $ (λx. e1) e2 = (λx. k $ e1) $ e2

Proof. k $ (λx. e1) e2
$E= (λx. k $ (λx. e1)x) $ e2

βv= (λx. k $ e1) $ e2 J

I Definition 35 (CGS translation of values).

GvJxK = x GvJλx. eK = λx.GJeK

I Lemma 36. GJvK = S0k. k GvJvK

I Lemma 37. λ$ axiom $E is equivalent to the following three equations:

v $ e1 e2 = (λx. v $x e2) $ e1 ($L)
v $ v′ e = (λx. v $ v′ x) $ e ($R)

v $ e1 $ e2 = (λx. v $x $ e2) $ e1 ($$)

Proof. Equations $L, $R and $$ are obviously instances of $E . In the other direction the
proof is by induction on the context E.

E = •

v $ e ηv= (λx. v x) $ e $v= (λx. v $x) $ e

E = E′ e

v $ (E′ e)[e′] def= v $E′[e′ e] ind= (λx. v $E′[x]) $ e′ e $L= (λx. (λx. x $E′[x]) $x e) $ e′
ind= (λx. v $E′[x e]) $ e′ def= (λx. v $ (E′ e)[x]) $ e′

The other two cases are similar. J

B Proof of Property 1

1-4 proven by induction on the expression e. Only the nontrivial cases are shown.

1. For every λS0 term e we have λS0 ` D−1JDJeKK = e.

D−1JDJ〈e〉KK def= D−1J(λx. x) $DJeKK def= (λf. 〈(λx.S0z. f x)D−1JDJeKK〉) (λx. x)
ind= (λf. 〈(λx.S0z. f x) e〉) (λx. x) βv= 〈(λx.S0z. x) e〉 〈v〉= 〈(λx.S0z. 〈x〉) e〉
〈λ〉= 〈(λx. x) e〉 βΩ= 〈e〉

2. For every λ$ term e we have λ$ ` DJD−1JeKK = e.

DJD−1Je1 $ e2KK
def= DJ(λf. 〈(λx.S0z. f x)D−1Je2K〉)D−1Je1KK

def= (λf. (λx. x) $ (λx.S0z. f x)DJD−1Je2KK)DJD−1Je1KK
ind= (λf. (λx. x) $ (λx.S0z. f x) e2) e1
η$= S0k. k $ (λf. (λx. x) $ (λx.S0z. f x) e2) e1

$Rβ= S0k. (λf. k $ (λx. x) $ (λx.S0z. f x) e2) $ e1
$Rβ= S0k. (λf. k $ (λx. (λx. x) $S0z. f x) $ e2) $ e1
β$= S0k. (λf. k $ (λx. f x) $ e2) $ e1
ηv= S0k. (λf. k $ f $ e2) $ e1

$E= S0k. k $ e1 $ e2
η$= e1 $ e2

M. Materzok 537

3. For every λS0 term e we have λ ` CJeK = CJDJeKK.

CJ〈e〉K def= CJeK (λx. λk. k x) η= λk. CJeK (λx. λk. k x) k
β= λk. (λf. CJeK f k) (λx. λk. k x) β= λk. (λk′. k′ (λx. λk. k x)) (λf. CJeK f k)
ind= λk. (λk′. k′ (λx. λk. k x)) (λf. CJDJeKK f k)
def= CJ(λx. x) $DJeKK def= CJDJ〈e〉KK

4. For every λ$ term e we have λ ` CJeK = CJD−1JeKK.

CJe1 $ e2K
def= λk. CJe1K (λf. CJe2K f k)

η= λk. CJe1K (λf. CJe2K (λx. λk. f x k) k)
β= λk. CJe1K (λf. CJe2K (λx. (λz. λk. f x k) (λx. λk. k x)) k)
def= λk. CJe1K (λf. CJe2K (λx. CJS0z. f xK (λx. λk. k x)) k)
β= λk. CJe1K (λf. (λk′. CJe2K (λx. (λx. CJS0z. f xK)x k′))(λx. λk. k x) k)
ind= λk. CJD−1Je1KK (λf. (λk′. CJD−1Je2KK (λx. (λx. CJS0z. f xK)x k′))(λx. λk. k x) k)
def= λk. CJD−1Je1KK (λf. CJ〈(λx.S0z. f x)D−1Je2K〉K k)
β= λk. CJD−1Je1KK (λx. (λf. CJ〈(λx.S0z. f x)D−1Je2K〉K)x k)
def= CJ(λf. 〈(λx.S0z. f x)D−1Je2K〉)D−1Je1KK

def= CJD−1Je1 $ e2KK

5. λS0 ` e1 = e2 implies λ$ ` DJe1K = DJe2K.
(βΩ) (λx.E[x]) e = E[e]

DJ(λx.E[x]) eK def= (λx. (DJEK)[x])DJeK
η$= S0k. k $ (λx. (DJEK)[x])DJeK

$Rβ= S0k. (λx. k $ (DJEK)[x]) $DJeK $E= S0k. k $ (DJEK)[DJxK]
def= S0k. k $DJE[x]K η$= DJE[x]K

(〈S0〉) 〈E[S0x. e]〉 = e[λx. 〈E[x]〉/x]

DJ〈E[S0x. e]〉K
def= (λx. x) $ (DJEK)[S0x.DJeK]

$E= (λx. (λx. x) $ (DJEK)[x]) $S0x.DJeK
β$= DJeK[λx. (λx. x) $ (DJEK)[x]/x] def= DJe[λx. 〈E[x]〉/x]K

(〈v〉) 〈v〉 = v

DJ〈v〉K def= (λx. x) $DJvK $v= (λx. x)DJvK βv= DJvK

(η〈·〉) S0k. 〈(λx.S0z. k x) e〉 = e

DJS0k. 〈(λx.S0z. k x) e〉K def= S0k. (λx. x) $ (λx.S0z. k x)DJeK
$Rβ= S0k. (λx. (λx. x) $S0z. k x) $DJeK
β$= S0k. (λx. k x) $DJeK ηv= S0k. k $DJeK

η$= DJeK

(〈λ〉) 〈(λx.S0k. 〈e1〉) e2〉 = 〈(λx. e1) e2〉

DJ〈(λx.S0k. 〈e1〉) e2〉K
def= (λx. x) $ (λx.S0k. (λx. x) $DJe1K)DJe2K

$Rβ= (λx. (λx. x) $S0k. (λx. x) $DJe1K) $DJe2K
β$= (λx. (λx. x) $DJe1K) $DJe2K

$Rβ= (λx. x) $ (λx.DJe1K)DJe2K
def= DJ〈(λx. e1) e2〉K

CSL’13

538 Axiomatizing Subtyped Delimited Continuations

6. λ$ ` e1 = e2 implies λS0 ` D−1Je1K = D−1Je2K.
(β$) v $S0x. e = e[v/x]

D−1Jv $S0x. eK
def= (λf. 〈(λx.S0z. f x) (S0x.D−1JeK)〉)D−1JvK

βv= 〈(λx.S0z.D−1JvKx) (S0x.D−1JeK)〉
〈S0〉= D−1JeK[λy. 〈(λx.S0z.D−1JvKx) y〉/x]
βv= D−1JeK[λy. 〈S0z.D−1JvK y〉/x] 〈S0〉= D−1JeK[λy.D−1JvK y/x]
ηv= D−1JeK[D−1JvK/x] def= D−1Je[v/x]K

(η$) S0x. x $ e = e

D−1JS0x. x $ eK def= S0x. 〈(λy.S0z. x y)D−1JeK〉
η〈·〉= D−1JeK

($v) v1 $ v2 = v1 v2

D−1Jv1 $ v2K
def= 〈(λx.S0z.D−1Jv1Kx)D−1Jv2K〉

βv= 〈S0z.D−1Jv1KD−1Jv2K〉
〈S0〉= D−1Jv1KD−1Jv2K

def= D−1Jv1 v2K

($E) v $E[e] = (λx. v $E[x]) $ e

D−1Jv $E[e]K def= 〈(λx.S0z.D−1JvKx) ((D−1JEK)[D−1JeK])〉
βΩ= 〈(λx. (λx.S0z.D−1JvKx) ((D−1JEK)[x]))D−1JeK〉
def= 〈(λx. (λx.S0z.D−1JvKx)D−1JE[x]K)D−1JeK〉
〈λ〉= 〈(λx.S0z. 〈(λx.S0z.D−1JvKx)D−1JE[x]K〉)D−1JeK〉
βv= 〈(λx.S0z. (λx. 〈(λx.S0z.D−1JvKx)D−1JE[x]K〉)x)D−1JeK〉
def= D−1J(λx. v $E[x]) $ eK

C Proof of Lemma 6

For every λ$ term e we have λ$ ` e = GJeK.
Proof is by induction on the expression e. Only the nontrivial cases are presented.

e = λx. e′

λx. e′
η$= S0k. k $λx. e′ $v= S0k. k (λx. e′) ind= S0k. k (λx.GJe′K) def= GJλx. e′K

e = e1 e2

e1 e2
η$= S0k. k $ e1 e2

$E= S0k. (λf. k $ f e2) $ e1
$E= S0k. (λf. (λx. k $ f x) $ e2) $ e1

ind= S0k. (λf. (λx. k $ f x) $GJe2K) $GJe1K
def= GJe1 e2K

e = e1 $ e2

e1 $ e2
η$= S0k. k $ e1 $ e2

$E= S0k. (λf. k $ f $ e2) $ e1
ind= S0k. (λf. k $ f $GJe2K) $GJe1K

def= GJe1 $ e2K

M. Materzok 539

ε�≤ [τ σ] τ σ �≤
σ �≤ ~σ
σ �≤ ε ~σ

[τ3 σ3] τ2 σ2 �≤ ~σ τ ′2 σ
′
2 ≤ τ ′2 σ2

[τ3 σ3] τ1 σ1 �≤ [τ ′2 σ′2] τ1 σ1 ~σ

Γ, x : τ B x : τ
var

Γ, x : τ1 B e : τ2 σ
Γ B λx : τ1. e : τ1 σ−→ τ2

abs
Γ, x : τ1 σ−→ τ2 B e : τ3 σ′

Γ B S0x : τ1 σ−→ τ2. e : τ1 [τ2 σ] τ3 σ′
sft

Γ B e1 : τ1 σ3−→ τ2 σ1 Γ B e2 : τ1 σ2 σ �≤ σ1 σ2 σ3

Γ B e1 e2 : τ2 σ
app

Rule for λ≤S0
: Γ B e : τ ′′ [τ ′ σ′] τ σ τ ′′ ≤ τ ′ σ′

Γ B 〈e〉 : τ σ
rst

Rule for λ≤$: Γ B e1 : τ1 σ′−→ τ2 σ1 Γ B e2 : τ1 [τ2 σ′] τ3 σ2 σ �≤ σ1 σ2

Γ B e1 $ e2 : τ3 σ
dol

Figure 11 The type system giving minimal types for λ$ and λ≤$.

D Proof of Theorem 21 (coherence)

The language λ≤$ has minimal types in the following sense:

I Lemma 38 (Minimal types). For every e, Γ, τ , σ such that Γ ` e : τ σ there exist τ ′, σ′
such that Γ ` e : τ ′ σ′ and for every τ ′′, σ′′ such that Γ ` e : τ ′′ σ′′ we have τ ′ σ′ ≤ τ ′′ σ′′.

Proof. The type system in Figure 11 gives the minimal type. This can be proven by induction
on the derivation of Γ ` e : τ σ. J

For every derivation DM of the minimal type judgement of Figure 11 we can find a type
derivation for the same type which corresponds to the derivation DM ; let us call it D(DM).
We can prove the following lemma:

I Lemma 39. For every derivation DM of ΓB e : τ σ and every derivation D of Γ ` e : τ ′ σ′
we have λ→$; Γ ` GJeKD = GJτ σ ≤ τ ′ σ′K[GJeKD(DM)].

Proof. Induction on the derivation D. J

Coherence follows immediately.

E Kameyama and Hasegawa’s axiomatization of shift/reset

The axioms were presented in [6]. Syntax was adapted to the one used in this paper.

(λx. e) v = e[v/x] (βv)
λx. v x = v x 6∈ V(v) (ηv)

(λx.E[x]) e = E[e] x 6∈ V(E) (βΩ)
〈v〉 = v (reset-value)

〈(λx. e1) 〈e2〉〉 = (λx. 〈e1〉) 〈e2〉 (reset-lift)
Sk. k e = e k 6∈ V(e) (S-elim)

〈E[Sk. e]〉 = e[λx. 〈E[x]〉/k] x 6∈ V(E) (reset-S)
Sk. 〈e〉 = Sk. e (S-reset)

CSL’13

On dialogue games and coherent strategies˚

Paul-André Melliès

CNRS, Laboratoire PPS (Preuves, Programmes, Systèmes), UMR 7126
Université Paris Diderot, Sorbonne Paris Cité, F–75205 Paris, France.
mellies@pps.univ-paris-diderot.fr

Abstract
We explain how to see the set of positions of a dialogue game as a coherence space in the sense of
Girard or as a bistructure in the sense of Curien, Plotkin and Winskel. The coherence structure
on the set of positions results from a Kripke translation of tensorial logic into linear logic extended
with a necessity modality. The translation is done in such a way that every innocent strategy
defines a clique or a configuration in the resulting space of positions. This leads us to study
the notion of configuration designed by Curien, Plotkin and Winskel for general bistructures in
the particular case of a bistructure associated to a dialogue game. We show that every such
configuration may be seen as an interactive strategy equipped with a backward as well as a
forward dynamics based on the interplay between the stable order and the extensional order.
In that way, the category of bistructures is shown to include a full subcategory of games and
coherent strategies of an interesting nature.

1998 ACM Subject Classification D.3.1 Formal Definitions and Theory, F.3.2 Semantics of
Programming Languages, F.4.1 Mathematical Logic

Keywords and phrases Game semantics, Stable order, Extensional order, Bistructures, Tensorial
logic, Innocent strategies

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.540

1 Introduction

An important dichotomy in the denotational semantics of a programming language like PCF
is provided by the distinction between the qualitative and the quantitative interpretations
of the language. The distinction is important but recent since the first quantitative model
emerged in the work by Girard on quantitative domains [9] only a few months before the
discovery of linear logic. All the denotational models of PCF were qualitative before that.
This includes the domain-theoretic models either based on continuous functions between
Scott domains [24] or on stable functions between dI-domains [2] as well as the precursor
of game semantics based on sequential algorithms between concrete data structures [3].
The difference between qualitative and quantitative models is best understood today by
translating the intuitionistic types of PCF into formulas of linear logic. There, the distinction
between the two classes of models boils down to the way the exponential modality ! of
linear logic is interpreted. As shown by Ehrhard in his work on differential linear logic, the
quantitative models of linear logic are usually better behaved and closer to a mathematical
understanding of resource (formal series, differential calculus) because they incorporate the
number of times a procedure is called by its environment. On the other hand, the qualitative
models are precious tools for automatic verification of software because they interpret finite
types (typically limited to booleans or to finite approximations of the natural numbers) as

˚ This work has been partly supported by the ANR Project RECRE.

© Paul-André Melliès;
licensed under Creative Commons License CC-BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca; pp. 540–562

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.540
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

P.-A. Melliès 541

finite mathematical structures, and thus provide mechanical procedures to decide specific
properties of programs.

Quite interestingly, most interactive models based on game semantics are quantitative,
rather than qualitative. There is a good reason for that: once understood how to track the
several copies of a game A in the game !A by using indices or pointers, it is generally easier
to describe the behaviour of a PCF program in exactly the same way as it proceeds in time,
typically in a Krivine machine. As a consequence, the number of times a program of type
p!Aq (B calls its procedure of type A is generally reflected in the game model. As we
already mentioned, a remarkable counter-example to this general principle is provided by
the sequential algorithm model of PCF [3] which is indeed operational and qualitative at
the same time. Lamarche and Curien [15, 5] have shown very early in the history of game
semantics how to reformulate this model of PCF as a model of intuitionistic linear logic
based on sequential data structures — which we prefer to call here simple games in order
to distinguish them among the more general dialogue games. Because of the qualitative
nature of the model, simple games are defined as alternating decision trees, without the
need for extra indexing or pointer structure. The key idea of the model is to define the
simple game !A as the tree of partial explorations of a given strategy σ of the simple game A.
The contraction !A Ñ !Ag !A of linear logic is then interpreted by a clever memoisation
procedure which keeps track of the portion of the strategy σ of the game A on the left
explored by the two environments playing independently on the copies of !A on the right.
In this way, one obtains a qualitative model of intuitionistic linear logic whose co-Kleisli
category embeds in the category of sequential algorithms originally introduced by Berry
and Curien. Note that we write AgB for the tensor product of simple games defined by
interleaving, in order to distinguish it from the tensor product of dialogue games AbB.

The interest in this specific Curien-Lamarche modality ! has been recently revived by the
observation that the category of dialogue games and innocent strategies defined by Hyland
and Ong [12] may be reconstructed as a bi-Kleisli category from the category of simple games,
using a quantitative (or repetitive) version of the modality [11]. For the sake of completeness,
we find instructive to take the reverse point of view here, and to see the category Simple
of simple games as a specific full subcategory of a category Dialogue of dialogue games
and innocent strategies. This category Dialogue should be understood as a resource-aware
and linear variant of the original category in [12]. At this point, it is worth recalling the
definition of a dialogue category, see [23] for instance:

I Definition 1 (Dialogue category). A dialogue category C is a symmetric monoidal category
equipped with an object K together with a functor

 : C op ÝÑ C (1)

and a family of bijections

ϕA,B : CpAbB,Kq – CpA, Bq

natural in A and B. A dialogue category is called affine when it is equipped with a natural
family of morphisms (called weakening)

eA : A ÝÑ 1.

The category Dialogue of dialogue games and total innocent strategies may be concisely
defined as the free affine dialogue category with finite sums (and tensors distributing over
these finite sums). A more concrete definition will appear in §3 but the conceptual definition
is convenient at this introductory stage. Similarly,

CSL’13

542 On dialogue games and coherent strategies

I Definition 2 (Negation category). A negation category C is a category equipped with a
functor (1) and with a family of bijections

νA,B : CpA, Bq – CpB, Aq

natural in A and B.

The category Simple of simple games and total sequential strategies may be concisely defined
as the free negation category with finite sums. Note that Simple coincides with the free
category FampGq with finite sums (or finite family construction) generated by the category G

of finite Opponent starting games and total strategies considered in [5]. As a dialogue
category, the category Dialogue is also a negation category. This implies the existence of a
negation and finite sum preserving functor

embedding : Simple ÝÑ Dialogue

The functor is full and faithful, and injective on objects. As such, it identifies the category
Simple of simple games to a full subcategory of the category Dialogue of dialogue games.
The category Simple is symmetric monoidal closed with tensor product and linear implication
noted g and ´́˚ respectively. As such, it defines a dialogue category with negation defined
as A “ A ´́˚ K where K is the simple game with one initial Player move ˚ (which may be
also seen as a unique initial position ˚ of the game) followed by a single Opponent move q.
Again, by the universal characterization of the category Dialogue, this induces a finite sum,
tensor and negation preserving functor

pathification : Dialogue ÝÑ Simple

which we call pathification because it transports every dialogue game A to a simple game
entirely defined by its alternating paths. Despite its name, the pathification functor is a
brutal transformation on the original dialogue game, since it destroys the asynchronous
structure of the asynchronous game A and only retains its alternating paths. On the other
hand, every simple game is already a tree, and thus the composite functor

Simple
embedding // Dialogue

pathification // Simple

is equal to the identity. One preliminary observation of the paper is that the tensor
product AgB between simple games factors as

AgB “ pathificationpembeddingpAq b embeddingpBqq

and similarly, that the Curien-Lamarche exponential modality ! factors as

Simple shriek // Dialogue
pathification // Simple (2)

Note that the transformation shriek is entirely described by the recursive equation

shriek
ˆ

à

iPI

à

jPJi

 Aij

˙

“
à

iPI

â

jPJi

 shriek pAijq

whose purpose is to replace every cartesian product (or negated sum indexed by j P Ji) by
the corresponding tensor product. We will illustrate the construction in (3) and (5). In
particular, for every pair of simple games A,B, there exists a bijection

Simplep!A,Bq – DialoguepshriekpAq, embeddingpBqq.

P.-A. Melliès 543

This basic observation seems to underlie a lot of work in the field of game semantics, in
particular the graph-theoretic formulation of the sequential algorithm model by Hyland and
Schalk [13]. A fundamental difficulty (or phenomenon) arises at this point of our analysis:
the transformation shriek is not functorial — and this is precisely the reason why we prefered
to indicate it with a dotted line in (2). In order to understand what is going wrong, let
us define 1 as the simple game with a unique Player move ˚ (or initial position) and the
Sierpinski game Σ “ 1 as the simple game with a unique initial Player move ˚ (or initial
position) followed by a unique Opponent move done, itself followed by a unique Player
move done. The cartesian product Σ & Σ in the category Simple is equal to the simple
game

`

p 1q ‘ p 1q
˘

. Now, consider the morphism

σ
P

q

O

done

Σ Σ Σ&

PP

q

O

q
L R

done doneL R

O

(3)

in the category Simple, where σ denotes the strategy which starts at the initial position
pK,Kq and consists of the two sequences of moves below:

sL : pK,Kq
O
ÝÑ pK, qLq

P
ÝÑ pq, qLq

O
ÝÑ pdone, qLq

P
ÝÑ pdone, doneLq

sR : pK,Kq
O
ÝÑ pK, qRq

P
ÝÑ pq, qRq

O
ÝÑ pdone, qRq

P
ÝÑ pdone, doneRq

(4)

together with their even-length prefixes. We indicate with a grey orb in (3) the fact that
the moves qL and qR are incompatible and thus cannot appear in the same play of the
game Σ & Σ. By definition, shriek transports the simple game Σ into itself, and the simple
game Σ & Σ “

`

p 1q ‘ p 1q
˘

into the dialogue game Σb Σ “ p 1q b p 1q. We claim
that shriek is not functorial because it cannot transport the strategy σ to any innocent
strategy

PP

q

O

q
L R

done doneL R

P

q

O

done

O

Σ Σ Σ
τ

(5)

in the category Dialogue. Note that we remove the grey orb between the moves qL and qR
in the case of the dialogue game Σ b Σ to indicate that the two moves are compatible in
the game. Imagine that there exists such an innocent strategy τ “ shriekpσq. In order to
make our argument work, we will make the mild hypothesis that any reasonable functorial
definition of shriek should transport the projection πi : Σ & Σ Ñ Σ to the expected strategy
shriekpπiq : Σb Σ Ñ Σ which plays a copycat strategy between Σ and the first or second
component of Σb Σ depending on the value of i “ 1, 2. With this additional hypothesis, it
is easy to deduce from the equality πi ˝ σ “ idΣ (for i “ 1, 2) and from the totality of τ that
the strategy τ “ shriekpσq coincides with the strategy consisting of the two plays

sLR : pK,K,Kq
Op˚q
ÝÑ pK, qL,Kq

P p˚q
ÝÑ pq, qL,Kq

O
ÝÑ pdone, qL,Kq

P
ÝÑ pdone, doneL,Kq

O
ÝÑ pdone, doneL, qRq

P
ÝÑ pdone, doneL, doneRq

sRL : pK,K,Kq
O
ÝÑ pK,K, qRq

P
ÝÑ pq,K, qRq

O
ÝÑ pdone,K, qRq

P
ÝÑ pdone,K, doneRq

Op˚˚q
ÝÑ pdone, qL, doneRq

P p˚˚q
ÝÑ pdone, doneL, doneRq

CSL’13

544 On dialogue games and coherent strategies

together with their even-length prefixes. One recognizes here the contraction strategy
Σ Ñ Σ g Σ of the Curien-Lamarche model for the simple game Σ “ ! Σ. Our whole point is
that the strategy τ is not innocent as a strategy Σ Ñ Σ b Σ because it does not play in the
same way in the move P p˚q of the play sLR and in the move P p˚˚q of the play sRL although
the Player views are the same seen from the move Op˚q and from the move Op˚˚q.

In order to repair the situation, we introduce the notion of coherent strategy which relaxes
the familiar notion of innocent strategy between dialogue games in such a way that (1) there
exists a functor

Dialogue
embedding // Coherent

which enables one to transport every strategy σ : A Ñ B between simple games into a
coherent strategy using the composite functor

Simple
embedding // Dialogue

embedding // Coherent

and moreover (2) a functor

Simple shriek // Coherent (6)

making the diagram below commute

Dialogue

embedding

��

Simple

shriek
77

shriek ''
Coherent

(7)

One main purpose of this paper is thus to introduce the notion of coherent strategy on a
dialogue game. We proceed in the same (slightly unconventional) way as the notion emerged
in our work. First, we recall in §2 the relationship between dialogue games and tensorial
logic, and then define in §3 the notion of innocent strategy we have in mind. Then, we
introduce in §4 a Kripke translation of tensorial logic into linear logic extended with a
necessity modality (noted l) which enables us to interpret the set of positions of a dialogue
game as a coherence space in the sense of Girard or as a bistructure in the sense of Curien,
Plotkin and Winskel [6]. After briefly recalling in the Appendix this model of bistructures,
we show in §5 that the configurations σ of the bistructure rAs of positions of a dialogue
game A are positional strategies extending the familiar notion of innocent strategies. These
strategies are precisely what we call the coherent strategies of a dialogue game. Accordingly,
the category Coherent is defined as the category of coherent strategies between dialogue
games. We thus obtain a series of functorial translations:

Simple
embedding// Dialogue // Coherent

forgetful // Bistr

where Bistr denotes the category of bistructures and configurations introduced by Curien,
Plotkin and Winskel [6] and where forgetful adapts to Coherent the forgetful functor U
from the category M of coalgebras of the comonad l to the category Bistr. One interesting
observation is that the functor

Simple shriek // Coherent
forgetful // Bistr l // Bistr (8)

P.-A. Melliès 545

transports every simple game A to the bistructure ! rAs where ! denotes the qualitative
exponential modality of Bistr. From this follows that the functor lifts to a functor between
the Kleisli categories associated to Simple and to Bistr. We deduce that every sequential
algorithm σ : !AÑ B defines a stable and extensional function ΓpAq Ñ ΓpBq between the
associated bidomains of configurations.

2 Dialogue games and tensorial logic

Tensorial logic is a primitive logic of tensor and negation which refines linear logic by relaxing
the hypothesis that negation is involutive. At the same time, tensorial logic may be seen as
a resource-aware version of polarized linear logic developed by Laurent [17] which itself was
based on the ideas by Girard on polarities in classical logic [10]. In particular, it extends
the connection between polarized linear logic and dialogue games formulated in [16] to the
positional and resource-aware notion of dialogue game defined below.

I Definition 3. A dialogue game is defined as a family of rooted trees (or forest) where
every node m is equipped with an equivalence relation conflictrms on its set of children.
A node of the forest A is called a move of the dialogue game. One writes m $A n when
the node n is a child of the node m in the forest A, and one declares in that case that the
move m justifies the move n. Accordingly, a root of the forest A is called an initial move of
the dialogue game because it is not justified by any other move. A position of the dialogue
game A is then defined as a (non-empty) subtree x of the forest A containing only pairwise
non-conflicting moves. The set of positions of a dialogue game is denoted Pos pAq. By
convention, we declare that every move of odd depth is Player, and every move of even depth
is Opponent. In other words, every initial move is Player, and every branch of the forest is
then alternating between Opponent and Player moves.

We will make use of the fact that every finite dialogue game A may be alternatively seen as
a formula of tensorial logic:

A,B ::“ 0 | 1 | A‘B | AbB | A

modulo the equations:

Ab pB ‘ Cq – pAbBq ‘ pAb Cq 0bA – 0

together with the associativity and commutativity of ‘ and b and the fact that the formulas 0
and 1 are their respective units. Let us briefly explain how the correspondence works. The
dialogue game 0 is the empty forest and the sum A‘B of two dialogue games is obtained by
putting the two forests A and B side by side. As already mentioned, the game 1 is the tree
with a unique Player move ˚. The negation A of a dialogue game A is defined by “lifting”
the game A with a move ˚ which justifies the initial moves of the game A. The equivalence
relation conflictr˚s is defined as the total relation, hence every two moves justified by the
unique initial move ˚ are conflicting in the game A. The tensor product of two dialogue
games is required to satisfy the distributivity law

à

iPI

Ai b
à

jPJ

Bj “
à

pi,jqPIˆJ

Ai b Bj

For that reason, the tensor product of two finite dialogue games is entirely described by the
equality

A “
â

iPI

 Ai

CSL’13

546 On dialogue games and coherent strategies

where the dialogue game A is defined as the coalesced sum of the trees Ai. This coalesced
sum A is the dialogue game with unique initial move ˚ obtained (1) by taking the disjoint
sum of the trees Ai and then (2) by identifying the unique initial move ˚i of each tree Ai
to the unique initial move ˚ of the game A. By definition of a coalesced sum, this dialogue
game A is a tree whose unique initial move justifies the moves justified by the root ˚i in the
game Ai. Its compatibility relation is defined as follows:

conflictr˚As “
ě

iPI

conflictr˚is

Typically, the boolean formula 1‘ 1 is interpreted as the forest with only two nodes V and F
(for Vrai and Faux, true and false in French) whereas its double negation B “ p1‘ 1q
and the tensor product Bb B define the following dialogue games:

VF

P P

q

O

VF

P P

q

O

L R

VF

P P

q

O

A dialogue game is called simple when the conflict relation is full over every move of the
game. For instance, the dialogue game B is simple whereas the dialogue game Bb B is not
simple because the two moves qL and qR are not in the same equivalence class of conflictr˚s.
Note that the set of positions of a dialogue game may be defined inductively as follows:

Pos p0q “ H

Pos p1q “ t ˚ u

Pos pA‘Bq “ Pos pAq ` Pos pBq
Pos pAbBq “ Pos pAq ˆ Pos pBq
Pos p Aq “ Pos pAq ` t ˚ u

Every such position x may be nicely depicted by drawing every move m in it as a circle (or
as an ellipse) containing the circles corresponding to the moves n justified by m. The colour
convention is to depict the Player moves as blue circles, and the Opponent moves as red
circles. Typically, the four positions tKu, tK, qRu, tK, qR, VR, qLu and tK, qL, FL, qR, VRu of
the game Bb B are respectively depicted as

F VVq
Lq

R

Similarly, the maximal position of the dialogue game pBbBq(B “ pBbBb p1‘ 1qq is
depicted as

V F V (9)

where, by convention, we write A (B for the dialogue game pAb B1q when B “ B1.
The intuition behind these pictures is that every move m of a dialogue game is a memory

P.-A. Melliès 547

cell of a more advanced technology than in the case of concrete data structures, since it may
contain several independent cells, each of them filled by a value. Quite obviously, each of
these cells corresponds to a specific equivalence class of conflictrms. This is typically the
case of the Opponent move q in the position (9) which is filled by the three independent
“values” qL, qR and done. Note that one recovers the traditional notion of memory cell when
the dialogue game is simple, since in that case every memory cell is filled by at most one
value.

3 Innocent strategies

In order to define the notion of innocent strategy on dialogue games, we find convenient
to recall the asynchronous formulation of innocence formulated in [20]. The starting point
of the approach is the idea that every dialogue game A defines an asynchronous transition
system

whose nodes are the positions of the game,
with a transition m : xÑ y between two positions whenever y “ xZ tmu where m is a
move of the game and Z means disjoint sum,
with a permutation pxÑ y1 Ñ zq „ pxÑ y2 Ñ zq whenever y1 “ xZ tmu, y2 “ xZ tnu

and z “ xZ tm,nu for two different moves m and n of the game.
Every transition m : x Ñ y is polarized either as Player or Opponent depending on the
polarity of the move m added to the position x in order to obtain the position y. Every
initial Player move ˚ of the dialogue game defines an initial position t˚u of the associated
asynchronous transition system. By convention, we generally identify the initial position t˚u
with the initial Player move ˚.

I Definition 4. A sequential play of a dialogue game A is defined as a path

˚
m1
ÝÑ x1

m2
ÝÑ ¨ ¨ ¨

mk
ÝÑ xk

starting from an initial position ˚ of the asynchronous transition system and then alternating
between Opponent and Player moves. In particular, every move mk is Opponent when k is
odd and Player when k is even. The position x is called the target position of the play s. A
play is called empty when k “ 0. There is a one-to-one correspondence between the initial
positions of a dialogue game and its empty plays.

I Definition 5. A sequential strategy σ of a dialogue game A is defined as set of even-length
sequential plays which

has a starting point: σ contains the empty play ˚ for exactly one initial position ˚,
is closed under even-length prefix: s ¨m ¨ n P σ implies that s P σ,
is deterministic: s ¨m ¨ n1 P σ and s ¨m ¨ n2 P σ implies that n1 “ n2

for all plays s and all moves m,n, n1, n2 of the dialogue game.

I Definition 6. A sequential strategy is called backward innocent when every play s P σ,
every path t, every pair of Opponent moves m1, m2, and every pair of Player moves n1, n2
which satisfy the properties:

s ¨m1 ¨ n1 ¨m2 ¨ n2 ¨ t P σ and pn1 $ m2q and pm1 $ m2q

satisfy also the properties:

 pn1 $ n2q and pm1 $ n2q and s ¨m2 ¨ n2 ¨m1 ¨ n1 ¨ t P σ.

CSL’13

548 On dialogue games and coherent strategies

Backward innocence may be depicted as the following diagrammatic property:

s

t

n

m





mm

n

σ � ∈σ �

s

t

n

m





m

n n

m





m

n

σ⇒ (10)

I Definition 7. A strategy σ is forward innocent when every play s P σ, every pair of
Opponent moves m1, m2, and every pair of Player moves n1, n2 satisfying the properties:

s ¨m1 ¨ n1 P σ and s1 ¨m2 ¨ n2 P σ and m1 ‰ m2

satisfy also the properties:

n1 ‰ n2 and s ¨m1 ¨ n1 ¨m2 ¨ n2 P σ.

Forward innocence may be depicted as the following diagrammatic property:

s

m

mm

n

σ � ∈σ �

s

n

m





m

n n

m





m

n

σ⇒
n

∈ σ
(11)

I Definition 8. A strategy is called innocent when it is backward and forward innocent.

One important property of innocence established in [20] is that every innocent strategy is
positional, in the sense that it is entirely described by its set of halting positions. By halting
position of the innocent strategy σ, we mean a position x of the dialogue game such that
there exists a play s P σ with target position x.

I Definition 9. A sequential strategy σ of a dialogue game A is called total when for every
play s P σ, and for every Opponent move m such that s ¨m is a play of the dialogue game A,
there exists a Player move n such that s ¨m ¨ n P σ.

Note that the notion of total strategy considered here is weaker than in [23] since we do
not require that every maximal position px, yq of the strategy in DialoguepA,Bq reaches
two maximal positions x and y of the dialogue games A and B. A typical illustration is
provided by the strategy eA : AÑ 1 which contains exactly the empty play on the unique
initial position ˚. Its unique maximal position is the pair p˚, ˚q of initial positions in A
and 1 although the position ˚ is not maximal in the dialogue game A.

P.-A. Melliès 549

One main application of tensorial logic is the following characterization of the category
Dialogue of dialogue games and total innocent strategies. The proof of the proposition may
be done directly in a proof-theoretic style or by extending to finite sums the combinatorial
presentation of innocence in [23].

I Proposition 10. The category Dialogue is the free affine dialogue category with finite
sums (and tensor product distributing over these finite sums) generated by the empty category.

Although Proposition 10 looks like a purely conceptual statement, it provides a very useful
tool in order to relate game semantics to various models of tensorial or linear logic. In
particular, it states that there exists a canonical (and functorial) interpretation of dialogue
games and total innocent strategies

r´s : Dialogue // D (12)

in any affine dialogue category D with finite sums, where the tensor distributes over finite
sums. Moreover, by its mere construction, the functor A ÞÑ rAs preserves the monoidal
structure, the finite sums, the negation and the weakening map eA : AÑ 1 up to coherent
isomorphism.

4 A Kripke translation of tensorial logic into linear logic + necessity

One preliminary insight of the paper is that the construction A ÞÑ Pos pAq which transports
a dialogue game to its set of positions may be understood as an instance of the semantic
functor (12). After all, a simple example of such an affine dialogue category D is provided
by the category Rel of sets and relations with weakening eA : AK Ñ 1 defined as the empty
relation. As in the case of any such affine ˚-autonomous category, the tensorial negation A
is interpreted as the involutive negation:

r As “ rAsK. (13)

In the specific case of Rel, this implies that rAs coincides with the set of maximal positions
of the dialogue game A. This preliminary observation leads to the idea of replacing the
inappropriate interpretation (13) of tensorial negation by the following one

r As “ l rAsK (14)

where the modality l would be typically defined as

lA “ A & K (15)

in order to add a point to the relational interpretation of A. The idea is tempting, but there
remains to justify it from a logical and algebraic point of view. In order to understand where
we stand, it is worth recalling that tensorial logic enjoys the same position with respect to
linear logic as intuitionistic logic does with respect to classical logic. From that point of
view, it makes sense to translate tensorial logic into linear logic in just the same way as one
translates intuitionistic logic into classical logic. A typical solution is to adapt the well-known
Kripke translation of intuitionistic logic in the modal logic S4 consisting of classical logic
extended with a necessity modality l. Recall that the Kripke translation is based on the
following interpretation of the intuitionistic implication:

rA ñint B s “ l p rAsK _ rBs q (16)

CSL’13

550 On dialogue games and coherent strategies

Note that one recovers an intuitionistic variant of (14) by taking the formula B equal to
false in (16). Consequently, our next purpose will be to design a linear logic extended
with a necessity modality l in such a way as to make our tensorial version of the Kripke
translation (14) work. We could proceed syntactically and define a sequent calculus for the
logic, which we will call linear S4 for simplicity. Since this is essentially equivalent, we prefer
to remain at an algebraic level, and to define a categorical semantics of linear S4. To that
purpose, we introduce the following notion:

I Definition 11. A necessity modality on a symmetric monoidal category L is defined as a
symmetric monoidal comonad l. By this, one means a comonad l thus equipped with two
natural families of morphisms

εA : A ÝÑ lA δA : lA ÝÑ l lA

making the expected associativity and unit diagrams commute, together with a natural
family of coercions

mA,B : lAblB Ñ l pAbBq m1 : 1 ÝÑ l 1

making l a lax symmetric monoidal functor, and compatible with the structure of the
comonad.

It is well-known and not difficult to check that in that case, the comonad factors as

l “ Forget ˝Necessary

where Forget and Necessary define a symmetric monoidal adjunction

pM,b, 1q

Forget

""
K

Necessary

bb pL,b, 1q (17)

and the category M is typically defined as the category of Eilenberg-Moore coalgebras of
the comonad. The adjunction is called a symmetric monoidal adjunction because it is the
same thing as a formal adjunction in the 2-category of symmetric monoidal categories and
symmetric monoidal functors in the lax sense, see [21] for details. The notion of symmetric
monoidal adjunction is important in tensorial logic because it enables one to transport the
tensorial negations of the category L into the category M. Suppose for instance that the
category L is ˚-autonomous. In this case, the category M inherits a tensorial negation

 A “ Necessary p pForget AqKq (18)

from the linear negation in the category L. Hence, M defines a dialogue category. This
establishes that every ˚-autonomous category L equipped with a necessity modality l induces
a model of tensorial logic, simply defined as its dialogue category M of Eilenberg-Moore
coalgebras. Note that the category M has finite sums as soon as the underlying category L

has finite sums. One shows moreover that the dialogue category M is affine when the necessity
modality l is affine in the following sense.

I Definition 12. An affine necessity modality l on a symmetric monoidal category L is a
necessity modality equipped with a family of coalgebra maps eA : lA ÝÑ 1 natural in A.

P.-A. Melliès 551

The notion of affine necessity modality is quite familiar in models of linear logic. In particular,
the exponential modality ! of a linear category L defines an affine necessity modality, see
[21] for details. The ongoing discussion establishes that

I Proposition 13. Every ˚-autonomous category with finite sums equipped with an affine
necessity modality l induces a functor

pDialogue,b, 1q ÝÑ pM,b, 1q

where M denotes the category of Eilenberg-Moore coalgebras of the comonad l.

It is not very difficult to check that equation (15) defines an affine necessity modality l in
the category Rel, with weakening eA : A& 1 Ñ 1 defined as the projection on the second
component. Much more interesting is the fact that the same equation (15) defines an affine
necessity modality in the category Coh of coherence spaces. The resulting semantic functor
A ÞÑ rAs enables us to identity the set of positions Pos pAq as the web of the coherence
space rAs. By way of illustration, the dialogue game B “ p1‘ 1q is transported to the
following coherence space:

VF

q

VF

P P

q

O

(19)

where the initial position K is coherent with the three other positions q “ tK, qu, F “ tK, q, F u
and V “ tK, q, V u which are themselves pairwise incoherent. One main benefit of our logical
approach to game semantics is that every innocent strategy σ playing on the dialogue game A
is shown to be interpreted as a clique of halting positions rσs in the coherence space of
positions rAs. This fact that the set of halting positions of an innocent strategy σ defines a
clique in rAs is reasonable, but it does not seem so easy to establish by a direct and purely
combinatorial proof.

5 Dialogue categories and coherent strategies

Our next task is to apply our general method in order to interpret the positions of a dialogue
game A as the web of a bistructure. The bistructure model of linear logic was introduced
by Curien, Plotkin and Winskel about ten years ago [6] and it remains today one of the
most clever and enigmatic models ever designed for linear logic. Its main achievement is
to integrate the causality principles underlying Berry’s notion of stable function — later
revisited by Girard in his coherence space model of linear logic — to the information structure
underlying the notion of continuous function between Scott domains [24]. The definition of
bistructure is recalled in the appendix. In order to achieve our task on dialogue games, we
introduce an affine necessity modality on bistructures:

l : Bistr ÝÑ Bistr

simply defined by extending a given bistructure E with one element ˚ in such a way that
˚ ďR e for all e P E. Note that by definition of a bistructure, this implies that ˚ ¨ e for
all e P E. We then apply Proposition 13 in order to interpret the set of positions of a
dialogue game A as the web of a bistructure rAs, and an innocent strategy σ : A Ñ B as
a configuration rσs defining a morphism rAs Ñ rBs in the category M of coalgebras of the

CSL’13

552 On dialogue games and coherent strategies

comonad l. Typically, the bistructure associated to the dialogue game B “ p1‘1q refines
the coherence space (19) with the extra ďL and ďR ordering information:

VF

P P

q

O

VF

R

L L

q

R
R

The diagram should be read as follows: it states that F, V ďL q and that K ďR q, F, V .
An easy induction on the formulas of tensorial logic enables one to characterize the two
orders ďL and ďR on the set of positions of a dialogue game A.

I Proposition 14. For every dialogue game A, two positions x, y P Pos pAq satisfy
x ďL y precisely when y Ď x and the position y may be obtained from x by removing
subtrees with Player moves as roots,
x ďR y precisely when x Ď y and the position x may be obtained from y by removing
subtrees with Opponent moves as roots.

Proposition 14 is important because it provides an elementary and purely combinatorial
account of the two orders ďL and ďR. A typical illustration of these orderings is provided
by the three positions of the dialogue game Bb B (B considered earlier:

V F VVq
L

q
R

q
L

q

Unfortunately, the coherence relation ¨rAs between positions of a dialogue game A appears
more difficult to formulate in a similarly simple combinatorial way. We will not try to do
that here. Rather, we establish the following useful property.

I Proposition 15. The set-theoretic intersection x X y of two positions x, y P Pos pAq
included in a position z P Pos pAq is itself a position of the dialogue game A. Moreover,
the two positions x and y are coherent in the bistructure rAs of positions in the sense that
x ¨rAs y whenever they satisfy the inequalities:

xX y ďR x xX y ďR y.

Dually, the two positions x and y are incoherent in the bistructure of positions in the sense
that x ˚rAs y whenever they satisfy the inequalities:

x ďL xX y y ďL xX y.

Proof. See the appendix. J

An interesting and non trivial consequence of Proposition 13 is the following statement:

I Proposition 16. The set of halting positions rσs of a total innocent strategy σ playing on
a dialogue game A defines a configuration of the bistructure of positions rAs.

Once this result established, a natural question is to understand more generally the behaviour
of any configuration σ of the bistructure rAs of positions associated to a dialogue game A.
We know already that every such configuration σ is secured, and thus has a backward

P.-A. Melliès 553

dynamics which recovers from every position x P σ the causal cascade which produced it
from the initial position of the dialogue game ˚. Indeed, in the case of a bistructure of
positions rAs, securedness means that for every position x in the configuration σ and for
every position y obtained by removing some Opponent information from x, there exists a
position z P σ obtained by removing some Player information from y. This interpretation of
securedness follows from Proposition 14. The somewhat surprising observation is that every
configuration σ of a bistructure of positions rAs is also equipped with a forward dynamics
and thus behaves like a (usually not sequential) strategy. This last claim is formulated as
the following result:

I Proposition 17. For every configuration σ of the bistructure rAs of positions of a dialogue
game A, and for every pair of positions x P σ and z P σ, such that x Ď z, and for every
Opponent transition m : x Ñ y to a position y P Pos pAq such that y Ď z, there exists a
(possibly empty) path of Player transitions t : y Ñ y1 Ñ ¨ ¨ ¨ Ñ yn Ñ y1 such that y1 P σ and
y1 Ď z. The position y1 is moreover unique.
Proof. See the appendix. J

The result of Proposition 17 justifies to introduce the following definition.

I Definition 18. A coherent strategy on a dialogue game A is defined as a configuration
on the bistructure of positions rAs. Accordingly, the category Coherent is defined as
the category with dialogue games as objects and with configurations σ of the bistructure
rAs(rBs making the diagram below commute

rAs

dA
��

σ // rBs

dB
��

l rAs
lσ // l rBs

where dA and dB are the coalgebra structures
wrt. the comonad l

of the bistructures of positions rAs and rBs.

as morphisms. By construction, the category Coherent is an affine dialogue category with
finite sums, and its tensor product distributes over these finite sums. Moreover, there is a
functor of dialogue category

Dialogue
embedding // Coherent

and the category Coherent embeds fully and faithfully as a dialogue category in the dialogue
category M of coalgebras of the comonad l.

6 Sequential algorithms as stable extensional functions

The connection between dialogue games and bistructures provided by the functor r´s only
works at this stage for the linear fragment of tensorial logic. In particular, it does not include
the quantitative exponential modality of dialogue games and innocent strategies. However,
we explain that this connection is sufficient in order to interpret the qualitative exponential
modality ! of simple games. The connection is provided by the following observation:

I Proposition 19. For every simple game A, there exists an isomorphism

λA : ! rAs Ñ l rshriekpAqs (20)

in the category of bistructures, where ! denotes the qualitative exponential modality on
bistructures introduced by Curien, Plotkin and Winskel.
Proof. See the appendix. J

CSL’13

554 On dialogue games and coherent strategies

Just as announced in the introduction, using this result, one constructs a functor

shriek : Simple ÝÑ Coherent

making the diagram (7) commute. The functor shriek is constructed in such a way that the
composite functor (8) coincides with the functor

Simple
r´s // Coherent

forgetful // Bistr ! // Bistr

One observes moreover that the bistructure rAs of positions of a simple game A is a B-
bistructure in the sense of Curien, Plotkin and Winskel, see [6]. From this follows that its
set of configurations ΓpAq equipped with the stable order ĎR and the extensional order Ď

defines a bidomain in the sense of Berry [2]. From all this, one deduces that

I Proposition 20. There exists a functor

Γ : KleislipSimple, !q // KleislipBistr, !q

between the co-Kleisli categories induced by the Curien-Lamarche modality ! on simple games
and the Curien-Plotkin-Winskel modality ! on bistructures. The definition of the functor Γ is
based on the fact that every sequential algorithm

σ : A ñ B (21)

may be alternatively seen as a sequential strategy

σ : !A ÝÑ B

in the category Simple of simple games, which may be itself seen as an innocent strategy

ϕpσq : shriekpAq ÝÑ B

in the category Dialogue of dialogue games. By definition, the functor Γ transports the
sequential strategy (21) to the composite morphism

! rAs λA // l r shriekpAq s counit // r shriekpAq s
rϕpσqs // rBs

in the category of bistructures, which itself corresponds to the stable and extensional function

Γpσq : ΓpAq ñ ΓpBq

between the bidomains of configurations ΓpAq and ΓpBq induced by the bistructures of positions
rAs and rBs of the simple games A and B.

7 Conclusion

This work on coherent strategies between dialogue games is still at a pretty preliminary stage
but we find useful to share the general methodology of our approach based on tensorial logic
as well as the somewhat unexpected discovery that the category of bistructures contains a
subcategory of dialogue games and coherent strategies. Our final result that every sequential
algorithm between two simple games A and B induces a stable and extensional function
ΓpAq Ñ ΓpBq between the associated bidomains of configurations is related to the extensional
description of sequential algorithms investigated by Curien, Laird and Streicher [14, 7, 18]. In

P.-A. Melliès 555

particular, Streicher made the important observation that the set of sequential strategies with
errors on a simple game defines a bidomain in the sense of Berry. In that line of research,
it should be possible to refine our Proposition 20 in order to characterize the sequential
algorithms between A and B as a specific class of stable and extensional functions, but we
prefer to leave that aspect for future work. Note that such a characterization has already
been given by Calderon and McCusker [4] for sequential strategies between simple games.
Another question of interest would be to understand the relationship between the present
work on dialogue games and bistructures with the tight connection between sequential games
and Ehrhard’s hypercoherence spaces [8, 22].

References
1 S. Abramsky, P.-A. Melliès. Concurrent games and full completeness. In Proceedings of

the Fourteenth Annual IEEE Symposium on Logic in Computer Science (LICS ’99), IEEE
Computer Society Press, 1999.

2 G. Berry. Modèles Complètement Adéquats et Stables des Lambda-calculs Typés. Thèse
de Doctorat d’Etat, Université Paris VII (1979).

3 G. Berry and P.-L. Curien. Sequential algorithms on concrete data structures. In Theoretical
Computer Science, 20:265-321, 1982.

4 A. Calderon and G. McCusker. Understanding Game Semantics Through Coherence Spaces.
Electr. Notes Theor. Comput. Sci. 265: 231-244 (2010)

5 P.-L. Curien. On the symmetry of sequentiality. In Proceedings of Mathematical Foundations
of Programming Semantics, MFPS’93, LNCS 802, Springer Verlag, 1993.

6 P.-L. Curien, G. Plotkin and G. Winskel. Bistructures, Bidomains and Linear Logic. In
Milner Festschrift, MIT Press (2000).

7 P.-L. Curien. Sequential algorithms as bistable maps. From Semantics to Computer Science.
Essays in Honour of Gilles Kahn. Cambridge University Press, 2009.

8 T. Ehrhard. Parallel and serial hypercoherences. Theoretical Computer Science, 2000.
9 J.-Y. Girard. Normal functors, power series and lambda-calculus. Journal of Pure and

Applied Logic, 1986.
10 J.-Y. Girard. A new constructive logic: Classical logic, Mathematical Structures in Com-

puter Science 1 (3) (1991) 255–296.
11 R. Harmer, M. Hyland and P-A. Melliès. Categorical combinatorics for innocent strategies.

Proceedings of LiCS’07, the 22nd Annual IEEE Symposium on Logic in Computer Science.
Wroclaw, 2007.

12 M. Hyland and L. Ong, On full abstraction for PCF: I, II and III, Information and Com-
putation 163 (2) (2000) 285–408.

13 M. Hyland and A. Schalk. Games on Graphs and Sequentially Realizable Functionals. Pro-
ceedings of LICS 2002: 257-264.

14 J. Laird. Bistability: A sequential domain theory. Logical Methods in Computer Science,
volume 3, issue 2, 2007.

15 F. Lamarche. Sequentiality, games and linear logic. Manuscript, 1992.
16 O. Laurent. Polarized Games. Annals of Pure and Applied Logic, number 1–3, volume 130,

79–123, 2004.
17 O. Laurent. Syntax vs. Semantics: a polarized approach. Theoretical Computer Science,

volume 343, number 1–2, 177–206, 2005.
18 T. Loew and T. Streicher. Universality results for models in locally boolean domains. Pro-

ceedings of CSL 2006.
19 P.-A. Melliès. Comparing hierarchies of types in models of linear logic Information and

Computation, Volume 189, Issue 2, Pages 202-234, March 2004.

CSL’13

556 On dialogue games and coherent strategies

20 P.-A. Melliès. The true concurrency of innocence. Special Issue Selected papers of CONCUR
2004 of Theoretical Computer Science Volume 358, Issues 2-3, pages 200-228, 2006.

21 P.-A. Melliès. Categorical semantics of linear logic. Survey in Interactive models of com-
putation and program behaviour. P.-L. Curien, H. Herbelin, J.-L. Krivine, P.-A. Melliès
Panoramas et synthèses 27 (2009).

22 P.-A. Melliès. Sequential algorithms and strongly stable functions. Special Issue ”Game
Theory Meets Theoretical Computer Science” of Theoretical Computer Science, Volume
343, Issue 1, Pages 237-281, 2005.

23 P.-A. Melliès. Game semantics in string diagrams. Proceedings of the Annual ACM/IEEE
Symposium on Logic in Computer Science 2012.

24 D. S. Scott. Data types as lattices. Proceedings of the International Summer Institute and
Logic Colloquium, Kiel, in Lecture Notes in Mathematics (Springer-Verlag) 499: 579?651.
1975.

A Appendix: a short account of bistructures

We recall below the notion of bistructure as well as the main definitions of the theory.

I Definition 21. A (countable) bistructure is a quadruple pE,ďL,ďR,¨q where E is a
countable set called the web of the bistructure, ďL, ďR are partial orders on E and ¨ is a
binary reflexive, symmetric relation on E such that:
1. defining ď as the transitive closure of pďL Y ďRq, we have the following factorisation

property:
e ď e1 ñ De2 P E, e ďL e2 ďR e1

2. defining ĺ as the transitive closure of pěL Y ďRq, we have the following properties:
a. ĺ is finitary, i.e., te1|e1 ĺ eu is finite, for all e P E,
b. ĺ is a partial order,
3. (a) ÓLĎ˚ and (b) ÒRĎ¨.

Here, the two compatibility relations are defined by:

e ÓL e1 ðñ D e2 P E, e2 ďL e and e2 ďL e1
e ÒR e1 ðñ D e2 P E, e ďR e2 and e1 ďR e2.

and we write ˚ for the reflexive closure of the complementary of ¨. We then recall below
the definition of configuration.

I Definition 22. A configuration of a bistructure pE,ďL,ďR,¨q is a subset σ Ď E which
is:

consistent: @e, e1 P σ, e ¨ e1, and
secured: @e P σ, @e1 ďR e, De2 P σ, e1 ďL e2.

We write ΓpEq for the set of configurations of a bistructure E, and ΓfinpEq for the subset
of finite configurations. At this point, we recall how Curien, Plokin and Winskel [6] define
a stable order ĎR and an extensional order Ď on the configurations σ, τ P ΓpEq of a given
bistructure E.

I Definition 23. Let E be a bistructure. The stable order ĎR and the extensional order Ď

on configurations are defined as:
ĎR is set-theoretic inclusion,
σ Ď τ ðñ @e P σ, De1 P τ, e ďL e1.

P.-A. Melliès 557

Note that it follows from the reflexivity of ďL that ĎR is included in Ď. A third relation ĎL

is then defined as follows:

σ ĎL τ ðñ σ Ď τ and p@υ P ΓpEq, pσ Ď υ and υ ĎR τq ñ τ “ υq

Thus, σ ĎL τ means that τ is a ĎR-minimal configuration such that σ Ď τ . We also write
σ ÒR τ when there exists a configuration υ P ΓpEq such that σ ĎR υ and τ ĎR υ.

We briefly recall from [6] that the category Bistr has bistructures as objects and configurations
of A (B as morphisms σ : A Ñ B. The category is ˚-autonomous and has finite sums
provided by the following definitions.

the negation E K of a bistructure pE,ďL,ďR,¨q is defined as pE,ěR,ěL,˚q,
the sum E1 ‘E2 of two bistructures pE1,ď

L
1 ,ď

R
1 ,¨1q and pE2,ď

L
2 ,ď

R
2 ,¨2q is defined as

pE1 ` E2,ď
L
1 ` ď

L
2 ,ď

R
1 ` ď

R
2 ,¨1 ` ¨2q,

the tensor product E1 b E2 of two bistructures pE1,ď
L
1 ,ď

R
1 ,¨1q and pE,ďL2 ,ďR2 ,¨2q is

defined as pE1 ˆ E2,ď
L
1 ˆ ď

L
2 ,ď

R
1 ˆ ď

R
2 ,¨1 ˆ ¨2q,

the bistructure 0 has an empty web, and the bistructure 1 has a singleton web,
the exponential !E of a bistructure pE,ďL,ďR,¨q is defined as pΓfinpEq,ĎL,ĎR, ÒRq

where these structures are introduced in Definition 23.

B Appendix: Proof of Proposition 15

Proof. The proof is established by an easy induction on the formula defining the dialogue
game A. The property is obvious in the case of the two unit games 0 and 1. We treat in
turn the inductive case of the game AbB, of the game A‘B and of the game A.

First inductive case: the dialogue game AbB

By definition of the dialogue game A b B, the two positions x and y are of the form
x “ xA b xB and y “ yA b yB. Suppose that the two positions x and y are included in a
position z “ zA b zB . In that case, the positions xA and yA obtained by projecting x and y
on the component A are included in the position zA. By induction hypothesis, it follows
that xA X yA is a position of the dialogue game A. One establishes symmetrically that the
intersection xB X yB is a position of the dialogue game B. The set-theoretic intersection
xX y is equal to pxA X yAq b pxB X yBq which is a position of the dialogue game AbB. We
conclude that xX y is a position of the game AbB.

Now, suppose that two positions x “ xA b xB and y “ yA b yB are included in a
position z “ zA b zB and moreover that x X y ďR x and x X y ďR y. In that case, the
two positions xA and yA are included in the position zA. Moreover, xA X yA ď

R xA and
xA X yA ď

R yA since x X y “ pxA X yAq b pxB X yBq and the order ďR is defined in the
bistructure rA b Bs “ rAs b rBs as the componentwise product of ďR in the bistructures
rAs and rBs. By induction hypothesis applied to the game A, it follows that xA ¨rAs yA.
One establishes symmetrically that xB ¨rBs yB. From this, we conclude by definition of
coherence in the bistructure rAbBs “ rAs b rBs that xA b xB ¨rAbBs yA b yB and thus,
that x ¨rAbBs y.

There remains to establish the last statement of the proposition. Suppose that two
positions x “ xAbxB and y “ yAb yB are included in a position z “ zAb zB and moreover
that x ďL xXy and y ďL xXy. The proof that x ˚rAbBs y is done in the same way as in the
previous paragraph. In that case, the two positions xA and yA are included in the position zA.

CSL’13

558 On dialogue games and coherent strategies

Moreover xA ďL xAXyA and yA ďL xAXyA because xXy “ pxAXyAqbpxBXyBq and the
order ďL is defined in the bistructure rAbBs “ rAsbrBs as a componentwise product of ďL
in the bistructures rAs and rBs. By induction hypothesis applied to the game A, it follows
that xA ˚rAs yA. One establishes symmetrically that xB ˚rBs yB . From this, we conclude by
definition of coherence in the bistructure rAbBs “ rAs b rBs that xA b xB ˚rAbBs yA b yB
and thus, that x ˚rAbBs y.
Second inductive case: the dialogue game A‘B

By definition of the dialogue game A‘B, the fact that the two positions x and y are included
in a position z implies that the three positions x, y, z lie in the same component A or B of
the game A‘B. We may suppose without loss of generality that the three positions x, y, z
are positions of the component A. From this, it follows easily by induction hypothesis applied
to the dialogue game A that the intersection x X y is a position in the game A and thus
in the game A ‘ B. The two remaining statements of the proposition are just as easy to
establish by induction.

Third inductive case: the dialogue game A

By definition of the dialogue game A, we are in one of the two possible situations: either
the three positions x, y, z are in the component A or one of the two positions x, y is the
initial position ˚ itself. The first case is easily treated by induction hypothesis on A. In the
second case, one of the two positions x and y is equal to the initial position ˚. For the sake of
discussion, we may suppose without loss of generality that the position x is equal to the initial
position ˚. The intersection x X y “ ˚ is a position of the dialogue game A. Moreover,
it follows from the definition of the bistructure r As of positions of the game A as the
bistructure l prAsKq that the two positions x and y are coherent in the bistructure r As
since x “ ˚ is the position added to the bistructure rAsK by the necessity modality. Note
that, by definition of l prAsKq, the position x “ ˚ also satisfies ˚ ďR y. Moreover, if y ďL ˚
then y “ ˚, and thus x ˚r As y. This concludes the proof by induction of Proposition 15. J

C Appendix: Proof of Proposition 17

Proof. The proof is based on the very specific properties of the bistructure rAs associated
to a dialogue game A, and in particular on the two Propositions 14 and 15. Given the
position x P σ and the Opponent transition m : x Ñ y such that y Ď z for z P σ, let
y` denote the smallest position (with respect to inclusion) containing the position y as a
subset: y Ď y`, and satisfying y` ďR z. This position y` exists and is defined according to
Proposition 14 by removing from the position z all the subtrees with an Opponent root n
not element of the position y. It is important to observe that the position y` only contains
Player moves besides the moves already in the position y. The situation may be depicted as
follows. Note that the Opponent move m in the position y is depicted in red, and the layer
of Player moves between y and y` is depicted in blue.

m

x

z

m

x

y

z

y

P.-A. Melliès 559

By the securedness property of the configuration σ, there exists a position y1 P σ such that
y` ďL y1. By Proposition 14, the position y1 is obtained from the position y` by removing a
series of subtrees with Player roots. From this follows in particular that the position xX y1
is obtained from the position xX y` “ x by removing a series of subtrees with Player roots.
Hence, x ďL xX y1.

First claim: the move m appears in the position y1

We claim that the move m appears in the position y1. Suppose that this is no the case,
and that the move m does not appear in the position y1. In that case, a simple argument
shows that the position xX y1 is obtained from the position y1 by removing only subtrees
with roots in the position y` but not in the position y. An important point is that the
roots of these subtrees removed from y1 in order to obtain xX y1 are all Player moves. By
Proposition 14, it thus follows that y1 ďL xX y1. Recall moreover that the two positions x
and y1 are included in the position z and that x ďL xX y1. All this put together establishes
thanks to Proposition 15 that the positions x and y1 are incoherent in the bistructure rAs.
Since the two positions x and y1 are also coherent as elements of the clique σ, they are
necessarily equal. This contradicts the definition of y and of y` and more specifically the
fact that y` ďL y1. The point is that the position x “ y1 can be obtained from the position y
(and thus from the position y`) only at the condition of removing the subtree with Opponent
root m. From this, we conclude that the move m necessarily appears in the position y1.

Second claim: the position x is a subset of the position y1

Now, we want to prove that x Ď y1. Suppose that this is not the case, and let the position x`
be obtained by removing the subtree with Opponent root m from the position y1 P σ. By
construction, one has x` ďR y1. One also has xXx` “ xX y1 since m is not an element of x.
From this follows that x ďL xX x` since we already know that x ďL xX y1. By securedness
of σ, there exists a position x1 P σ such that x` ďL x1. By Proposition 14, the position x1 is
obtained from the position x` by removing subtrees with Player roots. From this follows
that the position x X x1 is obtained from the position x X x` by removing subtrees with
Player roots. Hence, xX x` ďL xX x1 by Proposition 14 again. From this and x ďL xX x`,
we conclude by transitivity that x ďL xX x1. At this point, a simple argument shows that
the position xX x1 is obtained from the position x1 by removing subtrees whose roots stand
among the Player moves in y` but not in y. The fact that these moves are all Player moves
implies that x1 ďL xX x1. The two inequalities x ďL xX x1 and x1 ďL xX x1 together with
the fact that the positions x and x1 are included in the position z implies by Proposition 15
that x and x1 are incoherent in the bistructure rAs. Since the two positions x and x1 are also
coherent as elements of the clique σ, they are equal. The equality x “ x1 establishes that
x Ď y1 since x1 Ď x` Ď y1 by definition of the position x1 P σ.

From the two claims just established, we conclude that y “ xZ tmu is a subset of the
position y1. By construction, the position y1 is at the same time a subset of y` which only
contains Player moves besides the moves already in the position y. From this, we deduce that
the position y1 only contains Player moves besides the moves already in position y, and thus
that there exists a path of Player transitions from the position y to the position y1 P σ. J

CSL’13

560 On dialogue games and coherent strategies

D Appendix: Proof of Proposition 19

Proof. We construct the isomorphism

λA : ! rAs Ñ l rshriekpAqs

in the category of bistructures, for every simple game A. The first step of the construction
is to characterize the configurations σ of the associated bistructure rAs of positions. A
preliminary observation is that there is a one-to-one relationship between (1) the positions of
the simple game A seen as a dialogue game (2) the sequential plays

˚
m1
ÝÑ x1

m2
ÝÑ ¨ ¨ ¨

mk
ÝÑ xk

of the simple game A and (3) the elements of the web of the bistructure rAs. Since every
position x of the bistructure rAs corresponds to a specific sequential play of the simple game A,
every configuration σ is alternatively described by a set of sequential plays (or positions) x P σ
of the simple game A. We claim that every configuration σ of the bistructure rAs is closed
under even-length prefix in the sense that every sequential play (or position) y which is even-
length prefix of a sequential play (or position) x P σ is also an element of the configuration σ.
In order to establish our claim, we first observe that by Proposition 14, a position y is an
even-length prefix of the position x precisely when y ďR x. Suppose that we are in that
case, and that y ďR x. By securedness of σ, we know that there exists a position z P σ

such that y ďL z. We would like to prove that z “ y. Suppose that it is not the case
and that z is a strict prefix of y. In that case, z P σ is also a strict prefix of x P σ. By
Proposition 14, the position z is obtained from the position y by removing a subtree (in that
case, a branch) with a Player root. Hence, the position z is also obtained from the position x
by removing a subtree with a Player root since y is a prefix of x. From this, we conclude by
Proposition 14 that x ďL z. By definition of a bistructure, the two positions x and z are thus
incoherent in the bistructure rAs. The two positions x and z are also coherent as elements
of the configuration σ. From this, we conclude that x “ z. This contradicts the fact that
the position z is a strict prefix of the position y and thus of the position x. From this, we
conclude that z “ y, and thus, that the configuration σ is closed under even-length prefix.

Similarly, we may establish a complementary property of the configuration σ, which states
that every strict prefix y P σ of a position x P σ is of even length. The reason is that the two
positions x and y of the configuration σ are coherent, whereas the relation x ďL y (and thus
x ˚rAs y) would hold if the position y was of odd length. This second observation leads us
to introduce a useful variant of our Definition 5 of sequential strategy on a dialogue game A,
see for instance [19].

I Definition 24 (sequential strategy with errors). A sequential strategy σ with errors on a
dialogue game A is defined as set of sequential plays which

has a starting point: σ contains the empty play ˚ for exactly one initial position ˚,
is closed under even-length prefix, in the sense that for every even-length prefix s of a
sequential play t, one has t P σ ñ s P σ,
has no intermediate errors, in the sense that for every odd-length prefix s of a sequential
play t, one has ps P σ and t P σq ñ s “ t,
is deterministic, in the sense that for every even-length sequential play s, s ¨m ¨ n1 P σ

and s ¨m ¨ n2 P σ implies that n1 “ n2,
for all plays s and all moves m,n, n1, n2 of the dialogue game.

P.-A. Melliès 561

Note that by definition of a strategy σ with errors, every odd-length position s of the strategy σ
is maximal among the positions in σ. Such an odd-length position of the strategy σ is called
an error of the strategy. We have just established that every non-empty configuration σ

of the bistructure rAs of positions of a simple game A satisfies the three first properties
of Definition 5. We prove the fourth property (determinism) below. Suppose given an
even-length position x of the configuration σ, alternatively seen as a sequential play:

s “ ˚
m1
ÝÑ x1

m2
ÝÑ ¨ ¨ ¨

m2k
ÝÑ x2k “ x

and suppose that the two sequential plays y1 “ s ¨m ¨ n1 and y2 “ s ¨m ¨ n2 are positions in
the configuration σ. We claim that n1 “ n2. The proof is very easy, since it simply consists
in observing that the two positions y1 and y2 are strictly incoherent in the bistructure rAs
when the moves n1 and n2 are different. Since the positions y1 and y2 are elements of the
configuration σ, and thus coherent, we conclude that n1 “ n2. This establishes that every
non-empty configuration σ of the bistructure rAs defines a sequential strategy with errors of
the underlying simple game A. Conversely, it is easy to check that every sequential strategy σ
with errors of the simple game A defines a non-empty configuration of the bistructure rAs of
configurations. From this we conclude that

Fact: there is a one-to-one relationship between the non-empty configurations of
the bistructure rAs and the sequential strategies with errors of the simple game A

At this point, an obvious but important observation is that every sequential strategy σ with
errors of the simple game A may be alternatively seen as a non-empty subtree of A which
only branches on Opponent moves. This subtree is entirely described by its set maxpospσq
of maximal positions. Note that the positions in maxpospσq may be either of even-length or
of odd-length. The sequential strategy σ with errors is then recovered from maxpospσq as

σ “ maxpospσq Y even-length-prefixpmaxpospσqq

where even-length-prefixpXq denotes the set of even-length prefixes of a position in X.
This establishes that there is a one-to-one relationship between the non-empty configurations
of rAs and the non-empty subtrees of the simple game A which only branch on Opponent
moves. Now, such a non-empty subtree which only branches on Opponent moves in the
simple game A is the same thing as a position in the dialogue game shriekpAq. From this,
we conclude that:

Fact: there is a one-to-one relationship between the non-empty configurations of
the bistructure rAs and the positions of the dialogue game shriekpAq

We use the notation configpxq for the non-empty configuration σ of the bistructure rAs
associated to the position x in the dialogue game shriekpAq. At this point, starting from
Proposition 14, it is not difficult to establish that

configpxq ĎR configpyq ðñ x ďR y

because configpxq Ď configpyq precisely when x Ď y and the position x may be obtained
from the position y by removing subtrees with Opponent moves as roots ; that

configpxq ĎL configpyq ðñ x ďL y

CSL’13

562 On dialogue games and coherent strategies

precisely when y Ď x and the position y may be obtained from the position x by removing
subtrees with Player moves as roots ; and finally that

configpxq ÒR configpyq ðñ x ¨rshriekpAqs y

for every two positions x, y of the dialogue game shriekpAq. This establishes that the
bistructure rshriekpAqs of positions of the dialogue game shriekpAq is isomorphic to the
bistructure ! rAs restricted to its non-empty configurations. As for the empty configuration,
one has that

H ĎR σ H ¨!A σ

for every configuration σ of the bistructure ! rAs. This concludes our proof that the bistructure
! rAs is isomorphic to the bistructure l rshriekpAqs for every simple game A. J

Elementary Modal Logics over Transitive
Structures∗

Jakub Michaliszyn1,2 and Jan Otop1,3

1 University Of Wrocław
2 Imperial College London
3 IST Austria

Abstract
We show that modal logic over universally first-order definable classes of transitive frames is
decidable. More precisely, let K be an arbitrary class of transitive Kripke frames definable by a
universal first-order sentence. We show that the global and finite global satisfiability problems
of modal logic over K are decidable in NP, regardless of choice of K. We also show that the
local satisfiability and the finite local satisfiability problems of modal logic over K are decidable
in NExpTime.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Modal logic, Transitive frames, Elementary modal logics, Decidability

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.563

1 Introduction

Modal logic was first introduced by philosophers as the study of the deductive behaviour of
the expressions ‘it is necessary that’ and ‘it is possible that’. Nowadays, it is widely used in
several areas of computer science, including formal verification and artificial intelligence.

Syntactically, modal logic extends propositional logic by two unary operators: ♦ and �.
The formal semantics is usually given in terms of Kripke structures. Basically, a Kripke
structure is a directed graph, called a frame, together with a valuation of propositional
variables. Vertices of this graph are called worlds. For each world truth values of all
propositional variables can be defined independently. In this semantics, ♦ϕ means the
current world is connected to some world in which ϕ is true; and �ϕ, equivalent to ¬♦¬ϕ,
means ϕ is true in all worlds to which the current world is connected.

“Classical” modal logic, defined as above, is very simple, and therefore it has limited
applications. For that reason, many modifications of modal logic are studied. One way to
enrich modal logic is to add more modalities and obtain so called multimodal logic. Another
popular modification is to add some constraints on the interpretation of operators, e.g.
by requiring that the modal operator represents a relation that is reflexive and transitive
(S4). Finally, by combining these two techniques, we may obtain multimodal logics with
nonuniform modal operators, like Linear Temporal Logic (LTL), Computation Tree Logic
(CTL) or Halpern–Shoham logic (HS).

∗ The first author was generously supported by Polish National Science Center based on the decision
number DEC-2011/03/N/ST6/00415. The second author was supported in part by the Austrian Sci-
ence Fund NFN RiSE (Rigorous Systems Engineering) and by the ERC Advanced Grant QUAREM
(Quantitative Reactive Modeling).

© Jakub Michaliszyn and Jan Otop;
licensed under Creative Commons License CC-BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca; pp. 563–577

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.563
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

564 Elementary Modal Logics over Transitive Structures

Variants of modal logic vary in the complexity and the decidability of the satisfiability
problem. While there are some logics, like S5, that are NP-complete, most of them are
PSpace-hard. Modal logic itself is PSpace-complete, and so is the temporal logic LTL. Lo-
gics CTL and CTL∗ are even harder, ExpTime-complete and 2-ExpTime-complete, resp.
Finally, the Halpern–Shoham logic is a simple example of a temporal logic that is undecid-
able, even if we consider some unimodal fragments [3, 16].

There are several ways of adding constraints on the interpretation of operators. The
syntactic way goes by adding some additional axioms and considering only modal logics
that satisfy these axioms. Another way is by restricting the class of the admissible frames.
It also can be done in many ways, but one of the simplest is to define the class of frames
by a first order logic sentence that uses a single binary relation R, which is interpreted as
the transition relation. For example, the sentence ∀xyz.xRy ∧ yRz ⇒ xRz defines the class
of all transitive frames. Modal logic over a class of frames definable by a first order logic
sentence is called an elementary modal logic.

The main goal of our work is to classify all elementary modal logics with respect to
decidability of their satisfiability problems. In [9], it was shown that there is an universal
first-order formula such that the global satisfiability problem over the class of frames that
satisfy this formula is undecidable. A slight modification of that formula yields an analogous
result for the local satisfiability problem. In [12] it was shown that even a very simple formula
with three variables without equality leads to undecidability.

Many modal logics used in automatic verification contain operators that are interpreted
as transitive relations. For example, Linear Temporal Logic (LTL) contains transitive oper-
ators F and G [2]. In epistemic modal logics, the knowledge operators Ki are interpreted as
relations that are not only transitive, but also reflexive and symmetric [4]. Another example
is the logic of subintervals [16], which is a fragment of Halpern–Shoham logic with a single
modality that can be read as “in some subinterval”.

Main results. In this paper, an logic is called a subframe logic if it is an unimodal logic
defined by restricting the class of the admissible frames to a class that is closed under
subframes. Fine[5] showed that there are undecidable transitive subframe logics. An open
question suggested in [9] is whether there is an undecidable transitive subframe logic that
is an elementary modal logic. Due to [5], such a logic would not be finitely axiomatizable.
We show that such a logic does not exist.

The Łoś–Tarski preservation theorem (see, e.g., [10]) states that a first order definable
class of frames is closed under subframes if and only if it is universally first order definable.
Therefore, to answer the question discussed above, we may restrict our attention to universal
formulae. We prove the following theorem.

I Theorem 1. Let K be a class of frames defined by a universal first order formula that
implies transitivity. The local and the global satisfiability problems for unimodal logic over
K are decidable.

The finiteness constraint can make the satisfiability problem easier or harder. There are
decidable modal logics that are finitely undecidable, and there are undecidable modal logics
that are finitely decidable [6, 19]. However, this is not the case here — the finite satisfiability
problems are decidable as well.

I Theorem 2. Let K be a class of frames defined by a universal first order formula that
implies transitivity. The local and the global finite satisfiability problems for unimodal logic
over K are decidable.

J. Michaliszyn and J. Otop 565

We focus on the case where a first-order formula, that defines the class of frames, is a
parameter of the problem, and the input consists of a modal formula only. However, our
results hold even if we allow a first–order formula to be a part of the input.

Related work. Decidability of modal logic over various classes of frames can be shown by
employing the so-called standard translation of modal logic to first-order logic [2]. Indeed,
the satisfiability of a modal formula ϕ in KΦ is equivalent to satisfiability of ST (ϕ)∧Φ, where
ST (ϕ) is the standard translation of ϕ. In this way, we can show that (multi)modal logic is
decidable over any class defined by two-variable logic [20], even extended with a linear order
[21], counting quantifiers [22], one transitive relation [24], or equivalence closures of two
distinguished binary relations [13]. The same holds for formulae of the guarded fragment
[7], even if we allow for some restricted application of transitive relations [14, 23], fixed-
points [1, 8] and transitive closures [17]. In many cases, the decidability results hold also
when only finite frames are considered. However, the complexity bounds obtained this way
are high — usually between ExpTime and 2NExpTime.

Many natural classes of frames, including transitive, reflexive, symmetric and Euclidean,
can be defined by first-order sentences even if we further restrict the language to universal
Horn formulae. In [18], it was shown that the problems defined by universal Horn formulae
are always decidable, and the precise complexity (depending on properties of first–order
formulae) was established. In [11], the decidability of elementary modal logics defined by
universal Horn formulae was extended to the finite satisfiability case.

Observe however, that the above results do not solve our problem – for example, the
class of transitive frames that do not contain cliqus of size 3 cannot be defined in any of the
languages mentioned above.

Overview of the paper. The proof of Theorem 2 is much easier than the proof of Theorem
1. For a given modal formula ϕ and its transitive model, we show that we can remove a
world from any path containing at least |ϕ|+ 1 worlds such that the resulting structure is a
model. By iterating this procedure, we obtain a model in which a there are no paths longer
than |ϕ|, and the existence of such a model can be verified by an NExpTime algorithm.
The whole proof of Theorem 2 is in Section 3.

The general satisfiability case is discussed in Section 4. We start with the global satis-
fiability problem in Section 4.1. We show that each satisfiable formula has a model which
is a clique or an infinite path.

In Section 4.2 we present the proof for the local satisfiability problem. This proof is
much more complicated than the other proofs. The general shape of the proof is similar to
the previous proofs: we show that each satisfiable formula has a “nice” model, i.e., a model
whose description is exponential w.r.t. the size of the modal formula, and that description
admits efficient algorithm checking whether described model satisfies a given modal (or first
order) formula.

The goal of this paper is to prove the decidability. However, we also discuss the complex-
ity that arises from our algorithms. In the case of the global (finite and infinite) satisfiability
problems, we provide the optimal complexity proving that these problems is always in NP
(see Proposition 10). The corresponding lower bound comes from the trivial reduction of
SAT problem. For the local satisfiability problem we show only that the membership is in
NExpTime (see Propositions 5 and 15), which is not optimal – for example, the satisfiability
problem of modal logic over the class of all transitive frames is PSpace-complete.

Finally, the possible future work is discussed in Section 5.

CSL’13

566 Elementary Modal Logics over Transitive Structures

2 Preliminaries

As we work with both first-order logic and modal logic we help the reader to distinguish
them in our notation; we denote first-order formulae with Greek capital letters, and modal
formulae with Greek small letters. We assume that the reader is familiar with first-order
logic and propositional logic.

Modal logic. Formulae of modal logic are interpreted in Kripke structures, which are triples
of the form 〈M,R, π〉, where M is a set of worlds, 〈M,R〉 is a directed graph called a frame,
and π is a labelling, a function that assigns to each world a set of propositional variables
which are true at this world. We say that a structure 〈M,R, π〉 is based on the frame 〈M,R〉.
For a given class of frames K, we say that a structure is K-based if it is based on some frame
from K. We will use calligraphic letters M,N to denote frames and Fraktur letters M,N

to denote structures. Whenever we consider a structure M, we assume that its frame isM
and its universe is M (and the same holds for other letters).

The semantics of modal logic is defined recursively. A modal formula ϕ is (locally)
satisfied in a world w of a model M = 〈M,R, π〉, denoted as M, w |= ϕ if

ϕ = p, where p is a variable, and ϕ ∈ π(w),
ϕ = ¬ϕ′ and M, w 6|= ϕ′,
ϕ = ϕ1 ∧ ϕ2 and M, w |= ϕ1 and M, w |= ϕ2,
ϕ = ♦ϕ′ and there is a world v ∈M such that (w, v) ∈ R and M, v |= ϕ′,

Boolean connectives ∨,⇒,⇔ and constants >,⊥ are introduced in the standard way.
We abbreviate ¬♦¬ϕ by �ϕ.

We say that a formula ϕ is globally satisfied in M, denoted as M |= ϕ, if for all worlds
w of M, we have M, w |= ϕ. By |ϕ| we denote the length of ϕ.

For a given class of frames K, we say that a formula ϕ is locally (resp. globally) K-
satisfiable if there exists a K-based structure M, and a world w ∈ W such that M, w |= ϕ

(resp. M |= ϕ). We study four versions of the satisfiability problem.
For a given formula ϕ, a Kripke structure M, and a world w ∈ M we define the type of

w (with respect to ϕ) in M as tpϕ
M(w) = {ψ : M, w |= ψ and ψ is a subformula of ϕ}. We

write tpM(w) if the formula is clear from the context. Note that |tpϕ
M(w)| ≤ |ϕ|.

First-order logic. The class of (equality-free) universal first order sentences is defined as
a subclass of first–order sentences such that each sentence is of the form ∀~xΨ(~x), where
Ψ(~x) is quantifier–free formula over the language {R}, where R is a binary relation symbol
interpreted as the successor relation in modal logic. As we work only with universally
quantified formulae, we often skip the quantifier prefix, e.g., write xRx instead of ∀x.xRx.

The set of transitive formulae, ∀T , is defined as the set of those Φ over the language
{R} which are of the form (∀xyz.xRy ∧ yRz ⇒ xRz)∧Ψ, where Ψ is an arbitrary universal
first-order formula.

Decision problems. The local (resp. global) satisfiability problem K-SAT (resp. K-GSAT)
as follows. Is a given modal formula locally (resp. globally) K-satisfiable? The finite local
(global) satisfiability problem, K-FINSAT (K-GFINSAT), is defined in the same way, but
we are only interested in finite models (the class K may still contain infinite structures).

In context of decision problems, we use the word “general” as an antonym of “finite”.
Furthermore, for a given universal first-order formula Φ, we define KΦ as the class of frames
satisfying Φ.

J. Michaliszyn and J. Otop 567

3 Finite satisfiability

In this section, we show that if a modal formula has a finite model in which the transition
relation is transitive, then it has one with the size bounded exponentially in the size of modal
formula. This clearly leads to an NExpTime algorithm that simply guesses an exponential
model and verifies it.

For a given modal formula ϕ, we say that a world w in a model M is special w.r.t. ϕ,
if there is a subformula ψ of ϕ such that w satisfies ψ, no successor of w different than w
satisfies ψ. Worlds that are not special w.r.t. ϕ are regular (w.r.t. ϕ). We omit explicit
reference to ϕ when it is clear from the context.

The decidability of FINSAT and GFINSAT comes from the following lemma.

I Lemma 3. Let Φ be a ∀T formula, ϕ be a modal formula, M be a model satisfying Φ, w
be a regular (w.r.t. ϕ) world in M, and N be the result of removing w (and all connected
edges) from M. Then, for each v ∈ N , tpϕ

M(v) = tpϕ
N(v).

Proof. The proof goes by induction on ϕ. Consider a subformula ψ of ϕ. The only non-
trivial case is when ψ = ♦ψ′, w satisfies ψ′ and a world w′ is a predecessor of w. Since w
is regular, there is a world v 6= w reachable from w that satisfies ψ′ in M and, by inductive
assumptions, in N. Since R is transitive, v is a successor of w′, so w′ satisfies ψ in N. J

I Example 4. Consider a formula Φ that states that R is transitive, ϕ = ��⊥ and the
structure M = 〈{a, b, c}, {(a, b), (b, c), (a, c)}, π} with M, a 6|= ϕ. It may seem that the worlds
b and c are regular, but if we removed any of them, the type of a would not contain ϕ.

However, � is an abbreviation, thus an unrolled form of ϕ is ¬♦¬¬♦¬⊥. Then, only
a satisfies ♦¬¬♦¬⊥, b (but not c) satisfies ♦¬⊥, and only c satisfies ¬♦¬⊥. Thus, all the
worlds in M are special w.r.t. ϕ.

We would like to thank an anonymous reviewer for suggesting the above example. The-
orem 2 follows from the following proposition.

I Proposition 5. Let Φ be a ∀T formula. Then KΦ-FINSAT and KΦ-GFINSAT are decidable
in NExpTime.

Proof. Let ϕ be a modal formula with a finite model M based on a frame from KΦ. Since
the relation of M is transitive, by iterating Lemma 3, we can obtain a model N without
regular worlds. Since all worlds in N are special, the maximal length of a path of different
worlds in N is bounded by |ϕ|.

We obtain a small model by applying standard selection technique [2, 15]. In first stage,
we mark an arbitrary world satisfying ϕ. Then, in consecutive stages, for each world w

marked in the previous stage and each subformula ψ of ϕ, if w is connected to a world
satisfying ψ, but not to a marked world satisfying ψ, then we mark one successor of w
satisfying ψ. Note that this procedure ends after |ϕ| stages — otherwise there would be a
path containing more than |ϕ| different worlds. Finally, we remove all worlds but marked.
It is not hard to see that the types of remaining worlds do not change and that the size
of obtained model is bounded by |ϕ||ϕ|. We have shown that the considered logic has
the exponential model property. The NExpTime algorithm simply guesses an exponential
model and verifies it. J

CSL’13

568 Elementary Modal Logics over Transitive Structures

4 General satisfiability

Consider the formula that defines the class of transitive and irreflexive frames:

Γ = (∀xyz.xRy ∧ yRz ⇒ xRz) ∧ ∀x.¬xRx

A quick check shows that a modal formula ♦>∧�♦> has only infinite models satisfying
Γ. In order to illustrate some later concepts, we consider a more complex formula ν which
is a conjunction of the following properties.

1. �¬((p ∧ q) ∨ (p ∧ r) ∨ (q ∧ r)) ∧ �(p ∨ q ∨ r) stating that each reachable world satisfies
exactly one of variables p, q, r (recall that we consider transitive structures).

2. ♦p ∧�(p⇒ ♦p) stating that there is a reachable world satisfying p, and each reachable
world satisfying p has a successor satisfying p.

3. �(p ⇒ ♦r) ∧ �(r ∨ q ⇒ ♦q ∧ �q) stating that each reachable world satisfying p has a
successor satisfying r, and each reachable world satisfying r or q has a successor satisfying
q and all its successors satisfy q.

Fig. 1 contains two models of ν satisfying Γ (the formula is satisfied at the root). It is
not hard to see that each such model has to contain two infinite chains: one labelled by p
and one labelled by q.

p r q q q . . .

p r q q q . . .

p r q q q . . .

p r q q q . . .

p r q q q . . .

...

a)

r

q

q

q

q

p

p

p

p

p

...
...

b)

Figure 1 The running example — two models of ν over Γ. The edges that follows from the
transitivity are omitted for better readability. Note that the structure a) is a model of ν even if we
remove the dashed edge.

4.1 Disentangled structures and global satisfiability
By employing the standard translation [2] and the Löwenheim–Skolem theorem we know that
each satisfiable modal formula has a countable model over any class of first-order definable
frames. In this section we consider only countable structures.

J. Michaliszyn and J. Otop 569

In order to simplify the exposition in this section, we assume that a modal formula ϕ
is fixed and all notions defined below (a tight structure, a special clique, . . .) depend on ϕ
and are defined with respect to ϕ.

We say that a (sub)structure is a clique if it is a single strongly-connected component,
i.e., for all two different worlds w, v we have wRv∧vRw. Note that a single world is a clique,
regardless of whether it is reflexive; we will call such a world a trivial clique.

Let ϕ be a modal formula. We say that a structure is tight if the size of its cliques is
bounded by |ϕ|. We omit explicit reference to ϕ when it is clear from the context.

I Lemma 6. Let Φ be a ∀T formula, M be a structure satisfying Φ and ϕ be a modal
formula. Then there is a tight (w.r.t. ϕ) substructure N of M such that for each v ∈ N ,
tpϕ

M(v) = tpϕ
N(v).

Proof. In each clique C in M with size greater than |ϕ|, we do the following. For each
subformula ψ of ϕ satisfied in some world of C, we mark one world satisfying ψ in C. We
remove all worlds from C that are not marked. A straightforward induction w.r.t. the size
of subformulae shows that the types (w.r.t. ϕ) of remaining worlds do not change. We do
the operation described above independently for all cliques in the model. J

Let M be a model containing a world w. A formula ψ is a reachable formula of w if it
is a subformula of ϕ and there is a world v satisfying ψ such that wRv ∧ ¬vRw. Let Bw

denote the set of all reachable formulae of w. We extend this notation to cliques — for a
clique C that contains a world w, we put BC = Bw (notice that BC does not depend on the
choice of w from C).

We say that a clique is special if some world w of this clique satisfies some subformula ψ
of ϕ with ψ 6∈ Bw, and regular otherwise.

For a set B of subformulae of ϕ, we define (B, s)-zones in a structure M as follows.
The (B, 0)-zone is the substructure of M that consists of worlds from all regular cliques C
such that BC = B. The (B, 1)-zone is the substructure of M that consists of worlds from
all special cliques C such that BC = B. We say that a (B, s)-zone is special if s = 1 and
regular otherwise. Clearly, each world is in exactly one zone and the number of (B, s)-zones
is bounded by O(2|ϕ|).

We define a partial order 4 on zones as follows. We say that (B, s)-zone 4 (B′, s′)-zone
if B ⊂ B′ or B = B′ and s ≤ s′.

I Lemma 7. If M is transitive, then for any B,B′, s, s′, world w from a (B, s)-zone and
w′ from a (B′, s′)-zone, if wRw′, then (B′, s′) 4 (B, s).

Proof. Suppose that wRw′. Of course, Bw′ ⊆ Bw. Assume that (B′, s′) 64 (B, s), i.e.,
Bw′ = Bw, s = 0 and s′ = 1. Then, w′ is a special (trivial) clique and w is not, so there
is no edge from w′ to w. As w′ is special, it satisfies some ψ 6∈ B. But, since wRw′,
ψ ∈ Bw = B — a contradiction. J

We say that a frame is a line if its reflexive closure is isomorphic with 〈N,≤〉. We extend
this notation to structures, saying that a (sub)structure is a line if its frame is a line. We
jointly call cliques and lines units. For a line l, we denote by li the ith world of l, i.e., the
world that have i proper predecessors in l.

Our aim is to show that all modal formulae satisfiable over some class definable by a ∀T

formula Φ have models with a bounded number of units.
We say that a structure M is disentangled if each special zone of M consist of not

connected cliques and each regular zone of M consists of lines l1, l2, . . . such that if there is
an edge from a world in li to a world in lj , then i ≤ j.

CSL’13

570 Elementary Modal Logics over Transitive Structures

I Example 8. Consider structures presented in Fig. 1 and a modal formula ν as a reference
formula. All worlds satisfying r are special (w.r.t. ν) — none of their successors satisfies r.
All other worlds are regular (w.r.t. ν).

Consider any of the structures presented in Fig. 1. Let p, q and r be arbitrary worlds
of that structure labelled by p, q and r, respectively. Observe that the structure consists of
three zones: the (Bp, 0)-zone that contains all elements satisfying p, the (Br, 1)-zone that
contains elements satisfying r and the Bq-zone that contains all elements satisfying q. Note
that Bq ⊆ Br ⊆ Bp — if there is an edge from one zone to another, then by transitivity the
first one contains all the successors of some world in the second one. The second inclusion
is strict — case in point, r ∈ Bp \ Br. But the first one is not — it is not hard to see that
Br = Bq.

The model b) is disentangled, and each of its zones contains precisely a single unit — a
line or a trivial clique (consisting of a single world). The model a) is not disentangled, but
it contains a disentangled submodel — it is enough to remove the dashed edge.

I Lemma 9. Let Φ be a ∀T formula, ϕ be a modal formula and M be a tight (w.r.t. ϕ)
structure satisfying Φ and ϕ. Then there is a tight (w.r.t. ϕ) disentangled substructure N

of M such that for each v ∈ N , tpϕ
M(v) = tpϕ

N(v).

Proof. We show that units in a (B, 1)-zone in M are not connected. Assume that for some
worlds w, v from two different units of this zone we have wRv. World v is in a special clique,
therefore there is a world v′ in this clique and a subformula ψ /∈ B of ϕ satisfied by v′. Since
¬v′Rw (otherwise v′, w would be in the same clique) and wRv′ it follows that ψ ∈ Bw = B.
This is a contradiction. The structure N therefore contains all the (B, 1)-zones of M.

Now we consider regular zones; we transform a (B, 0)-zone to a substructure that consists
of ordered lines. First, we remove all points with only finite numbers of successors. Such
worlds are regular, as they are in a regular zone, therefore Lemma 3 guarantees that the
types of the remaining worlds are not changed.

Let w1, w2, . . . be an enumeration of those worlds in the (B, 0)-zone such that for all
worlds v, if v has a successor in the (B, 0)-zone then it has a successor among w1, w2, . . . ,
and no two worlds among w1, w2, . . . are in the same clique. Below we inductively define a
sequence l1, l2, . . . such that each li is a line or it is empty.

For each i, if wi has a successor in some lj with j < i, then we leave li empty. Otherwise,
let li be an arbitrary path starting in wi that does not contain non-trivial cliques, i.e., cliques
of consisting of more than one world.

We remove all the worlds that are not in any lj . Clearly, there are no edges from li to lj
for any i > j. We add the remaining worlds to N – these worlds form the (B, 0)-zone of N.
To obtain a sequence matching the requirements of the definition of disentangled structure,
we simply remove empty elements from l1, l2, J

I Proposition 10. For any ∀T formula Φ, KΦ-GSAT and KΦ-GFINSAT are in NP.

Proof. We prove that each satisfiable modal formula has a model which is a single unit.
Clearly, the existence of such a model can be verified in NP.

Assume that ϕ has a model satisfying Φ. By Lemma 9 there is a disentangled model M
of ϕ and Φ. Let a (B, s)-zone be a maximal nonempty zone w.r.t. 4. It is not hard to see
(Lemma 7) that there are no edges from the (B, s)-zone to another zone. Let N be any unit
of this zone. Of course, N satisfies Φ as it is a submodel of M. Now we define a single-unit
structure N′ that satisfies ϕ.

If s = 1, then we simply put N′ = N. By the definition of disentangled models, there are
no edges from N to different units in the same zone. Moreover, by choice of the (B, s)-zone

J. Michaliszyn and J. Otop 571

there are no edges in M from any world from N to any different zone. Therefore, each world
in N has the same successors in N as in M, and therefore its type is the same in both models.

If s = 0, then we define a line N′ over a universe 0, 1, . . . containing fresh worlds as
follows. Let the frame N ′ be isomorphic with N and let {t0, t1, . . . , tk−1} be a set of labels
of worlds of the (B, s)-zone (restricted to the propositional variables of φ). For every i ≥ 0,
we label a world i as ti mod k. A quick check shows that the types of worlds in N′ are the
same as the types of worlds in the (B, s)-zone.

This proof can be simply adjusted to the finite global satisfiability — in any finite model,
we can find a clique without successors. J

4.2 Local satisfiability
First, we define a property of sets of worlds called homogeneity. Roughly speaking, all the
worlds from a homogeneous set have the same set of predecessors and successors outside of
this set.

A world v is called a proper predecessor (successor) of w w.r.t. W if v is a predecessor
(successor, resp.) of w and v 6∈W .

A set of worlds W is (P, S)-homogeneous (in M) if for every world w ∈ W the set of
proper successors of w w.r.t. W is equal to S and the set of proper predecessors of w w.r.t.
W is equal to P .

A structure M′ is the (P, S)–homogenization of W in a structure M if M′ is a structure
with the same universe as M such that W is (P, S)–homogeneous in M′ and M′ is obtained
by changing the proper predecessors and the proper successors (w.r.t W) of worlds from W

to P and S respectively. More precisely, there is an edge from w to v in M′ if and only if
one of the following holds.

w and v are both in W or both outside W and there is an edge from w to v in M.
w is in P and v is in W or it is a successor of some world of W .
v is in Q and w is in W or it is a predecessor of some world of W .

A set W is homogeneous (in M) if there are P, S such that W is (P, S)–homogeneous (in
M). Figure 2 contains an example of a homogenization. Observe that for all P, S,W and
M there is a unique a (P, S)–homogenization of W in M.

A set of worlds W is a witness for a set of worlds V if for each world v ∈ V and each
subformula ♦ψ of ϕ, if v has a proper successor w.r.t. V satisfying ψ, then it has one in
W . Note that if V is a finite set of worlds within one unit, there is a witness for V of size
bounded by |ϕ|.

Our aim is to prove the following lemma.

I Lemma 11. Let Φ be a ∀T formula and ϕ be a modal formula satisfiable over KΦ. Then
there is a tight (w.r.t. ϕ) disentangled model of ϕ satisfying Φ s.t. the number of units is
bounded exponentially in the size of ϕ and all its units are homogeneous.

The first step towards the proof of Lemma 11 is enforcing an additional restriction on
lines. Namely, we can assume, without loss of generality, that every line consists of either
only reflexive worlds or only irreflexive worlds.

I Lemma 12. Let Φ be a ∀T formula and ϕ be a modal formula satisfiable over KΦ. Then
there exists a tight (w.r.t. ϕ) disentangled model of ϕ satisfying Φ such that every line is
isomorphic with 〈N,≤〉 or 〈N, <〉.

CSL’13

572 Elementary Modal Logics over Transitive Structures

P

S

W
a)

P

S

W
b)

Figure 2 The structure on the picture b) is the result of the (P, S)–homogenization of W in the
structure on the picture a). Some edges that follow from the transitivity are omitted for better
readability.

Proof. If ϕ is a modal formula satisfiable over KΦ, there exists a tight disentangled model
M of ϕ satisfying Φ.

Let l1, l2, . . . be an enumeration of lines in M. We show that for every i > 0, there is
a model Mi of ϕ satisfying Φ such that for every j ∈ {1, . . . , i − 1}, Mi ∩ lj is isomorphic
with 〈N,≤〉 or 〈N, <〉.

Let li be a line in Mi. If li contains finitely many reflexive worlds, they can be re-
moved. Let Mi+1 be the resulting structure. Due to Lemma 3, Mi+1 satisfies ϕ and, as a
substructure of Mi, it satisfies Φ. Clearly, the lineMi+1 ∩ li is isomorphic with 〈N, <〉.

Otherwise, li contains infinitely many reflexive worlds. Let N be a substructure of Mi

resulting from removing all irreflexive worlds from li. Clearly, N ∩ li is isomorphic with
〈N,≤〉. The structure N satisfies Φ, but it may violate ϕ.

Therefore, we defineMi+1 as a structure defined on the frameN such that the labelling of
Mi+1 coincides with the labelling of Mi on worlds the do not belong to li, i.e., w ∈Mi+1 \ li.
Now, on worlds w ∈Mi+1∩ li the labelling is defined in such a way that every labelling that
occurs on li in Mi+1, occurs infinitely often in Mi+1 ∩ li in Mi+1. It is easy to verify that
the types for all proper predecessors of Mi+1 ∩ li in Mi+1 remain the same as in Mi. J

Before we show Lemma 11, we provide an outline. Define n = |ϕ| and N = |Φ|. We
start from an arbitrary tight disentangled model M such that every line is isomorphic with
〈N,≤〉 or 〈N, <〉 and modify it in three steps.

Step 1. Select recursively worlds from M. Initially, select an arbitrary element a of M
such that M, a |= ϕ. Then, recursively, for every world w selected in the previous stage do
the following. If w is in a non-trivial clique, select a witness for this clique of size bounded
by |ϕ|.

If w is in a line l, select from l the world lk with the following property: for every selected
world v preceding l, if v has a successor in l, then lk is a successor of v as well. (There are
finitely many selected v preceding l, thus such lk exists.) Then, remove all worlds from l

preceding w′, and select worlds lk, lk+1, . . . , lk+N ·n2·n . Finally, choose for them a witness

J. Michaliszyn and J. Otop 573

W and select worlds from W \ l.
Let M1 be the structure obtained in this step. We show that M1 satisfies Φ and ϕ and

at most n2·n units contain selected worlds.
Step 2. Remove from M1 those units that do not contain selected worlds, obtaining the

structure M2. Clearly, M2 satisfies Φ as it is a substructure of M. However, it may happen
that the modal formula ϕ is not satisfied in M2.

Consider a model presented at Fig. 1 a) and the unit that consists of all worlds satisfying
p. If we select only finitely many units satisfying r and remove all other such units, then
the obtained structure would not satisfy the ν. We find a witness for the set of first N ·n2·n

worlds from the line and select all its worlds. Later we will show how we can use them as
witnesses for all other worlds from this line.

Step 3. In each line l in M2, starting from the greatest zone w.r.t. 4, we find a
homogeneous set of N worlds that is before the world lN ·n2·n . Since the number of all units
in M2 is bounded by n2·n, such a sequence can be easily found. Then, we use this sequence
to obtain a line such that all worlds in this line have the same set of successors as the worlds
in the sequence and that transformation does not violate Φ (this trick will be presented as
Lemma 13).

Let M3 be the structure obtained by applying this procedure to all lines. We conclude
by an inductive proof that shows that M3 satisfies ϕ.

Let us discuss the properties of M1 defined in Step 1. At every stage of the construction,
either the selected worlds are from the same unit or they belong to strictly greater zones
w.r.t. 4. Since chains w.r.t. 4 are bounded by 2 · n, there is at most 2 · n stages of the
construction. Every unit that contains a selected world has at most n selected witnesses.
Thus, there are at most n2·n units with selected worlds. The structure M1 results from
M by removing finitely many regular worlds, therefore by Lemma 3, for every v ∈ M1,
tpM1(v) = tpM(v). In particular, M1 satisfies ϕ. As a substructure of M, M1 satisfies Φ.

Observe that M1 satisfies the following property: if a selected world v has a successor
in a unit U with a selected world, all worlds of U are successors of v. This is clear if U is
a clique, and we remove from lines worlds that violate this. Every unit in M2 contains a
selected world, therefore M2 satisfies the following property:

(1) if a selected world v has a successor in a unit U , all worlds from U are successors of v.

Now, we elaborate on Step 3, i.e., we show a construction of M3 from M2 and we show
that it satisfies Φ. We start with the following lemma stating that careful homogenization
of a structure satisfying Φ satisfies Φ as well.

I Lemma 13. Let Φ be a ∀T formula, N = |Φ|, M be a structure over KΦ, l be a line
in M isomorphic with 〈N,≤〉 or 〈N, <〉. If there is k such that {lk, lk+1, . . . , lk+N−1} is
(P, S)–homogeneous, then the (P \ l, S \ l)–homogenization of l in M satisfies Φ.

Proof. Let M′ be the (P \ l, S \ l)–homogenization of l in M. Let us assume that l is
isomorphic with 〈N, <〉. The case where l is isomorphic with 〈N,≤〉 is similar. We show
that M′ satisfies Φ. To avoid confusion with modal logic, we show that M′, which is a
relational structure, satisfies the first order formula Φ.

The formula Φ is a conjunction of the fromula (∀xyz.xRy ∧ yRz ⇒ xRz) and a univer-
sal first-order formula. Thus, it can be transformed to an equivalent formula of the form
∀~x.Ψ(~x), where Ψ(~x) is quantifier-free and |~x| ≤ N . Suppose that M′ does not satisfy Φ
and let ~u = 〈u0, . . ., u|~x|−1〉 be such that M′ violate Ψ(~u). We can rearrange ~u such that

CSL’13

574 Elementary Modal Logics over Transitive Structures

~u = ~u1 ∪ ~u2, ~u1 are from l, ~u2 are disjoint with l, and ~u1 are ordered w.r.t. the successors
relation of M′. Let f : ~u 7→ M′ be defined as

f(ui) =
{
lk+i if ui ∈ ~u1

ui otherwise

Let f(~u) denote image of ~u under f , i.e., f(~u) = 〈f(u0), . . . , f(u|~x|−1)〉. We show that

(i) for all v, v′ ∈ ~u,M′ satisfies vRv′ iffM′ satisfies f(v)Rf(v′),
(ii) for all v, v′ ∈ ~u,M′ satisfies f(v)Rf(v′) iffM satisfies f(v)Rf(v′).

It follows that if M′ violates Ψ(~u), then M violates Ψ(f(~u)). Thus, if M satisfies Φ,
thenM′ satisfies Φ.

(i) : Clearly, (i) holds when v, v′ are both from ~u1 or both from ~u2. If v ∈ ~u1 and v′ ∈ ~u2,
then v ∈ l and v′ /∈ l. (P \ l, S \ l)-homogeneity implies thatM′ satisfies vRv′ iffM′ satisfies
f(v)Rv′. Since v′ /∈ l, v′ = f(v′). Therefore, M′ satisfies vRv′ iffM′ satisfies f(v)Rf(v′).
The case v ∈ ~u2 and v′ ∈ ~u1 is similar.

(ii) : (P \ l, S \ l)-homogenization only changes successors and predecessors of worlds
from l. This implies that (ii) holds if v, v′ are both form ~u1 or both from ~u2.

If v ∈ ~u1 and v′ ∈ ~u2, then f(v) ∈ {lk, . . . , lk+N−1} and v′ /∈ l. Thus, M′ satisfies
f(v)Rf(v′) iff v′ ∈ S \ l iff M satisfies f(v)Rf(v′). Similarly, if v ∈ ~u2 and v′ ∈ ~u1,
then f(v′) ∈ {lk, . . . , lk+N−1} and M′ satisfies f(v)Rf(v′) iff v ∈ P \ l iff M satisfies
f(v)Rf(v′). J

Let @ be a linear order relation on units of M2 compatible with the reversed 4, i.e., if
U1 is from a greater zone than U2, then U1 @ U2. Since M2 has finitely many units, @ is
well-founded. We define structures NU , where U ranges over units of M2. The structures
NU will be defined inductively w.r.t. the order @. They will satisfy the following induction
assumption: NU satisfies Φ and for every unit U ′ such that U ′ v U , U ′ is homogeneous.

For the induction base we introduce an empty unit ∅ and we state that it is the least
unit w.r.t. @. Clearly, N∅ = M2 satisfies all the assumptions.

For the induction step assume that NV has been defined, it satisfies Φ and every unit
U ′ v V is homogenous in NV . Let U be the least unit greatest than V (w.r.t. @). Since
cliques are homogeneous, NU = NV satisfies all the assumptions.

Assume that U is a line l. (1) implies the following dichotomy for selected worlds: for
every selected world w and every unit U ′ either all worlds from U ′ are successors of w or
no world from U ′ is a successor of w. Therefore, a subset of units determines the set of
successors of a given selected world. Due to transitivity, for all w,w′; if w′ is a successor of
w, the set of successors of w′ is a subset of the set of successors of w. Since there are n2·n

different units, among N ·n2·n consecutive selected worlds there are N consecutive worlds ~u
that have the same set of successors outside the line l. Observe (1) implies that all selected
worlds in l have the same predecessors. Therefore, ~u have the same sets of predecessors
and successors outside l. As they are consecutive on l, predecessors of u0 are predecessors
of ~u and successors of uN−1 are successors of ~u. Hence, there are P, S such that ~u is a
(P, S)-homogeneous set. Let NU be (P \ l, S \ l)-homogenization of l in NV . By Lemma
13, NU satisfies Φ. All units homogeneous in NV remain homogeneous in NU and U = l is
homogeneous.

We have shown that the construction given in Steps 1, 2 and 3 can be executed and that
M3 satisfies all the postulated conditions from Lemma 11 but one. It remains to be verified
that M3 satisfies ϕ.

J. Michaliszyn and J. Otop 575

I Lemma 14. The structure M3 satisfies ϕ.

Proof. We show that worlds from M3 have the same types in M3 as in M1, i.e., for each
v ∈ M3, tpM1(v) = tpM3(v). Observe that M3 contains the root of M1, thus it satisfies ϕ.
To show that the types do not change, we show the following property:
(2) for every v ∈M3, ♦ψ ∈ tpM1(v) iff v has a successor u in M3 such that ψ ∈ tpM1(u).
We show (2) in two steps. First, observe that
(3) for every selected v ∈M2, ♦ψ ∈ tpM1(v) iff v has a successor u in M2 s.t. ψ ∈ tpM1(u).
Clearly, M2 is a substructure of M1, therefore if v has a successor u in M2 such that
ψ ∈ tpM1(u), then ♦ψ ∈ tpM1(v).

Conversely, assume that ♦ψ ∈ tpM1(v). We need to show that v has a successor u ∈M1
such that ψ ∈ tpM1(u) and u is in a unit that contains a selected world from M1. Clearly,
such u belongs to M2, thus (3) holds.

Recall that, for every w ∈M1, tpM(w) = tpM1(w). Let v′ be the last selected successor
(in M) of v that satisfies ♦ψ (it can be v itself). The world v′ has a selected successor u
satisfying ψ. If u belongs to M1, we are done. We show that u /∈M1 is impossible. Suppose
that u belongs to a line l in M, but it has been removed at Step 1. Then, due to regularity
of l, there is a successor u′ of u in l, which is selected and belongs to M1. Since every world
on l is regular, u′ has a successor in l satisfying ψ. Thus, u′ is a selected strict successor of
v′ and it satisfies ♦ψ, which contradicts the assumption that v′ is the last selected successor
of v that satisfies ♦ψ.

Observe that (3) implies (2): If v belongs to a clique, then it has exactly the same
successors in M3 as in M2, thus (3) implies (2).

Assume that v belongs to a line l. Let w be a selected world from the same line l which
belongs to a chosen homogeneous set. Since w has the same successors in M2 and M3, (3)
implies (2) for w, i.e., ♦ψ ∈ tpM1(w) iff w has a successor u′ in M3 such that ψ ∈ tpM1(u′).

All worlds in l have the same set of reachable formulae, therefore ♦ψ ∈ tpM1(v) iff
♦ψ ∈ tpM1(w). Since all worlds in l share the set B, the set of reachable formulae, alike in
M1 as in M3, v has a successor u in l satisfying ψ ∈ tpM1(u) iff w has a a successor u′ in
l satisfying ψ ∈ tpM1(u′). Also, l is homogeneous in M3, therefore v and w have the same
successors outside l. Thus, w has a successor u′ in M3 such that ψ ∈ tpM1(u′) iff u has a
successor u′′ in M3 such that ψ ∈ tpM1(u′′). This implies (2).

Finally, we show that the property (2) implies that for each v ∈M3, tpM1(v) = tpM3(v).
The modal depth, denoted by MD(ϕ), of a modal formula ϕ is defined recursively:

MD(p) = 0 where p is a propositional variable or a logical constant (>, ⊥).
MD(¬ϕ) = MD(ϕ).
MD(ϕ1 ∧ ϕ2) = max(MD(ϕ1),MD(ϕ2)).
MD(♦ϕ) = MD(ϕ+ 1).

We show by induction on n that for every v ∈ M3, for every subformula ψ of ϕ with
MD(ψ) ≤ k, ψ ∈ tpM1(v) iff ψ ∈ tpM3(v).

Induction base. The labelling π is not changed at any stage of construction, therefore
the types tpM1(v) and tpM2(v) agree on formulae of modal depth zero.

Induction step. Assume that for every v ∈M3, tpM1(v) and tpM3(v) agree on formulae
of modal depth n. Let w ∈ M3. Consider a subformula ♦ψ of ϕ, where modal depth of ψ
is n. By (2), ♦ψ ∈ tpM1(w) iff w has a successor u in M3, such that ψ ∈ tpM1(u). Since
ψ has modal depth n, the induction assumption implies that ψ ∈ tpM1(u) iff ψ ∈ tpM3(u).
Therefore, ♦ψ ∈ tpM1(w) iff ♦ψ ∈ tpM3(w).

CSL’13

576 Elementary Modal Logics over Transitive Structures

Observe that if tpM1(w) and tpM3(w) agree on formulae of modal depth n + 1 of the
form ♦ψ, then they agree on all formulae of modal depth n+ 1. J

I Proposition 15. Let Φ be a ∀T formula. Then KΦ-SAT is decidable in NExpTime.

Proof. For a given ∀T formula Φ, we describe an algorithm that checks whether a given
modal formula ϕ has a model that satisfies Φ, ϕ and consists of exponentially many homo-
geneous units. Lemma 11 implies that such an algorithm is complete. The algorithm works
as follows:
Guess a finite description of a structure N. Observe that if every unit of N is homo-
geneous, then for all units U1, U2, either all worlds from U1 are successors (predecessors) of
all worlds from U2 or no world from U1 is a successor (predecessor) of any world from U2.
Therefore, if N has at most M units, it has a description of size M · (M · 2|ϕ|). For every
unit U it needs to be stated whether U is a line or a clique, which units are successors of U
and which types occur in {tpN(u) : u ∈ U}. The order of types in a line is irrelevant and we
can assume that each type occurs infinitely often.
Verify the modal formula. It suffices to check whether every type in every unit has appro-
priate witnesses and if a formula ¬♦ψ belongs to this type, the formula ψ does not belong
to any type in the current unit or successor units.
Verify the first-order formula. The first order formula is universal, i.e., Φ = ∀~x.Ψ(~x),
where Ψ is quantifier-free. Therefore, it has to be checked whether every instantiation of ~x
in N satisfies Ψ. However, observe that for all ~a,~b satisfying (a) for every i ∈ [1, N], ai is in
the same unit as bi, and (b) for all ai, aj from the same unit, ai is a successor of aj iff bi is
a successor of bj , we haveM3 (the frame of M3) satisfies Ψ(~a) iffM3 satisfies Ψ(~b).

It follows that we have to check at most finitely many different types of tuples ~a. Each
type of a tuple is determined by the assignment of its elements to the units of N (cond.
(a)) and relative order of elements in the same unit (cond. (b)). Notice that these two
characteristics determine relations among worlds. Hence, it can be easily verified whether
tuples of a given type satisfy Ψ.

The number of types of tuples ~a that have to be checked is bounded by cN (2N)!, where
c is the number of units. Since N is a parameter of the problem and c is of exponential
order, they can be checked in exponential time in |ϕ|. Even if Φ was a part of an instance,
N is linear in the size of the input and cN (2N)! is still exponential in the input. J

5 Conclusion and future work

We proved that all elementary modal logics over universally defined classes of transitive
structures are decidable. In case of the global satisfiability problem, we proved that all
satisfiability problems and finite satisfiability problems are in NP and, by a straightforward
reduction from SAT, we can conclude that these problems are NP-complete. The case of
the local satisfiability problem is more complicated. We proved that all the satisfiability
problems and all the finite satisfiability problems are in NExpTime, but the precise com-
plexity may vary. For example, the logic K4 is PSpace-complete, while S5 is NP-complete.
Providing the full characterisation with respect to complexity is left as an open question.

Modal logic over a class of transitive frames can be seen as a temporal logic. Indeed, the
logic K4 may be defined as a syntactic variant of a fragment of CTL that allows only two
modalities — AG and EF. Therefore, Theorem 1 may be treated as a first step in study of
elementary temporal logics. A natural question that arises is whether the decidability results
can be extended for different CTL operators, such as EG and AF.

J. Michaliszyn and J. Otop 577

References
1 Vince Bárány and Mikolaj Bojanczyk. Finite satisfiability for guarded fixpoint logic. Inf.

Process. Lett., 112(10):371–375, 2012.
2 Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic, volume 53 of Cam-

bridge Tracts in Theoretical Comp. Sc. Cambridge University Press, Cambridge, 2001.
3 Davide Bresolin, Dario Della Monica, Valentin Goranko, Angelo Montanari, and Guido

Sciavicco. The dark side of interval temporal logic: Sharpening the undecidability border.
In TIME, pages 131–138. IEEE, 2011.

4 R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi. Reasoning About Knowledge. MIT
Press, 1995.

5 Kit Fine. Logics containing K4. Part II. J. of Symbolic Logic 50, pages 619–651, 1985.
6 Igor Gorbunov. A decidable modal logic that is finitely undecidable. In Advances in Modal

Logic, pages 247–258. College Publications, 2006.
7 Erich Grädel. On the restraining power of guards. J. Symbolic Logic, 64:1719–1742, 1999.
8 Erich Grädel and Igor Walukiewicz. Guarded fixed point logic. In Fourteenth Annual IEEE

Symposium on Logic in Computer Science, pages 45–54, 1999.
9 Edith Hemaspaandra and Henning Schnoor. A universally defined undecidable unimodal

logic. In MFCS, volume 6907 of LNCS, pages 364–375. Springer, 2011.
10 Wilfrid Hodges. Model Theory. Cambridge University Press, 1993.
11 Emanuel Kieroński and Jakub Michaliszyn. Two-variable universal logic with transitive

closure. In Proceedings of Computer Science Logic 2012, 2012.
12 Emanuel Kieroński, Jakub Michaliszyn, and Jan Otop. Modal logics definable by universal

three-variable formulas. In FSTTCS, volume 13 of LIPIcs, pages 264–275, 2011.
13 Emanuel Kieroński, Jakub Michaliszyn, Ian Pratt-Hartmann, and Lidia Tendera. Extend-

ing two-variable first-order logic with equivalence closure. In LICS ’12: Proceedings of the
29th IEEE symposium on Logic in Computer Science, 2012.

14 Emanuel Kieroński and Lidia Tendera. On finite satisfiability of the guarded fragment with
equivalence or transitive guards. In LPAR, volume 4790 of LNCS, pages 318–332. Springer,
2007.

15 Marcus Kracht. Tools and Techniques in Modal Logic. Studies in Logic and the Foundations
of Mathematics. Elsevier, Amsterdam, 1999.

16 Jerzy Marcinkowski and Jakub Michaliszyn. The ultimate undecidability result for the
Halpern-Shoham logic. In LICS, pages 377–386. IEEE Computer Society, 2011.

17 Jakub Michaliszyn. Decidability of the guarded fragment with the transitive closure. In
ICALP (2), volume 5556 of LNCS, pages 261–272. Springer, 2009.

18 Jakub Michaliszyn and Jan Otop. Decidable elementary modal logics. In LICS ’12: Pro-
ceedings of the 29th IEEE symposium on Logic in Computer Science, 2012.

19 Jakub Michaliszyn, Jan Otop, and Piotr Witkowski. Satisfiability vs. finite satisfiability in
elementary modal logics. In Proceedings of GandALF 2012, pages 141–154, 2012.

20 Michael Mortimer. On languages with two variables. Mathematical Logic Quarterly,
21(1):135–140, 1975.

21 Martin Otto. Two variable first-order logic over ordered domains. Journal of Symbolic
Logic, 66:685–702, 1998.

22 Ian Pratt-Hartmann. Complexity of the two-variable fragment with (binary-coded) count-
ing quantifiers. Journal of Logic, Language and Information, 2005.

23 Wiesław Szwast and Lidia Tendera. The guarded fragment with transitive guards. Annals
of Pure and Applied Logic, 128:227–276, 2004.

24 Lidia Tendera and Wiesław Szwast. FO2 with one transitive relation is decidable. In Proc.
of STACS 2013, 2013.

CSL’13

A Fully Abstract Game Semantics for Parallelism
with Non-Blocking Synchronization on Shared
Variables
Susumu Nishimura

Dept. of Mathematics, Graduate School of Science, Kyoto University
Sakyo-ku, Kyoto 606-8502, JAPAN
susumu@math.kyoto-u.ac.jp

Abstract
We present a fully abstract game semantics for an Algol-like parallel language with non-blocking
synchronization primitive. Elaborating on Harmer’s game model for nondeterminism, we develop
a game framework appropriate for modeling parallelism. The game is a sophistication of the wait-
notify game proposed in a previous work, which makes the signals for thread scheduling explicit
with a certain set of extra moves. The extra moves induce a Kleisli category of games, on which
we develop a game semantics of the Algol-like parallel language and establish the full abstraction
result with a significant use of the non-blocking synchronization operation.

1998 ACM Subject Classification F.3.2 Semantics of Programming Languages, F.1.1 Models of
Computation, F.1.2 Modes of Computation

Keywords and phrases shared variable parallelism, non-blocking synchronization, full abstrac-
tion, game semantics

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.578

1 Introduction

In shared memory parallel programming, parallel threads competing for shared memory
cells (or shared variables) must be appropriately synchronized to avoid race conditions. A
synchronization method is called non-blocking, if each individual thread spins over a shared
resource until it acquires an exclusive access to it. In contemporary architectures including
multicores, non-blocking synchronization is supported via the read-modify-write operation,
most notably known as compare-and-set (CAS) operation. [12]

This paper concerns with game theoretical analysis of an Algol-like parallel language that
supports non-blocking synchronization on shared variables. Game semantics for PCF and
Idealized Algol have been well investigated and shown fully abstract [13, 3]. However, the
standard methods used in the game modeling do not directly apply to the parallel extension
considered in this paper:

The models for the above deterministic languages solely concern may-convergence, i.e.,
they just observe if a program has the possibility of termination. The parallel programs,
on the other hand, are inherently nondeterministic and thus may-convergence is too
imprecise to give a pleasant discrimination of parallel programs: Even if two programs
are judged equivalent, they can nondeterministically exhibit different convergences.
One might expect that the parallel execution would be modeled by interleaved game plays
of simultaneously running threads, but this fails to properly shuffle variable accesses,
due to the parity restriction originating from the Hyland-Ong game [13], in which the
opponent moves and the player moves must strictly alternate.

© Susumu Nishimura;
licensed under Creative Commons License CC-BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca; pp. 578–596

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.578
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

S. Nishimura 579

In a preliminary work [20], Watanabe and the present author proposed wait-notify games
as a means to remedy the above issues. They developed the wait-notify games based on
Harmer’s game semantics [9, 10], in order to capture the nondeterministic nature of parallel
computation more precisely. Harmer’s games substantially extend Hyland-Ong’s with the
notion of divergence, giving the full abstraction result for a nondeterministic variant of
Algol-like sequential language. It concerns both may-convergence and must-convergence,
i.e., it also discriminates those programs which are obliged to terminate from those which
are not.

The fundamental idea in wait-notify games is to have each game play interspersed by a
suitable number of pairs of extra wait and notify moves, written W and N, respectively. A
wait move W represents a delay imposed by the scheduler of the operating system, each time
a single execution thread attempts to access a shared variable; A subsequent notify move N
represents the resumption of the delayed variable access by the scheduler. However, wait-
notify games are defined only for the type of parallel computation and are not well integrated
with the computational structure of other types, including higher-order ones. The resulting
parallel language thereby supports parallelism only under a fairly limited context: Within
parallel contexts, nothing but shared variables can be parametrized.

The present paper sophisticates the idea in the wait-notify game to give a fully abstract
game semantics for an Algol-like parallel language with non-blocking synchronization, in
which parallelism is allowed under much wider contexts of arbitrary types, though subject
to a few modest syntactic restrictions. We will develop the game model in a Kleisli category
of games, induced from the monadic structure introduced by the wait and notify moves.
This not only enables us to reach to the full abstraction result in a standard way but also
reveals the computational structure hindered behind the parallel computation.

Here we emphasize that we do not intend to model parallel computation as a game
between individual parallel threads. Rather, we model parallel computation as a game
between the collection of simultaneously running threads and the scheduler, which is the
entity invisible in the program text. The extra wait and notify moves enable the game
semantical construction with the scheduler’s interference explicit. The extra moves, on the
other hand, should not be counted when we discuss observational behavior of programs.
Thus we need to introduce a scheduler strategy that ignores these extra moves all together,
later in Section 5.

The development in this paper also gives some indications on the nature of parallel
computing:

As we will discuss later, the game model in this paper has no ability to observe the
termination of the entire collection of threads running in parallel. This implies that no
language whose parallel running threads can join to a single sequential thread would be
fully abstract with respect to the present game model or its modest extension. Due to
this fact, we are driven to design our parallel language so that no parallel threads join:
There is no means to merge the set of parallel threads into a single sequential thread,
even after all the parallel threads have terminated.
In the course of establishing full abstraction, we need to separate out a history-insensitive
part from a given game strategy. This is usually done by the so-called innocent factor-
ization [3], which does not directly apply to our parallel setting, though. The parallel
threads would compete for a shared variable in which the factorized strategy keeps the
history. There we make an indispensable use of the non-blocking synchronization oper-
ation CAS, as a means for mutual exclusion on the shared variable. This indicates that
a language without CAS or its equivalent would be strictly less able to define strategies
than the language with CAS would be.

CSL’13

580 A Fully Abstract Game Semantics for Parallelism with Non-Blocking Synchronization

Related work. The game model in this paper can be seen as a resumption model, which has
been used for denotational modeling of concurrency [17, 19] and later examined for giving
a game semantics for parallelism [1]. The present paper investigates the computational
structure in the resumption-style (wait-notify) game and develops the full abstraction result
for a suitable Algol-like shared variable parallel language.

There have been several approaches to full abstraction for shared variable parallel lan-
guages, e.g., [5] by Brookes and [7, 8] by Ghica, Murawski, et al. These studies concern
blocking synchronization primitives, i.e., some locking mechanisms, while the present paper
concerns non-blocking ones. More significantly, whereas they solely discuss may-convergence,
we discuss may&must-convergence. This enables a more precise analysis of parallel compu-
tation that is inherently nondeterministic, though we need certain quotienting on the game
model.

Unlike in the parallel languages they consider, parallel threads in our language never join
to continue with a sequential computation, as mentioned earlier. This rigid distinction of
sequential and parallel computation in our language might be more suitable for distributed
computing, where a collection of parallel threads execute in concert but their computation
results not necessarily need to coalesce. In a distributed environment, the indefinability
without CAS might seem a reminiscent of the impossibility result for the wait-free distributed
consensus [11], but one should mind their difference. Wait-freeness assumes a fairness in
scheduling, while the present game model does not: A parallel computation in the latter is
judged to diverge as soon as at least one out of the parallel threads does, while the former
is judged irrespective of divergence of a subset of threads.

Outline. The rest of the paper is organized as follows. Section 2 introduces an Algol-
like parallel language and gives its operational semantics. Reviewing Harmer’s games for
nondeterminism in Section 3, we develop in Section 4 a game framework, in which parallel
programs are interpreted in a Kleisli category of wait-notify games. Section 5 defines the
game interpretation for terms and its soundness is shown. In Section 6, we show the full
abstraction, which is derived by combining two factorizations followed by a definability
result. Finally, Section 7 concludes the paper with some topics for future investigations.

2 The IApar Language

Let us define a programming language for shared variable parallelism, called IApar , which is
yet another variant of Idealized Algol [18]. IApar is a strongly typed language, whose types
and syntax are defined as below.

T ::= nat | com | var | par | T→ T

M ::= x | n |M ? M | λxT.M |MM | fixT M | skip | seq M M | if0 M then M else M
| assign M M | deref M | cas M M M | mkvar M M M | newvar v = n in M
| M or M |M1‖ · · · ‖Mζ |M �j M

The types consist of base types and arrow types built from them. Base types are either
nat for natural numbers, com for sequential commands, var for mutable variables, or par
for parallel commands. A type judgment of the form Γ ` M : T assigns the type τ for the
term M , where Γ is a typing context, a finite mapping from identifiers to types. The typing
rules are given in Figure 1 of Appendix A.

The terms consist of PCF terms (natural numbers, λ-terms, and general recursion, where
the binary operator ? on natural numbers at least includes the addition + and the cut-off

S. Nishimura 581

subtraction −, Algol terms (commands for mutable variables and the bad variable con-
structor mkvar), the erratic nondeterminism or [9, 10], and parallel constructs. The parallel
command M1‖ · · · ‖Mζ executes the sequential commandsM1, ..., Mζ simultaneously, where
ζ is the fixed degree of parallelism. The thread extension P �j M (1 ≤ j ≤ ζ) extends the
command execution of the j-th thread in the parallel command P by a sequential command
M . That is, as soon as the execution in the j-th thread as specified in P has terminated,
the same thread continues to execute the sequential command M . The preamble sequenc-
ing seq M P , where P is of type par, executes the sequential command M in advance of
the parallel command P . Within a parallel command, every simultaneously running thread
has parallel access to shared variables, which are ranged over by the identifiers v, v′, ... of
type var. In addition to the primitives assign and deref for atomic read and write on muta-
ble variables, respectively, it also provides compare-and-set (CAS) operation as a means for
non-blocking synchronization on shared variables. A CAS operation cas v m n is an atomic
uninterruptible operation that conditionally updates the value stored in v: If the present
value stored in v is equal to m then it updates the value to n and returns n; otherwise, it
leaves v as it is and returns the stored value.

The formal operational semantics for IApar is given in the style of small-step operational
semantics (Figure 2 of Appendix A). Each 1-step reduction 〈M, s〉 −→ 〈M ′, s′〉 corresponds
to a single atomic sequential execution that may update the store s to s′ as the side effect,
where a store is a finite mapping from mutable variables to natural numbers.

We say the evaluation of a termM may-converges at initial state s, if 〈M, s〉 −→∗ 〈M ′, s′〉
for some state s′ and no reduction rules apply to 〈M ′, s′〉 further, where −→∗ is the reflexive
transitive closure of −→. Also, we say the evaluation of a term M must-converges at initial
state s, if there is no infinite reduction sequence 〈M, s〉 −→ 〈M ′, s′〉 −→ · · · . In particular
when M is a closed term, we write M⇓may for may-convergence and also write M⇓must for
must-convergence.

A contextual preorder on terms is defined by means of both may- and must-convergences.
We define M .may N iff, for any context C[−] of type par, C[M]⇓may implies C[N]⇓may.
Also, M .must N iff, for any context C[−] of type par, C[M]⇓must implies C[N]⇓must.
Overall, we define the approximation of convergence by: M .m&m N iff M .may N and
M .must N .

3 Harmer’s game for nondeterminism

This section reviews Harmer’s game model together with a little sophistication specifically
needed for the development in the present paper. It is intended to make the present paper
self-contained as much as possible, but some details are omitted due to page limitation.
For the full details, see Harmer’s thesis [10]. More general aspects on game semantics for
Algol-like languages can be found in [4].

Arenas. The definition of arenas is standard, except that the arena moves are ordered. An
arena A is a triple ((MA, <A), λA,`A), where MA is a countable set of moves, associated
with a nonreflexive total order <A on them; λA : MA → {O,P} × {Q,A} is a labeling
function that assigns each move m ∈ MA its attributes, either O (opponent) or P (player)
and either Q (question) or A (answer); the enabling relation `A is a binary relation over the
moves satisfying: (e1) (a `A b ∧ a 6= b) =⇒ λOP

A (a) 6= λOP
A (b); (e2) b `A b =⇒ (λA(b) =

(O,Q) ∧ (a 6= b =⇒ a 6 `Ab)); (e3) (a `A b ∧ λQA
A (b) = A) =⇒ λQA

A (a) = Q, where we
write λOP

A (b) (resp., λQA
A (b)) for the opponent/player (resp., question/answer) attribution of

CSL’13

582 A Fully Abstract Game Semantics for Parallelism with Non-Blocking Synchronization

the move b. When a `A b (a 6= b), we say a justifies b. A move a is called an initial move if
a `A a.

The most trivial arena is 1 = (∅, ∅, ∅). The arena C = ((MC, <C), λC,`C) corre-
sponding to type com of commands is specified, as usual, by the data MC = {run, done},
λC(run)=(O,Q), λC(done) = (P,A), `C= {(run, run), (run, done)}, together with the or-
dering run <C done. For the arenas of other base types and type constructors, see Ap-
pendix B.

Here we notice that the arena definition does not preclude the possibility that question
moves are justified by answer moves. We say such a question move justified by an answer
move a a subquestion move (inferior to a). Let us write SubqA(a) = {q | a `A q} for the set
of all subquestions inferior to the answer move a. We call an answer move a a subquestioning
answer iff SubqA(a) 6= ∅. Throughout the paper, we assume that SubqA(a) is a finite set for
each answer move a. In this paper, subquestion moves in lifted arenas will play a significant
role in modeling parallelism (Section 4.1).

Justified strings, legal plays, and strategies. Let us write ε for an empty string of arena
moves and st (occasionally written s · t for clarity) for concatenation of strings of moves s
and t. We write s v t to mean that s is a prefix of t and also write s veven t in particular
when s is an even-length string. Typically, strings of arena moves are ranged over by s, t, u,
etc., while arena moves are ranged over by a, b, p, q, etc.

A justified string in an arena A is a sequence of moves in which every non-initial move
p has a pointer to an earlier occurrence of a justifying move q (i.e., q ` p), written like
· · · q · · · pxx · · · . In particular when p is an answer move (and hence q is a question move),
we say “p answers q.”

We say a justified string s is well-opened, if s has at most a single occurrence of initial
move. We also define the player view of a justified string s, denoted by V(s), by induction
on the length of s as follows: (i) V(sq) = q if q is initial; (ii) V(sqtp) = V(s)qp if p is an
opponent move and q justifies p; (iii) V(sq) = V(s)q if q is a player move.

A justified string s in arena A is called a legal play, if s strictly alternates opponent/player
moves, that is, s = o1p1o2p2 · · · where oi’s are opponents and pi’s are players. We write LA
to denote the set of legal plays in the arena A and also Leven

A (resp., Lodd
A) to denote the set

of even (resp., odd) length legal plays.
In order to appropriately model may&must-convergence in nondeterministic programs,

Harmer defined each game strategy by a pair of execution traces and witnesses of divergence.
A strategy σ is a pair (Tσ, Dσ), where the trace set Tσ is an even-length prefix closed

subset of Leven
A and the divergence set Dσ is a subset of Lodd

A satisfying: (d1) if s ∈ Tσ,
sa ∈ LA, and sa 6∈ dom(σ), then there exists d ∈ Dσ such that d v sa; (d2) if sa ∈ Dσ,
then s ∈ Tσ; If rngσ(sa) is an infinite set, then there exists d ∈ Dσ such that d v sa, where
rngσ(sa) = {sab | sab ∈ Tσ} is the range of moves that follows sa and dom(σ) = {sa |
rngσ(sa) 6= ∅} is the domain of σ.

We say a divergence d ∈ Dσ interesting, if d ∈ dom(σ); otherwise, it is called uninterest-
ing. A strategy σ is called deterministic if rngσ(sa) is a singleton set for every sa ∈ dom(σ);
A strategy σ is called reliable if it is deterministic and further every sa ∈ Dσ is uninteresting.

The composition of two strategies σ : A → B and τ : B → C, written σ; τ : A → C,
is obtained by parallel composition and hiding on the pair of plays taken from each of the
strategies. Given s ∈ LA→B and s′ ∈ LB→C , a parallel composition of s and s′ is a play t of
moves in MA ∪MB ∪MC such that s (resp., s′) is a restriction of t to the moves MA ∪MB

(resp., MB ∪MC). Hiding the moves MB occurring in t, we obtain a composite play.

S. Nishimura 583

The trace part Tσ;τ is the set of composite plays of any s ∈ Tσ and s′ ∈ Tτ . The
divergence Dσ;τ is the set of divergences that is a union of subsets generated by the following
two ways. One subset is obtained by parallel composition and hiding on the pair of a trace
from one strategy and a divergence from the other strategy. The other subset is obtained
from infinite traces generated by a pair of traces taken from both: Let u∞ be an infinite
play of moves in MA ∪MB ∪MC such that only a finite number of moves from MA or MB

are witnessed in u∞. Then the restriction of u∞ to MA ∪MB moves is a divergent play, as
u∞ can be understood as exhibiting an infinite chatter, where two strategies make infinite
(thus diverging) interaction with each other in the arena B.

We say strategy τ is more likely to converge than σ, denoted by σ ≤\ τ , iff Tσ ⊆ Tτ∧∀d′ ∈
Dτ .∃d ∈ Dσ.d v d′ ∧ ∀sab.(sab ∈ Tτ ∧ sab /∈ Tσ =⇒ ∃d ∈ Dσ.d v sab).

For every arena A, there is the least element ⊥A subject to ≤\, specified by (T⊥A , D⊥A) =
({ε}, {q | q: initial}). We will define σ =\ τ iff σ ≤\ τ and τ ≤\ σ.

Strategy subclasses. Throughout the paper, we will only concern the class of single-
threaded strategies [9, 10]. Intuitively, a single-threaded strategy consists of plays that
are closed under arbitrary interleaving of several copies of plays. This intuition is supported
by the fact that single-threaded strategies have a bijective correspondence with the so-called
well-opened ones, representing a single execution of a sequential program.

We say a strategy σ is well-opened iff every play s ∈ Tσ is well-opened and so is every
interesting divergence d ∈ Dσ. The bijective correspondence between single-threaded strate-
gies and well-opened ones, up to =\, is established by a pair of mappings WO (−) and ST (−):
for every single-threaded strategy σ and well-opened strategy υ, we have σ =\ ST (WO (σ))
and WO (ST (υ)) =\ υ, where WO (σ) restricts the plays in σ to those well-opened ones and
ST (υ) interleaves several copies of the well-opened plays in υ.

Due to this bijective correspondence, we may specify a single-threaded strategy σ by
just giving the well-opened plays contained in the trace Tσ and the interesting divergences
in Dσ. Every uninteresting divergence is implicitly identified by (d1), i.e., sa ∈ Lodd

A is
identified as an uninteresting divergence whenever s ∈ Tσ but sa 6∈ dom(σ). Furthermore,
the trace set can be identified by (the prefix closure of) the longest well-opened plays. Also,
we may not even mention divergences, when the strategy has no interesting divergences.
For example, when we say a single-threaded strategy σ : C is specified by the trace set
{run · done} (of the longest well-opened plays), σ is formally a strategy defined by the pair
(Tσ, Dσ) = ({(run·done)k | k ≥ 0}, {(run·done)k·run | k ≥ 1}).

In this paper, we will mostly concern a further limited class of strategies satisfying the
following closure properties, except for the scheduler strategy to be presented in Section 5.

A strategy σ is called player visible, if for every sa ∈ Tσ, the player move a is justified
by a move in V(s); A strategy σ is called player bracketing, if for every sa ∈ Tσ, a is the
answer to the pending question, i.e., the last occurrence of unanswered question in V(s).

Harmer gave a fully abstract semantics for Idealized Algol with erratic nondeterminism
on a cartesian closed category C of games, whose objects are the arenas and morphisms are
the (=\-equivalence classes of) single-threaded strategies. The identity arrow assigned to
an object A in C is the copycat strategy idA : A → A, which is specified by the trace set
TidA = {s ∈ Leven

A1→A0
| ∀t veven s.(t � A1 = t � A0)}.1 Restricting morphisms in C to those

player visible and player bracketing ones, we have a lluf subcategory, denoted by Cvb.

1 We may occasionally put subscripts or primes in order to distinguish different copies of the same arena.

CSL’13

584 A Fully Abstract Game Semantics for Parallelism with Non-Blocking Synchronization

In what follows, by abuse of notation, we denote each morphism in C (and their subcat-
egories as well) by σ, a representative of the equivalence class containing it.

4 The Game for Parallelism

As usual, each IApar term is assigned a game strategy whose arena is determined by the
type of the term. The base types (except for par) and function types are each interpreted
as [[nat]] = N, [[com]] = C, [[var]] = Var, and [[T → T]] = [[T]] ⇒ [[T]]. Each typing context
Γ = x1 : T1, · · ·xk : Tk is interpreted by a product arena, namely, [[Γ]] = [[T1]]× · · · × [[Tk]].

4.1 Interleaving game plays
While a single-threaded strategy just interleaves independent execution of threads, the ex-
ecution of threads in a shared variable parallel program can be affected by the order of
interleaved variable access operations. This possible dependency between threads can be
properly modeled in lifted arenas [16, 10] within a single-threaded strategy.

A lifted arena A⊥ is a triple ((MA⊥ , <A⊥), λA⊥ ,`A⊥), where MA⊥ = {?,
√
} + MA,

λA⊥ = [λ′, λA] with λ′(?) = (O,Q) and λ′(
√

) = (P,A), and p `A⊥ q iff p = q =? ∨
(p = ?∧ q =

√
) ∨ (p =

√
∧ q `A q) ∨ (p `A q ∧ p 6= q). The associated ordering extends

<A with ? <A⊥

√
and also p <A⊥ q for every p ∈ {?,

√
} and q ∈MA.

We interpret par type by [[par]] = (C1 × · · · ×Cζ)⊥. The individual threads in this
arena is ordered by: run1 <[[par]] run2 <[[par]] · · · <[[par]] runζ . An IApar term Γ `
seq M (M1‖ · · · ‖Mζ) : par is interpreted by a strategy whose play has the form ? s

√
t,

where s models the interaction of the command M with Γ and t models the execution of the
subsequent parallel command M1‖ · · · ‖Mζ . whose interleaved parallel execution is modeled
by the subsequent play t. As mentioned in [10], the lifting construction gathers parallel
threads of computation into a single sequence of play, allowing single-threaded strategies to
express history-sensitive execution.

The arenas that interpret par and higher-types involving it, however, still contain some
strategies that are not definable by the terms of IApar : The language IApar is carefully
designed to force affine uses of parallel computational contents. Further, a parallel compu-
tational content cannot be converted to a sequential computational content either; it can
only be either discarded or modified by means of a few parallel constructs.

A suitable (fully abstract) game model for IApar is obtained by further restricting the
class of strategies to subquestion-affine ones, which satisfy the following properties.

(sq1) For every s·?′ ∈ Tσ, if ?′ `A
√′ for some subquestioning answer

√′, then the occurrence
of ?′ is justified by an occurrence of ? in s, where ? is a question move satisfying ? `A

√

for some subquestioning answer
√
.

(sq2) For every s·
√′ ∈ dom(σ) where

√′ is a subquestioning answer, s·
√′ 6∈ Dσ and

rngσ(s·
√′) = {s·

√′·
√
} for some subquestioning answer

√
.

(sq3) For every s·
√′·
√
·t·q ∈ dom(σ) such that

√′ and
√

are subquestioning answers and q ∈
SubqA(

√
), it holds that s·

√′·
√
·t·q 6∈ Dσ and rngσ(s·

√′·
√
·t·q) = {s·

√′·
√
·t·q·ρ(q)},

where ρ(q) is justified by
√′ and ρ : SubqA(

√
) 7→ SubqA(

√′) is the bijection that
preserves the order <A.

(sq4) For every u·b·
√
·s·q·t ∈ Tσ where q is a subquestion move justified by

√
which is further

justified by an initial move, if u·b·
√
·s·q·t·q ∈ Lodd

A in which the both occurrences of q
are justified by

√
and also b is not a subquestioning move, then u·b·

√
·s·q·t·q 6∈ dom(σ).

S. Nishimura 585

To see how these conditions compel the affine use of parallel computation, let σ ∈ [[T]]
be a subquestion-affine strategy for some type T. The condition (sq4) applies to the case
where T has the form · · · → par, with q being any runj ∈ [[par]] (1 ≤ j ≤ ζ), prohibiting
any duplicated occurrences of the same move runj . This compels each thread of a parallel
command to execute once and only once.

The conditions (sq1)–(sq3) apply to the case where T contains a positive occurrence
of par and a negative occurrence of par′ in the form (T′ → par′) → · · · → par. Any
occurrence of ?′ ∈ M[[par′]] in a trace of σ must be justified ? ∈ M[[par]] [(sq1)]; Any
occurrence of

√′ ∈ M[[par′]] in σ must be immediately followed by
√
∈ M[[par′]] with-

out diverging [(sq2)]; Any occurrence of runj ∈ M[[par]] in σ must be immediately fol-
lowed by run′j ∈ M[[par′]] without diverging, unless the subquestioning move

√
that jus-

tifies runj is ever preceded by
√′ [(sq3)]. Thus a typical trace of σ has the form like:

?·s·?′· · ·
√′·
√
·run1·run′1 · · · run2·run′2 · · · done′1·t1·done1 · · · done′2·t2·done2 · · · run1·run′1 · · · .

It is intended that the corresponding function makes just a single copy of computation
of the argument type par′, possibly augmenting it by preamble sequencing and thread ex-
tension (as denoted by subsequences s and ti’s in the trace above, respectively). Notice
that, as opposed to the case of (sq4) that does not copy parallel computation, the trace can
contain duplicated occurrences of the same move runj , each immediately followed by run′j .
These duplicates are not harmful, since they are superficial in a sense that solely the earliest
one of the duplicates can come into play, eventually when the strategy is combined with
some strategy in [[T′ → par′]].

In what follows, we will develop a game semantical framework on a category G of games,
a lluf subcategory of Cvb, whose morphisms of player visible and player bracketing strategies
are further restricted to subquestion-affine ones. The category C and their subcategories
Cvb and G are cartesian closed. For any objects A and B, A⇒ B is the exponential object
with its associated evaluation map evA,B : (A ⇒ B) × A → B being a copycat strategy
between the copies of arenas A and B, respectively. The currying isomorphism is written
ΛA,B(f) : C → (A⇒ B) for every f : C ×A→ B.

4.2 Wait-notify games for shared variable access

We model interleaved access to shared variables in wait-notify games [20], as we discussed
earlier. The arena WN of wait and notify moves is defined as below.

WN = ((MWN, <WN), λWN,`WN) is the arena of wait-notify signals, where MWN =
{W, N}, λWN(W) = (O,Q), λWN(N) = (P,A), `WN= {(W, W), (W, N)}, and and W <WN N.

Let F : G → G be the functor WN⇒ (−) and (F, η, µ, t) be the canonical commutative
strong monad, where each natural transformation is given the following game interpretation:

The unit ηA : A → WN ⇒ A is a trivial copycat between the two copies of arena A,
with no witnesses of WN moves.
The multiplication µA : WN1 ⇒ (WN2 ⇒ A) → WN0 ⇒ A is a copycat in which
(i) each opponent move of an arena A is immediately copied by the same move of the
other A arena; (ii) each opponent W move of WN1 or WN2 is copied by a W move of
WN0; (iii) each opponent N move of WN0 is copied by a N move of WN1 (resp., WN2)
when the opponent N move is justified by a W move that copies a move of WN1 (resp.,
WN2).
The tensorial strength tA,B : A× (WN⇒ B)→WN⇒ (A× B) is the trivial copycat
between the arenas A× (WN⇒ B) and WN⇒ (A×B).

CSL’13

586 A Fully Abstract Game Semantics for Parallelism with Non-Blocking Synchronization

The monadic structure in G, in the usual way, gives rise to the Kleisli category GF , whose
objects are the same as G and the homset GF (A,B) is G(A,FB). We write f : A →→→ B to
mean f is in GF (A,B).2 The composition of two Kleisli arrows f : A →→→ B, g : B →→→ C,
written f ; g, is the morphism f ; g∗ : A → FC (in G), where g∗ : FB → FC is the Kleisli
extension of g. For each object A, GF has the identity arrow idA : A →→→ A = ηA and the
terminal arrow !!!A : A →→→ 1 = ΛWN(!A×WN).

The category GF is also cartesian closed. For objects A and B, the exponential object
is A ⇒ B (the same as that of G) and the evaluation map is given by evA,B : (A ⇒
B)× A →→→ B = evA,B ; ηB . For each f : C × A →→→ B, the currying isomorphism is given by
ΛA(f) : C →→→ (A ⇒ B) = ΛA(f); δ−1

A,B , where δA,B : F (A ⇒ B) → A ⇒ FB is the trivial
copycat strategy between the arenas WN⇒ (A⇒ B) and A⇒ (WN⇒ B). Given Kleisli
arrows f1 : A →→→ B1, ..., fk : A →→→ Bk, we write, as usual, 〈〈〈f1, . . . , fk〉〉〉 : A →→→ B1 × · · · ×Bk
for pairing operations and πi : B1 × · · · × Bk → Bi (1 ≤ i ≤ k) for projections. πi may be
instead written as πBi when there arises no confusion.

The categories G and GF inherit some significant properties [10] from C: They are CPO-
enriched, where the underlying CPO is an algebraic CPO with the least element ⊥A for
every arena A, w.r.t. the ordering ≤\. Furthermore, a strategy σ is a compact element in
the CPO iff TWO(σ) is a finite set.

5 The Game Model and the Soundness

The game model is given in a quite standard way except that each IApar term Γ ` M : T
is interpreted by a Kleisli arrow in GF , denoted by [[Γ ` M : T]] : [[Γ]] →→→ [[T]], as given in
Fig. 3 of Appendix B. (We may instead write [[Γ ` M]] or [[M]], unless ambiguity arises.)
We notice that the strategy given to every term is player visible, player bracketing, and
subquestion-affine.

The W and N moves in the Kleisli arrows model the wait and notify events that come into
play when accessing shared variables: Each time a program tries to access a shared variable,
it is forced to yield its execution to another running thread and wait until it is notified
to resume execution after an arbitrary amount of delays. Thus the terms assign, deref,
and cas are modeled by strategies whose every interaction with the Var arena is preceded
by a sequence of moves W·N, which are kept throughout a series of Kleisli compositions.
Let us consider, for instance, a term v : var ` seq M1 M2 where M1 = assign v 1 and
M2 = assign v 2. The term seq M1 M2 is interpreted by the strategy 〈〈〈[[M1]], [[M2]]〉〉〉; seqcom =
〈〈〈[[M1]], [[M2]]〉〉〉; seq∗com, where the Kleisli extension seq∗com : F ′(com1×com2)→ Fcom has a trace
run·run1·W′·W·N·N′·done1·run2·W′·W·N·N′·done2·done that augments the trace in seqcom : com1×
com2 → Fcom with extra WN moves that copies each WN move associated to com1 or com2
to a WN move associated to com. When this is composed with the strategies [[Mi]] : var→
F ′comi (i = 1, 2) of subterms, each of which is specified by a trace run·W′·N′·wri·ok·done,
the extra moves W′ and N′ in both strategies are synchronized and hidden but the copies of
them are kept intact in the composed trace as: run·W·N·wr1·ok·W·N·wr2·ok·done.

Several term constructors would worth further explanation. Thread extension P �j

M makes use of the strategy contj : (C′1 × · · · ×C′ζ)⊥ × C →→→ (C1 × · · · ×Cζ)⊥, which
combines the strategy of the parallel command P with that of the sequential command
M at the end of the j-th thread’s execution. The interpretation of the parallel command
M1‖ · · · ‖Mζ is given for its equivalent: (skip ‖ · · · ‖ skip)�1 M1 �2 M2 · · · �ζ Mζ . The

2 Notice the uses of heavier symbols in the Kleisli category.

S. Nishimura 587

trivial parallel command skip ‖ · · · ‖ skip is interpreted by a strategy (the strategy pskip
in Appendix B) whose well-opened trace set consist of the ζ copies of the neutral command
skip in the arena [[par]].

Since every IApar term is interpreted by a Kleisli arrow in our game model, two terms
that are comparable in an operational sense are not necessarily so by their corresponding
strategies, due to the excess W and N moves. These excessive moves are necessary for modeling
interleaved parallel execution but should be ignored when we discuss the observable behavior
of programs.

Specifically for this purpose, we introduce a scheduler strategy sched : F (C1 × · · · ×Cζ)⊥
→ C in C, which is identified by the set of (well-opened longest) traces {run·?·(W·N)k·

√
·s·

done | k ≥ 0, s ∈ CPP}, where CPP is the set of complete parallel plays: we say a legal
play s ∈ F (C1 × · · · × Cζ) is a complete parallel play if s arbitrarily interleaves the plays
runj ·(W·N)kj ·donej (1 ≤ j ≤ ζ, kj ≥ 0) and both runj and donej have exactly a single
occurrence in s for each j. We remark that the strategy sched in C but not in G or Cvb,
because it is neither player visible nor player bracketing. For example, sched has a trace

run ?
�� √

run1
��

W
��

run2
}}

W
zz

N
yy

done1
yy

N
yy

done2
yy

· · · , where the second N is not justified
by a move in its player view run·?·

√
·run1·done1·N and also the first N does not answer to

the last unanswered question in its player view, i.e., the second W. This indicates that the
scheduler strategy is not definable in IApar without using higher-order references and control
primitives [2, 14, 15].

In what follows, the soundness property is discussed up to the so-called intrinsic quotient,
a game model quotiented by contexts [3, 16, 10]. In most game models, the intrinsic quotient
is only needed for establishing the full abstraction result, but the present paper needs it for
establishing the soundness result as well, because of the above mentioned issue.

Using the scheduler strategy, we define the intrinsic quotient as follows: Given morphisms
f, g : A →→→ B in GF , we define f 4 g iff (‘f ’;h); sched ≤\ (‘g’;h); sched for every h : (A ⇒
B) →→→ Cζ

⊥, where ‘f ’ : 1 →→→ A ⇒ B is the name of f , namely, ‘f ’ = ΛA(πA; f). We write
f ' g to mean f 4 g and g 4 f . Let us write GF /' for the quotient category. GF /' is
cartesian closed and is also rational, which is a sufficient condition for modeling recursions
in Algol-like languages [16, 10]. We write E [[M]] = [[[M]]]', the extensional interpretation of
the term M in GF /'.

The soundness property follows from the consistency and adequacy.

I Proposition 1 (consistency). Suppose M is a closed term of type par. If M⇓may, then
run·done ∈ T[[M]];sched ; If M⇓must, then run 6∈ D[[M]];sched .

I Proposition 2 (adequacy). Suppose M is a closed term of type par. If run·done ∈
T[[M]];sched , then M⇓may; If run 6∈ D[[M]];sched , then M⇓must.

I Theorem 3 (soundness). If M and N are closed terms of type T and E [[M]] . E [[N]], then
M .m&m N .

6 Definability and Full Abstraction

As Harmer did for his nondeterministic Algol-like language [10], we can also show the full
abstraction result for our parallel language IApar by combining two factorizations and a
definability result. However, we need to make his techniques more precise, due to extra
intricacies involved in parallelism, most notably race conditions on shared variables.

CSL’13

588 A Fully Abstract Game Semantics for Parallelism with Non-Blocking Synchronization

6.1 Reliable factorization
We first factor out possible nondeterminism as the oracle strategy oracle : 1 →→→ N′⇒N,
whose (longest well-opened) traces are {qq′0n | n ≥ 0}∪{q(q′m)n+1n | m > 0∧0 ≤ n ≤ m}
and the (sole) well-opened interesting divergence is qq′0. Given a constant 0, the oracle
strategy nondeterministically diverges or converges to produce an arbitrary number; Given
a positive constant m, it never diverges but reliably returns a number not greater than
m. The strategy oracle is definable by the term λxnat.if0 x then 0 else 0′x, where 0 =
fixnat(λx.0 or (x+ 1)) and 0′ = fixnat→nat(λf.λx.if0 x then 0 else (0 or f(x− 1) + 1)).

Assuming a fixed coding function codeA that assigns a unique natural number to each
distinct legal play in arena A, we separate out the reliable part of a strategy σ as follows.

I Proposition 4. If σ : 1 →→→ A is a compact strategy in GF , then there exists a compact,
reliable strategy det(σ) : (N′ ⇒ N) →→→ A such that σ =\ oracle; det(σ).

Proof. The proof basically follows that of Proposition 4.6.2 in [10], but we must be careful
that our oracle strategy is different from the one employed in Harmer’s original proof, in
that Harmer’s oracle strategy makes use of local variables whereas ours doesn’t. The effect is
that ours makes duplicated copies of the argument, witnessed as the subsequence (q′m)n+1

in the trace. This does not matter for factorization, though. Wherever Harmer factors out
a finitely branching nondeterminism at sa ∈ dom(σ) by a trace · · · a·q·q′m·j·b in det(σ), we
do it by a bit longer trace · · · a·q·(q′·m)j+1·j·b. Factorization at diverging points is similarly
done.

Further, in order to have the factorization process closed under the subquestion-affine
property, we have to make Harmer’s factorization more precise so that any oracle moves are
not inserted where the subsequent player move is uniquely determined. J

Our preference to the oracle that is definable without local variables is due to the extra
WN moves to be introduced otherwise. Harmer’s oracle strategy would also work in our
game model modulo '. We will deal with '-quotients in the next step, where we can work
with reliable strategies, without being bothered with divergence or nondeterminism.

6.2 Innocent factorization
The second step toward full abstraction is innocent factorization [3], which separates an
innocent (history-free, in other words) strategy from history-sensitive one. A strategy σ

is called innocent if σ is reliable and player visible and for every sab ∈ Tσ and t ∈ Lodd
σ

such that V(sa) = V(t), tb ∈ Tσ and V(sa)b = V(t)b, where b is justified by the matching
move in the player view. An innocent strategy σ is uniquely identified by its view function,
fun(σ) = {V(s) | s ∈ Tσ}.

The idea in innocent factorization of a strategy is to determine its behavior up to, instead
of the trace that it has played so far, a record of execution history kept in a variable. The
standard innocent factorization procedure builds an innocent strategy, whose view function
contains a player view of the form s′·a·rd·codeA(s)·wrcodeA(s·a·b)·ok·b, for every sab ∈ Tσ
and the player view s′ of the factorization of s. This construction violates, however, the
subquestion-affine conditions (sq2) and (sq3). Thus we need a factorization procedure with
improved precision.

Let σ be a reliable and player visible strategy. A player view V(sab) at an opponent
move a of σ is called locally innocent, if it holds that V(sab) = V(s′ab′) for every s′ab′ ∈ Tσ
satisfying V(sa) = V(s′a). Wherever a player view at an opponent move is locally innocent,

S. Nishimura 589

as the next player move that follows is uniquely determined by the player view, we can skip
and postpone the history update until we reach a point that is not locally innocent.

More fundamentally, we need another change in the factorization procedure, in or-
der to avoid possible race conditions caused by parallel accesses to the shared variable.
Suppose we have a strategy in arena F [[par]] that has a factorized view function contain-
ing plays like ?·

√
·runj ·sj ·donej (1 ≤ j ≤ ζ), where each sj contains successive moves

aj ·W·N·rd·mj ·W·N·wrnj ·ok·pj . (Remember that every move representing a variable access op-
eration is preceded by W·N in our game modeling.) Then the factorized strategy, which
arbitrarily interleaves the plays in the view function, contains a play that competes for the
shared variable, e.g., ?·

√
· · · a1·W·N·rd·m1·W·a2·W·N·rd·m2·W·N·wrn1 ·ok ·p1·N·wrn2 ·ok·p2. At

the end of the play, thread 1 has already reached its player move p1 but it is not recorded
in the storage, overwritten by the subsequent moves of thread 2.

Here we achieve innocent factorization by a thread-safe programming on game plays. We
make use of the atomic read-modify-write ability provided by the CAS operation in order
to avoid race conditions, making each history update inseparable from the completion of a
single computation step. To do this, we may just spin over the variable storing the history,
repeatedly trying to atomically update the variable by CAS until successful. However,
the spin lock mechanism is too naïve as a means for factorization, as it may introduce an
undesired divergence when the update fails forever. Instead, we repeatedly try to update,
but bounded by a sufficiently large number of times. Such a bound exists, if we assume a
compact strategy, i.e., a strategy whose well-opened traces are finite, because there can be
at most a bounded number of successful writes throughout the entire traces, meaning that
each repeated execution of update by CAS is guaranteed to succeed within the bound.

To sum up, given a compact, player visible, and reliable strategy σ on an arena A→ FB

and also a positive number d, we construct an innocent strategy innd(σ), identified by the
view function fun(innd(σ)) that contains the following player views for every s·a·b ∈ Tσ:

When the player view V(sa) is locally innocent, we just add player views of the form
s′·a·b to the view function, where s′ is a factorization obtained from s;
Otherwise, for any partial function ν on natural numbers such that ν(n) = m iff n =
code(s′), m = code(s′ab) for some s′ab ∈ Tσ satisfying V(s′a) = V(sa), where s′ is a fac-
torization obtained from s. Then, we add (every even-length prefixes of) player views of
the following form s′·a·(W·N)d·rd·code(s)·uc0,c1 ·uc1,c2 · · ·uci,ci+1 · · ·uck,ν(ck)·(W·N)d·b,
where um,m′ is a sequence of moves (W·N)d·casm,ν(m)·m′, c0 = code(s), and for every
i (1 ≤ i ≤ k), ci 6= ν(ci−1) and there exists ta′b′ ∈ TWO(σ) satisfying code(t) = ci−1 and
code(ta′b′) = ci. k is bounded by a number determined by each given strategy, i.e., the
length of the longest well-opened trace.

We call the strategy innd(σ) a d-delayed innocent strategy, as every sa ∈ dom(σ) must
be followed by at least d successive sequences of W·N moves, unless the player view V(sa)
uniquely determines the next player move. Formally, an innocent strategy σ is called d-
delayed iff for every trace sab ∈ Tσ, either b is W, the player view V(sa) is locally innocent,
or V(sab) = t·(W·N)d·b for some t. The extra d-delays, not just a single delay, are needed for
obtaining the definability result (Section 6.3).

I Proposition 5. Let f : 1 →→→ A be a compact reliable strategy in GF . Then, for every
d ≥ 1, there is a compact d-delayed innocent strategy innd(f) : Var →→→ A in GF such that
(cellcode(ε); ηVar); innd(f) ' f .

We notice that factorization is modulo ', which ignores the extra WN moves introduced
during the factorization procedure.

CSL’13

590 A Fully Abstract Game Semantics for Parallelism with Non-Blocking Synchronization

6.3 Definability
The last step toward the full abstraction is the definability: We are obliged to show that
every strategy in a suitable strategy subclass is definable by an IApar term.

In the construction of IApar terms below, we need a general conditional expression case`,T :
nat × T` → T, where ` ≥ 0 and T is either nat, com, or par. This conditional expression
is an operationally conservative extension to the language, as it is defined by the following
IApar term:

λxx1 · · ·x`.
(
newvar v = 0 in

seq (assign v x) (if0 (deref v) then x1 else
(if0 (deref v)− 1 then x2 else · · · (if0 (deref v)− ` then x` else Ω) · · ·))

)
where Ω is the divergence at type T.

Due to the variable access operations being involved, however, the game interpretation
of case`,T contains extra WN moves in its traces: Given a natural number m less than ` as
its first argument, casek,T has m+ 1 accesses to the local variable v, leaving (W·N)m+1 in its
trace as the footprint. The extra WN moves are canceled by the aforementioned d-delayed
innocent strategy innd(σ), where d is a number larger than the maximum number of possible
opponent moves that immediately follow the same player view, i.e., max{#{ta′b′ | ta′b′ ∈
fun(σ)} | tab ∈ fun(σ)}.

In case some trace in the innocent strategy contains excess W·N sequences than those to
be canceled out, we let the term newvar v = 0 in assign v 0, denoted by touch hereafter,
cancel out the remaining ones. The term touch has the trace run·W·N·done, which witnesses
a single W·N sequence as the footprint of a single access to the local variable v. Further, for

brevity, we will write touchk for the command
k times︷ ︸︸ ︷

seq touch (seq touch · · · (seq touch skip) · · ·).
Let us show that any compact, d-delayed innocent, player bracketing strategy σ : [[T1]]×

· · ·× [[Tn]] →→→ [[T]], where d is a sufficiently large number as analyzed above, is definable by an
IApar term of the form x1 : T1, · · · , xn : Tn `M : T. We construct such a term by induction
on the size of view function fun(σ), where the base case is fun(σ) = {ε} that is trivially
definable by Ω. Below we will mostly concern par types and the extra WN moves. (We
will omit some details not concerning these extra complications. See [10] for the missing
details.)

We may assume that T is a base type. If otherwise, say, T = T′1 → · · · → T′m → T′ with T′

being a base type, we instead work on the isomorphic strategy on [[T1]]× · · · × [[Tn]]× [[T′1]]×
· · · × [[T′m]] →→→ [[T′]].

Here we consider solely the case T = par. The remaining cases T = nat, T = com, and
T = var are shown in almost the same way, except that, when T = var, we need to construct
a bad variable mkvar M N L with L being the term that simulates a CAS-like operation.

Suppose that ?·(W·N)d·qj ∈ fun(σ), where qj is a move from the arena N in particular
when Tj has the form T′1 → · · · → T′m → nat, with d being the sufficiently large num-
ber. We derive a class of substrategies from σ that separate out the threads of play in
[[Tj]] induced by the move qj , as follows. Let σi : [[T1]] × · · · × [[Tn]] →→→ [[par]] (i ≥ 0)
and σ′h : [[T1]] × · · · × [[Tn]] →→→ [[T′h]] (1 ≤ h ≤ m) be substrategies identified by view func-
tions fun(σi) = {?·s | ?·(W·N)d·qj ·i·s ∈ fun(σ)} and fun(〈〈〈σ′1, · · · , σ′m〉〉〉) = {s | ?·(W·N)d·qj ·s ∈
fun(σ), s contains no answer to qj}, respectively. By the compactness, there exists a nat-
ural number ` such that fun(σi) = {ε} for every i ≥ `. Since each substrategy is again a
compact, d-delayed innocent, player bracketing strategy that is strictly smaller than fun(σ),

S. Nishimura 591

by induction hypothesis, we have terms Mi and M ′h defining σi and σ′h, respectively, for
each i and h. Then the strategy σ is definable by the term:

case`,par (xjM ′1 · · ·M ′m) (seq touchd−1 M0) (seq touchd−2 M1) · · · (seq touchd−` M`−1).

The case the right-most base type in Tj being com or par is similarly defined by using seq
in place of case; The case for var is also similar, except that we need to additionally deal
with CAS operations.

When ?·W·N·p ∈ fun(σ) with p not being a move from [[Tj]]’s, the strategy σ is simply
definable by the term seq touch M , whereM is the defining term of the substrategy σ′ spec-
ified by fun(σi) = {?·p·s | ?·W·N·p·s ∈ fun(σ)}. When ?·

√
∈ fun(σ), we define substrategies

σj : [[T1]]× · · · × [[Tn]] →→→ Cj (1 ≤ j ≤ ζ) by view functions fun(σj) = {runj ·t | ?·
√
·runj ·t ∈

fun(σ)}. By induction hypothesis, we have a term Mi that defines σi for each i. Then the
strategy σ is definable by the term M1‖ · · · ‖Mζ .

The remaining case is that there exists ?·?′·
√′·
√
∈ fun(σ) where

√′ is a subquestioning
answer, which is derived from the par′ type in Tj of the form T′1 → · · · → T′m → par′.
Likewise above, we derive substrategies from σ. Let σi : [[T1]]× · · · × [[Tn]] →→→ C (1 ≤ i ≤ ζ)
and σ′h : [[T1]]× · · · × [[Tn]] →→→ [[T′h]] (1 ≤ h ≤ m) be substrategies identified by view functions
fun(σi) = {runi·s′ | ?·?′·

√′·
√
·runi·run′i·done′i·s′ ∈ fun(σ)} and fun(〈〈〈σ′1, · · · , σ′m〉〉〉) = {s′ |

?·?′·
√′·
√
·runj ·run′j ·s′ ∈ fun(σ), s′ contains no answer to run′j}, respectively. Again, by in-

duction hypothesis, we have terms Mi, and M ′j defining σi, and σ′j , respectively, for each i
and j. Then σ is definable by the term (xjM ′1 · · ·M ′m)�1 M1�2 M2 · · · �ζ Mζ .

I Theorem 6 (definability). Let σ : [[Γ]] →→→ [[T]] be a compact and player bracketing strategy in
GF (henceforth, it is also a player visible, subquestion-affine strategy.) Then, σ is definable
in IApar .

I Theorem 7 (Full abstraction). Suppose M and N are closed terms of type T. Then,
E [[M]] . E [[N]] iff M .m&m N .

7 Conclusion and Future Work

We have developed a full abstract game semantics for an Algol-like parallel language with a
non-blocking synchronization primitive CAS. Elaborating on the wait-notify game [20] in the
framework of Harmer’s game model for nondeterminism [10], we exploited the computational
structure of the Kleisli category induced by the extra W and N moves and thereby established
the full abstraction, in which we made a significant use of CAS operations.

Based on the full abstraction result, it would be beneficial to find a subset language
whose observational equality is decidable, as it would provide a mechanized method for
equivalence checking, as done in [6]. Further, though the present paper is limited to an
unfair thread scheduling policy specified by the particular strategy sched , more flexible
variants of scheduling policy (say, the Round-robin scheduling) would worth investigating.
This requires a game model for fair nondeterminism, which would provide a deeper insight
on parallel computation.

Acknowledgment. I would like to thank Shin-ya Katsumata for his valuable comments
and suggestions on an early draft of the paper. I am also grateful for reviewers for their
helpful comments. This work was supported by KAKENHI 24500014.

CSL’13

592 A Fully Abstract Game Semantics for Parallelism with Non-Blocking Synchronization

References

1 Samson Abramsky. Game semantics of idealized parallel Algol. Lecture given at the Newton
Institute, 1995.

2 Samson Abramsky, Kohei Honda, and Guy McCusker. A fully abstract game semantics for
general references. In 13th Annual IEEE Symposium on Logic in Computer Science, pages
334–344, 1998.

3 Samson Abramsky and Guy McCusker. Linearity, sharing and state: A fully abstract game
semantics for idealized Algol with active expressions. In P. W. O’Hearn and R. D. Tennent,
editors, Algol-like Languages, volume 2 of Progress in Theoretical Computer Science, pages
297–329. Birkhäuser, 1997.

4 Samson Abramsky and Guy McCusker. Game semantics. In H. Schwichtenberg and
U. Berger, editors, Computational Logic: Proceedings of the 1997 Marktoberdorf Summer
School, pages 1–56. Springer-Verlag, 1999.

5 Stephen Brookes. Full abstraction for a shared variable parallel language. In Proceedings
of 8th Annual IEEE Symposium on Logic in Computer Science, pages 98–109, 1993.

6 Dan R. Ghica and Guy McCusker. The regular-language semantics of second-order idealized
ALGOL. Theoretical Computer Science, 309(1–3):469–502, 2003.

7 Dan R. Ghica and Andrzej S. Murawski. Angelic semantics of fine-grained concurrency.
Annals of Pure and Applied Logic, 151(2-3):89–114, 2008.

8 Dan R. Ghica, Andrzej S. Murawski, and C.-H. Luke Ong. Syntactic control of concurrency.
Theoretical Computer Science, 350(2-3):234–251, 2006.

9 Russel Harmer and Guy McCusker. A fully abstract game semantics for finite nondetermin-
ism. In Proceedings of the 14th Annual IEEE Symposium on Logic in Computer Science,
pages 422–430, 1999.

10 Russell Harmer. Games and Full Abstraction for Nondeterministic Languages. PhD thesis,
University of London, 1999.

11 Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages
and Systems, 13(1), 1991.

12 Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan Kauf-
mann, 2008.

13 J. M. E. Hyland and C.-H. Luke Ong. On full abstraction for PCF: I, II, and III. Information
and Computation, 163(2):285–408, 2000.

14 James Laird. Full abstraction for functional languages with control. In 12th Annual IEEE
Symposium on Logic in Computer Science, pages 58–67, 1997.

15 James Laird. A fully abstract game semantics of local exceptions. In 16th Annual IEEE
Symposium on Logic in Computer Science, pages 105–114, 2001.

16 Guy McCusker. Games and Full Abstraction for a Functional Metalanguage with Recursive
Types. Distinguished Dissertations. Springer, 1998.

17 Gordon D. Plotkin. A powerdomain construction. In SIAM J. Comput., number 5 in 3,
pages 452–487, 1976.

18 John C. Reynolds. The essence of Algol. In Proceedings of the 1981 International Sympo-
sium on Algorithmic Languages, pages 345–372. North-Holland, 1981.

19 David A. Schmidt. Denotational Semantics: A Methodology for Language Development.
1986.

20 Keisuke Watanabe and Susumu Nishimura. May&must-equivalence of shared variable
parallel programs in game semantics. Information Processing Society of Japan Transac-
tions on Programming (PRO), 5(4):17–26, 2012. http://jlc.jst.go.jp/DN/JST.JSTAGE/
ipsjtrans/5.167.

http://jlc.jst.go.jp/DN/JST.JSTAGE/ipsjtrans/5.167
http://jlc.jst.go.jp/DN/JST.JSTAGE/ipsjtrans/5.167

S. Nishimura 593

Γ, x : T ` x : T Γ ` n : nat
Γ `M : nat Γ ` N : nat

Γ `M ? N : nat

Γ, x : T′ `M : T

Γ ` λxT′
.M : T′ → T

Γ `M1 : T′ → T Γ `M2 : T′

Γ `M1M2 : T
Γ `M : T→ T
Γ ` fixT M : T

Γ ` skip : com
Γ `M1 : com Γ `M2 : T T ∈ {nat, com, par}

Γ ` seq M1 M2 : T

Γ `M : nat Γ `M1 : T Γ `M2 : T T ∈ {nat, com, par}
Γ ` if0 M then M1 else M2 : T

Γ `M : var Γ ` N : nat
Γ ` assign M N : com

Γ `M : var
Γ ` deref M : nat

Γ ` L : var Γ `M : nat Γ ` N : nat
Γ ` cas L M N : nat

Γ `M : nat→ com Γ ` N : nat Γ ` L : nat→ nat→ nat
Γ ` mkvar M N L : var

Γ, v : var `M : T T ∈ {com, par}
Γ ` newvar v = n in M : T

Γ `M1 : nat Γ `M2 : nat
Γ `M1 or M2 : nat

Γ `M1 : com · · · Γ `Mζ : com
Γ `M1‖ · · · ‖Mζ : par

Γ ` P : par Γ `M : com
Γ ` P �j M : par

Figure 1 Typing rules.

A Typing Rules and Operational Semantics for IApar

The typing rules of IApar are given in Figure 1.
Let us write 〈s | v 7→ m〉 for a store that updates s to give the natural number m at v.

Let us also write M [N/x] for the term substitution, which replaces every free occurrence of
variable x in M with N , assuming the usual variable convention.

The reduction rules are given in Figure 2, relative to evaluation context. An evaluation
context E is a term with a single hole [] defined by the following grammar:

E ::= [] | E ? M | n ? E | EM | seq E M | if0 E then M else N | E�j M

| M1‖ · · · ‖Mj−1‖E‖Mj+1‖ · · · ‖Mζ .

We write E[M] for the term obtained by filling the hole in E with term M .
Here we notice that there are three term formations whose evaluation can be nonde-

terministic: M1 or M2, the erratic binary choice on natural numbers; M1 ‖ · · · ‖ Mζ ,
the choice of a single command out of ζ simultaneously running sequential commands;
(M1 ‖ · · · ‖ Mζ)�jM , which either extends the j-the thread’s execution by the command
M or executes just one out of ζ parallel threads a single step forward. The last nondeter-
minism, nevertheless, is neutral to the observational property, that is, the different reduced
terms can conflue even after further reductions. Indeed, they will be given the identical
game interpretation.

B Game Interpretation of Terms

The arenas corresponding to common base types found in Algol-like languages are given
below. (For notational convenience, let us we write λA for the labeling function whose

CSL’13

594 A Fully Abstract Game Semantics for Parallelism with Non-Blocking Synchronization

〈E[m ? n], s〉 −→ 〈E[n′], s〉, where n′ = m ? n 〈E[
(
λxT.M

)
N], s〉 −→ 〈E[M [N/x]], s〉

〈E[if0 0 then M else N], s〉 −→ 〈E[M], s〉 〈E[if0 n+ 1 then M else N], s〉 −→ 〈E[N], s〉
〈E[fix M], s〉 −→ 〈E[M(fix M)], s〉 〈E[seq skip M], s〉 −→ 〈E[M], s〉
〈E[assign v n, s〉] −→ 〈E[skip], 〈s | v 7→ n〉〉 〈E[deref v], s〉 −→ 〈E[s(v)], s〉
〈E[cas v m n], s〉 −→ 〈E[n], 〈s | v 7→ n〉〉, where s(v) = m

〈E[cas v m n], s〉 −→ 〈E[s(v)], s〉, where s(v) 6= m

〈E[assign (mkvar M N L) n], s〉 −→ 〈E[Mn], s〉 〈E[deref (mkvar M N L)], s〉 −→ 〈E[N], s〉
〈E[cas (mkvar M N L) m n], s〉 −→ 〈E[Lmn], s〉
〈E[M or N], s〉 −→ 〈E[M], s〉 〈E[M or N], s〉 −→ 〈E[N], s〉
〈E[newvar v = n in skip], s〉 −→ 〈E[skip], s〉
〈E[newvar v = n in (skip‖ · · · ‖skip)], s〉 −→ 〈E[skip‖ · · · ‖skip], s〉

〈M, 〈s | v 7→ n〉〉 −→ 〈M ′, s′〉
〈E[newvar v = n in M], s〉 −→ 〈E[newvar v = s′(v) in M ′], 〈s′ | v 7→ s(v)〉〉

〈E[(newvar v = n in P)�j M], s〉 −→ 〈E[newvar v = n in (P �j M)], s〉
〈E[(M1‖ · · · ‖Mj−1‖Mj‖Mj+1‖ · · · ‖Mζ)�j M], s〉

−→ 〈E[M1‖ · · · ‖Mj−1‖seq Mj M‖Mj+1‖ · · · ‖Mζ], s〉

Figure 2 Reduction rules.

opponent/player attribution is swapped, i.e., λOP
A (b) = O iff λOP

A (b) = P for every move b.)
The arena N = ((MN, <N), λN,`N) of natural numbers, whereMN = {q}∪{n | n ≥ 0},
λN(q) = (O,Q), λN(n) = (P,A) for every n, `N= {(q, q)} ∪ {(q, n) | n ≥ 0}.
The arena C = ((MC, <C), λC,`C) of commands, where MC = {run, done}, λC(run)=
(O,Q), λC(done) = (P,A), `C= {(run, run), (run, done)}.
The arena Var = ((MVar, <Var), λVar,`Var) of mutable variables, where MVar =
{rd, ok} ∪ {n | n ≥ 0} ∪ {wrn | n ≥ 0} ∪ {casm,n | m,n ≥ 0}, λVar(rd) = λVar(wrn) =
λVar(casm,n) = (O,Q) and λVar(ok) = λVar(n) = (P,A) for every m,n ≥ 0, and
`Var= {(rd, rd)}∪{(rd, n) | n ≥ 0}∪{(wrn, wrn), (wrn, ok) | n ≥ 0}∪{(casm,n, casm,n) |
m,n ≥ 0} ∪ {(casm,n, l) | l,m, n ≥ 0}.

We associate an arbitrary (but fixed) ordering to each of the arena moves above, leaving its
explicit definition unspecified.

The compound arenas A×B and A⇒ B are defined as follows. (Below, for any pairs of
functions f : S → U and g : T → U , we write [f, g] : S + T → U for the coproduct function,
where S + T stands for the disjoint sum of S and T .)

A product arena A×B is a triple ((MA×B , <A×B), λA×B ,`A×B), where MA×B = MA+
MB , λA×B = [λA, λB], and n `A×B m iff n `A m ∨ n `B m. The associated order
extends the union of orders <A ∪ <B with additional orderings a <A×B b for every
a ∈MA and b ∈MB .
An arrow arena A ⇒ B is a triple ((MA⇒B , <A⇒B), λA⇒B ,`A⇒B), where MA⇒B =
MA + MB , λA⇒B = [λA, λB], and n `A⇒B m iff n `B m ∨ (n 6= m ∧ n `A m) ∨ (n `B
n ∧m `A m). The associated order <A⇒B is the same as <A×B .

Fig. 3 gives the game interpretation of each IApar term Γ ` M : T, specified as a Kleisli
arrow [[Γ `M : T]] : [[Γ]] →→→ [[T]] in GF .

S. Nishimura 595

[[Γ, x : T ` x : T]] = π[[T]]

[[Γ ` λx :T .M : T′]] = Λ[[T]]([[Γ, x : T `M : T′]])
[[Γ `MN : T]] = 〈〈〈[[Γ `M : T′ → T]], [[Γ ` N : T′]]〉〉〉; ev[[T′]],[[T]]

[[Γ ` fixTM : T]] =
⊔
i

σi, where σ0 = ⊥ and σi+1 = 〈〈〈[[Γ `M : T→ T]], σi〉〉〉; ev[[T]],[[T]].

[[Γ ` n : nat]] = !!![[Γ]]; cnstn
[[Γ `M ?N : nat]] = 〈〈〈[[Γ `M]], [[Γ ` N]]〉〉〉; binop?
[[Γ ` skip : com]] = !!![[Γ]]; skip
[[Γ ` seq M1 M2 : T]] = 〈〈〈[[Γ `M1 : com]], [[Γ `M2 : T]]〉〉〉; seq[[T]]

[[Γ ` if0 M then M1 else M2 : T]] = 〈〈〈[[Γ `M : nat]], [[Γ `M1 : T]], [[Γ `M2 : T]]〉〉〉; cond [[T]]

[[Γ ` assign M N : com]] = 〈〈〈[[Γ `M]], [[Γ ` N]]〉〉〉; asgn
[[Γ ` deref M : nat]] = [[Γ `M]]; deref
[[Γ ` cas L M N : com]] = 〈〈〈[[Γ ` L]], [[Γ `M]], [[Γ ` N]]〉〉〉; cas
[[Γ ` mkvar M N L : var]] = 〈〈〈[[Γ `M]]; acpt, [[Γ ` N]], [[Γ ` L]]; cacpt〉〉〉

[[Γ ` newvar v = n in M : T]] = ST
(
〈id [[Γ]], ![[Γ]]; celln〉; WO ([[Γ, v : var `M : T]])

)
[[Γ `M1 or M2 : nat]] = 〈〈〈[[Γ `M1]], [[Γ `M2]]〉〉〉; choice
[[Γ `M1‖ · · · ‖Mζ : par]] = σζ , where σ0 = !!![[Γ]]; pskip and σi+1 = 〈〈〈σi, [[Γ `Mi+1 : com]]〉〉〉; conti+1.
[[Γ ` P �j M : par]] = 〈〈〈[[Γ ` P : par]], [[Γ `M : com]]〉〉〉; contj

Figure 3 The game interpretation of IApar terms.

The strategies printed in italic fonts in the figure are defined (by their longest well-opened
traces) as below.

cnstn : 1 →→→ N is defined by the trace set {qn}.
binop? : N′ ×N′′ →→→ N is defined by the trace set {qq′m′q′′n′′k | m ? n = k}.
skip : 1 →→→ C is defined by the trace set {run·done}.
seqA : C×A →→→ A is defined by the trace set {q·run·done·t | q·t ∈ TWO(idA)}.
deref : Var →→→ N is defined by the trace set {q·W·N·rd·n·n | n ≥ 0}.
cas : Var × N1 × N2 →→→ N is defined by the trace set {q·q1·m·q2·n·W·N·casm,n·k·k |
m,n, k ≥ 0}.
acpt : (N⇒ C) →→→ Var is defined by the trace set {wrn·run·q·n·done·ok | n ≥ 0}.
cacpt : (N1 ⇒ N2 ⇒ N) →→→ Var is defined by the trace set {casm,n·q·q1·m·q2·n·k·k |
m,n, k ≥ 0}.
choice : N1 ×N2 →→→ N is defined by the trace set {q·qi·n·n | i ∈ {1, 2}, n ≥ 0}.
pskip : 1 →→→ (C1 × · · · ×Cζ)⊥ is defined by the trace set {?

√
·runρ(1)·doneρ(1) · · · runρ(ζ)·

doneρ(ζ) | ρ : {1, . . . , ζ} 7→ {1, . . . , ζ} is a bijection }.
conti : (C′1 × · · · ×C′ζ)⊥ ×C →→→ (C1 × · · · ×Cζ)⊥ is specified by the traces {??′

√′√
s |

s ∈ T〈σ1,··· ,σζ〉}, where the trace of each σj : C′j×C →→→ Cj is defined by {runj ·run′j ·done′j ·
donej} if j 6= i and σi is defined by {runi·run′i·done′i·run·done·donei}.
celln : 1 → Var is the strategy defined by the set of causal traces whose initial value
is n. A trace in Var is called a causal trace, if every wrn move is immediately followed
by a move ok, and each rd or casm,n move is followed by a natural number stored in
the variable just after the corresponding operation is finished. The value stored in the
variable is determined by the last successful write: A successful write by n is identified

CSL’13

596 A Fully Abstract Game Semantics for Parallelism with Non-Blocking Synchronization

by a pair of successive moves, either wrn·ok of a write operation or casm,n·n of a CAS
operation.

The newvar v = n in M construct delimits the scope of variable v local to M and further
forces the causality induced by the order of accesses to v. Unless bound in newvar, v behaves
like a variable allocated in a volatile memory cell. We notice that, since every termM of type
com or par under a scope of a local variable is executed exactly once, it must be interpreted,
as done in [10], by a composition of well-opened strategy in WO ([[M]]) with a cell strategy
in G, written celln : 1→ Var, which comprises of causal traces whose initial value is n.

Extracting Herbrand trees in classical realizability
using forcing∗

Lionel Rieg

LIP (UMR 5668 CNRS ENS Lyon UCBL INRIA), ENS de Lyon, Université de
Lyon
46 allée d’Italie, 69364 LYON, FRANCE
lionel.rieg@ens-lyon.fr

Abstract
Krivine presented in [9] a methodology to combine Cohen’s forcing with the theory of classical
realizability and showed that the forcing condition can be seen as a reference that is not subject
to backtracks. The underlying classical program transformation was then analyzed by Miquel [11]
in a fully typed setting in classical higher-order arithmetic (PAω+).

As a case study of this methodology, we present a method to extract a Herbrand tree from a
classical realizer of inconsistency, following the ideas underlying the completeness theorem and
the proof of Herbrand’s theorem. Unlike the traditional proof based on Kőnig’s lemma (using a
fixed enumeration of atomic formulas), our method is based on the introduction of a particular
Cohen real. It is formalized as a proof in PAω+, making explicit the construction of generic sets
in this framework in the particular case where the set of forcing conditions is arithmetical.
We then analyze the algorithmic content of this proof.

1998 ACM Subject Classification F.4.1 Lambda-calculus and related system

Keywords and phrases classical realizability, forcing, Curry-Howard correspondence, Herbrand
trees

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.597

1 Introduction

Forcing is a model transformation initially invented by Cohen [1, 2] to prove the relative
consistency of the negation of the continuum hypothesis with respect to the axioms of Zermelo-
Fraenkel (ZF) set theory. From a model-theoretic point of view, forcing is a technique to
extend a given model of ZF—the base model—into a larger model—the generic extension—
generated around the base model from a new set with good properties: the generic filter G.
From a proof-theoretic point of view, forcing can be presented as a logical translation that
maps formulas expressing properties of the extended model into formulas expressing (more
complex) properties of the base model. Through this translation, the properties of the
(fictitious) generic set G (in the extended universe) are reduced to the properties of the
forcing poset C (in the base universe) that parametrizes the whole construction.

Recently, Krivine studied [9] Cohen forcing in the framework of the proofs-as-programs
correspondence in classical logic [5, 13, 3] and showed how to combine it with the theory of
classical realizability [8]. In particular, he discovered a program translation (independent
from typing derivations) that captures the computational contents of the logical translation
underlying forcing. Surprisingly, this program transformation acts as a state passing style

∗ This work was supported by the ANR project RÉCRÉ.

© Lionel Rieg;
licensed under Creative Commons License CC-BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca; pp. 597–614

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.597
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

598 Extracting Herbrand trees in classical realizability using forcing

translation where the forcing condition is treated as a memory cell that is protected from the
backtracks performed by control operators such as callcc [5] —thus opening an intriguing
connection between forcing and imperative programming. Reformulating this work in classical
higher-order arithmetic (PAω+) and analyzing the corresponding program transformation,
Miquel [11, 12] introduced an extension of the Krivine Abstract Machine (KAM) devoted to
execution of proofs by forcing—the KFAM—where the forcing condition is explicitly treated
as a memory cell in the context of the execution of a proof by forcing.

These analogies naturally suggest that Cohen forcing can be used not only to prove
relative consistency results, but also to write computationally more efficient (classical) proofs
by exploiting the imperative flavor of the forcing condition.

In this paper, we propose to instantiate this technique on one example, namely the
extraction of a Herbrand tree (see section 2) from a validity proof of an existential formula
∃~x. F (~x) where F (~x) is quantifier-free. Our extraction procedure is based on a proof of a
mix between completeness and Herbrand’s theorem using the method of forcing. The key
ingredient of this proof is the introduction of a Cohen real (using forcing) that represents all
valuations at once. From a computational point of view, we will see that the corresponding
program uses the forcing condition to store the tree under construction, thus protecting it
from the backtracks induced by classical reasoning. The interest of this approach is that since
the conclusion of our semantic variant of Herbrand’s theorem is Σ0

1, any proof (program) of
the translation of the conclusion (through the forcing translation) can be turned into a proof
(program) of the conclusion itself. From this, it is then possible to apply standard witness
extraction techniques in classical realizability [10] to extract the desired Herbrand tree.

Contribution of the paper

This work follows on from [9] and [11]. Its contributions are the following:
The extension of the program transformation underlying forcing to a generic filter G
(when the forcing sort and its relativization predicate are invariant under forcing).
A proof of a semantic variant of Herbrand’s theorem (containing completeness) by forcing
where a Cohen real represents all valuations at once in the forcing universe.
A formalization of this proof in the formal system PAω+ which, through the forcing
transformation, gives an extraction process for Herbrand trees.
An analysis of the computational content of this extraction process in classical realizability.

2 Herbrand trees

2.1 The notion of Herbrand tree
In what follows, we work in a given countable first-order language, and write Term and Atom
the countable sets of closed terms and of closed atomic formulas, respectively. Throughout
this paper we are interested in the following problem.

Let ∃~x. F (~x) be a purely existential formula, where F (~x) is quantifier-tree. Let us now
assume that the formula ∃~x. F (~x) is true in all models, and actually in all syntactic models,
where variables are interpreted by closed terms t ∈ Term. From this information, we know
that there is a function H : (Atom → Bool) → −−−→Term that associates to every syntactic
valuation ρ : Atom→ Bool a tuple of closed terms H(ρ) = ~t ∈

−−−→Term such that ρ |= F (~t) (i.e.
a ‘witness’ for the formula ∃~x. F (~x) in the valuation ρ).

However, the information provided by the function H is twice infinite: it is infinite
in depth since each valuation ρ : Atom → Bool is (a priori) infinite, and it is infinite in

L. Rieg 599

width since the set of all such valuations has the power of continuum. Nevertheless, the
completeness theorem combined with Herbrand’s theorem says that we can compact the
information given by the a priori infinite function H into a finite binary tree, which is called
a Herbrand tree.

I Definition 2.1 (Herbrand tree for a formula F). A Herbrand tree is a finite binary tree H
such that:

The inner nodes of H are labeled with atomic formulas a ∈ Atom, so that every branch of
the tree represents a partial valuation (going left means ‘true’, going right means ‘false’).
Every leaf of H contains a witness for the corresponding branch, that is a tuple ~t ∈ −−−→Term
s.t. ρ |= F (~t) for every (total) valuation ρ extending that partial valuation of the branch.

I Theorem 2.2. If the formula ∃~x. F (~x) is true in all syntactic models, then F has a
Herbrand tree.

The aim of this paper is to describe a method to effectively extract a Herbrand tree from
a proof (actually a classical realizer) of the proposition expressing that ‘the formula ∃~x. F (~x)
holds in all syntactic models’. Since the latter proposition is directly implied by the formula
∃~x. F (~x) itself (using the trivial implication of the completeness theorem), we will thus get a
method to effectively extract a Herbrand tree from a proof/realizer of the formula ∃~x. F (~x).

Note that we will not give a proof of Theorem 2.2 but rather a proof of the validity of
the admissible rule associated to it, namely: given a proof that ‘the formula ∃~x. F (~x) holds
in all syntactic models’, we can build a proof of existence of a Herbrand tree for F . This
statement is enough for extraction.

2.2 Extracting Herbrand trees effectively
In the framework of the Curry-Howard correspondence, the natural method to extract
Herbrand trees is to use a classical realizer t0 obtained from a formal proof of Theorem 2.2.
By applying t0 to a realizer u of the premise of Theorem 2.2, we get a realizer of the
Σ0

1-formula expressing the existence of a Herbrand tree for the formula ∃x.F (~x), from which
we can retrieve the desired Herbrand tree using standard classical extraction techniques [10].

However, the efficiency of the extracted code highly depends on the proof of Theorem 2.2.
In particular, the simplest proof of this theorem (Fig. 1), which relies on a fixed enumeration
of all atoms, is not well suited to this task, since it gives terribly poor performances on

Given an enumeration (ai)i∈N of the
closed instances of the atomic formu-
las appearing in F (~x), let us consider
the infinite binary tree whose 2i nodes
at depth i are labeled with the atom
ai. Any infinite branch in this infinite
tree is an valuation ρ, because all atoms
appear along it. From our assumption,
we know that there is a tuple ~t ∈ −−−→Term
such that ρ |= F (~t). But since the cal-

a0

a1

a2

a3

...
...

a3

...
...

a2

a3

...
...

a3

...
...

a1

a2

a3

...
...

a3

...
...

a2

a3

...
...

a3

...
...

culation of the truth value of the closed formula F (~t) only relies on a finite subset of ρ, we can
cut the branch along ρ at some depth d, putting a leaf labeled with ~t. Doing this in all branches
simultaneously, we get a finite tree (by the fan theorem), which is by construction a Herbrand tree.

Figure 1 A proof of Theorem 2.2 by enumerating the atoms.

CSL’13

600 Extracting Herbrand trees in classical realizability using forcing

formulas F (~x) involving atoms that appear late in the chosen enumeration. What we want
is a proof/realizer of Theorem 2.2 that chooses the atoms labeling the nodes only in function
of the realizer of its premise.

In what follows, we present a novel proof of Theorem 2.2 that is tailored for this purpose,
and that relies on the forcing techniques developed in [9, 11, 12]. In this case, the forcing
condition is a Cohen real which behaves as a generic valuation, i.e. it represents all infinite
branches at once. As we will see in section 6, it is computationally a scheduler that will
extend the tree under construction on request, depending on which atoms are required by
the realizer of the premise. It will scan the whole tree and schedule pending branches until
the full Herbrand tree is built.

3 The higher-order arithmetic PAω+

In this section, we recall PAω+, the formal proof system in which this work takes place. It
is a presentation of classical higher-order arithmetic with explicit (classical) proof terms,
inspired by Church’s theory of simple types. It features an extra congruence on terms, in
the spirit of deduction modulo [4]. This section is a summary of the presentation of PAω+

in [11], to which we refer the reader for more details and proofs of the results stated here.

3.1 Syntax
System PAω+ distinguishes three kinds of syntactic entities: sorts (or kinds), higher-order
terms, and proof terms, whose grammar is recalled in Fig 2.

Sorts τ, σ ::= ι | o | τ → σ

Higher-order terms M,N,A,B ::= xτ | λxτ .M | MN | 0 | S | recτ
| A⇒ B | ∀xτ . A | M

.=τ N 7→ A

Proof-terms t, u ::= x | λx. t | tu | callcc

Figure 2 Syntax of PAω+.

3.1.1 Sorts and higher-order terms
Sorts are simple types formed from the two basic sorts ι (the sort of individuals) and o

(the sort of propositions). Higher-order terms (also called terms for short) are simply-typed
λ-terms (à la Church) that are intended to represent mathematical objects that inhabit sorts.

Higher-order terms of sort ι, which are called individuals, are formed using the two
constructors 0 (of sort ι), S (of sort ι → ι) and the family of recursors recτ (of sort
τ → (ι→ τ → τ)→ ι→ τ).

Higher-order terms of sort o, which are called propositions (and written A, B, C, etc.
in what follows), are formed using implication A ⇒ B (where A and B are propositions),
universal quantification ∀xτ . A (where A is a proposition possibly depending on the vari-
able xτ) and a new connective M .=τ N 7→ A called an equational implication (where M
and N are of sort τ and where A is a proposition). This new connective must be thought of
as a kind of implication, but giving more compact proof terms. It makes the computational
contents of the forcing translation more transparent, but it is logically equivalent to the
usual implication M =τ N ⇒ A, via the proof terms:

λxy. y x : (M .= N 7→ A)⇒ (M = N ⇒ A), λx. x (λy. y) : (M = N ⇒ A)⇒ (M .= N 7→ A)

(See fFg. 4 for a definition of the proof system.)

L. Rieg 601

As usual, application is left associative whereas implication and equational implication are
both right associative and have same precedence: A⇒M

.= N 7→ B ⇒ C ⇒ D has to be read
as A⇒ (M .= N 7→ (B ⇒ (C ⇒ D))). Logical connectives (absurdity, negation, conjunction,
disjunction) are defined using the standard second-order encodings, as well as Leibniz
equality, letting: x =τ y := ∀Zτ→o. Z x⇒ Z y. Existential quantification (possibly combined
with conjunctions) is encoded classically using De Morgan laws: ∃xτ . A1 & . . .&Ak :=
¬(∀xτ . A1 ⇒ . . . ⇒ Ak ⇒ ⊥). We often omit the sort annotation τ to ease reading when
this does not hinder understanding. On the opposite, when we want to give explicitly the
sort of a term, we write it in exponent, e.g. Mτ , Ao, recτ→(ι→τ→τ)→ι→τ

τ .

3.1.2 System T is a fragment of PAω+

Gödel’s system T can be recovered from PAω+ as the subsystem where we restrict sorts
to be T -sorts, that is sorts built with ι as the only base sort. This constraint casts out all
logical constructions and limits the term construction rules exactly to those of system T.
Recall that the expressiveness of system T is exactly the functions which are provably total
in first-order arithmetic, which includes (and exceeds) all primitive recursive functions.

3.2 Proof system

3.2.1 Congruence
The proof system PAω+ differs from higher-order arithmetic by the addition of a congruence
'E to the proof system. This allows to reason modulo some equivalence on higher-order terms
(hence on propositions) without polluting the proof terms with computationally irrelevant
parts.

This congruence contains the usual βηι-conversion, some semantic equivalences on pro-
positions (mostly commutations) and an equational theory E . This equational theory is a
finite set of equations E = M1 = N1, . . . ,Mk = Nk, where Mi and Ni are higher-order terms
of the same sort (that 'E considers equal). Some rules for the congruence 'E are given in
Fig. 3, the full set is given in annex A.

(M = N) ∈ E
M 'E N

M 'E N P 'E Q A 'E,M=P B

M
.= P 7→ A 'E N

.= Q 7→ B

M
.= M 7→ A 'E A A⇒M

.= N 7→ B 'E M
.= N 7→ A⇒ B

x /∈ FV (M,N)
∀xτ .M .= N 7→ A 'E M

.= N 7→ ∀xτ . A

Figure 3 Some inference rules for the relation 'E .

3.2.2 Proof terms and inference rules
Proof terms (Fig. 2) are pure λ-terms enriched with an extra constant callcc; they are formed
from a set of proof variables (notation: x, y, z, etc.) distinct from higher-order term variables.
The deduction system of PAω+ is defined around a typing judgment of the form E ; Γ ` t : A,
where E is an equational theory and Γ a context, that is: a finite set of bindings of distinct
proof variables xi to propositions Ai. The inference rules, given in Fig 4, are the ones of
higher-order arithmetic, with slight modifications to deal with the congruence and equational
implication.

CSL’13

602 Extracting Herbrand trees in classical realizability using forcing

E ; Γ, x : A ` x : A
E ; Γ ` t : A

A 'E A′E ; Γ ` t : A′ E ; Γ ` callcc : ((A⇒ B)⇒ A)⇒ A

E ; Γ, x : A ` t : B
E ; Γ ` λx. t : A⇒ B

E ; Γ ` t : A⇒ B E ; Γ ` u : A
E ; Γ ` t u : B

E ,Mτ = Nτ ; Γ ` t : A
E ; Γ ` t : M .=τ N 7→ A

E ; Γ ` t : M .=τ M 7→ A

E ; Γ ` t : A
E ; Γ ` t : A

x /∈ FV (Γ)
E ; Γ ` t : ∀xτ . A

E ; Γ ` t : ∀xτ . A
E ; Γ ` t : A[Nτ/xτ]

Figure 4 The inference rules of PAω+.

I Remarks.
1. The only inference rules that alter proof terms are the axiom, Peirce’s law, and the

introduction and elimination rules of implication. The remaining rules do not affect proof
terms and are said to be computationally transparent.

2. The proof system of PAω+ enjoys no normalization property since the proposition >
defined by > := λxy. x

.=o λxy. y 7→ ⊥ acts as a type of all (untyped) proof terms [11,
section II.E.3]. (Intuitively, > allows to equate any two propositions so that they are all
equivalent to ⊥.) Nevertheless, the system is sound with respect to the intended classical
realizability semantics (see section 3.4).

3. This proof system allows full classical reasoning thanks to Peirce’s law. Arithmetical
reasoning (including reasoning by induction) can be recovered by relativizing all quantifica-
tions over the sort ι using the predicate x ∈ N := ∀Zo. Z 0⇒ (∀yι. Z y ⇒ Z (S y))⇒ Z x

(see below).

3.3 Sets and datatypes
In PAω+, a set is given by a sort τ together with a relativization predicate P of sort τ → o

expressing membership in the set. For instance, the set of total relations between individuals
is given by the sort ι→ ι→ o and the predicate Tot := λR.∀xι.∃yι. R x y.

Because the sort τ can be inferred from the sort of P , we will identify sets with their
relativization predicates. For convenience, we use the suggestive notations x ∈ P (resp.
∀x ∈ P.A, ∃x ∈ P.A) for P x (resp. ∀x. P x⇒ A, ∃x. x ∈ P &A). In what follows, datatypes
will be represented as particular sets based on the sort τ ≡ ι and whose relativization
predicate P is invariant under forcing (see section 4.2). For instance, the datatypes of
Booleans and natural numbers are given by

x ∈ Bool := ∀Zι→o. Z 0⇒ Z 1⇒ Z x

x ∈ N := ∀Zι→o. Z 0⇒
(
∀yι. Z y ⇒ Z (S y)

)
⇒ Z x

(The proof of their invariance under forcing is delayed until section 5.2.) We also consider two
abstract datatypes Term and Atom representing closed terms and closed atomic formulas
(whose exact implementation is irrelevant). More generally, inductive datatypes are defined
by implementing constructors as suitable functions from individuals to individuals and by
defining the corresponding predicate by well-known second-order encodings. For instance,
the datatype of binary trees

t, t′ := Leaf ~v | Node a t t′ where ~v ∈ −−−→Term, a ∈ Atom

is given by two injective functions Leafι→ι and Nodeι→ι→ι→ι whose ranges do not overlap
(the actual implementation is irrelevant here) and the corresponding relativization predicate
t ∈ Tree is

L. Rieg 603

∀Zι→o. (∀~v ∈ Term. Z (Leaf ~v)) ⇒ (∀tι1tι2 a ∈ Atom. Z t1 ⇒ Z t2 ⇒ Z (Node a t1 t2))⇒ Z t .

We also introduce the inductive datatype Comp of quantifier-free formulas built above Atom:

c, c′ := |= | a | cV c′ where a ∈ Atom

This presentation based on implication is more suited to classical realizability (see below),
but Comp is nothing but the free Boolean algebra generated by Atom.

3.4 Realizability semantics
System PAω+ has a classical realizability semantics in the spirit of Krivine’s [8] that is
fully described in [11, 12]. This semantics is based on Krivine’s λc-calculus (which contains
all proof terms of PAω+) and parametrized by a fixed set of processes (the pole of the
realizability model). According to this semantics, every (closed) proof term t of a (closed)
proposition A is a realizer of A (written t
 A), and this independently from the choice of
the pole. In the particular case where the pole is empty, the realizability model collapses
to a Tarski model of PAω+, from which we deduce the logical consistency of the system.
This classical realizability semantics also provides simple methods to extract witnesses from
realizers (and thus from proofs) of Σ0

1-propositions [10].

4 The Forcing Transformation

4.1 Forcing in PAω+

This section is a reformulation of Cohen’s theory of forcing (developed for ZF set theory) in
the framework of PAω+. Here, we see forcing as a translation of facts about objects living in
an extended universe (where sorts intuitively contain much more inhabitants) to facts about
objects living in the base universe. Technically, we will first present forcing as a translation
from PAω+ to itself. But in section 4.3, we will see how to add a generic filter G to PAω+,
so that forcing will be actually a translation from PAω+ +G to PAω+. We follow here the
presentation of [11, 12], where the reader may find all missing proofs.

4.1.1 Definition of a forcing structure
As in [9, 11], we introduce the set of conditions as an upward closed subset C of a meet-
semilattice (κ, ·, 1). (Any poset with a greatest element can be presented in this way.)

I Definition 4.1 (Forcing structure). A forcing structure is given by:
a set C : κ→ o of well-formed forcing conditions (p ∈ C being usually written C[p]),
an operation · of sort κ → κ → κ to form the meet of two conditions (denoted by
juxtaposition),
a greatest condition 1,
nine closed proof terms representing the axioms that must be satisfied by the forcing
structure:

α0 : C[1] α1 : ∀pq. C[pq]⇒ C[p] α2 : ∀pq. C[pq]⇒ C[q]
α3 : ∀pq. C[pq]⇒ C[qp] α4 : ∀p. C[p]⇒ C[pp] α5 : ∀pqr. C[(pq)r]⇒ C[p(qr)]
α6 : ∀pqr. C[p(qr)]⇒ C[(pq)r] α7 : ∀p. C[p]⇒ C[p1] α8 : ∀p. C[p]⇒ C[1p]

CSL’13

604 Extracting Herbrand trees in classical realizability using forcing

(σ → τ)∗ := σ∗ → τ∗ ι∗ := ι o∗ := κ→ o

(xτ)∗ := xτ
∗

0∗ := 0 (∀xτ . A)∗ := λrκ. ∀xτ
∗
. A∗ r

λxτ .M := λxτ
∗
.M∗ S∗ := S (M .= N 7→ A)∗ := λrκ.M∗

.= N∗ 7→ A∗ r

(M N)∗ := M∗N∗ rec∗τ := recτ∗ (A⇒ B)∗ := λrκ. ∀qκ∀(r′)κ. r .= qr′ 7→
(∀sκ. C[qs]⇒ A∗ s)⇒ B∗ r′

x∗ := x (λx. t)∗ := γ1(λx. t∗[(β3y)/y][(β4x)/x]) y 6= x

(t u)∗ := γ3 t
∗ u∗ callcc∗ := λcx. callcc(λk. x (α14 c) (λcy. k (y α15 c)))

β3 := λxc. x (α9 c) β4 := λxc. x (α10 c) γ1 := λxcy. x y (α6 c) γ3 := λxyc. x (α11c) y

Figure 5 The forcing translations τ 7→ τ∗, M 7→M∗ and t 7→ t∗.

(This set of axioms is not minimal, since α2, α6 and α8 can be defined from the others.)
The above axioms basically express that the set C is upward-closed with respect to the

pre-ordering p ≤ q (‘p is stronger than q’) defined by p ≤ q := ∀rκ. C[pr]⇒ C[qr]. From this
definition of the preorder p ≤ q, we easily check that pq is the meet of p and q and that 1 is
the greatest element. On the other hand, all the elements of κ outside C are equivalent with
respect to the ordering ≤; they intuitively represent an ‘inconsistent condition’ stronger than
all well-formed conditions.

In what follows, we will also need the following derived combinators:

α9 := α3 ◦ α1 ◦ α6 ◦ α3 : ∀pqr. C[pqr]⇒ C[pr] α10 := α2 ◦ α5 : ∀pqr. C[pqr]⇒ C[qr]
α11 := α9 ◦ α4 : ∀pq. C[pq]⇒ C[p(pq)] α12 := α5 ◦ α3 : ∀pqr. C[p(qr)]⇒ C[q(rp)]
α13 := α3 ◦ α12 : ∀pqr. C[p(qr)]⇒ C[(rp)q]
α14 := α12 ◦ α10 ◦ α4 ◦ α2 : ∀pqr. C[p(qr)]⇒ C[q(rr)] α15 := α9 ◦ α3 : ∀pqr. C[p(qr)]⇒ C[qp]

where αi ◦ αj ◦ · · · ◦ αk stands for λc. αi (αj . . . (αk c) . . .) with c a fresh proof variable.

4.1.2 The three forcing translations
Given a forcing structure, the forcing transformation consists of three translations: τ 7→ τ∗ on
sorts, M 7→M∗ on higher-order terms (which is extended point-wise to equational theories)
and t 7→ t∗ on proof terms. The translations are given figure 5 (see [12] for the definition of
all combinators).
I Remarks.
1. The translation on sorts simply replaces occurrences of o by κ → o. This means that

propositions will now depend on an extra parameter which is a forcing condition.
2. The translation on (higher-order) terms changes the sort of the term: Nτ is turned into

(N∗)τ∗ . The heart of this translation lies in the implication case and it merely propagates
through the connectives in all the other cases.

3. The proof term translation instrumentalizes the computational interaction between
abstractions and applications in proof terms:

it adds the γ3 combinator in front of applications;
it shows the de Bruijn structure of bound variables: if an occurrence of the bound
variable x has de Bruijn index n, it will be translated to βn3 (β4 x).

4.1.3 The forcing transformation on propositions
From the translation on terms, we define the usual forcing relation p F A on propositions,
letting:

p F A := ∀rκ. C[pr]⇒ A∗r .

L. Rieg 605

This definition extends point-wise to contexts and we write it p F Γ. In addition to
the expected properties of substitutivity and compatibility with the congruences 'E , this
transformation on propositions enjoys the following important properties:

I Proposition 4.2.
1. Forcing strongly commutes with universal quantification and equational implication:

p F ∀xτ . A ' ∀xτ∗. (p F A) p F (M .=τ N 7→ A) ' M∗
.=τ∗ N

∗ 7→ (p F A)
2. Forcing is anti-monotonic: ∀pq. (p F A)⇒ (pq F A)
3. Forcing an implication: p F A⇒ B ⇐⇒ ∀qκ. (q F A)⇒ (pq F B)

I Theorem 4.3 (Soundness). If the judgment E ; Γ ` t : A is derivable in PAω+, then the
judgment E∗; (p F Γ) ` t∗ : p F A is derivable in PAω+.

This theorem is thus an effective way to turn a proof term t : A (expressed in the forcing
universe) into a proof term t∗ : p F A (expressed in the base universe).

4.2 Invariance under forcing
Clearly, the sorts that are invariant under the forcing translation are exactly the T -sorts
defining Gödel’s system T (see section 3.1.2). A proposition A whose free variables live in
T -sorts is said to be invariant under forcing or absolute when there exist two closed proof
terms ξA and ξ′A such that

ξA : ∀p. (p F A)⇒ (C[p]⇒ A) ξ′A : ∀p. (C[p]⇒ A)⇒ (p F A) .

An important class of absolute propositions is the class of first-order propositions, which
contains the subclass of arithmetical propositions (in which all quantifications are relativized).

I Definition 4.4 (First-order propositions). First-order propositions are defined by
A,B := ⊥ | Mτ = Nτ | A⇒ B | ∀xσ. A | M ι ∈ N

where σ and τ are T -sorts (see section 3.1.2).

I Theorem 4.5 (Invariance). All first-order propositions are invariant under forcing.

I Theorem 4.6 (Elimination of a forced hypothesis). If the propositions 1 F A and A⇒ B

are derivable (in the empty context) and if B is absolute, then B is derivable too (in the
empty context).

Proof. Let u and s be proof terms such that u : A⇒ B and s : 1 F A. Using theorem 4.3,
we have u∗ : 1 F A⇒ B. Because B is invariant under forcing, the previous theorem gives
us ξB : (1 F B)⇒ C[1]⇒ B. We finally get ξB (γ3 u

∗ s)α0 : B. J

This theorem will be used to remove forcing in the proof of existence of a Herbrand tree.

4.3 The generic filter G

We now introduce PAω+ +G, which extends PAω+ with a constant G (the generic filter)
and its axioms. To do so, we first assume that κ ≡ κ∗ (it is a T -sort) and that the set of
well-formed conditions C (of sort κ → o) is absolute, so that we have two proof terms ξC
and ξ′C such that

ξC : ∀pq. (p F C[q])⇒ (C[p]⇒ C[q]) ξ′C : ∀pq. (C[p]⇒ C[q])⇒ (p F C[q]) .

(At this stage, we do not need to know the particular implementation of C.)
The proof system PAω+ +G is defined from PAω+ by adding a constant G of sort κ→ o

and five axioms expressing its properties. The first four axioms say that G is a filter in C:

CSL’13

606 Extracting Herbrand trees in classical realizability using forcing

A1 : G is a subset of C: ∀p. p ∈ G⇒ C[p],
A2 : G is non empty: 1 ∈ G,
A3 : G is upward closed: ∀pq. pq ∈ G⇒ p ∈ G,
A4 : G is closed under product: ∀pq. p ∈ G⇒ q ∈ G⇒ pq ∈ G,
The last axiom—genericity—relies on the following notion:

I Definition 4.7 (Dense subset). A set D of sort κ→ o is said dense in C if for every element
p ∈ C, there is an element q ∈ C belonging to D and smaller than p. Formally, we let:

D dense := ∀pκ. C[p]⇒ ∃qκ. C[pq] & pq ∈ D (⇔ ∀pκ. C[p]⇒ ∃qκ. C[q] & q ∈ D& q ≤ p)

The last axiom on the set G is then:
A5 : G intersects every set Dκ→o (of the base universe) dense in C:

(∀p. C[p]⇒ ∃q. C[pq] & pq ∈ D) ⇒ ∃p. p ∈ G& p ∈ D.

Now we need to explain how the forcing translation extends to a translation from PAω++G
to PAω+. The term translation on the generic filter G is defined by G∗ := λpr. C[pr]. This
definition has the advantage of giving a very simple proposition for p F q ∈ G:

I Fact 4.8. p F q ∈ G := ∀r. C[pr]⇒ (q ∈ G)∗r ' ∀r. C[pr]⇒ C[qr] ' p ≤ q

We now need to prove the proposition ∀pκ. p F Ai (in PAω+) for each of the five axioms
A1–A5 of the generic filter G. Thanks to proposition 4.2 (anti-monotonicity), it is sufficient
to prove that 1 F Ai. Notice that the proof terms justifying the filter properties of G are
small, except the proof term for genericity (the most complex property).

I Proposition 4.9 (Forcing the properties of G).

γ1 (λx. ξ′C (α1 ◦ x ◦ α3)) : 1 F ∀p. p ∈ G⇒ C[p] (4.9.i)
λx. x : 1 F 1 ∈ G (4.9.ii)

γ1 (λx. α9 ◦ x ◦ α10) : 1 F ∀pq. pq ∈ G⇒ p ∈ G (4.9.iii)
γ1(λx. γ1 (λy. α13 ◦ y ◦ α12 ◦ x ◦ α2 ◦ α5 ◦ α5)) : 1 F ∀pq. p ∈ G⇒ q ∈ G⇒ pq ∈ G

(4.9.iv)
γ1 (λx. γ1 (λy. ξ′⊥ (λc. ξ∃2 ξC ξD(γ3 x (ξ′c (λ_. c))) (α2 (α1 c))

(λc′d. ξ⊥ (γ3 (γ3 (β3 (β4 y)) I) (ξ′D (λ_. d))) c′))))
: 1 F (∀p. C[p]⇒ ∃q. C[pq] & pq ∈ D)⇒ ∃p. p ∈ G& p ∈ D (4.9.v)

where ξ∃2 is the proof term (built using theorem 4.5) such that
ξ∃2 ξA ξB : (p F ∃n.A&B)⇒ (C[p]⇒ ∃n.A&B)

5 A proof of Herbrand’s theorem by forcing

In order not to alter the meaning of the forcing poset through the forcing transformation, we
choose to let κ := ι (the sort of individuals), because ι∗ ≡ ι.

5.1 Interface for finite relations over Atom× Bool
We describe here an interface implementing finite relations over pairs of atoms and Booleans
together with some operations (union, membership test) and properties. Everything can be
implemented for instance by finite ordered lists of pairs (in the sort ι) without repetition.
We assume given &&ι→ι→ι and ||ι→ι→ι, the (infix) Boolean conjunction and disjunction (at

L. Rieg 607

the term level) together with their defining equations (e.g. 1 && b ' b) that must hold at
the congruence level (typically by β-reduction for suitable definitions of && and ||). Let us
first describe the terms of the interface.
∅ι : the empty relation singι→ι→ι : sing a b denotes {(a, b)} and is written ab

∪ι→ι→ι : union (infix symbol) testι→ι→ι→ι : test p a b tests if the atom a is mapped to b in p

The required properties over this structure are:
associativity, commutativity and idempotence of ∪
∅ is a neutral element for ∪
the specification equations of test: for all a, a′, b, b′, p, q with a 6= a′ or b 6= b′,
test ∅ a b = 0 test ab a b = 1 test ab a′ b′ = 0 test (p∪ q) a b = test p a b || test q a b

Using these terms and properties, we define two operations:
testing membership: mem a p := test p a 1 || test p a 0
adding the binding (a, b) to p: p∪ ab

Among finite relations, we can distinguish those that are functional, i.e. those representing
finite functions from Atom to Booleans. We call them finite valuations and denote their
set by FVal. Formally, this set (in the sense of section 3.3) is inductively defined using the
following second-order encoding, which encompasses both finiteness and functionality:

p ∈ FVal := ∀Zι→o. Z ∅ ⇒ (∀rι.∀a ∈ Atom. mem a r
.=ι 0 7→ Z r ⇒ Z (r∪ a1))⇒

(∀rι.∀a ∈ Atom. mem a r
.=ι 0 7→ Z r ⇒ Z (r∪ a0))⇒ Z p

This shows the underlying computational structure of finite valuations: they are isomorphic
to lists of atoms with two cons constructors (one for the atoms mapped to true, one for
those mapped to false) without duplicates (thanks to the precondition mem a r

.=ι 0 7→ . . .

in the cons constructors).
Finally, we assume the existence of a function for testing membership, that is a proof

term Tottest of the totality of test on finite valuations:

Tottest : ∀p ∈ FVal.∀a ∈ Atom.∀b ∈ Bool. test p a b ∈ Bool .

5.2 Programming in PAω+

In order to ease writing proof terms in PAω+, we introduce some macros:
〈a, b〉 λf. f a b let (x, y) = c in M c (λxy.M)
true, false λxy. x, λxy. y if b then f else g b f g

consT a p λx1x2x3. x2 a (p x1 x2 x3) consF a p λx1x2x3. x3 a (p x1 x2 x3)

They come with the inference rules (admissible in PAω+) given Fig. 6.

E ; Γ `M : A E ; Γ ` N : B
E ; Γ ` 〈M,N〉 : A ∧B

E ; Γ `M : A ∧B E ; Γ, x : A, y : B ` N : C
x, y /∈ FV (M)

E ; Γ ` let (x, y) = M in N : C

E ; Γ ` true : 1 ∈ Bool E ; Γ ` false : 0 ∈ Bool

E ; Γ `M : b ∈ Bool E ; Γ ` N : b .= 1 7→ A E ; Γ ` P : b .= 0 7→ A

E ; Γ ` if M then N else P : A
E ; Γ `M : a ∈ Atom E ; Γ ` N : p ∈ FVal

mem a p 'E 0
E ; Γ ` consTMN : p∪ a1 ∈ FVal

+ idem for consF with p∪ a0 ∈ FVal

Figure 6 Admissible inference rules in PAω+.

CSL’13

608 Extracting Herbrand trees in classical realizability using forcing

5.3 Definition of our forcing structure
The interface and functions defined in the previous two sections allow us to build the forcing
structure that we will use for Herbrand’s theorem. In this setting, finite valuations will
represent pieces of information about the current valuation that will be used to decide which
closed instance of the proposition F (~x) is false. Note that most combinators are the identity
thanks to the properties we imposed on the implementation of finite relations.

I Definition 5.1 (Forcing structure for Herbrand’s theorem). Our forcing structure is given by

κ := ι C[p] := p ∈ FVal ∧ (subH p⇒ subH ∅) p · q := p∪ q
1 := ∅ α3 = α4 = α5 = α6 = α7 = α8 := I α0 := 〈λxyz. z, I〉
α1 = α2 := λc. let (p, t) = c in 〈UpFVal p, λx. let (x1, x2) = x in t 〈x1,MonsubHtree x2〉〉

(UpFVal and MonsubHtree will be defined in section 5.4.)

I Remarks.
1. We can simplify α1 further if we replace MonsubHtree by I (which is a realizer of the

same formula, see the remark after lemma 5.4). Note that in this case, α1 is no longer
a proof term but only a realizer (which is enough for our purpose) and we can write it
α1 := λc. let (c1, c2) = c in 〈UpFVal c1, c2〉.

2. Once we have proven the existence of a Herbrand tree (that is subH ∅), the second part of
the definition of the set C (subH p⇒ subH ∅) is trivial. Therefore, the set C is logically
equivalent to its first part FVal, the set of finite functions from Atom to Bool. It is
interesting to notice that when Atom = N, this is exactly the forcing conditions used to
add a Cohen real [7]. This remark means that our forcing structure actually adds a single
Cohen real (in the extended universe) which turns out to be the model we seek. It is a
simple exercise of forcing to show that this real number is different from all real numbers
of the base universe and that it is non computable.

In order to use all the results of section 4 and to be able to remove forcing using
theorem 4.6, we need to prove that both subH and C are absolute.

I Proposition 5.2. The sets Tree, subH, FVal and C are invariant under forcing.

Proof. There exist proof terms in PAω+ proving these properties. For instance, we have:
ξC := ξ∧ ξFVal (ξ⇒ ξ′subH ξsubH) ξ′C := ξ′∧ ξ

′
FVal (ξ′⇒ ξsubH ξ

′
subH) J

5.4 Formal statement of Herbrand’s theorem in PAω+

We now formalize in PAω+ the statement of Herbrand’s theorem presented in section 2 as:

If F (~x) is a quantifier-free formula and all syntactic valuations validate ∃~x. F (~x),
then ∃~x. F (~x) has a Herbrand tree.

Since we consider atomic formulas as elements of an abstract datatype (of sort ι) rep-
resented by the set Atom, a valuation is completely determined by its values on atoms
and is thus defined as a function from atoms to propositions that we represent by a term
of sort ι → o. We can extend a valuation ρ to quantifier-free formulas by the function
interp(ι→o)→ι→o recursively defined by the following equations.

interp ρ |= := ⊥ interp ρ a := ρ a interp ρ (cV c′) := (interp ρ c)⇒ (interp ρ c′)

L. Rieg 609

The formula F (~x) is represented by a term V ι→ι mapping any ~v to the corresponding
quantifier-free formula F (~v) in Comp. The premise of Herbrand’s theorem becomes the
formula ∀ρι→o.∃~v ∈ Term. interp ρ (V ~v).

We now need to define the proposition expressing that a binary tree is a Herbrand tree.
Checking the correctness of a Herbrand tree is completely computational:
1. go down the tree and remember the partial valuation of your current branch,
2. evaluate V ~v at the leaves using the partial valuation accumulated so far.
This process is performed by the function subHtree recursively defined by these equations.

subHtree p (Node a t1 t2) := subHtree pa1 t1 && subHtree pa0 t2
subHtree p (Leaf ~v) := eval p (V ~v) 1

The case of leaves is treated using a Boolean function evalι→ι→ι→ι checking whether the
truth value of V ~v (2nd arg.) is equal to b (3rd arg.) in the valuation p (1st arg.). The only
non trivial case is the case of an atom where we need to look for the binding (a, b) into p,
which can be done by the test function (see section 5.1). Since p is partial, eval p (V ~v) b = 0
can have two causes: either the truth value of V ~v in p is 1− b or p does not contain enough
information to evaluate V ~v. Conversely, when eval p (V ~v) b = 1, it means both that p
contains enough information to evaluate V ~v and that the result is b. When subHtree p t = 1,
we say that t is a Herbrand tree below p. Using subHtree, we finally define the predicate
subH p expressing the existence of a Herbrand tree below the finite (and partial) valuation p:
subH p := ∃t ∈ Tree. subHtree p t = 1.

Summing up, the formal statement of Herbrand’s theorem in PAω+ is

(∀ρι→o.∃~v ∈ Term.¬ interp ρ (V ~v))⇒ subH ∅ . (H)

I Lemma 5.3 (subH-merging). Let p be a partial valuation and let a be an atom not appearing
in p. If we have both subH pa1 and subH pa0, then we have subH p.

Proof. If t1 and t2 are Herbrand trees below pa1 and pa0 respectively, then Node a t1 t2 is
a Herbrand tree below p. In PAω+, this lemma is formally stated and proved as follows.

merge := λxaxy. let (x1, x2) = x in let (y1, y2) = y in 〈Node xa x1 y1, y2 ◦ x2〉
: ∀pι.∀a ∈ Atom. mem a p

.= 0 7→ subH pa1 ⇒ subH pa0 ⇒ subH p J

I Lemma 5.4 (Monotonicity). The functions test, eval and subHtree are monotonic in p.

Proof. There exists proof terms Montest, Moneval and MonsubHtree of the propositions

∀pqab. test p a b = 1⇒ test (p∪ q) a b = 1
∀pq.∀c ∈ Comp.∀b ∈ Bool. eval p c b = 1⇒ eval (p∪ q) c b = 1
∀pq.∀t ∈ Tree. subHtree p t = 1⇒ subHtree(p∪ q) t = 1 .

For instance, we have Montest := λxy. x y. J

I Remark. In practice, there is no need to build formal proofs in PAω+ of monotonicity
since their unrelativized version are realized by the identity (they are Horn formulas, true in
the standard model): we can use them in proofs as axioms and later realize them by I.

I Lemma 5.5 (FVal is upward-closed). For all p and q, if (p∪ q) ∈ FVal, then p ∈ FVal.

Proof. There exists a proof term UpFVal : ∀pq. (p∪ q) ∈ FVal⇒ p ∈ FVal. J

CSL’13

610 Extracting Herbrand trees in classical realizability using forcing

5.5 The full proof
5.5.1 The big picture
Now that we have our forcing setting, we can turn to the proof itself. It will be split between
the base (B) and forcing universes (F) as shown by the following steps:
1. B Assume the premise ∀ρι→o.∃~v ∈ Term.¬ interp ρ (V ~v).
2. F Lift the premise to the forcing universe.
3. F Make the proof: t : subH ∅.
4. B Use the forcing translation: t∗ : 1 F subH ∅.
5. B Remove forcing: ξsubH t

∗α0 : subH ∅.
6. B Extract a witness.

I Remarks.
1. Steps 1 and 2 are automatic (a proof in the base universe is correct in the forcing one),
2. Step 5 has already been explained in the general case,
3. Step 6 uses standard classical realizability techniques and will not be discussed here.
4. Since the premise is not absolute (because of the quantification over valuations ρ of sort

ι→ o), we do not have a proof of Herbrand’s theorem (in the base universe) and only get

this admissible rule (see section 2.1): E ; Γ ` u : ∀ρι→o.∃~v ∈ Term. interp ρ (V ~v)
E ; Γ ` t(u) : subH ∅

.

5.5.2 The proof in the forcing universe (step 3)
Recall the formal statement of Herbrand’s theorem (H) given in section 5.4. Since we are now
in the forcing universe, we can use the properties of the generic filter G given in section 4.3.
As usual with proof in forcing, we start by building the generic valuation g =

⋃
G, which is

legal because G is a filter. We would like to let g :=
⋃
G and prove that it is total. However,

its simpler to define g := λa.∃p ∈ G. test p a 1 = 1 (total by definition) and then prove that
it is equal to the union of G. To do so, instead of full genericity, we use a specialized axiom

∀a ∈ Atom.∃p ∈ G. ∃b ∈ Bool. test p a b = 1 . (A)

First of all, we lift this axiom to quantifier-free formulas:

I Lemma 5.6 (Evaluation by G). There exists a proof term proving the proposition

∀c ∈ Comp.∃p ∈ G.∃b ∈ Bool. eval p c b = 1 & if b then interp g c else ¬(interp g c) .

Proof. The second part of the conjunct simply says that g must interpret a quantifier-free
formula c exactly as any p in G would do, which is obvious by definition of g. We can therefore
focus our attention on the first part on the conjunct, which is proved by induction on c, using
property (4.9.iv) for the case of implication and axiom (A) for the case of atom. J

Because g is a valuation, we can feed it to the premise of (H) to get terms ~v such that
~v ∈ Term (1) and ¬ interp g (V ~v) (2). Using lemma 5.6 above with V ~v, we get p ∈ G and
b ∈ Bool such that eval p (V ~v) b = 1 (3) and if b then interp g (V ~v) else ¬(interp g (V ~v)) (4).
Since b ∈ Bool, we can make a case analysis:
1. b = 1: By (4), we have interp g (V ~v) which is in contradiction with (2).
2. b = 0: The equation (3) gives us eval p (V ~v) 0 = 1 which, combined with (1), makes a

proof of subH p (take t := Leaf ~v). But p ∈ G and G ⊂ C so that we have C[p] and thus
subH p⇒ subH ∅ which allows us to conclude.

L. Rieg 611

λcaf. let (p, t) = α1 c in a′ := ξAtom a (α1 c) : a ∈ Atom
if Tottest p a

′ true then f (α1 c) I true∗ I∗ else
if Tottest p a

′ false then f (α1 c) I false∗ I∗ else
f 〈UpFVal (consT a′ p), λt1. f 〈UpFVal (consF a′ p), λt2. t (merge a′ t1 t2)〉 I false∗ I∗〉 I true∗ I∗

Figure 7 The program realizing the axiom (A).

5.5.3 Back to the base universe (step 4)
Converting our proof term t : subH ∅ in the forcing universe into a proof term t∗ : 1 F subH ∅
in the base universe follows exactly the methodology of section 4. The only subtlety is that
instead of the genericity property of G (property (4.9.v)), we use the axiom (A) and we now
need to translate it.

I Proposition 5.7 (Forcing the axiom (A)). There is a proof term in PAω+ proving

1 F ∀a ∈ Atom.¬(∀pb. p ∈ G⇒ b ∈ Bool⇒ test p a b = 1⇒ ⊥) .

Proof. The corresponding realizer is given in Fig. 7. Note that we use the simplified version
of α1. The (textual) proof is given in annex B. J

6 Computational interpretation

By analyzing the proof from the previous section, we obtain an algorithm for computing
Herbrand trees. In order to study this algorithm, we use Krivine’s classical realizability (see
section 3.4), the setting in which the computational content of forcing has been studied [9, 11].

Overall, the interest of using forcing in this case is twofold. First, it allows to reason (in
the forcing universe) on a single valuation, the generic valuation, instead of considering all of
them. The forcing translation takes care of ‘moving’ this generic valuation across the tree to
make sure we cover every possible branch. In short, forcing transparently manages the tree
structure. Second, the forcing condition stores the tree under construction (see below), thus
protecting it from any backtrack that might occur in the realizer of the premise of (H).

Computationally, a realizer of C[p] is a dependent type of a zipper [6] at position p. Its
first part (p ∈ FVal) behaves as a finite list of atoms with two cons constructors, representing
a finite approximation of the generic valuation g. Its second part (subH p⇒ subH ∅) is the
return continuation: provided we can find a Herbrand tree below p, we have a full Herbrand
tree; it represents a tree context where the hole is at position p.

From this perspective, the key ingredient of the proof is axiom (A), which is responsible
for the insertion of new nodes in the Herbrand tree and the scheduling of the computation of
the subtrees. Indeed, it is the only place where the second component of the forcing condition
(the tree context) is modified. It can be seen as the primitive called by the user program (the
premise) to build the tree, like a system call giving access to g: given an atom a, this program
(given Fig. 7) computes the truth value b of a in g, together with a witness of its answer:
p ∈ G containing a (remember that g =

⋃
G). To do so, it first checks whether a belongs

to the current forcing condition q and if so, returns the associated value (lines 2 & 3) by
feeding it to its continuation f . When a does not belong to q, we need to extend q. Since a
can be mapped to either true or false in g, we consider both cases and hence make two calls
to f (last line). These two calls can be understood intuitively as follows: first we lead f to
believe we have a tree context for p := qa1 (i.e. a fictitious realizer T ′ of subH qa1 ⇒ subH ∅)
although at the time, we only have one for q. When the computation inside f uses T ′, it

CSL’13

612 Extracting Herbrand trees in classical realizability using forcing

must provide a Herbrand tree t1 below qa1. We then swap branches and call f again with
p := qa0 because this time, we do have a tree context for qa0, namely λt2. t (merge a t1 t2).
Summing up, this last line contains both the extension of the tree (in merge a u v) and the
scheduling of the subtree computation (the two calls to f).

Furthermore, our realizer is completely intuitionistic (no callcc), which means that any
backtrack during execution originates from the realizer of the premise of (H) and cannot
affect the partial tree under construction which is stored in the second part of C[p]. Indeed
callcc∗ takes care of saving and restoring the forcing condition. This restricted form of
backtrack becomes a real instruction in the KFAM [12] (Krivine’s Forcing Abstract Machine)
which hard-wires the forcing translation of section 4 and features two execution modes:

a real mode where terms have their usual KAM behavior,
a forcing mode (or protected mode) where the first slot on the stack is considered as
a forcing condition and terms behave as if they were translated through the forcing
transformation.

In this machine, the premise of Herbrand’s theorem would be executed only in forcing mode
and could not affect the forcing condition (stored on the first slot of the stack).

Finally, the proof of section 5.5.2 in the forcing universe PAω+ +G never uses the upward
closure of G (property 4.9.iii). This means that we do not need to erase information from
the partial Herbrand tree and suggests that our realizer is efficient.

References

1 Paul J. Cohen. The independence of the continuum hypothesis. Proceedings of the National
Academy of Science of the USA, 50:1143–1148, 1963.

2 Paul J. Cohen. The independence of the continuum hypothesis II. Proceedings of the
National Academy of Science of the USA, 51:105–110, 1964.

3 P.-L. Curien and Hugo Herbelin. The duality of computation. In International Conference
on Functional Programming, pages 233–243, 2000.

4 Gilles Dowek, Thérèse Hardin, and Claude Kirchner. Theorem proving modulo. Journal
of Automated Reasoning, 31(1):33–72, 2003.

5 Timothy G. Griffin. A formulae-as-types notion of control. In Principles of Programming
Languages (POPL’90), pages 47–58, 1990.

6 Gérard Huet. The zipper. Journal of Functional Programming, 7(5):549–554, 1997.
7 Thomas Jech. Set theory. Springer Monographs in Mathematics. Springer-Verlag, Berlin,

2003. The third millennium edition, revised and expanded.
8 J.-L. Krivine. Realizability in classical logic. In Interactive models of computation and

program behaviour, volume 27 of Panoramas et synthèses, pages 197–229. SMF, 2009.
9 J.-L. Krivine. Realizability algebras: a program to well order R. Logical Methods in

Computer Science, 7, 2011.
10 Alexandre Miquel. Existential witness extraction in classical realizability and via a negative

translation. In Logical Methods in Computer Science, 2010.
11 Alexandre Miquel. Forcing as a program transformation. Logic in Computer Science, pages

197–206, 2011.
12 Alexandre Miquel. Forcing as a program transformation. Mathematical Structure in Com-

puter Science, 2013. to appear.
13 Michel Parigot. Proofs of strong normalisation for second order classical natural deduction.

Journal of Symbolic Logic, 62(4):1461–1479, 1997.

L. Rieg 613

A Definition of the congruence relation

Reflexivity, symmetry, transitivity and base case

M 'E M
M 'E N
N 'E M

M 'E N N 'E P
M 'E P

(M = N) ∈ E
M 'E N

Context closure
M 'E N

λx.M 'E λx.N
A 'E B

∀xτ . A 'E ∀xτ . B
M 'E N P 'E Q

M P 'E N Q

A 'E B C 'E D
A⇒ C 'E B ⇒ D

M 'E N P 'E Q A 'E,M=P B

M
.= P 7→ A 'E N

.= Q 7→ B

β η ι-conversion

(λxτ .M)Nτ 'E M [Nτ/xτ]
x /∈ FV (M)

λx.M x 'E M

recτ M N 0 'E M recτ M N(S P) 'E N P (recτ M N P)
Semantically equivalent propositions

∀xτ∀yσ. A 'E ∀yσ∀xτ . A
x /∈ FV (A)

∀xτ . A 'E A
x /∈ FV (A)

A⇒ ∀xτ . B 'E ∀xτ . A⇒ B

M
.= M 7→ A 'E A M

.= N 7→ A 'E N
.= M 7→ A

M
.= N 7→ P

.= Q 7→ A 'E P
.= Q 7→M

.= N 7→ A

A⇒M
.= N 7→ B 'E M

.= N 7→ A⇒ B
x /∈ FV (M,N)

∀xτ .M .= N 7→ A 'E M
.= N 7→ ∀xτ . A

B Proof that the axiom (A) is forced

We want to prove (in PAω+) that 1 F ∀a ∈ Atom.∃p ∈ G. ∃b ∈ Bool. test p a b = 1. Unfolding
the existential quantifiers, we need to prove

1 F ∀a ∈ Atom.¬(∀p ∈ G.∀b ∈ Bool. test p a b = 1⇒ ⊥),

that is

1 F ∀a. a ∈ Atom⇒ ¬(∀p∀b. p ∈ G⇒ b ∈ Bool⇒ test p a b = 1⇒ ⊥) .

Using proposition 4.2, it amounts to proving (1qa)qf F ⊥ given

xa : qa F a ∈ Atom
xf : qf F ∀p∀b. p ∈ G⇒ b ∈ Bool⇒ test p a b = 1⇒ ⊥ .

Since 1 is neutral for the product, this is the same as proving that qaqf F ⊥. With repeated
use of γ3, we can turn xf into y := λuv. γ3(γ3 (γ3 (β4 y)u) v) which is a proof term for

∀q∀p∀b. (qqf F p ∈ G)⇒ (qqf F b ∈ Bool)⇒ (qqf F test p a b = 1)⇒ (qqf F ⊥) .

Because test is total and we have Tottest : ∀p ∈ FVal.∀a ∈ Atom.∀b ∈ Bool. test p a b ∈ Bool
(both assumed in the interface for finite relations), we can proceed by case analysis:

CSL’13

614 Extracting Herbrand trees in classical realizability using forcing

test (qaqf) a 1 = 1: We take p := qaqf and b := 1. We use y with q := qa to prove
qaqf F ⊥ so that we have to prove its premises:

I : qaqf ≤ qaqf ≡ qaqf F qaqf ∈ G,
γ1(λu. γ1(λv. β4 (β3 u))) : qaqf F 1 ∈ Bool,
I∗ : qaqf F test (qaqf) a 1 = 1 because the equality holds in the equational theory
(thanks to the case analysis).

test (qaqf) a 0 = 1: It is similar to the previous case.
test (qaqf) a 1 = 0 and test (qaqf) a 0 = 0: This case means that a does not appear in
qaqf .
We use ξ′⊥ and we are left to prove C[qaqf] ⇒ ⊥. We first prove C[(qaa1)qf] ⇒ ⊥ by
using first ξ⊥ then y with q ≡ p := qaa

1 and b := 1.
α9 : (qaa1)qf ≤ qaa1 ≡ (qaa1)qf F qaa1 ∈ G because product is the glb for ≤,
(qaa1)qf F 1 ∈ Bool proved as before,
(qaa1)qf F test (qaa1) a 1 = 1 proved as before.

In a similar fashion, we prove C[(qaa0)qf]⇒ ⊥.
Let us come back to the proof of C[qaqf]⇒ ⊥. Assume C[qaqf]. Applying the proof term
for C[(qaa1)qf]⇒ ⊥, we have to prove C[(qaa1)qf] ≡ (qaa1)qf ∈ FVal∧(subH (qaa1)qf ⇒
subH ∅). The first part present no difficulty because we have C[qaqf] and mem a (qaqf) = 0:
we just need to apply the second constructor of FVal. For the second part, we assume
subH (qaa1)qf and we want to prove subH ∅. Instead we choose to prove ⊥ ≡ ∀Z.Z.
Applying again the same method with C[(qaa0)q]⇒ ⊥, we end up proving subH ∅ with
subH (qaa1)q and subH (qaa0)qf as extra hypotheses. For this, we just have to use merge
(proposition 5.3) to get subH qaqf and apply it to subH qaqf ⇒ subH ∅ which we get from
C[qaqf].

The Complexity of Abduction for Equality
Constraint Languages
Johannes Schmidt∗ and Michał Wrona†

Linköping University
IDA
Linköping
{johannes.schmidt, michal.wrona}@liu.se

Abstract
Abduction is a form of nonmonotonic reasoning that looks for an explanation for an observed
manifestation according to some knowledge base. One form of the abduction problem studied
in the literature is the propositional abduction problem parameterized by a structure Γ over
the two-element domain. In that case, the knowledge base is a set of constraints over Γ, the
manifestation and explanation are propositional formulas.

In this paper, we follow a similar route. Yet, we consider abduction over infinite domain.
We study the equality abduction problem parameterized by a relational first-order structure Γ
over the natural numbers such that every relation in Γ is definable by a Boolean combination of
equalities, a manifestation is a literal of the form (x = y) or (x 6= y), and an explanation is a set
of such literals. Our main contribution is a complete complexity characterization of the equality
abduction problem. We prove that depending on Γ, it is ΣP2 -complete, or NP-complete, or in P.

1998 ACM Subject Classification F.4.1 Mathematical Logic, F.2.2 Nonnumerical Algorithms
and Problems

Keywords and phrases Abduction, infinite structures, equality constraint languages, computa-
tional complexity, algebraic approach

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.615

1 Introduction

Abduction is a form of logical inference that aims at finding explanations for observed
manifestations, starting from some knowledge base. It found many different applications
in artificial intelligence [21], in particular to explanation-based diagnosis (e.g. medical
diagnosis [10]), text interpretation [18], and planning [17].

In this paper we are interested in the complexity of abduction in a well-defined framework
explained below. In a certain sense we follow a series of papers concerning the complexity
of propositional abduction [16, 15, 20]. Roughly speaking, an instance of a propositional
abduction problem for a relational structure Γ over the two element domain consists of
a knowledge base KB — a conjunction of constraints over Γ, a set of hypotheses H —
propositional literals formed upon variables in KB, and a manifestation M — a propositional
formula. The question is whether there exists an explanation, i.e., a set E ⊆ H such that
(KB∧

∧
E) is satisfiable and (KB∧

∧
E) entailsM . For every Γ, this propositional abduction

problem is in ΣP
2 [16]. Depending on the restrictions, e.g., on Γ, one can obtain variants

which are polynomial, NP-complete, coNP-complete or ΣP2 -complete [20].

∗ Supported by the National Graduate School in Computer Science (CUGS), Sweden.
† Supported by the Swedish Research Council (VR) under grant 621-2012-3239.

© Johannes Schmidt and Michał Wrona;
licensed under Creative Commons License CC-BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca ; pp. 615–633

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.615
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

616 The Complexity of Abduction for Equality Constraint Languages

Here, we follow a similar scheme. The difference is that Γ is not a structure over the
two-element domain but a structure that has a first-order definition in (N; =), that is, the
set of natural numbers with equality only. In what follows we call such structures equality
(constraint) languages and the corresponding abduction problem the equality abduction
problem. Since all structures first-order definable in (N; =) have also first-order definitions in
all other infinite structures, it is natural to start classifying the complexity of abduction for
infinite structures considering equality languages first. The motivation for studying abduction
for infinite constraint languages is strong and presented below. Equality languages are also
of independent interest. They were studied in the context of CSPs [5] and QCSPs [3], see
also Section 4.1. In [4], these languages were classified with respect to primitive positive
definability.

An instance of the equality abduction problem for Γ consists of a knowledge base φ that
is a conjunction of constraints over Γ, a subset V of the set of variables occurring in φ, and
a manifestation which is a literal L(x, y) of the form (x = y), or (x 6= y). The question
is whether there exists an explanation, i.e., a conjunction ψ of such literals formed upon
variables in V such that (φ ∧ ψ) is satisfiable and (φ ∧ ψ) entails L(x, y). For instance,
a possible explanation for the knowledge base ((x1 = y1 ∧ x2 = y2) → z = v) and the
manifestation (z = v) is (x1 = y1 ∧ x2 = y2). We give a precise definition in Section 4. The
notions used in the introduction are pretty standard. Most of them are, nevertheless, defined
in Section 2.

The main contribution of this paper is a trichotomous complexity classification of the
equality abduction problem. As we show, this problem is always in ΣP2 . Moreover, depending
on Γ, it may be ΣP2 -hard, or NP-complete, or solvable in polynomial time.

This way of parameterizing computational problems by relational structures is also
referred to as Schaefer’s framework or Schaefer’s approach and dates back to Schaefer’s
paper on the complexity of constraint satisfaction problems (CSPs) over the two-element
domain [22]. Modern proofs of Schaefer’s theorem (see, e.g., [12]), as well as many other
classifications of the complexity of related problems (for a survey, see [14]) including also
propositional abduction take advantage of the so-called algebraic approach. In this approach
the complexity of the problem, e.g., a constraint satisfaction problem or an abduction problem
for a fixed Γ, is related directly to the set of operations preserving Γ. To enjoy the benefits of
the algebraic tools, it is not necessary to restrict to the two-element domain, neither to any
finite domain. Indeed, algebraic tools are equivalently powerful in classifying the complexity
of CSPs for certain infinite structures [2], called ω-categorical structures [19].

Very natural examples of such structures are (N; =) but also (Q;<), that is, the order of
rational numbers. Several classifications of constraint satisfaction problems for ω-categorical
structures were obtained in the literature [2]. All of them follow the following scheme. One
starts from some ω-categorical structure ∆ such as (N; =) or (Q;<), then considers the class
of all structures Γ with a first-order definition in ∆, which are also ω-categorical. The cases
where ∆ is (N; =) and (Q;<) were treated in [5] and [6], respectively. In both situations it
appeared that the problem CSP(Γ) is either in P, or it is NP-complete. Here, we adopt this
framework to study the complexity of the equality abduction problem.

To motivate the study of CSPs for ω-categorical structures, it is worth to mention that
many problems studied independently in temporal reasoning, e.g., network satisfaction
problems for qualitative calculi such as the Point Algebra [23] or Allen’s Interval Algebra [1]
can be directly formulated in this framework. In fact the complexity classification of Γ with
a first-order definition in (Q;<) substantially generalizes the result on tractability for the
network satisfaction problem for the Point Algebra. Furthermore, the network satisfaction

J. Schmidt and M. Wrona 617

problem for Allen’s Interval Algebra may be also modelled as a CSP for an ω-categorical
structure, see [2].

Back to the issue of abduction, a kind of this problem handling time dependencies between
events is called temporal abduction. Among others it is studied in [8, 13] in the framework [9]
based on already mentioned, formalisms: Point Algebra, and Allen’s Interval Algebra. It
motivates the study of the complexity of abduction for ω-categorical structures, which we
initiate in this paper.

1.1 Outline of the paper

We start in Section 2 by providing some preliminaries. In Section 3 we give a general
definition of an abduction problem for a relational structure Γ. This definition captures many
variants of propositional abduction as well as the equality abduction problem we study in
this paper. We believe that the general definition will be employed in our future research on
abduction. In that section we also show that two primitive positive interdefinable structures
Γ1 and Γ2 give rise to abduction problems that are polynomial-time equivalent. Using the
Galois connection in [7], it follows that if Γ1 and Γ2 are ω-categorical and preserved by
the same operations, then their abduction problems are polynomial-time equivalent. We
conclude that part of the paper by proving a useful result which links the complexity of the
abduction and the constraint satisfaction problem.

A set of operations preserving a given structure Γ forms an algebraic structure called
a clone. Clones corresponding to equality languages were classified in [4]. To provide our
classification, which is presented in detail in Section 4, we express it in terms of clones, see
Section 5. Then it remains to prove the complexity results, which are provided in Sections 6,
7, and 8. The paper is concluded in Section 9, where also the issue of future work is adressed.

The appendix contains proofs of: Theorem 5, Proposition 26, Lemma 28, and Proposi-
tion 29.

2 Preliminaries

Always, when it is possible, the notation is consistent with [19], [11], and [2], which we
recommend as further reading on model theory, ω-categoricity and CSPs over ω-categorical
structures, respectively. We write [n] to denote {1, . . . , n}.

2.1 Structures and Formulas

In this paper, we consider relational structures, which are typically denoted here by capital
Greek letters such as Γ, or ∆. A signature is usually denoted by τ . If it is not stated
otherwise, then we assume that the signature is finite. For the sake of simplicity, we use the
same symbols to denote relations and their corresponding relation symbols. We mainly focus
on countably infinite and ω-categorical structures. We say that a countably infinite structure
is ω-categorical if all countable models of its first-order theory are isomorphic.

Let σ and τ be signatures with σ ⊆ τ . When ∆ is a σ-structure and Γ is a τ -structure
with the same domain such that R∆ = RΓ for all R ∈ σ, then Γ is called an expansion of ∆.

For a τ -structure Γ over the domain D we define ∆ := Γk, where k > 0 is a natural
number, to be a k-fold direct product of Γ, that is, the τ -structure on the domain Dk such
that for every n-ary relation symbol R in τ we have ((d1

1, . . . , d
1
k), . . . , (dn1 , . . . , dnk)) ∈ R∆ iff

(d1
i , . . . , d

n
i) ∈ RΓ for all i ∈ [k].

CSL’13

618 The Complexity of Abduction for Equality Constraint Languages

In this paper, we say that a relational structure Γ is first-order definable in ∆ if Γ has
the same domain as ∆, and for every relation R of Γ there is a first-order formula φ in the
signature of ∆ such that φ holds exactly on those tuples that are contained in R. If Γ is
first-order definable in ∆, then we say that Γ is a first-order reduct of ∆. We say that two
formulas are equivalent if they are over the same variables and define the same relation.

We are in particular interested in equality (constraint) languages, that is, first-order
reducts of (N; =). All equality languages are ω-categorical structures. Furthermore, since
(N; =) has quantifier elimination, every equality language has a quantifier-free first-order
definition in (N; =) in conjunctive normal form. Such formulas over the signature {=, 6=}
will be called equality formulas, and equality formulas of the form (x = y) and (x 6= y) will
be called (equality) literals. The set of all literals that can be formed upon a set of variables
V will be denoted by L(V).

A Γ-constraint is an atomic formula over the signature of Γ of the form R(x1, . . . , xn).
Of special interest for abduction are Γ-formulas which are conjunctions of Γ-constraints.
Furthermore, primitive positive formulas (pp-formulas) over the signature of Γ are first-order
formulas built exclusively from conjunction, existential quantifiers, Γ-constraints and atomic
formulas of the form (x = y). The set of relations with a pp-definition in Γ is denoted by [Γ].

For a quantifier-free first-order formula φ, we write Var(φ) to denote the set of variables
occurring in φ. Let φ1 and φ2 be two equality formulas over the same set of variables
{v1, . . . , vn}. We say that φ1 entails φ2 if (N; =) |= (∀v1 · · · ∀vn.φ1 → φ2).

2.2 Polymorphisms and Clones
Let Γ be a structure. Homomorphisms from Γk to Γ are called polymorphisms of Γ. When R
is a relation over domain D, we say that f : Dk → D preserves R if f is a polymorphism
of (D;R), and that f violates R otherwise. The set of all polymorphisms of a relational
structure Γ, denoted by Pol(Γ), forms an algebraic object called a clone. A clone on some
fixed domain D is a set of operations on D containing all projections and closed under
composition. A clone C is locally closed iff for all natural numbers n, for all n-ary operations
g on D, if for all finite B ⊆ Dn there exists an n-ary f ∈ C which agrees with g on B, then
g ∈ C. We say that a set of operations F (locally) generates an operation f (or that an
operation f is (locally) generated by F) if f is in the smallest locally closed clone containing
F , denoted by 〈F 〉. If F = {g} then we also say that g generates f or that f is generated by
g.

I Proposition 1 (see e.g. [2]). Let F be a set of operations on some domain D. Then the
following are equivalent: (i) F is the polymorphism clone of a relational structure; and (ii) F
is a locally closed clone.

For ω-categorical structures we have the following Galois connection.

I Theorem 2 ([7]). Let Γ1,Γ2 be ω-categorical structures. We have that Pol(Γ1) ⊆ Pol(Γ2)
if and only if [Γ2] ⊆ [Γ1].

A special kind of a polymorphism is an automorphism. Observe that the set of auto-
morphisms of (N; =) is exactly SN, that is, the set of all permutations on N. By the theorem
of Engeler, Ryll-Nardzewski and Svenonius (see, e.g., [19]), it follows that a structure is
an equality language if and only if it is preserved by SN. Thus, by Theorem 2 and results
obtained in Section 3, studying the complexity of the equality abduction problem amounts to
studying locally closed clones on N containing SN. In what follows, such clones will be called
equality clones. These clones form a complete lattice, where the least element is the clone

J. Schmidt and M. Wrona 619

generated by SN and the greatest element is the set of all operations on N, denoted here
by O. By O(k), we denote a subset of O containing the operations of arity k. For a given
family of clones (Ci)i∈I , the meet is just an intersection

⋂
i∈I Ci, and the join is 〈

⋃
i∈I Ci〉.

The lattice of equality clones was described in [4]. In this paper, we take advantage of this
classification. The clones which are important for us are recalled in Section 5.

2.3 Complexity Classes
In this paper we study decision problems. The complexity classes we deal with are P, NP and
ΣP

2 . Recall that ΣP
2 = NPNP is the class of decision problems solvable in nondeterministic

polynomial time with access to an NP-oracle. In general, we write CC2
1 for the class of

languages solvable in C1 with access to a C2-oracle.

2.4 Propositional Abduction
Abduction has been intensively studied in the propositional case, see e.g., [15] and [20] for
complexity classifications. Similarly as in this paper, these classifications are based on the
closure properties of constraint languages. To prove hardness results on the equality abduction
problem, we will use the complexity classification for a special kind of propositional abduction
problem called PQ-ABDUCTION(Γ), where Γ is a structure over the two-element domain.
By Lit(V) we denote the set of propositional literals that can be formed upon variables
in V . An instance of PQ-ABDUCTION(Γ) is a triple (φ, V, q), where φ is a Γ-formula,
V ⊆ Var(φ), and q ∈ Var(φ) \ V . We ask whether there is a set of literals Lit ⊆ Lit(V) such
that (φ ∧

∧
Lit) is satisfiable but (φ ∧

∧
Lit ∧ ¬q) is not. We will need the following version

of Theorem 7.6 in [15]. Beforehand, however, consider the following operations over the two-
element domain: i) majority(b1, b2, b3) = (b1∧b2)∨(b1∧b3)∨(b2∧b3), ii) minority(b1, b2, b3) =
(b1 ∧¬b2 ∧¬b3)∨ (¬b1 ∧ b2 ∧¬b3)∨ (¬b1 ∧¬b2 ∧ b3)∨ (b1 ∧ b2 ∧ b3), iii) min(b1, b2) = b1 ∧ b2,
iv) max(b1, b2) = b1 ∨ b2, v) c0(b) = 0, vi) c1(b) = 1, vii) opzero(b1, b2, b3) = b1 ∧ (b2 ∨ b3),
and viii) opone(b1, b2, b3) = b1 ∨ (b2 ∧ b3).

I Theorem 3 ([15]). Let Γ be a structure over the two-element domain.

If Γ is preserved by i) majority, ii) minority, iii) min and c1, iv) opzero, or v) opone,
then PQ-ABDUCTION(Γ) is in P.
Otherwise, if Γ is preserved by min or max, the problem PQ-ABDUCTION(Γ) is NP-
complete.
In all other cases, we have that PQ-ABDUCTION(Γ) is ΣP2 -hard.

3 The Abduction Problem and Algebra

Let ∆ be a relational structure over some domain D and let Γ,HYP,M be three first-order
reducts of ∆. Let ΓHYP be an expansion of Γ by the relations in HYP , that is, the structure
whose relations are either from Γ or HYP; and ΓHYP,M be an expansion of ΓHYP by the
relations inM.

I Definition 4. An instance of the abduction problem ABD(Γ,HYP,M) is a triple T =
(φ, V,M), where:

φ is a Γ-formula (the knowledge base),
V is a subset of Var(φ),
M is anM-constraint (the manifestation).

CSL’13

620 The Complexity of Abduction for Equality Constraint Languages

The triple T = (φ, V,M) is a positive instance of ABD(Γ,HYP,M) if there exists an
explanation for T , that is, a HYP-formula ψ built upon variables from V such that both of
the following hold:

(φ ∧ ψ) is satisfiable in ΓHYP ,
(φ ∧ ψ) entails M (or equivalently, (φ ∧ ψ ∧ ¬M) is not satisfiable in ΓHYP,M).

In this case ψ is called an explanation for T .

This definition allows to model many variants of the propositional abduction problem as
defined in [20]. For instance, the basic problem PQ-ABDUCTION(Γ) discussed in Section 2
(called V-ABD(Γ, PosLits) in [20]) can be modelled in the following way. We start from
∆ = ({0, 1};T, F), where T = {(1)} and F = {(0)}, and consider Γ with a first-order
definition in ∆, that is, Γ may be an arbitrary structure over the two-element domain. Then,
we set HYP to ({0, 1};T, F), andM to ({0, 1};T).

We observe in the following that the algebraic approach is applicable to the abduction
problem under consideration. We first show that when HYP and M are fixed, then
the complexity of ABD(Γ,HYP,M) is fully determined by the set [Γ], the closure of
Γ under primitive positive definitions. For Γ1 ⊆ [Γ2] and an instance T1 = (φ1, V,M)
of ABD(Γ1,HYP,M), we create an instance T2 = (φ2, V,M) of ABD(Γ2,HYP,M) by
transforming a Γ1-formula φ1 into a Γ2-formula φ2 in the following standard way: (1) replace
in φ1 every Γ1-constraint by its pp-definition in Γ2, (2) delete all existential quantifiers,
(3) delete all equality constraints and identify variables that are linked by a sequence of =.

It is easily observed that this transformation preserves satisfiability. Similarly as in [20],
one can show that an explanation for T1 can be easily rewritten into an explanation for T2,
and vice versa.

I Theorem 5. Let ∆ be a relational structure and Γ1,Γ2,HYP,M be first-order reducts
of ∆, where Γ1 and Γ2 are over finite signatures. If Γ1 has a pp-definition in Γ2, then
ABD(Γ1,HYP,M) reduces to ABD(Γ2,HYP,M) in polynomial time.

By Theorems 2 and 5, we have that the complexity of ABD(Γ,HYP,M) for ω-categorical
Γ is fully captured by the set of polymorphisms preserving Γ.

I Corollary 6. Let ∆ be an ω-categorical structure and Γ1, Γ2, HYP, and M first-order
reducts of ∆, where Γ1 and Γ2 are over finite signatures. If Pol(Γ2) ⊆ Pol(Γ1), then
ABD(Γ1,HYP,M) reduces to ABD(Γ2,HYP,M) in polynomial time.

We will conclude this section by providing a simple but useful link between the complexity
of CSP(ΓHYP,M) and ABD(Γ,HYP,M).

I Proposition 7. Let ∆ be a relational structure and Γ,HYP,M be first-order reducts of ∆,
where HYP is over a finite signature. If CSP(ΓHYP,M) is in the complexity class C, then
ABD(Γ,HYP,M) is in NPC .

Proof. Let T = (φ, V,M) be an instance of ABD(Γ,HYP,M). By assumption, the signature
of HYP is finite and therefore we can assume that if an explanation for T exists, then it is of
polynomial length with respect to the number of variables in V , and thereby with respect to
the length of T . Thus, we can guess a ψ and verify in polynomial time with two calls to the
C-oracle whether the instances (φ ∧ ψ) and (φ ∧ ψ ∧¬M) of CSP(ΓHYP,M) are, respectively,
satisfiable and not satisfiable in ΓHYP,M. J

J. Schmidt and M. Wrona 621

4 Equality Abduction

In this paper, we treat a special case of the abduction problem ABD(Γ,HYP,M). In the
rest of the paper, Γ is always an equality language over a finite signature, and HYP andM
are always (N; =, 6=).

We now formally define the equality abduction problem. Recall from Section 2 that
equality literals are equality formulas of the form (x = y) or (x 6= y); and that the set of all
equality literals that can be formed upon variables in V is denoted by L(V).

I Definition 8 (Equality Abduction Problem). The equality abduction problem ABD(Γ) for
an equality language Γ (over a finite signature) is the computational problem, whose instance
is a triple T = (φ, V, L(x, y)), where:

φ is a Γ-formula,
V is a subset of Var(φ),
L(x, y) is a literal and x, y ∈ Var(φ).

The triple T is a positive instance of ABD(Γ) if there exists an explanation for T , that is, a
set of literals L ⊆ L(V) such that both of the following hold:

(φ ∧
∧
L) is satisfiable in (N; =, 6=),

(φ∧
∧
L) entails L(x, y) (or equivalently, (φ∧

∧
L∧¬L(x, y)) is not satisfiable in (N; =, 6=)).

We would like to remark that since Γ is always over a finite signature, the complexity of
ABD(Γ) does not depend on the representation of relations in Γ.

Consider the following example. Let Γ = (N; I), where I = {(x, y, z) | (x = y → y = z)},
be an equality language. Consider the instance T = (φ, {x, y, v}, (z = w)) of ABD(Γ) where
φ is ((x = y → y = z) ∧ (v = z → v = w)). Consider the set of literals L = {x = y, y = v}.
Observe that (φ∧

∧
L) is equivalent to ((x = y → y = z)∧(v = z → v = w))∧(x = y)∧(y = v).

It is straightforward to verify that this formula is satisfiable and that it entails (z = w).
Therefore, L is an explanation. As we will see, the problem ABD(N; I) is NP-complete.

The following classes of equality languages are crucial to understand the complexity of
the equality abduction problem.

I Definition 9. We say that a first-order formula is a negative (equality) formula if it is a
conjunction of clauses of the form

(x1 6= y1 ∨ · · · ∨ xk 6= yk) or (x = y).

A relation R is called negative if it can be defined by a negative formula. An equality language
Γ is negative if every its relation is negative.

I Definition 10. We say that a first-order formula is a Horn (equality) formula if it is a
conjunction of clauses of the form

(x1 6= y1 ∨ · · · ∨ xk 6= yk ∨ x = y),

where it is permitted that k = 0 and the clause is simply an equality, i.e., of the form
x = y. It is also permitted that we skip the equality and the clause is simply a disjunction of
disequalities. A relation R is called Horn if it can be defined by a Horn formula. An equality
language Γ is Horn if every its relation is Horn.

We will now present the main contribution of this paper. The following theorem completely
classifies the complexity of the equality abduction problem.

CSL’13

622 The Complexity of Abduction for Equality Constraint Languages

I Theorem 11 (Complexity Classification of the Equality Abduction Problem). Let Γ be an
equality language (over a finite signature). Then exactly one of the following holds.
1. Γ is negative and ABD(Γ) is in P;
2. Γ is not negative but Horn and ABD(Γ) is NP-complete;
3. Γ is not Horn and ABD(Γ) is ΣP2 -complete.

We will now break the proof of Theorem 11 into smaller steps. Keeping in mind that NPP
is equal to NP, by Proposition 7 and the complexity results in [5], which are also discussed
in Section 4.1, we have the following upper bounds.
I Proposition 12. Let Γ be an equality language. Then we have both of the following.
1. The problem ABD(Γ) is in ΣP2 .
2. If Γ is Horn, then ABD(Γ) is in NP.

In the remainder of the paper, we focus on hardness and tractability results. We first
characterize those equality languages for which the abduction problem is of the highest
complexity.
I Proposition 13. Let Γ be an equality language. If Γ is not Horn, then ABD(Γ) is ΣP2 -hard.

Then, we take care of those that are NP-hard.
I Proposition 14. Let Γ be an equality language. If Γ is not negative, then ABD(Γ) is
NP-hard.

As we show, there is also a nontrivial class of equality abduction problems that are in P.
For those, we will provide an appropriate algorithm.
I Proposition 15. Let Γ be an equality language. If Γ is negative, then ABD(Γ) is in P.

Propositions 13, 14, and 15 are proved in Sections 6, 7, and 8, respectively. Now assuming
these propositions we will prove Theorem 11.

Proof of Theorem 11. It obviously holds exactly one of the following cases.
1. Γ is negative, or
2. Γ is not negative but Horn, or
3. Γ is not Horn.
We obtain the corresponding memberships by Propositions 15 and 12. The required hardness
results follow by Propositions 13 and 14. J

4.1 Related Classifications on Equality Languages
As we already mentioned, equality languages were studied in the context of CSPs [5] and
QCSPs [3]. Just to recall, an instance of CSP(Γ) may be seen as a Γ-formula where every
variable is existentially quantified, and an instance of QCSP(Γ) as Γ-formula where every
variable is either existentially or universally quantified. In both cases, the question is whether
a given sentence is true in Γ.

The problem CSP(Γ) for an equality language Γ is always in NP, it is in P if Γ is Horn
or it is preserved by a constant operation. Preservation under a constant function makes
neither QCSP(Γ) nor ABD(Γ) tractable.

The problem QCSP(Γ) is always in PSPACE. Moreover, it is known to be in P if Γ is
negative, and to be NP-hard if Γ is positive, that is, it may be defined as a conjunction
of clauses of the form (x1 = y1 ∨ · · · ∨ xk = yk), but not negative. Otherwise QCSP(Γ) is
coNP-hard. In particular QCSP(N; I) is coNP-hard. We remark that the equality abduction
problem for positive equality languages is ΣP2 -hard unless it may be defined as a conjunction
of equalities (i.e., unless it is negative).

J. Schmidt and M. Wrona 623

5 Equality Clones

To prove Theorem 11 we take advantage of the classification of equality clones classified
in [4]. Here, we recall only the definitions of clones that are relevant to our classification.

We say that an operation f : Nn → N is essentially unary if there exists i ∈ [n] and
g : N→ N such that f(x1, . . . , xi, . . . , xk) = g(xi).

I Definition 16. For every i ∈ N, we define Ki to be the set of operations containing all
essentially unary operations as well as all operations whose range has at most i elements.

We say that an operation f : Nn → N is up to fictitious coordinates, injective if there
exists {i1, . . . , ik} ⊆ [n] where i1 < . . . < ik and an injective function g : Nk → N such that
for all (x1, . . . , xn) ∈ Nn we have that f(x1, . . . , xn) = g(xi1 , . . . , xik).

I Definition 17. (The Horn clone H). We define H to be the set of operations which are,
up to fictitious coordinates, injective.

Let i ∈ [n]. We call an operation f ∈ O(n) injective in the i-th direction if f(a) 6= f(b)
whenever a, b ∈ Nn and ai 6= bi. We say that f ∈ O(n) is injective in one direction if there is
an i ∈ [n] such that f is injective in the i-th direction.

I Definition 18. (Richard R). We define R to be the set of operations injective in one
direction.

Let f3 ∈ O(3) be any operation satisfying the following.

For all a ∈ N we have f3(a, 1, 1) = 1, f3(2, a, 2) = 2, and f3(3, 3, a) = 3.
For all other arguments, the function arbitrarily takes a value that is distinct from all
other function values.

I Definition 19. (The odd clone S). We define S to be the set of operations generated by
f3, and S+ to be the superset of S containing additionally all constant operations.

In [4], one can find the proof that the sets of operations S,S+,R,H and Ki for every
i ∈ N are locally closed clones. The following theorem is a direct consequence of Theorems 8,
13, and 15 in that paper.

I Theorem 20. Let Γ be an equality language. Then either
1. Pol(Γ) is contained in Ki for some i ∈ N, or
2. Pol(Γ) contains H. In this case:

1. either Pol(Γ) is contained in S+, or
2. Pol(Γ) contains R.

Further, we get from [4] (Propositions 43 and 68) the algebraic characterizations for
negative constraint languages and Horn constraint languages.

I Proposition 21. Let Γ be an equality constraint language. Then:
1. Γ is negative if and only if R ⊆ Pol(Γ);
2. Γ is Horn if and only if H ⊆ Pol(Γ).

We will use the following version of Corollary 6.

I Proposition 22. Let Γ1 and Γ2 be equality languages such that Pol(Γ2) ⊆ Pol(Γ1), then
ABD(Γ1) has a polynomial time reduction to ABD(Γ2).

CSL’13

624 The Complexity of Abduction for Equality Constraint Languages

6 ΣP
2 -hard Equality Abduction Problems

We start by presenting an infinite family of relations H2,H3, . . . that give rise to the abduction
problems whose complexity meets the upper bound from Proposition 12.

Let i ∈ N \ {0, 1}. We define Hi to be an equality relation of arity (i + 4) which
is the union of: (1) {(b0, . . . , bi, x, y, z) ∈ Ni+4 | (|{b0, . . . , bi, x, y, z}| < i + 1)} and
(2) {(b0, . . . , bi, x, y, z) ∈ Ni+4 |

∧
k 6=l;k,l∈{0,...,i}(bk 6= bl) ∧ (x = b0 ∨ x = b1) ∧ (y = b0 ∨ y =

b1) ∧ (z = b0 ∨ z = b1) ∧ (b0 = x ∨ b0 = y ∨ b0 = z) ∧ (b1 = x ∨ b1 = y ∨ b1 = z)}.
Observe that item (1) has a first-order definition over (N; =). Indeed, one can define it

by a conjunction of the formulas of the form ¬(
∧
v,w∈S v 6= w) where S ⊆ {b0, . . . , bi, x, y, z}

is of size greater or equal than (i+ 1).
The real purpose of this chapter is, however, to prove that ABD(Γ) is ΣP

2 -complete
whenever Pol(Γ) ⊆ Ki for some i. The next lemma reduces that problem to showing that
every ABD(N;Hi) for every i is ΣP

2 -complete. The lemma also explains why item (1) is
included in the definition of Hi: assure that Hi is preserved by all operations in Ki.

I Lemma 23. Let i ∈ N \ {0, 1}. Then Hi is preserved by all operations in Ki.

Proof. Directly from the definition of Hi, it follows that this relation contains all tuples with
at most i pairwise different entries. Thus it is preserved by all operations with range of at most
i elements. It remains to show that Hi is preserved also by all essentially unary operations.
We therefore consider some f : N → N and t ∈ Hi. Observe that either f(t) = α(t) for
some automorphism α of (N; =), or the number of pairwise different entries in f(t) is strictly
smaller than in t. In the first case f(t) is certainly in Hi. Further, we observe that t has at
most (i+ 1) pairwise different entries. Hence in the second case, the tuple f(t) has at most i
pairwise different entries. Thus in this case, we are done by the observation from the first
sentence of the proof. J

Let NAE = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 0)}. To prove that ABD(Γ),
where Γ = (N;Hi), is ΣP2 -hard we reduce from the problem PQ-ABDUCTION(∆) such that
∆ = ({0, 1}; NAE). By Theorem 3, this problem is ΣP

2 -hard. Indeed, it is straightforward
to verify that ∆ is preserved by none of the following operations: majority, minority, min,
max, opzero, opone. Let i be a natural number greater than or equal to 2. Observe that a
tuple (b0, . . . , bi, xp, xr, xs) of Hi with b0, . . . , bi pairwise different may be easily translated
into a tuple (p, r, s) of NAE such that the value of t ∈ {p, r, s} is k ∈ {0, 1} if and only if xt
is assigned to the same value as bk. Analogously, one can find a tuple in Hi with b0, . . . , bi
pairwise different corresponding to a tuple (p, r, s) of NAE. We produce an instance TΓ of
ABD(Γ) from an instance T∆ of PQ-ABDUCTION(∆) by replacing in the knowledge base
every constraint NAE(p, r, s) with Hi(b0, . . . , bi, xp, xr, xs) and setting the manifestation to
(xq 6= b0), where q is the manifestation in T∆. Translating an explanation for T∆ into an
explanation for TΓ, we ensure that all b0, . . . , bi are forced to be pairwise different. Converting
the other way, it turns out that in general every explanation for TΓ enforces b0, . . . , bi to take
pairwise distinct values. We now give more details on that.
I Proposition 24. Let i ∈ N \ {0, 1}. Then the problem ABD(Hi) is ΣP2 -hard.

Proof. Let T∆ = (φ∆, V∆, q) be an instance of PQ-ABDUCTION(∆). We will now construct
an instance TΓ = (φΓ, VΓ, L(x, y)) of ABD(Γ) from it. First, for every propositional variable
p occurring in φ∆, we introduce a variable xp ranging over N. Besides, we have (i+ 1) extra
variables b0, . . . , bi in Var(φΓ). The formula φΓ is a conjunction of constraints of the form
Hi(b0, . . . , bi, xp, xr, xs) such that NAE(p, r, s) occurs in φ∆. The set VΓ we define to be equal

J. Schmidt and M. Wrona 625

to {xp | p ∈ V∆} ∪ {b0, . . . , bi}, and L(x, y) equal to (xq 6= b0). This construction may be
certainly performed in polynomial time. We will now prove that T∆ ∈ PQ-ABDUCTION(∆)
if and only if TΓ ∈ ABD(Γ). We start from the following facts.
I Observation 25. Let a∆ : Var(φ∆) → {0, 1}, and let F∆,Γ(a∆) : Var(φΓ) → N be

such that F∆,Γ(a∆)(bk) = k for all k ∈ {0, . . . , i} and F∆,Γ(a∆)(xp) = k if and only if
a∆(p) = k for all p ∈ Var(φ∆) and k ∈ {0, 1}. Then, if a∆ satisfies φ∆, then F∆,Γ(a∆)
satisfies φΓ.
Let aΓ : Var(φΓ) → N be such that aΓ(bk) = k for k ∈ {0, . . . , i} and aΓ(xp) ∈ {0, 1}
for all xp /∈ {b0, . . . , bk}. Let FΓ,∆(aΓ) : Var(φ∆)→ {0, 1} such that FΓ,∆(aΓ)(p) = k if
and only if aΓ(xp) = k for all p ∈ Var(φ∆) and k ∈ {0, 1}. Then, if aΓ satisfies φΓ, then
FΓ,∆(aΓ) satisfies φ∆. J

Suppose that T∆ has an explanation Lit∆ ⊆ Lit(V∆) so that (φ∆ ∧
∧
Lit∆) is satisfiable

by some assignment a∆ : Var(φ∆) → {0, 1} and (φ∆ ∧
∧
Lit∆ ∧ ¬q) is not satisfiable. We

set LΓ ⊆ L(VΓ) to be the union of {(xp = b1) | p ∈ Lit∆}, and {(xp = b0) | (¬p) ∈ Lit∆},
and

⋃
k 6=l;k,l∈{0,...,i}{(bk 6= bl)}. We will now prove that LΓ is an explanation for TΓ. By

Observation 25, the assignment F∆,Γ(a∆) satisfies (φΓ∧
∧
LΓ). Assume towards contradiction

that (φΓ ∧
∧
LΓ ∧ (xq = b0)) is also satisfiable by some aΓ. By the construction of LΓ, the

image of aΓ has at least (i+ 1) elements. Indeed, every bk for k ∈ {0, . . . , i} has to be set to a
different element. We assume without loss of generality that aΓ(bk) = k for all k ∈ {0, . . . , i}.
By the construction of φΓ, for every p ∈ Var(φ∆) we have that aΓ(xp) ∈ {0, 1}. Hence, by
Observation 25, the assignment FΓ,∆(aΓ) satisfies (φ∆ ∧

∧
Lit∆ ∧ ¬q). It contradicts the

assumption and thus we are done with the left-to-right implication.
Suppose now that there is some explanation LΓ ⊆ L(VΓ) for TΓ, that is, (i) the formula

(φΓ ∧
∧
LΓ) is satisfiable, and (ii) (φΓ ∧

∧
LΓ ∧ (xq = b0)) is not satisfiable. Observe first

that every assignment a satisfying LΓ has at least (i + 1) elements in the image. Indeed,
suppose that there is some a : Var(φΓ) → N with less than (i + 1) elements in the image.
Then a can be extended to a′ without increasing the size of the range of the assignment so
that every variable not occurring in LΓ is set to the same value as b0. By the definition
of the PQ-ABDUCTION problem and the construction of φΓ, the variable xq is not in VΓ,
and hence a′ satisfies (xq = b0). By the definition of Hi, the assignment a′ also satisfies
all constraints in φΓ. But this contradicts (ii). Now, by item (2) of the definition of Hi,
every assignment satisfying (φΓ ∧

∧
LΓ) has exactly (i+ 1) elements in the image. Indeed,

for every p ∈ Var(φ∆), such an assignment assigns to xp the same value as to b0 or b1.
We can therefore assume that there is an assignment aΓ satisfying (φΓ ∧

∧
LΓ) such that

aΓ(bk) = k for all k ∈ {0, . . . , i}. We now set the explanation Lit∆ for T∆ to be the union
of {(p) | p ∈ V∆ ∧ aΓ(xp) = 1} and {(¬p) | p ∈ V∆ ∧ aΓ(xp) = 0}. To complete the proof
we have to show that (a) (φ∆ ∧

∧
Lit∆) is satisfiable, and (b) (φ∆ ∧

∧
Lit∆ ∧ ¬q) is not

satisfiable. Point (a) follows by (i) and Observation 25. To prove that (b) holds, we suppose
that (φ∆ ∧

∧
Lit∆ ∧ ¬q) is satisfiable by some a∆. From Observation 25, it follows that

F∆,Γ(a∆) satisfies (φΓ ∧ (xq = b0)). It is also easy to see that F∆,Γ(a∆)(x) = aΓ(x) for
every x occurring in LΓ, hence (φΓ ∧

∧
LΓ ∧ (xq = b0)) is satisfiable by F∆,Γ(a∆). But it

contradicts (ii) and thus completes the proof. J

This section will be concluded by proving Proposition 13.

Proof of Proposition 13. Let Γ be not Horn. By Theorem 20 and Proposition 21 we
know that there is an i ∈ N such that Pol(Γ) ⊆ Ki. From Lemma 23 it follows that
Pol(Γ) ⊆ Ki ⊆ Pol(N;Hi) for some i ∈ N. By Proposition 22 and Proposition 24 we conclude
that ABD(Γ) is ΣP2 -hard. J

CSL’13

626 The Complexity of Abduction for Equality Constraint Languages

7 Equality Horn Languages that are NP-hard

In this section we prove Proposition 14. It turns out that already a very simple Horn relation

I = {(x, y, z) ∈ N3 | (x = y → y = z)}

gives rise to an abduction problem which is NP-hard. In fact we provide a hardness proof for
a structure Γ = (N; I4), where I4 = {(a, b, c, d) ∈ N4 | ((a = b ∧ b = c)→ (a = d))}. Observe
that ∃z (I(x, y, z) ∧ I(v, z, w)) pp-defines I4(x, y, v, w).

We reduce from the propositional abduction problem PQ-ABDUCTION(∆), where
∆ = ({0, 1};RA3) and RA3 = {(x, y, z) | ¬x ∧ ¬y → ¬z}. By Theorem 3, this problem is
NP-hard. Indeed, it is straightforward to verify that ∆ is preserved by none of the following
operations: majority, minority, min, opzero, opone.

The idea of the proof is similar to what we had in the preceding section. Observe that
every tuple (b0, xp, xr, xs) of I4 may be translated into a tuple (p, r, s) of RA3 such that
t ∈ {p, r, s} is 0 if xt and b0 are assigned to the same value and t is 1 otherwise. In the
analogical way, one can find a tuple (b0, xp, xr, xs) of I4 for every (p, r, s) in RA3 by setting
b0 to 0, and xt to the same value which is assigned to t ∈ {p, r, s}. We construct an instance
of TΓ from T∆ by replacing in the knowledge base every constraint of the form RA3(p, r, s)
with I4(b0, xp, xr, xs), and setting the manifestation to (xq 6= b0) where q is the manifestation
in T∆. Now an explanation for TΓ may be obtained from an explanation for T∆ when t and
(¬t) are replaced with (xt 6= b0) and (xt = b0), respectively. Converting the explanation back
is analogous.
I Proposition 26. The problem ABD(N; I) is NP-hard.

We will conclude this section by proving Proposition 14.

Proof of Proposition 14. Let Γ be not negative. It suffices to concentrate on the case where
Γ is Horn (if Γ is not Horn, we conclude with Proposition 13). We obtain then by Theorem 20
and Proposition 21 that Pol(Γ) ⊆ S+.

By Proposition 62 in [4], we have that if R has a pp-definition by ODD3 = {(a, b, c) ∈ N3 |
a = b = c ∨ |{a, b, c}| = 3}, then S ⊆ Pol(N;R). The relation I has a pp-definition by ODD3,
this follows by Lemma 8.6 in [3]. Further, since I is preserved by all constant operations, we
have that Pol(Γ) ⊆ S+ ⊆ Pol(N; I). Hence, by Proposition 22, there is a polynomial-time
reduction from ABD(N; I) to ABD(Γ). Thus, by Proposition 26, the problem ABD(Γ) is
NP-hard. J

8 Abduction for Negative Languages is in P

Recall negative equality languages provided in Definition 9. In this section we prove
Proposition 15, that is, we show that if Γ is a negative equality language, then ABD(Γ)
is in P. The algorithm is presented in Fig. 1. We will first discuss the first line of the
procedure. There an instance T = (φ, V, L(x, y)) of ABD(Γ) is transformed into an instance
TA = (φA, VA, LA) of the problem ABDno eq defined below. The instance TA is equivalent to
T w.r.t. existence of explanations but is such that φA contains no equalities.

I Definition 27. An instance of the computational problem ABDno eq consists of:

a conjunction of disjunctions of disequalities φ,
a subset V of Var(φ), and
an equality literal L(x, y), with {x, y} ⊆ Var(φ), of the form (x = y), or (x 6= y).

J. Schmidt and M. Wrona 627

The question is whether there is an explanation L ⊆ L(V) such that:

1. (φ ∧
∧
L) is satisfiable, and

2. (φ ∧
∧
L ∧ ¬L(x, y)) is not satisfiable.

Let ∼ be an equivalence relation on Var(φ) such that for all x1, x2 ∈ Var(φ) we have
x1 ∼ x2 if and only if φ entails (x1 = x2). We construct φA, VA, LA(xA, yA) by first replacing
in φ, V, L(x, y), respectively, every variable from Var(φ) by its equivalence class in Var(φ)/ ∼.
Then, we remove all equalities and disequalities of the form (v 6= v) in φA.

I Lemma 28. Let Γ be a negative language and T = (φ, V, L(x, y)) be an instance of
ABD(Γ). Then there exists an instance TA of ABDno eq such that T ∈ ABD(Γ) if and only
if TA ∈ ABDno eq. Moreover, TA can be obtained from T in polynomial time.

Algorithm for ABD(Γ), where Γ is a negative structure.

INPUT: An instance T = (φ, V, L(x, y)) of ABD(Γ), where
• φ is a Γ-formula
• V, {x, y} ⊆ Var(φ), and
• L(x, y) is (x = y), or (x 6= y).

1: Let TA = (φA, VA, LA(xA, yA)) be an instance of ABDno eq from Lemma 28.
2: if φA is unsatisfiable then return FALSE
3: if LA(xA, yA) is (xA = yA) then
4: if xA and yA is the same variable then return TRUE
5: else if xA, yA ∈ VA and (φA ∧ xA = yA) is satisfiable then return TRUE
6: else return FALSE
7: end if
8: // from now on we can assume that LA(xA, yA) is (xA 6= yA).
9: if xA and yA is the same variable then return FALSE

10: if xA, yA ∈ VA then return TRUE
11: if z ∈ {xA, yA} is in VA, and

v ∈ {xA, yA}\{z} is not in VA, and
φA contains a clause equivalent to (x1 6= y1 ∨ · · · ∨ xk 6= yk ∨ w 6= v) such that
• {x1, y1, . . . , xk, yk, w} ⊆ VA, and
• (φ ∧

∧
i∈[k] xi = yi ∧ z = w) is satisfiable

then return TRUE
12: if xA, yA /∈ VA and

φA contains a clause equivalent to (x1 6= y1 ∨ · · · ∨ xk 6= yk ∨ xA 6= yA) such that
• {x1, y1, . . . , xk, yk} ⊆ VA, and
• (φ ∧

∧
i∈[k] xi = yi) is satisfiable

then return TRUE
13: return FALSE

Figure 1 Algorithm for Abduction for Negative Languages.

The following proposition states that the algorithm presented in Fig. 1 is correct and
complete.
I Proposition 29. Let Γ be a negative equality language, and (φ, V, L(x, y)) be an instance
of ABD(Γ). Then (φ, V, L(x, y)) ∈ ABD(Γ) if and only if the algorithm in Fig. 1 returns
TRUE.

CSL’13

628 The Complexity of Abduction for Equality Constraint Languages

By Lemma 28, the first line of the algorithm in Fig. 1 can be performed in polynomial
time. Apart from that, the procedure amounts to checking the satisfiability of a number of
formulas which are obtained from negative formulas by adding conjuncts, which are equalities.
Formulas of this form are always Horn formulas, and hence by the result in [5], each such
check may be performed in polynomial time. Since the number of the satisfiability checks is
readily polynomial with respect to the size of the input, we have the following.
I Proposition 30. Let Γ be a negative equality language. Then, for a given instance
(φ, V, L(x, y)) of ABD(Γ), the algorithm in Fig. 1 works in polynomial time in the size of
(φ, V, L(x, y)).

We are now ready to conclude this section.
Proof of Proposition 15. The statement follows by Propositions 29 and 30. J

9 Conclusion and Future Work

In this paper, we have initiated the study of the abduction problem parameterized by an ω-
categorical relational structure Γ. We proved that as in the case of CSPs for these structures,
the complexity of the abduction problem is fully captured by the set of operations preserving
Γ. We have classified the complexity of the abduction problem parameterized by Γ with
a first-order definition in (N; =) under the assumption that a manifestation is a literal of
the form (x = y) or (x 6= y) and an explanation is a set of such literals over a given set of
variables.

Our future work will concern similar classifications for first-order reducts of other ω-
categorical structures. A natural choice for the next structure to study is (Q;<). Let Γ be a
first-order reduct of (Q;<). In this case an instance of an abduction problem consists of a
temporal knowledge base φ — a set of Γ-constraints — that describes point-based temporal
dependencies between a finite number of events. A manifestation might be, for instance, of
the form (x < y), where x, y are events from φ. We can ask for an explanation that is a
partial order on events in φ described by a conjunction of literals ψ of the form (x ≤ y) and
(x 6= y) such that ψ is consistent with φ ((φ∧ψ) is satisfiable) and ordering events from φ as
described in ψ entails that x has to take place before y ((φ ∧ ψ) entails (x < y)).

Abduction problems for first-order reducts of (Q;<) do not only form a class of natural
computational problems but also are plausible to be classified. The complexity of CSPs for
these structures was classified in [6].

References
1 James F. Allen. Maintaining knowledge about temporal intervals. Communications of the

ACM, 26(11):832–843, 1983.
2 Manuel Bodirsky. Complexity classification in infinite-domain constraint satisfaction. Mem-

oire d’habilitation à diriger des recherches, Université Diderot – Paris 7. Available at
arXiv:1201.0856, 2012.

3 Manuel Bodirsky and Hubie Chen. Quantified equality constraints. SIAM Journal on
Computing, 39(8):3682–3699, 2010. A preliminary version of the paper appeared in the
proceedings of LICS’07.

4 Manuel Bodirsky, Hubie Chen, and Michael Pinsker. The reducts of equality up to primitive
positive interdefinability. Journal of Symbolic Logic, 75(4):1249–1292, 2010.

5 Manuel Bodirsky and Jan Kára. The complexity of equality constraint languages. Theory of
Computing Systems, 3(2):136–158, 2008. A conference version appeared in the proceedings
of Computer Science Russia (CSR’06).

J. Schmidt and M. Wrona 629

6 Manuel Bodirsky and Jan Kára. The complexity of temporal constraint satisfaction prob-
lems. Journal of the ACM, 57(2):1–41, 2009. An extended abstract appeared in the Pro-
ceedings of the Symposium on Theory of Computing (STOC’08).

7 Manuel Bodirsky and Jaroslav Nešetřil. Constraint satisfaction with countable homogen-
eous templates. Journal of Logic and Computation, 16(3):359–373, 2006.

8 Vittorio Brusoni, Luca Console, Paolo Terenziani, and Daniele Theseider Dupré. A spec-
trum of definitions for temporal model-based diagnosis. Artif. Intell., 102(1):39–79, 1998.

9 Vittorio Brusoni, Luca Console, Paolo Terenziani, and Barbara Pernici. Later: Managing
temporal information efficiently. IEEE Expert, 12(4):56–64, 1997.

10 Tom Bylander, Dean Allemang, Michael C. Tanner, and John R. Josephson. The compu-
tational complexity of abduction. Artif. Intell., 49(1-3):25–60, 1991.

11 Peter J. Cameron. Oligomorphic Permutation Groups. Cambridge University Press, Cam-
bridge, 1990.

12 Hubie Chen. A rendezvous of logic, complexity, and algebra. ACM Comput. Surv., 42(1),
2009.

13 Luca Console, Paolo Terenziani, and Daniele Theseider Dupré. Local reasoning and
knowledge compilation for efficient temporal abduction. IEEE Trans. Knowl. Data Eng.,
14(6):1230–1248, 2002.

14 Nadia Creignou, Phokion G. Kolaitis, and Heribert Vollmer, editors. Complexity of Con-
straints - An Overview of Current Research Themes [Result of a Dagstuhl Seminar], volume
5250 of Lecture Notes in Computer Science. Springer, 2008.

15 Nadia Creignou and Bruno Zanuttini. A complete classification of the complexity of pro-
positional abduction. SIAM J. Comput., 36(1):207–229, 2006.

16 Thomas Eiter and Georg Gottlob. The complexity of logic-based abduction. J. ACM,
42(1):3–42, 1995.

17 A. Herzig, J. Lang, and Pierre Marquis. Planning as abduction. In IJCAI-01 Workshop on
Planning under Uncertainty and Incomplete Information, Seattle, Washington, USA, aug
2001.

18 Jerry R. Hobbs, Mark E. Stickel, Douglas E. Appelt, and Paul A. Martin. Interpretation
as abduction. Artif. Intell., 63(1-2):69–142, 1993.

19 Wilfrid Hodges. Model theory. Cambridge University Press, 1993.
20 Gustav Nordh and Bruno Zanuttini. What makes propositional abduction tractable. Artif.

Intell., 172(10):1245–1284, 2008.
21 Harry E. Pople. On the mechanization of abductive logic. In IJCAI, pages 147–152, 1973.
22 Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the

Symposium on Theory of Computing (STOC), pages 216–226, 1978.
23 Marc Vilain, Henry Kautz, and Peter van Beek. Constraint propagation algorithms for

temporal reasoning: A revised report. Reading in Qualitative Reasoning about Physical
Systems, pages 373–381, 1989.

A Proof of Theorem 5

Proof of Theorem 5. By assumption, it follows that every n-ary relation R in the structure
Γ1 has a pp-definition (∃y1 · · · ∃ym.φR(y1, . . . , ym, x1, . . . , xn)) in Γ2.

Let T1 = (φ1, V1,M1) be an instance of ABD(Γ1,HYP,M). We will now construct an
instance T2 = (φ2, V2,M2) of ABD(Γ2,HYP,M). To obtain φ2 from φ1, we first transform
φ1 to a (Γ2 ∪ {=})-formula φ=. To that end, we replace every Γ1-constraint in φ1 of the
form R(x1, . . . , xn) with φR(x1, . . . , xn, y1, . . . , ym) so that every time y1, . . . , ym are fresh
variables. Observe that by the construction of φ=, we have Var(φ1) ⊆ Var(φ=).

CSL’13

630 The Complexity of Abduction for Equality Constraint Languages

Consider now a partition Ξ = {X1, . . . , Xn} of Var(φ=) such that x, y ∈ Var(φ=) are in
the same block Xi if and only if (x = y) is entailed by the conjunction of equalities occurring
in φ=. Let V = {v1, . . . , vn} be fresh variables. If x ∈ Var(φ=) is in Xi, then we say that
vi is the representative of x. We obtain a Γ2-formula φ2 from φ= by first removing all
{=}-constraints and then replacing every occurrence of every variable by its representative
in V. Similarly, to obtain V2 and M2, we replace all variables in V1 and M1, respectively,
with their representatives in V. It is easy to see that this procedure can be performed in
polynomial time. We will now prove that T1 is a positive instance of ABD(Γ1,HYP,M) if
and only if T2 is a positive instance of ABD(Γ2,HYP,M).

As a first step towards this goal, we will show that T1 = (φ1, V1,M1) is a positive
instance of ABD(Γ1,HYP,M) if and only if T= = (φ=, V1,M1) is a positive instance
of ABD(Γ2 ∪ {=},HYP,M). Observe that the claim is a consequence of the following
two facts. First, every assignment a1 : Var(φ1) → N satisfying φ1 may be extended to
a= : Var(φ=)→ N satisfying φ=. Second, every assignment a= : Var(φ=)→ N satisfying a=
restricted to variables in Var(φ1) satisfies φ1.

Now, it remains to prove that T= = (φ=, V1,M1) is a positive instance of ABD(Γ2 ∪ {=
},HYP,M), if and only if T2 = (φ2, V2,M2) is a positive instance of ABD(Γ2,HYP,M).
We start from an easy observation.

I Observation 31. Let a= : Var(φ=) → N. If a= satisfies φ=, then for all Xi ∈ Ξ and all
x, y ∈ Xi we have that a=(x) = a=(y). J

Suppose first that ψ= is an explanation for T=. Construct ψ2 from ψ= by replacing every
variable by its representative in V. Since (φ= ∧ ψ=) is satisfiable, by Observation 31, it
follows that (φ2 ∧ ψ2) is also satisfiable. Furthermore, if (φ2 ∧ ψ2 ∧ ¬M2) was satisfiable, we
would have that (φ= ∧ψ= ∧¬M1) is satisfiable. It contradicts the assumption and completes
the proof of this implication.

Suppose now that ψ2 is an explanation for T2. Construct ψ= from ψ2 by replacing each
variable vi by some, always the same, variable x ∈ Xi ∩V1. Observe that by the construction
of V2, the set Xi∩V1 is not empty. Since (φ2∧ψ2) is satisfiable, it easily follows that (φ=∧ψ=)
is also satisfiable. To conclude the proof, observe that (φ= ∧ ψ= ∧ ¬M1) is not satisfiable.
Indeed, if it was satisfiable, then by Observation 31, we would have that (φ2 ∧ ψ2 ∧ ¬M2) is
satisfiable. It contradicts the assumption and completes the proof of the theorem. J

B Proof of Proposition 26

Proof of Proposition 26. Consider the relation I4 = {(a, b, c, d) ∈ N4 | ((a = b ∧ b = c) →
(a = d))}. Observe that ∃z (I(x, y, z) ∧ I(v, z, w)) pp-defines I4(x, y, v, w). By Theorem 5, it
is therefore enough to show that ABD(Γ), where Γ = (N; I4), is NP-hard.

We reduce from the propositional abduction problem PQ-ABDUCTION(∆), where
∆ = ({0, 1};RA3) and RA3 = {(x, y, z) | ¬x ∧ ¬y → ¬z}. By Theorem 3, this problem is
NP-hard. Indeed, it is straightforward to verify that ∆ is preserved by none of the following
operations: majority, minority, min, opzero, opone.

Let T∆ = (φ∆, V∆, q) be an instance of PQ-ABDUCTION(∆). We will now construct an
instance TΓ = (φΓ, VΓ, L(x, y)) of ABD(Γ). First, for every Boolean variable p ∈ Var(φ∆), we
introduce a variable xp ranging over N. Besides, we have also one extra variable b0 in Var(φΓ).
Then, we set φΓ to be a conjunction of atomic formulas of the form I4(b0, xp, xr, xs) such
that RA3(p, r, s) occurs in φ∆; and VΓ to {xp | p ∈ V∆} ∪ {b0}. To complete the reduction
we set L(x, y) to be equal to (xq 6= b0).

J. Schmidt and M. Wrona 631

The reduction may certainly be performed in polynomial time. To complete the proof,
we will now show that T∆ ∈ PQ-ABDUCTION(∆) if and only if TΓ ∈ ABD(Γ).

We start from the following facts.

I Observation 32. Let aΓ : Var(φΓ)→ N be any assignment satisfying φΓ. Then a′
Γ, obtained

from aΓ so that for every x ∈ Var(φΓ) we have that a′
Γ(x) = 0 iff aΓ(x) = aΓ(b0) and

a′
Γ(x) = 1 otherwise, also satisfies φΓ. J

I Observation 33. Let a∆ : Var(φ∆)→ {0, 1}, and let F∆,Γ(a∆) : Var(φΓ)→ N be such
that F∆,Γ(a∆)(b0) = 0 and F∆,Γ(a∆)(xp) = k if and only if a∆(p) = k for k ∈ {0, 1}.
Then, if a∆ satisfies φ∆, then F∆,Γ(a∆) satisfies φΓ.
Let aΓ : Var(φΓ) → N such that aΓ(b0) = 0 and for every p ∈ Var(φ∆), we have
aΓ(xp) ∈ {0, 1}. Define FΓ,∆(aΓ) : Var(φ∆)→ {0, 1} so that for every p ∈ Var(φ∆) and
k ∈ {0, 1}, we have that FΓ,∆(aΓ)(xp) = k iff aΓ(p) = k. Then, if aΓ satisfies φΓ, then
FΓ,∆(aΓ) satisfies φ∆. J

Suppose first that there exists a set of propositional literals Lit∆ ⊆ Lit(V∆) such that
(φ∆ ∧

∧
Lit∆) is satisfiable by some assignment a∆ : Var(φ∆)→ {0, 1} and (φ∆ ∧

∧
Lit∆ ∧

¬q) is not satisfiable. We set the explanation LΓ ⊆ L(VΓ) for TΓ to be the union of⋃
p∈Lit∆{xp 6= b0} and

⋃
(¬p)∈Lit∆{xp = b0}. We will now show that (φΓ∧

∧
LΓ) is satisfiable

and (φΓ∧
∧
LΓ∧(b0 6= xq)) is not satisfiable. The former follows from Observation 33. Indeed,

the formula (φΓ∧
∧
LΓ) is satisfiable by F∆,Γ(a∆). To prove the latter, assume on the contrary

that (φΓ∧
∧
LΓ∧ (xq = b0)) is satisfied by some aΓ : Var(φΓ)→ N. By Observation 32, there

exists a′
Γ : Var(φΓ)→ N satisfying φΓ that assigns 0 to b0 as well as sends every variable to

0, or 1. Thus, by Observation 33, we have that FΓ,∆(a′
Γ) satisfies (φ∆ ∧

∧
Lit∆ ∧ ¬q). This

contradicts the assumption and completes the proof of the left-to-right implication.
Suppose now that there is an explanation LΓ ⊆ L(VΓ) of TΓ, that is, the formula

(φΓ ∧
∧
LΓ) is satisfiable by some aΓ : Var(φΓ) → N and (φΓ ∧

∧
LΓ ∧ (xq = b0)) is

not satisfiable. By Observation 32, we can assume that aΓ sends every variable to 0
or 1 and b0 to 0. We set the explanation Lit∆ ⊆ Lit(V∆) for T∆ to be the union of
{(p) | p ∈ Lit(V∆) ∧ aΓ(xp) = 1} and {(¬p) | p ∈ Lit(V∆) ∧ aΓ(xp) = 0}. We will now
show that (φ∆ ∧

∧
Lit∆) is satisfiable and (φ∆ ∧

∧
Lit∆ ∧ ¬q) is not satisfiable. The former

holds by Observation 33. Indeed, we have that FΓ,∆(aΓ) satisfies (φ∆ ∧
∧

Lit∆). Finally,
assume on the contrary that (φ∆ ∧

∧
Lit∆ ∧ ¬q) is satisfied by a∆ : Var(φ∆)→ {0, 1}. By

Observation 33, the assignment F∆,Γ(a∆) satisfies (φΓ ∧ (xq = b0)). It is also easy to see that
for every p ∈ Var(φ∆) it holds F∆,Γ(a∆)(xp) = aΓ(xp). Thus F∆,Γ(a∆) satisfies

∧
LΓ and in

consequence, by Observation 33, (φΓ ∧ LΓ ∧ (xq = b0)). But this contradicts the assumption
and hence completes the proof. J

C Proof of Lemma 28

Proof of Lemma 28. Let TA = (φA, VA, LA(xA, yA)) be an instance of ABDno eq obtained
from T = (φ, V, L(x, y)) as it was described before the formulation of the lemma. It is easily
observed that TA can be obtained from T in polynomial time.

We will now show that T ∈ ABD(Γ) if and only if TA ∈ ABDno eq. As we will argue, it is
basically a consequence of the following two facts. Let X1, . . . , Xk be equivalence classes of
Var(φ)/ ∼.

I Observation 34. Let aφ : Var(φ)→ N be an assignment satisfying φ. Then for every i ∈ [k]
and all v, z ∈ Xi we have that aφ(v) = aφ(z). J

CSL’13

632 The Complexity of Abduction for Equality Constraint Languages

I Observation 35. Let aφ : Var(φ) → N be such that for every i ∈ [k] and all v, z ∈ Xi

we have that aφ(v) = aφ(z), and let Fφ,φA
(aφ) : Var(φ)/ ∼→ N be such that for all

i ∈ [k] and all z ∈ Xi we have that Fφ,φA
(aφ)(Xi) = aφ(z). Then if aφ satisfies φ, then

Fφ,φA
(aφ) satisfies φA.

Let aφA
: Var(φ)/ ∼→ N, and FφA,φ(aφA

) : Var(φ)→ N be such that for all i ∈ [k] and
z ∈ Xi we have FφA,φ(aφA

)(z) = aφA
(Xi). Then, if aφA

satisfies φA, then FφA,φ satisfies
φ. J

Suppose first that T ∈ ABD(Γ). Then there exists L ⊆ L(V) such that (φ ∧
∧
L) is

satisfiable by some aφ : Var(φ)→ N and (φ∧
∧
L∧¬L(x, y)) is not satisfiable. We define LA

to be the set that contains all literals of the form (Xi ◦Xj), where i, j ∈ [k] and ◦ ∈ {=, 6=},
such that L contains (x′ ◦ y′) for some x′ ∈ Xi, y

′ ∈ Xj . From Observations 34 and 35, we
easily obtain that (φA∧

∧
LA) is satisfiable by Fφ,φA

(aφ). Also, if (φA∧
∧
LA∧¬LA(xA, yA))

was satisfiable, then by Observation 35 we would have that (φ∧
∧
L∧¬L(x, y)) is satisfiable.

It contradicts the assumption and completes the proof of the left-to-right implication.
Suppose now that there is LA such that both (φA ∧

∧
LA) is satisfiable by some aφA

:
Var(φ)/ ∼→ N and (φA ∧

∧
LA ∧ ¬L(xA, yA)) is not satisfiable. We set L to contain all

literals of the form (v ◦ z), where ◦ ∈ {=, 6=}, such that v ∈ Xi ∩ V and z ∈ Xj ∩ V and
Xi ◦Xj is in LA. By Observation 35, we have that (φ ∧ L) is satisfiable by FφA,φ(aφA

). On
the other hand, if (φ ∧

∧
L ∧ ¬L(x, y)) was satisfiable by some aφ, then by Observations 34

and 35, we would have that (φA ∧
∧
LA ∧ ¬LA(xA, yA)) is satisfiable, which contradicts the

assumption and completes the proof of the lemma. J

D Proof of Proposition 29

Proof of Proposition 29. By Lemma 28, it is enough to show that the algorithm returns
TRUE if and only if (φA, VA, LA(xA, yA)) ∈ ABDno eq.

We will first show the proof of the right-to-left implication. If LA(xA, yA) is (xA = yA),
then the algorithm returns TRUE if φA is satisfiable and either xA and yA are the same
variable, or {xA, yA} ⊆ VA. In the first case an empty set of literals works as an explanation,
while in the other, we can take L equal to (xA = yA). If LA(xA, yA) is (xA 6= yA), then the
algorithm may return TRUE in lines 10, 11 and 12. In line 10, we set L to {xA 6= yA}. In
line 11 to

⋃
i∈[k]{xi = yi} ∪ {z = w}, while in line 12 to

⋃
i∈[k]{xi = yi}.

We now turn to the left-to-right implication. Suppose that there is a set of literals L such
that both Points 1 and 2 in Definition 27 hold. Consider a formula ψ equal to (φA ∧

∧
L).

Let X = {X1, . . . , Xk} be a partition of Var(ψ) such that ψ entails (s = t) if and only if
there exists i ∈ [k] such that both s and t are in Xi. Then, for i ∈ [k], we choose one element
si from every Xi to be a representative of all elements in Xi. Then, in all disjunctions of
disequalities, we first replace all variables with their representatives, and then remove all
disequalities of the form (si 6= si). Since all these transformations preserve the satisfiability
of the formula, in the end we get no empty clauses. Denote the formula obtained in this way
by ψ′.

Consider first the case where LA(xA, yA) is (xA = yA). The case where xA and yA are
the same variable is handled by the procedure in line 4. Thus we can assume that they
are different. Since (φA ∧

∧
L) entails (xA = yA), and φA does not contain equalities, the

formula (xA = yA) must be entailed by
∧
L. Indeed, suppose this is not the case, then there

is an assignment a : V ar(φA)→ N satisfying (
∧
L ∧ xA 6= yA). Let a′ : V ar(φA)→ N be a

satisfying assignment to (φA ∧
∧
L). We claim that b(a, a′) where b : N2 → N is a binary

injective operation satisfies (φA ∧
∧
L ∧ xA 6= yA). It clearly satisfies (xA 6= yA), it satisfies

J. Schmidt and M. Wrona 633

∧
L since it is Horn. To see that b(a, a′) satisfies φA we use the following property of a

negative equality formula φ: let a, a′ : Var(φ)→ N such that a′ satisfies φ and b be a binary
injection, then b(a, a′) satisfies φ. Thus, we proved that (xA = yA) must be entailed by

∧
L.

Hence xA and yA are in VA. Since also φA ∧ (xA = yA) is satisfiable, the procedure returns
TRUE in line 5.

Assume now that LA(xA, yA) is (xA 6= yA). Since (φA ∧ LA(xA, yA)) is satisfiable, we
have that xA and yA are in different blocks Xa, and Xb, respectively, of X. Assume without
loss of generality that they are the representatives of their own blocks. Observe that ψ′

contains a clause of the form (xA 6= yA): otherwise (ψ ∧ xA = yA) would be satisfiable by
the assignment aX : Var(ψ) → N sending all variables from Xi where i 6= b to i, and all
variables from Xb to a, i.e., no explanation would exist. So, we can assume that ψ′ contains
(xA 6= yA). In this case either (i) xA and yA are both in V , or (ii) there is z ∈ {xA, yA}
which is in V , and v ∈ {xA, yA} \ {z} which is not, and φ contains a clause equivalent to
(x1 6= y1 ∨ · · · ∨ xk 6= yk ∨w 6= v) such that for every i both xi and yi as well as z and w are
in the same block of X, or (iii) both xA, yA are not in V and φ contains a clause equivalent
to (x1 6= y1 ∨ · · · ∨ xk 6= yk ∨ xA 6= yA) such that for every i both xi and yi are in the same
block of X. Observe that cases (i), (ii), and (iii) are handled by the procedure in lines 10, 11,
and 12, respectively. J

CSL’13

A New Type Assignment for Strongly
Normalizable Terms
Rick Statman

Carnegie Mellon University
Department of Mathematical Sciences
Pittsburgh, PA 15213
(statman@cs.cmu.edu)

Abstract
We consider an operator definable in the intuitionistic theory of monadic predicates and we
axiomatize some of its properties in a definitional extension of that monadic logic. The axioma-
tization lends itself to a natural deduction formulation to which the Curry-Howard isomorphism
can be applied. The resulting Church style type system has the property that an untyped term
is typable if and only if it is strongly normalizable.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases lambda calculus

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.634

1 Introduction

Intersection types [4] are very interesting especially in their use for proving untyped terms to
be strongly normalizable [6]. However, we view them only as types, and the Curry-Howard
isomorphism does not seem to apply. Here we would like to extend the formulae as types
direction of Curry-Howard to include all strongly normalizable terms. We shall do this by
considering a definitional extension of a very weak version of intuitionistic monadic logic.
Our notion of typing appears quite different from the clever application of Curry-Howard
to the derivations of intersection types for untyped terms in [2]; we do no linearization of
untyped terms.

2 Intuitionistic Monadic Logic

We consider the first-order language of intuitionistic monadic predicate logic in the negative
fragment. The language consists of two individual constants
0, 1
and an arbitrary selection of monadic predicates R. In addition, we shall have two other
distinguished monadic predicates
P,Q

that play a special role and remain mostly hidden. We have the connective, →, the universal
quantifier, ∧, and a symbol for falsehood, @. We shall assume that P0, Q1 and P and Q are
disjoint; that is, ∧x(Px→ (Qx→ @)). As usual, we set ∼ F := F → @.

We define a certain definitional extension of our language as follows. Introduce a new
connective/relation symbol D which takes a single individual and two formula arguments,
and which is defined by DxFG := (Px→ F) & (Qx→ G).
Indeed, this is the only way that P and Q enter into our discussion.

© Richard Statman;
licensed under Creative Commons License CC-BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca; pp. 634–652

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.634
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

R. Statman 635

D satisfies many interesting properties. Of these, the equivalences

(a) D0FG ↔ F

(b) D1FG ↔ G

(c) Dt(F → G)(H → K) ↔ DtFH → DtGK

(d) Dt(∧yF)G ↔ ∧y DtFG y not free in G, t

(e) DtF (∧yG) ↔ ∧yDtFG y not free in F, t

are the most important. They can be verified as follows

(a) Assume F , then P0→ F and Q0→ G since ∼ Q0.
Conversely, assume D0FG. Then P0→ F so F since P0.

(b) Similar to (a)
(c) Assume Dt(F → G)(H → K). Now assume DtFH. To show DtGK assume Pt. Then,

since DtFH we get F and since Dt(F → G)(H → K) we get F → G. Thus G. So
Pt → G. Now assume Qt. Similarly, we get K. Thus, Qt → K. Conversely, assume
DtFH → DtGK. To show Dt(F → G)(H → K) assume Pt and F . Then ∼ Qt so
DtFH;. Thus, DtGK and hence since Pt, G. Similarly for H → K.

(d) Assume Dt(∧xF)G. Let x be given. To show DtFG assume Pt. Then ∧xF , in
particular, F . Thus, Pt→ F . Now assume Qt. By hypothesis G. Thus, Qt→ G. But
x was arbitrary; thus, ∧x(Pt → F and Qt → G). Conversely, suppose ∧x DtFG. To
show Dt(∧xF)G assume Pt. Let x be given. We have, by assumption, Pt→ F so F .
Thus ∧xF . We already have Qt→ G. Similarly for the other half.

The above equivalences would be shared by D with any discriminator. Discriminators
have been extensively studied, and we refer the reader to Bloom & Tindell [3]. Fortunately,
the properties above do not depend on the decidability of P and Q, their coverage, nor on
their complementarity. For example, in any (Kripke) model satisfying ∧x (DxFF ↔ F) if
the model fails to satisfy ∧x (Px ∨Qx) then the model satisfies ∼∼ F . Unfortunately, the
five above are not complete in our context. For example,

Dt(DrFG)(DrHK)↔ Dr(DtFH)(DtGK)

is valid but not derivable from the five. This can be seen as an exercise after the next
section. There are more; indeed, the set of all valid equivalences is undecidable. If A[S] is
any monadic formula on the monadic predicate S then

A[S] is intuitionistically valid ⇔

A[λxDx(Rx)(Rx)]↔ (R0→ R0) is a valid equivalence. In particular, Kripke model M
for S can be extended by setting R = S, P = M − {1} and Q = {1}. Thus, we can apply
the theorem of Maslow, Mints, and Orevkov [5].

3 Natural Deduction and Rewrite Rules

From now on, we consider only the restricted language without @, P , and Q, and with D as
a primitive symbol. The above equivalences can be formulated as reduction rules;

CSL’13

636 A New Type Assignment for Strongly Normalizable Terms

(0)D0FG � F

(1)D1FG � G

(→)Dt(F → G)(H → K) � (DtFH)→ (DtGK)
(∧)Dt(∧uF)G � ∧uDtFG u not free in G or t
(∧)DtF (∧vG) � ∧v DtFG v not free in F or t
($) ∧ uF � F u not free in F

($$) ∧ u ∧ vF � ∧v ∧ uF

Here ($) and ($$) make for a smoother theory. The congruence generated by � is called
formula conversion (conv.).

D − {(0), (1)} is denoted D−. The following are easily verified.

Facts:

(i) D− reductions satisfy the weak-diamond property.
(ii) A given formula D− reduces to only finitely many others.
(iii) D− reduction has the strong diamond property, modulo ($$).

There is an obvious notion of residual for reductions. Residuals, if they exist, are unique
and the corresponding reductions commute modulo the order of ∧’s.

(iv) D− is Church-Rosser.
(v) (0) + (1) has unique normal forms.
(vi) There is a strip lemma for (0)+(1) -reduction over D; If F ←� G in general, and G�→ H

by (0) + (1) then H �→ K in general and F �→ K by (0) + (1).
(vii) � is Church-Rosser.
(viii) There is a standardization theorem for (∧);

If F �→ ∧yG then there exists H such that F �→ ∧yH by (∧) and ($$) alone and
H �→ G.

(ix) A formula F in � normal form has the properties

(a) F does not contain D0HK or D1HK

(b) If F contains DtF0F1 then if Fi is not atomic then Fi has the form H → K and F1−i

is atomic.

(i) � normal forms are unique up to ($$).

If we have a formula F with no variable both free and bound and no variable bound twice
(alpha normal form) and we require that in ($) expansions u is new, then in any conversion
F conv. G each quantifier ∧v has at most one descendant in G. The replacement of ∧v in F
by t in this conversion is the result of substituting t for every occurrence of v and omitting
∧v. The result is a valid conversion when redundant steps are omitted.

Now we have the natural deduction rules for intuitionistic monadic logic with D

R. Statman 637

/

F

/

·
·
·

(→ I) G

F → G

· ·
· ·
· ·

(→ E) F → G F

G

·
·
·

(∧I) F

∧vF v (eigenvariable) not free in any
assumption

·
·
·

(∧E) ∧vF

[t/v]F t free for v in F (i.e. if t is a
variable it should not become bound by
substitution)

·
·
·

(conv.) F

F conv. G
G

These rules will be transformed into typing rules for untyped lambda terms.

4 Typing Rules

Although we are essentially using Church typing, two deviations from normal conventions
will be employed. First, as already mentioned, we adopt Curry style derivations. This is
merely a notational convenience. In a second notational convenience, we dispense with

CSL’13

638 A New Type Assignment for Strongly Normalizable Terms

lambda abstraction over object variables appearing in types normally used as a coercion into
universally quantified types. Instead, we could distinguish the notion of a typed sub-term
from an untyped one, so an untyped sub-term begins a nested set of typed ones; but, in
practice, we shall just refer to a particular point in the typing derivation tree. Nevertheless,
each typed sub-term has a unique type. The typing rules are the following.

/

x : F
/

·
·
·

(→ I) X : G

λxX : F → G

· ·
· ·
· ·

(→ E) X : F → G Y : F

(XY) : G

·
·
·

(∧I) X : F

X : ∧vF v (eigenvariable) not free in the
type of any free variable of X

·
·
·

(∧E) X : ∧vF t free for v in F

X : [t/v]F

·
·
·

(conv.) X : F F conv. G

X : G

where x can occur in an assumption x : F with at most one F . These rules are to be
understood in the obvious way. Each derivation of X : G, for untyped X, corresponds to a
Church typing of X with G, and the free variables of X with the types assigned to them in
the assumptions.

R. Statman 639

5 Reductions of Derivations

With each conversion, F (conv.) G, a pair of reductions

F �→ H ←� G

can be associated. We can always assume that H has only 0 and 1 in atomic sub-formulae
R0 or R1, and no D0KK ′ or D1KK ′, and by the strip lemma, each reduction begins with
(0), (1) reductions and proceeds afterwards with none. Two conversions

F conv. G conv. H

in a row can be transformed into a single one

F conv. H

We now define the notion of a “derivation reduction" in 4 parts.
(1) In three successive inferences (∧I), (conv.), (∧E)

·
·
·
F

∧v F

∧u G

[t/u] G

either ∧u is a descendant of ∧v or it is not. In the first case, omitting trivial pairs of
($$)’s we have

·
[t/v] ·

·
[t/v] F

[t/u] G

In the latter case, there is the trivial case that ∧v is omitted by ($), and we have

·
·
·
F

∧u G (conv.)

[t/u] G

CSL’13

640 A New Type Assignment for Strongly Normalizable Terms

Otherwise, in case ∧u is omitted by ($), we have

·
·
·
F

∧v F

(conv.)
[t/u] G

Finally, we have

∧v F (conv.) ∧ v ∧ u H(v, u) by (∧) and ($$)
∧v ∧ u H(v, u)�→ ∧v ∧ u K(v, u)
∧u ∧ v K(v, u)←� ∧u ∧ v L(u, v)
∧u ∧ v L(u, v)←� ∧u G by (∧) and ($)

and so

·
·
·
F

∧u H(v, u)

H(v, t)

L(t, v)

∧v L(t, v)

[t/u]G

In this manner the three successive inferences are reduced to either

(conv.)
(conv.), (∧E)
(∧I), (conv.) or
(∧E), (conv.), (∧I)

(2) In three successive inferences (→ I), (conv.), (∧E);

R. Statman 641

/

F

/

·
·
·
G

F → G

∧u H

[t/u]H

omitting trivial pairs of ($$)’s, there exist H ′, F ′, G′ such that

∧uH �→ ∧uH ′� H ′ by ($)
H ′ �→ (F ′ → G′) ←� (F → G)
H ′ ←� [t/u]H

and so the three successive inferences can be reduced to an (→ I), (conv.).
(3) In three successive inferences (∧I), (conv.), (→ E);

/

F

/

·
·
·
H

·
∧u H ·

·
F → G F

G

omitting trivial pairs of ($$)’s, there exist H ′, F ′, G′ such that

∧uH �→ ∧uH ′ � H ′ by ($)
H ′ �→ (F ′ → G′) ←� (F → G)
H ′ ←� H

and so the three successive inferences can be reduced to an (conv.) (→ E).
(4) In three successive inferences (→ I), (conv.), (→ E);

CSL’13

642 A New Type Assignment for Strongly Normalizable Terms

/

F

/

·
·
·
G

·
F → G ·

·
H → K H

K

we have F conv. H and G conv. K. These three successive inferences can be reduced to
·
·
·
H

F

·
·
·
G

K

which uses only (conv.).
A segment in a derivation is an alternating sequence of (∧I), or (∧E) inferences and

conversions. Thus, in a segment, we can assume that no (∧I) precedes an (∧E) by applying
suitable reductions (1)-(3). Thus, if a segment begins and ends in a formula beginning with
→, it is simply a conversion. When employing the rules as typing rules, applying reductions
(1)-(3) to segments does not alter the untyped term being typed.

6 The Main Result

We shall now prove that an untyped term is strongly normalizable if, and only if, it has a
type in our system.

I Lemma 1. Suppose that we have typings X : F and X : G of the untyped X. Then there
exists a typing X : DvFG for v new. Moreover, if, for the free variable x, we have x : H in
X : F and x : K in X : G then x : DvHK in X : DvFG.

I Lemma 2. A normal untyped term X has a typing X : F .

I Lemma 3. Suppose that x occurs in X and [Y/x]X has a typing

[Y/x]X : F.

Then there is a typing (λxX)Y : F , where the free variables of X may have new types.

R. Statman 643

I Proposition 1. If X is strongly normalizable then for some F we have a typing X : F .

Proof. Now suppose that X is strongly normalizable. We show that X has a typing by
induction on the reduction tree of X with a subsidiary induction on the length of X. This
is really induction on Barendregts’s perpetual reduction strategy beginning with X ([1] pg.
334). We can write X :=

λx1 . . . xr


xi

X1 . . . Xs

(λx.X0)

Case 1: r > 0. Then the induction hypothesis on length can be applied directly.

Case 2: r = 0 and there is no head redex. This is just like the case of normal terms.

Case 3: r = 0 and X has a head redex. We distinguish two subcases.

Subcase 1: x is not free in X0. Now both X1 and X0X2 . . . Xs have shorter reduction trees
than X. Thus, by induction hypothesis, both have typings with X1 : G. We may adjust
the typings of the free variables in X1 and X0X2 . . . Xs so that they match as in the case of
normal terms. Thus, we have a typing of X with x : G.

Subcase 2: x appears free in X0. Now the reduction tree of

([X1/x]X0)X2 . . . Xs

is smaller than that of X so the induction hypothesis applies and this term has a typing. Now
we can apply Lemma 3 and adjust the types of the free variables in ([X1/x]X0)X2 . . . X2. J

I Lemma 4. If X : G is strongly normalizable with y : F and Y : F is strongly normalizable
then [Y/y]X : G is strongly normalizable.

I Proposition 2. If the untyped term X has a typing X : F then X is strongly normalizable.

Proof. By induction on X where we again write X :=

λx1 . . . xr


xi

X1 . . . Xs

(λxX0).

Lemma 4 prevails. J

Acknowledgement. The author would like to thank refree 3 (the expert) for his many
thoughtful and usefull suggestions. There was neither time nor space to include them all in
the version of this paper.

References
1 H. P. Barendegt, “The Lambda Calculus", North Holland, 1984.
2 A. Bucciarelli, Piperno, A., and Salvo, I., Intersection types and lambda definability,

MSCS03 13 (1), 2003, pp. 15-53.
3 S. Bloom and R. Tindell, Varieties of “if-then-else", SICOMP 12 (4), 1983.

CSL’13

644 A New Type Assignment for Strongly Normalizable Terms

4 M. Coppo and M. Dezani, A new type assignment for lambda terms, Archiv fur Math.
Logik, 19, 1978.

5 S. Ghilezan, Strong normalization and typability with intersection types, Notre Dame Jour-
nal of Formal Logic, 37 (1), 1996.

6 S. A. Maslow, G. E. Mints, and V. P. Orevkov, Unsolvability in the constructive predicate
calculus, Soviet Math. Doklady 4 1963, pp. 1365-1367.

7 G. Pottinger, “A type assignment for strongly normalizable lambda terms", Curry
Festschrift, 1980.

8 M. Sorenson and P. Urzyczyn, Lectures on the Curry-Howard Isomorphism Manuscript,
1998.

R. Statman 645

A Proof of Lemma 1

Proof. Lemma 1. By induction on X.

Basis: X = x. The typings X : F and X : G are both segments, which we can assume are the
same length by adding trivial conversions. In addition, we can assume that all the variables
which occur bound in one typing are distinct from the variables which at some point occur
free in the other. Then we can simulate both typings in a typing by DvFG as follows.

From X : F to X : DvFG

x : H

x : ∧uH

7→ x : DvHK

x : ∧uDvHK

x : Dv(∧uH)K

x : ∧uH

x : [t/u]H

7→ x : Dv(∧uH)K

x : ∧u DvHK

x : [t/u]DvHK

and similarly for from X : G to X : DvFG.

Induction step:

Case 1: X = (Y Z)

In X : F we have
· ·
· ·
· ·

Y : H Z : M
· ·
· (segment) · (segment)
· ·

Y : K → L Z : K

(Y Z) : L
·
· (segment)
·

(Y Z) : F

and in X : G we have

CSL’13

646 A New Type Assignment for Strongly Normalizable Terms

· ·
· ·
· ·

Y : H ′ Z : M ′
· ·
· (segment) · (segment)
· ·

Y : K ′ → L′ Z : K ′

(Y Z) : L′
·
· (segment)
·

(Y Z) : G

The segments can be simulated as in the basis case and this arrives at

· ·
· ·
· ·
Y : DvHH ′ z : DvMM ′

· ·
· (segment) · (segment)
· ·
Y : Dv(K → L)(K ′ → L′) (conv.) ·

Y : DvKK ′ → DvLL′ Z : DvKK ′

(Y Z) : DvLL′

and the final segment can be, again, simulated as in the basis case.

Case 2: X = λyY .

In X : F we have

/

y : H
/

·
·
·

Y : K

λyY : H → K

·
· (segment)
·

X : F

R. Statman 647

In X : G we have
/

y : H ′
/

·
·
·

Y : K ′

λyY : H ′ → K ′

·
· (segment)
·

X : G

and so we have the simulation

/

y : DvHH ′

/

·
·
·

Y : DvKK ′

λyY : DvHH ′ → DvKK ′

(conv.)
X : Dv(H → K)(H ′ → K ′)

and the final segment can be, again, simulated as in the basis case. J

As usual we say that an untyped term is strongly normalizable if every beta reduction
sequence terminates.

B Proof of Lemma 4

Proof. Lemma 4: By induction where we let

k = the length of any � normal form of F,
l = the size of the reduction tree of Y,
m = the size of the reduction tree of X,
n = the length of X

and we order the 4-tuples (k, l,m, n) lexicographically. As before we write X :=

λx1 . . . xr


xi

X1 . . . X2
(λxX0)

Case 1: r > 0. In this case the result follows from the induction hypothesis applied to n.

CSL’13

648 A New Type Assignment for Strongly Normalizable Terms

Case 2: r = 0 and xi is not the free variable y. In this case the result follows by the induction
hypothesis applied to the Xj in place of X.

Case 3: r = 0 and X has the head redex (λxX0)X1. In this case the typing of X has the
form

/

x : H, y : F
/

·
·
·

X0 : J

(→ I)
λx.X0 : H → J y : F

· segment ·
· ·

λx.X0 : K → L X1 : K

(λx.X0)X1 : L

·
· (segment)
·

(λx.X0)X1 : L

·
·
·

X : G .

By the remark before Lemma 1 we may assume that the segment from H → J to K → L is
actually a conversion which factors into a conversion of H to K followed by a conversion of
J to L. We note here that no eigenvariable in either segment displayed above can occur in
F . We distinguish two subcases.

Subcase 1: x is not free inX0. By induction hypothesis on n, [Y/y]X1 is strongly normalizable.
In addition,

y : F

·
·
·

X0 : J

(conv.)
X0 : M

·
·
·

X0X2 . . . Xs : G.

R. Statman 649

is a typing of the strongly normalizable X0X2 . . . Xs for which the induction hypothesis
applies to m. Thus,

[Y/y](X0X2 . . . Xs)

is strongly normalizable. But then Barendregt’s perpetual strategy terminates when applied
to [Y/y]X, so [Y/y]X is strongly normalizable.

Subcase 2: x is free in X0. Now

y : F

·
·
·

X1 : K

(conv.)
X1 : H, y : F

·
·
·

[X1/x]X0 : J

(conv.)
[X1/x]X0 : M

·
·
·

([X1/x]X0)X2 . . . Xs : G

is a typing of ([X1/x]X0)X2 . . . Xs and the induction hypothesis applies to m. Thus,
([X1/x]X0)X2 . . . Xs is strongly normalizable and Barendregt’s perpetual strategy terminates
when applied to [Y/y]X. Thus, [Y/y]X is strongly normalizable.

Case 4: r = 0 and xi = y is free in X. Let

Y = λy1 . . . yt


yk

Y1 . . . Yq

λz.Z

Subcase i: t = 0 and Y has no head redex. Then [Y/y]X is strongly normalizable by the
induction hypothesis for n applied to the terms [Y/y]Xj and the assumption that Y is
strongly normalizable applied to the terms Yj .

Subcase ii: t = 0 and Y has a head redex. By induction hypothesis for n applied to the
[Y/y]Xj we have that

x[Y/y]X1 . . . [Y/y]Xs

is strongly normalizable and we can apply the induction hypothesis for ` to

CSL’13

650 A New Type Assignment for Strongly Normalizable Terms

[([Y1/z]Z)Y2 . . . Yq/x](x[Y/y]X1 . . . [Y/y]Xs)

where x : F .

Subcase iii: t > 0. For easier notation let Y = λz.Z. In this case the typing of X has the
form

y : F y : F

· ·
· (segment) ·
· ·

y : H → K X1 : H

yX1 : K

(conv.)
yX1 : J , y : F

·
·

X : G

and the typing of Y has the form

/

Z : L
/

·
·
·

Z : M

(→ I)
λz.Z : L→M

·
· (segment)
·

λz.Z : F

Now the segment

λz.Z : L→M

·
· (segment)
·

λz.Z : F

·
· (segment)
·

λz.Z : H → K

R. Statman 651

reduces to a conversion by the remark preceeding Lemma 1 and we have the typings
Z : H

(conv.)
z : L′

·
·

Z : M ′

Z : J

for suitable instances L′ of L and M ′ of M and
/

Z : L
/

·
·
·

Z : M

(→ I)
λz.Z : L→M

·
· (segment)
·

λzZ : F

·
·
·

[Y/y]X1 : H

and

/

Z : L

/

·
·
·

Z : M

(→ I)
λz.Z : L→M

·
· (segment)
·

x : J, Y : F

·
·

x([Y/y]X2) . . . ([Y/y]Xs) : G

CSL’13

652 A New Type Assignment for Strongly Normalizable Terms

Thus, by induction hypothesis for n, x([Y/y]X2) . . . ([Y/y]X)s, is strongly normalizable. By
induction hypothesis for n, [Y/y]X1 is strongly normalizable. Now the length of any �
normal form of H is less than that of F since H conv. L′ and L→ M conv. F . Thus, by
induction hypothesis for k

[[Y/y]X1/z]Z

is strongly normalizable. In addition, the length of any� normal form of J is less than that
of F since H conv. L′ and L→M conv. F . Thus, by induction hypothesis for k

([[Y/y]X1/z]Z)([Y/y]X2) . . . ([Y/y]Xs)

is strongly normalizable. Hence, Barendregt’s perpetual strategy terminates for [Y/y]X and
it is strongly normalizable. J

Semantics of Intensional Type Theory extended
with Decidable Equational Theories ∗

Qian Wang1,3,4,5,6 and Bruno Barras1,2

1 Laboratoire d’Informatique de L’École Polytechnique
2 INRIA Saclay – Île de France
3 Key Laboratory for Information System Security, Ministry of Education
4 Tsinghua National Laboratory for Information Science and Technology

(TNList)
5 School of Software, Tsinghua University
6 Department of Computer Science and Technology, Tsinghua University

Abstract
Incorporating extensional equality into a dependent intensional type system such as the Calculus
of Constructions (CC) provides with stronger type-checking capabilities and makes the proof
development closer to intuition. Since strong forms of extensionality generally leads to undecid-
able type-checking, it seems a reasonable trade-off to extend intensional equality with a decidable
first-order theory, as experimented in earlier work on CoqMTU and its implementation CoqMT.

In this work, CoqMTU is extended with strong eliminations. The meta-theoretical study,
particularly the part relying on semantic arguments, is more complex. A set-theoretical model
of the equational theory is the key ingredient to derive the logical consistency of the formal-
ism. Strong normalization, the main lemma from which type-decidability follows, is proved by
attaching realizability information to the values of the model.

The approach we have followed is to first consider an abstract notion of first-order equational
theory, and then instantiate it with a particular instance, Presburger Arithmetic. These results
have been formalized using Coq.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Calculus of Constructions, Extensional Type Theory, Intensional Type
Theory, Model, Meta-theory, Consistency, Strong Normalization, Presburger Arithmetic

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.653

1 Introduction

Most proof assistants, such as Coq [19], implement intensional type theory because ex-
tensional type theory is usually undecidable. Coq implements ECIC, a type theory that
extends CC [8] with two more features: inductive types in the style of the Calculus of In-
ductive Constructions (CIC) [12], and a predicative hierarchy of universes, in the style of
the Extended Calculus of Constructions (ECC) [10].

The purely intensional version of type-theory may become awkward when it comes to
programming with dependent types. In the well-known examples of “vectors”, one has the
type Vect(n) of lists of length n, a concatenation function @ such that v1@v2 has length

∗ Supported by National Science Foundation of China grant 61272002, Tsinghua National Laboratory
for Information Science and Technology (TNList) Cross-discipline Foundation 2011-9, Major Research
plan of the National Natural Science Foundation of China grant 91218302, National Basic Research
Program of China (973 Program) grant 2010CB328003.

© Qian Wang and Bruno Barras;
licensed under Creative Commons License CC-BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca; pp. 653–667

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.653
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

654 Semantics of Intensional Type Theory extended with Decidable Equational Theories

n1 + n2 whenever vi has length ni. But showing that v@nil = v is not possible because it is
not even a well-typed statement: lengths n+ 0 and n are not identified because + is defined
recursively on the first argument (n here) which is not in the form of 0 or successor.

Several works tried to fix this problem by either adding rewrite rules to increase the
computing ability [5] or including in extensional equalities [14, 15, 11]. Unfortunately, such
solutions have never been implemented as a proof assistant until CoqMT [17] which is
evolved from [6, 7, 16] and further generalized by CoqMTU [4]. The idea is a trade-
off between decidability and type-checking capabilities, only allowing decidable extensional
theory and automatically checking the theory equality by a decision procedure. Though this
solution looks nice, the meta-theory of CoqMTU is not well understood yet: confluence
and subject reduction of the full calculus are proved, but strong normalization (SN) and
consistency are only proved in absence of strong elimination.

Our first contribution, shown in Section 4, is that formalizing a new schema (CCT) incor-
porating an abstract decidable theory into CC family, which is not only ECIC implemented
by Coq, but a further extension of it. The abstract theory can be instantiated by any
concrete one of interest if it can be represented in CCT and satisfies special assumptions to
ensure the main meta-theoretical properties. CCT captures many calculus, but we provide
a uniform way of establishing the meta-theoretical properties proved semantically.

Our second contribution, shown in Section 5, is about proving the key properties of CCT:
consistency and strong normalization (with strong elimination), the basis for proving the
meta-theory of other calculus extending CC and admitting a decidable theory. As often,
this requires a set-theoretical model. We have based our study on the work of the second
author [3, 2], that provides a modular framework for modeling a wide range of type theories
from CC to the formalism of Coq. In this article, we show that this framework can be
reused and that it accommodates the extra features of CCT.

To implement CICUT as a proof assistant, we must investigate its syntactic properties,
among which only Church-Rosser can not be proved in the usual way, because we do not
embed extensional equations into ι-reduction as CoqMTU does. Nevertheless, it is not
a disaster because we believe Church-Rosser still hold and will study the whole syntactic
properties of CICUT in the future.

Finally, our last contribution, shown in Section 6, is to show that Presburger Arithmetic
fits perfectly in this abstract notion of decidable first-order theory, which also demonstrates
our abstraction philosophy works well.

In the following sections, most of the proofs will not be shown in the paper due to the page
limit. They have been done in the Coq development and available to whom are interested1.
Many similar notations are overloaded to avoid ambiguity, such as λ is overloaded by λ̇ and
λ̌ to represent abstractions of set and pure λ-term respectively. We will detail when we need.
The notations without overloading are Coq primitives, such as ∀ for universal quantification
because the whole work is formally done in Coq. To make the concepts easier to understand,
we use → for function types only, and use ⇒ for implication. We also try to hide De Bruijn
index, though it is heavily used in the development.

2 CICUT

Since the focus of this paper is the semantic meta-theory, the syntax of CICUT will not be
exhaustively introduced here. The core of CICUT is almost the same as that of the CC.

1 The development is available at https://github.com/superwalter/SETheory-dev

https://github.com/superwalter/SETheory-dev

Q. Wang and B. Barras 655

Γ `
Γ ` T : s
Γ [x : T] `

Γ `, Γ(n) = (x : T)
Γ ` n :↑n+1 T

Γ `
Γ ` Prop : Kind

Γ ` T : s1, Γ [x : T] ` U : s2

Γ ` Πx : T.U : s2

Γ [x : T] `M : U
Γ ` λx : T.M : Πx : T.U

Γ `M : Πx : T.U, Γ ` N : T
Γ `M N : U [x\N]

Γ `M : T, Γ ` T = T ′ : s
Γ `M : T ′

Γ `M : T
Γ `M = M : T

Γ `M = M ′ : T
Γ `M ′ = M : T

Γ `M1 = M2 : T, Γ `M2 = M3 : T
Γ `M1 = M3 : T

Γ ` T = T ′ : s1, Γ [x : T] ` U = U ′ : s2

Γ ` Πx : T.U = Πx : T ′.U ′ : s2

Γ ` T = T ′ : s1, Γ [x : T] `M = M ′ : U
Γ ` λx : T.M = λx : T ′.M ′ : Πx : T.U

Γ `M = M ′ : Πx : T.U, Γ ` N = N ′ : T
Γ `M N = M ′N ′ : U [x\N]

Γ [x : T] `M = M ′ : U, Γ ` N = N ′ : T
Γ ` (λx : T.M)N = M ′[x\N ′] : U [x\N]

Figure 1 Calculus of Constructions, judgmental presentation.

Figure 1 shows a judgmental presentation of the typing rules of CC, it is different from the
usual one by replacing an equivalence relation on untyped λ-terms by equality judgments.
Γ ` M = M ′ : T expresses that M is equal to M ′, both being of type T in context Γ. [13]
shows these two representations are equivalent, and we will extend this conclusion for all of
the extensions considered in this article, leaving the proof to the future.

The main novel feature of CICUT and CoqMTU in the syntax of terms is the embedding
of a type of first-order terms. Regarding the typing rules, the main difference is the extension
of the definitional equality with a decidable theory ∼T on these first-order terms. See [4] for
a more detailed presentation. Let us just give the extra inference rules (besides Presburger
arithmetic axioms) that need to be considered to have CICUT instantiated with Presburger
arithmetic. It introduces three canonical constants and a defined symbol (Rec):

Γ `
Γ ` nat : Kind

Γ `
Γ ` 0 : nat

Γ `
Γ ` S : nat→ nat

Γ ` P : nat→ s, Γ ` N : nat, Γ `M0 : P 0, Γ `M1 : Πn : nat. P n→ P (Sn)
Γ ` Rec(P,N,M0,M1) : P N

Γ ` M ∼T N
Γ `M = N : T

N ∼T 0
Rec(P,N,M0,M1) ∼T M0

N ∼T SN ′

Rec(P,N,M0,M1) ∼T M1N
′ Rec(P,N ′,M0,M1)

The main difference between CICUT and CoqMTU is the abandon of incorporating
definitional equalities into reductions and restore the strong elimination, which is witnessed

CSL’13

656 Semantics of Intensional Type Theory extended with Decidable Equational Theories

by the fact that the eliminator of natural numbers (Rec) can be used with a term P belonging
to any sort s. By contrast, weak eliminations are obtained by restricting s to the Prop, the
sort of propositions. In other words, weak elimination provides the induction principle of
the natural numbers, but not the possibility to define functions by structural induction.

3 Extensible set-theoretical realizability model of CC

This section gives a short introduction to a general method used to build consistency and
strong normalization models of a wide range of type-theories with dependent types. See [2]
for more details.

Consistency of such formalisms is often achieved by providing a set-theoretical model,
that interprets terms and types as sets. The judgment that a term has a given type is
interpreted by the proposition that the term is interpreted by a member of the interpretation
of the type. The soundness of such a model implies the consistency of the formalism, as
soon as one type (representing the absurd proposition) is interpreted by the empty set.

Strong normalization (SN) is the property that any well-typed term of a type system
cannot be reduced ad infinitum. It often captures the logical strength of the type system
seen as a logical formalism. This is why it generally requires a particular model construction.
Types are not mere sets of values anymore, but they should also be interpreted as sets of
strongly normalizing λ-terms, that represent the possible terms that have this type. The
latter are often called “realizers”. The soundness of the model shall also require that the
term can be interpreted by a realizer of its type. SN is thus a consequence of the construction
of such a realizability model.

The main ingredient in this model construction is the notion of saturated sets due to
Tait [18] (but Girard’s reducibility candidates serve the same purpose). They are sets of
strongly normalizing λ-terms such that the type constructors (such as the arrow type or
intersection) can be interpreted.

SN of CC and CIC in presence of weak elimination can be proved in this setting. However,
to take care of strong elimination, we need a more subtle definition of realizers: a saturated
set for the value of each type is not enough, each member of the value of a type should have
its own saturated set of realizers (see the R function below). This is closely related to the
notion of Λ-sets introduced by Altenkirch [1].

In the remainder of this section, we show how the model construction can be carried out,
provided we can implement the two signatures below: the first one gathers what is required
to build a set-theoretical model (the set-denotation, symbols will be overloaded with a)̇;
the second one corresponds to the extra requirements to have a full realizability model (the
term-denotation, symbols will be overloaded with a)̌, from which SN will follow.

3.1 Abstract Parameterized Models
The first abstract model is designed to provide a uniform structure of set denotations to all
the models, hiding the implementation until instantiation. It contains the set-denotation
for all closed terms in the model together with the properties to ensure soundness. It uses a
higher-order presentation: binding constructions are represented using functional arguments.

I Definition 1 (Abstract model). The model has the following signature:

X : Type ∈̇ : X→ X→ Prop =̇ : X→ X→ Prop F : X

@̇ : X→ X→ X λ̇ : X→ (X→ X)→ X Π̇ : X→ (X→ X)→ X

Q. Wang and B. Barras 657

satisfying certain properties (the followings are some examples):

N ∈̇A
(λ̇x∈̇A.f)@̇N=̇F (N)

[β]
∀x∈̇A.F (x)∈̇F
(Π̇x∈̇A.F)∈̇F

[Imp]
∀x∈̇A.(f(x))∈̇(F (x))
(λ̇x∈̇A.f)∈̇(Π̇x∈̇A.F)

[Π-I]

where λ̇x∈̇A.f stands for λ̇(A, x 7→f(x)) and Π̇x∈̇A.B for Π̇(A, x 7→B(x)).

X is the type of values, that can be seen as a kind of set-theory since we assume we have
relations ∈̇ and =̇ (equality and membership). F is the set of all the values. Other symbols
and related properties are specific to CC, hence look similar to their counterpart in CC.

The second abstract model is an supplement of the first one when upgrading a consistency
model to a SN model. The key parameter is the function R that takes a type and one of its
elements, and returns the saturated set formed by the realizers of this element.

I Definition 2 (Abstract supplement of SN model). This model aims at building a saturated
set for each type and indicates that each proposition is inhabited.

z : X z ∈ Π̇(P ∈̇F).P R : X→ X→ SAT

R(Π̇x∈̇A.B, f) =
⋂
x∈̇A

R(A, x) sat→ R(B(x), f@̇x) R(F, P) = SN

where SAT and SN are the sets of all saturated sets and all SN pure λ-terms respectively.⋂
and sat→ are standard set intersection and product on saturated sets.

The instance z (the daimon) ensures that any type is inhabited including False, such
that SN is guaranteed in arbitrary type context. Consequently, consistency can not be
proved as in the consistency model, but as a matter of fact, it still can be deduced as will
be shown in Section 5.

3.2 Main Model Construction
The main model is called M, consisting in giving an account of all syntactic entities (terms,
judgments, derivations) based on an instance of the signatures above. The denotations of
open terms depend on the valuations of free variables, thus a term is encoded as a pair of
functions each taking a valuation (N→ X for set-denotation, or N→ Λ for term-denotation)
as a parameter returning a set or a pure λ-term as denotation, with some requirements to
ensure consistency. Since de Bruijn indices are used, the arguments of valuations are natural
numbers. Λ is the type of pure λ-terms.

Due to space constraints, we do not expose the full details of how sorts are dealt with.
In the following, we will only consider the sort of propositions. See the formal development
or [2] for an exact account. And the symbols of M will be overloaded with a .̃

I Definition 3 (Pseudo-terms). A term is a pair of a set and term denotation:

Term ∆= {f : (N→ X)→ X} × {g : (N→ Λ)→ Λ | sub(g) ∧ lift(g)}

where sub(g) and lift(g) assert that g commutes with substitution and relocation.

We use Val(t)i
∆= f(i) and Tm(t)j

∆= g(j) to denote the set-denotation and term-
denotation of term t with certain valuations i and j.

CSL’13

658 Semantics of Intensional Type Theory extended with Decidable Equational Theories

I Definition 4 (Explicit substitution). An explicit substitution is a pair:

Esub ∆= {f : (N→ X)→ (N→ X)} × {g : (N→ Λ)→ (N→ Λ)|El(g),Es(g)}

where El(g) and Es(g) are commutation properties similar to the previous definition.

We use σ(i) and σ(j) to represent f(i) and g(j) for an explicit substitution σ.

I Definition 5 (Term constructors). Constructors in M are encoded as:

Prop ∆= 〈i 7→F, j 7→k〉
ñ

∆= 〈(i 7→i(n)), j 7→j(n)〉
M@̃N ∆= 〈i 7→Val(m)i@̇Val(N)i, j 7→Tm(m)j@̌Tm(N)j〉
λ̃A.t

∆= 〈i 7→λ̇x∈̇Val(A)i.Val(t)i′ , j 7→k@̌(λ̌x.Tm(t)j′)@̌Tm(A)j〉
Π̃A.B ∆= 〈i 7→Π̇x∈̇Val(A)i.Val(B)i′ , j 7→k@̌Tm(A)j@̌λ̌x.Tm(B)j′〉

where k is the combinator λ̌x.λ̌y.x, i′ is the function such that i′(0) = x and i′(n+1) = i(n),
and j′ is defined as j′(0) = j(0) and j′(n+ 1) = ↑̌

1
j(n).

Note that we just show the pair omitting the trivial proof of the assertions. The k com-
binator used in the second component of λ̃ and Π̃ allows to simulate CC-reductions occurring
in types. Many properties such as Val(M@̃N)i = Val(M)i@̇Val(N)i follow straightforwardly.

Similarly, we define several instances of explicit substitution, identity and cons:

id ∆= 〈i 7→i, j 7→j〉 σ ·M ∆= 〈i 7→Val(M)i � σ(i), j 7→Tm(M)j � σ(j)〉

where i 7→x� σ ∆= [0 7→x, . . . , n+ 1 7→σ(n)](n ≥ 0).
An explicit substitution σ applied to a term M is defined as:

M [σ] ∆= 〈i 7→Val(M)σ(i), j 7→Tm(M)σ(j)〉.

I Definition 6 (Judgment). A type judgment, denoted by M : T , holds for valuations i j iff:

[M : T]i,j
∆= Tm(M)j
Val(T)i

Val(M)i

where t
T x stands for x∈̇T ∧ t∈̌R(T, x), which reads as “t realizes x of type T”.

I Definition 7 (Semantics of context). The denotation of a M-context Γ is a set of pairs of
valuations defined as :

[Γ] = {(i, j) | ∀n.[n : ↑̃n+1Γ(n)]i,j}

We will write membership of (i, j) to [Γ] as (i, j)∈̃[Γ].

I Definition 8 (Judgments with context). There are four kinds of judgments:

˜̀ Γ ∆= ∃(i, j).(i, j)∈̃[Γ] (Well-founded Judgment)
Γ ˜̀M ∈̃T ∆= ∀(i, j)∈̃[Γ].[M : T]i,j (Typing Judgment)

Γ ˜̀M=̇N ∆= ∀(i, j)∈̃[Γ].Val(M)i=̇Val(N)i (Equality Judgment)
Γ1 ˜̀ σ . Γ2

∆= ∀(i, j)∈̃[Γ1], (σ(i), σ(j))∈̃[Γ2] (Explicit Substitution Judgment)

To express strong normalization, we need to express the notion of reduction between
pseudo-terms. This can be based on the set-denotation since the [β] parameter of Def. 1
assigns the same set to β-equivalent pseudo-terms. A pseudo-term reduces to another if the
term-denotation of the former reduces to that of the latter, whatever the valuation:

Q. Wang and B. Barras 659

I Definition 9. The pseudo-reduction (one step or more) in M is defined as:

M→̃M ′ ∆= ∀j.Tm(M)j→̌+Tm(M ′)j

A pseudo-term is said strongly normalizing if there is no infinite chain of pseudo-reduction
starting from it. The abstract SN lemma can be proved now:

I Lemma 10 (Abstract SN). For any well-typed term t in a valid context Γ, t is SN.

˜̀ Γ ∧ Γ ˜̀ t∈̃T ⇒ SN(t)

Proof. By ˜̀ Γ, we have ∃(p, q)∈̃[Γ]. By Γ ˜̀ t∈̃T , we have Tm(t)j∈̌R(Val(T)i,Val(t)i) for all
(i, j)∈̃[Γ]. Since R(Val(T)i,Val(t)i) is a saturated set, we have Tm(t)q is SN by applying
(p, q). Any reduction from t can be simulated by a reduction from Tm(t)q, hence t is SN as
a consequence of Tm(t)q is SN. J

3.3 Soundness of the Main Model
There are four steps to investigate the meta-theories of CC using the model above. The first
is to prove the existence of a model, that is, there are instances of the abstract models.

We can show that the abstract models can be instantiated in intuitionistic Zermelo-
Frankel set theory with replacement (IZFR). Types are encoded as a couples formed of a
set of values and a function from this set towards saturated set.

All propositions have the same set-denotation {∅}, and associate a saturated set to ∅.
So the type of all propositions is defined as

F
∆= ({(∅,_ 7→S)|S∈̌SAT},_ 7→SN).

Dependent product is based on an alternative encoding of functions due to Aczel (see [2] for
details), in order to interpret the impredicativity of Prop. The term-denotation of products
is fixed by the abstract model. Finally, the daimon z has to be taken as ∅.

The second step is to prove that the model interprets CC correctly. Syntax maps to
semantic terms in the model straightforwardly.

I Theorem 11 (Soundness). If Γ ` t : T (in CC, see Fig. 1), then Γ̃ ˜̀ t̃∈̃T̃ (in M).

The third step is the prove the consistency and SN in M. Consistency can now be proved
independently from strong normalization:

I Theorem 12 (Consistency). The model M is consistent.

∀M,¬([] ˜̀M ∈̃(Π̃P : Prop.P))

Proof. Assume there is closed proof t of False ∆= Π̃Prop.0̃ in the model. Then, the term
interpretation of the proof t should be closed by commutation with substitution. By the
properties of Π̃, Tm(t)j@̌u, where u and j are respectively a closed term and a closed
valuation, should be in all saturated sets. As a consequence, it must contain free variables
which must be in Tm(t)j since u is closed. Since both t and j are closed, Tm(t)j should be
closed, a contradiction. J

I Theorem 13 (Strong normalization). Well typed M-terms are SN.

Finally, by soundness result, consistency and SN of CC is an immediate consequence of
the consistency and SN of M.

CSL’13

660 Semantics of Intensional Type Theory extended with Decidable Equational Theories

4 A Sound Model of Abstract First Order Theory

Compared with sticking to some specific first-order theory, we are more interested in invest-
igating an abstract model (MT) such that the abstract meta-theoretical results established
in that model can apply to any of its instance.

There are three principles to design such an abstract model. Firstly, this model should
capture as many theories as possible which leads to an abstract expression of its signature
and axioms. Secondly, this model should provide enough evidence to ensure only the valid
theories are included : including in such a theory would not break the meta-theories estab-
lished in M. The evidence can be taken as abstract property about the abstract expressions,
which we call assumption. At last, we want to carry out the tough work as much as possible,
such that it is not so hard to instantiate this model later for any allowable specific theory.
There should be as few assumptions as possible and each assumption should be the familiar
concept. Many decidable theories are first order, hence we restrict us to first-order theories.

To prove the soundness, we also need to abstractly formalize the syntax of the theory
as well as the interpretation rules following the abstraction schema of MT. There are two
kinds of abstraction: abstract expressions and assumptions. When instantiating, all abstract
expressions and assumptions should be specified and proved respectively.

Following Coq’s convention, environment Parameter and Axiom are used for abstract
expression and assumption respectively. Environment Definition and Lemma are only
used for concrete definition and property. Since MT is an extension of M, the symbols in MT
are also reloaded by .̃ Syntactic symbols are overloaded byˆfor formulas and¯for terms.

4.1 Syntax of the Abstract Theory
Classically, first-order theory consists in four parts: the signature, the formulas, the axioms
and the inference rules.

I Parameter 14 (Signature). The domain and the operations of signature are:

T : Set; ↑̄ : T→ N→ N→ T; Θ̄ : T→ T→ N→ T; Φ̄ : T→ N→ [..N..]

where Set is the Coq’s primitive type, [..N..] is the list of natural numbers. Θ̄u
kt is the

substitution operation on t, Φ̄kt the function collecting the free variables in t, and ↑̄nk t the
operation relocating the free variables in t. The latter three operations are indexed by some
number k corresponding to the depth at which the operator is applied.

I Definition 15 (Formulas). Formulas are defined inductively upon signature:

F ::= >̂ | ⊥̂ | f→̂g | f ∨̂g | f ∧̂g | t ∼T u | ¬̂f | ∀̂f | ∃̂f

where f and g are formulas, and t and u are first-order terms.

Note that equality is the only predicate we are interested in. We shall (again) use Φ̂kf ,
↑̂
n

kf and Θ̂N
k f to denote respectively the set of free variables, the relocation of free variables

and the substitution operating on formulas.

I Definition 16 (Context). The context (notated as C) is a list of declarations corresponding
to either a term variable or an assumption:

C ∆= [..(T + {f : F})..].

Q. Wang and B. Barras 661

Since theories considered here are first-order, a well-formed formula should contain term
variables only.

I Definition 17 (Well-formed term and formula). Given a context H,

Wft(H, t)
∆= ∀n ∈l Φ̄t,H(n) = T; Wff(H, g) ∆= ∀n ∈l Φ̂g,H(n) = T

A valid formula should be a well-formed formula justified from the axioms by a succession
of judgments. We define first the (abstract) notion of axiom, which should be well-formed
formulas. Inference rules for generating theorems from the axioms come next. They are
defined here in terms of introduction rules, elimination rules and judgmental rules.

I Parameter 18 (Axioms). Axioms are Coq’s predicates which judges special formulas in
a context, further they should be well-formed :

Âx : C→ F→ Prop; Âx(H, f)⇒Wff(H, f)

I Definition 19 (Derivation rules). A derivation rule (ˆ̀ : C → F → Prop) is a Coq’s
predicate with arity two defined inductively as followings:

H(n) = f, Wff(H, ↑̂
(S n)

f)

H ˆ̀ ↑̂
(S n)

f

Âx(H, f)
H ˆ̀ f H ˆ̀ >̂

H ˆ̀ ⊥, Wff(H, f)
H ˆ̀ f

H ˆ̀ f→̂⊥̂
H ˆ̀ ¬̂f

H ˆ̀ ¬̂f
H ˆ̀ f→̂⊥̂

H ˆ̀ f1, H ˆ̀ f2

H ˆ̀ f1∧̂f2

H ˆ̀ f1∧̂f2

H ˆ̀ f1

H ˆ̀ f1∧̂f2

H ˆ̀ f2

H ˆ̀ f1, Wff(H, f2)
H ˆ̀ f1∨̂f2

H ˆ̀ f2, Wff(H, f1)
H ˆ̀ f1∨̂f2

H ˆ̀ f1∨̂f2, (f1 ::H) ˆ̀ ↑̂
1
f3, (f1 ::H) ˆ̀ ↑̂

1
f3

H ˆ̀ f3

Wff(H, f1), (f1 :: H) ˆ̀ ↑̂
1
f2

H ˆ̀ f1→̂f2

H ˆ̀ f1→̂f2, H ˆ̀ f1

H ˆ̀ f2

(T :: H) ˆ̀ f

H ˆ̀ ∀̂f
H ˆ̀ ∀̂f, Wft(H, t)

H ˆ̀ Θ̂tf

H ˆ̀ Θ̂tf Wft(H, t)
H ˆ̀ ∃̂f

H ˆ̀ ∃̂f (f :: T :: H) ˆ̀ ↑̂
2
g

H ˆ̀ g

Valid formulas (or theorems) are those formulas that can be derived by application of
the above rules. Valid formulas should be well-formed:

I Lemma 20. If H ˆ̀ f , then Wff(H, f)

4.2 The abstract model of the theory
MT is another formalization of the theory using the material provided by M. The domain
of first-order term is encoded by a constant S : Term in MT. First-order terms also encoded
by Term should satisfy the following assumptions:

I Axiom 21. The following assumptions aims at ensuring the meta-theory:

∀Γ,Γ ˜̀ S∈̃Kind [1] ↑̃nkS=̃S ∧ Θ̃N
k S=̃S [2]

Val(x)i∈̇Val(S)i Val(y)i∈̇Val(S)i
Val(x)i=̇Val(y)i ∨ ¬Val(x)i=̇Val(y)i

[3]

Val(x)i∈̇S Val(y)i∈̇S ¬Val(x)i=̇Val(y)i
∃P, P ∈̇(Π̇x∈̇S.F) ∧ P @̇Val(x)i=̇true ∧ P @̇Val(x)i=̇false

[4]

where true ∆= Π̇P ∈̇F.Π̇p∈̇P.P and false ∆= Π̇P ∈̇F.P .

CSL’13

662 Semantics of Intensional Type Theory extended with Decidable Equational Theories

Assumption [1] and [2] assert that S is a closed object of type Kind. Assumption [3]
asserts that equation of set-denotations of the first-order term should be decidable. The
last assumption is included to ensure we could define the equality of the theory as Leibniz
equality later. The idea is that there exists a predicate that discriminates between different
values of S.

We further assume that axioms actually hold in the model MT:

I Axiom 22. Axioms are formulas interpreted by provable M-terms.

The encoding of formulas is given by a standard impredicative encoding due to Girard [9].

I Definition 23 (Formulas). The formulas are defined impredicatively:

x=̃y ∆= Π̃p : (Π̃x : S.Prop).Π̃t : (p@̃x).(p@̃y) ¬̃f ∆= f→̃⊥̃ A→̃B ∆= Π̃x : A.B

⊥̃ ∆= Π̃P : Prop.P A∨̃B ∆= Π̃P : Prop.((A→̃P)→̃(B→̃P)→̃P)

>̃ ∆= Π̃P : Prop.P→̃P A∧̃B ∆= Π̃P : Prop.((A→̃B→̃P)→̃P)

∀̃f ∆= Π̃x : S.f ∃̃f ∆= Π̃P : Prop.((Π̃n : S.f [x/n])→̃P)

We can prove similar properties to those in Definition 19, but in the format of typing
judgments. Among the 26 properties, we only show the following by using Rule [3] and [4]
of the previous Assumption 21.

I Lemma 24. Equality of theory can be embedded into the typed equality.
WFCE(Γ) Γ ˜̀ x∈̃S Γ ˜̀ y∈̃S Γ ˜̀ t∈̃(x=̃y)

Γ ˜̀ x=̇y
[=̃-E]

where WFCE(Γ), standing for well-formed closed environment, is defined as:

∀(i, j′)∈̃[Γ],∃j, (i, j)∈̃[Γ] ∧ CPT(j)

CPT(j) stands for Closed Pure Term, means j always returns a closed term to any index.

WFCE looks strange but necessary. In M, the value of any proposition is the singleton
of empty, the distinction between true propositions and false propositions reflects in their
realizers. False proposition contains open realizers only, while true proposition contains at
least one close realizer. A well-formed context Γ can contain false propositions and of course
false proposition (x=̃y) is derivable from Γ indicating that x and y may have different values.
That’s why we need a constraint WFCE on the context showing that the term-valuation of
each variable should be the closed to ensure that Γ does not contain false propositions.

4.3 Interpretation Rules and Soundness
Soundness of MT can be proved by defining abstract interpretation rules.

I Parameter 25 (Signature mapping). There exists a function IT : T→ Term which assigns
a M-term for each first-order term.

I Definition 26 (Formula mapping). The function IF : F → Term, which assigns a M-term
to each formula, is defined as:

IF(x ∼T y) ∆= IT(x)=̃IT(y) IF(⊥̂) ∆= ⊥̃ IF(>̂) ∆= >̃

IF(¬̂f) ∆= ¬̃IF(f) IF(f ∧̂g) ∆= IF(f)∧̃IF(g) IF(f ∨̂g) ∆= IF(f)∨̃IF(g)

IF(f→̂g) ∆= IF(f)→̃IF(g) IF(∀̂f) ∆= ∀̃IF(f) IF(∃̂f) ∆= ∃̃IF(f)

Q. Wang and B. Barras 663

The interpretation of the context is a combination of IT and IF:

I Definition 27. The function IΓ : C→ [..Term..] is defined as:

IΓ(e) ∆=
{

[] (e = [])
f(x) :: IΓ(l) (e = x :: l) and f(x) =

{
IΓ(x) ((x = f) : F))
S (x = T)

We now need to assume or prove that each one of these semantic mappings produces
expressions of the expected type (S for terms and Prop for formulas). Omitting the trivial
case of contexts, this yields:

I Axiom 28. Wft(Γ, t)⇒ IΓ(Γ) ˜̀ IT(t)∈̃S

I Lemma 29. Wff(Γ, f)⇒ IΓ(Γ) ˜̀ IF(f)∈̃Prop

All axioms are formulas provable in the model.

I Axiom 30. Âx(Γ, f)⇒ ∃t, IΓ(Γ) ˜̀ t∈̃IF(f)

Soundness of MT is not a trivial result:

I Theorem 31 (Soundness). MT is sound, that is any derivable formula can be proved in
MT by induction on the syntactic derivation rules (Definition 19):

Γ ˆ̀ P ⇒ ∃p, IΓ(Γ) ˜̀ p∈̃IF(P)

5 Soundness of CCT and CICUT

Having a sound model of the theory, the work remaining to ensure the meta-theory of CCT
is to prove the soundness of the conversion rule extended with first-order equations.

The theorem is introduced step by step. When the original conversion checking fails to
check Γ ` A ' B, a decision procedure Preprocess is called to check whether the theory can
be used to check this equation. If the theory is applicable, Preprocess will refine the context
and relocate the variables and the theory will check whether A′ and B′ are equal in the
context Γ′. If any of the above steps fails, then it makes no difference to Coq. Hence, we
can start the proof from the conditions that the equality is derivable in the theory:

Preprocess(Γ, A,B) = (Γ′, A′, B′)[1] and Γ′ ˆ̀ A′ ∼T B′[2]

The Preprocess function should maintain some invariants:

IΓ(Γ) ˜̀ σ . IΓ(Γ′) [3]; IT(A) = (IT(A′))[σ] [4]; IT(B) = (IT(B′))[σ] [5]

By Lemma 20, any derivable formula should be a well-formed formula, particularly for
equation in condition [2], its sub-term A′ and B′ should be well-formed in Γ′. Further, by
Axiom 28, they should be interpreted in the scope S:

IΓ(Γ′) ˜̀ IT(A′)∈̃S [6] IΓ(Γ′) ˜̀ IT(B′)∈̃S [7]

By the soundness theorem (Theorem 31) the interpretation of this equality should be inhab-
ited in MT (condition [8]). If Γ′ does not contain false formula, then we have WFCE(IΓ(Γ′)),
hence the equality judgment can correctly interpret the equality in theory by Lemma 24
using conditions [6], [7] and [8]:

∃t, IΓ(Γ′) ˜̀ t∈̃(IT(A′)=̃IT(B′)) [8] IΓ(Γ′) ˜̀ IT(A′)=̇IT(B′) [9]

CSL’13

664 Semantics of Intensional Type Theory extended with Decidable Equational Theories

Finally, by the substitution lemma applied to conditions [2], [3], [4] and [5], we derive:

IΓ(Γ) ˜̀ IT(A)=̇IT(B)

Following the above analysis, the new conversion rule is justified by proving:

I Theorem 32. Equal terms in theory have the same values in the model:
WFCE(IΓ(Γ′)) Γ ˜̀ σ . IΓ(Γ′) Γ′ ˆ̀ A′ ∼T B′ x = IT(A′)[σ] y = IT(B′)[σ]

Γ ˜̀ x=̇y

Since we require WFCE(IΓ(Γ′)), not all first-order objects (terms and formulas) can be
extracted from Γ. That means we may not extract satisfiable equations to Γ′ and use these
equations to check another equation as SMT solvers do. Nevertheless, it is still an significant
improvement of conversion checking.

The sound model of CCT can be built now by adding a sound model for the abstract
theory and proving the extended conversion rule. Further, since we no longer incorporate
the equality of the theory into ι-reduction, we can absorb the models of inductive types
and universes built by Barras to yield a sound model for CICUT. All the meta-theoretical
properties that we have established for CC can be established for CCT and CICUT as well.

6 Example: Presburger Arithmetic

In this section, we take Presburger Arithmetic as an example to illustrate how to instantiate
the above abstract setting for a specific theory.

Firstly, we define the signature and axioms of Presburger, and prove it correctly instan-
tiates the abstract syntax of theory in Subsection 4.1.

6.1 Formalization of Presburger Arithmetic
The definition of the signature and axioms instantiate Parameter 14 and 18.

I Definition 33 (Signature). Presburger signature is defined inductively:

T ∆= n̄|C0|C1|(x : T)+̄(y : T)

where n̄ indicates the free variables, C0 and C1 are two constants representing zero and one
respectively, +̄ is the addition relation.

With this definition, variable relocation, substitution and free variable operations can be
defined by recursion on the structure of T.

I Definition 34 (Axioms). An axiom is a special formula presented by a predicate in Coq
taking a context and formula as arguments and checking whether this formula is an axiom:

Âx(H, f) ∆=



f = ∀̂x.¬̂(C0 ∼T (x+̄C1)) ∨
f = ∀̂xy.((x+̄C1 ∼T y+̄C1)→̂(x ∼T y)) ∨
f = ∀̂x.x ∼T (x+̄C0) ∨
f = ∀̂xy.((x+̄y)+̄C1) ∼T (x+̄(y+̄C1)) ∨
∃g,Wff(T :: H, g) ∧ (f = g[C0]→̂(∀̂n.g[n]→̂g[n+̄C1])→̂(∀̂n.g[n]))

The assumption in Parameter 18 can be proved, because g is well-typed in (T :: H).
Secondly, we give a brief introduction to the formalization of natural number in [2]: useful

definition (maybe abstract) and properties without proof. Then the MT will be instantiated
by the these definitions and properties. The abstract interpretation rules are instantiated
accordingly which will not be detailed here.

Q. Wang and B. Barras 665

6.2 Formalization of Natural Numbers
As mentioned in Section 3, the first step is to define the set-values of natural numbers (NAT),
its constructors (ZERO and SUCC) and eliminator (NREC) in set-theory. Proving that this
setting interprets all of the axioms of Presburger arithmetic is straightforward.

The second step is to define the realizers (saturated set) of the type and its constructors.
More details can be found in [2].

I Definition 35 (Realizer of constructors). The realizers of natural number are:

ZE ∆= λ̌x.λ̌f.x SU ∆= λ̌n.λ̌x.λ̌f.f@̌n@̌(n@̌x@̌f)

We then define the saturated set cNAT(k), the realizers of number k. The idea is to
follow the impredicative definition of natural numbers, but we need the dependent version.
So we take the least fixpoint of a function fNAT defined as follows:

I Definition 36 (Saturated set associated to natural numbers).

fNAT(A, k) ∆=
⋂

P :X→SAT
P (ZERO)→

[⋂
n∈NAT

A(n)→ P (n)→ P (SUCC(n))
]
→ P (k)

cNAT(k) ∆=
⋂

A s.t. fNAT(A)⊆A

A

and these definitions satisfy following properties :

ZE∈̌(cNAT(ZERO))
n∈̇NAT t∈̌cNAT(n)

SU@̌t∈̌cNAT(SUCC(n)))

Then, natural numbers can be defined in M:

I Definition 37 (Natural Number). The type of natural number and its constructors are
defined in M as follows:

Nat ∆= 〈i 7→(NAT, cNAT), j 7→k〉
Zero ∆= 〈i 7→ZERO, j 7→ZE〉
Succ ∆= 〈i 7→SUCC, j 7→SU〉

NatRec(f, g, n) ∆=
〈
i 7→NREC(Val(f)i, (n, y 7→Val(g)i@̇n@̇y),Val(n)i),
j 7→Tm(n)j@̌Tm(f)j@̌Tm(g)j

〉
I Lemma 38. Typing rules of the natural numbers can be proved:

Γ ˜̀ Zero∈̃Nat Γ ˜̀ Succ∈̃(Π̃n∈̃Nat.Nat) Γ ˜̀ Nat∈̃Kind

Γ ˜̀ n∈̃Nat Γ ˜̀ f ∈̃(P @̃Zero) Γ ˜̀ g∈̃(Π̃n∈̃Nat.Π̃(P @̃n).P @̃(Succ@̃n))
Γ ˜̀ NatRec(f, g, n)∈̃(P @̃n)

6.3 Instantiation the Model of Abstract Theory by Presburger
The S in MT is instantiated by Nat. Furthermore, we need to provide enough constructors
to interpret Presburger Signature (Definition 33).

I Definition 39 (Presburger Semantic). The semantic of Presburger is:

S ∆= Nat Zero Succ(Zero) +̃ ∆= λ̃(x∈̃Nat).λ̃(y∈̃Nat).NatRec(x, λ̃(z∈̃Nat).Succ, y)

CSL’13

666 Semantics of Intensional Type Theory extended with Decidable Equational Theories

By the induction scheme provided in the values of natural numbers, we can prove the last
two assumptions in Axiom 21, while others are trivial according to the definition.

Instantiating Presburger axioms in M is just a translation work according to the inter-
pretation rules, but proving them requires more efforts: the main task is to construct the
proof term for each axiom. We have all the detailed proofs in our development to ensure:

I Lemma 40. MT instantiated by Presburger arithmetic is sound.

Then, all the meta-theoretical properties holding in MT preserve after instantiation by Pres-
burger arithmetic, therefore we can conclude:

I Lemma 41. Presburger arithmetic is a safe theory to be embedded, hence CoqMT is safe.

Let us finish with an important remark. We have proven the strong normalization for
CICUT instantiated with Presburger arithmetic, but the reduction considered includes β-
and ι-reduction (the reduction of NatRec when its main argument is either 0 or successor),
but not the reduction associated to the last two rules of Section 2. The main difficulty is
that the latter is not sequential (both S(n) +m and n+ S(m) reduce to a successor), while
the β-reduction of λ-calculus is sequential. We thus cannot claim yet the decidability of
type-checking for the presented version of CICUT.

7 Conclusion

In this paper, we give an abstract proof of consistency and SN to CCT, which extends
CC family by incorporating extensional equalities from an abstract theory. Presburger
arithmetic is proved to correctly instantiate the abstract theory which, on the one hand,
ensures Presburger arithmetic is safe to be embedded, on the other hand demonstrates that
our abstraction strategy works well for adding a new theory of interest.

Actually, this proof is applicable to a richer type system contains more features if each
feature has a sound model and it does not have interference with other features, such as
CICUT. That’s our original motivation to do this research: improving the Coq by incor-
porating decidable extensional equalities.

We don’t embed theory in the ι-reduction to ensure the consistency and SN, the side
effect is that Church-Rosser can not be proved in the usual way, as well as the decidability
of type checking (DoTC). However we have another way to prove DoTC, that’s our next
work : formalize the syntax of CCT or CICUT, and build a complete formal proof of all the
properties required.

Acknowledgements. The authors would like to thank Jean-Pierre Jouannaud and Pierre-
Yves Strub for many useful discussions. The authors would also like to thank Jean-Pierre
Jouannaud and anonymous reviewers for their useful comments and language editing which
have greatly improved the mansucript.

References
1 Thorsten Altenkirch. Proving strong normalization of cc by modifying realizability se-

mantics. In Henk Barendregt and Tobias Nipkow, editors, TYPES, volume 806 of Lecture
Notes in Computer Science, pages 3–18. Springer, 1993.

2 Bruno Barras. Semantical investigations in intuitionistic set theory and type theories with
inductive families. In preparation habilitation thesis, http://www.lix.polytechnique.fr/ bar-
ras/habilitation/.

Q. Wang and B. Barras 667

3 Bruno Barras. Sets in coq, coq in sets. Journal of Formalized Reasoning, 3(1):29–48, 2010.
4 Bruno Barras, Jean-Pierre Jouannaud, Pierre-Yves Strub, and Qian Wang. Coqmtu: A

higher-order type theory with a predicative hierarchy of universes parametrized by a de-
cidable first-order theory. In LICS, pages 143–151. IEEE Computer Society, 2011.

5 Frédéric Blanqui. Inductive types in the calculus of algebraic constructions. In Martin
Hofmann, editor, TLCA, volume 2701 of Lecture Notes in Computer Science, pages 46–59.
Springer, 2003.

6 Frédéric Blanqui, Jean-Pierre Jouannaud, and Pierre-Yves Strub. From formal proofs to
mathematical proofs: a safe, incremental way for building in first-order decision procedures.
CoRR, abs/0804.3762, 2008.

7 Frédéric Blanqui, Jean-Pierre Jouannaud, and Pierre-Yves Strub. From formal proofs to
mathematical proofs: A safe, incremental way for building in first-order decision procedures.
In Giorgio Ausiello, Juhani Karhumäki, Giancarlo Mauri, and C.-H. Luke Ong, editors,
IFIP TCS, volume 273 of IFIP, pages 349–365. Springer, 2008.

8 Thierry Coquand and Gérard P. Huet. The calculus of constructions. Inf. Comput.,
76(2/3):95–120, 1988.

9 J. L. Krivine. Lambda-calculus, types and models. Ellis Horwood, Upper Saddle River, NJ,
USA, 1993.

10 Zhaohui Luo. Ecc, an extended calculus of constructions. In LICS, pages 386–395. IEEE
Computer Society, 1989.

11 Nicolas Oury. Extensionality in the calculus of constructions. In Joe Hurd and Thomas F.
Melham, editors, TPHOLs, volume 3603 of Lecture Notes in Computer Science, pages
278–293. Springer, 2005.

12 Christine Paulin-Mohring. Inductive definitions in the system coq - rules and properties.
In Marc Bezem and Jan Friso Groote, editors, TLCA, volume 664 of Lecture Notes in
Computer Science, pages 328–345. Springer, 1993.

13 Vincent Siles and Hugo Herbelin. Equality is typable in semi-full pure type systems. In
LICS, pages 21–30. IEEE Computer Society, 2010.

14 Mark-Oliver Stehr. The open calculus of constructions (part i): An equational type theory
with dependent types for programming, specification, and interactive theorem proving.
Fundam. Inform., 68(1-2):131–174, 2005.

15 Mark-Oliver Stehr. The open calculus of constructions (part ii): An equational type theory
with dependent types for programming, specification, and interactive theorem proving.
Fundam. Inform., 68(3):249–288, 2005.

16 Pierre-Yves Strub. Théories des Types et Procédures de Décisions. These, Ecole Polytech-
nique X, July 2008.

17 Pierre-Yves Strub. Coq modulo theory. In Anuj Dawar and Helmut Veith, editors, CSL,
volume 6247 of Lecture Notes in Computer Science, pages 529–543. Springer, 2010.

18 William Tait. A realizability interpretation of the theory of species. In Rohit Parikh,
editor, Logic Colloquium, volume 453 of Lecture Notes in Mathematics, chapter 7, pages
240–251–251. Springer Berlin / Heidelberg, Berlin, Heidelberg, 1975.

19 The Coq Development Team. The Coq Proof Assistant, Reference Manual, Version 8.4.
Technical report, INRIA, Roquencourt, France, 2012.

CSL’13

	p000-frontmatter
	Editor's Preface
	Conference Organization
	External Reviewers

	p001-dawar
	p005-dershowitz
	Purpose
	The State Model
	State Evolution
	State Programs
	State Policies
	Conclusion

	p011-girard
	First light: what is an answer?
	Implicit vs. explicit
	Stars and galaxies
	Unification
	Flows
	The convolution algebra

	Stars and galaxies
	Stars
	Galaxies
	Normalisation
	Church-Rosser

	Second light: what is a question?
	Formatted vs. informal
	Vehicles and gabarits
	Proof-nets
	Vehicles: cut-free case
	Vehicles: general case
	Gabarits (I)
	Correctness, a.k.a. completeness
	Gabarits (II): virtual switches

	Third light: what conveys certainty?
	Epidictic vs. apodictic
	Derealism
	Proof-nets and certainty
	Épures
	The derealistic program

	p024-oitavem
	Introduction
	Bounded recursion schemes
	FPtime
	FPspace
	FNP

	Final considerations

	p028-tendera
	Overview

	p030-afshari
	Introduction
	Syntax and semantics of modal -formulæ
	Alternation-free fragment
	Trees
	Closure ordinals

	Syntactic analysis
	Semantic analysis
	Tableaux
	Order-types of tableaux
	Closure ordinals for the alternation-free fragment

	p045-aschieri
	Introduction
	Excluded Middle versus Double Negation Elimination
	Permutation Rules for EM 1
	Delimited Exceptions
	Realizability and Prawitz Validity
	Witness Extraction and Strong Normalization
	Non-Determinism
	Plan of the Paper

	The System HA + EM 1
	A Realizability interpretation for HA + EM 1
	Basic Properties of Realizers
	The Adequacy Theorem
	Conclusions

	p061-berkholz
	Introduction
	Preliminaries
	Alternation function for FOk over trees
	Alternation function for FO2 over colored graphs
	Succinctness results
	The proof of Theorem 3.3
	Proof of Theorem 5.1

	p081-bilkowski
	Introduction
	Basic notions
	Trees
	Automata
	Logic

	Bi-unambiguous languages
	Thin algebra
	Prophetic algebras
	Semi-characterisation
	The procedure P

	(Un)definability of choice on thin trees
	Prophetic thin algebras

	Uniformizability results on thin trees
	Non-uniformizability
	Degrees of uniformization

	Thin algebra
	Transducer for an uniformized relation

	p101-boudes
	Introduction
	-Calculus and Böhm trees
	Taylor expansion
	Characterizing the Taylor expansion
	Conclusion

	p116-bradfield
	Introduction
	Preliminaries
	IF logic syntax and semantics
	DL syntax and semantics
	Negation

	Team-building games for DL
	Game definition
	Remarks
	Examples
	A simple `Snap' game
	An infinite game
	Team-building and game negation

	Correctness
	Further examples and remarks
	The infinite game again
	Constraints on Abelard
	Team-building for IFL

	Negation and Team Logic
	Team Logic
	Negation in the team-building game

	Conclusion

	p129-broadbent
	Introduction
	Preliminaries
	Co-Trivial ATA Model Checking
	Trivial ATA Model Checking
	Experiments
	Related Work
	Conclusion
	On Theorem 8
	Proofs
	Proofs for Section 3
	Proofs for Section 4

	An algorithm to check the inhabitance condition
	The construction
	A remark on the complexity of the emptiness check

	p149-bulatov
	Introduction
	Preliminaries
	Basic definitions
	Constraint satisfaction problem
	Counting and approximation
	The class of problems AP-interreducible with #BIS

	Descriptive complexity of (approximate) counting problems

	Reduction to the monadic case
	Necessary condition
	Sufficient condition
	Counting problems and linear Datalog

	p165-chatterjee
	Introduction
	Definitions
	Strategy Complexity
	Computational Complexity

	p181-chatterjee
	Introduction
	Definitions
	Strategy complexity for finitary conditions over infinite-state games
	Bounded and uniform conditions
	Strategy complexity for bounded uniform Büchi games
	From bounded uniform Büchi games to finitary Büchi games
	From finitary Büchi to finitary parity games

	Pushdown B games
	The collapse result
	Decidability of pushdown B games

	Pushdown games with finitary and stack boundedness conditions
	A reduction from finitary parity to bounded parity
	The special case of Büchi conditions
	The complete reduction

	p197-clouston
	Introduction
	Display Calculi
	Syntax
	Semantics

	Deep Inference and Proof Search
	The Shallow Inference Calculus
	The Deep Inference Calculus
	The Equivalence of the Deep and Shallow Nested Sequent Calculi

	Separation, Conservativity, and Decidability
	Conclusion
	Display Calculus
	Conservativity of BiILL over FILL
	Annotated Sequent Calculi Proofs

	p215-colcombet
	Introduction
	Cost automata and cost functions
	Cost automata
	Variants of weakness for cost automata
	Cost function equivalence

	Expressivity of traditional automata on infinite trees
	Reducing to cost function equivalence
	Description of the contribution
	Proof from Kupferman and Vardi
	Construction
	Proof of correctness

	Deciding special cases of cost function equivalence
	Special cases of cost function equivalence over infinite trees
	Deciding co-Büchi definability
	Deciding weak definability of Büchi definable languages

	Conclusion
	Appendix
	S-automata
	Duality and simulation
	Decidability

	p231-di-gianantonio
	Introduction
	The Category of Arenas and Innocent Strategies
	An Alternative Description of Innocent Strategies
	Timeless Games

	A Game Model of Unary PCF
	The Type Assignment System
	From Types to Games
	ITAS without Indexes

	Conclusions and Further Work
	Proofs

	p248-fortier
	Introduction
	Preliminaries and notation
	The calculus of circular proofs
	Semantics of the calculus
	Cut elimination
	Primitive operations
	The cut-elimination algorithm

	Conclusions and perspectives

	p263-galliani
	Introduction
	Preliminaries
	Team Semantics
	Dependencies in Team Semantics

	Comparing strict and lax semantics
	The expressive power of fragments
	Arity hierarchies
	-hierarchies

	Appendix

	p281-galliani
	Introduction
	Preliminaries
	Team Semantics
	Dependencies in Team Semantics
	Greatest Fixed Point Logic

	Inclusion Logic captures GFP+
	First-Order Union Closed Properties
	An EF Game for Inclusion Logic
	Conclusions and Further Work

	p296-ghasemloo
	Introduction
	 io-typed Theories
	Two-Sorted io-Typed Bounded Arithmetics
	Theory io2Basic
	Theory ioV0 for AC0
	Theory ioVC
	Theory ioVNC1
	Theory t-ioVinf

	Proof Systems and Uniform SubExp bdFrege Proofs
	Proof Systems and Proof Classes
	 bdFrege, Frege, and G
	Proof Systems tbdGinf and H

	From Uniform to Nonuniform
	Translation of Terms and Formulas
	Translation of Proofs

	From Nonuniform to Uniform
	 ioV0 Proves Soundness of bdFrege
	 ioVNC1 Proves Soundness of (Unbalanced) Frege
	 tioVinf Proves Soundness of tbdGinf

	neps-ioVinf Contains ioVNC1
	 Simulation of Frege proofs with bdFrege proofs

	p316-gimenez
	Introduction
	A Convenient Presentation of Linear Logic with Structures
	The Underlying Computational Model
	Reduction within the Deep-Inference Formalism
	An Extensible Normalisation Proof via the Reducibility Technique
	Conclusion

	p332-goeller
	Introduction
	Preliminaries
	Encoding huge numbers via sibling-ordered trees
	Overview of the proofs
	Model Checking ML on the asynchronous product
	Model checking ML on the synchronous product and model checking EF on the asynchronous product
	Conclusion
	Proof of Lemma 4
	Proof of Lemma 6

	p348-hampson
	Introduction and results
	Definitions and basic properties
	Encoding counter machines in FOLTL-models
	FOLTL= over "426830A ,<"526930B and finite linear orders
	FOLTL= over arbitrary linear orders
	FOLTL= over timelines with infinite descending chains
	FOLTL= and propositional bimodal logics
	Conclusion and open problems

	p363-harwath
	Introduction
	Preliminaries
	Locality of queries
	Gaifman locality
	Weak Gaifman locality
	Shift locality
	Applications

	Hanf locality and locality on string structures

	p380-hunter
	Introduction
	Preliminaries
	Characterization of expressively complete MTL
	Expressive completeness for bounded formulas
	Syntactic separation of MTLK
	Expressive completeness for FOK

	Expressive completeness of MTLZ with counting
	Expressive equivalence of bounded formulas
	Syntactic separation of MTLZ+C
	Equivalence of MTLZ+C, PQ2MLO and FOZ

	Conclusion and further work

	p395-kikuchi
	Introduction
	Strong normalisation for g-calculus
	g-calculus
	I[,]-calculus
	Strong normalisation of typed g-terms

	Strong normalisation for xg-calculus
	xg-calculus
	Failure of PSN with respect to g,g-reduction
	Strong normalisation of typed xg-terms

	Application to other systems
	Conclusion and related work
	Proof in Section 2
	Proofs in Section 3

	p415-kozen
	Introduction
	Commutative Strong Monads with Lazy Pairs
	Nondeterministic Monads
	Nondeterministic Strong Monad with Iteration
	The Lowerset Monad
	The Ideal Completion Monad

	Typed Kleene Algebra with Products
	Iteration Theories
	Embedding the Equational Theory of Iteration in KA
	Related Work
	Conclusion and Future Work
	Interaction between tensorial strength and iteration

	p432-krishnaswami
	Introduction
	Syntax, Typing and Operational Semantics
	Semantics
	Quasi-PERs
	A Comparison with PER Models
	The Semantic Interpretation
	Contexts
	Kinds
	Type Constructors

	Soundness
	The Pre-Interpretation and Structural Properties
	Fundamental Property

	Examples
	Sums and Natural Numbers
	Dependent Records
	Induction for the Natural Numbers
	Existential Types
	Quotient Types
	A Note on the Constructivity of the Axioms

	Discussion and Related Work
	Quasi-PERs
	Semantic Models for Parametricity
	Internalizations of Parametricity

	Appendix
	Typing Rules
	Metatheory

	p452-kuusisto
	Introduction
	Preliminaries
	MSC captures FMPA-recognizability
	Specifying FMPAs in MSC
	Simulating MSC programs by FMPAs

	Modal theories capture complements of MPA-recognizable classes
	Expressivity and Decidability
	Appendix
	Addenda to the proof of Theorem 2

	p469-leivant
	Introduction
	Data systems
	Symbolic data
	Equational programs
	Operational semantics of programs
	Inductive Data systems
	Coinductive decomposition rules
	Data systems
	Examples of data-systems
	Computational completeness of equational programs

	A Canonicity Theorem: operational semantic is equivalent to Tarskian semantic
	Data-correct expansions and the canonical structure
	Typing statements
	Canonicity for inductive data
	Canonicity Theorem for Data Systems

	Intrinsic theories
	Intrinsic theories for inductive data
	Provable typing in intrinsic theories
	Intrinsic theories for arbitrary data-systems

	Proof theoretic strength
	Applications and further developments

	p484-manuel
	Introduction
	Preliminaries
	An Automaton Model for Ordered Data Words
	Ordered Data Automata and EMSO2 (, ,) are equivalent
	Deciding Emptiness for Ordered Data Automata on k-bounded Ordered Data Words
	Hardness Results for Two-Dimensional Ordered Structures
	Discussion

	p500-maruyama
	Introduction
	General Duality Theory
	A Categorical Conception of Point-Set Spaces
	Dual Adjunction via Harmony Condition
	Proof of Dual Adjunction Theorem
	Deriving Equivalence from Adjunction

	Domain-Convexity Duality
	Convexity-Theoretical Duality for Scott's Continuous Lattices
	Jacobs Duality for Algebras of the Distribution Monad

	Categorical Duality as Philosophy of Space

	p521-materzok
	Introduction
	The languages with shift0/reset0 and shift0/$
	The language with shift0/reset0
	The language with shift0/$

	Untyped axiomatization
	The axioms for shift0/reset0
	The axioms for shift0/$
	Reducing shift0/reset0 to shift0/$
	CGS translation
	From CGS language to untyped lambda calculus

	Typed languages with shift0/reset0 and shift0/$
	Type systems
	Selective CPS translations

	Typed axiomatization
	The typed axioms for shift0/reset0 and shift0/$
	Reducing typed shift0/reset0 to typed shift0/$
	Typed CGS translation
	From typed CGS to simply typed lambda calculus

	Related work
	Kameyama and Hasegawa's axioms for shift/reset
	Kameyama and Hasegawa's axioms in the typed setting
	Connection with the axioms for the CPS Hierarchy

	Conclusion
	Useful lemmas
	Proof of Property 1
	Proof of Lemma 6
	Proof of Theorem 21 (coherence)
	Kameyama and Hasegawa's axiomatization of shift/reset

	p540-mellies
	Introduction
	Dialogue games and tensorial logic
	Innocent strategies
	A Kripke translation of tensorial logic into linear logic + necessity
	Dialogue categories and coherent strategies
	Sequential algorithms as stable extensional functions
	Conclusion
	Appendix: a short account of bistructures
	Appendix: Proof of Proposition 15
	Appendix: Proof of Proposition 17
	Appendix: Proof of Proposition 19

	p563-michaliszyn
	Introduction
	Preliminaries
	Finite satisfiability
	General satisfiability
	Disentangled structures and global satisfiability
	Local satisfiability

	Conclusion and future work

	p578-nishimura
	Introduction
	The IApar Language
	Harmer's game for nondeterminism
	The Game for Parallelism
	Interleaving game plays
	Wait-notify games for shared variable access

	The Game Model and the Soundness
	Definability and Full Abstraction
	Reliable factorization
	Innocent factorization
	Definability

	Conclusion and Future Work
	Typing Rules and Operational Semantics for IApar
	Game Interpretation of Terms

	p597-rieg
	Introduction
	Herbrand trees
	The notion of Herbrand tree
	Extracting Herbrand trees effectively

	The higher-order arithmetic PAw+
	Syntax
	Sorts and higher-order terms
	System T is a fragment of PAw+

	Proof system
	Congruence
	Proof terms and inference rules

	Sets and datatypes
	Realizability semantics

	The Forcing Transformation
	Forcing in PAw+
	Definition of a forcing structure
	The three forcing translations
	The forcing transformation on propositions

	Invariance under forcing
	The generic filter G

	A proof of Herbrand's theorem by forcing
	Interface for finite relations over Atom x Bool
	Programming in PAw+
	Definition of our forcing structure
	Formal statement of Herbrand's theorem in PAw+
	The full proof
	The big picture
	The proof in the forcing universe (step 3)
	Back to the base universe (step 4)

	Computational interpretation
	Definition of the congruence relation
	Proof that the axiom (A) is forced

	p615-schmidt
	Introduction
	Outline of the paper

	Preliminaries
	Structures and Formulas
	Polymorphisms and Clones
	Complexity Classes
	Propositional Abduction

	The Abduction Problem and Algebra
	Equality Abduction
	Related Classifications on Equality Languages

	Equality Clones
	2P-hard Equality Abduction Problems
	Equality Horn Languages that are NP-hard
	Abduction for Negative Languages is in P
	Conclusion and Future Work
	Proof of Theorem 5
	Proof of Proposition 26
	Proof of Lemma 28
	Proof of Proposition 29

	p634-statman
	Introduction
	Intuitionistic Monadic Logic
	Natural Deduction and Rewrite Rules
	Typing Rules
	Reductions of Derivations
	The Main Result
	Proof of Lemma 1
	Proof of Lemma 4

	p653-wang
	Introduction
	CICUT
	Extensible set-theoretical realizability model of CC
	Abstract Parameterized Models
	Main Model Construction
	Soundness of the Main Model

	A Sound Model of Abstract First Order Theory
	Syntax of the Abstract Theory
	The abstract model of the theory
	Interpretation Rules and Soundness

	Soundness of CCT and CICUT
	Example: Presburger Arithmetic
	Formalization of Presburger Arithmetic
	Formalization of Natural Numbers
	Instantiation the Model of Abstract Theory by Presburger

	Conclusion

