
19th International Conference on
Types for Proofs and Programs

TYPES 2013, April 22–26, 2013, Toulouse, France

Edited by

Ralph Matthes
Aleksy Schubert

LIPIcs – Vo l . 26 – TYPES 2013 www.dagstuh l .de/ l ip i c s

Editors
Ralph Matthes Aleksy Schubert
IRIT Faculty of Mathematics, Informatics and Mechanics
CNRS and Université de Toulouse University of Warsaw
France Poland
matthes@irit.fr alx@mimuw.edu.pl

ACM Classification 1998
D.1.1 Applicative (Functional) Programming, D.2.4 Software/Program Verification, F.3.1 Specifying and
Verifying and Reasoning about Programs, F.4.1 Mathematical Logic

ISBN 978-3-939897-72-9

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-939897-72-9.

Publication date
July, 2014

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.TYPES.2013.i

ISBN 978-3-939897-72-9 ISSN 1868-8969 http://www.dagstuhl.de/lipics

http://www.dagstuhl.de/dagpub/978-3-939897-72-9
http://www.dagstuhl.de/dagpub/978-3-939897-72-9
http://dnb.d-nb.de
http://dx.doi.org/10.4230/LIPIcs.TYPES.2013.i
http://www.dagstuhl.de/dagpub/978-3-939897-72-9
http://drops.dagstuhl.de/lipics
http://www.dagstuhl.de/lipics

iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Susanne Albers (TU München)
Chris Hankin (Imperial College London)
Deepak Kapur (University of New Mexico)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Catuscia Palamidessi (INRIA)
Wolfgang Thomas (RWTH Aachen)
Pascal Weil (Chair, CNRS and University Bordeaux)
Reinhard Wilhelm (Saarland University)

ISSN 1868-8969

www.dagstuhl.de/lipics

TYPES 2013

http://drops.dagstuhl.de/lipics
http://www.dagstuhl.de/lipics

Contents

Preface
Ralph Matthes and Aleksy Schubert . vii

Update Monads: Cointerpreting Directed Containers
Danel Ahman and Tarmo Uustalu . 1

A “Game Semantical” Intuitionistic Realizability Validating Markov’s Principle
Federico Aschieri and Margherita Zorzi . 24

Formally Verified Implementation of an Idealized Model of Virtualization
Gilles Barthe, Gustavo Betarte, Juan Diego Campo, Jesús Mauricio Chimento, and
Carlos Luna . 45

Ramsey Theorem for Pairs as a Classical Principle in Intuitionistic Arithmetic
Stefano Berardi and Silvia Steila . 64

Extracting Imperative Programs from Proofs: In-place Quicksort
Ulrich Berger, Monika Seisenberger, and Gregory J. M. Woods 84

A Model of Type Theory in Cubical Sets
Marc Bezem, Thierry Coquand, and Simon Huber . 107

Isomorphism of “Functional” Intersection Types
Mario Coppo, Mariangiola Dezani-Ciancaglini, Ines Margaria, and
Maddalena Zacchi . 129

A Hybrid Linear Logic for Constrained Transition Systems
Joëlle Despeyroux and Kaustuv Chaudhuri . 150

The Rooster and the Syntactic Bracket
Hugo Herbelin and Arnaud Spiwack . 169

A Direct Version of Veldman’s Proof of Open Induction on Cantor Space via Delimited
Control Operators

Danko Ilik and Keiko Nakata . 188

The Montagovian Generative Lexicon ΛTyn: a Type Theoretical Framework for Natural
Language Semantics

Christian Retoré . 202

A Certified Extension of the Krivine Machine for a Call-by-Name Higher-Order
Imperative Language

Leonardo Rodríguez, Daniel Fridlender, and Miguel Pagano . 230

Definitional Extension in Type Theory
Tao Xue . 251

19th International Conference on Types for Proofs and Programs (TYPES 2013).
Editors: Ralph Matthes and Aleksy Schubert

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

Preface

The 19th International Conference on Types for Proofs and Programs (TYPES 2013) was
held in Toulouse, France from April 22 to 26, 2013, consisting of the main conference and
several satellite events.

The following institutions helped with funding and/or in providing lecture halls and
services that TYPES 2013 could take place (in alphabetic order):

Institut de Recherche en Informatique de Toulouse (IRIT), http://www.irit.fr/
Région Midi-Pyrénées, http://www.midipyrenees.fr/
So Toulouse (an activity of Mairie de Toulouse), http://www.sotoulouse.com/
Structure Fédérative de Recherche en Mathématiques et en Informatique de Toulouse
(FREMIT), http://www.irit.fr/FREMIT/
Université Paul Sabatier, Toulouse III, http://www.univ-tlse3.fr/
Université Toulouse 1 Capitole, http://www.ut-capitole.fr/

The conference was attended by close to hundred scientists. The responsible person for
local organisation was Ralph Matthes, and the program committee for the selection of the
conference presentations consisted of

José Espírito Santo, University of Minho, Braga, Portugal,
Herman Geuvers, Radboud University Nijmegen, Netherlands,
Silvia Ghilezan, University of Novi Sad, Serbia,
Hugo Herbelin, PPS, INRIA Rocquencourt-Paris, France,
Martin Hofmann, Ludwig-Maximilians-Universität München, Germany,
Zhaohui Luo, Royal Holloway, University of London, UK,
Ralph Matthes, IRIT, CNRS and Université de Toulouse, France (co-chair),
Marino Miculan, University of Udine, Italy,
Bengt Nordström, Chalmers University of Technology, Göteborg, Sweden,
Erik Palmgren, Stockholm University, Sweden,
Andy Pitts, University of Cambridge, UK,
Sergei Soloviev, IRIT, Université de Toulouse, France (co-chair),
Paweł Urzyczyn, University of Warsaw, Poland,
Tarmo Uustalu, Institute of Cybernetics, Tallinn Technical University, Estonia.

The TYPES meetings were first organised in the late 1980’s and were supported by a
series of EU programmes from 1989 to 2008. Previous meetings were held in Antibes (1990),
Edinburgh (1991), Båstad (1992), Nijmegen (1993), Båstad (1994), Aussois (1996), Kloster
Irsee (1998), Lökeberg (1999), Durham (2000), Berg en Dal (2002), Turin (2003), Paris
(2004), Nottingham (2006), Cividale del Friuli (2007), Turin (2008), Aussois (2009), Warsaw
(2010) and Bergen (2011).

Three invited talks and 34 contributed talks were given at the meeting, and we got 22
submissions to these open post-proceedings, out of which 13 papers were accepted. In this
volume one can find papers on the following topics: analysis of the classical principles in
intuitionistic calculi, type isomorphisms for intersection types, monads and their semantics
in functional programming languages, realizability, extensions of type theory, extensions of
linear logic, models of type theory, control operators in type systems, formal verification of
programs, program extraction, compiler formalization and modelling of natural language
features. All papers obtained at least two reviews, and up to six reviews, counting a second
round of review.
19th International Conference on Types for Proofs and Programs (TYPES 2013).
Editors: Ralph Matthes and Aleksy Schubert

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.irit.fr/
http://www.midipyrenees.fr/
http://www.sotoulouse.com/
http://www.irit.fr/FREMIT/
http://www.univ-tlse3.fr/
http://www.ut-capitole.fr/
http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

viii Preface

As editors of this post-proceedings volume, we would like to thank the authors of the
paper submissions, whether accepted or not. And we gratefully acknowledge all 43 anonymous
external referees for their valuable work. The overall very high quality of the resulting papers
is in part due to their careful reading and commenting on the obtained material.

Concerning the handling, we owe thanks to Andrej Voronkov and the support team of
EasyChair for this tool that is still quite helpful for preparing post-proceedings, and also to
Marc Herbstritt whose competent and friendly guidance made it a very agreeable experience
to work with Schloss Dagstuhl as editors of these post-proceedings.

June 2014, Ralph Matthes, Aleksy Schubert

Author Index

Ahman, Danel, 1
Aschieri, Federico, 24

Barthe, Gilles, 45
Berardi, Stefano, 64
Berger, Ulrich, 84
Betarte, Gustavo, 45
Bezem, Marc, 107

Campo, Juan Diego, 45
Chaudhuri, Kaustuv, 150
Chimento, Jesús Mauricio, 45
Coppo, Mario, 129
Coquand, Thierry, 107

Despeyroux, Joëlle, 150
Dezani-Ciancaglini, Mariangiola, 129

Fridlender, Daniel, 230

Herbelin, Hugo, 169
Huber, Simon, 107

Ilik, Danko, 188

Luna, Carlos, 45

Margaria, Ines, 129

Nakata, Keiko, 188

Pagano, Miguel, 230

Retoré, Christian, 202
Rodríguez, Leonardo, 230

Seisenberger, Monika, 84
Spiwack, Arnaud, 169
Steila, Silvia, 64

Tao, Xue, 256

Uustalu, Tarmo, 1

Woods, Gregory J.M., 84

Zacchi, Maddalena, 129
Zorzi, Margherita, 24

19th International Conference on Types for Proofs and Programs (TYPES 2013).
Editors: Ralph Matthes and Aleksy Schubert

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

Update Monads: Cointerpreting Directed
Containers∗

Danel Ahman1 and Tarmo Uustalu2

1 Laboratory for Foundations of Computer Science, University of Edinburgh
10 Crichton Street, Edinburgh EH8 9AB, United Kingdom
d.ahman@ed.ac.uk

2 Institute of Cybernetics at Tallinn University of Technology
Akadeemia tee 21, 12618 Tallinn, Estonia
tarmo@cs.ioc.ee

Abstract
We introduce update monads as a generalization of state monads. Update monads are the
compatible compositions of reader and writer monads given by a set and a monoid. Distributive
laws between such monads are given by actions of the monoid on the set.

We also discuss a dependently typed generalization of update monads. Unlike simple update
monads, they cannot be factored into a reader and writer monad, but rather into similarly looking
relative monads.

Dependently typed update monads arise from cointerpreting directed containers, by which
we mean an extension of an interpretation of the opposite of the category of containers into the
category of set functors.

1998 ACM Subject Classification F.3.2 Semantics of Programming Languages, F.3.3 Studies of
Program Constructs

Keywords and phrases monads and distributive laws, reader and writer and state monads,
monoids, monoid actions, directed containers

Digital Object Identifier 10.4230/LIPIcs.TYPES.2013.1

1 Introduction

In denotational semantics and functional programming, reader, writer and state monads [15]
are well known and important. They are related to each other, but there is also something
that may feel unsatisfactory: reader and writer monads are not instances of state monads
and state monads are not combinations of reader and writer monads.

In this paper we introduce a generalization of state monads, which we call update monads,
that overcome exactly this underachievement. Update monads are compatible compositions
of reader and writer monads, they are specified by a set, a monoid and an action, defining a
reader monad, a writer monad and a distributive law of the latter over the former. They
collect computations that take an initial state to pair of an update (that is not applied!) and
a return value.

We also discuss a dependently typed generalization of update monads. Dependently typed
update monads arise from cointerpreting directed containers, by which we mean an extension

∗ This work was supported by the University of Edinburgh Principal’s Career Development PhD Scholar-
ship, the ERDF funded Estonian CoE project EXCS and ICT programme project Coinduction, the
Estonian Ministry of Education and Research target-financed research theme no. 0140007s12 and the
Estonian Science Foundation grant no. 9475.

© Danel Ahman and Tarmo Uustalu;
licensed under Creative Commons License CC-BY

19th International Conference on Types for Proofs and Programs (TYPES 2013).
Editors: Ralph Matthes and Aleksy Schubert; pp. 1–23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TYPES.2013.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Update Monads: Cointerpreting Directed Containers

of an interpretation of the opposite of the category of containers into the category of set
functors. Directed containers [2] are a description of comonoids in the category of containers
and characterize those containers whose interpretation carries a comonad structure. In a
directed container, each state has its own set of updates that are considered “safe” for that
state.

The paper is organized as follows. We begin Section 2 by recapitulating reader, writer and
state monads. We then introduce update monads, show that reader and writer monads are
instances of update monads and that state monads related to them in an important way; we
also discuss algebras of update monads. Next, we show that update monads are compatible
compositions of reader and writer monads, which leads to a different characterization of
their algebras. We also briefly discuss update monad maps. In Section 3, we look at the
dependently typed generalization of update monads that results from cointerpreting directed
containers. In Section 4, we compare update monads to a generalization of state monads by
Kammar and Plotkin.

For self-containedness of the paper, in Appendix A, we review monoids, actions, monads
and compatible compositions of monads. In Appendix B, we give a detailed proof of the
main theorem of the paper. In Appendix C, we show how algebras of update monads can be
described as models of Lawvere theories.

In this paper we develop the theory of update monads over the category Set of sets and
functions. The development in Section 2 can be easily generalized to arbitrary Cartesian
closed categories. The development in Section 3 can be similarly carried out in locally
Cartesian closed categories.

2 Unifying reader, writer, state monads

2.1 Reader, writer, state monads

We recall the three “classic” families of monads of functional programming [15]—the reader,
writer and state monads.

Reader monads

Every set S (of states) defines a monad (the reader monad) via

T X = S → X

η : ∀{X}. X → S → X

η x = λs. x

µ : ∀{X}. (S → (S → X))→ S → X

µf = λs. f s s

Here and in the following, we use Agda’s [12] syntax of braces for implicit arguments, i.e.,
for those arguments we may want to skip when they are inferrable from other arguments.

D. Ahman and T. Uustalu 3

Writer monads

Every monoid (P, o,⊕) (of updates) defines a monad (the writer monad, also sometimes
called the complexity monad) via

T X = P ×X

η : ∀{X}. X → P ×X
η x = (o, x)

µ : ∀{X}. P × (P ×X)→ P ×X
µ (p, (p′, x)) = (p ⊕ p′, x)

Note that we would not be able to do with just a set P to get a monad on this underlying
functor, we need both the unit and multiplication of the monoid to the define the unit and
multiplication and the monoid laws to prove the monad laws.1

State monads

Every set S defines a monad (the state monad) via

T X = S → S ×X

η : ∀{X}. X → S → S ×X
η x = λs. (s, x)

µ : ∀{X}. (S → S × (S → S ×X))→ S → S ×X
µf = λs. let (s′, g) = f s;

(s′′, x) = g s′

in (s′′, x)

The usual explanation of the state monad is the following. T X = S → S ×X is the set
of computations each taking an initial state to a pair of a final state and a return value.

Unifying the three?

Notice the similarities between these monads. The reader monad resembles the state monad,
when we ignore the final, mutated, state. The writer monad resembles the state monad,
when we ignore the initial state and require the final state to have monoidal structure. (This
said, in the case of the writer monad, the values written accumulate, but in the case of the
state monad, they replace each other.) Could we possibly unify the three properly? We can.
We do this in the next section using monoid actions.

2.2 Update monads
Given a set S and a monoid (P, o,⊕) together with a right action ↓: S × P → S of the
monoid on the set (in this paper we call such a triple a (right) act2), we are interested in the

1 The monoid structure on P induces also a different non-isomorphic monad defined by T rX = X × P ,
ηr x = (x, o), µr ((x, p), p′) = (x, p ⊕ p′). The order of P and X in the product T r X is not important
here, as product is symmetric. But µr adds the two given monoid elements in the order reverse to µ.

2 A set that a fixed monoid (P, o,⊕) acts on is often called a (P, o,⊕)-set or a (P, o,⊕)-act. We are
interested in varying both the set S and the monoid (P, o,⊕) at the same time.

TYPES 2013

4 Update Monads: Cointerpreting Directed Containers

following monad, which we call the update monad for the act (S, (P, o,⊕), ↓).

T X = S → P ×X

η : ∀{X}. X → S → P ×X
η x = λs. (o, x)

µ : ∀{X}. (S → P × (S → P ×X))→ S → P ×X
µf = λs. let (p, g) = f s;

(p′, x) = g (s ↓ p)
in (p ⊕ p′, x)

A computation over X, i.e., an element of T X, is a function taking an initial state to an
update produced and a return value. Notice that rather than returning the result of applying
the update to the initial state, i.e., the final state, the function returns the actual update
itself. These updates are only ever applied by the multiplication µ. This operation applies to
the initial state s the update p defined by s, in order to thus obtain a new state s ↓ p that
then further determines a new update p′ to be composed with p.

I Example 1. It turns out that reader and writer monads are special cases of update monads.
We get the reader monad for a given set S when we take (P, o,⊕) and ↓ trivial, i.e.,

P = 1. We then have T X = S → 1×X ∼= S → X.
The writer monad for a given monoid (P, o,⊕) is obtained by taking S and ↓ trivial, i.e.,

S = 1, so that T X = 1→ P ×X ∼= P ×X.

I Example 2. State monads fail to be a special case of update monads, but they are very
close in an important way.

Recall that the free monoid on any semigroup3 (S, •) is (P, o,⊕) where

P = 1 + S

o = inl ∗

inl ∗ ⊕ p = p

inr s ⊕ inl ∗ = inr s
inr s ⊕ inr s′ = inr (s • s′)

The actions of this monoid on any set S are determined by the actions of the inducing
semigroup (S, •) on S. Recall that, in particular, • is an action of (S, •) on S, so it also
induces an action of (P, o,⊕) on S.

Notice also that, for any set S, the “overwrite” operation • defined by s • s′ = s′ gives a
semigroup structure on S.4

Now let us fix some set S and let (T, η, µ) be the state monad for S. Let (P, o,⊕) be
the free monoid on the overwrite semigroup (S, •) and let ↓ be the action of (P, o,⊕) on S
induced by •. Let (T ◦, η◦, µ◦) be the update monad for S, (P, o,⊕) and ↓.

It turns out that the state monad (T, η, µ) is characterized as the splitting of the following
monad idempotent idem on (T ◦, η◦, µ◦) that replaces the nil update with overwriting the

3 Notice that we are talking about the free monoid on a semigroup here, not the free monoid on a set!
This is about adjoining a unit element to the semigroup.

4 In semigroup/monoid literature [10], this is called the right zero semigroup structure.

D. Ahman and T. Uustalu 5

given state by itself:

idem : ∀{X}. (S → (1 + S)×X)→ S → (1 + S)×X
idem f = λs. let (p, x) = f s in (inr (case p of (inl ∗ 7→ s; inr s′ 7→ s′)), x)

Indeed the monad (T, η, µ) embeds into (T ◦, η◦, µ◦) via a monad map sec:

sec : ∀{X}. (S → S ×X)→ S → (1 + S)×X
sec f = λs. let (s′, x) = f s in (inr s′, x)

The monad (T ◦, η◦, µ◦) also projects onto the state monad (T, η, µ) via a monad map retr:

retr : ∀{X}. (S → (1 + S)×X)→ S → S ×X
retr f = λs. let (p, x) = f s in (case p of (inl ∗ 7→ s; inr s′ 7→ s′), x)

And it is easy to check that sec ◦ retr = idem and retr ◦ sec = id.

I Example 3. We mentioned earlier that the functor T◦ given by T◦X = P◦ ×X is not a
monad, if P◦ is just a set. We need the unit and multiplication of a monoid structure on P◦
for T◦ to carry the unit and multiplication of a monad.

But in fact on any set P◦ we have the the overwrite semigroup structure. Hence T◦ is at
least a “monad without a unit” with multiplication µ◦ : P◦ × (P◦ ×X)→ P◦ ×X given by
µ◦ (p, (p′, x)) = (p′, x).

We get a monad from (T◦, µ◦) by freely adjoining a unit. Concretely, we get a monad
(T, η, µ) by defining

T X = X + P◦ ×X (∼= (1 + P◦)×X)

η : ∀{X}. X → X + P◦ ×X
η x = inlx

µ : ∀{X}. (X + P◦ ×X) + P◦ × (X + P◦ ×X)→ X + P◦ ×X
µ (inl c) = c

µ (inr (p, (inlx))) = inr (p, x)
µ (inr (p, (inr (p′, x)))) = inr (p′, x)

This is (up to isomorphism) the update monad for the set 1, the free monoid on the
overwrite semigroup on P◦ and the trivial action. We call it the overwrite monad.

I Example 4. For any set S and monoid (P, o,⊕), we have an action that does nothing:
s ↓ p = s. The multiplication operation of the corresponding update monad uses the same
state twice:

T X = S → P ×X

η : ∀{X}. X → S → P ×X
η x = λs. (o, x)

µ : ∀{X}. (S → P × (S → P ×X))→ S → P ×X
µf = λs. let (p, g) = f s;

(p′, x) = g s

in (p ⊕ p′, x)

TYPES 2013

6 Update Monads: Cointerpreting Directed Containers

I Example 5. Here is a cute example of update monads of with a clear programming
meaning.

Let (P, o,⊕) be the free monoid on a given set S explicitly defined by

P = S∗

o = []
ss ⊕ ss′ = ss ++ ss′

i.e., the set of lists over S, the empty list and concatenation. As the action ↓ : S → S∗ → S

we want to use

s ↓ ss = last (s :: ss)

(Note that :: can be given the type S × S∗ → S+ and last is a total function S+ → S.)
We get the following state-logging monad (similar to the one considered by Piróg and

Gibbons [13], except that it only allows finite traces):

T X = S → S∗ ×X

η : ∀{X}. X → S → S∗ ×X
η x = λs. ([], x)

µ : ∀{X}. (S → S∗ × (S → S∗ ×X))→ S → S∗ ×X
µf = λs. let (ss, g) = f s;

(ss′, x) = g (last (s :: ss))
in (ss ++ ss′, x)

A computation takes an initial state to the list of all intermediate states (excluding the
initial state!) and the value returned.

Here and in the following we use Haskell notation for lists, with [] for nil, :: for cons and
++ for append. In addition we will write escn for taking n first elements of a list es, nbes for
taking n last elements, and es/n for removing n last elements of es (if len es ≤ n, then all
elements are taken resp. removed).

I Example 6. Here is a minimally more involved concrete example of an update monad—for
no-removal buffers of a fixed size N . This is the definition:

T X = E≤N → E∗ ×X

η : ∀{X}. X → E≤N → E∗ ×X
η x = λes. ([], x)

µ : ∀{X}. (E≤N → E∗ × (E≤N → E∗ ×X))→ E≤N → E∗ ×X
µf = λes. let (es′, g) = f es;

(es′′, x) = g (es ++ (es′c(N − len es)))
in (es′ ++ es′′, x)

The buffer is used to store values drawn from some given set E and has size N . Therefore,
we take as the states S = E≤N lists of values of length at most N (for values stored
in the buffer). The updates P = E∗ are simply lists of values to write into the buffer,
with the nil update and composition of two updates given by o = [], es ⊕ es′ = es ++
es′. The action, defined by es ↓ es′ = es ++ (es′c(N − len es)), updates the buffer with

D. Ahman and T. Uustalu 7

additional values, as long as there is free space. The updates that do not fully fit into the
buffer are performed partially, so some suffix of the list of values to write may be dropped
“silently”. (An alternative buffer might prefer new values to old, which corresponds to choosing
es ↓ es′ = Nb(es ++ es′).)

I Example 7. To implement an unbounded stack, we can choose the set of states to be
S = E∗ (values stored in the stack) and as the set of updates use P = (1 + E)∗, o = [],
ps ⊕ ps′ = ps ++ ps′ (sequences of pop and push instructions). The intended action ↓ is then

es ↓ [] = es

es ↓ (inl ∗ :: ps) = es/1 ↓ ps
es ↓ (inr e :: ps) = (es ++ [e]) ↓ ps

(notice that popping from the empty stack removes no element).
Alternatively, we can be more abstract in regards to updates and identify all those

sequences of pop and push instructions that have the same net effect. An update is then a
number of elements to remove from the stack and a list of new elements to add. We define

P ′ = Nat× E∗
o′ = (0, [])
(n, es) ⊕′ (n′, es′) = (n+ (n′ −. len es), es/n′ ++ es′)

es ↓′ (n′, es′) = es/n′ ++ es′

The monoid here is a Zappa-Szép product [5] of the monoids (Nat, 0,+) and (E∗, [],++). It
arises from two matching actions of the two monoids on each other.

In Section 3, we will see that a dependently typed version of update monads can disallow
over- and underflowing updates.

2.3 Algebras of update monads
By the definition of an algebra of a monad (see Appendix A.2), an algebra for the update
monad for an act (S, (P, o,⊕), ↓) is a set X with an operation

act : (S → P ×X)→ X

satisfying the equations

x = act (λs. (o, x))
act (λs. (p s, act (λs′. (p′ s s′, x s s′)))) = act (λs. (p s ⊕ p′ s (s ↓ p s), x s (s ↓ p s)))

However it is quite easy to see that the same thing can also be described as a set X with
two operations (see the interdefinability below)

lkp : (S → X)→ X

upd : P ×X → X

satisfying the equations

x = lkp (λs. upd (o, x))
upd (p, upd (p′, x)) = upd (p⊕ p′, x)
lkp (λs. upd (p s, lkp (λs′. x s s′))) = lkp (λs. upd (p s, x s (s ↓ p s)))

TYPES 2013

8 Update Monads: Cointerpreting Directed Containers

The intuition behind the design of the equation system is that every algebra expression should
be rewritable into the form lkp (λs. upd (p s, x s)). Seen as rewrite rules, the 1st equation
enables one to prefix a given algebra expression with a pair of occurrences of lkp and upd
whereas the 2nd and 3rd equations allow removal of all subsequent occurrences of lkp and
upd.

The operations

act : (S → P ×X)→ X

and

lkp : (S → X)→ X

upd : P ×X → X

satisfying their respective axioms are interdefinable via

lkp (λs. x s) = act (λs. (o, x s))
upd (p, x) = act (λs. (p, x))

and

act (λs. (p s, x s)) = lkp (λs. upd (p s, x s))

2.4 Update monads as a compatible composition of reader and writer
monads

While state monads cannot be described as compositions of reader and writer monads, update
monads are exactly that!

The update monad (T, η, µ) for (S, (P, o,⊕), ↓) is a compatible composition (in the sense
of the definition given in Section A.3) of the reader monad (T0, η0, µ0) for S and the writer
monad (T1, η1, µ1) for (P, o,⊕): the underlying functor T is the functor composition T0 · T1
and the unit η and multiplication µ relate to those of the reader and writer monad in a
certain way, which implies, in particular, that T0 · η1 is a monad map from (T0, η0, µ0) to
(T, η, µ) and η0 · T1 is one from (T1, η1, µ1) to (T, η, µ).

The corresponding distributive law θ of (T1, η1, µ1) over (T0, η0, µ0) is determined by the
action ↓:

θ : ∀{X}. P × (S → X)→ S → P ×X
θ (p, f) = λs. (p, f (s ↓ p)) (1)

Moreover, every compatible composition of these two monads is an update monad, since
every distributive law θ of (T1, η1, µ1) over (T0, η0, µ0) defines an action ↓ satisfying (1) via

↓ : S × P → S

s ↓ p = snd (θ {S} (p, id {S}) s) (2)

while it follows directly from the definition of θ that

p = fst (θ {S} (p, id {S}) s) (3)

Substituting the two definitions into each other the other way around yields identity too,
so (1) and (2) give a bijective correspondence between the actions and the distributive laws.

I Lemma 8. For any distributive law θ of the writer monad for (P, o,⊕) over the reader
monad for S, equation (3) holds.

D. Ahman and T. Uustalu 9

I Theorem 9. Equations (1), (2) establish a bijective correspondence between the actions
of (P, o,⊕) on S and the distributive laws of the writer monad for (P, o,⊕) over the reader
monad for S.

For proofs, see Appendix B.

The trivial action s ↓ p = s corresponds to the distributive law θ (p, f) = λs. (p, f s),
which is the strength of T0.

As an instance of the general characterization of algebras of a compatible composition of
two monads in terms of their algebras, we learn that an algebra of the update monad for
(S, (P, o,⊕), ↓) can be specified as a set X carrying algebras of both the reader and writer
monad, i.e., operations

lkp : (S → X)→ X upd : P ×X → X

satisfying the conditions

x = lkp (λs. x) x = upd (o, x)
lkp (λs. lkp (λs′. x s s′)) = lkp (λs. x s s) upd (p, upd(p′, x)) = upd (p ⊕ p′, x)

plus an additional compatibility condition

upd (p, lkp (λs′. x s′)) = lkp (λs. upd (p, x (s ↓ p)))

This axiomatization of lkp and upd is quite different from the one we showed above—only
one axiom is shared—, but nonetheless equivalent. One could also argue that it is more
systematic and symmetric.

For the trivial action s ↓ p = s, the compatibility condition becomes upd (p, lkp (λs′. x s′))
= lkp (λs. upd (p, x s))—the condition of models of the tensor of the Lawvere theories for
reading and writing [9, Section 5].

It is important to notice that algebras (X, upd) of the reader monad are nothing but sets
with a left action of (P, o,⊕) while (S, ↓) is a set with a right action of (P, o,⊕).

2.5 Maps between update monads
What are maps between update monads like? It turns out that, for a suitable notion of act
maps, every map between two given acts in the reverse direction defines a map between the
corresponding update monads, but this mapping of act maps to monad maps is generally
neither injective nor surjective.

We choose to define a map between two acts (S′, (P ′, o′,⊕′), ↓′) and (S, (P, o,⊕), ↓) to
be a function t : S′ → S together with a monoid homomorphism q : (P, o,⊕)→ (P ′, o′,⊕′)
(notice the direction of q!) such that

t (s ↓′ q p) = t s ↓ p

holds.5
These pairs (t, q) are in a bijective correspondence with pairs (τ0, τ1) where τ0 is a map

between the reader monads (T0, η0, µ0) and (T ′0, η′0, µ′0) for S0 resp. S′0 and τ1 is a map

5 More customarily, a map between these acts would be taken to be a function t : S′ → S together with a
monoid homomorphism q : (P ′, o′,⊕′)→ (P, o,⊕) satisfying the condition t (s ↓′ p) = t s ↓ q p, see, e.g.,
[10, p. 54].

TYPES 2013

10 Update Monads: Cointerpreting Directed Containers

between the writer monads (T1, η1, µ1) and (T ′1, η′1, µ′1) for (P, o,⊕) resp. (P, o′,⊕′) satisfying
the condition

T1 · T0
τ1·τ0 //

θ

��

T ′1 · T ′0

θ′

��
T0 · T1 τ0·τ1

// T ′0 · T ′1

where θ and θ′ are the distributive laws defined by ↓ resp. ↓′.
Acts and act maps form a category.
Every act map (t, q) between (S′, (P ′, o′,⊕′), ↓′) and (S, (P, o,⊕), ↓) determines a monad

map τ between the corresponding update monads (T, η, µ) and (T, η′, µ′) via

τ : ∀{X}. (S → P ×X)→ S′ → P ′ ×X
τ f = λs. let (p, x) = f (t s) in (q p, x)

extending the mapping of acts to monads into a functor from the opposite of the category of
acts to the category of monads on Set.

This functor is neither faithful nor full. To see the failure of faithfulness, let S be any set,
but S′ = 0, and let (P, o,⊕), (P ′, o′,⊕′) be arbitrary monoids with more than one monoid
map between them. Let ↓ be arbitrary; as ↓′: S′ × P ′ → S′ we can only choose the empty
function. Now there is exactly one map t : S′ → S, namely the empty function. For any
monoid map q : (P, o,⊕)→ (P ′, o′,⊕′), the pair (t, q) is an act map, but the corresponding
map τ between the update monads, with type τ : ∀{X}. (S → P × X) → S′ → P ′ × X,
sends any given map f to the empty map irrespective of the choice of q.

A simple counterexample to fullness is obtained by considering the reader monad for
a given S, the update monad extension of the state monad for S (the update monad of
Example 2) and the more interesting one of the two canonical embeddings between them.
Concretely, we take S to be an arbitrary non-trivial set (i.e., not 0, not 1) and S′ = S. We
let (P, o,⊕) and ↓ be trivial (i.e., P = 1) and we let (P ′, o′,⊕′) and ↓′ be the free monoid on
the overwrite semigroup on S and the action of P ′ on S given by overwriting. We define
τ : ∀{X}. (S → 1×X)→ S → (1 + S)×X by τ f = λs. let (∗, x) = f s in (inr s, x). Now τ

is a monad map, but it is not the image of any act map (t, q).

3 A dependently typed generalization

Recall the fixed-size no-removal buffer and stack of Examples 6 and 7. They can overflow
and underflow. This raises a natural question: Is it possible to restrict the updates so that
this is guaranteed to not happen?

This cannot be done with the definition given in Section 2.2. The reason is the non-
dependence of updates on states. To remedy this, we now define a dependently-typed
generalization of update monads. It is related to Abbott, Altenkirch and Ghani’s containers [1]
(equivalent to (simple, or non-dependent) polynomials [8]).

We recall that a container is a set S together with a S-indexed family P . A map between
two containers (S, P) and (S′, P ′) is given by functions t : S → S′ and q : Π {s : S}. P ′ (t s)→
P s. Containers and container morphisms form a monoidal category Cont.

Any container determines a set functor JS, P Kc (its interpretation) by

JS, P Kc X = Σs : S. P s→ X

JS, P Kc h (s, v) = (s, h ◦ v)

D. Ahman and T. Uustalu 11

By associating a map (t, q) between containers (S, P) and (S′, P ′) with a natural transfor-
mation Jt, qKc between the functors JS, P Kc and JS′, P ′Kc by

Jt, qKc (s, v) = (t s, v ◦ q {s})

the mapping J−Kc is extended into a fully faithful monoidal functor from Cont to [Set,Set].
In our previous work with Chapman [2], we introduced directed containers as characteri-

zation of containers that are comonads. A directed container is similar to an act, except that
the monoid carrier and operations depend on elements of the set.

A directed container is a set S together with a S-indexed family P and operations

↓ : Πs : S. P s→ S

o : Π{s : S}. P s
⊕ : Π{s : S}.Πp : P s. P (s ↓ p)→ P s

satisfying the equations

s ↓ o = s

s ↓ (p ⊕ p′) = (s ↓ p) ↓ p′

p ⊕ o = p

o ⊕ p = p

(p ⊕ p′) ⊕ p′′ = p ⊕ (p′ ⊕ p′′)

Observe that, on the level of terms (with implicit arguments suppressed) these five equations
are exactly those of a monoid and an action. But the typing is different. In fact, the
4th equation is only well-typed on the assumption of the 1st equation and similarly the
well-typedness of the 5th equation depends on a proof of the 2nd equation. (In the renderings
above, this is invisible, as we have also suppressed type-index conversions.) If none of P s,
o {s} and p ⊕ {s} p′ actually depends on s, the directed container is an act. If s ↓ p = s,
then it is a set together with a family of monoids.

A map between directed containers (S, P, ↓, o,⊕) and (S′, P ′, ↓′, o′,⊕′) is a map (t, q)
between the underlying containers (S, P) and (S′, P ′) such that

t (s ↓ q p) = t s ↓′ p
o = q o′
q p ⊕ q p′ = q (p ⊕′ p′)

These equation look like those for a monoid map and an action map, but are typed finer. In
particular, the 3rd equation is well-typed on the assumption of the 1st equation. If the two
directed containers are in fact acts and q {s} p does not actually depend on s, then q is an
act map.

Directed containers and directed container maps form a category DCont that turns out
to be isomorphic to the category Comonoids(Cont) of comonoid objects in the monoidal
category Cont.

This isomorphism together with monoidality of the functor J−Kc implies that the functor
J−Kc : Cont → [Set,Set] lifts to a functor J−Kdc from DCont ∼= Comonoids(Cont) to
Comonads(Set) ∼= Comonoids([Set,Set]) interpreting directed containers into comonads.
From fully faithfulness of J−Kc it follows that J−Kdc is fully faithful too, i.e., the maps between
the interpretations of two directed containers are in a bijection between the maps between
these directed containers. More, J−Kdc is the pullback of J−Kc along the forgetful functor
U : Comonads(Set)→ [Set,Set], meaning that directed containers are in fact exactly the

TYPES 2013

12 Update Monads: Cointerpreting Directed Containers

containers whose interpretation carries a comonad structure. This is summarized in the
following diagram.

DCont
∼= Comonoids(Cont) U //

y

J−Kdc f.f.
��

Cont mon.

J−Kc f.f., mon.

��Comonads(Set)
∼= Comonoids([Set,Set]) U

// [Set,Set] mon.

For this paper, we have a reason to refocus from interpretation to “cointerpretation”. Let
us assign to every container (S, P) a set functor 〈〈S, P 〉〉c (its cointerpretation) by setting

〈〈S, P 〉〉c X = Πs : S. P s×X
〈〈S, P 〉〉c h f = λs. let (p, x) = f s in (p, h x)

By associating with any container map (t, q) between (S′, P ′) and (S, P) a natural transfor-
mation 〈〈t, q〉〉c between 〈〈S, P 〉〉c and 〈〈S′, P ′〉〉c, which is easily done by taking

〈〈t, q〉〉c f = λs. let (p, x) = f (t s) in (q {s} p, x)

we extend the mapping 〈〈−〉〉c to a functor 〈〈−〉〉c between Contop and [Set,Set].
The functor 〈〈−〉〉c : Contop → [Set,Set] is not as well-behaved as J−Kc : Cont →

[Set,Set]. First of all, 〈〈−〉〉c fails to be monoidal, it is only lax monoidal. Second, it is
neither faithful nor full.

Nonetheless, the mere lax monoidality of 〈〈−〉〉c is enough to obtain a canonical cointer-
pretation mapping of directed containers into monads. It suffices to note that DContop ∼=
(Comonoids(Cont))op ∼= Monoids(Contop) and Monads(Set) ∼= Monoids([Set,Set]).
Lax monoidality of 〈〈−〉〉c : Contop → [Set,Set] implies that 〈〈−〉〉c sends monoids to
monoids and lifts to a functor 〈〈−〉〉dc : DContop →Monads(Set). This is summarized in
the following diagram where the square commutes, but is not a pullback.

DContop

∼= (Comonoids(Cont))op

∼= Monoids(Contop) U //

〈〈−〉〉dc

��

Contop mon.

〈〈−〉〉c lax mon.

��Monads(Set)
∼= Monoids([Set,Set]) U

// [Set,Set] mon.

Explicitly, the functor 〈〈−〉〉dc sends a directed container (S, P, ↓, o,⊕) to the monad
(T, η, µ) (the corresponding (dependently typed) update monad) given by

T X = 〈〈S, P 〉〉c X = Πs : S. P s×X

η : ∀{X}. X → Πs : S. P s×X
η x = λs. (o, x)

µ : ∀{X}. (Πs : S. P s× (Πs′ : S.P s′ ×X))→ Πs : S. P s×X
µf = λs. let (p, g) = f s;

(p′, x) = g (s ↓ p)
in (p ⊕ p′, x)

D. Ahman and T. Uustalu 13

On the level of terms, the definitions of the unit and multiplication look exactly as those we
gave in Section 2.2 for the update monad for an act, but their types are finer.

A map (t, q) between directed containers (S′, P ′, ↓′, o′,⊕′) and (S, P, ↓, o,⊕) is sent by
〈〈−〉〉dc to the natural transformation 〈〈t, q〉〉dc = 〈〈t, q〉〉c between the functors 〈〈S, P 〉〉c and
〈〈S′, P ′〉〉c, which is also a monad map between 〈〈S, P, ↓, o,⊕〉〉dc and 〈〈S′, P ′, ↓′, o′,⊕′〉〉dc.
This way of specifying maps between dependently typed update monads generalizes the one
we described in Section 2.5 for maps between simply typed update monads.

The intuitive advantage of dependently typed update monads over simply typed update
monads lies in the idea of updates enabled (or safe) in a state. In the simply typed case, any
update has to apply to any state.

In the dependently typed setting, any initial state s : S determines its own set of updates
P s enabled in it. And, according to the type of ↓, only those updates are applicable to s.
This means that we are not forced to invent outcomes for updates that should morally only
be allowed in some states.

I Example 10. In the example of the buffer (Example 6), we chose to write only a prefix of
a given list into the buffer, if it had no space left for the full list. This is clearly a dangerous
design, as values get discarded silently. Another option would have been to introduce a
special error state. But with a dependently typed update monad, we can do much better.

The non-overflowing fixed-size no-removal buffer monad is given by the following data:

T X = Πes : E≤N . E≤N−len es ×X

η : ∀{X}. X → Πes : E≤N . E≤N−len es ×X
η x = λes. []

µ : ∀{X}. (Πes : E≤N . E≤N−len es × (Πes′ : E≤N . E≤N−len es′ ×X))→
Πes : E≤N . E≤N−len es ×X

µf = λes. let (es′, g) = f es;
(es′′, x) = g (es ++ es′)

in (es′ ++ es′′, x)

The states are lists of length at most n as before: S = E≤N . But the updates, acceptable
lists of values to write, now depend on these states in a natural way. Namely, for a state
es : E≤N of the buffer, the enabled updates are P es = E≤N−len es, i.e., lists that can be
appended to es without exceeding the length limit N . The means that the action does not
have to truncate, it is just concatenation: es ↓ es′ = es ++ es′.

I Example 11. Similarly, we can amend our two stack monads from Example 7 to be
non-underflowing.

As before, the set of states S = E∗ is given by lists of elements of E. Regarding the
monoid of updates, we can define P es = {ps : (1 + E)∗ | removes ps ≤ len es} where

removes [] = 0
removes (inl ∗ :: ps) = removes ps+ 1
removes (inr e :: ps) = removes ps−. 1

Alternatively, we can define P ′ es = [0..len es]× E∗.

Differently from simply typed update monads, dependently typed update monads subsume
state monads.

TYPES 2013

14 Update Monads: Cointerpreting Directed Containers

I Example 12. Given a set S, define P s = S, s ↓ s′ = s′, o {s} = s, s′ ⊕ {s} s′′ = s′′.
The update monad for this directed container is the state monad for S.
In Example 2, we noted that the state monad for S fails to be a simply typed update

monad, because P = S is just a semigroup, not a monoid. With the dependently typed
notion, we can afford a different unit element o {s} = s : P s = S for each s : S, overcoming
this obstacle.

The monad morphisms idem, sec and retr are morphisms of dependently typed update
monads.

An (EM-)algebra for the dependently typed update monad for the directed container
(S, P, ↓, o,⊕) is a set X with an operation

act : (Πs : S. P s×X)→ X

satisfying the equations

x = act (λs. (o {s}, x))
act (λs. (p s, act (λs′. (p′ s s′, x s s′)))) = act (λs. (p s ⊕ {s} p′ s (s ↓ p s), x s (s ↓ p s)))

Again the equations look exactly the same as in the simply typed case, but the types are
different.

It is not clear to us whether dependently typed update monads admit a useful decompo-
sition similar to the decomposition of simple update monads into reader and writer monads.
One possibility is to resort to relative monads of Altenkirch et al. [4]: dependently typed
update monads can be described as compatible compositions of certain relative monads.

Given a directed container (S, P, ↓, o,⊕). Define J0 : [S,Set]→ Set by J0 X = Πs : S.X s

and J1 : Set → [S,Set] by J1 X s = X (notice that J0 is right adjoint to J1). Now on J0
we have a rather trivial but nonetheless reader-like relative monad (T0, η0, (−)∗0) given by
T0 X = Πs : S.X s = J0 X, η0 {X} = id {J0 X}, k∗0 = k. On J1 at the same time we can define
a writer-like relative monad (T1, η1, (−)∗1) by T1 X s = P s × X, η1 {X} {s}x = (o {s}, x),
k∗1 {s} (p, x) = let (p′, y) = k {s ↓ p}x in (p ⊕ {s} p′, y). The dependently typed update
monad is a compatible composition of the two relative monads.

4 Kammar and Plotkin’s generalization of state monads

Kammar and Plotkin6 have proposed a generalization of state monads that is related to ours.
Similarly to us, they employ monoids and monoid actions. Kammar and Plotkin’s monad for
an act (S, (P, o,⊕), ↓) is defined by

T X = Πs : S. (s ↓ P)×X

η : ∀{X}. X → Πs : S. (s ↓ P)×X
η x = λs. (s, x)

µ : ∀{X}. (Πs : S. (s ↓ P)× (Πs′ : S. (s′ ↓ P)×X))→ Πs : S. (s ↓ P)×X
µf = λs. let (s′, g) = f s;

(s′′, x) = g s′

in (s′′, x)

6 O. Kammar and G. Plotkin. Take action for your state: effective conservative restrictions. Slides from
Scottish Programming Language Seminar, Strathclyde, Nov. 2010.

D. Ahman and T. Uustalu 15

Here s ↓ P = {s ↓ p | p ∈ P} ⊆ S is the orbit of s along the action ↓ of the monoid (P, o,⊕)
on the set S. Notice that η and µ are defined just as for the state monad for S, only the
typing is finer. In particular, the monoid structure and the action only appear in the types.

Reader and state monads are special cases of this unification, while writer monads are
not. (Remember that, in contrast, simply typed update monads cover reader and writer
monads, but not state monads.)

Kammar and Plotkin’s monad for (S, (P, o,⊕), ↓) turns out to be the middle monad in
the epi-mono factorization of the obvious monad map τ between the simply typed update
monad for (S, (P, o,⊕), ↓) and the state monad for S. For a given state, τ just applies to a
given initial state the update that it produces.

τ : ∀{X}. (S → P ×X)→ S → S ×X
τ f = λs. let (p, x) = f s in (s ↓ p, x)

Just as the state monad, Kammar and Plotkin’s monad is an instance of a dependently
typed update monad. The appropriate directed container is (S, P ′, ↓′, o′,⊕′) where

P ′ s = s ↓ P

↓′ : Πs : S.Πs′ : s ↓ P. S
s ↓′ s′ = s′

o′ : Π{s : S}. s ↓ P
o′ {s} = s

⊕′: Πs : S.Πs′ : s ↓ P. s′ ↓ P → s ↓ P
s′ ⊕′ {s} s′′ = s′′

5 Conclusion and future work

We have presented some facts about a class of monads that we call update monads. We hope
that those convince the reader that the concept is meaningful and elegant. Although we
arrived at update monads thinking about cointerpretation of directed containers, in hindsight
we think that they are above all a simple, but instructive unification of the reader, writer
and state monads. This unification helps explain how they and some further special monads
interrelate and why.

As future work, we wish to generalize this work to monoidal closed categories (replacing
unique comonoids with arbitrary comonoids) and to presheaf categories (replacing directed
containers with directed indexed containers).

Acknowledgements. Danel Ahman thanks Ohad Kammar for discussions. Tarmo Uustalu
acknowledges the feedback from Ichiro Hasuo, Zhenjiang Hu and their colleagues at the
University of Tokyo and National Institute of Informatics.

References
1 M. Abbott, T. Altenkirch, N. Ghani. Containers: constructing strictly positive types. Theor.

Comput. Sci., v. 342, n. 1, pp. 3–27, 2005.
2 D. Ahman, J. Chapman, T. Uustalu. When is a container a comonad? In L. Birkedal, ed.,

Proc. of 15th Int. Conf. on Foundations of Software Science and Computation Structures,
FoSSaCS 2012 (Tallinn, March 2012), v. 7213 of Lect. Notes in Comput. Sci., pp. 74–88.
Springer, 2012. Journal version to appear in Log. Methods in Comput. Sci.

TYPES 2013

16 Update Monads: Cointerpreting Directed Containers

3 D. Ahman, T. Uustalu. Distributive laws of directed containers. Progress in Informatics, v.
10, pp. 3–18, 2013.

4 T. Altenkirch, J. Chapman, T. Uustalu. Monads need not be endofunctors. In L. Ong, ed.,
Proc. of 13th Int. Conf. on Foundations of Software Science and Computation Structures,
FoSSaCS 2010 (Paphos, March 2010), v. 6014 of Lect. Notes in Comput. Sci., pp. 297-311.
Springer, 2010. Journal version to appear in Log. Methods in Comput. Sci.

5 M.G. Brin. On the Zappa-Szép product. Commun. in Algebra, v. 33, n. 2, pp. 393–424,
2005.

6 M. Barr and C. Wells. Toposes, Triples and Theories, v. 278 of Grundlehren der mathema-
tischen Wissenschaften. Springer, 1984.

7 J. Beck. Distributive laws. In B. Eckmann, ed., Seminar on Triples and Categorical Ho-
mology, ETH 1966/67, v. 80 of Lect. Notes in Math., pp. 119–140. Springer, 1969.

8 N. Gambino, M. Hyland. Wellfounded trees and dependent polynomial functors. In S. Be-
rardi, M. Coppo, F. Damiani, eds., Revised Selected Papers from Int. Wksh. on Types for
Proofs and Programs, TYPES 2003 (Torino, Apr./May 2003), v. 2085 of Lect. Notes in
Comput. Sci., pp. 210–225. Springer, 2004.

9 M. Hyland, G. Plotkin, J. Power. Combining effects: sum and tensor. Theor. Comput. Sci.,
v. 357, no. 1, pp. 70–99, 2006.

10 M. Kilp, U. Knauer, A. V. Mikhalev. Monoids, Acts and Categories: With Applications to
Wreath Products and Graphs, v. 29 of De Gruyter Expositions in Mathematics. De Gruyter,
2000.

11 S. Mac Lane. Categories for the Working Mathematician, v. 5 of Graduate Texts in Math-
ematics. Springer, 1971.

12 U. Norell. Towards a practical programming language based on dependent type theory.
PhD thesis, Chalmers University of Technology, 2007.

13 M. Piróg, J. Gibbons. Monads for behavior. In D. Kozen, M. Mislove, eds., Proc. of MFPS
XXIX (New Orleans, LA, June 2013), v. 298 of Electron. Notes in Theor. Comput. Sci.,
pp. 309–324. Elsevier, 2013.

14 G.D. Plotkin, J. Power. Notions of computation determine monads. In M. Nielsen, U.
Engberg, eds., Proc. of 5th Int. Conf. on Foundations of Software Science and Computation
Structures, FoSSaCS 2002 (Grenoble, April 2002), v. 2303 of Lect. Notes in Comput. Sci.,
pp. 342–356. Springer, 2002.

15 P. Wadler. The essence of functional programming. In Proc. of 19th Ann. ACM SIGPLAN-
SIGACT Symp. on Principles of Programming Languages, POPL 1992 (Albuquerque, NM,
Jan. 1992), pp. 1–14. ACM Press, 1992.

A Background

A.1 Monoids, actions
We recall that a monoid is a set P together with two operations

o : P
⊕ : P × P → P

satisfying

p ⊕ o = p

o ⊕ p = p

(p ⊕ p′) ⊕ p′′ = p ⊕ (p′ ⊕ p′′)

D. Ahman and T. Uustalu 17

A map between two monoids (P, o,⊕) and (P ′, o′,⊕′) is a map

q : P → P ′

satisfying

q o = o′
q (p ⊕ p′) = q p ⊕′ q p′

A right action of a monoid (P, o,⊕) on a set S is an operation

↓ : S × P → S

satisfying the conditions

s ↓ o = s

s ↓ (p ⊕ p′) = (s ↓ p) ↓ p′

Similarly, a left action of (P, o,⊕) on S is an operation ↑ : P ×S → S satisfying o ↑ s = s,
(p ⊕ p′) ↑ s = p ↑ (p′ ↑ s).

A.2 Monads, monad algebras
We recall the definitions of monads and algebras for monads. For thorough expositions, we
refer the reader to the books by Barr and Wells [6, Ch. 3] and Mac Lane [11, § VI].

A monad on a category C is given by an endofunctor T on C and natural transformations
η : Id→ T and µ : T · T satisfying the conditions

T

T ·η
��

T · T
µ
// T

T
η·T // T · T

µ

��
T

T · T · T
µ·T //

T ·µ
��

T · T
µ

��
T · T

µ
// T

A map between monads (T, η, µ) and (T ′, η′, µ′) on the same category C is a natural
transformation τ : T → T ′ satisfying the conditions

Id
η

��

η′

��
T

τ
// T ′

T · T

µ

��

τ ·τ // T ′ · T ′

µ′

��
T

τ
// T ′

An (Eilenberg-Moore) algebra of a monad (T, η, µ) is an object A together with a map
a : T A→ A satisfying the conditions

A
η A // T A

a

��
A

T (T A) µA //

T a

��

T A

a

��
T A

a
// A

For any object A, there is a free algebra of the monad (T, η, µ) on A: the algebra (T A, µA)
together with the map η A : A→ T A.

TYPES 2013

18 Update Monads: Cointerpreting Directed Containers

A.3 Distributive laws and compatible compositions of monads
Distributive laws, compatible compositions and liftings are due to Beck [7]. They are also
discussed in the book of Barr and Wells [6, Ch. 9].

A distributive law between two monads (T0, η0, µ0) and (T1, η1, µ1) on the same category
C is a natural transformation

θ : T1 · T0 → T0 · T1

satisfying the conditions

T1
T1·η0

{{

η0·T1

##
T1 · T0

θ
// T0 · T1

T1 · T0 · T0

T1·µ0

��

θ·T0 // T0 · T1 · T0
T0·θ // T0 · T0 · T1

µ0·T1

��
T1 · T0

θ
// T0 · T1

T0
η1·T0

{{

T0·η1

##
T1 · T0

θ
// T0 · T1

T1 · T1 · T0

µ1·T0

��

T1·θ // T1 · T0 · T1
θ·T1 // T0 · T1 · T1

T0·µ1

��
T1 · T0

θ
// T0 · T1

A compatible composition of monads (T0, η0, µ0) and (T1, η1, µ1) on C is a monad structure
(η, µ) on the endofunctor T0 · T1 satisfying the conditions

Id η0 // T0

T0·η1

��
Id

η
// T0 · T1

T0 · T0
µ0 //

T0·η1·T0·η1

��

T0

T0·η1

��
T0 · T1 · T0 · T1 µ

// T0 · T1

Id η1 // T1

η0·T1

��
Id

η
// T0 · T1

T1 · T1
µ1 //

η0·T1·η0·T1

��

T1

η0·T1

��
T0 · T1 · T0 · T1 µ

// T0 · T1

T0 · T1
T0·η1·η0·T1

ww
T0 · T1 · T0 · T1 µ

// T0 · T1

Notice that the first two conditions say that T0 · η1 is a morphism between the monads
(T0, η0, µ0) and (T0 · T1, η, µ) and the next two say that η0 · T1 is a morphism between the
monads (T1, η1, µ1) and (T0 · T1, η, µ). Notice also that the 1st and 3rd conditions really say
the same, namely, that η = η0 · η1. The most significant condition is the 5th, the so-called
middle unital law.

Distributive laws and compatible compositions are in a bijective correspondence. A
distributive law θ determines a compatible composition (η, µ) via

η = Id η0·η1 // T0 · T1

µ = T0 · T1 · T0 · T1
T0·θ·T1 // T0 · T0 · T1 · T1

µ0·µ1 // T0 · T1

Conversely, a compatible composition (η, µ) defines a distributive law θ via

θ = T1 · T0
η0·T1·T0·η1 // T0 · T1 · T0 · T1

µ // T0 · T1

D. Ahman and T. Uustalu 19

Given a distributive law θ between two monads (T0, η0, µ0) and (T1, η1, µ1), a pair of their
algebras (A, a0) and (A, a1) with the same carrier is matching, if it satisfies the condition

T1 (T0 A)

T1 a0

��

θ A // T0 (T1 A)T0 a1 // T0 A

a0

��
T1 A a1

// A

Matching pairs of algebras are in a bijective correspondence with algebras of the compatible
composition.

A matching pair of algebras (A, a0, a1) defines an algebra (A, a) via

a = T0 (T1 A) T0 a1 // T0 A
a0 // A

An algebra (A, a) induces a matching pair (A, a0, a1) via

a0 = T0 A
T0 (η1 A) // T0 (T1 A) a // A

a1 = T1 A
η0 (T1 A) // T0 (T1 A) a // A

The counterpart under this bijection of the free algebra (T0 (T1 A), µA) of the compatible
composition on A is the matching pair (T0 (T1 A), µ̄0 A, µ̄1 A) where

µ̄0 = T0 · T0 · T1
µ0·T1 // T0 · T1

µ̄1 = T1 · T0 · T1
θ·T1 // T0 · T1 · T1

T0·µ1 // T0 · T1

B Proof of the main theorem

B.1 Proof of Lemma 8
p

=
fst ((λs′. (p, ∗)) s)

= {def. of η0}
fst ((η0 · T1) {1} (p, ∗) s)

= {distr. law eq. 1 for θ}
fst ((θ ◦ T1 · η0) {1} (p, ∗) s)

= {def. of η0}
fst (θ {1} (p, λs′. ∗) s)

= {defs. of T1, T0}
fst ((θ {1} ◦ (T1 · T0) (λs′. ∗)) (p, f) s)

= {naturality of θ}
fst (((T0 · T1) (λs′. ∗) ◦ θ {X}) (p, f) s)

= {defs. of T0, T1}
fst (θ {X}) (p, f) s)

B.2 Proof of Theorem 9
Given an action ↓, we must verify that θ : ∀{X}. T1 (T0 X) → T0 (T1 X) defined by
θ {X} (p, f) = λs. (p, f (s ↓ p)) is a distributive law.

TYPES 2013

20 Update Monads: Cointerpreting Directed Containers

Proof of naturality of θ.

((T0 · T1) g ◦ θ {X}) (p, f)
= {def. of θ}

(T0 · T1) g (λs. (p, f (s ↓ p)))
= {def. of T0, T1}
λs. (p, g (f (s ↓ p)))

= {def. of θ}
θ {Y } (p, g ◦ f)

= {def. of T1, T0}
(θ {Y } ◦ (T1 · T0) g) (p, f)

Proof of distributive law equation 1 for θ.

(θ ◦ T1 · η0) {X} (p, x)
= {defs. of T1, η0}
θ {X} (p, λs′. x)

= {def. of θ}
λs. (p, (λs′. x) (s ↓ p))

=
λs. (p, x)

= {def. of η0}
(η0 · T1) {X} (p, x)

Proof of distributive law equation 2 for θ.

(θ ◦ T1 · µ0) {X} (p, f)
= {defs. of T1, µ0}
θ {X} (p, λs′. f s′ s′)

= {def. of θ}
λs. (p, f (s ↓ p) (s ↓ p))

= {def. of µ0}
(µ0 · T1) {X} (λs. λs′. (p, f (s ↓ p) (s′ ↓ p)))

= {defs. of T0, θ}
(µ0 · T1 ◦ T0 · θ) {X} (λs. (p, f (s ↓ p)))

= {def. of θ}
(µ0 · T1 ◦ T0 · θ ◦ θ · T0) {X} (p, f)

Proof of distributive law equation 3 for θ.

(θ ◦ η1 · T0) {X} f
= {def. of η1}
θ {X} (o, f)

= {def. of θ}
λs. (o, f (s ↓ o))

= {action eq. 1 for ↓}
λs. (o, f s)

= {defs. of T0, η1}
(T0 · η1) {X} f

D. Ahman and T. Uustalu 21

Proof of distributive law equation 4 for θ.

(θ ◦ µ1 · T0) {X} (p, (p′, f))
= {def. of µ1}
θ {X} (p ⊕ p′, f)

= {def. of θ}
λs. (p ⊕ p′, f (s ↓ (p ⊕ p′)))

= {action eq. 2 for ↓}
λs. (p ⊕ p′, f ((s ↓ p) ↓ p′))

= {defs. of T0, µ1}
(T0 · µ1) {X} (λs. (p, (p′, f ((s ↓ p) ↓ p′))))

= {def. of θ}
(T0 · µ1 ◦ θ · T1) {X} (p, λs. (p′, f (s ↓ p′)))

= {defs. of T1, θ}
(T0 · µ1 ◦ θ · T1 ◦ T1 ◦ θ) {X} (p, (p′, f))

Given a distributive law θ, we must verify that ↓: S × P → S defined by s ↓ p =
snd (θ {S} (p, λs′. s′) s) is an action.

Proof of action law 1 for ↓.

s ↓ o
= {def. of ↓}

snd (θ {S} (o, λs′. s′) s)
= {def. of η1}

snd ((θ ◦ η1 · T0) {S} (λs′. s′) s)
= {distr. law eq. 3 for θ}

snd ((T0 · η1) {S} (λs′. s′) s)
= {defs. of T0, η1}

snd ((λs′. (o, s′)) s)
=
s

Proof of action law 2 for ↓.

s ↓ (p ⊕ p′)
= {def. of ↓}

snd (θ {S} (p ⊕ p′, λs′. s′) s)
= {def. of µ1}

snd ((θ ◦ µ1 · T0) {S} (p, (p′, λs′. s′)) s)
= {distr. law eq. 4 for θ}

snd ((T0 · µ1 ◦ θ · T1 ◦ T1 · θ) {S} (p, (p′, λs′. s′)) s)
= {def. of T1, Lemma 8, def. of ↓}

snd ((T0 · µ1 ◦ θ · T1) {S} (p, λs′. (p′, s′ ↓ p′)) s)
= {defs. of T0, T1}

snd ((T0 · µ1 ◦ θ · T1 ◦ (T1 · T0) (λs′. (p′, s′ ↓ p′))) {S} (p, λs′. s′)) s)
= {naturality of θ}

snd ((T0 · µ1 ◦ (T0 · T1) (λs′. (p′, s′ ↓ p′)) ◦ θ) {S} (p, λs′. s′)) s)
= {Lemma 8, def. of ↓}

snd ((T0 · µ1 ◦ (T0 · T1) (λs′. (p′, s′ ↓ p′))) {S} (λs′. (p, s′ ↓ p)) s)

TYPES 2013

22 Update Monads: Cointerpreting Directed Containers

= {defs. of T0, T1}
snd ((T0 · µ1) {S} (λs′. (p, (p′, (s′ ↓ p) ↓ p′))) s)

= {defs. of T0, µ1}
snd ((λs′. (p ⊕ p′, (s′ ↓ p) ↓ p′)) s)

=
(s ↓ p) ↓ p′

Finally, we have to check that the correspondence is bijective.

s ↓′ p
= {def. of ↓′}

snd (θ {S} (p, id {S}) s)
= {def. of θ}

snd (p, id {S} (s ↓ p))
=
s ↓ p

θ′ {X} (p, f)
= {def. of θ′}
λs. (p, f (s ↓ p))

= {Lemma 8, def. of ↓}
λs. (fst (θ {S} (p, id {S}) s), f (snd (θ {S} (p, id {S}) s)))

= {defs. of T0, T1}
((T0 · T1) f ◦ θ {S}) (p, id {S})

= {naturality of θ}
(θ {X} ◦ (T1 · T0) f) (p, id {S})

= {defs. of T0, T1}
θ {X} (p, f)

C Algebras of update monads as models of Lawvere theories

In Sections 2.3 and 2.4, we showed three different equivalent definitions of algebras for the
update monad for a given act (S, (P, o,⊕), ↓). An algebra is the same as a model of the
(generally large) Lawvere theory corresponding to this monad. Each of the three definitions
corresponds to a particular presentation of this Lawvere theory.

The first presentation is given by one operation

act : S → S → P

and two equations

1 λs. ∗ // S

act

��

S × S
λ(s,f). (s,f s) //

S×act��

S × (S → S)

act×(S→S)

��

S × (S → P)
λ(s,f). (s,f s)��

S × (S → S → P)
act×(S→S→P)��

1 S → P
λ∗.λs. o
oo (S → P)× (S → S → P) (S → P)× (S → S)

λ(f,g). (λs. f s⊕g s (s↓f s),λs. s↓f s)
oo

D. Ahman and T. Uustalu 23

The second and third resemble Melliès’s and Plotkin’s variations7 of Plotkin and Power’s
presentation of the theory of (global) state [14]. The second is given by two operations

lkp : S → 1
upd : 1→ P

satisfying

1 upd // P

o
��
1

λs. ∗
��

1 S
lkp
oo

1 upd //

upd
��

P

⊕

��

P

λ(∗,p). p
��

1× P
upd×P

// P × P

(S × S)× 1
λ(s,s′). ((s,s′),∗)

��

(S×S)×upd// (S × S)× P
λ(s,p). (s,s↓p)×P
��

S × S
S×lkp

��

(S × P)× P

λ(s,(p,p′)). ((s,p),p′)

��

S × 1
S×upd

��
S × P

λ(s,f). (s,f s)
��

S × (P × P)
S×λp. (p,p)
��

S × (S → P)
lkp×(S→P)

��

S × P
λ(s,f). (s,f s)
��

1× (S → P) S × (S → P)
lkp×(S→P)
oo

The third has the same operations, but different equations:

1 λs. ∗ // S

lkp
��
1

S × S
λs. (s,s) //

S×lkp
��

S

lkp

��

S × 1

λs. (s,∗)
��
S

lkp
// 1

1 upd // P

o
��
1

1 upd //

upd
��

P

⊕

��

P

λ(∗,p). p
��

1× P
upd×P

// P × P

S × 1

λs. (s,∗)
��

S×upd // S × P

↓×P
��

S

lkp
��

(S × P)× P

λ(s,(p,p′)). ((s,p),p′)

��

1

upd
��
P

λ(∗,p). p
��

S × (P × P)

S×λp. (p,p)
��

1× P S × P
lkp×P

oo

7 P.-A. Melliès. String diagrams in logic and computer science. Slides from lecture 6 from course held at
ITU Copenhagen, Apr. 2011. G. Plotkin. Algebraic effects. Slides from Logic and Interaction, Marseille,
Feb. 2012.

TYPES 2013

A “Game Semantical” Intuitionistic Realizability
Validating Markov’s Principle
Federico Aschieri∗,1 and Margherita Zorzi†,2

1 Laboratoire de l’Informatique du Parallélisme (UMR 5668, CNRS, UCBL)
École Normale Supérieure de Lyon – Université de Lyon, France

2 Dipartimento di Informatica, Università di Verona, Italy

Abstract
We propose a very simple modification of Kreisel’s modified realizability in order to computa-
tionally realize Markov’s Principle in the context of Heyting Arithmetic. Intuitively, realizers
correspond to arbitrary strategies in Hintikka-Tarski games, while in Kreisel’s realizability they
can only represent winning strategies. Our definition, however, does not employ directly game
semantical concepts and remains in the style of functional interpretations. As term calculus, we
employ a purely functional language, which is Gödel’s System T enriched with some syntactic
sugar.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Markov’s principle, intuitionistic realizability, Heyting arithmetic,
game semantics

Digital Object Identifier 10.4230/LIPIcs.TYPES.2013.24

1 Introduction

1.1 Markov’s Argument
Given a recursive function f : N → N, if it is impossible that for every natural number n,
f(n) 6= 0, then there exists an n such that f(n) = 0. This classically true statement has
come to be universally known as Markov’s Principle, and was introduced by Markov in
the context of his theory of Constructive Recursive Mathematics (see e.g. [23]). Markov’s
original argument for it was simply the following: if it is not possible that for all n, f(n) 6= 0,
then by computing in sequence f(0), f(1), f(2), . . ., one will eventually hit a number n such
that f(n) = 0, which can be effectively recognized as a witness. For the rest of the paper
we shall consider the formalization of Markov’s principle in Heyting Arithmetic, that is the
axiom scheme

MP : ¬∀xNP → ∃xNP⊥

where P is a decidable predicate and P⊥ its negation.
Markov’s justification of his own principle is hardly satisfying from a constructive point

of view; the intuitionistic school of Brouwer, indeed, rejected it. It is true that, following

∗ This work was supported by the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within
the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research
Agency (ANR)
† Partially supported by LINTEL (Linear Techniques For The Analysis Of Languages), https://sites.

google.com/site/tolintel/

© Federico Aschieri and Margherita Zorzi;
licensed under Creative Commons License CC-BY

19th International Conference on Types for Proofs and Programs (TYPES 2013).
Editors: Ralph Matthes and Aleksy Schubert; pp. 24–44

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TYPES.2013.24
https://sites.google.com/site/tolintel/
https://sites.google.com/site/tolintel/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

F. Aschieri and M. Zorzi 25

Markov’s argument, one can recursively realize MP using Kleene’s realizability interpreta-
tion [13], thus providing a computational interpretation of it. However, a Kleene realizer
just blindly searches for a witness of the conclusion, without even considering the possible
constructive content of a proof of the premise. In other terms, such a realizer does not
embody the meaningful transformation of a proof of ¬∀xNP into a proof of ∃xNP⊥ which is
demanded by the Brouwer-Heyting-Kolmogorov reading of logical constants [23]. However,
when added to Heyting Arithmetic, MP gives rise to a constructive system enjoying the
disjunction and the existential witness property [21] (if a disjunction is derivable, one of the
disjoint is derivable too, and if an existential statement is derivable, so it is one instance of
it). So a better interpretation of MP can and must be provided. In this article we shall try
to answer, in particular, to the following question: is it possible to realize Markov’s Principle
just using a functional language and a simple intuitionistic realizability?

1.2 Gödel’s Dialectica Interpretation

A much more refined constructive justification of Markov’s Principle was in fact introduced
by Gödel [10]. Indeed, the idea behind Gödel’s Dialectica Interpretation is so refined, that
it forms the basis for all subsequent constructive interpretations of MP [5, 11]. As pointed
out by Diller [6], a very satisfying constructive justification of MP is indeed hidden in the
Dialectica, and is the following. A formal proof of ¬∀xNP is a natural deduction of ⊥ from
the hypothesis ∀xNP . If we consider a normal form of this proof, we have actually a deduction
of ⊥ from finitely many instances P (t1), . . . , P (tn); so one of them must be false and we get
a ti such that P⊥(ti), and ti reduces to some numeral n. Thus, as required in the BHK
semantics, from any proof of the premise of Markov’s Principle one can effectively extract a
witness for the conclusion, without having to run a blindfold process.

More in detail, Gödel’s interpretation of implication allows one to describe a realizer of
the premise ¬∀xNP of MP as a functional mapping a witness for ∀xNP (essentially, something
void) into a possible counterexample to ∀xNP . If this counterexample works, one witness
∃xNP⊥, otherwise one has refuted the realizer of the premise of MP.

Gödel’s Dialectica is thus very interesting and, rather remarkably, allows to computation-
ally interpret any proof in Heyting Arithmetic plus MP with a term in a simple and purely
functional language, Gödel’s system T. However, in spite of its simple interpretation of MP,
the Dialectica is a rather involved translation, which burdens a lot the reading of implication,
making it particularly painful to unravel in presence of nested implications in the translated
formula, as it is often the case. It is also quite cumbersome to decorate natural deductions
with Gödel realizers. Is it really needed all this complication if one wants just to interpret
Markov’s Principle?

1.3 Kreisel’s Modified Realizability

Inspired by Gödel’s interpretation, Kreisel put forward his modified realizability [14, 15] as
a simplification of the Dialectica, which is actually equivalent to it in the case of formulas
without implications (Oliva [17]). In modified realizability, the familiar BHK reading of
implication is restored – which originates the main simplification – and the term assignment for
proofs can be taken as a pleasant intuitionistic Curry-Howard correspondence. Unfortunately,
Kreisel introduced modified realizability with the specific aim of showing that Markov’s
principle is not realizable in the syntactical model made by the terms of Gödel’s T. So one is
left with a very good intuitionistic realizability, which is not able to concretely realize MP.

TYPES 2013

26 A “Game Semantical” Intuitionistic Realizability Validating Markov’s Principle

1.4 Modified Realizability and Friedman’s Translation

The Friedman translation is a strikingly simple device introduced by Friedman [7] in order
to prove closure of intuitionistic systems S under Markov’s rule:

S ` ¬∀xNP =⇒ S ` ∃xN¬P

where P is any decidable quantifier free formula. While combining Friedman’s translation
with modified realizability allows to interpret any fixed instance of MP, the situation does not
improve too much because it is not possible to validate the full axiom scheme MP. In other
terms, if a proof contains more than one instance of MP, combining Friedman’s translation
with modified realizability is not enough to interpret it.

Indeed, one possible solution to this issue, due to Coquand-Hofmann [5], is to first make
Friedman’s translation more flexible by using a somewhat unusual forcing [3] and then
combining the result with modified realizability. We seek however a simpler and less ad hoc
modification of modified realizability.

1.5 Game Semantics and Functional Interpretations

What’s wrong with modified realizability? The problem is that it is not a refined game
semantics, which is really the framework needed to explain constructively classical principles
(see e.g. [4, 1]). Instead, the Dialectica is better suited to represent dialogues among players
– i.e. proofs and tests – which arise in classical game semantics.

The standard way to associate a game to an arithmetical formula A is to consider an
interaction between two players who debate A; the first player – usually called Eloise – tries
to show that it is true, while the second player – usually called Abelard – tries to show that
the formula is false. Thus, Eloise wins when true atomic formulas are on the board while
Abelard wins with false ones. In the case of formulas of the shape A∨B, ∃xNA, Eloise moves:
in the first case by choosing A or B and in the second case by choosing an instance A(n),
where n is intended to be a witness for the existential quantifier. In the case of formulas
of the shape A ∧B, ∀xNA, Abelard moves: in the first case by choosing A or B and in the
second case by choosing an instance A(n), where n is intended to be a counterexample to
the universal quantifier. This kind of game was introduced by Hintikka [12] and it is also
known as Tarski game.

As far as →-free formulas are concerned, modified realizability and Dialectica agree
(Oliva [17]): a realizer represents in both cases a winning strategy for Eloise, that is, a way
of selecting moves that allows Eloise to win every play, no matter how Abelard plays. But in
the case of formulas of the shape A→ B, according to modified realizability, Abelard should
give Eloise a winning strategy for A, and then the game for B is played; while according to
Dialectica, Abelard should give Eloise some strategy for A and then the game for B is played,
and either Eloise wins this game, or “temporarily” looses it, but still with the possibility of
winning the whole game if she manages to show that the strategy offered by Abelard was
not winning. This second way of formulating the game for → is much better, since the first
one is not concretely playable: how to establish effectively whether the strategy given by
Abelard to Eloise is winning? In the case of Dialectica, Abelard is given a chance to play the
game for the premise A without necessarily having to play in the best way possible, but just
at his best, as in real life games.

F. Aschieri and M. Zorzi 27

1.6 A Game Semantical Twist of Modified Realizability
The goal of the present paper is to tweak modified realizability in such a way that its
game semantical content is improved and made more similar to the one of Dialectica, while
retaining the simplicity and the appeal of Kreisel’s original definition. One should allow
realizers to be not only winning strategies, but arbitrary ones, thus allowing poor Abelard to
have more chances to play in the game for the formula A→ B. True realizers – among which
those extracted from proofs – should be winning strategies, but in the concept of realizability
should appear also weaker realizers, that is, arbitrary strategies.

1.7 Plan of the paper
In Section §2 the term calculus T in which realizers are written and the language of the
arithmetical theory HAω + MP are introduced. In Section §3 we give our definition of
realizability. In Section §4 an extensionality property of T is introduced and discussed as a
crucial tool for studying the realizer of the Markov’s Principle, defined in Section §5. Section
§6 is devoted to prove our main result, that every theorem of HAω + MP is realizable; also
the relationship between our notion of realizability and truth is discussed. Conclusions and
considerations about future works are in Section §7.

2 The Term Calculus

In this section we introduce the typed lambda calculus T in which realizers are written.
System T is obtained from Gödel’s T (see [8, 9]) by adding a new atomic type U and new
operations on it. The basic objects of T are numerals (S . . . S0), booleans (True, False) and
its basic computational constructs are primitive recursion at all types (R), if-then-else (if),
pairs, as in Gödel’s T. Terms of the form ifA t1 t2 t3 will be sometimes written in the far more
legible form if t1 then t2 else t3. T , which is formally described in Figure 1, also includes:

two denumerable sets of constants of type U, namely >0,>1,>2, . . . and ⊥0,⊥1,⊥2, . . .;
two constants tt and ff of type N→ U: they transform numerals n into, respectively, the
constants >n and ⊥n; these are also the only constructs of the system that can generate
constants of type U;
the constant quote of type U → N: quote takes as argument any constant >n or ⊥n
and transform it into the numeral n. In other terms, quote takes a constant of type U
and returns its Gödel number, which is its position in the enumeration. However – and
this will be crucial in the following! – quote is not able to tell from which enumeration
its argument comes from and it just returns its position n, which may thus refer to
the ordering >0,>1,>2, . . . as well as the ordering ⊥0,⊥1,⊥2, Therefore, quote is
partially blind with respect to constants of type U: of its argument >n or ⊥n, it sees only
something like ?n – i.e. the index n.

These non-standard features of T notwithstanding, the type U and all the constants
tt , ff , quote are just syntactic sugar. Indeed, the type U can be encoded in Gödel’s T as

Bool× N; then >n and ⊥n can be encoded respectively as 〈True, n〉 and 〈False, n〉; tt and
ff can be encoded respectively as λxN 〈True, x〉 and λxN 〈False, x〉, and quote as the term
λxBool×N π1(x). The typing rules for tt , ff , quote fully agree with the above encodings. So
its clear that T is still a purely functional language; however, in order to be able to reason
about it in a more refined way, we have found necessary to add the new type and constants
as primitive constructs.

TYPES 2013

28 A “Game Semantical” Intuitionistic Realizability Validating Markov’s Principle

Types

σ, τ ::= N | Bool | U | σ → τ | σ × τ

Constants
>0,>1,>2, . . .

⊥0,⊥1,⊥2, . . .

c ::= Rτ | ifτ | 0 | S | True | False |>i (i ∈ N) |⊥i (i ∈ N) | tt | ff | quote
Terms

t, u ::= c | xτ | tu | λxτu | 〈t, u〉 | π0u | π1u

Typing Rules for Variables and Constants

xτ : τ | 0 : N | S : N→ N | True : Bool | False : Bool |

>i : U for every i ∈ N | ⊥i : U for every i ∈ N
tt : N→ U | ff : N→ U | quote : U→ N

ifτ : Bool→ τ → τ → τ | Rτ : τ → (N→ (τ → τ))→ N→ τ

Typing Rules for Composed Terms
t : σ → τ u : σ

tu : τ
u : τ

λxσu : σ → τ
u : σ t : τ
〈u, t〉 : σ × τ

u : τ0 × τ1
i ∈ {0, 1}πiu : τi

Reduction Rules All the usual reduction rules for simply typed lambda calculus (see Girard [8]) plus the
rules for recursion, if-then-else and projections

Rτuv0 7→ u RτuvS(t) 7→ vt(Rτuvt) ifτ Trueu v 7→ u ifτ Falseu v 7→ v πi〈u0, u1〉 7→ ui, i = 0, 1

plus the following ones, assuming n be a numeral:

tt n 7→ >n ff n 7→ ⊥n
quote>m → m quote⊥m → m

Figure 1 The extension T of Gödel’s system T.

It is easy provable that T is strongly normalizing and has the uniqueness-of-normal-form
property:

I Theorem 1 (Strong Normalization and Weak Church-Rosser). The system T enjoys strong
normalization and weak-Church-Rosser (uniqueness of normal forms) for all closed terms of
atomic types N, Bool or U.

Proof. By the translation of T into T. J

The following normal form theorem for T also holds.

I Theorem 2 (Normal Form Property for T). Assume A is either an atomic type N, Bool,U or
a product type. Then any closed normal term t ∈ T of type A is: a numeral n : N, or a boolean
True, False : Bool, or a constant >i : U, or a constant ⊥i : U, or a pair 〈u, v〉 : B × C.

Proof. As in Lemma 5 in [2]. J

From now onwards, for every pair of terms t, u of System T , we shall write t = u if they
are the same term modulo the equality rules corresponding to the reduction rules of System
T (equivalently, if they have the same normal form).

Finally, we define two sets of terms:

>> := {t | t is a term of T and t = >i for some i ∈ N}

and
⊥⊥ := {t | t is a term of T and t = ⊥i for some i ∈ N} .

F. Aschieri and M. Zorzi 29

2.1 Language of HAω + MP
We now define the language of the arithmetical theory HAω + MP.

I Definition 3 (Language of HAω + MP). The language L of HAω + MP is defined as follows.
1. The terms of L are all t ∈ T .
2. The atomic formulas of L are all Q ∈ T such that Q : Bool.
3. The formulas of L are built from atomic formulas of L by the connectives ∨,∧,→ ∀,∃ as

usual, with quantifiers possibly ranging over variables xτ , yτ , zτ of arbitrary finite type τ
of T.

We denote with ⊥ the atomic formula False. With P⊥ we denote the complement of
the predicate P , that is, if P then False else True. If P is an atomic formula of L in the
free variables xτ1

1 , . . . , x
τn
n and t1 : τ1, . . . , tn : τn are terms of L, with P (t1, . . . , tn) we shall

denote the atomic formula P [t1/x1, . . . , tn/xn].

3 Realizability

For every formula A of L, we are now going to define what type |A| realizers of A must have.

I Definition 4 (Types for realizers). For each formula A of L we define a type |A| of T by
induction on A:

|P | = U if P is atomic |A ∧B| = |A| × |B| |A→ B| = |A| → |B|
|A ∨B| = Bool× (|A| × |B|) |∀xτA| = τ → |A| |∃xτA| = τ × |A|

We remark that any HAω term of type |A|, by definition, can be taken to represent an
arbitrary strategy for Eloise in the Hintikka-Tarski game for A. For example, a term

t : |∀xτA| = τ → |A|

takes a move u : τ by Abelard, corresponding to the game A[u/xτ], and gives Eloise the
strategy tu to follow for the continuation. A term

t : |∃xτA| = τ × |A|

gives Eloise a move to play, π0t = u, and a strategy π1t for continuing the game A[u/xτ].
For precise definitions of Hintikka-Tarski games and strategies we refer to [1]. In this paper,
however, we do not need to examine these concepts in further detail, because game semantical
notions will be just used as guidelines to understand intuitively the realizability that we are
going to introduce.

Let now p0 := π0 : σ0 × (σ1 × σ2) → σ0, p1 := π0π1 : σ0 × (σ1 × σ2) → σ1 and
p2 := π1π1 : σ0 × (σ1 × σ2)→ σ2 be the three canonical projections from σ0 × (σ1 × σ2).

We define the realizability relation t
 F , where t ∈ T and F is a formula:

I Definition 5 (Realizability). For each closed formula F and closed term t : |F | of System
T , we define a relation t
 F of HAω by induction on F as follows:
1. t
 Q if and only if (Q = True and t ∈ >>) or (Q = False and t ∈ ⊥⊥) for Q atomic

formula;
2. t
 A ∧B if and only if π0t
 A and π1t
 B;
3. t
 A ∨B if and only if p0t = True and p1t
 A or p0t = False and p2t
 B;
4. t
 A→ B if and only if for all u, if u
 A, then tu
 B;
5. t
 ∃xτA if and only if π0t = u for u : τ closed term of HAω and π1t
 A[u/x];
6. t
 ∀xτA if and only if for all closed term u : τ of HAω, tu
 A[u/x].

TYPES 2013

30 A “Game Semantical” Intuitionistic Realizability Validating Markov’s Principle

We remark that the clauses 2–6 of our realizability relation coincide exactly with those
of modified realizability for the corresponding formulas. Our definition tweaks modified
realizability in two other ways. Firstly, instead of considering Gödel’s T as canonical term
model, we take T . Secondly, we modify in a crucial way the realizability condition for atomic
formulas. In modified realizability P is realizable by any term if it is true, while not realizable
if it is false; in our case, a realizer of P is a term which just computes the truth value of P
and returns it under the form of a constant belonging to >> or to ⊥⊥.

In game semantical language, a realizer of P just determines the outcome of the Hintikka-
Tarski game for P , returning a constant belonging to >> or to ⊥⊥ according as to whether
Eloise or Abelard wins. The intuition is that, as anticipated in the introduction, we want
arbitrary strategies to realize formulas. This forces atomic formulas to be realizable regardless
of their truth value, and we just need the truth value to be reflected by realizers. Of course,
realizer coming from proofs will have an extra condition that will prevent them from realizing
false formulas, as we shall soon see. We shall also show that any closed formula of HAω

is realizable: any strategy t for A can be mapped into a realizer tA of A which follows
the strategy t. All that implies a crucial change in the meaning with respect to modified
realizability also for implication. Since arbitrary strategies can be turned into realizers, a
realizer of A→ B will map not only winning strategies for A into winning strategies for B,
but also realizers/arbitrary-strategies for A into realizers/arbitrary-strategies for B.

I Definition 6 (Translation of Arbitrary Strategies). Let A be any formula and t : |A| any
term of HAω containing all the free variables of A. We define by induction on A a term tA of
T with free variables containing those of A:

If P is atomic, then
tP := if P then >0 else ⊥0

tA∧B := 〈(π0t)A, (π1t)B〉 tA∨B := 〈p0t, (p1t)A, (p2t)B〉 tA→B := λx|A|. (tx)B
t∀xτA := λxτ . (tx)A t∃xτA := 〈π0t, (π1t)A[π0t/xτ]〉

where x is fresh.

I Proposition 7 (Arbitrary Strategies and Realizability). Let A be any closed formula and
t : |A| any closed term of HAω. Then

tA
 A

Proof. We proceed by induction on A. We cover only few representative cases, the others
being similar.

1. A = P , with P atomic. Then

tP := if P then >0 else ⊥0

Now, if P = True, then tP = >0 ∈ >>, so tP
 P ; if P = False, then tP = ⊥0 ∈ ⊥⊥, so
tP
 P .

2. A = B → C. Then
tA := λx|B|. (tx)C

Now, suppose u
 B. We have to show tAu
 C. But it is easy to see that

tAu = (tx)C [u/x] = (tu)C

and by inductive hypothesis (tu)C
 C. We thus conclude by Lemma 9 that tA
 A.

F. Aschieri and M. Zorzi 31

3. A = ∃xτB. Then
tA := 〈π0t, (π1t)B[π0t/xτ]〉

Since by inductive hypothesis

(π1t)B[π0t/xτ]
 B[π0t/x
τ]

we conclude by Lemma 9 that tA
 A.
J

In the following, we will focus on a particular class of terms, called proof-like. These are
the terms that are extracted from the actual proofs, and that neither contain any constant
from the set ⊥⊥ nor have the possibility of generating them with a constant ff .

I Definition 8 (Proof-like Terms). A proof-like term is a term t of T which does not contain
constants of the form ⊥i (i ∈ N) or ff .

In the following, the “true” realizers will be proof-like terms. They actually represent
winning strategies, that is, they carry sound constructive information about the formula they
realize.

The concept of proof-like realizer is also crucial to determine a meaningful interaction
between strategies in the definition of realizability for implication. For instance, suppose that
some proof-like term t realizes a formula A→ B, where for simplicity A and B are →-free.
Let u be a realizer of A. Then tu must realize B. Since tu is not necessarily proof-like, tu
may not represent a winning strategy for B. For example, assume B = ∀xN ∃yN P (x, y); then
there could be a numeral n such that if we let m = π0(tun), then P (n,m) = False. n is a
test that refutes the realizer tu, when seen as a strategy for B. Now, the term π1(tun), which
realizes P (n,m), must reduce to a constant in ⊥⊥. Since t is proof-like, such a constant must
be produced by the term u in the reduction of π1(tun); namely, a test must be produced that
refutes u as well, when seen a strategy. For example, if A = ∃xN ∀yNQ(x, y), in the reduction
of π1(tun), π1u must be applied to some numeral j such that π0u = i and Q(i, j) = False.
In that case, a constant in ⊥⊥ is produced, and it may actually be the constant which is the
normal form of π1(tun).

We point out that this behaviour of realizers of implications is analogous to that of terms
witnessing the Dialectica interpretation of implications.

The next Lemma tells that realizability respects the notion of equality of T terms: if two
terms can be proved equal in T , then then they realize the same formulas.

I Lemma 9. If t1 = t2 and u1 = u2 are valid in T , then t1
 A[u1/x] if and only if
t2
 A[u2/x] for each formula A.

Proof. By induction on the formula A. J

4 Extensionality

Proving that Markov’s Principle is realizable by a proof-like term is by no means trivial. The
goal of this section is to introduce a key tool that will let us describe an important kind
of extensionality property of System T . Afterwards, we shall be able to reason in a more
sophisticated way about terms of T , and in particular about the realizer of MP that we shall
propose.

A basic feature of typed functional lambda calculi is extensionality: in concrete computa-
tions, there is no way to discriminate syntactically different terms if, denotationally, they

TYPES 2013

32 A “Game Semantical” Intuitionistic Realizability Validating Markov’s Principle

represent the same function. For example, suppose t and u are two terms of T of type N2 → N
implementing in different way the addition function. For instance, t may perform recursion
on the first argument and u on the second. The two terms represent the same function, but
they are syntactically different normal forms. Nevertheless, any term Ψ : (N2 → N)→ N of T
will not be able to discriminate t and u: Ψt and Ψu will convert to the same numeral.

Another characteristic of typed lambda calculi is the impossibility of distinguishing
different mute constants, which are the constants whose associated reduction rules cannot
leak any information about their shape. If we take a term t and permute its mute constants
obtaining t′, the normal form of t′ can be obtained from the normal form of t by the same
permutation of constants. To put it differently, mute constants can be moved around and
duplicated inside a term, but they have no influence whatsoever on the evolution of the
computation. Now, while the constants True, False,S, 0 can be discriminated (by if and
R), the constants of the form >n,⊥n do not. They are not completely mute since their
indexes can be recognized by quote , but their main form (⊥,>) cannot be determined by
any reduction rule.

All these considerations lead us to the concept of extensionality modulo a relation R over
the base type U. Here, R relates terms which should be regarded as almost, or observationally,
equal. If we take the usual definition of extensionality and, instead of fixing it to be equality
at type U, we let it to be R, we determine a more flexible concept of extensionality, relating
objects which can well be different, but cannot be computationally distinguished. Now, let
us consider any reflexive binary relation R between closed terms of type U of T . R is said
to be saturated with respect to equality if for every t1, t2, u1, u2, if t1R t2 and t1 = u1 and
t2 = u2, then u1Ru2.

I Definition 10 (Extensionality Modulo a Relation). Let t and u two closed terms of T of
type ρ and R a reflexive relation between closed terms of type U of T saturated with respect
to equality. We define the extensionality relation t ∼R u by induction on the type ρ:

If ρ = U, then t ∼R u if and only if tRu;
If ρ = N, then t ∼R u if and only if t = u;
If ρ = Bool, then t ∼R u if and only if t = u;
If ρ = τ → σ, then t ∼R u if and only if ∀v : τ ∀w : τ. v ∼R w implies tv ∼R uw;
If ρ = τ × σ, then t ∼R u if and only if π0t ∼R π0u and π1t ∼R π1u.

Intuitively, a closed term t of T is extensional modulo R if t ∼R t. Let us now prove that
the relation ∼R as well is saturated with respect to equality.

I Lemma 11. Given u1, u2, t1, t2 closed terms of T of type σ, suppose u1 = t1, u2 = t2 and
u1 ∼R u2. Then t1 ∼R t2.

Proof. By induction on the type σ.
σ = U: the thesis follows by saturation of the relation R.
σ = N or ρ = Bool: by Definition 10, u1 = u2, so t1 = t2 and we conclude t1 ∼R t2.
σ = ρ → τ . Let us consider any pair of terms r : ρ and s : ρ such that r ∼R s. By
Definition 10 of the extensionality relation and by the fact that u1 ∼R u2, it holds that
u1r ∼R u2s. Now, we can apply the inductive hypothesis to the type τ of the terms u1r

and u2s: since u1r = t1r and u2s = t2s, we have t1r ∼R t2s. Therefore, by Definition 10,
t1 ∼R t2.
σ = ρ × τ . By Definition 10, u1 ∼R u2 implies that π0u1 ∼R π0u2 and π1u1 ∼R π1u2.
Since π0u1 = π0t1, π0u2 = π0t2, π1u1 = π1t1, π1u2 = π1t2, by applying the inductive
hypothesis on the types ρ and τ one has that π0t1 ∼R π0t2 and π1t1 ∼R π1t2. Thus, by
Definition 10, t1 ∼R t2. J

F. Aschieri and M. Zorzi 33

The following proposition says that any closed term of T in which quote does not occur,
is extensional modulo R, where R is any reflexive binary relation between terms. The proof
of the extensionality of the constant quote requires instead the definition of a particular
relation R and will be formalized in Lemma 14. Since ∼R can be seen as a logical relation,
in the sense of Plotkin, our proposition can be seen as yet another incarnation of the usual
Fundamental Theorem of logical relations (see e.g. [16]).

I Proposition 12 (Extensionality). Let t be a term of T with free variables among x1, . . . , xk
and assume that the constant quote does not occur in t. If u1, . . . , uk, v1, . . . , vk are closed
terms of T such that u1 ∼R v1, . . . , uk ∼R vk, then t[u1/x1 . . . uk/xk] ∼R t[v1/x1 . . . vk/xk].

Proof. By induction on the structure of t.
1. t is a variable xi for some i ∈ [1, k]. Trivially, xi[u1/x1 . . . uk/xk] = ui ∼R vi =

xi[v1/x1 . . . vk/xk].
2. t is an application t1t2. Suppose t1 : τ → σ and t2 : τ . By inductive hypothesis, one has

t1[u1/x1 . . . uk/xk] ∼R t1[v1/x1 . . . vk/xk] and t2[u1/x1 . . . uk/xk] ∼R t2[v1/x1 . . . vk/xk].
By Definition 10 of the extensionality relation

t1[u1/x1 . . . uk/xk]t2[u1/x1 . . . uk/xk] ∼R t1[v1/x1 . . . vk/xk]t2[v1/x1 . . . vk/xk]

which is to say
t1t2[u1/x1 . . . uk/xk] ∼R t1t2[v1/x1 . . . vk/xk] .

3. t is λzσw. Let us consider any two terms r1, r2 of type σ such that r1 ∼R r2. By inductive
hypothesis, it holds that

w[u1/x1 . . . uk/xk r1/z] ∼R w[v1/x1 . . . vk/xk r2/z] .

Since
(λzσw)[u1/x1 . . . uk/xk]r1 = w[u1/x1 . . . uk/xk r1/z]

(λzσw)[v1/x1 . . . vk/xk]r2 = w[v1/x1 . . . vk/xk r2/z]

by Lemma 11 we obtain

(λzσw)[u1/x1 . . . uk/xk]r1 ∼R (λzσw)[v1/x1 . . . vk/xk]r2

and thus the thesis.
4. t is a pair 〈t1, t2〉. Then, for i = 0, 1, by induction hypothesis

πi(t[u1/x1. . .uk/xk]) = ti[u1/x1 . . . uk/xk] ∼R ti[v1/x1 . . . vk/xk] = πi(t[v1/x1 . . . vk/xk])

and thus by Lemma 11 we obtain

πi(t[u1/x1 . . . uk/xk]) ∼R πi(t[v1/x1 . . . vk/xk])

and thus the thesis.

5. t is πiw, i = 0, 1. By inductive hypothesis,

w[u1/x1 . . . uk/xk] ∼R w[u1/x1 . . . uk/xk]

and by Definition 10 of extensionality we have the thesis.
6. t is a constant such as 0 : N, True : Bool, False : Bool: we conclude t ∼R t by

Definition 10.

TYPES 2013

34 A “Game Semantical” Intuitionistic Realizability Validating Markov’s Principle

7. t is the constant S : N→ N. Given two terms w1, w2 : N such that w1 ∼R w2, by definition
of extensionality relation, w1 = w2. Then clearly Sw1 ∼R Sw2 and we obtain the thesis
by Definition 10.

8. t is ⊥i, >i (i ∈ N): ⊥i ∼R ⊥i and >i ∼R >i follows by reflexivity of the relation R.
9. t is the constant tt : N → U. Let us consider two terms w1 and w2 of type N such that

w1 ∼R w2. By Definition 10, w1 = w2, i.e they have the same numeral, say m, as normal
form. Therefore, tt w1 = >m ∼R >m = tt w2 and, by Lemma 11 and definition of the
extensionality relation, tt ∼R tt .

10. t is the constant ff : as for the previous case.
11. t is the constant ifτ . Let us consider r1 : Bool, r2 : τ, r3 : τ and s1 : Bool, s2 : τ, s3 : τ

terms of T such that r1 ∼R s1, r2 ∼R s2 and r3 ∼R s3. We want to prove that
ifτ r1 r2 r3 ∼R ifτ s1 s2 s3. By Definition 10, r1 ∼R s1 implies that r1 = s1, i.e. r1 and s1
both reduces to either True or False.
There are two cases, according to the normal form of r1 and s1. If r1 = s1 = True,
then ifτ r1 r2 r3 = r2 ∼R s2 = ifτ s1 s2 s3 and the thesis follows by Lemma 11. If
r1 = s1 = False: symmetric to the previous case.

12. t is the constant Rτ . Let us consider r1, s1 : τ, r2, s2 : N → (τ → τ), r3, s3 : N terms of
T such that r1 ∼R s1, r2 ∼R s2 and r3 ∼R s3. We want to prove that Rτ r1 r2 r3 ∼R
Rτ s1 s2 s3. By Definition 10, r3 ∼R s3 implies that r3 = s3 and therefore r3 and
s3 reduce to the same numeral: we argue by induction on it. If r3 = s3 = 0, then
Rτ r1 r2 0 = r1 ∼R s1 = Rτ s1 s2 s3 and one can conclude by Lemma 11. If r3 = s3 = S(m),
then

Rτ r1 r2 r3 = Rτ r1 r2 S(m) = r2 m (Rτ r1 r2 m)

Rτ s1 s2 s3 = Rτ s1 s2 S(m) = s2 m (Rτ s1 s2 m)

By induction hypothesis Rτr1 r2 m ∼R Rτs1 s2 m and Definition 10, r2 m (Rτ r1 r2 m) ∼R
s2 m (Rτ s1 s2 m) and the thesis follows by Lemma 11.

J

I Corollary 13. Let t be any closed term of T . If quote ∼R quote , t ∼R t.

Proof. Clearly, for some fresh variable z : U, t = (t[z/ quote])[quote /z]. Thus, by Proposition
12 applied to t[z/ quote], we obtain t ∼R t. J

In Section 6 we will prove that every theorem in HAω + MP is realizable and in particular
that a proof-like realizer r of Markov’s Principle ¬∀xNP → ∃xNP⊥ can be defined. In this
case, the extensionality relation plays a crucial role. Our realizer r of Markov’s Principle will
have to map a realizer of ¬∀xNP into a realizer of ∃xNP⊥. In other words, given a realizer of
¬∀xNP , r must in some way extract from it either a counterexample for ∀xNP to be used as
a witness of ∃xNP⊥, or a constant in ⊥⊥, by which one can realize everything.

So let us examine a realizer of ∀xNP → ⊥. It takes as input a realizer of ∀xNP and returns
a realizer of ⊥. A tentative first plan to define r may thus be to construct a realizer of ∀xNP

in order to obtain a realizer of ⊥, that is, a constant in ⊥⊥. A realizer of ∀xNP is indeed easily
definable in T as follows:

testλx.P ::= λxN. if P then tt x else ff x

It behaves the expected way: when fed with a numeral m it evaluates P [m/x] yielding >m if
P [m/x] = True and ⊥m if P [m/x] = False.

Thus we are done... aren’t we? Unfortunately, no. Clearly, testλx.P is not proof-like,
since it contains the subterm ff and so it may evaluate to ⊥i for some numeral i. As previously

F. Aschieri and M. Zorzi 35

said, only proof-like terms will be considered realizers/winning strategies and r is forbidden
to contain a term such as testλx.P .

We have thus to formulate a new plan for constructing r. The idea is to use extensionality.
We want to alter testλx.P in such a way that it behaves extensionally as before but at the
same time it is proof-like! With that in mind, we modify the term testλx.P like this:

mtestλx.P ::= λxN.if P then tt x else tt x

While that may appear like a crazy attempt, it works. The term mtestλx.P is indeed
proof-like, and differs from testλx.P only for the fact that it returns a constant in >> also
when P [m/x] is false. That would be a great difference in another situation, but here it
is not the case: testλx.P and mtestλx.P are equal up to a subterm of the form tt x or ff x,
which yields mute constants – constants that cannot be discriminated by any term in T . In
other words, mtestλx.P behaves observationally, i.e. extensionally, like testλx.P , provided
the relation R is suitable chosen.

In order to prove that mtestλx.P ∼R testλx.P , R will be defined to hold either on pairs
of equal terms (and this captures the case in which the evaluation of P on the given input
n yields True and both mtestλx.P and testλx.P evaluates to tt n) or on pair of discordant
constants (>k,⊥k), where the index k is a numeral such that P [k/x] = False. These
constants are considered to be “equal” by the terms of our system and their index k is a
counterexample to the formula ∀xNP and therefore a correct witness for ∃xNP⊥. Notice
that k can be extracted both from >k and ⊥k by the constant quote , which is not able to
produce any information about the argument but the index itself. The same constant quote
is extensional modulo the relation R just introduced. All these notions are formalized in the
following lemma:

I Lemma 14 (Test Equivalence). Let us consider the terms mtestλx.P and testλx.P defined
above and the saturated-with-respect-to-equality relation

R ::= {(t1, t2) | t1 = t2 or (t1 = >k, t2 = ⊥k and P [k/x] = False for some numeral k)}

where we assume that the only free variable of P is x. Then:
1. mtestλx.P ∼R testλx.P
2. quote ∼R quote

Proof.

1. Let us consider two closed term s : N and r : N such that s ∼R r. By Theorem 2 and by
Definition 10, s and r reduce to the same numeral, say n : N. We want to prove that
mtestλx.P n ∼R testλx.P n.
Two cases occur:

P [n/x] = True. Then mtestλx.P n = tt n = >n = tt n = testλx.P n. By definition of
R, mtestλx.P n R testλx.P n, which is to say mtestλx.P n ∼R testλx.P n.
P [n/x] = False. Then

mtestλx.P n = tt n = >n ∼R ⊥n = ff n = testλx.P n

Therefore, by Lemma 11 mtestλx.P n ∼R testλx.P n.

Finally, by Definition 10 and Lemma 11, one can conclude mtestλx.P ∼R testλx.P .

TYPES 2013

36 A “Game Semantical” Intuitionistic Realizability Validating Markov’s Principle

2. Let us consider two terms u1 and u2 of type U such that u1 ∼R u2. By Theorem 2 and
by Definition 10:

either u1 = u2, and clearly quoteu1 = quoteu2 and, by Definition 10, quoteu1 ∼R
quoteu2;
or u1 = >k, u2 = ⊥k for some k and P [k/x] = False. Also in this case quoteu1 =
quoteu2 = k and, by Definition 10, quoteu1 ∼R quoteu2.

Finally, by Definition 10 and Lemma 11, one can conclude quote ∼R quote . J

5 A Realizer of Markov’s Principle

We are now ready to define the realizer r of Markov’s Principle. r takes as argument a
realizer z of ¬∀xNP and we want r to pass the term mtestλx.P as argument to z. Of course,
mtestλx.P is not a realizer of ∀xNP , which is required in order to obtain with certitude a
realizer of ⊥ from z. However, it is extensionally equal to the realizer testλx.P , which is
enough. Now, let us consider zmtestλx.P . The informal reasoning is the following (for a
detailed argument see the proof of the Adequacy Theorem 15 or come back after having
read it for intuitive explanations of the formal details). zmtestλx.P is extensionally equal
to z testλx.P , for R chosen as in Lemma 14, and z testλx.P must normalize to a constant
in ⊥⊥, say ⊥k. That constant is ultimately generated either by testλx.P or already by z.
In this latter case, also zmtestλx.P will be able to produce ⊥k, and we are done, we can
realize everything. In the former case, zmtestλx.P should reduce to >k, with k witness for
∃xNP⊥, because zmtestλx.P R z testλx.P ; then k can be extracted by quote applied to
zmtestλx.P .

For those reasons, we are lead to define r as:

λz(N→U)→U〈 quote (zmtestλx.P), if P⊥[quote (zmtestλx.P)/x] then tt 0 else z(mtestλx.P)〉

r just tests whether the numeral k = quote (zmtestλx.P) is a witness for ∃xNP⊥; if it is the
case, then tt 0 = >0 realizes P⊥[k/x], otherwise zmtestλx.P realizes ⊥ and thus P⊥[k/x].

5.1 Curry-Howard Correspondence for HAω + MP
In Figure 2, we define a standard natural deduction system for HAω + MP (see [19], for
example) together with a term assignment in the spirit of Curry-Howard correspondence for
intuitionistic logic.

We replace purely universal axioms (i.e., Π0
1-axioms) with sound Post rules, which are

inferences of the form

Γ ` A1 Γ ` A2 · · · Γ ` An
Γ ` A

where A1, . . . , An, A are atomic formulas of T such that for every substitution

σ = [t1/x1, . . . , tk/xk]

of closed terms t1, . . . , tk of T , A1σ = . . . = Anσ = True implies Aσ = True. Any other
axiomatic presentation of HAω would have worked just fine, but Post rules allows to define
in a uniform way a more flexible deduction system, which is very useful when coding actual

F. Aschieri and M. Zorzi 37

Contexts With Γ we denote contexts of the form x1 : A1, . . . , xn : An, with x1, . . . , xn proof variables
and A1, . . . , An formulas of T .

Axioms Γ, x : A ` x|A| : A

Conjunction Γ ` u : A Γ ` t : B
Γ ` 〈u, t〉 : A ∧B

Γ ` u : A ∧B
Γ ` π0u : A

Γ ` u : A ∧B
Γ ` π1u : B

Implication Γ ` u : A→ B Γ ` t : A
Γ ` ut : B

Γ, x : A ` u : B
Γ ` λx|A|u : A→ B

Disjunction Intro. Γ ` u : A
Γ ` 〈True, u, d|B|〉 : A ∨B

Γ ` u : A
Γ ` 〈False, d|A|, u〉 : A ∨B

Disjunction Elim. Γ ` u : A ∨B Γ ` w1 : A→ C Γ ` w2 : B → C
Γ ` if p0u then w1(p1u) else w2(p2u) : C

Universal Quantification Γ ` u : ∀ατA
Γ ` ut : A[t/ατ]

Γ ` u : A
Γ ` λατu : ∀ατA

where t is a term of T and αN does not occur free in any formula B occurring in Γ.

Existential Quantification Γ ` u : A[t/ατ]
Γ ` 〈t, u〉 : ∃ατ .A

Γ ` u : ∃ατ .A Γ ` t : ∀ατ . A→ C
Γ ` t(π0u)(π1u) : C

where ατ is not free in C.

Induction Γ ` u : A(0) Γ ` v : ∀αN.A(α)→ A(S(α))
Γ ` λαNRuvα : ∀αNA

Booleans Γ ` u : A(True) Γ ` v : A(False)
Γ ` λαBool if x then u else v : ∀αBoolA

Post Rules Γ ` u1 : A1 Γ ` u2 : A2 · · · Γ ` un : An
Γ ` if A then tt 0 else if A⊥

1 then u1 else . . . if A⊥
n then un else tt 0 : A

where n > 0 and A1, A2, . . . , An, A are atomic formulas and the rule is a sound Post rule.

Post Rules with no Premises Γ ` tt 0 : A
where A is an atomic formula of T and an axiom of equality or a classical propositional tautology.

MP Γ ` r : ¬∀xNP → ∃xNP⊥

where r = λz(N→U)→U〈 quote (zmtestλx.P), if P⊥[quote (zmtestλx.P)/x] then tt 0 else zmtestλx.P 〉

Figure 2 Terms Assignment Rules for HAω + MP.

mathematical proofs. Let now eq : N2 → Bool a term of Gödel’s system T representing
equality between natural numbers. Among the Post rules, we have the Peano axioms

Γ ` eq S(x) S(y)
Γ ` eq x y

Γ ` eq 0 S(x)
Γ ` ⊥

and axioms of equality

Γ ` eq xx
Γ ` eqx y Γ ` eq y z

Γ ` eq x z
Γ ` A(x) Γ ` eqx y

Γ ` A(y)

TYPES 2013

38 A “Game Semantical” Intuitionistic Realizability Validating Markov’s Principle

and for every A1, A2 such that A1 = A2 is an equation of system T (equivalently, A1, A2
have the same normal form in T), we have the rule

Γ ` A1
Γ ` A2

.

We also have a Post rule

Γ ` A1 Γ ` A2 · · · Γ ` An
Γ ` A

for every classical propositional tautology A1 → . . . → An → A, where for i = 1, . . . , n,
Ai, A are atomic formulas obtained as combination of other atomic formulas by the Gödel’s
system T closed terms representing boolean connectives. For example, given terms ⇒Bool

,∧Bool,∨Bool : Bool → Bool → Bool . . . representing boolean connectives, one can form,
out of atomic formulas A and B, the atomic formulas ⇒Bool AB and ∧BoolAB. Using infix
notations, we have for example the rules

Γ ` ⊥
Γ ` P ,

Γ ` B
Γ ` A⇒Bool B

,
Γ ` A ∧Bool B

Γ ` A .

Finally, we have a rule of case reasoning for booleans. For any formula A(αBool) he have the
axiom:

Γ ` A(True) Γ ` A(False)
Γ ` ∀αBoolA

.

We remark that some of the Post rules, for example many of those for eq, are derivable
from others. We remark that the negations ⊥ and ¬, and the disjunctions ∨Bool and ∨
have the same meaning but they are syntactically different: for every atomic formula P ,
we consider P⊥ and P ∨Bool P

⊥ as atomic formulas, while ¬P and P ∨ P⊥ as compound
formulas. But one can show that, for every atomic formula P , HAω ` P⊥ ↔ ¬P : it is enough
to derive HAω ` True⊥ ↔ ¬True and HAω ` False⊥ ↔ ¬False, then use the rule of case
reasoning for booleans to obtain HAω ` ∀αBoolα⊥ ↔ ¬α and conclude with the elimination
of ∀ applied to P . We can derive HAω ` True⊥ → ¬True as follows:

True⊥, True ` True⊥ = if True then False else True
True⊥, True ` False

True⊥ ` True→ False = ¬True
and HAω ` ¬True→ True⊥ as follows:

¬True ` ¬True ¬True ` True
¬True ` False

¬True ` True⊥ = if True then False else True

HAω ` False⊥ ↔ ¬False can be derived even more easily, since ¬False = False→ False
is derivable and

` True
` False⊥ = if False then False else True

Moreover, P ∨Bool P
⊥ is an axiom, while we may derive HAω ` P ∨ P⊥ again by case

reasoning for booleans.
If τ is any type of T , we denote with dτ a dummy term of type τ , defined by dN = 0,

dBool = False, dU = >0, dσ→ρ = λzσ.dρ (with zσ any variable of type σ), dσ×ρ = 〈dσ, dρ〉.

F. Aschieri and M. Zorzi 39

6 Main Results

6.1 The Adequacy Theorem
We now prove our main result, namely, that every theorem of HAω + MP is realizable by a
proof-like term. This derives as an easy corollary from the Adequacy Theorem 15. In the
Adequacy Theorem we will exploit the extensionality relation defined in Section 4.

As usual in adequacy proofs for realizability, we prove a stronger version of the theorem,
suitable to be proved by induction.

I Theorem 15 (Adequacy). Assume that Γ ` w : A in HAω + MP, with Γ = x1 : A1, . . . , xn :
An and suppose that all the free variables occurring in Γ and w : A are among α1 : τ1, . . . , αk :
τk. For any choice of closed terms r1 : τ1, . . . , rk : τk of system T , if there are terms t1, . . . , tn
such that, for i = 1, . . . , n

ti
 Ai[r1/α1, . . . , rk/αk]

then
w[t1/x|A1|

1 , . . . , tn/x
|An|
n , r1/α1, . . . , rk/αk]
 A[r1/α1, . . . , rk/αk] .

Proof.
I Notation 1. For any term v and formula B, we denote v[t1/x|A1|

1 · · ·tn/x|An|n r1/α1· · ·rk/αk]
with v and B[r1/α1 · · · rk/αk] with B. We have |B| = |B| for all formulas B.
We proceed by induction on the derivation of Γ ` w : A. Let r be the last rule applied in the
derivation.
1. r is an axiom for variables. For some i, w = x

|Ai|
i and A = Ai. So w = ti
 Ai = A.

2. r is the ∧I rule, then w = 〈u, t〉, A = B ∧ C, Γ ` u : B and Γ ` t : C. Therefore,
w = 〈u, t〉. By induction hypothesis, π0w = u
 B and π1w = t
 C; so, by Lemma 9,
w
 B ∧ C = A.

3. r is a ∧E rule, say left, then Γ ` u : A ∧ B, w = π0u. Since u
 A ∧ B by induction
hypothesis, if w = π0u we can conclude w
 A.

4. r is the → E rule, then Γ ` u : B → A and Γ ` t : B w = ut, . So w = ut
 A, for
u
 B → A and t
 B by induction hypothesis.

5. r is the → I rule, then w = λx|B|u, A = B → C and Γ, x : B ` u : C. Suppose now that
t
 B; we have to prove that wt
 C. By induction hypothesis on u, u
 C. One has

wt = (λx|B|u)[t1/x|A1|
1 · · · tn/x|An|n r1/α1 · · · rk/αk]t

= (λx|B|u)t[t1/x|A1|
1 · · · tn/x|An|n r1/α1 · · · rk/αk]

= u[t/x|B|][t1/x|A1|
1 · · · tn/x|An|n r1/α1 · · · rk/αk]

= u .

Then since u = wt, by Lemma 9, wt
 C.
6. r is a ∨I rule, say left (the other case is symmetric), then w = 〈True, u, d|C|〉, A = B ∨C

and Γ ` u : B. So, w = 〈True, u, d|C|〉 and hence π0w[s] = True. u
 B follows with the
help of induction hypothesis.

7. r is a ∨E rule, then

w = if p0u then w1(p1u) else w2(p2u)

and Γ ` u : B ∨ C, Γ ` w1 : B → A, Γ ` w2 : C → A.
Assume p0u = π0u = True. By inductive hypothesis u
 B ∨ C, w1
 B → A and
w2
 C → A. Therefore, p1u
 B. Hence w = w1(p1u).

TYPES 2013

40 A “Game Semantical” Intuitionistic Realizability Validating Markov’s Principle

Since w1
 B → A and p1u
 B, by definition of realizability, w1(p1u)
 A. By
w = w1((p1u)) and Lemma 9, also w
 A.
Symmetrically, if p0u = False, we obtain again w
 A.

8. r is the ∀E rule, then w = ut, A = B[t/ατ] and Γ ` u : ∀ατB. So, w = ut. By inductive
hypothesis u
 ∀ατB and so we can conclude that ut
 B[t/ατ].

9. r is the ∀I rule, then w = λατu, A = ∀ατB and Γ ` u : B (with ατ not occurring free
in the formulas of Γ). So, w = λατu, since α 6= α1, . . . , αk. Let t : τ be a closed term
of HAω; by Lemma 9, it is enough to prove that wt = u[t/ατ], u[t/ατ]
 B[t/ατ], which
amounts to show that the induction hypothesis can be applied to u. We observe that,
since α 6= α1, . . . , αk, for i = 1, . . . , n we have

ti
 Ai = Ai[t/ατ] .

10. r is the ∃E rule, then w = t(π0u)(π1u), Γ ` t : ∀ατ : B → C and Γ ` u : ∃ατ .B.
By inductive hypothesis u
 ∃αN.B, π0u = v for v term in HAω and hence π1u
 B[v/ατ].
Then

tv(π1u)
 C[v/ατ] = C .

We thus obtain by w = t(π0u)(π1u) and by Lemma 9 that w
 C.
11. r is the ∃I rule, then w = 〈t, u〉, A = ∃ατB, Γ ` u : B[t/ατ]. So, w = 〈t, u〉; and, indeed,

π1w = u
 B[t/ατ] by induction hypothesis. By Lemma 9 we conclude the thesis.
12. r is the induction rule. Therefore w = λαNRuvα, A = ∀αNB, Γ ` u : B(0) and

Γ ` v : ∀αN.B(α)→ B(S(α)). So, w = λαNRuvα.
We have to prove that wu
 B[n/α] for all closed term u of type N.
Let n be the normal form of u: by Lemma 2 n is a numeral. A plain induction shows that

wn = Ruvn
 B[n/α]

for u
 B(0) and vi
 B(i)→ B(S(i)) for all numerals i by induction hypothesis. If we
set i = n, the thesis follows by Lemma 9 and wu = wn.

13. r is the rule for booleans, then w = λαBool if α then u else v, Γ ` u : B(True), Γ ` v :
B(False) and A = ∀αBoolB. By inductive hypothesis, u
 B(True) and v
 B(False).
So, w = λαBoolif α then u else v. Let t : Bool be a closed term of HAω; by Lemma 9, it
is enough to prove that

wt = (if t then u else v)
 B[t/αBool] .

By Lemma 2, there are two cases:
the normal form of t is True. Then wt = (if True then u else v) reduces to u: the
thesis follows by Lemma 9 and the inductive hypothesis on u.
the normal form of t is False. Then wt reduces to v: the thesis follows by Lemma 9
and the inductive hypothesis on v.

14. r is a Post rule, then w = if A then tt 0 else if A⊥1 then u1 else . . . if A⊥n then un else tt 0.
By inductive hypothesis, for i = 1, . . . , n, ui
 Ai. There are two cases:

if A = True , then w = tt 0 = >0 ∈ >> and thus w
 A.
if A = False, then there exists j ∈ [1, n] such that Aj = False and uj ∈ ⊥⊥. Thus
w = uj and the thesis follows by Lemma 9 and the inductive hypothesis.

F. Aschieri and M. Zorzi 41

15. r is the MP axiom, then for some atomic formula Q

w = λz(N→U)→U〈 quote (zmtestλx.Q), if Q⊥[quote (zmtestλx.Q)/x] then tt 0 else zmtestλx.Q〉

and A = ¬∀xNQ → ∃xNQ⊥. Let u : (N → U) → U be a closed term of T such that
u
 (∀xNQ)→ ⊥. We have to prove that

wu = 〈 quote (umtestλx.Q), if Q⊥[quote (umtestλx.Q)/x] then tt 0 else umtestλx.Q〉
 ∃xNQ⊥

By Theorem 2, assume quote (umtestλx.Q) = m, with m numeral. There are two cases:
m is a witness for ∃xNQ⊥, that is, Q⊥[m/x] = True. Then

π1(wu) = if Q⊥[m/x] then tt 0 else umtestλx.Q = >0 ∈ >>

and by Lemma 9 we can conclude wu
 ∃xNQ⊥.
m is not a witness for ∃xNQ⊥, that is, Q⊥[m/x] = False and

π1(wu) = if Q⊥[m/x] then tt 0 else umtestλx.Q = umtestλx.Q

In order to obtain the thesis, we have to prove that umtestλx.Q
 Q⊥[m/x]. We have
that testλx.Q
 ∀xNQ and so u testλx.Q
 ⊥. Therefore u testλx.Q = ⊥n, for some
numeral n. Let us define the saturated relation R defined as in Lemma 14

R ::= {(t1, t2) | t1 = t2 or (t1 = >i, t2 = ⊥i and Q[i/x] = False for some i)}

By the Test Equivalence Lemma 14, mtestλx.Q ∼R testλx.Q, quote ∼R quote ;
therefore, by Corollary 13, u ∼R u and by Definition 10, umtestλx.Q ∼R u testλx.Q,
which implies umtestλx.Q R u testλx.Q. Now, u testλx.Q = ⊥n and it cannot be that
umtestλx.Q = >n, because by assumption quote (umtestλx.Q) = m and we would
thus have m = n, with again by assumption

Q[m/x] = True

By definition of R, this forces umtestλx.Q = u testλx.Q. Therefore, umtestλx.Q ∈ ⊥⊥.
We conclude that umtestλx.Q
 Q⊥[m/x].

J

Since all the terms decorating the inference rules of HAω + MP are proof-like, as an easy
corollary of Theorem 15 we obtain the main theorem:

I Theorem 16. If A is a closed formula and HAω + MP ` t : A, then t
 A, with t proof-like
term of T .

6.2 Realizability and Truth
We now want to investigate the relationship between realizability and truth. We have already
seen in Proposition 7 that any formula is realizable. Here, we want to show that our notion
of realizability is consistent at least when realizers come from proofs in HAω + MP: whenever
a formula not containing → is realized by a proof-like term, it is also true, for a suitable
notion of truth. Intuitively, we consider a formula of HAω to hold if it is true in the canonical
syntactical model in which quantifiers of type τ range over the closed terms of HAω of type τ .
In particular, the truth of arithmetical formulas is exactly the standard arithmetical truth
over N. We now give the obvious definition.

TYPES 2013

42 A “Game Semantical” Intuitionistic Realizability Validating Markov’s Principle

I Definition 17 (Truth in the Syntactical Model). Given a closed formula F of HAω, we define
by induction over F its truth value [[F]] ∈ {True, False}.

If P is atomic, [[P]] = True if P = True, [[P]] = False otherwise.
[[A ∧B]] = True if [[A]] = [[B]] = True, [[A ∧B]] = False otherwise.
[[A ∨B]] = True if [[A]] = True or [[B]] = True, [[A ∨B]] = False otherwise.
[[A→ B]] = True if [[A]] = True implies [[B]] = True, [[A→ B]] = False otherwise.
[[∀xτA]] = True if for all closed terms t : τ of HAω, [[A[t/x]]] = True, [[∀xτA]] = False
otherwise.
[[∃xτA]] = True if there exists a closed term t : τ of HAω such that [[A[t/xτ]]] = True,
[[∃xτA]] = False otherwise.

We are now ready show the consistency of our notion of realizability.

I Proposition 18 (Consistency of Realizability). Let F be a closed →-free formula and let t
be a proof-like term such that t
 F . Then [[F]] = True.

Proof. By induction on F .
1. F = P , with P atomic. Since t is proof-like, no term in the reduction tree of t can contain

a constant in ⊥⊥. Therefore, t /∈ ⊥⊥, and since t
 P , it must be that P = True.
2. F = A∧B. Since t
 A∧B, we have that π0t
 A and π1t
 B. By induction hypothesis,

[[A]] = True and [[B]] = True. Therefore, [[A ∧B]] = True.
3. F = A ∨B. Since t
 A ∨B, we have that p1t
 A or p2t
 B. By induction hypothesis,

[[A]] = True or [[B]] = True. Therefore, [[A ∨B]] = True.
4. F = ∀xτA. Since t
 ∀xτA, we have that for all closed terms u of HAω, tu
 A[u/xτ].

By induction hypothesis, for all closed terms u of HAω, [[A[u/xτ]]] = True. Therefore,
[[∀xτA]] = True.

5. F = ∃xτA. Since t
 ∃xτA, we have that for π0t = u for some closed term u of HAω, and
π1t
 A[u/xτ]. By induction hypothesis, [[A[u/xτ]]] = True. Therefore, [[∃xτA]] = True.

J

Proposition 18 is very important since ensure that proof-like realizers produce correct
constructive content for the formulas they realize. For instance, if t
 ∃xτA, then π0t = u

for some closed term u of HAω and [[A[u/x]]] = True. Thus, our realizability can be used to
extract in an effective way sound witnesses from proofs in HAω + MP of →-free formulas.
Proposition 18 is not true for all formulas, since the Axiom of Choice is realizable, as in
Kreisel’s modified realizability, but not true in the syntactical model. But we conjecture
that Proposition 18 can be strengthened further and that many kind of formulas containing
implications are true when realized. However, for reasons of space and complexity we do not
address this matter here.

7 Concluding Remarks and Further Works

As remarked in the introduction, there are several constructive interpretations of Markov’s
Principle [10, 5, 11]. While the semantics are quite different from each other, it is quite clear
that the computational mechanisms employed by the extracted programs are essentially the
same. Our realizability is no exception and exploits, as all the other interpretations, a proof
of ¬∀xNP in order to get a witness for ∃xNP⊥.

However, it is clear that our realizability is intensionally different from the Dialectica, it
is simpler and the term assignment for extracting programs is much lighter. It remains to

F. Aschieri and M. Zorzi 43

establish the exact relationship between the two notions: are they equivalent? We conjecture
that in most cases there is a translation between realizers of formulas in our sense and terms
witnessing their Dialectica interpretation.

Our realizability appears also less ad hoc then Avigad’s smooth version [3] of Coquand-
Hofmann translation, which requires an usual forcing style definition, with conditions being
set of purely universal formulas. With that approach one must always refer to these conditions,
which are used to interpret Markov’s Principle, even when considering other formulas or
axiom schemes (for example, one may like to interpret countable choice, which has nothing
to do with MP).

We also remark that our realizability has not been formulated as a syntactical formula
translation. Indeed it is not trivial to formalize it in such a way, since we have employed
several syntactical tools, as the notion of proof-like term and the normalization theorem.
However, we claim to be able to formulate realizability as a formula translation in the style
of modified realizability. Once formalized, we also claim that our realizability can be used
to obtain with new methods some conservativity results, for example the one stating that
HAω + MP is conservative over HAω for →-free arithmetical formulas.

Finally, compared with Herbelin [11], we employ a purely functional language, while he
uses exception handling mechanisms.

Another way of extending this work is to interpret the generalized Markov’s Principle:

GMP : ¬∀xτP → ∃xτP⊥ .

It is indeed reasonable that the methods of this paper can be refined in order to interpret
also this axiom.

References
1 F. Aschieri: A Constructive Analysis of Learning in Peano Arithmetic, Annals of Pure and

Applied Logic 162(11), 2012.
2 F. Aschieri, S. Berardi: A New Use of Friedman’s Translation: Interactive Realizability,

Logic, Construction, Computation, Ontos Mathematical Logic 3, 11–50, 2011.
3 J. Avigad: Interpreting Classical Theories in Constructive Ones, Journal of Symbolic Logic

65, 1785–1812, 2000.
4 T. Coquand: A Semantic of Evidence for Classical Arithmetic, Journal of Symbolic Logic

60, 325–337,1995.
5 T. Coquand, M. Hofmann: A New Way of Establishing Conservativity of Classical Systems

over their Intuitionistic Versions, Mathematical Structures in Computer Science 9(4), 323–
333, 1999.

6 J. Diller: Logical Problems of Functional Intepretations, Annals of Pure and Applied Logic
114, 27–42, 2002.

7 H. Friedman: Classically and Intuitionistically Provable Recursive Functions, Lecture Notes
in Mathematics 669, 21–27, 1978.

8 J.-Y. Girard, Y. Lafont, P. Taylor: Proofs and Types, Cambridge University Press. 1989.
9 Girard, J.-Y.: Proof Theory and Logical Complexity, Studies in Proof Theory, Bibliopolis,

1987.
10 K. Gödel: Über eine bisher noch nicht benutzte Erweiterung des finiten Standpunktes, Dia-

lectica 12, 280–287, 1958.
11 H. Herbelin: An Intuitionistic Logic that Proves Markov’s Principle, Proceedings of Logic

in Computer Science, 50–56, 2010.
12 J. Hintikka, G. Sandu: Game-Theoretical Semantics in Handbook of Language and Com-

putation, MIT Press, 1997.

TYPES 2013

44 A “Game Semantical” Intuitionistic Realizability Validating Markov’s Principle

13 S.C. Kleene: On the interpretation of intuitionistic number theory. Journal of Symbolic
Logic 10(4),109–124, 1972.

14 G. Kreisel: Interpretation of Analysis by Means of Constructive Functionals of Finite Types.
Constructivity in Mathematics, 101–128, North-Holland, 1959.

15 G. Kreisel: On Weak Completeness of Intuitionistic Predicate Logic, Journal of Symbolic
Logic 27, 1962.

16 J. Mitchell: Foundations for Programming Languages, MIT Press, 2000.
17 P. Oliva: Unifying Functional Intepretations, Notre Dame Journal of Formal Logic 47(2),

263–290, 2006.
18 D. Prawitz: Ideas and Results in Proof Theory. In Fenstad, ed., Proceedings of the 2nd

Scandinavian Logic Symposium, 235–307, North-Holland, 1972.
19 M.H. Sorensen, P. Urzyczyn: Lectures on the Curry-Howard isomorphism, Studies in Logic

and the Foundations of Mathematics 149, Elsevier, 2006.
20 A. Troelstra: Notions of Realizability for Intuitionistic Arithmetic and Intuitionistic Arith-

metic in all Finite Types, in Fenstad, ed., Proceedings of the 2nd Scandinavian Logic
Symposium, 369–405, North-Holland,1972.

21 A. Troelstra: Metamathematical Investigations of Intuitionistic Arithmetic and Analysis,
Lectures Notes in Mathematics 344, Springer-Verlag, 1973.

22 A. Troelstra: Realizability, in S. Buss, ed., Handbook of Proof Theory, Studies in Logic
and in the Foundation of Mathematics, Elsevier, 1998.

23 A. Troelstra, D. van Dalen: Constructivism in Mathematics Volume I, North-Holland, 1988.

Formally Verified Implementation of an Idealized
Model of Virtualization
Gilles Barthe1, Gustavo Betarte2, Juan Diego Campo2,
Jesús Mauricio Chimento3, and Carlos Luna2

1 IMDEA Software, Madrid, Spain
gilles.barthe@imdea.org

2 InCo, Facultad de Ingeniería, Universidad de la República, Uruguay
{gustun,jdcampo,cluna}@fing.edu.uy

3 FCEIA, Universidad Nacional de Rosario, Argentina
checholcc@gmail.com

Abstract
VirtualCert is a machine-checked model of virtualization that can be used to reason about isol-
ation between operating systems in presence of cache-based side-channels. In contrast to most
prominent projects on operating systems verification, where such guarantees are proved directly
on concrete implementations of hypervisors, VirtualCert abstracts away most implementations
issues and specifies the effects of hypervisor actions axiomatically, in terms of preconditions and
postconditions. Unfortunately, seemingly innocuous implementation issues are often relevant for
security. Incorporating the treatment of errors into VirtualCert is therefore an important step
towards strengthening the isolation theorems proved in earlier work. In this paper, we extend
our earlier model with errors, and prove that isolation theorems still apply. In addition, we
provide an executable specification of the hypervisor, and prove that it correctly implements the
axiomatic model. The executable specification constitutes a first step towards a more realistic
implementation of a hypervisor, and provides a useful tool for validating the axiomatic semantics
developed in previous work.

1998 ACM Subject Classification D.2.4 Software/Program Verification, D.4.6 Security and
Protection

Keywords and phrases virtualization, cache and TLB, executable specification, error manage-
ment, isolation

Digital Object Identifier 10.4230/LIPIcs.TYPES.2013.45

1 Introduction

Virtualization is a prominent technology that allows high-integrity, safety-critical, systems
and untrusted, non-critical, systems to coexist securely on the same platform and efficiently
share its resources. To achieve the strong security guarantees requested by these application
scenarios, virtualization platforms impose a strict control on the interactions between their
guest systems. While this control theoretically guarantees isolation between guest systems,
implementation errors and side-channels often lead to breaches of confidentiality, allowing
a malicious guest system to obtain secret information, such as a cryptographic key, about
another guest system.

Over the last few years, there have been significant efforts to prove that virtualization
platforms deliver the expected, strong, isolation properties between operating systems. The
most prominent efforts in this direction are within the Hyper-V [13, 19] and L4.verified [17]

© Gilles Barthe, Gustavo Betarte, Juan Diego Campo, Jesús Mauricio Chimento, and Carlos Luna;
licensed under Creative Commons License CC-BY

19th International Conference on Types for Proofs and Programs (TYPES 2013).
Editors: Ralph Matthes and Aleksy Schubert; pp. 45–63

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TYPES.2013.45
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

46 Formally Verified Implementation of an Idealized Model of Virtualization

projects, which aim to derive strong guarantees for concrete implementations: more specific-
ally, Murray et al. [24] recently presented a machine-checked information flow security proof
for the seL4 microkernel.

Earlier work

In [4, 5], we have pursued a complementary approach in which verification of isolation
properties is conducted in an idealized model of virtualization, named VirtualCert [28].
In comparison with the Hyper-V and L4.verified projects, our proofs are based on an
axiomatization of the semantics of a hypervisor, and abstract away many details from the
implementation; on the other hand, our model integrates caches and Translation Lookaside
Buffers (TLBs), two security relevant components that are not considered in these works.
Specifically, we formalize using the Coq proof assistant [31] the semantics of a hypervisor.
The semantics accounts for cache-based side-channels, by allowing that a malicious operating
system can draw observations from the history of the cache; the treatment of cache-based
side-channels is inspired from earlier work on physically observable cryptography [23], but is
specialized to caches and TLBs. Then, we prove that, for a wide range of replacement and
write policies, flushing the cache upon switching between guest operating systems ensures
OS isolation and prevents access-driven cache-based attacks [34].

Contributions

The axiomatic semantics of [4, 5] only considers correct execution. The first contribution of
this paper is an implementation of a hypervisor in the programming language of Coq, and a
proof that it realizes the axiomatic semantics. Although it remains idealized and far from a
realistic hypervisor, the implementation arguably provides a useful mechanism for validating
the axiomatic semantics.

The implementation is total, in the sense that it computes for every state and action a
new state or an error. Thus, soundness is proved with respect to an extended axiomatic
semantics in which transitions may lead to errors. The second contribution of this paper is a
proof that OS isolation remains valid for executions that may trigger errors.

Formal language and notation used

The Coq proof assistant [31, 9] is a free open source software that provides a (dependently
typed) functional programming language and a reasoning framework based on higher order
logic to perform proofs of programs. As examples of its applicability, Coq has been used
as a framework for formalizing programming environments and designing special platforms
for software verification: the Gemalto and Trusted Logic companies obtained the level CC
EAL 7 of certification for their formalization, developed in Coq, of the security properties of
the JavaCard platform [11, 10, 1]; Leroy and others developed in Coq a certified optimizing
compiler for a large subset of the C programming language [20]; Barthe and others used Coq
to develop Certicrypt, an environment of formal proofs for computational cryptography [7].

We developed our specification in the Calculus of Inductive Constructions (CIC) [14,
15, 27] – formal language that combines a higher-order logic and a richly-typed functional
programming language – using Coq.

We freely use enumerated types, option types, lists, streams and records. Enumerated
types and (parametric) sum types are defined using Haskell-like notation; for example, we
define for every type T the type option T

def= None | Some (t : T). Record types are of the
form {l1 : T1, . . . , ln : Tn}, whereas their elements are of the form 〈t1, . . . , tn〉. Field selection

G. Barthe, G. Betarte, J. D. Campo, J. M. Chimento, and C. Luna 47

and field update are respectively written as r.l and r′[l := v]; we also use simultaneous field
update, which is defined in the usual way. We make an extensive use of partial maps, and
bounded partial maps: the type of partial maps from objects of type A into objects of type
B is written A 7→ B, and the type of partial maps from A to B whose domain is of size
smaller or equal to k (where k is a natural number) is written as A 7→k B. Application of
a map m on an object a of type A is denoted m[a] and map update is written m[a := b],
where b overwrites the value, if any, associated to the key a.

Organization of the paper

The rest of the paper is organized as follows. Section 2 provides a brief account of the basic
components of the idealized model focusing on the memory model and the notion of state
that has been formalized. Section 3 describes the formal axiomatic and executable semantics
of the hypervisor and outlines the proof of correctness of the implementation. In section 4
we present the isolation theorems for the model extended with execution errors. Section 5
discusses related work and concludes.

The formal development can be found in [28], and can be verified using Coq.

2 Background

In this section we provide insights into the basic structures of VirtualCert, namely, the
memory model and the set of (valid) states.

Memory model

The formalized memory model includes the main memory of the platform, various kinds of
memory spaces, and the cache and the TLB. Our modelling choices are guided by Xen [3],
and specifically, by Xen on ARM [16]. As shown in Figure 1 there are three different
types of memory addresses: i) the machine addresses (written madd) model real hardware
memory on the host machine and it is never directly accessed by the guest operating systems,
ii) the physical addresses (padd) are an abstraction provided by the hypervisor, in order
for the guest operating systems to use a contiguous memory space when dealing with its
memory pages. The mapping between physical and machine addresses is managed exclusively
by the hypervisor, and is transparent to the guest operating systems, and iii) the virtual
addresses (vadd) are used by applications running on guest operating systems. Each OS
has a designated portion of its virtual address space that is reserved for the hypervisor to
attend hypercalls. A hypercall interface allows OSs to perform a synchronous software trap
into the hypervisor to perform a privileged operation, analogous to the use of system calls
in conventional operating systems. The hypervisor maintains page tables that map virtual
addresses to machine addresses in special memory pages. The operating systems must call
the hypervisor to modify these mappings.

The figure also shows the cache and the TLB. The cache is indexed by a virtual address,
modeling a Virtually Indexed Virtually Tagged (VIVT) cache, and holds a (partial) copy
of memory pages. The TLB is used in conjunction with the current page table of the
active OS to map virtual to machine addresses. In [5], we present a brief overview of
cache management, where we describe different cache types and alternatives policies for
implementing cache content management, in particular concerning the update and replacement
of cache information.

TYPES 2013

48 Formally Verified Implementation of an Idealized Model of Virtualization

Machine Memory

...

OS1
RW

OS1
RW

OS1
RW

OS1
RW

OS1
RW

OS2
RW

OS2
RW

OS2
RW

Hyp

Hyp

Hyp

OS1
PT

OS1
PT

OS2
PT

OS
Current Virtual

Memory

Hypervisor
reserved
region

OS accessible
region

...

OS Physical
Memory

OS hypervisor
mapping

Active OS Cache

OS1
RW

Hyp

OS1
RW

Hyp

OS1
RW

OS1
RW

OS1
RW

OS1
RW

OS1
RW

Hyp

va1

va2

ma1

ma2

.

.

.

.

.

.

TLB

OS current
PT page
mapping

Figure 1 Memory model of the platform.

Platform states
States are modeled as records:

State def= { oss : oss_map,

active_os : os_ident,
mode : exec_mode,

activity : os_activity,

hypervisor : hypervisor_map,

memory : machine_memory,

cache : cache_vivt,
tlb : tlb_struct } .

We define a type os_ident of identifiers for guest OSs and a predicate trusted_os that
separates between trusted and untrusted OSs. The state contains information about each
guest OS such as its current page table, and whether the OS has a pending hypercall to be
resolved. Formally this information is captured by a mapping oss_map that associates OS
identifiers with objects of type os, where

os def= {curr_page : padd, hcall : option Hyper_call} ,

oss_map def= os_ident 7→ os .

The state also stores the current active operating system, and the execution mode of the
CPU (user or supervisor mode). Guest operating systems execute in user mode (where some
privileged instructions are not available) and the hypervisor executes in supervisor mode.
The activity registers whether the active OS is currently running or waiting for a hypercall
to be resolved. The mapping, that given an OS returns the corresponding mapping from
physical to machine addresses, is formalized as an object of the type hypervisor_map, where

hypervisor_map def= os_ident 7→ (padd 7→ madd) .

The real platform memory is formalized as a mapping that associates to a machine address
a page. A memory page consists of a page content (either a readable/writable value, an OS

G. Barthe, G. Betarte, J. D. Campo, J. M. Chimento, and C. Luna 49

page table mapping, or nothing) and a reference to the page owner (the hypervisor, an OS,
or none). Formally:

machine_memory def= madd 7→ page ,

content def= RW (v : option Value) | PT (va_to_ma : vadd 7→ madd) | Other ,

page_owner def= Hyp | Os (osi : os_ident) | No_Owner ,

page def= { page_content : content, page_owned_by : page_owner } .

Finally, the cache and the TLB of the platform are formalized as partial maps, whose
domains are bounded in size with positive fixed constants size_cache and size_tlb:

cache_vivt def= vadd 7→size_cache page ,

tlb_struct def= vadd 7→size_tlb madd .

We define a notion of valid state, through the predicate valid_state on states, that
captures essential properties of the platform. The definition is provided in Appendix A.1.

3 Verified implementation

In this section we first provide a short account of the axiomatic semantics of the hypervisor,
to proceed to motivate the extension of the model with execution errors. Then we describe
the executable specification and show that it constitutes a correct implementation of the
behavior specified by the idealized model.

3.1 Actions semantics
The axiomatic semantics of the hypervisor is modeled by defining a set of actions, and
providing their semantics as state transformers. Table 1 summarises a small subset of the
actions specified in our model. The complete set of actions is included in Appendix A.2.
Actions can be classified as follows:

hypervisor calls new, delete, pin, unpin and lswitch;
change of the active OS by the hypervisor (switch);
access, from an OS or the hypervisor, to memory pages (read and write);
update of page tables by the hypervisor on demand of an untrusted OS or by a trusted
OS directly (new and delete);
changes of the execution mode (chmod, ret_ctrl); and
changes in the hypervisor memory mapping (pin and unpin), which are performed by
the hypervisor on demand of an untrusted OS or by a trusted OS directly. These actions
model (de)allocation of resources.

The behaviour of actions is specified by a precondition Pre and by a postcondition Post
of respective types:

Pre : State → Action → Prop ,

Post : State → Action → State → Prop .

Figure 2 provides the axiomatic semantics of the write action.
The precondition of the action write va val says that there exists a machine address ma

such that va is associated to it (va_mapped_to_ma) and that the page associated to it in
the memory is readable/writable (is_RW); that the guest OS activity must be running; and

TYPES 2013

50 Formally Verified Implementation of an Idealized Model of Virtualization

Table 1 Actions.
read_hyper va The hypervisor reads virtual address va.
write va val A guest OS writes value val in virtual address va.
new_tr va pa The virtual address va is mapped to the machine address ma in the

memory mapping of the trusted active OS, where pa translates to ma
for the active OS.

switch o The hypervisor sets o to be the active OS.
lswitch_untr o pa The hypervisor changes the current memory mapping of the untrusted

active OS, to be the one located at physical address pa.
hcall c An untrusted OS requires privileged service c to be executed by the

hypervisor.
pin_untr o pa t The memory page that corresponds to physical address pa (for untrus-

ted OS o) is registered and classified with type t.
unpin_untr o pa The memory page that corresponds to physical address pa (for the

untrusted OS o) is un-registered.

Pre s (write va val) def= ∃ (ma : madd),
va_mapped_to_ma(s, va, ma) ∧ is_RW (s.memory[ma].page_content) ∧
os_accessible(va) ∧ s.activity = running

Post s (write va val) s′ def= ∃ (ma : madd) (pg : page),
let new_pg := {RW (Some val), pg.page_owned_by} in
va_mapped_to_pg_cache(s, va, pg) ∧ va_mapped_to_ma_cache(s, va, ma) ∧

s′ = s

 mem := (s.memory[ma := new_pg]),
cache := cache_add(fix_cache_synonym(s.cache, ma), va, new_pg),

tlb := tlb_add(s.tlb, va, ma)


Figure 2 Axiomatic specification of action write.

that va must be accessible by the active guest OS (os_accessible). Its postcondition sets up
that the only variations in the state after executing this action can be produced in the value
of the page associated to ma in memory, and in the values stored in the cache and the TLB.
It is not hard to see that, as the cache uses a write-through policy, both the memory and the
cache are updated when a write is performed. As explained in [5], a cache c2 is the result of
updating a cache c1 with a pair va and pg, written c2 = cache_add(c1, va, pg), iff

pg = c2[va] ∧
∀ (va′ : vadd) (pg′ : page), va 6= va′ → pg′ = c2[va′] → pg′ = c1[va′] .

The definition of c2 = tlb_add(c1, va, ma) is analogous. Moreover, in order to avoid aliasing
problems we fix synonyms before adding a new entry into the cache using the function
fix_cache_synonym. The result of fix_cache_synonym(c1, ma) is a cache c2 whose indexes
(virtual addresses) are translated to machine addresses ma′ which differ from ma. We recall
that we are modeling a VIVT cache.

3.2 Error management
There can be attempts to execute an action on a state that does not verify the precondition
of that action. In the presence of one such situation the system answers with a corresponding
error code. These error codes are defined in our model by the enumerated type ErrorCode.

G. Barthe, G. Betarte, J. D. Campo, J. M. Chimento, and C. Luna 51

Table 2 Preconditions and error codes.

Action Failure Error Code

write va val

s.aos_activity 6= running wrong_os_activity
¬ va_mapped_to_ma(s, va, ma) invalid_vadd
¬ os_accessible(va) no_access_va_os
¬ is_RW (s.memory[ma].page_content) wrong_page_type

new_tr va pa

s.aos_activity 6= running wrong_os_activity
¬ os_accessible(va) no_access_va_os
¬ trusted_os(osi) os_trust_failure
¬ page_of_OS(s.active_os, pa, ma) wrong_owner

lswitch_untr osi pa

s.aos_activity 6= waiting wrong_os_activity
trusted_os(osi) os_trust_failure
¬ is_PT(s.memory[ma].page_content) wrong_page_type
¬ lswitch_hypercall(s.oss[osi].hcall) wrong_pending_hcall
¬ page_of_OS(s.activeos, pa, ma) wrong_owner

unpin_untr osi pa

s.aos_activity 6= waiting wrong_os_activity
trusted_os(osi) os_trust_failure
¬ page_unpin_hypercall(s.oss[osi].hcall) wrong_pending_hcall
¬ pa_not_curr_page(s, s.oss, pa) wrong_currpage_add
s.hypervisor [osi][pa] 6= ma invalid_madd
¬ no_va_mapped_to_ma(s, osi, ma) invalid_vadd

We define the relation between an error code and the unfulfilled precondition of an action
with the predicate ErrorMsg. Formally,

ErrorMsg : State → Action → ErrorCode → Prop

where ErrorMsg s a ec means that the execution of the action a in the state s generates
the error ec. In Table 2 we show some examples about error codes associated to unverified
preconditions of some actions of our model. Notice that in the case of the write action,
for instance, to each of the propositions that compose the precondition of that action there
corresponds an element of ErrorCode that indicates the failure of the state s to satisfy that
proposition.

Executions with error management
Executing an action a over a state s produces a new state s′ and a corresponding answer r

(denoted s ↪
a/r−−→ s′), where the relation between the former state and the new one is given by

the postcondition relation Post.

valid_state(s) Pre(s, a) Post(s, a, s′)

s ↪
a/ok−−−→ s′

valid_state(s) ErrorMsg(s, a, ec)

s ↪
a/error ec−−−−−−−→ s

Whenever an action occurs for which the precondition holds, the (valid) state may change in
such a way that the action postcondition is established. The notation s ↪

a/ok−−−→ s′ may be read

TYPES 2013

52 Formally Verified Implementation of an Idealized Model of Virtualization

as the execution of the action a in a valid state s results in a new state s′. However, if the
precondition is not satisfied, then the state s remains unchanged and the system answer is
the error message determined by the relation ErrorMsg.

Formally, the possible answers of the system are defined by the following type:

Response def= ok : Response | error : ErrorCode → Response

where ok is the answer resulting from a successful execution of an action.
One-step execution with error management preserves valid states, that is to say, the state

resulting from the execution of an action is also a valid one.

I Lemma 1 (Validity is invariant).
∀ (s s′ : State)(a : Action)(r : Response),
valid_state(s) → s ↪

a/r−−→ s′ → valid_state(s′) .

Platform state invariants, such as state validity, are useful to analyze other relevant
properties of the model. In particular, the results presented in this work are obtained from
valid states of the platform.

3.3 Executable specification
The executable specification of the hypervisor has been written using the Coq proof assistant
and it ultimately amounts to the definition of functions that implement action execution.
The functions have been defined so as to conform to the axiomatic specification of action
execution as provided by the idealized model. The implementation of the hypervisor consists
of a set of Coq functions, such that for every predicate involved in the axiomatic specification
of action execution there exists a function which stands for the functional counterpart of
that predicate. An important characteristics of our formalization is that the definition of
state that is used for defining the executable semantics of the hypervisor is exactly the same
as the one introduced in the idealized model. This simplifies the formal proof of soundness
between the inductive and the functional semantics of the hypervisor. The execution of
the virtualization platform consists of a (potentially infinite) sequence of action executions
starting in an (initial) platform state. The output of the execution is the corresponding
sequence of memory states (the trace of execution) obtained while executing the sequence of
actions.

3.3.1 Action execution
The execution of actions has been implemented as a step function, that given a memory
state s and an action a invokes the function that implements the execution of a in s, which
in turn returns an object res of type Result:

Result def= { resp : Response, st : State }

where res.resp is either an error code ec, if the precondition of the actions does not hold in
state s, or otherwise the value ok, and the state res.st represents the execution effect. The
step function acts basically as an action dispatcher. Figure 3, which shows the structure of
the dispatcher, details the branch corresponding to the dispatching of action write, which is
the action we shall use along this section to illustrate the working of the implementation.

The functions invoked in the branches, like write_safe, are state transformers whose
definition follows this pattern: first it is checked whether the precondition of the action is

G. Barthe, G. Betarte, J. D. Campo, J. M. Chimento, and C. Luna 53

Definition step s a :=
match a with

| . . .⇒ . . .

| Write va val ⇒ write_safe(s, va, val)
| . . .⇒ . . .

end.

Figure 3 The step function.

Definition write_safe (s : state) (va : vadd) (val : value) : Result :=
match write_pre(s, va, val) with

| Some ec ⇒ {error(ec), s}
| None ⇒ {ok, write_post(s, va, val)}

end.

Figure 4 Execution of write action.

Definition write_pre (s : state) (va : vadd) (val : value) : option ErrorCode :=
match get_os_ma(s, va) with
| None ⇒ Some invalid_vadd
| Some ma
⇒match page_type(s.memory, ma) with
| Some RW
⇒match aos_activity(s) with
| Waiting ⇒ Some wrong_os_activity
| Running
⇒ if vadd_accessible(s, va)

then None
else Some no_access_va_os

end
| _⇒ Some wrong_page_type
end

end.

Figure 5 Validation of write action precondition.

satisfied in state s, and then, if that is the case, the function that implements the execution of
the action is invoked, otherwise, the state s, unchanged, is returned along with an appropriate
response.

In Figure 4 we show the definition of the function that implements the execution of the
write action. The Coq code of this function, together with that of the remaining functions,
can be found in [28].

The function write_pre is defined as the nested validation of each of the properties of
the precondition (see Figure 5). The function write_post, shown in Figure 6, implements
the expected behavior of the write action: when a new value has to be written in a certain
virtual address va, first it must be checked whether va is in the cache (i.e. is an index of
the cache). If that is the case, then the function updates both the cache and the memory,

TYPES 2013

54 Formally Verified Implementation of an Idealized Model of Virtualization

Definition write_post (s : state) (va : vadd) (val : value) : state :=
match s.cache[va] with
| Value old_pg ⇒
let new_pg := Page (RW_c (Some val)) (page_owned_by old_pg) in
let val_ma := va_mapped_to_ma_system(s, va) in
match val_ma with

| Value ma ⇒
s · [mem := s.memory[ma := new_pg],

cache := fcache_add(fix_cache_synonym(s.cache, ma), va, new_pg)]
| Error _ ⇒ s end

| Error _⇒
match s.tlb[va] with
| Value ma ⇒
match s.memory[ma] with
| Value old_pg ⇒
let new_pg := Page (RW_c (Some val)) (page_owned_by old_pg) in
s · [mem := s.memory[ma := new_pg],

cache := fcache_add(fix_cache_synonym(s.cache, ma), va, new_pg)]
| Error _⇒ s end

| Error _⇒
match va_mapped_to_ma_currentPT (s, va) with
| Value ma ⇒
match s.memory[ma] with
| Value old_pg ⇒
let new_pg := Page (RW_c (Some val)) (page_owned_by old_pg) in
s · [mem := s.memory[ma := new_pg],

cache := fcache_add(fix_cache_synonym(s.cache, ma), va, new_pg),
tlb := ftlb_add(s.tlb, va, ma)]

| Error _⇒ s end
| Error _⇒ s end end end.

Figure 6 Effect of write execution

because it implements a write-through policy. Otherwise, i.e. if the virtual address va is not
already in the cache, the machine address associated to va has to be determined in order
to write the new value in memory. First, the TLB is inspected to check whether va has
already been translated. If there is a translation of va in the TLB, then the machine address
is used to update the memory and the new entry 〈va, new_pg〉 is added to the cache. If
there is no translation of va in the TLB, then the corresponding machine address has to be
recovered using the current page table of the active guest OS. Once that translation has
been found, the memory is updated, the new entry 〈va, new_pg〉 is added to the cache and
the corresponding translation of va is added to the TLB.

3.3.2 Cache and TLB update
In the axiomatic semantics of cache and TLB management the replacement policy has
been left abstract. For the execution semantics we have chosen to implement a simple
FIFO replacement mechanism. However, this behavior is encapsulated in the definition

G. Barthe, G. Betarte, J. D. Campo, J. M. Chimento, and C. Luna 55

Definition fcache_add (c : cache_struct) (va : vadd) (pg : page) : cache_struct :=
if map_valid_index(c, va)
then map_add(c, va, pg)
else if is_full_cache(c)

then fifo_replace(c, va, pg)
else fifo_add(c, va, pg).

Figure 7 Cache update.

of the functions fcache_add and ftlb_add, which implement cache and TLB replacement,
respectively. Therefore, for the implementation of an alternative replacement policy it
suffices to modify correspondingly these two functions leaving the rest of the code unchanged.
Figure 7 shows the definition of the fcache_add function: first, it is checked whether the
virtual address va is the index of an entry of the cache c (map_valid_index). If this is the
case, it suffices to perform a simple update of c with the page pg (caches are implemented as
bounded maps of virtual addresses to machine addresses). Otherwise, the behaviour of the
function depends on whether c has room for a new entry or it is full (is_full_cache). If c is
full, the cache update, and entry eviction, is handled using the FIFO replacement algorithm
(fifo_replace). If there is room left for a new entry, then c must be updated following the
FIFO replacement algorithm guidelines for adding new entries in the cache (fifo_add). The
definitions of the replacement and update function for the TLB are analogous.

3.4 Soundness

We proceed now to outline the proof that the executable specification of the hypervisor
correctly implements the axiomatic model. It has been formally stated as a soundness
theorem and verified using the Coq proof assistant.

I Theorem 2 (Soundness of hypervisor implementation).
∀ (s : State) (a : Action),
valid_state(s)→ s ↪

a/step(s,a).resp−−−−−−−−−−→ step(s, a).st .

The proof of this theorem follows by, in the first place, performing a case analysis on
Pre(s, a) (this predicate is decidable) and then: if Pre(s, a) applying Lemma 3; otherwise
applying Lemma 5.

I Lemma 3 (Soundness of valid execution).
∀ (s : State) (a : Action),
valid_state(s)→ Pre(s, a) →
s ↪

a/ok−−−→ step(s, a).st ∧ step(s, a).resp = ok .

The proof of Lemma 3 proceeds by applying functional induction on step(s, a) and then by
providing the corresponding proof of soundness of the function that implements the execution
of each action. Thus, in the case of the action write we have stated and proved Lemma 4.
This lemma, in turn, follows by performing a case analysis on the result of applying the
function write_pre on s and the action: if the result is an error code then the thesis follows
by contradiction. Otherwise, it follows by the correctness of the function write_post.

TYPES 2013

56 Formally Verified Implementation of an Idealized Model of Virtualization

I Lemma 4 (Correctness of write execution).
∀ (s : State) (va : vadd) (val : value),
valid_state(s)→ Pre(s, (write va val)) →
Post(s, (write va val), write_post(s, va, val)) .

As to Lemma 5, the proof also proceeds by first applying functional induction on step(s, a).
Then, for each action a, it is shown that if ¬Pre(s, a) the execution of the function that
implements that action yields the values returned by the branch corresponding to the case
that the function that validates the precondition of the action a in state s fails, i.e., an error
code ec and the (unchanged) state s.

I Lemma 5 (Soundness of error execution).
∀ (s : State) (a : Action),
valid_state(s)→ ¬Pre(s, a)→ ∃ (ec : ErrorCode),
step(s, a).st = s ∧ step(s, a).resp = error(ec) ∧ ErrorMsg(s, a, ec) .

4 Isolation

Isolation theorems ensure that the virtualization platform protects guest operating systems
against each other, in the sense that a malicious operating system cannot gain information
about another victim operating system executing on the same platform. In earlier work [5],
we adopted ideas from physical cryptography and in particular the idea of leakage function to
model possible leaks of information via the cache, and prove that the virtualization platform
can guarantee perfect isolation by flushing the cache at every context switch. In this section,
we extend the proof of OS isolation from [5], yielding modifications in some key technical
definitions and lemmas below, so that it accounts for errors in execution traces.

4.1 OS Isolation
OS isolation is a 2-safety property [32, 12], cast in terms of two executions of the system, and
is closely related to the non-influence property studied by Oheimb and co-workers [25, 26].
Unfortunately, the technology for verifying 2-safety properties is not fully mature, making
their formal verification on large and complex programs exceedingly challenging.

Informally, OS isolation states that starting from states with the same information for an
operating system osi, osi cannot distinguish between the two traces, as long as it executes
the same actions in both. This captures the idea that the execution of osi does not depend
on the state or behaviour of the other systems, even in the presence of erroneous executions.

Note that there is one particular error (the out_of_memory error in [28]) that can in
principle influence the execution of an operating system, if during its execution the platform
runs out of memory. Since we are specifically interested in modelling observations on states
(and the cache, in particular), we treat this error as transparent for the executing operating
system, and only make sure it does not modify the state. This is consistent with what
usually happens in real implementations, where there are no data leaks from the victims
when the platform runs out of memory, and the only information an attacker learns is the
total memory consumption of the other operating systems in the platform. Additionally it
is possible, in this case, to assign to each guest OS a fixed pool of memory from which to
allocate, so whether allocation succeeds or fails for one OS doesn’t depend on what any other
guest OS does.

To formalize OS isolation we use a notion of state equivalence w.r.t. an operating system
osi. The definition of osi-equivalence (≡osi), which is stated in Appendix A.3, coincides

G. Barthe, G. Betarte, J. D. Campo, J. M. Chimento, and C. Luna 57

with the one used in [4]; in particular, it does not mention the cache and the TLB. However,
one can prove that it entails some form of cache equivalence and TLB equivalence on valid
states. Formally, we define two valid states s1 and s2 to be cache equivalent for osi, written
s1 ≡cache

osi s2, iff osi is the active OS in both states and the caches hold equal values for all
accessible virtual addresses va that are in the domain of the cache of both states, i.e. for all
virtual address va and pages p1 and p2

s1.active_os = s2.active_os = osi → os_accessible(va) →
s1.cache[va] = p1 → s2.cache[va] = p2 → p1 = p2 .

Note that we do not require that the domains of both caches coincide, as it would invalidate
the following lemma.

I Lemma 6 (Cache equivalence).
∀ (s1 s2 : State) (osi : os_ident),
valid_state(s1) → valid_state(s2) → s1 ≡osi s2 → s1 ≡cache

osi s2 .

The notion of TLB equivalence is defined in a similar way. We say that two valid states s1
and s2 are TLB equivalent for osi, written s1 ≡tlb

osi s2, iff osi is the active OS in both states
and for all accessible virtual addresses va that are in the domain of the TLB of both states,
if the machine address s1.tlb[va] holds a page with RW memory content, then if va appears
in s2.tlb, it holds the same page, i.e. for all machine addresses ma1 and ma2, and page pg:

s1.active_os = s2.active_os = osi →
s1.tlb[va] = ma1 → s1.memory[ma1] = pg →
∃ (val : Value), pg.page_content = RW (Some val)→
s2.tlb[va] = ma2 → s2.memory[ma2] = pg

and conversely. We have:

I Lemma 7 (Tlb equivalence).
∀ (s1 s2 : State) (osi : os_ident),
valid_state(s1) → valid_state(s2) → s1 ≡osi s2 → s1 ≡tlb

osi s2 .

We write s1 ≡cache,tlb
osi s2 as a shorthand for s1 ≡osi s2 ∧ s1 ≡cache

osi s2 ∧ s1 ≡tlb
osi s2. We

can now generalize the unwinding lemmas of [4]: the first lemma states that equivalence is
preserved by the execution of all actions that do not generate errors.

I Lemma 8 (Step-consistent unwinding lemma).
∀ (s1 s′

1 s2 s′
2 : State) (a : Action) (osi : os_ident),

s1 ≡osi s2 → os_action(s1, a, osi)→ os_action(s2, a, osi)→
s1 ↪

a/ok−−−→ s′
1 → s2 ↪

a/ok−−−→ s′
2 → s′

1 ≡
cache,tlb
osi s′

2 .

where os_action(s, a, osi) denote that action a is an action successfully executed by the OS
osi in the state s; in particular, its execution does not cause an error. Note that an execution
that fails does not generate a change in the system state.

The second lemma states that execution does not alter the state of non-active OSs, or
active OS if it performs an execution that fails.

I Lemma 9 (Locally preserves unwinding lemma).
∀ (s s′ : State) (a : Action) (r : Response) (osi : os_ident),
¬ os_action(s, a, osi) → s ↪

a/r−−→ s′ → s ≡cache,tlb
osi s′ .

TYPES 2013

58 Formally Verified Implementation of an Idealized Model of Virtualization

4.2 OS isolation in execution traces
The extension to traces of the relation one-step execution with error management is defined
as follows: an execution trace is defined as a stream (an infinite list) of states that are related
by the transition relation ↪

a/r−−→, i.e. an object of the form

s0 ↪
a0/r0−−−→ s1 ↪

a1/r1−−−→ s2 ↪
a2/r2−−−→ s3 . . .

In the sequel, we let t[i] denote the i-th state of a trace t and we use s ↪
a/r−−→ t to denote the

trace obtained by prepending the valid execution step s ↪
a/r−−→ t[0] to a trace t. We let Trace

define the type of these traces. Isolation properties are eventually expressed on execution
traces, rather than execution steps.

Non-influencing execution (errors)
Using the unwinding lemmas previously presented, one can establish a non-influence result
in the style of [25]. We define for each operating system osi a predicate same_os_actions
stating that two traces have the same set of actions w.r.t. osi; so that two traces are related
iff they perform the same valid osi-actions. Then we define two traces t1 and t2 to be
osi-equivalent, written t1 ≈osi,cache,tlb t2, co-inductively by the following rules:

t1 ≈osi,cache,tlb t2 ¬ os_action(s, a, osi)

(s ↪
a/r−−→ t1) ≈osi,cache,tlb t2

t1 ≈osi,cache,tlb t2 ¬ os_action(s, a, osi)

t1 ≈osi,cache,tlb (s ↪
a/r−−→ t2)

t1 ≈osi,cache,tlb t2 os_action(s1, a, osi) os_action(s2, a, osi) s1 ≡cache,tlb
osi s2

(s1 ↪
a/ok−−−→ t1) ≈osi,cache,tlb (s2 ↪

a/ok−−−→ t2)

I Theorem 10 (OS isolation).
∀ (t1 t2 : Trace) (osi : os_ident),
same_os_actions(osi, t1, t2)→ (t1[0] ≡osi t2[0])→ t1 ≈osi,cache,tlb t2 .

OS isolation formally establishes that two traces are osi-equivalent if they have the same
set of osi-actions and if their initial states are osi-equivalent. The proof of OS isolation
is based on co-induction principles and on the previous unwinding lemmas. Note that the
definition of osi-equivalent traces conveniently generalizes the notion used in [4] (by allowing
related traces to differ in the number of actions executed by other OSs) and extends that
presented in [5] considering executions with error management. In particular, Theorem 10
states that the OS isolation property introduced in [5] is also valid in the context of executions
that include error handling, considering that an osi-action is an action successfully executed
by the OS osi.

Though it is left as future work, it is interesting to comment on the validity of isolation
properties under other policies. On the one hand, the replacement policy for the cache
and the TLB is left abstract in our model, so any reasonable algorithm will preserve these
properties (as embodied e.g. in the definition of cache_add in Section 3.1). On the other
hand, we have fixed a write-through policy for the main memory: this policy entails that
updates to memory pages are done simultaneously to the cache and main memory, and we
have used throughout the development the invariant property that cache data is included
in the memory. This inclusion property will not hold if we were to use a write-back policy,

G. Barthe, G. Betarte, J. D. Campo, J. M. Chimento, and C. Luna 59

in which written entries are marked dirty and updates to main memory are done when a
page is removed from the cache. We believe that it remains possible to prove strong isolation
properties under the write-back policy, since page values, even if different in memory, will be
equal if we consider the cache and memory together.

Finally, the flushing policy is assumed to be a total flush on switch and local switch
execution. An alternative would be to tag cache (and TLB) entries with the virtual spaces
allowed to access the entry. This will not have as much impact on the current model as the
write policy, though changes will need to be done to the cache definition to include the tags.
Isolation properties would still hold, given correct semantics of access control of cache entries.

5 Related work and conclusion

Thanks to recent advances in verification technology, it is now becoming feasible to verify
formally realistic specifications and implementations of operating systems. A recent account
of existing efforts can be found in the surveys [18, 30]. Many of these works focus on
functional correctness of the hypervisor; one notable exception is [24], which proves that
the seL4 microkernel guarantees information flow security; this work builds on a proof of
integrity [29] and a proof of correctness and culminates a 30+ man-year verification effort.
In addition, many of these works do not consider cache, which is a distinctive focus of our
work. On the other hand, most of these works focus on implementations, and provide an
explicit treatment of errors – that was missing in our earlier work [5].

Moving away from OS verification, many works have addressed the problem of relat-
ing inductively defined relations and executable functions, in particular in the context of
programming language semantics. For instance, Tollitte et al [33] show how to extract a
functional implementation from an inductive specification in the Coq proof assistant. Similar
approaches exist for Isabelle, see e.g. [8]. Earlier, alternative approaches such as [2, 6] aim to
provide reasoning principles for executable specifications.

We have enhanced the idealized model of virtualization considered in [5] with an explicit
treatment of errors, and showed that OS isolation is preserved in this setting. Moreover we
have implemented an executable specification that realizes the axiomatic semantics used
in [5]. The formal development in this paper is about 15 kLOC of Coq, where 8k correspond
to the verified executable specification and 7k to the OS isolation proof on the extended
model with errors. In [28] we derive two certified hypervisor implementations, using the
extraction mechanism of Coq [22, 21], in functional languages Haskell and OCaml.

In future work, we intend to implement alternative executable semantics for different
models of cache and policies. Moreover, we plan to use our extended model as a basis for
investigating whether error management can lead to side-channels.

Acknowledgements. The authors want to thank TYPES reviewers for helpful feedback on
the paper.

The work of Gilles Barthe has been partially funded by European Project FP7 256980
NESSoS, Spanish project TIN2009-14599 DESAFIOS 10 and Madrid Regional project
S2009TIC-1465 PROMETIDOS and the work of Gustavo Betarte, Juan Diego Campo and
Carlos Luna by Uruguayan project CSIC-Convocatoria 2012, Proyectos I + D, VirtualCert –
Fase II.

TYPES 2013

60 Formally Verified Implementation of an Idealized Model of Virtualization

References
1 June Andronick. Modélisation et Vérification Formelles de Systèmes Embarqués dans les

Cartes à Microprocesseur – Plate-Forme Java Card et Système d’Exploitation. PhD thesis,
Université Paris-Sud, 2006.

2 Antonia Balaa and Yves Bertot. Fix-point equations for well-founded recursion in type
theory. In Mark Aagaard and John Harrison, editors, TPHOLs, volume 1869 of LNCS,
pages 1–16. Springer, 2000.

3 P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt,
and A. Warfield. Xen and the art of virtualization. In SOSP’03: Proceedings of the 19th
ACM Symposium on Operating Systems Principles, pages 164–177, New York, NY, USA,
2003. ACM Press.

4 G. Barthe, G. Betarte, J.D. Campo, and C. Luna. Formally verifying isolation and availab-
ility in an idealized model of virtualization. In FM 2011, pages 231–245. Springer-Verlag,
2011.

5 G. Barthe, G. Betarte, J.D. Campo, and C. Luna. Cache-Leakage Resilient OS Isolation
in an Idealized Model of Virtualization. In CSF 2012, pages 186–197, 2012.

6 G. Barthe, J. Forest, D. Pichardie, and V. Rusu. Defining and reasoning about recursive
functions: A practical tool for the coq proof assistant. In M. Hagiya and P. Wadler, editors,
FLOPS, volume 3945 of LNCS, pages 114–129. Springer, 2006.

7 Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. Formal certification of
code-based cryptographic proofs. SIGPLAN Not., 44(1):90–101, January 2009.

8 Stefan Berghofer, Lukas Bulwahn, and Florian Haftmann. Turning inductive into equa-
tional specifications. In S. Berghofer, T. Nipkow, C. Urban, and M. Wenzel, editors,
TPHOLs, volume 5674 of LNCS, pages 131–146. Springer, 2009.

9 Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Sci-
ence. Springer-Verlag, 2004.

10 G. Betarte, E. Giménez, C. Loiseaux, and B. Chetali. FORMAVIE: Formal Modeling and
Verification of the Java Card 2.1.1 Security Architecture. In Proceedings of eSmart’02,
2002.

11 Boutheina Chetali and Quang-Huy Nguyen. About the world-first smart card certificate
with eal7 formal assurances. Slides 9th ICCC, Jeju, Korea, September 2008.

12 M.R. Clarkson and F.B. Schneider. Hyperproperties. Journal of Computer Security,
18(6):1157–1210, 2010.

13 E. Cohen. Validating the microsoft hypervisor. In J. Misra, T. Nipkow, and E. Sekerinski,
editors, FM’06, volume 4085 of LNCS, pages 81–81. Springer, 2006.

14 Thierry Coquand and Gérard P. Huet. The calculus of constructions. Inf. Comput.,
76(2/3):95–120, 1988.

15 Thierry Coquand and Christine Paulin. Inductively defined types. In Per Martin-Löf and
Grigori Mints, editors, Conference on Computer Logic, volume 417 of Lecture Notes in
Computer Science, pages 50–66. Springer, 1988.

16 J.-Y. Hwang, S.-B. Suh, S.-K. Heo, C.-J. Park, J.-M. Ryu, S.-Y. Park, and C.-R. Kim. Xen
on arm: System virtualization using xen hypervisor for arm-based secure mobile phones.
In 5th IEEE Consumer and Communications Networking Conference, 2008.

17 G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. seL4:
Formal verification of an OS kernel. Communications of the ACM (CACM), 53(6):107–115,
June 2010.

18 Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip
Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas

G. Barthe, G. Betarte, J. D. Campo, J. M. Chimento, and C. Luna 61

Sewell, Harvey Tuch, and Simon Winwood. seL4: formal verification of an OS kernel. In
SOSP 2009, pages 207–220. ACM, 2009.

19 D. Leinenbach and T. Santen. Verifying the microsoft hyper-v hypervisor with vcc. In
A. Cavalcanti and D. Dams, editors, FM 2009, volume 5850 of LNCS, pages 806–809.
Springer, 2009.

20 Xavier Leroy. Formal verification of a realistic compiler. Commun. ACM, 52:107–115, July
2009.

21 P. Letouzey. Programmation fonctionnelle certifiée – L’extraction de programmes dans
l’assistant Coq. PhD thesis, Université Paris-Sud, July 2004.

22 Pierre Letouzey. A New Extraction for Coq. In Herman Geuvers and Freek Wiedijk, editors,
Types for Proofs and Programs, Second International Workshop, TYPES 2002, Berg en Dal,
The Netherlands, April 24-28, 2002, volume 2646 of Lecture Notes in Computer Science.
Springer-Verlag, 2003.

23 Silvio Micali and Leonid Reyzin. Physically observable cryptography (extended abstract).
In TCC 2004, pages 278–296, 2004.

24 T. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke, S. Seefried, C. Lewis, X. Gao,
and G. Klein. seL4: from General Purpose to a Proof of Information Flow Enforcement.
In Proc. of the 2013 IEEE Symp. on Security and Privacy (SP’13), pages 415–429, 2013.

25 David von Oheimb. Information flow control revisited: Noninfluence = Noninterference
+ Nonleakage. In P. Samarati, P. Ryan, D. Gollmann, and R. Molva, editors, Computer
Security – ESORICS 2004, volume 3193 of LNCS, pages 225–243. Springer, 2004.

26 David von Oheimb, Volkmar Lotz, and Georg Walter. Analyzing SLE 88 memory man-
agement security using Interacting State Machines. International Journal of Information
Security, 4(3):155–171, 2005.

27 C. Paulin-Mohring. Inductive definitions in the system coq - rules and properties. In
M. Bezem and J. F. Groote, editors, 1st Int. Conf. on Typed Lambda Calculi and Applica-
tions, volume 664 of LNCS, pages 328–345. Springer-Verlag, 1993.

28 The VirtualCert project. Supporting Coq formalization. See http://www.fing.edu.uy/
inco/grupos/gsi/proyectos/virtualcert.php.

29 Thomas Sewell, Simon Winwood, Peter Gammie, Toby Murray, June Andronick, and Ger-
win Klein. seL4 enforces integrity. In ITP 2011, Nijmegen, The Netherlands, 2011.

30 Zhong Shao. Certified software. Commun. ACM, 53(12):56–66, 2010.
31 The Coq Development Team. The Coq Proof Assistant Reference Manual, 2012.
32 T. Terauchi and A. Aiken. Secure information flow as a safety problem. In C. Hankin and

I. Siveroni, editors, Proceedings of SAS’05, volume 3672 of LNCS, pages 352–367. Springer-
Verlag, 2005.

33 Pierre-Nicolas Tollitte, David Delahaye, and Catherine Dubois. Producing certified func-
tional code from inductive specifications. In Chris Hawblitzel and Dale Miller, editors,
CPP, volume 7679 of LNCS, pages 76–91. Springer, 2012.

34 Eran Tromer, Dag Arne Osvik, and Adi Shamir. Efficient cache attacks on AES, and
countermeasures. J. Cryptology, 23(1):37–71, 2010.

TYPES 2013

http://www.fing.edu.uy/inco/grupos/gsi/proyectos/virtualcert.php
http://www.fing.edu.uy/inco/grupos/gsi/proyectos/virtualcert.php

62 Formally Verified Implementation of an Idealized Model of Virtualization

A Appendix

A.1 Valid state
We define a notion of valid state that captures essential properties of the platform. Formally,
the predicate valid_state holds on state s if s satisfies the following properties:

if the active OS is in running mode then no hypercall requested by it is pending;
if the hypervisor or a trusted OS (respectively untrusted OS) is running the processor
must be in supervisor (respectively user) mode;
the hypervisor maps an OS physical address to a machine address owned by that same
OS. This mapping is also injective;
all page tables of an OS o map virtual addresses to pages owned by o;
the current page table of any OS is owned by that OS;
any machine address which is associated to a virtual address in a page table has a
corresponding pre-image, which is a physical address, in the hypervisor mapping;
all cache keys are related in a page table mapping of the memory;
all cache pages have the same owner and type as those in machine memory;
if va is translated into ma according to the TLB, then the machine address ma is
associated to va in the active memory mapping.

All properties have a straightforward interpretation in our model. For example, the first
property is captured by the proposition:

∀ osi : os_ident, trusted_os(osi)→ (s.oss[osi]).hcall = None .

A.2 Actions
Table 3 summarises the complete set of actions specified in the model, and their effects.

A.3 Observational equivalence of states
We say that two states s1 and s2 are osi-equivalent, written s1 ≡osi s2, iff:

osi is the active OS in both states and the processor mode is the same, or the active OS
is different to osi in both states;
osi has the same hypercall in both states, or no hypercall in both states;
the current page tables of osi are the same in both states;
all page table mappings of osi that map a virtual address to a RW page in one state,
must map that address to a page with the same content in the other;
the hypervisor mappings of osi in both states are such that if a given physical address
maps to some RW page, it must map to a page with the same content on the other state.

Note that we cannot require that memory contents be the same in both states for them to
be osi-equivalent, because on a page_pin action, the hypervisor can assign an arbitrary (free)
machine address to the OS, so we consider osi-equivalence without taking into account the
actual value of the machine addresses assigned. In particular, two osi-equivalent states can
have different page table memory pages, which contain mappings from virtual to arbitrary
machine addresses, but such that the content at these machine addresses be the same in
both states, if it corresponds to an RW page.

G. Barthe, G. Betarte, J. D. Campo, J. M. Chimento, and C. Luna 63

Table 3 Full set of actions.

read va A guest OS reads virtual address va.
read_hyper va The hypervisor reads virtual address va.
write va val A guest OS writes value val in virtual address va.
write_hyper va val The hypervisor writes value val in virtual address va.
new_tr va pa The virtual address va is mapped to the machine address ma in the

memory mapping of the trusted active OS, where pa translates to ma
for the active OS.

new_untr o va pa The hypervisor adds (on behalf of the OS o) a new ordered pair
(mapping virtual address va to the machine address ma) to the current
memory mapping of the untrusted OS o, where pa translates to ma
for o.

new_hyper va ma The hypervisor adds a new ordered pair to the current memory mapping
of the active OS (mapping virtual address va to the machine address
ma) for his own purposes.

del_tr va The trusted active OS deletes the ordered pair that maps virtual
address va from its memory mapping.

del_untr o va The hypervisor deletes (on behalf of the o OS) the ordered pair that
maps virtual address va from the current memory mapping of o.

del_hyper va The hypervisor deletes (for its own purposes) the ordered pair that
maps virtual address va from the current memory mapping of the
active OS.

switch o The hypervisor sets o to be the active OS.
lswitch_tr pa The trusted active OS changes its current memory mapping to be

the one located at physical address pa. This action corresponds to a
traditional context switch by the active OS.

lswitch_untr o pa The hypervisor changes the current memory mapping of the untrusted
active OS, to be the one located at physical address pa.

silent Represents the silent action (the system does not advertise any effects).
hcall c An untrusted OS requires privileged service c to be executed by the

hypervisor.
ret_ctrl Returns the execution control to the hypervisor.
chmod The hypervisor changes the execution mode from supervisor to user

mode, if the active OS is untrusted, and gives to it the execution
control.

pin_tr pa t The memory page that corresponds to physical address pa (for the
active OS) is registered and classified with type t.

pin_untr o pa t The memory page that corresponds to physical address pa (for untrus-
ted OS o) is registered and classified with type t.

unpin_tr pa The memory page that corresponds to physical address pa (for the
active OS) is un-registered.

unpin_untr o pa The memory page that corresponds to physical address pa (for the
untrusted OS o) is un-registered.

TYPES 2013

Ramsey Theorem for Pairs As a Classical Principle
in Intuitionistic Arithmetic∗

Stefano Berardi1 and Silvia Steila2

1 Dipartimento di Informatica, Università degli studi di Torino
Corso Svizzera 185 Torino, Italia
stefano@di.unito.it

2 Dipartimento di Informatica, Università degli studi di Torino
Corso Svizzera 185 Torino, Italia
steila@di.unito.it

Abstract
We produce a first order proof of a famous combinatorial result, Ramsey Theorem for pairs and
in two colors. Our goal is to find the minimal classical principle that implies the “miniature”
version of Ramsey we may express in Heyting Arithmetic HA. We are going to prove that Ramsey
Theorem for pairs with recursive assignments of two colors is equivalent in HA to the sub-classical
principle Σ0

3-LLPO. One possible application of our result could be to use classical realization to
give constructive proofs of some combinatorial corollaries of Ramsey; another, a formalization of
Ramsey in HA, using a proof assistant.

In order to compare Ramsey Theorem with first order classical principles, we express it as
a schema in the first order language of arithmetic, instead of using quantification over sets and
functions as it is more usual: all sets we deal with are explicitly defined as arithmetical predicates.
In particular, we formally define the homogeneous set which is the witness of Ramsey theorem
as a ∆0

3-arithmetical predicate.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases formalization, constructivism, classical logic, Ramsey theorem

Digital Object Identifier 10.4230/LIPIcs.TYPES.2013.64

1 Introduction

The purpose of this paper is to study, from the viewpoint of first order arithmetic, Ramsey
Theorem [15] for pairs for recursive assignments of two colors, in order to find some principle
of classical logic equivalent to it in Intuitionistic Arithmetic HA. Ramsey theorem is
not intuitionistically provable, and a priori, it is not evident whether a classical principle
expressing Ramsey in intuitionistic arithmetic exists. Our long-time research goal is to study
the constructive content of corollaries in first order arithmetic of Ramsey Theorem using
interactive realizability, and to this aim we want to find the statement and the proof of
Ramsey in first order arithmetic requiring the minimum amount of classical logic. In the
PhD thesis of Giovanni Birolo [4] there is an example of a constructive study of a classical
proof obtained by interactive realizability. Birolo studied a geometric property that required

∗ This work was partially supported by the Accademia delle Scienze di Torino, the PRIN 2010 project
“Metodi logici per il trattamento dell’informazione”, and the Doctoral School of Sciences and Innovative
Technologies – Computer Science (Università degli studi di Torino).

© Stefano Berardi and Silvia Steila;
licensed under Creative Commons License CC-BY

19th International Conference on Types for Proofs and Programs (TYPES 2013).
Editors: Ralph Matthes and Aleksy Schubert; pp. 64–83

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TYPES.2013.64
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

S. Berardi and S. Steila 65

the law of Excluded Middle of level one (EM1); for Ramsey, the required principles are higher
than EM1 in the hierarchy of classical principles presented in [1].

Our study of Ramsey Theorem differs from the results in Classical Reverse Mathematics
([5], [6], [13], [8]) in many aspects. We already stressed that we formulate Ramsey in first
order arithmetic, replacing set variables with explicit set definitions. Besides, Classical
Reverse Mathematics is interested in the necessary set existence axioms needed to proof a
theorem and investigates the minimum restriction of the induction schema required in a
proof, while they assume the entire Excluded Middle schema. Our work may be considered
a kind of Intuitionistic Reverse Mathematics: we assume the entire induction schema, and
we investigate the minimum restriction of the Excluded Middle Schema and of some other
classical schemas required in a classical proof. Therefore our approach is different from
what Ishihara calls Constructive Reverse Mathematics in [9]. Ishihara works in Bishop’s
Constructive Mathematics which is an informal mathematics using intuitionistic logic and
assuming some function existence axioms; instead, he does not study the level of classical
principles used in the proof.

As regards the comprehension axiom, instead, there are some links with Classical Reverse
Mathematics. Recall that the description axiom says that each arithmetic binary predicate
that is fully and uniquely defined is a graph of some function: N→ N. If we add function
variables and we assume the description axiom, the Excluded Middle for an arithmetic
predicate and the comprehension axiom for the same predicate are equivalent in HA +
functions.

We may stress the difference between the two approaches through an example. Let
consider the Infinite Pigeonhole Principle. On the one hand, in reverse mathematics, this
principle is equivalent to BΣ0

2(the bounding principle for Σ0
2-formulas, see [16]) which is

equivalent to ∆0
2-induction ([17]). On the other hand, in our setting, it is a consequence

of the law of Excluded Middle of level two: EM2. In [12] Liu considered the base system
for reverse mathematics RCA0, in which we assume the entire Excluded Middle, but only
induction for Σ0

1 formulas and recursive comprehension. Liu proved that Ramsey Theorem
for pairs in two colors does not imply WKL0, Weak König’s Lemma for recursive trees, in
RCA0. Instead in [11] Kohlenbach and Kreuzer proved in iRCA*

0, the intuitionistic system
corresponding to RCA* (Σ0

0-induction, exponentiation axioms but no excluded middle), that
Ramsey Theorem for pairs implies Π0

2-LEM, which is more than WKL0. In this work we drop
function and set variables, and we consider Heyting Arithmetic HA, in which we have no
Excluded Middle Schema but we have the full induction schema. Under these assumptions,
we prove that recursive Ramsey Theorem for pairs in two colors is equivalent to Σ0

3-LLPO
(Lesser Limited Principle of Omniscience for Σ0

3 predicates, a principle weaker than full
Excluded Middle, but stronger than WKL0, which we explain below).

Our study of Ramsey Theorem differs also from the no-counterexample [2], since we do
not transform Ramsey Theorem into some weaker and constructively provable statement,
but we study the minimum restriction of the Excluded Middle schema required to prove
the original result in HA. We differ from the dialectica interpretation ([11], [14]), because it
transforms RT2

2 into a constructively provable, classically equivalent statement and deletes
the non-constructive content leaving only the combinatorial core. Moreover the dialectica
interpretation requires complex types and variables for each type, while we use the type of
natural numbers and of functions over natural numbers only, and no function variable.

At the beginning of this work, in a private communication, Alexander Kreuzer conjectured
that Erdős Rado proof of Ramsey Theorem may be formalized in HA + EM4, Excluded
Middle restricted to Σ0

4 formulas. We prove that he was right. Moreover, by modifying

TYPES 2013

66 Ramsey Theorem for Pairs As a Classical Principle in Intuitionistic Arithmetic

Jockusch’s proof of Ramsey [10] (that is already a modified version of Erdős Rado proof
of the same result) we prove that the classical principle Σ0

3-LLPO is in fact equivalent to
Ramsey Theorem in HA. Σ0

3-LLPO (see [1]) is a classical principle weaker than Excluded
Middle Schema for Σ0

3 formulas, which may be restated as the conjunction of Excluded
Middle for Σ0

2 formulas and De Morgan Laws for Σ0
3 formulas. If we add Choice to HA,

Σ0
3-LLPO is equivalent to WKL3, Weak König’s Lemma for Σ0

2 trees.
We hope to apply, in future works, the method called interactive realizability to understand

and explain the computational content of Ramsey Theorem, and to find new constructive
proofs for some consequences of it. The interactive realizability is a realizability interpretation
for first order classical arithmetic introduced in 2008 by Stefano Berardi and Ugo de’ Liguoro
[3]. If a corollary of Ramsey Theorem is a consequence of Intuitionistic Ramsey Theorem,
an alternative method to prove it constructively could be to use the Coquand’s work [7].
However his proof use the Brouwer’s thesis, so this method does not guarantee a proof in
HA.

This is the plan of the paper. In Section 2 we explain how to state Ramsey Theorem
without using functions and set variables; in Section 3 we prove that Ramsey Theorem
implies Σ0

3-LLPO and in Section 4, by modifying Jockusch’s proof, we prove the opposite
implication. In the conclusions we discuss the interest of the equivalence with Σ0

3-LLPO.

2 Ramsey Theorem and Classical Principles for Arithmetic

In this section we introduce some notations for Ramsey Theorem and for some classical
principles. Any natural number n is identified with the set {0, . . . , n − 1}. We use N to
denote the least infinite ordinal, which is identified with the set of natural numbers. For any
set X and any natural number r,

[X]r = {Y ⊆ X | |Y | = r}

denotes the set of subsets of X of cardinality r. If r = 1 then [N]r is the set of singleton
subsets of N, and just another notation for N. If r = 2 then [N]2 is the complete graph on
N: we think of any subset {x, y} of N with x 6= y as an edge of the graph. We will think
that each edge {x, y} has direction from min{x, y} to max{x, y}. Let n,m ∈ N, then a map
f : [N]r → n is called a coloring of [N]r with n colors. If r = 2 and f({x, y}) = c < n, then
we say that the edge {x, y} has color c. If f : [N]r → n is a map then for all X ⊆ N we
denote with f ′′[X]r the set of colors of hyper-edges of X, that is:

f ′′[X]r = {k ∈ N | ∃e ∈ [X]r such that f(e) = k} .

We say that X ⊆ [N]r is homogeneous for f , or f is homogeneous on X, if all hyper-edges
of X have the same color, that is, there exists k < n such that f ′′[X]r = {k}. We also say
that X is homogeneous for f in color k. If r = 1 we can think of the function f as a point
coloring map on natural numbers. In this case an homogeneous set X is any set of points of
N which all have the same color. If r = 2 we can think of the function f as an edge coloring
of a graph that has as its vertices the natural numbers. In this case an homogeneous set X
is any set of points of N whose connecting edges all have the same color.

We denote Heyting Arithmetic, with one symbol and axioms for each primitive recursive
map, with HA. We work in the language for Heyting Arithmetic with all primitive recursive
maps, extended with the symbols {f0, . . . , fn}, where n is a natural number and fi denotes
a total recursive function for all i < n+ 1. These fi will indicate an arbitrary coloring in the
formulation of Ramsey Theorem below. If P = ∀x1∃x2 . . . p(x1, x2, . . .), with p arithmetic

S. Berardi and S. Steila 67

atomic formula, and Q = ∃x1∀x2 . . .¬p(x1, x2 . . .), then we say that P , Q are dual each
other and we write P⊥ = Q and Q⊥ = P . Dual is defined only for prenex formulas as P , Q.
We consider the classical principles as statement schemas as in [1]. A conjunctive schema is
a set C of arithmetical formulas, expressing the second order statement “for all A in C, A
holds” in a first order language. We prove a conjunctive schema C in HA if we prove any A
in C in HA. A conjunctive schema C implies a formula A in HA if s1∧· · ·∧sn ` A in HA for
some s1, . . . , sn ∈ C. The conjunctive schema C implies another conjunctive schema C ′ in
HA if C implies A in HA for any A in C ′. In order to express Ramsey Theorem we also have
to consider the dual concept of disjunctive schema D, expressing the second order statement
“for some A in D, A holds” in a first order language. We prove a disjunctive schema D in
HA if we prove s1 ∨ · · · ∨ sn in HA for some s1, . . . , sn ∈ D. A disjunctive schema D implies
a formula A in HA if s ` A in HA for all s ∈ D.

The infinite Ramsey Theorem is a very important result for finite and infinite combinat-
orics. In this paper we study Ramsey Theorem in two colors, for singletons and for pairs.
They are informally stated as follows:

I RT1
2(Σ0

n). For any coloring ca : N → 2 of vertices with a parameter a, there exists an
infinite subset of N homogeneous for the given coloring. (ca ∈ Σ0

n).

I RT2
2(Σ0

n). For any coloring ca : [N]2 → 2 of edges with a parameter a, there exists an
infinite subset of N homogeneous for the given coloring. (ca ∈ Σ0

n).

RT2
2(Σ0

0) (respectively RT1
2(Σ0

0)) says that given a family {ca | a ∈ N} of recursive edge
(vertex) colorings of a graph with N vertices, then for any coloring there exists a subgraph
with N vertices such that each edge (vertex) of the subgraph has the same color.

In this work we formalize Ramsey Theorem for two colors, for pairs (respectively, for
singletons) and for recursive colorings by the following disjunctive schema which we call
Ramsey schema R:

R := {∀a(B(., ca) infin. hom. black ∨W (., ca) infin. hom. white) | B,W arithm. predic.} .

Here c = {ca | a ∈ N} denotes any recursive family of recursive assignment of two colors,
black and white. A sufficient condition to prove Ramsey schema is to find at least two
predicates B, W and a proof of ∀a(B(., ca) infinite homogeneous black ∨ W (., ca) infinite
homogeneous white) in HA. For short we say that for each recursive family of recursive
colorings there is an homogeneous set.

The conjunctive schemata for HA we consider, expressing classical principles and taken
from [1], are the followings.

I Σ0
n-LLPO. Lesser Limited Principle of Omniscience. For any parameter a

∀x, x′ (P (x, a) ∨ Q(x′, a)) =⇒ ∀xP (x, a) ∨ ∀xQ(x, a). (P, Q ∈ Σ0
n−1)

It is a kind of law for prenex formulas and if we assume the Axiom of Choice it is
equivalent to Weak König’s Lemma for Σ0

n−1 trees. We postpone the discussion about this
principle at the conclusions of the paper.

I Pigeonhole Principle for Π0
n. The Pigeonhole Principle states that given a partition of

infinitely many natural numbers in two classes, then at least one of these classes has infinitely
many elements. For any parameter a

∀x ∃z [z ≥ x ∧ (P (z, a) ∨Q(z, a))] =⇒

∀x ∃z [z ≥ x ∧ P (z, a)] ∨ ∀x ∃z [z ≥ x ∧ Q(z, a)]. (P,Q ∈ Π0
n)

TYPES 2013

68 Ramsey Theorem for Pairs As a Classical Principle in Intuitionistic Arithmetic

I EMn. Excluded Middle for Σ0
n formulas. For any parameter a

∃x P (x, a) ∨ ¬∃x P (x, a). (P ∈ Π0
n−1)

Recall that P⊥ denotes the dual of P for any prenex P . As shown in [1, corollary 2.9]
the law of Excluded Middle for Σ0

n formulas is equivalent in HA to

∃x P (x, a) ∨ ∀x P (x, a)⊥. (P ∈ Π0
n−1)

In all our schemata we use parameters. The parameter a is necessary since we need to use in
HA statements with a free variable a, like

∀a (∀x P (x, a) ∨ ∃x ¬P (x, a))

in our proof.

3 Ramsey Theorem for pairs and recursive coloring implies the
Limited Lesser Principle of Omniscience for Σ0

3 formulas

In this section we prove RT2
2(Σ0

0) =⇒ Σ0
3-LLPO in HA. From now on, all proofs are done in

Intuitionistic Arithmetic HA. By definition of disjunctive schema, we have to prove that for
each P in Σ0

3-LLPO, there exist a finite number of recursive families of recursive colorings
ca,0, . . . , ca,j−1 such that, fixed any Wi(., ca,i) and Bi(., ca,i), if we assume

{∀a(Wi(., ca,i) infinite and homogeneous ∨Bi(., ca,i) infinite and homogeneous) | i < j}

then we deduce P .
We say that a sequence is stationary if it is constant from a certain point on. In our proof

we need some conjunctive schemata provable in Classical Arithmetic: that, in every primitive
recursive family of monotone and bounded above sequences s : N → N, each sequence is
stationary and that, in every primitive recursive family of recursive sequences t : N→ N for
which there are at most k values of x such that t(x) 6= t(x+ 1), each sequence is stationary.
In order to obtain these results in HA from RT2

2(Σ0
0) we need to prove the EM1 schema first,

as shown by the following lemma (proved in HA, as all lemmas for now on).

I Lemma 1. 1. RT2
2(Σ0

0) implies EM1;
2. EM1 implies that, for any family F = {s(n, ·) | n ∈ N} of recursive monotone and bounded

above sequences enumerated by a binary primitive recursive function s : N× N→ N, each
sequence in F is stationary;

3. EM1 implies that, for any family G = {t(n, ·) | n ∈ N} of recursive sequences enumerated
by a binary primitive recursive function t : N × N → N for which there are at most k
values of x such that t(n, x) 6= t(n, x+ 1), each sequence in G is stationary.

Proof. 1. RT2
2(Σ0

0) implies RT1
2(Σ0

0) that implies the infinite pigeonhole principle which
implies EM1.
a. For the first implication, given a coloring of the points ca : N → 2 we consider a

coloring of the edges

c∗a : [N]2 → 2

that depends only on the smallest point of the edge, that is, for every x < y,
c∗a({x, y}) := ca(x). The infinite homogeneous set for c∗a, whose existence is guaranteed
by RT2

2(Σ0
0), is such that it is homogeneous also for ca. Then RT2

2(Σ0
0) implies RT1

2(Σ0
0).

S. Berardi and S. Steila 69

b. The infinite pigeonhole principle can be stated as follows

∀x ∃z [z ≥ x ∧ (P (z, a) ∨Q(z, a))] =⇒

∀x ∃z [z ≥ x ∧ P (z, a)] ∨ ∀x ∃z [z ≥ x ∧ Q(z, a)] ,

with P and Q recursive predicates. Assuming the hypothesis of the principle, we define
the following recursive coloring ca : N→ 2: for each x ∈ N ca(x) := 0 if and only if the
first witness zx of

∃z [z ≥ x ∧ (P (z, a) ∨Q(z, a))]

is such that P (zx, a) is true. Thanks to RT1
2(Σ0

0) we have an infinite homogeneous set.
If it is uniform in color 0 then P is true for infinitely many z, otherwise Q is true for
infinitely many z.

c. By hypothesis we have the pigeonhole principle:

∀x ∃z [z ≥ x ∧ (P (z, a) ∨Q(z, a))] =⇒

∀x ∃z [z ≥ x ∧ P (z, a)] ∨ ∀x ∃z [z ≥ x ∧ Q(z, a)] ,

with P and Q recursive predicates. We want to show that

∃x P (x, a) ∨ ∀x ¬P (x, a) ;

with P recursive predicate. To prove it, we apply the pigeonhole principle with

P ∗(z, a) := ∃y ≤ z P (y, a)

Q∗(z, a) := ∀y ≤ z ¬P (y, a) .

The hypothesis of the pigeonhole principle holds for P ∗, Q∗ with z = x. For the same
principle, we deduce that either

∀x ∃z [z ≥ x ∧ ∃y ≤ z P (y, a)]

is true, from which it follows ∃x P (x, a), or

∀x ∃z [z ≥ x ∧ ∀y ≤ z ¬P (y, a)]

is true, from which it follows ∀x ¬P (x, a).
2. Suppose that n ∈ N and s(n, ·) ∈ F . We assume that s is recursive and there is an r ∈ N

such that for every x, y ∈ N

x ≤ y =⇒ s(n, x) ≤ s(n, y) ≤ r .

We prove that there exists m such that for every y ≥ m we have s(n,m) = s(n, y). The
proof is by induction on r. If r = 0 then s(n, x) = 0 for each x, hence we choose m = 0.
Supposing the thesis holds for r, we prove the thesis for r+ 1 using EM1. For EM1, either
there is m such that s(n,m) = r + 1, or not. In the first case by monotonicity we have
that for every x, m ≤ x implies r + 1 = s(n,m) ≤ s(n, x) ≤ r + 1, then s(n, x) = r + 1
for every x ≥ m. In the second case, we have s(n, x) ≤ r for each x ∈ N, we apply the
induction hypothesis and deduce the thesis. We need to use only one statement of EM1

∀n∀r (∃m(s(n,m) = r + 1) ∨ ∀m(s(n,m) 6= r + 1)) ,

which implies all the formulas in EM1 used in the proof.

TYPES 2013

70 Ramsey Theorem for Pairs As a Classical Principle in Intuitionistic Arithmetic

3. Let s(n, x) be the number of y < x such that t(n, y) 6= t(n, y + 1). s(n, ·) is monotone by
construction. Since the number of changes of value of t(n, ·) is bounded by some r ∈ N
then s(n, ·) is bounded by the same r. Moreover {s(n, ·) | n ∈ N} is enumerated by a
primitive recursive function, since G has this property. So s(n, ·) is stationary from a
certain m onwards thanks to the second part of this Lemma. From the same point m
even t(n, ·) is stationary.

J

We may now prove the main result of this section:

I Theorem 2. RT2
2(Σ0

0) implies Σ0
3-LLPO.

Proof. Let a be a parameter, we assume the hypothesis of Σ0
3-LLPO:

∀x, x′ (H0(x, a) ∨H1(x′, a)) ,

where

H0(x, a) := ∃y ∀z P0(x, y, z, a)

H1(x, a) := ∃y ∀z P1(x, y, z, a)

for some P0, P1 primitive recursive predicates. In order to prove

∀x H0(x, a) ∨ ∀x H1(x, a)

we define a recursive 2-coloring such that:
if there are infinitely many white (0) edges from x, then

H0(0, a) ∧ · · · ∧H0(x, a) ;

if there are infinitely many black (1) edges from x, then

H1(0, a) ∧ · · · ∧H1(x, a) .

Given x andm, wherem > x, the color of {x,m} expresses a conjecture based on a limited
study of the predicates Hi(x, a). White represents the hypothesis that H0(0, a)∧· · ·∧H0(x, a)
is true, after the analysis of the statements H0(0, a), . . . , H0(x, a) with quantifiers restricted
to the set [0,m]. Vice versa, black represents the hypothesis that H1(0, a) ∧ · · · ∧H1(x, a) is
true, after the analysis of the statements H1(0, a), . . . , H1(x, a) with quantifiers restricted
to the set [0,m].

The coloring, and so the current hypothesis, is defined as follows. For every n ∈ N we
define a primitive recursive function

ya
n(m, c) : N× 2→ m+ 1

that returns the minimum y ≤ m+ 1 such that

∀z ≤ m Pc(n, y, z, a) ,

if such y exists. If such y does not exist then ya
n(m, c) = m.

Note that ya
n(m, c) is weakly increasing: if ya

n(m+ 1, c) ≤ m, then by definition

∀z ≤ m+ 1 Pc(n, ya
n(m+ 1, c), z, a) ,

S. Berardi and S. Steila 71

thus trivially

∀z ≤ m Pc(n, ya
n(m+ 1, c), z, a)

follows and hence by construction ya
n(m, c) ≤ ya

n(m + 1, c) ≤ m; on the other hand if
ya

n(m+ 1, c) = m+ 1 we obtain ya
n(m+ 1, c) > m ≥ ya

n(m, c).
For all x ∈ N define a sequence Cx : N→ 2, where, for all m > x, Ca

x(m) will be the color
of the edge {x,m}.

Ca
x(m) = c expresses that, analysing the interval [0,m], Hc(0, a)∧· · ·∧Hc(x, a) is believed

to be true. The definition of Ca
x(m) is given by induction on m.

Ca
x(0) = 0;

if for all n ≤ x ya
n(m,Ca

x(m)) = ya
n(m + 1, Ca

x(m)) then Ca
x(m + 1) = Ca

x(m), else
Ca

x(m+ 1) = 1− Ca
x(m).

We paint the edge {x,m} with color Ca
x(m). Now we want to prove that for some m0

and for all m ≥ m0, that Ca
x(m) is stationary, that ya

n(m, c) is stationary for every n ≤ x,
and that y = ya

n(m, c) is a witness of

Hc(n, a) := ∃y ∀zPc(n, y, z, a) .

As a matter of fact we supposed:

∀n, n′ ≤ x(H0(n, a) ∨H1(n′, a)) .

Hence we can constructively prove that witnesses exist either for H0(0, a) ∧ · · · ∧H0(x, a) or
for H1(0, a)∧· · ·∧H1(x, a), so there exist d1, d2, . . . , dx such that either for all n = 0, . . . , x

∀z P0(n, dn, z, a)

or for n = 0, . . . , x

∀z P1(n, dn, z, a).

In the first case we have

ya
0 (m, 0) ≤ d0, . . . , y

a
x(m, 0) ≤ dx

for each m, so, thanks to the first and the second part of Lemma 1, the recursive sequences
(ya

0 (m, 0), . . . , ya
x(m, 0)) are stationary. In the other case we have

ya
0 (m, 1) ≤ d0, . . . , y

a
x(m, 1) ≤ dx

for each m, so, as above, the recursive sequence (ya
0 (m, 1), . . . , ya

x(m, 1)) are stationary.
Moreover the sequences (ya

0 (m, c), . . . , ya
x(m, c))m∈N with c < 2 increase in at least one

component every second change of color. Since one of these is stationary, from a point
onwards there could be only one change of color, so the number of change of values of Ca

x(m)
is bounded above. Thanks to the first and the third part of Lemma 1 the sequence Ca

x(m) is
stationary, for each x ∈ N.

Now we need to prove that if there exists m0 such that for all m ≥ m0 C
a
x(m) = c, then

Hc(0, a) ∧ · · · ∧Hc(x, a). In this case, by definition of ya
n(·, c), there exist e0, . . . , ex such

that ya
n(m, c) = en for all n = 0, . . . , x. It follows that

∀z ≤ m Pc(n, en, z, a)

TYPES 2013

72 Ramsey Theorem for Pairs As a Classical Principle in Intuitionistic Arithmetic

for each n ≤ x, m ≥ m0, hence

∀z Pc(n, en, z, a)

for every n ≤ x, and thus Hc(n, a) for all n ≤ x.
Applying RT2

2(Σ0
0), there exists an infinite homogeneous setX. Hence ifX is homogeneous

in color c, and x ∈ X, then by stationarity of Ca
x(m) every edge {x,m} is of color c, except

for a finite number of cases. Thus Hc(0, a)∧· · ·∧Hc(x, a) for each x ∈ X and so for infinitely
many x. We obtain

∀x Hc(x, a) .

In order to obtain an implication between schemata, observe that only three finite sets
of statements in RT2

2(Σ0
0) are required in the proof: the statement that corresponds to the

coloring of the edges and finitely many statements which corresponds to the two uses of
Lemma 1 in the previous page. J

4 The Limited Lesser Principle of Omniscience for Σ0
3 formulas

implies Ramsey Theorem for pairs and recursive coloring

In this section we modify Jockusch’s proof of Ramsey Theorem [10] in order to obtain a proof
in HA of Σ0

3-LLPO =⇒ RT2
2(Σ0

0). It is enough to prove that if {ca | a ∈ N} is a recursive
family of recursive colorings, a finite number of statement in Σ0

3-LLPO imply that there are
predicates W (., c) and B(., c) such that,

∀a(W (., ca) infinite and homogeneous ∨B(., ca) infinite and homogeneous) .

We first sketch Jockusch’s proof of RT2
2 (which is itself a modification of Erdős Rado

proof of RT2
2): it consists in defining a suitable infinite binary tree J . We first remark that

RT1
2 (Ramsey Theorem for colors and points of N) is nothing but the Pigeonhole Principle:

indeed, if we have a partition of N into two colors, then one of the two classes is infinite.
We informally prove now RT2

2 from RT1
2. Fix any coloring f : [N]2 → 2 of all edges of the

complete graph having support N. If X is any subset of N, we say that X defines a 1-coloring
of X if for all x ∈ X, any two edges from x to some y, z in X have the same color. If X is
infinite and defines a 1-coloring, then, by applying RT1

2 to X we produce an infinite subset
Y of X whose points all have the same color c, that is, such that all edges from all points of
X all have the color c. Thus, a sufficient condition for RT2

2 is the existence of an infinite set
defining a 1-coloring. In fact we need even less. We say that a tree V included in the graph
N defines a 1-coloring w.r.t. V if for all x ∈ V , for any two proper descendants y, z of x in
V , the edges x to y, z have the same color. Assume there exists some infinite binary tree V
defining a 1-coloring w.r.t. V . Then V has some infinite branch B by König’s Lemma. B
is a total order in V , therefore B is a complete subgraph of N. Thus, B defines an infinite
1-coloring over the points of B, and proves RT2

2. Therefore a sufficient condition for RT2
2 is

the existence of an infinite binary tree V defining a 1-coloring w.r.t. V . Erdős Rado proof,
Jockusch’s proof and our proof differ in the definition of V , even if the general idea is similar.

I Theorem 3. Σ0
3-LLPO implies RT2

2(Σ0
0) in HA.

Proof. We consider Jockusch’s version of Erdős Rado proof of RT2
2 and we modify it in

order to do not use classical principles stronger than Σ0
3-LLPO. Erdős and Rado introduce

an ordering relation ≺E on N which defines the proper ancestor relation of a binary tree E

S. Berardi and S. Steila 73

structure on N. The 2-coloring on edges of N, restricted to the set of pairs x ≺E y, gives
the same color to any two edges x ≺E y and x ≺E z with the same origin x. This defines a
canonical 1-coloring over the nodes of E. Jockusch defines a relativization ≺J to an infinite
set J included in N of the relation ≺E , that still defines a binary tree and a 1-coloring over
the nodes of J . In both proofs, an infinite homogeneous set is obtained from an infinite set
of nodes of the same color in an infinite branch of the tree. In Erdős-Rado and Jockusch’s
proofs, the pigeonhole principle is applied to a ∆0

3-branch obtained by König’s Lemma. To
formalize this proof in HA we would have to use the classical principle Σ0

4 -LLPO. Our goal
is to prove RT2

2(Σ0
0) using the weaker principle Σ0

3-LLPO. We will define an infinite binary
tree T with order relation ≺T such that T is Π0

1 and has exactly one infinite branch, the
rightmost. T is a variant of J such that we may prove that there are infinitely many nodes
of the same color in the infinite branch using only Σ0

3-LLPO. An infinite set totally ordered
for ≺T and painted on the same color will be the monochromatic set for the original graph.
Moreover our proof recursively defines two monochromatic ∆0

3-sets, one of each color, that
can not be both finite, even if we can not decide which of these is the infinite one.

Let V be a subset of N such that 0 ∈ V . Firstly define, for each subset V of N such that
0 ∈ V , a tree structure ≺V for V , then we choose a certain set for V . More precisely, we
define a relation x ≺V y for each x ∈ V and y ∈ N, that restricted to V × V will define a
tree with root 0. The definition of x ≺V y is given by induction on x: at each step we use
only the subset V ∩ (x+ 1) of V .

0 ≺V 1.
x ≺V y if and only if x ∈ V and y ∈ N and x < y and for every z such that z ≺V x:
{z, x} and {z, y} have the same color.

We define a tree T choosing an infinite sequence of points x0, x1, . . . of N. The Jockusch
relation ≺J restricted from J×N to J×J in general is different from the Erdős Rado relation
≺E restricted from N×N to J × J , but both relations have the same properties, which hold
also for our relation ≺V , no matter what is V ⊆ N. Let us briefly state them.

I Lemma 4. Let V ⊆ N be any predicate of HA, 0 ∈ V , and ≺V defined as above.
1. ≺V⊆<.
2. 0 ≺V x for every x ∈ Nr {0}.
3. If x, y ∈ N and V ∩ (x+ 1) = U ∩ (x+ 1) then

x ≺V y ⇐⇒ x ≺U y .

4. ≺V is transitive.
5. If x < y ≺V z and x ≺V z then x ≺V y.
6. Let z ∈ N. The relations < and ≺V describe the same order on

pdV (z) := {x ∈ V | x ≺V z} ,

i.e. for each x, y ∈ pdV (z)

x < y ⇐⇒ x ≺V y .

Proof. 1. It follows from the definition of ≺V .
2. It follows from definition of ≺V and from the fact that does not exist a natural number z

such that z ≺V 0, since for the first point we should have z < 0.

TYPES 2013

74 Ramsey Theorem for Pairs As a Classical Principle in Intuitionistic Arithmetic

3. Prove by induction on x. For x = 0 it follows from the second point. Suppose that it is
true for each z < x. Prove ⇒. Assume x ≺V y, then by definition

x ∈ V ∧ y ∈ N ∧ ∀z ≺V x ca({z, x}) = ca({z, y}) .

By hypothesis it follows that x ∈ U , since

V ∩ (x+ 1) = U ∩ (x+ 1) ,

and thus, by induction hypothesis on z < x and by V ∩ (z + 1) = U ∩ (z + 1), we obtain

z ≺V x ⇐⇒ z ≺U x ,

hence

x ∈ U ∧ y ∈ N ∧ ∀z ≺U x ca({z, x}) = ca({z, y}) ;

i.e. x ≺U y. The proof of the vice versa is analogous.
4. (x ≺V y) ∧ (y ≺V z) =⇒ x ≺V z .

By induction on z. For z = 0 it is true since x, y ≺V 0 is false. Assume that the
transitivity holds for all z′ < z and that

x ≺V y ∧ y ≺V z ,

then, by definition and by inductive hypothesis on y < z,

∀w ≺V x (w ≺V y ∧ ca({w, x}) = ca({w, y}) = ca({w, z})) ,

we conclude x ≺V z by the definition of V .
5. By induction on x. If x = 0 it is trivial. Assume that it is true for each t < x and we

prove it for x. Observe that x ∈ V , y ∈ V and z ∈ N. Since x ≺V z, we have that

∀t ≺V x ca({t, x}) = ca({t, z}) ,

and since y ≺V z we obtain

∀t′ ≺V y ca({t′, y}) = ca({t′, z}) .

Since x < y, in order to prove x ≺V y it suffices to show that

∀t ≺V x(t ≺V y) .

Let t ≺V x, then t ≺V x ≺V z and so, thanks to transitivity, we obtain t ≺V z. Since
we have t < x < y ≺V z and t ≺V z, then t ≺V y by induction hypothesis. Therefore
x ≺V y.

6. (⇐) follows from the first property. (⇒). Let x, y be such that x, y ≺V z and x < y.
Then, thanks to point 5 and since x < y ≺V z and x ≺V z, we have x ≺V y.

J

By the sixth point of Lemma 4, the relation ≺V defines a total order on pdV (z) for each
z ∈ V ; by the second point of Lemma 4 we have 0 ∈ pdV (z) if z > 0. Hence ≺V defines a
tree with root 0 (we say that ≺V is the father/child relation).

It remains to choose a particular tree T definable by a predicate of HA, to use it in the
proof of Ramsey Theorem. Define, by induction on n, the set of the first n+ 1 nodes of T :

Tn := {x0, . . . , xn} .

S. Berardi and S. Steila 75

As auxiliary parameter we define a color cn in {0, 1} as follows: if n = 0 then cn = 0 and if
n > 0 then cn = c({Father(xn), xn}). The next edge added to Tn, if possible, should come
from xn and have color cn. The proof of correctness of the definition of T requires the law
of Excluded Middle of level 1, which is a consequence of Σ0

3-LLPO (see [1]). T is a finite
conjunction of decidable statements or simply universal statements and so it is Π0

1.
The next node xn+1 of T is the first natural number z which satisfies the predicate we

call “First Choice”, or, if none exists, the first which satisfies the predicate we call “Second
Choice”.

z is a first choice node after Tn if z is greater than xn in the relation defined by Tn, and
the edge from xn to z has color cn;

FirstChoice(z, Tn) := z �Tn
xn ∧ c({z, xn}) = cn .

FirstChoice(z, Tn) is decidable.
z is a second choice node after Tn if z is the first node greater than some ancestor xp of
xn in the relation defined by Tn, and for no proper descendant of xp and ascendant of xn

there is such a z.

SecondChoice(z, Tn) := ∃p < n+ 1{[z �Tn
xp ∧ ∀y < z(y > xn ⇒ y 6�Tn

xp)]
∧∀h ≤ n[(h ≥ p+ 1 ∧ xh �Tn

xp ∧ xn <Tn
xh)⇒ ∀w(w > xn ⇒ w 6�Tn

xh)]}.

SecondChoice(z, Tn) is Π0
1.

Formally, z is the chosen node after Tn either if z is the minimal first choice node, or if there
are not first choice nodes and z is the unique second choice node;

Chosen({z, Tn}) :=[FirstChoice(z, Tn) ∧ ∀y < z¬FirstChoice(y, Tn)]
∨ [∀y¬FirstChoice(y, Tn) ∧ SecondChoice(z, Tn)].

Chosen(z, Tn) is Π0
1. We informally define the tree T , then we translate its definition in HA.

I Definition 5 (Informal definition of T). We informally define Tn by induction on n.
If n = 0 then T0 = x0 := 0.
For n+ 1, if Chosen(xn+1, Tn), then Tn+1 = Tn ∪ {xn+1}.
T =

⋃
n∈N

Tn .

The definition 5 of T (which is not yet a definition in HA) uses EM1, in other words an
oracle for the properties Σ0

1, hence T is a ∆0
2 tree. We may represent in HA by some Π0

1
predicates: “x0, . . . , xn are the first n nodes of T” and x ∈ T .

I Definition 6 (Formal definition of T). “x0, . . . , xn are the first n nodes of T” is the
predicate of HA:

(x0 = 0) ∧ ∀i < nChosen(xi+1, {x0, . . . , xi})

“x is a node of T” is the predicate of HA:

Node(x) := ∃n < x∃x0, . . . , xn < x(Chosen(x, {x0, . . . , xn})∧

“x0, . . . , xn are the first n nodes of T”) ;

Both predicates are Π0
1. Now, we are going to prove that T of definition 6 satisfies the

requirements of definition 5.

TYPES 2013

76 Ramsey Theorem for Pairs As a Classical Principle in Intuitionistic Arithmetic

I Lemma 7. If T is the tree defined by definition 5, every occurrence of the relation ≺Tn in
FirstChoice and SecondChoice can be replaced by an occurrence of the relation ≺T .

Proof. Just see that the definition guarantees that for each n

Tn ∩ (x+ 1) = T ∩ (x+ 1) ,

for each x ∈ Tn. Thus, applying the third point of Lemma 4, for every x ∈ Tn and for every
y ∈ N

x ≺Tn y ⇐⇒ x ≺T y. J

The fact that T of definition 6 satisfies the requirements of definition 5 is a consequence
of the uniqueness of the chosen node.

I Lemma 8. For each n there exists a unique z such that Chosen(z, Tn).

Proof. The uniqueness follows since we choose either the minimal first choice node, or, if it
does not exist, the unique second choice node. The existence is a consequence of the EM1
statement:

∀z¬FirstChoice(z, Tn) ∨ ∃zFirstChoice(x, Tn) .

If there exists z which satisfies FirstChoice(z, Tn) then z is the chosen node, otherwise we
prove that the second choice node exists. As a matter of fact, thanks to Σ0

3-LLPO, EM1
holds; and, by EM1, we may prove in HA that either there is a first z such that z �T xn, a
statement we may write as φ(xn):

φ(x) := ∃z((z �T x) ∧ ∀y < z(y > x =⇒ y 6�T x)

or for all z, z �T xn is false, a statement we may write as ψ(xn), where:

ψ(x) := ∀z(z 6�T x) .

Informally, if φ(xn), i.e. if xn has a first child z greater than xn, we chose z. On the other
hand, if ψ(xn), i.e., if xn has no child z greater than xn, we can decide if the father xp of xn

has got a child greater than xn or not, and so on. In the worst case we arrive at the root 0,
which has at least the child xn + 1, which is > xn.

Formally, we have to prove the following formula:

∃x ≤ xn(∀y ≤ xn((y > x ∧ y ≺Tn
xn) =⇒ ψ(y)) ∧ (x �Tn

xn) ∧ φ(x));

which follows by the maximalization principle applied to the list 0 = xn0 , . . . , xnp = xn of
ancestors of xn, and by φ(xn0) and ∀x.φ(x) ∨ ψ(x). J

Observe that the construction of the tree required one instance of two formulas of the
EM1 schema with different parameters. Each formula in EM1 used in the proof above of
Lemma 8 is an instance of one of the following formulas:

∀n∀〈x0, . . . , xn, cn〉(∀x¬FirstChoice(x, Tn) ∨ ∃xFirstChoice(x, Tn)) ,

and

∀x(∃z((z �T x) ∧ ∀y < z(y > x =⇒ y 6�T x) ∨ ∀z(z 6�T x) .

S. Berardi and S. Steila 77

So only two statements of Σ0
3-LLPO (the ones that imply the above formulas in EM1)

are sufficient in order to prove the existence of the tree.
Let rn the branch in Tn that ends with xn.

rn = {xi0 , . . . , xim} ,

where xi0 = 0 and xim
= xn. We describe how rn grows. If the z which satisfies Chosen(z, Tn)

is such that FirstChoice(z, Tn) then rn+1 = rn ∪ z, while if it satisfies SecondChoice(z, Tn)
then there exists xp ∈ Tn such that z �Tn

xp moreover for every y > xn and for each h > p

such that xh is in rn between xp+1 and xn, y �Tn
xh does not hold. Observe that since

xn <Tn xp, we have xp ∈ rn. From this characterization of rn we deduce:

I Lemma 9. Let T be the tree defined above, and x, y, z ∈ N.
1. All nodes of T having descendants after xn are in rn: if xi ∈ Tn, z > xn, and z �Tn

xi,
then xi ∈ rn.

2. If x ∈ T has two children y, z ∈ T , with y < z then y has no descendants in T which are
> z.

Proof. 1. We prove the statement for all z, i by induction on n. If n = 0 it is trivial. Now
suppose that the thesis is true for n and prove it for n+ 1. Let rn+1 be the branch of
Tn+1 that ends with xn+1. We have to check that for each xk ∈ Tn+1 r rn+1, there are
no y �T xk such that y > xn+1. By definition of T , we have rn+1 ∩ xn = {xi0 , . . . , xiq},
where xiq

is the xp of the predicate SecondChoice. Thus, if xk ∈ Tn+1 r rn+1, there are
two possibilities left: either xk ∈ {xiq+1 , . . . , xim}, or xk ∈ Tn r rn. In the first case, by
the choice of xp there is not any y > xn such that

y �T xim
∨ . . . ∨ y �T xiq+1 .

Even more so, there is not any y > xn+1 > xn such that

y �T xim
∨ . . . ∨ y �T xiq+1 .

In the second case, by induction hypothesis, for every xk ∈ Tn r rn there do not exist any
y �T xk for which y > xn, hence there are not any y �T xk for which y > xn+1 > xn.

2. Assume z = xn+1 is the node chosen by some Tn = {x0, . . . , xn}. x has a child y < z in
T , therefore some child y ∈ Tn, hence x 6= xn because xn is a leaf in Tn. z is a child of x
in T , therefore, by definition of Chosen, z is a second choice node with xp = x for some
p < n. By definition of SecondChoice(z, Tn) we have

y �T x ∧ xn �T y ⇒ ∀w(w > xn ⇒ w 6�T y) .

Since z > xn we obtain

∀w(w > z ⇒ w 6�T y) . J

Moreover we need to prove that the tree T is a binary tree: each node has at most two
children.

I Lemma 10. Let T be the predicate from definition 6, defining a tree.
1. The following is a sufficient condition for x ≺T y. If i, x ∈ T and y ∈ N are such that

x is an immediate successor of i with respect to the relation ≺T , i ≺T y, x < y and
ca({i, x}) = ca({i, y}), then x ≺T y.

2. Each node i of T has at most one child x such that {i, x} is black, and at most one child
y such that {i, y} is white.

TYPES 2013

78 Ramsey Theorem for Pairs As a Classical Principle in Intuitionistic Arithmetic

Proof. 1. By hypothesis we have that

∀t ≺T i ca({t, i}) = ca({t, x})

and

∀t ≺T i ca({t, i}) = ca({t, y}) ,

so we have

∀t ≺T i ca({t, x}) = ca({t, y}). (1)

Since x is an immediate successor of i,

t ≺T x ⇐⇒ t ≺T i ∨ t = i

by formula 1 and by the hypothesis ca({i, x}) = ca({i, y}), we obtain the thesis x ≺T y.
2. Let i ∈ T and let x and y be two children of i. Then we have that x ≺T y and y ≺T x are

false, otherwise we should have i ≺T x ≺T y and i ≺T y ≺T x. By point 1 above, since
x < y or y < x, it follows that c({i, x}) 6= c({i, y}). Therefore the number of children
must be lesser than the number of colors, i.e. two. J

The tree T is infinite by construction and is binary by Lemma 10.2. We are going to
prove, using EM2 (that is a consequence of Σ0

3-LLPO, [1]), that each node with infinitely
many descendants has at least one child with infinitely many descendants, then that each
node with infinitely many descendants has exactly one child with infinitely many descendants.
This implies that T has exactly one infinite branch, which, to be accurate, is the rightmost
branch of T , if we order children according to their integer value.

Observe that, by the definition of the tree, we have that, given a node t with infinitely
many descendants, his first child has infinitely many descendants if and only if the first child
is also the unique child (see Lemma 9.2). We define the uniqueness of the children of x as
follows:

Unique(x) := ∀x∀z((Child(x, t) ∧ Child(z, t)) =⇒ x = z) ,

where

Child(x, t) := ∃n < t∃x0, . . . , xn < t

(“x0, . . . , xn, t, x are the first n+ 2 nodes of T”) .

This is an assertion Π0
2, since Child is Π0

1. Indeed, using EM1, we can transform the
occurrence of Child(x, t) in Unique(x) in a Σ0

1 formula and the whole predicate Unique(x) in
a Π0

2 formula. If we apply EM2 to Unique(x) we deduce that either that t has at most one
child, or there exist two different children x and z of t. In the first case the first node xn+1
chosen after t = xn in T is a child of t, otherwise, by definition of Tn+1, t would not belong
to the rightmost branch rn+1 of Tn+1, and by Lemma 9.1, t would not have descendants. So
the node x is the unique child of t, and the infinitely many descendants of t are descendants
of x. In the second case if x < z are two children of t then z is the second child of t. Since
we proved that a node has at most two children and by the definition of T , every descendant
of t grater of z is descendant also of z, otherwise from a point onward t would not have
descendants. Hence the second child of t, z, has infinitely many descendants. Observe that
only one statement of Σ0

3-LLPO is sufficient in order to prove that “t has only one child or

S. Berardi and S. Steila 79

not” for every t ∈ T ; as a matter of fact we need the formula in Σ0
3-LLPO that implies the

following formula in EM2

∀t(∀x∀z((Child(x, t) ∧ Child(z, t)) =⇒ x = z)∨

¬(∀x∀z((Child(x, t) ∧ Child(z, t)) =⇒ x = z))) .

We prove now that the infinite branch exists, is unique and define two monochromatic
sets, where at least one is infinite. Now define r as follows; we say that x ∈ r if and only if

InfiniteBranch(x) ⇐⇒ ∀y > x(Node(y)⇒ x ≺T y).

I Lemma 11. Let T be the tree defined above.
1. T has a unique infinite branch, r, the rightmost branch, which consists of all and only the

nodes with infinitely many descendants.
2. If T has infinitely many edges with color c, then r has infinitely many edges with color c.

Proof. 1. Thanks to the second part of Lemma 9, if a node has two children the first child
has not got descendants greater than the second one, and therefore each node of T has
at most one immediate infinite subtree. Since we have just proved the existence of the
infinite subtree, it follows that each node of T that has infinitely many descendants is
a root of a infinite subtree that has exactly one infinite subtree. Then the set of nodes
with infinite children in T , which includes the root because T is infinite, has exactly one
child for each node, and then defines the only infinite branch r of T .

2. Let r = {xi0 , . . . , xin , . . . } be the unique infinite branch of T . Suppose that T has
infinitely many edges of color c and prove that r has infinitely many edges of color c.
Consider any node xip of r, we want to prove that r has an edge of color c below xip . If
{xip

, xip+1} has color c we are done. Suppose it has color 1− c: then cip+1 = 1− c. By
hypothesis, there exists n such that n ≥ ip+1 and there exists m < n such that {xm, xn}
has color c. Since r is infinite, there exists q such that iq ≥ n+ 1 > n ≥ ip+1. We prove
that at least one of the edges

{xip+1 , xip+2}, . . . , {xiq−1 , xiq}

has color c. Suppose by contradiction that they all have color 1−c (we are using Excluded
Middle over a decidable statement about the colors of finitely many edges). In this case,
for every k ∈ [p+ 1, q− 1] there exists y > xik+1−1 ≥ xik

such that y �T xik
and {y, xik

}
has color 1− c, since {xik

, xik+1} has color 1− c; so there exists a first choice node. Since
for each such k there is a first choice node (with color 1− c), it follows that between ip+1
and iq the tree T grows keeping cik

= 1− c and only along the branch r. So we do not
add the edge {xm, xn} of color c between ip+1 e iq, contradiction. J

We have still to prove that, indeed, the infinite branch of T has infinitely many pairs
x ≺T y of color c. By Lemma 11.2, it is enough to prove that T has infinitely many pairs
x ≺T y of color c, for some c. ≺T is a Π0

1 predicate. Thus, if we apply the infinite pigeonhole
principle for Π0

1 predicates, we deduce that T either has infinite white edges, or has infinitely
many black edges. However, the pigeonhole principle for Π0

1 predicates is a classical principle,
therefore we have to derive the particular instance we use from Σ0

3-LLPO.

I Lemma 12. Σ0
3-LLPO implies the infinite pigeonhole principle for Π0

1 predicates.

TYPES 2013

80 Ramsey Theorem for Pairs As a Classical Principle in Intuitionistic Arithmetic

Proof Lemma 12. The infinite pigeonhole principle for Π0
1 predicates can be stated as

follows:

∀x ∃z [z ≥ x ∧ (P (z, a) ∨Q(z, a))]

=⇒ ∀x ∃z [z ≥ x ∧ P (z, a)] ∨ ∀x ∃z[z ≥ x ∧Q(z, a)] ,

with P and Q Π0
1 predicates. We prove that the formula above is equivalent in HA to some

formula of Σ0
3-LLPO. Let

H(x, a) := ∃z [z ≥ x ∧ P (z, a)]
K(x, a) := ∃z [z ≥ x ∧Q(z, a)].

In fact both H and K are equivalent in HA to Σ0
2 formulas H ′, K ′. By intuitionistic prenex

properties (see [1])

∃z[z ≥ x ∧ (P (z, a) ∨Q(z, a))]

is equivalent to

∃z[z ≥ x ∧ P (z, a)] ∨ ∃z[z ≥ x ∧ Q(z, a)] .

The formula above is equivalent to H ′ ∨K ′. Thus, any formula of pigeonhole principle for
Π0

1 with H, K is equivalent to the instance of Σ0
3-LLPO with H ′, K ′. J

Thus, there exist infinitely many edges of r in color c. Their smaller nodes define a
monochromatic set for the original graph, since given an infinite branch r and x ∈ r, if there
exists y ∈ r such that x ≺T y and {x, y} has color c, then for every z ∈ r such that x ≺T z,
the edge {x, z} has color c. Thus we can devise a coloring on r, given color c to x if {x, y}
has color c, with y child of x in r. After that, every infinite set of points with the same
color in r defines an infinite set with all edges of the same color, and then it proves Ramsey
Theorem in HA starting from the assumption of Σ0

3-LLPO. J

Observe that the infinite branch r is Π0
2. Moreover r can not be ∆0

2. Here we prove it
classically for short. Suppose by contradiction that r is ∆0

2. In this hypothesis we will prove
that for each recursive coloring there exists an infinite homogeneous set ∆0

2. Indeed, using
the fact that all edges from the same point of r to another point of r have the same color,
we may describe the homogeneous set of color c = 0, 1 as the set of points whose edges to
any other point of r all have color c:

HomSet(y) ⇐⇒ y ∈ r ∧ ∀z > y(InfiniteBranch(z) =⇒ c({y, z}) = c)

and also as the set of points having some edge to another point of r of color c:

HomSet(y) ⇐⇒ y ∈ r ∧ ∃z > y(InfiniteBranch(z) ∧ c({y, z}) = c) .

Therefore, if r is ∆0
2 then the first formula is Π0

2 and the second one is Σ0
2. So for any c = 0, 1

the homogeneous set is ∆0
2. Since at least one of these sets is infinite and since Jockusch

proved that exists a coloring of [N]2 that has no infinite homogeneous set Σ0
2, we obtain a

contradiction. So r 6∈ ∆0
2 in general.

In Jockusch’s proof he shows that one of the homogeneous sets (the red one in his notation)
is Π0

2, since at the beginning of each step he looks for red edges; while the second one is ∆0
3.

In our proof we can see that both the homogeneous sets are ∆0
3, since our construction is

S. Berardi and S. Steila 81

symmetric with respect to the two colors. As a matter of fact, since r is Π0
2, the previous

two formulas are respectively Π0
3 and Σ0

3. This is enough in order to prove that both the
homogeneous sets are ∆0

3. There always is an infinite homogeneous set Π0
2, but apparently

the proof is purely classical and cannot compute the integer code of such Π0
2 predicate. Again

we refer to Jockusch [10] for details.

5 Conclusions

Σ0
3-LLPO is a principle of uncommon use, but it is equivalent to König’s Lemma, given

function variables and choice axiom [1]. The first goal of this section is to present the
equivalence between Σ0

3-LLPO and two more common principles: EM2 and DeMorgan(Σ0
3).

After that we present some possible future developments.
First of all we want to prove that Σ0

n -LLPO is equivalent to the union of DeMorgan(Σ0
n)

and EMn−1, where

DeMorgan(Σ0
n) := ¬(P ∧Q) =⇒ ¬P ∨ ¬Q. (P,Q ∈ Σ0

n)

DeMorgan(Σ0
3) is a principle outside the hierarchy considered in [1] and incomparable with

EM1.
In order to prove the equivalence claimed above we need the following statements; their

proof are shown in [1].

I Lemma 13. Let Σ0
n -LLPO∗ := ¬(P ∧Q) =⇒ P⊥ ∨Q⊥ where P,Q ∈ Σ0

n, then:
1. Σ0

n -LLPO is equivalent to Σ0
n -LLPO∗;

2. Σ0
n -LLPO implies EMn−1.

Now, we can prove the equivalence. This equivalence helps us to analyse the proof of
Theorem 3. Observing it, we can see that the most of the proof uses only EM2 and that
DeMorgan(Σ0

3) (and so Σ0
3-LLPO) is used only in the last part (Lemma 12).

I Theorem 14. Σ0
n -LLPO ⇐⇒ DeMorgan(Σ0

n) + EMn−1.

Proof. Denote with P, Q any two Σ0
3 formulas.

⇒. Thanks to Lemma 13 we have Σ0
n -LLPO =⇒ EMn−1. We have to prove DeMorgan(Σ0

n).
By the first part of Lemma 13, it suffices to prove that Σ0

n -LLPO∗ implies DeMorgan(Σ0
n).

In HA holds P⊥ =⇒ ¬P , so we obtain

¬(P ∧Q) =⇒ P⊥ ∨Q⊥ =⇒ ¬P ∨ ¬Q .

⇐. Thanks to De Morgan we have ¬(P ∧ Q) =⇒ ¬P ∨ ¬Q. Moreover, by EMn−1, we
obtain ¬P =⇒ P⊥ [1, corollary 2.9]. So, it follows Σ0

n -LLPO∗ (that is equivalent to
Σ0

n -LLPO):

¬(P ∧Q) =⇒ P⊥ ∨Q⊥ . J

The first question that raises after this work is what is the minimal classical principle
that implies RT2

2(Σ0
n), Ramsey Theorem for pairs in two colors, but with any Σ0

n family of
colorings. We conjecture that, modifying conveniently the proofs of Theorem 2 and Theorem
3, we should obtain

Σ0
n+3 -LLPO ⇐⇒ RT2

2(Σ0
n). (2)

A first development of this paper might be to check of the equivalence 2, for each n ∈ N.

TYPES 2013

82 Ramsey Theorem for Pairs As a Classical Principle in Intuitionistic Arithmetic

We conjecture that the result RT2
2(Σ0

0) may be generalized from 2 colors to any finite
number of colors, that is, to the theorem RT2

n(Σ0
0), for any n ∈ N. Apparently, however, the

proof of Theorem 3 requires non-trivial changes in the case of n colors.
In this paper we consider Ramsey Theorem as schema in order to work with first order

statements. Now our idea is to study Ramsey Theorem working in HA + functions +
description axiom (that is a conservative extension of HA, see [1]), in order to use only one
statement to express Ramsey Theorem for pairs in two colors. It seems to us that this unique
statement is still equivalent to Σ0

3-LLPO.
As we said in the introduction, in the future we hope to apply the interactive realizability

[3] in order to study the computational content of Ramsey Theorem, and to find new
constructive proofs for some consequences of it. Since the use of EMn corresponds to n
nested limits in this interpretation, thanks to our results, we may state that only three nested
limits suffice to formalize this proof.

A further development would be to use this equivalence in order to find the minimal
classical principles which imply a given corollary of Ramsey Theorem in HA.

Moreover we may observe that our proofs are semi-formal in HA, so it could be formalized
using proof assistant software, like Coq.

Acknowledgements. We want to thank Alexander Kreuzer and Paulo Oliva for their useful
comments and suggestions.

References
1 Yohji Akama, Stefano Berardi, Susumu Hayashi, and Ulrich Kohlenbach. An Arithmetical

Hierarchy of the Law of Excluded Middle and Related Principles. In LICS, pages 192–201.
IEEE Computer Society, 2004.

2 G. Bellin. Ramsey interpreted: a parametric version of Ramsey’s Theorem. In AMS, editor,
Logic and Computation: Proceedings of a Symposium held at Carnegie-Mellon University,
volume 106, pages 17–37, 1990.

3 Stefano Berardi and Ugo de’ Liguoro. A Calculus of Realizers for EM1 Arithmetic. In
Proceedings of CSL’08, Lecture Notes in Computer Science. Springer-Verlag, 2008.

4 Giovanni Birolo. Interactive Realizability, Monads and Witness Extraction. PhD thesis,
Doctoral School of Sciences and Innovative Technologies, 2012. PhD Thesis, Università di
Torino.

5 Peter A. Cholak, Carl G. Jockusch, and Theodore A. Slaman. On the strength of Ramsey’s
theorem for pairs. Journal of Symbolic Logic, pages 1–55, 2001.

6 C.T. Chong, Theodore A. Slaman, and Yue Yang. The Metamathematics of Stable Ram-
sey’s Theorem for Pairs. preprint, 2012.

7 Thierry Coquand. A direct proof of Ramsey’s Theorem. Author’s website, 2011.
8 Denis R. Hirschfeldt. Slicing the Truth: On the Computability Theoretic and Reverse

Mathematical Analysis of Combinatorial Principles. Author’s webpage.
9 Hajime Ishihara. Reverse mathematics in Bishop’s constructive mathematics. Philosophia

Scientiae, Cahier special, 6:43–59, 2006.
10 Carl G. Jockusch Jr. Ramsey’s Theorem and Recursion Theory. J. Symb. Log., 37(2):268–

280, 1972.
11 Ulrich Kohlenbach and Alexander Kreuzer. Term extraction and Ramsey’s theorem for

pairs. J. Symb. Log., 77(3):853–895, 2012.
12 Jiayi Liu. RT2

2 does not imply WKL0. J. Symb. Log., 77(2):609–620, 2012.
13 Joseph R. Mileti. Partition theorems and computability theory. Technical Report 3, De-

partment of Mathematics, University of Chicago, 2005.

S. Berardi and S. Steila 83

14 Paulo Oliva and Thomas Powell. A Constructive Interpretation of Ramsey’s Theorem via
the Product of Selection Functions. CoRR, abs/1204.5631, 2012.

15 F.P. Ramsey. On a problem in formal logic. Proc. London Math. Soc., 30:264–286, 1930.
16 Stephen George Simpson. Subsystems of second order arithmetic. Perspectives in logic.

Association for symbolic logic, New York, 2009. 2nd edition.
17 Theodore A. Slaman. Σn-bounding and ∆n-induction. Proc. Amer. Math. Soc., 132:2449–

2456, 2004.

TYPES 2013

Extracting Imperative Programs from Proofs:
In-place Quicksort
Ulrich Berger, Monika Seisenberger, and Gregory J. M. Woods

Swansea University
Swansea, UK
U.Berger@swansea.ac.uk, M.Seisenberger@swansea.ac.uk, csgreg@swansea.ac.uk

Abstract
The process of program extraction is primarily associated with functional programs with less focus
on imperative program extraction. In this paper we consider a standard problem for imperative
programming: In-place Quicksort. We formalize a proof that every array of natural numbers can
be sorted and apply a realizability interpretation to extract a program from the proof. Using
monads we are able to exhibit the inherent imperative nature of the extracted program. We see
this as a first step towards an automated extraction of imperative programs. The case study is
carried out in the interactive proof assistant Minlog.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Pro-
grams, D.2.4 Software/Program Verification, B.5.2 Design Aids, F.4.1 Mathematical Logic

Keywords and phrases program extraction, verification, realizability, imperative programs, in-
place quicksort, computational monads, Minlog

Digital Object Identifier 10.4230/LIPIcs.TYPES.2013.84

1 Introduction

Program extraction based on the proofs-as-programs paradigm is a powerful method of
generating, in one step, programs together with a proof of their correctness. Often, this
technique is based on some form of realizability (see e.g. [15, 5]), or a similar method, and
usually yields terms denoting computable functionals or elements of a partial combinatory
algebra. These terms can be naturally interpreted as functional programs. For this reason, the
process of program extraction has long been associated with functional programs. There exist
many tools which are able to extract functional programs from proofs (see e.g. Coq [9, 17],
Minlog [18, 4], Agda [2, 8], NuPRL [22], Isabelle [13, 6]) whereas relatively little research and
tool development has been explored addressing the problem of extracting imperative programs
from proofs. Since most programs that are written today are more towards the imperative
paradigm (cf TIOBE Index [28]) and imperative programs, in general, are notoriously difficult
to verify, it would be highly desirable to have tools that allow the extraction of verified
imperative programs.

In this paper we show that imperative program extraction is possible. We start with a
case study where we extract an imperative In-place Quicksort algorithm from a proof. First,
we informally describe In-place Quicksort, then we present a formalisation of a proof that
every array can be sorted. From this proof we extract a first version of Quicksort using the
Minlog system. This version of Quicksort, which is still functional, is then translated into a
program that uses the well-known state monad and can be directly interpreted as the desired
imperative In-place Quicksort algorithm.

An analysis of the program obtained from this case study leads us to a restricted functional
calculus, called SIT (Single-Threaded Functional Language), that singles out programs

© Ulrich Berger, Monika Seisenberger, and Gregory J.M. Woods;
licensed under Creative Commons License CC-BY

19th International Conference on Types for Proofs and Programs (TYPES 2013).
Editors: Ralph Matthes and Aleksy Schubert; pp. 84–106

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TYPES.2013.84
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

U. Berger, M. Seisenberger, and G. J.M. Woods 85

which use their array argument in a single-threaded way. All well-typed SIT programs can
be translated into well-typed programs of a monadic language, called MON, that directly
admits an imperative interpretation. We prove the correctness of this translation by showing
that it is the inverse of the natural interpretation of MON in SIT.

The next step will be to analyse the proof from which our Quicksort program was
extracted, and develop a proof calculus which only extracts programs in the language SIT,
or a suitable generalisation of SIT, for which a similar automatic translation into imperative
code is possible. We leave this, as well as the actual translation of MON programs into
imperative code, for further work.

1.1 Related work
There are other attempts at extracting imperative programs from proofs. A notable one
is carried out in [23] where the authors combine the proofs-as-programs concept with
Intuitionistic Hoare Logic. However, this work leans more towards a verification strategy,
which builds on the specification of the program.

A different route is Krivine’s Classical Realizability ([16]) which is based on an abstract
machine model that has imperative features. Krivine’s work has further been adapted by
Miquel [19]. The precise links between these methods and ours have yet to be investigated.

Quicksort has traditionally been a case study for many verification techniques and as
such, there are many examples in the literature. A recent case study of the In-place Quicksort
algorithm was formed in [11] using Event-B[1]. The behaviour of the algorithm is specified
and then the algorithm is verified through a series of “refinements” where the problem is
simplified into abstract machines and the effect of the abstraction makes the verification
tasks more simple.

Another interesting verification is undertaken in [26] using ACL2 (see [7]) with an efficient
version of the In-place Quicksort algorithm using single-threaded objects. The verification
task involves showing that the efficient version of Quicksort is equivalent to a non single-
threaded version and then showing that this algorithm satisfies the properties of a sorting
algorithm. Once the equivalence is established, the process of verification is in some ways
similar to Event-B using a “refinement” process to obtain correctness.

In relation to our work, the Event-B case study has an extraction process, through
refinement, of the imperative In-place Quicksort algorithm whereas the ACL2 case study
shows correctness of an already written imperative program w.r.t. the behaviour of the
original functional Quicksort algorithm. The crucial difference between these works and
ours is that we synthesize programs from mathematical proofs that do not require particular
representations of data, and do not involve the process of programming. Therefore, our
approach is highly modular, language independent, and more accessible to users outside the
programming community.

1.2 Minlog
Minlog [18, 3] is an interactive proof system based on a first-order natural deduction calculus.
It is not a type-theoretic system, like Coq or Agda, since it keeps formulas and proofs separate
from (non-dependent) types and terms. Terms and types have a simple domain-theoretic
denotational semantics. The theoretical background of Minlog is explained in [27]. One
of the main motivations behind Minlog is to exploit the proofs-as-programs paradigm for
program development and program verification. Minlog implements various methods of
program extraction (realizability, dialectica interpretation) which also include extraction

TYPES 2013

86 Extracting Imperative Programs from Proofs: In-place Quicksort

from classical proofs via the Friedman A-translation (see [25] for a comparative case study).
Recent work on Minlog has been extending program extraction to simultaneous inductive and
coinductive definitions and extraction to Haskell [20]. The system is supported by automatic
proof search and normalization by evaluation as an efficient term rewriting device. Minlog
is implemented in Scheme, and is an open system which invites users to contribute to its
development and explore new methods.

2 Informal description of In-Place Quicksort

Quicksort, as we consider it in this paper, is a sorting algorithm that takes an array of natural
numbers as input and sorts its elements into order of lowest to highest. The Quicksort
algorithm was invented by Tony Hoare [12, p11]. Here we focus on an imperative variant of
Quicksort, called In-place Quicksort, which sorts an array by repeatedly swapping elements,
without using extra memory space (for creating new arrays).

In-place Quicksort works as follows:

1. We are given an array a and indices l, r. We wish to sort a on the interval [l, r] = {i ∈
N | l ≤ i ≤ r}:

α ε

l r

If l ≥ r, nothing needs to be done. Hence, in the following we assume that l < r.
2. Pick l as the pivot index p, and pick r as the max swap index m:

α ε

p = l m = r

We call a[p], the element of the array at p, the pivot.
3. Now we compare the pivot with the element at p+ 1:

α β ε

p p+ 1 m

a. If the pivot is greater than or equal to the element at p + 1, then we swap the two
elements of the array and increment the pivot index by 1:

β α ε

p m

b. If the pivot is smaller than the element at p+ 1, then we swap the element at p+ 1
with the element at m and decrement the index m by 1:

α ε β

p p+ 1 m

4. Repeat step 3 until the markers p and m are equal.
5. Repeat steps 1–4 recursively on the array between l and p− 1 and on the array between

p+ 1 and r.

We will show that this imperative algorithm can be extracted automatically from a proof
that contains no reference to imperative features at all in contrast to [23].

U. Berger, M. Seisenberger, and G. J.M. Woods 87

3 A formal proof that every array can be sorted

We sketch a formal proof that every array can be sorted. The proof is organized in such a way
that its computational content corresponds to the previously described In-place Quicksort
algorithm. We present the proof in some detail, so that the reader can use it as a guide
through the Minlog proof script (see [24]).

For simplicity, we assume that the array to be sorted has as index set the whole set of
natural numbers and every cell of the array holds a natural number (the array could hold
any type of elements with a computable ordering). We view arrays as an abstract data type
equipped with operations a[i], for accessing the content of the array a at index i and a[i := x]
for changing the value of the array a at index i to x. Hence we assume the following axioms

(RW1) b = a[i := x]→ b[i] = x .

(RW2) b = a[i := x] ∧ k 6= i→ b[k] = a[k] .

Our goal is to prove that every array can be permuted into a sorted one between any
given index bounds l ≤ r

I Theorem 1 (Sorting Theorem). ∀l, r, a. l ≤ r → ∃b.Permuted(a, b, l, r) ∧ Sorted(b, l, r)1

where

Sorted(a, l, r) := ∀i, j.l ≤ i < j ≤ r → a[i] ≤ a[j]

and the intuitive meaning of the predicate Permuted is

Permuted(a, b, l, r) := ∃ permutation σ of [l, r]. ∀i ∈ [l, r] b[i] = a[σ(i)] ∧
∀i 6∈ [l, r]. b[i] = a[i]

where [l, r] = {i | l ≤ i ≤ r}.
In the proof it will be convenient to work with a different (but equivalent) inductive

definition of the predicate Permuted, based on the fact that every permutation is a composition
of swappings (transpositions). First, we define what it means for two arrays a and b to differ
only by swapping the contents at the indices i and j:

Swap(a, b, i, j) := b[i] = a[j] ∧ b[j] = a[i] ∧ ∀k 6∈ {i, j}. b[k] = a[k] .

The predicate Permuted is now defined inductively by the clauses:
(P1) Permuted(a, a, l, r) .
(P2) l ≤ i, j ≤ r ∧ Swap(a, b, i, j)→ Permuted(a, b, l, r) .
(P3) Permuted(a1, a2, l, r) ∧ Permuted(a2, a3, l, r)→ Permuted(a1, a3, l, r) .

This means that Permuted is the least predicate satisfying the clauses P1–3.
We first prove we can always swap two elements of an array and that the predicate

Permuted has the expected properties:

I Lemma 2 (Swap). ∀a, i, j. ∃b. Swap(a, b, i, j) .

1 We use the dot notation where the dot allows the quantifiers to have the largest possible range. For
example ∀i.A → B is the same as ∀i(A → B).

TYPES 2013

88 Extracting Imperative Programs from Proofs: In-place Quicksort

I Lemma 3 (Permutation). For all a, b, l, r with Permuted(a, b, l, r)
(a) ∀i ∈ [l, r].∃j ∈ [l, r]. b[i] = a[j] .
(b) ∀i 6∈ [l, r]. b[i] = a[i] .
(c) ∀l′, r′. l′ ≤ l ∧ r ≤ r′ → Permuted(a, b, l′, r′) .

The proofs of both lemmas are easy. The proof of the Permutation Lemma proceeds by
induction on the definition of Permuted(a, b, l, r). We omit further details.

3.1 Partitioning an array
The crucial idea of Quicksort is the notion of a partition. A partition is an array together
with a selected pivot element such that every element to the left of the pivot is smaller than
or equal to the pivot and every element to the right is greater than the pivot.

Partition(a, l, p, r) := ∀i (l ≤ i < p→ a[i] ≤ a[p]) ∧
∀i (p < i ≤ r → a[p] < a[i]) .

For the proof of the Sorting Theorem (Theorem 1) we need to prove that every array can
be permuted into a partition:

I Lemma 4 (Partition).

∀l, r, a . l ≤ r → ∃p, b . l ≤ p ≤ r ∧ Permuted(a, b, l, r) ∧ Partition(b, l, p, r) .

Proof. We prove a slightly stronger statement stating in addition that b[p] = a[l]. The proof
is by induction on k := r − l. Formally, we prove

∀k, l, r, a . l+ k = r → ∃p ∈ [l, r], b . b[p] = a[l]∧ Permuted(a, b, l, r)∧ Partition(b, l, p, r)

by induction on k.

Base Case: k = 0. Assume l + 0 = k. Then l = k and we may take p = l and b = a.

Step: k + 1. We assume l + (k + 1) = r.

Case 1: a[l] ≥ a[l + 1] .
We use the induction hypothesis with l + 1, r and some a1 satisfying Swap(a, a1, l, l + 1),
which by the Swapping Lemma exists. Since (l + 1) + k = r we get p ∈ [l + 1, r] and b
with b[p] = a1[l + 1], Permuted(a1, b, l + 1, r) and Partition(b, l + 1, p, r). We take the
same p and b. We have b[p] = a1[l+ 1] = a[l]. Furthermore, by definition of the predicate
Permuted, it follows that Permuted(a, b, l, r). In order to show Partition(b, l, p, r), we
assume first l ≤ i < p and show b[i] ≤ b[p]. If i = l, then b[i] = a1[l] by the Permutation
Lemma, part (c), and hence b[i] = a[l + 1] ≤ a[l] = a1[l + 1] = b[p]. If i ≥ l + 1, the
in-equation b[i] ≤ b[p] follows from Partition(b, l + 1, p, r). That for p < i ≤ r we have
b[p] < b[r] follows immediately from Partition(b, l + 1, p, r).
Case 2: a[l] < a[l + 1] .
We use the induction hypothesis with l, r− 1 and a1 satisfying Swap(a, a1, l+ 1, r). Since
l + k = r − 1 we get p ∈ [l, r − 1] and b with b[p] = a1[l], Permuted(a1, b, l, r − 1) and
Partition(b, l, p, r − 1). Again, we take the same p and b. We have b[p] = a1[l] = a[l]
since l 6∈ {l + 1, r}. Furthermore, by definition of the predicate Permuted, it follows
Permuted(a, b, l, r). In order to show Partition(b, l, p, r), we assume first p < i ≤ r − 1

U. Berger, M. Seisenberger, and G. J.M. Woods 89

and show b[i] > b[p]. If i = r, then b[i] = a1[r] by the Permutation Lemma, part (c), and
hence b[i] = a[l + 1] > a[l] = b[p]. If i ≤ r − 1, the in-equation b[i] > b[p] follows from
Partition(b, l + 1, p, r). That for l ≤ i < p we have b[i] ≤ b[p] follows immediately from
Partition(b, l, p, r − 1).

This completes the proof of the Partition Lemma. J

3.2 Proof of the Sorting Theorem
Now we have everything we need to prove the Sorting Theorem (1). If l ≥ r, the proof is
trivial. Hence, in the following we assume l < r.

Proof. We do an induction on the length r − l of the segment to be sorted. Therefore, we
have an induction hypothesis for all shorter segments. Our goal is

∃b. Sorted(b, l, r) ∧ Permuted(a, b, l, r) .

By the Partition Lemma (4) we have an array a1 and a pivot index p that fulfil the partition
property

Permuted(a, a1, l, r) ∧ Partition(a1, l, p, r) . (1)

Case 1: Both sides of the partition are non-empty, i.e. l < p < r.
We use the induction hypothesis with the left side of the partition with the array l, p− 1
and a1 and get a2 such that

Sorted(a2, l, p− 1) ∧ Permuted(a1, a2, l, p− 1) . (2)

We now do the same on the right side of the partition using the induction hypothesis
with p+ 1, r and a2 and get b with:

Sorted(b, p+ 1, r) ∧ Permuted(a2, b, p+ 1, r) . (3)

We show that our b satisfies:

Sorted(b, l, r) ∧ Permuted(a, b, l, r) .

Sorted(b, l, r): by (2) we have Sorted(a2, l, p − 1) and by (3), Sorted(b, p + 1, r).
Furthermore, by the Permutation Lemma (3), part (b), and by using the other
conjunct of (2) it follows Sorted(b, l, p−1). Furthermore, from (1) and the Permutation
Lemma (3), part (a), it follows Partition(b, l, p, r). From these facts one easily derives
Sorted(b, l, r).
Permuted(a, b, l, r): this follows easily from the Permutation Lemma, part (c), and the
last clause of the inductive definition of the predicate Permuted.

Case 2: One side of the partition is empty.
If the left side is empty, i.e. p = l, then we apply the induction hypothesis to a1, l + 1, r.
If the right side is empty we use the induction hypothesis for a1, l, r − 1. The rest of the
proof is similar to the previous Case 1, but simpler. J

4 Program Extraction

In this section we address some technical issues of the implementation in Minlog, present
the extracted programs and explain why they can be considered as imperative programs.
The Minlog source files for this extraction example can be found on the Swansea Minlog
Repository web page [24].

TYPES 2013

90 Extracting Imperative Programs from Proofs: In-place Quicksort

4.1 Implementation in Minlog
We highlight some aspects of the implementation in Minlog that are necessary to understand
the proof scripts and the extracted programs.

We present the theorems as they appear in Minlog:

Listing 1 Sorting Theorem (1)
(set -goal (pf "all l,r,a . l<= r ->

ex b. Permuted a b l r & Sorted b l r"))

Listing 2 Partition Lemma (4)
(set -goal (pf "all k,l,r,a. l+k=r ->

(ex a1 ,p. ((all i (l<=i -> i<p -> Rd a1 i <= Rd a1 p)) &
(all i (p<i -> i<=r -> Rd a1 p < Rd a1 i)) &
Permuted a a1 l r &
Rd a1 p = Rd a l &
l <= p &
p <= r))"))

Listing 3 Swap Lemma (2)
(set -goal (pf "all a,i,j ex b. Swap a b i j"))

4.1.1 Arrays
Minlog does not have a built-in data type of arrays. We chose to define arrays as a free
algebra with the nullary constructor Empty, denoting the constant zero array, and a ternary
constructor Wr (for “write”):

Listing 4 Minlog Array Definition
(add -alg "ar" ’(" Empty" "ar") ’("Wr" "ar=>nat=>nat=>ar "))

The earlier used notation a[i := x] was just syntactic sugar for Wr a x i.
By structural recursion on the free algebra of arrays we define a reading operation:
Listing 5 Minlog Read Definition

(apc "Rd" (py "ar=>nat=>nat "))
(add - computation -rule

(pt "Rd (Wr a n i) j")
(pt "[if (i=j) n (Rd a j)]"))

This means that Rd is introduced as a program constant with the computation rule
rewriting Rd (Wr a n i) j to [if (i=j) n (Rd a j)]. We do not use a rewrite rule for
Rd Empty j in the proof.

Using the notation a[i] for Rd a i the Axioms (RW1) and (RW2) (cf. Sect. 3) now become
easily provable theorems.

4.1.2 Equational reasoning via normalisation
The reader might have noticed that we slightly deviated from Sect. 3 where we said that we
consider arrays as an abstract data type. The reason for our choice is purely a matter of
convenience since equational reasoning becomes much easier if certain equations are expressed
via (strongly normalizing and confluent) term rewriting rules, allowing us to prove equations

U. Berger, M. Seisenberger, and G. J.M. Woods 91

by checking syntactic equality of normal forms. One could, of course, replace arrays by a
different data structure where accessing an element takes logarithmic instead of linear time.
However, this would have no effect on the extracted program.

4.1.3 Realizability
In this paper we work with Minlog’s program extraction module based on modified realizability
[15] which can be viewed as a typed version of Kleene’s realizability for numbers [14].

Realizability provides a very intuitive way of extracting the computational content from
a formal constructive proof in the spirit of the Curry-Howard correspondence that associates
propositions with types and proofs with programs. It does not establish an isomorphism
between proofs and programs, but a highly non-injective homomorphism that eliminates
large parts of proofs that are computationally irrelevant. In order to widen the range of
applications, Minlog uses an extended form of realizability that allows, for example, to extract
algebraic data types from inductive definitions [18].

4.1.4 Induction and recursion
There occur two kinds of induction in our formalization:

1. Ordinary “Zero-successor”-induction on the natural numbers. This is used, for example
in the proof of the Partition Lemma. In Minlog this axiom scheme is interpreted
computationally (via realizability) as a constant-scheme: Rec.

2. The other form of induction we use is “induction with respect to a measure function”.
This is used in the Sorting Theorem. The realizability interpretation of this form of
induction is a constant-scheme: GRecGuard.

4.2 The extracted programs
4.2.1 Program extracted from the proof of the Sorting Theorem.

Listing 6 Qsort Extracted Program
qsort =

cGIND
[n3 ,n4 ,g5 ,a6]

[let ap7 (cPart(n4 --n3)n3 n4 a6)
[if (n3 <right ap7)

[if (right ap7 <n4)
[let a8 (g5 n3(Pred right ap7)left ap7)

[let a9 (g5(Succ right ap7)n4 a8)
a9]]

(g5 n3(Pred right ap7)left ap7)]
[if (right ap7 <n4)

(g5(Succ right ap7)n4 left ap7)
(left ap7)]]]

Note: ap7 corresponds to (a1, p) in the proof of the Partition Lemma. left ap7 and
right ap7 correspond to p and a1 respectively. g5 plays the role of the recursive call, cGIND
is a particular instance of the constant-scheme GRecGuard and cPart corresponds to the
Partition lemma. The letter c in cPart indicates that it is an automatically generated name
for the program from partition lemma Part. For better readability, we omit the c in the
further discussion.

TYPES 2013

92 Extracting Imperative Programs from Proofs: In-place Quicksort

4.2.2 Program extracted from the proof of the Partition Lemma.
Listing 7 Part Extracted Program

part =
[n0]

(Rec nat=>nat=>nat=>ar=> ar@@nat)
n0

([n4 ,n5 ,a6]a6@n4)
([n4 ,rec5 ,n6 ,n7 ,a8]

[if (Rd a8(Succ n6)<=Rd a8 n6)
[let a9 (Swap a8(Succ n6)n6) (rec5(Succ n6)n7 a9)]
[let a9 (Swap a8(Succ n6)n7) (rec5 n6(Pred n7) a9)]])

Note: The variable rec5 has type nat=>nat=>ar=>ar@@nat and represents the recursive
call where ar@@nat is the pairing of an array and a natural number.

4.2.3 The swap function extracted from the proof of the Swapping
Lemma

Listing 8 Swap Extracted Program
swap =

[a0 ,n1 ,n2]
[let n3 (Rd a0 n1)

[let n4 (Rd a0 n2)
[let a1 (Wr a0 n4 n1) (Wr a1 n3 n2)]]]

4.3 The extracted programs explained
Minlog’s formalization of recursive definitions via recursion operators is adequate from a
technical point of view, but it makes recursively defined functions hard to read. Therefore,
we replace the recursion operators by recursive equations, and re-name the (automatically
generated) variables so that they match the variable names used in the proofs. Furthermore,
we write the variable ap7 in the let expression of qsort as a pair (a1,p) which spares us
the use of the projection functions left and right. Also, in the function part we omit the
first parameter n0, which corresponds to k, since it always has the value r − l (n4-n5), and
replace, for example “k = 0” by l = r. All these changes are only cosmetic and intended to
ease the understanding of the programs. They do not affect their behaviour.

We use Haskell-like syntax in the pseudo-code below. For example, (N,N,A) stands for
the type N×N×A where A is the type of arrays. The programs qsort and part are intended
to be used for l ≤ r only.

Listing 9 Qsort (Haskell Style)
qsort(l,r,a) =

let (a1 ,p) = part(l,r,a)
in if l < p

then if p < r
then let {a2 = qsort(l,p-1,a1)} in qsort(p+1,r,a2)
else qsort(l,r-1,a1)

else if p < r
then qsort(l+1,r,a1)
else a1

U. Berger, M. Seisenberger, and G. J.M. Woods 93

Listing 10 Part (Haskell Style)
part : (N,N,A) -> (A,N)
part(l,r,a) =

if l = r
then (a,l)
else if a[l+1] <= a[l]

then let {a1 = swap(a,l+1,l)} in part(l+1,r,a1)
else let {a1 = swap(a,l+1,r)} in part(l,r-1,a1)

Listing 11 Swap (Haskell Style)
swap : (A,N,N) -> A
swap(a,i,j) = let {x = a[i]; y = a[j]; a1 = a[i:=y]} in a1[j:=x]

4.4 How are these extracted programs imperative?

At first sight the extracted programs look clearly functional. Indeed they are, provided
the writing operation a[i:=y], which is the only operation where the array is modified,
is implemented functionally. However, nothing prevents us from implementing the write
operation as a procedure that destructively changes the array (instead of producing a new
array). But, are the extracted programs then still correct? Looking at the proof of the
Soundness Theorem (see eg [5]) for realizability, which is the source of correctness of our
extracted program, we see that the extracted programs are assumed to behave functionally,
i.e. have no side effects. In particular, functional programs do not destroy their input, and
as a consequence, referential transparency holds, which means that the value of a complex
programs only depends on the values of its subprograms and not, for example, on the order in
which the subprograms are evaluated. Referential transparency is crucial for the Soundness
Theorem, and it does, in general, not hold for imperative code. Therefore, an additional
argument is needed in order to show that, in our particular case, the programs stay correct
when the writing operation is implemented imperatively. The argument is simple: in the
extracted programs, arrays can be viewed as “single-threaded” objects, since, once an array
is used as an argument of the update operation, or a program that uses the writing operation
such as swap, part or qsort, it is never used again. Hence the correctness of the program is
not compromised if the write operation destroys its argument.

4.5 Monadic presentation of the extracted programs

The imperative nature of the programs qsort and part becomes particularly lucid when
they are formulated using the state monad where arrays play the role of states. Monads [21]
are a popular concept to incorporate imperative code into functional programs in an elegant
and clean way. The definitions below are standard in functional programming, but in order
to make the paper self-contained we include them.

We define a type operator M (the state monad with arrays as states) by

M u = A -> (u,A)

where u is a type variable. A value of type M u can be viewed as an action that, when
executed, produces a result of type u, but may, in addition, have a side effect on the state
(array in our case).

We have the general monad operators

TYPES 2013

94 Extracting Imperative Programs from Proofs: In-place Quicksort

return : u -> M u
return x a = (x,a)

bind : M u -> (u -> M v) -> M v
bind m f a = let {(x,b) = m a} in f x b

and the special operators for this particular monad:
get : N -> M N
get i a = (a[i],a)

put : (N,N) -> M ()
put(i,x) a = ((),a[i:=x])

where () is a singleton type, We will use the suggestive “do-notation”: If m1 : M u and
m2 : M v are expressions where m2 may depend on a variable x : u, then
do { x <- m1 ; m2 } := bind m1 (\x-> m2) : M v

where \x-> denotes lambda-abstraction. If m2 does not depend on x, then
do { m1 ; m2 } := bind m1 (_ -> m2) : M v

This notation can be extended to more than two actions in the obvious way. Furthermore,
expressions of the form do { ... x <- m ; return x } can be simplified to do { ... m }.

Using canonical isomorphisms such as

N× N×A→ A ' N× N→ (A→ ()×A)

we can write the programs qsort, part, and swap equivalently as follows, using the new
names mqsort, mpart and mswap:

Listing 12 Qsort (Monadic Style)
mqsort (l,r) =

do {
p <- mpart(l,r) ;
(if l < p

then if p < r
then do { mqsort (l,p -1) ; mqsort (p+1,r) }
else mqsort (l,r -1)

else if p < r
then mqsort (l+1,r)
else return ()

}

Listing 13 Part (Monadic Style)
mpart : (N,N) -> M N
mpart(l,r) =

if l = r
then return l
else do {

x <- get l ;
y <- get (l+1) ;
(if x >= y

then do { mswap(l,l+1); mpart(l+1,r) }
then do { mswap(l+1,r); mpart(l,r -1) }

}

U. Berger, M. Seisenberger, and G. J.M. Woods 95

Listing 14 Swap (Monadic Style)
mswap : (N,N) -> M ()
mswap(i,j) = do { x <- get(i) ; y <- get(j) ; put(i,y) ; put(j,x) }

The significance of the monadic notation is that the syntax alone enforces that arrays,
once they have been used as input to a program involving the write operation, can no longer
be accessed, thus enabling destructive interpretations of these operations. For example, we
might want a modified sorting program qsort1 that outputs the sorted array together with
the original array. In the non-monadic style this can be done by simply defining

qsort1 (l,r,a) = (qsort(l,r,a),a)

This would exhibit the desired behaviour if qsort is interpreted functionally, but not if it is
interpreted imperatively. However, in the monadic style we need a copying operation

copy : M A
copy a = (a,a)

in order to define

mqsort1 (l,r) = do { a <- copy ; mqsort (l,r) ; return a }

The latter program is correct w.r.t. the functional and the imperative interpretation.

5 Automated Monadification

Abstracting from the Quicksort case study we now define a functional language SIT modelling
a subset of Minlog’s term language which captures the idea of single-threadedness and includes
the original functional Quicksort program extracted by Minlog. Then we describe a (meaning
preserving) translation of this language into a monadic language which admits an imperative
interpretation.

5.1 Remark
A different monadification process has been studied by Erwig and Ren [10]. They consider
the problem of transforming a program of type ρ → σ into one of type ρ → M(σ) where
M is a “runnable” monad (i.e. a monad with a left inverse of the return operation) and
the resulting program is again functional. On the other hand, our translation transforms
programs of type (ρ,A)→ (σ,A) into programs of type ρ→M(σ) whereM is specifically the
state monad, i.e. we deal with programs where the input and output may be state dependent.
In addition we are careful that the resulting program has an imperative interpretation.

5.2 The Single-Threaded Functional Language SIT
In the SIT language we have two different kinds of types. A distinguished type A of states
and other “ordinary” types ρ, σ different from A. For the Quicksort example the state is an
array and the only other types are natural numbers and Boolean values.

SIT is parametrized by three different kinds of functions which are distinguished by the
types of values they access and return:

Basic Functions – functions that neither access or modify the state:
fbas : ~ρ→ σ

Accessor Functions – functions which may require access to the state, but do not modify
it:
facc : (~ρ,A)→ σ

TYPES 2013

96 Extracting Imperative Programs from Proofs: In-place Quicksort

Quasi Side-Effect Functions – functions that may modify the state (“Quasi” because they
are SIT functions which are side-effect free, but will later be translated into functions
with side-effects):
f sid : (~ρ,A)→ (~σ,A)

In (ρ1, . . . , ρn, A) the number n may be zero in which case we write just (A). We let
x, y, z range over an infinite set of variables which will later be given ordinary types. We
only need one state variable a.

The terms t and expressions e of SIT are defined as follows:
SitTerm 3 t ::= x | fbas(~t) | facc(~t, a)
SitExpr 3 e ::= (~t, a) | f sid(~t, a) | if t then e1 else e2 | let (~x, a) = e1 in e2

where all variables in ~x are different. In general, ~x, ~y, . . . will always denote vectors of pairwise
different variables.

A SIT program is a finite list of equations of the form

f sid1 (~x1, a) = e1
. . .

f sidn (~xn, a) = en .

The functions f sidi may occur in the expressions ej and are considered to be (possibly
recursively) defined by the equations. All other functions symbols occurring in the ej are
considered as predefined functions (or parameters of the program).

The “let” is the only construction which binds free variables. In fact, the “let” expression
let (~x, a) = e1 in e2 is to be understood as the β-redex (λ(~x, a).e2)e1. This intuition is
reflected by the following axiom:
I Axiom 1. let (~x, a) = (~t, a) in e ≡ e[~t/~x] for all ~t ∈ SitTerm, e ∈ SitExpr,
where substitution of terms into expressions, e[~t/~x], is defined below.

Note that in a “let” expression, let (~x, a) = e1 in e2, the equation (~x, a) = e1 is not to
be understood as a (potentially) recursive definition of (~x, a) as it is the case in Haskell.
Therefore, our “let” rather corresponds to Scheme’s “let” while Haskell’s “let” corresponds
to Scheme’s “letrec”.

The free variables for “let” constructs are defined as:

FV(let (~x, a) = e1 in e2) := FV(e1) ∪ (FV(e2) \ {~x, a}) .

The notion of α-equivalence is defined as usual, in particular:

let (~x, a) = e1 in e2
α≡ let (~y, a) = e1 in e2[~y/~x]

where ~y are fresh variables. Simultaneous substitution, e[~t/~x], of terms ~t for variables ~x in a
SIT expression e is defined as follows:

y[~t/~x] :=
{
ti, if y ∈ {x1, . . . , xn},where y = xi

y, otherwise

fbas(~s)[~t/~x] := fbas(s1[~t/~x], . . . , sn[~t/~x])
facc(~s, a)[~t/~x] := facc(s1[~t/~x], . . . , sn[~t/~x], a)

(~s, a)[~t/~x] := (s1[~t/~x], . . . , sn[~t/~x], a)
f sid(~s, a)[~t/~x] := f sid(s1[~t/~x], . . . , sn[~t/~x], a)

(if t then e1 else e2)[~t/~x] := if s[~t/~x] then e1[~t/~x] else e2[~t/~x]
(let (~y, a) = e1 in e2)[~t/~x] := let (~y, a) = e1[~t/~x] in e2[~t/~x]

where in the “let” case we can assume, possibly after α-renaming, that ~y ∩ (~x ∪ FV(~t)) = ∅.

U. Berger, M. Seisenberger, and G. J.M. Woods 97

5.3 SIT Typing System
In the following we define a typing system which derives judgements of the form Γ ` t : ρ or
Γ ` e : (~ρ,A) where the context Γ is a finite set of type declarations x : ρ:

Γ, x : σ ` x : σ

fbas : ~ρ→ σ Γ ` ~t : ~ρ
Γ ` fbas(~t) : σ

facc : (~ρ,A)→ σ Γ ` ~t : ~ρ
Γ ` facc(~t, a) : σ

Γ ` ~t : ~ρ
Γ ` (~t, a) : (~ρ,A)

f sid : (~ρ,A)→ (~σ,A) Γ ` ~t : ~ρ
Γ ` f sid(~t, a) : (~σ,A)

Γ ` t : B Γ ` e1 : (~σ,A) Γ ` e2 : (~σ,A)
Γ ` if t then e1 else e2 : (~σ,A)

Γ ` e1 : (~ρ,A) Γ, ~x : ~ρ ` e2 : (~σ,A)
Γ ` let (~x, a) = e1 in e2 : (~σ,A)

A SIT program

f sid1 (~x1, a) = e1
. . .

f sidn (~xn, a) = en

is well-typed if for each of the defined functions f sidi : (~ρi, A)→ (~σi, A) the typing judgement
~xi : ~ρi ` ei : (~σi, A) is derivable.

Since the typing rules are syntax directed it is clear that the typing rules are decidable
(in linear time) and therefore can be automated.

The single-threadedness of SIT is enforced by the fact that there are no functions with
result type A. For example, Wr has result type (A) but not A. Otherwise, one could form
well-typed, but non single-threaded terms such as Rd(i, Wr(i, x, a)) + Rd(i, a).

5.4 Quicksort as a SIT program
We briefly demonstrate that the extracted Quicksort program (written as recursive equations)
can be written in SIT. We have the predefined functions <,≤,= : (N,N) → B (basic
functions), Rd : (N, A) → N (accessor function) and Wr : (N,N, A) → (A) (quasi side-
effect function). Semantically (expressed outside the SIT language), Rd(i, a) = a[i] and
Wr(i, x, a) = (a[i := x]). The SIT program defining Quicksort is as follows:

TYPES 2013

98 Extracting Imperative Programs from Proofs: In-place Quicksort

Listing 15 Qsort (SIT)
qsort : (N,N,A) -> (A)
qsort(l,r,a) =

let (p,a) = part(l,r,a) in
if l < p
then if p < r

then let (a) = qsort(l,p-1,a) in qsort(p+1,r,a)
else qsort(l,r-1,a)

else if p < r
then qsort(l+1,r,a)
else (a)

Listing 16 Part (SIT)
part : (N,N,A) -> (N,A)
part(l,r,a) =

if l = r
then (l,a)
else if Rd(l+1,a) <= Rd(l,a)

then let (a) = swap(l+1,l,a) in part(l+1,r,a)
else let (a) = swap(l+1,r,a) in part(l,r-1,a)

Listing 17 Swap (SIT)
swap : (N,N,A) -> (A)
swap(i,j,a) = let (x,y,a) = (Rd(i,a),Rd(j,a),a) in

let (a) = Wr(i,y,a) in Wr(j,x,a)

The above SIT code wouldn’t run correctly in Haskell because, as mentioned in Sect. 5.2,
Haskell would interpret, for example, let (p,a) = part(l,r,a) as a recursive definition
of (p,a). In order to obtain correct Haskell code (up to minor syntactic details such
as capitalised functions) we can simply α-rename the state variables, for example, re-
name let (p,a) = part(l,r,a) in e to let (p,a1) = part(l,r,a) in e[a1/a]. Then
we would end up with essentially the same code as in listings 9–11.

5.5 The Monadic Language MON
We now introduce a monadic language MON with programs of type ~ρ→M~σ where M is a
monad. For convenience we let M operate on tuples of types rather than single types. For
the moment M is an arbitrary monad, but later in Sect. 6.1 we will interpret MON into
SIT where it will be pinned down as the state monad. In MON we have two different kinds
of functions:

The basic functions of the SIT language,
fbas : ~ρ→ σ .

Functions which may access and modify the state,
gsid : ~ρ→M~σ .

The terms u and expressions m of MON are defined as follows:
MonTerm 3 u ::= x | fbas(~u)
MonExpr 3 m ::= gsid(~u) | return ~u | if u then m1 else m2 | bind m1 (λ~x.m2)

where in bind m1 (λ~x.m2) we assume ~x /∈ FV(m1).
Notice that MonTerm ⊂ SitTerm. A MON program is a finite list of equations

gsid1 (~x1) = m1
. . .

gsidn (~xn) = mn .

U. Berger, M. Seisenberger, and G. J.M. Woods 99

As with SIT, the functions gsidi are considered to be (possibly recursively) defined by the
equations. All other functions symbols occurring in the mj are considered as predefined
functions.

5.6 MON Typing System
We define a typing system for judgements of the form Γ ` u : σ and Γ ` m : M~σ where
contexts Γ are as before:

Γ, x : σ ` x : σ

fbas : ~ρ→ σ Γ ` ~u : ~ρ
Γ ` fbas(~u) : σ

Γ ` ~u : ~ρ
Γ ` return ~u : M~ρ

gsid : ~ρ→M~σ Γ ` ~u : ~ρ
Γ ` gsid(~u) : M~σ

Γ ` u : B Γ ` m1 : M~σ Γ ` m2 : M~σ

Γ ` if u then m1 else m2 : M~σ

Γ ` m1 : M~ρ Γ, ~x : ~ρ ` m2 : M~σ

Γ ` bind m1 (λ~x.m2) : M~σ

5.7 Translation from SIT to MON
The translation of SIT into MON is parametric in a translation of the predefined function
symbols. Hence, we assume that we have assigned in a one-to-one way:

to every SIT accessor function facc : (~ρ,A)→ σ a MON side-effect function F0(facc) :
~ρ→Mσ, and
to every SIT quasi side-effect function f sid : (~ρ,A)→ (~σ,A) a MON side-effect function
F0(f sid) : ~ρ→M~σ

Recall that basic SIT functions fbas : ~ρ→ σ are at the same time basic MON functions
and are hence translated into themselves. Based on this assignment we define a translation

F : SitTerm ∪ SitExpr→ MonExpr

Terms
F(x) := return x (where x is a variable)
F(fbas(~t)) := bind F(~t) λ~x.return fbas(~x)
F(facc(~t, a)) := bind F(~t) λ~x.F0(facc)(~x)
Where bind F(~t) λ~x.m is defined recursively as:
bind F(∅) λ∅.m := m

bind F(t,~t) λx.λ~x.m := bind F(t) (λx.bind F(~t) λ~x.m)
assuming ~x ∩ FV(~t) = ∅
Expressions
F((~t, a)) := bind F(~t) λ~x.return ~x
F(f sid(~t, a)) := bind F(~t) λ~x.F0(f sid)(~x)
F(if t then e1 else e2) := bind F(t) (λx.if x then F(e1) else F(e2))
F(let(~x, a) = e1 in e2) := bind F(e1) (λ~x.F(e2))

TYPES 2013

100 Extracting Imperative Programs from Proofs: In-place Quicksort

where all introduced λ-abstractions use fresh variables. This induces a translation of any
SIT program:

f sid1 (~x1, a) = e1
. . .

f sidn (~xn, a) = en

into the MON program:

F0(f sid1)(~x1) = F(e1)
. . .

F0(f sidn)(~xn) = F(en) .

I Lemma 5 (Type preservation of translation F).
If Γ ` t : ρ then Γ ` F(t) : Mρ, and
If Γ ` e : (~ρ,A) then Γ ` F(e) : M~ρ

Proof. By induction on the typing derivations. J

I Corollary 6. If a SIT program is well-typed then its monadic translation is also well-typed.

5.8 Translating the SIT code of Quicksort into MON
We apply the translation F to the SIT code of the Quicksort program shown in Sect. 5.4.
Defining the function F0 as:

F0(Rd) = get
F0(Wr) = put
F0(qsort) = mqsort
F0(part) = mpart
F0(swap) = mswap

and using the “do-notation” introduced in Sect. 4.5 we obtain exactly the MON programs
in the same section (listings 12-14).

6 Soundness of the translation

To prove the soundness of the monadic translation F we define a new translation:

G : MON→ SIT

which “demonadifys” the program. We will prove the following theorem (which will be
Theorem 10 below):

For all typable SIT expressions e, G(F(e)) ≡ e.

6.1 Translation from MON to SIT
The following translation of MON into SIT can be viewed as a definition of the monadic
constructs in functional terms. In fact, it expresses that M is the state monad. To every
MON side-effect function gsid : ~ρ→M~σ, each of which we may assume to be in the image
of F0, we assign a SIT quasi side-effect function G0(gsid) : (~ρ,A)→ (~σ,A) as follows:

If gsid = F0(f sid), then G0(gsid) := f sid ,

If gsid = F0(facc), then G0(gsid) := f̂acc ,

U. Berger, M. Seisenberger, and G. J.M. Woods 101

where for a SIT accessor function facc : (~ρ,A) → σ, f̂acc : (~ρ,A) → (σ,A) is a new SIT
quasi side-effect function that “behaves” like facc, that is, we postulate:

I Axiom 2. f̂acc(~x, a) ≡ (facc(~x, a), a) .

Now we define the function

G : MonExpr→ SitExpr .

Recall that MonTerm ⊂ SitTerm, and SIT has only one state variable a which is used below.

G(gsid(~u)) := G0(gsid)(~u, a)
G(return ~u) := (~u, a)
G(if u then m1 else m2) := if u then G(m1) else G(m2)
G(bind m1 λ~x.m2) := let (~x, a) = G(m1) in G(m2)

6.2 Auxiliary Lemmas
We prepare the proof of Theorem 10 by a sequence of lemmas.

I Lemma 7. Let ~t = t1, . . . , tn. Assume Γ ` ~t : ~ρ, and G(F(ti)) ≡ (ti, a). Let ~x = x1, . . . , xn
be pairwise different variables that are not free in ~t. Then:
(a) G(bind F(~t) λ~x.return fbas(~x)) ≡ (fbas(~t), a)
(b) G(bind F(~t) λ~x.F0(facc)(~x)) ≡ (facc(~t, a), a)

Proof. For part (a) we prove more generally:

G(bind F(tk+1, . . . , tn) λxk+1, . . . , xn.return fbas(x1, . . . , xn)) ≡
(fbas(x1, . . . , xk, tk+1, . . . , tn), a)

for all k ∈ 1, . . . , n, by induction on n− k.

Base case n− k = 0 (n = k).

G(bind F(∅) λ∅.return fbas(x1, . . . , xn))
≡ G(return fbas(x1, . . . , xn)) (def. of bind)
≡ (fbas(x1, . . . , xn), a) (def. of G)

Step n > 0 (k < n).

G(bind F(tk+1, . . . , tn) λxk+1, . . . , xn.return fbas(x1, . . . , xn))
≡ G(bind F(tk+1) (λxk+1.bind F(tk+2, . . . , tn) (def. of bind)

λxk+2, . . . , λxn.return fbas(x1, . . . , xn)))
≡ let(xk+1, a) = G(F(tk+1)) in (def. of G)

G(bind F(tk+2, . . . , tn) λxk+2, . . . , λxn.return fbas(x1, . . . , xn))
≡ let(xk+1, a) = (tk+1, a) in (assumption)

G(bind F(tk+2, . . . , tn) λxk+2, . . . , λxn.return fbas(x1, . . . , xn))
≡ let (xk+1, a) = (tk+1, a) in (fbas(x1, . . . , xk, xk+1, tk+2, . . . , tn), a) (I.H.)
≡ (fbas(x1, . . . , xk, xk+1, tk+2, . . . , tn), a)[tk+1/xk+1] (Axiom 1)
≡ (fbas(x1, . . . , xk, tk+1, tk+2, . . . , tn), a) (xk+1 /∈ FV(~t))

TYPES 2013

102 Extracting Imperative Programs from Proofs: In-place Quicksort

Similarly for part (b) we prove the following more general statement:

G(bind F(tk+1, . . . , tn) λxk+1, . . . , xn.F0(facc)(x1, . . . , xn)) ≡
(facc(x1, . . . , xk, tk+1, . . . , tn, a), a)

for all k ∈ 1, . . . , n, by induction on n− k.

Base case n− k = 0 (n = k).

G(bind F(∅) λ∅. F0(facc)(x1, . . . , xn))
≡ G(F0(facc)(x1, . . . , xn)) (def. of bind)
≡ G0(F0(facc))(x1, . . . , xn, a) (def. of G)

≡ f̂acc(x1, . . . , xn, a) (def. of G0)
≡ (facc(x1, . . . , xn, a), a) (Axiom 2)

Step n > 0 (k < n).

G(bind F(tk+1, . . . , tn) λxk+1, . . . , xn. F0(facc)(x1, . . . , xn))
≡ G(bind F(tk+1) (λxk+1.bind F(tk+2, . . . , tn) (def. of bind)

λxk+2, . . . , λxn.F0(facc)(x1, . . . , xn)))
≡ let(xk+1, a) = G(F(tk+1)) in (def. of G)

G(bind F(tk+2, . . . , tn) λxk+2, . . . , λxn.F0(facc)(x1, . . . , xn))
≡ let(xk+1, a) = (tk+1, a) in (assumption)

G(bind F(tk+2, . . . , tn) λxk+2, . . . , λxn.F0(facc)(x1, . . . , xn))
≡ let (xk+1, a) = (tk+1, a) in (facc(x1, . . . , xk, xk+1, tk+2, . . . , tn, a), a) (I.H.)
≡ (facc(x1, . . . , xk, xk+1, tk+2, . . . , tn, a), a)[tk+1/xk+1] (Axiom 1)
≡ (facc(x1, . . . , xk, tk+1, tk+2, . . . , tn, a), a) (xk+1 /∈ FV(~t))

J

I Lemma 8 (Soundness for a single term)).
If Γ ` t : σ (i.e. t is typable in the SIT language), then G(F(t)) = (t, a).

Proof. By induction on SIT terms.

G(F(x))
≡ G(return x) (def. of F)
≡ (x, a) (def. of G)

G(F(fbas(~s))
≡ G(bind F(~s) λ~x.return fbas(~x)) (def. of F)
≡ (fbas(~s), a) (Lemma 7)

G(F(facc(~s, a)))
≡ G(bind F(~s) λ~x. F0(facc)(~x)) (def. of F)
≡ (facc(~x, a), a) (Lemma 7)

J

U. Berger, M. Seisenberger, and G. J.M. Woods 103

I Lemma 9 (Bind Lemma). If Γ ` ~t : ~ρ and ~x ∩ FV(~t) = ∅, then G(bind F(~t) λ~x.m) ≡
G(m)[~t/~x].

Proof. By induction on the length of ~t.
Base len(~t) = 0 (i.e. ~t = ∅)

G(bind F(∅) λ∅.m)
≡ G(m) (def. of bind)

Step

G(bind F(t,~t) λxλ~x.m)
≡ G(bind F(t) (λx.bind F(~t) λ~x.m)) (def. of bind)
≡ let (x, a) = G(F(t)) in G(bind F(~t) λ~x.m) (def. of G)
≡ let (x, a) = G(F(t)) in (G(m)[~t/~x]) (I.H.)
≡ let (x, a) = (t, a) in (G(m)[~t/~x]) (Lemma 8)
≡ G(m)[~t/~x][t/x] (Axiom 1)
≡ G(m)[t,~t/x, ~x] (x /∈ FV(~t))

J

6.3 Soundness Proof

Now we show the main Theorem:

I Theorem 10 (Soundness for expressions). If Γ ` e : (~ρ,A), then G(F(e)) ≡ e

Proof. By induction on SIT expressions.
e ≡ (~t, a).

G(F((~t, a)))
≡ G(bind F(~t) λ~x.return ~x) (def. of F)
≡ G(return ~x)[~t/~x] (Lemma 9)
≡ (~x, a)[~t/~x] (def. of G)
≡ (~t, a)

e ≡ f sid(~t, a).

G(F(f sid(~t, a)))
≡ G(bind F(~t) λ~x. F0(f sid)(~x)) (def. of F)
≡ G(F0(f sid)(~x))[~t/~x] (Lemma 9)
≡ (G0(F0(f sid))(~x, a)[~t/~x] (def. of G)
≡ f sid(~x, a)[~t/~x] (def. of G0)
≡ f sid(~t, a)

TYPES 2013

104 Extracting Imperative Programs from Proofs: In-place Quicksort

e ≡ if t then e1 else e2.

G(F(if t then e1 else e2))
≡ G(bind F(t) λx. if x then F(e1) else F(e2)) (def. of F)
≡ G(if x then F(e1) else F(e2))[t/x] (Lemma 9)
≡ (if x then G(F(e1)) else G(F(e2)))[t/x] (def. of G)
≡ (if x then e1 else e2)[t/x] (I.H.)
≡ if t then e1 else e2 (Since x /∈ FV(e1) and x /∈ FV(e2))

e ≡ let (~x, a) = e1 in e2.

G(F(let (~x, a) = e1 in e2))
≡ G(bind F(e1) λ~x.F(e2)) (def. of F)
≡ let (~x, a) = G(F(e1)) in G(F(e2)) (def. of G)
≡ let (~x, a) = e1 in e2 (I.H.)

J

Since we understand the translation G as the definition of the semantics of monadic
expressions this theorem states that the transformation F is a semantic preserving translation.

7 Conclusion and Further Work

We started by extracting a program from a formal proof of the Quicksort algorithm using
the interactive theorem prover Minlog. We then observed, using Monads, that the extracted
program behaves imperatively. Using this example for inspiration we defined a restricted
functional language SIT, a monadic language MON and an automatic translation between
the two that would allow for fully automatic imperative program extraction. At present it is
by chance that the program extracted from the proof behaves imperatively, but we plan to
develop a restricted proof calculus which only yields imperative programs. The situation is
depicted in the diagram below:

FPL PROOF

MON SIT PROOF−

IMP

extraction

G
H

F

⊆

extraction

imperative extraction

The full arrows correspond to the results of this paper whereas the dashed arrows hint at
further work:

a restricted proof calculus, called PROOF−, where the extracted programs from proofs
are always in the SIT language;
a translation H from MON to an imperative language IMP which would enable, through
composition of F and H, an automatic extraction of imperative programs;
a direct imperative extraction from PROOF− to H.

U. Berger, M. Seisenberger, and G. J.M. Woods 105

In this paper we considered only first-order constructs, but, ideally, we would like to develop
a proof calculus and a program extraction process which combines higher order constructs
with imperative features.

References
1 J.R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge University

Press, New York, NY, USA, 1st edition, 2010.
2 Agda. http://wiki.portal.chalmers.se/agda/.
3 H. Benl, U. Berger, H. Schwichtenberg, M. Seisenberger, and W. Zuber. Proof theory at

work: Program development in the Minlog system. In Automated Deduction, volume II of
Applied Logic Series, pages 41–71. Kluwer, 1998.

4 U. Berger, K. Miyamoto, H. Schwichtenberg, and M. Seisenberger. Minlog – A Tool for
Program Extraction Supporting Algebras and Coalgebras. In A. Corradini, B. Klin, and
C. Cîrstea, editors, CALCO 2011, volume 6859 of Lecture Notes in Computer Science,
pages 393–399. Springer, 2011.

5 U. Berger and M. Seisenberger. Proofs, Programs, Processes. Theory of Computing Systems,
51(3):313–329, 2012.

6 S. Berghofer. Program extraction in simply-typed higher order logic. In H. Geuvers and
F. Wiedijk, editors, TYPES 2002, volume 2646 of Lecture Notes in Computer Science,
pages 21–38. Springer, 2003.

7 B. Brock, M. Kaufmann, and J. S. Moore. ACL2 Theorems about Commercial Micropro-
cessors. In Formal Methods in Computer-Aided Design, volume 1166 of Lecture Notes in
Computer Science, pages 275–293. Springer-Verlag, 1996.

8 C.M. Chuang. Extraction of Programs for Exact Real Number Computation Using Agda.
PhD thesis, Swansea University, Wales, 2011.

9 The Coq Proof Assistant. http://coq.inria.fr/.
10 M. Erwig and D. Ren. Monadification of Functional Programs. Science of Computer

Programming, 52(1-3):101–129, 2004.
11 S. Hallerstede and M. Leuschel. Experiments in program verification using Event-B. Formal

Aspects of Computing, 24:97–125, 2012.
12 C.A.R. Hoare. Quicksort. The Computer Journal, 5(1):10–16, 1962.
13 Isabelle. http://isabelle.in.tum.de/.
14 S.C. Kleene. On the Interpretation of Intuitionistic Number Theory. Journal of Symbolic

Logic, 10:109–124, 1945.
15 G. Kreisel. Interpretation of Analysis by means of Constructive Functionals of Finite Types.

Constructivity in Mathematics, pages 101–128, 1959.
16 J. Krivine. Realizability Algebras: A Program to Well Order R. Logical Methods in

Computer Science, 7:1–47, 2011.
17 P. Letouzey. A New Extraction for Coq. In Types for Proofs and Programs, TYPES 2002,

volume 2646 of Lecture Notes in Computer Science, pages 200–219, 2003.
18 The Minlog System. http://www.minlog-system.de.
19 A. Miquel. Classical Program Extraction in the Calculus of Constructions. In CSL 2007,

volume 4646 of Lecture Notes in Computer Science, pages 313–327, 2007.
20 K. Miyamoto, F. Nordvall Forsberg, and H. Schwichtenberg. Program Extraction from

Nested Definitions. In S. Blazy, C. Paulin-Mohring, and D. Pichardie, editors, ITP 2013,
volume 7998 of Lecture Notes in Computer Science, pages 370 – 385. Springer, 2013.

21 E. Moggi. Notions of Computation and Monads. Information and Computation, 93(1):55–
92, 1991.

22 PRL Project. http://www.nuprl.org/.

TYPES 2013

http://wiki.portal.chalmers.se/agda/
http://coq.inria.fr/
http://isabelle.in.tum.de/
http://www.minlog-system.de
http://www.nuprl.org/

106 Extracting Imperative Programs from Proofs: In-place Quicksort

23 I. Poernomo, J.N. Crossley, and M. Wirsing. Adapting Proofs-as-Programs: The Curry-
Howard Protocol. Springer, 2005.

24 Swansea Minlog Repository. http://cs.swan.ac.uk/minlog/.
25 D. Ratiu and T. Trifonov. Exploring the Computational Content of the Infinite Pigeonhole

Principle. Journal of Logic and Computation, 22(2):329–350, 2012.
26 S. Ray and R. Sumners. Verification of an In-place Quicksort in ACL2. In D. Borrione,

M. Kaufmann, and J. S. Moore, editors, 3rd International Workshop on the ACL2 Theorem
Prover and Its Applications (ACL2 2002), pages 204–212, Grenoble, 2002.

27 H. Schwichtenberg and S. S. Wainer. Proofs and Computations. Perspectives in Logic.
Assoc. Symb. Logic and Cambridge Univ. Press, 2012.

28 TIOBE. http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html.

http://cs.swan.ac.uk/minlog/
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

A Model of Type Theory in Cubical Sets
Marc Bezem1, Thierry Coquand2, and Simon Huber2

1 Department of Informatics, University of Bergen
Postboks 7800, N-5020 Bergen, Norway
bezem@ii.uib.no

2 Department of Computer Science and Engineering, University of Gothenburg
SE-412 96 Göteborg, Sweden
{thierry.coquand, simon.huber}@cse.gu.se

Abstract
We present a model of type theory with dependent product, sum, and identity, in cubical sets.
We describe a universe and explain how to transform an equivalence between two types into
an equality. We also explain how to model propositional truncation and the circle. While not
expressed internally in type theory, the model is expressed in a constructive metalogic. Thus it
is a step towards a computational interpretation of Voevodsky’s Univalence Axiom.

1998 ACM Subject Classification F.4.1 Mathematical Logic, F.3.2 Semantics of Programming
Languages

Keywords and phrases models of dependent type theory, cubical sets, univalent foundations

Digital Object Identifier 10.4230/LIPIcs.TYPES.2013.107

La théorie singulière classique utilise des simplexes;
dans la suite de ce chapitre, nous aurons besoin d’une
définition équivalente, mais utilisant des cubes; il est
en effet évident que ces derniers se prêtent mieux que

les simplexes à l’étude des produits directs, et, a
fortiori, des espaces fibrés qui en sont la généralisation.

(J. P. Serre, Thèse, Paris,1951 [21])

1 Introduction

In [16], Voevodsky proposes a new axiom in dependent type theory: the Univalence Axiom.
This opens up for many improvements for the encoding of mathematics in type theory in
general: function extensionality, identification of isomorphic structures, etc.

In order to preserve the good computational properties of type theory it is crucial that
postulated constants have a computational interpretation. Concerning univalence, this is an
important open problem. One way of attacking this problem is by constructing a model of the
new axiom, in type theory itself, or at least in a constructive metalogic. The computational
interpretation can then be obtained through the semantics, for example, by evaluating a
term of type N (natural numbers) in the model.

The model of type theory with the Univalence Axiom given by Voevodsky [16] is based
on Kan simplicial sets. A problem with a constructive approach to Kan simplicial sets is
that degeneracy is in general undecidable [3]. This problem makes it impossible to use the
Kan simplicial set model as it is to obtain a computational interpretation of univalence.

We present a model of dependent type theory in cubical sets. This can be seen as a
generalization of Bishop’s notion of set [4]. While not expressed internally in type theory,

© Marc Bezem, Thierry Coquand, and Simon Huber;
licensed under Creative Commons License CC-BY

19th International Conference on Types for Proofs and Programs (TYPES 2013).
Editors: Ralph Matthes and Aleksy Schubert; pp. 107–128

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TYPES.2013.107
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

108 A Model of Type Theory in Cubical Sets

this model is expressed in a constructive metalogic. It can be seen as a simplification and a
constructive version of the Kan simplicial set model of type theory [16, 1].

The first combinatorial description of homotopy groups by Kan used cubical sets [15];
see [7], [27] for a more recent account. Our presentation of cubical sets amounts to have
a formal representation of cubes seen as continuous maps [0, 1]I → X, where I is a finite
set of symbols, instead of using only continuous maps [0, 1]n → X. If I = x1, . . . , xn such
a continuous map u can be seen as a function of x1, . . . , xn which vary in the unit interval.
We can then consider for instance u(xi = 0), which is the quantity u where we set xi to
be 0, or we can introduce a new symbol y and consider u to be a quantity as a function of
x1, . . . , xn, y, which is actually independent of y. We formalize this by defining a cubical set
to be a covariant presheaf on a suitable base category, where objects are finite sets of symbols
and maps are substitution. This opens connections with the theory of nominal sets [20, 19].

Following e.g. [11], we can give a model of type theory where a context is interpreted by a
cubical set. Like for the classical model based on simplicial sets where one restricts the model
to Kan fibrations, we restrict our model by requiring a certain Kan structure on dependent
types. Like in Kan’s original paper [15], such a Kan structure requires fillers of open boxes.
However, in order for this structure to be preserved–in a constructive metalogic–under all
type forming operations, in particular Π, a certain uniformity condition is required on the
choice of the fillers. This structure is essential for validating the elimination rule of identity
types.

The strengthening of the Kan condition is natural given the reformulation of the notion
of cubical sets that we present in the first section, and the connection mentioned above with
nominal sets.

In this paper we present the semantics of dependent products, sums and identity types.
We also show how to interpret the universe, but only sketch one special case how one
could define the Kan structure on the universe. We also only describe how to transform an
equivalence between two small types into a path between these types. Based on the model
described in the first version of this paper (a nominal version of it) C. Cohen, A. Mörtberg
and the last two authors have implemented a type checker1. This implementation supports
computing with the Univalence Axiom and Kan operations for the universe.

The paper is structured as follows. In the next two sections we introduce the category of
names and substitutions and we define cubical sets. In Section 4 we explain the presheaf
semantics of type theory in the special case of cubical sets. In the next two sections we define
the uniform Kan condition and we give examples of cubical sets. In Section 7 we show that
Kan cubical sets are a model for dependent types. In the last section we show how identity
types can be interpreted in the Kan cubical set model, and describe the universe as a cubical
set (and only indicate how Kan fillings can be given), and how to transform an equivalence
into an equality of types. Finally, we explain how to represent in our model spaces up
to homotopy such as the sphere, and the operation of propositional truncation, giving in
particular a new computational interpretation of the axiom of description [26, Introduction].

2 The category of names and substitutions

We start by fixing a countable discrete set of names or symbols, hereafter called the name
space, such that 0 and 1 are not names.

1 Available at: http://github.com/simhu/cubical

http://github.com/simhu/cubical

M. Bezem, T. Coquand, and S. Huber 109

I Definition 1. The category C of names and substitutions has as objects all finite decidable
subsets of the name space, denoted by I, J,K, A morphism f : I → J is a map
I → J ∪ {0, 1} such that f(i) = f(j) iff i = j whenever f(i) and f(j) are in J .

Notice that {0, 1} is disjoint from J since J is a set of names. We say that i is in the domain
of f , or that f(i) is defined, if f(i) is an element of J .2 So the condition for f being a
morphism can be reformulated by saying that f is injective on its domain.

Clearly, 1I : I → I defined by 1I(i) = i for all i ∈ I is a morphism. If f : I → J and
g : J → K are morphisms, we define the composition g ◦ f by (g ◦ f)(i) = g(f(i)) if i is in
the domain of f , and (g ◦ f)(i) = f(i) if f(i) = 0, 1. Clearly, g ◦ f : I → K is a morphism.
We shall write fg for the composition g ◦ f , so first f and then g. It is not difficult to see
that composition is associative and that 1If = f = f1J . Hence C is a category. From now
on, we may simply write 1 instead of 1I .

Every f : I → J has a unique extension to a map I∪{0, 1} → J∪{0, 1} that is the identity
on {0, 1}, and this canonical extension respects composition. Together with I 7→ I ∪ {0, 1}
we get a functor C → Set.

We think of f : I → J as a substitution with renaming, where the only values we can
substitute are 0 and 1. In particular we have for any x in I two substitutions (x = b) : I →
I − x, for b = 0, 1, defined by (x = b)(y) = y if y 6= x and (x = b)(x) = b. These are the face
maps. Thus there are 2n face maps when I has n elements, that is, in dimension n (where
simplicial sets have n+ 1 face maps).

We say that a map f : I → J is a degeneracy map iff all elements in I are in the
domain of f . For instance, if I ⊆ J the canonical inclusion I → J defines a degeneracy
map. If x is not in I the inclusion map I → I, x will be written as ιx. We have two face
maps (x = 0), (x = 1) : I, x → I and we have ιx(x = 0) = ιx(x = 1) = 1I , which is one
example of a cubical identity. There are many more cubical identities, often implicit in the
notations. We also have the following result (cf. simplicial sets): every morphism f has a
unique decomposition f = gh where g is a composite of face maps and h is a degeneracy
map.

If f : I → J is defined on x, we write f − x : I − x→ J − f(x) for the map defined by
(f − x)(y) = f(y) if y is in I − x.

If f : I → J and x is not in I and y is not in J , we can extend f to a map (f, x = y) :
I, x→ J, y by sending x to y.

3 Cubical sets

I Definition 2. A cubical set is a covariant functor C → Set.

Let X be a cubical set. Then we have sets X(I) and set maps (called restrictions) X(I)→
X(J), u 7−→ uf for any morphism f : I → J , such that u1 = u and u(fg) = (uf)g. Another
notation for uf would be X(f)(u).

A cubical set X is a presheaf on the category Cop. Any finite set of directions I represents
by the Yoneda embedding y : Cop → SetC a cubical set yI, which can be thought of as a formal
representation of [0, 1]I . An element of X(I) can then be seen as a formal representation of
a “continuous” map [0, 1]I → X, and it is natural to call an element of X(I) an I-cube.

2 In a previous attempt, we have been considering the category of finite sets with maps I → J + 2 (i.e.
the Kleisli category for the monad I + 2). This category appears on pages 47–48 in Pursuing Stacks
[10] as “in a sense, the smallest test category”.

TYPES 2013

110 A Model of Type Theory in Cubical Sets

For finite sets of names we will write commas instead of unions and often omit curly
braces; e.g. we write I, x for I∪{x}, I−x for I−{x}, and X(x1, . . . , xn) for X({x1, . . . , xn}).

We think of u in X(I) as meaning that u may depend on the names in I, and only on those
names; we think of uf in X(J) as the element we obtain by performing the substitution f
on u, possibly combined with renaming and/or adding variables. An element of X() represents
a point, an element ω of X(x) a line connecting the points ω(x = 0) and ω(x = 1) in X().
An element in X(x, y) represents a square. We then follow some notations similar to the
ones in first-order logic by writing u = u(x1, . . . , xn) when u is in X(x1, . . . , xn). This is
similar to saying that u may depend at most on the names x1, . . . , xn. In doing so we always
implicitly assume that the names x1, . . . , xn are pairwise distinct; the order of the names
in X(x1, . . . , xn) does not matter. Applying a face map will now be expressed by actually
performing the substitution. For example, we have that u(x = 0) is in X(y) whenever u is in
X(x, y):

u(0, 1)
u(x,1) // u(1, 1) u(0, 0)

u(x,0) // u(1, 0)

u(x, y) u(x, 0)

u(0, 0)
u(x,0)

//

u(0,y)

OO

u(1, 0)

u(1,y)

OO

u(0, 0)
u(x,0)

//

u(0,0)

OO

u(1, 0)

u(1,0)

OO

If v is an I − x cube of X then we can consider vιx which is an I-cube of X (we recall
that ιx : I − x → I is the canonical inclusion). The map v 7−→ vιx is injective (we have
vιx(x = 0) = v) and it is natural to identify v and vιx, thus considering X(I − x) to be a
subset of X(I). An example is the degenerate right square above.

If u is in X(I) and x is in I, there may exist a v in X(I − x) such that u = vιx = v.
Intuitively, this means that x “does not occur” in u, or that u is “independent” of x. One
sometimes uses the notation x#u to express this relation. In general, this relation does not
need to be decidable.

If X is a cubical set and a and u are two points (∅-cube) of X we can define a new cubical
set IdX a u by taking an element in (IdX a u)(I) to be an I, x-cube ω of X where x is a
fresh variable (i.e. x /∈ I), such that ω(x = 0) = a and ω(x = 1) = u. The name x is “bound”
in this operation so that another I, x′-cube ω′ is equal to ω iff ω′(x′ = x) = ω. We introduce
a new binding operation 〈x〉ω which defines this I-cube of IdX a u. One way to make this
notion precise is to assume a choice function on the set of names which selects a fresh name
for any finite subset and define 〈x〉ω to be ω(x = xI) where xI is the fresh name given by
the choice function. (This is the solution suggested in [22].)

The corresponding category with the same objects and morphisms I → J ∪ {0} has been
already considered as the category of partial injections. It has been shown by Staton that the
category of covariant presheaves over this category is equivalent to the category of nominal
sets with one restriction operation (see [20, exercise 9.7]). Using the same method, we can
associate in a canonical way a nominal set to any cubical set. A category equivalent to to
the category of cubical sets is presented in [19].

M. Bezem, T. Coquand, and S. Huber 111

4 Cubical sets as a presheaf model

We will now recall how cubical sets, as does any presheaf category, give rise to a model of
dependent type theory. We use Dybjer’s notion of category with families (CwF) to devise
such a model [9, 8, 11]. We stress the fact that such a structure is described by a generalized
algebraic theory [5]. To give a CwF is to give:
1. interpretations (as sets) for the sorts of contexts, context morphisms (substitutions),

types and terms;
2. operations;
3. checking equations.
This amounts to validate the rules given in Figure 1. Note that we use polymorphic notation
to increase readability as in [5, 9]; e.g. without this convention we should have written
pΓ,A for the first projection p : Γ.A → Γ. Also, we leave the type parameters implicit, e.g.
(Aσ)δ = A(σδ) tacitly assumes the premises σ : ∆→ Γ, δ : Θ→ ∆ and Γ ` A. These points
are also stressed in [25, Sec. 1] and [9].

We will now describe how cubical sets give rise to such a structure. This construction
works for any presheaf category and is described in [11, Sec. 4]. Instead of using contravariant
presheaves, we use covariant presheaves and write composition in diagram order.

A context Γ, written Γ `, is interpreted by a cubical set, and context morphisms
σ : ∆ → Γ are interpreted as cubical set maps (i.e. natural transformations), that is we
have (σβ)f = σ(βf) if β is a I-cube of ∆. A dependent type Γ ` A is given by sets Aα
for each I-cube α of Γ together with maps (also called restrictions) Aα→ Aαf, u 7−→ uf

for each f : I → J , satisfying u1 = u and u(fg) = (uf)g. Another way to express this is
to say that A is a covariant presheaf on the category of elements of Γ, where the category
of elements of Γ is given by objects (I, α) with α ∈ Γ(I), and morphisms f : (I, α)→ (J, β)
given by f : I → J in C such that β = αf . A section (or term) Γ ` a : A is defined by
giving an element aα in Aα for each I-cube α of Γ in such a way that (aα)f = a(αf) for
any f : I → J . The empty context () is given by the cubical set with exactly one I-cube for
each I. Given Γ ` A and σ : ∆→ Γ we define ∆ ` Aσ by (Aσ)α = A(σα) and the induced
maps; likewise, substitution in a term Γ ` a : A is given by (aσ)α = a(σα). If Γ ` A, we
define the cubical set Γ.A by taking as I-cubes of Γ.A pairs (α, u) with α an I-cube of Γ
and u in Aα. For f : I → J we define (α, u)f = (αf, uf). The first projection p : Γ.A→ Γ,
p(α, u) = α becomes thus a context morphism, and the second projection q(α, u) = u a
section Γ.A ` q : Ap corresponding to the first de Bruijn index. For Γ ` A, σ : ∆→ Γ and
∆ ` u : Aσ we give (σ, u) : ∆→ Γ.A by (σ, u)β = (σβ, uβ). This concludes the description of
the CwF without type formers.

We now describe how to interpret Π and Σ. If Γ ` A and Γ.A ` B, we define the type
Γ ` ΠAB as follows. For each I-cube α of Γ, an element w of (ΠAB)α is a family (wf)
indexed by f : I → J such that

wf ∈
∏

u∈Aαf

B(αf, u)

is a dependent function and (wf (u))g = wfg(ug) for g : J → K and u ∈ Aαf . We define
the family wf in (ΠAB)αf by putting (wf)g = wfg, which completes the definition of
Γ ` ΠAB. Given Γ.A ` b : B we interpret Γ ` λ b : ΠAB by ((λ b)α)f (u) = b(αf, u) for u
in Aαf . Application Γ ` app(w, u) : B[u] (where [u] = (1, u) : Γ → Γ.A) of Γ ` w : ΠAB

to Γ ` u : A is given by app(w, u)α = (wα)1(uα). We get app((λ b), u)α = ((λ b)α)1(uα) =
b(α, uα) = (b[u])α.

TYPES 2013

112 A Model of Type Theory in Cubical Sets

Γ `
1 : Γ→ Γ

σ : ∆→ Γ δ : Θ→ ∆
σδ : Θ→ Γ

Γ ` A σ : ∆→ Γ
∆ ` Aσ

Γ ` t : A σ : ∆→ Γ
∆ ` tσ : Aσ

() `
Γ ` Γ ` A

Γ.A `
Γ ` A

p : Γ.A→ Γ
Γ ` A

Γ.A ` q : Ap

σ : ∆→ Γ Γ ` A ∆ ` u : Aσ
(σ, u) : ∆→ Γ.A

Γ.A ` B
Γ ` Π A B

Γ.A ` B Γ.A ` b : B
Γ ` λb : Π A B

Γ ` w : Π A B Γ ` u : A
Γ ` app(w, u) : B[u]

Γ.A ` B
Γ ` Σ A B

Γ.A ` B Γ ` u : A Γ ` v : B[u]
Γ ` (u, v) : Σ A B

Γ ` w : Σ A B

Γ ` w.1 : A
Γ ` w : Σ A B

Γ ` w.2 : B[w.1]

1σ = σ1 = σ (σδ)ν = σ(δν) [u] = (1, u)

A1 = A (Aσ)δ = A(σδ) u1 = u (uσ)δ = u(σδ)

(σ, u)δ = (σδ, uδ) p(σ, u) = σ q(σ, u) = u (p, q) = 1

(Π A B)σ = Π (Aσ) (B(σp, q)) (λb)σ = λ(b(σp, q))

app(w, u)δ = app(wδ, uδ) app(λb, u) = b[u] w = λ(app(wp, q))

(Σ A B)σ = Σ (Aσ) (B(σp, q)) (w.1)σ = (wσ).1 (w.2)σ = (wσ).2

(u, v)σ = (uσ, vσ) (u, v).1 = u (u, v).2 = v (w.1, w.2) = w

Figure 1 Rules of MLTT.

The definition of dependent sums is easier: Γ ` ΣAB for Γ ` A and Γ.A ` B is defined
by sums in each stage, i.e. for an I-cube α in Γ, (ΣAB)α consists of pairs (u, v) with u in
Aα and v in B(α, u). Restrictions are defined component-wise: (u, v)f = (uf, vf) where
f : I → J . If Γ ` w : ΣAB and wα = (u, v), then (w.1)α = u and (w.2)α = v.

We can then verify all the equations of Figure 1.

5 The uniform Kan condition

Using these notations we can formulate the Kan condition (cf. [15]) and our strengthening
as follows. Let X be a cubical set. First we define the notion of an open box in X, the
equivalent of a horn in a simplicial set. Let I be a finite set of names and let J, x ⊆ I. The
variable x must not be in J and will be the direction in which the box is open. For every
y ∈ J , the open box will have two faces, one with y = 0 and one with y = 1. Let O+(J, x)
consist of pairs (x, 0) and (y, b) for y ∈ J, b = 0, 1. In the same way we define O−(J, x), but
with (x, 1) instead of (x, 0). The idea for both is that one face in the direction x is missing.
We use O(J, x) to denote either O+(J, x) or O−(J, x). An open box, denoted by ~u, is a family
of elements (faces) uyb in X(I − y) for each (y, b) ∈ O(J, x) such that

uyb(z = c) = uzc(y = b)

M. Bezem, T. Coquand, and S. Huber 113

for all (y, b), (z, c) ∈ O(J, x) with y 6= z. The latter condition may be phrased as: the faces
of an open box are adjacent-compatible. If f : I → K is defined on J, x, we write ~uf for the
open box indexed by O(f(J), f(x)) with components (~uf)(fy)b = uyb(f − y) in X(K − f(y)).

For X to be a (constructive) Kan cubical set, we require to be given operations X↑ and
X↓ for every J, x ⊆ I such that X↑~u and X↓~u are both in X(I). Here ~u is an open box
with ux0 and ux1 in X(I − x) in the respective cases X↑~u and X↓~u. (From now on we will
always tacitly assume that the open box ~u is of the right type with respect to X↑, X↓.) The
operations X↑, X↓ are to be thought of as a filling their respective open boxes. Therefore we
require for all (y, b) ∈ O(J, x):

(X↑~u)(y = b) = uyb (X↓~u)(y = b) = uyb

The new uniformity condition is: if f : I → K is defined on J, x, we require:

(X↑~u)f = X↑(~uf) (X↓~u)f = X↓(~uf)

We refer to the combined condition as the uniform Kan condition for cubical sets, or the
Kan condition for short.

If we only consider the case where I = J, x, that is, no other variables in I, and without
the uniformity conditions, we get back the usual notion of Kan cubical sets [15, Sec. 4]
(adapted to our notion of cubical sets). Similar uniformity conditions have been considered
for semisimplicial sets in [2]. For a suggestive description of how to define combinatorially
πn(X,u) for each point u of X if X satisfies the Kan property, see [27].

If X is a Kan cubical set with operations X↑, X↓, we define new operations (see the
figure below)

X+~u = (X↑~u)(x = 1) X−~u = (X↓~u)(x = 0)

representing transport in the open box in the direction in which it is open.

·
X+(ux0,uy0,uy1) // · · ux1 // ·

X↑(ux0, uy0, uy1) X↓(ux1, uy0, uy1)

·
ux0

//

uy0

OO

·

uy1

OO

·
X−(ux1,uy0,uy1)

//

uy0

OO

·

uy1

OO

Let Γ be a cubical set (which does not need to satisfy the Kan condition) and Γ ` A
a type over Γ. A Kan structure on Γ ` A is given by operations Aα↑ and Aα↓ for each
α ∈ Γ(I) and J, x ⊆ I, such that Aα↑~u and Aα↓~u are both in Aα for every open box ~u.
Here open box means that uyb ∈ Aα(y = b) for all (y, b) ∈ O(J, x), and that these faces
are adjacent-compatible. Aα↑, Aα↓ must satisfy the same Kan conditions as X↑, X↓ above.
The usual Kan conditions are obtained by simply substituting Aα for X. Since f : I → K

interacts with α, we reformulate the uniformity conditions:

(Aα↑~u)f = Aαf↑(~uf) (Aα↓~u)f = Aαf↓(~uf)

If Γ ` A has a Kan structure with operations Aα↑, Aα↓, we define as before

Aα+~u = (Aα↑~u)(x = 1) Aα−~u = (Aα↓~u)(x = 0)

TYPES 2013

114 A Model of Type Theory in Cubical Sets

Notice that if Γ ` A has a Kan structure, then the map p : Γ.A→ Γ is a Kan fibration as
in [15, 27].

For Γ ` A with Kan structure and a line α in Γ(x) connecting points ρ0 to ρ1 one can
define a map of cubical sets Aρ0 → Aρ1 as follows. First, consider Aρi as a cubical set with
set of points Aρi, set of lines Aρiιx, and so on. In general, we define AρiιI by taking ιI to be
the unique morphism ∅ → I; restrictions are induced by Γ ` A. Then, the map Aρ0 → Aρ1 is
defined by a 7→ Aα+a. The equivalence a 7→ Aα+a works uniformly and does not distinguish
cases in which a is degenerate or not. One can show that this map is an equivalence (see
Section 8.2 and 8.4). This is in contrast to Kan simplicial sets where classical logic is essential
to define such an equivalence [3].

6 Examples of cubical sets

In this section we elaborate the following examples of cubical sets: discrete cubical sets; the
unit interval I; polynomial rings; the cubical nerve N of the group Z2 with two elements;
the exponential N I. A noticeable difference between simplicial sets and our cubical sets is
that, while N is Kan, N I is not. This is important motivation for the main result of the next
section, implying that BA is a Kan cubical set if both A and B are.

Every set A gives rise to the discrete cubical set KA via the constant presheaf, i.e.
(KA)(I) = A for each I and all restrictions are the identity map A→ A. Note that in an
open box ~u all the components have to be equal, say u, and this u is also the (unique) filler
u = KA↑~u making the discrete cubical set trivially into a Kan cubical set.

6.1 Unit interval
Recall the canonical extension of a map f : J → K in C to a set map J ∪ {0, 1} → K ∪ {0, 1}
that is the identity on {0, 1}. Together with mapping objects J of C to J ∪ {0, 1}, canonical
extension actually forms a functor C → Set. This covariant functor is called the unit interval,
denoted by I. We explore: I() = {0, 1} (I has two points); I(x) = {0, 1, x} (I has three
lines, only x is non-degenerate); I(x, y) = {0, 1, x, y} (I has four degenerate squares, see the
display below); and so on. The square x varies in direction x, but is constant in direction y,
and hence degenerate. Similarly for objects of higher dimension in I. This completes the
description of the unit interval as a cubical set. Note that I ∼= y{x} for a name x (where y
denotes the Yoneda embedding) is another way to describe the interval.

I(x, y) : 0
0

0
0

1
1

1
1

0
0

1
1

1
0

1
0

6.2 Polynomial rings
A particularly natural example of a cubical set, suggested by Aczel, is based on polynomials
over a commutative ring R. We let R[I] as usual denote the ring of polynomials with
coefficients in R and variables in (at most) I. For x /∈ I and p ∈ R[I], we define pιx = p ∈
R[I, x]. For x ∈ I and p ∈ R[I], we define p(x = 0) ∈ R[I − x] as p with 0 ∈ R substituted
for x. Likewise, p(x = 1) ∈ R[I − x] is p with 1 ∈ R substituted for x. It is easily verified
that this defines a cubical set, which we denote by R[_]. In the following paragraph we show
that R[_] has Kan structure.

For simplicity, we first take I = x, J and J = y, z. After that, the general case can be done
by an easy induction on |J |. Let ~u be an open box indexed by O+(J, x). The construction of
filling an open box can be described as iterated orthogonal linear interpolation, in which we

M. Bezem, T. Coquand, and S. Huber 115

stepwise approximate the filler p, one direction per step, ending with the direction in which
the box is open. Define pz = (1− z)uz0 + zuz1. Then pz(z = 0) = uz0, pz(z = 1) = uz1, so
pz has the right faces in direction z. Now define:

pyz = pz + (1− y)(uy0 − pz(y = 0)) + y(uy1 − pz(y = 1))

This step is typical for the induction case. Per construction, pyz has the right faces in the
direction y. We verify that pyz still has the right faces in the direction z. For b = 0, 1 we
have

pyz(z = b) = pz(z = b) + (1− y)(uy0(z = b)− pz(z = b)(y = 0))
+ y(uy1(z = b)− pz(z = b)(y = 1))

= uzb + (1− y)(uy0(z = b)− uzb(y = 0)) + y(uy1(z = b)− uzb(y = 1))
= uzb.

In the last step above we have used that an open box has adjacent-compatible faces, such
that uyc(z = b) = uzb(y = c). It remains to define the filler p = pxyz by

pxyz = pyz + (1− x)(ux0 − pyz(x = 0))

and to verify the p has all the same faces as ~u. The latter is similar to the verification of pyz
and is left to the reader. We note that the construction of the filler p is completely uniform,
and hence R[_] has Kan structure.

We can also fill closed boxes by adding a term x(ux1−pyz(x = 1)) to pxyz above. Another
consequence of linear interpolation is that the cubical set R[_] is contractible.

6.3 Cubical nerve
Recall that a morphism f : J → K in C is a function f : J → K ∪ {0, 1} such that for every
y ∈ K there exists at most one x ∈ J with f(x) = y. Hence every morphism f : J → K

defines a function {0, 1}K → {0, 1}J through precomposition with f . We can view {0, 1}J
as a product of posets 0 ≤ 1, and hence as a category with unique morphisms. Then every
morphism f : J → K defines a functor {0, 1}K → {0, 1}J , as the precomposition preserves
the order. We denote this functor also by f .

Given a small category D, we define its cubical nerve ND as follows. The sets ND(J)
are functors {0, 1}J → D. For every morphism f : J → K, its function ND(J)→ ND(K) is
defined by precomposition with the functor f . Note that the unit interval is not the cubical
nerve of the poset 0 ≤ 1: they have similar sets of points and lines, but N(0 ≤ 1) has two
more squares, both non-degenerate in two directions:

N(0 ≤ 1)(x, y) : 0
0

0
0

0
0

1
1

1
0

1
0

1
1

1
1

0
0

1
0

1
0

1
1

An element of ND(J) can be viewed as a (hyper)cube with the edges labelled by morphisms
of D and vertices labelled by objects of D, such that all paths commute (or equivalently, all
triangles commute). This completes the description of the cubical nerve of a category.

Consider the group of two elements as a category (groupoid) with one object ? and
two morphisms 0, 1 : ? → ? where 0 is the identity of ?. Let N be the nerve of this
groupoid: N has one point and two lines, again denoted by ? and 0, 1. Note that ?ιx = 0
and 1 ◦ 1 = 1 + 1 = 0. The squares of N are listed as follows, where we only show the lines:

N(x, y): 00
00 10

01 01
10 10

10 11
00 01

01 00
11 11

11

TYPES 2013

116 A Model of Type Theory in Cubical Sets

Being the nerve of a groupoid, N is Kan (see the next section).
We now show thatN I is not Kan. By the Yoneda Lemma we haveN I(J) ∼= ((yJ×I)→ N),

the latter denoting a set of natural transformations. Defining p ∈ N I(J) means defining
maps (index K omitted) p : yJ(K)→ (I(K)→ N(K)) for all K, such that (pfu)g = pfg(ug)
for every f : J → K, g : K → L, and u ∈ I(K).

We explore the points of N I and define p ∈ N I() by, first p1() : I() → N() : 0, 1 7→ ?.
Then, pιx : I(x) → N(x) : 0, 1 7→ ?ιx = 0 is forced by naturality, but for pιxx there is a
choice. If we choose 0, we must make the same choice for all names x in the name space.
The choice 1 for all names x in the name space would give the only other point. In higher
dimensions all arguments are degenerate, determining the function values, and naturality is
compatible with each of the two choices above. We now fix p with pιxx = 0.

Next we explore lines from p to p in N I, say in direction i, and define ` : p→ p in N I(i)
by `(i=b)g = pg for all b = 0, 1 and g : ∅ → K. For `(i=x) : I(x) → N(x) there is a choice.
For the moment we put `(i=x)c = `c for all c ∈ I(x). Note that we must make the same
choices `0, `1, `x for all names x in the name space. On the next level, there is no choice left.
First, `(i=b)g = pg for b = 0, 1 and g = ιxιy. Moreover, `(i=x)ιy , `(i=y)ιx : I(x, y) → N(x, y)
are completely determined by the choices of `0, `1, `x. Even more so, naturality limits the
choice on the lower level. This can be seen by applying `(i=x)ιy and `(i=y)ιx to both x and y
in I(x, y). This results in the four squares (NB: `x = `y):

0`x
`x

0 0`1
`0

0 `0
0
0`1 `y

0
0`y

Since the squares have to commute we get `0 = `1. In higher dimensions all values are
determined by naturality, and naturality is compatible with each of the four possible choices
(recall that objects in I can be non-degenerate in at most one direction). This yields in total
four lines from p to p in N I.

In order to show that N I is not Kan, consider lines p, ` : p → p, where p is degenerate
(p0 = px = p1 = 0) and ` is defined by `0 = `1 = 0, `x = 1. Consider an open box as in the
picture below, left:

p // p 0 0 // 0 ?
`′0 // ? 1 1 // 1 ?

`′1 // ?

p
p

//

p

OO

p

`

OO

0
0

//

0

OO

0

0

OO

?
0

//

0

OO

?

0

OO

0
0

//

y

OO

0

y

OO

?
0

//

0

OO

?

1

OO

Assume we could fill the box. Call the closing (dotted) line above `′. Applying the first
square to the second results in the third square, yielding `′0 = 0. Applying the first square to
the fourth results in the last square, yielding `′1 = 1. This contradicts `′0 = `′1 for any line
p→ p. Hence the above box has no filler.

6.4 The nerve of a groupoid is Kan
Let G be a groupoid, and N its cubical nerve. We sketch a proof that N is Kan. Take
I = x, J, z in C, with J = y1, . . . , yk (k ≥ 0). Taking one variable z instead of z1, . . . , zn
simplifies the presentation, but is otherwise inessential.

Let ~u be an open box indexed by O(J, x), that is, adjacent-compatible faces ux0 ∈ N(I−x)
and uyb in N(I − y). We have to define u ∈ N(I) with faces as given by the open box. For
this we define closing faces ux1,uz0,uz1, such that they are adjacent-compatible with the

M. Bezem, T. Coquand, and S. Huber 117

open box, and show that all squares commute. This will define u in a unique way. Thereafter
we shall verify the uniformity condition.

If J = ∅ (k = 0), the open ‘box’ is a degenerate line ux0 in direction z. We close by
taking ux1 = uz0 = uz1 = ux0, and u is the doubly degenerate square. If J 6= ∅ (k > 0),
we observe that all the points of u are already given by the open box, so that we can limit
attention to the edges. Moreover, if J consists of more than one variable, all edges are also
already present in the open box, which makes the definition of the closing faces particularly
simple. This can be seen as follows. For b = 0, 1, the faces uy1b contain all edges in which
y1 = b, and the faces uy2b contain all edges in which y2 = b. In particular, the two faces uy2b

contain all edges in direction y1. Hence, the four faces uy1b, uy2b together contain all edges.
The groupoid structure guarantees that all squares of the closing face commute.

The most interesting case to elaborate is I = x, y, z, J = y, where we have to define
the edges in ux1 in direction y. This situation is depicted below, left, with the new edges
as defined right. The new edges make essential use of the inverses in the groupoid and are
uniquely defined.

// g−1
0 ·g1·g2 //__

//

??
g0

__

g1
//

g2
??

ux0

��

//

OO

��

OO

x

��

y //

z

OO

g3��

g4 //

g5 ��

OO

//

OO OO

g−1
3 ·g4·g5

//

OO

The new squares uzb commute as per construction. Moreover, the new square ux1 commutes
since it can be projected down to the commuting square ux0 along edges that are invertible.
A similar argument can be used if J contains more variables. This completes the construction
of u ∈ N(I).

Uniformity will be shown to be a consequence of the uniqueness of u constructed above,
and the following easy lemma. This lemma can be useful in other places as well.

I Lemma 3. For all morphisms f : I → K in C defined on x we have (i) (x = b)(f − x) =
f(f(x) = b) and (ii) ιxf = (f − x)ιfx.

Now let u = N↑(ux0, uy0, uy1) and u′ = N↑(ux0(f − x), uy0(f − y), uy1(f − y)). We have
to show u′ = uf . By the lemma we have ux0(f − x) = uf(f(x) = 0) and uyb(f − y) =
uf(f(y) = b). This means that u′ and uf agree on the open box defining u′, so they are
equal by uniqueness. Again, a similar argument can be used if J contains more variables.
This completes the proof sketch that the cubical nerve of a groupoid is Kan.

7 The Kan cubical set model

In this section we will give a refinement of the model given in Section 4. The Kan cubical set
model is given as follows: contexts and context morphisms are interpreted as in Section 4,
i.e. by cubical sets and morphisms between cubical sets; a type is given by a type Γ ` A in
the sense of Section 4 together with a Kan structure; terms are given as in Section 4. The
Kan structure on types is needed in order to justify the elimination rules for the identity
types (cf. Section 8.2).

TYPES 2013

118 A Model of Type Theory in Cubical Sets

It is crucial to note that the Kan structure is part of a type in the Kan cubical set model.
Two types Γ ` A and Γ ` B which have a Kan structure can be equal as cubical sets, but
not with their Kan structure. Thus we have to check whether the equations between types
in Figure 1 are preserved for their Kan structure.

The definition of the model is such that it follows the model described in Section 4, but
additionally we have to define how the Kan structure is given on the types. This is done in
the proofs of the following theorems.

I Theorem 4. If Γ ` A has a Kan structure and σ : ∆→ Γ, then also ∆ ` Aσ has a Kan
structure. Moreover the definition is such that A1 = A and (Aσ)τ = A(στ) as types with
Kan structures.

Proof. For an I-cube α of ∆ recall that (Aσ)α = A(σα) as cubical sets; we define the
filling operations in (Aσ)α to be those in A(σα), i.e. we set (Aσ)α↑~u = A(σα)↑~u. With this
definition it is clear that A1 and A have the same filling operations, and similarly for the
other equation. J

7.1 Dependent product
I Theorem 5. If both Γ ` A and Γ.A ` B have Kan structures, then so does Γ ` ΠAB.
Moreover the definition of the Kan structure is such that (ΠAB)σ = Π(Aσ)(B(σp, q)).

Proof. We present the argument in the case J = ∅, the general case is not essentially more
difficult. Also, as the cases ↑, ↓ are perfectly symmetric, we restrict attention to ↑. We denote
the direction of filling with a subscript to ↑, ↓,−,+. Let C = ΠAB.

First we will define Cα+
xw ∈ Cα(x = 1) for α an I-cube of Γ, x ∈ I, and w in Cα(x = 0).

This amounts to define a family of dependent functions (Cα+
xw)f in

∏
u∈Aα(x=1)f B(α(x =

1)f, u) for all f : I − x→ K, such that(
(Cα+

xw)f (u)
)
g = (Cα+

xw)fg(ug). (1)

We will first define (Cα+
xw)f for f = 1: I − x→ I − x. For this let u ∈ Aα(x = 1). We use

the Kan fillings to map u down to Aα−x u, apply w (at 1 : I − x→ I − x) and map the result
up:

(Cα+
xw)1(u) = B(α,Aα↓xu)+

x (w1(Aα−x u)) (2)

which is in B(α(x = 1), u) as (Aα↓xu)(x = 1) = u. So we have defined (Cα+w)1 for arbitrary
α and w.

For general f : I − x→ K we let z be fresh w.r.t. K and set:

(Cα+
xw)f = (Cα(f, x = z)+

z wf)1 (3)

By the uniformity conditions, this definition does not depend on the choice of z, and we also
get by uniformity and (2)(

(Cα+
xw)1(u)

)
f = (Cα(f, x = z)+

z wf)1(uf). (4)

Note that (3) suffices to get the uniformity conditions for Cα+
xw; (3) together with (4), yields

(1) and thus an element in Cα(x = 1), concluding the definition of Cα+
xw.

Next we define Cα↑xw ∈ Cα; we do so again by first defining (Cα↑xw)f for f = 1: I → I.
Let γ ∈ Aα, u0 = γ(x = 0) and u = γ(x = 1); the definition of (Cα↑xw)1(γ) ∈ B(α, γ) has

M. Bezem, T. Coquand, and S. Huber 119

to satisfy:

(Cα+
xw)1 : u 7−→ (Cα+

xw)1(u)

(Cα↑xw)1 : γ 7−→ (Cα↑xw)1(γ)

w1

OO

: u0

OO

7−→ w1(u0)

OO

Let y be a fresh name; using the uniform Kan filling for Γ ` A in Aα with J = {y} (denoted
by Aα↓x,y) we construct

θ = Aα↓x,y(u, γ,Aα↓xu),

resulting in a square:

u
u // u

θ

u0

γ

OO

θ(x=0)
// Aα−x u

Aα↓xu

OO

With λ = B(α,Aα↓xu)↑x(w1(Aα−x u)) we get an open box in B(α, θ)

(Cα+
xw)1(u)

(Cα+
xw)1(u) // (Cα+

xw)1(u)

w1u0
wιy (θ(x=0))

// w1(Aα−x u)

λ

OO

where the line on the right hand side is by the defining equation (2). Using the Kan structure
of Γ.A ` B for J = {x} we define

(Cα↑xw)1(γ) = B(α, θ)−y,x
(
λ,wιy (θ(x = 0)), (Cα+

xw)1(u)
)

with λ as above. Using the uniformity conditions for Γ ` A and Γ.A ` B, this definition is
such that(

(Cα↑xw)1(γ)
)
f = (Cαf↑fxw(f − x))1(γf)

for f : I → K defined on x.
Now, if f : I → K is defined on x, we define (Cα↑w)f = (Cαf↑fxw(f − x))1. If f is not

defined on x, we can write f = (x = b)f ′ for some f ′ : I − x → K. Then we can simply
define (Cα↑xw)f = wf ′ for b = 0, and (Cα↑xw)f = (Cα+

xw)f ′ for b = 1. This defines the
element Cα↑w in Cα which satisfies the uniformity conditions.

To verify that the Kan structure of Π(Aσ)(B(σp, q)) (as defined above) is equal to the
Kan structure for (ΠAB)σ (as defined in the proof of the preceding theorem), assume that
above α = σβ for σ : ∆→ Γ; then Cα = ((ΠAB)σ)β and in equation (2) we have

B(σβ,A(σβ)↓xu)+
x (w1(A(σβ)−x u)) = (B(σp, q))(β, (Aσ)β↓xu)+

x (w1((Aσ)β−x u))

and the right hand side is the definition of
(
Π(Aσ)(B(σp, q))+

xw
)

1(u). Similarly for the other
parts of the definition. J

Notice that we make essential use of the uniformity conditions in the above proof in order
to verify that the fillers we define are indeed elements in the dependent product. Moreover,
in the general case the fillings used from Γ ` A are only with J such that |J | ≤ 1.

TYPES 2013

120 A Model of Type Theory in Cubical Sets

7.2 Sum type
I Theorem 6. If Γ ` A and Γ.A ` B have Kan structures, then so does Γ ` ΣAB. Moreover
the definition of the Kan structure is such that (ΣAB)σ = Σ(Aσ)(B(σp, q)).

Proof. Given an open box ~p in (ΣAB)α with pyb = (uyb, vyb) for any (y, b) ∈ O+(J, x) we
first fill u = Aα↑~u in Aα, and then set

(ΣAB)α↑~p = (u,B(α, u)↑~v).

This clearly satisfies the uniformity condition as they are satisfied for Γ ` A and Γ.A ` B.
Moreover, if α = σβ for σ : ∆→ Γ, we get u = (Aσ)β↑~u and

B(σβ, u)↑~v = (B(σp, q))(β, u)↑~v,

yielding (ΣAB)σ = Σ(Aσ)(B(σp, q)). J

8 Extensions

8.1 Inductive types
We can interpret inductive types by adding the corresponding constructors in each dimension.
In the case of inductive definitions without parameters this results in a discrete Kan cubical
sets (see Section 6). E.g. the booleans Γ ` N2 are defined by N2α = {true, false} for each
α ∈ Γ(I), and restrictions being the identity map. As in Section 6 one defines a Kan structure.
We interpret the constants Γ ` true : N2 by trueα = true, and similar for Γ ` false : N2. To
interpret the elimination principle

Γ.N2 ` C Γ ` d0 : C[true] Γ ` d1 : C[false] Γ ` b : N2

Γ ` if b then d0 else d1 : C[b]

we define (if b then d0 else d1)α = d0α for bα = true, and (if b then d0 else d1)α = d1α for
bα = false.

8.2 Identity type
We describe the interpretation of Γ ` IdA a b given Γ ` A and Γ ` a : A and Γ ` b : A. Given
an I-cube α in Γ we define (IdA a b)α to be the set of elements 〈x〉ω where ω is in Aαιx
and x is a fresh variable not in I, such that ω(x = 0) = aα and ω(x = 1) = bα. The latter
situation is conveniently described by ω : aα→x bα. We recall that ιx denotes the canonical
injection I → I, x. The element 〈x〉ω is the equivalence class of I, x-cubes of Aαιx, x not
in I, where ω is identified with ω(x = x′) if x′ is not in I. This operation 〈x〉ω binds the
name x. (One could define 〈x〉ω to be ω(x = xI) where xI is a name not in I obtained by a
choice function.) If f is a substitution I → K we choose a variable y not in K, extend f to
(f, x = y) : I, x→ K, y and define (〈x〉ω)f to be 〈y〉ω(f, x = y), preserving equivalence.

I Theorem 7. If Γ ` A has a Kan structure, then so does Γ ` IdA a b whenever we have
Γ ` a : A and Γ ` b : A. Moreover the definition is such that (IdA a b)σ = IdAσ aσ bσ as
types with Kan structures.

Proof. Let α be an I-cube of Γ and J, x ⊆ I. After a suitable renaming, we can conve-
niently denote an open box for (IdA a b)α by a vector 〈y〉~ω with components 〈y〉ωzc in
(IdA a b)α(z = c), for all (z, c) ∈ O(J, x).

M. Bezem, T. Coquand, and S. Huber 121

We define, with aα, bα the faces in the direction y, omitting subscripts J ,

(IdA a b)α↑x〈y〉~ω = 〈y〉(Aα↑x,y(~ω, aα, bα))

which shows that Γ ` IdA a b satisfies the Kan condition for J, x if Γ ` A satisfies the
Kan condition for (J, y), x. The situation in case J = ∅ is depicted below. The uniformity
condition follows from the uniformity of Γ ` A. J

aα
Aα+

x,y(ω0,aα,bα)
// bα 〈y〉ω1

Aα↑x,y(ω0, aα, bα) (IdA a b)α↑x〈y〉ω0

aα
ω0

//

aα

OO

bα

bα

OO

〈y〉ω0

OO

We give the interpretation of Γ ` Ref a : IdA a a given Γ ` a : A. For any set of directions
I, and any I-cube ρ, we have to give a line aρ→ aρ. For this, we choose a direction x not in
I and we define (Ref a)ρ = 〈x〉aριx, which can also simply be written (Ref a)ρ = 〈x〉aρ.

Next we show that we can interpret an elimination operator for the identity type. Suppose
Γ ` a : A, Γ ` b : A, Γ ` u : IdA a b and Γ.A ` P and Γ ` v : P [a]. We will define an
operator

Γ ` T(u, v) : P [b].

Let ρ be some I-cube of Γ. Then uρ is of the form 〈x〉ω for some path ω : aρ→x bρ, x not
in I, ω ∈ Aρ. The I, x-cube (ρ, ω) in Γ.A is then a path [a]ρ→x [b]ρ and we define (see the
picture below)

T(u, v)ρ = P (ρ, ω)+vρ where 〈x〉ω = uρ

The condition (T(u, v)ρ)f = T(u, v)(ρf) follows from the uniformity condition on the Kan
filling operations.

bρ [b]ρ T(u, v)ρ

ω ρ, ω P (ρ, ω)↑vρ

aρ

OO

[a]ρ

OO

vρ

OO

We have that P (ρ, ω)↑vρ is a line connecting vρ and T(u, v)ρ. In particular for u = Ref a,
this gives an interpretation of an operator

Γ ` H(v) : IdP [a] v T(Ref a, v)

by taking H(v)ρ = 〈x〉P (ριx, aρ)↑vρ. The computation rule for identity is thus only validated
by a path to v via H(v)3.

3 The validity of the computation rule for identity corresponds to considering only fibrations that are
regular in the sense of Hurewicz [14].

TYPES 2013

122 A Model of Type Theory in Cubical Sets

Γ ` A Γ ` a : A Γ ` b : A
Γ ` IdA a b

Γ ` a : A
Γ ` Ref a : IdA a a

Γ ` a : A Γ ` b : A Γ ` u : IdA a b Γ.A ` P Γ ` v : P [a]
Γ ` T(u, v) : P [b]

Γ ` a : A Γ.A ` P Γ ` v : P [a]
Γ ` H(v) : IdP [a] v T(Ref a, v)

Γ ` a : A
Γ ` center (a,Ref a) : ΠT (IdTp(a,Ref a) q) where T = ΣA (IdApap q)

Figure 2 Rules for Id-types.

We finally show that, given Γ ` a : A, the type Γ ` T = Σ A (IdAp ap q) is contractible.
For this we have to find a center of T and a path to this center for any element of T . That
is, we have to find two sections Γ ` t : T and Γ.T ` u : IdTp tp q. We define t = (a,Ref a).
Let ρ be some I-cube of Γ and let (v, 〈x〉α) be some element of Tρ. So v is an element of Aρ
and α is a line connecting aρ and v in some direction x not in I. We introduce a direction y
not in I, x and define:

u(ρ, (v, 〈x〉α)) = 〈y〉(Aρ+
x,y(aρ, aρ, α), 〈x〉Aρ↑x,y(aρ, aρ, α))

The fact that the filling operations commute with substitution ensures that this defines a
section Γ.T ` u : IdTp tp q.

We summarize the rules we interpret in the Kan cubical set model in Figure 2, where
we left out the equations that the operations commute with substitutions, e.g. (IdA a b)σ =
IdAσ aσ bσ.

N.A. Danielsson has checked formally in Agda that these properties are enough to develop
all basic propositions of univalent mathematics; this Agda development4 is accompanying
the paper [6].

Let us define the more common elimination operator of C. Paulin-Mohring [18] from the
above operations—with the difference that its computation rule only holds propositionally,
and not as usual definitionally. In order not to make the notation too heavy we’ll use informal
reasoning in type theory; note that the definition can be given internally in type theory and
we don’t refer to the model; this definition follows N.A. Danielsson’s Agda development (loc.
cit.). First note that using the transport operation T one can define composition p◦q : IdAa c
of two identity proofs p : IdAa b, q : IdAb c, as well as inverses p−1 : IdAb a. With H one can
derive IdIdAa a(p−1 ◦ p) (Ref a).

Let A be a type, a : A, and C(b, p) a type given b : A, p : IdAa b, such that v : C(a,Ref a);
for b : A and p : IdAa b we define J(a, v, b, p) : C(b, u). We can consider C as a dependent type
over T = (Σx : A)IdAa x via C(w.1, w.2) for w : T . As we showed in the last paragraph, T is
contractible with center (a,Ref a), and thus we get a witness app(h, (b, p)) : IdT (a,Ref a) (b, p)
for h = λu, u as in the above paragraph; now with T (w.r.t. the type C(w.1, w.2) for w : T)
we can define

J(a, v, b, p) = T(app(h, (a,Ref a))−1 ◦ app(h, (b, p)), v).

4 Available at: http://www.cse.chalmers.se/~nad/

http://www.cse.chalmers.se/~nad/

M. Bezem, T. Coquand, and S. Huber 123

Now if p = Ref a, we get that app(h, (a,Ref a))−1 ◦ app(h, (b, p)) is propositionally equal to
Ref(Ref a), and thus using T and H again one gets a witness of IdC(a,Ref a) v J(a, v, a,Ref a).

Even though J doesn’t satisfy the judgmental equality, the model validates a new operation
mapOnPaths which behaves well w.r.t. judgmental equality. Its rule given Γ ` A, Γ ` B,
Γ ` u : A and Γ ` v : A is

Γ ` ϕ : A→ B Γ ` p : IdA u v

Γ ` mapOnPaths(ϕ, p) : IdB (app(ϕ, u)) (app(ϕ, v))

where A → B is the non-dependent function space ΠA(Bp). Given ρ in Γ(I) we define
mapOnPaths(ϕ, p)ρ = 〈x〉 (ϕρ)1ω for pρ = 〈x〉ω. This satisfies the equations

mapOnPaths(id, p) = p

mapOnPaths(ϕ ◦ ψ, p) = mapOnPaths
(
ϕ,mapOnPaths(ψ, p)

)
mapOnPaths(ϕ,Ref a) = Ref(app(ϕ, a))
mapOnPaths(λ(bp), p) = Ref b

where now ϕ ◦ ψ denotes ordinary function composition and λ(bp) is constant.
Notice that some of these equations do not hold if the identity type is defined as an

inductive family, as in [17].

This interpretation of identity satisfies function extensionality (left to the reader).

8.3 Description of a universe
We now describe the interpretation of U as a universe of Kan cubical sets. We give U only
as a cubical set (following [12, 23]) and only indicate how an operation similar to the Kan
fillings can be given. The full proof that U has a Kan structure will be presented in the
forthcoming [13].

Recall that the Yoneda embedding is denoted by y. An element A of U(I) is a type
yI ` A with Kan structure such that for each f : I → J the set Af is small (we use subscripts
to keep the notation separate from the restrictions). Given such a yI ` A and f : I → J the
restriction Af of A by f is defined to be yJ ` A(yf), where yf : yJ → yI is the substitution
induced by f ; thus (Af)g = Afg. This defines U as a cubical set.

Note that the points of U are simply the (small) uniform Kan cubical sets. More precisely,
since ∅ is initial in C, any A in U(∅) becomes a cubical set when we define A(I) as Af for
the unique f : ∅ → I. A line in U between points A and B can be seen as a “heterogeneous”
notion of lines, cubes, . . . a→ b where a is an I-cube of A and b an I-cube of B.

As a first step towards proving that this cubical set satisfies the Kan condition we show
how to compose an A and B in U(I) with x ∈ I assuming A(x = 1) = B(x = 0); we define
C = comp(A,B) ∈ U(I) such that C(x = 0) = A(x = 0), C(x = 1) = B(x = 1), and for
f : I → J defined on x, Cf = comp(Af,Bf). (Compare this to the composition of relations.)

We define the sets Cf , f : I → J by case distinction on f(x); in case f(x) = 0, we can
write f = (x = 0)f ′ and we have to set Cf = Af as we have to satisfy Cf = (C(x = 0))f ′ =
(A(x = 0))f ′ = Af ; similarly, if f(x) = 1, we set Cf = Bf . In case, f is defined on x, an
element of Cf is any pair (a, b) such that a ∈ Af and b ∈ Bf with a(x = 1) = b(x = 0) in
Af(x=1) = A(x = 1)(f−x) = B(x = 0)(f−x) = Bf(x=0).

We still have to define the restrictions Cf → Cfg for g : J → K; in the first two cases
from above, the restrictions are induced by Af and Bf respectively. In case f is defined on
x, we look at g(f(x)): if g(f(x)) = 0, we set (a, b)g = ag; if g(f(x)) = 1, we set (a, b)g = bg;
and if g is defined at f(x), we define (a, b)g = (ag, bg).

TYPES 2013

124 A Model of Type Theory in Cubical Sets

It remains to define the Kan fillings for C; it suffices to give them for C1 as Cf is either
determined by Af , Bf , or comp(Af,Bf)1; so let J, x′ ⊆ I with x′ /∈ J , and ~u be a open
box in C1, i.e. uyc ∈ C(y=c) for (y, c) ∈ O+(J, x′) with uyc(z = d) = uzd(y = c). Note
that for y 6= x, uyc = (ayc, byc) with ayc ∈ A1 and byc ∈ B1 with ayc(x = 1) = byc(x = 0).
We want to define u = C1↑~u. There are three cases. First, in case x = x′, we set
ax0 = ux0 ∈ C(x=0) = A(x=0); this yields an open box ~a in A1 which we can fill to
a = A1↑~a ∈ A1. Now setting bx0 = a(x = 1) yields an open box ~b in B1 which we can fill to
get b = B1↑~b ∈ B1. Note that b(x = 0) = a(x = 1) and thus we can set u = (a, b).

Second, in case x 6= x′ with x ∈ J , we construct an element v ∈ A(x=1) = B(x=0) first. For
(y, c) ∈ O+(J −x, x′) define vyc = ayc(x = 1) (which is also equal to byc(x = 0)). It is readily
checked that this defines an open box in A(x=1) = B(x=0) and thus we get v = A(x=1)↑~v.
Now set ax1 = bx0 = v; this yields open boxes ~a and ~b in A1 and B1, respectively. Thus we
can take u = (A1↑~a,B1↑~b).

Finally, in case x /∈ J , we directly have open boxes ~a and ~b in A1 and B1, respectively.
Setting u = (A1↑~a,B1↑~b) gives an element in C1 since

(A1↑~a)(x = 1) = A(x=1)↑(~a(x = 1)) = B(x=0)↑(~b(x = 0)) = (B1↑~b)(x = 0).

This concludes the definition of C = comp(A,B).

8.4 Equivalence and equality of types
We explain in this section how to transform any equivalence σ : A→ B between two small Kan
cubical sets to a path A→ B in U , as defined in the previous section. Let us recall the notion
of equivalence between types (cf. [24, Definition 4.4.1]) using informal notation. For a type
A we define the proposition of being contractible isContrA to be (Σa : A)(Πx : A) IdA a x.
The fiber fibσ b of a map σ : A→ B over b : B is defined as (Σx : A) IdB app(σ, x) b. A map
σ : A→ B is an equivalence if all its fibers are contractible, i.e. if

(Πb : B) isContr(fibσ b).

This amounts to give ϕ : (Πb : B)(Σx : A) IdB app(σ, x) b and ψ : (Πb : A)(Πu :
fibσ b) Idfibσ b app(ϕ, b) u. If we now assume that A and B are Kan cubical sets (which
corresponds to types in the empty context), this definition unfolds to the following data: a
map σ : A→ B is an equivalence if there is a map δ : B → A and a map assigning to b a line
b′ : σδb→ b, and a transformation of any equality ω : σa→ b, where a (resp. b) is an I-cube
of A (resp. B) to a “square” (really a pair of an I, x-cube of A and an I, x, y-cube of B)

a
ω∗ // δb

σa
σω∗ //

ω

��

σδb

b′

��
b

b
// b

We define from this a path C between A and B in the direction x. For any substitution
f : {x} → I we have to define a set Cf together with substitution maps Cf → Cfg. If

M. Bezem, T. Coquand, and S. Huber 125

f(x) = 0 we take Cf = A(I) and if f(x) = 1 we take Cf = B(I). If f(x) = y then we define
Cf to be the set of pairs (a, b) where a is an (I − y)-cube of A and b is an I-cube of B and
b(y = 0) = σa. It can be then be checked in an elementary way that if σ is an equivalence,
then this “heterogeneous” notion of cube has the uniform Kan property.

In pictures, the main difficult case is to complete an open box

σa0 // b0

��
σa1 // b1

to a square

a0

��

σa0 //

��

b0

��
a1 σa1 // b1

For this, using the fact that σ is an equivalence, we transform the open box in an open box
in A

a0 // δb0

��
a1 // δb1

and since A is Kan, it can be filled to a box

a0 //

��

δb0

��
a1 // δb1

and we can then fill the box in B

a0

��

σa0 //

��

""

b0

��

��
σδb0

��

// b0

��
σδb1 // b1

a1 σa1 //

<<

b1

__

TYPES 2013

126 A Model of Type Theory in Cubical Sets

Since our model is constructive, this gives a way to effectively transport properties and
structures on a Kan cubical set to one which is equivalent. In particular we can effectively
transport properties and structures of a groupoid to one which is categorically equivalent.

We have only described here a weak corollary of the Axiom of Univalence, but the
complete Axiom can be validated in this model as well5 and will be presented in a forthcoming
publication.

8.5 Propositional reflection
We can describe the operation of Kan “completion”. Given a cubical set X we add operations
X+, X↑, X−, X↓ in a free way, i.e. considering these operations as constructors. At the same
time one defines the restrictions of the added operations, resulting in an inductive-recursive
definition. The uniformity condition determine what the restrictions of these elements should.
In this way we get a new cubical set Y , satisfying by definition the Kan extension property,
with a map X → Y . Furthermore, if Z is Kan, and we have a map σ : X → Z there is a map
Y → Z extending σ. This map is furthermore unique if we impose it to commute with the
Kan operations. In general however, the maps of Kan cubical sets do not need to commute
with the Kan operations.

The same idea can be used to define inhX, the proposition stating that X is inhabited.
Besides adding constructors (inhX)+, (inhX)↑, (inhX)− and (inhX)↓, we also add a con-
structor αx(u0, u1) connecting formally along the dimension x any two I-cubes u0 and u1
(with x not in I) and constructors for the Kan filling and composition operations. Thus each
I-cube u in inhX is of one of the forms: either u an I-cube of X; a formal Kan filling, e.g.
(inhX)↑~u with ~u an open box in inhX; or of the form αx(u0, u1) with ui in (inhX)(I − x).
At the same time we define the restrictions

αx(u0, u1)(x = 0) = u0 αx(u0, u1)(x = 1) = u1

and, if f is defined on x with y = f(x),

αx(u0, u1)f = αy(u0(f − x), u1(f − x)).

This satisfies the required induction principle of inhX: if we have a map ϕ : X → Y , we can
extend this to a map ϕ̃ : propY × inhX → Y where propY is (Πy0 y1 : Y) IdY y0 y1. For
p ∈ (propY)(I) and u ∈ (inhX)(I) we define ϕ̃(p, u) in Y (I) by induction on u. The difficult
case is when u is αx(u0, u1) with x ∈ I and ui ∈ (inhX)(I − x). By induction hypothesis, we
already defined vi = ϕ̃(p(x = i), ui) ∈ Y (I − x). Applying p(x = 0) to both v0 and v1 gives
a path 〈x〉ω, where ω ∈ Y (I) connecting v0 to v1 along x, and we set ϕ̃(p, u) = ω. Note that
the choice of p(x = 0) ∈ (propY)(I − x) above is not canonical.

We can also define the spheres. For instance S1 will be the Kan completion of the cubical
set generated by a point base and a loop loop.

We can then define ∃ A B to be inh(Σ A B). If Σ A B is a proposition we have an
inhabitant of ∃ A B → Σ A B and this can be seen as a generalization of the axiom of
description since if A set, B proposition and B is satisfied by at most one element of A then
Σ A B is a proposition.

5 The algorithms can be found in the implementation available at http://github.com/simhu/cubical.

http://github.com/simhu/cubical

M. Bezem, T. Coquand, and S. Huber 127

Acknowledgments. The research for this paper has been started while the first two authors
were members of the Institute for Advanced Study in Princeton, as part of the program
Univalent Foundations of Mathematics. We are grateful for the generous support by the IAS
and the Fund for Math.

The last two authors acknowledge financial support from the ERC: The research leading
to these results has received funding from the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement nr. 247219.

The authors wish to thank Jean-Philippe Bernardy, Cyril Cohen, Andy Pitts and Michael
Shulman for stimulating discussions on the topic of this paper. The clear presentation of [27]
provided an important help.

References
1 Steve Awodey and Michael Warren. Homotopy theoretic models of identity types. Mathe-

matical Proceedings of the Cambridge Philosophical Society, 146:45–55, 2009.
2 Bruno Barras, Thierry Coquand, and Simon Huber. A generalization of Takeuti-Gandy

interpretation. To appear in Mathematical Structures in Computer Science, 2013.
3 Marc Bezem and Thierry Coquand. A Kripke model for simplicial sets. Preprint, 2013.
4 Erret Bishop. Foundations of constructive analysis. McGraw-Hill Book Co., New York,

1967.
5 John Cartmell. Generalised algebraic theories and contextual categories. Annals of Pure

and Applied Logic, 32:209–243, 1986.
6 Thierry Coquand and Nils Anders Danielsson. Isomorphism is equality. Indagationes

Mathematicae, 24(4):1105–1120, 2013.
7 Sjoerd Crans. On combinatorial models for higher dimensional homotopies. PhD thesis,

Universiteit Utrecht, 1995.
8 Pierre-Louis Curien. Substitutions up to isomorphisms. Fundamenta Informaticae, 19:51–

85, 1993.
9 Peter Dybjer. Internal type theory. In Types for Programs and Proofs, pages 120–134.

Lecture Notes in Computer Science, Springer, 1996.
10 Alexander Grothendieck. Pursuing stacks. Manuscript, 1983.
11 Martin Hofmann. Syntax and semantics of dependent types. In A.M. Pitts and P. Dybjer,

editors, Semantics and logics of computation, volume 14 of Publ. Newton Inst., pages 79–
130. Cambridge University Press, Cambridge, 1997.

12 Martin Hofmann and Thomas Streicher. Lifting Grothendieck universes. Unpublished Note.
13 Simon Huber. A model of type theory in cubical sets. Licentiate thesis, University of

Gothenburg, 2014.
14 Witold Hurewicz. On the concept of fiber space. Proc. Nat. Acad. Sci. U. S. A., 41:956–961,

1955.
15 Daniel M. Kan. Abstract homotopy. I. Proc. Nat. Acad. Sci. U. S. A., 41:1092–1096, 1955.
16 Chris Kapulkin, Peter LeFanu Lumsdaine, and Vladimir Voevodsky. The simplicial model

of univalent foundations. Preprint, http://arxiv.org/abs/1211.2851, 2012.
17 Per Martin-Löf. An intiutionistic theory of types: Predicative part. In H. E. Rose and

J. Shepherdson, editors, Logic Colloquium ’73, pages 73–118. North–Holland, Amsterdam,
1975.

18 Christine Paulin-Mohring. Inductive Definitions in the System Coq - Rules and Properties.
In Marc Bezem and Jan Friso Groote, editors, Proceedings of the conference Typed Lambda
Calculi and Applications, number 664 in Lecture Notes in Computer Science, 1993.

19 Andrew M. Pitts. An equivalent presentation of the Bezem-Coquand-Huber category of
cubical sets. Manuscript, http://arxiv.org/abs/1401.7807, September 2013.

TYPES 2013

http://arxiv.org/abs/1211.2851
http://arxiv.org/abs/1401.7807

128 A Model of Type Theory in Cubical Sets

20 Andrew M. Pitts. Nominal Sets: Names and Symmetry in Computer Science, volume 57
of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2013.

21 Jean-Pierre Serre. Homologie simgulière des espaces fibrés. Applications. Thèse, Paris,
1951.

22 Allen Stoughton. Substitution revisited. Theoretical Computer Science, 59:317–325, 1988.
23 Ross Street. Cosmoi of internal categories. Trans. Amer. Math. Soc., 258:271–318, 1980.
24 The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations

of Mathematics. http://homotopytypetheory.org/book, Institute for Advanced Study,
2013.

25 Vladimir Voevodsky. The equivalence axiom and univalent models of type theory. Talk at
CMU, February 2010.

26 Alfred N. Whitehead and Bertrand Russell. Principia Mathematica. Cambridge University
Press, 2nd edition, 1925.

27 Richard Williamson. Combinatorial homotopy theory. Preprint, 2012.

http://homotopytypetheory.org/book

Isomorphism of “Functional” Intersection Types∗

Mario Coppo, Mariangiola Dezani-Ciancaglini, Ines Margaria, and
Maddalena Zacchi

Dipartimento di Informatica, Università di Torino
corso Svizzera 185, 10149 Torino, Italy
{coppo, dezani, ines, zacchi}@di.unito.it

Abstract
Type isomorphism for intersection types is quite odd, since it is not a congruence and it does
not extend type equality in the standard interpretation of types. The lack of congruence is due
to the proof theoretic nature of the intersection introduction rule, which requires the same term
to be the subject of both premises. A partial congruence can be recovered by introducing a
suitable notion of type similarity. Type equality in standard models becomes included in type
isomorphism whenever atomic types have “functional” interpretations, i.e. they are equivalent
to arrow types. This paper characterises type isomorphism for a type system in which the
equivalence between atomic types and arrow types is induced by the initial projections of the
Scott D∞ model via the correspondence between inverse limit models and filter λ-models.

1998 ACM Subject Classification F.4.1 Mathematical Logic, F.3.3 Studies of Program Con-
structs, D.1.1 Applicative (Functional) Programming

Keywords and phrases type isomorphism, lambda calculus, intersection types

Digital Object Identifier 10.4230/LIPIcs.TYPES.2013.129

1 Introduction

The notion of type isomorphism is a particularisation of the general notion of isomorphism as
defined in category theory. Two objects a and b are isomorphic if there exist two morphisms
f :a→ b and g :b→ a such that f ◦ g = idb and g ◦ f = ida:

a

f

((
ida 66 b

g

hh idb

ww

Analogously, two types σ and τ in some typed λ-calculus, are isomorphic if there are two
λ-terms f and g of types σ → τ and τ → σ, respectively, such that f ◦ g is βη equal to the
identity at type τ and g ◦ f is βη equal to the identity at type σ.

In a recent paper [15], isomorphic types are identified. So λ-terms getting a type σ have
also all types isomorphic to σ. This is useful both in looking for proofs of formulas through
the Curry-Howard correspondence and in searching functions by type in program libraries.

Bruce and Longo proved in [5] that only one equation, namely the swap equation:
σ → τ → ρ ≈ τ → σ → ρ

is needed for characterising isomorphism in the simply typed λ-calculus.

∗ This work was partially supported by EU Collaborative project ASCENS 257414, ICT COST Action
IC1201 BETTY, MIUR PRIN Project CINA Prot. 2010LHT4KM and Torino University/Compagnia
San Paolo Project SALT.

© Mario Coppo, Mariangiola Dezani-Ciancaglini, Ines Margaria, and Maddalena Zacchi;
licensed under Creative Commons License CC-BY

19th International Conference on Types for Proofs and Programs (TYPES 2013).
Editors: Ralph Matthes and Aleksy Schubert; pp. 129–149

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TYPES.2013.129
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

130 Isomorphism of “Functional” Intersection Types

Later, the study has been directed toward richer λ-calculi, obtained from the simply
typed λ-calculus in an incremental way, by adding some other type constructors (like product
[22, 4, 23]) or by allowing higher-order types (System F [5, 13]). Di Cosmo summarised in
[14] the equations characterising type isomorphisms in different type systems. The set of
equations grows incrementally in the sense that the set of equations for a typed λ-calculus,
obtained by adding a primitive to a given typed λ-calculus, is an extension of the set of
equations of the λ-calculus without that primitive.

In the presence of intersection, this incremental approach does not work, as pointed out
in [12]; the isomorphism is no longer a congruence and type equality in the standard models
of intersection types does not entail type isomorphism. Notice that both features hold also
in the very tricky case of the sum types [17].

The lack of congruence can be shown considering, for instance, the types ϕ1 → ϕ2 → σ

and ϕ2 → ϕ1 → σ. They are isomorphic (by argument swapping), while their intersections
with the same type (ϕ3 → ϕ4 → τ), i.e.

(ϕ1 → ϕ2 → σ) ∧ (ϕ3 → ϕ4 → τ) and (ϕ2 → ϕ1 → σ) ∧ (ϕ3 → ϕ4 → τ),
are not. It is interesting to note that the lack of congruence prevents to give a finitary
axiomatisation of the type isomorphism studied in this paper.

The standard models of intersection types map types to subsets of any domain that is a
model of the untyped λ-calculus, with the conditions that the arrow is interpreted as the
function space constructor and the intersection as the set-theoretic intersection [2]. For
example, σ ∧ τ → ρ is isomorphic (and equal in all standard models) to τ ∧ σ → ρ, but they
are no longer isomorphic when intersected with an atomic type ϕ, i.e. (σ ∧ τ → ρ) ∧ ϕ is not
isomorphic to (τ ∧ σ → ρ) ∧ ϕ (although their interpretations remain equal).

In place of congruence one can use a suitable notion of type similarity, as done in [12] for
characterising isomorphism. Instead, the existence of non-isomorphic types, which are equal
in all standard interpretations, reveals that the type assignment system considered in [12]
can be improved. The problem is caused by the absence of a functional behaviour for atomic
types. This is quite odd for the pure λ-calculus, where everything is a function.

The present paper proposes a type system whose isomorphisms contain type equality
in standard intersection models. This is achieved by assuming that each atomic type is
equivalent to a functional type. In particular the type system is sound for a type interpretation
in which each atomic type is interpreted as the set of constant functions returning values
belonging to the set itself. Notably, this choice takes inspiration from the properties of the
standard projections of Scott’s D∞ λ-model [21] and from the relations between inverse limit
models and filter models [6]. As proved in [6], in fact, D∞ is isomorphic to a filter λ-model
built from a set of atomic types which correspond to elements of the initial domain D0. In
this model a type interpretation in which all types have a functional character is obtained in
a natural way by taking the open sets in the Scott topology.

A strongly related paper is [9], where the functional interpretation of atomic types is
considered in a type system with also union types. Type similarity is extended to union types
and proved to be sound for type isomorphism, while its completeness is only conjectured.

Summary. Section 2 presents the type assignment system with its properties, notably
Subject Reduction and Subject Expansion. Section 3 discusses some basic isomorphisms
which entail equality in standard models (Theorem 18). The main result of this paper is
the characterisation of type isomorphism (Theorem 37) given in Section 5, using the type
normalisation presented in Section 4. As a consequence type isomorphism turns out to be
decidable (Theorem 39). Section 6 concludes with some directions for further studies.

M. Coppo, M. Dezani-Ciancaglini, I. Margaria, and M. Zacchi 131

2 Type Assignment System

Let A be a denumerable set of atomic types ranged over by ϕ,ψ and ω an atom not in A.
The syntax of types is given by:

σ ::= ϕ | ω | σ → σ | σ ∧ σ .

As usual, parentheses are omitted according to the precedence rule “ ∧ over →” and →
associates to the right. It is useful to distinguish between different kinds of types. So in the
following:

σ, τ, ρ, θ range over arbitrary types;
α, β, γ range over atomic and arrow types, defined as α ::= ϕ | ω | σ → σ.

The following equivalence asserts the functional character of atomic types, by equating
them to arrow types. It also agrees with the interpretation of type ω as the whole domain of
elements (see Definition 17).

I Definition 1 (Semantic type equivalence). The semantic equivalence relation ∼= on types is
defined as the minimal congruence such that:

ϕ ∼= ω → ϕ ω ∼= ω → ω σ ∼= σ ∧ ω σ ∼= ω ∧ σ.

The congruence allows one to state that σ ∼= σ′ and τ ∼= τ ′ imply σ ∧ τ ∼= σ′ ∧ τ ′. Moreover
σ → τ ∼= σ′ → τ ′ iff σ ∼= σ′ and τ ∼= τ ′. Note that no other equivalence is assumed between
types, for instance σ ∧ τ is different from τ ∧ σ.

The equivalence of Definition 1 is dubbed semantic since it is derived by the relation
between D∞ λ-models and filter λ-models, see [1] and [3] (Section 16.3). Briefly, each inverse
limit model built from an ω-algebraic lattice D0 with order v is isomorphic to a filter λ-model
with subtyping ≤∞ when:

the intersections of atomic types are in one-to-one correspondence γ with the compact
elements of D0 (ω corresponds to ⊥);
each type corresponds to a compact element of D∞;
each arrow type corresponds to a step function between compact elements of D∞;
each intersection type corresponds to the join between compact elements of D∞;
the subtype relation ≤∞ mimics

the (reverse) partial order on the compact elements of D0, i.e. d, d′ ∈ D0 and d v d′
imply γ−1(d′) ≤∞ γ−1(d), and
the initial projection from the compact elements of D0 to the set of continuous functions
mapping D0 in D0, i.e. if d ∈ D0 is mapped to the step function d1 ⇒ d2, then

γ−1(d) ≤∞ γ−1(d1)→ γ−1(d2) ≤∞ γ−1(d).

The standard initial projection ι of Scott’s model [21] maps each element of D0 in the
constant function returning that element, i.e. ι(d) is equal to the step function ⊥ ⇒ d for
all d ∈ D0 (including d = ⊥). It is then easy to verify that the first two equivalences of
Definition 1 are induced by associating ⊥ with type ω, by taking as D0 the lattice obtained by
join completion of a domain with a denumerable set of incomparable elements (corresponding
to the types in A) and by using the standard initial projection. The last two equivalences of
Definition 1 agree with the facts that ⊥ is the least element of D∞ and that the intersection
corresponds to the join.

In the type assignment system considered in this paper, types can be assigned only to
linear λ-terms. A λ-term is linear if each free or bound variable occurs exactly once in it.

TYPES 2013

132 Isomorphism of “Functional” Intersection Types

(Ax) x :σ ` x :σ (∼=) Γ `M :σ σ ∼= τ

Γ `M :τ

(→ I) Γ, x :σ `M :τ
Γ ` λx.M :σ → τ

(→ E) Γ1 `M :σ → τ Γ2 ` N :σ
Γ1,Γ2 `MN :τ

(∧I) Γ `M :σ Γ `M :τ
Γ `M :σ ∧ τ (∧E) Γ `M :σ ∧ τ

Γ `M :σ
Γ `M :σ ∧ τ

Γ `M :τ

Figure 1 Typing rules.

This is justified by the observation that type isomorphisms are realised by finite hereditarily
permutators which are linear λ-terms (see Definitions 10 and 12). This is not restrictive since
it is easy to prove that the full system without linearity restriction [6] is conservative over the
present one. Therefore the types that can be derived for the finite hereditarily permutators
are the same in the two systems, so the present study of type isomorphism holds for the full
system too.

Figure 1 gives the typing rules. As usual, environments associate variables to types and
contain at most one type for each variable. The environments are relevant, i.e. they contain
only the used premises. The domain of the environment Γ is denoted by dom(Γ). When
writing Γ1,Γ2 one convenes that dom(Γ1) ∩ dom(Γ2) = ∅. It is easy to verify that Γ `M :σ
implies dom(Γ) = FV (M) (FV (M) denotes the set of free variables of M). An example of
derivation is shown in Figure 2.

Some useful admissible rules are:

(L) x :σ ` x :τ Γ, x :τ `M :ρ
Γ, x :σ `M :ρ (ω) dom(Γ) = FV (M)

Γ `M :ω

In order to state and prove the Inversion Lemma (Lemma 4) it is handy to introduce a
pre-order on types (Definition 2), which is induced by the typing rules (Lemma 3(2)).

I Definition 2 (Identity pre-order on types). 1. The set A of atomic and arrow types of a
type σ (notation A(σ)) is inductively defined by:

A(α) = {α, ω} A(σ ∧ τ) = A(σ) ∪ A(τ)
2. The identity pre-order relation - on types is defined by:

σ - τ if for all α ∈ A(τ) there is β ∈ A(σ) such that β ∼= α.

It is easy to verify that σ - ω and σ - ω → ω for all types σ. Clearly, whereas σ ∼= τ implies
σ - τ , the inverse does not hold since for example ϕ ∧ ψ - ω → ϕ, but ϕ ∧ ψ 6∼= ω → ϕ.

I Lemma 3. 1. Γ `M :σ iff Γ `M :α for all α ∈ A(σ).
2. If Γ `M :σ and σ - τ , then Γ `M :τ .

Proof. (1). By structural induction on σ. If σ = α and Γ ` M : σ, the rule (ω) derives
Γ `M :ω. Let σ = σ1 ∧ σ2. By rules (∧I) and (∧E) Γ `M :σ iff Γ `M :σ1 and Γ `M :σ2,
so the induction hypothesis applies.
(2). By definition for all α ∈ A(τ) there is β ∈ A(σ) such that β ∼= α. Point (1) implies that
Γ `M :β for all β ∈ A(σ). Then by rule (∼=) Γ `M :α for all α ∈ A(τ), so again by point
(1) Γ `M :τ . J

In the following,
∧
i∈{1,...,n} τi is used to denote any type obtained by multiple applications

of the intersection type constructor to the types τ1, . . . , τn.

M. Coppo, M. Dezani-Ciancaglini, I. Margaria, and M. Zacchi 133

x
:σ
`
x

:σ
(A
x

)
(∧
E

)
x

:σ
`
x

:ϕ
1
→
ϕ

1
(∼ =

)
x

:σ
`
x

:ϕ
1
→
ω
→
ϕ

1
z

:ϕ
1
`
z

:ϕ
1

(A
x

)
(→

E
)

x
:σ
,
z

:ϕ
1
`
x
z

:ω
→
ϕ

1
y

:ω
`
y

:ω
(A
x

)
(→

E
)

x
:σ
,
y

:ω
,
z

:ϕ
1
`
x
z
y

:ϕ
1

(→
I

)
x

:σ
,
y

:ω
`
λ
z
.x
z
y

:ϕ
1
→
ϕ

1
(→

I
)

x
:σ
`
λ
y
z
.x
z
y

:ω
→
ϕ

1
→
ϕ

1

x
:σ
`
x

:σ
(A
x

)
(∧
E

)
x

:σ
`
x

:ϕ
2
→
ϕ

3
→
ϕ

2
z

:ϕ
2
`
z

:ϕ
2

(A
x

)
(→

E
)

x
:σ
,
z

:ϕ
2
`
x
z

:ϕ
3
→
ϕ

2
y

:ϕ
3
`
y

:ϕ
3

(A
x

)
(→

E
)

x
:σ
,
y

:ϕ
3
,
z

:ϕ
2
`
x
z
y

:ϕ
2

(→
I

)
x

:σ
,
y

:ϕ
3
`
λ
z
.x
z
y

:ϕ
2
→
ϕ

2
(→

I
)

x
:σ
`
λ
y
z
.x
z
y

:ϕ
3
→
ϕ

2
→
ϕ

2
(∧
I

)
x

: (
ϕ

1
→
ϕ

1
)
∧

(ϕ
2
→
ϕ

3
→
ϕ

2
)
`
λ
y
z
.x
z
y

:(
ω
→
ϕ

1
→
ϕ

1
)
∧

(ϕ
3
→
ϕ

2
→
ϕ

2
)

(→
I

)
`
λ
x
y
z
.x
z
y

:(
ϕ

1
→
ϕ

1
)
∧

(ϕ
2
→
ϕ

3
→
ϕ

2
)
→

(ω
→
ϕ

1
→
ϕ

1
)
∧

(ϕ
3
→
ϕ

2
→
ϕ

2
)

Fi
gu

re
2

D
er

iv
at

io
n

of
`
λ
x
y
z
.x
z
y

:(
ϕ

1
→
ϕ

1
)∧

(ϕ
2
→
ϕ

3
→
ϕ

2
)→

(ω
→
ϕ

1
→
ϕ

1
)∧

(ϕ
3
→
ϕ

2
→
ϕ

2
),

w
he

re
σ

=
(ϕ

1
→
ϕ

1
)∧

(ϕ
2
→
ϕ

3
→
ϕ

2
).

TYPES 2013

134 Isomorphism of “Functional” Intersection Types

I Lemma 4 (Inversion Lemma). 1. If x :σ ` x :τ , then σ - τ .
2. If Γ ` λx.M :τ and τ - ρ→ σ, then Γ, x :ρ `M :σ.
3. If Γ ` MN : τ , then there are Γ1,Γ2, σi, τi (1 ≤ i ≤ n) such that Γ = Γ1,Γ2 and

Γ1 `M :σi → τi, and Γ2 ` N :σi for 1 ≤ i ≤ n and
∧
i∈{1,...,n} τi - τ .

4. If Γ ` MN : α, then there are Γ1,Γ2, σ, τ such that Γ = Γ1,Γ2 and Γ1 ` M : σ → τ ,
Γ2 ` N :σ and τ - α.

Proof. Points (1), (2) and (3) are proved by induction on derivations. Only the non-standard
cases are presented.
For point (1), if the last applied rule is (∼=), observe that σ - τ ′ and τ ′ ∼= τ imply σ - τ . If
the last applied rule is (∧I) or (∧E), observe that σ - τ1 and σ - τ2 iff σ - τ1 ∧ τ2.
For point (2), if the last applied rule is (∼=), observe that τ ′ ∼= τ and τ - σ → ρ imply
τ ′ - σ → ρ. If the last applied rule is (∧I) or (∧E), observe that τ1 ∧ τ2 - σ → ρ iff
τ1 - σ → ρ or τ2 - σ → ρ.
The proof of point (3), if the last applied rule is (∼=) or (∧E), is the same as that of point
(1). If the last applied rule is (∧I) by the induction hypothesis one has

∧
i∈{1,...,n} τ

(1)
i - τ1

and
∧
i∈{1,...,m} τ

(2)
i - τ2, which imply (

∧
i∈{1,...,n} τ

(1)
i) ∧ (

∧
i∈{1,...,m} τ

(2)
i) - τ1 ∧ τ2.

Point (4) follows from point (3) and the definition of -. In fact point (3) gives Γ = Γ1,Γ2 such
that Γ1 `M :σi → τi, Γ2 ` N :σi and

∧
i∈{1,...,n} τi - τ , for some Γ1,Γ2, σi, τi (1 ≤ i ≤ n).

In this case τ = α and
∧
i∈{1,...,n} τi - α implies that there is β ∈ A(

∧
i∈{1,...,n} τi) =⋃

i∈{1,...,n}A(τi) such that β ∼= α. So there is an i0 (1 ≤ i0 ≤ n) such that β ∈ A(τi0) and
β ∼= α, that give τi0 - α. One can then choose σ = σi0 and τ = τi0 . J

The following characterisation of the arrow types of the identity λx.x justifies the name
of the pre-order relation in Definition 2.

I Corollary 5. ` λx.x :σ → τ iff σ - τ .

Proof. Easy from Lemmas 4(2), 4(1) and 3(2). J

The Inversion Lemma allows one to show some useful properties of arrow types derivable
for λ-abstractions.

I Lemma 6. 1. If Γ ` λx.M :σ → τ and Γ ` λx.M :ρ→ θ, then Γ ` λx.M :σ ∧ ρ→ τ ∧ θ.
2. If Γ ` λx.M :σ → τ and Γ ` λx.M :σ → ρ, then Γ ` λx.M :σ → τ ∧ ρ.

Proof. (1). By Lemma 4(2) Γ, x :σ `M :τ and Γ, x :ρ `M :θ, which imply Γ, x :σ∧ρ `M :τ
and Γ, x :σ ∧ ρ `M :θ by rules (∧E) and (L). Rule (∧I) derives Γ, x :σ ∧ ρ `M :τ ∧ θ. Rule
(→ I) concludes the proof.
(2). By Lemma 4(2) and rules (∧I), (→ I). J

This section ends with the proofs of Subject Reduction (Theorem 8) and Subject Expansion
(Theorem 9). As usual a Substitution Lemma is required.

I Lemma 7 (Substitution Lemma). If Γ, x :σ `M :τ and Γ′ ` N :σ and dom(Γ)∩dom(Γ′) = ∅,
then Γ,Γ′ `M [N/x] :τ .

Proof. The proof is by structural induction on M . J

I Theorem 8 (Subject Reduction). If Γ `M :τ and M −→∗β N , then Γ ` N :τ .

M. Coppo, M. Dezani-Ciancaglini, I. Margaria, and M. Zacchi 135

Proof. It is enough to show that Γ ` (λx.M)N :τ implies Γ `M [N/x] :τ . By Lemma 4(3)
there are Γ1,Γ2, σi, τi (1 ≤ i ≤ n) such that Γ = Γ1,Γ2 and Γ1 ` λx.M :σi → τi, Γ2 ` N :σi
for 1 ≤ i ≤ n and

∧
i∈{1,...,n} τi - τ . By Lemma 4(2) Γ1, x : σi ` M : τi, which implies

Γ1,Γ2 ` M [N/x] : τi by Lemma 7 for 1 ≤ i ≤ n. By applications of rule (∧I) one has
Γ `M [N/x] :

∧
i∈{1,...,n} τi and, by Lemma 3(2), one obtains Γ `M [N/x] :τ . J

Types are not preserved by η-reduction, for example x :ϕ → ϕ ` λy.xy :ϕ ∧ ψ → ϕ, while
x :ϕ→ ϕ 6` x :ϕ ∧ ψ → ϕ.

Subject expansion holds for both β and η-expansions.

I Theorem 9 (Subject Expansion). If M is a linear λ-term and M −→∗βη N and Γ ` N :τ ,
then Γ `M :τ .

Proof. For β-expansion it is enough to show that Γ `M [N/x] :τ implies Γ ` (λx.M)N :τ .
The proof is by structural induction on M , observing that the linearity condition implies
that there is exactly one occurrence of x in M .
For η-expansion let Γ ` M : τ and α ∈ A(τ). By Lemma 3(1) it is enough to show that
Γ ` λx.Mx :α, where x is fresh. Let α ∼= σ → ρ. By Lemma 3(1) and rule (∼=) Γ `M :σ → ρ.
By rules (→ E) and (→ I) one has Γ ` λx.Mx : σ → ρ. Rule (∼=) implies Γ ` λx.Mx :α.
Lemma 3(1) concludes. J

3 Isomorphism and Equality in Models

The study of type isomorphism in λ-calculus is based on the characterisation of λ-term
invertibility. A λ-term P is invertible if there exists a λ-term P−1 such that P ◦ P−1 =βη

P−1 ◦ P =βη λx.x. The paper [11] completely characterises the invertible λ-terms in
λβη-calculus: the invertible terms are all and only the finite hereditary permutators.

I Definition 10 (Finite Hereditary Permutator). A finite hereditary permutator (FHP for
short) is a λ-term of the form (modulo β-conversion)

λxy1 . . . yn.x(P1yπ(1)) . . . (Pnyπ(n)) (n ≥ 0)
where π is a permutation of 1, . . . , n, and P1, . . . , Pn are FHPs.

Note that the identity is trivially an FHP (take n = 0). Another example of an FHP is
λxy1y2.x y2 y1

∗
β←− λxy1y2.x ((λz.z) y2) ((λz.z) y1),

which proves the swap equation. It is easy to show that FHPs are closed on composition.

I Theorem 11. A λ -term is invertible iff it is a finite hereditary permutator.

This result, obtained in the framework of the untyped λ-calculus, has been the basis for
studying type isomorphism in different type systems for the λ-calculus. Note that every FHP
has, modulo βη-conversion, a unique inverse P−1. Even if in the type free λ-calculus FHPs
are defined modulo βη-conversion [11], in this paper each FHP is considered only modulo
β-conversion, because types are not invariant under η-reduction. Taking into account these
properties, the definition of type isomorphism can be stated as follows:

I Definition 12 (Type isomorphism). Two types σ and τ are isomorphic (σ ≈ τ) if there exists
a pair < P,P−1 > of FHPs, inverse of each other, such that ` P :σ → τ and ` P−1 :τ → σ.
The pair < P,P−1 > proves the isomorphism.

TYPES 2013

136 Isomorphism of “Functional” Intersection Types

When P = P−1 one can simply write “P proves the isomorphism”.

It is immediate to verify that type isomorphism is an equivalence relation.

Clearly semantic type equivalence implies type isomorphism, i.e.
σ ∼= τ implies σ ≈ τ

The inverse does not hold, for example λxyz.xzy proves ω → ϕ→ ϕ ≈ ϕ→ ϕ (note that
ϕ→ ϕ ∼= ϕ→ ω → ϕ), but ω → ϕ→ ϕ 6∼= ϕ→ ϕ.

It is useful to consider some basic isomorphisms, which are directly related to set theoretic
properties of intersection and to standard properties of functional types. It is interesting
to remark that all these isomorphisms are provable equalities in the system B+ of relevant
logic [20].

idem. σ ∧ σ ≈ σ
comm. σ ∧ τ ≈ τ ∧ σ
assoc. (σ ∧ τ) ∧ ρ ≈ σ ∧ (τ ∧ ρ)
split. σ → τ ∧ ρ ≈ (σ → τ) ∧ (σ → ρ)

The identity λx.x proves the first three isomorphisms, and its η-expansion λxy.xy proves
the fourth one.

An intersection σ ∧ τ is set-theoretically equal to σ if σ is included in τ . So, it is handy
to introduce a pre-order on types which formalises set-theoretic inclusion taking into account
the meaning of the arrow type constructor and the semantic type equivalence given in
Definition 1. This pre-order is dubbed normalisation pre-order being used in the next section
to define normalisation rules (Definition 19).

I Definition 13 (Normalisation pre-order on types). The normalisation pre-order ≤ is the
pre-order relation on types defined by:

σ ≤ ω σ ∧ τ ≤ σ σ ∧ τ ≤ τ
ϕ ≤ σ → ϕ ω ≤ σ → ω

σ ≤ τ, σ ≤ ρ⇒ σ ≤ τ ∧ ρ σ′ ≤ σ, τ ≤ τ ′ ⇒ σ → τ ≤ σ′ → τ ′

Notice that σ ≤ ω derives from σ∧ω ∼= σ. Moreover ϕ ≤ σ → ϕ and ω ≤ σ → ω are justified
by ϕ ∼= ω → ϕ, ω ∼= ω → ω and the contra-variance of ≤ for arrow types.

The identity pre-order and the normalisation pre-order are incomparable, for example
ω → ϕ - ϕ, ω → ϕ 6≤ ϕ and σ → τ ≤ σ ∧ ρ→ τ , σ → τ 6- σ ∧ ρ→ τ .

The soundness of the normalisation pre-order follows from the following lemma, which
shows the expected isomorphisms. This lemma uses particular forms of FHPs defined as
follows.

I Definition 14 (Finite Hereditary Identity). A finite hereditary identity (FHI) is a β-normal
form obtained from λx.x through a finite (possibly zero) number of η-expansions.

It is easy to verify that, for each FHI different from the identity, one gets
Id ∗β←− λxy.Id1(x(Id2y))

for unique FHIs Id1, Id2. For example, for Id = λxy1y2y3.x(λt.y1t)y2(λu1u2.y3u1u2) one has
Id1 = λxy2y3.xy2(λu1u2.y3u1u2) and Id2 = λxt.xt.

I Lemma 15. 1. Let Id be an FHI, then ` Id :σ → σ for every type σ.
2. If σ ≤ τ , then there is an FHI Id such that ` Id :σ → τ .
3. If σ ≤ τ , then σ ∧ τ ≈ σ.

M. Coppo, M. Dezani-Ciancaglini, I. Margaria, and M. Zacchi 137

Proof. (1). The proof is trivial observing that the identity λx.x has type σ → σ for all σ
and types are preserved by η-expansions (Theorem 9).
(2). The proof is by induction on the definition of ≤. Only interesting cases are considered.
If σ ≤ ρ and ρ ≤ τ imply σ ≤ τ , then by the induction hypothesis there are FHIs Id1, Id2
such that ` Id1 :σ → ρ and ` Id2 :ρ → τ . This implies ` λx.Id2(Id1x) :σ → τ . It is easy to
verify that λx.Id2(Id1x) β-reduces to an FHI.
If σ ≤ τ and σ ≤ ρ imply σ ≤ τ ∧ ρ, then by the induction hypothesis there are FHIs Id1, Id2
such that ` Id1 :σ → τ and ` Id2 :σ → ρ. By definition of FHI there is an FHI Id such that
Id −→∗η Id1 and Id −→∗η Id2. By Subject Expansion (Theorem 9) ` Id :σ → τ and ` Id :σ → ρ,
which imply ` Id :σ → τ ∧ ρ by Lemma 6(2).
If ϕ ≤ σ → ϕ one can derive y :σ ` y :ω by rule (ω), and x :ϕ ` x :ω → ϕ by rule (∼=). Then
` λxy.xy :ϕ→ σ → ϕ holds by rules (→ E) and (→ I).
If σ′ ≤ σ and τ ≤ τ ′ imply σ → τ ≤ σ′ → τ ′, then by the induction hypothesis there are
FHIs Id1, Id2 such that ` Id2 :σ′ → σ and ` Id1 :τ → τ ′. This implies

` λxy.Id1(x(Id2y)) : (σ → τ)→ σ′ → τ ′

and λxy.Id1(x(Id2y)) β-reduces to an FHI.
(3). By point (2) there is an FHI Id such that ` Id :σ → τ . By point (1) one has ` Id :σ → σ.
Lemma 6(2) gives ` Id :σ → σ ∧ τ . Lastly ` λx.x :σ ∧ τ → σ. J

For example λxyz.xyz has type (ϕ → ϕ) → (ϕ → ϕ) ∧ (ϕ → ψ → ϕ). Notice that
ϕ→ ϕ ∼= ϕ→ ω → ϕ ≤ ϕ→ ψ → ϕ.

Lemma 15 proves the validity of the basic isomorphism:
erase. if σ ≤ τ then σ ∧ τ ≈ σ

The following lemma assures that one can consider types modulo idempotence, com-
mutativity, associativity, splitting and erasure in every type context C[]. A type context is
defined as usual:

C[] ::= [] | C[]→ σ | σ → C[] | σ ∧ C[] | C[] ∧ σ

I Lemma 16. If σ ≈ τ is proved by reflexive and transitive application of the basic iso-
morphisms (idem), (comm), (assoc), (split), and (erase), then C[σ] ≈ C[τ].

Proof. As the isomorphism is reflexive and transitive, it is enough to consider the case in
which σ ≈ τ is proved by one application of (idem), (comm), (assoc), (split), and (erase).
The proof is by structural induction on type contexts. For any context C[], an FHI IdC[]
that proves the isomorhism C[σ] ≈ C[τ] is provided.

Id[] = λx.x for (idem), (comm), (assoc); Id[] = λxy.xy for (split); Id[] is given by
Lemma 15(3) for (erase).
IdC[]→ρ β←− λxy.x(IdC[]y).
Idρ→C[] β←− λxy.IdC[](xy).
Idρ∧C[] = IdC[]∧ρ = IdC[]. J

For example λxy.x(λzt.yzt) proves (ϕ→ ϕ)→ ψ ≈ (ϕ→ ϕ) ∧ (ϕ→ ψ → ϕ)→ ψ. In
fact, λwzt.wzt, having the type (ϕ→ ϕ)→ (ϕ→ ϕ)∧(ϕ→ ψ → ϕ), proves the isomorphism
by erasure (Lemma 15(3)). Moreover Id[]→ϕ

∗
β←− λxy.x(Id[]y) = λxy.x((λwzt.wzt)y) since

the isomorphism used in the empty context is the (erase).

Lemma 16 justifies the notation
∧
i∈I σi with finite I, where a single atomic or arrow

type is seen as an intersection (in this case I is a singleton).

TYPES 2013

138 Isomorphism of “Functional” Intersection Types

The standard models of intersection types map types to subsets of any domain that
is a model of the untyped λ-calculus, with the condition that the arrow is interpreted as
the function space constructor and the intersection as the set-theoretic intersection. More
formally using P to denote the power-set:

I Definition 17. Let D be the domain of a λ-model and V : A → P(D) a mapping from
atomic types to subsets of D. The standard interpretation of types is given by:

[ϕ]V = V(ϕ) [ω]V = D
[σ → τ]V = {d ∈ D | ∀d′ ∈ [σ]V : d · d′ ∈ [τ]V} [σ ∧ τ]V = [σ]V ∩ [τ]V

The equalities corresponding to the contextual closure of the basic type isomorphisms
(idem), (comm), (assoc), (split), and (erase), include the ones of [2], which are proved
to be the equalities valid in all standard models. Therefore all types equal in all standard
models are isomorphic in the system of Figure 1.

I Theorem 18. Type equality in the standard models of intersection types entails type
isomorphism.

Instead, the standard type interpretation does not validate a pre-order which includes the
clause ϕ ≤ ω → ϕ or ω → ϕ ≤ ϕ or both, unless the mapping from atomic types to subsets
of D enjoys particular properties. In particular a mapping V0 from atomic types to subsets
of D such that

V0(ϕ) = {d ∈ D | ∀d′ ∈ D : d · d′ ∈ V0(ϕ)}
validates the semantic type equivalence given in Definition 1, i.e. it gives the same inter-
pretation to equivalent types. If D is the domain of the inverse limit model discussed after
Definition 1, then a valid interpretation is that of taking as V0(ϕ) the set of all the elements
of D greater than or equal to the finite element corresponding to ϕ. Notably V0(ϕ) is an
open set in the Scott topology over D. More generally, the interpretation of each type σ is
the open set of all elements of D greater than or equal to the finite element corresponding to
σ, when mapping arrow types in step functions and intersection types in joins.

4 Normalisation

To investigate type isomorphism, following a common approach [4, 14, 12, 7, 8], a notion
of normal form of types is introduced. Normal type is short for type in normal form. The
notion of normal form is effective, since an algorithm to find the normal form of an arbitrary
type is given.

Type normalisation rules are introduced together with the proof of their soundness.

I Definition 19 (Type normalisation rules). The type normalisation rules are:
(ϕ⇒) ω → ϕ =⇒ ϕ (ω ⇒) ω ≤ σ and σ 6= ω imply σ =⇒ ω

(∧ ⇒) σ → τ ∧ ρ =⇒ (σ → τ) ∧ (σ → ρ) (≤⇒) σ ≤ τ implies σ ∧ τ =⇒ σ

(ctx⇒) σ =⇒ τ implies C[σ] =⇒ C[τ]

The first two rules follow immediately from semantic type equivalence, the following two
rules correspond to the split and erase basic isomorphisms, respectively. Since ω ≤ σ → ω,
an admissible rule is σ → ω =⇒ ω.

For example by rules (∧ ⇒) and (≤⇒), taking into account that ∧ is considered modulo
commutativity:

M. Coppo, M. Dezani-Ciancaglini, I. Margaria, and M. Zacchi 139

(ϕ1 → ϕ2 ∧ ϕ3) ∧ ϕ3 =⇒ (ϕ1 → ϕ2) ∧ (ϕ1 → ϕ3) ∧ ϕ3 =⇒ (ϕ1 → ϕ2) ∧ ϕ3

since ϕ3 ≤ ϕ1 → ϕ3.

A normal type ξ is either ω or a normal intersection type. A normal intersection type ζ is
either a normal singleton type or an intersection of normal intersection types, which cannot
be reduced by rule (≤⇒). A normal singleton type ν is either an atomic type different from
ω or an arrow type from a normal intersection type to a normal singleton type, which cannot
be reduced by rule (ϕ⇒). Formally:

ξ ::= ω | ζ ζ ::= ν | ζ ∧ ζ ν ::= ϕ | ξ → ν

where an intersection is allowed only if rule (≤⇒) cannot be applied at top level and an
arrow is allowed only if rule (ϕ⇒) cannot be applied at top level. So a normal type is either
ω or

∧
i∈I νi for some I and νi with i ∈ I.

For example (ϕ→ ϕ) ∧ ψ is a normal type, but not a normal singleton type, while ϕ→ ϕ is
a normal singleton type.
The type (ω → ϕ → ϕ) ∧ ψ → ψ is a normal singleton type, because (ω → ϕ → ϕ) ∧ ψ is
a normal intersection type, being ω → ϕ → ϕ a normal singleton type. On the contrary
(ϕ→ ω → ϕ) ∧ ψ → ψ is not a normal singleton type, because ϕ→ ω → ϕ is not so.

I Theorem 20 (Soundness of the normalisation rules). If σ =⇒ τ , then there are FHIs Id, Id′

such that ` Id :σ → τ , ` Id′ :τ → σ.

Proof. Rule (ϕ⇒) is obtained by orienting the equivalence relation between types, so it is
sound since equivalent types are shown isomorphic by the identity. Rule (ω ⇒) is sound
because, by Lemma 15(2), there is an FHI Id such that ` Id :ω → σ, and obviously ` Id :σ → ω.
Rule (∧ ⇒) is sound by the isomorphism (split). Lemma 15(3) implies the soundness of rule
(≤⇒). Lemma 16 implies the soundness of rule (ctx⇒). J

For example (ϕ1 → ϕ2 ∧ ϕ3) ∧ ϕ3 =⇒∗ (ϕ1 → ϕ2) ∧ ϕ3 as shown before, and λxy.xy

proves
(ϕ1 → ϕ2 ∧ ϕ3) ∧ ϕ3 ≈ (ϕ1 → ϕ2) ∧ ϕ3.

In fact, both
x : (ϕ1 → ϕ2 ∧ ϕ3) ∧ ϕ3 ` λy.xy : (ϕ1 → ϕ2) ∧ ϕ3

and
x : (ϕ1 → ϕ2) ∧ ϕ3 ` λy.xy : (ϕ1 → ϕ2 ∧ ϕ3) ∧ ϕ3

are derivable.

The following theorem shows the existence and uniqueness of the normal forms, i.e. that
the normalisation rules are terminating and confluent.

I Theorem 21 (Uniqueness of normal form). The normalisation rules of Definition 19 are
terminating and confluent.

Proof. The termination follows from an easy adaptation of the recursive path ordering
method [10]. The partial order on operators is defined by: → � ∧. Notice that the induced
recursive path ordering �∗ has the subterm property. This solves the case of all rules but
(∧ ⇒). For rule (∧ ⇒), since → � ∧, it is enough to observe that σ → τ ∧ ρ �∗ σ → τ

and σ → τ ∧ ρ �∗ σ → ρ.
For confluence, thanks to the Newman Lemma [18], it is sufficient to prove the convergence
of the critical pairs. Figure 3 shows the diamonds for the only three interesting cases, where
σ → τ ∧ ρ ≤ θ, ω → ϕ ≤ σ, ω ≤ σ, respectively. J

TYPES 2013

140 Isomorphism of “Functional” Intersection Types

(σ → τ ∧ ρ) ∧ θ
(≤⇒)

rz

(∧⇒)

&.
σ → τ ∧ ρ (σ → τ) ∧ (σ → ρ) ∧ θ

(σ → τ) ∧ (σ → ρ)
$,(∧⇒) px (≤⇒)

(ω → ϕ) ∧ σ
(≤⇒)

t|

(ϕ⇒)

"*

σ ∧ ω
(≤⇒)

y�

(ω⇒)

 (
ω → ϕ ϕ ∧ σ σ

(ω⇒) �&

ω ∧ ω
(≤⇒)

v~
ϕ
#+

(ϕ⇒)
t|

(≤⇒)

ω

Figure 3 Critical pairs and their diamonds.

The unique (modulo idempotence, commutativity and associativity of ∧) normal form of
σ is denoted by σ↓. The soundness of the normalisation rules (Theorem 20) implies that
each type is isomorphic to its normal form.

I Corollary 22. σ ≈ σ↓.

As expected, semantic equivalent types have the same normal form. Clearly the inverse
is false, since (σ → τ ∧ ρ)↓= (σ → τ) ∧ (σ → ρ), but σ → τ ∧ ρ 6∼= (σ → τ) ∧ (σ → ρ).

I Lemma 23. If σ ∼= τ , then σ↓= τ↓.

Proof. The proof is by cases on Definition 1. For the equivalences ϕ ∼= ω → ϕ and ω ∼= ω → ω,
rules (ϕ ⇒) and (ω ⇒) give (ω → ϕ)↓= ϕ and (ω → ω)↓= ω, respectively. For the
equivalences σ ∼= ω∧σ and σ ∼= σ∧ω, rule (∧ ⇒) with σ ≤ ω gives (ω∧σ)↓= (σ∧ω)↓= σ. The
congruence follows from the applicability of the normalisation rules in any type context. J

This section ends showing some properties of normal types for FHPs. The main result is
that isomorphic normal types different from ω are intersections with the same number of
normal singleton types, which are pairwise isomorphic (Theorem 27). Lemmas 24, 25 and 26
show preliminary results. In the following ξ, χ range over normal types and ν, µ, λ range over
normal singleton types.

I Lemma 24. 1. If ω - σ → τ , then ω ∼= τ .
2. If µ - σ → τ and τ 6∼= ω, then µ ∼= σ → ν and τ ∼= ν for some ν.

Proof. (1). Immediate by definition of - (Definition 2).
(2). By definition of - and of ∼= (Definition 1). J

I Lemma 25. Let λxy1 . . . yn.xQ1 . . . Qn be an FHP.
1. If x :

∧
i∈I µi ` λy1 . . . yn.xQ1 . . . Qn :

∧
j∈J νj, then for every j ∈ J there is a ij ∈ I such

that x :µij ` λy1 . . . yn.xQ1 . . . Qn :νj.
2. If x :ω ` λy1 . . . yn.xQ1 . . . Qn :ξ, then ξ = ω.

M. Coppo, M. Dezani-Ciancaglini, I. Margaria, and M. Zacchi 141

Proof. (1). Take an arbitrary j ∈ J . Without loss of generality assume
νj ∼= ξ1 → · · · → ξn → ν.

This is not a restriction since ϕ ∼= ω → · · · → ω︸ ︷︷ ︸
m

→ ϕ for all m. By rules (∧E) and (∼=)

x :
∧
i∈I µi ` λy1 . . . yn.xQ1 . . . Qn :

∧
j∈J νj

implies x :
∧
i∈I µi ` λy1 . . . yn.xQ1 . . . Qn : ξ1 → · · · → ξn → ν. Then by Lemma 4(2) it

follows
x :

∧
i∈I µi, y1 :ξ1, . . . , yn :ξn ` xQ1 . . . Qn :ν.

By repeated applications of Lemma 4(4) there are σ1, . . . , σn, τ1, . . . , τn such that
x :

∧
i∈I µi, yπ(1) :ξπ(1), . . . , yπ(h−1) :ξπ(h−1) ` xQ1 . . . Qh−1 :σh → τh and

yπ(h) :ξπ(h) ` Qh :σh,
where yπ(h) is the head variable of Qh for 1 ≤ h ≤ n. Moreover τk - σk+1 → τk+1 for
1 ≤ k ≤ n−1 and τn - ν. By Lemma 4(1) x :

∧
i∈I µi ` x :σ1 → τ1 implies

∧
i∈I µi - σ1 → τ1.

Then there is ij ∈ I such that µij - σ1 → τ1 by definition of -. Lemma 24(2) applied to
µij - σ1 → τ1 gives µij ∼= σ1 → ν1 and τ1 ∼= ν1 for some ν1. This together with τ1 - σ2 → τ2
implies ν1 - σ2 → τ2. Again by Lemma 24(2) one has ν1 ∼= σ2 → ν2 and τ2 ∼= ν2 for some
ν2. By iterating one gets νk ∼= σk+1 → νk+1 and τk+1 ∼= νk+1 for some νk+1 (1 ≤ k ≤ n− 1).
Lastly τn ∼= νn and τn - ν imply νn ∼= ν. Taking into account that νk ∼= σk+1 → νk+1 and
νk+1 ∼= σk+2 → νk+2 imply νk ∼= σk+1 → σk+2 → νk+2, (1 ≤ k ≤ n− 2), one can conclude
µij
∼= σ1 → · · · → σn → ν. Notice that this implies µij 6∼= ω whenever νj 6∼= ω.

Rules (→ E) and (→ I) applied to x :µij ` x :σ1 → · · · → σn → ν and yπ(h) :ξπ(h) ` Qh :σh
for 1 ≤ h ≤ n derive x :µij ` λy1 . . . yn.xQ1 . . . Qn :νj .
(2). Toward a contradiction assume ξ =

∧
j∈J νj . Let νj ∼= ξ1 → · · · → ξn → ν for an

arbitrary j ∈ J , as in the proof of point (1). One gets ω - σ1 → τ1 and
τk - σk+1 → τk+1 for 1 ≤ k ≤ n− 1, τn - ν.

Lemma 24(1) implies ω ∼= ν, which is impossible. J

I Lemma 26. If ` Id :ξ → χ, then ξ ≤ χ.

Proof. If χ = ω the proof is trivial. If ξ = ω, then χ = ω by Lemma 25(2). Let ξ =
∧
i∈I µi,

χ =
∧
j∈J νi. By Lemma 25(1) for all j ∈ J there is ij ∈ I such that ` Id :µij → νj . Then

it is enough to show µij ≤ νj . The proof is by structural induction on Id. If Id = λx.x

by Lemma 4(1) µij - νj ; since both these types are normal singleton types, µij ∼= νj , and
Lemma 23 implies µij = νj . Otherwise let Id ∗β←− λxy.Id1(x(Id2y)) and µij

∼= ξ′ → µ,
νi ∼= χ′ → ν. By Lemma 4 ` Id1 :µ → ν and ` Id2 :χ′ → ξ′. By the induction hypothesis
µ ≤ ν and χ′ ≤ ξ′, which imply µij ≤ νj . J

One can use the previous lemmas to prove that if an FHP P has the type
∧
i∈I µi →

∧
j∈J νj

and its inverse P−1 has the type
∧
j∈J νj →

∧
i∈I µi, then not only for every j ∈ J there is

a ij ∈ I such that ` P :µij → νj , but P−1 precisely maps each component νj of the target
intersection to its corresponding µij in the source intersection.

I Theorem 27. If
∧
i∈I µi ≈

∧
j∈J νj and < P,P−1 > proves this isomorphism, then there

is a permutation π between I and J such that < P,P−1 > proves µi ≈ νπ(i) for all i ∈ I.

Proof. By Lemma 25(1), for all j ∈ J there is ij ∈ I such that ` P :µij → νj . Again by
Lemma 25(1) there is j′ ∈ J such that ` P−1 :νj′ → µij . Let us suppose j′ 6= j towards a
contradiction. One gets x : νj′ ` P (P−1x) : νj and by rule (→ I) ` λx.P (P−1x) : νj′ → νj ,

TYPES 2013

142 Isomorphism of “Functional” Intersection Types

which implies that νj′ ≤ νj by Lemma 26, since λx.P (P−1x) β-reduces to an FHI. So
∧
j∈J νj

would not be a normal type, since rule (≤⇒) could be applied. J

5 Characterisation of Isomorphism

This section shows the main result of the paper, i.e. that two types are isomorphic iff their
normal forms are “similar” (Definition 28). The basic aim of the similarity relation is that of
formalising isomorphism determined by argument permutations (as in the swap equation).
This relation has to take into account the fact that, for two types to be isomorphic, it is
not sufficient that they coincide modulo permutations of types in the arrow sequences, as
in the case of cartesian products. Indeed the same permutation must be applicable to all
types in the corresponding intersections. The key notion of similarity exactly expresses such
a condition.

I Definition 28 (Similarity). The similarity relation between two sequences of normal types
〈ξ1, . . . , ξm〉 and 〈χ1, . . . , χm〉, written 〈ξ1, . . . , ξm〉 ∼ 〈χ1, . . . , χm〉, is the smallest equivalence
relation such that:
1. 〈ξ1, . . . , ξm〉 ∼ 〈ξ1, . . . , ξm〉;
2. if 〈ξ1, . . . , ξi, ξi+1, . . . , ξm〉 ∼ 〈χ1, . . . , χi, χi+1, . . . , χm〉, then

〈ξ1, . . . , (ξi ∧ ξi+1)↓, . . . , ξm〉 ∼ 〈χ1, . . . , (χi ∧ χi+1)↓, . . . , χm〉;
3. if 〈ξ(1)

i , . . . , ξ
(m)
i 〉 ∼ 〈χ(1)

i , . . . , χ
(m)
i 〉 for 1 ≤ i ≤ n, then

〈(ξ(1)
1 → . . .→ ξ

(1)
n → ν1)↓, . . . , (ξ(m)

1 → . . .→ ξ
(m)
n → νm)↓〉 ∼

〈(χ(1)
π(1) → . . .→ χ

(1)
π(n) → ν1)↓, . . . , (χ(m)

π(1) → . . .→ χ
(m)
π(n) → νm)↓〉,

where π is a permutation of 1, . . . , n.
Similarity between normal types is trivially defined as similarity between unary sequences:

ξ ∼ χ if 〈ξ〉 ∼ 〈χ〉.

For example, from 〈ω〉 ∼ 〈ω〉 and 〈ϕ〉 ∼ 〈ϕ〉 one obtains, by Definition 28(3),
〈(ω → ϕ→ ϕ)↓〉 ∼ 〈(ϕ→ ω → ϕ)↓〉,

that is ω → ϕ→ ϕ ∼ ϕ→ ϕ. Moreover 〈ψ, ω → ϕ→ ϕ〉 ∼ 〈ψ,ϕ→ ϕ〉 gives
ψ ∧ (ω → ϕ→ ϕ) ∼ ψ ∧ (ϕ→ ϕ).

The soundness of similarity can be shown without difficulties.

I Theorem 29 (Soundness). If 〈ξ1, . . . , ξm〉 ∼ 〈χ1, . . . , χm〉 , then there is a pair of FHPs
that proves ξj ≈ χj, for 1 ≤ j ≤ m.

Proof. By induction on the definition of ∼ (Definition 28).
(1). 〈ξ1, . . . , ξm〉 ∼ 〈ξ1, . . . , ξm〉. The identity proves the isomorphism.
(2). 〈ξ1, . . . , ξi, (ξi ∧ ξi+1)↓, . . . , ξm〉 ∼ 〈χ1, . . . , χi, (χi ∧ χi+1)↓, . . . , χm〉 since

〈ξ1, . . . , ξi, ξi+1, . . . , ξm〉 ∼ 〈χ1, . . . , χi, χi+1, . . . , χm〉.
By the induction hypothesis there is a pair < P,P−1> that proves ξj ≈ χj , for 1 ≤ j ≤ m.
By Lemma 6(1), the same pair proves ξi ∧ ξi+1 ≈ χi ∧ χi+1. By Theorem 20 there are FHIs
Id1, Id2, Id′1, Id

′
2 such that < Id1, Id2> proves ξi ∧ ξi+1 ≈ (ξi ∧ ξi+1)↓ and < Id′1, Id

′
2> proves

χi ∧χi+1 ≈ (χi ∧χi+1)↓. By Lemma 15(1) ` Id` :ξj → ξj and ` Id′` :χj → χj for 1 ≤ j ≤ m
and 1 ≤ ` ≤ 2. Then the pair < λx.Id′1(P (Id2x)), λx.Id1(P−1(Id′2x))> proves the required
isomorphism.

M. Coppo, M. Dezani-Ciancaglini, I. Margaria, and M. Zacchi 143

(3).
〈(ξ(1)

1 → . . .→ ξ
(1)
n → ν1)↓, . . . , (ξ(m)

1 → . . .→ ξ
(m)
n → νm)↓〉 ∼

〈(χ(1)
π(1) → . . .→ χ

(1)
π(n) → ν1)↓, . . . , (χ(m)

π(1) → . . .→ χ
(m)
π(n) → νm)↓〉

since 〈ξ(1)
i , . . . , ξ

(m)
i 〉 ∼ 〈χ(1)

i , . . . , χ
(m)
i 〉 for 1 ≤ i ≤ n. By the induction hypothesis, there

are pairs < Pi, P
−1
i > proving ξ(j)

i ≈ χ
(j)
i for 1 ≤ j ≤ m. Let

P = λxy1 . . . yn.x(P−1
1 yπ−1(1)) . . . (P−1

n yπ−1(n))
P−1 = λxy1 . . . yn.x(Pπ(1)yπ(1)) . . . (Pπ(n)yπ(n))

It is easy to verify that
` P : (ξ(j)

1 → . . .→ ξ
(j)
n → µj)→ χ

(j)
π(1) → . . .→ χ

(j)
π(n) → νj

` P−1 : (χ(j)
π(1) → . . .→ χ

(j)
π(n) → νj)→ ξ

(j)
1 → . . .→ ξ

(j)
n → µj

for 1 ≤ j ≤ m. Notice that

(ξ1 → . . .→ ξh → µ)↓=


ξ1 → . . .→ ξk → µ if ξk+1 = . . . = ξh = ω

and µ is an atomic type,
ξ1 → . . .→ ξh → µ otherwise

since ξ1, . . . , ξh are normal types and µ is a normal singleton type. Then
ξ1 → . . .→ ξh → µ ∼= (ξ1 → . . .→ ξh → µ)↓,

and, by the typing rule (∼=):
` P : (ξ(j)

1 → . . .→ ξ
(j)
n → µj)↓→ (χ(j)

π(1) → . . .→ χ
(j)
π(n) → νj)↓

` P−1 : (χ(j)
π(1) → . . .→ χ

(j)
π(n) → νj)↓→ (ξ(j)

1 → . . .→ ξ
(j)
n → µj)↓

for 1 ≤ j ≤ m. So < P,P−1 > is the required pair. J

An immediate implication of the Soundness Theorem is that two similar types are
isomorphic.

I Corollary 30. If ξ ∼ χ, then ξ ≈ χ.

As an example, by 〈ω, ϕ1, ω〉 ∼ 〈ω, ϕ1, ω〉, 〈ϕ2, ϕ3, ω〉 ∼ 〈ϕ2, ϕ3, ω〉, 〈ω, ϕ4, ϕ5〉 ∼ 〈ω, ϕ4, ϕ5〉
and the permutation < 3, 2, 1 >, one has:

〈ω → ϕ2 → ψ1, ϕ1 → ϕ3 → ϕ4 → ψ2, ω → ω → ϕ5 → ψ3〉 ∼
〈ω → ϕ2 → ψ1, ϕ4 → ϕ3 → ϕ1 → ψ2, ϕ5 → ψ3〉.

The isomorphism between the corresponding elements of the two sequences is proved by the
FHP λxy1y2y3.xy3y2y1.
As another example, by 〈ϕ1〉 ∼ 〈ϕ1〉, 〈ϕ2〉 ∼ 〈ϕ2〉, 〈ϕ3〉 ∼ 〈ϕ3〉, 〈ω〉 ∼ 〈ω〉, using the
permutation < 4, 1, 3, 2 >, one has

ϕ1 → ϕ2 → ϕ3 → ψ ∼ ω → ϕ1 → ϕ3 → ϕ2 → ψ.

The isomorphism is proved by the pair < λxy1y2y3y4.xy2y4y3y1, λxy1y2y3y4.xy4y1y3y2 > .

The proof of the similarity completeness, i.e. that isomorphic types have similar normal
forms (Theorem 36), is based on the isomorphism characterisation given in [12]. The type
system of [12] has all the rules of Figure 1, but rule (∼=). The isomorphism of [12] is called
here weak isomorphism and it is denoted by ≈w. The pre-order on types of [12] (weak
pre-order) is a restriction of the present normalisation pre-order, since in [12] no equivalence
between types is assumed. For example ϕ and σ → ϕ are unrelated in the weak pre-order.
The rules for normalising types in [12] are the rules (∧ ⇒), (≤⇒), and (ctx ⇒), but the
application of rule (ctx⇒) is subject to some conditions. For example (σ → τ ∧ ρ) ∧ ϕ is a
normal form in [12]. The normal form of [12] is called here weak normal form and denoted
by ↓w.

TYPES 2013

144 Isomorphism of “Functional” Intersection Types

The paper [12] defines a similarity between types, here dubbed weak similarity (∼w)
that differs from similarity (∼) since the semantic type equivalence ∼=, introduced in the
current type system, makes necessary to identify semantic equivalent types. The definition
of similarity pays heed to that.

I Definition 31 (Weak Similarity). The weak similarity relation between two sequences of
types 〈σ1, . . . , σm〉 and 〈τ1, . . . , τm〉, written 〈σ1, . . . , σm〉 ∼w 〈τ1, . . . , τm〉, is the smallest
equivalence relation such that:
1. 〈σ1, . . . , σm〉 ∼w 〈σ1, . . . , σm〉;
2. if 〈σ1, . . . , σi, σi+1, . . . , σm〉 ∼w 〈τ1, . . . , τi, τi+1, . . . , τm〉, then

〈σ1, . . . , (σi ∧ σi+1), . . . , σm〉 ∼w 〈τ1, . . . , (τi ∧ τi+1), . . . , τm〉;
3. if 〈σ(1)

i , . . . , σ
(m)
i 〉 ∼w 〈τ (1)

i , . . . , τ
(m)
i 〉 for 1 ≤ i ≤ n, then

〈σ(1)
1 → . . .→ σ

(1)
n → ρ1, . . . , σ

(m)
1 → . . .→ σ

(m)
n → ρm〉 ∼w

〈τ (1)
π(1) → . . .→ τ

(1)
π(n) → ρ1, . . . , τ

(m)
π(1) → . . .→ τ

(m)
π(n) → ρm〉,

where π is a permutation of 1, . . . , n.
Weak similarity between types is trivially defined as weak similarity between unary sequences:

σ ∼w τ if 〈σ〉 ∼w 〈τ〉.

The main difference between similarity (Definition 28) and weak similarity (Definition 31)
is that the first one only relates types in normal form. As a matter of fact, similarity and
weak similarity are incomparable, for example ϕ→ ϕ ∼ ω → ϕ→ ϕ, ϕ→ ϕ 6∼w ω → ϕ→ ϕ,
and

ϕ→ ω → ϕ ∼w ω → ϕ→ ϕ, ϕ→ ω → ϕ 6∼ ω → ϕ→ ϕ,
since ϕ→ ω → ϕ is not a normal type.

The characterisation of type isomorphism given in [12] can be written using the present
notation as:

I Theorem 32. σ ≈w τ iff σ↓w∼w τ↓w.

In order to use this result for showing completeness (Theorem 36) it is handy to compare
∼ with ∼w (Lemma 34) and ≈ with ≈w (Lemma 35). The following auxiliary lemma can
be shown by induction on the definition of ∼.

I Lemma 33. If 〈ξ1, . . . , ξi, ξi+1, . . . , ξm〉 ∼ 〈χ1, . . . , χi, χi+1, . . . , χm〉, then
1. 〈ξ1, . . . , ξi, ξi, ξi+1, . . . , ξm〉 ∼ 〈χ1, . . . , χi, χi, χi+1, . . . , χm〉;
2. 〈ξ1, . . . , ξi, ω, ξi+1, . . . , ξm〉 ∼ 〈χ1, . . . , χi, ω, χi+1, . . . , χm〉.

Proof. The proof is by induction over the derivation of similarity. The only interesting case
is when similarity is obtained using case 3 of Definition 28. Let
〈(ξ(1)

1 → . . .→ ξ
(1)
n → ν1)↓, . . . , (ξ(i)

1 → . . .→ ξ
(i)
n → νi)↓, . . . , (ξ(m)

1 → . . .→ ξ
(m)
n → νm)↓〉 ∼

〈(χ(1)
π(1) → . . .→ χ

(1)
π(n) → ν1)↓, . . . , (χ(i)

π(1) → . . .→ χ
(i)
π(n) → νi)↓, . . . , (χ(m)

π(1) → . . .→ χ
(m)
π(n) → νm)↓〉

since 〈ξ(1)
j , . . . , ξ

(i)
j , . . . , ξ

(m)
j 〉 ∼ 〈χ(1)

j , . . . , χ
(i)
j , . . . , χ

(m)
j 〉 for 1 ≤ j ≤ n.

By the induction hypothesis 〈ξ(1)
j , . . . , ξ

(i)
j , ξ

(i)
j , . . . , ξ

(m)
j 〉 ∼ 〈χ(1)

j , . . . , χ
(i)
j , χ

(i)
j , . . . , χ

(m)
j 〉 for

1 ≤ j ≤ n, which imply by the same clause:
〈(ξ(1)

1 → . . .→ ξ
(1)
n → ν1)↓, . . . , µ, µ, . . . , (ξ(m)

1 → . . .→ ξ
(m)
n → νm)↓〉 ∼

〈(χ(1)
π(1) → . . .→ χ

(1)
π(n) → ν1)↓, . . . , µ′, µ′, . . . , (χ(m)

π(1) → . . .→ χ
(m)
π(n) → νm)↓〉

and

M. Coppo, M. Dezani-Ciancaglini, I. Margaria, and M. Zacchi 145

〈(ξ(1)
1 → . . .→ ξ

(1)
n → ν1)↓, . . . , µ, (ξ(i)

1 → . . .→ ξ
(i)
n → ω)↓, . . . , (ξ(m)

1 → . . .→ ξ
(m)
n → νm)↓〉 ∼

〈(χ(1)
π(1) → . . .→ χ

(1)
π(n) → ν1)↓, . . . , µ′, (χ(i)

π(1) → . . .→ χ
(i)
π(n) → ω)↓, . . . , (χ(m)

π(1) → . . .→ χ
(m)
π(n) → νm)↓〉

where µ = (ξ(i)
1 → . . .→ ξ

(i)
n → νi)↓, µ′ = (χ(i)

π(1) → . . .→ χ
(i)
π(n) → νi)↓. This concludes the

proof by observing that (ξ(i)
1 → . . .→ ξ

(i)
n → ω)↓= (χ(i)

π(1) → . . .→ χ
(i)
π(n) → ω)↓= ω. J

I Lemma 34. σ ∼w τ implies σ↓∼ τ↓.

Proof. One needs to show that 〈σ1, . . . , σm〉 ∼w 〈τ1, . . . , τm〉 implies
〈σ1↓, . . . , σm↓〉 ∼ 〈τ1↓, . . . , τm↓〉.

The proof is by induction on the definition of weak similarity.
(1). 〈σ1, . . . , σm〉∼w 〈σ1, . . . , σm〉. By case 1 of Definition 28 〈σ1↓, . . . , σm↓〉∼〈σ1↓, . . . , σm↓〉.
(2). 〈σ1, . . . , (σi ∧ σi+1), . . . , σm〉 ∼w 〈τ1, . . . , (τi ∧ τi+1), . . . , τm〉 since
〈σ1, . . . , σi, σi+1, . . . , σm〉 ∼w 〈τ1, . . . , τi, τi+1, . . . , τm〉. By the induction hypothesis

〈σ1↓, . . . , σi↓, σi+1↓, . . . , σm↓〉 ∼ 〈τ1↓, . . . , τi↓, τi+1↓, . . . , τm↓〉.
This implies, by case 2 of Definition 28,

〈σ1↓, . . . , (σi↓ ∧σi+1↓)↓, . . . , σm↓〉 ∼ 〈τ1↓, . . . , (τi↓ ∧τi+1↓)↓, . . . , τm↓〉,
which concludes the proof since (ρ↓ ∧θ↓)↓= (ρ ∧ θ)↓ for all ρ, θ.
(3). 〈σ(1)

1 → . . .→ σ
(1)
n → ρ1, . . . , σ

(m)
1 → . . .→ σ

(m)
n → ρm〉 ∼w

〈τ (1)
π(1) → . . .→ τ

(1)
π(n) → ρ1, . . . , τ

(m)
π(1) → . . .→ τ

(m)
π(n) → ρm〉

since 〈σ(1)
i , . . . , σ

(m)
i 〉 ∼w 〈τ (1)

i , . . . , τ
(m)
i 〉 for 1 ≤ i ≤ n, where π is a permutation of 1, . . . , n.

By the induction hypothesis 〈σ(1)
i ↓, . . . , σ

(m)
i ↓〉 ∼ 〈τ

(1)
i ↓, . . . , τ

(m)
i ↓〉 for 1 ≤ i ≤ n.

Let](ρj) = pj for 1 ≤ j ≤ m, where](θ) =
{
p if θ↓=

∧
`∈{1,...,p} ν`,

1 if θ↓= ω.

Then ρj↓=
∧
`∈{1,...,pj} λ

(j)
` for some λ(j)

` (1 ≤ ` ≤ pj) (1 ≤ j ≤ m).
By Lemma 33(1)

〈σ(1)
i ↓, . . . , σ

(1)
i ↓︸ ︷︷ ︸

p1

, . . . , σ
(m)
i ↓, . . . , σ

(m)
i ↓︸ ︷︷ ︸

pm

〉 ∼ 〈τ (1)
i ↓, . . . , τ

(1)
i ↓︸ ︷︷ ︸

p1

, . . . , τ
(m)
i ↓, . . . , τ (m)

i ↓︸ ︷︷ ︸
pm

〉.

This implies by case 3 of Definition 28
〈µ(1)

1 ↓, . . . , µ
(1)
p1 ↓, . . . , µ

(m)
1 ↓, . . . , µ(m)

pm ↓〉 ∼ 〈ν
(1)
1 ↓, . . . , ν

(1)
p1 ↓, . . . , ν

(m)
1 ↓, . . . , ν(m)

pm ↓〉
where µ(j)

` = σ
(j)
1 ↓→ . . . → σ

(j)
n ↓→ λ

(j)
` for 1 ≤ ` ≤ pj , ν(j)

` = τ
(j)
π(1)↓→ . . . → τ

(j)
π(n)↓→ λ

(j)
`

for 1 ≤ ` ≤ pj . By repeated applications of case 2 of Definition 28
〈
∧
`∈{1,...,p1} µ

(1)
` ↓, . . . ,

∧
`∈{1,...,pm} µ

(m)
` ↓〉 ∼ 〈

∧
`∈{1,...,p1} ν

(1)
` ↓, . . . ,

∧
`∈{1,...,pm} ν

(m)
` ↓〉

Notice that
∧
`∈{1,...,pj} µ

(j)
` ↓ and

∧
`∈{1,...,pj} ν

(j)
` ↓ for 1 ≤ j ≤ m are normal types by con-

struction. This concludes the proof, since it is easy to verify that (σ(j)
1 → . . .→ σ

(j)
n → ρj)↓=∧

`∈{1,...,pj} µ
(j)
` ↓ and (τ (1)

π(1) → . . .→ τ
(1)
π(n) → ρ1)↓=

∧
`∈{1,...,pj} ν

(j)
` ↓ for 1 ≤ j ≤ m. J

I Lemma 35. If ξ ≈ χ, then there are σ ∼= ξ, τ ∼= χ such that σ ≈w τ .

Proof. By induction on the abstraction nesting in the normal forms of P ,P−1, where the
pair < P,P−1 > proves the isomorphism ξ ≈ χ. By Lemma 25(2) and Theorem 27 either
ξ = χ = ω or ξ =

∧
i∈I µi, χ =

∧
i∈I νi and µi ≈ νi for all i ∈ I (note that, since ∧

is commutative, one can consider the identity permutation in Theorem 27). In the first
case the proof is trivial. In the second case it is enough to show that there are µ′i ∼= µi,
ν′i
∼= νi such that < P,P−1 > proves the isomorphism µ′i ≈w ν′i for all i ∈ I. One can

assume that P , P−1 have the same number of initial abstractions, possibly by η-expanding
(Theorem 9). Let P = λxy1 . . . yn.xQ1 . . . Qn and P−1 = λzt1 . . . tn.zR1 . . . Rn. It is easy

TYPES 2013

146 Isomorphism of “Functional” Intersection Types

to verify that if yπ(j) is the head variable of Qj , then tj is the head variable of Rπ(j)
and λyπ(j).Qj is inverse of λtj .Rπ(j) for 1 ≤ j ≤ n. Let µi ∼= ξ1 → . . . → ξn → µ and
νi ∼= χ1 → . . . → χn → ν. By Lemma 4(2) x : µi, y1 : χ1, . . . , yn : χn ` xQ1 . . . Qn : ν and
z :νi, t1 :ξ1, . . . , tn :ξn ` zR1 . . . Rn :µ. By means of an argument similar to that one used in
the proof of Lemma 25(1) there are σ1, . . . , σn, τ1, . . . , τn such that µi ∼= σ1 → . . .→ σn → ν,
νi ∼= τ1 → . . . → τn → µ. Then ξj ∼= σj , χj ∼= τj for 1 ≤ j ≤ n and µ ∼= ν. Moreover
yπ(j) :χπ(j) ` Qj :σj and tj : ξj ` Rπ(j) : τπ(j) for 1 ≤ j ≤ n. Therefore yπ(j) :χπ(j) ` Qj : ξj
and tj :ξj ` Rπ(j) :χπ(j) for 1 ≤ j ≤ n. This implies ξj ≈ χπ(j), and then by the induction
hypothesis there are ξ′j ∼= ξj , χ′j ∼= χj such that ξ′j ≈w χ′π(j) for 1 ≤ j ≤ n. One can
then choose µ′i ∼= ξ′1 → . . . → ξ′n → µ, ν′i ∼= χ′1 → . . . → χ′n → µ, and σ =

∧
i∈I µ

′
i,

τ =
∧
i∈I ν

′
i. J

I Theorem 36 (Completeness). If σ ≈ τ , then σ↓∼ τ↓.

Proof. By Corollary 22, σ ≈ τ implies σ↓ ≈ τ↓. So, Lemma 35 assures that there are σ′, τ ′
such that σ′ ∼= σ↓, τ ′ ∼= τ↓, and σ′ ≈w τ ′. By Theorem 32 σ′ ≈w τ ′ implies σ′↓w∼w τ ′↓w.
Lemma 34 gives σ′↓∼ τ ′↓, since (ρ↓w)↓= ρ↓ for all types ρ. Lemma 23 concludes σ↓∼ τ↓. J

The result of the present paper is summarised in the following theorem.

I Theorem 37 (Main). Two types are isomorphic iff their normal forms are similar.

A consequence of the Main Theorem is the decidability of type isomorphism. A last
lemma shows the inverse of the Soundness Theorem.

I Lemma 38. If there is a pair of FHPs that proves ξj ≈ χj for 1 ≤ j ≤ m, then
〈ξ1, . . . , ξm〉 ∼ 〈χ1, . . . , χm〉.

Proof. By induction on the abstraction nesting in the normal forms of P ,P−1, where the pair
< P,P−1 > proves the isomorphisms ξj ≈ χj for 1 ≤ j ≤ m. As in the proof of Lemma 35,
one gets P = λxy1 . . . yn.xQ1 . . . Qn and P−1 = λzt1 . . . tn.zR1 . . . Rn, where λyπ(i).Qi is
inverse of λti.Rπ(i) for 1 ≤ i ≤ n. By Lemmas 25(2) and 33(2) one can assume that all
ξj , χj are different from ω for 1 ≤ j ≤ m. By Theorem 27 and case 2 of Definition 28 one
can consider that all ξj , χj are singleton types for 1 ≤ j ≤ m. Let ξj ∼= ξ

(j)
1 → . . . ξ

(j)
n → µj

and χj ∼= χ
(j)
1 → . . . χ

(j)
n → νj for 1 ≤ j ≤ m. As in the proof of Lemma 35 one gets

yπ(i) : χ(j)
π(i) ` Qi : ξ(j)

i and ti : ξ(j)
i ` Rπ(i) : χ(j)

π(i) for 1 ≤ j ≤ m and 1 ≤ i ≤ n. By
the induction hypothesis 〈ξ(1)

i , . . . , ξ
(m)
i 〉 ∼ 〈χ(1)

π(i), . . . , χ
(m)
π(i)〉 for 1 ≤ i ≤ n, so case 3 of

Definition 28 concludes the proof. J

I Theorem 39. Type isomorphism is decidable.

Proof. By Theorem 37, for deciding if two types are isomorphic it is sufficient to check if
their normal forms are similar. Normal forms can be computed owing to the fact that the
normalisation rules are terminating and confluent. By Definition 28, two types are similar
when the unary sequences built by these types are similar, then it enough to show that
similarity of type sequences is decidable. This is done by induction on the total number of
symbols in the types which occur in the two sequences. Let the sequences be 〈ξ1, . . . , ξm〉
and 〈χ1, . . . , χm〉. Theorem 29 implies that there is a pair of FHPs that proves ξi ≈ χi, for
1 ≤ i ≤ m. There are the following cases (leaving out the symmetric ones):
1. If one of the ξi is ω, then by ξi ≈ χi and Lemma 25(2) χi must be ω and the two sequences

〈ξ1, . . . , ξi−1, ξi+1, . . . , ξm〉 and 〈χ1, . . . , χi−1, χi+1, . . . , χm〉
must be similar.

M. Coppo, M. Dezani-Ciancaglini, I. Margaria, and M. Zacchi 147

2. If one of the ξi is an intersection
∧
j∈{1,...,n} µj , then by Theorems 29 and 27 χi must

be an intersection
∧
j∈{1,...,n} νj , and there are a pair of FHPs and a permutation π

of {1, . . . , n} such that the pair proves ξi ≈ χi, for 1 ≤ i ≤ m, and µj ≈ νπ(j), for
1 ≤ j ≤ n. Lemma 38 implies that the two sequences
〈ξ1, . . . , ξi−1, µ1, . . . , µn, ξi+1, . . . , ξm〉 and 〈χ1, . . . , χi−1, νπ(1), . . . , νπ(n), χi+1, . . . , χm〉
are similar. Note that the number of permutations is finite and all sequences to be checked
have types with lower numbers of symbols.

3. If all types in the sequences are singleton types, let for 1 ≤ i ≤ m: ξi = ξ
(i)
1 → . . . ξ

(i)
pi → ϕi

and χi = χ
(i)
1 → . . . χ

(i)
qi → ψi, and n = max{p1, . . . , pm, q1, . . . , qm}. Let the similarity

in question be obtained by cases 1 or 3 of Definition 28. Both cases prescribe ϕi = ψi
for 1 ≤ i ≤ m and that there must exist a permutation π of {1, . . . , n} such that the
following similarities hold:

〈ξ̂(1)
j , . . . , ξ̂

(m)
j 〉 ∼ 〈χ̂(1)

π(j), . . . , χ̂
(m)
π(j)〉 for 1 ≤ j ≤ n,

where ξ̂(i)
j =

{
ξ

(i)
j if j ≤ pi,
ω otherwise.

χ̂
(i)
j =

{
χ

(i)
j if j ≤ qi,
ω otherwise.

It is easy to check that any pair of the so obtained sequences has a number of symbols
less than the one of the original sequence.
If instead the similarity in question is obtained by case 2 of Definition 28, one has

〈ξ1, . . . , ξi, ξ, ξi+1, . . . , ξm〉 ∼ 〈χ1, . . . , χi, χ, χi+1, . . . , χm〉
and (ξi∧ξ)↓= ξi, (χi∧χ)↓= χi. Then one starts from the sequences obtained by removing
ξ, χ and iterate this process until the similarity is obtained by cases 1 or 3 of Definition 28.

J

Note that in the system of [12], in which only intersection types are considered, decidability
is a rather immediate consequence of the decidability of type assignment for normal forms
proved in [19]. This result does not seem easily extensible to the present type assignment
system.

6 Conclusion

In this paper type isomorphism is studied in the setting of an intersection type system
in which all types have a functional character. An equivalence relation is introduced that
equates any atomic type ϕ to an arrow type from a distinguished atom ω to ϕ itself. In
the derived type system all type isomorphisms related to the set theoretic properties of
intersection, in particular idempotence, commutativity and associativity, are realised by
λ-terms of proper type. These isomorphisms, together with other two isomorphisms that
express properties of functional interpretation and inclusion of types, are preserved by every
context. It follows that semantic type equality in all standard models of intersection types
entails type isomorphism.

The type equivalence defined in this paper can be validated in the model D∞ [21] by an
interpretation in which each type denotes an open set in the Scott topology. One could then
use the present type system to investigate the isomorphisms between open sets in D∞. The
problem of finding a model which validates all and only the type isomorphisms studied in
this paper remains open.

We plan to study type isomorphism in other theories of intersection and union types, in
particular in the theories providing models of the call-by-value λ-calculus. An interesting
observation is that, with the typing rules given in [16] for the type constant ν, all intersections
of arrow types ending by ν are isomorphic to ν. In fact the rule Γ ` λx.M :ν allows one to

TYPES 2013

148 Isomorphism of “Functional” Intersection Types

derive both
x :ν ` λy1 . . . ym.xy1 . . . ym :σ1 → . . .→ σn → ν

and x :σ1 → . . .→ σn → ν ` λy.xy :ν,
for any n ≤ m and arbitrary σ1, . . . , σn. Notably, the type theory of [16] gives a model of
the call-by-value λ-calculus.

Acknowledgements. We gratefully acknowledge the anonymous referees for their careful
reading of our paper and their many useful remarks and suggestions. In particular Lemma
35 strongly improved. We thank Alejandro Díaz-Caro for his useful advices.

References
1 Fabio Alessi, Mariangiola Dezani-Ciancaglini, and Furio Honsell. Inverse limit models

as filter models. In D. Kesner, F. van Raamsdonk, and J. Wells, editors, Higher-Order
Rewriting, pages 3–25. RWTH Aachen, 2004.

2 Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. A filter lambda
model and the completeness of type assignment. The Journal of Symbolic Logic, 48(4):931–
940, 1983.

3 Henk Barendregt, Wil Dekkers, and Richard Statman. Lambda Calculus with Types. Per-
spectives in Logic. Cambridge, 2013.

4 Kim Bruce, Roberto Di Cosmo, and Giuseppe Longo. Provable isomorphisms of types.
Mathematical Structures in Computer Science, 2(2):231–247, 1992.

5 Kim Bruce and Giuseppe Longo. Provable isomorphisms and domain equations in models
of typed languages. In R. Sedgewick, editor, Symposium on the Theory of Computing, pages
263–272. ACM Press, 1985.

6 Mario Coppo, Mariangiola Dezani-Ciancaglini, Furio Honsell, and Giuseppe Longo. Ex-
tended type structures and filter lambda models. In G. Lolli, G. Longo, and A. Marcja,
editors, Logic Colloquium, pages 241–262. North-Holland, 1984.

7 Mario Coppo, Mariangiola Dezani-Ciancaglini, Ines Margaria, and Maddalena Zacchi. To-
wards isomorphism of intersection and union types. In S. Graham-Lengrand and L. Paolini,
editors, Intersection Types and Related Systems, volume 121 of EPTCS, pages 58–80, 2013.

8 Mario Coppo, Mariangiola Dezani-Ciancaglini, Ines Margaria, and Maddalena Zacchi. Iso-
morphism of intersection and union types. Mathematical Structures in Computer Science,
2014. To appear.

9 Mario Coppo, Mariangiola Dezani-Ciancaglini, Ines Margaria, and Maddalena Zacchi. On
isomorphism of “functional” intersection and union types. In J. Rehof, editor, Intersection
Types and Related Systems, EPTCS, 2014. To appear.

10 Nachum Dershowitz. Orderings for term-rewriting systems. Theoretical Computer Science,
17(3):279–301, 1982.

11 Mariangiola Dezani-Ciancaglini. Characterisation of normal forms possessing an inverse in
the λβη-calculus. Theoretical Computer Science, 2(3):323–337, 1976.

12 Mariangiola Dezani-Ciancaglini, Roberto Di Cosmo, Elio Giovannetti, and Makoto Tat-
suta. On isomorphisms of intersection types. ACM Transactions on Computational Logic,
11(4):1–22, 2010.

13 Roberto Di Cosmo. Second order isomorphic types. A proof theoretic study on second
order λ-calculus with surjective pairing and terminal object. Information and Computation,
119(2):176–201, 1995.

14 Roberto Di Cosmo. A short survey of isomorphisms of types. Mathematical Structures in
Computer Science, 15:825–838, 2005.

M. Coppo, M. Dezani-Ciancaglini, I. Margaria, and M. Zacchi 149

15 Alejandro Díaz-Caro and Gilles Dowek. Simply typed lambda-calculus modulo type iso-
morphisms. https://who.rocq.inria.fr/Alejandro.Diaz-Caro/stmti.pdf, 2014.

16 Lavinia Egidi, Furio Honsell, and Simona Ronchi Della Rocca. Operational, Denotational
and Logical Descriptions: a Case Study. Fundamenta Informaticae, 16(1):149–169, 1992.

17 Marcelo Fiore, Roberto Di Cosmo, and Vincent Balat. Remarks on isomorphisms in typed
lambda calculi with empty and sum types. Annals of Pure and Applied Logic, 141(1–2):35–
50, 2006.

18 Maxwell H.A. Newman. On theories with a combinatorial definition of “equivalence”. An-
nals of Mathematics, 43(2):223–243, 1942.

19 Simona Ronchi Della Rocca. Principal type scheme and unification for intersection type
discipline. Theoretical Computer Science, 59(1–2):1–29, 1988.

20 Richard Routley and Robert K. Meyer. The semantics of entailment III. Journal of
Philosophical Logic, 1:192–208, 1972.

21 Dana Scott. Continuous lattices. In F.W. Lawvere, editor, Toposes, Algebraic Geometry,
and Logic, number 274 in Lecture Notes in Mathematics, pages 97–136. Springer-Verlag,
1972.

22 Sergei Soloviev. The category of finite sets and cartesian closed categories. Journal of
Soviet Mathematics, 22(3):1387–1400, 1983. English translation of the original paper in
Russian published in Zapiski Nauchnych Seminarov LOMI, v.105, 1981.

23 Sergei Soloviev. A complete axiom system for isomorphism of types in closed categories. In
A. Voronkov, editor, Logic Programming and Automated Reasoning, volume 698 of LNCS,
pages 360–371. Springer-Verlag, 1993.

TYPES 2013

https://who.rocq.inria.fr/Alejandro.Diaz-Caro/stmti.pdf

A Hybrid Linear Logic for Constrained Transition
Systems
Joëlle Despeyroux1 and Kaustuv Chaudhuri2

1 INRIA and CNRS, I3S, Sophia-Antipolis, France
joelle.despeyroux@inria.fr

2 INRIA, France
kaustuv.chaudhuri@inria.fr

Abstract
Linear implication can represent state transitions, but real transition systems operate under
temporal, stochastic or probabilistic constraints that are not directly representable in ordinary
linear logic. We propose a general modal extension of intuitionistic linear logic where logical
truth is indexed by constraints and hybrid connectives combine constraint reasoning with logical
reasoning. The logic has a focused cut-free sequent calculus that can be used to internalize the
rules of particular constrained transition systems; we illustrate this with an adequate encoding
of the synchronous stochastic pi-calculus.

1998 ACM Subject Classification F.4.1. Mathematical Logic, F.1.2. Modes of Computation

Keywords and phrases linear logic, hybrid logic, stochastic pi-calculus, focusing, adequacy

Digital Object Identifier 10.4230/LIPIcs.TYPES.2013.150

1 Introduction

To reason about state transition systems, we need a logic of state. Linear logic [21] is such a
logic and has been successfully used to model such diverse systems as process calculi [25],
references and concurrency in programming languages [38], and formal security [7, 8], to give
a few examples. Linear logic achieves this versatility by representing propositions as resources
that are combined using ⊗, which can then be transformed using the linear implication
((). However, linear implication is timeless: there is no way to correlate two concurrent
transitions. If resources have lifetimes and state changes have temporal, probabilistic or
stochastic constraints, then the logic will allow inferences that may not be realizable in the
system being modelled. The need for formal reasoning in such constrained systems has
led to the creation of specialized formalisms such as Computation Tree Logic (CTL)[18],
Continuous Stochastic Logic (CSL) [2] or Probabilistic CTL (PCTL) [22]. These approaches
pay a considerable encoding overhead for the states and transitions in exchange for the
constraint reasoning not provided by linear logic. A prominent alternative to the logical
approach is to use a suitably enriched process algebra such as the stochastic and probabilistic
π-calculi or the κ-calculus [14]. Processes are animated by means of simulation and then
compared with the observations. Process calculi do not however completely fill the need for
formal reasoning for constrained transition systems.

We propose a simple yet general method to add constraint reasoning to linear logic. It is
an old idea—labelled deduction [37] with hybrid connectives [6]—applied to a new domain.
Precisely, we parameterize ordinary logical truth on a constraint domain: A@w stands for
the truth of A under constraint w. Only a basic monoidal structure is assumed about
the constraints from a proof-theoretic standpoint. We then use the hybrid connectives of

© Joëlle Despeyroux and Kaustuv Chaudhuri;
licensed under Creative Commons License CC-BY

19th International Conference on Types for Proofs and Programs (TYPES 2013).
Editors: Ralph Matthes and Aleksy Schubert; pp. 150–168

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TYPES.2013.150
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

J. Despeyroux and K. Chaudhuri 151

satisfaction (at) and localization (↓) to perform generic symbolic reasoning on the constraints
at the propositional level. We call the result hybrid linear logic (HyLL); it has a generic
cut-free (but cut admitting) sequent calculus that can be strengthened with a focusing
restriction [1] to obtain a normal form for proofs. Any instance of HyLL that gives a semantic
interpretation to the constraints enjoys these proof-theoretic properties.

Focusing allows us to treat HyLL as a logical framework for constrained transition systems.
Logical frameworks with hybrid connectives have been considered before; hybrid LF (HLF), for
example, is a generic mechanism to add many different kinds of resource-awareness, including
linearity, to ordinary LF [33]. HLF follows the usual LF methodology of keeping the logic of
the framework minimal: its proof objects are β-normal η-long natural deduction terms, but
the equational theory of such terms is sensitive to permutative equivalences [39]. With a
focused sequent calculus, we have more direct access to a canonical representation of proofs,
so we can enrich the framework with any connectives that obey the focusing discipline. The
representational adequacy of an encoding in terms of (partial) focused sequent derivations
tends to be more straightforward than in a natural deduction formulation. We illustrate
this by encoding the synchronous stochastic π-calculus (Sπ) in HyLL using rate functions as
constraints.

In addition to the novel stochastic component, our encoding of Sπ is a conceptual
improvement over other encodings of π-calculi in linear logic. In particular, we perform
a full propositional reflection of processes as in [25], but our encoding is first-order and
adequate as in [9]. HyLL does not itself prescribe an operational semantics for the encoding
of processes; thus, bisimilarity in continuous time Markov chains (CTMC) is not the same as
logical equivalence in stochastic HyLL, unlike in CSL [16]. This is not a deficiency; rather,
the combination of focused HyLL proofs and a proof search strategy tailored to a particular
encoding is necessary to produce faithful symbolic executions. This exactly mirrors Sπ where
it is the simulation rather than the transitions in the process calculus that is shown to be
faithful to the CTMC semantics [29].

This work has the following main contributions. First is the logic HyLL itself and its
associated proof-theory, which has a very standard and well understood design. Second,
we show how to obtain many different instances of HyLL for particular constraint domains
because we only assume a basic monoidal structure for constraints. Third, we illustrate the
use of focused sequent derivations to obtain adequate encodings by giving a novel adequate
encoding of Sπ. Our encoding is, in fact, fully adequate, i.e., partial focused proofs are in
bijection with traces. The ability to encode Sπ gives an indication of the versatility of HyLL.

This paper is organized as follows: in Sec. 2, we present the inference (sequent calculus)
rules for HyLL and describe the two main semantic instances: temporal and probabilistic
constraints. In Sec. 3 we sketch the general focusing restriction on HyLL sequent proofs.
In Sec. 4 we give the encoding of Sπ in probabilistic HyLL, and show that the encoding
is representationally adequate for focused proofs (theorems 16 and 18). We end with an
overview of related (Sec. 5) and future work (Sec. 6). The full version of this paper is available
as a technical report [12].

2 Hybrid Linear Logic

In this section we define HyLL, a conservative extension of intuitionistic first-order linear
logic (ILL) [21] where the truth judgements are labelled by worlds representing constraints.
Like in ILL, propositions are interpreted as resources which may be composed into a state
using the usual linear connectives, and the linear implication (() denotes a transition

TYPES 2013

152 A Hybrid Linear Logic for Constrained Transition Systems

between states. The world label of a judgement represents a constraint on states and state
transitions; particular choices for the worlds produce particular instances of HyLL. The
common component in all the instances of HyLL is the proof theory, which we fix once and
for all. We impose the following minimal requirement on the kinds of constraints that HyLL
can deal with.

I Definition 1. A constraint domain W is a monoid structure 〈W, ·, ι〉. The elements of W
are called worlds, and the partial order � : W ×W—defined as u � w if there exists v ∈W
such that u · v = w—is the reachability relation in W.

The identity world ι is �-initial and is intended to represent the lack of any constraints. Thus,
the ordinary ILL is embeddable into any instance of HyLL by setting all world labels to the
identity. When needed to disambiguate, the instance of HyLL for the constraint domain W
will be written HyLL(W). Two design choices are important to note. First, we only require
the worlds to be monoids, not lattices, because this lets us give a sufficiently general system
that it can be instantiated with rate functions as the constraint domain. Second, we do not
assume that the monoid is commutative so that we can still choose to use lattices for the
constraint domain.

Atomic propositions are written using lowercase letters (a, b, . . .) applied to a sequence of
terms (s, t, . . .), which are drawn from an untyped term language containing term variables
(x, y, . . .) and function symbols (f, g, . . .) applied to a list of terms. Non-atomic propositions
are constructed from the connectives of first-order intuitionistic linear logic and the two
hybrid connectives satisfaction (at), which states that a proposition is true at a given world
(w, u, v, . . .), and localization (↓), which binds a name for the (current) world the proposition
is true at. The following grammar summarizes the syntax of HyLL propositions.

A,B, . . . ::= a ~t
∣∣A⊗B ∣∣ 1

∣∣A(B
∣∣A&B

∣∣> ∣∣A⊕B ∣∣ 0
∣∣ !A

∣∣ ∀x.A ∣∣ ∃x.A
| (A at w)

∣∣ ↓u.A ∣∣ ∀u.A ∣∣ ∃u.A
Note that in the propositions ↓u.A, ∀u.A and ∃u.A, world u is bound in A. World variables
cannot be used in terms, and neither can term variables occur in worlds; this restriction is
important for the modular design of HyLL because it keeps purely logical truth separate
from constraint truth. We let α range over variables of either kind. As we shall prove later
(Theorem 5), the ↓ connective commutes with every propositional connective, including itself.
That is, ↓u. (A ∗B) is equivalent to (↓u.A) ∗ (↓u.B) for all binary connectives ∗, and ↓u. ∗A
is equivalent to ∗(↓u.A) for every unary connective ∗, assuming the commutation will not
cause an unsound capture of u. It is purely a matter of taste where to place the ↓, and
repetitions are harmless.

The unrestricted connectives ∧, ∨, ⊃, etc. of intuitionistic (non-linear) logic can also be
defined in terms of the linear connectives and the exponential ! using any of the available
embeddings of intuitionistic logic into linear logic, such as Girard’s embedding [21]. For
example, A ⊃ B can be defined as !A(B.

2.1 Sequent Calculus for HyLL
In this section, we give a sequent calculus presentation of HyLL and prove a cut-admissibility
theorem. The sequent formulation in turn will lead to an analysis of the polarities of the
connectives in order to get a focused sequent calculus that can be used to compile a logical
theory into a system of derived inference rules with nice properties (Sec. 3). For instance, if
a given theory defines a transition system, then the derived rules of the focused calculus will

J. Despeyroux and K. Chaudhuri 153

exactly exhibit the same transitions. This is key to obtain the necessary representational
adequacy theorems, as we shall see for the Sπ-calculus example chosen in this paper (Sec. 4.1).

We start with the judgements from linear logic [21] and enrich them with a modal
situated truth. We present the syntax of hybrid linear logic in a sequent calculus style,
using Martin-Löf’s principle of separating judgements and logical connectives. Instead of
the ordinary mathematical judgement “A is true”, for a proposition A, judgements of HyLL
are of the form “A is true at world w”, abbreviated as A@w. We use sequents of the form
Γ ; ∆ =⇒ C@w where Γ and ∆ are sets of judgements of the form A@w, with ∆ being
moreover a multiset. Γ is called the unrestricted context: its hypotheses can be consumed
any number of times. ∆ is a linear context: every hypothesis in it must be consumed singly
in the proof. Note that in a judgement A@w (as in a proposition A at w), w can be any
expression in W, not only a variable. The notation A[τ/α] stands for the replacement of all
free occurrences of the variable α in A with the expression τ , avoiding capture. Note that
the expressions in the rules are to be read up to alpha-conversion.

The full collection of rules of the HyLL sequent calculus is in Fig. 1. The rules for the
linear connectives are borrowed from [11] where they are discussed at length, so we omit
a more thorough discussion here. The rules for the first-order quantifiers are completely
standard. A brief discussion of the hybrid rules follows. To introduce the satisfaction
proposition (A at u) (at any world v′) on the right, the proposition A must be true in the
world u. The proposition (A at u) itself is then true at any world, not just in the world u.
In other words, (A at u) carries with it the world at which it is true. Therefore, suppose we
know that (A at u) is true (at any world v); then, we also know that A@u. The other hybrid
connective of localisation, ↓, is intended to be able to name the current world. That is, if
↓u.A is true at world w, then the variable u stands for w in the body A. This interpretation
is reflected in its introduction rule on the right ↓R. For left introduction, suppose we have a
proof of ↓u.A@v for some world v. Then, we also know [v/u]A@v.

There are only two structural rules: the init rule infers an atomic initial sequent, and the
copy rule introduces a contracted copy of an unrestricted assumption into the linear context
(reading from conclusion to premise). Weakening and contraction are admissible rules:

I Theorem 2 (Structural Properties).
1. If Γ ; ∆ =⇒ C@w, then Γ,Γ′ ; ∆ =⇒ C@w. (weakening)
2. If Γ, A@u,A@u ; ∆ =⇒ C@w, then Γ, A@u ; ∆ =⇒ C@w. (contraction)

Proof. By straightforward structural induction on the given derivations. J

The most important structural properties are the admissibility of the identity and the
cut principles. The identity theorem is the general case of the init rule and serves as a global
syntactic completeness theorem for the logic. Dually, the cut theorem below establishes the
syntactic soundness of the calculus; moreover there is no cut-free derivation of · ; · =⇒ 0@w,
so the logic is also globally consistent.

I Theorem 3 (Identity). Γ ; A@w =⇒ A@w.

Proof. By induction on the structure of A (see [12]). J

I Theorem 4 (Cut).
1. If Γ ; ∆ =⇒ A@u and Γ ; ∆′, A@u =⇒ C@w, then Γ ; ∆,∆′ =⇒ C@w.
2. If Γ ; · =⇒ A@u and Γ, A@u ; ∆ =⇒ C@w, then Γ ; ∆ =⇒ C@w.

TYPES 2013

154 A Hybrid Linear Logic for Constrained Transition Systems

Judgemental rules

Γ ; a ~t @u =⇒ a ~t @u
init Γ, A@u ; ∆, A@u =⇒ C@w

Γ, A@u ; ∆ =⇒ C@w
copy

Multiplicatives

Γ ; ∆ =⇒ A@w Γ ; ∆′ =⇒ B@w

Γ ; ∆,∆′ =⇒ A⊗B@w
⊗R

Γ ; ∆, A@u,B@u =⇒ C@w

Γ ; ∆, A⊗B@u =⇒ C@w
⊗L

Γ ; · =⇒ 1@w
1R

Γ ; ∆ =⇒ C@w

Γ ; ∆,1@u =⇒ C@w
1L

Γ ; ∆, A@w =⇒ B@w

Γ ; ∆ =⇒ A(B@w
(R

Γ ; ∆ =⇒ A@u Γ ; ∆′, B@u =⇒ C@w

Γ ; ∆,∆′, A(B@u =⇒ C@w
(L

Additives

Γ ; ∆ =⇒ >@w
>R Γ ; ∆,0@u =⇒ C@w

0L

Γ ; ∆ =⇒ A@w Γ ; ∆ =⇒ B@w

Γ ; ∆ =⇒ A&B@w
&R

Γ ; ∆, Ai@u =⇒ C@w

Γ ; ∆, A1 &A2@u =⇒ C@w
&Li

Γ ; ∆ =⇒ Ai@w

Γ ; ∆ =⇒ A1 ⊕A2@w
⊕Ri

Γ ; ∆, A@u =⇒ C@w Γ ; ∆, B@u =⇒ C@w

Γ ; ∆, A⊕B@u =⇒ C@w
⊕L

Quantifiers
Γ ; ∆ =⇒ A@w

Γ ; ∆ =⇒ ∀α. A@w
∀Rα

Γ ; ∆, [τ/α]A@u =⇒ C@w

Γ ; ∆, ∀α. A@u =⇒ C@w
∀L

Γ ; ∆ =⇒ [τ/α]A@w

Γ ; ∆ =⇒ ∃α. A@w
∃R

Γ ; ∆, A@u =⇒ C@w

Γ ; ∆, ∃α. A@u =⇒ C@w
∃Lα

For ∀Rα and ∃Lα, α is assumed to be fresh with respect to the conclusion. For ∃R and
∀L, τ stands for a term or world, as appropriate.

Exponentials
Γ ; · =⇒ A@w

Γ ; · =⇒ !A@w
!R

Γ, A@u ; ∆ =⇒ C@w

Γ ; ∆, !A@u =⇒ C@w
!L

Hybrid connectives
Γ ; ∆ =⇒ A@u

Γ ; ∆ =⇒ (A at u)@v atR
Γ ; ∆, A@u =⇒ C@w

Γ ; ∆, (A at u)@v =⇒ C@w
atL

Γ ; ∆ =⇒ [w/u]A@w

Γ ; ∆ =⇒ ↓u.A@w
↓R

Γ ; ∆, [v/u]A@v =⇒ C@w

Γ ; ∆, ↓u.A@v =⇒ C@w
↓L

Figure 1 The sequent calculus for HyLL.

J. Despeyroux and K. Chaudhuri 155

Proof. By lexicographic structural induction on the given derivations, with cuts of kind 2
additionally allowed to justify cuts of kind 1. The style of proof sometimes goes by the name
of structural cut-elimination [11]. See [12] for the details. J

We can use the admissible cut rules to show that the following rules are invertible: ⊗L,
1L, ⊕L, 0L, ∃L,(R, &R, >R, and ∀R. In addition, the four hybrid rules, atR, atL, ↓R
and ↓L are invertible. In fact, ↓ and at commute freely with all non-hybrid connectives:

I Theorem 5 (Invertibility). The following rules are invertible:
1. On the right: &R, >R, (R, ∀R, ↓R and atR;
2. On the left: ⊗L, 1L, ⊕L, 0L, ∃L, !L, ↓L and atL. J

I Corollary 6 (Consistency). There is no proof of · ; · =⇒ 0@w.

Proof. A straightforward consequence of Thm. 4. J

HyLL is conservative with respect to ordinary intuitionistic linear logic: as long as no
hybrid connectives are used, the proofs in HyLL are identical to those in ILL [11]. The proof
(omitted) is by simple structural induction.

I Theorem 7 (Conservativity). Call a proposition or multiset of propositions pure if it
contains no instance of the hybrid connectives and no instance of quantification over a world
variable, and let Γ, ∆ and A be pure. Then, If Γ ; ∆ =⇒HyLL C@w is derivable, then so is
Γ ; ∆ =⇒ILL C. J

In the rest of this paper we use the following derived connectives:

I Definition 8 (Modal Connectives).

�A , ↓u.∀w. (A at u · w) ♦A , ↓u.∃w. (A at u · w)
ρv A , ↓u. (A at u · v) †A , ∀u. (A at u)

The connective ρ represents a form of delay. Note its derived right rule:

Γ ; ∆ ` A@w · v
Γ ; ∆ ` ρv A@w

ρR .

The proposition ρv A thus stands for an intermediate state in a transition to A. Informally it
can be thought to be “v before A”; thus, �A = ∀v. ρv A represents all intermediate states
in the path to A, and ♦A = ∃v. ρv A represents some such state. The modally unrestricted
proposition †A represents a resource that is consumable in any world; it is intended to be
used to make the transition rules available everywhere.

It is worth remarking that the reachability relation in HyLL is trivial: every world that
can be defined is reachable from every other. To illustrate, the (linear form of the) axioms of
the S5 modal logic are derivable in HyLL; in particular, the sequent · ; ♦A@w =⇒ �♦A@w,
which represents the 5 axiom, is provable. HyLL is, in fact, more expressive than S5 as it
allows direct manipulation of the worlds using the hybrid connectives: for example, the ρ
connective is not definable in S5.

2.2 Temporal Constraints
As a pedagogical example, consider the constraint domain T = 〈R+,+, 0〉 representing
instants of time. This domain can be used to define the lifetime of resources, such as keys,
sessions, or delegations of authority. Delay (Defn. 8) in HyLL(T) represents intervals of

TYPES 2013

156 A Hybrid Linear Logic for Constrained Transition Systems

time; ρdA means “A will become available after delay d”, similar to metric tense logic [32].
This domain is very permissive because addition is commutative, resulting in the equivalence
of ρu ρv A and ρv ρuA. The “forward-looking” connectives G (always in the future) and F
(sometimes in the future) of ordinary tense logic are precisely � and ♦ of Defn. 8.

In addition to the future connectives, the domain T also admits past connectives if we
add saturating subtraction (i.e., a− b = 0 if b ≥ a) to the language of worlds. We can then
define the duals H (historically) and O (once) of G and F as:

H A , ↓u.∀w. (A at u− w) O A , ↓u.∃w. (A at u− w)

While this domain does not have any branching structure like CTL, it is expressive enough
for many common idioms because of the branching structure of derivations involving ⊕. CTL
reachability (“in some path in some future”), for instance, is the same as our ♦; similarly
CTL steadiness (“in some path for all futures”) is the same as �. CTL stability (“in all
paths in all futures”), however, has no direct correspondance in HyLL (see however [15] for a
correspondance in particular cases). Note that model checking cannot cope with temporal
expresssions involving the “in all paths” notion anyway. 1

On the other hand, the availability of linear reasoning, enriched with modalities, makes
certain kinds of reasoning in HyLL much more natural than in ordinary temporal logics.
One important example is of oscillation between states in systems with kinetic feedback. In
a temporal specification language such as BIOCHAM [10], only aperiodic oscillations are
representable, while in HyLL an oscillation between A and B with delay d is represented
by the rule †(A(ρdB) & (B(ρdA) (or †(A(♦B) & (B(♦A) if the oscillation is
aperiodic). If HyLL(T) were extended with constrained implication and conjunction in the
style of CILL [36] or η [17], then we can define localized versions of � and ♦, such as “A is
true everywhere/somewhere in an interval”.

For examples of applications of HyLL with temporal constraints, the interested reader can
see [15], which gives an encoding of a simple biological system and its temporal properties in
HyLL(T ′), where T ′ = 〈N,+, 0〉 represents discrete instants of time. We will, instead, use a
version of HyLL dedicated to continuous time Markov Chains with exponential distribution,
as used in Sπ. We introduce this type of constraints below.

2.3 Probabilistic Constraints
Transitions in practice rarely have precise delays. Phenomenological and experimental
evidence is used to construct a probabilistic model of the transition system where the delays
are specified as probability distributions of continuous (or discrete) variables. A number
of variations of monoids representing probabilistic and stochastic constraints are presented
in [12], both for the general case and for the special case of Markov processes.

One of the standard models of stochastic transition systems is continuous time Markov
chains (CTMCs) where the delays of transitions between states are distributed according to
the Markov assumption of memorylessness (Markov processes) with the further condition
that their state-spaces are countable [35]. In the synchronous stochastic π-calculus (Sπ),
the probability of a reaction with rate r is given by continuous time Markov chains with
exponential distribution of parameter r (See [31]). To describe such processes, we shall take
R+ to represent the rates of their exponential distribution. To encode the Sπ calculus in a
suitable instanciation of HyLL, we only need a symbolic operation on the rates. This abstract

1 at least in their full generality, involving an infinite number of states.

J. Despeyroux and K. Chaudhuri 157

treatment can be made fully precise, but this would require a detour into measure theory
that is beyond the scope of this paper; see [12] for the details.

I Definition 9. The rates domain R is the monoid R = 〈R+∗, ·, []〉 of lists of positive reals,
where · is concatenation of lists, and [] is the empty list.

Worlds r ∈ R represent the (rates of the) sequence of actions that have led to the current
world from a given fixed initial world. We might equivalently have chosen T = 〈R+,+, 0〉 to
represent average time delays, which would be the sum of the reciprocals of the rates in the
list of rates. We choose to use lists of rates because they are more informative than average
time delays. Note that since our rate functions are assumed to be memoryless, the order of
the list of rates is immaterial, so we can easily relax it to a multi-set of rates; this change
could not substantially alter the development of this paper.

3 Focusing

As HyLL is intended to represent transition systems adequately, it is crucial that HyLL
derivations in the image of an encoding have corresponding transitions. However, transition
systems are generally specified as rewrite algebras over an underlying congruence relation.
These congruences have to be encoded propositionally in HyLL, so a HyLL derivation will
generally require several inference rules to implement a single transition; moreover, several
trivially different reorderings of these “micro” inferences would correspond to the same
transition. It is therefore futile to attempt to define an operational semantics directly on
HyLL inferences.

We restrict the syntax to focused derivations [1], which ignores many irrelevant rule
permutations in a sequent proof and divides the proof into clear phases that define the grain
of atomicity. The logical connectives are divided into two classes, negative and positive, and
rule permutations for connectives of like polarity are confined to phases. A focused derivation
is one in which the positive and negative rules are applied in alternate maximal phases in the
following way: in the active phase, all negative rules are applied (in irrelevant order) until
no further negative rule can apply; the phase then switches and one positive proposition is
selected for focus; this focused proposition is decomposed under focus (i.e., the focus persists
to its sub-formulas) until it becomes negative, and the phase switches again.

As noted before, the logical rules of the hybrid connectives at and ↓ are invertible, so
they can be considered to have both polarities. It would be valid to decide a polarity for each
occurrence of each hybrid connective independently; however, as they are mainly intended
for book-keeping during logical reasoning, we define the polarity of these connectives in the
following parasitic form: if its immediate subformula is positive (resp. negative) connective,
then it is itself positive (resp. negative). These connectives therefore become invisible to
focusing. This choice of polarity can be seen as a particular instance of a general scheme that
divides the ↓ and at connectives into two polarized forms each. To complete the picture, we
also assign a polarity for the atomic propositions; this restricts the shape of focusing phases
further [13]. The full syntax of positive (P,Q, . . .) and negative (M,N, . . .) propositions is as
follows:

P,Q, . . . ::= p ~t
∣∣ P ⊗Q ∣∣ 1

∣∣ P ⊕Q ∣∣ 0
∣∣ !N

∣∣ ∃α. P ∣∣ ↓u. P ∣∣ (P at w)
∣∣ ⇓N

N,M, . . . ::= n ~t
∣∣N &N

∣∣> ∣∣ P (N
∣∣ ∀α. N ∣∣ ↓u.N ∣∣ (N at w)

∣∣ ⇑P
The two syntactic classes refer to each other via the new shift connectives ⇑ and ⇓. Sequents
in the focusing calculus are of the following forms.

TYPES 2013

158 A Hybrid Linear Logic for Constrained Transition Systems

Focused logical rules

Γ ;
[
n ~t@w

]
=⇒ ⇓n ~t@w

li
Γ ; ∆ ; P@u =⇒ · ; Q@w

Γ ; ∆ ;
[
⇑P@u

]
=⇒ Q@w

⇑L
Γ ; ∆ ; · =⇒ N@w ; ·
Γ ; ∆ =⇒

[
⇓N@w

] ⇓R

Γ ; ∆ ;
[
Ni@u

]
=⇒ Q@w

Γ ; ∆ ;
[
N1 &N2@u

]
=⇒ Q@w

&Li
Γ ; ∆ =⇒

[
P@u

]
Γ ; Ξ ;

[
N@u

]
=⇒ Q@w

Γ ; ∆,Ξ ;
[
P (N@u

]
=⇒ Q@w

(L

Γ ; ∆ ;
[
[τ/α]N@u

]
=⇒ Q@w

Γ ; ∆ ;
[
∀α. N@u

]
=⇒ Q@w

∀L
Γ ; ∆ ;

[
[v/u]N@v

]
=⇒ Q@w

Γ ; ∆ ;
[
↓u.N@v

]
=⇒ Q@w

↓LF

Γ ; ∆ ;
[
N@u

]
=⇒ Q@w

Γ ; ∆ ;
[
(N at u)@v

]
=⇒ Q@w

atLF
Γ ; ⇑p ~t@w =⇒

[
p ~t@w

] ri

Γ ; ∆ =⇒
[
P@w

]
Γ ; Ξ =⇒

[
Q@w

]
Γ ; ∆,Ξ =⇒

[
P ⊗Q@w

] ⊗R
Γ ; ∆ =⇒

[
Pi@w

]
Γ ; ∆ =⇒

[
P1 ⊕ P2@w

] ⊕Ri
Γ ; ∆ =⇒

[
[τ/α]P@w

]
Γ ; ∆ =⇒

[
∃α. P@w

] ∃R Γ ; · ; · =⇒ N@w ; ·
Γ ; · =⇒

[
!N

]
@w

!R
Γ ; ∆ =⇒

[
[w/u]P@w

]
Γ ; ∆ =⇒

[
↓u. P@w

] ↓RF

Γ ; ∆ =⇒
[
P@u

]
Γ ; ∆ =⇒

[
(P at u)@w

] atRF
Γ ; · =⇒

[
1@w

] 1R

Active logical rules
(R of the form · ; Q@w or N@w ; ·, and L of the form Γ ; ∆ ; Ω)

L, P@u,Q@u =⇒ R
L, P ⊗Q@u =⇒ R ⊗L L =⇒ R

L,1@u =⇒ R 1L
L, P@u =⇒ R L, Q@u =⇒ R

L, P ⊕Q@u =⇒ R ⊕L

L, [v/u]P@v =⇒ R
L, ↓u. P@v =⇒ R

↓LA
L, P@u =⇒ R

L, (P at u)@v =⇒ R atLA
L, P@u =⇒ R

L, ∃α. P@u =⇒ R ∃L
α

Γ, N@u ; ∆ ; Ω =⇒ R
Γ ; ∆ ; Ω, !N@u =⇒ R !L

Γ ; ∆, N@w ; Ω =⇒ R
Γ ; ∆ ; Ω,⇓N@w =⇒ R

⇓L
Γ ; ∆,⇑p ~t ; Ω =⇒ R

Γ ; ∆ ; Ω, p ~t@w =⇒ R
lp

L =⇒M@w ; · L =⇒ N@w ; ·
L =⇒M &N@w ; · &R L =⇒ >@w ; · >R

L, P@w =⇒ N@w ; ·
L =⇒ P (N@w ; · (R

L =⇒ [w/u]N@w ; ·
L =⇒ ↓u.N@w ; ·

↓RA L =⇒ N@u
L =⇒ (N at u)@w atRA

L =⇒ N@u ; ·
L =⇒ ∀α. N@u ; · ∀R

α

L =⇒ · ; P@w

L =⇒ ⇑P@w ; ·
⇑R

L =⇒ · ; ⇓n ~t@w
L =⇒ n ~t@w ; ·

rp
L,0@u =⇒ R 0L

Focusing decisions

Γ ; ∆ ;
[
N@u

]
=⇒ Q@w N not ⇑p ~t

Γ ; ∆, N@u ; · =⇒ · ; Q@w
lf

Γ, N@u ; ∆ ;
[
N@u

]
=⇒ Q@w

Γ, N@u ; ∆ ; · =⇒ · ; Q@w
cplf

Γ ; ∆ =⇒
[
P@w

]
P not ⇓n ~t

Γ ; ∆ ; · =⇒ · ; P@w
rf

Figure 2 Focusing rules for HyLL.

J. Despeyroux and K. Chaudhuri 159

Γ ; ∆ ; Ω =⇒ · ; P@w
Γ ; ∆ ; Ω =⇒ N@w ; ·

}
active Γ ; ∆ ;

[
N@u

]
=⇒ P@w

Γ ; ∆ =⇒
[
P@w

] }
focused

In each case, Γ and ∆ contain only negative propositions (i.e., of the form N@u) and Ω
only positive propositions (i.e., of the form P @u). The full collection of inference rules are
in Fig. 2. The sequent form Γ ; ∆ ; · =⇒ · ; P @w is called a neutral sequent; from such a
sequent, a left or right focused sequent is produced with the rules lf, cplf or rf. Focused
logical rules are applied (non-deterministically) and focus persists unto the subformulas of
the focused proposition as long as they are of the same polarity; when the polarity switches,
the result is an active sequent, where the propositions in the innermost zones are decomposed
in an irrelevant order until once again a neutral sequent results.

Soundness of the focusing calculus with respect to the ordinary sequent calculus is
immediate by simple structural induction. In each case, if we forget the additional structure
in the focused derivations, then we obtain simply an unfocused proof. We omit the obvious
theorem. Completeness, on the other hand, is a hard result. We omit the proof because
focusing is by now well known for linear logic, with a number of distinct proofs via focused
cut-elimination (see e.g. the detailed proof in [13]). The hybrid connectives pose no problems
because they allow all cut-permutations.

I Theorem 10 (Focusing Completeness). Let Γ− and C−@w be negative polarizations of Γ
and C@w (that is, adding ⇑ and ⇓ to make C and each proposition in Γ negative) and ∆+

be a positive polarization of ∆. If Γ ; ∆ =⇒ C@w, then · ; · ; ! Γ−,∆+ =⇒ C−@w ; ·.

4 Encoding the Synchronous Stochastic π-calculus

In this section, we shall illustrate the use of HyLL(R) (Definiition 9) as a logical framework
for constrained transition systems by encoding the syntax and the operational semantics
of the synchronous stochastic π-calculus (Sπ), which extends the ordinary π-calculus by
assigning to every channel and internal action an inherent rate of synchronization. In Sπ,
each rate characterises an exponential distribution such that the probability of a reaction
with rate r occuring within time t is given by 1− e−rt [31], where the rate r is a parameter.

We shall encode Sπ in HyLL(R): a Sπ reaction with rate r will be encoded by a transition
of a probability described by a random variable with exponential distribution of parameter r;
Worlds r in R will represent the list of the rates of the transitions performed so far.

HyLL(R) can therefore be seen as a formal language for expressing Sπ executions (traces).
For the rest of this section we shall use r, s, t, . . . instead of u, v, w, . . . to highlight the fact
that the worlds represent (lists of) rates (overloading single elements and the list of single
elements). We do not directly use rates because the syntax and transitions of Sπ are given
generically for a π-calculus with labelled actions, and it is only the interpretation of the
labels that involves probabilities.

We first summarize the syntax of Sπ, which is a minor variant of a number of similar
presentations such as [31]. For hygienic reasons we divide entities into the syntactic categories
of processes (P,Q, . . .) and sums (M,N, . . .), defined as follows. We also include environments
of recursive definitions (E) for constants.

(Processes) P,Q, . . . ::= νr P
∣∣ P |Q ∣∣ 0

∣∣Xn x1 · · ·xn
∣∣M

(Sums) M,N, . . . ::= x〈y〉. P
∣∣ x. P ∣∣ τr. P ∣∣M +N

(Environments) E ::= E,Xn , P
∣∣ ·

P |Q is the parallel composition of P and Q, with unit 0. The restriction νr P abstracts
over a free channel x in the process P x. We write the process using higher-order abstract

TYPES 2013

160 A Hybrid Linear Logic for Constrained Transition Systems

Interactions

x〈y〉. P + M | x. Q + M ′ rate(x)
−−−−−−→ P |Qy

syn
τr. P

r−−→ P
int

P
r−−→ P ′

P |Q r−−→ P ′ |Q
par

∀xs.
(
P x

r−−→Qx
)

νs P
r−−→ νs Q

res
P

r−−→Q P ≡ P ′ Q ≡ Q′

P ′ r−−→Q′
cong

. .

Congruence

P | 0 ≡ P P |Q ≡ Q | P P | (Q | R) ≡ (P |Q) | R νr 0 ≡ 0
Xn , P ∈ E

E ` Xn x1 · · · xn ≡ P x1 · · · xn

νr(λx. νs(λy. P)) ≡ νs(λy. νr(λx. P))
∀xr. (P x ≡ Qx)
νr P ≡ νr Q νr(λx. P |Q(x)) ≡ P | νr Q

P ≡ P ′

P |Q ≡ P ′ |Q
P ≡ P ′

x〈m〉. P ≡ x〈m〉. P ′
∀n. (P n ≡ Qn)
x. P ≡ x. Q

P ≡ P ′

τr. P ≡ τr. P
′ M + N ≡ N + M

M + (N + K) ≡ (M + N) + K

M ≡M ′

M + N ≡M ′ + N

M ≡ N
M + N ≡M

Figure 3 Interactions and congruence in Sπ. The environment E is elided in most rules.

syntax [28], i.e., P in νr P is (syntactically) a function from channels to processes. This
style lets us avoid cumbersome binding rules in the interactions because we reuse the well-
understood binding structure of the λ-calculus. A similar approach was taken in the earliest
encoding of the (ordinary) π-calculus in (unfocused) linear logic [25], and is also present in
the encoding in CLF [9].

A sum is a non-empty choice (+) over terms with action prefixes: the output action
x〈y〉 sends y along channel x, the input action x reads a value from x (which is applied
to its continuation process), and the internal action τr has no observable I/O behaviour.
Replication of processes happens via guarded recursive definitions [26]; in [34] it is argued
that they are more practical for programming than the replication operator !. In a definition
Xn , P , Xn denotes a (higher-order) defined constant of arity n; given channels x1, . . . , xn,
the process Xn x1 · · ·xn is synonymous with P x1 · · ·xn. The constant Xn may occur on the
right hand side of any definition in E, including in its body P , as long as it is prefixed by an
action; this prevents infinite recursion without progress.

Interactions are of the form E ` P r−→Q denoting a transition from the process P to the
process Q, in a global environment E, by performing an action at rate r. Each channel x is
associated with an inherent rate specific to the channel, and internal actions τr have rate r.
The restriction νr P defines the rate of the abstracted channel as r.

The full set of interactions and congruences are in fig. 3. We generally omit the global
environment E in the rules as it never changes. It is possible to use the congruences to
compute a normal form for processes that are a parallel composition of sums and each
reaction selects two suitable sums to synchronise on a channel until there are no further
reactions possible; this refinement of the operational semantics is used in Sπ simulators such
as SPiM [30].

J. Despeyroux and K. Chaudhuri 161

I Definition 11 (Syntax Encoding).
1. The encoding of the process P as a positive proposition, written JP Kp, is as follows (sel

is a positive atom and rt a negative atom).

JP |QKp = JP Kp ⊗ JQKp Jνr P Kp = ∃x. !(rtx at r)⊗ JP xKp

J0Kp = 1 JXn x1 · · ·xnKp = Xn x1 · · ·xn
JMKp = ⇓(sel(JMKs)

2. The encoding of the sum M as a negative proposition, written JMKs, is as follows (out,
in and tau are positive atoms).

JM +NKs = JMKs & JNKs Jx〈m〉. P Ks = ⇑(outx m⊗ JP Kp)

Jx. P Ks = ∀n.⇑(inx n⊗ JP nKp) Jτr. P Ks = ⇑(tau r ⊗ JP Kp)

3. The encoding of the definitions E as a context, written JEKe, is as follows.
r
E,Xn , P

z

e
= JEKe , † ∀x1, . . . , xn. Xn x1 · · ·xn ≡ JP x1 · · ·xnKp

J·Ke = ·

where P ≡ Q is defined as (P (⇑Q) & (Q(⇑P).

The encoding of processes is positive, so they will be decomposed in the active phase
when they occur on the left of the sequent arrow, leaving a collection of sums. The encoding
of restrictions will introduce a fresh unrestricted assumption about the rate of the restricted
channel. Each sum encoded as a processes undergoes a polarity switch because(is negative;
the antecedent of this implication is a guard sel. This pattern of guarded switching of
polarities prevents unsound congruences such as x〈m〉. y〈n〉. P ≡ y〈n〉. x〈m〉. P that do
not hold for the synchronous π calculus. To see this, note that Jx〈m〉. y〈n〉. P Kp has the
form X ((A⊗ (X (B ⊗ C)) (eliding the polarity shifts) which is not provably equivalent
to X ((B ⊗ (X (A⊗ C)) in both linear logic and HyLL. Thus, even though we use a
commutative connective ⊗ in Jx〈m〉. P Ks, output actions are still sequential and synchronous.

The guard sel also locks the sums in the context: the Sπ interaction rules int and syn
discard the non-interacting terms of the sum, so the environment will contain the requisite
number of sels only when an interaction is in progress. The action prefixes themselves are
also synchronous, which causes another polarity switch. Each action releases a token of
its respective kind—out, in or tau—into the context. These tokens must be consumed by
the interaction before the next interaction occurs. For each action, the (encoding of the)
continuation process is also released into the context.

The proof of the following congruence lemma is omitted. Because the encoding is
(essentially) a ⊗/& structure, there are no distributive laws in linear logic that would break
the process/sum structure.

I Theorem 12 (Congruence). E ` P ≡ Q iff both JEKe @ι ; · ; JP Kp @ι =⇒ · ; JQKp @ι and
JEKe @ι ; · ; JQKp @ι =⇒ · ; JP Kp @ι.

Now we encode the interactions. Because processes were lifted into propositions, we
can be parsimonious with our encoding of interactions by limiting ourselves to the atomic
interactions syn and int (below); the par, res and cong interactions will be ambiently
implemented by the logic. Because there are no concurrent interactions—only one interaction
can trigger at a time in a trace—the interaction rules must obey a locking discipline. We

TYPES 2013

162 A Hybrid Linear Logic for Constrained Transition Systems

represent this lock as the proposition act that is consumed at the start of an interaction and
produced again at the end. This lock also carries the net rate of the prefix of the trace so far:
that is, an interaction P r−→Q will update the lock from act@s to act@s · r. The encoding
of individual atomic interactions must also remove the in, out and tau tokens introduced in
context by the interacting processes.

I Definition 13 (Interaction).
Let inter , †(act(⇑int & ⇑syn) where act is a positive atom and int and syn are as
follows:

int , (sel at ι)⊗ ⇓∀r.
(

(tau r at ι)(ρr ⇑act
)

syn , (sel⊗ sel at ι)⊗ ⇓∀x, r,m.
(

(outx m⊗ inx m at ι)(⇓(rtx at r)(ρr ⇑act
)
.

The number of interactions that are allowed depends on the number of instances of inter in
the linear context: each focus on inter implements a single interaction. If we are interested
in all finite traces, we will add inter to the unrestricted context so it may be reused as many
times as needed.

4.1 Representational Adequacy.
Adequacy consists of two components: completeness and soundness. Completeness is the
property that every Sπ execution is obtainable as a HyLL derivation using this encoding, and
is the comparatively simpler direction (see Thm. 16). Soundness is the reverse property, and
is false for unfocused HyLL as such. However, it does hold for focused proofs (see Thm. 18).
In both cases, we reason about the following canonical sequents of HyLL.

I Definition 14. The canonical context of P , written bP c, is given by:

bXn x1 · · ·xnc = ⇑Xn x1 · · ·xn bP |Qc = bP c, bQc b0c = · bνr P c = bP ac
bMc = sel(JMKs

For bνr P c, the right hand side uses a fresh channel a that is not free in the rest of the
sequent it occurs in.

As an illustration, take P , x〈a〉. Q | x. R. We have:

bP c = sel(⇑(outx a⊗ JQKp), sel(∀y.⇑(inx y ⊗ JRyKp)

Obviously, the canonical context is what would be emitted to the linear zone at the end of
the active phase if JP Kp were to be present in the left active zone.

I Definition 15. A neutral sequent is canonical iff it has the shape

JEKe , rates, inter@ι ; ⇑act@s, bP1 | · · · | Pkc@ι ; · =⇒ · ; (JQKp at ι)⊗ act@t

where rates contains elements of the form rtx@r defining the rate of the channel x as r,
and all free channels in JEKe , bP1 | · · · | Pk |Qc have a single such entry in rates.

Figure 4 contains an example of a derivation for a canonical sequent involving P . Focusing
on any (encoding of a) sum in bP c@ι will fail because there is no sel in the context, so only
inter can be given focus; this will consume the act and release two copies of (sel at ι) and
the continuation into the context. Focusing on the latter will fail now (because outx m
and inx m (for some m) are not yet available), so the only applicable foci are the two

J. Despeyroux and K. Chaudhuri 163

Suppose L = rtx@r, inter@ι and R = (JSKp at ι)⊗ act@t. (All judgements @ι omitted.)

L ; bQc , bRac ,⇑act@s · r ; · =⇒ · ; R
L ; bQc,⇑ outx a,⇑ inx a, bRac,

∀x, r,m. ((outx m⊗ inx m at ι)(⇓(rtx at r)(ρr act)@s ; · =⇒ · ; R

5

L ; ⇑ outx a, bQc, sel(∀y.⇑(inx y ⊗ JRyKp),
⇑sel, ∀x, r,m. ((outx m⊗ inx m at ι)(⇓(rtx at r)(ρr act)@s ; · =⇒ · ; R

4

L ; sel(⇑(outx a⊗ JQKp), sel(∀y. (inx y ⊗ JRyKp),
⇑sel,⇑sel, ∀x, r,m. ((outx m⊗ inx m at ι)(⇓(rtx at r)(ρr act)@s ; · =⇒ · ; R

3

L ; ⇑act@s, sel(⇑(outx a⊗ JQKp), sel(∀y.⇑(inx y ⊗ JRyKp) ;
[
inter

]
=⇒ R

2

L ; ⇑act@s, sel(⇑(outx a⊗ JQKp), sel(∀y.⇑(inx y ⊗ JRyKp) ; · =⇒ · ; R 1

L ; ⇑act@s, bx〈a〉. Q | x. Rc ; · =⇒ · ; R

Steps
1: focus on inter ∈ L 3: sel for output + full phases 5: cleanup
2: select syn from inter, active rules 4: sel for input + full phases

Figure 4 Example interaction in the Sπ-encoding.

sums that can now be “unlocked” using the sels. The output and input can be unlocked
in an irrelevant order, producing two tokens inx a and outx a. Note in particular that
the witness a was chosen for the universal quantifier in the encoding of x. Q because the
subsequent consumption of these two tokens requires the messages to be identical. (Any
other choice will not lead to a successful proof.) After both tokens are consumed, we get the
final form act@s · r, where r is the inherent rate of x (found from the rates component of
the unrestricted zone). This sequent is canonical and contains bQ |Rac.

Our encoding therefore represents every Sπ action in terms of “micro” actions in the
following rigid order: one micro action to determine what kind of action (internal or
synchronization), one micro action per sum to select the term(s) that will interact, and finally
one micro action to establish the contract of the action. Thus we see that focusing is crucial
to maintain the semantic interpretation of (neutral) sequents. In an unfocused calculus,
several of these steps could have partial overlaps, making such a semantic interpretation
inordinately complicated. We do not know of any encoding of the π calculus that can provide
such interpretations in unfocused sequents without changing the underlying logic. In CLF [9]
the logic is extended with explicit monadic staging, and this enables a form of adequacy [9];
however, the encoding is considerably more complex because processes and sums cannot be
fully lifted and must instead be specified in terms of a lifting computation. Adequacy is
then obtained via a permutative equivalence over the lifting operation. Other encodings of π
calculi in linear logic, such as [20] and [3], concentrate on the easier asynchronous fragment
and lack adequacy proofs anyhow.

I Theorem 16 (Completeness). If E ` P r−→Q, then the following canonical sequent is
derivable.

JEKe , rates, inter@ι ; ⇑act@s, bP c@ι ; · =⇒ · ; (JQKp at ι)⊗ act@s · r.

Proof. By structural induction of the derivation of E ` P r−→Q. Every interaction rule of
Sπ is implementable as an admissible inference rule for canonical sequents. For cong, we
appeal to Thm. 12. J

TYPES 2013

164 A Hybrid Linear Logic for Constrained Transition Systems

Completeness is a testament to the expressivity of the logic – all executions of Sπ are also
expressible in HyLL. However, we also require the opposite (soundness) direction: that every
canonical sequent encodes a possible Sπ trace. The proof hinges on the following canonicity
lemma.

I Lemma 17 (Canonical Derivations). In a derivation for a canonical sequent, the derived
inference rules for inter are of one of the two following forms (conclusions and premises
canonical).

JEKe , rates, inter@ι ; ⇑act@s, bP c@ι ; · =⇒ · ; (JP Kp at ι)⊗ act@s

JEKe , rates, inter@ι ; ⇑act@s · r, bQc@ι ; · =⇒ · ; (JRKp at ι)⊗ act@t

JEKe , rates, inter@ι ; ⇑act@s, bP c@ι ; · =⇒ · ; (JRKp at ι)⊗ act@t

where: either E ` P ≡ Q with r = ι or E ` P r−→Q.

Proof. This is a formal statement of the phenomenon observed earlier in the example (Fig. 4):
JRKp ⊗ act cannot be focused on the right unless P ≡ R, in which case the derivation ends
with no more foci on inter. If not, the only elements available for focus are inter and one
of the congruence rules JEKe in the unrestricted context. In the former case, the definition of
a top level Xn in bP c is (un)folded (without advancing the world). In the latter case, the
derived rule consumes the ⇑act@s, and by the time act is produced again, its world has
advanced to s · r. The proof proceeds by induction on the structure of P . J

Lemma 17 is a strong statement about HyLL derivations using this encoding: every
partial derivation using the derived inference rules represents a prefix of an Sπ trace. This is
sometimes referred to as full adequacy, to distinguish it from adequacy proofs that require
complete derivations [27]. The structure of focused derivations is crucial because it allows
us to close branches early (using init). It is impossible to perform a similar analysis on
unfocused proofs for this encoding; both the encoding and the framework will need further
features to implement a form of staging [9, Chapter 3].

I Corollary 18. If JEKe , rates, inter@ι ; ⇑act@ι, bP c@ι ; · =⇒ · ; (JQKp at ι)⊗ act@r is
derivable, then E ` P r−→∗Q.

Proof. Directly from Lem. 17. J

4.2 Stochastic Correctness with respect to simulation
So far the HyLL(R) encoding of Sπ represents any Sπ trace symbolically. However, not every
symbolic trace of an Sπ process can be produced according to the operational semantics of
Sπ, which is traditionally given by a simulator. This is the main difference between HyLL
(and Sπ) and the approach of CSL [2], where the truth of a proposition is evaluated against
a CTMC, which is why equivalence in CSL is identical to CTMC bisimulation [16]. In this
section we sketch how the execution could be used directly on the canonical sequents to
produce only correct traces (proofs). The proposal in this section should be seen by analogy
to the execution model of Sπ simulators such as SPiM [29], although we do not use the
Gillespie algorithm.

The main problem of simulation is determining which of several competing enabled
actions in a canonical sequent to select as the “next” action from the race condition of the
actions enabled in the sequent. Because of the focusing restriction, these enabled actions are

J. Despeyroux and K. Chaudhuri 165

easy to compute. Each element of bP c is of the form sel(JMKs, so the enabled actions
in that element are given precisely by the topmost occurrences of ⇑ in JMKs. Because none
of the sums can have any restricted channels (they have all been removed in the active
decomposition of the process earlier), the rates of all the channels will be found in the rates
component of the canonical sequent.

The effective rate of a channel x is related to its inherent rate by scaling by a factor
proportional to the activity on the channel, as defined in [29]. Note that this definition is on
the rate constants of exponential distributions, not the rates themselves. The distribution
of the minimum of a list of random variables with exponential distribution is itself an
exponential distribution whose rate constant is the sum of those of the individual variables.
Each individual transition on a channel is then weighted by the contribution of its rate to
this sum. The choice of the transition to select is just the ordinary logical non-determinism.
Note that the rounds of the algorithm do not have an associated delay element as in [29];
instead, we compute (symbolically) a distribution over the delays of a sequence of actions.

Because stochastic correctness is not necessary for the main adequacy result in the
previous subsection, we leave the details of simulation to future work.

5 Related Work

Logically, the HyLL sequent calculus is a variant of labelled deduction [37], a very broad
topic not elaborated on here. The combination of linear logic with labelled deduction isn’t
new to this work. In the η-logic [17] the constraint domain is intervals of time, and the
rules of the logic generate constraint inequalities as a side-effect; however its sole aim is the
representation of proof-carrying authentication, and it does not deal with the full generality
of constraint domains or with focusing. The main feature of η not in HyLL is a separate
constraint context that gives new constrained propositions. HyLL is also related to the
Hybrid Logical Framework (HLF) [33] which captures linear logic itself as a labelled form of
intuitionistic logic. Encoding constrained π calculi directly in HLF would be an interesting
exercise: we would combine the encoding of linear logic with the constraints of the process
calculus. Because HLF is a very weak logic with a proof theory based on natural deduction,
it is not clear whether (and in what forms) an adequacy result in HyLL can be transferred
to HLF.

Temporal logics such as CSL and PCTL [22] are popular for logical reasoning on temporal
properties of transition systems with probabilities. In such logics, truth is defined in terms of
correctness with respect to a constrained forcing relation on the constraint algebra. In CSL
and PCTL states are formal entities (names) labeled with atomic propositions. Formulae
are interpreted on algebraic structures that are discrete (in PCTL) or continuous (in CSL)
time Markov chains. Transitions between states are viewed as pairs of states labeled with a
probability (the probability of the transition), which is defined as a function from S × S into
[0, 1], where S is the set of states. While such logics have been very successful in practice
with efficient tools, the proof theory of these logics is very complex. Indeed, such modal logics
generally cannot be formulated in the sequent calculus, and therefore lack cut-elimination
and focusing. In contrast, HyLL has a very traditional proof theoretic pedigree, but lacks
such a close correspondence between logical and algebraic equivalence. Probably the most
well known and relevant stochastic formalism not already discussed is that of stochastic
Petri-nets [24], which have a number of sophisticated model checking tools, including the
PRISM framework [23]. Recent advances in proof theory suggest that the benefits of model
checking can be obtained without sacrificing proofs and proof search [4].

TYPES 2013

166 A Hybrid Linear Logic for Constrained Transition Systems

6 Conclusion and Future Work

We have presented HyLL, a hybrid extension of intuitionistic linear logic with a simple
notion of situated truth, a traditional sequent calculus with cut-elimination and focusing,
and a modular and instantiable constraint system (set of worlds) that can be directly
manipulated using hybrid connectives. We have proposed two instances of HyLL (i.e two
particular instances of the set of worlds): one modelling temporal constraints and the others
modelling stochastic (continuous time Markov processes) constraints. We have shown how to
obtain representationally adequate encodings of constrained transition systems, such as the
synchronous stochastic π-calculus in a suitable instance of HyLL.

Several instantiations of HyLL besides the ones in this paper seem interesting. For
example, we can already use disjunction (⊕) to explain disjunctive states, but it is also
possible to obtain a more extensional branching by treating the worlds as points in an
arbitrary partially-ordered set instead of a monoid. Another possibility is to consider lists
of worlds instead of individual worlds – this would allow defining periodic availability of a
resource, such as one being produced by an oscillating process. The most interesting domain
is that of discrete probabilities: here the underlying semantics is given by discrete time
Markov chains instead of CTMCs, which are often better suited for symbolic evaluation [40].

The logic we have provided so far is a logical framework well suited to represent constrained
transition systems. The design of a logical framework for (i.e. to reason about) constrained
transition systems is left for future work -and might be envisioned by using a two-levels
logical framework such as the Abella system [19]. The work presented in [15] provides a first
step in this direction in the area of systems biology (where biological systems are viewed as
transition systems), using the Coq proof assistant [5] with HyLL(T ′) (with discrete instants
of time) as an object logic. This work can be seen as a first possible implementation of HyLL
with temporal constraints.

An important open question is whether a general logic such as HyLL can serve as a
framework for specialized logics such as CSL and PCTL. A related question is what benefit
linearity truly provides for such logics – linearity is obviously crucial for encoding process
calculi that are inherently stateful, but CSL requires no such notion of single consumption of
resources.

In the κ-calculus, reactions in a biological system are modeled as reductions on graphs
with certain state annotations. It appears (though this has not been formalized) that the
κ-calculus can be embedded in HyLL even more naturally than Sπ, because a solution—a
multiset of chemical products—is simply a tensor of all the internal states of the binding
sites together with the formed bonds. One important innovation of κ is the ability to extract
semantically meaningful “stories” from simulations. We believe that HyLL provides a natural
formal language for such stories.

We became interested in the problem of encoding stochastic reasoning in a resource
aware logic because we were looking for the logical essence of biochemical reactions. What
we envision for the domain of “biological computation” is a resource-aware stochastic or
probabilistic λ-calculus that has HyLL propositions as (behavioral) types.

Acknowledgements. This work was partially supported by the Information Society Tech-
nologies programme of the European Commission, Future and Emerging Technologies under
the IST-2005-015905 MOBIUS project, and by the European TYPES project. We thank
François Fages, Sylvain Soliman, Alessandra Carbone, Vincent Danos and Jean Krivine for
fruitful discussions on various preliminary versions of the work presented here. Thanks also

J. Despeyroux and K. Chaudhuri 167

go to Nicolas Champagnat, Luc Pronzato and André Hirschowitz who helped us understand
the algebraic nature of stochastic constraints.

References
1 Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. J. of Logic

and Computation, 2(3):297–347, 1992.
2 A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Model checking continuous time Markov

chains. ACM Transactions on Computational Logic, 1(1):162–170, 2000.
3 David Baelde. Logique linéaire et algèbre de processus. Technical report, INRIA Futurs,

LIX and ENS, 2005.
4 David Baelde, Andrew Gacek, Dale Miller, Gopalan Nadathur, and Alwen Tiu. The Bedwyr

system for model checking over syntactic expressions. In F. Pfenning, ed., 21th Conf. on
Automated Deduction (CADE), number 4603 in LNAI, pp. 391–397, Springer, 2007.

5 Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Springer, 2004.

6 Torben Braüner and Valeria de Paiva. Intuitionistic hybrid logic. Journal of Applied Logic,
4:231–255, 2006.

7 Luís Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In
P. Gastin and F. Laroussinie, eds., Proc. of the 21th Int’l Conf. on Concurrency Theory
(CONCUR), vol. 6269 of Lecture Notes in Computer Science, pp. 222–236. Springer, 2010.

8 Iliano Cervesato. Typed multiset rewriting specifications of security protocols. Electronic
Notes on Theoretical Computer Sciience, 40:8–51, 2000.

9 Iliano Cervesato, Frank Pfenning, David Walker, and Kevin Watkins. A concurrent logical
framework II: Examples and applications. Technical Report CMU-CS-02-102, Carnegie
Mellon University, 2003. Revised, May 2003.

10 Nathalie Chabrier-Rivier, François Fages, and Sylvain Soliman. The biochemical abstract
machine BIOCHAM. In International Workshop on Computational Methods in Systems
Biology (CMSB-2), LNCS. Springer, 2004.

11 Bor-Yuh Evan Chang, Kaustuv Chaudhuri, and Frank Pfenning. A judgmental analysis of
linear logic. Technical Report CMU-CS-03-131R, Carnegie Mellon University, Dec. 2003.

12 Kaustuv Chaudhuri and Joëlle Despeyroux. A hybrid linear logic for constrained transition
systems with applications to molecular biology. Technical Report hal-00402942, INRIA-
HAL, October 2013.

13 Kaustuv Chaudhuri, Frank Pfenning, and Greg Price. A logical characterization of forward
and backward chaining in the inverse method. J. of Automated Reasoning, 40(2-3):133–177,
March 2008.

14 Vincent Danos and Cosimo Laneve. Formal molecular biology. Theor. Comput. Sci.,
325(1):69–110, 2004.

15 Elisabetta de Maria, Joëlle Despeyroux, and Amy Felty. A logical framework for systems
biology. Technical Report hal-00981409, INRIA-HAL, April 2014.

16 Josée Desharmais and Prakash Panangaden. Continuous stochastic logic characterizes
bisimulation of continuous-time Markov processes. Journal of Logic and Algebraic Pro-
gramming, 56:99–115, 2003.

17 Henry DeYoung, Deepak Garg, and Frank Pfenning. An authorization logic with explicit
time. In Computer Security Foundations Symp. (CSF-21), pp. 133–145. IEEE CS, 2008.

18 E. Allen Emerson. Temporal and modal logic. In TCS, pages 995–1072. Elsevier, 1995.
19 Andrew Gacek. A Framework for Specifying, Prototyping, and Reasoning about Computa-

tional Systems. PhD thesis, University of Minnesota, September 2009.
20 Deepak Garg and Frank Pfenning. Type-directed concurrency. In Martín Abadi and Luca

de Alfaro, editors, 16th International Conference on Concurrency Theory (CONCUR),
volume 3653 of LNCS, pages 6–20. Springer, 2005.

TYPES 2013

168 A Hybrid Linear Logic for Constrained Transition Systems

21 Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
22 H. Hansson and B. Jonsson. A logic for reasoning about time and probability. Formal

Aspects of Computing, 6, 1994.
23 M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic model checking us-

ing PRISM: a hybrid approach. International Journal of Software Tools for Technology
Transfer, 6(2), 2004.

24 M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Francenschinis. Modelling
with Generalised Stochastic Petri Nets. Wiley Series in Parallel Computing. Wiley and
Sons, 1995.

25 Dale Miller. The π-calculus as a theory in linear logic: Preliminary results. In E. Lamma
and P. Mello, editors, 3rd Workshop on Extensions to Logic Programming, number 660 in
LNCS, pages 242–265, Bologna, Italy, 1993. Springer.

26 Robin Milner. Communicating and Mobile Systems : The π-Calculus. Cambridge University
Press, New York, NY, USA, 1999.

27 Vivek Nigam and Dale Miller. Focusing in linear meta-logic. In Proc. of IJCAR: Int’l Joint
Conf. on Automated Reasoning, volume 5195 of LNAI, pages 507–522. Springer, 2008.

28 Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Proceedings of the
ACM-SIGPLAN Conference on Programming Language Design and Implementation, pages
199–208. ACM Press, June 1988.

29 Andrew Phillips and Luca Cardelli. A correct abstract machine for the stochastic pi-calculus.
Concurrent Models in Molecular Biology, August 2004.

30 Andrew Phillips and Luca Cardelli. A correct abstract machine for the stochastic pi-calculus.
In Proceedings of BioConcur’04, ENTCS, 2004.

31 Andrew Phillips, Luca Cardelli, and Giuseppe Castagna. A graphical representation for
biological processes in the stochastic pi-calculus. Transactions on Computational Systems
Biology VII, pages 123–152, 2006.

32 Arthur N. Prior. Time and Modality. Oxford: Clarendon Press, 1957.
33 Jason Reed. Hybridizing a logical framework. In International Workshop on Hybrid Logic

(HyLo), Seattle, USA, August 2006.
34 A. Regev, W. Silverman, and E. Shapiro. Representation and simulation of biochemical

processes using the π-calculus and process algebra. In L. Hunter, R.B. Altman, A.K.
Dunker, and T.E. Klein, editors, Pacific Symposium on Biocomputing, volume 6, pages
459–470, Singapore, 2001. World Scientific Press.

35 L.C.G. Rogers and D. Williams. Diffusions, Markov Processes and Martingales, volume 1:
Foundations. Cambridge Mathematical Library, 2nd edition, 2000.

36 Uluç Saranli and Frank Pfenning. Using constrained intuitionistic linear logic for hybrid
robotic planning problems. In IEEE International Conference on Robotics and Automation
(ICRA), pages 3705–3710. IEEE, 2007.

37 Alex Simpson. The Proof Theory and Semantics of Intuitionistic Modal Logic. PhD thesis,
University of Edinburgh, 1994.

38 Philip Wadler. Linear types can change the world. In M. Broy and C. B. Jones, editors,
Proceedings of the IFIP TC 2 Working Conference on Programming Concepts and Methods,
pages 561–581. North Holland, 1990.

39 Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David Walker. A concurrent lo-
gical framework I: Judgments and properties. Technical Report CMU-CS-02-101, Carnegie
Mellon University, 2003. Revised, May 2003.

40 Peng Wu, Catuscia Palamidessi, and Huimin Lin. Symbolic bisimulations for probabilistic
systems. In QEST’07, pages 179–188. IEEE Computer Society, 2007.

The Rooster and the Syntactic Bracket∗

Hugo Herbelin1 and Arnaud Spiwack2

1 Inria Paris-Rocquencourt
Paris, France
hugo.herbelin@inria.fr

2 Inria Paris-Rocquencourt
Paris, France
arnaud@spiwack.net

Abstract
We propose an extension of pure type systems with an algebraic presentation of inductive and
co-inductive type families with proper indices. This type theory supports coercions toward from
smaller sorts to bigger sorts via explicit type construction, as well as impredicative sorts. Type
families in impredicative sorts are constructed with a bracketing operation. The necessary re-
strictions of pattern-matching from impredicative sorts to types are confined to the bracketing
construct. This type theory gives an alternative presentation to the calculus of inductive con-
structions on which the Coq proof assistant is an implementation.

1998 ACM Subject Classification F.3.3 Studies of Program Constructs

Keywords and phrases Coq, calculus of inductive constructions, impredicativity, strictly positive
type families, inductive type families

Digital Object Identifier 10.4230/LIPIcs.TYPES.2013.169

1 Introduction

In the Coq proof assistant [14] inductive types are treated as toplevel definitions. If it
makes sense from a convenience or an efficiency point of view, the monolithic nature of the
definitions make it hard to describe what they precisely mean. As a matter of fact, inductive
definitions mean different things depending on the type they are defined in: specifically, some
types are interpreted differently in impredicative sorts like Prop or the impredicative variant
of Set.

In this article, we present a calculus of inductive and co-inductive constructions where
inductive and co-inductive types are presented algebraically. The algebraic presentation is an
extension of a PTS [3] with inductive and co-inductive type families. Thanks to its modularity,
it is meant to serve as a description which is simpler to expose and more mathematically
amenable than the monolithic scheme which is found in a practical system such as Coq.
For the sake of clarity, the system is given with a single universe and explicit subtyping,
although Coq has an unbounded cumulative hierarchy of universes and implicit subtyping.
Apart from these technicalities, it is believed that our calculus of algebraic inductive and
co-inductive constructions expresses all the features of the Set-impredicative Calculus of
Inductive Constructions that Coq implements, e.g. in its version 8.4 when launched with
option -impredicative-set.

∗ This research has received funding from the European Research Council under the FP7 grant agreement
278673, Project MemCAD

© Hugo Herbelin and Arnaud Spiwack;
licensed under Creative Commons License CC-BY

19th International Conference on Types for Proofs and Programs (TYPES 2013).
Editors: Ralph Matthes and Aleksy Schubert; pp. 169–187

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TYPES.2013.169
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

170 The Rooster and the Syntactic Bracket

Γ ` A : s x is fresh in Γ
Γ, x:A ` x : A

Γ ` u : A Γ ` B : s x is fresh in Γ
Γ, x:B ` u : A

Γ `
∏

x:A B : s Γ, x:A ` u : B
Γ ` λxA. u :

∏
x:A B

Γ ` u :
∏

x:A B Γ ` v : A
Γ ` u v : B[x \ v]

Γ ` u : A Γ ` B : s A ≡ B
Γ ` u : B

(
λxA. u

)
v ; u[x \ v]

Figure 1 Generic rules of pts.

This work draws most of its inspiration from Morris & al [9, 10] for the algebraic
presentation of inductive type families in a predicative sort, and Awodey & Bauer [2] for the
treatment of impredicative sorts.

We use examples from Coq to illustrate the algebraic presentation. To differentiate
expressions in Coq from expressions in the algebraic presentation, the former are typeset in
a sans-serif font and the latter in a roman font.

2 Pure type systems

To model the type system of Coq, we start with the classic presentation of pure type
systems (pts) of Barendregt [3], which we will then extend to model type families. A pts is
characterised by a single syntactic category of terms which are used both as λ-terms and
as types. It has a single form of typing judgment Γ ` u : A, where u and A are terms, and
Γ a context assigning terms to variables. A pts has a set of sorts, which we shall denote
schematically by the symbol s. Every sort is an atomic term. A pts has a conversion relation
u ≡ v. Here we diverge from the presentation of [3] which always uses β-conversion. Coq, on
the other hand, uses βη-conversion on the fragment described in this section. In this article
we will take the conversion rule as abstract, not even requiring it to be decidable. We will
only require that it contains all the reduction rules which are given in the form u; v (in
this section, we only have β-reduction).

The typing rules of a pts comprise of a set of generic rules given in Figure 1, together
with a number of rules of the form

` s1 : s2

called axioms, and rules of the form

Γ ` A : s1 Γ, x:A ` B : s2

Γ `
∏

x:A B : s3

of product formation rules. As usual we write A→ B for
∏

x:A B when x does not bind a
variable in B.

As a starting point of the algebraic presentation, we shall use a pts with two sorts, Type
and 2, together with the following axiom:

Γ ` Type : 2

and the following product formation rule:

H. Herbelin and A. Spiwack 171

Γ ` A : s1 Γ, x:A ` B : s2

Γ `
∏

x:A B : max s1 s2

where max s s = s and max Type2 = max2Type = 2 .
The sorts Type and 2 are predicative. The sort 2 plays a technical role in allowing type

variable and the formation of type-level functions; it cannot, however, be referenced in terms.
In the following sections, 2 will also be used to be able to define types by pattern-matching
(strong elimination).

To model the entire Coq system, Type and 2 would be replaced with a hierarchy of
predicative sorts Typei, such that

Γ ` Typei : Typei+1

are axioms. Adapting the presentation to a hierarchy of sorts is straightforward, but in the
interest of keeping to the heart of the matter we give a presentation with two sorts.

3 Inductive type families

We shall now extend the algebraic presentation with a notion of inductive type families to
model (dependent) datatypes. In this section we will stay in the predicative fragment of Coq.

Contrary to the inductive types of Coq, where inductive definitions must be named at
toplevel, like in:

Inductive Even : Type :=
| eo : Even
| es : Odd → Even
with Odd : Type :=
| os : Even → Odd.

the presentation given here is essentially anonymous, and inductive families need not be
defined at toplevel prior to use. Mutually inductive types such as Even and Odd are not
modelled directly, rather they are encoded using an index:

Inductive EvenOdd : bool → Type :=
| eo : EvenOdd true
| es : EvenOdd false → EvenOdd true
| os : EvenOdd true → EvenOdd false.
Definition Even := EvenOdd true.
Definition Odd := EvenOdd false.

This encoding works as long as all the mutual definitions are all in the same sort. A
variant for mutual definition involving Type and Prop is demonstrated in Section 4.3. When
the types being defined are in different predicative sorts, however, we have to resort to
another encoding which involves nested datatypes [4, Section 8.6].

We will not explore the latter kind of mutual definition. However, nested datatypes –
where recursive calls occur as arguments of another type – such as:

Inductive List (A:Type) : Type :=
| nil : List A
| cons : A → List A → List A.
Inductive Tree : Type :=
| node : List Tree → Tree.

are indeed modelled in the algebraic presentation.

TYPES 2013

172 The Rooster and the Syntactic Bracket

3.1 Regular types
To be able to traverse terms of inductive type, the core pts constructions is extended with a
recursive fixed point on functions:

Γ `
∏

x1:A1,. . . ,xn−1:An−1,xn:An
B : s guarded f x1 . . . xn−1 xn u

Γ, f :
∏

x1:A1,. . . ,xn−1:An−1,xn:An
B, x1:A1, . . . , xn−1:An−1, xn:An ` u : B

Γ ` fix f x1:A1 . . . xn−1:An−1 xn:An ⇒ u :
∏

x1:A1,. . . ,xn−1:An−1,xn:An
B .

Recursive fixed points are unfolded when fully applied

(fix f x1:A1 . . . xn:An ⇒ u) v1 . . . vn ; u[xi \ vi] .

To ensure strong normalisation, this reduction rule is limited, and a guard condition is
imposed on the recursive calls to f . It is not, however, the object of this article to discuss
these restriction or the guard condition. Briefly, Coq currently relies on a single structural
argument in the block x1, . . . , xn: fixed points are not unfolded until their structural
argument starts with a constructor, and the guard condition ensures that each recursive
call is performed on a subterm of said structural argument, for a relaxed notion of subterm.
Other possibilities exist: Agda2 [11] uses any number of arguments as structural, and tries
to find a lexicographic ordering. Yet another possibilities is to use sized types [1]. We shall
simply assume that an adequate guard condition is given.

We now extend the grammar of type constructors. The presentation of this article is
largely inspired by the synthetic definition of strictly positive families by Morris & al [9, 10],
but is adapted to intensional type theory. The presentation of [9, 10] is designed for generic
programming inside a type theory, they give codes for strictly positive families which are
then decoded into an actual type of the ambient theory. No elimination principle needs to
be given for the strictly positive families, as they are implicit in their decoding. Here, we are
defining the syntax of inductive type families, including their elimination rules.

The regular type constructors, whose typing rules are given in Figure 2, are the empty
type 0, the unit type 1, and the sum of two types. The elimination rules are given in the
form of dependent pattern-matching with a syntax made to remind of that of Coq. We shall
often omit the typing predicate when it is clear from the context, especially when it does not
depend on the branch. With this material we can define a first example type, namely the
booleans:

B = 1 + 1
true = inl ()
false = inr () .

3.2 Inductive type families
Inductive families differ from regular inductive types in that they are parametrised by indices,
that is they are functions F : A→ Type for some A. An inductive family of the form λxA. R,
is said to be uniformly parametrised by A. In general, inductive families are not uniformly
parametrised: the value of the index is allowed to vary in recursive calls, and constructors
may build values of F x for certain x only. Remember, for instance, the EvenOdd family:

Inductive EvenOdd : bool → Type :=
| eo : EvenOdd true
| es : EvenOdd false → EvenOdd true
| os : EvenOdd true → EvenOdd false.

H. Herbelin and A. Spiwack 173

Sum type
Γ ` A : Type Γ ` B : Type

Γ ` A+B : Type

Γ ` A+B : s Γ ` t : A
Γ ` inl t : A+B

Γ ` A+B : s Γ ` u : B
Γ ` inru : A+B

Γ ` u : A+B Γ, x:A+B ` P : s Γ, y:A ` v : P [x \ inl y] Γ, z:A ` w : P [x \ inr z]

Γ `
match u as x return P with
inl y ⇒ v

inr z ⇒ w

: P [x \u]

match inlu as x return P with
inl y ⇒ v

inr z ⇒ w

; v[y \u]

match inru as x return P with
inl y ⇒ v

inr z ⇒ w

; w[z \u]

Unit type

Γ ` 1 : Type Γ ` () : 1

Γ ` u : 1 Γ, x:1 ` P : s Γ ` v : P [x \ ()]

Γ ` match u as x return P with
() ⇒ v

: P [x \u]

match () as x return P with
() ⇒ v

; v

Empty type

Γ ` 0 : Type
Γ ` u : 0 Γ ` A : Type

Γ ` match u return A with · : A
Figure 2 Regular type constructors.

TYPES 2013

174 The Rooster and the Syntactic Bracket

Inductive fixed point

Γ ` A : s Γ, X:A→ Type ` F : A→ Type spX F

Γ ` µXA→Type. F : A→ Type

µXA→s. F ≡ F
[
X \µXA→s. F

]
Proper indices

Γ ` A : Type Γ ` B : Type Γ, x:A ` T : Type Γ, x:A ` f : B
Γ `

∑f
x:AT : B → Type

Γ `
∑f

x:AT : B → s Γ ` u : A Γ ` v : T [x \u]

Γ ` (u, v)f
x:A.T :

(∑f
x:AT

)
(f [x \u])

Γ ` u :
(∑f

x:AT
)
b Γ, y:B, z:

(∑f
x:AT

)
y ` P : s

Γ, i:A, j:T i ` v : P
[
y \ f i , z \ (i, j)f

x:A.T

]
Γ ` match u as z in y return P with

(i, j)f
x:A.T ⇒ v

: P [y \ b , z \u]

match (u, v)f
x:A.T as z in y return P with

(i, j)f
x:A.T ⇒ w

; w[i \u , j \ v]

Figure 3 Inductive type families.

The inductive family constructors, presented in Figure 3, warrant individual discussion.
First, notice that as a simplifying hypothesis, inductive families have exactly one index. This
is, of course, not a limitation in expressive power as multiple indices can be encoded as a
dependent sum, and the unit type allows us to write families without an index.

The construction µXA→Type. F constructs the inductive fixed point of F . It acts on type
families, because indices vary through recursive calls to X. To be able to form an inductive
fixed point, occurrences of X must be strictly positive in F , rules for strict positivity are
given in Figure 4. The rules of Figure 4 are a simple set which suits the needs of this article,
however in practice, we may want to consider strict positivity rules involving elimination
rules and a finer treatment of application. Strict positivity ensures that no non-terminating
term can be written without recursive fixed points, so that the guard condition suffices
to enforce termination. Paradoxes which can be derived from non-positive or non-strictly
positive inductive fixed points can be found in [13, Chapter 4, Section 4.2][8, Chapter 3][4,
Chapter 8]. To avoid clutter, we give a presentation where inductive fixed points can be
freely rolled and unrolled thanks to the conversion. An alternative can be to give an explicit
term constructor for fixed points, see Section 3.4.

We will also use an inductive fixed point on nullary families, defined as:

µXType. F =
(
µY 1→Type. F [X \Y ()]

)
()

from which we have that µXType. F can be freely rolled from or unrolled to F
[
X \µXType. F

]
.

H. Herbelin and A. Spiwack 175

spX y spX 0 spX 1

X is fresh in A spX B

spX (
∏

x:A B)
spX A spX B

spX (A+B)
X is fresh in A spX F

spX

(
µY A. F

)
X is fresh in A spX T

spX

(
λxA. T

) spX U X is fresh in t
spX (U t)

spX B B ≡ A
spX A

X is fresh in f spX A spX T

spX

(∑f
x:AT

)
Figure 4 Strict positivity condition.

With inductive fixed points, we can, for instance, define the accessibility predicate. In
Coq:

Inductive Acc (A:Type) (R:A→A→Type) (x:A) : Type :=
| acc_intro : (forall y:A, R y x → Acc A R y) → Acc A R x.

This type represents the generic form of termination proofs: any terminating recursive fixed
point can be made structural over a proof of accessibility. In the algebraic presentation, it is
defined as:

Acc = λATypeRA→A→Type. µAccA→Type. λxA.
∏
y:A

Ry x→ Acc y

accintro = λATypeRA→A→Type xA f

∏
y:A

R y x→Acc A R y
. f

Because inductive fixed points are treated transparently, the constructor is rather trivial.
However, notice how, in the definition of Acc, the parameter x is treated differently from
A and R. The reason is that A and R are uniform parameters, in that they do not vary
through recursive calls, whereas x does: it is a non-uniform parameter. The parameter x is,
hence, represented as an index. However, such an index is not sufficient to encode types like
EvenOdd.

Representing proper indices requires a new type construction, which we write
∑f

x:AT .
This construction comes from [9, 10], where it is inspired by a categorical point of view:
in a sufficiently extensional setting,

∑f
x:AT is the right adjoint to a pullback functor. The

similarity with the usual notation of dependent sum is not fortuitous, indeed we can define
dependent sum as a special case of proper indexing:

∑
x:A

B =
(∑()

x:A
B

)
()

(u, v)x:A.B = (u, v)()
x:A.B

We also write A×B and (u, v) for
∑

x:A B and (u, v)x:A.B , respectively, when x is not free
in B.

In the case of dependent sums, the index is trivial. When it is not, however, the pattern
matching return clause P is allowed to depend on the value of the index. This is the purpose

TYPES 2013

176 The Rooster and the Syntactic Bracket

of Coq’s in-pattern. With the algebraic presentation, the in-pattern has the pleasant property
of being confined to the proper indexing construction, hopefully making its meaning more
explicit. The syntax differs a little from that of Coq, however: Coq renders the in clause as a
pattern with the type name at the head:

match n as n’ in EvenOdd b return P n’ b with
. . .
end.

In the algebraic presentation, types not having a name, the in clause simply consists of a
name for the index.

The prototype of proper indexing is the identity type, which we name Eq. In Coq:

Inductive Eq (A:Type) (x:A) : A → Type :=
| eq_refl : Eq A x x

in the algebraic presentation: Eq = λAType xA.
∑x

_:1
1

eqrefl = λAType xA. ((), ())x
_:1.1

In fact, dependent sums and identity types are sufficient to define proper indexing. Indeed∑f
x:AT can be redefined as:

∑f

x:A
T = λyB .

∑
x:A

(EqB y f)× T

(u, v)f
x:A.T = (u, (eqreflB f [x \u], v))x:A.(Eq B (f [x \u]) f)×T

It is closer to the spirit of Coq, but in no way essential, to take a proper indexing construction
rather than equality as primitive. In Morris & al [9, 10], the dependent sum and equality of
the ambient type theory is used to define

∑f
x:AT which is then taken as primitive.

An other choice lies in the use of A + B as primitive. It is the only type construction
which allows to define a type with distinct elements. However, a common alternative is to
take B as primitive, in which case we can define A+B as:

A+B =
∑
b:B

match b with
true ⇒ A

false ⇒ B

inl = λxA. (true, x)
b:B.

match b with
true ⇒ A
false ⇒ B

inr = λyB . (false, y)
b:B.

match b with
true ⇒ A
false ⇒ B

3.3 Examples

The previous section concludes the description of the predicative fragment of the algebraic
presentation. We can now give definitions of the remaining inductive families we have
encountered in terms of the algebraic presentation. Starting with EvenOdd:

H. Herbelin and A. Spiwack 177

Inductive EvenOdd : bool → Type :=
| eo : EvenOdd true
| es : EvenOdd false → EvenOdd true
| os : EvenOdd true → EvenOdd false.

translates, in the algebraic presentation, to:



EvenOdd = µEvenOddB→Type.
(∑true

_:1
1 + EvenOdd false

)
+
(∑false

_:1
EvenOdd true

)
eo = inl ((), inl ())true

_:1.1

es = λxEvenOdd false. inl ((), inrx)true
_:1.1

os = λxEvenOdd true. inr ((), x)false
_:1.1

Here is the definition of List in Coq:

Inductive List (A:Type) : Type :=
| nil : List A
| cons : A → List A → List A.

and in the algebraic presentation:


List = λAType. µListType. 1 +A× List

nil = λAType. inl ()
cons = λAType xA lList A. inr (x, l)

Finally the definition of Tree:

Inductive Tree : Type :=
| node : List Tree → Tree.

translates to:{
Tree = µTreeType.List Tree
node = λfList Tree. f

Note that in the definition of Tree, we must β-reduce List Tree for the recursive definition to
be strictly positive.

A more complex example is given by the type of lists indexed by their length, often called
vectors:

Inductive Nat : Type :=
| o : Nat
| s : Nat → Nat.
Inductive Vector (A:Type) : Nat → Type :=
| vnil : Vector A o
| vcons : forall n, A → Vector A n → Vector A (s n).

TYPES 2013

178 The Rooster and the Syntactic Bracket

It is encoded in the algebraic presentation as:

Nat = µNatType. 1 + Nat
o = inl ()
s = λnNat. inrn

Vector = λAType. µV Nat→Type. λnNat.
(∑o

_:1
1
)
n+

(∑s n′

n′:Nat
A× V n′

)
n

vnil = λAType. inl ((), ())o
_:1.1

vcons = λAType nNat aA vVector n a. inr (n, (a, v))s n′

n′:Nat.A×V n′

Contrary to proper indices, the types of non-uniform parameters are allowed to be in 2,
this allows the definition of types such as the binary lists [12]:

Inductive BList (A:Type) : Type :=
| one : A → BList A
| twice : BList (A∗A) → BList A
| stwice : A → BList (A∗A) → BList A

which are rendered in the algebraic presentation as:
BList = µBListType→Type. λAType. A+ (BList (A×A) +A× (BList (A×A)))

one = λAType xA. inl x

twice = λAType lBList (A×A). inr (inl l)

stwice = λAType xA lBList (A×A). inr (inr (a, l))

In Coq, where there is a hierarchy of universe, types of proper indices can be in any sort.
However, a proper index whose type is in Typei constrains the final type to be in Typei+1
or higher. Uniform parameters, of any type, do not constrain the type they parametrise.

Inductive types are consumed by recursive fixed points. Using the implicit unfolding of
inductive fixed points, we can pattern-match over the top constructor directly. The Coq
function

Fixpoint add (x y:Nat) : Nat :=
match y with
| o ⇒ x
| s y’ ⇒ s (add x y’)
end

is rendered in the algebraic presentation as

add = fix add x:Nat y:Nat⇒
match y as _ return Nat with
inl _ ⇒ x

inr y′ ⇒ s (addx y′)

3.4 Co-induction
In addition to inductive fixed points, Coq also has support for co-inductive fixed points.
Co-inductive fixed points are required to be strictly positive, like inductive fixed points. We
choose in this section, a presentation of co-inductive data where fixed points are explicitly
introduced with a constructor. Below we will use this explicit presentation to give a variation
on Coq’s co-inductive fixed points.

H. Herbelin and A. Spiwack 179

Γ ` A : s Γ, X:A→ Type ` F : A→ Type spX F

Γ ` νXA→Type. F : A→ Type

Γ ` νXA→s. F : A→ s Γ ` i : A Γ ` u : F
[
X \ νXA→s. F

]
i

Γ ` forcedu :
(
νXA→s. F

)
i

Γ ` νXA→s. F : A→ s Γ ` i : A Γ ` u :
(
νXA→s. F

)
i

Γ, x:
(
νXA→s. F

)
i ` P : s′ Γ, y:F

[
X \ νXA→s. F

]
i ` v : P [x \ forced y]

Γ ` match u as x return P with
forced y ⇒ v

: P [x \u]

match forcedu as x return P with
forced y ⇒ v

; v[y \u]

Just like inductive data is destructed by a recursive fixed point operation, co-inductive
data is constructed by a co-recursive fixed point operation, allowing co-inductive data to be
infinite. The guard condition on co-recursive fixed points ensures that a finite number of
unfolding will eventually produce a forced value.

Γ `
∏

x1:A1,. . . ,xn:An

(
νXA→s. F

)
i : s coguarded f x1 . . . xn u

Γ, f :
∏

x1:A1,. . . ,xn:An

(
νXA→s. F

)
i, x1:A1, . . . , xn:An ` u :

(
νXA→s. F

)
i

Γ ` cofix f x1:A1 . . . xn:An ⇒ u :
∏

x1:A1,. . . ,xn:An

(
νXA→s. F

)
i

Co-recursive fixed-point are meant to represent infinite data: they cannot be unfolded eagerly,
lest they would fail to terminate. They are unfolded only when they appear at the head of a
pattern-matching expression:

match (cofix f x1:A1 . . . xn:An ⇒ u) v1 . . . vn as x return P with
forced y ⇒ v

;
match u[f \ (cofix f x1:A1 . . . xn:An ⇒ u) , xi \ vi] as x return P with
forced y ⇒ v

The dependent elimination rule for co-inductive fixed points asserts, in essence, that every
co-inductive data is of the form forcedu. Even though it would be fine for inductive fixed
points – this is why we could leave the unrolling to the conversion – this does not reflect
well the computational aspects of co-inductive data: suspended co-recursive fixed points are
values, and won’t be evaluated until the context demands it. The fact that the elimination
for co-inductive data claims that all values are forced gives rise to undesirable behaviour.

Take for instance the following simple co-inductive type, and data:{
T = νX.X

i = cofix i⇒ forced i

So that i is effectively an infinite sequence of forced. Using the elimination principle above,
it is possible to give a closed proof that Eq T i (forced i):

match i as x return Eq T x
(

forced
(

match x with
forced y ⇒ y

))
with

forced y ⇒ eqrefl T y

TYPES 2013

180 The Rooster and the Syntactic Bracket

However, i and (forced i) are not convertible, yet, as every closed proof of equality does, this
proof reduces to eqrefl, hence should relate convertible terms. The dependent elimination
rule of co-inductive fixed points compromises the type safety of the logic.

Coq uses the above dependent elimination rule for co-inductive fixed points. It was a
deliberate decision made for practical purposes. Nonetheless, one may want to weaken it to
avoid the incompatibility between equality and conversion. To do so, it suffices to erase the
dependency of the return predicate over the matched term:

Γ ` νXA→s. F : A→ s Γ ` i : A Γ ` u :
(
νXA→s. F

)
i Γ ` P : s′ Γ ` v : P

Γ ` match u return P with
forced y ⇒ v

: P

4 Prop

With all the common baggage for predicative sorts set in place, we can add impredicative
sorts to the algebraic presentation. The main such sort in Coq is the sort Prop of propositions.
The design of Prop is guided by proof irrelevance: even if it is not actually provable in
Coq, different proofs of a proposition are thought of as being equal. This property is useful
for program extraction: only the computationally relevant parts of a program need to be
executed to get the final result. In other words: propositions are considered as static data.
It is why, with disjunction and existential defined as:

Inductive Or (A B:Prop) : Prop :=
| or_introl : A → A ∨ B
| or_intror : B → A ∨ B.
Inductive Ex (A:Type) (P:A→Prop) : Prop :=
| ex_intro : forall x:A, P x → Ex A P.

the following terms are refused by type-checking:

match x with
| or_introl _ ⇒ true
| or_intror _ ⇒ false
end.

and

match x with
| ex_intro x _ ⇒ x
end.

On the other hand, it is not the case of every inductive type defined in Prop, that they
cannot be eliminated into Type. Conjunction and falsity are two counter-examples:

Inductive False : Prop := .
Inductive And (A B:Prop) : Prop :=
| conj : A → B → A ∧ B.

Coq allows elimination over these two propositions into Type, and both following terms are
well-typed:

match x return Bool with end.

and

H. Herbelin and A. Spiwack 181

match x with
| conj _ _ ⇒ true
end.

The object of this section is to make syntactically explicit what happens when an inductive
type of Coq is declared to be of sort Prop. The description elaborated in this section has
strong similarities with the system of bracket-types proposed by Awodey & Bauer [2]. They
describe the propositions as the subset of types with at most one element, and introduce a
left adjoint, written as brackets, to the inclusion of propositions into types. We will reuse
their notation, even though, in our intensional setting, T:Prop does not enforce that T has a
most one element, and the bracketing operation does not properly form an adjunction with
the inclusion from Prop to Type.

4.1 Impredicativity

Let us start by introducing the new sort Prop in the algebraic presentation:

Γ ` Prop : Type

As in [2], propositions form a subset of types. Coq has a subtyping rule (also known as
cumulativity) to make the inclusion transparent. We will, however, render it with a syntactic
construct:

Γ ` A : Prop
Γ ` {A} : Type

Γ ` u : A
Γ ` prf u : {A}

Γ ` u : {A} Γ, x: {A} ` P : s Γ, y:A ` v : P [x \ prf y]

Γ ` match u as x return P with
prf y ⇒ v

: P [x \u]

match prf u as x return P with
prf y ⇒ v

; v[y \u]

This definition simply makes {A} a synonym of A, except of sort Type. It is strictly positive
in A:

spX A

spX {A}

The fact that Prop is impredicative – i.e. supports the following product formation rules:

Γ ` A : s Γ, x:A ` B : Prop
Γ `

∏
x:A B : Prop

is easily understood in terms of proof irrelevance. Indeed, if for all x, B has at most one
element, so has the product over x. Even though it uses functional extensionality, which is
not provable.

TYPES 2013

182 The Rooster and the Syntactic Bracket

Γ ` 0 : Prop Γ ` 1 : Prop

Γ ` A : Prop Γ ` B : Prop Γ, x:A ` T : Prop Γ, x:A ` f : B
Γ `

∑f
x:AT : B → Prop

Figure 5 Singleton rules.

4.2 Singleton rules
The types which (ideally) preserve the proof irrelevance property are sometimes called
singleton types in the setting of Coq. In our algebraic presentation, they correspond
to inductive type family constructors with extra formation rules to make them preserve
propositions. The rules are shown in Figure 5.

This elucidates why Coq allows elimination over False and And into arbitrary type: False
is implemented as 0 and And A B and A×B. The elimination rules being unchanged, pattern-
matching over proofs of False and And are unrestricted. Because restricted pattern-matching
is often seen as the default, singleton types are said to enjoy singleton elimination.

Remark that, proofs of propositions being uninformative, there is essentially nothing to
be gained from depending on, or being indexed over a proposition. In consequence, the type
formation rule for proper indexing in Figure 5 is only useful, in practice, for the subcase of
cartesian product.

Coq actually implements two other singleton rules. The first one is for inductive fixed
points. In our algebraic presentation:

Γ ` A : s Γ, X:A→ Prop ` F : A→ Prop spX F

Γ ` µXA→Prop. F : A→ Prop

It allows to type the accessibility predicate Acc in Prop. This rule is sound in that fixed
points indeed preserve proof irrelevance in presence of functional extensionality. It is also
very useful for extraction: structural recursion over Acc allows the definition of functions
whose termination cannot be proved automatically by the guard condition. However, the
proof is no longer needed to ensure termination in the target languages of extraction. In this
sense, at least, it is static data.

The last singleton rule allows properly indexed families in Prop (not how it is stronger
than the rule dependent sum of Figure 5):

Γ ` A : Prop Γ ` B : Type Γ, x:A ` T : Prop Γ, x:A ` f : B
Γ `

∑f
x:AT : B → Prop

It turns the identity type Eq into a proposition. It is known to be sound to accept that Eq
is proof irrelevant [6]. It is also useful for extraction, as equal types, in a closed environment,
are extracted to the same type. Hence a program may safely eliminate over Eq knowing
that it will not affect the performances of the extracted code. In Coq, the index B in the
rule above can be of any sort Typei, however, this wisdom has been challenged in recent
years with the formulation of the univalence principle [15], of which a simple consequence is
that Eq is not proof irrelevant at every type. Indeed, some extracted Coq programs written
assuming the univalence principle crash.

To correct for the univalence principle, the singleton rule for proper indices can be simply
dropped; but it can also be restricted to the lowest sort: B : Type0. More precisely the

H. Herbelin and A. Spiwack 183

conjunction of the univalence principle and the proof irrelevance principle is consistent as
long as the singleton rule of proper indices is restricted to sorts s such that there is no sort
s′ other than Prop such that s′ : s. Because, if such a sort s′ exists, B : s′ and by univalence,
EqB has two distinct elements contradicting proof irrelevance.

For types which do not enjoy singleton elimination, turning them into propositions means
restricting their elimination. We achieve this effect by adding a single type construction
coercing from Type to Prop:

Γ ` A : Type
Γ ` [A] : Prop

Γ ` u : A
Γ ` 〈u〉 : [A]

Γ ` u : [A] Γ, x: [A] ` P : Prop Γ, y:A ` v : P [x \ 〈y〉]

Γ ` match u as x return P with
〈y〉 ⇒ v

: P [x \u]

match 〈u〉 as x return P with
〈y〉 ⇒ v

; v[y \u]

The important rule is the elimination rule, where the return clause is limited to be of sort
Prop, whereas every other type construction can be eliminated to any sort. Apart from this
restriction [A] is a synonym of A, except in Prop. In [2], the type theory is extensional, in
that the identity type and the conversion relation coincide. The elimination rules for bracket
is much finer and reflects precisely the fact that propositions are proof-irrelevant. In an
intensional type theory, restricting with respect to sorts approximates this behaviour: even if
we constrained propositions to be proof-irrelevant, not every proof irrelevant type will have
type Prop. The bracketing construction is also strictly positive:

spX A

spX [A]

It is actually possible, using only the impredicative dependent product to define a
bracketing operation:

∏
P :Prop (A→ P)→ P . Like [A] it behaves as A except it can only be

used to form a proposition. However, the impredicative encoding is positive but not strictly,
which motivates the introduction of the extra construction.

4.3 Examples
The logical connectives can be defined as follows:

False = 0
And = λAPropBProp. A×B
pair = λAPropBProp xA yB . (x, y)
Or = λAPropBProp. [A+B]

orintrol = λAPropBProp xA. 〈inl x〉
orintror = λAPropBProp yB . 〈inr y〉

Ex = λAType PA→Prop.

[∑
x:A

P x

]
exintro = λAType PA→Prop xA pP x. 〈(x, p)x:A.P 〉

TYPES 2013

184 The Rooster and the Syntactic Bracket

Note how, because of the brackets, existentials and disjunctions are prohibited from being
eliminated to non-propositional types. Thanks to the singleton rules, however, conjunction
and falsity do not require brackets.

As a final example, consider the type Ascending n p of ascending sequences of integers
between p and n defined by mutual recursion with the proposition Ge m p which stands from
m is greater than or equal to p:

Inductive Ascending : Nat → Nat → Type :=
| top : forall n, Ascending n n
| up : forall n p m, Ge m (s p) → Ascending n m → Ascending n p
with Ge : Nat → Nat → Prop :=
| ascend : forall m p, Ascending m p → Ge m p.

As Ascending has type Type, whereas Ge has type Prop, the translation to a single inductive
type is not as straightforward as Even and Odd. The translation requires the use of brackets
around the recursive calls:



AscendingGe =

µX(Nat×Nat)+(Nat×Nat)→Type. λi(Nat×Nat)+(Nat×Nat).(∑inl (n,n)
n:Nat 1

)
i

+
(∑inl j

j:Nat×Nat
∑

m:Nat [X (inr (m, s (π2 j)))]×X (inl (π1 j,m))
)
i

+
(∑inr j

j:Nat×NatX (inl j)
)
i

Ascending = λn p.AscendingGe (inl (n, p))
Ge = λmp. [AscendingGe (inr (m, p))]

5 Impredicative Set

In addition to the impredicative sort Prop, Coq has a sort Set which is predicative by default
but can be turned impredicative with a flag. Where Prop is meant to be used in the context
of separating static and dynamic information, the spirit of the impredicative sort Set is to be
as powerful as possible without being inconsistent. In the algebraic presentation, that means
being stable by every construction except dependent sums with the first projection in an
arbitrary sort (strong sums).

To mirror the optional nature of the impredicativity of Set, the rules for a predicative
sort Set are given in Figure 6; to turn impredicativity on, the rules of Figure 7 must be
used in addition to those of predicative Set. This presentation makes immediately apparent
that impredicative Set is an extension of predicative Set, in that every program of the latter
typechecks in the former.

The rules of Set are the same as those of Prop, with the exception of A + B which is
in Set when both A and B are – even with predicative Set. Hence, there are types in Set
with several elements – e.g. B. As a consequence, the bracketing operation which coerces
types in Type to Set does not enjoy an explanation in terms of proof irrelevance, as was
the case in Prop. As a matter of fact, there is no clear set-theoretical description at all. A
close cousin of Set bracketing, however, can be found in homotopy type theory [15], where,
roughly, groupoids are truncated to sets through a quotient of their homsets by the total
relation.

H. Herbelin and A. Spiwack 185

Γ ` Set : Type
Γ ` A : Set Γ, x:A ` B : Set

Γ `
∏

x:A B : Set

Γ ` A : Set Γ, x:A ` P : Set
Γ `

∑
x:A P : Set

Γ ` A : Set Γ ` B : Set
Γ ` A+B : Set Γ ` 1 : Set Γ ` 0 : Set

Γ ` A : s Γ, X:A→ Set ` F : A→ Set spX F

Γ ` µXA→Set. F : A→ Set

Γ ` A : Set Γ ` B : Set Γ, x:A ` T : Set Γ, x:A ` f : B
Γ `

∑f
x:AT : B → Set

Γ ` A : s Γ, X:A→ Set ` F : A→ Set spX F

Γ ` νXA→Set. F : A→ Set

Γ ` A : Set
Γ ` {A}Set : Type

Γ ` u : A
Γ ` eltu : {A}Set

Γ ` u : {A}Set Γ, x:{A}Set ` P : s Γ, y:A ` v : P [x \ elt y]

Γ ` match u as x return P with
elt y ⇒ v

: P [x \u]

match eltu as x return P with
elt y ⇒ v

; v[y \u]

spX A

spX {A}Set

Figure 6 Rules for predicative Set.

TYPES 2013

186 The Rooster and the Syntactic Bracket

Γ ` A : s Γ, x:A ` B : Set
Γ `

∏
x:A B : Set

spX A

spX [A]Set

Γ ` A : Type
Γ ` [A]Set : Set

Γ ` u : A
Γ ` 〈u〉Set : [A]Set

Γ ` u : [A]Set Γ, x:[A]Set ` P : Set Γ, y:A ` v : P [x \ 〈y〉Set]

Γ ` match u as x return P with
〈y〉Set ⇒ v

: P [x \u]

match 〈u〉Set as x return P with
〈y〉Set ⇒ v

; v[y \u]

Figure 7 Rules for impredicative Set.

6 Conclusion

The algebraic presentation of Coq makes the conversion between sorts explicit. The toplevel
inductive definitions of Coq can be understood as implicitly inserting canonical bracketing
operations when an inductive type is declared inside an impredicative sort but should be of
a different sort due to its form; and inserting type coercion from a smaller sort to a bigger
sort when applying a cumulativity rule.

Monolithic type definitions like in Coq have a number of advantages over the algebraic
presentation, they boil down to better type errors due to naming, better type inference
and better memory representation due to n-ary sums and products. However, the value of
the implicit coercions between sorts is less clear. In particular, the bracketing operation
to impredicative sorts is probably a better guide for program extraction than the current
method of figuring whether or not a given type is a proposition, which interacts badly with
universe polymorphism [7]. Explicit coercions for extraction are also in the spirit of [5].

All of the algebraic type constructors can actually be defined in Coq, except the two
fixed-points because there is no way to abstract over strictly positive type families. So is it
clear that expressions of the algebraic presentation which do not use inductive or co-inductive
fixed points can be translated into Coq. Occurrences of the fixed points in a type must be
λ-lifted and given a toplevel name. Some care must be given to avoiding the duplication of
such definitions otherwise types which must be convertible for the expression to typecheck,
might be seen as different in the Coq translation. Apart from this technicality, translation
from the algebraic presentation to Coq is straightforward. We claim that, at least if we extend
the algebraic presentation to a hierarchy of universes and the strict positivity condition is
made a bit more fine-grained, Coq terms can be, conversely, translated into the algebraic
presentation.

References
1 Andreas Abel. A polymorphic lambda-calculus with sized higher-order types. PhD thesis,

2006.
2 Steve Awodey and Andrej Bauer. Propositions as [Types]. Journal of Logic and Computa-

tion, 14(4):447–471, August 2004.

H. Herbelin and A. Spiwack 187

3 Henk Barendregt. Lambda calculus with types. Handbook of logic in computer science,
1992.

4 Bruno Barras. Semantical Investigations in Intuitionistic Set Theory and Type Theories
with Inductive Families. Thèse d’Habilitation, 2013.

5 Bruno Barras and Bruno Bernardo. The implicit calculus of constructions as a program-
ming language with dependent types. Foundations of Software Science and Computational
Structures, 4962:365–379, 2008.

6 Gyesik Lee and Benjamin Werner. Proof-irrelevant model of CC with predicative induction
and judgmental equality. 2011.

7 Pierre Letouzey and Bas Spitters. Implicit and noncomputational arguments using monads.
pages 1–16, 2005.

8 Peter Morris. Constructing Universes for Generic Programming. PhD thesis, 2007.
9 Peter Morris and Thorsten Altenkirch. Constructing strictly positive families. CATS ’07

Proceedings of the thirteenth Australasian symposium on Theory of computing, pages 111–
121, 2007.

10 Peter Morris, Thorsten Altenkirch, and Neil Ghani. A universe of strictly positive families.
IInternational journal of foundations of computer science, pages 83–107, 2009.

11 Ulf Norell. Towards a practical programming language based on dependent type theory. PhD
thesis, Chalmers University of Technology, 2007.

12 Chris Okasaki. Purely functional data structures. 1999.
13 Christine Paulin-Mohring. Définitions inductives en théorie des types d’ordre supérieur.

PhD thesis, Université Claude Bernard-Lyon I, 1996.
14 The Coq development team. The Coq Proof Assistant.
15 The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of

Mathematics.

TYPES 2013

A Direct Version of Veldman’s Proof of Open
Induction on Cantor Space via Delimited Control
Operators∗†

Danko Ilik1 and Keiko Nakata2

1 Research Center for Computer Science and Information Technologies
Macedonian Academy of Sciences and Arts
Skopje, Macedonia
danko.ilik@gmail.com

2 Institute of Cybernetics
Tallinn University of Technology
Tallinn, Estonia
keiko@cs.ioc.ee

Abstract
First, we reconstruct Wim Veldman’s result that Open Induction on Cantor space can be derived
from Double-negation Shift and Markov’s Principle. In doing this, we notice that one has to
use a countable choice axiom in the proof and that Markov’s Principle is replaceable by slightly
strengthening the Double-negation Shift schema. We show that this strengthened version of
Double-negation Shift can nonetheless be derived in a constructive intermediate logic based
on delimited control operators, extended with axioms for higher-type Heyting Arithmetic. We
formalize the argument and thus obtain a proof term that directly derives Open Induction on
Cantor space by the shift and reset delimited control operators of Danvy and Filinski.

1998 ACM Subject Classification F.4.1 Mathematical Logic, F.3.3 Studies of Program Con-
structs

Keywords and phrases open induction, axiom of choice, double negation shift, Markov’s princi-
ple, delimited control operators

Digital Object Identifier 10.4230/LIPIcs.TYPES.2013.188

1 Introduction

Let X be a set with an equality relation =X and a binary relation <X . We denote by Xω

and X∗ the set of infinite sequences, or streams, over X and the set of finite sequences over
X, respectively. Let elements of Xω be denoted by Greek letters α, β, γ, let natural numbers
be denoted by n, k, l,m, and let αn denote the finite sequence 〈α(0), α(1), . . . , α(n− 1)〉, i.e.,
the initial segment of length n of the sequence α.

The lexicographic extension <Xω of <X is a binary relation on streams, defined by

α <Xω β iff ∃n(αn =X∗ βn ∧ α(n) <X β(n)),

where =X∗ denotes the equality relation induced from =X by element-wise comparison, i.e.,
p =X∗ q iff p and q are of the same length and element-wise equal with respect to =X .

∗ D. Ilik’s work is covered by a Kurt Gödel Research Prize Fellowship 2011.
† K. Nakata acknowledges the ERDF funded EXCS project, the Estonian Ministry of Education and
Research research theme no. 0140007s12, and the Estonian Science Foundation grant no. 9398.

© Danko Ilik and Keiko Nakata;
licensed under Creative Commons License CC-BY

19th International Conference on Types for Proofs and Programs (TYPES 2013).
Editors: Ralph Matthes and Aleksy Schubert; pp. 188–201

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TYPES.2013.188
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

D. Ilik and K. Nakata 189

A non-empty subset U of Xω is called open if there is an enumeration π : N→ X∗ which
can approximate U , in the sense that membership in U can be defined1 by

α ∈ U iff ∃n∃k(αn =X∗ π(k)).

The Principle of Open Induction on Xω (equipped with <X and =X) is the following
statement, for U open:

∀α (∀β <Xω α (β ∈ U)→ α ∈ U)→ ∀α(α ∈ U). (OI-X)

One immediately sees that OI-X has the form of a well-founded induction principle.
However, one should note that, even for the simple choice of X = {0, 1} equipped with the
usual decidable order and equality relation, an open set U is generally uncountable, and the
lexicographic ordering <Xω is not well-founded!

The utility of this principle has been recognized by Raoult [15] who gave, using OI-X, a
new version of Nash-Williams’ proof of Kruskal’s theorem that does not explicitly use the
Axiom of Dependent Choice2.

OI-X was introduced in the context of Constructive Mathematics by Coquand [4]. He
proved OI-X by relativized Bar Induction, and also first considered separately the version
for Xω being the Cantor space [5].

Berger [3] showed that OI-X in higher-type Arithmetic, where X can be any type ρ,
is classically equivalent to the Axiom of Dependent Choice (DC) for the type ρ. He also
gave a modified realizability interpretation of OI-X by a schema of Open Recursion, and
showed that, unlike DC, OI-X is closed under double-negation- and A-translation – this
means that there is a simple way to extract open-recursive programs from classical proofs of
Π0

2-statements that use DC or OI-X.
In the context of Constructive Reverse Mathematics, in a series of lectures [18], Veldman

showed that Open Induction for Cantor space is equivalent to Double-negation Shift,

∀n¬¬A(n)→ ¬¬∀nA(n) (for any formula A(n)), (DNS)

in presence of Markov’s Principle,

¬¬∃nA0(n)→ ∃nA0(n) (for a decidable A0(n)). (MP)

Given that it is possible to obtain proofs for both MP [9] and DNS [11] using constructive
logical systems based on delimited control operators, it is a natural next step to attempt
to provide a direct constructive proof of OI for Cantor space based on delimited control
operators. This is what we do in this paper.

The remainder of the paper is organized as follows. In Section 2, we reconstruct in detail
Veldman’s argument that proves OI on Cantor space from DNS and MP via the principle
EnDec. In Section 3, we recall the logical system MQC+(S) from [11] that is able to prove a
strengthened version DNSS of DNS using delimited control operators. DNSS allows us to
prove (a minimal logic version of) EnDec without explicitly using MP. In Section 4, we give
a formalized proof term for OI on Cantor space in a variant of HAω based on the logical
system MQC+(S). In the concluding Section 5, we explain the current limitation of our
approach for extracting proofs from programs and we mention directly related works.

1 For simplicity, we exclude the possibility of U = ∅, so that we may take total enumerations π, rather
than partial enumerations, sending N to option(X∗).

2 Raoult proves OI-X using Zorn’s Lemma.

TYPES 2013

190 Open Induction via Delimited Control Operators

2 From DNS and MP to Open Induction for Cantor Space

We will consider the case X = B, where B = {0, 1} with 0 <B 1 and 0 =B 0, 1 =B 1, that is,
Open Induction on Cantor space, OI-B. We will show that OI-B is provable from DNS, MP,
and AC!0,B, where

∀xN∃!yBA(x, y)→ ∃fN→B∀xNA(x, f(x)) (AC!0,B)

is a restriction of the Axiom of Unique Countable Choice (also known as Countable Com-
prehension). All the arguments of this section take place in plain intuitionistic logic; if a
principle that is not intuitionistically derivable is used, that is explicitly noted.

In addition to the already introduced notational conventions, let p, q, r, s denote finite
binary sequences (bit-strings), B∗, and let p ∗ q denote the concatenation of p and q. For
a natural number k, Bk denotes the set of bit-strings of length k. Concrete bit-strings are
constructed using the notation 〈·〉, e.g. 〈〉 denotes an empty sequence, 〈0〉 the bit-string
of length 1 that contains a 0, 〈1, 1, 1, 1〉 the bit-string that contains four 1’s, etc. Thus
p ∗ 〈0〉 means that a zero bit is appended at the end of p. The function len(p) computes
the length of p. Analogously to the initial segment function αn on infinite sequences, we
denote by pn the initial segment function on finite sequences, with default value pn := p

when n > len(p). Instead of writing <Bω and =B∗ , we simply write < and =. We abbreviate
(S1 → S2) ∧ (S2 → S1) to (S1 ↔ S2). We may write n 6∈ A to mean ¬(n ∈ A).

By a Σ-formula, we mean a formula built only from existential quantifiers (over the set
N), disjunction, conjunction, and the equality symbol “=” for N. This definition is equivalent
to the usual definition of Σ0

1-formula if the language has all the primitive recursive symbols,
as is the case for the system from Section 4.

We say that a set B ⊆ N is enumerable when the membership in B is a Σ-formula, i.e.,
n ∈ B is defined as S(n) for a Σ-formula S. Equivalently3, B is enumerable when B is given
by a function f : N→ N such that n ∈ B is a notation for ∃m(f(m) = n+ 1). A set B ⊆ N
is decidable when we have that ∀n(n ∈ B ∨ n 6∈ B)4.

Veldman introduced the following principle.

I Axiom 1 (EnDec). Assume B ⊆ N is enumerable. Let, for any decidable C ⊆ B, we have
that, if ∃m(m 6∈ C), then ∃m(m 6∈ C ∧m ∈ B). Then N ⊆ B (and hence B is decidable).

Note that EnDec holds classically, since classically any B is decidable, so we may set C := B

to obtain N ⊆ B. Our interest in EnDec here is because it is a stepping stone to proving
OI-B.

I Theorem 1. Assuming AC!0,B, EnDec implies Open Induction on Cantor space.

Proof. Let A be a non-empty open subset of Cantor space5 i.e., there exists π : N → B∗
such that “α ∈ A” is a notation for ∃l,m(αl = π(m)). Let also A be progressive, that is,

∀α(∀β < α(β ∈ A)→ α ∈ A).

We want to show that ∀α(α ∈ A). Define B ⊆ B∗ as

p ∈ B iff ∃k∀q ∈ Bk∃l,m(p ∗ q l = π(m))

3 “Equivalent” in the system from Section 4.
4 In some literature, our “decidable” is called “detachable”.
5 The progressiveness on Cantor space in fact ensures that A is non-empty.

D. Ilik and K. Nakata 191

such that p is in B if p is “uniformly barred” by π. That is, p ∈ B if there exists k such that
any extension of p by a finite bit-string of length k is covered by π(m) for some m6.

It suffices to show 〈〉 ∈ B for the empty bit-string 〈〉, since we then know that π covers
the entire Cantor space. We show that B is actually equal to B∗, using EnDec. Notice that
B∗ is bijective to N by primitive recursive functions and B is enumerable7, hence we may
transport EnDec from N to B∗. It is left to show that, for any decidable subset C ⊆ B, if
∃q(q 6∈ C), then ∃r(r 6∈ C ∧ r ∈ B).

Suppose that such C and q are given. If 〈〉 ∈ C ⊆ B, then we have that q ∈ B. So we are
done. We assume 〈〉 6∈ C. Since C is decidable, we can construct α, using AC!0,B, such that

α(n) :=


0 , if αn ∗ 〈0〉 6∈ C
1 , if αn ∗ 〈0〉 ∈ C and αn ∗ 〈1〉 6∈ C
0 , if αn ∗ 〈0〉 ∈ C and αn ∗ 〈1〉 ∈ C

The sequence α tries to stay outside of C for as long as possible and tries to be minimal. It
first tries to “turn left” (value 0). If it was not possible, i.e., αn ∗ 〈0〉 ∈ C, then it tries to
“turn right” (value 1). If neither was possible, then it defaults to “turning left”. One may
notice that if α fails to stay outside of C at n+ 1, i.e., αn ∗ 〈0〉 ∈ C and αn ∗ 〈1〉 ∈ C, then
we have αn ∈ B. This fact, a manifestation of the compactness of Cantor space, will be used
later in the proof.

Now, we can find a prefix of α that is in B but not in C, by following α up to the first
point where it enters B. Let us first prove that α is in A, which guarantees that α has
a prefix in B, hence that α will enter B. We use progressiveness of A. Let β < α i.e.,
∃n(βn = αn∧β(n) = 0∧α(n) = 1). We have to show β ∈ A. By construction of α, α(n) = 1
is only possible if αn∗ 〈0〉 ∈ C and αn∗ 〈1〉 6∈ C. Noticing that β(n+ 1) = βn∗ 〈0〉 = αn∗ 〈0〉,
this yields β(n+ 1) ∈ C ⊆ B. We conclude that β ∈ A, which was to be shown.

From α ∈ A, we obtain l,m such that αl = π(m). We finish the proof by proving the
following more general statement by induction

∀n ≤ l (α(l − n) 6∈ C → ∃l′(αl′ 6∈ C ∧ αl′ ∈ B)) .

Indeed, since we have 〈〉 6∈ C, by instantiating the above statement with n := l, we obtain p
such that p 6∈ C and p ∈ B.

In the base case, n = 0, we have that αl 6∈ C by the hypothesis and that αl ∈ B (from
α ∈ A); so we set l′ := l. In the induction case for n+ 1 we consider three possibilities:
1. if α(l − (n+ 1)) ∗ 〈0〉 6∈ C, then α(l − n) = α(l − (n+ 1) + 1) = α(l − (n+ 1)) ∗ 〈0〉 6∈ C

and we close the case by induction hypothesis;
2. similarly, if α(l − (n + 1)) ∗ 〈0〉 ∈ C and α(l − (n + 1)) ∗ 〈1〉 6∈ C, then α(l − n) =

α(l− (n+ 1)+ 1) = α(l− (n+ 1))∗ 〈1〉 6∈ C, and we close the case by induction hypothesis;
3. if α(l− (n+ 1)) ∗ 〈0〉 ∈ C and α(l− (n+ 1)) ∗ 〈1〉 ∈ C, then we get that α(l− (n+ 1)) ∈ B

as we noted earlier. Recalling that we also have α(l− (n+ 1)) /∈ C by hypothesis, we can
set l′ := l − (n+ 1).

The first two cases could be merged into one, verifying only whether α(l−(n+1)+1) 6∈ C. J

6 A bit-string p is covered by q if, as a bit-string, q is a prefix of p, or the open set given by p is covered
by the open set given by q.

7 B is enumerable because it is defined by a Σ-formula: the bounded universal quantifier “∀q ∈ Bk” does
not pose a problem, since it could be interpreted as a bounded minimization operator, for example like
in §3.5 of [12].

TYPES 2013

192 Open Induction via Delimited Control Operators

I Remark. In the previous proof, we used AC!0,B when constructing the sequence α by
course-of-values recursion using the choice function extracted from the decidability of C.
Since the principle EnDec is classically valid, not using a choice axiom would mean that
one can reduce OI-B (and, using Berger’s results [3], also Dependent Choice for B) to plain
classical logic without choice8.

We now consider the principle of Double-negation Shift (DNS), which is independently
important because it allows to interpret the double-negation translation of the Axiom of
Countable Choice [16]. Following Veldman, we find it useful to consider the following variant
of DNS.

I Axiom 2 (DNSV). ¬¬∀n(A(n) ∨ ¬A(n)), for any formula A(n).

I Remark. The proof of equivalence between DNS and DNSV is analogous to the proof of
equivalence between the law of double-negation elimination (DNE) and the law of excluded
middle (EM). In minimal logic, which is intuitionistic logic without the rule of ⊥-elimination
(ex falso quodlibet), EM is weaker than DNE [1]. We expect a similar result for DNS, i.e.,
that DNSV is weaker than DNS in minimal logic.

When quantifier-free formulas and decidable formulas coincide, as in Arithmetic, we may
state Markov’s Principle using Σ-formulas.

I Axiom 3 (MP). For any Σ-formula S, we have that ¬¬S → S.

We can now prove EnDec from DNSVand MP.

I Theorem 2. DNSVand MP together imply EnDec.

Proof. Let the premises of EnDec hold. Given n ∈ N, we have to prove n ∈ B, which is a
Σ-formula. We are entitled to apply MP. Now, we have to show that ¬¬(n ∈ B). Suppose
¬(n ∈ B). Thanks to DNSV, it suffices to prove ⊥ assuming moreover that B is decidable,
i.e., ∀n(n ∈ B ∨ ¬(n ∈ B)). We use the premise of EnDec by taking C := B and recalling
that we have ¬(n ∈ B). This gives us ∃m(m ∈ B ∧¬(m ∈ B)), from which we derive ⊥. J

3 A Constructive Logic Proving EnDec

In this section, we recall the logical system MQC+(S) from [11], and show that EnDec is
provable in MQC+(S) (with a suitably instantiated parameter S), without an explicit use of
MP, thanks to the slightly stronger form of DNS that MQC+(S) proves.

MQC+(S) is a pure predicate logic system, parameterized over a closed Σ-formula S,
that, in addition to the usual rules of minimal intuitionistic predicate logic, adds two rules
for proving the Σ-formula S 9. The rule “reset”,

Γ `S S # (“reset”),
Γ `� S

sets a marker (under the turnstile) meaning that one wants to prove S. Once the marker is
set, one can use the “shift” rule,

8 Classically AC!0,B is equivalent to Dependent Choice for B (in Berger’s formulation), hence that we
only use AC!0,B is not a concern.

9 In the context of MQC+(S), Σ-formulas coincide with formulas without ∀ and →.

D. Ilik and K. Nakata 193

Γ, A⇒ S `S S S (“shift”),
Γ `S A

to prove by a principle related to double-negation elimination from classical logic. The idea is
to internalize in the formal system the fact, known from Friedman-Dragalin’s A-translation,
that a classical proof of a Σ0

1-formula can be translated to an intuitionistic proof of the same
formula, showing that classical proofs of such formulas are in fact constructive. The first
system built around this internalization idea was Herbelin’s [9] with the power to derive
Markov’s Principle. It satisfies, like MQC+(S), the disjunction and existence properties,
characteristic of plain intuitionistic logic.

The names “shift” and “reset” come from the computational intention behind the nor-
malization of these proof rules, Danvy and Filinski’s delimited control operators [6, 7, 8].
These operators were developed in the theory of programming languages with the aim of
enabling to write continuation-passing style (CPS) programs in so-called direct style. Since
CPS transformations are known to be one and the same thing as double-negation translations
[14], one can think of shift/reset in Logic as enabling to prove directly theorems whose
double-negation translation is intuitionistically provable. In order for this facility to remain
constructive, we allow its use only for proving Σ-formulas.

The natural deduction system for MQC+(S) is given in Table 1 with proof term annota-
tions. The diamond in the subscript of ` is a wild-card: `� denotes either ` or `S , where
in the latter the subscript S is the same formula as the parameter S. We mark ` with the
parameter to record that a reset has been set. The rules should be read bottom-up, so that
the marker is propagated from below to above the line. The usual intuitionistic rules neither
“read” nor “write” this marker, hence � denotes the same below and above the line. The reset
rule is the one that sets the marker (if it is not already set). If the marker has been already
set, then the marker is simply kept. This kind of use of reset would have no logical purpose,
but it would affect the course of normalization, hence the computational behavior of the
proof term. The rule shift can only be applied when the marker is set, hence it is assured
that we are ultimately proving the Σ-formula S.

The following theorem shows a utility of proving with shift and reset.

I Theorem 3. Let S be a closed Σ-formula and A(x) an arbitrary formula. The following
version of DNSV,((

∀x
(
A(x) ∨ (A(x)→ S)

))
→ S

)
→ S, (DNSVS)

is provable in MQC+(S).

Proof. Using the proof term λh.#h
(
λ̃x.Sk.k

(
ι2
(
λa.k(ι1a)

)))
. J

DNSVS is a version of DNSV, in which ⊥ is generalized to a closed Σ-formula S. DNSVS
already has some form of MP built in, as can be seen from the proof of Theorem 4 below.

We now state a version of EnDec which is suitable for use in minimal logic, where
⊥-elimination is absent.

I Axiom 4 (A minimal-logic version of Axiom 1). Assume that B ⊆ N is enumerable and
n ∈ N. Let, for any s ∈ N and any C ⊆ B, such that

∀x (x ∈ C ∨ (x ∈ C → s ∈ B)) ,

TYPES 2013

194 Open Induction via Delimited Control Operators

Table 1 Natural deduction system for MQC+(S), parameterized over a closed Σ-formula S, with
proof terms annotating the rules.

(a : A) ∈ Γ
AxΓ `� a : A

Γ `� p : A1 Γ `� q : A2 ∧IΓ `� (p, q) : A1 ∧A2

Γ `� p : A1 ∧A2 ∧i
EΓ `� πi p : Ai

Γ `� p : Ai ∨i
IΓ `� ιi p : A1 ∨A2

Γ `� p : A1 ∨A2 Γ, a1 : A1 `� q1 : C Γ, a2 : A2 `� q2 : C ∨EΓ `� case p of (a1.q1‖a2.q2) : C

Γ, a : A1 `� p : A2 →I
Γ `� λa.p : A1 → A2

Γ `� p : A1 → A2 Γ `� q : A1 →E
Γ `� p q : A2

Γ `� p : A(x) x fresh
∀I

Γ `� λ̃x.p : ∀xA(x)
Γ `� p : ∀xA(x)

∀EΓ `� p t : A(t)

Γ `� p : A(t)
∃IΓ `� (t, p) : ∃x.A(x)

Γ `� p : ∃x.A(x) Γ, a : A(x) `� q : C x fresh
∃EΓ `� dest p as (x.a) in q : C

Γ `S p : S # (“reset”)Γ `� #p : S
Γ, k : A→ S `S p : S

S (“shift”)Γ `S Sk.p : A

we have that, if

∃m(m ∈ C → s ∈ B),

then

∃m((m ∈ C → s ∈ B) ∧m ∈ B).

Then, n ∈ B.

The following result is the minimal-logic analogue of Theorem 2, showing that an instance
of Axiom 4 is derivable in MQC+(S).

I Theorem 4. Assume that B ⊆ N is enumerable and n ∈ N. The instance of Axiom 4 with
conclusion n ∈ B is derivable in the system MQC+(n ∈ B).

D. Ilik and K. Nakata 195

Proof. Let the premises of Axiom 4 hold. To show that n ∈ B, which is a Σ-formula, we
use DNSVS for A(x) := x ∈ B and S := n ∈ B. Now, given ∀x(x ∈ B ∨ (x ∈ B → n ∈ B)),
we have to show n ∈ B. We use the premise of Axiom 4 for s := n and C := B, and,
using the trivial proof of ∃m(m ∈ B → n ∈ B) for m := n, the premise gives us a proof of
∃m(m ∈ B ∧ (m ∈ B → n ∈ B)), from which we derive n ∈ B. J

4 A Proof Term for Open Induction

In this section, we give a proof term for OI on Cantor space in the system HAω
+(S) (by

suitably instantiating the parameter S), which is the system of axioms HAω (from §§1.6.15
of [17]) and AC!0,B added on top of the predicate logic MQC+(S) — the need of AC!0,B is
justified by Remark 2. Basic ingredients to construct the proof term are at hand: Theorem 1
and Theorem 4. We are to interpret them in HAω

+(S) and combine the thus obtained proof
terms for Theorem 1 and Theorem 4.

4.1 The system HAω
+(S)

Let S be a closed Σ-formula. First, we take a multi-sorted version of MQC+(S), that is,
given different sorts (denoted by σ, ρ, τ, δ), the language is extended with individual variables
(denoted by x, y, z) of any sort, and quantifiers for all sorts. We will not annotate quantifiers
with their sorts, since those will be clear from the context; we may annotate variables by
their sorts when we want to avoid ambiguity.

The sorts are built inductively, according to the following rules: there is a sort named 0; if
ρ and σ are sorts, then there is a sort named ρ→ σ. The intended interpretation is that the
sort 0 stands for N, the sort 0→ 0 stands for functions N→ N, the sort ((0→ 0)→ 0) for
functionals (N→ N)→ N, etc. We will employ the word ‘type’ instead of sort, henceforth,
and we abbreviate the type 0→ 0 by 1.

Now, we add to the language a binary predicate symbol = for individual terms of type 0,
intended to be interpreted as (the decidable) equality on N. We emphasize that we only have
decidable equality. The individual terms will be built from the function symbols 00 (zero),
(·+1)1 (successor), Πρ→τ→ρ and Σ(δ→ρ→τ)→(δ→ρ)→δ→τ (combinators), and R0→ρ→(ρ→0→ρ)→ρ

(recursor of type ρ). There is also the function symbol of juxtaposition which is not explicitly
denoted: for terms tσ→τ and sσ, t s is a term of type τ .

The axioms defining these symbols are (the universal closures of each of):

x = x, x = y → y = x, x = y → y = z → x = z, x = y → x+ 1 = y + 1,

x = y → t[x/z] = t[y/z] where t[x/z] is the simultaneous
substitution of x for z in t

t[Πxy/u] = t[x/u]
t[Σxyz/u] = t[xz(yz)/u]
t[R0yz/u] = t[y/u]

t[R(x+ 1)yz/u] = t[z(Rxyz)x/u]

We also add the axiom schema of induction, for arbitrary formula A(x), but only for variables
x of type 0:

A(0)→ ∀x0(A(x)→ A(x+ 1))→ ∀x0(A(x)) (IA)

TYPES 2013

196 Open Induction via Delimited Control Operators

Since “=” is the only predicate symbol, all atomic (prime) formulas are of form t = s. This
allows us to show that x = y → A(x)→ A(y), by induction on the complexity of formula A.

It is known that using the combinators one may define an individual term for lambda
abstraction, denoted λ̇x.t, of type 1, which satisfies the usual β-reduction axiom,

(λ̇x0.s0)t0 = s[t/x].

Using this and the recursor R, one can easily define all the usual primitive recursive functions.
Using the thus defined predecessor function, and the induction axiom, one can derive the
remaining Peano axioms, x+ 1 = y + 1→ x = y, and (x+ 1 = 0)→ 1 = 0, where we took
1 = 0 instead of ⊥ because we are in minimal logic. In fact, in the presence of arithmetic,
one can prove, again by induction, that the rule of ⊥-elimination (with ⊥ replaced by 1 = 0)
is derivable, although we will not need it.

Some notational conventions follow. We shall need to speak of bits, finite sequences of
bits (bit-strings), and infinite sequences of bits (bit-streams). Bits and bit-strings can be
encoded by natural numbers, but, instead of using the type 0 for terms of that kind, to be
more pragmatic, we will write bool (intended to interpret B) and bool∗ (intended to interpret
B∗). Bitstreams are represented by terms of type 0→ 0, but we will write 0→ bool instead.
We will need the operations for concatenation and initial segments of both bit-strings and
bit-streams, that we already introduced. In addition, the operator head(p) returns the first
bit of p, while tail(p) returns the string that follows the first bit of p. Although p is not a
function, we will use the notation p(n) to extract the (n+ 1)-th bit of p10. We will also use
the fact that one can define by primitive recursion a term if · · · then · · · else · · · of type
bool→ bool→ bool→ bool, such that the following equations hold:

if 0 then y else z = z

if x+ 1 then y else z = y

We will also need the usual operation min : 0 → 0 → 0 on numbers. All the mentioned
operations can be defined by a restricted amount of primitive recursion at higher types,
level 3 of the Grzegorcyk hierarchy would suffice. Hence we could work in a corresponding
subsystem of HAω, like for example G3Aωi from §3.5 of [12].

Finally, we shall also need the following choice axiom, a restriction of the usual Axiom of
Countable Choice (AC0,0):

∀x0∃!yboolA(x, y)→ ∃φ0→bool∀x0A(x, φ x) (AC!0,B)

Neither AC0,0 nor AC!0,B is provable in HAω. For arithmetical formulas, AC0,0 (and hence
AC!0,B) is an admissible rule for HAω [2].

4.2 Proof term for OI-B
We now formalize the concepts involved in the proof of OI-B. An open set A in Cantor
space is given, as a parameter to the logical system, by a term π of type 0 → bool∗, an
enumeration of basic opens. Each bit-string π(n) is a basic open and the union of them

10 head p (resp. p(n)) returns an arbitrary default value when p is an empty sequence (resp. len(p) < n+1).
However, we will use these operations only in a well-defined way.

D. Ilik and K. Nakata 197

makes A. Membership in A, α ∈ A, means that α is covered by some basic open from the
enumeration. Formally, we define

α ∈ A iff ∃l0∃m0(α l = π(m)),

and we see that membership in A is a closed Σ-formula. (Recall that π is a parameter of the
logical system.) The relation < on bit-streams is formalized as

β < α iff ∃n0 (βn = αn ∧ (β(n) = 0 ∧ α(n) = 1)
)
.

We use an instance of Axiom 4 for the enumerable set B given by a Σ-formula B(x), to
be defined below, and n given by the natural number encoding an empty sequence. We define

B(x) := ∃k0∀qboolk∃l0∃m0(x ∗ q l = π(m)),

where ∀qboolk denotes a bounded universal quantification over bit-strings of length k. Bounded
quantification can be encoded away using primitive recursive symbols, hence B(x) is still a
Σ-formula. We define p ∈ B by B(p). We have that, for any α, ∃n(αn ∈ B) iff α ∈ A. We
instantiate the parameter S of HAω

+(S) by 〈〉 ∈ B.
Next, we give an interpretation of the instance of Axiom 4 in HAω

+(〈〉 ∈ B). We
cannot literally formalize Axiom 4 in HAω

+(S), since HAω
+(S) does not have higher-order

quantification (but only quantification over higher types), hence we cannot quantify over
subsets. We therefore “interpret” (the instance of) Axiom 4:

∀sbool∗
(
∀χbool∗→bool

C

(
∀xbool∗(χC(x) = 1→ B(x))→

∃qbool∗(χC(q) = 1→ B(s))→ ∃rbool∗ ((χC(r) = 1→ B(s)) ∧B(r))
))
→ B(〈〉).

The enumerable set B is represented by the Σ-formula B(x), the decidable subset C by
a characteristic function χbool∗→bool

C , replacing the premise ∀x (x ∈ C ∨ (x ∈ C → s ∈ B)).
The characteristic function should intuitively read as χC(p) = 1 iff “p ∈ C”, but we take
B(s) for ⊥.

The proof term for OI-B is shown in Figure 1. We obtained it by formalizing the proofs
of Theorems 1 and 4 in HAω

+(〈〉 ∈ B), and then by normalizing and (hand-)optimizing the
formalized proof term, to obtain a compact and direct program proving OI-B.

To ease the presentation, at certain places, we have put after a semicolon the type
annotations for individual terms, and the formulas for proof terms. Some parts, being too
long, have been put below the main proof term. We suppress the use of equality axioms,
to keep the proof term simple without equality-rewriting terms. It is known that equality
proofs have no computational content when extracting programs, as they are realized by
singleton data types.

We now explain the behavior of the proof term. Given a proof h that A is progressive, it
has to show that α′ ∈ A for any α′. As in the proof of Theorem 1, it proves 〈〉 ∈ B (lines 3-10),
from which we obtain k′ such that h5 : ∀qboolk

′

∃l0∃m0(q l = π(m)) (line 10). Then h5(α′k′)
gives us j′ such that h6 : ∃m0(α′k′j′ = π(m)) (line 11), so that (min(k′, j′), h6) proves
∃l0∃m0(α′l = π(m)) (line 12). (An explicit proof of the equality α′k′j′ = α′(min(k′, j′))
would need an explicit definition of the min function and induction).

To show 〈〉 ∈ B, which is the parameter of the system, it applies a reset # (line 3),
and now it has to show the same formula, but classical logic in the form of the shift rule

TYPES 2013

198 Open Induction via Delimited Control Operators

1 : λh : ∀α(∀β < α(β ∈ A)→ α ∈ A).λ̃α′.
2 : dest

3 :
(

#dest aC(λ̃x.Sk.k(ι2(λa.k(ι1a)))) as (χ.b) in

4 : dest
(
hα
(
λ̃β.λh′ : β < α.

5 : dest (h′ : β < α) as (n.h′′) in
6 : dest (a1(π2π2h

′′) : β(n+ 1) ∈ B) as (k.h′′′) in
7 : dest (h′′′(〈β(n+ 1)〉 ∗ · · · ∗ 〈β(n+ k)〉) : β(n+ k + 1) ∈ A) as (j.h4) in
8 : (min(n+ k + 1, j), h4)

)
: α ∈ A

)
as (l.c) in

9 : dest (c : ∃m(αl = π(m)) as (m.d) in

10 : aI (λh.h) a3 l (0, λ̃q.(l, (m, d))) : 〈〉 ∈ B
)

as (k′.h5) in

11 : dest (h5 (α′k′) : α′k′ ∈ A) as (j′.h6) in
12 : (min(k′, j′), h6)

α := λ̇n.

R(n+ 1, 〈〉, (λ̇z.λ̇n′.z ∗ 〈if χ(z ∗ 〈0〉) then (if χ(z ∗ 〈1〉) then 0 else 1) else 0〉))(n)

a1 : α(n) = 1→ β(n+ 1) ∈ B := λh.case aB(χ(β(n+ 1))) of(
h1.(π1(b(β(n+ 1))))h1‖h2.(π1(b(β(n+ 1))))h2

)
a3 := λ̃n.λhI : αn ∈ B → 〈〉 ∈ B.λh : α(n+ 1) ∈ B.

case aB(χ(αn ∗ 〈0〉)) of (h1.(π2(b(α(n+ 1))))h1 h

‖h2.case (aB(χ(αn ∗ 〈1〉))) of (h21.(π2(b(α(n+ 1))))h21 h‖h22.hI a4))

a4 : αn ∈ B :=
dest ((π1(b(αn ∗ 〈0〉)))h2 : αn ∗ 〈0〉 ∈ B)

as (k0.f0 : ∀q : boolk0 .∃l,m(αn ∗ 〈0〉 ∗ q l = π(m))) in
dest ((π1(b(αn ∗ 〈1〉)))h22 : αn ∗ 〈1〉 ∈ B)

as (k1.f1 : ∀q : boolk1 .∃l,m(αn ∗ 〈1〉 ∗ q l = π(m)) in
(min(k0, k1) + 1, λq : boolmin(k0,k1)+1.if head(q) then f1(tail(q)k1) else f0(tail(q)k0))

Figure 1 Proof term for OI-B of type ((∀α(∀β < α(β ∈ A) → α ∈ A)) → ∀α′(α′ ∈ A)) in
HAω

+(〈〉 ∈ B).

can be used. Indeed, the proof term λ̃x.Sk.k(ι2(λa.k(ι1a))) proves the “decidability” of B:
∀xbool∗(x ∈ B ∨ (x ∈ B → 〈〉 ∈ B)). Using the proof term aC for the formula

∀xbool∗(x ∈ B ∨ (x ∈ B → 〈〉 ∈ B))→

∃χbool∗→bool∀xbool∗((χ(x) = 1→ x ∈ B) ∧ (χ(x) = 0→ (x ∈ B → 〈〉 ∈ B))),

we obtain from the decidability, a characteristic function χbool∗→bool for B. The proof term
aC is constructed by combining AC!0,B together with a proof term that eliminates disjunction
in presence of arithmetic11. The proof term b proves the characteristic property of χ, namely,
∀x((χ(x) = 1→ x ∈ B) ∧ (χ(x) = 0→ (x ∈ B → 〈〉 ∈ B))).

11For the proof of this statement, (A ∨B)↔ ∃x((x = 1→ A) ∧ (x = 0→ B)), see for example §§1.3.7 of
[17].

D. Ilik and K. Nakata 199

Now, using this χ, the bit-stream α that we saw in the proof of Theorem 1 can be
constructed using R and if · · · then · · · else · · · by (encoded) course-of-values recursion.

Next one needs to show that α ∈ A (lines 4-8). One uses progressiveness h: from β and a
proof h′ of β < α, one extracts n and a proof h′′ of

βn = αn ∧ (β(n) = 0 ∧ α(n) = 1).

Then, π2π2h
′′ shows α(n) = 1, and it is for a1 to show that αn∗ 〈0〉 = β(n+ 1) is in B, which

in turn shows, with the help of h′′′, that β(n+ k+ 1) ∈ A, i.e., ∃j∃i(β(n+ k + 1)j = π(i))12.
Now, one concludes β ∈ A with (min(n+ k+ 1, j), h4) by appropriately choosing the witness
min(n+ k + 1, j) so that β(n+ k + 1)j = β(min(n+ k + 1, j)) holds. (Again, we suppress
the proof term for this equality.)

The proof term a1 derives β(n + 1) ∈ B from α(n) = 1 by making a case distinction.
To generate the disjunction needed for the case analysis, one uses a proof term aB for
∀xbool(x = 0∨x = 1). For the first case in which χ(β(n+1)) = 0, we have an absurdity 1 = 0,
by definition of α, since α(n) = 1. Hence, by equality-rewriting we may use the proof term
h1 at type χ(β(n+ 1)) = 1. Now, both the two cases are closed by applying π1(b(β(n+ 1))),
which proves χ(β(n+ 1)) = 1→ β(n+ 1) ∈ B, to h1 and h2, respectively.

From α ∈ A, one obtains the length l and the index m such that αl is covered by the
basic open π(m) (the proof term d in line 9), and then one can show that α0 = 〈〉 is in B.
This last fact is derived by the proof term

aI (λh.h) a3 l (0, λ̃q.(l, (m, d))),

where aI is a proof term behind an instance of the induction axiom showing ∀l0(αl ∈ B →
〈〉 ∈ B). The proof term aI uses the proof term a3 which derives

∀n((αn ∈ B → 〈〉 ∈ B)→ α (n+ 1) ∈ B → 〈〉 ∈ B).

It is proved by case analysis, considering the possibilities for the pair (χ(αn∗〈0〉), χ(αn∗〈1〉)).
If either χ(αn ∗ 〈0〉) = 0 or χ(αn ∗ 〈1〉) = 0 holds, we close the case by the characteristic
property of χ together with the hypothesis h. Otherwise, i.e. both χ(αn ∗ 〈0〉) = 1 and
χ(αn ∗ 〈1〉) = 1 holds, we can deduce αn ∈ B (the proof term a4), from which the case
follows by the induction hypothesis.

5 Conclusion

We gave a direct proof for OI-B in a constructive predicate logic incorporating delimited
control operators. While computational interpretation of MQC+(S) is available, namely the
standard call-by-value weak-head reduction semantics for lambda calculus with shift and
reset, we cannot directly analyze the computational behavior of the proof term for OI-B
because, at the moment, we do not have a proof term for AC!0,B used in the proof term for
OI-B. The best way to overcome this limitation would be to extend MQC+(S) so that it can
derive AC!0,B as it is done in Martin-Löf Type Theory or constructive versions of Hilbert’s
epsilon calculus.

Another way to overcome the limitation would be to use a realizability or functional
interpretation that extracts programs from constructive proofs even in presence of choice

12The proof term a1(π2π2h
′′) proves αn ∗ 〈0〉 ∈ B, from which β(n+ 1) ∈ B follows using equality axioms.

As remarked earlier, equality-rewriting is implicit in the proof term.

TYPES 2013

200 Open Induction via Delimited Control Operators

axioms. For example, by using Spector’s extension of Gödel’s functional interpretation with
bar recursion, we could extract a program from our proof. However, to replace bar recursion
is the point of using delimited control operators in the first place.

If and when our future work is successful, it would allow, at least for the case of the
compact Cantor space, to replace Berger’s general-recursive computation schema of open
recursion by a terminating computation schema based on control operators.

The work of Krivine on Classical Realizability gives an interpretation of the Axiom of
Dependent Choice [13] using control operators for classical logic. Herbelin recently gave a
more direct version of that work [10], using classical control operators and coinduction.

Finally, we would like to mention Veldman’s recent work in Constructive Reverse Mathe-
matics [19, 20] that has served as inspiration for our work. An article of Veldman on the
equivalence of Open Induction with a number of other axioms is in preparation. In our paper,
we showed one direction of this equivalence for the topology of Cantor space seen as the
infinite binary tree rather than as the subset of the real line.

Acknowledgments. We would like to thank Wim Veldman for explaining us some of his
results, and Ralph Matthes and Hugo Herbelin for valuable comments on the draft.

References
1 Zena M. Ariola and Hugo Herbelin. Minimal classical logic and control operators. In

Thirtieth International Colloquium on Automata, Languages and Programming, ICALP’03,
Eindhoven, The Netherlands, June 30 to July 4, 2003, volume 2719 of Lecture Notes in
Computer Science, pages 871–885. Springer, 2003.

2 Michael Beeson. Goodman’s theorem and beyond. Pacific Journal of Mathematics, 84:1–16,
1979.

3 Ulrich Berger. A computational interpretation of open induction. In F. Titsworth, editor,
Proceedings of the Ninetenth Annual IEEE Symposium on Logic in Computer Science, pages
326–334. IEEE Computer Society, 2004.

4 Thierry Coquand. Constructive topology and combinatorics. In J. Myers and M. O’Donnell,
editors, Constructivity in Computer Science, volume 613 of Lecture Notes in Computer
Science, pages 159–164. Springer Berlin / Heidelberg, 1992. DOI: 10.1007/BFb0021089.

5 Thierry Coquand. A note on the open induction principle, 1997.
6 Olivier Danvy and Andrzej Filinski. A functional abstraction of typed contexts. Technical

report, Computer Science Department, University of Copenhagen, 1989. DIKU Rapport
89/12.

7 Olivier Danvy and Andrzej Filinski. Abstracting control. In LISP and Functional Program-
ming, pages 151–160, 1990.

8 Olivier Danvy and Andrzej Filinski. Representing control: A study of the CPS transforma-
tion. Mathematical Structures in Computer Science, 2(4):361–391, 1992.

9 Hugo Herbelin. An intuitionistic logic that proves Markov’s principle. In Proceedings, 25th
Annual IEEE Symposium on Logic in Computer Science (LICS’10), Edinburgh, UK, 11–14
July 2010, page N/A. IEEE Computer Society Press, 2010.

10 Hugo Herbelin. A constructive proof of dependent choice, compatible with classical logic.
In Proceedings of the 27th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2012, 25–28 June 2012, Dubrovnik, Croatia, pages 365–374. IEEE Computer Society,
2012.

11 Danko Ilik. Delimited control operators prove double-negation shift. Annals of Pure and
Applied Logic, 163(11):1549–1559, 2012.

http://dx.doi.org/10.1007/BFb0021089

D. Ilik and K. Nakata 201

12 Ulrich Kohlenbach. Applied proof theory: proof interpretations and their use in mathematics.
Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2008.

13 Jean-Louis Krivine. Dependent choice, ‘quote’ and the clock. Theor. Comput. Sci., 308(1–
3):259–276, 2003.

14 Chetan Murthy. Extracting Classical Content from Classical Proofs. PhD thesis, Depart-
ment of Computer Science, Cornell University, 1990.

15 Jean-Claude Raoult. Proving open properties by induction. Information Processing Letters,
29:19–23, 1988.

16 Clifford Spector. Provably recursive functionals of analysis: a consistency proof of analysis
by an extension of principles formulated in current intuitionistic mathematics. In Proc.
Sympos. Pure Math., Vol. V, pages 1–27. American Mathematical Society, Providence,
R.I., 1962.

17 Anne S. Troelstra, editor. Metamathematical Investigations of Intuitionistic Arithmetic and
analysis. Lecture Notes in Mathematics 344. Springer-Verlag, 1973.

18 Wim Veldman. The principle of open induction on the unit interval [0,1] and some of its
equivalents. Slides from presentation, May 2010.

19 Wim Veldman. Brouwer’s Fan Theorem as an axiom and as a contrast to Kleene’s Alter-
native. ArXiv e-prints, June 2011.

20 Wim Veldman. Some further equivalents of Brouwer’s Fan Theorem and of Kleene’s Alter-
native. ArXiv e-prints, November 2013.

TYPES 2013

The Montagovian Generative Lexicon ΛT yn:
a Type Theoretical Framework for Natural
Language Semantics∗

Christian Retoré

LaBRI, Université de Bordeaux / IRIT-CNRS, Toulouse
33405 Talence cedex, France
christian.retore@labri.fr

Abstract
We present a framework, named the Montagovian generative lexicon, for computing the semantics
of natural language sentences, expressed in many-sorted higher order logic. Word meaning is
described by several lambda terms of second order lambda calculus (Girard’s system F): the
principal lambda term encodes the argument structure, while the other lambda terms implement
meaning transfers. The base types include a type for propositions and many types for sorts of
a many-sorted logic for expressing restriction of selection. This framework is able to integrate
a proper treatment of lexical phenomena into a Montagovian compositional semantics, like the
(im)possible arguments of a predicate, and the adaptation of a word meaning to some contexts.
Among these adaptations of a word meaning to contexts, ontological inclusions are handled by
coercive subtyping, an extension of system F introduced in the present paper. The benefits of this
framework for lexical semantics and pragmatics are illustrated on meaning transfers and coercions,
on possible and impossible copredication over different senses, on deverbal ambiguities, and on
“fictive motion”. Next we show that the compositional treatment of determiners, quantifiers,
plurals, and other semantic phenomena is richer in our framework. We then conclude with the
linguistic, logical and computational perspectives opened by the Montagovian generative lexicon.

1998 ACM Subject Classification F.4.1 Mathematical Logic, I.2.7 Natural Language Processing,
I.2.4 Knowledge Representation Formalisms and Methods, D.1.1 Applicative (Functional) Pro-
gramming

Keywords and phrases type theory, computational linguistics

Digital Object Identifier 10.4230/LIPIcs.TYPES.2013.202

1 Introduction: word meaning and compositional semantics

The study of natural language semantics and its automated analysis, known as computational
semantics, is usually divided into formal semantics, usually compositional, which has strong
connections with logic and with philosophy of language, and lexical semantics which rather
concerns word meaning and their interrelations, derivational morphology and knowledge
representation. Roughly speaking, given an utterance, formal semantics tries to determine
who does what according to this utterance, while lexical semantics analyses the concepts
under discussions and their interplay i.e. what it speaks about.

∗ This work supported by the projects ANR LOCI and POLYMNIE, and was done during my CNRS-
sabbatical at IRIT.

© Christian Retoré;
licensed under Creative Commons License CC-BY

19th International Conference on Types for Proofs and Programs (TYPES 2013).
Editors: Ralph Matthes and Aleksy Schubert; pp. 202–229

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TYPES.2013.202
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Ch. Retoré 203

(1) a. A sentence: Some club defeated Leeds.
b. Its formal semantics: ∃x : e (club(x) & defeated(x, Leeds))

(2) Lexical semantics as found in a dictionary: defeat:

a. overcome in a contest, election, battle, etc.; prevail over; vanquish
b. to frustrate; thwart.
c. to eliminate or deprive of something expected

Although applications in computational linguistics require both aspects of semantics,
some applications rather focus on formal and compositional semantics, e.g. man machine
dialogue, non statistical translation, text generation while other applications like information
retrieval, classification, statistical translation rather stress lexical semantics.

Herein we refine compositional semantics with a treatment of some of lexical semantics
issues, in particular for selecting the right word meaning in a given context. Of course any
sensible analyser, including human beings, or Moot’s Grail parser [49] combines both the
predicate argument structures and the relations between lexical meanings to build a semantic
representation and to understand an utterance.

We define a framework named the Montagovian generative lexicon, written ΛTynas it
extends Tyn of Muskens [55] with the second order Λ operator and the corresponding
quantified Π types. It is based on Montague view of formal and compositional semantics [46],
but we provide a faithful and computable account of some phenomena of lexical semantics,
which have been addressed in particular by Pustejovsky and Asher [62, 5, 6]: correctness,
polysemy, adaptation of word meaning to the context, copredication over different senses
of a given expression. Our framework ΛTyn also suggests a finer grained analysis of some
formal and compositional semantic issues such as determiners, quantification, or plurals.

Compositional semantics is usually described within simply typed lambda calculus:
therefore its implementation is rather straightforward in any typed functional programming
language like ML, CaML or Haskell. The computational framework for natural language
semantics that we present in this paper, as well as the precise description of some semantics
constructions, is defined in a subsystem of system F (second order lambda calculus), which
does not go beyond the type systems of the afore mentioned functional programming languages.
Hence our proposals can easily be implemented in such a language, for instance in Haskell
along the lines of the good and recent book by van Eijck and Unger on computational
semantics with functional programming [73].

1.1 The syntax of compositional semantics
As opposed to many contributions to the domain of linguistics known as “formal semantics”
the present paper neither deals with reference nor with truth in a given situation: we only
build a logical formula (first order or higher order, single sorted or many-sorted) that can
be thereafter interpreted as one wants, if he wishes to. Hence we are not committed to any
particular kind of interpretation like truth values, possible worlds, game semantics,. . .

In the traditional Montagovian view, the process of semantic interpretation of a sentence,
consists in computing from syntax and word meanings, a logical formula (which possibly
includes logical modalities and intensional operators), and in interpreting this formula in
possible world semantics. Although Montague thought that intermediate representations,
including the logical formulae, should be regarded as unimportant, and should be wiped off
just after computing truth values and references, in this paper we precisely focus on the
intermediate representations, in particular on the logical formulae, which can be called the

TYPES 2013

204 The Montagovian Generative Lexicon ΛTyn

logical forms of sentences, with particular attention to the way they are computed – for the
time being, we leave out the interpretation of these formulae. A reason for doing so is that
we can encompass subtle questions, like vague predicates, generalised and vague quantifiers,
for which standard notions of truth and references are inadequate: possibly some interactive
interpretation would be better suited, as that proposed by Lecomte and Quatrini [33] or by
Abrusci and Retoré [1].

1.2 A brief reminder on Montague semantics
Let us briefly remind the reader how one computes the logical forms according to the
Montagovian view. Assume for simplicity that a syntactic analysis is a tree specifying how
subtrees apply one to the other – the one that is applied is called the function while the other
is called its argument. A semantic lexicon provides a simply typed λ-term [w] for each word
w. The semantics of a leaf (hence a word) w is [w] and the semantic [t] of a sub syntactic
tree t = (t1 , t2) is recursively defined as [t] = ([t1] [t2]) that is [t1] applied to [t2], in case
[t1] is the function and [t2] the argument – and as [t] = ([t2] [t1]) otherwise, i.e. when [t2] is
the function and [t1] the argument. In addition to these functional applications, the tree
could possibly include some λ-expressions, for instance if the syntactic structure is computed
with a categorial grammar that includes hypothetical reasoning like Lambek calculus and its
extensions, see e.g. [53, Chapter 3].

The typed λ-terms from the lexicon are given in such a way that the function always has a
semantic type of the shape a→ b that matches the type a of the argument, and the semantics
associated with the whole tree has the semantic type t, that is the type of propositions.
This correspondence between syntactical categories and semantic types, which extends to
a correspondence between parse structures and logical forms is crystal clear in categorial
grammars, see e.g. [53, Chapter 3]. Typed λ-terms usually are defined out of two base types,
e for individuals (also known as entities) and t for propositions (which have a truth value).
Logical formulae can be defined in this typed λ-calculus as first observed by Church a long
time ago. This early use of lambda calculus, where formulae are viewed as typed lambda
terms, cannot be merged with the more familiar view of typed lambda terms as proofs. The
proof such a typed lambda term corresponds to is simply the proof that the formula is well
formed, e.g. that a two-place predicate is properly applied to two individual terms of type e
and not to more or fewer objects, nor to objects of a different type etc. This initial vision of
lambda calculus was designed for a proper handling of substitution in deductive systems à la
Hilbert. One needs constants for the logical quantifiers and connectives:

Quantifier Constant Type
there exists ∃ (e→ t)→ t

for all ∀ (e→ t)→ t

Connective Constant Type
and & t→ t→ t
or ∨ t→ t→ t

implies ⊃ t→ t→ t

Constant Type
defeated e→ e→ t

won, voted e→ t
Liverpool, Leeds e

· · · · · ·

as well as predicates for the precise language to be described – a binary predicate like won
has the type e → e → t – as usual the type a→ b→ c→ u stands for a→ (b→ (c→ u))
and the term h t s r stands for (((h t) s) r) (h being a function of arity at least 3).

Ch. Retoré 205

word semantic type u∗

semantics : λ-term of type u∗

xv the variable or constant x is of type v
some (e→ t)→ (e→ t)→ t

λP e→t. λQe→t. (∃(e→t)→t (λxe. (&t→t→t(P x)(Q x))))
club e→ t

λxe. (clube→t x)
defeated e→ e→ t

λye. λxe. ((defeatede→e→t x)y)
Leeds e

Leeds

Figure 1 A simple semantic lexicon.

A small example goes as follows. Assume the syntax says that the structure of the
sentence “Some club defeated Leeds.” is

(some (club)) (defeated Leeds)

where the function is always the term on the left. If the semantic terms are as in the lexicon
in Figure 1, placing the semantical terms in place of the words yields a large λ-term that can
be reduced:((

λP e→t. λQe→t. (∃(e→t)→t (λxe. (&t→t→t(P x)(Q x))))
)(
λxe. (clube→t x)

))((
λye. λxe. ((defeatede→e→t x)y)

)
Leedse

)
↓ β(

λQe→t. (∃(e→t)→t (λxe(&t→t→t(clube→t x)(Q x))))
)(

λxe. ((defeatede→e→t x)Leedse)
)

↓ β(
∃(e→t)→t (λxe. (&t→t→t(clube→t x)((defeatede→e→t x)Leedse)))

)
This λ-term of type t can be called the logical form of the sentence. It represents the

following formula of predicate calculus (admittedly more pleasant to read):

∃x : e (club(x) & defeated(x, Leeds))

The above described procedure is quite general: starting with a properly defined semantic
lexicon whose terms only contain the logical constants and the predicates of the given
language one always obtains a logical formula. Indeed, such λ-terms always reduce to a
unique normal form and any normal λ-term of type t (preferably η long, see e.g. [53, Chapter
3]) corresponds to a logical formula.

If we closely look at the Montagovian setting described above, we observe that it is
weaving two different “logics”:

Logic/calculus for meaning assembly (a.k.a glue logic, metalogic,. . .) In our example, this
is simply typed λ-calculus with two base types e and t – these terms are the proof in
intuitionistic propositional logic.

Logic/language for semantic representations In our example, that is higher-order predic-
ate logic.1

1 It can be first-order logic if reification is used, but this may induce unnatural structure and exclude
some readings.

TYPES 2013

206 The Montagovian Generative Lexicon ΛTyn

The framework we present in this paper mainly concerns the extension of the metalogic
and the reorganisation of the lexicon in order to incorporate some phenomena of lexical
semantics, first of all restrictions of selection. Indeed, in the standard type system above
nothing prevents a mismatch between the real nature of the argument and its expected
nature. Consider the following sentences:2

(3) a. * A chair barks.
b. * Jim ate a departure
c. ? The five is fast

Although they can be syntactically analysed, they should not receive a semantical analysis.
Indeed, “barks” requires a “dog” or at least an “animate” subject while a “chair” is neither
of them; “departure” is an event, which cannot be an “inanimate” object that could be eaten;
finally a “number” like “five” cannot do anything fast – but there are particular contexts in
which such an utterance makes sense and we shall also handle these meaning transfers.

1.3 The need of integrating lexical semantics in formal semantics
In order to block the interpretation of the semantically ill formed sentences above, it is quite
natural to use types, where the word type should be understood both in its intuitive and
in its formal meaning. The type of the subject of barks should be “dog”, the type of “fast”
objects should be “animate”, and the type of the object of “ate” should be “inanimate”.
Clearly, having, on the formal side a unique type e for all entities is not sufficient.

The traditional view with a single type e for entities has another related drawback. It is
unable to relate predicates whose meanings are actually related, although a usual dictionary
does. A common noun like “book” is usually viewed as a unary predicate “book:e→ t” while
a transitive verb like “read” is viewed as a binary predicate “read: e→ e→ t” This gives the
proper argument structure of Mary reads a book. as (∃x : ebook(x) & reads(Mary, x)) but
this traditional setting cannot relate the predicates book and read – while any dictionary
does. With several types, as we shall have later on, we could stipulate that the object of
“read” ought to be something that one can “read”, and a “book” can be declared as something
that one can “read”, “write”, “print”, “bind”, etc. Connections between a predicate like
“book” and predicates like “write”, “read”, etc. allow to interpret sentences like “I finished
my book” which usually means “I finished to read my book” and sometimes “I finished to
write my book”, the other possible senses being even rarer.

Hence we need a more sophisticated type theory than the one initially used by Montague
to filter semantically invalid sentences. But in many cases some flexibility is needed to accept
and analyse sentences in which a word type is coerced into another type. In sentence (3c), in
the context of a football match, the noun “five” can be considered as a player i.e. a “person”
who plays the match with the number 5 jersey, who can “run”.

There is a vast literature on such lexical meaning transfers and coercions, starting from
1980 [11, 12, 21, 57] – see also [32, 13] for more recent surveys of some lexical theories. In
those pioneering studies, the objective is mainly to classify these phenomena, to find the
rules that govern them. The quest of a computational formalisation that can be incorporated
into an automated semantic analyser appears with Pustejovsky’s generative lexicon in 1991

2 We use the standard linguistic notation: a “*” in front of a sentence indicates that the sentence is
incorrect, a “?” indicates that the correctness can be discussed and the absence of any symbol in front
means that the sentence is correct.

Ch. Retoré 207

[61, 62]. The integration of lexical issues into compositional semantics à la Montague and
type theories appears with the work by Nicholas Asher [5, 6] which led to the book [3], and
differently in some works of Robin Cooper with an intensive use of records from type theory
to recover frame semantics with features and attributes inside type-theoretical compositional
semantics [19, 20]

1.4 Type theories for integrating lexical semantics

As the aforementioned contributions suggest, richer type systems are quite a natural frame-
work for formal semantics à la Montague and for selectional restriction and coercions. Such
a model must extend the usual ones into two directions:

1. Montague’s original type system and metalogic should be enriched to encompass lexical
issues (selectional restriction and coercions), and

2. the usual phenomena studied by formal semantics (quantifiers, plurals, generics) should
be extended to this richer type system and so far only Cooper and us did so [19, 20, 16,
52, 41, 35, 64]

At the end of this paper, we shall provide a comparison of the current approaches, which
mainly focuses on (1). Let us list right now what the current approaches are:

The system works with type based coercions and relies on some Modern Type Theory
(MTT) 3 – this corresponds to the work of Zhaohui Luo [38, 39, 77, 16].

The system works with type based coercions and relies on usual typed λ-calculus extended
with some categorical logic rules – this approach by Asher [5, 6] culminated in his book
[3]

The system works with term based coercions and relies on second order λ-calculus – this
is our approach, first introduced with Bassac, Mery, and further developed with Mery,
Moot, Prévot, Real-Coelho. [8, 51, 50, 52, 41, 34, 35, 64, 63].

In fact our approach differs from the concurrent ones mainly because of the organisation
of the lexicon and of the respective rôles of types and terms. It can be said to be word-driven,
as it accounts for the (numerous) idiosyncrasies of natural language in particular the different
behaviour of words of the same type is coded by assigning them different terms, while others
derive everything from the types.

The precise type system we use, namely system F, could be replaced by some other type
theory. However, as far as the presentation of the system is concerned, it is the simplest
of all systems, because it only contains four term building operations (two of them being
the standard λ-calculus rules, the two others being their second order counterparts) and
two reduction rules (one of them being the usual beta reduction and the other one being
its second order counterpart). Dependent types, which are types defined from terms, are
a priori not included although they could be added if necessary.

3 This name Modern Type Theory (MTT) covers several variants of modern type theories, including
Martin-Löf type theory, the Predicative Calculus of (Co)Inductive Constructions (pCic), the Unifying
Theory of dependent Types (UTT), . . . – the latter one being the closest to the system used by Zhaohui
Luo

TYPES 2013

208 The Montagovian Generative Lexicon ΛTyn

2 A Montagovian generative lexicon for compositional semantic and
lexical pragmatics

We now present our solution for introducing some lexical issues in a compositional framework
à la Montague.

2.1 Guidelines for a semantic lexicon
We should keep in mind that whatever the precise solution presented, the following questions
must be addressed in order to obtain a computational model, so here are the guidelines of
our model:

What is the logic for semantic representation?
We use many-sorted higher order predicate calculus. As usual, the higher order can be
reified in first order logic, so it can be first order logic, but in any case the logic has to be
many-sorted. Asher [3] is quite similar on this point, while Luo use Type Theory [39].
What are the sorts?
The sorts are the base types. As discussed later on these sorts may vary from a small
set of ontological kinds to any formula of one variable. We recently proposed that they
correspond to classifiers in language with classifiers: this give sorts a linguistically and
cognitively motivated basis [43].
What is the metalogic (glue logic) for meaning assembly?
We use second order λ-calculus (Girard system F) in order to factor operations that
apply uniformly to a family of types. For specific coercions, like ontological inclusions we
use subtyping introduced in the present paper. Asher [3] uses simply typed λ-terms with
additional categorical rules, while Luo also use Type Theory with coercive subtyping [39].
What kind of information is associated with a word in the lexicon?
Here it will be a finite set of λ-terms, one of them being called the principal λ-term while
the other ones are said to be optional. Other approaches make use of more specific terms
and rules.
How does one compose words and constituents for a compositional semantics?
We simply apply one λ-term to the other, following the syntactic analysis, perform some
transformations corresponding to coercions and presupposition, and reduce the compound
by β-reduction.
How is the semantic incompatibility of two components rendered?
By type mismatch, between a function of type A → X and an argument of type B 6=
A. Most works that insert lexical considerations into compositional semantics model
incompatibility by type mismatch.
How does one allow an a priori impossible composition?
By using the optional λ-terms, which change the type of at least one of the two terms
being composed, the function and argument. Both the function and the argument may
provide some optional lambda terms. Other approaches rather use type-driven rules.
How does one allow or block felicitous and infelicitous copredications on various aspects
of the same word?
An aspect can be explicitly declared as incompatible with any other aspect. More recently
we saw that linear types (linear system F) can account for compatibility between arbitrary
subsets of the possible aspects. [42]

Each word in the lexicon is given a principal term, as well as a finite number, possibly
nought, of optional terms that licence type change and implement coercions. They may be

Ch. Retoré 209

inferred from an ordinary dictionary, electronic or not. Terms combine almost as usual except
that there might be type clashes, which account for infringements of selectional restriction:
in this case optional terms may be used to solve the type mismatch. In case they lead to
different results these results should be considered as different possible readings – just as
the different readings with different quantifier scopes are considered by formal semantics as
different possible readings of a sentence.

Let us first present the type and terms and thereafter we shall come back to the composition
modes.

2.2 Remarks on the type system for semantics
We use a type system that resembles Muskens Tyn [55] where the usual type of individuals,
e is replaced with a finite but large set of base types e1 , . . . , en for individuals, for instance
objects, concepts, events,. . . These base types are the sorts of the many-sorted logic whose
formulae express semantic representations. The set of base types as well as their interrelations
can express some ontological relations as Ben Avi and Francez thought ten years ago [10].

For instance, assume we have a many-sorted logic with a sort ζ for animals, a sort φ
for physical objects and a predicate eat whose arguments are of respective sort φ and ζ

the many-sorted formula ∀z : ζ ∃x : φ eat(z, x) is rendered in type theory by the λ-term:
∀ζ(λzζ . (∃φ(λxφ. ((eat x)z)))) with eat a constant of type φ → ζ → t. Observe that the
type theoretic formulation requires a quantifier for each sort α of objects, that is a constant
∀α of type (α→ t)→ t.4

What are the base types? We have a tentative answer, but we cannot be too sure of
this answer. Indeed, this is a subtle question depending on one’s philosophical convictions,
and also on the expected precision of the semantic representations,5 but it does not really
interfere with the formal and computational model we present here. Let us mention some
natural sets of base types that have been proposed so far, from the smallest to the largest:
1. A single base type e for all entities (but as seen above it cannot account for lexical

semantics).
2. A very simple ontology defines the base types: events, physical objects, living entities,

concepts, . . . (this resembles Asher’s position in [3]).
3. Classifiers. Many Asian languages (Chinese, Japanese, Korean, Malay, Burmese, Nepali,

. . .) and all Sign Languages, have classifiers that are pronouns specific to classes of
nouns (100–400) especially detailed for physical objects that can be handled, and for
animals.There are almost no classifiers in European languages. Nevertheless a word like
“head” in “Three heads of cattle.” can be considered as a classifier. Hence classifiers are a
rather natural set of base types, or the importation of the classifiers of a language in one
that does not have any [43]. But we do not claim that this is the definitive answer. For
instance, for a specific task, some other set of base types may be better.

4. A base type per common noun (thousands of base types) as proposed by Luo in [39]).
5. A type for every formula with a single free variable.

Our opinion is that types should be cognitively natural classes and rich enough to express
selectional restrictions. Whatever types are, there is a relation between types and properties.

4 We do not speak about interpretations, but if one wishes to, we do not necessarily ask for the usual
requirement that sorts are disjoint: this is coherent with the fact that in type theory, nothing prevents
a pure term from having several types.

5 For instance, a dictionary says that pregnant can be said of a “woman or female animal”, but can it be
said of a “grandma” or of a “heifer”?

TYPES 2013

210 The Montagovian Generative Lexicon ΛTyn

With base types as in (5), the correspondence seems quite clear, but, because types can be
used to express new many-sorted formulae, the set of types is in this case defined as a least
fixed point. For other sets of base types, e.g. (4) or (2) for each type T there should be a
corresponding predicate which recognises T entities among entities of a larger type. For
instance, if there is a type dog there should be a predicate d̂og : α→ t but what should be
the type α of its argument? Should it be “animal”, “animate”,. . . the simplest solution is to
assume a type of all individuals, that is Montague’s e, and to say that corresponding to any
base type a, there is a predicate, namely â of type e→ t.6

Let us make here a remark on the predicate constants in the language. If a predicate
constant, say Q, has the type u→ t with u (e – sometimes another type u is more natural
than the standard e – then there is a canonical extension Qe of Q to e which should be
interpreted as false for any object that cannot be viewed as a u-object. Predicates constants
from the first or higher order logical language do also have restrictions. Given a type u that
is smaller than the domain q of Q one can define Q|u which is defined as Q on q ∩ u and as
false elsewhere.

2.3 ΛTyn: many-sorted formulae in second order lambda calculus
Since we have many base types, and many compound types as well, it is quite convenient
and almost necessary to define operations over family of similar terms with different types,
to have some flexibility in the typing, and to have terms that act upon families of terms and
types. Hence we shall extend further Tyn into ΛTyn by using Girard’s system F as the type
system [25, 24]. System F involves quantified types whose terms can be specialised to any
type.

The types of ΛTynare defined as follows:
Constant types ei and t are (base) types.
Type variables α, β, . . . are types.
Whenever T and α respectively are a type and a type-variable, the expression Πα. T is a
type. The type variable may or may not occur in the type T .
Whenever T 1 and T 2 are types, T 1 → T 2 is a type as well.

The terms of ΛTyn, which encode proofs of quantified propositional intuitionistic logic,
are defined as follows:

A variable of type T i.e. x : T or xT is a term, and there are countably many variables of
each type.
In each type, there can be a countable set of constants of this type, and a constant of
type T is a term of type T . Such constants are needed for logical operations and for the
logical language (predicates, individuals, etc.).
(f t) is a term of type U whenever t : T and f : T → U .
λxT . t is a term of type T → U whenever x : T and t : U .
t{U} is a term of type T [U/α] whenever t : Λα. T and U is a type.
Λα. t is a term of type Πα. T whenever α is a type variable and t : T is a term without
any free occurrence of the type variable α in the type of a free variable of t.

The later restriction is the usual one on the proof rule for quantification in propositional
logic: one should not conclude that F [p] holds for any proposition p when assuming that a
property G[p] of p holds – i.e. when having a free hypothesis of type G[p].

6 An alternative solution, used by us and others [64, 17] would be Πα. α→ t, using quantification over
types to be defined in the next section.

Ch. Retoré 211

The reduction of the terms in system F or its specialised version ΛTynis defined by the
two following reduction schemes that resemble each other:

(λxφ. t)uφ reduces to t[u/x] (usual β reduction).
(Λα. t){U} reduces to t[U/α] (remember that α and U are types).

As an example, we earlier said that in Tyn we needed a first order quantifier per sort (i.e.
per base type). In ΛTynit is sufficient to have a single quantifier ∀, that is a constant of type
Πα. (α→ t)→ t. Indeed, this quantifier can be specialised to specific types, for instance to
the base type ζ, yielding ∀{ζ} : (ζ → t)→ t, or even to properties of ζ objects, which are
of type ζ → t, yielding ∀{ζ → t} : ((ζ → t)→ t)→ t. We actually do quantify over higher
types, for instance in the examples below we respectively quantify over propositions with a
human subject (Example 4), and over all propositions (Example 5):

(4) He did everything he could to stop them.
(5) And he believes whatever is politically correct and sounds good.

As Girard showed [25, 24] reduction is strongly normalising and confluent every term of
every type admits a unique normal form which is reached no matter how one proceeds.7 The
normal forms, which can be asked to be η-long without loss of generality, can be characterised
as follows (for a reference see e.g. [28]):
I Proposition 1. A normal Λ-term N of system F, β normal and η long to be precise, has
the following structure:8

sequence of head sequence of {· · · } and (· · ·) applications
λ and Λ abstractions variable to types W k and normal terms tlX l

N =
︷ ︸︸ ︷
(λxi

Xi | ΛX j)∗
︷ ︸︸ ︷
(· · · (h(ΠXk |X l→)∗Z

︷ ︸︸ ︷
({W k} | tlX l)∗) · · ·)

This has a good consequence for computational semantics, see e.g. [53, Chapter 3]:
I Property 1 (ΛTynterms as formulae of a many-sorted logic). If the predicates, the constants
and the logical connectives and quantifiers are the ones from a many-sorted logic of order
n (possibly n = ω) then the normal terms of ΛTyn of type t unambiguously correspond to
many-sorted formulae of order n.

Let us illustrate how F factors uniform behaviours. Given types α, β, two predicates
Pα→t, Qβ→t, over entities of respective kinds α and β for any ξ with two morphisms from ξ

to α and to β (see Figure 2), F contains a term that can coordinate the properties P,Q of
(the two images of) an entity of type ξ, every time we are in a situation to do so – i.e. when
the lexicon provides the morphisms.
I Term 1. [Polymorphic AND] is defined as

&Π = Λα. Λβ. λPα→t. λQβ→t. Λξ. λxξ. λfξ→α. λgξ→β . (&t→t→t (P (f x))(Q (g x))) .

Such a term is straightforwardly implemented in Haskell along the lines of [73]:

7 This is one way to be convinced of the soundness of F, which defines types depending on other types
including themselves: as it is easily observed that there are no normal closed terms of type ΠX. X ≡ ⊥ ,
the system is necessarily coherent. Another way is to construct a concrete model, for instance coherence
spaces, where types are interpreted as countable sets with a binary relation (coherence spaces), and
terms up to normalisation are interpreted as structure preserving functions (stable functions) [25].

8 This structure resembles the structure of (weak) head normal form, in functional programming, but the
terms inside the structure are also asked to be normal.

TYPES 2013

212 The Montagovian Generative Lexicon ΛTyn

Figure 2 Polymorphic conjunction: P (f(x))&Q(g(x)) with x : ξ, f : ξ → α, g : ξ → β.

andPOLY :: (a -> Bool) -> (b -> Bool) -> c -> (c -> a) -> (c -> b) -> Bool
andPOLY = \ p q x f g -> p (f x) && q (g x)

This can apply to say, a “book”, that can be “heavy” as a “physical object”, and “interesting”
as an “informational content” – the limitation of possible over-generation, that is the
production or recognition of incorrect phrases or sentences, is handled by the rigid use of
possible transformations, to be defined thereafter.

2.4 Organisation of the lexicon and rules for meaning assembly
The lexicon associates each word w with a principal λ-term [w] which basically is the
Montague term reminded earlier, except that the types appearing in [w] belong to a much
richer typed system. In particular, the numerous base types can impose some selectional
restriction. In addition to this principal term, there can be optional λ-terms also called
modifiers or transformations to allow, in some cases, compositions that were initially ruled
out by selectional restriction.

There are two ways to solve a type conflict using those modifiers. Flexible modifiers can
be used without any restriction. Rigid modifiers turn the type, or the sense of a word, into
another one which is incompatible with other types or senses. For a technical reason, the
identity, which is always a licit modifier, is also specified to be flexible or rigid. In the lalter
rigid case, it means that the original sense is incompatible with any other sense, although
two other senses may be compatible. Consequently, every modifier, i.e. optional λ-term is
declared, in the lexicon, to be either a rigid modifier, noted (r) or a flexible one, noted (f).
More subtle compatibility relations between senses can be represented by using the linear
version of system F as we did in [42].

The reader may be surprised that we repeat the morphisms in the lexical entries, rather
than having general rules. For instance, one could also consider morphisms that are not
anchored in a particular entry: in particular, they could implement the ontology at work
in [62] as the type-driven approach of Asher does [3]. For instance, a place (type Pl) could
be viewed as a physical object (type φ) with a general morphism Pl2φ turning places into
physical objects that can be “spread out”. We are not fully enthusiastic about a general use of

Ch. Retoré 213

word principal λ-term optional λ-terms rigid/flexible
book B̂ : e→ t IdB : B → B (f)

b1 : B → φ (f)
b2 : B → I (f)

town T̂ : e→ t IdT : T → T (f)
t1 : T → F (r)
t2 : T → P (f)
t3 : T → Pl (f)

Liverpool LplT IdT : T → T (f)
t1 : T → F (r)
t2 : T → P (f)
t3 : T → Pl (f)

spreadout spread_out : Pl→ t
voted voted : P → t
won won : F → t

where the base types are defined as follows:

B book
φ physical objects
I information

T town
Pl place
P people
F football team

Figure 3 A sample lexicon.

such rules since it is hard to tell whether they are flexible or rigid. As they can be composed
they might lead to incorrect copredications, while their repetition inside each entry offers a
better control of incorrect and correct copredications. One can think that some meaning
transfer differs although the words have the same type. An example of such a situation in
French is provided by the words “classe” and “promotion”, which both refer to groups of
pupils. The first word “classe” (English: “class”) can be coerced into the room where the
pupils are taught, (the “classroom”), while the second, “promotion” (English: “class” or
“promotion”) cannot.

Consequently, we in general prefer word-driven coercions, i.e. modifiers that are anchored
in a word. An exception are ontological inclusions that are better represented by type-driven
rules: “cars” are “vehicles” which are “artefacts” etc. This is the reason why we also allow
optional terms that are available for all words of the same type. This is done by subtyping
and more precisely by the notion of coercive subtyping that is introduced in Section 3.4.

3 A proper account of meaning transfers

In this section we shall see that the lexicon we propose, provides a proper account of the lexical
phenomena that motivated its definition: ill typed readings are rejected, coerced readings
are handled, felicitous copredications are analysed while infelicitous ones are rejected. Some
particular case of coerced readings are given a finer analysis as the polysemy of deverbals
(nouns derived from verbs, like “construction”), or fictive motion. Finally we introduce
coercive subtyping for system F which handles general coercions corresponding to ontological
inclusion.

TYPES 2013

214 The Montagovian Generative Lexicon ΛTyn

3.1 Coercions and copredication
One can foresee what is going to happen, using the lexicon given in Figure 3 with sentences
like:

(6) a. Liverpool is spread out.
b. Liverpool voted.
c. Liverpool won.

(7) Liverpool is spread out and voted (last Sunday).
(8) # Liverpool voted and won (last Sunday).

Our purpose is not to discuss whether this or that sentence is correct, nor whether this
or that copredication is felicitous, but to provide a formal and computational model which
given sentences that are assumed to be correct, derives the correct readings, and which given
sentences that are said to be incorrect, fails to provide a reading.

Ex. (6a) This sentence leads to a type mismatch spread_outPl→tLplT , since “spread out”
applies to “places” (type Pl) and not to “towns” as “Liverpool”. It is solved using the
optional term t3

T→Pl provided by the entry for “Liverpool”, which turns a town (T) into
a place (Pl) spread_outPl→t(t3 T→PlLplT) – a single optional term is used, the (f) /
(r) difference is useless.

Ex. (6b) and (6c) are treated as the previous one, using the appropriate optional terms.
Ex. 7 In this example, the fact that “Liverpool” is “spread out” is derived as previously,

and the fact that “Liverpool voted” is obtained from the transformation of the town into
people, who can vote. The two can be conjoined by the polymorphic “and” defined above
as term 1 (&Π) because these transformations are flexible: one can use one and the other.
We can make this precise using only the rules of second order typed lambda calculus.
The syntax yields the predicate (&Π(spread_out)Pl→tvotedP→t) and consequently the
type variables should be instantiated by α := Pl and β := P and the exact term is
&Π{Pl}{P}spread_outPl→tvotedP→t which reduces to:
Λξ. λxξ. λfξ→α. λgξ→β . (&t→t→t (spread_outPl→t (f x))(voted (g x))).
Syntax says that this term is applied to “Liverpool”. Consequently, the instantiation
ξ := T happens and the term corresponding to the sentence is, after some reduction steps,
λfT→Pl . λgT→P . (&t→t→t(spread_outPl→t (f LplT))(votedP→t (g LplT))).
Fortunately the optional λ-terms t2 : T → P and t3 : T → Pl are provided by the lexicon,
and they can both be used, since none of them is rigid. Thus we obtain, as expected
(&t→t→t (spread_outPl→ t (t3 T→Pl LplT))(votedPl→t (t2 T→P LplT))).

Ex. 8 The last example is rejected as expected. Indeed, the transformation of the town into
a football club prevents any other transformation (even the identity) to be used in the
polymorphic “and” that we defined above. We obtain the same term as above, with won
instead of spread_out. The corresponding term is:
λfT→Pl . λgT→P . (&t→t→t (wonF→t (f LplT))(votedP→t (g LplT)))
and the lexicon provides the two morphisms that would solve the type conflict, but
the one turning the Town into its football club is rigid, i.e. we can solely use this one.
Consequently the sentence is semantically invalid.

3.2 Fictive motion
A rather innovative extension is to apply this technique to what Talmy called fictive motion
[72]. Under certain circumstances, a path may introduce a virtual traveller following the

Ch. Retoré 215

path, as in sentences like:

(9) Path GR3 descends for two hours.

Because of the duration complement “two hours”, one cannot consider that descends means
that the altitude decreases as the curvilinear abscissa goes along the path. One ought to
consider someone who follows the road. We model this by one morphism associated with
the “Path GR3” and one with “descends”. The first coercion turns the “Path GR3” from
an immobile object into an object of type “path” that can be followed and the second one
coerces “descends” into a verb that acts upon a “path” object and introduces an individual
following the path downwards – this individual, which does not need to exist, is quantified,
yielding a proposition that can be paraphrased as “any individual following the path goes
downwards for two hours”. [51, 50]

3.3 Deverbals
Deverbals are nouns that correspond to action verbs, as “construction” or “signature”. Usually
they are ambiguous between result and process. We showed that our idiosyncratic model is
well adapted since their possible senses vary from one deverbal to another, even if the verbs
are similar and the suffix is the same.

(10) a. The construction took three months.
b. The construction is of traditional style.
c. * The building that took three months was painted white.

(11) a. The signature was illegible.
b. The signature took three months.
c. * Although it took three months the signature was illegible.
d. Although it took one minute, the signature was illegible.

We showed that a systematical treatment of deverbal meaning as the one proposed by the
type-driven approach does not properly account for the data. Indeed, the possible meanings
of a deverbal are more diverse than result and event, and there are no known rules to make
sure the deverbal refers to the event. Consequently, word entries in the lexicon must include
lexical information such as the possible meanings of the deverbal. These meanings can be
derived from the event expressed by the verb: meanings usually include the event itself (but
not always), the result (but not always), and other meanings as well like the place where the
event happens (e.g. English noun “pasture”). This lexical information can be encoded in our
framework, with one principal meaning and optional terms for accessing other senses and
the flexibility or rigidity of these optional terms – they are usually rigid, and copredication
on the different senses of a deverbal is generally infelicitous. We successfully applied our
framework and treatment to the semantic of deverbals, to the restrictions of selection (both
for the deverbal and for the predicate that may apply to the deverbal), to meaning transfers,
and to the felicity of copredications on different senses of a deverbal [63].

3.4 Coercive subtyping and ontological inclusions
As we said earlier on, ontological inclusions like “Human beings are animals.”, would be
better modelled by optional terms that are available for any word of the type, instead of
anchoring them in words and repeating these terms for every word of this type. The model
we described can take these subtyping inclusions into account as standard coercions, by

TYPES 2013

216 The Montagovian Generative Lexicon ΛTyn

. .

transitivity
A < B B < C

A < C
. .

covariance and contravariance of implication
(if identity coercions are allowed only the left most rule is needed)

A < B C < D

D → A < C → B

A < B

T → A < T → B

A < B

B → T < A→ T
. .

quantification over types
U < T [X]

X not free in U
U < ΠX. T [X]

U < ΠX. T [X]
U < T [W]

. .
Figure 4 Rules for coercive subtyping in system F.

specifying that a word like “human being” introduces a transformation into an “animal”.
But this is somehow heavy, since one should also say that “human beings” are “living beings”
etc. Any predicate, that applies to a class, also applies to an ontologically smaller class. For
instance, “run” that applies to “animals” also applies to “human beings”, because “human”
is a subtype of “animals”. These subtype coercions look type-driven, and, consequently,
would be more faithfully modelled with a proper notion of subtyping.

Coercive subtyping, introduced by Luo and Soloviev [40, 70] for variants of Martin-Löf
type theory, corresponds quite well to these particular transformations. One starts with a
transitive and acyclic set of coercions between base types, with at most one coercion between
any two base types, and from these given coercions rules derive coercions between complex
types, preserving the property that there is at most one coercion between any two types.

This kind of subtyping seems adequate for modelling ontological inclusions. Indeed, such
ontological inclusions when viewed as functions always are the identity on objects, hence there
cannot be two different manners to map them in the larger type. Furthermore, other notions
of subtyping that have been studied for higher order type theories are very complicated with
tricky restrictions on the subtyping rules. [15, 37]

Coercive subtyping, noted A0 < A, can be viewed as a short hand for allowing a predicate
or a function which applies to A-objects to apply to an argument whose type A0 is not the
expected type A but a subtype A0 of A. Hence coercive application is exactly what we were
looking for:

coercive application
f : A→ B u : A0 A0 < A

(f u) : B

The subtyping judgements, which have the structure of categorical combinators, are
derived with very natural rules given in Figure 4. These rules simply encode transitivity,
covariance and contravariance of implicative types (arrow types), and quantification over
type variables.

It should be observed that, given constants ci→j representing the coercions from a base
type ei to a base type ej , any derivable coercion T < U can be depicted by a linear Λ-term

Ch. Retoré 217

m : U of system F or ΛTynwith a single occurrence of a free variable x : T and occurrences of
the constants ci→j . The construction of the term according to the derivation rules is defined
as follows:

transitivity
x : A < t : B y : B < u : C

x : A < u[y := t] : C

covariance and contravariance of implication
x : A < t : B z : C < u : D

f : D → A < λzC . t[x := f(u)] : C → B

x : A < t : B
f : T → A < λwT . t[x := f(w)] : T → B

x : A < t : B
g : B → T < λxA. g(t) : A→ T

quantification over types
u : U < t : T [X]

X not free in U
u : U < ΛX. t : ΠX. T [X]

u : U < t : ΠX. T [X]
u : U < t{W} : T [W]

As easy induction shows that:
I Proposition 2. All terms derived in this system are linear, with a single occurrence of a
single free variable (whose type is on the left of “<”).

From this one easily concludes that:
I Proposition 3. Not all Λ-terms of system F can be derived in the subtyping system.

Any derivation c of ei < ej for base types ei , ej is equivalent to a coercion ci→j , i.e. our
derivation system does not introduce new coercions between base types. This kind of result is
similar to coherence in categories: given a compositional graph G, the free cartesian category
over G does not contain any extra morphism between objects from the initial compositional
graph. Here is the precise formulation of this coherence result:
I Proposition 4. Given a derivation of ei < ej for base types ei , ej whose associated Λ-term
is C̃, the normal form C of C̃ is a compound of ch→k applied to x : ei , which, because of the
assumptions on coercions, must be ci→j .

Proof. As seen above, a deduction of T < U clearly corresponds to a linear Λ-term of system
F, whose only free variable is x : T with the ci→j as constants. Hence it has a normal from
which also has a single free variable x : T and ci→j as constants.

Let us show that any normal Λ-term C of type ej with a single free variable x : ei and
constants ci→j : ei → ej is a compound of ci→j applied to xei , i.e. is a term of Ci defined by:

xei ∈ Ci
if cej ∈ Ci then (cj→k(c))ek ∈ Ci

TYPES 2013

218 The Montagovian Generative Lexicon ΛTyn

We proceed by induction on the number of occurrences of variables and constants in the
normal term C, whose form is, as said in Proposition 1:

sequence of head sequence of {· · · } and (· · ·) applications
λ and Λ abstractions variable to types W k and normal terms tlX l

C =
︷ ︸︸ ︷
(λxi

Xi | ΛX j)∗
︷ ︸︸ ︷
(· · · (h(ΠXk |X l→)∗Z

︷ ︸︸ ︷
({W k} | tlX l)∗) · · ·)

If the term C corresponds to a proof of ei < ej there is no (λxi
X i | ΛX j) in front, because

ej is neither of the form U → V nor of the form ΠX. T [X]. What may be the head variable?
It is either the only free variable of this term, namely xei , or a constant i.e. some coercion
ck→l.

If the head variable is xei then, because of its type, the ({W k} | tlX l)∗ part of the term
contains no application to a type nor to a term, hence ei = ej and the normal form is xei ,
which is in Ci

If the head variable is is some ck→l, which because of its type, may only be applied to a
normal term tl

X l of type ek . This normal term is a normal term of type ek with xei as its
single free variable and the constants cj→l. As tlX l has one symbol less than C, we can
conclude that tlX l is in Ci hence C ∈ Ci .

Hence in any case the normal form C : ej of the term C̃ : ej is in Ci .
Now, given that the coercions ci→j enjoy ck→j ◦ ci→j = ci→k (as part of our condition on

base coercions) it is easily seen that the only term of type ej in Ci is ci→j . J

We think that this coherence result can be improved by showing that there is at most
one normal term corresponding to a derivation S < T , although the proof is likely to use
some variant of reducibility candidates [24, 25].

An alternative presentation. The rules for coercive subtyping given above follow a natural
deduction style, as lambda terms of system F. Nevertheless, an alternative formulation of
the quantifier elimination rule is possible. It requires identity axioms (whose term is identity)
to derive obvious subtyping relations.

alternative quantifier elimination rule (sequent calculus style)

s : S[T] < t : U
ṡ : ΠX. S[X] < t[s := ṡ{T}]

4 Compositional semantics issues: determiners, quantifiers, plurals

So far we have focused on phenomena in lexical semantics that are usually left out of standard
models but properly accounted for by our model. However, we must also have a look at
compositional semantics, that is the logical structure of a sentence, to see whether our
model still properly analyses what standard compositional models do, and possibly, provide
a better analysis. Fortunately, sentence structures are correctly analysed but furthermore
our extended setting is quite appealing for some classical issues in formal semantics like
determiners and quantification, or plurals, as we show in this section.

Ch. Retoré 219

4.1 Determiners and quantifiers
The examples presented so far only involved proper names because we chose to extend the
treatment of definite descriptions with the ι operator of some authors [68, 22, 75, 76], to
indefinite articles and quantifiers. This slightly differs from the usual Montagovian setting,
the one we used for “some” in subsection 1.2. This standard treatment of quantification can
be adapted to many-sorted logic provided the two predicates, the common noun and the
verb phrase, apply to the same type, or that the conjunction and implication respectively
involved in existential and universal quantification allow some coercions, in the style of the
polymorphic &Π.

We adopt the view of quantified, definite, and indefinite noun phrases as individual
terms by using generic elements (or choice functions) [66, 65, 67] as initiated by Russell
[68] and formalised by Hilbert [26], Ackerman [2], before Hilbert and Bernays provided a
thorough presentation and discussion in [27]. This view of quantification has been adapted
to linguistics by researchers like von Heusinger see e.g. [22, 75, 76], and is not that far from
Steedman treatment of existential quantifiers by choice functions [71] although there are
some differences that we shall not discuss here.

How do we tune our model, in particular the types, if instead of the proper name
“Liverpool”, the examples contain “the town”, “a town”, “all towns”, or “most towns”?
Indefinite determiners, quantifiers, generalised quantifiers,. . . are usually viewed as functions
from two predicates to propositions, one expressing the restriction and the other the main
predicate see e.g. [59]

As we said, and this is especially true in a categorial setting such as the one Moot
implemented [49], the syntactic structure usually closely corresponds to the semantic structure.
But the usual treatment of quantification that we saw in subsection 1.2 infringes this
correspondence, since the semantic term “(λx. Keith played x)” in the semantic representation
(12c) of example (12a) has no corresponding constituent in its syntactical structure (12b):

(12) a. sentence: Keith played some Beatles song.
b. syntactical structure: (Keith (played (some (Beatles song))))
c. semantical structure: (some (Beatles song)) (λx. Keith played x)

Another criticism that applies to the usual treatment of quantifiers is the symmetry that
it wrongly introduces between the main predicate and the class over which one quantifies.
For instance, the two sentences below (13a,13b) usually have the same logical form (13c):

(13) a. Some politicians are crooks.
b. ? Some crooks are politicians.
c. ∃x. politician(x) & crook(x)

Hence, in accordance with syntax, we prefer to consider that a quantified noun phrase is
by itself some individual – a generic one which does not refer to a precise individual nor to a
collection of individuals. As [75] we use η for indefinite determiners (whose interpretation
picks up a new element) and ι for definite noun phrases9 (whose interpretation picks up the
most salient element). Regarding the deductive rules for handling these operators ι and η,
both correspond to Hilbert’s ε: only their interpretations in the discursive context differ.

Given a first order language L, epsilon terms and formulae are defined by mutual recursion:

9 Actually [75] writes ε instead of ι. We do not follow his notation because we also use Hilbert’s ε with
its traditional meaning.

TYPES 2013

220 The Montagovian Generative Lexicon ΛTyn

Any constant or variable from L is a term.
f(t1 , . . . , tp) is a term provided that each ti is a term and f is a function symbol of arity
p.
εxA and τxA are terms if A is a formula, x is a variable — any free occurrence of x in A
is bound by εx or τxA.
s = t is a formula whenever s and t are terms.
R(t1 , . . . , tn) is a formula provided each ti is a term and R is a relation symbol of arity n.
A&B, A ∨B, A⇒ B are formulae if A and B are formulae.
¬A is formula if A is a formula.

As the example below shows, a formula of first order logic can be recursively translated
into a formula of the epsilon calculus, without surprise:

(14) ∀x∃yP (x, y) = ∃yP (τxP (x, y), y) = P (τxP (x, εyP (τxP (x, y), y)), εyP (τxP (x, y), y))

Admittedly the epsilon translations of usual formulae may look quite complicated – at least
we are not used to them.

The deduction rules for τ and ε are the usual rules for quantification:
From A(x) with x generic in the proof (no free occurrence of x in any hypothesis), infer
A(τx . A(x)).
From B(c) infer B(εxB(x)).

The other rules can be found by duality:
From A(x) with x generic in the proof (no free occurrence of x in any hypothesis), infer
A(εx¬A(x)).
From B(c) infer B(τx¬B(x)).

Hence we have F (τxF (x)) ≡ ∀x.F (x) and F (εxF (x)) ≡ ∃x. F (x) and because of negation,
one only of these operators is needed, usually the ε operator is used, and the resulting logic
is known as the epsilon calculus: εxA(x) = τx¬A(x)

Hilbert in [27] turned these symbols into a mathematically satisfying deductive system
that properly describes quantification. The first and second epsilon theorem basically say
that this is an alternative formulation of first order logic.
First epsilon theorem When inferring a quantifier free formula C without ε from quantifier

free formulae Γ without ε, the derivation can be done within quantifier free predicate
calculus.

Second epsilon theorem When inferring a formula C without ε symbol from formulae Γ not
involving the ε symbol the derivation can be done within usual predicate calculus.

The epsilon calculus, restricted to the translations of usual formulae with the help of the
two epsilon theorems, provided the first correct proof of Herbrand theorem (much before
mistakes where found and solved by Goldfarb) and a way to prove, during the same period
as Gentzen worked on the same question of the consistence of Peano arithmetic with the
epsilon substitution method [27]. Later, Asser [7] and Leisenring [36] worked on the epsilon
calculus more specifically in order to have models and completeness. Nevertheless, as one can
read on Zentralblatt (see e.g. [14, 44]) these results are misleading as well as the posterior
corrections. Only the proof theoretical aspects of the epsilon calculus seem to have been
further investigated with some success by Mints10 [45] or by Moser and Zach [54].

10We are sorry to learn that the great logician Grigori Mints just passed away on May 29, 2014.

Ch. Retoré 221

In a typed model, a predicate that applies to α-objects is of type α→ t. Consequently
the semantic constant ι corresponding to “the” introducing definite descriptions, should
be of type: (α → t) → α, and, in order to have a single constant ι, its type should be
Πα. (α → t) → α.11 Therefore, if we have a predicate dog that applies to entities of type
animate the term ι(dog) (written ιx. dog(x) in untyped models), i.e. the semantics of “the
dog” is of type animate. . . . but we would like this term to enjoy the property dog! How
could we say so, since the predicate dog does not appear in ι, but only its type. Indeed,
only “animate” entities appear in ι as an instantiation of α. We solve this by adding a
presupposition12 P (ι(P)) for any P of type α → t , as soon as some entity enjoying P is
uttered.13

As advocated by von Heusinger and others, indefinite descriptions that are in fact
existentially quantified noun phrases are processed similarly using Hilbert’s ε instead of ι:
both ι and ε are constants of type Πα. (α → t) → α. Determiners are modelled in our
framework by such typed constants, see [66, 65, 67]. This solution avoids the problems
evoked in examples (12a) and (13b). For instance, regarding the unwanted asymmetry in the
semantics of (13b) the formulae P (εxQ(x)) and Q(εxP (x)) are not equivalent – and neither
of them is equivalent to a first order formula, but Q(εxP (x)), with P (εxP (x)) which is added
as a presupposition, entails P&Q(εxP&Q(x)) ≡ ∃x. P (x)&Q(x).

It should be observed that generics introduced by Hilbert’s operators fit better into our
typed and many-sorted semantic representations. Indeed, intuitively it is easier to think of a
generic “politician” or “song” than it is to think of a generic “entity” or “individual”.

One can even introduce constants that model generalised quantification. They are typed
just the same way, and this construct can be applied to compute the logical form of statement
including the “most” quantifier, as exposed in [64]. It does not mean that we have the
sound and complete proof rules nor a model theoretical interpretation: we simply are able
to automatically compute logical forms from sentences involving generalised and vague
quantifiers such as “most”, “many”, “few”.

4.2 Individuals, plurals and sets in a type-theoretical framework
The organisation of the types also allows us to handle simple facts about plurals, as shown
in [52, 41] – which resembles some of Partee’s ideas [58]. Here are some classical examples
involving plurals, exemplifying some typical readings for plurals:

(15) a. *Keith met.
b. Keith and John met. (unambiguous).

(16) a. *The student met.
b. The students met. (unambiguous, one meeting)

(17) a. The committee met. (unambiguous, one meeting)
b. The committees met. (ambiguous: one big meeting, one meeting per committee,

several meetings invoking several committees)

11An alternative type working with any predicate α̂ that corresponds to a type α, would be Πα. α.
12A presupposition is a proposition which is not explicitly stated but which is assumed by the uttered

proposition and by its negation as well: “Keith stopped smoking.” and “Keith did not stop smoking”
both presuppose “Keith used to smoke.”. Observe that a typing judgement t : a is not easy to refute, as
a presupposition: indeed after “The dog is sleeping on the sofa.” one can hardly answer “It is not an
animal.” or “It is not a dog.” although one can say “It is not sleeping”.

13 If the predicate P corresponds to a type τ i.e. P = τ̂ , this presupposition is better written as ι(τ̂) : τ .

TYPES 2013

222 The Montagovian Generative Lexicon ΛTyn

q Λα. λxα. λyα. x = y

∗ ΛαλPα→t. λQα→t. ∀xα. Q(x)⇒ P (x)
ΛαλR(α→t)→t. λSα→t→t. ∀Pα→tS(P)⇒ R(P)
c Λα. λR(α→t)→t. λPα→t. ∀xα. P (x)⇒ ∃Qα→tQ(x) ∧ (∀yαQ(y)⇒ P (y)) ∧R(Q)

Figure 5 Some operators for plurals.

(18) a. The students wrote a paper. (unambiguous)
b. The students wrote three papers. (covering)

Such readings are derivable in our model because one can define in F operators for
handling plurals. Firstly, one can add, as a constant, a cardinality operator for predicates
||_|| : Πα. (α → t) → N where N are the internal integers of system F, namely N =
ΠX. (X → X)→ (X → X), or a predefined integer type as in Gödel system T – this might
be problematic if infinitely many objects satisfied the predicate, but syntax and restriction of
selection can make sure it is only applied when it makes sense. Secondly, as shown in Figure
5, we can have operators for handling plurals: q (turning an individual into a property/set, a
curried version of equality), ∗ (distributivity), # (restricted distributivity from sets of sets to
its constituent subsets), c (for coverings), etc. The important fact is that the computation
of such readings uses exactly the same mechanisms as lexical coercion. Some combinations
are blocked by their types, but optional terms coming either from the predicate or from the
plural noun may allow an a priori prohibited reading. To be precise we also provide specific
tools for handling groups that are singular nouns, each of which denoting a set. All these
functions are easily implemented in a typed functional programming language like Haskell,
in the style of [73].

5 Comparison with related work and conclusion

5.1 Variants and implementation
Some variation is possible in the above definition of the Montagovian generative lexicon
without changing its general organisation. For instance, as suggested in the beginning of
section 2 the set of base types can be discussed. We proposed to use classifiers as base types
of a language with classifiers, because classifiers are linguistically and cognitively motivated
classes of words and entities. But it is fairly possible that other sets of base types are better
suited in particular for specific applications [43].

In relation to this issue, the inclusion between base types, which in our model are
morphisms, can be introduced with words or as general axioms. We prefer the first solution
that allows idiosyncratic behaviours, dependent on words as explained in subsection 2.4 with
“classe” and “promotion”. Nevertheless when dealing with ontological inclusions, or other
very general coercions, we think a subtyping approach is possible and reduces the size of the
lexicon, this is why we are presently exploring coercive subtyping.

The type we gave for predicates can also vary: it could be systematically e→ t, but as
explained in paragraph 4, types u→ t are possible as well – but transition from one form to
another is not complicated.

An important variant is to define the very same ideas within a compositional model like
λ-DRT [56] the compositional view of Discourse Representation Theory [29] which can, as
its name suggests, handle discursive phenomena. Thus one can integrate the semantical
and lexical issues presented here into a broader perspective. This can be done, and in fact

Ch. Retoré 223

several applications of the model presented here are already included in the Grail parser
by Richard Moot, in particular for French [49]. The grammar was automatically extracted
from annotated corpora, but unfortunately the refined semantic terms we need can only be
typed by hand. Consequently we only tested the semantic analyses described herein on a
small specific lexicon. For instance, our treatment of fictive motion (cf. subsection 3.2) has
been tested with a detailed lexicon for spatial semantics, but with λ-DRT [50] rather than
plain lambda calculus [51]. The Grail parser is written with Prolog and as far as semantics is
concerned, a functional programming language like CaML or Haskell would be better suited,
as van Eijck and Unger show in [73].

5.2 Comparison with related work
There are many similarities with the contemporary work by Asher and Luo [4, 39, 16].

A first difference is the type system. Our type system, F, is quite powerful but simple:
four-term building operations, and two reduction rules. Luo makes use of a version of Modern
Type Theories (MTT), closed to the Unifying Theory of dependent Types (UTT), whose
expressive power and computational complexity is difficult to compare: it is predicative but
it includes dependent types. Hence it is not clear whether MTT better characterises the logic
needed for meaning assembly. Quantification over type variables is quite comparable and
admits ∀α : CN (CN are common nouns) which is quite convenient although it can certainly
be encoded within system F using the fact that finite sums can be defined in system F, hence
x : α, α : CN can be rephrased if there are finitely many CN . This is both a positive and
negative feature of system F: it can encode many things, but encodings are often dull. A
possible solution, similar to [69], is to introduce predefined types F with specific reduction
schemes – e.g. adding integers as in Gödel’s system T.

Regarding coercions, Luo [38] makes an extensive use of coercive subtyping, which he
introduced with Soloviev [70]: as said in their paper this kind of subtyping may also work
well with system F. So we can say that the system of Luo is very similar. Dependent types
and predicative quantification may be closer to what we wish to model, but the formal
diversity of the numerous employed rules may result in an obscure formalisation. The typed
system at work in Asher’s view [3] is a simple type theory extended with type constructors
and operations imported from category theory. The theory extends cartesian closed category
with a few of the many operations that one finds in topos theory, like being a subobject.
This approach is difficult to compare with the two above, since it does not belong to the
same family: morphisms do not represent (quotiented) proofs of some logic, they are closer
to a set theoretic interpretation.

Another ingredient of our models are base types. Asher leaves the set of base types open,
but rather small (say a dozen) : e, t, physical objects, etc., with a linguistically motivated
subtyping relation @ defined over these types. Luo, especially in his later article [39], wants
to equate base types with common nouns (also with coercions between them), and this is a
possible compromise between any formula and the minimal base type system which makes it
difficult to express some selectional restrictions with types. However it seems that there are
too many of them, since not every common noun appears as a restriction of selection for
another word in a dictionary. Dealing with classifiers as base types is a recent proposal of ours
which seems cognitively and linguistically motivated. It is worth exploring this hypothesis
empirically in tests over corpora.

The subtyping relation between base types are language independent in these two models,
i.e. they are not triggered by words, but simply by types. We opted for a compromise
in which only ontological inclusions are type-driven, using coercive subtyping, while other
coercions are word-driven.

TYPES 2013

224 The Montagovian Generative Lexicon ΛTyn

Regarding the general organisation of the lexicon and its composition modes, the same
difference applies. While according to Asher and Luo, types determine the coercions, in our
approach the coercions are provided by the terms in the lexicon, i.e. by the words themselves
and not by their types, with an exception for ontological inclusions. The recent claim by
Luo that base type should be common nouns (that are words) partly blurs the differences
between on the one hand the type-driven approaches of himself and Asher and, on the other
hand, ours which is more idiosyncratic being based on words and terms that are known to
be arbitrary.

Finally one may wonder whether we finally derive similar logical forms. They actually are
quite similar: we derive higher order many-sorted logical formulae, Asher derives formulae in
a category that can be seen as an intuitionnistic set theory, which works with sorts, and Luo
derives formulae of type theory. All these are more or less the same: higher order is possible,
although not extensively used in examples, and there are sorts or types.

A possible difference may lie in the distance between syntax and semantics. Indeed, the
effective computability of the semantic representations requires a specific treatment of the
common structures in compositional semantics like determiners, quantifiers, plurals,. . . and to
be integrated in a general analysis that also includes phenomena like time or aspect. For the
time being we did more on such issues than the others, but I am pretty sure that a similar
treatment is possible within the approach developed by Asher and Luo.

5.3 Perspectives

Apart from fixing up the optimal variant among the possible variants of our model, to study
and develop the convergence with related work, or to pursue the implementation, there
are some questions both on type theory and on linguistic modelling, both theoretical and
practical, that deserve to be further studied.

The acquisition of the semantic lexicon has both theoretical and practical aspects. In
particular, how could one acquire the optional lambda terms that represent coercions?
Syntactic information on words can be automatically extracted: indeed, Moot’s parser that
we used to experiment our type theoretical semantic analyses was automatically acquired
[48, 47]. By now there are some techniques [78] to extract the usual lambda terms of Montague
semantics of subsection 1.2 that represent the argument structure of words. Machine learning
(see e.g. [23]) and serious games (that are games with an outcome besides entertainment,
and in particular collaborative games with a purpose [74] that have been shown to be quite
efficient for constructing linguistic ressources) are also able to learn relations between words
see e.g. [18, 31]. However, up to now there are no learning algorithms for acquiring a set of
base type, nor for determining given a set of base type, the optional lambda terms, and our
experiments with Moot parser were performed using a hand typed semantic lexicon.

On the logical side there are many intriguing questions.
One is the relation in a type system with sorts between the (higher order) predicate
calculus and the type system, exemplified by the relation between type judgements x : T
that, as linguistic presuppositions, cannot be denied and predicates T̂ (x) that can be
denied.
The Hilbert operator ε, which looks more natural in this typed system, deserves to be
further studied. Since most of the results are false but Hilbert’s original results, the study
of both the deductive system and the interpretation of those operators is appealing. In
particular, we are puzzled by formulae with Hilbert operators that have no corresponding
formula in usual logic.

Ch. Retoré 225

The coercive subtyping we introduced in this paper should also be further explored, e.g.
by proving that there is at most one coercion between any two types.
It is quite clear that we do not need the full power of system F: we chose this system of
variable types and quantified types for its simplicity and elegance. Nevertheless one may
wonder whether there is a simple restriction that would be sufficient. Linear versions of
system F both have a lower complexity [30] and allow a finer grained treatment of the
constraints on sense compatibility [42].

Regarding computational linguistics, and applications to natural language processing,
the way the discourse context is handled is important. In particular, the permanence and
the propagation of constraints (e.g. on sense compatibilities) through linguistic structure
deserves to be further studied. Observe that:

(19) a. This salmon was living nearby Scottish coast. It was delicious.
b. ? This salmon that was living nearby Scottish coast was delicious.
c. * This salmon was living nearby Scottish coast and was delicious.

We believe that the type theoretical and many-sorted view presented in this paper may
shed new light on classical challenges of natural language semantics. A known difficult
example is the semantics of mass nouns, like wine, which can be quantified:

(20) a. He drank some wine.
b. He drank all the wine.

Thanks. Special thanks to Sergeï Soloviev for his explanations on coercive subtyping during
my CNRS sabbatical at IRIT.

Many thanks to Christian Bassac who introduced me to the topic, to my coauthors Bruno
Mery (Bordeaux), Richard Moot (Bordeaux), Michele Abrusci (Roma), Laurent Prévot (Aix),
Livy Real (Curitiba). I also thanks for helpful discussions Nicholas Asher, Zhaohui Luo,
Marta Abrusan, Claire Beyssade, Heather Burnett, Sarah-Jane Conrad, Francis Corblin,
Fabio Del Prete, Alda Mari, Hazel Pearson.

Finally let me thank the anonymous reviewers for providing unusually insightful comments,
and the editors for their patience.

References
1 Vito Michele Abrusci and Christian Retoré. Quantification in ordinary language: from a

critic of set-theoretic approaches to a proof-theoretic proposal. In Peter Schröder-Heister,
editor, 14th Congress of Logic, Methodology and Philosophy of Sciences, 2011.

2 W. Ackermann. Begründung des “tertium non datur” mittels der Hilbertschen Theorie der
Widerspruchsfreiheit. Mathematische Annalen, 93:1–36, 1924.

3 Nicholas Asher. Lexical Meaning in context – a web of words. Cambridge University press,
2011.

4 Nicholas Asher and Zhaohui Luo. Formalization of coercions in lexical semantics. In
Emmanuel Chemla, Vincent Homer, and Grégoire Winterstein, editors, Sinn und Bedeutung
17, pages 63–80, 2012. http://semanticsarchive.net/sub2012/.

5 Nicholas Asher and James Pustejovsky. The metaphysics of words in contexts, 2000.
6 Nicolas Asher. A type driven theory of predication with complex types. Fundamenta

Informaticae, 84(2):151–183, 2008.
7 Gunter Asser. Theorie der logischen auswahlfunktionen. Zeitschrift für Mathematische

Logik und Grundlagen der Mathematik, 1957.

TYPES 2013

http://semanticsarchive.net/sub2012/

226 The Montagovian Generative Lexicon ΛTyn

8 Christian Bassac, Bruno Mery, and Christian Retoré. Towards a Type-Theoretical Account
of Lexical Semantics. Journal of Logic Language and Information, 19(2):229–245, April
2010.

9 Denis Béchet and Alexander Ja. Dikovsky, editors. Logical Aspects of Computational Lin-
guistics – 7th International Conference, LACL 2012, Nantes, France, July 2–4, 2012. Pro-
ceedings, volume 7351 of Lecture Notes in Computer Science. Springer, 2012.

10 Gilad Ben-Avi and Nissim Francez. Categorial grammars with ontology-refined types. In
Categorial grammars – an efficient tool for natural language processing, pages 99–113, Mont-
pellier, June 2004. C.N.R.S.

11 Manfred Bierwisch. Wörtliche bedeutung - eine pragmatische gretchenfrage. In G. Grewen-
dorf, editor, Sprechakttheorie und Semantik, pages 119–148. Surkamp, Frankfurt, 1979.

12 Manfred Bierwisch. Semantische und konzeptuelle repräsentation lexikalischer einheiten. In
R. Ru̇z̆ic̆ka and W. Motsch, editors, Untersuchungen zur Semantik, pages 61–99. Akademie-
Verlag, Berlin, 1983.

13 Reinhard Blutner. Lexical semantics and pragmatics. In Fritz Hamm and Thomas Ede
Zimmermann, editors, Semantics, volume 10 (Sonderheft), pages 27–58, Hamburg, 2002.
Buske.

14 J.T. Canty. Zbl0327.02013 : review of “on an extension of Hilbert’s second ε-theorem” by
T.B. Flanagan (journal of symbolic logic, 1975). Zentralblatt Math.

15 Luca Cardelli, Simone Martini, John C. Mitchell, and Andre Scedrov. An extension of
system F with subtyping. Information and Computation, 109(1/2):4–56, 1994.

16 Stergios Chatzikyriakidis and Zhaohui Luo. An account of natural language coordination
in type theory with coercive subtyping. In Denys Duchier and Yannick Parmentier, editors,
7th International Workshop on Constraint Solving and Language Processing (CSLP’12).
Selected and Revised Papers, number 8114 in Lecture Notes in Computer Science. Springer,
2013.

17 Stergios Chatzikyriakidis and Zhaohui Luo. Adjectives in a modern type-theoretical setting.
In Glyn Morrill and Mark-Jan Nederhof, editors, FG, volume 8036 of Lecture Notes in
Computer Science, pages 159–174. Springer, 2013.

18 Philipp Cimiano and Johanna Wenderoth. Automatic acquisition of ranked qualia struc-
tures from the web. In John A. Carroll, Antal van den Bosch, and Annie Zaenen, editors,
ACL. The Association for Computational Linguistics, 2007.

19 Robin Cooper. Copredication, dynamic generalized quantification and lexical innovation
by coercion. In Fourth International Workshop on Generative Approaches to the Lexicon.
Université de Genève, 2007.

20 Robin Cooper. Copredication, quantification and frames. In Pogodalla and Prost [60],
pages 64–79.

21 D.A. Cruse. Lexical semantics. Cambridge textbooks in linguistics. Cambridge University
Press, 1986.

22 Urs Egli and Klaus von Heusinger. The epsilon operator and E-type pronouns. In Urs
Egli, Peter E. Pause, Christoph Schwarze, Arnim von Stechow, and Götz Wienold, editors,
Lexical Knowledge in the Organization of Language, pages 121–141. Benjamins, 1995.

23 Peter Flach. Machine Learning: The Art and Science of Algorithms That Make Sense of
Data. Cambridge University Press, New York, NY, USA, 2012.

24 Jean-Yves Girard. Une extension de l’interprétation de Gödel à l’analyse et son application:
l’élimination des coupures dans l’analyse et la théorie des types. In Jens Erik Fenstad, editor,
Proceedings of the Second Scandinavian Logic Symposium, volume 63 of Studies in Logic
and the Foundations of Mathematics, pages 63–92, Amsterdam, 1971. North Holland.

25 Jean-Yves Girard. The blind spot – lectures on logic. European Mathematical Society, 2011.

Ch. Retoré 227

26 David Hilbert. Die logischen grundlagen der mathematik. Mathematische Annalen, 88:151–
165, 1922.

27 David Hilbert and Paul Bernays. Grundlagen der Mathematik. Bd. 2. Springer, 1939.
Traduction française de F. Gaillard, E. Guillaume et M. Guillaume, L’Harmattan, 2001.

28 Gérard P. Huet. Résolution d’équations dans des langages d’ordre 1,2,...,ω. Thèse de
doctorat d’état, Université Paris VII, 1976.

29 Hans Kamp and Uwe Reyle. From Discourse to Logic. D. Reidel, Dordrecht, 1993.
30 Yves Lafont. Soft linear logic and polynomial time. Theoretical Computer Science, 318(1–

2):163 – 180, 2004.
31 Mathieu Lafourcade and Alain Joubert. Computing trees of named word usages from a

crowdsourced lexical network. In IMCSIT, volume Computational Linguistics – Applica-
tions (CLA’10), pages 439–446, 2010.

32 Sven Lauer. A comparative study of current theories of polysemy in formal semantics.
Master’s thesis, Cognitive science Osnabrück - Computational Linguistics, 2004.

33 Alain Lecomte and Myriam Quatrini. Figures of dialogue: a view from ludics. Synthese,
183:59–85, 2011.

34 Anaïs Lefeuvre, Richard Moot, and Christian Retoré. Traitement automatique d’un corpus
de récits de voyages pyrénéens : analyse syntaxique, sémantique et pragmatique dans le
cadre de la théorie des types. In SHS Web of Conferences, editor, Congrès mondial de
linguistique française, pages 2485–2497, 2012.

35 Anaïs Lefeuvre, Richard Moot, Christian Retoré, and Noémie-Fleur Sandillon-Rezer. Traite-
ment automatique sur corpus de récits de voyages pyrénéens : Une analyse syntaxique,
sémantique et temporelle. In Traitement Automatique du Langage Naturel, TALN’2012,
volume 2, pages 43–56, 2012.

36 Albert C. Leisenring. Mathematical logic and Hilbert’s ε symbol. University Mathematical
Series. Mac Donald & Co., 1967.

37 Giuseppe Longo, Kathleen Milsted, and Sergei Soloviev. Coherence and transitivity of
subtyping as entailment. Journal of Logic and Computation, 10(4):493–526, 2000.

38 Zhaohui Luo. Contextual analysis of word meanings in type-theoretical semantics. In
Pogodalla and Prost [60], pages 159–174.

39 Zhaohui Luo. Common nouns as types. In Béchet and Dikovsky [9], pages 173–185.
40 Zhaohui Luo, Sergei Soloviev, and Tao Xue. Coercive subtyping: Theory and implementa-

tion. Inf. Comput., 223:18–42, 2013.
41 Bruno Mery, Richard Moot, and Christian Retoré. Plurals: individuals and sets in a richly

typed semantics. In Shunsuke Yatabe, editor, Logic and Engineering of Natural Language
Semantics 10 (LENLS 10), pages 143–156. Keio University, 2013. ISBN 978-4-915905-57-5.

42 Bruno Mery and Christian Retoré. Advances in the logical representation of lexical se-
mantics. In Valeria de Paiva and Larry Moss, editors, Natural Language and Computer
Science (LICS 2013 satellite workshop), New-Orleans, 2013.

43 Bruno Mery and Christian Retoré. Semantic types, lexical sorts and classifiers. In B. Sharp
and M. Zock, editors, 10th International Workshop on Natural Language Processing and
Cognitive Science, Marseilles, September 2013.

44 G. Mints. Zbl0381.03042: review of “cut elimination in a Gentzen-style ε-calculus without
identity” by Linda Wessels (Z. math Logik Grundl. Math., 1977). Zentralblatt Math.

45 Grigori Mints. Cut elimination for a simple formulation of epsilon calculus. Ann. Pure
Appl. Logic, 152(1-3):148–160, 2008.

46 Richard Montague. English as a formal language. In Bruno Visentini, editor, Linguaggi
nella Societa e nella Tecnica, pages 189–224. Edizioni di Communità, Milan, Italy, 1970.
(Reprinted in R. Thomason (ed) The collected papers of Richard Montague Yale University
Press, 1974.).

TYPES 2013

228 The Montagovian Generative Lexicon ΛTyn

47 Richard Moot. Automated extraction of type-logical supertags from the spoken dutch
corpus. In Srinivas Bangalore and Aravind Joshi, editors, The Complexity of Lexical De-
scriptions and its Relevance to Natural Language Processing: A Supertagging Approach.
MIT Press, 2007.

48 Richard Moot. Semi-automated extraction of a wide-coverage type-logical grammar
for French. In Proceedings of Traitement Automatique des Langues Naturelles (TALN),
Montreal, 2010.

49 Richard Moot. Wide-coverage French syntax and semantics using Grail. In Proceedings of
Traitement Automatique des Langues Naturelles (TALN), Montreal, 2010.

50 Richard Moot, Laurent Prévot, and Christian Retoré. A discursive analysis of itineraries in
an historical and regional corpus of travels. In Constraints in discourse, Ayay-roches-rouges,
France, September 2011. http://passage.inria.fr/cid2011/doku.php.

51 Richard Moot, Laurent Prévot, and Christian Retoré. Un calcul de termes typés pour la
pragmatique lexicale – chemins et voyageurs fictifs dans un corpus de récits de voyages.
In Traitement Automatique du Langage Naturel, TALN 2011, pages 161–166, Montpellier,
France, June 2011.

52 Richard Moot and Christian Retoré. Second order lambda calculus for meaning assembly:
on the logical syntax of plurals. In Reinhard Muskens, editor, Coconat: Conference on
Computing Natural Reasoning. University of Tilburg, December 2011. http://hal.inria.
fr/hal-00650644.

53 Richard Moot and Christian Retoré. The logic of categorial grammars: a deductive account
of natural language syntax and semantics, volume 6850 of LNCS. Springer, 2012.

54 Georg Moser and Richard Zach. The epsilon calculus and herbrand complexity. Studia
Logica, 82(1):133–155, 2006.

55 Reinhard Muskens. Anaphora and the logic of change. In Jan van Eijck, editor, JELIA,
volume 478 of Lecture Notes in Computer Science, pages 412–427. Springer, 1990.

56 Reinhard Muskens. Combining Montague Semantics and Discourse Representation. Lin-
guistics and Philosophy, 19:143–186, 1996.

57 Geoffrey Nunberg. Transfers of meaning. Journal of semantics, 12(2):109–132, 1995.
58 Barbara Partee. Noun phrase interpretation and type shifting principles. In B.H. Partee and

P.H. Portner, editors, Formal Semantics: The Essential Readings, pages 357–381. Wiley,
2008.

59 Stanley Peters and Dag Westerståhl. Quantifiers in Language and Logic. Clarendon Press,
2006.

60 Sylvain Pogodalla and Jean-Philippe Prost, editors. Logical Aspects of Computational Lin-
guistics – 6th International Conference, LACL 2011, Montpellier, France, June 29 to July
1, 2011. Proceedings, volume 6736 of LNCS. Springer, 2011.

61 James Pustejovsky. The generative lexicon. Computational Linguistics, 17(4):409–441,
1991.

62 James Pustejovsky. The generative lexicon. M.I.T. Press, 1995.
63 Livy Real and Christian Retoré. Deverbal semantics and the Montagovian generative

lexicon ΛTyn . Journal of Logic Language and Information, 2014. 10.1007/s10849-014-
9187-y.

64 Christian Retoré. Variable types for meaning assembly: a logical syntax for generic noun
phrases introduced by “most”. Recherches Linguistiques de Vincennes, 41:83–102, 2012.

65 Christian Retoré. A natural framework for natural language semantics: many sorted logic
and Hilbert operators in type theory. In Mário Edmundo and Boban Velickovic, editors,
Logic colloquium, Evora, 2013.

http://passage.inria.fr/cid2011/doku.php
http://hal.inria.fr/hal-00650644
http://hal.inria.fr/hal-00650644

Ch. Retoré 229

66 Christian Retoré. Sémantique des déterminants dans un cadre richement typé. In Em-
manuel Morin and Yannick Estève, editors, Traitement Automatique du Langage Naturel,
TALN RECITAL 2013, volume 1, pages 367–380. ACL Anthology, 2013.

67 Christian Retoré. Typed hilbert epsilon operators and the semantics of determiner phrases
(invited lecture). In Glyn Morrill, Reinhard Muskens, Rainer Osswald, and Frank Richter,
editors, Proceedings of Formal Grammar 2014, number 8612 in LNCS/FoLLI, pages 15–33.
Springer, 2014. Invited lecture.

68 Bertrand Russell. On denoting. Mind, 56(14):479–493, 1905.
69 Sergei Soloviev and David Chemouil. Some Algebraic Structures in Lambda-Calculus with

Inductive Types. In Stefano Berardi, Mario Coppo, and Ferruccio Damiani, editors, TYPES,
volume 3085 of Lecture Notes in Computer Science, pages 338–354. Springer, 2003.

70 Sergei Soloviev and Zhaohui Luo. Coercion completion and conservativity in coercive sub-
typing. Annals of Pure and Applied Logic, 1-3(113):297–322, 2000.

71 Mark Steedman. Taking Scope: The Natural Semantics of Quantifiers. MIT Press, 2012.
72 Leonard Talmy. Fictive motion in language and “ception”. In Paul Bloom, Mary A. Peterson,

Lynn Nadel, and Merrill F. Garrett, editors, Language and Space, pages 211–276. MIT
Press, 1999.

73 Jan van Eijck and Christina Unger. Computational Semantics with Functional Program-
ming. Cambridge University Press, 2010.

74 Luis von Ahn. Games with a purpose. Computer, 39(6):92–94, 2006.
75 Klaus von Heusinger. Definite descriptions and choice functions. In S. Akama, editor, Logic,

Language and Computation, pages 61–91. Kluwer, 1997.
76 Klaus von Heusinger. Choice functions and the anaphoric semantics of definite nps. Re-

search on Language and Computation, 2:309–329, 2004.
77 Tao Xue and Zhaohui Luo. Dot-types and their implementation. In Béchet and Dikovsky

[9], pages 234–249.
78 Luke S. Zettlemoyer and Michael Collins. Learning context-dependent mappings from sen-

tences to logical form. In Keh-Yih Su, Jian Su, and Janyce Wiebe, editors, ACL/IJCNLP,
pages 976–984. The Association for Computer Linguistics, 2009.

TYPES 2013

A Certified Extension of the Krivine Machine for a
Call-by-Name Higher-Order Imperative Language
Leonardo Rodríguez, Daniel Fridlender, and Miguel Pagano

Universidad Nacional de Córdoba, FaMAF
Córdoba, Argentina
{lrodrig2,fridlend,pagano}@famaf.unc.edu.ar

Abstract
In this paper we present a compiler that translates programs from an imperative higher-order
language into a sequence of instructions for an abstract machine. We consider an extension of
the Krivine machine for the call-by-name lambda calculus, which includes strict operators and
imperative features. We show that the compiler is correct with respect to the big-step semantics
of our language, both for convergent and divergent programs.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases abstract machines, compiler correctness, big-step semantics

Digital Object Identifier 10.4230/LIPIcs.TYPES.2013.230

1 Introduction

Important advancements have been made during the last decade in the field of compiler
certification; the project CompCert [19, 20] being the most significant achievement, since it
deals with a realistic compiler for the C language. It is still an active research topic open for
new techniques and experimentation. In this work we report our experiments in the use of
known techniques to prove the correctness of a compiler for a call-by-name lambda calculus
extended with strict operators and imperative features.

Most compilers are multi-pass, meaning that the process of translation usually involves
successive symbolic manipulations from the source program to the target program. The
compilation of a source program is often carried as a sequence of translations through
several intermediate languages, each one closer to assembly code than the previous one. One
common intermediate language consists of the instructions for some abstract machine; they
are useful because they hide low-level details of concrete hardware, but also permit step-by-
step execution of programs. At this level one can discover possible sources of optimization in
the compilation.

Historically, several abstract machines have been developed and studied. Perhaps the
best known ones are the SECD [15] machine and the CAM [8] machine, both for the call-by-
value lambda calculus, and the Krivine machine [14] together with the G-machine [23], for
call-by-name. We refer to Diehl et al. [11] for a, slightly dated, bibliographical review about
different abstract machines. In this article we use the Krivine machine as the target of our
compiler.

The Krivine machine has a very strong property: each transition rule of the machine
corresponds directly to a reduction rule in the small-step semantics of the lambda calculus.
This property is very useful to prove the correctness of the machine, since there is a relation
of simulation between the machine and the calculus. This correspondence is, however,
very difficult to maintain when one extends the source language, for example, by including

© Leonardo Rodríguez, Daniel Fridlender, and Miguel Pagano;
licensed under Creative Commons License CC-BY

19th International Conference on Types for Proofs and Programs (TYPES 2013).
Editors: Ralph Matthes and Aleksy Schubert; pp. 230–250

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TYPES.2013.230
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

L. Rodríguez, D. Fridlender, and M. Pagano 231

imperative features. Indeed, the conventional small step semantics of the calculus and the
usual transitions of the machine might not correspond, as there can be transition sequences
which do not necessarily simulate reduction steps in the source language. However, when the
goal is to get a proof of correctness of the compiler, simulation is a property stronger than
the one we actually need.

A different way of proving the correctness of a compiler is by using big-step semantics [22];
in this setting one proves that if a term t evaluates to a value v, then, when the machine
executes the code obtained in the compilation of t, it must stop in a state related to v, for
some appropriate definition of the relation between the value and the final state. One benefit
of this approach is that it can be adapted to handle the correctness of divergent programs
by a coinductive definition of the big-step semantics and of the transition relation of the
machine.

In this paper we present a compiler which translates programs from an imperative higher-
order language into a sequence of instructions for an abstract machine. We consider an
extension of the Krivine machine for the call-by-name lambda calculus, which includes strict
operators and imperative features. We show that the compiler is correct with respect to the big-
step semantics of our language, both for convergent and divergent programs. We formalized
the compiler and the proof of its correctness in the Coq proof assistant; the source code is
available at http://cs.famaf.unc.edu.ar/~leorodriguez/compilercorrectness/.

Except for the absence of the type system, the programming language we consider in
this paper has all of the features that Reynolds [26] described as the essence of Algol-like
languages: deallocation is automatically done at the end of a block (stack discipline), only
the imperative fragment of the language can have side effects, and it includes a call-by-name
lambda calculus as a procedure mechanism. We consider this work to be a step towards
proving the correctness for a compiler designed by Reynolds [25] for Algol-like languages.

The paper is organized as follows: in Sec. 2 we analyze the calculus of closures and the
Krivine machine; and we revisit the proof of correctness of the compiler with respects to
the small-step semantics of the calculus. In the following sections, we gradually extend the
source language and the machine to cope with the extensions: first we add, in Sec. 3, strict
operators and then, in Sec. 4, imperative features. We also prove the compiler correctness
with respects to the big-step semantics of those languages.

2 Call-by-name lambda calculus

In this section we revisit the call-by-name lambda calculus, as a calculus of closures, and the
Krivine abstract machine. In this simple setting we briefly explain the methodology used
to prove the correctness of the compilation function. The proof exploits the fact that the
transitions of the machine simulate the small-step semantics of the calculus.

2.1 Calculus of closures

Our high-level language is the lambda calculus with de Bruijn indices, but the operational
semantics is given for an extension, proposed by Biernacka and Danvy [4], of Curien’s
calculus of closures [9]. This calculus is an early version of the lambda calculus with explicit
substitutions. The main difference of this calculus with respect to the usual presentation of
the lambda calculus is the way in which substitution are treated. In the latter, substitution
is a meta-level operation, which in zero steps solves a β-redex. In contrast, in the calculus of
closures substitutions are represented as terms equipped with environments – these pairs are

TYPES 2013

http://cs.famaf.unc.edu.ar/~leorodriguez/compilercorrectness/

232 A Certified Extension of the Krivine Machine

called closures – and new rules are added to perform the reduction of a simple redex. A closed
lambda term t can be seen as a closure just by pairing it with the empty environment: t [[]].

I Definition 1 (Terms and closures).

Terms Λ 3 t, t′ ::= λ t Abstraction
| t t′ Application
| n Variables

Closures C 3 c, c′ ::= t [e] | c c′
Environments E 3 e ::= [] | c :: e

Terms are the usual ones of the lambda calculus with de Bruijn indices representing variables.
We will use some notational convention for meta-variables, besides those used in the grammar
we use n ∈ N and the overline is just to see them as variables. In Curien’s work only the
first production for closures is present; the second one is Biernacka and Danvy’s extension
and allows to define a small-step operational semantics. An environment is a sequence of
closures, and represents a substitution for all of the free variables of a term. The reduction
rules for the calculus of closures are given by the following rewriting system. Notice that the
side condition in (Var) can be removed if one sticks to closed closures.

I Definition 2 (Reduction rules).

(β) (λ t) [e] c → t [c :: e]
(App) (t t′) [e] → t [e] t′ [e]
(Var) n [e] → e.n if n < |e|

(ν)
c1 → c′1

c1 c2 → c′1 c2

These reduction rules evaluate a closed term up to a weak head normal form; i.e. values are
closures of the form λ t [e]. The (β) rule associates the argument of the redex with the first
free variable of the body of the abstraction. The rule (App) just propagates the environment
inside the term. Finally, the rule (Var) performs a lookup inside the environment, and
reduces to the closure associated with the variable position. The (ν) rule allows the reduction
of the left part of an application until getting an abstraction.

It can be easily proved that the semantics is deterministic:

I Lemma 3 (Determinism). If c → c1 and c → c2, then c1 = c2, for all closures c, c1 and c2.

2.2 The Krivine machine
Now we turn to the target of our compiler: the Krivine abstract machine [14]. This machine
has three components: the code, the environment, and the stack. We also have machine-level
closures γ = (i, η), which are pairs of code i together with an environment η.

I Definition 4 (Abstract Machine). A configuration w is a triple i | η | s, where

Code: I 3 i, i′ ::= Grab . i

| Push i . i′
| Access n

Environments: H 3 η, η′ ::= [] | (i, η′) :: η
Stacks: S 3 s ::= [] | (i, η) :: s

The environment and the stack are just a list of machine-level closures. We use the
following notation for lists: [] denotes the empty list, append is _ :: _ as in ML tradition;

L. Rodríguez, D. Fridlender, and M. Pagano 233

the length of the list xs is |xs| and if n < |xs| then projecting the nth-element from xs is
written xs.n. There are only three instructions, whose action is defined by the following
three transition rules.

I Definition 5 (Transition of the machine).
Grab . i | η | (i′, η′) :: s 7−→ i | (i′, η′) :: η | s

Push i′ . i | η | s 7−→ i | η | (i′, η) :: s
Access n | η | s 7−→ i′ | η′ | s if n < |η| and η.n = (i′, η′)

The instruction Grab . i takes a closure from the top of the stack, puts it in the environment,
and then continues with the execution of i. The instruction Push i′ . i pushes a closure
(i′, η) (where η is the current environment) in the top of the stack and continues with the
execution of i. Finally, the instruction Access n starts executing the closure associated with
the position n inside the environment.

2.3 Compilation and correctness
The next step is the definition of the translation of terms into code. The compiler function
is denoted with J_ K and it is easily defined by induction on terms. We also define a
decompilation function denoted ⦃_ ⦄ which is clearly the inverse of the compilation. This
function is useful to describe some properties of the machine which in turn are helpful to
prove the correctness of the compiler.

I Definition 6 (Compilation and decompilation of terms).

J_ K : Λ→ I

Jλ t K = Grab . J t K

J t t′ K = Push J t′ K . J t K

Jn K = Access n

⦃_ ⦄ : I → Λ
⦃Grab . i ⦄ = λ ⦃ i ⦄
⦃Push i′ . i ⦄ = ⦃ i ⦄ ⦃ i′ ⦄
⦃Access n ⦄ = n

We homomorphically extend the definition of the decompilation function to machine-level
closures and environments:

I Definition 7 (Decompilation of closures and environments).

⦃_ ⦄c : I ×H → C

⦃ (i, η) ⦄c = ⦃ i ⦄ [⦃ η ⦄e]

⦃_ ⦄e : H → E

⦃ [] ⦄e = []
⦃ (i′, η′) :: η ⦄e = ⦃ (i′, η′) ⦄c :: ⦃ η ⦄e

We also need to decompilate configurations of the machine into source-level closures. To
decompile a configuration (i | η | s) we successively apply the decompilation of the current
closure (i, η) to the decompilation of every closure in s.

I Definition 8 (Decompilation of configurations). Let s = γ1, . . . , γn, then

⦃ (i | η | s) ⦄ = (. . . (⦃ (i, η) ⦄c ⦃ γ1 ⦄) . . . ⦃ γn ⦄)

We now continue by presenting some well-known lemmas about the behaviour of the
machine with respect to the small-step semantics of the calculus. First, we state that every
transition of the machine simulates a reduction step in the calculus:

I Lemma 9 (Simulation). If w 7−→ w′, then ⦃w ⦄ → ⦃w′ ⦄.

TYPES 2013

234 A Certified Extension of the Krivine Machine

There is another useful property of the machine: if a configuration w decompiles to the
closure c, and c can reduce, then the machine does not stop but makes a transition from w.

I Lemma 10 (Progress). If ⦃w ⦄ → c′, then there exists a configuration w′ such that
w 7−→ w′.

We can use Lemma 9 to obtain a stronger version of the previous lemma that better
characterizes the configuration to which the machine makes the transition:

I Lemma 11 (Progress and simulate). If ⦃w ⦄ → c′, then there exists a configuration w′

such that w 7−→ w′ and ⦃w′ ⦄ = c′.

Proof. By the progress lemma we state the existence of w′, then by the simulation lemma we
know that ⦃w ⦄ → ⦃w′ ⦄ and then we conclude ⦃w′ ⦄ = c′ using the fact that the semantics
is deterministic. J

The Lemma 11 can be easily extended to the reflexive-transitive closure of the small-step
reduction and the machine transitions:

I Lemma 12. If ⦃w ⦄ →∗ c′, then there exists a configuration w′ such that w 7−→∗ w′ and
⦃w′ ⦄ = c′.

We are particularly interested in the case in which the reduction sequence of the previous
lemma reaches an irreducible closure c′. In this case, we expect the machine to stop in an
irreducible configuration w′ which decompiles to c′. We say that a configuration is irreducible
if the machine can not perform any transition from it.

I Lemma 13. If ⦃w ⦄ →∗ c′ and c′ is irreducible, then there exists a configuration w′ such
that w 7−→∗ w′, ⦃w′ ⦄ = c′ and w′ is irreducible.

Proof. It is a consequence of the Lemma 12 and the simulation lemma. It is important to
note that the proof of this lemma can be done constructively since the property of being
irreducible is decidable. J

Now we can use these results to prove the correctness of our compiler. The following
lemma states the correctness of the compilation of a closed term whose reduction sequence
reaches an irreducible closure:

I Lemma 14 (Correctness for convergent closed terms). If t [[]] →∗ c′ and c′ is irreducible,
then there exists a configuration w′ such that (J t K | [] | []) 7−→∗ w′, ⦃w′ ⦄ = c′ and w′ is
irreducible.

Proof. This lemma is an instance of Lemma 13 since we have ⦃ (J t K | [] | []) ⦄ = t [[]]. J

If the reduction sequence of a closed term does not terminate (it does not reach an
irreducible closure), then the execution of the compiled code must diverge. We can capture
the notion of divergence for both reduction and execution with the following coinductive
rules, the double line indicates that the rules are to be interpreted coinductively:

I Definition 15 (Divergence of reduction and execution).

c → c′ c′
∞→

c
∞→

===============
w 7−→ w′ w′ 7−→∞

w 7−→∞
=====================

L. Rodríguez, D. Fridlender, and M. Pagano 235

The following lemma states that the divergence of the reduction sequence forces the
machine to diverge:

I Lemma 16 (Progress forever). If ⦃w ⦄ →∞, then w 7−→∞.

Proof. The proof is obtained by coinduction and using Lemma 11. J

Finally, the correctness of the compilation of divergent closed terms can be stated as
follows:

I Lemma 17 (Correctness for divergent closed terms). If t [[]] →∞, then (J t K | [] | []) 7−→∞.

In general, obtaining a proof of compiler correctness with respect to the small-step
semantics of the source language is a very complicated task. In this section, we avoided some
of those complications due to the simplicity of the language, for example, we did not have to
define a bisimilarity relation as in [12, 27], but instead we used a decompilation function.

For more sophisticated languages, the big-step semantics leads often to simpler proofs of
compiler correctness [22]. In the following sections, we use big-step semantics to prove the
correctness of the compilation of two languages: a call-by-name lambda calculus with strict
operators and an imperative higher-order language. We follow an approach inspired in the
work of Leroy [22] (a proof of compiler correctness for the call-by-value lambda calculus).

3 Call-by-name lambda calculus with strict operators

In this section we extend the source language with constants and a strict binary operator;
the language is specified by a big-step semantics. Then we present the abstract machine and
the corresponding compiler. The correctness of the compiler for convergent terms is a ternary
relation involving terms, their values, and the execution of the abstract machine. Leroy
defined this relation by compiling values and proving that the execution of the compilation
of a term leads to the compilation of the value. Following the same path for our language
would impose an artificial set of transition rules for the machine; we avoid this by defining a
binary relation between values and configurations.

3.1 The calculus

We now extend the source language with integer constants and the addition operator.
Everything in this section can be straightforwardly extended to a language with several strict
binary operators, but for the sake of concreteness we restrict our exposition to addition.

I Definition 18 (Terms and closures).

Terms Λ 3 t, t′ ::= λ t Abstraction
| t t′ Application
| n Variables
| k Constants
| t + t′ Addition

Closures C 3 c ::= t [e]
Environments E 3 e ::= [] | c :: e
Values V 3 v ::= (λ t) [e] | k

TYPES 2013

236 A Certified Extension of the Krivine Machine

The new terms are constants k, for k ∈ N, and addition. Notice that there is no application of
closures, this is a consequence of passing from small-step reductions to a big-step semantics,
where intermediate computations steps cannot be observed. Values are the canonical forms
which are the result of the evaluation of a term: an abstraction with its environment, and a
constant. We define now the big-step semantics of the language. The evaluation of a term t

in the environment e to the value v is denoted by e` t⇒ v.

I Definition 19 (Big-step semantics).

(Abs)
e`λ t⇒(λ t) [e]

(Const)
e` k⇒ k

(App)
e` t1⇒(λ t) [e′] t2 [e] :: e′ ` t⇒ v

e` t1 t2⇒ v
(Var)

e′ ` t′⇒ v

e`n⇒ v
e.n = t′ [e′]

(Add)
e` t1⇒ k e` t2⇒ k′

e` t1 + t2⇒ k + k′

The rules for abstractions and constants are trivial, since canonical forms evaluate to
themselves. Notice that in the rule of the application the argument is not evaluated, but it
is used to extend the environment during the evaluation of the body of the abstraction. In
order to evaluate a variable one must do a lookup operation inside the environment, and
start the evaluation of the corresponding closure. The rule for addition is quite conventional:
one must first evaluate the two arguments and then obtain the final value by performing the
addition of the two constants.

Now we show two simple examples of evaluation of terms:

I Example 20. A term that evaluates to an abstraction (partial application).

e`(λλ t)⇒(λλ t) [e] t′ [e] :: e`λ t⇒(λ t) [t′ [e] :: e]
e`(λλ t) t′⇒(λ t) [t′ [e] :: e]

I Example 21. A term that evaluates to a constant.

e`λ (0 + 3)⇒λ (0 + 3) [e]

e` 2⇒ 2
2 [e] :: e` 0⇒ 2 2 [e] :: e` 3⇒ 3

2 [e] :: e` 0 + 3⇒ 5
e`(λ (0 + 3)) 2⇒ 5

3.2 A call-by-name machine with strict operations

The Krivine machine follows the call-by-name strategy, this implies that the argument of
an application is evaluated only when it is needed. But if we want to incorporate some
strict operation, like addition, we need a way to force the evaluation of the arguments before
computing the operation. A known solution, cf. [28], to this issue is a data structure called
frame, which is intended to store the code needed to compute the arguments along with the
temporal values generated in the computation. The different components of the machine are
defined as follows:

L. Rodríguez, D. Fridlender, and M. Pagano 237

I Definition 22 (Abstract machine).

Code: I 3 i, i′ ::= Grab . i

| Push i . i′
| Access n
| Const k
| Add

Closures: Γ 3 γ ::= (i, η)
Environments: H 3 η ::= [] | γ :: η
Stack values: M 3 µ ::= γ | [+ • γ] | [+ k •]
Stacks: S 3 s ::= [] | µ :: s
Configurations: W 3 w ::= (γ, s)

As in the previous section, a closure is composed by a code together with its environment.
The environment is a list of closures and a stack is a list of stack values which may be closures
or frames. The frame [+ • γ] stores the code needed to compute the second argument of the
addition, this closure remains stored in the stack while the first argument is being computed.
On the other hand, the frame [+ k •] stores the computed value of the first argument while
the second argument is being computed. In the next section we generalize frames to support
n-ary operations.

The following are the transitions of the machine; they are the same from the previous
section and the new rules for operators and constants.

I Definition 23 (Machine transitions).
(Grab . i, η) | γ :: s 7−→ (i, γ :: η) | s

(Push i . i′, η) | s 7−→ (i′, η) | (i, η) :: s
(Access n, η) | s 7−→ η.n | s if n < |η|

(Add, η) | γ1 :: γ2 :: s 7−→ γ1 | [+ • γ2] :: s
(Const k, η) | [+ • γ] :: s 7−→ γ | [+ k •] :: s
(Const k, η) | [+ k′ •] :: s 7−→ (Const (k + k′), η) | s

The instruction Add expects in the top of the stack one closure for each of the arguments of
the addition. It pushes in the stack a new frame with the code of the second argument, and
starts executing the code of the first one. For the case of the instruction Const k there are
two transition rules, arising from two scenarios: k is the value of the first argument of an
addition, and k is the value of the second argument. In the first case, it executes the code γ
stored in the frame, and updates the frame with the constant k. In the second case, we can
take the value of the first argument k′ from the frame and execute Const (k + k′).

3.3 Compilation and its correctness

The compiler is defined by induction on the structure of the term, it maps source terms into
a sequence of machine instructions:

TYPES 2013

238 A Certified Extension of the Krivine Machine

I Definition 24 (Compilation of terms).

J K : Λ→ I

Jλ t K = Grab . J t K

J t t′ K = Push J t′ K . J t K

Jn K = Access n
J k K = Const k

J t1 + t2 K = Push J t2 K . (Push J t1 K . Add)

The compilation of a term k is just the instruction Const k. The code for an addition starts
with a Push instruction for each argument, and continues with the Add instruction. By the
time when the instruction Add is executed, the code for each argument is already stored in
the stack, ready to be inserted inside a frame. We now extend the definition of the compiler
for closures and environments:

I Definition 25 (Compilation of closures and environments).

J_ Kc : C → Γ
J t [e] Kc = (J t K, J e Ke)

J_ Ke : E → H

J [] Ke = []
J c :: e Ke = J c Kc ::J e Ke

Here the functions J_ Kc and J_ Ke are mutually recursive. The compilation of a source-level
closure is a machine-level closure which couples the code of the term and the code of its
environment. On the other hand, the compilation of an environment is obtained by compiling
each closure inside it.

In order to illustrate how the machine works, we take the same terms of the above
examples and show the step-by-step execution of the corresponding code:

I Example 26. Execution of the code J (λλ t) t′ K.

J (λλ t) t′ K = Push J t′ K . Grab . Grab . J t K

(Push J t′ K . Grab . Grab . J t K, η) | s
7−→(Grab . Grab . J t K, η) | (J t′ K, η) :: s
7−→(Grab . J t K, (J t′ K, η) :: η) | s

I Example 27. Execution of the code J (λ (0 + 3)) 2 K.

J (λ (0 + 3)) 2 K = Push (Const 2) . Grab . Push (Const 3) . Push (Access 0) . Add

(Push (Const 2) . Grab . Push (Const 3) . Push (Access 0) . Add, η) | s
7−→ (Grab . Push (Const 3) . Push (Access 0) . Add, η) | (Const 2, η) :: s
7−→ (Push (Const 3) . Push (Access 0) . Add, (Const 2, η) :: η) | s
7−→ (Push (Access 0) . Add, η′) | (Const 3, η′) :: s where η′ = (Const 2, η) :: η
7−→ (Add, η′) | (Access 0, η′) :: (Const 3, η′) :: s
7−→ (Access 0, η′) | [+ • (Const 3, η′)] :: s
7−→ (Const 2, η) | [+ • (Const 3, η′)] :: s
7−→ (Const 3, η′) | [+ 2 •] :: s
7−→ (Const 5, η′) | s

L. Rodríguez, D. Fridlender, and M. Pagano 239

Example 27 is, in fact, an instance of a more general behaviour of the machine: if a
term t evaluates to a constant k in an environment e, then, the execution of the code J t K
in the environment J e Ke and an initial stack s leads to the configuration (Const k, η′) | s
for some environment η′. In a similar way, Example 26 can be generalized as follows: if a
term t evaluates to a closure (λ t′) [e′] in an environment e, then, the execution of J t K in the
environment J e Ke leads to the configuration (Grab . J t′ K, J e′ Ke) | s. These facts can be
taken as evidence of the correctness of the compiler:

I Theorem 28 (Compiler Correctness). For any e ∈ E, t ∈ Λ and v ∈ V , if e` t⇒ v then
for all s ∈ S,

if v = k for some constant k, then J t [e] Kc | s 7−→∗ (Const k, η′) | s for some η′ ∈ H,
if v = (λ t′) [e′] for some t′ ∈ Λ and e′ ∈ E, then J t [e] Kc | s 7−→∗ (Grab . J t′ K, J e K) | s.

The statement of this theorem can significantly shortened by defining the relation
�⊆ W × V :

I Definition 29.

γ | s � k iff γ | s 7−→∗ (Const k, η′) | s for some η′ ∈ H
γ | s � (λ t) [e] iff γ | s 7−→∗ (Grab . J t K, J e Ke) | s.

The following property about this relation is expected and self-evident:

I Lemma 30. For any γ, γ′ ∈ Γ, s ∈ S and v ∈ V , if γ | s 7−→∗ γ′ | s and γ′ | s � v,
then γ | s � v.

The relation� leads to simpler proofs (both in paper and in Coq) and can be generalized
in the presence of more values, keeping the statement of correctness unchanged. Theorem 28
can be stated as follows:

I Theorem 31 (Compiler Correctness). For any e ∈ E, t ∈ Λ and v ∈ V , if e` t⇒ v then
for all s ∈ S, J t [e] Kc | s � v.

Proof. This theorem can be proved by induction on the derivation of e` t⇒ v. We illustrate
the proof with two cases: for rules (Const) and (App).

In the case of the rule e` k⇒ k, we have

J k [e] Kc | s = (Const k, J e Ke) | s 7−→∗ (Const k, J e Ke) | s ,

for any s ∈ S, and therefore J k [e] Kc | s � k.
Now we turn to application; let us recall the rule (App):

(App)
e` t1⇒(λ t) [e′] t2 [e] :: e′ ` t⇒ v

e` t1 t2⇒ v

We have one inductive hypothesis for each premise in the rule. In this case we have:

(i) for all s′ ∈ S, J t1 [e] Kc | s′ � (λ t) [e′]
(ii) for all s′ ∈ S, J t [t2 [e] :: e′] Kc | s′ � v.

Thus, by definition of � and (i), we get:

(iii) for all s′ ∈ S, J t1 [e] Kc | s′ 7−→∗ (Grab . J t K, J e′ Ke) | s′.

TYPES 2013

240 A Certified Extension of the Krivine Machine

Using Lemma 30, we can now start with the configuration J t1 t2 [e] Kc | s and try to reach
the configuration J t [t2 [e] :: e′] Kc | s, which we know by (ii) is related with v by the �
relation:

J t1 t2 [e] Kc | s = (J t1 t2 K, J e Ke) | s by definition of J_ Kc

= (Push J t2 K . J t1 K, J e Ke) | s by definition of J_ K

7−→ (J t1 K, J e Ke) | (J t2 K, J e Ke) :: s by the Push rule
= J t1 [e] Kc | (J t2 K, J e Ke) :: s by definition of J_ Kc

7−→∗ (Grab . J t K, J e′ Ke) | (J t2 K, J e Ke) :: s by (iii)
7−→ (J t K, (J t2 K, J e Ke) ::J e′ Ke) | s by the Grab rule
= (J t K, J t2 [e] Kc ::J e′ Ke) | s by definition of J_ Kc

= (J t K, J t2 [e] :: e′ Ke) | s by definition of J_ Ke

= J t [t2 [e] :: e′] Kc | s by definition of J_ Kc.

And that finishes the proof for (App). The remaining cases are similar. J

There is a third way to state the theorem of correctness that is a bit more intuitive and
closer as how Leroy [22] stated it: one defines a compilation for values and then proves that
the compilation of a term executes to the compilation of its value.

I Definition 32 (Compilation of values).

J_ Kv : V → Γ
J (λ t) [e] Kv = (Grab . J t K, J e Ke)

J k Kv = (Const k, [])

The alternative version of the correctness theorem can be formally stated as follows:

I Theorem 33 (Compiler Correctness, alternative). For any e ∈ E, t ∈ Λ and v ∈ V , if
e` t⇒ v, then, for all s ∈ S, J t [e] Kc | s 7−→∗J v Kv | s .

The proof also proceeds by induction on derivations of the evaluation. Notice however that
the compilation of a constant value pairs the constant with the empty environment, but the
compilation of the constant (as a term) is paired with the compilation of the corresponding
environment. So one needs to add a rule to discard the environment:

(Const k, γ :: η) | s 7−→ (Const k, []) | s

But this change introduces some non-determinism in the machine, so one is forced to change
the two rules for constants in Def. 23: those would require the environment to be empty. At
first sight, it could seem possible to avoid this issue by generalizing the function J_ Kv by
taking an extra argument for the top-level environment; however, this also fails in the proof
of the theorem for the case (Var).

3.3.1 Correctness for divergent terms
To complete the proof of correctness of the compiler, we need to ensure that, when the
evaluation of a term t diverges, the execution of J t K will never terminate. We use the
approach proposed by Leroy [22] of defining a coinductive big-step semantics to capture the
notion of divergence of a term. We write e` t⇒∞ to denote the divergence of a term t in
an environment e. The following are the rules of divergence for the high-level language of
this section:

L. Rodríguez, D. Fridlender, and M. Pagano 241

I Definition 34 (Coinductive semantics).

(App1)
e` t1⇒∞

e` t1 t2⇒∞
============ (App2)

e` t1⇒(λ t) [e′] t2 [e] :: e′ ` t⇒∞

e` t1 t2⇒∞
===================================

(Var)
e′ ` t′⇒∞

e`n⇒∞
========== e.n = t′ [e′]

(Add1)
e` t1⇒∞

e` t1 + t2⇒∞
=============== (Add2)

e` t1⇒ k e` t2⇒∞

e` t1 + t2⇒∞
=======================

There are two possible reasons for an application (t1 t2) to diverge. The first possibility is
that the function term t1 diverges. The second one is that, when the term t1 evaluates to an
abstraction (λ t) [e′], then the evaluation of the body t diverges. Note that, since we are in a
call-by-name setting, we do not make any claim about the evaluation of the argument t2.

The next step is to capture divergence in the abstract machine; again, we use coinduct-
ive semantics. The following rule captures the notion of an infinite sequence of machine
transitions:

I Definition 35 (Divergence of execution).

w 7−→w′ w′ 7−→∞

w 7−→∞
====================

Now we are able to state the following lemma that establishes that if a term t diverges, then
the machine makes infinitely many transitions.

I Theorem 36 (Correctness for divergent programs). If e` t⇒∞, then J t [e] Kc | s 7−→∞ .

4 Higher-order imperative language

In this section we extend the language of the previous section with imperative features,
namely we add the possibility to allocate, modify, and access memory locations. We adapt
the abstract machine to reflect this extension of the source language and prove the correctness
of the compiler with respect to a big-step semantics. For simplicity, the imperative variables
of our language can only contain integer values, and we only consider memory locations
storing integers.

4.1 The language

The imperative fragment of the language includes locations (natural numbers representing
positions in the store), a dereferencing operator, variable declarations, composition and
assignments. As in the previous section, we use de Bruijn indices to represent variables.

TYPES 2013

242 A Certified Extension of the Krivine Machine

I Definition 37 (Higher-order imperative language).

Terms Λ 3 t, t′ ::= λ t Abstraction
| t t′ Application
| n Variables
| k Constants
| t ⊕ t′ Binary operators
| ` Locations
| ! t Dereferencing
| newvar t Variable declaration
| t ; t′ Composition
| t := t′ Assignments
| skip Skip command

Closures C 3 c ::= t [e]
Environments E 3 e ::= [] | c :: e
Stores Σ 3 σ ::= [] | σ . k
Values V 3 v ::= (λ t) [e] | k | ` | σ

The initial configurations of the big-step semantics are triples (e, t, σ) and final configur-
ations are values; we write e σ̀ t⇒ v to denote that (e, t, σ) evaluates to v. Of course, the
values of commands are stores; moreover, since only commands can have side effects, the
rules of the big-step semantics of the language of the previous sections remain unchanged,
except that they propagate the state to each premise.

I Definition 38 (Big-step semantics).

(Abs)
e`σ λ t⇒(λ t) [e]

(Var)
e′ σ̀ t′⇒ v

e`σ n⇒ v
e.n = t′ [e′]

(App)
e σ̀ t1⇒(λ t) [e′] t2 [e] :: e′ σ̀ t⇒ v

e σ̀ t1 t2⇒ v

(Const)
e σ̀ k⇒ k

(Bop)
e σ̀ t1⇒ k e σ̀ t2⇒ k′

e σ̀ t1 ⊕ t2⇒ k ⊕ k′

(Loc)
e`σ `⇒ `

` < |σ| (Deref)
e σ̀ t⇒ `

e`σ! t⇒σ(`)

(Skip)
e σ̀ skip⇒σ

(Newvar)
` [e] :: e σ̀ . 0 t⇒σ′ . k

e σ̀ newvar t⇒σ′
` = |σ|

(Assign)
e σ̀ t⇒ ` e σ̀ t′⇒ k

e`σ t := t′⇒σ[` 7→ k]
(Comp)

e σ̀ t⇒σ′ e σ̀′ t′⇒σ′′

e`σ t ; t′⇒σ′′

Here we use some conventional notations to access and modify stores. We consider
locations to be a position (an index) of the store. Thus, the store σ[` 7→ k] contains the same
values as σ except perhaps in the position `, in which the value is k. We denote by σ(`) the

L. Rodríguez, D. Fridlender, and M. Pagano 243

constant allocated in the position ` of the store. Extension of the store σ with value k in the
new location is written σ . k.

In the rule of the term newvar we observe that, in order to evaluate the inner command
t, we need to extend the store and the environment. The store is extended with the value 0,
which is the default value we chose for newly created locations. The environment is extended
with the location ` = |σ| which points to the new (and last) position of the extended store.

It is worth noting that, since the access to a location could be done exclusively through
the use of a variable bound by newvar , we can “hide” to the user the existence of explicit
locations as terms. In other words, the user does not need to know that he can write explicit
locations, since all of them are created by newvar and bound to variables. This kind of
explicit locations have been used before, for example in [13, page 3].

Another observation to make is that it is impossible for a location created by newvar
to leave its lexical scope. In the assignment command t1 := t2 the term t2 must evaluate to a
constant, and not to a location. The store is also restricted to contain integer constants only.

A distinct feature of Algol-like languages is that the execution of a command should not
leave inaccessible locations in the store; as the following lemmas show, our semantics respects
that condition.

I Lemma 39 (Store size preservation). If e σ̀ t⇒σ′ then |σ| = |σ′|.

I Lemma 40 (Safe locations). If e σ̀ t⇒ ` then ` < |σ|.

4.2 A Krivine abstract machine with store
In order to cope with the extensions in the source language we need to make some changes
to the abstract machine of Sec. 3. We generalize the treatment of the binary operator of the
previous section so as to capture at once addition, dereferencing, and assignment; in order to
do so, some instructions carry the arity of the operator. Besides that generalization, we need
two instructions for allocating and deallocating memory cells; and yet another one to signal
the end of the execution of the current command.

I Definition 41 (Abstract machine).

Code: I 3 i, i′ ::= Grab . i

| Push i . i′
| Access n
| Const V
| Op 	n

| Frame 	n

| Alloc . i
| Dealloc
| Cont

Closures: Γ 3 γ ::= (i, η)
Environments: H 3 η ::= [] | γ :: η
Operators: Ops 3 	n ::= ⊕2 | !1 | :=2

Operator Arguments: N 3 ν ::= k | `
Stack values: M 3 µ ::= γ | [n ν • γ]
Stacks: S 3 s ::= [] | µ :: s
Stores: Σ 3 σ ::= [] | σ . k
Configurations: W 3 w ::= (γ, σ, s)

TYPES 2013

244 A Certified Extension of the Krivine Machine

Here, a frame [n ν • γ] is a data structure that contains: (a) an operator 	n, which
is always associated with an operation supported by the machine, (b) a list ν with the
arguments of the operation which have been already computed, and (c) a list γ with the
code required to compute the rest of the arguments.

The transitions of the machine are given in the following definition. Notice that the
execution of code corresponding to expressions will, eventually, finish with a numeric value
in the closure part; while the execution of an imperative command will finish with Cont.

I Definition 42.
(Grab . i, η) | σ | γ :: s 7−→ (i, γ :: η) | σ | s
(Push i . i′, η) | σ | s 7−→ (i′, η) | σ | (i, η) :: s
(Access n, η) | σ | s 7−→ η.n | σ | s if n < |η|
(Frame 	n, η) | σ | γ1 :: γ :: s 7−→ γ1 | σ | [n • γ] :: s if |γ| < n

(Op ⊕, η) | σ | [⊕ k, k′ •] :: s 7−→ (Const k̂, η) | σ | s where k̂ = k ⊕ k′

(Op :=, η) | σ | [:= `, k •] :: s 7−→ (Cont, η) | σ′ | s where σ′ = σ[` 7→ k]
(Op !, η) | σ | [! ` •] :: s 7−→ (Const k, η) | σ | s where k = σ(`)
(Alloc . i, η) | σ | s 7−→ (i, γ :: η) | σ . 0 | s where γ = (Const |σ|, η)
(Dealloc, η) | σ . k | s 7−→ (Cont, η) | σ | s
(Cont, η) | σ | γ :: s 7−→ γ | σ | s
(Const ν, η) | σ | [n ν • γ1, γ] :: s 7−→ γ1 | σ | [n ν, ν • γ] :: s
(Const ν, η) | σ | [n ν •] :: s 7−→ (Op 	n, η) | σ | [n ν, ν •] :: s

The instruction Frame 	n expects n closures in the top of the stack. Then it executes
the code of the first argument, and creates a frame containing the rest of them.

As in the previous section, the instruction Const k updates the frame with the constant k
– which is the value of an argument – and executes the next closure stored in the frame, if
there is any. When all the arguments have been computed, the instruction Op 	n is executed.
This instruction expects a frame with all the arguments computed and applies the built-in
operation associated with 	n. For example, if 	n is the assignment operator (:=), then
Op (:=) expects a frame [:= `, k •] and then updates the store in the location ` with the
constant value k.

4.3 Compilation and correctness
The compilation of the applicative part of the language remains unchanged with respect to
the previous section. The translation of an n-ary operator 	 consists in compiling all its
operands and putting the instruction Frame 	n after their code. Notice, however, that the
code for the operands will be executed after constructing the appropriate frame in the stack.
To compile the allocation of a new variable, we prepare the deallocation of the new location
–to be executed after the body of the block–, then we generate an allocation instruction
followed by the code of the body.

I Definition 43 (Compilation of terms).

J_ K : Λ→ I

Jλ t K = Grab . J t K

J t t′ K = Push J t′ K . J t K

Jn K = Access n
J k K = Const k
J ` K = Const `

J t1 ⊕ t2 K = Push J t2 K . Push J t1 K . Frame (⊕)
J ! t K = Push J t K . Frame (!)

J newvar t K = Push (Dealloc) . Alloc . J t K

J t1 ; t2 K = Push J t2 K . J t1 K

J t1 := t2 K = Push J t2 K . Push J t1 K . Frame (:=)
J skip K = Cont

L. Rodríguez, D. Fridlender, and M. Pagano 245

The following is the definition of compilation functions for closures and environments. Note
that these functions are mutually recursive:

I Definition 44 (Compilation of closures and environments).

J_ Kc : C → Γ
J t [e] Kc = (J t K, J e Ke)

J_ Ke : E → H

J [] Ke = []
J c :: e Ke = J c Kc ::J e Ke

As in the previous section, we use a relation � between configurations and values to
state the correctness theorem. We extend Definition 29 as follows:

I Definition 45 (�⊆ W × V).

γ | σ | s � k iff γ | σ | s 7−→∗ (Const k, η′) | σ | s for some η′ ∈ H
γ | σ | s � (λ t) [e] iff γ | σ | s 7−→∗ (Grab . J t K, J e Ke) | σ | s
γ | σ | s � ` iff γ | σ | s 7−→∗ (Const `, η′) | σ | s for some η′ ∈ H
γ | σ | s � σ′ iff γ | σ | s 7−→∗ (Cont, η′) | σ′ | s for some η′ ∈ H.

Now we can state the theorem of correctness for convergent terms:

I Theorem 46 (Correctness for convergent terms). For any e ∈ E, t ∈ Λ, σ ∈ Σ, v ∈ V , if
e σ̀ t⇒ v then, for all s ∈ S, J t [e] Kc | σ | s � v.

Proof. The proof is by induction in the derivation of e σ̀ t⇒ v. We illustrate the proof for
the case of the assignment command. Let us recall the rule for assignment:

(Assign)
e σ̀ t⇒ ` e σ̀ t′⇒ k

e`σ t := t′⇒σ[` 7→ k]

We have an inductive hypothesis for each premise of the rule:

(i) for all s′ ∈ S, J t [e] Kc | σ | s′ � `

(ii) for all s′ ∈ S, J t′ [e] Kc | σ | s′ � k.

Therefore, by definition of �, we get:

(iii) for all s′ ∈ S, J t [e] Kc | σ | s′ 7−→∗ (Const `, η1) | σ | s′ for some η1 ∈ H

(iv) for all s′ ∈ S, J t′ [e] Kc | σ | s′ 7−→∗ (Const k, η2) | σ | s′ for some η2 ∈ H.

TYPES 2013

246 A Certified Extension of the Krivine Machine

Now we can make the following sequence of transitions:

J t := t′ [e] Kc | σ | s
= (J t := t′ K, J e Ke) | σ | s by definition of J_ Kc

7−→ (Push J t′ K . Push J t K . Frame (:=), J e Ke) | σ | s by definition of J_ K

7−→ (Push J t K . Frame (:=), J e Ke) | σ | (J t′ K, J e Ke) :: s by the Push rule

7−→ (Frame (:=), J e Ke) | σ | (J t K, J e Ke) :: (J t′ K, J e Ke) :: s by the Push rule

7−→ (J t K, J e Ke) | σ | [:= • (J t′ K, J e Ke)] :: s by the Frame rule

= J t [e] Kc | σ | [:= • (J t′ K, J e Ke)] :: s by definition of J_ Kc

7−→∗ (Const `, η1) | σ | [:= • (J t′ K, J e Ke)] :: s by (iii)

7−→ (J t′ K, J e Ke) | σ | [:= ` •] :: s by a Const rule

= J t′ [e] Kc | σ | [:= ` •] :: s by definition of J_ Kc

7−→∗ (Const k, η2) | σ | [:= ` •] :: s by (iv)

7−→ (Op :=, η2) | σ | [:= `, k •] :: s by a Const rule

7−→ (Cont, η2) | σ[` 7→ k] | s by the Op (:=) rule .

Thus, we have proved J t := t′ [e] Kc | σ | s � σ[` 7→ k]. The remaining cases are similar. J

4.3.1 Correctness for divergent terms
We continue with the definition of the coinductive big-step semantics. In the following
definition we present the rules for the imperative fragment of our language, since the rules
for the other terms are similar to those in Definition 34, except for the propagation of the
store through the premises:

I Definition 47 (Coinductive semantics).

(Deref)
e`σ t⇒∞

e`σ! t⇒∞
========== (Newvar)

` [e] :: e`σ . 0
t⇒∞

e`σ newvar t⇒∞
==================

(Comp1)
e σ̀ t1⇒∞

e`σ t1 ; t2⇒∞
============== (Comp1)

e σ̀ t1⇒σ′ e σ̀′ t2⇒∞

e`σ t1 ; t2⇒∞
==========================

(Assign1)
e σ̀ t1⇒∞

e σ̀ t1 := t2⇒∞
=============== (Assign2)

e σ̀ t1⇒ ` e σ̀ t2⇒∞

e σ̀ t1 := t2⇒∞
=========================

We can prove, by coinduction, that if the machine executes the code of a divergent term,
then it never stops:

I Theorem 48 (Correctness for divergent terms). If e σ̀ t⇒∞, then J t [e] Kc | σ | s 7−→∞
for all s ∈ S.

4.4 About the formalization
In Coq, most of the definitions above are represented using inductive types. For example, the
following is the definition of the evaluation rules for abstractions, applications and variables:

L. Rodríguez, D. Fridlender, and M. Pagano 247

Inductive eval (e : env) (q : store) : term → value → Prop :=
| eval_abs : forall t, eval e q (term_abs t) (value_abs t e)
| eval_app : forall t1 t2 t e’ v,

eval e q t1 (value_abs t e’) →
eval (t2 [e] :: e’) q t v →
eval e q (term_app t1 t2) v

| eval_var : forall n t’ e’ v,
lookup e n = Some (t’ [e’]) →
eval e’ q t’ v →
eval e q (term_var n) v

[...]

Here, each constructor corresponds to one of the rules of evaluation. For example, the
constructor eval_abs corresponds to the rule (Abs) of Definition 38.

We rely on an important feature of Coq that is its built-in support for coinductive
definitions and proofs, which allowed us to handle proof involving infinite sequences of
transitions or coinductive evaluation in a simple manner. For example, the following is the
definition of the coinductive evaluation rules for the case of the application:

CoInductive diverges (e : env) (q : store) : term → Prop :=
| diverges_app_fst :

forall t1 t2,
diverges e q t1 →
diverges e q (term_app t1 t2)

| diverges_app_snd :
forall t1 t t2 e’ ,

eval e q t1 (value_abs t e’) →
diverges (t2[e] :: e’) q t →
diverges e q (term_app t1 t2)

[...]

The constructor diverges_app_fst covers the case when the application diverges due to its
operator (the term t1), and diverges_app_snd covers the case when the operator evaluates to
an abstraction but the divergence occurs after the contraction of the redex. The correctness
lemma for divergent terms is proved using the cofix tactic that permits proofs by coinduction:

Lemma correctness_for_divergent :
forall e q t,

diverges e q t →
forall s,

let g := closure_code (compile t) (compile_env e) in
infseq (plus trans) (g, q, s).

Proof.
cofix.
[...]

Qed.

We have used Coq’s Ltac tactic language to define tactics useful to automate some of the
proofs of the formalization. For example, the following tactic is used in the proof of compiler
correctness for convergent terms to make as many machine transitions as possible:

Ltac progress_until_possible :=
repeat

match goal with

TYPES 2013

248 A Certified Extension of the Krivine Machine

| [|− star trans _ _] ⇒
first [

eassumption
| apply star_refl
| eapply star_step ; [econstructor | eauto]
| eapply star_trans ; [eassumption | eauto]
]

| [|− _] ⇒ simpl ; progress eauto
end

Here, the inductive type star trans represents a sequence of machine transitions. This
tactic tries to prove a goal where the conclusion has the form star trans _ _. First, it tries
to use an assumption to prove the goal, but if it is not possible, it will try to make zero, one
or more steps (in that order) to reach the desired configuration.

We have measured the size of the formalization using the tool coqwc that prints the
number of lines of code designated to specifications or proofs. The next table shows the
results for the formalization of each of the three languages we considered in the paper:

Language Specifications Proofs
Call-by-name lambda calculus 345 531

Call-by-name lambda calculus with strict operators 336 199
Imperative higher-order language 468 272

The formalization of the first section has larger proofs scripts than the others. This is due to
the fact that the use of small-step semantics requires to prove more results to capture the
notion of correctness of the compiler and to a less extensive use of the Ltac mechanism.

5 Conclusion

In this paper we used well-known techniques [21, 22, 2] to mechanize in Coq the correctness
of a compiler for a higher-order imperative language to a variant of the Krivine abstract
machine. As far as we know, this is the first proof of correctness of a compiler combining
call-by-name lambda calculus extended with a store and strict operators.

This formalization is also one of our first steps towards proving the correctness of a
compiler for an Algol-like language [25]. Our next steps towards that goal involve (i) to
add booleans with non-strict binary operations, (ii) to impose a type system on the source
language, and (iii) to add a recursion operator.

Most of those changes planned for the language also entail modifications in the design of
the compiler or the machine. For example, if we impose a type system in the language, the
compiler might be designed to compile typing derivations instead of raw terms, as we do in
this paper. The type system should also enable us to eliminate the need for a dereferencing
operator, since we can detect during type-checking the different roles of the occurrences of a
variable.

We plan to make some improvements in the abstract machine and also consider the use of
the refocusing technique [10] to derive an abstract machine for the imperative language. One
downside of our machine is the overhead incurred by the use of frames to implement strict
operators; one possible remedy for this is the use of stack markers as in the ZAM machine
[18]. Since we are using call-by-name evaluation, we could get some improvements in the
execution by also considering sharing as in [17, 16].

L. Rodríguez, D. Fridlender, and M. Pagano 249

Related work. Leroy [22] defined an abstract machine for a call-by-value lambda calculus,
and used coinductive big-step semantics to describe the behavior of divergent programs.
He also used Coq to prove the correctness of the compiler and some additional semantic
properties like evaluation determinism and progress. A similar approach has been used by
Leroy [21] and Bertot [3] for the simple imperative language.

Danvy and Nielsen [10] introduced the refocusing technique, that allows to systematically
derive abstract machines from reduction semantics, by applying successive program trans-
formations. Sieczkowski et al. [29] formalized in Coq and proved correct the technique for
some applicative languages. We have taken Sieckzowski’s formalization and adapted it for the
language in Sec. 3; the resulting formalization is longer than our original mechanization. This
happens because that method requires to prove several technical lemmas for each language;
it could be interesting to investigate the possibility of stating refocusing more abstractly in
order to prove some of those lemmas in a more general setting. It is not immediate if this
technique can be applied to imperative languages, like the one in Section 4.

Chlipala [5, 6, 7] and Benton [1] used denotational semantics and logical relations to
structure the proof of correctness of compilers for several programming languages, including
typed lambda calculus and impure functional languages. Peter Selinger [28] derived extensions
of the Krivine machine from the CPS translations of the λµ-calculus. Piróg et al. [24] derived
a lazy abstract machine for an applicative language and formalized that derivation in Coq.

Acknowledgements. We would like to thank three anonymous reviewers for their comments
and suggestions on an earlier version of this article.

References
1 Nick Benton and Chung-Kil Hur. Biorthogonality, step-indexing and compiler correctness.

SIGPLAN Not., 44(9):97–108, August 2009.
2 Yves Bertot. A certified compiler for an imperative language. Technical Report RR-3488,

INRIA, September 1998.
3 Yves Bertot. Theorem proving support in programming language semantics. CoRR,

abs/0707.0926, 2007.
4 Malgorzata Biernacka and Olivier Danvy. A concrete framework for environment machines.

ACM Trans. Comput. Log., 9(1), 2007.
5 Adam Chlipala. A certified type-preserving compiler from lambda calculus to assembly

language. SIGPLAN Not., 42(6):54–65, June 2007.
6 Adam Chlipala. Parametric higher-order abstract syntax for mechanized semantics. SIG-

PLAN Not., 43(9):143–156, September 2008.
7 Adam Chlipala. A verified compiler for an impure functional language. In POPL, pages

93–106, 2010.
8 G. Cousineau and P.-L. Curien. The categorical abstract machine. Sci. Comput. Program.,

8(2):173–202, April 1987.
9 Pierre-Louis Curien. An abstract framework for environment machines. Theor. Comput.

Sci., 82(2):389–402, 1991.
10 Olivier Danvy and Lasse Nielsen. Refocusing in reduction semantics. Research report

BRICS RS-04-26, DAIMI, Department of Computer Science, Aarhus University, Aarhus,
Denmark, November 2004.

11 Stephan Diehl and Peter Sestoft. Abstract machines for programming language implement-
ation. Future Gener. Comput. Syst., 16(7):739–751, May 2000.

12 Thérèse Hardin, Luc Maranget, and Bruno Pagano. Functional runtime systems within the
lambda-sigma calculus. J. Funct. Program., 8(2):131–176, March 1998.

TYPES 2013

250 A Certified Extension of the Krivine Machine

13 Vasileios Koutavas and Mitchell Wand. Small bisimulations for reasoning about higher-
order imperative programs. In J. Gregory Morrisett and Simon L. Peyton Jones, editors,
POPL, pages 141–152. ACM, 2006.

14 Jean-Louis Krivine. A call-by-name lambda-calculus machine. Higher Order Symbol. Com-
put., 20(3):199–207, September 2007.

15 P. J. Landin. The Mechanical Evaluation of Expressions. The Computer Journal, 6(4):308–
320, January 1964.

16 John Launchbury. Lazy imperative programming. In ACM Sigplan Workshop on State
in Programming Languages, pages 46–56, 1993. (available as YALEU/DCS/RR968, Yale
University).

17 John Launchbury. A natural semantics for lazy evaluation. In POPL, pages 144–154, 1993.
18 Xavier Leroy. The ZINC experiment: an economical implementation of the ML language.

Technical report 117, INRIA, 1990.
19 Xavier Leroy. Formal verification of a realistic compiler. Commun. ACM, 52(7):107–115,

2009.
20 Xavier Leroy. A formally verified compiler back-end. J. Autom. Reason., 43(4):363–446,

December 2009.
21 Xavier Leroy. Mechanized semantics – with applications to program proof and compiler

verification. In Logics and Languages for Reliability and Security, pages 195–224. IOS Press
BV, 2010.

22 Xavier Leroy and Hervé Grall. Coinductive big-step operational semantics. Inf. Comput.,
207(2):284–304, February 2009.

23 Simon L. Peyton Jones. The Implementation of Functional Programming Languages
(Prentice-Hall International Series in Computer Science). Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1987.

24 Maciej Pirog and Dariusz Biernacki. A systematic derivation of the STG machine verified
in Coq. SIGPLAN Not., 45(11):25–36, September 2010.

25 John C. Reynolds. Using functor categories to generate intermediate code. In Proceedings
of the 22nd ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
POPL’95, pages 25–36, New York, NY, USA, 1995. ACM.

26 John C. Reynolds. The essence of Algol. In Peter W. O’Hearn and Robert D. Tennent, ed-
itors, ALGOL-like Languages, Volume 1, pages 67–88. Birkhauser Boston Inc., Cambridge,
MA, USA, 1997.

27 M. Rittri and Institutionen för informationsbehandling (Göteborg). Proving the Correctness
of a Virtual Machine by a Bisimulation. Department of computer sciences, 1988.

28 Peter Selinger. From continuation passing style to Krivine’s abstract machine. Manuscript,
2003. Available in Peter Selinger’s web site.

29 Filip Sieczkowski, Małlgorzata Biernacka, and Dariusz Biernacki. Automating derivations
of abstract machines from reduction semantics: A generic formalization of refocusing in Coq.
In Proceedings of the 22Nd International Conference on Implementation and Application
of Functional Languages, IFL’10, pages 72–88, Berlin, Heidelberg, 2011. Springer-Verlag.

Definitional Extension in Type Theory
Tao Xue

School of Computer Science, McGill University, Montreal, Canada
xuet.cn@hotmail.com

Abstract
When we extend a type system, the relation between the original system and its extension is
an important issue we want to understand. Conservative extension is a traditional relation we
study with. But in some cases, like coercive subtyping, it is not strong enough to capture
all the properties, more powerful relation between the systems is required. We bring the idea
definitional extension from mathematical logic into type theory. In this paper, we study the notion
of definitional extension for type theories and explicate its use, both informally and formally, in
the context of coercive subtyping.

1998 ACM Subject Classification F.4 Mathematical Logic and Formal Language

Keywords and phrases conservative extension, definitional extension, subtype, coercive subtyp-
ing

Digital Object Identifier 10.4230/LIPIcs.TYPES.2013.251

1 Introduction

In the studies of type theory, sometimes we extend a type system with some notions and rules.
We are interested in what power the extension systems can bring to us, and we also want to
know the relations between the systems. Understanding the relations between the systems
tells us some of the properties the new system should hold. The most common property we
always think of is conservativity, or put in anther way, whether the extension is a conservative
extension. For example, Hofmann showed the conservativity of extensional type theory over
intensional type theory with extensional concepts added [4]. Informally, conservativity means
that the new system maybe more convenient than the original system but it cannot prove any
new theorem within the old language. It requires that all the theorems in the old language,
which are provable in new system, are also provable in the old system.

Subtypes are introduced into type theory and studied in many works [1, 2, 14, 15].
Coercive subtyping [7] is one approach of studying subtype in type theory. Unlike the
traditional way of dealing subtype with subsumption rule

a : A A ≤ B
a : B

which is very common in the study of functional programming languages [13], coercive
subtyping is an abbreviation mechanism. We consider a unique coercion c between two types
A and B, written as A <c B. Intuitively, for every place we require a term of type B, we can
use a term a of type A instead, and it is just an abbreviation of using the term c(a). This
simple mechanism is quite powerful, one recent use is in the study of linguistic semantics
[9, 19].

Since we take coercive subtyping as an abbreviation mechanism, we don’t want it to
increase any power of the existing system. Soloviev and Luo [17] studied the relationship
between a type system and its coercive subtyping extension and called it “conservativity”. In

© Tao Xue;
licensed under Creative Commons License CC-BY

19th International Conference on Types for Proofs and Programs (TYPES 2013).
Editors: Ralph Matthes and Aleksy Schubert; pp. 251–269

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TYPES.2013.251
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

252 Definitional Extension in Type Theory

fact, the relationship is not quite the same as the traditional notion of conservative extension
and it turns out that it can better be characterized as an definitional extension in a more
general sense. In this paper, we will give a definition of this notion of definitional extension
and explicate it, both informally with a simple example and formally for coercive subtyping.

Soloviev and Luo’s previous work [17] was based on a notion of basic subtyping rules
which turns out to be unnecessarily general. It does not exclude certain “bad” subtyping
rules which cannot be used normally but can be applied once we introduce coercive subtyping.
This would destroy the consistency of the whole system. Recently, we fix the problem by
considering coercion sets rather than coercion rules and, furthermore, the latter can be
captured by the former [11, 18]. In this paper, our treatment of coercive subtyping is based
on this new framework.

The paper goes in the following way. We give the motivation of introducing definitional
extension in Section 2 by showing that coercion mechanism cannot be expected as a conservat-
ive extension. In Section 3, we present a definition of conservative extension and definitional
extension in type theory. We use a simplified example to demonstrate the relation between
a system and its coercion extension in Section 4 and give a sketch on the full study of the
relation in Section 5.

2 Motivation: coercive subtyping

Coercive subtyping [7] is an approach to introducing subtypes into type theory and it considers
subtyping by means of abbreviations.

The basic idea of coercive subtyping is that, when we consider A as a subtype of B, we
choose a unique function c from A to B, and declare c to be a coercion, written as A <c B.
Intuitively, the idea means anywhere we need to write an object of type B, we can use
an object a of type A instead. Actually in the context, the object a is to be seen as an
abbreviation for the object c(a) : B. More precisely, if we have f from B to C, then f can
be applied to any object a of type A to form f(a) of type C, which is definitionally equal
to f(c(a)). We can consider f(a) to be an abbreviation for f(c(a)), with coercion c being
inserted to fill the gap between f and a. The idea above could be captured by means of the
following formal rules:

f : B → C a : A A <c B

f(a) : C
f : B → C a : A A <c B

f(a) = f(c(a)) : C

As an extension of a type theory, coercive subtyping is based on the idea that subtyping
is abbreviation. On the one hand, it should not increase any expressive power of the
original system. On the other hand, coercions can always be correctly inserted to obtain the
abbreviated expressions as long as the basic coercions are coherent 1.

In the study coercive subtyping, Soloviev and Luo tried to think it be a conservative
extension [17]. But we find that conservativity is not accurate to capture the relation. In
the expressions of coercive subtyping, there are “gaps” introduced by the coercions. Given
f : B → C and a : A, although f(a) : C is well-formed with coercive subtyping A <c B, we
can still image that there is a “gap” in f(a) between f and a. As mentioned above, we want
to show that all the “gaps” in the expressions caused by coercions can be correctly inserted.

1 Informally, coherence in coercive subtyping means there is unique coercion between two different types,
further details are discussed in Section 5.

T. Xue 253

For example, let’s consider types Nat = 0 |succ(Nat), Bool = true|false and coercion
Bool <c Nat. With coercive subtyping, we can have terms:

succ(true), succ(false), succ(succ(true)), succ(succ(false)), . . .

As we have emphasised that coercive subtyping is just abbreviation, these terms should
actually be equivalent to the following terms:

succ(c(true)), succ(c(false)), succ(succ(c(true))), succ(succ(c(false))), . . .

Such equivalence is the most important property of the extension with coercive subtyping.
We want to show that all the judgements or derivations in the system with coercive subtyping
can be translated into the equivalent ones in the original type system. “conservative extension”
is not enough for our use, it only talks about whether the derivable judgements in new system
are still derivable in the original one, it doesn’t ask for such equivalence connection. We find
the idea of “definitional extension” in first-order logic theories contains a translation between
the formulas of the theories. Hence, we think that such notion of definitional extension is a
suitable option to describe the relation between a type system and its coercive subtyping
extension.

3 Conservative extension and definitional extension

To build a definition for the definitional extension, we should give definitions for the equival-
ence between judgements and equivalence between derivations first. Such definitions depend
on the forms of judgements. In this paper, we will consider the type systems formalised in
Luo’s logical framework2 [6]. For other cases, we should be able to consider them in a similar
way.

3.1 Luo’s logical framework
Luo’s logical framework [6] is a typed version of Martin-Löf’s logical framework [15]. In
Luo’s logical framework, the functional abstractions of the form (x)k in Martin-Löf’s logical
framework are replaced by the typed form [x : K]k. We will simply call it LF in the rest
part of this paper.

LF is a type system with terms of the following forms:

Type, El(A), (x : K)K ′, [x : K]k′, f(k)

The kind Type denotes the conceptual universe of types; El(A) denotes the kind of objects
of type A; (x : K)K ′ denotes a dependent product; [x : K]k′ denotes an abstraction; and
f(k) denotes an application. The free occurrences of the variable x in K ′ and k′ are bound
by the binding operators (x : K) and [x : K]. There are five forms of judgements in LF:

Γ ` valid, which asserts that Γ is a valid context.
Γ ` K kind, which asserts that K is a valid kind.
Γ ` k : K, which asserts that k is an object of kind K.
Γ ` k = k′ : K, which asserts that k and k′ are equal objects of kind K.
Γ ` K = K ′, which asserts that K and K ′ are two equal kinds.
Figure 7 shows the LF rules. It contains the rules for context validity and assumptions,

the general equality rules, the type equality rules, the substitution rules, the rules for kind
Type and the rules for dependent product kinds.

2 It is different from the Edinburgh Logical Framework [3].

TYPES 2013

254 Definitional Extension in Type Theory

3.2 Conservative extension
In mathematical logic, when we say a logical theory S2 is an extension of a theory S1, it
means that the syntax of S2 includes all the syntax of S1 and every theorem of S1 is a
theorem of S2. We call S2 a conservative extension of S1, if S2 is an extension of S1 and we
have a further condition that any theorem of S2 in the language of S1 is a theorem in S1.

When we talk about such extensions, it is important to point out that the syntax of S2
contains all the syntax of S1. We can have two labels of the theorems, one is proposable,
another is provable. Proposable means the theorem can be written down in the language,
not necessary be proved. Provable means the theorem can not only be written down but also
be proved. In conservative extension, we don’t care those theorems which are proposable in
S2 but not proposable in S1. However, we will see later that in definitional extension we
need to think of them.

We can consider the idea similarly in type theory. Instead of thinking of the theorems,
we would like to think of the judgements. If a judgement can be derived through the rules
in the system, we call it a derivable judgement. We say type system T2 which includes all
the syntax of system T1 is a conservative extension of T1 , if for any proposable sequent
(judgement) t of the system T1, t is derivable in T2 implies that t is derivable in T1. If a
sequent is not proposable in T1 (only proposable in T2), its derivability does not matter.

More precisely, let’s use `T for the derivable judgements in system T . T2 is an extension
of T1 requires that, T2 includes all the syntax of T1 and for any judgement Γ ` Σ in T1(it
may not be derivable):

Γ `T1 Σ ⇒ Γ `T2 Σ

For such an extension to be conservative, we also require:

Γ `T2 Σ ⇒ Γ `T1 Σ

I Definition 1 (conservative extension). Type theory T2 is a conservative extension of T1,
if T2 includes all the syntax of T1 and for any proposable judgement J in T1, there’s a
derivation of J in T1 if and only if there’s a derivation of J in T2.

3.3 Definitional extension
Sometimes, conservative extension is not powerful enough to describe the relation between
the systems. In some cases, like the study of coercive subtyping [11], we not only want to
show the conservativity, but also want the systems to keep a stronger relation. We want the
formulas, judgements or derivations in one system could be translated to corresponding ones
in another system. Definitional extension describes such kind of relation.

Traditionally, the notion of definitional extension was formulated for first-order logical
theories [5]: a first-order theory is a definitional extension of another if the former is a
conservative extension of the latter and any formula in the former is logically equivalent to
its translation in the latter. More precisely, a definitional extension S′ of a first-order theory
S is obtained by successive introductions of relations(or functions) in such a way that, for
example, for an n-ary relation R, the following defining axiom of R is added:

∀x1...∀xn. R(x1, ..., xn) ⇐⇒ φ(x1, ..., xn),

where φ(x1, ..., xn) is a formula in S.

T. Xue 255

For such a definitional extension S′, we have:
for any formula ψ in S′, ψ ⇐⇒ ψ∗ is provable in S′, where ψ∗ is the formula in S

obtained from ψ by replacing any occurrence of R(t1, ..., tn) by φ(t1, ..., tn) (with necessary
changes of bound variables).
S′ is a conservative extension of S.

Taking the idea of definitional extension, especially the translation between formulas, we
are going to consider a similar relation in type theory. The notion of definitonal extension
in first-order logic is characterised in terms of translation on formulas. In our type theory,
we have at least two options to present the translation on: judgements and derivations.
Intuitively, derivable judgements and derivations are very close related to each other. In
analogy to the formulas in logic, it sounds even more natural to use judgements in type
theory. However, we will choose derivations to formalise our definition. Let’s consider the
type systems with coercive subtyping. Translating a judgement with coercive subtyping into
a judgement without coercive subtyping requires us to point out all the “gaps” introduced
by coercion in the judgement. They are not simply marked in the syntax, and due to the
congruence rules of subtyping, the insertion might not be syntactically unique. We have
to look up the derivations to find the coercions out. More generally, in intensional type
theories, the non-syntax-directed use of the conversion rule makes the connection between
the judgement and derivation non-structural. When we have the mechanisms like coercion,
the choice of rules by which to refine a judgement becomes no more free. Based on these
reasons, it is necessary to give the definition in term of derivations.

Before giving a formal definition of definitional extension, we need to define the equivalence
between derivations first. The equivalence between the derivations can be defined by the
equivalence between derivable judgements and the equivalence between the judgements
intuitively means that the corresponding parts of two judgements are equal formulas. In LF,
the judgements are of form:

Γ ` valid, Γ ` K kind, Γ ` k : K, Γ ` k1 = k2 : K and Γ ` K1 = K2

Hence, we can define the equivalence between the judgements in the following way:

I Notation 2. In a type system S specified in LF, let Γ1 and Γ2 be

Γ1 ≡ x1 : K1, x2 : K2, · · · , xn : Kn

Γ2 ≡ x1 : M1, x2 : M2, · · · , xn : Mn

The equality Γ ` Γ1 = Γ2 is an abbreviation for the following list of n judgements:

Γ ` K1 = M1;
Γ, x1 : K1 ` K2 = M2;

...
Γ, x1 : K1, · · · , xn−1 : Kn−1 ` Kn = Mn.

With the LF rules, we can proof the following propositions of our equality abbreviation in
type system S specified in LF. Then, we can use them to define equality between judgements
and between derivations in S.

I Proposition 3. In a type system S specified in LF.
1. If Γ1 is a valid context, then ` Γ1 = Γ1.
2. If Γ ` Γ1 = Γ2, then Γ ` Γ2 = Γ1.

TYPES 2013

256 Definitional Extension in Type Theory

3. If Γ ` Γ1 = Γ2 and Γ ` Γ2 = Γ3, then Γ ` Γ1 = Γ3.
4. If Γ,Γ1 ` J and Γ ` Γ1 = Γ2 then Γ,Γ2 ` J . (J is of form valid, K kind, k : K,

k1 = k2 : K or K1 = K2)

Proof. See appendix B. J

I Definition 4. (equality between judgements) Let S be a type theory specified in LF.
The notion of equality between judgements of the same form in S, notation J1 =s J2, is
inductively defined as follows:
1. (Γ1 ` valid) =s (Γ2 ` valid) iff ` Γ1 = Γ2 is derivable in S.
2. (Γ1 ` K1 kind) =s (Γ2 ` K2 kind) iff ` Γ1 = Γ2 and Γ1 ` K1 = K2 are derivable in S.
3. (Γ1 ` k1 : K1) =s (Γ2 ` k2 : K2) iff ` Γ1 = Γ2, Γ1 ` K1 = K2 and Γ1 ` k1 = k2 : K1 are

derivable in S.
4. (Γ1 ` K1 = K ′1) =s (Γ2 ` K2 = K ′2) iff ` Γ1 = Γ2, Γ1 ` K1 = K2 and Γ1 ` K ′1 = K ′2 are

derivable in S.
5. (Γ1 ` k1 = k′1 : K1) =s (Γ2 ` k2 = k′2 : K2) iff ` Γ1 = Γ2, Γ1 ` K1 = K2, Γ1 ` k1 =

k2 : K1 and Γ1 ` k′1 = k′2 : K1 are derivable in S.

The equivalence between the derivations can be given as follows:

I Definition 5. (equality between derivations) Suppose d is a derivation in type system S,
let conc(d) denote the conclusion of derivation d. Given two derivations d1 and d2, we call
d1 and d2 equivalent derivations in S and write d1 ∼s d2 iff conc(d1) =s conc(d2) in S.

I Theorem 6. Let S be a type theory specified in LF, =s and ∼s are equivalence relations.

Proof. Straight with Proposition 3 and LF rules in Figure 7. J

When no confusion may occur, We will omit S and simply write = and ∼ for the
equivalence between judgements and derivations in system S.

I Definition 7. (definitional extension) We call T2 is a definitional extension of T1, if we
have:

for any derivation d in T2, we can translate d into a corresponding derivation d′ in T1, d
and d′ are equivalent derivations in T2.
T2 is a conservative extension of T1.

4 A simple example

In Section 2, we have proposed our motivation of introducing definitional extension: con-
servative extension is not enough to capture the properties when we extend a system with
coercive subtyping. However, we find that coercive subtyping is not a definitional extension
either. The reason is that terms like succ(true) are proposable but not derivable in the
original system. With the help of coercive subtyping, they are derivable. It doesn’t satisfy
the definition of conservative extension, hence not definitional extension. To figure out what
exactly the relation is, we have to employ some intermediate systems to help us.

The complete description of the relations between a type system, its coercive subtyping
extension and intermediate systems is complex and includes some tedious proofs [18]. We
will give a sketch of it in the next section. In this section, we try to give an example with
coercive subtyping to tell such story in a simple and informal way. Through this trivial
looking example, we would like to show the following points: 1) why definitional extension is
still not enough (or why we introduce a intermediate system); 2) how to introduce a proper
intermediate system; 3) the relations between the systems.

T. Xue 257

Ic

φ

��

Φ

&&
I∗

Φ′

conservative
//

φ′

OO

I

Figure 1 Relations between Ic, I∗ and I.

We will consider three systems in the example, a type system I and two of its extensions.
I is a very simple type system with only two constant types Nat and Bool. We extend it
into system Ic with one coercion Bool <c Nat. We also introduce system I∗ as extension of
I with ∗ calculus, such ∗ plays a role of gap holder when we apply the coercion. Through
the relations between the judgements of these systems, we can draw a picture for the links
between these systems as Figure 1 (definitions of Φ, Φ′, φ and φ′ are shown in the later parts
of this section).

We will use some informal notions in this example section for the purpose of a simple
description. We only have subtyping in the example, while in LF we shift them into subkinding.
We will omit the contexts of judgements and use judgements to formalise translations for
definitional extension. It is worth pointing out that using judgements for the translations
doesn’t violate our previous settings with derivations in this example. Because in the syntax
of judgements, the applications of succ on true or false indicate the use of coercion application
rule in the derivation clearly.

4.1 System I

In I, we only have two basic types Nat and Bool with their constructors, and a term c of
type Bool → Nat:

Nat : Type, 0 : Nat, succ : Nat → Nat,
Bool : Type, true : Bool, false : Bool, c : Bool → Nat

And, we have the following rules:

f : M → N a : M
f(a) : N

a : M
a = a : M

a1 = a2 : M
a2 = a1 : M

a1 = a2 : M a2 = a3 : M
a1 = a3 : M

In this system, the judgements are of form:
a : M and a1 = a2 : M

We can easily list out all the derivable judgements in I, they can only be of the following
cases:

0 : Nat, succ : Nat → Nat, succ(...succ(0)) : Nat,
true : Bool, false : Bool, c : Bool → Nat, c(true) : Nat, c(false) : Nat,
succ(...succ(c(true))) : Nat, succ(...succ(c(false)) : Nat,
0 = 0 : Nat, succ(...succ(0)) = succ(...succ(0)) : Nat,
true = true : Bool, false = false : Bool,
succ = succ : Nat → Nat, c = c : Bool → Nat,
succ(...succ(c(true))) = succ(...succ(c(true))) : Nat,
succ(...succ(c(false))) = succ(...succ(c(false))) : Nat

TYPES 2013

258 Definitional Extension in Type Theory

I Remark. For the judgements like succ(...succ(c(true))) = succ(...succ(c(true))) : Nat, the
left and right term of the equal mark have the same number of succ. It’s the same case for
the other similar judgements in rest of this section.

4.2 System Ic

Let’s enrich the system I with coercive subtyping. We extend I into system Ic with coercion
Bool <c Nat and coercion application rules:

f : B → C a : A A <c B

f(a) : C
f : B → C a : A A <c B

f(a) = f(c(a)) : C

The judgements in system Ic are of form3:
a : M and a1 = a2 : M

We can get all the derivable judgements in system Ic. Besides all those we have in system
I, we can derive the following judgements:

succ(...succ(true)) : Nat, succ(...succ(false)) : Nat,
succ(...succ(true)) = succ(...succ(true)) : Nat,
succ(...succ(false)) = succ(...succ(false)) : Nat,
succ(...succ(c(true))) = succ(...succ(true)) : Nat,
succ(...succ(c(false))) = succ(...succ(false)) : Nat,
succ(...succ(true)) = succ(...succ(c(true))) : Nat,
succ(...succ(false)) = succ(...succ(c(false))) : Nat

4.3 Relation between I and Ic

Now, let’s consider the relation between I and Ic. We want to show that every derivable
judgement in Ic is equivalent to a corresponding derivable judgement in I. To achieve this
goal, we define a translation Φ from every derivable judgements in system Ic to derivable
judgements in I. Φ inserts all the gaps caused by coercion with term c (since we only have
one subtyping relation). The definition of Φ is as follows :
1. Φ(t) ≡ t, if the t is the judgement in I,
2. Φ(t) ≡ succ(...succ(c(b)) : Nat, if t ≡ succ(...succ(b)) : Nat, b is either true or false,
3. Φ(t) ≡ succ(...succ(c(b))) = succ(...succ(c(b))) : Nat,

if t ≡ succ(...succ(b)) = succ(...succ(b)) : Nat, b is either true or false,
4. Φ(t) ≡ succ(...succ(c(b) = succ(...succ(c(b))) : Nat,

if t ≡ succ(...succ(b)) = succ(...succ(c(b))) : Nat, b is either true or false,
5. Φ(t) ≡ succ(...succ(c(b)) = succ(...succ(c(b))) : Nat,

if t ≡ succ(...succ(c(b))) = succ(...succ(b)) : Nat, b is either true or false.

It is easy to prove that Φ is total. In order to show the equality between the judgements
in Ic and their translations in I, we can prove Φ is holding the following property.

I Proposition 8. For any derivable judgement t in system Ic, Φ(t) and t are equivalent
judgements in system Ic

3 We do not consider subtyping relation as a judgement in this example section. But in full study of
coercive subtyping in LF, we will think them as judgements. See the discussion in Section 5.

T. Xue 259

Although we have shown certain relation between system I and Ic, it just satisfies the
first condition of definitional extension. We cannot say Ic is a definitional extension of I,
because definitional extension requires conservativity. Unfortunately, Ic is not a conservative
extension of Ic. A simple counter example is that, succ(true) : Nat is a judgement but not
derivable in I, however it is derivable in Ic. It doesn’t satisfy the definition of conservative
extension.

The reason for this problem is that the abbreviation with “gaps” mechanism of coercive
subtyping makes such non-well-formed sequences to be well-formed. If we consider an
intermediate system with an extra place holder for the “gaps”, we may get rid of the problem.

4.4 System I∗

To make a more specific study for the relations, we will introduce another system I∗.
Intuitively, I∗ means that for any place we want to use a coercion, we insert a symbol ∗ to
fill the gap, it equals to the term where the coercion applied. Similarly like Ic, I∗ extends
system I with the following rules:

f : B → C a : A A <c B

f ∗ a : C
f : B → C a : A A <c B

f ∗ a = f(c(a)) : C

In system I∗, the judgements are also of form:
a : M and a1 = a2 : M

We can list all the derivable judgements in system I∗ as follows, besides all those in
system I:

succ(...succ ∗ true) : Nat, succ(...succ ∗ false) : Nat,
succ(...succ ∗ true) = succ(...succ ∗ true) : Nat,
succ(...succ ∗ false) = succ(...succ ∗ false) : Nat,
succ(...succ(c(true)) = succ(...succ ∗ true) : Nat,
succ(...succ(c(false))) = succ(...succ ∗ true) : Nat,
succ(...succ ∗ true) = succ(...succ(c(true))) : Nat,
succ(...succ ∗ true) = succ(...succ(c(false))) : Nat

4.5 Relation between I and I∗

It is trivial to show that I∗ is a conservative extension of I. Since judgements like succ∗ true :
Nat are not judgements in I, we don’t need to consider them, all the other derivable
judgements in I∗ are exactly the same judgements in I.

I Proposition 9. System I∗ is a conservative extension of system I.

Like what we have done for the relation between Ic and I. We can introduce a total
translation Φ′ from judgements of system I∗ to judgements of system I. Intuitively, it
substitutes all the appearance of ∗ with our only coercion c:
1. Φ′(t) ≡ t, if the t is a derivable judgement in I,
2. Φ′(t) ≡ succ(...succ(c(b)) : Nat, if t ≡ succ(...succ ∗ b) : Nat, b is either true or false,
3. Φ′(t) ≡ succ(...succ(c(b)) = succ(...succ(c(b))) : Nat,

if t ≡ succ(...succ ∗ b) = succ(...succ ∗ b) : Nat, b is either true or false,
4. Φ′(t) ≡ succ(...succ(c(b) = succ(...succ(c(b))) : Nat,

if t ≡ succ(...succ ∗ b) = succ(...succ(c(b))) : Nat, b is either true or false,
5. Φ′(t) ≡ succ(...succ(c(b)) = succ(...succ(c(b))) : Nat,

if t ≡ succ(...succ(c(b))) = succ(...succ ∗ b) : Nat, b is either true or false.

TYPES 2013

260 Definitional Extension in Type Theory

Now we have a total translation Φ′ from system I∗ to system I. Again, it is easy to prove
that for every derivable judgement t in system I∗, Φ′(t) and t are equal judgements in I∗.
Together with the conservative property, we can conclude that I∗ is a definitional extension
of I.

For any derivable judgement t in I∗, Φ′(t) is a derivable judgement in I, Φ′(t) and t are
equivalent judgements in I∗.
I∗ is a conservative extension of I.

4.6 Relation between Ic and I∗

Now, let’s think of the relation between, Ic and I∗. The rules and judgements are almost
the same, only different in symbols. Intuitively, they should be equivalent systems. We can
show their equality by introducing two more translations between the systems: φ from the
judgement of Ic to the judgement of I∗, φ′ from the judgement of I∗ to the judgement of Ic.

φ changes every place of succ(true) or succ(false) in system Ic into term succ ∗ true or
succ ∗ false.
φ′ simply removes every occurrence of ∗ in system I∗.

It’s trivial to show that φ and φ′ are total, and easy to prove that Ic and I∗ are two
equivalent systems by means of :

I Proposition 10.
For every judgement t in Ic, φ′(φ(t)) ≡ t.
For every judgement t′ in I∗ φ(φ′(t′)) ≡ t′.

We can also show that Φ is a composition of Φ′ and φ:

I Proposition 11. For any derivable judgement t in Ic, Φ(t) ≡ Φ′(φ(t))

Finally, we can reach the conclusion for the relations between all these systems: Ic is
equivalent to a system I∗ which is a definitional extension of I, as shown in the graph
previously (Figure 1):

Ic is an equivalent system of I∗
I∗ is a definitional extension of I:

5 Coercive subtyping in LF

Luo formulated coercive subtyping [7] in his LF [6]. Later we find that the extension took a
too general set of coercion rules which may ruin the consistency of the extension system. We
solve the problem by reformulating it with some restriction [11, 18]. In this section, we give
a sketch of reformulated system and proofs to show the definitional extension, further details
could be found in the author’s thesis [18].

We will mainly consider the following systems: an original type system T ; an extension of
system T with coercive subtyping (T [C]); an extension of system T with coercive subtyping
and place holder ∗ (T [C]∗); an intermediate system without coercion application rules
(T [C]0K).

We introduce coercive subtyping in type level (rules in Figure 2) and then move them
into kind level (rules in Figure 3). The symbol ∗ is introduced as a place holder to fill the
gaps left by the coercions. We call it ∗-calculus. Following the idea in Section 4, we should be
able to show that T [C]∗ is a definitional extension over T . Unfortunately, we can not reach
this conclusion yet, because we need to consider the derivations of subtyping and subkinding
judgements (Γ ` A <c B : Type or Γ ` K <c K

′). We didn’t consider them in the simplified

T. Xue 261

Base Coercion
Γ ` A <c B : Type ∈ C

Γ ` A <c B : Type
Congruence

Γ ` A <c B : Type Γ ` A = A′ : Type Γ ` B = B′ : Type Γ ` c = c′ : (A)B
Γ ` A′ <c′ B′ : Type

Transitivity
Γ ` A <c1 B : Type Γ ` B <c2 C : Type

Γ ` A <c2◦c1 C : Type
Substitution

Γ, x : K,Γ′ ` A <c B : Type Γ ` k : K
Γ, [k/x]Γ′ ` [k/x]A <[k/x]c [k/x]B : Type

Weakening

Γ,Γ′ ` A <c B : Type Γ ` K kind x 6∈ FV (Γ) ∪ FV (Γ′)
Γ, x : K,Γ′ ` A <c B : Type

Context Retyping

Γ, x : K,Γ′ ` A <c B : Type Γ ` K = K ′

Γ, x : K ′,Γ′ ` A <c B : Type

Figure 2 The structural subtyping rules of T [C]0.

example in the previous section, there was only one coercion taken as axiom. In a complete
description in LF, we have derivations of these subtyping and subkinding judgements, we can
hardly match them to any equivalent derivations in T . To fill this gap, we have to involve the
intermediate system T [C]0K into the relations between T , T [C] and T [C]∗. T [C]0K extends T
as T [C] but without the coercion application rules (rules in Figure 4). We will show that
T [C]∗ is a definitional extension of T [C]0K , T [C]0k is a conservative extension of T and T [C]
is an equivalent system of T [C]∗.

5.1 System T [C]
Let T be a type system specified in LF such as Martin-Löf’s type theory [12] or UTT [6].
With a set C of coercive subtyping judgements (judgements of form Γ ` A <c B : Type),
the following basic coercion rules in Figure 2, 3 and coercion application rules in Figure 4,
we can extend T into a type system T [C] with coercive subtyping4.

5.2 Coherence
Coherence is an important issue in coercive subtyping. Informally, it means there’s a unique
coercion between two types. To give a formal definition in our structure, we need to introduce
an intermediate system T [C]0.

4 Rules in Figures 2, 3, 4 and 5 are only the subtyping and subkinding rules. Figure 7 contains the rest
LF rules.

TYPES 2013

262 Definitional Extension in Type Theory

Basic subkinding rule

Γ ` A <c B : Type
Γ ` El(A) <c El(B)

Subkinding for dependent product kinds

Γ ` K ′1 <c1 K1 Γ, x′ : K ′1 ` [c1(x′)/x]K2 = K ′2 Γ, x : K1 ` K2 kind
Γ ` (x : K1)K2 <c (x′ : K ′1)K ′2

where c ≡ [f : (x : K1)K2][x′ : K ′1]f(c1(x′));

Γ ` K ′1 = K1 Γ, x′ : K ′1 ` K2 <c2 K
′
2 Γ, x : K1 ` K2 kind

Γ ` (x : K1)K2 <c (x′ : K ′1)K ′2
where c ≡ [f : (x : K1)K2][x′ : K ′1]c2f(x′);

Γ ` K ′1 <c1 K1 Γ, x′ : K ′1 ` [c1(x′)/x]K2 <c2 K
′
2 Γ, x : K1 ` K2 kind

Γ ` (x : K1)K2 <c (x′ : K ′1)K ′2
where c ≡ [f : (x : K1)K2][x′ : K ′1]c2(f(c1(x′))).
Congruence for subkinding

Γ ` K1 <c K2 Γ ` K1 = K ′1 Γ ` K2 = K ′2 Γ ` c = c′ : (K1)K2

Γ ` K ′1 <c K ′2

Transitivity for subkinding

Γ ` K <c K
′ Γ ` K ′ <c′ K ′′

Γ ` K <c′◦c K ′′

Substitution for subkinding

Γ, x : K,Γ′ ` K1 <c K2 Γ ` k : K
Γ, [k/x]Γ′ ` [k/x]K1 <[k/x]c [k/x]K2

Weakening for subkinding

Γ,Γ′ ` K1 <c K2 Γ ` K kind x 6∈ FV (Γ) ∪ FV (Γ′)
Γ, x : K,Γ′ ` K1 <c K2

Context Retyping for subkinding

Γ, x : K,Γ′ ` K1 <c K2 Γ ` K = K ′

Γ, x : K ′,Γ′ ` K1 <c K2

Figure 3 The subkinding rules of T [C]0K .

T. Xue 263

Coercive application rule

(CA1)Γ ` f : (x : K)K ′ Γ ` k0 : K0 Γ ` K0 <c K

Γ ` f(k0) : [c(k0)/x]K ′

(CA2)Γ ` f = f ′ : (x : K)K ′ Γ ` k0 = k′0 : K0 Γ ` K0 <c K

Γ ` f(k0) = f ′(k′0) : [c(k0)/x]K ′

Coercive definition rule

(CD)Γ ` f : (x : K)K ′ Γ ` k0 : K0 Γ ` K0 <c K

Γ ` f(k0) = f(c(k0)) : [c(k0)/x]K ′

Figure 4 The coercive application and definition rules of T [C].

T [C]0 is a system extending T with set C of coercion subtyping judgements, subtyping
judgements Γ ` A <c B : Type and basic subtyping rules (Figure 2).

I Definition 12. (coherence) C is called a coherent set of coercive subtyping judgement, if
in T [C]0 we have:
1. Γ ` A <c B : Type implies Γ ` A : Type, Γ ` B : Type, Γ ` c : (A)B are derivable

in T .
2. We cannot derive Γ ` A <c A : Type, for any Γ, A, c.
3. Γ ` A <c1 B : Type and Γ ` A <c2 B : Type imply that Γ ` c1 = c2 : (A)B is derivable

in T .

In fact, we can prove that any two coercions between two given kinds are equal in T [C].
Let c and c′ be two different coercion from K to K ′, K <c K

′ and K <c′ K
′:

Γ ` c = [x : K](c(x)) (η rule)
= [x : K]([y : K ′]y)c(x) (β rule)
= [x : K]([y : K ′]y)(x) (ξ and coercive definition)
= [x : K]([y : K ′]y)(c′(x)) (ξ and coercive definition)
= [x : K](c′(x)) (β rule)
= c′ : (K)K ′ (η rule)

This fact implies that without the coherence condition, in T [C] we can prove some result
that we can’t get in T . That’s the reason why we define coherence before introducing the
coercion application rule. And we have to use a coherent set of C, otherwise the conservativity
cannot hold.

5.3 Relation between T [C] and T

Now, we would like to consider the relation between system T [C] and T . The example in
Section 4 gives us the basic idea of dealing their relation. However, it is more complicated in
LF, there are several extra things we need to consider.

We need to extend the form of judgements. As we have rules of subtyping and subkinding
and derivations of them, we consider the subtyping and subkinding as judgements as well.

TYPES 2013

264 Definitional Extension in Type Theory

Coercive application rule

(CA∗1)Γ ` f : (x : K)K′ Γ ` k0 : K0 Γ ` K0 <c K

Γ ` f ∗ k0 : [c(k0)/x]K′

(CA∗2)Γ ` f = f ′ : (x : K)K′ Γ ` k0 = k′0 : K0 Γ ` K0 <c K

Γ ` f ∗ k0 = f ′ ∗ k′0 : [c(k0)/x]K′

Coercive definition rule

(CD∗)Γ ` f : (x : K)K′ Γ ` k0 : K0 Γ ` K0 <c K

Γ ` f ∗ k0 = f(c(k0)) : [c(k0)/x]K′

Figure 5 The coercive application and definition rules of T [C]∗.

So we introduce two new forms of judgements:

Γ ` A <c B : Type and Γ ` K1 <c K2

Since we have two new forms of judgements, we need to consider the equivalence between
these judgements as well. We can extend the Definition 4 with the following two cases:

I Definition 13. (equality between the subtyping and subkinding judgements) Let S be a
type theory specified in LF:
1. (Γ1 ` A1 <c1 B1 : Type) =s (Γ2 ` A2 <c2 B2 : Type) iff ` Γ1 = Γ2, Γ1 ` A1 =

A2 : Type, Γ1 ` B1 = B2 : Type, Γ ` c1 = c2 : (A1)B1 are derivable in S.
2. (Γ1 ` K1 <c1 K

′
1) =s (Γ2 ` K2 <c2 K

′
2) iff ` Γ1 = Γ2, Γ1 ` K1 = K2, Γ1 ` K ′1 = K ′2 and

Γ ` c1 = c2 : (K1)K ′1 are derivable in S.

It is straight to show the relation =s and ∼s are still equivalence relations in coercive
subtyping extensions.

I Theorem 14. Let S be a type theory with coercive subtyping specified in LF, =s and ∼s
are equivalence relations.

5.3.1 System T [C]0K

The system T [C]0K is an intermediate system which extends T with subtyping and subkinding
rules but no coercion application and definition rules. It is obtained from T by adding the
new judgement form Γ ` A <c B : Type, Γ ` K <c K

′ and the inference rules in Figure 2
and 3. Since we don’t have any coercion application rule in T [C]0K , the coercion judgements
cannot be applied, T [C]0K can be trivially proved as a conservative extension of T .

I Proposition 15. System T [C]0K is a conservative extension of system T .

5.3.2 System T [C]∗

We can think T [C] as a system obtained from T [C]0K by adding the coercive application and
coercive definition rules in Figure 4. We will extend T [C]0K into another system T [C]∗ with
∗ as gap holder when we apply coercive subtyping.

T [C]∗ is the system obtained from T [C]0K by adding the coercive application and coercive
definition rules in Figure 5.

It is easy to find out that all the judgements with ∗ are not judgements in T [C]0K . It
means that T [C]∗ is conservative over T [C]0K

I Proposition 16. T [C]∗ is a conservative extension of T [C]0K .

T. Xue 265

5.3.3 Relation between the systems
To describe the relation between the type system T [C], T [C]∗ and T [C]0K , we introduce four
algorithms Θ, Θ∗, θ1 and θ2 between the systems.

For two type systems T1 and T2, we write

f : T1 → T2

if f is a function from the T1-derivations to T2-derivations.
We describe four algorithms, which are such functions:

Θ : T [C]→ T [C]0K
Θ∗ : T [C]∗ → T [C]0K
θ1 : T [C]→ T [C]∗

θ2 : T [C]∗ → T [C]

The algorithms behave in the following way:
The algorithm Θ replaces the derivations of Γ ` K1 <c K2 in the premises of coercive rules
(CA1)(CA2)(CD) by derivations of Γ ` c : (K1)K2 and replaces the coercive applications
by several ordinary applications.
The algorithm Θ∗ replaces the derivations of Γ ` K1 <c K2 in the premises of coercive
rules (CA∗1)(CA∗2)(CD∗) by derivations of Γ ` c : (K1)K2 and replaces the coercive
applications by several ordinary applications.
The algorithm θ1 replaces coercive applications in T [C] derivations by coercive applications
in T [C]∗, by inserting ∗ into appropriate places.
The algorithm θ2 replaces coercive applications of the form f ∗ a in T [C]∗ by coercive
applications f(a) in T [C].

We need to show that our algorithms behave in the right way, they insert the coercions
into where they should be. The following property guarantees that all the coercions are
inserted correctly by the algorithms:

I Proposition 17.
1. For any derivation t in T [C], t and Θ(t) are equivalent derivations in T [C].
2. For any derivation t′ in T [C]∗, t′ and Θ∗(t′) are equivalent derivations in T [C]∗.

With the proposition below, we can show that T [C] and T [C]∗ are equivalent systems.

I Proposition 18.
1. For any derivation t in T [C], t and θ2(θ1(t)) are equivalent derivations in T [C].
2. For any derivation t′ in T [C]∗, t′ and θ1(θ2(t′)) are equivalent derivations in T [C]∗.

Finally, with the propositions above we can conclude the relations between our systems
and intermediate systems. Their relations can be drawn as Figure 6.

T [C] is a equivalent system of T [C]∗.
T [C]∗ is a definitional extension of T [C]0K .
T [C]0K is a conservative extension of T .

T [C]∗ is a definitional extension of T [C]0K and T [C]0K is a conservative extension of T ,
we would like to call that T [C]∗ is a D-conservative extension5 of T .

5 There is a notion of D-conservativity in Luo’s note [8], we have a different meaning with that.

TYPES 2013

266 Definitional Extension in Type Theory

T [C]

θ2

��

Θ

$$
T [C]∗ Θ∗ //

θ1

OO

T [C]0K
conservative // T

Figure 6 Relations between T [C], T [C]∗, T [C]0K and T.

I Remark. Although we have shown that T [C]∗ with ∗-calculus has a more nature relationship
with T , we still use T [C] as for description of coercive subtyping. T [C] itself is directly
connected to important themes in the study of subtyping: implicit coercions and subtyping
as abbreviation.

6 Conclusion and discussion

During the study of coercive subtyping, we find that conservativity is not enough to capture the
relation between the systems. We borrow the idea of definitional extension from mathematical
logic to describe the relation and formulate it in type theory. With a simple example, we
demonstrate the relations and properties between a type system and its coercive subtyping
extension. Although the example only consists of two basic types and one coercion, it’s a
nice shot containing the idea and key elements of the whole coercive subtyping extension
story. We also give a sketch of the study on coercive subtyping in LF.

We hope this work presents a clear description of extending a type system with coercive
subtyping and wish the notion of definitional extension can help with studies on other
extensions in type theory. For example, implicit syntax of Pollack [16] is a good candidate.
It starts from LEGO [10] and widely used on today’s systems. We write terms with implicit
arguments omitted and they are not well-typed in the system until the missing arguments
have been inserted. It is not a conservative extension and we wish our notion could help
to figure the exact relation out. More broadly, we can think of elaboration. An elaboration
process maps surface language features to underlying constructions. We would like to see if
elaboration is definitional extension or something more.

Acknowledgments. I would like to thank Zhaohui Luo for discussions regarding this topic
and also thank to the anonymous reviewers for their valuable comments.

References
1 David Aspinall and Adriana Compagnoni. Subtyping dependent types. Theoretical Com-

puter Science, 266(1-2):273–309, 2001.
2 Gilles Barthe and Maria João Frade. Constructor subtyping. In S. Doaitse Swierstra, editor,

Proceedings of Programming Languages and Systems, 8 conf. (ESOP’99), volume 1576 of
Lecture Notes in Computer Science, pages 109–127. Springer, 1999.

3 Robert Harper, Furio Honsell, and Gordon D. Plotkin. A framework for defining logics.
In Proceedings of Symposium on Logic in Computer Science 1987, pages 194–204. IEEE
Computer Society, 1987.

4 Martin Hofmann. Extensional Concepts in Intensional Type Theory. PhD thesis, University
of Edinburgh, 1995.

5 Stephen Kleene. Introduction to Metamathematics. North Holland, 1952.

T. Xue 267

6 Zhaohui Luo. Computation and Reasoning: A Type Theory for Computer Science. Oxford
University Press, 1994.

7 Zhaohui Luo. Coercive subtyping. Journal of Logic and Computation, 9(1):105–130, 1999.
8 Zhaohui Luo. D-conservativity. Notes, January 2012.
9 Zhaohui Luo. Formal semantics in modern type theories with coercive subtyping. Linguist-

ics and Philosophye, 35(6):491–513, 2012.
10 Zhaohui Luo and Robert Pollack. Lego proof development system: User manual, 1992.
11 Zhaohui Luo, Sergei Soloviev, and Tao Xue. Coercive subtyping: Theory and implementa-

tion. Information and Computation, 223:18–42, February 2013.
12 Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.
13 Robin Milner. A theory of type polymorphism in programming. Journal of Computer

Systems and Sciences, 17:348–375, 1978.
14 John C. Mitchell. Type inference with simple subtypes. Journal of Functional Programming,

1(3):245–285, 1991.
15 Bengt Nordström, Kent Petersson, and Jan M. Smith. Programming in Martin-Löf’s Type

Theory: An Introduction. Oxford University Press, Oxford, 1990.
16 Robert Pollack. Implicit syntax. In the preliminary Proceedings of the 1st Workshop on

Logical Frameworks, 1990.
17 Sergei Soloviev and Zhaohui Luo. Coercion completion and conservativity in coercive sub-

typing. Annals of Pure and Applied Logic, 113(1–3):297–322, 2002.
18 Tao Xue. Theory and Implementation of Coercive Subtyping. PhD thesis, Royal Holloway,

University of London, 2013.
19 Tao Xue and Zhaohui Luo. Dot-types and their implementaion. Logical Aspects of Compu-

tational Linguistics (LACL’12). LNCS, 7351:234–249, 2012.

TYPES 2013

268 Definitional Extension in Type Theory

A LF inference rules

Contexts and assumptions

<>` valid
Γ ` K kind x 6∈ FV (Γ)

Γ, x : K ` valid
Γ, x : K,Γ′ ` valid
Γ, x : K,Γ′ ` x : K

Γ,Γ′ ` J Γ ` K kind x 6∈ FV (Γ) ∪ FV (Γ′)
Γ, x : K,Γ′ ` J

General equality rules

Γ ` K kind
Γ ` K = K

Γ ` K = K′

Γ ` K′ = K

Γ ` K = K′ Γ ` K′ = K′′

Γ ` K = K′′

Γ ` k : K
Γ ` k = k : K

Γ ` k = k′ : K
Γ ` k′ = k : K

Γ ` k = k′ : K Γ ` k′ = k′′ : K
Γ ` k = k′′ : K

Equality typing rules

Γ ` k : K Γ ` K = K′

Γ ` k : K′
Γ ` k = k′ : K Γ ` K = K′

Γ ` k = k′ : K′

Γ, x : K,Γ′ ` J Γ ` K = K′

Γ, x : K′,Γ′ ` J
where J is of form: valid, K0 kind, k : K0, K1 = K2 or k1 = k2 : K0

Substitution rules
Γ, x : K,Γ′ ` valid Γ ` k : K

Γ, [k/x]Γ′ ` valid
Γ, x : K,Γ′ ` K′ kind Γ ` k : K

Γ, [k/x]Γ′ ` [k/x]K′ kind
Γ, x : K,Γ′ ` k′ : K′ Γ ` k : K

Γ, [k/x]Γ′ ` [k/x]k′ : [k/x]K′

Γ, x : K,Γ′ ` K′ = K′′ Γ ` k : K
Γ, [k/x]Γ′ ` [k/x]K′ = [k/x]K′′

Γ, x : K,Γ′ ` k′ = k′′ : K′ Γ ` k : K
Γ, [k/x]Γ′ ` [k/x]k′ = [k/x]k′′ : [k/x]K′

Γ, x : K,Γ′ ` K′ kind Γ ` k = k′ : K
Γ, [k/x]Γ′ ` [k/x]K′ = [k′/x]K′

Γ, x : K,Γ′ ` k′ : K′ Γ ` k1 = k2 : K
Γ, [k1/x]Γ′ ` [k1/x]k′ = [k2/x]k′ : [k1/x]K′

The kind Type

Γ ` valid
Γ ` Type kind

Γ ` A : Type
Γ ` El(A) kind

Γ ` A = B : Type
Γ ` El(A) = El(B)

Dependent product kinds

Γ ` K kind Γ, x : K ` K′ kind
Γ ` (x : K)K′ kind

Γ ` K1 = K2 Γ, x : K1 ` K′1 = K′2
Γ ` (x : K1)K′1 = (x : K2)K′2

Γ, x : K ` k : K′

Γ ` [x : K]k : (x : K)K′ (η) Γ ` K1 = K2 Γ, x : K1 ` k1 = k2 : K
Γ ` [x : K1]k1 = [x : K2]k2 : (x : K1)K

Γ ` f : (x : K)K′ Γ ` k : K
Γ ` f(k) : [k/x]K′

Γ ` f = f ′ : (x : K)K′ Γ ` k1 = k2 : K
Γ ` f(k1) = f ′(k2) : [k1/x]K′

(β) Γ, x : K ` k′ : K′ Γ ` k : K
Γ ` ([x : K]k′)(k) = [k/x]k′ : [k/x]K′ (ξ) Γ ` f : (x : K)K′ x 6∈ FV (f)

Γ ` [x : K]f(x) = f : (x : K)K′

Figure 7 The inference rules of LF.

T. Xue 269

B Proof of Proposition 3

In a type system S specified in LF.
1. If Γ1 is a valid context, ` Γ1 = Γ1
2. If Γ ` Γ1 = Γ2, then Γ ` Γ2 = Γ1.
3. If Γ ` Γ1 = Γ2 and Γ ` Γ2 = Γ3, then Γ ` Γ1 = Γ3.
4. If Γ,Γ1 ` J and Γ ` Γ1 = Γ2 then Γ,Γ2 ` J . (J is of form valid, K kind, k : K,

k1 = k2 : K or K1 = K2)

Proof. Suppose
Γ1 ≡ x1 : K1, x2 : K2, · · · , xn : Kn

Γ2 ≡ x1 : M1, x2 : M2, · · · , xn : Mn

Γ3 ≡ x1 : N1, x2 : N2, · · · , xn : Nn
1. Straight by definition.
2. Since Γ ` Γ1 = Γ2, by definition we have:

Γ ` K1 = M1;
Γ, x1 : K1, · · · , xi−1 : Ki−1 ` Ki = Mi (i = 2, · · · , n)

For any 1 < i ≤ n:
Γ, x1 : K1, · · · , xi−2 : Ki−2, xi−1 : Ki−1 ` Ki = Mi Γ, x1 : K1, · · · , xi−2 : Ki−2 ` Ki−1 = Mi−1

Γ, x1 : K1, · · · , xi−2 : Ki−2, xi−1 : Mi−1 ` Ki = Mi

.

.

.
Γ, x1 : K1, x2 : M2, · · · , xi−1 : Mi−1 ` Ki = Mi Γ ` K1 = M1

Γ, x1 : M1, x2 : M2, · · · , xi−1 : Mi−1 ` Ki = Mi

Γ, x1 : M1, x2 : M2, · · · , xi−1 : Mi−1 ` Mi = Ki

and i = 1 is trivial with Γ ` K1 = M1
Γ `M1 = K1

. Hence, we have Γ ` Γ2 = Γ1 by definition.
3. Since Γ ` Γ2 = Γ3, by definition we have:

Γ ` M1 = N1

Γ, x1 : M1, · · · , xi−1 : Mi−1 ` Mi = Ni (i = 2, · · · , n)
We have Γ ` K1 = M1, and from case 2:

Γ, x1 : M1, · · · , xi−1 : Mi−1 ` Ki = Mi (i = 2, · · · , n)

In the LF, we have transitivity rules for equal kinds, so we can get:
Γ ` K1 = N1

Γ, x1 : M1, · · · , xi−1 : Mi−1 ` Ki = Ni (i = 2, · · · , n)
For any 1 < i ≤ n:

Γ, x1 : M1, · · · , xi−2 : Mi−2, xi−1 : Mi−1 ` Ki = Ni Γ, x1 : M1, · · · , xi−2 : Mi−2 ` Mi−1 = Ki−1

Γ, x1 : M1, · · · , xi−2 : Mi−2, xi−1 : Ki−1 ` Ki = Ni

.

.

.
Γ, x1 : M1, x2 : K2, · · · , xi−1 : Ki−1 ` Ki = Ni Γ ` K1 = M1

Γ, x1 : K1, x2 : K2, · · · , xi−1 : Ki−1 ` Ki = Ni

We have Γ ` Γ1 = Γ3 by definition.
4.

Γ, x1 : K1, · · · , xn−1 : Kn−1, xn : Kn ` J Γ, x1 : K1, · · · , xn−1 : Kn−1 ` Kn = Mn

Γ, x1 : K1, · · · , xn−1 : Kn−1, xn : Mn ` J

.

.

.
Γ, x1 : K1, xx : M2, · · · , xn : Mn ` J Γ ` K1 = M1

Γ, x1 : M1, xx : M2, · · · , xn : Mn ` J

Hence we have Γ,Γ2 ` J .

TYPES 2013

	p000-00-frontmatter
	Preface

	p001-01-ahman
	Introduction
	Unifying reader, writer, state monads
	Reader, writer, state monads
	Update monads
	Algebras of update monads
	Update monads as a compatible composition of reader and writer monads
	Maps between update monads

	A dependently typed generalization
	Kammar and Plotkin's generalization of state monads
	Conclusion and future work
	Background
	Monoids, actions
	Monads, monad algebras
	Distributive laws and compatible compositions of monads

	Proof of the main theorem
	Proof of Lemma 8
	Proof of Theorem 9

	Algebras of update monads as models of Lawvere theories

	p024-02-aschieri
	Introduction
	Markov's Argument
	Gödel's Dialectica Interpretation
	Kreisel's Modified Realizability
	Modified Realizability and Friedman's Translation
	Game Semantics and Functional Interpretations
	A Game Semantical Twist of Modified Realizability
	Plan of the paper

	The Term Calculus
	Language of HA + MP

	Realizability
	Extensionality
	A Realizer of Markov's Principle
	Curry-Howard Correspondence for HA +MP

	Main Results
	The Adequacy Theorem
	Realizability and Truth

	Concluding Remarks and Further Works

	p045-03-barthe
	Introduction
	Background
	Verified implementation
	Actions semantics
	Error management
	Executable specification
	Action execution
	Cache and TLB update

	Soundness

	Isolation
	OS Isolation
	OS isolation in execution traces

	Related work and conclusion
	Appendix
	Valid state
	Actions
	Observational equivalence of states

	p064-04-berardi
	Introduction
	Ramsey Theorem and Classical Principles for Arithmetic
	Ramsey implies the Limited Lesser Principle of Omniscience
	The Limited Lesser Principle of Omniscience implies Ramsey
	Conclusions

	p084-05-berger
	Introduction
	Related work
	Minlog

	Informal description of In-Place Quicksort
	A formal proof that every array can be sorted
	Partitioning an array
	Proof of the Sorting Theorem

	Program Extraction
	Implementation in Minlog
	Arrays
	Equational reasoning via normalisation
	Realizability
	Induction and recursion

	The extracted programs
	Program extracted from the proof of the Sorting Theorem.
	Program extracted from the proof of the Partition Lemma.
	The swap function extracted from the proof of the Swapping Lemma

	The extracted programs explained
	How are these extracted programs imperative?
	Monadic presentation of the extracted programs

	Automated Monadification
	Remark
	The Single-Threaded Functional Language SIT
	SIT Typing System
	Quicksort as a SIT program
	The Monadic Language MON
	MON Typing System
	Translation from SIT to MON
	Translating the SIT code of Quicksort into MON

	Soundness of the translation
	Translation from MON to SIT
	Auxiliary Lemmas
	Soundness Proof

	Conclusion and Further Work

	p107-06-bezem
	Introduction
	The category of names and substitutions
	Cubical sets
	Cubical sets as a presheaf model
	The uniform Kan condition
	Examples of cubical sets
	Unit interval
	Polynomial rings
	Cubical nerve
	The nerve of a groupoid is Kan

	The Kan cubical set model
	Dependent product
	Sum type

	Extensions
	Inductive types
	Identity type
	Description of a universe
	Equivalence and equality of types
	Propositional reflection

	p129-07-coppo
	Introduction
	Type Assignment System
	Isomorphism and Equality in Models
	Normalisation
	Characterisation of Isomorphism
	Conclusion

	p150-08-despeyroux
	Introduction
	Hybrid Linear Logic
	Sequent Calculus for HyLL
	Temporal Constraints
	Probabilistic Constraints

	Focusing
	Encoding the Synchronous Stochastic -calculus
	Representational Adequacy.
	Stochastic Correctness with respect to simulation

	Related Work
	Conclusion and Future Work

	p169-09-herbelin
	Introduction
	Pure type systems
	Inductive type families
	Regular types
	Inductive type families
	Examples
	Co-induction

	Prop
	Impredicativity
	Singleton rules
	Examples

	Impredicative Set
	Conclusion

	p188-10-ilik
	Introduction
	From DNS and MP to Open Induction for Cantor Space
	A Constructive Logic Proving EnDec
	A Proof Term for Open Induction
	The system HA+(S)
	Proof term for OI-B

	Conclusion

	p202-11-retore
	Introduction: word meaning and compositional semantics
	The syntax of compositional semantics
	A brief reminder on Montague semantics
	The need of integrating lexical semantics in formal semantics
	Type theories for integrating lexical semantics

	A Montagovian generative lexicon for compositional semantic and lexical pragmatics
	Guidelines for a semantic lexicon
	Remarks on the type system for semantics
	Many-sorted formulae in second order lambda calculus
	Organisation of the lexicon and rules for meaning assembly

	A proper account of meaning transfers
	Coercions and copredication
	Fictive motion
	Deverbals
	Coercive subtyping and ontological inclusions

	Compositional semantics issues: determiners, quantifiers, plurals
	Determiners and quantifiers
	Individuals, plurals and sets in a type-theoretical framework

	Comparison with related work and conclusion
	Variants and implementation
	Comparison with related work
	Perspectives

	p230-12-rodriguez
	Introduction
	Call-by-name lambda calculus
	Calculus of closures
	The Krivine machine
	Compilation and correctness

	Call-by-name lambda calculus with strict operators
	The calculus
	A call-by-name machine with strict operations
	Compilation and its correctness
	Correctness for divergent terms

	Higher-order imperative language
	The language
	A Krivine abstract machine with store
	Compilation and correctness
	Correctness for divergent terms

	About the formalization

	Conclusion

	p251-13-xue
	Introduction
	Motivation: coercive subtyping
	Conservative extension and definitional extension
	Luo's logical framework
	Conservative extension
	Definitional extension

	A simple example
	System I
	System Ic
	Relation between I and Ic
	System I*
	Relation between I and I*
	Relation between Ic and I*

	Coercive subtyping in LF
	System T[C]
	Coherence
	Relation between T[C] and T
	System T[C]0K
	System T[C]*
	Relation between the systems

	Conclusion and discussion
	LF inference rules
	Proof of Proposition 3

