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Preface

The papers in this volume were accepted for presentation at the 30th Computational
Complexity Conference (CCC’15), held June 17–19, 2015 in Portland, Oregon as part
of the ACM Federated Computing Research Conference (FCRC’15). The conference is
organized by the Compututational Complexity Foundation in cooperation with the European
Association for Theoretical Computer Science (EATCS) and the ACM Special Interest Group
on Algorithms and Computation Theory (SIGACT). CCC’15 is sponsored by Microsoft
Research and is supported by the Institute for Quantum Computing (IQC).

The call for papers sought original research papers in all areas of computational complexity
theory. Of the 110 submissions the program committee selected 30 for presentation at the
conference.

The program committee would like to thank everyone involved in the conference, including
all those who submitted papers for consideration as well as the reviewers (listed separately)
for their scientific contributions; the board of trustees of the Computational Complexity
Foundation and especially its president Dieter van Melkebeek for extensive advice and
assistance; Jacobo Toran for a variety of assistance; Mike Saks for sharing his knowledge as
2014 PC chair; and Marc Herbstritt for coordinating the production of these proceedings.
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Strong Locally Testable Codes with Relaxed Local
Decoders∗

Oded Goldreich, Tom Gur, and Ilan Komargodski

Weizmann Institute of Science
Rehovot, Israel
{oded.goldreich,tom.gur,ilan.komargodski}@weizmann.ac.il

Abstract
Locally testable codes (LTCs) are error-correcting codes that admit very efficient codeword tests.
An LTC is said to be strong if it has a proximity-oblivious tester; that is, a tester that makes only
a constant number of queries and reject non-codewords with probability that depends solely on
their distance from the code.

Locally decodable codes (LDCs) are complimentary to LTCs. While the latter allow for highly
efficient rejection of strings that are far from being codewords, LDCs allow for highly efficient
recovery of individual bits of the information that is encoded in strings that are close to being
codewords.

Constructions of strong-LTCs with nearly-linear length are known, but the existence of a
constant-query LDC with polynomial length is a major open problem. In an attempt to bypass this
barrier, Ben-Sasson et al. (SICOMP 2006) introduced a natural relaxation of local decodability,
called relaxed-LDCs. This notion requires local recovery of nearly all individual information-
bits, yet allows for recovery-failure (but not error) on the rest. Ben-Sasson et al. constructed a
constant-query relaxed-LDC with nearly-linear length (i.e., length k1+α for an arbitrarily small
constant α > 0, where k is the dimension of the code).

This work focuses on obtaining strong testability and relaxed decodability simultaneously. We
construct a family of binary linear codes of nearly-linear length that are both strong-LTCs (with
one-sided error) and constant-query relaxed-LDCs. This improves upon the previously known
constructions, which either obtain weak LTCs or require polynomial length.

Our construction heavily relies on tensor codes and PCPs. In particular, we provide strong
canonical PCPs of proximity for membership in any linear code with constant rate and relative
distance. Loosely speaking, these are PCPs of proximity wherein the verifier is proximity oblivious
(similarly to strong-LTCs) and every valid statement has a unique canonical proof. Furthermore,
the verifier is required to reject non-canonical proofs (even for valid statements).

As an application, we improve the best known separation result between the complexity of
decision and verification in the setting of property testing.

1998 ACM Subject Classification F.1.3 [Computation by Abstract Devices] Complexity Mea-
sures and Classes

Keywords and phrases Locally Testable Codes, Locally Decodable Codes, PCPs of Proximity
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2 Strong Locally Testable Codes with Relaxed Local Decoders

1 Introduction

Locally testable codes (LTCs) are error-correcting codes that can be tested very efficiently.
Specifically, a code is said to be an LTC if there exists a probabilistic algorithm, called a tester,
that is given a proximity parameter ε > 0 and oracle access to an input string (an alleged
codeword), makes a small number (e.g., poly(1/ε)) of queries to the input and is required to
accept valid codewords, and reject with high probability input strings that are ε-far from
being a codeword (i.e., reject strings that disagree with any codeword on ε fraction of the
bits). The systematic study of LTCs was initiated by Goldreich and Sudan [13], though the
notion was mentioned, in passing, a few years earlier by Friedl and Sudan [8] and Rubinfeld
and Sudan [20].

A natural strengthening of the notion of locally testable codes (LTCs) is known as
strong-LTCs. While LTCs (also referred to as weak-LTCs) allow for a different behavior of the
tester for different values of the proximity parameter, strong-LTCs are required to satisfy a
strong uniformity condition over all values of the proximity parameter. In more detail, the
tester of a strong-LTC does not get a proximity parameter as an input, and is instead required
to make only a constant number of queries and reject non-codewords with probability that is
related to their distance from the code. See [13, 10] for a discussion on both types of local
testability. We note that from a property testing point of view, strong-LTCs can be thought
of as codes that can be tested by a proximity-oblivious tester (see [12]).

The two most fundamental parameters of error-correcting codes (and strong-LTCs in
particular) are the distance and the codeword length. Throughout this work we will only
consider codes with constant relative distance, and so our main parameter of interest is the
length, which measures the amount of redundancy of information in each codeword. By this
criterion, constructing a strong-LTC with linear length (and constant relative distance) is the
holy grail of designing efficient locally testable codes. Although recently some progress was
made towards showing the impossibility of such linear length LTCs [5, 3], there are known
constructions of strong-LTCs with relatively good parameters: Goldreich and Sudan [13]
constructed a strong-LTC with constant relative distance and nearly-linear length, where
throughout this paper a code of dimension k is said to have nearly-linear length if its codewords
are of length k1+α for an arbitrarily small constant α > 0. Furthermore, recently Viderman
[23] constructed a strong-LTC with constant relative distance and quasilinear length (i.e.,
length k · polylogk).

Another natural local property of codes is local decodability. A code is said to be a locally
decodable code (LDC) if it allows for a highly efficient recovery of any individual bit of the
message encoded in a somewhat corrupted codeword. That is, there exists a probabilistic
algorithm, called a decoder, that is given a location i and oracle access to an input string
w that is promised to be sufficiently close to a codeword. The decoder is allowed to make
a small (usually constant) number of queries to the input w and is required to decode the
ith bit of the information that corresponds to the codeword that w is closest to. Following
the work of Katz and Trevisan [17] that formally defined the notion of LDCs, these codes
received much attention and found numerous applications (see e.g., [21, 25] and references
therein). They are also related to private information retrieval protocols [4] (see [9] for a
survey).

Despite much attention that LDCs received in recent years, the best known LDCs are
of super-polynomial length (cf. [7], building on [24]). While the best known lower bound
(cf. [17]) only shows that any q-query LDC must be of length Ω

(
k1+ 1

q−1

)
(where k is the

dimension of the code), the existence of a constant-query LDC with polynomial length remains
a major open problem.
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In an attempt to bypass this barrier, Ben-Sasson et al. [1] introduced a natural relaxation
of the notion of local decodability, known as relaxed-LDCs. This relaxation requires local
recovery of most (or nearly all) individual information-bits, yet allows for recovery-failure
(but not error) on the rest. Specifically, a code is said to be a relaxed-LDC if there exists
an algorithm, called a (relaxed) decoder, that has oracle access to an input string that is
promised to be sufficiently close to a codeword. Similarly to LDCs, the decoder is allowed to
make few queries to the input in attempt to decode a given location in the message. However,
unlike LDCs, the relaxed decoder is allowed to output an abort symbol on a small fraction of
the locations, which indicates that the decoder detected a corruption in the codeword and is
unable to decode this specific information-bit. Note that the decoder must still avoid errors
(with high probability).

Throughout this work, unless explicitly stated otherwise, when we say that a code is a
relaxed-LDC, we actually mean that it is a relaxed-LDC with constant query complexity.

Ben-Sasson et al. [1] constructed a relaxed-LDC with nearly-linear length. More generally,
they showed that for every constant α > 0 there exists a relaxed-LDC (with constant relative
distance) that maps k-bit messages to k1+α-bit codewords and has query complexity O

(
1/α2).

While these relaxed-LDCs are dramatically shorter than any known LDC, they do not break
the currently known lower bound on LDCs (cf. [17]), and hence it is it still an open question
whether relaxed-LDC are a strict relaxation of LDCs.

1.1 Obtaining Local Testability and Decodability Simultaneously
In this work, we are interested in short codes that are both (strongly) locally testable and
(relaxed) locally decodable.1 The motivation behind such codes is very natural, as the notion
of local decodability is complimentary to the notion of local testability: The success of the
decoding procedure of a locally decodable code is pending on the promise that the input is
sufficiently close to a valid codeword. If the locally decodable code is also locally testable,
then this promise can be verified by the testing procedure. However, recall that there are no
known constant-query LDCs with even polynomial length, let alone such that are also locally
testable. Hence, we focus on relaxed-LDCs.2

There are a couple of known constructions of codes that are both locally testable and
relaxed decodable (with constant query complexity). Ben-Sasson et al. [1] observed that their
relaxed-LDC can be modified to also be a weak-LTC (i.e., an LTC that is not strong), while
keeping its length nearly-linear. However, the local testability of their code is inherently weak
(see Section 1.3 for details). In a recent development, Gur and Rothblum [15] constructed a
relaxed-LDC that is also a strong-LTC, albeit with polynomial length.

In this paper, we improve upon the aforementioned results of [1] and [15], achieving the
best of both worlds. That is, we construct a code that is both a strong-LTC and a relaxed-LDC
with nearly-linear length.

I Theorem 1.1 (informal). There exists a binary linear code that is a relaxed-LDC and a
(one-sided error) strong-LTC with constant relative distance and nearly-linear length.

1 Note that although the notion of local testability and decodability are related, LTCs do not imply LDCs
(i.e., there are LTCs that are not LDCs) and vice-versa. (See [18].)

2 A different possible approach to solve this problem is to settle for codes with long length. Indeed, there
are codes with exponential length that are both (constant-query) LDCs and LTCs, e.g., the Hadamard
code. Another approach to solve this problem is to settle for codes with large query complexity. In a
recent work, Guo, Kopparty, and Sudan [14] constructed very short length codes that are both locally
testable and locally decodable, albeit with large (yet needless to say, sub-linear) query complexity.

CCC 2015



4 Strong Locally Testable Codes with Relaxed Local Decoders

A formal statement of Theorem 1.1 is given in Section 3. We remark that we actually
prove a slightly stronger claim; namely, that any good linear code can be augmented (by
appending additional bits to each codeword) into a code that is both a relaxed-LDC and a
strong-LTC, at the cost of increasing the codeword length from linear to nearly-linear.

On Invoking Testers Prior to Decoders

Recall that for a code that is both locally testable and decodable, the promise (that the input
is close to a codeword) required by the decoder can be eliminated by invoking the tester first.
However, doing so can potentially hamper the decodability, since the tester is allowed to
reject codewords that are only slightly corrupted. Fortunately, our tester is smooth (i.e., it
queries each of the n bits of a codeword with probability Θ(1/n)), and thus invoking the
strong-tester a carefully chosen number of times (rejecting if one of the invocations rejected)
will result in a tolerant tester (see [16, 19]). Such a tester will reject inputs that do not
satisfy the promise of the decoder, yet still accept slightly-corrupted codewords (with high
probability).

1.2 Strong Canonical PCPs of Proximity
The notion of PCPs of proximity plays a major role in many constructions of LTCs and
relaxed-LDCs, as well as in our own. Loosely speaking, PCPs of proximity (PCPPs) are a
variant of PCP proof systems, which can be thought of as the PCP analogue of property
testing. Recall that a standard PCP is given explicit access to a statement (i.e., an input that
is supposedly in some NP language) and oracle access to a proof (i.e., a “probabilistically
checkable” NP witness). The PCP verifier is required to probabilistically verify whether
the (explicitly given) statement is correct, by making few queries to the alleged proof. In
contrast, a PCPP is given oracle access to a statement and to a proof, and is only allowed
to make a small number of queries to both the statement and the proof. Since a PCPP
verifier only sees a small part of the statement (typically, only a constant number of bits), it
cannot be expected to verify the statement precisely. Instead, it is required only to accept
correct statements and reject statements that are far from being correct (i.e., far in Hamming
distance from any valid statement).

PCPs of proximity were first studied by Ben-Sasson et al. [1] and by Dinur and Reingold [6]
(wherein they are called assignment testers). The main parameters of interest in a PCPP
system for some language L are its query complexity (i.e., the total number of queries to the
input and to the proof that the PCPP verifier makes in order to determine membership in
L) and its proof length, which can be thought as measuring the amount of redundancy of
information in the proof. Ben-Sasson et al. [1] showed a PCPP for any language in NP, with
constant query complexity and nearly-linear length (in fact, the length is n1+o(1), where n is
the length of the corresponding NP-witness).

As we have already noted, PCPPs have a central theoretical significance as the property
testing analogue of PCP proof-systems. Moreover, PCPPs were shown to be useful in various
applications, e.g., for PCP composition and alphabet reduction [1, 6], and for locally testable
and locally decodable codes [1, 13, 15]. Further information regarding the latter application
follows.

The notion of locally testable codes and PCPs of proximity are tightly connected. Not
only that PCPPs (and PCPs in general) can be thought of as the computational analogue of
the (combinatorial) notion of LTCs, but also any code can be made locally testable by using
an adequate PCPP. Specifically, Ben-Sasson et al. [1] showed that any linear code can be
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transformed to a (weak) LTC by appending each codeword with a PCPP proof that ascertains
that the codeword is indeed properly encoded.3 However, since there is no guarantee that
every two different proofs for the same statement are far (in Hamming distance), in order to
prevent deterioration of the distance of the code two additional steps are taken: Firstly, the
appended PCPP proof should be uniquely determined per codeword (i.e., each codeword has
a canonical proof), and secondly, each codeword is repeated many times so that the PCPP
part constitutes only a small fraction of the total length.

The drawback of the foregoing approach is that it results in locally testable codes that
are inherently weak (i.e., codes that do not allow for proximity-oblivious testing). To see this,
note that PCPPs only guarantee that false assertions are rejected (with high probability),
while true assertions can be accepted even if the proof is incorrect. Hence, corruptions in the
PCPP part are not necessarily detectable and the canonicity of the PCPP proofs may not be
verified, ruling out the possibility of a (strong) tester that is uniform over all possible values
of the proximity parameter.4 Moreover, when trying to build strong-LTCs, an additional
problem that arises is that, by definition, PCPPs do not necessarily provide strong soundness,
i.e., reject false proofs with probability that depends only on their distance from a correct
proof.

Motivated by constructing strong locally testable codes, Goldreich and Sudan [13, Section
5.3] considered a natural strengthening of the notion of PCPPs, known as strong canonical
PCPs of proximity (hereafter scPCPP), which addresses the aforementioned issues. Loosely
speaking, scPCPP are PCPPs with strong soundness that are required to reject “wrong”
proofs, even for correct statements. Moreover, they require that each correct statement
will only have one acceptable proof. In more detail, scPCPP are PCPP with two additional
requirements: (1) canonicity: for every true statement there exists a unique proof (called the
canonical proof) that the verifier is required to accept, and any other proof (even for a correct
statement) must be rejected, and (2) strong soundness: the scPCPP verifier is required to
be proximity oblivious and reject any pair of statement and proof with probability that is
related to its distance from a true statement and its corresponding canonical proof. A formal
definition of scPCPPs can be found in Section 2.4.

Given a construction of adequate scPCPPs, the aforementioned strategy of appending
each codeword with an efficient scPCPP (which ascertains membership in a code) will allow
to transform any code to a strong-LTC. Unfortunately, unlike standard PCPPs, for which
there are efficient constructions for any language in NP, there are no known constructions of
general-purpose scPCPPs. Yet, Goldreich and Sudan constructed a mechanism, called linear
inner proof systems (LIPS), which is closely related to some special-purpose scPCPPs. Loosely
speaking, the LIPS mechanism allows to transform linear strong locally testable codes over a
large alphabet into strong locally testable codes over a smaller alphabet (see [13, Section 5.2]
for further details). By a highly non-trivial construction and usage of the LIPS mechanism,
Goldreich and Sudan showed efficient constructions of strong-LTCs. Unfourtunately, their
constructions do not meet our needs. Nevertheless, building upon their techniques, we show
strong canonical PCPs of proximity with polynomial length for any good linear code.

3 Note that membership in any linear code is in P, and so, the efficient PCPP for NP of Ben-Sasson et al.
[1] can handle these statements.

4 In contrast, note that for weak LTCs this problem can be ignored by simply making the PCPPs themselves
a sufficiently small part of the codewords. Recall that weak LTCs are allowed to only work for values
of the proximity parameter that are sufficiently large to ensure that the concatenation of a corrupted
codeword and its corresponding PCPP sequence will include (significant) corruption in the codeword
part. Thus, there is no need to verify the canonicity or even validity of the PCPP proof. However, when
we seek to achieve the stronger definition of LTCs (i.e., strong-LTCs), this problem becomes relevant
(and cannot be ignored).
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6 Strong Locally Testable Codes with Relaxed Local Decoders

I Theorem 1.2 (scPCPP for good codes – informal). Let C be a linear code with constant
relative distance and linear length. Then, there exists a scPCPP with polynomial proof length
for membership in the set of all codewords of C.

In fact, we actually prove a slightly stronger statement. Specifically, our scPCPPs satisfy
two additional properties that will be useful for our main construction: The scPCPP proofs
are linear (over GF(2)), and the queries that the verifier makes are roughly uniform. We
remark that not only that the scPCPPs in Theorem 1.2 are crucial to our construction (see
Section 1.4 for details), we also view these scPCPPs as interesting on their own. A formal
statement of Theorem 1.2 and its proof are presented in Section 6.

1.3 Previous Works and Techniques
In this subsection, we survey the previous works and techniques regarding relaxed-LDCs
upon which we build. We start by recalling the construction of the (nearly) quadratic
length relaxed-LDC of Ben-Sasson et al. [1, Section 4.2]. The core idea that underlies
their construction is to partition each codeword into three parts: The first providing the
distance property, the second allowing for “local decodability”, and the third ascertaining
the consistency of the first two parts. The natural decoder for such a code will verify the
consistency of the first two parts via the third part and decode according to the second part
in case it detects no consistency error. Details follow.

Let C be any good linear code (i.e., a code with constant relative distance and linear
length). Ben-Sasson et al. construct a new code C ′ whose codewords consist of three parts
of equal length: (1) repetitions of a good codeword C(x) that encodes the message x; (2)
repetitions of the explicitly given message x; and (3) PCPPs that ascertain the consistency
of each individual bit in the message x (which is explicitly given in the second part) with the
codeword C(x) (which is explicitly given in the first part). We remark that since the total
length of the PCPPs is significantly longer than the statements they ascertain, the desired
length proportions are obtained by the repetitions in the first two parts. Observe that the
first part grants the new code C ′ good distance (although it may not be locally decodable),
the second part allows for a highly efficient decoding of the message (at the cost of reducing
the distance), and the third part is needed in order to guarantee that the first two parts refer
to the same message. The (relaxed) decoder for C ′ will use the PCPPs in the third part in
order to verify that the first part (the codeword C(x)) is consistent with the bit we wish to
decode in the second part (the message x). If the PCPP verifier detects no error, the decoder
returns the relevant bit in the second part; otherwise, it returns an abort symbol.

In order to implement the aforementioned relaxed-LDC, an adequate PCPP is needed;
that is, an efficient PCPP for verifying the consistency of each individual bit in a message x
with the codeword C(x). We note that such statements are in P. Recall that Ben-Sasson et
al. [1, Section 3] showed PCPPs with nearly-linear length for any language in NP. Hence,
the consistency of each message bit with a codeword of C can be guarantied by a PCPP of
length that is nearly-linear in the length of C. Since C ′ is obtained by augmenting a good
linear code C with a single PCPP proof per every message bit (claiming consistency between
that bit and the codeword of C), the length of C ′ is (nearly) quadratic (i.e., length k2+α for
an arbitrarily small constant α > 0, where k is the dimension of the code). We note that
Ben-Sasson et al. showed that the length of C ′ can be improved to nearly-linear by, roughly
speaking, partitioning the message into blocks of various lengths and decoding based on a
chain of consistent blocks.5

5 To obtain length k1.5+α, the message is partitioned into
√
k blocks, each of length

√
k. Then, the
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Recall that any code can be transformed to a weak locally testable code by appending
adequate PCPPs to it (See [1, Section 4.1]). Applying this transformation to the relaxed-LDC
does not hamper the relaxed decodability of the code, and only increase its length by a
moderate amount (since the PCPPs are of nearly-linear length); hence this transformation
yields a (constant query) relaxed-LDC with nearly-linear length that is also a (weak) LTC. We
stress that the aforementioned transformation yields local testability that is inherently weak
due to the fact that it uses standard PCPPs. However, if the PCPPs in use were actually
scPCPPs (of nearly-linear length), then the foregoing code would have been strongly testable.

In a recent work, Gur and Rothblum [15] constructed scPCPPs with polynomial length
for the particular family of linear length statements that are needed for the [1] relaxed-LDC.
By using these scPCPPs in the construction of [1], they obtained a relaxed-LDC that is also
a strong-LTC, albeit with polynomial length (due to the length of their scPCPPs). While
we conjecture it is feasible to construct nearly-linear length scPCPPs for P (which contains
the family of statements we wish to have scPCPPs for) and even for unique-NP (also known
as the class US),6 we do not obtain such scPCPPs here. Instead, we take an alternative
approach, which circumvents this challenge, as described in the next subsection.

1.4 Our Techniques
In this subsection, we present our main techniques and ideas for constructing a relaxed-LDC
with nearly-linear length that is also a strong-LTC. Our starting point is the (weakly testable)
relaxed-LDC construction of Ben-Sasson et al. [1]. However, we wish to replace the PCPPs
that they use with scPCPPs, in order to achieve strong local testability.

Since we do not have general-purpose scPCPPs (let alone of near-linear length), we
construct special-purpose scPCPPs that allow us to ascertain the particular statements we
are interested in (see Theorem 1.2). It is crucial to note that the scPCPPs we are able to
construct are with polynomial proof length (and not nearly-linear length, as we would have
hoped). Recall that the statements that are needed for the construction of Ben-Sasson et
al. (i.e., ascertaining the consistency of each bit of the message with the entire codeword
for decodability, and ascertaining the validity of the codeword for testability) are linear in
the length of the message. Therefore, applying our scPCPPs in a naive way (i.e., replacing
the PCPPs in the construction of Ben-Sasson et al. with our scPCPPs) would yield codes
with polynomial length, whereas we are aiming for nearly-linear length. Instead, we use an
alternative approach.

The key idea is to provide scPCPPs that only refer to sufficiently short statements such
that even with the polynomial blow-up of the scPCPP, the length of each proof would still be
sub-linear. Specifically, instead of providing proofs for the validity of the entire codeword and
the consistency of each message bit with the entire codeword (as in [1]), we provide proofs
for the consistency of each message bit with “small” parts of the code and for the validity of

original message, as well as each of the smaller blocks is encoded by an error-correcting code. For each of
the encoded smaller blocks, the following PCPPs are added: (1) a PCPP that ascertains the consistency
of the encoded block with the encoded original-message; and (2) PCPPs that ascertains the consistency
of each bit in the encoded block with the entire encoded block. Observe that the total encoding length
decreased, since there are

√
k proofs of statements of length O(k) and k proofs of statements of length

O(
√
k), thus, the total length is nearly-linear in k3/2. By repeating this process, we can reduce the

length of the code to k1+α for an arbitrarily small constant α > 0 (see [1, Section 4.2] for details).
6 We note that the class unique-NP(i.e., the class of NP problems with unique witnesses) seems more
likely to have scPCPPs than NP. This is because a language in NP may have many witnesses per
instance, and it is not clear how to recognize the “canonical” NP-witness.

CCC 2015



8 Strong Locally Testable Codes with Relaxed Local Decoders

these small parts. If each part is sufficiently small (i.e., of length kα for an arbitrarily small
constant α > 0, where k is the length of the message), then we can still obtain a code with
nearly-linear length, even when providing polynomial length proofs for all of the small parts.

The caveat, however, is that proving that each message bit is consistent with a small part
(or local view) of a codeword does not necessary imply that the message bit is consistent
with the entire codeword. Similarly, partitioning a codeword into small parts and proving
the validity of each part does not imply the validity of the entire codeword. Therefore, we
need the base code (to which we append scPCPPs) to be highly structured so that, loosely
speaking, the local consistency and validity we are able to ascertain can be used to enforce
global consistency and validity. Concretely, the strategy we employ is using tensor codes and
proving that this family of codes has features that allow us to overcome the aforementioned
caveat. Details follow.

Given a linear code C : {0, 1}k → {0, 1}n, the tensor code C ⊗ C : {0, 1}k2 → {0, 1}n2

consists of all n× n matrices whose rows and columns are codewords of C. Similarly, the
d-dimensional tensor code C⊗d = C ⊗ C ⊗ · · · ⊗ C︸ ︷︷ ︸

d times

: {0, 1}kd → {0, 1}nd is defined in the

natural way. Namely, C⊗d consists of all n× n× · · · × n︸ ︷︷ ︸
d times

-dimensional tensors such that

each (axis-parallel) line in the tensor is a codeword of C.7 (See Section 2.3 for the exact
definitions.)

Towards obtaining relaxed local decodability, we show that tensor codes satisfy a feature,
which we call local propagation, that allows us to verify global consistency statements (such
as the ones that are used in the [1] relaxed-LDC) by verifying local consistency statements,
which we can afford to prove with polynomial length scPCPPs; the local propagation feature
of tensor codes is discussed in Section 4. Hence, we can ascertain that the value at each point
in the tensor is consistent with the entire codeword by verifying the consistency of a constant
number of randomly selected statements regarding small parts of the tensor (specifically,
statements of consistency between the value at a point in the tensor and a line that passes
through it). We remark that Theorem 1.2 can be used to derive polynomial-length scPCPPs
for such statements (see Section 6). Therefore, we can replace the nearly-linear length PCPPs
that are used in [1] with our polynomial length scPCPPs, while preserving the functionality
of relaxed local decoding and keeping the total length of the construction nearly-linear. (See
Section 4 for a more detailed high-level description of our approach, followed by a full proof
in Section 4.2.)

Recapping, so far our construction is as follows. Let C be a good linear code and
d ∈ N be a sufficiently large constant. Each codeword of our code consists of the following
equal-length parts: (1) repetitions of the tensor codeword C⊗d(x) that encodes the message
x; (2) repetitions of the explicitly given message x; and (3) scPCPPs for small statements
(specifically, regarding the consistency of each point in the tensor C⊗d(x) with each line that
passes through it), which are used to ascertain the consistency of each individual bit in the
message x with the codeword C⊗d(x).8

Finally, we augment the aforementioned construction with a forth and last part that
allows us to obtain strong local testability. The naive approach is to append a scPCPP

7 Axis-parallel lines in high-dimensional tensors simply generalize the notion of rows and columns in n×n
matrices.

8 We remark that the actual construction differs slightly from the above in that, for convenience, we
use systematic tensor codes that contain the message explicitly in the encoding, instead of providing
repetitions of the message as a part of the code.
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that ascertains the validity of all three parts of our code. However, since the length of our
scPCPPs is polynomial in the length of the statement, this approach would yield codes with
long (polynomial) length. Instead, recall that we can (strongly) test the consistency of the
first two parts via the third part (which is also strongly testable, since it is a scPCPP). Thus,
in order to obtain strong local testability it suffices to ascertain that the first part is a valid
codeword of C⊗d using scPCPPs. Luckily, tensor codes also satisfy the robustness feature,
which allows us to ascertain the validity of an entire codeword of C⊗d by ascertaining the
validity of small parts of the codeword. Detail follows.

Loosely speaking, a code is said to be robust if the corruption in a random “local view”
of a codeword is proportional to the corruption in the entire codeword. In more detail, we
use a recent result of Viderman [22] (building on [2]) that states that the corruption in a
random 2-dimensional (axis-parallel) plane of a corrupted codeword of a binary tensor code
C⊗d (where d ≥ 3) is proportional to the corruption in the entire codeword. This feature
allows us to ascertain the validity of the first part (i.e., the tensor codeword C⊗d(x)) by only
providing scPCPPs for short statements that refer to 2-dimensional planes in C⊗d(x). (See
Section 5 for a more detailed high-level description, followed by a full proof.)

1.5 Applications to Property Testing
As an application of our main result (Theorem 1.1) we improve on the best known separation
result (due to [15]) between the complexity of decision and verification in the setting of
property testing.

The study of property testing, initiated by Rubinfeld and Sudan [20] and Goldreich,
Goldwasser and Ron [11], considers highly-efficient randomized algorithms that solve ap-
proximate decision problems, while only inspecting a small fraction of the input. Recently,
Gur and Rothblum [15] initiated the study ofMA proofs of proximity (hereafterMAPs),
which can be viewed as the NP analogue of property testing. They reduced the task of
separating the power of property testers andMAPs to the design of very local codes, both
in terms of testability and decodability. Furthermore, they noticed that for such a separation,
relaxed decodability would suffice.

Gur and Rothblum used several weaker codes to obtain weaker separation results than
the one we obtain here. Specifically, they either show a smaller gap between the query
complexity of testers andMAPs, or show a separation for a limited range of the proximity
parameter. In contrast, by plugging-in the code of Theorem 1.1, we obtain the best known
(exponential) separation result between the power ofMAPs and property testers.

I Theorem 1.3 (Informal). There exists a property that requires n0.999 queries for every
property tester but has anMAP that uses a proof of logarithmic length and makes poly(1/ε)
queries.

For more information regarding this application, we refer the reader to Section 7.

1.6 Organization
In Section 2 we provide the preliminaries. In Section 3 we describe the construction of the
codes that establish Theorem 1.1. In Section 4 and Section 5 we establish the relaxed local
decodability and strong local testability (respectively) of the codes. In Section 6 we construct
the scPCPPs needed for our construction, and finally, in Section 7 we present an application
of our codes for property testing.
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10 Strong Locally Testable Codes with Relaxed Local Decoders

2 Preliminaries

We start with some general notation. We denote by [n] the set of numbers {1, 2, . . . , n}. For
i ∈ [n] and for x ∈ {0, 1}n, denote by xi the ith bit of x. For x, y ∈ {0, 1}n, we denote by
∆(x, y) the Hamming distance between x and y, and denote by δ(x, y) the relative (Hamming)
distance between x and y, i.e., δ(x, y) = ∆(x, y)/n. We say that x is δ-close to (respectively,
δ-far from) y if the relative distance between x and y is at most δ (respectively, at least δ).

Given a set S, we denote by s∈RS the distribution that is obtained by selecting uniformly
at random s ∈ S. For a randomized algorithm A, we write PrA[·] (or EA[·]) to state that the
probability (or expectation) is over the internal randomness of the algorithm A.

(Non) Uniformity

Throughout this paper, for the simplification of the presentation, we formally treat algorithms
(testers, decoders, and verifiers) as (non-uniform) polynomial-size circuits. We note, however,
that all of our algorithms can be made uniform by making straightforward modifications.
Furthermore, it will be convenient for us to view the length n ∈ N of objects as fixed. We
note that although we fix n, it should be viewed as a generic parameter, and so we allow
ourselves to write asymptotic expressions such as poly(n), O(n), etc. In contrast, when we
say that something is a constant, we mean that it is independent of the length parameter n.

2.1 Error Correcting Codes
Let k, n ∈ N. A binary linear code C : {0, 1}k → {0, 1}n of distance d is a linear mapping
over GF(2), which maps messages to codewords, such that the Hamming distance between
any two codewords is at least d = d(n). The relative distance of C, denoted by δ(C), is given
by d/n. The length of a code is n = n(k). By slightly abusing notation, we say that we can
construct a code C with nearly linear length if for any constant α > 0 we can construct a code
C : {0, 1}k → {0, 1}n, where n = k1+α. For any x ∈ {0, 1}n, denote the relative distance of
x to the code C by δC(x) = miny∈C{δ(x, y)}.

We say that C is systematic, if the first k bits of every codeword of C contain the message;
that is, if for every x ∈ {0, 1}k and every i ∈ [k] it holds that C(x)i = xi. Since C is a linear
code, we may assume without loss of generality that it is systematic.

2.2 Local Testability and Decodability
Following the discussion in the introduction, strong locally testable codes are defined as
follows.

I Definition 2.1 (strong-LTC). A code C : {0, 1}k → {0, 1}n is a strong-LTC, if there exists
a probabilistic algorithm (tester) T that, given oracle access to w ∈ {0, 1}n, makes O(1)
queries to w, and satisfies:
1. Completeness: For any codeword w of C it holds that Tw = 1.
2. Strong Soundness: For all w ∈ {0, 1}n,

Pr
T

[Tw = 0] ≥ poly
(
δC(w)

)
.

We say that a tester makes nearly-uniform queries if it queries each bit in the (alleged)
codeword input w ∈ {0, 1}n with probability Θ(1/n).

Following the discussion in the introduction, relaxed locally decodable codes are defined
as follows.
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I Definition 2.2 (relaxed-LDC). A code C : {0, 1}k → {0, 1}n is a relaxed-LDC if there exists
a constant δradius ∈ (0, δ(C)/2), a constant ρ > 0 and a probabilistic algorithm (decoder) D
that, given oracle access to w ∈ {0, 1}n and explicit input i ∈ [k], makes O(1) queries to w,
and satisfies:
1. Completeness: For any i ∈ [k] and x ∈ {0, 1}k it holds that DC(x)(i) = xi.
2. Relaxed Soundness: For any i ∈ [k] and any w ∈ {0, 1}n that is δradius-close to a codeword

C(x),9 it holds that

Pr
D

[Dw(i) ∈ {xi,⊥}] ≥ 2/3.

3. Success Rate: For every w ∈ {0, 1}n that is δradius-close to a codeword C(x), and for
at least a ρ fraction of the indices i ∈ [k], with probability at least 2/3 the decoder D
outputs the ith bit of x. That is, there exists a set Iw ⊆ [l] of size at least ρk such that
for every i ∈ Iw it holds that PrD [Dw(i) = xi] ≥ 2/3.

We remark that our definition is slightly stronger than the one given in [1] as we require
prefect completeness (i.e., that the decoder always outputs the correct value given oracle
access to a valid codeword of the code C).

2.3 Tensor Codes
Tensor codes are defined as follows.

I Definition 2.3. Let C : {0, 1}k → {0, 1}n be a linear code. The tensor code C ⊗ C :
{0, 1}k2 → {0, 1}n2 is the code whose codewords consists of all n× n matrices such that each
axis-parallel line (i.e., a row or a column) in the matrix is a codeword of C. Similarly, given
d ∈ N, the tensor code C⊗d : {0, 1}kd → {0, 1}nd is the code whose codewords consists of all
d-dimensional tensors such that each axis-parallel line in the tensor is a codeword of C.

It is well-known that for every d ∈ N the tensor code C⊗d is a linear code with relative distance
δ(C)d (see e.g., [2]). Given a message x ∈ {0, 1}kd and coordinate ı̄ = (̄ı1, . . . , ı̄d) ∈ [n]d, we
denote the value of C⊗d(x) at coordinate ı̄ by C⊗d(x)ı̄.
I Remark. By the definition of tensor codes, if a linear code C is systematic, then the tensor
code C⊗d is also a systematic code;10 that is, for every x ∈ {0, 1}kd and ı̄ ∈ [k]d it holds that
C⊗d(x)ı̄ = xı̄.

Next, we provide notations for the restriction of tensors to lines and planes. We start by
defining axis-parallel lines.

I Definition 2.4 (Axis-Parallel Lines). For j ∈ [d] and ı̄ = (i1, . . . , id) ∈ [n]d, we denote by
`j,̄ı the jth axis-parallel line passing through ı̄. That is,

`j,̄ı = {(i1, . . . , ij−1, x, ij+1, . . . , id)}x∈[n] .

We denote by Lines(n, d) the multi-set that contains all axis-parallel lines that pass through
each point ı̄ ∈ [n]d.11 That is, Lines(n, d) = {`j,̄ı}ı̄∈[n]d,j∈[d]. Lastly, given a tensor w ∈
{0, 1}nd we denote by w|`i,j ∈ {0, 1}n the restriction of w to the line `i,j , i.e., the jth
axis-parallel line that passes through ı̄.

9 Note that since δradius < δ(C)/2, for every x ∈ {0, 1}n that is δradius-close to C there exists a unique
codeword x′ of C such that x is δC′(x)-close to x′.

10We view the restriction of the tensor C⊗d to the coordinates in [k]d as the prefix of C⊗d.
11Note that each axis-parallel line in {0, 1}n

d

appears n times in Lines(n, d).
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12 Strong Locally Testable Codes with Relaxed Local Decoders

Next, we define axis-parallel planes.

I Definition 2.5 (Axis-Parallel (2-dimensional) Planes). For j1 < j2 ∈ [d] and ı̄ = (i1, . . . , id) ∈
[n]d, we denote by pj1,j2 ,̄ı the (j1, j2)th axis-parallel plane passing through the point ı̄. That
is

pj1,j2 ,̄ı = {(i1, . . . , ij1−1, x1, ij1+1, . . . , ij2−1, x2, ij2+1, . . . , id)}x1,x2∈[n] .

We denote by Planes(n, d) the set of all (distinct) axis-parallel planes in all directions in
{0, 1}nd .12 Lastly, for a tensor w ∈ {0, 1}nd and a plane p ∈ Planes(n, d) we denote by
w|p ∈ {0, 1}n

2 the restriction of w to the coordinates in the plane p.

Throughout this work we deal with axis-parallel lines (respectively, axis-parallel planes);
hence, for brevity, we will sometimes refer to an axis-parallel line (respectively, axis-parallel
plane) simply as a line (respectively, plane). We remark that the multi-set Lines(n, d) contains
d · nd lines and the set Planes(n, d) contains

(
d
2
)
· nd−2 planes. We omit the parameters n

and d when they are clear from the context.

Testing Tensor Codes

The next theorem, which is implicit in [22], shows that for every d ≥ 3 and every linear code
C, testing the tensor-code C⊗d can be reduced to testing whether a random plane in C is a
codeword of C⊗2.

I Theorem 2.6. Let C be a linear binary code and d ≥ 3 an integer. Then, there exists a
constant crobust ∈ (0, 1) such that for every tensor w ∈ {0, 1}nd it holds that

E
p∈RPlanes

[
δ
(
w|p, C⊗2)] > crobust · δC⊗d(w).

Specifically, in [22, Theorem A.5] it is shown that for d ≥ 3, if a codeword w of a tensor
code C⊗d is corrupted, then the corruption in a random (d− 1)-dimensional subplane of w is
proportional to the corruption in the entire tensor w. By applying this result recursively (a
constant number of times), we obtain Theorem 2.6. For completeness, we provide the proof
of Theorem 2.6 in Appendix C.

2.4 PCPs of Proximity

Strong canonical PCPs of proximity were defined as follows in [13, Section 5.3].

I Definition 2.7 (scPCPPs). Let V be a probabilistic algorithm (verifier) that is given oracle
access to an input x ∈ {0, 1}n and oracle access to a proof π ∈ {0, 1}`(n), where ` : N→ N
satisfies `(n) ≤ exp

(
poly(n)

)
. We say that V is a strong (canonical) PCPP verifier for language

L if it makes O(1) queries and satisfies the following two conditions:
Canonical Completeness: For all x ∈ L, there exists a unique canonical proof for x,
denoted πcanonical(x), such that the verifier always accepts the pair (x, πcanonical(x)); i.e.,
V x,πcanonical(x) = 1.

12Unlike the multi-set Lines(n, d), which contains n copies of each line, there is no redundancy in the set
Planes(n, d).
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Strong Canonical Soundness: For any input x′ ∈ {0, 1}n and proof π′ ∈ {0, 1}`(|x|) the
verifier rejects with probability at least poly

(
δPCPP(x′, π′)

)
, where

δPCPP(x′, π′) , min
x∈{0,1}n

{
max

(
∆(x, x′)

n
; ∆(πcanonical(x), π′)

`(n)

)}
, (1)

where for any x /∈ L we define πcanonical(x) = λ and say that any π′ is 1-far from λ.
We say that a scPCPP verifier makes nearly-uniform queries if it queries each bit in the input
x with probability Θ(1/|x|) and queries each bit in the proof π(x) with probability Θ(1/|π|).

We stress that these scPCPPs have one-sided error (i.e., they always accept inputs in
L coupled with their canonical proofs). Note that the canonical aspect is reflected in the
dependence of δPCPP(x′, π′) on ∆(πcanonical(x), π′), whereas the strong-soundness aspect is
reflected in the tight relation between the rejection probability and δPCPP(x′, π′).

3 The Main Construction

In this section we describe our construction of a family of binary linear codes that are
both (constant-query) relaxed-LDCs and strong-LTCs with constant relative distance and
nearly-linear length. Our codes rely heavily on special-purpose strong canonical PCPs of
proximity (with polynomial proof length), which we construct in Section 6, and so, we start
by stating these scPCPPs. Our first family of scPCPPs is for good linear codes.

I Theorem 3.1 (scPCPPs for good codes). Let C : {0, 1}k → {0, 1}n be a linear code with
constant relative distance and linear length. Then, there exists a scPCPP for codewords of C
(i.e., for the set {C(x) }x∈{0,1}k). Furthermore, the proof length of the scPCPP is poly(n),
the scPCPP verifier makes nearly-uniform queries, and the canonical scPCPP proofs are
linear (over GF(2)).

As a corollary of Theorem 3.1, we obtain a family of scPCPPs for half-spaces of any good
linear code. That is, scPCPPs that ascertain membership in the set of all codewords wherein
one given location is set to a specific value (for example, all codewords that have 1 in their
first location).

I Theorem 3.2 (scPCPPs for half-spaces of good codes). Let C : {0, 1}k → {0, 1}n be a
linear code with constant relative distance and linear length. Let i ∈ [k] be a location in a
message and b ∈ {0, 1} a bit. Then, there exists a scPCPP for Ci,b, where Ci,b is the set of
all codewords w of C such that the ith-bit of w equals b (i.e., wi = b). Furthermore, the proof
length of the scPCPP is poly(n), the scPCPP verifier makes nearly-uniform queries, and the
scPCPP proofs are linear (over GF(2)).

See Section 6 for the full proofs of Theorems 3.1 and 3.2. Equipped with the foregoing
scPCPPs, we describe the construction of our code, which consists of three parts. (See
Section 2 for relevant notation.)

Tensor code part

Let C0 : {0, 1}k → {0, 1}n be a systematic linear code with linear length (i.e., n = Θ(k)) and
constant relative distance 0 < δ(C0) < 1. Let d ≥ 3 be a sufficiently large constant (to be
determined later). Let C , (C0)⊗d : {0, 1}kd → {0, 1}nd be the d-tensor product of C0. By
Section 2.3, since C0 is systematic, then C is also systematic. Recall that δ(C) = δ(C0)d,
hence δ(C) is a constant.
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14 Strong Locally Testable Codes with Relaxed Local Decoders

We augment the code C with scPCPPs that ascertain the validity of each plane in C

(using Theorem 3.1) and scPCPPs that ascertain the consistency of each bit in C with each
line that passes through it (using Theorem 3.2). Details follow.

Plane scPCPPs part

Let C(x) be a codeword of the tensor code C. For every plane p in the tensor C(x) we use
our scPCPPs for good codes to prove that the restriction of C(x) to the plane p (denoted by
C(x)|p) is a codeword of C⊗2

0 . Specifically, for a codeword w of C⊗2
0 we denote by πplane(w)

the corresponding canonical proof for the scPCPP verifier of Theorem 3.1. Then, for every
message x ∈ {0, 1}kd we define πplanes(x) as the sequence of the canonical proofs for all planes
in C(x); that is,

πplanes(x) = {πplane(C(x)|p)}p∈Planes,

where Planes is the set of all (2-dimensional) axis-parallel planes in {0, 1}nd (see Defini-
tion 2.5).

We append πplanes(x) to the codeword C(x). Note that

|πplanes(x)| =
(
d

2

)
nd−2 · |πplane(C(x)|p)| ≤ nd+O(1).

We stress that the constant in the O(1) notation does not depend on d. These scPCPPs will
be used for the local testability of our code (see Section 5).

Point-line scPCPPs part

Let C(x) be a codeword of the tensor code C. For every point ı̄ = (i1, . . . , id) ∈ [n]d and
every direction j ∈ [d] we use our scPCPPs for half-spaces of good codes to prove that the
restriction of C(x) to the line that passes through point ı̄ in direction j (denoted by C(x)|`j,ı̄

)
is a codeword of C0 that is consistent with value of C(x) at point ı̄.13 Specifically, for a
codeword w of C0 and index s ∈ [n] we denote by πline(w, s) the canonical proof for the
scPCPP verifier of Theorem 3.2 (which corresponds to codewords of C0 whose sth-bit equals
to ws). Then, for every message x ∈ {0, 1}kd we define πlines(x) as the set of the canonical
proofs for all lines passing through each point in C(x); that is,

πlines(x) = {πline(C(x)|`j,ı̄
, ij)}`j,ı̄∈Lines,

where Lines = {`j,̄ı}ı̄∈[n]d,j∈[d], as in Definition 2.4 (i.e., the set Lines contains all axis-parallel
lines that pass through each point ı̄ ∈ [n]d).

We append πlines(x) to the codeword C(x). Note that |πlines(x)| = d · nd · |πline(C(x)|`)| ≤
nd+O(1), where the constant in the O(1) notation does not depend on d. These scPCPPs will
be used for the relaxed local decodability of our code (see Section 4).

Putting it all together

Our construction is obtained by combining the tensor codeword C(x) with πlines(x) and
πplanes(x), while ensuring that the three parts are of equal length. That is, for k′ = kd define

13Note that the ı̄th-bit of C(x) is, in fact, the ijth-bit of the line C(x)|`j,ı̄
.
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C ′ : {0, 1}k′ → {0, 1}n′ as follows.

C ′(x) ,
(

(C(x))t1 , (πlines(x))t2 , (πplanes(x))t3
)

where t1, t2 and t3 are theminimal integers such that |C(w)|t1 = |πlines(w)|t2 = |πplanes(w)|t3 .14

Length and relative-distance of C ′

For sufficiently large d the length of C ′ is nearly-linear. To this end, observe that for every
x ∈ {0, 1}kd it holds that |C(x)| = nd, |πlines(x)| ≤ poly(n) and |πplanes(x)| ≤ poly(n2). Hence,
for every constant α > 0, there exists some constant d > 0 so that

n′ = nd+O(1) = (O(1) · k)d+O(1) ≤ (k′)1+α
.

The code C ′ has constant relative distance since the relative distance of C (denoted by
δ(C)) is constant, and since repetitions of C constitute a third of the length of C ′; that is,
δ(C ′) ≥ δ(C)

3 . In the next sections we prove the following theorem.

I Theorem 1.1 (restated). For every constant α > 0, there exists some constant d ≥ 0 so
that the code C ′ : {0, 1}k′ → {0, 1}n′ , as defined above, is a linear binary code that is a
relaxed-LDC and a strong-LTC with constant relative distance.

Specifically, in Section 4 we prove the relaxed-LDC feature of C ′, and in Section 5 we prove
the strong-LTC feature of C ′.

(Alleged) Codeword Notations

Consider an arbitrary string w ∈ {0, 1}n′ (which we think of as an alleged codeword). We
view w as a string composed of three parts (analogous to the three parts of the construction
above):
1. c̄ = (c1, . . . , ct1) : the t1 alleged repetitions of the tensor code part.
2. p̄lines =

(
p̄lines

1 , . . . , p̄lines
t2

)
: the t2 alleged repetitions of the scPCPP proofs for all the point-

line pairs (i.e., lines passing through all coordinates in all directions). For every i ∈ [t2],
the string p̄lines

i consists of scPCPP proofs for every point-line pair, i.e., p̄lines
i = {p`i}`∈Lines.

3. p̄planes =
(
p̄planes

1 , . . . , p̄planes
t3

)
: the t3 alleged repetitions of the scPCPP proofs for all the

(2-dimensional) planes. For every i ∈ [t3], the string p̄planes
i consists of scPCPP proofs for

every plane, i.e., p̄planes
i = {pp

i }p∈Planes.

4 Establishing the Relaxed-LDC Property

In this section we prove that the code C ′, which was defined in Section 3, is a relaxed locally
decodable code.

I Theorem 4.1. The code C ′ : {0, 1}k′ → {0, 1}n′ is a relaxed-LDC.

14 Ignoring integrality issues, we can say that we “blow” the lengths of the two shorter parts to match
the length of the longest part, which (in case of our implementation of the scPCPPs) is the part of the
plane scPCPPs. Hence, actually, t3 = 1.
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16 Strong Locally Testable Codes with Relaxed Local Decoders

In order to prove Theorem 4.1, it would be convenient to use an alternative definition
of relaxed-LDCs, which implies the standard definition (Definition 2.2) by applying known
transformations. Specifically, in Section D (following [1, Section 4.2]) we show that it suffices
to relax the soundness parameter in Definition 2.2 to Ω(1) (instead of 2/3), and replace the
success rate condition with the following average smoothness condition. Loosely speaking,
average smoothness requires that the decoder makes nearly uniform queries on average (over
all indices to be decoded). By the foregoing, to prove Theorem 4.1 it suffices to show that
the code C ′ satisfies the following definition.

I Definition 4.2 (Modified relaxed-LDCs). A code C : {0, 1}k → {0, 1}n is a modified
relaxed-LDC if there exists a constant δradius ∈ (0, δ(C)/2) and a probabilistic algorithm
(decoder) D that, given oracle access to w ∈ {0, 1}n and explicit input i ∈ [k], makes
q = O(1) queries to w, and satisfies:
1. Completeness: For any i ∈ [k] and x ∈ {0, 1}k it holds that DC(x)(i) = xi.
2. Modified Relaxed Soundness: For any i ∈ [k] and any w ∈ {0, 1}n that is δradius-close to a

codeword C(x) it holds that

Pr
D

[Dw(i) ∈ {xi,⊥}] = Ω(1).

where δradius ∈ (0, δ(C ′)/2), the decoding radius of C, is a universal constant, to be
determined later.

3. Average Smoothness: for every w ∈ {0, 1}n and v ∈ [n],

Pr
i,j,r

[Dw(i, j, r) = v] < 2
n
,

where Dw(i, j, r) denotes the distribution of the jth query of the decoder Dw on coordinate
i and coin tosses r, where the probability is taken uniformly over all possible choices of
i ∈ [k], j ∈ [q], and coin tosses r.

We remark that in [1, Section 4.2], the definition of average smoothness also requires
a matching lower bound, i.e., the decoder should satisfy 1

2n < Pri,j,r [Dw(i, j, r) = v] < 2
n .

However, for our applications it suffices to only require the upper bound. We note that the
lower bound can be easily obtained by adding (random) dummy queries.

We start by showing a decoder that satisfies the first two aforementioned conditions (i.e.,
the completeness condition and the modified relaxed soundness). Next, in Section 4.3 we
show how to obtain a related decoder that also satisfies the average smoothness condition.

The Setting

Consider an arbitrary input w ∈ {0, 1}n′ such that 0 ≤ δC′(w) < δradius. We view w as a
string composed of three parts as in Section 3, i.e., w = (c̄, p̄lines, p̄planes). We stress that
any part of w might suffer from corruptions, and so, we have to be able to decode correctly
assuming that not too many corruptions have occurred (i.e., less than δradius fraction). Denote
by x the unique string such that w is δC′(w)-close to C(x) (see footnote 9).

High-Level Idea

Recall that a valid codeword of C ′ consists of three (repeated) parts: (1) a systematic tensor
code C, (2) point-line scPCPPs, and (3) plane scPCPPs. Our general approach is to decode
according to the prefix of the first part (which allegedly contains the message x explicitly
(since we use a systematic code), and to use the second part to ensure that each bit in
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message x is consistent with the rest of the (tensor) codeword C(x). (The third part is not
used here; it is only used for the testability of the code.) Thus, the task of (relaxed) decoding
the ith bit of the message is reduced to verifying that the explicitly given value of the ith bit
of the message is consistent with the rest of the codeword.

Towards this end, recall that the second part of each codeword contains scPCPPs that
ascertain the consistency of each bit in the tensor with each line that passes through it, but
not consistency with the entire tensor. Therefore, in order to verify the consistency of each
message bit with the entire codeword, our decoder uses a feature of tensor codes, which we
call local propagation. This feature allows us to verify the consistency of a single message
bit with the entire codeword by verifying the consistency of a carefully chosen sequence of d
point-line pairs (using the point-line scPCPP). Details follow.

Loosely speaking, the local propagation feature of tensor codes implies that if one corrupts
a single point in a codeword and attempts to keep most local views (say, lines in the tensor)
consistent with this corruption, then a chain of highly structured modifications must be
made that causes the “corruption” to propagate throughout the entire tensor. This is best
exemplified by our decoder, which is tailored to take advantage of the foregoing phenomena.

Our decoder is given a coordinate ı̄ = (i1, . . . , id) ∈ [k]d and oracle access to an alleged
codeword w as above. The decoder looks for “inconsistencies” in w and if it finds any, it
outputs ⊥. Otherwise, it simply output wı̄ (which should contain the ı̄th bit of the message).
Since our base code C0 has constant relative distance, in order to “corrupt” the point ı̄ in
the tensor code without causing the lines that pass through ı̄ to be inconsistent with the
corrupted value at ı̄, one has to corrupt a constant fraction of each line on which ı̄ resides.
Thus, our decoder uses the scPCPPs to verify that a line ` that passes through ı̄ is consistent
with the value at ı̄, assuring that a constant fraction of many lines on which ı̄ resides is
corrupted.

Similarly, in order to “corrupt” a constant fraction of the line ` in the tensor codeword
without causing inconsistency between the corrupted points in ` and the lines that pass
through these corrupted points, one has to change a constant fraction of each line that
passes through a corrupted point in ` (therefore, corrupting a constant fraction of each plane
wherein the line ` resides). Thus, our decoder uses the scPCPPs to verify that the line that
passes through a random point ı̄′ in ` (which is corrupted with probability Ω(1)) is consistent
with the value at ı̄′, assuring that a constant fraction of many planes on which line ` resides
were corrupted.

Thus, if the ı̄th point of the tensor codeword (i.e., the bit we wish to decode) is corrupted,
then by iteratively continuing this procedure d times, and only performing d point-line
consistency tests, the decoder can detect the corruption in ı̄ with high probability, unless a
large fraction of the codeword is corrupted (i.e., the corruption at a single point, ı̄, propagated
to the entire tensor).

We remark that in the proof that C ′ is a relaxed-LDC we do not use the strongness and
canonicity properties of the scPCPPs (they are only used to prove that C ′ is a strong-LTC).
Furthermore, since in the following we only wish to present a decoder satisfies Condition 1
and 2 of Definition 4.2, we can allow the decoder to output a “don’t-know” symbol whenever
the codeword is corrupted.15 Thus, we are not concerned with corruptions in the scPCPP

15Recall that the completeness condition of Definition 4.2 requires the decoder to successfully decode
valid codeword, and the modified relaxed soundness condition requires that the decoder does not make a
mistake in the decoding with probability at least Ω(1). However, the decoder is allowed to output a
“don’t-know” symbol with arbitrary probability on any (even on only slightly) corrupted codeword.
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18 Strong Locally Testable Codes with Relaxed Local Decoders

parts, since a corruption in these parts can only increase the rejection probability for strings
that are not codewords. Regarding inputs that are legal codewords, there are no corruptions
and hence, no “inconsistencies”. Thus, for legal codewords our tester will always output the
correct value.

4.1 Warm-up: Two-Dimensional Tensors

Before we proceed to prove Theorem 4.1, we sketch a proof for two-dimensional tensor codes;
that is, when we set d = 2 in the construction that appears in Section 3. In this warm-up,
towards the end of simplifying the presentation, we make the following assumptions: We
omit the third part of the codeword (i.e., the plane scPCPPs), and we omit the repetitions of
the first and second parts of the code (i.e., the tensor code, and the point-line scPCPPs) and
assume instead that the lengths of the first and the second parts are equal. We note that
both assumptions can be easily removed (see Section 4.2 for details).

Let w = (c, p) be an alleged codeword that consists of two parts of equal length: (1) c,
an alleged 2-dimensional tensor code C⊗2

0 : {0, 1}k2 → {0, 1}n2 , and (2) p, a sequence of
alleged scPCPPs for every pair of point ı̄ in [n]2 and line ` in C⊗2

0 that passes through ı̄; each
scPCPP ascertains that the line ` is a codeword of C0 that is consistent with the value at
the point ı̄.

Given a point ı̄ = (i1, i2) ∈ [k]2, the decoder first runs the point-line scPCPP that
corresponds to ı̄ and the line `1,̄ı = {(x, i2)}x∈[n] passing through ı̄ in direction “1” (i.e.,
parallel to the first axis), and outputs ⊥ if the scPCPP verifier rejected. Otherwise, the
decoder picks a random point ı̄′ = (i′1, i′2) on the line `1,̄ı, runs the corresponding scPCPP for
ı̄′ and the line `2,̄ı′ = {(i′1, x)}x∈[n] that passes through ı̄′ in direction “2”, and output ⊥ if
the scPCPP verifier rejected. If none of the scPCPP verifiers rejected, the verifier outputs cı̄.

For the completeness condition, assume that the decoder is given a valid codeword. In
this case, the first part is indeed a valid copy of C⊗2

0 (x), and the second part consists
of the canonical proofs for C⊗2

0 (x). Hence, all of the scPCPP verifiers accept, and since
C⊗2

0 (x)ı̄ = xı̄, the decoder succeeds in decoding xı̄.

For the (modified) relaxed soundness condition, assume that the decoder is given a
corrupted codeword w = (c, p) that is δ-close to a valid codeword C⊗2

0 (x), where δ ≤ δradius
for a sufficiently small (constant) decoding radius δradius. Note that if cı̄ = xı̄, then the
decoder satisfies the soundness condition (since it always outputs either xi or ⊥); hence,
we assume that cı̄ 6= xı̄. In this case, when the decoder runs the scPCPP verifier for ı̄ and
(the restriction of c to) `1,̄ı it does not reject (with high probability) only if C|`1,ı̄

is “close”
to a codeword of C0 that disagrees with c on ı̄ (since the i2th bit of this codeword of C0
must be different than xı̄). Since C0 is a code with constant relative distance, this implies
that a constant fraction of the line `1,̄ı must be corrupted (i.e., the restriction of c to the
line `1,̄ı is Ω(1)-far from its corresponding line in C(x)) for the scPCPP verifier to accept.
Finally, if the decoder selected ı̄′ that is one of the Ω(n) corrupted points on `1,̄ı, then by
the same argument, a constant fraction points on the restriction of c to the line `2,̄ı′ (that
passes through ı̄′) must be corrupted. We deduce that in order to both scPCPP verifiers to
accept (and hence defy the soundness condition), c must contain Ω(n2) corrupted points, i.e.,
c should be β-far from C⊗2

0 (x) for some constant β. By fixing δradius < β, we prevent this
possibility.
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The relaxed-LDC Procedure for C′

Input: a coordinate ı̄ ∈ [k]d and an oracle access to a string w = (c̄, p̄lines, p̄planes).

For s ∈ [n] and b ∈ {0, 1} let Vs,b be a scPCPP verifier that refers to an input of the form
z ∈ {0, 1}n, and asserts that there exists y ∈ C0 such that z = y and zs = b.

1. Choose a random copy of a tensor code c in c̄ and a random copy of a set of point-line proofs
p̄ in p̄lines. That is, choose uniformly at random r ∈ [t1] and r′ ∈ [t2], and set c , cr and
p̄ , {pj,ı̄}ı̄∈[n]d, j∈[d] , p̄lines

r′ .
2. Initialize a set of points P1 to contain the singleton ı̄; i.e., P1 = {ı̄}.
3. For j = 1 until j = d:

a. Select uniformly at random a point ū = (u1, . . . , ud) from the set Pj .
b. Verify that the jth-axis-parallel line passing through ū is a legal codeword of C0 and that

it is consistent with the value at cū. That is, run the scPCPP verifier Vs,cū , where s , uj ,
with proof oracle pj,ū and input that consists of the jth-axis-parallel line passing through
ū in c. In other words, we run Vs,cū on input c|`j,ū and proof pj,ū.

c. If V rejects, output ⊥ and halt.
d. If j < d, fix Pj+1 to be a set of points in [n]d that reside on the jth-axis-parallel lines passing

through the points in Pj . That is, Pj+1 = {`j,z̄}z̄∈Pj
, where `j,z̄ (defined in Definition 2.4)

is the jth axis-parallel line passing through the point z̄.
4. Query cı̄ and return its value.

Figure 1 Relaxed local decoder D for C′.

4.2 The General Case

We proceed with the full proof that C ′ has a decoder that satisfies the first two conditions
in the definition of a relaxed-LDC (i.e., the completeness and (modified) relaxed soundness
conditions of Definition 4.2). We generalize the decoder of Section 4.1 to d-dimensional
tensors and ensure it works without the assumptions that were made there for simplicity.
The decoder D is formally described in Figure 1.

Let ı̄ ∈ [k]d. The completeness of the decoder is immediate from the construction: If
the input is a codeword, i.e., w = C ′(x) and all of the scPCPPs proofs are the canonical
proofs for C ′(x) (i.e., p̄lines and p̄planes), then all of the executions of the scPCPP verifiers
accept (since the scPCPP verifiers are with one-sided error). Recalling that, by definition,
C(x)ı̄ = C⊗d0 (x)ı̄ = xı̄, the decoding procedure Dw (̄ı) returns xı̄ with probability 1, as
required.

Next, we prove the (modified) relaxed soundness of the decoder. Let w ∈ {0, 1}n be a
corrupted codeword that is δradius-close to a codeword C(x), where δradius is a sufficiently
small constant, to be determined later. We partition the analysis into three cases (Claims 4.3
and 4.4 and Theorem 4.5) that we analyze in the rest of this section. We begin with the
following two simple claims.

The first claim shows that probability Ω(1), the random copy c in (c1, . . . , ct1) that is
chosen in Step 1 cannot be “too far” from the codeword C(x).

I Claim 4.3. With probability at least 1/4, the random copy c is 4δC′(w)-close to C(x),
where c is chosen uniformly at random from c̄. That is,

Pr
c∈R(c1,...,ct1 )

[δC(c) ≤ 4δC′(w)] ≥ 1
4 .
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Proof. Since |c̄| =
∣∣p̄lines

∣∣ =
∣∣p̄planes

∣∣, then c̄ = (c1, . . . , ct1) is 3δC′(w)-close to C(x)t1 . This
means that the expected relative distance of a random c ∈ {c1, . . . , ct1} from C(x) is at most
3δC′(w). Hence, by Markov’s inequality, c is 4δC′(w)-far from C(x) with probability at most
3/4. J

Therefore, throughout the rest of the proof we fix a random copy c and assume that it is
4δC′(w)-close to C(x). This only costs us at most a constant factor in the success probability
of the decoder. Having fixed c, recall that for ı̄ ∈ [n]d, the notation cı̄ refers to the value of
c at point ı̄. The next claim shows that if the bit we are trying to decode is not “corrupted”
(in the random copy c), then the decoder D never outputs a mistake.

I Claim 4.4. If cı̄ = xı̄, then PrD[Dw (̄ı) ∈ {xı̄,⊥}] = 1.

Proof. By the definition of the decoder (see Figure 1), regardless of the rest of the values in
the input, D always outputs either cı̄ or ⊥. J

The main part of the analysis takes place in the next lemma, where we assume that
cı̄ 6= xı̄ and c is close to C(x), and prove that the decoder succeeds with constant probability,
as required. Recall that δC′(w) < δradius, where δradius is a sufficiently small constant, to be
determined later.

I Lemma 4.5. Suppose that c is 4δC′(w)-close to C(x) and that cı̄ 6= xı̄. Then,

Pr
D

[Dw (̄ı) ∈ {xı̄,⊥}] = Ω(1).

Proof. We say that a point ū ∈ [n]d in the tensor code c is corrupted if cū 6= C(x)ū. Since
we assume that c is corrupted in the point ı̄ (which we wish to decode), by the definition
of the decoder, the probability that D makes a mistake is equal to the probability that D
reaches Step 4 and outputs cı̄.

Recall that Pj is the set of points that we consider in the jth iteration of the decoder.
The set P1 is the singleton that contains ı̄; i.e., P1 = { ı̄ } and for every j ∈ { 2, . . . , d+ 1 }
we recursively define Pj as the set of all points that reside on the (j − 1)-axis-parallel lines
that pass through points in Pj−1 (see Step 3d). Note that for every j ∈ [d] the cardinality of
Pj is equal to the number of points in a codeword of C⊗j−1

0 ; that is, |Pj | = nj−1. Hence,
the number of points in all lines that pass through points in Pj (i.e., nj) equals the number
of points in a codeword of C⊗j0 . We will show that in order to corrupt cı̄ without being
detected by the scPCPPs, one has to corrupt a constant fraction of a large portion of the
lines that pass through points in Pd, which in turn implies that one has to corrupt a constant
fraction of the tensor code C, in contradiction to our assumption that δC′(w) < δradius, for a
sufficiently small constant δradius.

Consider the first iteration of Step 3 (where j = 1). Denote by s , i1 the index of the bit
that we wish to decode in the line c|`1,ı̄

, and denote by b , cı̄ the value of c at ı̄.
We verify that the line that passes through ı̄ in the 1-direction is a codeword of C0 that

is consistent with the value of c at ı̄. This is done by running the verifier Vs,b on input c|`1,ı̄

and proof p1,̄ı. Recall that the relative distance of C0 (i.e., δ(C0)) is a constant. Since ı̄ is
corrupted (i.e., b = cı̄ 6= C(x)ı̄), if the line c|`1,ı̄

is δ(C0)/2-close to the line C(x)|`1,ı̄
(which

is a codeword of C0 that is inconsistent with cı̄), then c|`1,ı̄
is δ(C0)/2-far from any codeword

y ∈ C0 that is consistent with cı̄ (i.e., such that ys 6= C(x)ı̄). In this case, the verifier Vs,b
rejects c|`1,ı̄ with probability at least poly (δ(C0)/2) = Ω(1) (regardless of the corresponding
proof), as required. Hence, in the following we assume that the line c|`1,ı̄

is δ(C0)/2-far from
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C(x)|`1,ı̄ , and therefore P2 contains a constant fraction of at least β1 , δ(C0)/2 corrupted
points.

We proceed by induction. Consider the jth iteration, where 2 ≤ j ≤ d. We show that
if the set of points that we consider in the jth iteration (the set Pj) contains a constant
fraction of corrupted points, then either the decoder rejects with constant probability in
the jth iteration, or Pj+1 contains a constant fraction of corrupted points (we denote this
probability by βj+1).

I Claim 4.6. Let 2 ≤ j ≤ d and let 0 < βj ≤ 1 be a constant. If Pj contains a at least a βj
fraction of corrupted points, then either:
1. The decoder rejects with probability at least Ω(1) in the jth iteration; or,
2. Pj+1 contains at least βj+1 , βj ·δ(C0)

4 fraction of corrupted points.

Proof of Claim 4.6. Consider the jth iteration of Step 3. The decoder selects uniformly at
random a point ū = (u1, . . . , ud) ∈ Pj . Denote by s = uj the index of the bit that we wish to
decode on the line c|`j,ū (which passes through ū in the jth-direction), and denote by b , cū
the value of c at ū. By the hypothesis, ū is corrupted with probability at least βj .

Next, the verifier Vs,b is executed on input c|`j,ū
and proof pj,ū. Observe that if a fraction

of at most βj/2 of the j-axis-parallel lines that pass through points in Pj (i.e.,
{

c|`j,z̄

}
z̄∈Pj

)
are δ(C0)/2-far (each) from their corresponding lines in C(x), then the decoder outputs ⊥
with probability at least βj/2 · poly (δ(C0)/2) = Ω(1), as required. This is because in this
case, with probability at least βj/2, we hit a line that is δ(C0)/2-close to its corresponding
line in C(x) (but the value of this line in uj differs from C(x)ū). As in the first iteration,
this implies that this line is δ(C0)/2-far from any codeword y ∈ C0 such that ys 6= C(x)ū,
and hence the verifier Vs,b rejects c|`j,ū

with probability at least poly (δ(C0)/2) (regardless of
the corresponding proof).

Otherwise (i.e., if the above case does not hold), at least βj/2 of the lines in
{

c|`j,z̄

}
z̄∈Pj

are δ(C0)/2-far (each) from their corresponding lines in C(x). Therefore, Pj+1 contains at
least a βj ·δ(C0)

4 fraction of corrupted points. J

Note that Pd+1 is the set of all points in [n]d. By solving the recurrence relation, we get
that βd+1 = δ(C0)d

22d−1 .16 Recall that according to the hypothesis of the lemma, c is 4δradius-
close to C(x). Fix the decoding radius δradius to a sufficiently small constant such that
4δradius < βd+1. Thus, Claim 4.6 implies that in one of the iterations the decoder must reject
with probability at least Ω(1), as required. J

Remarks

The codewords of C ′ are of the form w = (c̄, p̄lines, p̄planes), where the three parts are of equal
length. The fact that the length of each of the three parts is proportional to the others is
critical. The length of c̄ must be proportional to the length of w in order for our code to have
constant relative distance (recall that there is no guarantee on the distance of the scPCPPs).
Moreover, the length of each of the scPCPP parts, c̄ and p̄lines, should be proportional to the
length of w in order to obtain the average smoothness requirement (see Section 4.3).

16Recall that the fraction of corrupted points in P2 is at least δ(C0)/2, and that for 2 ≤ j ≤ d the fraction
of corrupted points in Pj+1 (which we denote by βj+1) is at least βj ·δ(C0)

4 .
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We remark that we chose our tensor code to be systematic only for the sake of convenience.
Instead, we could have added the message itself (repeated to obtain the proper length) as a
fourth part to the code C ′.17

Next, we note that for the proof that our code C ′ is a relaxed-LDC we only use the
point-line scPCPPs and ignore the plane scPCPPs (i.e., the third part of w). Furthermore, we
do not use the fact that the point-line scPCPPs are neither strong nor canonical. That is, to
get only a relaxed-LDC with nearly-linear length it is enough to augment a good systematic
tensor code (i.e., a tensor product of a systematic linear code with constant rate and constant
relative distance) with a “regular” PCPP. However, the plane scPCPPs and the strongness
and canonicity of the PCPPs will be heavily used in the proof that C ′ is also a strong-LTC
(see Section 5).

4.3 Obtaining Average Smoothness
In this subsection, we conclude the proof that C ′ : {0, 1}k′ → {0, 1}n′ is a relaxed-LDC. Recall
that in Section 4.2 we showed a decoder D for C ′ (described in Figure 1) that satisfies the
first two conditions of Definition 4.2, i.e., the completeness and (modified) relaxed soundness
conditions. Next, we show that D can be modified such that it also satisfies the third
and final condition of Definition 4.2, i.e., the average smoothness condition (which, roughly
speaking, requires that the decoder makes nearly-uniform queries on average).

Denote by Dw(i, j, r) the jth query of the decoder D on coordinate i ∈ [k′], coin tosses
r, and input oracle w. Recall that D satisfies the average smoothness condition if for every
w ∈ {0, 1}n′ and v ∈ [n′], it holds that

Pr
i,j,r

[
Dw(i, j, r) = v

]
<

2
n′
, (2)

where the probability is taken uniformly over all possible choices of i ∈ [k′], j ∈ [q] (where q
is the number of queries that D makes), and coin tosses r.

Firstly, we can relax the condition in Equation (2) and replace it with the condition

Pr
i,j,r

[
Dw(i, j, r) = v

]
= O

(
1
n′

)
. (3)

To see this, note that if the decoder D (which makes q = O(1) queries) satisfies Equation (3),
then we can obtain a decoder D′ that makes q′ = O(q) queries and satisfy Equation (2) simply
by running D and adding O(q) uniformly distributed “dummy” queries (whose answers the
decoder ignores).

Secondly, note that by the construction of D (of Figure 1), each of the scPCPPs verifiers
that are being emulated by D makes nearly-uniform queries (see Theorems 3.1 and 3.2) to
the statement it refers to and to its corresponding proof. Observe that on a random index
ū ∈ [k]d the decoder D invokes the verifier of the point-line scPCPP on uniformly selected
lines in a uniformly selected copy of the tensor code. Since the length of the first and second
part of each codeword of C ′ (i.e., the tensor code and the point-line scPCPPs) constitutes a
constant fraction of the length of each codeword of C ′, the decoder D satisfies Equation (3).
Finally, by the foregoing discussion, D can be modified to satisfy Equation (2).

17Actually, this approach (of adding the message itself to the output of the code) was taken in previous
constructions of relaxed-LDC (see [1, 15]). By using a systematic tensor code, we circumvented this
unnecessary complication.



O. Goldreich, T. Gur, and I. Komargodski 23

5 Establishing the Strong-LTC Property

In this section we prove that the code C ′, which was defined in Section 3, is a strong locally
testable code.

I Theorem 5.1. The code C ′ : {0, 1}k′ → {0, 1}n′ as defined in Section 3 is a strong-LTC.
Furthermore, it has a tester that makes nearly-uniform queries.

In order to prove Theorem 5.1 we need to present a tester T that is given an oracle access
to w ∈ {0, 1}n′ , makes O(1) queries to w, and satisfies the following: For all w ∈ C it holds
that Tw = 1, and for all w 6∈ C it holds that PrT [Tw = 0] ≥ poly (δC′(w)).

5.1 Outline of the Tester and its Analysis
Recall that each codeword of C ′ consists of three parts: (1) an alleged d-dimensional tensor
code C = C⊗d0 : {0, 1}kd → {0, 1}nd , (2) alleged scPCPPs for every 2-dimensional plane in C;
each scPCPP ascertains that the given plane is consistent with C, and (3) alleged scPCPPs
for every pair of point ı̄ in C and line ` in C that passes through ı̄; each scPCPP ascertains
that a line ` is a codeword of C0 that is consistent with the value at a point ı̄.

For the simplicity of the exposition, we omit the repetitions of the three parts of the code
(i.e., the tensor code, the point-line scPCPPs, and the plane scPCPPs) and assume instead
that the length of the each part is equal. We note that this assumption can be easily removed
by using an additional consistency test. See the full details in Section 5.2.

The key idea is that by the robustness property of tensor codes, the corruption rate of a
codeword is proportional to the corruption rate of a random plane in the codeword. Hence,
in order to ensure that the tensor code part of C ′ is valid, our tester use the plane scPCPPs
to ascertain that a random plane is close to being valid. We note that for the tester, we do
not need the point-line scPCPPs (which we only need for the decoder); however, since we
need to ensure that also the point-line scPCPPs part is not corrupted, our tester also verifies
a random point-line scPCPPs.

Clearly, this tester always accepts valid codewords. To analyze what happens with
non-codewords consider a string that is somewhat far from C ′. In this case, one of the
following three cases must hold:
1. The tensor code part is far from a legal codeword of C⊗d.
2. The tensor code part is close to a legal codeword of C⊗d but the plane scPCPP proofs

part is far from the corresponding canonical proofs.
3. The tensor code part is close to a legal codeword of C⊗d but the point-line scPCPP proofs

part is far from the corresponding canonical proofs.

To ensure that in the first case the tester succeeds (i.e., rejects with sufficiently high
probability), it is enough to test that a random plane in c is close to a codeword of C⊗2. To
accomplish this, we choose uniformly at random a (2-dimensional, axis-parallel) plane and
run the corresponding plane scPCPP verifier. This suffices, since Theorem 2.6 asserts that if
a tensor c is far from a legal codeword of C⊗d, then a random (2-dimensional, axis-parallel)
plane in c must also be far from a legal codeword of C⊗2.

The second and third cases are similar, and so, we only sketch how to handle the second
case. Assume that the tensor is close to a codeword but the plane scPCPPs are far from the
corresponding canonical proofs. From this assumption we can deduce that there are many
planes that are close to legal codewords of C⊗2, but whose corresponding scPCPPs are far
from the canonical proofs. Thus, choosing a random plane and running the corresponding
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The strong-LTC Procedure for C′

Input: oracle access to a string w = (c̄, p̄lines, p̄planes).

For s ∈ [n] and b ∈ {0, 1} let V line(s, b) be a scPCPP verifier that refers to an input of the form
z ∈ {0, 1}n and asserts that there exists y ∈ C0 such that z = y and zs = b.

Let V plane be a scPCPP verifier that refers to an input of the form z ∈ {0, 1}n
2
and asserts that

there exists y ∈ C⊗2
0 such that z = y.

Choose a random copy of each of the three replicated parts of w. That is, choose uniformly at
random a copy c in c̄, a copy p̄line = {pj,ı̄}{ı̄∈[n]d, j∈[d]} in p̄lines, and a copy p̄plane = {pp}{p∈Planes}

in p̄planes.

Accept if none of the following tests reject:

1. The repetition test: We query two random copies from the tensor part of w and check if
they agree on a random location. More accurately, we select uniformly at random r, r′ ∈ [t1]
and reject if and only if cr and cr′ disagree on a random coordinate.

2. The plane scPCPP consistency test: Choose a uniformly at random a plane p ∈ Planes.
Reject if the verifier V plane rejects on the plane p (i.e., input c|p) and the proof pp.

3. The point-line scPCPP consistency test: Choose uniformly at random a coordinate
ū = (u1, . . . , ud) ∈ [n]d and a direction j ∈ [d] in c. Reject if the verifier V line(uj , cū) rejects
on the line passing through ū in direction j and the proof pj,ū. In other words, we reject if
V line(uj , cū) rejects on input c|`j,ū and proof pj,ū.

Figure 2 Strong local tester for C′.

plane scPCPP verifier ensures that the tester rejects with a sufficiently high probability. This
is due to the strongness and canonicity features of our scPCPPs.

To conclude, the tester consists of three parts: (1) a repetition test, wherein we verify
the repetition structure of the tensor, (2) plane scPCPP consistency test, wherein we verify
that a random plane in the tensor is a legal codeword; this test ensures that both the tensor
code part consists of valid codewords and its plane scPCPPs are the corresponding canonical
proofs, and (3) point-line scPCPP consistency test, which we perform only to verify that the
point-line scPCPPs consists of the canonical proofs that corresponds to the tensor part of
the code.

5.2 The Full Proof

We proceed with the full proof of Theorem 5.1, which formalizes the intuition given in
the previous section. We show a strong-LTC procedure for C ′. The tester T is formally
described in Figure 2. Note that since both the point-line and plane scPCPP verifiers make
nearly-uniform queries (and the three parts of each codeword are of equal length), then the
tester T also makes nearly-uniform queries.

Consider an arbitrary input w ∈ {0, 1}n′ such that δC′(w) ≥ 0. We view w as a string
composed of three parts as in Section 3, i.e., w = (c̄, p̄lines, p̄planes). The completeness of the
tester is immediate: Indeed, if the input is a codeword, i.e., w = C ′(x), then the first part
of w consists of identical copies of a tensor code, and hence the codeword repetition test
accepts with probability 1. Similarly, the second and third parts consists of the canonical
point-line and plane scPCPP proofs for the aforementioned tensor code, respectively; hence
the (one-sided error) scPCPP verifiers will accept with probability 1.
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Next, we prove the soundness of the tester. We partition the analysis into three cases
(Claim 5.2 and Lemmas 5.3 and 5.4), which we analyze in the rest of this section.

Let ĉ ∈ {0, 1}nd be a tensor that is closest on average to the tensors in c̄, i.e., a string
that minimizes ∆(c̄, ĉt1) =

∑t1
i=1 ∆(ci, ĉ). The first (and standard) claim shows that if c̄ is

far from consisting of t1 identical tensors, then the repetition test (of Step 1) rejects with
high probability. Let γ be a constant set to δ(C)/(24d) (for the purpose of Lemma 5.4).

I Claim 5.2. If δ(c̄, ĉt1) ≥ γ
5 · δC′(w), then PrT [Tw = 0] ≥ poly

(
δC′(w)

)
.

Proof. Suppose that δ(c̄, ĉt1) ≥ γ
5 · δC′(w). The codeword repetition test rejects with

probability at least

E
r,r′∈R[t1]

[
∆(cr, cr′)

nd

]
≥ E

r∈R[t1]

[
∆(cr, ĉ)
nd

]
= ∆(c̄, ĉt1)

t1nd
.

Therefore, PrT [Tw = 0] ≥ γ
5 · δC′(w) ≥ poly

(
δC′(w)

)
. J

The following lemma shows that if c̄ consists of t1 nearly identical tensors that are far
from a codeword of C, then due to the robustness feature of tensor codes, a random plane in
a random copy in c̄ will be far from valid, and hence, Step 2 of the tester rejects with high
probability.

I Lemma 5.3. Assume δ(c̄, ĉt1) < γ
5 · δC′(w). If c̄ is γ · δC′(w)-far from Ct1 , then PrT [Tw =

0] ≥ poly
(
δC′(w)

)
.

Proof. Observe that a random copy c of a tensor code in c̄ is Ω
(
δC′(w)

)
-far from C with high

probability. This is because δCt1 (c̄) ≤ δCt1 (ĉt1) + δ (ĉt1 , c̄), which implies δC(ĉ) > 4γ
5 · δC′(w).

Since at least 2/3 of the ci’s are 3 · γ5 · δC′(w)-close to ĉ, these ci’s are γ
5 · δC′(w)-far from C.

Next, by the robustness feature of tensor codes, we deduce that if the randomly selected
tensor code c is Ω

(
δC′(w)

)
-far from being valid, then a random plane of c is also Ω

(
δC′(w)

)
-

far from being valid. Specifically, by Theoren 2.6, there exists a constant crobust ∈ (0, 1) such
that for every tensor w ∈ {0, 1}nd we have

E
p∈RPlanes

[
δ
(
w|p, C⊗2)] > crobust · δC⊗d(w).

Hence, by an averaging argument,

Pr
p∈Planes

[
δC⊗2(c|p) > crobust

2 · γ5 · δC
′(w)

]
>
crobust

2 · γ5 · δC
′(w). (4)

Note that, by Equation (4), with probability Ω
(
δC′(w)

)
we select a plane that is Ω

(
δC′(w)

)
-

far from a codeword of C⊗2
0 . Given such plane, the scPCPP verifier V plane rejects with

probability Ω
(
δC′(w)

)
. Thus, the tester T rejects with probability poly(δC′(w)) over the

internal randomness of T . J

In the next lemma, we complete the analysis by assuming that c̄ is sufficiently close to a
codeword of Ct1 , and showing that in this case most of the “corruption” takes place in the
parts of the scPCPP proofs, and hence the scPCPP consistency tests will reject with high
probability.

I Lemma 5.4. If c̄ is γ · δC′(w)-close to being a codeword of Ct1 , then PrT [Tw = 0] ≥
poly

(
δC′(w)

)
.
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Proof. Recall that γ = δ(C)
24d < δ(C)

2 . Therefore, our assumption that c̄ is γ · δC′(w)-
close to being a codeword of Ct1 implies that there exists a unique codeword c′ of C
that minimizes the distance of c̄′ , (c′)t1 from c̄. Let w′ be the codeword of C ′ that
consists of repetitions of the tensor code c′ and its canonical scPCPP proofs; that is, Let
w′ =

(
c̄′, (πlines(c′))t2 , (πplanes(c′))t3

)
be a codeword of C ′. Denote by x the inverse of w′

(i.e., , w′ = C ′(x)).
It is convenient to introduce notations for the fraction of corruptions in each part of C ′.

Towards this end, denote the fraction of errors in the first part of the code (the copies of the
tensor code) by δc̄ = δ(c̄, c̄′). Analogously, denote by δp̄lines and δp̄planes the fraction of errors
in the second and third parts of w (point-line scPCPPs and plane scPCPPs), respectively.
Denote by δp̄total =

(
δp̄lines + δp̄planes

)
/2 the total fraction of errors in the second and third part

of w together.
Observe that assuming the hypothesis of Lemma 5.4 (i.e., c̄ is sufficiently close to c̄′),

the scPCPPs part (i.e., p̄lines and p̄planes) must be somewhat far from the corresponding set
of canonical scPCPP proofs; that is, assuming δc̄ < δC′(w), then δp̄total ≥ δC′(w). Therefore,
since δc̄ ≤ γ · δC′(w) < δC′(w), we may assume that either: (1) the plane scPCPPs are
sufficiently corrupted, i.e., δp̄planes > δC′(w), or (2) the point-line scPCPPs are sufficiently
corrupted, i.e., δp̄lines > δC′(w). We claim that in the first case the plane scPCPP consistency
test will reject with high probability, and in the second case the point-line scPCPP consistency
test will reject with high probability. We prove this in the following two claims, from which
Lemma 5.4 follows.

I Claim 5.5. Assuming c̄ is γ · δC′(w)-close to being a codeword of Ct1 , if δp̄planes > δC′(w),
then PrT [Tw = 0] ≥ poly

(
δC′(w)

)
.

I Claim 5.6. Assuming c̄ is γ · δC′(w)-close to being a codeword of Ct1 , if δp̄lines > δC′(w),
then PrT [Tw = 0] ≥ poly

(
δC′(w)

)
.

Claims 5.5 and 5.6 follow immediately from the canonicity and strong soundness features
of the scPCPPs (along with averaging arguments). Since the proofs of Claims 5.5 and 5.6 are
similar, we conclude the proof of Lemma 5.4 by showing Claim 5.5 and defer the proof of
Claim 5.6 to Section E.

Proof of Claim 5.5. Loosely speaking, the hypothesis of the claim guarantees that: (1)
c̄ is close to being a unique codeword C(x)t1 , and hence (by averaging arguments), most
restrictions of a random copy c in c̄ = (c1, . . . , ct1) to a plane cannot be significantly corrupted;
(2) the plane scPCPPs are far, on average, from the canonical proofs that corresponds to
C(x), and thus many plane scPCPPs are far from the canonical proofs for the planes of C(x)
they correspond to. By the foregoing, we conclude that there are many planes in c that are
close to planes of C(x) but their alleged plane scPCPP proofs are far from their canonical
proofs. Thus, by the canonicity and strong soundness features of the scPCPPs, the verifier
will reject with high probability. Details follow.

By the claim’s hypothesis, c̄ is δc̄-close to C(x)t1 , where δc̄ ≤ γ · δC′(w). Hence, by an
averaging argument, with probability at least 2/3 the random copy c is 3δc̄-close to C(x).
Assume from now on that this is indeed the case. We say that a point ı̄ ∈ [n]d in c is
corrupted if cı̄ 6= C(x)ı̄, and so, there are at most 3δc̄nd corrupted points in c. Since there
are

(
d
2
)
nd−2 axis-parallel planes in c, then on average, the number of corrupted points in a

random axis-parallel plane in c is at most 3δc̄n
d

(d
2)nd−2 < 3δc̄n2. Thus, by an averaging argument,

we obtain that at most δp̄

4 fraction of the axis-parallel planes in c contain at least 4
δp̄
· 3δc̄n2

corrupted points.
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Secondly, we note that a random copy of the plane scPCPP proofs contains a fraction of
Ω
(
δC′(w)

)
corrupted points with probability Ω

(
δC′(w)

)
. That is, by an averaging argument,

with probability at least δp̄ , δp̄planes/2 the random copy p̄ in p̄planes is δp̄-far from its
corresponding set of canonical proofs, πplanes(x) = {πplane(C(x)|p)}p∈Planes. Assume from
now on that p̄ is δp̄-far from πplanes(x). Then, by an averaging argument, we obtain that at
least δp̄/2 fraction of the proofs in p̄ = {pp}p∈Planes are δp̄/2-far from their corresponding
(canonical) proofs πplanes(x).

By combining the conclusions of the last two paragraphs, we deduce that Ω
(
δC′(w)

)
-

fraction of the planes p in c are both δ(C⊗2
0 )/2-close to the restriction of the tensor codeword

C(x) to p, and their corresponding proofs are Ω
(
δC′(w)

)
-corrupted; that is, a fraction

of at least δp̄

4 of the axis-parallel planes p in c are δ(C⊗2
0 )/2-close to C(x)|p (recall that

4
δp̄
· 3δc̄ < 12γ < δ(C)/2 ≤ δ(C⊗2

0 )), and in addition, their corresponding (alleged) plane
scPCPP proofs in {pp}p∈Planes are δp̄/2-far from their (correct) canonical proofs in πplanes(x).
Denote the set of planes that satisfy the foregoing condition by BAD.

Observe that for every plane p ∈ BAD, in order for input c|p and proof pp to be a valid
claim (for the input-proof language that V plane verifies), one must make at least one of the
following changes: (1) change a fraction of at least δp̄

2 of the proof pp such that it matches
πplane (C(x)|p), or (2) change a fraction of at least δ(C⊗2

0 )/2 of c|p (since pp might be a valid
proof for input C⊗2

0 (y) 6= c|p). Thus, for every p ∈ BAD, the probability that V plane rejects
input c|p and proof pp is at least polynomial in δC′(w).

Putting it all together, with probability 2/3 we hit a random copy c of the tensor code
that is 3δc̄-close to C(x). Furthermore, with probability at least δp̄ we hit a random copy p̄
that is δp̄-corrupted, and subsequently, with probability δp̄/2 we hit a plane scPCPP proof
that is δp̄/2-corrupted. Finally, assuming the foregoing, the scPCPP verifier V plane rejects
with probability poly (δC′(w)). Therefore,

Pr
T

[Tw = 0] ≥ 2
3 · δp̄ ·

δp̄
2 · poly (δC′(w)) ≥ poly

(
δC′(w)

)
.

J

This concludes the proof of Lemma 5.4. J

6 Strong Canonical PCPs of Proximity

In this section we construct scPCPPs with polynomial proof length for any good linear
code (see Theorem 3.1) and for any half-space of a any good linear code (see Theorem 3.2).
Our starting point (see Corollary 6.2) is the following result of [15],18 which in turn builds
upon [13, Section 5.2]: For any good code C : {0, 1}k → {0, 1}ck, there exists a strong-LTC
C ′ : {0, 1}k → {0, 1}poly(k) such that the first half of C ′(x) consists of c blocks, each depending
only on a k-bit long block of C(x). Using this result, we construct a scPCPP for any good
code C, where this construction applies the above result to several auxiliary codes that are
derived from C.

6.1 scPCPPs for Good Codes
We start by recalling the statement of Theorem 3.1.

18Actually, Corollary 6.2 is a straightforward generalization of [15, Corollary B.3].
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I Theorem 3.1 (restated). Let C : {0, 1}k → {0, 1}n be a linear code with constant relative
distance and linear length. Then, there exists a scPCPP for codewords of C (i.e., for the
set {C(x) }x∈{0,1}k). Furthermore, the proof length of the scPCPP is poly(n), the scPCPP
verifier makes nearly-uniform queries, and the canonical scPCPP proofs are linear (over
GF(2)).

The main technical tool upon which we rely (when proving Theorem 3.1) is the linear
inner proof systems (hereafter, LIPS), constructed by Goldreich and Sudan. Loosely speaking,
the LIPS mechanism allows to transform linear strong locally testable codes over a large
alphabet into strong locally testable codes over a smaller alphabet (see [13, Section 5.2]).
We encapsulate our usage of the LIPS mechanism in the following theorem, which generalizes
[13, Theorem 5.20] and [13, Proposition 5.21]. Throughout this section, denote F = GF(2).

I Theorem 6.1. Let Σ = Fb. For infinitely many k, there exists n = poly(k) and a linear
code E : Σ→ Fn with constant relative distance such that the following holds. Suppose that
C : ΣK → ΣN is a strong-LTC that is linear over F and has a (non-adaptive) tester that uses
r random bits and makes nearly-uniform queries. Then, there exists ` = poly(k) such that `
is a multiple of n, and a linear strong-LTC C ′′ : Fbk → F2r+1·` such that the 2r · `-bit long
prefix of C ′′(x) equals

(
E(C(x)1), . . . , E(C(x)N )

)2r`/(Nn). Moreover, the tester of C ′′ makes
nearly-uniform queries.

As a corollary of Theorem 6.1, we obtain that any good linear code can be augmented to
a linear strong-LTC with polynomial length, such that the prefix of the new code is closely
related to that of the original code (but is not equal to the original code). This is done by
viewing the good linear code as a trivial strong-LTC over a sufficiently large alphabet.

I Corollary 6.2 (our starting point). Let C : {0, 1}k → {0, 1}ck be a good linear code with
constant relative distance, where c ∈ N is a constant. Then, for some M,m = poly(k),
there exists a linear strong-LTC C ′ : {0, 1}k → {0, 1}2M and a linear code E : {0, 1}k →
{0, 1}m, which has constant relative distance, such that the M-bit long prefix of C ′(x)
equals

(
E(C(x)[1]), . . . , E(C(x)[c])

)M/(c·m), where C(x)[i] is the ith block of length k in C(x).
Furthermore, the (strong) tester of C ′ makes nearly-uniform queries.

We remark that Theorem 6.1 and Corollary 6.2 are straightforward generalization of [15,
Theorem B.2] and [15, Corollary B.3] (respectively), and we defer their proofs to Appendix A.

The Plan

Let C : {0, 1}k → {0, 1}ck be a good linear code, where c ∈ N is a constant. We construct
a strong-LTC C ′ such that a constant fraction of each codeword C ′(x) contains copies of
C(x). This, in turn, implies a scPCPP for C (see Proposition 6.5). Note that by applying
Corollary 6.2 to C we obtain a strong-LTC C ′ such that a constant fraction of each codeword
C ′(x) contains copies of

(
E(C(x)[1]), . . . , E(C(x)[c])

)
, but not of C(x). This does not seem

to suffice for obtaining a scPCPP, and so we use a different approach.
We start by using Corollary 6.2 to obtain a family of linear strong-LTCs, denoted by{

Ci : {0, 1}k → {0, 1}n
}
i∈[ck], where n = poly(k), with constant relative distance such that

the prefix of each codeword Ci(x) contains a linear number of copies of the ith-bit of C(x)
(as well as other structural features that will be useful for us). This is done via the next
lemma, which uses techniques from [15].

I Lemma 6.3 (obtaining auxiliary codes Ci). Let C : {0, 1}k → {0, 1}ck be a good linear code,
where c ∈ N is a constant. There exist a constant α ∈ (0, 1), a polynomial value n = poly(k),
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and a linear code Ĉ : {0, 1}k → {0, 1}cn with constant relative distance, which satisfy the
following: For every i ∈ [ck], there exists a function πi : {0, 1}k → {0, 1}(c+1)n such that the
code Ci : {0, 1}k → {0, 1}αn+cn+(c+1)n, given by

Ci(x) =
(
(C(x)i)αn, Ĉ(x), πi(x)

)
,

is a linear strong-LTC with constant relative distance. Moreover, for every i ∈ [ck] the (strong)
tester of Ci makes nearly-uniform queries.

We stress that the code Ĉ (which is common to all Ci’s) is independent of i and constitutes
a constant fraction of the length of each Ci.

Proof of Lemma 6.3. For every j ∈ [c], we denote by C(x)[j] the jth block of length k of
C(x). For every i ∈ [ck], consider the code C ′i : {0, 1}k → {0, 1}(c+1)k given by

C ′i(x) ,
(
(C(x)i)k, C(x)

)
=
(
(C(x)i)k, C(x)[1], . . . , C(x)[c]

)
.

Note that C ′i is a good linear code.
For every i ∈ [ck], we apply Corollary 6.2 to C ′i and obtain a linear strong-LTC C ′′i :

{0, 1}k → {0, 1}2(c+1)·n with constant relative distance, which is (up to a permutation of its
bit locations) of the form

C ′′i (x) =
((

E
(
(C(x)i

)k)t
,
(
E
(
C(x)[1]

))t
, . . . ,

(
E
(
C(x)[c]

))t
, πi(x)

)
where m,n = poly(k), the function E : {0, 1}k → {0, 1}m is a linear code with constant
relative distance, t = n/m, and πi(x) ∈ {0, 1}(c+1)n is some string. Moreover, the (strong)
tester of C ′′i makes nearly-uniform queries.

Denote by Ĉ : {0, 1}k → {0, 1}cn the linear code (with constant relative distance) that

is given by Ĉ(x) =
((

E
(
C(x)[1]

))t
, . . . ,

(
E
(
C(x)[c]

))t)
. Since E is a linear code with

constant relative distance, then E(0k) = 0m and ∆
(
E
(
1k
)
, 0m

)
≥ αm for some constant

α ∈ (0, 1). Now, for every i ∈ [ck], consider the code Ci : {0, 1}k → {0, 1}αn+cn+(c+1)n,
given by Ci(x) =

(
(C(x)i)αn , Ĉ(x), πi(x)

)
, which is obtained from C ′′i by simply removing

coordinates on which E(0k) and E(1k) agree, in each of the t copies in the first part (i.e.,
E
(
C(x)i

)k).
Note that Ci has constant relative distance. Furthermore, since C ′′i is linear and since we

only removed coordinates on which the value is 0, the code Ci is also a linear code. Finally,
by emulating the execution of the tester of C ′′i on an (alleged) codeword of Ci (which can be
done by returning 0 whenever a coordinate that was omitted is being queried), we obtain
that Ci(x), which is of the required form of the hypothesis, is a strong-LTC with a (strong)
tester that makes nearly-uniform queries. J

In the actual proof of Theorem 3.1, we will construct a code C ′ that encodes a message x
by concatenating the encodings of x by all of the strong-LTCs in

{
Ci : {0, 1}k → {0, 1}n

}
i∈[ck]

(i.e., C ′(x) ,
(
C1(x), . . . , Cck(x)

)
). Thus, we will obtain a strong-LTC that (up to a permu-

tation of the bit locations) contains copies of the entire codeword C(x) in its prefix. We
remark that, in general, the concatenation of strong-LTCs is not a strong-LTC. However,
the structure of the aforementioned family of codes (specifically, the fact that all codes
in the family contains a common sub-code) implies that the concatenation of codes in{
Ci : {0, 1}k → {0, 1}n

}
i∈[ck] yields a strong-LTC. The next proposition shows a sufficient

condition for obtaining strong-LTCs via concatenation of strong-LTCs.
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I Proposition 6.4 (concatenating multiple encodings of strong-LTCs with a common sub-code).
Let C1, . . . , Ct : {0, 1}k → {0, 1}n be strong-LTCs with constant relative distance. Let I ⊆ [n]
such that |I| = Ω(n), and let Ĉ : {0, 1}k → {0, 1}|I| be a code with constant relative distance.
If Ĉ(x) = C1(x)|I = C2(x)|I = . . . = Ct(x)|I for every x ∈ {0, 1}k, where Ci(x)|I denotes
the restriction of Ci(x) to I, then the code C ′(x) ,

(
C1(x), . . . , Ct(x)

)
is a strong-LTC with

constant relative distance. Moreover, if the (strong) testers of C1, . . . , Ct make nearly-uniform
queries, then the (strong) tester of C ′ also makes nearly-uniform queries.

Proposition 6.4 follows by using a tester that (1) emulates the strong-LTC tester of a
randomly selected concatenated code Ci (to ascertain that each concatenated codeword
is valid), and (2) tests the consistency of the common code Ĉ in two randomly selected
concatenated codes (to assure that all of the concatenated codewords encode the same
message). The analysis is quite straightforward and is deferred to Appendix B.

The last tool we shall need in order to prove Theorem 3.1 is the following proposition, which
allows us to transform strong-LTCs to scPCPPs for prefixes of the strong-LTCs’ codewords.

I Proposition 6.5 (from strong-LTCs to scPCPPs for related codewords). Let C : {0, 1}k →
{0, 1}n be a linear code, and let C ′ : {0, 1}k → {0, 1}n′ be a linear strong-LTC. If there exists
I ⊆ [n′] where |I| = Ω(n′) and n′ − |I| = Ω(n′) such that C ′(x)|I =

(
C(x)

)|I|/n, then there
exists a scPCPP for C (i.e., for the set of codewords {C(x)}x∈{0,1}k) with proof length O(n′).
Moreover, the canonical scPCPP proofs are linear, and if the (strong) tester of C ′ makes
nearly-uniform queries, then the verifier of the scPCPP for C also makes nearly-uniform
queries.

Proof. Let C, C ′, and I be as in the hypothesis. Assume, without loss of generality, that
I = {1, . . . , |I|}. Denote the (strong) tester of C ′ by T . We use T in a black-box manner in
order to construct a scPCPP for the set {C(x)}x∈{0,1}k .

Given a codeword C(x), the canonical scPCPP proof for C(x) is given by π(x) ,
C ′(x)|[n′]\I , where C ′(x)|[n′]\I is the restriction of C(x) to the coordinates outside of I.
Let V be the scPCPP verifier that gets oracle access to an alleged codeword w ∈ {0, 1}n and
oracle access to a proof oracle p of length n′ − |I|. Let t = |I| /n. The verifier V emulates
the execution of T on (wt, p) as follows: Each query that T makes to the first part (which
are allegedly C(x)t) is simulated by a corresponding query to the input oracle w,19 and each
query that T makes to the other coordinates (which is allegedly π(x)) is simulated by a
corresponding query to the proof oracle. The verifier V accepts if and only if the emulated
run of T on (wt, p) accepted. Note that if T makes nearly-uniform queries, then V also
makes nearly-uniform queries.

The completeness of V is immediate: If w is a codeword C(x) and p = π(x), then
(
wt, p

)
is a codeword of C ′. We conclude the proof by showing the soundness of V . Note that V
gets as input a pair of an alleged codeword w and an alleged canonical proof p. Suppose
that δPCPP(w, p) , minx∈{0,1}n

{
max

(
δ(x,w) ; δ(πcanonical(x), p)

)}
> 0.

For every x ∈ {0, 1}n, either the alleged proof p is δPCPP(w, p)-far from πcanonical(x),
or the alleged codeword is δPCPP(w, p)-far from C(x). In the former case, since |p| =
n′ − |I| = Ω(n′), it holds that δ

(
(wt, p), (xt, πcanonical(x))

)
= Ω

(
δPCPP(w, p)

)
. In the latter

case, since δCt(wt) = δC(w) and |wt| = Ω(n′), it holds that δ
(
(wt, p), (xt, πcanonical(x))

)
=

19Note that the tester expects t copies of C(x), while the input oracle consists of a single copy. Hence,
the emulation is done simply by directing the query of the ith bit of the jth copy to the ith bit of the
input oracle, for every i, j.
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Ω
(
δPCPP(w, p)

)
. Therefore δC′

(
(wt, p)

)
= Ω

(
δPCPP(w, p)

)
, and thus the tester of C ′, and

subsequently the verifier V , will reject with probability poly(δPCPP(w, p)) as required. J

Using Lemmas 6.3 and Propositions 6.4 and 6.5, we proceed with the proof of Theorem 3.1.

Proof of Theorem 3.1. Let c ∈ N be a constant and C : {0, 1}k → {0, 1}ck be a linear code
with constant relative distance. We show a scPCPP, with polynomial proof length, for the
language of all codewords of C.

First, we apply Lemma 6.3 on C and get that there exists a linear code Ĉ : {0, 1}k →
{0, 1}cn with constant relative distance and a set of codes{

Ci : {0, 1}k → {0, 1}αn+cn+(c+1)n}
{i∈[ck]}

such that each Ci is a linear code with constant relative distance that is given by

Ci(x) =
(
(C(x)i)αn, Ĉ(x), πi(x)

)
,

where α ∈ (0, 1), n = poly(k) and πi : {0, 1}k → {0, 1}(c+1)n. Moreover, each Ci makes
nearly-uniform queries.

Next, we consider the code C ′(x) ,
(
C1(x), . . . , Cck(x)

)
. Observe that, up to a permuta-

tion of the indices, C ′ has the form

C ′(x) =
(
C(x)αn, Ĉ(x)ck, π(x)

)
,

where π(x) = π1(x), . . . , πck(x). Note that
∣∣∣Ĉ(x)ck

∣∣∣ = ck · cn, which is a constant fraction of
|C ′(x)|. By Proposition 6.4, the code C ′ is a strong-LTC with constant relative distance that
makes nearly-uniform queries.

Finally, the theorem follows by applying Proposition 6.5 to the code C ′ with I = [αn · ck],
where the code C is repeated αn = |I|/(ck) times. (Indeed, we use the fact that |I| is a
constant fraction of |C ′(x)|.) Note that the scPCPP proof we obtain (namely,

(
Ĉ(x)ck, π(x)

)
)

is of length poly(k). J

6.2 scPCPPs for Half-Spaces of Good Codes
We start by recalling the statement of Theorem 3.2.

I Theorem 3.2 (restated). Let C : {0, 1}k → {0, 1}n be a linear code with constant relative
distance and linear length. Let i ∈ [k] be a location in a message and b ∈ {0, 1} a bit. Then,
there exists a scPCPP for Ci,b, where Ci,b is the set of all codewords w of C such that the
ith-bit of w equals b (i.e., wi = b). Furthermore, the proof length of the scPCPP is poly(n),
the scPCPP verifier makes nearly-uniform queries, and the scPCPP proofs are linear (over
GF(2)).

Theorem 3.2 is obtained by using Theorem 3.1 in a black-box manner. Specifically, note
that in case b = 0, the code Ci,0 is linear, and thus we can apply Theorem 3.1 directly. On
the other hand, in case b = 1, the code Ci,1 is not linear, but we can “shift” it (by a fixed
codeword of Ci,1) and apply Theorem 3.1.

Proof of Theorem 3.2. In light of the above, we focus on the case in which b = 1. Assume,
without loss of generality, that there exists a codeword c(i) of C such that that the ith-bit of
c(i) is 1 (otherwise, we can always reject). Consider a verifier, Vi,1, that gets oracle access
to an input string w and a proof π, and proceeds as follows. The verifier Vi,1 emulates the
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execution of Vi,0 (obtained via Theorem 3.1) on input oracle w + c(i) (where the summation
is point-wise over GF(2)) and its proof oracle π (which should be the canonical proof for
w + c(i) ∈ Ci,0). Note that the verifier Vi,0 makes nearly-uniform queries, and so Vi,1 also
makes nearly-uniform queries. We show that Vi,1 is a scPCPP for Ci,1

The completeness is immediate: Recall that if w is a codeword of Ci,1, then w = C(x)
such that wi = 1. By the linearity of C, w + c(i) is a codeword of C such that its ith bit is
0 (i.e.,

(
w + c(i)

)
i

= 0). Therefore, we actually invoke Vi,0 on a codeword of Ci,0. For the
soundness condition, assume that δCi,1(w) > 0. Observe that

δCi,0

(
w + c(i)

)
= min
w′∈Ci,0

δ
(
w′, w + c(i)

)
= min
w′∈Ci,0

δ
(
w′ + c(i), w

)
= δCi,1(w).

Therefore, the verifier Vi,1 will reject the input w + c(i) (given the corresponding canonical
proof) with probability at least poly

(
δCi,1(w)

)
, as required. J

7 Application to Property Testing

In this section we give an application of our main result (Theorem 1.1) to the area of
property testing. Specifically, we improve on the best known separation result, due to Gur
and Rothblum [15], between the complexity of decision versus verification in the property
testing model. Details follow.

The study of property testing, initiated by Rubinfeld and Sudan [20] and Goldreich, Gold-
wasser and Ron [11], considers highly-efficient randomized algorithms that solve approximate
decision problems, while only inspecting a small fraction of the input. Such algorithms,
commonly referred to as testers, are given oracle access to some object, and are required to
determine whether the object has some predetermined property or is far (say, in Hamming
distance) from every object that has the property.

Remarkably, it turns out that many natural properties can be tested by making relatively
few queries to the object. However, there are also many natural properties that no tester
can test efficiently. In fact, “almost all” properties require a very large query complexity to
be tested. Motivated by this limitation, Gur and Rothblum [15] initiated the study of MA
proofs of proximity (hereafterMAPs), which can be viewed as the NP proof-system analogue
of property testing.

Loosely speaking, anMAP is a probabilistic proof system that augments the property
testing framework by allowing the tester full and free access to an (alleged) proof. That is,
such a proof-aided tester for a property Π is given oracle access to an input x and free access
to a proof string w, and should distinguish between the case that x ∈ Π and the case that
x is far from Π, while only making a sublinear number of queries. More precisely, given a
proximity parameter ε > 0, we require that for inputs x ∈ Π, there exist a proof that the
tester accepts with high probability, and for inputs x that are ε-far from Π no proof will
make the tester accept, except with some small probability of error. For formal definitions
we refer to [15, Section 2].

As observed by [15], given anMAP proof of length that is linear in the size of the object
(specifically, a proof that fully describes the object), every property can be tested by only
making O(1/ε) queries to the object, simply by verifying the proof’s consistency with the
object. Hence, it is natural to measure the complexity of anMAP by both the length of the
proof and the number of queries made in order to decide whether x ∈ Π or ε-far from it. We
note that a property tester can be viewed as anMAP that uses a proof of length 0.

Gur and Rothblum [15] showed that the task of separating the power of property testers
andMAPs can be reduced to the task of designing a code that is both locally testable and
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locally decodable. Furthermore, they noticed that for such a separation, relaxed decodability
suffices. Unable to construct a code as in Theorem 1.1, Gur and Rothblum used several
weaker codes to obtain partial separation results. Specifically, they proved the following
theorem.

I Theorem 7.1 (Theorems 3.1, 3.2 and 3.3 in [15]). In all items, n denotes the length of the
main input being tested.
1. For every constant α > 0, there exists a property Πα that has anMAP that uses a proof

of length O(logn) and makes poly(1/ε) queries for every ε > 1/polylog(n), but for which
every property tester must make Ω(n1−α) queries.

2. For every constant α > 0, there exists a property Πα that has anMAP that uses a proof
of length O(logn) and makes poly(logn, 1/ε) queries, but for which every property tester
must make Ω(n1−α) queries.

3. There exists a universal constant c ∈ (0, 1) and a property Π that has anMAP that uses
a proof of length O(logn) and makes poly(1/ε) queries (without limitation on ε), but for
which every property tester must make nc queries.

Furthermore, each of the aboveMAPs has one-sided error.

Note that each of these separation results has a drawback: The first separation works only for
sufficiently large values of the proximity parameter, the second separation has non-constant
query complexity for theMAPs, and the third separation does not require property testers
to make nearly-linear number of queries.

Plugging in the code C ′ from Theorem 1.1 into the framework developed by [15, Lemmas
3.4 and 3.5], we achieve the best of all the aforementioned results; that is, a separation for
all values of the proximity parameter, with constant query complexity for theMAPs, and
nearly-linear query complexity for testers. Formally, we obtain the following separation result
betweenMAPs and property testers.

I Theorem 1.3 (restated). For every constant α > 0, there a property Πα that has anMAP
that uses a proof of length O(logn) and makes poly(1/ε) queries (without limitation on ε),
but for which every property tester must make n1−α queries. Furthermore, theMAP has
one-sided error.

Acknowledgments. We would like to thank Or Meir for a helpful discussion regarding the
robustness of tensor codes and its relation to local testability, and Michael Ben-Or for raising
the issue of tolerant testing. The third author would like to thank his advisor Moni Naor for
his support and encouragement.

References
1 Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan.

Robust PCPs of proximity, shorter PCPs, and applications to coding. SIAM Journal on
Computing, 36(4):889–974, 2006.

2 Eli Ben-Sasson and Madhu Sudan. Robust locally testable codes and products of codes.
Random Structures & Algorithms, 28(4):387–402, 2006.

3 Eli Ben-Sasson and Michael Viderman. Towards lower bounds on locally testable codes via
density arguments. Computational Complexity, 21(2):267–309, 2012.

4 Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private information
retrieval. Journal of the ACM, 45(6):965–981, 1998.

5 Irit Dinur and Tali Kaufman. Dense locally testable codes cannot have constant rate and
distance. In APPROX-RANDOM, pages 507–518, 2011.

CCC 2015



34 Strong Locally Testable Codes with Relaxed Local Decoders

6 Irit Dinur and Omer Reingold. Assignment testers: Towards a combinatorial proof of the
PCP theorem. SIAM Journal on Computing, 36(4):975–1024, 2006.

7 Klim Efremenko. 3-query locally decodable codes of subexponential length. SIAM Journal
on Computing, 41(6):1694–1703, 2012.

8 Katalin Friedl and Madhu Sudan. Some improvements to total degree tests. In ISTCS,
pages 190–198, 1995.

9 William I. Gasarch. A survey on private information retrieval (column: Computational
complexity). Bulletin of the EATCS, 82:72–107, 2004.

10 Oded Goldreich. Short locally testable codes and proofs: A survey in two parts. In Property
Testing, pages 65–104, 2010.

11 Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. Journal of the ACM, 45(4):653–750, 1998.

12 Oded Goldreich and Dana Ron. On proximity oblivious testing. In STOC, pages 141–150,
2009.

13 Oded Goldreich and Madhu Sudan. Locally testable codes and PCPs of almost-linear length.
Journal of the ACM, 53(4):558–655, 2006.

14 Alan Guo, Swastik Kopparty, and Madhu Sudan. New affine-invariant codes from lifting.
In ITCS, pages 529–540. ACM, 2013.

15 Tom Gur and Ron D. Rothblum. Non-interactive proofs of proximity. In ITCS, pages
133–142. ACM, 2015.

16 Venkatesan Guruswami and Atri Rudra. Tolerant locally testable codes. In Approximation,
Randomization and Combinatorial Optimization. Algorithms and Techniques, pages 306–
317. Springer, 2005.

17 Jonathan Katz and Luca Trevisan. On the efficiency of local decoding procedures for
error-correcting codes. In STOC, pages 80–86, 2000.

18 Tali Kaufman and Michael Viderman. Locally testable vs. locally decodable codes. In
APPROX-RANDOM, pages 670–682, 2010.

19 Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant property testing and distance
approximation. Journal of Computer and System Sciences, 72(6):1012–1042, 2006.

20 Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with appli-
cations to program testing. SIAM Journal on Computing, 25(2):252–271, 1996.

21 Luca Trevisan. Some applications of coding theory in computational complexity. Electronic
Colloquium on Computational Complexity (ECCC), 2004.

22 Michael Viderman. A combination of testability and decodability by tensor products. In
APPROX-RANDOM, pages 651–662, 2012.

23 Michael Viderman. Strong LTCs with inverse poly-log rate and constant soundness. Elec-
tronic Colloquium on Computational Complexity (ECCC), 20:22, 2013.

24 Sergey Yekhanin. Towards 3-query locally decodable codes of subexponential length. Jour-
nal of the ACM, 55(1):1, 2008.

25 Sergey Yekhanin. Locally decodable codes. Foundations and Trends in Theoretical Com-
puter Science, 6(3):139–255, 2012.



O. Goldreich, T. Gur, and I. Komargodski 35

A Obtaining Strong LTCs from LIPS

In this appendix, we provide tools that allow us to use the linear inner proof systems
(hereafter, LIPS), constructed by Goldreich and Sudan [13], to obtain families of strong-LTCs
with several features that we take advantage of in Appendix 6. Specifically, we prove
Theorem 6.1 and Corollary 6.2. Throughout this section, denote F = GF(2). Recall the
statement of Theorem 6.1.

I Theorem 6.1 (restated). Let Σ = Fb. For infinitely many k, there exists n = poly(k) and
a linear code E : Σ → Fn such that the following holds. Suppose that C : ΣK → ΣN is a
strong-LTC that is linear over F and has a (non-adaptive) tester that uses r random bits and
makes nearly-uniform queries. Then, there exists ` = poly(k) such that ` is a multiple of n,
and a linear strong-LTC C ′′ : Fbk → F2r+1·` such that the 2r · `-bit long prefix of C ′′(x) equals(
E(C(x)1), . . . , E(C(x)N )

)2r`/Nn. Moreover, the tester of C ′′ makes nearly-uniform queries.

Proof. We follow the proof of [13, Theorem 5.20], while using the code C of the theorem’s
hypothesis instead of the third ingredient in that proof. In addition, following [13, Proposition
5.21], we use composition theorems (i.e., [13, Theorem 5.15] and [13, Theorem 5.17]) that
preserve the nearly-uniform distribution of the queries the verifiers (or tester) make, thus
ascertaining that C ′′(x) has a tester that queries each location with probability Θ(1/N).
We note that in our settings, the overhead of replacing the “vanilla” composition theorems
(which are used in [13, Theorem 5.20]) with the composition theorems that preserve the
nearly-uniform queries is insignificant. Details follow.

In the following description, all references refer to [13]. Recall some basics regarding the
terminology used in [13]. By Definitions 5.8 and 5.9, a

(
F, (q, b) → (p, a), δ, γ

)
-LIPS refers

to input oracles X1, ..., Xq : [n] → Fa and a proof oracle Xq+1 : [`] → Fa, where the input
oracles provide an n-long encoding (over Fa) of a single symbol in the (much) bigger alphabet
Fb (i.e., this encoding is denoted E : Fb → (Fa)n). (In addition δ is the relative distance of
the encoding used, and γ is the detection ratio in strong soundness. In the following, both
parameters will be small constants.)

The proof of Theorem 5.20 starts with an overview (page 79), and then lists three
ingredients (page 80) that will be used: (1) The Hadamard based

(
F, (pH , kH) → (pH +

5, 1), 1/2, 1/8
)
-LIPS (for any choice of pH and kH) of Proposition 5.18, (2) The Reed-Muller

based
(
F, (pRM , kRM ) → (pRM + 4, poly(log pRMkRM )), 1/2,Ω(1)

)
-LIPS (for any choice of

pRM and kRM ) of Proposition 5.18, and (3) a specific strong-LTC (namely, the strong-LTC
in Part 1 of Theorem 2.4). We shall use the very same first two ingredients,20 but use
the code C in place of the third. Assume, without loss of generality, that the randomness
complexity r of the strong (tester) of C satisfies that 2r is a multiple of N . (We remark
that all three ingredients have verifiers or testers that make nearly-uniform queries, and that
we compose these ingredients via the composition theorems that preserve this distribution
of queries.) Specifically, the second paragraph following the ingredients-list asserts that for
any desired p′′ and k′′, an

(
F, (p′′, k′′)→ (p′′ + 13, 1),Ω(1),Ω(1/p′′)2)-LIPS with randomness

O(p′′ log k′′), input length poly(p′′k′′), and proof length that are poly(p′′k′′). We shall use
p′′ = O(1) and k′′ = b, where the O(1) stands for the query complexity of the codeword tester
for C. Thus the above simplifies to asserting an

(
F, (O(1), b)→ (O(1), 1),Ω(1),Ω(1)

)
-LIPS

20We remark that while these two LIPSs are presented in [13] as if they are non-uniform, it can be verified
that they can be presented in uniform terms (i.e., computable by Turing machines rather than by
circuits).
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with randomness O(log b) and input/proof lengths (i.e., n and `) that are poly(b). Without
loss of generality, we may assume that ` is a multiple of n.

Next, we wish to compose C with the above LIPS via Theorem 5.15 (instead of via
Theorem 5.13, which does not preserve the nearly-uniform distribution of the queries). It
follows that in Item 1 of Theorem 5.15 we use K,N and r as provided by the hypothesis
and q = O(1). For Item 2, we use b as provided by the hypothesis, (q = O(1) as above),
p = O(1) and a = 1, and n, ` = poly(b) (all fitting the LIPS above). So we have Γ = F , and
get a strong-LTC mapping FbK to F2r+1·`, which makes nearly-uniform queries. In particular,
for t = 2r`/Nn (i.e., tNn = 2r`), as shown on top of page 56 (see Equation (32)), the first
half of the codewords of the resulting code have the form

(
E(C(x)1)), ..., E(C(x)N )

)t, where
x ∈ FbK is viewed as an element of ΣK . The theorem follows. J

Next, recall the statement of Corollary 6.2.

I Corollary 6.2 (restated). Let C : {0, 1}k → {0, 1}ck be a good linear code with con-
stant relative distance, where c ∈ N is a constant. Then, for some M,m = poly(k),
there exists a linear strong-LTC C ′ : {0, 1}k → {0, 1}2M and a linear code E : {0, 1}k →
{0, 1}m, which has constant relative distance, such that the M -bit long prefix of C ′(x) equals(
E(C(x)[1]), ..., E(C(x)[c])

)M/cm, where C(x)[i] is the ith block of length k in C(x). Fur-
thermore, the (strong) tester of C ′ makes nearly-uniform queries.

Proof. Let C : Fk → Fck be a good linear code. Viewing C as a mapping from Σ = Fk to Σc,
note that C is a strong-LTC, which is (trivially) checked by reading all c symbols (and hence,
by definition, it makes uniform queries). The claim follows by instantiating Theorem 6.1
using the code C and taking b = k, K = 1, N = c = O(1), and r = 0. J

B Concatenating Multiple Encodings of Strong LTCs

In this appendix, we show a sufficient condition for obtaining strong-LTCs via concatenation
of strong-LTCs. Recall the statement of Proposition 6.4.

I Proposition 6.4 (restated). Let C1, . . . , Ct : {0, 1}k → {0, 1}n be strong-LTCs with constant
relative distance. Let I ⊆ [n] such that |I| = Ω(n), and let Ĉ : {0, 1}k → {0, 1}|I| be
a code with constant relative distance. If Ĉ(x) = C1(x)|I = C2(x)|I = . . . = Ct(x)|I
for every x ∈ {0, 1}k, where Ci(x)|I denotes the restriction of Ci(x) to I, then the code
C ′(x) ,

(
C1(x), . . . , Ct(x)

)
is a strong-LTC with constant relative distance. Moreover, if the

(strong) testers of C1, . . . , Ct make nearly-uniform queries, then the (strong) tester of C ′ also
makes nearly-uniform queries.

Proof. Let |I| = α · n for constant 0 ≤ α ≤ 1. Assume, without loss of generality, that
I = {1, . . . , α · n}. For every i ∈ [t], we refer to an alleged (n-bit) codeword Ci(x) as the pair
of strings (yi, zi) ∈ {0, 1}α·n × {0, 1}(1−α)·n, so that yi is the common codeword Ĉ(x) and zi
is the rest of the codeword.

We show a tester that, given oracle access to a binary string w =
(
(y1, z1), . . . , (yt, zt)

)
,

where (yi, zi) ∈ {0, 1}n for every i ∈ [t], accepts every codeword of C ′ and rejects non-
codewords of C ′ with probability that is polynomial in their relative distance from C ′. The
strong-LTC procedure for C ′ is described in Figure 3.

Note that Step 1 of the tester T invokes the tester of a uniformly selected inner code
(Ci), and so, if the testers of C1, . . . , Ct make nearly-uniform queries, then Step 1 of T also
makes nearly-uniform queries. As for Step 2 of T (which queries a uniformly selected bit in
two uniformly selected yi’s), note that by adding two dummy queries to the second part of
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The strong-LTC Procedure for C′

Input: a string
(
(y1, z1), . . . , (yt, zt)

)
∈ {0, 1}n·t.

1. The inner strong-LTC test: Select at random i ∈ [t], and run the strong-LTC tester of Ci
on (yi, zi).

2. The common codeword consistency test: Select at random i1, i2 ∈ [t] and j ∈ [n], and
reject if the jth bit of yi1 and yi2 differs.

Figure 3 Strong local tester for C′.

each inner code (i.e., query a uniformly selected bit in two uniformly selected zi’s) we ensure
that the first test also makes nearly-uniform queries.

The completeness of the tester is straightforward. If
(
(y1, z1), . . . , (yt, zt)) is equal to

C ′(x) for some x ∈ {0, 1}k, then: (1) for every i1, i2 ∈ [t] it holds that yi1 = yi2 , and (2) for
every i ∈ [t] it holds that (yi, zi) is equal to Ci(x). Thus the tester accepts.

Next, we show the soundness of the tester. Let w =
(
(y1, z1), . . . , (yt, zt)

)
be δC′(w)-far

from the code C ′, let u ∈ {0, 1}n be a string that minimizes the value of ∆
(
(y1, . . . , yt), ut

)
,

and let γ = δ(Ĉ)/36. Suppose that (y1, . . . , yt) is γ · δC′(w)-far from ut. In this case, the
“common codeword consistency test” rejects with probability

E
i1,i2∈R[t]

[
∆(yi1 , yi2)

n

]
≥ E
i1∈R[t]

[
∆(yi1 , u)

n

]
=

∆
(
(y1, . . . , yt), ut

)
n · t

= γ · δC′(w).

Thus, in the sequel, we assume that (y1, . . . , yt) is γ · δC′(w)-close to ut.
Suppose that u is 3γ · δC′(w)-far from Ĉ. Since (y1, . . . , yt) is γ · δC′(w)-close to ut, at

least half of the yi’s must be 2γ · δC′(w)-close to u, so these yi’s are γ · δC′(w)-far from Ĉ.
Thus, in the invocation of the strong-LTC test of a random Ci, with probability 1/2, the test
is invoked on a string (yi, zi) such that yi is γ · δC′(w)-far from the codewords of Ĉ. Since
|I| = |yi| the tester will reject with probability Ω(δC′(w)). Hence, in the sequel, we assume
that u is 3γ · δC′(w)-close to a codeword of Ĉ. Since we also assume that (y1, . . . , yt) is
γ ·δC′(w)-close to ut, then by the triangle inequality, the string (y1, . . . , yt) is 4γ ·δC′(w)-close
to a (unique, since 4γ < δ(Ĉ)/2) codeword Ĉt(x). Furthermore, by an averaging argument,
at most δC′(w)/8 fraction of the yi’s are δ(Ĉ)/2-far from Ĉ(x).

Since |Ĉ(x)|t = α · |C ′(x)| for a constant α ∈ (0, 1), and since (y1, . . . , yt) is 4γ · δC′(w)-
close to Ĉt(x), then (z1, . . . , zt) is δC′(w)/2-far from any (ẑ1, . . . , ẑt) ∈ {0, 1}(n−|I|)t such
that

(
Ĉt(x), (ẑ1, . . . , ẑt)

)
is a codeword of C ′. Thus, at least δC′(w)/4 fraction of the zi’s are

δC′(w)/4-far from their corresponding ẑi’s. Hence, at least δC′(w)/8 fraction of the (yi, zi)
pairs satisfy (1) yi is δ(Ĉ)/2-close to Ĉ(x), and (2) zi is δC′(w)/4-far from ẑi(x). Therefore,
if we invoke the verifier of Ci on such (yi, zi), it will reject with probability Ω(δC′(w)).
Therefore, the tester T rejects with probability poly

(
δC′(w)

)
, as required. J

C Robustness of Tensor Codes

In this section we prove Theorem 2.6, which is implicit in [22]. Specifically, in [22, Theorem
A.5] it is shown that for d ≥ 3, if a codeword w of a d-dimensional tensor code C⊗d is
corrupted, then the corruption in a random hyperplane (i.e., a d− 1-dimensional subplane) of
w is proportional to the corruption in the entire (d-dimensional) tensor w. By applying this
theorem recursively we obtain that for constant values of d ≥ 3, the corruption in a random
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2-dimensional plane of a corrupted codeword of C⊗d is proportional to the corruption in the
entire codeword. Formally, we show the following.

I Theorem 2.6 (restated). Let C be a linear binary code and d ≥ 3 an integer. Then, there
exists a constant crobust ∈ (0, 1) such that for every tensor w ∈ {0, 1}nd it holds that

E
p∈RPlanes

[
δ
(
w|p, C⊗2)] > crobust · δC⊗d(w).

We start by recalling the definition of robustness. Informally, we say that a tester is
robust if for every word that is far from the code, the tester’s view is far in expectation from
any consistent view. This notion was defined for LTCs following an analogous definition for
PCPs [1].

I Definition C.1 (Robustness). Given a tester T for a code C : {0, 1}k → {0, 1}n, for every
word w ∈ {0, 1}k we define

ρT (w) = E
I

[
δ(w|I , C|I)

]
,

where w|I denotes the local view of the tester after querying on coordinates given by I. We
say that the tester T has robustness ρTC on the code C if for every w ∈ {0, 1}k it holds that
ρT (w) ≥ ρTC · δC(w).

Next, we consider the “hyperplane tester for tensor codes” of Ben-Sasson and Sudan [2].
Towards this end, we first provide a notation for hyperplanes. For every j ∈ [d], and b ∈ [n],
we say that τ is a (j, b)-hyperplane in {0, 1}nd if

τ = {(i1, . . . , ij−1, b, ij+1, . . . , id) : for all t ∈ [d] \ { j } we have it ∈ [n]} .

We denote by Hyperplanes = {(j, b)-hyperplane}{j∈[d],b∈[n]} the set of all hyperplanes in
{0, 1}nd , and denote the restriction of a tensor w ∈ {0, 1}nd to a hyperplane τ ∈ Hyperplanes
by w|τ ∈ {0, 1}n

d−1 .

IDefinition C.2 (Hyperplane Tester for Tensor Codes). Let C be a linear code, d ≥ 3 an integer,
and w ∈ {0, 1}nd . The hyperplane tester for C⊗d selects uniformly at random τ ∈ Hyperplanes,
obtains w|τ by querying all points on τ , and accepts if and only if w|τ ∈ C⊗d−1.

I Theorem C.3 ([22, Theorem A.5]). Let C be a linear code and d ≥ 3. Let T be the
hyperplane tester for C⊗d. Then, ρTC⊗d ≥ δ(C)d

2d2 .

We show that Theorem 2.6 follows by iterative applications of Theorem C.3.

Proof of Theorem 2.6. Let C be a linear code and d ≥ 3 a constant integer. Let w ∈ {0, 1}nd

be a tensor. For every 3 ≤ t ≤ d, let Tt be the hyperplane tester for C⊗t. Note that for every
3 ≤ t ≤ d, the tester Tt queries a hyperplane that is allegedly a codeword of C⊗t−1; hence
Tt−1 can be composed with Tt; that is, we can run Tt on input w, during which Tt generates
a local view w|I to be queried, and so, we can run Tt−1 on the local view w|I . (Note that the
composed tester T3 ◦ . . . ◦ Td queries the restriction of the input w to a uniformly selected
plane p ∈ Planes.) The robustness of the composed tester will hence be

ρT3◦...◦Td

C⊗d ≥ ρTd

C⊗d · ρ
Td−1
C⊗d−1 · . . . · ρT3

C⊗3 .

By Theorem C.3, for every t ≥ 3 we have ρTt

C⊗t ≥ δ(C)t

2t2 . Thus, for constant d ≥ 3 it holds
that crobust , ρT3◦...◦Td

C⊗d is a positive constant that depends only on δ(C) and d. J
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D Average Smoothness and Error Reduction for Relaxed LDCs

In this appendix, following [1, Section 4.2], we show that the modified definition of relaxed-LDCs
(see Definition 4.2) implies the standard definition of relaxed-LDCs (see Definition 2.2). To-
wards this end we need to show the following: (1) The soundness can be increased from Ω(1)
(as in Condition 2 of Definition 4.2) to 2/3 (as in Condition 2 of Definition 2.2), and (2) the
average smoothness (i.e., Condition 3 of Definition 4.2) can be replaced with the success rate
condition (i.e., Condition 3 of Definition 2.2). Both claims were shown in [1]; we provide
their proofs (adapted to our settings) for completeness.

We start by showing how to perform error-reduction for relaxed-LDC with soundness
Ω(1). Recall that the decoder is required to successfully decode each valid codeword, and
in addition, given a somewhat corrupted codeword the decoder is required to either decode
successfully or abort with probability Ω(1). On the face of it, it may seem that standard
error reduction cannot be applied (since we start with a large error probability). However,
the error reduction can be simply performed by repeating the execution of the decoder,
outputting a bit only if all invocations returned this bit, and aborting otherwise. We remark
that the above may cause an increase in the number of indices on which the decoder aborts
(with probability at least 2/3). However, in the modified definition (i.e., Definition 4.2) there
is no restriction on the success rate.

I Proposition D.1. Let C : {0, 1}k → {0, 1}n be a modified relaxed-LDC, according to
Definition 4.2. Then, C has a modified relaxed-LDC decoder that also satisfies Condition 2
of Definition 2.2.

Proof. Let C be a modified relaxed-LDC. Denote its decoder by D. There exists a constant
p > 0 such that for every string w that is sufficiently close to a codeword of C it holds
that PrD[Dw(i) = {xi,⊥}] ≥ p. Consider a decoder D′ that operates follows: D′ executes
the original decoder D (with fresh randomness) for r times, where r is a constant to be
determined later. If all of the executions are consistent, i.e., there exists an a ∈ {0, 1,⊥} such
that in every execution Dw(i) = a, then D′ output a; otherwise, D′ output ⊥. (We remark
that the distribution of queries of D′ is identical to that of D, and thus D′ also satisfies the
average smoothness condition.)

Note that the new decoder D′ satisfies Condition 1 of Definition 2.2 (the completeness
condition). Moreover, D′ satisfies Condition 2 of Definition 2.2: Indeed, given w that is
sufficiently close to C(x), the probability that D′ errs is at most p′ = (1− p)r. Hence, by
fixing r = 2/p we get that PrD′ [D′w(i) = {xi,⊥}] ≥ 1− p′ ≥ 2/3, as needed. J

Finally, we show that the average smoothness condition (i.e., Condition 3 of Definition 4.2)
can be replaced by the success rate condition (i.e., Condition 3 of Definition 2.2, which limits
the number of indices upon which the decoder aborts (with probability at least 2/3)). The
key idea is that a decoder that satisfies the completeness and soundness conditions (i.e.,
Conditions 1 and 2 of Definition 2.2) only aborts if the local view of the codeword that it
queries contains a corrupted point. By the average smoothness, on average the decoder will
only query a corrupted point with low probability. Thus, by an averaging argument, we can
deduce that there is a small number of indices upon which the decoder might abort.

I Proposition D.2. Let C : {0, 1}k → {0, 1}n be a linear code, and let D be a constant-query
decoder for C that satisfies Conditions 1 and 2 of Definition 2.2 as well as Condition 3
of Definition 4.2 (i.e., average smoothness). Then, C satisfies all three conditions of
Definition 2.2.
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40 Strong Locally Testable Codes with Relaxed Local Decoders

Proof. Let the code C and the decoder D be as in the hypothesis of the proposition. Denote
the (constant) query complexity of D by q. According to Condition 1, for any x ∈ {0, 1}k and
every i ∈ [k], it holds that Pr

[
DC(x)(i) = xi

]
= 1. Considering any w that is δ-close to C(x)

(where δ ≤ δradius), the probability that given a uniformly distributed index i ∈ [k] the decoder
D queries a location on which w and C(x) disagree is at most q · (2/n) · δn = 2qδ. This is
due to the fact that, for a uniformly distributed i, no position is queried with probability
greater than 2/n.

Let pwi denote the probability that on input i the decoder D queries a location on which
w and C(x) disagree. We have just established that (1/k) ·

∑k
i=1 p

w
i ≤ 2qδ. By an averaging

argument, for Iw , {i ∈ [k] : pwi ≤ 1/3}, it holds that |Iw| ≥ (1− 6qδ) · k. Observe that for
any i ∈ Iw, it holds that Pr[Dw(i) = xi] ≥ 1− 1/3 = 2/3, as required. J

E Proof of Claim 5.6

In this section we provide the proof of Claim 5.6. The proof is similar to the proof of Claim 5.5.
However, note that Claims 5.5 and 5.6 deal with different objects: While Claim 5.5 deals
with the planes of the tensor code and the plane scPCPPs, Claim 5.6 deals with the lines
of the tensor and the point-line scPCPPs. In particular, every plane in the tensor code is
coupled with a unique plane scPCPP proof, whereas every line in the tensor code is coupled
with n different point-line scPCPPs, one for each point on the line. We begin by restating
Claim 5.6. Recall that γ = δ(C)/(24d).

I Claim 5.6 (restated). Assuming c̄ is γ · δC′(w)-close to being a codeword of Ct1 , if
δp̄lines > δC′(w), then PrT [Tw = 0] ≥ poly

(
δC′(w)

)
.

Proof. By the lemma’s hypothesis, c̄ is δc̄-close to C(x)t1 , where δc̄ ≤ γ · δC′(w). By an
averaging argument, with probability at least 2/3 the random copy c is 3δc̄-close to C(x).
We say that a point ı̄ ∈ [n]d in c is corrupted if cı̄ 6= C ′(x)ı̄ and so, there are at most 3δc̄nd
corrupted points in c. Since there are d · nd−1 axis-parallel lines in c, then on average, the
number of corrupted points in a random axis-parallel line is at most 3δc̄n

d

d·nd−1 ≤ 3δc̄n. Thus,
by an averaging argument, we obtain that at most δp̄

4 fraction of the axis-parallel lines in c
contain at least 4

δp̄
· 3δc̄n corrupted points.

Recall that every axis-parallel line ` has n corresponding point-line scPCPP proofs (one
for each point on `). For every line ` we view these n proofs as one concatenated proof for
the line `. By an averaging argument, with probability at least δp̄ , δp̄lines/2 the random copy
p̄ in p̄lines is δp̄-far from its corresponding set of canonical proofs, πlines(x). Assume from now
on that p̄ is δp̄-far from πlines(x). By another averaging argument, at least a δp̄/2 fraction of
the concatenated line proofs (i.e., proofs which consists of n point-line scPCPP proofs) are
δp̄/2-far from their corresponding (concatenated) canonical line proofs.

By combining the conclusions of the last two paragraphs, we deduce that Ω
(
δC′(w)

)
-

fraction of the axis-parallel lines ` in c are both δ(C0)/2-close to the restriction of the tensor
codeword C(x) to `, and their corresponding (concatenated) proofs are Ω

(
δC′(w)

)
-corrupted;

that is, there is a subset of lines, denoted BAD, which consists of at least δp̄

4 fraction of all
the lines in c that are δ(C0)/2-close to C(x)|` (recall that δc̄ ≤ γ · δC′(w) and δp̄ > δC′(w),
therefore 12·δc̄

δp̄
< δ(C0)/2), and in addition satisfy the following: For every ` ∈ BAD, the

n (alleged) point-line scPCPP proofs that correspond to ` are δp̄/2-far from their (correct)
canonical proofs in πlines(x). By an averaging argument, for every ` ∈ BAD it holds that
δp̄/4 fraction of the point-line PCPP proofs that correspond to the line ` (recall that there
are n such proofs) are δp̄/4-far from their canonical proof in πlines(x).
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Recall that the tester chooses a line ` = `j,̄ı by sampling uniformly at random a point
ı̄ ∈ [n]d and a direction j ∈ [d]. Notice that for if ` ∈ BAD, then with probability δp̄/4,
in order for input c|` and the proof p`j,ı̄ (that refers to the same line as `) to be a valid
claim for the input-proof language that V line(ij , cı̄) verifies, one must make at least one of
the following changes: (1) change a fraction of at least δp̄

4 of the proof p`j,ı̄ such that it
matches πline

(
C(x)|`j,ı̄ , ij

)
, or (2) change a fraction of at least δ(C0)/2 of c|` (since p`j,ı̄

might be a valid proof for input C0(y) 6= c|`). Thus, for every `j,̄ı ∈ BAD, the probability
that V line(ij , cı̄) rejects input c|`j,ı̄ and proof p`j,ı̄ is at least polynomial in δC′(w).

Putting it all together, with probability 2/3 we hit a random copy c of the tensor code
that is 3δc̄-close to C(x). Furthermore, with probability at least δp̄ we hit a random copy p̄
that is δp̄-corrupted, and subsequently, with probability δp̄/2 we hit a set of n line scPCPP
proofs that are δp̄/2-corrupted. Moreover, with probability at least δp̄/4 we hit a point-line
scPCPP proof that is δp̄/4 corrupted. Finally, assuming the foregoing, the corresponding
scPCPP verifier rejects with probability poly (δC′(w)). Therefore,

Pr
T

[Tw = 0] ≥ 2
3 · δp̄ ·

δp̄
2 ·

δp̄
4 · poly (δC′(w)) ≥ poly

(
δC′(w)

)
.

J
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Abstract
We prove a lower estimate on the increase in entropy when two copies of a conditional random
variable X|Y , with X supported on Zq = {0, 1, . . . , q − 1} for prime q, are summed modulo q.
Specifically, given two i.i.d. copies (X1, Y1) and (X2, Y2) of a pair of random variables (X,Y ),
with X taking values in Zq, we show

H(X1 +X2 | Y1, Y2)−H(X|Y ) ≥ α(q) ·H(X|Y )(1−H(X|Y ))

for some α(q) > 0, where H(·) is the normalized (by factor log2 q) entropy. In particular, if X|Y
is not close to being fully random or fully deterministic and H(X|Y ) ∈ (γ, 1−γ), then the entropy
of the sum increases by Ωq(γ). Our motivation is an effective analysis of the finite-length behavior
of polar codes, for which the linear dependence on γ is quantitatively important. The assumption
of q being prime is necessary: for X supported uniformly on a proper subgroup of Zq we have
H(X +X) = H(X). For X supported on infinite groups without a finite subgroup (the torsion-
free case) and no conditioning, a sumset inequality for the absolute increase in (unnormalized)
entropy was shown by Tao in [20].

We use our sumset inequality to analyze Arıkan’s construction of polar codes and prove that
for any q-ary source X, where q is any fixed prime, and any ε > 0, polar codes allow efficient
data compression of N i.i.d. copies of X into (H(X) + ε)N q-ary symbols, as soon as N is
polynomially large in 1/ε. We can get capacity-achieving source codes with similar guarantees
for composite alphabets, by factoring q into primes and combining different polar codes for each
prime in factorization.

A consequence of our result for noisy channel coding is that for all discrete memoryless
channels, there are explicit codes enabling reliable communication within ε > 0 of the symmetric
Shannon capacity for a block length and decoding complexity bounded by a polynomial in 1/ε.
The result was previously shown for the special case of binary-input channels [7, 9], and this work
extends the result to channels over any alphabet.
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1 Introduction

In a remarkable work, Arıkan [2] introduced the technique of channel polarization, and
used it to construct a family of binary linear codes called polar codes that achieve the
symmetric Shannon capacity of binary-input discrete memoryless channels in the limit of
large block lengths. Polar codes are based on an elegant recursive construction and analysis
guided by information-theoretic intuition. Arıkan’s work gave a construction of binary codes,
and this was subsequently extended to general alphabets in [18]. In addition to being an
approach to realize Shannon capacity that is radically different from prior ones, channel
polarization turns out to be a powerful and versatile primitive applicable in many other
important information-theoretic scenarios. For instance, variants of the polar coding approach
give solutions to the lossless and lossy source coding problem [3, 13], capacity of wiretap
channels [15], the Slepian-Wolf, Wyner-Ziv, and Gelfand-Pinsker problems [11], coding for
broadcast channels [5], multiple access channels [19, 1], interference networks [21], etc. We
recommend the well-written survey by Şaşoğlu [17] for a detailed introduction to polar codes.

The advantage of polar codes over previous capacity-achieving methods (such as Forney’s
concatenated codes that provably achieved capacity) was highlighted in a recent work [7]
where polynomial convergence to capacity was shown in the binary case (this was also shown
independently in [9]). Specifically, it was shown that polar codes enable approaching the
symmetric capacity of binary-input memoryless channels within an additive gap of ε with
block length, construction, and encoding/decoding complexity all bounded by a polynomially
growing function of 1/ε. Polar codes are the first and currently only known construction
which provably have this property, thus providing a formal complexity-theoretic sense in
which they are the first constructive capacity-achieving codes.

The main objective of this paper is to extend this result to the non-binary case, and
we manage to do this for all alphabets in this work. We stress that the best previously
proven complexity bound for communicating at rates within ε of capacity of channels with
non-binary inputs was exponential in 1/ε. Our work shows the polynomial solvability of the
central computational challenge raised by Shannon’s non-constructive coding theorems, in
the full generality of all discrete sources (for compression/noiseless coding) and all discrete
memoryless channels (for noisy coding).

The high level approach to prove the polynomially fast convergence to capacity is similar
to what was done in [7], which is to replace the appeal to general martingale convergence
theorems (which lead to ineffective bounds) with a more direct analysis of the convergence
rate of a specific martingale of entropies.1 However, the extension to the non-binary case
is far from immediate, and we need to establish a quantitatively strong “entropy increase
lemma” (see details in Section 4) over all prime alphabets. The corresponding inequality
admits an easier proof in the binary case, but requires more work for general prime alphabets.
For alphabets of size m where m is not a prime, we can construct a capacity-achieving code
by combining together polar codes for each prime dividing m.

In the next section, we briefly sketch the high level structure of polar codes, and the
crucial role played by a certain “entropy sumset inequality” in our effective analysis. Proving
this entropic inequality is the main new component in this work, though additional technical
work is needed to glue it together with several other ingredients to yield the overall coding
result.

1 The approach taken in [9] to analyze the speed of polarization for the binary was different, based on
channel Bhattacharyya parameters instead of entropies. This approach does not seem as flexible as the
entropic one to generalize to larger alphabets.
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2 Overview of the Contribution

In order to illustrate our main contribution, which is an inequality on conditional entropies
for inputs from prime alphabets, in a simple setting, we will focus on the source coding
(lossless compression) model in this paper. The consequence of our results for channel coding,
which is not immediate but follows in a standard manner from compression of sources with
side information (see for instance [17, Sec 2.4]), is stated in Theorem 2.3.

Let Zq = {0, 1, . . . , q− 1} denote the additive group of integers modulo q. Suppose X is a
source (random variable) over Zq (with q prime), with entropy H(X) (throughout the paper,
by entropy we will mean the entropy normalized by a lg q factor, so that H(X) ∈ [0, 1]). The
source coding problem consists of compressing N i.i.d. copies X0, X1, . . . , XN−1 of X to
≈ H(X)N (say (H(X)+ ε)N) symbols from Zq. The approach based on channel polarization
is to find an explicit permutation matrix A ∈ ZN×Nq , such that if (U0, . . . , UN−1)t =
A(X0, . . . , XN−1)t, then in the limit of N →∞, for most indices i, the conditional entropy
H(Ui|U0, . . . , Ui−1) is either ≈ 0 or ≈ 1. Note that the conditional entropies at the source
H(Xi|X0, . . . , Xi−1) are all equal toH(X) (as the samples are i.i.d.). However, after the linear
transformation by A, the conditional entropies get polarized to the boundaries 0 and 1. By
the chain rule and conservation of entropy, the fraction of i for which H(Ui|U0, . . . , Ui−1) ≈ 1
(resp. ≈ 0) must be ≈ H(X) (resp. ≈ 1−H(X)).

The polarization phenomenon is used to compress the Xi’s as follows: The encoder
only outputs Ui for indices i ∈ B where B = {i | H(Ui|U0, . . . , Ui−1) > ζ} for some tiny
ζ = ζ(N) → 0. The decoder (decompression algorithm), called a successive cancellation
decoder, estimates the Ui’s in the order i = 0, 1, . . . , N − 1. For indices i ∈ B that are output
at the encoder, this is trivial, and for other positions, the decoder computes the maximum
likelihood estimate ûi of Ui, assuming U0, . . . , Ui−1 equal û0, . . . , ûi−1, respectively. Finally,
the decoder estimates the inputs at the source by applying the inverse transformation A−1

to (û0, . . . , ûN−1)t.
The probability of incorrect decompression (over the randomness of the source) is upper

bounded, via a union bound over indices outside B, by
∑
i/∈B H(Ui|U0, . . . , Ui−1) ≤ ζN . Thus,

if ζ � 1/N , we have a reliable lossless compression scheme. Thus, in order to achieve compres-
sion rate H(X) + ε, we need a polarizing map A for which H(Ui|U0, . . . , Ui−1)� 1/N for at
least 1−H(X)− ε fraction of indices. This in particular means that H(Ui|U0, . . . , Ui−1) ≈ 0
or ≈ 1 for all but a vanishing fraction of indices, which can be compactly expressed as
Ei

[
H(Ui|U0, . . . , Ui−1)

(
1−H(Ui|U0, . . . , Ui−1)

)]
→ 0 as n→∞.

Such polarizing maps A are in fact implied by a source coding solution, and exist in abun-
dance (a random invertible map works w.h.p.). The big novelty in Arıkan’s work is an explicit
recursive construction of polarizing maps, which further, due to their recursive structure,
enable efficient maximum likelihood estimation of Ui given knowledge of U0, . . . , Ui−1.

Arıkan’s construction is based on recursive application of the basic 2× 2 invertible map
K = ( 1 1

0 1 ).2 While Arıkan’s original analysis was for the binary case, the same construction
based on the matrix K also works for any prime alphabet [18]. Let An denote the matrix
of the polarizing map for N = 2n. In the base case n = 1, the outputs are U0 = X0 +X1
and U1 = X1. If X0, X1 ∼ X are i.i.d., the entropy H(U0) = H(X0 +X1) > H(X) (unless
H(X) ∈ {0, 1}), and by the chain rule H(U1|U0) < H(X), thereby creating a small separation
in the entropies. Recursively, if (V0, . . . , V2n−1−1) and (T0, . . . , T2n−1−1) are the outputs of

2 Subsequent work established that polarization is a common phenomenon that holds for most choices of
the “base” matrix instead of just K [12].
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An−1 on the first half and second half of (X0, . . . , X2n−1), respectively, then the output
(U0, . . . , U2n−1) satisfies U2i = Vi + Ti and U2i+1 = Ti. If Hn denotes the random variable
equal to H(Ui|U0, . . . , Ui−1) for a random i ∈ {0, 1, . . . , 2n−1}, then the sequence {Hn} forms
a bounded martingale. The polarization property, namely that Hn → Bernoulli(H(X)) in the
limit of n→∞, can be shown by appealing to the martingale convergence theorem. However,
in order to obtain a finite upper bound on n(ε), the value of n needed for E[Hn(1−Hn)] ≤ ε
(so that most conditional entropies to polarize to < ε or > 1− ε), we need a more quantitative
analysis. This was done for the binary case in [7], by quantifying the increase in entropy
H(Vi + Ti|V0, . . . , Vi−1, T0, . . . , Ti−1) − H(Vi|V0, . . . , Vi−1) at each stage, and proving that
the entropies diverge apart at a sufficient pace for Hn to polarize to 0/1 exponentially fast
in n, namely E[Hn(1−Hn)] ≤ ρn for some absolute constant ρ < 1.

The main technical challenge in this work is to show an analogous entropy increase lemma
for all prime alphabets. The primality assumption is necessary, because a random variable X
uniformly supported on a proper subgroup has H(X) /∈ {0, 1} and yet H(X +X) = H(X).
Formally, we prove:

I Theorem 2.1. Let (Xi, Yi), i = 1, 2 be i.i.d. copies of a correlated random variable (X,Y )
with X supported on Zq for a prime q. Then for some α(q) > 0,

H(X1 +X2|Y1, Y2)−H(X|Y ) ≥ α(q) ·H(X|Y )(1−H(X|Y )). (1)

The linear dependence of the entropy increase on the quantity H(X|Y )(1−H(X|Y )) is
crucial to establish a speed of polarization adequate for polynomial convergence to capacity.
A polynomial dependence is implicit in [16], but obtaining a linear dependence requires lot
more care. For the case q = 2, Theorem 2.1 is relatively easy to establish, as it is known
that the extremal case (with minimal increase) occurs when H(X|Y = y) = H(X|Y ) for all
y in the support of Y [17, Lem 2.2]. This is based on the so-called “Mrs. Gerber’s Lemma"
for binary-input channels [23, 22], the analog of which is not known for the non-binary
case [10]. This allows us to reduce the binary version of (1) to an inequality about simple
Bernoulli random variables with no conditioning, and the inequality then follows, as the
sum of two p-biased coins is 2p(1− p)-biased and has higher entropy (unless p ∈ {0, 1

2 , 1}).
In the q-ary case, no such simple characterization of the extremal cases is known or seems
likely [17, Sec 4.1]. Nevertheless, we prove the inequality in the q-ary setting by first proving
two inequalities for unconditioned random variables, and then handling the conditioning
explicitly based on several cases.

More specifically, the proof technique for Theorem 2.1 involves using an averaging
argument to write the left-hand side of (1) as the expectation, over y, z ∼ Y , of ∆y,z =
H(Xy +Xz)− H(Xy)+H(Xz)

2 , the entropy increase in the sum of random variables Xy and
Xz with respect to their average entropy (this increase is called the Ruzsa distance between
the random variables Xy and Xz, see [20]). We then rely on inequalities for unconditioned
random variables to obtain a lower bound for this entropy increase. In general, once needs
the entropy increase to be at least c ·min{H(Xy)(1−H(Xy)), H(Xz)(1−H(Xz))}, but for
some cases, we actually need such an entropy increase with respect to a larger weighted
average. Hence, we prove the stronger inequality given by Theorem 4.10, which shows such
an increase with respect to 2H(Xy)+H(Xz)

3 for H(Xy) ≥ H(Xz)3. Moreover, for some cases

3 While the weaker inequality H(A + B) ≥ H(A)+H(B)
2 + c ·min{H(A)(1 −H(A)), H(B)(1 −H(B))}

seems to be insufficient for our approach, it should be noted that the stronger inequality H(A + B) ≥
max{H(A), H(B)}+c·min{H(A)(1−H(A)), H(B)(1−H(B))} is generally not true. Thus, Theorem 4.10
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of the proof, it suffices to bound ∆y,z from below by |H(Xy)−H(Xz)|
2 , which is provided by

Lemma 4.9, another inequality for unconditional random variables.
We note a version of Theorem 2.1 (in fact with tight bounds) for the case of unconditioned

random variables X taking values in a torsion-free group was established by Tao in his work
on entropic analogs of fundamental sumset inequalities in additive combinatorics [20] (results
of similar flavor for integer-valued random variables were shown in [8]). Theorem 2.1 is
a result in the same spirit for groups with torsion (and which further handles conditional
entropy). While we do not focus on optimizing the dependence of α(q) on q, pinning down
the optimal dependence, especially for the case without any conditioning, seems like a natural
question; see Remark 4.2 for further elaboration.

Given the entropy sumset inequality for conditional random variables, we are able to
track the decay of

√
Hn(1−Hn) and use Theorem 2.1 to show that for N = poly(1/ε),

at most H(X) + ε of the conditional entropies H(Ui|U0, . . . , Ui−1) exceed ε. However, to
construct a good source code, we need H(X) + ε fraction of the conditional entropies to be
� 1/N . This is achieved by augmenting a “fine” polarization stage that is analyzed using an
appropriate Bhattacharyya parameter. The details of this step are similar to the binary case
and appear in the full version of this paper [6].

The efficient construction of the linear source code (i.e., figuring out which entropies
polarize very close to 0 so that those symbols can be dropped), and the efficient implementation
of the successive cancellation decoder are similar to the binary case [7] and omitted here.
Upon combining these ingredients, we get the following result on lossless compression with
complexity scaling polynomially in the gap to capacity:

I Theorem 2.2. Let X be a q-ary source for q prime with side information Y (which means
(X,Y ) is a correlated random variable). Let 0 < ε < 1

2 . Then there exists N ≤ (1/ε)c(q) for
a constant c(q) < ∞ depending only on q and an explicit (constructible in poly(N) time)
matrix L ∈ {0, 1}(H(X|Y )+ε)N×N such that ~X = (X0, X1, . . . , XN−1)t, formed by taking N
i.i.d. copies (X0, Y0), (X1, Y1), . . . , (XN−1, YN−1) of (X,Y ), can, with high probability, be
recovered from L · ~X and ~Y = (Y0, Y1, . . . , YN−1)t in poly(N) time.

Moreover, can obtain Theorem 2.2 for arbitrary (not necessarily prime) q with the
modification that the map ZNq → ZH(X|Y )+ε)N

q is no longer linear. This is obtained by
factoring q into primes and combining polar codes over prime alphabets for each prime in
the factorization.

Channel coding. Using known methods to construct channel codes from polar source codes
for compressing sources with side information (see, for instance, [17, Sec 2.4] for a nice
discussion of this aspect), we obtain the following result for channel coding, enabling reliable
communication at rates within an additive gap ε to the symmetric capacity for discrete
memoryless channels over any fixed alphabet, with overall complexity bounded polynomially
in 1/ε. Recall that a discrete memoryless channel (DMC) W has a finite input alphabet
X and a finite output alphabet Y with transition probabilities p(y|x) for receiving y ∈ Y
when x ∈ X is transmitted on the channel. The entropy H(W ) of the channel is defined to
be H(X|Y ) where X is uniform in X and Y is the output of W on input X; the symmetric
capacity of W , which is the largest rate at which one can reliably communicate on W when
the inputs have a uniform prior, equals 1−H(W ). Moreover, it should be noted that if W

provides the right middle ground. A limitation of similar spirit for the entropy increase when summing
two integer-valued random variables was pointed out in [8].
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is a symmetric DMC, then the symmetric capacity of W is precisely the Shannon capacity
of W .

I Theorem 2.3. Let q ≥ 2, and let W be any discrete memoryless channel capacity with
input alphabet Zq. Then, there exists an N ≤ (1/ε)c(q) for a constant c(q) <∞ depending
only on q, as well as a deterministic poly(N) construction of a q-ary code of block length
N and rate at least 1−H(W )− ε, along with a deterministic N · poly(logN) time decoding
algorithm for the code such that the block error probability for communication over W is at
most 2−N0.49 . Moreover, when q is prime, the constructed codes are linear.

The structure of our paper will be as follows. Section 3 will introduce notation, describe
the construction of polar codes, and define channels as a tool for analyzing entropy increases
for a pair of correlated random variables. Section 4 will then present a sketch of our
main theorem and describe the “rough” and “fine” polarization results that follow from
the main theorem and allow us to achieve Theorem 2.2. Section 5 shows how polar codes
for prime alphabets may be combined to obtain a capacity-achieving construction over all
alphabets, thereby achieving a variant of Theorem 2.2 over non-prime alphabets, as well its
channel-coding counterpart, Theorem 2.3.

3 Construction of Polar Codes

Notation. We begin by setting some of the notation to be used in the rest of the paper.
We will let lg denote the base 2 logarithm, while ln will denote the natural logarithm.

For our purposes, unless otherwise stated, q will be a prime integer, and we identify
Zq = {0, 1, 2, . . . , q− 1} with the additive group of integers modulo q. We will generally view
Zq as a q-ary alphabet.

Given a q-ary random variable X taking values in Zq, we let H(X) denote the normalized
entropy of X:

H(X) = − 1
lg q

∑
a∈Zq

Pr[X = a] lg(Pr[X = a]).

In a slight abuse of notation, we also define H(p) for a probability distribution p. If p is
a probability distribution over Zq, then we shall let H(p) = H(X), where X is a random
variable sampled according to p. Also, for nonnegative constants c0, c1, . . . , cq−1 summing to
1, we will often write H(c0, . . . , cq−1) as the entropy of the probability distribution on Zq
that samples i with probability ci. Moreover, for a probability distribution p over Zq, we let
p(+j) denote the jth cyclic shift of p, namely, the probability distribution p(+j) over Zq that
satisfies

p(+j)(m) = p(m− j)

for all m ∈ Zq, where m− j is taken modulo q. Note that H(p) = H(p(+j)) for all j ∈ Zq.
Also, let ‖ · ‖1 denote the `1 norm on Rq. In particular, for two probability distributions p

and p′, the quantity ‖p− p′‖1 will correspond to twice the total variational distance between
p and p′.

Finally, given a row vector (tuple) ~v, we let ~vt denote a column vector given by the
transpose of ~v.
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3.1 Encoding Map
Let us formally define the polarization map that we will use to compress a source X. Given
n ≥ 1, we define an invertible linear transformation G : Z2n

q → Z2n
q by G = Gn, where

Gt : Z2t
q → Z2t

q , 0 ≤ t ≤ n is a sequence of invertible linear transformations defined as follows:
G0 is the identity map on Zq, and for any 0 ≤ k < n and ~X = (X0, X1, . . . , X2k+1−1)t, we
recursively define Gk+1 ~X as

Gk+1 ~X = πk+1(Gk(X0, . . . , X2k−1) +Gk(X2k , . . . , X2k+1−1), Gk(X2k , . . . , X2k+1−1)),

where πk+1 : Z2k+1

q → Z2k+1

q is a permutation such that πn(v)j = vi for j = 2i, and
πn(v)j = vi+2k for j = 2i+ 1.

G also has an explicit matrix form, namely, G = BnK
⊗n, where K = ( 1 1

0 1 ), ⊗ is the
Kronecker product, and Bn is the 2n × 2n bit-reversal permutation matrix for n-bit strings
(see [3]).

In our set-up, we have a q-ary source X, and we let ~X = (X0, X1, . . . , X2n−1)t be a collec-
tion of N = 2n i.i.d. samples from X. Moreover, we encode ~X as ~U = (U0, U1, . . . , U2n−1)t,
given by ~U = G · ~X. Note that G only has 0, 1 entries, so each Ui is the sum (modulo q) of
some subset of the Xi’s.

3.2 Channels
For purposes of our analysis, we define a channel W = (A;B) to be a pair of correlated
random variables A,B; moreover, we define the channel entropy ofW to be H(W ) = H(A|B),
i.e., the entropy of A conditioned on B.4

Given a channel W , we can define two channel transformations − and + as follows.
Suppose we take two i.i.d. copies (A0;B0) and (A1;B1) of W . Then, W− and W+ are
defined by

W− = (A0 +A1;B0, B1)
W+ = (A1;A0 +A1, B0, B1).

By the chain rule for entropy, we see that

H(W−) +H(W+) = 2H(W ). (2)

In other words, splitting two copies of W into W− and W+ preserves the total channel
entropy. These channels are easily seen to obey H(W+) ≤ H(W ) ≤ H(W−), and the key to
our analysis will be quantifying the separation in the entropies of the two split channels.

The aformentioned channel transformations will help us abstract each step of the recursive
polarization that occurs in the definition of G. Let W = (X;Y ), where X is a source taking
values in Zq, and Y can be viewed as side information. Then, H(W ) = H(X|Y ). One special
case occurs when Y = 0, which corresponds to an absence of side information.

Note that if start with W , then after n successive applications of either W 7→ W− or
W 7→W+, we can obtain one of N = 2n possible channels in {W s : s ∈ {+,−}n}. (Here, if

4 It should be noted W can also be interpreted as a communication channel that takes in an input A and
outputs B according to some conditional probability distribution. This is quite natural in the noisy
channel coding setting in which one wishes to use a polar code for encoding data in order to achieve the
channel capacity of a symmetric discrete memoryless channel. However, since we focus on the problem
of source coding (data compression) rather than noisy channel coding in this paper, we will simply view
W as a pair of correlated random variables.
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s = s0s1 · · · sn−1, with each si ∈ {+,−}, then W s denotes (· · · ((W s0)s1)· · · )sn−2)sn−1). By
successive applications of (2), we know that∑

s∈{+,−}n
W s = 2nH(W ) = 2nH(X|Y ).

Moreover, it can be verified (see [17]) that if 0 ≤ i < 2n has binary representation
bn−1bn−2 · · · b0 (with b0 being the least significant bit of i), then

H(Ui|U0, U1, . . . , Ui−1, Y0, Y1, . . . , YN−1) = H(W sn−1sn−2···s0),

where sj = − if bj = 0, and sj = + if bj = 1. As shorthand notation, we will define the
channel

W (i)
n = W sn−1sn−2···s0 ,

where s0, s1, . . . , sn−1 are as above. [18] shows that all but a vanishing fraction of the N
channels W s will be have channel entropy close to 0 or 1:

I Theorem 3.1. For any δ > 0, we have that

lim
n→∞

|{s ∈ {+,−}n : H(W s) ∈ (δ, 1− δ)}|
2n = 0.

Hence, one can then argue that as n grows, the fraction of channels with channel entropy
close to 1 approaches H(X|Y ). In particular, for any δ > 0, if we let

Highn,δ = {i : H(Ui|U0, U1, . . . , Ui−1, Y0, Y1, . . . , YN−1) > δ}, (3)

then

|Highn,δ|
2n → H(X|Y ),

as n → ∞. Thus, it can be shown that for any fixed ε > 0 and small δ > 0, there exists
suitably large n such that {Ui}i∈Highn,δ gives a source coding of ~X = (X0, X1, . . . , XN−1)
(with side information ~Y = (Y0, Y1, . . . , YN−1) with rate ≤ H(X|Y ) + ε.

Our goal is to show that N = 2n can be taken to be just polynomial in 1/ε in order to
obtain a rate ≤ H(X|Y ) + ε.

3.3 Bhattacharyya Parameter
In order to analyze a channel W = (X;Y ), where X takes values in Zq, we will define the
q-ary source Bhattacharyya parameter Zmax(W ) of the channel W as

Zmax(W ) = max
d6=0

Zd(W ),

where

Zd(W ) =
∑
x∈Zq

∑
y∈Supp(Y )

√
p(x, y)p(x+ d, y).

Here, p(x, y) is the probability that X = x and Y = y under the joint probability distribution
(X,Y ).
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Now, the maximum likelihood decoder attempts to decode x given y by choosing the most
likely symbol x̂:

x̂ = arg max
x′∈Zq

Pr[X = x′|Y = y].

Let Pe(W ) be the probability of an error under maximum likelihood decoding, i.e., the
probability that x̂ 6= x (or the defining arg max for x̂ is not unique) for random (x, y) ∼ (X,Y ).
It is known (see Proposition 4.7 in [17]) that Zmax(W ) provides an upper bound on Pe(W ):

I Lemma 3.2. If W is a channel with q-ary input, then the error probability of the maximum-
likelihood decoder for a single channel use satisfies Pe(W ) ≤ (q − 1)Zmax(W ).

Next, the following proposition shows how the Zmax operator behaves on the polarized
channels W− and W+. For a proof, see Proposition 4.16 in [17].

I Lemma 3.3. Zmax(W+) ≤ Zmax(W )2, and Zmax(W−) ≤ q3Zmax(W ).

Finally, the following lemma shows that Zmax(W ) is small whenever H(W ) is small.

I Lemma 3.4. Zmax(W )2 ≤ (q − 1)2H(W ).

The proof follows from Proposition 4.8 of [17].

4 Quantification of Polarization

Our goal is to show “rough” polarization of the channel. More precisely, we wish to show that
for somem = O(lg(1/ε)) and constantK, we have Pri[Z(W (i)

m ) ≤ 2−Km] ≥ 1−H(W )−ε. The
above polarization result will then be used to show the stronger notion of “fine” polarization,
which will establish the polynomial gap to capacity.

The main ingredient in showing polarization is the following theorem, which quantifies
the splitting that occurs with each polarizing step.

I Theorem 4.1. For any channel W = (A;B), where A takes values in Zq, we have

H(W−) ≥ H(W ) + α(q) ·H(W )(1−H(W )),

where α(q) is a constant depending only on q.

Theorem 4.1 follows as a direct consequence of Theorem 2.1, whose proof we sketch in
Section 4.2. Section 4.1 focuses on proving Theorem 4.10 (tackling the unconditioned case),
which will be used in the proof of Theorem 2.1.

4.1 Unconditional Entropy Gain
In this section, we sketch some results (Lemma 4.9 and Theorem 4.10) that provide a lower
bound on the normalized (unconditional) entropy H(A+B) of a sum of random variables
A,B in terms of the individual entropies.

First, we present some lemmas, whose proofs appear in the full version of the paper [6]
(with the exception of Lemma 4.3, which appears, with proof, as Lemma 4.5 in [17]).

Lemmas 4.2 and 4.3 are used to show that the entropy of a linear combination of cyclic
shifts of a distribution exhibits an increase over the entropy of the original distribution.
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I Lemma 4.2. Let p be a distribution over Zq. Then, if λ0, λ1, . . . , λq−1 are nonnegative
numbers adding up to 1, we have

H(λ0p
(+0) + λ1p

(+1) + · · ·+ λq−1p
(+(q−1))) ≥ H(p) + 1

2 lg q ·
λiλj
λi + λj

‖p(+i) − p(+j)‖2
1,

for any i 6= j such that λi + λj > 0.

I Lemma 4.3. Let p be a distribution over Zq, where q is prime. Then,

‖p(+i) − p(+j)‖1 ≥
(1−H(p)) lg q
2q2(q − 1) lg e .

Lemmas 4.4 and 4.5 show matching lower and upper bounds (up to a constant factor) on
the entropy of a low-entropy random variable with high mass on one symbol.

I Lemma 4.4. Suppose 0 < ε < 1. If p is a distribution on Zq with mass 1 − ε on one
symbol, then

H(p) ≥ ε lg(1/ε)
lg q .

I Lemma 4.5. Suppose 0 < ε ≤ min{ε1, ε2}, where ε1 = 1
500 and ε2 = 1

(q−1)4 . If p is a
distribution on Zq with mass 1− ε on one symbol, then

H(p) ≤ 17ε lg(1/ε)
12 lg q .

Lemma 4.6 provides a lower bound on H(X + Y ) for low-entropy random variables X,Y
that each have most of their mass on a single symbol.

I Lemma 4.6. Let X,Y be random variables taking values in Zq such that H(X) ≥ H(Y ),
and assume 0 < ε, ε′ ≤ min{ε1, ε2}, where ε1 = 1

500 and ε2 = 1
(q−1)4 . Suppose that X has

mass 1− ε on one symbol, while Y has mass 1− ε′ on a symbol. Then,

H(X + Y )− 2H(X) +H(Y )
3 ≥ 1

51 ·H(Y )(1−H(Y )). (4)

Lemma 4.7 provides a lower bound as well as upper bound on high-entropy random
variables that are close to uniform distributions.

I Lemma 4.7. Suppose p is a distribution on Zq such that for each 0 ≤ i ≤ q − 1, we have
p(i) = 1

q + δi with max0≤i<q |δi| = δ. Then,

1− q2

ln q δ
2 ≤ H(p) ≤ 1− q2(q ln q − (q − 1))

(q − 1)3 ln q δ2.

Lemma 4.8 shows provides a lower bound on H(X + Y ) for high-entropy random variables
X and Y that are both close to uniform distributions.

I Lemma 4.8. Let X and Y be random variables taking values in Zq such that H(X) ≥ H(Y ).
Also, assume 0 < δ, δ′ ≤ 1

2q2 . Suppose Pr[X = i] = 1
q + δi and Pr[Y = i] = 1

q + δ′i for
0 ≤ i ≤ q − 1, such that max0≤i<q |δi| = δ and max0≤i<q |δ′i| = δ′. Then,

H(X + Y )−H(X) ≥ ln q
16q2 ·H(X)(1−H(X)). (5)
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Now, we present some results showing a lower bound on H(A+B) in terms of H(A) and
H(B).

I Lemma 4.9. Let A and B be random variables taking values over Zq. Then,

H(A+B) ≥ max{H(A), H(B)}.

Proof. Without loss of generality, assume H(A) ≥ H(B). Let p be the underlying probability
distribution for A. Let λi = Pr[B = i]. Then, the underlying probability distribution of
A + B is λ0p

(+0) + λ1p
(+1) + · · · + λq−1p

(+(q−1)). The desired result then follows directly
from Lemma 4.2. J

The next theorem provides a different lower bound for H(A+B).

I Theorem 4.10. Let A and B be random variables taking values over Zq such that H(A) ≥
H(B). Then,

H(A+B) ≥ 2H(A) +H(B)
3 + c ·min{H(A)(1−H(A)), H(B)(1−H(B))}

for c = γ3
0 lg q

48q5(q−1)3 lg(6/γ0) lg2 e
, where γ0 = 1

500(q−1)4 lg q .

The proof of this theorem appears in the full version of our paper [6], but we provide a
brief overview of the proof below.

Overview of proof. The proof of Theorem 4.10 splits into various cases depending on where
H(A) and H(B) lie. Note that some of these cases overlap. The overall idea is as follows. If
H(A) and H(B) are both bounded away from 0 and 1 (Case 2), then the desired inequality
follows from the concavity of the entropy function, using Lemmas 4.2 and 4.3 (note that this
uses primality of q). Another setting in which the inequality can be readily proven is when
H(A)−H(B) is bounded away from 0 (which we deal with in Cases 4 and 5).

Thus, the remaining cases occur when H(A) and H(B) are either both small (Case 1) or
both large (Case 3). In the former case, one can show that A must have most of its weight
on a particular symbol, and similarly for B (note that this is why we must choose γ0 � 1

log q ;
otherwise, A could be, for instance, supported uniformly on a set of size 2). Then, one
can use the fact that a q-ary random variable having weight 1− ε has entropy Θ(ε log(1/ε))
(Lemmas 4.4 and 4.5) in order to prove the desired inequality (using Lemma 4.6).

For the latter case, we simply show that each of the q symbols of A must have weight
close to 1/q, and similarly for B. Then, we use the fact that such a random variable whose
maximum deviation from 1/q is δ has entropy 1−Θ(δ2) (Lemma 4.7) in order to prove the
desired result (using Lemma 4.8). J

4.2 Conditional Entropy Gain
Theorem 4.1 now follows as a simple consequence of our main theorem, which we restate
below. The proof appears in the full version of our paper [6], but we provide an overview of
the proof below.

I Theorem 2.1. Let (Xi, Yi), i = 1, 2 be i.i.d. copies of a correlated random variable (X,Y )
with X supported on Zq for a prime q. Then for some α(q) > 0,

H(X1 +X2|Y1, Y2)−H(X|Y ) ≥ α(q) ·H(X|Y )(1−H(X|Y )). (1)
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I Remark. We have not attempted to optimize the dependence of α(q) on q, and our proof gets
α(q) ≥ 1

qO(1) . It is easy to see that α(q) ≤ O(1/ log q) even without conditioning (i.e., when
Y = 0). Understanding what is the true behavior of α(q) seems like an interesting and basic
question about sums of random variables. For random variablesX taking values from a torsion-
free group G and with sufficiently large H2(X), it is known that H2(X1 +X2)−H2(X) ≥
1
2 − o(1) and that this is best possible [20], where H2(·) denotes the unnormalized entropy
(in bits). When G is the group of integers, a lower bound H2(X1 +X2)−H2(X) ≥ g(H2(X))
for an increasing function g(·) was shown for all Z-valued random variables X [8]. For groups
G with torsion, we cannot hope for any entropy increase unless G is finite and isomorphic to
Zq for q prime (as G cannot have non-trivial finite subgroups), and we cannot hope for an
absolute entropy increase even for Zq. So determining the asymptotics of α(q) as a function
of q is the analog of the question studied in [20] for finite groups.

Overview of proof. Let Xy denote X|Y = y. Then, we use an averaging argument: We re-
duce the desired inequality to providing a lower bound for ∆y,z = H(Xy+Xz)−H(Xy)+H(Xz)

2 ,
whose expectation over y, z ∼ Y is the left-hand side of (1). Then, one splits into three cases
for small, large, and medium values of H(X|Y ).

Thus, we reduce the problem to aruguing about unconditional entropies. As a first step,
one would expect to prove ∆y,z ≥ min{H(Xy)(1 − H(Xy)), H(Xz)(1 − H(Xz))} and use
this in the proof of the conditional inequality. However, this inequality turns out to be
too weak to deal with the case in which H(X|Y ) is tiny (case 2). This is the reason we
require Theorem 4.10, which provides an increase for H(Xy +Xz) over a higher weighted
average instead of the simple average of H(Xy) and H(Xz). Additionally, we use the
inequality H(Xy +Xz) ≥ max{H(Xy), H(Xz)} to handle certain cases, and this is provided
by Lemma 4.9.

In cases 1 and 3 (for H(X|Y ) in the middle and high regimes), the proof idea is that either
(1) there is a significant mass of (y, z) ∼ Y ×Y for which H(Xy) and H(Xz) are separated, in
which case one can use Lemma 4.9 to bound E[∆y,z] from below, or (2) there is a significant
mass of y ∼ Y for which H(Xy) lies away from 0 and 1, in which case H(Xy)(1−H(Xy))
can be bounded from below, enabling us to use Theorem 4.10. J

4.3 Rough Polarization
Now that we have established Theorem 4.1, we are ready to show rough polarization of
the channels W (i)

n , 0 ≤ i < 2n, for large enough n. The precise theorem showing rough
polarization is as follows.

I Theorem 4.11. There is a constant Λ < 1 such that the following holds. For any Λ < ρ < 1,
there exists a constant bρ such that for all channels W with q-ary input, all ε > 0, and all
n > bρ lg(1/ε), there exists a set

W ′ ⊆ {W (i)
n : 0 ≤ i ≤ 2n − 1}

such that for all M ∈ W ′, we have Zmax(M) ≤ 2ρn and Pri[W (i)
n ∈ W ′] ≥ 1−H(W )− ε.

The proof of Theorem 4.11 follows from the following lemma:

I Lemma 4.12. Let T (W ) = H(W )(1−H(W )) denote the symmetric entropy of a channel
W . Then, there exists a constant Λ < 1 (possibly dependent on q) such that

1
2

(√
T
(
W

(2j)
n+1

)
+
√
T
(
W

(2j+1)
n+1

))
≤ Λ

√
T
(
W

(j)
n

)
(6)

for any 0 ≤ j < 2n.
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The proofs of Theorem 4.11 and 4.12 follow from arguments similar to those found
in the proofs of Proposition 5 and Lemma 8 in [7], except that we work with Zmax. For
completeness, he proofs appear in the full version of this paper [6].

4.4 Fine Polarization

Now, we describe the statement of “fine polarization.” This is quantified by the following
theorem.

I Theorem 4.13. For any 0 < δ < 1
2 , there exists a constant cδ that satisfies the following

statement: For any q-ary input memoryless channel W and 0 < ε < 1
2 , if n0 > cδ lg(1/ε),

then

Pr
i

[
Zmax(W (i)

n0
) ≤ 2−2δn0

]
≥ 1−H(W )− ε.

The proof follows from arguments similar to those in [4, 7] and appears in the full version
of the paper [6].

As a corollary, we obtain the following result on lossless compression with complexity
scaling polynomially in the gap to capacity:

I Theorem 2.2. Let X be a q-ary source for q prime with side information Y (which means
(X,Y ) is a correlated random variable). Let 0 < ε < 1

2 . Then there exists N ≤ (1/ε)c(q) for
a constant c(q) < ∞ depending only on q and an explicit (constructible in poly(N) time)
matrix L ∈ {0, 1}(H(X|Y )+ε)N×N such that ~X = (X0, X1, . . . , XN−1)t, formed by taking N
i.i.d. copies (X0, Y0), (X1, Y1), . . . , (XN−1, YN−1) of (X,Y ), can, with high probability, be
recovered from L · ~X and ~Y = (Y0, Y1, . . . , YN−1)t in poly(N) time.

Proof. Let W = (X;Y ), and fix δ = 0.499. Also, let N = 2n0 . Then, by Theorem 4.13, for
any n0 > cδ lg(1/ε), we have that

Pr
i

[
Zmax(W (i)

n0
) ≤ 2−2δn0

]
≥ 1−H(X)− ε.

Moreover, let N = 2n0 . Recall the notation in (3). Then, letting δ′ = 2−2δn0 , we have that
Pri[i ∈ Highn0,δ′ ] ≤ H(X|Y ) + ε and Z(W (i)

n0 ) ≥ δ′ for all i ∈ Highn0,δ′ . Thus, we can take L
to be the linear map Gn0 projected onto the coordinates of Highn0,δ′ .

By Lemma 3.2 and the union bound, the probability that attempting to recover ~X from
L · ~X and ~Y results in an error is given by∑

i6∈Highn0,δ′

Pe(W (i)
n0

) ≤
∑

i 6∈Highn0,δ′

(q − 1)Zmax(W (i)
n0

) ≤ (q − 1)Nδ′ = (q − 1)2n0−2δn0
, (7)

which is ≤ 2−N0.49 for N ≥ (1/ε)µ for some positive constant µ (possibly depending on q).
Hence, it suffices to take c(q) = 1 + max{cδ, µ}.

Finally, the fact that both the construction of L and the recovery of ~X from L · ~X and ~Y

can be done in poly(N) time follows in a similar fashion to the binary case (see the binning
algorithm and the successive cancellation decoder in [7] for details). Also, the entries of L
are all in {0, 1} since L can be obtained by taking a submatrix of BnK⊗n0 , where Bn is a
permutation matrix, and K = ( 1 1

0 1 ) (see [3]). J
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5 Extension to Arbitrary Alphabets

In the previous sections, we have shown polarization and polynomial gap to capacity for
polar codes over prime alphabets. We now describe how to extend this to obtain channel
polarization and the explicit construction of a polar code with polynomial gap to capacity
over arbitrary alphabets.

The idea is to use the multi-level code construction technique sketched in [18] (and also
recently in [14] for alphabets of size 2m). We outline the procedure here. Suppose we have a
channel W = (X;Y ), where X ∈ Zq and Y ∈ Y. Moreover, assume that q =

∏s
i=1 qi is the

prime factorization of q.
Now, we can write X = (U (1), U (2), . . . , U (s)), where each U (i) is a random vari-

able distributed over [qi]. We also define the channels W (1),W (2), . . . ,W (s) by W (j) =
(U (j);Y,U (1), U (2), . . . , U (j−1)). Note that

H(W ) = H(X|Y ) = H(U (1), U (2), . . . , U (s)|Y )

=
s∑
j=1

H(U (j)|Y, U (1), U (2), . . . , U (j−1))

=
s∑
j=1

H(W (j)),

which means that W splits into W (1),W (2), . . . ,W (s). Since each W (j) is a channel whose
input is over a prime alphabet, one can polarize each W (j) separately using the procedure
of the previous sections. More precisely, the encoding procedure is as follows. For N large
enough (as specified by Theorem 2.2), we take N copies (X0;Y0), (X1;Y1), . . . , (XN−1;YN−1)
of W , where Xi = (U (1)

i , U
(2)
i , . . . U

(s)
i ). Then, sequentially for j = 1, 2, . . . , s, we en-

code U (j)
0 , U

(j)
1 , . . . , U

(j)
N−1 using

{(
Yi, U

(1)
i , U

(2)
i , . . . , U

(j−1)
i

)}
i=0,1,...,N−1

as side informa-
tion (which can be done by the procedure in previous sections, since Uj is a source over a
prime alphabet).

For decoding, one can simply use s stages of the successive cancellation decoder. In
the jth stage, one uses the successive cancellation decoder for W (j) in order to decode
U

(j)
0 , U

(j)
1 , . . . , U

(j)
N−1, assuming that

{
U

(k)
i

}
k<j

has been recovered correctly from the previ-
ous stages of successive canellation decoding. Note that the error probability in decoding
X0, X1, . . . , XN−1 can be obtained by taking a union bound over the error probabilities
for each of the s stages of successive cancellation decoding. Since each individual error
probability is exponentially small (see (7)), it follows that the overall error probability is also
negligible.

As a consequence, we obtain Theorem 2.2 for non-prime q, with the additional modification
that the map ZNq → ZH(X|Y )+ε)N

q is not linear. Moreover, using the translation from source
coding to noisy channel coding (see [17, Sec 2.4]), we obtain the following result for channel
coding.

I Theorem 2.3. Let q ≥ 2, and let W be any discrete memoryless channel capacity with
input alphabet Zq. Then, there exists an N ≤ (1/ε)c(q) for a constant c(q) <∞ depending
only on q, as well as a deterministic poly(N) construction of a q-ary code of block length
N and rate at least 1−H(W )− ε, along with a deterministic N · poly(logN) time decoding
algorithm for the code such that the block error probability for communication over W is at
most 2−N0.49 . Moreover, when q is prime, the constructed codes are linear.

I Remark. If q is prime, then the q-ary code of Theorem 2.3 is, in fact, linear.
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Abstract
A function defined on the Boolean hypercube is k-Fourier-sparse if it has at most k nonzero
Fourier coefficients. For a function f : Fn

2 → R and parameters k and d, we prove a strong
upper bound on the number of k-Fourier-sparse Boolean functions that disagree with f on at
most d inputs. Our bound implies that the number of uniform and independent random samples
needed for learning the class of k-Fourier-sparse Boolean functions on n variables exactly is at
most O(n · k log k).

As an application, we prove an upper bound on the query complexity of testing Booleanity
of Fourier-sparse functions. Our bound is tight up to a logarithmic factor and quadratically
improves on a result due to Gur and Tamuz (Chicago J. Theor. Comput. Sci., 2013).
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1 Introduction

Functions defined on the Boolean hypercube {0, 1}n = Fn
2 are fundamental objects in

theoretical computer science. It is well known that every such function f : Fn
2 → R can be

represented as a linear combination

f =
∑

S⊆[n]

f̂(S) · χS

of the 2n functions {χS}S⊆[n] defined by χS(x) = (−1)
∑

i∈S
xi . This representation is

known as the Fourier expansion of the function f , and the numbers f̂(S) are known as its
Fourier coefficients. The Fourier expansion of functions plays a central role in analysis of
Boolean functions and finds applications in numerous areas of theoretical computer science
including learning theory, property testing, hardness of approximation, social choice theory,
and cryptography. For an in-depth introduction to the topic the reader is referred to the
book of O’Donnell [22].

A classical result in learning theory is a general algorithm due to Kushilevitz and
Mansour [19], based on results of Linial, Mansour, and Nisan [20] and Goldreich and
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Levin [12], which enables to efficiently learn classes of Boolean functions with a “simple”
Fourier expansion. A common notion of simplicity of Fourier expansion is its sparsity. A
function is said to be k-Fourier-sparse if it has at most k nonzero Fourier coefficients. It follows
from [19] that given query access to a k-Fourier-sparse Boolean function f : Fn

2 → {0, 1}
it is possible to estimate its Fourier coefficients and to get a good approximation of f in
running time polynomial in n and k. Later, it was shown that such running time even allows
to reconstruct the function f exactly [13].

In recent years, properties of the Fourier expansion of functions were studied in the
property testing framework. We now mention some of those results; since this will not be
needed for the sequel, the reader can skip directly to the description of our results in the next
section. Gopalan, O’Donnell, Servedio, Shpilka, and Wimmer considered in [13] the problem
of testing if a given Boolean function is k-Fourier-sparse or ε-far from any such function.
Another problem studied there is that of deciding if a function is k-Fourier-dimensional,
that is, the Fourier support, viewed as a subset of Fn

2 , spans a subspace of dimension at
most k, or ε-far from satisfying this property. Gopalan et al. [13] established testers for these
properties whose query complexities depend only on k and ε. For k-Fourier-sparsity the
query complexity was a certain polynomial in k and 1/ε and for k-Fourier-dimensionality
it was O(k · 22k/ε). They also proved lower bounds of Ω(

√
k) and Ω(2k/2) respectively.

Another parameter associated with Boolean functions is the degree of its representation
as a polynomial over F2. The algorithmic task of testing if a function has F2-degree at
most d or is ε-far from any such function was considered by Alon et al. [1] and then by
Bhattacharyya et al. [6], who proved tight upper and lower bounds of Θ(2d + 1/ε) on the
query complexity. Note that all the above properties fall into the class of linear-invariant
properties, i.e., properties that are closed under compositions with any invertible linear
transformation of the domain. These properties have recently attracted a significant amount
of attention in the attempt to characterize efficient testability of them (see [24, 5] for related
surveys).

1.1 Our Results

List-decoding size

Our main technical result from which we derive all other results is concerned with the
list-decoding size of Fourier-sparse Boolean functions. In general, the list-decoding problem
of an error correcting code for a distance parameter d asks to find all the codewords whose
Hamming distance from a given word is at most d. Here we consider the (non-linear) binary
code of block length 2n whose codewords represent all the k-Fourier-sparse Boolean functions
on n variables.

It is not difficult to show that the total number of such functions is at most 2O(nk).
Indeed, there are 2O(nk) ways to choose the support of f̂ , and 2O(nk) ways to set those Fourier
coefficients which must all be integer multiples of 2−n in [−1,+1]. It is also not difficult to
show that the distance between any two distinct codewords is at least 2n/k. Indeed, it is
known that every k-Fourier-sparse Boolean function has F2-degree d ≤ log2 k (see, e.g., [4,
Lemma 3]), and therefore, by the Schwartz-Zippel lemma, every two distinct k-Fourier-sparse
Boolean functions disagree on at least 1/k fraction of the inputs. As a result, for every
function f : Fn

2 → R there is at most one codeword of distance smaller than 2n/(2k) from f .
We are not aware of any other known bounds beyond those two naive ones. We address

this question in the following theorem.
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I Theorem 1.1. For every function f : Fn
2 → R, the number of k-Fourier-sparse Boolean

functions of distance at most d from f is 2O(ndk log k/2n).

We observe that for certain choices of k and d the bound given in Theorem 1.1 is tight.
For example, let f be the constant zero function, let k < 20.9n be a power of 2, and take
d = 2n/k. Consider all the indicator functions of linear subspaces of Fn

2 of co-dimension
log2 k. Every such function is of distance d from f and is k-Fourier-sparse (see Claim 2.4).
The number of such functions is 2Θ(n log k) = 2Θ(ndk log k/2n).

Learning from samples

As an application of the list-decoding bound, we next consider the problem of learning
the class of k-Fourier-sparse Boolean functions on n variables (exactly) from uniform and
independent random samples (see, e.g., [2, 18] for related work). Let us note already at
the outset that all the results mentioned here are not efficient: it is not known if there is
an algorithm for the problem whose running time is some fixed polynomial in n times an
arbitrary function of k. Among other things, such an algorithm would imply a breakthrough
on the long-standing open question of learning juntas from samples [7, 21, 25, 18].

The question of recovering a function that is sparse in the Fourier (or other) basis from
a few samples is the central question in the area of sparse recovery. It has been intensely
investigated for over a decade and, among other things, has applications for compressed
sensing and for the data stream model. The best previously known bounds on our question
are O(n · k log3 k) ≤ O(n4 · k) due to Cheraghchi, Guruswami, and Velingker [11] and
O(n2 · k log k) ≤ O(n3 · k) due to Bourgain [8], improving on a previous bound of Rudelson
and Vershynin [23] (who themselves improved on the work of Candès and Tao [10]). We
note in passing that they actually answer a harder question: first, because they handle all
functions, not necessarily Boolean-valued; second, because they show that a randomly chosen
set of sample locations of the above cardinality is good with high probability simultaneously
for all k-Fourier-sparse functions (sometimes known as the “deterministic” setting), whereas
we only want a random set of sample locations to be good with high probability for any
fixed k-Fourier-sparse function (the “randomized” setting); finally, because they obtain the
recovery result by proving a “restricted isometry property” of the Fourier matrix which
among other things implies a recovery algorithm running in time polynomial in 2n and k.

Using Theorem 1.1, we improve the upper bound on the sample complexity of learning
Fourier-sparse Boolean functions.

I Corollary 1.2. The number of uniform and independent random samples required for
learning the class of k-Fourier-sparse Boolean functions on n variables is O(n · k log k).

We believe that our better bound and its elementary proof shed more light on the problem
and might be useful elsewhere. In fact, in a follow-up work [15] we employ the techniques
developed here to study the “restricted isometry property” of random submatrices of Fourier
(and other) matrices, improving on the aforementioned works [11, 8]. We finally note that a
lower bound of Ω(k · (n− log2 k)) on the sample complexity can be obtained by considering
the problem of learning indicator functions of affine subspaces of Fn

2 of co-dimension log2 k

(see Theorem 3.7; see, e.g., [3] for the same lower bound in a different setting).

Testing Booleanity

We next consider the problem of testing Booleanity of Fourier-sparse functions, which was
introduced and studied by Gur and Tamuz in [14]. In this problem, given access to a
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k-Fourier-sparse function f : Fn
2 → R, one has to decide if f is Boolean, i.e., its image is

contained in {0, 1}, or not. The objective is to distinguish between the two cases with some
constant probability using as few queries to f as possible. It was shown in [14] that there
exists a (non-adaptive one-sided error) tester for the problem with query complexity O(k2),
and that every tester for the problem has query complexity Ω(k). Here, we use our result on
learning k-Fourier-sparse Boolean functions to improve the upper bound of [14] and prove
the following.

I Theorem 1.3. For every k there exists a non-adaptive one-sided error tester that using
O(k · log2 k) queries to an input k-Fourier-sparse function f : Fn

2 → R decides if f is Boolean
or not with constant success probability.

We note that, while the tester established in Theorem 1.3 has an improved query
complexity, it is not clear if it is efficient with respect to running time. It can be shown, though,
that using the learning algorithm of Fourier-sparse functions that follows from [8, 15] (instead
of Corollary 1.2) in our proof of Theorem 1.3, one can obtain an efficient algorithm (running
in time polynomial in n and k) with the slightly worse query complexity of O(k · log3 k).

Finally, we complement Theorem 1.3 by the following nearly matching lower bound.

I Theorem 1.4. Every non-adaptive one-sided error tester for Booleanity of k-Fourier-sparse
functions has query complexity Ω(k · log k).

1.2 Overview of Proofs
1.2.1 The List-Decoding Size of Fourier-Sparse Boolean Functions
In order to prove Theorem 1.1, we have to bound from above the number of k-Fourier-sparse
Boolean functions of distance at most d from a general function f : Fn

2 → R. In the discussion
below, let us consider the special case where f is the constant zero function. The general
result follows easily.

Here, we have to bound the number of k-Fourier-sparse Boolean functions g : Fn
2 → {0, 1}

of support size at most d. We start by observing using Parseval’s theorem that such functions
have small spectral norm ‖ĝ‖1 =

∑
S⊆[n] |ĝ(S)|. Next, we observe that the Fourier expansion

of the normalized function g/‖ĝ‖1 is a convex combination of functions ±χS , and thus can
be viewed, following a technique of Bruck and Smolensky [9], as an expectation over a
distribution on the S’s. Using the Chernoff-Hoeffding bound and the bound on the spectral
norm, we obtain a succinct representation for every such function g. The ability to represent
these functions by a binary string of bounded length yields the upper bound on their number.
We note that the proof approach somewhat resembles that of the upper bound on the
list-decoding size of Reed-Muller codes due to Kaufman, Lovett, and Porat [17].

1.2.2 Learning Fourier-Sparse Boolean Functions
As a warmup, let us mention an easy upper bound of O(n · k2). This follows by recalling
that there are at most 2O(nk) k-Fourier-sparse Boolean functions, and that each one differs
from any fixed function on at least 1/k fraction of the inputs. Hence by the union bound,
after O(n · k2) samples all other functions will be eliminated.

The improved bound in Corollary 1.2 follows similarly using the list-decoding result of
Theorem 1.1. Namely, we apply the union bound separately on functions of different distances
from the input function. Functions that are nearby are harder to “hit” using random samples,
but by the theorem, there are few of them; functions that are further away are in abundance,
but they are easier to “hit” using random samples.
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1.2.3 Testing Booleanity of Fourier-Sparse Functions
The testing Booleanity problem is somewhat different from typical property testing problems.
Indeed, in property testing one usually has to distinguish objects that satisfy a certain property
from those that are ε-far from the property for some distance parameter ε > 0. However,
here the tester is required to decide if the function satisfies the Booleanity property or not,
with no distance parameter involved. This unusual setting makes sense in this case because
Fourier-sparse non-Boolean functions are always quite far from every Boolean function. More
precisely, the authors of [14] used the uncertainty principle (see Proposition 2.1) to prove
that every k-Fourier-sparse non-Boolean function f : Fn

2 → R is non-Boolean on at least
Ω(2n/k2) inputs (see Claim 2.3). This immediately implies a (non-adaptive one-sided error)
tester that uses O(k2) queries: just check that f is Boolean on O(k2) uniform inputs in Fn

2 .
The analysis of [14] turns out to be tight, as there are k-Fourier-sparse non-Boolean

functions that are not Boolean at only Θ(2n/k2) points. Indeed, for an even integer n,
consider the function f : Fn

2 → {0, 1, 2} defined by

f(x1, . . . , xn) = AND(x1, . . . , xn/2) + AND(xn/2+1, . . . , xn), (1)

which is not Boolean at only one point and has Fourier-sparsity 2 · 2n/2 (see Claim 2.4).

Upper bound

We prove Theorem 1.3 using our learning result, Corollary 1.2. To do so, we first observe that
a restriction of a k-Fourier-sparse non-Boolean function to a random subspace of dimension
O(log k) is non-Boolean with high probability (see Lemma 4.1). Since a restriction to a
subspace does not increase the Fourier-sparsity, this reduces our problem to testing Booleanity
of k-Fourier-sparse functions on n = O(log k) variables. Then, after O(k · log2 k) samples
from the subspace, if a non-Boolean value was found then we are clearly done. Otherwise, by
Corollary 1.2, the samples uniquely specify a Boolean candidate for the restricted function.
Such a function must be quite far from every other k-Fourier-sparse function (Boolean or
not; see Claim 2.2). This enables us to decide if the restricted function equals the Boolean
candidate function or not.

Lower bound

The upper bound in Theorem 1.3 gets close to the Ω(k) lower bound proven by Gur and
Tamuz in [14]. For their lower bound, they considered the following two distributions: (a)
the uniform distribution over all Boolean n-variable functions that depend only on their first
log2 k variables; (b) the uniform distribution over all n-variable functions that depend only
on their first log2 k variables and return a Boolean value on k − 1 of the assignments to the
relevant variables and the value 2 otherwise. It can be easily seen that any (possibly adaptive)
tester that distinguishes with some constant probability between distributions (a) and (b) has
query complexity Ω(k). Since the first distribution is supported on k-Fourier-sparse Boolean
functions and the second on k-Fourier-sparse non-Boolean functions, this implies that the
same lower bound holds for the query complexity of testing Booleanity of k-Fourier-sparse
functions.

Note that the distributions considered above are supported on log2 k-Fourier-dimensional
functions. It can be seen (say, using the uncertainty principle) that such functions are not
Boolean on at least 1/k fraction of their inputs, so O(k) random samples suffice for finding a
non-Boolean value if exists. Hence, in order to get beyond the Ω(k) lower bound, we need
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to consider k-Fourier-sparse functions that are not Boolean at only o(1/k) fraction of the
inputs – our functions will actually have O(1/k2) fraction of such inputs.

Specifically, we consider the distribution of functions obtained by composing the function
f given in (1) with a random invertible affine transformation. This is the class of functions
that can be represented as a sum 1V1 +1V2 of two indicators of affine subspaces V1, V2 ⊆ Fn

2 of
dimension n/2, which intersect at exactly one point. Intuitively, it seems that distinguishing
the functions in this class from those where V1 and V2 have empty intersection requires the
tester to learn the affine subspaces V1 and V2, a task that requires Ω(n · 2n/2) queries. We
prove such a lower bound for non-adaptive one-sided error testers. Since the above functions
are k-Fourier-sparse for k = O(2n/2), the obtained lower bound is Ω(k · log k).

2 Preliminaries

Let [n] denote the set {1, . . . , n}. A function f : Fn
2 → R is Boolean if its image is contained

in {0, 1} and is non-Boolean otherwise. The distance between two functions f, g : Fn
2 → R,

denoted dist(f, g), is the number of vectors x ∈ Fn
2 for which f(x) 6= g(x).

Fourier Expansion

For every S ⊆ [n], let χS : Fn
2 → {−1, 1} denote the function defined by χS(x) = (−1)

∑
i∈S

xi .
It is well known that the 2n functions {χS}S⊆[n] form an orthonormal basis of the space
of functions Fn

2 → R with respect to the inner product 〈f, g〉 = Ex[f(x) · g(x)], where x is
distributed uniformly over Fn

2 . Thus, every function f : Fn
2 → R can be uniquely represented

as a linear combination f =
∑

S⊆[n] f̂(S) · χS of this basis. This representation is called the
Fourier expansion of f , and the numbers f̂(S) are referred to as its Fourier coefficients. The
support of f is defined by supp(f) = {x ∈ Fn

2 | f(x) 6= 0} and the support of f̂ , known as the
Fourier spectrum of f , by supp(f̂) = {S ⊆ [n] | f̂(S) 6= 0}. We say that f is k-Fourier-sparse1
if | supp(f̂)| ≤ k. For every p ≥ 1 we denote ‖f̂‖p = (

∑
S⊆[n] |f̂(S)|p)1/p. For p = 1, ‖f̂‖1 is

known as the spectral norm of f . Parseval’s theorem states that Ex[f(x)2] = ‖f̂‖22.
The uncertainty principle says that there is no nonzero function f for which the supports

of both f and f̂ are small (see, e.g., [22, Exercise 3.15]). We state it below with two simple
consequences.

I Proposition 2.1 (The Uncertainty Principle). For every nonzero function f : Fn
2 → R,

| supp(f)| · | supp(f̂)| ≥ 2n.

I Claim 2.2. For every two distinct k-Fourier-sparse functions f, g : Fn
2 → R, dist(f, g) ≥

2n/(2k).

Proof. Apply Proposition 2.1 to the function f −g, whose Fourier-sparsity is at most 2k. J

I Claim 2.3 ([14]). For every k-Fourier-sparse function f : Fn
2 → R, if f is non-Boolean

then
|{x ∈ Fn

2 | f(x) /∈ {0, 1}}| ≥ 2
k2 + k + 2 · 2

n.

1 Boolean functions are sometimes defined in the literature with range {−1, +1} rather than {0, 1}. Notice
that this affects the Fourier-sparsity by at most 1.
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Proof. Apply Proposition 2.1 to the function f · (f − 1), whose Fourier-sparsity is at most

|{S4T | S, T ∈ supp(f̂)}|+ | supp(f̂)| ≤
(
k

2

)
+ k + 1,

where 4 stands for symmetric difference of sets. J

We also need the following simple claim.

I Claim 2.4. For every affine subspace V ⊆ Fn
2 of co-dimension k, the indicator function

1V : Fn
2 → {0, 1} is 2k-Fourier-sparse.

Proof. Since V has co-dimension k, there exist a1, . . . , ak ∈ Fn
2 and b1, . . . , bk ∈ F2 such that

V = {x ∈ Fn
2 | 〈x, ai〉 = bi, i = 1, . . . , k}. For every i, let Si ⊆ [n] denote the set whose

characteristic vector is ai, and observe that for every x ∈ Fn
2 ,

1V (x) =
k∏

i=1

(1 + (−1)bi · χSi
(x)

2

)
.

This representation implies that 1V is 2k-Fourier-sparse. J

Chernoff-Hoeffding Bound
I Theorem 2.5. Let X1, . . . , XN be N identically distributed independent random variables
in [−a,+a] satisfying E[Xi] = µ for all i. Then for every δ ≤ 1/2 and N ≥ C ·a2 · log(1/δ)/ε2,
for a universal constant C, it holds that

Pr
[∣∣∣µ− 1

N
·

N∑
i=1

Xi

∣∣∣ < ε

]
≥ 1− δ.

3 The List-Decoding Size of Fourier-Sparse Boolean Functions

We turn to prove Theorem 1.1, which provides an upper bound on the list-decoding size of the
code of block length 2n of all k-Fourier-sparse Boolean functions on n variables. Equivalently,
for a general distance d and a function f : Fn

2 → R we bound the number of k-Fourier-sparse
Boolean functions on n variables of distance at most d from f .

We start by proving that a function f : Fn
2 → R with small spectral norm can be well

approximated by a linear combination of few functions from {χS}S⊆[n] with coefficients
of equal magnitude. This was essentially proved in [9] and we include here the proof for
completeness.

I Lemma 3.1. For every function f : Fn
2 → R, ε > 0, and δ ∈ (0, 1/2], there exists a

collection2 F of O(‖f̂‖21 · log(1/δ)/ε2) subsets of [n] with signs (aS ∈ {±1})S∈F such that
for all but at most δ fraction of x ∈ Fn

2 it holds that

∣∣∣f(x)− ‖f̂‖1
|F|

·
∑
S∈F

aS · χS(x)
∣∣∣ < ε .

2 Repetitions of subsets in the collection F are allowed.
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Proof. Observe that the function f can be represented as follows.

f =
∑

S⊆[n]

f̂(S) · χS =
∑

S⊆[n]

|f̂(S)|
‖f̂‖1

· ‖f̂‖1 · sign(f̂(S)) · χS = E
S∼D

[‖f̂‖1 · sign(f̂(S)) · χS ],

where D is the distribution defined by D(S) = |f̂(S)|/‖f̂‖1. Let F be a collection of
|F| = O(‖f̂‖21 · log(1/δ)/ε2) independent random samples from the distribution D. For every
x ∈ Fn

2 , the Chernoff-Hoeffding bound (Theorem 2.5) implies that with probability at least
1− δ it holds that∣∣∣f(x)− 1

|F|
·
∑
S∈F
‖f̂‖1 · aS · χS(x)

∣∣∣ < ε, (2)

where aS = sign(f̂(S)). By linearity of expectation, it follows that there exist F and signs
(aS)S∈F for which (2) holds for all but at most δ fraction of x ∈ Fn

2 , as required. J

We now apply Lemma 3.1 to Fourier-sparse functions in Fn
2 → {−1, 0,+1} with bounded

support size, and then, in Corollary 3.3, derive an upper bound on the number of these
functions.

I Corollary 3.2. Let f : Fn
2 → {−1, 0,+1} be a k-Fourier-sparse function satisfying

| supp(f)| ≤ d. Then for every δ ∈ (0, 1/2] there exists a collection F of O(dk log(1/δ)/2n)
subsets of [n] with signs (aS ∈ {±1})S∈F such that for all but at most δ fraction of x ∈ Fn

2 it
holds that ∣∣∣f(x)− ‖f̂‖1

|F|
·
∑
S∈F

aS · χS(x)
∣∣∣ < 1

2 .

Proof. By the Cauchy-Schwarz inequality and Parseval’s theorem, we obtain that

‖f̂‖21
k
≤
∑

S⊆[n]

f̂(S)2 = 2−n ·
∑

x∈Fn
2

f(x)2 ≤ d

2n
.

The corollary follows from Lemma 3.1, applied with ε = 1/2, for |F| = O(‖f̂‖21 log(1/δ)/ε2) =
O(dk log(1/δ)/2n). J

I Corollary 3.3. The number of k-Fourier-sparse functions f : Fn
2 → {−1, 0,+1} satisfying

| supp(f)| ≤ d is 2O(ndk log k/2n).

Proof. For every k-Fourier-sparse function f : Fn
2 → {−1, 0,+1} satisfying | supp(f)| ≤ d,

let F and (aS)S∈F be as given by Corollary 3.2 for, say, δ = 1/(5k). Since the range of f is
{−1, 0,+1}, it follows that the collection F , the signs (aS)S∈F , and the value of ‖f̂‖1 define
a function of distance at most δ · 2n from f . Notice that by Claim 2.2 and our choice of
δ, the distance between every two distinct k-Fourier-sparse functions is larger than 2δ · 2n.
Thus, a function of distance at most δ · 2n from f fully defines f . This implies that f can
be represented by a binary string of length O(n · dk log k/2n), so the total number of such
functions is 2O(ndk log k/2n). J

The bound in Corollary 3.3 implies a bound on the number of Fourier-sparse Boolean
functions of bounded distance from a given Boolean function.

I Corollary 3.4. For every k-Fourier-sparse Boolean function f : Fn
2 → {0, 1}, the number

of k-Fourier-sparse Boolean functions of distance at most d from f is 2O(ndk log k/2n).
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Proof. Let f : Fn
2 → {0, 1} be a k-Fourier-sparse Boolean function. Consider the mapping

that maps every k-Fourier-sparse Boolean function g : Fn
2 → {0, 1}, whose distance from f is

at most d, to the function h = f − g. Observe that h is a 2k-Fourier-sparse function from Fn
2

to {−1, 0,+1} satisfying | supp(h)| ≤ d. By Corollary 3.3, the number of such functions h is
bounded by 2O(ndk log k/2n). Since the above mapping is bijective, this bound holds for the
number of functions g as well. J

Equipped with Corollary 3.3, we restate and prove Theorem 1.1.

I Theorem 1.1. For every function f : Fn
2 → R, the number of k-Fourier-sparse Boolean

functions of distance at most d from f is 2O(ndk log k/2n).

Proof. If there is no k-Fourier-sparse Boolean function of distance at most d from f , then
the bound trivially holds. So assume that such a function g : Fn

2 → {0, 1} exists. Observe
that every k-Fourier-sparse Boolean function of distance at most d from f has distance at
most 2d from g. Thus, by Corollary 3.4 applied to g, the number of such functions is at most
2O(ndk log k/2n). J

3.1 The Sample Complexity of Learning Fourier-Sparse Boolean
Functions

The sample complexity of learning a class of functions is the minimum number of uniform
and independent random samples needed from a function in the class for specifying it with
high success probability. Here we consider the class of k-Fourier-sparse Boolean functions on
n variables, and show how Theorem 1.1 implies an upper bound on the sample complexity of
learning it (Corollary 3.6).

I Theorem 3.5. For every n, 1 < k ≤ 2n, and a k-Fourier-sparse function f : Fn
2 → R, the

following holds. The probability that when sampling O(n · k log k) uniform and independent
random samples from f , there exists a k-Fourier-sparse Boolean function g 6= f that agrees
with f on all the samples is 2−Ω(n log k).

Proof. Consider q = O(nk log k) samples (x, f(x)) from a k-Fourier-sparse function f : Fn
2 →

R, where x is distributed uniformly and independently in Fn
2 . By Claim 2.2, the distance

between f and every other k-Fourier-sparse function is at least 2n/(2k). For an integer
` ∈ [1, blog2 2kc], consider all the k-Fourier-sparse Boolean functions whose distance from
f is in [2n−`, 2n−`+1]. By Theorem 1.1, the number of such functions is 2O(nk log k/2`). The
probability that such a function agrees with q random independent samples of f is at most
(1− 2−`)q. By the union bound, the probability that at least one of these functions agrees
with the q samples is at most

2O(nk log k/2`) · (1− 2−`)q ≤ 2O(nk log k/2`) · e−q/2`

≤ 2−Ω(n log k),

where the last inequality holds for an appropriate choice of q = O(nk log k). By applying the
union bound over all the values of `, it follows that with probability 1− 2−Ω(n log k) all the
k-Fourier-sparse Boolean functions (besides f) are eliminated, completing the proof. J

The following corollary follows immediately from Theorem 3.5 and confirms Corollary 1.2.

I Corollary 3.6. For every n and 1 ≤ k ≤ 2n, the number of uniform and independent
random samples required for learning the class of k-Fourier-sparse Boolean functions on n
variables with success probability 1− 2−Ω(n log k) is O(n · k log k).
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We end with the following simple lower bound.

I Theorem 3.7. For every n and 1 ≤ k ≤ 2n, the number of uniform and independent
random samples required for learning the class of k-Fourier-sparse Boolean functions on n
variables with constant success probability is Ω(k · (n− log2 k)).

Proof. Assume without loss of generality that k is a power of 2. Let A be an algorithm
for learning the class above with constant success probability p > 0 using q uniform and
independent random samples. Consider the class G of indicators of affine subspaces of Fn

2 of
co-dimension log2 k (i.e., affine subspaces of Fn

2 of size 2n/k). By Claim 2.4, the functions in
G are k-Fourier-sparse. Observe that their number satisfies

|G| = 2Θ(n·min(log2 k,n−log2 k)).

By Yao’s minimax principle, there exists a deterministic algorithm A′ (obtained by fixing
the random coins of A) that given evaluations of a function, chosen uniformly at random
from G, on a fixed collection of q points in Fn

2 , learns it with success probability p.
Now, observe that the expected number of 1-evaluations that A′ receives is q/k. By

Markov’s inequality, the probability that A′ receives at least 2q/(pk) 1-evaluations is at most
p/2. It follows that for at least p/2 fraction of the functions in G the algorithm A′ receives
at most 2q/(pk) 1-evaluations and learns them correctly. Assuming that pk ≥ 2, the number
of possible evaluation sequences on these inputs is at most

2q/(pk)∑
i=0

(
q

i

)
≤ (k · pe/2)2q/(pk) ≤ 2O(q·log2 k/k),

where for the first inequality we used the standard inequality
∑t

i=0
(

q
i

)
≤ (qe/t)t which holds

for t ≤ q (see, e.g., [16, Proposition 1.4]). The above is bounded from below by |G| · p/2,
implying that

q ≥ Ω(n ·min(log2 k, n− log2 k) · k/ log2 k) ≥ Ω(k · (n− log2 k)),

where the last inequality follows by considering separately the cases of k ≥ 2n/2 and k < 2n/2.
In case that pk < 2, the number of possible evaluation sequences is at most 2q, and the
bound follows similarly using the assumption that p is a fixed constant. J

4 Testing Booleanity of Fourier-Sparse Functions

In this section we prove upper and lower bounds on the query complexity of testing Booleanity
of Fourier-sparse functions. For a parameter k, consider the problem in which given access to
a k-Fourier-sparse function f : Fn

2 → R one has to decide if f is Boolean, i.e., f(x) ∈ {0, 1}
for every x ∈ Fn

2 , or not, with some constant success probability.

4.1 Upper Bound
As mentioned before, Gur and Tamuz proved in [14] that every k-Fourier-sparse non-Boolean
function f on n variables satisfies f(x) /∈ {0, 1} for at least Ω(2n/k2) inputs x ∈ Fn

2 (see
Claim 2.3). Thus, querying the input function f on O(k2) independent and random inputs
suffices in order to catch a non-Boolean value of f if such a value exists. In the following lemma
it is shown that it is not really needed to choose the O(k2) random vectors independently. It
turns out that a restriction of a k-Fourier-sparse non-Boolean function to a random linear
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subspace of size O(k2), that is, of dimension ≈ 2 log2 k, is with high probability non-Boolean.
Thus, the tester could randomly pick such a subspace and query f on all of its vectors. This
decreases the amount of randomness used in the tester of [14] from O(nk2) to O(n log k).
More importantly for us, this reduces the problem of testing Booleanity of k-Fourier-sparse
functions on n variables to the case of k = Θ(2n/2).

I Lemma 4.1. Let f : Fn
2 → R be a k-Fourier-sparse non-Boolean function, and denote

L = (k2 + k+ 2)/2. Then, for every δ > 0, the restriction of f to a uniformly chosen random
linear subspace of dimension r ≥ log2(L/δ) is also non-Boolean with probability at least 1− δ.

Proof. Let f : Fn
2 → R be a k-Fourier-sparse non-Boolean function. By Claim 2.3, there are

at least 2n/L vectors x ∈ Fn
2 for which f(x) /∈ {0, 1}. This implies that there exists a set S of

at least log2(2n/L) linearly independent vectors in Fn
2 on which f is not Boolean. Consider a

linear subspace V ⊆ Fn
2 of dimension n− 1 chosen uniformly at random. Since the vectors

in S are linearly independent, the probability that no vector in S is in V is 2−|S| ≤ L
2n . It

follows that the restriction f |V of f to V is a k-Fourier-sparse function defined on a linear
subspace of dimension n − 1, and its probability to be Boolean is at most L

2n . Note that
one can think of the domain of f |V as Fn−1

2 , because V and Fn−1
2 are isomorphic and a

composition with an invertible linear transformation does not affect the Fourier-sparsity.
Now, let us repeat the above process n− r−1 additional times, until we get a linear subspace
of dimension r. The probability that the function becomes Boolean in one of the steps is at
most

L

2n
+ L

2n−1 + · · ·+ L

2r+1 ≤
L

2r
≤ δ,

and we are done. J

We now restate and prove Theorem 1.3, which gives an upper bound of O(k · log2 k) on
the query complexity of testing Booleanity of k-Fourier-sparse functions. In the proof, we
first apply Lemma 4.1 to restrict the input function to a subspace of dimension O(log k).
Then, we apply Theorem 3.5 in an attempt to learn the restricted function and check if it is
consistent with some k-Fourier-sparse Boolean function.

I Theorem 1.3. For every k there exists a non-adaptive one-sided error tester that using
O(k · log2 k) queries to an input k-Fourier-sparse function f : Fn

2 → R decides if f is Boolean
or not with constant success probability.

Proof. Consider the tester that given access to an input k-Fourier-sparse function f : Fn
2 → R

acts as follows:
1. Pick uniformly at random a linear subspace V of Fn

2 of dimension r = min(n, dlog2(100L)e),
where L = (k2 + k + 2)/2, and let T be an invertible linear transformation mapping Fr

2
to V .

2. Query f on O(r · k log k) random vectors chosen uniformly and independently from the
subspace V . Note that these queries can be seen as uniform and independent random
samples from the function g : Fr

2 → R defined as g = f ◦ T .
3. If there exists a k-Fourier-sparse Boolean function on r variables that agrees with the

above samples of g then accept, and otherwise reject.

We turn to prove the correctness of the above tester. If f is a k-Fourier-sparse Boolean
function then so is g, because a restriction to a subspace and a composition with a linear
transformation leave the function k-Fourier-sparse and Boolean. Hence, in this case the
tester accepts with probability 1.
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On the other hand, if f is a k-Fourier-sparse non-Boolean function, then by Lemma 4.1
the restriction of f to the random subspace V of dimension r picked in Item 1, as well
as the function g defined in Item 2, are also non-Boolean with probability at least 0.99.
In this case, by Theorem 3.5, the probability that there is a k-Fourier-sparse Boolean
function on r variables that agrees with O(r · k log k) uniform and independent random
samples from g is 2−Ω(r log k), thus the tester correctly rejects with probability at least,
say, 0.9, as required. Finally, observe that the number of queries made by the tester is
O(r · k log k) = O(k · log2 k). J

4.2 Lower Bound
We turn to restate and prove our lower bound on the query complexity of testing Booleanity
of k-Fourier-sparse functions.

I Theorem 1.4. Every non-adaptive one-sided error tester for Booleanity of k-Fourier-sparse
functions has query complexity Ω(k · log k).

Proof. For a given integer k, let n be the largest even integer satisfying k ≥ 3 · 2n/2. Define
a distribution Dno over functions in Fn

2 → {0, 1, 2} as follows. Pick uniformly at random
a pair (V1, V2) of affine subspaces satisfying dim(V1) = dim(V2) = n/2 and |V1 ∩ V2| = 1,
and output the sum of indicators 1V1 + 1V2 . Notice that, by Claim 2.4, such a function has
Fourier-sparsity at most 2 · 2n/2 ≤ k. Thus, a function chosen from Dno is k-Fourier-sparse
and non-Boolean with probability 1.

Let T be a non-adaptive one-sided error randomized tester for Booleanity of k-Fourier-
sparse functions with query complexity q and success probability at least 2/3. By Yao’s
minimax principle, there exists a deterministic tester T ′ (obtained by fixing the random
coins of T ) that rejects a random function chosen from Dno with probability at least 2/3.
Since T is non-adaptive and has one-sided error, it follows that T ′ queries an input function
on q fixed vectors a1, . . . , aq ∈ Fn

2 , accepts every k-Fourier-sparse Boolean function, and
rejects a function chosen from Dno with probability at least 2/3. We turn to prove that
q > (n · 2n/2)/1000 = Ω(k · log k).

Assume in contradiction that q ≤ (n · 2n/2)/1000. Let f be a random function chosen
from Dno, that is, f = 1V1 + 1V2 for random affine subspaces V1 and V2 of dimension n/2
satisfying |V1 ∩ V2| = 1. For i = 1, 2, let Wi be the affine span of {a1, . . . , aq} ∩ Vi. Let E be
the event that the intersection of W1 and W2 is empty. We turn to prove that if the event E
happens then the tester T ′ accepts the function f and that the probability of this event is at
least 0.9. This contradicts the success probability of T ′ on functions chosen from Dno and
completes the proof.

I Lemma 4.2. If the event E happens then the tester T ′ accepts the function f .

Proof. Assume that the event E happens, i.e., W1 ∩W2 = ∅. Then, there exists an affine
subspace V ′2 of dimension n/2− 1 satisfying W2 ⊆ V ′2 ( V2 and V1 ∩ V ′2 = ∅. Consider the
function g = 1V1 + 1V ′

2
. By Claim 2.4, g is a Boolean function whose Fourier-sparsity is

at most 3 · 2n/2 ≤ k, thus it is accepted by T ′. However, g satisfies g(ai) = f(ai) for every
1 ≤ i ≤ q. This implies that T ′ cannot distinguish between g and f , so it must accept f as
well. J

I Lemma 4.3. The probability of the event E is at least 0.9.
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Proof. Denote by X the number of vectors in {a1, . . . , aq} ∩ V1. Since V1 is distributed
uniformly over all affine subspaces of dimension n/2, the probability that ai belongs to V1 is
2−n/2 for every 1 ≤ i ≤ q . Thus, by linearity of expectation,

E[X] = q

2n/2 ≤
(n · 2n/2)/1000

2n/2 = n

1000 .

By Markov’s inequality, we obtain that

Pr
[
dim(W1) ≥ n

10

]
≤ Pr

[
X ≥ n

10

]
≤ 1

100 .

Now, fix a choice of V1 for which dim(W1) < n/10, and consider the randomness over the
choice of V2. Notice that, conditioned on V1, V2 is distributed uniformly over all the affine
subspaces of dimension n/2 which contain exactly one vector from V1. By symmetry, every
vector of V1 has probability |V1|−1 = 2−n/2 to belong to V2. Thus, the probability that the
vector that belongs to both V1 and V2 is in W1 is |W1| · 2−n/2 < 2n/10 · 2−n/2 = 2−2n/5.

Finally, the probability that W1 ∩W2 = ∅ is at least the probability that W1 ∩ V2 = ∅,
and the latter is at least 1− (0.01 + 2−2n/5) ≥ 0.9 for every sufficiently large n. J

J
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Abstract
The problem of constructing explicit functions which cannot be approximated by low degree poly-
nomials has been extensively studied in computational complexity, motivated by applications in
circuit lower bounds, pseudo-randomness, constructions of Ramsey graphs and locally decodable
codes. Still, most of the known lower bounds become trivial for polynomials of super-logarithmic
degree. Here, we suggest a new barrier explaining this phenomenon. We show that many of
the existing lower bound proof techniques extend to nonclassical polynomials, an extension of
classical polynomials which arose in higher order Fourier analysis. Moreover, these techniques
are tight for nonclassical polynomials of logarithmic degree.
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1 Introduction

Polynomials play a fundamental role in computer science with important applications in
algorithm design, coding theory, pseudo-randomness, cryptography and complexity theory.
They are also instrumental in proving lower bounds, as many lower bounds techniques first
reduce the computational model to a computation or an approximation by a low degree
polynomial, and then continue to show that certain hard functions cannot be computed or
approximated by low degree polynomials. Motivated by these applications, the problem of
constructing explicit functions which cannot be computed or approximated (in certain ways)
by low degree polynomials has been widely explored in computational complexity. However,
most techniques to date apply only to relative low degree polynomials. In this paper, we focus
on understanding this phenomenon, when the polynomials are defined over fixed size finite
fields. In this regime, many lower bound techniques become trivial when the degree grows
beyond logarithmic in the number of variables. We propose a new barrier explaining the lack
of ability to prove strong lower bounds for polynomials of super-logarithmic degree. The
barrier is based on nonclassical polynomials, an extension of standard (classical) polynomials
which arose in higher order Fourier analysis. We show that several existing lower bound
techniques extend to nonclassical polynomials, for which the logarithmic degree bound is
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tight. Hence, to prove stronger lower bounds, one should either focus on techniques which
distinguish classical from nonclassical polynomials, or consider functions which are hard also
for nonclassical polynomials.

1.1 Nonclassical polynomials
Nonclassical polynomials were introduced by Tao and Ziegler [24] in their works on the
inverse theorem for the Gowers uniformity norms. To introduce these, it will be beneficial
to first consider classical polynomials. Fix a prime finite field Fp, where we consider p to
be a constant. A function f : Fn

p → Fp is a degree d polynomial if it can be written as a
linear combination of monomials of degree at most d. An equivalent definition is that f is
annihilated by taking any d+ 1 directional derivatives. That is, for a direction h ∈ Fn

p define
the derivative of f in direction h as Dhf(x) = f(x+ h)− f(x). Then, f is a polynomial of
degree at most d iff

Dh1 . . . Dhd+1f ≡ 0 ∀h1, . . . , hd+1 ∈ Fn
p .

Nonclassical polynomials extend this definition to a larger class of objects. Let T = R/Z
denote the torus. For a function f : Fn

p → T, define its directional derivative in direction
h ∈ Fn

p as before, as Dhf(x) = f(x + h) − f(x). Then, we define f to be a nonclassical
polynomial of degree at most d if it is annihilated by any d+ 1 derivatives,

Dh1 . . . Dhd+1f ≡ 0 ∀h1, . . . , hd+1 ∈ Fn
p .

While not immediately obvious, the class of nonclassical polynomials contains the classical
polynomials. Let | · | : Fp → {0, . . . , p−1} ⊂ Z denote the natural embedding. If f : Fn

p → Fp

is a classical polynomial of degree d then |f(x)|/p (mod 1) is a nonclassical polynomial of
degree d. It turns out that as long as d < p, these capture all the nonclassical polynomials.
However, for d ≥ p nonclassical polynomials strictly extend classical polynomials of the same
degree. For example, the following is a nonclassical polynomial of degree p:

f(x) =
∑
|xi|
p2 .

See Section 2 for more details on nonclassical polynomials.

1.2 Correlation bounds for polynomials
We first consider the problem of constructing explicit boolean functions which cannot be
approximated by low-degree polynomials. For simplicity, we focus on polynomials defined
over F2, but note that the results below extend to any constant prime finite field. This
problem was studied by Razborov [22] and Smolensky [23] in the context of proving lower
bounds for AC0(⊕) circuits (and more generally, bounded depth circuits with modular gates
modulo a fixed prime). Consider for example the function MOD3 : {0, 1}n → {0, 1}, which
outputs 1 if the sum of the bits is zero modulo 3, and outputs 0 otherwise. The probability
that it outputs 0 is very close to 2/3. They showed that low degree polynomials over F2
cannot improve this significantly. If f : Fn

2 → F2 be a polynomial of degree d then

Prx∈{0,1}n [f(x) = MOD3(x)] ≤ 2
3 +O

(
d√
n

)
.

This is sufficient to prove that the MOD3 function cannot be computed by sub-exponential
AC0(⊕) circuits. However, one would like to prove that it cannot even be slightly ap-
proximated by such circuits. Such a result would be a major step towards constructing
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pseudorandom generators for AC0(⊕) circuits [20, 21], a well known open problem in circuit
complexity. It turns out that the Razborov-Smolensky bound is tight for very large degrees,
as there exist polynomials of degree d = Ω(

√
n) which approximate the MOD3 function with

probability 0.99, say. However, it seems to be far from tight for d �
√
n, which suggests

that an alternative proof technique may be needed.
Viola and Wigderson [26] proved stronger inapproximability results for degrees d� logn.

These are better described if one considers the correlation of f with the sum of the bits
modulo 3. In the following, let ω3 = exp(2πi/3) be a cubic root of unity. They showed that
if f : Fn

2 → F2 is a polynomial of degree d then

Ex∈{0,1}n

[
(−1)f(x)ωx1+...+xn

3

]
≤ 2−Ω(n/4d).

The technique of [26] proves exponential correlation bounds for constant degrees, but decays
quickly and becomes trivial at d = O(logn). Our first result is that this is because of a good
reason. Their technique is based on derivatives, and hence extends to nonclassical polynomials.
Moreover, it is tight for nonclassical polynomials. In the following, let e : T→ C∗ be defined
as e(x) = exp(2πix).

I Theorem 1.1 (Correlation bounds with modular sums for nonclassical polynomials (informal)).
Let f : Fn

2 → T be a nonclassical polynomial of degree d. Then

Ex∈{0,1}n

[
e(f(x))ωx1+...+xn

3
]
≤ 2−Ω(n/4d).

Moreover, for any ε > 0 there exists a nonclassical polynomial f : Fn
2 → T of degree

O(log(n/ε)) such that
Ex∈{0,1}n

[
e(f(x))ωx1+...+xn

3
]
≥ 1− ε.

So, the Viola-Wigderson technique is bounded for degrees smaller than O(logn), because it
extends to nonclassical polynomials of that degree, for which it is tight. We note that the
modulus 3 in Theorem 1.1 can be replaced with any fixed odd modulus.

Another boolean function which was shown by Razborov and Smolensky [22,23] to be
hard for AC0(⊕) circuits is the majority function MAJ : Fn

2 → F2. The proof relies on the
following key fact. If f : Fn

2 → F2 is a degree d polynomial then

Prx∈{0,1}n [f(x) = MAJ(x)] ≤ 1
2 +O

(
d√
n

)
.

Equivalently, this can be presented as a correlation bound

Ex∈{0,1}n

[
(−1)f(x)(−1)MAJ(x)

]
≤ O

(
d√
n

)
.

This is known to be tight for degree d = 1 (as say x1 has correlation Ω(1/
√
n) with the

majority function) and also for d = Ω(
√
n), since there exist polynomials of that degree

which approximate well the majority function, or any symmetric function for that matter.
However, it is not known if these bounds are tight for degrees 1� d�

√
n. We study this

question for nonclassical polynomials. We show that there are nonclassical polynomials of
degree O(logn) with a constant correlation with the majority function.

I Theorem 1.2 (Correlation bounds with majority for nonclassical polynomials (informal)).
There exists a nonclassical polynomial f : Fn

2 → T of degree O(logn) such that∣∣∣E [e(f(x))(−1)MAJ(x)
]∣∣∣ ≥ Ω(1).
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So, the Razborov-Smolensky technique separates classical from nonclassical polynomials,
since classical polynomials of degree O(logn) have negligible correlation with the majority
function, while as we show above, this is false for nonclassical polynomials.

1.3 Exact computation by polynomials
A related problem to correlation bounds is that of exact computation with good probability.
For classical polynomials the two problems are equivalent, but this is not the case for
nonclassical polynomials. Given a nonclassical polynomial f : Fn

2 → T, we can ask what is
the probability that f is equal to a boolean function, say the majority function. To do so,
we identify naturally F2 with {0, 1/2} ⊂ T, and consider MAJ : Fn

2 → {0, 1/2}. We show the
following result, which gives a partial answer to the question.

I Theorem 1.3 (Exact computation of majority by nonclassical polynomials (informal)). Let
f : Fn

2 → T be a nonclassical polynomial of degree d. Then,

Prx∈{0,1}n [f(x) = MAJ(x)] ≤ 1
2 +O

(
d2d

√
n

)
.

We believe that the bound is not tight, and that, unlike for correlation bounds, nonclassical
polynomials should not be able to exactly compute boolean functions better than classical
polynomials. Specifically, we ask the following question.

I Open Problem 1.4. Let f : Fn
2 → T be a nonclassical polynomial of degree d. Show that

Prx∈{0,1}n [f(x) = MAJ(x)] ≤ 1
2 +O

(
d√
n

)
.

1.4 Weak representation of the OR function
We next move to the problem of weak representation of the OR function. Let p1, . . . , pr

be distinct primes and let m = p1 · · · pr. The goal is to construct a low degree polynomial
f ∈ Zm[x1, . . . , xn] such that f(0n) = 0 but f(x) 6= 0 for all nonzero x ∈ {0, 1}n. Such
polynomials stand at the core of some of the best constructions of Ramsey graphs [13,14,16]1
and locally decodable codes [8, 10–12,27], and were further investigated in [3–7,23]. There
are currently exponential gaps between the best constructions and lower bounds. Barrington,
Beigel and Rudich [5] showed that there exist polynomials of degree O(n1/r) that weakly
represent the OR function. The best lower bound is Ω(log1/(r−1) n), due to Barrington and
Tardos [3].

The definition of weak representation can be equivalently defined (via the Chinese
Remainder Theorem) as follows. There exist polynomials fi : Fn

pi
→ Fpi

for i = 1, . . . , r such
that f1(0n) = . . . = fr(0n) = 0 but for any nonzero x ∈ {0, 1}n, there exists an i for which
fi(x) 6= 0. This definition can be naturally extended to nonclassical polynomials, where
we consider fi : Fn

pi
→ T. We show that the Barrington-Tardos lower bound extends to

nonclassical polynomials, and it is tight up to polynomial factors.

I Theorem 1.5 (Weak representation of OR for nonclassical polynomials (informal)). Let
p1, . . . , pr be distinct primes, and fi : Fn

pi
→ T be nonclassical polynomials which weakly

represent the OR function. Then

max deg(fi) ≥ Ω(log1/r n).

1 The current record is due to [2] which uses different techniques.
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Moreover, for any fixed prime p, there exists a nonclassical polynomial f : Fn
p → T of degree

O(logn) which weakly represents the OR function.

Thus, the proof technique of Barrington-Tardos cannot extend beyond degree O(logn),
as it applies to nonclassical polynomials as well, for which the O(logn) bound holds even
for prime modulus. We note that unlike in the case of Theorem 1.1, where the lower bound
proof of [26] extended naturally to nonclassical polynomials, extending the lower bound
technique of [3] to nonclassical polynomials requires several nontrivial modifications of the
original proof.

As an aside, in the classical setting, we present an improvement in the degree of a
symmetric polynomial that weakly represents OR. This improves the result in [5] in the
growing modulus case and constructs a polynomial whose degree is modulus independent.
For more details, see Appendix A.

1.5 Pseudorandom generators for low degree polynomials
Consider for simplicity polynomials over F2. A distribution D over Fn

2 is said to fool
polynomials of degree d with error ε, if for any polynomial f : Fn

2 → F2 of degree at most d,
we have ∣∣Prx∼D[f(x) = 0]−Prx∈Fn

2
[f(x) = 0]

∣∣ ≤ ε.
Distributions which fool linear functions (e.g. d = 1) are called small bias generators, and
optimal constructions of them (up to polynomial factors) were given in [1, 19], with seed
length O(logn/ε). A sequence of works [9, 17,25] showed that small bias generators can be
combined to yield generators for larger degree polynomials. The best construction to date is
by Viola [25], who showed that the sum of d independent small bias generators with error
approximately ε2d fools degree d polynomials with error ε. Thus, his construction has seed
length O(2d log(1/ε) + d logn), and becomes trivial for d = Ω(logn). It is not clear whether
it is necessary to require the small bias generators to have smaller error than the required
error for the degree d polynomials, and this is the main source for the loss in parameters
when considering large degrees.

There is a natural extension of these definitions to nonclassical polynomials. If f : Fn
2 → T

is a nonclassical polynomial of degree d, then we require that∣∣Ex∼D[e(f(x))]− Ex∈Fn
2
[e(f(x))]

∣∣ ≤ ε.
The proof technique of Viola is based on derivatives, and we note here (without proof) that it
extends to nonclassical polynomials in a straightforward way. We suspect that it is tight for
nonclassical polynomials, however we were unable to show that. Thus, we raise the following
question.

I Open Problem 1.6. Fix ε > 0, d ≥ 1. Does there exist a small bias generator with error
� ε2d , such that the sum of d independent copies of the generator does not fool degree d
nonclassical polynomials with error ε?

Organisation. Section 2 covers preliminary definitions. In Section 3 we prove bounds
on approximation of modular sums by nonclassical polynomials. In Section 4 we analyze
the approximation of the majority function by nonclassical polynomials in the correlation
model and the exact computation model. In Section 5 we prove the results on the weak
representation of the OR function. We describe in Appendix A an improvement in the degree
of classical polynomials which weakly represent the OR function.
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2 Preliminaries

Let N = {1, 2, . . .} denote the set of positive integers. For n ∈ N, let [n] := {1, 2, . . . , n}. Let
T = R/Z denote the torus. This is an abelian group under addition. Let e : T → C∗ be
defined by e(x) = exp(2πix).

2.1 Nonclassical polynomials
Let Fp be a prime finite field. Given a function f : Fn

p → T, its directional derivative in
direction h ∈ Fn

p is Dhf : Fn
p → T, given by

Dhf(x) = f(x+ h)− f(x).

Polynomials are defined as functions which are annihilated by repeated derivatives.

I Definition 2.1 (Nonclassical polynomials). A function f : Fn
p → T is a polynomial of degree

at most d if Dh1 . . . Dhd+1f ≡ 0 for any h1, . . . , hd+1 ∈ Fn
p . The degree of f is the minimal d

for which this holds.

Classical polynomials satisfy this definition. Let | · | denote the natural map from Fp

to {0, 1, . . . , p − 1} ⊆ Z. If P : Fn
p → Fp is a (classical) polynomial of degree d, then

f(x) = |P (x)|/p (mod 1) is a nonclassical polynomial of degree d. For degrees d ≤ p, it
turns out that these are the only possible polynomials. However, when d > p, there are more
polynomials than just these arising from the classical ones, from which the term nonclassical
polynomials arise. A complete characterization of nonclassical polynomials was developed by
Tao and Ziegler [24]. They showed that a function f : Fn → T is a polynomial of degree ≤ d
if and only if it has the following form:

f(x1, . . . , xn) = α+
∑

0≤e1,...,en≤p−1,k≥0:
∑

ei+(p−1)k≤d

ce1,...,en,k|x1|e1 . . . |xn|en

pk+1 (mod 1).

Here, α ∈ T and ce1,...,en,k ∈ {0, 1, . . . , p− 1} are uniquely determined. The coefficient α is
called the shift of f , and the largest k for which ce1,...,en,k 6= 0 for some e1, . . . , en is called
the depth of f . Classical polynomials correspond to polynomials with 0 shift and 0 depth.
In this work, we assume without loss of generality that all polynomials have 0 shift. Define
Up,k := 1

pk Z/Z which is a subgroup of T. Then, the image of polynomials of depth k − 1 lie
in Up,k. We prove the following lemma which shows that nonclassical polynomials can be
“translated" to classical polynomials of a somewhat higher degree, at least if we restrict our
attention to boolean inputs.

I Lemma 2.2. Let f : Fn
p → T be a polynomial of degree d and depth ≤ k − 1. Let

ϕ : Up,k → Fp be any function. Then there exists a classical polynomial g : Fn
p → Fp of degree

at most (pk − 1)d, such that

g(x) = ϕ(f(x)) ∀x ∈ {0, 1}n.

Proof. By the characterization of nonclassical polynomials, we have

f(x) =
∑
e,j

ce,j |x1|e1 . . . |xn|en

pj

where the sum is over e = (e1, . . . , en) with ei ∈ {0, . . . , p − 1}, 1 ≤ j ≤ k such that∑
ei + (p− 1)(j − 1) ≤ d. We only care about the evaluation of f on the boolean hypercube,
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which allows for some simplifications. For any x ∈ {0, 1}n we have |x1|e1 . . . |xn|en =
∏

i∈I xi

where I = {i : ei 6= 0}. Thus, we can define an integer polynomial P (x) =
∑

I c
′
I

∏
i∈I xi

such that
f(x) = P (x)

pk
(mod 1) ∀x ∈ {0, 1}n,

where c′I =
∑

e:{i:ei 6=0}=I

∑
j p

k−jce,j . In particular, note that P has degree at most d. We
may further simplify P (x) = M1(x) + . . . + Mt(x), where each Mi is a monomial of the
form

∏
i∈I xi, and monomials may be repeated (indeed, the monomial

∏
i∈I xi is repeated c′I

times). Hence

f(x) = M1(x) + . . .+Mt(x)
pk

(mod 1) ∀x ∈ {0, 1}n.

We care about the first k digits in base p of P (x) =
∑
Mi(x). These can be captured via

the symmetric polynomials, using the fact that Mi(x) ∈ {0, 1} for all x ∈ {0, 1}n.
The `-th symmetric polynomial in z = (z1, . . . , zt), for 1 ≤ ` ≤ t, is a classical polynomial

of degree ` defined as
S`(z) =

∑
S⊂[t],|S|=`

∏
i∈S

zi.

When z ∈ {0, 1}t, it follows by Lucas theorem [18] that the i-th digit of z1 + . . .+ zt in base
p is given by Spi(z) (mod p).

So, define a polynomial Q : Fk
p → Fp such that Q(a0, . . . , ak−1) = ϕ(

∑
aip

i/pk) for all
a0, . . . , ak−1 ∈ {0, . . . , p− 1}, and polynomials Ri : Fn

p → Fp for i = 0, . . . , k − 1 by Ri(x) =
Spi(M1(x), . . . ,Mt(x)). Note that deg(Ri) ≤ pid. Define g(x) = Q(R0(x), . . . , Rk−1(x)).
Then we have that

g(x) = ϕ(f(x)) ∀x ∈ {0, 1}n.

To conclude, we need to bound the degree of g. As monomials in Q raise each variable to
degree at most p− 1, we have deg(g) ≤ (p− 1)

∑
deg(Ri) ≤ (pk − 1)d. J

2.2 Gowers uniformity norms
Let F : Fn → C. The (multiplicative) derivative of F in direction h ∈ Fn is given by
(∆hF )(x) = F (x + h)F (x). One can verify that if f : Fn → T and F = e(f) then
∆hF = e(Dhf). The d-th Gowers uniformity norm ‖ · ‖Ud is defined as

‖F‖Ud := (Eh1,...,hd,x∈Fn [∆h1 . . .∆hd
F (x)])1/2d

.

Observe that ‖F‖U1 = |Ex[F (x)]|, which is a semi-norm. For d ≥ 2, the Gowers uniformity
norm turns out to indeed be a norm (but we will not need that). The following lists the
properties of the Gowers uniformity norm that we would need. For a proof and further
details, see [15].

Let f : Fn → T and F = e(f). Then 0 ≤ ‖F‖Ud ≤ 1, where ‖F‖Ud = 1 if and only if f is
a polynomial of degree ≤ d− 1.
If f : Fn → T is a polynomial of degree ≤ d − 1 then ‖Fe(f)‖Ud = ‖F‖Ud for any
F : Fn → C.
If F (x1, . . . , xn) = F1(x1) . . . Fn(xn) then ‖F‖Ud = ‖F1‖Ud . . . ‖Fn‖Ud .
(Gowers-Cauchy-Schwarz) For any F : Fn → C and any d ≥ 1,

0 ≤ ‖F‖U1 ≤ ‖F‖U2 ≤ . . . ≤ ‖F‖Ud .
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3 Approximating modular sums by polynomials

Viola and Wigderson [26] proved that low-degree polynomials over F2 cannot correlate to the
sum modulo m, as long as m is odd. Their proof technique is based on the Gowers uniformity
norm. As such, it extends naturally to nonclassical polynomials. We capture that by the
following theorem. In the following, let ωm = exp(2πi/m) be a primitive m-th root of unity.
I Theorem 3.1 (Extension of [26] to nonclassical polynomials). Let f : Fn

2 → T be a polynomial
of degree < d. Let m ∈ N be odd. Then for any a ∈ {1, . . . ,m− 1},

Ex∈{0,1}n

[
e(f(x)) · ωa(x1+...+xn)

m

]
≤ exp(−cn/4d)

where c = cm > 0.
Proof. Let F (x) = e(f(x)) · ωa(x1+...+xn)

m . By the properties of the Gowers uniformity norm,

|Ex[F (x)]| ≤ ‖F‖Ud = ‖ωa(x1+...+xn)
m ‖Ud =

n∏
i=1
‖ωaxi

m ‖Ud = ‖e(g)‖n
Ud ,

where g : F2 → T is given by g(0) = 0, g(1) = a/m. A routine calculation shows that

Dh1 . . . Dhd
g(x) =

{ a′/m if h1 = . . . = hd = 1, x = 0
−a′/m if h1 = . . . = hd = 1, x = 1
0 otherwise

where a′ = a2d−1 is nonzero modulo m. Hence ‖e(g)‖2d

Ud = (1− 2−d) + 2−d cos(2πa′/m) ≤
1− 2−d · Ω(1/m2) and

|E[F ]| ≤
(
1− 2−d · Ω(1/m2)

)n/2d

≤ exp(−cn/4d)

where c = Ω(1/m2). J

This proof technique gives trivial bounds for d� logn. Here, we show that this is for a
good reason, as there are nonclassical polynomials of degree O(logn) which well approximate
the sum modulo m.
I Theorem 3.2. Let m ∈ N be odd and fix a ∈ {1, . . . ,m− 1}. For any ε > 0 there exists a
polynomial f : Fn

2 → T of degree log
(

n+m
ε

)
+O(1) such that

Ex∈{0,1}n

[
e(f(x)) · ωa(x1+...+xn)

m

]
= 1 + u

where |u| ≤ ε.
Proof. Let k ≥ 1 to be specified later. Let r ∈ {0, . . . ,m− 1} be such that r ≡ a2k (mod m)
and let A = r−a2k

m ∈ Z. Define f : Fn
2 → T as

f(x) = A(|x1|+ . . .+ |xn|)
2k

(mod 1).

Note that f is a polynomial of degree ≤ k. For x ∈ {0, 1}n, if x1 + . . .+ xn = pm+ q where
q ∈ {0, . . . ,m− 1}, then

f(x) ≡ A(pm+ q)
2k

≡
rp+ rq

m

2k
− aq

m
= −aq

m
+ θx (mod 1),

where 0 ≤ θx ≤ (n+m)/2k. We choose k ≥ log
(

n+m
ε

)
+ c for some absolute constant c > 0

so that |e(θx)− 1| ≤ ε for all x. Hence∣∣∣E [e(f(x)) · ωa(x1+...+xn)
m

]
− 1
∣∣∣ = |E [e(θx)− 1]| ≤ E [|e(θx)− 1|] ≤ ε.

J
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4 Approximating majority by nonclassical polynomials

The majority function MAJ : Fn
2 → F2 is defined as

MAJ(x) =
{

0 if
∑n

i=1 |xi| ≤ n/2
1 otherwise

We first show that it correlates well with a nonclassical polynomial of degree O(logn).

I Theorem 4.1. There is a nonclassical polynomial f : Fn
2 → T of degree logn+ 1 such that∣∣∣E [(−1)MAJ(x)e(f(x))

]∣∣∣ ≥ c,
where c > 0 is an absolute constant.

Proof. We assume that n is even for the proof. The proof is similar for odd n. Let A = ba
√
nc

for a > 0 to be specified later. Let k be the smallest integer such that 2k ≥ n. Set

f(x) =
A(
∑n

i=1 |xi| − n/2)
2k

.

Note that deg(f) ≤ logn+ 1. Now,

E
[
(−1)MAJ(x)e(f(x))

]
= 2−n

n/2∑
i=0

(
n

i

)
e
(
A(i− n/2)/2k

)
− 2−n

n∑
i=n/2+1

(
n

i

)
e
(
A(i− n/2)/2k

)

= 2−n

n/2∑
j=1

(
n

n/2− j

)
e
(
−Aj/2k

)
− 2−n

n/2∑
j=1

(
n

n/2− j

)
e
(
Aj/2k

)
+ 2−n

(
n

n/2

)

= −2i · 2−n

n/2∑
j=1

(
n

n/2− j

)
sin
(
2πAj/2k

)
+ 2−n

(
n

n/2

)
,

where in the last equation i =
√
−1. Let C = 2−n

∑n/2
j=1

(
n

n/2−j

)
sin
(
2πAj/2k

)
, so that∣∣E [(−1)MAJ(x)e(f(x))

]∣∣ ≥ 2C. We will show that C ≥ Ω(1). Let b > 0 be a constant to be
specified later. We bound

C ≥ 2−n

b
√

n∑
j=1

(
n

n/2− j

)
sin
(
2πAj/2k

)
− exp(−2b2),

where the error term follows from the Chernoff bound. We set a = 1/8b. For all 1 ≤ j ≤ b
√
n

we have 2πAj/2k ≤ π/4. Applying the estimate sin(x) ≥ x/2 which holds for all 0 ≤ x ≤ π/4,
we obtain that

C ≥ π

32b
√
n
· 2−n

b
√

n∑
j=1

(
n

n/2− j

)
j − exp(−2b2).

Now, if b is a large enough constant, standard bounds on the binomial coefficients give that

2−n

b
√

n∑
j=1

(
n

n/2− j

)
j = Ω(

√
n).

Hence, we obtain that
C ≥ Ω(1/b)− exp(−2b2).

If b is chosen a large enough constant, this shows that C ≥ Ω(1) as claimed. J
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We next show that the Razborov-Smolensky technique generalizes to nonclassical polyno-
mials when we require the polynomial to exactly compute MAJ. Recall that we identify F2
with {0, 1/2} ⊂ T and consider MAJ : Fn

2 → {0, 1/2}.

I Theorem 4.2. Let f : Fn
2 → T be a nonclassical polynomial of degree d and depth < k.

Then,

Prx∈{0,1}n [f(x) = MAJ(x)] ≤ 1
2 +O

(
2kd√
n

)
.

Proof. Let ϕ : U2,k → F2 be defined as ϕ(0) = 0, ϕ(1/2) = 1 and choose arbitrarily ϕ(x) for
x ∈ U2,k \ {0, 1/2}. Applying Lemma 2.2, there exists a classical polynomial g : Fn

2 → F2
such that g(x) = ϕ(f(x)) for all x ∈ Fn

2 , where deg(g) ≤ (2k − 1)d. In particular,

Prx∈Fn
2
[g(x) = MAJ(x)] ≥ Prx∈Fn

2
[f(x) = MAJ(x)].

Hence, we can apply the Razborov-Smolensky bound [22,23] to g and conclude that

Pr[f(x) = MAJ(x)] ≤ 1
2 +O

(
deg(g)√

n

)
.

J

5 Weak representation of the OR function

A set of classical polynomials fi : Fn
pi
→ Fpi is said to weakly represent the OR function if

they all map 0n to zero, and for any other point in the boolean hypercube, at least one of
them map it to a nonzero value. This definition extends naturally to nonclassical polynomials.

I Definition 5.1. Let p1, . . . , pr be distinct primes. The polynomials fi : Fn
pi
→ T weakly

represent the OR function if
f1(0n) = . . . = fr(0n) = 0.
For any x ∈ {0, 1}n \ 0n, there exists some i such that fi(x) 6= 0.

It is well known that a single classical polynomial f : Fn
p → Fp which weakly represents

the OR function, must have degree at least n/(p− 1). This is since f(x)p−1 computes the
OR function on {0, 1}n, and hence its multi-linearization (obtained by replacing any power
xei

i , ei ≥ 1 with xi) must be the unique multi-linear extension of the OR function, which has
degree n.

We first show that there is a nonclassical polynomial of degree O(logn) which weakly
represents the OR function.

I Lemma 5.2. There exists a polynomial f : Fn
p → T of degree O(pdlogp ne) which weakly

represents the OR function.

Proof. Let k ≥ 1 be minimal such that pk > n. Define f(x) = |x1|+...+|xn|
pk . This is

a polynomial of degree 1 + (p − 1)(k − 1). Clearly f(0n) = 0 and f(x) 6= 0 for any
x ∈ {0, 1}n \ 0n. J

We show that allowing for multiple nonclassical polynomials can only improve this simple
construction by a polynomial factor.

I Theorem 5.3. Let p1, . . . , pr be distinct primes, and let p = max(p1, . . . , pr). Let fi :
Fn

pi
→ T be polynomials which weakly represent the OR function. Then at least one of the

polynomials must have degree Ω((logp n)1/r).
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The proof is an adaptation of the result of Barrington and Tardos [3], who proved similar
lower bounds for classical polynomials. We start by showing that a low degree polynomial f
with f(0) = 0 must have another point x with f(x) = 0.

I Claim 5.4. Let f : Fn
p → T be a polynomial of degree d and depth ≤ k − 1 such that

f(0) = 0. If n > (pk − 1)d then there exists x ∈ {0, 1}n \ 0n such that f(x) = 0.

We note that the bound on n is fairly tight, as f(x) = (x1 + . . .+xn)/pk (mod 1) violates
the conclusion of the claim whenever n < pk.

Proof. Let ϕ : Up,k → Fp be given by ϕ(0) = 0, ϕ(a) = 1 for all a 6= 0. Applying Lemma 2.2,
there exists a classical polynomial g : Fn

p → Fp of degree ≤ (pk − 1)d such that g(x) = 0
if f(x) = 0, and g(x) = 1 if f(x) 6= 0, for all x ∈ {0, 1}n. If f(0n) = 0 but f(x) 6= 0 for
all nonzero x ∈ {0, 1}n, then g computes the OR function over {0, 1}n. Hence, deg(g) ≥ n,
which leads to a contradiction whenever n > (pk − 1)d. J

We next extend Claim 5.4 to a find a common root for a number of polynomials.

I Claim 5.5. Let f1, . . . fr : Fn
p → T be polynomials of degree d and depth ≤ k − 1 such

that fi(0) = 0 for all i ∈ [r]. If n > (pk − 1)dr then there exists x ∈ {0, 1}n \ 0n such that
fi(x) = 0 for all i ∈ [r].

Proof. We construct an interpolating polynomial for f1, . . . , fr. Following the proof of
Claim 5.4, for each fi there exists a classical polynomial gi : Fn

p → Fp satisfying the following.
For any x ∈ {0, 1}n, if fi(x) = 0 then gi(x) = 0, and if fi(x) 6= 0 then gi(x) = 1. Moreover,
deg(gi) ≤ (pk − 1)d. Define g : Fn

p → Fp as

g(x) = 1−
r∏

i=1
(1− gi(x)).

Note that deg(g) ≤
∑

deg(gi) ≤ (pk − 1)dr. Suppose for contradiction that for every
x ∈ {0, 1}n \ 0n there is an i ∈ [r] such that fi(x) 6= 0. Then g(0) = 0 as fi(0) = 0 for all
i ∈ [r], but g(x) = 1 for all x ∈ {0, 1}n \ 0n. Then g computes the OR function over {0, 1}n,
and hence deg(g) ≥ n. This leads to a contradiction whenever n > (pk − 1)dr. J

Next, we argue that the hamming ball of radius d is an interpolating set for polynomials
of degree d over {0, 1}n. In the following, let B(n, d) = {x ∈ {0, 1}n :

∑
xi ≤ d}.

I Claim 5.6. Let f : Fn
p → T be a polynomial of degree d such that f(x) = 0 for all

x ∈ B(n, d). Then f(x) = 0 for all x ∈ {0, 1}n.

Proof. Towards contradiction, let x∗ ∈ {0, 1}n be a point such that f(x∗) 6= 0, with a
minimal hamming weight. By assumption, the hamming weight of x∗ is at least d+ 1. Let
i1, . . . , id+1 ∈ [n] be distinct coordinates such that x∗i1

= . . . = x∗id+1
= 1. Let ej ∈ {0, 1}n

be the j-th unit vector, defined as (ej)j = 1 and (ej)j′ = 0 for j′ 6= j. Define vectors
h1, . . . , hd+1 ∈ Fn

p by hj = −eij
. Since f is a degree d polynomial, we have

Dh1 . . . Dhd+1f ≡ 0.

Evaluating this on x∗ gives ∑
I⊂{i1,...,id+1}

(−1)|I|f(x∗ −
∑
i∈I

ei) = 0.

However, as we chose x∗ with minimal hamming weight such that f(x∗) 6= 0, we have
f(x∗ −

∑
i∈I ei) = 0 for all nonempty I. Hence also f(x∗) = 0. J
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Next, we prove that low degree polynomials must be zero on a large combinatorial cube.
In the following, we identify subsets S ⊂ [n] with their indicators in {0, 1}n.

I Lemma 5.7. Let f : Fn
p → T be a polynomial of degree d and depth ≤ k − 1 such that

f(0) = 0. For ` ≥ 1, if n ≥ 2dpk`d+1 then there exist pairwise disjoint and nonempty sets of
variables S1, . . . , S` ⊂ [n] such that

f

(∑̀
i=1

yiSi

)
= 0 ∀y ∈ {0, 1}`.

Proof. Fix a1, . . . , a` to be determined later such that n ≥ a1 + . . .+a`. Let A1, . . . , A` ⊂ [n]
be disjoint subsets of variables of size |Ai| = ai. We will find subsets Si ⊂ Ai such that
f(
∑
yiSi) = 0 for all y ∈ {0, 1}`. As we may set the variables outside A1, . . . , A` to zero, we

assume from now on that n = a1 + . . .+ a`.
First, set a1 = pkd. Consider the restriction of f to A1 by setting the remaining variables

to zero. By Claim 5.4, there exists a nonempty set S1 ⊂ A1 such that f(S1) = 0.
Next, suppose that we already constructed S1 ⊂ A1, . . . , Sj ⊂ Aj for some 1 ≤ j < `,

such that f(
∑
yiSi) = 0 for all y ∈ {0, 1}j . For each y ∈ {0, 1}j , define a polynomial

fy : FAj+1
p → T by

fy(x′) = f

(
j∑

i=1
yiSi + x′

)

where x′ ∈ FAj+1
p denotes the variables in Aj+1. We will find a common nonzero root for

fy(x′).
First, consider only y ∈ B(j, d). The number of such polynomials is r =

(
j
≤d

)
=
∑d

i=0
(

j
i

)
.

Applying claim 5.5, if we choose aj+1 ≥ drpk then there exists Sj+1 ⊂ Aj+1 such that

fy (Sj+1) = 0 ∀y ∈ B(j, d).

We claim that this implies that fy(Sj+1) = 0 for all y ∈ {0, 1}j . To see that, define g : Fj
p → T

by

g(y) = f

(
j∑

i=1
yiSi + Sj+1

)
.

This a polynomial of degree d, and by Claim 5.6, if it is zero for all y ∈ B(j, d), then it is
zero on all {0, 1}d. Hence, we have that f(

∑j+1
i=1 yiSi) = 0 for all y ∈ {0, 1}j+1.

We next estimate the parameters. We have
(

j
≤d

)
≤ 2jd, and hence it suffices to take

aj+1 = 2djdpk. Hence, we need n ≥ n0 for

n0 =
∑̀
j=1

aj ≤ 2dpk
∑̀
j=1

jd ≤ 2dpk`d+1.

J

We are now ready to prove Theorem 5.3.

Proof of Theorem 5.3. Let p1, . . . , pr be distinct primes, and let p = max(p1, . . . , pr). Let
fi : Fn

pi
→ T be polynomials of degree at most d and depth at most k − 1 which weakly

represent the OR function. We fix integers n ≥ n0 = `0 ≥ `1 . . . ≥ `r−1 ≥ `r = 1 which
will be specified later. Applying Lemma 5.7 to f1 with parameter `1, we get that as long
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as n is large enough, we can find disjoint nonempty subsets S1,1, . . . , S1,`1 ⊂ [n] such that
f1(
∑
yiS1,i) = 0 for all y ∈ {0, 1}`1 .

Next, consider the restriction of f2 to the combinatorial cube formed by {S1,i}. That is,
define f ′2 : F`1

p → T by f ′2(y) = f2(
∑
yiS1,i). Note that f ′2 is a polynomial of degree at most

d and depth at most k − 1. Applying Lemma 5.7 to f ′2 with parameter `2, we get that as
long as `1 is large enough, we can find disjoint nonempty subsets S′2,1, . . . , S

′
2,`2
⊂ [`1] such

that f ′2(
∑
yiS
′
2,i) = 0 for all y ∈ {0, 1}`2 . Define S2,1, . . . , S2,`2 ⊂ [n] by S2,i = ∪j∈S′2,i

S1,j .
Then S2,1, . . . , S2,`2 are disjoint nonempty subsets of [n], such that

f1

(
`2∑

i=1
yiS2,i

)
= f2

(
`2∑

i=1
yiS2,i

)
= 0 ∀y ∈ {0, 1}`2 .

Continuing in this fashion, we ultimately find disjoint nonempty subsets Sr,1, . . . , Sr,`r ⊂
[n] such that

f1

(
`r∑

i=1
yiSr,i

)
= . . . = fr

(
`r∑

i=1
yiSr,i

)
= 0 ∀y ∈ {0, 1}`r .

In particular, f1, . . . , fr cannot weakly represent the OR function. This argument requires
that for each 0 ≤ i ≤ r − 1, `i ≥ 2dpk`d+1

i+1 , which can be satisfied if

n ≥ n0 = (2dpk)(d+1)r−1
.

Now, k ≤ d/(p− 1) + 1 and hence pk ≤ pd/(p−1)+1 ≤ 2dp. As we can trivially bound 2d ≤ 2d

we obtain the simplified bound
n0 ≤ 24(d+1)r·log p.

Thus, if f1, . . . , fr weakly represent the OR function, at least one of the must have degree
d ≥ Ω((logp n)1/r). J
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A Improved weak OR representation by classical polynomials

In this section, we construct a low degree polynomial over Zm that weakly represents the OR
function. Recall that the task is to construct a polynomial P in Zm[x1, . . . , xn] such that
P (0) = 0 and P (x) 6= 0 for any nonzero x ∈ {0, 1}n. Let m = p1 · · · pr for pairwise distinct
primes pi. Let `(m) be the largest prime divisor of m. As mentioned before, the best result
is due to Barrington, Beigel and Rudich [5], who constructed a symmetric polynomial of
degree O

(
`(m)n1/r

)
that weakly represents the OR function. It is also well known [5], by

Lucas’ theorem that for symmetric functions, d = Ω
(
`(m)−1n1/r

)
.

Our construction takes us closer to the lower bound. We construct symmetric polynomials
that have modulus independent degree, that is, d = O

(
n1/r

)
.

I Theorem 1.1. Let m =
∏r

i=1 pi for pairwise distinct primes pi. Then there exists an
explicit polynomial P ∈ Zm[x1, . . . , xn] of degree at most 2dn1/re such that P weakly represents
OR modulo m.

Proof. For each 1 ≤ i ≤ r, let ei be the smallest integer such that pei
i >

⌈
n1/r

⌉
. Let Sj be

the j-th symmetric polynomial in x = (x1, . . . , xn). Let γi be a quadratic non-residue in Zpi

for odd pi. Define P ∈ Zm[x1, . . . , xn] as follows. For odd pi define

P (x) = Qi(x)2 − γiRi(x)2 mod pi

and for pi = 2 (if it exists) define

P (x) = Qi(x)2 +Qi(x)Ri(x) +Ri(x)2 mod 2.

The polynomials Qi, Ri are defined as

Qi(x) = 1−
ei−2∏
j=0

(1− Spj
i
(x)pi−1)

and
Ri(x) = S

p
ei−1
i

(x).

This uniquely defines P (x) mod m.
We next observe that P (x) = 0 mod pi if and only if Qi(x) = Ri(x) = 0 mod pi. This

follows from the irreducibility of x2 − γi over Zpi
for odd pi and x2 + x + 1 over Z2. In

particular, as Qi(0) = Ri(0) = 0 for all pi, we obtain that P (0) = 0. We next show that
P (x) 6= 0 for all x ∈ {0, 1}n \ 0n.

Let wt(x) :=
∑n

i=1 |xi|. If x ∈ {0, 1}n \ 0n then 1 ≤ wt(x) ≤ n. Hence, there exists
1 ≤ i ≤ r such that wt(x) 6= 0 mod pi

ei . To simplify notation, set p := pi, e := ei, Q :=
Qi, R := Ri from here onwards.

Consider the p-ary expansion of wt(x). Let wt(x) =
∑e−1

j=0 ajp
j + tpe, 0 ≤ aj ≤ p − 1.

Since wt(x) 6= 0 mod pe, we have aj 6= 0 for some 0 ≤ j ≤ e− 1. As x ∈ {0, 1}n, we have
Spj (x) =

(wt(x)
pj

)
. Therefore, by Lucas’ theorem, we have that aj = Spj (x) mod p.

We consider now two cases. If ae−1 6= 0 then Spe−1(x) 6= 0 mod p and hence (by
definition) R(x) 6= 0 mod p. If, on the other hand, aj 6= 0 for some j ≤ e − 2, then
Spj (x) 6= 0 mod p and hence Q(x) ≡ 1 mod p. Thus, in any case, we cannot have that
both Q(x) = R(x) = 0 mod p and hence P (x) 6= 0 mod p.

To conclude, we bound the degree of P (x). The degree of each Qi(x) is at most
(pi−1)

∑ei−2
j=0 pj

i = pei−1
i −1. The degree of each Ri(x) is pei−1

i . Therefore the degree of P (x)
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is maxi 2pei−1
i . This is where we improve on [5], as the upper bound that they obtain is pei

i .
Since ei was chosen as the least integer such that pei

i >
⌈
n1/r

⌉
, we have that pei−1

i ≤
⌈
n1/r

⌉
and hence deg(P ) ≤ 2dn1/re as claimed.

J
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Abstract
We show that the deterministic number-on-forehead communication complexity of set disjointness
for k parties on a universe of size n is Ω(n/4k). This gives the first lower bound that is linear
in n, nearly matching Grolmusz’s upper bound of O(log2(n) + k2n/2k). We also simplify the
proof of Sherstov’s Ω(

√
n/(k2k)) lower bound for the randomized communication complexity of

set disjointness.
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1 Introduction

Given a family of k sets F = (X1, . . . , Xk) over the universe [n], the disjointness function is
defined as

Disjoint(F) =
{

1 if
⋂k
i=1Xi = ∅,

0 otherwise.

We study the communication complexity of computing disjointness in the number-on-
forehead model [9]. We consider k parties that attempt to compute Disjoint(F) by exchanging
messages about X1, . . . , Xk, until one of the parties announces the value of Disjoint(F). The
i’th party can see all of the inputs except for Xi, and can send messages that depend on
the inputs she sees and all previous messages. All messages are visible to all parties. The
communication complexity is the minimum number of bits that needs to be transmitted
to compute Disjoint(F). In a randomized communication protocol, the parties use shared
randomness to pick a deterministic communication protocol, and then run the chosen
deterministic protocol. The protocol computes Disjoint(F) correctly if it outputs Disjoint(F)
with probability at least 2/3, for every family F . For formal definitions of multiparty
communication complexity and its significance, we refer the reader to [23].
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Grolmusz [19] gave a beautiful deterministic protocol showing that Disjoint(F) can be
computed deterministically with communication O(log2(n) + k2n/2k). Chattopadhyay [11]
used similar ideas to give a protocol with communication O(k log(n) + n/2k). This paper is
about proving lower bounds on the communication complexity.

1.1 Motivation and related work
Lower bounds on multiparty communication complexity are important because several
computational models such as circuits, branching programs, and propositional proofs can be
used to obtain efficient communication protocols. Strong enough communication complexity
lower bounds for the computation of any explicit function can therefore be used to prove lower
bounds on these models [3, 15, 2, 30, 40]. In particular, lower bounds on the communication
complexity of disjointness have many applications (see the recent survey [13]). Such lower
bounds imply lower bounds on proof systems [6], circuit lower bounds [21, 32, 28, 39], lower
bounds on communication for problems related to combinatorial auctions [16, 26, 25, 17, 20,
29], and oracle separations for complexity classes [1].

Attempts to prove lower bounds for disjointness have led to many interesting ideas. When
the number of parties is k = 2, Kalyanasundaram and Schnitger [22] proved that Ω(n)
communication is required in the randomized setting. Alternate proofs and tight bounds have
since been obtained [31, 4, 8] using methods involving information theory. These methods
have found many other applications that we do not discuss here.

When k is large, Tesson [38] and Beame, Pitassi, Segerlind and Wigderson [7] proved
that the deterministic communication complexity is Ω(log(n)/k). Then Sherstov [34, 35]
introduced the pattern matrix method for proving lower bounds in the case k = 2. The
method was used to separate certain circuit classes by relating their complexity to analytic
properties of boolean functions, like their approximate degree. This technique was generalized
to k > 2 by Chattopadhyay [10], Lee and Shraibman [24], and Chattopadhyay and Ada [12].
These last two papers proved lower bounds of the type Ω

(
n1/(k+1)/22O(k)) on the randomized

communication complexity. Beame and Huynh-Ngoc [5] extended these methods further to
prove that the randomized communication complexity is at least 2Ω

(√
log(n)/k

)
2−k. Finally,

Sherstov [36, 37] proved the best known lower bounds prior to our work, showing that the
randomized communication complexity is at least Ω(

√
n/(k2k)). In fact, Sherstov proved

lower bounds for a broader class of functions, as we discuss below.
These results use powerful techniques such as Fourier analysis, Gowers norms, directional

derivatives, and bounds on the approximate degree. The last two works of Sherstov are the
main inspiration for our work.

1.2 Results
In what follows, k is the number of players in the number-on-forehead model, and n is the
size of the universe. For an integer m, we denote by [m] the set {1, 2, . . . ,m}, and for two
real numbers a and b, we denote by [a, b] the interval {x ∈ R : a ≤ x ≤ b}.

Our work follows the ideas in the recent papers of Sherstov [36, 37]. We prove a linear
lower bound on the deterministic multiparty communication complexity o f disjointness:

I Theorem 1.1. The deterministic communication complexity of disjointness is Ω
(
n
4k

)
.

Given our interpretation of Sherstov’s work in [36], the proof of Theorem 1.1 is short.
We also simplify the proof of the randomized lower bound from [37]:
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I Theorem 1.2 ([37]). The randomized communication complexity of disjointness is Ω
(√

n
k2k

)
.

Sherstov proved lower bounds for functions of the type f(Disjoint(F1), . . . ,Disjoint(Fm)),
where f is a multivariate function, and F1, . . . ,Fm are families on disjoint parts of the
universe. In our proof, we focus on the case where f is symmetric. We symmetrize his proof
by viewing f as a univariate function f : {0, 1, . . . ,m} → {0, 1}, rather than as a multivariate
function.

The proof begins by bounding the discrepancy of the parity of several independent
instances of disjointness. Here we use two different bounds that Sherstov proved [36, 37], as
black boxes. The first bound, stated as Theorem 2.1 in this paper, is used for the deterministic
case, and the second, stated as Theorem 2.2, is used in the randomized case.

The rest of Sherstov’s proof of Theorem 1.2 is a method to control the error in an
approximation of the function f , using the bounds on the discrepancy. In the symmetrized
proof, this corresponds to a bound on the error in an approximation of the Kronecker delta
function (i.e. the univariate function f that is the indicator of m). We bound the error via
the following theorem, which shows that every polynomial that is not correlated with any
parity has a low-degree approximation:

I Theorem 1.3. Let m be a power of 2. For j ∈ [m], let J denote the smallest power of 2
such that J ≥ j. Let Y1, . . . , Ym ∈ {0, 1} be distributed uniformly and independently. Suppose
f is a real univariate polynomial of degree at most m, and δ ≥ 0 is such that for every
j ≥ d > 0,∣∣E [f((Y1 + . . .+ Yj)m/J) · (−1)Y1+...+Yj

]∣∣ ≤ 2−12Jδ. (1)

Then there exists a polynomial g of degree at most d− 1 such that |g(x)− f(x)| ≤ δ for all
x ∈ [0,m].

To prove Theorem 1.3, we define a useful basis b0(x), . . . , bm(x) for the space of polyno-
mials, where each bi is of degree i. Given this basis, the polynomial g is just the projection of
f to the space spanned by b0, . . . , bd−1. This basis may be of independent interest. For the
analogous part of the proof, Sherstov finds a low-degree approximation of f using a different
basis. We prove Theorem 1.3 in Section 3.

Finally, we state a corollary that may be useful in other applications.

I Corollary 1.4. There exists a function `(k) ≤ O(k24k) with the following property.
Suppose each family Fi, i ∈ [m], is supported on a disjoint universe of size `. Let
f : {0, 1, . . . ,m} → {0, 1} be an arbitrary function. If the randomized communication
complexity of f(

∑m
i=1 Disjoint(Fi)) is C, then there exists a polynomial g of degree at most

C − 1 such that |f(x)− g(x)| ≤ 1/3 + 2−3C for all x ∈ {0, 1, . . . ,m}.

The proof of the corollary follows easily from the ideas in Section 2.2.

2 The lower bounds

Without loss of generality, we assume that n = m`, where m is a power of 2 and ` is a
function of k to be determined. Any family F = (X1, . . . , Xk) can be described using the m
families F1, . . . ,Fm, each over a universe of size `, defined as

Fi = (X1 ∩ [(i− 1)`+ 1, i`], . . . , Xk ∩ [(i− 1)`+ 1, i`]). (2)
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Distribution µ on F1 ⊆ 2[`]

Let S1, . . . , Sk−1 ⊆ [`] be uniformly random sets conditioned on |S1 ∩ S2 ∩ . . . ∩ Sk−1| = 1. Let
Sk ⊆ [`] be uniform and independent. Set

F1 = (S1, . . . , Sk−1, Sk).

Figure 1 The distribution µ.

Moreover,

Disjoint(F) =
{

1 if
∑m
i=1 Disjoint(Fi) = m,

0 otherwise.

In order to prove Theorems 1.1 and 1.2, we consider distributions on families F , where
each Fi is independent and identically distributed. Sherstov shows that there are distributions
of this type under which every protocol with small communication complexity must have low
correlation with (−1)

∑m

i=1
Disjoint(Fi).

2.1 The lower bound for deterministic protocols

Consider the distribution µ given in Figure 1 as a way to sample each Fi. The following
theorem is an easy consequence of Theorem 4.2 in [36], and the fact that every communication
protocol can be expressed as a sum of cylinder intersections:

I Theorem 2.1 ([36]). If each family Fi is sampled independently according to µ, and π is
a k party protocol with communication complexity C, then

∣∣∣E [π(F) · (−1)
∑m

i=1
Disjoint(Fi)

]∣∣∣ ≤ 2C ·
(

2k−1 − 1√
`

)m
.

The proof of Theorem 2.1 involves ideas analogous to [3] and some subtle reasoning about
the distribution µ. For completeness, we give a full exposition of the proof in Appendix B.
Given Theorem 2.1, Theorem 1.1 easily follows:

Proof of Theorem 1.1. Let π be a deterministic protocol that computes Disjoint(F) with
communication complexity C. When Disjoint(F) = 1, we have (−1)

∑m

i=1
Disjoint(Fi) = (−1)m

and π(F) = 1. On the other hand, when Disjoint(F) = 0, we have π(F) = 0. In addition,
Pr[Disjoint(Fi) = 1] = 1/2 for all i ∈ [m], which implies Pr[Disjoint(F) = 1] = 2−m. Thus,∣∣∣E [π(F) · (−1)

∑m

i=1
Disjoint(Fi)

]∣∣∣ = 2−m. (3)

Now set ` = 16(2k−1 − 1)2. Theorem 2.1 and (3) imply that

2C · ((2k−1 − 1)/
√
`)m ≥ 2−m ⇒ C ≥ m = Ω

( n
4k
)
.

J
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Distribution γ on F1 ⊆ 2[`]

We define a distribution on k × ` boolean matrices. Given a matrix M sampled from this
distribution, define the family F1 by setting the i’th set Si = {j ∈ [`] : Mi,j = 1}. Let t be such
that ` = 2k−1 + t(2k − 1). Sample M as follows:
1. For each v ∈ {0, 1}k such that v 6= 1k, let M have t columns equal to v.
2. Let b ∈ {0, 1} be uniformly random. For each u ∈ {0, 1}k such that

∑k

i=1 ui = b mod 2,
add a column to M that is equal to u.

3. Permute the columns of M using a uniformly random permutation of [`].

Figure 2 The distribution γ.

2.2 The lower bound for randomized protocols
The proof of Theorem 1.1 does not give anything meaningful in the randomized setting, since
it may be the case that a randomized protocol has no correlation with (−1)

∑m

i=1
Disjoint(Fi).

To prove lower bounds on the randomized communication, following Sherstov, we use a more
complicated distribution on inputs, as well as approximation theory.

For the rest of this section, we work with the distribution γ described in Figure 2. Note
that under this distribution, Pr[Disjoint(F1) = 1] = 1/2. A crucial feature of this distribution
is the following symmetric structure: if ρ : [`] → [`] is a uniformly random permutation
independent of F1, then the families (F1, ρ(F1)) have the same joint distribution as two
independent samples (F1,F ′1) from γ conditioned on Disjoint(F1) = Disjoint(F ′1). Here by
ρ(F1) we mean the family obtained by permuting the underlying universe. In analogy with
Theorem 2.1, Sherstov shows (Corollary 4.19 in [37]) that no protocol can be significantly
correlated with (−1)

∑m

i=1
Disjoint(Fi) under the distribution γ:

I Theorem 2.2 ([37]). If each family Fi is sampled independently according to γ, and π is
a protocol with communication complexity C, then

∣∣∣E [π(F) · (−1)
∑m

i=1
Disjoint(Fi)

]∣∣∣ ≤ 2C ·
(
c0k

24k

`

)m/4
,

where c0 > 0 is a universal constant.

The proof of Theorem 2.2 is delicate, mainly due to the symmetric structure of the
distribution γ (especially if one wishes to optimize the dependence on k). This symmetric
structure is, on the other hand, very useful, and we shall exploit it next.

Given any protocol π computing Disjoint(F), define fπ as the unique degree m polynomial
so that for all t ∈ {0, 1, . . . ,m},

fπ(t) = Pr
[
π(F) = 1

∣∣∣∣∣
m∑
i=1

Disjoint(Fi) = t

]
. (4)

Since the protocol computes Disjoint(F) with probability at least 2/3, we have that
|fπ(t)| ≤ 1/3, for t = 0, 1, . . . ,m − 1, and |1 − fπ(m)| ≤ 1/3. The following well known
theorem [18, 33, 27] shows that any such function must have degree

√
m/3:

I Theorem 2.3 ([18, 33, 27]). Let ε ∈ (0, 1/2). If f : [0,m] → R is a polynomial such
that |f(t)| ≤ ε for t = 0, 1, . . . ,m − 1, and |1 − f(m)| ≤ ε, then the degree of f is at least√
m(1− 2ε)/3.
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Protocol τπ,j(F1, . . . ,Fj)

1. Let J denote the smallest power of 2 such that J ≥ j. Note that m/J is an integer, since
m is assumed to be a power of 2.

2. Using public randomness, sample J − j families Fj+1,Fj+2, . . . ,FJ according to γ, condi-
tioned on the event that Disjoint(Fj+1) = Disjoint(Fj+2) = Disjoint(FJ) = 0.

3. Let G = (F1, . . . ,F1,F2, . . . ,F2, . . . ,FJ , . . . ,FJ) be the m families obtained by repeating
each family Fi exactly m/J times.

4. Let ρ1, ρ2, . . . , ρm : [`]→ [`], η : [m]→ [m] be independent uniformly random permutations
chosen using public randomness.

5. Output π(ρ1(Gη(1)), ρ2(Gη(2)), . . . , ρm(Gη(m))).

Figure 3 The protocol τπ,j .

Theorem 2.3 is proved via a clever reduction to Markov’s bound on the magnitude of
derivatives in bounded polynomials. We include the short proof in Appendix A. We remark
that Theorem 2.3 is tight — one can use Chebyshev polynomials to give a polynomial f of
degree O(

√
m) satisfying the constraints. We shall prove that if the communication of π is

much less than
√
n/(k2k), then Theorems 2.2 and 1.3 imply that fπ can be approximated by

a polynomial whose degree is much less than
√
m, contradicting Theorem 2.3.

We analyze the behavior of π under several carefully chosen input distributions, and use
the symmetric structure of the distributions together with Sherstov’s correlation bounds to
show that fπ has low correlation with parity. We then appeal to Theorem 1.3 to conclude
that fπ has a low degree approximation. We formalize this plan by describing m protocols
τπ,1, . . . , τπ,m, each simulating π with a different distribution on inputs.

Define the protocol τπ,j as in Figure 3. The protocol τπ,j takes j families of sets F1, . . . ,Fj .
If each of F1, . . . ,Fj is in the support of γ, then the protocol τπ,j , using shared public
randomness and no communication, generates m families H1, . . . ,Hm that are independently
distributed according to γ, conditioned on

m∑
i=1

Disjoint(Hi) = (m/J)
j∑
i=1

Disjoint(Fi).

This distribution of H1, . . . ,Hm is as stated due to the symmetric structure of γ, which is
discussed in the second paragraph of this section. Finally, τπ,j simulates π on H1, . . . ,Hm.

The key properties of τπ,j are summarized in the following lemma.

I Lemma 2.4. Let j ≤ m.
1. The communication complexity of τπ,j equals that of π.
2. Let F1, . . . ,Fj be fixed families of sets, each in the support of γ. Then,

Pr[τπ,j(F1, . . . ,Fj) = 1] = fπ

((
j∑
i=1

Disjoint(Fi)
)
m/J

)
.

Lemma 2.4 and Theorem 2.2 together imply that the correlation of fπ with parity is
small:

CCC 2015
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I Lemma 2.5. Let J be the smallest power of 2 so that J ≥ j. If the communication
complexity of π is C, and Y1, . . . , Yj ∈ {0, 1} are uniformly random and independent, then

E
[
fπ((Y1 + . . .+ Yj)m/J) · (−1)Y1+...+Yj

]
≤ 2C ·

(
c0k

24k

`

)j/4
,

where c0 > 0 is a universal constant.

Proof. If F1 is distributed according to γ, then Disjoint(F1) is a uniformly random bit. Thus,

E
[
fπ((Y1 + . . .+ Yj)m/J) · (−1)Y1+...+Yj

]
= E

[
fπ

((
j∑
i=1

Disjoint(Fi)
)
m/J

)
· (−1)

∑j

i=1
Disjoint(Fi)

]

Using Lemma 2.4,

= E
[
τπ,j(F1, . . . ,Fj) · (−1)

∑j

i=1
Disjoint(Fi)

]
≤ 2C ·

(
c0k

24k

`

)j/4
,

where the last inequality is by Theorem 2.2, since the communication complexity of τπ,j is
equal to that of π. J

Given Lemma 2.5, the proof is completed as follows:

Proof of Theorem 1.2. We set ` = 216·4c0k
24k, so that the right hand side of Lemma 2.5

is 2C−16j . Fix any randomized protocol π that computes Disjoint(F) on the distribution
induced by γ with C bits of communication. Let fπ be as defined in (4).

By Lemma 2.5, fπ satisfies the hypothesis of Theorem 1.3, with d = C. Thus we conclude
that there is a degree C−1 polynomial g that agrees with fπ up to an error of 2−3C . Theorem
2.3 implies that

C ≥
√
m(1− 2(1/3 + 2−3C))/3 ⇒ C ≥ Ω(

√
n/(k2k)).

J

3 Approximating functions that are not correlated with parity

Here we prove Theorem 1.3, which shows that if a polynomial has low correlation with
parity, then it can be approximated by a low degree polynomial. We restate the theorem for
convenience.

I Theorem 1.3 (restated). Let m be a power of 2. For j ∈ [m], let J denote the smallest
power of 2 such that J ≥ j. Let Y1, . . . , Ym ∈ {0, 1} be distributed uniformly and independently.
Suppose f is a real univariate polynomial of degree at most m, and δ ≥ 0 is such that for
every j ≥ d > 0,∣∣E [f((Y1 + . . .+ Yj)m/J) · (−1)Y1+...+Yj

]∣∣ ≤ 2−12Jδ. (5)

Then there exists a polynomial g of degree at most d− 1 such that |g(x)− f(x)| ≤ δ for all
x ∈ [0,m].
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In what follows, let Y1, . . . , Ym ∈ {0, 1} be independent and uniformly random bits, and
let I, J be the smallest powers of 2 such that I ≥ i and J ≥ j.

To prove the theorem, we define a useful basis for the space of polynomials. Let b0(x) = 1.
For i > 0, let1

bi(x) = 2i
(
xI/m

i

)
= 2ix(x−m/I)(x− 2m/I) . . . (x− (i− 1)m/I)

i! · (m/I)i .

Since bi is of degree i, the polynomials b0, . . . , bm form a basis for the space of polynomials
of degree at most m. To prove Theorem 1.3, we express f in this basis and then argue that
all coefficients corresponding to high degree terms are negligible. The polynomials in our
basis can be bounded by the following lemma:

I Lemma 3.1. For every i ∈ {0, 1, . . . ,m}, maxx∈[0,m] |bi(x)| ≤ 8i.

Proof. We show that the maximum of bi is attained when x = m, and so

max
x∈[0,m]

|bi(x)| = |bi(m)| = 2i
(
mI/m

i

)
≤ 2i · 2I ≤ 8i.

Note that the magnitude of bi is symmetric around the point (i− 1)m/(2I),

|bi(x+ (i− 1)m/(2I))| = |bi(−x+ (i− 1)m/(2I))|.

So the maximum is attained with x ∈ [(i− 1)m/(2I),m]. For any such x that is not a root
of bi,∣∣∣∣bi(x+m/I)

bi(x)

∣∣∣∣ =
∣∣∣∣ x+m/I

x− (i− 1)m/I

∣∣∣∣ ≥ ∣∣∣∣x+m/I

x

∣∣∣∣ > 1,

proving that the maximum is attained with x ∈ [m − m/I,m]. For such x, every term
(x− jm/I) with j ∈ {0, 1, . . . , i−1} in bi(x) is non-negative, and so the maximum is attained
when x = m. J

The basis polynomials behave nicely under the random experiments from (1):

I Lemma 3.2. For all i ∈ {0, 1, 2, . . . ,m} and j ∈ [m],

∣∣E [bi((Y1 + . . .+ Yj)m/J) · (−1)Y1+...+Yj
]∣∣


= 0 if i < j,
= 1 if i = j,
= 0 if j < i ≤ J ,
≤ 8i if J < i.

Proof. When i < j, the polynomial bi(y1 + . . .+ yj) has degree i in the variables y1, . . . , yj .
Since every monomial must exclude one of the j variables, the contribution of each of the
monomials to the expectation is 0. When i = j, bi((y1 + . . . + yi)m/I) = 2i

(
y1+...+yi

i

)
is

non-zero only when y1 = y2 = . . . = yi = 1. Thus the expectation is 2−i · 2i
(
i
i

)
= 1 in this

case. When j < i ≤ J , we have I = J . Since for r ∈ [i − 1], bi(rm/I) = 2i
(
r
i

)
= 0, the

expectation is 0. When i > J , by Lemma 3.1, the expectation is at most 8i. J

Theorem 1.3 now follows by straightforward induction:

1 Here and below we think of
(
x
i

)
= x(x−1)(x−2)...(x−(i−1))

i! as a real polynomial in the variable x.
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Proof of Theorem 1.3. Write f(x) =
∑m
j=0 ajbj(x), and let g(x) be the degree d− 1 poly-

nomial g(x) =
∑d−1
j=0 ajbj(x). To prove the theorem, we show that |g(x)− f(x)| ≤ δ for all

x ∈ [0,m]. Lemma 3.2 and (1) imply that for j = d, . . . ,m,

|aj | −
m∑

i=J+1
8i|ai| ≤ |E

[
f((Y1 + . . .+ Yj)m/J) · (−1)Y1+...+Yj

]
| ≤ 8−4Jδ

⇒ |aj | ≤ 8−4Jδ +
m∑

i=J+1
8i|ai|. (6)

We now prove by induction that for j = m,m− 1, . . . , d,
J∑
t=j
|at| ≤ 8−3Jδ. (7)

When m/2 < j ≤ m, (6) implies
m∑
t=j
|at| ≤ (m/2)8−4mδ ≤ 8−3mδ.

In the general case (6) implies

(2/J)
J∑
t=j
|at| ≤ 8−4Jδ +

m∑
t=J+1

8t|at| ≤ 8−4Jδ +
log(m)∑

r=log(J)+1

82r
2r∑

t=1+2r−1

|at|

Applying the induction hypothesis, we get

≤ 8−4Jδ +
log(m)∑

r=log(J)+1

82r

8−3·2r

δ ≤ 8−4Jδ + 8−4Jδ

∞∑
q=0

8−q ≤ 8−3J(2/J)δ,

which proves the general case of (7).
Finally, for every x ∈ [0,m], Lemma 3.1 and (7) imply

|g(x)− f(x)| ≤
m∑
j=d
|aj ||bj(x)| ≤

logm∑
r=dlog de

8−3·2r

δ · 82r

≤ 8−2dδ

∞∑
q=0

8−2q ≤ δ.

J
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A Approximation theory

The proof relies on a fundamental theorem of Markov, relating the degree of a bounded
polynomial to the maximum value of its derivative.

I Theorem 1.1 (Markov’s Theorem [14]). Let g : [−1, 1] → [−1, 1] be computed by a
polynomial of degree d. Then |g′(y)| ≤ d2 for every y ∈ [−1, 1].

Markov’s theorem allows us to prove the statement about approximation that we need:

Proof of Theorem 2.3. Let d be the degree of f and let D = maxx∈[0,m] |f ′(x)|. We can
bound f using D as follows. The value |f(j)| is at most 1 + ε for j ∈ {0, 1, . . . ,m}, and so
|f(x)| ≤ 1 + ε+D/2 for x ∈ [0,m]. On the other hand, D ≥ f(m)−f(m−1)

1 ≥ 1− 2ε.
Now consider the degree d polynomial g : [−1, 1]→ [−1, 1] given by g(y) = f(my/2+m/2)

1+ε+D/2 .
Since g′(y) = (m/2)f ′(my/2+m/2)

1+ε+D/2 , there is a y ∈ [−1, 1] such that |g′(y)| = Dm/2
1+ε+D/2 . By

Theorem 1.1,

d2 ≥ Dm/2
1 + ε+D/2 ≥

m(1/2− ε)
1 + ε+ 1/2− ε = 2m(1/2− ε)

3 ,

so
d ≥

√
m(1− 2ε)/3.

J
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B Bounding the discrepancy for the deterministic case

Here we give the proof of Theorem 2.1 [36]. Let F = (T1, . . . , Tk). We shall need to analyze
the discrepancy on a more general class of distributions. Let each family Fi be sampled
independently according to the distribution µ, on a universe of size `i. Let g(F) be a cylinder
intersection, that is, g(F) =

∏k
i=1 gi(F) where each gi is 0/1 valued and does not depend on

Ti. We shall prove that

∣∣∣E [g(F) · (−1)
∑m

i=1
Disjoint(Fi)

]∣∣∣ ≤ m∏
i=1

2k−1 − 1√
`i

, (8)

which implies Theorem 2.1, since every communication protocol with communication C can
be expressed as a sum of 2C cylinder intersections. We prove (8) by induction on k.

When k = 2, convexity implies that∣∣∣E [g(F) · (−1)
∑m

i=1
Disjoint(Fi)

]∣∣∣2
≤ E
T2

[
g1(F) E

T1

[
g2(F) · (−1)

∑m

i=1
Disjoint(Fi)

]2]
≤ E
T2

[
E
T1

[
g2(F) · (−1)

∑m

i=1
Disjoint(Fi)

]2]
= E
T2,T1,T ′1

[
g2(F) · g2(F ′) · (−1)

∑m

i=1
Disjoint(Fi)+Disjoint(F ′i)

]
≤ E
T1,T ′1

[∣∣∣∣E
T2

[
(−1)

∑m

i=1
Disjoint(Fi)+Disjoint(F ′i)

]∣∣∣∣] ,
where here F = (T1, T2) and F ′ = (T ′1, T2). Now for every fixing of T1, T

′
1, the inner

expectation is 1 when T1 = T ′1, and otherwise it is 0. Thus,

∣∣∣E [g(F) · (−1)
∑m

i=1
Disjoint(Fi)

]∣∣∣2 ≤ Pr[T1 = T ′1] =
m∏
i=1

1
`i
,

proving the base case.
When k > 2, we again use convexity to bound∣∣∣E [g(F) · (−1)

∑m

i=1
Disjoint(Fi)

]∣∣∣2
≤ E
T2,...,Tk

g1(F) E
T1

 k∏
j=2

gj(F) · (−1)
∑m

i=1
Disjoint(Fi)

2


≤ E
T1,T ′1

∣∣∣∣∣∣ E
T2,...,Tk

 k∏
j=2

gj(F) · gj(F ′)

 (−1)
∑m

i=1
Disjoint(Fi)+Disjoint(F ′i)

∣∣∣∣∣∣
 , (9)

where here F = (T1, T2, . . . , Tk) and F ′ = (T ′1, T2, . . . , Tk). Recall that the first k − 1 sets of
Fi and F ′i each intersect in exactly one element. Let Z = (Z1, Z2, . . . , Zm), where Zi is the
indicator random variable for the event that these two elements are not the same in Fi and
F ′i . Let Q = T1 \ T ′1, Q′ = T ′1 \ T1, and denote by Qi, Q′i the intersection of these sets with
the i’th part of the universe (see (2)). Let R denote all the intersections of the sets T2, . . . , Tk
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with the elements that are not in Q,Q′. By convexity of the absolute value function,

(9) ≤ E
T1,T ′1,R,Z

∣∣∣∣∣∣ E
T2,...,Tk

 k∏
j=2

gj(F) · gj(F ′)

 (−1)
∑m

i=1
Disjoint(Fi)+Disjoint(F ′i)

∣∣∣∣∣∣


≤ E
Z,Q,Q′

[ ∏
i:Zi=1

(2k−2 − 1)2√
|Qi| · |Q′i|

]
, (10)

where the last inequality follows from the fact that after fixing T1, T
′
1, Z,R, the inner

expectation can be bounded by the inductive hypothesis applied to the families where Zi = 1,
over the disjoint universes Qi, Q′i, and the cylinder intersection defined by

∏k
j=2 gj(F)gj(F ′).

Apply the arithmetic-mean-geometric-mean inequality to conclude that

(10) ≤ E
Z,Q,Q′

[ ∏
i:Zi=1

(2k−2 − 1)2 1
2

(
1
|Qi|

+ 1
|Q′i|

)]
. (11)

Since (even conditioned on the value of Z) the size of Qi is distributed identically to the size
of Q′i, we have

(11) = E
Z,Q

[ ∏
i:Zi=1

(2k−2 − 1)2

|Qi|

]

≤
m∏
i=1

(
Pr[Zi = 0] + E

Zi,Qi

[
Zi(2k−2 − 1)2

|Qi|

])
, (12)

where here we adopt the convention that Zi/|Qi| is 0 when Zi = 0, |Qi| = 0. We shall prove
that for all i,

Pr[Zi = 0] ≤ 2k−1 − 1
`i

, (13)

and

E
Zi,Qi

[
Zi
|Qi|

]
≤ 2(2k−1 − 1)
`i(2k−2 − 1) . (14)

Inequalities (13) and (14) imply that

(12) ≤
m∏
i=1

(
2k−1 − 1

`i
+ 2(2k−1 − 1)(2k−2 − 1)2

`i(2k−2 − 1)

)

=
m∏
i=1

(
2k−1 − 1 + (2k−1 − 1)(2k−1 − 2)

`i

)
=

m∏
i=1

(2k−1 − 1)2

`i
,

as required.
It only remains to prove (13) and (14). Fix i for the rest of the proof. We start with (13).

Let S1, . . . , Sk be the intersections of T1, . . . , Tk with the i’th part of the universe, and let
S′1 be the intersection of T ′1 with the i’th part of the universe. Observe that for all w 6= ∅,

Pr
[
Zi = 0

∣∣∣∣ ∩k−1
j=2 Sj = w

]
= 1
|w|

.

The total number of choices for sets S1, . . . , Sk−1 can be counted as the number of ways to
pick the common intersection point, times the number of configurations for the rest of the



A. Rao and A. Yehudayoff 101

universe: `i · (2k−1 − 1)`i−1. Of these, the number of configurations with ∩k−1
j=2Sj = w can be

counted as the number of choices for the common intersection point in w, times the number
of configurations for the rest of the universe: |w| · (2k−1 − 2)`i−|w|. So the probability that
the two intersection points are the same is

Pr[Zi = 0] = 1
`i · (2k−1 − 1)`i−1 ·

∑
w 6=∅

|w| · (2k−1 − 2)`i−|w|

|w|

≤ 1
`i · (2k−1 − 1)`i−1 · (2

k−1 − 2 + 1)`i = 2k−1 − 1
`i

,

proving (13).
Next we prove (14). Let p = 2k−2−1

2(2k−1−1) . Let V = S1 ∩ . . . ∩ Sk−1 be the intersection set
of size 1. We claim that for every non-empty set q, and singleton v,

Pr[Zi = 1, Qi = q, V = v]
{
≤ p|q|−1(1− p)`i−|q|/`i when v ⊆ q,
= 0 otherwise.

(15)

When V is not contained in Qi, the value of Zi is always 0. On the other hand, when v ⊆ q,

Pr[Zi = 1, Qi = q, V = v] ≤ Pr[Qi = q, V = v]
= (1/`i) · Pr[Qi = q|V = v]

≤ p|q|−1(1− p)`i−|q|/`i,

since every element e /∈ v is included in Qi with probability p, independent of all other such
elements. Indeed such an element is included in S1 with probability 2k−2−1

2k−1−1 , and given that
it is included in S1, it is excluded from S′1 with probability 1/2.

When |Qi| = 0, we have that Zi = 0, and so Zi/|Qi| = 0 by our convention. Thus (15)
gives

E
Z,Qi

[
Zi
|Qi|

]
≤

∑
v:|v|=1

∑
q:v⊆q

p|q|−1(1− p)`i−|q|/`i
|q|

= 1
p`i

∑
q 6=∅

p|q|(1− p)`i−|q|

≤ 1
p`i
· (1− p+ p)`i = 2(2k−1 − 1)

`i(2k−2 − 1) ,

proving (14).
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Abstract
We study the relationship between communication and information in 2-party communication
protocols when the information is asymmetric. If IA denotes the number of bits of information
revealed by the first party, IB denotes the information revealed by the second party, and C is
the number of bits of communication in the protocol, we show that

one can simulate the protocol using order IA + 4
√
C3 · IB · logC +

√
C · IB · logC bits of

communication,
one can simulate the protocol using order IA · 2O(IB) bits of communication.

The first result gives the best known bound on the complexity of a simulation when IA � IB , C3/4.
The second gives the best known bound when IB � logC. In addition we show that if a function
is computed by a protocol with asymmetric information complexity, then the inputs must have
a large, nearly monochromatic rectangle of the right dimensions, a fact that is useful for proving
lower bounds on lopsided communication problems.
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1 Introduction

Can one compress the communication in 2-party communication protocols when the informa-
tion revealed by the messages of the protocol is small? This has been a central question in
communication complexity in recent years. Interest in the question is fueled by applications
to proving lower bounds in communication complexity, which in turn yield lower bounds
for streaming algorithms and data structures among other models. In this work, we obtain
stronger results when one party reveals much less information than the other, a case that
often arises when studying data structures.
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as the mutual information between the inputs and the messages of the protocol. Barak,
Braverman, Chen and Rao [4] called this measure the external information cost of a protocol,
and proved that if the protocol π has external information cost Iext
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called the internal information cost of the protocol. This is the amount of information that
is revealed by the parties of the protocol: let IAπ denote the information revealed by the
first party, and IBπ denote the information revealed by the second party. Then the internal
information cost is defined to be Iπ = IAπ + IBπ . Since each of the parties already knows one
of the inputs, the internal information cost is never more than the external information cost,
with equality when the inputs to the parties are independent of each other. This quantity
turns out to be the most interesting for applications to lower bounds. Indeed, Braverman
and Rao [8] showed that the internal information cost required to compute a function is
exactly equal to the amortized communication complexity of the function, so this quantity
has a very natural interpretation, seemingly independent of information theory.

[4] showed that any protocol π can be simulated inO(
√
IπCπ logCπ) bits of communication.

If we wish the simulation to not have a dependence on the communication of the original
protocol, Braverman [6] showed that one can carry out the simulation using communication
complexity 2O(Iπ) (see also [9, 13]), a result that was subsequently proven to be tight by
Ganor, Kol and Raz [11]. In addition, Braverman and Weinstein [9] (see also [13]) showed that
if a function is computed by π, then the space of inputs must contain a nearly monochromatic
rectangle of density 2−O(Iπ), a fact that can be used to prove lower bounds on the information
complexity of computing functions.

In the setting of bounded round communication, Braverman and Rao [8] showed that
a single message can be compressed to its internal information, giving a protocol that
can simulate any r-round protocol with internal information cost I using I +O(r) bits of
communication.

In this work, we generalize and strengthen several of these results, in the case that
IB � IA, C. This case is interesting in part because many lower bounds for data structures
involve proving lower bounds on so called lopsided problems, problems where the optimal
lower bound on communication for one party is much smaller than for the other party(see [15],
[18], [2], [17], [16], [5], [12], [19]). Indeed, our techniques allow us to reprove an important
and well known theorem of Patrascu [18] giving a tight lower bound on the communication
complexity of lopsided disjointness.

Our first theorem is somewhat analogous to the result of [4]. We show

I Theorem 1.1. Every protocol π can be ε-simulated by a protocol with expected communica-
tion O

(
IAπ + 4

√
‖π‖3 · IBπ · log(1/ε) + 4

√
‖π‖3 · IBπ · log ‖π‖+

√
‖π‖ · IBπ · log ‖π‖

)
.

We prove Theorem 1.1 in Section 3. At a high level, we first show that π can be simulated
by a bounded round protocol, and then use the ideas of [8] to get the final simulation.

Our second result is an analogue of [6]:

I Theorem 1.2. π can be simulated in communication complexity IAπ · 2O(IBπ ).

Theorem 1.2 shows that when the information revealed by one of the parties is a constant,
the communication is within a constant factor of the information. We prove Theorem 1.2 in
Section 4. As a corollary to Theorem 1.2, we show the following,

I Corollary 1.3. If π computes f(x, y), then there exists a rectangle S × T and a constant c
such that

Pr[x ∈ S] ≥ 2−O(IAπ ), Pr[y ∈ T |x ∈ S] ≥ 2−O(IBπ )

and

Pr[f(x, y) = c|(x, y) ∈ S × T ] ≥ 2/3.
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Table 1 Known bounds on the complexity of simulating r-round protocols with communication
C and information IA, IB .

Reference Communication Complexity of the Simulation

[4] O
(√

(IA + IB)C logC
)

[4] O
(
(IA + IB) logC

)
(when inputs are independent)

[6] 2O(IA+IB)

[8] IA + IB +O
(√

r · (IA + IB) + 1
)

+ r log(1/ε)

Theorem 1.1 O
(
IAπ + 4

√
‖π‖3 · IBπ · log(1/ε) + 4

√
‖π‖3 · IBπ · log ‖π‖+

√
‖π‖ · IBπ · log ‖π‖

)
Theorem 1.2 IA · 2O(IB)

One can view Corollary 1.3 as defining an asymmetric notion of discrepancy, and showing
that if the information complexity is small, then the discrepancy must be large. Corollary1.3
is a useful tool to prove lower bounds on lopsided problems. We illustrate this by using the
ideas going into Corollary 1.3 to give optimal lower bounds on the communication complexity
of lopsided disjointness (a bound first proved by Patrascu [18]).

Table 1 summarizes all of the simulation results discussed in this introduction.

2 Preliminaries

Unless otherwise stated, logarithms in this text are computed base two. Random variables
are denoted by capital letters and values they attain are denoted by lower-case letters. For
example, A may be a random variable and then a denotes a value A may attain and we may
consider the event A = a. Given a = a1, a2, . . . , an, we write a≤i to denote a1, . . . , ai. We
define a>i and a≤i similarly. [`] denotes the set {1, 2, . . . , `}.

We use the notation p(a) to denote both the distribution on the variable a, and the
number Prp[A = a]. The meaning will be clear from context. We write p(a|b) to denote
either the distribution of A conditioned on the event B = b, or the number Pr[A = a|B = b].
Again, the meaning will be clear from context. Given a distribution p(a, b, c, d), we write
p(a, b, c) to denote the marginal distribution on the variables a, b, c (or the corresponding
probability). We often write p(ab) instead of p(a, b) for conciseness of notation. If W is an
event, we write p(W ) to denote its probability according to p. We denote by Ep(a) [g(a)] the
expected value of g(a) with respect to a distributed according to p.

For two distributions p, q, we write |p(a)− q(a)| to denote the `1 distance between the
distributions p and q. We write p ε

≈ q if |p− q| ≤ ε.

I Proposition 2.1. Let p(x), q(x) be two distributions and F be an event such that p(x|F ) ε
≈

q(x). Then if p(F ) ≥ 1− γ, we have p(x)
ε+2γ
≈ q(x).

Proof. The `1 distance between p, q can be expressed as 2 maxT (p(T ) − q(T )), where the
maximum is taken over all subsets of the support of p(x). Let T be the maximizer. Then

|p(x)− q(x)| = 2(p(T )− q(T ))
= (2(p(T |F )p(F ) + p(¬F )p(T |¬F ))− q(T ))
≤ 2(p(T |F )− q(T )) + 2p(¬F )
≤ ε+ 2γ,

as required. J
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I Proposition 2.2. Let p(x), q(x) be two distributions and F be an event such that p(x) ε
≈ q(x).

Then if p(F ) ≥ 1− γ ≥ 3/4, we have p(x|F )
ε+4γ
≈ q(x).

Proof. The `1 distance between p(x|F ), q(x) can be expressed as 2 maxT p(T |F ) − q(T ),
where the maximum is taken over all subsets of the support of p(x). Let T be the maximizer.
Then

|p(x|F )− q(x)| = 2(p(T |F )− q(T ))
= 2(p(T, F )/p(F )− q(T ))
≤ 2(p(T )/p(F )− q(T ))
≤ 2(p(T )/(1− γ)− q(T ))
≤ 2(p(T )(1 + 2γ)− q(T ))
≤ ε+ 4γ,

as required. J

The entropy of a random variable A, conditioned on B is defined to be

Hp(A|B) =
∑
a,b

p(ab) log 1
p(a|b)

For a binary random variable A, we denote the entropy of A to be

h(p(0)) = − [p(0) log p(0) + (1− p(0)) log(1− p(0))]

The divergence between two distributions is defined to be

D

(
p

q

)
=
∑
a

p(a) log p(a)
q(a)

The mutual information between two random variables A,B, conditioned on C is defined
to be

Ip(A;B|C) =
∑
a,b,c

p(abc) log p(abc)
p(a|c)p(b|c) .

This is always a non-negative quantity, and is at most log |Supp(A)|. When the underlying
distribution p is clear from the context, we sometimes omit it from the notation. The mutual
information satisfies the chain rule:

I Proposition 2.3 (Chain Rule). I(A1A2;B|C) = I(A1;B|C) + I(A2;B|A1C).

Pinsker’s inequality bounds the `1 distance in terms of the divergence:

I Proposition 2.4 (Pinsker). D

(
p

q

)
≥ |p− q|2.

An alternate formulation is as follows:

I Proposition 2.5 (Alternate Pinsker). Ep(bc) [|p(a|bc)− p(a|c)|] ≤
√
I(A;B|C).

The chain rule easily gives the following inequality:
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I Proposition 2.6 (Data Processing Inequality). If the random variable A determines B, then
I(A;C) ≥ I(B;C).

I Proposition 2.7 ([11]). Let p(ab) be a distribution and q(a) be another. Then

E
p(b)

[
D

(
p(a|b)
p(a)

)]
≤ E
p(b)

[
D

(
p(a|b)
q(a)

)]
.

We shall sometimes deal with distribution on strings of variable length. We have the
following proposition, which follows from Shannon’s source coding theorem:

I Proposition 2.8. Suppose A is a random variable supported on binary strings of length up
to n, such that no string in the support of A is a prefix of another string in the support of A.
Then I(A;B|C) ≤ E [|A|] .

2.1 Communication Complexity
For a more involved introduction to communication complexity, we refer the reader to the
book [14]. Given a protocol π that operates on inputs x, y drawn from a distribution µ using
public randomness1 r and messages m, we write π(xymr) to denote the joint distribution
of these variables. We write ‖π‖ to denote the communication complexity of π, namely the
maximum number of bits that may be exchanged by the protocol in any execution. The
maximum number of alternations between messages sent by Alice and those sent by Bob is
called the number of rounds of the protocol.

Let q(x, y, a) be an arbitrary distribution. We say that a protocol π δ-simulates q, if
there is a function g and a function h such that

π(x, y, g(x, r,m), h(y, r,m)) δ
≈ q(x, y, a, a),

where q(x, y, a, a) is the distribution on 4-tuples (x, y, a, a) where (x, y, a) are distributed
according to q. Thus if π δ-simulates q, the protocol allows the parties to sample a according
to q(a|xy).

If λ is a protocol with inputs x, y, public randomness r′ and messages m′, we say that π
δ-simulates λ if π δ-simulates λ(x, y, (r′,m′)). We say that π simulates λ if π 0-simulates λ.

We say that π computes
a function f(x, y) with success probability 1− δ, if π δ-simulates π(x, y, f(x, y)).
We shall sometimes refer to the expected communication, or expected number of rounds of

a protocol π. We note here that one can always use a bound on the expected communication
or number of rounds to get a bound on the worst case communication, via the following
proposition:

I Proposition 2.9. If π has expected communication c, then it can be γ-simulated by a
protocol with communication c/γ.

Our work relies on ways to measure the information complexity of a protocol (see [4, 7]
and references within for a more detailed overview). The internal information cost [4] of π is

1 In our paper we define protocols where the public randomness is sampled from a continuous (i.e.
non-discrete) set. Nevertheless, we often treat the randomness as if it were supported on a discrete
set, for example by taking the sum over the set rather than the integral. This simplifies notation
throughout our proofs, and does not affect correctness in any way, since all of our public randomness
can be approximated to arbitrary accuracy by sufficiently dense finite sets.
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defined to be Iπ(X;M |Y R) + Iπ(Y ;M |XR). This quantity is the sum of the information
learnt by Alice about Bob’s input, IBπ = Iπ(Y ;M |XR), and the information learnt by Bob
about Alice’s input, IAπ = Iπ(X;M |Y R). We will sometimes say that the internal information
is (IA, IB) when we want to consider the values of both quantities instead of the sum.

2.1.1 Results from prior work
I Theorem 2.10 ([8]). For every ε > 0, if π is an a protocol with internal information
cost I and r rounds in expectation, then π can be ε-simulated with expected communication
I +O(

√
r · I + 1) + r log(1/ε).

I Theorem 2.11 ([8]). For any f, µ, ε, let π be the protocol computing f on n independent
pairs of inputs, each drawn from the distribution µ and probability of error is at most ε on each
pair, then there exists a protocol τ computing f on a single input pair with communication
||τ || = ||π|| and information IAτ ≤

IAπ
n , IBτ ≤

IBπ
n

3 Compressing Protocols with Asymmetric Information – I

In this section, we show how to compress protocols to take advantage of situations where the
information learnt by one party is significantly larger than the information revealed by the
other party. We shall prove Theorem 1.1.

We compress the given protocol in two steps. In the first step, we convert the protocol
into a bounded round protocol, while controlling its internal information cost. In the second
step, we apply Theorem 2.10 to conclude the proof. The first step is captured by the following
theorem:

I Theorem 3.1 (Bounded round simulation). Given any protocol π and a parameter k, there
exists a protocol that simulates π with

√
IBπ · ‖π‖+ ‖π‖/k number of rounds in expectation,

and internal information at most ‖π‖ log ‖π‖
k + k

√
IBπ · ‖π‖+ IAπ + 2 log ‖π‖

√
‖π‖ · IBπ + 3.

We use the protocol τ given in figure 12 to simulate π.
Let M denote the output of τ . Then we claim that the distribution of m is correct:

I Lemma 3.2. τ(xyrm) = π(xyrm).

Proof. It is clear that τ(xyr) = π(xyr). For each i ∈ [‖π‖], if mi is to be sent by Alice
in π, then mi = 1 exactly when ρi < π(mi|xrm<i), and if mi is to be sent by Bob in π,
then mi = 1 exactly when ρi < π(mi|yrm<i). Thus, if mi is to be sent by Alice in π,
τ(mi|xyrm<i) = π(mi|xrm≤i) = π(mi|xyrm≤i). On the other hand, if mi is to be sent by
Bob in π, then τ(mi|xyrm<i) = π(mi|yrm<i) = π(mi|xyrm<i). Thus

τ(xyrm) = τ(xyr) ·
‖π‖∏
i=1

τ(mi|xyrm<i) = π(xyr) ·
‖π‖∏
i=1

π(mi|xyrm<i) = π(xyrm).

J

Let L denote the number of mistake indices j reported to Alice by Bob in τ . Then we
have:

2 Here we do not bother optimizing the communication of τ , since the communication will be eventually
optimized via Theorem 2.10.
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Input: x, y, the inputs to π. A parameter k.
Output: m, r distributed according to π(mr|xy).
Public Randomness: The public randomness r of π, as well as an additional

sequence of uniformly random numbers
r′ = ρ1, . . . , ρ‖π‖ ∈ [0, 1].

Let m be the empty string;
while |m| < ‖π‖ do

Set t = |m|;
for i = t+ 1, . . . ,min{k + t, ‖π‖} do

if mi is sent by Bob in π then Alice checks if ρi < π(mi = 1|xrm<i), and sets
mi = 1 if this is the case. Otherwise she sets mi = 0;
else Alice samples mi privately according to the distribution π(mi|xrm<i);

end
Alice sends the current transcript m to Bob;
Bob computes the smallest index j ∈ [min{k + t, ‖π‖}] such that mj would have
been sent by Bob in π and ρj lies in the interval between π(mj = 1|xrm<j) and
π(mj = 1|yrm<j). Bob can check this using ρj ,m, y, r;
Bob sends j to Alice, or reports that there is no such j;
Alice corrects m if such j is found, by flipping the bit mj , and truncating m = m≤j ;

end
return m;

Figure 1 Protocol τ simulating π.

I Lemma 3.3. The number of rounds in τ is at most ‖π‖/k + L = 4
√
‖π‖3 · IBπ + L.

Proof. There are L rounds where Alice needs to truncate m. In every other round, at least k
new bits of the messages of π are sampled, so there can be at most ‖π‖/k additional rounds
of communication. J

Given the last lemma, we can bound the number of rounds in the protocol by bounding
L:

I Lemma 3.4. E [L] ≤
√
IBπ · ‖π‖.

Proof. Let Li denote the indicator random variable for the event that the i’th index of the
message is corrected by Bob in τ , so L =

∑‖π‖
i=1 Li. If the i’th message is sent by Alice, then

Li = 0. On the other hand, if it is sent by Bob, by Proposition 2.5, we get

τ(Li = 1) = E
xyrm<i

[|π(mi|xrm<i)− π(mi|yrm<i)|]

= E
xyrm<i

[|π(mi|xrm<i)− π(mi|xyrm<i)|]

≤
√
I(Mi;Y |XRM<i).

The penultimate inequality is true since mi is sampled by Bob in π, hence is independent of
x conditioned on y, r,m<i.
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Thus by linearity of expectation and the Cauchy Schwartz inequality, we get

E [L] ≤
‖π‖∑
i=1

√
I(Mi;Y |XRM<i)

≤

√√√√‖π‖ · ‖π‖∑
i=1

I(Mi;Y |XRM<i)

=
√
‖π‖ · I(M ;Y |XR),

where here we used the chain rule (Proposition 2.3) in the last step. J

Lemma 3.4 and Lemma 3.3 together imply that the expected number of rounds in τ is at
most

√
IBπ · ‖π‖+ ‖π‖/k. It only remains to bound the internal information of τ :

I Lemma 3.5. The internal information of τ is at most

‖π‖ log ‖π‖
k

+ k
√
IBπ · ‖π‖+ IAπ + 2 log ‖π‖

√
‖π‖ · IBπ + 3

Proof. Recall that R′ denotes the sequence of numbers ρ1, . . . , ρ‖π‖. The public randomness
of τ consists of R,R′. Let Z denote the messages exchanged in the protocol τ . Let ZA denote
the bits sent by Alice, and ZB denote the bits sent by Bob. Then the information learnt by
Alice can be expressed as

Iτ (ZAZB ;Y |XRR′) = Iτ (ZB ;Y |XRR′) + Iτ (ZA;Y |XRR′ZB), (1)

by the chain rule. The the second term of (1) is 0, since Alice’s messages are independent of
Y , given Bob’s messages and Alice’s inputs. For the first term, we use Proposition 2.8 to
bound it by E [|ZB |]. The total number of rounds of the protocol is at most L+ ‖π‖/k, since
every round where there is no mistake must simulate at least k messages from the protocol.
Thus E [|ZB |] ≤ (E [L] + ‖π‖/k) log ‖π‖ ≤

√
IBπ · ‖π‖ log ‖π‖+ ‖π‖ log ‖π‖

k , by Lemma 3.4.
Next we bound the information learnt by Bob in τ . This can be written

Iτ (Z;X|Y RR′) =
|Z|∑
i=1

Iτ (Zi;X|Z<iY RR′) = E
xyrr′z

 |z|∑
i=1

D

(
zi|xyrr′z<i
zi|yrr′z<i

) (2)

by the chain rule.

I Claim 3.6. For x ∈ [0, 1/2] log(1/(1− x)) ≤ 3x

Proof. Let T = ln(1/(1− x)). The Taylor expansion of ln(1/(1− x)) gives,

T = ln(1/(1− x)) = x+ x2/2 + x3/3 + · · ·
= x+ x(x/2 + x2/3 + x3/4 + · · · )
≤ x+ x · T.

This implies, T ≤ x/(1− x). Since, x ≤ 1/2, T ≤ 2x. Now,

log(1/(1− x)) = ln(1/(1− x))/ln(2) ≤ 1.5ln(1/(1− x)) ≤ 3x,

which follows from the fact that 1/ln(2) ≤ 1.5 J
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I Claim 3.7. If m<j represents the messages of π sampled by the simulation τ at the point
the messages z<i were sent, then

E
r′|xyrz<i

[
D

(
τ(zi|xyrr′z<i)
τ(zi|yrr′z<i)

)]



= 0 if Bob sends zi,
≤ 1 if zi is discarded,

≤ D

 π(mj |xyrm<j)

π(mj |yrm<j)

 if Alice sends mj,

≤

√√√√√D

 π(mj |xyrm<j)

π(mj |xrm<j)

 log ‖π‖+ 3
‖π‖

if Bob sends mj.

Proof. When zi is sent by Bob, both distributions are the same, so the divergence is 0.
To prove the remaining cases, we apply Proposition 2.7. When zi is to be discarded, set

q(zi|yrr′z<i) to be the uniform distribution on bits. When q is the uniform distribution on

the bits, D
(
p

q

)
= 1− h(p(0)) ≤ 1. Since D

(
p

q

)
≤ 1 for any p, the bound follows using

Proposition 2.7. When mj is sent by Alice in π, observe that the distribution of τ(zi|xyrr′z<i)
is exactly the same as the distribution of π(mj |xyrm<j). Set q(zi|yrr′z<i) = π(mj |yrm<j).
The bound follows by Proposition 2.7. For the last case, observe that in τ , zi is determined
by xyrr′m<j , since zi = 1 exactly when ρi < π(mj = 1|xrm<j). Set

b(ρi, y, r, r′,m<j) =
{

1 if ρi < π(mj = 1|yrm<j),
0 otherwise

and

q(zi|yrr′z<i) =
{

1− 1/‖π‖ if b(ρi, y, r, r′,m<j) = zi,
1/‖π‖ otherwise.

When ρi is in between π(mj = 1|yrm<j) and π(mj = 1|xrm<j),

D

(
τ(zi|xyrr′z<i)
q(zi|yrr′z<i))

)
= log(1/(1/‖π‖)) = log ‖π‖,

for all zi with positive probability. When ρi is not in between those two quantities,

D

(
τ(zi|xyrr′z<i)
q(zi|yrr′z<i))

)
≤ log 1

1− 1/‖π‖ ≤ 3/‖π‖.

which follows from Claim 3.6 and the assumption that ‖π‖ > 2. It is safe to assume that
‖π‖ > 2, as the compression is trivial for protocols with communication at most 2.

The probability of the first case is at most

√√√√D

(
π(mj |xyrm<j)
π(mj |yrm<j)

)
, by Proposition 2.4. J

Now given Z, call i good if the message Zi does not correspond to a mistake and is not
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discarded by the simulation. Let G denote the set of good indices. We have,

E
xyrr′z

 |z|∑
i=1

D

(
τ(zi|xyrr′z<i)
τ(zi|yrr′z<i)

)
= E
xyrz

 |z|∑
i=1

E
r′|xyrz<i

[
D

(
τ(zi|xyrr′z<i)
τ(zi|yrr′z<i)

)]
= E
xyrz

[∑
i∈G

E
r′|xyrz<i

[
D

(
τ(zi|xyrr′z<i)
τ(zi|yrr′z<i)

)]]

+ E
xyrz

[∑
i/∈G

E
r′|xyrz<i

[
D

(
τ(zi|xyrr′z<i)
τ(zi|yrr′z<i)

)]]

For every Z, at most k · L indices are discarded. This is because, at most k indices are
discarded for every round with a mistake. Then by Claim 3.7,

E
xyrz

[∑
i/∈G

E
r′|xyrz<i

[
D

(
τ(zi|xyrr′z<i)
τ(zi|yrr′z<i)

)]]
≤ kE [L]

For every index i ∈ G, by Claim 3.7

E
xyrz

[∑
i∈G

E
r′|xyrz<i

[
D

(
τ(zi|xyrr′z<i)
τ(zi|yrr′z<i)

)]]

≤ E
π(mxyr)

[
D

(
π(mj |xyrm<j)
π(mj |yrm<j)

)]

+ E
π(mxyr)

‖π‖∑
j=1

√√√√D

(
π(mj |xyrm<j)
π(mj |xrm<j)

)
log ‖π‖+ 3

‖π‖


= E
π(mxyr)

[
D

(
π(mj |xyrm<j)
π(mj |yrm<j)

)]
+ log ‖π‖ E

π(mxyr)

‖π‖∑
j=1

√√√√D

(
π(mj |xyr)
π(mj |xr)

)+ 3

≤ E
π(mxyr)

[
D

(
π(mj |xyrm<j)
π(mj |yrm<j)

)]

+ log ‖π‖

√√√√√‖π‖ · E
π(mxyr)

‖π‖∑
j=1

D

(
π(mj |xyr)
π(mj |xr)

)+ 3

= IAπ + log ‖π‖
√
‖π‖ · IBπ + 3,

where the penultimate inequality follows from an application of Cauchy Schwartz inequality,
and the last inequality follows from the definition of IAπ , IBπ . J

I Corollary 3.8. Given any protocol π, there exists a protocol that simulates π with 2 ·
4
√
‖π‖3 · IBπ number of rounds in expectation, and internal information at most

IAπ + 4
√
‖π‖3 · IBπ + 4

√
‖π‖3 · IBπ · log ‖π‖+ 2 ·

√
‖π‖ · IBπ · log ‖π‖+ 3.

Proof. Set k = 4
√
‖π‖/IBπ . By Theorem 3.1, we get that the expected number of rounds

of the simulation is at most
√
IBπ · ‖π‖+ 4

√
‖π‖3 · IBπ ≤ 2 4

√
‖π‖3 · IBπ ( since IBπ ≤ ‖π‖) and
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Simulation π

Public randomness: A sequence of L = 10·|U |·220(IA+1) tuples (zi, ai, bi) ∈ U×
[
0, 220(IA+1)

]
×[

0, 220(IB+1)
]
, for i = 1, 2, . . . , L, and a random function h : [L]→

[
240(IA+1)

]
.

1. Alice computes the set A =
{
i
∣∣∣ai ≤ pA(zi), bi ≤ pB(zi) · 220(IB+1)

}
, and Bob computes the

set B =
{
i

∣∣∣ai ≤ qA(zi) · 220(IA+1), bi ≤ qB(zi)
}
.

2. Alice computes i∗, the the smallest element of A.
3. Alice sends h(i∗) to Bob.
4. If there is a unique i ∈ B such that h(i) = h(i∗), Bob accepts and assumes that the outcome

of the protocol is zi. Otherwise Bob aborts.

Figure 2 The sampling procedure.

the internal information is at most IAπ + 4
√
‖π‖3 · IBπ + 4

√
‖π‖3 · IBπ · log ‖π‖+ 2 ·

√
‖π‖ · IBπ ·

log ‖π‖+ 3 J

Applying Theorem 2.10 to the simulation guaranteed by Corollary 3.8, gives a simulation
with communication bounded by

O

(
IAπ + 4

√
‖π‖3 · IBπ · log(1/ε) + 4

√
‖π‖3 · IBπ · log ‖π‖+

√
‖π‖ · IBπ · log ‖π‖

)
,

as required in Theorem 1.1.

4 Compressing Protocols with Asymmetric Information – II

In this section, we prove Theorem 1.2, (i.e) we show how to simulate π with communication
IAπ · 2O(IBπ ).

I Theorem 4.1. Let U be a finite set. Let pA, pB , qA, qB : U → [0, 1] be such that ∀z ∈ U ,
µ(z) = pA(z)qB(z), p(z) = pA(z)pB(z) and q(z) = qA(z)qB(z) are distributions. There exists
a randomized protocol with inputs pA, pB to Alice and qA, qB to Bob, such that

Both Alice and Bob either accept and compute (possibly different) samples z ∈ U , or abort
the protocol.

Pr[Both parties accept] ≥ 2
−O

(
D

(
µ

q

)
+1

)
.

Given that both parties accept, the distribution of their samples is 0.35-close in `1 distance
to the distribution where both parties sample the same sample from µ(z).

Let IB = D

(
µ

p

)
and IA = D

(
µ

q

)
. Figure 2 describes the randomized protocol

promised by the lemma. Let

G =
{
z
∣∣∣220(IB+1) · p(z) ≥ µ(z), 220(IA+1) · q(z) ≥ µ(z)

}
.

We need the following simple claim, which was proved in [6].

I Claim 4.2. µ(G) ≥ 9
10 .
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We proceed with the analysis of the simulation.

I Lemma 4.3. Pr[i∗is defined] ≥ 1− e−11.

Proof. For each i, we have

Pr[i ∈ A] =
∑
z∈U

pA(z)pB(z)
|U | · 220(IA+1)

= 1
|U | · 220(IA+1)

∑
z∈U

pA(z)pB(z)

= 1
|U | · 220(IA+1) . (since p is a distribution)

The probability that i∗ is not defined is exactly equal to the probability that i /∈ A for all
1 ≤ i ≤ L. Thus,

Pr[i∗ not defined] =
(

1− 1
|U | · 220(IA+1)

)L
≤ e−L/|U |·2

20(IA+1)
. (using (1− x)n ≤ e−xn, x ≥ 0)

≤ e−10.

J

I Lemma 4.4. For z ∈ U ,

Pr[zi∗ = z & i∗ ∈ B|i∗ is defined] ≤ µ(z)
220(IB+1) ,

with equality when z ∈ G.

Proof.

Pr[zi∗ = z & i∗ ∈ B|i∗ is defined] = Pr[zi∗ = z|i∗ is defined] · Pr[i∗ ∈ B|zi∗ = z]. (3)

We have

Pr[zi∗ = z|i∗ is defined] = pA(z)pB(z)2−20(IA+1)∑
z∈U pA(z)pB(z)2−20(IA+1)

= pA(z)pB(z). (4)

Let us now analyze Pr[i∗ ∈ B|zi∗ = z]. If zi∗ = z, we have ai∗ ≤ pA(z), bi∗ ≤ pB(z)220(IB+1).
Thus Pr[i∗ ∈ B|zi∗ = z] is exactly

Pr[i∗ ∈ B|z∗i = z] = min
{

qB(z)
220(IB+1)pB(z)

, 1
}
·min

{
220(IA+1)qA(z)

pA(z) , 1
}

≤ qB(z)
220(IB+1)pB(z)

. (5)

Equality holds in (5) when z ∈ G, since for such z, qB(z)
220(IB+1)pB(z)

≤ 1 and 220(IA+1)qA(z)
pA(z) ≥ 1.

Therefore, using (4),(5),(3)

Pr[zi∗ = z & i∗ ∈ B] ≤ pA(z)pB(z) · qB(z)
220(IB+1)pB(z)

= µ(z)/220(IB+1),

with equality for z ∈ G. J
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When i∗ is defined, let E denote the event that i∗ is the only possible index that is in B
and consistent with the message Bob receives, namely: ∀i 6= i∗, i ∈ B ⇒ h(i) 6= h(i∗). Then
we have

I Lemma 4.5. Pr[¬E|i∗ is defined] ≤ L2−40(IA+1)−20(IB+1)

|U |Pr[i∗ is defined] .

Proof. Given that i∗ is defined, probability that i ∈ B and h(i) = h(i∗) is at most
Pr[i∈B]·2−40(IA+1)

Pr[i∗ is defined] . Thus,

Pr[i ∈ B] · 2−40(IA+1)

Pr[i∗ is defined] = 1
|U | · Pr[i∗ is defined] ·

∑
z∈U

qA(z) · 2−20(IB+1)qB(z)2−40(IA+1)

≤ 2−40(IA+1)−20(IB+1)

|U | · Pr[i∗ is defined] .

Thus, by the union bound, the probability than any such i is accepted by Bob is at most
L2−40(IA+1)−20(IB+1)

|U |Pr[i∗ is defined] J

I Lemma 4.6. Pr[i∗ ∈ B|i∗ is defined] ≥ µ(G) · 2−20(IB+1)

Proof.

Pr[i∗ ∈ B|i∗ is defined] =
∑
z∈|U |

Pr[zi∗ = z, i∗ ∈ B|i∗ is defined]

≥
∑
z∈G

µ(z)/220(IB+1) (by Lemma 4.4)

= µ(G) · 2−20(IB+1). (by Lemma 4.3)

J

I Lemma 4.7. Pr[Both parties accept|i∗is defined] ≥ 8
10 · 2

−20(IB+1)

Proof.

Pr[Both parties accept|i∗is defined]
≥ Pr[i∗ ∈ B|i∗ is defined]− Pr[¬E|i∗is defined]

≥ µ(G)/220(IB+1) − Pr[¬E|i∗is defined] (by Lemma 4.6)

≥ 9
10 · 2

−20(IB+1) − 10
1− e−10 · 2

−20(IA+1)−20(IB+1) (by Lemma 4.5, Claim 4.2)

>
8
10 · 2

−20(IB+1).

where the last inequality follows from IA ≥ 0. J

I Lemma 4.8. Pr[Both parties accept] ≥ 7
10 · 2

−20(IB+1).

Proof.

Pr[Both parties accept] = Pr[i∗is defined] Pr[Both parties accept|i∗is defined]

≥ 8(1− e−10)
10 · 220(IB+1) >

7
10 · 2

−20(IB+1),

which follows from Lemma 4.7 and Lemma 4.3. J
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I Lemma 4.9. |π(zi∗ = z|i∗ ∈ B)− µ(z)| ≤ 2(1− µ(G))/µ(G).

Proof. By Lemma 4.4,

Pr[i∗ ∈ B|i∗ is defined] · Pr[zi∗ = z|i∗ ∈ B] ≤ µ(z) · 2−20(IB+1).

Combining the above inequality and Lemma 4.6,

Pr[zi∗ = z|i∗ ∈ B] ≤ µ(z)/µ(G).

For any set T ⊆ U ,∑
z∈T

π(zi∗ = z|i∗ ∈ B)− µ(z) ≤
∑
z∈T

µ(z)/µ(G)− µ(z) ≤ (1− µ(G))/µ(G),

where the last inequality follows from µ being a distribution. Therefore,

|π(zi∗ = z|i∗ ∈ B)− µ(z)| = 2 max
T

(∑
z∈T

π(zi∗ = z|i∗ ∈ B)− µ(z)
)
≤ 2(1− µ(G))/µ(G).

J

I Lemma 4.10.

Pr[¬E|i∗ ∈ B] < 0.01, Pr[¬E|Both parties accept] < 0.01

Proof. We have,

Pr[¬E|i∗ ∈ B] = Pr[¬E|i∗ ∈ B, i∗ is defined]

= Pr[¬E & i∗ ∈ B|i∗ is defined]
Pr[i∗ ∈ B|i∗ is defined]

≤ Pr[¬E|i∗is defined]
Pr[i∗ ∈ B|i∗ is defined]

≤ 10
µ(G)(1− e−10) · 2

−20(IA+1)

< 0.01.

The penultimate inequality follows from Lemmas 4.5, 4.6. Similarly,

Pr[¬E|Both parties accept] = Pr[¬E|Both parties accept, i∗ is defined]

= Pr[¬E & Both parties accept|i∗is defined]
Pr[Both parties accept|i∗is defined]

≤ Pr[¬E|i∗is defined]
Pr[Both parties accept|i∗is defined]

≤ 100
8(1− e−10) · 2

−20(IA+1)

< 0.01.

The penultimate inequality follows from Lemmas 4.5, 4.7. J

I Lemma 4.11. |µ(z)− π(z|Both parties accept)| < 0.35
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Proof. Applying Proposition 2.2 twice gives,

|µ(z)− π(z|Both parties accept)|
≤ |π(zi∗ = z|i∗ ∈ B, E)− µ(z)|+ 4 Pr[¬E|Both parties accept]
≤ |π(zi∗ = z|i∗ ∈ B)− µ(z)|+ 4 Pr[¬E|i∗ ∈ B] + 4 Pr[¬E|Both parties accept].

Applying Lemmas 4.9, 4.10 give,

|µ(z)− π(z|Both parties accept)| < 2(1− µ(G))/µ(G) + 0.04 + 0.04 < 0.35,

as required. J

In Theorem 4.1, property 2 is guaranteed by Lemma 4.8 and property 3 is guaranteed by
Lemma 4.11.

4.1 Proof of Theorem 1.2
Define U to be the set of all transcripts of protocol π. For every m ∈ U , define πx(m) =
π(m|x), πy(m) = π(m|y), πxy(m) = π(m|xy). We have,

Iπ(X;M |Y R) = Exyr

[
D

(
πxy(m|r)
πy(m|r)

)]
.

Define Γ =
{

(x, y, r)

∣∣∣∣∣D
(
πxy(m|r)
πy(m|r)

)
≤ 50 · IAπ ,D

(
πxy(m|r)
πx(m|r)

)
≤ 50 · IBπ

}
. By an

union bound and Markov’s inequality,

Pr[(x, y, r) ∈ Γ] ≥ 24
25 (6)

The following observations are useful.

π(m|xyr) =
∏

i:mi sent by Alice
π(mi|xyrm<i) ·

∏
i:mi sent by Bob

π(mi|xyrm<i)

=
∏

i:mi sent by Alice
π(mi|xrm<i) ·

∏
i:mi sent by Bob

π(mi|yrm<i),

where the last inequality follows from the fact that Alice’s messages depend only on x, the
public randomness and the previous messages and Bob’s messages depend only on y, public
randomness and the previous messages. Similar expressions can be written for π(m|xr) and
π(m|yr).

We can now apply Theorem 4.1, with µ(m) = πxy(m|r), p(m) = πx(m|r), q(m) = πy(m|r).
The theorem implies that for every (x, y, r) ∈ Γ, there exists a constant c and a randomized
protocol τ with communication O(IAπ ) that samples a a transcript m such that

|π(m)− τ(m|Both parties accept)| < 0.35,Pr[Both parties accept in τ ] ≥ 2−c(I
B
π +1) (7)

I Lemma 4.12. Eπ(xyr)|π(m|xyr)− τ(m|xyr,Both parties accept)| < 1
25 + 0.35

Proof. τ guarantees that for (x, y, r) ∈ Γ, |π(m|xyr)−τ(m|xyr,Both parties accept)| < 0.35.
Therefore,

Eπ(xyr)|π(m|xyr)− τ(m|xyr,Both parties accept)|
≤ Pr[(x, y, r) ∈ Γ] max

(x,y,r)∈Γ
|π(z|xyr)− τ(z|xyr,Both parties accept)|+ Pr[(x, y, r) /∈ Γ]

< 0.35 + 1
25 ,

where the last inequality follows from (6). J
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Input: x, y, the inputs to π. A parameter t.
Public Randomness: Sequence of strings L1, · · · , Lt, r. A random transcript m′.
i=1;
while i ≤ t do

Run protocol τ with Li as the public random tape;
if τ Accepts then return the output of τ ;
else i=i+1;

end
return m′;

Figure 3 Protocol Σ simulating π.

We now show a simulation of π. Run Σ shown in Figure 3 with parameter t = 10 ·2c(IB+1).
We have,

CC(Σ) ≤ t · CC(τ) = 10 · IA2c(I
B+1).

Let J be the value of i at the time of termination of Σ.

I Lemma 4.13. Pr[J = t+ 1] ≤ 1/25 + e−10

Proof. Conditioned on (x, y) ∈ Γ, the probability that τ does not accept in iteration i equals
1− Pr[Both parties accepts]. Therefore,

Pr[J = t+ 1|(x, y, r) ∈ Γ]

= (1− Pr[Both party accepts in τ ])t

≤
(

1− 2−c(I
B+1)

)t
(by (7))

≤ e−10 ((1− x)n ≤ e−xn, x > 0). (8)

Now,

Pr[J = t+ 1]
= Pr[(x, y, r) ∈ Γ] · Pr[J = t+ 1|(x, y, r) ∈ Γ]

+ Pr[(x, y, r) /∈ Γ] · Pr[J = t+ 1|(x, y, r) /∈ Γ]
≤ e−10 + 1/25,

where the last inequality follows from (6), (8). J

Let us now analyze the `1 distance between Σ and π.

I Lemma 4.14. |Σ− π| < 3/25 + 2e−10 + 0.35

Proof. Conditioning on J ≤ t, we know that Σ’s output corresponds to the output of τ .
Therefore,

|π(m)− Σ(m|J ≤ t)| = Eπ(xyr)|π(m|xyr)− τ(m|xyr,Both parties accept)|

By Proposition 2.1 and Lemma 4.13,

|Σ− π| ≤ 2 Pr[J = t+ 1] + |π(z)− Σ(z|J ≤ t)|
= 2 Pr[J = t+ 1] + Eπ(xyr)|π(m|xyr)− τ(m|xyr,Both parties accept)
< 2/25 + 2e−10 + 1/25 + 0.35,

where the last inequality follows from Lemma 4.13 and Lemma 4.12. J

This concludes the proof of Theorem 1.2.
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4.2 A Rectangle Lower Bound
In this subsection, we show a corollary to Theorem 1.2. The simulation of Theorem 1.2
shows the existence of almost monochromatic rectangles of the right dimension.

I Corollary 4.15. Given a protocol π with internal information (IA, IB) and inputs drawn
from µ, there exists a zero communication protocol for sampling a message m such that,

µ(Alice Accepts) = 2−O(IA)

µ(Bob Accepts|Alice Accepts) ≥ 2−O(IB)

Moreover, given that both parties accept, the distribution of their samples is δ−close in `1
distance to the distribution where both parties sample consistently from π(m).

Proof. First we wish to fix the public randomness of π, such that the internal information
and the error bound are within limit. We have,

IA = E
r

[I(M ;X|Y r)] , IB = E
r

[I(M ;Y |Xr)] , E
r

[µ(π(x, y) 6= f(x, y)|r)] ≤ ε

By Markov’s inequality,

Pr
r

[I(M ;X|Y r) > 3IA] < 1/3

Pr
r

[I(M ;Y |Xr) > 3IB ] < 1/3

Pr
r

[µ(π(x, y) 6= f(x, y)|r) > 3ε] < 1/3.

Therefore, by an union bound, there exits an r such that

I(M ;X|Y r) ≤ 3IA, I(M ;Y |Xr) ≤ 3IB , µ(π(x, y) 6= f(x, y)|r) ≤ 3ε

After fixing r, we now have a protocol with internal information at most (3IA, 3IB) and error
at most 3ε and no public randomness.

The following observations are useful.

π(m|xy) =
∏

i:mi sent by Alice
π(mi|xym<i) ·

∏
i:mi sent by Bob

π(mi|xym<i)

=
∏

i:mi sent by Alice
π(mi|xm<i) ·

∏
i:mi sent by Bob

π(mi|ym<i),

where the last inequality follows from the fact that Alice’s messages depend only on x, the
public randomness and the previous messages and Bob’s messages depend only on y, public
randomness and the previous messages.

Define,

πA(m|x) =
∏

i:mi sent by Alice
π(mi|xm<i); πB(m|y) =

∏
i:mi sent by Bob

π(mi|ym<i)

In a similar fashion define,

π′A(m|x) =
∏

i:mi sent by Bob
π(mi|ym<i); π′B(m|y) =

∏
i:mi sent by Alice

π(mi|ym<i)

We are now in a position to describe the simulation. Consider the simulation τ in Figure
4(take c to be a large constant):

Let L denote the sequence of L tuples in the public tape. Theorem 1.2 implies,
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Simulation

Public randomness: A sequence of L = 10·|U |·2c(IA+1) tuples (zi, ai, bi) ∈M×
[
0, 2c(IA+1)

]
×[

0, 2c(IB+1)
]
, for i = 1, 2, . . . , L, r and a random function h : [L]→

[
22c(IA+1)

]
, whereM is the

set of all transcripts of π.

1. Alice computes the set A =
{
i

∣∣∣ai ≤ πA(zi|xr), bi ≤ π′A(zi|xr) · 2c(IB+1)
}
, and Bob computes

the set B =
{
i

∣∣∣ai ≤ π′B(zi|yr) · 2c(IA+1), bi ≤ πB(zi|yr)
}
.

2. Alice computes i∗, the the smallest element of A.

3. Alice accepts if h(i∗) = 02c(IA+1).

4. If there is a unique i ∈ B such that h(i) = 02c(IA+1), Bob accepts and assumes that the
outcome of the protocol is zi. Otherwise Bob aborts.

Figure 4 The sampling procedure.

EL,h [µ(Alice Accepts)] ≥ 2−O(IA) (this follows from h being a random hash function)
EL,h [µ(Bob Accepts|Alice Accepts)] ≥ 2−O(IB)

Given both parties accept, the distribution of the samples is δ/3−close in `1 distance to
the distribution where both parties sample the same from π(x, y), for all constants δ > 0.

The third condition translates to, EL,h [|π(m|xy)− τ(m|xy,Both parties accept)|] ≤ δ/3.
This implies that there exists a fixing of L, h such that

µ(Alice Accepts) ≥ 2−O(IA), µ(Bob Accepts|Alice Accepts) ≥ 2−O(IB)

|π(m|xy)− τ(m|xy,Both parties accept)| ≤ δ.

(the argument is similar to the one used for fixing of public randomness of π. One applies 3
Markov inequalities followed by an union bound) This completes the proof of the corollary. J

I Corollary 4.16 (Restated). Given any randomized protocol π computing a boolean function
f , with internal information (IA, IB), there exists sets S, T and z ∈ {0, 1} such that

µ(x ∈ S) ≥ 2−O(IA), µ(y ∈ T |x ∈ S) ≥ 2−O(IB)

µ(f(x, y) 6= z|S × T ) ≤ 3ε+ δ,

where ε is the error incurred by π under µ and δ > 0 being any constant.

Proof. The protocol in Corollary 4.15 is deterministic. Any transcript in a deterministic
protocol corresponds to a rectangle. Therefore, when both parties accepting, it exactly
corresponds to a rectangle S × T with

µ(x ∈ S) ≥ 2−O(IA), µ(y ∈ T |x ∈ S) ≥ 2−O(IB).

In addition, conditioning on the event that both parties accept, the output z ∈ {0, 1} of
the protocol (the value of the function that both parties agree on) has the property that
µ(f(x, y) 6= z) ≤ 3ε+ δ, where ε is the error incurred by the the protocol π under µ. J
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4.2.1 Application – Lower Bounds for Lopsided Set Disjointness
In this subsection, we use the rectangle lower bound to reprove the well known lower bound
for lopsided set disjointness by Pǎtraşcu in [18]. The problem of lopsided set disjointness is
defined as follows,

I Definition 4.17. The set disjointness function on sets x, y ⊆ [NB] is

SD(x, y) =
{

1 if x ∩ y = ∅,
0 otherwise.

Lopsided set disjointness(LSD) is a restricted version of the problem where we are promised
that x, y ⊆ [NB] and |x| = N . The following bound proved by Patrascu [18] has found many
applications to proving data structure lower bounds. The bound was shown to be tight by
Saglam [20].

I Theorem 4.18 ([18]). For any protocol computing LSD with error probability ε, one of the
following holds,

Alice communicates at least γN logB bits,
Bob communicates at least NB1−cγ bits,

where c = c1 + 1 + 1
γ logB (log 2c1 − log (1− h(12ε+ δ))), for a constant c1 and B = Ω(1).

Here we give a slightly different proof of Theorem 4.18, using Corollary 4.15. The universe
is taken to be

(
2[B])N , the cartesian product of N power sets of [B]. (x, y) ∈

(
2[B], 2[B]) is

restricted tuples with |x| = 1 and y takes exactly one element from the pair (2k, 2k + 1), for
all 2k, 2k + 1 ∈ [B]. We define two distributions ψ and µ on (x, y) as follows,

ψ is a uniform distribution on all such pairs (x, y), with LSD(x, y) = 1.
µ is a uniform distribution on all such pairs (x, y).

The hard distribution for disjointness µh is one where i ∈ [N ] chosen at random, with (xi, yi)
drawn from distribution µ and rest of the coordinates (xj , yj), for j ∈ [N ] \ {i} is drawn i.i.d
from ψ.

Having described the hard distribution, we are all set to describe the proof of Theorem 4.18.

Proof. We assume the contrary that there exists a protocol π computing LSD(x, y) on
the distribution µh with Alice communicating a < γN logB bits and Bob communicating
b < NB1−cγ bits.

We now use protocol π to compute LSD on a single block. Consider the case when
the inputs (x, y) is drawn according to the distribution ψ. We know that protocol π
computes LSD on inputs drawn i.i.d in ψ with information

(
IA, IB

)
<
(
γN logB,NB1−cγ).

By Theorem 2.11, there exist a protocol τ computing LSD(x, y) on ψ with information(
IAτ , I

B
τ

)
≤
(
γ logB,B1−cγ).

DefineM = {m|µ(LSD(x, y) 6= τ(x, y)|m) ≤ 4ε}, a subset of all transcripts of τ . Note
that µ(M) ≥ 1 − 1

4 = 3
4 , using the fact that µ(LSD(x, y) 6= τ(x, y)) ≤ ε. Therefore,

ψ(M) ≥ 1− 2
4 = 1

2 , since density of Supp(ψ) under µ is one half.
First observe that Corollary 4.15 holds when the transcripts are restricted to the setM.

Now, Corollary 4.16 shows the existence of constant c1 and sets S, T such that ψ(x ∈ S) ≥
2−c1(IA) ≥ 2−c1(γ logB) and ψ(y ∈ T |x ∈ S) ≥ 2−c1(IB) ≥ 2−c1(B1−4γ) We used with upper
bounds on information (IA, IB) under ψ.

Since restricted to m ∈M, µ(LSD(x, y) 6= 1|S × T ) ≤ 3× 4ε+ δ, where the factor 3 is an
outcome of an averaging argument(see Corollary 4.16) and δ corresponds to the `1 distance
between the simulation in Corollary 4.15 and the actual protocol.
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The marginal distribution in x being the same on µ and ψ imply,

µ(x ∈ S) ≥ 2−c1(γ logB)

Also, µ(y) ≥ 1
2 · ψ(y) since ψ(x, y) = µ(x, y|x ∩ y = ∅) and µ(x ∩ y = ∅) = 1

2 . Therefore,

µ(y ∈ T ) ≥ 1
2 · ψ(y ∈ T ) ≥ 2−c1(γ logB+B1−cγ)−1.

From here on, we work only with the distribution µ. The bounds on probabilities imply
the following bounds on the corresponding entropy,

H(X|S) ≥ (1− c1γ) logB (9)

H(Y |T ) ≥ B

2 − c1γ logB − c1B1−cγ − 1. (10)

The error bound implies,

∀x ∈ S, µ(Yx = 1|T ) ≤ µ(π(x, y) 6= 1|S × T ) ≤ 12ε+ δ. (11)

Note that Yx is the projection of the vector Y (the indicator random variable for the subset
in {0, 1}B) onto the coordinate indexed by x. This implies, ∀x ∈ S H(Yx|T ) ≤ h(12ε+ δ).

Using subadditivity of entropy, we upper bound H(Y |T ) by H(YS |T ) + H(YS̄ |T ), where
S̄ is the complement of the set S. YS , YS̄ are projections of vector Y onto coordinates
indexed by elements of sets S and S̄ The first term in the expression can be simplified(using
subadditivity of entropy) as follows,

H(YS |T ) ≤ h (12ε+ δ) · |S|

where the inequality follows from subadditivity of entropy and (11).
The second term yields,

H(YS̄ |T ) ≤ B

2 − |S|,

by an application of subadditivity of entropy and upper bounding binary entropy by 1.
(9) implies |S| ≥ B1−c1γ . Therefore

H(Y |T ) ≤ B

2 − (1− [h(12ε+ δ)])B1−c1γ .

Equation (10) implies,

H(Y |T ) ≥ B

2 − c1γ logB − c1B1−cγ − 1

This yields a contradiction, as c > c1 + 1
γ logB (log 2c1 − log (1− h(12ε+ δ))) and B = Ω(1)

imply,

B

2 − (1− [h(12ε+ δ)])B1−c1γ <
B

2 − c1γ logB − c1B1−cγ − 1.

This concludes the proof of the theorem. J
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Abstract
We consider C-compression games, a hybrid model between computational and communication
complexity. A C-compression game for a function f : {0, 1}n → {0, 1} is a two-party communica-
tion game, where the first party Alice knows the entire input x but is restricted to use strategies
computed by C-circuits, while the second party Bob initially has no information about the input,
but is computationally unbounded. The parties implement an interactive communication pro-
tocol to decide the value of f(x), and the communication cost of the protocol is the maximum
number of bits sent by Alice as a function of n = |x|.

We show that any AC0
d[p]-compression protocol to compute Majorityn requires communication

n/(logn)2d+O(1), where p is prime, and AC0
d[p] denotes polynomial size unbounded fan-in depth-d

Boolean circuits extended with modulo p gates. This bound is essentially optimal, and settles a
question of Chattopadhyay and Santhanam (2012). This result has a number of consequences,
and yields a tight lower bound on the total fan-in of oracle gates in constant-depth oracle circuits
computing Majorityn.

We define multiparty compression games, where Alice interacts in parallel with a polynomial
number of players that are not allowed to communicate with each other, and communication
cost is defined as the sum of the lengths of the longest messages sent by Alice during each round.
In this setting, we prove that the randomized r-round AC0[p]-compression cost of Majorityn is
nΘ(1/r). This result implies almost tight lower bounds on the maximum individual fan-in of
oracle gates in certain restricted bounded-depth oracle circuits computing Majorityn. Stronger
lower bounds for functions in NP would separate NP from NC1.

Finally, we consider the round separation question for two-party AC0-compression games, and
significantly improve known separations between r-round and (r + 1)-round protocols, for any
constant r.
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1 Introduction

1.1 Motivation and Background
Computational complexity theory investigates the complexity of solving explicit problems in
various computational models. While fairly strong lower bounds are known for restricted
models such as constant-depth circuits (Ajtai [2], Furst, Saxe, and Sipser [23], Yao [49], and
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Håstad [27]) and monotone circuits (Razborov [35], Andreev [7], and Alon and Boppana
[5]), our understanding of general Boolean circuits is still very limited. For example, our
current state of knowledge does not rule out that every function in NTIME(2n) is computed
by Boolean circuits of linear size.

Several barriers have been identified to proving lower bounds for general Boolean circuits,
such as relativization (Baker, Gill, and Solovay [9]), algebrization (Aaronson and Wigderson
[1]), and the “natural proofs” barrier (Razborov and Rudich [37]). Most known lower bound
techniques for restricted models are “naturalizable”, and it is believed that substantially
different methods will be required in order to prove strong lower bounds for unrestricted
models.

In spite of this, the techniques used to prove lower bounds for weaker models are still
interesting, and an improved understanding of these techniques can have substantial benefits.
First, there is a developing theory of connections between unconditional lower bounds and
algorithmic results, which involves satisfiability algorithms, learning algorithms, truth-table
generation, among other models (cf. Williams [46], Oliveira [33], and Santhanam [39]). In
particular, such connections provide new insights and results in both areas, and a better
understanding of restricted classes of circuits can lead to improved algorithms (cf. Williams
[47]). Second, strong enough lower bounds for weaker models imply lower bounds for more
general models (Valiant [43, 44], see Viola [45] for a modern exposition). In a similar vein,
we mention the surprising results from Allender and Koucký [4] showing that, in some cases,
weak circuit size lower bounds of the form n1+ε yield much stronger results.

Furthermore, even if known proof techniques individually naturalize, it is possible they
could be used as ingredients of a more sophisticated approach which is more powerful. A
recent striking example of this is the use by Williams [48] of structural characterizations
of ACC0 circuits, together with various complexity tools such as completeness for problems
on succinctly represented inputs, diagonalization, and the easy witness method, in order to
separate NEXP from ACC0. Given the paucity of techniques in the area of complexity lower
bounds, it makes sense to try to properly understand the techniques we do have.

We focus in this work on C-compression games (Chattopadhyay and Santhanam [13]),
where C is some class of Boolean circuits. A C-compression game is a 2-player (interactive)
communication game where the first player Alice is computationally bounded (by being
restricted to play strategies in C) and has access to the entire input x ∈ {0, 1}n, while the
second player Bob is computationally unbounded and initially has no information about
the input. Alice and Bob communicate to compute f(x) for a fixed Boolean function
f : {0, 1}n → {0, 1}, and the question is how many bits of communication sent by Alice are
required. Note that if f is computable by C, then 1 bit of communication suffices, as Alice
can compute f(x) by herself, and send the answer to Bob. Thus, if we are interested in
unconditional lower bounds on the communication cost for an explicit function, we must
study circuit classes C where lower bounds are already known for explicit functions, such as
constant-depth circuits, and their extension with modulo p gates.

Compression games hybridize between communication complexity and computational
complexity as follows. In the traditional two-party communication complexity model, Alice
and Bob are symmetric – they each know half of the input, and communicate to compute a
given function on the whole input. Neither party is computationally bounded. Thus they
are equally constrained (or unconstrained) informationally as well as computationally. In the
compression game setting, an asymmetry appears. Alice now has an informational advantage
over Bob – she begins with knowledge of the whole input, while Bob has no knowledge
about the input at all. However, this informational advantage is offset by a computational
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constraint – Alice can only use strategies computable from C. Thus studying compression
games can be thought of as studying the tradeoff between information and computation.
Typically, when studying the question of lower bounds against C, we are merely interested in
whether a function f is computable in C or not. Now, we are concerned instead by how much
information can be obtained about f(x) using merely circuits from C, or conversely, how
much assistance a C-bounded party requires from an unbounded one in order to compute
f(x). In other terms, we would like to obtain a refined quantitative picture of solvability by
C-circuits, rather than a purely qualitative one.

Communication complexity has long been an important tool in the complexity theorist’s
toolkit. In particular, several lower bound techniques such as the crossing sequence method,
the Nečiporuk method [32] and the Khrapchenko method [28] can be interpreted as uses of
communication complexity (cf. Kushilevitz and Nisan [30]). Often, when a computational
model is relatively weak, lower bound techniques exploit some sort of information bottleneck
in the model, which is how communication complexity enters the picture. By studying
compression games, where the model explicitly incorporates both communication and com-
putation, we hope to better understand the interplay between communication complexity
techniques and computational complexity techniques.

We explore in this work the power of the polynomial approximation method (Razborov
[36], Smolensky [40]) and the random restriction method (cf. Furst, Saxe, and Sipser [23]
and Håstad [27]) in the context of interactive compression games. We use these techniques
and the compression framework to prove significant generalizations of known lower bounds
for constant-depth circuits.

Compression games have been considered before, both to prove unconditional and con-
ditional lower bounds. The pioneering work of Dubrov and Ishai [17] showed that Parityn
requires AC0-compression cost n1−ε (for any fixed ε > 0, and large enough n) when there is
only one round of communication between Alice and Bob. Dubrov and Ishai were motivated
by questions about the randomness complexity of sampling, and their work has later found
applications in leakage-resilient cryptography (Faust et al. [18]). Chattopadyay and San-
thanam [13] strengthened the Dubrov-Ishai lower bound to n/poly(logn), and showed that
the lower bound holds for multi-round games where Alice is allowed to use a randomized
strategy. Their main technique was a generic connection between correlation and multi-round
compression. As strong correlation lower bounds are not known for AC0[p] circuits (see
e.g. Srinivasan [41]), their technique does not yield strong lower bounds for multi-round
AC0[p]-compression games, which constitute the main topic of this work.

The investigation of single-round compression (also known as instance compression) has
found connections to other topics in areas such as cryptography (Harnik and Naor [26]),
parameterized complexity (cf. Bodlaender et al. [10]), probabilistic checkable proofs (Fortnow
and Santhanam [22]), and structural complexity (Buhrman and Hitchcock [12]), and has
received considerable attention recently (see e.g. Drucker [16] and Dell [14]). There has also
been a long line of work on proving lower bounds for SIZE(poly(n))-compression games under
complexity-theoretic assumptions (cf. Dell and van Melkebeek [15]), but papers along this
line use very different ideas, and hence are tangential to our work.

1.2 Main Results and Techniques
For a circuit class C, we use Cd to denote the restriction of C to polynomial size circuits
of depth d. For instance, AC0

d refers to polynomial size depth-d circuits. Recall that
Majorityn : {0, 1}n → {0, 1} is the function that is 1 on an input x if and only if

∑
i∈[n] xi ≥

n/2. Further, we let MODnq : {0, 1}n → {0, 1} be the function that is 1 if and only if q divides∑
i∈[n] xi.
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The proof that Majorityn /∈ AC0
d[p] for d(n) = o(logn/ log logn) (Razborov [36], Smolensky

[40]) remains one of the strongest lower bounds for an explicit function. There are no known
explicit lower bounds for polynomial size circuits of depth d = ω(logn/ log logn), nor for
constant depth circuits with arbitrary (composite) modulo gates.

In the framework of compression games, the Razborov-Smolensky lower bound is equivalent
to the claim that in any AC0[p] game for Majority, there must be non-trivial communication
between Alice and Bob. More recently, Chattopadhyay and Santhanam [13] proved that
in any randomized single-round AC0

d[p]-compression protocol for this function, Alice must
communicate

√
n/(logn)O(d) bits. However, their technique does not extend to multiple-

round compression games. Before this work, the only known technique to prove unconditional
lower bounds for games with an arbitrary number of rounds used a connection between
compressibility and correlation. The lack of strong correlation bounds for low-degree Fp
polynomials computing explicit Boolean functions prevents us from using this connection to
get AC0[p]-compression lower bounds (see Srinivasan [41] for more details).

In this work, we bypass this difficulty through a new application of the polynomial
approximation method, obtaining the following result.

I Theorem 1.1. Let p be a prime number. There exists a constant c ∈ N such that, for any
d ∈ N, and every n ∈ N sufficiently large, the following holds.
(i) Any AC0

d[p]-compression game for Majorityn (with any number of rounds) has communi-
cation cost at least n/(logn)2d+c.

(ii) There exists a single-round AC0
d-compression game for Majorityn with communication

cost at most n/(logn)d−c.

The argument for the lower bound part of this result proceeds roughly as follows. First, we
show via a reduction in the interactive compression framework that a protocol for Majorityn
can be used to compress other symmetric functions, such as MODnq . In other words, it is
enough to prove a strong communication lower bound for MODnq in order to establish the
lower bound in Theorem 1.1. We then employ a general technique that allows us to transform
an interactive protocol for a Boolean function f into an exponentially large circuit computing
f , following an approach introduced in Chattopadhyay and Santhanam [13]. We have thus
reduced the original problem involving computation and communication to a certain circuit
lower bound for MODq.

A crucial ingredient in our proof is a new exponential lower bound for a certain class
of bounded-depth circuits extended with modulo p gates computing the MODq function.
Although obtaining circuit lower bounds for depth d circuits beyond size roughly 2n1/(d−1) is a
major open problem in circuit complexity (see e.g. Viola [45]), we show that, under a certain
semantic constraint on the AC0

d[p] circuit, MODnq requires circuits of size 2n/(logn)O(d) . More
specifically, we consider circuits consisting of a disjunction of exponentially many polynomial
size circuits, for which the following holds: whenever the top gate evaluates to true, precisely
one subcircuit evaluates to true.

The proof of this circuit lower bound relies on the application of the polynomial ap-
proximation method in the exponentially small error regime, as opposed to the original
proofs of Razborov and Smolensky, which are optimized with constant error. In particular,
this approach allows us to prove a stronger lower bound that avoids the correlation barrier
mentioned before. In order to implement this idea, we rely on a recent strengthening of
their method introduced by Kopparty and Srinivasan [29], and on an extension of the degree
lower bounds of Razborov and Smolensky to very small error. We believe that this new
circuit lower bound may be of independent interest, and that semantic restrictions will find
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more applications in circuit complexity. Altogether, these results give the lower bound in
Theorem 1.1.

Theorem 1.1 implies a new result for AC0[p] circuits extended with arbitrary oracle gates,
which we state next.

I Corollary 1.2. Let p ≥ 2 be prime, and d ∈ N. There exists a constant c ∈ N such that,
for every sufficiently large n, the following holds. If Majorityn is computed by polynomial-size
AC0

d[p] circuits with arbitrary oracle gates, then the total fan-in of the oracle gates is at least
n/(logn)2d+c.

Another interesting consequence of Theorem 1.1 is that it provides information about
the structure of polynomial size circuits with modulo p gates computing Majorityn. More
precisely, it implies that in any layered circuit, at least bn/(logn)2k+cc gates must be present
in the k-th layer, which is essentially optimal.

Observe that Theorem 1.1 holds for deterministic compression games. For randomized
protocols, in which Alice can employ a probabilistic strategy, we use our techniques to prove
the following strengthening over previous results.

I Theorem 1.3. Let p and q be distinct primes. There exists a constant c ∈ N such that,
for any d ∈ N, and n ∈ N sufficiently large, every randomized AC0

d[p]-compression game for
MODnq with any number of rounds and error at most 1/3 has communication cost at least√
n/(logn)d+c.

We stress that Theorems 1.1 and 1.3 hold both for Majority and MODq, whenever p 6= q

are distinct primes. Determining the correct communication cost for probabilistic and
average-case games for these functions remains an interesting open problem. (We discuss
these models in more detail in Section 2.)

We also consider a model of multiparty compression games. In this framework, Alice is
allowed to interact during each round with k additional parties, and the communication cost
of the round is defined to be the length of the longest message sent by Alice to one of the
parties. Further, the cost of the protocol on a given input is defined as the sum of the costs
of the individual rounds. We stress that the extra parties are not allowed to interact with
each other during the execution of the protocol.

This is a natural communication framework, motivated by the question of lower bounds
for oracle circuits. Lower bounds in this model with a bounded number of rounds imply
lower bounds on the maximum individual fan-in of oracle gates in oracle circuits with a
bounded number of such layers.

We prove the following bounds on the randomized multiparty AC0[p]-compression cost of
Majority.

I Theorem 1.4. Let p ∈ N be a fixed prime. For every k, r, d ∈ N, the following holds.
(i) There exists a deterministic n1/r-party r-round AC0[p]-compression game for Majorityn

with cost Õ(n1/r).
(ii) Every randomized nk-party r-round AC0

d[p]-compression game for Majorityn has cost
Ω̃(n1/2r).

The proof of Theorem 1.4 also employs the polynomial approximation method, although
the argument is different in this case. Observe that this result says that the communication
cost of Majorityn in the randomized multiparty framework is nΘ(1/r) for r-round protocols. In
other words, allowing Alice to interact with more parties for more time reduces communication
considerably (under the definition of communication cost for multiparty games).
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We obtain a consequence of Theorem 1.4 for oracle circuits where there are a bounded
number r of such layers, i.e., there are no more than r oracle gates on any input-output path
in the circuit.

I Corollary 1.5. Let p ≥ 2 be prime, and r, d ∈ N. If Majorityn is computed by an AC0
d[p]

circuit of polynomial size with arbitrary oracle gates that contains at most r layers of such
gates, then there is some oracle gate with fan-in at least Ω̃(n1/2r).

In fact, lower bounds for multiparty games are connected to the NP versus NC1 question.
It is possible to show that every Boolean function in NC1/poly admits poly(n)-party r-round
AC0-compression games with cost nO(1/r). Thus, proving a lower bound of nΩ(1) on the
cost of poly(n)-party AC0-compression games with ω(1) rounds for a function in NP would
separate NP from NC1/poly. We conjecture that such a lower bound holds for the Clique
function. Note that it is already known that strong enough lower bounds on the size of
constant-depth circuits for NP functions implies a separation between NP and NC1 (cf. Viola
[45]). The novelty here is that sufficiently strong results about polynomial-size constant
depth circuits imply similar separations. Essentially, the computation of logarithmic-depth
circuits can be factored into constant-depth and low-communication components, and our
multiparty communication game models precisely this mixture of notions.

There is an interesting contrast in the statement of Theorem 1.1: while the lower bound
holds for protocols with any number of rounds, the upper bound is given by a single-round
protocol. It is natural to wonder whether in the compression setting interaction allows
Alice to solve more computational problems. We provide a natural example of the power of
interaction in our framework in Section 6, where we observe that, while the inner product
function cannot be computed by polynomial size MAJ ◦MAJ circuits (Hajnal et al. [25]),
there exists an efficient two-party (MAJ ◦MAJ)-compression game for this function.

In a similar direction, a quantitative study of the power of interaction in two-party
compression games was initiated by Chattopadhyay and Santhanam [13] (with respect to
AC0-compression games). They obtained a quadratic gap in communication when one
considers r and (r − 1)-round protocols for a specific Boolean function. We obtain the
following strengthening of their round separation theorem.

I Theorem 1.6. Let r ≥ 2 and ε > 0 be fixed parameters. There is an explicit family of
functions f = {fn}n∈N with the following properties:
(i) There exists an AC0

2(n)-bounded protocol Πn for fn with r rounds and cost c(n) ≤ nε,
for every n ≥ nf , where nf is a fixed constant that depends on f .

(ii) Any AC0(poly(n))-bounded protocol Π for f with r − 1 rounds has cost c(n) ≥ n1−ε, for
every n ≥ nΠ, where nΠ is a fixed constant that depends on Π.

Our hard function is based on a pointer jumping problem with a grid structure, while
Chattopadhyay and Santhanam uses a tree structure. Similar constructions have been
used in other works in communication complexity in the information theoretic setting
(Papadimitriou and Sipser [34], and subsequent works), but our analysis needs to take into
account computational considerations as well.

The proof of Theorem 1.6 relies on a careful application of the random restriction method,
coupled with a round elimination strategy. Observe that the upper bound is achieved
by protocols where Alice’s strategy can be implemented by linear-size DNFs, while the
communication lower bound holds for polynomial size circuits.
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1.3 Organization
We define interactive compression games and introduce notation in the next section. In
Section 3, we give the proof of our main result, deferring the discussion of some auxiliary
results to the Appendix. Multiparty compression games are discussed in Section 4, followed
by applications of our communication lower bounds to circuits with oracle gates in Section
5. A natural example for which interactive compression can be easier than computation is
presented in Section 6. The round separation theorem for AC0 games is proved in Section 7.
Finally, we mention a few open problems and research directions in Section 8.

2 Preliminaries and Notation

The results of this paper are essentially self-contained, but some familiarity with basic notions
from complexity theory and communication complexity can be helpful. A good introduction
to these areas can be found in [8] and [30], respectively.

Basic definitions. For any positive integer m ∈ N, let [m] def= {1, . . . ,m}. We use Majorityn
to denote the Boolean function over n variables that is 1 if and only if

∑
i xi ≥ n/2. For

a prime p, we let MODnp be the Boolean function over n variables that is 1 if and only if
p divides

∑
i xi. We let Parityn

def= ¬MODn2 . A function h : {0, 1}n → {0, 1} is symmetric
if there exists a function φ : [n] → {0, 1} such that h(x) = φ(

∑
i xi), for every x ∈ {0, 1}n.

Clearly, Majorityn and MODnp are symmetric functions. We say that a Boolean function
f ε-approximates a Boolean function g over a distribution D if Prx∼D[f(x) 6= g(x)] ≤ ε.
An ε-error probabilistic polynomial Q(x1, . . . , xn) ∈ Fp[x1, . . . , xn] for a Boolean function
f : {0, 1}n → {0, 1} is a distribution E over polynomials such that, for every x ∈ {0, 1}n,
PrQ∼E [f(x) 6= Q(x)] ≤ ε.1 The degree of a probabilistic polynomial is the maximum degree
over the polynomials on which E is supported. We say that functions f : {0, 1}n → {0, 1}
and g : {0, 1}n → {0, 1} are disjoint if f−1(1) ∩ g−1(1) = ∅. Given a string w, we use |w| to
denote the length of w, and |w|1 to denote the number of 1s in w. We will use p and q to
denote prime numbers throughout the text, unless noted otherwise.

Languages and circuit classes. Given a language L ⊆ {0, 1}∗, we let Ln
def= L ∩ {0, 1}n.

We view Ln as a Boolean function in the natural way. We will use C to denote a circuit class,
such as AC0 and AC0[p]. Unless stated otherwise, assume that any circuit class discussed in
this paper contains AND, OR, and NOT gates of unbounded fan-in. Our results hold with
more general circuit classes, but we stick with this definition for simplicity. The size of a
circuit corresponds to the total number of gates in the circuit. We use Cd(s(n)) to denote the
same class restricted to circuits of depth d and size O(s(n)). For instance, we abuse notation
and write AC0

d[p](poly(n)) to denote the set of languages decided by polynomial size circuits
of depth at most d consisting of unbounded fan-in AND, OR, NOT and MODp gates, for a
fixed prime p ∈ N. As a convention, if we write C without a depth and size specialization,
assume that it consists of constant depth polynomial size circuits with gates from C. As
usual, we will identify C both as a set of languages, and as a class of circuits, depending on
the context. Furthermore, if C is a fixed circuit, we may also use C to refer to the Boolean
function computed by this circuit. The correct meaning will always be clear in both cases.

1 We will use boldface notation whenever we want to emphasize that we are referring to a random variable
or a probability distribution over the corresponding structures.
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Deterministic compression games. Given a circuit class C and a language L, we define a
communication game between two players Alice and Bob. The goal is to decide whether a
given string x ∈ {0, 1}n belongs to L. We describe this game informally as follows. Alice
knows x, but her computational power is limited to functions computed by circuits from C.
On the other hand, Bob can perform arbitrary computations, but has no information about
x during the beginning of the game. The players exchange messages during the execution of
the protocol, and at the end should be able to decide whether x ∈ L. The goal is to compute
the initial function correctly while minimizing the total number of bits sent by Alice during
the game.

Formally, a C-bounded protocol Πn = 〈C(1), . . . , C(r), f (1), . . . , f (r−1), En〉 with r = r(n)
rounds consists of a sequence of C-circuits for Alice, a strategy for Bob, given by functions
f (1), . . . , f (r−1), and a set of accepting transcripts En. We associate to every protocol Πn its
signature signature(Πn) = (n, s1, t1, . . . , tr−1, sr), which is the sequence corresponding to the
input size n = |x| and the length of the messages exchanged by Alice and Bob during the
execution of the protocol. For convenience, let s =

∑
i∈[r] si, and t =

∑
i∈[r−1] ti. We always

have En ⊆ {0, 1}t+s. In addition, we let rounds(Πn) def= r. For every i ∈ [r],

C(i) : {0, 1}n+
∑

j<i
(sj+tj) → {0, 1}si ,

and for every i ∈ [r − 1],
f (i) : {0, 1}

∑
j≤i

sj → {0, 1}ti .

In other words, before the beginning of the i-th round, Alice has sent messages a(i), . . . , a(i−1)

of size s1, . . . , si−1, respectively, and Bob has replied with messages b(1), . . . , b(i−1) of size
t1, . . . , ti−1, respectively. The next message sent by Alice is given by

a(i) def= C(i)(x, a(1), b(1), . . . , a(i−1), b(i−1)).

On the other hand, since Bob has unlimited computational power, its message during the
i-th round is given simply by b(i) def= f (i)(a(1), . . . , a(i)). The transcript of Πn on x ∈ {0, 1}n
is the sequence of messages exchanged by Alice and Bob during the execution of the protocol
on x, and will be denoted by transcriptΠn(x) def= 〈a(1), b(1), . . . , a(r)〉 ∈ {0, 1}s+t. We say that
Πn solves the compression game of a function hn : {0, 1}n → {0, 1} if

h(x) = 1 ⇐⇒ transcriptΠn(x) ∈ En.

Finally, we let cost(Πn) def= s. We stress that the length of the messages sent by Bob does
not contribute to the cost of the protocol, and we assume for convenience that the length of
these messages are limited by the size of the circuits in C. Observe that a single-round game
consists of a protocol Πn with signature(Πn) = (n, s1). Put another way, Alice sends a single
message a(1) ∈ {0, 1}s1 , and a decision is made.

Given a language L and a circuit class C, we say that a sequence of C-bounded protocols
Π = {Πn}n∈N solves the compression game of L with cost c(n) and r(n) rounds if, for every
n, Πn solves the compression game of Ln, and in addition satisfies cost(Πn) ≤ c(n) and
rounds(Πn) ≤ r(n).

Observe that if L ∈ C then Alice can compute L(x) by herself, and there is a trivial
protocol of cost c(n) = 1 for L. On the other hand, for every language L there exists a
protocol solving its compression game with cost c(n) ≤ n, since Alice can simply send her
whole input to Bob.
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Probabilistic and average-case compression games. The definition presented before cap-
tures deterministic games computing a function correctly on every input x. Our framework
can be extended naturally to probabilistic and average-case games.

First, in a probabilistic C-compression game, Alice is allowed to use randomness when
computing her next message, while Bob’s strategy remains deterministic. Formally, each
circuit C(i) has an additional input of uniformly distributed bits, and different circuits have
access to independent bits. Clearly, on any x ∈ {0, 1}n, TranscriptΠn(x) is now a random
variable distributed over {0, 1}s+t. The other definitions remain the same. We say that Πn

solves the compression game of a function hn : {0, 1}n → {0, 1} with error probability at
most γ(n) ∈ [0, 1] if, for every x ∈ {0, 1}n,

hn(x) = 1 =⇒ Pr
Πn

[TranscriptΠn(x) ∈ En] ≥ 1− γ(n), and if

hn(x) = 0 =⇒ Pr
Πn

[TranscriptΠn(x) ∈ En] ≤ γ(n).

On the other hand, in a average-case C-compression game, we have deterministic games
as defined before, but allow a small error during the computation of hn with respect to the
uniform distribution over {0, 1}n. More precisely, we say that a deterministic protocol Πn

solves the compression game of hn with error at most γ(n) ∈ [0, 1] if

Pr
x∼{0,1}n

[hn(x) = 1⇐⇒ transcriptΠn(x) ∈ En] ≥ 1− γ(n).

These definitions are extended to languages in the natural way. Since in this paper all circuit
classes are non-uniform, any probabilistic protocol for a language L with error at most γ(n)
can be converted into an average-case protocol with error at most γ(n) (simply by fixing the
randomness of Alice in order to minimize the error probability over {0, 1}n).

Interacting with several Bobs. We discuss here a more general family of multi-party
compression games that allow Alice to interact with multiple Bobs during a single round
of the game. The different Bobs are not allowed to communicate with each other, only
with Alice. The definition of round complexity for such games is slightly different than for
standard 2-party compression games. The reason is as follows. For 2-party games, we can
assume that the game concludes with a message to Bob, as Bob is all-powerful and can
determine the result of the protocol from the final message. In the case of multi-party games,
this assumption isn’t well motivated, as no individual Bob might have access to all the
information about the protocol. It makes more sense to say the game for a Boolean function
h concludes with Alice computing whether h(x) = 1, where x is her input. Thus, a 1-round
game will consist of Alice sending messages to the various Bobs, the Bobs responding, and
finally Alice computing the answer. This naturally extends to a definition of r-round games.

We will also measure the cost of a protocol somewhat differently. We will again count
only the communication from Alice to Bob, but the cost of a protocol will not be the sum of
the lengths of all messages sent by Alice. Instead, we will define the cost of a round to be the
maximum length of a message sent by Alice to some Bob, and then the cost of the protocol
to be the sum of the costs over all rounds. This definition of protocol cost is motivated by
the connection of our model with lower bounds on oracle circuits, which we elaborate later.
A formal definition is presented below.

Let C be a circuit class, and k = k(n), r = r(n) be arbitrary functions. A C-bounded
(k + 1)-party protocol

Π[k]
n = 〈D(1,1), . . . , D(1,k);D(2,1), . . . , D(2,k); . . . ;D(r+1,1),

g(1,1), . . . , g(r,1); g(1,2), . . . , g(r,2); . . . ; g(1,k), . . . , g(r,k)〉
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with r rounds consists of a sequence of C-circuits for Alice, and strategies for each Bobi, given
by g(1,i) . . . g(r,i). We associate to every k-party protocol Π[k]

n its signature signature(Π[k]
n ) =

(n, s1, t1, . . . sr, tr), where for each j ∈ [r], i ∈ [k], sj is the maximum length of a message
sent by Alice to any Bobi during the j-th round, and tj is the maximum length of a message
sent by any Bobi to Alice during the j-th round. For every i ∈ [r], j ∈ [k], D(i,j) maps
the sequence of the input x, all messages sent to Alice before the i-th round and all of
Alice’s messages before the i-th round to Alice’s message in the j-th round to Bobj . D(r+1,1)

maps the sequence of x and all messages sent during the protocol to a single bit. For every
i ∈ [r], j ∈ [k], g(i,j) maps the sequence of all Alice’s messages to Bobj from the first to
the i-th round to Bobj ’s message to Alice in the i-th round. We say that Π[k]

n solves the
compression game for a function hn on n bits if D(r+1,1) outputs 1 on x if and only if
hn(x) = 1.

Finally, we let cost(Π[k]
n ) def= s, where s =

∑
i∈[r] si. We assume for convenience that the

number of parties is always limited by the size of the circuits used by Alice. These definitions
extend to languages, probabilistic games, and average-case games in the natural way.

3 The communication cost of AC0[p]-compression games

We start with a construction of single-round compression games for an arbitrary symmetric
function.

I Lemma 3.1. Let f : {0, 1}n → {0, 1} be an arbitrary symmetric function. Then, for every
1 ≤ d(n) ≤ logn/ log logn, the function f admits a single-round AC0

d(poly(n))-compression
game with communication

cd(n) = O

(
(d− 1)! · n ·

(
log logn

logn

)d−1
)
.

In particular, for every fixed integer d ≥ 1, we have cd(n) = O
(
n/(logn)(d−1)−o(1)).

Proof. Let f be a symmetric function that receives as input an n-bit string x ∈ {0, 1}[n]. We
sketch the construction of depth-d circuits for the corresponding compression games. Observe
that any integer n ∈ N can be represented with at most dlog(n+ 1)e bits. For simplicity, we
will approximate these values by logn. This will be compensated by the use of asymptotic
notation in the final bounds.

Observe that for d = 1 the result is obvious, since Alice can simply send x to Bob. For
every d ≥ 2, we design an AC0

d(poly(n)) circuit that, on a given input x, outputs md
def=

(d− 2)! ·n · (log logn)d−2/(logn)d−1 binary strings a1
d, . . . , a

md
d of size sd

def= (d− 1) · log logn,
which together encode the number of 1’s in x. More precisely, |x|1 =

∑md
i=1 dec(aid), where

dec(a) denotes the integer encoded by the binary string a. Therefore, it is enough that Alice
communicates in a single-round at most md ·sd bits to Bob, which is then able to compute the
original value f(x). This last step relies on the assumption that f is a symmetric function.

First, we give a depth-2 circuit with these properties. Partition the n input bits into
m2 = n/ logn blocks of size t = logn. In other words, let [n] = B1∪̇ . . . ∪̇Bm2 , where |Bi| = t.
For each block Bi, there exists CNFs φi1, . . . , φilog logn of size O(n) that compute the string
ai2 ∈ {0, 1}log logn = {0, 1}s2 corresponding to the number of 1’s in xBi ∈ {0, 1}Bi (the
projection of x to Bi). A small formula of this form exists because the number of input bits
is logn. Together with the previous discussion, this completes the proof for d = 2.

Now fix an arbitrary d > 2. We will construct the corresponding AC0
d circuit by induction.

It will be clear from the description that its final size is a polynomial whose leading exponent
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does not depend on d. Assume that there is a depth d − 1 circuit C that outputs md−1
strings a1

d−1, . . . , a
md−1
d−1 , as described before, on any given input x ∈ {0, 1}n. Assume also

that its top gates are AND gates. This is without loss of generality, given the argument we
use below.

Recall that aid−1 ∈ {0, 1}sd−1 . We partition these strings into md sets, each containing
t

def= md−1/md = logn/((d− 2) · log logn) ≥ 1 strings, given our upper bound on d. More
precisely, we have [md−1] = T1∪̇ . . . ∪̇Tmd , where |Ti| = t. For convenience, let Ai = {ajd−1 |
j ∈ Ti}. For any ajd−1, we have dec(ajd−1) ≤ 2sd−1 = (logn)d−2. Consequently,∑

j∈Ai

dec(ajd−1) ≤ |Ai| · (logn)d−2 = t · (logn)d−2 ≤ (logn)d−1.

In particular, this sum can be represented with sd = (d− 1) · log logn bits. Observe that the
strings in Ai have, together, t · sd−1 = logn bits. Therefore, there exists DNFs ψi1, . . . , ψisd
of size O(n) that compute the sum of the strings in Ai, which we represent as a string
aid ∈ {0, 1}sd . Since this is the case for every i ∈ [md], we obtain circuits ψi ◦ C computing
each string aid. Finally, notice that the top three layers of ψij ◦ C can be collapsed into a
depth-2 circuit, which gives us an AC0

d circuit for the same function. This completes the
proof of Lemma 3.1. J

Notice that this upper bound comes from a very restricted class of compression games, as
there is no continuing interaction with Bob. A simpler and more efficient construction can
be obtained for the MODq functions, as for them there is no need to keep track of the exact
number of 1s in the original input.

As observed by [13], any compression game for Majority2n can be used to solve the
compression game for Parityn, with some overhead. In general, the same argument provides
the following connection, which implies that in order to prove lower bounds for Majority, it is
sufficient to get lower bounds for MODq.

I Proposition 3.2. Let h : {0, 1}n → {0, 1} be an arbitrary symmetric function, C be a circuit
class, and d ≥ 1. Assume that the Cd(poly(n))-compression game for Majorityn can be solved
with cost c(n) in r(n) rounds. Then the Cd+O(1)(poly(n))-compression game for h can be
solved with cost ch(n) = O(c(2n) · logn) in rh(n) = O(r(2n) · logn) rounds.

Proof. Let ΠMaj
2n be a protocol for Majority2n. We sketch the construction of a protocol Πh

n

for h. The idea is to run ΠMaj
2n about logn times in order to obtain the hamming weight |x|1

of x ∈ {0, 1}n, the input given to Alice in the compression game for h.
In order to achieve this, Alice runs ΠMaj

2n on appropriate inputs of the form y = x1k0n−k ∈
{0, 1}2n, where a different k is used during each stage of Πh

n. Here a stage is simply a
complete execution of ΠMaj

2n , and Alice performs a binary search with at most O(logn) stages
to obtain |x|1. Although we have defined protocols with an implicit set E of accepting
transcripts, observe that with an extra round we can ensure that Bob sends the correct
output Majority2n(y) to Alice.

Finally, it is enough to verify that each string y can be computed by constant-depth
polynomial size circuits. However, since there are no more than O(logn) stages, and since
Bob sends one bit at each stage, each string y is a function of at most O(logn) bits, and can
certainly be computed by depth-two polynomial size circuits. J

For our main theorem, we will need the following result, whose proof is discussed in more
detail in Section B.
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I Proposition 3.3 ([36, 40], folklore). Let p, q ≥ 2 be distinct primes. There exist fixed
constants ζ > 0 and n0 ∈ N for which the following holds. For every n ≥ n0 and ε(n) ∈
[2−n, 1/10q], any polynomial P ∈ Fp[x1, . . . , xn] that ε-approximates the MODnq function with
respect to the uniform distribution has degree at least ζ ·

√
n · log(1/ε).

Interestingly, our argument relies on a crucial way on the approximation of Boolean
circuits by polynomials with exponentially small error. For convenience of the reader, we
include the proof of the next result in Section C.

I Proposition 3.4 ([36, 40, 29]). Let p be a fixed prime. There exists a constant α =
α(p) ∈ N such that, for every δ ∈ (0, 1/2) and d(n) ≥ 1, any AC0

d[p](s(n)) circuit C
admits a δ-error probabilistic polynomial Q(x1, . . . , xn) ∈ Fp[x1, . . . , xn] of degree at most
(α · log s)d−1 · log(1/δ). In particular, it follows that for any distribution D over {0, 1}n, C is
δ-approximated with respect to D by a polynomial of degree at most (α · log s)d−1 · log(1/δ).

The next proposition is a minor extension of a result implicit in [13]. It allows us to
transform an interactive compression protocol for a function into a certain Boolean circuit
that computes the same function.

I Proposition 3.5. Let c : N→ N be a function such that c(n) ≤ n, s : N→ N be a function
with s(n) = Ω(n), γ : N→ [0, 1/2), L be a language, and C be a circuit class. If there exists
an average-case Cd(poly(n))-compression game for L with cost c(n) and error probability γ(n)
with respect to the uniform distribution over {0, 1}n, then there exist circuits C1, . . . , CT
from Cd+O(1)(poly(n)), where T ≤ 2c(n), such that

Pr
x∼{0,1}n

[L(x) 6=
∨
i∈[T ]

Ci(x)] ≤ γ(n).

Furthermore, these circuits are disjoint: C−1
i (1) ∩ C−1

j (1) = ∅ for every pair i, j ∈ [T ] with
i 6= j.

Proof. Let Πn = 〈C(1), . . . , C(r), f (1), . . . , f (r−1), En〉 be an average-case protocol for Ln
with r(n) rounds and error probability γ(n). Observe that Πn solves the C-compression game
of some function hn : {0, 1}n → {0, 1}, and that hn is γ(n)-close to Ln. Recall that Πn has a
signature signature(Πn) = (n, s1, t1, . . . , tr−1, sr). For convenience, let t

def=
∑
i∈[r−1] ti, and

s
def= c(n) =

∑
i∈[r] si.

Given a string w ∈ {0, 1}s+t, we write w = (w(A,1), w(B,1), . . . , w(B,r−1), w(A,r)) as a
concatenation of strings whose sizes respect the signature of Πn. In other words, |w(A,i)| = si
and |w(B,j)| = ti, for all i ∈ [r] and j ∈ [r− 1]. We say that w is Alice-consistent on an input
x if, for every i ∈ [r], w(A,i) = C(i)(x,w(A,1), w(B,1), . . . , w(B,i−1)). On the other hand, we say
that w is Bob-consistent if, for every j ∈ [r− 1], w(B,j) = f (j)(w(A,1), . . . , w(A,j−1)). Observe
that whether a string w is Bob-consistent or not does not depend on x. Let Bn ⊆ {0, 1}t+s

denote the set of Bob-consistent strings. For convenience, set Wn
def= En ∩Bn.

We claim that h(x) = 1 if and only if there exists a string w ∈Wn that is Alice-consistent
on x. One direction is clear, since if h(x) = 1 then transcriptΠn(x) ∈ En, and this string
is both Bob-consistent and Alice-consistent on x. On the other hand, assume there exists
w ∈ {0, 1}s+t that is Bob-consistent and Alice-consistent on x. An easy induction on the
number of rounds of the protocol shows that w = transcriptΠn(x). Furthermore, if w ∈Wn

then w ∈ En, and it must be the case that h(x) = 1, since Πn is a protocol for hn. Observe
that this argument also shows that if h(x) = 1 then there is a unique w ∈Wn that serves as
a certificate for x.
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Notice that there are at most 2c(n) Bob-consistent strings. This is because for every
string wA = (w(A,1), w(A,2), . . . , w(A,r)) ∈ {0, 1}s, there exists a unique completion of wA by
a string w ∈ {0, 1}s+t that is Bob-consistent. In particular, |Wn| ≤ 2c(n).

For every fixed w ∈Wn, we claim that there exists a circuit Cw(x) from Cd+O(1)(poly(n))
that checks if w is Alice-consistent on x. Recall that for every i ∈ [r], C(i) is a circuit from
Cd(poly(n)). Therefore, we can check in parallel whether

w(A,i) = C(i)(w(A,1), w(B,1), . . . , w(B,i−1))

for all i ∈ [r] using just a constant number of additional layers, since we assume throughout
that C has unbounded fan-in AND and OR gates. which proves the claim. It follows that

h(x) =
∨

w∈Wn

Cw(x),

for every x ∈ {0, 1}n. In addition, Cw1 and Cw2 are disjoint whenever w1 6= w2, since exactly
one w ∈ Wn is Alice-consistent on x. Finally, recall that hn is γ(n)-close to Ln, which
completes the proof of Proposition 3.5. J

Proposition 3.5 implies that in order to prove communication lower bounds for interactive
compression games, it is enough to prove circuit lower bounds of a particular form. We
obtain the following result.

I Lemma 3.6. Let p and q be distinct primes, γ : N→ (0, 1) be an arbitrary function, k ∈ N,
and d = d(n) ∈ N. Assume that

Pr
x∼{0,1}n

[MODnq (x) 6=
∨

i∈[T (n)]

Ci(x)] ≤ γ(n),

where each Ci is computed by an AC0
d[p](nk) circuit, and Ci and Cj are disjoint whenever

i 6= j. Then, the following holds.
(i) log T (n) ≥

√
n/(logn)d+O(1) if γ(n) ≤ 1/20q;

(ii) log T (n) ≥ n/(logn)2d+O(1) in the case of an exact compression game (i.e., γ = 0).

Proof. We employ the polynomial approximation method, i.e., we show that if MODnq admits
a circuit of this form, then it can be approximated by a polynomial Q whose degree is upper
bounded by a function depending on T . We then invoke Proposition 3.3 in order to obtain a
lower bound on T . More details follow.

First, Proposition 3.4 guarantees that for any δ > 0, each circuit Ci can be δ-approximated
under the uniform distribution by a polynomial Qi ∈ Fp[x1, . . . , xn] of degree at most
(` · logn)d · log(1/δ), where ` is a fixed positive constant. We let δ def= ε/T , where ε = ε(n)
will be set conveniently later in the proof. Now let

Q(x) def=
∑
i∈[T ]

Qi(x).

We claim that Q ∈ Fp[x1, . . . , xn] is a polynomial that (ε+ γ)-approximates MODnq under
the uniform distribution. Clearly,

Pr
x∼{0,1}n

[MODnq (x) 6= Q(x)] ≤ Pr
[
MODnq (x) 6=

∨
i∈[T (n)]

Ci(x)
]

+ Pr
[ ∨
i∈[T (n)]

Ci(x) 6= Q(x)
]

≤ γ +
(

1− Pr
[ ∨
i∈[T (n)]

Ci(x) = Q(x)
])
.
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For each i ∈ [T ], let Si
def= {x ∈ {0, 1}n | Qi(x) 6= Ci(x)} be the set of bad inputs for Qi, and

set S def=
⋃
i∈[T ] Si. In order to complete the proof of our claim, we argue next that for every

y /∈ S, Q(y) =
∨
i∈[T (n)] Ci(y).

First, if
∨
i∈[T (n)] Ci(y) = 0, then Qi(y) = 0 for every i ∈ [T ], and we get Q(y) = 0. On

the other hand, if
∨
i∈[T (n)] Ci(y) = 1, using the disjointness assumption for the family of

circuits, it follows that there is exactly one circuit with Ci(y) = 1. Since y /∈ S, we get that
Qi(y) = 1, while Qj(y) = 0 for every j 6= i. Consequently, we have Q(y) = 1. (Observe that
the extra assumption over the family of circuits is crucial for this case, since the original
circuits produce Boolean values, while Q is an Fp-polynomial.) Overall, it follows that
Pr[
∨
i∈[T (n)] Ci(x) = Q(x)] ≥ (2n− |S|) · 2−n ≥ 1−T · δ = 1− ε, which establishes our initial

claim.
Therefore, for every ε(n) > 0, there exists a polynomial Q ∈ Fp[x1, . . . , xn] that (ε+ γ)-

approximates the MODnq function over the uniform distribution, where

deg(Q) ≤ ((` · logn)d · log(1/δ)) ≤ (` · logn)d · (log T + log(1/ε)). (1)

On the other hand, we obtain from Proposition 3.3 that for every ε(n) ∈ [2−n, 1/10q], and
every large enough n,

ζ ·
√
n · log(1/(ε+ γ)) ≤ deg(Q). (2)

Our result follows by combining Equations 1 and 2. Observe that we are free to set ε(n)
in order to maximize our lower bound on T , depending on the value of γ. If 0 < γ ≤ 1/20q,
the first case of Lemma 3.6 follows if we let ε = 1/20q. On the other hand, when γ = 0, we
get that

log T (n) ≥
ζ ·
√
n · log(1/ε)− log(1/ε) · (` · logn)d

(` · logn)d ,

and the second case of Lemma 3.6 now follows by setting ε = exp(−Θ(n/ log2d n)). J

We are now ready to prove an essentially optimal communication lower bound for AC0
d[p]-

compression games for Majority.

I Theorem 3.7. Let p be a prime number. There exists a constant c ∈ N such that, for any
d ∈ N, and every n ∈ N sufficiently large, the following holds.
(i) Any AC0

d[p]-compression game for Majorityn (with any number of rounds) has communi-
cation cost at least n/(logn)2d+c.

(ii) There exists a single-round AC0
d-compression game for Majorityn with communication

cost at most n/(logn)d−c.

Proof. The lower bound follows immediately from Proposition 3.2, Proposition 3.5, and
Lemma 3.6 (ii). The upper bound is given by Lemma 3.1. J

For randomized compression games, we are able to generalize the lower bound for single-
round protocols obtained by Chattopadhyay and Santhanam [13] to protocols with any
number of rounds.

I Theorem 3.8. Let p and q be distinct primes. There exists a constant c ∈ N such that,
for any d ∈ N, and n ∈ N sufficiently large, every randomized AC0

d[p]-compression game for
MODnq with any number of rounds and error at most 1/3 has communication cost at least√
n/(logn)d+c.
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Proof. If there exists a randomized compression protocol with these properties, we can boost
its success probability to 1−1/20q on every input by repeating it a constant number of times,
and applying a majority vote. Observe that the communication increases by a constant
factor only, and that the majority vote can be computed efficiently, as it is over a constant
number of bits. Since any randomized protocol with this success probability provides an
average-case protocol that is correct on at least a (1− 1/20q)-fraction of the inputs under
the uniform distribution, the result follows from Proposition 3.5 and Lemma 3.6 (i). J

We stress that the results in Theorems 3.7 and 3.8 hold both for Majority and MODq, but
we restricted each statement to a particular function for simplicity. In order to see this, first
notice that the proof of Theorem 3.7 includes the argument for MODq. On the other hand,
in order to extend Theorem 3.8 to Majority, we can employ a reduction through Proposition
3.2. A subtle point is that for probabilistic protocols one has to make sure that the final error
probability after the reduction is bounded. However, this can be achieved during the proof
by boosting the correctness probability of the initial protocol for Majority via repetition.

The proof of Theorem 3.7 can be generalized to an essentially optimal bound for
AC0

d[p](s(n))-compression games computing MODnq . The argument implies that this function
has communication cost n/(log s)Θ(d). Observe that the original circuit size lower bounds
obtained by Razborov [36] and Smolensky [40] follows from the analysis of communication
protocols for Majority and MODq with constant communication cost. Interestingly, the
polynomial method interpolates between essentially optimal communication lower bounds
and circuit size lower bounds when applied with exponentially small error and constant error,
respectively.

4 Multiparty Interactive Compression

4.1 The communication cost of k-party AC0[p]-compression games
We will prove in this section that Majorityn requires Ω̃(n1/2r) communication in the (k + 1)-
party r-round AC0[p]-compression game, for any k = poly(n). Put another way, although
Alice is allowed to send roughly n1/2r bits to each individual Bob, even if n100 such parties
are present, she will not be able to combine their answers in order to compute Majorityn.

We start with the following upper bound, which can be seen as the corresponding analogue
of Lemma 3.1.

I Lemma 4.1. Let f : {0, 1}n → {0, 1} be an arbitrary symmetric function, and p be any
prime. For any r ∈ N, f admits an (dn1/re+ 1)-party r-round AC0-compression game with
cost O(rn1/r log(n)).

Proof. We set up some notation first. Given n and r, let Tn,r be the complete dn1/re-ary
tree of depth r. We assume the leaves of Tn,r to be ordered from left to right. Given an
input x of length n, label the leaves of Tn,r with bits of x in the natural way: the leftmost
leaf is labelled with the first bit of x, the second to leftmost with the second bit, etc. Note
that some leaves may remain unlabelled in this process.

Let Vd be the set of nodes at depth d in this tree, where 0 ≤ d ≤ r. The protocol will
proceed with Alice iteratively labelling nodes in the tree with numbers in [n], each node being
labelled with the sum of all the leaves in the subtree rooted at the node. Any unlabelled
leaf is assumed to have label 0. After round i, where 0 ≤ i ≤ r, all nodes at depth r − i or
greater will be labelled. Once the root is labelled, Alice can compute f(x) by herself, as f(x)
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is purely a function of the label at the root (which is the weight of the input x), and any
function of O(logn) bits can be computed in AC0

2.
We assume inductively that after round i, all nodes at depth r − i or greater have been

labelled. The base case i = 0 clearly holds, as Alice can label the leaves herself. Assume that
the inductive hypothesis holds after round i, where 0 ≤ i < r. We show it holds after round
i+ 1. In round i+ 1, Alice arbitrarily associates a unique Bob with each node v ∈ Vr−i−1.
This can be done as long as the number of parties is greater than dn1/re, as assumed. We
denote the Bob associated with v by Bob(v). For each v, Alice sends to Bob(v) the sequence
of labels of the children of v. Note that by the inductive assumption, the children of v have
already been labelled. For each v, Bob(v) responds with the sum of all the integer labels
sent by Alice to Bob(v) in the (i+ 1)-th round.

This is clearly a correct protocol. In any one round, Alice sends at most dn1/re·dlog(n+1)e
bits to any Bob, as the number of children of any node in the tree is at most dn1/re, and
each labelled node has a label in [n]. Thus, the cost of the protocol is O(rn1/r logn), as
claimed. J

Our lower bound is also based on algebraic arguments, but it employs a slightly different
approach to that in the previous section. In particular, it does not rely on Proposition 3.5.
We will need the following result.

I Proposition 4.2 ([36]). Let p be a fixed prime, and P (x1, . . . , xn) ∈ Fp[x1, . . . , xn] be a
degree-` polynomial. Then,

Pr
x∼{0,1}n

[Majorityn(x) = P (x)] ≤ 1/2 +O(`/
√
n).

The next lemma allows us to construct low-degree probabilistic polynomials from multi-
party compression games.

I Lemma 4.3. Let Φ[k]
n be a randomized (k + 1)-party r-round AC0

d[p](poly(n))-compression
protocol with signature (n, s1, t1, . . . , sr, tr) computing a Boolean function h : {0, 1}n → {0, 1}
with error γ, where si ≤ n for each i ∈ [r], and r ∈ N. Then, for every δ > 0, h admits
a (γ + δ)-error probabilistic polynomial over Fp with degree O

(
(
∑
i∈[r] si)r · ((logn)d+r ·

(log 1/δ))r+1).
Proof. We start with a proof of the lemma for r = 1 and deterministic protocols that are
always correct, then observe that the same proof can be generalized to randomized r-round
protocols.

Suppose Φ[k]
n is a (k + 1)-party 1-round AC0

d[p](poly(n))-compression protocol with signa-
ture (n, s1, t1) for a Boolean function h on inputs x of n bits. For each i ∈ [k], let ai1 . . . aini
be the message bits sent by Alice to Bobi in the first round, and let bi1 . . . bimi be Bobi’s
response. Let a be the bit output by Alice at the conclusion of the protocol. By the definition
of signature, we have that for each i ∈ [k], ni ≤ s1 and mi ≤ t1. We also have that a = 1 if
and only if h(x) = 1.

Each of the message bits sent by Alice in the first round is a function of x, and since
Alice is AC0

d[p](poly(n))-bounded, we can use Proposition 3.4 to obtain ε-error probabilistic
polynomials P ij ∈ Fp[x1, . . . , xn], where i ∈ [k], j ∈ [ni], for each of these message bits. The
degree of each polynomial is at most d1 = O((logn)d−1 · log 1/ε), where ε > 0 is a parameter
to be determined later. Since each message bit of each Bobi is a function of the message
bits sent by Alice to Bobi, we can express each bit bij of Bobi as an exact polynomial Qij in
the message bits of Alice. Notice that each such polynomial has degree at most s1. Now,
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again by Proposition 3.4, there is an ε-error probabilistic polynomial P of degree at most
d2 = O((logn)d−1 · log 1/ε) for a as a function of x, the message bits sent by Alice in the
first round, and the message bits sent by each Bob in the first round.

If we set ε = δ/(s1 · k + 1), by using the union bound, we have that

P ′
def= P (x, P 1

1 (x), . . . , P knk(x), Q1
1(P 1

1 (x), . . . , P 1
n1

(x)), . . . , Qkmk(P k1 (x), . . . , P knk(x)))

is a δ-error probabilistic polynomial for h as a function of x. The degree of P ′ is at most
d1 · s1 · d2 = O(s1 · ((logn)d · log 1/δ)2), where we have used that log 1/ε = O(logn · log 1/δ)
due to the upper bound on s1 and k ≤ poly(n). This completes the proof for (deterministic)
single-round protocols.

The proof for deterministic protocols with r ≥ 2 rounds is by induction on the number
of rounds. Let Φ[k]

n be a (k + 1)-party r-round AC0
d[p](poly(n))-compression protocol with

signature (n, s1, t1, . . . , sr, tr) for a Boolean function h. Observe that during the last round
of the protocol, each Bob` receives a message containing at most s def=

∑
i∈[r] si bits (recall

that Bob` has access to the messages he received from Alice in previous rounds, and to
no other message). We can view each bit a`j of each such message as a Boolean function
computed by a (k+ 1)-party (r− 1)-round protocol, where ` ∈ [k], and j ≤ s. It follows from
the induction hypothesis that there is a probabilistic polynomial P `j ∈ Fp[z1, . . . , zs′ ] for an
appropriate s′ ≤ s of degree at most

d1 ≤ O
(
sr−1 · ((logn)d+(r−1) · (log 1/ε))r

)
that ε-approximates a`j , where ε > 0 will be set conveniently later in the proof.2 Further,
during the last round of the protocol, each bit b`j sent by Bob` can be computed exactly by
a (deterministic) polynomial Q`j of degree at most s. Finally, the last bit output by Alice
during the execution of Φ[k]

n is computed by an AC0
d[p] circuit over polynomially many input

bits. According to Proposition 3.4, it can be ε-approximated by a probabilistic polynomial
P ∈ Fp[y1, . . . , ypoly(n)] of degree d2 ≤ O((logn)d−1 · log 1/ε).

We now compose these polynomials appropriately, similarly to the base case, in order to
obtain a probabilistic polynomial P ′ ∈ Fp[x1, . . . , xn] that approximates the original Boolean
function h compressed by Φ[k]

n . If we set ε def= δ/(sk + 1) = δ/poly(n), we get via an union
bound that P ′ is a probabilistic polynomial that δ-approximates h. Finally, the degree of P ′
is upper bounded by

d1 · s · d2 ≤ O
(
sr−1 · ((logn)d+(r−1) · (log 1/ε))r · s · (logn)d−1 · log 1/ε

)
≤ O

(
sr · ((logn)d+r · (log 1/δ))r · (logn)d · log 1/δ

)
≤ O

(
(Σi∈[r]si)r · ((logn)d+r · (log 1/δ))r+1),

which completes the induction step.
It remains to handle the case of randomized protocols. Observe that for every fixed

setting of the randomness of Alice, we obtain a multiparty compression protocol computing
some Boolean function hr. We can apply the procedure described above to get a probabilistic
polynomial Pr ∈ Fp[x1, . . . , xn] that agrees with hr on every input x ∈ {0, 1}n except with
probability δ. Since over the choice of r we know that h(x) = hr(x) except with probability
γ, we can obtain from the family of distributions Pr a single distribution over polynomials of

2 Our abuse of the asymptotic notation in this inductive proof is harmless, as we are proving the result
for a fixed number of rounds only.
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the same degree that agrees with h on every input x except with probability γ + δ, which
completes the proof. J

We now have all ingredients to prove the main result of this section.

I Theorem 4.4. Let p ∈ N be a fixed prime. For every k, r, d ∈ N, the following holds.
(i) There exists a deterministic n1/r-party r-round AC0[p]-compression game for Majorityn

with cost O(n1/r · logn).
(ii) Every randomized nk-party r-round AC0

d[p]-compression game for Majorityn has cost
Ω
(
n1/2r/(logn)2(d+r)).

Proof. The upper bound follows from Lemma 4.1. For the lower bound, assume Π[k]
n has

signature (n, s1, t1, . . . , sr, tr) and satisfies the assumption of the theorem. Since Π[k]
n is a

randomized protocol, we can reduce its error probability to 1/20 by running it in parallel
and computing a majority vote during the last round. Observe that the depth of the circuits
used by Alice increases by at most 1 if this computation is performed by an appropriate
DNF or CNF. Setting δ = 1/20 in Lemma 4.3 and fixing the randomness, we can obtain an
average-case (deterministic) polynomial for Majorityn of the stated degree and error 1/10
with respect to the uniform distribution. Now applying Proposition 4.2 and using 1/δ = O(1),
we get that

(s1 + s2 + . . .+ sr)r · (logn)(d+r)(r+1) ≥ Ω(
√
n),

which completes the proof of the lower bound, since cost(Π[k]
n ) =

∑
i∈[r] si and r ≥ 1. J

As opposed to the statement of Theorem 3.7, we have not tried to optimize the logarithmic
factors here, since there is still a polynomial gap in the bounds as a function of r.3

I Corollary 4.5. For any r, `, d ∈ N, the randomized n`-party r-round AC0
d[p]-compression

cost of Majorityn is nΘ(1/r).

In addition, observe that Theorem 4.4 implies a round separation result for multiparty
AC0[p]-compression games. In particular, we get the following consequence for single-round
AC0[p] protocols versus protocols with more rounds.

I Corollary 4.6. For every ε > 0 and ` ∈ N, there exists r ∈ N with r = O(1/ε) for
which the following holds, whenever n is sufficiently large. There exists an explicit function
fn : {0, 1}n → {0, 1} such that: fn admits no randomized n`-party single-round AC0[p]-
compression games with cost n1/2−ε, but it admits deterministic nε-party r-round AC0[p]-
compression games of cost nε.

4.2 Randomized versus deterministic games
Note that for two-party games we were able to obtain almost linear lower bounds for
deterministic protocols (Theorem 3.7), while for probabilistic and average-case protocols we
encountered a barrier at c(n) ≈

√
n (Theorems 3.8 and 4.4). We are not aware of explicit

lower bounds of the form n1/2+ε for a fixed ε > 0 for randomized two-party AC0[p] games.
It is natural to wonder if we can improve Theorem 4.4 in the case of deterministic k-party
games.

3 For instance, in the proof of Lemma 4.1, it is possible to break the information passed to each Bob into
multiple blocks as done in the proof of Lemma 3.1, and save an extra (logn)Θ(d) factor during each
round by allowing Alice to make partial progress towards the computation of Majority.
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We prove next that this is unlikely without the introduction of new ideas to handle
probabilistic protocols. More precisely, we observe that k-party protocols can be derandomized
without increasing communication cost. The proof relies on the definition of cost for such
protocols as the length of the longest message sent by Alice to any particular Bob, and on
the fact that we are dealing with non-uniform protocols/circuits. The argument is based
on parallel repetition and composition of k-party protocols with an approximate majority
function. We provide the details next.

We say that a Boolean function hn : {0, 1}n → {0, 1} is an (`1, `2)-approximate majority
if hn(x) = 0 on every x with |x|1 ≤ `1, and hn(x) = 1 on every x with |x|1 ≥ `2.

I Proposition 4.7 ([3]). There exists a family h = {hn}n∈N of Boolean functions in
AC0

3(poly(n)) for which every hn is an (0.49n, 0.51n)-approximate majority.

I Theorem 4.8. Let C be a circuit class, d ≥ 1, and f = {fn}n∈N be a family of Boolean
functions, where fn : {0, 1}n → {0, 1}. Suppose f admits a k-party probabilistic Cd(poly(n))-
compression game with cost c(n) and error γ(n) ≤ 1/3, where k = O(poly(n)). Then f

admits a k′-party deterministic Cd+O(1)(poly(n))-compression game with the same cost c(n)
and k′ = O(poly(n)).

Proof. By assumption, f has a k-party probabilistic Cd(poly(n))-compression protocol Π
with cost c(n) and error γ(n) ≤ 1/3, where k = O(poly(n)). We define a new probabilistic
protocol for f with the same cost but with k′ def= `n · k parties and with error γ′(n) < 2−n,
where ` > 0 is a constant which we determine later. We then use Adleman’s trick to fix the
random bits used by Alice, thus making the protocol deterministic.

The new probabilistic protocol Π′ for f simply simulates `n copies of the protocol Π in
parallel. Namely, we interpret the Bobs to be partitioned into `n sets, each of size k, and
Alice independently executes the protocol in parallel for each set of Bobs. Note that by our
definition of cost, the cost for each round of Π′ is the same as the cost for each round of Π.
In the final step of the protocol, Π′ applies the Approximate Majority function h`n to the
answers of Π for the `n parallel executions. Using Proposition 4.7, Alice can be implemented
to work in Cd+O(1)(poly(n)). It follows by a standard application of Proposition 1.1 that if
we set ` to be a large enough constant, the error probability of the new protocol Π′ is strictly
less than 2−n.

Now, there must exist some setting of the random bits of Alice that yields the correct
answer for every x ∈ {0, 1}n, simply by using the union bound. By fixing the random bits of
Alice accordingly, we derive a deterministic protocol with cost c(n), which completes the
proof. J

5 The connection with circuits augmented with oracle gates

In this section we observe that lower bounds on interactive compressibility are closely
connected to lower bounds against oracle circuits with arbitrary oracles. We first show such
a connection for 2-party compression games, and then for multiparty compression games.

In order to formalize these connections, we need to define classes of oracle circuits
corresponding to classes of Boolean circuits. Such a definition is especially non-obvious for
bounded-depth circuit classes – should we consider oracle gates when counting the depth
or not? We use a very generous notion of oracle circuits. We say that an oracle circuit
C belongs to the oracle analogue of a Boolean circuit class C if every maximal subcircuit
of C without oracle gates belongs to C. Put another way, every subcircuit induced by a
connected subgraph of the acyclic graph encoding C that does not contain an oracle gate is
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a circuit from C. The generosity of this notion only makes the lower bounds we derive from
the connections below stronger.

For the sake of convenience, we abuse notation and occasionally use C to refer both to a
Boolean circuit class and its oracle analogue.

I Proposition 5.1. Let C be a circuit class. Let C be an oracle circuit over n variables from
C(poly(n)) with oracle gates fi : {0, 1}si → {0, 1}ti , where i ∈ [r], for some r = r(n). In
addition, let s = s1 + . . .+ sr be the total fan-in of these oracle gates, and h : {0, 1}n → {0, 1}
be the Boolean function computed by C. Then h admits a C(poly(n))-compression game with
communication cost c(n) ≤ s+ 1 consisting of at most r + 1 rounds.

Proof. We describe a protocol for the compression game for h in which Alice sends at most
s+ 1 bits to Bob, and where each of Alice’s messages is computable by a small circuit from C.

First Alice topologically sorts the circuit C with respect to oracle gates, namely she
constructs a graph G whose nodes are the oracle gates of the circuit, and there is an edge
from a node u to a node v if and only if there is a path from the oracle gate represented by
u to the oracle gate represented by v in the digraph C. The graph G is a DAG, and hence
its vertices can be topologically sorted. Let g1, g2 . . . gr be the topological ordering of the
oracle gates. Alice proceeds inductively as follows. In round i, where i ∈ [r], she computes
all inputs to the gate gi using her input x and previous messages sent by Bob. She then
sends the values of these input bits to Bob, who in turn computes the value of the gate gi
applied to these bits, and sends her the answer. Note that g1 has no predecessors which are
oracle gates, and therefore Alice can compute all the inputs to g1 herself using circuits from
C (which are sub-circuits of C) applied to the input x. Gate gi only has gates g1 . . . gi−1 as
predecessors, and by the definition of the protocol, Alice has already received the values of
these gates from Bob in previous rounds, hence she can calculate values of inputs to gi from
x and previous messages using circuits from C. In round r + 1, Alice computes the value of
the circuit C on x and sends it to Bob, thus completing the protocol.

The total number of bits sent by Alice to Bob is the total fan-in of the oracle gates plus
one, i.e., s+ 1, and there are r + 1 rounds in the protocol. J

Note that Proposition 5.1 only gives useful information when the total fan-in of oracle
gates is sub-linear. We’d like to also show lower bounds on oracle gates where the total
fan-in is not bounded in this way. This is where multiparty compression games, and the
modified notion of protocol cost for such games, come in useful.

We need some more terminology for oracle circuits. An oracle circuit C has r layers if
the oracle gates can be partitioned into r sets such that no two gates within any set are
connected by a path in C. Equivalently, there are at most r oracle gates on any path from
an input of C to the output.

I Proposition 5.2. Let D be an oracle circuit over n variables from C(poly(n)) augmented
with r layers of oracle gates, where for each i ∈ [r], si is the maximum fan-in of a gate
in the i-th layer, and where there are at most k gates in each layer. Let s =

∑
i∈[r] si. In

addition, let h : {0, 1}n → {0, 1} be the Boolean function computed by D. Then h admits a
(k + 1)-party C(poly(n))-compression game with r rounds and communication cost c(n) ≤ s.

Proof. Alice orders the layers of oracle gates topologically, so that there are no paths from
gates in layer i to gates in layer j for i > j. The protocol proceeds with Alice inductively
computing all input bis to oracle gates in the i-th layer, where i ∈ [r], and then delegating
the computations of gates in the i-th layer to the Bobs, a different Bob for each oracle gate.
Since there are at most k gates in each such layer, she can successfully assign a different Bob
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to each oracle gate in any specific layer. Alice can compute all inputs to an oracle gate in
the first layer by herself, as all of these can be computed by circuits in C(poly(n)). In the
i-th round, where i ∈ [r], Alice chooses a different Bob for each oracle gate in layer i, and
sends to the corresponding Bob the values of the inputs to the corresponding gate. She can
compute these values using circuits in C, as the output bits of all oracle gates in layer i− 1
or below are already known to her by the definition of the protocol. The Bob corresponding
to a gate responds with the output values of that gate. After the r-th round, Alice computes
the output value of the circuit C, and outputs it.

Notice that Alice sends at most si bits to any individual Bob in round i by our assumption
on the fan-in of oracle gates in C. Thus the cost of the protocol is s. It is clear that the
protocol operates in r rounds. J

Observe that Propositions 5.1 and 5.2, together with Theorems 3.7 and 4.4, imply strong
limitations on the progress that AC0[p] circuits can make towards the goal of computing the
Majority function. In particular, a circuit of this form extended with arbitrary oracle gates
can only compute Majorityn if it delegates essentially all the work to these extra gates. We
can formalize this claim as follows.

I Corollary 5.3. Let p ≥ 2 be prime, and d ∈ N. There exists a constant c ∈ N such that,
for every sufficiently large n, the following holds. If Majorityn is computed by AC0

d[p] circuits
of polynomial size with arbitrary oracle gates, then the total fan-in of the oracle gates is at
least n/(logn)2d+c.

Proof. This result follows immediately from Proposition 5.1 and Theorem 3.7. The fan-in
lower bound is independent of the number of oracle gates, as Theorem 3.7 holds for protocols
with any number of rounds. J

This result has an interesting consequence on the structure of AC0[p] circuits computing
Majority. More precisely, Corollary 5.3 implies that in any layered circuit computing Majorityn,
at least bn/(logn)O(k)c gates must be present at the k-th layer of the circuit (in order to see
this, transform the circuit into an equivalent circuit with a single oracle gate at the top after
the first k layers). On the other hand, the construction in Lemma 3.1 shows that this bound
is not far from optimal. A similar consequence holds for polynomial size circuits computing
the MODq function.

Using Proposition 5.2 and Theorem 4.4, we derive lower bounds on the maximum fan-in
of oracle gates in oracle circuits with a bounded number of such layers computing Majority.
The number of oracle gates is now allowed to be polynomially large.

I Corollary 5.4. Let p ≥ 2 be prime, and r, d ∈ N. If Majorityn is computed by an AC0
d[p]

circuit of polynomial size with arbitrary oracle gates that contains at most r layers of such
gates, then there is some oracle gate with fan-in at least n1/2r/polylog(n).

Proposition 5.2 suggests an approach to the NP vs. NC1/poly problem. The key observa-
tion is that for any r, every Boolean function in NC1/poly has oracle circuits of polynomial
size with r layers, where the maximum fan-in of any oracle gate is nO(1/r).

I Proposition 5.5. Let f = {fn}n∈N be a family of Boolean functions in NC1/poly, and
r ∈ N. Then f has AC0 oracle circuits of polynomial size with r layers, where the maximum
fan-in of any oracle gate is nO(1/r).

Proof. Let {Cn}n∈N be a sequence of circuits for f , where each Cn has size at most nk and
depth at most c logn, for fixed constants k and c. We define oracle circuits Dn as follows.
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Divide Cn into r equally spaced layers of gates, with the distance between any two layers
being at most (c/r) logn. Replace each node at a layer boundary by an oracle gate whose
inputs are its predecessors on the previous layer boundary. Note that any oracle gate has
at most nc/r inputs, since the circuit has bounded fan-in. There are clearly a polynomially
bounded number of oracle gates. Also, the circuit is an AC0 circuit, since it consists purely
of inputs and oracle gates. J

Applying Proposition 5.2 yields the following corollary.

I Corollary 5.6. Let r be any positive integer. Every function in NC1/poly admits poly(n)-
party AC0(poly(n))-compression games with r rounds and cost nO(1/r).

Thus a stronger lower bound than in Corollary 5.4 for an explicit function in NP would
imply a separation of NP and NC1/poly. We conjecture that Clique is such a function.

6 Interactive Compression versus Computation

The results of this paper and in [13] show that two important techniques in circuit complexity,
namely, random restrictions and approximation by low-degree polynomials, can be used to
prove strong incompressibility lower bounds. It is natural to wonder if other important lower
bounds in complexity theory can be extended in a similar way. A related problem is whether
compression can be easier than exact computation. Our next result sheds more light into
these questions.

Let IPn : {0, 1}n × {0, 1}n → {0, 1} be the Inner Product function. In other words, for
x, y ∈ {0, 1}n, IPn(x, y) def=

∑
i∈[n] xi · yi (mod 2). It is known that IPn /∈ THR ◦MAJ, i.e.,

this function cannot be computed by polynomial size circuits consisting of a bottom layer of
linear threshold functions with polynomial weights, connected to a top gate computed by an
arbitrary linear threshold function ([20, 21]).4

We observe below that IPn admits a (MAJ ◦MAJ)-compression game with communication
cost O(logn). In other words, there is a natural Boolean function that cannot be computed
by certain circuits, but whose computation becomes feasible if Alice is allowed to interact
with a more powerful party.

I Proposition 6.1. Let IP = {IPn}n∈N be the family of Inner Product functions. There exists
a (MAJ ◦MAJ)-compression game for IP with communication cost c(n) = O(logn).

Proof. The protocol consists of O(logn) rounds, where in each round Alice sends a single
bit, and Bob replies with a string v ∈ {0, 1}n. After the last round, Bob knows the sum∑
i∈[n] xi · yi, and therefore the transcript reveals the value IPn(x, y). More details follow.
Alice’s circuits are of the form C(x, y, v). In the first layer of the circuit, C computes

zi
def= xi ∧ yi, for every i ∈ [n]. In the second layer, C outputs sign(

∑
i∈[n] zi − vi). Put

another way, Alice uses the same circuit in every round, and we assume that the first bit
sent by Alice during the first round is discarded. Bob does all the work, and simulates a
binary search by sending to Alice an appropriate string v during each round. For instance,
Bob sends v = 0n/21n/2 during the first round, and the next bit computed by Alice reveals if∑
i∈[n] xi · yi is at least n/2. After each round, Bob sends a string corresponding to the next

step of the binary search, and so on. Clearly, after O(logn) rounds, Bob knows the value∑
i∈[n] xi · yi. Finally, observe that Alice communicates O(logn) bits, and that her circuits

are of the form MAJ ◦MAJ. J

4 Recall that a function f : {0, 1}n → {0, 1} is a linear threshold function if there exist weights w1, . . . , wn ∈
Z and a threshold θ ∈ Z such that f(x) = sign(

∑
i∈[n] wi · xi − θ).
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7 An improved round separation theorem for AC0

Recall that Chattopadhyay and Santhanam [13] proved that there are Boolean functions on
n variables that admit AC0-bounded protocols with r rounds and cost O(n1/r), but for which
any correct AC0-bounded (r − 1)-round protocol has cost Ω(n2/r−o(1)). We use a different
construction and refine their techniques, obtaining the following result.

I Theorem 7.1. Let r ≥ 2 and ε > 0 be fixed parameters. There is an explicit family of
functions f = {fn}n∈N with the following properties:
(i) There exists an AC0

2(n)-bounded protocol Πn for fn with r rounds and cost c(n) ≤ nε,
for every n ≥ nf , where nf is a fixed constant that depends on f .

(ii) Any AC0(poly(n))-bounded protocol Π for f with r − 1 rounds has cost c(n) ≥ n1−ε, for
every n ≥ nΠ, where nΠ is a fixed constant that depends on Π.

We will need some additional definitions and notation in order to establish this result. For
any n ∈ N, let gn : {0, 1}n → {0, 1} be the parity function on n variables, and g = {gn}n∈N.
Let m, `, and r be positive integers. Set n = n(m, `, r) def= m + ` · r · m. We define a
function fm,`,r : {0, 1}n → {0, 1} that will be used to prove round separation results for
AC0-compression games. For convenience, let k def= log ` and v def= m/ log `. The definition of
fm,`,r depends on g and a given function h : {0, 1}k → [`], which we assume to be some fixed
one-to-one function.

Given any string z ∈ {0, 1}n, we write z = (x, y(·,1), . . . , y(·,r)), where x ∈ {0, 1}m, and
y(·,j) = (y(1,j), . . . , y(`,j)), where j ∈ [r], and y(i,j) ∈ {0, 1}m, for every i ∈ [`]. In addition,
for any string w ∈ {0, 1}m, we write w = (w(1), . . . , w(k)), where each w(u) ∈ {0, 1}v, for
u ∈ [k]. For convenience, instead of writing y(i,j)(u), we may also use y(i,j,u).

The function fm,`,r is defined by induction on r. It is simply a pointer jumping function,
where h is applied to certain bits computed from the current string (initially x) using k = log `
independent applications of gv. After jumping from the initial x to a new string x′, which
will be one of the y’s in y(·,1), we recurse. After r steps, some string y from y(·,r) will be
reached. The output of fm,`,r is then set to be gm(y).

Formally, when r = 1, for any z ∈ {0, 1}n,

fm,`,1(z) def= gm(y(i,1)), where i = h(gv(x(1)), . . . , gv(x(k))).

Now let r ≥ 2 be arbitrary. Then, for any z ∈ {0, 1}n,

fm,`,r(z)
def= fm,`,r−1(z′),

where z′ = (x′, y(·,2), . . . , y(·,r)), x′ = y(i,1), and i = h(gv(x(1)), . . . , gv(x(k))). This completes
the definition of fm,`,r.

I Lemma 7.2 (Upper Bound). For any m, `, r ≥ 1, the function fm,`,r admits an AC0
2(m · `)-

compression game with r + 1 rounds and communication cost c(n) = (r + 1) ·m.

Proof. During each round j, Alice sends her current string x′ ∈ {0, 1}m to Bob, which replies
with ` strings v(i) ∈ {0, 1}m satisfying the following property: v(i) = 1m if the next round of
the game is played on y(i,j+1), and v(i) = 0m otherwise. Observe that the next message that
Alice has to send is simply the m-bit string given by∨

i∈[`]

(
v(i) ∧ y(i,j+1)

)
.

The cost and round complexity of this protocol is clear. J
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We now proceed with the proof that in any AC0-bounded protocol for fm,`,r with r

rounds, Alice has to communicate roughly ` ·m bits, for an appropriate choice of ` that we
would like to make as large as possible. The argument is based on random restrictions, which
allow us to simplify the AC0 circuits used by Alice considerably, while still maintaining the
resulting function sufficiently hard for compression games. At a high level, we apply a round
elimination technique, combined with a strong lower bound for fm,`,1. More details follow.

From now on we will also view fn,`,r as a function fm,`,r : {0, 1}[n] → {0, 1}, where each
input z for fm,`,r can also be interpreted as a function z : [n] → {0, 1}. This will give us
more flexibility when manipulating restrictions. A restriction ρ ∈ {0, 1, ∗}[n] is simply a
function ρ : [n]→ {0, 1, ∗}. Given a restriction ρ and a function f : {0, 1}[n] → {0, 1}, we let
fρ : {0, 1}ρ−1(∗) → {0, 1} be the following function. For every z− ∈ {0, 1}ρ−1(∗),

fρ(z−) def= f(z),

where z ∈ {0, 1}[n] is the function with z|ρ−1({∗}) = z− and z|ρ−1({0,1}) = ρ|ρ−1({0,1}).
Let N def= [n]. Recall that we write z ∈ {0, 1}n as z = (x, y(1,1), . . . , y(`,r)). Similarly, we

let S(i,j,u) ⊆ N index the variables corresponding to y(i,j,u), for i ∈ [`], j ∈ [r] and u ∈ [k].
We define S(i,j) def=

⋃
u S

(i,j,u). Further, we use M ⊆ N to index the variables corresponding
to x, and M (1), . . . ,M (k) for the corresponding variables x(1), . . . , x(k). Let ΓN be the set
of all restrictions with domain N , i.e., ΓN

def= {0, 1, ∗}N . Given ρ1, ρ2 ∈ ΓN , we say that ρ2
extends ρ1 if ρ−1

2 (∗) ⊆ ρ−1
1 (∗) and ρ2|ρ−1

1 ({0,1}) = ρ1|ρ−1
1 ({0,1}).

Our round separation theorem will be derived from lower bounds on a class of functions
φs,d,` : N× N× R+ → N, defined as follows:

φs,d,`
(
m, r, δ

) def= min
σ∈ΓN,δ

min
Π∈Protσ

s,d,r

cost(Π),

where:5
(i) ΓN,δ ⊆ ΓN is the set of all restrictions σ for which the following holds: there exists sets

Dj ⊆ [`] with j ∈ [r] such that |Dj | ≤ δ · `, and σ−1({0, 1}) =
⋃
j∈[r]

(⋃
i∈Dj S

(i,j)
)
,

(ii) Protσs,d,r is the set of all AC0
d(s)-bounded r-round protocols Π solving the compression

game of fσm,`,r.
The parameters m, r, and δ will vary during our inductive proof, while s, d, and ` remain
fixed (observe that this is reflected in our notation for φ). The proof of Theorem 7.1 relies
on the following lemmas, whose proof we present later in this section.

I Lemma 7.3 (Lower Bound: Base case). Let s = nc1 , d ∈ N, ` = mc2 , δ ∈ (0, 1/10), and
r = 1, where c1 and c2 are fixed positive integers. Then, for every fixed β ∈ (0, 1/10) and m
sufficiently large,

φs,d,`
(
m, 1, δ

)
≥ ` ·m1−β .

I Lemma 7.4 (Lower Bound: Induction step). Let s = nc1 , d ∈ N, ` = mc2 , δ ∈ (0, 1/10),
and r ≥ 2, where c1 and c2 are fixed positive integers. Then, for every fixed β ∈ (0, 1/10)
and m sufficiently large,

φs,d,`
(
m, r, δ

)
≥ min

{
` ·m1−β , φs,d,`

(
m1−β , r − 1, δ + β

)}
.

5 For the sake of this proof, we consider circuits of size at most s (exactly), instead of O(s).
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These lemmas imply the following result.

I Proposition 7.5. For every fixed r ≥ 1, c ∈ N, and ζ > 0, for m sufficiently large, we have

φpoly(n),O(1),mc
(
m, r, 1/(100r)

)
≥ ` ·m1−ζ .

Proof. The result follows easily from Lemmas 7.3 and 7.4 using that r is constant and that
we can take β and δ sufficiently small. J

Finally, it is not hard to derive the main lower bound of this section from these results.

Proof of Theorem 7.1. Given any r ≥ 2 and ε > 0, it is enough to consider an appropriate
family of functions fm,`,r−1, where c = c(ε) is sufficiently large, and set ` = mc. The result
then follows from Lemma 7.2 and Proposition 7.5. J

We proceed now with the proof of the lemmas. We will need the notion of a random
restriction. Let p ∈ [0, 1] be a real number. We let ΓpN denote the distribution over restrictions
ρ ∈ ΓN generated by independently fixing each ρ(i) (where i ∈ N) as follows:

Pr[ρ(i) = ∗] = p, Pr[ρ(i) = 1] = (1− p)/2, Pr[ρ(i) = 0] = (1− p)/2.

Given a Boolean function fn : {0, 1}n → {0, 1} over n variables, we let DTdepth(f) be the
smallest decision tree depth among all decision trees computing fn. The next statement is
independent of the number of inputs of f .

I Lemma 7.6 (Switching Lemma [27]). Let f be a Boolean function that can be written as a
conjunction or disjunction of any number of depth-t decision trees. Then, for every p ∈ [0, 1]
and r ∈ N,

Pr
ρ∼Γp

[DTdepth(fρ) > r] ≤ (5pt)r.

The next result is a standard consequence of Lemma 7.6 (cf. Gopalan and Servedio [24]).

I Proposition 7.7. Let f be a Boolean function computed by an AC0 circuit of size M and
depth d. For every t ∈ N, if p ≤ 1/(10t)d then

Pr
ρ∼Γp

[DTdepth(fρ) > t] ≤M · 2−t.

Given a function C : {0, 1}[n] → {0, 1}, we let live(C) ⊆ [n] denote the set of input
variables of C with influence greater than zero. It will be more convenient for us to rely on
the following straightforward consequence of Lemma 7.6 and Proposition 7.7.

I Lemma 7.8. Let C1, . . . , Cs1 : {0, 1}n1 → {0, 1} be functions computed by depth-d AC0

circuits of size at most nc1
1 , where d, c1 ∈ N and s1 = m1−γ · `, and these parameters satisfy

m, ` ∈ N, γ ∈ (0, 1/5), ` = mc2 , where c2 ∈ N, and n1 = Θ(m · `). Then, for p = m−γ/2,
there exists a constant c3 such that, as m→∞,

Pr
ρ∼Γp[n1]

[ ∣∣∣ ⋃
i∈[s1]

live (Cρi )
∣∣∣ ≤ c3 · (m1−γ · `)

]
→ 1.

Proof. Let p = p1 ·p2, where p1 = p2 = m−γ/4. Observe that sampling a restriction ρ ∼ Γp[n1]
is equivalent to first sampling some ρ1 ∼ Γp1

[n1], followed by a restriction ρ2 ∼ Γp2
W , where

W
def= [n1] \ ρ−1

1 ({0, 1}), and finally setting ρ = ρ2 ◦ ρ1, where the composition operation
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is defined in the natural way. Let c = c1 + 10, and t = c · logn1. Furthermore, we let
r = d8(1 + c2)/γe, and c3 = 2r. Then,

Pr
ρ∼Γp[n1]

[ ∣∣∣ ⋃
i∈[s1]

live (Cρi )
∣∣∣ > c3 · (m1−γ · `)

]
≤ Pr

ρ
def= ρ2◦ρ1

[
∃i ∈ [s1] s.t. |live(Cρi )| > 2r

]
≤ Pr

ρ1,ρ2

[
∃i ∈ [s1] s.t. DTdepth(Cρi ) > r

]
In order to conclude the proof, it is enough to show that for every j ∈ [s1] and sufficiently
large m, Prρ1,ρ2 [DTdepth(Cρj ) > r] ≤ (1/n1)2. However, by our choice of parameters (and with
room to spare), this follows from an application of Proposition 7.7 with ρ1 and t, followed
by an application of Lemma 7.6 with ρ2 and r (notice that these statements are true with
respect to any input size). J

We are now ready to prove Lemmas 7.3 and 7.4.

Proof of Lemma 7.3. Let σ : [n]→ {0, 1, ∗} be a restriction in ΓN,δ, where n = m+ ` ·m
and N = [n], as usual. Let N1

def= N \ σ−1({0, 1}), and set n1
def= |N1|. Observe that

n1 ≥ (1 − δ) · ` · m = Θ(m · `). In addition, let Π = (C(1), g(1), E) be a single-round
protocol for fσm,`,1, where C(1) = (C1, . . . , Cs1), and these are AC0 circuits of depth d and size
s = nc1 ≤ n2c1

1 (for large enough m) that compute the message in {0, 1}s1 that Alice sends to
Bob. By definition, for each i ∈ [s1], Ci : {0, 1}n1 → {0, 1}. We prove that if s1 < ` ·m1−β ,
then there exists an input z ∈ {0, 1}n1 for which Π(z) 6= fσm,`,1(z).

Let D1 ⊆ [`] be the set identifying the variables y fixed by σ (according to our definition of
ΓN,δ). For any z ∈ {0, 1}N1 , we write z = (x, y(i1,1), . . . , y(ik,1)), where [`]\D1 = {i1, . . . , ik},
k ≥ (1− δ) · `, and x ∈ {0, 1}m. Recall that we use sets S(i1,1), . . . , S(ik,1) and M to address
the elements of [N1] corresponding to these input positions.

Now consider a random restriction ρ ∼ ΓpN1
, where p = m−β/2. Applying Lemma

7.8 with γ = β and Proposition 1.1, it follows that, for every large enough m, with high
probability:
(i) C(1),ρ depends on at most O(m1−β · `) variables.
(ii) For every j ∈ [log `], it is the case that ρ−1(∗) ∩M (j) 6= ∅.
(iii) |ρ−1(∗) ∩ (S(i1,1) ∪ . . . ∪ S(ik,1))| ≥ 1

2 ·
(1−δ)·m·`
mβ/2 = Ω(m1−β/2 · `). In particular, from (i)

we get that there exists i ∈ [`] \D1 for which S(i,1) ∩
(
ρ−1(∗) \ live(C(1),ρ)

)
6= ∅.

Overall, it follows that there exists a restriction ρ ∈ ΓN with ρ = ρ ◦σ, for an appropriate
choice of ρ ∈ ΓN1 , such that ρ fixes the message sent by Alice, but does not fix the value of
fρm,`,1. In particular, there exists a z ∈ {0, 1}n1 that agrees with ρ for which Π(z) 6= fσm,`,1(z),
which completes the proof. J

The proof of Lemma 7.4 is not much harder than the argument used in the base case,
but it has a few technicalities that need to be handled.

Proof of Lemma 7.4. Let σ ∈ ΓN,δ and Π ∈ Protσs,d,r be a pair realizing φs,d,`(m, r, δ). In
other words, Π solves the compression game of fσm,`,r, and cost(Π) = φs,d,`(m, r, δ). Assume
that Π = (C(1), . . . , C(r), g(1), . . . , g(r−1), E), and signature(Π) = (n1, s1, t1, . . . , tr−1, sr),
where n = m+m · ` · r, N = [n], N1 = N \ σ−1({0, 1}), and n1 = |N1|. For convenience, let
C(1) = (C1, . . . , Cs1), where each Ci is a depth-d AC0 circuit of size at most nc1 ≤ n2c1

1 (for
large m), since n1 ≥ (1− δ) · n.

Notice that if cost(Π) ≥ ` ·m1−β then the statement of Lemma 7.4 is true. Otherwise,
from cost(Π) < ` ·m1−β we get that s1 < ` ·m1−β , which allows us to proceed as in the proof
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of Lemma 7.3. Let p = m−β/2, and set γ = β. It follows from Lemma 7.8 that, with high
probability, ∣∣live(C(1),ρ)

∣∣ = O(m1−β · `). (3)

Let Dj for j ∈ [r] be the sets identifying the variables y fixed by σ. By assumption,
|Dj | ≤ δ · ` for every j ∈ [r]. From now on, whenever we consider a set S(i,j), we implicitly
assume that j ∈ [r] and i ∈ [`] \Dj . This time we will also be concerned about how the
action of ρ affects the more specific sets S(i,j,u), where u ∈ [log `]. Observe that, with high
probability (Proposition 1.1), for every (i, j, u), we have:

∣∣S(i,j,u) ∩ ρ−1(∗)
∣∣ ≥ 1

2 ·
m

log ` · p = 1
2 ·

m1−β/2

c2 logm ≥ m
1−(3/4)β , (4)

for any sufficiently large m. We say that a set S(i,j) is bad with respect to C(1),ρ if
|S(i,j) ∩ live(C(1),ρ)| ≥ 1

2 ·m
1−(3/4)β . Otherwise, the set is said to be good. It follows from

Equation 3 that

Number of bad sets S(i,j) ≤ O(m1−β · `)
(1/2) ·m1−(3/4)β = 2`

mβ/4 = o(`), (5)

as m→∞. In particular, since r = O(1) and β is a fixed constant, with high probability, for
every j ∈ [r] there are at most β · ` sets S(i,j) that are bad with respect to C(1),ρ. Finally,
with high probability over ρ, we also get that, for every j ∈ [log `],∣∣M (j) ∩ ρ−1(∗)

∣∣ > 0.

It follows using the probabilistic method that there exists a fixed restriction ρ1 ∈ ΓN1

satisfying all these properties. Let ρ2 = ρ1 ◦ σ be the restriction obtained by combining ρ1
and σ in the obvious way. Observe that ρ2 : N → {0, 1, ∗}. Fix arbitrarily all ∗-variables in
ρ2 corresponding to bad sets S(i,j). On every good set S(i,j), fix all ∗-variables intersecting
live(C(1),ρ1), and also fix additional variables in each set S(i,j,u) so that the new restriction ρ3
satisfies |ρ−1

3 (∗)∩S(i,j,u)| = m1−β , for every appropriate triple (i, j, u). This is possible for any
large enough m, since these sets are good. Further, we assume that the number of variables
corresponding to each S(i,j,u) that are set to 1 is even, in order not to invert the parity inside
each block, which will be important later in the proof. Let fρ3

m,`,r : {0, 1}ρ−1
3 (∗) → {0, 1} be

the resulting function.
Given an input z̃ ∈ {0, 1}ρ−1

3 (∗), write z̃ = (x̃, {ỹ(i,j)}), and let z = (x, {y(i,j)}) ∈ {0, 1}n
be the completion of z̃ that agrees with ρ3, where this notion is defined in the natural way.
Observe that h(x) still depends on x̃. Now we set all remaining ∗-variables in M in a way
that, for the new restriction σ : [N ] → {0, 1, ∗}, we have h(σ(M)) pointing to a pair (i, 1)
corresponding to a good set S(i,1). This is possible due to the properties of ρ1. Observe
that C(1),σ computes a constant function (i.e., Alice’s message a(1) has been fixed). Let
b(1) ∈ {0, 1}t1 be the answer provided by Bob, which is also fixed.

Now let Π = (C(1)
, . . . , C

(r−1)
, g(1), . . . , g(r−2), E) be a new protocol obtained by setting

each C
(i) to be C(i+1) with its input corresponding to the first message sent by Bob

fixed to b(1), and g(i) = g(i+1), for every appropriate i. If we also rename the input
variables in fσm,`,r and in the functions and circuits from Π, truncating irrelevant variables
appropriately (recall the definition of the original function as a pointer jumping function),
we obtain a restriction σ′ : {0, 1}N ′ → {0, 1}, where n′ = |N ′| = m′ +m′ · ` · r′, m′ = m1−β ,
r′ = r − 1, σ′ ∈ ΓN ′,δ′ , δ′ = δ + β, and the resulting protocol Π′ ∈ Protσ

′

s,d,r′ . Crucially,
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Π′ is a protocol solving the compression game of fσ′m′,`,r′ in r′ rounds, which implies that
cost(Π) ≥ cost(Π′) ≥ φs,d,`(m′, r′, δ′) = φs,d,`(m1−β , r − 1, δ + β), completing the proof of
Lemma 7.4. J

8 Open Problems and Further Research Directions

Our results and techniques raise a number of interesting questions, which we discuss more
carefully below.

The power of interaction in two-party AC0[p]-compression games. Observe that the
approach to obtain communication lower bounds for AC0[p] games employed in the proof of
Theorem 1.1 is insensitive to the number of rounds of the protocol. On the other hand, our
round separation result (Theorem 1.6) holds with respect to AC0 circuits only. Consequently,
a natural question is whether a strong round separation theorem is true for AC0[p] games.
We conjecture that this is the case, and that a hard function can be obtained via a similar
construction that uses MODq instead of parity.

Randomized AC0[p]-compression games. While we have obtained essentially optimal lower
bounds for deterministic two-party AC0[p]-compression games, the situation is less clear
with respect to randomized protocols. Modulo logarithmic factors, there is a quadratic
gap between our upper and lower bounds for MODq and Majority (Theorem 1.3). On the
other hand, it is known that the communication cost of these games is n/ logΘ(d) n for
randomized AC0

d-compression games (Chattopadhyay and Santhanam [13]). We are unable
to obtain better lower bounds here because our approach does not seem to tolerate the initial
error probability from the protocol, as it relies on the low error regime of the polynomial
approximation method.

Extending circuit lower bounds to incompressibility results. The results presented in this
paper and in [13] show that recent extensions of the random restriction method and the
polynomial approximation method can provide optimal incompressibility results. However,
our construction from Section 6 implies that not every technique can be extended in this
sense. Which other techniques and results from circuit complexity can be strengthened to
compressibility lower bounds?

Understanding the structure of Boolean circuits. Our results shed more light into the
computation of Boolean functions such as MODq using AC0[p] circuits, as we are able to
obtain information about each layer of the circuit. Similar developments appear for instance
in Tarui [42], Rudich and Berman [38], and Borodin [11]. We believe that results of this form
can provide important insights in algorithms and computational complexity, and it would be
very interesting to see further advances in this direction.
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A Auxiliary results

We use the following standard concentration bound (cf. Alon and Spencer [6], Appendix A).

I Proposition 1.1. Let X1, . . . , Xm be independent {0, 1} random variables, where each Xi

is 1 with probability p ∈ [0, 1]. In addition, set X def=
∑
iXi, and µ

def= E[X] = pm. Then, for
any fixed ζ > 0, there exists a constant cζ > 0 such that

Pr[ |X − µ| > ζµ] < 2e−cζµ.

B The degree lower bound in the low-error regime

In this section we describe the proof of the degree lower bound for Fp-polynomials approx-
imating MODq in the low error regime. Recall that we use MODnq to denote the MODq
function over n input variables, and that a polynomial Q ∈ Fp[x1, . . . , xn] ε(n)-approximates
a Boolean function f : {0, 1}n → {0, 1} under the uniform distribution if

Pr
x∼{0,1}n

[Q(x) = f(x)] ≥ 1− ε(n),

where x is viewed as an element of Fnp or {0, 1}n, depending on the context.

I Proposition 2.1 ([36, 40], folklore). Let p, q ≥ 2 be distinct primes. There exist fixed
constants δ > 0 and n0 ∈ N for which the following holds. For every n ≥ n0 and ε(n) ∈
[2−n, 1/10q], any polynomial P ∈ Fp[x1, . . . , xn] that ε-approximates the MODnq function with
respect to the uniform distribution has degree at least δ ·

√
n · log(1/ε).

The proofs that appear in the literature are concerned with large values of ε, and our
goal here is to discuss the extension of the degree lower bound to very small ε, as stated in
Proposition 2.1. For this reason, we will focus on the case where q = 2 and p > 2, which is
slightly simpler. We start with the following lemma.

I Lemma 2.2. For a prime p > 2, let P ∈ Fp[x1, . . . , xn] be a degree-d polynomial that
ε(n)-approximates MODn2 over the uniform distribution. Then there exists a polynomial
Q ∈ Fp[y1, . . . , yn] of degree at most d and a set S ⊆ {−1, 1}n ⊆ Fnp with |S| ≥ (1 − ε)2n
such that

∀y ∈ S, Q(y) =
n∏
i=1

yi.

Proof. Let T ⊆ {0, 1}n ⊆ Fnp be a set of size at least (1− ε)2n such that

∀x ∈ T, P (x) = MODn2 (x).

Consider the map γ : {−1, 1} → {0, 1} computed by the Fp-polynomial γ(y) def= (1− y)2−1.
Observe that γ(−1) = 1 and γ(1) = 0. Let Q(y1, . . . , yn) be a polynomial in Fp[y1, . . . , yn]
with Q(y) def= 2P (γ(y1), . . . , γ(yn))− 1, and let

S
def= {y ∈ {−1, 1}n | (y1, . . . , yn) = (γ−1(x1), . . . , γ−1(xn)), where x ∈ T}.

Then, using the definition of P , Q, S, T , and γ, it is not hard to see that

∀y ∈ S, Q(y) =
n∏
i=1

yi.

Finally, observe that |S| = |T | and deg(Q) ≤ deg(P ), which completes the proof of the
lemma. J
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The next lemma shows that polynomials with this property can be very useful when
computing functions defined over S ⊂ Fnp .

I Lemma 2.3. Let F be a finite field, and a, b ∈ F be distinct non-zero elements. Assume
that Q ∈ F[x1, . . . , xn] is a degree-d polynomial, and S ⊆ {a, b}n is a set such that

∀x ∈ S, Q(x) =
n∏
i=1

xi.

Then, for every function f : S → F, there is a polynomial Qf ∈ F[x1, . . . , xn] with degree at
most (n+ d)/2 such that

∀x ∈ S, Qf (x) = f(x).

Proof. Fix a function f : S → F, and let Pf be a multilinear polynomial such that, for all
x ∈ S, Pf (x) = f(x). For instance, since a and b are distinct elements of F, we can take

Pf (x) def=
∑
x∈S

f(x) ·
( ∏
i:xi=a

(b− xi)(b− a)−1

)( ∏
i:xi=b

(a− xi)(a− b)−1

)
.

Now consider any monomial M(x) def=
∏
i∈I xi, where I ⊆ [n]. Since a and b are non-zero,

for any y ∈ S ⊆ {a, b}n, we have

∏
i∈I

yi =

∏
i∈[n]

yi

(∏
i/∈I

y−1
i

)

= Q(y) ·
(∏
i/∈I

a−1(b− yi)(b− a)−1 + b−1(a− yi)(a− b)−1

)
,

where Q is the polynomial granted by the statement of the lemma. Therefore, each monomial
in Pf defined over a subset I ⊆ [n] can be replaced by a monomial of degree at most
min(|I|, d + n − |I|) ≤ (n + d)/2, in the sense that the new polynomial is still correct on
every input in S. Consequently, there exists a polynomial Qf for f with degree at most
(n+ d)/2, as claimed by the lemma. J

In other words, if d is small, there exist polynomials of degree much smaller than n for all
functions with domain S and codomain F. This is impossible for large sets S, via a simple
counting argument. In order to formalize this argument and obtain good parameters, we
rely on a certain lower bound for the binomial distribution. The next lemma follows from
more general results presented in Feller [19]. We follow closely the exposition in Matoušek
and Vondrák [31].

I Lemma 2.4. For an even integer n ∈ N, consider independent random variables X1, . . . , Xn,
where each Xi attains values 0 and 1, each with probability 1/2. Let X def=

∑
i∈[n]Xi. Then,

for any integer t ∈ [0, n/8],

Pr
[
X ≥ n

2 + t
]
≥ 1

15 · e
−16t2/n.
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Proof. For convenience, let n = 2m. Then,

Pr[X ≥ m+ t] = 2−2m
m∑
j=t

(
2m
m+ j

)

≥ 2−2m
2t−1∑
j=t

(
2m
m+ j

)

= 2−2m
2t−1∑
j=t

(
2m
m

)
m

m+ j
· m− 1
m+ j − 1 . . .

m− j + 1
m+ 1

≥ 1
2
√
m

2t−1∑
j=t

j∏
i=1

(
1− j

m+ i

)
(since

(
2m
m

)
≥ 22m/(2

√
m))

≥ t

2
√
m

(
1− 2t

m

)2t

≥ t

2
√
m
· e−8t2/m (since 1− x ≥ e−2x for 0 ≤ x ≤ 1/2).

The lemma now follows depending on the value of t. Observe that if t ≥ 1
4
√
m then the

last expression is lower bounded by 1
8e
−16t2/n. On the other hand, for 0 ≤ t < 1

4
√
m, we get

that Pr[X ≥ m+ t] ≥ Pr[X ≥ m+ 1
4
√
m] ≥ 1

8e
−1/2 ≥ 1

15 , which completes the proof. J

Finally, we combine these lemmas in order to prove Proposition 2.1 for primes q = 2 and
p > 2.

Proof. Let P ∈ Fp[x1, . . . , xn] be a degree-d polynomial that ε(n)-approximates the MODn2
function over the uniform distribution. Assume without loss of generality that n is even,
since otherwise we can obtain a polynomial Q ∈ Fp[x1, . . . , xn+1] with degree at most 2d that
ε(n)-approximates MODn+1

2 with respect to {0, 1}n+1 (i.e., apply P to the first n variables,
then compose with the appropriate function over two input variables).

It follows from Lemmas 2.2 and 2.3 that there exists a set S ⊆ {−1, 1}n ⊆ Fnp of
size (1 − ε)2n such that, for every function f : S → Fp, there exists a polynomial Qf ∈
Fp[x1, . . . , xn] of degree at most d′ def= (n+ d)/2 that agrees with f over S.

Let F be the set of such functions. Clearly, |F| = |Fp||S|. On the other hand, since
S ⊆ {−1, 1}n, we can assume that each polynomial Qf is multilinear. The number of such
polynomials with degree at most d′ is upper bounded by |Fp|M , where M def=

∑d′

i=0
(
n
i

)
.

Therefore, |Fp||S| ≤ |F| ≤ |Fp|M , and we get that

(n+d)/2∑
i=0

(
n

i

)
≥ (1− ε) · 2n. (6)

We use this inequality to lower bound d in terms of n and ε. First, Equation 6 can be
rewritten as

2−n ·
∑

i>(n+d)/2

(
n

i

)
≤ ε. (7)

On the other hand, it follows from Lemma 2.4 that, for any d ∈ [0, n/8],

1
15 · exp

(
−16
n
·
(
d

2 + 1
)2
)
≤ Pr

[
X >

n

2 + d

2

]
= 2−n ·

∑
i>(n+d)/2

(
n

i

)
. (8)
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Therefore, we obtain from Equations 7 and 8 that d = Ω(
√
n · log(1/ε)) for any ε(n) ∈

[2−n, 1/20], which completes the proof. J

C Improved approximation of AC0[p] circuits by polynomials

For convenience of the reader, we describe in this section how to approximate Boolean circuits
by bounded-degree polynomials in the low-error regime. We assume the following classic
result, obtained in slightly different forms by Razborov [36] and Smolensky [40].

I Proposition 3.1 ([36], [40]). Let p be a fixed prime. There exists a constant β = β(p) ∈ N
such that, for every d = d(n) ≥ 1 and s = s(n) ≥ 1, any AC0

d[p](s(n)) circuit admits
an 1/(6s)-error probabilistic polynomial Q(x1, . . . , xn) ∈ Fp[x1, . . . , xn] of degree at most
(β · log max{s, 2})d.

We are now ready to describe the proof of the degree upper bound obtained by Kopparty
and Srinivasan [29], which allows us to obtain better bounds when the error is sufficiently
small.

I Proposition 3.2 ([29]). Let p be a fixed prime. There exists a constant α = α(p) ∈ N
such that, for every δ ∈ (0, 1/2) and d(n) ≥ 2, any AC0

d[p](s(n)) circuit C admits a δ-
error probabilistic polynomial Q(x1, . . . , xn) ∈ Fp[x1, . . . , xn] of degree at most (α · log s)d−1 ·
log(1/δ). In particular, it follows that for any distribution D over {0, 1}n, C is δ-approximated
with respect to D by a polynomial of degree at most (α · log s)d−1 · log(1/δ).

Proof. Let C be an AC0[p] circuit of size s and depth d ≥ 2. Further, let g be the
top gate of C, and assume that this gate is fed by t ≤ s input wires y1, . . . , yt, where
each yj = gj(x1, . . . , xn). Observe that the corresponding Boolean function over inputs
x1, . . . , xn at each gate gj is computed by a circuit of size at most s and depth at most
d− 1, while g = g(y1, . . . , yt) is computed by a circuit of size one. Let ε def= 1/(6s). Then,
Proposition 3.1 guarantees the existence of probabilistic polynomials Qj(x1, . . . , xn) which
compute the corresponding functions gj with error at most ε, where deg(Qj) ≤ (β · log s)d−1.
Similarly, since g is computed by a single gate, there exists a probabilistic polynomial
Qg(y1, . . . , yt) that computes g with error at most 1/6, where deg(Qg) ≤ β. By composing
these polynomials and applying a union bound, it follows that there exists a probabilistic
polynomial P(~x) def= Qg(Q1(~x), . . . ,Qt(~x)) with deg(P) ≤ (γ · log s)d−1 that computes C
with error at most 1/3, where γ = γ(p) is a fixed constant. Further, by raising this polynomial
to p− 1 and applying Fermat’s little theorem, we can assume without loss of generality that
its output is always Boolean. Since d ≥ 2, the degree becomes at most (γ′ · log s)d−1, where
γ′ ≤ p · γ.

Now let k = c · log(1/δ), for a sufficiently large constant c. Consider the probabilistic
polynomial M(~x) def= M(P1(~x), . . . ,Pk(~x)), where M is a degree k polynomial that computes
Majorityk exactly, and each Pi is an independent copy of P. It follows from Proposition 1.1
that M is a probabilistic polynomial of degree at most (α · log s)d−1 · log(1/δ) that computes
C with error at most δ, where α = α(γ′, c) = α(p) is an appropriate constant. J
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Abstract
Shpilka and Wigderson [22] had posed the problem of proving exponential lower bounds for
(nonhomogeneous) depth three arithmetic circuits with bounded bottom fanin over a field F of
characteristic zero. We resolve this problem by proving a NΩ( dτ ) lower bound for (nonhomo-
geneous) depth three arithmetic circuits with bottom fanin at most τ computing an explicit
N -variate polynomial of degree d over F.

Meanwhile, Nisan and Wigderson [18] had posed the problem of proving superpolynomial
lower bounds for homogeneous depth five arithmetic circuits. Over fields of characteristic zero,
we show a lower bound of NΩ(

√
d) for homogeneous depth five circuits (resp. also for depth three

circuits) with bottom fanin at most Nµ, for any fixed µ < 1. This resolves the problem posed
by Nisan and Wigderson only partially because of the added restriction on the bottom fanin (a
general homogeneous depth five circuit has bottom fanin at most N).
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1 Introduction

The problem of proving super-polynomial lower bounds for arithmetic circuits occupies a
central position in algebraic complexity theory, much like the problem of proving super-
polynomial lower bounds for Boolean circuits does in Boolean complexity. The model of
arithmetic circuits is an algebraic analogue of the model of Boolean circuits: an arithmetic
circuit contains addition (+) and multiplication (×) gates and it naturally computes a
polynomial in the input variables over some underlying field. We typically allow the input
edges to a + gate to be labelled with arbitrary constants from the underlying field F so that
a + gate can in fact compute an arbitrary F-linear combination of its inputs. As a possible
stepping stone, researchers have focused on restricted (but still nontrivial and interesting)
subclasses of arithmetic circuits. In particular, circuits of low depth1 are interesting for
they correspond to computation which is highly parallel. But despite a lot of attention,
proving superpolynomial lower bounds for even bounded depth arithmetic circuits remains
an outstanding open problem.

1 Recall that the depth of a circuit is the maximum length of any path in the circuit.
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Notation for low depth circuits. Bounded depth arithmetic circuits2 consist of alternating
layers of addition and multiplication gates. We will denote an arithmetic circuit of depth ∆
by a sequence of ∆ symbols wherein each symbol (either Σ or Π) denotes the nature of the
gates at the corresponding layer and the leftmost symbol indicates the nature of the gates at
the output layer. For example, a ΣΠΣ circuit with input x = (x1, x2, . . . , xn) computes a
polynomial in the following manner:

C(x) =
∑
i

∏
j

(
aij0 +

n∑
k=1

aijkxk

)
, where each aijk ∈ F. (1)

In dealing with circuits it is useful to keep track of the fanin to various gates. Towards this
end, we extend the above notation and allow integer superscripts on the gate symbols (i.e. Σ
or Π symbols) which denotes an upper bound on the fanin of any gate in the corresponding
layer3. So for example a Σ[s]Π[e]Σ[τ ] circuit computes a polynomial of the form:

C(x) =
∑
i≤s

∏
j≤e

∑
k≤τ

aijk · yijk

 where each aijk ∈ F and yijk ∈ x ∪ {1}.

while a ΣΠ[a]ΣΠ[b] circuit computes a polynomial in the following manner:

C(x) =
∑
i

∏
j≤a

Qij(x) where degQij ≤ b for all i and j.

Depth Three Circuits. Being the shallowest nontrivial subclass of arithmetic circuits, depth
three arithmetic circuits, also denoted as ΣΠΣ circuits4 have been intensely investigated. ΣΠΣ
circuits (more specifically tensors) arise naturally in the investigation of the complexity of
polynomial multiplication and matrix multiplication5. Moreover, the optimal formula/circuit
for some well known families of polynomials are in fact depth three circuits. In particular,
the best known circuit for computing the permanent Permd is known as Ryser’s formula
[19] which is a (homogeneous6) depth three circuit of size O(d2 · 2d). Recently it was shown
[7] that (nonhomogeneous) ΣΠΣ circuits are surprisingly powerful – any polynomial f of
small circuit complexity can also be computed by a (nonhomogeneous) ΣΠΣ circuit which

2 Throughout the rest of this paper, we shall deal with bounded depth circuits – indeed of depth at most
5. In this context, we will often use the words formulas and circuits interchangeably, as depth-∆ circuits
can be converted to depth-∆ formulas with only a polynomial blow-up in size.

3 If there is no superscript on the symbol for a layer, then the fanin at that layer is allowed to be arbitrary.
4 Depth three circuits with a product gate at the output, i.e. ΠΣΠ-circuits, are uninteresting from the

perspective of proving lower bounds for they cannot even compute irreducible polynomials of degree
more than 1 (regardless of size).

5 For example it can be shown that the product of two n × n matrices can be computed with Õ(nω)
arithmetic operations if and only if the polynomial

Mn =
∑
i∈[n]

∑
j∈[n]

∑
k∈[n]

xij · yjk · zki

can be computed by a ΣΠΣ circuit where the top fanin s is at most Õ(nω).
6 Recall that a multivariate polynomial is said to be homogeneous if all its monomials have the same total
degree. An arithmetic circuit is said to be homogeneous if the polynomial computed at every internal
node of the circuit is a homogeneous polynomial. It is a folklore result (cf. the survey by Shpilka and
Yehudayoff [24]) that as far as computation by polynomial-sized arithmetic circuits of unbounded depth
is concerned one can assume without loss of generality that the circuit is homogeneous. Specifically, if a
homogeneous polynomial f of degree d can be computed by an (unbounded depth) arithmetic circuit of
size s, then it can also be computed by a homogeneous circuit of size O(d2 · s).
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is not too large. Specifically7, if an n-variate polynomial f of degree d can be computed by
poly(n)-sized circuits, then it can also be computed by nO(

√
d)-sized ΣΠΣ circuit8.

Lower Bounds for ΣΠΣ circuits. In a very influential piece of work, Nisan and Wigderson
[18] showed that over any field F, any homogeneous ΣΠΣ circuit computing the determinant
Detd must be of size 2Ω(d). Grigoriev and Karpinski [5], and Grigoriev and Razborov [6]
showed that any ΣΠΣ arithmetic circuit over any fixed finite field computing Detd must
be of size at least 2Ω(d). This also implies that any ΣΠΣ arithmetic circuit over integers
computing Detd must be of size at least 2Ω(d). Raz and Yehudayoff give 2Ω(d) lower bounds
for multilinear ΣΠΣ circuits9. But despite all this progress, even a superpolynomial lower
bound for unrestricted ΣΠΣ circuits (over an infinite field) has remained ellusive. The best
known lower bound in the general ΣΠΣ case is the quadratic lower bound due to Shpilka
and Wigderson [22]. For more on ΣΠΣ circuits, we refer the reader to the thesis of Shpilka
[21] and the references therein.

ΣΠΣ circuits with small bottom fanin. Nisan and Wigderson noted that (nonhomoge-
neous) ΣΠΣ circuits with bottom fanin just two can be exponentially more powerful than
homogeneous ΣΠΣ circuits – any homogeneous ΣΠΣ circuit computing the elementary sym-
metric polynomial of degree n on 2n variables10 must be of size 2Ω(n) but it can be computed
by just O(n2)-sized ΣΠΣ[2] circuits11. They also noted that this contrasts sharply with the
the exponential lower bounds for Majority in the Boolean model and over fixed finite
fields. Recently, Ramprasad Saptharishi [20] pointed out to us that the depth reduction in [7]
actually yields ΣΠΣ[O(

√
d)]-circuits. This indicates that (nonhomogeneous) ΣΠΣ[τ ]-circuits

are interesting and motivates the effort to prove lower bounds for them. Indeed, Shpilka
and Wigderson [22] had already noted this frontier in arithmetic complexity and explicitly
posed the problem of proving lower bounds for (nonhomogeneous) depth three circuits with
bounded bottom fanin (over fields of characteristic zero). We resolve this challenge here by
proving exponential lower bounds for such circuits. Our proof techniques are based on recent
developments in arithmetic circuit lower bounds.

Recent lower bound results. A series of recent works have built upon the work of Nisan
and Wigderson [18] to prove lower bounds for homogeneous depth four circuits. Motivated

7 The quantitative version mentioned here is due to an improvement by Tavenas [25].
8 This depth reduction is only valid over fields of characteristic zero.
9 The results of Raz and Yehudayoff are more general and extend to lower bounds for any constant depth
multilinear circuit.

10The elementary polynomial of degree n on 2n formal variables is the arithmetic analog of the Majority
function. Formally, it is defined as

ESymn(x1, . . . , x2n) def=
∑
S⊆[2n]
|S|=n

∏
i∈S

xi.

11More accurately, [18] attribute Michael Ben-Or for an O(n2)-sized ΣΠΣ circuit for
ESymn(x1, x2, . . . , x2n) which has the following specific form:

ESymn(x) =
2n+1∑
i=1

ai

2n∏
j=1

(xj + i),

where the ai’s are appropriate field constants.
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by the depth reduction results of Agrawal and Vinay [1] and Koiran [14] and Tavenas [25]
and using a complexity measure introduced in Kayal [10], the work of Gupta, Kamath, Kayal
and Saptharishi [8] and Kayal, Saha and Saptharishi [13] have led to lower bounds of nΩ(

√
d)

for homogeneous depth four circuits of bottom fanin O(
√
d). Follow-up work by Fournier,

Limaye, Malod and Srinivasan [4] showed the same lower bound for a family of polynomials
in VP. Subsequently, work by Kayal, Limaye, Saha and Srinivasan [12, 11] removed the
restriction on the bottom fanin and obtained a nΩ(

√
d) lower bound for homogeneous depth

four circuits for a family of polynomials in VNP 12. Follow-up work by Kumar and Saraf [15]
showed the same lower bounds for a family of polynomials in VP13.

Our results. Our first result is a lower bound of NΩ( dτ ) for (nonhomogeneous) ΣΠΣ[τ ]

circuits which resolves an open problem (specifically, Problem 7.5 in [23]) posed by Shpilka
and Wigderson in [22]. It also implies that the depth reduction result of [7] is optimal
assuming that the resulting depth three circuit has bottom fanin at most O(

√
d). The formal

statement is as follows.

I Theorem 1.1 (Lower Bound for ΣΠΣ[τ ] circuits). Let F be a field of characteristic zero.
There is a family of N -variate, degree d polynomials {fN} in VP with N = dO(1) such that
any ΣΠΣ[τ ] circuit over F computing fN must have top fanin at least NΩ( dτ ).

We would like to stress here that there is no restriction of homogeneity on the ΣΠΣ[τ ]

formula in the above statement. Indeed the formal degree of the ΣΠΣ[τ ] circuit can be
arbitrarily large (say doubly exponential) and yet we obtain the stated lower bound on the
top fanin. We prove Theorem 1.1 by first showing a reduction from ΣΠΣ[τ ] circuits to a
subclass of homogeneous ΣΠΣΠΣ[τ ] circuits14 (using a result implicit in [22] and [7]; see
Lemma 4.1 in Section 4). It turns out fortunately that the proof techniques/complexity
measure used in [11, 15] are readily applicable to this subclass of homogeneous ΣΠΣΠΣ[τ ]

circuits and this yields the above lower bound. Having obtained a lower bound for a subclass
of homogeneous ΣΠΣΠΣ circuits, can our techniques be pushed further to yield lower bounds
for general homogeneous ΣΠΣΠΣ formulas? It turns out that proving superpolynomial lower
bounds for general homogeneous ΣΠΣΠΣ formulas was explicitly posed as an open problem
by Nisan and Wigderson in [18]. We next give a lower bound for homogeneous ΣΠΣΠΣ
formulas with small bottom fanin. It resolves the above problem only partially because of
the added restriction on the bottom fanin.

I Theorem 1.2 (Lower Bound for homogeneous ΣΠΣΠΣ[τ ] circuits). Let F be a field of
characteristic zero and µ ∈ [0, 1) be any fixed positive real number less than 1. Let α = 2µ+1

1−µ
and τ = O(Nµ). There is a family of N-variate, degree d polynomials {fN} in VNP with
N ∈ [d2+α, 2d2+α] such that any homogeneous ΣΠΣΠΣ[τ ] formula over F computing fN has
size NΩ(

√
d).

The family of polynomials in the above theorem is the Nisan-Wigderson design based
polynomials introduced in [13], and later used in [11, 15], but with an altered set of parameters.

12Meanwhile, an independent work by Kumar and Saraf [16] also showed a nΩ(log logn) lower bound for
general homogeneous depth-4 circuits without the bottom fanin restriction.

13The result of [15] is also valid over any field F.
14The reduction from ΣΠΣ formulas to homogeneous ΣΠΣΠΣ formulas yields a restricted class of

homogeneous ΣΠΣΠΣ formulas wherein every product gate in the layer closest to the input layer is
actually an exponentiation gate, i.e. a product gate all of whose inputs originate from the source node g,
so that its output is of the form ge for some e ∈ Z≥1. We denote such formulas as ΣΠΣ∧Σ formulas.
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The complexity measure that we use for this result is (almost) the same as the one introduced
in [11] called the dimension of projected shifted partials under random restrictions. An
appropriate adaption of the techniques yields a lower bound for N -input homogeneous
ΣΠΣΠΣ[Nµ]-circuits for some fixed value of µ < 0.1. We felt that it would be worthwhile to
push the analysis further and obtain as good a lower bound as possible while allowing the
bottom fanin to be as large as possible – specifically, to allow the bottom fanin to be Nµ for
any constant µ that is arbitrarily close to 1. For this, we delve deeper into the analysis of
[11] and carefully tune it at certain places, including the complexity analysis of the explicit
polynomial family for which the lower bound is shown. As a corollary, we also obtain a
similar lower bound for (nonhomogeneous) ΣΠΣ[Nµ] circuits for any constant µ < 1.

I Corollary 1.3. Let F be a field of characteristic zero and µ ∈ [0, 1) be any fixed positive
real number less than 1. Let α = 2µ+1

1−µ . There is a family of N -variate, degree d polynomials
{fN} in VNP with N ∈ [d2+α, 2d2+α] such that any ΣΠΣ[Nµ] formula over F computing fN
has size at least NΩ(

√
d).

2 Proof Overview

From depth three to homogeneous depth-5. Let f(x) ∈ F[x] be a homogeneous N -variate
polynomial of degree d. It was already observed by Shpilka and Wigderson [22] that if f is
computed by a small (of size No(

√
d)) ΣΠΣ circuit C(x) then it is also computed by a small

(of size No(
√
d)) formula D(x) which is structurally in a subclass of homogeneous ΣΠΣΠΣ

formulas. We observe that this reduction from depth three to homogeneous depth-5 preserves
the bound on the bottom fanin of the formulas, i.e. if the bottom fanin of C(x) is bounded
by τ then same is true for D(x) (see Lemma 4.1 in Section 4). It turns out that the proof
techniques/complexity measure employed in [11, 15] are readily applicable to this subclass of
homogeneous ΣΠΣΠΣ[τ ] circuits and this yields the lower bound of theorem 1.1. We then
consider general homogeneous ΣΠΣΠΣ[τ ] circuits.

Homogeneous depth five formulas. A homogeneous depth-5 formula is a representation
of the form

D(x) =
∑
i

∏
j

∑
r

Qijr, (2)

where Qijr is a product of linear forms. Also, suppose the number of variables in every linear
form in Qijr (for every i, j and r) is bounded by τ = Nµ for some fixed constant µ < 1. To
prove a lower bound on the size of D(x), our overall strategy is based on the complexity
measure introduced in [11] called the dimension of projected shifted partials under random
restrictions. As is common to many lower bounds, the proof is in two steps:
1. Upper bound the measure for any ΣΠΣΠΣ[τ ]-formula D(x) as in equation (2), and
2. Lower bound the measure for an explicit (family of) polynomial(s) f .

Overall, the lower bound follows by comparing these two bounds. We will now describe
the complexity measure used and then indicate why it is small for ΣΠΣΠΣ[τ ]-formulas.

Random restriction. The random restriction we use in this paper is quite natural and
(almost) same as in [11]. We consider the identity (2) and in that set each variable to zero
independently at random with probability (1 − p), where p = d−β for a suitable constant
β > 0 (a variable is left untouched with probability p.) For ease of exposition, it is convenient
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to denote a restriction in which a subset of variables R ⊆ [N ] is15 set to zero (and the
variables outside R are left untouched) as a homomorphism, σR : F[x] 7→ F[x]. Formally,
σR : F[x] 7→ F[x] is a homomorphism such that σR(f) def= f |xi=0 ∀i∈R. In this notation,
a random restriction can also be viewed as constructing an R by picking every variable
independently at random with probability 1 − p and then applying16 the map σR to the
expression given by equation (2).

The complexity measure. Let m = xi1 · · ·xik be a monomial in x. Denote ∂k

∂xi1 ···∂xik
f by

∂mf and define

∂=k
ml f := {∂mf |m is a multilinear monomial of degree k}

We will refer to ∂=k
ml f as the set of all multilinear k-th order partial derivatives of f ∈ F[x].

Let x=` be the set of all multilinear monomials in x of degree equal to `. We denote by
x=` ·∂=k

ml f the set of all polynomials of the form m ·g where m ∈ x=` and g ∈ ∂=k
ml f . Define a

map π : F[x] 7→ F[x] such that when π acts on a polynomial f , it retains only and exactly the
multilinear monomials of f . More precisely, let Mf be the set of all monomials with nonzero
coefficients in f . Then, π(f) :=

∑
u cumu where mu is a multilinear monomial in Mf and

coefficient of mu in f is cu. Naturally, π is a linear map, i.e. π(af+bg) = a ·π(f)+b ·π(g) for
every a, b ∈ F and f, g ∈ F[x]. The definition of π extends naturally to sets of polynomials:
For A ⊆ F[x], let π(A) := {π(f) | f ∈ A}. For integers k and `, the space of projected shifted
partials of f is the linear span (i.e. F-span) of the polynomials in π(x=` ·∂=k

ml f). The measure
we use is the dimension of this space of projected shifted partials, denoted by DPSPk,` (or
simply DPSP assuming parameters k and ` are fixed suitably):

DPSPk,`(f) := dim(π(x=` · ∂=k
ml f)).

Observe that the measure DPSPk,` obeys subadditivity, i.e. DPSPk,`(f + g) ≤ DPSPk,`(f) +
DPSPk,`(g).

From depth-5 to depth-4. Let D(x) be a homogeneous-ΣΠΣΠΣ[Nµ] formula as in equation
(2) of size at most No(

√
d) so that in particular the total number of Qijr’s appearing in it

is at most s = No(
√
d). We show that when a random restriction σR is applied on D(x),

then with high probability σR(D(x)) can be expressed as D1(x) +D2(x), where D1(x) is
computed by a homogeneous ΣΠΣΠ[

√
d] formula of top fanin at most No(

√
d) and D2(x) is a

polynomial such that DPSP(D2(x)) = 0. We will argue this shortly but assuming that this
happens, we can infer (via subadditivity) that

DPSP(σR(D(x))) ≤ DPSP(D1(x)) + DPSP(D2(x))
= DPSP(D1(x)).

DPSP(D1(x)) can then be upper bounded using known arguments from [11] which in turn
yields an upper bound for DPSP(σR(D(x))).

15 [N ] denotes the set of the first N positive integers, i.e. {1, 2, . . . , N}.
16We will use the random restriction in two phases in Section 6 to obtain an appropriate upper bound on

the measure for homogeneous ΣΠΣΠΣ[τ ] formulas.
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Using random restrictions to obtain a decomposition. The reason σR(D(x)) decomposes
into D1(x) and D2(x) with high probability is as follows. Let t =

√
d. In equation (2),

suppose a Qijr has degree greater than 2t. Such a Qijr can be expressed as Q̃ijr · Pijr with
deg(Q̃ijr) = 2t, by simply multiplying out 2t linear forms in Qijr. Since bottom fanin of
D(x) is bounded by Nµ, the number of monomials in Q̃ijr is bounded by N2µt. Monomials
of Q̃ijr are of two kinds – those with individual degree of variables bounded by 2 (and hence
have support at least t), and those with at least one variable having degree 3 or more. The
probability any of the monomials in Q̃ijr survives under the action of the random restriction
σR is less than pt ·N2µt. Running over all Qijr, with probability at least 1− s · pt ·N2µt, we
have

σR(D(x)) =
∑
i

∏
j

∑
r

deg(Qijr)≤2t

σR(Qijr) + P (x),

where every monomial in P (x) has a variable with degree 3 or more. Now observe that for any
multilinear monomial m, every monomial in ∂mP has a variable of degree 2 or more and hence
π(∂mP ) = 0, implying DPSP(P ) = 0. By taking D1(x) =

∑
i

∏
j

∑
r,deg(Qijr)≤2t σR(Qijr)

and D2(x) = P (x), we come to the desired conclusion, if the “bad" probability, namely
s · pt ·N2µt, is small. Now suppose N = d3 (as is the case in [11]). Then the bad probability
is s ·N−( β3−2µ)t which is negligible for any constant µ less than β/6. This gives the required
decomposition.

Extension for arbitrary µ < 1. Combining the above decomposition argument with the
lower bound available for homogeneous-ΣΠΣΠ[

√
d]-circuits (which imposes some additional

constraints on how large β can be), we get that if µ is sufficiently small (say, 0.01), any
homogeneous ΣΠΣΠΣ[Nµ] formula computing the same family of Nisan-Wigderson design
based polynomials as used in [11], has size NΩ(

√
d). However, in order to prove the same size

lower bound for any constant µ < 1, we delve deeper into the analysis of [11] and carefully
tune it at certain places, including the complexity analysis of the explicit polynomial family
for which the lower bound is shown.

3 Preliminaries

Affine forms and linear forms. An affine form is simply another name for a degree one
polynomial, with a (possibly) nonzero constant term. Thus an affine form `(x) looks like

`(x) = a0 + a1x1 + a2x2 + . . .+ anxn,

where each ai ∈ F. The weight of such an affine form `(x) will be the number of nonzero
coefficients in it, i.e.

weight of ` def= |{i ∈ [0..n] : ai 6= 0}|

A homogeneous degree one polynomial (i.e. one whose constant term a0 is zero) we will refer
to as a linear form.

Notation for circuits with exponentiation gates. Sometimes a multiplication gate in our
circuit will have the feature that all its incoming edges originate from a single gate g (thus
computing ge, if there are e wires entering the multiplication gate). We will refer to such
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gates as exponentiation gates and denote them by the symbol ∧. So for example, a Σ∧Σ
circuit computes a polynomial in the following manner:

C(x) =
∑
i∈[s]

`i(x)ei where each `i ∈ F[x] is an affine form.

A numerical estimate. The following numerical estimate from [8] will be useful.

I Lemma 3.1. Let a(n), f(n), g(n): Z>0 7→ Z be integer valued functions such that
(|f |+ |g|) = o(a). Then

ln (a+ f)!
(a− g!) = (f + g) ln a±O

(
f2 + g2

a

)

4 Depth Three Circuits with small bottom fanin

In this section, we will first see a reduction from (nonhomogeneous) ΣΠΣ[τ ] to a subclass of
homogeneous ΣΠΣΠΣ[τ ] circuits. It can be easily inferred from the proofs of theorem 5.2 in
[23] and lemma V.317 in [7] but we nevertheless give a proof here for completeness.

I Lemma 4.1. (implicit in [22] and [7].) Let d ≥ 1 be an integer and F be an infinite field
of characteristic larger than d (or of zero characteristic). Let f(x) ∈ F[x] be a homogeneous
N-variate polynomial of degree d computed by a Σ[s]Π[e]Σ[τ ] circuit. Then f can also be
computed by a homogeneous Σ[s·exp(

√
d)]ΠΣ[e]∧Σ[τ ] circuit.

Proof. The premise that f can be computed by a Σ[s]Π[e]Σ[τ ] circuit means that there exist
s · e affine forms `ij ’s each of weight at most τ such that

f(x) =
s∑
i=1

e∏
j=1

`ij(x). (3)

Expressing f as a sum of projections of elementary symmetric polynomials. We will first
ensure that each of the affine forms `ij has a nonzero constant term. We can do this by
applying a random shift of the form x 7→ x + a to the above identity. That is, pick a random
point a ∈ Fn and replacing x by x + a in the identity (3) we get

f(x + a) =
s∑
i=1

e∏
j=1

`ij(x + a)

=
s∑
i=1

αi

e∏
j=1

(1 +mij(x)),where mij(x) def= `ij(x)− `ij(0) is a linear form of

weight at most τ and αi
def=

e∏
j=1

`ij(a)

Comparing the homogeneous components of degree d on the two sides of the above identity
we get

f(x) =
s∑
i=1

αi ·ESymd(mi1, . . . ,mie), (4)

17Ramprasad Saptharishi [20] has recently communicated to us that the consequence in the original lemma
in [7] can be slightly improved quantitatively.
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where
ESymd(y1, . . . , ye)

def=
∑
S⊆[e]
|S|=d

∏
i∈S

yi

is the elementary symmetric polynomial of degree d on the e formal variables y1, y2, . . . , ye.

Expressing ESymd in terms of the power symmetric polynomials. We now use Newton’s
identities to express each elementary symmetric polynomial that occurs above in terms of
the power-symmetric polynomials defined as:

PSymr(y1, . . . , ye)
def=
∑
j∈[e]

yrj .

We use the following implication of Newton’s identities (cf. [17]):

ESymd = 1
d! ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

PSym1 1 0 0 · · · 0 0
PSym2 PSym1 2 0 · · · 0 0
PSym3 PSym2 PSym1 3 · · · 0 0

...
...

...
...

. . .
...

...
PSymd−1 PSymd−2 PSymd−3 PSymd−4 · · · PSym1 d− 1
PSymd PSymd−1 PSymd−2 PSymd−3 · · · PSym2 PSym1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

In particular, this means that ESymd can be expressed as a polynomial function of the
PSymi’s. Let us now count how many terms are there in such a polynomial expression.
Expanding out the determinant above we see that there exist scalars βa’s such that

ESymd(y) =
∑

a=(a1,...,ad)∈Zd≥0∑
i
i·ai=d

βa ·
∏
i∈[d]

PSymai
i (y). (5)

The number of solutions of
∑
i∈[d] i · ai = d is exactly the number of ways to partition the

natural number d and hence is 2Θ(
√
d) by the Hardy-Ramanujan estimate for the partition

function [9]. Hence the number of terms in the above summation is 2Θ(
√
d). In particular

this means that ESymd(y) is computed by a homogeneous Σ[exp(
√
d)]ΠΣ[e]∧-circuit.

Combining (4) and (5) to get a homogeneous ΣΠΣ ∧ Σ circuit for f . If we now replace
each occurrence of ESymd in equation (4) by its homogeneous ΣΠΣ∧ circuit given by the
identity (5) , we see that f(x) is computed by a homogeneous Σ[s·exp(

√
d)]ΠΣ[e]∧Σ[τ ] circuit.

This proves the lemma.
J

We next observe that the homogeneous ΣΠΣ∧Σ-circuit in the outcome of the above
lemma corresponds to a certain structured form for expressing f that we make precise below.
For ease of subsequent exposition, let us introduce the following notation/terminology. Let
m = xe11 · x

e2
2 · . . . · x

eN
N in F[x1, x2, . . . , xN ] be a monomial. The support of m, denoted

Supp(m) is the subset of variables appearing in it, i.e.

Supp(m) def= {i : ei ≥ 1} ⊆ [N ].

The support size of a polynomial Q, denoted |Supp(Q)| is the maximum support size of any
monomial appearing in Q.
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I Proposition 4.2. Let d ≥ 1 be an integer and F be an infinite field of characteristic larger
than d (or of zero characteristic). Let f(x) ∈ F[x] be a homogeneous N -variate polynomial
of degree d computed by a Σ[s]Π[e]Σ[τ ] circuit. Then f admits an expression of the form

f(x) =
s·exp(

√
d)∑

i

∏
j

Qij , Supp(Qij) ≤ τ (6)

Proof. The premise that f can be computed by a Σ[s]Π[e]Σ[τ ] circuit means that there exist
s · e affine forms `ij ’s each having at most τ nonzero coefficients such that

f(x) =
s∑
i=1

e∏
j=1

`ij(x). (7)

First observe that if we have a linear form ` in which at most τ coefficients are nonzero, then
for all j ≥ 1, we have

Supp(`j) ≤ τ.
In particular, this means that for all r ≥ 1 and all i ≤ s we have Supp(PSymr(`i1, `i2, . . . , `ie))
≤ τ. By the proof of lemma 4.1 we get that f can be expressed as a sum of product of the
PSymr’s in a homogeneous fashion, with the expression having s · exp(

√
d) many terms.

Hence f has a representation of the form given by equation (6). J

This means that our problem reduces to proving lower bounds for representations of
the form given by the right-hand side of equation (6) which we refer to as τ -supported
homogeneous ΣΠΣΠ circuits. It turns out that such representations occur also as an
intermediate step in prior work and [11] explicitly gives an NΩ( dτ ) lower bound for such
representations.
I Theorem 4.3. [11]. There exists an explicit family {fN} of homogeneous degree d

polynomials on N = d3 variables in VNP such that any τ -supported homogeneous ΣΠΣΠ
circuit computing fN has top fanin at least NΩ( dτ ).
I Remark. We would like to stress here that the above theorem holds for any τ ≥ 1. In [11],
the analysis was done by setting the parameter ` of the measure DPSPk,` as ` = N

2
(
1− k ln d

d

)
(where k = δd

τ for a suitable constant δ > 0). With this choice of `, the parameter τ has to
be Ω(ln d) or else ` becomes negative (which does not quite make sense). We note here that

the choice of ` can be altered (rather refined) slightly by setting ` = N
2

(
1− d

δ
τ −1

d
δ
τ +1

)
so that

` is now well-defined for any τ ≥ 1. The analysis of [11] works fine with this choice of `. Also,
note that for larger values of τ , the quantities d

δ
τ −1

d
δ
τ +1

and k ln d
d are close to each other as,

lim
τ→∞

(d δτ − 1) · τ
(d δτ + 1) · δ ln d

= 1
2 .

In the follow-up work of [15], the class of τ -supported homogeneous ΣΠΣΠ circuits occurs
implicitly. It follows from their work that the above lower bound is in fact valid for the
family of iterated matrix multiplication polynomial which is in VP (in fact is complete for a
subclass of VP called algebraic branching programs).
I Theorem 4.4. [15]. There exists an explicit family {fN} of homogeneous degree d

polynomials on N = dO(1) variables in VP such that any τ -supported homogeneous ΣΠΣΠ
circuit computing fN has top fanin at least NΩ( dτ ).

Combining Proposition 4.2 with the above theorem immediately yields theorem 1.1. In
the next section we move on investigating homogeneous ΣΠΣΠΣ[τ ] circuits.
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5 The lower bound for homogeneous ΣΠΣΠΣ[Nµ] formulas

Here we follow the outline given in section 2 and derive a lower bound for homogeneous
ΣΠΣΠΣ[Nµ]-formulas.

Step 1: an upper bound for homogeneous ΣΠΣΠΣ[Nµ]-formulas. Let 0 ≤ µ < 1 be a
fixed constant. Consider a homogeneous ΣΠΣΠΣ[Nµ] formula of size s as in equation (2)
computing a homogeneous N -variate polynomial of degree d. We pick a random set R ⊆ [N ]
by picking each variable independently at random with probability 1− p, where p = d−β (for
a suitable constant β > 0), and upper bound the DPSP-complexity of σR(D(x)).

I Lemma 5.1. Let t =
√
d, α = 2µ+1

1−µ and d2+α ≤ N ≤ 2d2+α be an integer. If s ≤ N
0.03
2+α ·

√
d

then there exists a constant 0 < β < α such that with probability at least 1− 1
NΩ(

√
d) , a random

restriction σR satisfies:

DPSPk,`(σR(D(x))) ≤ s·
(d
t + 1
k

)
·
(

N

`+ 2kt

)
for all k, ` ≥ 0 satisfying `+2kt ≤ N

2 . (8)

We defer the proof of this lemma to section 6.

Step 2.1: constructing a suitable family of polynomials. The explicit family of polyno-
mials for which we prove the lower bound is a variant of the Nisan-Wigderson design based
polynomials used in [13, 11, 15]. The choice of this family depends on the bottom fanin of the
depth 5 formulas. When the bottom fanin is τ = Nµ, for some fixed 0 ≤ µ < 1, the family
is defined as follows. For an integer d and α = 2µ+1

1−µ , let q be the smallest prime number
between d1+α and 2d1+α (such a prime is guaranteed to exist by the Bertrand-Chebyshev
theorem [3])18. We define a family of Nisan-Wigderson polynomials of degree d on N = d · q
variables, parametrized by a number r (to be fixed later in the analysis).

NWr(x1,1, x1,2, . . . , xd,q) :=
∑

h(z)∈Fq [z]
deg(h)≤r

∏
i∈[d]

xi,h(i),

where Fq is the finite field with q elements.

Step 2.2: lower bounding the DPSP-complexity of our polynomial family. For appropri-
ate choices of integers r, k, ` and a random restriction σR, we show that DPSPk,`(σR(NWr))
is large with high probability.

I Lemma 5.2 (The main technical lemma.). Let NWr be the Nisan-Wigderson design based
polynomial defined above. Suppose R is a set formed by picking each variable independently
at random with probability 1− p, where p = d−β and β > 0 is any constant less than α. Over
any field F of characteristic zero, for r = α+β

2(1+α) · d − 1, k = δ ·
√
d (for a small constant

δ > 0) and ` = N
2 (1− k ln d

d ), we have

DPSPk,`(σR(NWr)) ≥
1

dO(1) min
(
pk

4k ·
(
N

k

)
·
(
N

`

)
,

(
N

`+ d− k

))
, (9)

with probability at least 1− 1
dΘ(1) .

We will prove this lemma in Section A of the appendix.

18We are avoiding ceil/floor notations for simplicity of exposition
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Final Step: comparing the two bounds. Comparing the probabilities with which equations
(8) and (9) are satisfied, we see that there exists a set R such that both of them are
simultaneously satisfied, implying:

s ≥ DPSPk,`(σR(NWr))( d
t+1
k

)
·
(

N
`+2kt

)
= NΩ(

√
d) (for small enough constant δ)

The above implication can be worked out using the numerical estimates given in lemma 3.1.
This proves the lower bound of theorem 1.2.

6 Upper bounding the measure for homogeneous ΣΠΣΠΣ[τ ] formulas

Let D(x) be a homogeneous ΣΠΣΠΣ[τ ] formula with bottom fanin bounded by τ = Nµ

where µ ∈ [0, 1) is a fixed constant.

D(x) =
∑
i

∏
j

∑
r

Qijr, (10)

where Qijr is a product of linear forms. As before, let α = 2µ+1
1−µ . In this section we give

a proof of lemma 5.1. We first show that when we apply a random restriction to a small
homogeneous ΣΠΣΠΣ[Nµ] formula, then with high probability it decomposes into two pieces
which are individually much easier to deal with.

I Lemma 6.1 (Decomposition under random restrictions.). Suppose that D(x) has size s ≤
N

0.03
2+α ·

√
d. Then, it is possible to fix a constant 0 < β < α and19 form a set R by picking

each variable independently at random with probability 1− p, where p = d−β, such that with
probability at least 1− 1

NΩ(
√
d) the following is true:

σR(D(x)) = D1(x) +D2(x),

where D1(x) is a homogeneous ΣΠΣΠ[2
√
d] formula having top fanin same as that of D(x),

and DPSPk,`(D2(x)) = 0 for any choice of k and `.

Before proving this, let us see why it implies the required upper bound of lemma 5.1.

Proof of Lemma 5.1. Using the decomposition lemma 6.1, with probability at least 1 −
1

NΩ(
√
d) we have:

DPSPk,`(σR(D(x))) ≤ DPSPk,`(D1(x)).

Let t =
√
d and k, ` be arbitrary integers satisfying `+ 2kt ≤ N

2 . Then the dimension of the
projected shifted partials of D1(x) is upper bounded as in [11],

DPSPk,`(σR(D(x))) ≤ s ·
(d
t + 1
k

)
·
(

N

`+ 2kt

)
. (11)

This proves lemma 5.1. J

6.1 Proof of the decomposition lemma
We will prove lemma 6.1 here by considering two cases separately: 0 ≤ µ ≤ 1

5 and 1
5 < µ < 1.

Let t =
√
d.

19The requirement of β < α in the statement of lemma 6.1 comes from Lemma 5.2.
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Case 1. Suppose 0 ≤ µ ≤ 1
5 . In this case the analysis is similar to the one outlined in

Section 2. Let Qijr be a product of linear forms as in equation (10) and deg(Qijr) > 2t. Then
Qijr can be expressed as Qijr = Q̃ijr · Pijr such that deg(Q̃ijr) = 2t, by simply multiplying
out 2t linear forms in Qijr. Since the support of every linear form in Qijr is bounded by
τ = Nµ, the number of monomials in Q̃ijr is bounded by τ2t = (Nµ)2t. The monomials of
Q̃ijr are of two types – those with individual degree of every variable bounded by 2 (and
hence has support at least t), and those with at least one variable of degree 3 or more.

Let R be a set formed by picking every variable independently at random with probabil-
ity 1− p, where p = d−β for an appropriate choice of β (to be fixed shortly). The probability
that any monomial of support at least t in Q̃ijr survives under the random restriction σR
is bounded by pt · (Nµ)2t. Running over all Qijr in equation (10), with probability at least
1− s · pt · (Nµ)2t,

σR(D(x)) =
∑
i

∏
j

∑
r

deg(Qijr)≤2t

σR(Qijr) + P,

where every monomial in P has a variable of degree 3 or more. Naturally, DPSPk,`(P ) = 0
for any choice of k and `. Since s ≤ N

0.03
2+α ·

√
d, p = d−β , α = 2µ+1

1−µ and t =
√
d, the “bad”

probability is

s · pt · (Nµ)2t ≤ (N
0.03
2+α · d−β ·N2µ)t

≤ (N
0.03
2+α ·N−

β
2+α · 2

β
2+α ·N2µ)t, as

(
N

2

) 1
2+α

≤ d ≤ N
1

2+α

The above quantity is at most 1
NΩ(

√
d) if

1. 2µ+ 0.03
2+α <

β
2+α , and

2. 0 < β < α.
It is easy to verify that these two conditions are satisfied if β = 6.5µ+0.03

1−µ and considering
µ ≤ 1

5 .

Case 2. Suppose 1
5 < µ < 1. In this case we apply the random restriction in two phases.

Phase 1: Pick each variable independently at random with probability 1− p1, where p1 =
d−β1 , and form a set R1. (β1 will be fixed shortly.) Let g be a linear form in a product
Qijr. Assume without loss of generality that the support of g is exactly τ = Nµ (if not,
simply fill in g with variables having zero coefficients). Then, the expected value of the
support size of σR1(g) is

γ := E [support size of g] = d−β1 ·Nµ.

By Chernoff bound,

Pr{bottom fanin of σR1(D(x)) ≥ (1 +
√

3) · γ} ≤ s · e−γ .

One can verify that the above probability is less than 1
NΩ(

√
d) if

µ · (2 + α) > β1 + 1
2 , (12)

as s ≤ N
0.03
2+α ·

√
d. We will set β1 shortly to satisfy the above condition.
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Phase 2: Pick each variable independently at random (and independent of Phase 1) with
probability 1− p2, where p2 = d−β2 , and form a set R2. (β2 will be set to an appropriate
value shortly.) We wish to study the formula σR2(σR1(D(x))) = σR1∪R2(D(x)).

If we set β1 satisfying equation (12) then with high probability the bottom fanin of
σR1(D(x)) is less than (1 +

√
3) · γ – assume that this happens after Phase 1. The

argument from here on is similar to that in Case 1. Let

σR1(D(x)) =
∑
i

∏
j

∑
r

Q′ijr,

where each linear form in every Q′ijr has support size bounded by (1 +
√

3) · γ. If
deg(Q′ijr) ≥ 2t then Q′ijr = Q̃′ijr · P ′ijr where deg(Q̃′ijr) = 2t and number of monomial
in Q̃′ijr is bounded by (1 +

√
3)2t · γ2t. Once again, focus on those monomials in Q̃′ijr

that have support at least t. (Each of the remaining monomials in Q̃′ijr has a variable of
degree 3 or more.) The probability that any of those monomials in Q̃′ijr survives after
the random restriction σR2 is applied is bounded by pt2 · (1 +

√
3)2t · γ2t. Hence with

probability at least 1− s · pt2 · (1 +
√

3)2t · γ2t,

σR1∪R2(D(x)) = σR2(σR1(D(x))) =
∑
i

∏
j

∑
r

deg(Q′
ijr

)≤2t

σR2(Q′ijr) + P ′,

where DPSPk,`(P ′) = 0 for any k, `. Let us calculate the bad probability a bit more
closely.

s · pt2 · (1 +
√

3)2t · γ2t ≤ [N
0.03
2+α · p2 · (1 +

√
3)2 · γ2]t

= [N
0.03
2+α · d−β2 · (1 +

√
3)2 · d−2β1 ·N2µ]t.

The above quantity is less than 1
NΩ(

√
d) if

2µ · (2 + α) + 0.03 < β2 + 2β1, and (13)

β1 + β2 < α & β1, β2 > 0 (14)

The requirement stated in equation (14) comes from Lemma 5.2, as Phase 1 and 2
together amounts to setting each variable zero independently with probability 1− p1p2 =
1− d−(β1+β2). It is easy to verify that the conditions stated by equations (12), (13) and
(14) are satisfied by choosing

β1 = µ · (2 + α)− 0.51
β2 = 1.06,

and keeping in mind that µ > 1
5 .

This completes the proof of the decomposition lemma.

7 Summary and discussion

A recent line of research on arithmetic circuit lower bounds uses the dimension of the space
of shifted partials and its variant the projected shifted partials under random restriction as a
complexity measure to make progress on proving lower bounds for certain interesting classes
of arithmetic circuits, namely regular formulas and homogeneous depth four formulas. (The
dimension of the space of shifted partials measure is in turn based on the classical measure of
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the dimension of the space of partial derivatives.) The formal degree of a homogeneous depth
four formula (or a regular formula) is bounded by the degree (or the order of the degree)
of the polynomial that it computes. At this point it was not clear if the present techniques
are applicable to models where the formal degree is much higher than the degree of the
computed polynomial. One very interesting (and arguably the simplest nontrivial) example
of such an unrestricted formal degree model is (nonhomogeneous) depth three circuits over
fields of characteristic zero – its power being exhibited by the recent work of [7].

Our work takes a step forward in this direction by showing an exponential lower bound for
(nonhomogeneous) depth three circuits with small bottom fanin over fields of characteristic
zero. Along the way we also show an exponential lower bound for homogeneous depth five
formulas with small bottom fanin. The second result is for an explicit polynomial in VNP.
An immediate question is whether the combinatorial argument from [15] can be suitably
adapted so that the lower bound of theorem 1.2 holds for iterated matrix multiplication as
well. Both these results are obtained by building upon the current techniques on shifted
patials based measures. It would be very interesting to prove analogous lower bounds for
less restrictive subclasses of arithmetic circuits.

Can we drop the restriction of ‘small bottom fanin’ from both the models – (nonhomo-
geneous) depth three circuits and homogeneous depth five circuits – and still show an
exponential lower bound?

A few other intriguing problems on arithmetic circuit lower bounds are worth mentioning
here:

Show a super-polynomial lower bound for homogeneous bounded depth arithmetic circuits.
Show a super-polynomial lower bound for homogeneous arithmetic formulas.
Show a super-polynomial separation between homogeneous product-depth-∆ formulas
and homogeneous product-depth-(∆− 1) formulas.
Solve the above problems without the assumption of homogeneity.

Solutions to these problems, using present or new techniques, would give a significant
boost to our understanding of arithmetic circuit lower bounds.

Acknowledgements. The authors would like to thank Amit Chakrabarti, Mrinal Kumar,
Satya Lokam and Ramprasad Saptharishi for helpful discussions. In particular, Ramprasad
pointed out to us that a lemma in [7] can be improved quantitatively and that the ΣΠΣ
circuits which come out of the depth reduction in [7] in fact have small bottom fanin.
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A Proof of Lemma 5.2

In this section we prove lemma 5.2, i.e. we show that the dimension of projected shifted
partial derivatives of a randomly restricted Nisan-Wigderson design based polynomial is
within a “small’ factor of the maximum possible with high probability. Our proof is very
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similar to the proof of Lemma 13 in [11] – in fact, we reuse quite a bit of the argument from
there but carefully tune it at places to achieve the required setting of parameters. Proofs of
some of the propositions in this section are collected in Section B. Let e def= (d−k) throughout
the rest of this section.

Preliminaries. Note that in the construction in Section 5 of NWr, there is a 1-1 corre-
spondence between the variable indices in [N ] and points in [d]× [q]. Being homogeneous
and multilinear of degree d, the monomials of NWr are in 1-1 correspondence with sets in([N ]
d

)
≡
([d]×[q]

d

)
. Indeed, from the construction it is clear that the coefficient of any monomial

in NWr is either 0 or 1 and that there is a 1-1 correspondence between monomials in the
support of NWr and univariate polynomials of degree at most r in Fq[z]. Now since two
distinct polynomials of degree r over a field have at most r common roots we get:

I Proposition 1.1 (A basic property of our construction). For any two distinct sets D1, D2 ∈([d]×[q]
d

)
in the support of NWr, we have

|D1 ∩D2| ≤ r.

Let R be a set formed by picking each variable independently at random with probability
1− p, where p = d−β for 0 < β < α. Our goal for the remainder of this section is to lower
bound DPSPk,`(σR(NWr)).

Reformulating our goal in terms of the rank of an explicit matrix. Let f be any homo-
geneous multilinear polynomial of degree d on N variables. Then we have

∂=k
ml f =

{
∂Cf : C ∈

(
[N ]
k

)}
.

Note that every k-th order derivative of f is homogeneous and multilinear of degree (d− k).
Hence

π(x=` · ∂=k
ml f) =

{
xA · σA

(
∂Cf

)
: A ∈

(
[N ]
`

)
, C ∈

(
[N ]
k

)}
.

Thus we have

I Proposition 1.2. For any homogeneous multilinear polynomial f of degree d on N variables
and for all integers k and `:

DPSPk,`(f) = dim
({

xA · σA
(
∂Cf

)
: A ∈

(
[N ]
`

)
, C ∈

(
[N ]
k

)})
.

Now the F-linear dimension of any set of polynomials is the same as the rank of the matrix
corresponding to our set of polynomials in the natural way. In fact, we will focus our attention
on a subset of rows of this matrix and prove a lower bound on the rank of the matrix defined
by this subset of rows. Specifically,

I Proposition 1.3. Let f be a homogeneous multilinear polynomial of degree d on N variables.
Let k, ` be integers. Define a matrix M(f) as follows. The rows of M(f) are labelled by pairs
of subsets (A,C) ∈

([N ]
`

)
×
([N ]
k

)
such that A ∩ C = Φ (null set) and columns are indexed by

subsets S ∈
( [N ]
`+e
)
. Each row (A,C) corresponds to the polynomial

fA,C
def= xA · σA

(
∂Cf

)
in the following way. The S-th entry of the row (A,C) is the coefficient of xS in the
polynomial fA,C . Then,

DPSPk,`(f) ≥ rank(M(f)).
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So our problem is equivalent to lower bounding the rank of the matrix M(f) for our
constructed polynomial f . Now note that the entries of M(f) are coefficients of appropriate
monomials of f and it will be helpful to us in what follows to keep track of this information.
We will do it by assigning a label to each cell of M(f) as follows. We will think of every
location in the matrixM(f) being labelled with either a setD ∈

([N ]
d

)
or the label InvalidSet

depending on whether that entry contains the coefficient of the monomial xD of f or it would
have been zero regardless of the actual coefficients of f . Specifically, let us introduce the
following notation. For sets A,B define:
1.

A B =
{
A \B ifB ⊆ A
InvalidSet otherwise

2.

A ]B =
{
A ∪B ifB ∩A = ∅
InvalidSet otherwise

Then the label of the ((A,C), S)-th cell of M(f) is defined to be the set (S  A) ] C.
Equivalently, if the label of a cell of the (A,C)-th row of M is a set D then the column must
be the one corresponding to S = (D  C) ]A (if C is not a subset of D or if D and A are
not disjoint then D cannot occur in the row indexed by (A,C)). For the rest of this section,
we will refer to M(σR(NWr)) simply as the matrix M . Our goal then is to show that the
rank of this matrix M is reasonably close to the trivial upper bound, viz. the minimum of
the number of rows and the number of columns of M with high probability. It turns out that
our matrix M is a relatively sparse matrix and we will exploit this fact by using a relevant
lemma from real matrix analysis to obtain a lower bound on its rank.

The Surrogate Rank. Consider the matrix B def= MT ·M . Then B is a real symmetric,
positive semidefinite matrix. From the definition of B it is easy to show that:

I Proposition 1.4. Over any field F we have

rank(B) ≤ rank(M).

Over the field R of real numbers we have

rank(B) = rank(M).

So it suffices to lower bound the rank of B. By an application of Cauchy-Schwarz on the
vector of nonzero eigenvalues of B, one obtains:

I Lemma 1.5 ([2]). Over the field of real numbers R we have:

rank(B) ≥ Tr(B)2

Tr(B2) .

Let us call the quantity Tr(B)2

Tr(B2) as the surrogate rank of B, denoted SurRank(B). It then
suffices to show that this quantity is within a ‘small’ factor of U = min(

(
N
`+e
)
,
(
N
`

)
·
(
N
k

)
)

with high probability. In the rest of this section, we will first derive an exact expression
for SurRank(B) and then show that it is close to U (again, with high probability). In the
following discussion we would need an estimate of a quantity Rd(w, r) that denotes the
number of univariate polynomials in Fq[z] of degree at most r having exactly w distinct roots
in [d].
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An estimate for Rd(w, r). First note that any polynomial h(z) ∈ Fq[z] of degree at most r
that has w roots in [d] must be of the form

h(z) = (z − α1) · (z − α2) · . . . · (z − αw) · ĥ(z),

where each αi is in [d] and ĥ(z) ∈ Fq[z] is of degree at most (r − w). Thus we have

Rd(w, r) ≤ qr−w+1 ·
(
d

w

)
≤ qr+1 ·

(
d

q

)w
· 1
w! (15)

A.1 Deriving an exact expression for SurRank(B).
We will now calculate an exact expression for SurRank(B), or equivalently an exact expression
for Tr(B) and Tr(B2).

Calculating Tr(B). Calculating Tr(B) is fairly straightforward. From the definition of the
matrix B we have:

I Proposition 1.6. For any 0,±1 matrix M (i.e. a matrix all of whose entries are either 0,
or +1 or −1) we have

Tr(B) = Tr(MT ·M) = number of nonzero entries in M.

Now we can calculate the number of nonzero entries in M by going over all sets D ∈([N ]
d

)
∩ Supp(σR(NWr)), calculating the number of cells of M labelled with D and adding

these up. Clearly
σR(NWr) =

∑
D∈Supp(NWr)

eD · xD,

where eD is an indicator variable such that eD = 1 if σR(xD) 6= 0, and eD = 0 otherwise.
Hereafter, we will refer to σR(NWr) as g at some places, and the number of monomials in
σR(NWr) as µ(g).

µ(g) =
∑

D∈Supp(NWr)

eD

⇒ E [µ(g)] = pd · qr+1 = γ (say)

⇒ E [Tr(B)] = γ ·
(
d

k

)
·
(
N − d
`

)
.

I Proposition 1.7. Pr
[
Tr(B) ≤ 1

2 · γ ·
(
d
k

)
·
(
N−d
`

)]
≤ 10

pdα . (Proof in Section B)

Calculating Tr(B2). From the definition of B = MT ·M and expanding out the relevant
summations we get:

I Proposition 1.8. Tr(B2) equals∑
(A1,C1),(A2,C2)∈(([N]

` )×([N]
k ))2

∑
S1,S2∈( [N]

`+e)
2

M(A1,C1),S1 ·M(A1,C1),S2 ·M(A2,C2),S1 ·M(A2,C2),S2 .

We will use the following notation in doing this calculation. For a pair of row indices
((A1, C1), (A2, C2)) ∈

(([N ]
`

)
×
([N ]
k

))2
and a pair of column indices S1, S2 ∈

(( [N ]
`+e
))2

, the
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box b defined by them, denoted b = 2− box((A1, C1), (A2, C2), S1, S2) is the four-tuple of
cells

(((A1, C1), S1), ((A1, C1), S2), ((A2, C2), S1), ((A2, C2), S2)).

Since all the entries of our matrix M are either 0 or 1 we have:

I Proposition 1.9.

Tr(B2) = Number of boxes b with all four entries nonzero.

For a box b = 2− box((A1, C1), (A2, C2), S1, S2), its tuple of labels, denoted labels(b) is the
tuple of labels of the cells ((A1, C1), S1), ((A1, C1), S2), ((A2, C2), S1), ((A2, C2), S2)) in that
order. In other words,

labels(b) = ((S1 A1) ] C1, (S2 A1) ] C1, (S1 A2) ] C2, (S2 A2) ] C2).

We then have

I Proposition 1.10. Tr(B2) equals the number of boxes

b = 2− box((A1, C1), (A2, C2), S1, S2)

such that all the four labels in labels(b) are valid sets in the support of our design polynomial
σR(NWr).

So our problem boils down to counting the number of boxes in which all the four labels
are valid sets in the support of our polynomial σR(NWr). Let us analyze the box

b = 2− box((A1, C1), (A2, C2), S1, S2)

a bit closely. Suppose labels(b) = (D1, D2, D3, D4) as shown in the table below where
D1, D2, D3, D4 are valid sets in

([N ]
d

)
.

S1 S2

(A1,C1) D1 D2

(A2,C2) D3 D4

Define the following sets:

E1 := A1\(A1 ∩A2) E2 := A2\(A1 ∩A2)
E3 := C1 E4 := C2

E5 := D1\(E2 ] E3) E6 := D2\(E2 ] E3)
= D3\(E1 ] E4) = D4\(E1 ] E4)

Note that E2]E3 must be a subset of bothD1 andD2, similarly E1]E4 must be a subset of
both D3 and D4. Also, D1\(E2]E3) = D3\(E1]E4) as (D1C1)]A1 = (D3C2)]A2 = S1.
Similarly, D2\(E2 ]E3) = D4\(E1 ]E4). Verify that D1, D2, D3 and D4 can be expressed
as:

D1 = E2 ] E5 ] E3 D2 = E2 ] E6 ] E3 (16)
D3 = E1 ] E5 ] E4 D4 = E1 ] E6 ] E4

From the above definitions, if |A1 ∩A2| = v then

|E1| = |E2| = `− v (17)
|E3| = |E4| = k

|E5| = |E6| = d− (`− v + k)
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I Proposition 1.11. Unless D1, D2, D3, D4 are all distinct sets, labels(b) contains at most
two distinct sets. Furthermore, if D1, D2, D3 are distinct then `−v+k ≤ r and d−(`−v+k) ≤
r.

Proof. We show that if D1 equals any of D2, D3 or D4 then labels(b) has at most two
distinct sets. The argument is similar for other cases. Suppose D1 = D2 then by Equation
16 E5 = E6, implying D3 = D4. If D1 = D3 then again by Equation 16, E2 ] E3 = E1 ] E4
implying D2 = D4. Now suppose D1 = D4, then by Equation 16, E6 ⊆ D1. But E6 ⊆ D2,
which means D2 ⊆ D1 as E2 ] E3 ⊆ D1. Since |D2| = |D1| = d, D1 = D2 and hence
D1 = D2 = D3 = D4.

To prove the second statement of the lemma, observe that |D1 ∩D2| ≥ |E2 ] E3| =
`− v+k. So, if `− v+k ≥ r+ 1 then D1 = D2. Similarly, |D1 ∩D3| ≥ |E5| = d− (`− v+k).
If d− (`− v + k) ≥ r + 1 then D1 = D3. J

This means that any box b that contributes to Tr(B2) must have the property that its
label set labels(b) contains at most two distinct sets in the support of σR(NWr), or four
distinct sets in the support of σR(NWr). A set D is in the support of σR(NWr) if D is in
the support of NWr and σR(xD) 6= 0. (Recall that eD is an indicator variable which is 1 if
σR(xD) 6= 0, and zero otherwise.)

I Corollary 1.12. For any four distinct sets D1, D2, D3, D4 ∈
([N ]
d

)
define

µ0(D1) def= {box b : labels(b) = (D1, D1, D1, D1)}

µ1(D1, D2) def= {box b : labels(b) = (D1, D2, D1, D2)}

µ2(D1, D2) def= {box b : labels(b) = (D1, D1, D2, D2)}

µ3(D1, D2, D3, D4) def= {box b : labels(b) = (D1, D2, D3, D4)}

Let the support of NWr, denoted Supp(NWr) ⊂
([N ]
d

)
, be the set of all sets D ∈

([N ]
d

)
such

that the coefficient of the monomial xD in NWr is nonzero. Define T0, T1, T2, T3 as follows:

T0 =
∑

D1∈Supp(NWr)

eD1 · |µ0(D1)|

T1 =
∑

D1 6=D2∈Supp(NWr)

eD1 · eD2 · |µ1(D1, D2)|

T2 =
∑

D1 6=D2∈Supp(NWr)

eD1 · eD2 · |µ2(D1, D2)|

T3 =
∑

D1 6=D2 6=D3 6=D4∈Supp(NWr)

eD1 · eD2 · eD3 · eD4 · |µ3(D1, D2, D3, D4)| (18)

Then
Tr(B2) = T0 + T1 + T2 + T3.

We are using the notation D1 6= D2 6= D3 6= D4 to mean that the four sets are
distinct. The proof of Proposition 1.11 rules out the existence of any box b having
labels(b) = (D1, D2, D2, D1) with distinct D1, D2 ∈ Supp(NWr) and that is why there
is no term in Tr(B2) corresponding to such boxes.

Proposition 1.7 shows that Tr(B) is large with high probability. In order to lower bound
Tr(B)2

Tr(B2) , we will show that Tr(B2) is less than an upper bound with high probability. This
is achieved by upper bounding the expected values of T0, T1, T2 and T3 and then applying
Markov’s inequality.
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A.2 Upper bound for E [T3]
Let ρ(D1, D2, D3) be the number of pairs of rows ((A1, C1), (A2, C2)) in which D1, D2, D3
(all distinct) can possibly occur as labels (as depicted in the table before). For a fixed
D1, D2, D3 we upper bound ρ(D1, D2, D3) with the help of Equation 16. Notice that for
a fixed D1, D2, D3, if we specify E2, E3, E4 and A1 ∩ A2 then the sets A1, C1, A2, C2 are
determined. Let us count the number of ways we can pick E2, E3, E4 and A1 ∩A2 for a given
D1, D2, D3. Taking the size bounds on the sets into account from Equation 17, this quantity
is upper bounded by,(

d

`− v

)
·
(
d− (`− v)

k

)
·
(
`− v + k

k

)
·
(
N − d
v

)
.

The quantity
(
N−d
v

)
is an upper bound on the number of ways we can pick A1 ∩A2 as A1

must be disjoint from D1. By Proposition 1.11, ` − v + k ≤ r < d, (also, v ≤ ` < N−d
2 )

implying

ρ(D1, D2, D3) ≤ 2d ·
(
d

k

)2
·
(
N − d
`

)
= ρ (say). (19)

Hence,

T3 ≤ ρ ·
∑

D1 6=D2 6=D3∈Supp(NWr)

eD1 · eD2 · eD3 (20)

Now we upper bound the expected value of the quantity
∑
D1 6=D2 6=D3∈Supp(NWr) eD1 ·

eD2 · eD3 = η (say) in the following proposition.

I Proposition 1.13. E [η] ≤ 4 · γ2 · q(r+1) ·
(
d
q

)d
, where γ is as in Proposition 1.7. This

implies

E [T3] ≤ 4 ·
(

2
d
α−β

2

)d
· γ2 ·

(
d

k

)2
·
(
N − d
`

)
.

Proof of the above proposition is omitted. We show in the later sections that E [T3] is
negligible compared to E [T0 + T1 + T2] and hence does not contribute much to the expected
value of Tr(B2).

In what follows we will derive expressions for |µ0(D1)| , |µ1(D1, D2)| and |µ2(D1, D2)|
and compute expected values of T0, T1 and T2 by summing these up over D1, D2 ∈
Supp(σR(NWr)). We first observe:

I Proposition 1.14. For any set D1 ∈
([N ]
d

)
and any row (A,C) of M , there can be at most

one cell in that row labelled with the set D1.

This means that any box b = 2−box((A1, C1), (A2, C2), S1, S2) contributing to either µ0(D1)
or µ2(D1, D2), the columns S1 and S2 must be the same.

A.3 Calculating µ0(D1) and E [T0].
Every box b ∈ µ0(D1) is of the form b = 2− box((A1, C1), (A2, C2), S1, S1) where both the
entries ((A1, C1), S1) and ((A2, C2), S1) are both labelled by D1. This implies A1 = A2 and
C1 = C2: By Equation 16, E1 ⊆ D3 = D1, but A1 is disjoint from D1 and E1 ⊆ A1. Hence,
E1 is an empty set and similarly E2 is also an empty set. This also implies E3 = E4 from
Equation 16 as D3 = D1. Analyzing this situation gives
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I Proposition 1.15.

|µ0(D1)| =
(
N − d
`

)
·
(
d

k

)
and E [T0] = γ ·

(
N − d
`

)
·
(
d

k

)
Proof. For a fixed D1, we can choose C1 in

(
d
k

)
ways and A1 in

(
N−d
`

)
ways. (Recall A1 must

be disjoint from D1.) The expression for E [T0] follows immediately from Equation 18. J

A.4 Calculating µ1(D1, D2) and E [T1].
Let D1, D2 ∈

([N ]
d

)
be two distinct subsets in the support of NWr. We consider a box

b = 2− box((A1, C1), (A2, C2), S1, S2) in µ1(D1, D2). Observe that even in this case it must
be that A1 = A2 and C1 = C2: By the same reason as before since D3 equals D1 in Equation
16. Analyzing this situation gives

I Proposition 1.16. If |D1 ∩D2| = w then

|µ1(D1, D2)| =
(
N − 2d+ w

`

)
·
(
w

k

)
and hence E [T1] ≤ d · γ2

d(α−β)k · k!
·
(
N − 2d+ k

`

)
.

Proof of the above proposition is given in Section B.

A.5 Calculating µ2(D1, D2) and E [T2].
Let D1, D2 ∈

([N ]
d

)
be two distinct subsets in the support of NWr. We consider a box

b = 2−box((A1, C1), (A2, C2), S1, S2) in µ2(D1, D2). As we observed before this can happen
only if S1 = S2 = S (say). Let |C1 ∩ C2| = u. Analyzing this situation gives

I Proposition 1.17. If |D1 ∩D2| = w then

|µ2(D1, D2)| =
∑

0≤u≤k

(
N − 2d+ w

`− d+ k + w − u

)
·
(
d− w
k − u

)
·
(
d− w
k − u

)
·
(
w

u

)
, and hence

E [T2] ≤ dk · γ2 ·
(
N − 2d
`− d+ k

)
·
(
d

k

)2
.

Proof. The expectation calculation is similar to the one in the proof of Proposition 1.16 –
the maxima of the relevant expression is touched at w = u = 0. J

A.6 Lower bound on SurRank(B)
A comparison between the binomial coefficients

(
N−2d
`−d+k

)
and

(
N−d
`

)
shows that(

N − 2d
`− d+ k

)
≥ 1

3d ·
(
N − d
`

)
.

Thus, from Proposition 1.15, 1.17 and 1.13, the upper bound on E [T2] dominates the upper
bounds on E [T0] and E [T3]. Applying Markov’s inequality,

Tr(B2) ≤ d2 · γ2

d(α−β)k · k!
·
(
N − 2d+ k

`

)
+ 3d2k · γ2 ·

(
N − 2d
`− d+ k

)
·
(
d

k

)2

with probability at least 1− 1
d . Coupled with Proposition 1.7,

SurRank(B) ≥ min

 1
4 · γ

2 ·
(
d
k

)2 · (N−d` )2
2d2 · γ2

d(α−β)k·k! ·
(
N−2d+k

`

) , 1
4 · γ

2 ·
(
d
k

)2 · (N−d` )2
6d2k · γ2 ·

(
N−2d
`−d+k

)
·
(
d
k

)2
 ,
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with probability at least 1− 1
dΩ(1) . The first ratio is at least pk

dO(1) · 1
4k ·

(
N
k

)
·
(
N
`

)
as

(
N−d
`

)2(
N−2d+k

`

) ≥ 1
2kdO(1) ·

(
N

`

)
and dαk · k! ·

(
d

k

)2
≥ 1

2kdO(1) ·
(
N

k

)
.

The second ratio is at least 1
dO(1) ·

(
N

`+d−k
)
as,

(
N−d
`

)2(
N−2d
`−d+k

) ≥ 1
dO(1) ·

(
N

`+ d− k

)
.

Therefore,

SurRank(B) ≥ 1
dO(1) min

(
pk

4k ·
(
N

k

)
·
(
N

`

)
,

(
N

`+ d− k

))
.

B Proofs of certain propositions

Proposition 1.7. Pr
[
Tr(B) ≤ 1

2 · γ ·
(
d
k

)
·
(
N−d
`

)]
≤ 10

pdα .

Proof. As in Proposition 1.6, Tr(B) = Tr(MT ·M) = number of nonzero entries in M .

Tr(B) = µ(g) ·
(
d

k

)
·
(
N − d
`

)
⇒ E [Tr(B)] = γ ·

(
d

k

)
·
(
N − d
`

)
Hence,

Pr
[
Tr(B) ≤ 1

2 · γ ·
(
d

k

)
·
(
N − d
`

)]
= Pr

[
µ(g) ≤ 1

2 · γ
]
.

It turns out that the variance of µ(g), denoted by Var(µ(g)), can be upper bounded as follows.

Var(µ(g)) ≤ γ · (1− pd) + γ2 · 2
pdα

(proof omitted)

⇒ Pr
[
µ(g) ≤ 1

2 · γ
]
≤ 10

pdα
(by Chebyshev’s inequality)

The last inequality also uses the fact that γ > 2pdα which is true since r = α+β
2(1+α) · d − 1

and hence γ = dΩ(d).
J

Proposition 1.16. If |D1 ∩D2| = w then

|µ1(D1, D2)| =
(
N − 2d+ w

`

)
·
(
w

k

)
and hence E [T1] ≤ d · γ2

d(α−β)k · k!
·
(
N − 2d+ k

`

)
.

Proof. For a given D1, D2, let us count the number of rows (A,C) in which D1 and D2 can
occur as labels. Since C ⊂ D1 ∩D2 and |D1 ∩D2| = w, we can pick C in

(
w
k

)
ways. For
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every choice of C, we can pick A in
(
N−2d+w

`

)
ways as A must be disjoint from D1 ∪D2 and

|D1 ∪D2| = 2d− w. By Equation 18,

T1 =
∑

D1∈Supp(NWr)

∑
w≥k

∑
D2∈Supp(NWr)

D2 6=D1,|D2∩D1|=w

eD1 · eD2 · |µ1(D1, D2)|

⇒ E [T1] =
∑

D1∈Supp(NWr)

∑
w≥k

∑
D2∈Supp(NWr)

D2 6=D1,|D2∩D1|=w

pd · pd−w ·
(
N − 2d+ w

`

)
·
(
w

k

)

≤ p2d ·
∑

D1∈Supp(NWr)

∑
w≥k

Rd(w, r) · p−w ·
(
N − 2d+ w

`

)
·
(
w

k

)

≤ p2d ·
∑

D1∈Supp(NWr)

∑
w≥k

qr+1 ·
(
d

pq

)w
· 1
w! ·

(
N − 2d+ w

`

)
·
(
w

k

)

≤ p2d · qr+1 ·
∑

D1∈Supp(NWr)

∑
w≥k

(
1

dα−β

)w
· 1
w! ·

(
N − 2d+ w

`

)
·
(
w

k

)
The term

( 1
dα−β

)w · 1
w! ·

(
N−2d+w

`

)
·
(
w
k

)
is maximized at w = k as β < α. So,

E [T1] ≤ d · γ2

d(α−β)k · k!
·
(
N − 2d+ k

`

)
.
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A Depth-Five Lower Bound for Iterated Matrix
Multiplication∗

Suman K. Bera and Amit Chakrabarti

Department of Computer Science, Dartmouth College
Hanover, USA
{suman.k.bera.gr, amit.chakrabarti}@dartmouth.edu

Abstract
We prove that certain instances of the iterated matrix multiplication (IMM) family of polynomials
with N variables and degree n require NΩ(

√
n) gates when expressed as a homogeneous depth-five

ΣΠΣΠΣ arithmetic circuit with the bottom fan-in bounded by N1/2−ε. By a depth-reduction
result of Tavenas, this size lower bound is optimal and can be achieved by the weaker class of
homogeneous depth-four ΣΠΣΠ circuits.

Our result extends a recent result of Kumar and Saraf, who gave the same NΩ(
√
n) lower

bound for homogeneous depth-four ΣΠΣΠ circuits computing IMM. It is analogous to a recent
result of Kayal and Saha, who gave the same lower bound for homogeneous ΣΠΣΠΣ circuits
(over characteristic zero) with bottom fan-in at most N1−ε, for the harder problem of computing
certain polynomials defined by Nisan–Wigderson designs.
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1 Introduction

The fundamental goal of algebraic complexity theory is an understanding of which polynomials
can be computed efficiently. Arithmetic formulas and circuits, being the most natural and
intuitive model for computing polynomials, are the basis for the notion of complexity of a
polynomial. They are defined in an analogous way to Boolean formulas and circuits, the key
difference being that the gates used to build them are addition (+) and multiplication (×)
gates, rather than logic gates (more details appear in Section 2).

A classic result in the area is that the symbolic n × n determinant – an n2-variate
polynomial of degree n – can be computed by a poly(n)-sized arithmetic circuit over an
arbitrary field [2]. A classic open problem is to prove that the symbolic n× n permanent
– also n2-variate and of degree n – cannot be so computed. In a highly influential work,
Valiant [22] defined complexity classes analogous to P and NP for the algebraic world, which
have since come to be called VP (polynomial-sized arithmetic circuits) and VNP (roughly,
polynomial-sized arithmetic circuits with a summation quantifier; the permanent has such
circuits), and hypothesized that VP 6= VNP. Proving this separation is the preeminent open
problem in the area.

Recent work, starting with Agarwal and Vinay [1], has shown that the VP 6= VNP
conjecture can be attacked by focusing on constant-depth circuits (equivalently, constant-
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184 A Depth-Five Lower Bound for Iterated Matrix Multiplication

depth formulas). In particular, it suffices to prove certain strong size lower bounds for
depth-four ΣΠΣΠ circuits: these are layered circuits with four layers of gates, alternating
between +-gates and ×-gates, with a +-gate at the top (output) level. A flurry of research
over the last two years has greatly advanced our understanding of the power of such circuits.
Tavenas [21] has shown that every NO(1)-sized arithmetic circuit on N variables computing
a polynomial of degree n = NΘ(1) can be transformed into a depth-four ΣΠΣΠ circuit of
size NO(

√
n) with bottom fan-in at most O(

√
n). Moreover the transformation preserves

homogeneity: if the original circuit is homogeneous – meaning that each +-gate computes a
homogeneous polynomial – then so is the transformed circuit.

In a recent tour de force, Kumar and Saraf [16] showed that depth-four homogeneous
circuits for the iterated matrix multiplication (IMM) family of polynomials require NΩ(

√
n)

size even without a restriction of the bottom fan-in; again N and n represent the number
of variables and the degree (respectively), and their proof uses N ≈ n11. Since the IMM
polynomials are easily seen to have polynomial-sized arithmetic circuits, this lower bound
shows that Tavenas’s depth reduction result is tight in a strong sense.

1.1 Our Results
We extend the above Kumar–Saraf theorem to obtain a similar exponential lower bound
for depth-five homogeneous ΣΠΣΠΣ circuits, albeit with a restriction on the bottom fan-in.
Namely, we consider circuits where this bottom fan-in is at most Nµ, where µ < 1/2 is a
constant. For each such µ, we shall consider a family of N -variate degree-n IMM polynomials,
where N = nΘ(q) and q is a constant depending on µ, and show that our restricted depth-five
circuits require NΩ(

√
n) size to compute these polynomials. By Tavenas’s above theorem, the

bound NΩ(
√
n) is tight.

The IMM polynomials are defined as follows. The variables are
{
z

(h)
i,j

}
h∈[n], i,j∈[m], to be

thought of as entries of m×m matrices Z(1), . . . , Z(n): we use the standard convention that
the (i, j)-entry of a matrix A is denoted ai,j . The polynomial IMMn,m on these variables is
defined as the (1, 1)-entry of the matrix product Z(1)Z(2) · · ·Z(n). Thus,

IMMn,m

(
z

(1)
1,1, . . . , z

(n)
m,m

)
=

∑
i1,i2,...,in−1∈[m]

z
(1)
1,i1z

(2)
i1,i2
· · · z(n−1)

in−2,in−1
z

(n)
in−1,1 . (1)

I Theorem 1.1 (Main Theorem). For every constant µ ∈ [0, 1/2), there is an integer q > 0
such that the following holds. With m = nq, any homogeneous ΣΠΣΠΣ circuit with bottom
fan-in Nµ that computes the N -variate degree-n polynomial IMMn,m has size at least NΩ(

√
n).

A more precise version of this theorem appears as Theorem 4.2 on page 194.
Proving a super-polynomial lower bound for homogeneous ΣΠΣΠΣ circuits was explicitly

posed as an open problem by Nisan and Wigderson [18, Section 2.2] in their pioneering work
on arithmetic circuit lower bounds. In particular, a depth-five lower bound for IMM was
posed as an open problem by Kayal and Saha in a recent work [12] where they obtained
such bounds for the so-called Nisan–Wigderson (NW) family of polynomials.1 Unlike IMM,
the NW polynomials are not known to have polynomial-sized arithmetic circuits. This is a
strength of our result, because it applies to a potentially “easier” family of polynomials.

Another strength of our result is that, unlike the above Kayal–Saha result, it does not
depend on any properties of the underlying field F over which the circuit is defined. Their

1 The name “Nisan–Wigderson” for these polynomials refers to a still earlier work of Nisan and Wigder-
son [17] that popularized a certain kind of combinatorial design.
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result crucially relies on F having characteristic zero. Meanwhile a weakness of our result is
the µ < 1/2 requirement; the analogous requirement in Kayal–Saha is that µ < 1, which is
still a restriction on the structure of the circuit but a weaker one.

We shall prove our depth-five lower bound for a slight restriction of the polynomial in
eq. (1) obtained by setting some of its variables to 1 (clearly this only strengthens the result).
Our proof will use machinery from the recent work of Kayal and Saha [12] to essentially
transform a depth-five circuit into a depth-four one, while controlling the bottom fan-in.

1.2 Related Work
In a seminal work, Valiant et al. [23] gave the first nontrivial depth-reduction technique for
general arithmetic circuits. They proved that a poly(N)-sized N -variate arithmetic circuit
that computes a polynomial with degree poly(N) can be assumed to be of poly(logN) depth
without loss of generality. All subsequent depth-reduction results have built on this work.
In particular, Agarwal and Vinay [1] gave a reduction to depth four and the parameters of
this reduction were subsequently refined and improved by Koiran [15] and, most recently, by
Tavenas [21] who gave the result described earlier.

A consequence of Tavenas’s theorem is that a size lower bound of Nω(
√
n) for homogeneous

ΣΠΣΠ circuits computing a homogeneous polynomial2 f shows that f /∈ VP; in fact the
circuits can be restricted to a bottom fan-in of O(

√
n). In particular, proving such a strong

lower bound with f being either the permanent polynomial or the NW polynomial would
imply VP 6= VNP. A number of recent works have pursued this research program and made
significant progress.

This research program can be traced back to the groundbreaking work of Nisan and
Wigderson [18], which introduced the idea of studying the dimension of the space of partial
derivatives of a polynomial f . Lower bounds on this dimension imply lower bounds on the
size of depth-three ΣΠΣ circuits for f . In particular, this technique shows that a homogeneous
ΣΠΣ circuit computing the n× n symbolic determinant (over an arbitrary field) must have
size 2Ω(n). Gupta et al. [7] greatly strengthened this technique by considering “shifted” partial
derivatives (see Section 2), and proved that a homogeneous ΣΠΣΠ circuit with bottom fan-in
at most

√
n that computes either the n× n determinant or the n× n permanent must have

size 2Ω(
√
n). Kayal et al. [13] then proved a larger lower bound of NΩ(

√
n) for the same class

of circuits, for the “harder” problem of computing an N -variate degree-n NW polynomial.
Fournier et al. [4] proved the same lower bound for the problem of computing certain IMM
polynomials.

The next major conceptual advance was made by Kayal et al. [11], who further strength-
ened the partial derivatives technique by adding a multilinear projection step, arriving at
the “dimension of projected shifted partials” measure. Using this, and further applying
well-chosen random restrictions, they removed the bottom fan-in restriction and gave an
NΩ(

√
n) lower bound for homogeneous ΣΠΣΠ circuits computing NW polynomials. However,

their proof introduced a new restriction: the underlying field had to have characteristic zero.
The aforementioned recent work by Kumar and Saraf [16] does not have such a restriction
on the field and gives the same NΩ(

√
n) lower bound for certain NW polynomials as well

as certain IMM polynomials. Since IMM ∈ VP, this proves the tightness of Tavenas’s
theorem [21].

2 Strictly speaking, one considers the complexity not of a single polynomial but of a family of polynomials
{fN}N∈I for some infinite index set I ⊆ N.
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Along different lines Grigoriev and Karpinski [5], and Grigoriev and Razborov [6] con-
sidered (not necessarily homogeneous) ΣΠΣ circuits over a finite field F and proved that
computing the MODq function on n variables, where q 6= char(F) is a prime, requires size
2Ω(n). In contrast, over a field of characteristic zero, a result of Gupta et al. [8] shows that a
polynomial-sized N -variate arithmetic circuit can be converted to a non-homogeneous ΣΠΣ
circuit of size NO(

√
n). Thus, another approach to proving VP 6= VNP would be to show

strong enough lower bounds for general ΣΠΣ circuits.
Recently Kayal and Saha [12] proved that a ΣΠΣ circuit over a field of characteristic zero

computing certain N -variate degree-n polynomials – namely, NW and IMM polynomials
with N = nΘ(1) – must have size NΩ(

√
n), provided the bottom fan-in is at most

√
n. Their

technique involves converting the ΣΠΣ circuit into a homogeneous ΣΠΣΠΣ circuit with
bounded bottom fan-in (precisely the class of circuits that this paper is about) and then
proving lower bounds for the resulting depth-five circuits. In fact their depth-five circuits
have a very special structure, which they then exploit to obtain their NW and IMM results.
Without using this special structure, they are still able to obtain lower bounds for NW, but
not IMM.

As noted in Theorem 1.1, this paper gives such a depth-5 lower bound for IMM. Our own
proof builds on the ideas of Kayal and Saha.

The excellent survey by Shpilka and Yehudayoff [20] gives a much more detailed overview
of classic and modern results on arithmetic circuits. Two new surveys by Kayal and
Saptharishi [14], and Saptharishi [19] cover recent progress on constant-depth lower bounds.

2 Preliminaries and Proof Outline

All arithmetic circuits studied in this paper will be constant-depth, layered, and homogeneous,
with gates of arbitrary fan-in except where noted. A layer is either a Σ-layer (consisting of
+-gates only) or a Π-layer (consisting of ×-gates only). The output layer always consists of a
single +-gate. Notation of the form ΣΠΣΠ indicates the number and types of layers with
the leftmost symbol corresponding to the output (a.k.a. top) layer and the rightmost symbol
corresponding to the bottom layer, whose gates read only input variables.3 Wires feeding
+-gates are labeled with coefficients from the underlying field F: thus a +-gate computes an
arbitrary linear form over F.

Following Kumar and Saraf [16], we shall consider the following restriction of the IMM
polynomial defined in eq. (1). Let

m = nq , n = (B + 2)k , (2)

for some integers q,B, and k. Eventually, we shall take B = Θ(
√
n), k = Θ(

√
n), and q large

enough but constant. We partition the sequence of matrices Z(1), . . . , Z(n) into k contiguous
subsequences, which we call blocks. In the hth block, we denote the first matrix as Y (h),
the next B matrices as X(h,1), X(h,2), . . . X(h,B), and the last matrix as J (h). We then set
all entries of each J (h) to be 1. We shall denote the resulting polynomial, which is slightly
smaller than the original and uses a different set of variable names, as

fn,q
(
x

(1,1)
1,1 , . . . , x(k,B)

m,m , y
(1)
1,1, . . . , y

(k)
m,m

)
. (3)

Clearly, deg fn,q 6 n and fn.q is N -variate for N = m2(n− k).

3 When studying non-homogeneous circuits, we must also allow the bottom layer gates to read the
constant 1.
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Our lower bound is based on the complexity measure termed “dimension of projected
shifted partials” (DPSP), whose history we have recounted in Section 1.2. We now define
the DPSP measure. Fix a field F and a set of variables x1, . . . , xN . Consider a polynomial
f(x1, . . . , xN ) ∈ F[x1, . . . , xN ]. Let α = xi1 . . . xik be a multilinear monomial in the same
variables. We use the compact notation ∂αf := ∂kf/∂xi1 · · · ∂xik , calling it the partial
derivative of f with respect to α. LetM be a set of multilinear monomials and ` > 0 be an
integer. We define

DPSPM,`(f) := dim span proj shift`{∂αf : α ∈M} , (4)

where shift` f = {βf : β is a monomial of degree `}, proj f is the projection of f onto the
subspace of the F-vector-space F[x1, . . . , xN ] spanned by multilinear monomials, and these
operators are extended to sets of polynomials in the natural way.

For fixed choices of M and `, the measure DPSPM,` is easily seen to be subadditive.
It is a good complexity measure because it can be nontrivially upper-bounded for “simple”
circuits. Let us call a circuit t-supported if at most t distinct variables feed each bottom-level
gate.

I Lemma 2.1 (Essentially [10, Corollary 12]). Let C be a t-supported degree-n homogeneous
ΣΠΣΠ circuit on N variables, with top fan-in at most S0. Let M be a set of degree-k
multilinear monomials on these N variables and let ` > 0 be an integer such that `+kt 6 N/2.
Then

DPSPM,`(C) 6 S0

(
2n/t+ 1

k

)(
N

`+ kt

)
. J

To apply this to depth five circuits with small support, we proceed as in Kayal and
Saha [12]: we perform a random restriction. That is, we kill (set to zero) all variables xi
lying outside a suitably randomly chosen subset V . This will simplify a polynomial f to a
“smaller” polynomial, which we will denote f |V . The crux of our argument is to show that
a sufficiently strong restriction will, w.h.p., simplify a depth-five circuit into a depth-four
circuit (the truth is a little more subtle; see Lemma 2.4). At the same time, we do not want
to apply too strong a restriction, for otherwise the IMM polynomial itself might simplify too
much. We desire that, w.h.p., the restricted polynomial fn,q|V (see eq. (3)) still has “high”
complexity, with respect to our DPSP measure.

2.1 Random Restrictions and Their Effect on IMM
Let Vn,q denote the set of variables of the polynomial fn,q; see eq. (3). We now define a
distribution over subsets of Vn,q by describing a procedure for sampling a random subset,
V . The set V is a union (over h, h′, and i) of random subsets V (h,h′)

i and V (h)
i , which are

subsets of the variables in the ith row of X(h,h′) and Y (h) respectively; these subsets are
mutually independent. Each such subset is chosen uniformly conditioned on its size being
some particular quantity, as follows (the parameters b and λ will be fixed later).

For each h, |V (h)
1 | = mb = nbq, where b ∈ (0, 1). Further, |V (h)

i | = 0 for i 6= 1.
For each h, |V (h,1)

i | = nλ for each i, where λ ≈ 2.
For each h and h′, with 2 6 h′ 6 B − 2 logn, |V (h,h′)

i | = 2 for each i.
For each h and h′, with h′ > B − 2 logn, |V (h,h′)

i | = 1 for each i.
Then, as mentioned above, we set

V :=
m⋃
i=1

k⋃
h=1

(
V

(h)
i ∪

B⋃
h′=1

V
(h,h′)
i

)
. (5)
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Technically, our proof is all about studying the effects of restricting our depth-five circuits and
the IMM polynomial to this random set V . This random restriction is a small generalization
of the one used by Kumar and Saraf [16], where we have introduced b as a tunable parameter.
Therefore, their (highly technical) analysis of the effect of this random restriction on the
IMM polynomial largely carries over. We shall now explain the final outcome of this analysis.

To this end, we introduce the following key parameters:

k := 32
√
n ; (this then determines B) (6)

n̂ := Bk = n− 2k ; (the number of X matrices) (7)

` := N

2

(
1− lnn

Γ
√
n

)
, where (8)

Γ := 2 + o(1) is chosen such that n
√
n

(
N

N − `

)n̂
=
(
N

`

)n̂
; (9)

λ := 2− 1 + o(1)
32Γ is chosen such that nλk · 2n̂−(1+2 logn)k =

(
N

N − `

)n̂
. (10)

For each V drawn as indicated above, letM(V ) denote the set of all monomials obtained
by picking exactly one y-variable from each set V (h)

1 ; the degree of each such monomial is
then k.

I Lemma 2.2 (Slight generalization of [16, Lemma 8.1]). Suppose bq > 1. Then, for every
realization of the random set V , there existsM′(V ) ⊆M(V ) such that |M′(V )| = n

√
n and

∀α1 6= α2 ∈M′(V ),

| supp(α1) \ supp(α2)| = | supp(α2) \ supp(α1)| > k −
√
n ,

where the support supp(α) of a monomial α is defined as the set of variables that appear in
α.

I Lemma 2.3 (Essentially [16, Lemma 8.9]). Suppose bq > 1. With probability at least 0.9,
the above setM′(V ) contains a subsetM′′(V ) such that

DPSPM′′(V ),`
(
fn,q|V

)
>

n
√
n

O(n
√
n/8) · no(

√
n)

(
N

N − `

)n̂(
N − n̂
`

)
.

2.2 Circuit Decomposition Under Random Restrictions
To prove our depth-five lower bound using the DPSP lower bound given by Lemma 2.3, we
will need to extend Lemma 2.1 as discussed right after its statement. We will analyze the
random restriction defined in Section 2.1 to establish the following decomposition lemma.

I Lemma 2.4 (Analogous to [12, Lemma 11]). For each constant µ < 1/2, there exists
an integer q = q(µ) such that the following holds. Let C be an Nµ-supported degree-n
homogeneous ΣΠΣΠΣ circuit on the variables Vn,q, with size S 6 nε

√
n for some small

positive constant ε. Let the random set V be drawn as above, with b chosen such that bq > λ.
Then with probability 1− o(1),

C|V = C ′ + g , (11)

where C ′ is a (
√
n/64)-supported degree-n homogeneous ΣΠΣΠ circuit with top fan-in at

most that of C, and g is a polynomial each of whose monomials has a variable raised to the
third or higher power.
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The proof of the above lemma is our main technical contribution. It occupies most of
Section 3.

The projection step in the definition of DPSP ensures that the polynomial g in eq. (11)
satisfies DPSPM,`(g) = 0 for every choice of M and `. Furthermore, the bound on the
bottom fan-in of C ′ enables us to apply Lemma 2.1. Recalling that DPSP is a subadditive
measure, we then obtain the following upper bound (setting t =

√
n/64 in Lemma 2.1).

I Lemma 2.5 (Analogous to [12, Lemma 9]). Let µ, q, C, S, and V be as in the previous
lemma. Then the following event occurs with probability 1− o(1). For all setsM of degree-k
multilinear monomials and all ` > 0 such that `+ k

√
n/64 6 N/2, we have

DPSPM,`(C|V ) 6 S

(
128
√
n+ 1
k

)(
N

`+ k
√
n/64

)
. J

Our final lower bound – Theorem 1.1 – then follows by combining Theorems 2.3 and 2.5
and using the parameter settings in eqs. (6)–(10).

3 Proof Details

Lemmas 2.1 and 2.3 are essentially restatements of the corresponding lemmas from previous
works [10, 16]. It remains to prove Lemma 2.2 and 2.4.

3.1 A Well-Spaced Collection of Derivatives
We prove the first of these lemmas, which guarantees that the setM(V ) of monomials with
respect to which we shall be taking derivatives contains a large set of pairwise far monomials.

Proof of Lemma 2.2. Recall that |V (h)
1 | = nbq for each h ∈ [k]. Therefore M(V ) maps

bijectively to V (1)
1 × · · · × V (k)

1 in a natural way and thence to [nbq]k in an artificial way. Let
K be the largest finite field whose order is at most nbq; note that |K| > nbq/2. Then Kk
maps injectively (artificially) intoM(V ), via an injection ι, say.

Consider a Reed–Solomon code C ⊆ Kk where the codewords are evaluations of polyno-
mials in K[w] of degree at most

√
n at k distinct points in K. Then

|C| = |K|
√
n+1 > (nbq/2)

√
n+1 > n

√
n ,

since bq > 1. Pick M′(V ) to be an arbitrary n
√
n-sized subset of ι(C). The code C, by

construction, has Hamming distance at least k −
√
n. This directly translates to the desired

monomial distance property forM′(V ). J

Proof of Lemma 2.3. As we noted while stating this lemma, it essentially restates Lemma
8.9 from Kumar and Saraf [16]. The main concern is that for small b our setM′(V ) above
could be much smaller than their corresponding set. However, an examination of the proof of
their Lemma 8.9 shows that the only properties ofM′(V ) that are needed are the size bound
|M′(V )| > n

√
n and the above farness property, both of which our Lemma 2.2 guarantees. J

3.2 The Main Lemma: Circuit Decomposition
We prove the remaining lemma which establishes the circuit decomposition indicated by
eq. (11). The following technical lemma will be useful in the analysis.
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I Lemma 3.1. Given integers 0 < t 6 s′ 6 s and sets A and B with |A| = s, |B| = t, and
B ⊆ A, let R be a random subset of A chosen uniformly conditioned on |R| = s′. Then
Pr[B ⊆ R] 6 (s′/s)t. J

To start the proof of Lemma 2.4, consider C, an arbitrary Nµ-supported degree-n
homogeneous ΣΠΣΠΣ circuit with size S 6 nε

√
n, on the variables Vn,q, that computes the

IMM polynomial fn,q. Fix this C for the rest of this section. Expanding C into a formula,
we have

C =
∑
i

∏
j

∑
r

Qijr , (12)

where each Qijr is a product of linear forms, each such linear form having at most Nµ

variables. The proof now splits into two cases: the thin case, when the bottom fan-in is
below N1/4 and the fat case, when the bottom fan-in is N1/4 or more.

3.3 The Thin Case
We consider the case when 0 6 µ < 1

4 .
Let the random set V be drawn as described in Section 2.1. A monomial survives the

restriction to V iff all its variables belong to V . Now Lemma 3.1 implies the following bounds
for a monomial α with | supp(α)| = t = O(

√
n).

For each h, if α has variables only from the first row of Y (h), then its survival probability
is at most m−(1−b)t = nbqtn−qt.
For each h, if α has variables only from the ith row of X(h,1), then its survival probability
is at most n−(q−λ)t = nλtn−qt.
For each h, h′ and i, with 2 6 h′ 6 B − 2 logn, if α has variables only from the ith row
of X(h,h′), then its survival probability is at most (2/m)t = 2tn−qt = nt/ lognn−qt.
For each h, h′ and i, with h′ > B − 2 logn, if α has variables only from the ith row of
X(h,h′), then its survival probability is at most m−t = n−qt.

The hypotheses of Lemma 2.4 include the condition bq > λ, and eq. (10) implies λ > 1.
Therefore the largest of these bounds is the first one, i.e., n−(1−b)qt.

Since all the random subsets mentioned above are mutually independent, even if α’s
variables are spread out arbitrarily among multiple rows of multiple matrices, its survival
probability is still at most n−(1−b)qt.

Let C|V =
∑
i

∏
j

∑
r Q

′

ijr where Q′ijr is a product of linear forms. Assume for some
(i, j, r) that deg(Q′ijr) = 2t; if deg(Q′ijk) > 2t, then we only consider the product of the “first”
2t linear forms. Then the number of monomials in Q′ijk is at most (Nµ)2t. Consider the
bad monomials in Q′ijk, defined as ones where each variable has degree at most 2. These
monomials have support at least t; the event that one of them survives is a bad event. If
not a single bad monomial survives, then the circuit C decomposes into two circuits: a
2t-supported degree-n homogeneous ΣΠΣΠ circuit C ′ with top fan-in at most that of C, and
a circuit g wherein each monomial has a variable raised to the third or higher power. Setting
t =
√
n/128, this is exactly the decomposition we seek.

It remains to prove that the above bad event has probability o(1). The probability that a
bad monomial survives the random restriction is at most n−(1−b)qt, as noted above. By a
union bound, the bad event has probability at most

Sn−(1−b)qt(Nµ)2t 6 nε
√
nn−(1−b)qtn(2q+1)2µt =

(
n128ε−(1−b)q+(2q+1)2µ)t .
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Since t = Θ(
√
n), we can bound this by n−Ω(

√
n) by ensuring

128ε− (1− b)q + (2q + 1)2µ < 0 . (13)

Clearly it suffices to ensure that

(1− b)q = (2q + 1)2µ+ 129ε . (14)

Recall that we want bq > λ ≈ 2 and b ∈ (0, 1). So we need (1− b)q = q − bq 6 q − λ, i.e.,

(2q + 1)2µ+ 129ε 6 q − λ ⇐⇒ q >
λ+ 129ε+ 2µ

1− 4µ , (15)

where we have used µ < 1/4.
We set q to be the smallest integer satisfying (15), then set b to satisfy (14). Then we do

have bq > λ as well as b ∈ (0, 1) as required.

3.4 The Fat Case
We consider the remaining case, when 1

4 6 µ < 1
2 .

We imagine the random restriction as being performed in two phases. Phase 1 chooses
“large” random subsets of each row of each matrix in the IMM polynomial (for the Y -matrices,
only the first row is used). Then Phase 2 chooses smaller random subsets, of the desired
target sizes as in Section 2.1. The net effect is the same as the random restriction described
in Section 2.1.

Phase 1
Let a be a parameter such that 0 < b < a < 1; its value will be fixed in the later analysis.

We now define a distribution over subsets of Vn,q for sampling a random subset, W .
Similar to V , W is also a union of random subsets W (h)

1 and W (h,h′)
i over h, h′ and i, where

W
(h)
i and W (h,h′)

i are subsets of variables in the ith row of Y (h) and X(h,h′) respectively;
these subsets are mutually independent. Each subset is chosen uniformly conditioned on its
size being ma. In the first phase, we consider a restriction to W , i.e., all variables outside W
are set to zero.

Consider the probability that a monomial α, with | supp(α)| = t = O(
√
n), survives

Phase 1. By Lemma 3.1, if α’s variables come only from the first row of Y (h) for some
particular h, or only from the ith row of some particular X(h,h′), then its survival probability
is at most m−(1−a)t = n−(1−a)qt. Since all the random subsets are mutually independent,
even if α’s variables are spread out arbitrarily among multiple rows of multiple matrices, its
survival probability is still at most n−(1−a)qt.

Phase 2
In this phase, we sample V (h)

1 ⊆W (h)
1 and V (h,h′)

i ⊆W (h,h′)
i , uniformly and independently,

subject to the cardinality constraints given in Section 2.1. We then define V as in eq. (5).
Let α be a monomial with | supp(α)| = t = O(

√
n). If the variables in α all come from

a single set W (h)
1 or W (h,h′)

i , then we can bound the probability of α surviving this second
phase exactly as in Section 3.3, by using Lemma 3.1.

If the variables come from W
(h)
1 , the survival probability is at most m−(a−b)t = nbqtn−aqt.

If the variables come fromW
(h,1)
i , the survival probability is at most n−(aq−λ)t = nλtn−aqt.
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If the variables come from W
(h,h′)
i , where 2 6 h′ 6 B − 2 logn, then the survival

probability is at most (2/m−a)t = 2tn−aqt = nt/ lognn−aqt.
If the variables come from W

(h,h′)
i , where h′ > B − 2 logn, then the survival probability

is at most m−at = n−aqt.
Again, recalling that bq > λ > 1, we see that the largest of these bounds is the first one, i.e.,
n−(a−b)qt. Since all the random subsets mentioned above are mutually independent, even if
α’s variables are spread out arbitrarily among multiple rows of multiple matrices, its survival
probability in phase 2 is still at most n−(a−b)qt.

Effect of Phase 1 Restriction
We now analyze the effect of the phase 1 random restriction on the circuit C. Recall the
expansion in eq. (12). Let Qijr =

∏
u Lu where each Lu is a linear form with (w.l.o.g.)

exactly Nµ terms.
Observe that the survival probability of each variable in C is at most n−(1−a)q. Therefore,

by linearity of expectation,

E[number of surviving terms in Lu|W ] 6 Nµn−(1−a)q 6 n(2q+1)µ−(1−a)q =: T . (16)

We would like to bound the probability that the bottom fan-in of C|W greatly exceeds this
bound T . This is not a straightforward Chernoff bound because the number of surviving
terms in Lu|W is a sum of dependent indicator random variables. However, the dependency
is of a benign sort. To see this, we recall some facts from probability theory, proved in, e.g.,
[3, Section 3.1] and [9].

I Fact 3.2. Negative association of random variables is closed under products. That is,
if X1, . . . , Xn and Y1, . . . , Ym are two independent collections of random variables that are
separately negatively associated, then the union X1, . . . , Xn, Y1, . . . , Ym is also negatively
associated.

I Fact 3.3. Let a subset R ⊆ [n] be drawn uniformly at random, conditioned on |R| = k, for
some k 6 n, and let Xi be an indicator for the event i ∈ R. Then the collection X1, . . . , Xn

is negatively associated.

I Fact 3.4. The Chernoff–Hoeffding bounds apply as is to a sum of negatively associated
random variables.

Using these facts, we see that standard Chernoff bounds may be applied to the number
of surviving terms in Lu|W . Doing so and applying a union bound over all linear forms Lu
gives us

Pr
[
bottom fan-in of C|W > (1 +

√
3)T

]
6 Se−T 6 nε

√
ne−T .

For this probability to be o(1), it suffices to have

ε
√
n lnn− n(2q+1)µ−(1−a)q 6 −ω(1) (using eq. (16))

⇐ (2q + 1)µ− (1− a)q > 1
2 + Θ(1) . (17)

Effect of Phase 2 Restriction
After phase 1, with high probability the bottom fan-in of C|W is bounded by (1 +

√
3)T .

Assuming that this bound holds, we analyze the effect of phase 2 on C|W . This analysis is
analogous to that in the thin case.
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Let C|W =
∑
i

∏
j

∑
kQ
′
ijk where Q′ijk is a product of linear forms. Assume for some

i, j, k, that deg(Q′ijk) = 2t; if deg(Q′ijk) > 2t, then we only consider the product of the first
2t linear forms. Then the number of monomials in Q′ijk is at most (1 +

√
3)2tT 2t. Consider

the bad monomials in Q′ijk: those where each variable has degree at most 2. By our previous
analysis, the probability that such a monomial survives phase 2 is at most by n−(a−b)qt.
If no bad monomial survives, then C|W indeed decomposes into two circuits as desired: a
2t-supported degree-n homogeneous ΣΠΣΠ circuit C ′ with top fan-in at most that of C and
a circuit g wherein each monomial has a variable raised to a power > 3. We set t =

√
n/128

to obtain the decomposition we seek.
By a union bound over the at most S bad monomials, the probability that no bad

monomial survives phase 2 – which we would like to bound by o(1) – is at most

Sn−(a−b)qt(1 +
√

3)2tT 2t 6 nε
√
nn−(a−b)qt(1 +

√
3)2t(n(2q+1)µ−(1−a)q)2t

6
(
n128ε−(a−b)q−2(1−a)q+2(2q+1)µ)t(1 +

√
3)2t .

Since t = Θ(
√
n), we can bound this by n−Ω(

√
n) by ensuring that

128ε− (a− b)q − 2(1− a)q + 2(2q + 1)µ < 0 . (18)

Recall that we also want a, b, q to satisfy bq > λ ≈ 2 as well as the phase 1 condition (17).
Moreover, for the two-phase random restriction process to make sense, we want 0 < b < a < 1.
We claim that it suffices to choose a, b, and q such that

(1− a)q = (2q + 1)µ− 0.51 , and (19)
(a− b)q = 2× 0.51 + 129ε . (20)

Clearly condition (17) is satisfied. By adding (19) and 2×(20), we see that condition (18) is
also satisfied. We will soon set q to a positive integer, satisfying b < a. By adding (19) and
(20), we get

(2q + 1)µ+ 0.51 + 129ε = (1− b)q . (21)

We want (1− b)q = q − bq 6 q − λ, i.e.,

(2q + 1)µ+ 0.51 + 129ε 6 q − λ ⇐⇒ q >
λ+ 0.51 + 129ε+ µ

1− 2µ , (22)

where we used µ < 1/2. We set q to be the smallest integer satisfying condition (22). Next we
set a and b satisfying eq. (19) and eq. (20) respectively. Now we want a < 1, or equivalently

(2q + 1)µ− 0.51 > 0 ⇐⇒ q >
1
2

(
0.51
µ
− 1
)
. (23)

So we want
1
2

(
0.51
µ
− 1
)
<
λ+ 0.51 + 129ε+ µ

1− 2µ
⇐⇒ (λ+ 0.51 + 129ε)2µ+ 2µ2 > (1− 2µ)(0.51− µ)
⇐⇒ (λ+ 0.51 + 129ε)2µ+ 2µ2 > 0.51− 2.02µ+ 2µ2

⇐⇒ µ >
0.51

2(λ+ 0.51 + 129ε) + 2.02 .

Since, 1 < λ < 2 and µ > 1/4, the above inequality does hold.

This completes the proof of Lemma 2.4.
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4 Final Result and Discussion

We now put together the lemmas proven so far to obtain our final lower bound on homogeneous
Nµ-supported ΣΠΣΠΣ circuits for IMM.

The following estimation will be useful in our calculations.

I Lemma 4.1 (See, e.g., [7, Lemma 6]). Let a(n), f(n), g(n) : Z>0 → Z>0 be integer valued
functions such that f + g = o(a). Then

(a+ f)!
(a− g)! = af+g · e±O

(
(f+g)2/a

)
. J

With this, we are ready to prove our result.

I Theorem 4.2 (Precise version of Main Theorem 1.1). For every constant µ ∈ [0, 1/2), there
is an integer q > 0 such that the following holds. Let C be a homogeneous Nµ-supported
ΣΠΣΠΣ circuit that computes the N-variate degree-n IMM polynomial fn,q mentioned in
Equation (3). Then C has size at least NΩ(

√
n).

Proof. Suppose C has size S. Clearly we may choose an arbitrary small constant ε > 0 and
proceed under the assumption that S 6 nε

√
n. So we make this assumption.

Let V be a random subset of Vn,q, the variable set of fn,q, sampled according to the
distribution described in Section 2.1. By Lemma 2.5, for all setsM of degree-k multilinear
monomials and all ` > 0 such that `+ k

√
n/64 6 N/2,

DPSPM,`(C|V ) 6 S

(
128
√
n+ 1
k

)(
N

`+ k
√
n/64

)
with probability 1− o(1).

By Lemma 2.3, with probability at least 0.9 there exists a set M′′(V ) of degree-k
multilinear monomials such that

DPSPM′′(V ),`
(
fn,q|V

)
>

n
√
n

O(n
√
n/8) · no(

√
n)

(
N

N − `

)n̂(
N − n̂
`

)
.

for all ` > 0. Hence with non-zero probability both these bounds hold. Comparing the above
two bounds, and using parameters k = 32

√
n and ` = N

2

(
1− lnn

Γ
√
n

)
from eq. (6) and (8), we

get

S >

n
√

n

O(n√n/8)·no(√n) ·
(

N
N−`

)n̂
·
(
N−n̂
`

)
(128

√
n+1

32
√
n

)
·
( N

`+32
√
n·
√

n
64

)
=

n
√
n ·
(

N
N−`

)n̂
O
(
n
√
n/8
)
· no(

√
n) · 2O(√n) ·

(
N−n̂
`

)(
N

`+0.5n
) since

(
128
√
n+ 1

32
√
n

)
= 2Θ(

√
n)

=
(
N
`

)n̂
O
(
n
√
n/8
)
· no(

√
n) · 2O(√n) ·

(N − n̂)!
N ! · (N − `− 0.5n)!

(N − `− n̂) · (`+ 0.5n)!
`! using (9)

≈ 1
O
(
n
√
n/8
)
· no(

√
n) · 2O(√n) ·

(
N

`

)n̂
· 1
N n̂
· (N − `)n̂−0.5n · `0.5n by Thm 4.1

= 1
O
(
n
√
n/8
)
· no(

√
n) · 2O(√n) · (N − `)

n̂−0.5n · `0.5n−n̂
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= 1
O
(
n
√
n/8
)
· no(

√
n) · 2O(√n) ·

(
N − `
`

)n̂−0.5n

= 1
O
(
n
√
n/8
)
· no(

√
n) · 2O(√n) ·

N − N
2

(
1− lnn

Γ
√
n

)
N
2

(
1− lnn

Γ
√
n

)
n̂−0.5n

using (8)

= 1
O
(
n
√
n/8
)
· no(

√
n) · 2O(√n) ·

(
1 + lnn

Γ
√
n

1− lnn
Γ
√
n

)n̂−0.5n

≈ 1
O
(
n
√
n/8
)
· no(

√
n) · 2O(√n) · e

2· ln n
Γ
√

n
·(n̂−0.5n)

= 1
O
(
n
√
n/8
)
· no(

√
n) · 2O(√n) · n

2
Γ
√

n (n−64
√
n−0.5n) using (7)

= 1
O
(
n
√
n/8
)
· no(

√
n) · 2O(√n) · n

2
Γ (√n−64−0.5

√
n) .

Using the estimate for Γ from (9), we obtain S > nΩ(√n) = NΩ(
√
n), as desired. J

4.1 Remarks and Discussion
Notably, our lower bound only applies to circuits with bottom fan-in below

√
N – or rather,

at most N1/2−Θ(1). This is a somewhat strong restriction because in a general depth-five
circuit on N variables this fan-in could have been as high as N . In particular it is a stronger
restriction than in the Kayal–Saha lower bound for certain Nisan–Wigderson polynomials
(NW polynomials) [12], where this bottom fan-in had to be at most N1−Θ(1).

On the positive side, our lower bound works for arithmetic circuits over an arbitrary field,
whereas the Kayal–Saha bound requires characteristic zero. Ultimately, this is because the
technique for lower-bounding DPSP that they use (which is borrowed from Kayal et al. [10])
hinges on an operator-theoretic interpretation of matrix rank. In contrast, the DPSP lower
bound that we use (borrowed from Kumar and Saraf [16]) is proven using counting alone.

It is worth understanding why our result hits a barrier at bottom fan-in around N1/2.
The random restriction used in this analysis retains at least one variable from almost every
row of every matrix in the IMM polynomial. Therefore, it reduces the variable set from
size N to size slightly more than N1/2 (the “slightly” is in fact contingent on making q very
large), and this is not a severe enough random restriction to give us the required circuit
decomposition. More concretely, satisfying Equation (21), even in the extreme setting b = 0,
forces q →∞ as µ→ 1/2. It could be that an even more severe random restriction is worth
considering, but proving a good DPSP lower bound for IMM polynomials so restricted seems
unlikely to proceed along the lines of the Kumar–Saraf argument. Whether our size lower
bound still holds with the bottom fan-in allowed to reach up to N1−Θ(1), or even N (which
is the general case) is the most immediate and natural open question.

Acknowledgments. The second author would like to thank Neeraj Kayal, Chandan Saha,
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Abstract
In [8], Kaltofen proved the remarkable fact that multivariate polynomial factorization can be done
efficiently, in randomized polynomial time. Still, more than twenty years after Kaltofen’s work,
many questions remain unanswered regarding the complexity aspects of polynomial factorization,
such as the question of whether factors of polynomials efficiently computed by arithmetic formulas
also have small arithmetic formulas, asked in [10], and the question of bounding the depth of the
circuits computing the factors of a polynomial.

We are able to answer these questions in the affirmative for the interesting class of polynomials
of bounded individual degrees, which contains polynomials such as the determinant and the
permanent. We show that if P (x1, . . . , xn) is a polynomial with individual degrees bounded by
r that can be computed by a formula of size s and depth d, then any factor f(x1, . . . , xn) of
P (x1, . . . , xn) can be computed by a formula of size poly((rn)r, s) and depth d+5. This partially
answers the question above posed in [10], that asked if this result holds without the exponential
dependence on r. Our work generalizes the main factorization theorem from Dvir et al. [2], who
proved it for the special case when the factors are of the form f(x1, . . . , xn) ≡ xn−g(x1, . . . , xn−1).
Along the way, we introduce several new technical ideas that could be of independent interest
when studying arithmetic circuits (or formulas).
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1 Introduction

Let f(x1, . . . , xn) ∈ F[x1, . . . , xn] be a multivariate polynomial over a field F. The individual
degree of f with respect to variable xi, denoted by degxi

(f), is the largest power of xi
appearing in a monomial of f . Many interesting polynomials have bounded individual degree,
such as the Permanent and Determinant polynomials. Moreover, the class of polynomials of
bounded individual degree is closed under factorization, since if a polynomial f(x1, . . . , xn)
has individual degrees bounded by r, so will its factors. In this work, we study the problem
of formula (circuit) factorization of polynomials of low individual degree.

One of the basic operations on polynomials is factorization. This problem can be phrased
as follows: given a polynomial P (x1, . . . , xn), decide whether P (x1, . . . , xn) is irreducible, or
if not, output one of its factors, which we denote by f(x1, . . . , xn). From the computational
perspective, we will usually be given a device computing the polynomial P , and we will be
asked to output a similar device computing f . In the field of arithmetic complexity, the
most natural device for computing polynomials is an arithmetic circuit or a formula (see
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Definition 1.1 below). Therefore, we will assume that we are given P as an arithmetic circuit
(formula) and output one of its factors in the same representation. We now give the definition
of an arithmetic circuit/formula:

I Definition 1.1. An arithmetic circuit Γ is a directed acyclic labeled graph in which the
vertices are called ‘gates’. The gates of Γ with in-degree 0 are called inputs and are labeled
by either a variable from {x1, . . . , xn} or by a field element from F. Every other gate of
Γ is labeled by either ‘×’ or ‘+’ and has in-degree 2. (If we talk about bounded depth
circuits/formulas, then we remove the restriction on the in-degree.) There is one gate with
out-degree 0, which we call the output gate. Each gate in Γ computes a polynomial in
F[x1, . . . , xn] in the natural way. An arithmetic circuit is called a formula if its underlying
graph is a tree. The size of a circuit (formula) Γ, written |Γ|, is given by the number of edges
in the circuit (formula) and the depth of Γ, written depth(Γ), is defined as the length of the
longest directed path in the graph of Γ.

Polynomial factorization is one of the cornerstone problems in modern computer algebra,
and as such has been the focus of intensive research. The past three decades have seen major
advances on the development of efficient algorithms for polynomial factorization, pioneered
by the works of Lenstra et al. and Kaltofen [11, 7, 8, 9]. In addition to the general problem,
polynomial factorization has also been studied in many other important (and more restricted)
representations. For instance, in the sparse representation, where the input polynomial is
given as a list of its coefficients and monomials, the works of Lenstra, Kaltofen and von zur
Gathen [12, 4] give efficient algorithms for sparse factorization in the univariate and in the
multivariate cases. For a more complete survey on polynomial factorization we refer the
reader to the survey [9] and to the book [3].

In the seminal work of Kaltofen [8], it is proved that if P (x1, . . . , xn) of total degree D
can be computed by an arithmetic circuit of size s, then any of its factors have arithmetic
circuits of size poly(n, s,D). Moreover, Kaltofen gives a randomized algorithm that with
high probability outputs such a factor in polynomial time. This result, besides settling an
important complexity theoretic question, has since then had a great impact in many areas of
computer science, such as coding theory [16, 5], derandomization [6] and cryptography [1].
However, many interesting questions on the complexity of arithmetic circuits or formulas
under factorization remain unanswered. In particular, we study the following two questions,
where the first one was asked in the work of Kopparty et al. [10], while the second question
was stated as an open problem in the survey [15, Open Problem 19]:

1. If P (x1, . . . , xn) of total degree D is computed by an arithmetic formula of size s, is it
true that any of its factors will also have formulas of size poly(n, s,D)?

2. If P (x1, . . . , xn) can be computed by a circuit of size s and depth d, can its factors be
computed by a circuit of size poly(s) and depth O(d)?

In this work, we answer both of these questions in the affirmative, in the case where the
input polynomial P has bounded individual degrees. In particular, we show:

I Theorem 1.2. Let P (x1, . . . , xn) ∈ F[x1, . . . , xn]\{0} be such that degxi
(P ) ≤ r, 1 ≤ i ≤ n,

and let f(x1, . . . , xn) ∈ F[x1, . . . , xn] be a factor of P , where F is a field of characteristic
zero. If there exists a formula (circuit) of size s and depth d computing P , then there exists a
formula (circuit) of depth d+5 and size poly((nr)r, s) that computes f(x1, . . . , xn). Moreover,
if we require the in-degree of each gate to be 2, then the size remains the same and the depth
becomes d+O(r log(nr)).
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Notice that our theorem has no restriction on the individual degrees of the polynomials
computed by the intermediate gates of the circuit (that is, we have no syntactic restrictions).
We only care about the individual degrees of the output polynomial, which we regard as
bounded by a constant, denoted by r, in the theorem above.

Theorem 1.2 provides a direct answer to the second question posed above in the case
where P has bounded individual degrees (that is, r is a constant). The connection between
Theorem 1.2 and the first question comes from the fact that one can always balance formulas to
have logarithmic depth. More precisely, suppose that we are given a formula Φ (with in-degree
bounded by 2) of size s = poly(n) computing P . By Theorem 2.7 in [15], we can assume that
Φ is of size poly(s) and depth(Φ) = O(log s). Hence, Theorem 1.2 implies that there exists a
formula Ψ, with in-degree bounded by 2, of depth depth(Ψ) = depth(Φ) +O(r log(sn)) =
O(log s) and size poly((nr)r, s) = poly(s) computing any factor f(x1, . . . , xn) of P . This
provides an affirmative answer to the first question.

Before giving an overview of the proof of Theorem 1.2, we give some background on
related work on factorization in general and in bounded depth circuits.

The problem of factoring in bounded depth was studied previously in [2], who showed
that if P (x1, . . . , xn) has a depth d circuit of size s and degxn

(P ) ≤ r, then its factors of the
form xn − φ(x1, . . . , xn−1) have depth d+ 3 circuits of size poly(nr, s). This result was used
to extend the hardness-randomness tradeoffs of [6] to the bounded depth model. Our main
theorem generalizes their result to any factor of P , provided that P has bounded individual
degrees.

Shpilka and Volkovich in [14] initiated the study of factorization of multilinear polynomials,
which are the most basic case of polynomials of bounded individual degrees. They relate the
problem of deterministically factoring multilinear polynomials to the problem of performing
deterministic Polynomial Identity Testing (PIT). In their paper, they prove that these two
problems are roughly equivalent in the multilinear setting for most restricted multilinear
circuit classes that have been studied. Since the problem of performing deterministic PIT
seems to be hard, even for the class of multilinear formulas, this shed some light on the
difficulty of obtaining deterministic factorization even for this model. This equivalence
between deterministic PIT and deterministic polynomial factorization was later generalized
by Kopparty et al. in [10] to polynomials (of polynomial degree) computed by general circuits.
Since we prove here that, for polynomials of bounded individual degrees computed by circuits
of small depth, their factors can also be computed by circuits of small depth, one could hope
for similar connections between PIT for restricted classes of circuits – say of bounded depth
and low individual degrees – and factorization of polynomials in such classes.

2 Proof Overview

In this section, we give an overview of the proof of the main theorem. For simplicity of
exposition, we will only refer to arithmetic circuits in this overview, but our results hold true
for formulas as well, as the statements in the later sections show. We begin with a definition:

I Definition 2.1 (Approximate Root). Let P (x1, . . . , xn, y) be a polynomial in F[x1, . . . , xn, y].
We say that q(x1, . . . , xn) is a root of P up to degree t if all the homogeneous parts up to degree
t of the polynomial P (x1, . . . , xn, q(x1, . . . , xn)) are zero. That is, P (x1, . . . , xn, q(x1, . . . , xn))
only has monomials of degree larger than t.

Given a polynomial P (x1, . . . , xn, y) ∈ F[x1, . . . , xn, y] with individual degree in y bounded
by r, Dvir et al. [2] show that if P (0, . . . , 0, y) has no double roots, that is, P (0, . . . , 0, y) can
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be factored as

P (0, . . . , 0, y) ≡ c ·
r∏
i=1

(y − µi)

where µi 6= µj for i 6= j, then for each µi, there exists an approximate root qi,t(x1, . . . , xn) of
P up to degree t such that qi,t(0, . . . , 0) = µi. Moreover, they show that if P is computed by
a circuit Γ of size s and depth d, then there exists a circuit of size poly(tr, s) and depth d+ 2
computing qi,t(x1, . . . , xn).

With this idea in mind, suppose for simplicity that

P (x1, . . . , xn, y) ≡
r∏
i=1

(y − gi(x1, . . . , xn)),

where each polynomial gi(x1, . . . , xn) has a nonzero constant term µi and µi 6= µj for i 6= j.
In this case we are in the framework of [2], since

P (0, . . . , 0, y) ≡
r∏
i=1

(y − µi)

and the roots µi are distinct. As Section 4 shows, we can guarantee distinct roots in
P (0, . . . , 0, y) by using a random shift of the variables (x1, . . . , xn), as long as P is square-
free. Therefore, for each µi and t ≥ 1, we can find polynomials qi,t(x1, . . . , xn) such that
qi,t(0, . . . , 0) = µi and the polynomial P (x1, . . . , xn, qi,t(x1, . . . , xn)) only has terms of degree
larger than t. Since

P (x1, . . . , xn, qi,t(x1, . . . , xn)) ≡
r∏
j=1

(qi,t(x1, . . . , xn)− gj(x1, . . . , xn)),

the minimum degree terms of P (x1, . . . , xn, qi,t(x1, . . . , xn)) must come from the product of
the minimum degree terms of each of the polynomials qi,t(x1, . . . , xn)−gj(x1, . . . , xn). Notice
that for each j 6= i, the constant term of qi,t(x1, . . . , xn)− gj(x1, . . . , xn) is equal to µi − µj ,
which is nonzero. Therefore, the minimum degree terms of P (x1, . . . , xn, qi,t(x1, . . . , xn))
must come from the minimum degree terms of the polynomial qi,t(x1, . . . , xn)−gi(x1, . . . , xn).
Because P (x1, . . . , xn, qi,t(x1, . . . , xn)) only has terms of degree larger than t, the same must
happen to the polynomial qi,t(x1, . . . , xn)− gi(x1, . . . , xn). This implies that qi,t(x1, . . . , xn)
approximates the actual root gi(x1, . . . , xn) of P up to degree t. Hence, if we pick t larger
than the total degree of gi, the lower degree terms of qi,t correspond to the root gi, and
therefore we can recover this root gi (and use it to factor P ).

There are two main issues with this approach that we need to overcome, if we are to
generalize it. The first issue is that P may not factor into linear factors in y, that is,
polynomials of the form y − gi(x1, . . . , xn). The second one is that P need not be monic in
y, in which case we will still need to recover its leading coefficient – which is a polynomial in
F[x1, . . . , xn].

To deal with the first issue, let us study a toy example: assume that P is monic in y with
degy(P ) = r, that is,

P (x1, . . . , xn, y) ≡ yr +
r−1∑
i=0

Pi(x1, . . . , xn)yi,

but P does not factor into linear factors in y. Let f(x1, . . . , xn, y) be one of its factors, of
degree k in y. Since P is monic in y, we know that f must also be monic in y. Note that
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if we work over the algebraic closure of F(x1, . . . , xn) (that is, the field F(x1, . . . , xn)), we
can factor P (and f) into linear factors in y. In this work, we will not describe what the
algebraic closure of F[x1, . . . , xn] is, since it is a very complex field, and it is not needed in
our proof. We only mention F(x1, . . . , xn) here to give us some intuition on how to generalize
the root finding approach described above. For simplicity, think of elements of the closure as
“functions” over the variables x1, . . . , xn. Since f divides P , if

P (x1, . . . , xn, y) ≡
r∏
i=1

(y − ϕi(x1, . . . , xn)),

then there will be indices (say i from 1 to k) such that

f(x1, . . . , xn, y) ≡
k∏
i=1

(y − ϕi(x1, . . . , xn)).

However, it is worth noting that these linear factors will not be polynomials! Nevertheless,
the fact that they share some roots in the closure of F[x1, . . . , xn] gives us a hint on what to
do next. To overcome this problem, we will (in Lemma 6.1 and Corollary 6.2) approximate
these functions ϕi by polynomials gi,t, in a way that the polynomial

gt(x1, . . . , xn, y) ≡
k∏
i=1

(y − gi,t(x1, . . . , xn))

agrees with f on the terms of order smaller than t. Therefore, for large enough t, the lower
order terms of gt(x1, . . . , xn, y) will correspond to the polynomial f , which we can then
obtain by interpolation (Lemma 3.3). We can think of each polynomial gi,t as the Taylor
expansion of ϕi up to degree t.

The way we obtain these approximations to the roots (the polynomials gi,t) is by a
procedure similar in nature to Hensel lifting. Suppose that ϕi(0, . . . , 0) = µi for 1 ≤ i ≤ k,
and moreover, suppose that µi 6= µj for i 6= j. From each valuation µi, we will construct a
family of polynomials gi,t of degree t, such that gi,t(x1, . . . , xn) is a root of f up to degree
t. Now, the question is: how can we construct this family of polynomials if we do not have
access to f? The answer to this question lies on the fact that each root y − ϕi of f is also a
root of P , and therefore we can access the valuations of ϕi’s through the circuit computing P .
Hence, we will use the fact that the ϕi’s are also roots of P in order to find the polynomials
gt that approximate f (Lemma 7.1).

To overcome the second main issue, that the polynomial P may not be monic, let us
define

f(x1, . . . , xn, y) ≡
k∑
i=0

fi(x1, . . . , xn)yi and P (x1, . . . , xn, y) ≡
r∑
i=0

Pi(x1, . . . , xn)yi,

where fk(x1, . . . , xn) 6≡ 0 and Pr(x1, . . . , xn) 6≡ 0. If f divides P , then it must be the case
that the leading coefficient fk of f divides the leading coefficient Pr of P . Hence, a possible
solution to this second issue would be to find, by some kind of induction, a small circuit for
fk based on the circuit for Pr that we obtain from P . Then, we could generalize the factoring
result for monic polynomials to the case where the factors are rational functions of the form

f(x1, . . . , xn, y)
fk(x1, . . . , xn) ≡ y

k +
k−1∑
i=0

fi(x1, . . . , xn)
fk(x1, . . . , xn)y

i.
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With these two results, we could multiply the circuits computing fk and f

fk
to obtain our

factor f .
More precisely, if we could find, by induction on the number of variables, a small circuit

Φk for fk based on the circuit Γr for Pr that we obtain from P via interpolation (Lemma 3.4),
and if we could find a small circuit Υ for the rational function f

fk
based on the circuit Γ

computing P (Lemma 7.1), then the circuit given by Υ× Φk would compute the polynomial
f , as we wanted.

One problem with this approach is that, even if we can generalize the monic factoring
result to monic rational functions as above, as far as we know, the best bound on the size
of the circuit Γr computing Pr is given by 3r · s (see Lemma 3.4). Therefore, if we define
T (n, s) as the maximum size of a factor of a polynomial in n variables computed by a circuit
of size s, the induction given by the procedure above would give us the following bounds on
the size:

T (n+ 1, s) ≤ T (n, 3r · s) + poly((nr)r, s).

The reason for this bound is the following: P (x1, . . . , xn, y) has n + 1 variables and is
computed by Γ, which has size s. Hence, the maximum size of a factor f is by definition
T (n+ 1, s). Since fk divides the leading coefficient Pr, which is computed by Γr of size 3rs
and has n variables, the bound we have on the size of Φk is given by T (n, 3rs), because now
the input polynomial is Pr. Assuming that the size of f/fk can be bounded by ((nr)r ·s)α, for
some constant α (which we can by Lemma 7.1), we obtain the additive factor poly((nr)r, s).
Since the circuit for f is given by Υ× Φk, we need to add the bounds on the sizes for Φk

and Υ. However, when we solve this equation, we obtain that

T (n+ 1, s) ≤ T (1, (3r)n · s) + poly((nr)r, (3r)n · s)

which is exponential in n, the number of variables! Therefore, this approach, as it is, cannot
work.

The main problem with the recursion above is that the bound on the circuit size of the
leading coefficient, if we only use Lemma 3.4, keeps getting worse as we reduce the number
of variables – it will become (3r)` · s if we get rid of ` variables. To get around this issue,
we define the reversal of a polynomial with respect to a specific variable and we study its
properties with regards to divisibility. If

P (x1, . . . , xn, y) ≡
r∑
i=0

Pi(x1, . . . , xn)yi

is a polynomial, with Pr(x1, . . . , xn) · P0(x1, . . . , xn) 6≡ 0, we define its reversal with respect
to y as the polynomial

P̃ (x1, . . . , xn, y) ≡
r∑
i=0

Pi(x1, . . . , xn)yr−i.

That is, P̃ is obtained from the polynomial P by “reversing” the coefficients Pi(x1, . . . , xn).
It is easy to see that f divides P iff f̃ divides P̃ . By performing a reversal, notice that we
have transformed the leading coefficient of our problem from Pr(x1, . . . , xn) to P0(x1, . . . , xn).
This has the advantage that now, the leading coefficient of our input polynomial can be
computed by the circuit Γ|y=0 (that is, the circuit obtained from Γ by setting y = 0), which
has size ≤ s. This now allows us to recurse into the division of f0 by P0 (the new leading
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coefficients after the reversal) without paying the multiplicative cost on the size of the circuit.
Hence with this idea we avoid paying the exponential blowup on the circuit size! On the
coin side, notice that the size of the circuit computing the polynomial P̃ is bounded by
8r2 · s, according to Lemma 3.7. But this blow up does not hurt us, since the reversal is not
cumulative.

More precisely, we now have the following recursion: we want to bound the size of a factor
of P , computed by a circuit Γ of size s and on n+ 1 variables. This bound is by definition
T (n+ 1, s). Let Γ̃ be a circuit computing P̃ . Suppose we can find a circuit computing f/f0
of size bounded by ((nr)r · |Γ̃|)α ≤ ((nr)r · 8r2s)α, for some constant α (which we can by
Lemma 7.1). Then we are only left with the problem of finding a small circuit for f0, which
divides P0, which in turn can be computed by a circuit of size bounded by s in n variables.
The bound for a circuit for f0 is given in this case by T (n, s), by definition of the function T .
Therefore, our recursion becomes

T (n+ 1, s) ≤ T (n, s) + ((nr)r · 8r2 · s)α

which implies that

T (n, s) ≤ n · ((nr)r · 8r2 · s)α = poly((nr)r, s),

as we wanted!
The idea of the reversal of a polynomial is similar to the definition of reversal of a

univariate polynomial given in [3, §9.1]. This notion of reversal is used there to perform
division with remainder for univariate polynomials by using Newton iteration.

To generalize the monic factoring result to the case when f is monic in y with rational
coefficients, we introduce the idea of an approximation polynomial of a rational function (see
Section 5), and we use this approximation polynomial in Lemma 7.1 (instead of the rational
function) as the “factor” of the input polynomial. If f is a rational function of the form

f(x1, . . . , xn, y) ≡ 1
1− g(x1, . . . , xn) ·

k∑
i=0

fi(x1, . . . , xn)yi,

where g(x1, . . . , xn) and fi(x1, . . . , xn) are polynomials in F[x1, . . . , xn] such that g(0, . . . , 0) =
0, we define its approximation polynomial (to degree m) as the following polynomial

ψf,m(x1, . . . , xn, y) ≡ (1 + g + g2 + . . .+ gm) ·
k∑
i=0

fiy
i,

where g ≡ g(x1, . . . , xn) and fi ≡ fi(x1, . . . , xn). This polynomial “approximates” the
rational function f(x1, . . . , xn, y) in the sense that, for large enough m, the polynomial
obtained by ψf,m(x1, . . . , xn, y)·(1−g(x1, . . . , xn)) is equal to f(x1, . . . , xn)·(1−g(x1, . . . , xn)),
up to high order terms (see Observation 5.3), which we can get rid of by interpolation
(Lemma 3.3). By adapting the approach in [2] to work with approximation polynomials,
we can find all the “roots” of the approximation polynomials, and after that combine this
approximation polynomial with the circuit obtained to compute the leading term.

After we take care of finding the leading coefficient f0(x1, . . . , xn) (of the reversed
polynomial f̃(x1, . . . , xn, y)), and after recovering the approximation polynomial ψf̃ ,m (see
Lemma 7.1), we can multiply it by f0 to obtain the factor f (up to high order terms) which,
after interpolation, becomes our desired factor (see Theorem 7.2).

We conclude this proof outline with a basic roadmap of the main ideas involved in this
work:
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1. Given a circuit Γ for our polynomial P (x1, . . . , xn, y), we find a circuit Γ̃ computing the
reversal polynomial P̃ (x1, . . . , xn, y). (Lemma 3.7)

2. We use the circuit Γ̃ to find small circuits Φi,t for each approximate root of P̃ up to
degree t. (Section 6)

3. Since f̃ , divides P̃ (Lemma 3.8), any approximate root of f̃ will also be an approximate root
of P̃ . By combining the circuits Φi,t computing the approximate roots of f̃(x1, . . . , xn, y),
find circuit Ψ computing the approximation polynomial (see Section 5) of the monic

rational function f̃(x1, . . . , xn, y)
f0(x1, . . . , xn) . (Lemma 7.1)

4. By induction, obtain the circuit Λ0 computing f0(x1, . . . , xn), through the circuit Γ|y=0
computing P0(x1, . . . , xn) ≡ P (x1, . . . , xn, 0).

5. We then prove that the lower order terms of the circuit Φ = Λ0 × Ψ compute the
polynomial f̃ . (Theorem 7.2)

6. By interpolation (Lemma 3.3) and by the Reversal Lemma (Lemma 3.7), obtain the lower
order terms from Φ computing f .

2.1 Organization
The rest of the paper is organized as follows: in Section 3, we set up notations, go over some
useful background and discuss the concept of reversal of a polynomial. In Section 4, we
introduce the concept of properly splitting variable restrictions. In Section 5, we formally
introduce the concepts of standard forms and approximation polynomials. In Section 6, we
adapt the approach of [2] to find small formulas for the roots of P (x1, . . . , xn, y). In Section 7
we prove our main technical lemma and theorem. In Section 8, we conclude and propose
some open problems.

For the sake of brevity of exposition, we only give a proof of our main technical theorem.
The proofs of all other facts stated in this paper can be found in the full version [13].

3 Preliminaries

In this section, we establish the notation that will be used throughout the paper and some
technical background that will be needed in the proof of our main theorem.

3.1 Notations
From this point on, we will use boldface for vectors, and regular font for scalars. Thus, we
will denote the vector (x1, . . . , xn) by x. If we want to multiply the vector x by a scalar z
we will denote this product by zx.

We will denote our base field by F, assume that F has characteristic zero and that it is
algebraically closed. The results in this paper also hold for non-closed fields of large enough
characteristic, if we allow ourselves to use elements from field extensions. The assumptions
just made are for clarity of exposition.

Let N0 be the set of natural numbers including zero, that is, N0 = {0, 1, 2, 3, . . .}. If
e ∈ Nn0 is a vector of natural numbers and x = (x1, . . . , xn) is a vector of formal variables,

we define xe =
n∏
i=1

xei
i . That is, xe is the monomial corresponding to the product of the

variables
n∏
i=1

xei
i , where each variable is raised to the proper power.
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We will denote F(x)[y] as the set of polynomials in the variable y whose coefficients are
rational functions on the variables x. That is, f(x, y) ∈ F(x)[y] iff it can be expressed in the

form f(x, y) ≡
k∑
i=0

fi(x)
gi(x)y

i, with fi(x), gi(x) ∈ F[x], 0 ≤ i ≤ k.

When working with a polynomial in F[x, y], we might be interested in looking at the
homogeneous parts of a polynomial with respect to certain variables only. This will be
particularly useful when lifting the “roots” of a polynomial f(x, y) of the form y − q(x) in
order to obtain a circuit computing f(x, y). To this end, we introduce the following definition.

I Definition 3.1 (Partial Homogeneous Parts). Let P (x, y) ≡
∑

d

αd(y) · xd be a polynomial

in F[x, y], where each αd(y) ∈ F[y]. For each m ∈ N0, we define Hx
m[P ] as the polynomial

formed by the homogeneous parts of degreem of P (x, y), when seen as a polynomial in F[y][x],
that is, when considered as a polynomial on the variables x, and regarding y as a constant.
More explicitly, Hx

m[P ] is equal to the sum of all monomials of P that have degree m in

x1, . . . , xn, without any restrictions on the degree of y. We also define Hx
≤m[P ] ≡

m∑
i=0

Hx
i [P ].

For example, if P (x, y) ≡ (x1x3x4 − x3
2 + x1x2)y2 + (x2

1x3 − x4)y+ x2
2x3 − x1x4, we have

that Hx
3 [P (x, y)] ≡ (x1x3x4 − x3

2)y2 + x2
1x3y + x2

2x3.

Notice that if P (x, y) ≡
r∑
i=0

Pi(x)yi, then the partial homogeneous parts satisfy the

following property:

Hx
m[P (x, y)] ≡

r∑
i=0

Hx
m[Pi(x)] · yi.

Therefore, this definition of partial homogeneous parts agrees with the definition of homoge-
neous parts if P (x, y) does not depend on variable y.

When talking about partial homogeneous parts of a polynomial, it is useful to have a
notion of minimum degree with respect to some variables.

I Definition 3.2 (Minimum Degree). Let f(x, y) ∈ F[x, y] be a polynomial. We define
mindegx(f(x, y)) to be the minimum degree of polynomial f(x, y) on the variables x. In
other words, we have mindegx(f(x, y)) = min` (Hx

` [f ] 6≡ 0) . For instance, if f(x, y) =
x1x2x3y − x2

1x
2
2 + x5

3, we have that mindegx(f) = 3.

3.2 Basic Operations on Circuits and Formulas
We begin with the following standard lemma on obtaining the homogeneous components of a
polynomial. The version below is from [2].

I Lemma 3.3 (Homogeneous Components Through interpolation). Let P (x) ∈ F[x] be a
polynomial with degree deg(P ) = m such that P can be computed by a formula (circuit) Γ of
depth d. Then, there exists a formula (circuit) ∆ with m+ 1 outputs, of size |∆| ≤ 9m2 · |Γ|
and depth depth(∆) ≤ depth(Γ) + 1 that computes Hx

0 [P ], . . . ,Hx
m[P ]. Moreover, if the

topmost gate in the formula (circuit) for P (x) is an addition gate, then we have depth(∆) =
depth(Γ) = d.

The next lemma shows us how to obtain the coefficients of a polynomial through interpo-
lation.
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I Lemma 3.4 (Interpolation). Let P (x, y) ≡
r∑
i=0

yiPi(x) be a polynomial computed by a

formula (circuit) Γ. Then for each i ∈ {0, 1, . . . , r}, there exists a formula (circuit) Φi such
that |Φi| ≤ 3r · |Γ| and Φi computes the polynomial Pi(x).

Given an irreducible polynomial g(x, y) and a polynomial P (x, y) that is divisible by
g, it will be useful for us to find a polynomial D(x, y) that is divisible by g and it is also
square-free with respect to g, that is, g(x, y) - ∂D∂y (x, y). The next lemma shows that we can
find such a polynomial efficiently.

I Lemma 3.5. Let g(x, y) ∈ F[x, y] be an irreducible polynomial that divides a polynomial
P (x, y) ∈ F[x, y], where degy(P ) ≤ r and let Γ be a formula computing P (x, y). Then,
there exists a formula ∆ that computes a polynomial D(x, y) such that g(x, y) | D(x, y),
g(x, y) - ∂D

∂y
(x, y), |∆| ≤ 9r2 · |Γ| and depth(∆) ≤ depth(Γ). Moreover, the output gate of ∆

is an addition gate and for each variable z ∈ {x, y}, we have that degz(D) ≤ degz(P ).

The following observation will be very useful to convert small depth formulas into formulas
with fanin bounded by 2.

I Observation 3.6. Any formula Φ of size s and depth d, without restrictions on the fanin
of any of its gates, can be computed by a formula Ψ of size 2s and depth d · (1 + log(s)),
where each gate has fanin 2.

To see that this observation is true, just replace each addition (multiplication) gate of
fanin t by a balanced formula of size 2t made only with addition (multiplication) gates. Since
t ≤ s, and a balanced formula of size 2t has depth 1 + log t, we have that each gate will be
replaced by a formula of depth at most 1 + log s. The replacement by a balanced formula
clearly does not change the computation, and the depth increases by a multiplicative factor
of 1 + log s, as we wanted.

3.3 Reversal of Polynomials
In this section, we define a very useful operation for polynomials, which serves as a crucial
tool in the proof of our main theorem. This operation, which we call reversal, simply maps a
polynomial P (x, y) ≡

∑r
i=0 Pi(x)yi, with Pr(x) · P0(x) 6≡ 0, to P̃ (x) ≡

∑r
i=0 Pi(x)yr−i.

The restriction that Pr(x) · P0(x) 6≡ 0 is needed in this paper because it preserves
irreducibility, as we will see in Lemma 3.8 and Corollary 3.9. We begin by showing that the
reversal can be computed almost as efficiently as the original polynomial.

I Lemma 3.7 (Reversal Lemma). Let P (x, y) ≡
r∑
i=0

yiPi(x) be a polynomial computed by

a formula (circuit) Γ, where Pr(x) · P0(x) 6≡ 0. Let P̃ (x, y) ≡
r∑
i=0

yr−iPi(x) be its reversal.

There exists a formula (circuit) ∆ computing P̃ such that |∆| = 8r2 · |Γ|.

We now connect the reversal operation to divisibility and irreducibility of polynomials.

I Lemma 3.8 (Divisibility with Reversals). Let P (x, y) ≡
r∑
i=0

yiPi(x), with Pr(x) · P0(x) 6≡ 0

and f(x, y) ≡
k∑
i=0

yifi(x), with fk(x) · f0(x) 6≡ 0, be two polynomials. In addition, let
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P̃ (x, y) ≡
r∑
i=0

yr−iPi(x) and f̃(x, y) ≡
k∑
i=0

yk−ifi(x) be their reversals. Then, we have that

f | P ⇐⇒ f̃ | P̃ .

Since divisibility is preserved by taking reversals, we have the following corollary:

I Corollary 3.9 (Irreducibility of Reversals). Let P (x, y) ≡
r∑
i=0

yiPi(x), with Pr(x) ·P0(x) 6≡ 0,

be an irreducible polynomial in F[x, y]. In addition, let P̃ (x, y) ≡
r∑
i=0

yr−iPi(x) be its reversal.

Then, we have that
P is irreducible ⇐⇒ P̃ is irreducible.

Another useful property of reversals is that if two univariate polynomials do not share a
common root, then their reversals will not share any root either. This gives us the following
lemma:

I Lemma 3.10. If f(x), g(x) ∈ F[x] do not share any common roots, then their reversals
f̃(x), g̃(x) do not share any roots either.

4 Properly Splitting Variable Restrictions

In this section, we study properties of pairs of polynomials f(x, y), g(x, y) which share no
common factor involving the variable y. We state a lemma on restrictions of the x variables
of f and g that preserve the property that their restrictions share no common factors in y.
We denote such restrictions as properly splitting variable restrictions.

I Definition 4.1 (Properly Splitting Restrictions). Let x = (x1, . . . , xn), where n ≥ 1, and
let f(x, y) ∈ F[x, y] be an irreducible polynomial such that degy(f) ≥ 1. In addition, let
g(x, y) ∈ F[x, y] be a polynomial with degy(g) ≥ 1 that is not divisible by f(x, y). We say
that c ∈ Fn properly splits f(x, y) with respect to g(x, y) if the following conditions hold:
1. f(c, y) is a polynomial with exactly degy(f) distinct roots in F and
2. f(c, y) and g(c, y) share no common roots.

With the definition above, we are now ready to state the main lemma of this section.
This lemma tells us that the set of restrictions that properly split an irreducible polynomial
f(x, y) with respect to a polynomial g(x, y) that is not divisible by f(x, y) is the complement
of an algebraic set. This implies that a random restriction of the variables x will properly
split f(x, y) with respect to g(x, y).

I Lemma 4.2. Let x = (x1, . . . , xn), where n ≥ 1 and f(x, y) ∈ F[x, y] be an irreducible
polynomial such that degy(f) ≥ 1. In addition, let g(x, y) ∈ F[x, y] be a polynomial with
degy(g) ≥ 1 that is not divisible by f(x, y). Then, there exists a nonzero polynomial G(x)
with deg(G) ≤ 2 deg(f)2 +2 deg(f) deg(g) for which the following holds: for any value c ∈ Fn
such that G(c) 6= 0, we have that c properly splits f(x, y) with respect to g(x, y).

5 Standard Forms and Approximation Polynomials

In this section we define the notion of standard forms in F(x)[y], that is, the ring of
polynomials on the variable y with coefficients being rational functions on the variables x.
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We also define the approximation polynomial of a standard form. These concepts will be
useful when factoring a polynomial P (x, y) ∈ F[x, y], since our factorization procedure will
use standard forms to obtain the factors of P (x, y) that depend of the variable y. We begin
with the following definition:

I Definition 5.1 (Standard Form and Approximation Polynomials). We say that f(x, y) ∈
F(x)[y] is in standard form if

f(x, y) ≡ 1
1− g(x) ·

k∑
i=0

fi(x)yi,

where fi(x), g(x) ∈ F[x], fk(x) 6≡ 0 and g(0) = 0. Moreover, we will say that f is in monic
standard form if fk(x) ≡ 1−g(x). For a given parameter m ∈ N, we define the approximation
polynomial of the standard form f to degree m, as the polynomial ψf,m(x, y) ∈ F[x, y] given
by

ψf,m(x,y) = (1 + g(x) + . . .+ g(x)m) ·
k∑
i=0

fi(x)yi.

In order to state some useful properties of approximation polynomials, we will need to
extend the definition of reversals to standard forms.

I Definition 5.2. Let f(x, y) be a standard form as above, with the additional condition
that f0(x) 6≡ 0. We define the reversal of f(x, y) as the following standard form:

f̃(x, y) ≡ 1
1− g(x) ·

k∑
i=0

fi(x)yk−i.

The following observations about standard forms reveal much of its usefulness when
factoring a polynomial.

I Observation 5.3. If f(x, y) ∈ F(x)[y] is in standard form as above, notice that the following
holds for all m ∈ N:
1. Hx

≤m[(1− g(x)) · ψf,m(x, y)] ≡ Hx
≤m[(1− g(x)) · f(x, y)].

2. If m ≥ deg((1− g(x)) · f(x, y)), we have:

Hx
≤m[(1− g(x)) · ψf,m(x, y)] ≡ (1− g(x)) · f(x, y).

3. Hx
≤m[ψf̃ ,m(x, y)] ≡ Hx

≤m

[
ψ̃f,m(x, y)

]
.

4. If h(x, y) ≡ f(x, y + γ), where γ ∈ F, we have that h(x, y) is also a standard form and

Hx
≤m[ψf,m(x, y + γ)] ≡ Hx

≤m[ψh,m(x, y)].

6 Approximating the Roots of a Polynomial

In this section, we proceed in a similar way as in [2] and find approximations of the roots
of a polynomial P (x, y) up to degree t. That is, as we defined in the introduction, we find
polynomials qt(x) such that Hx

≤t[P (x, qt(x))] ≡ 0. Moreover, we observe that under certain
conditions on the polynomial P (x, y) these roots are well-defined and unique given their
constant coefficient. This uniqueness condition will be useful because it will allow us to
construct any factor of P (x, y) through the lifting procedure, since a factor f(x, y) of P (x, y)
will share some of the roots of P (x, y). We begin with the approximation lemma:
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I Lemma 6.1 (Approximation Lemma). Let P (x, y) ∈ F[x, y], P ′(x, y) ≡ ∂P
∂y (x, y) and µ ∈ F

be such that P (0, µ) = 0 but P ′(0, µ) = ξ 6= 0. Then, for each t ≥ 0, there exists a unique
polynomial qt(x) s.t. deg(qt) ≤ t, qt(0) = µ and

Hx
≤t[P (x, qt(x))] ≡ 0.

Moreover, if P can be computed by a formula (circuit) Γ such that its output gate is an
addition gate, there is a formula (circuit) Φt for the polynomial qt(x) such that the output
gate of Φt is an addition gate, depth(Φt) ≤ depth(Γ) + 2 and

|Φt| ≤ 200(tr)2
(
t+ r + 1
r + 1

)
· |Γ|.

If we require the fanin of the formula (circuit) to be 2, then the size of Φt does not change,
and depth(Φt) ≤ depth(Γ) + 5r log(t).

Now that we know that any root of a polynomial P (x, y) of small individual degree
computed by a small formula can be approximated by a small formula, the next corollary
uses the uniqueness of the approximation of the root to show that the same is true for any
factor of P (x, y).

I Corollary 6.2. Let P (x, y) and µ ∈ F be defined as in Lemma 6.1 and for each t ∈ N0, let
qt(x) be the unique polynomial obtained from Lemma 6.1. If h(x, y) ∈ F[x, y] is such that
h(0, µ) = 0, ∂h∂y (0, µ) 6= 0 and there exist t ∈ N and Q(x, y) ∈ F[x, y] such that

Hx
≤t[P (x, y)] ≡ Hx

≤t[h(x, y) ·Q(x, y)], (1)

then the polynomial qt(x) also satisfies

Hx
≤t[h(x, qt(x))] ≡ 0, ∀t ≥ 0.

7 Proof of the Main Theorem

In this section, we give the proof of our main theorem. In addition, we state the consequences
of the main theorem for both small formula size and depth of circuits computing factors of
polynomials with small bounded degree.

I Lemma 7.1 (Main Lemma). Let P (x, y) ∈ F[x, y] be such that degy(P ) = r, and also

degxi
(P ) ≤ r, ∀i ∈ {1, . . . , n}. Let P ′(x, y) ≡ ∂P

∂y
(x, y). In addition, let f(x, y) ∈ F(x)[y] be

in monic standard form and assume it is irreducible over F(x)[y], satisfying the following
conditions:
1. f(x, y) | P (x, y)1,
2. f(0, y) has exactly degy(f) distinct roots2,
3. P ′(0, y) and f(0, y) share no common roots.
If there exists a formula (circuit) Γ computing P with output gate being an addition gate,
|Γ| = s and depth(Γ) = d, then for every m ≥ 1, there exist formulas (circuits) Ψm and Ψ̃m

with each output gate being a multiplication gate, of size

max(|Ψm|, |Ψ̃m|) ≤ 300m2r3 ·
(
m+ r + 1
r + 1

)
· s

1 Since P (x, y) ∈ F[x, y], this condition is equivalent to the existence of Q(x, y) ∈ F[x, y] such that
f(x, y) ·Q(x, y) ≡ P (x, y).

2 Note that we can evaluate f(x, y) at x = 0, since f(x, y) is in standard form.
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and depth max(depth(Ψm), depth(Ψ̃m)) ≤ d+ 3 such that

Hx
≤m[Ψm] ≡ Hx

≤m[ψf,m(x, y)] and

Hx
≤m[Ψ̃m] ≡ Hx

≤m[ψf̃ ,m(x, y)].

If we require the in-degree of the formula (circuit) to be 2, then the size of Ψm or Ψ̃m does
not change, and max(depth(Ψm),depth(Ψ̃m)) ≤ d+ 10r logm.

With the Main Lemma stated above, we are now able to state and prove our main
theorem.

I Theorem 7.2 (Main Theorem). Let P (x) ∈ F[x]\{0} be such that degxi
(P ) ≤ r, 1 ≤ i ≤ n,

P (0) 6= 0 and let Γ be a formula (circuit) of size s and depth d computing P . Let f(x) ∈ F[x]
be a factor of P (x), and let m be a positive integer. There exists a polynomial G(x) ∈ F[x] of
total degree deg(G) ≤ 4r3n3 such that if c ∈ Fn satisfies G(c) 6= 0 then there exists a formula
Φm whose output gate is a multiplication gate and for which

depth(Φm) ≤ d+ 43,

|Φm| ≤ 60000m2r8n ·
(
m+ r + 1
r + 1

)
s and

Hx
≤m[Φm(x)] ≡ Hx

≤m[f(x + c)].

If we require the in-degree of the formula (circuit) to be 2, then the size of Φm does not
change, and depth(Φm) ≤ d+ 20r logm.

Proof. The proof of the theorem is by induction on the number of variables. The bound
is trivial in the univariate case, since if f(x), P (x) ∈ F[x], where deg(f) = k ≤ r and f | P ,
then we can write

f(x) = c ·
k∏
i=1

(x− µi),

which can be trivially computed by a formula Ψ of size ≤ 50k and depth 2. In this case,
setting G(x) to be any constant polynomial, for instance G(x) ≡ 1, c = 0 and Φm = Ψ, takes
care of the base case.

Hence, let’s assume that the claim is true for polynomials P (x) ∈ F[x] = F[x1, . . . , xn]
with P (0) 6= 0, for some n ≥ 1. Now we will prove that the same bounds hold for polynomials
P (x, y) ∈ F[x, y] s.t. P (0, 0) 6= 0. Let P (x, y) ∈ F[x, y] be a polynomial computed by Γ and
f(x, y) ∈ F[x, y] be a factor of P (x, y). We can assume that f(x, y) and P (x, y) depend on
y, otherwise we can simply restrict the formula Γ to Γ|y=0, and by the induction hypothesis
the result follows.

Let

P (x, y) ≡
r∑
i=0

Ci(x)yi, and f(x, y) ≡ q(x) ·
t∏
i=1

fi(x, y)ei , with

fi(x, y) ≡
ki∑
j=0

fij(x)yj , where fi0(x) · fiki
(x) 6≡ 0, ∀1 ≤ i ≤ t.

3 If the bottom gates are addition gates, then the depth is bounded by d + 3.
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where each fi(x, y) ∈ F[x, y] is an irreducible polynomial. Since P (0, 0) 6= 0, we have that
C0(x) ≡ P (x, 0) 6≡ 0, and moreover, that C0(0) 6= 0. Let

u(x) ≡ f(x, 0) ≡ q(x) ·
t∏
i=1

fi0(x)ei .

Notice that f(x, y) | P (x, y)⇒ u(x) | C0(x). In addition, notice that C0(0) 6= 0 and C0(x)
can be computed by the formula Γ|y=0, where |Γ|y=0| ≤ |Γ| and depth(Γ|y=0) ≤ depth(Γ).
Therefore, by induction hypothesis, there exists H(x) ∈ F[x] with deg(H) ≤ 4r3n3 such that
for any a ∈ Fn for which H(a) 6= 0, there exists a formula Λm with output gate being a
multiplication gate, such that

depth(Λm) ≤ d+ 4,

|Λm| ≤ 60000m2r8n ·
(
m+ r + 1
r + 1

)
s and

Hx
≤m[Λm(x)] ≡ Hx

≤m[u(x + a)].

Now that we have an approximation to the factor u(x), which is the constant term of the
polynomial f(x, y) when seen as a polynomial in the variable y, we want to use Lemma 7.1
to find the factors of f(x, y) that contain y. For this, we will first need to find polynomials
Di(x, y) with small formulas such that fi(x, y) | Di(x, y) and each Di is square-free with
respect to fi(x, y).

Fortunately, Lemma 3.5 tells us that for each (irreducible) polynomial fi(x, y), we can
find formulas ∆i of size ≤ 9r2|Γ| computing polynomials Di(x, y) such that degxj

(Di) ≤

r, 1 ≤ j ≤ n, degy(Di) ≤ r, fi(x, y) | Di(x, y) but fi(x, y) -
∂Di

∂y
(x, y). Moreover these

formulas have an addition gate as output gate.

Since fi(x, y) is irreducible with degy(fi) ≥ 1 and fi(x, y) - ∂Di

∂y
(x, y), Lemma 4.2 implies

that there exists a polynomial Gi(x) ∈ F[x] with

deg(Gi) ≤ 2 deg(fi)2 + 2 deg(fi) deg(Di) ≤ 4r2n2

such that for any c ∈ Fn where Gi(c) 6= 0 we have that c properly splits fi(c, y) with respect
to ∂Di

∂y
(c, y).

Let

G(x, y) ≡ H(x) · C0(x) ·
t∏
i=1

Gi(x) and (c, γ) ∈ Fn+1 be s.t. G(c, γ) 6= 0.4

4 At first, it may seem strange that G(x, y) does not depend on the variable y, since if we continued
this argument by induction we would arrive at the conclusion that G(x, y) is the constant polynomial.
However, notice that even though H(x) does not depend on the variable xn, the polynomial G(x, y)
depends on xn, since the polynomials C0(x) and Gi(x) depend on xn. The right way to see this
dependence is the following: G(x, y) depends on every variable except the variable used by the lifting
procedure, which in this case is the variable y. Hence, we will have that H(x) depends on all the
variables except xn (if we choose to perform the lifting with respect to xn).
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Denote

Q(x, y) ≡ P (x + c, y) ≡
r∑
i=0

Qi(x)yi, hi(x, y) ≡ fi(x + c, y) ≡
ki∑
j=0

hij(x)yj and

h(x, y) ≡ f(x + c, y) ≡ q(x + c) ·
t∏
i=1

hi(x, y)ei .

Since hi0(x) ≡ fi0(x+c, 0) | P (x+c, 0) ≡ C0(x+c) and C0(c) 6= 0 (because G(c, γ) 6= 0),
we have that hi0(0) 6= 0, for all 1 ≤ i ≤ t. Hence, after normalization by a proper field
element, we can write each hi0 in the following form:

hi0(x) = 1− gi(x), where gi(0) ≡ 0.

In addition, notice that fiki(x) 6≡ 0⇒ hiki(x) ≡ fiki(x + c) 6≡ 0.
Moreover, notice that fi(x, y) is irreducible with fi0(x) · fiki(x) 6≡ 0 implies that hi(x, y)

is irreducible with hi0(x) · hiki
(x) 6≡ 0, which implies (by Corollary 3.9) that the polynomial

h̃i(x, y) ≡
ki∑
j=0

hij(x)yki−j is irreducible in F[x, y]. Hence, we have that `i(x, y) ≡ h̃i(x, y)
hi0(x) is

a monic irreducible standard form in F(x)[y].

Because fi(x, y) | Di(x, y) and fi(x, y) -
∂Di

∂y
(x, y), by Lemma 3.8 we obtain that

hi(x, y) | Ei(x, y) ≡ Di(x + c, y) and hi(x, y) - ∂Ei
∂y

(x, y) ≡ ∂Di

∂y
(x + c, y).

Since hi(0, y) ≡ fi(c, y), we also have that hi(0, y) has no common roots with ∂Ei
∂y

(0, y).

The following claim shows that `i(x, y) satisfies the conditions of Lemma 7.1.

I Claim 7.3. For each i ∈ {1, . . . , t}, the monic irreducible standard form `i(x, y) ≡ h̃i(x, y)
hi0(x)

and the polynomial Ẽi(x, y) satisfy the conditions of Lemma 7.1.

Proof of claim. Notice that conditions (i) and (ii) from Lemma 7.1 follow from the fact
that hi(x, y) | Ei(x, y) and Lemmas 3.8 and 4.2. Condition (iii) follows from the fact that
hi(0, y)
hi0(0) ≡ hi(0, y) shares no common roots with ∂Ei

∂y
(0, y) and from Lemma 3.10.

This finishes the proof of the claim. J

Now that we have rational functions in monic standard form that are, in a certain sense,
computing the reversal of each fi(x, y), we can use the main lemma to lift the factorization
of the approximation polynomial of fi(x, y)/fi0(x).5

Since each `i(x, y) and Ẽi(x, y) satisfy the conditions of Lemma 7.1, and Ẽi(x, y) can be
computed by a formula Υi of size |Υi| ≤ 180r4 · |Γ| = 180r4s and depth depth(Υi) ≤ d+ 1
(since Υi is a shift of ∆̃i), we have that there exists a formula Ψi,m having as output gate a
multiplication gate, depth(Ψi,m) ≤ depth(Υi) + 3 ≤ d+ 4 and size

|Ψi,m| ≤ 300m2r3 ·
(
m+ r + 1
r + 1

)
· 180r4 · s ≤ 60000m2r7 ·

(
m+ r + 1
r + 1

)
· s

5 In actuality, we are performing a lift of a shift of fi(x, y).
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such that
Hx
≤m[Ψi,m] ≡ Hx

≤m[ψ˜̀i(x,y),m(x, y)].

By Observation 5.3, we have that

Hx
≤m[hi0(x) · ψ˜̀i(x,y),m(x, y)] ≡ Hx

≤m[˜̀i(x, y) · hi0(x)] ≡ Hx
≤m[hi(x, y)], and also

Hx
≤m[hi0(x) · ψ˜̀i(x,y),m(x, y + γ)] ≡ Hx

≤m[hi(x, y + γ)].

In addition, from the formulas Ψi,m and from the fact that
∑t
i=1 ei ≤ r, we have that

the formula given by Ψm =
∏t
i=1 Ψei

i,m is of size

|Ψm| ≤
t∑
i=1

ei · |Ψi,m| ≤ r · max
1≤i≤t

(|Ψi,m|) ≤ 60000m2r8 ·
(
m+ r + 1
r + 1

)
· s

and computes the following polynomial:

Hx
≤m[Ψm(x, y)] ≡ Hx

≤m

[
t∏
i=1

ψ˜̀i(x,y),m(x, y + γ)ei

]
.

Now that we found a formula computing the approximation polynomials ψ˜̀i(x,y),m(x, y+γ),
we can multiply them by hi0(x, y) and via Observation 5.3 obtain the polynomials hi(x, y),
which are the shifts of fi(x, y). Since Ψm computes all of the approximation polynomials,
and Λm computes all of the leading coefficients, by combining them we can recover the factor
f(x, y). This is what we do next.

Multiplying Ψm by Λm, we have that the formula Φm = Λm ·Ψm is such that

|Φm| ≤ |Λm|+ |Ψm| ≤ 60000m2r8(n+ 1) ·
(
m+ r + 1
r + 1

)
· s

and

Hx
≤m[Φm(x, y)] ≡ Hx

≤m[Λm ·Ψm] ≡ Hx
≤m

[
u(x + c) ·

t∏
i=1

ψhi(x,y)
hi0(x) ,m

(x, y + γ)ei

]

≡ Hx
≤m

[
q(x + c) ·

t∏
i=1

fi0(x + c)ei ·
t∏
i=1

ψhi(x,y)
hi0(x) ,m

(x, y + γ)ei

]

≡ Hx
≤m

[
q(x + c) ·

t∏
i=1

(
hi0(x) · ψhi(x,y)

hi0(x) ,m
(x, y + γ)

)ei
]

≡ Hx
≤m

[
q(x + c) ·

t∏
i=1

hi(x, y + γ)ei

]

≡ Hx
≤m

[
q(x + c) ·

t∏
i=1

fi(x + c, y + γ)ei

]
≡ Hx

≤m[f(x + c, y + γ)].

Since

deg(G(x, y)) ≤ deg(H) + deg(C0) +
t∑
i=1

deg(Gi) ≤ 4r3n3 + rn+ r · 4r2n2 ≤ 4r3(n+ 1)3,

this finishes the induction, and therefore the proof of the theorem. It is clear from the proof,
via Observation 3.6, that if we restrict the in-degree to 2, we obtain the desired bound on
the depth. J
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As a corollary of the main theorem, we obtain:

I Corollary 7.4 (Small Formula – Restatement of Theorem 1.2). Let P (x) ∈ F[x] \ {0} be such
that degxi

(P ) ≤ r, 1 ≤ i ≤ n, and let f(x) ∈ F[x] be a factor of P . If there exists a formula
Γ of size s and depth d computing P , then there exists a formula Φ of depth depth(Φ) ≤ d+ 5
and size

|Φ| = O

(
n3r12 ·

(
nr + r + 1
r + 1

)
s

)
= poly((nr)r, s)

such that
Φ(x) ≡ f(x).

If we require the in-degree of the formula (circuit) to be 2, then the size of Φ does not change,
and depth(Φ) ≤ d+ 30r log(nr).

Proof. Let c ∈ Fn be such that P (c) 6= 0. Such a c exists since P (x) is nonzero. This implies
that Q(x) ≡ P (x + c) is computed by the formula ∆(x) = Γ(x + c), of size ≤ 2|Γ| = 2s,
depth(∆) ≤ d+ 1 and is such that Q(0) = P (c) 6= 0. Hence, by Theorem 7.2, we have that
there exists polynomial G(x) ∈ F[x] of degree deg(G) ≤ 4r3n3 such that for any a ∈ Fn for
which G(a) 6= 0, there is a formula Φnr whose output gate is a multiplication gate for which
depth(Φnr) ≤ depth(∆) + 3 ≤ d+ 4, of size

|Φnr| ≤ 120000(nr)2r8n ·
(
nr + r + 1
r + 1

)
s and such that

Hx
≤nr[Φnr(x)] ≡ Hx

≤nr[f(x + c + a)] ≡ f(x + c + a), since nr ≥ deg(f).

By the interpolation Lemma 3.4, we obtain that there exists a formula Φ′ of size

|Φ′| ≤ 9r2 · |Φnr|

and depth(Φ′) ≤ d+5 such that Φ′(x) ≡ f(x+c+a). By shifting the inputs of the formula Φ′
by −(a + c), we have that the new formula just obtained, call it Φ, computes the polynomial
f(x), as we wanted. It is easy to see that Φ has the desired upper bound on its size. It is
also clear from the proof that if we restrict the in-degree of the formulas (circuits) to be 2,
we obtain the desired bounds on the depth. This finishes the proof. J

8 Conclusion

Besides solving a question posed by Kopparty et al. [10] and Open Problem 19 in [15] for the
class of bounded individual degree polynomials, notice that Lemma 7.1 and Theorem 7.2 also
provide a framework to convert formulas (circuits) for the approximate roots of a polynomial
into actual formulas (circuits) for factors of the same polynomial. Since Lemma 7.1, and
therefore Theorem 7.2, uses the Approximation Lemma (Lemma 6.1) as a black-box, any
improvements on Lemma 6.1 would lead to better bounds on the size of the formulas for the
factors of the input polynomial. Hence, if one can remove the exponential dependence on
the parameter r (the bound on the individual degrees) in the Approximation Lemma, one
can fully solve the questions above. This is the main open question left by this work.

Acknowledgements. The author would like to thank his advisor Zeev Dvir for all the
helpful discussions and encouragement throughout the course of this work.
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Abstract
In the setting of streaming interactive proofs (SIPs), a client (verifier) needs to compute a given
function on a massive stream of data, arriving online, but is unable to store even a small fraction
of the data. It outsources the processing to a third party service (prover), but is unwilling to
blindly trust answers returned by this service. Thus, the service cannot simply supply the desired
answer; it must convince the verifier of its correctness via a short interaction after the stream
has been seen.

In this work we study “barely interactive” SIPs. Specifically, we show that two or three rounds
of interaction suffice to solve several query problems – including Index, Median, Nearest Neighbor
Search, Pattern Matching, and Range Counting – with polylogarithmic space and communication
costs. Such efficiency with O(1) rounds of interaction was thought to be impossible based on
previous work.

On the other hand, we initiate a formal study of the limitations of constant-round SIPs by
introducing a new hierarchy of communication models called Online Interactive Proofs (OIPs).
The online nature of these models is analogous to the streaming restriction placed upon the verifier
in an SIP. We give upper and lower bounds that (1) characterize, up to quadratic blowups, every
finite level of the OIP hierarchy in terms of other well-known communication complexity classes,
(2) separate the first four levels of the hierarchy, and (3) reveal that the hierarchy collapses to
the fourth level. Our study of OIPs reveals marked contrasts and some parallels with the classic
Turing Machine theory of interactive proofs, establishes limits on the power of existing techniques
for developing constant-round SIPs, and provides a new characterization of (non-online) Arthur–
Merlin communication in terms of an online model.
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1 Introduction

The surging popularity of commercial cloud computing services, and more generally outsourced
computations, has revealed compelling new applications for the study of interactive proofs
with highly restricted verifiers. Consider, e.g., a retailer (verifier) who lacks the resources to
locally process a massive input (say, the set of all its transactions), but can access a powerful
but untrusted cloud service provider (prover), who processes the input on the retailer’s behalf.
The verifier must work within the confines of the restrictive data streaming paradigm, using
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only a small amount of working memory. The prover must both answer queries about the
input (say, “how many pairs of blue jeans have I ever sold?”), and prove that the answer is
correct. We refer to this general scenario as verifiable data stream computation.

It is useful to look at this computational scenario as “data stream algorithms with
access to a powerful (space-unlimited) prover.” As is well known, most interesting data
streaming problems have no nontrivial (i.e., sublinear space) algorithms unless one allows
approximation. For instance, given a stream σ of tokens from the universe [n] := {1, 2, . . . , n},
which implicitly defines frequencies fj for each j ∈ [n], some basic questions we can ask about
σ are the number of distinct tokens F0(σ), the kth frequency moment Fk(σ) =

∑n
j=1 f

k
j ,

the median of the collection of numbers in σ, and the very basic point queries where, given
a specific j ∈ [n] after σ has been presented, we wish to know fj . In each case, we would
like an exact answer, not an estimate. With the trivial exception of F1(σ) – which is just
the length of σ – not one of these questions can be answered by a (possibly randomized)
streaming algorithm restricted to o(n) space. However, with access to a powerful prover,
things improve greatly: as shown in Chakrabarti et al. [9], point queries, median, and Fk (for
integral k > 0) can be computed exactly by a verifier using Õ(

√
n) space, while receiving

Õ(
√
n) bits of “help” from the prover.

Notably, the protocol achieving this Õ(
√
n) cost (space plus amount of help) is non-

interactive: the prover sends a single message to the verifier. Chakrabarti et al. [9] also
showed that under this restriction their protocol is optimal: a cost of Ω(

√
n) is required. In

subsequent work, Cormode et al. [15] considered streaming interactive proofs (SIPs), where
the verifier may engage in several rounds of interaction with the prover, seeking to minimize
both the space used by the verifier and the total amount of communication. They gave
SIPs with 2k − 1 rounds of interaction following the verifier’s single pass over the input
stream, achieving a cost of Õ(n1/(k+1)) for the above problems. This generalizes the earlier
set of results [9], which gave 1-round SIPs. Moreover, it achieves O(polylogn) cost with
O(logn/ log logn) rounds of interaction. In recent work, Klauck and Prakash [24] further
studied this kind of computation and generalized the 1-round lower bound, claiming that a
(2k − 1)-round SIP must cost Ω(n1/(k+1)), even for very basic point queries.

However, we identify an implicit assumption in the Klauck–Prakash lower bound argument:
it applies only to protocols in which the verifier’s messages to the prover are independent of
the input. This happened to hold in all previous SIPs, which are ultimately descended from
the sum-check protocol of Lund et al. [27]. Furthermore, this assumption is harmless in the
classical theory of interactive proofs where public-coin protocols can simulate private-coin
ones with just a polynomial blowup in cost [16]. However, these simulation results fail subtly
in the streaming setting, and we show that this failure is intrinsic by giving a number of new
upper bounds.

1.1 New Results: Exponentially Improved Constant-Round SIPs
We start by showing that even two-round SIPs are exponentially more powerful than previously
believed, on certain problems. For now we state our results informally, using the Õ-notation
to suppress “lower order” factors. We give formal theorem statements later in the paper,
after all definitions are in place.

I Result 1.1 (Formalized in Theorem 3.1). There is a two-round SIP with cost Õ(logn) for
answering point queries on a stream over the universe [n].

The SIP that achieves this upper bound is based on an abstract protocol that we call the
polynomial evaluation protocol. Crucially, unlike the sum-check protocols used in previous
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SIPs, it involves an interaction where the verifier’s message to the prover depends on part of
the input; specifically, it depends on the query. Note that two rounds of interaction is likely
unavoidable in practice even if verifiability is not a concern: one round may be required for
the verifier to communicate the query to the prover, with a second round required for the
prover to reply.

Adding a third round of interaction allows us to answer selection queries, of which an
important special case is median-finding.

I Result 1.2 (Formalized in Theorem 3.7). There is a three-round SIP with cost Õ(logn) for
determining the exact median of a stream of numbers from [n].

We can in fact answer fairly complex queries with three rounds and polylogarithmic cost.
For instance, given a data set presented as a stream of points from a metric space, we can
answer exact nearest neighbor queries to the data set very efficiently, even in high dimensions.
This is somewhat surprising, given that even the offline version of the problem seems to
exhibit a curse of dimensionality.

I Result 1.3 (Formalized in Theorem 3.4). For data sets consisting of points from [n]d under
a reasonable metric, such as the Manhattan distance `d

1 or the Euclidean distance `d
2, there is

a three-round SIP with cost poly(d, logn) allowing exact nearest neighbor queries to the data
set.

We also give similarly efficient two-round SIPs for other well-studied query problems,
such as range counting queries (Theorem 3.6), where a stream of data points is followed by a
query range and the goal is to determine the number of points in the range that appeared in
the stream, and pattern matching queries (Theorem 3.8), where a streamed text is followed
by a (short) query pattern.

Next, we work towards a detailed understanding of the subtleties of SIPs that caused the
aforementioned Klauck–Prakash lower bound [24] not to apply. Our study naturally leads
into communication complexity, in particular to Arthur–Merlin communication, which we
discuss next.

1.2 The Connection to Arthur–Merlin Communication
Like almost all previous lower bounds for data stream computations, prior SIP lower bounds [9,
24] use reductions from problems in communication complexity. To model the prover in an
SIP, the appropriate setting is Arthur–Merlin communication, which we now introduce.

Suppose Alice holds an input x ∈ X , Bob holds y ∈ Y, and they wish to compute
f(x, y) for some Boolean function f : X × Y → {0, 1}, using random coins and settling for
some constant probability of error. Say this costs R(f) bits of communication. Can an
omniscient but untrusted Merlin, who knows (x, y), convince “Arthur” (defined as Alice
and Bob together) that f(x, y) = 1, keeping the overall communication within o(R(f))?
For several interesting functions f the answer is “Yes” and this is the general subject of
Arthur–Merlin communication complexity, first considered in seminal work by Babai, Frankl,
and Simon [5].

The one-pass streaming restriction on the verifier in an SIP is modeled by requiring
that Alice not receive any communication from either Bob or Merlin. Thus the Alice–Bob
communication is one-way, though Bob and Merlin may interact arbitrarily. We refer to this
restricted communication setting as online Arthur–Merlin communication. It should be clear
that a k-round SIP with cost C can be simulated by an online Arthur–Merlin communication
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of cost C where Bob and Merlin interact for k rounds. Thus, lower bounds on SIPs would
follow from corresponding communication lower bounds in the online Arthur–Merlin setting.

At this point let us recall that the classical Turing-Machine-based theory of interactive
proofs considers two different models of interaction between prover and verifier, corresponding
to the complexity classes IPTM,1 where the verifier is allowed private randomness, and AMTM,
where he may only use public randomness. Recall the following classic results about such
interactive proofs.

Equivalence of private and public coins. Goldwasser and Sipser [16] proved that a
k-round private coin interactive proof (à la IPTM) can be simulated (with a polynomial
blowup in complexity) by a (k + 2)-round public coin one (à la AMTM). Thus, in the
resulting protocol, the verifier can perform his interaction with the prover before even
looking at the input!
Round reduction. Babai and Moran [6] proved that a (k + 1)-round interactive proof
can be simulated by a k-round interactive proof with a polynomial blowup in the verifier’s
complexity. Thus, a two-round (verifier→prover→verifier) interactive proof is just as
powerful as any constant-round one.

Interestingly, as we shall show in this work, neither of these phenomena holds for the online
communication complexity analogs of IPTM and AMTM. (Recall that “online” means that
Alice does not receive any communication from either Bob or Merlin.) This point appears to
have been missed in the Klauck–Prakash proof [24], which works in a “public coin” setting and
thus applies only to a restricted class of SIPs. The new SIPs we design in this work correspond
to a “private coin” setting, which allows the aforementioned exponential improvements.

Clearly there are nuances in online Arthur–Merlin communication complexity that do
not arise in classical interactive proofs. In particular, we seek a better understanding of the
precise role of rounds and of private randomness in the communication setting. This is the
goal of our next batch of results.

1.3 New Results: Complexity Classes for Arthur–Merlin
Communication

As noted above, we can think of AMTM as a restricted interactive proof model where the
verifier must interact with the prover before looking at his input. We can then define a
hierarchy of analogous communication complexity models called OMA[k] (Online Merlin–
Arthur), where Bob interacts with Merlin in k rounds without looking at his input, and
then Alice communicates with Bob one-way. We defer precise definitions to Section 4. The
aforementioned Klauck–Prakash lower bound essentially says the following:

I Proposition 1.4 (Klauck and Prakash [24]). The index problem – where Alice gets x ∈
{0, 1}n, Bob gets j ∈ [n] and Bob must output xj with high probability – requires Ω(n1/(k+1))
cost in the OMA[2k] model.

We can also define a parallel hierarchy OIP[k] (Online Interactive Proof) of communi-
cation analogs of IPTM. We now hit another subtlety. We could require the Bob–Merlin
interaction to happen before the Alice→Bob communication; this is how we shall define
OIP[k]. Alternatively, we could swap the order, so that Bob’s messages to Merlin could
depend on Alice’s input as well; we shall call the resulting (more powerful) model OIP[k]

+ .

1 Throughout this paper, we use the subscript “TM” to denote a Turing-machine-based complexity class,
to resolve the notation clash with the analogous communication complexity classes.
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These communication models correspond to SIPs as follows. Every SIP designed prior to
this work falls into a restricted setting where the verifier’s messages are independent of the
input, so it can be simulated by an OMA[k] protocol with k being the number of rounds
of interaction in the SIP. The SIPs we design in this work apply to “query problems” with
the data set appearing before the query, and our verifier messages depend only on the query.
Thus our SIPs are naturally simulable by OIP[k] protocols. Finally, a general SIP, where
verifier messages can depend on the entire input stream, is simulable by an OIP[k]

+ protocol.
Following Babai et al. [5], given a communication model C, we define a corresponding

complexity class, also denoted C, consisting of all problems that have polylogarithmic
cost protocols in the model C. We now have three parallel hierarchies of communication
complexity classes: OMA[k], OIP[k], and OIP[k]

+ . For our next batch of results, we prove
several inclusion and separation results relating these newly defined classes to each other
and to well-studied classes from earlier work in communication complexity.

I Result 1.5 (Formalized over several theorems in Section 5). The following complexity class
inclusions and separations, given in Figure 1, hold.

R[1,A] R[2,B] MA[2,B] AM OMA[k]

OIP[1] OIP[2] OIP[3] OIP[4] OIP[k]

OIP[1]
+ R[3,A] OIP[2]

+

Figure 1 The layout of our communication complexity zoo. An arrow from C1 to C2 indicates
that C1 ⊆ C2. If the arrow is double-headed, then the inclusion is strict. Here k > 4 is an arbitrary
constant. The models R[t,A] (resp. R[t,B]) are standard t-round randomized communication with
Alice (resp. Bob) starting. The model MA[2,B] consists of a message from Merlin followed by
Bob→Alice→Bob communication, while AM is standard (see Section 5).

Notice that there are several two-way inclusions (i.e., equalities) amongst these communica-
tion complexity classes. It is worth noting that with one exception (namely OIP[1] = OIP[1]

+ )
none of these equalities is trivial. For instance, consider the switch from the model R[2,B] to
the model OIP[2]: Bob loses the ability to send Alice a message before hearing from her,
but gains access to Merlin. It is not a priori clear that this switch in models will result in
a complexity class that is even comparable to R[2,B], and nontrivial simulation arguments
(Theorems 5.3 and 5.6) are required to prove that R[2,B] = OIP[2].

Many of our simulations incur some blowup in cost. All such blowups are at most
quadratic, so polylogarithmic costs remain polylogarithmic.

The OMA and OIP hierarchies behave quite differently from the classical AMTM and
IPTM:

In contrast to the Goldwasser–Siper private-by-public-coin theorem, the class OIP[4]

is strictly more powerful than OMA[k] (in fact, even OIP[2] 6⊆ OMA[k]), for every
constant k.
In contrast to the Babai–Moran round reduction theorem, there are exactly four distinct
levels (not two) in the OIP[k] hierarchy, for constant k.
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In the course of proving the separation results in Figure 1, we obtain concrete lower
bounds for explicit functions that are of interest in their own right. Let us highlight one of
these.

I Result 1.6 (Formalized in Corollary 5.9). The set disjointness problem disj – where Alice
and Bob each get a subset of [n] and must decide whether they are disjoint – requires Ω(n1/3)
cost in the OIP[3] model and thus does not belong to the class OIP[3]. This lower bound is
tight up to a logarithmic factor.

This has implications for SIPs. We noted that all SIPs designed thus far (including the
new ones in this work) are simulable in the weaker OIP models. By a standard reduction [4]
from disj to the frequency moments problem Fk, it follows that unlike what we achieved
for point queries and median queries, based on currently known techniques, we cannot get a
polylogarithmic cost three-round SIP for Fk (k 6= 1).

Removing the qualifier “based on currently known techniques” above would require
a similar lower bound for OIP[3]

+ . Unfortunately, at present we are unable to prove any
nontrivial lower bounds on OIP[2]

+ , and doing so appears to be a rather difficult problem.
Indeed, this inability is what led us to study the weaker OIP model. Yet, because the OIP
models are online, the separation results in Figure 1 still morally capture the primary way in
which SIPs, due to their streaming/online nature, differ from classical interactive proofs.

Finally, our result AM = OIP[4] gives a novel characterization of AM in terms of online
communication. This is surprising because online models, where no one talks to Alice, might
be expected to be too weak to capture AM. Proving lower bounds on AM is a longstanding
and notoriously hard problem in communication complexity [26, 22, 23]. We believe our
new characterization of AM is of independent interest, and may prove useful in establishing
non-trivial AM lower bounds.

1.4 Related Work
1.4.1 Stream Computation
Early theoretical work on verifiable stream computation focused on non-interactive protocols,
as in the annotated data streams model of Chakrabarti et al. [9]. In our language, that
model corresponds to 1-round SIPs. Work in this model has established optimal protocols
for several problems including frequency moments and frequent items [9]; linear algebraic
problems such as matrix rank [24]; and graph problems like shortest s–t path [14]. Many of
these protocols have subsequently been optimized for streams whose length is much smaller
than the universe size [8]. More recent protocols, such as the Arthur–Merlin streaming
protocols of Gur and Raz [19, 8] are “barely interactive” in the sense that the prover and
the verifier may exchange a constant number of messages. Meanwhile, the fully general
streaming interactive proof (SIP) model of Cormode et al. [15, 13] permits “many” rounds
of interaction. Cormode, Thaler, and Yi [15] showed that several general IPTM protocols
can be simulated in this model. These include the powerful, general-purpose protocol of
Goldwasser, Kalai, and Rothblum [18]. Given any problem in NCTM, the resulting protocol
requires only polylogarithmic space and communication while using polylogarithmic rounds
of verifier–prover interaction. Refinements and implementations of these protocols [36, 13, 35]
have demonstrated scalability and the practicality of this line of work.

Algebraic techniques lie at the core of almost all nontrivial protocols in the above
models. Specifically, a number of 1-round SIPs are inspired by the Aaronson–Wigderson
MA communication protocol for disj [2], which is in turn inspired by the classic sum-check
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protocol of Lund et al. [27]. The sum-check protocol is also the inspiration for the way
that all previous multi-round SIPs make use of interaction. The aforementioned protocol of
Goldwasser et al. [18] also builds upon the sum-check protocol.

The algorithmic results outlined in Section 1.1 have a rather different algebraic idea at
their core. They are based on the aforementioned polynomial evaluation protocol, which is
obtained by adapting a result of Raz [33] about IP/rpolyTM to a streaming setting; see the
discussion at the start of Section 2.1.

Early work on interactive proofs studied space-bounded verifiers (see the survey by
Condon [12]), but many protocols developed in this line of work require the verifier to
store the input, and therefore do not address verifiable stream computation, as we do here.
Goldwasser et al. [17] studied interactive proofs with verifiers in the complexity class NC0

TM.
Interestingly, they showed that private randomness is necessary to obtain interactive proofs
with verifiers in NC0

TM, unless the language in question is already in NC0
TM. This is analogous

to our finding that constant-round “public coin” SIPs (where the verifier’s messages do not
depend on the input) are exponentially weaker than general constant-round SIPs.

1.4.2 Computationally Sound Protocols

Protocols for verifiable stream computation have also been studied in the cryptography
community [10, 32, 34]. These works only require soundness to hold against cheating
provers that run in polynomial time. In exchange for this weaker security guarantee, these
protocols can achieve properties that are impossible in the information-theoretic setting we
consider. For example, they typically achieve reusability, allowing the verifier to use the
same randomness to answer many queries. In contrast, our protocols only support “one-shot”
queries, because they require the verifier to reveal secret randomness to the prover.

Chung et al. [10] combine the GKR protocol with fully homomorphic encryption (FHE)
to give reusable, non-interactive protocols of polylogarithmic cost for any problem in NC.
Papamanthou et al. [32] give improved protocols for a class of low-complexity queries
including point queries and range search: their protocols avoid the use of FHE, and allow
the prover to answer such queries in polylogarithmic time (a similar property was achieved
by Schröder and Schröder [34], but for a simpler class of queries, and with unidrectional
communication from the verifier to the prover on each stream update). In contrast, prior
work as well as our own requires the prover to spend time quasilinear in the size of the data
stream after receiving a query, even if the answer itself can be computed in sublinear time
(e.g., point queries, which can be solved with a single access to memory). We note however
that our most interesting protocols, such as those for nearest neighbor search and pattern
matching, are for problems that cannot be solved in sublinear time; hence, the quasilinear
time required by our protocols does not affect the prover’s runtime by more than logarithmic
factors.

1.4.3 Communication Complexity

Seminal work by Babai et al. [5] introduced and studied the communication analogs of the
major Turing Machine complexity classes, including P, NP, Σ2, Π2. They hinted at similar
analogs of MA and the AM hierarchy. Lokam [26] related the task of placing problems
outside of the communication class AM to notions of matrix rigidity. He also observed that
the communication complexity classes IP and AM behave similarly to their Turing Machine
counterparts. In particular, noted theorems such as IP = PSPACE, Toda’s Theorem, and
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Babai and Moran’s round reduction results [6] all hold in the communication world (though
not under online communication, as shown by this work).

Online (also known as one-round) randomized communication complexity was introduced
in the mid-1990s and considered by Ablayev [3], Kremer, Nisan, and Ron [25], and Newman
and Szegedy [29]. Aaronson [1] introduced online variants of Merlin–Arthur communica-
tion, in classical and quantum flavors. Aaronson and Wigderson [2] gave an online MA
communication protocol for disj (more generally, for inner-product) with cost Õ(

√
n);

this is nearly optimal, as shown by a lower bound of Klauck [22] that applies to general
MA protocols. More recently, Klauck [23] performed a careful study of AM, MA, and its
quantum analogue QMA. In particular, he gave a promise problem PAppMP separating
QMA from AM; we shall eventually show that PAppMP separates OIP[3] from OIP[4].

2 The SIP Model and the Polynomial Evaluation Protocol

In a data stream problem, the input σ is a stream, or sequence, of tokens from some data
universe U . The goal is to compute or approximate some function g(σ), keeping space usage
sublinear in the two key size parameters: (1) the length of σ, and (2) the size of the universe
|U |. Practically speaking, we would also like to process each stream update (token arrival)
quickly. All our data stream algorithms will be randomized, and we shall allow them to err
with some small constant probability on each input stream. In the streaming interactive
proofs (SIP) model, after processing σ, the algorithm (called the “verifier”) may engage in k
rounds of interaction with an oracle (the “prover”) who knows σ and whose goal is to lead
the verifier to output the correct answer g(σ). The verifier, being distrustful, will output “⊥”
(indicating “abort”) if he suspects the prover to be cheating.

All of the SIPs in this paper will work in the turnstile streaming model, where σ can
contain deletions of tokens from U , in addition to insertions. In this model it is best to think
of the input as being a stream of integer updates to a vector x = (x1, . . . , xn) ∈ Zn. Initially
x = 0, and an update is a tuple (i, c) ∈ [n]× Z, which has the effect of adding c to the entry
xi. We will sometimes describe our algorithms as they apply to the vanilla streaming model,
but it will be straightforward to extend them to the turnstile model.

We say that an SIP computes the function g with completeness error εc and soundness
error εs if for all inputs x there exists a prover strategy that will cause the verifier to output
g(x) with probability at least 1− εc, and no prover strategy can cause the verifier to output
a value outside {g(x),⊥} with probability larger than εs. In designing SIPs, our goal will be
to achieve εc, εs ≤ 1/3; clearly the theory remains unchanged if we replace 1/3 by another
constant in (0, 1/2). A SIP with εc = 0 is said to have perfect completeness. The total length
of the verifier–prover interaction is the help cost. The space used by the streaming verifier
is the space cost. The cost of an SIP is the sum of its help cost and its space cost. When
designing SIP protocols we will also discuss the time complexities of the prover and the
verifier. To keep things simple, we consider a model in which all arithmetic operations on a
finite field of size nO(1) can be executed in unit time.

2.1 The Polynomial Evaluation Protocol
We shall present a two-round SIP for an abstract data stream problem called “polynomial
evaluation,” where the input consists of a multivariate polynomial described implicitly, as a
table of values, followed by a point at which the polynomial must be evaluated. Without
space constraints, this problem simply amounts to interpolation followed by direct evaluation,
but our goal is to obtain a protocol where the verifier uses space roughly logarithmic in the
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size of the table of values, and is convinced by the prover about the correct answer after a
similar amount of communication. For ease of presentation, we shall first consider a concrete
special setting that is important in its own right: the index problem. In this problem, the
input is a stream of n data bits x1, . . . , xn, followed by a query index j ∈ [n]. The goal is to
output xj with error at most 1/3.

With very different motivations from ours, Raz [33] gave an interactive proof protocol
placing every language in IPTM/rpoly, the class of languages that have interactive proofs
with polynomial-time verifiers that take randomized advice, where the advice is kept secret
from the prover. Our SIP for index can be seen as an adaptation of Raz’s interactive proof
to the streaming setting.

I Theorem 2.1. The index problem has a two-round SIP with cost O(logn log logn), in
which the verifier processes each stream token in O(logn) time and the prover runs in total
time O(n logn).

Proof. Assume WLOG that n = 2b, for some integer b. Identify each integer z ∈ [n] with a
Boolean vector z = (z1, . . . , zb) ∈ {0, 1}b in some canonical way, such as by using the binary
representation of z. We can then view the data bits as a table of values for the Boolean
function gx : {0, 1}b → {0, 1} given by gx(z) = xz, and thus for the multilinear b-variate
polynomial g̃x(Z1, . . . , Zb) given by

g̃x(Z1, . . . , Zb) =
∑

z∈{0,1}b

gx(z)χz(Z1, . . . , Zb) , where (1)

χu(Z1, . . . , Zb) =
b∏

i=1

(
(1− ui)(1− Zi) + uiZi

)
(2)

is the indicator function of the vector u = (u1, . . . , ub). We shall interpret g̃x as a polynomial
in F[Z1, . . . , Zb] for a fixed “large enough” finite field F. With this interpretation, g̃x is called
the multilinear extension of gx to F. We define a line in Fb to be the range of a nonconstant
affine function from F to Fb. Every line contains exactly |F| points. Given such a line, `, we
define its canonical representation to be the degree-1 polynomial λ`(W ) ∈ Fb[W ] such that
λ`(0) and λ`(1) are, respectively, the lexicographically first and second points in `. We define
the canonical restriction of a polynomial f(Z1, . . . , Zb) to ` to be the univariate polynomial
f(λ`(W )) ∈ F[W ], whose degree is at most the total degree of f .

Using the above notations and conventions, our two-round SIP for index works as shown
in Figure 2.
To analyze this protocol, first note that after reading all the data bits, the verifier would
have computed Q = g̃x(r), by Eq. (1). Now the protocol is easily seen to have perfect
completeness. Since g̃x(Z1, . . . , Zb) is multilinear, it follows that deg (g̃x(λ`(W ))) ≤ b, so the
prover can always honestly choose h(W ) = g̃x(λ`(W )). If he does so, then we will indeed
have h(t) = g̃x(λ`(t)) = g̃x(r) = Q, and the verifier’s check will pass. Finally, the verifier will
output h(w) = g̃x(λ`(w)) = g̃x(j) = xj , the correct answer to the index instance.

Next, we analyze soundness. If the prover supplies a polynomial h(W ) 6≡ g̃x(λ`(W )),
then, since both polynomials have degree at most b, they agree at at most b points in F. From
the prover’s perspective after he receives the verifier’s message, r is uniformly distributed in
` \ {j}. Thus, Prr[h(t) = Q] ≤ b/(|F| − 1) ≤ 1/3.

Now we consider this protocol’s costs. The verifier maintains the random point r ∈ Fb and
the running sum Q ∈ F, using O(b log |F|) space. He sends the prover `, which is specified by
two elements of Fb, and receives a degree-b polynomial in F[W ]; both communications use at
most O(b log |F|) bits. Recalling that |F| ≤ 6b+ 2, we see that both space and communication
costs are in O(b log b) = O(logn log logn).
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Input: Stream of data bits (x1, . . . , xn) where n = 2b, followed by index j ∈ [n].
Goal: Prover to convince Verifier to output the correct value of xj .
Shared Agreement: Finite field F with 3b+ 1 ≤ |F| ≤ 6b+ 2; bijective map u ∈ [n]←→
u ∈ {0, 1}b.

Initialization: Verifier picks r ∈R Fb uniformly at random, sets Q← 0.
Stream Processing: Upon reading xz, where z ∈ [n], Verifier updates Q← Q+xzχz(r).
Query Handling: Upon reading the index j, Verifier interacts with Prover as follows:

1. If j = r, Verifier outputs Q as the answer. Otherwise, he sends Prover `, the
unique line in Fb through j and r.

2. Prover sends Verifier a polynomial h(W ) ∈ F[W ] of degree at most b, claiming
that it is the canonical restriction of the multilinear polynomial g̃x(Z1, . . . , Zb) to
the line `. That is, Prover claims that h(W ) ≡ g̃x(λ`(W )).

3. Let w, t ∈ F be such that λ`(w) = j and λ`(t) = r. Verifier checks that h(t) = Q,
aborting if not. If the check passes, Verifier outputs h(w) as the answer.

Figure 2 A Two-Round Streaming Interactive Proof (SIP) Protocol for the index Problem

Finally, we consider the verifier’s and prover’s runtimes. The honest prover must send
the univariate polynomial g̃x(λ`(W )). Since g̃x has degree at most b, it suffices for the prover
to specify the evaluations of g̃x(λ`(W )) at b + 1 = O(logn) points. A direct application
of Qqs. (1) and (2) shows that each evaluation can be done in O(n logn) time, resulting
in a total runtime of O(n log2 n). However, using now-standard memoization techniques
(see e.g. [36, Section 5.1]), it is possible for the prover to in fact perform each of these
evaluations in just O(n) time, resulting in a total runtime of O(n logn). The verifier can
run in O(b) = O(logn) time per stream update, as each stream update xz only requires the
verifier to compute χz(r), and it follows from Eq. (2) that this can be done with O(b) field
operations. When interacting with the prover, the verifier first needs to determine the line `
through j and r, which he can do in O(b) = O(logn) time. To process the prover’s reply,
he must evaluate the polynomial h at the points t and w; these evaluations can be done in
polylogn time. J

The above SIP protocol uses very little of the special structure of the index problem.
Let us abstract out its salient features, so as to handle the general problem described at the
start of this section. First, note the protocol treats the data set given by (x1, . . . , xn) as an
implicit description of the polynomial g̃x. Second, note that our soundness analysis did not
require multilinearity per se, only an upper bound on the total degree of g̃x. Finally, note
that the specific form of Eqs. (1) and (2) is not crucial either; all we used was that it allows
the verifier an easy streaming computation. Thus, we obtain the following generic result.

I Theorem 2.2 (Polynomial Evaluation Protocol). Suppose an input data stream implicitly
describes a v-variate polynomial g of total degree d over a field F, followed by a point j ∈ Fv.
Suppose this implicit description allows a streaming verifier to evaluate g at a random
point r ∈R Fv using space S. Then the technique of the protocol in Figure 2 gives a two-
round SIP for computing g(j), with the following properties: (1) perfect completeness; (2)
soundness error bounded by d/(|F| − 1); (3) space usage in O(v log |F|+ S); (4) help cost in
O((d+ v) log |F|). J

We shall refer to the abstract protocol given by Theorem 2.2 as the polynomial evaluation
protocol.
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3 Constant-Round SIPs for Query Problems

We shall now apply the polynomial evaluation protocol to design SIPs proving the various
upper bounds outlined in Section 1.1. The first application is immediate; later applications
bring in additional ideas.

3.1 Point Queries.
In the PointQuery problem, the input is a stream in the turnstile model, updating an
initially-zero vector x ∈ Zn, followed by a query j ∈ [n]. The goal is to output xj .

I Theorem 3.1. Suppose the input to PointQuery is guaranteed to satisfy |xi| ≤ q at end
of the data stream, for all entries of x, where the bound q is known a priori. Then there is a
two-round SIP for PointQuery with space and help costs in O(logn log(q + logn)).

Proof. Assume WLOG that n = 2b for an integer b, and use a bijection u ∈ [n] ←→ u ∈
{0, 1}b as in Theorem 2.1. The vector x resulting from the updates defines a multilinear
polynomial g̃x(Z1, . . . , Zb) by Eq. (1), where gx(z) := xz. We can treat g̃x as a polynomial
over any field we like, but to solve our problem, we need to tell apart the 2q + 1 possible
values taken on by the entries of x (recall that q is an upper bound on ‖x‖∞ at the end of
the stream). For this it suffices to have char(F) ≥ 2q + 1.

Applying the polynomial evaluation protocol is now straightforward. The verifier starts
with r ∈R Fb and Q = 0. Upon receiving an update indicating “xi ← xi + c,” he updates
Q← Q+ cχi(r). The other details are as in Figure 2. The space and communication costs
are both in O(b log |F|) as before.

To ensure a soundness error of at most 1/3, we let |F| > 3b as before. This and the earlier
condition on char(F) can both be satisfied by, e.g., taking F = Fp, for a prime p > 3b+ 2q.
This translates to cost bounds in O(logn log(q + logn)), as claimed. J

3.2 Nearest Neighbor Queries
Consider a “premetric” space 2 (X , D) given by a finite ground set X and distance function
D : X ×X → R+ satisfying D(x,x) = 0 for all x ∈ X . Let BD(z, r) = {x ∈ X : D(x, z) ≤ r}
denote the corresponding ball of radius r ∈ R+ centered at z ∈ X . In the NearestNeighbor
problem, the input consists of a stream 〈x(1), . . . ,x(m)〉 of m points from X , constituting the
data set, followed by a query point z ∈ X . The goal is to output x? = arg minx(i) D(x(i), z),
the nearest neighbor of z in the data set. We shall give highly efficient SIPs for this problem
that handle rather general distance functions D. To keep our statements of bounds simple,
we shall impose the following structure on (X , D).

We assume that X = [n]d. We think of d as the dimensionality of the data, and [n]d as a
very fine “grid” over the ambient space of possible points.
For all x,y ∈ [n]d, D(x,y) ≤ 1 is an integer multiple of a small parameter ε ≥ 1/nd.

Overall, this amounts to assuming that our data set has polynomial spread: the ratio between
the maximum and minimum distance. We proceed to give two SIPs for NearestNeighbor.
Our basic SIP has cost roughly logarithmic in the stream length and the spread (and therefore

2 This very general setting, which includes metric spaces as special cases, captures several important
distance functions such as the Bregman divergences from information theory and machine learning that
satisfy neither symmetry nor the triangle inequality.
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linear in d but only logarithmic in n). After we present it, we shall critique it and then give
a more sophisticated SIP to handle its faults.

I Theorem 3.2. Under the above assumptions on the premetric space (X , D), the Near-
estNeighbor problem has a three-round SIP with cost O(d logn log(m+ log(d logn))).

Proof. Let B = {BD(x, jε) : x ∈ X , j ∈ Z, 0 ≤ j ≤ 1/ε} be the set of all balls of all
radii between 0 and 1 (quantized at granularity ε). By our assumptions on the structure
of (X , D), we have |B| ≤ nd/ε ≤ n2d. The input stream 〈x(1), . . . ,x(m)〉 defines a derived
stream, consisting of updates to a vector v indexed by the elements of B. We shall denote by
v[β] the entry of v indexed by β ∈ B. The derived stream is defined as follows: the token
x(i) increments v[β] for every ball β that contains x(i). The verifier runs the PointQuery
protocol of Theorem 3.1 on this derived stream.

The verifier learns the query point z at the end of the stream. The prover then supplies
a point y claimed to be a valid nearest neighbor (note that there may be more than one
valid answer). To check this claim, it is sufficient for the verifier to check two properties:
(1) that y did appear in the stream, and (2) that the stream contained no point closer
to z than y. The first property holds iff v[BD(y, 0)] 6= 0. The second property holds iff
v[BD(z, D(y, z)− ε)] = 0. Clearly, these two properties can be checked by two point queries
over the derived stream.

Following the protocol of Theorem 3.1, the two point queries (executed in parallel) involve
two more rounds between the verifier and the prover, for an overall three-round SIP. Since
the entries of v never exceed m, each PointQuery protocol requires space and help costs
O(d logn log(m+ log(d logn))). J

While the protocol of Theorem 3.2 achieves very small space and help costs, the prover’s
and verifier’s runtimes could be as high as Ω(nd), because processing a single stream token x(i)

may require both parties to enumerate all balls containing x(i). Ultimately, this inefficiency
is because the protocol assumes hardly anything about the nature of the distance function D
and, as a result, does not get to exploit any structural information about the balls in B.

To rectify this, we shall make the entirely reasonable assumption that the distance
function D is “efficiently computable” in the rather mild sense that membership in a ball
generated by D can be decided by a short (say, polynomial-length) formula. Accordingly,
we shall express our bounds in terms of a parameter that captures this notion of efficient
computation.

I Definition 3.3. Suppose the distance function D on X satisfies the assumptions for
Theorem 3.2. Let ΦD : B × X → {0, 1} be the ball membership function for D, i.e.,
ΦD(BD(z, r),x) = 1 ⇐⇒ x ∈ BD(z, r). Think of ΦD as a Boolean function of (3d logn)-bit
inputs. We define the formula size complexity of D, denoted fsize(D), to be the length of
the shortest de Morgan formula for ΦD.

Since addition and multiplication of b-bit integers can both be computed by Boolean
circuits in depth log b (see, e.g., [31, 37]), they can be computed by Boolean formulae of
size poly(b). It follows that for many natural distance functions D, including the Euclidean,
Hamming, `1, and `∞ metrics (and in fact `p for all suitably “small” positive p), we have
fsize(D) = poly(d, logn).

I Theorem 3.4. Suppose the premetric space (X , D) satisfies the assumptions made for
Theorem 3.2. Then NearestNeighbor on (X , D) has a three-round SIP, whose space and
help costs are both at most O(fsize(D) log(m+ fsize(D))), in which the verifier processes each
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stream update in time O(fsize(D)), and the prover runs in total time m · poly(fsize(D)). In
particular, if fsize(D) = poly(d, logn), as is the case for many natural distance functions
D, then the space and help costs are both poly(d, logm, logn), the verifier runs in time
poly(d, logn) per stream update, and the prover runs in total time m · poly(d, logn).

We defer a proof of Theorem 3.4 to the full version of the paper, but the high level idea
that allows us to avoid the high runtimes of the previous protocol is as follows. Essentially,
the SIP of Theorem 3.2 ran our polynomial evaluation protocol on a multilinear extension of
the vector v defined by the derived stream. That SIP took v to be a completely arbitrary
table of values. As a result, the verifier’s computation – evaluating the multilinear extension
at a random point – became costly. The honest prover incurred similar costs. A closer
examination of the nature of v reveals that if D is a “reasonable” distance function, then
v itself has plenty of structure. In particular, an appropriate higher degree extension of v
can in fact be evaluated much more efficiently (by both the verifier and the prover) than the
above multilinear extension.

3.3 Range Counting Queries

Let U be any data universe and R ⊆ 2U a set of ranges. In the RangeCount problem,
the data stream σ = 〈x(1), . . . ,x(m), R∗〉 specifies a sequence of universe elements x(i) ∈ U ,
followed by a query or target range R∗ ∈ R. The goal is to output |{i : x(i) ∈ R∗}|, i.e., the
number of elements in the target range that appeared in the stream.

We easily obtain a two-round streaming interactive proof for the RangeCount problem
with cost bounded by O (log |R| log (|R|m)). The verifier simply runs a PointQuery on the
derived stream σ′ defined to have data universe R. σ′ is obtained from σ as follows: on each
stream update x(i) ∈ U , the verifier inserts into σ′ one copy of each range R ∈ R such that
x(i) ∈ R. The range count problem is equivalent to a PointQuery on σ′, with the target
item being R∗, and we obtain the following theorem.

I Theorem 3.5. There is a two-round SIP with O(log |R| log(|R|m)) cost for RangeCount.

In particular, for spaces of bounded shatter dimension ρ, log |R| = ρ logm = O(logm).
The above protocol also implies a three-round SIP for the problem of linear classification,
a core problem in machine learning. Just like the protocol for NearestNeighbor invokes
a two-round protocol for index, an SIP for linear classification (find a hyperplane that
separates red and blue points) verifies that the proposed hyperplane is empty of red points
on one side and blue points on the other using the above two-round RangeCount protocol.

The prover and verifier in the protocol of Theorem 3.5 may require time Ω(|R|) per
stream update. This could be prohibitively large. However, we can obtain savings analogous
to Theorem 3.4 if we make a mild “efficient computability” assumption on our ranges.
Specifically, suppose there exists a (poly(S)-time uniform) de Morgan formula Φ of length S
that takes as input a binary string representing a point x(i) ∈ U , as well as the label of a
range R ∈ R and outputs a bit that is 1 if and only if x(i) ∈ R. We then obtain the following
more practical SIP.

I Theorem 3.6. Suppose membership in ranges from R can be decided by de Morgan formulas
of length S as above. Then there is a two-round SIP for RangeCount on R, with costs at
most O(S log(m+ S)), in which the verifier runs in time O(S) per stream update, and the
prover runs in total time m · poly(S).
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3.4 Median and Selection Queries
We give a three-round SIP for selection, of which median is a special case. In the selection
problem, defined over data universe U = [n], the data stream σ = 〈x(1), . . . ,x(m), ρ〉 is
a sequence of elements from [n], followed by a desired rank ρ ∈ [m]. For i ∈ [n], let
fi := {j : x(j) = i} denote the number of times element i appears in the stream. Given a
desired rank ρ ∈ [m], the goal is to output an element j ∈ [n] such that∑

k<j

fk < ρ and
∑
k>j

fk ≤ m− ρ. (3)

median is the special case of selection when ρ = bm/2c.
Our three-round SIPs for selection essentially work by reducing to the RangeCount

problem, but an extra round is required for the prover to send the desired element j to the
verifier.

I Theorem 3.7. There is a three-round SIP for selection with cost at most O(logn log(m+
logn)) in which the verifier runs in time poly(logn, logm) per update, and the prover runs
in total time m · poly(logn, logm).

The proof of Theorem 3.7 is deferred to the full version of the paper.

3.5 Pattern Matching Queries
In the pattern matching with wildcards problem, denoted pmw, we are given a stream σ

representing text T = (t1, . . . , tm) ∈ {0, 1, ∗}m followed by a pattern P = (p1, . . . , pq) ∈
{0, 1, ∗}q. The wildcard symbol ∗ is interpreted as “don’t care”, and the pattern P is said
to occur at location i in t if, for every position j in P , either pj = ti+j or at least one
of pj and ti+j is the wildcard symbol. The pmw problem is to determine the number of
locations at which P occured in T . PatternMatching refers to the special case where
“don’t care” symbols are not permitted. We focus on a binary alphabet; a larger alphabet U
can be handled by replacing each character in U with its binary representation, growing the
parameter q by a factor of log |U |.

Pattern matching, both with and without wildcards, has been extensively studied within
the algorithmic literature, with applications ranging from internet search to computational
genetics (see e.g. [11, 20] and the references therein). Verifiable protocols for pattern
matching enable searching in the cloud, and complements work on searching in encrypted
data within the cloud (e.g. [7]). Cormode et al. [13] described and implemented an SIP
for pmw that required roughly Θ(log2m) rounds and had space help costs bounded by
Θ̃(log2m); Concretely, their implementation required well over 1,000 rounds, even for quite
small streams (of length 217). In stark contrast, our new protocol requires the optimal
number of rounds: two.

I Theorem 3.8. There is a 2-round SIP for pmw with space and help costs at most O(q log(q+
m)), in which the verifier runs in time O(q) per stream update, and the prover runs in total
time m · poly(q).

The proof of Theorem 3.8 is deferred to the full version of the paper. We remark that
the pmw protocol of Theorem 3.8 can be run even if the verifier only knows an upper bound
on the length q of the pattern. This is because, for any q′ ≤ q, a pattern P ′ ∈ {0, 1, ∗}q′ is
equivalent to the pattern P ∈ {0, 1, ∗}q obtained from P ′ by concatenating q − q′ wildecard
symbols to P ′.
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4 Communication Protocols and Complexity Classes

We now turn to the study of communication complexity classes motivated by a desire to
understand streaming interactive proofs (SIPs) from a complexity-theoretic viewpoint. In
this section, we lay out the necessary definitions and terminology to rigorously discuss the
notions outlined in Section 1.3. In the next section we prove the many parts of Result 1.5.

4.1 Definitions
Communication problems arise naturally out of data stream problems if we suppose Alice
holds a prefix of the input stream, and Bob the remaining suffix. The primary goal of such
reductions is to obtain space lower bounds on data stream algorithms, so we are free to split
the stream at any place we like. For example, most data stream problems in Section 3 are
query problems, where the input consists of a streamed data set, S, followed by a query, q, to
apply to S. In this case, it would be natural to split the input by giving S to Alice and q to
Bob. Communication problems that will play an important role in this paper include the index
problem index : {0, 1}n × [n] → {0, 1} where [n] := {1, . . . , n} and index(x, j) = xj , the
set-intersection and set-disjointness problems inter, disj : {0, 1}n × {0, 1}n → {0, 1} where
inter(x, y) = ¬disj(x, y) =

∨n
i=1(xi ∧ yi), and the median relation med : [n]m × [n]m → [n],

where inputs x, y ∈ [n]m × [n]m are interpreted as two halves of a list of numbers, and the
valid output(s) corresponds to the median(s) of the combined list.

4.1.1 Communication Complexity Classes
All our communication models provide random coins and allow two-sided error probability up
to a constant; when unspecified, this constant defaults to 1/3. Given a communication model
C, we denote the corresponding complexity measure of a problem f by C(f). Following
Babai et al. [5], we also denote by C the corresponding complexity class, defined as the set
of all functions f : {0, 1}n × {0, 1}n → {0, 1} such that C(f) = (logn)O(1), i.e., functions
that are “easy” in the model C.

We let R[k,A] denote the model of randomized communication complexity where Alice
and Bob exchange k ≥ 1 messages in total with Alice sending the first; R[k,B] is similar,
except that Bob starts. In the MA model, the super-player Merlin, who sees all of the
input, broadcasts a message at the start, following which Alice and Bob run a (two-way,
arbitrary-round) randomized “verification” protocol. The MA[k,A] and MA[k,B] models are
restrictions of MA where Merlin speaks only to Bob 3 and the verification protocol following
Merlin’s single message is restricted to lie in R[k,A] and R[k,B] respectively.

The MA model (indeed, its restriction MA[1,A]) allows us to simulate 1-round SIPs in
an obvious way: Merlin sends Bob the prover’s message, and Alice sends Bob the verifier’s
memory contents after it has processed her prefix of the stream. Notice that the order of the
two messages is not important, modulo one crucial consideration: Alice must have a private
channel to Bob and the random coins used to generate the message from Alice to Bob must
be hidden coins, invisible to Merlin but shared between Alice and Bob (which is why we
called them “hidden coins” rather than “private coins”).

The models OMA[k], OIP[k], and OIP[k]
+ , for k ≥ 1, are obtained by extending MA[1,A]

to simulate k-round SIP protocols. These communication models work as follows. In each

3 Our definition breaks symmetry between Alice and Bob because our eventual goal is to study online
protocols.
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case, Alice and Bob first toss some hidden coins. Then, upon receiving the input, two things
happen: (1) Merlin and Bob interact for k rounds, with Merlin sending the last message in
the interaction, and (2) Alice sends Bob a message, randomized using the hidden coins. After
these actions are completed, Bob produces an output in {0, 1}. The differences between the
three series of models are as follows.

In OMA[k], (1) happens before (2) and Bob must interact with Merlin before looking at
his input. This is directly analogous to AMTM; see the discussion in Section 1.2.
In OIP[k], (1) happens before (2) and Bob may look at his input before talking to Merlin.
Finally, OIP[k]

+ is like OIP[k] except that (2) happens before (1). Thus, Bob’s messages
may depend on Alice’s actual message to Bob, not just on Bob’s input and the hidden
coins.

In the AM model, the parties first choose a public random string, then Merlin broadcasts a
message to Alice and Bob, who then run a deterministic communication protocol to arrive
at a Boolean output. Since Merlin can in fact predict the exact transcript that Alice and
Bob will generate following his message, we can assume without loss of generality that after
Merlin’s message, Alice and Bob output one bit each indicating whether or not they accept
Merlin’s prediction.

4.1.2 Cost and Value of Protocols
Let P be a protocol in a model C involving Merlin. For each input (x, y), P defines a game
between Merlin and Arthur (recall that Alice and Bob together constitute Arthur), wherein
Merlin’s goal is to make Arthur output 1. We define the value V P(x, y) to be Merlin’s
probability of winning this game with optimal play. Given a Boolean function f , we say that
P computes f with soundness error εs and completeness error εc if, for all x, y we have

f(x, y) = 0 ⇒ V P(x, y) ≤ εs , and f(x, y) = 1 ⇒ V P(x, y) ≥ 1− εc . (4)

When the above holds with εc = 0, we say that P computes f with perfect completeness.
The verification cost of P , denoted vc(P), is the (worst-case) number of bits sent by Alice

plus the number of hidden coin tosses; its help cost hc(P) is the number of bits communicated
between Merlin and Bob; its communication cost cc(P) = hc(P) + vc(P). For a problem
f , we define its complexity C(f) = min{cc(Q) : Q is a C protocol that solves f with
max{εs, εc} ≤ 1/3}.

4.2 Relations Among Communication Complexity Classes
We prove a number of inclusion and separation results among our “new” communication
complexity classes and relate them to previously studied classes. These are summarized in
Figure 1, replicated below.

Our results shed light on the landscape of online communication complexity in general.
The simplest online communication model is R[1,A], a.k.a. one-way randomized com-

munication. The result OIP[1] = OIP[1]
+ = R[1,A] establishes that in the world of online

communication, introducing the omniscient but untrusted Merlin into the model is not
enough to obtain super-polynomial efficiency improvements, if interaction with Merlin is not
permitted. The stronger result that OMA[k] = R[1,A] for all constants k > 0 (this is the
full statement of Theorem 5.20) establishes that in the “public coin” setting, the addition of
Merlin is not enough to obtain super-polynomial speedups even if interaction with Merlin is
permitted.
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R[1,A] R[2,B] MA[2,B] AM OMA[k]

OIP[1] OIP[2] OIP[3] OIP[4] OIP[k]

OIP[1]
+ R[3,A] OIP[2]

+

Figure 3 The layout of our communication complexity zoo. An arrow from C1 to C2 indicates
that C1 ⊆ C2. If the arrow is double-headed, then the inclusion is strict. Within the figure, k is an
arbitrary constant larger than 4.

The result that OIP[2] = R[2,B] (see Corollary 5.7) establishes that in the “hidden coin”
setting, the addition of Merlin to the communication model can yield super-polynomial
efficiency improvements, even if only the barest amount of interaction with Merlin is permitted.
However, note that R[2,B] is the simplest non-online communication model. Thus the
combination of hidden coins and a minimal amount of interaction is enough to simulate only
the simplest of the non-online communication protocols.

The result that OIP[4] = OIP[4]
+ = AM (see Corollary 5.14) shows that in the “hidden

coin” setting, the addition of Merlin to the communication model permits the simulation
even of non-online interactive proofs, as soon as four rounds of interaction with Merlin are
permitted.

This in turn explains the somewhat puzzling result that the OIP and OIP+ hierarchies
collapse to the fourth level: both Goldwasser–Sipser [16] and Babai–Moran [6] break down
in the OIP and OIP+ worlds because their transformations do not preserve online-ness:
they will turn an OIP[2] protocol into a “public coin” one, but require Merlin to send a
message to Alice. However, as soon as four rounds of interaction with Merlin are permitted,
even online interactive proofs can simulate non-online ones. At this point, the phenomena of
classical interactive proofs kick in, and the hierarchies collapse.

5 A Communication Complexity Zoo

We now study our central communication models OIP[k] and OIP[k]
+ , and prove the web of

relationships given in Figure 3. Our results are of two types: (1) establishing separations
or collapses between levels of the OIP and OIP+ hierarchies, as the case may be, and
(2) relating these hierarchies to other previously studied communication complexity classes.
We shall first characterize every finite level of the OIP hierarchy (the vertical bidirectional
arrows in Figure 3). Next, in Sections 5.4 and 5.5, we separate the first four levels of the
hiearchy (the horizontal double-headed arrows in the figure). Finally, in Section 5.5, we
separate the OIP and OMA hierarchies.

Throughout Section 5, f will denote an arbitrary communication problem given by a
Boolean function f : X × Y → {0, 1}, and n will parametrize its “instance size” up to a
constant factor, i.e., we will have log |X | + log |Y| = Θ(n). We shall use big-O and big-Ω
notation to hide constants independent of f , |X | and |Y|. We shall use the term “ordinary
protocol” to mean a randomized communication protocol involving Alice and Bob alone (and
no Merlin).
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The first level of the hierarchy is easy to characterize.

I Theorem 5.1. We have OMA[1] = OIP[1] = OIP[1]
+ = MA[1,A] = R[1,A].

Proof. The definitions immediately show that the first four classes are identical (syntactically)
and include R[1,A], because one can always choose to ignore Merlin. The reverse inclusion
MA[1,A] ⊆ R[1,A] follows from previous work: Chakrabarti et al. [9] show that for all f we
have R[1,A](f) = O

(
MA[1,A](f)2). J

5.1 A Characterization of OIP[2]

The main goal of this subsection is to prove that OIP[2] = R[2,B]. We start with the
following communication analog of Theorem 2.2, which was proven in a streaming setting.

I Lemma 5.2 (Polynomial Evaluation Protocol, Communication Version). Suppose Alice holds
a v-variate polynomial g of total degree d over a field F, and Bob holds a point j ∈ Fv. Assume
|F| > 4d. Then there is an OIP[2] protocol with communication cost O((v + d) · log |F|) for
evaluating g(j). In particular, OIP[2](index) = O(logn log logn), so that index ∈ OIP[2].

Proof. Using the notation established in the description of the polynomial agreement protocol
of Section 2.1, we simply note that the hidden coins shared between Alice and Bob determine
r. Bob can send Merlin (the canonical representation of) the line ` that passes through j
and r without having to hear from Alice, since ` is determined entirely by r and Bob’s input
j. Merlin can send Bob the polynomial h(W ) claimed to equal g restricted to the line `, and
Alice can send Bob g(r) within the stated cost bounds. Bob performs the same check as the
verifier in Theorem 2.2, and the completeness and soundness analysis is unchanged. J

The just-proved fact that index ∈ OIP[2] is striking: combined with the well-known
lower bound R[1,A](index) = Ω(n), it shows that introducing Merlin into the picture while
keeping the one-way restriction on the Alice/Bob communication lowers cost exponentially.
It is now natural to ask whether OIP[2] allows such exponential savings for harder problems,
such as disj. Our next result – a lower bound on OIP[2] complexity – implies that it does
not.

I Theorem 5.3. Let P be an OIP[2] protocol computing f . Then hc(P) vc(P) = Ω(R[2,B](f)).
In particular, OIP[2](f) = Ω

(
R[2,B](f)1/2), which implies OIP[2] ⊆ R[2,B].

Proof. After appropriate parallel repetition, we may assume that the soundness and com-
pleteness errors of P at most 1/12 each. In general, P takes the following shape: (1) hidden
coins are tossed, generating random string r according to distribution D; (2) Bob sends
Merlin a message mB = mB(y, r); (3) Merlin responds with a message mM = mM (x, y,mB);
(4) Alice sends Bob a message mA = mA(x, r); (5) Bob outputs a bit given by a function
outP (y,mM ,mA).

Let Dm be D conditioned on the event {mB(y, r) = m}. Note that the distribution Dm

depends on both y and m. Since Bob knows y, Bob can determine the distribution Dm for
any value of m (this is not, however, true for Alice, because Alice does not know y).

With this notational setup, we now describe (in Figure 4) a two-message ordinary protocol
Q that we claim computes f .

To analyze this protocol, let us first define the weight Wx,y(m) of a Bob-message m to be
the probability that Merlin, playing optimally after receiving m, convinces Bob to output 1.
That is,

Wx,y(m) = max
mM

Pr
r∼Dm

[
outP(y,mM ,mA(x, r)) = 1

]
. (5)
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1. Bob samples r ∼ D, computes m = mB(y, r), then sends Alice i.i.d. samples
r(1), . . . , r(h) ∼ Dm, where h = 36(hc(P) + 4).

2. Alice sends Bob mA

(
x, r(1)), . . . ,mA

(
x, r(h)).

3. Bob outputs 1 iff ∃mM : |{i ∈ [h] : outP(y,mM ,mA(x, r(i))) = 1}| > h/2.

Figure 4 The R[2,B] protocol Q, which simulates the OIP[2] protocol P.

Then, withm ∼ mB(y,D), the expected weight Em[Wx,y(m)] is at least 11/12 when f(x, y) =
1 and at most 1/12 when f(x, y) = 0.

Correctness on 1-inputs: Fix (x, y) ∈ f−1(1). We shall proceed assuming that the
specific Bob-message m chosen in Step 1 of Q satisfies Wx,y(m) > 2/3 = 1 − 4(1/12); by
Markov’s inequality, this fails to happen with probability at most 1/4. Studying Eq. (5) tell
us that there exists a specific Merlin-message m∗M such that Prr[outP(y,m∗M ,mA(x, r)) =
1] > 2/3. Therefore, according to the strategy in Steps 2 and 3, the size of the set
{i ∈ [h] : outP(y,m∗M ,mA(x, r(i))) = 1} is a sum of h i.i.d. indicators and exceeds 2h/3 in
expectation. By standard Chernoff bounds (e.g., [28, Theorem 4.4]), the probability that
Bob outputs 0 is 2−Ω(h). Thus, overall, the probability that Q outputs 0 on input (x, y) is at
most 1/4 + 2−Ω(h) < 1/3.

Correctness on 0-inputs: Fix (x, y) ∈ f−1(0). We shall proceed assuming that the specific
Bob-message m chosen in Step 1 of Q satisfies Wx,y(m) < 1/3; by Markov’s inequality, this
fails to happen with probability at most 1/4. For each specific Merlin-message mM , define

size(mM ) =
∣∣∣{i ∈ [h] : outP(y,mM ,mA(x, r(i))) = 1}

∣∣∣ .
Then size(mM ) is a sum of h i.i.d. indicators and has expectation below h/3. By standard
Chernoff bounds, Pr[size(mM ) > h/2] ≤ e−h/36. By a union bound over all possible Merlin-
messages mM , the probability that Bob outputs 1 is at most 2hc(P)e−h/36 < 2−4, using our
choice of h. Adding in the 1/4 from our Markov argument earlier, the overall probability
that Q outputs 1 on input (x, y) is at most 1/4 + 2−4 < 1/3.

Communication Cost: By definition of the OIP[2] model, we have |r| ≤ vc(P) and
|mA| ≤ vc(P). Thus, each of the two messages in Q costs at most h ·vc(P) = O(hc(P) vc(P))
bits. J

The above proof exploits a key property of OIP[2] protocols: Bob can sample from the
conditional distribution Dm. This is possible because mB = mB(y, r) is independent of
Alice’s message mA, a property not satisfied in the stronger OIP[2]

+ model. This explains
why Theorem 5.3 does not apply to OIP[2]

+ , and indeed we shall later give an exponential
separation between OIP[2] and OIP[2]

+ in Corollary 5.19.
Theorem 5.3 implies a number of lower bounds for specific problems. We begin with disj.

I Corollary 5.4. We have Ω(n1/2) ≤ OIP[2](disj) ≤ O(n1/2 logn). In particular, disj /∈
OIP[2].

Proof. For the lower bound, we combine Theorem 5.3 with the fact that R[2,B](disj) ≥
R(disj) = Ω(n), the last step being a celebrated lower bound [21]. The upper bound follows
from the Aaronson–Wigderson protocol [2] for disj, which is in fact an MA[1,A] protocol. J
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We remark that we may replace disj in Corollary 5.4 with ip2, the “inner product mod 2”
function. Indeed, the Aaronson–Wigderson protocol also applies to ip2, and R(ip2) = Ω(n).

Recall that med is a relation on inputs in [n]m × [n]m. Corollary 5.5 below establishes a
lower bound of Ω(m1/4) on the cost of any OIP[2] protocol for med (the proof is deferred to
the full version of the paper). This justifies our use of three rounds in the polylogarithmic
cost SIP for median we gave in Theorem 3.7, as it implies that any 2-round SIP for median
based on known techniques must have polynomial cost.

I Corollary 5.5. We have Ω(m1/4) ≤ OIP[2](med) ≤ O(m1/2 log3/2 n).

We have now seen that up to polynomial (specifically, quadratic) blowup, OIP[2] is no
more powerful than ordinary R[2,B]. We now show that up to another quadratic blowup this
is in fact a characterization.

I Theorem 5.6. For all f , we have OIP[2](f) = O
(

R[2,B](f)2). In particular, OIP[2] ⊇
R[2,B].

Proof. Let Q be an R[2,B] protocol for f with cost C and error at most 1/6. Assume WLOG
that C ≥ 5 and that each of the two messages in Q is a string in {0, 1}C . We shall treat
Alice’s messages as elements of the field F = F2C via an agreed-upon bijection.

We design an OIP[2] protocol P for f , based on Q. Given an input (x, y), P begins
by choosing a (hidden) random string r shared between Alice and Bob exactly as Q would
have. From now on, think of x, y, r as fixed. This then fixes a message mB that Bob would
have sent Alice in Q, as well as a function mA : {0, 1}C → F specifying Alice’s response to
each Bob-message. Let m̃A(Z1, . . . , ZC) ∈ F[Z1, . . . , ZC ] be the multilinear extension of this
function mA. In P, Alice needs to send a message to Bob that allows him to determine
mA(mB) = m̃A(mB) with Merlin’s help. This is an instance of polynomial evaluation, so we
solve it by applying the OIP[2] polynomial evaluation protocol (PEP) from Lemma 5.2.

The polynomial m̃A is C-variate and has total degree C. Therefore, PEP has commu-
nication cost O(C log |F|) = O(C2), as does P. Next, PEP has perfect completeness, so an
honest Merlin can cause P to output 1 whenever the choice of r would have caused Q to
output 1. Finally, PEP has soundness error at most C/(|F| − 1) = C/(2C − 1) < 1/6, so a
dishonest Merlin can cause P to differ in output from Q with probability at most 1/6. Using
the error bound of 1/6 on Q, we conclude that P has completeness error at most 1/6 and
soundness error at most 1/6 + 1/6 = 1/3. J

I Corollary 5.7. For all f , we have Ω
(

R[2,B](f)1/2) ≤ OIP[2](f) ≤ O
(

R[2,B](f)2). Thus,
OIP[2] = R[2,B].

Proof. Combine Theorems 5.3 and 5.6. J

5.2 A Characterization of OIP[3]

The main goal of this subsection is to prove that OIP[3] = MA[2,B]. Theorem 5.8 below
gives a lower bound that builds on the argument in Theorem 5.3 (the proof is deferred to the
full version of the paper). Just as before, we can then derive a lower bound for the specific
problem disj.

I Theorem 5.8. Let P be an OIP[3] protocol computing f . Then there is an MA[2,B]

protocol Q computing f with hc(Q) ≤ hc(P) and vc(Q) = O(hc(P) vc(P)). In particular,
OIP[3](f) = Ω

(
MA[2,B](f)1/2), which implies OIP[3] ⊆MA[2,B].
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I Corollary 5.9. We have Ω(n1/3) ≤ OIP[3](disj) ≤ O(n1/3 logn). In particular, disj /∈
OIP[3].

Proof. Klauck [22] proved that MA(disj) = Ω(n1/2). Applying Theorem 5.8 to this result
gives the non-tight bound OIP[3](disj) = Ω(n1/4). But we observe that Klauck’s proof shows
something stronger: namely, if an MA protocol Q computes disj, then hc(Q) vc(Q) = Ω(n).
Combining Theorem 5.8 with this result, we conclude that if an OIP[3] protocol P computes
disj, then hc(P)2 vc(P) = Ω(n), and therefore hc(P) + vc(P) = Ω(n1/3).

For the upper bound, we note that Aaronson and Wigderson [2] also gave an online
MAMA protocol for disj of cost O(n1/3 logn). Every online MAMA protocol admits a
simulation in OIP[3]. J

As with Corollary 5.4, we may replace disj in the above result with ip2. Indeed, Klauck’s
result [22] implies that MA(ip2) = Ω(n1/2), and Aaronson and Wigderson’s MAMA protocol
also applies to ip2.

As we did for the second level in the OIP hierarchy, we give an upper bound that applies
to the third level and gives a characterization that is tight up to a quadratic blowup.

I Theorem 5.10. For all f , we have OIP[3](f) = O
(

MA[2,B](f)2). In particular, OIP[3] ⊇
MA[2,B].

Proof sketch. We build on the argument in Theorem 5.6 exactly as the proof of Theorem 5.8
builds on Theorem 5.3. Given an MA[2,B] protocol Q of cost C, the verification strategy
used by Alice and Bob in Q is an R[2,B] protocol of cost C, which we can replace with an
OIP[2] protocol of cost O(C2), by Theorem 5.6. After this replacement we have an OIP[3]

protocol. The remaining analysis is routine. J

I Corollary 5.11. For all f , Ω
(

MA[2,B](f)1/2) ≤ OIP[3](f) ≤ O
(

MA[2,B](f)2). Thus,
OIP[3] = MA[2,B].

Proof. Combine Theorems 5.8 and 5.10. J

5.3 A Characterization of OIP[4] and Beyond
The fourth level of the OIP hierarchy turns out to have surprising power. It can capture
all of AM, a model that lies at the frontier of our current understanding of communication
complexity classes in the sense that we do not know any nontrivial AM lower bounds.
Thanks to this surprising power, we can show that all constant-height levels of the OIP
hierarchy collapse to the fourth level.

I Theorem 5.12. For all f , we have OIP[4](f) = O(AM(f) log AM(f)). In particular,
OIP[4] ⊇ AM.

Proof. Suppose AM(f) = C. WLOG, there is a protocol Q for f with the following shape:
Bob tosses coins to generate a random string r and sends it to Merlin, who responds with a
message m, where |r|+ |m| ≤ C. Bob then sends (r,m) to Alice, who responds with a single
bit, after which Bob announces the output.

The interaction between Bob and Alice is an R[2,B] protocol (in fact, it is deterministic)
of cost C. Theorem 5.6 shows that it can be replaced with an OIP[2] protocol of cost O(C2).
Performing this replacement gives us an OIP[4] protocol for f . The cost bound can be
improved to O(C logC) by revisiting the analysis of the polynomial evaluation protocol used
to prove Theorem 5.6 and using the fact that Alice’s message in Q is just a single bit. J
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I Theorem 5.13. For each k > 0, there exists a constant ck > 0 such that for all
f , OIP[k]

+ (f) ≥ Ω
(

AM(f)ck
)
. In particular, for every constant k, we have OIP[k]

+ ⊆ AM.

Proof. Let C = OIP[k]
+ (f) and let P be an OIP[k]

+ protocol with cost C that computes f . By
definition, P uses a hidden random string and Merlin learns about this string only indirectly,
from Bob’s computed messages. We apply the Goldwasser–Sipser set lower bound technique
[16] to convert P into a protocol where all random coins are directly revealed. Specifically,
we can convert P into an AMAM · · ·AM protocol Q′, where k + 3 messages are sent in
total: Merlin’s messages are broadcast and after his final message Alice sends a message to
Bob, who announces the output. We have cc(Q′) = O(Cak ) for some constant ak ≥ 1.

We apply Babai and Moran’s round elimination techniques [6] to turn Q′ into a standard
AM protocol Q of cost at most O(cc(Q′)bk ) for some constant bk ≥ 1. The result follows by
taking ck = 1/(akbk). J

I Corollary 5.14. For all f , Ω
(

AM(f)c4
)
≤ OIP[4](f) ≤ O(AM(f) log AM(f)), where c4 is

the constant from Theorem 5.13. In particular, OIP[4] = AM, and in fact OIP[k] = AM
for every constant k ≥ 4.

Proof. Combine Theorems 5.13 and 5.12, noting that OIP[k] ⊆ OIP[k]
+ for every k ≥ 4. J

Here is an interesting point worth contemplating. On the one hand, our transformations in
the proof of Theorem 5.13 perform round reduction at the expense of destroying online-ness:
the final protocol Q is no longer online, i.e., we cannot require communications to go to
Bob alone. On the other hand, the transformation in the proof of Theorem 5.12 “restores”
onlineness at only a “slight” expense of requiring four rounds, whereas AM uses only two.
Overall, we have a collapse of the OIP hierarchy to its fourth level.

We have also noted earlier that we (regretfully) do not yet know how to place a concrete
problem outside OIP[2]

+ . Nevertheless, Theorems 5.12 and 5.13 together establish a weakness
of OIP[2]

+ : up to polynomial factors this model is no more powerful than OIP[4].

5.4 Exponential Separations in Our Complexity Zoo
Among the first four levels of the OIP hierarchy, we can now show that every pair of adjacent
levels is exponentially separated. The next three results make this precise. Recall that
inter = ¬disj is the set intersection problem.

I Theorem 5.15. We have OIP[1](index) = Ω(n1/2) whereas OIP[2](index) = O(logn log logn).

Proof. Combine Theorems 5.1 and Lemma 5.2, and then the known results that MA[1,A](f) =
Ω
(

R[1,A](f)1/2) for all f [9] (see also Theorem 5.20 in Section 5.5), and that R[1,A](index) =
Ω(n) [3]. J

I Theorem 5.16. We have OIP[2](inter) = Ω(n1/2) whereas OIP[3](inter) = O(log2 n).

Proof. For the lower bound, use R[2,B](inter) ≥ R(inter) = R(disj) = Ω(n) and then
apply Theorem 5.3.

For the upper bound, note that inter has a nondeterministic protocol with cost O(logn),
wherein Alice and Bob guess an element in the intersection of their respective sets and they
verify membership. In particular this gives MA[2,B](inter) = O(logn); in fact, Bob need
not send anything to Alice in the MA[2,B] protocol. Now apply Theorem 5.10. J
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While we do not know of a total Boolean function that separates OIP[3] from OIP[4],
we do know of a partial Boolean function whose OIP[3] communication complexity is
exponentially larger than its OIP[4] communication complexity. Specifically, Klauck [23,
Corollary 3] gives a promise problem he calls PAppMP which has Quantum Merlin-Arthur
(QMA) communication complexity Ω(n1/6) and AM communication complexity O(logn).
Since Theorem 5.8 shows that any OIP[3] protocol can be transformed into an equivalent
MA[2,B] protocol with a quadratic blowup in cost, and MA[2,B] protocols are simply
restricted versions of QMA protocols, Klauck’s lower bound on the QMA cost of PAppMP
implies that OIP[3](PAppMP) = Ω(n1/12).

Meanwhile, Theorem 5.12 shows that any AM communication protocol can be transformed
into an equivalent OIP[4] protocol with a logarithmic blowup in costs. Thus, Klauck’s upper
bound on the AM communication complexity of PAppMP implies that OIP[4](PAppMP) =
O(logn log logn).

I Theorem 5.17. We have OIP[3](PAppMP) = Ω(n1/12) whereas OIP[4](PAppMP) =
O(logn log logn).

Next, we show that, up to polynomial factors, OIP[2]
+ is at least as powerful as R[3,A],

the class of three-message randomized communication protocols in which Alice speaks first.
This will enable us to exhibit an explicit function f on domain {−1, 1}n × {−1, 1}n such
that OIP[2](f) = Ω(

√
n/ logn), while OIP[2]

+ (f) = O(log2 n).

I Theorem 5.18. For all f , we have OIP[2]
+ (f) = O

(
R[3,A](f)2).

Proof. Let Q be any three-message randomized communication protocol of cost C, with
Alice speaking first. We show how to convert Q into an OIP[2]

+ protocol P of cost O(C2).
We think of Q as consisting of one message m(1)

A from Alice to Bob, followed by a
two-message communication protocol Q′ in which Bob speaks first. Theorem 5.6 shows
how to transform Q′ into an equivalent OIP[2] protocol P ′ of cost O(C2) (note this OIP[2]

protocol depends on m(1)
A ).

Thus, we obtain an OIP[2]
+ protocol P as follows. Alice’s message to Bob in P consists

of two parts. The first specifies m(1)
A , and the second is the message she would have sent to

Bob in P ′. Bob, who learns m(1)
A from the first part of Alice’s message, now knows what

OIP[2] protocol P ′ to execute, and simply behaves the same as he would in P ′. J

Exponential separations between R[3,A] and R[2,B] are known. In particular, consider
the k-step (bipartite) pointer jumping function pjk, which interprets each of Alice and Bob’s
inputs as a list of N = Θ(n/ logn) pointers, a pointer being a (logN)-bit integer. Each
pointer in a player’s list is interpreted as pointing to (i.e., indexing) a pointer in the other
player’s list. The goal is to follow these pointers, starting at the first pointer in Alice’s list,
and output the kth pointer encountered. For example, if Alice’s input is x = (00, 01, 10, 00)
and Bob’s input is y = (01, 10, 11, 00), then pj1(x, y) = 01, pj2(x, y) = 01, pj3(x, y) = 10,
and so on. To turn pjk into a Boolean function bpjk, we take the parity of the (logN)-bit
output of pjk.

I Corollary 5.19. We have OIP[2](bpj2) = Ω(
√
n/ logn), while OIP[2]

+ (bpj2) = O(log2 n).

Proof. Nisan and Wigderson [30] showed that R[k,B](bpjk) = Ω(N/k2 − k logN). In partic-
ular, any two-message randomized communication protocol in which Bob speaks first has
cost Ω(N). Hence, Theorem 5.3 implies that OIP[2](bpj2) = Ω(

√
n/ logn).
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To prove the upper bound on OIP[2]
+ (bpj2), note that there is a trivial three-message

protocol for pj2 (and hence for bpj2) of cost O(logn) in which Alice speaks first. Now apply
Theorem 5.18. J

5.5 An Exponential Separation Between OIP[2] and OMA[k]

Theorem 5.20 establishes that for any function f , OMA[2k](f) = Ω
(

R[1,A](f)1/(k+1)). An
essentially identical lower bound was proven by Klauck and Prakash for a closely related
(though not identical) communication model; the full version of the paper provides a detailed
proof for completeness, and in the process identifies the crucial details of the communication
model that enable the lower bound to hold.

I Theorem 5.20. For any function f and constant k, OMA[2k](f) = Ω
(

R[1,A](f)1/(k+1)).
The main property of the OMA[k] communication model exploited in our proof of

Theorem 5.20 is the following: in any OMA[k] protocol P , for all i ≤ k, Alice can determine
Bob’s ith message to Merlin in P on her own. In particular, the same lower bound would
apply to any variant of online Arthur-Merlin communication models in which Bob’s messages
to Merlin must be independent of his input y. This is the intuitive reason why the OIP[2]

model is exponentially more powerful than the OMA[k] model for any constant k: in the
OIP[2] model, Bob’s message to Merlin may depend on his input y, while this is not allowed
in the OMA[k] model.

Combining Theorem 5.20 with Lemma 5.2, which says that OIP[2](index) = O(logn
log logn), we obtain an exponential separation between OIP[2] and OMA[k] for any constant
k > 0.

I Corollary 5.21. For every constant k > 0, we have OIP[2] 6⊆ OMA[k]. J

6 Conclusion

Our primary objects of study in this paper were constant-round interactive protocols for
verifying outsourced streaming computations. Our main algorithmic contributions were to
give constant-round streaming interactive proofs for a large class of “query” problems. Our
protocols are exponentially more efficient than what was believed possible based on prior
work, and demonstrate that in the streaming setting, “hidden” coins are exponentially more
powerful than public coins.

We also introduced new “online” communication hierarchies, OIP+ and OIP, which can
be seen as restricted variants of the standard Arthur-Merlin communication model. The
flow of information in the OIP+ and OIP models is severely restricted (neither Bob nor
Merlin can speak to Alice), yet OIP+ is still powerful enough to simulate any streaming
interactive proof, and OIP powerful enough to simulate all known streaming interactive
proofs. Our study revealed that the online nature of these communication models leads
them to behave very differently from classical interactive proofs, and allowed us to establish
strong limitations on the power of existing techniques for developing constant-round SIPs.
It also yielded a surprising characterization of the communication complexity class AM in
terms of online communication models (namely, AM = OIP[4] = OIP[4]

+ ). We believe this
characterization may prove useful in establishing non-trivial AM lower bounds, a problem
that has been identified [23] as an important “first step” toward resolving the Π2 6= Σ2
problem in two-party communication complexity, one of the most important problems left
open by Babai et al. [5].
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Many questions remain for future work, but here we highlight just one: proving a
superlogarithmic lower bound on the OIP[2]

+ communication cost of an explicit function.
Progress on this question would yield the first superlogarithmic lower bounds on the cost of
two-round SIPs. Moreover, we have shown that standard techniques easily establish that
OIP[2]

+ is a subset of AM, but have been unable to prove any superlogarithmic lower bounds
against OIP[2]

+ protocols. Proving OIP[2]
+ lower bounds therefore represents an important

(and potentially tractable) “zeroth step” toward resolving Π2 6= Σ2.
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Abstract
We provide a general framework to remove short advice by formulating the following compu-
tational task for a function f : given two oracles at least one of which is honest (i.e. correctly
computes f on all inputs) as well as an input, the task is to compute f on the input with the
help of the oracles by a probabilistic polynomial-time machine, which we shall call a selector.
We characterize the languages for which short advice can be removed by the notion of selector:
a paddable language has a selector if and only if short advice of a probabilistic machine that
accepts the language can be removed under any relativized world.

Previously, instance checkers have served as a useful tool to remove short advice of probabilis-
tic computation. We indicate that existence of instance checkers is a property stronger than that
of removing short advice: although no instance checker for EXPNP-complete languages exists
unless EXPNP = NEXP, we prove that there exists a selector for any EXPNP-complete language,
by building on the proof of MIP = NEXP by Babai, Fortnow, and Lund (1991).

1998 ACM Subject Classification F.1.1 Models of Computation;, F.1.2 Modes of Computation,
F.1.3 Complexity Measures and Classes

Keywords and phrases nonuniform complexity, short advice, instance checker, interactive proof
systems, probabilistic checkable proofs
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1 Introduction

Blum and Kannan [10] introduced the notion of instance checker. Roughly speaking, an
instance checker for a function f is an efficient probabilistic machine that, given access to an
oracle, checks if the oracle computes f(x) correctly on a given instance x; the oracle models a
possibly buggy program that purports to compute f , and an instance checker verifies whether
the program works correctly on a given instance.

The notion of instance checker is intimately related to interactive proof systems: the
line of work showing the power of interactive proofs [22, 24, 6] yielded instance checkers for
P#P-, PSPACE-, and EXP-complete languages; in addition, Blum and Kannan [10] gave a
characterization of the languages with an instance checker by a function-restricted interactive
proof system. Since any language with an interactive proof protocol is in NEXP [17], any
language with an instance checker must be in NEXP ∩ coNEXP.

In this paper, we investigate a computational task weaker than instance checking of a
(Boolean) function f : we are given access to two oracles (instead of a single oracle) as well
as an input x; again, both of the oracles purport to compute f ; however, it is assumed that
at least one of the two oracles is honest, i.e. computes f(q) correctly on all inputs q; and
the task is to compute f(x) with the help of the oracles in polynomial time. We shall call a
probabilistic machine doing the task a (probabilistic) selector for f .

If the answers of oracles on the input x agree, then we have only to output the answer,
which is surely correct by the assumption. Thus, the task of a selector is essentially to
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identify the honest oracle when two oracles disagree on x (i.e. one of the oracles asserts that
f(x) = 0, whereas the other asserts that f(x) = 1).

Our main result shows that there exists a selector for EXPNP-complete languages. We
also show that the notion of selector does not change even if there are one honest oracle
and polynomially many dishonest oracles. Thus, these results can be encapsulated in the
following phrase: “identifying an honest oracle among many is strictly weaker than instance
checking unless EXPNP = NEXP.”

Although the task is weaker than instance checking, a situation in which one may assume
existence of an honest oracle naturally arises out of computation with advice: Suppose, for
example, that a (paddable) language L is computed by a probabilistic machine M with
advice of one bit. We regard M with advice 0 and 1 as two oracles A0 and A1, respectively.
By the definition of advice, either A0 or A1 is honest on all the inputs (of the same length).
Thus, the advice of one bit can be removed if L has a selector. We can in fact remove advice
of size O(logn), since a selector can identify an honest oracle among polynomially many
oracles.

1.1 Removing Short Advice for Probabilistic Computation
In early work as to removing short advice for probabilistic computation, Trevisan and
Vadhan [25] gave an insight into the potential of instance checkability: they demonstrated
that instance checkability can be exploited to remove short advice. Based on the existence
of an instance checker for EXP-complete languages, they showed a quantitative tradeoff
from a uniform worst-case-hardness assumption (i.e. EXP 6⊆ BPTIME(t(nO(1)))) to average-
case hardness of EXP (i.e. EXP contains languages that cannot be solved by probabilistic
computation on a fraction better than 1

2 + 1
t of inputs in time t).

They also argued that their result cannot be obtained via black-box uniform reductions.
Typical constructions of a worst-case to average-case connection are based on the following
scheme: we convert a function f into another function f ′, which is an error-correcting code
of f ; if we have a “black-box” algorithm that computes f ′ on a fraction greater than 1

2 + ε of
the inputs, then a probabilistic machine that takes advice can compute f on all inputs by
decoding f ′. Since it is impossible to uniquely decode f ′ for small ε, the advice is used to
identify f and is provably indispensable.

Indeed, it was the instance checkability of EXP-complete languages that broke the black-
box construction in the proof of Trevisan and Vadhan; the instance checkability enabled
them to remove advice of logarithmic size. Therefore, it will be helpful for future research to
closely understand the property that they actually exploited.

Subsequent to their work, instance checkability has since been exploited to cope with
short advice for probabilistic computation: for example, Barak [7] proved the first hier-
archy theorem for probabilistic computation with short advice; Buhrman, Fortnow, and
Santhanam [12] unconditionally separated BPEXP from BPP with advice of subpolynomial
size; and Buhrman, Fortnow, Koucký, and Loff [11] gave some evidences that a deterministic
efficient computation with oracle access to the set of Kolmogorov-random strings can be
simulated by a probabilistic efficient computation.

1.2 Our Results
In fact, the notion of selector captures a property of removing short advice:

I Theorem 1.1. Let L be an arbitrary paddable language. The following are equivalent:
1. There exists a selector for L.
2. For any oracle R ⊆ {0, 1}∗, it holds that L ∈ BPPR// log implies L ∈ BPPR.
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That is, a paddable language has a selector if and only if short advice can be removed under
any relativized world. (“//′′ means advice that can depend on coin flips of probabilistic
machines as well as input length [25].)

In addition, we construct a selector for EXPNP-complete languages, thereby indicating
an essential difference between selectors and instance checkers. We also give an upper bound
on the languages with a selector:

I Theorem 1.2 (Main Theorem).
1. Every EXPNP-complete language has a selector.
2. Any language with a selector is in Sexp

2 (which is an exponential-time analogue of Sp
2).

Thus, existence of an instance checker is a property stronger than that of removing
short advice (or, equivalently, existence of a selector): although no instance checker for
EXPNP-complete languages exists unless EXPNP = NEXP, short advice of a probabilistic
machine that accepts EXPNP-complete languages can be removed.

Our Techniques
The most technical part of this paper is a proof of the main theorem (Theorem 1.2, Part 1).
In order to construct a selector for EXPNP-complete languages, we build on the proof of
MIP = NEXP by Babai, Fortnow, and Lund [6]. As pointed out by Gábor Tardos in the
paper [6], the complexity of honest provers of the interactive proof system for NEXP-complete
languages can be bounded above by EXPNP. We crucially use this fact to check satisfiability
of an exponential-sized formula with the help of an EXPNP-complete oracle. We also compare
two exponential-sized strings by performing a binary search.

Thanks to plenty of machinery that has been cultivated together with interactive proof
systems, program checking, and PCPs, we can prove the main theorem by careful combinations
of such machinery. For example, we exploit a multilinearity test [6] and the self-correction of
low-degree polynomials [8, 21].

Due to the usage of arithmetization, we suspect that our proof of the main theorem does
algebrize [1] but does not relativize.

Variants of Selectors
We also investigate other variants of selectors: a deterministic selector and a nonadaptive
deterministic selector. We focus on the “suprema” of the languages with a selector, namely,
upper bounds on these languages and existence of a selector for languages complete for a
complexity class that is close to the upper bounds. (Note that the languages with a selector
are not necessarily closed downward. For example, although NEXP ⊆ EXPNP, we do not
know whether NEXP-complete languages have a selector or not.)

For a nonadaptive deterministic selector, we prove polynomial-time analogues of Theo-
rem 1.2:

I Theorem 1.3.
1. Every PNP-complete language has a nonadaptive deterministic selector.
2. Any language with a nonadaptive deterministic selector is in Sp

2 .

The proofs of this theorem will clearly illustrate the basic ideas for Theorem 1.2.
Notice that PNP is close to the upper bound Sp

2 since PNP ⊆ Sp
2 ⊆ ZPPNP [23, 14]. (Under

suitable hardness assumptions, it holds that PNP = Sp
2 by derandomization [19].)

For a deterministic selector, the supremum is PSPACE:
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I Theorem 1.4.
1. Every PSPACE-complete language has a deterministic selector. More generally, any

downward self-reducible language has a deterministic selector.
2. Any language with a deterministic selector is in PSPACE.

As with Theorem 1.1, a property of removing short advice for deterministic computation
can be characterized by existence of a deterministic selector:

I Theorem 1.5. Let L be an arbitrary paddable language. The following are equivalent:
1. There exists a deterministic selector for L.
2. For any oracle R ⊆ {0, 1}∗, it holds that L ∈ PR/ log implies L ∈ PR.

1.3 Comparison with Prior Work
In seminal work by Karp and Lipton [18] as to collapses of a uniform class contained in a
nonuniform class, it was shown that NP ⊆ P/ log implies NP ⊆ P and PSPACE ⊆ P/ log
implies PSPACE ⊆ P. These results are essentially equivalent to the existence of deterministic
selectors for NP- and PSPACE-complete languages, respectively.

Fortnow and Klivans [16] observed that NEXP ⊆ BPP// log implies NEXP = BPP
by combining previous results. Similarly, it is folklore that EXPNP ⊆ BPP// log implies
EXPNP = BPP. This follows by combining the result by Buhrman and Homer [13] stating
that EXPNP ⊆ EXP/poly implies EXPNP = EXP, the existence of an instance checker (or a
selector) for EXP-complete languages, and BPP// log ⊆ P/poly (see [16]).

We clarify the differences between the folklore and our results in two respects. First,
our results can be relativized on the right-hand side. Second, selectors can be used to
quantitatively remove advice of logarithmic size: if we allow a machine to run in time t
(instead of polynomial time), then advice of size log t can be removed.

I Corollary 1.6 (Analogous to Proposition 5.6 in [25]). There are an EXPNP-complete
language L and a constant d ∈ N such that, for any nice time bound1 t : N → N and any
oracle R ⊆ {0, 1}∗, if L ∈ BPTIMER(t(n))// log t(n) then L ∈ BPTIMER(t(nd)).

We mention in passing that, by substituting selectors for instance checkers in the proofs
of Trevisan and Vadhan [25], one can obtain a quantitative tradeoff from a uniform worst-
case-hardness assumption on EXPNP to a uniform average-case hardness of EXPNP (see [25,
Theorem 5.7]).

1.4 Application: Random Strings vs. Randomized Computation
In Section 6, we will give another application in order to demonstrate usefulness of the notion
of selector, by simply substituting selectors for instance checkers in the previous work by
Buhrman, Fortnow, Koucký, and Loff [11].

They tried to show that a deterministic polynomial-time computation with oracle access
to the set of Kolmogorov-random strings is, in some sense, equivalent to a probabilistic
polynomial-time computation; they modeled oracle access to the set of Kolmogorov-random
strings as advice strings of high nonuniform complexity. Although the nonuniform complexity
of the advice strings is required to be much higher than that of Kolmogorov-random strings,
they showed, as a partial result, that if a language L can be solved in deterministic polynomial

1 Although the definition of a nice time bound is the same as in [25], we note that the condition t(n) ≤ 2n

is not needed here.
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time with high nonuniform advice, then L is in BPP with advice of almost linear size [11,
Theorem 13].

Because the goal is to show that L is in BPP without any advice, they further observed
that one can dispense with the advice of almost linear size if there exists an instance checker
for L. From this observation, they showed that, for any class C ∈ {NP,P#P,PSPACE,EXP},
if some C-complete language can be solved in deterministic polynomial time with high
nonuniform advice, then C ⊆ BPP [11, Theorem 15].

In fact, they proved this result by analyzing the two cases: For C ∈ {P#P,PSPACE,
EXP}, they used an instance checker for C-complete languages, whose existence was shown
by [22, 24, 6]; Unfortunately, because it is not known whether NP-complete languages have
instance checkers or not, they needed to prove the result in another way solely for C = NP.

The notion of selector, however, enables us to show the result in a unified way and to
extend the result from {NP,P#P,PSPACE,EXP} to any classes whose complete languages
have a selector. Given the fact that many languages have selectors (e.g. languages with
instance checkers and downward self-reducible languages), it becomes more plausible that
we can dispense with the advice of almost linear size; thereby we slightly strengthen the
connection between Kolmogorov-random strings and randomized computation.

Organization
In Section 2, we give formal definitions, common properties of selectors, and a proof of
Theorem 1.1. Sections 3, 4, and 5 are devoted to investigating nonadaptive deterministic
selectors, probabilistic selectors, and deterministic selectors, respectively. We mention some
possible directions for future work in Section 7.

Preliminaries and Notations
We assume that the reader is familiar with basics of computational complexity (e.g. [2]).

For a Turing machine M , let M(x) denote the output of M on input x ∈ {0, 1}∗. For
an oracle Turing machine M and oracles A0, A1 ⊆ {0, 1}∗, let MA0,A1 represent a machine
equipped with access to oracle A ⊆ {0, 1}∗ such that A(i · q) = Ai(q), for each i ∈ {0, 1} and
for any q ∈ {0, 1}∗. We identify false and true with 0 and 1, respectively. We also identify a
language L ⊆ {0, 1}∗ with its characteristic function from {0, 1}∗ to {0, 1}. For a Boolean
formula ϕ in n variables, we abuse notation and write ϕ : {0, 1}n → {0, 1}.

We say that a language L is paddable if there exists a polynomial-time machine that, on
input (x, 1m) where x ∈ {0, 1}n and n ≤ m, outputs a string y of length m such that y ∈ L
if and only if x ∈ L.

2 Definitions and Common Properties of Selectors

In this section, we give formal definitions of selectors and show common properties that all
types of selectors have. First, we define a probabilistic selector:

IDefinition 2.1 (Probabilistic Selector). A (probabilistic) selector S for a language L ⊆ {0, 1}∗
is a probabilistic polynomial-time oracle Turing machine which computes L with high
probability, given arbitrary two oracles A0, A1 ⊆ {0, 1}∗ such that A0 or A1 is equal to L.
That is, for any input x ∈ {0, 1}∗ and oracles A0, A1 ⊆ {0, 1}∗,

L ∈ {A0, A1 } =⇒ Pr
[
SA0,A1(x) = L(x)

]
≥ 2

3 ,

where the probability is taken over coin flips of S.
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Note that the success probability 2
3 in Definition 2.1 can be enhanced by repetitions. We

often abbreviate a probabilistic selector as a selector.
An oracle equal to L is said to be honest; otherwise it is said to be dishonest.
Next, we define a deterministic selector and a nonadaptive deterministic selector:

I Definition 2.2 (Deterministic Selector). A deterministic selector for a language L is a
deterministic polynomial-time oracle machine S such that SL,X(x) = SX,L(x) = L(x) for
any oracle X ⊆ {0, 1}∗ and for any input x ∈ {0, 1}∗.

I Definition 2.3 (Nonadaptive Deterministic Selector). A nonadaptive deterministic selector
S for a language L is a deterministic polynomial-time oracle machine such that

SL,X(x) = SX,L(x) = L(x) for any oracle X ⊆ {0, 1}∗ and any input x ∈ {0, 1}∗, and
S is nonadaptive, i.e. there exists a polynomial-time machine which, on input x ∈ {0, 1}∗,
outputs the query set Q(x) of all the queries that S makes to either of the oracles.

We state a useful structural property:

I Proposition 2.4. The class of the languages with a selector is closed under polynomial-time
Turing equivalence. Namely, L1 ≤pT L2 and L2 ≤pT L1 imply that if L1 has a selector then so
does L2.

In particular, it is closed under complement. Moreover, for any complexity class C, if a
specific C-complete language has a selector, then so does an arbitrary C-complete language.

Proof. The proof is essentially the same with Beigel’s theorem [10], which shows the same
closure property of instance checkers. The idea is as follows: reduce a L2 problem to a L1
problem by using the reducibility from L2 to L1, and solve the L1 problem by running a
selector for L1, while converting its query (which is an instance of L1) into an instance of L2.

Let Mij be a polynomial-time oracle machine that witnesses the polynomial-time Turing
reduction Li ≤pT Lj for each (i, j) ∈ { (1, 2), (2, 1) } (that is, MLj

ij (x) = Li(x) for any x), and
S be a selector for L1. The following algorithm yields a selector for L2: Given an input
x ∈ {0, 1}n and two oracles A0, A1, simulate M21(x) in order to compute L2(x). If M21
makes a query q, then we try to answer it with L1(q), by running S(q). If S makes a query
q′ to the ith oracle ( i ∈ {0, 1} ), then answer it with MAi

12 (q′).
Let Ai be an honest oracle (i.e. Ai = L2). Then, we have MAi

12 (q′) = ML2
12 (q′) = L1(q′),

and hence S(q) is simulated under the existence of the honest oracle; thus it outputs L1(q)
correctly with high probability (say, with probability at least 1− 2−n, by running the selector
O(n) times). Therefore, the simulation ofM21(x) results in outputting L2(x) with probability
at least 1− 2−nnO(1). J

I Remark 2.5. Similarly, the class of languages with a deterministic selector is closed under
polynomial-time Turing equivalence, and the class of languages with a nonadaptive deter-
ministic selector is closed under polynomial-time truth-table (i.e. nonadaptive) equivalence.

To prove Theorem 1.1, we show that the definitions of selectors are robust even if we
consider a situation in which we are given polynomially many oracles.

I Lemma 2.6. For any language L ⊆ {0, 1}∗, the following are equivalent:
1. There exists a selector for L.
2. There exists a selector for L that identifies an honest oracle among polynomially many

oracles.
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The latter can be formally stated as follows: for any polynomial m : N→ N, there exists
a probabilistic polynomial-time oracle Turing machine S such that, on input length n ∈ N, it
holds that Pr

[
SA(x) = L(x)

]
≥ 2

3 for any x ∈ {0, 1}n, where A is an arbitrary oracle such
that there exists an index i ∈ {1, · · · ,m(n)} that satisfies A(i, q) = L(q) for all q ∈ {0, 1}∗.

Proof. The one direction is obvious: If there exists a selector that works among m(n) oracles,
then letting m(n) := 2 yields a selector that works among two oracles.

Conversely, let S be a selector (that identifies an honest oracle among two oracles) with
probability at least 1− 1

3m(n) . Given an oracle A, let Ai(q) denote A(i, q) for any i ∈ N. On
input x ∈ {0, 1}n, we first make a query x to all the oracles A1, · · · , Am(n), and divide them
into the two sets according to their answers:

C0 = { j ∈ {1, · · · ,m(n)} | Aj(x) = 0 },
C1 = { k ∈ {1, · · · ,m(n)} | Ak(x) = 1 }.

That is, Cα (α ∈ {0, 1} ) is the set of the indices of all the oracles asserting that L(x) = α.
Next, we repeat the following until C0 = ∅ or C1 = ∅: Pick arbitrary elements j ∈ C0

and k ∈ C1. We check which is a supposedly honest oracle by running SAj ,Ak on input x.
If SAj ,Ak (x) = 0, then we doubt Ak and thus eliminate k from C1; Otherwise we doubt Aj
and eliminate j from C0.

Finally, we output 1 if and only if C1 6= ∅.
Now let us analyze this algorithm. It runs in polynomial time because |C0| + |C1| is

decreased by one in each repetition.
We claim the correctness of the algorithm. For simplicity, we assume that L(x) = 0.

Then, there exists an index i ∈ {1, · · · ,m(n)} such that Ai is honest and i ∈ C0. If i ∈ C0
and some k ∈ C1 are picked in a repetition, then Pr

[
SAi,Ak (x) = 0

]
≥ 1− 1

3m(n) . That is, i
remains in C0 with probability at least 1− 1

3m(n) . Since i is picked at most |C1| (≤ m(n) )
times, the probability that i remains in C0 is at least 1−m(n) · 1

3m(n) = 2
3 . J

I Remark 2.7. Although Lemma 2.6 is stated only for a probabilistic selector, analogous
statements hold for a deterministic selector and a nonadaptive deterministic selector. For a
deterministic selector, one can easily check that the same proof works. For a nonadaptive
deterministic selector, we must compute the query set in polynomial time. On input
x, let Q(x) denote the query (to either A0 or A1) set of a selector that identifies an
honest oracle among two oracles. Then we can define all the set of possible queries as
Q′(x) := { (i, q) ∈ N×{0, 1}∗ | 1 ≤ i ≤ m(|x|), q ∈ Q(x)∪{x} }, which is clearly computable
in polynomial time.

By using Lemma 2.6, we characterize the class of the paddable languages with a selector
by the property that short advice can be removed under any relativized world. In fact, we
can prove a statement stronger than Theorem 1.1:

I Theorem 2.8.
1. For any paddable language L, if L has a selector, then L ∈ BPPR// log implies L ∈ BPPR

for any oracle R ⊆ {0, 1}∗.
2. For any language L, if L ∈ PR/1 implies L ∈ BPPR for any oracle R ⊆ {0, 1}∗, then L

has a selector.

As a corollary, we immediately obtain Theorem 1.1 (note that PR/1 ⊆ BPPR// log).
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Proof.

Part 1. Let M be a polynomial-time oracle machine which witnesses L ∈ BPPR//a, where
a(n) = O(logn). That is, there exists an advice function α : {0, 1}∗ → {0, 1}∗ such that, for
every n ∈ N,

Pr
r∈{0,1}t(n)

[
∀x ∈ {0, 1}n, MR(x, r, α(r)) = L(x)

]
≥ 5

6 , (1)

where |α(r)| = a(n) and t is a polynomial (see also [25, Definition 5.1]).
Let l(n)

(
= nO(1) ) be an upper bound on the running time of a selector for L on inputs

of length n. By Lemma 2.6, there exists a selector S that can identify an honest oracle
among m(n) oracles for m(n) := 2a(l(n)) = nO(1) with probability at least 5

6 . By padding, we
may assume that S makes only queries of length exactly l(n) on each input length n ∈ N

Consider the following probabilistic algorithm: On input x ∈ {0, 1}n, pick a string
r ∈R {0, 1}t(l(n)) uniformly at random, and define oracles by Ai(q) := MR(q, r, i) for any
q ∈ {0, 1}l(n), where i ∈ {1, · · · ,m(n)} is identified with i ∈ {0, 1}a(l(n)). Simulate S on
input x, answering its queries q ∈ {0, 1}l(n) to Ai by computing MR(q, r, i).

If a “good” string r is picked (whose probability is at least 5
6 by (1)), then we have

Ai(q) = MR(q, r, i) = L(q) for any q ∈ {0, 1}l(n), where i = α(r). That is, Ai is honest for
some i with probability at least 5

6 . Thus, the algorithm computes L correctly with probability
at least 1− 1

6 −
1
6 = 2

3 .

Part 2. We prove the contraposition. Assume that L does not have any selectors.
Recall that we regard the computation given oracle access to two oracles R0, R1, namely

MR0,R1 , as MR where R(i · q) = Ri(q) for each i ∈ {0, 1}. Thus, the goal is to show that
there exist oracles R0, R1 ⊆ {0, 1}∗ such that L ∈ PR0,R1/1 and L 6∈ BPPR0,R1 .

We use a diagonalization argument on all the probabilistic polynomial-time oracle machine
M1,M2, · · · . We construct R(e)

0 , R
(e)
1 at stage e ∈ N, and then define Ri :=

⋃
eR

(e)
i for each

i ∈ {0, 1}.
We will construct them so that, for each n ∈ N, there exists jn ∈ {0, 1} such that

Rjn
(q) = L(q) for any q ∈ {0, 1}n. Thus, L ∈ PR0,R1/1 holds because we can make a query

x to obtain Rjn(x) = L(x) with advice {jn}n∈N of one bit.
Let us now construct R(e)

0 , R
(e)
1 , and l(e) ∈ Z, where l(e) represents the maximum length

of the strings that have been fixed. At stage e = 0, we set R(0)
0 = R

(0)
1 = ∅, and l(0) := −1.

At stage e ≥ 1, we claim that R(e−1)
0 and R(e−1)

1 can be extended so that some input x(e)

can fool Me:
I Claim 2.9. For each e ≥ 1, there exist oracles A0, A1 ⊆ {0, 1}∗ and a string x(e) ∈ {0, 1}∗
such that
1. Ai agrees with R(e−1)

i on all the strings of length at most l(e−1) for each i ∈ {0, 1},
2. either A0 or A1 agrees with L on all the strings of length greater than l(e−1), and
3. Pr

[
MA0,A1
e (x(e)) = L(x(e))

]
< 2

3 .

Proof of Claim 2.9. Assume otherwise. That is, for any oracles A0, A1 ⊆ {0, 1}∗ and string
x ∈ {0, 1}∗, we have Pr

[
MA0,A1
e (x) = L(x)

]
≥ 2

3 if Properties 1 and 2 hold. Then, the
following algorithm yields a selector for L, which contradicts the assumption: we hardwire
all the strings in R(e−1)

i of length at most l(e−1) into a table; given oracles A0, A1 one of
which agrees with L, we simulate Me, answering its queries q to Ai ( i ∈ {0, 1} ) with the
content of the table if |q| ≤ l(e−1) and with Ai(q) otherwise. J
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Define l(e)
(
> l(e−1) ) as an upper bound on the length of the queries that MA0,A1

e (x(e))
makes. Then, define R(e)

i as R(e)
i (q) := R

(e−1)
i (q) = Ai(q) if |q| ≤ l(e−1); R(e)

i (q) := Ai(q)
if l(e−1) < |q| ≤ l(e); and R

(e)
i (q) = 0 otherwise, for each q ∈ {0, 1}∗. This completes the

construction of stage e.
On one hand, x(e) witnesses MR0,R1

e not computing L on input x(e) for any e ≥ 1, by
Property 3; thus, we have L 6∈ BPPR0,R1 . On the other hand, for each input length n ∈ N,
either R0 or R1 agrees with L on {0, 1}n, by Property 2; thus, we have L ∈ PR0,R1/1. J

I Remark 2.10. Again, the analogous statement (Theorem 1.5) holds for a deterministic
selector. A proof is essentially the same and hence is omitted.

One can also prove the quantitative version (Corollary 1.6) of Part 1 of Theorem 2.8 by
changing parameters in the proofs of Theorem 2.8 and Lemma 2.6.

3 Nonadaptive Deterministic Selector

In this section we prove Theorem 1.3.
We first prove Part 1 of Theorem 1.3, which states that every PNP-complete language

has a nonadaptive deterministic selector. It is sufficient to show that a specific PNP-complete
language has a selector (recall Proposition 2.4 and Remark 2.5). We construct a nonadaptive
deterministic selector for the following canonical PNP-complete language (see [20] for a proof
of its completeness).

I Definition 3.1 (Lexicographically Maximum Satisfying Assignment; Krentel [20]). The lexi-
cographically maximum satisfying assignment problem contains all the pairs (ϕ, k) such that
ϕ : {0, 1}n → {0, 1} is a satisfiable Boolean formula in n variables for some n ∈ N, and ak = 1,
where a1 · · · an ∈ {0, 1}n denotes the lexicographically maximum satisfying assignment of ϕ.

In other words, the lexicographically maximum satisfying assignment problem is the
decision version of the problem of answering, given a Boolean formula ϕ in n variables, the
lexicographically maximum satisfying assignment if ϕ is satisfiable and 0n otherwise. Note
that it is implicit in the definition that the answer is 0n for an unsatisfiable Boolean formula.

Proof of Part 1 of Theorem 1.3. We show an algorithm of a selector for the lexicographi-
cally maximum satisfying problem, together with its analysis. Let us call two oracles A0 and
A1.

On input (ϕ, k), the set of all the queries that we make is { (ϕ, j) | j ∈ {1, · · · , n} },
where n ∈ N is the number of variables in ϕ. The (presumably) lexicographically maximum
satisfying assignment asserted by each oracle Ai (i ∈ {0, 1}) can be obtained by concatenating
the answers of the oracle, namely Ai(ϕ, 1) ·Ai(ϕ, 2) · · ·Ai(ϕ, n) =: vi ∈ {0, 1}n.

If the kth bits of v0 and v1 agree, then we simply output it because the oracles agree on
input (ϕ, k).

Otherwise v0 is not equal to v1. Therefore, we may assume without loss of generality
that v0 < v1. We check whether v1 is a satisfying assignment or not by evaluating ϕ(v1). If
ϕ(v1) = 1, then we trust the oracle A1 and output A1(ϕ, k) because A1 showed a satisfying
assignment larger than v0; otherwise we doubt A1 and output A0(ϕ, k) because A1 tried to
cheat us by answering an unsatisfying assignment. J

Then we show that any language with a nonadaptive deterministic selector is in Sp
2 .
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Proof of Part 2 of Theorem 1.3. Let L be a language with a nonadaptive deterministic
selector S. We claim that L is in Sp

2 . Let Q(x) = {q1, · · · , qm} be the query set of S on
input x ∈ {0, 1}∗.

We consider the following polynomial-time machine M : Suppose that the input to M is
(x, y, z) ∈ {0, 1}n × {0, 1}m × {0, 1}m. Let y = y1 · · · ym and z = z1 · · · zm. M simulates the
selector S on input x. If S makes a query qi to the oracle A0, then it is answered with yi.
Similarly, if S makes a query qi to the oracle A1, then it is answered with zi.

Then, there exists y ∈ {0, 1}m such that M(x, y, z) = L(x) for any z ∈ {0, 1}m. Indeed,
if y is the concatenation of L(q1), · · · , L(qm), then by the definition of a nonadaptive
deterministic selector, M(x, y, z) correctly outputs L(x) for any z ∈ {0, 1}m, because all the
queries that S makes to A0 are answered correctly. Similarly, there exists z ∈ {0, 1}m such
that M(x, y, z) = L(x) for any y ∈ {0, 1}m. J

4 Probabilistic Selector

In this section we investigate probabilistic selectors.
First, we show that probabilistic selectors can be constructed based on instance checkers.

An instance checker is formally defined as follows:

I Definition 4.1 (Instance Checker [10]). An instance checker C for a language L is a
probabilistic polynomial-time oracle machine such that, given any oracle A ⊆ {0, 1}∗,
1. if A = L then CA accepts with high probability, i.e. Pr

[
CA(x) = 1

]
≥ 2

3 on all the input
x ∈ {0, 1}∗, and

2. for any input x ∈ {0, 1}∗, if A(x) 6= L(x) then CA(x) rejects with high probability, i.e.
Pr
[
CA(x) = 0

]
≥ 2

3 ,
where the probability is taken over coin flips of C.

I Proposition 4.2. Every language with an instance checker has a selector.

Proof. Suppose that a language L has an instance checker C. Given input x ∈ {0, 1}∗ and
two oracles A0, A1 ⊆ {0, 1}∗, we check which is honest, A0 or A1, by computing CA0(x). If
CA0(x) accepts, then we trust A0 and output A0(x); otherwise we doubt A0 and output
A1(x).

Let us analyze the algorithm above. If A0 = L, then CA0(x) accepts with probability at
least 2

3 , and hence we can output A0(x) = L(x) correctly with probability at least 2
3 .

Otherwise, it must hold that A1 = L. If A0(x) = L(x), then we can surely output L(x)
correctly since A0(x) = A1(x) = L(x). If A0(x) 6= L(x), then CA0(x) rejects with probability
at least 2

3 , and thus we can output A1(x) = L(x) correctly with probability at least 2
3 . J

Next, we show an upper bound on the languages with a probabilistic selector. For
completeness, we include a definition of Sexp

2 , which is a straightforward exponential-time
analogue of Sp

2 :

I Definition 4.3. We say that a language L is in Sexp
2 if there exist a time-constructible

function t(n) = 2nO(1) and a Turing machine M running in time 2|x|O(1) on input (x, ·, ·) such
that, for any input x ∈ {0, 1}∗,

∃y ∈ {0, 1}t(|x|),∀z ∈ {0, 1}t(|x|), M(x, y, z) = L(x),

∃z ∈ {0, 1}t(|x|),∀y ∈ {0, 1}t(|x|), M(x, y, z) = L(x).

The proof itself is essentially a corollary of Part 2 of Theorem 1.3:
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Proof of Part 2 of Theorem 1.2. Notice that a probabilistic selector can be simulated by
an exponential-time nonadaptive deterministic selector. In addition, every language with an
exponential-time nonadaptive deterministic selector is in Sexp

2 , which is an exponential-time
analogue of Part 2 of Theorem 1.3. Combining these two facts, it follows that every language
with a probabilistic selector is in Sexp

2 . J

4.1 Selector for EXPNP-complete Languages
In this subsection we prove the main theorem (Theorem 1.2, Part 1). That is, we construct
a selector for EXPNP-complete languages.

Proof Sketch
We sketch the proof of the main theorem. We will construct a selector for a specific
EXPNP-complete language, which is a problem of finding the lexicographically maximum
satisfying assignment of a succinctly described Boolean formula FΦ : {0, 1}2n → {0, 1}. The
basic strategy to construct a selector for this language is the same with that of Part 1 of
Theorem 1.3: Given access to two oracles A0, A1 ⊆ {0, 1}∗, we request them to reveal the
presumably lexicographically maximum satisfying assignments V0, V1 ∈ {0, 1}2

n asserted by
A0, A1, respectively. The rest of the algorithm consists of two parts: First, we determine
the larger assignment of V0 and V1, checking whether V0 < V1 or V0 > V1. Second, we verify
whether the larger assignment satisfies the formula FΦ or not. Obviously, the obstacle is that
there can be exponentially many variables and clauses in FΦ.

For the second part, Babai, Fortnow, and Lund [6] showed that, given access to provers
(or, equivalently, an oracle), one can efficiently check that exponentially many constraints in
FΦ are satisfied: basically, by encoding an assignment as a multilinear function and using
arithmetization, it holds that the assignment satisfies all the clauses in FΦ if and only if the
sum of some low-degree polynomials (that can be computed by the multilinear function and
the arithmetization) over a subdomain {0, 1}l is equal to 0, and the latter can be verified by
using the sum-check protocol [22] (called the LFKN protocol in [6]). As pointed out by Gábor
Tardos [6], since EXPNP is capable of finding a satisfying assignment of an exponential-sized
Boolean formula, the honest oracle in the protocol above can be implemented in EXPNP;
thus, given access to an honest EXPNP-complete oracle (which is A0 or A1), one can verify
the satisfiability.

For the first part, we perform a binary search to obtain the lexicographically first index z
such that V0 and V1 disagree. Thus, we need
1. to check if V0 = V1 on some range of indices, and
2. to split the range into two parts.
We observe that these can be done if we encode a satisfying assignment by the multilinear
extension (as with [6]): Let F be a finite field. We regard the assignments V0, V1 ∈ {0, 1}2

n

as vectors in F2n . There is a bijective correspondence between a vector V ∈ F2n and a
multilinear function Ṽ : Fn → F. For example, if n = 2 and V = (V00, V01, V10, V11), then

Ṽ (x1, x2) = V00(1− x1)(1− x2) + V01(1− x1)x2 + V10x1(1− x2) + V11x1x2.

For Part 1, we can rely on the polynomial identity testing: indeed, since the multilinear
extension is bijective, we have V0 6= V1 if and only if these multilinear extensions Ṽ0 and Ṽ1
differ; thus, it is sufficient to check if the two low-degree polynomials Ṽ0 and Ṽ1 differ.

It is well known that, given access to two low-degree polynomials, one can efficiently
check if these polynomials differ: given access to two functions Ṽ0, Ṽ1, pick a random point
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u ∈R Fn and check if Ṽ0(u) 6= Ṽ1(u). Assuming that the functions are low-degree (which is
true if they are multilinear), the Schwartz-Zippel lemma assures that Ṽ0 and Ṽ1 disagree on
a large fraction of inputs if Ṽ0 6= Ṽ1. Although it is possible that a dishonest oracle tries
to cheat us by storing a high-degree polynomial, we can check whether or not the function
stored by an oracle is close to some multilinear function, by using the multilinearity test [6].

For Part 2, we use the following simple fact: Fixing the first variable of a multilinear
extension Ṽ to 0 or 1, we obtain multilinear extensions that correspond to the first or second
part of V . In the example above, we obtain two multilinear functions:

Ṽ (0, x2) = V00(1− x2) + V01x2, Ṽ (1, x2) = V10(1− x2) + V11x2.

These correspond to multilinear extensions of (V00, V01) and (V10, V11), respectively, for n = 1.
Thus, we can recursively compute the lexicographically first disagreement.

Proof of the Main Theorem
Now we move on to the proof of the main theorem. We construct a selector for the following
EXPNP-complete language, which is an analogue of the NEXP-complete languages called
the oracle-3-satisfiability problem in [6].

I Definition 4.4 (Lexicographically Maximum Oracle-3-satisfying Assignment). Let m,n be
nonnegative integers, and Φ: {0, 1}m+3n+3 → {0, 1} be a Boolean formula. For a Boolean
function X : {0, 1}n → {0, 1}, define FΦ(X) as the following Boolean formula:∧

w∈{0,1}m+3n

Φ(w,X(b1), X(b2), X(b3)),

where w = (y, (b1, b2, b3)) ∈ {0, 1}m × ({0, 1}n)3. A Boolean function X : {0, 1}n → {0, 1}
is said to be an assignment of FΦ. For assignments X,Y : {0, 1}n → {0, 1}, we introduce
the lexicographical ordering: X is less than Y if there exists an index b ∈ {0, 1}n such
that X(b) < Y (b) and X(b′) = Y (b′) for any b′ < b. Let VΦ : {0, 1}n → {0, 1} denote the
lexicographically maximum assignment such that FΦ(VΦ) = 1 (i.e. the lexicographically
maximum satisfying assignment of FΦ); if there is no satisfying assignment, then define
VΦ(b) = 0 for any b ∈ {0, 1}n.

The lexicographically maximum oracle-3-satisfying assignment is a problem of answering
VΦ(bin), given nonnegative integers m,n, a Boolean formula Φ: {0, 1}m+3n+3 → {0, 1}, and
an index bin ∈ {0, 1}n as input.

We omit a proof of EXPNP-completeness because this is a simple exponential-time analogue
of the lexicographically maximum satisfying assignment language [20] (see also [6]).

Suppose that the input is a Boolean formula Φ: {0, 1}m+3n+3 → {0, 1} and an index bin,
and that we have access to two oracles A0 and A1, one of which is honest.

Encoding Assignments by the Multilinear Extension
As with the proof of MIP = NEXP [6], we encode a satisfying assignment by the multilinear
extension. Let F be a prime field such that |F| is sufficiently large (but is bounded by a
polynomial in the input size). We regard {0, 1} ⊆ F in the canonical way. We say that a
function f : Fn → F is multilinear if it is a polynomial of degree at most 1 in each variable.

I Proposition 4.5 (Multilinear Extension). Let f : {0, 1}n → F be an arbitrary function. Then,
there exists a unique multilinear function f̃ : Fn → F such that f and f̃ agree on {0, 1}n.
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Proof Sketch. For a complete proof, the reader is referred to [6, Proposition 4.4]. Here, we
note that the extension f̃ can be explicitly written as

f̃(x) =
∑

b∈{0,1}n

f(b)
n∏
i=1

((1− xi)(1− bi) + xibi) , (2)

where b = (b1, · · · , bn) and x = (x1, · · · , xn) ∈ Fn. J

For the lexicographically maximum satisfying assignment VΦ : {0, 1}n → {0, 1} ⊆ F, let
ṼΦ : Fn → F denote its multilinear extension.

We request the oracles to grant local access to ṼΦ. Formally, we consider the following
search problem: given a Boolean formula Φ, a prime |F|, and x ∈ Fn, the task is to output the
value ṼΦ(x). We regard this problem as a decision problem in the standard way. (Specifically,
given the inputs specified above and auxiliary inputs k ∈ N and b ∈ {0, 1}, the task is to
output one bit saying whether or not the kth bit of a binary representation of ṼΦ(x) is b.)
The problem is still solvable in EXPNP, by first computing VΦ in EXPNP and then computing
the expression (2) straightforwardly in exponential time.

Therefore, the problem can be reduced to the original EXPNP-complete problem; by
using the EXPNP-completeness, one can translate the problem of computing ṼΦ(x) into the
original problem in polynomial time, and hence we can ask the oracles to output ṼΦ(x). Let
f0, f1 : Fn → F denote the answers of the oracles A0, A1, respectively. Then, we have fi = ṼΦ
for an honest oracle Ai.

Although fi is not necessarily multilinear for a dishonest oracle Ai, we can ensure
that it is close to some multilinear function. This can be done by the multilinearity test,
which was one of the main technical ingredients in the proof of MIP = NEXP [6]. For
two functions f, g : Fn → F and a real number δ ∈ R, we say that f and g are δ-close if
Prx∈Fn [f(x) 6= g(x)] < δ.

I Lemma 4.6 (Multilinearity Test [6]). Let n ∈ N and F be a finite field. There exist a
constant δ = nO(1)/|F| and an efficient probabilistic algorithm that, given oracle access to an
arbitrary function f : Fn → F,
1. accepts with probability 1 if f is multilinear, and
2. rejects with high probability if f is not δ-close to any multilinear function.

We perform the multilinearity test for f0 and f1. Suppose that fi is not δ-close to any
multilinear function for a dishonest oracle Ai. Then, the multilinearity test fails and hence
we can doubt Ai with high probability. Therefore, in what follows, we may assume that both
f0 and f1 are δ-close to some multilinear functions f̂0 and f̂1, respectively (note that f̂0 and
f̂1 are unique for small δ).

In reality, we have only access to f0, f1 instead of multilinear functions f̂0, f̂1. However,
we may pretend to have access to the multilinear functions f̂0, f̂1, by using the random
self-reducibility of multivariate low-degree polynomials (also known as the self-correction of
the Reed-Muller code).

I Lemma 4.7 (Self-correction; Beaver and Feigenbaum [8] and Lipton [21]). There exists an
efficient probabilistic algorithm that, given input x ∈ Fn and oracle access to a function
f : Fn → F that is δ-close to a multilinear function f̂ : Fn → F, outputs f̂(x) with probability
at least 1− δ(n+ 1).

Proof. Let a0, · · · , an be arbitrary distinct points in F \ {0}. Pick a random point y ∈R Fn.
By the polynomial interpolation, find the univariate polynomial p of degree at most n such
that f(x+ ai · y) = p(ai) for all i ∈ {0, · · · , n}, and output p(0).
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Since x+ ai · y is uniformly distributed on Fn for any fixed x and ai 6= 0, it holds that
f̂(x+ ai · y) = f(x+ ai · y) with probability at least 1− δ. By the union bound, we have
p(ai) = f̂(x+ ai · y) for each i ∈ {0, · · · , n} with probability at least 1− δ(n+ 1); thus we
have p(0) = f̂(x) with probability at least 1− δ(n+ 1), because f̂ is a polynomial of total
degree at most n. J

I Remark 4.8. In the case of the proof of MIP = NEXP, the self-correcting algorithm was
not needed; for the sum-check protocol, it is sufficient to evaluate a multilinear function
f̂i on random points x ∈R Fn, rather than fixed points. In contrast, we need to evaluate
a multilinear function f̂i on points that are not uniformly distributed, during the binary
search.

In the following, we pretend that the dishonest oracle Ai asserts that the satisfying
assignment is f̂i|{0,1}n , instead of fi|{0,1}n . (Note that it holds that fi|{0,1}n = f̂i|{0,1}n = VΦ
for the honest oracle Ai.)

Identifying the Larger Assignment
We are now ready to describe how to identify the larger assignment. It is sufficient to show
that we can find, with high probability, the lexicographically first index z ∈ {0, 1}n such that
f̂0(z) 6= f̂1(z).

First, we check if f̂0(bin) = f̂1(bin): For each i ∈ {0, 1}, run the self-correcting algorithm
for fi to obtain f̂i(bin). If f̂0(bin) = f̂1(bin), then output it (which is surely the correct answer
since f̂i(bin) = VΦ(bin) for the honest oracle Ai) and halt. Otherwise, perform the binary
search described below.

We compute the lexicographically first disagreement z = (z1, · · · , zn) ∈ {0, 1}n one by
one. For j := 1 to n, repeat the following: Suppose that we have computed z1, · · · , zj−1.
Pick a random point u = (uj+1, · · · , un) ∈R Fn−j uniformly at random. Define x :=
(z1, · · · , zj−1, 0, uj+1, · · · , un) ∈ Fn. For each i ∈ {0, 1}, use the self-correcting algorithm for
fi to obtain f̂i(x). If f̂0(x) 6= f̂1(x), then set zj := 0; else, set zj := 1.

I Claim 4.9. Assume that f̂0(bin) 6= f̂1(bin). Let z ∈ {0, 1}n denote the lexicographically first
index such that f̂0(z) 6= f̂1(z). Then, the binary search described above correctly computes
z with probability at least 1− δn(n+ 1)− n2

|F| .

In particular, by setting |F| large enough, we can compute z with high probability.

Proof. Let j ∈ {1, · · · , n}. Consider the jth iteration and assume that we have computed
z1, · · · , zj−1 correctly. For each i ∈ {0, 1}, let f ′i : Fn−j → F be the multilinear function such
that

f ′i(tj+1, · · · , tn) = f̂i(z1, · · · , zj−1, 0, tj+1, · · · , tn),

for any (tj+1, · · · , tn) ∈ Fn−j . (The binary search tries to check if f ′0 6= f ′1 by the polynomial
identity testing, and sets zj := 0 if and only if f ′0 6= f ′1.)

If zj = 0, then we have f ′0 6= f ′1 because f ′0(zj+1, · · · , zn) 6= f ′1(zj+1, · · · , zn). The
probability that the self-correcting algorithm outputs f̂i(x) correctly is at least 1− δ(n+ 1)
for a dishonest oracle Ai. By the Schwartz-Zippel lemma, the probability that f ′0(u) 6= f ′1(u)
for a random point u ∈R Fn−j is at least 1− n−j

|F| ≥ 1− n
|F| . Therefore, the algorithm sets

zj := 0 correctly with probability at least 1− δ(n+ 1)− n
|F| .

If zj = 1, then it follows from the minimality of z that f ′0(t) = f ′1(t) for every t ∈ {0, 1}n−j .
Since f ′0 and f ′1 are multilinear, we have f ′0 = f ′1 by the uniqueness of the multilinear extension
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(Proposition 4.5) and hence f ′0(u) = f ′1(u) holds for any u ∈ Fn−j . Therefore, since the
self-correcting algorithm outputs f̂i(x) with probability at least 1− δ(n+ 1), the algorithm
sets zj := 1 correctly with probability at least 1− δ(n+ 1).

Overall, the algorithm computes z correctly with probability at least(
1− δ(n+ 1)− n

|F|

)n
≥ 1− δn(n+ 1)− n2

|F|
.

J

We have computed the lexicographically first disagreement z ∈ {0, 1} such that f̂0(z) 6=
f̂1(z). Run the self-correcting algorithm to obtain f̂0(z) and f̂1(z). Without loss of generality
(by swapping the oracles if f̂0(z) > f̂1(z)), we may assume that f̂0(z) < f̂1(z).

Now we know, with high probability, that A1 asserts the larger (presumably satisfying)
assignment f̂1|{0,1}n : {0, 1}n → F.

Verifying the Satisfiability
All that remains is to verify that f̂1|{0,1}n satisfies FΦ, which can be done in the same way
with a proof of MIP = NEXP. For completeness, we sketch a proof suggested in [6, Section
7.1] and observe that it can be done with the help of an EXPNP-complete oracle.

Babai, Fortnow, Lund [6] used the sum-check protocol [22] to check whether or not an
exponentially long assignment satisfies FΦ. Basically, checking if an assignment f̂1|{0,1}n :
{0, 1}n → F satisfies a Boolean formula FΦ reduces to checking if some low-degree polynomials
g : Fl → F evaluate to 0 on {0, 1}l.

Let us arithmetize the Boolean formula Φ: {0, 1}m+3n+3 → {0, 1} to a low-degree
polynomial Φ̃ : Fm+3n+3 → F in the standard way, so that Φ and Φ̃ agree on {0, 1}m+3n+3

(see [6, Section 3.1]). Define g1 : Fm+3n → F and g2 : Fn → F as

g1(w) := 1− Φ̃
(
w, f̂1(b1), f̂1(b2), f̂1(b3)

)
, (3)

g2(b) := f̂1(b)
(

1− f̂1(b)
)
, (4)

where w = (y, (b1, b2, b3)) ∈ Fm× (Fn)3 and b ∈ Fn. Note that since f̂1 and Φ̃ are low-degree
polynomials, so are g1 and g2.

It is easy to see that g1(w) = 0 and g2(b) = 0 for any w ∈ {0, 1}m+3n and b ∈ {0, 1}n if
and only if f̂1|{0,1}n is a satisfying assignment of FΦ. Indeed, g2(b) = 0 forces f̂1|{0,1}n to
be a Boolean function (i.e. f̂1(b) ∈ {0, 1} for any b ∈ {0, 1}n), and g1(w) = 0 means that
Φ(w, f̂1(b1), f̂1(b2), f̂1(b3)) is true for any w ∈ {0, 1}m+3n.

We note that, given a random point w or b, we can compute the value of g1(w) or g2(b)
with high probability by substituting f1 for f̂1 in (3) or (4) (i.e. we do not need to use the
self-correcting algorithm); for a random point w ∈R Fm+3n, it holds that g1(w) computed by
substituting f1 in (3) and g1(w) are identical with probability at least 1− 3δ.

Therefore, it is sufficient to show that we can check if each g ∈ {g1, g2} vanishes on {0, 1}l,
given access to a low-degree polynomial g. (Here, l := m+ 3n if g = g1 and l := n if g = g2.)
There are several ways to verify that g : Fl → F vanishes on {0, 1}l, including [6, Section 7.1]
and [5, 15, 9]. Here, we follow the way of Feige, Goldwasser, Lovász, Safra, and Szegedy [15].

We reduce a task of checking if g : Fl → F vanishes on {0, 1}l to a task of checking if a
sum is equal to 0, the latter of which can be verified by the sum-check protocol (see [15,
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Section 4.2.2] for more details): Pick a random point t = (t1, · · · , tl) ∈R Fl. Consider the
following sum:∑

w=(w1,··· ,wl)∈{0,1}l

g(w)
∏

{i|wi=1}

ti =
∑

w∈{0,1}l

g(w)
∏

i∈{1,··· ,l}

(witi + 1− wi). (5)

If g vanishes on {0, 1}l, then this sum is equal to 0. Otherwise, regarding the left-hand side of
(5) as a multilinear function on variables t1, · · · , tl, the sum is not equal to 0 with probability
at least 1− l

|F| by the Schwartz-Zippel lemma. Therefore, by defining a low-degree polynomial
ht : Fl → F as ht(w) := g(w)

∏
i∈{1,··· ,l}(witi + 1 − wi) for any w ∈ Fl, it is sufficient to

check if the sum of ht(w) over w ∈ {0, 1}l is equal to 0, which can be done by the sum-check
protocol.

We describe the sum-check protocol briefly (see [6, Section 3.2] for a detailed description):
In order to check if

∑
w∈{0,1}l ht(w) = 0, pick a random point r = (r1, · · · , rl) ∈R Fl. Define

a low-degree univariate polynomial gi : F→ F for each i ∈ {1, · · · , l} as

gi(x) :=
∑

(wi+1,··· ,wl)∈{0,1}l−i

ht(r1, · · · , ri−1, x, wi+1, · · · , wl)

and g0(x) := 0. We request the oracle A1 to reveal all the coefficients of the univariate
polynomial gi for all i ∈ {1, · · · , l}. We trust A1 if and only if gi−1(ri−1) = gi(0) + gi(1) for
each i ∈ {1, · · · , l} (the Consistency Test) and gl(rl) = ht(r) (the Final Test). Here, since r
is a random point, we may evaluate ht(r) by using f1 in place of f̂1 in (3) and (4).

We claim that the complexity of the honest oracle to output gi is bounded by EXPNP.
Consider the following search problem: given a Boolean formula Φ, a prime |F|, and r, t ∈ Fl,
the task is to output all the coefficients of gi for all i ∈ {1, · · · , l} (which can be written
in a binary representation of polynomial length), where ṼΦ is substituted for f̂1 in (3) and
(4). Regarding this problem as a decision problem, one can easily show that the problem is
computable in EXPNP. Thus, we can request the oracle A1 to output gi.

Finally, we conclude the proof by analyzing the correctness (assuming that the binary
search succeeded):
1. If A1 is honest, then f̂1 = f1 = ṼΦ. Thus, each g ∈ {g1, g2} vanishes on {0, 1}l, and

hence the sum (5) is 0; therefore, we can trust A1 with probability 1.
2. If A1 is dishonest, then f̂1 does not constitute a satisfying assignment of FΦ. (If it

were a satisfying assignment, then f̂1|{0,1}n would be a satisfying assignment larger than
f̂0|{0,1}n = VΦ.) Thus, for some g ∈ {g1, g2}, the sum (5) is not 0 with probability at
least 1− l

|F| .
Assume that the sum is not 0, and let d ∈ N be an upper bound on the degree of the
low-degree polynomial ht. Suppose that the dishonest oracle claimed that gi is g′i for each
i ∈ {1, · · · , l}. Assuming that the Consistency Tests pass (i.e. g′i−1(ri−1) = g′i(0) + g′i(1)
for each i ∈ {1, · · · l}), it holds that g′l(rl) 6= gl(rl) = ht(r) with probability at least 1− dl

|F|
(see [6, Section 3.2]). The probability that ht can be evaluated correctly on a random
point r ∈R Fl is at least 1 − 3δ. Thus, the Final Test (i.e. g′l(rl) = ht(r)) fails with
probability at least 1− dl

|F| − 3δ.
Overall, we can doubt A1 with probability at least 1− dl

|F| − 3δ − l
|F| .

5 Deterministic Selector

This section is devoted to investigating a deterministic selector.
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To prove the existence of a deterministic selector for a PSPACE-complete language
(Theorem 1.4, Part 1), we show that a deterministic selector can be constructed based on
downward self-reducibility:

I Theorem 5.1. Any downward self-reducible language has a deterministic selector.

Since there exists a downward self-reducible PSPACE-complete language, we immediately
obtain a deterministic selector for any PSPACE-complete language.

Proof. Let L be a downward self-reducible language. Namely, there exists a polynomial-time
oracle machine M such that

ML(x) = L(x) for any x ∈ {0, 1}∗, and
M does not make any queries of length greater than or equal to |x|, on input x ∈ {0, 1}∗.

The idea is to keep a string y such that A0(y) 6= A1(y), and to run MA0 and MA1

to obtain another string q of length less than |y| such that A0(q) 6= A1(q). Consider the
following algorithm: Given an input x ∈ {0, 1}∗ and two oracles A0, A1, if A0(x) = A1(x)
then output it and halt. Else, let y := x and repeat the following: Compute MAi(y) for each
i ∈ {0, 1}. If MA0(y) = MA1(y) =: b, then we trust the oracle Ai such that Ai(y) = b and
output Ai(x). Otherwise, let q be the first query that MA0 and MA1 make on input y such
that A0(q) 6= A1(q). (There exists such a q because MA0(y) 6= MA1(y); moreover, it holds
that |q| < |y| by the definition of downward self-reducibility.) Then, we update y := q and
move on to the next iteration.

This algorithm runs in polynomial time, since |y| decreases in each repetition.
We claim the correctness of the algorithm. It is easy to see that A0(y) 6= A1(y) at the

beginning of each repetition. Suppose that MA0(y) = MA1(y) =: b. Since A0 or A1 is equal
to L, we have b = MA0(y) = MA1(y) = ML(y) = L(y), where the last equality holds by the
definition of M . Moreover, there exists the unique i ∈ {0, 1} such that Ai(y) = b because A0
and A1 disagree on y. Therefore, Ai is honest if and only if Ai(y) = b ( = L(y) ). J

Then, we claim that any language with a deterministic selector is in PSPACE (Theorem
1.4, Part 2). We thereby prove that the supremum of the languages with a deterministic
selector is PSPACE.

Proof of Part 2 of Theorem 1.4. Let L be a language with a deterministic selector S.
The idea is to regard a computation of S as a game played between the NO player and the

YES player (which correspond to two oracles A0 and A1, respectively): On input x ∈ {0, 1}∗,
the YES player tries to convince the selector S that x ∈ L, whereas the NO player tries to
convince S that x 6∈ L. The YES player chooses A1 ⊆ {0, 1}∗ such that x ∈ A1, and the NO
player chooses A0 ⊆ {0, 1}∗ such that x 6∈ A0. Then, we simulate SA0,A1(x), and the YES
player wins if and only if SA0,A1(x) = 1.

It is easy to see that the YES player has a winning strategy if x ∈ L. Indeed, the YES
player wins by setting A1 = L; similarly, if x 6∈ L, then the NO player wins by setting A0 = L.
Therefore, it is sufficient to show that we can compute the player that has a winning strategy
in PSPACE.

We may restate the game as follows: Simulate S on input x. If S makes a query x to
Ai ( i ∈ {0, 1} ), then answer it with i. If S makes a query q ( 6= x ) to the oracle A0, then
the NO player gives an arbitrary answer; similarly, if S makes a query to A1, then the YES
player gives an arbitrary answer. (However, we require the players to behave in a consistent
way: if S makes the same query more than once, then a player must give the same answer
that the player answered in the past.)
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Again, one can easily prove that the YES player has a winning strategy for this game if
and only if x ∈ L.

Now we describe a polynomial-time alternating Turing machine that computes L: Simulate
the game described above, while universally guessing the answers of the NO player and
existentially guessing the answers of the YES player. Since a polynomial-time alternating
machine can be simulated in PSPACE, it holds that L ∈ PSPACE. J

6 Random Strings vs. Randomized Computation

In this section, we apply the notion of selector to the proof by Buhrman, Fortnow, Koucký,
and Loff [11]. We thereby extend their result from {NP,P#P,PSPACE,EXP } to any classes
whose complete languages have a selector (e.g. Σp

i ,Π
p
i ,P#P,PSPACE,EXP, and EXPNP).

I Theorem 6.1 (Extended Theorem 15 of [11]). Let α : {0}∗ → {0, 1}∗ be a length preserving
function, c > 0 be a constant such that α(0n) 6∈ i.o-EXP/n− c logn, and C be a complexity
class such that there is a selector for some paddable C-complete language L. If L ∈ P/α(0nd)
for some d > 0, then C ⊆ BPP.

Proof. Let M be a polynomial-time machine such that L(x) = M
(
x, α(0|x|d)

)
, and Gn ⊆

{0, 1}nd be the set of “good” advice:

Gn := { r ∈ {0, 1}n
d

| ∀x ∈ {0, 1}n, L(x) = M(x, r) }.

Buhrman et al. [11] showed that |Gn| ≥ 2nd

/ncd by exploiting the high nonuniform complexity
of advice α(0nd).

As with Theorem 2.8, there exist a polynomial l and a selector S that identifies an honest
oracle among m := 2l(n)cd oracles with probability at least 5

6 , and makes only queries of
length exactly l(n) on inputs of length n.

Consider the following probabilistic algorithm: On input x ∈ {0, 1}n, let l denote l(n).
We pick m random strings r1, · · · , rm ∈R {0, 1}l

d uniformly at random, and define oracles
Ai(q) = M(q, ri), for any i ∈ {1, · · · ,m} and for any q ∈ {0, 1}l. We simulate S on input x,
answering its queries q ∈ {0, 1}l to Ai by computing M(q, ri).

The probability that we fail to pick any “good” advice, namely ri 6∈ Gl for all i, is
(1− |Gl|)2lcd

≤ e−2lcd/lcd

< 1
6 . Thus, we can output the correct answer with probability at

least 2
3 overall. J

7 Concluding Remarks

We state some open problems and possible directions for future work:
Do there exist selectors for NEXP-complete languages or promise-Sexp

2 -complete languages?
In particular, it is interesting to close the gap between EXPNP and Sexp

2 : although these
classes seem “close” in some sense, EXPNP and Sexp

2 are very different in the known
relationship with BPP; it is a notorious open problem whether BPP 6= EXPNP, whereas
one can prove BPP 6= Sexp

2 .
We proved that a property of removing short advice can be captured by the notion of
selector. What about a property of removing advice of polynomial length?
The result of MIP = NEXP was “scaled-down” to obtain the relationship with hardness
of approximating cliques [15], and eventually the PCP theorem [4, 3] was established.
Can we obtain such interesting applications of selectors, by scaling down the selector for
EXPNP-complete languages?
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Abstract
We give a new lower bound on the query complexity of any non-adaptive algorithm for testing
whether an unknown Boolean function is a k-junta versus ε-far from every k-junta. Our lower
bound is that any non-adaptive algorithm must make

Ω
(

k log k
εc log(log(k)/εc)

)
queries for this testing problem, where c is any absolute constant < 1. For suitable values of ε this
is asymptotically larger than the O(k log k + k/ε) query complexity of the best known adaptive
algorithm [9] for testing juntas, and thus the new lower bound shows that adaptive algorithms
are more powerful than non-adaptive algorithms for the junta testing problem.
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1 Introduction

As popular and scientific interest in “big data” continues to build, the field of sublinear-time
algorithms has received increasing research attention in recent years. The study of property
testing is an important area within sublinear algorithms. At a high level, property testing
algorithms are “ultra-fast” randomized algorithms which aim to (approximately) determine
whether an unknown “massive object” has a particular property while inspecting only a tiny
(sublinear, or in some cases even constant sized) portion of the object. Testing algorithms have
by now been studied for many different types of mathematical objects; see e.g. [38, 39, 28]
for some fairly recent surveys and overviews of contemporary property testing research.

In this work we shall consider property testing algorithms for Boolean functions, and
in particular we study the question of testing whether an unknown Boolean function is a
k-junta. Recall that a function f is a k-junta if it has at most k relevant variables, i.e. there
exist k distinct indices i1, . . . , ik and a k-variable function g : {0, 1}k → {0, 1} such that
f(x) = g(xi1 , . . . , xik ) for all x ∈ {0, 1}n. A testing algorithm for k-juntas is given as input
k and ε > 0, and is provided with black-box oracle access to an unknown and arbitrary
f : {0, 1}n → {0, 1}. The algorithm must output “yes” with high probability (say at least
2/3) if f is a k-junta, and must output “no” with high probability if f disagrees with every
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k-junta on at least an ε fraction of all possible inputs. The main goal in property testing is to
obtain algorithms which make as few queries as possible to the unknown black-box function.

We motivate our work by observing that juntas are a very basic type of Boolean function
whose study intersects many different areas within theoretical computer science. In complexity
theory and cryptography, k = O(1)-juntas are precisely the Boolean functions computed
by NC0 circuits. Juntas arise naturally in settings where a small (unknown) set of features
determines the label of a high-dimensional data point, and hence many researchers in
learning theory have studied juntas across a wide range of different learning models, see
e.g. [15, 22, 16, 30, 3, 37, 4, 2, 25, 42, 21]. Finally, the problem of testing whether an unknown
Boolean function is a k-junta is one of the most thoroughly studied questions in Boolean
function property testing. We briefly survey relevant previous work on testing juntas in the
following subsection.

1.1 Prior work on testing juntas

Fischer et al. [26] were the first to explicitly consider the junta testing problem. Their
influential paper gave several algorithms for testing k-juntas, the most efficient of which is a
non-adaptive tester that makes O(k2(log k)2/ε) queries. This was improved by Blais [8] who
gave a non-adaptive testing algorithm that uses only O(k3/2(log k)3/ε) queries; this result is
still the most efficient known non-adaptive junta tester. Soon thereafter Blais [9] gave an
adaptive junta testing algorithm that uses only O(k log k + k/ε) queries, which remains the
most efficient known junta testing algorithm to date.

We note that ideas and and techniques from these junta testing algorithms have played
an important role in a broad range of algorithmic results for other Boolean function property
testing problems. These include efficient algorithms for testing various classes of functions,
such as s-term DNF formulas, small Boolean circuits, and sparse GF (2) polynomials, that
are close to juntas but not actually juntas themselves (see e.g. [23, 29, 24, 19]), as well as
algorithms for testing linear threshold functions [34] (which in general are not close to juntas).
Junta testing is also closely related to the problem of Boolean function isomorphism testing,
see e.g. [13, 14, 18, 1].

Lower bounds for testing k-juntas have also been intensively studied. The original
[26] paper gave an Ω(

√
k/ log k) lower bound for nonadaptive algorithms that test whether

an unknown function is a k-junta versus constant-far from every k-junta. Chockler and
Gutfreund [20] simplified, strengthened and extended this lower bound by proving that
even adaptive testers require Ω(k) queries to distinguish k-juntas from random functions on
k + 1 variables, which are easily seen to be constant-far from k-juntas. (We describe the
construction and sketch the [20] argument in Section 1.3 below). Blais [8] was the first to
give a lower bound that involves the distance parameter ε; he showed that for ε ≥ k/2k, any
non-adaptive algorithm for ε-testing k-juntas must make Ω

(
k

ε log(k/ε)

)
queries.

In recent years numerous other works have given junta testing lower bounds. In [11]
Blais, Brody and Matulef established a connection between lower bounds in communication
complexity and property testing lower bounds, and used this connection (together with
known lower bounds on the communication complexity of the size-k set disjointness problem)
to give a different proof of an Ω(k) lower bound for adaptively testing whether a function
is a k-junta versus constant-far from every k-junta. More recently, Blais, Brody and Ghazi
[10] gave new bounds on the communication complexity of the Hamming distance function,
and used these bounds to give an alternate proof of the Ω(k) lower bound for adaptive
junta testing algorithms via the [11] connection. Blais and Kane [12] studied the problem of
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testing whether an n-variable Boolean function is a size-k parity function (as noted in [12],
lower bounds for this problem give lower bounds for testing juntas), and via a geometric and
Fourier-based analysis gave a k − o(k) lower bound for adaptive algorithms and a 2k −O(1)
lower bound for non-adaptive algorithms, again for ε constant. Buhrman et al. [17] combined
the communication complexity based approach of [11] with an Ω(k log k) lower bound for the
one-way communication complexity of k-disjointness to obtain an Ω(k log k) lower bound (for
constant ε) for testing whether a function f is a size-k parity, and hence for testing whether
f is a k-junta.

1.2 Our main result: Adaptivity helps for testing juntas
While the junta testing problem has been intensively studied, the results described above still
leave a gap between the query complexity of the best adaptive algorithm [9] and the strongest
known lower bounds for non-adaptive junta testing. The lower bounds of Ω

(
k

ε log(k/ε)

)
from

[8] and Ω(k log k) (for ε constant) from [17] are incomparable, but neither of them is strong
enough, for any setting of ε, to exceed the O(k log k + k/ε) upper bound from [9]. In [8]
Blais asked as an open question “Is there a gap between the query complexity of adaptive and
non-adaptive algorithms for testing juntas?” This question was reiterated in a 2010 survey
article on testing juntas, in which Blais explicitly asked “Does adaptivity help when testing
k-juntas?”, referring to this as a “basic problem” [7].

Our main contribution in the present work is to give a better lower bound on non-adaptive
junta testing algorithms which implies that the answer to the above questions is “yes.” We
prove the following:

I Theorem 1.1. Let A be any non-adaptive algorithm which tests whether an unknown
black-box f : {0, 1}n → {0, 1} is a k-junta versus ε-far from every k-junta. Then for all ε
satisfying k−ok(1) ≤ ε ≤ ok(1), algorithm A must make at least

q = Ck log k
εc log(log(k)/εc) (1)

queries, where c is any absolute constant < 1 and C > 0 is an absolute constant.

For suitable choices of ε, such as ε = 1/(log k), the lower bound of Theorem 1.1 is
asymptotically larger than the O(k log k + k/ε) upper bound of the [9] adaptive algorithm.
Thus, together with the [9] upper bound, our lower bound gives an affirmative answer to the
question posed in [8, 7]: adaptivity helps for testing k-juntas.1

It is interesting that while all of the recent junta testing lower bounds [11, 10, 17] employ
the connection with communication complexity lower bounds that was established in [11],
our proof of Theorem 1.1 does not follow this approach. Instead, we give a proof using Yao’s
classic minimax principle; however, our argument is somewhat involved, employing a new
Boolean isoperimetric inequality and a very delicate application of a variant of McDiarmid’s
“method of bounded differences” that allows for a (low-probability) bad event. In the rest of
this section we motivate and explain our approach at a high level before giving the full proof
in the subsequent sections.

1 We note in this context that several other natural Boolean function classes are known to exhibit a gap
between the query complexity of adaptive versus non-adaptive testing algorithms. These include the
class of signed majority functions [35, 40] and the class of read-once width-two OBDD [41]. In all three
cases the adaptive tester which beats the best possible non-adaptive tester may be viewed as performing
some sort of binary search.
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1.3 The idea underlying our proof
Our approach is inspired by the lower bound of Chockler and Gutfreund [20] for adaptive
algorithms, so we begin by briefly recalling their construction and analysis. Chockler and
Gutfreund define two distributions Dyes and Dno over (k + 1)-variable functions. A random
fyes ∼ Dyes is drawn by first choosing a random coordinate i ∈ [k + 1] to be the irrelevant
variable, and then choosing a random k-junta over the other k variables from x1, . . . , xk+1.
A random fno ∼ Dno is drawn by choosing a random (k + 1)-junta. Clearly every f in the
support of Dyes is a k-junta, and it is easy to show (for k larger than an absolute constant)
that almost every function in the support of Dno is constant-far from every k-junta.

Chockler and Gutfreund argue that any k/6-query adaptive algorithm A must have∣∣∣∣ Pr
fyes∼Dyes

[
A accepts fyes

]
− Pr

fno∼Dno

[
A accepts fno

]∣∣∣∣ ≤ 1
6 ,

which gives their Ω(k) lower bound for adaptive algorithms. Their analysis shows that the
only way an algorithm can get statistical evidence that the black-box f is a yes-function rather
than a no-function is by querying a pair of inputs x, y ∈ {0, 1}k+1 that differ in precisely the
coordinate i ∈ [k + 1] that was chosen to be irrelevant in the selection of fyes ∼ Dyes (they
refer to such a pair of Hamming neighbors x, x⊕i in {0, 1}k+1 as an i-twin). While we do
not repeat their analysis here, for intution we observe that if x, y form a j-twin for j 6= i

then for both a random yes-function and a random no-function f(x) = f(y) with probability
exactly 1/2, while if x, y form an i-twin then f(x) = f(y) for a random yes-function with
probability 1 while f(x) = f(y) with probability 1/2 for a random no-function. Since a set
of t queries can contain i-twins for at most t− 1 distinct coordinates, the Ω(k) lower bound
follows by a “needle in a haystack” argument.

The starting point of our work is the simple observation that the analysis of the Chockler-
Gutfreund construction is tight for adaptive algorithms: there is an adaptive algorithm that
can distinguish a random fyes ∼ Dyes from a random fno ∼ Dno with O(k) queries. This
algorithm works as follows: for each successive coordinate j = 1, . . . , k + 1, it draws random
j-twins until either (a) a j-twin x, x⊕j is drawn for which f(x) 6= f(x⊕j), or (b) 10 log(k+ 1)
j-twins have been drawn and all had f(x) = f(x⊕j). If (b) holds for any j ∈ [k+ 1] then halt
and output “k-junta,” and if (a) holds for every j ∈ [k + 1] halt and output “not a k-junta.”
Since the expected number of j-twins drawn for a coordinate j 6= i is 2, a straightforward
analysis establishes that this algorithm wvhp makes O(k) queries and outputs the correct
answer.

Intuitively, the above-described algorithm is only able to achieve O(k) query complexity
(an amortized O(1) queries for each of the k + 1 coordinates) because it is adaptive and
hence can stop querying a given coordinate j once it receives a j-twin with f(x) 6= f(x⊕j).
Since there are k + 1 coordinates to consider, it is very likely that for some coordinate j 6= i,
a collection of 1

2 log k randomly selected j-twins will all have f(x) = f(x⊕j) (in fact we
expect this to happen for ≈

√
k different coordinates). Since non-adaptive algorithms cannot

“amortize” the coordinates along which they spend their queries, this suggests that (i) any
nonadaptive algorithm will need to query Ω(log k) j-twins for at least Ω(k) many choices
of j ∈ [k + 1], and further raises the possibility that (ii) any non-adaptive algorithm for
distinguishing Dyes from Dno may need Ω(k log k) queries.

In fact, (i) above is correct but (ii) is not. While indeed a non-adaptive algorithm must
“rule out” at least Ω(k) coordinates as not being irrelevant, and indeed Ω(log k) j-twins must
be queried to rule out a given coordinate j with confidence 1− 1/poly(k), it does not follow
that Ω(k log k) queries are required to rule out all coordinates. This is because a set of q
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query points can induce ω(q) different twins – or, to put it in the more combinatorial terms
that we use henceforth in the paper, a subset Q of vertices of the Boolean hypercube can
induce ω(|Q|) hypercube edges.2 Indeed, as observed by Frankl [27], there is a set Q of
only Θ(k log k

log log k ) points in {0, 1}k+1 that induces at least log(k + 1) edges along each of
the k + 1 coordinates. This set S is as follows: letting ` = log(2 log(k + 1)) (and assuming
that ` and k+1

` are integers), we partition [k + 1] into sets A1, . . . , A(k+1)/` of equal size
` each, and let Q be the union of the k+1

` subcubes C1, . . . , C(k+1)/` where Ci consists of
all 2` strings whose 1-coordinates are all contained in positions in Ai. It is easy to verify
that the corresponding non-adaptive algorithm makes Θ(k log k

log log k ) queries and successfully
distinguishes fyes ∼ Dyes from fno ∼ Dno.

It turns out that this is indeed an optimal query lower bound for non-adaptive algorithms
that distinguish Dyes from Dno, up to constant factors; this follows as a special case of our
main result, taking ε to be constant. Our main result is proved by analyzing an ε-biased
generalization of the Chockler-Gutfreund yes- and no-distributions; the distributions we
consider are the same ones that Blais uses in [8] to establish his lower bound for non-
adaptive algorithms. The analysis of [8] uses the edge-isoperimetric inequality of Harper [31],
Bernstein [6], Lindsey [33], and Hart [32] and leads to a lower bound of Ω

(
k

ε log(k/ε)

)
queries

for non-adaptive algorithms. In contrast, we use a different edge-isoperimetric inequality,
which may be viewed as an extension of Frankl’s Theorem 4 in [27] (see Section 2.2). Our
edge-isoperimetric inequality, which we state and prove in Section 2.2, implies that any set
of vertices in {0, 1}k+1 that induces Ω(log k) edges in each of Ω(k) distinct coordinates must
be of size Θ(k log k

log log k ).
Another significant difference between our approach and that of [8] is that while [8]

essentially applies the Harper–Bernstein–Lindsey–Hart isoperimetric inequality via a union
bound in a fairly straightforward way to obtain the Ω

(
k

ε log(k/ε)

)
lower bound, our argument

yielding a Ω
(

k log k
εc log(log(k)/εc)

)
lower bound is significantly more involved. (The union bound

approach of [8] would cost us at least a log k factor, which is more than we can afford
to separate adaptive versus non-adaptive query complexity.) Instead, we use our edge-
isoperimetric inequality in the context of a careful probabilistic analysis (to bound the
variation distance between “yes-function” and “no-function” vectors of responses a la Yao’s
minimax method) which crucially relies on a variant of McDiarmid’s “method of bounded
differences” in which a low-probability “bad event” may take place [36].

1.4 Preliminaries

All logarithms are base 2 unless otherwise stated. We use boldface (e.g. x,y, and f) to
denote random variables. Given S ⊆ {0, 1}n, we write GS to denote the subgraph of the
Hamming graph induced by S. That is, GS = (S,ES), where (x, y) ∈ ES iff x, y ∈ S and
x = y⊕i (this is the string obtained by flipping y in the i-th coordinate) for some i ∈ [n]; we
call such an edge (x, y) an i-edge induced by S.

2 The edge-isoperimetric inequality of Harper [31], Bernstein [6], Lindsey [33], and Hart [32] gives a tight
upper bound of 1

2 |Q| log |Q| edges. We return to this in Section 2.2 when we state and prove a different
edge-isoperimetric inequality that we need for our proof.



R. Servedio, L.-Y. Tan, and J. Wright 269

2 Proof of Theorem 1.1

2.1 The “yes” and “no” distributions
As discussed in the introduction, we consider the same distributions Dyes and Dno that Blais
used in [8] to establish his non-adaptive lower bound, which are biased generalizations of the
yes- and no-distributions considered by Chockler and Gutfreund in [20]. A draw from Dno
is an “ε-biased random (k + 1)-junta” fno : {0, 1}k+1 → {0, 1}, one which independently
takes value 1 with probability ε on every string in {0, 1}k+1. A random fyes from Dyes is
drawn by first choosing a random coordinate i ∈ [k+ 1] to be irrelevant, and then choosing a
random ε-biased random k-junta over the variables from {x1, . . . , xk+1}\{xi}. Equivalently,
Dyes is the uniform mixture of D(1)

yes, . . . ,D(k+1)
yes , where a draw f (i)

yes from D
(i)
yes is the random

function f (i)
yes(x) = fno(xi←1) for all x ∈ {0, 1}n, where fno ∼ Dno and xi←1 denotes the

string x ∈ {0, 1}k+1 with its i-th bit set to 1. We see that Dyes is supported entirely on
k-juntas (in particular, D(i)

yes is supported entirely on functions that do not depend on the
i-th coordinate), and a straightforward calculation shows Dno is supported almost entirely
on functions that are Ω(ε)-far from being a k-junta:

I Lemma 2.1 (Lemma 4.2 of [8]). When 6k/2k < ε ≤ 1/2 and k ≥ 3, a function fno :
{0, 1}k+1 → {0, 1} drawn from Dno is (ε/6)-far from being a k-junta with probability at least
11/12.

We note that these functions fyes,fno : {0, 1}k+1 → {0, 1} can be embedded in the full
n-dimensional domain {0, 1}n simply by defining Fyes : {0, 1}n → {0, 1} where Fyes(x) =
fyes(x[k+1]) for all x ∈ {0, 1}n, where x[k+1] denotes the prefix substring (x1, . . . , xk+1) ∈
{0, 1}k+1 of x. Likewise, we may extend fno : {0, 1}k+1 → {0, 1} to Fno : {0, 1}n → {0, 1}.
In the rest of the paper we confine our discussion to the fyes and fno functions over {0, 1}k+1.

Fix any constant c < 1. Fix any query set Q∗ = {v(1), . . . , v(q)} ⊆ {0, 1}k+1 of cardinality
q as specified in Equation (1) (we will specify the absolute constant C in Section 2.2 below).
For now, we will let the ordering of the query strings v(1), . . . , v(q) be arbitrary, though
we will later impose a carefully chosen particular ordering (see Proposition 2.13). By a
standard application of Yao’s minimax principle, to prove Theorem 1.1 it suffices to argue
that dTV(fyes(Q∗),fno(Q∗)) ≤ 1/3, where fyes(Q∗) denotes the random “response vector”
(fyes(v(1)), . . . ,fyes(v(q))) ∈ {0, 1}q, likewise fno(Q∗) = (fno(v(1)), . . . ,fno(v(q))) ∈ {0, 1}q,
and dTV(·, ·) denotes the total variation distance (also known as statistical distance) between
its two arguments.

2.2 A useful Boolean isoperimetric inequality
As discussed in the introduction, a key combinatorial lemma in Blais’ Ω̃(k/ε) sharpening of
the Chockler–Gutfreund Ω(k) lower bound is the classical edge-isoperimetric inequality of
Harper, Bernstein, Lindsey, and Hart, which may be viewed as giving a lower bound on the
cardinality of query sets in terms of the number of edges they induce.

I Theorem 2.2 (Harper–Bernstein–Lindsey–Hart). For all S ⊆ {0, 1}n, we have |ES | ≤
1
2 |S| log |S|.

We will need a variant of this inequality which takes into account the directions of the
induced edges; in particular, it will be important for us that most directions have “not too
few” induced edges in that direction.
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I Definition 2.3. Let S ⊆ {0, 1}n. We say that S m-saturates direction i ∈ [n] if S induces
at least m many i-edges.

Motivated by our earlier discussion in Section 1.3, a “good” query set Q ⊆ {0, 1}k+1 for
distinguishing between fyes ∼ Dyes and fno ∼ Dno is one which m-saturates most of the
k + 1 coordinates for a suitable choice of m (and of course we want Q to achieve this while
being as small as possible). What kind of query sets Q are best suited to meet these two
objectives? As an easy first observation, let Q1 be an arbitrary query set such that GQ1 has
q1,i edges in each direction i. It is not difficult to show that there exists a query set Q2, with
|Q2| = |Q1|, such that (i) GQ2 is a connected graph and (ii) GQ2 has q2,i ≥ q1,i edges in each
direction i. (Repeatedly translate connected components of Q1 until they “come together”
and only a single connected component is present; such translations cannot decrease the
number of edges in any direction.)

In fact, a stronger statement than the above is true (and is not difficult to show): the
“best” query set Q of a given size is of the form g−1(1) (or g−1(0)) for some monotone Boolean
function g. This is made precise through the following definition and fact:

I Definition 2.4. For each i ∈ [n] the i-th down-shift operator κi acts on Boolean functions
g : {0, 1}n → {0, 1} as follows: (κig)(x) = g(x) if g(x) = g(x⊕i), and (κig)(x) = 1 − xi
otherwise.

I Fact 2.5 (see e.g. [5]). Let S ⊆ {0, 1}n and g : {0, 1}n → {0, 1} be its indicator function.
Consider Sshift := g−1

shift(1) ⊆ {0, 1}n, where gshift := κ1 · · ·κng. Then |Sshift| = |S| and Sshift
is downward closed, meaning that for all v′ � v, if v ∈ Sshift then v′ ∈ Sshift. Furthermore,
if GS has qi edges in direction i, then GSshift has qshift,i ≥ qi edges in direction i (hence if S
m-saturates a direction i then so does Sshift).

The following isoperimetric bound plays a key role in our arguments; it says that we need
“many” vertices to m-saturate a large number of distinct directions.

I Proposition 2.6. Let S ⊆ {0, 1}n be a set of points that m-saturates at least ` directions.
Then |S| ≥ m`

blogm+1c = Ω
(

m`
logm

)
.

Proof. Let height(S) denote the quantity maxv∈S ‖v‖, where ‖v‖ =
∑n
i=1 vi is the Hamming

weight of v ∈ {0, 1}n. By Fact 2.5, we may restrict our attention to sets S that are downward
closed. Let S∗ be a downward-closed set of minimal size that m-saturates at least ` directions,
and which has height(S∗) as small as possible among all such minimal sets; for brevity we
write h to denote height(S∗). Note that we have the relationship

m` ≤ |ES∗ | =
∑
v∈S∗

‖v‖ ≤ h · |S∗|, (2)

and hence to prove a lower bound on the size of S∗, it suffices to show an upper bound on h,
the height of S∗. Let v∗ be a vertex in S with ‖v∗‖ = h, let Dv∗ = {i ∈ [n] : v∗i = 1}, and
consider S′ = S∗ \ {v∗}. Since S∗ is downward closed we have that GS∗ has at least 2h−1

edges in each direction i ∈ Dv∗ . Deleting v∗ from S∗ removes exactly h induced edges, one
from each direction i ∈ Dv∗ , and so by the minimality of S∗ it follows that 2h−1 − 1 < m, or
equivalently, h ≤ blogm+ 1c.This, with (2), completes the proof. J

I Remark. Proposition 2.6 recovers as a special case a classical result of Frankl (Theorem 4
of [27]), proved using the Kruskal–Katona theorem, giving a lower bound of |S| = Ω

(
mn

logm
)

on the cardinality of any set S ⊆ {0, 1}n which m-saturates all n directions. We note also
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that the parameters of Proposition 2.6 are optimal up to a factor of 2. To see this, suppose
t := logm + 1 ∈ N and t divides `. Let A1, . . . , A`/t be a partition of [`] into disjoint
blocks of cardinality t, and for each i ∈ [`/t], let Ci = {v : vj = 0 for all j /∈ Ai} be the
t-dimensional subcube over the coordinates in Ai ⊆ [`]. Then S :=

⋃
Ci is a set of cardinality

|S| = (2m`/(logm+ 1))− 1 which m-saturates the first ` directions.

By Proposition 2.6, we can and shall assume that the query set Q∗ ⊆ {0, 1}k+1 (which
is of size at most q ≤ Ck log k

εc log((log k)/εc) , recall (1)) (log k)/εc-saturates at most 0.1k directions.
As noted earlier, by Yao’s minimax principle, to prove Theorem 1.1 it remains to argue that
dTV(fyes(Q∗),fno(Q∗)) ≤ 1/3.

2.3 Conditioning on unsaturated irrelevant coordinates, and bounding
total variation by establishing concentration

In analyzing the random variable fyes(Q∗), it will be helpful for us to condition on the event
that Q∗ only induces “a few” edges in the direction of the irrelevant coordinate i ∈ [k + 1].
Formally, let U ⊆ [k+ 1] denote the directions that are not ((log k)/εc)-saturated by Q∗, and
recall that |U | ≥ 0.9k by our assumption on the cardinality of Q∗ along with Proposition 2.6.
Let D′yes denote the uniform mixture of D(i)

yes for all i ∈ U (i.e. D′yes is Dyes conditioned on
the irrelevant coordinate i being in U), and D′′yes denote the uniform mixture of D(i)

yes for all
i /∈ U . In other words, Dyes is the mixture of D′yes and D′′yes with mixing weights 1− δ and
δ respectively, where δ ≤ 0.1. We write f ′yes and f ′′yes to denote draws from D′yes and D′′yes
respectively.

I Lemma 2.7. dTV(fyes(Q∗),fno(Q∗)) ≤ dTV(f ′yes(Q∗),fno(Q∗)) + δ.

Proof. This holds by noting that dTV(fyes(Q∗),fno(Q∗)) can be expressed as

1
2

∑
y∈{0,1}q

∣∣(1− δ) Pr[f ′yes(Q∗) = y] + δPr[f ′′yes(Q∗) = y]−Pr[fno(Q∗) = y]
∣∣

≤ 1
2

∑
y∈{0,1}q

∣∣Pr[f ′yes(Q∗) = y]−Pr[fno(Q∗) = y]
∣∣

+ δ
(

Pr[f ′yes(Q∗) = y] + Pr[f ′′yes(Q∗) = y]
)

= dTV(f ′yes(Q∗),fno(Q∗)) + δ. J

And so indeed, Lemma 2.7 reduces the task of proving dTV(fyes(Q∗),fno(Q∗)) ≤ 1/3 to
that of showing

dTV(f ′yes(Q∗),fno(Q∗)) ≤ (1/3)− 0.1, (3)

which is what we will do. We begin by observing that the distribution of fno(Q∗) is fairly easy
to understand: for all y ∈ {0, 1}q, we have Pr

[
fno(Q∗) = y

]
= ε|y|(1 − ε)q−|y| := wtε(y).

This motivates us to define the function A : {0, 1}Q∗ → [0, 1],

A(y) = Pr
[
f ′yes(Q∗) = y

]
, and write dTV(f ′yes(Q∗),fno(Q∗)) =

∑
y∈{0,1}Q∗

|A(y)− wtε(y)|
2 .

For the remainder of this proof, we will write y = (y1, . . . ,yq) to denote a draw from {0, 1}q(ε),
the ε-biased product distribution over {0, 1}q where each coordinate is independently 1 with
probability ε. It will be convenient to think of y as the values fno ∼ Dno takes on the query
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points in Q∗ ⊆ {0, 1}k+1; in other words, y is distributed identically to fno(Q∗). Writing
Ã(y) := A(y)/wtε(y), we have

dTV(f ′yes(Q∗),fno(Q∗)) = 1
2

∑
y∈{0,1}Q∗

wtε(y)|Ã(y)− 1| = 1
2 E

[
|Ã(y)− 1|

]
.

Since 1 =
∑
y A(y) =

∑
y wtε(y) · Ã(y) = E[Ã(y)], it suffices for us to argue that the random

variable Ã(y) is concentrated around its expectation E[Ã(y)] = 1:

I Proposition 2.8. Pr
[
Ã(y) ∈ [0.9, 1.1]

]
≥ 0.9.

Our claimed bound on total variation distance (3) follows from Proposition 2.8 via the
following calculation, where the penultimate inequality uses Proposition 2.8:

dTV(f ′yes(Q∗),fno(Q∗)) = 1
2

∑
y∈{0,1}q

|A(y)− wtε(y)|

= 1
2

(
2− 2

∑
y∈{0,1}q

min{A(y),wtε(y)}
)

≤ 1−
∑

y∈{0,1}q

Ã(y)∈[0.9,1.1]

min{A(y),wtε(y)}

≤ 1−
∑

y∈{0,1}q

Ã(y)∈[0.9,1.1]

0.9 · wtε(y) ≤ 1− (0.9)2 < (1/3)− 0.1.

2.4 Proof of Proposition 2.8
We will bound the probability that Ã(y) deviates from its mean using the “method of
averaged bounded differences” in which a rare “bad” event is allowed to take place:

I Theorem 2.9 (special case of Theorem 3.7 of [36]). Let Ã be a function of {0, 1}-valued
random variables y1, . . . ,yq such that E[Ã(y)] is bounded. Let B ⊆ {0, 1}q, and suppose that
for all b ∈ {0, 1}q \ B,∑

j∈[q]

(
E
[
Ã(b1, . . . , bj−1, bj ,yj+1, . . . ,yq)− Ã(b1, . . . , bj−1, bj ,yj+1, . . . ,yq)

])2 ≤ ∆. (4)

Then for all t ≥ 0, we have Pr
[
|Ã(y)−E[Ã(y)]| > t

]
≤ 2 exp

(
− 2t2/∆

)
+ 2 Pr[y ∈ B].

We introduce some useful notation. Given a labelling b = (b1, . . . , bq) ∈ {0, 1}q of
the query strings v(1), . . . , v(q) in Q∗, we write (bj ,yj+1) to denote the hybrid string
(b1, . . . , bj−1, bj ,yj+1, . . . ,yq) and likewise (bj ,yj+1) to denote (b1, . . . , bj−1, bj ,yj+1, . . . ,yq).
We also write diff(b, j) to denote the difference |E[Ã(bj ,yj+1)−Ã(bj ,yj+1)]|. This notational
convention allows us to express the inequality (4) more succinctly as∑

j∈[q]

diff(b, j)2 =
∑
j∈[q]

(
E[Ã(bj ,yj+1)− Ã(bj ,yj+1)]

)2 ≤ ∆. (5)

Furthermore, we write #i11(b) to denote the number of i-edges in GQ∗ whose endpoints are
both labeled 1 by b, and likewise #i00(b) to denote the number of i-edges in GQ∗ whose
endpoints are both labeled 0 by b. We write #i1(b) to denote the number of vertices in GQ∗
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that are labeled 1 by b and are not incident to an i-edge in GQ∗ , and likewise #i0(b). Finally,
let i-biasε(b) denote the quantity ε−#i11(b) · (1− ε)−#i00(b).

The following terminology will be useful: We say a labeling y ∈ {0, 1}q of the query
strings v(1), . . . , v(q) ∈ Q∗ is i-monochromatic (abbreviated as “i-mono”) if every i-edge in
GQ∗ either has both endpoints labeled 1 by y, or has both endpoints labeled 0 by y. With
this notation and terminology in place we may conveniently characterize Ã(y) as follows:

I Lemma 2.10. Ã(y) = 1
|U |

∑
i∈U

1[y is i-mono] · i-biasε(y).

Proof of Lemma 2.10. Fix a choice for the irrelevant coordinate i ∈ U . Conditioned on
this, the probability that f ′yes(Q∗) = y is ε#i11(y)+#i1(y) · (1− ε)#i00(y)+#i0(y) if y is i-mono
and is 0 otherwise. As wtε(y) = ε2#i11(y)+#i1(y) · (1 − ε)2#i00(y)+#i0(y) if y is i-mono, we
have that Ã(y) equals

1
|U |

∑
i∈U

1[y is i-mono] · 1
wtε(y) ·Pr

[
f ′yes(Q∗) = y | i = i

]
= 1
|U |

∑
i∈U

1[y is i-mono] · ε
#i11(y)+#i1(y) · (1− ε)#i00(y)+#i0(y)

ε2#i11(y)+#i1(y) · (1− ε)2#i00(y)+#i0(y)

= 1
|U |

∑
i∈U

1[y is i-mono] · i-biasε(y). J

By Lemma 2.10, we have that diff(b, j) is at most 1
|U | times∣∣∣∣∣∑

i∈U
E
y

[
1[(bj ,yj+1) is i-mono] i-biasε(bj ,yj+1)− 1[(bj ,yj+1) is i-mono] i-biasε(bj ,yj+1)

]
︸ ︷︷ ︸

(∗)

∣∣∣∣∣.
(6)

Fix b ∈ {0, 1}Q∗ and j ∈ [q]. We make a couple of observations about the quantity (∗) for a
fixed coordinate i ∈ U which will be useful later.
I Observation 2.11. If v(j) is not incident to an i-edge within GQ∗ , then (∗) = 0 pointwise
for every possible outcome of y.
This is because the labeling of v(j) has no effect on either the monochromaticity of the
i-th direction or the number of monochromatic i-edges, and hence 1[(bj , yj+1) is i-mono] =
1[(bj , yj+1) is i-mono] and i-biasε(bj , yj+1) = i-biasε(bj , yj+1) for every possible outcome y
of y.
I Observation 2.12. If v(j) has an i-edge to v(j′) within GQ∗ where j′ > j, then again
(∗) = 0.

(In the following equations we use the notation (a1, a2,yj+2) to denote the string (bj ,yj+1)
except with the j-th bit set to a1 and the j′-th bit set to a2.) Observation 2.12 is true
because

±(∗) = E
y

[
1[(1,yj+1) is i-mono] i-biasε(1,yj+1)− 1[(0,yj+1) is i-mono] i-biasε(0,yj+1)

]
= E

y

[
ε1[(1, 1,yj+2) is i-mono] i-biasε(1, 1,yj+2)

− (1− ε)1[(0, 0,yj+2) is i-mono] i-biasε(0, 0,yj+2)
]
,

and moreover, 1[(1, 1, yj+2) is i-mono] = 1[(0, 0, yj+2) is i-mono] and ε · i-biasε(1, 1, yj+2) =
(1− ε) · i-biasε(0, 0, yj+2) for every possible outcome y of y.
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2.4.1 Choosing an ordering
Given the preceding observations, we may rewrite (6) so that the sum is only over those
directions i ∈ U such that v(j) has an i-edge within GQ∗ to some v(j′) where j′ < j. A priori,
there is no reason to believe that this rewriting will simplify the sum or significantly reduce the
number of summands. However, the next proposition shows that by enforcing an appropriate
ordering on the query set Q∗ = {v(1), . . . , v(q)}, we can ensure that all but blog(q)c terms
will drop out of (6).

I Proposition 2.13. For every S = {v(1), . . . , v(q)} ⊆ {0, 1}n, there exists an ordering
v(1) ≺ v(2) ≺ · · · ≺ v(q) such that every v(i) has at most blog qc many Hamming neighbors
v(j) that precede it in the ordering.

Proof. We proceed by induction on q, noting that the lemma trivially holds when q = 1. For
the inductive step, we partition S into SL and SR, where

SL = {v ∈ S : degS(v) ≤ blog qc},
SR = {v ∈ S : degS(v) > blog qc},

and degS(v) denotes the degree of v in GS . By the edge-isoperimetric inequality (Theo-
rem 2.2), we have that∑

v∈S
degS(v) = 2 · |ES | ≤ q log q,

and hence |SL| ≥ 1, or equivalently, |SR| ≤ q− 1. By our induction hypothesis applied to SR,
there exists an ordering of its vertices so that every vertex has at most blogSRc ≤ blog qc
Hamming neighbors that precede it in the ordering. Our ordering of S will be the vertices
in SR listed in this order given by the induction hypothesis, followed by the vertices in SL
listed in an arbitrary order. The proof is complete by recalling that degS(v) ≤ blog qc for
every v ∈ SL, and hence every v ∈ SL trivially has at most blog qc Hamming neighbors that
precede it in the ordering. J

We will now assume that Q∗ = {v(1), . . . , v(q)} is sorted in the order given by Proposition 2.13.
Since |Q∗| = q = o(k1.1) � k2 (recall (1) and the bounds on ε given in the conditions of
Theorem 1.1) we have that there are fewer than 2 log k such directions i ∈ U . Let i∗ ∈ U be
the direction that maximizes (∗) in (6), and so diff(b, j) is at most (6), which in turn is at
most 2 log k

0.9k times∣∣∣∣Ey [1[(bj ,yj+1) i∗-mono] i∗-biasε(bj ,yj+1)︸ ︷︷ ︸
(∗∗)

−1[(bj ,yj+1) i∗-mono] i∗-biasε(bj ,yj+1)︸ ︷︷ ︸
(∗∗∗)

]∣∣∣∣.
Since v(j) has an i∗-edge within GQ∗ to some v(j′) where j′ < j, it follows that either
E[(∗∗)] = 0 or E[(∗ ∗ ∗)] = 0 (the former if bj′ 6= bj , and the latter if bj′ 6= bj). We may
assume w.l.o.g. that E[(∗ ∗ ∗)] = 0, and so

diff(b, j) ≤ 2 log k
0.9k E

y

[
1[(bj ,yj+1) is i∗-mono] · i∗-biasε(bj ,yj+1)

]
.

Next, we observe that the expectation above may be rewritten as

E
y

[
1[(bj ,yj+1) is i∗-mono] · i∗-biasε(bj ,yj+1)

]
=

∏
i∗-edges e

E
y

[
1[e is mono w.r.t. (bj ,yj+1)] · i∗-biasε((bj ,yj+1)|e)

]
, (7)
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where

i∗-biasε((bj ,yj+1)|e) =
{

ε−1 if both endpoints of e are labeled 1 by (bj ,yj+1)
(1− ε)−1 if both endpoints of e are labeled 0 by (bj ,yj+1).

We claim that the expectation on the RHS of (7) is 1 unless e = (v(`), v(r)), where ` < r ≤ j.
To see this, note that if j < ` < r then

E
y

[
1[e is mono w.r.t. (bj ,yj+1)] · i∗-biasε((bj ,yj+1)|e)

]
= ε2 · 1

ε
+ (1− ε)2 · 1

1− ε = 1,

and if ` ≤ j ≤ r then

E
y

[
1[e is mono w.r.t. (bj ,yj+1)]·i∗-biasε((bj ,yj+1)|e)

]
=
{

ε · ε−1 if b` = 1
(1− ε) · (1− ε)−1 if b` = 0.

Since neither 1[e is mono w.r.t. (bj ,yj+1)] nor i∗-biasε((bj ,yj+1)|e) depend on y when e =
(v(`), v(r)) where ` < r ≤ j, it follows that (7) may be simplified to be

(7) =
∏

i∗-edges e
e=(v(`),v(r)), `<r≤j

1[e is mono w.r.t. b] · i∗-biasε(b|e).

Recalling that this expression (7) depends on both b ∈ {0, 1}q and j ∈ [q] (since i∗ depends
on j), we write val(b, j) to denote (7), i.e.

val(b, j) :=
∏

i∗-edges e
e=(v(`),v(r)), `<r≤j

1[e is mono w.r.t. b] · i∗-biasε(b|e) (8)

and hence we may write

diff(b, j) ≤ 2 log k
0.9k · val(b, j).

2.4.2 Bounding val(b, j) by bucketing
Our goal is to define a bad set B ⊆ {0, 1}q of small measure (Pr[y ∈ B] ≤ 0.01 is sufficient,
though our B will satisfy Pr[y ∈ B] = k−Ω(1)) such that for all b /∈ B,∑

j∈[q]

val(b, j)2 = O
(
k( 25+c

13 )). (9)

This is sufficient since it implies that we may take ∆ := 0.01 and have that the LHS of (4) is
at most∑

j∈[q]

diff(b, j)2 ≤
(

2 log k
0.9k

)2 ∑
j∈[q]

val(b, j)2 = 1
k2−o(1) ·O

(
k( 25+c

13 )) ≤ ∆ = 0.01

for sufficiently large k. (This uses (5) along with the fact that c < 1.) Applying Theorem 2.9
with t = 0.1 would then complete the proof of Proposition 2.8, and hence Theorem 1.1.

To reason about b ∈ {0, 1}q for which (9) does not hold, we group the q many summands
on the LHS of (9) into O(log k) groups according to magnitude. Set M :=

( 23+c
24
)

log k,
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and partition [0,∞) into M + 2 intervals I0 = [0, 1), Im = [2m−1, 2m) for all m ∈ [M ] and
IM+1 = [2M ,∞). For each b ∈ {0, 1}q and m ∈ {0, 1, . . . ,M + 1} we define

bucket(b,m) := {j ∈ [q] : val(b, j) ∈ Im},

C(b,m) :=
∑

j∈bucket(b,m)

val(b, j)2.

With this notation in hand, we may write∑
j∈[q]

val(b, j)2 =
M+1∑
m=0

C(b,m). (10)

Next, for each m ∈ {0, 1, . . . ,M + 1} we define Bm ⊆ {0, 1}q to be

Bm :=
{
b ∈ {0, 1}q : C(b,m) > k( 23+c

12 )},
and finally B :=

⋃
Bm. Certainly if b /∈ B then by (10) we have that∑

j∈[q]

val(b, j)2 =
M+1∑
m=0

C(b,m) ≤ (M + 2) · k( 23+c
12 ) = o(k( 25+c

13 )),

and so it suffices to prove the following proposition.

I Proposition 2.14. For all m ∈ {0, 1, . . . ,M + 1}, we have that Prb∼{0,1}q

(ε)
[b ∈ Bm] =

k−Ω(1). (Consequently, Pr[b ∈ B] = k−Ω(1) by a union bound.)

Proof. First note that for all m ∈ {0, 1, . . . ,M}, we have that

C(b,m) =
∑

j∈bucket(b,m)

val(b, j)2 < |bucket(b,m)| · 22m. (11)

Since |bucket(b,m)| ≤ q = o(k1.1) for all m, we have that (11) < k1.7 for m ≤ 0.3 log k,
and hence recalling the definition of Bm, we have Pr[b ∈ Bm] = 0 for m ≤ 0.3 log k, so the
proposition clearly holds for all such m. Hence we may assume that m > 0.3 log k; it will be
convenient for us to write m = α log k for some α ∈ (0.3, 1). Next, observe that in order for
C(b,m) to be greater than k( 23+c

12 ) it has to be the case that |bucket(b,m)| ≥ k( 23+c
12 ) ·2−2m =

k( 23+c
12 )−2α; this is trivially true for m = M + 1 (since k( 23+c

12 ) · 2−2m = 1
4 ), and follows from

(11) for m ∈ {0, 1, . . . ,M}. We will therefore focus on bounding the RHS of

Pr
[
|bucket(b,m)| ≥ k( 23+c

12 )−2α] ≤ Pr
[
|{j ∈ [q] : val(b, j) ≥ 2m−1 = 1

2k
α}| ≥ k( 23+c

12 )−2α]
by k−Ω(1). Consider the random variable val(b, j) for a fixed j ∈ [q]. Let E = E(j) denote
the number of i∗-edges (where i∗ depends on j), and note that E ≤ log(k)/εc since i∗ ∈ U is
an unsaturated direction. Recalling (8), we may introduce independent random variables
X(j)

1 , . . . ,X(j)
E where

X(j)
` =


0 with probability 2ε(1− ε)

(1− ε)−1 with probability (1− ε)2

ε−1 with probability ε2

and note that val(b, j) (where b ∼ {0, 1}q(ε)) is distributed identically to
∏E
`=1 X(j)

` . Simplify-
ing further, we introduce additional (mutually independent) random variables Y(j)

1 , . . . ,Y(j)
E ,

where each Y(j)
` is coupled to X(j)

` in the following way

Y(j)
` =

{
X(j)
` when X(j)

` = ε−1

1 otherwise.
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Under such a coupling, we have that

E∏
`=1

X(j)
` ≤

(
1

1− ε

)E E∏
`=1

Y(j)
`

with probability 1, where the factor (1− ε)−E is ≤ kν(k) for some function ν(k) = ok(1), for
all ε = ok(1) since E ≤ log(k)/εc (recall the bounds on ε given in the conditions of Theorem
1.1).

I Claim 2.15. Pr
[∏E

`=1 Y(j)
` ≥

1
2k

α−ν(k)] = O(k−( 4−c
3 )α).

Proof of Claim 2.15. Set t := (m − ν(k) log(k) − 2)/ log(1/ε) = ((α − ν(k)) log(k) −
2)/ log(1/ε), and so ε−t = 1

2k
α−ν(k).

Pr
[

E∏
`=1

Y(j)
` ≥

kα−ν(k)

2

]
< ε2t

(
E

t

)

≤ 4
k2α−ν(k)

(
eE

t

)t
≤ 4
k2α−ν(k)

(
e log(1/ε)

0.3 · εc

)t
≤ 4
k2α−ν(k) ·O

(
ε−( 1+c

2 )t
)

<
4

k2α−ν(k) ·O
(
k( 1+c

2 )(α−ν(k))
)

= O

(
1

k( 4−c
3 )α

)
,

where the third inequality uses the fact that t > 0.3 log(k)/ log(1/ε) (recall our assumption
that α > 0.3), the fourth inequality uses the fact that ε = ok(1), and the last inequality uses
the fact that ν(k) = ok(1). J

By linearity of expectation, it follows that

E
[
|{j ∈ [q] : val(b, j) ≥ 1

2k
α}|
]

= O
(
q·k−( 4−c

3 )α) = O
(
k( 7−c

6 )·k−( 4−c
3 )α) = O(k( 7−c

6 )−( 4−c
3 )α),

where we have used the fact that q = O(k1+η) (recall (1) and the bounds on ε given in the
conditions of Theorem 1.1) for any fixed η > 0, and so by Markov’s inequality, we conclude
that

Pr
[
|{j ∈ [q] : val(b, j) ≥ 1

2k
α}| ≥ k( 23+c

12 )−2α] = O
(
k( 7−c

6 )−( 4−c
3 )α−(( 23+c

12 )−2α)) = O(k( c−1
12 ))

for sufficiently large k. Because c < 1, this is k−Ω(1), and therefore the proof of Proposi-
tion 2.14 is complete. J
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Abstract
We continue the study of covering complexity of constraint satisfaction problems (CSPs) initiated
by Guruswami, Håstad and Sudan [9] and Dinur and Kol [7]. The covering number of a CSP
instance Φ, denoted by ν(Φ) is the smallest number of assignments to the variables of Φ, such
that each constraint of Φ is satisfied by at least one of the assignments. We show the following
results regarding how well efficient algorithms can approximate the covering number of a given
CSP instance.
1. Assuming a covering unique games conjecture, introduced by Dinur and Kol, we show that

for every non-odd predicate P over any constant sized alphabet and every integer K, it is NP-
hard to distinguish between P -CSP instances (i.e., CSP instances where all the constraints
are of type P ) which are coverable by a constant number of assignments and those whose
covering number is at least K. Previously, Dinur and Kol, using the same covering unique
games conjecture, had shown a similar hardness result for every non-odd predicate over the
Boolean alphabet that supports a pairwise independent distribution. Our generalization
yields a complete characterization of CSPs over constant sized alphabet Σ that are hard to
cover since CSPs over odd predicates are trivially coverable with |Σ| assignments.

2. For a large class of predicates that are contained in the 2k-LIN predicate, we show that it is
quasi-NP-hard to distinguish between instances which have covering number at most two and
covering number at least Ω(log logn). This generalizes the 4-LIN result of Dinur and Kol that
states it is quasi-NP-hard to distinguish between 4-LIN-CSP instances which have covering
number at most two and covering number at least Ω(log log logn).

1998 ACM Subject Classification F.2 [Theory of Computation] Analysis of Algorithms and
Problem Complexity

Keywords and phrases CSPs, Covering Problem, Hardness of Approximation, Unique Games,
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1 Introduction

One of the central (yet unresolved) questions in inapproximability is the problem of coloring
a (hyper)graph with as few colors as possible. A (hyper)graph G = (V,E) is said to be
k-colorable if there exists a coloring c : V → [k] := {0, 1, 2, . . . , k−1} of the vertices such that
no (hyper)edge of G is monochromatic. The chromatic number of a (hyper)graph, denoted
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by χ(G), is the smallest k such that G is k-colorable. It is known that computing χ(G) to
within a multiplicative factor of n1−ε on an n-sized graph G for every ε ∈ (0, 1) is NP-hard.
However, the complexity of the following problem is not yet completely understood: given a
constant-colorable (hyper)graph, what is the minimum number of colors required to color the
vertices of the graph efficiently such that every edge is non-monochromatic? The current best
approximation algorithms for this problem require at least nΩ(1) colors while the hardness
results are far from proving optimality of these approximation algorithms (see § 1.3 for a
discussion on recent work in this area).

The notion of covering complexity was introduced by Guruswami, Håstad and Sudan [9]
and more formally by Dinur and Kol [7] to obtain a better understanding of the complexity
of this problem. Let P be a predicate and Φ an instance of a constraint satisfaction problem
(CSP) over n variables, where each constraint in Φ is a constraint of type P over the n
variables and their negations. We will refer to such CSPs as P -CSPs. The covering number
of Φ, denoted by ν(Φ), is the smallest number of assignments to the variables such that
each constraint of Φ is satisfied by at least one of the assignments, in which case we say
that the set of assignments covers the instance Φ. If c assignments cover the instance Φ, we
say that Φ is c-coverable or equivalently that the set of assignments form a c-covering for
Φ. The covering number is a generalization of the notion of chromatic number (to be more
precise, the logarithm of the the chromatic number) to all predicates in the following sense.
Suppose P is the not-all-equal predicate NAE and the instance Φ has no negations in any
of its constraints, then the covering number ν(Φ) is exactly dlogχ(GΦ)e where GΦ is the
underlying constraint graph of the instance Φ.

Cover-P refers to the problem of finding the covering number of a given P -CSP instance.
Finding the exact covering number for most interesting predicates P is NP-hard. We therefore
study the problem of approximating the covering number. In particular, we would like to
study the complexity of the following problem, denoted by Covering-P -CSP(c, s), for
some 1 ≤ c < s ∈ N: “given a c-coverable P -CSP instance Φ, find an s-covering for Φ”.
Similar problems have been studied for the Max-CSP setting: “for 0 < s < c ≤ 1, “given
a c-satisfiable P -CSP instance Φ, find an s-satisfying assignment for Φ”. Max-CSPs and
Cover-CSPs, as observed by Dinur and Kol [7], are very different problems. For instance, if
P is an odd predicate, i.e, if for every assignment x, either x or its negation x+ 1 satisfies P ,
then any P -CSP instance Φ has a trivial two covering, any assignment and its negation. Thus,
3-LIN and 3-CNF1, being odd predicates, are easy to cover though they are hard predicates
in the Max-CSP setting. The main result of Dinur and Kol is that the 4-LIN predicate, in
contrast to the above, is hard to cover: for every constant t ≥ 2, Covering-4-LIN-CSP(2, t)
is NP-hard. In fact, their arguments show that Covering-4-LIN-CSP(2,Ω(log log logn)) is
quasi-NP-hard.

Having observed that odd predicate based CSPs are easy to cover, Dinur and Kol
proceeded to ask the question “are all non-odd-predicate CSPs hard to cover?”. In a partial
answer to this question, they showed that assuming a covering variant of the unique games
conjecture Covering-UGC(c), if a predicate P is not odd and there is a balanced pairwise
independent distribution on its support, then for all constants k, Covering-P -CSP(2c, k) is
NP-hard (here, c is a fixed constant that depends on the covering variant of the unique games
conjecture Covering-UGC(c)). See § 2 for the exact definition of the covering variant of
the unique games conjecture.

1 3-LIN : {0, 1}3 → {0, 1} refers to the 3-bit predicate defined by 3-LIN(x1, x2, x3) := x1 ⊕ x2 ⊕ x3 while
3-CNF : {0, 1}3 → {0, 1} refers to the 3-bit predicate defined by 3-CNF(x1, x2, x3) := x1 ∨ x2 ∨ x3.
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1.1 Our Results
Our first result states that assuming the same covering variant of unique games conjecture
Covering-UGC(c) of Dinur and Kol [7], one can in fact show the covering hardness of all
non-odd predicates P over any constant-sized alphabet [q]. The notion of odd predicate can
be extended to any alphabet in the following natural way: a predicate P ⊆ [q]k is odd if for
all assignments x ∈ [q]k, there exists a ∈ [q] such that the assignment x+ a satisfies P .

I Theorem 1.1 (Covering hardness of non-odd predicates). Assuming Covering-UGC(c),
for any constant-sized alphabet [q], any constant k ∈ N and any non-odd predicate P ⊆ [q]k,
for all constants t ∈ N, the Covering-P -CSP(2cq, t) problem is NP-hard.

Since odd predicates P ⊆ [q]k are trivially coverable with q assignments, the above theorem,
gives a full characterization of hard-to-cover predicates over any constant sized alphabet
(modulo the covering variant of the unique games conjecture): a predicate is hard to cover iff
it is not odd.

We then ask if we can prove similar covering hardness results under more standard
complexity assumptions (such as NP 6=P or the exponential-time hypothesis (ETH)). Though
we are not able to prove that every non-odd predicate is hard under these assumptions, we
give sufficient conditions on the predicate P for the corresponding approximate covering
problem to be quasi-NP-hard. Recall that 2k-LIN ⊆ {0, 1}2k is the predicate corresponding
to the set of odd parity strings in {0, 1}2k.

I Theorem 1.2 (NP-hardness of Covering). Let k ≥ 2. Let P ⊆ 2k-LIN be any 2k-bit predicate
such there exists distributions P0,P1 supported on {0, 1}k with the following properties:
1. the marginals of P0 and P1 on all k coordinates is uniform,
2. every a ∈ supp(P0) has even parity and every b ∈ supp(P1) has odd parity and furthermore,

both a · b, b · a ∈ P .
Then, unless NP ⊆ DTIME(2poly logn), for all ε ∈ (0, 1/2], Covering-P -CSP(2,

Ω(log logn)) is not solvable in polynomial time.
Furthermore, the YES and NO instances of Covering-P -CSP(2,Ω(log logn)) satisfy

the following properties.

YES Case: There are 2 assignments such that each of them covers 1− ε fraction of the
constraints and they together cover the instance.
NO Case: Even the 2k-LIN-CSP instance with the same constraint graph as the given
instance is not Ω(log logn)-coverable.

The furthermore clause in the soundness guarantee is in fact a strengthening for the
following reason: if two predicates P,Q satisfy P ⊆ Q and Φ is a c-coverable P -CSP instance,
then the Q-CSP instance ΦP→Q obtained by taking the constraint graph of Φ and replacing
each P constraint with the weaker Q constraint, is also c-coverable.

The following is a simple corollary of the above theorem.

I Corollary 1.3. Let k ≥ 2 be even, x, y ∈ {0, 1}k be distinct strings having even and odd
parity respectively and x, y denote the complements of x and y respectively. For any predicate
P satisfying

2k-LIN ⊇ P ⊇ {x · y, x · y, x · y, x · y, y · x, y · x, y · x, y · x},

unless NP ⊆ DTIME(2poly logn), the problem Covering-P -CSP(2,Ω(log logn)) is not
solvable in polynomial time.
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This corollary implies the covering hardness of 4-LIN predicate proved by Dinur and Kol [7]
by setting x := 00 and y := 01. With respect to the covering hardness of 4-LIN, we note that
we can considerably simplify the proof of Dinur and Kol and in fact obtain a even stronger
soundness guarantee (see Theorem below). The stronger soundness guarantee in the theorem
below states that there are no large (≥ 1/ poly logn fractional sized) independent sets in the
constraint graph and hence, even the 4-NAE-CSP instance2 with the same constraint graph
as the given instance is not coverable using Ω(log logn) assignments. Both the Dinur-Kol
result and the above corollary only guarantee (in the soundness case) that the 4-LIN-CSP
instance is not coverable.

I Theorem 1.4 (Hardness of Covering 4-LIN). Assuming that NP 6⊆ DTIME(2poly logn), for
all ε ∈ (0, 1), there does not exist a polynomial time algorithm that can distinguish between
4-LIN-CSP instances of the following two types:

YES Case: There are 2 assignments such that each of them covers 1− ε fraction of the
constraints, and they together cover the entire instance.
NO Case: The largest independent set in the constraint graph of the instance is of
fractional size at most 1/ poly logn.

1.2 Techniques
As one would expect, our proofs are very much inspired from the corresponding proofs in
Dinur and Kol [7]. One of the main complications in the proof of Dinur and Kol [7] (as
also in the earlier work of Guruswami, Håstad and Sudan [9]) was the one of handling
several assignments simultaneously while proving the soundness analysis. For this purpose,
both these works considered the rejection probability that all the assignments violated the
constraint. This resulted in a very tedious expression for the rejection probability, which
made the rest of the proof fairly involved. Khot [12] observed that this can be considerably
simplified if one instead proved a stronger soundness guarantee that the largest independent
set in the constraint graph is small (this might not always be doable, but in the cases when
it is, it simplifies the analysis). We list below the further improvements in the proof that
yield our Theorems 1.1, 1.2 and 1.4.

Covering hardness of 4-LIN (Theorem 1.4): The simplified proof of the covering hardness
of 4-LIN follows directly from the above observation of using an independent set analysis
instead of working with several assignments. In fact, this alternate proof eliminates the need
for using results about correlated spaces [14], which was crucial in the Dinur-Kol setting.
We further note that the quantitative improvement in the covering hardness (Ω(log logn)
over Ω(log log logn)) comes from using a Label-Cover instance with a better smoothness
property (see Theorem 2.5).

Covering UG-hardness for non-odd predicates (Theorem 1.1): Having observed that it
suffices to prove an independent set analysis, we observed that only very mild conditions on
the predicate are required to prove covering hardness. In particular, while Dinur and Kol
used the Austrin-Mossel test [3] which required pairwise independence, we are able to import
the long-code test of Bansal and Khot [4] which requires only 1-wise independence. We
remark that the Bansal-Khot Test was designed for a specific predicate (hardness of finding
independent sets in almost k-partite k-uniform hypergraphs) and had imperfect completeness.

2 The k-NAE predicate over k bits is given by k-NAE = {0, 1}k \ {0, 1}.
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Our improvement comes from observing that their test requires only 1-wise independence
and furthermore that their completeness condition, though imperfect, can be adapted to give
a 2-cover composed of 2 nearly satisfying assignments. This enlarges the class of non-odd
predicates for which one can prove covering hardness (see Theorem 3.1). We then perform a
sequence of reductions from this class of CSP instances to CSP instances over all non-odd
predicates to obtain the final result. Interestingly, one of the open problems mentioned in
the work of Dinur and Kol [7] was to devise “direct” reductions between covering problems.
The reductions we employ, strictly speaking, are not “direct” reductions between covering
problems, since they rely on a stronger soundness guarantee for the source instance (namely,
large covering number even for the NAE instance on the same constraint graph), which we
are able to prove in Theorem 3.1.

Quasi-NP-hardness result (Theorem 1.2): In this setting, we unfortunately are not able
to use the simplification arising from using the independent set analysis and have to deal
with the issue of several assignments. One of the steps in the 4-LIN proof of Dinur and
Kol (as in several others results in this area) involves showing that a expression of the form
E(X,Y ) [F (X)F (Y )] is not too negative where (X,Y ) is not necessarily a product distribution
but the marginals on the X and Y parts are identical. Observe that if (X,Y ) was a product
distribution, then the above expressions reduces to (EX [F (X)])2, a positive quantity. Thus,
the steps in the proof involve constructing a tailor-made distribution (X,Y ) such that the
error in going from the correlated probability space (X,Y ) to the product distribution
(X ⊗ Y ) is not too much. More precisely, the quantity∣∣∣∣ E

(X,Y )
[F (X)F (Y )]− E

X
[F (X)] E

Y
[F (Y )]

∣∣∣∣ ,
is small. Dinur and Kol used a distribution tailor-made for the 4-LIN predicate and used
an invariance principle for correlated spaces to bound the error while transforming it to a
product distribution. Our improvement comes from observing that one could use an alternate
invariance principle (see Theorem 2.8) that works with milder restrictions and hence works
for a wider class of predicates. This invariance principle for correlated spaces (Theorem 2.8)
is an adaptation of invariance principles proved by Wenner [17] and Guruswami and Lee [10]
in similar contexts. The rest of the proof is similar to the 4-LIN covering hardness proof of
Dinur and Kol.

1.3 Recent work on approximate coloring

We remark that recently, with the discovery of the short code [5], there has been a sequence
of works [6, 8, 13, 16] which have considerably improved the status of the approximate
coloring question, stated in the beginning of the introduction. In particular, we know that
it is quasi-NP-hard to color a 2-colorable 8-uniform hypergraph with 2(logn)c colors for
some constant c ∈ (0, 1). Stated in terms of covering number, this result states that it is
quasi-NP-hard to cover a 1-coverable 8-NAE-CSP instance with (logn)c assignments. It is to
be noted that these results pertain to the covering complexity of specific predicates (such
as NAE) whereas our results are concerned with classifying which predicates are hard to
cover. It would be interesting if Theorem 1.2 and Theorem 1.4 can be improved to obtain
similar hardness results (i.e., poly logn as opposed to poly log logn). The main bottleneck
here seems to be reducing the uniformity parameter (namely, from 8).
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1.4 Organization
The rest of the paper is organized as follows. We start with some preliminaries of Label-
Cover, covering CSPs and Fourier analysis in § 2. Theorems 1.1, 1.2 and 1.4 are proved in
Sections 3, 4 and 5 respectively.

2 Preliminaries

2.1 Covering CSPs
We will denote the set {0, 1, · · · q − 1} by [q]. For a ∈ [q], ā ∈ [q]k is the element with a in all
the k coordinates (where k and q will be implicit from the context).

I Definition 2.1 (P -CSP). For a predicate P ⊆ [q]k, an instance of P -CSP is given by
a (hyper)graph G = (V,E), referred to as the constraint graph, and a literals function
L : E → [q]k, where V is a set of variables and E ⊆ V k is a set of constraints. An assignment
f : V → [q] is said to cover a constraint e = (v1, · · · , vk) ∈ E, if (f(v1), · · · , f(vk))+L(e) ∈ P ,
where addition is coordinate-wise modulo q. A set of assignments F = {f1, · · · , fc} is said
to cover (G,L), if for every e ∈ E, there is some fi ∈ F that covers e and F is said to be a
c-covering for G. G is said to be c-coverable if there is a c-covering for G. If L is not specified
then it is the constant function which maps E to 0̄.

I Definition 2.2 (Covering-P -CSP(c, s)). For P ⊆ [q]k and c, s ∈ N, the Covering-
P -CSP(c, s) problem is, given a c-coverable instance (G = (V,E), L) of P -CSP, find an
s-covering.

I Definition 2.3 (Odd). A predicate P ⊆ [q]k is odd if ∀x ∈ [q]k,∃a ∈ [q], x+ ā ∈ P , where
addition is coordinate-wise modulo q.

For odd predicates the covering problem is trivially solvable, since any CSP instance on
such a predicate is q-coverable by the q translates of any assignment, i.e., {x+ ā | a ∈ [q]} is
a q-covering for any assignment x ∈ [q]k.

2.2 Label Cover
I Definition 2.4 (Label-Cover). An instance G = (U, V,E, L,R, {πe}e∈E) of the Label-
Cover constraint satisfaction problem consists of a bi-regular bipartite graph (U, V,E), two
sets of alphabets L and R and a projection map πe : R→ L for every edge e ∈ E. Given a
labeling ` : U → L, ` : V → R, an edge e = (u, v) is said to be satisfied by ` if πe(`(v)) = `(u).

G is said to be at most δ-satisfiable if every labeling satisfies at most a δ fraction of the
edges. G is said to be c-coverable if there exist c labelings such that for every vertex u ∈ U ,
one of the labelings satisfies all the edges incident on u.

An instance of Unique-Games is a label cover instance where L = R and the constraints
π are permutations.

The hardness of Label-Cover stated below follows from the PCP Theorem [2, 1], Raz’s
Parallel Repetition Theorem [15] and a structural property proved by Håstad [11, Lemma 6.9].

I Theorem 2.5 (Hardness of Label-Cover). For every r ∈ N, there is a deterministic nO(r)-
time reduction from a 3-SAT instance of size n to an instance G = (U, V,E, [L], [R], {πe}e∈E)
of Label-Cover with the following properties:
1. |U |, |V | ≤ nO(r); L,R ≤ 2O(r); G is bi-regular with degrees bounded by 2O(r).
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2. There exists a constant c0 ∈ (0, 1/3) such that for any v ∈ V and α ⊆ [R], for a random
neighbor u,

E
u

[
|πuv(α)|−1] ≤ |α|−2c0 .

This implies that
∀v, α, Pru [|πuv(α)| < |α|c0 ] ≤ 1

|α|c0
.

3. There is a constant d0 ∈ (0, 1) such that,
YES Case: If the 3-SAT instance is satisfiable, then G is 1-coverable.
NO Case: If the 3-SAT instance is unsatisfiable, then G is at most 2−d0r-satisfiable.

Our characterization of hardness of covering CSPs is based on the following conjecture
due to Dinur and Kol [7].

I Conjecture 2.6 (Covering-UGC(c)). There exists c ∈ N such that for every suffi-
ciently small δ > 0 there exists L ∈ N such that the following holds. Given a an instance
G = (U, V,E, [L], [L], {πe}e∈E) of Unique-Games it is NP-hard to distinguish between the
following two cases:

YES Case: There exist c assignments such that for every vertex u ∈ U , at least one of
the assignments satisfies all the edges touching u.
NO Case: Every assignment satisfies at most δ fraction of the edge constraints.

2.3 Analysis of Boolean Function over Probability Spaces
For a function f : {0, 1}L → R, the Fourier decomposition of f is given by

f(x) =
∑

α∈{0,1}L
f̂(α)χα(x) where χα(x) := (−1)

∑L

i=1
αi·xi and f̂(α) := E

x∈{0,1}L
f(x)χα(x).

We will use α, also to denote the subset of [L] for which it is the characteristic vector. The
Efron-Stein decomposition is a generalization of the Fourier decomposition to product distri-
butions of arbitrary probability spaces. Let (Ω, µ) be a probability space and (ΩL, µ⊗L) be
the corresponding product space. For a function f : ΩL → R, the Efron-Stein decomposition
of f with respect to the product space is given by

f(x1, · · · , xL) =
∑
β⊆[L]

fβ(x),

where fβ depends only on xi for i ∈ β and for all β′ 6⊇ β, a ∈ Ωβ′ , Ex∈µ⊗R [fβ(x) | xβ′ = a] = 0.
We will be dealing with functions of the form f : {0, 1}dL → R for d ∈ N and d-to-1 functions
π : [dL]→ [L]. We will also think of such functions as f :

∏
i∈L Ωi → R where Ωi = {0, 1}d

consists of the d coordinates j such that π(j) = i. An Efron-Stein decomposition of
f :

∏
i∈L Ωi → R over the uniform distribution over {0, 1}dL, can be obtained from the

Fourier decomposition as

fβ(x) =
∑

α⊆[dL]:π(α)=β

f̂(α)χα. (2.1)

Let ‖f‖2 := Ex∈µ⊗L [f(x)2]1/2 and ‖f‖∞ := maxx∈Ω⊗L |f(x)| . For i ∈ [L], the influence of
the ith coordinate on f is defined as follows.

Infi[f ] := E
x1,··· ,xi−1,xi+1,··· ,xL

Varxi [f(x1, · · · , xL)] =
∑
β:i∈β

‖fβ‖22.
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For an integer d, the degree d influence is defined as

Inf≤di [f ] :=
∑

β:i∈β,|β|≤d

‖fβ‖22.

It is easy to see that for Boolean functions, the sum of all the degree d influences is at most d.
Let (Ωk, µ) be a probability space. Let S = {x ∈ Ωk | µ(x) > 0}. We say that S ⊆ Ωk is

connected if for every x, y ∈ S, there is a sequence of strings starting with x and ending with
y such that every element in the sequence is in S and every two adjacent elements differ in
exactly one coordinate.

I Theorem 2.7 ([14, Proposition 6.4]). Let (Ωk, µ) be a probability space such that the
support of the distribution supp(µ) ⊆ Ωk is connected and the minimum probability of every
atom in supp(µ) is at least α for some α ∈ (0, 1

2 ]. Then there exists continuous functions
Γ : (0, 1)→ (0, 1) and Γ : (0, 1)→ (0, 1) such that the following holds: For every ε > 0, there
exists τ > 0 and an integer d such that if a function f : ΩL → [0, 1] satisfies

∀i ∈ [n], Inf≤di (f) ≤ τ

then

Γ
(

E
µ
[f ]
)
− ε ≤ E

(x1,...,xk)∼µ

 k∏
j=1

f(xj)

 ≤ Γ
(

E
µ
[f ]
)

+ ε.

There exists an absolute constant C such that one can take τ = εC
log(1/α) log(1/ε)

εα2 and d =
log(1/τ) log(1/α).

The following invariance principle for correlated spaces proved in Appendix A is an
adaptation of similar invariance principles (c.f., [17, Theorem 3.12],[10, Lemma A.1]) to our
setting.

I Theorem 2.8 (Invariance Principle for correlated spaces). Let (Ωk1 × Ωk2 , µ) be a correlated
probability space such that the marginal of µ on any pair of coordinates one each from Ω1
and Ω2 is a product distribution. Let µ1, µ2 be the marginals of µ on Ωk1 and Ωk2 respectively.
Let X,Y be two random k × L dimensional matrices chosen as follows: independently for
every i ∈ [L], the pair of columns (xi, yi) ∈ Ωk1 × Ωk2 is chosen from µ. Let xi, yi denote the
ith rows of X and Y respectively. If F : ΩL1 → [−1,+1] and G : ΩL2 → [−1,+1] are functions
such that

τ :=
√∑
i∈[L]

Infi[F ] · Infi[G] and Γ := max


√∑
i∈[L]

Infi[F ],
√∑
i∈[L]

Infi[G]

 ,

then∣∣∣∣∣∣ E
(X,Y )∈µ⊗L

∏
i∈[k]

F (xi)G(yi)

− E
X∈µ⊗L1

∏
i∈[k]

F (xi)

 E
Y ∈µ⊗L2

∏
i∈[k]

G(yi)

∣∣∣∣∣∣ ≤ 2O(k)Γτ. (2.2)

3 UG Hardness of Covering

In this section, we prove the following theorem, which in turn implies Theorem 1.1 (see below
for proof).
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I Theorem 3.1. Let [q] be any constant sized alphabet and k ≥ 2. Recall that NAE :=
[q]k \ {b̄ | b ∈ [q]}. Let P ⊆ [q]k be a predicate such that there exists a ∈ NAE and
NAE ⊃ P ⊇ {a + b̄ | b ∈ [q]}. Assuming Covering-UGC(c), for every sufficiently small
constant δ > 0 it is NP-hard to distinguish between P -CSP instances G = (V, E) of the
following two cases:

YES Case: G is 2c-coverable.
NO Case: G does not have an independent set of fractional size δ.

Proof of Theorem 1.1. Let Q be an arbitrary non odd predicate, i.e, Q ⊆ [q]k \ {h+ b̄ | b ∈
[q]} for some h ∈ [q]k. Consider the predicate Q′ ⊆ [q]k defined as Q′ := Q − h. Observe
that Q′ ⊆ NAE. Given any Q′-CSP instance Φ with literals function L(e) = 0, consider the
Q-CSP instance ΦQ′→Q with literals function M given by M(e) := h,∀e. It has the same
constraint graph as Φ. Clearly, Φ is c-coverable iff ΦQ′→Q is c-coverable. Thus, it suffices
to prove the result for any predicate Q′ ⊆ NAE with literals function L(e) = 03. We will
consider two cases, both of which will follow from Theorem 3.1.

Suppose the predicate Q′ satisfies Q′ ⊇ {a + b̄ | b ∈ [q]} for some a ∈ [q]k. Then this
predicate Q′ satisfies the hypothesis of Theorem 3.1 and the theorem follows if we show that
the soundness guarantee of Theorem 3.1 implies that in Theorem 1.1. Any instance in the
NO case of Theorem 3.1, is not t := logq(1/δ)-coverable even on the NAE-CSP instance with
the same constraint graph. This is because any t-covering for the NAE-CSP instance gives a
coloring of the constraint graph using qt colors, by choosing the color of every variable to be
a string of length t and having the corresponding assignments in each position in [t]. Hence
the Q′-CSP instance is also not t-coverable.

Suppose Q′ 6⊇ {a+ b̄ | b ∈ [q]} for all a ∈ [q]k. Then consider the predicate P = {a+ b̄ |
a ∈ Q′, b ∈ [q]} ⊆ NAE. Notice that P satisfies the conditions of Theorem 3.1 and if the
P -CSP instance is t-coverable then the Q′-CSP instance is qt-coverable. Hence an YES
instance of Theorem 3.1 maps to a 2cq-coverable Q-CSP instance and NO instance maps to
an instance with covering number at least logq(1/δ). J

We now prove Theorem 3.1 by giving a reduction from an instance G = (U, V,E, [L], [L],
{πe}e∈E) of Unique-Games as in Definition 2.4, to an instance G = (V, E) of a P -CSP
for any predicate P that satisfies the conditions mentioned. As stated in the introduction,
we adapt the long-code test of Bansal and Khot [4] for proving the hardness of finding
independent sets in almost k-partite k-uniform hypergraphs to our setting. The set of
variables V is V × [q]2L. Any assignment to V is given by a set of functions fv : [q]2L → [q],
for each v ∈ V . The set of constraints E is given by the following test which checks whether
fv’s are long codes of a good labeling to V . There is a constraint corresponding to all the
variables that are queried together by the test.

Long Code Test T1

1. Choose u ∈ U uniformly and k neighbors w1, . . . , wk ∈ V of u uniformly and independently
at random.

2. Choose a random matrix X of dimension k×2L as follows. Let Xi denote the ith column
of X. Independently for each i ∈ [L], choose (Xi, Xi+L) uniformly at random from the

3 This observation [7] that the cover-Q problem for any non-odd predicate Q is equivalent to the cover-Q′
problem where Q′ ⊆ NAE shows the centrality of the NAE predicate in understanding the covering
complexity of any non-odd predicate.



A. Bhangale, P. Harsha, and G. Varma 289

set

S :=
{

(y, y′) ∈ [q]k × [q]k | y ∈ {a+ b̄ | b ∈ [q]} ∨ y′ ∈ {a+ b̄ | b ∈ [q]}
}
. (3.1)

3. Let x1, · · · , xk be the rows of matrix X. Accept iff

(fw1(x1 ◦ πuw1), fw2(x2 ◦ πuw2), · · · , fwk(xk ◦ πuwk)) ∈ P,

where x◦π is the string defined as (x◦π)(i) := xπ(i) for i ∈ [L] and (x◦π)(i) := xπ(i−L)+L
otherwise.

I Lemma 3.2 (Completeness). If the Unique-Games instance G is c-coverable then the
P -CSP instance G is 2c-coverable.

Proof. Let `1, . . . , `c : U ∪ V → [L] be a c-covering for G as described in Definition 2.4. We
will show that the 2c assignments given by f iv(x) := x`i(v), g

i
v(x) := x`i(v)+L, i = 1, . . . , c form

a 2c-covering of G. Consider any u ∈ U and let `i be the labeling that covers all the edges
incident on u. For any (u,wj)j∈{1,··· ,k} ∈ E and X chosen by the long code test T1, the vector
(f iw1

(x1 ◦ πuw1), · · · , f iwk(xk ◦ πuwk)) gives the `i(u)th column of X. Similarly the above
expression corresponding to gi gives the (`i(u) + L)th column of the matrix X. Since, for all
i ∈ [L], either ith column or (i+L)th column of X contains element from {a+ b̄ | b ∈ [q]} ⊆ P ,
either (f iw1

(x1 ◦ πuw1), · · · , f iwk(xk ◦ πuwk)) ∈ P or (giw1
(x1 ◦ πuw1), · · · , giwk(xk ◦ πuwk)) ∈ P .

Hence the set of 2c assignments {f iv, giv}i∈{1,··· ,c} covers all constraints in G. J

To prove soundness, we show that the set S, as defined in Equation (3.1), is connected,
so that Theorem 2.7 is applicable. For this, we view S ⊆ [q]k × [q]k as a subset of ([q]2)k as
follows: the element (y, y′) ∈ S is mapped to the element ((y1, y

′
1), · · · , (yk, y′k)) ∈ ([q]2)k.

I Claim 3.3. Let Ω = [q]2. The set S ⊂ Ωk is connected.

Proof. Consider any x := (x1, x2), y := (y1, y2) ∈ S ⊂ [q]k × [q]k. Suppose both x1, y1 ∈
{a+ b̄ | b ∈ [q]}, then it is easy to come up with a sequence of strings belonging to S, starting
with x and ending with y such that consecutive strings differ in at most 1 coordinate,. Now
suppose x1, y2 ∈ {a+ b̄ | b ∈ [q]}. First we come up with a sequence from x to z := (z1, z2)
such that z1 := x1 and z2 = y2, and then another sequence for z to y. J

I Lemma 3.4 (Soundness). For every constant δ > 0, there exists a constant s such that, if
G is at most s-satisfiable then G does not have an independent set of size δ.

Proof. Let I ⊆ V be an independent set of fractional size δ in the constraint graph. For
every variable v ∈ V , let fv : [q]2L → {0, 1} be the indicator function of the independent set
restricted to the vertices that correspond to v. For a vertex u ∈ U , let N(u) ⊆ V be the set
of neighbors of u and define fu(x) := Ew∈N(u)[fw(x ◦ πuw)]. Since I is an independent set,
we have

0 = E
u,wi,...,wk

E
X∼T1

[
k∏
i=1

fwi(xi ◦ πuwi)
]

= E
u

E
X∼T1

[
k∏
i=1

fu(xi)
]
. (3.2)

Since the bipartite graph (U, V,E) is left regular and |I| ≥ δ|V |, we have Eu,x[fu(x)] ≥ δ.
By an averaging argument, for at least δ

2 fraction of the vertices u ∈ U , Ex[fu(x)] ≥ δ
2 . Call

a vertex u ∈ U good if it satisfies this property. A string x ∈ [q]2L can be thought as an
element from ([q]2)L by grouping the pair of coordinates xi, xi+L. Let x ∈ ([q]2)L denotes
this grouping of x, i.e., jth coordinate of x is (xj , xj+L) ∈ [q]2. With this grouping, the
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function fu can be viewed as fu : ([q]2)L → {0, 1}. From Equation (3.2), we have that for
any u ∈ U ,

E
X∼T1

[
k∏
i=1

fu(xi)
]

= 0.

By Claim 3.3, for all j ∈ [L] the tuple ((x1)j , . . . , (xk)j) (corresponding to columns (Xj ,Xj+L)
of X) is sampled from a distribution whose support is a connected set. Hence for a good
vertex u ∈ U , we can apply Theorem 2.7 with ε = Γ(δ/2)/2 to get that there exists
j ∈ [L], d ∈ N, τ > 0 such that Inf≤dj (fu) > τ . We will use this fact to give a randomized
labeling for G. Labels for vertices w ∈ V, u ∈ U will be chosen uniformly and independently
from the sets

Lab(w) :=
{
i ∈ [L] | Inf≤di (fw) ≥ τ

2

}
, Lab(u) :=

{
i ∈ [L] | Inf≤di (fu) ≥ τ

}
.

By the above argument (using Theorem 2.7), we have that for a good vertex u, Lab(u) 6= ∅.
Furthermore, since the sum of degree d influences is at most d, the above sets have size at
most 2d/τ . Now, for any j ∈ Lab(u), we have

τ < Inf≤dj [fu] =
∑

S:j∈S,|S|≤d

‖fu,S‖2 =
∑

S:j∈S,|S|≤d

∥∥∥∥ E
w∈N(u)

[
fw,π−1

uw(S)

]∥∥∥∥2
(By Definition.)

≤
∑

S:j∈S,|S|≤d

E
w∈N(u)

∥∥∥fw,π−1
uw(S)

∥∥∥2
= E
w∈N(u)

Inf≤d
π−1
uw(j)[fw]. (By Convexity of square.)

Hence, by another averaging argument, there exists at least τ
2 fraction of neighbors w of

u such that Inf≤d
π−1
uw(j)(fw) ≥ τ

2 and hence π−1
uw(j) ∈ Lab(w). Therefore, for a good vertex

u ∈ U , at least τ
2
τ
2d fraction of edges incident on u are satisfied in expectation. Also, at

least δ
2 fraction of vertices in U are good, it follows that the expected fraction of edges that

are satisfied by this random labeling is at least δ
2
τ
2
τ
2d . Choosing s < δ

2
τ
2
τ
2d completes the

proof. J

4 NP-Hardness of Covering

In this section, we prove Theorem 1.2. We give a reduction from an instance of a Label-
Cover, G = (U, V,E, [L], [R], {πe}e∈E) as in Definition 2.4, to a P -CSP instance G = (V, E)
for any predicate P that satisfies the conditions mentioned in Theorem 1.2. The reduction
and proof is similar to that of Dinur and Kol [7]. The main difference is that they used a test
and invariance principle very specific to the 4-LIN predicate, while we show that a similar
analysis can be performed under milder conditions on the test distribution.

We assume that R = dL and ∀i ∈ [L], e ∈ E, |π−1
e (i)| = d. This is done just for simplifying

the notation and the proof does not depend upon it. The set of variables V is V × {0, 1}2R.
Any assignment to V is given by a set of functions fv : {0, 1}2R → {0, 1}, for each v ∈ V .
The set of constraints E is given by the following test which checks whether fv’s are long
codes of a good labeling to V .

Long Code Test T2
1. Choose u ∈ U uniformly and v, w ∈ V neighbors of u uniformly and independently at

random. For i ∈ [L], let Buv(i) := π−1
uv (i), B′uv(i) := R+ π−1

uv (i) and similarly for w.
2. Choose matrices X,Y of dimension k× 2dL as follows. For S ⊆ [2dL], we denote by X|S

the submatrix of X restricted to the columns S. Independently for each i ∈ [L], choose
c1 ∈ {0, 1} uniformly and
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a. if c1 = 0, choose
(
X|Buv(i)∪B′uv(i), Y |Buw(i)∪B′uw(i)

)
from P⊗2d

0 ⊗ P⊗2d
1 ,

b. if c1 = 1, choose
(
X|Buv(i)∪B′uv(i), Y |Buw(i)∪B′uw(i)

)
from P⊗2d

1 ⊗ P⊗2d
0 .

3. Perturb X,Y as follows. Independently for each i ∈ [L], choose c2 ∈ {∗, 0, 1} as follows:
Pr[c2 = ∗] = 1 − 2ε, and Pr[c2 = 1] = Pr[c2 = 0] = ε. Perturb the ith matrix block(
X|Buv(i)∪B′uv(i), Y |Buw(i)∪B′uw(i)

)
as follows:

a. if c2 = ∗, leave the matrix block
(
X|Buv(i)∪B′uv(i), Y |Buw(i)∪B′uw(i)

)
unperturbed,

b. if c2 = 0, choose
(
X|B′uv(i), Y |B′uw(i)

)
uniformly from {0, 1}k×d × {0, 1}k×d,

c. if c2 = 1, choose
(
X|Buv(i), Y |Buw(i)

)
uniformly from {0, 1}k×d × {0, 1}k×d.

4. Let x1, · · · , xk and y1, · · · , yk be the rows of the matrices X and Y respectively. Accept
if

(fv(x1), · · · , fv(xk), fw(y1), · · · , fw(yk)) ∈ P.

I Lemma 4.1 (Completeness). If G is an YES instance of Label-Cover, then there exists
f, g such that each of them covers 1− ε fraction of E and they together cover all of E.

Proof. Let ` : U ∪V → [L]∪ [R] be a labeling to G that satisfies all the constraints. Consider
the assignments fv(x) := x`(v) and gv(x) := xR+`(v) for each v ∈ V . First consider the
assignment f . For any (u, v), (u,w) ∈ E and x1, · · · , xk, y1, · · · , yk chosen by the long code
test T2, (fv(x1), · · · , fv(xk)), (fw(y1), · · · , fw(yk)) gives the `(v)th and `(w)th column of the
matrices X and Y respectively. Since πuv(`(v)) = πuw(`(w)), they are jointly distributed
either according to P0 ⊗ P1 or P1 ⊗ P0 after Step 2. The probability that these rows are
perturbed in Step 3c is at most ε. Hence with probability 1− ε over the test distribution, f
is accepted. A similar argument shows that the test accepts g with probability 1− ε. Note
that in Step 3, the columns given by f, g, are never re-sampled uniformly together. Hence
they together cover G. J

Now we will show that if G is a NO instance of Label-Cover then no t assignments
can cover the 2k-LIN-CSP with constraint hypergraph G. For the rest of the analysis,
we will use +1,−1 instead of the symbols 0, 1. Suppose for contradiction, there exist t
assignments f1, · · · , ft : {±1}2R → {±1} that form a t-cover to G. The probability that all
the t assignments are rejected in Step 4 is

E
u,v,w

E
T2

[
t∏
i=1

1
2

(
k∏
j=1

fi,v(xj)fi,w(yj) + 1

)]
= 1

2t + 1
2t

∑
∅⊂S⊆{1,··· ,t}

E
u,v,w

E
T2

[
k∏
j=1

fS,v(xj)fS,w(yj)

]
.

(4.1)

where fS,v(x) :=
∏
i∈S fi,v(x). Since the t assignments form a t-cover, the LHS in Equa-

tion (4.1) is 0 and hence, there exists an S 6= ∅ such that

E
u,v,w

E
T2

 k∏
j=1

fS,v(xj)fS,w(yj)

 ≤ −1/(2t − 1). (4.2)

The following lemma shows that this is not possible if t is not too large, thus proving that
there does not a exist t-cover.

I Lemma 4.2 (Soundness). Let c0 ∈ (0, 1) be the constant from Theorem 2.5 and S ⊆
{1, · · · , t}, |S| > 0. If G is at most s-satisfiable then

E
u,v,w

E
X,Y ∈T2

[
k∏
i=1

fS,v(xi)fS,w(yi)
]
≥ −O(ksc0/8)− 2O(k) s

(1−3c0)/8

ε3/2c0
.
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Proof. Notice that for a fixed u, the distribution of X and Y have identical marginals. Hence
the value of the above expectation, if calculated according to a distribution which is the direct
product of the marginals, is positive. We will first show that the expectation can change by
at most O(ksc0/8) in moving to an attenuated version of the functions (see Claim 4.3). Then
we will show that the error incurred by changing the distribution to the product distribution
of the marginals has absolute value at most 2O(k) s(1−3c0)/8

ε3/2c0 (see Claim 4.5). This is done by
showing that there is a labeling to G that satisfies an s fraction of the constraints if the error
is more than 2O(k) s(1−3c0)/8

ε3/2c0 .
For the rest of the analysis, we write fv and fw instead of fS,v and fS,w respectively. Let

fv =
∑
α⊆[2R] f̂v(α)χα be the Fourier decomposition of the function and for γ ∈ (0, 1), let

T1−γfv :=
∑
α⊆[2R](1 − γ)|α|f̂v(α)χα. The following claim is similar to a lemma of Dinur

and Kol [7, Lemma 4.11]. The only difference in the proof is that, we use the smoothness
from Property 2 of Theorem 2.5 (which was shown by Håstad [11, Lemma 6.9]).

I Claim 4.3. Let γ := s(c0+1)/4ε1/c0 where c0 is the constant from Theorem 2.5.∣∣∣∣∣ E
u,v,w

E
T2

[
k∏
i=1

fv(xi)fw(yi)
]
− E
u,v,w

E
T2

[
k∏
i=1

T1−γfv(xi)T1−γfw(yi)
]∣∣∣∣∣ ≤ O(ksc0/8).

Proof. We will add the T1−γ operator to one function at a time and upper bound the
absolute value of the error incurred each time by O(sc0/8). The total error is at most 2k
times the error in adding T1−γ to one function. Hence, it suffices to prove the following∣∣∣∣∣ E
u,v,w

E
T2

[
k∏
i=1

fv(xi)fw(yi)
]
− E
u,v,w

E
T2

[(
k−1∏
i=1

fv(xi)fw(yi)
)
fv(xk)T1−γfw(yk)

]∣∣∣∣∣ ≤ O(sc0/8).

(4.3)

Recall that X,Y denote the matrices chosen by test T2. Let Y−k be the matrix obtained
from Y by removing the kth row and Fu,v,w(X,Y−k) :=

(∏k−1
i=1 fv(xi)fw(yi)

)
fv(xk). Then,

(4.3) can be rewritten as∣∣∣∣ E
u,v,w

E
T2

[Fu,v,w(X,Y−k) (I − T1−γ) fw(yk)]
∣∣∣∣ ≤ O(sc0/8). (4.4)

Let U be the operator that maps functions on the variable yk, to one on the variables (X,Y−k)
defined by

(Uf)(X,Y−k) := E
yk|X,Y−k

f(yk).

Let Gu,v,w(X,Y−k) := (U(I − T1−γ)fw) (X,Y−k). Note that Ey∈{0,1}2R Gu,v,w(y) = 0. For
the rest of the analysis, fix u, v, w chosen by the test. We will omit the subscript u, v, w from
now on for notational convenience. The domain of G can be thought of as ({0, 1}2k−1)2dL

and the test distribution on any row is independent across the blocks {Buv(i) ∪B′uv(i)}i∈[L].
We now think of G as having domain

∏
i∈[L] Ωi where Ωi = ({0, 1}2k−1)2d corresponds to

the set of rows in Buv(i) ∪B′uv(i). Let the following be the Efron-Stein decomposition of G
with respect to T2,

G(X,Y−k) =
∑
α⊆[L]

Gα(X,Y−k).

The following technical claim follows from a result similar to [7, Lemma 4.7] and then using
[14, Proposition 2.12]. We defer its proof to Appendix B.
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I Claim 4.4. For α ⊆ [L]

‖Gα‖2 ≤ (1− ε)|α|
∑

β⊆[2R]:π̃uw(β)=α

(
1− (1− γ)2|β|

)
f̂w(β)2 (4.5)

where π̃uw(β) := {i ∈ [L] : ∃j ∈ [R], (j ∈ β ∨ j +R ∈ β) ∧ πuv(j) = i}.

Substituting the Efron-Stein decomposition of G,F into the LHS of (4.4) gives∣∣∣∣ E
u,v,w

E
T2

[Fu,v,w(X,Y−k) (I − T1−γ) fw(yk)]
∣∣∣∣ =

∣∣∣∣ E
u,v,w

E
T2
F (X,Y−k)G(X,Y−k)

∣∣∣∣
(By orthonormality of

Efron-Stein decomposition) =

∣∣∣∣∣∣ E
u,v,w

∑
α⊆[L]

E
T2
Fα(X,Y−k)Gα(X,Y−k)

∣∣∣∣∣∣
(By Cauchy-Schwarz inequality) ≤ E

u,v,w

√∑
α⊆[L]

‖Fα‖2 ·
√∑
α⊆[L]

‖Gα‖2

(Using
∑
α⊆[L]

‖Fα‖2 = ‖F‖22 = 1) ≤ E
u,v,w

√∑
α⊆[L]

‖Gα‖2.

Using concavity of square root and substituting for ‖Gα‖2 from Equation (4.5), we get that
the above is upper bounded by√√√√√∑

α⊆[L]

∑
β⊆[2R]:
π̃uw(β)=α

E
u,v,w

(1− ε)|α|
(

1− (1− γ)2|β|
)
f̂w(β)2︸ ︷︷ ︸

=:Termu,w(α,β)

.

We will now break the above summation into three different parts and bound each part
separately.

Θ0 := E
u,w

∑
α,β:|α|≥ 1

εsc0/4

Termu,w(α, β), Θ1 := E
u,w

∑
α,β:|α|< 1

εsc0/4

|β|≤ 2
s1/4ε1/c0

Termu,w(α, β),

Θ2 := E
u,w

∑
α,β:|α|< 1

εsc0/4

|β|> 2
s1/4ε1/c0

Termu,w(α, β).

Upper bounding Θ0: When |α| > 1
εsc0/4 , (1 − ε)|α| < sc0/4. Also since fw is {+1,−1}

valued, sum of squares of Fourier coefficient is 1. Hence |Θ0| < sc0/4.

Upper bounding Θ1: When |β| ≤ 2
s1/4ε1/c0

,

1− (1− γ)2|β| ≤ 1−
(

1− 4
s1/4ε1/c0

γ

)
= 4
s1/4ε1/c0

γ = 4sc0/4.

Again since the sum of squares of Fourier coefficients is 1, |Θ1| ≤ 4sc0/4.

Upper bounding Θ2: From Property 2 of Theorem 2.5, we have that for any v ∈ V and β
with |β| > 2

s1/4ε1/c0
, the probability that |π̃uv(β)| < 1/εsc0/4, for a random neighbor u, is at

most εsc0/4. Hence |Θ2| ≤ sc0/4.
J
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Fix u, v, w chosen by the test. Recall that we thought of fv as having domain
∏
i∈[L] Ωi

where Ωi = {0, 1}2d corresponds to the set of coordinates in Buv(i) ∪ B′uv(i). Since the
grouping of coordinates depends on u, we define Infui [fv] := Infi[fv] where i ∈ [L] for
explicitness. From Equation (2.1),

Infui [fv] =
∑

α⊆[2dL]:i∈π̃uv(α)

f̂v(α)2,

where π̃uv(α) := {i ∈ [L] : ∃j ∈ [R], (j ∈ α ∨ j +R ∈ α) ∧ πuv(j) = i}.

I Claim 4.5. Let τu,v,w :=
∑
i∈[L] Infui [T1−γfv] · Infui [T1−γfw].

E
u,v,w

∣∣∣∣∣ET2

[
k∏
i=1

T1−γfv(xi)T1−γfw(yi)
]
− E
T2

[
k∏
i=1

T1−γfv(xi)
]

E
T2

[
k∏
i=1

T1−γfw(yi)
]∣∣∣∣∣

≤ 2O(k)

√
Eu,v,w τu,v,w

γ
.

Proof. It is easy to check that
∑
i∈[L] Infui [T1−γfv] ≤ 1/γ (c.f., [17, Lemma 1.13]). For any

u, v, w, since the test distribution satisfies the conditions of Theorem 2.8, we get∣∣∣∣∣ET2

[
k∏
i=1

T1−γfv(xi)T1−γfw(yi)
]
− E
T2

[
k∏
i=1

T1−γfv(xi)
]

E
T2

[
k∏
i=1

T1−γfw(yi)
]∣∣∣∣∣ ≤ 2O(k)

√
τu,v,w
γ

.

The claim follows by taking expectation over u, v, w and using the concavity of square
root. J

From Claim 4.5 and Claim 4.3 and using the fact the the marginals of the test distribution
T2 on (x1, . . . , xk) is the same as marginals on (y1, . . . , yk), for γ := s(c0+1)/4ε1/c0 , we get

E
u,v,w

E
X,Y ∈T2

[
k∏
i=1

fv(xi)fw(yi)

]
≥ −O(ksc0/8)−2O(k)

√
Eu,v,w τu,v,w

γ
+E
u

(
E
v

E
T2

[
k∏
i=1

T1−γfv(xi)

])2

.

(4.6)

If τu,v,w in expectation is large, there is a standard way of decoding the assignments to a
labeling to the label cover instance, as shown in Claim 4.6.

I Claim 4.6. If G is an at most s-satisfiable instance of Label-Cover then

E
u,v,w

τu,v,w ≤
s

γ2 .

Proof. Note that
∑
α⊆[2R](1− γ)|α|f̂v(α)2 ≤ 1. We will give a randomized labeling to the

Label-Cover instance.
For each v ∈ V , choose a random α ⊆ [2R] with probability (1− γ)|α|f̂v(α)2 and assign a

uniformly random label j in α to v; if the label j ≥ R, change the label to j −R and with
the remaining probability assign an arbitrary label. For u ∈ U , choose a random neighbor
w ∈ V and a random β ⊆ [2R] with probability (1− γ)|β|f̂w(β)2, choose a random label `
in β and assign the label π̃uw(`) to u. With the remaining probability, assign an arbitrary
label. The fraction of edges satisfied by this labeling is at least

E
u,v,w

∑
i∈[L]

∑
(α,β):i∈π̃uv(α),i∈π̃uw(β)

(1− γ)|α|+|β|

|α| · |β|
f̂v(α)2f̂w(β)2.
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Using the fact that 1/r ≥ γ(1− γ)r for every r > 0 and γ ∈ [0, 1], we lower bound 1
|α| and

1
|β| by γ(1− γ)|α| and γ(1− γ)|β| respectively. The above is then lower bounded by

γ2 E
u,v,w

∑
i∈[L]

 ∑
α:i∈π̃uv(α)

(1− γ)2|α|f̂v(α)2

 ∑
β:i∈π̃uw(β)

(1− γ)2|β|f̂w(β)2

 = γ2 E
u,v,w

τu,v,w.

Since G is at most s-satisfiable, the labeling can satisfy at most s fraction of constraints and
the above equation is upper bounded by s. J

Lemma 4.2 follows from the above claim and Equation 4.6. J

Proof of Theorem 1.2. Using Theorem 2.5, the size of the CSP instance G produced by the
reduction is N = nr22O(r) and the parameter s ≤ 2−d0r . Setting r = Θ(log logn), gives that
N = 2poly(logn) for a constant k. Lemma 4.2 and Equation 4.2 imply that

O(ksc0/8) + 2O(k) s
(1−3c0)/8

ε3/2c0
≥ 1

2t − 1 .

Since k is a constant, this gives that t = Ω(log logn). J

5 Improvement to covering hardness of 4-LIN

In this section, we prove Theorem 1.4. We give a reduction from an instance of Label-Cover,
G = (U, V,E, [L], [R], {πe}e∈E) as in Definition 2.4, to a 4-LIN-CSP instance G = (V, E).
The set of variables V is V × {0, 1}2R. Any assignment to V is given by a set of functions
fv : {0, 1}2R → {0, 1}, for each v ∈ V . The set of constraints E is given by the following test
which checks whether fv’s are long codes of a good labeling to V .

Long Code Test T3

1. Choose u ∈ U uniformly and neighbors v, w ∈ V of u uniformly and independently at
random.

2. Choose x, x′, z, z′ uniformly and independently from {0, 1}2R and y from {0, 1}2L. Choose
(η, η′) ∈ {0, 1}2L × {0, 1}2L as follows: Independently for each i ∈ [L], (ηi, ηL+i, η

′
i, η
′
L+i)

is set to
a. (0, 0, 0, 0) with probability 1− 2ε,
b. (1, 0, 1, 0) with probability ε and
c. (0, 1, 0, 1) with probability ε.

3. For y ∈ {0, 1}2L, let y ◦ πuv ∈ {0, 1}2R be the string such that (y ◦ πuv)i := yπuv(i) for
i ∈ [R] and (y ◦ πuv)i := yπuv(i−R)+L otherwise. Given η ∈ {0, 1}2L, z ∈ {0, 1}2R, the
string η ◦ πuv · z ∈ {0, 1}2R is obtained by taking coordinate-wise product of η ◦ πuv and
z. Accept iff

fv(x)+fv(x+y◦πuv+η◦πuv ·z)+fw(x′)+fw(x′+y◦πuw+η′◦πuw ·z′+1) = 1 (mod 2). (5.1)

(Here by addition of strings, we mean the coordinate-wise sum modulo 2.)

I Lemma 5.1 (Completeness). If G is an YES instance of Label-Cover, then there exists
f, g such that each of them covers 1− ε fraction of E and they together cover all of E.
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Proof. Let ` : U ∪V → [L]∪ [R] be a labeling to G that satisfies all the constraints. Consider
the assignments given by fv(x) := x`(v) and gv(x) := xR+`(v) for each v ∈ V . On input fv,
for any pair of edges (u, v), (u,w) ∈ E, and x, x′, z, z′, η, η′, y chosen by the long code test
T3, the LHS in (5.1) evaluates to

x`(v)+x`(v)+y`(u)+η`(u)z`(v)+x′`(w)+x′`(w)+y`(u)+η′`(u)z
′
`(w)+1 = η`(u)z`(v)+η′`(u)z

′
`(w)+1.

Similarly for gv, the expression evaluates to ηL+`(u)zR+`(v) + η′L+`(u)z
′
R+`(w) + 1. Since

(ηi, η′i) = (0, 0) with probability 1− ε, each of f, g covers 1− ε fraction of E . Also for i ∈ [L]
whenever (ηi, η′i) = (1, 1), (ηL+i, η

′
L+i) = (0, 0) and vice versa. So one of the two evaluations

above is 1 (mod 2). Hence the pair of assignment f, g cover E . J

I Lemma 5.2 (Soundness). Let c0 be the constant from Theorem 2.5. If G is at most
s-satisfiable with s < δ10/c0+5

4 , then any independent set in G has fractional size at most δ.

Proof. Let I ⊆ V be an independent set of fractional size δ in the constraint graph G. For
every variable v ∈ V , let fv : {0, 1}2R → {0, 1} be the indicator function of the independent
set restricted to the vertices that correspond to v. Since I is an independent set, we have

E
u,v,w

E
x,x′,
z,z′,
η,η′,y

[fv(x)fv(x+ y ◦ πuv + η ◦ πuv · z)fw(x′)fw(x′ + y ◦ πuw + η′ ◦ πuw · z′ + 1)] = 0.

(5.2)

For α ⊆ [2R], let π⊕uv(α) ⊆ [2L] be the set containing elements i ∈ [2L] such that if i < L

there are an odd number of j ∈ [R]∩α with πuv(j) = i and if i ≥ L there are an odd number
of j ∈ ([2R]\ [R])∩α with πuv(j−R) = i−L . It is easy to see that χα(y ◦πuw) = χπ⊕uv(α)(y).
Expanding fv in the Fourier basis and taking expectation over x, x′ and y, we get that

E
u,v,w

∑
α,β⊆[2R]:π⊕uv(α)=π⊕uw(β)

f̂v(α)2f̂w(β)2(−1)|β| E
z,z′,η,η′

[χα(η ◦ πuv · z)χβ(η′ ◦ πuw · z′)] = 0.

(5.3)

Now the expectation over z, z′ simplifies as

E
u,v,w

∑
α,β⊆[2R]:π⊕uv(α)=π⊕uw(β)

f̂v(α)2f̂w(β)2(−1)|β| Pr
η,η′

[α · (η ◦ πuv) = β · (η′ ◦ πuw) = 0̄]︸ ︷︷ ︸
=:Termu,v,w(α,β)

= 0,

(5.4)

where we think of α, β as the characteristic vectors in {0, 1}2R of the corresponding sets. We
will now break up the above summation into different parts and bound each part separately.
For a projection π : [R]→ [L], define π̃(α) := {i ∈ [L] : ∃j ∈ [R], (j ∈ α∨j+R ∈ α)∧(π(j) =
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i)}. We need the following definitions.

Θ0 := E
u,v,w

∑
α,β:

π⊕uv(α)=π⊕uw(β)=∅

Termu,v,w(α, β),

Θ1 := E
u,v,w

∑
α,β:

π⊕uv(α)=π⊕uw(β) 6=∅,
max{|α|,|β|}≤2/δ5/c0

Termu,v,w(α, β),

Θ2 := E
u,v,w

∑
α,β:

π⊕uv(α)=π⊕uw(β)6=∅,
max{|π̃uv(α)|,|π̃uw(β)|}≥1/δ5

Termu,v,w(α, β),

Θ3 := E
u,v,w

∑
α,β:

π⊕uv(α)=π⊕uw(β)6=∅,
max{|α|,|β|}>2/δ5/c0 ,

max{|π̃uv(α)|,|π̃uw(β)|}<1/δ5

Termu,v,w(α, β).

Lower bounding Θ0: If π⊕uw(β) = ∅, then |β| is even. Hence, all the terms in Θ0 are positive
and

Θ0 ≥ E
u,v,w

Termu,v,w(0, 0) = E
u

(
E
v
f̂v(0)2

)2
≥
(

E
u,v
f̂v(0)

)4
= δ4.

Upper bounding Θ1: Consider the following strategy for labeling vertices u ∈ U and v ∈ V .
For u ∈ U , pick a random neighbor v, choose α with probability f̂v(α)2 and set its label to a
random element in π̃uv(α). For w ∈ V , choose β with probability f̂w(β)2 and set its label to
a random element of β. If the label j ≥ R, change the label to j −R. The probability that a
random edge (u,w) of the label cover is satisfied by this labeling is

E
u,v,w

∑
α,β:

π̃uv(α)∩π̃uw(β)6=∅

f̂v(α)2f̂w(β)2 1
|π̃uv(α)| · |β| ≥ E

u,v,w

∑
α,β:

π⊕uv(α)=π⊕uw(β)6=∅
max{|α|,|β|}≤2/δ5/c0

f̂v(α)2f̂w(β)2 δ
10/c0

4

≥ |Θ1| ·
δ10/c0

4 .

Since the instance is at most s-satisfiable, the above is upper bounded by s. Choosing
s < δ10/c0+5

4 , will imply |Θ1| ≤ δ5.

Upper bounding Θ2: Suppose |π̃uv(α)| ≥ 1/δ5, then note that

Pr
η,η′

[α · (η ◦ πuv) = β · (η′ ◦ πuw) = 0] ≤ Pr
η

[α · (η ◦ πuv) = 0] ≤ (1− ε)|π̃uv(α)| ≤ (1− ε)1/δ5
.

Since the sum of squares of Fourier coefficients of f is less than 1 and ε is a constant, we get
that |Θ2| ≤ 1/2Ω(1/δ5) < O(δ5).

Upper bounding Θ3: From the third property of Theorem 2.5, we have that for any v ∈ V
and α ⊆ [2R] with |α| > 2/δ5/c0 , the probability that |π̃uv(α)| < 1/δ5, for a random neighbor
u of v, is at most δ5. Hence |Θ3| ≤ δ5.

On substituting the above bounds in Equation (5.4), we get that δ4 −O(δ5) ≤ 0 which
gives a contradiction for small enough δ. Hence there is no independent set in G of size δ. J
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Proof of Theorem 1.4. From Theorem 2.5, the size of the CSP instance G produced by
the reduction is N = nr22O(r) and the parameter s ≤ 2−d0r. Setting r = Θ(log logn),
gives that N = 2poly(logn) and the size of the largest independent set δ = 1/poly(logn) =
1/poly(logN). J
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A Invariance Principle for correlated spaces

Theorem 2.8 (Invariance Principle for correlated spaces) [Restated]. Let (Ωk
1 × Ωk

2 , µ)
be a correlated probability space such that the marginal of µ on any pair of coordinates
one each from Ω1 and Ω2 is a product distribution. Let µ1, µ2 be the marginals of µ on
Ωk

1 and Ωk
2 respectively. Let X,Y be two random k × L dimensional matrices chosen as

follows: independently for every i ∈ [L], the pair of columns (xi, yi) ∈ Ωk
1 × Ωk

2 is chosen
from µ. Let xi, yi denote the ith rows of X and Y respectively. If F : ΩL

1 → [−1,+1] and
G : ΩL2 → [−1,+1] are functions such that

τ :=
√∑
i∈[L]

Infi[F ] · Infi[G] and Γ := max


√∑
i∈[L]

Infi[F ],
√∑
i∈[L]

Infi[G]

 ,

then∣∣∣∣∣∣ E
(X,Y )∈µ⊗L

∏
i∈[k]

F (xi)G(yi)

− E
X∈µ⊗L1

∏
i∈[k]

F (xi)

 E
Y ∈µ⊗L2

∏
i∈[k]

G(yi)

∣∣∣∣∣∣ ≤ 2O(k)Γτ. (A.1)

Proof. We will prove the theorem by using the hybrid argument. For i ∈ [L+1], let X(i), Y (i)

be distributed according to (µ1 ⊗ µ2)⊗i ⊗ µ⊗L−i. Thus, (X(0), Y (0)) = (X,Y ) is distributed
according to µ⊗L while (X(L), Y (L)) is distributed according to (µ1 ⊗ µ2)⊗L. For i ∈ [L],
define

erri :=

∣∣∣∣∣∣ E
X(i),Y (i)

 k∏
j=1

F (x(i)
j )G(y(i)

j )

− E
X(i+1),Y (i+1)

 k∏
j=1

F (x(i+1)
j )G(y(i+1)

j )

∣∣∣∣∣∣ . (A.2)

The left hand side of Equation (2.2) is upper bounded by
∑
i∈[L] erri. Now for a fixed

i, we will bound erri. We use the Efron-Stein decomposition of F,G to split them into two
parts: the part which depends on the ith input and the part independent of the ith input.

F = F0 + F1 where F0 :=
∑
α:i/∈α

Fα and F1 :=
∑
α:i∈α

Fα.

G = G0 +G1 where G0 :=
∑
β:i/∈β

Gβ and G1 :=
∑
β:i∈β

Gβ .

Note that Infi[F ] = ‖F1‖22 and Infi[G] = ‖G1‖22. Furthermore, the functions F0 and F1 are
bounded since F0(x) = Ex′ [F (x′)|x′[L]\i = x[L]\i] ∈ [−1,+1] and F1(x) = F (x) − F0(x) ∈
[−2,+2]. For a ∈ {0, 1}k, let Fa(X) :=

∏k
j=1 Faj (xj). Similarly G0, G1 are bounded and

Ga defined analogously. Substituting these definitions in Equation (A.2) and expanding the
products gives

erri =

∣∣∣∣∣∣
∑

a,b∈{0,1}k

(
E

X(i),Y (i)

[
Fa(X(i))Gb(Y (i))

]
− E
X(i+1),Y (i+1)

[
Fa(X(i+1))Gb(Y (i+1))

])∣∣∣∣∣∣ .
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Since both the distributions are identical on (Ωk
1)⊗L and (Ωk

2)⊗L, all terms with a = 0̄ or
b = 0̄ are zero. Because µ is uniform on any pair of coordinates on each from the Ω1 and Ω2
sides, terms with |a| = |b| = 1 also evaluates to zero. Now consider the remaining terms with
|a|, |b| ≥ 1, |a|+ |b| > 2. Consider one such term where a1, a2 = 1 and b1 = 1. In this case,
by Cauchy-Schwarz inequality we have that∣∣∣∣ E
X(i−1),Y (i−1)

[
Fa(X(i−1))Gb(Y (i−1))

]∣∣∣∣ ≤√EF1(x1)2G1(y1)2 · ‖F1‖2 ·

∥∥∥∥∥∥
∏
j>2

Faj

∥∥∥∥∥∥
∞

·

∥∥∥∥∥∥
∏
j>1

Gbj

∥∥∥∥∥∥
∞

.

From the facts that the marginal of µ to any pair of coordinates one each from Ω1 and Ω2
sides are uniform, Infi[F ] = ‖F1‖22 and |F0(x)|, |F1(x)|, |G0(x)|, |G1(x)| are all bounded by 2,
the right side of above becomes

√
EF1(x1)2

√
EG1(y1)2 · ‖F1‖2 ·

∥∥∥∥∥∥
∏
j>2

Faj

∥∥∥∥∥∥
∞

·

∥∥∥∥∥∥
∏
j>1

Gbj

∥∥∥∥∥∥
∞

≤
√

Infi[F ]2Infi[G] · 22k.

All the other terms corresponding to other (a, b) which are at most 22k in number, are
bounded analogously. Hence,∑

i∈[L]

erri ≤ 24k
∑
i∈[L]

(√
Infi[F ]2Infi[G] +

√
Infi[F ]Infi[G]2

)
= 24k

∑
i∈[L]

√
Infi[F ]Infi[G]

(√
Infi[F ] +

√
Infi[G]

)
.

By applying the Cauchy-Schwarz inequality, followed by a triangle inequality, we obtain

∑
i∈[L]

erri ≤ 24k
√∑
i∈[L]

Infi[F ]Infi[G]

√∑
i∈[L]

Infi[F ] +
√∑
i∈[L]

Infi[G]

 .

Thus, proved. J

B Proof of Claim 4.4

We will be reusing the notation introduced in the long code test T2. We denote the k × 2d
dimensional matrix X|B(i)∪B′(i) by Xi and Y |B(i)∪B′(i) by Y i. Also by Xi

j , we mean the
jth row of the matrix Xi and Y i−k is the first k − 1 rows of Y i. The spaces of the random
variables Xi, Xi

j , Y
i
−k will be denoted by X i,X ij ,Yi−k.

Before we proceed to the proof of claim, we need a few definitions and lemmas related to
correlated spaces defined by Mossel [14].

I Definition B.1. Let (Ω1 × Ω2, µ) be a finite correlated space, the correlation between Ω1
and Ω2 with respect to µ us defined as

ρ(Ω1,Ω2;µ) := max
f :Ω1→R,E[f ]=0,E[f2]≤1
g:Ω2→R,E[g]=0,E[g2]≤1

E
(x,y)∼µ

[|f(x)g(y)|].

I Definition B.2 (Markov Operator). Let (Ω1×Ω2, µ) be a finite correlated space, the Markov
operator, associated with this space, denoted by U , maps a function g : Ω2 → R to functions
Ug : Ω1 → R by the following map:

(Ug)(x) := E
(X,Y )∼µ

[g(Y ) | X = x].
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The following results (from [14]) provide a way to upper bound correlation of a correlated
spaces.

I Lemma B.3 ([14, Lemma 2.8]). Let (Ω1×Ω2, µ) be a finite correlated space. Let g : Ω2 → R
be such that E(x,y)∼µ[g(y)] = 0 and E(x,y)∼µ[g(y)2] ≤ 1. Then, among all functions f : Ω1 → R
that satisfy E(x,y)∼µ[f(x)2] ≤ 1, the maximum value of |E[f(x)g(y)]| is given as:

|E[f(x)g(y)]| =
√

E
(x,y)∼µ

[(Ug(x))2].

I Proposition B.4 ([14, Proposition 2.11]). Let (
∏n
i=1 Ω(1)

i ×
∏n
i=1 Ω(2)

i ,
∏n
i=1 µi) be a product

correlated spaces. Let g :
∏n
i=1 Ω(2)

i → R be a function and U be the Markov operator mapping
functions form space

∏n
i=1 Ω(2)

i to the functions on space
∏n
i=1 Ω(1)

i . If g =
∑
S⊆[n] gS and

Ug =
∑
S⊆[n](Ug)S be the Efron-Stein decomposition of g and Ug respectively then,

(Ug)S = U(gS)

i.e. the Efron-Stein decomposition commutes with Markov operators.

I Proposition B.5 ([14, Proposition 2.12]). Assume the setting of Proposition B.4 and
furthermore assume that ρ(Ω(1)

i ,Ω(2)
i ;µi) ≤ ρ for all i ∈ [n], then for all g it holds that

‖U(gS)‖2 ≤ ρ|S|‖gS‖2.

We will prove the following claim.

I Claim B.6. For each i ∈ [L],

ρ
(
X i × Yi−k,Yik; T i2

)
≤
√

1− ε.

Before proving this claim, first let’s see how it leads to the proof of Claim 4.4.

Proof of Claim 4.4. Proposition B.4 shows that the Markov operator U commutes with tak-
ing the Efron-Stein decomposition. Hence, Gα := (U((I−T1−γ)fw))α = U((I−T1−γ)(fw)α),
where (fw)α is the Efron-Stein decomposition of fw w.r.t the marginal distribution of T2 on∏L
i=1 Yik which is a uniform distribution. Therefore, (fw)α =

∑
β⊆[2R],
π̃uw(β)=α

f̂w(β)χβ . Using

Proposition B.5 and Claim B.6, we have

‖Gα‖22 = ‖U((I − T1−γ)(fw)α)‖22 ≤ (
√

1− ε)2|α|‖(I − T1−γ)(fw)α‖22
= (1− ε)|α|

∑
β⊆[2R]:π̃uw(β)=α

(
1− (1− γ)2|β|

)
f̂w(β)2,

where the norms are with respect to the marginals of T2 in the corresponding spaces. J

Proof of Claim B.6. Recall the random variable c2 ∈ {∗, 0, 1} defined in Step 3 of test T2.
Let g and f be the functions that satisfies E[g] = E[f ] = 0 and E[g2],E[f2] ≤ 1 such that
ρ
(
X i × Yi−k,Yik; T i2

)
= E[|fg|]. Define the Markov Operator

Ug(Xi, Y i−k) = E
(X̃,Ỹ )∼T i2

[g(Ỹk) | (X̃, Ỹ−k) = (Xi, Y i−k)].
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By Lemma B.3, we have

ρ
(
X i × Yi−k,Yik; T i2

)2 ≤ E
T i2

[Ug(Xi, Y i−k)2]

= (1− 2ε) E
T i2

[Ug(Xi, Y i−k)2 | c2 = ∗] + ε E
T i2

[Ug(Xi, Y i−k)2 | c2 = 0]+

ε E
T i2

[Ug(Xi, Y i−k)2 | c2 = 1]

≤ (1− 2ε) + ε E
T i2

[Ug(Xi, Y i−k)2 | c2 = 0] + ε E
T i2

[Ug(Xi, Y i−k)2 | c2 = 1],

where the last inequality uses the fact that ET i2 [Ug(Xi, Y i−k)2 | c2 = ∗] = E[g2] which is at
most 1. Consider the case when c2 = 0. By definition, we have

E
T i2

[Ug(Xi, Y i−k)2 | c2 = 0] = E(
Xi,

Y i−k

)
∼T i2

(
E

(X̃,Ỹ )∼T i2
[g(Ỹk) | (X̃, Ỹ−k) = (Xi, Y i−k) ∧ c2 = 0]

)2

.

Under the conditioning, for any fixed value of Xi, Y i−k, the value of Ỹk|B′(i) is a uniformly
random string whereas Ỹk|B(i) is a fixed string (since the parity of all columns in B(i) is 1).
Let U be the uniform distribution on {−1,+1}d and P(Xi, Y i−k) ∈ {+1,−1}d denotes the
column wise parities of[

Xi|B(i)

Y i−k|B(i)

]
.

E
T i2

[Ug(Xi, Y i−k)2 | c2 = 0] = E
Xi,Y i−k∼T

i
2

(
E

(X̃,Ỹ )∼T i2

[
g(Ỹk) | (X̃,Ỹ−k)=(Xi,Y i−k)∧

c2=0

])2

= E
Xi,Y i−k∼T

i
2 ,

z=P(Xi,Y i−k)

(
E
r∼U

[g(−z, r)]
)2

= E
z∼U

(
E
r∼U

[g(z, r)]
)2

(Since marginal on z is uniform)

= E
z∼U

 E
r∈U

∑
α⊆B(i)∪B′(i)

ĝ(α)χα(z, r)

2

= E
z∼U

 ∑
α⊆B(i)∪B′(i)

ĝ(α) E
r∈U

[χα(z, r)]

2

= E
z∼U

 ∑
α⊆B(i)

ĝ(α)χα(z)

2

=
∑

α⊆B(i)

ĝ(α)2.

Similarly we have,

E
T i2

[Ug(Xi, Y i−k)2 | c2 = 1] =
∑

α⊆B′(i)

ĝ(α)2.
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Now we can bound the correlation as follows:

ρ
(
X i × Yi−k,Yik; T i2

)2 ≤(1− 2ε) + ε
∑

α⊆B(i)

ĝ(α)2 + ε
∑

α⊆B′(i)

ĝ(α)2

≤(1− 2ε) + ε
∑

α⊆B(i)∪B′(i)

ĝ(α)2 (Using ĝ(φ) = E[g] = 0)

≤(1− ε). (Using E[g2] ≤ 1 and Parseval’s Identity)

J
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bounds for these models.

For depth-3 multilinear formulas, of size exp(nδ), we give a hitting set of size
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arithmetic circuit whose computation graph is a tree. An arithmetic circuit (or formula)
is multilinear if the polynomial computed at each of its gates is multilinear (as a formal
polynomial), that is, in each of its monomials the power of every input variable is at most
one (see Section 1.1 for definition of the models studied in this paper)

Two outstanding open problems in complexity theory are to prove exponential lower
bounds on the size of arithmetic circuits, i.e., to prove a lower bound on the number
of operations required to compute some polynomial f , and to give efficient deterministic
polynomial identity testing (PIT for short) algorithms for them. The PIT problem for
arithmetic circuits asks the following question: given an arithmetic circuit Φ computing a
polynomial f , determine, efficiently and deterministically, whether “f ≡ 0”. The black-box
version of the PIT problem asks to construct a small hitting set, i.e., a set of evaluation
points H, for which any such non-zero f does not vanish on all the points in H.

It is known that solving any one of the problems (proving lower bound or deterministic
PIT), with appropriate parameters, for small depth (multilinear) formulas, is equivalent to
solving it in the general (multilinear) case [37, 6, 24, 15, 36]. It is also known that these two
problems are tightly connected and that solving one would imply a solution to the other,
both in the general case [16, 17, 1] and in the bounded depth case1 [11]. We note that in the
multilinear case it is only known that hitting sets imply circuit lower bounds but not vice
versa.

In this work we study the PIT problem for several models of bounded depth multilinear
formulas. Our main results are subexponential size hitting sets for depth-3 and depth-4
multilinear formulas of subexponential size and for regular depth-d multilinear formulas of
subexponential size (with construction size deteriorating among the different models). Using
the connection between explicit hitting sets and circuit lower bounds we get, as corollaries,
subexponential lower bounds for these models.

1.1 Models for Computing Multilinear Polynomials

An arithmetic circuit Φ over the field F and over the set of variables X is a directed acyclic
graph as follows. Every vertex in Φ of in-degree 0 is labelled by either a variable in X or
a field element in F. Every other vertex in Φ is labelled by either × or +. An arithmetic
circuit is called a formula if it is a directed tree (whose edges are directed from the leaves
to the root). The vertices of Φ are also called gates. Every gate of in-degree 0 is called an
input gate. Every gate of out-degree 0 is called an output gate. Every gate labelled by × is
called a product gate. Every gate labelled by + is called a sum gate. An arithmetic circuit
computes a polynomial in a natural way. An input gate labelled by y ∈ F ∪X computes the
polynomial y. A product gate computes the product of the polynomials computed by its
children. A sum gate computes the sum of the polynomials computed by its children.

A polynomial f ∈ F[X] is called multilinear if the degree of each variable in f is at most
one. An arithmetic circuit (formula) Φ is called multilinear if every gate in Φ computes a
multilinear polynomial.

In this work we are interested in small depth multilinear formulas. A depth-3 ΣΠΣ
formula is a formula composed of three layers of alternating sum and product gates. Thus,

1 The result of [11] is more restricted than the results for circuits with no depth restrictions.
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every polynomial computed by a ΣΠΣ formula of size s has the following form

f =
s∑
i=1

di∏
j=1

`i,j ,

where the `i,j are linear functions. In a ΣΠΣ multilinear formula, it holds that in every
product gate,

∏di
j=1 `i,j , the linear functions `i,1, . . . , `i,di are supported on disjoint sets of

variables.
Similarly, a depth-4 ΣΠΣΠ formula is a formula composed of four layers of alternating

sum and product gates. Thus, every polynomial computed by a ΣΠΣΠ formula of size s has
the following form

f =
s∑
i=1

di∏
j=1

Qi,j ,

where the Qi,j are computed at the bottom ΣΠ layers and are s-sparse polynomials, i.e.,
polynomials that have at most s monomials. As in the depth-3 case, we have that at every
product gate the polynomials Qi,1, . . . , Qi,di are supported on disjoint sets of variables.

Another important definition for us is that of a regular depth-d formula. A regular
depth-d formula is specified by a list of d integers (a1, p1, a2, p2, . . .). It has d layers of
alternating sum and product gates. The fan-in of every sum gate at the (2i− 1)’th layer is
ai and, similarly, the fan-in of every product gate at the (2i)’th layer is pi. For example, a
depth-4 formula that is specified by the list (a1, p1, a2, p2) has the following form:

f =
a1∑
i=1

p1∏
j=1

Qi,j ,

where each Qi,j is a polynomial of degree p2 that has (at most) a2 monomials. As before, a
regular depth-d multilinear formula is a regular depth-d formula in which every gate computes
a multilinear polynomial.

Regular formulas were first defined by Kayal, Saha and Saptharishi [21], who proved
quasi-polynomial lower bounds for logarithmic-depth regular formulas. It is interesting to note
that in the reductions from general (multilinear) circuits/formulas to depth-d (multilinear)
formulas, one gets a regular depth-d (multilinear) formula [37, 6, 24, 36].

Finally, we also need to consider the model of Read-Once Algebraic Branching Programs
(ROABPs) as our construction is based on a reduction to this case. Algebraic branching
programs were first defined in the work of Nisan [25] who proved exponential lower bounds
on the size of non-commutative ABPs computing the determinant or permanent polynomials.
Roughly, an algebraic branching program (ABP) consists of a layered graph with edges going
from the i’th layer to the (i+ 1)’th layer. The first layer consists of a single source node and
the last layer contains a single sink. The edges of the graph are labeled with polynomials (in
our case we only consider linear functions as labels). The weight of a path is the product of
the weights of the edges in the path. The polynomial computed by the ABP is the sum of
the weights of all the paths from the source to the sink. An ABP is called a read-once ABP
(ROABP) if the only variable appearing on edges that connect the i’th and the (i+ 1)’th
layer is xi. It is clear that a ROABP whose edges are labeled with linear functions computes
a multilinear polynomial.

1.2 Polynomial Identity Testing
In the PIT problem we are given an arithmetic circuit or formula Φ, computing some
polynomial f , and we have to determine whether “f ≡ 0”. That is, we are asking if f is the
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zero polynomial in F[x1, . . . , xn]. By the Schwartz-Zippel-DeMillo-Lipton lemma [38, 32, 9],
if 0 6= f ∈ F[x1, . . . , xn] is a polynomial of degree ≤ d, and α1, . . . , αn ∈ A ⊆ F are chosen
uniformly at random, then f(α1, . . . , αn) = 0 with probability at most2 d/|A|. Thus, given
Φ, we can perform these evaluations efficiently, giving an efficient randomized procedure
for answering “f ≡ 0?”. It is an important open problem to find a derandomization of this
algorithm, that is, to find a deterministic procedure for PIT that runs in polynomial time
(in the size of Φ).

One interesting property of the above randomized algorithm of Schwartz-Zippel is that
the algorithm does not need to “see” the circuit Φ. Namely, the algorithm only uses the
circuit to compute the evaluations f(α1, . . . , αn). Such an algorithm is called a black-box
algorithm. In contrast, an algorithm that can access the internal structure of the circuit Φ
is called a white-box algorithm. Clearly, the designer of the algorithm has more resources
in the white-box model and so one can expect that solving PIT in this model should be a
simpler task than in the black-box model.

The problem of derandomizing PIT has received a lot of attention in the past few years.
In particular, many works examine a specific class of circuits C, and design PIT algorithms
only for circuits in that class. One reason for this attention is the strong connection between
deterministic PIT algorithms for a class C and lower bounds for C. This connection was
first observed by Heintz and Schnorr [16] (and later also by Agrawal [1]) for the black-
box model and by Kabanets and Impagliazzo [18] for the white-box model (see also Dvir,
Shpilka and Yehudayoff [11] for a similar result for bounded depth circuits). Another
motivation for studying the problem is its relation to algorithmic questions. Indeed, the
famous deterministic primality testing algorithm of Agrawal, Kayal and Saxena [3] is based on
derandomizing a specific polynomial identity. Finally, the PIT problem is, in some sense, the
most general problem that we know today for which we have randomized coRP algorithms
but no polynomial time algorithms, thus studying it is a natural step towards a better
understanding of the relation between RP and P. For more on the PIT problem we refer to
the survey by Shpilka and Yehudayoff [35].

Among the most studied circuit classes we find Read-Once Algebraic Branching Programs
[14, 12, 2], set-multilinear formulas [28, 13, 5], depth-3 formulas [10, 23, 20, 22, 31], multilinear
depth-4 formulas (and some generalizations of them) [19, 30, 4] and bounded-read multilinear
formulas [33, 34, 8, 4]. We note that none of these results follow from a reduction a la
Kabanets-Impagliazzo [18] (or the reduction of [11] for bounded depth circuits) from PIT to
lower bounds. Indeed, this reduction does not work for the restricted classes mentioned here.
In particular, for the multilinear model no reduction from PIT to lower bounds is known.
That is, even given lower bounds for multilinear circuits/formulas (e.g., the exponential lower
bound of Raz and Yehudayoff [29] for constant depth multilinear formulas) we do not know
how to construct a PIT algorithm for a related model.

The works on depth-3 and multilinear depth-4 formulas gave polynomial time algorithms
only when the fan-in of the top gate (the output gate) is constant, and became exponential
time when the top fan-in was Ω(n), both in the white-box and black-box models [23, 31, 30].
Raz and Shpilka [28] gave a polynomial time PIT for set-multilinear depth-3 circuits and
Forbes and Shpilka [14] and Agrawal, Saha and Saxena [5] gave a quasi-polynomial size
hitting set for the model. Recall that in a depth-3 set-multilinear formula, the variables
are partitioned to sets, and each linear function at the bottom layer only involves variables

2 Note that this is meaningful only if d < |A| ≤ |F|, which in particular implies that f is not the zero
function.
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from a single set. Recently, Agrawal et al. [2] gave a subexponential white-box algorithm
for a depth-3 formula that computes the sum of c set-multilinear formulas, each of size s,
with respect to different partitions of the variables. The running time of their algorithm is
nO(2cn1− 2

2c log s). In particular, for c = O(log log(n)) the running time is exp(n).
Thus, prior to this work there were no subexponential PIT algorithms, even for depth-3

multilinear formulas with top fan-in n.

1.3 Our Results
I Remark. Throughout this paper, we assume that for formulas of size 2nδ , the underlying
field F is of size at least |F| ≥ 2n2δpoly log(n), and that if this is not the case then we are
allowed to query the formula on inputs from an extension field of the appropriate size. In
particular, all our results hold over fields of characteristic zero or over fields of size exp(n).

We give subexponential size hitting sets for depth-3, depth-4 and regular depth-d multi-
linear formulas, of subexponential size. In particular we obtain the following results.

I Theorem 1.1. There exists a hitting set H of size |H| = 2Õ(n
2
3 + 2

3 δ) for the class of ΣΠΣ
multilinear formulas of size 2nδ .

This gives a significant improvement to the recent result, mentioned above, of Agrawal et
al. [2] who studied sum of set-multilinear formulas. From the connection between hitting
sets and circuit lower bounds [16, 1] we obtain the following corollary.

I Corollary 1.2. There is an explicit multilinear polynomial f ∈ F[x1, . . . , xn], whose coeffi-
cients can be computed in exponential time, such that any depth-3 multilinear formula for f
has size exp(Ω̃(

√
n)).

This lower bound is weaker than the exponential lower bound of Nisan and Wigderson
for this model [26]. Yet, it is interesting to note that we can get such a strong lower bound
from a PIT algorithm. Next, we present our result for depth-4 multilinear formulas.

I Theorem 1.3. There exists a hitting set H of size |H| = 2Õ(n2/3+4δ/3) for the class of
ΣΠΣΠ multilinear formulas of size 2nδ .

Again, from the connection between hitting sets and circuit lower bounds we obtain the
following corollary.

I Corollary 1.4. There is an explicit multilinear polynomial f ∈ F[x1, . . . , xn], whose coeffi-
cients can be computed in exponential time, such that any depth-4 multilinear formula for f
has size exp(Ω̃(n1/4)).

The best known lower bound for depth-4 multilinear formulas is exp(n1/2) due to Raz
and Yehudayoff [29], thus, as in the previous case, the term in the exponent of our lower
bound is the square root of the corresponding term in the best known lower bound. For
regular depth-d multilinear formulas we obtain the following result.

I Theorem 1.5. There exists a hitting set H of size |H| = 2Õ(n1−δ/3) for the class of regular
depth-d multilinear formulas of size 2nδ , where δ ≤ 1

5bd/2c+1 = O
(

1√
5d

)
.

As before we obtain a lower bound for such formulas.

I Corollary 1.6. There is an explicit multilinear polynomial f ∈ F[x1, . . . , xn], whose coeffi-
cients can be computed in exponential time, such that any regular depth-d multilinear formula
for f has size exp(Ω̃(n

1
5bd/2c+1 )).
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We note that Raz and Yehudayoff gave an exp(nΩ( 1
d )) lower bound for depth-d multilinear

formulas, which is much stronger than what Corollary 1.6 gives. Yet, our result also gives a
PIT algorithm, which does not follow from the results of [29]. As we later explain, we lose a
square root in the term at the exponent for every increase of the depth and this is the reason
that we get only exp(n1/ exp(d)) instead of exp(n1/d).

1.4 Proof Overview
We first discuss our proof technique for the case of depth-3 multilinear formulas. Our
(idealized) aim is to reduce such a formula Φ to a depth-3 multilinear formula in which each
linear function is of the form αx + β. That is, each linear function contains at most one
variable. If we manage to do that then we can use the quasi-polynomial sized hitting set of
[13, 2] for this model.

Of course, the problem with the above argument is that in general, depth-3 formulas have
more than one variable per linear function. To overcome this difficulty, we will partition the
variables to several sets T1, . . . , Tm and hope that each linear function in the formula contains
at most one variable from each Ti. If we can do that then we would use the hitting set for
each set of variables Ti and combine those sets together to get our hitting set. That is, the
combined hitting set is composed of concatenation of all vectors of the form v1 ◦ v2 ◦ . . . ◦ vm
where vi comes from the hitting set restricted to the variables in Ti (the concatenation is
performed in a way that respects the partition of course). Thus, if we can carry out this
procedure then we will get a hitting set of size roughly nm logn. This step indeed yields a
hitting set, since when we restrict our attention to each Ti and think of the other variables
as constants in some huge extension field, then we do get a small ROABP (in the variables
of Ti) and hence plugging in the hitting set of [13, 2] gives a non-zero polynomial. Thus,
we can first do this for T1 and obtain some good assignment v1 that makes the polynomial
non-zero after substituting v1 to T1. Then we can find v2 etc.

There are two problems with the above argument. One problem is how to find such a
good partition. The second is that this idea simply cannot work as is. For example, if we
have the linear function x1 + · · ·+ xn, then it will have a large intersection with each Ti.

We first deal with the second question. to overcome the difficulty posed by the example,
we would like to somehow “get rid” of all linear functions of large support and then carry
out the idea above. To remove linear functions with large support from the formula we
use another trick. Consider a variable xk that appears in a linear function `0 that has
a large support. Assume that ∂f

∂xk
6≡ 0 as otherwise we can ignore xk. Now, because of

multilinearity, we can transform our original formula Φ to a formula computing ∂f
∂xk

. This
is done by replacing each linear function `(X) =

∑n
i=1 αixi + α0 with the constant αk. In

particular, the function `0 that used to have a high support does not appear in the new
formula. Furthermore, this process does not increase the support size of any other linear
function. A possible issue is that if we have to repeat this process for every function of large
support then it seems that we need to take a fresh derivative for every such linear function.
The point is that because we only care about linear functions that have a large support to
begin with, we can find a variable that simultaneously appears in many of those functions
and thus one derivative will eliminate many of the “bad” linear functions. Working out the
parameters, we see that we need to take roughly nε · log |Φ| many derivatives to reduce to
the case where all linear functions have support size at most n1−ε.

Now we go back to our first problem. We can assume that we have a depth-3 formula in
which each linear function has support size at most n1−ε and we wish to find a partition
of the variables to sets T1, . . . , Tm so that each Ti contains at most one variable from each
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linear function. This cannot be achieved as a simple probabilistic argument shows, so we
relax our requirement and only demand that in each multiplication gate (of the formula)
only a few linear functions have a large intersection. If at most k linear functions in each
gate have a large intersection, we can expand each multiplication gate to at most nk new
gates (by simply expanding all linear functions that have large intersection) and then apply
our argument. As we will be able to handle subexponential size formulas, this blow up is
tolerable for us.

Note that if we were to pick the partition at random, when m = n1−ε+γ , for some
small γ, then we will get that with very high probability at most nδ linear functions will
have intersection at most nδ with each Ti, where δ is such that |Φ| < exp(nδ). To get a
deterministic version of this partitioning, we simply use an nδ-wise independent family of
hash functions {h : [n]→ [m]}. Each hash function h induces a partition of the variables to
Ti = {xk | h(k) = i}. Because of the high independence, we are guaranteed that there is at
least one hash function that induces a good partition.

Now we have all the ingredients in place. To get our hitting set we basically do the
following (we describe the construction as a process, but it should be clear that every step
can be performed using some evaluation vectors).
1. Pick nε · log |Φ| many variables and compute a black-box for the polynomial that is

obtained by taking the derivative of f with respect to those variables. The cost of this
step is roughly

(
n

nε·log |Φ|
)
· 2nε·log |Φ|, where the first term is for picking the variables and

the second is what we have to pay to get access to the derived polynomial.
2. Partition the remaining variables to (roughly) n1−ε/2 many sets using a (roughly) log |Φ|-

wise independent family of hash functions. The cost of this step is roughly nlog |Φ| as this
is the size of the hash function family.

3. Plug in a fresh copy of the hitting set of [13, 2] to each of the sets of variables Ti. The
cost is roughly nlogn·n1−ε/2 .

Combining everything we get a hitting set of size roughly((
n

nε · log |Φ|

)
· 2n

ε·log |Φ|
)
·
(
nlog |Φ|

)
·
(
nlogn·n1−ε/2

)
≈ 2Õ(n1−ε/2+nε log |Φ|).

Optimizing the parameters we get our hitting set.
We would like to use the same approach also for the case of depth-4 formulas. Here the

problem is that in the two bottom layers the formula computes a polynomial and not a linear
function. In particular, when taking a derivative we are no longer removing functions that
have large support. Nevertheless, we can still use a similar idea. We show there is a variable
xi that by either setting f |xi=0 or considering ∂f

∂xi
, we are guaranteed that the total sparsity

of all polynomials that have large support goes down by some non-negligible factor. Thus,
repeating this process (of either setting a variable to 0 or taking a derivative) nε · log |Φ|
many times we reach a depth-4 formula where all polynomials computed at the bottom
addition gate have small support. Next, we partition the variables to sets and consider a
single set Ti. Now, another issue is that even if the intersection of a low-support polynomial
with some Ti is rather small, the sparsity of the resulting polynomial (which is considered as
a polynomial in the variable in the intersection) can still be exponential in the size of the
intersection. This is why we lose a bit in the upper bound compared to the depth-3 case.
Combining all steps again we get the result for depth-4 formulas.

The proof for regular formulas works by first reducing to the depth-4 case and then
applying our hitting set. The reduction is obtained in a similar spirit to the reduction of
Kayal et al. [21]. We break the formula at an appropriate layer and then express the top
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layers as a ΣΠ circuit and the bottom layers as products of polynomials of not too high
degree. We then use the trivial observation that if the degree of a polynomial is at most n1−ε

then its sparsity is at most nn1−ε and proceed as before. Due to the different requirements
of the reduction and of the hashing part, we roughly lose a constant factor in the exponent
of n, in the size of the hitting set, whenever the depth grows, resulting in a hitting set of size
roughly exp(n1−1/ exp(d)).

To obtain the lower bounds we simply use the idea of [16, 1]. That is, given a hitting set
we find a non-zero multilinear polynomial that vanishes on all points of the hitting set by
solving a homogeneous system of linear equations.

1.5 Related Work

1.5.1 The work of Agrawal, Gurjar, Korwar and Saxena [2]
The closest work to ours is the one by Agrawal et al. [2]. In addition to other results, they
gave a white-box PIT algorithm that runs in time nO(2cn1− 2

2c log s) for depth-3 formulas that
can be represented as a sum of c set-multilinear formulas, each of size s (potentially with
respect to different partitions of the variables).

Theorem 1.1 improves upon this results in several ways. First, the theorem gives a hitting
set, i.e., a black-box PIT. Secondly, for c = O(log logn) the running time of the algorithm of
[2] is exp(n), whereas our construction can handle a sum of exp(nβ) set-multilinear formulas
and still maintain a subexponential complexity.

Nonetheless, there are some similarities behind the basic approach of this work and the
work of Agrawal et al. Recall that a set-multilinear depth-3 formula is based on a partition
of the variables, where each linear function in the formula contains variables from a single
partition. Agrawal et al. start with a sum of c set-multilinear circuits, each with respect to
a different partitioning of the variables, and their first goal is to reduce the formula to a
set-multilinear formula, i.e., to have only one partition of the variables. For this they define
a distance between different partitions and show, using an involved combinatorial argument,
that one can find some partition T1, . . . , Tm of the variables so that when restricting our
attention to Ti, all the c set-multilinear formulas will be somewhat “close to each other”.
If the distance is ∆ (according to their definition) then they prove that they can express
the sum as a set-multilinear circuit of size roughly s · n∆, where s is the total size of the
depth-3 formula. Unlike our work, they find the partition in a white-box manner by gradually
refining the given c partitions of the set-multilinear circuits composing the formula. The
final verification step is done, in a similar manner to ours, by substituting the hitting set
of [5] (or that of [13]) to each of the sets Ti. The step of finding the partition T1, . . . , Tm is
technically involved and is the only step where white-box access is required.

1.6 Organization
In Section 2 we provide basic definitions and notations, and also state some general lemmas
which will be helpful in the next sections. In Section 3, we explain how to reduce general
depth-3 and depth-4 formulas to formulas such that every polynomial at the bottom has
small support. Then, in Section 4, we construct a hitting set for those types of formulas. In
Section 5, we explain how to combine the ideas of the previous two sections and construct
our hitting set for depth-3 and depth-4 multilinear formulas.

We then move on to depth-d regular formulas in Section 6, and state our hitting set for
this class. In the short Section 7 we spell out briefly how, using known observations about the
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relation between PIT and lower bounds, we obtain our lower bounds for multilinear formulas.
Finally, in Section 8 we discuss some open problems and future directions for research.

The proofs of the results regarding depth-4 and depth-d regular formulas are omitted
from this version, and can be found in the full version of the paper ([27]).

2 Preliminaries

In this section, we establish notation, some definitions and useful lemmas that will be used
throughout the paper.

2.1 Notations and Basic Definitions
For any positive integer n, we denote by [n] the set of integers from 1 to n, and by

([n]
≤r
)
the

family of subsets A ⊆ [n] such that |A| ≤ r. We often associate a subset A ⊆ [n] with a subset
of variables var(A) ⊆ {x1, . . . , xn} in a natural way (i.e., var(A) = {xi | i ∈ A}). In those
cases we make no distinction between the two and use A to refer to var(A). Additionally, if
A and B are disjoint subsets of [n], we denote their disjoint union by A tB. For a vector
v ∈ Fn we denote with v|A the restriction of v to the coordinates A. In order to improve the
readability of the text, we omit floor and ceiling notations.

Let f(x1, . . . , xn) ∈ F[x1, . . . , xn] be a polynomial. We will denote by ∂xf the formal
derivative of f with respect to the variable x, and by f |x=0 the polynomial obtained from f

by setting x = 0. Moreover, if A ⊆ [n], we will denote by ∂Af the polynomial obtained when
taking the formal derivative of f with respect to all variables in A. In a similar fashion, we
denote by f |A=0 the polynomial obtained when we set all the variables in A to zero, and
more generally, if |A| = r and α = (α1, . . . , αr) ∈ Fr, f |A=α will denote the restriction of f
obtained when setting the i’th variable in A to αi, for 1 ≤ i ≤ r.

In addition to the conventions above, the following definitions will be very useful in the
next sections.

I Definition 2.1 (Variable Set and Non-trivial Variable Set). Let f(x1, . . . , xn) ∈ F[x1, . . . , xn]
be a polynomial. Define the variable set (var) and the non-trivial variable set (var∗) as
follows:

var(f) = {x ∈ {x1, . . . , xn} | ∂xf 6= 0}
var∗(f) = {x ∈ {x1, . . . , xn} | ∂xf 6= 0 and f |x=0 6= 0}.

That is, the variable set of a polynomial f is the set of variables x ∈ {x1, . . . , xn} that appear
in the representation of f as a sum of monomials, whereas the non-trivial variable set is the
set of variables of f that do not divide it.

We shall say that f has a small support if var(f) (or var∗(f)) is not too large.

I Definition 2.2 (Monomial Support and Sparsity). Let f(x1, . . . , xn) ∈ F[x1, . . . , xn] be a
polynomial. We define the monomial support of f , written mon(f), as the set of monomials
that have a non-zero coefficient in f . In addition, we define the sparsity of f , written ‖f‖, as
the size of the set mon(f), that is,

‖f‖ = |mon(f)|.

In other words, the sparsity of f is the number of monomials that appear with a non-zero
coefficient in f .
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In the constructions of our hitting sets we will need to combine assignments to different
subsets of variables. The following notation will be useful. For a partition of [n], T1 t T2 t
· · · t Tm = [n], and sets Hi ⊆ F|Ti|, we denote with HT1

1 × · · · ×HTmm the set of all vectors of
length n whose restriction to Ti is an element of Hi:

HT1
1 × · · · × HTmm = {v ∈ Fn | ∀i ∈ [m], v|Ti ∈ Hi}.

2.2 Depth-3 and Depth-4 Formulas
We define some special classes of depth-3 and depth-4 formulas that will be used throughout
this paper.

I Definition 2.3 (Restricted Top Fan-in). Let Φ be a multilinear depth-4 formula. We say
that Φ is a multilinear Σ[M ]ΠΣΠ formula if it is of the form

∑m
i=1
∏ti
j=1 fi,j , where m ≤M .

If, in addition to the conditions above, we have that each fi,j is a linear function, that is, Φ
is actually a depth-3 formula, we will say that Φ is a multilinear Σ[M ]ΠΣ formula.

Our next definition considers the case where polynomials computed at the bottom layers
do not contain too many variables, that is, they have small variable set.

I Definition 2.4 (Restricted Top Fan-in and Variable Set). Let Φ be a multilinear depth-
4 formula. We say that Φ is a multilinear Σ[M ]Π(ΣΠ){τ} formula if it is of the form∑m

i=1
∏ti
j=1 fi,j , where m ≤M and for each 1 ≤ i ≤ m we have that

1. |var(fi,j)| ≤ τ for all 1 ≤ j ≤ ti
2. var(fi,j1) ∩ var(fi,j2) = ∅, for any j1 6= j2.
If, in addition to the conditions above, we have that each fi,j is a linear function, that is, Φ
is actually a depth-3 formula, we will say that Φ is a multilinear Σ[M ]ΠΣ{τ} formula.

Since the formula will be given to us as a black-box, we can make some assumptions about
it, which will help us to preserve non-zeroness when taking derivatives or setting variables to
zero. To this end, we define a notion of simplicity of depth-4 formulas,3 and prove that we
can assume without loss of generality that any input formula is simple.

I Definition 2.5. Let f(x1, . . . , xn) ∈ F[x1, . . . , xn] be a multilinear polynomial and let

Φ =
M∑
i=1

ti∏
j=1

fi,j

be a multilinear depth-4 formula computing f . We say that Φ is a simple multilinear depth-4
formula if for each variable x ∈ var(f) that divides f , it must be the case that for every
1 ≤ i ≤M , there exists j ∈ [ti] such that fi,j = x.

In words, Φ is simple if whenever a variable x divides f , it also divides every product
gate. The following proposition tells us that we can indeed assume, without loss of generality,
that any multilinear depth-4 formula given to us is a simple formula.

I Proposition 2.6. If Φ is a depth-4 multilinear Σ[M ]ΠΣΠ formula computing f(x1, . . . , xn),
then f can be computed by a simple depth-4 multilinear Σ[M ]ΠΣΠ formula Ψ where |Ψ| ≤ |Φ|.

3 Note that this is not the same notion as used, e.g., in [10].
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As a corollary, together with the simple observation that any derivative or restriction of
a multilinear formula results in a multilinear formula of at most the same size, we obtain
that partial derivatives or restrictions of a multilinear polynomial can also be computed by
simple formulas.

I Corollary 2.7. If Φ is a depth-4 multilinear Σ[M ]ΠΣΠ formula computing f(x1, . . . , xn),
then for any disjoint sets A,B ⊆ var(f), ∂Af |B=0 can be computed by a simple depth-4
multilinear Σ[M ]ΠΣΠ formula Ψ where |Ψ| ≤ |Φ|. We will refer to Ψ as ∂AΦ|B=0.

Therefore, from now on we will always assume that any depth-4 multilinear formula given
to us is a simple formula.

2.3 ROABPs for Products of Sparse Polynomials
Another important model that we need for our constructions is that of Algebraic Branching
Programs.

I Definition 2.8 (Nisan [25]). An algebraic branching program (ABP) is a directed acyclic
graph with one vertex s of in-degree zero (the source) and one vertex t of out-degree zero
(the sink). The vertices of the graph are partitioned into levels labeled 0, 1, . . . , D. Edges in
the graph can only go from level `− 1 to level `, for ` ∈ [D]. The source is the only vertex at
level 0 and the sink is the only vertex at level D. Each edge is labeled with an affine function
in the input variables. The width of an ABP is the maximum number of nodes in any layer,
and the size of an ABP is the number of vertices in the ABP.

Each path from s to t computes the polynomial which is the product of the labels of the
path edges, and the ABP computes the sum, over all s→ t paths, of such polynomials.

I Definition 2.9 (Ordered Read-Once Algebraic Branching Programs). A Ordered Read-Once
Algebraic Branching Program (ROABP) in the variable set {x1, . . . , xD} is an ABP of depth
D, such that each edge between layer `− 1 and ` is labeled by a univariate polynomial in x`.

Below we show an elementary construction of ROABPs for a very specific class of
polynomials, the proof of which can be found in [27].

I Lemma 2.10. Let F be a field, and f(y1, . . . , ym) =
∑M
i=1
∏ti
j=1 fi,j be a multivariate

polynomial over F, such that for every 1 ≤ i ≤M :
1. At most k different 1 ≤ j ≤ ti, satisfy |var(fi,j)| > 1.
2. For every 1 ≤ j ≤ ti, ‖fi,j‖ ≤ s.
Then f can be computed by an ROABP of width at most M · sk.

2.4 Hashing
In this section we present the basic hashing tools that we will use in our construction. We
first recall the notion of a k-wise independent hash family.

I Definition 2.11. A family of hash functions F = {h : [n]→ [m]} is k-wise independent if
for any k distinct elements (a1, . . . , ak) ∈ [n]k and any k (not necessarily distinct) elements
(b1, . . . , bk) ∈ [m]k, we have:

Pr
h∈F

[h(a1) = b1 ∧ · · · ∧ h(ak) = bk] = m−k.

Our next lemma studies the case where several sets are hashed simultaneously by the same
hash function. We present the lemma in a general form and only later, in the application, fix
the parameters.
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I Lemma 2.12. Let 0 < δ < ε, and n,M ∈ N such that M = 2nδ . Assume A1, . . . ,AM are
families of pairwise disjoint subsets of [n] such that for every 1 ≤ i ≤M and every A ∈ Ai,
|A| ≤ n1−ε. Let γ > 0 be such that γ ≥ (ε− δ)/2. Let F be a family of k-wise independent
hash functions from [n] to [m] for k = nδ + 2 logn and m = 10n1−ε+γ .

Then there exists h ∈ F such that for every 1 ≤ i ≤M and every 1 ≤ j ≤ m, both of the
following conditions hold:
1. For every set A ∈ Ai,

∣∣h−1(j) ∩A
∣∣ ≤ k.

2. The number of sets A ∈ Ai such that
∣∣h−1(j) ∩A

∣∣ > 1 is at most k logn.

We conclude this section with the following well known fact (see, e.g., Chapter 16 in [7],
and the references therein):

I Fact 2.13. There exists an explicitly constructible family F of k-wise independent hash
functions from [n] to [10n1−ε+γ ] of size |F| = nO(k).

3 Reducing the Bottom Variable Set of Depth-3 and Depth-4
Formulas

In this section we make the first step towards proving Theorems 1.1 and 1.3. As outlined
in Section 1.4, our first step is making the functions computed at the bottom layers (linear
functions in the case of depth-3 and “sparse” polynomials in the case of depth-4) have small
variable set. Hence, we establish reductions from any Σ[M ]ΠΣ or Σ[M ]ΠΣΠ formula to a
Σ[M ]ΠΣ{τ} or Σ[M ]Π(ΣΠ){τ} formula, respectively. We first describe the simple depth-3 case.
We then state without proofs the more general case of depth-4 formulas. The full proofs can
be found in the full version ([27]).

3.1 Reducing Bottom Variable Set for Depth-3
Given a depth-3 formula

∑M
i=1
∏ti
j=1 `i,j , we would like to eliminate all linear functions that

contain many variables. To this end, we observe that there must exist a variable that appears
in many of these functions, and that taking a derivative according to that variable eliminates
those functions from the formula.

I Lemma 3.1. Let f(x1, . . . , xn) =
∑M
i=1
∏ti
j=1 `i,j be a non-zero multilinear polynomial

computed by a multilinear Σ[M ]ΠΣ formula Φ and let ε > 0. Then, there exists a set of
variables A of size |A| ≤ Õ(nε · logM) such that ∂Af is a non-zero multilinear polynomial
that can be computed by a multilinear Σ[M ]ΠΣ{n1−ε} formula.

Proof. Define B = {`i,j | |var(`i,j) ∩ var(f)| ≥ n1−ε} to be the set of “bad” linear functions.
Those are linear functions that contain more than n1−ε variables that also appear in f . We
show how to eliminate those linear functions from the formula while preserving non-zeroness.

Since for every ` ∈ B, |var(`) ∩ var(f)| ≥ n1−ε, there exists a variable xi that appears
in at least |B|n1−ε/n = |B|/nε linear functions in B (and also in f). The polynomial ∂xif
is non-zero, since xi ∈ var(f). Furthermore, using the fact that deriving with respect to
a variable is a linear operation, and the fact that every multiplication gate in the formula
multiplies linear functions with disjoint support, a formula for ∂xif can be obtained from
Φ by replacing every linear function in which xi appears with an appropriate constant.
Therefore, every such function is removed from B, and so the set of bad linear functions in
∂xif is of size at most |B| − |B|/nε = |B| · (1− 1/nε). We continue this process for at most
O(nε · log |B|) steps, until we reach a point where |B| < 1 and so |B| = 0.
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Finally, it remains to be noted that |B| ≤Mn, since by multilinearity each multiplication
gate multiplies linear functions with disjoint support, and so its fan-in is at most n. J

The process for depth-4 formulas follows the same outline as the depth-3 case, but there
are a few more details, which can be found in the full version [27]. The precise statement of
the support reduction for depth-4 is as follows:

I Lemma 3.2 (Reduction to Depth-4 with Small Bottom Variable Set). Let Φ be a multilinear
simple Σ[M ]ΠΣΠ formula computing a non-zero multilinear polynomial f(x1, . . . , xn) ∈
F[x1, . . . , xn]. There exist disjoint sets A,B ⊂ [n] with |A tB| ≤ 2n

τ · log(|Φ|) such that the
polynomial ∂Af |B=0 is non-zero and can be computed by a simple multilinear Σ[M ]Π(ΣΠ){τ}
formula Ψ.

4 Hitting Set for ΣΠΣ{n1−ε} and ΣΠ(ΣΠ){n1−ε} Formulas

In this section we construct subexponential sized hitting set for the classes of Σ[M ]ΠΣ{n1−ε}

and Σ[M ]Π(ΣΠ){n1−ε} multilinear formulas. Recall that in Section 3 we showed how to
reduce general depth-3 and depth-4 formulas to these types of formulas. In the next section,
we will show how to tie all loose edges and combine the arguments of Section 3 with those of
this section in order to handle the general case.

An essential ingredient in our construction is a quasi-polynomial sized hitting set for
Read-Once Algebraic Branching Programs (ROABPs) [14, 2]. We note that in our setting,
we may assume that the reading order of the variables by the ABP is known.

I Theorem 4.1 ([14, 2]). Let C be the class of n-variate polynomials computed by a ROABP
of width w, such that the degree of each variable is at most d, over a field F so that
|F| ≥ poly(n,w, d). Then C has a hitting set of size poly(n,w, d)logn that can be constructed
in time poly(n,w, d)logn.

We begin by describing a unified construction for both Σ[M ]ΠΣ{n1−ε} and
Σ[M ]Π(ΣΠ){n1−ε} formulas. We then describe how to set the parameters of the construction
for each of the cases.

I Construction 4.2 (Hitting set for multilinear Σ[M ]ΠΣ{n1−ε} and Σ[M ]Π(ΣΠ){n1−ε} formulas).
Let 0 < δ < ε and n, k, s,M integers, such that M = 2nδ and k = nδ + 2 logn. Set
m = 10n1−(ε+δ)/2 and t = k logn. Let F be a family of k-wise independent hash functions
from [n] to [m], as in Lemma 2.12. For every h ∈ F , define the set Ih as follows:
1. Partition the variables to sets4 T1 t T2 t · · · t Tm = h−1(1) t h−1(2) t · · · t h−1(m).
2. For every 1 ≤ i ≤ m, let Hi be a hitting set for ROABPs of width M · st and individual

degree d = 1 (as promised by Theorem 4.1), on the variables of Ti (of course, |Ti| ≤ n).
3. We define Ih as the set of all vectors v such that the restriction of v to the coordinates

Ti, v|Ti , is in Hi. I.e., in the notation of Section 2.1,

Ih = HT1
1 ×H

T2
2 × · · · × HTmm .

Finally, define H =
⋃
h∈F Ih.

The following lemma gives an upper bound to the size of the hitting set constructed in
Construction 4.2.

4 Recall that we associate subsets of [n] with subsets of the variables, and make no distinction in the
notation.



R. Oliveira, A. Shpilka, and B. L. Volk 317

I Lemma 4.3. Let δ, ε, k, n, s and M be the parameters of Construction 4.2. The
set H constructed in Construction 4.2 has size nO(k) ·

(
M · sk logn)Õ(n1−(ε+δ)/2) =(

M · sk logn)Õ(n1−(ε+δ)/2), and it can be constructed in time poly(|H|).

Proof. This is a direct consequence of the construction, Fact 2.13 and Theorem 4.1. J

4.1 Depth-3 Formulas
We begin by describing the argument for depth-3 formulas. The following lemma proves
that indeed, by setting the proper parameters, the set H from Construction 4.2 does hit
Σ[M ]ΠΣ{n1−ε} formulas.

I Lemma 4.4. Let f(x1, . . . , xn) ∈ F[x1, . . . , xn] be a multilinear polynomial computed by
a multilinear Σ[M ]ΠΣ{n1−ε} formula Φ =

∑M
i=1
∏ti
j=1 `i,j. Let H be the set constructed in

Construction 4.2 with s = k + 1. Then there exists a point α ∈ H such that f(α) 6= 0.

Proof. For every multiplication gate 1 ≤ i ≤M in Φ, define a partition of the variables

Ai = {var(`i,j) ∩ var(f) | 1 ≤ j ≤ ti}.

Let h ∈ F be the function guaranteed by Lemma 2.12 with respect to the partitions
A1, . . .AM , and assume the setup of Construction 4.2. We claim that there exists α ∈ Ih
such that f(α) 6= 0.

To that end, consider the partition of the variables induced by h:

T1 t T2 t · · · t Tm = h−1(1) t h−1(2) t · · · t h−1(m).

We view the polynomial as a polynomial f1 in the variables of T1, over the extension field
F(T2t · · ·tTn). We claim that f1 can be computed by an ROABP of width M · (k + 1)k logn.
To see this note that, by Lemma 2.12, in any multiplication gate, at most k logn linear
functions contain more than one variable from T1, and each contains at most k variables. It
follows that the sparsity of every linear function (with respect to the variables in T1) among
those k logn functions, is at most k+ 1. By Lemma 2.10, f1 can be computed by an ROABP
over F(T2 t · · · t Tn) of width M · (k + 1)k logn. By the hitting set property of Theorem 4.1,
there exists α1 ∈ H1 ⊆ F|T1| such that f2

def= f1|T1=α1 6≡ 0.
Similarly, the same conditions now hold for f2, considered as a polynomial over the field

F(T3 t · · · t Tn), and so there exists α2 ∈ H2 ⊆ F|T2| such that f3
def= f2|T2=α2 6≡ 0.

We continue this process form steps, and at the last step we find αm such that fm−1(αm) =
f(α1, · · · , αm) 6= 0, with (α1, · · · , αm) ∈ Fn being the length n vector obtained by filling the
entires of αi ∈ F|Ti| in the positions indexed by Ti. J

4.2 Depth-4 Formulas
The argument for depth-4 formulas is very similar, apart from a small change in the setting
of the parameters. Once again, the proof is omitted.

I Lemma 4.5. Let f(x1, . . . , xn) ∈ F[x1, . . . , xn] be a multilinear polynomial computed by a
multilinear Σ[M ]Π(ΣΠ){n1−ε} formula Φ =

∑M
i=1
∏ti
j=1 fi,j. Let H be the set constructed in

Lemma 4.2 with s = 2k. Then, there exists a point α ∈ H such that f(α) 6= 0.
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5 Hitting Set for Depth-3 and Depth-4 Multilinear Formulas

Recall that, in Section 3, we showed that any non-zero Σ[M ]ΠΣ or Σ[M ]ΠΣΠ formula has a
non-zero partial derivative (and, possibly, a restriction) which is computed by a non-zero
Σ[M ]ΠΣ{n1−ε} or Σ[M ]Π(ΣΠ){n1−ε} formula, respectively. Then, in Section 4 we gave hitting
sets for such formulas. In this section we provide the final ingredient, which is to show how
to “lift” those hitting sets back to the general class, via a simple method, albeit one that
requires some notation.

Handling restrictions is fairly easy, and causes no blow up in the hitting set size: If we
have a set H ⊆ Fn−r that hits f |B=0 for some multilinear polynomial f(x1, . . . , xn) and
B ⊆ [n] with |B| = r, then simply extending H into a subset of Fn by filling out zeros in all
the entries indexed by B will hit f itself.

In order to handle partial derivates, first note that if f(x1, . . . , xn) is a multilinear
polynomial, then

∂xif = f(x1, . . . , xi−1, 1, xi+1, . . . , xn)− f(x1, . . . , xi−1, 0, xi+1, . . . , xn),

and so if ∂xif(α) 6= 0 for some α ∈ Fn then at least one of the two evaluations on the right
hand side must be non-zero as well.

Applying this fact repeatedly, given a set A ⊆ [n] we can evaluate ∂Af at any point by
making 2|A| evaluations of f . Motivated by this, we introduce the following notation:

I Definition 5.1. Let f(x1, . . . , xn) ∈ F[x1, . . . , xn] be a multilinear polynomial and A,B ⊆
[n] be two disjoint subsets of variables with |A| = r, |B| = r′. Let H ⊆ Fn−(r+r′).

We define the “lift” of H with respect to (A,B) to be

LBA(H) =
(
{0, 1}r

)A
×
(
{0}r

′
)B
×H[n]\(AtB).

In the special case where B = ∅, we simply denote LBA(H) = LA(H).

That is, for all α ∈ H, LBA(H) contains all the possible 2r ways to extend α into β ∈ Fn
by filling out zeros and ones within the r entries that are indexed by A, and zeros in all the
r′ entries indexed by B.

5.1 Depth-3 Formulas
In this section we prove Theorem 1.1. For the reader’s convenience, we first restate the
theorem:

I Theorem 5.2 (Theorem 1.1, restated). Let C be the class of multilinear Σ[M ]ΠΣ formulas
for M = 2nδ . There exists a hitting set H of size |H| = 2Õ(n2/3+2δ/3) for C, that can be
constructed in time poly(|H|).

The size of the hitting set is subexponential for any constant δ < 1/2. Also, ifM = poly(n)
then the size of the hitting set is 2Õ(n2/3).

With Definition 5.1 in hand, we now provide our construction for Σ[M ]ΠΣ formulas,
towards the proof of Theorem 5.2.

I Construction 5.3 (Hitting set for multilinear Σ[M ]ΠΣ formulas). Let M = 2nδ and ε =
2/3−δ/3. Let r = Õ(nε logM) = Õ(n 2

3 + 2
3 δ) as guaranteed by Lemma 3.1. For every A ∈

([n]
≤r
)
,
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construct a set HA ∈ Fn−|A| using Construction 4.2 with parameters δ, ε, n, k, s = k + 1 and
M (recall that in Construction 5.3 we set k = nδ + 2 logn). Finally, let

H =
⋃

A∈([n]
≤r)
LA(HA).

We are now ready to prove Theorem 5.2:

Proof of Theorem 5.2. We show that the set H constructed in Construction 5.3 has the
desired properties. First, note that by Lemma 4.3, for every A ⊆ [n] with

|A| ≤ Õ(nε logM) = Õ(n2/3−δ/3 logM) = Õ(n 2
3 + 2

3 δ),

the set HA has size

(M · (k + 1)k logn)Õ(n2/3−δ/3) = 2Õ(n2/3+2δ/3),

where we have used the fact that, in Construction 5.3, we take k = nδ + 2 logn. It therefore
follows that

|LA(HA)| ≤ 2|A| · |HA| = 2Õ(n2/3+2δ/3),

and that

|H| ≤
Õ(n

2
3 + 2

3 δ)∑
i=0

∑
A⊆[n],|A|=i

|LA(HA)| = 2Õ(n2/3+2δ/3).

To show the hitting property of H, let f(x1, . . . , xn) be a non-zero multilinear polynomial
computed by a Σ[M ]ΠΣ formula, and let A′ ⊆ [n] be the set guaranteed by Lemma 3.1.
Thus, |A′| ≤ Õ(nε logM) = Õ(n 2

3 + 2
3 δ). Then by Lemma 4.4, there exists α ∈ HA′ such that

∂A′f(α) 6= 0, and so there must exist

β ∈ LA′(HA′) ⊆ H

such that f(β) 6= 0. J

In the depth-4 case, the construction and proof are both very similar, with a slight change
in the parameters. For the detailed statements, proofs and construction of the hitting set,
we refer the reader to the full version [27].

6 Multilinear Depth-d Regular Formulas

In this section, we consider multilinear regular formulas, which are regular formulas with
the extra condition that each gate computes a multilinear polynomial. However, we will
remove the bound on the formal degree of the formula. More precisely, we have the following
definition:

I Definition 6.1 (Multilinear Regular Formulas). We say that a formula Φ is
a multilinear (a1, p1, a2, p2, . . . , ad, pd, ad+1)-regular formula computing a mul-
tilinear polynomial f(x1, . . . , xn) if it can be computed by a multilinear
Σ[a1]Π[p1]Σ[a2]Π[p2] . . .Σ[ad]Π[pd]Σ[ad+1]-formula. Notice that the size of such a for-
mula is (

∏
1≤i≤d+1 ai) · (

∏
1≤i≤d pi) and the formal degree of such a formula is given by

deg(Φ) =
∏

1≤i≤d pi. Since the formula is multilinear, we have that deg(Φ) ≤ n.
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Comparing with the definition given in Section 1.1, an (a1, p1, a2, p2, . . . , ad, pd, ad+1)-
regular formula has depth 2d+ 1.

Our main result for multilinear regular formulas is given by the following theorem, a
proof of which can be found in the full version of this paper [27].

I Theorem 6.2 (Theorem 1.5, restated). For d ≥ 2, let Cd be the class of multilinear
polynomials computed by (a1, p1, a2, p2, . . . , ad, pd, ad+1)-regular formulas of size S ≤ 2nδ

computing a multilinear polynomial f(x1, . . . , xn), where δ = 1
5d+1 . Then, there exists a

hitting set Hd of size |Hd| = 2Õ(n1−δ/3) for Cd, that can be constructed in time poly(|Hd|).

7 Lower Bounds for Bounded Depth Multilinear Formulas

As we noted earlier, the connection between construction of hitting sets and lower bounds
for explicit polynomials is well established. The following theorem was proved by Heintz and
Schnorr [16] and Agrawal [1], albeit we cite only a special case which matches our use of it:

I Theorem 7.1 (A special case of [16, 1]). Suppose there is a black-box deterministic PIT
algorithm for a class C of multilinear circuits, that outputs a hitting set H of size |H| =
2nα < 2n and runs in time poly(|H|), such that H hits circuits of size at most 2nδ . Then,
there exists a multilinear polynomial f(x1, . . . , xn) such that any circuit from the class C
computing f must be of size at least 2nδ , and the coefficients of f can be found in time 2O(n).

Theorem 7.1 is proved by finding a non-zero polynomial f(x1, . . . , xn) which vanishes on
the entire hitting set H of size 2nα , and then, by definition, f cannot have circuits of size
2nδ . Finding f amounts to finding a non-zero solution to a homogenous system of linear
equations whose unknowns are the coefficients of the 2n possible multilinear monomials in
x1, . . . , xn. As long as 2n > |H| = 2nα , a non-zero solution is guaranteed to exist.

Our lower bounds now follow as a direct application of our hitting set constructions and
Theorem 7.1.

Proofs of Corollaries 1.2, 1.4 and 1.6. In light of Theorem 7.1, we only need to pick δ so
that the hitting sets we constructed have size less than 2n. The appropriate choices, by
Theorems 1.1, 1.3 and 1.5, respectively, can be seen to be δ = 1/2−O(log logn/ logn) (for
depth-3), δ = 1/4−O(log logn/ logn) (for depth-4) and δ = 1

5bd/2c+1 = O
(

1√
5d

)
(for depth-d

regular formulas). J

8 Conclusion and Open Questions

We conclude this paper with some obvious open problems. First, as noted in Section 1.3, the
lower bounds that we get from our hitting sets are not as good as the best lower bounds for
these models. Can one improve our construction to yield lower bounds matching the best
known lower bounds?

Currently, the size of the hitting set that we get for depth-d regular multilinear formulas is
roughly exp(n1−1/ exp(d)). Can the bound be improved to exp(n1−Ω(1/d)) ? Finally, another
natural question is to extend our argument from depth-d regular multilinear formulas to
arbitrary depth-d multilinear formulas.

Acknowledgements. The authors would like to thank Zeev Dvir and Avi Wigderson for
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Abstract
A read-once oblivious arithmetic branching program (ROABP) is an arithmetic branching pro-
gram (ABP) where each variable occurs in at most one layer. We give the first polynomial time
whitebox identity test for a polynomial computed by a sum of constantly many ROABPs. We
also give a corresponding blackbox algorithm with quasi-polynomial time complexity nO(logn).
In both the cases, our time complexity is double exponential in the number of ROABPs.

ROABPs are a generalization of set-multilinear depth-3 circuits. The prior results for the sum
of constantly many set-multilinear depth-3 circuits were only slightly better than brute-force, i.e.
exponential-time.

Our techniques are a new interplay of three concepts for ROABP: low evaluation dimension,
basis isolating weight assignment and low-support rank concentration. We relate basis isolation
to rank concentration and extend it to a sum of two ROABPs using evaluation dimension (or
partial derivatives).
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Since all problems with randomized polynomial-time solutions are conjectured to have
deterministic polynomial-time algorithms, we expect that such an algorithm exists for PIT. It
is also known that any sub-exponential time algorithm for PIT implies a lower bound [15, 2].
See also the surveys [25, 26, 30].

An efficient deterministic solution for PIT is known only for very restricted input models,
for example, sparse polynomials [5, 19], constant fan-in depth-3 (ΣΠΣ) circuits [7, 18, 17, 16,
27, 28], set-multilinear circuits [22, 10, 4], read-once oblivious ABP (ROABP) [22, 12, 9, 3].
This lack of progress is not surprising: Gupta et al. [13] showed that a polynomial time
test for depth-3 circuits would imply a sub-exponential time test for general circuits. For
now, even a sub-exponential solution for depth-3 circuits seems elusive. However, an efficient
test for depth-3 multilinear circuits looks within reach as a lower bound against this class
of circuits is already known [23]. A circuit is called multilinear if all its gates compute a
multilinear polynomial, i.e. polynomials such that the maximum degree of any variable is
one.

A depth-3 multilinear circuit is called set-multilinear if all the product gates in it induce
the same partition on the set of variables. It is easy to see that a depth-3 multilinear circuit
is a sum of polynomially many set-multilinear circuits. Hence, a natural first step to attack
depth-3 multilinear circuit is to find an efficient test for the sum of two set-multilinear
polynomials. Before this work, the only non-trivial test known for sum of two set-multilinear
circuits was a sub-exponential whitebox algorithm by Agrawal et al. [3]. Subsequently, a sub-
exponential time blackbox test was also given for depth-3 multilinear circuits [6]. Our results
imply the first polynomial-time whitebox algorithm, and the first quasi-polynomial-time
blackbox algorithm, for the sum of two set-multilinear circuits.

In this paper, we deal with ROABPs, a model which subsumes set-multilinear circuits;
see for example [3, Lemma 14]. A read-once oblivious ABP (ROABP) is an arithmetic
branching program, where each variable occurs in at most one layer. There has been a long
chain of work on identity testing for ROABP, see the thesis of Michael Forbes [8] for an
excellent overview. In 2005, Raz and Shpilka [22] gave a polynomial-time whitebox test for
ROABP. Then, Forbes and Shpilka [12] gave an sO(logn)-time blackbox algorithm for ROABP
with known variable order, where s is the size of the ROABP and n is number of variables.
This was followed by a complete blackbox test [9] that took sO(d log2 s) steps, where d is the
syntactic degree bound of any variable. This was further improved by Agrawal et al. [3]
to sO(logn) time. They removed the exponential dependence on the degree d. Their test is
based on the idea of basis isolating weight assignment. Given a polynomial over an algebra,
it assigns weights to the variables, and naturally extends it to monomials, such that there is
a unique minimum weight basis among the coefficients of the polynomial.

In another work, Jansen et al. [14] gave a blackbox test for a sum of constantly many
“ROABPs”. Their definition of “ROABP” is much weaker. They assume that a variable
appears on at most one edge in the ABP.

We consider the sum of ROABPs. Note that there are polynomials P (x) computed by
the sum of two ROABPs such that any single ROABP that computes P (x) has exponential
size [20]. Hence, the previous results on single ROABPs do not help here. In Section 3 we
show our first main result (Theorem 3.2):

PIT for the sum of constantly many ROABPs is in polynomial time.

The exact time bound we get for the PIT-algorithm is (ndw2c)O(c), where n is the number
of variables, d is the degree bound of the variables, c is the number of ROABPs and w is
their width. Hence our time bound is double exponential in c, but polynomial in ndw.
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Our algorithm uses the fact that the evaluation dimension of an ROABP is equal to
the width of the ROABP [21, 11]. Namely, we consider a set of linear dependencies derived
from partial evaluations of the ROABPs 1. We view identity testing of the sum of two
ROABPs as testing the equivalence of two ROABPs. Our idea is inspired from a similar result
in the boolean case. Testing the equivalence of two ordered boolean branching programs
(OBDD) is in polynomial time [24]. OBDDs too have a similar property of small evaluation
dimension, except that the notion of linear dependence becomes equality in the boolean
setting. Our equivalence test, for two ROABPs A and B, takes linear dependencies among
partial evaluations of A and verifies them for the corresponding partial evaluations of B. As
B is an ROABP, the verification of these dependencies reduces to identity testing for a single
ROABP.

In Section 3.2, we generalize this test to the sum of c ROABPs. There we take A as one
ROABP and B as the sum of the remaining c− 1 ROABPs. In this case, the verification of
the dependencies for B becomes the question of identity testing of a sum of c− 1 ROABPs,
which we solve recursively.

The same idea can be applied to decide the equivalence of an OBDD with the XOR
of c− 1 OBDDs. We skip these details here as we are mainly interested in the arithmetic
case.

In Section 4, we give an identity test for a sum of ROABPs in the blackbox setting. That
is, we are given blackbox access to a sum of ROABPs and not to the individual ROABPs.
Our main result here is as follows (Theorem 4.9):

There is a blackbox PIT for the sum of constantly many ROABPs that works in
quasi-polynomial time.

The exact time bound we get for the PIT-algorithm is (ndw)O(c 2c log(ndw)), where n is the
number of variables, d is the degree bound of the variables, c is the number of ROABPs and
w is their width. Hence our time bound is double exponential in c, and quasi-polynomial
in n, d, w.

Here again, using the low evaluation dimension property, the question is reduced to
identity testing for a single ROABP. But, just a hitting-set for ROABP does not suffice
here, we need an efficient shift of the variables which gives low-support concentration in any
polynomial computed by an ROABP. An `-concentration in a polynomial P (x) means that
all of its coefficients are in the linear span of its coefficients corresponding to monomials with
support < `. Essentially we show that a shift, which achieves low-support concentration
for an ROABP of width w2c , also works for a sum of c ROABPs (Lemma 4.8). This is
surprising, because as mentioned above, a sum of c ROABPs is not captured by an ROABP
with polynomially bounded width [20].

A novel part of our proof is the idea that for a polynomial over a k-dimensional F-
algebra Ak, a shift by a basis isolating weight assignment achieves low-support concentration.
To elaborate, let w: x→ N be a basis isolating weight assignment for a polynomial P (x) ∈
Ak[x] then P (x+ tw) has O(log k)-concentration over F(t). As Agrawal et al. [3] gave a basis
isolating weight assignment for ROABPs, we can use it to get low-support concentration.
Forbes et al. [9] had also achieved low-support concentration in ROABPs, but with a
higher cost. Our concentration proof significantly differs from the older rank concentration
proofs [4, 9], which always assume distinct weights for all the monomials or coefficients.

1 Equivalently, we work with the dependencies of the partial derivatives.
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Here, we only require that the weight of a coefficient is greater than the weight of the basis
coefficients that it depends on.

2 Preliminaries

2.1 Notation
Let x = (x1, x2, . . . , xn) be a tuple of n variables. For any a = (a1, a2, . . . , an) ∈ Nn, we
denote by xa the monomial

∏n
i=1 x

ai
i . The support size of a monomial xa is given by

supp(a) = |{ai 6= 0 | i ∈ [n]}|.
Let F be some field. Let A(x) be a polynomial over F in n variables. A polynomial

A(x) is said to have individual degree d, if the degree of each variable is bounded by d for
each monomial in A(x). When A(x) has individual degree d, then the exponent a of any
monomial xa of A(x) is in the set

M = {0, 1, . . . , d}n .

By coeffA(xa) ∈ F we denote the coefficient of the monomial xa in A(x). Hence, we can
write

A(x) =
∑

a∈M
coeffA(xa)xa .

The sparsity of polynomial A(x) is the number of nonzero coefficients coeffA(xa).
We also consider matrix polynomials where the coefficients coeffA(xa) are w×w matrices,

for some w. In an abstract setting, these are polynomials over a w2-dimensional F-algebra A.
Recall that an F-algebra is a vector space over F with a multiplication which is bilinear and
associative, i.e. A is a ring. The coefficient space is then defined as the span of all coefficients
of A, i.e., spanF{coeffA(xa) | a ∈M}.

Consider a partition of the variables x into two parts y and z, with |y| = k. A
polynomial A(x) can be viewed as a polynomial in variables y, where the coefficients are
polynomials in F[z]. For monomial ya, let us denote the coefficient of ya in A(x) by
A(y,a) ∈ F[z]. For example, in the polynomial A(x) = x1 + x1x2, we have A({x1},1) = 1 + x2,
whereas coeffA(x1) = 1.

Thus, A(x) can be written as

A(x) =
∑

a∈{0,1,...,d}k
A(y,a) y

a . (1)

The coefficient A(y,a) is also sometimes expressed in the literature as a partial derivative ∂A
∂ya

evaluated at y = 0 (and multiplied by an appropriate constant), see [11, Section 6].
For a set of polynomials P, we define their F-span as

spanF P =
{∑
A∈P

αAA | αA ∈ F for all A ∈ P
}
.

The set of polynomials P is said to be F-linearly independent if
∑
A∈P αAA = 0 holds only

for αA = 0, for all A ∈ P. The dimension dimF P of P is the cardinality of the largest
F-linearly independent subset of P.

For a matrix R, we denote by R(i, ·) and R(·, i) the i-th row and the i-th column of R,
respectively. For any a ∈ Fk×k′ , b ∈ F`×`′ , the tensor product of a and b is denoted by a⊗ b.
The inner product is denoted by 〈a, b〉. We abuse this notation slightly: for any a,R ∈ Fw×w,
let 〈a,R〉 =

∑w
i=1
∑w
j=1 aijRij .
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2.2 Arithmetic branching programs
An arithmetic branching program (ABP) is a directed graph with ` + 1 layers of vertices
(V0, V1, . . . , V`). The layers V0 and V` each contain only one vertex, the start node v0 and the
end node v`, respectively. The edges are only going from the vertices in the layer Vi−1 to the
vertices in the layer Vi, for any i ∈ [d]. All the edges in the graph have weights from F[x],
for some field F. The length of an ABP is the length of a longest path in the ABP, i.e. `. An
ABP has width w, if |Vi| ≤ w for all 1 ≤ i ≤ `− 1.

For an edge e, let us denote its weight by W (e). For a path p, its weight W (p) is defined
to be the product of weights of all the edges in it,

W (p) =
∏
e∈p

W (e).

The polynomial A(x) computed by the ABP is the sum of the weights of all the paths from
v0 to v`,

A(x) =
∑

p path v0 v`

W (p).

Let the set of nodes in Vi be {vi,j | j ∈ [w]}. The branching program can alternately
be represented by a matrix product

∏`
i=1 Di, where D1 ∈ F[x]1×w, Di ∈ F[x]w×w for

2 ≤ i ≤ `− 1, and D` ∈ F[x]w×1 such that

D1(j) = W (v0, v1,j), for 1 ≤ j ≤ w,
Di(j, k) = W (vi−1,j , vi,k), for 1 ≤ j, k ≤ w and 2 ≤ i ≤ n− 1,
D`(k) = W (v`−1,k, v`), for 1 ≤ k ≤ w.

Here we use the convention that W (u, v) = 0 if (u, v) is not an edge in the ABP.

2.3 Read-once oblivious arithmetic branching programs
An ABP is called a read-once oblivious ABP (ROABP) if the edge weights in every layer are
univariate polynomials in the same variable, and every variable occurs in at most one layer.
Hence, the length of an ROABP is n, the number of variables. The entries in the matrix Di

defined above come from F[xπ(i)], for all i ∈ [n], where π is a permutation on the set [n].
The order (xπ(1), xπ(2), . . . , xπ(n)) is said to be the variable order of the ROABP.

We will view Di as a polynomial in the variable xπ(i), whose coefficients are w-dimensional
vectors or matrices. Namely, for an exponent a = (a1, a2, . . . , an), the coefficient of

x
aπ(1)
π(1) in D1(xπ(1)) is the row vector coeffD1(xaπ(1)

π(1) ) ∈ F1×w,
x
aπ(i)
π(i) in Di(xπ(i)) is the matrix coeffDi(x

aπ(i)
π(i) ) ∈ Fw×w, for i = 2, 3, . . . , n− 1, and

x
aπ(n)
π(n) in Dn(xπ(n)) is the vector coeffDn(xaπ(n)

π(n) ) ∈ Fw×1.

The read once property gives us an easy way to express the coefficients of the polyno-
mial A(x) computed by an ROABP.

I Lemma 2.1. For a polynomial A(x) = D1(xπ(1))D2(xπ(2)) · · ·Dn(xπ(n)) computed by an
ROABP, we have

coeffA(xa) =
n∏
i=1

coeffDi(x
aπ(i)
π(i) ) ∈ F . (2)
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We also consider matrix polynomials computed by an ROABP. A matrix polynomial
A(x) ∈ Fw×w[x] is said to be computed by an ROABP if A = D1D2 · · ·Dn, where Di ∈
Fw×w[xπ(i)] for i = 1, 2, . . . , n and some permutation π on [n]. Similarly, a vector polynomial
A(x) ∈ F 1×w[x] is said to be computed by an ROABP if A = D1D2 · · ·Dn, where D1 ∈
F 1×w[xπ(1)] and Di ∈ Fw×w[xπ(i)] for i = 2, . . . , n. Usually, we will assume that an ROABP
computes a polynomial in F[x], unless mentioned otherwise.

Let A(x) be the polynomial computed by an ROABP and let y and z be a partition
of the variables x such that y is a prefix of the variable order of the ROABP. Recall from
equation (1) that A(y,a) ∈ F[z] is the coefficient of monomial ya in A(x). Nisan [21] showed
that for every prefix y, the dimension of the set of coefficient polynomials A(y,a) is bounded
by the width of the ROABP2. This holds in spite of the fact that the number of these
polynomials is large.

I Lemma 2.2 ([21], Prefix y). Let A(x) be a polynomial of individual degree d, computed by
an ROABP of width w with variable order (x1, x2, . . . , xn). Let k ≤ n and y = (x1, x2, . . . , xk)
be the prefix of length k of x. Then dimF{A(y,a) | a ∈ {0, 1, . . . , d}k} ≤ w.

Proof. Let A(x) = D1(x1)D2(x2) · · · Dn(xn), where D1 ∈ F1×w[x1], Dn ∈ Fw×1[xn] and
Di ∈ Fw×w[xi], for 2 ≤ i ≤ n− 1. Let z = (xk+1, xk+2, . . . , xn) be the remaining variables
of x. Define P (y) = D1D2 · · ·Dk and Q(z) = Dk+1Dk+2 · · ·Dn. Then P and Q are vectors
of length w,

P (y) = [P1(y) P2(y) · · · Pw(y)]
Q(z) = [Q1(z) Q2(z) · · · Qw(z)]T

where Pi(y) ∈ F[y] and Qi(z) ∈ F[z], for 1 ≤ i ≤ w, and we have A(x) = P (y)Q(z).
We get the following generalization of equation (2): for any a ∈ {0, 1, . . . , d}k, the

coefficient A(y,a) ∈ F[z] of monomial ya can be written as

A(y,a) =
w∑
i=1

coeffPi(ya)Qi(z). (3)

That is, every A(y,a) is in the F-span of the polynomials Q1, Q2, . . . , Qw. Hence, the claim
follows. J

Observe that equation (3) tells us that the polynomials A(y,a) can also be computed by
an ROABP of width w: by equation (2), we have coeffPi(ya) =

∏
xi∈y coeffDi(x

ai
i ). Hence,

in the ROABP for A we simply have to replace the matrices Di which belong to P by the
coefficient matrices coeffDi(x

ai
i ). Here, y is a prefix of x. But this is not necessary for the

construction to work. The variables in y can be arbitrarily distributed in x. We summarize
the observation in the following lemma.

I Lemma 2.3 (Arbitrary y). Let A(x) be a polynomial of individual degree d, computed by an
ROABP of width w and y = (xi1 , xi2 , . . . , xik) be any k variables of x. Then the polynomial
A(y,a) can be computed by an ROABP of width w, for every a ∈ {0, 1, . . . , d}k. Moreover, all
these ROABPs have the same variable order, inherited from the order of the ROABP for A.

For a general polynomial, the dimension considered in Lemma 2.2 can be exponentially
large in n. We will next show the converse of Lemma 2.2: if this dimension is small for a

2 Nisan [21] showed it for non-commutative ABP, but the same proof works for ROABP.
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polynomial then there exists a small width ROABP for that polynomial. Hence, this property
characterizes the class of polynomials computed by ROABPs. Forbes et al. [11, Section 6]
give a similar characterization in terms of evaluation dimension, for polynomials which can
be computed by an ROABP, in any variable order. On the other hand, we work with a fixed
variable order.

As a preparation to prove this characterization we define a characterizing set of de-
pendencies of a polynomial A(x) of individual degree d, with respect to a variable order
(x1, x2, . . . , xn). This set of dependencies will essentially give us an ROABP for A in the
variable order (x1, x2, . . . , xn).

I Definition 2.4. Let A(x) be polynomial of individual degree d, where x = (x1, x2, . . . , xn).
For any 0 ≤ k ≤ n and yk = (x1, x2, . . . , xk), let

dimF{A(yk,a) | a ∈ {0, 1, . . . , d}k} ≤ w,

for some w.
For 0 ≤ k ≤ n, we define the spanning sets spank(A) and the dependency sets dependk(A)

as subsets of {0, 1, . . . , d}k as follows.
For k = 0, let depend0(A) = ∅ and span0(A) = {ε}, where ε = ( ) denotes the empty

tuple. For k > 0, let
dependk(A) = {(a, j) | a ∈ spank−1(A) and 0 ≤ j ≤ d}, i.e. dependk(A) contains all
possible extensions of the tuples in spank−1(A).
spank(A) ⊆ dependk(A) is any set of size ≤ w, such that for any b ∈ dependk(A), the
polynomial A(yk,b) is in the span of {A(yk,a) | a ∈ spank(A)}.

The dependencies of the polynomials in {A(yk,a) | a ∈ dependk(A)} over {A(yk,a) | a ∈
spank(A)} are the characterizing set of dependencies.

The definition of spank(A) is not unique. For our purpose, it does not matter which of the
possibilities we take, we simply fix one of them. We do not require that spank(A) is of minimal
size, i.e. the polynomials associated with spank(A) constitute a basis for the polynomials
associated with dependk(A). This is because in the whitebox test in Section 3, we will
efficiently construct the sets spank(A), and there we cannot guarantee to obtain a basis. We
will see that it suffices to have | spank(A)| ≤ w. It follows that | dependk+1(A)| ≤ w(d+ 1).
Note that for k = n, we have yn = x and therefore A(yn,a) = coeffA(xa) is a constant for
every a. Hence, the coefficient space has dimension one in this case, and thus | spann(A)| = 1.

Now we are ready to construct an ROABP for A.

I Lemma 2.5 ([21], Converse of Lemma 2.2). Let A(x) be a polynomial of individual degree d
with x = (x1, x2, . . . , xn), such that for any 1 ≤ k ≤ n and yk = (x1, x2, . . . , xk), we have

dimF{A(yk,a) | a ∈ {0, 1, . . . , d}k } ≤ w .

Then there exists an ROABP of width w for A(x) in the variable order (x1, x2, . . . , xn).

Proof. To keep the notation simple, we assume3 that | spank(A)| = w for each 1 ≤ k ≤
n − 1. The argument would go through even when | spank(A)| < w. Let spank(A) =
{ak,1,ak,2, . . . ,ak,w} and spann(A) = {an,1}.

To prove the claim, we construct matrices D1, D2, . . . , Dn, where D1 ∈ F[x1]1×w, Dn ∈
F[xn]w×1, and Di ∈ F[xi]w×w, for i = 2, . . . , n − 1, such that A(x) = D1 D2 · · ·Dn. This
representation shows that there is an ROABP of width w for A(x).

3 Assuming d + 1 ≥ w, spank(A) can be made to have size = w for each k.
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The matrices are constructed inductively such that for k = 1, 2 . . . , n− 1,

A(x) = D1D2 · · ·Dk [A(yk,ak,1) A(yk,ak,2) · · · A(yk,ak,w)]T . (4)

To construct D1 ∈ F[x1]1×w, consider the equation

A(x) =
d∑
j=0

A(y1,j) x
j
1. (5)

Recall that depend1(A) = {0, 1, . . . , d}. By the definition of span1(A), every A(y1,j) is in the
span of the A(y1,a)’s for a ∈ span1(A). That is, there exists constants {γj,i}i,j such that for
all 0 ≤ j ≤ d we have

A(y1,j) =
w∑
i=1

γj,iA(y1,a1,i). (6)

From equations (5) and (6) we get, A(x) =
∑w
i=1

(∑d
j=0 γj,i x

j
1

)
A(y1,a1,i). Hence, we define

D1 = [D1,1 D1,2 · · · D1,w], where D1,i =
∑d
j=0 γj,i x

j
1, for all i ∈ [w]. Then we have

A = D1 [A(y1,a1,1) A(y1,a1,2) · · · A(y1,a1,w)]T . (7)

To construct Dk ∈ F[xk]w×w for 2 ≤ k ≤ n− 1, we consider the equation

[A(yk−1,ak−1,1) · · ·A(yk−1,ak−1,w)]T = Dk [A(yk,ak,1) · · ·A(yk,ak,w)]T . (8)

We know that for each 1 ≤ i ≤ w,

A(yk−1,ak−1,i) =
d∑
j=0

A(yk,(ak−1,i,j)) x
j
k. (9)

Observe that (ak−1,i, j) is just an extension of ak−1,i and thus belongs to dependk(A). Hence,
there exists a set of constants {γi,j,h}i,j,h such that for all 0 ≤ j ≤ d we have

A(yk,(ak−1,i,j)) =
w∑
h=1

γi,j,hA(yk,ak,h). (10)

From equations (9) and (10), for each 1 ≤ i ≤ w we get

A(yk−1,ak−1,i) =
w∑
h=1

 d∑
j=0

γi,j,h x
j
k

A(yk,ak,h) .

Hence, we can define Dk(i, h) =
∑d
j=0 γi,j,h x

j
k, for all i, h ∈ [w]. Then Dk is the desired

matrix in equation (8).
Finally, we obtain Dn ∈ Fw×1[xn] in an analogous way. Instead of equation (8) we

consider the equation

[A(yn−1,an−1,1) · · ·A(yn−1,an−1,w)]T = D′n [A(yn,an,1)] . (11)

Recall that A(yn,an,1) ∈ F is a constant that can be absorbed into the last matrix D′n, i.e.
we define Dn = D′nA(yn,an,1). Combining equations (7), (8), and (11), we get A(x) =
D1 D2 · · ·Dn. J
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Consider the polynomial Pk defined as the product of the first k matrices D1, D2, . . . , Dk

from the above proof; Pk(yk) = D1D2 · · ·Dk. We can write Pk as

Pk(yk) =
∑

a∈{0,1,...,d}k
coeffPk(ya

k )ya
k ,

where coeffPk(ya
k ) is a vector in F1×w. We will see next that it follows from the proof of

Lemma 2.5 that the coefficient space of Pk, i.e., spanF{coeffPk(ya
k ) | a ∈ {0, 1, . . . , d}k} has

full rank w.

I Corollary 2.6 (Full Rank Coefficient Space). Let D1, D2, . . . , Dn be the matrices constructed
in the proof of Lemma 2.5 with A = D1D2 · · ·Dn. Let spank(A) = {ak,1,ak,2, . . . ,ak,w}.
For k ∈ [n], define the polynomial Pk(yk) = D1D2 · · ·Dk.

Then for any ` ∈ [w], we have coeffPk(yak,`
k ) = e`, where e` is the `-th elementary unit

vector, e` = (0, . . . , 0, 1, 0, . . . , 0) of length w, with a one at position `, and zero at all other
positions. Hence, the coefficient space of Pk has full rank w.

Proof. In the construction of the matrices Dk in the proof of Lemma 2.5, consider the
special case in equations (6) and (10) that the exponent (ak−1,i, j) is in spank(A), say
(ak−1,i, j) = ak,` ∈ spank(A). Then the γ-vector to express A(yk,(ak−1,i,j)) in equation (6)
and (10) can be chosen to be e`, i.e. (γi,j,h)h = e`. By the definition of matrix Dk, vector e`
becomes the i-th row of Dk for the exponent j, i.e., coeffDk(i,·)(xjk) = e`.

This shows the claim for k = 1. For larger k, it follows by induction because for
(ak−1,i, j) = ak,` we have coeffPk(yak,`

k ) = coeffPk−1(yak−1,i
k−1 ) coeffDk(xjk) . J

3 Whitebox Identity Testing

We will use the characterization of ROABPs provided by Lemmas 2.2 and 2.5 in Section 3.1
to design a polynomial-time algorithm to check if two given ROABPs are equivalent. This is
the same problem as to check whether the sum of two ROABPs is zero. In Section 3.2, we
extend the test to check whether the sum of constantly many ROABPs is zero.

3.1 Equivalence of two ROABPs
Let A(x) and B(x) be two polynomials of individual degree d, given by two ROABPs. If the
two ROABPs have the same variable order then one can combine them into a single ROABP
which computes their difference. Then one can apply the test for one ROABP (whitebox
[22], blackbox [3]). So, the problem is non-trivial only when the two ROABPs have different
variable order. W.l.o.g. we assume that A has order (x1, x2, . . . , xn). Let w bound the width
of both ROABPs. In this section we prove that we can find out in polynomial time whether
A(x) = B(x).

I Theorem 3.1. The equivalence of two ROABPs can be tested in polynomial time.

The idea is to determine the characterizing set of dependencies among the partial derivative
polynomials of A, and verify that the same dependencies hold for the corresponding partial
derivative polynomials of B. By Lemma 2.5, these dependencies essentially define an ROABP.
Hence, our algorithm is to construct an ROABP for B in the variable order of A. Then it
suffices to check whether we get the same ROABP, that is, all the matrices D1, D2, . . . , Dn

constructed in the proof of Lemma 2.5 are the same for A and B. We give some more details.
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Construction of spank(A)

Let A(x) = D1(x1)D2(x2) · · ·Dn(xn) of width w. We give an iterative construction, starting
from span0(A) = {ε}. Let 1 ≤ k ≤ n. By definition, dependk(A) consists of all possible
one-step extensions of spank−1(A). Let b = (b1, b2, . . . , bk) ∈ {0, 1, . . . , d}k. Define

Cb =
k∏
i=1

coeffDi(x
bi
i ) .

Recall that coeffD1(xb1
1 ) ∈ F1×w and coeffDi(x

bi
i ) ∈ Fw×w, for 2 ≤ i ≤ k. Therefore

Cb ∈ F1×w for k < n. Since Dn ∈ Fw×1, we have Cb ∈ F for k = n. By equation (3), we
have

A(yk,b) = Cb Dk+1 · · ·Dn . (12)

Consider the set of vectors Dk = {Cb | b ∈ dependk(A)}. This set has dimension bounded
by w since the width of A is w. Hence, we can determine a set Sk ⊆ Dk of size ≤ w of
such that Sk spans Dk. Thus we can take spank(A) = {a | Ca ∈ Sk}. Then, for any
b ∈ dependk(A), vector Cb is a linear combination

Cb =
∑

a∈spank(A)

γa Ca .

Recall that |dependk(A)| ≤ w(d + 1), i.e. this is a small set. Therefore we can efficiently
compute the coefficients γa for every b ∈ dependk(A) . Note that by equation (12) we have
the same dependencies for the polynomials A(yk,b). That is, with the same coefficients γa,
we can write

A(yk,b) =
∑

a∈spank(A)

γa A(yk,a) . (13)

Verifying the dependencies for B

We want to verify that the dependencies in equation (13) computed for A hold as well for B,
i.e. that for all k ∈ [n] and b ∈ dependk(A),

B(yk,b) =
∑

a∈spank(A)

γa B(yk,a) . (14)

Recall that yk = (x1, x2, . . . , xk) and the ROABP for B has a different variable order.
By Lemma 2.3, every polynomial B(yk,a) has an ROABP of width w and the same order on
the remaining variables as the one given for B. It follows that each of the w + 1 polynomials
that occur in equation (14) has an ROABP of width w and the same variable order. Hence,
we can construct one ROABP for the polynomial

B(yk,b) −
∑

a∈spank(A)

γaB(yk,a) . (15)

Simply identify all the start nodes and all the end nodes and put the appropriate constants γa

to the weights. Then we get an ROABP of width w(w + 1). In order to verify equation (14),
it suffices to make a zero-test for this ROABP. This can be done in polynomial time [22].
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Correctness

Clearly, if equation (14) fails to hold for some k and b, then A 6= B. So assume that
equation (14) holds for all k and b.

Recall Lemma 2.5 and its proof. There we constructed an ROABP just from the
characterizing dependencies of the given polynomial. Hence, the construction applied to B
will give an ROABP of width w for B with the same variable order (x1, x2, . . . , xn) as for A.
The matrices Dk will be the same as for A because their definition uses only the dependencies
provided by equation (14), and they are the same as for A in equation (13).

Note that when we construct the last matrix Dn by equation (11), for A we have
A(x) = D1D2 · · ·Dn, where Dn = D′nA(yn,an,1). The dependencies define matrix D′n.
Therefore, for B we will obtain B(x) = D1D2 · · ·D′nB(yn,an,1). Since we also check that we
get the same matrix Dn for A and B, we also have A(yn,an,1) = B(yn,an,1), and therefore
A(x) = B(x). This proves Theorem 3.1.

3.2 Sum of constantly many ROABPs
Let A1(x), A2(x), . . . , Ac(x) be polynomials of individual degree d, given by c ROABPs. Our
goal is to test whether A1 +A2 + · · ·+Ac = 0. Here again, the question is interesting only
when the ROABPs have different variable orders. We show how to reduce the problem to
the case of the equivalence of two ROABPs from the previous section. For constant c this
will lead to a polynomial-time test.

We start by rephrasing the problem as an equivalence test. Let A = −A1 and B =
A2 + A3 + · · · + Ac. Then the problem has become to check whether A = B. Since A is
computed by a single ROABP, we can use the same approach as in Section 3.1. Hence,
we get again the dependencies from equation (13) for A. Next, we have to verify these
dependencies for B, i.e. equation (14). Now, B is not given by a single ROABP, but is
a sum of c − 1 ROABPs. For every k ∈ [n] and b ∈ dependk(A), define the polynomial
Q = B(yk,b) −

∑
a∈spank(A) γaB(yk,a). By the definition of B we have

Q =
c∑
i=2

Ai(yk,b) −
∑

a∈spank(A)

γaAi(yk,a)

 . (16)

As explained in the previous section for equation (15), for each summand in equation (16)
we can construct an ROABP of width w(w + 1). Thus, Q can be written as a sum of c− 1
ROABPs, each having width w(w + 1). To test whether Q = 0, we recursively use the same
algorithm for the sum of c− 1 ROABPs. The recursion ends when c = 2. Then we directly
use the algorithm from Section 3.1.

To bound the running time of the algorithm, let us see how many dependencies we need
to verify. There is one dependency for every k ∈ [n] and every b ∈ dependk(A). Since
|dependk(A)| ≤ w(d+ 1), the total number of dependencies verified is ≤ nw(d+ 1). Thus,
we get the following recursive formula for T (c, w), the time complexity for testing zeroness of
the sum of c ≥ 2 ROABPs, each having width w. For c = 2, we have T (2, w) = poly(n, d, w),
and for c > 2,

T (c, w) = nw(d+ 1) · T (c− 1, w(w + 1)) + poly(n, d, w).

As solution, we get T (c, w) = wO(2c)poly(nc, dc), i.e. polynomial time for constant c.
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I Theorem 3.2. Let A(x) be an n-variate polynomial of individual degree d, computed
by a sum of c ROABPs of width w. Then there is a PIT for A(x) that works in time
wO(2c)(nd)O(c).

4 Blackbox Identity Testing

In this section, we extend the blackbox PIT of Agrawal et. al [3] for one ROABP to the
sum of constantly many ROABPs. In the blackbox model we are only allowed to evaluate a
polynomial at various points. Hence, for PIT, our task is to construct a hitting-set.

I Definition 4.1. A set H = H(n, d, w) ⊆ Fn is a hitting-set for ROABPs, if for every
nonzero n-variate polynomial A(x) of individual degree d that can be computed by ROABPs
of width w, there is a point a ∈ H such that A(a) 6= 0.

For polynomials computed by a sum of c ROABPs, a hitting-set is defined similarly. Here,
H = H(n, d, w, c) additionally depends on c.

For a hitting-set to exist, we will need enough points in the underlying field F. Henceforth,
we will assume that the field F is large enough such that the constructions below go through
(see [1] for constructing large F). To construct a hitting-set for a sum of ROABPs we use
the concept of low support rank concentration defined by Agrawal, Saha, and Saxena [4]. A
polynomial A(x) has low support concentration if the coefficients of its monomials of low
support span the coefficients of all the monomials.

I Definition 4.2 ([4]). A polynomial A(x) has `-support concentration if for all monomials xa

of A(x) we have

coeffA(xa) ∈ spanF{coeffA(xb) | supp(b) < `}.

The above definition applies to polynomials over any F-vector space, e.g. F[x], Fw[x] or
Fw×w[x]. If A(x) ∈ F[x] is a non-zero polynomial that has `-support concentration, then
there are nonzero coefficients of support < `. Then the assignments of support < ` are a
hitting-set for A(x).

I Lemma 4.3 ([4]). For n, d, `, the set H = {h ∈ {0, β1, . . . , βd}n | supp(h) < `} of size
(nd)O(`) is a hitting-set for all n-variate `-concentrated polynomials A(x) ∈ F[x] of individual
degree d, where {βi}i are distinct nonzero elements in F.

Hence, when we have low support concentration, this solves blackbox PIT. However,
not every polynomial has a low support concentration, for example A(x) = x1x2 · · ·xn is
not n-concentrated. However, Agrawal, Saha, and Saxena [4] showed that low support
concentration can be achieved through an appropriate shift of the variables.

I Definition 4.4. Let A(x) be an n-variate polynomial and f = (f1, f2, . . . , fn) ∈ Fn. The
polynomial A shifted by f is A(x+ f) = A(x1 + f1, x2 + f2, . . . , xn + fn).

Note that a shift is an invertible process. Therefore it preserves the coefficient space of a
polynomial.

In the above example, we shift every variable by 1. That is, we consider A(x + 1) =
(x1 + 1)(x2 + 1) · · · (xn + 1). Observe that A(x+ 1) has 1-support concentration. Agrawal,
Saha, and Saxena [4] provide an efficient shift that achieves low support concentration for
polynomials computed by set-multilinear depth-3 circuits. Forbes, Saptharishi and Shpilka [9]
extended their result to polynomials computed by ROABPs. However their cost is exponential
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in the individual degree of the polynomial. Any efficient shift for ROABPs will suffice for
our purposes. Here, we will give a new shift for ROABPs with quasi-polynomial cost.
Namely, in Theorem 5.6 below we present a shift polynomial f(t) ∈ F[t]n in one variable t of
degree (ndw)O(logn) that can be computed in time (ndw)O(logn). It has the property that
for every n-variate polynomial A(x) ∈ Fw×w[x] of individual degree d that can be computed
by an ROABP of width w, the shifted polynomial A(x+ f(t)) has O(logw)-concentration.
We can plug in as many values for t ∈ F as the degree of f(t), i.e. (ndw)O(logn) many. For
at least one value of t, the shift f(t) will O(logw)-concentrate A(x + f(t)). That is, we
consider f(t) as a family of shifts. The same shift also works when the ROABP computes a
polynomial in F[x] or F1×w[x].

The rest of the paper is organized as follows. The construction of a shift to obtain low
support concentration for single ROABPs is postponed to Section 5. We start in Section 4.1
to show how the shift for a single ROABP can be applied to obtain a shift for the sum of
constantly many ROABPs.

4.1 Sum of ROABPs
Let polynomial A ∈ F[x] of individual degree d have an ROABP of width w, with variable
order (x1, x2, . . . , xn). Let B ∈ F[x] be another polynomial. We start by reconsidering the
whitebox test from the previous section. The dependency equations (13) and (14) were used
to construct an ROABP for B ∈ F[x] in the same variable order as for A, and the same
width. If this succeeds, then the polynomial A + B has one ROABP of width 2w. Since
there is already a blackbox PIT for one ROABP [3], we are done in this case. Hence, the
interesting case that remains is when B does not have an ROABP of width w in the variable
order of A.

Let k ∈ [n] be the first index such that the dependency equations (13) for A do not carry
over to B as in equation (14). In the following Lemma 4.5 we decompose A and B into a
common part up to layer k, and the remaining different parts. That is, for yk = (x1, x2, . . . , xk)
and zk = (xk+1, . . . , xn), we obtain A = RP and B = RQ, where R ∈ F[yk]1×w′ and
P,Q ∈ F[zk]w′×1, for some w′ ≤ w(d+ 1). The construction also implies that the coefficient
space of R has full rank w′. Since the dependency equations (13) for A do not fulfill
equation (14) for B, we get a constant vector Γ ∈ F1×w′ such that ΓP = 0 but ΓQ 6= 0.
From these properties we will see in Lemma 4.6 below that we get low support concentration
for A+B when we use the shift constructed in Section 5 for one ROABP.

I Lemma 4.5 (Common ROABP R). Let A(x) be polynomial of individual degree d, computed
by a ROABP of width w in variable order (x1, x2, . . . , xn). Let B(x) be another polynomial
for which there does not exist an ROABP of width w in the same variable order.

Then there exists a k ∈ [n] such that for some w′ ≤ w(d + 1), there are polynomials
R ∈ F[yk]1×w′ and P,Q ∈ F[zk]w′×1, such that
1. A = RP and B = RQ,
2. there exists a vector Γ ∈ F1×w′ with supp(Γ) ≤ w + 1 such that ΓP = 0 and ΓQ 6= 0,
3. the coefficient space of R has full rank w′.

Proof. Let D1, D2, . . . , Dn be the matrices constructed in Lemma 2.5 for A. Assume again
w.l.o.g. that spank(A) = {ak,1,ak,2, . . . ,ak,w} has size w for each 1 ≤ k ≤ n − 1, and
spann(A) = {an,1}. Then we have D1 ∈ F1×w[x1], Dn ∈ Fw×1[xn] and Di ∈ Fw×w[xi], for
2 ≤ i ≤ n− 1.

In the proof of Lemma 2.5 we consider the dependency equations for A and carry them
over to B. By the assumption of the lemma, there is no ROABP of width w for B now.

CCC 2015



336 Identity Testing for Sum of ROABPs

Therefore there is a smallest k ∈ [n] where a dependency for A is not followed by B. That is,
the coefficients γa computed for equation (13) do not fulfill equation (14) for B. Since the
dependencies carry over up to this point, the construction of the matrices D1, D2, . . . , Dk−1
work out fine for B. Hence, by equation (4), we can write

A(x) = D1 D2 · · ·Dk−1 [A(yk−1,ak−1,1) A(yk−1,ak−1,2) · · · A(yk−1,ak−1,w)]T (17)

B(x) = D1 D2 · · ·Dk−1 [B(yk−1,ak−1,1) B(yk−1,ak−1,2) · · · B(yk−1,ak−1,w)]T (18)

Since the difference between A and B occurs at xk, we consider all possible extensions
from xk−1. That is, by equation (9), for every i ∈ [w] we have

A(yk−1,ak−1,i) =
d∑
j=0

A(yk,(ak−1,i,j))x
j
k . (19)

Recall that our goal is to decompose polynomial A into A = RP . We first define
polynomial P as the vector of coefficient polynomials of all the one-step extensions of
spank−1(A), i.e., P =

(
A(yk,(ak−1,i,j))

)
1≤i≤w, 0≤j≤d is of length w′ = w(d + 1). Written

explicitly, this is

P = [A(yk,(ak−1,1,0)) · · ·A(yk,(ak−1,1,d)) · · · A(yk,(ak−1,w,0)) · · ·A(yk,(ak−1,w,d))]T .

To define R ∈ F[yk]1×w′ , let Iw be the w×w identity matrix. Define matrix Ek ∈ F[xk]w×w′

as the tensor product

Ek = Iw ⊗
[
x0
k x

1
k · · · xdk

]
.

From equation (19) we get that

[A(yk−1,ak−1,1) · · ·A(yk−1,ak−1,w)]T = Ek P.

Thus, equation (17) can be written as A(x) = D1 D2 · · ·Dk−1EkP . Hence, when we
define

R(yk) = D1 D2 · · ·Dk−1Ek

then we have A = RP as desired. By an analogous argument we get B = RQ for Q =(
B(yk,(ak−1,i,j))

)
1≤i≤w, 0≤j≤d.

For the second claim of the lemma let b ∈ dependk(A) such that the dependency
equation (13) for A is fulfilled, but not equation (14) for B. Define Γ ∈ F1×w′ to be the
vector that has the values γa used in equation (13) at the position where P has entry A(yk,a),
and zero at all other positions. Then supp(Γ) ≤ w + 1 and we have ΓP = 0 and ΓQ 6= 0.

It remains to show that the coefficient space of R has full rank. By Corollary 2.6, the
coefficient space of D1 D2 · · ·Dk−1 has full rank w. Namely, for any ` ∈ [w], the coefficient
of the monomial yak−1,`

k−1 is e`, the `-th standard unit vector. Therefore the coefficient of
R(yk) = D1 D2 · · ·Dk−1Ek at monomial y(ak−1,`,j)

k is

coeffR(yak−1,`,j
k ) = e` coeffEk(xjk),

for 1 ≤ ` ≤ w and 0 ≤ j ≤ d. By the definition of Ek, we get coeffR(yak−1,`,j
k ) =

e(`−1)(d+1)+j+1. Thus, the coefficient space of R has full rank w′. J

Lemma 4.5 provides the technical tool to obtain low support concentration for the sum
of several ROABPs by the shift developed for a single ROABP. We start with the case of the
sum of two ROABPs.
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I Lemma 4.6. Let A(x) and B(x) be two n-variate polynomials of individual degree d, each
computed by an ROABP of width w. Define Ww,2 = (d+ 1)(2w)2 and `w,2 = log(W 2

w,2 + 1).
Let fw,2(t) ∈ F[t]n be a shift that `w,2-concentrates any polynomial (or matrix polynomial)
that is computed by an ROABP of width ≤Ww,2.

Then (A+B)′ = (A+B)(x+ fw,2) is 2 `w,2-concentrated.

Proof. If B can be computed by an ROABP of width w in the same variable order as the
one for A, then there is an ROABP of width 2w that computes A + B. In this case the
lemma follows because 2w ≤ Ww,2. So let us assume that there is no such ROABP for B.
Thus the assumption from Lemma 4.5 is fulfilled. Hence, we have a decomposition of A
and B at the k-th layer into A(x) = R(yk)P (zk) and B(x) = R(yk)Q(zk), and there is a
vector Γ ∈ F1×w′ such that ΓP = 0 and ΓQ 6= 0, where w′ = (d+ 1)w and supp(Γ) ≤ w + 1.

Define R′, P ′, Q′ as the polynomials R,P,Q shifted by fw,2, respectively. Since ΓP = 0,
we also have ΓP ′ = 0.

By the definition of R, there is an ROABP of width w′ that computes R. Since w′ ≤Ww,2,
polynomial R′ is `w,2-concentrated by the assumption of the lemma.

We argue that also ΓQ′ is `w,2-concentrated: let Q = [Q1 Q2 · · ·Qw′ ]T ∈ F[zk]w′×1. By
Lemma 2.3, from the ROABP for B we get an ROABP for each Qi of the same width w and
the same variable order. Therefore we can combine them into one ROABP that computes
ΓQ =

∑w′

i=1 γiQi. Its width is w(w + 1) because supp(Γ) ≤ w + 1. Since w(w + 1) ≤Ww,2,
polynomial ΓQ′ is `w,2-concentrated.

Since ΓQ 6= 0 and ΓQ′ is `w,2-concentrated, there exists at least one b ∈ {0, 1, . . . , d}n−k
with supp(b) < `w,2 such that Γ coeffQ′(zb

k) 6= 0. Because ΓP = 0, we have Γ coeffP ′(zb
k) = 0,

and therefore

Γ coeffP ′+Q′(zb
k) 6= 0. (20)

Recall that the coefficient space of R has full rank w′. Since a shift preserves the coefficient
space, also R′ has a full rank coefficient space. Because R′ is `w,2-concentrated, already the
coefficients of the < `w,2-support monomials of R′ have full rank w′. That is, for M`w,2 =
{a ∈ {0, 1, . . . , d}k | supp(a) < `w,2}, we have rankF(t){coeffR′(ya

k ) | a ∈ M`w,2} = w′.
Therefore, we can express Γ as a linear combination of these coefficients,

Γ =
∑

a∈M`w,2

αa coeffR′(ya
k ),

where αa is a rational function in F(t), for a ∈M`w,2 . Hence, from equation (20) we get

Γ coeff(P ′+Q′)(zb
k) =

 ∑
a∈M`w,2

αa coeffR′(ya
k )

 coeffP ′+Q′(zb
k)

=
∑

a∈M`w,2

αa coeffR′(P ′+Q′)(ya
k z

b
k)

=
∑

a∈M`w,2

αa coeff(A+B)′(x(a,b))

6= 0 .

Since supp(a, b) = supp(a)+supp(b) < 2`w,2, it follows that there is a monomial in (A+B)′ of
support < 2`w,2 with a nonzero coefficient. In other words, (A+B)′ is 2`w,2-concentrated. J
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In Section 5, Theorem 5.6, we will show that the shift polynomial fw,2(t) ∈ F[t]n used
in Lemma 4.6 can be computed in time (ndw)O(logn). The degree of fw,2(t) has the same
bound. Recall that when we say that we shift by fw,2(t), we actually mean that we plug in
values for t up to the degree of fw,2(t). That is, we have a family of (ndw)O(logn) shifts, and
at least one of them will give low support concentration. By Lemma 4.3, we get for each t, a
potential hitting-set Ht of size (nd)O(`w,2) = (nd)O(log dw),

Ht = {h+ f(t) | h ∈ {0, β1, . . . , βd}n and supp(h) < 2`w,2} .

The final hitting-set is the union of all these sets, i.e. H =
⋃
tHt, where t takes (ndw)O(logn)

distinct values. Hence, we have the following main result.

I Theorem 4.7. Given n, d, w, in time (ndw)O(logndw) one can construct a hitting-set for all
n-variate polynomials of individual degree d, that can be computed by a sum of two ROABPs
of width w.

We extend Lemma 4.6 to the sum of c ROABPs.

I Lemma 4.8. Let A = A1 + A2 + · · · + Ac, where the Ai’s are n-variate polynomials of
individual degree d, each computed by an ROABP of width w. Define Ww,c = (d+ 1)(2w)2c−1

and `w,c = log(W 2
w,c + 1). Let fw,c(t) ∈ F[t]n be a shift that `w,c-concentrates any polynomial

(or matrix polynomial) that is computed by an ROABP of width Ww,c.
Then A′ = A(x+ fw,c) is c `w,c-concentrated.

Proof. The proof is by induction on c. Lemma 4.6 provides the base case c = 2. For the
induction step let c ≥ 3. We follow the proof of Lemma 4.6 with A = A1 and B =

∑c
j=2 Aj .

Consider again the decomposition of A and B at the k-th layer into A = RP and B = RQ,
and let Γ ∈ F1×w′ such that ΓP = 0 and ΓQ 6= 0, where w′ = (d+ 1)w and supp(Γ) ≤ w+ 1.

The only difference to the proof of Lemma 4.6 is Q = [Q1 Q2 · · ·Qw′ ]T . Recall from
Lemma 4.5 that Qi = B(yk,ai) =

∑c
j=2 Aj(yk,ai)

, for ai ∈ dependk(A). Hence,

ΓQ =
w′∑
i=1

γi

 c∑
j=2

Aj(yk,ai)

 =
c∑
j=2

w′∑
i=1

γiAj(yk,ai)
.

By Lemma 2.3, ΓQ can be computed by a sum of c− 1 ROABPs, each of width w(w + 1) ≤
2w2 = w′′, because supp(Γ) ≤ w + 1. Our definition of Ww,c was chosen such that

Ww′′,c−1 = (d+ 1)(2w′′)2c−2
= (d+ 1)(2 · 2w2)2c−2

= (d+ 1)(2w)2c−1
= Ww,c .

Hence, fw,c(t) is a shift that `w′′,c−1-concentrates any polynomial that is computed by an
ROABP of width Ww′′,c−1. By the induction hypothesis, we get that ΓQ′ = ΓQ(x+ fw,c(t))
is (c− 1) `w′′,c−1-concentrated, which is same as (c− 1) `w,c-concentrated.

Now we can proceed as in the proof of Lemma 4.6 and get that (A+B)′ =
∑c
j=1 A

′
j has

a monomial of support < `w,c + (c− 1) `w,c = c `w,c. J

We combine the lemmas similarly as for Theorem 4.7 and obtain our main result for the
sum of constantly many ROABPs.

I Theorem 4.9. Given n,w, d, in time (ndw)O(c·2c logndw) one can construct a hitting-set
for all n-variate polynomials of individual degree d, that can be computed by the sum of c
ROABPs of width w.
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4.2 Concentration in matrix polynomials
As a by-product, we show that low support concentration can be achieved even when
we have a sum of matrix polynomials, each computed by an ROABP. For a matrix poly-
nomial A(x) ∈ Fw×w[x], an ROABP is defined similar to the standard case. We have
layers of nodes V0, V1, . . . , Vn connected by directed edges from Vi−1 to Vi. Here, also
V0 = {v0,1, v0,2, . . . , v0,w} and Vn = {vn,1, vn,2, . . . , vn,w} consist of w nodes. The polyno-
mial Ai,j(x) at position (i, j) in A(x) is the polynomial computed by the standard ROABP
with start node v0,i and end node vn,j .

Note that Definition 4.2 for `-support concentration can be applied to polynomials over
any F-algebra.

I Corollary 4.10. Let A = A1 + A2 + · · · + Ac, where each Ai ∈ Fw×w[x] is an n-variate
matrix polynomials of individual degree d, each computed by an ROABP of width w. Let `w,c
be defined as in Lemma 4.8.

Then A(x+ fw2,c) is c`w2,c-concentrated.

Proof. Let α ∈ Fw×w and consider the dot-product 〈α,Ai〉 ∈ F[x]. This polynomial can be
computed by an ROABP of width w2: we take the ROABP of width w for Ai and make w
copies of it, and two new nodes s and t. We add the following edges.

Connect the new start node s to the h-th former start node of the h-th copy of the
ROABP by edges of weight one, for all 1 ≤ h ≤ w.
Connect the j-th former end node of the h-th copy of the ROABP to the new end node t
by an edge of weight αh,j , for all 1 ≤ h, j ≤ w.

The resulting ROABP has width w2 and computes 〈α,Ai〉.
Now consider the polynomial 〈α,A〉 = 〈α,A1〉+〈α,A2〉+· · ·+〈α,Ac〉. It can be computed

by a sum of c ROABPs, each of width w2, for every α ∈ Fw×w. Hence, by Lemma 4.8, the
polynomial 〈α,A〉 (x+ fw2,c) is c`w2,c-concentrated, for every α ∈ Fw×w. By Lemma 4.11
below, it follows that A(x+ fw2,c) is c`w2,c-concentrated. J

The following lemma is also of independent interest.

I Lemma 4.11. Let A ∈ Fw×w[x] be an n-variate polynomial and f(t) be a shift. Then
A(x+ f(t)) is `-concentrated iff ∀α ∈ Fw×w, 〈α,A〉 (x+ f(t)) is `-concentrated.

Proof. Assume that A′(x) = A(x+f) is not `-concentrated. Then there exists a monomial xb

such that coeffA′(xb) /∈ spanF(t){coeffA′(xa) | supp(a) < `}. Hence, there exists an α ∈
Fw×w such that 〈α, coeffA′(xa)〉 = 0, for all a with supp(a) < `, but 〈α,A′〉 6= 0. We thus
found an α ∈ Fw×w such that 〈α,A〉 (x+ f(t)) is not `-concentrated.

For the other direction, let A(x+f) be `-concentrated. Hence, any coefficient coeffA′(xa)
can be written as a linear combination of the small support coefficients,

coeffA′(xa) =
∑

b
supp(b)<`

γb coeffA′(xb),

for some γb ∈ F. Hence, for any α ∈ Fw×w, we also have

〈α, coeffA′(xa)〉 =
〈
α,

∑
b

supp(b)<`

γb coeffA′(xb)
〉
.

That is, 〈α,A〉 (x+ f(t)) is `-concentrated. J
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5 Low Support Concentration in ROABPs

Recall that a polynomial A(x) over an F-algebra A is called low-support concentrated if its
low-support coefficients span all its coefficients. We show an efficient shift which achieves
concentration in matrix polynomials computed by ROABPs. We use the quasi-polynomial
size hitting-set for ROABPs given by Agrawal et al. [3]. Their hitting-set is based on a basis
isolating weight assignment which we define next.

Recall that M = {0, 1, . . . , d}n denotes the set of all exponents of monomials in x of
individual degree bounded by d. For a weight function w: [n]→ N and a = (a1, a2, . . . , an) ∈
M , let the weight of a be w(a) =

∑n
i=1 w(i)ai. Let Ak be a k-dimensional algebra over field

F.

I Definition 5.1. A weight function w: [n]→ N is called a basis isolating weight assignment
for a polynomial A(x) ∈ Ak[x], if there exists S ⊆M with |S| ≤ k such that
∀a 6= b ∈ S, w(a) 6= w(b) and
∀a ∈ S := M − S, coeffA(xa) ∈ spanF{coeffA(xb) | b ∈ S and w(b) < w(a)}.

Agrawal et al. [3, Lemma 8] presented a quasi-polynomial time construction of such a
weight function for any polynomial A(x) ∈ Fw×w[x] computed by an ROABP. The hitting-set
is then defined by points (tw(1), tw(2), . . . , tw(n)) for poly(n, d, w)logn many t’s. Our approach
now is to use this weight function for a shift of A(x) by

(
tw(i))n

i=1. Let A′(x) denote the
shifted polynomial,

A′(x) = A(x+ tw) = A(x1 + tw(1), x2 + tw(2), . . . , xn + tw(n)) .

We will prove that A′ has low support concentration.
The coefficients of A′ are linear combinations of coefficients of A, which are given by the

equation

coeffA′(xa) =
∑
b∈M

(
b

a

)
tw(b−a) · coeffA(xb), (21)

where
(

b
a

)
=
∏n
i=1
(
bi
ai

)
for any a, b ∈ Nn.

Equation (21) can be expressed in terms of matrices. Let C be the coefficient matrix
of A, i.e. the M × [k] matrix with the coefficients coeffA(xa) as rows,

C(a, ·) = coeffA(xa)T .

Similarly, let C ′ be the M × [k] with the coefficients coeffA′(xa) as rows. Let furthermore T
be the M ×M transfer matrix given by

T (a, b) =
(
b

a

)
,

and D be the M ×M diagonal matrix given by

D(a,a) = tw(a) .

The inverse of D is the diagonal matrix given by D−1(a,a) = t−w(a). Now equation (21)
becomes

C ′ = D−1TDC . (22)

As shifting is an invertible operation, the matrix T is also invertible and rank(C ′) = rank(C).
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I Lemma 5.2 (Isolation to concentration). Let A(x) be a polynomial over a k-dimensional
algebra Ak. Let w be a basis isolating weight assignment for A(x). Then A(x + tw) is
`-concentrated, where ` = dlog(k + 1)e.

Proof. Let A′(x) = A(x+ tw). We reconsider equation (22) with respect to the low support
monomials: let M` = {a ∈ M | supp(a) < `} be the exponents of low support. Then we
define matrices

C′
` : the M` × [k] submatrix of C′ that contains the coefficients of A′ of support < `,

T` : the M` ×M submatrix of T restricted to the rows a ∈M`,
D` : the M` ×M` submatrix of D restricted to the rows and columns from M`.

To show that A′ is `-concentrated, we need to prove that rank(C ′`) = rank(C). By equa-
tion (22), matrix C ′` can be written as C ′` = D−1

` T`DC. Since D` and D−1
` are diagonal

matrices, they have full rank. Hence, it suffices to show that rank(T`DC) = rank(C).
W.l.o.g. we assume that the order of the rows and columns in all the above matrices that

are indexed by M or M` is according to increasing weight w(a) of the indices a. The rows
with the same weight can be arranged in an arbitrary order.

Now, recall that w is a basis isolating weight assignment. Hence, there exists a set S ⊆M
such that the coefficients coeffA(b), for b ∈ S, span all coefficients coeffA(a), for a ∈M . In
terms of the coefficient matrix C, for any a ∈M we can write

C(a, ·) ∈ span{C(b, ·) | b ∈ S and w(b) < w(a)}. (23)

Let S = {s1, s2, . . . , sk′} for some k′ ≤ k. Let C0 be the k′ × k submatrix of C whose
i-th row is C(si, ·), i.e. C0(i, ·) = C(si, ·). By (23), for every a ∈ M , there is a vector
γa = (γa,1, γa,2, . . . , γa,k′) ∈ Fk′ such that C(a, ·) =

∑k′

j=1 γa,j C0(j, ·). Let Γ = (γa,j)a,j be
the M × [k′] matrix with these vectors as rows. Then we get

C = ΓC0 .

Observe that the si-th row of Γ is simply ei, the i-th standard unit vector. By (23),
the coefficient C(si, ·) is used to express C(a, ·) only when w(a) > w(si). Recall that the
rows of the matrices indexed by M , like Γ, are in order of increasing weight of the index.
Therefore, when we consider the i-th column of Γ from top, the entries are all zero down to
row si, where we hit on the one from ei,

Γ(si, i) = 1 and ∀a 6= si, w(a) ≤ w(si) =⇒ Γ(a, i) = 0 . (24)

Recall that our goal is to show rank(T`DC) = rank(C). For this, it suffices to show that
the M` × k′ matrix R = T`DΓ has full column rank k′, because then we have rank(T`DC) =
rank(T`DΓC0) = rank(RC0) = rank(C0) = rank(C).

To show that R has full column rank k′, observe that the j-th column of R can be written
as

R(·, j) =
∑

a∈M
T`(·,a) Γ(a, j) tw(a) . (25)

By (24), the term with the lowest degree in equation (25) is tw(sj). By lc(R(·, j)) we denote
the coefficient of the lowest degree term in the polynomial R(·, j). Because Γ(sj , j) = 1, we
have

lc(R(·, j)) = T`(·, sj) .
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We define the M` × [k′] matrix R0 whose j-th column is lc(R(·, j)), i.e. R0(·, j)) = T`(·, sj).
We will show in Lemma 5.3 below that the columns of matrix T` indexed by the set S are
linearly independent. Therefore the k′ columns of R0 are linearly independent.

Hence, there are k′ rows in R0 such that its restriction to these rows, say R′0, is a square
matrix with nonzero determinant. Let R′ denote the restriction of R to the same set of
rows. Now observe that the lowest degree term in det(R′) has coefficient precisely det(R′0),
i.e., lc(det(R′)) = det(R′0). This is because the lowest degree term in det(R′) has degree∑k′

j=1 w(sj), and this degree can only be obtained when the degree w(sj) term is taken
from the j-th column, for all j. We conclude that det(R′) 6= 0 and hence R has full column
rank. J

It remains to show that the k′ ≤ k columns of matrix T` indexed by the set S are linearly
independent. In fact, we will show that any k = 2` − 1 columns of T` are independent.

I Lemma 5.3. Let T` be the M` ×M matrix with T`(a, b) =
(

b
a

)
. Any 2` − 1 columns of

matrix T` are linearly independent.

Proof. Let S ⊆ M now be any set of size k = 2` − 1. Let T`,k be the M` × S submatrix
of T` that consists of the columns indexed by S. To prove the lemma we will show that for
any 0 6= v ∈ Fk we have T`,kv 6= 0.

Let v = (va)a∈S . Define the polynomial V (x) =
∑

a∈S vax
a ∈ F[x]. Let V ′(x) be

the polynomial where every variable in V (x) is shifted by one: V ′(x) = V (x + 1). From
equation (21) we get that for any a ∈M`,

coeffV ′(xa) =
∑
b∈S

(
b

a

)
vb = T`,k(a, ·)v .

Hence, T`,kv gives all the coefficients of V ′(x) of support < `. Now it remains to show that at
least one of these coefficients is nonzero. We show this in our next claim about concentration
in sparse polynomials, which is also of independent interest.

I Claim 5.4. Let V (x) ∈ F[x] be a non-zero n-variate polynomial with sparsity bounded by
2` − 1. Then V ′(x) = V (x+ 1) has a nonzero coefficient of support < `.

We prove the claim by induction on the number of variables n. For n = 1, polynomial V (x)
is univariate, i.e. all monomials in V (x) have support 1. Hence, for ` > 1 it suffices to show
that V ′(x) 6= 0. But this is equivalent to V (x) 6= 0, which holds by assumption. If ` = 1,
then V (x) is a univariate polynomial with exactly one monomial, and therefore V (x+ 1)
has a nonzero constant part.

Now assume that the claim is true for n − 1 and let V (x) have n variables. Let xn−1
denote the set of first n− 1 variables. Let us write V (x) =

∑d
i=0 Ui x

i
n, where Ui ∈ F[xn−1],

for every 0 ≤ i ≤ d. Let U ′i(xn−1) = Ui(xn−1 + 1) be the shifted polynomial, for every
0 ≤ i ≤ d. We consider two cases:
Case 1: There is exactly one index i ∈ [0, d] for which Ui 6= 0. Then Ui has sparsity ≤ 2`−1.

Because Ui is an (n− 1)-variate polynomial, U ′i has a nonzero coefficient of support < `

by inductive hypothesis.
Thus, V ′(x) = (xn + 1)i U ′i also has a nonzero coefficient of support < `.

Case 2: There are at least two Ui’s which are nonzero. Then there is at least one index in
i ∈ [0, d] such that Ui has sparsity 2`−1 − 1. And hence, by the inductive hypothesis, U ′i
has a nonzero coefficient of support < `− 1. Consider the largest index j such that U ′j
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has a nonzero coefficient of support < `− 1. Let the corresponding monomial be xa
n−1.

Now, as V ′(x) =
∑d
i=0 U

′
i (xn + 1)i, we have that

coeffV ′(xa
n−1x

j
n) =

d∑
r=j

(
r

j

)
coeffU ′r (x

a
n−1).

By our choice of j we have coeffU ′
j
(xa
n−1) 6= 0 and coeffU ′r(x

a
n−1) = 0, for r > j. Hence,

coeffV ′(xa
n−1x

j
n) 6= 0. The monomial xa

n−1x
j
n has support < `, which proves our claim

and the lemma. J

We can use Lemma 5.2 to get concentration in a polynomial computed by an ROABP.
Agrawal et al. [3, Lemma 8] constructed a family F = {f1(t),f2(t), . . . ,fN (t)} of n-tuples
such that for any given polynomial A(x) ∈ Fw×w[x] computed by an ROABP of width w,
at least one of them is a basis isolating weight assignment and hence, provides log(w2 + 1)-
concentration, where N = (ndw)O(logn). The degrees are bounded by D = max{deg(fi,j) |
i ∈ [N ] and j ∈ [n]} = (ndw)O(logn). The family F can be generated in time (ndw)O(logn).

By Lemma 5.2, we now have an alternative PIT for one ROABP because we could simply
try all f i ∈ F for low support concentration, and we know that at least one will work.
However, in Lemmas 4.6 and 4.8 we apply the shift to several ROABPs simultaneously, and
we have no guarantee that one of the shifts works for all of them. We solve this problem by
combining the n-tuples in F into one single shift that works for every ROABP.

Let L(y, t) ∈ F[y, t]n be the Lagrange interpolation of F . That is, for all j ∈ [n],

Lj =
∑
i∈[N ]

fi,j(t)
∏
i′∈[N ]
i′ 6=i

y − αi′
αi − αi′

,

where αi is an arbitrary unique field element associated with i, for all i ∈ [N ]. (Recall that we
assume that the field F is large enough that these elements exist.) Note that Lj |y=αi = fi,j .
Thus, L|y=αi = f i. Also, degy(Lj) = N − 1 and degt(Lj) ≤ D.

I Lemma 5.5. Let A(x) be a n-variate polynomial over a k-dimensional F-algebra Ak and F
be a family of n-tuples, such that there exists an f ∈ F such that A′(x, t) = A(x + f) ∈
Ak(t)[x] is `-concentrated. Then, A′′(x, y, t) = A(x+L) ∈ Ak(y, t)[x] is `-concentrated.

Proof. Let rankF{coeffA(xa) | a ∈ M} = k′, for some k′ ≤ k, and M` = {a ∈ M |
supp(a) < `}. We need to show that rankF(y,t) {coeffA′′(xa) | a ∈M`} = k′.

Since A′(x) is `-concentrated, we have that rankF(t) {coeffA′(xa) | a ∈M`} = k′. Recall
that A′(x) is an evaluation of A′′ at y = αi, i.e. A′(x, t) = A′′(x, αi, t). Thus, for all a ∈M
we have coeffA′(xa) = coeffA′′(xa)|y=αi .

Let C ∈ F[t]k×|M`| be the matrix whose columns are coeffA′(xa), for a ∈ M`. Let
similarly C ′ ∈ F[y, t]k×|M`| be the matrix whose columns are coeffA′′(xa), for a ∈M`. Then
we have C = C ′|y=αi .

As rankF(t)(C) = k′, there are k′ rows in C, say indexed by R, such that det(C(R, ·)) 6= 0.
Because det(C(R, ·)) = det(C ′(R, ·))|y=αi , it follows that det(C ′(R, ·)) 6= 0. Hence, we have
rankF(y,t)(C ′) = k′. J

Using the Lagrange interpolation, we can construct a single shift, which works for all
ROABPs of width ≤ w.

I Theorem 5.6. Given n, d, w, in time (ndw)O(logn) one can compute a polynomial f(t) ∈
F[t]n of degree (ndw)O(logn) such that for any n-variate polynomial A(x) ∈ Fw×w[x] (or
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F1×w[x], or F[x]) of individual degree d that can be computed by an ROABP of width w, the
polynomial A(x+ f(t)) is log(w2 + 1)-concentrated.

Proof. Recall that for any polynomial A(x) ∈ Fw×w[x] computed by an ROABP, at least
one tuple in the family {f1,f2, . . . ,fN} obtained from [3, Lemma 8], gives log(w2 + 1)-
concentration. By Lemma 5.5, the Lagrange interpolation L(y, t) of {f1,f2, . . . ,fN} has y-
and t-degrees (ndw)O(logn). After shifting an n-variate polynomial of individual degree d
by L(y, t), its coefficients will be polynomials in y and t, with degree d′ = dn(ndw)O(logn).
Consider the determinant polynomial det(C ′(R, ·)) from Lemma 5.5. As the set of coefficients
of polynomial A(x) have rank bounded by w2, det(C ′(R, ·)) has degree bounded by d′′ = w2d′.

Note that when we replace y by td
′′+1, this will not affect the non-zeroness of the

determinant, and hence, the concentration is preserved. Thus, f = L(td′′+1, t) is an n-tuple
of univariate polynomials in t that fulfills the claim of the theorem.

Now, consider the case when the ROABP computes a polynomial A(x) ∈ F1×w[x]. It is
easy to see that there exist S ∈ F1×w and B ∈ Fw×w[x] computed by a width-w ROABP
such that A = SB. We know that B(x+f(t)) has log(w2 + 1)-concentration. As multiplying
by S is a linear operation, one can argue as in the proof of Lemma 4.11 that any linear
dependence among coefficients of B(x+ f(t)) also holds among coefficients of A(x+ f(t)).
Hence, A(x+ f(t)) has log(w2 + 1)-concentration. A similar argument would work when
A(x) ∈ F[x], by writing A = SBT , for some S ∈ F1×w and T ∈ Fw×1. J

6 Discussion

The first question is whether one can make the time complexity for PIT for the sum of c
ROABPs proportional to wO(c) instead of wO(2c). This blow up happens because, when we
want to combine w + 1 partial derivative polynomials given by ROABPs of width w, we get
an ROABP of width O(w2). There are examples where this bound seems tight. So, a new
property of sum of ROABPs needs to be discovered.

It also needs to be investigated if these ideas can be generalized to work for sum of more
than constantly many ROABPs, or depth-3 multilinear circuits.

As mentioned in the introduction, the idea for equivalence of two ROABPs was inspired
from the equivalence of two read once boolean branching programs (OBDD). It would
be interesting to know if there are concrete connections between arithmetic and boolean
branching programs. In particular, can ideas from identity testing of an ROABP be applied to
construct pseudo-randomness for OBDD. E.g. the less investigated model, XOR of constantly
many OBDDs can be checked for unsatisfiability by modifying our techniques.
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Abstract
A square matrix V is called rigid if every matrix V ′ obtained by altering a small number of entries
of V has sufficiently high rank. While random matrices are rigid with high probability, no explicit
constructions of rigid matrices are known to date. Obtaining such explicit matrices would have
major implications in computational complexity theory. One approach to establishing rigidity of
a matrix V is to come up with a property that is satisfied by any collection of vectors arising
from a low-dimensional space, but is not satisfied by the rows of V even after alterations. In
this paper we propose such a candidate property that has the potential of establishing rigidity
of combinatorial design matrices over the field F2.

Stated informally, we conjecture that under a suitable embedding of Fn2 into Rn, vectors
arising from a low dimensional F2-linear space always have somewhat small Kolmogorov width,
i.e., admit a non-trivial simultaneous approximation by a low dimensional Euclidean space. This
implies rigidity of combinatorial designs, as their rows do not admit such an approximation even
after alterations. Our main technical contribution is a collection of results establishing weaker
forms and special cases of the conjecture above.
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The most prominent reduction of this nature is due to Valiant [23] who showed that for
each (Ω(n), nε)-rigid matrix A ∈ Fn×n the linear transformation induced by A cannot be
computed by a linear circuit that simultaneously has size O(n) and depth O(logn). Two
other reductions that call for explicit (r, d)-rigid matrices with a sub-linear value of the
remaining rank r, are given in [15, 18]. Reductions above naturally lead to the challenge of
constructing rigid matrices explicitly. After more than three decades of efforts, however, this
challenge remains elusive [13].

None of the existing techniques for constructing rigid matrices [11, 12, 3, 17, 5, 2] surpasses
the basic untouched minor argument of [19] that amounts to taking a matrix where every
minor has full rank, and using the bound from the Zarankiewicz problem [9, p. 25] to show
that after up to d arbitrary changes per row there remains a somewhat large minor that has
not been touched. Quantitatively, this yields explicit(

r,Ω
(n
r

log n
r

))
rigid matrices over fields of size Ω(n), when log2 n ≤ r ≤ n/2. Similar parameters are known
to be attainable over small finite fields [6]. Rigidity parameters above are vastly weaker the
parameters of random matrices. In particular, it is not hard to show that a random matrix
over any field is at least (n

2 ,Ω(n)
)

rigid with a very high probability.

1.1 Combinatorial designs
A family F of w-subsets of a universe of size n is called an (n,w, λ) design if every pair of
distinct elements of [n] belongs to exactly λ sets in F . A combinatorial design is symmetric
if |F| = n. Geometric designs are a well studied class of symmetric combinatorial designs. A
geometric design is defined by the incidence relation between points and hyperplanes in an
m-dimensional projective space PG(m+ 1, q) over the finite field Fq. Such a relation yields
(n,w, λ) symmetric designs, where

n = qm+1 − 1
q − 1 w = qm − 1

q − 1 λ = qm−1 − 1
q − 1 . (1)

With a slight abuse of notation we write Gm,q or just Gm to denote both geometric designs
and their incidence matrices.

In his original paper [23, Problem 4] Valiant proposed matrices G2 defined above as
natural candidates for (Ω(n), nε)-rigidity over the field F2. Taken literally, this conjecture is
not true as some matrices G2 have low rank over F2. In fact, the rank of geometric designs is
a well studied quantity in design theory. Let rankp denote matrix rank over the field Fp. We
have [20]:

rankpGm,q =


n if q 6= pe, w + (n− 1)λ 6= 0 mod p;
n− 1 if q 6= pe, w + (n− 1)λ = 0 mod p;(
p+m−1
m

)e if q = pe.

(2)

Thus in some cases the rank of geometric designs turns out to be surprisingly low, e.g., when
char Fq = 2, for fixed m and growing q we have

rank2Gm,q = O
(
n

log2(m+1)
m

)
. (3)
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Identity (3) implies that any proof of (r, d)-rigidity of matrices Gm with r = Ω(n) cannot
just rely on the combinatorial structure of these matrices as this structure does not seem to
change much with the characteristic of the field underlying the projective space. Thus any
rigidity proof that relies solely on the design properties of Gm (and thus applies to all designs
with the parameters of geometric designs) has to be aiming at the regime of polynomially
low remaining rank r = O(nδ). In Section 1.3 we outline our approach to proving a result
like this.

1.2 Hamada’s conjecture
In what follows let Vm denote an incidence matrix (or the set of rows of an incidence matrix)
of a combinatorial (n,w, λ) design that has the parameters of the geometric design Gm,q.
Clearly, any proof of (r, d)-rigidity of Vm has to imply that matrices Vm have rank at least
r when no alterations are allowed. Bounding the rank of matrices Vm over finite fields has
received some attention in design theory.

It is not hard to show that when q 6= pe we have, rankpVm ≥ n− 1. A conjecture [7] due
to Noboru Hamada from 1973, asserts that when q = pe, geometric designs Gm,q have the
lowest possible Fp-rank among all designs Vm with the same parameters. Relatively little
is known about the validity of Hamada’s conjecture [10, Section 4]. (A stronger version of
Hamada’s conjecture that asserts that every design Vm whose Fp-rank equals that of Gm,q
has to be isomorphic to Gm,q is known to be false [10].)

One easier natural question to ask that fits well with our approach to rigidity is whether one
can prove any non-trivial lower bounds on the rank of design matrices Vm.We are particularly
interested in the asymptotic setting of fixed m and growing q. Hamada’s conjecture and
identity (2) suggest that

rankpVm ≥ Ω
(
n

logp( p+m−1
m )

m

)
. (4)

The trivial lower bound is rankpVm ≥ n
1
m . We are not aware of any better bound.

1.3 Our approach
In order to establish rigidity of matrices Vm over the field F2 we propose a certain property
that is not satisfied by the rows of Vm even after alterations, yet that we conjecture to hold
for any collection of vectors arising from a low-dimensional F2-linear space.

As a first step of our argument we consider a natural embedding of the space Fn2 into
Rn. We treat elements of Fn2 as real {0, 1}-vectors and normalize them to have L2 norm one.
Thus a non-zero x ∈ Fn2 gets mapped to x

‖x‖ . In what follows we assume that this embedding
is implied and treat vectors in Fn2 as real vectors.

Next for sets X ⊆ Rn we consider the quantity Ar(X) that we call the approximability
measure. Ar(X) is defined to be the maximum over all r-dimensional Euclidian linear spaces
W of the square of the smallest projection of a vector from X onto W. Thus sets with large
value of Ar are precisely those that are well approximated by some r-dimensional Euclidian
linear space, i.e., the ones that have small Kolmogorov width.

Now let m = 1
ε . We argue that for all values of r = ω(n1−ε), the approximability measure

Ar(Vm) ≈ Ar (Fn2 ) . Thus for sufficiently large r, approximating rows of an incidence matrix
of a combinatorial design is no easier than approximating all of the Hamming space. The
claim remains true even if we allow rows of Vm be altered in up to O

(
n1−2ε) coordinates.
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Finally, we conjecture that for any F2-linear space L, dim L ≤ n2ε+δ, and some r =
ω(n1−ε), the approximability measure Ar(L) ≥ (1 + α)Ar (Fn2 ) , for some positive α. In
other words, we conjecture that low dimensional F2-linear spaces keep some tiny amount of
resemblance to Euclidian linear spaces after the embedding, and can be approximated better
than all of the Hamming cube. It is easy to see that this conjecture implies (n2ε+δ, n1−2ε)-
rigidity of matrices Vm, since if one of these matrices had low rank after alterations, its rows
would belong to a low dimensional F2-linear space, and thus admit a non-trivial Euclidian
approximation.

We measure our progress towards the conjecture by looking at the largest value of
dimension k for that we are indeed able to prove that all k-dimensional F2-linear spaces L
satisfy Ar(L) ≥ (1 + α)Ar (Fn2 ) , for some r = ω(n1−ε). Currently, our main Theorem 5.5
gives this for all k = o(nε logn). Apart from this result, we also establish the conjecture for a
certain restricted class of linear spaces called cut-spaces. While substantial further progress
is needed to establish rigidity of matrices Vm, our current results (Corollary 5.6) already
suffice to get the bound

rankpVm ≥ Ω
(
n

1
m log2 n

)
, (5)

for all values of p, a results that seems to be new.
From the technical viewpoint our main contribution is a new relation between discrete

(F2) linear spaces and Euclidian linear spaces, yielding some insight into combinatorics of
low weight codewords in linear codes.

1.4 Organization
In Section 3 we formally introduce the approximability measure Ar. We argue that for
sufficiently large values of dimension r, we have Ar(Vm) ≈ Ar(Fn2 ). We establish a similar
result for perturbed matrices Vm. Next, we introduce our main conjecture stating that
low-dimensional F2-linear spaces L always have a somewhat large value of Ar. We show how
this conjecture implies rigidity of matrices Vm.

In Sections 4 through 6 we prove our main results regarding approximability of low-
dimensional F2-linear spaces L. In Section 4 we deal with low-dimensional approximations
and obtain a bound for A1(L). In Section 5 we deal with high dimensional approximations
and state the implications of our results for the Hamada’s conjecture. All our results in
Sections 4 and 5 apply not just to F2-linear spaces but to all families of vectors that have
bounded triangular rank [14].

In Section 6 we establish our main approximability conjecture for a certain class a linear
spaces called cut-spaces and give a simpler proof of a slightly weaker version of the results
from Section 5. Our constructions of approximating real spaces use low weight vectors in
the dual space of L. Finally, in Section 7 we discuss the relation of our approach to matrix
rigidity to the natural proofs lower bounds barrier of Razborov and Rudich [16].

2 Notation

We use the following standard mathematical notation:
‖ · ‖ denotes the Euclidian norm;
For an integer n, [n] = {1, . . . , n};
For a vector v, the set of non-zero coordinates of v is denoted supp(v);
We write f(n) ≈ g(n), if f(n) = g(n)(1 + o(1)). We adopt the same agreement for .,& .
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3 The conjecture

We now introduce our approximability measure Ar. Following that, in Section 3.2 we argue
that for sufficiently large values of dimension r, collections of rows of incidence matrices of
combinatorial designs have essentially the smallest possible value of Ar even after alterations.
Finally, in Section 3.3 we introduce our main conjecture stating that low-dimensional F2-linear
spaces always have a somewhat large value of Ar. We show how this conjecture implies
rigidity of incidence matrices of combinatorial designs.

3.1 The approximability measure
We consider a natural embedding of Fn2 into Rn.We treat elements of Fn2 as real {0, 1}-vectors
and normalize them to have L2 norm one. Thus a non-zero v ∈ Fn2 gets mapped to v

‖v‖ .

Zero is mapped to zero. In what follows we assume that this embedding is implied and treat
vectors in Fn2 as real vectors. Let V be an arbitrary subset of Fn2 . Our approach is centered
around the following approximability measure

Ar(V ) = max
dimW≤r

min
v∈V
‖PrW (v)‖2, (6)

where the maximum is taken over all linear spaces W ∈ Rn,dimW = r, and minimum is
taken over the non-zero elements of V. Observe that our notion of approximability measure is
equivalent to the classical concept of Kolmogorov width Kr(V ) =

√
1−Ar(V ), also known

as "poperechnik" of a family of vectors. See [21, 22].
We remark the importance of the normalization step in formula (6). In essence normalizing

elements of V pushes all high weight vectors in V to the center of the positive orthant in Rn,
and makes Ar(V ) governed by the distribution of low weight vectors in V as needed for our
approach. We now derive a formula for approximability measure of the whole Boolean cube.

I Lemma 3.1. Let r = o(n) be arbitrary. We have

Ar (Fn2 ) ≈ r

n
. (7)

Proof. Let ei, i ∈ [n] denote the i-th unit vector. First we show that

Ar (Fn2 ) ≤ Ar ({e1, . . . , en}) ≤
r

n
. (8)

Let W be an arbitrary r-dimensional linear space with an orthonormal basis {w1, . . . ,wr}.
Consider an n× r matrix M, where Mij = (ei,wj)2. Clearly, the sum of values in M is equal
to r. Thus for some i ∈ [n] we have

∑
j(ei,wj)2 ≤ r

n and (8) follows.
We now exhibit a space W such that for all non-zero binary vectors v, ‖PrW (v)‖2 & r

n .

The space W is spanned by r unit vectors {wi}. These vectors have disjoint supports that
partition [n]. Every support is of size dnr e or b

n
r c. Each vector wi is constant on its support.

Let v be an arbitrary vector of weight w. Assume that the support of v intersects the
supports of t different vectors {wi}, namely, wi1 , . . . ,wit . Clearly, t ≤ w. For j ≤ t, let
aj = |supp(v) ∩ supp(wij )|. We have

∑t
j=1 aj = w. We also have

t∑
j=1

(v,wij )2 ≥
t∑

j=1

a2
jr

(n+ r)w = r

(n+ r)w

t∑
j=1

a2
j ≥

r

w(n+ r)

(w
t

)2
t &

r

n
.

This concludes the proof. J
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3.2 Inapproximability of combinatorial designs
In this Section we argue that approximating rows of a combinatorial design by a high-
dimensional real space is as hard as approximating all of the Boolean cube. We also establish
a robust version of this result.

I Lemma 3.2. Let V ⊆ Fn2 , |V | = n. Let B be the n× n real matrix, where the rows of B
are the normalized elements of V. Let λ1 ≥ . . . ≥ λn ≥ 0 be the eigenvalues of BBt; then for
all r,

Ar(V ) ≤ 1
n

∑
i≤r

λi. (9)

Proof. This is a simple corollary of a result in [8]. A special case of this result states that
for all r

1
n

∑
i≤r

λi = max
dimW≤r

Ev∈V ‖PrW (v)‖2, (10)

where the expectation is taken with respect to the uniform distribution on V . Since the RHS
of this equality is at least as large as Ar(V ), the claim of the Lemma follows. J

Let Vm be an incidence matrix of a combinatorial (n,w, λ) design with the parameters (1)
of the geometric design Gm,q for some value of q. Let m = 1

ε . We assume that m is fixed and
q grows to infinity. Thus w ≈ n1−ε and λ ≈ n1−2ε. Lemma 3.2 yields

I Corollary 3.3. With the notation above, we have

Ar
(
V1/ε

)
.
n1−ε + r

n
. (11)

Proof. Let B be the n× n matrix, where the rows of B are the normalized elements of Vm.
Clearly, B = 1√

w
Vm. We have

BBt = w − λ
w

I + λ

w
J,

where I denotes the identity matrix and J denotes the all-ones matrix. It is not hard to see
that the eigenvalues of BBt are given by

λ1 ≈ n1−ε and λ2 = . . . = λn ≈ 1.

An application of Lemma 3.2 completes the proof. J

Combining (7) and (11), we conclude that for r = ω(n1−ε) and r = o(n),

Ar(V1/ε) ≈ Ar(Fn2 ) ≈ r

n
. (12)

Observe that identity (10) and the eigenvalue computation above can be used to show that
matrices Vm are inapproximable on average and not just in the worst case. The following
Lemma gives a stability result for Ar :

I Lemma 3.4. Let V = {v1, . . . ,vn} ⊆ Fn2 be a set of vectors of Hamming weight w. Assume
the new set V ′ = {v′1, . . . ,v′n} ⊆ Fn2 is obtained from V by altering at most d coordinates of
each vi, where d < w; then for all r,

Ar(V ′) ≤
(√

Ar(V ) +
√
d

w

)2

. (13)
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Proof. Let v,v′ be arbitrary binary vectors such that the Hamming weight of v is w and
the Hamming distance between v and v′ is at most d. It is not hard to see that after the
embedding in the real space we have

(v,v′) ≥
√

1− d

w
. (14)

The minimum in (14) is attained by a vector v′ of Hamming weight w− d, where the support
of v′ is a subset of the support of v. Let W be an r-dimensional real space in Rn that attains
the maximum in (6) for approximating the set V ′. Let w1, . . . ,wn be a family of unit vectors
in W such that for all i ∈ [n], (v′i,wi)2 ≥ Ar (V ′) . Let A =

√
Ar(V ). By definition of A

there exists i ∈ [n] such that

(vi,wi) ≤ A. (15)

We introduce notation for angles between vectors vi,v′i, and wi. Let

α = ∠(v′i,wi), β = ∠(vi,v′i), γ = ∠(vi,wi).

Clearly α, β ∈ [0, π/2] and α ≥ γ − β. First suppose that γ − β ≥ 0; then

(v′i,wi) = cosα ≤ cos γ cosβ + sin γ sin β ≤ max{0, cos γ}+ sin β ≤ A+
√
d

w
,

where the last inequality follows from (14) and (15). Now note that if 0 ≤ γ ≤ β ≤ π/2; then

(v′i,wi) ≤ 1 ≤ cos γ + sin β ≤ A+
√
d

w
.

The inequality (13) follows. J

The above Lemma and identity (12) yield

I Proposition 3.5. Let Vm be an n×n matrix of a combinatorial design with the parameters
of a geometric design Gm. Assume m = 1

ε is fixed and n grows to infinity. Let V ′m be obtained
from Vm by altering each row in up to O

(
n1−2ε) coordinates. Let r = ω(n1−ε). We have

Ar

(
V ′1/ε

)
≈ r

n
. (16)

3.3 The conjecture and rigidity implications
We now introduce our main conjecture stating that low-dimensional F2-linear spaces L always
have a somewhat large value of Ar and show how this conjecture implies rigidity of design
matrices Vm. We begin with a formal definition of rigidity.

I Definition 3.6. Let V be an n × n matrix over a field F. We say that V is (r, d)-rigid;
if for every matrix V ′ that differs from V in at most d coordinates in each row, we have
rankFV ≥ r.

I Conjecture 3.7. There exists positive constants α, δ, and ε = 1
m (for an integer m) such

that for all linear spaces L ⊆ Fn2 where dimL ≤ n2ε+δ, for some r = ω(n1−ε),

Ar(L) ≥ (1 + α) r
n
. (17)
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The conjecture above trivially implies
(
n2ε+δ, n1−2ε)-rigidity of design matrices Vm over

the field F2. If some matrix V ′m had rank below n2ε+δ after O(n1−2ε) alterations in each
row; then its rows would belong to a n2ε+δ-dimensional linear space over F2, and thus have
non-trivial approximation measure, contradicting Proposition 3.5. Currently we can only
prove the conjecture for all linear spaces L with dimL = o (nε logn) . (Theorem 5.5).
I Remark. Replacing the condition dim(L) ≤ n2ε+δ in the Conjecture above by the condition
dim(L) ≤ O

(
nε log( 1

ε+1)
)
makes the Conjecture invalid as by formula (3) matrices V1/ε may

have have F2 rank of O
(
nε log( 1

ε+1)
)
.

4 Low dimensional approximations from bounded triangular rank

In this and the following two Sections we prove our main results regarding approximability
of low-dimensional F2-linear spaces L. In the current Section we deal with low-dimensional
approximations and obtain a bound for A1(L). All results obtained in this Section apply not
just to F2-linear spaces but to all families of vectors that have bounded triangular rank.

I Definition 4.1. Let T = {v1, . . . ,vt} be a sequence of binary vectors of of dimension n.
We say that T is a tower of height t if for all j ≤ t :

supp(vj) 6⊆
⋃

s≤j−1
supp(vs).

Further, let V be an arbitrary collection of binary vectors. We define the triangular rank of
V, denoted trk(V ) to be the largest height of a tower that can be constructed from elements
of V.

It is easy to see that for any subset V of an F2-linear space L we always have trk(V ) ≤ dimL.

Let L ⊆ Fn2 , trk(L) ≤ k. For i ∈ [n], let

wi = min
v∈L : i∈supp(v)

|supp(v)|. (18)

If i ∈ [n] does not belong to the support of any vector in L; we define wi =∞. We set

µ = µ(L) =
n∑
i=1

w−1
i . (19)

Our proof of the following Lemma resembles some of the arguments in [14, Section 2].

I Lemma 4.2. Let L ⊆ Fn2 , trk(L) ≤ k; then

µ(L) ≤ k.

Proof. Assume µ > k.We derive a contradiction by exhibiting a collection V = {v1, . . . ,vk+1}
⊆ L such that for every j ∈ [k + 1], there exists ij ∈ supp(vj), such that ij 6∈ supp(vs), for
all s < j. Consider an n-node hypergraph, where the hyperedges are the supports of the
elements of L. Color all nodes white. Set Φ = µ, V = ∅. On the j-th step:
1. We choose a white node i whose wi is the smallest among the white nodes;
2. We set vj to be a weight-wi element of L such that i ∈ supp(vj);
3. We set

∆ =
∑

s∈supp(vj) | s is white
w−1
s .

It is important to note that ∆ is necessarily at most 1.
4. We reduce Φ by ∆ and color all nodes s ∈ supp(vj) black.
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On each step we reduce Φ by at most one and increase trk(V ) by one. Thus after k+ 1 steps
we necessarily have trk(V ) > k. J

I Theorem 4.3. Let L ⊆ Fn2 , trk(L) ≤ k; then

A1(L) ≥ 1
k
.

Proof. Let {wi} and µ be as defined in (18) and (19). Fix a vector w ∈ Rn, where for all
i ∈ [n], wi =

√
1
µwi

. Clearly ‖w‖ = 1. Let v ∈ L be arbitrary, |supp(v)| = w. Note that for
all i ∈ supp(v), wi ≤ w. It remains to note that

(w,v) ≥
w
√

1/µw√
w

= 1
√
µ
≥ 1√

k
,

where the last inequality follows from Lemma 4.2. J

Theorem 4.3 exhibits a vast gap between A1 (Fn2 ) ≈ 1
n and A1(L) ≥ 1

k for F2-linear spaces
L that have polynomially low dimension k. This Theorem alone already implies that our
main Conjecture 3.7 holds for all linear spaces of dimension up to o(nε). In fact it shows that
even one-dimensional approximations of discrete linear spaces suffice to get this result.

5 High dimensional approximations from bounded triangular rank

In this Section we deal with high dimensional approximations and state the implications of
our results for the Hamada’s conjecture. Our main result is given by Theorem 5.5. As in
the previous Section our arguments apply not just to F2-linear spaces but to all families of
vectors that have bounded triangular rank. To simplify notation in this Section we do not
distinguish between binary vectors v and their support sets supp(v).

I Definition 5.1. Let L be a family of subsets of some universe. Let S be a subset of the
same universe. We say that S is a (c, k)-attractor for L if trk(L) ≤ k and for all v ∈ L such
that v ∩ S 6= ∅,

|v ∩ S| ≥ c · |S|
k
. (20)

Informally, an attractor is a subset of coordinates such that every low weight vector (i.e., a
vector of weight around n

k or less) in L whose support intersects the subset, intersects it by
more than one would expect. Below is the key Lemma of this Section.

I Lemma 5.2. Let L be a family of binary vectors. Let [N ] be the union of supports of vectors
in L. Let trk(L) ≤ k. Assume that Hamming weights of all vectors in L lie in the segment
[w, 2w]. Further assume k ≥ 25c+2 where c is an integer. Then there exists a (c, k)-attractor
for L of size at least N

24c .

Proof. Note that if N
24c+2 < w, then the set [N ] is a (c, k)-attractor for L. In fact, let v ∈ L

be arbitrary. We have

|supp(v) ∩ [N ]| ≥ w ≥ N

24c+2 ≥ c ·
N

25c+2 ≥ c ·
|[N ]|
k

.

Thus without loss of generality we assume
N

24c+2 ≥ w. (21)

We now execute the following simple greedy algorithm that constructs a tower in the family L.
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1. Set the tower T to be an empty family of sets. Set R = [N ].
2. WHILE R 6= ∅ DO
3. BEGIN
4. Identify a set v ∈ L that minimizes |v ∩R|;
5. Add v to the tower T ;
6. Drop the elements in v from R;
7. END
The algorithm above terminates producing a tower of height at most k. On step j the
algorithm adds a new vector to T and reduces the set R by ∆j = T ∩R. We partition the
steps of the algorithm into stages. A step falls into stage number i if in the beginning on the
step

N

2i < |R| ≤
N

2i−1 . (22)

Observe that among the first 4c stages there is at least one stage i, such that the height of T
increases by t ≤ k

4c during that stage. Let S be the change in the set R on the stage i. We
have

|S| ≥
(

N

2i−1 − 2w
)
− N

2i ≥
N

2i+1 .

The first inequality above follows from the fact that in the beginning of stage i the size of R
is at least N

2i−1 minus the size of the last step of stage (i− 1) and the fact that every step
size is bounded by 2w. The second inequality follows from (21). Let a be the index of the
first step of stage i. We have

a+t−1∑
j=a

|∆j | = |S| ≥
N

2i+1 .

Thus at stage i there exists a step j such that

|∆j | ≥
N

2i+1 ·
4c
k
.

Let A be the set R at the beginning of step j. As step j belongs to stage i, by (22) we have

|A| ≤ N

2i−1 .

Combining the last two inequalities we get

|A|
|∆j |

≤ k

c
.

Therefore by the greedy property of our algorithm for every set v ∈ L that intersects A we
have

|A|
|A ∩ v| ≤

k

c
,

or equivalently

|A ∩ v| ≥ c · |A|
k
.

Thus A is a (c, k)-attractor for L of size at least N
24c . J
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I Lemma 5.3. Let L be a family of binary vectors, trk(L) ≤ k. Assume that Hamming
weights of all vectors in L lie in some segment [

√
2w, 2w]. Further assume k ≥ 25c+2 where c

is an integer. We have

Ac·24c (L) ≥ Ω
( c
k

)
, (23)

where the constant in Ω-notation is absolute.

Proof. Set [N ] be the union of supports of vectors in L. Clearly, N ≤ 2wk.We now construct
a basis for the approximating real space.
1. π = {πi}i≥0 is a partition of [N ]. Initially π consists of a single set π0 = [N ] and i = 0.
2. WHILE ((i < c · 24c) AND (π0 6= ∅)) DO
3. BEGIN
4. Identify a (c, k)-attractor πi for L of relative size at least 1

24c;
5. Remove elements of πi from π0 and from all sets v ∈ L;
6. Add the set πi to π;
7. Drop every element v such that |v| < w from L;
8. Increment i;
9. END
Lemma 5.2 ensures that the attractor constructed on step 4 above always exists. Observe
that by the end of the execution of the algorithm we have

|π0| ≤ N ·
(

1− 1
24c

)c·24c

≤ N

c
. (24)

Recall that π = {πi}i≥0 is a partition of [N ]. LetW be the real linear space spanned by binary
vectors p0, . . . ,pr whose supports are elements of this partition. Clearly, dimW ≤ c · 24c.

We claim that W approximates all v ∈ L well. Consider two cases:
|v ∩ π0| < w. At least (

√
2− 1)w elements of supp(v) fall onto (c, k)-attractors in π. To

approximate v ∈ L consider the set J = {j | v∩πj 6= ∅ and j 6= 0}. For all j ∈ J by (20)
we have

|v ∩ πj | ≥ c ·
|πj |
k
.

Therefore

|πj | ≤ |v ∩ πj | ·
k

c
. (25)

Consider the vector p =
∑
j∈J pj . Summing (25) over all j ∈ J we obtain

wt(p) ≤ 2w · k
c
,

where wt(p) denotes the Hamming weight. Thus(
p
‖p‖ ,

v
‖v‖

)2
≥ |v ∩ supp(p)|2

wt(v) · c

2wk ≥
(
√

2− 1)2

4 · c
k
.

|v ∩ π0| ≥ w. By (24) we have |π0| ≤ 2wk
c . Consider the binary real vector p whose

support is π0. We have (
p
‖p‖ ,

v
‖v‖

)2
≥ w2

2w ·
c

2wk = c

4k . J
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In what follows all log’s are base 2 unless otherwise specified.

I Theorem 5.4. Let L ⊆ Fn2 , trk(L) ≤ k. Assume k ≥ 25c+2 where c is an integer. We have

A2c·24c·logn (L) ≥ Ω
( c
k

)
, (26)

where the constant in Ω-notation is absolute.

Proof. Partition the set L into 2 logn subsets L1, . . . , L2 logn where every set Li contains
elements of L whose Hamming weight is between 2(i−1)/2 an 2i/2. Apply Lemma 5.3 to each
Li. Consider the joint span of 2 logn resulting real spaces to approximate L. J

I Theorem 5.5. Let L ⊆ Fn2 , trk(L) ≤ k; then
For all τ > 0 and sufficiently large k and n,

Anτ (L) ≥ Ω
(

log k
k

)
, (27)

where the constant in the Ω-notation depends only on τ.
The bullet above implies that for all α and all ε > 0 our main Conjecture 3.7 holds for
all linear spaces L, where dimL = o(nε logn).

Proof. We start with the first bullet. Set c =
⌊
min

{
τ
8 log k, log k−2

5

}⌋
. Theorem 5.4 yields

A τ
4 log k lognkτ/2(L) ≥ Ω

(
log k
k

)
,

which immediately yields (27) for large enough n.
We proceed to the second bullet. Let k = dimL = β(n)nε logn, where β(n) → 0 but

β logn grows. Fix an arbitrary τ < 1− ε. By (27)

Anτ (L) ≥ c log k
k

,

for some constant c. Set r(n) = cεn1−ε

β(n)(1+α) . Observe that for sufficiently large n,

Ar(L) ≥ Anτ (L) ≥ c log k
k
≥ cε logn
βnε logn = cε

βnε
= (1 + α) r

n
.

This concludes the proof. J

The following Corollary gives the implication of Theorem 5.5 for the triangular rank of
combinatorial designs.

I Corollary 5.6. Let m = 1
ε and let Vm be the n × n incidence matrix of a combinatorial

design that has the parameters of the geometric design Gm,q. We have

trk(Vm) = Ω (nε log2 n) , (28)

where trk(Vm) denotes the triangular rank of the collection of rows of Vm.

Proof. Let trk(Vm) = k. Set r = n1−ε. From Corollary 3.3 we have Ar(Vm) . 2
nε . However

from Theorem 5.5 we have Ar(Vm) ≥ Ω
(

log k
k

)
. Therefore

2
nε
≥ Ω

(
log k
k

)
.

Thus k = Ω (nε log2 n) . J

Note that triangular rank of Vm gives a lower bound for the rank of Vm over any field.
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6 High dimensional approximations from short dual vectors

In this Section we establish Conjecture 3.7 for a certain class a linear spaces called cut-spaces
and give a simpler proof of a slightly weaker version of Theorem 5.5. In both of these
results we use low weight vectors in the dual space of an F2-linear space L to construct the
approximating real space for L. As in the previous Section, we often write v to denote both
a vector v and its support set supp(v).

I Definition 6.1. Let L be a family of subsets of [n].We say that the r-partition π =
⊔
j≤r πj

of [n] is attractive for L, if for some constant α > 0 for every v ∈ L we have∣∣∣∣∣∣
⊔

j : v∩πj 6=∅

πj

∣∣∣∣∣∣ ≤ |supp(v)|
(1 + α) ·

n

r
. (29)

I Lemma 6.2. Let L be a set of n-dimensional binary vectors. Suppose there exists an
r-partition of [n] that is attractive for L; then Ar(L) ≥ (1 + α) rn .

Proof. Let W be the real linear space spanned by binary vectors p1, . . . ,pr whose supports
are elements of the attractive r-partition. To approximate v ∈ L consider the vector
p =

∑
j : v∩πj 6=∅ pj . We have

wt(p) ≤ wt(v)
(1 + α) ·

n

r
.

Thus (p/‖p‖,v)2 ≥ (1 + α) rn . J

6.1 Approximating cut spaces
A cut space is a subspace of Fn2 that has a k × n generator matrix where every column has
weight two. Equivalently, a cut space is defined by a k-node graph G with n edges. Elements
of the cut space are incidence vectors of cuts in the graph. Elements of the dual space are
incidence vectors of even degree subgraphs of G. In what follows we restrict our attention to
connected graphs G. For such graphs the dimension of the corresponding cut space is k − 1.
We now argue that cut spaces satisfy Conjecture 3.7.

I Theorem 6.3. Let L ⊆ Fn2 be a cut space, dimL ≤ o
(

n
logn

)
. Then for some r = Θ

(
n

logn

)
and α > 0 we have

Ar(L) ≥ (1 + α) r
n
.

Proof. We rely on the fact that any graph with k nodes and n edges contains a cycle of length
at most 2 logn provided n ≥ 3k. We consider the graph G corresponding to L. We construct
a family π of disjoint subsets of edges of G (coordinates of L). We start by executing the
following simple algorithm:
1. Start with an empty family of sets π.
2. WHILE n ≥ 3k DO
3. BEGIN
4. Identify a cycle C in G, |C| ≤ 2 logn;
5. Include C into π as a new set;
6. Drop edges in C from G;
7. END
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Our next goal is to make sure that most sets in π have approximately the same size. Firstly,
we repeatedly join together any two sets in π, if the sum of their sizes is below 2 logn. Secondly,
we drop the smallest set from π. Now every set in π has size in the range [logn, 2 logn]. We
fix a small δ > 0 and consider two alternatives:

The average size of a set in π is larger than (1 + δ) logn. We extend π to become a
partition of the set [n] by including all remaining coordinates as singleton sets. Let
r = |π|. We have

r ≤ n

(1 + δ) logn + 3k + logn .
n

(1 + δ) logn.

We claim that π is attractive for L. Observe that every element v ∈ L intersects each
non-singleton element of π in an even number of coordinates. Therefore we have∣∣∣∣∣∣

⊔
j : v∩πj 6=∅

πj

∣∣∣∣∣∣ ≤ wt(v)
2 · 2 logn = wt(v) · logn.

It remains to note that

wt(v) · n
r
& (1 + δ) · wt(v) · logn.

The average size of a set in π is below (1 + δ) logn. The fraction of sets of size above
1.5 logn is at most 2δ. We pair up sets of size less than 1.5 logn arbitrarily (possibly
dropping one set). We replace pairs by their unions. This leads us to a new family of
sets, where the size of each set is in the range [1.5 logn, 3 logn] and the average size is
above 1.5(1 + δ′) logn. Here we apply the argument from the previous bullet.

This concludes the proof. J

6.2 Approximating general F2-linear spaces
We now apply the method used in the previous Section to approximate cut spaces to generic
linear spaces.

I Theorem 6.4. Let L ⊆ Fn2 be a linear space, dimL = k, k ≤ n
1
2−β . Then for some

r = Θ
(
n
k log k

)
and α > 0,

Ar(L) ≥ (1 + α) r
n
. (30)

Proof. Fix ε > 0 such that k1+ε = o
(
n
k log k

)
. We rely on the fact that by the Hamming

bound for any linear subspace of Fm2 of dimension k, there is a dual vector of weight at most
ck/ log k provided k1+ε ≤ m, for a universal constant c. We construct a family π of disjoint
subsets of [n]. We start by executing the following simple algorithm:
1. Start with an empty family of sets π.
2. WHILE n ≥ k1+ε DO
3. BEGIN
4. Identify a light dual vector v, wt(v) ≤ ck

log k ;
5. Include supp(v) into π as a new set;
6. Drop the coordinates in supp(v) from [n]. Reduce n appropriately.
7. END
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Our next goal is to make sure that most sets in π have approximately the same size.
Firstly, we repeatedly join together any two sets in π, if the sum of their sizes is below
2ck/ log k. Secondly, we drop the smallest set from π. Now every set in π has size in the
range [ck/ log k, 2ck/ log k]. We fix a small δ > 0 and consider two alternatives:

The average size of a set in π is larger than (1 + δ)ck/ log k. We extend π to become
a partition of the set [n] by including all remaining coordinates as singleton sets. Let
r = |π|. We have

r ≤ n log k
(1 + δ)ck + k1+ε + ck

log k .
n log k

(1 + δ)ck .

We claim that π is attractive for L. Observe that every element v ∈ L intersects each
non-singleton element of π in an even number of coordinates. Therefore we have∣∣∣∣∣∣

⊔
j : v∩πj 6=∅

πj

∣∣∣∣∣∣ ≤ wt(v)
2 · 2ck

log k = wt(v) · ck

log k .

It remains to note that

wt(v) · n
r
& wt(v) · (1 + δ) · ck

log k .

The average size of a set in π is below (1 + δ)ck/ log k. The fraction of sets of size above
1.5ck/ log k is at most 2δ.We pair up sets of size less than 1.5ck/ log k arbitrarily (possibly
dropping one set). We replace pairs by their unions. This leads us to a new family of
sets, where the size of each set is in the range [1.5ck/ log k, 3ck/ log k] and the average
size is above 1.5(1 + δ′)ck/ log k. Here we apply the argument from the previous bullet.

This concludes the proof. J

Similarly to Theorem 5.5, Theorem 6.4 above can be used to argue that Conjecture 3.7
holds for all linear spaces of dimension up to o(nε logn), i.e., if we set k = β(n) · nε logn,
where β(n)→ 0, and r = Θ

(
n
k logn

)
= Θ

(
n1−ε

β

)
; then (30) yields

Ar(L) ≥ (1 + α) r
n
. (31)

Theorem 5.5 however presents a stronger result. Firstly, in the proof of Theorem 5.5 we use
real spaces of dimension as low as nτ to arrive at the bound (31) for some r = ω(n1−ε). This
leaves plenty of room for potential further improvements. Secondly, Theorem 5.5 applies to
all sets of vectors of bounded triangular rank, while Theorem 6.4 only deals with F2-linear
spaces.

7 Relation to natural proofs

In [16] Razborov and Rudich introduced the natural proofs barrier for proving lower bounds
for computational complexity of Boolean functions. Stated informally their results say that
if a certain property of Boolean functions is shown to imply hardness then; either typical
(random) functions do not have this property, or the property should be hard to recognize,
or some well accepted hardness conjectures are invalid. While the theory developed in [16]
deals with properties of Boolean functions one can make an analogy in the linear setting by
defining a natural property of a matrix to be a property that holds for most matrices and
can be verified efficiently [1]. In this case however the respective ”hardness conjectures" are
not as standard.
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In light of the above it is interesting to ask if establishing our main Conjecture 3.7 for
some ε would necessarily certify rigidity of random binary matrices where each element is set
to 1 independently with probability n−ε. The answer to this seems to depend on the value
of α for that one proves the Conjecture. If α is sufficiently small; then rigidity of random
matrices would likely not be implied. The following Theorem shows that unlike the rows of
a combinatorial design V1/ε, the rows of a random binary matrix of density n−ε with high
probability admit a non-trivial approximation on average even in the regime of a fairly large
dimension of the approximating real space.

I Theorem 7.1. Let V be a random n× n matrix of zeros and ones where every entry is set
to 1 independently with probability p = n−ε, ε < 1

4 . Let B be the real matrix, where the rows
of B are the normalized elements of V. Let λ1 ≥ . . . ≥ λn ≥ 0 be the eigenvalues of BBt.
There exists α > 0 such that with high probability over the choice of V for all r = o(n) we
have,

max
dimW≤r

Ev∈V ‖PrW (v)‖2 = 1
n

∑
i≤r

λi ≥ (1 + α) r
n
. (32)

Proof. The equality above is given by (10). We need to prove the inequality, which is a
straightforward corollary of the Marchenko-Pastur law [4] determining the limiting behavior
of the spectral distribution of large inner product matrices. We state a special case of this
law that will suffice for our purposes (see Theorem 3.10 in [4]).

Let {Mn} be a sequence of n× n random matrices, such that the entries of Mn are i.i.d.
random variables with expectation µn and variance 1. Let λ1, . . . , λn be the eigenvalues of
1
nMnM

t
n. Then, for any 0 ≤ a ≤ 4 holds, with probability 1, that

# {i : λi ≥ a}
n

−→ 1
2π

∫ 4

a

√
4− x
x

dx (33)

Fix a = 2. Let c = 1
2π
∫ 4

2

√
4−x
x dx = π−2

2π ≈ 0.18. Taking Mn = 1√
p(1−p)

· V , we observe

that, with probability tending to one with n, at least cn− o(n) eigenvalues of 1
p(1−p)nV V

t

are greater or equal 2.
To complete the proof, we will argue that the spectral distribution of 1

p(1−p)nV V
t is close

to that of BBt. In fact, a special case of the perturbation inequality A.41 in [4] states that
for any two symmetric n× n matrices X and Y , with eigenvalues λ1, . . . , λn and µ1, . . . , µn,
and for any real number a holds that∣∣∣∣# {i : λi ≥ a}

n
− # {i : µi ≥ a}

n

∣∣∣∣ ≤ ( 1
n
· Tr

(
(X − Y )2

))1/3
(34)

We will apply this inequality to slightly perturbed versions of the matrices 1
p(1−p)nV V

t and
BBt. The goal of this modification would be to cancel the problematic effect of the maximal
eigenvalues of the two matrices. With this in mind, we set U = V − pJ , where J is the all-1
matrix. Let W = (wij) = UU t. We take X = 1

p(1−p)nW .
Next, we consider the norms of the rows of V . Since V is a 0-1 matrix, the norm of its ith

row is √ri, where ri is the row sum. We take Y =
(

wij√
rirj

)
.

Note that the matrices X and Y are rank-1 perturbations of 1
p(1−p)nV V

t and BBt. It is
well-known that if two matrices differ by a matrix of rank 1, their eigenvalues interlace.
Hence, using the perturbed matrices changes the LHS of (34) by at most an additive factor
of O (1/n), which we may ignore.
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In the following analysis we may and will assume all ri to lie in the interval np± t
√
np logn,

for a sufficiently large absolute constant t, since this holds with probability tending to one
with n, by the Chernoff bound.
With this assumption, we can bound the distance between the entries of X and Y as follows.

(xij − yij)2 =
(

wij
p(1− p)n −

wij√
rirj

)2
≤ O

(
1
n2

)
· w2

ij

In the last inequality we have used the fact that np2 �
√
n logn, which we may do since

p = n−ε and, by assumption, ε < 1/4.
To complete the argument about proximity of the spectral distributions of X and Y , we need
to estimate from above the `2 norm of W . Note first that by (33) we may assume all the
eigenvalues of X to lie between 0 and 4. Hence

∑n
i,j=1 x

2
ij = O(n). Since W = p(1− p)n ·X,

we deduce
∑n
i,j=1 w

2
ij ≤ n2p2 ·

∑n
i,j=1 x

2
ij ≤ O

(
n3p2).

Finally, we can estimate the RHS of (34) from above as follows:

(
1
n
· Tr

(
(X − Y )2

))1/3
≤ O

(
1
n

)
·

 n∑
i,j=1

w2
ij

1/3

≤ O
(
p2/3

)
= o(n)

We deduce that at least cn− o(n) eigenvalues of the matrices Y and (hence) BBt are greater
or equal 2, for an absolute constant c ≈ 0.18. The claim of the theorem follows. J

8 Conclusions

In this paper we suggested a new path to establishing rigidity of design matrices over the
field F2. Our approach is centered around the conjecture that says that after the natural
”normalizing" embedding of the Boolean cube into Rn, low dimensional F2-linear spaces
exhibit some tiny amount of resemblance to real linear spaces. In particular it is easier to
approximate them by Euclidian linear spaces than to approximate all of the Boolean cube.
We showed that the conjecture is indeed true (by a huge margin) when approximating real
spaces are of low dimension. However our approximability results for high-dimensional real
spaces are not strong enough.

Currently it feels that the weakness of our results stems from the fact in that we use
relatively little combinatorial structure of F2-linearity. In particular our strongest result
(Theorem 5.5) applies to all sets of bounded triangular rank. Note that while it is plausible
that one can make further progress based just on triangular rank; one cannot establish
Conjecture 3.7 is such generality.
I Remark. Replacing the condition dim(L) ≤ n2ε+δ in the Conjecture 3.7 by the condition
trk(L) ≤ n2ε+δ makes the Conjecture invalid.

Proof. Let m = 1
ε be an integer. Let V ′m be a matrix that is obtained from Vm by

independently flipping every zero entry to one with probability n−2ε. It is not hard to see that
with overwhelming probability V ′m does not contain an all-zeros minor of size Ω(n2ε logn).
Thus trk(V ′m) = O(n2ε logn). However Proposition 3.5 implies that for any r = ω(n1−ε), we
have Ar(V ′m) ≈ r

n . Thus rows of V
′
m give a counterexample to this stronger version of the

Conjecture. J
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Abstract
The Minimum Circuit Size Problem (MCSP) is: given the truth table of a Boolean function f

and a size parameter k, is the circuit complexity of f at most k? This is the definitive problem
of circuit synthesis, and it has been studied since the 1950s. Unlike many problems of its kind,
MCSP is not known to be NP-hard, yet an efficient algorithm for this problem also seems very
unlikely: for example, MCSP ∈ P would imply there are no pseudorandom functions.

Although most NP-complete problems are complete under strong “local” reduction notions
such as poly-logarithmic time projections, we show that MCSP is provably not NP-hard under
O(n1/2−ε)-time projections, for every ε > 0. We prove that the NP-hardness of MCSP under
(logtime-uniform) AC0 reductions would imply extremely strong lower bounds: NP 6⊂ P/poly and
E 6⊂ i.o.-SIZE(2δn) for some δ > 0 (hence P = BPP also follows). We show that even the NP-
hardness of MCSP under general polynomial-time reductions would separate complexity classes:
EXP 6= NP ∩ P/poly, which implies EXP 6= ZPP. These results help explain why it has been so
difficult to prove that MCSP is NP-hard.

We also consider the nondeterministic generalization of MCSP: the Nondeterministic Mini-
mum Circuit Size Problem (NMCSP), where one wishes to compute the nondeterministic circuit
complexity of a given function. We prove that the Σ2P-hardness of NMCSP, even under arbitrary
polynomial-time reductions, would imply EXP 6⊂ P/poly.
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1 Introduction

The Minimum Circuit Size Problem (MCSP) is the canonical logic synthesis problem: we are
given 〈T, k〉 where T is a string of n = 2` bits (for some `), k is a positive integer (encoded
in binary or unary), and the goal is to determine if T is the truth table of a boolean function
with circuit complexity at most k. (For concreteness, let’s say our circuits are defined over
AND, OR, NOT gates of fan-in at most 2.) MCSP is in NP, because any circuit of size at
most k could be guessed nondeterministically in O(k log k) ≤ O(n) time, then verified on all
bits of the truth table T in poly(2`, k) ≤ poly(n) time.1
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1 Recall that every Boolean function f : {0, 1}` → {0, 1} has a circuit of size at most k ≤ ` · 2`. Hence
every instance 〈T, k〉 with k > 2n log n is automatically a yes-instance of MCSP.
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MCSP is natural and basic, but unlike thousands of other computational problems studied
over the last 40 years, the complexity of MCSP has yet to be determined. The problem could
be NP-complete, it could be NP-intermediate, or it could even be in P. (It is reported that
Levin delayed publishing his initial results on NP-completeness out of wanting to include
a proof that MCSP is NP-complete [3]. More notes on the history of this problem can be
found in [15].)

Lower Bounds for MCSP?

There is substantial evidence that MCSP /∈ P. If MCSP ∈ P, then (essentially by definition)
efficient algorithms for MCSP imply that there are no pseudorandom functions. Kabanets and
Cai [15] made this critical observation, noting that the hardness of factoring Blum integers
implies that MCSP is hard. Allender et al. [4] strengthened these results considerably,
showing that Discrete Log and many approximate lattice problems from cryptography are
solvable in BPPMCSP and Integer Factoring is in ZPPMCSP. (Furthermore, [4] also prove
that MCSP /∈ AC0.) Allender and Das [5] recently showed that Graph Isomorphism is in
RPMCSP, and in fact every problem with statistical zero-knowledge interactive proofs [11] is
in promise-BPP with a MCSP oracle.

NP-Hardness for MCSP?

These reductions indicate strongly that MCSP is not solvable in randomized polynomial
time; perhaps it is NP-complete? Evidence for the NP-completeness of MCSP has been
less conclusive. The variant of the problem where we are looking for a minimum size DNF
(instead of an arbitrary circuit) is known to be NP-complete [10, 6]. Kabanets and Cai [15]
show that, if MCSP is NP-complete under so-called “natural” poly-time reductions (where
the circuit size parameter k output by the reduction is a function of only the input length to
the reduction) then EXP 6⊂ P/poly, and E 6⊂ SIZE(2εn) for some ε > 0 unless NP ⊂ SUBEXP.
Therefore NP-completeness under a restricted reduction type would imply (expected) circuit
lower bounds. This doesn’t necessarily show that such reductions do not exist, but rather
that they will be difficult to construct.

Allender et al. [4] show that if PH ⊂ SIZE(2no(1)) then a (variant of) MCSP is not hard
for TC0 under AC0 reductions. The generalization MCSPA for circuits with A-oracle gates
has also been studied; it is known for example that MCSPQBF is complete for PSPACE under
ZPP reductions [4], and recently Allender, Holden, and Kabanets [7] proved that MCSPQBF

is not PSPACE-complete under logspace reductions. They also showed, among similar results,
that if there is a set A ∈ PH that such that MCSPA is hard for P under AC0 reductions,
then P 6= NP.

NP-completeness has been defined for many different reducibility notions: polynomial
time, logarithmic space, AC0, even logarithmic time reductions. In this paper, we study the
possibility of MCSP being NP-complete for these reducibilities. We prove several new results
in this direction, summarized as follows:
1. Under “local” polynomial-time reductions where any given output bit can be computed

in no(1) time, MCSP is provably not NP-complete, contrary to many other natural NP-
complete problems. (In fact, even PARITY cannot reduce to MCSP under such reductions:
see Theorem 1.2.)

2. Under slightly stronger reductions such as uniform AC0, the NP-completeness of MCSP
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would imply NP 6⊂ P/poly2 and E 6⊂ i.o.-SIZE(2δn) for some δ > 0, therefore P = BPP as
well by [14].

3. Under the strongest reducibility notions such as polynomial time, the NP-completeness of
MCSP would still imply major separations of complexity classes. For example, EXP 6= ZPP
would follow, a major (embarrassingly) open problem.

Together, the above results tell a convincing story about why MCSP has been difficult to
prove NP-complete (if that is even true). Part 1 shows that, unlike many textbook reductions
for NP-hardness, no simple “gadget-based” reduction can work for proving the NP-hardness of
MCSP. Part 2 shows that going only a little beyond the sophistication of textbook reductions
would separate P from NP and fully derandomize BPP, which looks supremely difficult (if
possible at all). Finally, part 3 shows that even establishing the most relaxed version of the
statement “MCSP is NP-complete” requires separating exponential time from randomized
polynomial time, a separation that appears quite far from a proof at the present time.

MCSP is Not Hard Under “Local” Reductions

Many NP-complete problems are still complete under polynomial-time reductions with severe-
looking restrictions, such as reductions which only need O(logc n) time to output an arbitrary
bit of the output. Let t : N→ N; think of t(n) as n1−ε for some ε > 0.

I Definition 1.1. An algorithm R : Σ? × Σ? → {0, 1, ?} is a TIME(t(n)) reduction from L

to L′ if there is a constant c ≥ 1 such that for all x ∈ Σ?,
R(x, i) has random access to x and runs in O(t(|x|)) time for all i ∈ {0, 1}d2c log2 |x|e.
There is an `x ≤ |x|c + c such that R(x, i) ∈ {0, 1} for all i ≤ `x, and R(x, i) = ? for all
i > `x, and
x ∈ L ⇐⇒ R(x, 1) ·R(x, 2) · · ·R(x, `x) ∈ L′.

(Note that ? denotes an “out of bounds” character to mark the end of the output.) That
is, the overall reduction outputs strings of polynomial length, but any desired bit of the
output can be printed in O(t(n)) time. TIME(no(1)) reductions are powerful enough for
almost all NP-completeness results, which have “local” structure transforming small pieces
of the input to small pieces of the output.3 More precisely, an O(nk)-time reduction R from
L to L′ is a projection if there is a polynomial-time algorithm A that, given i = 1, . . . , nk in
binary, A outputs either a fixed bit (0 or 1) which is the ith bit of R(x) for all x of length n,
or a j = 1, . . . , n with b ∈ {0, 1} such that the ith bit of R(x) (for all x of length n) equals
b · xj + (1 − b) · (1 − xj). Skyum and Valiant [17] observed that almost all NP-complete
problems are also complete under projections. So for example, we have:

I Proposition 1 ([17, 16]). SAT, Vertex Cover, Independent Set, Hamiltonian Path, and
3-Coloring are NP-complete under TIME(poly(logn)) reductions.

In contrast to the above, we prove that MCSP is not complete under TIME(n1/3) re-
ductions. Indeed there is no local reduction from even the simple language PARITY to
MCSP:

2 After learning of our preliminary results, Allender, Holden, and Kabanets [7] found an alternative proof
of the consequence NP 6⊂ P/poly.

3 We say “almost all NP-completeness results” because one potential counterexample is the typical
reduction from Subset Sum to Partition: two numbers in the output of this reduction require taking the
sum of all numbers in the input Subset Sum instance. Hence the straightforward reduction does not
seem to be computable even in 2no(1)

-size AC0.
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I Theorem 1.2. For every δ < 1/2, there is no TIME(nδ) reduction from PARITY to MCSP.
As a corollary, MCSP is not AC0[2]-hard under TIME(nδ) reductions.4

This establishes that MCSP cannot be “locally” NP-hard in the way that many canonical
NP-complete problems are known to be.

Hardness Under Stronger Reducibilities

For stronger reducibility notions than sub-polynomial time, we do not yet have unconditional
non-hardness results for MCSP. (Of course, a proof that MCSP is not NP-complete under
poly-time reductions would immediately imply P 6= NP.) Nevertheless, we can still prove
interesting complexity consequences assuming the NP-hardness of MCSP under these sorts
of reductions.

I Theorem 1.3. If MCSP is NP-hard under polynomial-time reductions, then EXP 6=
NP ∩ P/poly. Consequently, EXP 6= ZPP.

I Corollary 1.4. If MCSP is NP-hard under logspace reductions, then PSPACE 6= ZPP.

I Theorem 1.5. If MCSP is NP-hard under logtime-uniform AC0 reductions, then NP 6⊂
P/poly and E 6⊂ i.o.-SIZE(2δn) for some δ > 0. As a consequence, P = BPP also follows.

That is, the difficulty of computing circuit complexity would imply lower bounds, even in
the most general setting (there are no restrictions on the polynomial-time reductions here, in
contrast with Kabanets and Cai [15]). We conjecture that the consequence of Theorem 1.3
can be strengthened to EXP 6⊂ P/poly, and that MCSP is (unconditionally) not NP-hard
under uniform AC0 reductions.

Σ2-Hardness for Nondeterministic MCSP Implies Circuit Lower Bounds

Intuitively, the difficulty of solving MCSP via uniform algorithms should be related to circuit
lower bounds against functions defined by uniform algorithms. That is, our intuition is
that “MCSP is NP-complete” implies circuit lower bounds. We have not yet shown a result
like this (but come close with EXP 6= ZPP in Theorem 1.3). However, we can show that
Σ2P-completeness for the nondeterministic version of MCSP would imply EXP 6⊂ P/poly.

In the Nondeterministic Minimum Circuit Size Problem (NMCSP), we are given 〈T, k〉 as
in MCSP, but now we want to know if T denotes a boolean function with nondeterministic
circuit complexity at most k. It is easy to see that NMCSP is in Σ2P: nondeterministically
guess a circuit C with a “main” input and “auxiliary” input, nondeterministically evaluate
C on all 2` inputs x for which T (x) = 1, then universally verify on all 2` inputs y satisfying
T (y) = 0 that no auxiliary input makes C output 1 on y.

We can show that if NMCSP is hard even for Merlin-Arthur games, then circuit lower
bounds follow.

I Theorem 1.6. If NMCSP is MA-hard under polynomial-time reductions, then EXP 6⊂
P/poly.

Vinodchandran [18] studied NMCSP for strong nondeterministic circuits, showing that
a “natural” reduction from SAT or Graph Isomorphism to this problem would have several
interesting implications.

4 Dhiraj Holden and Chris Umans (personal communication) proved independently that there is no
TIME(poly(log n)) reduction from SAT to MCSP unless NEXP ⊂ Σ2P.
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1.1 Intuition

The MCSP problem is a special kind of “meta-algorithmic” problem, where the input describes
a function (and a complexity upper bound) and the goal is to essentially compute the circuit
complexity of the function. That is, like many of the central problems in theory, MCSP is a
problem about computation itself.

In this paper, we apply many tools from the literature to prove our results, but the key
idea is to exploit the meta-algorithmic nature of MCSP directly in the assumed reductions
to MCSP. We take advantage of the fact that instances of MCSP are written in a rather
non-succinct way: the entire truth table of the function is provided. (This observation was
also used by Kabanets and Cai [15], but not to the same effect.)

For the simplest example of the approach, let L be a unary (tally) language, and suppose
there is a TIME(poly(logn)) reduction R from L to MCSP. The outputs of R are pairs
〈T, k〉, where T is a truth table and k is the size parameter. Because every bit of R is
computable in polylog time, it follows that each truth table T output by R can in fact be
described by a polylogarithmic size circuit specifying the length of the input instance of L,
and the mechanics of the polylog time reduction used to compute a given bit of R. Therefore
the circuit complexities of all outputs of R are at most polylogarithmic in n (the input
length). Furthermore, the size parameters k in the outputs of R on n-bit inputs are at most
poly(logn), otherwise the MCSP instance is trivially a yes instance. That is, the efficient
reduction R itself yields a strong upper bound on the witness sizes of the outputs of R.

This ability to bound k from above by a small value based on the existence of an efficient
reduction to MCSP is quite powerful. It can also be carried out for more complex languages.
For example, consider a polylog time reduction from PARITY to MCSP, where we are
mapping n-bit strings to instances of MCSP. Given any polylog time reduction from PARITY
to MCSP, we can construct another polylog time reduction which on every n-bit string
always outputs the same circuit size parameter kn. That is, we can turn any polylog time
reduction into a natural reduction in the sense of Kabanets and Cai [15], and apply their
work to general reductions. (The basic idea is to answer “no” to every bit query of the
polylog time reduction, and to then “pad” a given PARITY instance with a few strategically
placed zeroes, so that it always satisfies those “no” answers.)

Several of our theorems have the form that, if computing circuit complexity is NP-hard
(or nondeterministic circuit complexity is Σ2P-hard), then circuit lower bounds follow. This is
intriguing to us, as one also expects that efficient algorithms for computing circuit complexity
also lead to lower bounds! (For example, [15, 13, 19] show that polynomial-time algorithms
for MCSP in various forms would imply circuit lower bounds against EXP and/or NEXP.) If
a circuit lower bound can be proved to follow from assuming MCSP is NP-intermediate (or
NMCSP is Σ2P-intermediate), perhaps we can prove circuit lower bounds unconditionally
without necessarily resolving the complexity of MCSP.

2 Preliminaries

For simplicity, all languages are over {0, 1}. We assume knowledge of the basics of complexity
theory [8]. Here are a few (perhaps) non-standard notions we use. For a function s : N→ N,
poly(s(n)) is shorthand for O(s(n)c) for some constant c, and Õ(s(n)) is shorthand for
s(n) · poly(logn). Define SIZE(s(n)) to be the class of languages computable by a circuit
family of size O(s(n)). Define Σ2TIME[t(n)] to be the class of languages recognizable by a
Σ2 machine in time O(t(n)); more precisely, the languages L such that there exists a linear
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time machine M such that for all strings x,

x ∈ L ⇐⇒ (∃y ∈ {0, 1}t(|x|))(∀z ∈ {0, 1}t(|x|))[M(x, y, z) accepts].

In some of our results, we apply the well-known PARITY lower bound of Håstad:

I Theorem 2.1 (Håstad [12]). For every k ≥ 2, PARITY cannot be computed by circuits
with AND, OR, and NOT gates of depth k and size 2o(n

1/(k−1)).

Machine model

The machine model used in our results may be any model with random access to the input
via addressing, such as a random-access Turing machine. The main component we want is
that the “address” of the bit/symbol/word being read at any step is stored as a readable
and writable binary integer.

A remark on sub-polynomial reductions

In Definition 1.1 we defined sub-polynomial time reductions to output out-of-bounds charac-
ters which denote the end of an output string. We could also have defined our reductions to
output a string of length 2dc log2 ne on an input of length n, for some fixed constant c ≥ 1.
This makes it easy for the reduction to know the “end” of the output. We can still compute
the length ` of the output in O(log `) time via Definition 1.1, by performing a doubling
search on the indices i to find one ? (trying the indices 1, 2, 4, 8, etc.), then performing a
binary search for the first ?. The results in this paper hold for either reduction model (but
the encoding of MCSP may have to vary in trivial ways, depending on the reduction notion
used).

Encoding MCSP

Let y1, . . . , y2` ∈ {0, 1}` be the list of k-bit strings in lex order. Given f : {0, 1}` → {0, 1},
the truth table of f is defined to be tt(f) := f(y1)f(y2) · · · f(y2`).

The truth table of a circuit is the truth table of the function it computes. Let T ∈ {0, 1}?.
The function encoded by T , denoted as fT , is the function satisfying tt(fT ) = T02k−|T |, where
k is the minimum integer satisfying 2k ≥ T . The circuit complexity of T , denoted as CC(T ),
is simply the minimum number of gates of any circuit computing fT .

There are several possible encodings of MCSP we could use. The main point we wish
to stress is that it’s possible to encode the circuit size parameter k in essentially unary
or in binary, and our results remain the same. (This is important, because some of our
proofs superficially seem to rely on a short encoding of k.) We illustrate our point with
two encodings, both of which are suitable for the reduction model of Definition 1.1. First,
we may define MCSP to be the set of strings Tx where |T | is the largest power of two
satisfying |T | < |Tx| and CC(fT ) ≤ |x|; we call this a unary encoding because k is effectively
encoded in unary. (Note we cannot detect if a string has the form 1k in logtime, so we
shall let any k-bit string x denote the parameter k. Further note that, if the size parameter
k > |T |/2, then the instance would be trivially a yes-instance. Hence this encoding captures
the “interesting” instances of the problem.) Second, we may define MCSP to be the set of
binary strings Tk such that |T | is the largest power of two such that |T | < |Tk|, k is written
in binary (with most significant bit 1) and CC(fT ) ≤ k. Call this the binary encoding.

I Proposition 2. There are TIME(poly(logn)) reductions between the unary encoding of
MCSP and the binary encoding of MCSP.
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The proof is a simple exercise, in Appendix A. More points on encoding MCSP for these
reductions can be found there as well.

Another variant of MCSP has the size parameter fixed to a large value; this version has
been studied extensively in the context of KT-complexity [2, 4]. Define MCSP′ to be the
version with circuit size parameter set to |T |1/2, that is, MCSP ′ := {T | CC(T ) ≤ |T |1/2}.
To the best of our knowledge, all theorems in this paper hold for MCSP′ as well; indeed
most of the proofs only become simpler for this case.

A simple lemma on the circuit complexity of substrings

We also use the fact that for any string T , the circuit complexity of an arbitrary substring of
T can be bounded via the circuit complexity of T .

I Lemma 2.2 ([19]). There is a universal c ≥ 1 such that for any binary string T and any
substring S of T , CC(fS) ≤ CC(fT ) + c log |T |.

Proof. Let c′ be sufficiently large in the following. Let k be the minimum integer satisfying
2k ≥ |T |, so the Boolean function fT representing T has truth table T02k−|T |. Suppose
C is a size-s circuit for fT . Let S be a substring of T = t1 · · · t2k ∈ {0, 1}2

k , and let
A,B ∈ {1, . . . , 2k} be such that S = tA · · · tB. Let ` ≤ k be a minimum integer which
satisfies 2` ≥ B −A. We wish to construct a small circuit D with ` inputs and truth table
S02`−(B−A). Let x1, . . . , x2` be the `-bit strings in lex order. Our circuit D on input xi first
computes i+A; if i+A ≤ B−A then D outputs C(xi+A), otherwise D outputs 0. Note there
are circuits of c′ · n size for addition of two n-bit numbers (this is folklore). Therefore in size
at most c′ · k we can, given input xi of length `, output i+A. Determining if i+A ≤ B −A
can be done with (c′ · `)-size circuits. Therefore D can either be implemented as a circuit of
size at most s+ c′(k + `+ 1). To complete the proof, let c ≥ 3c′. J

3 MCSP and Sub-Polynomial Time Reductions

In this section, we prove the following impossibility results for NP-hardness of MCSP:

Reminder of Theorem 1.2. For every δ < 1/2, there is no TIME(nδ) reduction from
PARITY to MCSP. As a corollary, MCSP is not AC0[2]-hard under TIME(nδ) reductions.

The proof has the following outline. First we show that there are poly(logn)-time reduc-
tions from PARITY to itself which can “insert poly(n) zeroes” into a PARITY instance. Then,
assuming there is a TIME(nδ) reduction from PARITY to MCSP, we use the aforementioned
zero-inserting algorithm to turn the reduction into a “natural reduction” (in the sense of
Kabanets and Cai [15]) from PARITY to MCSP, where the circuit size parameter k output by
the reduction depends only on the input length n. Next, we show how to bound the value of
k from above by Õ(nδ), by exploiting naturalness. Then we use this bound on k to construct
a Σ2 algorithm for PARITY which existentially guesses an Õ(nδ)-size circuit for the truth
table produced by the reduction, then universally verifies the circuit is correct on all bits of
the truth table. Finally, we convert the Σ2 algorithm into a depth-three circuit family of
2Õ(nδ) size, and appeal to Håstad’s AC0 lower bound for PARITY for a contradiction.

We start with a simple poly(logn)-time reduction for padding a string with zeroes in a
poly(n)-size set of prescribed bit positions. Let S ∈ Z` for a positive integer `. We say S is
sorted if S[i] < S[i+ 1] for all i = 1, . . . , `− 1.
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I Proposition 3. Let p(n) be a polynomial. There is an algorithm A which, given x of
length n, a sorted tuple S = (i1, . . . , ip(n)) of indices from {1, . . . , n+ p(n)}, and a bit index
j = 1, . . . , p(n) + n, A(x, S, j) outputs the jth bit of the string x′ obtained by inserting zeroes
in the bit positions i1, i2, . . . , ip(n) of x. Furthermore, A(x, S, j) runs in O(log2 n) time on x
of length n.

Proof. Given x of length n, a sorted S = (i1, . . . , ip) ∈ {1, . . . , n + p}p, and an index
j = 1, . . . , n+ p, first A checks if j ∈ S in O(log2 n) time by binary search, comparing pairs
of O(logn)-bit integers in O(logn) time. If yes, then A outputs 0. If no, there are two cases:
either (1) j < i1, or (2) ik < j for some k = 1, . . . , p. In case (1), A simply outputs xj . In
case (2), A outputs xj−k. (Note that computing j − k is possible in O(logn) time.) It is
easy to verify that the concatenation of all outputs of A over j = 1, . . . , |x|+ p is the string
x but with zeroes inserted in the bit positions i1, . . . , ip. J

Let t(n) = n1−ε for some ε > 0. The next step is to show that a TIME(t(n)) reduction
from PARITY to MCSP can be turned into a natural reduction, in the following sense:

I Definition 3.1 (Kabanets-Cai [15]). A reduction from a language L to MCSP is natural if
the size of all output instances and the size parameters k depend only on the length of the
input to the reduction.

The main restriction in the above definition is that the size parameter k output by the
reduction does not vary over different inputs of length n.

I Claim 1. If there is a TIME(t(n)) reduction from PARITY to MCSP, then there is a
TIME(t(n) log2 n) natural reduction from PARITY to MCSP. Furthermore, the value of k in
this natural reduction is Õ(t(n)).

Proof. By assumption, we can choose n large enough to satisfy t(2n) log(2n)� n. We define
a new (natural) reduction R′ from PARITY to MCSP:

R′(x, i) begins by gathering a list of the bits of the input that affect the size parameter
k of the output, for a hypothetical 2n-bit input which has zeroes in the positions
read by R. This works as follows. We simulate the TIME(t(n)) reduction R from L

to MCSP on the output indices corresponding to bits of the size parameter k, as if
R is reading an input x′ of length 2n. When R attempts to read a bit of the input,
record the index ij requested in a list S, and continue the simulation as if the bit at
position ij is a 0. Since the MCSP instance is polynomial in size, k written in binary
is at most O(logn) bits (otherwise we may simply output a trivial “yes” instance), so
the number of indices of the output that describe k is at most O(logn) in the binary
encoding. It follows that the size parameter k in the output depends on at most
t(2n) log(2n) bits of the (hypothetical) 2n-bit input. Therefore |S| ≤ t(2n) log(2n).
Sort S = (i1, . . . , i|S|) in O(t(n) log2 n) time, and remove duplicate indices.
R′ then simulates the TIME(t(n)) reduction R(x, i) from PARITY to MCSP. However,
whenever an input bit j of x is requested by R, if j ≤ n+ |S| then run the algorithm
A(x, S, j) from Proposition 3 to instead obtain the jth bit of the O(n+ |S|)-bit string
x′ which has zeroes in the bit positions in the sorted tuple S. Otherwise, if j > n+ |S|
and j ≤ 2n then output 0, and if j > 2n then output ? (out of bounds). Since the
algorithm of Proposition 3 runs in O(log2 n) time, this step of the reduction takes
O(t(n) log2 n) time.
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That is, the reduction R′ first looks for all the bits in a 2n-bit input that affect the output
size parameter k in the reduction R, assuming the bits read are all 0. Then R′ runs R on a
simulated string 2n-bit string x′ for which all those bits are zero (and possibly more at the
end, to enforce |x′| = 2n). Since the parity of x′ equals the parity of x, the MCSP instance
output by R′ is a yes-instance if and only if x has odd parity. However for the reduction R′,
the output parameter k is now a function of only the input length; that is, R′ is natural.

Now let us argue for an upper bound on k. Define a function f(i) which computes z := 0n,
then runs and outputs R′(z, i). The truth table of f , tt(f), is therefore an instance of MCSP.
Since R′ is natural, the value of k appearing in tt(f) is the same as the value of k for all
length-n instances of PARITY.

However, the circuit complexity of f is small: on any i, R′(0n, i) can be computed in
time O(t(n) log2 n). Therefore the circuit complexity of f is at most some s which is Õ(t(n)).
In particular, the TIME(t(n) log2 n) reduction can be efficiently converted to a circuit, with
any bit of the input 0n efficiently computed in O(logn) time at every request (the only thing
to check is that the index requested doesn’t exceed n). As the instance f of MCSP has
CC(f) ≤ s, by Lemma 2.2 the truth table T in the instance tt(f) has CC(T ) ≤ cs as well
for some constant c.

Since 0n has even parity, the truth table of f is not in MCSP. This implies that the value
of k in the instance tt(f) must be less than cs = Õ(t(n)). Therefore the value of k fixed in
the reduction from PARITY to MCSP must be at most Õ(t(n) log2 n). J

Now, we show that efficient reductions from PARITY to MCSP yield efficient Σ2 algo-
rithms for PARITY:

I Claim 2. If there is a TIME(t(n)) reduction from PARITY to MCSP, then there is a
Σ2TIME(Õ(t(n))) algorithm for PARITY.

Proof. Construct a Σ2 algorithm for PARITY as follows:

Given an input x, existentially guess a circuit C with O(logn) inputs and size at most
s = Õ(t(n)), where s is taken from Claim 1. Then universally verify over all possible
O(logn)-bit inputs i to C that C(i) = R′(x, i), where R′ is from Claim 1. If yes, then
accept, else reject.

Since we know the value of the size parameter in the instance output by R′(x, ·) is at
most s (from Claim 1), there is a circuit C of size at most s with the above property if
and only if x has odd parity. Since the number of inputs to C is O(logn), the universal
quantification in the above procedure is only O(logn) bits. Verification also takes Õ(t(n))
time, since C can be evaluated in Õ(t(n)) time on any input. Hence the Σ2 procedure has
the claimed running time. J

Finally, we can complete the proof of Theorem 1.2:

Proof of Theorem 1.2. Suppose that PARITY has a TIME(nδ) reduction from PARITY to
MCSP, for some δ < 1/2. Then by Claim 2, there is a Σ2 algorithm for PARITY running in
Õ(nδ) time. Such an algorithm can be converted into a depth-three OR-AND-OR circuit of
size 2Õ(nδ): the top OR at the output has incoming wires for all possible 2Õ(nδ) existential
guesses for the Σ2 machine, the middle AND tries all 2Õ(nδ) universal guesses, and the
remaining deterministic computation on Õ(nδ) bits is computable with a CNF (AND of
ORs) of size 2Õ(nδ). Therefore, the assumed reduction implies that PARITY has depth-three
AC0 circuits of size 2Õ(nδ). For δ < 1/2, this is false by Håstad (Theorem 2.1). J
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I Remark. We used only the following properties of PARITY in the above proof: (a) one
can insert zeroes into a string efficiently without affecting its membership in PARITY,
(b) PARITY has trivial no-instances (strings of all zeroes), and (c) PARITY lacks small
depth-three circuits. We imagine that some of the ideas in the above proof may be useful for
other “non-hardness” results in the future.

4 NP-Hardness of MCSP Implies Lower Bounds

We now turn to stronger reducibility notions, showing that even NP-hardness of MCSP under
these reductions implies separation results that currently appear out of reach.

4.1 Consequences of NP-Hardness Under Polytime and Logspace
Reductions

Our two main results here are:

Reminder of Theorem 1.3. If MCSP is NP-hard under polynomial-time reductions, then
EXP 6= NP ∩ P/poly. Consequently, EXP 6= ZPP.

Reminder of Corollary 1.4. If MCSP is NP-hard under logarithmic space reductions, then
PSPACE 6= ZPP.

These theorems follow from establishing that the NP-hardness of MCSP and small circuits
for EXP implies NEXP = EXP. In fact, it suffices that MCSP is hard for only sparse
languages in NP. (Recall that a language L is sparse if there is a c such that for all n,
|L ∩ {0, 1}n| ≤ nc + c.)

I Theorem 4.1. If every sparse language in NP has a polynomial-time reduction to MCSP,
then EXP ⊆ P/poly =⇒ EXP = NEXP.

Proof. Suppose that MCSP is hard for sparse NP languages under polynomial-time reductions,
and that EXP ⊆ P/poly. Let L ∈ NTIME(2nc) for some c ≥ 1. It is enough to show that
L ∈ EXP.

Define the padded language L′ := {x012|x|
c

| x ∈ L}. The language L′ is then a sparse
language in NP. By assumption, there is a polynomial time reduction from L′ to MCSP.
Composing the obvious reduction from L to L′ with the reduction from L′ to MCSP, we
have a 2c′·nc -time reduction R from n-bit instances of L to 2c′·nc -bit instances of MCSP, for
some constant c′. Define the language

BITSR := {(x, i) | the ith bit of R(x) is 1}.

BITSR is clearly in EXP. Since EXP ⊆ P/poly, for some d ≥ 1 there is a circuit family {Cn}
of size at most nd + d computing BITSR on n-bit inputs.

Now, on a given instance x of L, the circuit D(i) := C2|x|+c′·|x|c(x, i) has c′ · |x|c inputs
(ranging over all possible i = 1, . . . , 2c′·|x|c) and size at most s(|x|) := (2 + c′)d|x|cd + d,
such that tt(D) is the output of R(x). Therefore, for every x, the truth tables output by
R(x) all have circuit complexity at most e · s(|x|) for some constant e, by Lemma 2.2. This
observation leads to the following exponential time algorithm for L:

On input x, run the reduction R(x), obtaining an exponential sized instance 〈T, k〉 of
MCSP. If k > e · s(|x|) then accept. Otherwise, cycle through every circuit E of size
at most k; if tt(E) = T then accept. If no such E is found, reject.
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Producing the truth table T takes exponential time, and checking all 2O(s(n) log s(n)) circuits
of size O(s(n)) on all polynomial sized inputs to the truth table also takes exponential time.
As a result L ∈ EXP, which completes the proof. J

The same argument can be used to prove collapses for other reducibilities. For example,
swapping time for space in the proof of Theorem 4.1, we obtain:

I Corollary 4.2. If MCSP is NP-hard under logspace reductions, then PSPACE ⊆ P/poly =⇒
NEXP = PSPACE.

Theorem 4.1 shows that complexity class separations follow from establishing that MCSP
is NP-hard in the most general sense. We now prove Theorem 1.3, that NP-hardness of
MCSP implies EXP 6= NP ∩ P/poly:

Proof of Theorem 1.3. By contradiction. Suppose MCSP is NP-hard and EXP = NP∩P/poly.
Then EXP ⊂ P/poly implies NEXP = EXP by Theorem 4.1, but NEXP = EXP ⊆ NP,
contradicting the nondeterministic time hierarchy [20]. J

Corollary 1.4 immediately follows from the same argument as Theorem 1.3, applying
Corollary 4.2.

We would like to strengthen Theorem 1.3 to show that the NP-hardness of MCSP
actually implies circuit lower bounds such as EXP 6⊂ P/poly. This seems like a more natural
consequence: an NP-hardness reduction would presumably be able to print truth tables of
high circuit complexity from no-instances of low complexity. (Indeed this is the intuition
behind Kabanets and Cai’s results concerning “natural” reductions [15].)

4.2 Consequences of NP-Hardness under AC0 Reductions
Now we turn to showing consequences of assuming that MCSP is NP-hard under uniform
AC0 reductions. Here we obtain consequences so strong that we are skeptical the hypothesis
is true.

Reminder of Theorem 1.5. If MCSP is NP-hard under logtime-uniform AC0 reductions,
then NP 6⊂ P/poly and E 6⊂ i.o.-SIZE(2δn) for some δ > 0. As a consequence, P = BPP also
follows.

We will handle the two consequences in two separate theorems.

I Theorem 4.3. If MCSP is NP-hard under LOGTIME-uniform AC0 reductions, then
NP ⊆ P/poly =⇒ NEXP ⊆ P/poly.

Proof. The proof is similar in spirit to that of Theorem 4.1. Suppose that MCSP is NP-hard
under LOGTIME-uniform AC0 reductions, and that NP ⊆ P/poly. Then ΣkP ⊆ P/poly for
every k ≥ 1.

Let L ∈ NEXP; in particular, let L ∈ NTIME(2nc) for some c. As in Theorem 4.1,
define the sparse NP language L′ = {x01t | x ∈ L, t = 2|x|c}. By assumption, there is a
LOGTIME-uniform AC0 reduction R from the sparse language L′ to MCSP. This reduction
can be naturally viewed as a ΣkP reduction S(·, ·) from L to exponential-sized instances of
MCSP, for some constant k. In particular, S(x, i) outputs the ith bit of the reduction R on
input x01t, and S can be implemented in ΣkP, and hence in P/poly as well.

That is, for all inputs x, the string S(x, 1) · · ·S(x, 2O(|x|c)) is the truth table of a function
with poly(|x|)-size circuits. Therefore by Lemma 2.2, the truth table of the MCSP instance
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being output on x must have a poly(|x|)-size circuit. We can then decide L in Σk+2P time:
on an input x, existentially guess a circuit C of poly(|x|) size, then for all inputs y to C,
verify that S(x, y) = C(y). The latter equality can be checked in ΣkP. As a result, we have
NEXP ⊆ Σk+2P ⊆ P/poly. J

I Theorem 4.4. If MCSP is NP-hard under P-uniform AC0 reductions, then there is a
δ > 0 such that E 6⊂ i.o.-SIZE(2δn). As a consequence, P = BPP also follows from the same
assumption (Impagliazzo and Wigderson [14]).

Proof. Assume the opposite: that MCSP is NP-hard under P-uniform AC0 reductions and
for every ε > 0, E ⊂ i.o.-SIZE(2εn). By Agrawal et al. [1] (Theorem 4.1), all languages
hard for NP under P-uniform AC0 reductions are also hard for NP under P-uniform NC0
reductions. Therefore MCSP is NP-hard under P-uniform NC0 reductions. Since in an NC0
circuit all outputs depend on a constant number of input bits, the circuit size parameter k
in the output of the reduction depends on only O(logn) input bits. By Claim 1, the NC0
reduction from PARITY to MCSP can be converted into a natural reduction. Therefore we
may assume that the size parameter k in the output of the reduction is a function of only
the length of the input to the reduction.

Let R be a polynomial-time algorithm that on input 1n produces a P-uniform NC0 circuit
Cn on n inputs that reduces PARITY to MCSP. Fix c such that R runs in at most nc + c

time and every truth table produced by the reduction is of length at most nc + c. Define an
algorithm R′ as follows:

On input (n, i, b), where n is a binary integer, i = 1, . . . , nc + c, and b ∈ {0, 1}, run
R(1n) to produce the circuit Cn, then evaluate Cn(0n) to produce a truth table Tn.
If b = 0, output the ith bit of Cn. If b = 1, output the ith bit of Tn.

For an input (n, i, b), R′ runs in time O(nc); when m = |(n, i, b)|, this running time is
2O(m) ≤ nO(1). By assumption, for every ε > 0, R′ has circuits {Dm} of size O(2εm) ≤ O(n2ε)
for infinitely many input lengths m. This has two important consequences:
1. For every ε > 0 there are infinitely many input lengths m = O(logn) such that the size

parameter k in the natural reduction from PARITY to MCSP is at most n2ε (or, the
instance is trivial). To see this, first observe that 0n is always a no-instance of PARITY,
so R(0n) always maps to a truth table Tm of circuit complexity greater than k(n) (for
some k(n)). Since R′(n, i, 1) prints the ith bit of R(0n), and the function R′(n, ·, 1) is
computable with an O(n2ε)-size circuit Dn, the circuit complexity of Tm is at most
O(n2ε), by Lemma 2.2. Therefore the output size parameter k of R(0n) for these input
lengths m is at most O(n2ε).

2. On the same input lengths m for which k is O(n2ε), the same circuit Dm of size O(n2ε)
can compute any bit of the NC0 circuit Cn that reduces PARITY to MCSP. This follows
from simply setting b = 0 in the input of Dm.

The key point is that both conditions are simultaneously satisfied for infinitely many
input lengths m, because both computations are made by the same 2O(n) time algorithm R′.
We use these facts to construct an i.o.-Σ2TIME(Õ(n2ε)) algorithm A, as follows:

On input (x,D), where n = |x| and D is an O(n2ε) size circuit with m = O(logn)
inputs:
Assume D computes R′(n, i, b) on inputs such that m = |(n, i, b)|. Evaluate D on n,
O(logn) different choices of i, and b = 0, to construct the portion of the NC0 circuit
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Cn that computes the size parameter k in the output of the reduction from PARITY
to MCSP. Then, use this O(logn)-size subcircuit to compute the value of k for the
input length n.
Next, nondeterministically guess a circuit C ′ of size at most k; we wish to verify
that for all i, C ′(i) outputs the ith bit of the truth table Tx produced by the NC0
reduction on input x. We can verify this by noting that the ith bit of Tx can also
be computed in O(nε) time, via D. Namely, universally choose an i, and produce
the O(1)-size subcircuit that computes the ith output bit of the NC0 circuit Cn (by
making a constant number of queries to D with b = 0). Then, simulate the resulting
O(1)-size subcircuit on the relevant input bits of x to compute the ith bit of Tx, and
check that C ′(i) equals this bit. If all checks pass, accept, else reject.

Assuming the circuit D actually computes R′, A(x,D) computes PARITY correctly. For
every ε > 0, there are infinitely many m such that the circuit size parameter k is at most
2O(εm) ≤ O(n2ε), and the circuit D of size 2O(εm) ≤ O(n2ε) exists. Under these conditions,
the above Σ2 algorithm A runs in Õ(n2ε) time. As a result, for every ε > 0 we can find
for infinitely many n such that the algorithm A has a corresponding depth-3 AC0 circuit
of 2Õ(nε) size. Suppose we hardwire the O(n2ε)-size circuit D that computes R′ into the
corresponding AC0 circuit, on input lengths n for which D exists. Then for all ε > 0, PARITY
can be solved infinitely often with depth-3 AC0 circuits of 2Õ(nε) size, contradicting Håstad
(Theorem 2.1). J

Proof of Theorem 1.5. Suppose MCSP is NP-hard under logtime-uniform AC0 reductions.
The consequence E 6⊂ SIZE(2δn) was already established in Theorem 4.4. The consequence
NP 6⊂ P/poly follows immediately from combining Theorem 4.3 and Theorem 4.4. J

4.3 The Hardness of Nondeterministic Circuit Complexity
Finally, we consider the generalization of MCSP to the nondeterministic circuit model. Recall
that a nondeterministic circuit C of size s takes two inputs, a string x on n bits and a string
y on at most s bits. We say C computes a function f : {0, 1}n → {0, 1} if for all x ∈ {0, 1}n,
f(x) = 1 ⇐⇒ there is a y of length at most s such that C(x, y) = 1.

Observe that the Cook-Levin theorem implies that every nondeterministic circuit C of
size s has an equivalent nondeterministic depth-two circuit C ′ of size s · poly(log s) (and
unbounded fan-in). Therefore, it is no real loss of generality to define Nondeterministic MCSP
(NMCSP) to be the set of all pairs 〈T, k〉 where T is the truth table of a function computed
by a depth-two nondeterministic circuit of size at most k. This problem is in Σ2P : given
〈T, k〉, existentially guess a nondeterministic circuit C of size at most k, then for every x
such that T (x) = 1, existentially guess a y such that C(x, y) = 1; for every x such that
T (x) = 0, universally verify that for all y, C(x, y) = 0. However, NMCSP is not known to
be Σ2P -hard. (The proof of Theorem 1.6 below will work for the depth-two version with
unbounded fan-in, and the unrestricted version.)

Recall that it is known that MCSP for depth-two circuits is NP-hard [10, 6]. That is, the
“deterministic counterpart” of MCSP is known to be NP-hard.

Reminder of Theorem 1.6. If NMCSP is MA-hard under polynomial-time reductions, then
EXP 6⊆ P/poly.

Proof. Suppose that NMCSP is MA-hard under polynomial-time reductions, and suppose
that EXP ⊆ P/poly. We wish to establish a contradiction. The proof is similar in structure to
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other theorems of this section (such as Theorem 4.1). Let L ∈ MATIME(2nc), and define
L′ = {x012|x|

c

| x ∈ L} ∈ MA. By assumption, there is a reduction R from L′ to NMCSP
that runs in polynomial time. Therefore for some constant d we have a reduction R′ from L

that runs in 2dnc time, and outputs 2dnc-sized instances of NMCSP with a size parameter
s(x) on input x. Since R′ runs in exponential time, and we assume EXP is in P/poly, there is
a k such that for all x, there is a nondeterministic circuit C((x, i), y) of ≤ nk + k size that
computes the ith bit of R′(x). Therefore we know that s(x) ≤ |x|k + k on such instances
(otherwise we can trivially accept). We claim that L ∈ EXP, by the following algorithm:

Given x, run R′(x) to compute s(x). If s(x) > |x|k + k then accept.
For all circuits C in increasing order of size up to s(x),

Initialize a table T of 2dnc bits to be all-zero.
For all i = 1, . . . , 2dnc and all 2s(x) possible nondeterministic strings y,

Check for each i if there is a y such that C((x, i), y) = 1; if so, set T [i] = 1.
If T = R′(x) then accept.

Reject (no nondeterministic circuit of size at most s(x) was found).

Because s(x) ≤ |x|k + k, the above algorithm runs in 2nk·poly(logn) time and decides L.
Therefore L ∈ EXP. But this implies that MAEXP = EXP ⊆ P/poly, which contradicts the
circuit lower bound of Buhrman, Fortnow, and Thierauf [9]. J

5 Conclusion

We have demonstrated several formal reasons why it has been difficult to prove that MCSP
is NP-hard. In some cases, proving NP-hardness would imply longstanding complexity class
separations; in other cases, it is simply impossible to prove NP-hardness.

There are many open questions left to explore. Based on our study, we conjecture that:
If MCSP is NP-hard under polynomial-time reductions then EXP 6⊂ P/poly. We showed
that if MCSP is hard for sparse NP languages then EXP 6= ZPP; surely a reduction from
SAT to MCSP would provide a stronger consequence.
MCSP is (unconditionally) not NP-hard under logtime-uniform AC0 reductions. The-
orem 1.2 already implies that MCSP isn’t NP-hard under polylogtime-uniform NC0
reductions. Perhaps this next step isn’t far away, since we already know that hardness
under P-uniform AC0 reductions implies hardness under P-uniform NC0 reductions (by
Agrawal et al. [1]).

It seems that we can prove that finding the minimum DNF for a given truth table is
NP-hard, because of 2Ω(n) size lower bounds against DNFs [6]. Since there are 2Ω(nδ) size
lower bounds against AC0, can it be proved that finding the minimum AC0 circuit for a given
truth table is QuasiNP-hard? In general, can circuit lower bounds imply hardness results for
circuit minimization?
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A Appendix: Unary and Binary Encodings of MCSP

We will describe our reductions in the reduction model with “out of bounds” errors (Defini-
tion 1.1). In that model, we may define a unary encoding of MCSP (T, k) to be Tx where |T |
is the largest power of two such that |T | ≤ |Tx|, k = |x|. This encoding is sensible because
we may assume WLOG that k ≤ 2|T |/ log |T |: the size of a minimum circuit for a boolean
function on n inputs is always less than 2n+1/n. Similarly, we defined MCSP (T, k) in the
binary encoding to simply be Tk where |T | is the largest power of two such that |T | ≤ |Tk|.

Note that these encodings may be undesirable if one really wants to allow trivial yes
instances in a reduction to MCSP where the size parameter k is too large for the instance
to be interesting, or if one wants to allow T to have length other than a power of two. For
those cases, the following binary encoding works: we can encode the instance (T, k) as the
strings T00k′ such that k′ is k written “in binary” over the alphabet {01, 11}. There are also
TIME(poly(logn)) reductions to and from this encoding to the others above, mainly because
k′ has length O(logn).

I Proposition 4. There are TIME(poly(logn)) reductions between the unary encoding of
MCSP and the binary encoding of MCSP.

Proof. We can reduce from the binary encoding to the unary encoding as follows. Given an
input y, perform a doubling search (probing positions 1, 2, 4, . . ., 2`, etc.) until a ? character
is returned. Letting 2` < |y| be the position of the last bit read, this takes O(log |y|) probes
to the input. Then we may “parse” the input y into T as the first 2` bits, and integer k′
as the remainder. To process the integer k′, we begin by assuming k′ = 1, then we read in
log |y|) bits past the position 2`, doubling k′ for each bit read and adding 1 when the bit
read is 1, until k′ > |y| (in which case we don’t have to read further: the instance is trivially
yes) or we read a ? (in which case we have determined the integer k′). Finally, if the bit
position i requested is at most 2`, then we output the identical bit from the input Tk. If not,
we print 1 if i < 2` + k + 1, and ? otherwise. The overall output of this reduction is T1k′

where k < |T |. Since addition of O(logn) numbers can be done in O(logn) time, the above
takes poly(logn) time.

To reduce from the unary encoding to the binary encoding, we perform a doubling search
on the input y as in the previous reduction, to find the largest ` such that 2` < |y|. Then we
let the first 2` bits be T , and set the parameter k = |y| − 2` − 1. (Finding |y| can be done
via binary search in O(log |y|) calls to the reduction.) From here, outputting the ith bit of
either T or k in the binary encoding is easy, since |k| = O(log |y|).

J
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Abstract
We consider boolean circuits in which every gate may compute an arbitrary boolean function of
k other gates, for a parameter k. We give an explicit function f : {0, 1}n → {0, 1} that requires
at least Ω(log2 n) non-input gates when k = 2n/3. When the circuit is restricted to being layered
and depth 2, we prove a lower bound of nΩ(1) on the number of non-input gates. When the circuit
is a formula with gates of fan-in k, we give a lower bound Ω(n2/k logn) on the total number of
gates.

Our model is connected to some well known approaches to proving lower bounds in complexity
theory. Optimal lower bounds for the Number-On-Forehead model in communication complexity,
or for bounded depth circuits in AC0, or extractors for varieties over small fields would imply
strong lower bounds in our model. On the other hand, new lower bounds for our model would
prove new time-space tradeoffs for branching programs and impossibility results for (fan-in 2)
circuits with linear size and logarithmic depth. In particular, our lower bound gives a different
proof for a known time-space tradeoff for oblivious branching programs.
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1 Introduction

A boolean circuit is usually defined as a directed acyclic graph where vertices (called gates)
have in-degree (called fan-in) at most 2. Every gate with fan-in 0 corresponds to an input
variable, and all other gates compute an arbitrary boolean function of the values that feed
into them. Sometimes the model is restricted to using gates from the DeMorgan basis (i.e.
AND, OR, NOT) gates, but this changes the size of the circuit by at most a constant factor.
The circuit computes a function f : {0, 1}n → {0, 1} if some gate in the circuit evaluates to
f . A formula is a circuit whose underlying graph is a tree. The depth of the circuit is the
length of the longest path in the graph.

Since every algorithm with running time T (n) can be simulated by circuits of size Õ(T (n)),
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382 Circuits with Medium Fan-In

would imply that P 6= NP. However, we know of no explicit function (even outside NP) for
which we can prove a super-linear lower bound. In contrast, counting arguments imply that
almost every function requires circuits of exponential size.

We study a stronger model of circuits. We allow the gates to have fan-in k, where k is
a parameter that depends on n, and each gate may compute an arbitrary function of its
inputs. Typically, we consider the case where k is a constant fraction of n. We write Ck(f)
to denote the minimum number of non-input gates required to compute f in this model.

These circuits are much stronger than the models usually studied in the context of proving
lower bounds. Nevertheless, we show that many attempts at proving lower bounds on other
models of computation can be seen as attempts to prove new lower bounds in our model.
Truly exponential lower bounds for AC0, optimal lower bounds for the Number-On-Forehead
(or NOF) model of communication, or new extractors for varieties over small fields, would all
improve the best lower bounds we know how to prove for Ck(f). On the other hand, new
lower bounds in our model would lead to lower bounds for branching programs and (fan-in
2) circuits of logarithmic depth. Our Theorem 1 already leads to a different proof of the
lower bounds on oblivious branching programs given by Babai, Nisan and Szegedy [3]. We
elaborate on these connections in Section 4.

Similar models have been studied in past works. Circuits with arbitrary gates and arbitrar-
ily large fan-in have been considered for computing several boolean functions simultaneously.
If n boolean functions are being computed, the trivial upper bound uses n2 wires (edges).
Super-linear lower bounds on the number of wires are known for circuits of bounded depth in
this scenario [9, 17, 18, 14]. Beame, Koutris and Suciu [5], studied a model of communication
where p processors, each with memory n/p1−ε attempt to compute with a minimal amount
of communication. This model is conceptually related to ours, since each such processor can
be thought of as a collection of gates with bounded fan-in. Goldreich and Wigderson [12]
investigated multilinear arithmetic circuits where the gates are allowed to compute arbitrary
multilinear functions of a bounded number of inputs. None of these results seem to give
non-trivial lower bounds on Ck(f).

Clearly, Cn(f) = 1, since f has only n variables. However, when the fan-in is restricted,
the power of circuits dramatically decreases. A counting argument shows that for almost
every f , Ck(f) > 2(n−k)−o(n−k), which is exponentially large even for k linear in n. On the
other hand, one can show that Ck(f) ≤ O((n − k)2n−k) for every f . The challenge is to
obtain such a lower bound for an explicit function f . If f depends on all its inputs, then
it is easy to see that Ck(f) ≥ n/k. When k is linear in n, this trivial lower bound is just a
constant.

Chandra, Furst and Lipton [8] defined the Number-on-Forehead model of communication,
which we discuss in detail in Section 2.1. They proved lower bounds on branching programs
computing the majority function by giving a reduction to the NOF model. The lower bound
for the communication model is obtained via Ramsey style argument and displays a tower-like
decay. Their reduction is easily adapted to our model as well, yielding super-constant lower
bounds on C2n/3(Majority). In our work, we use NOF lower bounds to obtain stronger
results. We use a different reduction to show: 1

I Theorem 1. There exists f ∈ P such that for every γ > 0 and n large enough, C(1−γ)n(f) ≥
Ω(γ log2 n).

1 Abusing notation, we write f ∈ P to mean that f is obtained by restricting a polynomial time computable
function to n-bit inputs.
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The proof is reminiscent of the approaches in [16, 1, 3, 7, 6] concerning time-space trade-offs
for oblivious branching programs.

Next, we define a quantity which is closely related to Ck(f). Let C2
k(f) denote the smallest

number m such that there exist boolean functions g, f1, . . . , fm with f = g(f1, . . . , fm), where
every fi reads at most k inputs. We prove:

I Theorem 2. There exist f ∈ P, c > 0, such that C2
(1−γ)n(f) ≥ Ω(ncγ).

The proof of Theorem 2 involves ideas inspired by Nechiporuk’s [15] lower bound on boolean
formula size. We show (Proposition 4) that C2

k(f) ≤ Ck(f) · 2Ck(f) for every f , and hence
Theorem 2 implies a lower bound of Ω(γ logn) on C(1−γ)n(f). In fact, the specific f from
Theorem 2 satisfies C2n/3(f) ≤ O(logn), showing that C2

2n/3 can be exponentially larger
than C2n/3.

Finally, we observe that Nechiporuk’s original proof can be easily extended to formulas
with large fan-in. Write Lk(f) for the smallest number of leaves in a formula computing f
with fan-in at most k. Nechiporuk gave an explicit function f for which L2(f) ≥ Ω(n2/ logn).
We prove:

I Theorem 3. There exists f ∈ P such that Lk(f) = Ω(n2/k logn).

Note that for formulas we are counting leaves and not just the non-input gates. Of course,
Theorem 3 implies a lower bound of Ω(n2/k2 logn) on the number of non-input gates as well.

The lower bound in Theorem 1 is stronger than stated. Consider circuits where the gates
can have arbitrarily large fan-in, but each gate can read at most k input variables. Define
C∗k(f) as the smallest number of non-input gates which read some input variable in a circuit
computing f . Then C∗k(f) ≤ Ck(f). Our lower bound proofs actually give lower bounds
on C∗k(f): both Theorem 1 and Proposition 4 work for C∗k as well. On the other hand, we
always have C∗k(f) ≤ n. Hence, proving a super-linear lower bound on Ck(f) requires a
technique which fails to work for C∗k(f).

In Section 2, we discuss the quantities Ck and C2
k in greater detail. In Section 3, we give

the proofs our lower bounds. In Section 4, we outline the connections between our model
and other problems in complexity theory.

2 Circuits of medium fan-in

As mentioned in the introduction, counting arguments show that for almost every f , Ck(f) >
2(n−k)−o(n−k). The bound is exponential even when k is very close to n, and super-linear
even when k < n− 1.1 logn. It becomes sub-linear when k > n− logn. One can check that
Cn−1.1 log logn(f) = Ω(logn) for most functions f .

The trivial upper bound on the quantity C2
k(f) is n. The bound is tight even if k is very

close to n: there exists an f for which C2
bn−logn−1c(f) = n. Indeed, the number of choices

for the functions g, f1, . . . , fm is at most

22m
((

n

k

)
22k
)m
≤ 22m+m2k+nm .

In order to realize all n-variate functions, we must have 2m +m2k + nm ≥ 2n. If m = n− 1
and k = bn− logn− 1c, the bound is

2n−1 + (n− 1)2n−1/n+ n2 = 2n(1− 1/(2n)) + n2 < 2n.

CCC 2015
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An exercise would show that ` ≤ logn implies C2
n−`(f) ≤ 2` + `, thus C2

k decreases when k
goes above n− logn.

The following proposition relates Ck(f) to C2
k(f).

I Proposition 4. C2
k(f) ≤ Ck(f) · 2Ck(f).

Proof. Let u1, . . . , us be the non-input gates in a circuit of size s = Ck(f) where the gate
us evaluates to f . For every i ∈ [s] and every σ : {u1, . . . , us} → {0, 1}, we define a function
fi,σ that depends on at most k input variables, as follows. fi,σ reads the input variables that
are read by ui, and outputs 1 if and only if there exists some setting of the remaining input
variables that could result in the evaluation given in σ. Define g to be the function that
reads the outputs of the fi,σ’s and computes f by finding the unique σ for which fi,σ = 1 for
every i. Formally, f =

∨
σ:σ(us)=1

∧
i∈[s] fi,σ. J

Proposition 4 together with Theorem 2 already gives an Ω(logn) lower bound on C2n/3(f).
However,the exponential loss in the transformation means that even an optimal lower bound
(of n) on depth-2 circuits would give at most a logarithmic lower bound for general circuits.
We show in Proposition 5 that the exponential loss is inevitable.

2.1 Communication complexity

In the Number-On-Forehead model of communication complexity [8], there are p parties that
are trying to compute a function f(x1, x2, . . . , xp), where each xi is a n/p-bit string. The
i’th party can see every input except xi. To evaluate f , the parties exchange messages (by
broadcast), until one of the parties can transmit the value of f to the others. The complexity
of f is the number of bits the players need to exchange in order to evaluate f . Every function
can be computed with n/p bits of communication. The strongest lower bounds known are due
to Babai, Nisan and Szegedy [3]. They proved that the generalized inner product function
defined by

GIP(x1, . . . , xp) =
n/p∑
i=1

p∏
j=1

xji mod 2

requires Ω(n/22p) bits of communication. They also showed that computing the quadratic
character on a sum of numbers requires Ω(n/2p) communication.

The most straightforward connection between circuits and the NOF model is the following
observation:

Suppose that a circuit computing f(x1, . . . , xp) has the property that for every gate u there
is some i ∈ [p] such that u reads no variable from xi. Then, if the circuit has s non-input
gates, the function f can be evaluated using s bits in the NOF model.

This does not directly imply a circuit lower bound – in a circuit of linear fan-in, gates may
access a constant fraction of each of the blocks xi. For example, GIP can be computed by a
constant size circuit with fan-in n/2 (imagine two gates, one reading the first half of every
xi, and the other the second half). Nevertheless, this issue can be partially circumvented, as
in [8] or in our Theorem 1, where we use the GIP function to obtain C2n/3(f) ≥ Ω(log2 n)
for a related function f . An explicit function requiring Ω(n/p) communication in the NOF
model would give an explicit function with C2n/3(f) ≥ Ω (

√
n).
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3 The lower bounds

3.1 The Nechiporuk method applied to Lk(f)
The proofs of Theorems 2 and 3 are variations of Nechiporuk’s lower bound on formula size,
which we now discuss. Given a boolean function f on n variables, a subset of its variables S,
and an assignment σ to the variables outside S, we define the function fσ be the function
obtained by setting the variables outside S to σ. It is a function in the variables S. Any
such function is called an S-subfunction of f . The number of S-subfunctions of f is clearly
at most min(22|S| , 2n−|S|).

Nechiporuk finds a function f whose input is partitioned into intervals x1, x2, . . . , xr, each
of size approximately logn, such that for every i, f has 2Ω(n) {xi}-subfunctions. A simple
example is the element distinctness function. Divide the n-bit input into r = n/(2 logn)
intervals, each of size 2 logn, and let f(x1, . . . , xr) := 1 iff x1, . . . , xr ∈ {0, 1}2 logn are
distinct. Observe that whenever σ2, . . . , σr ∈ {0, 1}2 logn are distinct, then f(x1, σ2, . . . , σr)
rejects precisely on the inputs σ2, . . . , σr. Hence f has at least

(
n2

r−1
)
≥ ( n2

r−1 )r−1 = 2Ω(n)

{x1}-subfunctions, and likewise for any {xi}.
We now prove Theorem 3, which is a straightforward extension of Nechiporuk’s argument

for k = 2 to general k. It is however noteworthy that the bound deteriorates only polynomially
with k.

I Claim 1. Let S be a subset of variables of f . Assume that f can be computed by a formula
with fan-in k in which m leaves correspond to inputs from S. Then f has at most 2O(mk)

S-subfunctions.

Proof. Given such a formula computing f , define the tree T as the union of all paths going
from some variable in S to the output. Assume that the formula is such that |T | is smallest
possible and, without loss of generality, k ≥ 3. Then T contains no path u, v1, . . . , vr with
v1, . . . , vr having in-degree 1 (in T ) and r > 1. For then the value of vr is determined by
the value of u and a pair of functions g1, g2 of inputs from the complement of S. We can
replace vr in our formula by a single gate of fan-in 3, which takes as input u and two gates
computing g1 and g2. This may increase the size of the formula, but decreases the size of T .

The tree T has m leaves. Since there are no edges connecting gates of in-degree 1 in T , it
has at most 4m nodes. Every S-subfunction can be described using 4mk bits as follows. For
each gate v in T , it is enough to specify the inputs to v coming from outside of T . Since the
fan-in of every gate is at most k, there will be at most 4mk such inputs. Thus f has at most
24mk S-subfunctions. J

Applying the claim to the element distinctness function, we obtain that every for-
mula computing f contains Ω(n/k) leaves labelled with a variable from xi, for every
i ∈ {1, . . . , n/(2 logn)}. This means that any such formula contains Ω( n2

k logn ) leaves al-
together.

3.2 Proof of Theorem 2
In order to prove our theorem, we will find a function f that has a stronger property with
regards to its subfunctions. Namely, f will have many S subfunctions not just for S coming
from a fixed partition of the inputs; it will have many S-subfunctions for almost every
logn-element set S.

We define our hard function as follows. f(x, y) will take as inputs x ∈ {0, 1}`+log ` and a
O(log2 `)-bit string y. Thus f is a function of n = `+O(log2 `) bits in total. We view y as
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representing a subset Sy ⊂ [`+ log `] of log ` variables from x. Let xSy be the projection of
x to the variables in Sy. We view the log `-bit string xSy as an element of [`]. Let Scy denote
the complement of Sy. Then define the function f(x, y) to output the xSy ’th bit of xScy .

Given a fixed y, each setting of xScy gives a distinct Sy-subfunction of f(x, y). Thus,

I Claim 2. For every log `-element subset S of the variables x, f has 2` S-subfunctions.

To prove Theorem 2, it will be enough to show that any small circuit gives an upper
bound on the number of S-subfunctions of f , for some log ` element subset S of the variables
in x.

Suppose that f = g(f1, . . . , fm), where every fi reads at most (1− γ)n variables. First
we observe:

I Claim 3. There exists 0 < c < 1/2 such that for every 0 < γ < 1, if ` > 100 and m < `cγ/2,
then there exists a log `-element subset S of the variables x such that each fi reads at most
(1− γ/2) log ` of the variables from S.

Proof. Pick log ` variables a1, . . . , alog ` from x, y uniformly at random. With high probabilty,
they will be distinct and they will completely miss the variables y; the probability being
larger than 1/2 if ` > 100. For a given i, let X be the random variable that counts the
number of variables of S that are read by the gate fi. The Chernoff-Hoeffding bound gives,

Pr
[
X

log ` ≥ 1− γ/2
]
≤ e−D(1−γ/2||1−γ) log ` < `−cγ ,

for a suitable c > 0. Here, D(1− γ/2||1− γ) = γ/2 ln(1/2) + (1− γ/2) ln((1− γ/2)/(1− γ))
is the Kullback-Leibler divergence. As γ approaches 0, the divergence becomes roughly
γ/2 ln(1/2) + γ/2 > 0.15γ; as γ approaches 1 it goes to infinity. Hence we indeed have
D(1 − γ/2||1 − γ) > c′γ for some constant c′ > 0 and every γ ∈ (0, 1), and we can set
c := (log2 e)c′ (the assumption c < 1/2 is without loss of generality). If m < `cγ/2, the union
bound gives that there is a log `-element set S with the required property. J

If m < `cγ/2, let S be the set promised by Claim 3. For every i ∈ [m], the number of S-
subfunctions of fi is at most 22(1−γ/2) log ` = 2`1−γ/2 , since each fi reads at most (1−γ/2) log `
variables from S. Each S-subfunction of f is uniquely determined by the S-subfunctions
of f1, . . . , fm, and so f has at most 2`1−γ/2m S-subfunctions. By Claim 2, this means that
m ≥ `γ/2 > `cγ/2 – a contradiction. Hence C2

(1−γ)n(f) ≥ `cγ/2 = Ω(ncγ), proving Theorem
2.

3.2.1 A matching upper bound for f(x, y)
We will now show that the lower bound from Theorem 2 is tight for the function f(x, y)
defined above2, thus the exponential gap between Ck and C2

k from Proposition 4 is inevitable.

I Proposition 5. There exists c > 0 such that for every 0 < γ < 1/2 and n sufficiently large,
C2

(1−γ)nf(x, y)≤ncγ and C(1−γ)nf(x, y) ≤ cγ logn .

Proof. It is enough to prove the bound for C(1−γ)n and invoke Proposition 4. We will outline
the construction for γ = 1/2 and then sketch how to adapt it to the general case. Divide the
variables x into two equal subsets x1 and x2. Let g1 be the function which, on inputs x1 and

2 In the case when γ is fixed and n grows independently.
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y, outputs a log `-bit string whose first bits equal x1 restricted to Sy. Define g2 similarly.
This means that xSy can be recovered from x2, y and the advice from g1; likewise for x1, y

and g2. It is now easy to see that we can write f(x, y) = h1(g1, x2, y) ∨ h2(g2, x1, y) with
suitable h1 and h2. This gives approximately logn gates with fan-in approximately n/2.

In general, partition the variables x into r disjoint subsets a1, . . . , ar of nearly the same size.
The gates will have access to the inputs y and x \ ai for some i ∈ [r]. Note that for any log `
element subset S of x, there will exist two distinct ai and aj with |ai ∩S|, |aj ∩S| ≤ 2 log `/r.
We can recover xSy from x \ ai with an advice of 2 log `/r bits, and as above, compute f(x, y)
using two gates depending y, x \ ai and y, x \ aj and 2 logn/r bits of advice each. The advice
itself can be computed by gates which have access to either y, x \ a1 or y, x \ a2. This gives a
circuit with roughly 8 logn/r + r gates of fan-in (1− 1/r)n; this is at most 10 logn/r gates
for fixed r and large enough n. J

3.3 Proof of Theorem 1
We will deduce a lower bound on Ck(f) from known NOF lower bounds. The main issue
with the reduction to the NOF model is that any gate in the circuit may read an arbitrary
set of inputs (perhaps even one bit from every party’s forehead).

One way to simulate any circuit with linear fan-in and m gates using m parties is to
associate every gate with a party and then greedily assign variables to parties, giving inputs
of length Ω(n/m) for each of the m parties. We manage to reduce the number of parties
to O(m/ logn), which enables us to obtain stronger lower bounds. This is done using the
following Lemma:

I Lemma 6. Let G ⊆ A × B be a bipartite graph with |A| = m, |B| = n and with every
a ∈ A having degree at least γn, where 0 < γ < 1/100 and n is sufficiently large with respect
to γ−1. If logn ≤ m ≤ log2 n, then there exists p ≤ 5m/γ and disjoint T1, . . . , Tp ⊆ A,
S1, . . . , Sp ⊆ B, each Si of size at least n0.9, such that A =

⋃
Ti and (Ti ×Si) ⊆ G for every

i ∈ [p].

Proof. We first prove the following:

I Claim. If m ≤ logn, G contains a complete bipartite graph with at least γm/2 vertices on
the left and 2n0.9 vertices on the right.

Proof. Remove from B all vertices with degree ≤ γm/2. Since the graph has at least γmn
edges to begin with, the remaining set of vertices B′ has size at least γn/2. For M ⊆ A, let
B(M) be the set of b ∈ B′ such that b is connected to every a ∈M . Hence,

B′ =
⋃

|M |=dγm/2e

B(M) .

Since m ≤ logn and γ < 1/100, the number of sets with |M | = dγm/2e is at most n0.09. So
there is such an M with B(M) ≥ γn/2

n0.09 ≥ 2n0.9, for n large enough. J

We iteratively apply the Claim to prove the Lemma. If m > logn, choose an arbitrary
logn-element subset of A and let T1 × S1 be the complete graph guaranteed by the Claim.
If m ≤ logn, apply the Claim directly to G. Remove from G all the vertices T1 and S1,
obtaining a new graph G2 ⊆ A2×B2. Repeat this process p times to obtain graphs G2, . . . , Gp
until Ap = ∅. We claim that p ≤ 5m/(γ logn). For such a small p, we have altogether
removed o(n) vertices from B and so |Bi| ≥ n(1− o(1)) for every i = 1, 2, . . . , p. Similarly,
the degree of any a ∈ Ai is at least γ|Bi|/2. Hence, as long as |Ai| ≥ log |Bi|, we remove
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at least γ logn/4 vertices from Ai. After at most 4m/(γ logn) steps, we then must have
|Ai| < log |Bi|. After this point, Ai decreases by at least the factor of (1− γ/2), and so the
size drops below 1 in roughly log logn/γ steps, which is much smaller that m/γ. Finally, the
size of every Si is at least |Bi|0.9 = 2(n(1− o(1)))0.9 ≥ n0.9, if n is large enough. J

Our hard function f(x, y) is defined as follows. It takes as inputs x ∈ {0, 1}` and an
auxiliary string y. We think of y as defining p ≤ log ` disjoint subsets S1

y , . . . , S
p
y of [`], of

equal size not exceeding `0.9. Hence, y can be taken as roughly `0.9 log2 `-bit string. We
define

f(x, y) := GIP(xS1
y
, . . . , xSpy ) .

f(x, y) has n = `+O(`0.9 log2 `) variables. As before, xSiy is the projection of x to Siy.
Suppose that for a fixed 0 < γ and n sufficiently large, f(x, y) can be computed using

m < γ log2 n/50 non-input gates with fan-in n(1− γ). Take the graph G whose left vertices
are the m gates of the circuit and the right vertices the ` variables of x. There is an edge
between a gate and a variable whenever the gate does not read the variable. Since y is
much shorter than x, the degree of a gate in G is at least γ`/2. To apply the Lemma, we
will assume γ < 1/100 (otherwise the circuit is weaker) and that m ≥ log `. The Lemma
shows that there exist disjoint sets of variables S1, . . . , Sp with p ≤ logn/5 and Si = b`0.9c
such that each gate completely misses at least one set Si. We can fix y so that y represents
S1, . . . Sp and hence f(x, y) computes GIP(xS1 , . . . , xSp). As observed in Section 2.1, the
circuit gives an m-bit protocol for GIP(xS1 , . . . , xSp). By the results of [3], this implies
m ≥ Ω(`0.92−2 log `/5) = Ω(

√
`), contradicting the assumption that m < γ log2 n/50. This

proves Theorem 1.

4 Connections to other models

Here we show how is our model connected to several disparate problems in complexity theory.

4.1 Circuits of linear size and logarithmic depth
Obviously, Ck(f) ≤ C2(f), so any super-linear lower bound in our model would give a
super-linear lower bound for circuits of fan-in 2. However, even a linear lower bound on our
model would give a function that cannot be computed by a linear sized logarithmic depth
circuit:

I Proposition 7. If f has a fan-in 2 circuit of linear size and logarithmic depth, then for
any ε > 0, Cnε(f) < O

(
n log(1/ε)
log logn

)
.

Valiant [21] showed that any (fan-in 2) circuit of linear size and logarithmic depth contains
a set T of O

(
n log(1/ε)
log logn

)
gates such that every path of length ε logn in the circuit must touch

a gate from the set. Since every such gate in T can be computed from at most nε other gates
from T and the inputs, we obtain Proposition 7.

4.2 Oblivious branching programs
An oblivious branching program of width w and length ` is a directed graph with vertices
partitioned into ` layers L1, . . . , L`. Each layer is associated with an input variable. Every
vertex in Li has out-degree 2, with the edges labeled 0, 1. Every vertex of L` is labeled with
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an output value. The program is executed by starting at the first vertex of L1, and reading
the variables in turn to find a path through the program until the output is determined.

Barrington [4] showed that every logarithmic depth circuit (of fan-in 2) can be simulated
by a branching program with w = 5, ` = poly(n). Thus it is very interesting to prove
super-polynomial lower bounds on such programs. A line of work has proved time-space
tradeoffs on such programs. Alon and Maass [2] used reductions to Ramsey theory to show
that any program for computing the majority function must have ` logw ≥ ω(n logn). Babai,
Nisan and Szegedy [3] proved a lower bound of ` logw ≥ Ω(n log2 n) by reductions to the
Number-on-Forehead communication model. Beame and Vee [6] simplified the proof of this
last bound. No better lower bound on ` logw is known, to our knowledge.

Our results give lower bounds that match those of [3] via the following proposition:

I Proposition 8. If f can be computed by an oblivious branching program of width w < 2εn/2
and length `, then Cεn(f) ≤ 2` logw

εn .

The first logw gates of the circuit read the first εn/2 variables read by the program and
together compute the name of the vertex reached after those layers. The next logw gates
read the outputs of the previous gates and the next εn/2 variables, to compute the name of
the vertex in layer Lεn. Continue in this way until all of the program has been simulated.
Thus we obtain a lower bound of ` logw ≥ Ω(n log2 n) on the length of the program using
Proposition 8 and Theorem 1. Any lower bound of the type Cεn(f) = ω(log2 n) would give
new time-space tradeoffs for branching programs.

4.3 AC0

An AC0 circuit is a circuit of constant depth that uses AND, OR-gates of unbounded fan-in
and NOT-gates. As negations can be moved to the leaves, the depth of AC0 circuit is defined
as the largest number of AND, OR-gates on a path in the circuit. Any size s AC0 circuit can
be simulated by a size s2 circuit with gates of fan-in 2.

Beautiful methods have been developed to prove lower bounds on these circuits [13, 19, 20].
The best known lower bounds for a depth d circuit are of the type 2Ω(n1/(d−1)). The following
proposition shows that a truly exponential lower bound would give a linear lower bound in
our model.

I Proposition 9. For every f and k, f can be computed by a depth-3 AC0 circuit of size
O(kCk(f) · 2Ck(f)+k).

To see this, observe that the function g defined in the proof of Proposition 4 can be
computed by a monotone formula in disjunctive normal form, with Ck(f) · 2Ck(f) leaves.
Furthermore, each fi,σ depends on k variables, and hence it can be computed by a formula
in conjuctive normal form, with k · 2k leaves. This gives depth-3 AC0 formula with kCk(f) ·
2Ck(f)+k leaves.

Proposition 9 implies that if f cannot be computed by a depth-3 AC0 circuit of size 22k,
then Ck(f) ≥ Ω(k). Hence, a lower bound of 2ω(

√
n) for depth-3 AC0 circuits would give a

non-trivial lower bound on C√n(f), and a lower bound of 2Ω(n) would yield a linear lower
bound on Cεn(f). In addition, the latter f cannot have a linear sized circuit of logarithmic
depth by Proposition 7; an observation already made by Valiant [21].

4.4 Extractors for varieties
Given a field F, a variety is a set of the form {x ∈ Fn : f1(x) = f2(x) = . . . fm(x) = 0},
where f1, . . . , fm are polynomials. For a finite field F, an extractor for varieties is a function
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f : Fn → {0, 1} which is non-constant on any sufficiently large variety defined by low-degree
polynomials.

Dvir [11] showed how to use bounds on exponential sum estimates by Deligne [10] to
obtain extractors for varieties. Working over a prime field of size p, he shows that if ρ > 1/2
is a constant, and V ⊆ Fn is a variety of size pρn defined by polynomials of degree ρn, then
there is an efficiently computable extractor for such varieties, as long as p is polynomially
large in n. Here we show that such a result for p = 2 would imply non-trivial circuit lower
bounds.

I Proposition 10. Let p = 2. If f is an extractor for varieties of size 2ρn defined by degree
k polynomials, then Ck(f) > (1− ρ)n.

Proof. Suppose there is a circuit computing f with m gates of fan-in k. By averaging, there
must exist some evaluation of the gates which is consistent with 2n−m input strings. We now
define a variety using m polynomials as follows. Each polynomial checks that the input is
consistent with the evaluations of a single gate. Since every such polynomial depends on at
most k variables, and it can be taken multilinear, it has degree at most k. Thus we obtain a
variety of size 2n−m defined by degree k polynomials on which f is constant. So it must be
that n−m < ρn⇒ m > (1− ρ)n. J

By Proposition 7, any such extractor cannot be computed by linear sized logarithmic depth
circuits of fan-in 2.

Acknowledgements. We thank Paul Beame, Parikshit Gopalan, Makrand Sinha and Avi
Wigderson for useful comments.
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Abstract
This paper gives the first correlation bounds under product distributions, including the uniform
distribution, against the class mNC1 of polynomial-size O(logn)-depth monotone circuits. Our
main theorem, proved using the pathset complexity framework introduced in [56], shows that
the average-case k-CYCLE problem (on Erdős-Rényi random graphs with an appropriate edge
density) is 1

2 + 1
poly(n) hard for mNC1. Combining this result with O’Donnell’s hardness amplifi-

cation theorem [43], we obtain an explicit monotone function of n variables (in the class mSAC1)
which is 1

2 +n−1/2+ε hard for mNC1 under the uniform distribution for any desired constant ε > 0.
This bound is nearly best possible, since every monotone function has agreement 1

2 + Ω( logn√
n

)
with some function in mNC1 [44].

Our correlation bounds against mNC1 extend smoothly to non-monotone NC1 circuits with
a bounded number of negation gates. Using Holley’s monotone coupling theorem [30], we prove
the following lemma: with respect to any product distribution, if a balanced monotone function
f is 1

2 + δ hard for monotone circuits of a given size and depth, then f is 1
2 + (2t+1 − 1)δ hard

for (non-monotone) circuits of the same size and depth with at most t negation gates. We thus
achieve a lower bound against NC1 circuits with ( 1

2 − ε) logn negation gates, improving the
previous record of 1

6 log logn [7]. Our bound on negations is “half” optimal, since dlog(n + 1)e
negation gates are known to be fully powerful for NC1 [3, 21].
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1 Introduction

The majority of research in boolean circuit complexity is focused on restricted classes of
circuits. Super-polynomial lower bounds are known in two basic settings: bounded-depth
circuits (i.e. AC0) [1, 24] and monotone circuits [51]. For another natural class, deMorgan
formulas (tree-like circuits with fan-out 1), nearly cubic n3−o(1) lower bounds are known [28].
For bounded-depth circuits as well as deMorgan formulas, the state-of-the-art worst-case lower
bounds (obtained in the 1980’s and 90’s) have recently been matched by tight average-case
lower bounds, also known as correlation bounds, under the uniform distribution. It is now
known that

PARITY is 1
2 + 2−Ω(n/(logS)d−1) hard for depth-d (unbounded fan-in) circuits of size S

[29],
there is an explicit function in P which is 1

2 + 2−Ω(r) hard for deMorgan formulas of size
n3−o(1)/r2 [40].
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(A boolean function f is said to be γ-hard for a class of circuits C under a distribution µ if
Px∼µ[ f(x) = C(x) ] ≤ γ for every circuit C ∈ C. By default µ is the uniform distribution and
γ is typically expressed as 1

2 + δ or 1− δ where δ(n)→ 0.)
In the monotone setting, there is an excellent knowledge of worst-case lower bounds:

a long line of works [4, 8, 27, 37, 45, 48, 46, 50, 51] (among many others) have achieved
separations between the monotone versions of nearly all the important complexity classes,
as defined by Grigni and Sipser [26]. However, when it comes to average-case lower bounds
under the uniform distribution or any product distribution, essentially nothing has been
known; it is still open, for instance, whether any monotone function in NP is 1− 1

poly(n) hard
for polynomial-size monotone circuits. This represents a major gap in the basic understanding
of monotone computation, given the importance of product distributions in the monotone
setting. Product distributions are believed to be a natural source of hard instances for many
monotone problem: k-SAT and k-CLIQUE are famously conjectured to be hard-on-average
at an appropriate threshold density [38]. Product distributions are also significant in the
real analysis of monotone functions (see the FKG inequality [22], the Bollobás-Thomason
theorem [18], Friedgut’s threshold theorem [23], etc.)

1.1 Previous Work
Many of the aforementioned worst-case lower bounds in the monotone setting can be viewed
as average-case lower bounds under specific non-product distributions. To take one example,
consider Razborov’s celebrated lower bound for the k-CLIQUE function [51]. Let µ denote
the distribution on n-vertex graphs which, half of the time, is a uniform random k-clique,
and the other half is a uniform random (k − 1)-coclique (i.e. complete (k − 1)-partite graph).
The result of [51] (together with the quantitative improvement [4]) shows that, for all
3 ≤ k ≤ n1/4, k-CLIQUE is 1

2 + n−Ω(
√
k) hard under µ for the class mP of polynomial-size

monotone circuits (for k ≤ logn, this bound improves to 1
2 + n−Ω(k)). (Correlation bounds

under similar (non-product) distributions were recently obtained for monotone classes within
mP [20, 25], strengthening previous worst-case separations among these classes.)

Toward the goal of worst-case lower bounds, this distribution µ has a very sensible
property: it is supported entirely on minterms (minimal 1-instances, i.e., k-cliques) and
maxterms (maximal 0-instances, of which (k − 1)-cocliques are a subset). Thus µ exploits
monotonicity in the strongest possible way. However, there is something backwards about
µ: every 1-instance has Hamming weight

(
k
2
)
(≤
√
n), which is less the minimum Hamming

weight
(
k−1

2
)(

n
k−1

)2 (≥ n2/2) of any 0-instance. It follows that k-CLIQUE is equivalent
under µ to the anti-monotone threshold function THR<n2/2 (which is 1 on graphs with fewer
than n2/2 edges). Therefore, even though k-CLIQUE is hard under µ for monotone circuits,
it is easy under µ for polynomial-size circuits with a single negation gate (in fact, THR<n2/2
is computable by polynomial-size formulas with a single negation [3]).

This discomfort was addressed in work of Amano and Maruoka [7], who extended
the k-CLIQUE lower bound of [4, 51] to polynomial-size circuits with 1

6 log logn negation
gates by considering a modified distribution µ′ (a certain convex combination, over various
` ∈ {k, . . . , n}, of `-cliques and (k − 1)-cocliques supported on sets of size `). While the
core of the proof in [7] is still a monotone circuit lower bound for cliques vs. cocliques, this
result contributed an insight that sufficiently strong lower bounds against monotone circuits
imply lower bounds against negation-limited boolean circuits (we capitalize on this insight in
Lemma 1.3).

A more natural distribution for the average-case analysis of k-CLIQUE is given by the
Erdős-Rényi random graph G(n, p). Here we take p (= p(n, k)) to be the unique “ 1

2 -threshold”
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such that P[G(n, p) contains a k-clique ] = 1
2 . (Note that G(n, p) is a product distribution on

{0, 1}(
n
2).) Karp [38] famously conjectured that k-CLIQUE is hard-on-average under G(n, p)

(in the regime k ≈ 2 logn). Previous work of the author [54] confirmed this conjecture in the
(non-monotone) AC0 setting by showing that k-CLIQUE is 1

2 + n−Ω(k) hard under G(n, p)
for AC0 (polynomial-size constant-depth circuits) for all k ≤ log1/2 n. Follow-up work of
the author [55] combined the technique of [54] with the “approximation method” framework
of Razborov [51] to prove a correlation bound against monotone circuits under a different
distribution ν on n-vertex graphs: half of the time, ν is G(n, p) plus a uniform random
planted k-clique, and the other half ν is G(n, 2p) conditioned on being k-clique-free. The
result of [55] shows that k-CLIQUE is 1

2 + n−Ω(k) hard under ν for mP for all k ≤ log1/2 n.
While ν is (morally speaking) similar to G(n, p), it is unfortunately not a product distribution
and suffers the same shortcoming as µ: the 0-instances and 1-instances under ν, although
no longer minterms and maxterms, are nevertheless separable with high probability by an
anti-monotone threshold function (in this case THR< 3

2 (n
2)p). It was left as an open problem

in [55] to prove a correlation bound against mP for k-CLIQUE under G(n, p). In the present
paper, we do not succeed in this task; however, we prove a correlation bound against a
significant subclass of mP (mNC1) for a different monotone graph property (k-CYCLE)
under an appropriate product distribution.

1.2 Our Results
Our main theorem is a correlation bound for the average-case k-CYCLE problem against the
class mNC1 of polynomial-size O(logn)-depth monotone circuits (equivalently, polynomial-
size monotone formulas). Rather than the standard Erdős-Rényi random graph, we find
it convenient to restrict attention to “Ck-partite” input graphs with kn vertices and kn2

potential edges (Def. 4.2). For the average-case analysis of k-CYCLE, we consider a random
Ck-partite graph, denoted Γ, in which each potential edge is independently included with
probability p where p is the unique “ 1

2 -threshold” such that P[ Γ contains a k-cycle ] = 1
2 .

(Note: p ∼ ck/n for a constant ck depending on k.) A monotone function f on kn2 variables
is said to compute k-CYCLE on Γ with advantage δ if P[ f(Γ) = k-CYCLE(Γ) ] ≥ 1

2 + δ.

I Theorem 1.1 (Main Theorem). For all k ≤ log logn, if a monotone formula computes
k-CYCLE on Γ with advantage n−1/2+c, then it has size nΩ(c log k). In particular, log logn-
CYCLE is 1

2 + n−1/2+o(1) hard under Γ for monotone formulas of size no(log log logn) (and
hence for mNC1).

The lower bound in Theorem 1.1 is essentially tight, since k-CYCLE is computable
(in the worst-case) by monotone formulas of size nO(log k), as well as by polynomial-size
O(log k)-depth monotone circuits with semi-unbounded fan-in (i.e. binary AND gates and
unbounded OR gates). This places k-CYCLE in the class mSAC1. (In terms of space
complexity, k-CYCLE is computable in NL as well as Ave-L, as defined in [12].) Theorem
1.1 thus gives a very sharp average-case separation of mNC1 from higher complexity classes.

As a corollary of Theorem 1.1, we obtain nearly optimal correlation bounds against mNC1

under the uniform distribution. Note that the random graph Γ, while a product distribution,
is not the uniform distribution on {0, 1}kn2 ; moreover, the correlation bound in Theorem 1.1
is only 1

2 + (kn2)−1/4+o(1) in terms of the input size kn2. Nevertheless, using O’Donnell’s
hardness amplification theorem [43], we have the following result:

I Corollary 1.2. For every ε > 0, there is an explicit monotone function of N variables (in
the class mSAC1) which is 1

2 +N−1/2+ε hard for mNC1 under the uniform distribution.
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This function is the composite function1 TRIBES⊗ log logn-CYCLE⊗ p-BIAS on N =
poly(n) variables where

p-BIAS : {0, 1}n → {0, 1} is any n-term monotone DNF with exactly dp2ne satisfying
assignments,2

TRIBES : {0, 1}nc → {0, 1} is the “tribes” function of Ben-Or and Linial [13] on nc

variables, where c (= Ω(1/ε)) is a sufficiently large constant.
See O’Donnell’s paper [43] for background on the hardness amplification theorem which
yields Corollary 1.2 from Theorem 1.1. We only remark that all results in [43], while stated in
terms of the class NP, apply equally to mNC1. This observation relies on the fact that MAJ
∈ mNC1 [3, 63] (where MAJ is the majority function); this is essential for the application of
Implagliazzo’s “hard-core set” theorem [31, 39], which is a main tool in [43].

The correlation bound in Corollary 1.2 is nearly best possible under the uniform
distribution, as O’Donnell and Wimmer [44] have shown that every monotone function
{0, 1}n → {0, 1} has agreement 1

2 +Ω( logn√
n

) with one of functions 0, 1, x1, . . . , xn,MAJ. Since
these functions are all in mNC1, it follows that no monotone function is 1

2 + o( logn√
n

) hard
for mNC1. Corollary 1.2 shows that this correlation bound is nearly achieved by an explicit
monotone function. (By counting arguments, there exist (non-explicit) monotone functions
achieving similar correlation bounds [9, 36].)

Finally, we extend these results to non-monotone circuits with a bounded number of
negation gates, by means of a general lemma on correlation bounds under product distribution.
In fact, our observation applies to the broader class of distributions µ on {0, 1}n which satisfy
the FKG lattice condition [22] if

µ(x)µ(y) ≤ µ(x ∧ y)µ(x ∨ y) for all x, y ∈ {0, 1}n. (1)

Note that every product distribution satisfies (1) with equality.

I Lemma 1.3. Let µ be a distribution which satisfies the FKG lattice condition (1) and let f
be a monotone function which is balanced under µ (i.e. Eµ(f) = 1

2). If f is 1
2 + δ hard under

µ for monotone circuits of a given size and depth, then f is 1
2 + (2t+1 − 1)δ hard under µ,

up to the same size and depth, for (non-monotone) circuits with t negation gates.

Via Lemma 1.3, the correlation bound of Corollary 1.2 extends to NC1 circuits with
( 1

2 − ε) logn negation gates.

I Corollary 1.4. For every ε > 0, there is an explicit function in mSAC1 which is 1
2 + o(1)

hard for NC1 circuits with ( 1
2 − ε) logn negations under the uniform distribution.

Corollary 1.4 is half optimal, in the sense that NC1 circuits with dlog(n+ 1)e negations
are known to be equivalent to full NC1 by well-known results of Markov [42] and Fischer [21]
(again using the fact that MAJ ∈ NC1). This improves a previous 1

6 log logn lower bound of
Amano and Maruoka [7] on the negation-limited complexity of an explicit monotone function
{0, 1}n → {0, 1} (however, unlike Corollary 1.4, the result of [7] applies to polynomial-size
circuits of unbounded depth). For multi-output monotone functions {0, 1}n → {0, 1}n, Jukna

1 For boolean functions h : {0, 1}l → {0, 1} and g : {0, 1}m → {0, 1}, the composite function g ⊗ h :
({0, 1}l)m → {0, 1} is defined by (g ⊗ h)(y1, . . . , ym) = g(h(y1), . . . , h(ym)).

2 It is an easy exercise to show that there is an n-term monotone DNF with exactly m satisfying
assignments for every m ∈ {0, . . . , 2n}. Note that p-BIAS generates a single p′-biased bit from the
uniform distribution on {0, 1}n where p ≤ p′ < p + 2−n.
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[34] proved a worst-case lower bound of logn−O(log logn). (There is an extensive literature
on negation-limited complexity; see Chapter 10 of [35] and papers [11, 14, 16, 36, 64, 67]
besides those already mentioned.)

1.3 Overview
We present an outline of the paper, highlighting the main ideas in the proof of Theorem 1.1.

Persistent Minterms

In Section 3 we introduce the key notion of persistent minterms of a monotone function f
under an increasing sequence of monotone restrictions. Formally, we consider the sequence
of monotone functions f∨ρ0 ≤ f∨ρ1 ≤ · · · ≤ f∨ρm where ρ0 ≤ ρ1 ≤ · · · ≤ ρm are elements
in {0, 1}n and f∨ρi(x) := f(x ∨ ρi). An element x ∈ {0, 1}n of Hamming weight |x| = k

is called a d-persistent minterm of f under ~ρ if it is a common minterm of
(
d+k−1
k−1

)
many

functions f∨ρi .
Persistent minterms behave like ordinary minterms under operations ∨ and ∧ (Lemma

3.4). In additional, persistent minterms have the desirable property of being “noise-insensitive”
in a certain sense. Suppose ξ(1), . . . , ξ(m) are independent samples from a distribution of
random “noise” over {0, 1}n. If we now define ρi by ξ(1) ∪ · · · ∪ ξ(i), then every persistent
minterm is noise-insensitive, insofar as it has survived at least one hit of random noise. This
translates into a lemma to the effect that every monotone function whatsoever has “few”
persistent minterms with high probability (Lemma 5.13).

Average-Case k-CYCLE

In Section 4 we consider the average-case k-CYCLE problem on the random graph Γ (i.e.
the p-biased product distribution on {0, 1}kn2 for appropriate p ∼ 1/n). We introduce
an auxiliary random graph Ξ` consisting of ` (�

√
n) independent paths of length k − 1.

Crucially, Ξ` lives “within the variance” of the random graph Γ, in the sense that Γ and Γ∪Ξ`
have small total variation distance. Roughly speaking, we are able to show: if a monotone
function f has correlation � `k2/

√
n with k-CYCLE under Γ, then a non-negligible fraction

(at least 1/
√
n) of k-cycles are persistent minterms of f with respect to random noise Ξ`

(Lemma 4.5).

Pathset Complexity

In Section 5 we present the pathset complexity framework and state a lower bound proved in
[56]. Very roughly speaking, for a subgraph A = (VA, EA) of the k-cycle, a pathset over A is
a set of isomorphic copies of A embedded (as “sections”) in VA × [n]. Pathset complexity is a
(formula-like) complexity measure on pathsets with respect to operations ∪ and ./ (union and
join). Crucially, pathsets are subject to a collection of density constraints called smallness;
this bottleneck accounts for the high complexity of constructing pathsets beyond a certain
size.

The pathset complexity framework was introduced in [56] for the purpose of separating
formula-size and circuit-size within AC0. The technique is tailored to the formula complexity
of the (virtually equivalent) average-case k-STCONN / k-CYCLE problems. The paper [56]
proves a lower bound of nΩ(log k) on the pathset complexity of any sufficiently dense pathset
over the k-path / k-cycle (Theorem 5.8).
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Our correlation bound against mNC1 (Theorem 1.1) is proved by reduction to this pathset
complexity lower bound. Given a monotone formula which correlates well with k-CYCLE
under Γ, we define (random) pathsets at all gates of the formula in terms of persistent
minterms. We show (Lemma 5.13) that all of these pathsets satisfy the smallness constraint
with high probability. In this way, we are able to obtain a formula-size lower bound from
pathset complexity. The proof of Theorem 1.1 is given in Section 6; proofs of various lemmas
are included in appendices (due to space limitation, two appendices which appear in the full
version of this paper have been removed from this version).

2 Preliminaries

Let N = {0, 1, 2, . . . }. For n ∈ N, let [n] = {1, . . . , n}. We write ln(·) for the natural
logarithm and log(·) for the base-2 logarithm. For random variables X and Y , notation
X

d= Y expresses “X and Y are identically distributed”.

I Definition 2.1 (Monotone Functions, Minterms, Monotone Restrictions). B+
n denotes the

lattice of monotone (non-decreasing) boolean functions {0, 1}n → {0, 1}. f, g represent
functions in B+

n. f ≤ g denotes f(x) ≤ g(x) for all x ∈ {0, 1}n. For f ∈ B+
n and x ∈ {0, 1}n,

we say that x is a minterm of f if f(x) = 1 and f(x′) = 0 for all x′ < x. The set of minterms
of f is denoted byM(f). (Note thatM(·) gives a bijection from B+

n to anti-chains in {0, 1}n.)
For f ∈ B+

n and ρ ∈ {0, 1}n, we denote by f∨ρ be the monotone function f∨ρ(x) := f(x ∨ ρ).
(Note that f ≤ f∨ρ.) In this context, we view ρ ∈ {0, 1}n as a “monotone restriction” which
sets some variables to 1 (namely, i ∈ [n] such that ρi = 1) and leaves the remaining variables
unset.

I Lemma 2.2 (Minterm Lemma). For all f, g ∈ B+
n,

M(f ∨ g) ⊆M(f) ∪M(g), M(f ∧ g) ⊆ {x ∨ y : x ∈M(f), y ∈M(g)}. (2)

In other words, every minterm of f ∨ g is a minterm of f or a minterm of of g, and every
minterm of f ∧ g is the disjunction of a minterm of f and a minterm of g. (This is easy to
see, for instance, by thinking of the DNF representations of f and g.)

I Definition 2.3 (Monotone Formulas). A monotone formula on n variables is a finite rooted
binary tree whose leaves (inputs) are labeled by elements of [n]∪{0, 1} and whose non-leaves
(gates) are labeled ∧ or ∨. (In this paper all AND and OR gates have fan-in 2.) Every
monotone formula Φ on n variables computes a monotone function in B+

n (in the usual way).
For x ∈ {0, 1}n, we write Φ(x) for the value of the monotone function computed by Φ on
input x. Sub(Φ) denotes the set of (syntactic) sub-formulas of Φ. For example, if Φ is the
formula Ψ∧Ψ, then Sub(Φ) contains both (left and right) copies of Ψ. Leaves(Φ) (⊆ Sub(Φ))
denotes the set of leaves in Φ. The (leaf) size of Φ is defined as size(Φ) := |Leaves(Φ)|
(= 1

2 (|Sub(Φ)|+ 1)). The depth of Φ is its height as a tree (where a single leaf has depth 0).

3 Persistent Minterms

I Notation 3.1. For a partially ordered set L and m ∈ N, we denote by Seqm≤ (L) the set
of non-decreasing chains ~λ = (λ0, λ1, . . . , λm) such that λ0 ≤ λ1 ≤ · · · ≤ λm. (We will
consistently index coordinates of ~λ by λs, λt where 0 ≤ s ≤ t ≤ m.)

I Notation 3.2. For d, k ∈ N, let
〈
d
k

〉
:=
(
d+k−1
k−1

)
. Note the identity

〈
d
k

〉
=
〈
d−1
k

〉
+
〈
d
k−1
〉
.
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I Lemma 3.1. For all d, k ≥ 1 and ~a ∈ Seqk≤(R), if ak − a0 >
〈
d
k

〉
, then aj − aj−1 >

〈
d−1
j

〉
for some j ∈ {1, . . . , k}.

Proof. By induction on k: assuming ak−a0 >
〈
d
k

〉
, either ak−ak−1 >

〈
d−1
k

〉
, in which case the

lemma is satisfied with j = k, or else ak−1−a0 = (ak−a0)−(ak−ak−1) >
〈
d
k

〉
−
〈
d−1
k

〉
=
〈
d
k−1
〉
,

in which case we use the induction hypothesis for (a0, . . . , ak−1) ∈ Seqk−1
≤ (R). J

By the same basic induction, we have:

I Lemma 3.2. For all d,m ≥ 1 and ~x ∈ Seqm≤ ({0, 1}n), if m ≥
〈

d
|xm|

〉
, then xs = xt for

some 0 ≤ s ≤ t ≤ m with t− s ≥
〈
d−1
|xs|
〉
.

Proof. Suppose m ≥
〈

d
|xm|

〉
and let ` := min{s ≥ 0 : |xs| = |xm|}. If m − ` ≥

〈
d−1
|xm|

〉
,

then we are done. Otherwise, ` − 1 = (m − 1) − (m − `) ≥ (
〈

d
|xm|

〉
− 1) − (

〈
d−1
|xm|

〉
−

1) ≥
〈

d
|xm|−1

〉
≥
〈

d
|x`−1|

〉
and we use the induction hypothesis for the truncated sequence

(x0, . . . , x`−1) ∈ Seq`−1
≤ ({0, 1}n). J

I Definition 3.3 (Persistent Minterms). For ~f ∈ Seqm≤ (B+
n) and x ∈ {0, 1}n, we say that x is

a d-persistent minterm of ~f if it is a common minterm of fs and ft (i.e. x ∈M(fs)∩M(ft))
for some 0 ≤ s ≤ t ≤ m such that t − s ≥

〈
d
|x|
〉
. The set of d-persistent minterms of ~f is

denoted byMd(~f).

We have defined persistent minterms in a general way for sequences f0 ≤ f1 ≤ · · · ≤ fm
of monotone functions. However, we will be interested in the persistent minterms of an
individual monotone function f under a sequence ρ0 ≤ ρ1 ≤ · · · ≤ ρd of monotone restrictions.
(Eventually, we will utilize this notion by choosing random restrictions ~ρ.)

I Notation 3.3. For f ∈ B+
n and ~ρ ∈ Seqm≤ ({0, 1}n), letM~ρ

d(f) :=Md(f∨ρ0 ≤ f∨ρ1 ≤ · · · ≤
f∨ρm).

I Lemma 3.4 (Persistent Minterm Lemma). For all f, g ∈ B+
n and ~ρ ∈ Seqm≤ ({0, 1}n) and

d,m ≥ 1,

M~ρ
d(f ∨ g) ⊆M~ρ

d−1(f) ∪M~ρ
d−1(g), (3)

M~ρ
d(f ∧ g) ⊆

{
x ∨ y : x ∈M~ρ

d−1(f), y ∈M~ρ
d−1(g)

}
. (4)

The proof, which we include in Appendix A, is straightforward (in particular, we show
(4) using Lemma 3.2). We will return to persistent minterms in Section 5.2.

4 Average-Case k-CYCLE

We depart from the setting of monotone functions {0, 1}n → {0, 1} (on n variables) and
instead consider a domain G ∼= {0, 1}k

2n of graphs (with kn2 possible edges). Before defining
G, let us first clarify the role of k:

I Definition 4.1. Throughout the rest of this paper, let k = k(n) ∈ N be an arbitrary
parameter (i.e. function of n) subject to k ≤ log logn.

The constraint k ≤ log logn is due to the factor of (1/2)O(2k) in Theorem 5.8. Outside of
this theorem, all other lemmas in this paper hold for a larger range of k.
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I Definition 4.2 (K-Partite Graphs). All graphs in this paper are finite directed graphs
without isolated vertices. Formally, a graph is a pair G = (VG, EG) where VG is a finite set and
EG ⊆ VG × VG and VG =

⋃
vw∈EG

{v, w}. As a special case, ∅ denotes the empty graph with
V∅ = E∅ = ∅ (the empty set). K denotes the k-cycle graph with VK = {v0, v1, . . . , vk−1}
and EK = {v0v1, v1v2, . . . , vk−1v0}. (We never write these indices explicitly, instead always
writing v ∈ VK , vw ∈ EK or e ∈ EK .) We denote by G (= G(k, n)) the set of K-partite
graphs G satisfying

VG ⊆ {v(i) : v ∈ VK , i ∈ [n]}, EG ⊆ {v(i)w(j) : vw ∈ EK , i, j ∈ [n]}.

Here v(i) and v(i)w(j) are just a friendly notation for ordered pairs (v, i) and ((v, i), (w, j)).
In the context of functions G→ {0, 1}, we identify G with the hypercube {0, 1}kn2 .

I Definition 4.3 (k-CYCLE). For G ∈ G, we say that G is a k-cycle if G is isomorphic to
K. Note that G is a k-cycle if and only if there exists a function ι : VK → [n] such that
EG = {v(ι(v))w(ι(w)) : vw ∈ EK}. We say that G has a k-cycle if it contains a k-cycle as a
subgraph. k-CYCLE denotes the monotone function G→ {0, 1} which takes value 1 on G if,
and only if, G has a k-cycle.

We are interested in the average-case analysis of k-CYCLE. For this purpose, we define
three random graphs needed to state our main lemma (on the noise-invariance of minterms
of k-CYCLE).

I Definition 4.4 (Random Graphs Γ, � and Ξ`). Let Γ, � and Ξ` be the following (indepen-
dent) random graphs in G:

Let Γ be the (K-partite, Erdős-Rényi) random graph in G which includes each potential
edge independently with probability p (i.e. P[ Γ = G ] = p|EG|(1− p)kn2−|EG|) where p =
p(k, n) (∼ (ln 2)1/k/n) is the unique “ 1

2 -threshold” such that P[ k-CYCLE(Γ) = 1 ] = 1
2 .

Let � be a uniform random k-cycle in G. For e ∈ EK , we write �−e for the graph
obtained from � by deleting the edge in � corresponding to e. Note that �−e is a path
of length k − 1.
For ` ∈ N, let Ξ` be the random graph �−e11 ∪ · · · ∪�−e`

` where �1, . . . ,�` are uniform
random k-cycles and e1, . . . , e` are uniform random edges in EK . Equivalently, Ξ` is the
union of ` uniform random paths of length k − 1.

We will only consider values of ` much less than
√
n, where random paths �−e11 ∪ · · · ∪�−e`

`

are likely to be vertex-disjoint. The letter Ξ is mnemonic for this situation.

We state the key lemma of this section, whose proof is included in the full paper.

I Lemma 4.5. For every monotone function f : G→ {0, 1} and ` ∈ N, if

P
Γ

[
f(Γ) = k-CYCLE(Γ)

]
≥ 1

2 + C(`+ 1)k2
√
n

(5)

where C > 0 is a universal constant, then there exists G ∈ G such that

P
Ξ`

[
P
�

[
� ∈M(f∪G) ∩M(f∪G∪Ξ`)

]
≥ n−1/2

]
≥ n−1/2. (6)

Lemma 4.5 says the following: (in the case ` = 0) if a monotone function f has correlation
� k2/

√
n with k-CYCLE on Γ, then there exists a graph G such that a non-negligible fraction

of k-cycles are minterms of f∪G. Moreover, (for ` ≥ 1) if this correlation is � `k2/
√
n, then

these minterms are “Ξ`-noise-invariant” in the following sense: with probability ≥ n−1/2 over
Ξ`, at least 1/

√
n fraction of k-cycles are common minterms of f∪G and f∪G∪Ξ` .
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The tie-in to persistent minterms is clear. Let d ∈ N and suppose ` is a multiple of
m :=

〈
d
k

〉
. We may generate Ξ` as a union of independent Ξ(1)

`/m, . . . ,Ξ
(m)
`/m. Writing ρs for

the partial union Ξ(1)
`/m ∪ · · · ∪ Ξ(s)

`/m, we have a non-decreasing sequence ~ρ ∈ Seqm≤ (G). Notice
that every k-cycle which is a common minterm inM(f∪G) ∩M(f∪G∪Ξ`) is a d-persistent
minterm inM~ρ

d(f∪G). (This observation shows up in the proof of Theorem 1.1 in Section 6.)

5 Pathset Complexity

5.1 The Basic Framework
We present the definitions required to state the pathset complexity lower bound (Theorem
5.8), which we use in our main theorem (Theorem 1.1). For background on these definitions
(key examples, upper bounds, etc.), the reader is referred to the paper [56].

I Definition 5.1 (Pattern Graphs). Subgraphs of K are called pattern graphs and designated
by letters A,B,C. Recall that graphs (by definition in this paper) have no isolated vertices.
Therefore, pattern graphs A ⊆ K are in one-to-one correspondence with subsets EA ⊆ EK .

An important parameter of pattern graphs A ⊆ K is the number |VA| − |EA|. Note that
every pattern graph, other than K itself, is a disjoint union of paths. Therefore,

A 6= K ⇒ |VA| − |EA| = |{connected components of A}|. (7)

Also note that 0 ≤ |VA| − |EA| ≤ k/2 and |VA| − |EA| = 0 ⇔ A ∈ {∅,K}.

I Definition 5.2 (Sections). For A ⊆ K, an A-section is a graph A′ ∈ G such that EA′ =
{v(ι(v))w(ι(w)) : vw ∈ EA} for some function ι : VA → [n]. (As a special case, the empty
graph ∅ is the unique ∅-section.) The set of all A-sections is denoted by GA. As a matter
of notation, we consistently write A-sections using primes (A′, A′′, etc.) Every A′ ∈ GA is
isomorphic to A via the projection v(i) 7→ v.

We have already encountered K-sections and K \ {e}-sections in the guise of random
graphs � and �−e. (Note that K-sections are the same as k-cycles in G (Def. 4.2).)

I Definition 5.3 (Pathsets). For A ⊆ K, subsets of GA (i.e. sets of A-sections) are called
pathsets over A. As a special case, note that there are two distinct pathsets over ∅: the
empty set ∅ and the “identity” pathset {∅}. Every non-empty pathset A is a pathset over
a unique A ⊆ K, which we call its underlying pattern graph. Pathsets over A,B,C,K are
consistently designated by the respective calligraphic letters A,B, C,K. The density of a
pathset A is defined by

density(A) := |A| / n|VA| = P
A′∈GA

[A′ ∈ A ]. (8)

I Definition 5.4 (Joins). For any two pathsets A and B, the join A ./ B is the pathset (over
A ∪B) defined by

A ./ B :=
{
C ′ ∈ GA∪B : C ′ = A′ ∪B′ for some A′ ∈ A and B′ ∈ B

}
. (9)

Note that ./ is an associative, commutative and idempotent operation on pathsets. Moreover,
∅ and {∅} act as the zero and identity: A ./ ∅ = ∅ and A ./ {∅} = A. (Taking the view of
a pathset A as a “VA-ary relation” (i.e. a subset of [n]VA), ./ is the standard relational join
operation.)
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I Definition 5.5 (Restrictions). For pathsets A and B, we say that B is a restriction of A,
denoted B � A, if B ⊆ A and there exists B′ ∈ GA\B such that B = {B′ ∈ GB : B′∪B′ ∈ A}.
B is a proper restriction of A, denoted B ≺ A, if B � A and B 6= A.

I Definition 5.6 (Smallness). For ε > 0, a pathset A is ε-small if it satisfies

density(B) ≤ ε|VB |−|EB | for all B � A. (10)

The set of ε-small pathsets (over all pattern graphs) is denoted by Pε.

Note that every pathset over ∅ or K is ε-small, since |V∅| − |E∅| = |VK | − |EK | = 0.
ε-smallness is obviously preserved under subsets, as well as under restrictions: if A ∈ Pε,
then A0 ∈ Pε and B ∈ Pε for every A0 ⊆ A and B � A. Somewhat less obvious is the
fact that ε-smallness is also preserved under joins (Lemma 5.5 of [56]): if A,B ∈ Pε, then
A ./ B ∈ Pε.

I Definition 5.7 (Pathset Complexity). For any ε > 0 (“smallness parameter”), pathset
complexity is the function χε : Pε → N defined inductively as follows:

(base case) χε(∅) = χε({∅}) = 0 and χε(A) = |A| if |EA| = 1,
(induction case) if |EA| ≥ 2, then

χε(A) := min
(Bi,Ci)i

∑
i χε(Bi) + χε(Ci)

where (Bi, Ci)i ranges over all sequences of ε-small pathsets Bi, Ci ∈ Pε such that
Bi, Ci $ A and Bi ∪ Ci = A and A ⊆

⋃
i Bi ./ Ci.

In other words, for the (induction case) we consider all possible coverings of A by joins of
ε-small pathsets over proper subgraphs of A.

It is clear from this definition that pathset complexity satisfies the following inequalities:
(monotonicity) χε(A1) ≤ χε(A2) for all A1 ⊆ A2 ∈ Pε,
(sub-additivity) χε(A1∪A2) ≤ χε(A1)+χε(A2) for all A1,A2 such that A1∪A2 ∈ Pε,
(join inequality) χε(A ./ B) ≤ χε(A) + χε(B) for all A,B ∈ Pε.

In fact, these three inequalities provide a dual characterization of pathset complexity: χε is
the unique pointwise maximal function Pε → N which satisfies (base case), (monotonicity),
(sub-additivity) and (join inequality).

The following lower bound on pathset complexity was shown in [56]:

I Theorem 5.8 (Pathset Complexity Lower Bound). For every pathset K over K,

χε(K) ≥ (1/2)O(2k) · (1/ε) 1
6 log k · density(K). (11)

Theorem 5.8 corresponds to Theorem 5.8 of [56]. We remark that the lower bound proved
in [56] applies more broadly to pathsets A ∈ Pε over any pattern graph A ⊆ K:

χε(A) ≥ (1/2)O(2|EA|) · (1/ε) 1
6 log(length(A)) + |VA|−|EA| · density(A) (12)

where length(A) equals the number of edges in the largest connected component of A. In
fact, (12) follows from an even more general lower bound for pathset complexity with respect
to patterns (Theorem 8.3 of [56]). However, for the application in this paper, we only require
the bound (11) for pathsets over K.
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5.2 Pathsets of Persistent Minterms
In order to prove formula-size lower bounds using pathset complexity, we associate pathsets
with all monotone formulas on kn2 variables. The pathsets need to satisfy certain consistency
conditions; moreover, these (random) pathsets must be ε-small (with high probability).
Persistent minterms and random restrictions Ξ` accomplish both of these goals. In this
subsection, we show how to define appropriate pathsets using persistent minterms; we deal
with ε-smallness in the next subsection.

I Definition 5.9 (PathsetsMA(f) and P~ρA(Φ)). For a monotone function f : G→ {0, 1} and
A ⊆ K, letMA(f) := GA ∩M(f) be the pathset of A-sections which are minterms of f . For
a monotone formula Φ and ~ρ ∈ Seqm≤ (G) and A ⊆ K, the pathset P~ρA(Φ) (over A) is defined
by

P~ρA(Φ) := GA ∩M~ρ
depth(Φ)(Φ). (13)

That is, the P~ρA(Φ) is the set of A-sections which are depth(Φ)-persistent minterms of Φ
under the sequence ~ρ.

Unpacking definitions, for all A 6= ∅, we have the expression

P~ρA(Φ) =
⋃

0≤s≤t≤m :
t−s≥〈depth(Φ)

|EA|
〉

(
MA(Φ∪ρs) ∩MA(Φ∪ρt)

)
⊆

⋃
0≤s≤m−1

(
MA(Φ∪ρs) ∩MA(Φ∪ρs+1)

)
. (14)

The following lemma is a straightforward consequence of (14).

I Lemma 5.10. If P~ρA(Φ) is not ε-small, thenMA(Φ∪ρs)∩MA(Φ∪ρs+1) is not (ε/m)-small
for some s ∈ {0, . . . ,m− 1}.

Proof. Assume P~ρA(Φ) is not ε-small. By Def. 5.6, there exists a restriction B � P~ρA(Φ)
such that density(B) > ε|VB |−|EB |. (Note that A,B /∈ {∅,K}.) By Def. 5.5, there exists an
(A \ B)-section B′ ∈ GA\B such that B = {B′ ∈ GB : B′ ∪ B′ ∈ P~ρA(Φ)}. Writing As for
MA(Φ∪ρs) ∩MA(Φ∪ρs+1), we have P~ρA(Φ) ⊆

⋃m−1
s=0 As by (14), hence B ⊆

⋃m−1
s=0 {B′ ∈ GB :

B′ ∪B′ ∈ As}. It follows that there exists s ∈ {0, . . . ,m− 1} such that

density({B′ ∈ GB : B′ ∪B′ ∈ As}) ≥ density(B)/m > ε|VB |−|EB |/m ≥ (ε/m)|VB |−|EB |.

Since {B′ ∈ GB : B′ ∪B′ ∈ As} � As, we conclude that As is not (ε/m)-small. J

We next restate the Persistent Minterm Lemma 3.4 in terms of pathsets P~ρA(Φ).

I Lemma 5.11. For all monotone functions f, g and monotone formulas Φ,Ψ and ~ρ ∈
Seqm≤ (G) and A ⊆ K,

P~ρA(Φ ∨Ψ) ⊆ P~ρA(Φ) ∪ P~ρA(Ψ), (15)

P~ρA(Φ ∧Ψ) ⊆
⋃

B,C⊆A :B∪C=A
P~ρB(Φ) ./ P~ρC(Ψ). (16)

The main lemma of this subsection gives the key relationship between pathset complexity
and formula size and depth.

I Lemma 5.12. Suppose Φ is a monotone formula and ~ρ ∈ Seqm≤ (G) such that pathsets
P~ρA(Ψ) are ε-small for all Ψ ∈ Sub(Φ) and A ⊆ K. Then

χε(P~ρK(Φ)) ≤ 2O(k2) · depth(Φ)k · size(Φ). (17)
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Although the statement of Lemma 5.12 might appear complicated, the proof is actually
quite simple. The derivation of (17) uses only Lemma 5.11 and the key properties (mono-
tonicity), (sub-additivity) and (join inequality) of pathset complexity. The proof of Lemma
5.12, which is essentially the same as Lemma 6.7 in [56], is included in Appendix B.

5.3 Smallness Lemma
In the last subsection, we defined pathsets P~ρA(Φ) (for an arbitrary sequence ~ρ ∈ Seqm≤ (G))
and showed a relationship between pathset complexity and formula size under the condition
that all of the relevant pathsets are ε-small. The next lemma give a means of establishing
ε-smallness.

I Lemma 5.13. For every monotone function f : G → {0, 1} and A ⊆ K and ` ∈ N and
ε > 0,

P
Ξ`

[
MA(f) ∩MA(f∪Ξ`) is not ε-small

]
≤ (2n)k · exp

(
−Ω(ε`/k2)

)
. (18)

The main tools in the proof of Lemma 5.13 (included in the full version of this paper)
are Janson’s Inequality [33] and the sunflower-plucking technique of Razborov [51].

6 Proof of Theorem 1.1 (Correlation Bound for k-CYCLE)

Proof of Theorem 1.1. Let k ≤ log logn and suppose Φ is a monotone formula such that

P
Γ

[
f(Γ) = k-CYCLE(Γ)

]
= 1

2 + n−1/2+c.

Our goal is to show the lower bound size(Φ) = nΩ(c log k).
Using the fact that nO(log k) is an upper bound on the size of monotone formulas for

k-CYCLE (together with the “formula balancing lemma” [59, 66]: every monotone formula
of size S is equivalent to a monotone formula of depth O(logS)) we may assume that
size(Φ) = nO(log k) and depth(Φ) = O(log k · logn). However, for purposes of this proof, it is
enough for us to assume much weaker upper bounds size(Φ) ≤ exp(n1/k) and depth(Φ) ≤ n1/k.
We also assume c = Ω(1/ log k), since otherwise there is nothing to prove.

We set parameters m, `, ε as follows:

m :=
〈depth(Φ)

k

〉
(=
(depth(Φ)+k−1

k−1
)
), ` := nc/2, ε := n−c/4. (19)

Note that m = O(depth(Φ))k = no(c). We have n−1/2+c = ω((m` + 1)k2/
√
n), that is, Φ

satisfies the hypothesis (5) of Lemma 4.5 (for all sufficiently large n). Therefore, by Lemma
4.5, there exists G ∈ G such that

P
Ξ`m

[
P
�

[
� ∈M(Φ∪G) ∩M(Φ∪G∪Ξm`)

]
≥ n−1/2

]
= Ω(n−1/2). (20)

Fixing any such G, we now generate random ~ρρρ ∈ Seqm≤ (G) as follows:
Let Ξ(1)

` , . . . ,Ξ(m)
` be independent random copies of Ξ`.

For s ∈ {0, . . . ,m}, let ρρρs := G ∪ (Ξ(1)
` ∪ · · · ∪ Ξ(s)

` ).

By our choice of m =
〈depth(Φ)

k

〉
and Def. 5.9 of P~ρρρK(Φ) (see (14)), we have

P~ρρρK(Φ) =MK(Φ∪ρρρ0) ∩MK(Φ∪ρρρm).
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Since � is uniform in GK , it follows (by definition (8) of density(·)) that

density(P~ρρρK(Φ)) = P
�

[
� ∈M(Φ∪ρρρ0) ∩M(Φ∪ρρρm)

]
.

Since ρρρ0 = G and ρρρm
d= G ∪ Ξm`, we see that (20) is equivalent to

P
~ρρρ

[
density(P~ρρρK(Φ)) ≥ n−1/2 ] = Ω(n−1/2). (21)

We next observe that, with all-but-negligible probability 1− n−ω(1), pathsets P~ρρρA(Ψ) are
all ε-small:

P
~ρρρ

[ ∨
Ψ∈Sub(Φ)

∨
∅⊂A⊂K

P~ρρρA(Ψ) is not ε-small
]

(Lemma 5.10) (22)

≤
∑

Ψ∈Sub(Φ)

∑
∅⊂A⊂K

∑
0≤s≤m−1

P
~ρρρ

[
MA(Ψ∪ρρρs) ∩MA(Ψ∪ρρρs+1) is not (ε/m)-small

]
≤ size(Φ) · 2k ·m · exp

(
−Ω(ε`/k2m)

)
(Lemma 5.13)

= exp(O(n1/k)) · exp(−nc/4−o(c)) (size(Φ) ≤ exp(n1/k))

= n−ω(1) (c = Ω(1/ log k)).

As the upshot of (21) and (22), (for all sufficiently large n) there exists ~ρ ∈ Seqm≤ (G)
satisfying both

Dense(~ρ), the event that density(P~ρK(Φ)) ≥ n−1/2, and
Small(~ρ), the event that pathsets P~ρA(Ψ) are ε-small for all Ψ ∈ Sub(Φ) and A ⊆ K.

Fixing any such ~ρ, we complete the reduction to our pathset complexity lower bound (using
k ≤ log logn):

size(Φ) ≥ depth(Φ)−k · 2−O(k2) · χε(P~ρK(Φ)) (Small(~ρ) and Lemma 5.12)

≥ n−O(1) · χε(P~ρK(Φ)) (depth(Φ) ≤ n1/k)

≥ n−O(1) · 2−O(2k) · (1/ε) 1
6 log k · density(P~ρK(Φ)) (Theorem 5.8)

= n(c/24) log k−O(1) (Dense(~ρ)).

Therefore, size(Φ) = nΩ(c log k) as required. J
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A Proof of Lemma 3.4 (Persistent Minterms Under ∨ and ∧)

To simplify notation, we write fs for f∨ρs and gs for g∨ρs .
Proof of (3): Consider any x ∈ M~ρ

d(f ∨ g). Fix 0 ≤ s ≤ t ≤ m such that t − s ≥
〈
d
|x|
〉

and x ∈ M(fs ∨ gs) ∩M(ft ∨ gt). Since x is a minterm of fs ∨ gs, we have fs(x) = 1 or
gs(x) = 1. Without loss of generality, assume fs(x) = 1. We claim that x is also a minterm
of ft. Clearly ft(x) = 1 since fs ≤ ft. It suffices to show that ft(y) = 0 for all y < x. This
follows from the fact that x is a minterm of ft ∨ gt, hence (ft ∨ gt)(y) = 0 for all y < x.
Therefore, x ∈M(fs) ∩M(ft). Since t− s ≥

〈
d
j

〉
≥
〈
d−1
j

〉
, we conclude that x ∈M~ρ

d−1(f).
Proof of (4): Consider any x ∈M~ρ

d(f ∧ g). Fix 0 ≤ s ≤ t ≤ m such that t− s ≥
〈
d
|x|
〉
and

x ∈M(fs∧gs)∩M(ft∧gt). Let ` := t−s. We will construct, by induction on i = 0, 1, . . . , `,
two sequences y0 ≥ y1 ≥ · · · ≥ y` and z0 ≥ z1 ≥ · · · ≥ z` such that yi ∈ M(fs+i) and
zi ∈M(gs+i) and yi ∨ zi = x:

For the base case i = 0, since x is a minterm of fs ∧ gs, we have fs(x) = gs(x) = 1.
Therefore, there exist y ∈ M(fs) and z ∈ M(gs) such that y, z ≤ x. Note that
(fs ∧ gs)(y ∨ z) = 1 and y ∨ z ≤ x. Again using the fact that x is a minterm of fs ∧ gs, it
follows that y ∨ z = x. These are the starting terms of our sequence: y0 = y and z0 = z.
For the induction step, suppose we have chosen yi−1 ∈M(fs+i−1) and zi−1 ∈M(gs+i−1)
such that yi−1 ∨ zi−1 = x. Since fs+i−1 ≤ fs+i and gs+i−1 ≤ gs+i, we have fs+i(yi−1) =
gs+i(zi−1) = 1. Therefore, there exist y ∈M(fs+i) and z ∈M(gs+i) such that y ≤ yi−1
and z ≤ zi−1. Note that (fs+i ∧ gs+i)(y ∨ z) = 1 and y ∨ z ≤ x. Since x is a minterm of
fs+i ∧ gs+i, it follows that y ∨ z = x. These are the next terms in our sequence: yi = y

and zi = z.
Having constructed sequences ~y, ~z ∈ Seq`≥({0, 1}n), we finish the proof using Lemma 3.2.
Since ` ≥

〈
d
|x|
〉
≥
〈
d
|y0|
〉
, we may apply Lemma 3.2 to the reversed sequence (y`, y`−1, . . . , y0) ∈

Seq`≤({0, 1}n); we get 0 ≤ a ≤ b ≤ ` such that ya = yb and b − a ≥
〈
d−1
|ya|
〉
. Therefore,

ya ∈M~ρ
d−1(f). Similarly, we get zc ∈M~ρ

d−1(g) for some 0 ≤ c ≤ `. Since y0 ≤ ya ≤ y` and
z0 ≤ zc ≤ z` and z0 ∨ y0 = y` ∨ z` = x, we conclude that ya ∨ zc = x. J

B Proof of Lemma 5.12 (Pathset Complexity and Formula Size)

Assume Φ is a monotone formula and ~ρ ∈ Seqm≤ (G) such that P~ρA(Ψ) is ε-small for every
subformula Ψ of Φ and every A ⊆ K.

Consider any φ ∈ Leaves(Φ) labeled by the indicator variable for a potential edge v(i)w(j).
Clearly P~ρA(φ) = ∅ for all A ⊆ K except possibly when EA = {vw}, in which case the only
possibility for P~ρA(φ) other than ∅ is the singleton pathset {A′} where A′ is the A-section
with EA′ = {v(i)w(j)}. It follows that

∑
A⊆K |P

~ρ
A(φ)| ≤ 1.

Next, consider Ψ ∈ Sub(Φ) with an ∨-gate on top: Ψ = Ψ1 ∨ Ψ2. For all A ⊆ K,
by Lemma 5.11, we have P~ρA(Ψ) ⊆ P~ρA(Ψ1) ∪ P~ρA(Ψ2). By properties (monotonicity) and
(sub-additivity) of χε, it follows that

χε(P~ρA(Ψ)) ≤ χε(P~ρA(Ψ1)) + χε(P~ρA(Ψ2)). (23)

Now consider Ψ = Ψ1 ∧Ψ2 ∈ Sub(Φ). By Lemma 5.11, we have

P~ρA(Ψ) ⊆ P~ρA(Ψ1) ∪ P~ρA(Ψ2) ∪
⋃

B,C$A :B∪C=A

P~ρB(Ψ1) ./ P~ρC(Ψ2). (24)
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(This expression extracts from (16) the case where B = A, noting that P~ρA(Ψ1) ./ P~ρC(Ψ2) ⊆
P~ρA(Ψ1); and similarly the case where C = A.) By properties (monotonicity), (sub-additivity)
and (join inequality) of χε,

χε(P~ρA(Ψ)) ≤ χε(P~ρA(Ψ1)) + χε(P~ρA(Ψ2)) +
∑

B,C$A :B∪C=A

(
χε(P~ρB(Ψ1)) + χε(P~ρC(Ψ2))

)
≤
(
χε(P~ρA(Ψ1)) + 2k

∑
B$A

χε(P~ρB(Ψ1))
)

+
(
χε(P~ρA(Ψ2)) + 2k

∑
B$A

χε(P~ρB(Ψ2))
)
. (25)

If we now start with χε(P~ρK(Φ)) and repeatedly expand according to (25) and (23) down
to the leaves of Φ, we get a bound of the form

P~ρK(Φ) ≤
∑

φ∈Leaves(Φ)

∑
A⊆K

cφ,A · χε(P~ρA(φ))

for some cφ,A ∈ N. For φ ∈ Leaves(Φ) at depth d (≤ depth(Φ)), the coefficient cφ,A equals
the sum, over all chains K = B0 ⊃ B1 ⊃ · · · ⊃ Bt = A, of 2kt times the binomial coefficient(
d
t

)
(counting the locations of the ∧-gates above φ where branching occurred in the expansion

of (25)). Thus, we have the upper bound cφ,A ≤ 2O(k2) · depth(Φ)k. Using the fact that∑
A⊆K |P

~ρ
A(φ)| ≤ 1 for all φ ∈ Leaves(Φ) and the definition size(Φ) = |Leaves(Φ)|, we

conclude that P~ρK(Φ) ≤ 2O(k2) · depth(Φ)k · size(Φ). J

C Proof of Lemma 1.3 (Negation-Limited Circuits)

Our proof of Lemma 1.3 combines a monotone coupling theorem of Holley [30] (which is
the main ingredient in the proof of his generalization the FKG inequalities [22]) with an
observation about negations in circuits due to Amano and Maruoka [7]. We require one
definition:

I Definition 3.1. For a boolean (not necessarily monotone) function h : {0, 1}n → {0, 1}, let

mon-pairs(h) :=
{

(x, y) ∈ {0, 1}n × {0, 1}n : h(x) = 0 and h(y) = 1 and x < y
}
.

The following lemma and its proof are adapted from Theorem 3.2 of [7]. The only
difference is that we consider all monotone pairs, rather than only the monotone boundary
(i.e. only monotone pairs (x, y) with |y| − |x| = 1).

I Lemma 3.2. For every circuit C with t negation gates, there exist t′ = 2t+1−1 monotone cir-
cuits M1, . . . ,Mt′ of the same size and depth such that mon-pairs(C) ⊆

⋃t′
i=1 mon-pairs(Mi).

Proof. Let C1, . . . ,Ct be the sub-circuits of C which feed directly into negation gates, listed
in “topological order” such that i < j whenever Ci is a sub-circuit of Cj . Also, let Ct+1 be
C itself. For every j ∈ {1, . . . , t + 1} and α ∈ {0, 1}j−1, let Mα be the monotone circuit
obtained from Cj by, for each i ∈ {1, . . . , j − 1} such that Ci is a sub-circuit of Cj , replacing
the negation gate above Ci with the constant αi. The number of these monotone circuits
is
∑t+1
j=1 2j−1 = 2t+1 − 1. To finish the argument, consider any (x, y) ∈ mon-pairs(C).

Let j be the first index such that Cj(x) 6= Cj(y), and let α ∈ {0, 1}j−1 be the element
αi := Ci(x) = Ci(y). Then (x, y) ∈ mon-pairs(Mα). We conclude that mon-pairs(C) ⊆⋃
j∈[t+1]

⋃
α∈{0,1}j−1 mon-pairs(Mα). J
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I Lemma 3.3 (Holley [30]). Let µ0, µ1 be two strictly positive probability distributions on
{0, 1}n which satisfy the “Holley condition”

µ0(x)µ1(y) ≤ µ0(x ∧ y)µ1(x ∨ y) for all x, y. (26)

Then there exists a probability distribution ν on {0, 1}n × {0, 1}n (“monotone coupling of µ0
and µ1”) such that∑

y ν(x, y) = µ0(x) for all x,∑
x ν(x, y) = µ1(y) for all y,

ν(x, y) > 0⇒ x ≤ y for all x, y.

Holley’s proof of Lemma 3.3 uses a Markov chain coupling argument. We remark that
Lemma 3.3 also follows from an earlier (and much more general) monotone coupling theorem
of Strassen [60].

I Lemma 3.4. Let µ be a distribution on {0, 1}n which satisfies the FKG lattice condition
(1), and let f : {0, 1}n → {0, 1} be a monotone function such that Eµ(f) ∈ (0, 1). For
b ∈ {0, 1}, define the distribution µb on {0, 1}n by

µb(x) :=


µ(x)/(1− Eµ(f)) if f(x) = b = 0,
µ(x)/Eµ(f) if f(x) = b = 1,
0 otherwise.

(27)

Then the pair µ0, µ1 satisfy the Holley condition (26).

Proof. We simply observe:
If f(x) = 1, then µ0(x) = µ0(x ∧ y) = 0.
If f(y) = 0, then µ1(y) = µ1(x ∨ y) = 0.
If f(x) = 0 and f(y) = 1, then

µ0(x)µ1(y) = µ(x)µ(y)
Eµ(f)(1− Eµ(f)) ≤

µ(x ∧ y)µ(x ∨ y)
Eµ(f)(1− Eµ(f)) = µ0(x ∧ y)µ1(x ∨ y). J

Proof of Lemma 1.3. Let µ be a distribution on {0, 1}n which satisfies the FKG lattice
condition (1), and suppose f ∈ B+

n such that Eµ(f) = 1/2 (i.e. f is balanced with respect to
µ). We prove the contrapositive statement to Lemma 1.3. Assume C is a monotone circuit
which computes f on µ with advantage δ, that is,

P
x∼µ

[
C(x) = f(x)

]
= 1

2 + δ.

We will show that f is computed with advantage ≥ δ/(2t+1 − 1) by a monotone circuit of
the same size and depth.

Define µ0, µ1 by (27) as in Lemma 3.4. By Lemma 3.3 there is a monotone coupling ν of
µ0, µ1, which is supported on mon-pairs(f). For every monotone function h ∈ B+

n, we have

ν
(
mon-pairs(h)

)
= E

(x,y)∼ν

[
h(y)− h(x)

]
(28)

= E
(x,y)∼ν

[
h(y)

]
− E

(x,y)∼ν

[
h(x)

]
= P

(x,y)∼ν

[
h(y) = 1

]
+ P

(x,y)∼ν

[
h(x) = 0

]
− 1

= 2
(
P
y∼µ

[
h(y) = f(y) = 1

]
+ P
x∼µ

[
h(x) = f(x) = 0

])
− 1

= 2 P
x∼µ

[
h(x) = f(x)

]
− 1.
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It follows from Lemma 3.2 that there exists a monotone circuit M, of the same size and
depth as C, such that

ν
(
mon-pairs(M)

)
≥ 1

2t+1 − 1ν
(
mon-pairs(C)

)
.

We complete the proof by two applications of (28):

P
x∼µ

[
M(x) = f(x)

]
= 1

2

(
1 + ν

(
mon-pairs(M)

))
≥ 1

2

(
1 + 1

2t+1 − 1ν
(
mon-pairs(C)

))
= 1

2

(
1 + 1

2t+1 − 1

(
2 P
x∼µ

[
C(x) = f(x)

]
− 1
))

= 1
2 + δ

2t+1 − 1 . J
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1 Introduction

1.1 Propositional proof complexity

The field of propositional proof complexity aims to understand and analyze the computational
resources required to prove propositional statements. The problems the field poses are
fundamental, difficult and go back to the work of Cook and Reckhow [8], who showed the
immediate relevance of these problems to the NP vs. coNP problem (and thus the P vs. NP
problem).

Among the major unsolved questions in proof complexity, is whether the standard
propositional logic calculus, either in the form of the Sequent Calculus, or equivalently, in
the axiomatic form of Hilbert proofs (i.e., Frege proofs), is polynomially bounded; that
is, whether every propositional tautology (or unsatisfiable formula) has a proof whose size
is polynomially bounded (refutation, resp.) in the size of the formula proved. Here, we
consider the size of proofs as the number of symbols it takes to write them down, where
each formula in the proof is written as a Boolean formula (in other words we count the total
number of logical gates appearing in the proof where each proof-line is a formula). It is
known [29] that all Frege proof-systems (formally, a Frege proof system is any propositional
proof system with a fixed number of axiom schemes and sound derivation rules that is also
implicationally complete, and in which proof-lines are written as propositional formulas (see
e.g., [14] and Definition 2.4 below)) as well as the Gentzen sequent calculus (with the cut
rule) are polynomially equivalent to each other, and hence it does not matter precisely which
rules, axioms, and logical-connectives we use.

Complexity-wise, the Frege proof system is considered a very strong system alas a poorly
understood one. The qualification strong here has several meanings: first, that no super-
polynomial lower bound is known for Frege proofs. Second, that there are not even good
hard candidates for the Frege system (see [4, 17, 18] for a further discussion on hard proof
complexity candidates). Third, that for most hard instances (e.g., the pigeonhole principle
and Tseitin tautologies) that are known to be had for weaker systems (e.g., resolution, cutting
planes, etc.), there are known polynomial bounds on Frege proofs. Fourth, that proving
super-polynomial lower bounds on Frege proofs seems to a certain extent out of reach of
current techniques. And finally, that by the common (mainly informal) correspondence
between circuits and proofs – namely, the correspondence between a circuit-class C and a
proof system in which every proof-line is written as a circuit from C (to be more precise, one
has to associate a circuit class C with a proof system in which a family of proofs is written
such that every proof-line in the family is a circuit family from C) – Frege system corresponds
to the circuit class of polynomial-size log(n)-depth circuits denoted NC1 (equivalently, of
polynomial-size formulas [32]), considered to be a strong computational model for which no
(explicit) super-polynomial lower bounds are currently known.

Accordingly, proving lower bounds on Frege proofs is considered an extremely hard task.
In fact, the best lower bound known today is only quadratic [14], which uses a fairly simple
syntactic argument. If we put further impeding restrictions on Frege proofs, like restricting
the depth of each formula appearing in a proof to a certain fixed constant, exponential lower
bounds can be obtained [1, 21, 21]. Although these constant-depth Frege exponential-size
lower bounds go back to Ajtai’s result from 1988, they are still in some sense the state-of-the-
art in proof complexity lower bounds (beyond the important developments on weaker proof
systems, such as resolution and its weak extensions). Constant-depth Frege lower bounds
use quite involved probabilistic arguments, mainly specialized switching lemmas tailored for
specific tautologies (namely, counting tautologies, most notable of which are the Pigeonhole
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Principle tautologies). Even random k-CNF formulas near the satisfiability threshold are not
known to be hard for constant-depth Frege (let alone hard for [unrestricted depth] Frege).

All of the above goes to emphasize the importance, basic nature and difficulty in under-
standing the complexity of strong propositional proof systems, while showing how little is
actually known about these systems.

1.2 Prominent directions for understanding propositional proofs
As we already mentioned, there is a guiding line in proof complexity which states a correspond-
ence between the complexity of circuits and the complexity of proofs. This correspondence is
mainly informal, but there are seemingly good indications showing it might be more than
a superficial analogy. One of the most compelling evidence for this correspondence is that
there is a precise formal correspondence (cf. [7]) between the first-order logical theories of
bounded arithmetic (whose axioms state the existence of sets taken from a given complexity
class C) to propositional proof systems (in which proof-lines are circuits from C).

Another facet of the informal correspondence between circuit complexity and proof
complexity is that circuit hardness can sometimes be used to obtain proof complexity
hardness. The most notable example of this are the lower bounds on constant-depth Frege
proofs mentioned above: constant-depth Frege proofs can be viewed as propositional logic
operating with AC0 circuits, and the known lower bounds on constant depth Frege proofs (cf.
[1, 16, 21]) use techniques borrowed from AC0 circuits lower bounds. The success in moving
from circuit hardness towards proof-complexity hardness has spurred a flow of attempts to
obtain lower bounds on proof systems other than constant depth Frege. For example, Pudlák
[22] and Atserias et al. [2] studied proofs based on monotone circuits, motivated by known
exponential lower bounds on monotone circuits. Raz and Tzameret [28, 27, 34] investigated
algebraic proof systems operating with multilinear formulas, motivated by lower bounds on
multilinear formulas for the determinant, permanent and other explicit polynomials [24, 23].
Atserias et al. [3], Krajíček [15] and Segerlind [31] have considered proofs operating with
ordered binary decision diagrams (OBDDs), and the second author [35] initiated the study
of proofs operating with non-commutative formulas (see Sec. 1.5 for a comparison with the
current work).

Until quite recently it was unknown whether the correspondence between proofs and
circuits is two-sided, namely, whether proof complexity hardness (of concrete known proof sys-
tems) can imply any computational hardness. An initial example of such an implication from
proof hardness to circuit hardness was given by Raz and Tzameret [28]. They showed that a
separation between algebraic proof systems operating with arithmetic circuits and multilinear
arithmetic circuits, resp., for an explicit family of polynomials, implies a separation between
arithmetic circuits and multilinear arithmetic circuits. In a recent significant development
about the complexity of strong proof systems, Grochow and Pitassi [10] demonstrated a
much stronger correspondence. They introduced a natural propositional proof system, called
the Ideal Proof System (IPS for short), for which any super-polynomial size lower bound on
IPS implies a corresponding size lower bound on arithmetic circuits, and formally, that the
permanent does not have polynomial-size arithmetic circuits. The IPS is defined as follows:

I Definition 1.1 (Ideal Proof System (IPS) [10]). Let F1(x), . . . , Fm(x) be a system of
polynomials in the variables x1, . . . , xn, where the polynomials x2

i − xi, for all 1 ≤ i ≤ n, are
part of this system. An IPS refutation (or certificate) that the Fi’s polynomials have no 0-1
solutions is a polynomial C(x, y) in the variables x1, . . . , xn and y1, . . . , ym, such that:
1. F (x1, . . . , xn, 0) = 0; and
2. F (x1, . . . , xn, F1(x), . . . , Fm(x)) = 1.
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The essence of IPS is that a proof (or refutation) is a single polynomial that can be
written simply as an arithmetic circuit or formula. The advantage of this formulation is that
now we can obtain direct connections between circuit/formula hardness (i.e., “computational
hardness”) and hardness of proofs. Grochow and Pitassi showed indeed that a lower bound on
IPS written as an arithmetic circuit implies that the permanent does not have polynomial-size
algebraic circuits (Valiant’s conjectured separation VNP 6=VP [36]); And similarly, a lower
bound on IPS written as an arithmetic formula implies that the permanent does not have
polynomial-size algebraic formulas (VNP 6=VPe, ibid).

Under certain assumptions, Grochow and Pitassi [10] were able to connect their result
to standard propositional-calculus proof systems, i.e., Frege and Extended Frege. Their
assumption was the following: Frege has polynomial-size proofs of the statement expressing
that the PIT for arithmetic formulas is decidable by polynomial-size Boolean circuits (PIT for
arithmetic formulas is the problem to decide whether an input arithmetic formula computes
the (formal) zero polynomial). They showed that under this assumption super-polynomial
lower bounds on Frege proofs imply that the permanent does not have polynomial-size
arithmetic circuits. This, in turn, can be considered as a (conditional) justification for the
apparent difficulty in proving lower bounds on strong proof systems (We focus only on the
relevant results about Frege proofs from [10]; and not the results about Extended Frege in
[10]; the latter proof system operates, essentially, with Boolean circuits, in the same way
that Frege operates with Boolean formulas (equivalently NC1 circuits)).

1.3 Overview of results and proofs
1.3.1 Sketch
In this paper we contribute to the understanding of strong proof systems such as Frege, and
to the fundamental search for lower bounds on these systems, by formulating a very natural
proof system – a non-commutative variant of the ideal proof system – which we show captures
unconditionally (up to a quasi-polynomial-size increase) propositional Frege proofs. A proof
in the non-commutative IPS is simply a single non-commutative polynomial written as a
non-commutative formula. This gives a fairly compelling and simple new characterization
of the proof complexity of propositional Frege proofs. Moreover, it brings new hope for
achieving lower bounds on strong proof systems, by reducing the task of lower bounding
Frege proofs to the following seemingly much more manageable task: proving matrix rank
lower bounds on the matrices associated with certain non-commutative polynomials (in the
sense of Nisan [20]; see below for details).

We also tighten the results in Grochow and Pitassi [10], in the sense that we show that
in order to obtain a characterization of Frege proofs in terms of an ideal proof system it is
advantageous to consider non-commutative polynomials instead of commutative ones (as
well as to add the commutator axioms). This shows that, at least for Frege, and in the
framework of the ideal proof system, lower bounds on Frege proofs do not necessarily entail
in themselves very strong computational lower bounds.

1.3.2 Some preliminaries: non-commutative polynomials and formulas
A non-commutative polynomial over a given field F and with the variables X := {x1, x2, . . .}
is a formal sum of monomials with coefficients from F such that the product of variables is
non-commuting. For example, x1x2 − x2x1 + x3x2x

2
3 − x2x

3
3, x1x2 − x2x1 and 0 are three

distinct polynomials in F〈X〉. The ring of non-commutative polynomials with variables X
with coefficients from F is denoted F〈X〉.
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A polynomial (i.e., a commutative polynomial) over a field is defined in the same way as
a non-commutative polynomial except that now the product of variables is commutative;
that is, it is a sum of (commutative) monomials.

A non-commutative arithmetic formula (non-commutative formula for short; see Definition
2.5) is a fan-in two labeled tree, with edges directed from leaves towards the root, such that
the leaves are labeled with field elements (for a given field F) or variables x1, . . . , xn, and
internal nodes (including the root) are labeled with a plus + or product × gates. A product
gate has an order on its two children (holding the order of non-commutative product). A
non-commutative formula computes a non-commutative polynomial in the natural way (see
Definition 2.5).

Exponential-size lower bounds on non-commutative formulas (over any field) were es-
tablished by Nisan [20]. The idea (in retrospect) is quite simple: first transform a non-
commutative formula into an algebraic branching program (ABP); and then show that
the number of nodes in the ith layer of an ABP computing a degree d homogenous non-
commutative polynomial f is bounded from below by the rank of the degree i-partial-derivative
matrix of f . (The degree i partial derivative matrix of f is the matrix whose rows are all
non-commutative monomials of degree i and columns are all non-commutative monomials
of degree d − i, such that the entry in row M and column N is the coefficient of the d
degree monomial M ·N in f .) Thus, lower bounds on non-commutative formulas follow from
quite immediate rank arguments (e.g., the partial derivative matrices associated with the
permanent and determinant can easily be shown to have high ranks).

1.3.3 Non-commutative ideal proof system
Recall the IPS refutation system in Definition 1.1 above. We use the idea introduced in [35],
that considered adding the commutator x1x2 − x2x1 as an axiom in propositional algebraic
proof systems, to define a refutation system that polynomially simulates Frege:

I Definition 1.2 (Non-commutative IPS). Let F be a field. Assume that F1(x) = F2(x) =
· · · = Fm(x) = 0 is a system of non-commutative polynomial equations from F〈x1, . . . , xn〉,
and suppose that the following set of equations (axioms) are included in the Fi(x)’s:
Boolean axioms: xi · (1− xi) , for all 1 ≤ i ≤ n ;
Commutator axioms: xi · xj − xj · xi , for all 1 ≤ i < j ≤ n .

Suppose that the Fi(x)’s have no common 0-1 solutions. (One can check that the Fi(x)’s
have no common 0-1 solutions in F iff they do not have a common 0-1 solution in every
F-algebra.) A non-commutative IPS refutation (or certificate) that the system of Fi(x)’s
is unsatisfiable is a non-commutative polynomial F(x, y) in the variables x1, . . . , xn and
y1, . . . , ym (i.e. F ∈ F〈x, y〉), such that:
1. F(x1, . . . , xn, 0) = 0; and
2. F(x1, . . . , xn, F1(x), . . . , Fm(x)) = 1.

We always assume that the non-commutative IPS refutation is written as a non-
commutative formula. Hence the size of a non-commutative IPS refutation is the minimal
size of a non-commutative formula computing the non-commutative IPS refutation.

The main result of this paper is that the non-commutative IPS (over either Q or Zq,
for any prime q) polynomially simulates Frege; and conversely, Frege quasi-polynomially
simulates the non-commutative IPS (over GF (2)). We explain the results in what follows.

For the purpose of the next theorem, we use a standard translation of propositional
formulas T into non-commutative arithmetic formulas:
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I Definition 1.3. Let tr(xi) := xi, for variables xi; tr(false) := 1; tr(true) := 0; and by
induction on the size of the propositional formula: tr(¬T1) := 1 − tr(T1); tr(T1 ∨ T2) =
tr(T1) · tr(T2) and finally tr(T1 ∧ T2) = 1− ((1− tr(T1)) · (1− tr(T2))).

For a non-commutative formula f denote by f̂ the non-commutative polynomial computed
by f . Thus, T is a propositional tautology (i.e., a Boolean formula that is satisfied by
every assignment) iff t̂r(T ) = 0 for every 0-1 assignment to the underlying variables of the
non-commutative polynomial.

I Theorem 1.4. Let F be either Q or Zq, for a prime q. The non-commutative IPS refutation
system, when refutations are written as non-commutative formulas over F, polynomially
simulates the Frege system. More precisely, for every propositional tautology T, if T has
a polynomial-size Frege proof then there is a non-commutative IPS certificate (over F) of
tr(¬T ) that has a polynomial non-commutative formula size.

The proof of Theorem 1.4 proceeds as follows. To simulate Frege proofs we use an
intermediate proof system F-PC formulated by Grigoriev and Hirsch [9]. The F-PC system
(Definition 2.7) is akin to the polynomial calculus refutation system [6], except that we
operate in F-PC with arithmetic formulas treated as syntactic terms, instead of writing
polynomials throughout the proof as sum of monomials. We have the two rules of polynomial
calculus: from a pair of previously derived polynomials f, g we can derive af + bg for a, b ∈ F,
and from f we can derive xi · f , for any variable xi. We also have local rewriting rules, that
can operate on any sub-formula of an arithmetic formula appearing in the proof. These
rewriting rules express simple operations on polynomials like commutativity of addition and
product, associativity, distributivity, etc.

Grigoriev and Hirsch [9] showed that F-PC polynomially simulates Frege proofs, and
that for tree-like Frege proofs the polynomial simulation yields tree-like F-PC proofs. Since
tree-like Frege is polynomially equivalent to Frege (because Frege proofs can always be
balanced to depth which is logarithmic in their size; cf. [14] for a proof), we have that
tree-like F-PC polynomially simulates (dag-like) Frege proofs.

To conclude Theorem 1.4 it therefore remains to prove that non-commutative IPS
polynomially simulates tree-like F-PC proofs. This can be proved by induction on the
number of lines in the F-PC proofs. The interesting case in the induction is the simulation
of the commutativity rewrite-rule for products by the non-commutative IPS system, which is
done using the commutator axioms.

Now, since we write refutations as non-commutative formulas we can use the polynomial-
time deterministic Polynomial Identity Testing algorithm for non-commutative formulas,
devised by Raz and Shpilka [26], to check in deterministic polynomial-time the correctness
of non-commutative IPS refutations. Therefore, we obtain:

I Corollary 1.5. The non-commutative IPS is a sound and complete Cook-Reckhow refutation
system. That is, it is a sound and complete refutation system for unsatisfiable propositional
formulas in which refutations can be checked for correctness in deterministic polynomial-time.

This should be contrasted with the original (commutative) IPS of [10], for which verifica-
tion of refutations is done in probabilistic polynomial time (using the standard Schwartz-Zippel
[30, 37] PIT algorithm).

The major consequence of Theorem 1.4 is that to prove a super-polynomial Frege lower
bound it is now sufficient to prove a super-polynomial lower bound on non-commutative
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formulas computing certain polynomials. Specifically, it is enough to prove that any non-
commutative IPS certificate F(x, y) (which is simply a non-commutative polynomial) has
a super-polynomial non-commutative formula size; and yet in another words, it suffices to
show that any such F must have a super-polynomial total rank according to the associated
partial-derivatives matrices discussed before.

We now consider the other direction, namely, whether Frege can simulate the non-
commutative IPS. We show that it does for CNFs (this is the case considered in [10]), over
GF (2), and with only a quasi-polynomial increase in size. For convenience, we use a slightly
different translation of clauses to non-commutative formulas than Definition 1.3:

I Definition 1.6. Given a Boolean formula f we define the non-commutative formula
translation tr′(f) as follows. Let tr′(x) := 1 − x and tr(¬x) := x, for x a variable. And
let tr′(f1 ∨ . . . ∨ fr) := tr′(f1) · · · tr′(fr) (where the sequence of products stands for a tree of
product gates with tr′(fi) as leaves). Further, for a clause ki in a CNF φ = k1 ∧ k2 . . . ∧ km,
denote by Qφi the non-commutative formula translation tr′(ki) of ki, where i = 1, 2, . . . ,m.

I Theorem 1.7. For a CNF φ = k1 ∧ . . . ∧ km where Qφ1 , . . . , Qφm are the corresponding
non-commutative formulas for the clauses, if there is a non-commutative IPS refutation of
size s of Qφ1 , . . . , Qφm over GF (2), then there is a Frege proof of size sO(log s) of ¬φ.

The proof of Theorem 1.7 consists of several separate steps of independent interest.
Essentially, the argument is a short Frege proof for a reflection principle for the non-
commutative IPS system (a reflection principle for a given proof system P is a statement
that says that if a formula is provable in P than the formula is also true). The argument
becomes rather complicated because we need to prove properties of the evaluation procedure
of non-commutative formulas, within the restricted framework of propositional Frege proofs.

The quasi-polynomial blowup in Theorem 1.7 depends solely on the fact that the reflection
principle for non-commutative IPS is efficiently provable (apparently) only when the non-
commutative IPS certificate is written as a sum of homogenous non-commutative formulas,
as we now explain. Note that it is not known whether any arithmetic formula can be turned
into a (sum of) homogenous formulas with only a polynomial increase in size (in contrast to
the standard efficient homogenization of arithmetic circuits by Strassen [33]). Recently Raz
[25] showed how to transform an arithmetic formula into (a sum of) homogenous formulas
with only a quasi-polynomial increase in size. In Lemma 5.6 we show that:
1. The same construction in [25] holds also for non-commutative formulas.
2. This construction for non-commutative formulas can be carried out efficiently inside

Frege. That is, if F is a non-commutative formula of size s computing a homogenous
non-commutative polynomial over GF (2) and F ′ is a homogenous non-commutative
formula computing the same polynomial with size sO(log s) (existing by [25]), then Frege
admits an sO(log s) size proof of F ≡ F ′.

Before we homogenize the non-commutative formulas (according to Raz’ construction [25])
we need to balance them, so that their depth is logarithmic in their size. We inspect that the
recent construction of Hrubeš and Wigderson [11], for balancing non-commutative formulas
with division gates (incurring at most a polynomial increase in size) results in a division-free
formula, when the initial non-commutative formula is division-free itself. Therefore, we can
assume that the non-commutative IPS certificate is already balanced.

To prove Theorem 1.7 we thus start with a non-commutative IPS certificate π over GF (2)
of the polynomial translation of the CNF φ, written as a balanced non-commutative formula
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(over GF (2)). We then consider this non-commutative polynomial identity over GF (2) as
a Boolean tautology by replacing plus gates with XOR and product gates with AND. We
convert this Boolean tautology to a homogenous representation (as described above, using a
simulation of [25]). Now, we have a Boolean tautology which we denote by π.

We wish to prove ¬φ in Frege, using the fact that π is a (massaged version of a) non-
commutative IPS certificate. To this end we essentially construct an efficient Frege proof of
the correctness of the Raz and Shpilka non-commutative formulas PIT algorithm [26]. The
PIT algorithm in [26] uses some basic linear algebraic concepts that might complicate the
proof in Frege. However, since we only need to show the existence of short Frege proofs for the
PIT algorithm’s correctness, we can supply witnesses to witness the desired linear algebraic
objects needed in the proof (these witnesses will be a sequence of linear transformations).

Furthermore, to reason inside Frege directly about the algorithm of [26] is apparently
impossible, since this algorithm first converts a non-commutative formula into an algebraic
branching program (ABP); but apparently the evaluation of ABPs cannot be done with
Boolean formulas (and accordingly Frege possibly cannot reason about the evaluation of
ABPs). The reason for this apparent inability of Frege to reason about ABP’s evaluation
is that an ABP is a “sequential" object (an evaluation of an ABP seems to follow from
the source to sink, level by level), while Frege operates with formulas, which are “parallel”
objects (evaluation of [balanced] formulas can be done in logarithmic time, in case we
have enough [separate] processors to perform parallel sub-evaluations of the formula). To
overcome this obstacle we show how to perform Raz and Shpilka’s PIT algorithm directly on
non-commutative formulas, without converting the formulas first into ABPs. This technical
contribution takes a large part of the argument. We are thus able to prove the following
statement, which might be interesting by itself:

I Lemma 1.8. If a non-commutative homogeneous formula F (x) over GF (2) of size s is
identically zero, then the corresponding Boolean formula ¬Fbool(x) (where Fbool results by
replacing + with XOR and · with AND in F (x)) can be proved with a Frege proof of size at
most sO(1).

1.4 Significance and discussion
The propositional-calculus is one of the most natural and central notions in logic, and within
proof complexity it has a dominant role as a strong proof system whose structure and
complexity is poorly understood. In that respect, our characterization of Frege proofs (and
thus propositional-calculus) simply as non-commutative polynomials whose non-commutative
formula size corresponds (up to a quasi-polynomial factor) to the size of Frege proofs, should
be considered a valuable contribution. Since non-commutative formulas constitute a weak
model of computation that is quite well understood, and since the Frege system is considered
a strong proof system, and it is not entirely out of the way that Frege – or at least its
extension, Extended Frege – is polynomially bounded (i.e., admits polynomial-size proofs
for every tautology), our results showing the correspondence between Frege proofs and
non-commutative formulas are quite surprising.

This correspondence, between non-commutative formulas and proofs, also gives renewed
hope for progress on the major fundamental lower bounds problems in proof complexity: it
reduces the problem of proving lower bounds on Frege proofs to the problem of establishing
rank lower bounds on matrices associated with non-commutative polynomials, where the non-
commutative polynomials are given “semi-explicitly” (that is, they are given in terms of the
properties of the non-commutative IPS (Definition 1.2)). It is already known that rank lower
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bounds yielding strong non-commutative formulas lower bounds are fairly simple (cf. [20]).
This then provides a quite compelling evidence that Frege lower bounds, although mostly
considered out of reach of current techniques, might not be very far away. Furthermore, our
result simplifies greatly the high level-lower bound approach laid out in [10]: the suggested
lower bound approach in [10] proposed to move from (commutative) arithmetic circuits lower
bounds towards proof complexity lower bounds; but for (commutative) arithmetic circuits
there are no known explicit lower bounds, in contrast to non-commutative formulas which
constitute a well understood circuit class: both explicit exponential lower bounds and a
deterministic PIT algorithms are known for non-commutative formulas.

The new characterization of Frege proofs also sheds light on the correspondence between
circuits and proofs in proof complexity: in the framework of the ideal proof system, a Frege
proof can be seen from the computational perspective as a non-commutative formula.

We also tighten the results of [10]. Namely, by showing that already the non-commutative
version of the IPS is sufficient to simulate Frege. As well as by showing unconditional efficient
simulation of the non-commutative IPS by Frege.

While proving that Frege quasi-polynomially simulates the non-commutative IPS, we
demonstrate new simulations of algebraic complexity constructions within proof complexity;
these include the homogenization for formulas of Raz [25] and the PIT algorithm for non-
commutative formulas by Raz and Shpilka [26]. These proof complexity simulations adds
to the known previous such simulations shown in Hrubeš and Tzameret [13] and might be
interesting by themselves.

Lastly, this work emphasizes the importance and usefulness of non-commutative models
of computation in proof complexity (see [12, 18] for more on this).

1.5 Comparison with previous work
As discussed before, our main characterization of the Frege system is based on a non-
commutative version of the IPS system from Grochow and Pitassi [10]. As described above,
the non-commutative IPS gives a tighter characterization than the (commutative) IPS in
[10]. Thus, our proof system is seemingly weaker than the original (formula version of) IPS,
and hence apparently closer to capture the Frege system.

Proofs in the original (formula version of the) IPS are arithmetic formulas, and thus any
super-polynomial lower bound on IPS refutations implies VNP 6=VPe, or in other words, that
the permanent does not have polynomial-size arithmetic formulas (Joshua Grochow [personal
communication]). This gives a justification of the considerable hardness of proving IPS lower
bounds. On the other hand, an exponential-size lower bound on our non-commutative IPS
gives only a corresponding lower bound on non-commutative formulas, for which exponential-
size lower bounds are already known [20]. Since Frege is quasi-polynomially equivalent to
the non-commutative IPS, this means that exponential-size lower bounds on Frege implies
merely – at least in the context of the Ideal Proof System – corresponding lower bounds on
non-commutative formulas, a result which is however already known. This implies again
that there is no strong concrete justification to believe that Frege lower bounds are beyond
current techniques.

The work in [35] dealt with propositional proof systems over non-commutative formulas.
The difference with the current work is that [35] formulated all proof systems as variants
of the polynomial calculus and hence the characterization of a proof system in terms of a
single non-commutative polynomial is lacking from that work (as well as the consequences
we obtained in the current work).
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2 Preliminaries

2.1 Frege proof systems
I Definition 2.1 (Boolean formula). Given a set of input variables x1, . . . , xn, a Boolean
formula on the inputs is a rooted tree of fan-in at most two, with edges directed from leaves
to the root. Internal nodes are labeled with the Boolean gates ∨,∧,¬, and the fan-in of ∨,∧
is two and the fan-in of ¬ is one. The leaves are labeled either with input variables or with
0, 1 (identified with the truth values false and true, resp.). The entire formula computes the
function computed by the gate at the root. Given a formula F , the size of the formula is
the number of Boolean gates in F.

Informally, a Frege proof system is just a standard propositional proof system for proving
propositional tautologies (one learns in a basic logic course), having axioms and deduction
rules, where proof-lines are written as Boolean formulas. The size of a Frege proof is the
number of symbols it takes to write down the proof.

The problem of demonstrating super-polynomial size lower bounds on propositional proofs
(called also Frege proofs) asks whether there is a family (Fn)∞n=1 of propositional tautological
formulas for which there is no polynomial p such that the minimal Frege proof size of Fn is
at most p(|Fn|), for all n ∈ Z+ (where |Fn| denotes the size of the formula Fn).

I Definition 2.2 (Frege rule). A Frege rule is a sequence of propositional formulas A0(x), . . . ,
Ak(x), for k ≤ 0, written as A1(x),...,Ak(x)

A0(x) . In case k = 0, the Frege rule is called an axiom
scheme. A formula F0 is said to be derived by the rule from F1, . . . , Fk if F0, . . . , Fk are all
substitution instances of A1, . . . , Ak, for some assignment to the x variables (that is, there
are formulas B1, . . . , Bn such that Fi = Ai(B1/x1, . . . , Bn/xn), for all i = 0, . . . , k). The
Frege rule is said to be sound if whenever an assignment satisfies the formulas in the upper
side A1, . . . , Ak, then it also satisfies the formula in the lower side A0.

I Definition 2.3 (Frege proof). Given a set of Frege rules, a Frege proof is a sequence of
Boolean formulas such that every proof-line is either an axiom or was derived by one of the
given Frege rules from previous proof-lines. If the sequence terminates with the Boolean
formula A, then the proof is said to be a proof of A. The size of a Frege proof is the the
total sizes of all the Boolean formulas in the proof.

A proof system is said to be implicationally complete if for all set of formulas T , if T
semantically implies F , then there is a proof of F using (possibly) axioms from T . A proof
system is said to be sound if it admits proofs of only tautologies (when not using auxiliary
axioms, like in the T above).

I Definition 2.4 (Frege proof system). Given a propositional language and a set P of sound
Frege rules, we say that P is a Frege proof system if P is implicationally complete.

Note that a Frege proof is always sound since the Frege rules are assumed to be sound.
We do not need to work with a specific Frege proof system, since a basic result in proof
complexity states that every two Frege proof systems, even over different languages, are
polynomially equivalent [29].

2.2 Algebraic proof systems
In this section, we give the definitions the algebraic proof systems Polynomial Calculus over
Formulas (F-PC) defined by Grigoriev and Hirsch [9]. We start with the definition of a
non-commutative formula:
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I Definition 2.5 (Non-commutative formula). Let F be a field and x1, x2, . . . be variables.
A noncommutative arithmetic formula (or noncommutative formula for short) is a labeled
tree, with edges directed from the leaves to the root, and with fan-in at most two, such that
there is an order on the edges coming into a node (the first edge is called the left edge and
the second one the right edge). Every leaf of the tree (namely, a node of fan-in zero) is
labeled either with an input variable xi or a field F element. Every other node of the tree is
labeled either with + or × (in the first case the node is a plus gate and in the second case a
product gate). We assume that there is only one node of out-degree zero, called the root. A
noncommutative formula computes a noncommutative polynomial in F〈x1, . . . , xn〉 in the
following way. A leaf computes the input variable or field element that labels it. A plus
gate computes the sum of polynomials computed by its incoming nodes. A product gate
computes the noncommutative product of the polynomials computed by its incoming nodes
according to the order of the edges. (Subtraction is obtained using the constant −1.) The
output of the formula is the polynomial computed by the root. The depth of a formula is the
maximal length of a path from the root to the leaf. The size of a noncommutative formula
f is the total number of nodes in its underlying tree, and is denoted |f |.

The definition of (a commutative) arithmetic formula is almost identical:

I Definition 2.6 (Arithmetic formula). An arithmetic formula is defined in a similar way
to a noncommutative formula, except that we ignore the order of multiplication (that is, a
product node does not have order on its children and there is no order on multiplication
when defining the polynomial computed by a formula).

Given a pair of non-commutative formulas F and G and a variable xi, we denote by
F [G/xi] the formula F in which every occurrence of xi is substituted by the formula G.

Note that an arithmetic formula is a syntactic object. For example, x1 + x2 and x2 + x1
are different formulas because commutativity might not hold (even if commutativity holds,
we will regard them as different formulas. And in the proof system F-PC they can be derived
from each other via the “commutativity of addition”).

2.2.1 Polynomial calculus over formulas F-PC system
The F-PC proof system defined by Grigoriev and Hirsch [9] operates with arithmetic formulas
(as purely syntactic terms).

I Definition 2.7 (F-PC [9]). Fix a field F. Let F := {f1, . . . , fm} be a collection of formulas
computing polynomials from F[x1, . . . , xn] (note here that we are talking about formulas
(treated as syntactic terms), and not polynomials. Also notice that all formulas in F-PC are
(commutative) formulas computing (commutative) polynomials). Let the set of axioms be
the following formulas:
Boolean axioms xi · (1− xi) , for all 1 ≤ i ≤ n .

A sequence π = (Φ1, . . . ,Φ`) of formulas computing polynomials from F[x1, . . . , xn] is said
to be an F-PC proof of Φ` from F , if for every i ∈ [`] we have one of the following:
1. Φi = fj , for some j ∈ [m];
2. Φi is a Boolean axiom;
3. Φi was deduced by one of the following inference rules from previous proof-lines Φj ,Φk ,

for j, k < i:
Product

Φ
xr · Φ

, for r ∈ [n] .
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Addition

Φ Θ
a · Φ + b ·Θ , for a, b ∈ F .

(Where Φ, xr · Φ,Θ, a · Φ, b ·Θ are formulas constructed as displayed; e.g., xr · Φ is the
formula with product gate at the root having the formulas xr and Φ as children.)(In
[9] the product rule of F-PC is defined so that one can derive Θ · Φ from Φ, where Θ
is any formula, and not just a variable. However, the definition of F-PC in [9] and our
Definition 2.7 polynomially-simulate each other.)

4. Φi was deduced from previous proof-line Φj , for j < i, by one of the following rewriting
rules expressing the polynomial-ring axioms (where f, g, h range over all arithmetic
formulas computing polynomials in F[x1, . . . , xn]):
Zero rule 0 · f ↔ 0
Unit rule 1 · f ↔ f

Scalar rule t↔ α, where t is a formula containing no variables (only field F elements)
that computes the constant α ∈ F.

Commutativity rules f + g ↔ g + f , f · g ↔ g · f
Associativity rule f + (g + h)↔ (f + g) + h , f · (g · h)↔ (f · g) · h
Distributivity rule f · (g + h)↔ (f · g) + (f · h)

(The semantics of an F-PC proof-line pi is the polynomial equation pi = 0.) An F-PC
refutation of F is a proof of the formula 1 from F . The size of an F-PC proof π is defined
as the total size of all formulas in π and is denoted by |π|.

I Definition 2.8 (Tree-like F-PC). A system F-PC is a tree-like F-PC if every derived
arithmetic formula in the proof system is used only once (and if it is needed again, it must
be derived once more).

2.2.1.1 Translation of Boolean formulas into polynomial equations

The proof system F-PC can be considered as a propositional proof system for Boolean
tautologies (namely, Boolean formulas that are true under any assignment). Given a Boolean
formula T in the propositional variables x1, . . . , xn we can transform T into a set of polynomial
equations by encoding it into a set of arithmetic formulas where each clause in the CNF
corresponds to an arithmetic formula by replacing ∧ with ×, ∨ with + and ¬x with 1− x;
and for each variable xi, add x2

i − xi (called the Boolean axioms) to guarantee that every
satisfying assignment to the variables is a 0-1 assignment. Then the given CNF is a tautology
if and only if the set of arithmetic formulas have no common root.

I Definition 2.9 (Polynomially Simulation). Let P1,P2 be two proof systems for the same
language L (in case the proof systems are for two different languages we fix a translation from
one language to the other, as described above). We say that P2 polynomially simulates P1 if
given a P1 proof (or refutation) π of a F , then there exists a proof (respectively, refutation)
of F in P2 of size polynomial in the size of π. In case P2 polynomially simulates P1 while P1
does not polynomially simulates P2 we say that P2 is strictly stronger than P1.

In [9], it was shown that F-PC, as well as tree-like F-PC, polynomially simulate Frege.
We repeat the argument for the convenience of the reader:

I Theorem 2.10 ([9]). Tree-like F-PC polynomially simulates Frege.

Proof. The following was shown in [9]:
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I Theorem 2.11 (Theorem 3, [9]). The system F-PC polynomially simulates the Frege
system.

Moreover, inspecting the proof of the above theorem, we can observe that tree-like Frege
proofs are simulated by tree-like F-PC proofs:

I Lemma 2.12. Tree-like F-PC polynomially simulates tree-like Frege systems.

But Krajíček showed that tree-like Frege and Frege are polynomially equivalent:

I Theorem 2.13 ([14]). Tree-like Frege proofs polynomially simulate Frege proofs.

Thus, by this theorem and by Lemma 2.11, tree-like F-PC polynomially simulates the Frege
system. J

3 The non-commutative ideal proof system

The non-commutative ideal proof system (non-commutative IPS for short) is an algebraic
refutation system in which a refutation is a single non-commutative polynomial. In the
next section we show that when the non-commutative IPS refutations are written as non-
commutative formulas then the non-commutative IPS polynomially simulates tree-like F-PC,
and hence polynomially simulates the Frege proof system (by [9]).

I Definition 3.1 (Non-commutative IPS). Let F be a field. Assume that F1(x) = F2(x) =
· · · = Fm(x) = 0 is a system of non-commutative polynomial equations from F〈x1, . . . , xn〉,
and suppose that the following set of equations (axioms) are included in the Fi(x)’s:
Boolean axiom: xi · (1− xi) , for all 1 ≤ i ≤ n ;
Commutator axiom: xi · xj − xj · xi , for all 1 ≤ i < j ≤ n .

Suppose that the Fi(x)’s have no common 0-1 solutions. (One can check that the Fi(x)’s
have no common 0-1 solutions in F iff they do not have a common 0-1 solution in every
F-algebra.) A non-commutative IPS refutation (or certificate) that the system of Fi(x)’s
is unsatisfiable is a non-commutative polynomial F(x, y) in the variables x1, . . . , xn and
y1, . . . , ym (i.e. F ∈ F〈x, y〉), such that:
1. F(x1, . . . , xn, 0) = 0; and
2. F(x1, . . . , xn, F1(x), . . . , Fm(x)) = 1.

In this paper we assume that the non-commutative IPS refutation is written as a non-
commutative formula. Hence the size of a non-commutative IPS refutation is the minimal
size of a non-commutative formula computing the non-commutative IPS refutation.

I Comment. 1. The identities in items 1 and 2 in Definition 3.1 are formal identities of
polynomials (i.e., in 1 the polynomial in the left hand side has a zero coefficient for every
monomial, and in 2 the only nonzero monomial is the monomial 1).

2. In order to prove that a system of commutative polynomial equations {Pi = 0} (where
each Pi is expressed as an arithmetic formula) has no common roots in non-commutative
IPS, we write each Pi as a non-commutative formula (in some way; note that there is no
unique way to do this).

3. When we write P ·Q−Q · P where P,Q are formulas (e.g., xi and xj , resp.), we mean
((P ·Q) + (−1 · (Q · P ))).
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4 Non-commutative ideal proof system polynomially simulates Frege

Here we show that the non-commutative IPS polynomially simulates Frege.

I Theorem 4.1 (restatement of Theorem 1.4). The non-commutative IPS refutation system,
when refutations are written as non-commutative formulas, polynomially simulates Frege
systems. More precisely, for every propositional tautology T , if T has a polynomial-size Frege
proof then there is a non-commutative IPS certificate (with integer coefficients) of polynomial
non-commutative formula size.

Recall that Raz and Shpilka [26] gave a deterministic polynomial-time PIT algorithm for
non-commutative formulas (over any field):

I Theorem 4.2 (PIT for non-commutative formulas [26]). There is a deterministic polynomial-
time algorithm that decides whether a given noncommutative formula over a field F computes
the zero polynomial 0. (We assume here that the field F can be efficiently represented (e.g.,
the field of rationals).)

Now, since we write refutations as non-commutative formulas we can use the theorem
above to check in deterministic polynomial-time the correctness of non-commutative IPS
refutations, obtaining:

I Corollary 4.3 (restatement of Corollary 1.5). The non-commutative IPS is a sound and com-
plete Cook-Reckhow refutation system. That is, it is a sound and complete refutation system
for unsatisfiable propositional formulas in which refutations can be checked for correctness in
deterministic polynomial-time.

To prove Theorem 4.1, we will show in Section 4.1 that the non-commutative IPS polynomially-
simulates tree-like F-PC (Definition 2.7), which suffices to complete the proof due to Theorem
2.10.

4.1 Non-commutative IPS polynomially simulates tree-like F-PC
For convenience, let Ci,j denote the commutator axiom xi · xj − xj · xi, for i, j ∈ [n], i 6= j.

I Theorem 4.4. Non-commutative IPS polynomially simulates Tree-like F-PC (Defini-
tion 2.7).

Proof. Let F1, . . . , Fm be arithmetic formulas over the variables x1, . . . , xn. Note that an
arithmetic formula is a syntactic term in which the children of gates are ordered. We thus
can treat a (commutative) arithmetic formula as a non-commutative arithmetic formula
by taking the order on the children of products gates to be the order of non-commutative
multiplication.

Suppose F-PC has a poly(n)-size tree-like refutation π := (L1, . . . , Lk) of the Fi’s (i.e.,
a proof of the polynomial 1 from F1, . . . , Fm), where each Lj is an arithmetic formula.
We construct a corresponding non-commutative IPS refutation of the Fi’s from this F-PC
tree-like refutation. Denote by |π| the size of π. We have the following:

I Lemma 4.5. For each i ∈ [k], there exists a non-commutative formula φi such that:
1. φi(x, 0) = 0;
2. φi(x, Ft, Cj,j′) = Li, where t ∈ [m], j, j′ ∈ [n], j < j′; (this is an abuse of notation

meaning φi(x, F1, . . . , Fm, C1,2, C1,3 . . . , Cn−1,n). We use a similar abuse of notation in
the sequel.)
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3. |φi| ≤
(∑

`∈Ai
|L`|

)4, where Ai ⊂ [k] refers to the indices of the F-PC proof-lines involved
in deriving Li. (For example, if Li is derived by Lα and Lα is derived by Lβ for some
β < α < i ∈ [k], then we say that α, β are both involved for deriving Li.)

Note that if the lemma holds, then φk will be a non-commutative IPS proof because it
has the property that φk(x, 0) = 0 and φk(x, Ft, Cj,j′) = Lk = 1, where t ∈ [m], j, j′ ∈

[n], j 6= j′. And its size is bounded by
(∑

`∈Ak
|L`|

)4 ≤
(∑

`∈[k] |L`|
)4
≤ O(|π|4). Thus,

non-commutative IPS polynomially simulates tree-like F-PC. J

We construct φi by induction on the length k of the refutation π. That is, for i from 1 to k,
we construct the non-commutative formula φi(x, y) according to Li, as follows:

Case 1:

The Li is the input axiom Fj for some j ∈ [m].
Let φi := yj . Obviously, φi(x, 0) = 0, φi(x, Ft, Cα,β) = Fj = Li and |φi| = 1 ≤ |Li|4.

Case 2:

The Li is derived from an inference rule from previous proof-lines Lj , Lj′ , for j, j′ < i. Then
we divide this case into two parts.

Part (1): The Li is derived from the addition rule Li = aLj + bLj′ . Put φi := aφj + bφj′

where a, b ∈ F. Thus, φi(x, 0) = aφj(x, 0) + bφj′(x, 0) = 0, φi(x, Ft, Cα,β) = aLj + bLj′ = Li

and |φi| = |φj | + |φj′ | + 3 ≤
(∑

`∈Aj
|L`|

)4
+
(∑

`∈Aj′ |L`|
)4

+ 3 ≤
(∑

`∈Ai
|L`|

)4 (where
the right most inequality holds since π is a tree-like refutation and hence Aj ∩Aj′ = ∅).
Part (2): The Li is derived from the product rule Li = xr ·Lj′ for r ∈ [n]. Put φi := (xr ·φj).
Then φi(x, 0) = xr · φj(x, 0) = 0, φi(x, Ft, Cα,β) = xr · Lj = Li and |φi| = |φj | + 2 ≤(∑

`∈Aj
|L`|

)4
+ 2 ≤

(∑
`∈Ai

|L`|
)4.

Case 3:

The Li is derived from Lj by a rewriting rule excluding the commutative rule of multiplication.
Let φi := φj . The non-commutative φi satisfies the properties claimed trivially since all
the rewriting rules (excluding the commutative rule of multiplication) express the non-
commutative polynomial-ring axioms, and thus cannot change the polynomial computed by
a non-commutative formula. And |φi| = |φj | ≤

(∑
`∈Ai

|L`|
)4.

Case 4:

The Li is derived from Lj by a single application of the commutative rule of multiplication.
Then by Lemma 4.6 below, we can construct a non-commutative formula φLi,Lj such that
φi := (φj + φLi,Lj

) satisfies the desired properties (stated in Lemma 4.5).

I Lemma 4.6. Let Li, Lj be non-commutative formulas such that Li can be derived from
Lj via the commutative rule of multiplication. Then there is a non-commutative formula
φLi,Lj

(x, y) in variables {x`, yα,β , ` ∈ [n], α < β ∈ [n]}, such that:
1. φLi,Lj

(x, 0) = 0;
2. φLi,Lj (x,Cα,β) = Li − Lj;
3.
∣∣φLi,Lj

∣∣ ≤ |Li|2 |Lj |2.
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Proof. We define the non-commutative formula φLi,Lj
inductively as follows:

If Li = (P ·Q), and Lj = (Q · P ), then φLi,Lj
is defined to be the formula constructed in

Lemma 4.7 below.
If Li = (P ·Q), Lj = (P ′ ·Q′).
Case 1. If P = P ′, then let φLi,Lj

:= (P · φQ,Q′).
Case 2. If Q = Q′, then let φLi,Lj

:= (φP,P ′ ·Q).
If Li = (P +Q), Lj = (P ′ +Q′).
Case 1. If P = P ′, then let φLi,Lj

= φQ,Q′ .
Case 2. If Q = Q′, then let φLi,Lj = φP,P ′ .

By induction, one could check the construction satisfies the desired properties. J

I Lemma 4.7. For any pair P,Q of two non-commutative formulas there exists a non-
commutative formula F in variables {x`, yi,j , ` ∈ [n], i < j ∈ [n]} such that:
1. F (x, 0) = 0;
2. F (x,Ci,j) = P ·Q−Q · P ;
3. |F | = |P |2 |Q|2. e

Proof. Let s(P,Q) denote the smallest size of F satisfying the above properties. We will
show that s(P,Q) ≤ |P |2 · |Q|2 by induction on max(|P | , |Q|).

Base case: |P | = |Q| = 1.
In this case both P and Q are constants or variables, thus s(P,Q) = 1 ≤ |P |2 |Q|2.

In the following induction step, we consider the case that |P | ≥ |Q| (which is symmetric
for the case |P | < |Q|).

Induction step: Assume that |P | ≥ |Q| (the case |P | < |Q| is similar).
Case 1: The root of P is addition.

Let P = (P1 + P2). We have (after rearranging):

P ·Q−Q · P = ((P1 ·Q−Q · P1) + (P2 ·Q−Q · P2))

By induction hypothesis, we have s(P,Q) ≤ s(P1, Q) + 1 + s(P2, Q) ≤ |P1|2 |Q|2 + 1 +
|P2|2 |Q|2 ≤ (|P1|+ |P2|+ 1)2 |Q|2 = |P |2 · |Q|2.
Case 2: The root of P is a product gate.

Let P = (P1 · P2). By rearranging:

P ·Q−Q · P = ((P1 · (P2 ·Q−Q · P2)) + ((P1 ·Q−Q · P1) · P2))

By induction hypothesis, we have s(P,Q) = |P1|+ 1 + s(P2, Q) + 1 + s(P1, Q) + 1 + |P2| ≤
|P1|+ 1 + |P2|2 |Q|2 + 1 + |P1|2 |Q|2 + 1 + |P2| ≤ (|P1|+ |P2|+ 1)2 |Q|2 = |P |2 · |Q|2. J

5 Frege quasi-polynomially simulates non-commutative IPS

In this section we prove that the Frege system quasi-polynomially simulates the non-
commutative IPS (over GF (2)). Together with Theorem 4.4, this gives a new characterization
(up to a quasi-polynomial increase in size) of propositional Frege proofs as non-commutative
arithmetic formulas.

We use the notation in Section 1.3.3: for a clause ki in a CNF φ = k1∧ . . .∧km, we denote
by Qφi the non-commutative formula translation tr′(ki) of the clause ki (Definition 1.6).
Thus, ¬x is translated to x, x is translated to 1− x and f1 · · · fr is translated to

∏
i tr′(fi)
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(considered as a tree of product gates with tr′(fi) as leaves), and where the formulas are over
GF (2) (meaning that 1− x is in fact 1 + x).

I Theorem 5.1 (Main quasi-polynomial simulation). For a 3CNF φ = k1 ∧ . . . ∧ km where
Qφ1 , . . . , Q

φ
m are the corresponding polynomial equations for the clauses, if there is a non-

commutative IPS refutation of size s of Qφ1 , . . . , Qφm over GF (2), then there is a Frege proof
of size sO(log s) of ¬φ.

The rest of the section is dedicated to proving Theorem 5.1. Due to lack of space we refer
the reader to the full version of this work [19] for complete proofs. Here we shall only outline
the main parts of the proof (see also Section 1.3.3).

5.1 Balancing non-commutative formulas
First we show that a non-commutative formula of size s can be balanced to an equivalent
formula of depth O(log s), and thus we can assume that the non-commutative IPS certificate
is already given as a balanced formula (this is needed for what follows). Both the statement
of the balancing construction and its proof are similar to Proposition 4.1 in Hrubeš and
Wigderson [11] (which in turn is similar to the case of commutative formulas with division
gates in Brent [5]). Note that a formula of a logarithmic depth must have a polynomial-size.
(Thus, in what follows, without loss of generality we will assume that F is given already in
a balanced form, namely has depth O(log s) and polynomial-size which, for simplicity, we
denoted as s.)

I Lemma 5.2. Assume that a non-commutative polynomial p can be computed by a formula of
size s. Then p can be computed by a formula of depth O(log s) (and hence of polynomial-size).

5.2 The reflection principle
Here we show that the existence of a non-commutative IPS refutation of size s and depth
O(log s), implies the existence of a Frege proof with size sO(log s) of ¬φ. This is done by
proving a reflection principle for the non-commutative IPS system in Frege. As mentioned in
the introduction, informally, a reflection principle for a given proof system P is a statement
that says that if a formula is provable in P then the formula is also true. Thus, suppose we
have a short Frege-proof of the reflection principle for P , having the form:

“([π] is a P -proof of [T ]) −→ T”,

where [T ] and [π] are some reasonable encodings of the tautology T and its P -proof π,
respectively. Then, we can easily obtain a Frege proof of T assuming we have a P -proof of T .

Let F be a non-commutative formula over GF (2) and let Qφ(x) denote the vector
(Qφ1 , . . . , Qφm) (see Theorem 5.1). First, note that F is a non-commutative IPS proof of φ
only if it has the following two properties:

F
(
x, 0
)

= 0, F
(
x,Q

φ(x)
)

= 1, (1)

showing the unsatisfiability of Qφ(x) = 0, and hence showing ¬φ is a tautology. We can
treat F as a Boolean formula, as follows:

I Definition 5.3 (Booleanization Fbool). Let F (x) be a non-commutative formula over GF (2)
in the (algebraic) variables x. We denote by Fbool(p) the Boolean formula in the (propositional)
variables p obtained by turning every plus gate and multiplication gate to ⊕ (i.e., XOR)
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and ∧ gates, respectively, and turning the input variables x into the propositional variables
p. We sometimes write F and Fbool without explicitly mentioning the x and p variables,
respectively.

When we consider F = F (x, y) (with both the x and y variables), Fbool denotes the Boolean-
ization of F when the variables x are replaced by p and the variables y are still written as
y. Note that for any 0-1 assignment, F and Fbool have the same value. Therefore, by the
properties in (1), we know:

¬Fbool
(
p, 0
)
, Fbool

(
p,Q

φ

bool(p)
)

(2)

are both tautologies (though we still need to proof that their Frege proofs are short).
To conclude Theorem 5.1, we first prove in Frege ¬φ based on (2) (this is done in Lemma

5.4 below which is not hard to establish), and then we show that there exists an sO(log s)

Frege proof of (2) (which is done in Lemma 5.5 in the next section, and requires much more
work).

I Lemma 5.4.
((
¬Fbool

(
p, 0
))
∧ Fbool

(
p,Q

φ

bool(p)
))
→ ¬φ can be proved with a polynomial-

size Frege proof.

Having this lemma, it remains to show a quasi-polynomial-size proof of (2). We denote
¬Fbool

(
p, 0
)
and ¬

(
1⊕ Fbool

(
p,Q

φ

bool(p)
))

by

F ′bool(p), F ′′bool(p), respectively. (3)

Note that the substitutions of the constants 0 or the constant depth formulae Qφbool in F
cannot increase the depth of F too much (i.e., can add at most a constant to the size of F ).
In other words, the depths of the formulae in (3) are still O(log s).

5.3 Non-commutative formula identities have quasi-polynomial-size
proofs

Recall that a (commutative or non-commutative) multivariate polynomial f is homogeneous
if every monomial in f has the same total degree. For each 0 ≤ j ≤ d, denote by f (j) the
homogenous part of degree j of f , that is, the sum of all monomials (together with their
coefficient from the field) in f of total degree j. We say that a formula is homogeneous if
each of its gates computes a homogeneous polynomial (see Definition 2.5 for the definition of
a polynomial computed by a gate or a formula).

To complete the proof of Theorem 5.1 it remains to prove the following:

I Lemma 5.5. If a non-commutative formula F (x) with 0-1 coefficients of size s and depth
O(log s) is identically zero, then the corresponding Boolean formula ¬Fbool(p) admits a Frege
proof of size sO(log s).

5.4 Homogenization of non-commutative formulas has short Frege
proofs

To complete the proof of Lemma 5.5 it remains to prove Lemmas 5.6 and 1.8 in what follows.
Lemma 5.6 states that Raz’ construction from [25] for homogenizing arithmetic formulas is
efficiently provable in Frege (and is also applicable to non-commutative formulas):
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I Lemma 5.6. If F is a non-commutative formula of size s and depth O(log s) and
F (0), . . . , F (s) are the homogenous formulae computing F ’s homogenous parts of degrees
0, . . . , s, respectively, constructed according to [25], then there exists an sO(log s)-size Frege
proof of:

s+1⊕
i=0

F (i) ↔ Fbool.

5.5 Homogenous non-commutative formula identities have
polynomial-size Frege proofs

To conclude Theorem 5.1 it remains to prove Lemma 5.7 below, which is the main technical
lemma of the whole argument. It states that a non-commutative syntactic-homogenous
formula identity over GF (2) has polynomial-size Frege proofs (considered as a Boolean
tautology). The proof of this lemma is somewhat lengthy as it entails us to show that
the Raz and Shpilka polynomial-time PIT algorithm for non-commutative formulas can be
“simulated” efficiently with Frege proofs. Here we just state formally Lemma 1.8 and refer
the reader to the full version of the paper [19] for a complete proof of this lemma.

I Lemma 5.7 (Main technical lemma). There exists a constant c such that if a non-
commutative syntactic homogeneous formula F (x) over GF (2) of size s is identically zero,
then the corresponding Boolean tautology ¬Fbool(p) can be proved with a Frege proof of size
at most sc (for sufficiently large s).

Acknowledgements. We thank Joshua Grochow for helpful comments.
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Abstract
We study the space complexity of the cutting planes proof system, in which the lines in a proof
are integral linear inequalities. We measure the space used by a refutation as the number of
linear inequalities that need to be kept on a blackboard while verifying it. We show that any
unsatisfiable set of linear inequalities has a cutting planes refutation in space five. This is in
contrast to the weaker resolution proof system, for which the analogous space measure has been
well-studied and many optimal linear lower bounds are known.

Motivated by this result we consider a natural restriction of cutting planes, in which all
coefficients have size bounded by a constant. We show that there is a CNF which requires super-
constant space to refute in this system. The system nevertheless already has an exponential
speed-up over resolution with respect to size, and we additionally show that it is stronger than
resolution with respect to space, by constructing constant-space cutting planes proofs, with
coefficients bounded by two, of the pigeonhole principle.

We also consider variable instance space for cutting planes, where we count the number of
instances of variables on the blackboard, and total space, where we count the total number of
symbols.
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1 Introduction

1.1 Background
The method of cutting planes for integer linear programming was introduced by Gomory [15]
and Chvátal [10]. An initial polytope P, defined by a system of linear inequalities, can be
transformed through a sequence of Gomory-Chvátal cuts into the integral hull of P, that
is, into the smallest polytope containing the integral points of P. If the set of inequalities
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defining P has no integral solution, then the integral hull of P is empty and the sequence of
cuts can be used as a witness that there is no solution.

W. Cook et al. in [12] used this idea to define cutting-plane proofs. As we present it in this
paper, cutting planes, or CP, is a system for refuting unsatisfiable systems of integral linear
inequalities over Boolean (0/1-valued) variables. Each line in a CP refutation is an inequality,
and there are rules for taking linear combinations and for a version of the Gomory-Chvátal
cut (formal definitions follow in Section 2). In particular, CP can be used as a system for
refuting unsatisfiable Boolean formulas in conjunctive normal form (CNFs), since these can
be translated into sets of inequalities.

Cutting planes has been studied from the point of view of the size complexity of proofs,
usually measured as the number of lines in a refutation. It has an exponential speed-up over
the well-known resolution proof system [12]. Exponential lower bounds on size were shown
in [17, 24].

By analogy with complexity theory, where we study the space needed by computations, as
well as the time, we can also study the space requirements of proofs [14, 1]. In a refutational
system based on successively deriving formulas, we imagine presenting a proof by writing
formulas on a blackboard as we derive them. We can erase formulas and write down axioms
at any time, but if we want to write a formula derived by a rule, all the premises of the rule
must be present on the blackboard. How large a blackboard do we need? The most common
measure of blackboard size is the number of formulas that will fit on it. This is called in
general formula space, or clause space in resolution or inequality space in cutting planes. We
also consider some other measures. See Section 2 for definitions.

Space is by now fairly well-understood in resolution (see [22] for a survey) and increasingly
also in the algebraic polynomial calculus proof system (see e.g. [6]). But little has been known
about space in cutting planes. The basic space upper bounds known for resolution [14]
carry over to CP, for example, that every unsatisfiable CNF has a refutation with linear
space and quadratic total space. W. Cook in [11] showed that every unsatisfiable set of
inequalities F has a refutation with total space polynomial in the space needed to write F
(although his definitions are not quite the same as ours). A nontrivial lower bound for variable
instance space in CP is mentioned as an open problem in [1]. Dantchev and Martin in [13]
show lower bounds for a certain width measure. In a recent paper Göös and Pitassi [16],
improving a result of Huynh and Nordström [20], give a family of CNFs of size m which
cannot simultaneously be refuted with small space and small length – the space s and length `
of every CP refutation must satisfy s log ` ≥ m1/4−o(1).

One motivation for studying cutting planes is that it has the potential to offer a more
efficient foundation for SAT solving than resolution. From this point of view results about
refutation size and refutation space are both interesting, as they may give information about
respectively the time and the memory required for computations [23].

1.2 Results for cutting planes
Our main result, Theorem 3.4 in Section 3, is a general constant upper bound on the minimal
inequality space of CP refutations: any unsatisfiable set of linear inequalities can be refuted
in space five. This result, which holds in particular for unsatisfiable CNFs, is in contrast
with resolution, where there are several families of CNFs, including random k-CNFs, which
require refutations with linear clause space [14, 3] (the situation is similar with monomial
space in polynomial calculus [6]). To prove the theorem we first prove that the complete
tree contradiction CTn has CP refutations in space five (Lemma 3.2), and then use these
refutations to build small space refutations for any unsatisfiable set of inequalities.
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Section 4 contains three small results that follow from the work in Section 3. First, we
observe that the refutations in Lemma 3.2 use coefficients with absolute value at most 2n.
Hence the refutations have total space O(n2), where we measure total space by counting
the total number of symbols that must be written simultaneously on the blackboard, not
just the number of inequalities (we assume that the coefficients are written in binary, and
do not consider variable names as taking space – see below). It follows that O(n2) total
space is sufficient to refute any unsatisfiable set of linear inequalities, as long as the absolute
values of the coefficients and the constant term are bounded by an exponential function
(Corollary 4.1). Notice however that, restricted to CNFs, this upper bound already follows
from the O(n2) upper bound for total space in resolution (see e.g. [14, 7]).

Second, we use our derivation of CTn from any unsatisfiable set F of inequalities to
observe, in Proposition 4.2, that F has a CP refutation in which the absolute values of the
coefficients are relatively small – they are bounded by the maximum, over all inequalities I
in F , of the sum of the absolute values of the coefficients and constant term of I. This gives
smaller bounds than results in [12, 9]; however those are concerned with a different problem,
of limiting the size of the coefficients while keeping the refutation short.

Lastly in Section 4 we consider variable instance space in CP. This measures the total
number of instances of variables that appear simultaneously on the blackboard during a
refutation. This is like total space, but ignores the size of the coefficients and constant terms.
On the one hand, the minimal width of refuting an unsatisfiable CNF in resolution is a
lower bound on the variable instance space in CP; on the other hand, Theorem 3.4 implies a
general linear upper bound on variable instance space. This allows us to use known width
lower bounds in resolution to show tight linear bounds on variable instance space in CP
(Corollary 4.4).

1.3 Results for cutting planes with small coefficients
The constant space refutations in Theorem 3.4 use coefficients as big as 2n, and these seem
to be necessary for our proof technique to work. In Sections 5 and 6 we study what can be
said about space in CP if we rule out this kind of refutation, by putting an upper bound on
the coefficients.

For k ∈ N, we define CPk as the restriction of cutting planes in which every inequality in
a derivation must have coefficients with absolute value at most k. This is already quite a
strong proof system for k = 2. It is exponentially stronger than resolution, since an inspection
of the proofs in [12] shows that CP2 efficiently simulates resolution and has polynomial size
refutations of the pigeonhole principle PHPm. Cutting planes with bounded coefficients
has been considered before – the system generalized resolution studied in [19] is similar to
CP2, and size lower bounds for CP were initially shown for a restricted system CP∗ with
polynomially bounded coefficients [21, 8]. (Note that by a result of [18], if we bound the
constant term1 by k, rather than bounding the coefficients, we get a system equivalent to
resolution.)

In Section 5 we consider a natural candidate for proving inequality space lower bounds
on CPk refutations, the pigeonhole principle. We show in Theorem 5.1 that there is no such
lower bound for PHPm, and in fact that it has CP2 refutations with inequality space five.
Our refutation is broadly similar to the refutation in [12] (which uses space linear in the

1 More precisely, if we write all inequalities in the form
∑

i∈P
λixi +

∑
i∈N

λi(1 − xi) ≥ t and put a
constant upper bound on the term t.
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number of variables). It follows that CP2 is strictly stronger than resolution with respect to
space.

Finally in Section 6 we prove that small coefficients do not always suffice for constant
space proofs, by showing in Theorem 6.6 that for any constant k ∈ N, the contradiction
CTn requires inequality space Ω(log log logn) to refute in CPk. (In fact we prove something
slightly stronger, that the refutation requires many different coefficients – our proof does not
use the size of the coefficients directly.) Similarly, if we insist on constant inequality space
then we get a barely super-constant lower bound on the coefficients. Our lower bounds are
very small and surely not optimal. However, the proof is interesting because it is based on a
counting argument, which is rare in proof complexity.

The contradiction CTn is unusual in having exponential size in the number n of variables.
However, using a padding argument one can easily show that there is contradiction F of
linear size in n, and which even has linear size resolution refutations, but which still requires
superconstant inequality space to refute in CPk (Corollary 6.7). Nevertheless, it would be
interesting to find a more natural example.

2 Technical preliminaries

The lines in a cutting planes (CP) proof are inequalities of the form
∑
λixi ≥ t where the

coefficients λi and the constant term t are integers, and the xi are Boolean variables. A CP
derivation of an inequality I from a set of inequalities F is a sequence of lines, ending with I,
where each line is either (1) a member of F , or (2) a Boolean axiom x ≥ 0 or −x ≥ −1,
or (3) follows from earlier lines by the linear combination rule or the cut rule. These are
respectively ∑

λ1
ixi ≥ t1 · · ·

∑
λki xi ≥ tk∑(∑

j sjλ
j
i

)
xi ≥

∑
j sjtj

and
∑
sλixi ≥ t∑

λixi ≥ dt/se

where s1, . . . , sk and s must be strictly positive integers, and the linear combination rule can
take any number of premises.2

To define our space measures we assume that our derivations come with some extra
structure. We follow the model proposed by [14, 1] inspired by the definition of space for
Turing machines. A memory configuration M is a set of linear inequalities. A CP derivation
of I from F is then given by a sequence M0, . . . ,M` of memory configurations, where Mi

represents the contents of the blackboard at the ith step in the derivation. The sequence
must satisfy that M0 is empty, that I ∈ M`, and that for each i < `, Mi+1 is obtained
from Mi in one of three ways:

Axiom download: Mi+1 = Mi ∪ {J} for some J ∈ F
Inference: Mi+1 = Mi ∪ {J} where J follows from Mi by an inference rule, or is a
Boolean axiom
Erasure: Mi+1 ⊂Mi.

2 One can also define cutting planes using a binary addition rule, a unary multiplication rule and the
cut rule. The two systems polynomially simulate each other and the inequality space is exactly the
same. However other measures of complexity may differ substantially. We have chosen to use the linear
combination rule since this captures better the geometric idea behind cutting planes. We briefly discuss
a difference between the systems at the end of Section 4, but other than this our results do not depend
essentially on which definition one takes.
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A CP refutation of F is a CP derivation of 0 ≥ 1 from F .
We consider three measures of the space taken by a memory configuration M. The

inequality space is the number of inequalities in M. The variable instance space is the sum,
over all inequalities J inM, of the number of distinct variables appearing in J with a non-zero
coefficient (this definition, for general proof systems, is from [1], where it is called simply
“variable space”). We define the total space as the sum, over all inequalities J in M, of the
length in binary of all non-zero coefficients in J and of the constant term of J , ignoring
signs.3

For each measure, the corresponding space of a refutation Π is the maximum space of
any configuration Mi in Π. The corresponding space needed to refute a set of inequalities F
is the minimum space of any refutation of F . If we refer just to the space of a refutation we
mean the inequality space, just as in resolution the analogous measure, clause space, is often
simply called space.

By an assignment to a set of inequalities or CNF F , we always mean a total assignment
of 0/1 values to the variables appearing in F . We say that F is unsatisfiable if it is not
satisfied by any such assignment.

The complete tree contradiction CTn, which is central to this work, is a CNF in n

variables x0, . . . , xn−1, with 2n clauses. For each assignment α, it contains the clause∨
i∈Z xi ∨

∨
i∈A ¬xi where A = {i : α(xi) = 1} and Z = {i : α(xi) = 0}. This clause is

falsified by α and by no other assignment.
We translate propositional clauses into inequalities, and thus CNFs into sets of inequalities,

using the translation of [12]:∨
i∈P

xi ∨
∨
i∈N
¬xi 7−→

∑
i∈P

xi +
∑
i∈N

(1− xi) ≥ 1.

When describing a CP refutation, we may freely rearrange the terms in an inequality and
move the constant term around, for example treating

∑
λixi ≥ t and

∑
λixi + s ≥ t+ s as

the same inequality. Similarly, we will sometimes use the Boolean axiom −x ≥ −1 in the
form 1− x ≥ 0.

When working in a fixed amount of inequality space, it is helpful to think of each unit of
space as a “register” that can contain one inequality. We will frequently make use of the
following observation, which we record as a lemma:

I Lemma 2.1. If we have one register free, we can treat addition, multiplication and
rounding operations as if they happen “in place”, with one of the assumptions overwritten by
the conclusion. If we have two registers free, we can add any positive linear combination of
axioms to any other register.

3 Inequality space upper bound

We show that any unsatisfiable set of inequalities F can be refuted in CP in constant
inequality space. We do this by first showing that CTn can be refuted in constant space,
and then showing that each clause of CTn can be derived from F in constant space. The
overall form of the proof, and the idea of refuting CTn by considering all assignments in

3 For simplicity, we do not count arithmetical symbols or variable names in total space. Counting these
at most trebles the space, if we treat each variable name as a single symbol. It increases it by a factor
of O(logn) if we include the symbols needed to write variable indices.
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lexicographic order, are inspired by the proof of a variable instance space upper bound on
the Frege proof system in [1].

We first prove a useful lemma, then the upper bound for CTn.

I Lemma 3.1. Suppose we have two registers free, and a third register that contains an
inequality

∑
i∈S λixi +

∑
i∈T λi(1− xi) ≥ b, with b ≥ 1. Then we can replace the inequality

with
∑
i∈S xi +

∑
i∈T (1− xi) ≥ 1.

Proof. Choose an integer c greater than or equal to the maximum of b and all the coeffi-
cients λi. Using Lemma 2.1, add (c − λi)xi ≥ 0 to the inequality for each i ∈ S and add
(c− λi)(1− xi) ≥ 0 for each i ∈ T . This gives∑

i∈S
cxi +

∑
i∈T

c(1− xi) ≥ b.

Then divide by c and round (by applying the cut rule). The constant term becomes
db/ce = 1. J

I Lemma 3.2. CTn has a CP refutation with inequality space 5.

Proof. Given a number a < 2n we will write (a)0, . . . , (a)n−1 for the bits of the binary
expansion of a, so that a =

∑
2i(a)i. Throughout the proof sums

∑
are taken over i < n,

or whichever subset of this is indicated.
For a ∈ N, define the inequality Ta as

Ta :
∑

2ixi ≥ a.

The assignments falsifying Ta are exactly those lexicographically strictly less than a. In other
words, Ta is equivalent to the conjunction of the inequalities Ib over all b < a, where we
write Ib for the clause of CTn which is falsified exactly by the assignment xi 7→ (b)i.

For a < 2n, Ta and Ia together imply Ta+1. We will show that this implication can be
proved in small space. In this way we can proceed by a kind of induction, first deriving T0, then
deriving in turn T1, T2, . . . , T2n−1 and finally deriving a contradiction from T2n−1 and I2n−1.

For the inductive step, fix a < 2n. Let A = {i < n : (a)i = 1} and Z = {i < n : (a)i = 0}.
Define the inequalities

Ma :
∑
i∈Z

xi ≥ 1 Lka : xk +
∑
i>k
i∈Z

xi ≥ 1.

Notice that if β is an assignment such that β ≥ a lexicographically, then β satisfies Lka for
each k ∈ A. If furthermore β > a, then β also satisfies Ma. We claim these implications are
provable in small space:
Claim 1. We can derive Ma from Ta and Ia in space 3.
Claim 2. We can derive Lka from Ta in space 3, for any k ∈ A.

Using these two claims, we can then show
Claim 3. We can derive Ta+1 from Ta and Ia in space 4.

Here and below by “we can derive” we mean that there exists a CP derivation as defined
in Section 2, where we treat the assumptions as axioms which do not take up space until we
choose to download them. Using the claims we can carry out the refutation of CTn sketched
above, using five registers. The inequality T0 is a linear combination of the axioms xi ≥ 0 so
we may easily derive it in the first register. Then we derive T1 using T0, I0 and the four free
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registers, then copy it to the first register. We repeat this for T2, T3 and so on. Once we
have T2n−1 we can derive M2n−1, which is exactly 0 ≥ 1.

It remains to prove the three claims.
Proof of Claim 1. We are given Ta, Ia and three free registers and want to derive Ma. We
write Ia in the first register, that is,∑

i∈Z
xi +

∑
i∈A

(1− xi) ≥ 1.

We add to it the following two inequalities, both linear combinations of axioms:∑
i∈Z

(2i − 1)xi ≥ 0 and
∑
i∈A

(2i − 1)(1− xi) ≥ 0.

The result is∑
i∈Z

2ixi −
∑
i∈A

2ixi ≥ 1−
∑
i∈A

2i

whose right hand side equals 1− a. We add Ta to this, giving

2
∑
i∈Z

2ixi ≥ 1.

By Lemma 3.1 we can replace this with Ma.

Proof of Claim 2. We are given Ta and three free registers and want to derive Lka for a given
k ∈ A. We copy Ta into the first register, rearranging it as∑

i<k

2ixi + 2kxk +
∑
i>k
i∈A

2ixi +
∑
i>k
i∈Z

2ixi ≥
∑
i<k
i∈A

2i + 2k +
∑
i>k
i∈A

2i.

We add the following linear combination of axioms:

−
∑
i<k

2ixi −
∑
i>k
i∈A

2ixi ≥ −
∑
i<k

2i −
∑
i>k
i∈A

2i.

The result is

2kxk +
∑
i>k
i∈Z

2ixi ≥ 2k −
∑
i<k

2i +
∑
i<k
i∈A

2i

whose right hand side is at least 1. Hence by Lemma 3.1 we can replace it with Lka.

Proof of Claim 3. We are given Ta, Ia and four free registers and want to derive Ta+1. By
Claim 1, we can write Ma in the first register, that is,∑

i∈Z
xi ≥ 1.

For each k ∈ A, we use Claim 2 to write Lka in the second register, and then multiply it
by 2k, giving

2kxk + 2k
∑
i>k
i∈Z

xi ≥ 2k.
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We do this for each k ∈ A in turn, each time adding the result to the first register. At the
end of this process, the first register contains the inequality∑

k∈A

2kxk +
∑
i∈Z

(∑
k<i
k∈A

2k
)
xi +

∑
i∈Z

xi ≥ 1 +
∑
k∈A

2k.

Here the right hand side equals a+ 1, and for i ∈ Z the coefficient λi of xi is less than or
equal to 2i. Hence for all i ∈ Z we may add the inequality (2i−λi)xi ≥ 0 to the first register,
giving∑

k∈A

2kxk +
∑
i∈Z

2ixi ≥ a+ 1

which is Ta+1. J

Using the refutation constructed in Lemma 3.2 we prove, in Theorem 3.3, a space upper
bound for any unsatisfiable CNF. The proof is simple – any unsatisfiable CNF formula F
in n variables can be weakened to CTn in resolution (since every assignment falsifies at least
one clause) and the Boolean axioms in CP can easily simulate this weakening. We then
extend the argument to prove the more general result, an upper bound for any unsatisfiable
set of inequalities, as Theorem 3.4.

I Theorem 3.3. Let F be any unsatisfiable CNF. Then F has a CP refutation with inequality
space 5.

Proof. Suppose F has variables x0, . . . , xn−1. It is enough to show that, for each assignment α,
the inequality Iα of CTn is derivable in space 4 from the translation of F . We can then
imitate the refutation in the proof of Lemma 3.2.

Let α be any assignment and let A = {i : α(xi) = 1} and Z = {i : α(xi) = 0}. Since F is
unsatisfiable α falsifies some inequality from F , of the form

I :
∑
i∈P

xi +
∑
i∈N

(1− xi) ≥ 1.

Hence we must have α(xi) = 0 for each i ∈ P and α(xi) = 1 for each i ∈ N . In other words,
P ⊆ Z and N ⊆ A. Hence we can derive Iα from F using space 3, by downloading I and
adding∑

i∈Z\P

xi +
∑

i∈A\N

(1− xi) ≥ 0

which is a linear combination of axioms. J

I Theorem 3.4. Let F be any set of unsatisfiable inequalities. Then F has a CP refutation
with inequality space 5.

Proof. Suppose F has variables x0, . . . , xn−1. As before, let α be any assignment and let
A = {i : α(xi) = 1} and Z = {i : α(xi) = 0}. The assignment α falsifies some inequality
from F , of the form

I :
∑
i∈P

λixi −
∑
i∈N

λixi ≥ t

where P and N are disjoint and all the coefficients λi are positive. We will derive Iα from I

in space 3.
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We first decompose I as∑
i∈P∩A

λixi +
∑

i∈P∩Z
λixi −

∑
i∈N∩A

λixi −
∑

i∈N∩Z
λixi ≥ t. (1)

Since I is falsified by α, if we evaluate the left-hand side of (1) under α we get∑
i∈P∩A

λi −
∑

i∈N∩A
λi < t.

Hence if we set δ = t−
∑
i∈P∩A λi +

∑
i∈N∩A λi then δ ≥ 1 and we can rewrite (1) as∑

i∈P∩A
λixi +

∑
i∈P∩Z

λixi −
∑

i∈N∩A
λixi −

∑
i∈N∩Z

λixi ≥
∑

i∈P∩A
λi −

∑
i∈N∩A

λi + δ. (2)

We add to (2) the two inequalities

−
∑

i∈P∩A
λixi ≥ −

∑
i∈P∩A

λi and
∑

i∈N∩Z
λixi ≥ 0.

The result is∑
i∈P∩Z

λixi −
∑

i∈N∩A
λixi ≥ −

∑
i∈N∩A

λi + δ

which we rearrange as∑
i∈P∩Z

λixi +
∑

i∈N∩A
λi(1− xi) ≥ δ.

Since δ ≥ 1, we may use Lemma 3.1 to replace this with∑
i∈P∩Z

xi +
∑

i∈N∩A
(1− xi) ≥ 1

from which we can easily obtain Iα as in the previous theorem. J

4 Corollaries

Firstly, from the refutation constructed in Theorem 3.4, we immediately get a general upper
bound on the total space needed for CP refutations. Note that there are threshold functions
that require coefficients of size nn/2 to write as a linear inequality, so the assumption about
the coefficients in F is necessary.

I Corollary 4.1. Let F be any unsatisfiable set of linear inequalities over n variables in
which the coefficients and the constant term are bounded by an exponential function 2O(n).
Then F has a CP refutation with total space O(n2) and with coefficients bounded by 2O(n).

Secondly, we observe that the reduction to CTn at the end of Section 3 can be used
directly to show an upper bound on the size of coefficients needed in a CP refutation.

I Proposition 4.2. Let F be any set of unsatisfiable inequalities. Let σ be the maximum,
over all inequalities Σλixi ≥ t in F , of Σ|λi|+ |t|. Then there exists a CP refutation of F in
which the absolute value of all coefficients is at most σ.
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Proof. We use the constructions and notation from the proof of Theorem 3.4. We can derive
from F all inequalities Iα of CTn. Since these inequalities are translations of clauses, we
can then simulate in CP the resolution refutation of CTn. A simulation of resolution uses
coefficients with absolute value at most 2. So it remains to check the size of the coefficients
in the derivation of each Iα.

This is derived from a single inequality I in F , in two steps. First we obtain an inequality
of the form∑

i∈P∩Z
λixi +

∑
i∈N∩A

λi(1− xi) ≥ δ (3)

where all the λi are positive. The coefficients needed to derive this are just the coefficients
from I. Furthermore δ = t−

∑
i∈P∩A λi +

∑
i∈N∩A λi, so |δ| ≤ σ. We then reduce (3) to∑

i∈P∩Z
xi +

∑
i∈N∩A

(1− xi) ≥ 1 (4)

as in Lemma 3.1, by letting c = max{λ1, . . . , λn, δ}, adding (c − λi)xi ≥ 0 to (3) for each
i ∈ P ∩ Z, adding (c − λi)(1 − xi) ≥ 0 to (3) for each i ∈ N ∩ A, and then dividing by c
and rounding. Since c and all the λi are positive, the largest coefficient that appears in this
process is at most max{|λ1|, . . . , |λn|, c}, which is bounded by σ.

From (4) we can get Iα using only coefficients ±1. In fact, we do not even need this step,
since (4) already is the translation of a clause, and the collection of all such clauses has a
resolution refutation. J

Lastly we briefly discuss bounds on variable instance space in CP. The width of a
resolution refutation is the size of the largest clause in it. We state the next lemma for
variable instance space, but we will show a stronger fact that resolution width is at most the
“variable space without repetitions” of refuting F in CP, where the space of a configuration
is measured by counting the number of different variables that appear (this measure is called
simply “variable space” in [4, 2]). It is well-known that this fact is true for any refutation
system based on formulas defining Boolean functions (see Lemma 8 of [2]).

I Lemma 4.3. Let F be an unsatisfiable CNF. The minimal width of refuting F in resolution
is at most the variable instance space of refuting F in CP.

Proof. Let Π be a CP refutation of F in which every configuration contains at most s many
different variables with non-zero coefficients. We sketch how to simulate Π by a resolution
refutation ρ with width at most s. For any inequality I in Π, let X be the set of variables
in I with non-zero coefficients, and let ΦI be a CNF in variables X expressing the same
Boolean function as I. Let I1, . . . , Im be the inequalities from which I was derived by a
rule in Π. Then there is a resolution derivation of ΦI from ΦI1 , . . . ,ΦIm , since resolution is
implicationally complete. The total number of different variables appearing in this derivation
is at most s, since I1, . . . , Im and I must belong to the same configuration in Π, hence
can mention no more than s variables in total. In particular, the width of the resolution
derivation is at most s. J

The lemma allows us to use known lower bounds on width in resolution, together with the
linear upper bound on variable instance space that follows immediately from Theorem 3.4,
to derive tight bounds on variable instance space in CP. For example, using a result of [5],
we get:
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I Corollary 4.4. With high probability the variable instance space of refuting a random
k-CNF in CP is Θ(n).

Note that if we had defined cutting planes using a binary addition rule and unary
multiplication rule (rather than arbitrary linear combinations), the simulation in Lemma 4.3
would prove that resolution width is at most twice the CP width, if we define the width of
an inequality as the number of variables appearing with non-zero coefficients. Clearly, in
such a proof the particular form of the rules used is irrelevant; only their arity matters. In
the version of CP we use, it is not so easy to prove non-trivial width lower bounds. Dantchev
and Martin in [13] show a width lower bound for an ordering principle in essentially our
system, using a geometrical argument.

5 PHPn with small coefficients

We consider the pigeonhole principle contradiction PHPn. It is formalized, as usual, by the
following set of inconsistent inequalities:

Pi :
∑
j<n

xij ≥ 1 for i < n+ 1

Hii′j : xij + xi′j ≤ 1 for i < i′ < n+ 1 and j < n.

To simplify our presentation we will be less strict about how we write inequalities in CP
refutations, and allow the notation

∑
λixi ≤ t (we do not change the formal rules of the

system). With this notation the Boolean axioms look like −x ≤ 0 and x ≤ 1 and the cut
rule looks like∑

sλixi ≤ t∑
λixi ≤ bt/sc

where we round the constant term down rather than up.

I Theorem 5.1. PHPn has polynomial size CP2 refutations with space 5.

The non-trivial part of the proof is taken care of by the following lemma.

I Lemma 5.2. Given inequalities yi + yj ≤ 1 for all i < j < n, we can derive
∑
yi ≤ 1 in

polynomial size and in space 4, using coefficients bounded by 2.

Proof. Let Am be the inequality

Am :
∑
i<m

yi ≤ 1.

We claim that, for m < n, Am+1 can be derived from Am in space 3. The lemma follows
immediately.

So suppose we are given Am, all inequalities yi + yj ≤ 1, and three free registers. Our
strategy is to derive the inequality

Bk :
∑
i<k

yi + ym ≤ 1 (5)

in the first register, for k = 1, . . . ,m−1 in turn. For k = 1 this is an axiom, and for k = m−1
it is Am+1, as required. Suppose we have derived Bk for some 1 ≤ k < m− 1 and want to
derive Bk+1. We add to Bk the inequalities

yk + ym ≤ 1 and
∑
i<k+1

yi ≤ 1. (6)
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The first of these is an axiom. The second is a weakening of Am, which we could derive
in three registers by downloading Am and then adding the combination of Boolean axioms
−yk+1− · · · − ym−1 ≤ 0. However, since we only have two registers free, we achieve the same
effect by adding Am and −yk+1 − · · · − ym−1 ≤ 0 directly to the first register. The result is∑

i<k

2yi + 2yk + 2ym ≤ 3

since each index appears exactly twice in the three inequalities from (5) and (6). We derive
Bk+1 by dividing by two and rounding down the constant term.

J

Proof of Theorem 5.1. We are given the PHPn axioms and five free registers. We use
Lemma 5.2 and the first four registers to derive∑

i<n+1
xij ≤ 1

for each j < n in turn, each time adding the result to the fifth register. The fifth register
then contains the total∑

j<n

∑
i<n+1

xij ≤ n, or equivalently −
∑
i<n+1

∑
j<n

xij ≥ −n.

We obtain 0 ≥ 1 by adding to this the axioms Pi for all i < n+ 1. J

6 Space lower bounds for small coefficients

We use a counting argument to show that any CP refutation of CTn, in which there is a
global constant bound on the number of different coefficients appearing in every configuration,
must have superconstant inequality space. In particular, this implies superconstant lower
bounds on inequality space for CTn in the system CPk.

I Definition 6.1. Call a set A of assignments s-symmetric if there is a partition of the
variables into s or fewer blocks, such that A is closed under every permutation which preserves
all blocks.

I Lemma 6.2. Suppose I is a linear inequality in which no more than b different coefficients
appear. Then the set of assignments falsifying I is b-symmetric.

Suppose M is a CP configuration in space c, such that no more than b different coefficients
appear in any inequality in M. Then the set of assignments falsifying M is bc-symmetric.

Proof. For the first part, the inequality I has the form

λ1
∑
i∈B1

xi + · · ·+ λb
∑
i∈Bb

xi ≥ t.

The b-symmetry is witnessed by the blocks B1, . . . , Bb. For the second part, take the common
refinement of the partitions for all of the inequalities in M. J

I Lemma 6.3. Suppose that CTn has a CP refutation in space c, in which no more than b
different coefficients appear in any inequality. Then there is a sequence A1, . . . , AN of sets
of bc-symmetric assignments, beginning with the empty set and ending with the set of all
assignments, such that for each i < N either Ai+1 ⊆ Ai or Ai+1 = Ai ∪ {α} for some
assignment α.



N. Galesi, P. Pudlák, and N. Thapen 445

Proof. Let Ai be the set of assignments falsifying the ith configuration. J

We define a k-assignment to be an assignment with exactly k variables set to 1 and all
the rest set to 0.

I Lemma 6.4. Define S(s, k) = {|A| : A is an s-symmetric set of k-assignments}. Then
|S(s, k)| < ns2ks .

This is proved after Theorem 6.5.

I Theorem 6.5. For n ≥ 2, suppose that CTn has a CP refutation in space c, in which no
more than b different coefficients appear in any inequality. Then bc ≥

√
log logn.

Proof. Let s = bc and k = 2s. For trivial reasons b, c ≥ 2 so s ≥ 4.
Let A1, . . . , AN be the sequence of s-symmetric assignments from Lemma 6.3, and let

A′i = {α ∈ Ai : α is a k-assignment}. Then A′1 is empty, A′N consists of all k-assignments,
and for each i < N either A′i+1 ⊆ A′i or A′i+1 = A′i ∪ {α} for some k-assignment α. It follows
that the sequence |A′1|, . . . , |A′N | must contain every number between 0 and

(
n
k

)
. Since each

A′i is still s-symmetric, this in particular means that for every number m between 0 and
(
n
k

)
,

there is at least one s-symmetric set A of k-assignments with |A| = m.
Hence, in the notation of Lemma 6.4, S(s, k) =

(
n
k

)
+ 1. It follows that

(
n
k

)
< ns2ks .

Using the bound (nk )k ≤
(
n
k

)
and taking the logarithm of both sides, we get

k(logn− log k) < s logn+ ks.

Substituting k = 2s gives

2s(logn− s) < s logn+ 2s
2
.

Now assume for a contradiction that s <
√

log logn. Then logn − s ≥ 1
2 logn (we may

assume n ≥ 4) and 2s2
< logn. The inequality becomes

2s−1 logn < (s+ 1) logn

which is impossible. J

Proof of Lemma 6.4. Let A be an s-symmetric set of k-assignments. Let B1, . . . , Bs be a
partition witnessing the s-symmetry (we allow some of the blocks to be empty). Then A is
the union of orbits, where each orbit is parametrized by a distinct tuple r1, ..., rs summing
to k, and the orbit consists of every k-assignment which has exactly ri many ones in each
block Bi. Let ni = |Bi|. Then

|A| =
m∑
j=1

(
n1

rj1

)
· . . . ·

(
ns
rjs

)

where there are m orbits and the jth orbit has parameters r̄j = rj1, ..., r
j
s. In particular, |A|

depends only on the sizes n1, . . . , ns and on the set of tuples {r̄1, . . . , r̄m} characterizing
the set of orbits. There are no more than ns ways to choose n1, . . . , ns. There are no more
than ks ways to choose the parameters r̄ for an orbit, and therefore there are no more
than 2ks possible sets of such parameters. Therefore there are at most ns2ks possible values
for |A|. J

From Theorem 6.5 we immediately get:
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I Theorem 6.6. For any constant k ∈ N, the complete tree contradiction CTn requires
inequality space Ω(log log logn) to refute in CPk.

I Corollary 6.7. There is a family of propositional CNFs F in n variables, with linear size
and with linear sized resolution refutations, which require superconstant inequality space to
refute in CPk for any fixed k ∈ N.

Proof. Let m = logn, and let F be CTm together with 2m−m inequalities of the form yi ≥ 1
in variables y1, . . . , y2m−m disjoint from the variables in CTm. Then F has a resolution
refutation of linear size, since CTm has a refutation of size 2m, and any constant-space CP2

refutation of F can be made into a constant-space CP2 refutation of CTm by substituting 1
for all variables yi. J

We note that, as in Section 4, our lower bound relies only on the class of Boolean functions
appearing as lines in the refutation, not on the particular rules used.

7 Open problems

There are many problems about cutting planes that are worth mentioning, but we confine
ourselves to a small sample, directly connected with the results presented in this paper.

The first general problem is about the trade-off between inequality space and the size of
coefficients. Our upper bound uses coefficients of exponential size, while we can only prove
that if space is constant then coefficients can be lower-bounded by a very slowly growing
function. In particular the following is open:

Problem 1. Can every unsatisfiable CNF be refuted in CP in constant space, if the
coefficients are polynomially bounded?

A related open problem is:

Problem 2. Can every unsatisfiable CNF be refuted in CP in linear total space?

It seems plausible that some extension of the proof of Theorem 6.6 might work also for such
a lower bound.

Among the restricted systems of CP, the system CP2 stands out as already being strong
enough to simulate resolution and to capture some of the counting available in CP, since it
has efficient proofs of PHPn. It would be interesting to improve our results at least for this
system. In particular:

Problem 3. Prove a better space lower bound for CP2.
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Abstract
We exhibit families of 4-CNF formulas over n variables that have sums-of-squares (SOS) proofs
of unsatisfiability of degree (a.k.a. rank) d but require SOS proofs of size nΩ(d) for values of
d = d(n) from constant all the way up to nδ for some universal constant δ. This shows that the
nO(d) running time obtained by using the Lasserre semidefinite programming relaxations to find
degree-d SOS proofs is optimal up to constant factors in the exponent. We establish this result by
combining NP-reductions expressible as low-degree SOS derivations with the idea of relativizing
CNF formulas in [Krajíček ’04] and [Dantchev and Riis ’03], and then applying a restriction
argument as in [Atserias, Müller, and Oliva ’13] and [Atserias, Lauria, and Nordström ’14].
This yields a generic method of amplifying SOS degree lower bounds to size lower bounds, and
also generalizes the approach in [ALN14] to obtain size lower bounds for the proof systems
resolution, polynomial calculus, and Sherali-Adams from lower bounds on width, degree, and
rank, respectively.
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1 Introduction

Let f1, . . . , fs ∈ R[x1, . . . , xn] be real, multivariate polynomials. Then the Positivstellensatz
proven in [20, 31] says (as a special case) that the the system of equations

f1 = 0, . . . , fs = 0 (1.1)

has no solution over Rn if and only if there exist polynomials gj , q` ∈ R[x1, . . . , xn] such that

s∑
j=1

gjfj = −1−
∑
`

q2
` . (1.2)

That there can exist no solution given an expression of the form (1.2) is clear, but what is
more interesting is that there always exists such an expression to certify unsatisfiability. We
refer to (1.2) as a Positivstellensatz proof or Sums-of-squares (SOS) proof of unsatisfiability,
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or as an SOS refutation,1 of (1.1). We remark that the Positivstellensatz also applies if we
add inequalities h1 ≥ 0, . . . , ht ≥ 0 to the system of equations and allow terms −hj

∑
` q

2
j,`

on the right-hand side in (1.2).
The degree2 of an SOS refutation is the maximal degree of any gjfj . The search for

proofs of constant degree d is automatizable as shown in a sequence of works by Shor [30],
Nesterov [25], Lasserre [21], and Parrilo [27]. What this means is that if there exists a
degree-d SOS refutation for a system of polynomial equalities (and inequalities) over n
variables, then such a refutation can be found in polynomial time nO(d). Briefly, one can
view (1.2) as linear system of equations in the coefficients of gj and u =

∑
` q

2
` with the

added constraint that u is a sum of squares, and such a system can be solved by semidefinite
programming in d/2 rounds of the Lasserre SDP hierarchy.

In the last few years there has been renewed interest in sums-of-squares in the context
of constraint satisfaction problems (CSPs) and hardness of approximation, as witnessed by,
for instance, [3, 26, 32]. These works have highlighted the importance of SOS degree upper
bounds for CSP approximability, and this is currently a very active area of study.

Our focus in this paper is not on algorithmic questions, however, but more on sums-of-
squares viewed as a proof system (also referred to in the literature as Positivstellensatz or
Lasserre). This proof system was introduced by Grigoriev and Vorobjov [15] as an extension
of the Nullstellensatz proof system studied by Beame et al. [5], and Grigoriev established SOS
degree lower bound for unsatisfiable F2-linear equations [13] (also referred to as the 3-XOR
problem when each equation involves at most 3 variables) and for the knapsack problem [12].

Given the connections to semidefinite programming and the Lasserre SDP hierarchy, it is
perhaps not surprising that most works on SOS lower bounds have focused on the degree
measure. However, from a proof complexity point of view it is also natural to ask about the
minimal size of SOS proofs, measured as the number of monomials when all polynomials in
each term in (1.2) are expanded out as linear combinations of monomials. Such SOS size
lower bounds were proven for knapsack in [14] and F2-linear systems of equations in [18],3
and tree-like size lower bounds for other formulas were also obtained in [28].

A wider interest in this area of research was awakened when Schoenebeck [29] (essentially)
rediscovered Grigoriev’s result [13], which together with further work by Tulsiani [32] led
to integrality gaps for a number of constraint satisfaction problems. There have also been
papers such as [6] and [16] focusing on semantic versions of the proof system, with less
attention to the actual syntactic derivation rules used. We refer the reader to, for instance,
the introductory section of [26] for more background on sums-of-squares and connections
to hardness of approximation, and to the survey [4] for an in-depth discussion of SOS as
an approximation algorithm and the intriguing connections to the so-called Unique Games
Conjecture [17].

1.1 Our Contribution
As discussed above, if a system of polynomial equalities and inqualities over n variables can
be shown inconsistent by SOS in degree d, then by using semidefinite programming one

1 All proofs for systems of polynomial equations or for formulas in conjunctive normal form (CNF) in this
paper will be proofs of unsatisfiability, and we will therefore use the two terms “proof” and “refutation”
interchangeably.

2 This is sometimes also referred to as the “rank,” but we will stick to the term “degree” in this paper.
3 It might be worth pointing out that definitions and terminology in this area have suffered from a certain

lack of standardization, and so what [18] refers to as “static Lovász-Schrijver calculus” is closer to what
we mean by SOS/Lasserre.
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can find an SOS refutation of the system in time nO(d). It is natural to ask whether this is
optimal, or whether there might exist “shortcuts” that could lead to SOS refutations more
quickly.

We prove that there are no such shortcuts in general, but that the running time obtained
by using the Lasserre semidefinite programming relaxations to find SOS proofs is optimal
up to the constant in the exponent. We show this by constructing formulas on n variables
(which can be translated to systems of polynomial equalities in a canonical way) that have
SOS refutations of degree d but require refutations of size nΩ(d). Our lower bound proof
works for d from constant all the way up to nδ for some constant δ.

I Theorem 1.1 (informal). Let d = d(n) ≤ nδ where δ > 0 is a universal constant. Then
there is a family of 4-CNF formulas {Fn}n∈N+ with O

(
n2) clauses over O(n) variables such

that Fn is refutable in sums-of-squares in degree Θ(d) but any SOS refutation of Fn requires
size nΩ(d).

This theorem extends an analogous result joint by the two authors with Atserias in [1] for
the proof systems resolution, polynomial calculus, and Sherali-Adams,4 where upper bounds
on refutation size in terms of width, degree, and rank, respectively, were shown to be tight
up to the multiplicative constant in the exponent. Theorem 1.1 works for all of these proof
systems, since the upper bound is in fact on resolution width (i.e., the size of a largest clause
in a resolution refutation), not just SOS degree, and in this sense the theorem subsumes the
results in [1]. The concrete bound we obtain for the exponent inside the asymptotic notation
in the nΩ(d) size lower bound is very much worse, however, and therefore the gap between
upper and lower bounds is very much larger than in [1].

We want to emphasize that the size lower bound in Theorem 1.1 holds for SOS proofs
of arbitrary degree. Thus, going to higher degree (i.e., higher levels of the Lasserre SDP
hierarchy) does not help, since even arbitrarily large degree cannot yield shorter proofs.
This is an interesting parallel to the paper [24] exhibiting problems for which a (symmetric)
SDP relaxation of arbitrary degree but bounded size nd does not do much better than the
systematic relaxation of degree d.

1.2 Techniques
We obtain the result in Theorem 1.1 as a special case of a more general method of amplifying
lower bounds on width (in resolution), degree (in polynomial calculus) and rank/degree (in
Sherali-Adams and Lasserre/SOS) to size lower bounds in the corresponding proof systems.
This method is in some sense already implicit in [1], which in turn relies heavily on an
earlier paper by Atserias et al. [2], but it turns out that extracting the essential ingredients
and making them explicit is helpful for extending the results in [1] to an analogue for
sums-of-squares. We give a brief, informal description of the three main ingredients of the
method below.

(i) Find a base CNF formulas hard with respect to width/degree/rank. To start, we need
to find a base problem, encoded as an unsatisfiable CNF formula, that is “moderately hard” for
the proof system at hand. What this means is that we should be able to prove asymptotically
tight bounds on width if we are dealing with resolution, on degree for polynomial calculus,

4 The exact details of these proof systems are not important for this discussion, and so we choose not to
elaborate further here, instead referring the interested reader to [1].



M. Lauria and J. Nordström 451

and on degree/rank for Sherali-Adams and sums-of-squares. It then follows by a generic
argument (as discussed briefly above for SOS) that a bound O(d) on width/degree/rank
implies an upper bound nO(d) on proof size.

In [1, 2] the pigeonhole principle served as the base problem. This principle, which has
been extensively studied in proof complexity, is encoded in CNF as pigeonhole principle
(PHP) formulas saying that there is a one-to-one mapping of m pigeons into n pigeonholes
for m > n. For sums-of-squares we cannot use PHP formulas, however, since they are not
hard with respect to SOS degree. Instead we construct an SOS reduction in low degree from
inconsistent systems of F2-linear equations to the clique problem, and then appeal to the
result in [13, 29] briefly discussed above to obtain the following degree lower bound.

I Theorem 1.2 (informal). Given k ∈ N+, there is a graph G and a 3-CNF formula
k-Clique(G) of size polynomial in k with the following properties:
1. The graph G does not contain a k-clique, but the formula k-Clique(G) claims that it does.
2. Resolution can refute k-Clique(G) in width k.
3. Any sums-of-squares refutation of k-Clique(G) requires degree Ω(k).

(ii) Relativize the CNF formulas. The second step is to take the formulas for which we
have established width/degree/rank lower bounds and relativize them. Relativization is an
idea that seems to have been considered for the first time in the context of proof complexity
by Krajíček [19] and that was further developed by Dantchev and Riis [11]. Very loosely, it
can be described as follows.

Suppose that we have a CNF formula encoding (the negation of) a combinatorial principle
saying that some set S has a property. For instance, the CNF formula could encode the
pigeonhole principle discussed above, or could claim the existence of a totally ordered set of
n elements where no element in the set is minimal with respect to the ordering (these latter
CNF formulas are known as ordering principle formulas, least number principle formulas, or
graph tautologies in the literature).

The formula at hand is then relativized by constructing another formula encoding that
there is a (potentially much larger) set T containing a subset S ⊆ T for which the same
combinatorial principle holds. For the ordering principle, we can encode that there exists a
non-empty ordered subset S ⊆ T of arbitrary size such that it is possible for all elements
in S to find a smaller element inside S. This relativization step transforms the previously
very easy ordering principle formulas into relativized versions that are exponentially hard for
resolution [9, 10]. For the PHP formulas, we specify that we have a set of M � m pigeons
mapped into into n < m holes such that there exists a subset of m pigeons that are mapped
injectively.

In our setting, it will be important that the relativization does not make the formulas
too hard. We do not want the hardness to blow up exponentially and instead would like the
upper bound obtained in the first step above to scale nicely with the size of the relativization.
For our general approach to work, we therefore need formulas talking about some domain
being mapped to some range, where we can enlarge the domain while keeping the range fixed,
and where in addition the mapping is symmetric in the sense that permuting the domain
does not change the formula.

For this reason, relativizing the ordering principle formulas does not work for our purposes.
Pigeonhole principle formulas have this structure, however, which is exactly why the proofs
in [1] go through. As already mentioned, PHP formulas will not work for sums-of-squares,
but we can relativize the formulas in Theorem 1.2 by saying that there is a large subset of
vertices such that there is a k-clique hiding inside such a subset.
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(iii) Apply random restrictions to show proof size lower bounds. In the final step, we use
random restrictions to establish lower bounds on proof size for the relativized CNF formulas
obtained in the second step. This part of the proof is relatively standard, except for a crucial
twist in the restriction argument introduced in [2].

Assume that there is a small refutation in sums-of-squares (or whatever proof system we
are studying) of the relativized formula claiming the existence of a subset of size m�M

with the given combinatorial property. Now hit the formula (and the refutation) with a
random restriction that in effect chooses a subset of size m, and hence gives us back the
original, non-relativized formula. This restriction will be fairly aggressive in terms of the
number of variables set to fixed truth values, and hence it will hold with high probability
that the restricted refutation has no monomials of high degree (or, for resolution, no clauses
of high width), since all such monomials will either have been killed by the restriction or at
least have shrunk significantly. (We remark that making use of this shrinking in the analysis
is the crucial extra feature added in [2].) But this means that we have a refutation of the
original formula in degree smaller than the lower bound established in the first step. Hence,
no small refutation can exist, and the lower bound on proof size follows.

This concludes the overview of our method to amplify lower bounds on width/degree/rank
to size. It is our hope that developing such a systematic approach for deriving this kind of
lower bounds, and making explicit what conditions are needed for this approach to work,
can also be useful in other contexts.

1.3 Organization of This Paper

The rest of this paper is organized as follows. We start in Section 2 by reviewing the definitions
and notation used, and also stating some basic facts that we will need. In Section 3, we prove
a degree lower bound for CNF formulas encoding a version of the clique problem. We then
present in Section 4 a general method for obtaining SOS size lower bounds from degree lower
bounds (or from width, degree, and rank, respectively, for proof systems such as resolution,
polynomial calculus, and Sherali-Adams). We conclude with a brief discussion of some
possible directions for future research in Section 5. We refer to the full-length version [22] of
this paper for the details omitted in this extended abstract.

2 Preliminaries

For a positive integer n, we use the standard notation [n] = {1, 2, . . . , n}. All logarithms in
this paper are to base 2. A CNF formula F is a conjunction of clauses, denoted F =

∧
j Cj ,

where each clause C is a disjunction of literals, denoted C =
∨
i ai. Each literal a is either a

propositional variable x (a positive literal) or its negation x (a negative literal). We think of
formulas and clauses as sets, so that there is no repetition and order does not matter. We
consider polynomials on the same propositional variables, with the convention that, as an
algebraic variable, x evaluates to 1 when it is true and to 0 when it is false. All polynomials
in this paper are evaluated on 0/1-assignments, and live in the ring of real multilinear
polynomials, which is the ring of real polynomials modulo the ideal generated by polynomials
x2
i − xi for all variables xi. In other words, all variables in all monomials have degree at

most one, and monomial multiplication is defined by
(∏

i∈A xi
)
·
(∏

i∈B xi
)

=
∏
i∈A∪B xi.

Since sums-of-squares derivations operate with polynomial equations and inequalities, in
order to reason about CNF formulas we need to encode them in this language. For a clause
C = C+ ∨ C−, where we write C+ and C− to denote the subsets of positive and negative
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literals, respectively, we define

S(C) =
∑
x∈C+

x+
∑
x∈C−

(1− x) (2.1)

and encode C as the inequality

S(C) ≥ 1 . (2.2)

Clearly, a clause C is satisfied by a 0/1-assignment if and only if the same assignment satisfies
the inequality S(C) ≥ 1. For a variable x and a bit β ∈ {0, 1}, we define

δx=β =
{

1− x if β = 0,
x if β = 1;

(2.3)

and for a sequence of variables ~x = (xi1 , . . . xiw) and a binary string β = (β1, . . . βw), we
define the indicator polynomial

δ~x=β =
w∏
j=1

δxij=βj (2.4)

expanded out as a linear combination of monomials. That is, δ~x=β is the polynomial that
evaluates to 1 for 0/1-assignments satisfying the equalities xij = βj for j = 1, . . . , w and to 0
for all other 0/1-assignments. We have the following useful fact.

I Fact 2.1. For every sequence of variables ~x the syntactic equality
(∑

β∈{0,1}w δ~x=β
)

= 1
holds (after cancellation of terms).

Let F be a CNF formula over some set of variables denoted as Vars(F ), and let ρ be
a partial assignment on Vars(F ). We write F �ρ to denote the formula F restricted by ρ,
where all clauses C ∈ F satisfied by ρ are removed and all literals falsified by ρ in other
clauses are removed. For a polynomial p over variables Vars(F ) (written, as always, as a
linear combination of distinct monomials), we let p�ρ denote the polynomial obtained by
substituting values for assigned variables and removing monomials that evaluate to 0. We
extend this definition to sets of formulas or polynomials in the obvious way by taking unions.

I Definition 2.2 (Sums-of-squares proof system). A sums-of-squares derivation, or SOS
derivation for short, of the polynomial inequality p ≥ 0 from the system of polynomial
constraints

f1 = 0, . . . , fs = 0, h1 ≥ 0, . . . , ht ≥ 0 (2.5)

is a sum

p =
s∑
j=1

gjfj +
t∑

j=1
ujhj + u0 , (2.6)

where g1, . . . , gs are arbitrary polynomials and each uj is expressible as a sums of squares∑
` q

2
j,`. A derivation of the equation p = 0 is a pair of derivations of p ≥ 0 and −p ≥ 0. A

sums-of-squares refutation of (2.5) is a derivation of the inequality −1 ≥ 0 from (2.5).
The degree of an SOS derivation is the maximum degree among all the polynomials gjfj ,

ujhj , and u0 in (2.6). The size of an SOS derivation is the total number of monomials
(counted with repetition) in all polynomials gjfj , ujhj , and u0 (all expanded out as linear
combinations of distinct monomials). The size and degree of refuting an unsatisfiable system
of polynomial constraints are defined by taking the minimum over all SOS refutations of the
system with respect to the corresponding measure.
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We remark that our choice of the multilinear setting is without any loss of generality and
only serves to simplify the technical arguments slightly.

Let us state some useful basic properties of multilinear polynomials for later reference.

I Proposition 2.3 (Unique multilinear representation). Every function f : {0, 1}n → R has
a unique representation as a multilinear polynomial. In particular, if p is a multilinear
polynomial such that p(α) ∈ {0, 1} for all α ∈ {0, 1}n, then for every positive integer ` the
equality p` = p holds (where this is a syntactic equality of multlinear polynomials expanded
out as linear combinations of distinct monomials).

The upper bounds in this paper are shown in the weaker proof system resolution, which is
defined as follows. A resolution derivation of a clause D from a CNF formula F is a sequence
of clauses (D1, D2, . . . , Dτ ) such that Dτ = D and for every clause Di it holds that it is
either a clause of F (an axiom), or is obtained by weakening from some Dj ⊆ Di for j < i,
or can be inferred from two clauses D`, Dj , ` < j < i, by the resolution rule that allows to
derive the clause A∨B from two clauses A∨x and B ∨x (where we say that A∨x and B ∨x
are resolved on x to yield the resolvent A∨B). If in a resolution derivation (D1, D2, . . . , Dτ )
each clause Dj is only used once in a weakening or resolution step to derive some Di for i > j,
we say that the derivation is tree-like (such derivations may contain multiple copies of the
same clause). A resolution refutation of F , or resolution proof for F , is a derivation of the
empty clause (the clause containing no literals) from F .

The width of a clause is the number of literals in it, and the width of a CNF formula or
resolution derivation is the maximal width of any clause in the formula or derivation. The
size of a resolution derivation is the total number of clauses in it (counted with repetitions).
The size and width of refuting an unsatisfiable CNF formula F is defined by taking the
minimum over all resolution refutations of F with respect to the corresponding measure.

The following standard fact is easy to establish by forward induction over resolution
derivations. We omit the proof.

I Fact 2.4. Consider a partial assignment ρ which assigns ` variables. Let A be the unique
clause of width ` such that A evaluates to false under ρ. If resolution can derive C in width w
and size S from F�ρ, then resolution can derive A ∨ C in width at most w + ` and size at
most S + 1 from F .

Let us also state for the record the formal claim that SOS is more powerful than resolution
in term of degree (and for constant degree also in terms of size). The next lemma is essentially
Lemma 4.6 in [1], except that there the lemma is stated for the Sherali-Adams proof system.
Since SOS simulates Sherali-Adams efficiently with respect to both size and degree, however,
the same bounds apply also for SOS.

I Lemma 2.5 (SOS simulation of resolution). If a CNF formula F =
∧t
j=1 Cj has a resolution

refutation of size S and width w, then the constraints {S(Cj) ≥ 1}tj=1 as defined in (2.1)
and (2.2) have an SOS refutation of size O

(
w2wS

)
and degree at most w + 1.

The next lemma will be useful as a subroutine when we prove upper bounds in resolution.
We again omit the proof.

I Lemma 2.6. Let k and m1,m2, . . .mk be positive numbers. Then the CNF formula
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consisting of the clauses

yi,0 i ∈ [k], (2.7a)
yi,j−1 ∨ xi,j ∨ yi,j i ∈ [k], j ∈ [mi], (2.7b)
yi,mi i ∈ [k], (2.7c)
x1,j1 ∨ x2,j2 · · · ∨ xk,jk (j1, . . . , jk) ∈ [m1]× · · · × [mk], (2.7d)

has a resolution refutation of width k + 1 and size O
(∏k

i=1mi

)
.

When we construct formulas to be relativized as described in Section 1.2, it is convenient
to use variables xi,~ , where i ranges over some specific domain D and ~ is a collection of other
indices. We say that the variable xi,~ mentions the element i ∈ D. The domain-width of a
clause is the number of distinct elements of D mentioned by its variables. The domain-width
of a CNF formula or resolution proof is defined by taking the maximum domain-width over all
its clauses, and the domain-width of refuting a CNF formula F is the minimal domain-width
of any resolution refutation of F . Similarly, the domain-degree of a monomial is the number
of distinct elements in D mentioned by its variables, the domain-degree of a polynomial or
SOS proof is the maximal domain-degree of any monomial in it, and the domain-degree of
refuting an unsatisfiable system of polynomial constraints is defined by taking the minimum
over all refutations.

3 A Degree Lower Bound for Clique Formulas

In this section we state and prove the formal version of Theorem 1.2, namely a lower bound
for the domain-degree needed in SOS to prove that a graph G has no k-clique. Let us start
by describing how we encode the k-clique problem as a CNF formula.

I Definition 3.1 (k-clique formula). Let k be a positive integer, G = (V,E) be an undirected
graph on N vertices, and (v1, v2, . . . , vN ) be an enumeration of V (G) = V . Then the formula
k-Clique(G) consists of the clauses

xi,u ∨ xi′,v i, i′ ∈ [k], i 6= i′, {u, v} 6∈ E(G), (3.1a)
xi,u ∨ xi,v, i ∈ [k], u, v ∈ V (G), u 6= v, (3.1b)
zi,0 i ∈ [k], (3.1c)
zi,(j−1) ∨ xi,vj ∨ zi,j i ∈ [k], j ∈ [N ], (3.1d)
zi,N i ∈ [k]. (3.1e)

The formula k-Clique(G) encodes the claim that G has a clique of size k. The intended
meaning of the variable xi,v for v ∈ V (G) is that v is the ith vertex of the clique. The
variables of k-Clique(G) are indexed by i over the domain [k] and the domain-width of the
formula is 2. The next proposition shows that the naive brute-force approach to decide
k-Clique(G) can be carried on in resolution (and hence by Lemma 2.5 also in SOS).

I Proposition 3.2. If G has no clique of size k, then k-Clique(G) has a resolution refutation
of size O

(
|V |k

)
and width k + 1.

Proof. We first use the weakening rule to derive all clauses of the form

x1,u1 ∨ x2,u2 ∨ · · · ∨ xk,uk (3.2)
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for every sequence of vertices (u1, u2, . . . , uk). This is possible since either the sequence
contains a repetition or it includes two vertices with no edge between them, and in both cases
this means that the clause (3.2) is a superclause of some clause of the form (3.1a). Then we
derive the empty clause by applying Lemma 2.6 to the clauses (3.1c)–(3.1e) and (3.2). J

In order to obtain suitably hard instances of k-Clique(G) we construct a reduction from
3-XORs to k-partite graphs. It is convenient for us to describe the special case of k-clique on
k-partite graphs directly as an encoding as polynomial equations and inequalities as follows
next.

I Definition 3.3 (Polynomial encoding of k-clique on k-partite graphs). For a k-partite graph
G with V (G) = V1

.
∪ V2

.
∪ · · ·

.
∪ Vk we let k-Block(G) denotes the following collection of

polynomial constraints:∑
v∈Vi

xv = 1 i ∈ [k], (3.3a)

xu + xv ≤ 1 u ∈ Vi, v ∈ Vi′ , i 6= i′, {u, v} 6∈ E(G). (3.3b)

I Proposition 3.4. Consider a k-partite graph G, where V (G) = V1
.
∪ V2

.
∪ · · ·

.
∪ Vk. If

k-Clique(G) has an SOS refutation in domain-degree d, then k-Block(G) has an SOS refuta-
tion in domain-degree d.

Proof. The proof is by transforming a refutation of k-Clique(G) into a refutation of
k-Block(G) of the same domain-degree. To give an overview, we start with a refutation
of k-Clique(G) of domain-degree d and replace its variables with polynomials of degree at
most 1 mentioning only variables from k-Block(G). In this way we get an SOS refutation of
domain-degree at most d from the substituted axioms of k-Clique(G). The latter polynomials
are not necessarily axioms of k-Block(G), but we show that they have SOS derivations of
domain-degree 1 from the axioms of k-Block(G). This concludes the proof.

The variable substitution has two steps: first we substitute every variable zi,j with the
linear form

∑N
t=j+1 xi,vt , where {vj}Nj=1 is the enumeration of V (G) in Definition 3.1, and

then we set xi,vj to 0 whenever vj 6∈ Vi.
As mentioned above, we now need to give SOS derivations of domain-degree 1 of all

transformed axioms in k-Clique(G) from k-Block(G). For the axioms (3.1c)–(3.1e), the SOS
encoding is

zi,0 ≥ 1 i ∈ [k], (3.4a)(
1− zi,(j−1)

)
+ xi,vj + zi,j ≥ 1 i ∈ [k], j ∈ [N ], (3.4b)

(1− zi,N ) ≥ 1 i ∈ [k]. (3.4c)

After the first step of the substitution the inequalities (3.4a), (3.4b) and (3.4c) become,
respectively, the inequality

∑N
j=1 xi,vj ≥ 1, and two occurrences of tautology 1 ≥ 1. Further-

more, after the second step of the substitution the inequality (3.4a) becomes
∑
v∈Vi xi,v ≥ 1,

which is subsumed by Equation (3.3a). Each of the axioms (3.1a) and (3.1b) is encoded as

1− xi,u − xi′,v ≥ 0 (3.5)

for some pair of indices i, i′ and vertices u, v. We assume that u ∈ Vi and v ∈ Vi′ , because
otherwise the variable substitution turns the inequality into either a tautology or into
1− xi,u ≥ 0, where the latter follows from (1− xi,u)2 ≥ 0 by multilinearity. If i 6= i′ then
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the inequality (3.5) is an axiom of k-Block(G). If that is not the case, then we can obtain
1− xi,u − xi,v in domain-degree 1 using the derivation

1−
∑
v∈Vi

xi,w︸ ︷︷ ︸
from Equation (3.3a)

+
∑

w 6∈{u,v}

(xi,w)2

︸ ︷︷ ︸
sum of squares

= 1−
∑
v∈Vi

xi,w +
∑

w 6∈{u,v}

xi,w = 1− xi,u − xi,v (3.6)

where the first identity holds by multilinearity. The proposition follows. J

What we want to do now is to prove a domain-degree lower bound for instances of
k-Block(G) where the graph G is obtained by a reduction from (unsatisfiable) sets of
F2-linear equations. We rely on the version of Grigoriev’s degree lower bound [13] shown by
Schoenebeck [29], which is conveniently stated for random 3-XOR formulas as encoded next.

I Definition 3.5 (Polynomial encoding of random 3-XOR). A random 3-XOR formula φ
represents a system of ∆n linear equations modulo 2 defined over n variables. Each equation
is sampled at random among all equations of the form x ⊕ y ⊕ z = b as follows: x, y, z
are sampled uniformily without replacement from the set of n variables and b is sampled
uniformly in {0, 1}. The polynomial encoding of any such linear equation modulo 2 is

(1− x)(1− y)z = 0 (3.7a)
(1− x)y(1− z) = 0 (3.7b)
x(1− y)(1− z) = 0 (3.7c)

xyz = 0 (3.7d)

when b = 0 and

(1− x)(1− y)(1− z) = 0 (3.7e)
xy(1− z) = 0 (3.7f)
x(1− y)z = 0 (3.7g)
(1− x)yz = 0 (3.7h)

when b = 1.

Fixing δ = 1/4 and ∆ = 8 in [29] we have the following theorem.

I Theorem 3.6 ([29]). There exists an α, 0 < α < 1, such that for every ε > 0 there exists
an nε ∈ N such that a random 3-XOR formula φ in n ≥ nε variables and 8n constraints has
the following properties with probability at least 1− ε.
1. At most 6n parity constraints of φ can be simultaneously satisfied.
2. Any sums-of-squares refutation of φ requires degree αn.

Now we are ready to describe how to transform a 3-XOR formula φ into a k-partite
graph Gkφ that has a clique of size k if and only if φ is satisfiable.

I Definition 3.7 (3-XOR graph). Given k ∈ N and a 3-XOR formula φ with 8n constraints
over n variables, where we assume for simplicity that k divides 8n, we construct a 3-XOR
graph Gkφ as follows.

We arbitrarily split the formula φ into k linear systems with 8n/k constraints each,
denoted as φ1, φ2, . . . φk. For each φi we let Vi be a set of at most N ≤ 224n/k vertices
labelled by all possible assignments to the at most 24n/k variables appearing in φi. For
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two distinct vertices u ∈ Vi and v ∈ Vi′ there is an edge between u and v in Gkφ if the two
assignments corresponding to u and v are compatible, i.e., when they assign the same values
to the common variables, and also the union of the two assignments does not violate any
constraint in φ. (In particular, each Vi is an independent set, since two distinct assignments
to the same set of variables are not compatible.)

The key property of the reduction in Definition 3.7 is that it allows small domain-degree
refutations of k-Block

(
Gkφ
)
to be converted into small degree refutations of φ.

I Lemma 3.8. If k-Block
(
Gkφ
)
has an SOS refutation of domain-degree d, then φ has an

SOS refutation of degree 24dn/k.

Proof. Again we start by giving an overview of the proof, which works by transforming a
refutation of k-Block

(
Gkφ
)
of domain-degree d into a refutation of φ of degree 24dn/k.

Given a refutation of k-Block
(
Gkφ
)
of domain-degree d, we replace every variable xv

with a polynomial over the variables of φ. In this way we get an SOS refutation from the
polynomials corresponding to the substituted axioms of k-Block

(
Gkφ
)
. The latter polynomials

need not be axioms of φ, but we show that they can be efficiently derived in SOS from φ.
We thus obtain an SOS refutation of φ, the degree of which is easily verified to be as in the
statement of the lemma.

We now describe the substitution in detail. Consider a block Vi and suppose that the
corresponding 3-XOR formula φi mentions t variables. Let us write ~x to denote this set
of variables. Then every vertex v ∈ Vi represents an assignment β ∈ {0, 1}t to ~x. In what
follows, we denote the indicator polynomial δ~x=β in (2.4) by δv for brevity, and we substitute
for each variable xv the polynomial δv of degree t ≤ 24n/k.

Before the substitution each monomial in the original refutation has domain-degree at
most d by assumption. Two important observations are that (δv)2 = δv for every v ∈ Vi
and that δuδv = 0 for every two distinct u, v in the same block Vi. Therefore, after the
substitution each monomial is either identically zero or the product of at most d indicator
polynomials, and hence its degree is at most 24dn/k.

In order to complete the proof outline above, we now need to present SOS derivations
starting from the 3-XOR constraints of φ of all polynomial constraints resulting from the
substitutions in the axioms of k-Block

(
Gkφ
)
described above, and to do so in degree at

most 24n/k.
Let us first look at the axioms (3.3a). By Fact 2.1, the identity∑
v∈Vi

δv =
∑

β∈{0,1}t
δ~x=β = 1 (3.8)

holds syntactically, so substitutions in axioms of the form (3.3a) result in tautologies 1 = 1.
The remaining axioms of k-Block

(
Gkφ
)
in (3.3b) have the form xu + xv ≤ 1 for non-edges

(u, v) between vertices in different blocks. By construction of Gkφ the reason u and v are
not connected is either that the partial assignments corresponding to the two vertices are
incompatible, or that their union violates some constraint in φ.

In the first case, 1− δu − δv ≥ 0 is an SOS axiom because of the identity

(1− δu − δv)2 = 1− δu − δv , (3.9)

which follows from the observation that δu and δv are the indicator polynomials of two
incompatible assignments and cannot evaluate to 1 simultaneously, and so (1 − δu − δv)
evaluates to either 0 or 1 and is identical to its square by Proposition 2.3. The degree of (3.9)
is 24n/k.
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In the second case, the two assignments corresponding to u and v are compatible but
their union violates some initial equation f = 0 of the form (3.7a)–(3.7h). Any such f is a
degree-3 indicator polynomial which evaluates to 1 whenever the assignment satisfies the
equations δuδv = 1. This means that δuδv contains f as a factor. We factorize f as fufv so
that δu = fuδ

′
u and δv = fvδ

′
v. Given this notation, we can derive 0 ≤ 1− δu − δv using the

indentity

(1− fu − fv)2 + (fu − δu)2 + (fv − δv)2 − 2fufv = 1− δu − δv (3.10)

of degree at most 24n/k. The lemma follows. J

Now we can put together all the material in this section to prove a formal version of
Theorem 1.2 as stated next.

I Theorem 3.9. There are universal constants N0 ∈ N+ and α0, 0 < α0 < 1, such that for
every k ≥ 1 there exists a graph Gk with at most kN0 = O(k) vertices and a 3-CNF formula
k-Clique(Gk) of size polynomial in k with the following properties:
1. Resolution can refute k-Clique(Gk) in size 2O(k log k) and width k + 1.
2. Any SOS refutation of k-Clique(Gk) requires domain-degree α0k.

Proof. Fix any positive ε < 1 and let N0 = 224nε , α0 = α
24 and n = knε, where nε and α

are the universal constants from Theorem 3.6. To build the graph Gk we take a 3-XOR
formula φ on n variables and 8n equations from the distribution in Definition 3.5. Since
n ≥ nε, Theorem 3.6 implies that there is a formula in the support of the distribution that is
unsatisfiable and that requires degree αn to be refuted in SOS. We fix φ to be that formula
and let Gk be the graph Gkφ constructed as in Definition 3.7. Then Gkφ is k-partite, with each
part having at most 224n/k = N0 vertices, and the graph has no k-clique because otherwise
φ would be satisfiable.

Suppose that there is an SOS refutation of k-Clique
(
Gkφ
)
of domain-degree d. We want

to argue that d ≥ α0k. Since Gkφ is k-partite, by Proposition 3.4 the formula k-Block
(
Gkφ
)

also has an SOS refutation in domain-degree d. By Lemma 3.8, this in turn yields an SOS
refutation of φ in degree 24dn/k. Now Theorem 3.6 implies that 24dn/k ≥ αn, and hence
d ≥ α

24k = α0k.
To conclude the proof, we can just observe that the resolution width and size upper

bounds are a direct application of Proposition 3.2. J

4 Size Lower Bounds from Relativization

Using the material developed in Section 3, we can now describe how to relativize formulas in
order to to amplify degree lower bounds to size lower bounds in SOS . This method works
for formulas that are “symmetric” in a certain sense, and so we start by explaining exactly
what is meant by this.

I Definition 4.1 (Symmetric formula). Consider a CNF formula F on variables xi,~ , where i
is an index in some domain D and ~ denotes a collection of other indices. For every subset
of indices ~ı = {i1, i2, . . . , is} ⊆ D we identify the subformula F~ı of F such that each clause
C ∈ F~ı mentions exactly the indices in ~ı , so that a formula F of domain-width d can be
written as

F =
d∧
s=0

∧
~ı⊆D
|~ı |=s

F~ı . (4.1)
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We say that F is symmetric with respect to D if it is invariant with respect to permutations
of D, i.e., if for every F~ı ⊆ F it also holds that Fπ(~ı ) ⊆ F , where π is any permutation on D
and π (~ı ) is the set of images of the indices in ~ı . Phrased differently, F is symmetric with
respect to D if for any permutation π on D the syntactic equality F =

∧
~ı⊆D Fπ(~ı ) holds

(where we recall that we treat CNF formulas as sets of clauses). We apply this terminology
for systems of polynomial equations and inequalities in the same way.

I Observation 4.2. The k-Clique(G) formula in Definition 3.1 over variables xi,v is sym-
metric with respect to the indices i ∈ [k].

Starting with any formula F symmetric with respect to a domain D, we can build a
family of similar formulas by varying the size of the domain. If F has domain-width d,
then for each s, 0 ≤ s ≤ d, the subformulas F~ı with |~ı | = s in (4.1) are the same up to
renaming of the domain indices in ~ı . Hence, we can arbitrarily pick one such subformula to
represent them all, and denote it as Fs. The formulas {Fs}ds=0 are completely determined
by F , and together with D they in turn completely determine F . Using this observation, we
can generalize the formula F over domain D to any domain D′ with |D′| ≥ d by defining
F [D′] to be the formula

F [D′] =
d∧
s=0

∧
~ı⊆D
|~ı |=s

F~ı , (4.2)

where each F~ı for |~ı | = s is an isomorphic copy of Fs with its domain indices renamed
according to ~ı . Let us state some simple but useful facts that can be read off directly
from (4.2):
1. For any formula F of domain-width d symmetric with respect to domain D, it holds that

F [D] is (syntactically) equal to F .
2. For any domains D′, D′′ with |D′| = |D′′| ≥ d, the two formulas F [D′] and F [D′′] are

isomorphic.
3. For any D′′ ) D′ with |D′| ≥ d, the formula F [D′′] contains many isomorphic copies

of F [D′].

When we want to emphasize the domain D of a formula F in what follows, we will denote
the formula F as F [D]. When the domain is D = [t], we abuse notation slightly and write F [t]
instead of F [[t]]. As discussed above, from a symmetric formula F of domain-width d we can
obtain a well-defined sequence of formulas F [t] for all t ≥ d. We say that the unsatisfiability
threshold of such a sequence of formulas is the least t such that F [t] is unsatisfiable.

4.1 Relativization of Symmetric Formulas

Given a formula F = F [m] symmetric with respect to [m] and a parameter k < m, we now
want to define the k-relativization of F [m], which is intended to encode the claim that that
there exists a subset D ⊆ [m] of size |D| ≥ k such that the subformula F [D] ⊆ F [m] is
satisfiable. We remark that a CNF formula encoding such a claim will be unsatisfiable when
k is at least the unsatisfiability threshold of F .

In order to express the existence of the subsetD we use selectors s1, s2, . . . , sm as indicators
of membership in the subset and encode the constraint on the subset size |D| =

∑m
i=1 si ≥ k

as described in the next definition.
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I Definition 4.3. The threshold-k formula for variables ~s = {s1, . . . , sm} is the 3-CNF
formula Thrk(~s) that consists of the clauses

y`,0 ` ∈ [k], (4.3a)
y`,i−1 ∨ p`,i ∨ y`,i ` ∈ [k], i ∈ [m], (4.3b)
y`,m i ∈ [m], (4.3c)
p`,i ∨ p`′,i `, `′ ∈ [k], ` 6= `′, i ∈ [m], (4.3d)
p`,i ∨ si ` ∈ [k], i ∈ [m] . (4.3e)

To see that Thrk(~s) indeed enforces a cardinality constraint, note that the variables p`,i
encode a mapping between [k] and [m] (with p`,i being true if and only if ` maps to i). We
will need the following properties of the threshold formula.

I Observation 4.4. The formula Thrk(~s) in Definition 4.3 has the following properties:
1. Thrk(~s) has size polynomial in both k and m.
2. For any partial assignment to ~s with at least k ones there is an assignment to the extension

variables that satisfies Thrk(~s).
3. There is a resolution refutation of the set of clauses Thrk(~s)∪

{∨
i∈D si

∣∣D ⊆ [m], |D| = k
}

of size O
(
kmk

)
and width k + 1.

Proof. The first two items are immediate. In order to show the third item we can first derive
each clause p1,i1 ∨ . . . ∨ pk,ik by resolving si1 ∨ . . . ∨ sik with clauses of the form (4.3e), and
then apply Lemma 2.6. J

Using the formula in Definition 4.3 to encode cardinality constraints on subsets, we can
now define formally what we mean by the relativization of a symmetric formula.

I Definition 4.5 (Relativization). Given a CNF formula F symmetric with respect to a
domain [m] and a parameter k < m, the k-relativization (or k-relativized formula) F [k;m] is
the formula consisting of
1. the threshold formula Thrk(~s) over selectors ~s = {s1, . . . , sm};
2. a selectable clause si1 ∨ . . . ∨ sis ∨ C for each clause C ∈ F [m], where {i1, i2, . . . , is} are

the indices mentioned by C.

Since we are dealing with refutations of unsatisfiable formulas, it will always be the
case that the parameter k in Definition 4.5 is at least the unsatisfiability threshold of F .
An important property of relativized formulas is that the hardness of F [k;m] scales nicely
with m. In particular, if F [k] is not too hard, then the relativization F [k;m] also is not too
hard.

I Proposition 4.6. If F [k] has a resolution refutation of size S and width w, then F [k;m]
has a resolution refutation of size S ·

(
m
k

)
+ O

(
kmk

)
and width w + k.

Proof. For every set D ⊆ [m] with |D| = k we show how to derive∨
i∈D

si (4.4)

in size S+ 1 and width w+k from F [k;m]. Without loss of generality (because of symmetry)
we assume that D = [k], so that we want to derive s1 ∨ · · · ∨ sk. Consider the assignment
ρ = {s1 = 1, . . . , sk = 1}. In the restricted formula F [k;m]�ρ the selectable clauses in
Definition 4.5, item 2, with all indices in [k] become the clauses of F [k], which has a
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refutation of size S and width w. Thus the clause s1 ∨ · · · ∨ sk can be derived in size S + 1
and width w+k from F [k;m] by Fact 2.4. After we have derived all clauses of the form (4.4)
in this way, we can obtain the empty clause in width k+ 1 and in size at most O

(
kmk

)
using

Observation 4.4. J

4.2 Random Restrictions and Size Lower Bounds
To prove size lower bounds on refutations of relativized formulas F [k;m] we use random
restrictions sampled as follows.

I Definition 4.7 (Random restrictions for relativized formulas). Given a relativized for-
mula F [k;m], we define a distribution R of partial assignments over the variables of this
formula by the following process.
1. Pick uniformly at random a set D ⊆ [m] of size k.
2. Fix si to 1 if i ∈ D and to 0 otherwise.
3. Extend this to any assignment to the remaining variables of the formula Thrk(~s) that

satisfies this threshold formula.
4. For every variable xi,~ that has index i 6∈ D, fix xi,~ to 0 or 1 uniformly and independently

at random.
5. All remaining variables xi,~ for the indices i ∈ D are left unset.

It is straightforward to verify that the distribution R is constructed in such a way as to
give us back F [k] from F [k;m].

I Observation 4.8. For any relativized formula F [k;m] and any ρ ∈ R it holds that F [k;m]�ρ
is equal to F [k] up to renaming of variables.

The key technical ingredient in the size lower bound on sums-of-squares proofs is the
following property of the distribution R, which was proven in [2, 1] but is rephrased below
using the notation and terminology in this paper.

I Lemma 4.9 ([1, 2]). Let k, `,m be positive integers such that m ≥ 16 and ` ≤ k ≤
m/(4 logm). Let M be a monomial over the variables of F [k;m] and let ρ be a random
restriction sampled from the distribution R in Definition 4.7. Then the domain-degree of
M�ρ is less than ` with probability at least 1− (4k logm)k/m`.

Using Lemma 4.9, it is now straightforward to show that relativization amplifies degree
lower bounds to size lower bounds.

I Theorem 4.10. Let k, `,m be positive integers such that m ≥ 16 and ` ≤ k ≤ m/(4 logm).
If the CNF formula F [k] requires sums-of-squares refutations of domain-degree `, then the
relativized formula F [k;m] requires sums-of-squares refutations of size m`/(4k logm)k.

Proof. Suppose that there is a sums-of-squares refutation of F [k;m] in size S, i.e., containing
S monomials. For ρ sampled from R, we see that the probability that some monomial in the
refutation restricted by ρ has domain-degree at least ` is at most

S · (4k logm)k

m`
(4.5)

by appealing to Lemma 4.9 and taking a union bound.
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As noted in Observation 4.8, the formula F [k;m]�ρ is equal to F [k] up to renaming of
variables, and so it cannot have a refutation of domain-degree ` or less. This implies that
the bound on the probability (4.5) is greater than one, and thus we obtain

S >
m`

(4k logm)k
, (4.6)

which proves the theorem. J

Putting everything together, we can establish the formal version of our main results in
Theorem 1.1 as follows.

I Theorem 4.11. Let k = k(m) be any monotone non-decreasing integer-valued function
such that k(m) ≤ m/(4 logm). Then there is a family of 4-CNF formulas {Fm,k}m≥1 with
O
(
km2) clauses over O(km) variables such that:

1. Resolution can refute Fm,k in size kO(k)mk and width 2k + 1.
2. Any sums-of-squares refutation of Fm,k requires size Ω

(
mα0k/(4k logm)k

)
, where α0 is a

universal constant.

Proof. Let G be a graph with properties as in Theorem 3.9 and let F [k] be the CNF formula
k-Clique(G) in Definition 3.1. Since F [k] is symmetric, we can relativize it as in Definition 4.5
to obtain F [k;m], which will be our 4-CNF formula Fm,k. Theorem 3.9 says that F [k] has
a resolution refutation of size kO(k) and width k + 1, and appealing to Proposition 4.6 we
get a resolution refutation of Fm,k in size kO(k)mk and width 2k + 1. Since we have a
domain-degree lower bound of α0k for refuting F [k] according to Theorem 3.9, we can use
Theorem 4.10 to deduce that the required size to refute Fm,k in sums-of-squares is at least
Ω
(
mα0k/(4k logm)k

)
. The theorem follows. J

We remark that straightforward calculations show that when k(m) = O
(
mδ
)
for δ < α0

the upper bound in Theorem 4.11 is mO(k) and the lower bound is mΩ(k).

5 Concluding Remarks

In this paper, we show that using Lasserre semidefinite programming relaxations to find
degree-d sums-of-squares proofs is optimal up to constant factors in the exponent of the
running time. More precisely, we show that there are constant-width CNF formulas on n
variables that are refutable in sums-of-squares in degree d but require proofs of size nΩ(d).

As for so many other results for the sums-of-squares proof system, in the end our proof
boils down to a reduction from 3-XOR using Schoenebeck’s version [29] of Grigoriev’s degree
lower bound [13]. It would be very interesting to obtain other SOS degree lower bounds by
different means than by reducing from Grigoriev’s results for 3-XOR and knapsack.

Another interesting problem would be to prove average-case SOS degree lower bound for
k-clique formulas over Erdős–Rényi random graphs, or size lower bounds for (non-relativized)
k-clique formulas over any graphs. In this context, it might be worth to point out that the
problem of establishing proof size lower bounds for k-clique formulas for constant k, which
has been discussed, for instance, in [8], still remains open even for the resolution proof system
(although lower bounds have been shown for tree-like resolution in [7] and for full resolution
for a version of clique formulas using a different encoding more amenable to lower bound
techniques in [23]).
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Abstract
We study the problem of obtaining lower bounds for polynomial calculus (PC) and polynomial
calculus resolution (PCR) on proof degree, and hence by [Impagliazzo et al. ’99] also on proof
size. [Alekhnovich and Razborov ’03] established that if the clause-variable incidence graph of a
CNF formula F is a good enough expander, then proving that F is unsatisfiable requires high
PC/PCR degree. We further develop the techniques in [AR03] to show that if one can “cluster”
clauses and variables in a way that “respects the structure” of the formula in a certain sense, then
it is sufficient that the incidence graph of this clustered version is an expander. As a corollary of
this, we prove that the functional pigeonhole principle (FPHP) formulas require high PC/PCR
degree when restricted to constant-degree expander graphs. This answers an open question in
[Razborov ’02], and also implies that the standard CNF encoding of the FPHP formulas require
exponential proof size in polynomial calculus resolution. Thus, while Onto-FPHP formulas are
easy for polynomial calculus, as shown in [Riis ’93], both FPHP and Onto-PHP formulas are
hard even when restricted to bounded-degree expanders.
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1 Introduction

In one sentence, proof complexity studies how hard it is to certify the unsatifiability of
formulas in conjunctive normal form (CNF). In its most general form, this is the question of
whether coNP can be separated from NP or not, and as such it still appears almost completely
out of reach. However, if one instead focuses on concrete proof systems, which can be thought
of as restricted models of (nondeterministic) computation, then fruitful study is possible.

Perhaps the most well-studied proof system in proof complexity is resolution [6], in which
one derives new disjunctive clauses from a CNF formula until an explicit contradiction is
reached, and for which numerous exponential lower bounds on proof size have been shown
(starting with [8, 14, 29]). Many of these lower bounds can be established by instead studying
the width of proofs, i.e., the size of a largest clause appearing in the proofs, and arguing that
any resolution proof for a certain formula must contain a large clause. It then follows from a
result by Ben-Sasson and Wigderson [5] that any resolution proof must also consist of very
many clauses. Research since [5] has led to a well-developed machinery for showing width
lower bounds, and hence also size lower bounds.
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The focus of the current paper is the slightly more general proof system polynomial
calculus resolution (PCR). This proof system was introduced by Clegg et al. [9] in a slightly
weaker form that is usually referred to as polynomial calculus (PC) and was later extended
by Alekhnovich et al. [1]. In PC and PCR clauses are translated to multilinear polynomials
over some (fixed) field F, and a CNF formula F is shown to be unsatisfiable by proving that
the constant 1 lies in the ideal generated by the polynomials corresponding to the clauses
of F . Here the size of a proof is measured as the number of monomials in a proof when
all polynomials are expanded out as linear combinations of monomials, and the width of a
clause corresponds to the (total) degree of the polynomial representing the clause. Briefly, the
difference between PC and PCR is that the latter proof system has separate formal variables
for positive and negative literals over the same variable. Thanks to this, one can encode
wide clauses into polynomials compactly regardless of the sign of the literals in the clauses,
which allows PCR to simulate resolution efficiently. With respect to the degree measure PC
and PCR are exactly the same, and furthermore the degree needed to prove in polynomial
calculus that a formula is unsatisfiable is at most the width required in resolution.

In a work that served, interestingly enough, as a precursor to [5], Impagliazzo et al. [16]
showed that strong lower bounds on the degree of PC proofs are sufficient to establish strong
size lower bounds. The same proof goes through for PCR, and hence any lower bound on
proof size obtained via a degree lower bound applies to both PC and PCR. In this paper, we
will therefore be somewhat sloppy in distinguishing the two proof systems, sometimes writing
“polynomial calculus” to refer to both systems when the results apply to both PC and PCR.

In contrast to the situation for resolution after [5], the paper [16] has not been followed
by a corresponding development of a generally applicable machinery for proving degree lower
bounds. For fields of characteristic distinct from 2 it is sometimes possible to obtain lower
bounds by doing an affine transformation from {0, 1} to the “Fourier basis” {−1,+1}, an idea
that seems to have appeared first in [7, 13]. For fields of arbitrary characteristic Alekhnovich
and Razborov [2] developed a powerful technique for general systems of polynomial equations,
which when restricted to the standard encoding of CNF formulas F yields that polynomial
calculus proofs require high degree if the corresponding bipartite clause-variable incidence
graphs G(F ) are good enough expanders. There are many formula families for which this
is not true, however. One can have a constraint satisfaction problem where the constraint-
variable incidence graph is an expander – say, for instance, for an unsatisfiable set of linear
equations mod 2 – but where each constraint is then translated into several clauses when
encoded into CNF, meaning that the clause-variable incidence graph G(F ) will no longer
be expanding. For some formulas this limitation is inherent – it is not hard to see that an
inconsistent system of linear equations mod 2 is easy to refute in polynomial calculus over F2
– but in other cases it would seem that some kind of expansion of this sort should still be
enough, “morally speaking,” to guarantee that the CNF formulas are hard.

One important direction in proof complexity, which is the reason research in this area
was initiated by Cook and Reckhow [10], has been to prove superpolynomial lower bounds
on proof size for increasingly stronger proof systems. For proof systems where such lower
bounds have already been obtained, however, a somewhat orthogonal research direction has
been to try to gain a better understanding of the strengths and weaknesses of the proof
system by studying different combinatorial principles (encoded in CNF) and determining
how hard they are to prove.

It seems fair to say that by far the most extensively studied such combinatorial principle
is the pigeonhole principle. This principle is encoded into CNF as unsatisfiable formulas
claiming that m pigeons can be mapped in a one-to-one fashion into n holes for m > n, but
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there are several choices exactly how to do this encoding. The most basic pigeonhole principle
(PHP) formulas have clauses saying that every pigeon gets at least one pigeonhole and that
no hole contains two pigeons. While these formulas are already unsatisfiable for m ≥ n+ 1,
they do not a priori rule out “fat” pigeons residing in several holes. The functional pigeonhole
principle (FPHP) formulas perhaps correspond more closely to our intuitive understanding of
the pigeonhole principle in that they also contain functionality clauses specifying that every
pigeon gets exactly one pigeonhole and not more. Another way of making the basic PHP
formulas more constrained is to add onto clauses requiring that every pigeonhole should get
a pigeon, yielding so-called onto-PHP formulas. Finally, the most restrictive encoding, and
hence the hardest one when it comes to proving lower bounds, are the onto-FPHP formulas
containing both functionality and onto clauses, i.e., saying that the mapping from pigeons to
pigeonholes is a perfect matching. Razborov’s survey [23] gives a detailed account of these
different flavours of the pigeonhole principle formulas and results for them with respect to
various proof systems – we just quickly highlight some facts relevant to this paper below.

For the resolution proof system there is not much need to distinguish between the different
PHP versions discussed above. The lower bound by Haken [14] for formulas with m = n+ 1
pigeons can be made to work also for onto-FPHP formulas, and more recent works by Raz [20]
and Razborov [24, 25] show that the formulas remain exponentially hard (measured in the
number of pigeonholes n) even for arbitrarily many pigeons m.

Interestingly enough, for polynomial calculus the story is very different. The first degree
lower bounds were proven by Razborov [21], but for a different encoding than the standard
translation from CNF, since translating wide clauses yields initial polynomials of high degree.
Alekhnovich and Razborov [2] proved lower bounds for a 3-CNF version of the pigeonhole
principle, from which it follows that the standard CNF encoding requires proofs of exponential
size. However, as shown by Riis [27] the onto-FPHP formulas with m = n+ 1 pigeons are
easy for polynomial calculus. And while the encoding in [21] also captures the functionality
restriction in some sense, it has remained open whether the standard CNF encoding of
functional pigeonhole principle formulas translated to polynomials is hard (this question has
been highlighted, for instance, in Razborov’s open problems list [26]).

Another way of modifying the pigeonhole principle is to restrict the choices of pigeonholes
for each pigeon by defining the formulas over a bipartite graph H = (U

.
∪ V,E) with |U | = m

and |V | = n and requiring that each pigeon u ∈ U goes to one of its neighbouring holes
in N(u) ⊆ V . If the graph H has constant left degree, the corresponding graph pigeonhole
principle formula has constant width and a linear number of variables, which makes it possible
to apply [5, 16] to obtain exponential proof size lower bounds from linear width/degree
lower bounds. A careful reading of the proofs in [2] reveals that this paper establishes linear
polynomial calculus degree lower bounds (and hence exponential size lower bounds) for graph
PHP formulas, and in fact also graph Onto-PHP formulas, over constant-degree expanders H.
Razborov lists as one of the open problems in [23] whether this holds also for graph FPHP
formulas, i.e., with functionality clauses added, from which exponential lower bounds on
polynomial calculus proof size for the general FPHP formulas would immediately follow.

1.1 Our Results
We revisit the technique developed in [2] for proving polynomial calculus degree lower bounds,
restricting our attention to the special case when the polynomials are obtained by the
canonical translation of CNF formulas.

Instead of considering the standard bipartite clause-variable incidence graph G(F ) of a
CNF formula F (with clauses on the left, variables on the right, and edges encoding that a
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variable occurs in a clause) we construct a new graph G′ by clustering several clauses and/or
variables into single vertices, reflecting the structure of the encoded combinatorial principle.
The edges in this new graph G′ are the ones induced by the original graph G(F ) in the
natural way, i.e., there is an edge from a left cluster to a right cluster in G′ if any clause in
the left cluster has an edge to any variable in the right cluster in G(F ). We remark that such
a clustering is already implicit in, for instance, the resolution lower bounds in [5] for Tseitin
formulas (which is essentially just a special form of unsatisfiable linear equations) and graph
PHP formulas, as well as in the graph PHP lower bound for polynomial calculus in [2].

We then show that if this clustering is done in the right way, the proofs in [2] still
go through and yield strong polynomial calculus degree lower bounds when G′ is a good
enough expander.1 It is clear that this cannot work in general – as already discussed above,
any inconsistent system of linear equations mod 2 is easy to refute in polynomial calculus
over F2, even though for a random instance of this problem the clauses encoding each linear
equation can be clustered to yield an excellent expander G′. Very informally (and somewhat
incorrectly) speaking, the clustering should be such that if a cluster of clauses F ′ on the left
is a neighbour of a variable cluster V on the right, then there should exist an assignment ρ
to V such that ρ satisfies all of F ′ and such that for the clauses outside of F ′ they are either
satisfied by ρ or left completely untouched by ρ. Also, it turns out to be helpful not to insist
that the clustering of variables on the right should be a partition, but that we should allow
the same variable to appear in several clusters if needed (as long as the number of clusters
for each variable is bounded).

This extension of the lower bound method in [2] makes it possible to present previously
obtained polynomial calculus degree lower bounds in [2, 12, 17] in a unified framework.
Moreover, it allows us to prove the following new results:
1. If a bipartite graph H = (U ∪̇ V,E) with |U | = m and |V | = n is a boundary expander

(a.k.a. unique-neighbour expander), then the graph FPHP formula over H requires proofs
of linear polynomial calculus degree, and hence exponential polynomial calculus size.

2. Since FPHP formulas can be turned into graph FPHP formulas by hitting them with
a restriction, and since restrictions can only decrease proof size, it follows that FPHP
formulas require proofs of exponential size in polynomial calculus.

This fills in the last missing pieces in our understanding of the different flavours of pigeonhole
principle formulas with n+ 1 pigeons and n holes for polynomial calculus. Namely, while
Onto-FPHP formulas are easy for polynomial calculus, both FPHP formulas and Onto-PHP
formulas are hard even when restricted to expander graphs.

1.2 Organization of This Paper

After reviewing the necessary preliminaries in Section 2, we present our extension of the
Alekhnovich–Razborov method in Section 3. In Section 4, we show how this method can
be used to rederive some previous polynomial calculus degree lower bounds as well as to
obtain new degree and size lower bounds for functional (graph) PHP formulas. We conclude
in Section 5 by discussing some possible directions for future research. We refer to the
full-length version [18] of this paper for the details omitted in this extended abstract.

1 For a certain twist of the definition of expander that we do not describe in full detail here in order to
keep the discussion at an informal, intuitive level. The formal description is given in Section 3.1.
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2 Preliminaries

Let us start by giving an overview of the relevant proof complexity background. This material
is standard and we refer to, for instance, the survey [19] for more details.

A literal over a Boolean variable x is either the variable x itself (a positive literal) or its
negation ¬x or x (a negative literal). We define x = x. We identify 0 with true and 1 with
false. We remark that this is the opposite of the standard convention in proof complexity,
but it is a more natural choice in the context of polynomial calculus, where “evaluating to
true” means “vanishing.” A clause C = a1 ∨ · · · ∨ ak is a disjunction of literals. A CNF
formula F = C1 ∧ · · · ∧Cm is a conjunction of clauses. The width W(C) of a clause C is the
number of literals |C| in it, and the width W(F ) of the formula F is the maximum width of
any clause in the formula. We think of clauses and CNF formulas as sets, so that order is
irrelevant and there are no repetitions. A k-CNF formula has all clauses of size at most k,
where k is assumed to be some fixed constant.

In polynomial calculus resolution the goal is to prove the unsatisfiability of a CNF formula
by reasoning with polynomials from a polynomial ring F[x, x, y, y, . . .] (where x and x are
viewed as distinct formal variables) over some fixed field F. The results in this paper hold
for all fields F regardless of characteristic. In what follows, a monomial m is a product of
variables and a term t is a monomial multiplied by an arbitrary non-zero field element.

I Definition 2.1 (Polynomial calculus resolution (PCR) [1, 9]). A polynomial calculus resolution
(PCR) refutation π : F `⊥ of a CNF formula F (also referred to as a PCR proof for F ) over
a field F is an ordered sequence of polynomials π = (P1, . . . , Pτ ), expanded out as linear
combinations of monomials, such that Pτ = 1 and each line Pi, 1 ≤ i ≤ τ , is either

a monomial
∏
x∈L+ x ·

∏
y∈L− y encoding a clause

∨
x∈L+ x ∨

∨
y∈L− y in F (a clause

axiom);
a Boolean axiom x2 − x or complementarity axiom x+ x− 1 for any variable x;
a polynomial obtained from one or two previous polynomials by linear combination
Q R
αQ+βR or multiplication Q

xQ for any α, β ∈ F and any variable x.
If we drop complementarity axioms and encode each negative literal x as (1− x), the proof
system is called polynomial calculus (PC).

The size S(π) of a PC/PCR refutation π = (P1, . . . , Pτ ) is the number of monomials
in π (counted with repetitions), 2 the degree Deg(π) is the maximal degree of any monomial
appearing in π, and the length L(π) is the number τ of polynomials in π. Taking the
minimum over all PCR refutations of a formula F , we define the size SPCR(F `⊥), degree
DegPCR(F `⊥), and length LPCR(F `⊥) of refuting F in PCR (and analogously for PC).

We write Vars(C) and Vars(m) to denote the set of all variables appearing in a clause C
or monomial (or term) m, respectively and extend this notation to CNF formulas and
polynomials by taking unions. We use the notation 〈P1, . . . , Pm〉 for the ideal generated
by the polynomials Pi, i ∈ [m]. That is, 〈P1, . . . , Pm〉 is the minimal subset of polynomials
containing all Pi that is closed under addition and multiplication by any polynomial. One
way of viewing a polynomial calculus (PC or PCR) refutation is as a calculation in the ideal
generated by the encodings of clauses in F and the Boolean and complementarity axioms. It
can be shown that such an ideal contains 1 if and only if F is unsatisfiable.

2 We remark that the natural definition of size is to count monomials with repetition, but all lower bound
techniques known actually establish slightly stronger lower bounds on the number of distinct monomials.
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As mentioned above, we have DegPCR(F `⊥) = DegPC(F `⊥) for any CNF formula F .
This claim can essentially be verified by taking any PCR refutation of F and replacing all
occurrences of y by (1− y) to obtain a valid PC refutation in the same degree. Hence, we
can drop the subscript from the notation for the degree measure. We have the following
relation between refutation size and refutation degree (which was originally proven for PC
but the proof of which also works for PCR).

I Theorem 2.2 ([16]). Let F be an unsatisfiable CNF formula of width W(F ) over n variables.
Then

SPCR(F `⊥) = exp
(

Ω
(

(Deg(F `⊥)−W(F ))2

n

))
.

Thus, for k-CNF formulas it is sufficient to prove strong enough lower bounds on the PC
degree of refutations to establish strong lower bounds on PCR proof size.

Furthermore, it will be convenient for us to simplify the definition of PC so that axioms
x2 − x are always applied implicitly whenever possible. We do this by defining the result of
the multiplication operation to be the multilinearized version of the product. This can only
decrease the degree (and size) of the refutation, and is in fact how polynomial calculus is
defined in [2]. Hence, from now on whenever we refer to polynomials and monomials we mean
multilinear polynomials and multilinear monomials, respectively, and polynomial calculus is
defined over the (multilinear) polynomial ring F[x, y, z, . . .]/〈x2 − x, y2 − y, z2 − z, . . .〉.

We will also need to use restrictions. A restriction ρ on F is a partial assignment to the
variables of F . We use Dom(ρ) to denote the set of variables assigned by ρ. In a restricted
formula F�ρ all clauses satisfied by ρ are removed and all other clauses have falsified literals
removed. For a PC refutation π restricted by ρ we have that if ρ satisfies a literal in a
monomial, then that monomial is set to 0 and vanishes, and all falsified literals in a monomial
get replaced by 1 and disappear. It is not hard to see that if π is a PC (or PCR) refutation
of F , then π�ρ is a PC (or PCR) refutation of F�ρ, and this restricted refutation has at most
the same size, degree, and length as the original refutation.

3 A Generalization of the Alekhnovich–Razborov Method for CNFs

Many lower bounds in proof complexity are proved by arguing in terms of expansion. One
common approach is to associate a bipartite graph G(F ) with the CNF formula F with
clauses on one side and variables on the other and with edges encoding that a variable occurs
in a clause (the so-called clause-variable incidence graph mentioned in the introduction). The
method we present below, which is an extension of the techniques developed by Alekhnovich
and Razborov [2] (but restricted to the special case of CNF formulas), is a variation on
this theme. As already discussed, however, we will need a slightly more general graph
construction where clauses and variables can be grouped into clusters. We begin by describing
this construction.

3.1 A Generalized Clause-Variable Incidence Graph
The key to our construction of generalized clause-variable incidence graphs is to keep track
of how clauses in a CNF formula are affected by partial assignments.

I Definition 3.1 (Respectful assignments and variable sets). We say that a partial assignment
ρ respects a CNF formula E, or that ρ is E-respectful, if for every clause C in E either
Vars(C) ∩ Dom(ρ) = ∅ or ρ satisfies C. A set of variables V respects a CNF formula E if
there exists an assignment ρ with Dom(ρ) = V that respects E.
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I Definition 3.2 (Respectful satisfaction). Let F and E be CNF formulas and let V be a
set of variables. We say that F is E-respectfully satisfiable by V if there exists a partial
assignment ρ with Dom(ρ) = V that satisfies F and respects E. Such an assignment ρ is
said to E-respectfully satisfy F .

Using a different terminology, Definition 3.1 says that ρ is an autarky for E, meaning that
ρ satisfies all clauses in E which it touches, i.e., that E�ρ⊆ E after we remove all satisfied
clauses in E�ρ. Definition 3.2 ensures that the autarky ρ satisfies the formula F .

Recall that we identify a CNF formula
∧m
i=1 Ci with the set of clauses {Ci | i ∈ [m]}. In

the rest of this section we will switch freely between these two perspectives. We also change
to the notation F for the input CNF formula, to free up other letters that will be needed in
notation introduced below.

To build a bipartite graph representing the CNF formula F , we will group the formula
into subformulas (i.e., subsets of clauses). In what follows, we write U to denote the part of
F that will form the left vertices of the constructed bipartite graph, while E denotes the
part of F which will not be represented in the graph but will be used to enforce respectful
satisfaction. In more detail, U is a family of subformulas F of F where each subformula
is one vertex on the left-hand side of the graph. We also consider the variables of F to be
divided into a family V of subsets of variables V . In our definition, U and V do not need to be
partitions of clauses and variables in F , respectively. This is not too relevant for U because
we will always define it as a partition, but it turns out to be useful in our applications to
have sets in V share variables. The next definition describes the bipartite graph that we
build and distinguishes between two types of neighbour relations in this graph.

I Definition 3.3 (Bipartite (U ,V)E-graph). Let E be a CNF formula, U be a set of CNF
formulas, and V be a family of sets of variables V that respect E. Then the (bipartite)
(U ,V)E-graph is a bipartite graph with left vertices F ∈ U , right vertices V ∈ V, and edges
between F and V if Vars(F ) ∩ V 6= ∅. For every edge (F, V ) in the graph we say that F and
V are E-respectful neighbours if F is E-respectfully satisfiable by V . Otherwise, they are
E-disrespectful neighbours.

We will often write (U ,V)E as a shorthand for the graph defined by U , V, and E as
above. We will also use standard graph notation and write N(F ) to denote the set of all
neighbours V ∈ V of a vertex/CNF formula F ∈ U . It is important to note that the fact
that F and V are E-respectful neighbours can be witnessed by an assignment that falsfies
other subformulas F ′ ∈ U \ {F}.

I Definition 3.4 (Respectful boundary). For a (U ,V)E-graph and a subset U ′ ⊆ U , the
E-respectful boundary ∂E(U ′) of U ′ is the family of variable sets V ∈ V such that each
V ∈ ∂E(U ′) is an E-respectful neighbour of some clause set F ∈ U ′ but is not a neighbour
(respectful or disrespectful) of any other clause set F ′ ∈ U ′ \ {F}.

It will sometimes be convenient to interpret subsets U ′ ⊆ U as formulas
∧
F∈U ′

∧
C∈F C,

and we will switch back and forth between these two interpretations as seems most suitable.
We will show that a formula F =

∧
F∈U

∧
C∈F C ∧E = U ∧E is hard for polynomial calculus

with respect to degree if the (U ,V)E-graph has a certain expansion property as defined next.

I Definition 3.5 (Respectful boundary expander). A (U ,V)E-graph is said to be an (s, δ, ξ, E)-
respectful boundary expander , or just an (s, δ, ξ, E)-expander for brevity, if for every set
U ′ ⊆ U , |U ′| ≤ s, it holds that |∂E(U ′)| ≥ δ|U ′| − ξ.

Before we state our main theorem we need one more technical definition, which is used
to ensure that there do not exist variables that appear in too many variable sets in V.
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I Definition 3.6. The overlap of a variable x with respect to a family of variable sets V
is ol(x,V) = |{V ∈ V : x ∈ V }| and the overlap of V is ol(V) = maxx{ol(x,V)}, i.e., the
maximum number of sets V ∈ V containing any particular variable x.

Given the above definitions, we can state the main technical result in this paper as follows.

I Theorem 3.7. Let F =
∧
F∈U

∧
C∈F C ∧E = U ∧E be a CNF formula for which (U ,V)E

is an (s, δ, ξ, E)-expander with overlap ol(V) = d, and suppose furthermore that for all
U ′ ⊆ U , |U ′| ≤ s, it holds that U ′ ∧ E is satisfiable. Then any polynomial calculus refutation
of F requires degree strictly greater than (δs− 2ξ)/(2d).

In order to prove this theorem, it will be convenient to review some algebra. We do so
next.

3.2 Some Algebra Basics
We will need to compute with polynomials modulo ideals, and in order to do so we need to
have an ordering of monomials (which, as we recall, will always be multilinear).

I Definition 3.8 (Admissible ordering). We say that a total ordering ≺ on the set of all
monomials over some fixed set of variables is admissible if the following conditions hold:

If Deg(m1) < Deg(m2), then m1 ≺ m2.
For any m1,m2, and m such that m1 ≺ m2 and Vars(m) ∩

(
Vars(m1) ∪Vars(m2)

)
= ∅,

it holds that mm1 ≺ mm2.
Two terms t1 = α1m1 and t2 = α2m2 are ordered in the same way as their underlying
monomials m1 and m2.

One example of an admissible ordering is to first order monomials with respect to their
degree and then lexicographically. We write m1 4 m2 to denote that m1 ≺ m2 or m1 = m2.

I Definition 3.9 (Leading, reducible, and irreducible terms). For a polynomial P =
∑
i ti, the

leading term LT(P ) of P is the largest term ti according to ≺. Let I be an ideal over the
(multilinear) polynomial ring F[x, y, z, . . .]/〈x2 − x, y2 − y, z2 − z, . . .〉. We say that a term t

is reducible modulo I if there exists a polynomial Q ∈ I such that t = LT (Q) and that t is
irreducible modulo I otherwise.

The following fact is not hard to verify.

I Fact 3.10. Let I be an ideal over F[x, y, z, . . .]/〈x2 − x, y2 − y, z2 − z, . . .〉. Then any
multilinear polynomial P ∈ F[x, y, z, . . .]/〈x2 − x, y2 − y, z2 − z, . . .〉 can be written uniquely
as a sum Q+R, where Q ∈ I and R is a linear combination of irreducible terms modulo I.

This is what allows us to reduce polynomials modulo an ideal in a well-defined manner.

I Definition 3.11 (Reduction operator). Let I be an ideal and let P be any multilinear
polynomial over F[x, y, z, . . .]/〈x2 − x, y2 − y, z2 − z, . . .〉. The reduction operator RI is the
operator that when applied to P returns the sum of irreducible terms RI(P ) = R such that
P −R ∈ I.

We conclude our brief algebra review by stating two observations that are more or less
immediate, but are helpful enough for us to want to highlight them explicitly.

I Observation 3.12. For any two ideals I1, I2 such that I1 ⊆ I2 and any two polynomials
P , P ′ it holds that RI2(P ·RI1(P ′)) = RI2(PP ′).

I Observation 3.13. Suppose that the term t is irreducible modulo the ideal I and let ρ be
any partial assignment of variables in Vars(t) to values in F such that t�ρ 6= 0. Then t�ρ is
also irreducible modulo I.
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3.3 Proof Strategy
Let us now state the lemma on which we base the proof of Theorem 3.7.

I Lemma 3.14 ([21]). Let F be any CNF formula and D ∈ N+ be a positive integer.
Suppose that there exists a linear operator R on multilinear polynomials over Vars(F) with
the following properties:
1. R(1) 6= 0.
2. R(C) = 0 for (the translations to polynomials of) all axioms C ∈ F .
3. For every term t with Deg(t) < D and every variable x it holds that R(xt) = R(xR(t)).
Then any polynomial calculus refutation of F (and hence any PCR refutation of F) requires
degree strictly greater than D.

To prove Theorem 3.7, we construct a linear operator RG that satisfies the conditions of
Lemma 3.14 when the (U ,V)E-graph G is an expander. First, let us describe how we make
the connection between polynomials and the given (U ,V)E-graph. We remark that in the
rest of this section we will identify a clause C with its polynomial translation and will refer
to C as a (polynomial) axiom.

I Definition 3.15 (Term and polynomial neighbourhood). The neighbourhood N(t) of a term t

with respect to (U ,V)E is N(t) = {V ∈ V | Vars(t) ∩ V 6= ∅}, i.e., the family of all variable
sets containing variables mentioned by t. The neighbourhood of a polynomial P =

∑
i ti is

N(P ) =
⋃
iN(ti), i.e., the union of the neighbourhoods of all terms in P .

To every polynomial we can now assign a family of variable sets V ′. But we are interested
in the axioms that are needed in order to produce that polynomial. That is, given a family
of variable sets V ′, we would like to identify the largest set of axioms U ′ that could possibly
have been used in a derivation that yielded polynomials P with Vars(P ) ⊆

⋃
V ∈V′ V . This

is the intuition behind the next definition.3

I Definition 3.16 (Polynomial support). For a given (U ,V)E-graph and a family of variable
sets V ′ ⊆ V, we say that a subset U ′ ⊆ U is (s,V ′)-contained if |U ′| ≤ s and ∂E(U ′) ⊆ V ′.

We define the polynomial s-support Sups(V ′) of V ′ with respect to (U ,V)E , or just s-support
of V ′ for brevity, to be the union of all (s,V ′)-contained subsets U ′ ⊆ U , and the s-support
Sups(t) of a term t is defined to be the s-support of N(t).

We will usually just speak about “support” below without further qualifying this term,
since the (U ,V)E-graph G will be clear from context. The next observation follows immediately
from Definition 3.16.

I Observation 3.17. Support is monotone in the sense that if t ⊆ t′ are two terms, then it
holds that Sups(t) ⊆ Sups(t′).

Once we have identified the axioms that are potentially involved in deriving P , we define
the linear operator RG as the reduction modulo the ideal generated by these axioms as in
Definition 3.11. We will show that under the assumptions in Theorem 3.7 it holds that this
operator satisfies the conditions in Lemma 3.14. Let us first introduce some notation for the
set of all polynomials that can be generated from some axioms U ′ ⊆ U .

3 We remark that Definition 3.16 is a slight modification of the original definition of support in [2] that
was proposed by Yuval Filmus [11].
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I Definition 3.18. For a (U ,V)E-graph and U ′ ⊆ U , we write IE(U ′) to denote the ideal
generated by the polynomial axioms in U ′ ∧ E. 4

I Definition 3.19 ((U ,V)E-graph reduction). For a (U ,V)E-graph G, the (U ,V)E-graph
reduction RG on a term t is defined as RG(t) = RIE(Sups(t))(t). For a polynomial P , we define
RG(P ) to be the linear extension of the operator RG defined on terms.

3.4 Some Properties of Polynomial Support
A crucial technical property that we will need is that if a (U ,V)E-graph is a good expander in
the sense of Definition 3.5, then for small enough sets V ′ all (s,V ′)-contained subsets U ′ ⊆ U
as per Definition 3.16 are of at most half of the allowed size.

I Lemma 3.20. Let (U ,V)E be an (s, δ, ξ, E)-expander and let V ′ ⊆ V be such that |V ′| ≤
δs/2−ξ. Then it holds that every (s,V ′)-contained subset U ′ ⊆ U is in fact (s/2,V ′)-contained.

Proof. As |U ′| ≤ s we can appeal to the expansion property of the (U ,V)E-graph to derive
the inequality |∂E(U ′)| ≥ δ|U ′| − ξ. In the other direction, we can obtain an upper bound on
the size of ∂E(U ′) by noting that for any (s,V ′)-contained set U ′ it holds that |∂E(U ′)| ≤ |V ′|.
If we combine these bounds and use the assumption that |V ′| ≤ δs/2− ξ, we can conclude
that |U ′| ≤ s/2, which proves that U ′ is (s/2,V ′)-contained. J

Even more importantly, Lemma 3.20 now allows us to conclude that for a small enough
subset V ′ on the right-hand side of (U ,V)E it holds that in fact the whole polynomial
s-support Sups(V ′) of V ′ on the left-hand side is (s/2,V ′)-contained.

I Lemma 3.21. Let (U ,V)E be an (s, δ, ξ, E)-expander and let V ′ ⊆ V be such that |V ′| ≤
δs/2− ξ. Then the s-support Sups(V ′) of V ′ with respect to (U ,V)E is (s/2,V ′)-contained.

Proof. We show that for any pair of (s,V ′)-contained sets U1,U2 ⊆ U their union U1 ∪ U2 is
also (s,V ′)-contained. First, by Lemma 3.20 we have |U1|, |U2| ≤ s/2 and hence |U1 ∪U2| ≤ s.
Second, it holds that ∂E(U1), ∂E(U2) ⊆ V ′, which implies that ∂E(U1 ∪ U2) ⊆ V ′, because
taking the union of two sets can only shrink the boundary. This establishes that U1 ∪ U2 is
(s,V ′)-contained.

By induction on the number of (s,V ′)-contained sets we can conclude that the support
Sups(V ′) is (s,V ′)-contained as well, after which one final application of Lemma 3.20 shows
that this set is (s/2,V ′)-contained. This completes the proof. J

What the next lemma says is, roughly, that if we reduce a term t modulo an ideal
generated by a not too large set of polynomials containing some polynomials outside of
the support of t, then we can remove all such polynomials from the generators of the ideal
without changing the irreducible component of t.

I Lemma 3.22. Let G be a (U ,V)E-graph and let t be any term. Suppose that U ′ ⊆ U is
such that U ′ ⊇ Sups(t) and |U ′| ≤ s. Then for any term t′ with N(t′) ⊆ N(Sups(t)) ∪N(t)
it holds that if t′ is reducible modulo IE(U ′), it is also reducible modulo IE(Sups(t)).

4 That is, IE(U ′) is the smallest set I of multilinear polynomials that contains all axioms in U ′ ∧ E and
that is closed under addition of P1, P2 ∈ I and by multiplication of P ∈ I by any multilinear polynomial
over Vars(U ∧ E) (where as before the resulting product is implicitly multilinearized).
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Proof. If U ′ is (s,N(t))-contained, then by Definition 3.16 it holds that U ′ ⊆ Sups(t) and
there is nothing to prove. Hence, assume U ′ is not (s,N(t))-contained. We claim that
this implies that we can find a subformula F ∈ U ′ \ Sups(t) with a neighbouring subset
of variables V ∈

(
∂E(U ′) ∩N(F )

)
\N(t′) in the respectful boundary of U ′ but not in the

neighbourhood of t′. To argue this, note that since |U ′| ≤ s it follows from Definition 3.16
that the reason U ′ is not (s,N(t))-contained is that there exist some F ∈ U ′ and some
set of variables V ∈ N(F ) such that V ∈ ∂E(U ′) \ N(t). Moreover, the assumption
U ′ ⊇ Sups(t) implies that such an F cannot be in Sups(t). Otherwise there would exist an
(s,N(t))-contained set U∗ such that F ∈ U∗ ⊆ Sups(t) ⊆ U ′, from which it would follow
that V ∈ ∂E(U ′) ∩N(U∗) ⊆ ∂E(U∗) ⊆ N(t), contradicting V /∈ N(t). We have shown that
F /∈ Sups(t) ⊆ U ′ and V ∈ ∂E(U ′) ∩N(F ), and by combining these two facts we can also
deduce that V /∈ N(Sups(t)), since otherwise V could not be contained in the boundary
of U ′. In particular, this means that V /∈ N(t′) ⊆ N(Sups(t)) ∪N(t), which establishes the
claim made above.

Fixing F and V such that F ∈ U ′ \ Sups(t) and V ∈
(
∂E(U ′)∩N(F )

)
\N(t′), our second

claim is that if F is removed from the generators of the ideal, it still holds that if t′ is
reducible modulo IE(U ′), then this term is also reducible modulo IE(U ′ \ {F}). Given
this second claim we are done, since we can then argue by induction over the elements in
U ′ \ Sups(t) and remove them one by one to arrive at the conclusion that every term t′

with N(t′) ⊆ N(Sups(t)) ∪N(t) that is reducible modulo IE(U ′) is also reducible modulo
IE(Sups(t)), which is precisely what the lemma says.

We proceed to establish this second claim. The assumption that t′ is reducible modulo
IE(U ′) means that there exists a polynomial P ∈ IE(U ′) such that t′ = LT (P ). Since P is
in the ideal IE(U ′) it can be written as a polynomial combination P =

∑
i PiCi of axioms

Ci ∈ U ′ ∧ E for some polynomials Pi. If we could hit P with a restriction that satisfies (and
hence removes) F while leaving t′ and (U ′ \ {F}) ∧ E untouched, this would show that t′
is the leading term of some polynomial combination of axioms in (U ′ \ {F}) ∧ E. This is
almost what we are going to do.

As our restriction ρ we choose an arbitrary assignment with domain Dom(ρ) = V

that E-respectfully satisfies F . Note that at least one such assignment exists since V ∈
∂E(U ′) ∩N(F ) is an E-respectful neighbour of F by Definition 3.4. By the choice of ρ it
holds that F is satisfied, i.e., that all axioms in F are set to 0. Furthermore, none of the
axioms in U ′ \ {F} are affected by ρ since V is in the boundary of U ′. 5 As for axioms in
E it is not necessarily true that ρ will leave all of them untouched, but by assumption ρ
respects E and so any axiom in E is either satisfied (and zeroed out) by ρ or is left intact. It
follows that P�ρ can be be written as a polynomial combination P�ρ=

∑
i

(
Pi�ρ

)
Ci, where

Ci ∈ (U ′ \ {F}) ∧ E, and hence P�ρ∈ IE(U ′ \ {F}).
To see that t′ is preserved as the leading term of P�ρ, note that ρ does not assign any

variables in t′ since V /∈ N(t′). Hence, t′ = LT(P�ρ), as ρ can only make the other terms
smaller with respect to ≺. This shows that there is a polynomial P ′ = P�ρ∈ IE(U ′ \ {F})
with LT (P ′) = t′, and hence t′ is reducible modulo IE(U ′ \ {F}). The lemma follows. J

We need to deal with one more detail before we can prove the key technical lemma that
it is possible to reduce modulo suitably chosen larger ideals without changing the reduction
operator. We refer to the full-length version [18] for the proof of the next lemma.

5 Recalling the remark after Definition 3.3, we note that we can ignore here if ρ happens to falsify axioms
in U \ U ′.
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I Lemma 3.23. Suppose that U∗ ⊆ U for some (U ,V)E-graph and let t be any term. Then
it holds that N

(
RIE(U∗)(t)

)
⊆ N(U∗) ∪N(t).

Now we can state the formal claim that enlarging the ideal does not change the reduction
operator if the enlargement is done in the right way.

I Lemma 3.24. Let G be a (U ,V)E-graph and let t be any term. Suppose that U ′ ⊆ U is
such that U ′ ⊇ Sups(t) and |U ′| ≤ s. Then it holds that RIE(U ′)(t) = RIE(Sups(t))(t).

Proof. We prove RIE(U ′)(t) = RIE(Sups(t))(t) by applying the contrapositive of Lemma 3.22.
Recall that this lemma states that any term t′ with N(t′) ⊆ N(Sups(t)) ∪ N(t) that is
reducible modulo IE(U ′) is also reducible modulo IE(Sups(t)). Since every term t′ in
RIE(Sups(t))(t) is irreducible modulo IE(Sups(t)) and since by applying Lemma 3.23 with
U∗ = Sups(t) we have that N(t′) ⊆ N(Sups(t)) ∪N(t), it follows that t′ is also irreducible
modulo IE(U ′). This shows that RIE(U ′)(t) = RIE(Sups(t))(t) as claimed, and the lemma
follows. J

3.5 Putting the Pieces in the Proof Together
We just need two more lemmas to establish Theorem 3.7. To keep the length of this extended
abstract reasonable, we just state these lemmas and hint at how to prove them.

I Lemma 3.25. Let (U ,V)E be an (s, δ, ξ, E)-expander with overlap ol(V) = d. Then for
any term t with Deg(t) ≤ (δs− 2ξ)/(2d) it holds that |Sups(t)| ≤ s/2.

This is a fairly straightforward application of Lemma 3.21.

I Lemma 3.26. Let (U ,V)E be an (s, δ, ξ, E)-expander with overlap ol(V) = d. Then for
any term t with Deg(t) < b(δs− 2ξ)/(2d)c, any term t′ occurring in RIE(Sups(t))(t), and any
variable x, it holds that RIE(Sups(xt′))(xt′) = RIE(Sups(xt))(xt′).

This lemma follows from Observation 3.17, Lemma 3.23, Lemma 3.24, and Lemma 3.25.

Proof of Theorem 3.7. Recall that the assumptions of the theorem are that we have a
(U ,V)E-graph for a CNF formula F =

∧
F∈U F ∧ E such that (U ,V)E is an (s, δ, ξ, E)-

expander with overlap ol(V) = d and that furthermore for all U ′ ⊆ U , |U ′| ≤ s, it holds that∧
F∈U ′ F ∧E is satisfiable. We want to prove that no polynomial calculus derivation from∧
F∈U F ∧ E = U ∧ E of degree at most (δs− 2ξ)/(2d) can reach contradiction.
We can focus on a (U ,V)E-graph where the degree of axioms in U ∧ E is at most

(δs− 2ξ)/(2d), as it is not hard to show that axioms of higher degree can safely be ignored.
We want to show that the operator RG from Definition 3.19 satisfies the conditions of
Lemma 3.14, from which Theorem 3.7 immediately follows. We can note right away that the
operator RG is linear by construction.

To prove that RG(1) = RIE(Sups(1))(1) 6= 0, we start by observing that the size of the
s-support of 1 is upper-bounded by s/2 according to Lemma 3.25. Using the assumption
that for every subset U ′ of U , |U ′| ≤ s, the formula U ′ ∧ E is satisfiable, it follows that 1 is
not in the ideal IE(Sups(1)) and hence RIE(Sups(1))(1) 6= 0.

We next show that RG(C) = 0 for any axiom clause C ∈ U ∧ E (where we recall that
we identify a clause C with its translation into a linear combination of monomials). By the
assumption above it holds that the degree of C is bounded by (δs− 2ξ)/(2d), from which it
follows by Lemma 3.25 that the size of the s-support of every term in C is bounded by s/2.
Since C is the polynomial encoding of a clause, the leading term LT(C) contains all the
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variables appearing in C. 6 Hence, the s-support Sups(LT (C)) of the leading term contains
the s-support of every other term in C by Observation 3.17 and we can use Lemma 3.24
to conclude that RG(C) = RIE(Sups(LT(C)))(C). If C ∈ E, this means we are done because
IE(Sups(LT (C))) contains all of E, implying that RG(C) = 0.

For C ∈ U we cannot immediately argue that C reduces to 0, since (in contrast to [2])
it is not immediately clear that Sups(LT(C)) contains C. The problem here is that we
might worry that C is part of some subformula F ∈ U for which the boundary ∂E(F ) is not
contained in N(LT (C)) = Vars(C), and hence there is no obvious reason why C should be
a member of any (s,N(LT (C)))-contained subset of U . However, in view of Lemma 3.24
(applied, strictly speaking, once for every term in C) we can choose some F ∈ U such that
C ∈ F and add it to the s-support Sups(LT (C)) to obtain a set U ′ = Sups(LT (C))∪ {F} of
size |U ′| ≤ s/2 + 1 ≤ s such that RIE(Sups(LT(C)))(C) = RIE(U ′)(C). Since IE(U ′) contains
C as a generator we conclude that RG(C) = RIE(U ′)(C) = 0 also for C ∈ U .

It remains to prove the last property in Lemma 3.14 stating that RG(xt) = RG(xRG(t))
for any term t such that Deg(t) < b(δs− 2ξ)/(2d)c. We can see that this holds by studying
the following sequence of equalities:

RG(xRG(t)) =
∑

t′∈RG(t)

RG(xt′)
[
by linearity

]
=

∑
t′∈RG(t)

RIE(Sups(xt′))(xt′)
[
by definition of RG

]
=

∑
t′∈RG(t)

RIE(Sups(xt))(xt′)
[
by Lemma 3.26

]
= RIE(Sups(xt))(xRG(t))

[
by linearity

]
= RIE(Sups(xt))(xRIE(Sups(t))(t))

[
by definition of RG

]
= RIE(Sups(xt))(xt)

[
by Observation 3.12

]
= RG(xt)

[
by definition of RG

]
Thus, RG satisfies all the properties of Lemma 3.14, from which the theorem follows. J

We conclude the section by stating the following version of Theorem 3.7 for the most
commonly occuring case with standard expansion without any slack.

I Corollary 3.27. Suppose that (U ,V)E is an (s, δ, 0, E)-expander with overlap ol(V) = d

such that Vars(U ∧ E) =
⋃
V ∈V V . Then any polynomial calculus refutation of the formula∧

F∈U F ∧ E requires degree strictly greater than δs/(2d).

Proof sketch. It is not hard to show that if a (U ,V)E-graph is an (s, δ, 0, E)-expander such
that Vars(U ∧ E) =

⋃
V ∈V V , then for any U ′ ⊆ U , |U ′| ≤ s, it holds that the formula U ′ ∧E

is satisfiable. Now the corollary follows immediately from Theorem 3.7. J

4 Applications

In this section, we demonstrate how to use the machinery developed in Section 3 to establish
degree lower bounds for polynomial calculus. As a warm-up, let us consider the bound

6 We remark that this is the only place in the proof where we are using that C is (the encoding of) a
clause.

CCC 2015



480 A Generalized Method for Proving Polynomial Calculus Degree Lower Bounds

from [2] for CNF formulas F whose clause-variable incidence graph G(F) are good enough
expanders in the following sense.

I Definition 4.1 (Bipartite boundary expander). A bipartite graph G = (U ∪̇ V,E) is a
bipartite (s, δ)-boundary expander if for every set of vertices U ′ ⊆ U, |U ′| ≤ s, it holds that
|∂(U ′)| ≥ δ|U ′|, where the boundary ∂(U ′) =

{
v ∈ V : |N(v) ∩ U ′| = 1

}
consists of all

vertices on the right-hand side V that have a unique neighbour in U ′ on the left-hand side.

We can simply identify the (U ,V)E-graph with the standard clause-variable incidence
graph G(F) (setting E = ∅) to recover the degree lower bound in [2] as stated next.

I Theorem 4.2 ([2]). For any CNF formula F and any constant δ > 0 it holds that if the
clause-variable incidence graph G(F) is an (s, δ)-boundary expander, then the polynomial
calculus degree required to refute F in polynomial calculus is Deg(F `⊥) > δs/2.

As a second application, which is more interesting in the sense that the (U ,V)E-graph is
nontrivial, we show how the degree lower bound for the ordering principle formulas in [12]
can be established using this framework. For an undirected (and in general non-bipartite)
graph G, the graph ordering principle formula GOP(G) says that there exists a totally
ordered set of |V (G)| elements where no element is minimal, since every element/vertex v
has a neighbour u ∈ N(v) which is smaller according to the ordering. Formally, the CNF
formula GOP(G) is defined over variables xu,v, u, v ∈ V (G), u 6= v, where the intended
meaning of the variables is that xu,v is true if u < v according to the ordering, and consists
of the following axiom clauses:

xu,v ∨ xv,w ∨ xu,w u, v, w ∈ V (G), u 6= v 6= w 6= u (transitivity) (4.1a)
xu,v ∨ xv,u u, v ∈ V (G), u 6= v (anti-symmetry) (4.1b)
xu,v ∨ xv,u u, v ∈ V (G), u 6= v (totality) (4.1c)∨
u∈N(v)

xu,v v ∈ V (G) (non-minimality) (4.1d)

We remark that the graph ordering principle on the complete graph Kn on n vertices
is the (linear) ordering principle formula LOPn (also known as a least number principle
formula, or graph tautology in the literature), for which the non-minimality axioms (4.1d)
have width linear in n. By instead considering graph ordering formulas for graphs G of
bounded degree, one can bring the initial width of the formulas down so that the question of
degree lower bounds becomes meaningful.

To prove degree lower bounds for GOP(G) we need the following extension of boundary
expansion to the case of non-bipartite graphs.

I Definition 4.3 (Non-bipartite boundary expander). A graph G = (V,E) is an (s, δ)-boundary
expander if for every subset of vertices V ′ ⊆ V (G), |V ′| ≤ s, it holds that |∂(V ′)| ≥ δ|V ′|,
where the boundary ∂(V ′) =

{
v ∈ V (G) \ V ′ :

∣∣N(v) ∩ V ′
∣∣ = 1

}
is the set of all vertices in

V (G) \ V ′ that have a unique neighbour in V ′.

We want to point out that the definition of expansion used by Galesi and Lauria in [12]
is slightly weaker in that they do not require boundary expansion but just vertex expansion
(measured as |N(V ′) \ V ′| for vertex sets V ′ with |V ′| ≤ s), and hence their result is slightly
stronger than what we state below in Theorem 4.4. With some modifications of the definition
of E-respectful boundary in (U ,V)E-graphs it would be possible to match the lower bound
in [12], but it would also make the definitions more cumbersome and so we choose not to do
so here.
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I Theorem 4.4 ([12]). For a non-bipartite graph G that is an (s, δ)-boundary expander it
holds that Deg(GOP(G) `⊥) > δs/4.

Proof sketch. To form the (U ,V)E-graph for GOP(G), we let E consist of all transitivity
axioms (4.1a), anti-symmetry axioms (4.1b), and totality axioms (4.1c). The non-minimality
axioms (4.1d) viewed as singleton sets form the family U , while V is the family of variable
sets Vv for each vertex v containing all variables that mention v, i.e., Vv = {xu,w | u,w ∈
V (G), u = v or w = v}. We leave it to the reader to verify that (U ,V)E is an (s, δ, 0, E)-
expander and that the overlap ol(V) is 2, which implies the lower bound. J

Let us now turn our attention back to bipartite graphs and consider different flavours
of pigeonhole principle formulas. We will focus on formulas over bounded-degree bipartite
graphs, where we will convert standard bipartite boundary expansion as in Definition 4.1
into respectful boundary expansion as in Definition 3.5. For a bipartite graph G = (U ∪̇V,E)
the axioms appearing in the different versions of the graph pigeonhole principle formulas are
as follows:∨

v∈N(u)

xu,v u ∈ U (pigeon axioms) (4.2a)

xu,v ∨ xu′,v v ∈ V, u, u′ ∈ N(v), u 6= u′, (hole axioms) (4.2b)
xu,v ∨ xu,v′ u ∈ U, v, v′ ∈ N(u), v 6= v′ (functionality axioms) (4.2c)∨
u∈N(v)

xu,v v ∈ V (onto axioms) (4.2d)

The “plain vanilla” graph pigeonhole principle formula PHPG is the CNF formula over vari-
ables {xu,v | (u, v) ∈ E} consisting of clauses (4.2a) and (4.2b); the graph functional pigeon-
hole principle formula FPHPG contains the clauses of PHPG and in addition clauses (4.2c);
the graph onto pigeonhole principle formula Onto-PHPG contains PHPG plus clauses (4.2d);
and the graph onto functional pigeonhole principle formula Onto-FPHPG consists of all the
clauses (4.2a)–(4.2d).

We obtain the standard versions of the PHP formulas by considering graph formulas as
above over the complete bipartite graph Kn+1,n. In the opposite direction, for any bipartite
graph G with n+ 1 vertices on the left and n vertices on the right we can hit any version of
the pigeonhole principle formula over Kn+1,n with the restriction ρG setting xu,v to false for
all (u, v) /∈ E(G) to recover the corresponding graph pigeonhole principle formula over G.
When doing so, we will use the observation from Section 2 that restricting a formula can
only decrease the size and degree required to refute it.

As mentioned in Section 1, it was established already in [2] that good bipartite boundary
expanders G yield formulas PHPG that require large polynomial calculus degree to refute.
We can reprove this result in our language – and, in fact, observe that the lower bound in [2]
works also for the onto version Onto-PHPG – by constructing an appropriate (U ,V)E-graph.
In addition, we can generalize the result in [2] slightly by allowing some additive slack ξ > 0
in the expansion in Theorem 3.7. This works as long as we have the guarantee that no too
small subformulas are unsatisfiable.

I Theorem 4.5. Suppose that G = (U ∪̇V,E) is a bipartite graph with |U | = n and |V | = n−1
and that δ > 0 is a constant such that

for every set U ′ ⊆ U of size |U ′| ≤ s there is a matching of U ′ into V , and
for every set U ′ ⊆ U of size |U ′| ≤ s it holds that |∂(U ′)| ≥ δ|U ′| − ξ.

Then Deg(Onto-PHPG `⊥) > δs/2− ξ.
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Proof sketch. The (U ,V)E-graph for PHPG is formed by taking U to be the set of pigeon
axioms (4.2a), E to consist of the hole axioms (4.2b) and onto axioms (4.2d), and V to be the
collection of variable sets Vv = {xu,v | u ∈ N(v)} partitioned with respect to the holes v ∈ V .
It is straightforward to check that this (U ,V)E-graph is isomorphic to the graph G and that
all neighbours in (U ,V)E are E-respectful (for

∨
v∈N(u) xu,v ∈ U and Vv for some v ∈ N(u),

apply the partial assignment sending pigeon u to hole v and ruling out all other pigeons
in N(v) \ {u} for v). Moreover, using the existence of matchings for all sets of pigeons U ′
of size |U ′| ≤ s we can prove that every subformula U ′ ∧ E is satisfiable as long as |U ′| ≤ s.
Hence, we can apply Theorem 3.7 to derive the claimed bound. We refer to the upcoming
full-length version of [17] for the omitted details. J

Theorem 4.5 is the only place in this paper where we use non-zero slack for the expansion.
The reason that we need slack is so that we can establish lower bounds for another type
of formulas, namely the subset cardinality formulas studied in [17, 28, 30]. A brief (and
somewhat informal) description of these formulas is as follows. We start with a 4-regular
bipartite graph to which we add an extra edge between two non-connected vertices. We then
write down clauses stating that each degree-4 vertex on the left has at least 2 of its edges set
to true, while the single degree-5 vertex has a strict majority of 3 incident edges set to true.
On the right-hand side of the graph we encode the opposite, namely that all vertices with
degree 4 have at least 2 of its edges set to false, while the vertex with degree 5 has at least
3 edges set to false. A simple counting argument yields that the CNF formula consisting of
these clauses must be unsatisfiable. Formally, we have the following definition (which strictly
speaking is a slightly specialized case of the general construction, but again we refer to [17]
for the details).

I Definition 4.6 (Subset cardinality formulas [17, 30]). Suppose that G = (U ∪̇ V,E) is a
bipartite graph that is 4-regular except that one extra edge has been added between two
unconnected vertices on the left and right. Then the subset cardinality formula SC (G) over
G has variables xe, e ∈ E, and clauses:

xe1 ∨ xe2 ∨ xe3 for every triple e1, e2, e3 of edges incident to any u ∈ U ,
xe1 ∨ xe2 ∨ xe3 for every triple e1, e2, e3 of edges incident to any v ∈ V .

To prove lower bounds on refutation degree for these formulas we use the standard notion
of vertex expansion on bipartite graphs, where all neighbours on the left are counted and not
just unique neighbours as in Definition 4.1.

I Definition 4.7 (Bipartite expander). A bipartite graph G = (U ∪̇ V,E) is a bipartite
(s, δ)-expander if for each vertex set U ′ ⊆ U, |U ′| ≤ s, it holds that |N(U ′)| ≥ δ|U ′|.

The existence of such expanders with appropriate parameters can again be established by
straightforward calculations (as in, for instance, [15]).

I Theorem 4.8 ([17]). Suppose that G = (U ∪̇ V,E) is a 4-regular bipartite
(
γn, 5

2 + δ
)
-

expander for |U | = |V | = n and some constants γ, δ > 0, and let G′ be obtained from G

by adding an arbitrary edge between two unconnected vertices in U and V . Then re-
futing the formula SC (G′) requires degree Deg(SC (G′) ` ⊥) = Ω(n), and hence size
SPCR(SC (G′) `⊥) = exp

(
Ω(n)

)
.

Proof sketch. The proof is by reducing to graph PHP formulas and applying Theorem 4.5
(which of course also holds with onto axioms removed). We fix some complete matching
in G, which is guaranteed to exist in regular bipartite graphs, and then set all edges in the
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matching as well as the extra added edge to true. Now the degree-5 vertex v∗ on the right
has only 3 neighbours and the constraint for v∗ requires all of these edges to be set to false.
Hence, we set these edges to false as well which makes v∗ and its clauses vanish from the
formula. The restriction leaves us with n vertices on the left which require that at least 1 of
the remaining 3 edges incident to them is true, while the n− 1 vertices on the right require
that at most 1 out of their incident edges is true. That is, we have restricted our subset
cardinality formula to obtain a graph PHP formula.

As the original graph is a (γn, 5
2 + δ)-expander, a simple calculation can convince us

that the new graph is a boundary expander where each set of vertices U ′ on the left with
size |U ′| ≤ γn has boundary expansion |∂(U ′)| ≥ 2δ|U ′| − 1. Note the additive slack of 1
compared to the usual expansion condition, which is caused by the removal of the degree-5
vertex v∗ from the right. Now we can appeal to Theorem 4.5 (and Theorem 2.2) to obtain
the lower bounds claimed in the theorem. J

Let us conclude this section by presenting our new lower bounds for the functional
pigeonhole principle formulas. As a first attempt, we could try to reason as in the proof
of Theorem 4.5 (but adding the axioms (4.2c) and removing axioms (4.2d)). The naive
idea would be to modify our (U ,V)E-graph slightly by substituting the functionality axioms
for the onto axioms in E while keeping U and V the same. This does not work, however –
although the sets Vv ∈ V are E-respectful, the only assignment that respects E is the one
that sets all variables xu,v ∈ Vv to false. Thus, it is not possible to satisfy any of the pigeon
axioms, meaning that there are no E-respectful neighbours in (U ,V)E . In order to obtain a
useful (U ,V)E-graph, we instead need to redefine V by enlarging the variable sets Vv, using
the fact that V is not required to be a partition. Doing so in the appropriate way yields the
following theorem.

I Theorem 4.9. Suppose that G = (U ∪̇V,E) is a bipartite (s, δ)-boundary expander with left
degree bounded by d. Then it holds that refuting FPHPG in polynomial calculus requires degree
strictly greater than δs/(2d). It follows that if G is a bipartite (γn, δ)-boundary expander
with constant left degree and γ, δ > 0, then any polynomial calculus (PC or PCR) refutation
of FPHPG requires size exp(Ω(n)).

Proof. We construct a (U ,V)E-graph from FPHPG as follows. We let the set of clauses E
consist of all hole axioms (4.2b) and functionality axioms (4.2c). We define the family U to
consist of the pigeon axioms (4.2a) interpreted as singleton CNF formulas. For the variables
we let V = {Vv | v ∈ V }, where for every hole v ∈ V the set Vv is defined by

Vv =
{
xu′,v′

∣∣u′ ∈ N(v) and v′ ∈ N(u′)
}
. (4.3)

That is, to build Vv we start with the hole v on the right, consider all pigeons u′ on the
left that can go into this hole, and finally include in Vv for all such u′ the variables xu′,v′
for all holes v′ incident to u′. We want to show that (U ,V)E as defined above satisfies the
conditions in Corollary 3.27.

Note first that every variable set Vv respects the clause set E since setting all variables
in Vv to false satisfies all clauses in E mentioning variables in Vv. It is easy to see from (4.3)
that when a hole v is a neighbour of a pigeon u, the variable set Vv is also a neighbour in
the (U ,V)E-graph of the corresponding pigeon axiom Fu =

∨
v∈N(u) xu,v. These are the only

neighbours of the pigeon axiom Fu, as each Vv contains only variables mentioning pigeons
in the neighbourhood of v. In other words, G and (U ,V)E share the same neighbourhood
structure.
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Moreover, we claim that every neighbour Vv of Fu is an E-respectful neighbour. To see
this, consider the assignment ρu,v that sets xu,v to true and the remaining variables in Vv to
false. Clearly, Fu is satisfied by ρu,v. All axioms in E not containing xu,v are either satisfied
by ρu,v or left untouched, since ρu,v assigns all other variables in its domain to false. Any
hole axiom xu,v ∨ xu′,v in E that does contain xu,v is satisfied by ρu,v since xu′,v ∈ Vv for
u′ ∈ N(v) by (4.3) and this variable is set to false by ρu,v. In the same way, any functionality
axiom xu,v ∨ xu,v′ containing xu,v is satisfied since the variable xu,v′ is in Vv by (4.3) and
is hence assigned to false. Thus, the assignment ρu,v E-respectfully satisfies Fu, and so Fu
and Vv are E-respectful neighbours as claimed.

Since our constructed (U ,V)E-graph is isomorphic to the original graph G and all
neighbour relations are respectful, the expansion parameters of G trivially carry over to
respectful expansion in (U ,V)E . This is just another way of saying that (U ,V)E is an
(s, δ, 0, E)-expander.

To finish the proof, note that the overlap of V is at most d. This is so since a variable xu,v
appears in a set Vv′ only when v′ ∈ N(u). Hence, for all variables xu,v it holds that they
appear in at most |N(u)| ≤ d sets in V. Now the conclusion that any polynomial calculus
refutation of FPHPG requires degree greater than δs/(2d) can be read off from Corollary 3.27.
In addition, the exponential lower bound on the size of a refutation of FPHPG when G is a
(γn, δ)-boundary expander G with constant left degree follows by plugging the degree lower
bound into Theorem 2.2. J

It is not hard to show (again we refer to [15] for the details) that there exist bipartite
graphs with left degree 3 which are (γn, δ)-boundary expanders for γ, δ > 0 and hence our
size lower bound for polynomial calculus refutations of FPHPG can be applied to them.
Moreover, if |U | = n+ 1 and |V | = n, then we can identify some bipartite graph G that is a
good expander and hit FPHPn+1

n = FPHPKn+1,n
with a restriction ρG setting xu,v to false

for all (u, v) /∈ E to obtain FPHPn+1
n �ρG

= FPHPG. Since restrictions can only decrease
refutation size, it follows that size lower bounds for FPHPG apply also to FPHPn+1

n , yielding
the second lower bound claimed in Section 1.1.

I Theorem 4.10. Any polynomial calculus or polynomial calculus resolution refutation
of (the standard CNF encoding of) the functional pigeonhole principle FPHPn+1

n requires
size exp(Ω(n)).

5 Concluding Remarks

In this work, we extend the techniques developed by Alekhnovich and Razborov [2] for
proving degree lower bounds on refutations of CNF formulas in polynomial calculus. Instead
of looking at the clause-variable incidence graph G(F ) of the formula F as in [2], we allow
clustering of clauses and variables and reason in terms of the incidence graph G′ defined
on these clusters. We show that the CNF formula F requires high degree to be refuted
in polynomial calculus whenever this clustering can be done in a way that “respects the
structure” of the formula and so that the resulting graph G′ has certain expansion properties.

This provides us with a unified framework within which we can reprove previously
established degree lower bounds in [2, 12, 17]. More importantly, this also allows us to obtain
a degree lower bound on the functional pigeonhole principle defined on expander graphs,
solving an open problem from [23]. It immediately follows from this that the (standard CNF
encodings of) the usual functional pigeonhole principle formulas require exponential proof
size in polynomial calculus resolution, resolving a question on Razborov’s problems list [26]
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which had (quite annoyingly) remained open. This means that we now have an essentially
complete understanding of how the different variants of pigeonhole principle formulas behave
with respect to polynomial calculus in the standard setting with n+ 1 pigeons and n holes.
Namely, while Onto-FPHP formulas are easy, both FPHP formulas and Onto-PHP formulas
are exponentially hard in n even when restricted to bounded-degree expanders.

A natural next step would be to see if this generalized framework can also be used to
attack other interesting formula families which are known to be hard for resolution but for
which there are currently no lower bounds in polynomial calculus. In particular, can our
framework or some modification of it prove a lower bound for refuting the formulas encoding
that a graph does not contain an independent set of size k, which were proven hard for
resolution in [4]? Or what about the formulas stating that a graph is k-colorable, for which
resolution lower bounds were established in [3]?

Returning to the pigeonhole principle, we now understand how different encodings behave
in polynomial calculus when we have n+ 1 pigeons and n holes. But what happens when we
increase the number of pigeons? For instance, do the formulas become easier if we have n2

pigeons and n holes? (This is the point where lower bound techniques based on degree break
down.) What about arbitrary many pigeons? In resolution these questions are fairly well
understood, as witnessed by the works of Raz [20] and Razborov [22, 24, 25], but as far as
we are aware they remain wide open for polynomial calculus.
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Abstract
This paper investigates the role of interaction and coins in quantum Arthur-Merlin games (also
called public-coin quantum interactive proof systems). While the existing model restricts the
messages from the verifier to be classical even in the quantum setting, the present work introduces
a generalized version of quantum Arthur-Merlin games where the messages from the verifier can
be quantum as well: the verifier can send not only random bits, but also halves of EPR pairs.
This generalization turns out to provide several novel characterizations of quantum interactive
proof systems with a constant number of turns. First, it is proved that the complexity class
corresponding to two-turn quantum Arthur-Merlin games where both of the two messages are
quantum, denoted qq-QAM in this paper, does not change by adding a constant number of turns
of classical interaction prior to the communications of qq-QAM proof systems. This can be
viewed as a quantum analogue of the celebrated collapse theorem for AM due to Babai. To prove
this collapse theorem, this paper presents a natural complete problem for qq-QAM: deciding
whether the output of a given quantum circuit is close to a totally mixed state. This complete
problem is on the very line of the previous studies investigating the hardness of checking properties
related to quantum circuits, and thus, qq-QAM may provide a good measure in computational
complexity theory. It is further proved that the class qq-QAM1, the perfect-completeness variant
of qq-QAM, gives new bounds for standard well-studied classes of two-turn quantum interactive
proof systems. Finally, the collapse theorem above is extended to comprehensively classify the
role of classical and quantum interactions in quantum Arthur-Merlin games: it is proved that, for
any constant m ≥ 2, the class of problems having m-turn quantum Arthur-Merlin proof systems
is either equal to PSPACE or equal to the class of problems having two-turn quantum Arthur-
Merlin proof systems of a specific type, which provides a complete set of quantum analogues of
Babai’s collapse theorem.
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1 Introduction

Background and motivation. Interactive proof systems [9, 4] play a central role in compu-
tational complexity and have many applications such as probabilistically checkable proofs
and zero-knowledge proofs. The aim of such a system is the verification of an assertion
(e.g., verifying if an input is in a language) by a party implementing a polynomial-time
probabilistic computation, called the verifier, interacting with another party with unlimited
power, called the prover, in polynomially many turns. Two definitions are given on the
secrecy of the coin which the verifier can flip: Goldwasser, Micali, and Rackoff [9] defined
private-coin proof systems, where the prover cannot see the outcomes of coin flips, while
Babai [4] defined public-coin proof systems, where the prover can see all the outcomes of
coin flips. Public-coin interactive proof systems are often called Arthur-Merlin games or
Arthur-Merlin proof systems, since the verifier was called Arthur and the prover was called
Merlin in Ref. [4].

It is natural to expect that the power of interactive proof systems depends on the
number of turns of interaction. Babai [4] showed, however, that as long as the number
of turns is a constant at least two, the number of turns does not affect the power of
Arthur-Merlin proof systems, i.e., AM(m) = AM(2) for any constant m ≥ 2 (the collapse
theorem), where AM(m) is the class of problems having m-turn Arthur-Merlin proof systems.
Goldwasser and Sipser [10] then showed that a private-coin interactive proof system can be
simulated by an Arthur-Merlin proof system by adding two turns, and thus, these two types
of interactive proof systems are computationally equivalent. By the above results, the class
of problems having interactive proof systems of a constant number of turns is equal to AM(2)
(regardless of definitions with public coins or private coins), and this class is nowadays called
AM. The class AM is believed to be much smaller than PSPACE, as it is contained in ΠP

2
in the second level of the polynomial-time hierarchy [22, 4]. On the contrary, the class of
problems having more general interactive proof systems of polynomially many turns, called
IP, does coincide with PSPACE [26, 23, 28] (again regardless of definitions with public coins
or private coins [10, 29]).

Quantum interactive proof systems were introduced by Watrous [34], and the class of
problems having quantum interactive proof systems is called QIP. In the quantum world, the
importance of the number of turns in interactive proof systems is drastically changed. The
first paper on quantum interactive proofs [34] already proved the surprising power of quantum
interactive proof systems with a constant number of turns, by showing that any problem in
PSPACE has a three-turn quantum interactive proof system. Kitaev and Watrous [16] then
proved that any quantum interactive proof system can be simulated by a three-turn quantum
interactive proof system, namely, QIP = QIP(3), where QIP(m) denotes the class of problems
having m-turn quantum interactive proof systems. Finally, the recent result QIP = PSPACE
by Jain, Ji, Upadhyay, and Watrous [13] completely characterized the computational power of
quantum interactive proof systems with three turns or more. In contrast, despite a number of
intensive studies [33, 36, 14, 12], still very little is known on the class QIP(2) corresponding
to two-turn quantum interactive proof systems, and characterizing the computational power
of two-turn quantum interactive proof systems is one of the main open problems in this field.

A public-coin version of quantum interactive proof systems was first introduced by
Marriott and Watrous [24], named quantum Arthur-Merlin proof systems, where the messages
from the verifier are restricted to classical strings consisting only of outcomes of polynomially
many attempts of a fair coin flip. They then showed that three-turn quantum Arthur-Merlin
proof systems can simulate three-turn standard quantum interactive proof systems, and
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hence the corresponding class, denoted QMAM, coincides with QIP = PSPACE. They also
investigated the case of two-turn quantum Arthur-Merlin proof systems and showed that the
corresponding class, denoted QAM, is included in BP · PP, a subclass of PSPACE obtained
by applying the BP operator to the class PP, which is still the only nontrivial upper bound
known for QAM.

Results and their meanings. This paper introduces a “fully quantum” version of quantum
Arthur-Merlin proof systems, which generalizes the existing quantum Arthur-Merlin proof
systems in Ref. [24]. In this generalized model, the verifier can send quantum messages, but
these messages can be used only for sharing EPR pairs with the prover, i.e., the verifier at
his/her turn first generates polynomially many EPR pairs and then sends one half of each of
them to the prover. Recall that classical public-coin messages can be interpreted as messages
for sharing uniform randomness between the verifier and the prover. In this context, sharing
EPR pairs would be the most natural quantum analogue of sharing randomness, and thus,
the model introduced above may be viewed as a natural full-quantum version of quantum
Arthur-Merlin proof systems.

The main interest in this model is again on the two-turn case, as allowing three or
more turns in this model obviously hits the PSPACE ceiling. Let qq-QAM be the class
of problems having two-turn “fully quantum” Arthur-Merlin proof systems, i.e., two-turn
quantum interactive proof systems in which the first message from the verifier consists only
of polynomially many halves of EPR pairs. Note that the only difference from the existing
class QAM lies in the type of the message from the verifier: uniform random classical bits
are replaced by halves of EPR pairs. The main goal of this paper is to investigate the
computational power of this class qq-QAM in order to figure out the advantages offered by
sharing EPR pairs rather than classical randomness, and more generally, to make a step
forward in the understanding of two-turn quantum interactive proof systems.

While the class qq-QAM is the main target of investigation, this paper further studies the
power of various models of quantum Arthur-Merlin proofs with quantum/classical messages.
For any constant m ≥ 1 and any message-types t1, . . . , tm in {c, q}, let tm · · · t1-QAM(m) be
the class of problems having m-turn quantum interactive proof systems with the following
restrictions:

For any odd j, 1 ≤ j ≤ m, the (m− j + 1)st message (or the jth message counting from
the last), which is the message from the prover sent at the (m− j + 1)st turn, is a
quantum message if tj = q, and is restricted to a classical message if tj = c.
For any even j, 1 ≤ j ≤ m, at the (m− j + 1)st turn, which is a turn for the verifier, the
verifier first generates polynomially many EPR pairs and then sends halves of them if
tj = q, while the verifier first flips a fair coin polynomially many times and then sends
their outcomes if tj = c.

The class tm · · · t1-QAM(m) may be simply written as tm · · · t1-QAM when there is no ambi-
guity in the number of turns: for instance, qq-QAM(2) may be abbreviated to qq-QAM. Note
that the classes QAM and QMAM defined in Ref. [24] are exactly the classes cq-QAM and
qcq-QAM, respectively. The class cc-QAM corresponds to two-turn public-coin quantum inter-
active proofs with classical communications: the verifier sends a question consisting only of out-
comes of polynomially many attempts of a fair coin flip, then the prover responds with polyno-
mially many classical bits, and the final verification is done by the verifier via polynomial-time
quantum computation. By definition, AM ⊆ cc-QAM ⊆ cq-QAM ⊆ qq-QAM ⊆ QIP(2).

As mentioned above, the main target in this paper is the class qq-QAM. First, it is proved
that the power of qq-QAM proof systems does not change by adding a constant number of
turns of classical interaction prior to the communications of qq-QAM proof systems.
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I Theorem 1.1. For any constant m ≥ 2, c · · · cqq-QAM(m) = qq-QAM.

In stark contrast to this, as mentioned before and will be stated clearly in Theorem 1.7,
adding one turn of prior quantum interaction gives qq-QAM proof systems the full power of
quantum interactive proof systems (i.e., the resulting class is PSPACE). Hence, Theorem 1.1
may be viewed as a quantum analogue of Babai’s collapse theorem [4] for the class qq-QAM.

The proof of Theorem 1.1 comes in three parts: The first part proves that, for any
constant m ≥ 4, c · · · cqq-QAM(m) is necessarily included in ccqq-QAM. The second part
proves that cqq-QAM is included in qq-QAM. Finally, the third part proves that ccqq-QAM
is included in qq-QAM, by using the containment proved in the second part.

The first part is proved by carefully extending the argument in Babai’s collapse theorem.
The core idea of Babai’s proof is that, by a probabilistic argument applied to a parallel
repetition of the original proof system, the order of the verifier and the prover in the first
three turns of the original system can be switched, which results in another proof system
that has fewer number of turns. When proving the first part, the messages of the first three
turns of the original m-turn quantum Arthur-Merlin proof system are classical, and thus,
the argument in Babai’s collapse theorem still works.

The proof of the second part is one of the highlights of this paper. The main difficulty in
proving this part (and the third part) is that the argument used in Babai’s collapse theorem
fails when any of the first three turns is quantum in the starting proof system.

To overcome this difficulty, this paper first provides a natural complete promise problem
for qq-QAM, namely, the Close Image to Totally Mixed (CITM) problem, which
asks to check if the image of a given quantum circuit can be close to a totally mixed state,
formally defined as follows.

Close Image to Totally Mixed Problem: CITM(a, b)

Input: A description of a quantum circuit Q acting on qall qubits that has qin spec-
ified input qubits and qout specified output qubits.

Yes Instances: There exists a qin-qubit state ρ such that D
(
Q(ρ), (I/2)⊗qout

)
≤ a.

No Instances: For any qin-qubit state ρ, D
(
Q(ρ), (I/2)⊗qout

)
≥ b.

Here, D(·, ·) denotes the trace distance, Q(ρ) is the qout-qubit output state of Q when
the input state was ρ (i.e., the reduced state obtained by tracing out the space corresponding
to the (qall − qout) non-output qubits after applying Q to ρ⊗ (|0〉〈0|)⊗(qall−qin)), and I is the
identity operator of dimension two (and thus, (I/2)⊗qout corresponds to the totally mixed
state of qout qubits). The following completeness result is proved.

I Theorem 1.2. For any constants a and b in (0, 1) such that (1− a)2 > 1− b2, CITM(a, b)
is qq-QAM-complete under polynomial-time many-one reduction.

Then the core idea for proving the second part is to use the structure of this complete
problem that yes-instances are witnessed by the existence of a quantum state (i.e., the ∃
quantifier appears in the first place), while no such witness quantum state exists for no-
instances (i.e., the ∀ quantifier appears in the first place). This makes it possible to incorporate
the first turn of the cqq-QAM system into the input quantum state of the complete problem
CITM (as the quantifier derived from the first turn of the cqq-QAM system matches the
quantifier derived from the complete problem CITM), and thus, any problem in cqq-QAM
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can be reduced in polynomial time to the CITM problem with appropriate parameters,
which is in qq-QAM.

Actually, for the proof, whether the image of a constructed quantum circuit can be
close to a totally mixed state is partly evaluated by using the maximum output entropy of
quantum channels, which shows implicitly the qq-QAM-completeness of another problem
that asks to check whether the maximum output entropy of a quantum channel is larger than
a given value or not. More formally, the following Maximum Output Quantum Entropy
Approximation (MaxOutQEA) problem is also qq-QAM-complete.

Maximum Output Quantum Entropy Approximation Problem: MaxOutQEA

Input: A description of a quantum circuit that specifies a quantum channel Φ, and
a positive integer t.

Yes Instances: Smax(Φ) ≥ t+ 1.

No Instances: Smax(Φ) ≤ t− 1.

Here, Smax(·) denotes the maximum output von Neumann entropy. Namely, for any quantum
channel Φ, Smax(Φ) = maxρ S(Φ(ρ)), where S(·) denotes the von Neumann entropy and Φ(ρ)
is the output quantum state of Φ when the input quantum state to it was ρ.

I Theorem 1.3. MaxOutQEA is qq-QAM-complete under polynomial-time many-one
reduction.

Finally, the third part of the proof of Theorem 1.1 is obtained by first providing a
randomized reduction from a problem in ccqq-QAM to a problem in cqq-QAM, and then
using the containment proved in the second part for the resulting problem in cqq-QAM.

Besides its usefulness in proving Theorem 1.1, the complete problem CITM is of indepen-
dent interest in the following sense. Recall that problems with formulations similar to CITM
have already been studied, and were crucial to understand and characterize several complexity
classes related to quantum interactive proof systems: testing closeness between the images
of two given quantum circuits is QIP-complete [27] (and hence PSPACE-complete), testing
closeness between the state produced by a given circuit and the image of another quantum
circuit is QIP(2)-complete [32] (see also Ref. [12]), testing closeness between the two states
produced by two given quantum circuits is QSZK-complete [33, 35], and testing closeness
between the state produced by a quantum circuit and the totally mixed state is NIQSZK-
complete [18, 8]. Theorem 1.2 shows that the class qq-QAM, besides its theoretical interest in
the context of interactive proofs, is a very natural one that actually corresponds to a concrete
computational problem that is on this line of studies investigating the hardness of checking
properties related to quantum circuits. Since CITM corresponds to the remaining pattern
(image versus totally mixed state), Theorem 1.2 provides the last piece for characterizing the
hardness of these kinds of computational problems.

The complete problem MaxOutQEA is also on the very line of the previous studies.
Indeed, it is known that the following problems characterize the power of various models
of quantum interactive proofs: deciding which of the two states produced by two given
quantum circuits has higher entropy is QSZK-complete [6], and checking whether the entropy
of the state produced by a given quantum circuit is larger than a given value or not is
NIQSZK-complete [6, 8]. Along this line, MaxOutQEA is the first entropy-related problem
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that characterizes the power of quantum interactive proofs without zero-knowledge property,
which may be worthy of note.

It is further proved that the class cq-QAM (i.e., the standard QAM) is necessarily
contained in the one-sided bounded error version of qq-QAM of perfect completeness, denoted
by qq-QAM1 (throughout this paper, the perfect completeness version of each complexity
class is indicated by adding the subscript “1”).

I Theorem 1.4. cq-QAM ⊆ qq-QAM1.

One useful property when proving this theorem is that the proof of Theorem 1.1 does not
harm the perfect completeness property, i.e., the equality c · · · cqq-QAM1(m) = qq-QAM1
also holds for any constant m ≥ 2. Especially, the class ccqq-QAM1 is included in the
class qq-QAM1, and thus, one has only to prove that cq-QAM is included in ccqq-QAM1.
This can be proved by combining the classical technique due to Cai [7] for proving AM = AM1
(which itself originates in the proof of BPP ⊆ ΣP

2 due to Lautemann [22]), and the recent
result that any problem in QMA has a one-sided bounded error quantum Merlin-Arthur
proof system of perfect completeness in which Arthur and Merlin initially share a constant
number of EPR pairs [20] (which in particular implies that QMA is included in qq-QAM1).
Now the point is that, using two classical turns, the classical technique in Ref. [7] can be
used to generate polynomially many instances of a (promise) QMA problem, all of which are
QMA yes-instances if the input was a yes-instance, while at least one of which is a QMA
no-instance with high probability if the input was a no-instance. Hence, by making use of
the proof system in Ref. [20] for each QMA instance, which essentially runs polynomially
many attempts of a protocol of qq-QAM type in parallel to check that none of them results
in rejection, one obtains a proof system of ccqq-QAM type with perfect completeness.

An immediate corollary of this theorem is the first nontrivial upper bound for QAM in
terms of quantum interactive proofs.

I Corollary 1.5. QAM ⊆ QIP1(2).

Here, QIP1(2) denotes the class of problems having two-turn quantum interactive proof
systems of perfect completeness. This also improves the best known lower bound of
QIP1(2) (from QMA shown in Ref. [20] to QAM). By using the fact MQA = MQA1 (a.k.a.,
QCMA = QCMA1) stating that classical-witness QMA systems can be made perfectly com-
plete [15], a technique similar to the proof of Theorem 1.4 proves that perfect completeness
is achievable in cc-QAM.

I Theorem 1.6. cc-QAM = cc-QAM1.

Finally, results similar to Theorem 1.1 can be derived for other complexity classes
related to generalized quantum Arthur-Merlin proof systems. Namely, the following complete
characterization is proved on the power of generalized quantum Arthur-Merlin proofs involving
a constant number of turns, which can be viewed as the complete set of quantum analogues
of Babai’s collapse theorem.

I Theorem 1.7. The following four properties hold:
(i) For any constant m ≥ 3 and any message-types t1, . . . , tm in {c, q}, if there exists an

index j ≥ 3 such that tj = q, then tm · · · t1-QAM(m) = PSPACE.
(ii) For any constant m ≥ 2 and any message-type t in {c, q}, c · · · cqt-QAM(m) = qq-QAM.
(iii) For any constant m ≥ 2, c · · · cq-QAM(m) = cq-QAM (= QAM).
(iv) For any constant m ≥ 2, c · · · c-QAM(m) = cc-QAM.
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Further related work. There are several studies in which relevant subclasses of qq-QAM
were treated. The class QMAconst-EPR was introduced in Ref. [20] to give an upper bound of
QMA by its one-sided bounded error subclass QMAconst-EPR

1 with perfect completeness. This
QMAconst-EPR is an obvious subclass of qq-QAM with a restriction that the first message
from the verifier consists of not polynomially many but a constant number of halves of EPR
pairs. The class qq-QAM may be called QMApoly-EPR, following the notation in Ref. [20].
Another subclass of qq-QAM is the class NIQSZK studied in Refs. [18, 8] that corresponds to
non-interactive quantum statistical zero-knowledge proof systems, where the zero-knowledge
property must also be satisfied.

Organization of the paper. Section 2 summarizes the notions and properties that are used
throughout this paper. Section 3 presents formal definitions of generalized quantum Arthur-
Merlin proof systems. Section 4 provides a sketch of a proof of the qq-QAM-completeness of
the CITM problem. Section 5 then proves Theorem 1.1, the collapse theorem for qq-QAM.
This essentially shows the qq-QAM-hardness of the MaxOutQEA problem also. Section 6
treats the inclusion of the standard QAM in qq-QAM1 (Theorem 1.4). Section 7 proves
Theorem 1.7, the complete classification of the complexity classes derived from generalized
quantum Arthur-Merlin proof systems. Finally, Section 8 concludes the paper with some
open problems. A proof of the MaxOutQEA problem being in qq-QAM is provided in
the appendix, which completes the proof of the qq-QAM-completeness of MaxOutQEA
(Theorem 1.3). Some of the technical proofs are relegated to the full version [19] of this
paper.

2 Preliminaries

Throughout this paper, let N and Z+ denote the sets of positive and nonnegative integers,
respectively, and let Σ = {0, 1} denote the binary alphabet set. A function f : Z+ → N is
polynomially bounded if there exists a polynomial-time deterministic Turing machine that
outputs 1f(n) on input 1n. A function f : Z+ → [0, 1] is negligible if, for any polynomially
bounded function g : Z+ → N, the inequality f(n) < 1/g(n) holds for all but finitely many
values of n.

Quantum fundamentals. We assume the reader is familiar with the quantum formalism,
including pure and mixed quantum states, density operators, and measurements, as well
as the quantum circuit model (see Refs. [25, 17, 37], for instance). Some notations and
properties are summarized here for later use.

For each k in N, let C(Σk) denote the 2k-dimensional complex Hilbert space whose
standard basis vectors are indexed by the elements in Σk. In this paper, all Hilbert spaces
are complex and have dimension a power of two. For a Hilbert space H, let L(H) denote the
set of linear operators over H (i.e., the set of linear mappings from H to itself), and let D(H)
denote the set of density operators over H. For Hilbert spaces H and K, let C(H,K) denote
the set of quantum channels from D(H) to D(K) (i.e., the set of linear mappings from L(H)
to L(K) that are completely positive and trace-preserving). As usual, let

|Φ+〉 = 1√
2

(|00〉+ |11〉)

denote the two-qubit state in C(Σ2) that forms an EPR pair, and let

X =
(

0 1
1 0

)
, Z =

(
1 0
0 −1

)
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denote the Pauli operators. For convenience, we may identify a unitary operator with the
unitary transformation it induces. In particular, for a unitary operator U , the induced
unitary transformation is also denoted by U .

For a linear operator A, the trace norm of A is defined by

‖A‖tr = tr
√
A†A.

For a Hilbert space H and two quantum states ρ and σ in D(H), the trace distance
between ρ and σ is defined by

D(ρ, σ) = 1
2‖ρ− σ‖tr.

For Hilbert spaces H and K and two quantum channels Φ and Ψ in C(H,K), the minimum
output trace distance between Φ and Ψ is defined by

Dmin(Φ,Ψ) = min
{
D(Φ(ρ),Ψ(σ)) : ρ, σ ∈ D(H)

}
.

The minimum output trace distance satisfies the following property. The proof is found in
the full version [19] of this paper.

I Lemma 2.1. For any Hilbert spaces H and K, any quantum channels Φ and Ψ in C(H,K),
and any k in N,

1−
[
1− (Dmin(Φ,Ψ))2] k

2 ≤ Dmin
(
Φ⊗k,Ψ⊗k

)
≤ kDmin(Φ,Ψ).

For any quantum state ρ, the von Neumann entropy of ρ is defined by

S(ρ) = − tr(ρ log ρ).

A special case of the von Neumann entropy is the Shannon entropy of a probability distribu-
tion µ, which is defined by

H(µ) = S(µ)

by viewing probability distributions as special cases of quantum states with diagonal density
operators.

For Hilbert spaces H and K and a quantum channel Φ in C(H,K), the maximum output
von Neumann entropy of Φ is defined by

Smax(Φ) = max
{
S(Φ(ρ)) : ρ ∈ D(H)

}
.

This paper uses the following two properties on von Neumann entropy.
The first lemma provides an upper bound on the von Neumann entropy of a mixture of

quantum states [25, Theorem 11.10].

I Lemma 2.2. For any Hilbert space H and any quantum state ρ in D(H) such that
ρ =

∑
j µjρj for some probability distribution µ = {µj} and quantum states ρj in D(H),

S(ρ) ≤ H(µ) +
∑
j

µj S(ρj).

The second lemma describes relations between the von Neumann entropy of a quantum
state and the trace distance between the state and the totally mixed state (a similar statement
appeared in the full version of Ref. [8] without a proof). The proof of the statement described
here is found in the full version [19] of this paper.

I Lemma 2.3. For any quantum state ρ of n qubits, it holds that(
1−D

(
ρ, (I/2)⊗n

)
− 2−n

)
n ≤ S(ρ) ≤ n− log 1

1−D(ρ, (I/2)⊗n) + 2.
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Quantum circuits. Following conventions, this paper defines quantum Arthur-Merlin proof
systems in terms of quantum circuits. In particular, this paper uses the following notion of
polynomial-time uniformly generated families of quantum circuits.

A quantum circuit is specified by a series of quantum gates, each of which is applied to
some designated set of qubits. It is assumed that any quantum circuit is composed of gates
in some reasonable, universal, finite set of quantum gates. A description of a quantum circuit
is a string in Σ∗ that encodes the specification of the quantum circuit. The encoding must
be a “natural” one, i.e., the number of gates in a circuit encoded is not more than the length
of the description of that circuit, and each gate of the circuit is specifiable by a deterministic
procedure in time polynomial with respect to the length of the description.

A family {Qx}x∈Σ∗ of quantum circuits is polynomial-time uniformly generated if there
exists a polynomial-time deterministic procedure that, on input x in Σ∗, outputs a description
of Qx. For convenience, we may identify a circuit Qx with the unitary operator it induces.

For the results in which perfect completeness is concerned, this paper assumes a gate
set with which the Hadamard and any classical reversible transformations can be exactly
implemented. Note that this assumption is satisfied by many standard gate sets such as the
Shor basis [31] consisting of the Hadamard, i-phase-shift, and Toffoli gates, and the gate set
consisting of the Hadamard, Toffoli, and NOT gates [30, 2]. Moreover, as the Hadamard
transformation in a sense can be viewed as a quantum analogue of the classical operation of
flipping a fair coin, our assumption would be the most natural quantum correspondence to
the tacit classical assumption in randomized complexity theory that fair coins and perfect
logical gates are available. Hence, the authors believe that the condition above is very
reasonable and not restrictive.

Since non-unitary and unitary quantum circuits are equivalent in computational power [3],
it is sufficient to treat only unitary quantum circuits, as defined above. Nevertheless, for
readability, most procedures in this paper will be described using intermediate projective
measurements and unitary operations conditioned on the outcome of the measurements.
All of these intermediate measurements can be deferred to the end of the procedure by a
standard technique so that the procedure becomes implementable with a unitary circuit.

3 Generalized quantum Arthur-Merlin proof systems

A generalized quantum Arthur-Merlin proof system consists of a polynomial-time quantum
verifier and an all-powerful quantum prover. For any constant m ≥ 1 and any message-type tj
in {c, q} for each j in {1, . . . ,m}, a generalized quantum Arthur-Merlin proof system is of
tm · · · t1-QAM type if the message at the (m− j + 1)st turn is quantum (resp. is restricted
to classical) for each j such that tj = q (resp. tj = c).

Formally, an m-turn quantum verifier V for generalized quantum Arthur-Merlin proof
systems is a polynomial-time computable mapping of the form V : Σ∗ → Σ∗. For each x in Σ∗,
V (x) is interpreted as a description of a quantum circuit acting on (qV(|x|) +mqM(|x|)) qubits
with a specification of a qV(|x|)-qubit quantum register V and each qM(|x|)-qubit quantum
register Mj for j in {1, . . . ,m}, for some polynomially bounded functions qV, qM : Z+ → N.
One of the qubits in V is designated as the output qubit. At the (m− j + 1)st turn for
any even j such that 2 ≤ j ≤ m− 1, V receives a message from a prover, either classical or
quantum, which is stored in the quantum register Mm−j . When the system is of tm · · · t1-
QAM type, at the (m− j + 1)st turn for any even j such that 2 ≤ j ≤ m, if tj = c, V flips a
fair coin qM(|x|) times to obtain a binary string r of length qM(|x|), then sends r to the prover,
and stores r in the quantum register Mm−j+1, while if tj = q, V generates qM(|x|) EPR
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pairs |Φ+〉⊗ qM(|x|), then sends the second halves of them to the prover, and stores the first
halves of them in Mm−j+1. Upon receiving a message at the mth turn from the prover,
either classical or quantum, which is stored in the quantum register Mm, V prepares the
qV(|x|)-qubit quantum register V, all the qubits of which are initialized to the |0〉 state. V
then performs the final verification procedure by applying the circuit V (x) to (V,M1, . . . ,Mm)
and then measuring the output qubit in the computational basis, where the outcome |1〉 is
interpreted as “accept”, and the outcome |0〉 is interpreted as “reject”.

Similarly, an m-turn quantum prover P for generalized quantum Arthur-Merlin proof
systems is a mapping from Σ∗ to a sequence of dm/2e unitary transformations with a
specification of quantum registers they acts on. No restrictions are placed on the complexity
of P . For each x in Σ∗, P (x) is interpreted as a sequence of dm/2e unitary transforma-
tions P (x)2dm/2e−1, . . . , P (x)3, P (x)1 acting on (qM(|x|) + qP(|x|)) qubits with a specification
of a qP(|x|)-qubit quantum register P, for some polynomially bounded function qM : Z+ → N
and some function qP : Z+ → N. At the beginning of the protocol, P prepares the qP(|x|)-qubit
quantum register P (and a qM(|x|)-qubit quantum register M1 also, if m is odd). Without
loss of generality, one can assume that all the qubits in P (and in M1 when P prepares
it) are initialized to the |0〉 state at the beginning of the protocol. At the (m− j + 1)st
turn for any odd j such that 1 ≤ j ≤ m− 1, P receives a message from the verifier, either
classical or quantum, which is stored in the quantum register Mm−j+1. When the system
is of tm · · · t1-QAM type, at the (m− j + 1)st turn for any odd j such that 1 ≤ j ≤ m, P
applies P (x)j to (Mm−j+1,P). If tj = c, P further measures each qubit in Mm−j+1 in the
computational basis. P then sends Mm−j+1 to the verifier.

An m-turn generalized quantum Arthur-Merlin proof system Π is then specified by each
message-type tj in {c, q} for j in {1, . . . ,m} and anm-turn quantum verifier V for generalized
quantum Arthur-Merlin proof systems. An m-turn quantum prover P for tm · · · t1-QAM-type
systems is compatible with Π if the function qM of P is the same as that of V . In what follows,
provers are always assumed to be compatible. For any generalized quantum Arthur-Merlin
proof system Π, let MAPx(Π) denote the maximum acceptance probability in Π on input x
in Σ∗, which is the maximum of the acceptance probability of the verifier in Π on input x
over all quantum provers compatible with Π. The complexity class tm · · · t1-QAM(m, c, s)
derived from generalized quantum Arthur-Merlin proof systems of tm · · · t1-QAM type, with
completeness c and soundness s, is defined as follows.

I Definition 3.1. Given a constant m in N, functions c, s : Z+ → [0, 1] satisfying c > s, and
each message-type tj in {c, q} for j in {1, . . . ,m}, a promise problem A = (Ayes, Ano) is in
tm · · · t1-QAM(m, c, s) if there exists an m-turn quantum verifier V for generalized quantum
Arthur-Merlin proof systems, such that, for the tm · · · t1-QAM-type proof system Π specified
by V and for every input x in Σ∗,
(Completeness) if x is in Ayes, MAPx(Π) is at least c(|x|), and
(Soundness) if x is in Ano, MAPx(Π) is at most s(|x|).

Using this definition, the classes tm · · · t1-QAM(m) and tm · · · t1-QAM1(m) of problems
having generalized quantum Arthur-Merlin proof systems of tm · · · t1-QAM type with two-
sided bounded error, and those with one-sided bounded error of perfect completeness,
respectively, are defined as follows.

I Definition 3.2. Given a constant m in N and each message-type tj in {c, q} for j
in {1, . . . ,m}, a promise problem A = (Ayes, Ano) is in tm · · · t1-QAM(m) iff A is in
tm · · · t1-QAM(m, 1− ε, ε) for some negligible function ε : Z+ → [0, 1].
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I Definition 3.3. Given a constant m in N and each message-type tj in {c, q} for j
in {1, . . . ,m}, a promise problem A = (Ayes, Ano) is in tm · · · t1-QAM1(m) iff A is in
tm · · · t1-QAM(m, 1, ε) for some negligible function ε : Z+ → [0, 1].

In the case where the number of turns is clear, the parameter m may be omitted, e.g.,
ccqq-QAM(4) may be abbreviated as ccqq-QAM.

Similar to general quantum interactive proof systems, the perfect parallel repetition
theorem holds for generalized quantum Arthur-Merlin proof systems.

I Lemma 3.4. For any generalized quantum Arthur-Merlin proof system Π, for any k in
N and the generalized quantum Arthur-Merlin proof system Π⊗k resulting from the k-fold
parallel repetition of Π, and for every input x in Σ∗, it holds that

MAPx
(
Π⊗k

)
=
(
MAPx(Π)

)k
.

Proof. Fix any number m of turns and any message-types t1, . . . , tm in {c, q}. For any proof
system Π of tm · · · t1-QAM type, let Q(Π) be the m-turn (general) quantum interactive
proof system that exactly simulates Π as follows: on every input x in Σ∗, the verifier in
Q(Π) behaves exactly in the same manner as Arthur in Π except that, upon receiving the
jth message from a prover (resp. sending the jth message to a prover), if tj = c in Π, the
verifier of Q(Π) first makes sure that the received message (resp. the sent message) is indeed
classical by taking a copy of the message by CNOT operations (and the copied message
will never be touched in the rest of the protocol). Clearly, it is meaningless for a malicious
prover in Q(Π) to send a quantum message when the original message-type was classical in
Π. Therefore, for every input x, the maximum acceptance probability in Q(Π) is exactly
MAPx(Π). Now from the perfect parallel repetition theorem for general quantum interactive
proofs [11], the k-fold parallel repetition (Q(Π))⊗k of Q(Π) has its maximum acceptance
probability exactly

(
MAPx(Π)

)k for every x. As the proof system (Q(Π))⊗k is identical to
the m-turn (general) quantum interactive proof system Q(Π⊗k) that exactly simulates the
proof system Π⊗k of tm · · · t1-QAM type that is the k-fold parallel repetition of Π, it holds
that MAPx

(
Π⊗k

)
=
(
MAPx(Π)

)k for every x, as claimed. J

Using Lemma 3.4, one can show the following amplification properties on generalized
quantum Arthur-Merlin proof systems, which ensure that Definitions 3.2 and 3.3 give a
robust definition in terms of completeness and soundness parameters.

I Lemma 3.5. For any constant m in N, any message-types t1, . . . , tm in {c, q}, any
polynomially bounded function p : Z+ → N, and any polynomial-time computable functions
c, s : Z+ → [0, 1] satisfying c− s ≥ 1

q for some polynomially bounded function q : Z+ → N,

tm · · · t1-QAM(m, c, s) ⊆ tm · · · t1-QAM(m, 1− 2−p, 2−p).

I Lemma 3.6. For any constant m in N, any message-types t1, . . . , tm in {c, q}, any
polynomially bounded function p : Z+ → N, and any polynomial-time computable function
s : Z+ → [0, 1] satisfying 1− s ≥ 1

q for some polynomially bounded function q : Z+ → N,

tm · · · t1-QAM(m, 1, s) ⊆ tm · · · t1-QAM(m, 1, 2−p).

Proofs of Lemmas 3.5 and 3.6 (Sketch). Lemma 3.6 is immediate from Lemma 3.4 by
considering a parallel repetition of an appropriately many number of times.

To prove Lemma 3.5, as in Refs. [1, 21, 14], one first makes the completeness exponentially
close to one, while keeping the soundness bounded away from one, by performing a sufficiently
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Verifier’s qq-QAM Protocol for CITM(a, b)

1. Prepare qout-qubit registers S1 and S2, and generate qout EPR pairs |Φ+〉⊗qout in (S1,S2)
so that the jth qubit of S1 and that of S2 form an EPR pair, for every j in {1, . . . , qout}.
Send S2 to the prover.

2. Receive a (qall − qout)-qubit quantum register R from the prover. Apply the unitary
transformation U†Qx

to (R,S1). Accept if all the qubits in A are in state |0〉, and reject
otherwise, where A is the quantum register consisting of the last (qall − qin) qubits of
(R,S1) (i.e., the non-input qubits of Qx).

Figure 1 Verifier’s qq-QAM protocol for CITM.

many number of attempts of a given system in parallel and accepting only when a reasonably
large fraction of the attempts results in acceptance. Lemma 3.5 is then immediate from
Lemma 3.4 by running this system of almost-perfect completeness in parallel appropriately
many times. The rigorous proof is found in the full version [19] of this paper. J

4 qq-QAM-completeness of CITM

This section proves Theorem 1.2, which states that the CITM problem is complete for the
class qq-QAM.

First, it is proved that CITM(a, b) is in qq-QAM for appropriately chosen parame-
ters a and b. The proof is a special case of the proof of the Close Image problem being in
QIP(2) [32, 12].

I Lemma 4.1. For any constants a and b in [0, 1] satisfying (1− a)2 > 1− b2, CITM(a, b)
is in qq-QAM.

Proof (Sketch). Let Qx be a quantum circuit of an instance x of CITM(a, b) acting on
qall qubits with qin specified input qubits and qout specified output qubits. Without loss of
generality, one can assume that the first qin qubits correspond to the input qubits, and the last
qout qubits correspond to the output qubits. Let UQx

denote the unitary operator induced
by Qx. We construct a verifier V of the qq-QAM proof system with completeness (1− a)2

and soundness 1− b2 as follows (recall that a and b are constants in the interval [0, 1] such
that (1− a)2 > 1− b2, and thus this qq-QAM proof system is sufficient for the claim).

Let S1 and S2 be quantum registers of qout qubits. The verifier V first generates qout EPR
pairs |Φ+〉⊗qout in (S1,S2) so that the jth qubit of S1 and that of S2 form an EPR pair,
for every j in {1, . . . , qout}. Then V sends S2 to the prover. Upon receiving a quantum
register R of (qall − qout) qubits, V applies the unitary transformation U†Qx

to (R,S1). Letting
A be the quantum register consisting of the last (qall − qin) qubits of the register (R,S1) (i.e.,
corresponding to the non-input qubits of Qx), V accepts x if and only if all the qubits in A
are in state |0〉. Figure 1 summarizes the protocol of the verifier V .

The claim follows from a rigorous analysis of this protocol, which is relegated to the full
version [19] of this paper. J

Now the CITM problem is proved to be hard for qq-QAM.

I Lemma 4.2. For any constants a and b satisfying 0 < a < b < 1, CITM(a, b) is hard for
qq-QAM under polynomial-time many-one reduction.
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Algorithm Corresponding to Quantum Circuit Qx

1. Prepare quantum registers V and M, each of qV and qM qubits, respectively. Denote by
S and S the quantum registers consisting of the last qS and first (qV − qS) qubits of V,
respectively. The last (qS + qM) qubits of (V,M) = (S,S,M) (i.e., all the qubits in (S,M))
are designated as the input qubits, while the last qS qubits of V = (S,S) (i.e., all the
qubits in S) are designated as the output qubits.

2. Flip a fair coin, and proceed to Step 2.a if it results in “Heads”, and proceed to Step 2.b
if it results in “Tails”.
a. Output all the qubits in S.
b. Perform Vx over (V,M) = (S,S,M). If the first qubit of V is in state |1〉, output the

totally mixed state (I/2)⊗qS (by first generating the totally mixed state using fresh
ancillae, and then swapping the qubits in S with the generated totally mixed state),
and output |0〉⊗qS otherwise (by swapping the qubits in S with qS fresh ancillae).

Figure 2 The construction of the quantum circuit Qx.

Proof (Sketch). Let A = (Ayes, Ano) be a problem in qq-QAM. Then A has a qq-QAM proof
system with completeness c and soundness s for some appropriately chosen constants c and s
satisfying 0 < s < c < 1. Let V be the quantum verifier witnessing this proof system. Fix an
input x, and let V and M be quantum registers consisting of qV and qM qubits, respectively,
where V corresponds to the private qubits of V and M corresponds to the message qubits V
would receive on input x. Without loss of generality, one can assume that the first qubit
of V is the output qubit of V , and the last qS qubits of V form the quantum register S
corresponding to the halves of the EPR pairs V would keep until the final verification
procedure is performed. Let S be the quantum register of (qV − qS) qubits consisting of the
first (qV − qS) qubits of V (i.e., all the private qubits of V but those belonging to S). Denote
by Vx the unitary operator induced by this V on input x.

We construct a quantum circuit Qx that exactly implements the following algorithm. The
circuit Qx expects to receive a (qS + qM)-qubit state as its input, and prepares the quantum
registers V = (S,S) and M, where the input state is expected to be stored in (S,M). Then
with probability one-half, Qx just outputs the state in the register S. Otherwise Qx performs
Vx over (V,M) = (S,S,M), and outputs the totally mixed state (I/2)⊗qS if the first qubit of
V is in state |1〉 (i.e., if the system is in an accepting state of the original verifier V ), and
outputs (|0〉〈0|)⊗qS if the first qubit of V is in state |0〉 (i.e., if the system is in a rejecting
state of the original verifier V ). Figure 2 summarizes the construction of the circuit Qx.

The qq-QAM-hardness of CITM(a, 1/20) for any positive constant a < 1/20 follows from
a rigorous analysis of the properties of this circuit by appropriately choosing c and s, which
is found in the full version [19] of this paper. The qq-QAM-hardness of CITM(a, b) for any
constants a and b satisfying 0 < a < b < 1 then follows from Lemma 2.1 by first creating an
instance Qx of CITM(a/k, 1/20) according to the construction above, for k =

⌈
2 ln(1/(1−b))

ln(400/399)
⌉
,

and then constructing another circuit Q′x that places k copies of Qx in parallel. J

From Lemmas 4.1 and 4.2, Theorem 1.2 follows. Note that, with essentially the same
proofs as those of Lemmas 4.1 and 4.2, one can show that for any b in (0, 1), CITM(0, b) is
in qq-QAM1 and is hard for qq-QAM1, and thus, the following corollary holds.

I Corollary 4.3. For any constant b in (0, 1), CITM(0, b) is qq-QAM1-complete under
polynomial-time many-one reduction.
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I Remark. The proofs of Lemmas 4.1 and 4.2 actually also show that the variant of the CITM
problem where the number of output qubits of the circuit is a fixed constant independent
of instances is complete for the class QMAconst-EPR introduced in Ref. [20], and thus, it is
QMA-complete since QMAconst-EPR = QMA [5].

5 Collapse theorem for qq-QAM

This section proves Theorem 1.1, the quantum analogue of Babai’s collapse theorem [4]
stating that c · · · cqq-QAM(m) = qq-QAM for any constant m ≥ 2.

First, it is proved that for any constant m ≥ 4, c · · · cqq-QAM(m) ⊆ ccqq-QAM holds,
meaning that the first (m− 4) classical turns can be removed. The proof essentially relies on
the observation that the techniques used in the classical result by Babai [4] can be applied
to the quantum setting as well.

I Lemma 5.1. For any constant m ≥ 4, c · · · cqq-QAM(m) ⊆ ccqq-QAM.

Proof. It suffices to show that c · · · cqq-QAM(m) ⊆ c · · · cqq-QAM(m− 1) for any odd con-
stant m ≥ 5, and c · · · cqq-QAM(m) ⊆ c · · · cqq-QAM(m− 2) for any even constant m ≥ 6.

Let A = (Ayes, Ano) be a problem in c · · · cqq-QAM(m). By Lemma 3.5, A has an m-turn
c · · · cqq-QAM proof system Π with completeness 1− 2−8 and soundness 2−8. Without loss
of generality, one can assume that, for every input of length n, every classical message
exchanged consists of l(n) bits for some polynomially bounded function l : Z+ → N.

First consider the case with odd m, where the first turn is for the prover. Fix an input x in
Σ∗, and let wx(y, r) be the maximum of the probability that the prover can make the verifier
accept, under the condition that the first message from the prover is y in Σl(|x|) and the
second message from the verifier is r in Σl(|x|). Then, the maximum acceptance probability
in Π is given by MAPx(Π) = maxy∈Σl(|x|){E[wx(y, r)]}, where the expectation is taken over
the uniform distribution with respect to r in Σl(|x|). Note that MAPx(Π) ≥ 1− 2−8 if x is
in Ayes, and MAPx(Π) ≤ 2−8 if x is in Ano.

Consider the (m− 1)-turn c · · · cqq-QAM proof system Π′ specified by the following
protocol of the verifier: At the first turn, the verifier sends k(|x|) strings r1, . . . , rk(|x|) chosen
uniformly at random from Σl(|x|), for some polynomially bounded function k : Z+ → N. Upon
receiving a string y in Σl(|x|) and k(|x|) strings z1, . . . , zk(|x|) in Σl(|x|) at the third turn, the
verifier enters the simulations of the last (m− 3) turns of communications of Π, by running
in parallel k(|x|) attempts of such simulations, where the jth attempt assumes that the first
three messages in the original proof system Π were y, rj , and zj , respectively, for each j
in {1, . . . , k(|x|)}. The verifier accepts if and only if more than k(|x|)/2 attempts result in
acceptance in these simulations of Π. Figure 3 summarizes the protocol of this verifier in Π′.

In fact, the construction of this proof system Π′ is exactly the same as in Ref. [4] except
that the last two messages exchanged are quantum and the final verification of the verifier is
a polynomial-time quantum computation in the present case. The analysis in Ref. [4] works
also in the present case, since it only relies on the fact that wx(y, r) gives the conditional
probability defined above, and from Lemma 3.4, the perfect parallel repetition theorem holds
for general quantum Arthur-Merlin proof systems. In particular, the following property holds
also in the present case (see Lemmas 3.3 and 3.4 of Ref. [4]).

I Claim 1. 1− 2k(|x|)(1−MAPx(Π)
)k(|x|)/2 ≤ MAPx(Π′) ≤ 2k(|x|)+l(|x|)(MAPx(Π)

)k(|x|)/2.
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Verifier’s Protocol for Reducing the Number of Turns by One (for Odd m)

1. Send k(|x|) strings r1, . . . , rk(|x|), each chosen uniformly at random from Σl(|x|), to the
prover, for some polynomially bounded function k : Z+ → N.

2. Receive a string y in Σl(|x|) and k(|x|) strings z1, . . . , zk(|x|) in Σl(|x|) from the prover.
Run in parallel k(|x|) attempts of the (m− 3)-turn protocol that simulates the last
(m− 3) turns of communications of the original m-turn c · · · cqq-QAM proof system Π
on input x, where the jth attempt assumes that the first three messages in Π were y, rj ,
and zj , respectively, for each j in {1, . . . , k(|x|)}. Accept if more than k(|x|)/2 attempts
result in acceptance in these simulations of Π, and reject otherwise.

Figure 3 Verifier’s protocol in Π′ for reducing the number of turns by one when m is odd.

Now let k =
⌈ 2+l

3
⌉
. If x is in Ayes, then MAPx(Π′) is at least

1− 2k(|x|)(1−MAPx(Π)
)k(|x|)/2 ≥ 1− 2k(|x|)(2−8)k(|x|)/2 ≥ 1− 1

2l(|x|)+2 ≥
3
4 ,

while if x is in Ano, then MAPx(Π′) is at most

2k(|x|)+l(|x|)(MAPx(Π)
)k(|x|)/2 ≤ 2k(|x|)+l(|x|)(2−8)k(|x|)/2 ≤ 1

4 ,

which completes the proof for the case with odd m.
Next consider the case with even m, where the first message is a random string from

a verifier. Let Π(−1) be the (m− 1)-turn c · · · cqq-QAM proof system that on input (x, r)
simulates the last (m− 1) turns of Π on x under the condition that the first message in Π was
r in Σl(|x|). Let B = (Byes, Bno) be the following promise problem in c · · · cqq-QAM(m− 1):

Byes =
{

(x, r) : MAP(x,r)
(
Π(−1)) ≥ 2/3

}
, Bno =

{
(x, r) : MAP(x,r)

(
Π(−1)) ≤ 1/3

}
.

Note that, if x is in Ayes, then (x, r) is in Byes for at least (1− 3 · 2−8)-fraction of the
choices of r. Similarly, if x is in Ano, then (x, r) is in Bno for at least (1− 3 · 2−8)-fraction
of the choices of r. By the result for the case with odd m above, it holds that B is in
c · · · cqq-QAM(m− 2). Thus, there exists an (m− 2)-turn c · · · cqq-QAM proof system Π(−2)

for B such that if (x, r) is in Byes, MAP(x,r)
(
Π(−2)) is at least 2/3, while if (x, r) is in Bno,

MAP(x,r)
(
Π(−2)) is at most 1/3. Note that the first turn of Π(−2) is a turn for the verifier,

and thus, one can merge the turn for sending r with the first turn of Π(−2). This results
in an (m− 2)-turn c · · · cqq-QAM proof system Π′′ for A in which at the first turn the new
verifier sends a string r in Σl(|x|) chosen uniformly at random in addition to the original
first message of the verifier in Π(−2) on input (x, r), and then behaves exactly in the same
manner as the verifier in Π(−2) on input (x, r) in the rest of the protocol. If x is in Ayes,
MAPx(Π′′) is at least (1− 3 · 2−8) · (2/3) > 5/8, while if x is in Ano, MAPx(Π′′) is at most
3 · 2−8 + (1− 3 · 2−8) · (1/3) < 3/8, which is sufficient for the claim, due to Lemma 3.5. J

Second, using the fact that CITM is qq-QAM-complete, it is proved that cqq-QAM is
included in qq-QAM.

I Lemma 5.2. cqq-QAM ⊆ qq-QAM.

Proof. Let A = (Ayes, Ano) be a problem in cqq-QAM. Then, A has a cqq-QAM proof
system Π with completeness 2/3 and soundness 1/3. Let l : Z+ → N be the polynomially
bounded function that specifies the length of the first message in Π. Consider the qq-QAM
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proof system Πqq that on input (x,w) simulates the last two turns of Π on x under the
condition that the first message in Π was w in Σl(|x|). Let B = (Byes, Bno) be the following
promise problem in qq-QAM:

Byes =
{

(x,w) : MAP(x,w)
(
Πqq) ≥ 2/3

}
, Bno =

{
(x,w) : MAP(x,w)

(
Πqq) ≤ 1/3

}
.

Note that for any x, if x is in Ayes, there exists a string w in Σl(|x|) such that (x,w) is in
Byes, and if x is in Ano, for every string w in Σl(|x|), (x,w) is in Bno.

Let p : Z+ → N be a non-decreasing polynomially bounded function, which will be fixed
later. First notice that B has a qq-QAM proof system that satisfies completeness 1− 2−p and
soundness 2−p (the existence of such a proof system is ensured by Lemma 3.5). Starting from
this qq-QAM proof system, the proof of Lemma 4.2 implies the existence of a polynomial-
time algorithm that, given (x,w), computes a description of a quantum circuit Qx,w of
qin(|x|) input qubits and qout(|x|) output qubits with the following properties:
(i) if (x,w) is in Byes, there exists a quantum state ρ consisting of qin(|x|) qubits such that

D
(
Qx,w(ρ), (I/2)⊗ qout(|x|)) ≤ 2−p(|x|+|w|)−1 < 2−p(|x|), and

(ii) if (x,w) is in Bno, for any quantum state ρ consisting of qin(|x|) qubits, it holds that
D
(
Qx,w(ρ), (I/2)⊗ qout(|x|)) > 1/20.

Let q : Z+ → N be another non-decreasing polynomially bounded function satisfying
q(n) ≥ max{l(n) + 4, n} for any n in Z+. Considering the quantum circuit Q′x,w that runs
k(|x|) copies of Qx,w in parallel for the polynomially bounded function k =

⌈ 2 ln 2
ln(400/399)q

⌉
and

taking p = q + dlog ke, it follows from Lemma 2.1 (with Φ being the transformation induced
by Qx,w and Ψ being the transformation that receives an input state of qin(|x|) qubits and
always outputs the totally mixed state (I/2)⊗ qout(|x|) regardless of the input) that
(i) if x is in Ayes, there exist a string w in Σl(|x|) and a quantum state ρ′ consisting of

q′in(|x|) qubits such that D
(
Q′x,w(ρ′), (I/2)⊗ q′out(|x|)) < 2−q(|x|), and

(ii) if x is in Ano, for any string w in Σl(|x|) and any quantum state ρ′ consisting of
q′in(|x|) qubits, it holds that D

(
Q′x,w(ρ′), (I/2)⊗ q′out(|x|)) > 1− 2−q(|x|),

where q′in = kqin and q′out = kqout.

Now consider the quantum circuit Rx of
(
l(|x|) + q′in(|x|)

)
input qubits and q′out(|x|) out-

put qubits that corresponds to the following algorithm:
1. Measure all the l(|x|) qubits in the quantum register W in the computational basis to

obtain a classical string w in Σl(|x|), where W corresponds to the first l(|x|) qubits of the
input qubits.

2. Compute from (x,w) a description of the quantum circuit Q′x,w. Perform the circuit Q′x,w
with qubits in the quantum register R as its input qubits, where R corresponds to the
last q′in(|x|) qubits of the input qubits of Rx. Output the qubits corresponding to the
output qubits of Q′x,w.

We claim that the circuit Rx satisfies the following two properties:
(i) if x is in Ayes, there exists a quantum state σ consisting of

(
l(|x|) + q′in(|x|)

)
qubits such

that D
(
Rx(σ), (I/2)⊗ q′out(|x|)) < 2−q(|x|), and

(ii) if x is in Ano, for any quantum state σ consisting of
(
l(|x|) + q′in(|x|)

)
qubits, it holds

that D
(
Rx(σ), (I/2)⊗ q′out(|x|)) > 1/ q′out(|x|).

In fact, the item (i) is obvious from the construction of Rx.
To prove the item (ii), suppose that x is in Ano. Then, for any string w in Σl(|x|) and any

quantum state ρ′ of q′in(|x|) qubits, it holds that D
(
Q′x,w(ρ′), (I/2)⊗ q′out(|x|)) > 1− 2−q(|x|).
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From Lemma 2.2 and the second inequality of Lemma 2.3, it follows that

S(Rx(σ)) < l(|x|)+q′out(|x|)−q(|x|)+2 ≤ q′out(|x|)−2 ≤
(

1− 1
q′out(|x|)

−2−q
′
out(|x|)

)
q′out(|x|).

Hence, the first inequality of Lemma 2.3 ensures that D
(
Rx(σ), (I/2)⊗ q′out(|x|)) > 1/ q′out(|x|).

Finally, consider the quantum circuit R′x that runs k′(|x|) copies of Rx in parallel
for the polynomially bounded function k′ =

⌈ 2 ln(1/2)
ln(1−(1/(q′out)2))

⌉
≤ 2(q′out)2. Assuming that(

q′out(|x|)
)2 ≤ 2q(|x|)−4 (otherwise |x| is at most some fixed constant since q′out is a polynomi-

ally bounded function and q(|x|) ≥ |x|, and thus, it can be checked trivially whether x is in
Ayes or in Ano), it follows from Lemma 2.1 that
(i) if x is in Ayes, there exists a quantum state σ consisting of q′′in(|x|) qubits such that

D
(
R′x(σ), (I/2)⊗ q′′out(|x|)) < 1/8, and

(ii) if x is in Ano, for any quantum state σ consisting of q′′in(|x|) qubits, it holds that
D
(
R′x(σ), (I/2)⊗ q′′out(|x|)) > 1/2,

where q′′in = k′(l + q′in) and q′′out = k′q′out.

Thus, R′x is a yes-instance of CITM(1/8, 1/2) if x is in Ayes, while R′x is a no-instance of
CITM(1/8, 1/2) if x is in Ano. This implies that any problem A in cqq-QAM is reducible to
CITM(1/8, 1/2) in polynomial time, and thus in qq-QAM by Lemma 4.1, which completes
the proof. J

I Remark. Combined with Lemma 2.3, the reduction from the problem B to the circuit Q′x,w
in the proof of Lemma 5.2 essentially shows the qq-QAM-hardness of the MaxOutQEA
problem. On the other hand, the fact that MaxOutQEA is in qq-QAM is easily proved
by a straightforward modification of the arguments in Refs. [6, 8] that place the Quantum
Entropy Approximation (QEA) problem in NIQSZK. Hence, the MaxOutQEA problem
is also qq-QAM-complete, giving Theorem 1.3. A rigorous proof of MaxOutQEA being
in qq-QAM is presented in Appendix A, and a separate proof of the qq-QAM-hardness of
MaxOutQEA is found in the full version [19] of this paper.

Finally, using Lemma 5.2, it is proved that ccqq-QAM ⊆ qq-QAM.

I Lemma 5.3. ccqq-QAM ⊆ qq-QAM.

Proof. Let A = (Ayes, Ano) be a problem in ccqq-QAM. By Lemma 3.5, one can assume
that A has a ccqq-QAM proof system Π with completeness 1− 2−8 and soundness 2−8.
Let l : Z+ → N be the polynomially bounded function that specifies the length of the first
message in Π. Consider the cqq-QAM proof system Π(−1) that on input (x, r) simulates
the last three turns of Π on x assuming that the first message in Π was r in Σl(|x|). Let
B = (Byes, Bno) be the following promise problem in cqq-QAM:

Byes =
{

(x, r) : MAP(x,r)
(
Π(−1)) ≥ 2/3

}
, Bno =

{
(x, r) : MAP(x,r)

(
Π(−1)) ≤ 1/3

}
.

Note that, if x is in Ayes, then (x, r) is in Byes for at least (1− 3 · 2−8)-fraction of the choices
of r, while if x is in Ano, then (x, r) is in Bno for at least (1− 3 · 2−8)-fraction of the choices
of r. By Lemma 5.2, it holds that B is in qq-QAM. Thus, there exists a qq-QAM proof
system Π′ for B such that MAP(x,r)(Π′) is at least 2/3 if (x, r) is in Byes, while MAP(x,r)(Π′)
is at most 1/3 if (x, r) is in Bno. Here, the first turn of Π′ is a turn for the verifier, and
thus one can merge the turn for sending r with the first turn of Π′. This results in another
qq-QAM proof system Π′′ for A in which at the first turn the new verifier sends a string r in
Σl(|x|) chosen uniformly at random in addition to the original first message of the verifier
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in Π′ on input (x, r), and then behaves exactly in the same manner as the verifier in Π′ on
input (x, r) in the rest of the protocol. Notice that sending a random string r of length l(|x|)
can be exactly simulated by sending the halves of l(|x|) EPR pairs and measuring in the
computational basis all the remaining halves of them that the verifier possesses. If x is in Ayes,
MAPx(Π′′) is at least (1− 3 · 2−8) · (2/3) > 5/8, while if x is in Ano, MAPx(Π′′) is at most
3 · 2−8 + (1− 3 · 2−8) · (1/3) < 3/8, which is sufficient for the claim, due to Lemma 3.5. J

Now one inclusion of Theorem 1.1 is immediate from Lemmas 5.1 and 5.3, and the other
inclusion is trivial, which completes the proof of Theorem 1.1.

In fact, all the proofs of Lemmas 5.1, 5.2, and 5.3 can be easily modified to preserve the
perfect completeness property, and the following corollary holds.

I Corollary 5.4. For any constant m ≥ 2, c · · · cqq-QAM1(m) = qq-QAM1.

Proof. The proof of Lemma 5.1 can be modified so that it preserves the perfect completeness
property by taking Byes to be the set of (x, r)’s such that MAP(x,r)

(
Π(−1)) is one, and

using Lemma 3.6 instead of Lemma 3.5. This shows that c · · · cqq-QAM1(m) is included
in ccqq-QAM1 for any constant m ≥ 4. With a similar modification to the set Byes as well
as using Corollary 4.3 instead of Theorem 1.2, the proof of Lemma 5.2 can be modified
to present a reduction from any problem in cqq-QAM1 to CITM(0, b), which shows that
cqq-QAM1 is included in qq-QAM1. Using this inclusion instead of Lemma 5.2 and again
with a similar modification to Byes and a replacement of Lemma 3.5 by Lemma 3.6, the
proof of Lemma 5.3 can be modified so that ccqq-QAM1 is shown to be in qq-QAM1. J

6 QAM versus one-sided error qq-QAM

This section shows that qq-QAM proof systems of perfect-completeness are already as
powerful as the standard QAM proof systems of two-sided bounded error (Theorem 1.4).
As mentioned at the end of Section 5, the collapse theorem for qq-QAM holds even for
the perfect-completeness variants. In particular, the inclusion ccqq-QAM1 ⊆ qq-QAM1
holds. Hence, for the proof of Theorem 1.4, it suffices to show that any problem in cq-QAM
(= QAM) is necessarily in the class ccqq-QAM1. As mentioned earlier, this can be shown by
combining the classical technique in Ref. [7] for proving AM = AM1, which originates in the
proof of BPP ⊆ ΣP

2 due to Lautemann [22], and the recent result that sharing a constant
number of EPR pairs can make QMA proofs perfectly complete [20].

Proof of Theorem 1.4 (Sketch). Intuitively, with two classical turns of communications,
the classical technique in Ref. [7] can be used to generate polynomially many instances
of a (promise) QMA problem such that all these instances are QMA yes-instances if the
input was a yes-instance, while at least one of these instances is a QMA no-instance with
high probability if the input was a no-instance (some of the QMA instances may violate
the promise if the input was a no-instance, but this does not matter, as the important
point is that at least one instance is a no-instance in this case). Now one makes use of the
QMAconst-EPR

1 proof system in Ref. [20] for each QMA instance, by running polynomially
many attempts of such a system in parallel to see that none of them results in rejection.
The resulting proof system is thus of ccqq-QAM type, as QMAconst-EPR

1 proof systems are
special cases of qq-QAM proof systems. The perfect completeness of this proof system follows
from the fact that all the QMA instances generated from an input of yes-instance are QMA
yes-instances, and all of them are accepted without error in the attempts of the QMAconst-EPR

1
system due to the perfect completeness property of the system. The soundness of this proof
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system follows from the fact that at least one QMA instance generated from an input of
no-instance is a QMA no-instance with high probability, for which the QMAconst-EPR

1 proof
system results in rejection with reasonably high probability, due to the soundness property
of it. The rigorous proof is found in the full version [19] of this paper. J

The fact that perfect completeness is achievable in cc-QAM (Theorem 1.6) can be
proved in a similar fashion, except that now one uses the fact MQA = MQA1 (a.k.a.,
QCMA = QCMA1) that any classical-witness QMA proofs can be made perfectly complete
shown in Ref. [15] instead of the inclusion QMA ⊆ QMAconst-EPR

1 . Each QMA instance in
the argument above are replaced by an MQA (QCMA) instance in this case. Notice that no
additional turn is necessary in this case, as the second turn is a classical turn for a prover
and witnesses for the MQA instances can be sent also at this turn. Hence, the resulting proof
system corresponding to Π′′ is immediately a cc-QAM proof system of perfect completeness.

7 Collapse theorem for general quantum Arthur-Merlin proof systems

Before the proof of Theorem 1.7, first observe the simple fact that one can always replace
classical turns by quantum ones without diminishing the verification power, by letting the
verifier simulate classical turns by quantum turns via CNOT applications.

I Proposition 7.1. For any constant m in N, any j in {1, . . . ,m}, and any message-
types t1, . . . , tm in {c, q},

tm · · · tj+1 tj tj−1 · · · t1-QAM(m) ⊆ tm · · · tj+1 q tj−1 · · · t1-QAM(m).

As generalized quantum Arthur-Merlin proofs are nothing but a special case of gen-
eral quantum interactive proofs, it is obvious that for any constant m and any message-
types t1, . . . , tm in {c, q}, tm · · · t1-QAM(m) is contained in QIP = PSPACE [13]. As men-
tioned in Section 1, Marriott and Watrous [24] proved that qcq-QAM (= QMAM) already
hits the ceiling, i.e., coincides with QIP. Next lemma states that one can slightly improve
this and even the third message is not necessary to be quantum to have the full power of
quantum interactive proofs. The proof is based on a simulation of the original qcq-QAM
system by a qcc-QAM system using quantum teleportation.

I Lemma 7.2. qcq-QAM ⊆ qcc-QAM.

Proof (Sketch). Let A = (Ayes, Ano) be a problem in qcq-QAM, meaning that A has a
qcq-QAM proof system Π with completeness 2/3 and soundness 1/3 that is specified by the
protocol of the verifier of the following form for every input x:
1. Receive a quantum register M1 from the prover, and then send a random string r to the

prover.
2. Receive a quantum register M2 from the prover. Prepare a private quantum register V,

and perform the final verification procedure over (M1,M2,V).

Let l : Z+ → N be the polynomially bounded function that specifies the number of qubits
in M2. Consider the teleportation-based simulation of Π by the qcc-QAM proof system Π̃,
where the verifier performs the following protocol for every input x:
1. Receive a quantum register S1 of l(|x|) qubits, in addition to the quantum register M1,

from the prover. Send a random string r to the prover as would be done in Π.
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2. Receive a binary string b of length 2 l(|x|) from the prover. Apply Xbj,1Zbj,2 to the jth
qubit of S1, for each j in {1, . . . , l(|x|)}, where bj,1 and bj,2 denote the (2j − 1)st and
(2j)th bits of b, respectively. Finally, prepare his/her private quantum register V as in Π,
and simulate the final verification procedure of the verifier in Π with (M1,S1,V).

The claim follows from a rigorous analysis of this protocol, which is relegated to the full
version [19] of this paper. J

With Lemma 7.2 in hand, Theorem 1.7 is proved as follows.

Proof of Theorem 1.7. For the item (i), first notice that qcq-QAM is shown to be in
qccc-QAM by an argument very similar to the proof of Lemma 7.2, with not the honest
prover but the verifier preparing the EPR pairs. As qcq-QAM = QMAM = QIP = PSPACE,
together with Lemma 7.2, this implies that qccc-QAM = qcc-QAM = PSPACE. As adding
more turns to qt3t2t1-QAM and qt2t1-QAM proof systems does not diminish the verification
power for any t1, t2, and t3 in {q, c}, this establishes the claim in the item (i).

For the item (ii), again with a similar argument to the proof of Lemma 7.2, it holds
that c · · · cqq-QAM(m) is included in c · · · cqc-QAM(m) for any constant m ≥ 2, and thus,
combined with Theorem 1.1 and Proposition 7.1, the claim follows.

For the item (iii), it suffices to show that, for any constant m ≥ 3, c · · · cq-QAM(m) is
included in c · · · cq-QAM(m− 1). The case with m ≥ 5 is proved with an argument similar to
that in the proof of Lemma 5.1, since the first three (resp. four) turns of the m-turn c · · · cq-
QAM proof systems are classical when m is odd (resp. when m is even). In the case where
m = 3, one modifies the construction of Π′ in the proof of Lemma 5.1 so that the message
from the prover at the second turn (corresponding to Step 2 of Π′) is quantum, consisting of
(k(|x|) + 1) parts: the Y part and each Zj part for j in {1, . . . , k(|x|)}, corresponding to y
and each zj in Step 2 of Π′. In order to force the content in the Y part to be classical, the
verifier simply measures each qubit in the Y part in the computational basis. The analysis
in the proof of Lemma 5.1 then works with the case where m = 3, i.e., the case where a
ccq-QAM system is simulated by a cq-QAM system. The case where m = 4 can then be
proved using this result with m = 3, with the same argument as in the proof of Lemma 5.1.

Finally, for the item (iv), it suffices to show that, for any constant m ≥ 3, c · · · c-QAM(m)
is included in c · · · c-QAM(m− 1), which easily follows from an argument similar to that in
the proof of Lemma 5.1, since all the messages are classical. J

8 Conclusion

This paper has introduced the generalized model of quantum Arthur-Merlin proof systems to
provide some new insights on the power of two-turn quantum interactive proofs. A number of
open problems are listed below concerning generalized quantum Arthur-Merlin proof systems
and other related topics:

Is there any natural problem, other than CITM and MaxOutQEA, in qq-QAM that is
not known to be in the standard QAM? Or is qq-QAM equal to QAM?
Currently no upper-bound is known for qq-QAM other than QIP(2). Can a better
upper-bound be placed on qq-QAM? Is qq-QAM contained in BP · PP?
Does qq-QAM = qq-QAM1? In other words, is perfect completeness achievable in
qq-QAM? Similar questions remain open even for QIP(2) and QAM.
What happens if some of the messages are restricted to be classical in the standard
quantum interactive proof systems? Does a collapse theorem similar to the qq-QAM
case hold even with the QIP(2) case? More precisely, is the power of m-turn quantum
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interactive proof systems equivalent to QIP(2) for any constant m ≥ 2, when the first
(m− 2) turns are restricted to exchange only classical messages?

For the last question above, note that one might be able to show a similar collapse theorem
even with QIP(2) when the verifier cannot use quantum operations at all during the first
(m− 2) turns (possibly by extending the argument due to Goldwasser and Sipser [10] to
replace the classical interaction of the first (m− 2) turns by an m-turn classical public-
coin interaction, and then applying arguments similar to those in this paper, using some
appropriate QIP(2)-complete problem like the Close Image problem [32, 12], although
the authors do not know if this approach works). A more difficult, but more natural and
interesting case is where the verifier can use quantum operations to generate his/her classical
messages even for the first (m− 2) turns, to which the Goldwasser-Sipser technique does not
seem to apply any longer. A collapse theorem for such a case, if provable, would be very
helpful when trying to put more problems in QIP(2) and more generally investigating the
properties of two-turn quantum interactive proof systems.
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A qq-QAM-completeness of MaxOutQEA

This section presents a proof of the MaxOutQEA problem being in qq-QAM. As the
proof of Lemma 5.2 essentially shows the qq-QAM-hardness of MaxOutQEA (a separate
proof of which is found in the full version [19] of this paper), this proves Theorem 1.3, the
qq-QAM-completeness of MaxOutQEA.

I Lemma A.1. MaxOutQEA is in qq-QAM.

Proof. We present a reduction from the MaxOutQEA problem to the CITM problem
(with some appropriate parameters), by modifying the reduction from the QEA problem to
the Quantum State Closeness to Totally Mixed (QSCTM) problem presented in
the full version of Ref. [8], which relies on the analysis found in Section 5.3 of Ref. [6].

Let x = (Q, t) be an instance of MaxOutQEA, where Q is a description of a quantum
circuit that specifies a quantum channel Φ, and t is a positive integer. For simplicity, in
what follows, we identify the description Q and the quantum circuit it induces. Suppose
that Q acts on mall qubits with min specified input qubits and mout specified output qubits.
Let q and ε be two functions that appear in Eqs. (5.1) and (5.2) of Ref. [6]1 to be specified
later. We consider the quantum circuit Q⊗ q(|x|) that runs q(|x|) copies of Q in parallel,
and the (qt, d, ε)-quantum extractor E on q(|x|)mout qubits given in Ref. [6, Section 5.3],
which is written as E = 1

2d

∑2d

j=1Ej , where Ej(ρ) = UjρU
†
j for unitary operators Uj . Let

R be the quantum circuit that runs Q⊗ q(|x|) and then applies E to the output state of
q(|x|)mout qubits. By following the analysis found in Ref. [6], one can show that
(i) if x = (Q, t) is a yes-instance of MaxOutQEA, there exists a quantum state ρ consisting

of q(|x|)min qubits such that D(R(ρ), (I/2)⊗ q(|x|)mout) ≤ 3
2ε, and

(ii) if x = (Q, t) is a no-instance of MaxOutQEA, for any quantum state ρ consisting of
q(|x|)min qubits, it holds that D

(
R(ρ), (I/2)⊗ q(|x|)mout

)
≥ 1

4 q(|x|)mout
.

In fact, the item (i) follows from exactly the same analysis as in Ref. [6], by taking
ρ = σ⊗ q(|x|) with σ being a quantum state of min qubits such that S(Q(σ)) ≥ t+ 1 (the
condition Smax(Φ) ≥ t+ 1 ensures the existence of such a state σ).

1 Rigorously speaking, q in the present case corresponds to q
2 in the left-hand sides of Eqs. (5.1) and (5.2) of

Ref. [6]. This is due to the fact that the MaxOutQEA problem in this paper is defined using threshold
values t + 1 and t − 1, while the QEA problem in Ref. [6] is defined using threshold values t + 1

2 and t − 1
2 .
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To prove the item (ii), first notice that, if x = (Q, t) is a no-instance of MaxOutQEA,
it holds that S(Q(σ)) ≤ Smax(Φ) ≤ t− 1 for any quantum state σ of min qubits. Take an
arbitrary quantum state ρ of q(|x|)min qubits. By Lemma 2.2, it holds that

S(R(ρ)) = S

(
1
2d

2d∑
j=1

Uj Q
⊗ q(|x|)(ρ)U†j

)
≤ S

(
Q⊗ q(|x|)(ρ)

)
+ d.

For each j in {1, . . . , q(|x|)}, let Rj be the output quantum register of the jth copy of Q
(hence, the whole output state Q⊗ q(|x|)(ρ) of Q⊗ q(|x|) is in

(
R1, . . . ,Rq(|x|)

)
), and let σRj

be
the reduced state of Q⊗ q(|x|)(ρ) of mout qubits obtained by tracing out all the qubits except
those in Rj . By the subadditivity of von Neumann entropy, it follows that

S
(
Q⊗ q(|x|)(ρ)

)
≤
q(|x|)∑
j=1

S(σRj ) ≤
q(|x|)∑
j=1

max
σ

S(Q(σ)) ≤ (t− 1) q(|x|),

which implies that

S(R(ρ)) ≤ (t− 1) q(|x|) + d.

Now the item (ii) follows from exactly the same analysis as in Ref. [6].
To complete the reduction, similarly to the full version of Ref. [8], one takes ε = 2−k for

a polynomially bounded function k : Z+ → N such that k(n) ≥ n for any n in Z+ and
k(n) ∈ O(n), and a polynomially bounded function q : Z+ → N such that q(n) ∈ Θ(n4)
so that Eqs. (5.1) and (5.2) of Ref. [6] are satisfied. Consider the quantum circuit R′
that runs r(|x|) copies of R in parallel for a polynomially bounded function r : Z+ → N
such that r(n) =

⌈ 2 ln(1/2)
ln(1−(1/(2 q(n)mout)2))

⌉
≤ 2(2 q(n)mout)2 for all n in Z+. Assuming that

r(|x|) ≤ 2|x|/12 (otherwise |x| is at most some fixed constant as r is a polynomially bounded
function, and thus, it can be checked trivially whether x = (Q, t) is a yes-instance or a
no-instance), it follows from Lemma 2.1 that
(i) if x = (Q, t) is a yes-instance of MaxOutQEA, there exists a quantum state σ consisting

of r(|x|) q(|x|)min qubits such that D
(
R′(σ), (I/2)⊗ r(|x|) q(|x|)mout

)
≤ 1/8, and

(ii) if x = (Q, t) is a no-instance of MaxOutQEA, for any quantum state σ consisting of
r(|x|) q(|x|)min qubits, it holds that D

(
R′(σ), (I/2)⊗ r(|x|) q(|x|)mout

)
≥ 1/2.

Hence, MaxOutQEA is reducible to CITM(1/8, 1/2) in polynomial time, and thus in
qq-QAM by Lemma 4.1. J
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Abstract
We present two parallel repetition theorems for the entangled value of multi-player, one-round
free games (games where the inputs come from a product distribution). Our first theorem shows
that for a k-player free game G with entangled value val∗(G) = 1 − ε, the n-fold repetition of
G has entangled value val∗(G⊗n) at most (1 − ε3/2)Ω(n/sk4), where s is the answer length of
any player. In contrast, the best known parallel repetition theorem for the classical value of
two-player free games is val(G⊗n) ≤ (1− ε2)Ω(n/s), due to Barak, et al. (RANDOM 2009). This
suggests the possibility of a separation between the behavior of entangled and classical free games
under parallel repetition.

Our second theorem handles the broader class of free games G where the players can output
(possibly entangled) quantum states. For such games, the repeated entangled value is upper
bounded by (1−ε2)Ω(n/sk2). We also show that the dependence of the exponent on k is necessary:
we exhibit a k-player free game G and n ≥ 1 such that val∗(G⊗n) ≥ val∗(G)n/k.

Our analysis exploits the novel connection between communication protocols and quantum
parallel repetition, first explored by Chailloux and Scarpa (ICALP 2014). We demonstrate
that better communication protocols yield better parallel repetition theorems: in particular, our
first theorem crucially uses a quantum search protocol by Aaronson and Ambainis, which gives
a quadratic Grover speed-up for distributed search problems. Finally, our results apply to a
broader class of games than were previously considered before; in particular, we obtain the first
parallel repetition theorem for entangled games involving more than two players, and for games
involving quantum outputs.

1998 ACM Subject Classification F.1.2. Modes of Computation

Keywords and phrases Parallel repetition, quantum entanglement, communication complexity

Digital Object Identifier 10.4230/LIPIcs.CCC.2015.512

1 Introduction

The study of multi-player one-round games has been central to both theoretical computer
science and quantum information. Games have served as an indispensible tool with which
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entanglement. In particular, two-player games have received the most scrutiny. In a two-
player game G, a referee samples a pair of questions (x, y) from some distribution µ, and
sends question x to one player (typically named Alice), and y to the other (typically named
Bob). Alice and Bob then utilize some non-communicating strategy to produce answers a
and b, respectively, upon which the referee computes some predicate V (x, y, a, b) to decide
whether to accept or not. In this paper, we focus on the setting where Alice and Bob may
utilize quantum entanglement as part of their strategy. The primary quantity of interest is
the entangled value val∗(G) of game G, which is the maximum success probability over all
possible entangled strategies for the players.

Recently, there has been significant interest in the parallel repetition of entangled games [15,
6, 7, 13, 9]. More formally, the n-fold parallel repetition of a game G is a game G⊗n where
the referee will sample n independent pairs of questions (x1, y1), . . . , (xn, yn) from the
distribution µ. Alice receives (x1, . . . , xn) and Bob receives (y1, . . . , yn). They produce
outputs (a1, . . . , an) and (b1, . . . , bn), respectively, and they win only if V (xi, yi, ai, bi) = 1
for all i. We call each i a “coordinate” of G⊗n or “repetition” of G.

Suppose we have a game G where val∗(G) = 1− ε. Intuitively, one should expect that
val∗(G⊗n) should behave as (1 − ε)n. Indeed, this would be the case if the game G were
played n times sequentially. However, there are counterexamples of games G and n > 1 where
val∗(G⊗n) = val∗(G) (e.g., as in [8]). Despite such counterexamples, it has been shown that
the classical value val(G⊗n) (i.e. where the players are restricted to using classical strategies)
of a repeated game G⊗n goes down exponentially with n, for large enough n [19, 12]. This
result is known as the Parallel Repetition Theorem, and is central in the study of hardness
of approximation, probabilistically checkable proofs, and hardness amplification in classical
theoretical computer science.

Recently, quantum analogues of the Parallel Repetition Theorem have been studied, and
for certain types of games, it has been shown that the entangled game value also goes down
exponentially with the number of repetitions. In particular, parallel repetition theorems
have been shown for 2-player free games (see [6, 7, 13]) and projection games (see [9]). Free
games are where the input distribution to the players is a product distribution (i.e. each
players’ questions are chosen independently of each other). Projection games are where, for
each answer of one designated player, there is at most one other answer for the other player
that the referee would accept.

Most relevant to this work are the results of [6, 7, 13] on free entangled games. Among
them, the best parallel repetition theorem was obtained by [7], who prove that for a two-player
free game G, the entangled value of the n-fold repetition is at most (1− ε2)Ω(n/s), where s
is the answer length of the players. When G is also a projection game, they obtain strong
parallel repetition: the repeated game value is at most (1− ε)Ω(n). The centerpiece of their
analysis is a novel connection between communication complexity and parallel repetition of
games.

1.1 Our results
In this work, we further develop this connection between games and communication protocols
to obtain improved parallel repetition theorems for free entangled games. We present a
generic framework where one obtains parallel repetition theorems for free games by designing
succinct communication protocols. The core concept we present is:

Better parallel repetition theorems from better communication protocols.

The first instantiation of this concept is the following theorem:
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I Theorem 1.1. Let k ≥ 2 be an integer. Let G be a k-player free game with entangled value
val∗(G) = 1− ε. Then, for n = Ω(sk4 log(k/ε)/ε3/2),

val∗(G⊗n) ≤ (1− ε3/2)Ω(n/k4s)

where s is the output answer length of the players.

The proof of Theorem 1.1 uses a quantum communication protocol that performs a version
of distributed unstructured search (i.e. searching for a 1 in a bitstring). The improvement of
the base from 1− ε2 (as found in [7]) to 1− ε3/2 comes from the fact that the unstructured
search problem on N bits can be solved by a quantum algorithm using only O(

√
N) queries.

We discuss this in more detail in the next section.
Our second theorem handles a broader class of games, where the players can output

quantum states as answers. We are able to handle this broader class of games because our
framework allows general quantum communication protocols.

I Theorem 1.2. Let k ≥ 2 be an integer. Let G be a k-player free game, where players can
output (possibly entangled) quantum states, and has entangled value val∗(G) = 1− ε. Then,
for all n,

val∗(G⊗n) ≤ (1− ε2)Ω(n/k2s)

where s = maxj log(dj), where dj is the dimension of player j’s output state.

Furthermore, we prove that the dependence of the exponent on the number of players k
is necessary:

I Theorem 1.3. For all k ≥ 2, there exists a k-player free game G and n > 1 where
val∗(G⊗n) ≥ val∗(G)n/k.

To our knowledge, our results are the first to show quantum parallel repetition in the setting
of games with more than 2 players.

Finally, we give a proof of parallel repetition for the classical value of k-player free games.
While this theorem appears to be a folklore result, we were not able to find any explicit proof
of it. We provide one here for the sake of completeness.

I Theorem 1.4. Let G be a k-player free game with classical value val(G) = 1− ε. Then

val(G⊗n) ≤ (1− ε2)Ω(n/sk),

where s is the output answer length of the players.

CQ Games. Our second theorem applies to a class of games that is a generalization of the
traditional notion of games that involve two players and have classical inputs and outputs.
In this paper we introduce the class of k-player classical-quantum (CQ) games, where the
players receive classical inputs, apply local unitary operators to their share of an entangled
state, and return some qubits to the referee. The referee then makes a measurement on the
answer qubits to decide whether to accept or reject. If we restrict the players’ unitaries to be
permutation matrices, and the referee’s measurement to be diagonal in the standard basis,
then we recover the class of classical games.

We believe the model of CQ games is worth deeper investigation. One motivation for the
study of CQ games comes from the recent exciting work of Fitzsimons and Vidick [11], who
demonstrated an efficient reduction transforming a local Hamiltonian H = H1 + · · ·+Hm

acting on n qubits to a 5-player CQ-game GH such that approximating val∗(GH) with inverse
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polynomial accuracy will decide whether the ground state energy of H is a YES or NO
instance of the QMA-complete problem Local Hamiltonians. In this game, the referee
sends O(logn)-sized questions, and the players responds with O(1)-qubit states as answers.
The significance of this is that it opens up the possibility of proving a “games” version of the
Quantum PCP conjecture. This intriguing possibility calls for further study of the behavior
of CQ games.

1.2 Parallel repetition and communication protocols
At a high level, most proofs of parallel repetition proceed via reduction. Let G be a two-player
free game with verification predicate V (x, y, a, b). If there were a strategy S for the repeated
game G⊗n that wins with too large probability, then one can transform S to a strategy T to
play a single instance of the game G with probability larger than val∗(G), which would be a
contradiction.

In [6, 7, 13], the reduction from a repeated game strategy to a single game strategy has
two steps: (1) a “too-good” repeated game strategy S is converted to an advice-based strategy
for game G, which wins with high probability. An advice-based strategy is a collection of
advice states {ϕxy}xy so that when Alice and Bob receive inputs x and y, they happen to
share the entangled state ϕxy, which they can measure to produce answers. Of course, this is
not a valid quantum strategy for game G, but (2) using the assumption that S has very high
winning probability, the advice-based strategy can be rounded to a true game strategy: Alice
and Bob can apply local operations Ux and Vy, respectively, on some input-independent
state ϕ to approximate ϕxy, and thus simulate the advice-based strategy (with some error).

One can construct the advice states {ϕxy}xy from S in different ways. Generally, the goal
is to create advice states that closely mimick the joint state of the players during an actual
execution of the strategy S, conditioned on some event. Ideally, we would like to condition
on the event that the players won all n coordinates of G⊗n. This would give rise to the ideal
advice states: whenever the players receive an input x and y, their advice state ϕxy would
have precisely the correct answers a and b that would allow them to win the single game G.

However, it seems impossible to argue that such an ideal advice-based strategy can be
simulated by a true game strategy. The approach taken by [6, 7] is to construct advice
states {ϕxy} that have two properties: (a) the advice-based strategy succeeds with high
probability for G, and (b) there is a low-cost communication protocol between Alice and Bob
that produces ϕxy when they receive inputs x and y, respectively. Property (b) makes it
possible to approximate the advice-based strategy using a valid quantum strategy: small
communication complexity translates into small rounding error.

The communication protocol used in [6, 7] is a simple one: Alice and Bob first play the
optimal strategy S for G⊗n. They receive inputs (x1, . . . , xn) and (y1, . . . , yn), and measure
a shared state |ξ〉 and obtain n-tuples of outputs (a1, . . . , an) and (b1, . . . , bn). Then, Alice
samples a small subset of coordinates i1, . . . , ih, and sends over her inputs and outputs in this
subset to Bob, who verifies that the original game G was won in each of these coordinates. If
Bob finds a ij such that the tuple V (xij , yij , aij , bij ) = 0, then Bob aborts. Otherwise, Bob
accepts. If we condition the final state of the protocol on Bob accepting, then we have a
very good proxy for the ideal advice states described above. But since the communication
complexity of this protocol is small, we can round this to a valid quantum strategy.

However, the analysis of [6, 7] is tailored to simple one-way communication protocols
involving classical messages. We generalize this paradigm to show that, if the advice states
{ϕxy} can be constructed using any communication protocol (which can be two-way, and
involve quantum messages), then the advice-based strategy using {ϕxy} can be simulated
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with a true game strategy, with error that is related to the communication complexity of the
protocol. This unlocks a richer toolbox for the reduction designer: one can use many more
tools from communication complexity to engineer good advice states. This gives rise to the
concept of “Better parallel repetition theorems from better communication protocols.”

Our theorems are instantiations of this mantra. At the heart of the communication
protocol used in our first theorem is a variant of the Grover search algorithm. There, the
players sample a random subset of coordinates i1, . . . , ih as before, but now they perform
quantum search over the indices to find a “losing coordinate”: i.e., a coordinate ij such that
V (xij , yij , aij , bij ) = 0. The quadratic speedup of Grover’s search algorithm translates into a
quadratic savings in communication complexity, which is precisely what allows us to improve
the base of the repeated game value from 1 − ε2 to 1 − ε3/2. For our second theorem, we
take advantage of the fact that the communication protocol can be quantum, which allows
us to handle games with quantum outputs.

Our use of quantum search in the protocol to generate the advice states gives a generic
way to improve the reduction for arbitrary free games. However, one could also use this
technique to prove game-specific parallel repetition theorems. That is, one could try to
leverage special properties of a particular game to design a succinct communication protocol
for generating advice states, and in turn, obtain a parallel repetition theorem with better
parameters. Indeed, one can see this idea in the result of [7] for free projection games: by
using the projection property of the game, their communication protocol avoids sending whole
input and output symbols. This allows them to prove a repeated game value of (1− ε)Ω(n) –
note that this does not depend on the output alphabet!

1.3 Related work
We discuss how our result relates to prior results in parallel repetition, classical and quantum.
Most relevant to our work are the results on free games. Jain, et al. [13] and Chailloux and
Scarpa [6, 7] both proved that the entangled value of 2-player free games (with classical inputs
and outputs) goes down exponentially with the number of repetitions. In particular, [7]
showed for such a game G with val∗(G) = 1− ε, we have that val∗(G⊗n) ≤ (1− ε2)Ω(n/s),
where s is the output length of the players. They also show that, when G is also a projection
game, strong parallel repetition holds: val∗(G⊗n) ≤ (1− ε)Ω(n).

In a different line of work, Dinur, Steurer and Vidick show that projection games (with
an arbitrary input distribution) also have an exponential decay in entangled value under
parallel repetition: if G be a 2-player projection game with classical inputs and outputs,
and val∗(G) = 1− ε, then val∗(G⊗n) ≤ (1− ε12)Ω(n) [9]. This result is not comparable with
our work, nor with the work of [7, 13]. While [9] can handle games with arbitrary input
distributions, the games need to satisfy the projection property. On the other hand, the
results on free games can handle arbitrary verification predicates, but the input distributions
need to be product.

There is a rich history of study of parallel repetition in classical theoretical computer
science, which we will not detail here. Most relevant to us is the work of Barak, et al. [3], who
showed that for 2-player free games G with classical value 1− ε, val(G⊗n) ≤ (1− ε2)Ω(n/s),
where s is the output length of the players. Intriguingly, it is not known whether the ε2 term
is tight for free games (it is known that this is necessary for classical parallel repetition of
general games [20]). Our first theorem demonstrates a possible separation between classical
and quantum parallel repetition; the base of our repeated game value is 1− ε3/2, rather than
1− ε2.

Finally, there has been little prior study of the parallel repetition of games with more
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than 2 players. Buhrman et al. studied this question for non-signaling players, and showed
that the non-signaling value of repeated games goes down exponentially with the number of
repetitions [5]. Their parallel repetition theorem holds for games with full support, meaning
that every possible combination of questions gets asked with positive probability; furthermore,
the rate of decay also depends on the complete description of the game, not just the original
game value and the number of repetitions. Arnon-Friedman et al. prove similar results for
multi-player non-signaling games, but they use a new technique called de Finetti reductions [2].
Rosen also studied k-player parallel repetition in a weaker version of the non-signaling model,
and demonstrated an exponential rate of decay [21].

2 Proof overviews

2.1 Overview of Theorem 1.1
Here we give a very informal outline of the proof of Theorem 1.1, for the case of two-player
free games. The full proof that handles an arbitrary number of players can be found in
Section 5 of the Appendix.

Let G be a two-player free game, with inputs (x, y) drawn from a product distribution
µ = µX ⊗ µY , and with verification predicate V (x, y, a, b). Let S be an optimal strategy
for the repeated game G⊗n, where Alice and Bob share an entangled state |ξ〉, and upon
receiving a tuple of inputs x = (x1, . . . , xn) and y = (y1, . . . , yn), Alice and Bob perform
local measurements Mx = {Mx

a }a and Ny = {Ny
b}b on their respective parts of |ξ〉, to

obtain answer tuples a = (a1, . . . , an) and b = (b1, . . . , bn). Let |ξxyab〉 be the (unnormalized)
post-measurement state of |ξ〉 after making measurements (Mx, Ny), and obtaining outcomes
(a,b). We assume for contradiction that val∗(G⊗n) > 2−γn, for some small γ.

A naive approach. Consider the following state

|θ〉 = 1√
λ

∑
x,y

√
µ⊗n(x,y) |x〉 ⊗ |y〉 ⊗

∑
a,b:V (x,y,a,b)=1

|ξxyab〉 ⊗ |a〉 ⊗ |b〉

where λ is a normalizing constant, µ⊗n is the input distribution for G⊗n, and V (x,y,a,b) =∏
i V (xi,yi,ai,bi). This would be the joint state of Alice and Bob if they received inputs x

and y in coherent superposition, played strategy S, and won the game. Here is a naive idea
to use |θ〉 in a strategy T for G: Alice and Bob share |θ〉, with Alice possessing the |x〉 input
register, the |a〉 output register, and half of |ξxyab〉; Bob possesses the |y〉 input register,
the |b〉 output register, and the other half of |ξxyab〉. When they receive inputs (x, y)← µ,
they each measure some fixed coordinate i of their respective input registers of |θ〉 to obtain
input symbols x′ and y′, respectively. Suppose that x = x′ and y = y′: their shared state
has collapsed to |θxy〉. Then measuring the ith coordinate of their output registers will yield
outputs (a, b) such that V (x, y, a, b) = 1. Thus {θxy} is an excellent set of advice states –
call this ensemble the ideal advice. However, in general, this cannot be rounded to a valid
game strategy.

Advice states from Grover search. Instead, we will construct another ensemble that
mimicks the ideal advice, and if val∗(G⊗n) is too large, can be rounded to a valid game
strategy with small error. We construct a state |ϕ〉 in steps. First, Alice and Bob start with∣∣ψ0〉 =

∑
x,y

√
µ⊗n(x,y) |x〉 ⊗ |y〉 ⊗

∑
a,b

|ξxyab〉 ⊗ |a〉 ⊗ |b〉 .
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Note that this state can be produced without any communication. Then, Alice and Bob
engage in a short communication protocol to determine whether they’ve lost or won the
game repeated: they need to determine whether there exists a coordinate i such that
V (xi,yi,ai,bi) = 0 – call this a losing coordinate. Classically, this would require Ω(n)
bits of communication, which is too large for us. Instead, Alice and Bob can perform a
distributed version of Grover’s algorithm to search for a losing coordinate. Although Grover’s
search algorithm is a quantum query algorithm, it is a standard technique to convert query
algorithms into communication protocols (see [4]): Alice executes the Grover search algorithm,
and whenever she has to query the ith coordinate, Alice sends the query request to Bob,
who responds with (yi,bi). Alice can then compute V (xi,yi,ai,bi). If Alice finds a losing
coordinate, she aborts the protocol. Otherwise, she accepts. Since the Grover algorithm
requires O(

√
n) queries, this communication protocol uses Õ(

√
n) qubits of communication,

where Õ(·) hides the logn bits needed for the query request, as well as the input and output
lengths. This protocol is performed coherently with the |x〉, |y〉, |a〉, and |b〉 registers.
Let |ψ〉 denote the final state of this protocol, and let |ϕ〉 denote |ψ〉 conditioned on Alice
accepting.

If Grover search worked perfectly, then |ϕ〉 would be essentially the same as the naive |θ〉
we described first. However, Grover’s algorithm does not perform search perfectly, and has
some error. Furthermore, when we condition on Alice not finding a losing coordinate, this
error gets multiplied by 1/val∗(G⊗n). Though we are assuming val∗(G⊗n) is “large”, it is
still exponentially small, and hence we require that the Grover search has exponentially small
error. In our proof, we make some technical adjustments to the search protocol in order to
handle this exponential blowup of the Grover error (without increasing the communication
complexity to Ω(n) bits), but for the sake of exposition we will ignore this issue. For now,
we can treat |ϕ〉 as a very good approximation of |θ〉 – thus, defining |ϕxy〉 in the same way
we defined |θxy〉 yields a good ensemble of advice states {ϕxy}.

Rounding to a valid quantum strategy. Now it remains to show that {ϕxy} can be rounded
to a valid quantum strategy. We do this by establishing two properties of the state |ϕ〉: there
exists a coordinate i ∈ [n] such that
1. Suppose we decohere (i.e. measure) the ith coordinate of the |xy〉 registers of |ϕ〉, and

let (Xi, Yi) denote the random measurement outcomes. Then the distribution of (Xi, Yi)
is γ-close to µ, the input distribution of G; and

2. Let B denote the part of ϕ controlled by Bob. Then the quantum mutual information
between Xi (after measurement) and B in ϕ, denoted by I(Xi : B)ϕ, is at most γ.
Similarly, we have I(Yi : A)ϕ ≤ γ, where Yi and A are defined analogously.

Property 1 follows from the fact that the distribution of x and y, before conditioning, is
a product distribution across coordinates i. When we condition on an event with probability
λ, then on average, the distribution of the individual coordinates (xi, yi) are skewed by at
most

√
log(1/λ)/n in total variation distance. This simple but useful fact is known as Raz’s

Lemma in the parallel repetition literature. Thus, if λ� 2−n, then the input distribution of
most coordinates, even after conditioning, is largely unaffected. Here, λ corresponds to the
probability that Alice does not abort the protocol, which is at least val∗(G⊗n).

Property 2 is the most interesting part of our proof. It states that Bob’s part of the state
ϕ is relatively uncorrelated with the value of the input Xi, and similarly Alice’s part of ϕ
is relatively uncorrelated with the value of Yi. This uses the fact that our protocol has low
communication complexity: intuitively, since Alice and Bob communicate at most Õ(

√
n)

qubits in the protocol, they “learn” at most Õ(
√
n) bits total about each other’s inputs.
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Amortized over the n coordinates, this means Alice has about 1/
√
n bits of information

about each yi, on average, and similarly for Bob. When we condition on Alice not aborting,
each player’s knowledge of the other’s inputs increases by at most log 1/λ. If λ > 2−γn,
Alice’s state has O(γ) mutual information with each yi, on average.

This intuition is formalized by leveraging the beautiful result of Nayak and Salzman
that gives limits on the ability of entanglement-assisted quantum communication protocols
to transmit classical messages [17]. More specifically, consider a general two-way quantum
communication protocol between Alice and Bob, who may start with some shared entangled
state. Suppose that Alice is given a uniformly random m-bit message X at the beginning
of the protocol. If T qubits are exchanged between Alice and Bob over the course of the
protocol, Bob can only guess Alice’s input X with probability at most 22T /2m. Equivalently,
the mutual information between Bob’s final state and X is at most 2T . Applying the
Nayak-Salzman theorem to our setting, and using what we call Quantum Raz’s Lemma1, we
can conclude that on average, I(Yi : A)ϕ = I(Xi : B)ϕ = 1

n

(
Õ(
√
n) + log 1/λ

)
= O(γ).

Once we have established Property 1 and 2, then the Quantum Strategy Rounding Lemma
(which can be found in both [6, 13]) then gives that there exists a unitaries {Ux}x and {Vy}y
for Alice and Bob, respectively, so that Ux ⊗ Vy |ϕ〉 ≈ |ϕxy〉. Thus we have a valid quantum
strategy for G: on input (x, y), Alice and Bob locally apply unitaries Ux and Vy to their
shared state ϕ, and obtain something close to the advice state ϕxy, which they can use to
win game G with probability close to 1. For sufficiently small γ, this will be greater than
val∗(G), a contradiction. Thus, val∗(G⊗n) ≤ 2−γn. This concludes the proof outline.

Other technical considerations. While this discussion has been very informal, it captures
the conceptual arguments that are required by our analysis. There are many technical details
that are handled by the full proof in the Appendix: for example, in order to make the error
in the Grover search exponentially small, we increase the communication complexity of the
protocol to Õ(log(1/λ)/

√
ε). If λ < 2−ε3/2n, where val∗(G) = 1− ε, then the communication

complexity is at most Õ(εn), which is still small enough for use in Quantum Raz’s Lemma.
Another issue is that the communication protocol described requires that Bob transmit his
input symbols yi, which would incur a dependence on the input alphabet size. Through a
modification of the protocol and the analysis, we are able to avoid this dependence. Finally,
instead of using Grover’s algorithm exactly, we use the 3-dimensional search algorithm of
Aaronson and Ambainis [1], which performs quantum search in a “spatially local” way. When
converted to a communication protocol, the parties no longer need to incur a logn-qubit
overhead per round simply to transmit a query request.

The arguments above are not specific to two-players. We prove our theorem for the
general k-player case. An important part of this is the k-player generalization of the Quantum
Strategy Rounding lemma of [6, 13], which we prove in Lemma 4.3.

2.2 Overview of Theorem 1.2
Theorem 1.2 shows parallel repetition for the entangled value of k-player free CQ games:
these are games where the players may produce quantum states as answers. Instead of

1 We make a quick remark about Quantum Raz’s Lemma. The ingredients of Quantum Raz’s Lemma can
be found in various forms in [6, 7, 13], but we find it conceptually advantageous to consolidate these
ingredients into a single Lemma that is used as a black box. The benefit of this consolidation is that
the overarching structure of the proofs of Theorems 1.1 and 1.2 are the same – really, the only essential
difference is the communication protocol!
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making measurements on their share of the entangled state, players will apply local unitaries
(that depend on their inputs), and transmit a number of qubits to the referee. The referee
will then perform some joint verification measurement on all the answer qubits to decide
whether to accept or not.

Similarly to the proof of Theorem 1.1, we will use a low-cost communication protocol to
design advice states for the repeated-game-to-single-game reduction. However, we were not
able to use the distributed Grover search technique. Instead, our low-cost communication
protocol performs the following (in the two-player setting): Alice will send Bob her inputs
and answer qubits corresponding to coordinates in a small subset C ⊆ [n]. Bob will then
perform the referee’s verification measurement on Alice’s inputs and outputs, and his own
inputs and outputs, to determine whether they won all the coordinates in the subset C.
Having determined whether they won or not, Bob will return Alice’s message back to her. If
C is sufficiently small, then the communication cost of this task is small.

This simple checking protocol is similar to the checking protocol of [7]. However, in our
protocol, Alice and Bob exchange quantum messages, and it is a two-way protocol (because
Bob has to return Alice’s message back to her). The theorem of [17] again allows us to show
that I(Xi : B)ϕ and I(Yi : A)ϕ are small, where ϕ is the advice state that arises from this
communication protocol, and thus we can apply quantum strategy rounding as before.

For the proofs of Theorems 1.2, 1.3, and 1.4, we refer the reader to the full version of
our paper [8].

Outline. In Section 3, we list the quantum information theoretic facts we’ll need, as well as
prove a few useful technical lemmas (including Quantum Raz’s Lemma). In Section 4, we
prove our k-player Quantum Strategy Rounding lemma. We prove Theorem 1.1 in Section 5.

3 Preliminaries

We assume familiarity with the basics of quantum information and computation. For a
comprehensive reference, we refer the reader to [18, 22]. For a pure state |ψ〉, we will let ψ
denote the density matrix |ψ〉〈ψ|. If |ψ〉AB is a bipartite state, then ψA will be the reduced
density matrix of ψAB on space A. A density matrix ρXA is a classical-quantum (CQ) state
if ρXA =

∑
x p(x) |x〉〈x| ⊗ ρAx , where p(x) is a probability distribution and ρAx is an arbitrary

density matrix on space A. For a probability distribution µ, x ← µ indicates x is drawn
from µ. For a classical state ρX =

∑
x µ(x) |x〉〈x|, we write x← ρX to denote x← µ. We

let id denote the identity matrix.

3.1 k-player games
We give a formal definition of games, where the inputs and outputs are classical (in the full
version of this paper, we give a more general definition of CQ games, where the outputs may
be quantum [8]). A k-player game is a tuple G = (X ,A, µ, V ), where:
1. X = X1 × · · · × Xk with each Xj a finite alphabet,
2. A = A1 × · · ·Ak with each Aj a finite alphabet,
3. µ is a distribution over X ,
4. V : X ×A → {0, 1} is the verification predicate.
In a k-player G, a referee samples an input x = (x1, . . . , xk) from µ, and sends xj to player
j. The players produce a vector of outputs a = (a1, . . . , ak) (where the jth player outputs
symbol aj , and the referee accepts if V (x, a) = 1.
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We say a game is free if µ = µ1 ⊗ · · · ⊗ µk, where µj is a distribution over Xj (i.e. µ
is a product distribution). A quantum strategy for G is a shared state |ξ〉E (where E are
k-partite spaces split between the k players), and for each player j a set of measurements
{M j,xj}xj∈Xj (with each M j,xj being a set of POVM elements {M j,xj

aj }aj∈Aj ) which act on
the space Ej . On input xj , player j measures the Ej register of |ξ〉 using measurement
M j,xj , and obtains an outcome aj , which is then sent to the referee. The entangled value
of a game G is defined as the maximum probability a referee will accept over all possible
(finite-dimensional) quantum strategies for k players:

val∗(G) = max
|ξ〉,{{Mj,xj }xj

}j

E
x←µ

 ∑
a∈A:V (x,a)=1

tr
(
M1,x1
a1
⊗ · · · ⊗Mk,xk

ak
ξ
) .

The n-fold repetition of a game G = (X ,A, µ, V ) is denoted by G⊗n = (Xn,An, µ⊗n, V n),
where: µ⊗n is the product distribution over n independent copies of X , and V n(~x,~a) :=∏
i V (~xi,~ai), with ~x ∈ Xn and ~a ∈ An.

3.2 Properties of the squared Bures metric
For two positive semidefinite operators ρ, σ, let the fidelity between ρ and σ be denoted by
F (ρ, σ) := tr

√
ρ1/2σρ1/2. The fidelity distance measure has the well-known property that

for pure states |ψ〉 and |ϕ〉, F (ψ,ϕ) = | 〈ψ|ϕ〉 |. Furthermore, when ρ and σ are classical
probability distributions in the same basis (i.e. ρ =

∑
i pi |i〉〈i| and σ =

∑
i qi |i〉〈i|), then

F (ρ, σ) =
∑
i

√
piqi.

The fidelity distance measure is not a metric on the space of positive semidefinite
operators. For one, it does not satisfy a triangle inequality. However, one can convert fidelity
into other measures that are metrics. One such measure is the Bures metric, defined as
B(ρ, σ) :=

√
1− F (ρ, σ). In this paper, we will use the squared Bures metric, denoted by

K(ρ, σ) := B(ρ, σ)2, as the primary distance measure between quantum states. It satisfies
many pleasant properties, including the following:

I Fact 3.1 (Triangle inequality). Let n ≥ 2 and let ρ1, . . . , ρn+1 be density matrices. Then

K(ρ1, ρn+1) ≤ n
∑
i

K(ρi, ρi+1).

Proof. We adapt the proof from [7]. For i ∈ [n] let αi = arccos(F (ρi, ρi+1)). Let α =
arccos(F (ρ1, ρn+1)). Then, since arccos(F (·, ·)) is a distance measure for quantum states, we
have α ≤

∑
i αi. Then we have

K(ρ1, ρn+1) = 1− cos(α) ≤ n2(1− cos(α/n)) ≤ n
∑
i

(1− cos(αi)) = n

n∑
i=1

K(ρi, ρi+1).

J

I Fact 3.2 (Contractivity under quantum operations). Let E be a quantum operation, and let
ρ and σ be density matrices. Then K(E(ρ), E(σ)) ≤ K(ρ, σ).

I Fact 3.3 (Unitary invariance). Let U be unitary, and let ρ and σ be density matrices.Then
K(UρU†, UσU†) = K(ρ, σ).

I Fact 3.4 (Convexity). Let {Ai} and {Bi} be finite collections of positive semidefinite opera-
tors, and let {pi} be a probability distribution. Then K(

∑
i piAi

∑
i piBi) ≤

∑
i piK(Ai, Bi).
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I Fact 3.5. Let {Ai} and {Bi} be finite collections of positive semidefinite operators,
and let {pi} be a probability distribution. Then K(

∑
i pi |i〉〈i| ⊗ Ai,

∑
i pi |i〉〈i| ⊗ Bi) =∑

i piK(Ai, Bi).

3.3 Quantum information theory
For two positive semidefinite operators ρ, σ, the relative entropy S(ρ‖σ) is defined to be
tr(ρ(log ρ− log σ)). The relative min-entropy S∞(ρ‖σ) is defined as min{λ : ρ � 2λσ}. The
entropy of ρ is denoted by H(ρ) := − tr(ρ log ρ). For a tripartite state ρABC , the conditional
mutual information H(A|B)ρ is defined as H(ρAB)−H(ρB). Let ρAB be a bipartite state.
Then the mutual information I(A : B)ρ is defined as H(A)ρ − H(A|B)ρ. An equivalent
definition is I(A : B)ρ = S(ρAB‖ρA ⊗ ρB).

I Fact 3.6 ([14]). Let ρ and σ be density matrices. Then S(ρ‖σ) ≥ K(ρ, σ).

I Fact 3.7 ([14]). Let µ be a probability distribution on X . Let ρ =
∑
x∈X µx |x〉〈x| ⊗ ρAx .

Then I(X : A)ρ = Ex←µ[S(ρx‖ρ)].

I Fact 3.8 ([13], Fact II.11). Let ρXY and σXY be quantum states. Then S(ρXY ‖σXY ) ≥
S(ρX‖σX).

I Fact 3.9. Let ρXY and σXY = σX ⊗ σY be quantum states. Then S(ρXY ‖σXY ) ≥
S(ρX‖σX) + S(ρY ‖σY ).

I Fact 3.10 ([13], Fact II.8). Let ρ =
∑
x µ(x) |x〉〈x| ⊗ ρx, and ρ1 =

∑
x µ

1(x) |x〉〈x| ⊗ ρ1
x.

Then S(ρ1‖ρ) = S(µ1‖µ) + Ex←µ1
[
S(ρ1

x‖ρx)
]
.

I Fact 3.11 ([13], Lemma II.13). Let ρ = pρ0 + (1− p)ρ1. Then S∞(ρ0
∥∥ρ) ≤ log 1/p.

I Fact 3.12. Let ρAB and σAB be density matrices. Then S∞(ρAB‖σAB) ≥ S∞(ρA‖σB).

I Fact 3.13. Let ρ, σ, and τ be density matrices such that S∞(ρ‖σ) ≤ λ1 and S∞(σ‖τ) ≤ λ2.
Then S∞(ρ‖τ) ≤ λ1 + λ2.

I Fact 3.14. Let ρ, σ, and τ be density matrices such that S(ρ‖σ) ≤ λ1 and S∞(σ‖τ) ≤ λ2.
Then S∞(ρ‖τ) ≤ λ1 + λ2.

Proof. S∞(σ‖τ) = λ2 implies that 2−λ2σ � τ . Then,

S(ρ‖τ) = tr(ρ(log ρ− log τ))
≤ tr(ρ(log ρ− log 2−λ2σ))
≤ tr(ρ(log ρ− (−λ2)id− log σ))
≤ λ2 + tr(ρ(log ρ− log σ))
= λ1 + λ2.

J

3.4 Some technical lemmas
The following lemma is due to [3]:

I Lemma 3.15 ([3], Lemma 3.3). Let P = (p, 1−p) and Q = (q, 1−q) be binary distributions.
If S(P‖Q) ≤ δ, and p < δ, then q ≤ 4δ.
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The following adapts Lemma 3.15 to use the distance measure K instead:

I Lemma 3.16. Let P = (p, 1−p) and Q = (q, 1−q) be binary distributions. If K(P,Q) ≤ δ,
and p < δ, then q ≤ 9δ.

Proof. If q ≤ p, then we are done. Assume otherwise. We have that δ ≥ K(P,Q) ≥
(1− F (P,Q)2)/2, because 0 ≤ F (P,Q) ≤ 1. Then,

F (P,Q)2 = (√pq +
√

(1− p)(1− q))2

= pq + 1− p− q + pq + 2
√
pq(1− p)(1− q),

and thus

2δ ≥ p+ q − 2pq − 2
√
pq(1− p)(1− q)

≥ p+ q − 2pq − 2√pq
= (√p−√q)2 − 2pq
≥ (√p−√q)2 − 2δ,

where in the last line we used the assumption that p ≤ δ. Then 2
√
δ ≥ |√p−√q|. Either

q ≤ p, in which case q ≤ δ, or q ≥ p, in which case √q ≤ 2
√
δ +√p ≤ 3

√
δ, so q ≤ 9δ. J

Finally, we prove a quantum analogue of Raz’s Lemma, which is the central tool behind
many information-theoretic proofs of parallel repetition theorems [19, 12, 3]:

I Lemma 3.17 (Quantum Raz’s Lemma). Let ψXA =
(∑

x µ(x) |x〉〈x|X
)
⊗ ψA be a CQ-

state, classical on X and quantum on A, where X is n-partite. Furthermore, suppose that
µ(x) =

∏
µi(xi). Let ϕXA =

∑
x σ(x) |x〉〈x|X ⊗ ϕAx be such that S(ϕ‖ψ) ≤ t. Then,∑

i

I(Xi : A)ϕ ≤ 2t.

Proof. First observe the following manipulations:

t ≥ S(ϕXA‖ψXA)
= S(ϕXA‖ψX ⊗ ψA)
≥ S(ϕXA‖ϕX ⊗ ϕA)
= I(X : A)ϕ
= H(X)ϕ −H(X|A)ϕ
≥ H(X)ϕ −

∑
i

H(Xi|A)ϕ.

We focus on H(X)ϕ now. Using that relative entropy is always non-negative:

−H(X)ϕ +
∑
i

H(Xi)ϕ ≤ −H(X)ϕ +
∑
i

S(ϕXi‖ψXi) +H(Xi)ϕ

= −H(X)ϕ −
∑
i

tr(ϕXi logψXi)

= −H(X)ϕ − tr(ϕX logψX)
= S(ϕX‖ψX)
≤ t.

CCC 2015



524 Parallel Repetition for Entangled k-player Games via Fast Quantum Search

Continuing, we have

t ≥ −t+
∑
i

H(Xi)ϕ −H(Xi|A)ϕ = −t+
∑
i

I(Xi : A)ϕ.

J

4 Quantum strategy rounding

In this section we prove our k-player Quantum Strategy Rounding lemma, generalizing the
technique of [7, 13].

I Lemma 4.1 ([13]). Let µ be a probability distribution on X . Let

|ϕ〉 :=
∑
x∈X

√
µ(x) |xx〉XX

′
⊗ |ϕx〉AB .

Let |ϕx〉 := |xx〉XX
′
⊗ |ϕx〉AB. Then there exists unitary operators {Ux}x∈X acting on

XX ′A such that
E

x←µ

[
K(ϕx, UxϕU†x)

]
≤ I(X : B)ϕ.

Proof. We follow the proof in [13]. Denote the reduced states of Bob by ρx := trXX′A(ϕx)
and ρ := trXX′A(ϕ). By Facts 3.6 and 3.7, we get that

I(X : B)ϕ = E
x←µ

[S(ρx‖ρ)] ≥ E
x←µ

[K(ρx, ρ)].

By Uhlmann’s Theorem, for each x ∈ X there exists Ux such that | 〈ϕx| (Ux ⊗ idB) |ϕ〉 | =
F (ρx, ρ). Furthermore, this is equal to F (ϕx, Ux ⊗ idB ϕU†x ⊗ idB). We thus obtain the
claim. J

I Lemma 4.2. Let {|ϕa〉}a∈A be a finite collection of pure states. Let µ and τ be probability
distributions over A such that S(µ‖τ) ≤ ε. Then

K( E
a←µ

[|ϕa〉〈ϕa|], E
a←τ

[|ϕa〉〈ϕa|]) ≤ ε.

Proof. Consider the states

|ψµ〉 =
∑
a∈A

√
µa |aa〉AA

′
⊗ |ϕa〉

and
|ψτ 〉 =

∑
a∈A

√
τa |aa〉AA

′
⊗ |ϕa〉 .

Let ρµ = trA′(|ψµ〉〈ψµ|) and ρτ = trA′(|ψτ 〉〈ψτ |). Then notice that Ea←µ[|ϕa〉〈ϕa|] =
trAA′(ρµ) and Ea←τ [|ϕa〉〈ϕa|] = trAA′(ρτ ), respectively. We then have that, considering
the partial trace as a quantum operation, K(Ea←µ[|ϕa〉〈ϕa|],Ea←τ [|ϕa〉〈ϕa|]) ≤ K(ρµ, ρτ ).
By Uhlmann’s Theorem, this is at most 1− | 〈ψµ|ψτ 〉 | = 1−

∑
a∈A
√
µaτa = K(µ, τ). By

Fact 3.6, this is at most S(µ‖τ) ≤ ε. J

I Lemma 4.3 (Quantum strategy rounding). Let k ≥ 1. Let µ be a probability distribution
over X = X1 ×X2 × · · · × Xk, where the Xi are finite alphabets. Let

|ϕ〉 :=
∑
x∈X

√
µ(x) |xx〉XX

′
⊗ |ϕx〉AB
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where X = X1 · · ·Xk, X ′ = X ′1 · · ·X ′k, and A = A1 · · ·Ak are k-partite registers. Then for
all i ∈ [k] there exist operators {U ia}a∈Xi

acting on XiX
′
iAi such that

E
x←µ

[
K
(
ϕx, (U1

x1
⊗ · · · ⊗ Ukxk

)ϕ (U1,†
x1
⊗ · · · ⊗ Uk,†xk

)
)]
≤ 4k

∑
i

I(Xi : X−iX ′−iA−iB)ϕ,

where A−i, X−i, and X ′−i denote the A, X, and X ′ registers excluding the ith coordinate,
respectively, and for all x ∈ X , |ϕx〉 := |xx〉 ⊗ |ϕx〉.

Proof. For i ∈ [k], let νi = µ1⊗· · ·⊗µi⊗µ>i, where µj denotes the marginal distribution of
µ on coordinate j, and µ>i denotes the marginal distribution of µ on coordinates i+ 1, . . . , k.
For x ∈ X , for all S ⊆ [k], let xS denote the coordinates of x that are in S. Therefore,
x≤i = x1...i, and x>i = xi+1...k, etc. For all i ∈ [k] and x ∈ X , define

|ϕx>i 〉 := |x>ix>i〉X>iX
′
>i ⊗

∑
x≤i

√
µ(x≤i|x>i) |x≤ix≤i〉X≤iX

′
≤i ⊗ |ϕx〉AB


and

|ϕxi
〉 := |xixi〉XiX

′
i ⊗

∑
x−i

√
µ(x−i|xi) |x−ix−i〉X−iX

′
−i ⊗ |ϕx〉AB

 .

Note that for all i, |ϕ〉 =
∑
xi

√
µi(xi) |ϕxi 〉. Then by Lemma 4.1, we get that there exists

unitaries {U iu}u∈Xi
acting on XiX

′
iAi such that

E
xi←µi

[K(ϕxi
,U ixi

(ϕ))] ≤ I(Xi : X−iX ′−iA−iB)ϕ,

where U ixi
is the CP map σ 7→ U ixi

σ(U ixi
)†. Define |ϕ̃x>i

〉 = |x>i〉X
′′
>i ⊗ |ϕx>i

〉, |ϕ̃xi
〉 =

|xi〉X
′′
i ⊗ |ϕxi 〉, and |ϕ̃x〉 = |x〉X

′′
⊗ |ϕx〉. For notational convenience, let εi = I(Xi :

X−iX
′
−iA−iB)ϕ, and let x, xi and x>i denote the pure states |x〉〈x|, |xi〉〈xi|, and |x>i〉〈x>i|

respectively.
Define the following states: ρ0 = Ex←µ[x ⊗ ϕx] = Ex←µ[ϕ̃x], and for all i ∈ [k], ρi =

Ex←νi [x ⊗ Ux≤i
(ϕx>i)], where Ux≤i

denotes the CP map σ 7→
(⊗

j≤i U
j
xj

)
σ
(⊗

j≤i U
j
xj

)†
.

Then by the triangle inequality for the squared Bures metric (Fact 3.1),

K(ρ0, ρn) ≤ k
k−1∑
i=0

K(ρi, ρi+1).

We upper bound each term K(ρi, ρi+1):

K

(
E

x←νi

[x⊗ Ux≤i
(ϕx>i

)], E
x←νi+1

[x⊗ Ux≤i+1(ϕx>i+1)]
)
≤

E
x≤i←⊗µi

K

(
Ux≤i

(
E

x>i←µ>i

[x>i⊗ϕx>i ]
)
,Ux≤i

(
E

x>i←µi+1⊗µ>i+1
[x>i⊗U i+1

xi+1
(ϕx>i+1)]

))
= K

(
E

x>i←µ>i

[x>i ⊗ ϕx>i
], E
x>i←µi+1⊗µ>i+1

[x>i ⊗ U i+1
xi+1

(ϕx>i+1)]
)

= K

(
E

x>i←µ>i

[ϕ̃x>i
], E
xi+1←µi+1

[
xi+1 ⊗ U i+1

xi+1

(
E

x>i+1←µ>i+1
[ϕ̃x>i+1 ]

)])
The second and third lines follow from the convexity and unitary invariance of the squared Bu-
res metric, respectively (Facts 3.4 and Fact 3.3). Consider the operation E that measures the
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registers X>i+1 = Xi+2 . . . Xk in the standard basis, and copies the outcomes into new regis-
ters X ′′>i+1. Then E(Exi+1←µi+1 [ϕ̃xi+1 ]) = Ex>i←µ>i

[ϕ̃x>i
] and E(ϕ) = Ex>i+1←µ>i+1 [ϕ̃x>i+1 ].

Then since E commutes with U i+1
xi+1

and doesn’t act on the X ′′i+1 register, we have that the
line above is equal to

= K

(
E
(

E
xi+1←µi+1

[ϕ̃xi+1 ]
)
, E
(

E
xi+1←µi+1

[xi+1 ⊗ U i+1
xi+1

(ϕ)]
))

≤ K
(

E
xi+1←µi+1

[ϕ̃xi+1 ], E
xi+1←µi+1

[xi+1 ⊗ U i+1
xi+1

(ϕ)]
)

= E
xi+1←µi+1

K
(
ϕxi+1 ,U i+1

xi+1
(ϕ)
)

≤ εi+1.

To complete the proof, we use the triangle inequality once more:

E
x←µ

K(ϕx,Ux(ϕ)) = K

(
E

x←µ
[ϕ̃x], E

x←µ
[x⊗ Ux(ϕ)]

)
≤ 2K

(
E

x←µ
[ϕ̃x], E

x←νk

[x⊗Ux(ϕ)]
)

+

2K
(

E
x←νk

[x⊗Ux(ϕ)], E
x←µ

[x⊗Ux(ϕ)]
)

≤ 2k
∑
i

εi + 2k
∑
i

εi

≤ 4k
∑
i

εi.

where Ux is the composition of U ixi
for all i ∈ [k]. Here we used Lemma 4.2 in the second

line, and the fact that S(µ‖νk) = I(X1 : X2 : · · · : Xk)µ, which is the multipartite mutual
information between the coordinates of X. It is a known fact (see, e.g., [23]) that the
multipartite mutual information can be written in terms of the (standard) bipartite mutual
information like so:

I(X1 : X2 : · · · : Xk)µ ≤ I(X1 : X2)µ + I(X1X2 : X3)µ + · · ·+ I(X1X2 · · ·Xk−1 : Xk)µ,

but by the data processing inequality, we have that for all i, I(X1 · · ·Xi−1 : Xi)µ ≤ I(X−i :
Xi)µ ≤ I(Xi : X−iX ′−iA−iB)ϕ = εi. J

5 Parallel repetition using fast quantum search

Notation. Let G = (X ,A, µ, V ) be a k-player free game. In what follows, we will think of
x ∈ Xn as n× k matrices, where the ith row indicates the inputs of all k players in the ith
coordinate, and the jth column indicates the inputs of the jth player. Thus x(i, ·) indicates
the ith row of x, and x(·, j) indicates the jth column. When we write xS for some subset
S ⊆ [n], we mean the submatrix of x consisting of the rows indexed by i ∈ S.

Let X be an n × k-partite register. Then we will also format X as a n × k matrix, so
X(i,·) and X(·,j) have the natural meaning. For a subset S ⊆ [n], XS denotes the registers
corresponding to the rows of X indexed by S. For an index j, X(S,j) denotes the jth column
of the rows indexed by S. X(S,−j) denotes the submatrix of X corresponding to rows indexed
by i ∈ S, and all columns except for the jth one.
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We make the following observation, which will be useful for us in our analysis: without
loss of generality, we can restrict our attention to free games whose input distribution is
the uniform distribution over some alphabet. Let G = (X ,A, µ, V ) be a k-player free game.
Write µ = µ1 ⊗ · · · ⊗ µk, where µj is a distribution over the alphabet Xj . Fix an γ > 0.
For each i, there exists an alphabet X ′j and a map fj : X ′j → Xj such that the random
variable X ′j = fj(Uj) (where Uj is a uniformly random element from X ′j) is γ/k-close in
total variation distance to being distributed according to µj – and hence the distribution
of (f1(U1), . . . , fk(Uk)) is at most γ-far from µ. Thus, we can “simulate” the game G with
another game G′ = (X ′,A, U, V ′), where X ′ = X ′1 × · · · X ′k, U is the uniform distribution on
X ′, and V ′ : X ′ ×A → {0, 1} is the map (x′, a)→ V (〈f1(x′1), . . . , fk(x′k)〉, a).

I Claim 5.1. val∗(G′) = val∗(G)± γ.

Proof. Consider the optimal strategy for G. Then a strategy for G′ is the following: player
j, on input u′j ∈ X ′j , computes uj = fj(u′j), and performs the strategy she would’ve done
for G. The input distribution, from the point of view of the strategy for G, is at most γ-far
from the original input distribution µ. Thus the winning probability is at least val∗(G)− γ.

Now consider the optimal strategy for G′. Then a strategy for G is the following: player
j, on input uj ∈ Xj , computes a uniformly random preimage u′j ∈ f−1

j (uj), and performs
the strategy she would’ve done for G′. The input distribution, from the point of view of
the strategy for G′, is at most γ-far from the uniform distribution U . Thus the winning
probability is at least val∗(G′)− γ. J

Furthermore, this simulation “commutes” with parallel repetition, in that val∗((G′)⊗n) =
val∗(G⊗n)± γn. We can make γ arbitrarily small, at the cost of (potentially) increasing the
input alphabet size, so that the behavior of the simulation G′ is essentially the same as the
original game G. However, since our theorems do not depend on the input alphabet size, we
will treat γ as infinitesimally small, and hence neglect it.

I Theorem 5.2. Let G = (X ,A, µ, V ) be a k-player free game with classical outputs and
classical verification predicate V : X × A → {0, 1}. Suppose that val∗(G) = 1 − ε. Let
s = maxj log |Aj |. Then, for all n > k4s log(k2/ε)/ε3/2, we have that

val∗(G⊗n) ≤ (1− ε3/2)Ω(n/k4s).

Proof. Because of Claim 5.1, it is without loss of generality to assume that the input
distribution µ is the uniform distribution – the following analysis can be performed on a
simulation of G, which will still bound the repeated game value of G.

Let n be some integer greater than k4s log(k2/ε)/ε3/2, and consider an optimal entangled
strategy for G⊗n, and let 2−t denote its winning probability. Suppose for contradiction that
t ≤ cε3/2n/(k4s) for some universal constant c. Using this strategy, we will construct the
following state

|ϕ〉XX
′EA :=

∑
x∈Xn

√
ν(x) |xx〉XX

′
⊗ |ϕx〉EA ,

where ν(x) is a probability distribution over Xn, X, X ′, A are n× k-partite registers, and
E is a k-partite register. We will show that exists a coordinate i ∈ [n], and δ < ε/32k2

satisfying the following properties:
1. Measuring the X(i,·)A(i,·) register of ϕ yields a tuple (x(i,·), a(i,·)) that satisfies

V (x(i,·), a(i,·)) = 1 with probability at least 1− ε/8;
2. S(ϕX(i,·)‖µ) ≤ δ.
3. For all j ∈ [k], I(X(i,j) : Z−j)ϕ ≤ δ, where Z−j = X ′(·,−j)X(·,−j)E−jA(·,−j).
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For now, we assume the existence of such a state |ϕ〉; we will construct it in Lemma 5.3. We
use Lemma 4.3 on the state ϕ to obtain for each player j a set of unitaries {U ju}u∈Xj

acting
on X(·,j)X

′
(·,j)EjA(·,j) such that

E
x(i,·)←ϕ

X(i,·)

[
K
(
ϕx(i,·) ,Ux(i,·)(ϕ)

)]
≤ 4k

∑
j

I(X(i,j) : Z−j)ϕ ≤ 4k2δ,

where we let Ux(i,·) =
⊗

j U
j
x(i,j)

, and let Ux(i,·) be the CP map ϕ 7→ Ux(i,·)ϕU
†
x(i,·)

. The state
ϕx(i,·) denotes ϕ conditioned on X(i,·) = x(i,·).

We now describe a protocol for the k players to play game G. The players receive u ∈ X ,
drawn from the product distribution µ. Player j receives uj ∈ Xj . The players share the
state ϕ, where player j has access to the X(·,j)X

′
(·,j)EjA(·,j) registers.

Protocol A

Input: u ∈ X . Player j receives uj .
Preshared entanglement: ϕ
Strategy for player j:
1. Apply the local unitary U juj

on the X(·,j)X
′
(·,j)EjA(·,j) registers of ϕ.

2. Output the A(i,j) part of ϕ.

Slightly overloading notation, we let V iu denote the projector
∑
a∈A:V (u,a)=1 |a〉〈a| that

acts on the A(i,·) registers. Let κ denote the winning probability of Protocol A. This is equal
to

κ = E
u←µ

∥∥V iu Uu |ϕ〉∥∥2

≥ E
u←ϕX(i,·)

∥∥V iu Uu |ϕ〉∥∥2 − 4δ.

where we use property (B) and appeal to Lemma 3.15. Let

τ := E
u←ϕX(i,·)

∥∥V iu Uu |ϕ〉∥∥2
.

For every i ∈ [n], u ∈ X , define the quantum operation Ei,u that, given a state ϕ, measures
the A(i,·) registers using V iu measurement, and outputs a classical binary random variable F
indicating the verification measurement outcome (outcome 1 corresponds to “accept” and
outcome 0 corresponds to “reject”). Let

F0 = E
x(i,·)←ϕ

X(i,·)
Ei,x(i,·)

(
ϕx(i,·)

)
and F1 = E

u←ϕX(i,·)
Ei,u (Uu(ϕ)) .

Note that Pr(F0 = 1) ≥ 1− ε/8 by our assumption on ϕ, and Pr(F1 = 1) = τ . Then,

K(F0, F1) = K

(
E

x(i,·)←ϕ
X(i,·)

Ei,x(i,·)

(
ϕx(i,·)

)
, E
u←ϕX(i,·)

Ei,u (Uu(ϕ))
)

≤ E
x(i,·)←ϕ

X(i,·)
K
(
Ei,x(i,·)

(
ϕx(i,·)

)
, Ei,x(i,·)

(
Ux(i,·)(ϕ)

))
(Fact 3.4)

≤ E
x(i,·)←ϕ

X(i,·)
K
(
ϕx(i,·) ,Ux(i,·)(ϕ)

)
(Fact 3.2)

≤ 4k2δ.
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By our assumption on δ, this is at most K(F0, F1) ≤ ε/8. By Lemma 3.16, Pr(F1 = 1) ≥
1− ε/8− ε/2. Thus κ ≥ 1− 3ε/4. But notice that Protocol A is a valid strategy for the game
G; thus we have produced a strategy for game G that wins with probability strictly greater
than 1− ε, a contradiction. Thus, it must be at t = Ω(ε3/2n/(k4s)), which establishes the
theorem. J

5.1 Construction of ϕ

I Lemma 5.3. There exists a state |ϕ〉, and a coordinate i ∈ [n] satisfying properties (A),
(B), and (C).

Proof. Set ε′ = ε/32, η = 2−tε/32k2, and h = c′ log(1/η)/ε′ for some constant c′. We have
h = (32c′/ε)(t+ log(32k2/ε)), and by our assumptions on t and n, this is at most n/2.

Suppose there was a strategy to win the repeated game G⊗n with probability 2−t, involving
a shared state |ξ〉E (where E is a k-partite state register) and measurements {M j,xj

a } for
the players, respectively. That is, player j, on input xj ∈ Xnj , applies the measurement with
POVM elements {M j,xj

a } and reports the outcome.
We will build the state ϕ in steps. Consider the initial state∣∣ψ0〉 :=

∑
x∈Xn

√
µ⊗n(x) |xx〉XX

′
⊗
∑
a∈An

|ξxa〉E ⊗ |a〉A

where |ξxa〉 =
(⊗

j

√
M

j,xj
aj

)
|ξ〉 (which is a subnormalized state), and µ⊗n(x) is the

probability distribution associated with the repeated game G⊗n. For every set C ⊂ [n], and
every fixing of the inputs xC to the coordinates indexed by C, define the state

∣∣ψ0
C,xC

〉
to be∣∣ψ0〉 conditioned on XC = xC .

Now consider the following k-player communication protocol: for every set C ⊂ [n] and
every xC , the players share the entangled state

∣∣ψ0
C,xC

〉
, where player j has access to the

registers X(·,j)X
′
(·,j)EjA(·,j). Using shared randomness, the players sample h independent

and uniformly random coordinates C = {i1, . . . , ih} ⊂ [n], and sample xC from the marginal
distribution of µ⊗n on the subset C. For the remainder of the protocol, the players perform
all their operations on the shared state

∣∣ψ0
C,xC

〉
.

In the next phase of the protocol, the k players communicate qubits to each other to
determine whether they have won or lost the parallel repeated game G⊗n. In particular,
they run a protocol to search for a coordinate i ∈ C such that V (x(i,·), a(i,·)) = 0, if it exists
– call such a coordinate a losing coordinate. The state

∣∣ψ0
C,xC

〉
becomes transformed to

|ψC,xC
〉XX

′EAR :=
∑
x∈Xn

√
µ⊗n(x|xC) |xx〉XX

′
⊗
∑
a∈An

|ξ′Cxa〉
E⊗|a〉A⊗(αCxa |1〉+βCxa |0〉)R

where µ⊗n(x|xC) is probability of x conditioned on xC , and |ξ′Cxa〉 = |ξxa〉 ⊗ |wCxa〉 with
|wCxa〉 denoting the workspace qubits that are used during the protocol. The coefficients
αCxa and βCxa denote the amplitude that the search protocol places on the flags “No losing
coordinates” and “Exists a losing coordinate” respectively.

For now, we will abstract away from the particulars of this communication protocol and
defer the details of it until later. The only things we will use about this search protocol is
the following:
1. The search protocol is run conditioned on C, and the XA registers;
2. At most T = O(

√
1/ε′ log(1/η) log |A|) qubits in total are exchanged between all parties,

where A is the output alphabet in game G;
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3. For every fixing of (x, a) ∈ Xn × An, if there are no coordinates i ∈ [n] such that
V (x(i,·), a(i,·)) = 0, then the search procedure reports “No losing coordinates” with
certainty; and

4. If there are at least an ε′n bad coordinates, then the search procedure reports “No losing
coordinates” with probability at most η (over the quantum randomness of the protocol,
as well as over the choice of C). In other words, for tuples (x, a) ∈ Xn × An with
Ei[V (x(i,·), a(i,·))] < 1− ε′, ∑

C

p(C) |αCxa|2 ≤ η,

where p(C) is the distribution that samples h independent and uniformly random coordi-
nates from [n].

For all C, xC define |ϕC,xC
〉 to be |ψC,xC

〉 conditioned on measuring 1 in the R register:

|ϕC,xC
〉XX

′EAR := 1√
λC,xC

∑
x∈Xn

√
µ⊗n(x|xC) |xx〉XX

′
⊗
∑
a∈An

|ξ′Cxa〉
E⊗|a〉A⊗ (αCxa |1〉R)

where λC,xC
is for normalization. In the case that λC,xC

= 0 (meaning that we were trying to
normalize the 0 state), we leave the state undefined. Let ψCXC (C, xC) = p(C)µC(xC) denote
the joint probability distribution of the shared random variables C and XC , before condi-
tioning. Let ϕCXC (C, xC) = p(C)µC(xC)λC,xC

/λ denote the joint distribution conditioned
on R = 1, where λ =

∑
C,xC

ψCXC (C, xC)λC,xC
.

(A) A random coordinate of ϕ wins with high probability. Let

ρ = E
C,xC←ψCXC

[|C〉〈C | ⊗ |xC〉〈xC | ⊗ ψC,xC
]

and
σ = E

C,xC←ϕCXC

[|C〉〈C | ⊗ |xC〉〈xC | ⊗ ϕC,xC
] .

Observe that σ is the post-measurement state of ρ after measuring |1〉 in the R register. Let
E denote the quantum operation on that, (1) measures the C register, (2) chooses a uniformly
random i /∈ C, (3) measures X(i,·) register, and (4) then conditioned on X(i,·) = x(i,·),
performs the binary verification measurement V ix(i,·)

defined in the previous section, setting
an auxiliary register Q to |1〉 if the measurement accepts, |0〉 if it rejects. We wish to
argue that the probability that a measurement of the Q register of E(σ) yields 1 with high
probability. This probability is equivalent to the probability the following process succeeds:
first, measure the XA registers of σ to obtain a tuple (x, a). Then, measure the C register.
Finally, select a random index i /∈ C, and we succeed if V (x(i,·), a(i,·)) = 1.

In this alternative process, the probability that we measure (x, a) in σ such that
Ei∈[n][V (x(i,·), a(i,·))] < 1− ε′ (call such (x, a)’s “bad”) is equal to

1
λ

∑
(x, a) bad

Pr
ρ

(x, a)
∑
C

p(C)|αCxa|2

where Prρ(x, a) is the probability of measuring measuring (x, a) in ρ. By our assumption
on the communication protocol, this is at most η/λ. Since the players’ strategy wins the
repeated game G⊗n with probability 2−t, we have that λ ≥ 2−t. Thus the probability of
measuring a bad (x, a) is at most 2tη.

Now suppose we measure (x, a) such that Ei∈[n][V (x(i,·), a(i,·))] ≥ 1− ε′. Then, for any
C, a random i /∈ C loses with probability at most ε′n/(n− |C|) ≤ ε′n/(n− h) ≤ ε/16. Thus,
the probability that the Q register of E(σ) yields 0 is at most 2tη + ε/16.
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(B) Coordinate input distributions are mostly unaffected. By Fact 3.11, since σ � 2λρ,
we have

log 1/λ ≥ S∞(σ‖ρ)
≥ S(σ‖ρ)

≥ E
C,xC←ϕCXC

S(ϕXX
′EA

C,xC
‖ψXX

′EA
C,xC

), (5.1)

where in the last line we used Fact 3.10. Using Facts 3.8 and 3.9, we obtain that

log 1/λ ≥ E
C,xC←ϕCXC

S(ϕXC,xC
‖ψXC,xC

)

≥ E
C,xC←ϕCXC

∑
i/∈C

S(ϕX(i,·)
C,xC

‖ψX(i,·)
C,xC

)

= E
C,xC←ϕCXC

∑
i/∈C

S(ϕX(i,·)
C,xC

‖µ).

(C) Mutual information is small.

I Claim 5.4. Fix a j ∈ [k], and fix a C, xC . There exists a state σZ−j

C,xC
such that

S∞(ψX(·,j)Z−j

C,xC
‖ψX(·,j)

C,xC
⊗ σZ−j

C,xC
) ≤ 2T,

where Z−j = X(·,−j)X
′
(·,−j)E−jA(·,−j).

We defer the proof of this claim for later, and will assume it for now. Line (5.1) with Fact 3.8
implies that for all j, EC,xC←ϕCXC S(ϕX(·,j)Z−j

C,xC
‖ψX(·,j)Z−j

C,xC
) ≤ log 1/λ. Using Fact 3.14 with

Claim 5.4, we get that for all j, there exists a σZ−j

C,xC
such that

E
C,xC←ϕC,xC

S(ϕX(·,j)Z−j

C,xC
‖ψX(·,j)

C,xC
⊗ σZ−j

C,xC
) ≤ 2T + log 1/λ.

Using Quantum Raz’s Lemma, we get

E
C,xC←ϕC,xC

E
i∈[n]

I(X(i,j) : Z−j)ϕC,xC
≤ 2(log 1/λ+ 2T )/n.

By Markov’s inequality, we have that there exists a C, xC , i /∈ C such that
1. Measuring the X(i,·)A(i,·) register of ϕC,xC

yields a tuple (x(i,·), a(i,·)) that satisfies
V (x(i,·), a(i,·)) = 1 with probability at least 1− ε/8.

2. S(ϕX(i,·)
C,xC

‖µ) ≤ 32t/n.
3. For all j ∈ [k], I(X(i,j) : Z−j)ϕC,xC

≤ 64k(t+ 2T )/n.
Let δ = 64k(t+ 2T )/n. Let s be the maximum number of qubits output by any one player
in game G, so ks ≥ log |A|. Then the total communication is T = O(ks(t+ log k2/ε)/

√
ε).

Then, if t ≤ cε3/2n/(k4s) for some universal constant c, we have δ ≤ ε/32k2. Let ϕ = ϕC,xC
.

This yields the state and coordinate i required. J

5.2 The search protocol
Next, we detail the search protocol used to construct |ψ〉 and |ϕ〉. We describe the protocol
for a two-player game G; the extension to k parties is straightforward.
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Let G = (X×Y,A×B, µ, V ) be a two-player free game, where X and Y are Alice and Bob’s
input alphabets, respectively, and A and B are their output alphabets. Consider the optimal
strategy for G⊗n, where there is a shared state |ξ〉EAEB where on input (x, y) ∈ Xn × Yn,
Alice and Bob apply measurements {Mx

a }a∈An and {Ny
b }b∈Bn respectively on their share of

|ξ〉.
At the start of the search protocol, a multiset C = {i1, . . . , ih}, xC ∈ XC , and yC ∈ YC

are publically visible to Alice and Bob. They are both given the state∣∣ψ0
C,xC ,yC

〉
=

∑
x∈Xn,y∈Yn

√
µ⊗n(x, y|xC , yC) |xxyy〉XX

′Y Y ′ |ξ〉EAEB |0〉R

where µ⊗n(x, y|xC , yC) is the distribution of (x, y) conditioned on xC , yC . Alice has access
to registers XX ′EAR, and Bob has access to registers EBY Y ′.

Then, Alice and Bob apply their measurements from the optimal strategy, controlled on
the X and Y registers, respectively, to obtain∣∣ψ1

C,xC ,yC

〉
=

∑
x∈Xn,y∈Yn

√
µ⊗n(x, y|xC , yC) |xxyy〉

∑
a∈An,b∈Bn

|ξxyab〉 |ab〉 |0〉

where |ξxyab〉 = (
√
Mx
a ⊗

√
Ny
b ) |ξ〉.

Alice and Bob then run a distributed search protocol controlled on the XY AB registers.
Fix (x, y, a, b). The protocol proceeds as follows: Alice and Bob divide the multiset C into
groups D1, . . . , Dq, each of size m = d1/ε′e. For each ` = 1, . . . , q, Alice and Bob perform a
distributed version of the Aaronson-Ambainis 3-dimensional search algorithm [1] to determine
whether there is a coordinate D` contains a losing coordinate – i.e., a coordinate i ∈ D` such
that V (xi, yi, ai, bi) = 0.

The search protocol for a group D` works as follows. Whenever the Aaronson-Ambainis
algorithm is in the state

∑
i γi,z |i, z〉, where |i〉 corresponds to an index in D`, and |z〉 is

a qubit indicating whether a marked item has been found, the joint state between Alice
and Bob will be

∑
i γi,z |i〉 ⊗ |z〉 ⊗ |i〉, where Alice holds the first |i〉 and |z〉, and Bob holds

the second |i〉. Thus, Alice and Bob query locations are “synchronized”. When Aaronson-
Ambainis algorithm has to perform a query controlled on |i〉, Bob sends the qubit containing
|bi〉. Alice, controlled on |bi〉, performs |z〉 7→ |z ⊕ V (xi, yi, ai, bi)⊕ 1〉 – note that Alice can
perform this, because in addition to xi, ai, and bi, she also has access to yi because yC
is public. We perform an additional XOR with 1 because a “marked item” for the search
algorithm corresponds to a losing coordinate. Alice then sends back |bi〉 to Bob. The
other non-query transformations of the Aaronson-Ambainis algorithm are handled as in the
the protocol described in [1]. Each step of the algorithm incurs at most O(log |B|) qubits
of communication, and there are O(

√
m) steps, resulting in O(

√
m log |B|) qubits of total

communication. If D` contains a losing coordinate, then this protocol will succeed in finding
one with probability at least 2/3.

If for at least one `, Alice and Bob find a losing coordinate for G`, Alice sets the R register
to 0; otherwise, it sets it to 1. Thus the total amount of communication of this protocol is
T = O(q

√
m log |B|) = O(

√
1/ε′ log 1/η log |B|). The final state of the protocol looks like

|ψC,xC ,yC
〉 =

∑
x,y

√
µ⊗n(x, y|xC , yC) |xxyy〉

∑
a,b

∣∣ξ′xyab〉 |ab〉 (αCxyab |1〉+ βCxyab |0〉),

where
∣∣∣ξ′xyab〉 = |ξxyab〉 ⊗ |wCxyab〉 with |wCxyab〉 denoting the workspace qubits of the two

players.
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Fix a setting of the registers XY AB = (x, y, a, b). Suppose there was no i ∈ [n] such
that V (xi, yi, ai, bi) = 0. Then the search algorithm will never find a losing coordinate
in any of the G`’s, so for all C, the we have βCxyab = 0. On the other hand, suppose
there were at least ε′n losing coordinates. We analyze, for a fixed (x, y, a, b), the error
quantity

∑
C p(C) |αCxyab|2. We can write p(C) =

∏
` p(D`), because each index in C is

chosen uniformly and independently at random. Furthermore, we can decompose |αCxyab|2 =∏
` |αD`xyab|2, where αD`xyab is the probability amplitude that the Aaronson-Ambainis

protocol does not find a losing coordinate in D`. Thus the error quantity can be written
as
∏
`

∑
D`
p(D`)|αD`xyab|2 = (

∑
D p(D)|αDxyab|2)q. Each D` independently has at least

1− (1− ε′)m ≥ 1− 1/e probability of containing a losing coordinate. When D` has a losing
coordinate, the Aaronson-Ambainis search protocol will succeed in finding it with probability
at least 2/3. Thus the error quantity is at most(

Pr(D contains losing coordinate) · (1/3) + Pr(D does not have losing coordinate)
)q

≤ (1/3 + 1/e)q

= exp(−Ω(q)) = η.

This establishes the requisite properties of the search protocol in the case of k = 2.
The extension to general k parties is straightforward. At the beginning of the protocol, a

multiset C = D1 · · ·Dq and inputs xC are publically visible to all players. They start with an
analogous initial state |ψC,xC

〉, where each player j has access to registers X(·,j)X
′
(·,j)EjA(·,j);

player 1 also has access to register R. They perform the distributed Aaronson-Ambainis
protocol independently on all D`. There are k − 1 communication channels, one between the
first player and all the other players. Whenever a query is to be made, player j ∈ {2, . . . , k}
sends her answer symbol a(i,j) the first player, who then computes V (x(i,·), a(i,·)). The other
non-query transformations of the algorithm are also easily extended to the multiplayer case.
The total communication is T = O(q

√
m log |A|) = O(

√
1/ε′ log 1/η log |A|), where A is the

output alphabet for all k players.

Proof of Claim 5.4. Fix a C, xC . Fix a player j ∈ [k]. Take the start state ψ0
C,xC

defined
above (extended appropriately to k players), and trace out the X ′(C,j) register: θ0

C,xC
=

trX′
(C,j)

(ψ0
C,xC

). Since µ⊗n is a product distribution across players and also across game

coordinates, we have that θ0
C,xC

= U
X(C,j) ⊗ φ0

C,xC
where UX(C,j) is the maximally mixed

state for the register X(C,j), and∣∣φ0
C,xC

〉
= |xC 〉XCX

′
C

∑
x(·,−j)

√
µ⊗n−j (x(·,−j)|xC)

∣∣x(·,−j)x(·,−j)
〉X(C,−j)X

′
(C,−j) |ξ〉E |0〉R

where µ⊗n−j denotes the marginal distribution of µ⊗n on all players inputs, except for the jth
player. Here, we used the simplifying assumption that µ is the uniform distribution. The
search protocol described above never interacts with the X ′

C
registers. Thus, we can view

the protocol as the jth player receiving a uniformly random input drawn from, UX(C,j) , and
shares an entangled state φ0

C,xC
with players [k] − {j}. The rest of the protocol is some

two-way communication between player j and every one else. J

We now wish to analyze the min-entropy of player j’s input register XC,j relative to
the state of all other players. We appeal to the beautiful result of Nayak and Salzman [17],
whose theorem statement we reproduce here:

CCC 2015



534 Parallel Repetition for Entangled k-player Games via Fast Quantum Search

I Theorem 5.5 ([17]). Consider a communication protocol, without prior entanglement,
where Alice receives a uniformly random n-bit input X, and interacts with Bob over a quantum
communication channel. Let ψXB be the final joint state of Alice’s input X and Bob’s state
in the protocol. Then, for any measurement strategy {Mx}x that Bob applies to his own state,
the probability that Bob guesses Alice’s input X correct is at most 22mA/2n, where mA is the
number of qubits sent from Alice to Bob over the course of the protocol.

We now rephrase their theorem to use relative min-entropy instead of guessing probabilities.
Let α be the optimal guessing probability for Bob. Then, the quantum conditional min-entropy
Hmin(X|B)ψ is defined to be − logα. However, by SDP duality, we have the alternative
characterization that Hmin(X|B)ψ = − infσB S∞(ψXB‖idX ⊗ σB) [16]. Let σB be a state
achieving this infimum. Then logα = S∞(ψXB‖idX ⊗ σB) = S∞(ψXB‖ 1

2n idX ⊗ σB) − n.
By the theorem of Nayak and Salzman, logα ≤ 2mA − n, so S∞(ψXB‖ 1

2n idX ⊗ σB) =
S∞(ψXB‖ψX ⊗ σB) ≤ 2mA, where we used the fact that ψX is the uniform distribution.

To apply this theorem to our setting, we can treat player j as “Alice” and the rest of the
players as “Bob”. Alice exchanges at most T qubits with Bob. The crucial component of the
Nayak-Salzman theorem is that Bob’s probability of guessing does not depend on how many
qubits he sent to Alice! Thus, we can imagine that in the beginning of the protocol he sent
the Ej register of the shared entangled state φ0

C,xC
to Alice first. We have that there exists

a state σZ−j

C,xC
such that

2T ≥ S∞(ψX(·,j)Z−j

C,xC
‖ψX(·,j)

C,xC
⊗ σZ−j

C,xC
).

6 Open problems

We conclude with a variety of open problems.
1. Is it possible to extend the Grover search analysis to handle CQ games?
2. Is strong parallel repetition possible with the entangled value of free games? In other

words, can the base of 1− ε3/2 of Theorem 1.1 be improved to 1− ε?
3. Is the base of 1− ε2 for the repeated classical value of free games tight? If so, this would

mean that there is a separation of classical and quantum parallel repetition for free games.
4. It was shown by [10] that the dependence on the output alphabet size, for classical

parallel repetition, is necessary – even for free games. However, Holenstein showed the
repeated game value for non-signaling games has no such alphabet dependence [12]. Is
this dependence necessary for the quantum case?

5. Can we identify an interesting class of games for which we can prove improved parallel
repetition theorems, by designing efficient communication protocols to generate advice
states?

6. The mantra, “Better parallel repetition theorems from better communication protocols,”
suggests an intriguing connection between games and communication protocols. Although
games are protocols that forbid communication between the players, one can define the
communication complexity of a game as the minimum communication needed for the
players to determine whether they have won or lost the game. Our mantra suggests a
relationship between the value and communication complexity of a game. What is the
nature of this relationship?

7. Can one use these techniques to prove parallel repetition for entangled games with an
arbitrary input distribution?
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Upper Bounds on Quantum Query Complexity
Inspired by the Elitzur-Vaidman Bomb Tester
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Abstract
Inspired by the Elitzur-Vaidman bomb testing problem [19], we introduce a new query complexity
model, which we call bomb query complexity B(f). We investigate its relationship with the usual
quantum query complexity Q(f), and show that B(f) = Θ(Q(f)2).

This result gives a new method to upper bound the quantum query complexity: we give a
method of finding bomb query algorithms from classical algorithms, which then provide noncon-
structive upper bounds on Q(f) = Θ(

√
B(f)). We subsequently were able to give explicit quan-

tum algorithms matching our upper bound method. We apply this method on the single-source
shortest paths problem on unweighted graphs, obtaining an algorithm with O(n1.5) quantum
query complexity, improving the best known algorithm of O(n1.5√logn) [21]. Applying this
method to the maximum bipartite matching problem gives an O(n1.75) algorithm, improving the
best known trivial O(n2) upper bound.
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Keywords and phrases Quantum Algorithms, Query Complexity, Elitzur-Vaidman Bomb Tester,
Adversary Method, Maximum Bipartite Matching

Digital Object Identifier 10.4230/LIPIcs.CCC.2015.537

1 Introduction

Quantum query complexity is an important method of understanding the power of quantum
computers. In this model we are given a black-box containing a boolean string x = x1 · · ·xN ,
and we would like to calculate some function f(x) with as few quantum accesses to the black-
box as possible. It is often easier to give bounds on the query complexity than to the time
complexity of a problem, and insights from the former often prove useful in understanding
the power and limitations of quantum computers. One famous example is Grover’s algorithm
for unstructured search [22]; by casting this problem into the query model it was shown that
Θ(
√
N) queries was required [7], proving that Grover’s algorithm is optimal.
Several methods have been proposed to bound the quantum query complexity. Upper

bounds are almost always proven by finding better query algorithms. Some general methods
of constructing quantum algorithms have been proposed, such as quantum walks [3, 45, 34, 28]
and learning graphs [6]. For lower bounds, the main methods are the polynomial method [5]
and adversary method [2]. In particular, the general adversary lower bound [27] has been
shown to tightly characterize quantum query complexity [42, 43, 33], but calculating such a
tight bound seems difficult in general. Nevertheless, the general adversary lower bound is
valuable as a theoretical tool, for example in proving composition theorems [43, 33, 30] or
showing nonconstructive (!) upper bounds [30].

© Cedric Yen-Yu Lin and Han-Hsuan Lin;
licensed under Creative Commons License CC-BY

30th Conference on Computational Complexity (CCC’15).
Editor: David Zuckerman; pp. 537–566

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CCC.2015.537
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


538 Upper Bounds on Quantum Query Complexity

Our work
To improve our understanding of quantum query complexity, we introduce and study an
alternative oracle model, which we call the bomb oracle (see Section 3 for the precise definition).
Our model is inspired by the concept of interaction free measurements, illustrated vividly
by the Elitzur-Vaidman bomb testing problem [19], in which a property of a system can
be measured without disturbing the system significantly. Like the quantum oracle model,
in the bomb oracle model we want to evaluate a function f(x) on a hidden boolean string
x = x1 · · ·xN while querying the oracle as few times as possible. In this model, however, the
bomb oracle is a controlled quantum oracle with the extra requirement that the algorithm
fails if the controlled query returns a 1. This seemingly impossible task can be tackled using
the quantum Zeno effect [36], in a fashion similar to the Elitzur-Vaidman bomb tester [32]
(Section 2.1).

Our main result (Theorem 4.1) is that the bomb query complexity, B(f), is characterized
by the square of the quantum query complexity Q(f):

I Theorem 4.1.

B(f) = Θ(Q(f)2). (1)

We prove the upper bound, B(f) = O(Q(f)2) (Theorem 4.2), by adapting Kwiat et al.’s
solution of the Elitzur-Vaidman bomb testing problem (Section 2.1, [32]) to our model. We
prove the lower bound, B(f) = Ω(Q(f)2) (Theorem 4.3), by demonstrating that B(f) is lower
bounded by the square of the general adversary bound [27], (Adv±(f))2. The aforementioned
result that the general adversary bound tightly characterizes the quantum query complexity
[42, 43, 33], Q(f) = Θ(Adv±(f)), allows us to draw our conclusion.

This characterization of Theorem 4.1 allows us to give nonconstructive upper bounds
to the quantum query complexity for some problems. For some functions f a bomb query
algorithm is easily designed by adapting a classical algorithm: specifically, we show that
(stated informally):

I Theorem 5.1 (informal). Suppose there is a classical algorithm that computes f(x) in
T queries, and the algorithm guesses the result of each query (0 or 1), making no more
than an expected G mistakes for all x. Then we can design a bomb query algorithm that
uses O(TG) queries, and hence B(f) = O(TG). By our characterization of Theorem 4.1,
Q(f) = O(

√
TG).

This result inspired us to look for an explicit quantum algorithm that reproduces the
query complexity O(

√
TG). We were able to do so:

I Theorem 5.2. Under the assumptions of Theorem 5.1, there is an explicit algorithm
(Algorithm F.1) for f with query complexity O(

√
TG).

Using Algorithm F.1, we were able to give an O(n3/2) algorithm for the single-source
shortest paths (SSSP) problem in an unweighted graph with n vertices, beating the best-
known O(n3/2√logn) algorithm [21]. A more striking application is our O(n7/4) algorithm
for maximum bipartite matching; in this case the best-known upper bound was the trivial
O(n2), although the time complexity of this problem had been studied in [4] (and similar
problems in [16]).

Finally, in Section 7 we briefly discuss a related query complexity model, which we call the
projective query complexity P (f), in which each quantum query to x is immediately followed
by a classical measurement of the query result. This model seems interesting to us because
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its power lies between classical and quantum: we observe that P (f) ≤ B(f) = Θ(Q(f)2) and
Q(f) ≤ P (f) ≤ R(f), where R(f) is the classical randomized query complexity. We note
that Regev and Schiff [41] showed that P (OR) = Θ(N).

Past and related work
Mitchison and Jozsa have proposed a different computational model called counterfactual
computation [37], also based on interaction-free measurement. In counterfactual computation
the result of a computation may be learnt without ever running the computer. There has
been some discussion on what constitutes counterfactual computation; see for example
[26, 38, 25, 46, 24, 44, 47].

There have also been other applications of interaction-free measurement to quantum
cryptography. For example, Noh has proposed counterfactual quantum cryptography [40],
where a secret key is distributed between parties, even though a particle carrying secret
information is not actually transmitted. More recently, Brodutch et al. proposed an adaptive
attack [11] on Wiesner’s quantum money scheme [48]; this attack is directly based off Kwiat
et al.’s solution of the Elitzur-Vaidman bomb testing problem [32].

Our Algorithm F.1 is very similar to Kothari’s algorithm for the oracle identification
problem [31], and we refer to his analysis of the query complexity in our work.

The projective query model we detail in Section 7 was, to our knowledge, first considered
by Aaronson in unpublished work in 2002 [1].

Discussion and outlook
Our work raises a number of open questions. The most obvious ones are those pertaining
to the application of our recipe for turning classical algorithms into bomb algorithms,
Theorem 5.1:

Can we generalize our method to handle non-boolean input and output? If so, we might
be able to find better upper bounds for the adjacency-list model, or to study graph
problems with weighted edges.
Can our explicit (through Theorem 5.2) algorithm for maximum bipartite matching be
made more time efficient? The best known quantum algorithm for this task has time
complexity O(n2 logn) in the adjacency matrix model [4].
Finally, can we find more upper bounds using Theorem 5.1? For example, could the
query complexity of the maximum matching problem on general nonbipartite graphs be
improved with Theorem 5.1, by analyzing the classical algorithm of Micali and Vazirani
[35]?

Perhaps more fundamental, however, is the possibility that the bomb query complexity
model will help us understand the relationship between the classical randomized query
complexity, R(f), and the quantum query complexity Q(f). It is known [5] that for all total
functions f , R(f) = O(Q(f)6); however, there is a long-standing conjecture that actually
R(f) = O(Q(f)2). In light of our results, this conjecture is equivalent to the conjecture that
R(f) = O(B(f)). Some more open questions, then, are the following:

Can we say something about the relationship between R(f) and B(f) for specific classes
of functions? For example, is R(f) = O(B(f)2) for total functions?
Referring to the notation of Theorem 5.1, we have B(f) = O(TG). Is the quantity G
related to other measures used in the study of classical decision-tree complexity, for
example the certificate complexity, sensitivity [14], block sensitivity [39], or (exact or
approximate) polynomial degree? (For a review, see [12].)
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What about other query complexity models that might help us understand the relationship
between R(f) and Q(f)? One possibility is the projective query complexity, P (f),
considered in Section 7. Regev and Schiff [41] have shown (as a special case of their
results) that even with such an oracle, P (OR) = Θ(N) queries are needed to evaluate
the OR function.

We hope that further study on the relationship between bomb and classical randomized
complexity will shed light on the power and limitations of quantum computation.

2 Preliminaries

2.1 The Elitzur-Vaidman bomb testing problem
The Elitzur-Vaidman bomb testing problem [19] is a well-known thought experiment to
demonstrate the possibility of interaction free measurements, a measurement on a property
of a system without disturbing the system.

The bomb-testing problem is as follows: assume we have a bomb that is either a dud
or a live bomb. The only way to interact with the bomb is to probe it with a photon: if
the bomb is a dud, then the photon passes through unimpeded; if the bomb is live, then
the bomb explodes. We would like to determine whether the bomb is live or not without
exploding it. If we pass the photon through a beamsplitter before probing the bomb, we can
implement the controlled probe, pictured below:

|c〉 • |c〉
|0〉 I or X explodes if 1

(2)

The controlled gate is I if the bomb is a dud, and X if it is live. [32] shows how to
determine whether a bomb was live with arbitrarily low probability of explosion with the
following scheme: writing R(θ) = exp(iθX), the following circuit determines whether the
bomb is live with failure probability O(θ):

|0〉 R(θ) • R(θ) •

|0〉 I or X
. . .

|0〉 I or X

π/(2θ) times in total

(3)

If the bomb is a dud, then the controlled probes do nothing, and repeated application
of R(θ) rotates the control bit from |0〉 to |1〉. If the bomb is live, the bomb explodes with
O(θ2) probability in each application of the probe, projecting the control bit back to |0〉.
After O(1/θ) iterations the control bit stays in |0〉, with only a O(θ) probability of explosion.
Using O(1/θ) operations, we can thus tell a dud bomb apart from a live one with only O(θ)
probability of explosion.

2.2 Quantum query complexity
Throughout this paper, all functions f which we would like to calculate are assumed to have
boolean input, i.e. the domain is D ⊆ {0, 1}N .

For a boolean string x ∈ {0, 1}N , the quantum oracle Ox is a unitary operator that acts
on a one-qubit record register and an N -dimensional index register as follows (⊕ is the XOR
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function):

Ox|r, i〉 = |r ⊕ xi, i〉 (4)

|r〉
Ox

|r ⊕ xi〉
|i〉 |i〉

The quantum query complexity Qδ(f) is the minimum number of applications of Ox’s in
the circuit required to determine f(x) with error no more than δ for all x. Since δ can be
amplified by majority voting, the choice of δ only affects the query complexity by a log(1/δ)
factor. We therefore often set δ = 0.01 and write Q0.01(f) as Q(f).

3 Bomb query complexity

In this section we introduce a new query complexity model, which we call the bomb query
complexity. A circuit in the bomb query model is a restricted quantum query circuit, with
the following restrictions on the usage of the quantum oracle:
1. We have an extra control register |c〉 used to control whether Ox is applied (we call the

controlled version COx):

COx|c, r, i〉 = |c, r ⊕ (c · xi), i〉. (5)

where · indicates boolean AND.
2. The record register, |r〉 in the definition of COx above, must contain |0〉 before COx is

applied.
3. After COx is applied, the record register is immediately measured in the computational

basis (giving the answer c · xi), and the algorithm terminates immediately if a 1 is
measured (if c · xi = 1). We refer to this as the bomb blowing up or the bomb exploding.

|c〉 • |c〉
|0〉

Ox
bomb explodes if c · xi = 1

|i〉 |i〉

(6)

We define the bomb query complexity Bε,δ(f) to be the minimum number of times the
above circuit needs to be applied in an algorithm such that the following hold for all input x:

The algorithm reaches the end without the bomb exploding with probability at least
1− ε. We refer to the probability that the bomb explodes as the probability of explosion.
The total probability that the bomb either explodes or fails to output f(x) correctly is
no more than δ ≥ ε.

The above implies that the algorithm outputs the correct answer with probability at least
1− δ.

We often set δ = 0.01, and write simply Bε(f) = Bε,0.01(f). Sometimes we will even omit
the ε.

We will continue our discussion of the bomb query complexity in Appendix A. Note also
that the definition of the bomb query complexity is inherently asymmetric with respect to 0
and 1 in the input, since the bomb explodes only on a 1. We will define a symmetric variant
in Appendix A.2, although the proof that this variant is equivalent requires our main result,
Theorem 4.1.
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4 Main result

Our main result is the following:

I Theorem 4.1. For all functions f with boolean input alphabet, and numbers ε satisfying
0 < ε ≤ 0.01,

Bε,0.01(f) = Θ
(
Q0.01(f)2

ε

)
. (7)

Here 0.01 can be replaced by any constant no more than 1/10.

Proof. The upper bound Bε,δ(f) = O(Qδ(f)2/ε) is proved in Theorem 4.2. The lower bound
Bε,δ(f) = Ω(Q0.01(f)2/ε) is proved in Theorem 4.3. J

4.1 Upper bound
I Theorem 4.2. For all functions f with boolean input alphabet, and numbers ε, δ satisfying
0 < ε ≤ δ ≤ 1/10,

Bε,δ(f) = O(Qδ(f)2/ε). (8)

The proof follows the solution of Elitzur-Vaidman bomb-testing problem ([32], or Section
2.1). By taking advantage of the Quantum Zeno effect [36], using O(Q(f)

ε ) calls to Mx, we
can simulate one call to Ox with probability of explosion O( ε

Q(f) ). Replacing all Ox queries
with this construction results in a bounded error algorithm with probability of explosion
O( ε

Q(f)Q(f)) = O(ε).
The complete proof is given in Appendix B.

4.2 Lower bound
I Theorem 4.3. For all functions f with boolean input alphabet, and numbers ε, δ satisfying
0 < ε ≤ δ ≤ 1/10,

Bε,δ(f) = Ω(Q0.01(f)2/ε). (9)

The proof of this result uses the generalized adversary bound Adv±(f) [27]: we show
that Bε(f) = Ω(Adv±(f)2/ε), and then use the known result that Q(f) = O(Adv±(f)) [33].
The complete proof is given in Appendix C.

5 A general quantum algorithm inspired by B(f)

5.1 Using classical algorithms to design bomb query algorithms
We show nonconstructive upper bounds on Q(f) for some functions f , by creating bomb
query algorithms and using that Q(f) = Θ(

√
εBε(f)), as the following theorem:

I Theorem 5.1. Let f : D → E, where D ⊆ {0, 1}N . Suppose there is a classical randomized
query algorithm A, that makes at most T queries, and evaluates f with bounded error. Let
the query results of A on random seed sA be xp1 , xp2 , · · · , xpT̃ (x)

, T̃ (x) ≤ T , where x is the
hidden query string.

Suppose there is another (not necessarily time-efficient) randomized algorithm G, with
random seed sG, which takes as input xp1 , · · · , xpt−1 and sA, and outputs a guess for the next
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query result xpt of A. Assume that G makes no more than an expected total of G mistakes
(for all inputs x). In other words,

IEsA,sG


T̃ (x)∑
t=1

∣∣G(xp1 , · · · , xpt−1 , sA, sG)− xpt

∣∣ ≤ G ∀x. (10)

Note that G is given the random seed sA of A, so it can predict the next query index of A.
Then Bε(f) = O(TG/ε), and thus (by Theorem 4.1) Q(f) = O(

√
TG).

As an example, take f to be the OR function. One can easily find a classical algorithm
with T = N (the algorithm takes at most N queries) and G = 1 (the guessing algorithm
always guesses the next query to be 0; since the algorithm terminates on a 1, it makes at
most one mistake).

The proof idea is as follows: we take the classical algorithm and replace each classical
query by the construction of Theorem 4.2 (see Eq. 29), using O(G/ε) bomb queries each
time. On each query, the bomb has a O(ε/G) chance of exploding when the guess is wrong,
and no chance of exploding when the guess is correct. Therefore the total probability of
explosion is O(ε/G) ·G = O(ε). The total number of bomb queries used is O(TG/ε).

For the full technical proof, see Appendix D.

5.2 Explicit quantum algorithm for Theorem 5.1
In this section we give an explicit quantum algorithm, in the setting of Theorem 5.1, that
reproduces the given query complexity. This algorithm is very similar to the one given by R.
Kothari for the oracle identification problem [31].

I Theorem 5.2. Under the assumptions of Theorem 5.1, there is an explicit quantum
algorithm for f with query complexity O(

√
TG).

Proof. The explicit algorithm (Algorithm F.1) is given in Appendix F; we will give a high-level
description shortly. We need the following quantum search algorithm as a subroutine:

I Theorem 5.3 (Finding the first marked element in a list). Suppose there is an ordered list of
N elements, and each element is either marked or unmarked. Then there is a bounded-error
quantum algorithm for finding the first marked element in the list (or determines that no
marked elements exist), such that:

If the first marked element is the d-th element of the list, then the algorithm uses an
expected O(

√
d) time and queries.

If there are no marked elements, then the algorithm uses O(
√
N) time and queries, but

always determines correctly that no marked elements exist.

This algorithm is straightforward to derive given the result in [18], and was already
used in Kothari’s algorithm [31]. We give the algorithm (Algorithm E.2) and its analysis in
Appendix E.

We now describe our explicit quantum algorithm (Algorithm F.1 in Appendix F). The
main idea for the algorithm is this: we first assume that the guesses made by G are correct.
By repeatedly feeding the output of G back into A and G, we can obtain a list of query values
for A without any queries to the actual black box. We then search for the first deviation of
the string x from the predictions of G; assuming the first deviation is the d1-th query, by
Theorem 5.3 the search takes O(

√
d1) queries (ignoring error for now). We then know that
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all the guesses made by G are correct up to the (d1 − 1)-th query, and incorrect for the d1-th
query.

With the corrected result of the first d1 queries, we now continue by assuming again
the guesses made by G are correct starting from the (d1 + 1)-th query, and search for the
location of the next deviation, d2. This takes O(

√
d2 − d1) queries; we then know that all

the guesses made by G are correct from the (d1 + 1)-th to (d2 − 1)-th query, and incorrect
for the d2-th one. Continuing in this manner, we eventually determine all query results of A
after an expected G iterations. The expected number of queries is

O

(
G∑
i=1

√
di − di−1

)
= O

(√
TG
)

(11)

by the Cauchy-Schwarz inequality.1 J

Note that while Algorithm F.1 has query complexity O(
√
TG), the time complexity may

be much higher. After all, Algorithm F.1 proceeds by simulating A query-by-query, although
the number of actual queries to the oracle is smaller. Whether or not we can get a algorithm
faster than A using this approach may depend on the problem at hand.

6 Improved upper bounds on quantum query complexity

We now use Theorem 5.2 to improve the quantum query complexity of certain graph problems.

6.1 Single source shortest paths for unweighted graphs
I Problem 6.1 (Single source shortest paths (SSSP) for unweighted graphs). The adjacency
matrix of a directed graph n-vertex graph G is provided as a black box. Given a fixed vertex
vstart, our task is to find the lengths of the shortest paths from vstart to all other vertices w
in G.

I Theorem 6.2. The quantum query complexity of single-source shortest paths in an un-
weighted graph is Θ(n3/2) in the adjacency matrix model.

Proof. The lower bound of Ω(n3/2) is known [17]. We show the upper bound by applying
Theorem 5.2 to the breadth-first search (BFS) algorithm. Although T = O(n2) queries are
required for BFS in the worst case, if we always guess that (v, w) is not an edge, then the
algorithm only needs to make G = n− 1 mistakes (find n− 1 actual edges) to construct the
BFS tree. Therefore Q(f) = O(

√
TG) = O(n3/2). J

The previous best known quantum algorithm for unweighted SSSP, to our best knowledge,
was given by Furrow [21]; that algorithm has query complexity O(n3/2√logn).

We now consider the quantum query complexity of unweighted k-source shortest paths
(finding k shortest-path trees rooted from k beginning vertices). If we apply BFS on k

different starting vertices, then the expected number of wrong guesses is no more than
G = k(n − 1); however, the total number of edges we query need not exceed T = O(n2),
since an edge never needs to be queried more than once. Therefore

1 It may seem like we actually need an extra logarithmic factor in the query complexity to keep the total
error constant. However, Kothari showed [31] that multiple calls to Algorithm E.2 can be composed
without an extra logarithmic factor.
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I Corollary 6.3. The quantum query complexity of unweighted k-source shortest paths in the
adjacency matrix model is O(k1/2n3/2), where n is the number of vertices.

We use this idea – that T need not exceed O(n2) when dealing with graph problems – again
in the following section.

6.2 Maximum bipartite matching
I Problem 6.4 (Maximum bipartite matching). We are given as black box the adjacency
matrix of an n-vertex undirected bipartite graph G = (V = X ∪ Y,E). A matching of G is a
list of edges of G that do not share vertices. Our task is to find a maximum matching of G,
i.e. a matching that contains the largest possible number of edges.

I Theorem 6.5. The quantum query complexity of maximum bipartite matching is O(n7/4)
in the adjacency matrix model, where n is the number of vertices.

The proof proceeds by analyzing the classical Hopcroft-Karp algorithm [23], which uses up
to O(

√
n) iterations of modified breadth-first search and depth-first search. It will therefore

turn out that G = O(
√
n · n) = O(n3/2); however, T = O(n2), since no edge needs to be

queried more than once. This gives Q = O(
√
TG) = O(n7/4).

We give the complete proof in Appendix G.
To our knowledge, this is the first known nontrivial upper bound on the query complexity

of maximum bipartite matching.2 The time complexity of this problem was studied by
Ambainis and Spalek in [4]; they gave an upper bound of O(n2 logn) time in the adjacency
matrix model. A lower bound of Ω(n3/2) for the query complexity of this problem was given
in [9, 49].

For readers familiar with network flow, the arguments in this section also apply to Dinic’s
algorithm for maximum flow [15] on graphs with unit capacity, i.e. where the capacity of
each edge is 0 or 1. On graphs with unit capacity, Dinic’s algorithm is essentially the same
as Hopcroft-Karp’s, except that augmenting paths are over a general, nonbipartite flow
network. (The set S in Step 2(c) of Algorithm G.1 is generally referred to as a blocking
flow in this context.) It can be shown that only O(min{m1/2, n2/3}) iterations of Step
2 are required [29, 20], where m is the number of edges of the graph. Thus T = O(n2),
G = O(min{m1/2, n2/3}n), and therefore

I Theorem 6.6. The quantum query complexity of the maximum flow problem in graphs
with unit capacity is O(min{n3/2m1/4, n11/6}), where n and m are the number of vertices
and edges in the graph, respectively.

It is an open question whether a similar result for maximum matching in a general
nonbipartite graph can be proven, perhaps by applying Theorem 5.2 to the classical algorithm
of Micali and Vazirani [35].

7 Projective query complexity

We end this paper with a brief discussion on another query complexity model, which we
will call the projective query complexity. This model is similar to the bomb query model
in that the only way of accessing xi is through a classical measurement; however, in the

2 The trivial upper bound is O(n2), where all pairs of vertices are queried.
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projective query model the algorithm does not terminate if a 1 is measured. Our motivation
for considering the projective query model is that its power is intermediate between the
classical and quantum query models. To the best of our knowledge, this model was first
considered in 2002 in unpublished results by S. Aaronson [1].

A circuit in the projective query complexity model is a restricted quantum query circuit,
with the following restrictions on the use of the quantum oracle:
1. We have an extra control register |c〉 used to control whether Ox is applied (we call the

controlled version COx):

COx|c, r, i〉 = |c, r ⊕ (c · xi), i〉. (12)

where · indicates boolean AND.
2. The record register, |r〉 in the definition of COx above, must contain |0〉 before COx is

applied.
3. After COx is applied, the record register is immediately measured in the computational

basis, giving the answer c · xi. The result, a classical bit, can then be used to control
further quantum unitaries (although only controlling the next unitary is enough, since
the classical bit can be stored).

|c〉 • |c〉
|0〉

Ox
c · xi

|i〉 |i〉

(13)

We wish to evaluate a function f(x) with as few calls to this projective oracle as possible.
Let the number of oracle calls required to evaluate f(x), with at most δ error, be Pδ(f). By
gap amplification, the choice of δ only affects Pδ(f) by a factor of log(1/δ), and thus we will
often omit δ.

We can compare the definition in this section with the definition of the bomb query
complexity in Section 3: the only difference is that if c · xi = 1, the algorithm terminates in
the bomb model, while the algorithm can continue in the projective model. Therefore the
following is evident:

I Observation 7.1. Pδ(f) ≤ Bε,δ(f), and therefore P (f) = O(Q(f)2).

Moreover, it is clear that the projective query model has power intermediate between
classical and quantum (a controlled query in the usual quantum query model can be simulated
by appending a 0 to the input string), and therefore letting Rδ(f) be the classical randomized
query complexity,

I Observation 7.2. Qδ(f) ≤ Pδ(f) ≤ Rδ(f).

For explicit bounds on P , Regev and Schiff [41] have shown that for computing the OR
function, the projective query complexity loses the Grover speedup:

I Theorem 7.3 ([41]). P (OR) = Ω(N).

Note that this result says nothing about P (AND), since the definition of P (f) is asymmetric
with respect to 0 and 1 in the input.3

3 We could have defined a symmetric version of P , say P̃ , by allowing an extra guess on the measurement
result, similar to our construction of B̃ in Section A.2. Unfortunately, Regev and Schiff’s result, Theorem
7.3, do not apply to this case, and we see no obvious equivalence between P and P̃ .
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We observe that there could be a separation in both parts of the inequality Q ≤ P ≤ B:

Q(OR) = Θ(
√
N), P (OR) = Θ(N), B(OR) = Θ(N)

Q(PARITY ) = Θ(N), P (PARITY ) = Θ(N), B(PARITY ) = Θ(N2)

In the latter equation we used the fact that Q(PARITY ) = Θ(N) [5]. It therefore seems
difficult to adapt our lower bound method in Section 4.2 to P (f).

It would be interesting to find a general lower bound for P (f), or to establish more clearly
the relationship between Q(f), P (f), and R(f).

Acknowledgements. We are grateful to Scott Aaronson and Aram Harrow for many useful
discussions, and Scott Aaronson and Shelby Kimmel for valuable suggestions on a preliminary
draft. We also thank Andrew Childs for giving us permission to make use of his online proof
of the general adversary lower bound in [13]. Special thanks to Robin Kothari for pointing
us to his paper [31], and in particular his analysis showing that logarithmic factors can be
removed from the query complexity of Algorithm F.1. We also thank the anonymous referees
from QIP and CCC for their helpful comments. This work is supported by the ARO grant
Contract Number W911NF-12-0486. CYL gratefully acknowledges support from the Natural
Sciences and Engineering Research Council of Canada.

References
1 Scott Aaronson. Personal communication, 2014.
2 Andris Ambainis. Quantum lower bounds by quantum arguments. In Proceedings of the

32nd Annual ACM Symposium on Theory of Computing (STOC), pages 636–643, 2000.
3 Andris Ambainis. Quantum walk algorithm for element distinctness. SIAM Journal on

Computing, 37(1):210–239, 2007.
4 Andris Ambainis and Robert Špalek. Quantum algorithms for matching and network flows.

In Lecture Notes in Computer Science, volume 3884, pages 172–183. Springer, 2006.
5 Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald de Wolf. Quan-

tum lower bounds by polynomials. In Proceedings of the 39th Annual Symposium on Foun-
dations of Computer Science (FOCS), page 352, 1998.

6 Aleksandrs Belovs. Span programs for functions with constant-sized 1-certificates. In
Proceedings of the 44th Annual ACM Symposium on Theory of Computing (STOC), pages
77–84, 2012.

7 Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani. Strengths and
weaknesses of quantum computing. SIAM Journal on Computing, 26(5):1510–1523, 1997.

8 Claude Berge. Two theorems in graph theory. Proceedings of the National Academy of
Sciences of the United States of America, 43(9):842–844, 1957.

9 Aija Berzina, Andrej Dubrovsky, Rusins Freivalds, Lelde Lace, and Oksana Scegulnaja.
Quantum query complexity for some graph problems. In Lecture Notes in Computer Science,
volume 2932, pages 140–150. Springer, 2004.

10 Rajendra Bhatia. Matrix Analysis. Springer-Verlag, 1997.
11 Aharon Brodutch, Daniel Nagaj, Or Sattath, and Dominique Unruh. An adaptive attack

on Wiesner’s quantum money. arXiv preprint arXiv:1404.1507 [quant-ph], 2014.
12 Harry Buhrman and Ronald De Wolf. Complexity measures and decision tree complexity:

A survey. Theoretical Computer Science, 288:2002, 1999.
13 Andrew Childs. http://www.math.uwaterloo.ca/~amchilds/teaching/w13/l15.pdf,

2013.

CCC 2015

http://www.math.uwaterloo.ca/~amchilds/teaching/w13/l15.pdf


548 Upper Bounds on Quantum Query Complexity

14 Stephen Cook, Cynthia Dwork, and Rüdiger Reischuk. Upper and lower time bounds for
parallel random access machines without simultaneous writes. SIAM Journal on Computing,
15(1):87–97, 1986.

15 E. A. Dinic. Algorithm for solution of a problem of maximum flow in a network with power
estimation. Soviet Math Doklady, 11:1277–1280, 1970.

16 Sebastian Dörn. Quantum algorithms for matching problems. Theory of Computing Sys-
tems, 45(3):613–628, October 2009.

17 Christoph Dürr, Mark Heiligman, Peter Høyer, and Mehdi Mhalla. Quantum query com-
plexity of some graph problems. arXiv:quant-ph/0401091, 2004.

18 Christoph Dürr and Peter Høyer. A quantum algorithm for finding the minimum. arXiv
preprint arXiv:quant-ph/9607014, 1996.

19 Avshalom C. Elitzur and Lev Vaidman. Quantum mechanical interaction-free measure-
ments. Foundations of Physics, 23(7):987–997, July 1993.

20 Shimon Even and R. Endre Tarjan. Network flow and testing graph connectivity. SIAM
Journal on Computing, 4(4):507–518, 1975.

21 Bartholomew Furrow. A panoply of quantum algorithms. Quantum Information and Com-
putation, 8(8):834–859, September 2008.

22 Lov K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings
of the 28th Annual ACM Symposium on the Theory of Computing (STOC), May 1996.

23 John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum matchings in
bipartite graphs. SIAM Journal on Computing, 2(4):225–231, 1973.

24 Onur Hosten and Paul G. Kwiat. Weak measurements and counterfactual computation.
arXiv preprint arXiv:quant-ph/0612159, 2006.

25 Onur Hosten, Matthew T. Rakher, Julio T. Barreiro, Nicholas A. Peters, and Paul Kwiat.
Counterfactual computation revisited. arXiv preprint arXiv:quant-ph/0607101, 2006.

26 Onur Hosten, Matthew T. Rakher, Julio T. Barreiro, Nicholas A. Peters, and Paul G.
Kwiat. Counterfactual quantum computation through quantum interrogation. Nature,
439:949–952, February 2006.

27 Peter Høyer, Troy Lee, and Robert Špalek. Negative weights make adversaries stronger. In
Proceedings of the 39th Annual ACM Symposium on Theory of Computing (STOC), pages
526–535, 2007.

28 Stacey Jeffery, Robin Kothari, and Frederic Magniez. Nested quantum walks with quantum
data structures. In Proceedings of the 24th ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1474–1485, 2012.

29 Alexander V. Karzanov. O nakhozhdenii maksimal’nogo potoka v setyakh spetsial’nogo
vida i nekotorykh prilozheniyakh. In L.A. Lyusternik, editor, Matematicheskie Voprosy
Upravleniya Proizvodstvom, volume 5, pages 81–94. Moscow State University Press, 1973.

30 Shelby Kimmel. Quantum adversary (upper) bound. Chicago Journal of Theoretical Com-
puter Science, 2013(4), 2013.

31 Robin Kothari. An optimal quantum algorithm for the oracle identification problem. In
Ernst W. Mayr and Natacha Portier, editors, Proceedings of the 31st International Sym-
posium on Theoretical Aspects of Computer Science (STACS), volume 25 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), pages 482–493, Dagstuhl, Germany, 2014.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

32 Paul Kwiat, Harald Weinfurter, Thomas Herzog, Anton Zeilinger, and Mark A. Kasevich.
Interaction-free measurement. Physical Review Letters, 74(24):4763, 1995.

33 Troy Lee, Rajat Mittal, Ben W. Reichardt, Robert Špalek, and Mario Szegedy. Quantum
query complexity of state conversion. In Proceedings of the 52nd IEEE Symposium on
Foundations of Computer Science (FOCS), pages 344–353, 2011.



C.Y.-Y. Lin and H.-H. Lin 549

34 Frédéric Magniez, Ashwin Nayak, Jérémie Roland, and Miklos Santha. Search via quantum
walk. SIAM Journal on Computing, 40(1):142–164, 2011.

35 Silvio Micali and Vijay V. Vazirani. An O(
√
|V | · |E|) algorithm for finding maximum

matching in general graphs. In Proceedings of the 21st Annual Symposium on Foundations
of Computer Science (FOCS), pages 17–27, 1980.

36 B. Misra and E. C. G. Sudarshan. The Zeno’s paradox in quantum theory. Journal of
Mathematical Physics, 18(4):756, 1977.

37 Graeme Mitchison and Richard Jozsa. Counterfactual computation. Proceedings of the
Royal Society A, 457(2009):1175–1194, 2001.

38 Graeme Mitchison and Richard Jozsa. The limits of counterfactual computation. arXiv
preprint arXiv:quant-ph/0606092, 2006.

39 Noam Nisan. CREW PRAMs and decision trees. SIAM Journal on Computing, 20(6):999–
1007, 1991.

40 Tae-Gon Noh. Counterfactual quantum cryptography. Physical Review Letters, 103:230501,
2009.

41 Oded Regev and Liron Schiff. Impossibility of a quantum speed-up with a faulty oracle. In
Lecture Notes in Computer Science, volume 5125, pages 773–781. Springer, 2008.

42 Ben W. Reichardt. Span programs and quantum query complexity: The general adver-
sary bound is nearly tight for every boolean function. In Proceedings of the 50th IEEE
Symposium on Foundations of Computer Science (FOCS), pages 544–551, 2009.

43 Ben W. Reichardt. Reflections for quantum query algorithms. In Proceedings of the 22nd
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 560–569, 2011.

44 Hatim Salih, Zheng-Hong Li, M. Al-Amri, and M. Suhail Zubairy. Protocol for direct
counterfactual quantum communication. Physical Review Letters, 110:170502, 2013.

45 Mario Szegedy. Quantum speed-up of Markov chain based algorithms. In Proceedings of
the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2004.

46 Lev Vaidman. The impossibility of the counterfactual computation for all possible outcomes.
arXiv preprint arXiv:quant-ph/0610174, 2006.

47 Lev Vaidman. Comment on "protocol for direct counterfactual quantum communication"
[arxiv:1206.2042]. arXiv preprint arXiv:1304.6689 [quant-ph], 2013.

48 Stephen Wiesner. Conjugate coding. ACM SIGACT News, 15(1), 1983.
49 Shengyu Zhang. On the power of Ambainis’s lower bounds. Theoretical Computer Science,

339(2-3):241–256, 2005.

A A more detailed discussion of bomb query complexity

We will continue our discussion of bomb query complexity from Section 3, to provide further
intuition and also alternative characterizations that will be useful for the proofs contained in
this appendix.

A.1 Properties of the bomb query complexity
Recall that a circuit in the bomb query model has the following restrictions on the usage of
the quantum oracle:

1. We have an extra control register |c〉 used to control whether Ox is applied (we call the
controlled version COx):

COx|c, r, i〉 = |c, r ⊕ (c · xi), i〉. (14)

where · indicates boolean AND.
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2. The record register, |r〉 in the definition of COx above, must contain |0〉 before COx is
applied.

3. After COx is applied, the record register is immediately measured in the computational
basis (giving the answer c · xi), and the algorithm terminates immediately if a 1 is
measured (if c · xi = 1). We refer to this as the bomb blowing up or the bomb exploding.

|c〉 • |c〉
|0〉

Ox
bomb explodes if c · xi = 1

|i〉 |i〉

(15)

We define the bomb query complexity Bε,δ(f) to be the minimum number of times the
above circuit needs to be applied in an algorithm such that the following hold for all input x:

The algorithm reaches the end without the bomb exploding with probability at least
1− ε. We refer to the probability that the bomb explodes as the probability of explosion.
The total probability that the bomb either explodes or fails to output f(x) correctly is
no more than δ ≥ ε.

The above implies that the algorithm outputs the correct answer with probability at least
1− δ.

The effect of the above circuit is equivalent to applying the following projector on |c, i〉:

Mx = CPx,0 =
N∑
i=1
|0, i〉〈0, i|+

∑
xi=0
|1, i〉〈1, i| (16)

= I −
∑
xi=1
|1, i〉〈1, i|. (17)

CPx,0 (which we will just call Mx in our proofs later on) is the controlled version of Px,0,
the projector that projects onto the indices i on which xi = 0:

Px,0 =
∑
xi=0
|i〉〈i|. (18)

Thus Circuit 15 is equivalent to the following circuit :

|c〉 • |c〉
|i〉 Px,0 (1− c · xi)|i〉

(19)

In this notation, the square of the norm of a state is the probability that the state has
survived to this stage, i.e. the algorithm has not terminated. The norm of (1− c · xi)|xi〉 is 1
if c · xi = 0 (the state survives this stage), and 0 otherwise (the bomb blows up).

A general circuit in this model looks like the following:

U0

•

U1

•

U2

•

U3

Px,0 Px,0 Px,0

. . .

(20)

It is not at all clear that gap amplification can be done efficiently in the bomb query
model to improve the error δ; after all, repeating the circuit multiple times increases the
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chance that the bomb blows up. However, it turns out that the complexity Bε,δ(f) is closely
related to Qδ(f), and therefore the choice of δ affects Bε,δ(f) by at most a log2(1/δ) factor
as long as δ ≥ ε (this follows from the main result, Theorem 4.1). We therefore often omit δ
by setting δ = 0.01, and write Bε,0.01(f) as Bε(f). Sometimes we even omit the ε.

A.2 A symmetric variant of the bomb query complexity
Note that the definition of the bomb query complexity B(f) is inherently asymmetric with
respect to 0 and 1 in the input: querying 1 causes the bomb to blow up, while querying
0 is safe. We will now define a symmetric bomb query model and its corresponding query
complexity, B̃ε,δ(f). We will also show (using the main result, Theorem 4.1) that this
definition is equivalent to the asymmetric version: B̃ε,δ(f) = Θ(Bε,δ)(f) for constant δ.

We consider modifying the bomb query model as follows. We require that the input
string x can only be accessed by the following circuit:

|c〉 • • |c〉
|0〉

Ox
bomb explodes if 1

|i〉 |i〉
|a〉 •

(21)

Compare with Circuit 15; the difference is that there is now an extra register |a〉, and the
bomb explodes only if both xi = a and the control bit is 1. In other words, the bomb explodes
if c · (xi ⊕ a) = 1. The three registers c, i, and a are allowed to be entangled, however. If we
discard the second register afterwards, the effect of this circuit, written as a projector, is

M̃x =
∑

i∈[N ],a∈{0,1}

|0, i, a〉〈0, i, a|+
∑

i,a:xi=a
|1, i, a〉〈1, i, a|. (22)

Let B̃ε,δ(f) be the required number of queries to this modified bomb oracle M̃x to calculate
f(x) with error no more than δ, with a probability of explosion no more than ε. Using
Theorem 4.1, we show that B̃ and B are equivalent up to a constant:

I Lemma A.1. If f : D → E, where D ⊆ {0, 1}N , and δ ≤ 1/10 is a constant, then
Bε,δ(f) = Θ(B̃ε,δ(f)).

Proof. It should be immediately obvious that Bε,δ(f) ≥ B̃ε,δ(f), since a query in the B
model can be simulated by a query in the B̃ model by simply setting a = 0. In the following
we show that Bε,δ(f) = O(B̃ε,δ(f)).

For each string x ∈ {0, 1}N , define the string x̃ ∈ {0, 1}2N by concatenating two copies
of x and flipping every bit of the second copy. In other words,

x̃i =
{
xi if i ≤ N
1− xi−N if i > N

. (23)

Let D̃ = {x̃ : x ∈ D}. Given a function f : D → {0, 1}, define f̃ : D̃ → {0, 1} by f̃(x̃) = f(x).
We claim that a B̃ query to x can be simulated by a B query to x̃. This can be seen by

comparing M̃x:

M̃x =
∑

i∈[N ],a

|0, i, a〉〈0, i, a|+
∑

i∈[N ],a:xi=a

|1, i, a〉〈1, i, a|. (24)
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and Mx̃:

Mx̃ =
∑
ĩ∈[2N ]

∣∣0, ĩ〉〈0, ĩ∣∣+
∑

ĩ∈[2N ]:x̃i=0

∣∣1, ĩ〉〈1, ĩ∣∣. (25)

Recalling the definition of x̃ in 23, we see that these two projectors are exactly equal if we
encode ĩ as (i, a), where i ≡ ĩ mod N and a = bi/Nc.

Since f̃(x̃) = f(x), we thus have B̃ε,δ(f) = Bε,δ(f̃). Our result then readily follows; it
can easily be checked that Q(f) = Q(f̃), and therefore by Theorem 4.1,

B̃ε,δ(f) = Bε,δ(f̃) = Θ
(
Q(f̃)2

ε

)
= Θ

(
Q(f)2

ε

)
(26)

J

There are some advantages to allowing the projector M̃x instead of Mx. First of all, the
inputs 0 and 1 in x are finally manifestly symmetric, unlike that in Mx (the bomb originally
blew up if xi = 1, but not if xi = 0). Moreover, we now allow the algorithm to guess an
answer to the query (this answer may be entangled with the index register i), and the bomb
blows up only if the guess is wrong, controlled on c. This flexibility may allow more leeway
in designing algorithms for the bomb query model, as we soon utilize.

B Proof of the upper bound for B(f) (Theorem 4.2)

We restate and prove Theorem 4.2:

I Theorem 4.2. For all functions f with boolean input alphabet, and numbers ε, δ satisfying
0 < ε ≤ δ ≤ 1/10,

Bε,δ(f) = O(Qδ(f)2/ε). (27)

Proof. Let θ = π/(2L) for some large positive integer L (chosen later), and let R(θ) be the
rotation(

cos θ − sin θ
sin θ cos θ

)
(28)

We claim that with 2L calls to the bomb oracle Mx = CPx,0, we can simulate Ox by the
following circuit with probability of explosion less than π2/(2L) and error O(1/L).

|r〉 X |r ⊕ xi〉

|0〉 R(θ) • • R(−θ) • |0〉 (discard)

|i〉 Px,0 Px,0 |i〉

repeat L times repeat L times (29)

In words, we simulate Ox acting on |r, i〉 by the following steps:
1. Append an ancilla qubit |0〉, changing the state into |r, 0, i〉.
2. Repeat the following L times:
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a. apply R(θ) on the second register
b. apply Mx on the third register controlled by the second register.
At this point, if the bomb hasn’t blown up, the second register should contain 1− xi.

3. Apply CNOT on the first register controlled by the second register; this copies 1− xi to
the first register.

4. Apply a NOT gate to the first register.
5. Repeat the following L times to uncompute the second (ancilla) register :

a. apply R(−θ) on the second register
b. apply Mx on the third register controlled by second register

6. Discard the second (ancilla) register.

We now calculate explicitly the action of the circuit on an arbitrary state to confirm our
claims above. Consider how the circuit acts on the basis state |r, 0, i〉 (the second register
being the appended ancilla). We break into cases:

If xi = 0, then Px,0|i〉 = |i〉, so the controlled projections do nothing. Thus in Step 2 the
rotation R(θ)L = R(π/2) is applied to the ancilla qubit, rotating it from 0 to 1. After
Step 2 then, the state is |r, 1, i〉. Step 3 and 4 together do not change the state, while
Step 5 rotates the ancilla back to 0, resulting in the final state |r, 0, i〉.
If xi = 1, then Px,0|i〉 = 0, and

Mx|0, i〉 = |0, i〉, Mx|1, i〉 = 0 (for xi = 1) (30)

Therefore in Step 2 and Step 5, after each rotation R(±θ), the projection CPx,0 projects
the ancilla back to 0:

MxR(θ)|0, i〉 = Mx(cos θ|0〉+ sin θ|1〉)|i〉 = cos θ|0, i〉 (for xi = 1) (31)

Each application of MxR(θ) thus has no change on the state other than to shrink its
amplitude by cos θ. The CNOT in Step 3 has no effect (since the ancilla stays in 0), and
Step 4 maps |r〉 to |r ⊕ 1〉. Since there are 2L applications of this shrinkage (in Step 2
and 5), the final state is cos2L θ|r ⊕ 1, 0, i〉.

We can now combine the two cases: by linearity, the application of the circuit on a general
state

∑
r,i ar,i|r, i〉 (removing the ancilla) is∑

r,i

ar,i|r, i〉 →
∑

r∈{0,1},xi=0

ar,i|r, i〉+
∑

r∈{0,1},xi=1

ar,i cos2L(θ)|r ⊕ 1, i〉 (32)

=
∑
r,i

ar,i cos2Lxi

( π
2L

)
|r ⊕ xi, i〉 ≡ |ψ′〉 (33)

Thus the effect of this construction simulates the usual quantum oracle |r, i〉 → |r ⊕ xi, i〉
with probability of explosion no more than

1− cos4L
( π

2L

)
≤ 1−

(
1− π2

4L2

)2L

≤ π2

2L. (34)

Moreover, the difference between the output of our circuit, |ψ′〉, and the output on the
quantum oracle, |ψ〉 =

∑
r,i ar,i|r ⊕ xi, i〉, is

‖|ψ′〉 − |ψ〉‖ =

∥∥∥∥∥∥
∑

r∈{0,1},xi=1

ar,i(1− cos2L(θ))|r ⊕ 1, i〉

∥∥∥∥∥∥ (35)

≤ 1− cos2L π

2L ≤
π2

4L. (36)
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Given this construction, we can now prove our theorem. Suppose we are given a quantum
algorithm that finds f(x) with Qδ′(f) queries, making at most δ′ = δ− ε error. We construct
an algorithm using bomb oracles instead by replacing each of the applications of the quantum
oracle Ox by our circuit construction (29), where we choose

L =
⌈
π2

2ε Qδ
′(f)

⌉
(37)

Then the probability of explosion is no more than

π2

2LQδ
′(f) ≤ ε (38)

and the difference between the final states, |ψf 〉 and
∣∣∣ψ′f〉, is at most

∥∥∣∣ψ′f〉− |ψf 〉∥∥ ≤ π2

4LQδ
′(f) ≤ ε

2 . (39)

Therefore∣∣〈ψ′f ∣∣P ∣∣ψ′f〉− 〈ψf |P |ψf 〉∣∣ ≤ ∣∣〈ψ′f ∣∣P ∣∣ψ′f〉− 〈ψf |P ∣∣ψ′f〉∣∣+
∣∣〈ψ′f ∣∣P |ψf 〉 − 〈ψf |P |ψf 〉∣∣

≤
∥∥∣∣ψ′f〉∥∥ ∥∥P (∣∣ψ′f〉− |ψf 〉)∥∥+

∥∥P (∣∣ψ′f〉− |ψf 〉)∥∥ ‖|ψf 〉‖
≤ ε/2 + ε/2 = ε (40)

for any projector P (in particular, the projector that projects onto the classical answer at the
end of the algorithm). The algorithm accumulates at most ε extra error at the end, giving a
total error of no more than δ′+ ε = δ. This algorithm makes 2LQδ′(f) < π2

ε Q
2
δ′(f) + 2Qδ′(f)

queries to the bomb oracle, and therefore

Bε,δ(f) < π2

ε
Qδ−ε(f)2 + 2Qδ−ε(f) (41)

= O

(
Qδ−ε(f)2

ε

)
. (42)

From this we can derive that Bε,δ(f) = O(Qδ(f)2/ε):

Bε,δ(f) < Bε/2,δ(f)

= O

(
Qδ−ε/2(f)2

ε

)
, by 42

= O

(
Qδ(f)2

ε

)
, since δ2 ≤ δ −

ε

2 . (43)

J

C Proof of the adversary lower bound for B(f) (Theorem 4.3)

Before we give the proof of the general result that B(f) = Ω(Q(f)2) (Theorem 4.3)), we will
illustrate the proof by means of an example, the special case where f is the AND function.

I Theorem C.1. For δ < 1/10, Bε,δ(AND) = Ω(Nε ).
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Proof. Let
∣∣ψ0
t

〉
be the unnormalized state of the algorithm with x = 1n, and

∣∣ψkt 〉 be the
unnormalized state with x = 1 · · · 101 · · · 1, xk = 0, right before the (t + 1)-th call to Mx.
Then∣∣ψxt+1

〉
= Ut+1Mx|ψxt 〉 (44)

for some unitary Ut+1. For ease of notation, we’ll write M0 ≡ M1n and Mk = M1···101···1,
where the k-th bit is 0 in the latter case. When acting on the control and index bits,

M0 =
N∑
i=1
|0, i〉〈0, i|

Mk =
N∑
i=1
|0, i〉〈0, i|+ |1, k〉〈1, k|. (45)

Since the Mi’s are projectors, M2
i = Mi. Define

εit =
〈
ψit
∣∣(I −Mi)

∣∣ψit〉, i = 0, 1, · · · , N. (46)

Note that 〈ψit+1|ψit+1〉 =
〈
ψit
∣∣M2

i

∣∣ψit〉 =
〈
ψit
∣∣Mi

∣∣ψit〉 = 〈ψit|ψit〉 − εit, for all i = 0, · · · , N
(including 0!), and hence

T−1∑
t=0

εit = 〈ψi0|ψi0〉 − 〈ψiT |ψiT 〉 ≤ ε. (47)

We now define the progress function. Let

W k
t = 〈ψ0

t |ψkt 〉 (48)

and let the progress function be a sum over W k’s:

Wt =
N∑
k=1

W k
t =

N∑
k=1
〈ψ0
t |ψkt 〉. (49)

We can lower bound the total change in the progress function by (see [2] for a proof; their
proof equally applies to unnormalized states)

W0 −WT ≥ (1− 2
√
δ(1− δ))N. (50)

We now proceed to upper bound W0 −WT . Note that

W k
t −W k

t+1 = 〈ψ0
t |ψkt 〉 −

〈
ψ0
t

∣∣M0Mk

∣∣ψkt 〉
=
〈
ψ0
t

∣∣(I −M0)Mk

∣∣ψkt 〉+
〈
ψ0
t

∣∣M0(I −Mk)
∣∣ψkt 〉

+
〈
ψ0
t

∣∣(I −M0)(I −Mk)
∣∣ψkt 〉 (51)

and since M0(I −Mk) = 0, (I −M0)Mk = |1, k〉〈1, k|, we have

W k
t −W k

t+1 ≤ 〈ψ0
t |1, k〉〈1, k|ψkt 〉+

∥∥(I −M0)
∣∣ψ0
t

〉∥∥ ∥∥(I −Mk)
∣∣ψkt 〉∥∥

≤
∥∥〈1, k|ψ0

t 〉
∥∥+

√
ε0t ε

k
t . (52)
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where we used 46. Summing over k and t, we obtain

W0 −WT ≤
T−1∑
t=0

N∑
k=1

[∥∥〈1, k|ψ0
t 〉
∥∥+

√
ε0t ε

k
t

]

≤
√
TN

√√√√T−1∑
t=0

N∑
k=1
〈ψ0
t |1, k〉〈1, k|ψ0

t 〉+
T−1∑
t=0

N∑
k=1

ε0t + εkt
2

≤
√
TN

√√√√T−1∑
t=0
〈ψ0
t |(I −M0)|ψ0

t 〉+Nε

≤

√√√√TN

T−1∑
t=0

ε0t +Nε

≤
√
εTN +Nε (53)

where in the second line we used Cauchy-Schwarz and the AM-GM inequality. Combined
with W0 −WT ≥ (1− 2

√
δ(1− δ))N (Eq. 50), this immediately gives us

T ≥
(1− 2

√
δ(1− δ)− ε)2N

ε
. (54)

J

We now proceed to prove the general result. This proof follows the presentation given in
A. Childs’s online lecture notes [13], which we found quite illuminating.

I Theorem 4.3. For all functions f with boolean input alphabet, and numbers ε, δ satisfying
0 < ε ≤ δ ≤ 1/10,

Bε,δ(f) = Ω(Q0.01(f)2/ε). (55)

Proof. We prove the lower bound onBε,δ by showing that it is lower bounded by Ω(Adv±(f)2/ε),
where Adv±(f) is the generalized (i.e. allowing negative weights) adversary bound [27] for f .
We can then derive our theorem from the result [33] that Q(f) = O(Adv±(f)).

We generalize the bound on the f = AND case to an adversary bound for Bε,δ on
arbitrary f . Define the projectors

Π0 =
N∑
i=1
|0, i〉〈0, i|

Πi = |1, i〉〈1, i|, i = 1, · · · , n. (56)

It is clear that

Π0 +
N∑
i=1

Πi = I. (57)

Note that Mx = CPx,0 is

Mx = Π0 +
∑
i:xi=0

Πi. (58)
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Define |ψxt 〉 as the state of the algorithm right before the (t+ 1)-th query with input x;
then∣∣ψxt+1

〉
= Ut+1Mx|ψxt 〉 (59)

for some unitary Ut+1. Now if we let

εxt = 〈ψxt |(I −Mx)|ψxt 〉 (60)

then it follows that 〈ψxt |ψxt 〉 − 〈ψxt+1|ψxt+1〉 = εxt , and thus

T−1∑
t=0

εxt = 〈ψx0 |ψx0 〉 − 〈ψxT |ψxT 〉 ≤ ε. (61)

We proceed to define the progress function. Let S be the set of allowable input strings x.
Let Γ be an adversary matrix, i.e. an S × S matrix such that
1. Γxy = Γyx ∀x, y ∈ S; and
2. Γxy = 0 if f(x) = f(y).
Let a be the normalized eigenvector of Γ with eigenvalue ±‖Γ‖, where ±‖Γ‖ is the largest
(by absolute value) eigenvalue of Γ. Define the progress function

Wt =
∑
x,y∈S

Γxya∗xay〈ψxt |ψ
y
t 〉. (62)

For ε ≤ δ < 1/10 we have that4 (see [27] for a proof; their proof applies equally well to
unnormalized states)

|W0 −WT | ≥ (1− 2
√
δ(1− δ)− 2δ)‖Γ‖ (63)

We now proceed to upper bound |W0 −WT | ≤
∑
t |Wt −Wt−1|. Note that

Wt −Wt+1 =
∑
x,y∈S

Γxya∗xay
(
〈ψxt |ψ

y
t 〉 − 〈ψxt+1|ψ

y
t+1〉

)
=
∑
x,y∈S

Γxya∗xay (〈ψxt |ψ
y
t 〉 − 〈ψxt |MxMy|ψyt 〉)

=
∑
x,y∈S

Γxya∗xay(〈ψxt |(I −Mx)My|ψyt 〉

+ 〈ψxt |Mx(I −My)|ψyt 〉+ 〈ψxt |(I −Mx)(I −My)|ψyt 〉) (64)

We bound the three terms separately. For the first two terms, use

(I −Mx)My =
∑

i:xi=1,yi=0
Πi

= (I −Mx)
∑

i:xi 6=yi

Πi (65)

Define the S × S matrix Γi as

Γi =
{

Γxy if xi 6= yi

0 if xi = yi
(66)

4 As described in [27], the 2δ term can be removed if the output is boolean (0 or 1).
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The first term of 64 is∑
x,y∈S

∑
i:xi 6=yi

Γxya∗xay〈ψxt |(I −Mx)Πi|ψyt 〉 =
∑
x,y∈S

N∑
i=1

(Γi)xy a
∗
xay〈ψxt |(I −Mx)Πi|ψyt 〉

=
N∑
i=1

tr(QiΓiQ̃†i ) (67)

where

Qi =
∑
x∈S

axΠi|ψxt 〉〈x| (68)

Q̃i =
∑
x∈S

axΠi(I −Mx)|ψxt 〉〈x|. (69)

Although both Qi and Q̃i depend on t, we suppress the t dependence in the notation.
Similarly, the second term of 64 is equal to

∑N
i=1 tr(Q̃iΓiQ†i ). We can also rewrite the third

term of 64 as∑
x,y∈S

Γxya∗xay〈ψxt |(I −Mx)(I −My)|ψyt 〉 = tr(Q′ΓQ′†) (70)

where

Q′ =
∑
x∈S

ax(I −Mx)|ψxt 〉〈x|. (71)

Therefore, adding absolute values,

|Wt −Wt+1| ≤
N∑
i=1

[∣∣∣tr(QiΓiQ̃†i )∣∣∣+
∣∣∣tr(Q̃iΓiQ†i ))∣∣∣]+

∣∣tr(Q′ΓQ′†)∣∣ (72)

To continue, we need the following lemma:

I Lemma C.2. For any m,n > 0 and matrices X ∈ Cm×n, Y ∈ Cn×n, Z ∈ Cn×m, we have
| tr(XY Z)| ≤ ‖X‖F ‖Y ‖‖Z‖F . Here ‖ · ‖ and ‖ · ‖F denote the spectral norm and Frobenius
norm, respectively.

This lemma can be proved by using that | tr(XY Z)| ≤ ‖Y ‖‖ZX‖tr and ‖ZX‖tr ≤ ‖X‖F ‖Z‖F ,
which follows from [10, Exercise IV.2.12 and Corollary IV.2.6]. A more accessible proof is
found online at [13].

Then by Lemma C.2,
N∑
i=1

∣∣∣tr(QiΓiQ̃†i )∣∣∣ ≤ N∑
i=1
‖Γi‖‖Qi‖F ‖Q̃i‖F (73)

Since
N∑
i=1
‖Qi‖2F =

N∑
i=1

∑
x∈S
|ax|2 ‖Πi|ψxt 〉‖

2

=
∑
x∈S
|ax|2〈ψxt |

N∑
i=1

Πi|ψxt 〉

≤
∑
x∈S
|ax|2

= 1 (74)
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and
N∑
i=1
‖Q̃i‖2F =

N∑
i=1

∑
x∈S
|ax|2 ‖Πi(I −Mx)|ψxt 〉‖

2

=
∑
x∈S
|ax|2〈ψxt |(I −Mx)

(
N∑
i=1

Πi

)
(I −Mx)|ψxt 〉

≤
∑
x∈S
|ax|2〈ψxt |(I −Mx)|ψxt 〉

=
∑
x∈S
|ax|2εxt (75)

we have, by Cauchy-Schwarz,
N∑
i=1
‖Qi‖F ‖Q̃i‖F ≤

√∑
x∈S
|ax|2εxt (76)

Therefore by 73 and 76,
N∑
i=1

∣∣∣tr(QiΓiQ̃†i )∣∣∣ ≤√∑
x∈S
|ax|2εxt max

i∈[N ]
‖Γi‖. (77)

Similartly for tr(Q′ΓQ′†), we have

‖Q′‖2F =
∑
x∈S
|ax|2 ‖(I −Mx)|ψxt 〉‖

2

=
∑
x∈S
|ax|2〈ψxt |(I −Mx)|ψxt 〉

=
∑
x∈S
|ax|2εxt (78)

and using Lemma C.2,

tr(Q′ΓQ′†) ≤ ‖Q′‖2F ‖Γ‖ (79)

=
∑
x∈S
|ax|2εxt ‖Γ‖ (80)

Thus continuing from 72, we have that

|Wt −Wt+1| ≤ 2
√∑
x∈S
|ax|2εxt max

i∈[N ]
‖Γi‖+

∑
x∈S
|ax|2εxt ‖Γ‖ (81)

Finally, if we sum the above over t we obtain

|W0 −WT | ≤ 2 max
i∈[N ]

‖Γi‖
T−1∑
t=0

√∑
x∈S
|ax|2εxt +

T−1∑
t=0

∑
x∈S
|ax|2εxt ‖Γ‖ (82)

The first term can be bounded using Cauchy-Schwarz:

T−1∑
t=0

√∑
x∈S
|ax|2εxt ≤

√√√√T

T−1∑
t=0

∑
x∈S
|ax|2εxt

≤
√
εT (83)
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where we used
∑
t ε
x
t ≤ ε and

∑
x |ax|2 = 1. The second term can be summed easily:

T−1∑
t=0

∑
x∈S
|ax|2εxt ‖Γ‖ ≤

∑
x∈S
|ax|2ε‖Γ‖

= ε‖Γ‖. (84)

Therefore

|W0 −WT | ≤ 2
√
εT max

i∈[N ]
‖Γi‖+ ε‖Γ‖. (85)

Combined with our lower bound |W0 −WT | ≥ (1− 2
√
δ(1− δ)− 2δ)‖Γ‖, this immediately

gives

T ≥
(1− 2

√
δ(1− δ)− 2δ − ε)2

4ε
‖Γ‖2

maxi∈[N ] ‖Γi‖2
. (86)

Recalling that [27]

Adv±(f) = max
Γ

‖Γ‖
maxi∈[N ] ‖Γi‖

, (87)

we obtain5

T ≥
(1− 2

√
δ(1− δ)− 2δ − ε)2

4ε Adv±(f)2. (88)

We now use the tight characterization of the quantum query complexity by the general
weight adversary bound:

I Theorem C.3 ([33, Theorem 1.1]). Let f : D → E, where D ⊆ {0, 1}N . Then Q0.01(f) =
O(Adv±(f)).

Combined with our result above, we obtain

Bε,δ(f) = Ω
(
Q0.01(f)2

ε

)
. (89)

J

D Proof of Theorem 5.1

We restate and prove Theorem 5.1:

I Theorem 5.1. Let f : D → E, where D ⊆ {0, 1}N . Suppose there is a classical randomized
query algorithm A, that makes at most T queries, and evaluates f with bounded error. Let
the query results of A on random seed sA be xp1 , xp2 , · · · , xpT̃ (x)

, T̃ (x) ≤ T , where x is the
hidden query string.

Suppose there is another (not necessarily time-efficient) randomized algorithm G, with
random seed sG , which takes as input xp1 , · · · , xpt−1 and sA, and outputs a guess for the

5 For boolean output (0 or 1) the 2δ term can be dropped, as we previously noted (Footnote 4).
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next query result xpt of A. Assume that G makes no more than an expected total of G
mistakes (for all inputs x). In other words,

IEsA,sG


T̃ (x)∑
t=1

∣∣G(xp1 , · · · , xpt−1 , sA, sG)− xpt

∣∣ ≤ G ∀x. (90)

Note that G is given the random seed sA of A, so it can predict the next query index of A.
Then Bε(f) = O(TG/ε), and thus (by Theorem 4.1) Q(f) = O(

√
TG).

Proof. For the purposes of this proof, we use the characterization of B by the modified bomb
construction given in section A.2. This proof is substantially similar to that of theorem 4.2.

The following circuit finds xi with zero probability of explosion if xi = a, and with an
O(1/L) probability of explosion if xi 6= a (in both cases the value of xi found by the circuit
is always correct):

|0〉 R(θ)

M̃x

R(θ)

M̃x

X |xi〉

|i〉
. . .

|i〉
|a〉 • |a〉

L times in total (91)

where θ = π/(2L) for some large number L to be picked later, and

R(θ) =
(

cos θ − sin θ
sin θ cos θ

)
(92)

The boxed part of the circuit is then simply [M̃x(R(θ)⊗ I ⊗ I)]L, applied to the state |0, i, a〉.
We can analyze this circuit by breaking into cases:

If xi = a, then M̃x|ψ〉|i, a〉 = |ψ〉|i, a〉 for any state |ψ〉 in the control register. Thus the
M̃x’s act as identities, and the circuit simply applies the rotation R(θ)L = R(π/2) to the
control register, rotating it from 0 to 1. We thus obtain the state |1, i, a〉; the final CNOT
and X gates add a⊕ 1 = xi ⊕ 1 to the first register, giving |xi, i, a〉.
If xi 6= a, then

M̃x|0, i, a〉 = |0, i, a〉, M̃x|1, i, a〉 = 0 (for xi 6= a) (93)

Therefore after each rotation R(θ), the projection M̃x projects the control qubit back to
0:

M̃x(R(θ)⊗I⊗I)|0, i, a〉 = M̃x(cos θ|0〉+sin θ|1〉)|i, a〉 = cos θ|0, i, a〉 (for xi 6= a) (94)

In this case the effect of M̃x(R(θ) ⊗ I ⊗ I) is to shrink the amplitude by cos(θ); L
applications results in the state cosL(θ)|0, i, a〉. The final CNOT and X gates add
a⊕ 1 = xi to the first register, giving |xi, i, a〉.

The probability of explosion is 0 if xi = a. If xi 6= a, the probability of explosion is

1− cos2L
( π

2L

)
≤ π2

4L. (95)

Pick

L =
⌈
π2G

4ε

⌉
. (96)
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Then the probability of explosion is 0 if xi = a, and no more than ε/G if xi 6= a. If the bomb
does not explode, then the circuit always finds the correct value of xi.

We now construct the bomb query algorithm based on A and G. The bomb query
algorithm follows A, with each classical query replaced by the above construction. There
are no more than TL ≈ π2TG/(4ε) bomb queries. At each classical query, we pick the guess
a to be the guess provided by G. The bomb only has a chance of exploding if the guess is
incorrect; hence for all x, the total probability of explosion is no more than

ε

G
IEsA,sG


T̃ (x)∑
t=1

∣∣G(xp1 , · · · , xpt−1 , sA, sG)− xpt

∣∣ ≤ ε (97)

Thus replacing the classical queries of A with our construction gives a bomb query algorithm
with probability of explosion no more than ε; aside from the probability of explosion, this
bomb algorithm makes no extra error over the classical algorithm A. The number of queries
this algorithm uses is

B̃ε,δ+ε(f) ≤
⌈
π2G

4ε

⌉
T, (98)

where δ is the error rate of the classical algorithm. Therefore by Lemma A.1 and Theorem
4.1,

Bε(f) = O(Bε,δ+ε(f)) = O(B̃ε,δ+ε(f)) = O (TG/ε) (99)

J

E Proof of Theorem 5.3

We restate and prove Theorem 5.3:

I Theorem 5.3 (Finding the first marked element in a list). Suppose there is an ordered list of
N elements, and each element is either marked or unmarked. Then there is a bounded-error
quantum algorithm for finding the first marked element in the list, or determines that no
marked elements exist, such that:

If the first marked element is the d-th element of the list, then the algorithm uses an
expected O(

√
d) time and queries.

If there are no marked elements, then the algorithm uses O(
√
N) time and queries.

Proof. We give an algorithm that has the stated properties. We first recall a quantum
algorithm for finding the minimum in a list of items:

I Theorem E.1 ([18]). Given a function g on a domain of N elements, there is a quantum
algorithm that finds the minimum of g with expected O(

√
N) time and evaluations of g,

making δ < 1/10 error.

We now give our algorithm for finding the first marked element in a list. For simplicity,
assume that N is a power of 2 (i.e. log2N is an integer).

I Algorithm E.2.
1. For ` = 20, 21, 22, · · · , 2log2 N = N :
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Find the first marked element within the first ` elements, or determine no marked
element exists. This can be done by defining

g(i) =
{
∞ if i is unmarked
i if i is marked,

(100)

and using Theorem E.1 to find the minimum of g. This takes O(
√
`) = O(

√
d) queries

and makes δ < 1/10 error for each `. If a marked element i∗ is found, the algorithm
outputs i∗ and stops.

2. If no marked element was found in Step 1, the algorithm decides that no marked element
exists.

We now claim that Algorithm E.2 has the desired properties. Let us break into cases:

If no marked items exist, then no marked item can possibly be found in Step 1, so the
algorithm correctly determines that no marked items exist in Step 2. The number of
queries used is

log2 N∑
i=0

√
2i = O(

√
N) (101)

as desired.
Suppose the first marked item is the d-th item in the list. Then in Step 1(a), if ` ≥ d,
there is at least a 1− δ probability that the algorithm will detect that a marked item
exists in the first ` elements and stop the loop. Letting α = dlog2 de, the total expected
number of queries is thus

α−1∑
i=0

√
2i +

log2 N∑
i=α

δi−α
√

2i +O(
√
d) ≤ 2α/2 − 1√

2− 1
+
√

2α 1
1−
√

2δ
+O(

√
d)

= O(
√

2α) +O(
√
d)

= O(
√
d). (102)

The probability of not finding the marked item at the first ` ≥ d is at most δ , and thus
the total error of the algorithm is bounded by δ.

J

F Explicit quantum algorithm for Theorem 5.2

I Algorithm F.1 (Simulating a classical query algorithm by a quantum one).

Input. Classical randomized algorithm A that computes f with bounded error. Classical
randomized algorithm G that guesses queries of A. Oracle Ox for the hidden string x.

Output. f(x) with bounded error.

The quantum algorithm proceeds by attempting to produce the list of queries and results
that A would have made. More precisely, given a randomly chosen random seed sA, the quan-
tum algorithm outputs (with constant error) a list of pairs (p1(x), xp1(x)), · · · , (pT̃ (x)(x), xpT̃ (x)(x)).
This list is such that on random seed sA, the i-th query algorithm of A is made at the
position pi(x), and the query result is xpi(x). The quantum algorithm then determines the
output of A using this list.

CCC 2015
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The main idea for the algorithm is this: we first assume that the guesses made by G are
correct. By repeatedly feeding the output of G back into A and G, we can obtain a list of
query values for A without any queries to the actual black box. We then search for the first
deviation of the string x from the predictions of G; assuming the first deviation is the d1-th
query, by Theorem 5.3 the search takes O(

√
d1) queries (ignoring error for now). We then

know that all the guesses made by G are correct up to the (d1 − 1)-th query, and incorrect
for the d1-th query.

With the corrected result of the first d1 queries, we now continue by assuming again
the guesses made by G are correct starting from the (d1 + 1)-th query, and search for the
location of the next deviation, d2. This takes O(

√
d2 − d1) queries; we then know that all

the guesses made by G are correct from the (d1 + 1)-th to (d2 − 1)-th query, and incorrect
for the d2-th one. Continuing in this manner, we eventually determine all query results of A
after an expected G iterations.

We proceed to spell out our algorithm. For the time being, we assume that the algorithm
for Theorem 5.3 (i.e. Algorithm E.2) has no error and thus requires no error reduction.

1. Initialize random seeds sA and sG for A and G. We will simulate the behavior of A and G
on these random seeds. Initialize d = 0. d is such that we have determined the values of
all query results of A up to the d-th query. Also initialize an empty list L of query pairs.

2. Repeat until either all query results of A are determined, or 100G iterations of this loop
have been executed:
a. Assuming that G always guesses correctly starting from the (d+ 1)-th query, compute

from A and G a list of query positions pd+1, pd+2, · · · and results ãd+1, ãd+2, · · · . This
requires no queries to the black box.

b. Using our algorithm for finding the first marked element (Theorem 5.3, Algorithm
E.2), find the first index d∗ > d such that the actual query result of A differs from
the guess by G, i.e. xpd

6= ãd; or return that no such d∗ exists. This takes O(
√
d∗ − d)

time in the former case, and O(
√
T − d) time in the latter.

c. We break into cases:
i. If an index d∗ was found in Step 2b, then the algorithm decides the next mistake made

by G is at position d∗. It thus adds the query pairs (pd+1, ãd+1), · · · , (pd∗−1, ãd∗−1),
and the pair (pd∗ , 1− ãd∗), to the list L. Also set d = d∗.

ii. If no index d∗ was found in Step 2b, the algorithm decides that all remaining guesses
by G are correct. Thus the query pairs (pd+1, ãd+1), · · · , (pT̃ (x), ãT̃ (x)) are added to
L, where T̃ (x) ≤ T is the number of queries made by A.

3. If the algorithm found all query results of A in 100G iterations of step 2, use L to calculate
the output of A; otherwise the algorithm fails.

We now count the total number of queries. Suppose g ≤ 100G is the number of iterations
of Step 2; if all query results have been determined, g is the number of wrong guesses by
G. Say the list of d’s found is d0 = 0, d1, · · · , dg. Let dg+1 = T . Step 2 is executed for g + 1
times, and the total number of queries is

O

(
g+1∑
i=1

√
di − di−1

)
= O

(√
Tg
)

= O
(√

TG
)

(103)

by the Cauchy-Schwarz inequality.
We now analyze the error in our algorithm. The first source of error is cutting off the loop

in Step 2: by Markov’s inequality, for at least 99% of random seeds sG , sG , G makes no more
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than 100G wrong guesses. For these random seeds all query results of A are determined.
Cutting off the loop thus gives at most 0.01 error.

The other source of error is the error of Algorithm E.2 used in Step 2b: we had assumed
that it could be treated as zero-error, but we now remove this assumption. Assuming each
iteration gives error δ′, the total error accrued could be up to O(gδ′). It seems as if we
would need to set δ′ = O(1/G) for the total error to be constant, and thus gain an extra
logarithmic factor in the query complexity.

However, in his paper for oracle identification [31], Kothari showed that multiple calls
to Algorithm E.2 can be composed to obtain a bounded-error algorithm based on span
programs without an extra logarithmic factor in the query complexity; refer to [31, Section
3] for details. Therefore we can replace the iterations of Step 2 with Kothari’s span program
construction and get a bounded error algorithm with complexity O(

√
TG).

G Proof of Theorem 6.5

We restate and prove Theorem 6.5:

I Theorem 6.5. The quantum query complexity of maximum bipartite matching is O(n7/4)
in the adjacency matrix model, where n is the number of vertices.

Proof. We apply Theorem 5.2 to a classical algorithm. Classically, this problem is solved
in O(n5/2) time by the Hopcroft-Karp [23] algorithm (here n = |V |). We summarize the
algorithm as follows (this summary roughly follows that of [4]):

I Algorithm G.1 (Hopcroft-Karp algorithm for maximum bipartite matching [23]).

1. Initialize an empty matching M. M is a matching that will be updated until it is
maximum.

2. Repeat the following steps untilM is a maximum matching:
a. Define the directed graph H = (V ′, E′) as follows:

V ′ = X ∪ Y ∪ {s, t}
E′ = {(s, x) | x ∈ X, (x, y) 6∈ M for all y ∈ Y }
∪ {(x, y) | x ∈ X, y ∈ Y, (x, y) ∈ E, (x, y) 6∈ M}
∪ {(y, x) | x ∈ X, y ∈ Y, (x, y) ∈ E, (x, y) ∈M}
∪ {(y, t) | y ∈ Y, (x, y) 6∈ M for all x ∈ X} (104)

where s and t are two extra auxilliary vertices. Note that if (s, x1, y1, x2, y2, · · · , x`, y`, t)
is a path inH from s to t, then xi ∈ X and yi ∈ Y for all i. Additionally, the edges (aside
from the first and last) alternate from being inM and not being inM: (xi, yi) 6∈ M,
(yi, xi+1) ∈M. Such a path is called an augmenting path in the literature.
We note that a query to the adjacency matrix of E′ can be simulated by a query to
the adjacency matrix of E.

b. Using breadth-first search, in the graph H, find the distances of all vertices from s.
Let the distance from s to t be 2`+ 1.

c. Find a maximal set S of vertex-disjoint shortest paths from s to t in the graph H. In
other words, S should be a list of paths from s to t such that each path has length
2` + 1, and no pair of paths share vertices except for s and t. Moreover, all other
shortest paths from s to t share at least one vertex (except for s and t) with a path in
S. We describe how to find such a maximal set in Algorithm G.2.
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d. If S is empty, the matching M is a maximum matching, and we terminate. Otherwise
continue:

e. Let (s, x1, y1, x2, y2, · · · , x`, y`, t) be a path in S. Remove the ` − 1 edges (xi+1, yi)
fromM, and insert the ` edges (xi, yi) intoM. This increases |M| by 1. Repeat for
all paths in S; there are no conflicts since the paths in S are vertex-disjoint.

Once again, we omit the proof of correctness of this algorithm; the correctness is guaranteed
by Berge’s Lemma [8], which states that a matching is maximum if there are no more
augmenting paths for the matching. Moreover, O(

√
n) iterations of Step 2 suffice [23].

We now describe how to find a maximal set of shortest-length augmenting paths in Step
2(c). This algorithm is essentially a modified version of depth-first search:

I Algorithm G.2 (Finding a maximal set of vertex-disjoint shortest-length augmenting paths).

Input. The directed graph H defined in Algorithm G.1, as well as the distances dv of all
vertices v from s (calculated in Step 2(b) of Algorithm G.1).

1. Initialize a set of paths S := ∅, set of vertices R := {s}, and a stack6 of vertices L := (s). L
contains the ordered list of vertices that we have begun, but not yet finished, processing. R
is the set of vertices that we have processed. S is the set of vertex-disjoint shortest-length
augmenting paths that we have found.

2. Repeat until L is empty:
a. If the vertex in the front of L is t, we have found a new vertex-disjoint path from s to
t:

Trace the path from t back to s by removing elements from the front of L until s is
at the front. Add the corresponding path to S.
Start again from the beginning of Step 2.

b. Let v be the vertex in the front of L (i.e. the vertex last added to, and still in, L).
Recall the distance from s to v is dv.

c. Find w such that w 6∈ R, dw = dv + 1, and (v, w) (as an edge in H) has not been
queried in this algorithm. If no such vertex w exists, remove v from L and start from
the beginning of Step 2.

d. Query (v, w) on the graph H.
e. If (v, w) is an edge, add w to the front of L. If w 6= t, add w to R.

3. Output S, the maximal set of vertex-disjoint shortest-length augmenting paths.

We now return to Algorithm G.1 and count T and G. There is obviously no need to
query the same edge more than once, so T = O(n2). If the algorithm always guesses, on
a query (v, w), that there is no edge between (v, w), then it makes at most G = O(n3/2)
mistakes: in Step 2(b) there are at most O(n) mistakes (see the proof of Theorem 6.2), while
in Step 2(c)/Algorithm G.2 there is at most one queried edge leading to each vertex aside
from t, and edges leading to t can be computed without queries to the adjacency matrix of
H. Since Step 2 is executed O(

√
n) times, our counting follows.

Thus there is a quantum query algorithm with complexity Q = O(
√
TG) = O(n7/4).

J

6 A stack is a data structure such that elements that are first inserted into the stack are removed last.
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Abstract
We construct and analyze a new pseudorandom generator for degree 2 polynomial threshold
functions with respect to the Gaussian measure. In particular, we obtain one whose seed length
is polylogarithmic in both the dimension and the desired error, a substantial improvement over
existing constructions.

Our generator is obtained as an appropriate weighted average of pseudorandom generators
against read once branching programs. The analysis requires a number of ideas including a
hybrid argument and a structural result that allows us to treat our degree 2 threshold function
as a function of a number of linear polynomials and one approximately linear polynomial.
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1 Introduction

We say that a function f : Rn → {+1,−1} is a (degree-d) polynomial threshold function
(PTF) if it is of the form f(x) = sgn(p(x)) for p some (degree-d) polynomial in n vari-
ables. Polynomial threshold functions make up a natural class of Boolean functions and
have applications to a number of fields of computer science such as circuit complexity [1],
communication complexity [14] and learning theory [11].

In this paper, we study the question of pseudorandom generators (PRGs) for polynomial
threshold functions of Gaussians (and in particular for d = 2). In other words, we wish
to find explicit functions F : {0, 1}s → Rn so that for any degree-2 polynomial threshold
function f ∣∣Ex∼u{0,1}s [f(F (x))]− EX∼Gn [f(X)]

∣∣ < ε.

We say that such an F is a pseudorandom generator of seed length s that fools degree-d
polynomial threshold functions with respect to the Gaussian distribution to within ε. In this
paper, we develop a generator with s polylogarithmic in n and ε in the case when d = 2.

1.1 Previous Work
There have been a number of papers dealing with the question of finding pseudorandom
generators for polynomial threshold functions with respect to the Gaussian distribution or
the Bernoulli distribution (i.e. uniform over {−1, 1}n). Several early works in this area
showed that polynomial threshold functions of various degrees could be fooled by arbitrary
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Table 1 Generators Based on Limited Independence.

Paper Bernoulli/Gaussian d k
Diakonikolas, Gopalan, Jaiswal, Bernoulli 1 O(ε−2 log2(ε−1))
Servedio, Viola [3]
Diakonikolas, Kane, Nelson [4] Gaussian 1 O(ε−2)
Diakonikolas, Kane, Nelson [4] Both 2 O(ε−8)1

Kane [7] Both d Od

(
ε−2O(d)

)

k-wise independent families of Gaussian or Bernoulli random variables. It should be noted
that a k-wise independent family of Bernoulli random variables can be generated from a seed
of length O(k log(n)). Although, any k-wise independent family of Gaussians will necessarily
have infinite entropy, it is not hard to show that a simple discretization of these random
variables leads to a generator of comparable seed length. These results on fooling polynomial
threshold functions with k-independence are summarized in Table 1.

Unfortunately, it is not hard to exhibit k-wise independent families of Bernoulli or Gaussian
random variables that fail to ε-fool the class of degree-d polynomial threshold functions for
k = Ω(d2ε−2), putting a limit on what can be obtained through mere k-independence.

There have also been a number of attempts to produce pseudorandom generators by using
more structure than limited independence. In [12], Meka and Zuckerman develop a couple of
such generators in the Bernoulli case. Firstly, they make use of pseudorandom generators
against space bounded computation to produce a generator of seed length O(log(n)+log2(ε−1))
in the special case where d = 1. By piecing together several k-wise independent families,
they produce a generator for arbitrary degree PTFs of seed length 2O(d) log(n)ε−8d−3. In
[10], the author develops an improved analysis of this generator allowing for a seed length
as small as Oc,d(log(n)ε−11−c). For the Gaussian case, the author developed a generator
of seed length 2Oc(d) log(n)ε−4−c in [9]. This generator was given essentially as an average
several random variables each picked independently from a k-wise independent family of
Gaussians. The analysis of this generator was also improved in [10], obtaining a seed length
of Oc,d(log(n)ε−2−c). Finally, in [8] it was shown that this could be improved further by
taking an average with unequal weights, given seed length Oc,d(ε−c) for arbitrary degree and
log(n) exp(O(log(1/ε)2/3 log log(1/ε)1/3)) for degree 2. For a summary of these results, see
Table 2.

The bound in [8] came from showing that for Y a weak pseudorandom generator (and in
particular one that fools low degree moments) that∣∣∣E[f(X)]− E[f(

√
1− ε2X + εY )]

∣∣∣� εk (1)

for any k. This followed from an important structure theorem that said that any polynomial
p could be decomposed in terms of other polynomials, qi so that when the qi were localized
near a random location then with high probability they would all be approximately linear
polynomials. It was then shown that a moment matching random variable could fool such
functions of approximately linear polynomials with high fidelity.

The bottleneck in this analysis comes in the size of the decomposition described above.
On the one hand, for d > 2 the size of the decomposition described above could potentially

1 The bound in [4] for the Bernoulli case is actually Õ(ε−9), but this can be easily improved to O(ε−8)
using technology from [10].



D.M. Kane 569

Table 2 Other Generators.

Paper Bernoulli/Gaussian d s
Meka, Zuckerman [12] Bernoulli 1 O(log(n) + log2(1/ε))
Kane [8] Gaussian 1 O(log(n) + log3/2(1/ε))
Meka, Zuckerman [12] Bernoulli d log(n)2O(d)ε−8d−3

Kane [9] Gaussian d log(n)2O(d)ε−4.1

Kane [10] Gaussian d log(n)Od(ε−2.1)
Kane [10] Bernoulli d log(n)Od(ε−11.1)
Kane [8] Gaussian 2 log(n) exp(O(log(1/ε)2/3 log log(1/ε)1/3))
Kane [8] Gaussian d log(n)Oc,d(ε−c)
Kane, this paper Gaussian 2 O(log6(ε) log(n) log log(n/ε))

be quite large, though for d = 2, it can be handled explicitly. On the other hand, the implied
constant in the approximation above depends exponentially on the size of this decomposition.
While, we still do not know how to solve the former problem when d > 2, we can solve the
latter in the case of degree-2 polynomial threshold functions.

In the special case of degree 2 functions, we end up with a decomposition of our quadratic
polynomial as a function of a single approximately linear quadratic and several other linear
polynomials. Fortunately, as discovered by Meka and Zuckerman, pseudorandom generators
against read once branching programs are excellent at fooling linear polynomials (or even small
numbers of them). As such generators also approximately fool the expectation of low degree
polynomials (which is required for dealing with the approximately linear quadratic), they
will actually be much better suited as our Y above. In fact, we can produce a pseudorandom
generator for degree 2 polynomial threshold functions with polylogarithmic seed length. In
particular, given an appropriate notion of a discretized Gaussian (the δ-approximate Gaussian
defined in Section 3), we have the following Theorem:

I Theorem 1.1. Let ε > 0 and n a positive integer. For sufficiently large constant C, let
δ = log(ε)/C and ` an integer at least δ−3 log(ε). For 1 ≤ i ≤ ` let Yi be a family of n
exp(−δ−1 log(n/δ))-approximate Gaussians seeded by a pseudorandom generator that fools
read once branching programs of width δ−2 log(n/δ) to within error exp(−δ−1 log(n/δ)). Let

Y =
∑`

i=1(1− δ3)(`−1)/2Yi√∑`
i=1(1− δ3)`−1

,

and let X be an n dimensional standard Gaussian. Then for any degree 2 polynomial threshold
function f in n variables,

|E[f(X)]− E[f(Y )]| ≤ ε.

Furthermore, such Y can be constructed from generators of seed length of at most
O(log(ε)6 log(n) log log(n/ε)).

In Section 2, we will go over some basic notation and results. In Section 3, we introduce
the concept of an approximate Gaussian, and show that families of them seeded by a PRG
for read once branching programs will fool certain functions depending on a finite numbers
of linear threshold functions and polynomials of low degree. In Section 4, we will prove our
generalization of Equation (1). Finally, in Section 5, we will use this result to finish up our
analysis and prove Theorem 1.1.

CCC 2015
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2 Background Information

2.1 Conventions
Throughout the paper we will use X,Xi, . . . as standard Gaussian random variables. We
will usually use Y, Yi, . . . to denote some sort of pseudorandom Gaussian.

2.2 Distribution of Values of Polynomials
Given a polynomial, p, we will need to know some basic information about how its values at
random Gaussian inputs are distributed. Perhaps the most basic measure of such distribution
is the average size of p(X). In order to keep track this, we will make use of the Lt (and
especially L2) norms. In particular, recall:

I Definition 2.1. If p : Rn → R and t ≥ 1 then

|p|t :=
(
E[|p(X)|t]

)1/t

where X is a standard Gaussian.

We will also need an anticoncentration result. That is a result telling us that the value of
p(X) is unlikely to lie in any small neighborhood. In particular, we have:

I Lemma 2.2 (Carbery and Wright, [2]). If p is a degree-d polynomial then

Pr(|p(X)| ≤ ε|p|2) = O(dε1/d).

Where the probability is over X, a standard n-dimensional Gaussian.

We will also need a concentration result for the values. To obtain one, we make use of
the hypercontractive inequality below. The proof follows from Theorem 2 of [13].

I Lemma 2.3. If p is a degree-d polynomial and t > 2, then

|p|t ≤
√
t− 1d|p|2.

This bound on higher moments allows us to prove a concentration bound on the distri-
bution of p(X). The following result is a well-known consequence that can be found, for
example, in [6].

I Corollary 2.4. If p is a degree-d polynomial and N > 0, then

PrX(|p(X)| > N |p|2) = O
(

2−(N/2)2/d
)
.

Proof. Apply the Markov inequality and Lemma 2.3 with t = (N/2)2/d. J

2.3 Hermite Polynomials
Recall that the Hermite polynomials ha are an orthogonal set of polynomials with respect to
the Gaussian distribution obtained by taking products of univariate Hermite polynomials in
different coordinates. In particular,

E[ha(X)hb(X)] = δa,b.

We will need to make use of a few standard facts about the Hermite polynomials:
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Any degree-d polynomial, p, can be written as a linear combination of Hermite polynomials
of degree at most d so that the sum of the squares of the coefficients is |p|22 (and thus,
the sum of the absolute values of the coefficients is at most nd|p|2).
A Hermite polynomial of degree d depends on at most d coordinates of its input. In fact
it can be written as a product of one variable polynomials on these inputs.
The sum of the absolute values of the coefficients of a Hermite polynomial of degree d is
O(1)d.

These properties are all easy to verify given basic facts about univariate Hermite polynomials.

3 Approximate Gaussians and Read Once Branching Programs

In order to produce a pseudorandom generator supported on a discrete set, we will first need
to come up with a discrete version of the single variable Gaussian distribution. We will make
use of the following notation:

I Definition 3.1. We say that a random variable Y is a δ-approximate Gaussian, if there is
a (correlated) standard (1-dimensional) Gaussian variable X so that

Pr(|X − Y | > δ) < δ,

and |Y | = O(log(δ)) with probability 1.

In particular, it is not difficult to generate a random variable with this property.

I Lemma 3.2. There exists an explicit δ-approximate Gaussian random variable that can be
generated from a seed of length O(log(δ)).

Proof. We assume that δ is sufficiently small since otherwise there is nothing to prove. Let
N = bδ−3c. Note that the random variable

X :=
√
−2 log(z) cos(2πθ)

is a random Gaussian if z and θ independent uniform (0, 1) random variables. Let z′ and θ′
be the roundings of z and θ to the nearest half-integer multiple of 1/N , and let

Y :=
√
−2 log(z′) cos(2πθ′).

Note that |z − z′|, |θ − θ′| ≤ N−1. From this it follows that

|X − Y | = O

(
1

N min(z, z′, 1− z, 1− z′)

)
.

Thus, |X − Y | < δ with probability at least 1− δ.
On the other hand, z′ and θ′ are discrete uniform variables with O(log(N)) = O(log(δ))

bits of entropy each. Thus, Y can be generated from a seed of length O(log(δ)). J

We will also need to recall the concept of a read once branching program. An (M,D, n)-
branching program is a program that is allowed to take only a single pass over an input
consisting of n D-bit blocks that is only allowed to save M -bits of memory between blocks.
We will sometimes refer to this as a read once branching program of memory M (with n
and D usually implicit). We note that there are small seed-length generators to fool such
programs. In particular, we note the following theorem of [5]:
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I Theorem 3.3. There exists an explicit pseudorandom generator G with seed length O(M +
d+ log(n/ε) log(n)) so that if f is any Boolean function computed by an (M,D, n)-branching
program, then

|EX∼u{{0,1}D}n [f(X)]− E[f(G)]| ≤ ε.

As shown in [12], using pseudorandom generators for read once branching programs is a
good way to fool linear threshold functions, or by extension, things that depend on a small
number of linear functions of the input. They will also fool the expectations of polynomials of
low degree. An important building block for our construction will be families of approximate
Gaussians seeded with a pseudorandom generator which fools read once branching programs.
These, it turns out will simultaneously fool functions of a small number of linear functions
and expectations of low degree polynomials in the following sense:

I Proposition 3.4. Let s be a quadratic polynomial in n variables whose value depends on
at most r linear polynomials. Let g(x) be the indicator function of the event that s(x) lies in
I for some interval I. Let q(x) be a degree d polynomial in n variables. Let X be a standard
Gaussian and let Y be a family on n δ1-approximate Gaussians seeded by a PRG that fools
read once branching programs of length n and memory M = O((d+ r) log(n/δ1)) to error at
most δ2. Then

|E[g(X)q(X)]− E[g(Y )q(Y )]| ≤ O(log(δ1))d+1(δ2 + nδ
1/4
1 )nd|q|2.

First, we will need the following Lemma:

I Lemma 3.5. Let s be a quadratic polynomial in n variables whose value depends on at
most r linear polynomials. Let g(x) be the indicator function of the event that s(x) lies in I
for some interval I. Let h(x) be a Hermite polynomial of degree d. Let X and Y be as given
in Proposition 3.4. Then

|E[g(X)h(X)]− E[g(Y )h(Y )]| ≤ O(log(δ1))d+1(δ2 + nδ
1/4
1 ).

Proof. We prove this in two steps. First, show that for Y ′ a family of n independent
approximate Gaussians that E[g(X)h(X)] ≈ E[g(Y ′)h(Y ′)]. This is because by correlating X
and Y ′ appropriately, we can guarantee that X and Y ′ are close with high probability. This
will mean that g(X) = g(Y ′) with high probability that h(X) ≈ h(Y ′) with high probability.
Next, we will need to show that E[g(Y ′)h(Y ′)] ≈ E[g(Y )h(Y )]. This will hold because we can
construct a read once branching program of small memory that computes approximations
to the linear functions upon which s depends and the values of the (at most d) coordinates
upon which h depends.

We may assume that |s|2 = 1. We begin by letting Y ′ be a family of independent δ1-
approximate Gaussians. We can pick correlated copies of X and Y ′ so that with probability
at least 1 − nδ1 each coordinate of X is within δ1 of the corresponding coordinate of
Y ′. If this is the case, then |s(X) − s(Y ′)| = O(n log(δ1)δ1). By Lemma 2.2, s(X) is
only within this distance of an endpoint of I with probability O(n1/2δ

1/2
1 logd(δ1)). Thus,

neglecting an event with this probability, g(X) = g(Y ′). Let E be the event that g(X) 6=
g(Y ′), or that some coordinate of X and Y ′ differs by more than δ1. The contribution to
E[|g(X)h(X)− g(Y ′)h(Y ′)|] coming from times when E holds is at most

E[1E(|h(X)|+ |h(Y ′)|)],

which by Cauchy-Schwartz is at most

O((n1/4δ
1/4
1 logd/2(δ1))

√
E[h(X)2 + h(Y ′)2]) = O(n1/4δ

1/4
1 logd+1(δ1)).



D.M. Kane 573

On the other hand E[|h(X)− h(Y ′)|] when X and Y ′ agree to within δ1 in each coordinate
is O(n logd(δ1)δ1). Thus,

|E[g(X)h(X)]− E[g(Y ′)h(Y ′)]| ≤ O(logd+1(δ1)nδ1/4
1 ).

We now need to show that seeding Y ′ by a read once branching programs withM memory
fools this expectation to within small error. Notice that a read once branching program
with O((d+ r) log(n/δ1)) memory can keep track of an approximation to within n−1δ3

1 of
each of the r normalized linear functions that s depends on, and compute h to precision
δ1. The latter is accomplished by writing h as

∏n
i=1 hai

(xi) and keeping track of a running
product

∏m
i=1 hai

(xi) to relative precision δ1O(log(δ1))−d(m/n). This allows the program to
compute the values of s and h to within an error of at most δ1.

Thus, Pr(h(Y ′)g(Y ′) ≥ c) is at most

Pr(h(Y )g(Y ) ≥ c− δ1) + Pr(s(Y ′) is within δ1 of an endpoint of I) + δ2.

Note that except for an event of probability nδ1, the difference between s(X) and s(Y ′) is at
most O(n log(δ1)δ1) and the former is this close to an endpoint of I with probability at most
O(log(δ1)

√
nδ1). Thus, with probability 1−O(log(δ1)

√
nδ1 + nδ1), s(Y ′) is not within δ1 of

a boundary of I. Thus for any c,

Pr(h(Y )g(Y ) ≥ c) ≤ Pr(h(Y ′)g(Y ′) ≥ c− δ1) +O(δ2 + log(δ1)n1/2δ
1/2
1 + nδ1).

Integrating this over all |c| ≤ O(log(δ1))d (which is the full range of values of h(Y ′) and
h(Y )), we find that

E[g(Y )h(Y )] ≤ E[g(Y ′)h(Y ′)] + δ1 +O(log(δ1))d+1(δ2 + nδ
1/2
1 ).

The lower bound follows similarly, and this completes the proof. J

Proof of Proposition 3.4. Note that we can write q as a linear combination of degree d
hermite polynomials, where the sum of the absolute values of the coefficients is at most
O(nd|q|2). Our result follows from applying Lemma 3.5 to each term separately. J

We also note the following corollary when r = 0:

I Corollary 3.6. Let X and Y be as in Proposition 3.4. Let q be a polynomial of degree at
most d then

|E[q(X)]− E[q(Y )]| ≤ O(log(δ1))d+1(δ2 + nδ
1/4
1 )nd|q|2.

4 The Key Result

Our analysis will depend heavily upon the following Proposition:

I Proposition 4.1. Let δ > 0 and n a positive integer. Let C be a sufficiently large
constant, and let Y be a family of n exp(−Cδ−1 log(n/δ))-approximate Gaussians seeded by
a pseudorandom generator that fools read once branching programs of memory Cδ−2 log(n/δ)
to within error exp(−Cδ−1 log(n/δ)). Let X be an n dimensional standard Gaussian. Then
for any degree-2 polynomial threshold function f in n variables, we have that∣∣∣E[f(X)]− E[f(

√
1− δ3X + δ3/2Y )]

∣∣∣ = exp(−Ω(δ−1)).
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We first will need to show that this result holds for a certain class of quadratic polynomials.
In particular, we define:

I Definition 4.2. A degree 2 polynomial p : Rn → R is called (r, δ)-approximately linear if
it can be written in the form

p(x) = p0(x · v1, . . . , x · vr) + x · v + q(x)

for some vectors v1, . . . , vk, v with v orthogonal to vi, and some degree-2 polynomials p0 and
q so that |q|2 < δ|v|2.

We now show an analogue of Proposition 4.1 for approximately linear polynomials:

I Lemma 4.3. Let k, r > 0 be integers and δ, δ1, δ2 > 0 real numbers. Let p be an (r,
√
δ)-

approximately linear polynomial in n variables with f the corresponding threshold function.
Let X be an n-dimensional standard Gaussian, and Y a family on n δ1-approximate Gaussians
seeded by a PRG that fools read once branching programs of length n and memory M =
C(k + r) log(n/(δδ1δ2)), for sufficiently large C, to error at most δ2. Then∣∣∣E[f(X)]− E[f(

√
1− δ2X + δY )]

∣∣∣
is at most

≤ exp(−Ω(δ−1))4k +O(log5k(δ1)(δ2 + nδ
1/4
1 ))O(nk)4k +O(δk)2k +O(2−k/2).

The basic idea of the proof is as follows. First, we bin based on the approximate value of
p0. We are reduced to considering the expectation of the threshold function of a polynomial
C + x · v + q(x) times the indicator function of the event that p0 (a polynomial depending
on a bounded number of linear functions) lies in a small interval. To deal with the threshold
function, we note that averaging over possible values of X · v smooths it out, and we may
approximate it by its Taylor polynomial. Thus, we only need Y to fool the expectation of an
indicator function of p0 lying in a small interval, times a low degree polynomial. This should
hold by Proposition 3.4. The proof is as follows.

Proof. Since p is (r,
√
δ)-approximately linear, after rescaling we may assume that for some

orthonormal set of vectors v, v1, . . . , vk that

p(x) = p0(x · v1, . . . , x · vr) + x · v + q(x)

for some quadratic polynomials p0 and q with |q|2 <
√
δ. We may assume that δ � 1, for

otherwise there is nothing to prove.
Let N = 2k/|p|2. Let In(x) := 1p0(x)∈[n/N,(n+1)/N) and let fn(x) := In(x)f(x). Let

f+
n (x) = In(x)sgn(x · v + q(x) + (n+ 1)/N), and f−n (x) = In(x)sgn(x · v + q(x) + (n)/N).

Note that f(x) =
∑

n∈Z fn(x). Note also that f+
n (x) ≥ fn(x) ≥ f−n (x) for all x, n. We note

that f±n (x) is actually a very close approximation to fn(x). In particular, by Lemma 2.2 if
X is a random Gaussian then∑

n∈Z
E[f+

n (X)− f−n (X)] ≤ Pr(|p(X)| ≤ 1/N) = O(2−k/2).
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Thus, it suffices to show that f±n (X) and f±n (
√

1− δ2X + δY ) have similar expectations
for each n. To analyze this, let Xv be the component of X in the v direction, and X ′ be the
component in the orthogonal directions. Let

g±n (X ′, Y )

: = EXv
[f±n (

√
1− δ2X + δY )]

= In(X ′, Y )EXv
[sgn(C(X ′) + q0(X ′, Y ) +Xv(1 + q′1(X ′) + q′′1 (Y ))) +X2

vq2)] (2)

where C(X ′) is a polynomial in X ′ and q0, q
′
1, q
′′
1 and q2 are polynomials (of degree at most

2,1,1 and 0 respectively) of L2 norms at most |q0|2 = O(δ) , |q′1|2 = O(
√
δ), |q′′1 |2 = O(δ),

and |q2|2 = O(
√
δ). We may also assume that q0 is at most linear in the variables of X ′, and

that if we write q0(X ′, Y ) = δv · Y + q′0(X ′, Y ), then |q′0(X ′, Y )|2 = O(δ3/2). We claim that
with probability 1− exp(−Ω(δ−1)) over the choice of X ′ that the following hold:
1. EY [q0(X ′, Y )2] = O(δ2).
2. |q′1(X ′)| < 1/3.
The first holds by Corollary 2.4 since EY [q′0(X ′, Y )2] is a degree 2 polynomial in X ′ with L2

norm O(δ3). Thus, with the desired probability EY [q′0(X ′, Y )2] = O(δ2), which implies the
desired bound. The second holds by Corollary 2.4 since q′1 is a degree 1 polynomial with L2

norm O(
√
δ). For the next part of the argument we will assume that we have fixed a value

of X ′ so that the above holds.
Let q1(X ′, Y ) := q′1(X ′) + q′′1 (Y ). Note that if |q0(X ′, Y )|, |q1(X ′, Y )| < 2/3, then the

polynomial C+ q0 +x(1 + q1) +x2q2 cannot have more than one root with absolute value less
than Ω(δ−1/2). Since Xv cannot be larger than this except with probability exp(−Ω(δ−1)),
the expectation above is erf(R)+exp(−Ω(δ−1)), where R is the smaller root of that quadratic.
Furthermore, there will be no such root R unless |C| � δ−1/2. In such a case, by the quadratic
formula, this root is

R = −1− q1 +
√

1 + 2q1 + q2
1 − 4q2(C + q0)

2q2

= (1 + q1)
√

1− 4q2(C + q0)/(1 + q1)2 − 1
2q2

= C + q0

1 + q1
+O(1). (3)

Thus, in the range |q0|, |q1| < 2/3 and |C| � δ−1/2 we have that the expectation in (2) is

erf(R) + exp(−Ω(δ−1)).

Note that even for complex values of q0 and q1 with absolute value at most 2/3, the erf(R)
(with R given by Equation (3)) is complex analytic with absolute value uniformly bounded.
Therefore, by Taylor expanding about q0 = 0 and q1 = q′1, we can find a polynomial P of
degree at most 2k (depending on q, C and X ′) so that erf(R) is

P (q0(X ′, Y ), q1(X ′, Y )− q′1(X ′)) +O(q0(X ′, Y ))2k +O(q1(X ′, Y )− q′1(Y ))2k

= P (q0(X ′, Y ), q′′1 (Y )) +O(q0(X ′, Y ))2k +O(q′′1 (Y ))2k.

Furthermore, the coefficients of P are all O(1)k. The above must hold when |q0|, |q′′1 | are not
at most 1/3. On the other hand, this means that even when |q0|, |q′′1 | are larger than 1/3, we
have that P (q0(X ′, Y ), q′′1 (X ′, Y ))± 1 = O(q0(X ′, Y ))2k +O(q1(X ′, Y ))2k. This means that
the above formula holds for all values of q0 and q′′1 . Thus, g±n (X ′, Y ) is

G(X ′, Y ) := 1s(X′,Y )∈I(P (q0(X ′, Y ), q′′1 (Y ))+O(q0(X ′, Y ))2k+O(q′′1 (Y ))2k)+exp(−Ω(δ−1))
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where s is some quadratic that depends on at most r linear functions, I is an interval.
Thus, g(X ′, Y ) will be approximately the product of an indicator function of something that
depends on only a limited number linear functions of Y and a polynomial of bounded degree.
Our proposition will hold essentially because PRGs for read once branching programs fool
such functions as show in Proposition 3.4.

Note that P (q0(Y ), q′′1 (Y )) can be written as a polynomial of degree at most 4k and L2

norm at most O(k)4k. Letting G0(y) be

G0(y) := EX

[
1s(X,y)∈IP (q0(X, y), q′′1 (y))

]
we have by Proposition 3.4 that

|E[G0(X)]− E[G0(Y )]| ≤ O(log5k(δ1)(δ2 + nδ
1/4
1 ))O(nk)4k.

Similarly, if
G1(y) := EX

[
1s(X,y)∈I(q0(X, y)2k + q′′1 (X, y)2k)

]
then

|E[G1(X)]− E[G1(Y )]| ≤ O(log5k(δ1)(δ2 + nδ
1/4
1 ))O(nk)4k.

Also,
E[G1(X)] ≤ O(δk)2k

by Lemma 2.3. Therefore, we have that the difference in expectations between g±n (X ′, Y )
and g±n (X ′, Z) where Z is an independent standard Gaussian, is at most

exp(−Ω(δ−1)) +O(log5k(δ1)(δ2 + nδ
1/4
1 ))O(nk)4k +O(δk)2k.

Thus,∣∣∣E[f±n (X)]− E[f±n (
√

1− δ2X + δY )]
∣∣∣

≤ exp(−Ω(δ−1)) +O(log5k(δ1)(δ2 + nδ
1/4
1 ))O(nk)4k +O(δk)2k.

Therefore, we have that∑
|n|≤4k

∣∣∣E[fn(X)]− E[fn(
√

1− δ2X + δY )]
∣∣∣

≤ exp(−Ω(δ−1))4k +O(log5k(δ1)(δ2 + nδ
1/4
1 ))O(nk)4kδ−k +O(δk)k

+
∑

n

∣∣E[f+
n (X)− f−n (X)]

∣∣
≤ exp(−Ω(δ−1))4k +O(log5k(δ1)(δ2 + nδ

1/4
1 ))O(nk)4kδ−k +O(δk)k +O(2−k/2).

On the other hand, ∑
|n|≥4k

∣∣∣E[fn(X)]− E[fn(
√

1− δ2X + δY )]
∣∣∣

is at most the probability that either |p0(X)| or |p0(
√

1− δ2X + δY )| is more than 2k times
the L2 norm of p, which is O(2−k) by the Markov bound and Corollary 3.6. Thus,∣∣∣E[f(X)]− E[f(

√
1− δ2X + δY )]

∣∣∣
≤
∑
|n|∈Z

∣∣∣E[fn(X)]− E[fn(
√

1− δ2X + δY )]
∣∣∣

≤ exp(−Ω(δ−1))4k +O(log5k(δ1)(δ2 + nδ
1/4
1 ))O(nk)4k +O(δk)2k +O(2−k/2).

As desired. J
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We would like to reduce Proposition 4.1 to this case. Fortunately, it can be shown that
after an appropriate random restriction that any quadratic polynomial can be made to be
approximately linear with high probability.

I Lemma 4.4. Let p be a degree 2 polynomial, δ > 0 and r a non-negative integer. Let X
be a Gaussian random variable and p(X) be the polynomial

p(X)(x) := p(
√

1− δ2X + δx).

Then with probability at least 1 − exp(−Ω(r)) over the choice of X, p(X) is (r,O(δ))-
approximately linear.

Proof. For any polynomial q, let q(X) be the polynomial

q(X)(x) := q(
√

1− δ2X + δx).

After diagonalizing the quadratic part of p and making an orthonormal change of variables
we may write

p(x) =
n∑

i=1
pi(xi)

where pi is a quadratic polynomial in one variable. Furthermore, we may assume that the
quadratic term of pi(x) is aix

2 with |ai| decreasing in i. Note that

p(X)(x) =
n∑

i=1
p

(Xi)
i (xi).

We may write p(Xi)
i (x) as δ2√2aih2(x) +Ci,1(Xi)x+Ci,0(Xi) where h2(x) = (x2 − 1)/

√
2 is

the second Hermite polynomial, and Ci,1 and Ci,0 are appropriate constants depending on
Xi. Note furthermore, that unless Xi lies within a small constant of the global maximum or
minimum of pi that |Ci,1(Xi)| = Ω(δ|ai|). Thus, with probability at least 2/3, independently
for each i, we have that |Ci,1(Xi)| = Ω(δ|ai|). Let Ii be the indicator random variable for
the event that this happens.

From this it is easy to show that with probability 1− exp(−Ω(r)) we have that
∑m

i=1 Ii ≥
m/2 − r for all m (in fact the expected number of m for which this fails is exponentially
small). We claim that if this occurs, then p(X) is (r,O(δ))-approximately linear. To show
this, let S be the set of the r smallest indices i for which Ii = 0. We may write

p(X)(x) =

∑
i∈S

p
(Xi)
i (xi) +

∑
i6∈S

Ci,0(Xi)

+

∑
i 6∈S

Ci,1(Xi)ei

 ·X +

∑
i 6∈S

δ2√2aih2(xi)

 .

We claim that letting

p0(x) =
∑
i∈S

p
(Xi)
i (xi) +

∑
i 6∈S

Ci,0(Xi), v =
∑
i 6∈S

Ci,1(Xi)ei, q(x) =
∑
i6∈S

δ2√2aih2(xi)

shows that p(X) is (r,O(δ))-approximately linear.
It is clear that p0 depends on only the r linear functions x · ei for i ∈ S, that v is

orthogonal to these ei, and that p(X) is the sum of p0, x · v and q. We have only to verify
that |q|2 = O(δ)|v|. It is clear that |q|2 = O(δ2)

√∑
i6∈S a

2
i . On the other hand, we have that

|v|2 =
√∑

i 6∈S

C2
i,1(Xi) ≥ Ω

δ√∑
i6∈S

Iia2
i

 .
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Thus, it suffices to show that ∑
i 6∈S

Iia
2
i ≥

1
2
∑
i 6∈S

a2
i .

We can show this by Abel summation. In particular, for i 6∈ S let i′ be the value of the next
smallest integer not in S and let an+1 = 0. We have that

∑
i 6∈S

a2
i =

∑
i 6∈S

∑
j 6∈S,j≥i

a2
j − a2

j′ =
∑
j 6∈S

(a2
j − a2

j′)

 ∑
i 6∈S,i≤j

1

 .

Similarly,

∑
i6∈S

Iia
2
i =

∑
i6∈S

Ii

∑
j 6∈S,j≥i

Ii(a2
j − a2

j′) =
∑
j 6∈S

(a2
j − a2

j′)

 ∑
i 6∈S,i≤j

Ii

 .

On the other hand, for any j we have that∑
i6∈S,i≤j

Ii ≥
1
2
∑

i6∈S,i≤j

1.

Substituting into the above we find that∑
i 6∈S

Iia
2
i ≥

1
2
∑
i 6∈S

a2
i

and our result follows. J

Proposition 4.1 now follows easily by using Lemma 4.4 to reduce us to the case handled
by Lemma 4.3.

Proof. Let f(x) = sgn(p(x)) for some degree 2 polynomial p.
Let X1 and X2 be independent standard Gaussians. Note that

E[f(
√

1− δ3X + δ3/2Y )] = E[f(
√

1− δX1 +
√
δ(
√

1− δ2X2 + δY ))].

Let p(X1) be the polynomial given by

p(X1)(x) := p(
√

1− δX1 +
√
δx)

and let f (X1)(x) := sgn(p(X1))(x). Note that

E[f(
√

1− δ3X + δ3/2Y )] = EX1 [EX2,Y [f (X1)(
√

1− δ2X2 + δY )]].

By Lemma 4.4, we have with probability 1− exp(−Ω(δ−1)) over the choice of X1 that p(X1)

is (δ−1, O(
√
δ))-approximately linear. If this is the case, then by applying Lemma 4.3 with k

a sufficiently small multiple of δ−1, we find that

EX2,Y [f (X1)(
√

1− δ2X2 + δY )] = E[f (X1)(X)] + exp(−Ω(δ−1)).

Putting these together, we find that

E[f(
√

1− δ3X + δ3/2Y )] = EX1 [E[f (X1)(X)]] + exp(−Ω(δ−1))

= E[f(
√

1− δX1 +
√
δX)] + exp(−Ω(δ−1))

= E[f(X)] + exp(−Ω(δ−1)).

J
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5 Cleanup

It is not difficult to complete the analysis of our generator given Proposition 4.1. We begin
by applying Proposition 4.1 iteratively to obtain:

I Lemma 5.1. Let δ > 0 and n, ` be positive integers. Let C be a sufficiently large constant.
For 1 ≤ i ≤ ` let Yi be an independent copy of a family of n exp(−Cδ−1 log(n/δ))-approximate
Gaussians seeded by a pseudorandom generator that fools read once branching programs of
memory Cδ−2 log(n/δ) to within error exp(−Cδ−1 log(n/δ)). Let X be an n dimensional
standard Gaussian. Then for any degree 2 polynomial threshold function f in n variables, we
have that∣∣∣∣∣E[f(X)]− E

[
f

(
(1− δ3)`/2X + δ3/2

∑̀
i=1

(1− δ3)(`−1)/2Yi

)]∣∣∣∣∣ ≤ ` exp(−Ω(δ−1)).

Proof. The proof is by induction on `. The case of ` = 0 is trivial. Assuming that our
Lemma holds for `, applying Proposition 4.1 to the threshold function

g(x) := f

(
(1− δ3)`/2x+ δ3/2

∑̀
i=1

(1− δ3)(`−1)/2Yi

)
,

we find that

E

[
f

(
(1− δ3)(`+1)/2X + δ3/2

`+1∑
i=1

(1− δ4)(`−1)/2Yi

)]

= E

[
f

(
(1− δ3)`/2X + δ3/2

∑̀
i=1

(1− δ4)(`−1)/2Yi

)]
+ exp(−Ω(δ−1))

= E[f(X)] + (`+ 1) exp(−Ω(δ−1)).

This completes the proof. J

Next, we note that when ` is large, the coefficient of X above is small enough that it
should have negligible probability of affecting the sign of the polynomial in question.

I Lemma 5.2. Let δ > 0 and n, ` be positive integers. Let C be a sufficiently large constant.
For 1 ≤ i ≤ ` let Yi be an independent copy of a family of n exp(−Cδ−1 log(n/δ))-approximate
Gaussians seeded by a pseudorandom generator that fools read once branching programs of
memory Cδ−2 log(n/δ) to within error exp(−Cδ−1 log(n/δ)). Let X be an n dimensional
standard Gaussian. Then for any degree 2 polynomial threshold function f in n variables, we
have that∣∣∣∣∣∣E[f(X)]− E

f
∑`

i=1(1− δ3)(`−1)/2Yi√∑`
i=1(1− δ3)`−1

∣∣∣∣∣∣ ≤ ` exp(−Ω(δ−1)) +O((1− δ3)`/18).

Proof. Let

Y :=
∑`

i=1(1− δ3)(`−1)/2Yi√∑`
i=1(1− δ3)`−1

,

and
Y ′ = (1− δ3)`/2X +

√
1− (1− δ3)`Y.
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By Lemma 5.1, it suffices to compare E[f(Y )] with E[f(Y ′)]. To do this, let p be the degree-2
polynomial defining the threshold function f . Consider

E
[
(p(Y )− p(Y ′))2

]
.

We may write this as E[q(X,Y1, . . . , Y`)2] for an appropriate quadratic polynomial q. Letting
X1, . . . , X` be independent standard Gaussians, we have by repeated use of Corollary 3.6
that

E[q(X,Y1, . . . , Y`)2] ≤ (1 + δ5)E[q(X,X1, Y2, . . . , Y`)2]
≤ (1 + δ5)2E[q(X,X1, X2, Y3, . . . , Y`)2]
≤ . . .
≤ (1 + δ5)`E[q(X,X1, . . . , X`)2]

= (1 + δ5)`E

[(
p(X)− p

(
(1− δ3)`/2X1 +

√
1− (1− δ3)`X

))2
]

= O((1− δ3)`/3)|p|22.

The factors of (1 + δ5) are showing up as a very loose approximation to the truth, and are
obtained by noting that∣∣E[q(X,X1, . . . , Xi, Yi+1, . . . , Y`)2]− E[q(X,X1, . . . , Xi−1, Yi, . . . , Y`)2]

∣∣
≤ exp(−Ω(δ−1))EX,Xj ,Yj ,j 6=i[E[q(X,X1, . . . , Xi, Yi+1, . . . , Y`)4]1/2]
≤ δ5E[q(X,X1, . . . , Xi, Yi+1, . . . , Y`)2].

Let K = (1− δ3)`/9|p|2. By Markov’s inequality we have that |q(X,Yi)| ≤ K except with
probability at most O((1−δ3)`/18). Let f±(x) = sgn(p(x)±K). By Lemma 2.2, we have that
|E[f+(X)]−E[f−(X)]| ≤ O(K1/2) = O((1−δ3)`/18). By Lemma 5.1, |E[f±(X)]−E[f±(Y ′)]| ≤
` exp(−Ω(δ−1)). On the other hand, with high probability |p(Y )− p(Y ′)| ≤ K and thus with
high probability

f+(Y ′) ≥ f(Y ) ≥ f−(Y ′).

Therefore,

E[f(Y )] ≤ E[f+(Y ′)] +O((1− δ3)`/18)

≤ E[f+(X)] +O((1− δ3)`/18) + ` exp(−Ω(δ−1))

≤ E[f(X)] +O((1− δ3)`/18) + ` exp(−Ω(δ−1)).

The lower bound follows similarly, and this completes the proof. J

Theorem 1.1 now follows immediately.

Proof. The result follows immediately from Lemma 5.2. We can obtain the stated seed
length by using the generators from Lemma 3.2 and Theorem 3.3. J
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Abstract
A circuit C compresses a function f : {0, 1}n → {0, 1}m if given an input x ∈ {0, 1}n the circuit
C can shrink x to a shorter `-bit string x′ such that later, a computationally-unbounded solver D
will be able to compute f(x) based on x′. In this paper we study the existence of functions which
are incompressible by circuits of some fixed polynomial size s = nc. Motivated by cryptographic
applications, we focus on average-case (`, ε) incompressibility, which guarantees that on a random
input x ∈ {0, 1}n, for every size s circuit C : {0, 1}n → {0, 1}` and any unbounded solver D,
the success probability Prx[D(C(x)) = f(x)] is upper-bounded by 2−m + ε. While this notion
of incompressibility appeared in several works (e.g., Dubrov and Ishai [12]), so far no explicit
constructions of efficiently computable incompressible functions were known. In this work we
present the following results:
1. Assuming that E is hard for exponential size nondeterministic circuits, we construct a poly-

nomial time computable boolean function f : {0, 1}n → {0, 1} which is incompressible by
size nc circuits with communication ` = (1 − o(1)) · n and error ε = n−c. Our technique
generalizes to the case of PRGs against nonboolean circuits, improving and simplifying the
previous construction of Shaltiel and Artemenko [5].

2. We show that it is possible to achieve negligible error parameter ε = n−ω(1) for nonboolean
functions. Specifically, assuming that E is hard for exponential size Σ3-circuits, we construct
a nonboolean function f : {0, 1}n → {0, 1}m which is incompressible by size nc circuits with
` = Ω(n) and extremely small ε = n−c · 2−m. Our construction combines the techniques of
Trevisan and Vadhan [47] with a new notion of relative error deterministic extractor which
may be of independent interest.

3. We show that the task of constructing an incompressible boolean function f : {0, 1}n → {0, 1}
with negligible error parameter ε cannot be achieved by “existing proof techniques”. Namely,
nondeterministic reductions (or even Σi reductions) cannot get ε = n−ω(1) for boolean incom-
pressible functions. Our results also apply to constructions of standard Nisan-Wigderson type
PRGs and (standard) boolean functions that are hard on average, explaining, in retrospective,
the limitations of existing constructions. Our impossibility result builds on an approach of
Shaltiel and Viola [40].
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1 Introduction

In this paper we study several non-standard pseudorandom objects including incompressible
functions, non-boolean PRGs and relative-error extractors for samplable and recognizable
distributions. We present new constructions of these objects, relate them to each other and
to standard pseudorandom objects, and study their limitations. Following some background
on “traditional” pseudorandom objects (Section 1.1), we define and motivate incompressible
functions, non-boolean PRGs and extractors for samplable distributions (Section 1.2). We
continue with additional background on Hardness assumptions (Section 1.3), and state our
results in Sections 1.4 – 1.7. The reader is referred to [1] for a full version of the paper.

1.1 Incomputable functions and Pseudorandom generators
Functions that are hard to compute on a random input, and pseudorandom generators (PRGs)
are fundamental objects in Complexity Theory, Pseudorandomness and Cryptography.

I Definition 1.1 (incomputable functions and pseudorandom generators).
A function f : {0, 1}n → {0, 1}m is incomputable by a class C of functions if f
is not contained in C. We say that f is ε-incomputable by C if for every function
C : {0, 1}n → {0, 1}m in C, Prx←Un [C(x) = f(x)] ≤ 1

2m + ε.
A function G : {0, 1}r → {0, 1}n is an ε-PRG for a class C of functions if for every
function C : {0, 1}n → {0, 1} in C, |Pr[C(G(Ur)) = 1]− Pr[C(Un) = 1]| ≤ ε.

A long line of research is devoted to achieving constructions of explicit incomputable
functions and PRGs. As we are unable to give unconditional constructions of such explicit
objects, the focus of many previous works is on achieving conditional constructions, that rely
on as weak as possible unproven assumption. A common assumption under which explicit
incomputable functions and PRGs can be constructed is the assumption below:

I Assumption 1.2 (E is hard for exponential size circuits). There exists a problem L in
E = DTIME(2O(n)) and a constant β > 0, such that for every sufficiently large n, circuits of
size 2βn fail to compute the characteristic function of L on inputs of length n.

A long line of research in complexity theory is concerned with “hardness amplification”
(namely, conditional constructions of explicit ε-incomputable functions with small ε) and
“hardness versus randomness tradeoffs” (namely, conditional constructions of explicit PRGs).
We sum up some of the main achievements of this line of research in the theorem below.

I Theorem 1.3 ([30, 34, 6, 25, 44]). If E is hard for exponential size circuits, then for every
constant c > 1 there exists a constant a > 1 such that for every sufficiently large n, and every
r such that a logn ≤ r ≤ n:

There is a function f : {0, 1}r → {0, 1} that is n−c-incomputable for size nc circuits.
Furthermore, f is computable in time poly(nc).1
There is a function G : {0, 1}r → {0, 1}n that is an n−c-PRG for size nc circuits.
Furthermore, G is computable in time poly(nc).

In the statement of Theorem 1.3 we allow input length r (of the functions f and G) to
vary between a logn and n. It should be noted that the case of r > a logn easily follows

1 A statement like this means that we consider a family f = {fn} for growing input lengths, and we think
of r = r(n) as a function. We use this convention throughout the paper.
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584 Incompressible Functions

from the case of r = a logn. We state the theorem this way, as we want to emphasize that by
choosing r = nΩ(1), we obtain incomputable functions/PRGs which run in time polynomial
in their input length.

We also stress that in many settings in derandomization, increasing the input length r
of a pseudorandom object, allows achieving very small error of ε = 2−Ω(r). In contrast, in
Theorem 1.3 this dependance is not achieved. More precisely, if we set r = nΩ(1), we only
get ε = n−c = r−Ω(1) which is polynomially small in the input length. We will elaborate on
this limitation later on.

1.2 Additional Pseudorandom objects
In this paper we consider generalizations of incomputable functions and PRGs that were
introduced by Dubrov and Ishai [12]. We also consider the notion of extractors for samplable
distributions introduced by Trevisan and Vadhan [47].

1.2.1 Incompressible functions
1.2.1.1 Compression

Consider the following scenario. A computationally-bounded machine C wishes to compute
some complicated function f on an input x of length n. While C cannot compute f(x) alone,
it has a communication-limited access to a computationally-unbounded trusted “solver” D,
who is willing to help. Hence, C would like to “compress” the n-bit input x to a shorter
string x′ of length ` (the communication bound) while preserving the information needed to
compute f(x).

This notion of compression was introduced by Harnik and Naor [24] who studied the case
where f is an NP-hard function. (Similar notions were also studied by the Parameterized
Complexity community, see [24] for references.) Following Dubrov and Ishai [12], we focus
on a scaled-down version of the problem where the gap between the complexity of f to
the complexity of the compressor C is some fixed polynomial (e.g., C runs in time n2,
while f is computable in time n3). In this setting, the notion of incompressibility is a
natural strengthening of incomputability (as defined in Definition 1.1). We proceed with a
formal definition. It is more useful to define the notion of “incompressibility” rather than
“compressibility”. In the following, the reader should think of m < ` < n.

I Definition 1.4 (incompressible function [12]). A function f : {0, 1}n → {0, 1}m is incom-
pressible by a function C : {0, 1}n → {0, 1}` if for every function D : {0, 1}` → {0, 1}m,
there exists x ∈ {0, 1}m such that D(C(x)) 6= f(x). We say that f is ε-incompressible
by C if for every function D : {0, 1}` → {0, 1}m, Prx←Un [D(C(x)) = f(x)] ≤ 1

2m + ε. We
say that f is `-incompressible (resp. (`, ε)-incompressible) by a class C if for every
C : {0, 1}n → {0, 1}` in C, f is incompressible (resp. ε-incompressible) by C.

Incompressible functions are a generalization of incomputable functions in the sense that
for every ` ≥ 1 an (`, ε)-incompressible function is in particular ε-incomputable. However,
incompressibility offers several additional advantages and yield some interesting positive and
negative results.

1.2.1.2 Communication lower-bounds for verifiable computation

As an immediate example, consider the problem of verifiable computation where a computa-
tionally bounded client C who holds an input x ∈ {0, 1}n wishes to delegate the computation
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of f : {0, 1}n → {0, 1} (an n3-time function) to a computationally strong (say n10-time)
untrusted server, while verifying that the answer is correct. This problem has attracted a
considerable amount of research, and it was recently shown [28] that verifiable computa-
tion can be achieved with one-round of communication in which the client sends x to the
server, and, in addition, the parties exchange at most polylogarithmic number of bits. If
(1−o(1)) ·n-incompressible functions exist, then this is essentially optimal. Furthermore, this
lower-bound holds even in the preprocessing model ( [15, 9, 2]) where the client is allowed to
send long messages before seeing the input. Similar tight lower bounds can be shown for other
related cryptographic tasks such as instance-hiding or garbled circuits (cf. [3, Section 6]).

1.2.1.3 Leakage-resilient storage [10]

On the positive side, consider the problem of storing a cryptographic keyK on a computer that
may leak information. Specifically, assume that our device was hacked by a computationally-
bounded virus C who reads the memory and sends at most ` bits to a (computationally
unbounded) server D.2 Is it possible to securely store a cryptographic key in such a scenario?
Given an (`, ε)-incompressible function f : {0, 1}n → {0, 1}m we can solve the problem
(with an information-theoretic security) by storing a random x ← {0, 1}n and, whenever
a cryptographic key K is needed, compute K = f(x) on-the-fly without storing it in the
memory. For this application, we need average-case incompressibility (ideally with negligible
ε), and a large output length m. Furthermore, it is useful to generalize incompressibility to
the interactive setting in which the compressor C is allowed to have a multi-round interaction
with the server D. (See the full version [1] for a formal definition.)
Unfortunately, so far no explicit constructions of incompressible functions (based on “standard
assumptions”) are known, even in the worst-case setting.

1.2.2 PRGs for nonboolean circuits
Dubrov and Ishai [12] considered a generalization of pseudorandom generators, which should
be secure even against distinguishers that output many bits. In the definition below, the
reader should think of ` ≤ r < n.

I Definition 1.5 (PRG for boolean and nonboolean distinguishers [12]). A function G :
{0, 1}r → {0, 1}n is an ε-PRG for a function C : {0, 1}n → {0, 1}` if the distributions
C(G(Ur)) and C(Un) are ε-close.3 G is an (`, ε)-PRG for a class C of functions, if G is an
ε-PRG for every function C : {0, 1}n → {0, 1}` in C.

Indeed, note that a (1, ε)-PRG is simply an ε-PRG. Dubrov and Ishai noted that PRGs
with large ` can be used to reduce the randomness of sampling procedures. We now explain
this application. In the definition below, the reader should think of ` ≤ n.

I Definition 1.6 (Samplable distribution). We say that a distribution X on ` bits is samplable
by a class C of functions C : {0, 1}n → {0, 1}` if there exists a function C in the class such
that X is C(Un).

Imagine that we can sample from some interesting distribution X on ` = n1/10 bits
using n random bits, by a procedure C that runs in time n2. If we have a poly(n)-time

2 One may argue that if the outgoing communication is too large, the virus may be detected.
3 We use Un to denote the uniform distribution on n bits. Two distributions X,Y over the same domain

are ε-close if for any event A, |Pr[X ∈ A]− Pr[Y ∈ A]| ≤ ε.
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computable (`, ε)-PRG G : {0, 1}r → {0, 1}n against size n2 circuits, then the procedure
P (s) = C(G(s)) is a polynomial time procedure that samples a distribution that is ε-close
to X (meaning that even an unbounded adversary cannot distinguish between the two
distributions). Furthermore, this procedure uses only r random bits (rather than n random
bits) and we can hope to obtain r � n.

1.2.3 Extractors for samplable distributions
Deterministic (seedless) extractors are functions that extract randomness from “weak sources
of randomness”. The reader is referred to [35, 36] for survey articles on randomness extractors.

I Definition 1.7 (deterministic extractor). Let C be a class of distributions over {0, 1}n. A
function E : {0, 1}n → {0, 1}m is a (k, ε)-extractor for C if for every distribution X in the
class C such that H∞(X) ≥ k, E(X) is ε-close to uniform.4

Trevisan and Vadhan [47] considered extractors for the class of distributions samplable by
small circuits (e.g., distributions samplable by circuits of size n2).5 The motivation presented
by Trevisan and Vadhan is to extract randomness from “weak sources of randomness” in order
to generate keys for cryptographic protocols. Indeed, extractors for samplable distributions
are seedless and require no additional randomness (in contrast to seeded extractors). Note
that for this application we would like extractors that run in polynomial time. The model
of samplable distributions (say by circuits of size n2) is very general, and contains many
subclasses of distributions studied in the literature on seedless extractors. Finally, Trevisan
and Vadhan make the philosophical assumption that distributions obtained by nature must
be efficiently samplable.

Summing up, if we are convinced that the physical device that is used by an honest party
as a “weak source of randomness” has low complexity, (say size n2), then even an unbounded
adversary that gets to choose or affect the source, cannot distinguish between the output of
the extractor and the random string with advantage ≥ ε.

1.3 Hardness assumptions against nondeterministic and Σi-circuits
In contrast to incomputable functions and (standard) PRGs, poly(n)-time constructions of
the three objects above (incompressible functions, PRGs for nonboolean distinguishers and
extractors for samplable distributions) are not known to follow from the assumption that E
is hard for exponential size circuits. We now discuss stronger variants of this assumption
under which such constructions can be achieved.

I Definition 1.8 (nondeterministic circuits, oracle circuits and Σi-circuits). A non-deterministic
circuit C has additional “nondeterministic input wires”. We say that the circuit C evaluates
to 1 on x iff there exist an assignment to the nondeterministic input wires that makes C
output 1 on x. An oracle circuit C(·) is a circuit which in addition to the standard gates uses
an additional gate (which may have large fan in). When instantiated with a specific boolean
function A, CA is the circuit in which the additional gate is A. Given a boolean function
A(x), an A-circuit is a circuit that is allowed to use A gates (in addition to the standard
gates). An NP-circuit is a SAT-circuit (where SAT is the satisfiability function) a Σi-circuit

4 For a distribution X over {0, 1}n, H∞(X) := minx∈{0,1}n log 1
Pr[X=x] .

5 In this paper we won’t implicitly set a bound on the input length of the sampling circuit as such a
bound is implied by the bound on its size.
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is an A-circuit where A is the canonical ΣPi -complete language. The size of all circuits is the
total number of wires and gates.6

Note, for example, that an NP-circuit is different than a nondeterministic circuit. The
former is a nonuniform analogue of PNP (which contains coNP) while the latter is an
analogue of NP. Hardness assumptions against nondeterministic/NP/Σi circuits appear in
the literature in various contexts of complexity theory and derandomization [13, 29, 33, 47,
37, 16, 23, 38, 8, 39, 11]. Typically, the assumption used is identical to that of Assumption 1.2
except that “standard circuits” are replaced by one of the circuit types defined above. For
completeness we restate this assumption precisely.

I Definition 1.9. We say that “E is hard for exponential size circuits of type X” if there exists
a problem L in E = DTIME(2O(n)) and a constant β > 0, such that for every sufficiently
large n, circuits of type X with size 2βn fail to compute the characteristic function of L on
inputs of length n.

Such assumptions can be seen as the nonuniform and scaled-up versions of assumptions of
the form EXP 6= NP or EXP 6= ΣP

2 (which are widely believed in complexity theory). As such,
these assumptions are very strong, and yet plausible - the failure of one of these assumptions
will force us to change our current view of the interplay between time, nonuniformity and
nondeterminism.7

Hardness assumptions against nondeterministic or Σi-circuits appear in the literature
in several contexts (most notably as assumptions under which AM = NP. It is known that
Theorem 1.3 extends to to every type of circuits considered in Definition 1.8.

I Theorem 1.10 ([25, 29, 37, 38]). For every i ≥ 0, the statement of Theorem 1.3 also
holds if we replace every occurrence of the word “circuits” by “Σi-circuits” or alternatively
by “nondeterministic Σi-circuits”.

Thus, loosely speaking, if E is hard for exponential size circuits of type X, then for every
c > 1 we have PRGs and incomputable functions for size nc circuits of type X, and these
objects are poly(nc)-time computable, and have error ε = n−c.8

1.4 New constructions based on hardness for nondeterministic circuits
Our first results are explicit constructions of incompressible functions and PRGs for non-
boolean distinguishers from the assumption that E is hard for exponential size nondetermin-
istic circuits.

6 An alternative approach is to define using the Karp-Lipton notation for Turing machines with
advice. For s ≥ n, a size sΘ(1) deterministic circuit is equivalent to DTIME(sΘ(1))/sΘ(1), a
size sΘ(1) nondeterministic circuit is equivalent to NTIME(sΘ(1))/sΘ(1), a size sΘ(1) NP-circuit
is equivalent to DTIMENP(sΘ(1))/sΘ(1), a size sΘ(1) nondeterministic NP-circuit is equivalent to
NTIMENP(sΘ(1))/sΘ(1), and a size sΘ(1) Σi-circuit is equivalent to DTIMEΣPi (sΘ(1))/sΘ(1).

7 Another advantage of constructions based on this type of assumptions is that any E-complete problem
(and such problems are known) can be used to implement the constructions, and the correctness of the
constructions (with that specific choice) follows from the assumption. We do not have to consider and
evaluate various different candidate functions for the hardness assumption.

8 Historically, the interest in PRGs for nondeterministic/NP circuits was motivated by the goal of proving
that AM = NP, which indeed follows using sufficiently strong PRGs [29, 33, 37, 38]. It is important
to note, that in contrast to PRGs against deterministic circuits, PRGs for nondeterministic circuits
are trivially impossible to achieve, if the circuit can simulate the PRG. Indeed, this is why we consider
PRGs against circuits of size nc that are computable in larger time of poly(nc).
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1.4.1 A construction of incompressible functions
Our first result is a construction of polynomial time computable incompressible functions,
based on the assumption that E is hard for exponential size nondeterministic circuits. This is
the first construction of incompressible functions from “standard assumptions”. The theorem
below is stated so that the input length of the function is n. However, The input length
can be shortened to any Ω(logn) ≤ r ≤ n as in the case of incomputable function stated in
Theorem 1.3.

I Theorem 1.11. If E is hard for exponential size nondeterministic circuits, then for every
constant c > 1 there exists a constant d > 1 such that for every sufficiently large n, there
is a function f : {0, 1}n → {0, 1} that is (`, n−c)-incompressible for size nc circuits, where
` = n− d · logn. Furthermore, f is computable in time poly(nc).

The theorem smoothly generalizes to the case of non-boolean functions f : {0, 1}n →
{0, 1}n−`−d logn, and can also be extended to the interactive setting at the expense of
strengthening the assumption to “E is hard for exponential size nondeterministic NP-circuits”.
(See the full version [1].)

1.4.2 A construction of PRGs for nonboolean circuits
Dubrov and Ishai [12] showed that incompressible functions imply PRGs for nonboolean
distinguishers. More precisely, they used the analysis of the Nisan-Wigderson generator [34]
to argue that an incompressible function with the parameters obtained by Theorem 1.11
implies that for every constant c > 1, and every sufficiently large n and nΩ(1) ≤ ` < n, there
is a poly(nc)-time computable (`, n−c)-PRG G : {0, 1}r=O(`2) → {0, 1}n for circuits of size
nc. Using this relationship, one can obtain such PRGs under the assumption that E is hard
for exponential size nondeterministic circuits. Note that a drawback of this result is that the
seed length r is quadratic in `, whereas an optimal PRG can have seed length r = O(`). This
difference is significant in the application of reducing the randomness of sampling procedures
(as explained in detail by Artemenko and Shaltiel [5]).

Artemenko and Shaltiel [5] constructed PRGs for nonboolean circuits with the parameters
above, while also achieving seed length r = O(`). However, they used the stronger assumption
that E is hard for nondeterministic NP-circuits. In the theorem below we obtain the “best of
both worlds”: We start from the assumption that E is hard for nondeterministic circuits and
obtain PRGs with the optimal seed length of r = O(`).

I Theorem 1.12. If E is hard for exponential size non-deterministic circuits, then there
exists a constant b > 1 such that for every constant c > 1 there exists a constant a > 1
such that for every sufficiently large n, and every ` such that a logn ≤ ` ≤ n, there is a
function G : {0, 1}b·` → {0, 1}n that is an (`, n−c)-PRG for size nc circuits. Furthermore, G
is computable in time poly(nc).

It should be noted that if ` ≤ c logn then standard PRGs against size 2 · nc circuits are
also nb-PRGs. This is because any statistical test on ` = c logn bits can be implemented by
a circuit of size nc.

1.5 The power and limitations of nondeterministic reductions
1.5.1 Negligible error in pseudorandom objects?
A common theme in Theorems 1.3, 1.10, 1.11 and 1.12 is that we can get ε = n−c, but
we never get ε = n−ω(1) which would be desired, for example, for the virus application.
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This holds even if we are allowed to increase the input/seed length r, and let r approach
n (say r = nΩ(1)). More generally, in all these results (and in fact, in all the literature on
achieving incomputable functions/PRGs from the assumption that E is hard for exponential
size deterministic circuits) 1/ε is always smaller than the running time of the constructed
object. Consequently, polynomial time computable constructs do not obtain negligible error
of ε = n−ω(1). This phenomenon is well understood, in the sense that there are general
results showing that “current proof techniques” cannot beat this barrier. [40, 4]. (We give a
more precise account of these results in the full version [1]).

However, there are examples in the literature where assuming hardness against nondeter-
ministic (or more generally Σi) circuits, it is possible to beat this barrier. The first example
is the seminal work of Feige and Lund [13] on hardness of the permanent. More relevant
to our setup are the following two results by Trevisan and Vadhan [47], and Drucker [11],
stated precisely below. Note that in both cases, the target function is a polynomial time
computable function that is ε-incomputable for negligible ε = n−ω(1).

I Theorem 1.13 (Nonboolean incomputable function with negligible error [47]). If E is hard
for exponential size NP-circuits, then there exists some constant α > 0 such that for every
constant c > 1 and for every sufficiently large n, there is a function f : {0, 1}n → {0, 1}m that
is ε-incomputable by size nc circuits for m = αn and ε = 2−(m/3) = 2−Ω(n). Furthermore, f
is computable in time poly(nc).

I Theorem 1.14 (Nonboolean incomputable function with negligible error (corollary of [11])9).
For every c > 1 there is a constant c′ > c such that if there is a problem in P that for every
sufficiently large n is ( 1

2 −
1
n )-incomputable by nondeterministic circuits of size nc′ , then for

every sufficiently large n, there is a function f : {0, 1}n → {0, 1}
√
n that is ε-incomputable by

circuits of size nc, for ε = 2−nΩ(1) . Furthermore, f is computable in time poly(nc).10

It is important to note that in both cases above the target function that is constructed
is nonboolean. We stress that the aforementioned lower bounds of [4] apply also to the
case of nonboolean target functions, and the proofs above bypass these limitations by using
nondeterministic reductions.

More precisely, assuming that the target function can be computed too well, the proofs
need to contradict the assumption that E is hard for nondeterministic/Σi-circuits. They do
this by designing a reduction. This reduction uses a deterministic circuit that computes the
target function too well, in order to construct a nondeterministic/Σi-circuit that contradicts
the assumption. This setting allows the reduction itself to be a nondeterministic/Σi-circuit.
A precise definition of nondeterministic reductions appears in the full version [1].

Nondeterministic reductions are very powerful and previous limitations on reductions
[40, 4] do not hold for nondeterministic reductions. (Indeed, Theorems 1.13 and 1.14 beat the
barrier and achieve polynomial time computable functions that are n−ω(1)-incomputable).

9 Drucker [11] considers a more general setting, on which we will not elaborate, and proves a direct
product result. The result we state is a corollary that is easy to compare to the aforementioned results.

10The assumption of Theorem 1.14 is known to follow from the assumptions E is hard for exponential size
nondeterministic circuits by Theorem 1.10. Consequently, the assumption used in Theorem 1.14 follows
from the assumption in Theorem 1.13. The converse does not hold. We also remark that our Theorem
1.11 holds also if we replace the assumption by the following assumption that is similar in structure to
Drucker’s assumption: For every c > 1 there is a constant c′ > c such that there is a problem in P that
for every sufficiently large n is ( 1

2 −
1
n )-incomputable by NP-circuits of size nc

′
. The same holds for our

Theorem 1.12 if we make the additional requirement that ` = nΩ(1).
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Our Theorems 1.11 and 1.12 are also proven using nondeterministic reductions. This
raises the question whether nondeterministic reductions can achieve error ε = n−ω(1) in these
cases. More generally, given the success of Trevisan and Vadhan, and Drucker, it is natural
to hope that we can get ε = n−ω(1) in the classical results stated in Theorem 1.3, if we are
willing to assume the stronger assumption that E is hard for exponential size Σi-circuits, for
some i > 0. Assuming this stronger assumption will allow the proof to use nondeterministic
reductions (and the aforementioned lower bounds do not hold).

1.5.2 Limitations on nondeterministic reductions

In this paper we show that nondeterministic reductions (or even Σi-reductions) cannot
be used to obtain a polynomial time n−ω(1)-incomputable boolean function, starting from
the assumption that E is hard for exponential size Σi-circuits (no matter how large i is).
To the best of our knowledge, our model of nondeterministic reduction (that is explained
in the full version [1]) is sufficiently general to capture all known proofs in the literature
on hardness amplification and PRGs.11 This is a startling contrast between boolean and
non-boolean hardness amplification - the latter can achieve negligible error, while the former
cannot.12 Our results provide a formal explanation for the phenomenon described above,
and in particular, explains why Trevisan and Vadhan, and Drucker did not construct boolean
functions.

We show that the same limitations hold, also for incompressible functions, PRGs against
both boolean and nonboolean distinguishers, and extractors for samplable distributions. Our
results are summarized informally below, and the precise statement of our limitations appears
in the full version [1].

I Informal Theorem 1.15. For every i ≥ 0 and c > 0, it is impossible to use “black-box
reductions” to prove that the assumption that E is hard for Σi-circuits implies that for
ε = n−ω(1), there is a poly(n)-time computable:

ε-incomputable functions f : {0, 1}n → {0, 1} by size nc circuits, or
ε-PRG G : {0, 1}r → {0, 1}n for size nc circuits (the limitation holds for every r ≤ n− 1),
or
(`, ε)-PRG G : {0, 1}r → {0, 1}n for size nc circuits (the limitation holds for every
r ≤ n− 1), or
(k, ε)-extractor E : {0, 1}n → {0, 1}m for size nc circuits (the limitation holds for every
m ≥ 1 and k ≤ n− 1).

Furthermore, these limitations hold even if we allow reductions to perform Σi-computations,
make adaptive queries to the “adversary breaking the security guarantee”, and receive arbitrary
polynomial size nonuniform advice about the adversary.

It is interesting to note that previous work on (deterministic) black-box reductions often
cannot handle reductions that are both adaptive and nonuniform [20, 40] (see [4] for a
discussion) and so the model of nondeterministic reductions that we consider is very strong.

11 It should be noted that there are proof techniques (see e.g. [21, 22]) that bypass analogous limitations
in a related setup. See [22] for a discussion.

12Another contrast between boolean and nonboolean hardness amplification was obtained by Shaltiel and
Viola [40] for reductions that are non-adaptive constant depth circuits, and the reasons for the current
contrast, are similar. Our proof follows the strategy of [40] as explained in detail in Section 2.
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1.5.2.1 Related work on limitations on black-box hardness amplification

A “black-box proof of hardness amplification” consists of two components: A construction
(showing how to to compute the target function given access to the hardness assumption) and
a reduction (showing that an adversary that is able to compute the target function too well,
can be used to break the initial hardness assumption). We stress that in this paper we prove
limitations on reductions. Our limitation holds without placing limitations on the complexity
of the construction (and this only makes our results stronger). There is an orthogonal line
of work which is interested in proving limitations on low complexity constructions. There
is a superficial similarity to our work in that some of these results [48, 31, 32] show lower
bounds on constructions implementable in the polynomial time hierarchy. However, this
line of work is incomparable to ours, and is not relevant to the setting that we consider.
Specifically, we want to capture cases in which the hardness assumption is for a function
in exponential time. Typical polynomial time constructions use the hardness assumption
on inputs of length O(logn) where n is the input length of the target function (so that the
initial function is computable in time polynomial in n) and this allows the construction
to inspect the entire truth table of the function in the hardness assumption. All previous
limitations on the complexity of the construction trivially do not hold in this setting. We
elaborate on our model and the meaning of our results in the full version [1].

1.6 Nonboolean incompressible functions with negligible error

In light of the previous discussion, if we want to achieve poly-time computable ε-incompressible
functions with ε = n−ω(1) we must resort to nonboolean functions. In the next theorem we
give such a construction.

I Theorem 1.16 (Nonboolean incompressible function with negligible error). If E is hard for
exponential size Σ3-circuits then there exists a constant α > 0 such that for every constant
c > 1 and every sufficiently large n, and m ≤ α · n there is a function f : {0, 1}n → {0, 1}m
that is (`, n−c · 2−m)-incompressible for size nc circuits, where ` = α · n. Furthermore, f is
computable in time poly(nc).

We remark that the proof of Theorem 1.16 uses different techniques from the proof of
Theorem 1.11. We also note that the conclusion of Theorem 1.16 is stronger than that
of Theorems 1.13 and 1.14, even if we restrict our attention to ` = 1. Specifically for
m = Ω(n), we obtain that f : {0, 1}n → {0, 1}Ω(n) is ε-incomputable by size nc circuits,
with ε = n−c · 2−Ω(n), meaning that circuits of size nc, have probability at most 1+n−c

2m of
computing f(x). This should be compared to the probability of random guessing which is 1

2m .
Note that in the aforementioned theorems of [47, 11] the probability is larger than 2−(m/2)

which is large compared to 2−m.

Moreover, the function we get is not only ε-incomputable, but (`, ε)-incompressible for
large ` = Ω(n), and we will show that this holds even in the interactive setting. Getting back
to the memory leakage scenario, we will later see that (variants of) the theorem allows us to
achieve a constant rate scheme (an m bit key is encoded by n = O(m) bits) which resists an
nc-time virus that (interactively) leaks a constant fraction of the stored bits.
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1.7 Deterministic extractors with relative error
1.7.1 Previous work on extractors for samplable distributions
Trevisan and Vadhan constructed extractors for distributions samplable by size nc circuits.
The precise statement appears below.

I Theorem 1.17 (Extractors for samplable distributions [47]). If E is hard for exponential
size Σ4-circuits then there exists a constant α > 0 such that for every constant c > 1 and
sufficiently large n, and every m ≤ αn there is a ((1 − α) · n, 1

nc )-extractor E : {0, 1}n →
{0, 1}m for distributions samplable by size nc circuits. Furthermore, E is computable in time
poly(nc).13

As explained earlier, our limitations explain why Trevisan and Vadhan did not achieve
ε = n−ω(1). This may be a significant drawback in applications. In particular, if we use the
extractor to generate keys for cryptographic protocols (as explained in Section 1.2.3) then it
might be that an adversary that has a negligible probability of attacking the protocol under
the uniform distribution, has a noticeable probability of attacking under the distribution
output by the extractor.

1.7.2 Extractors with relative error
In order to circumvent this problem we suggest the following revised notion of statistical
distance, and extractors.

I Definition 1.18 (statistical distance with relative error). We say that a distribution Z

on {0, 1}m is ε-close to uniform with relative error if for every event A ⊆ {0, 1}m,
|Pr[Z ∈ A]− µ(A)| ≤ ε · µ(A) where µ(A) = |A|/2m.14

Note that if Z is ε-close to uniform with relative error, then it is also ε-close to uniform.
However, we now also get that for every event A, Pr[Z ∈ A] ≤ (1 + ε) · µ(A) and this implies
that events that are negligible under the uniform distributions cannot become noticeable
under Z.

We now introduce a revised definition of deterministic extractors by replacing the require-
ment that the output is ε-close to uniform by the requirement that the output is close to
uniform with relative error.

I Definition 1.19 (deterministic extractor with relative error). Let C be a class of distributions
over {0, 1}n. A function E : {0, 1}n → {0, 1}m is a (k, ε)-relative-error extractor for C if for
every distribution X in the class C such that H∞(X) ≥ k, E(X) is ε-close to uniform with
relative error.

To the best of our knowledge, this concept of “relative-error extractor” was not previously
considered in the literature. We first observe that a standard probabilistic argument shows
existence of such extractors for any small class of distributions. This follows by proving that
random functions satisfy this property with high probability (using the same calculation as in
the case of standard extractors). Moreover, this probabilistic argument works with random

13 In [47], this is stated with m = 0.5 · c · logn, but a more careful argument can give the stronger result
that we state here. Another result that appears in [47] allows m to be (1 − δ) · n for an arbitrary
constant δ > 0, and then Σ4 is replaced by Σ5, ε = 1/n and the running time is nbc,δ for a constant bc,δ
that depends only on c and δ.

14While we’ll use this definition mostly with ε < 1, note that it makes sense also for ε ≥ 1.
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t-wise independent functions. Specifically, the following theorem was implicitly proven by
Trevisan and Vadhan [47] (Proof of Proposition A.1):

I Theorem 1.20 (Existence of relative-error extractors). Let C be a class of at most N
distributions on {0, 1}n. Then there exists a (k, ε)-relative-error extractor E : {0, 1}n →
{0, 1}m for C with m = k − 2 log(1/ε) − O(log logN). Furthermore, with probability at
least 1− 2−n a random O(n+ logN)-wise independent function h : {0, 1}n → {0, 1}m is a
(k, ε)-relative-error extractor E : {0, 1}n → {0, 1}m for C.

1.7.3 New constructions of relative error extractors for samplable
distributions

We are able to extend Theorem 1.17 to hold with this new definition. Specifically:

I Theorem 1.21 (Extractors for samplable distributions with relative error). If E is hard for
exponential size Σ4-circuits then there exists a constant α > 0 such that for every constant
c > 1 and sufficiently large n, and every m ≤ αn there is a ((1 − α) · n, 1

nc )-relative-error
extractor E : {0, 1}n → {0, 1}m for distributions samplable by size nc circuits. Furthermore,
E is computable in time poly(nc).

As previously explained this means that events that receive negligible probability under the
uniform distribution also receive negligible probability under the output distribution of the
extractor. We believe that this makes extractors for samplable distributions more suitable
for cryptographic applications.

1.7.4 Relative error extractors for recognizable distributions
Shaltiel [41] introduced a notion of “recognizable distributions”.

I Definition 1.22 (Recognizable distributions [41]). We say that a distribution X on n bits
is recognizable by a class C of functions C : {0, 1}n → {0, 1} if there exists a function C in
the class such that X is uniform over {x : C(x) = 1}.

It is easy to see that extractors for distributions recognizable by small circuits translate
into incompressible functions. Furthermore, relative-error extractors with large error translate
into non-boolean incompressible functions with very small error.

I Lemma 1.23.
An (n− (`+ log(1/ε) + 1), ε/2)-extractor for distributions recognizable by size nc circuits,
is an (`, ε)-incompressible function for size nc circuits.
An (n − (` + log(1/ε) + m + 1), ε/2) relative-error extractor f : {0, 1}n → {0, 1}m for
distributions recognizable by size nc circuits, is an (`, ε · 2−m)-incompressible function for
size nc circuits.

This argument demonstrates (once again) the power of extractors with relative error.
More precisely, note that even if ε is noticeable, we get guarantees on probabilities that are
negligible! This lemma shows that in order to construct nonboolean incompressible functions
with very low error, it is sufficient to construct extractors for recognizable distributions with
relative error that is noticeable.

This lemma follows because if we choose X ← Un and consider the distribution of
(X|C(X) = a) for some compressed value a ∈ {0, 1}` that was computed by the compressor
C, then this distribution is recognizable, and for most a, it has sufficiently large min-entropy
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for the extractor f . It follows that f(X) is close to uniform with relative error even after
seeing C(X). However, in a distribution that is ε-close to uniform with relative error, no
string has probability larger than (1 + ε) · 2−m, and so even an unbounded adversary that
sees C(X) cannot predict f(X) with advantage better than ε · 2−m over random guessing.
We give a full proof in a more general setup in the formal section.
Our next result is a construction of a relative-error extractor for recognizable distributions.

I Theorem 1.24 (Extractors for recognizable distributions with relative error). If E is hard for
exponential size Σ3-circuits then there exists a constant α > 0 such that for every constant
c > 1 and sufficiently large n, and every m ≤ αn there is a ((1 − α) · n, 1

nc )-relative error
extractor E : {0, 1}n → {0, 1}m for distributions recognizable by size nc circuits. Furthermore,
E is computable in time poly(nc).

1.7.4.1 Application in the leakage resilient scenario

The same reasoning applies in the memory leakage scenario described in Section 1.2.1. Using
a relative error extractor for recognizable distributions f , we can achieve a constant rate
scheme (an m bit key is encoded by n = O(m) bits) which resists an nc-time virus who
(interactively) leaks a constant fraction of the stored bits in the following strong sense: Say
that the key K = f(x) is used as the key of some cryptographic scheme FK , and that the
scheme FK is secure in the sense that the probability that an adversary breaks the scheme is
negligible (under a uniform key), then the scheme remains secure even in the presence of the
additional information that was released by the virus.

2 Overview and Technique

In this section we present a high level overview of the techniques used to prove our results.

2.1 Boolean incompressible functions with error n−c

We start with an overview of the proof of Theorem 1.11. Our goal is to construct a boolean
incompressible function for size nc circuits. Consider a family of poly(nc)-wise independent
hash functions H = {hs : {0, 1}n → {0, 1}}. We can sample from such a family using
t = nO(c) random bits. An easy counting argument (see e.g. [47]) shows that for every
not too large class of distributions with min-entropy k (such as the class of distributions
recognizable by size nc circuits) a random hs ← H, is with high probability an extractor for
distributions in the class.

By Lemma 1.23, a random h ← H is w.h.p. an (`, ε)-incompressible function for
` = (1 − o(1)) · n and negligible ε. We are assuming that E is hard for exponential size
nondeterministic circuits, and by Theorem 1.10, there is a poly(nt)-time computable PRG
G : {0, 1}n → {0, 1}t for size nO(t) nondeterministic circuits. We construct an incompressible
function f : {0, 1}2n → {0, 1} as follows:

f(x, y) = hG(y)(x)

Note that f is computable in polynomial time. In order to show that f is (`, n−c)-
incompressible, it is sufficient to show that for (1 − n−c/2)-fraction of seeds y ∈ {0, 1}n,
f(y, ·) = hG(y)(·) is (`, n−c/2)-incompressible.

We will show that for ε = 1/poly(n), there exists a polynomial size nondeterministic
circuit P , that when given s ∈ {0, 1}t, accepts if hs is not (`, 2ε)-incompressible, and rejects
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if hs is (`, ε)-incompressible. A key observation is that as AM ⊆ NP/poly, it is sufficient to
design an Arthur-Merlin protocols P , and furthermore by [7, 19] we can allow this protocol
to be a private coin, constant round protocol, with small (but noticeable) gap between
completeness and soundness.

We now present the protocol P : Merlin (who is claiming that hs is not (`, 2ε)-
incompressible) sends a circuit C : {0, 1}n → {0, 1}` of size nc (which is supposed to
compress the function well). Arthur, chooses private coins x← Un, and sends C(x) to Merlin.
Merlin responds by guessing hs(x), and Arthur accepts if Merlin guessed correctly. It is
immediate that this protocol has completeness 1

2 + 2ε and soundness 1
2 + ε and the gap is

large enough to perform amplification.
It follows that for a uniform y, w.h.p. hG(y) is 2ε-incompressible, as otherwise the

nondeterministic circuit P distinguishes the output of G from uniform.15
We remark that this approach can be extended to yield nonboolean incompressible

functions. However, using this approach we cannot get ε = n−ω(1). This is because the error
of the final function f is at least the error of the PRG G, which cannot be negligible. We
later present our construction of nonboolean incompressible function with very low error (as
promised in Theorem 1.16), which works by giving a construction of relative error extractors
for recognizable distributions (using quite different techniques).

This approach of explicit construction by using PRGs to derandomize a probabilistic
construction was suggested in full generality by Klivans and van Melkebeek [29], and was
used in many relevant works such as [38, 5]. However, the use of AM protocols with private
coins enables us to come up with very simple proofs that improve upon previous work. An
example is our next result that improves a recent construction of [5].

2.2 PRGs for nonboolean distinguishers
We now give an overview of the proof of Theorem 1.12 and show how to construct PRGs against
nonboolean distinguishers. The argument is similar to that of the previous section. This time
we take a poly(nc)-wise independent family of hash functions H =

{
hs : {0, 1}2` → {0, 1}n

}
.

We show that w.h.p. a random hs ← H is an (`, ε)-PRG with very small ε. (This follows
because by a standard calculation, w.h.p, hs is a (ε · 2−`)-PRG for size nc, and this easily
implies that it is an (`, ε)-PRG [5]). Our final PRG is again G′(x, y) = hG(y)(x) for the same
PRG G as in the previous section.

Following our earlier strategy, it is sufficient to design a constant round, private coin
AM protocol P with noticeable gap ε between completeness and soundness, such that given
s ∈ {0, 1}t, P distinguishes the case that hs is not an (`, 2ε)-PRG from the case that hs is
an (`, ε)-PRG.

We now present such a protocol, that is similar in spirit to the graph non-isomorphism
protocol [18]. Merlin (who is claiming that hs is not a good PRG) sends a circuit C :
{0, 1}n → {0, 1}` (that is supposed to distinguish the output of hs from random). Arthur
tosses a private fair coin, and either sends C(y) for y ← Un, or C(hs(x)) for x ← U2`,

15Note that for this argument it is sufficient to have a PRG G : {0, 1}n → {0, 1}t=n
O(c)

that has polynomial
stretch. Therefore, any assumption that implies such a PRG suffices for our application, and we chose
the assumption that E is hard for exponential size nondeterministic circuits, for the ease of stating
it. Furthermore, it is sufficient for us that G fools uniform AM protocols, and we don’t need to fool
nonuniform nondeterministic circuits. There is a line of work on constructing PRGs against uniform
classed under uniform assumption [26, 46, 23, 39], but unfortunately, the relevant results only give
hitting set generators, and using these we can only get incompressible function with ε = 1− n−O(t).

CCC 2015



596 Incompressible Functions

depending on the value of the coin. Merlin is supposed to guess Arthur’s coin. Note that if
hs is not an (`, 2ε)-PRG, then the two distributions C(Un) and C(hs(U2`)) are not 2ε-close
and Merlin can indeed guess Arthur’s coin with probability 1

2 + ε. If hs is an (`, ε)-PRG,
then the distributions are ε-close and Merlin cannot distinguish with probability larger than
1
2 + ε/2.

2.3 The power and limitations of nondeterministic reductions

The precise definitions of nondeterministic reductions and formal restatement of Theorem
1.15 appears in the full version [1]. Below, we try to intuitively explain what makes
nondeterministic reductions more powerful than deterministic reductions, and why this
additional power is more helpful when constructing nonboolean functions, and less helpful
when constructing boolean functions.

Recall that we observed that nondeterministic reductions can be used to achieve negligible
error ε = n−ω(1) when constructing incomputable functions f : {0, 1}n → {0, 1}m for large
m, and we want to show that they cannot achieve this for m = 1. A powerful tool used by
several nondeterministic reductions is approximate counting.

I Theorem 2.1 (approximate counting [43, 42, 27]). For every sufficiently large n, and every
ε′ > 0 there is a size poly(n/ε′) randomized NP-circuit that, given oracle access to a function
C : {0, 1}n → {0, 1}, outputs with probability 1− 2−n an integer p which ε′-approximates the
value q = | {x : C(x) = 1} | in the sense that (1− ε) · p ≤ q ≤ (1 + ε) · p.

We want the oracle circuit above to have size poly(n), and so we can only afford
ε′ = n−c. Suppose that we are using approximate counting with this ε′ on some function
C : {0, 1}n → {0, 1}, to try and distinguish the case that q = | {x : C(x) = 1} |/2−n satisfies
q ≤ 2−m from the case that q ≥ 2−m + ε, for negligible ε = n−ω(1). Note that an n−c-
approximation can indeed perform this task distinguish if m ≥ log(1/ε), but it cannot
distinguish if m = 1.

The reductions that we describe in the proofs of Theorems 1.16 and 1.21 construct
functions with m bit outputs, and critically rely on this property. We now observe that in
order to be useful for constructing functions with output length m, reductions must be able
to distinguish the two cases above.

Let us focus on the task of constructing incomputable functions f : {0, 1}n → {0, 1}m.
Such reductions receive oracle access to a circuit C : {0, 1}n → {0, 1}m, and if C computes
f too well on average, the reduction needs to contradict the hardness assumption. Loosely
speaking, we observe that the reduction must be able to distinguish the case that it is given
a useful circuit C, namely one such that Prx←Un [C(x) = f(x)] ≥ 2−m + ε (on which the
reduction must succeed) from the case that it is given a useless circuit C ′, which ignores
its input, and outputs a random value, so that Prx←Un [C ′(x) = f(x)] = 2−m (and as this
circuit is useless, the reduction receives no information on f , and cannot succeed).

This explains why approximate counting is in some sense necessary for reductions that
want to achieve negligible error. In the formal proof, we use an argument similar to that
of Furst, Saxe and Sipser [14], to show that even reductions that are Σi-circuits, cannot
approximately count with the precision needed for distinguishing the cases above if m = 1.
This is shown by relating the quality of such reductions to the quality of AC0-circuits that
need to perform some task (for which there are known lower bounds). This relationship uses
ideas from the previous lower bounds of Shaltiel and Viola [40].
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2.4 Constructing relative error extractors for recognizable distributions
By lemma 1.23 it is sufficient to construct relative-error extractors for recognizable distri-
butions in order to obtain non-boolean incompressible functions with negligible error. We
now explain how to construct such extractors and prove Theorem 1.24. We use tools and
techniques from Trevisan and Vadhan [47], together with some key ideas that allow us to get
relative error. The full proof appears in the full version [1].

It is complicated to explain the precise setting, and instead we attempt to explain what
enables us to obtain relative-error. For this purpose, let us restrict our attention to the
problem of constructing an ε-incomputable function g : {0, 1}n → {0, 1}m for ε = n−c · 2−m,
which means that the function cannot be computed with probability larger than (1+n−c)·2−m
on a random input.

We will start from a function that is already very hard on average, say f : {0, 1}n →
{0, 1}n′ that is ε-incomputable for ε = 2−n′/3 (and we indeed have such a function by Theorem
1.13 for n′ = Ω(n)). We want to reduce the output length of f from n′ to m ≈ log(1/ε) while
preserving ε. This will make ε small compared to 2−m.

A standard way to reduce the output length while preserving security is the Goldreich-
Levin theorem [17] or more generally, concatenating with a “good” inner code. More precisely,
it is standard to define g(x, i) = EC(f(x))i for some error correcting code EC : {0, 1}n′ →
({0, 1}m)t that has sufficiently efficient list-decoding. Typically, the inner code that we use
is binary (that is m = 1). However, we want to choose codes with large alphabet that
have extremely strong list deocdability. One way to get such behavior is to use “extractor
codes” (defined by Ta-Shma and Zuckerman [45]). More precisely, to set g(x, i) = T (f(x), i)
where T : {0, 1}n′ × [t] → {0, 1}m is a “seeded extractor”. This guarantees that for every
event A ⊆ {0, 1}m, there aren’t “too many” x’s for which T (x, ·) lands in A with “too large
probability” (this is the kind of “combinatorial list-decoding” guarantee that we are interested
in). It turns out that for our application we need to replace “seeded extractors” with “2-source
extractors”. A useful property of 2-source extractors is that they can achieve error � 2−m.
In particular, if applied with error ε� 2−m, such extractors can be thought of as achieving
“relative error” - the probability of every output string is between 2−m− ε = (1− ε · 2m) · 2−m
and 2−m + ε = (1 + ε · 2m) · 2−m. This can be seen as a relative approximation with error
ε′ = ε · 2m.

We observe that such extractors can be used as “inner codes” in the approach of [47]
(which can be viewed as a more specialized concatenation of codes). Precise details appear
in the formal proof.

As in the case of Goldreich-Levin, these “codes” need to have efficient “list-decoding
procedures”. In this setup “efficient” means: a list decoding procedure implementable by a
polynomial size NP-circuit. In order to obtain such a list decoding procedure (for very small
ε) we critically use that approximate counting can indeed distinguish 2−m from 2−m + ε for
negligible ε using a noticeable approximation precision ε′ = n−c, as explained in Section 2.3.

2.5 Relative error extractors for samplable distributions
We now explain how to construct relative error extractors for samplable distributions and
prove Theorem 1.21. In this high level overview, let us restrict our attention to samplable
distributions that are flat, that is uniform over some subset S ⊆ {0, 1}n. Let X be such a
distribution, and let C : {0, 1}t → {0, 1}n be a circuit that samples X (that is X = C(Ut)).
It immediately follows that X is recognizable by the NP-circuit that given x accepts iff there
exists y ∈ {0, 1}t such that C(y) = x. This means that it suffices to construct a relative-error
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extractor for distributions samplable by NP-circuits. This follows from Theorem 1.24 just the
same, if in the assumption we assume hardness for Σ4-circuits, instead of Σ3-circuits. This
follows by observing that the proof of Theorem 1.24 relativizes. The argument sketched above
gives an extractor for flat samplable distributions. In order to extend this to distributions that
are not flat, we generalize the notion of recognizable distributions to non-flat distributions
and then Theorem 1.21 follows from the (generalized version) of Theorem 1.24.
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Abstract
We consider randomness extraction by AC0 circuits. The main parameter, n, is the length of the
source, and all other parameters are functions of it. The additional extraction parameters are
the min-entropy bound k = k(n), the seed length r = r(n), the output length m = m(n), and
the (output) deviation bound ε = ε(n).

For k ≤ n/ logω(1) n, we show thatAC0-extraction is possible if and only if mr ≤ 1+poly(logn)·
k
n ; that is, the extraction rate m/r exceeds the trivial rate (of one) by an additive amount
that is proportional to the min-entropy rate k/n. In particular, non-trivial AC0-extraction (i.e.,
m ≥ r + 1) is possible if and only if k · r > n/poly(logn). For k ≥ n/ logO(1) n, we show that
AC0-extraction of r + Ω(r) bits is possible when r = O(logn), but leave open the question of
whether more bits can be extracted in this case.

The impossibility result is for constant ε, and the possibility result supports ε = 1/poly(n).
The impossibility result is for (possibly) non-uniform AC0, whereas the possibility result hold for
uniform AC0. All our impossibility results hold even for the model of bit-fixing sources, where k
coincides with the number of non-fixed (i.e., random) bits.

We also consider deterministic AC0 extraction from various classes of restricted sources. In
particular, for any constant δ > 0, we give explicit AC0 extractors for poly(1/δ) independent
sources that are each of min-entropy rate δ; and four sources suffice for δ = 0.99. Also, we
give non-explicit AC0 extractors for bit-fixing sources of entropy rate 1/poly(logn) (i.e., having
n/poly(logn) unfixed bits). This shows that the known analysis of the “restriction method” (for
making a circuit constant by fixing as few variables as possible) is tight for AC0 even if the
restriction is picked deterministically depending on the circuit.
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1 Introduction

Randomness extractors, hereafter referred to as extractors, are procedures that transform
sources of “weak randomness” into sources of almost perfect randomness. The feasibility of
such a transformation depends on the specific notion of “weak randomness”, and in most
cases the transformation must be provided with a short (perfectly) random seed. Indeed, this
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fundamental problem has several versions, and each of them comes with a set of parameters.
(See Shaltiel’s survey [53] for a wide perspective as well as for a snapshot of the state of the
art a decade ago.)

The most popular and general notion of weak randomness is parameterized by a probability
bound, denoted 2−k, such that no outcome may appear with probability that exceeds it. In
such a case, k is called the min-entropy of the source. Additional parameters of the extraction
problem include the length of the source, denoted n, the length of the seed, denoted r, the
length of the (extracted) output, denoted m, and an upper bound on its deviation (from
perfect randomness), denoted ε. In fact, n is viewed as the main parameter, and all other
parameters are stated as functions of n. A function E : {0, 1}n × {0, 1}r → {0, 1}m is called
a (k, ε)-extractor if for every X of min-entropy k it holds that E(X,Ur) is ε-close to Um,
where U` denotes the uniform distribution over {0, 1}`. It is called a strong (k, ε)-extractor
if for such X’s it holds that E(X,Ur) ◦ Ur is ε-close to Um+r. (Note that if E is a strong
(k, ε)-extractor, then E′(x, u) = E(x, u) ◦ u is an (k, ε)-extractor.)

When ignoring computational issues, the exact trade-off between the various extraction
parameters is known, but much research has been devoted to obtaining explicit constructions
that approach the optimal bounds. Traditionally, an extractor is called explicit if it can be
computed efficiently (i.e., in polynomial-time) or alternatively if Boolean circuits computing
it can be constructed in poly(n)-time. It is known that some constructions are even more
explicit than that; for example, the popular constructions of universal hashing functions [15]
(known as the “mother of all extractors”) are computable by highly uniform AC0[2] circuits
(i.e., constant-depth circuits of polynomial-size with parity gates). The same holds for
Trevisan’s celebrated extractor [54]. Can one get any lower (indeed to AC0)? This is the
question we study here.1

1.1 The most relevant prior work

Our starting point is the following negative result by Viola [57].

I Theorem 1.1 (severe limitations on extraction in AC0 [57, Thm. 6.4]). If a (k, 0.999)-
extractor E : {0, 1}n × {0, 1}0.999m → {0, 1}m is computable by a circuit C (with negations
and unbounded fan-in and and or gates), then size(C) ≥ exp(Ω(n/k)1/(depth(C)−1)). In
particular, if E can be computed by a family of AC0 circuits, then there exists a positive
polynomial p such that k(n) ≥ n/p(logn) for all sufficiently large n.

This result rules out AC0-extractors that either extract from entropy k = n/ logω(1) n or
use a seed length r that is sublinear in the output length. However, the result leaves open the
possibility that (non-trivial) AC0-extractors exist for other settings of parameters. Indeed,
when making only the non-triviality requirement (i.e., m = r + 1), two such extractors
existed in the literature. First, AC0 circuits can extract one bit from a source of logarithmic
min-entropy when using a very long seed; specifically, when r = n = m− 1. (This can be
done by sampling input-output pairs of the inner product function [34], cf. [6, 58].) Second,
non-trivial AC0-extractors exist for min-entropy k ≥ n/poly logn (using the “sample-then-

1 In fact, one may even go lower and ask whether randomness extraction is possible in NC0. Actually,
such extractors were presented in [5, Sec. 5.3] for the case of m = n and r = Θ(n− k). We note that
these parameters are inferior to the parameters in Theorem 1.7, but they are the best possible for NC0

(since if an extractor of locality d extracts m = r + 1 bits such that d ·m ≤ n− k, then the entropy of
the output bits must come from the seed because n− k bits of the source may be fixed).
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extract” paradigm developed by Nisan and Zuckerman [46] and refined by Vadhan [55]). In
fact, this AC0-extractor can extract logarithmically many bits.

I Theorem 1.2 (following [55, Thm. 7.4]). For every k(n) = n/poly(logn) and ε(n) =
1/poly(n), there exist (non-explicit) AC0 circuits that compute a strong (k(n), ε(n))-extractor
E : {0, 1}n × {0, 1}O(logn) → {0, 1}Θ(logn). Furthermore, the circuits have depth 4 +⌈

log(n/k(n))
log logn

⌉
.

The proof of Theorem 1.2 follows the proof of [55, Thm. 7.4], which combines an adequate
sampler with an adequate extractor using the (sample-then-extract) composition theorem
of [55, Thm. 6.3]. We note that both the sampler and the extractor used in the original
proof of [55, Thm. 7.4] are non-explicit; furthermore, the (optimal) extractor used there is
probably not computable by constant-depth circuits of poly(n)-size (let alone explicit ones).
Instead, we shall use the (non-optimal) explicit extractor of [29, Sec. 5], which is computable
by (uniform) constant-depth circuits of size poly(n). The resulting AC0-extractor inherits
the non-explicitness of the sampler used in the proof of [55, Thm. 7.4]. Jumping ahead, we
mention that we provide an explicit version of Theorem 1.2 (see Theorem 3.1) by using a
new explicit sampler (see Theorem 3.2).

Hence, while a non-explicit AC0-extractor for k ≥ n/poly(logn) is implicit in prior work,
the explicit version (as stated in Theorem 3.1) relies on our new sampler (i.e., Theorem 3.2).
In any case, the foregoing results do not refer to the general trade-offs between the parameters
k, r and m that allow extraction to be performed in AC0.

1.2 Our main results
We study the following general question.

Parameters enabling extraction in AC0: For which values of k, r and m are (k, n−3)-
extractors E : {0, 1}n × {0, 1}r(n) → {0, 1}m(n) computable in AC0?

Recall that, for logarithmic seed length (i.e., r(n) = O(logn)), a min-entropy bound
of k(n) > n/poly(logn) is a necessary condition (even for m(n) = r(n) + Ω(logn) (see
Theorem 1.1)), whereas m(n) = r(n) + O(logn) is achievable (by Theorem 1.2). These
results mark the boundaries (between impossible and possible) as a function of k when
r(n) = O(logn) and m(n) = r(n) + Θ(logn). Indeed, this boundary refers to a line
(k, r = O(logn),m = r + Θ(logn)) in the three dimensional space (k, r,m) ∈ [n]3. Our
work is aimed at mapping the entire space, and it achieves this goal for k < n/ logω(1) n. In
this setting, we show that AC0-extraction is possible if and only if mr ≤ 1 + poly(logn) · kn ;
that is, the extraction rate m/r exceeds 1 by an additive amount that is proportional to the
min-entropy rate k/n. The region of k ≥ n/poly(logn) remains partially unmapped (as
indicated in Problem 1.6 below).

In general, our impossibility results are for constant ε, and the possibility results support
ε = 1/poly(n). The impossibility results are for (possibly non-uniform) AC0, whereas all but
one of our possibility results hold for uniform AC0 (assuming that the relevant functions (i.e.,
k, r,m and ε) are poly(n)-time computable). All impossibility results hold even for the model
of bit-fixing sources, where k coincides with the number of non-fixed (i.e., random) bits.

When we write k(n) < n/poly(logn) we mean that, for every positive polynomial p and
all sufficiently large n, it holds that k(n) < n/p(logn). When we write k(n) ≥ n/poly(logn)
we mean that there exists a polynomial p such that, for all sufficiently large n, it holds that
k(n) ≥ n/p(logn).
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With these preliminaries in place, we turn to describe our main results. In the case of
strong extraction we obtain a very clear dichotomy.

I Theorem 1.3 (strong extraction in AC0).
impossibility: Strong extraction, even of a single bit, is impossible in AC0 for k(n) <
n/poly(logn), regardless of the length of the seed.
possibility: Strong extraction of m0 = Ω(logn) bits is possible in uniform AC0 for any
k(n) ≥ n/poly(logn), using a seed of length O(logn). Furthermore, in this case, for every
t < k/2m0, strong extraction of t ·m0 bits is possible using a seed of length O(t · logn).

[The impossibility result follows by Theorem 5.4. The possibility result follows by Part 2 of
Corollary 6.4, which in turn is based on Theorem 3.1 (combined with Theorem 6.3 for the
furthermore part).]

We comment that, for k(n) ≥ n/poly(logn), one can extract poly-logarithmically many
bits in AC0 using a seed of logarithmic length but at an error rate of 1/poly(logn); this can
be done by using Trevisan’s extractors [54] (insead of the extractor of [29, Sec. 5]). We now
turn to ordinary (i.e., non-strong) extraction, starting with the minimal case of non-trivial
extraction.

I Theorem 1.4 (ordinary extraction in AC0, the case of m = r + 1).
impossibility: Extraction of r(n)+1 bits is impossible in AC0 for r(n)·k(n) < n/poly(logn).
possibility: There exists a constant c > 2 such that, for every k(n) ≥ c · log(n/ε) and every
r(n) ≥ (n · log3 n)/k(n), extraction of r(n) + min(poly(logn), k(n)/2) bits is possible in
uniform AC0.

[The impossibility result follows by Part 1 of Theorem 5.5, whereas the possibility result
follows by Corollary 6.2.]

I Theorem 1.5 (ordinary extraction in AC0, the case of m = r + Θ(r)).
impossibility: Extraction of r(n)+Ω(r(n)) bits is impossible in AC0 for k(n) < n/poly(logn),
regardless of r.
possibility: There exists a constant c > 0 such that, for every k(n) ≥ n/poly(logn) and
every r(n) ∈ [Ω(logn), k(n)/c], extraction of (1 + c) · r(n) bits is possible in uniform AC0

using a seed of length r(n).
[The impossibility result follows by Part 2 of Theorem 5.5, whereas the possibility result (of
Theorem 1.5) follows by the possibility result of Theorem 1.3.]

Note that the impossibility result of Theorem 5.5 establishes the same bound as Viola’s [57,
Thm. 6.4] (see Theorem 1.1), but does so for bit-fixing sources.

Let us restate the message of Theorem 1.5: It says that extracting m(n) = r(n) + Θ(r(n))
bits is impossible if k(n) < n/poly(logn) (regardless of the size of r), whereas if k(n) ≥
n/poly(logn) then using a seed of length r(n) = Ω(logn) we can extract r(n) + Ω(r(n)) bits.
However, it is not clear whether we cannot extract significantly more bits in the latter case.

I Open Problem 1.6 (extracting more bits at rate of at least 1/poly(logn)). Can one extract
more than poly(logn) · r(n) bits in AC0 using a seed of length r(n) = Ω(logn), when
k(n) > n/poly(logn)? In particular, can one extract more than poly(logn) bits using a seed
of logarithmic length? For starters, what about the special case of constant min-entropy rate,
that is, k(n) = Ω(n)?

We conjecture that the answer is negative and provide some evidence for this conjecture
in Section 4.2. Recall that for k(n) ≥ n/poly(logn), we can extract poly-logarithmically
many bits using a seed of logarithmic seed but at an error rate of 1/poly(logn); see Part 2
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of Corollary 3.6. Indeed, a minor open problem regarding this case is to reduce the error
rate to 1/poly(n).

Theorems 1.4 and 1.5 can be interpolated, and they indeed follow as special cases of the
following generalization (which is our main result).

I Theorem 1.7 (ordinary extraction in AC0, the general case of m = r +m′).
impossibility: For any m′(n) ≥ 1, extraction of r(n) +m′(n) bits is impossible in AC0 if
k(n) < m′(n)

r(n)+m′(n) ·
n

poly(logn) (equiv., if (r(n) +m′(n)) · k(n) < m′(n) · n/poly(logn)).
possibility: There exists a constant c > 1 such that for every k(n), m′(n), and r(n) such
that k(n) ≥ c · (m′(n) + log(n/ε)), extraction of r(n) +m′(n) bits is possible in uniform
AC0 in each of the following two cases.
1. For r(n) · k(n) ≥ dm′(n)/poly(logn)e ·O(n log2 n) and k(n) > poly(logn);
2. For r(n) = n. Furthermore, for r(n) · k(n) ≥ n/poly(logn), we have m′(n) =

Ω(k(n))− poly(logn).
[The impossibility result follows by Theorem 5.5, whereas the possibility result follows by
Corollary 6.4.]

The result of Theorem 1.7 is almost tight for k(n) < n/poly(logn): Extraction of
r(n) +m′(n) bits is impossible in AC0 if r(n) · k(n) +m′(n) · k(n) < m′(n) · n/poly(logn),
which is equivalent (in this case) to r(n) · k(n) < m′(n) · n/poly(logn), but is possible if
r(n) · k(n) ≥ m′(n) · n/poly(logn) (provided that poly(logn) < m′(n) ≤ k(n) − O(logn)).
Hence, what we really do not know refers to the range of k(n) ≥ n/poly(logn); that is, to
Problem 1.6.

A different perspective on Theorem 1.7 is obtained by considering the relation between
k/n and m′/r.

Theorem 1.7 asserts that for m′/r ∈ [0,Θ(1)], extraction in AC0 is possible if k/n ≥
f(n) ·m′/r for some f(n) = 1/poly(logn) and impossible if k/n < f ′(n) ·m′/r for every
f ′(n) = 1/poly(logn). Recall that Theorems 1.1 and 1.2 only refer to the case ofm′/r = Θ(1),
whereas Theorem 1.7 covers all m′/r ∈ [0,Θ(1)]. Problem 1.6 refers to m′/r = ω(1) (or
actually to m′/r = (logn)ω(1)).

We highlight the fact that non-trivial extraction (i.e., m′(n) = 1) is possible in AC0 if
and only if k · r > n/poly(logn). In contrast, the threshold for “significant” AC0-extraction,
that is m′ = Ω(r), is k > n/poly(logn). Hence, for r > poly(logn), there is a gap between
the min-entropy bound that allows non-trivial AC0-extraction and the min-entropy required
for extracting r + Ω(r) bits in AC0.

Extraction with respect to restricted sources

In relation to Problem 1.6, we mention that both in the model of block sources and in the
model of bit-fixing sources, we can extract more than poly-logarithmically many bits using a
seed of logarithmic length, where in both cases the min-entropy rate is at least 1/poly(logn)
(and extraction is in AC0). In fact, in both cases, n/poly(logn) bits are extracted.

I Theorem 1.8 (extraction in AC0 for bit-fixing sources and block sources). For any k(n) ≥
n/poly(logn), extraction of n/poly(logn) bits using a seed of length O(logn) is possible in
uniform AC0 for bit-fixing sources in which k(n) of the n bits are not fixed. Ditto for block
sources with Θ(k(n)/ logn) blocks such that each block has conditional min-entropy Ω(logn).

[See Corollary 4.3 and Theorem 5.2.]
Recall that the bit-fixing model allows for deterministic extractors, which work even for

lower min-entropy rates, but these extractors are not computable by AC0 (which is to be
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expected in light of the fact that our impossibility results hold for the bit-fixing model). Still,
it is possible that whenever extraction in AC0 is possible for bit-fixing sources, it is also
possible via deterministic extractors. We show that this is essentially the case.

I Theorem 1.9 (deterministic extraction in AC0 for bit-fixing sources). For any k(n) ≥
n/poly(logn), deterministic extraction of n/poly(logn) bits is possible in AC0 for bit-fixing
sources in which k(n) of the n bits are not fixed.

[See Theorem 5.8.] Unlike all previously mentioned results, this possibility result only claims
the existence of AC0 circuits (but does not provide an explicit construction). We mention
(see Theorem 5.18) that we can construct explicit AC0 circuits that compute a deterministic
disperser for this class of sources (i.e., we present a circuit that is not constant on any such
source).

A circuit complexity perspective (w.r.t random restrictions). A (deterministic) extractor
for bit-fixing sources in which k(n) of the n bits are random constitutes a circuit that is not
trivialized (i.e., does not simplify to a constant) under any restriction that keeps k(n) of the
variables alive.2 Hence, Hastad’s analysis [32] of the random restriction method [1, 24, 60],
which implies that any depth d circuit of size s(n) trivializes under a random restriction
that keeps n/O(logd−1 s(n)) variables alive, is optimal in a very strong sense: Not only
that there exist AC0 circuits that do not trivialize under a random restriction that keeps
n/poly(logn) variables alive, but these circuits are not trivialized under any restriction that
keeps n/poly(logn) variables alive. In other words, a restriction that is carefully selected
based on the target circuit cannot achieve significantly better parameters than a random
restriction (i.e., cannot trivialize the circuit while leaving significantly more variables alive).
There are contexts in which circuit-dependent restriction yields stronger lower bounds than
its randomized counterpart. These contexts include AC0 circuits of nearly-linear size [16],
and of threshold circuits of nearly-linear size [35].

Deterministic extraction from several independent sources. Another model allowing for
deterministic extractors is the model of two or more independent sources each having
min-entropy at least k(n)

(cf., e.g., [17, 7, 8, 38]). While this model allows for deterministic extractors, which work
even for min-entropy rates below 1/poly(logn), the known extractors are not computable by
AC0 (which is to be expected in light of the fact that our impossibility results hold also for
this model). We show that deterministic extraction in AC0 is possible also in this model.

I Theorem 1.10 (deterministic extraction in AC0 for the multi-source model). For any constant
δ > 0, there exist explicit AC0-extractors for poly(1/δ) independent sources that are each of
min-entropy rate δ. For δ = 0.99, four sources suffice.

See Section 7. In the two-source model, we only obtain such extractors for rates that
approach 1 (i.e., δ ≥ 1− log−4 n).

1.3 Techniques
Our results build on known results and known techniques. These are augmented by several
new constructions of various pseudorandom objects including

2 In fact, the same holds for dispersers, which are functions that map any such source to a non-trivial
distribution.
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two alternative constructions of averaging samplers (see Sections 3.2 and 3.4, respectively);
anAC0-extractor for bit-fixing sources extracting n/poly(logn) bits using a logarithmically
long seed (see Section 5.1);
a deterministic AC0-extractor for bit-fixing sources extracting poly(logn) bits (see Sec-
tion 5.3);
a deterministic two-source AC0-extractor (see Section 7.1);
deterministic many-source AC0-extractors for lower entropy rate (see Sections 7.2 and 7.3).

These and other contributions are mentioned in Section 1.5, where we emphasize interesting
aspects that are not mentioned here. In the current section, we focus on a few common
themes that re-occur in several proofs. Similar ideas were used before, but we found the
current incarnations useful and worthy of highlighting.

Generating pseudorandom partitions

Loosely speaking, the problem is to generate a pseudorandom partition of [n] into m equal-
sized sets such that each set has a strong hitting or sampling property. We wish to do
this using a logarithmic amount of randomness and for m = n/poly(logn). Specifically,
Lemma 5.3 asserts a pseudorandom partition generator for n/m = O(ρ−1 log(1/ε))2 such
that each set of density ρ is hit by each subset of the partition with probability at least 1− ε.

The idea is to use a fixed partition of [n] into n/m disjoint m-cycles and a standard hitter
of sample complexity

√
n/m. Hoping that this hitter generates a set that hits each cycle at

most once, we augment this set to a cover of all n/m cycles, and use the m “shifts” of this
augmented set as a partition. Using a suitable implementation, the aforementioned hope
does materialize with constant probability, and we augment the construction so to obtain a
good partition with overwhelmingly high probability. (The proof of Lemma 5.3 presents a
specific instantiation of this idea that is implementable in uniform AC0.)

Somewhat related problems arise in the proofs of Theorems 3.2 and 3.8. In these proofs,
we need to construct a sampler that generates a very large set (say of size n1/3) of distinct
elements. This is relatively easy if the elements of the sample are pairwise independent.
Getting sets of size greater than

√
n requires additional ideas, which appear in the proof of

Theorem 3.8.
In the latter case we rely on the fact that the number of occurrences of each element

in the sample is not large, and that this number can be computed using a high quality
hashing scheme. We then include each element in the final sample with probability that
is proportional to the number of occurrences in the first sample, while noting that this
random sieving preserves the sampling property of the first sample. (We warn that the
implementation of this procedure in AC0 is not straightforward.)

Combining various pseudorandom properties

As hinted above, we may want to have a good sampler that uses samples that are uniformly
distributed in the domain in a O(1)-wise independent manner. The problem is that good
samplers use random walks on expander graphs, and in this case the samples are each
uniformly distributed but they are not even pairwise independent.

The solution is to XOR an O(1)-wise independent sequence with the vertices visited in
the random walk (see Claim 3.4). We show that the combined sampler inherits the properties
of each of the original samplers. Indeed, such combinations were used before for different
properties (e.g., Impagliazzo and Wigderson [36] de-randomized Yao’s XOR Lemma by
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XORing the output of the “projected seed generator” of [45] with the output of a random
walk generator).

1.4 The perspective of error reduction
As articulated by Zuckerman [63], there is a close relation between randomness extractors
that are computable in a natural complexity class such as AC0 and error-reduction procedures
computable in that class. The error-reduction procedures referred to here are confined to
generating several inputs, applying the original circuit to each of these inputs, and ruling
by majority. Hence, these procedures are closely related to averaging samplers (as defined
implicitly in the next paragraph).

Specifically, a (k, 0.1)-extractor E : {0, 1}n × {0, 1}r → {0, 1}m yields a sampler S :
{0, 1}n → ({0, 1}m)2r such that for every f : {0, 1}m → {0, 1} with probability at least
1 − 2 · 2−(n−k) it holds that 2−r ·

∑
s∈S(Un) f(s) = (1 ± 0.1) · E[f(Um)]. (Just use S(x) =

{E(x, σ) : σ ∈ {0, 1}r}.) The converse holds too (by using E(x, σ) = S(x)σ): A sampler
S : {0, 1}n → ({0, 1}m)2r that satisfies Pr[2−r ·

∑
s∈S(Un) f(s) = (1 ± 0.1) · E[f(Um)]] >

1−0.1·2−(n−k) for every f : {0, 1}m → {0, 1}, yields a (k, 0.2)-extractor E : {0, 1}n×{0, 1}r →
{0, 1}m. For simplicity, let us ignore the small slackness (i.e., 0.1 vs 0.2, and 2 vs 0.1) in the
following discussion.

In light of the tight relationship between the extractor and the sampler in the foregoing
paragraph it holds that, for r = O(logn) and any length parameter m, having (k, 0.1)-
extractors in AC0 and having samplers with error 2−(n−k) computable in AC0 is equivalent.
Note that efficient error-reduction requires m(n) = nΩ(1), since n represents the length of
the input to the sampler and m(n) the length of the sampled strings, which means that
n = poly(m(n)) must hold.

Recall that Theorem 1.1 refers to relatively weak extractors; that is, ones that extracts
a constant factor more bits than the length of the seed (i.e., m(n) ≥ (1 + Ω(1)) · r(n)). It
asserts that AC0 circuits cannot compute such extractors for min-entropy rate that is smaller
than 1/poly(logn). In contrast, recall that AC0[2] (i.e., AC0 with parity gates) circuits
can compute very good extractors (e.g., Trevisan’s [54]); for example, such circuits can
compute (k, ε)-extractors with a logarithmically long seed for k(n) = m(n)2 =

√
n (and

ε(n) = 1/poly(n)).
Nevertheless, Theorem 1.1 says nothing about AC0-extraction from sources of higher

min-entropy rate (i.e., rate at least 1/poly(logn)). Actually, Theorem 1.2 says that AC0-
extraction is possible in this case, but it only provides for extracting logarithmically many bits
(i.e., m(n) = O(logn)), whereas efficient error-reduction requires m(n) = nΩ(1). Furthermore,
Vadhan’s approach [55], which underlies the proof of Theorem 1.2, seems to yield AC0-
extractors of logarithmic seed length only when the output length is polylogarithmic, even
when the min-entropy rate is a constant. The question (see Problem 1.6) is whether one can
extract more randomness under these conditions (i.e., using a source of constant min-entropy
and a logarithmically long seed).

While a positive resolution regarding m(n) = nΩ(1) would imply efficient error-reduction
for AC0, a bypass was found recently. Specifically, a recent revision of [30] (posted in
June 2014) establishes error-reduction for AC0 at the same level that would have been
implied by the best AC0-extractors that are not ruled out by Theorem 1.1. That is, it offers
error-reduction at a level that corresponds to min-entropy k(n) = n/poly(logn), output
length m(n) = nΩ(1), and logarithmic seed length (i.e., r(n) = O(logn)).

This was obtained by observing that we do not really need information-theoretic extractors
(computable in AC0), but rather extractors (computable in AC0) that output distributions
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that fool all AC0 circuits. Alternatively, it suffices to extract randomness for auxiliary circuits
obtained by shrinking the input of the original AC0 circuits by using the pseudorandom
generator of Nisan [44, 45]. Hence, randomness-efficient error-reduction for AC0 was obtained
without presenting an AC0-extractor with the corresponding parameters. In other words,
there is a gap (at least in our knowledge) between general error-reduction implementable in
AC0 (via samplers as reviewed above) and error-reduction for AC0, which may be defined as
obtaining samplers that satisfy the sampling requirement only with respect to functions that
f that are computable in AC0.

This gap in our knowledge provides a new motivation for resolving Problem 1.6, but
now a resolution in the negative direction would be more interesting. Such a result would
mean that, for a natural choice of parameters, randomness-efficient error-reduction for AC0

exists while a corresponding AC0-extractor does not exist (where the correspondence between
parameters is as in the standard relation articulated by Zuckerman [63]).

1.5 A roadmap and additional comments on the technical contents
Following the preliminaries, this write-up proceeds as follows. In Section 3, we prove
Theorem 3.1, which is based on a non-explicit construction of Vadhan [55, Thm. 7.4]. Our
improvement boils down to presenting an explicit “averaging sampler” with parameters that
are comparable to the non-explicit construction. One key observation underlying the new
construction is that the relaxed notion of averaging sampler as defined by Vadhan in [55,
Def. 6.1] can be composed and manipulated in ways that are not possible with the standard
definition of averaging samplers. The reason is that Vadhan’s notion is actually a hybrid of
the notions of hitters and (standard) averaging samplers. Using the new sampler one can also
improve the parameters in some of Vadhan’s explicit constructions of local extractors [55].

In general, Section 3 demonstrates the relevance of the study of local extractor to
extraction in AC0. In particular, local extractors yield constant-depth circuits of size that is
exponential in the seed length and in the locality. In some cases, the size can be made even
smaller (e.g., sub-exponential in the locality).

In Section 4 we consider block-sources. In Section 4.1 we show that applying an extractor
to individual blocks of a block-source, while using the same seed in all applications, yields
an extractor. This result seems to be folklore, but we believe that it is a very useful one,
since we think that this extraction strategy is a natural thing to do when actually having
a block-source. This is relevant to the context of AC0, because the resulting extractor
preserve the computational complexity of the original extractor. In Section 4.2 we consider
the difficulty of converting an arbitrary high min-entropy source into a block-source: Loosely
speaking, we show that two natural approaches to this task fail.

In Section 5 we consider AC0-extractors for bit-fixing sources. In Section 5.1, we present
our first construction, which uses a randomized procedure that outputs a partition of [n] into
small subsets that intersect any set of sufficient density (with high probability). The procedure
uses a logarithmic amount of randomness and is explicit (and hence is implementable by
uniform AC0 circuits). It yields an AC0-extractor that uses a logarithmically long seed
and extracts n/poly(logn) bits from bit-fixing sources of min-entropy n/poly(logn). In
Section 5.3 we combine the latter extractor with a new deterministic extractor (which
extracts poly-logarithmically many bits), and obtain a deterministic extractor that essentially
matches the performance of the seeded extractor. The former deterministic extractor is
based on a new AC0-reduction of the task of extraction from (oblivious) bit-fixing sources of
entropy rate that tends to 0 (i.e., 1/poly(logn)) to the task of extraction from non-oblivious
bit-fixing sources of entropy rate that tends to 1 (i.e., 1− 1/poly(logn)), whereas the latter
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task was treated by Ajtai and Linial [4].3 Indeed, the reduction is from a more restricted
type of sources to a broader type of sources, but the sources of the more restricted type have
significantly lower entropy.

The parameters obtained by these extractors are essentially optimal, with respect to
AC0-extraction from bit-fixing sources. Indeed, in Section 5.2, we present impossibility
results that extend those that are stated in Theorem 1.1:

One result asserts that that AC0 circuits cannot compute a strong extractor for bit-fixing
sources when the number of “unfixed” (i.e., random) bits is n/(logn)ω(1) (regardless of the
seed length). In general, Section 5.2 provides proofs of all our impossibility results, showing
that the relevant bounds hold even for extractors that should only work for bit-fixing sources.

In Section 5.4 we show that the foregoing impossibility results regarding extraction
from bit-fixing sources do not hold for a restricted class of such sources, called zero-fixing
sources [19], consisting of bit-fixing sources in which all fixed bits are set to zero. We show
that AC0 circuits, which use a seed of logarithmic length, can extract from zero-fixing sources
that contain only a logarithmic number of random bits.

Turning back to general sources of min-entropy k, in Section 6 we consider extraction with
a seed of linear length. In Section 6.1 we generalize Viola’s construction [58, Lem. 4.3] of a
non-trivial extractor in AC0 to one that outputs poly(logn) additional bits (rather than one).
In Section 6.2 we show that independent applications of an extractor (i.e., with independently
distributed seeds) yield an extractor, provided that the total number of extracted bits does
not exceed the min-entropy bound. This is a naive result, which relies on well-known ideas,
but it is advantageous in the context of AC0 because the resulting extractor preserve the
computational complexity of the original extractor. Indeed, this simple observation is pivotal
in establishing the general upper bound of Theorem 1.7, which presents a trade-off between
the seed length and the number of (additional) bits extracted.

In Section 7, we consider deterministic AC0-extractor for several independent sources.
Leaving open the question of extraction from pairs of sources of some constant min-entropy
rate, we prove the existence of AC0-extractors for pairs of sources of min-entropy rate
1− log−4 n. This is obtained by presenting a uniform AC0-reduction of the task at hand to the
task of extraction from non-oblivious bit-fixing sources of entropy rate 1−O(log−3 n). (Unlike
in Section 5.3 here the reduction is between incomparable types of sources and the target
sources have lower entropy.) We also present, for any constant δ > 0, explicit AC0-extractors
for poly(1/δ) independent sources that are each of min-entropy rate δ, whereas for δ = 0.99
four sources suffice.

Finally, in Section 8, we list and restate open problems that are mentioned in various
parts of the paper.

2 Preliminaries

By “circuits” we mean Boolean circuits with negations and unbounded fan-in and and or
gates. Since we deal with a very low complexity class (i.e., AC0), it is important to be
careful about the representation of objects. In particular, elements of [n] = {1, 2, . . . , n} are
represented as (blog2 nc+ 1)-bit long strings, and subsets of [n] are represented as (unsorted)

3 In non-oblivious bit-fixing sources the fixed bits may be determined as a function of the values of the
random bits, whereas in (oblivious) bit-fixing sources the fixed bits are set indepedently of the values of
the random bits. The connection between influence of sets as studies in [4] and deterministic extraction
from non-oblivious bit-fixing sources was made in [41].
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sequences over [n]. This convention is important for supporting an efficient implementation
of the projection operation; that is, for a sequence x = (x1, . . . , xn) ∈ {0, 1}n and I ⊆ [n],
we let XI denote the projection of x on I (i.e., if I = (i1, . . . , it), then XI = (xi1 , . . . , xit)).
Indeed, the mapping (x, (i1, . . . , it)) 7→ x(i1,...,it) is computable in uniform AC0 (e.g., by
having the jth output bit equal

∨
i∈[n](xi ∧ (i= ij))).4

By logn we mean log2 n, whereas by poly(n) we mean any (unspecified) positive poly-
nomial. In several statements (e.g., Theorem 1.1), we preferred to use 0.999 (resp., 0.499)
rather than “for every constant smaller than one” (resp., “for every constant smaller than
half”).

Another general convention is that multiple occurrences of the same random variable
mean that the same random value is assigned in all occurrences; that is, if X is a random
variable, then (X,X,X) represents the random variable obtained by selecting x according to
X and outputting (x, x, x). By U` we denote a random variable that is uniformly distributed
over {0, 1}`.

Below we review the basic definitions regarding extractors as well as some results regarding
locally computable extractors.

2.1 General extractors
We recommend Shaltiel’s survey [53] for a general introduction to randomness extractors.

I Definition 2.1 (min-entropy and (n, k)-sources). The min-entropy of a random variable
X, denoted H∞(X), is minx{log2(1/Pr[X = x])}. An (n, k)-source is a random variable X
assuming values in {0, 1}n such that H∞(X) ≥ k.

(Indeed, maxx{|Pr[X = x]} ≤ 2−H∞(X).) In the following definition, ∆[X ;Y ] denotes the
statistical difference (a.k.a variation distance) between X and Y ; that is,

∆[X ;Y ] def= 1
2 ·
∑
v

|Pr[X = v]−Pr[Y = v]| = max
S
{Pr[X ∈ S]−Pr[Y ∈ S]}

I Definition 2.2 ((seeded) randomness extractors). The function E : {0, 1}n × {0, 1}r →
{0, 1}m is called an ε-error extractor for a class of sources C if for every X in C it holds that
∆[E(X,Ur) ;Um] ≤ ε. It is called a strong ε-error extractor for C if for every X in C it holds
that ∆[E(X,Ur) ◦ Ur ;Um ◦ Ur] ≤ ε. When C is the class of (n, k)-sources, we call E a
(k, ε)-extractor.

Note that
∆[E(X,Ur) ◦ Ur ;Um ◦ Ur] = Es←Ur [∆[E(X, s) ;Um]].

We say that an extractor is explicit if a circuit computing it can be constructed in poly(n)-
time. Indeed, to make sense of this definition, one should consider a family of extractors
parameterized by n; that is, we actually consider the family {En : {0, 1}n × {0, 1}r(n) →
{0, 1}m(n)}n∈N such that En is an (k(n), ε(n))-extractor. Likewise, when using asymptotic
notation in reference to an extractor E : {0, 1}n × {0, 1}r → {0, 1}m, we actually refer to a

4 In contrast, if I ⊆ [n] is represented by the n-bit long indicator vector χ = (χ1, . . . , χn) such that χi = 1
if i ∈ I and χi = 0 otherwise, then the mapping (x, I) 7→ xI is not computable in AC0. The reason is
that counting (i.e., computing

∑
i∈[n] bi) is AC

0-reducible to the foregoing operation by setting x = 1n

and measuring the length of xI , where I = {i ∈ [n] : bi = 1}, while relying on (b1, . . . , bn) being an
admissible representation of I.
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family as above; that is, we always view the source length (i.e., n) as a varying parameter
(which determines all other parameters; e,g., r = r(n), m = m(n), etc). Furthermore, we
assume that k, r,m : N → N are monotonically non-decreasing and that ε : N → [0, 1]
is monotonically non-increasing. These conventions are used extensively throughout this
write-up.

2.2 Local extractors
Locally computable extractors were systematically studied by Vadhan [55]. These constructs
as well as some of Vadhan’s techniques (see especially [55, Sec. 6]) are used by us towards
constructing extractors that can be computed in AC0.

I Definition 2.3 (t-local extractors). The extractor E : {0, 1}n × {0, 1}r → {0, 1}m is called
t-local if of every s ∈ {0, 1}r the residual function fs(x) def= E(x, s) depends on at most t bits
of x.

For the case of constant min-entropy rate, we have the following result.

I Theorem 2.4 (special case of [55, Thm. 8.5]). For every constants δ, β > 0 and ε(n) =
1/poly(n), there exists an explicit O(logn)-local strong (δn, ε(n))-extractor E : {0, 1}n ×
{0, 1}β·m(n) → {0, 1}m(n) for m(n) = Θ(logn). Furthermore, the extractor is computable in
uniform AC0.

The furthermore claim is not stated in [55], but it follows from the main claim by combining
the circuits that compute the residual functions (obtained by fixing the seed). Specifically,
we combine depth-two circuits that compute the residual functions (where each function
depends on O(logn) bits), with depth-two circuits that select the adequate function, obtaining
depth-three circuits. For the case of min-entropy rate 1/poly(logn), we mention the following
non-explicit construction.

I Theorem 2.5 (special case of [55, Thm. 7.4]). For every k(n) = n/poly(logn) and ε(n) =
1/poly(n), there exists an (non-explicit) (2n/k(n))-local strong (k(n), ε(n))-extractor E :
{0, 1}n × {0, 1}O(logn) → {0, 1}Ω(logn).

(Note that here the seed is longer than the output, but the result is non-trivial since the
extractor is strong.) While the relevance of Theorem 2.4 to our study was demonstrated in
its furthermore-part, the relevance of Theorem 2.5 is less clear and arises from the technique
used in its proof. The point is that the proof of Theorem 2.5 is based on the composition
theorem of [55, Thm. 6.3], which implies that combining an adequate sampler with an
adequate extractor yields an extractor that can be computed more efficiently than standard
extractors. Loosely speaking, the sampler is used to sample relatively few bits in the source,
and the extractor is applied to the resulting sequence of bits, which approximately maintains
the entropy rate of the source. Thus, the complexity of the resulting extractor is related to
the complexity of sampling and to the complexity of extraction from a much shorter source.
(This fact will be extensively used in Section 3.)

The sample-and-extract paradigm goes back to the work Nisan and Zuckerman [46], but
the point here is using it in order to reduce the computational complexity of extraction.

Furthermore, better parameters are obtained by using the following relaxed notion of an
averaging sampler, introduced by Vadhan [55], which is a hybrid of a sampler and a hitter
(see discussion following the definition).
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I Definition 2.6 (averaging samplers, relaxed [55, Def. 6.1]5). A function S : {0, 1}r → [n]t is
called a (µ, µ′, γ)-averaging sampler if for every f : [n]→ [0, 1] such that ρ(f) def= Ei∈[n][f(i)] ≥
µ it holds that

PrI←S(Ur)

[
1
t

∑
i∈I

f(i) < µ′

]
≤ γ. (1)

Furthermore, it is required that |S(u)| = t for every u ∈ {0, 1}r; that is, the sampler must
always generate t distinct elements.

The standard notion of a (δ, γ)-averaging sampler is obtained from Definition 2.6 by requiring
that S is an (µ, µ − δ, γ)-averaging sampler for every µ ∈ [0, 1]. (Note that in such a case
an upper bound on the probability that 1

t

∑
i∈I f(i) > ρ(f) + δ follows by considering

the function 1 − f .) The definition of a (µ, γ)-hitter is obtained from Definition 2.6 by
replacing Eq. (1) with PrI←S(Ur)[

∑
i∈I f(i) = 0] ≤ γ. (Indeed, the latter definition remains

intact if one only considers Boolean functions f : [n] → {0, 1} (such that ρ(f) ≥ µ).)6
(In Appendix A.1 we prove two useful features of such averaging samplers, although these
features are not essential to this write-up.)

The relevance of averaging samplers to our project is captured by the following composition
theorem of Vadhan [55].

I Theorem 2.7 (sample-then-extract [55, Thm. 6.3]7). For any 0 < 3τ < δ ≤ 1, let µ =
(δ − 2τ)/ log(1/τ) and µ′ = (δ − 3τ)/ log(1/τ). Suppose that the following two conditions
hold.
1. S : {0, 1}r → [n]t is a (µ, µ′, γ)-averaging sampler;
2. E0 : {0, 1}t × {0, 1}r0 → {0, 1}m is a ((δ − 3τ) · t, ε0)-extractor.
Then, E : {0, 1}n × {0, 1}r0+r → {0, 1}m defined by E(x, (s0, s)) = E0(xS(s), s0) is a (δ ·
n, ε0 + γ + exp(−Ω(τn)))-extractor. Furthermore, if E0 is strong then so is E.

For any β ∈ (0, 1), setting τ = (1− β)δ/3 and assuming that δ = ω(log(1/ε)/n), we obtain
the following simplified form.

I Corollary 2.8 (Theorem 2.7, specialized). For any β ∈ (0, 1) and δ = ω(log(1/ε)/n), let
µ′ = Θ(δ/ log(1/δ)) and µ = 1+2β

3β · µ = (1 + Ω(1)) · µ′. Suppose that the following two
conditions hold.
1. S : {0, 1}r → [n]t is a (µ, µ′, ε)-averaging sampler;
2. E0 : {0, 1}t × {0, 1}r0 → {0, 1}m is a (βδ · t, ε)-extractor.
Then, E : {0, 1}n×{0, 1}r0+r → {0, 1}m defined by E(x, (s0, s)) = E0(xS(s), s0) is a (δ ·n, 3ε)-
extractor. Alternatively, if δ = Ω(log(1/γ)/n) and S is a (µ, µ′, γ)-averaging sampler, then
E is a (δ · n, ε+ γΩ(1))-extractor. Furthermore, if E0 is strong then so is E.

Indeed, when using Corollary 2.8 one should artificially set the error parameter of both
constructs in the hypothesis to be the maximum of their actual values. Note that if both S
and E0 are computable in (uniform) AC0, then so is E.

5 The formulation in [55, Def. 6.1] is slightly different: Firstly, the current (µ, µ′, γ)-averaging sampler
corresponds to a (µ, µ − µ′, γ)-averaging sampler in [55, Def. 6.1]. Secondly, the “distinct element
condition” is an integral part of Definition 2.6, whereas it is an additional feature in [55, Def. 6.1].

6 See the proof of [28, Thm. 5.10], which is adapted in the proof of Claim A.2.
7 The formulation in [55, Thm. 6.3] is slightly different: See Footnote 5.
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3 Local extractors and extraction in AC0

In this section, we use local extractors and the ideas underlying their construction to obtain
extractors computable in AC0. This approach was already used in proving Theorem 2.4, and
we stated our intention to use it towards proving Theorems 1.2 and 3.1. Let us spell out
how Theorem 2.4 was proved, in order to clarify the connection between local extraction and
extraction in AC0.

Theorem 2.4 asserts an (explicit) extractor of logarithmic locality and logarithmic seed
length. This means that for any possible seed, the residual extraction function depends only
on logarithmically many bits in the source, which implies that these residual functions can
be computed by depth-two circuits of polynomial size. Combining the polynomially many
circuits that correspond to all possible fixing of the seed, we obtain the desired AC0-extractor.

Note that the foregoing argument can be turned around: It implies that if AC0 cannot
compute extractors with logarithmic seed length for certain parameters, then such extractors
cannot have logarithmic locality. We mention that Bogdanov and Guo [11] proved a
logarithmic lower bound on the locality of extractors, which (unlike our lower bounds)
applies also to the case of k(n) = Ω(n), but this does not rule out AC0-extractors (see
Theorem 2.4).

Turning to Theorem 1.2 and its explicit version (captured by Theorem 3.1), recall that
its proof is based on Vadhan’s sample-then-extract technique (as stated in [55, Thm. 6.3]
and restated in Corollary 2.8). The starting point is the proof of Theorem 2.5, which uses
a sampler (of a logarithmically long seed) that samples poly-logarithmically many bits of
the source. Unlike Vadhan, we cannot afford an arbitrary extractor here, so instead we use
an extractor that can be computed by (explicit) constant-depth circuits of poly(n)-size (see
Section 3.1 for details). In addition, we make the entire construction explicit by using a new
explicit sampler (instead of the non-explicit sampler used originally in [55]). Thus, we obtain:

I Theorem 3.1 (an explicit version of Theorem 1.2). For every k(n) = n/poly(logn) and
ε(n) = 1/poly(n), there exist explicit AC0 circuits that compute a strong (k(n), ε(n))-
extractor E : {0, 1}n × {0, 1}O(logn) → {0, 1}Θ(logn). Furthermore, the circuits have depth
4 +

⌈
log(n/k(n))

log logn

⌉
.

The new explicit sampler, presented in Section 3.2, uses a seed of logarithmic length, and
so it is trivially implemented by uniform AC0 circuits. As stated in Corollary 3.5, combining
this sampler with Corollary 2.8, the construction of AC0-extractors for (n, k)-sources reduces
to the construction of poly(n)-circuits of constant depth for extraction from (t,Ω(k/n) · t)-
sources, where t = poly(n/k). Since k = n/poly(logn), we can afford constant-depth circuits
of size exp(tc) for a sufficiently small constant c > 0.

The applications of the new sampler are spelled out in Section 3.3. Since the new
extractor works only for t = Õ(n1/3) (or for constant error γ > 0), it does not suffice for the
application in Section 6, and so we present (in Section 3.4) an alternative sampler that works
essentially for any t and any error γ = 1/poly(n), which suffices for the latter application.
The alternative version uses a seed of polylogarithmic length, which forces us to detail its
implementation in AC0.

3.1 Proving Theorem 1.2
As a warm-up, we prove Theorem 1.2, which asserts that for every k(n) = n/poly(logn) and
ε(n) = 1/poly(n), there exist AC0 circuits that compute a strong (k(n), ε(n))-extractor E :
{0, 1}n×{0, 1}O(logn) → {0, 1}O(logn). (Furthermore, the circuits have depth 4 + log(n/k(n))

log logn .)
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Proof Sketch. We slightly modify the proof of [55, Thm. 7.4], which combines an averaging
sampler with an extractor (using [55, Thm. 6.3] (see Corollary 2.8)), while setting δ =
k(n)/n = 1/poly(logn), m = Θ(logn) and t = O(m/δ). Specifically, instead of using the
(optimal) non-explicit extractor asserted in [55, Lem. 7.1], which may not be computable
in AC0, we shall use the strong (k0, ε)-extractor E0 : {0, 1}t × {0, 1}O(logn) → {0, 1}m(n)

asserted in [29, Sec. 5], where k0 = O(m+ log(1/ε)). Recall that this extractor uses a seed
of length O(m+ log(t/ε)) = O(logn). (At this point we use the same non-explicit averaging
sampler as in the original proof; that is, the sampler of [55, Lem. 7.2.].)

The key observation is that E0 can be computed by (uniform) poly(n)-size circuits of
depth 2 + logm t = 3 + log(n/k(n))

logm , since the residual computation (resulting when fixing
the seed) amounts to a linear combination (over GF(2O(log t))) of O(log t)-bit long blocks
of the t-bit source viewed as a sequence of t/O(log t) elements over a field of size poly(t).
The sampler itself uses a logarithmically long seed, and thus can be computed by depth two
circuits of polynomial size. J

Towards the explicit version

The foregoing proof, which follows the proof of [55, Lem. 7.1], combines an adequate sampler
with an adequate extractor using the composition theorem of [55, Thm. 6.3]. Recall that we
replaced the extractor used in the original proof by an alternative extractor, which happens
to be explicit. In order to obtain an explicit version of the foregoing construction (i.e., prove
an explicit version of Theorem 1.2), we also need to replace the non-explicit sampler used in
the original proof. This will be done in Section 3.3, after designing an explicit sampler (in
Section 3.2).

3.2 A new averaging sampler
As stated in Section 3.1, a central ingredient in our constructions is a new sampler that
uses a seed of logarithmic length regardless of the density (i.e., µ) of the functions that
it semi-approximates, where by “semi-approximates” we refer to the relaxed notion of an
averaging sampler (as reviewed in Definition 2.6).

I Theorem 3.2 (an averaging sampler with logarithmic seed length). Let α ∈ (0, 1) be an
arbitrary constant. Then, for every µ > n−1/3/poly(logn) and γ ≥ 1/poly(n), there exists an
explicit (µ, αµ, γ)-averaging sampler S : {0, 1}O(logn) → [n]t for any t ∈ [Θ(µ−1 log(n/γ)),
Õ(n1/3)]. An analogous result holds for any µ > 1/n, t = Ω(1/µ), and any constant γ > 0.

That is, the main claim requires µ > n−1/3 and allows γ ≥ 1/poly(n), whereas the alternative
allows any µ > 0 (equiv., µ > 1/n) but provide only for constant γ > 0. (The constant 1/3,
in the exponent, can be replaced by any constant smaller than 1/2.)

Proof. We first establish the result for a constant γ, and then extend it to arbitrary
γ ≥ 1/poly(n). Our starting point is the observation that the pairwise-independence
generator yields a (µ, αµ, γ)-averaging sampler with t = Θ(1/γµ) samples. Basically, the
behavior of this generator with respect to the relaxed notion of averaging samplers (as in
Definition 2.6) is similar to its behavior with respect to the notion of hitters (i.e., the sample
size is linearly related to O(1/µ)).

I Claim 3.3 (the pairwise independence generator as an averaging sampler). Let F be a finite
field, t < |F |, and φ1, . . . , φt be t distinct non-zero elements of F . Consider G : F 2 → F t
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such that, for every r, s ∈ F ,

G(r, s) = (r + φ1s, r + φ2s, . . . , r + φts).

Then, for any constants α, β ∈ (0, 1), selecting uniformly and independently r ∈ F and
s ∈ F \ {0}, and outputting G(r, s) yields a (µ, αµ, β)-averaging sampler for µ = Ω(1/t).

We shall also use the fact that each of the elements in the sample is uniformly distributed in F .
An alternative construction that enjoys all the above features is the expander neighborhood
generator (see, e.g., [28, Apdx. C.2]), when instantiated with Ramanujan graphs (see [42]).

Proof. The proof is by a straightforward adaptation of the proof of the hitting property (see,
e.g., [28, Apdx. C.2]). Specifically, for r and s selected uniformly in F , and any function
f : F → [0, 1] such that ρ(f) ≥ µ, denoting by ζj the value of f(r + φjs), we have

Pr

 t∑
j=1

ζj < α · ρ(f) · t

 ≤ Pr

∣∣∣∣∣∣t · ρ(f)−
t∑

j=1
ζj

∣∣∣∣∣∣ > (1− α) · t · ρ(f)


≤ t · (1− ρ(f)) · ρ(f)

((1− α) · t · ρ(f))2

<
1

(1− α)2 · µ · t

where the second inequality uses Chebyshev’s Inequality. Avoiding the choice of s = 0
guarantees that the t elements in G(r, s) are indeed disjoint, while skewing the probability
by at most 1/|F | = o(1). J

Establishing the alternative claim (of the theorem) and moving on. Associating [n] with
the non-zero elements of a finite field (of size approximately n)8 and using any t ≥ O(1/µ), we
obtain an (µ, αµ, β)-averaging sampler that uses a seed of length 2 logn (as in the alternative
claim).

In order to reduce the error probability to γ = 1/poly(n), we shall use a random walk of
length ` = O(log(n/γ)) on a constant-degree expander over the vertex set [n2] to generate
seeds for the generator G of Claim 3.3. Actually, in order to guarantee that these seeds do
not generate samples that intersect, we will shift these seeds using a O(1)-wise independent
sequence over [n]2, and discard a small part of the resulting sample. The point is that
this combination yields a sequence that maintains the sampling features of the expander
random walk and the property that each O(1) elements of the sequence are independently
and uniformly distributed in the set. (At this point, we shall discard the few repetitions.)

I Claim 3.4 (a randomized version of the “random walk on an expander” hitter). For every
constants ε > 0 and c ∈ N and a varying m, let ` = O(logm) be sufficiently large, and
consider the following generator, denoted G′, that uses a seed of length O(logm).
1. The generator uses the first part of the seed to generate a random walk of length ` on a

poly(1/ε)-regular expander with vertex set Zm. Denote the sequence of visited vertices by
(v1, . . . , v`).

2. The generator uses the second part of the seed to generate a 2c-wise independent sequence
of ` elements in Zm, denoted (s1, . . . , s`).

8 The discrepancy between the field size and n can be ignored (e.g., by using a slightly bigger field and
mapping elements out of [n] is some standard manner).
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3. For every i ∈ [`], the generator computes v′i ← vi + si mod m.
4. The generator outputs the sequence of the first `′ = `− c distinct elements in the sequence

(v′1, . . . , v′`), and outputs (1, .., `′) if |{v′i : i ∈ [`]}| < `− c.
Then, the foregoing generator is a (1− ε, 1−O(

√
ε), exp(−Ω(`))-averaging sampler.

In other words, for every constants ε > 0 and c ∈ N, the generator G′ : {0, 1}O(logm) →
(Zm)O(logm) is a (1− ε, 1−O(

√
ε),m−c)-averaging sampler.

Proof. We first upper bound the probability that |{v′i : i ∈ [`]}| < `− c. Fixing any sequence
of vi’s (as selected in Step 1), we consider the probability space generated by Step 3. For
the bad event to occur, there must be a set of 2c indices, denoted I, such that the set
SI

def= {vi + si mod m : i ∈ I} has cardinality smaller than c. Since for every 2c-subset I it
holds that Pr[|SI | < c] <

(
m
c

)
· (c/m)2c < (c2/m)c, the bad event occurs with probability

at most
(
`
2c
)
· (c2/m)c < (c2`2/m)c < 2−Ω(`), provided that `/ logm is a sufficiently large

constant.
We now analyze the sampling property of the sequence of all v′i’s, while noting that any

subsequence of length `′ will do almost as well (since the omission causes a loss of at most
c = o(

√
ε`) units). Fixing an arbitrary function f : Zm → [0, 1] such that ρ(f) ≥ 1− ε, we

now fix an arbitrary sequence (s1, . . . , s`) as selected in Step 2. This selection induces `
auxiliary functions f1, . . . , f` such that fi(x) = f(x+ si mod m), since under this definition
f(v′i) = fi(vi). Setting ε′ = 6

√
ε, we shall prove that

Pr

∑
i∈[`]

fi(vi) < ` · (1− ε′)

 = exp(−Ω(`)), (2)

where (v1, . . . , v`) is generated as in Step 1. We recall the general Expander Random Walk
Theorem (see [28, Thm. A.4]), which asserts that for Boolean functions bi : [m] → {0, 1}
it holds that Pr[

∑
i∈[`] bi(vi) = `] <

∏
i∈[`] min(1, ρ(bi) + ε)1/2, where ε upper bounds the

(square of) the spectral gap of the expander (i.e., the expander was chosen so that this
upper bound holds). Hence, Eq. (2) follows for Boolean fi’s by considering all ε′`-subsets
I ⊂ [`] and setting bi = 1 − fi if i ∈ I and bi = 1 otherwise. Specifically, the probability
that

∑
i∈[`] fi(vi) < (1− ε′) · ` is upper bounded by

(
`
ε′`

)
· (2ε)ε′`/2, since this event can occur

only if there exists a ε′`-subset I such that for every i ∈ I it holds that fi(vi) = 0 (whereas
ρ(fi) ≥ 1− ε).9 Now, using(

`

ε′`

)
· (2ε)ε

′`/2 < (3`/ε′`)ε
′` · (2ε)ε

′`/2

= (1/2)ε
′`/2,

where the equality uses ε′ = 6
√
ε, and the claim follows (for Boolean f).

Observing that any averaging sampler for Boolean functions also works for general
functions (see Claim A.2), the claim is established. In this case, we can establish that the
generator is a (1−0.5ε, 1−O(

√
ε), exp(−Ω(`))-averaging sampler. An alternative argument for

the current setting may proceed by defining auxiliary Boolean functions f ′i such that f ′i(x) = 1
if and only if fi(x) ≥ 1− ε1/3, noting that ρ(f ′i) ≥ 1− ε2/3, and using ε′ = O(ε1/3). (This

9 Note that, for this I, we have ρ(bi) ≤ ε for i ∈ I and bi ≡ 1 otherwise. Hence,
∑

i∈I fi(vi) = 0 if and
only if

∑
i∈I bi(vi) = |I|, which holds if and only if

∑
i∈[`] bi(vi) = `, whereas the probability of the

latter event is upper bounded by
∏
i∈[`] min(1, ρ(bi) + ε)1/2 ≤ (2ε)|I|/2.
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alternative only establishes that the generator is a (1− ε, 1−O(ε1/3), exp(−Ω(`))-averaging
sampler, which is good enough for our application.) J

Establishing the main claim of the theorem. The theorem follows by combining the
samplers asserted in Claims 3.3 and 3.4. Specifically, we use G′ of Claim 3.4 to generate a
sequence of `′ seeds for the generator G of Claim 3.3 (i.e., we set m = n2 and associate Zm
with (F \ {0})2 ≡ [n]2). Actually, we might as well use the sequence of all ` seeds defined in
Step 3 of G′ (since we are going to make our own omissions anyhow). We set the constant
parameter β in Claim 3.3 so to fit ε in Claim 3.4 (i.e., β = ε), while picking the constant
parameter α < 1 as large as we wish (and ditto w.r.t t ∈ [Θ(µ−1 log(n/γ)), Õ(n1/3)]).
That is, the combined generator maps its seed s ∈ {0, 1}O(logn) to the sequence of sets
G(s1), . . . , G(s`), where (s1, . . . , s`)← G′(s).

The combined generator satisfies the average sampling property of Eq. (1); that is, for
every f : [n]→ [0, 1] such that ρ(f) ≥ µ, with probability at least 1− γ, the ` · t-sized sample,
denoted I, satisfies (1/|I|) ·

∑
i∈I f(i) ≥ (1 − O(

√
ε)) · αµ. This is the case since at least

1 − O(
√
ε) fraction of the seeds generated by G′ produce samples that have an f -average

of at least αµ. (Indeed, the one-sided flavor of Eq. (1) allows to discard the exceptional
seeds.) Since ε > 0 and 1 − α > 0 can be made arbitrarily small constants, we can have
(1− O(

√
ε)) · α be arbitrarily close to one. We note that the sampling guarantee remains

valid also if we omit any o(`) of the ` samples (produced by the ` seeds generated by G′).
The question is whether the sample I contains no repetitions. Recall that G generates

samples that have no repetitions, and that the t elements in each sample are each uniformly
distributed in [n]. For any desired c, the seeds generated by G′ are 2c-wise independent. Now,
consider a random graph R with vertices corresponding to the ` seeds and edges connecting
a pair of seeds if and only if the corresponding samples intersect. We claim that, with
probability at least 1− (`2t2/n)c, this graph has an independent set of size `− 2c.

To prove the last claim note that if the graph has no vertex cover of size 2c, then it must
have a matching of size greater than c. We shall show that even having a matching of size
c is unlikely. Denoting the number of possible matching of size c in an `-vertex graph by
M <

(
`
2c
)
· (2c!) < `2c, note that the probability that the graph R has a matching of size

c is upper bounded by M · (t2/n)c < (`2t2/n)c, because we consider M · (t2)c events, and
each event occurs with probability (1/n)c. Specifically, each event corresponds to a choice of
c disjoint pairs of seeds and a choice of a pair of samples per each pair of seeds, and this
sequence of 2c samples is uniformly distributed in [n]2c. (Here we use the fact that the seeds
generated by G′ are uniformly distributed in an 2c-wise independent manner, and that each
sample generated by G is uniformly distributed in [n].)

Recalling that t = Õ(n1/3) and ` = O(logn) (and γ = 1/poly(n)), and that c is a constant
chosen at our discretion, we conclude that with probability 1 − γ the graph contains an
independent set of size `− 2c, which means that the ` seeds generate at least `− 2c disjoint
samples. The final sampler outputs the union of `− 2c disjoint samples, and an arbitrary
sequence of (`− 2c) · t elements otherwise (i.e., if such a collection of disjoint samples does
not exist). By the foregoing analysis this final sampler also satisfies the average sampling
property of Eq. (1). J

3.3 Applications to explicit constructions of extractors
We first describe the implication of the new averaging sampler on randomness extraction in
AC0 (from (n, k)-sources ). We start by spelling out the construction obtained by instantiating
Corollary 2.8 with the averaging sampler of Theorem 3.2.
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I Corollary 3.5 (using the averaging sampler of Theorem 3.2). Let β ∈ (0, 1) be a constant,
δ > n−1/3 and t ∈ [Θ(δ−1 log2 n), Õ(n1/3)]. Suppose that E0 : {0, 1}t × {0, 1}r0 → {0, 1}m is
a (βδ · t, ε)-extractor that is computable by (uniform) constant-depth circuits of poly(n)-size.
Then, there exists a (δ · n, 3 ·max(ε, poly(1/n)))-extractor E : {0, 1}n × {0, 1}r0+O(logn) →
{0, 1}m that is computable by (uniform) AC0 circuits. Furthermore, the depth of the circuits
for E is only one unit more than the depth of the circuits for E0, and if E0 is strong then so
is E.

(The constant 1/3 can be replaced by any constant smaller than 1/2.)

Proof. Towards invoking Corollary 2.8, we set µ′ = βδ/O(log(1/δ)) and µ = 1+2β
3β ·µ

′. We use
the (µ, µ′, 1/poly(n))-averaging sampler S : {0, 1}O(logn) → [n]t of Theorem 3.2, while noting
that µ′/µ = 3β/(1 + 2β) is a constant smaller than 1, whereas µ > n−1/3/poly(logn) and
t = Ω(δ−1 log2 n) = Ω(µ−1 logn). Invoking Corollary 2.8, while noting that δ = ω((logn)/n)
and that S is computable by uniform DNFs (resp., CNFs) of poly(n)-size, we obtain the
desired extractor. J

Next, combining Corollary 3.5 with known extractors, which can be computed by constant-
depth circuits of poly(n)-size, we derive the following –

I Corollary 3.6 (extraction in AC0 with seed of logarithmic length).
1. (Theorem 3.1, restated): For every k(n) ≥ n/poly(logn) and ε(n) = 1/poly(n), there

exist explicit AC0 circuits that compute a strong (k(n), ε(n))-extractor E : {0, 1}n ×
{0, 1}O(logn) → {0, 1}Θ(logn). Furthermore, the circuits have depth 4 +

⌈
log(n/k(n))

log logn

⌉
.

2. For every k(n) ≥ n/poly(logn), m(n) = poly(logn), and ε(n) = 1/poly(logn), there
exist explicit AC0 circuits that compute a strong (k(n), ε(n))-extractor E : {0, 1}n ×
{0, 1}O(logn) → {0, 1}m(n). Furthermore, the circuits have depth 3 +

⌈
log(m(n)·n/k(n))

log logn

⌉
.

The extractor of Part 2 has longer output (i.e., m(n) = poly(logn) rather than m(n) =
O(logn)), but weaker quality than the extractor of Part 1 (i.e., ε(n) = 1/poly(logn) rather
than ε(n) = 1/poly(n)). We cannot afford the error-reduction procedures of [49], since these
procedures seem sequential in nature. But it may be possible to implement the extractor
of [31] (or another adequate extractor) by constant-depth circuits of sub-exponential size;
in general, for a parameter ` (to be set to O(logn)) and any δ > 1/poly(`) and t = poly(`),
we merely need exp(−Ω(`))-error extractors for (δt, t)-sources that are implementable by
constant-depth circuits of exp(`)-size and extract (δt)Ω(1) bits.

Proof. Starting with Corollary 3.5, the two parts are proved by providing corresponding
extractors. Specifically, we set β = 1/2, δ = k(n)/n and t = Θ((logn)c · δ−1), for a constant
c ≥ 1 selected below, and pick an adequate extractor E0 : {0, 1}t × {0, 1}r0 → {0, 1}m.

For Part 1 we set c = 1 and use the strong (δt/2, ε)-extractor E0 : {0, 1}t × {0, 1}r0 →
{0, 1}m asserted in [29, Sec. 5], which supports r0 = O(m) for m = Θ(δt) − log(1/ε).
Using ε = 1/poly(n) and t = Ω(δ−1 logn), we have m = Θ(logn), and all claims follow,
since (as detailed next) E0 can be computed by (uniform) poly(n)-size circuits of depth
2 + dlogm te = 3 + d(log(n/k(n)))/ logme.

To see that E0 can be computed by (uniform) poly(n)-size circuits of depth 2 + dlogm te,
we consider all poly(n) possible fixings of its seed, and observe that E0 can be computed
by a depth-two circuit that selects the appropriate residual circuit. As noted in Section 3.1,
viewing the t-bit source as a sequence of t/O(log t) elements over a field F of size poly(t), the
residual computation (for each fixing of the seed to E0) amounts to a linear combination (over
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F ) of these field elements. Such linear combinations can be computed by depth 1 + dlogm te
circuits of poly(n)-size.

Turning to Part 2, we set c = logm
log logn + 1 (i.e., m = (logn)c−1) and use the strong

(δt/2, ε)-extractor E0 : {0, 1}t × {0, 1}r0 → {0, 1}m asserted by Trevisan [54], which supports
r0 = O(log(t/ε)) and m = (δt/2)(c−1)/c, provided that δt/2 > tΩ(1) and ε = 1/poly(t).
Recalling that the residual computations corresponding to Trevisan’s extractor amounts to a
linear combination of the t bits, we conclude that these linear combinations can be computed
by depth 1 + dloglogn te = 1 + dc+ loglogn(n/k(n))e circuits of poly(n)-size. J

Application to explicit constructions of local extractors

Combining Theorem 3.2 with [55, Thm. 6.3] (see Corollary 2.8), yields improved parameters
for explicit local extractors. Further improvement is obtained by using better extractors (i.e.,
the current state-of-art extractors of Guruswami et al. [31, Thm. 1.5]) than those available
to Vadhan [55].10

I Corollary 3.7 (implications to locally computable extractors). For every constant α ∈ (0, 1),
k = Ω(poly(logn)) and ε = 1/poly(n), and every t ≥ min(Θ((n/k) log2 n), n), there exists an
explicit construction of a t-local (k, ε)-extractor E : {0, 1}n × {0, 1}O(logn) → {0, 1}α·(k/n)·t.

Proof Sketch. Assume that t < n, since otherwise the claim is trivial (using t = n and [31,
Thm. 1.5]). Now, setting δ = k(n)/n, µ = δ/O(log(1/δ)) and t ≥ Θ(µ−1 logn), combine the
(µ, αµ, 0.3ε)-averaging sampler of Theorem 3.2 (which maps {0, 1}O(logn) to [n]t) with the
(αδt, 0.3ε)-extractor of Guruswami et al. [31, Thm. 1.5] (set to map {0, 1}t × {0, 1}O(log(t/ε))

to {0, 1}α2δt), where the combination is via Corollary 2.8. This yields extraction of α2δt

bits. J

3.4 An alternative averaging sampler
The drawback of the averaging sampler presented in Theorem 3.2 is that it does not apply
to the case that both µ < n−1/2 and γ < 1/n2 (or so). This was good enough for the
applications to extraction in AC0 presented in Section 3.3, but is not sufficient for other
applications (see, e.g., Section 6, and specifically Corollary 6.2).

Recall that the reason for the lower bound on µ is that we needed t2 > µ−2 to be
(significantly) smaller than n, so that we may expect two random t-subsets of [n] to be
disjoint. The latter condition was used for establishing the claim that the sampler always
generate distinct elements (as required in the furthermore clause of Definition 2.6). We now
achieve the latter goal while using a seed of length O(logn)2, rather than O(logn), which
suffices for our application (i.e., Corollary 6.2).

I Theorem 3.8 (an averaging sampler for all densities). Let α ∈ (0, 1) be an arbitrary constant.
Then, for every µ > 1/n and γ ≥ 1/poly(n), there exist explicit constant-depth poly(n)-size
circuits Cn : {0, 1}O(logn)2 → [n]t that compute a (µ(n), αµ(n), γ(n))-averaging sampler for
any t ∈ [Θ(µ−1 log2 n), 0.1n].

Proof Sketch. Our starting point is the simple (pairwise independence) averaging sampler
G asserted in Claim 3.3. Setting ` = O(logn), we consider ` independent invocations of

10The latter improvement is in the output length and in some cases in the deviation parameter ε. Specifically,
using only extractors that were available to Vadhan (i.e., [54, 49]), one can extract Ω((k/n) · t)0.999 bits
(rather than Ω((k/n) · t) bits) for ε = max(poly(1/n), exp(−t1−o(1))).
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G and the sequence of ` · t elements generated. Denoting this sequence (or multi-set) by
S, note that each element occurs in S at most ` times, since the sets generated by G have
no repetitions. Denoting the number of occurrences of i (in the multi-set S) by qi, we use
an `-wise independent sequence of length n over [`] in order to select each i ∈ [n] with
probability qi/`, resulting in a set S′ (with no repetitions).

Using an `th moment inequality (see Appendix A.2) it can be shown that the probability
that the number of sampled elements is (1± ε) · t is greater than 1− (ε−2`2/t)`/2, since the
expected number is ` · t/` (whereas t ≥ 2ε−2`2 = O(log2 n), since we refer to any constant
ε > 0). Fixing any f : [n]→ [0, 1] such that ρ(f) ≥ µ, and assuming that

∑
i∈S f(i) ≥ αµ · `t

(which occurs with probability at least 1− γ (cf. the proof of Theorem 3.2)), we apply the
same reasoning to the f -value of the random set S′. Specifically, since t = Ω(µ−1 log2 n), it
follows that for any constant ε > 0 the probability that

∑
i∈S′ f(i) < (1 − ε) · αµ · t, is at

most (ε−2`2/αµt)`/2 < γ (where here we use t ≥ 2ε−2α−1µ−1`2 = O(µ−1 log2 n)). Finally,
we augment the set S′ so to obtain a set of size exactly (1 + 2ε) · t.

It is left to show that the foregoing sampler can be implemented by uniform constant-
depth circuits of poly(n)-size. This is not straightforward. Hence, the foregoing description
is merely an intuitive motivation and the actual implementation proceeds as follows.
1. Obtaining the multi-set S (by using ` invocations of G), and generating an `-wise

independent sequence (p1, . . . , pn) ∈ [`]n.
The implementation of this step by uniform constant-depth circuits of size poly(n) is
straightforward for G and quite standard for the `-wise independent sequence. The con-
struction of an `-wise independent sequence over [`] is actually performed over GF(2logn),
and involves taking various linear combinations of ` field elements, which constitute the
seed of the `-wise independence generator.

2. Computing the number of occurrences of each element (in S) and producing the set S′.
Specifically, the element e ∈ [n] in included in S′ if and only if it occurs in S at least pe
times (i.e., qe ≥ pe), where (p1, . . . , pn) is the sequence produced in Step 1.
This can be done by uniform constant-depth circuits of size poly(n) because the number
of occurrences of element e ∈ [n] in S equals the cardinality of the maximal set I ⊆ [`]
such that each index in I corresponds to an invocation of G that produced a sample that
contains e. Specifically, the condition to check for each set I is that for every i ∈ I there
exists j ∈ [t] such that ri + φjsi = e, where (ri, si) is the seed used in the ith invocation
of G. (Alternatively, we can count the number of occurrences of each e ∈ [n] in S by
using a counter for small values, as in Step 3(b).) Indeed, we obtain a representation of
S as an n-long sequence over {0, 1, . . . , `}, and produce (or sieve out) the set S′ using
the same representation, which means that S′ is represented as an n-bit long sequence.
The above actions can be performed by uniform constant-depth circuits of size 2`·poly(n) =
poly(n). Note, however, that the set S′ is not in the standard format that we use
throughout this paper, which is a format that seems essential for having AC0 circuits
compute a mapping of the form (x, S′) 7→ xS′ . The next steps are aimed at putting S′ in
the standard format.

3. Making progress towards obtaining a standard representation of S′ (as a sequence of
elements of [n]) is done as follows.
a. First, we select an `-wise independent hash function h : [n]→ [t/`3] and hash S′ ⊂ [n]

to [t/`3] such that, with probability at least 1− γ, each image i ∈ [t/`3] is assigned
(1 ± 2ε) · `3 elements of S′. (The probabilistic claim holds by virtue of the `-wise
independent hash function we use, while noting that (1− e) · `3 > 2ε−2 · `2.)

b. Next, we rank the elements of S′ that are hashed by h to each image i ∈ [t/`3].
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This is done by using a (uniform AC0) counter for small values (i.e., a uniform AC0

circuits that counts the number of ones a string of length n, when guaranteed that
this number does not exceed poly(logn)).11 An explicit construction of such a counter
was presented in [48], improving over [3, Sec. 5] (and subsequent works).12

Here, we count for each e ∈ (S′ ∩h−1(i)) the number of elements in S′ that are smaller
than e and are hashed by h to h(e) (i.e., we compute

∑
e′∈[n] χe′ , where χe′ = 1 if

e′ ∈ S′ and h(e′) = h(e)).
At the end of the current step we obtain a representation of S′ as a sequence of t/`3
(sorted) sets that are each of size (1±2ε) · `3, where the latter claim holds with probability
1− 2γ. This is closed to the desired format, but is not quite there.
Note that the current step can be performed by uniform constant-depth circuits of size
poly(n), where the key observation is that such circuits can rank poly(logn) many elements
that reside in an array of length n. (The implementation of that `-wise independent
hash functions from [n] to [n/`3] is similar to the implementation of `-wise independent
sequences over [`] discussed in Step 1.)

4. Obtaining a standard representation of the augmented set S′ (as a sequence of elements
of [n]) is done as follows. Indeed, obtaining the standard representation is linked to
augmenting the set S′ to a set of size exactly (1 + 2ε) · t.
Using an `-wise independent sequence of length t over [n], we first select t elements of [n],
while noting that (with probability at least 1− γ) we obtain at least t/2 distinct elements
that are not in S′. (Here we use t ≤ 0.1n.) Furthermore, the number of additional
elements mapped to each image of the (`-wise independent) hash function h (used in
Step 3) is at most (1 + ε) · `3 and the number of additional elements not in S′ that are
mapped to this image under h is at least `3/2.
Denoting the multi-set of additional elements by A and fixing a good hash function h,
note that for every i ∈ [t/`3] it holds that (i) |S′∩h−1(i)| = (1±2ε) ·`3, (ii) |A∩h−1(i)| ≤
(1 + ε) · `3, and (iii) |(A \ S′) ∩ h−1(i)| ≥ `3/2. Now, we rank the O(`3) elements of A
that are mapped by h to each image i ∈ [t/`3], just as we did with S′ in Step 3, and use
the two rankings in order to obtain a list of (1 + 2ε) · `3 elements that are mapped (by h)
to i such that this list contains all elements in S′ ∩ h−1(i). (Specifically, we place the
jth elements of S′ ∩ h−1(i) in position j, and the jth element of A ∩ h−1(i) in position
|S′ ∩ h−1(i)|+ j ≤ (1 + 2ε)`3.)13 At this point we have the desired format.

If any of these steps failed, which happened with probability O(γ), then we just output a
fixed sequence. J

I Corollary 3.9 (using the averaging sampler of Theorem 3.8). Let β ∈ (0, 1) be a constant,
δ = Ω(logn)/n and t ∈ [Θ(δ−1 log3 n), 0.1n]. Suppose that E0 : {0, 1}t × {0, 1}r0 → {0, 1}m
is a (βδ · t, ε)-extractor that is computable by (uniform) constant-depth circuits of poly(n)-size.
Then, there exists a (δ · n, ε+ poly(1/n))-extractor E : {0, 1}n × {0, 1}r0+O(logn)2 → {0, 1}m
that is computable by (uniform) AC0 circuits.

11These circuit can also detect the case that the guarantee is violated.
12An alternative construction is presented in Appendix A.3.
13Alternatively, we can just rank the the O(`3) elements of S′ ∪A that are mapped by h to each image
i ∈ [t/`3], while considering the elements of S′ as smaller than those of A. Either way, the fact that
A is a multi-set is irrelevant to our analysis, and the procedure just uses each element of A as if it
has appeared with multiplicity 1. In contrast, one should not ignore multiplicity when considering the
multi-set S, since multiplicity may have an effect on the sampling properties of S.
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Proof Sketch. As in the proof of Corollary 3.5, towards invoking Corollary 2.8, we set
µ′ = βδ/O(log(1/δ)) and µ = 1+2β

3β · µ
′. But here we use the (µ, µ′, 1/poly(n))-averaging

sampler S : {0, 1}O(logn)2 → [n]t of Theorem 3.8, while noting that δ = Ω((logn)/n)
and t = Ω(µ−1 log2 n). Invoking the alternative part of Corollary 2.8, while noting that
δ = Ω((logn)/n), the claim follows. J

4 Extraction from Block Sources

We consider block sources as defined by Chor and Goldreich [17], and not their generalization
as used by Zuckerman [61, 62] (see also [46]) and subsequent works.

I Definition 4.1 (block sources [17]14). An (n, (`, b))-block source is a sequence of (possibly
dependent) random variables X = (X1, . . . , Xn) ∈ {0, 1}n` such that for every i ∈ [n] and
x1, . . . , xi ∈ {0, 1}` it holds that

Pr[Xi = xi|X1 ◦ · · · ◦Xi−1 = x1 ◦ · · · ◦ xi−1] ≤ 2−b

It follows that Pr[X1 ◦ · · · ◦ Xn = x1 ◦ · · · ◦ xn] ≤ (2−b)n, which means that X is an
(n`, nb)-source.

A short discussion

Zuckerman and subsequent works considered a generalized definition of block sources with
varying block-length, where typically the blocks lengths decrease drastically (e.g., |Xi| <
|Xi−1|/2). This was used as a methodological step towards constructing extractors for general
min-entropy sources. While the study of randomness extractors for general min-entropy
sources proved to have numerous applications (most of which were not envisioned originally),
we believe that the original motivation of extracting high-quality randomness out of low-quality
sources of randomness is extremely important. Furthermore, we believe that block sources
are a very realistic model of poor sources of randomness, and hence we believe that extracting
high-quality randomness from such sources is of great importance.

Of course, one can extract randomness from block sources by using a corresponding
extractor for general min-entropy sources, since any ε-error extractor for (n`, nb)-sources
is an ε-error extractor for (n, (`, b))-sources. Yet, more advantageous constructions may be
possible for block sources, because the latter are a very restricted special case. In particular,
it may be desirable to extract randomness on-the-fly (i.e., in a block-by-block manner), rather
than wait for the entire source outcome, and it may be desirable to do so without storing
much information. (Of course, this is impossible for general min-entropy sources.)

4.1 A simple extractor
The following construction extract randomness separately from each block, using the same
random seed, and without sharing any other information among the (block-based) steps of
the extraction process. We stress that using the same seed for extraction from all the blocks
harms the quality of the output in a small and minimal manner.

14Actually, block sources were defined in [17] as being an infinite sequence of random variables that satisfy
the (conditional) min-entropy bound.

CCC 2015



624 On Randomness Extraction in AC0

I Theorem 4.2 (a simple extractor for block sources). Let E : {0, 1}`×{0, 1}r → {0, 1}m be a
strong (b, ε)-extractor. Then, E′ : {0, 1}n`×{0, 1}r → {0, 1}nm defined by E′(x1◦· · ·◦xn, s) =
E(x1, s) ◦ · · · ◦ E(xn, s) is a strong n · ε-error extractor for (n, (`, b))-block sources.

Theorem 4.2 seems to be folklore. In particular, it follows as a special case of Lemma 5.7
of Guruswami et al. [31], but this fact is not transparent because their result refers to a
“block chaining” construction; that is, in their construction, the original seed is used on the
last block, and extraction from the ith block (via Ei) is used both for obtaining a part of
the output and a seed for extraction from the i − 1st block.15 Given a strong extractor
E as above, one should first define an auxiliary extractor E1(x, s) = (s, E(x, s)), and then
apply [31, Lem. 5.7] with Ei = E1 (for all i’s). (For sake of self-containment, we provide a
direct and detailed proof of Theorem 4.2.)

Proof. We need to upper bound the statistical distance between Unm+r and E(X1, Ur) ◦
· · · ◦ E(Xn, Ur) ◦ Ur, where all occurrences of Ur represent the same outcome and X =
(X1, . . . , Xn) ∈ {0, 1}n` is an (n, (`, b))-block source. We prove the claim by induction
on n, where the base case (of n = 1) is immediate by the hypothesis regarding E. In
the induction step we proceed as follows, using the notation X[j,k] = (Xj , . . . , Xk) and
E′(X[j,k], Ur) = E(Xj , Ur) ◦ · · · ◦ E(Xk, Ur), where the choice of i ∈ [n − 1] is immaterial
(i.e., any i ∈ [n− 1] will do):

∆[E′(X,Ur) ◦ Ur ;Unm ◦ Ur]
= ∆[E′(X[1,i], Ur) ◦ E′(X[i+1,n], Ur) ◦ Ur ;Uim ◦ U(n−i)m ◦ Ur]
≤ ∆[E′(X[1,i], Ur) ◦ E′(X[i+1,n], Ur) ◦ Ur ;E′(X[1,i], Ur) ◦ U(n−i)m ◦ Ur]

+ ∆[E′(X[1,i], Ur) ◦ U(n−i)m ◦ Ur ;Uim ◦ U(n−i)m ◦ Ur]
≤ ∆[X[1,i] ◦ E′(X[i+1,n], Ur) ◦ Ur ;X[1,i] ◦ U(n−i)m ◦ Ur] (3)

+ ∆[E′(X[1,i], Ur) ◦ Ur ;Uim ◦ Ur] (4)

where the last inequality uses the fact that ∆[Π(Y ) ; Π(Z)] ≤∆[Y ;Z] holds for any random
process Π. Using the induction hypothesis (regarding extraction from the (i, (`, b))-source
X[1,i]), Eq. (4) is upper bounded by i · ε. So we turn to analyze Eq. (3). Letting X ′x denote
the distribution of X[i+1,n] conditioned on X[1,i] = x, we get

∆[X[1,i] ◦ E′(X[i+1,n], Ur) ◦ Ur ;X[1,i] ◦ U(n−i)m ◦ Ur]
= Ex←X[1,i] [∆[E′(X ′x, Ur) ◦ Ur ;U(n−i)m ◦ Ur]
≤ (n− i) · ε

where the inequality uses the induction hypothesis regarding extraction from the (n− i, (`, b))-
source X ′x. The claim follows. J

Relevance to the study of extraction in AC0

Theorem 4.2 reduces the complexity of extraction from (n, (`, b))-block sources to the com-
plexity of extraction from (`, b)-sources. In particular, we get –

15 Specifically, in [31, Lem. 5.7], E′(x1◦· · ·◦xn, s) = y1◦· · ·◦yn (or rather E′(x1◦· · ·◦xn, s) = s0◦y1◦· · ·◦yn),
where sn = s and (si−1, yi)← Ei(xi, si) for i = n, . . . , 1.
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I Corollary 4.3 (AC0 extractors for block sources). For every `(n) = poly(logn) and ε(n) =
1/poly(n) there exist b(n) = O(logn) and explicit AC0 circuits that compute a strong ε(n)-
error extractor E : {0, 1}n·` × {0, 1}O(logn) → {0, 1}n·Ω(logn) for (n, (`, b))-block sources.
Furthermore, the circuits have depth 4 + log(`(n)/b(n))

log logn .

Note that b(n)/`(n) is the min-entropy rate of the source.

Proof. Wishing to use the construction of Theorem 4.2, we (again) use the (b, ε)-extractor
E : {0, 1}`(n) × {0, 1}O(logn) → {0, 1}Ω(logn) asserted in [29, Sec. 5]. As noted in the proof
of Theorem 3.1, this extractor can be computed by (uniform) poly(n)-size circuits of depth
3 + logm(n) `(n) = 4 + (log(`(n)/b(n)))/ log logn. J

4.2 On converting min-entropy sources into block sources

In light of the relative ease of extracting randomness from block sources, it is natural to try
to convert general min-entropy sources into block sources. Such conversion is intended to be
easier than extraction; specifically, it amounts to sampling bits of the original source and
arranging them in blocks.

This idea goes back to Zuckerman’s work [61, 62], but in all known incarnations each
block is sampled using fresh randomness. This is typically not a problem when the number
of blocks is small, but in our context we wish the number of blocks to be large. The
question addressed here is whether conversion is possible using randomness complexity that
is significantly smaller than the number of desired blocks.

Following is a definition that captures what we mean by conversion, which we call blocking
(i.e., converting into a block source). Loosely speaking, a blocker is given a general (n, δn)-
source, and needs to “produce” a block source with m > 1 blocks such that each blocks has
min-entropy rate at least δ′ (conditioned on prior blocks). Of course, we consider δ′ ∈ (0, δ)
and blocks of length s ≤ n/m. In terms of the following definition of blockers, we ask whether
we may have r = o(m).

I Definition 4.4 (converting general min-entropy sources to block sources). For n,m, s, r ∈ N
and ε, δ, δ′ ∈ [0, 1], consider a generator S : {0, 1}r → ([n]s)m, which on input a seed
u ∈ {0, 1}r outputs an m-long sequence of s-subsets of [n], denoted (S1(u), . . . , Sm(u)). We
say that S is a (δ, δ′, ε)-blocker if for every (n, δn)-source X, for at least 1− ε of the choices
of u ∈ {0, 1}r, it holds that (XS1(u), . . . , XSm(u)) is an (m, (s, δ′s))-block source.

Definition 4.4 is analogous to the strong version of extraction (i.e., strong extractors). A
milder requirement is that (XS1(Ur), . . . ., XSm(Ur)) is ε-close to a (m, (s, δ′s))-block source.
For simplicity, we consider the stronger notion first and postpone the consideration of the
milder notion to later (see Remarks 4.2.1 and 4.2.2).

While we do not resolve the foregoing question, we present two illustrations for its
difficulty. First, we show that the requirements from a blocker must be more demanding
than the requirements from a generator of a sequence of disjoint sets in which each set in the
sequence has good sampling properties. This is shown for the case of m = 2, albeit using a
somewhat contrived construction. Next, we show that a natural construction fails too; this
is shown for m = nΩ(1) and r = O(logn). In both cases, the reader may think of small but
constant values of δ > δ′ > 0 and of s = poly(logn). (Recall that randomness extraction
from block sources can be performed in AC0 when the block length is poly-logarithmic.)
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4.2.1 1st illustration: Sampling does not suffice (even for two blocks)
Here we show that a “two-set sampler” is not necessarily a good blocker. We shall show this
by considering a very general and natural definition of a two-set sampler, and show that
there exists such constructs that fails as blockers.

We shall refer to a rather generic notion of a two-set sampler that generates pairs of sets
such that some property P is satisfied for each individual set. The property P is actually
a collection of conditions (or properties), and it is required that each condition is satisfied
(with specified probability). Of course, it is also required that the two generated sets are
disjoint.

I Definition 4.5 (two-set sampler w.r.t a class of properties {Pi}). For n, s, r ∈ N, let
S : {0, 1}r → [n]s × [n]s and denote (S1(u), S2(u)) = S(u). For ε ∈ [0, 1] and Pi ⊆ [n]s for
every i ∈ [t], we say that S is a two-set sampler w.r.t (ε, {Pi : i ∈ [t]}) if the following two
conditions hold:
1. For each σ ∈ {1, 2} and i ∈ [t], it holds that Pr[Sσ(Ur) ∈ Pi] ≥ 1− ε.
2. For every u ∈ {0, 1}r, the sets S1(u) and S2(u) are disjoint.
A natural class of properties are those that correspond to a (δ, ε)-averaging sampler. In this
case, the properties correspond to subsets of [n] and the property corresponding to a set
T ⊆ [n] consists of all s-subsets having (ρ(T )± δ) · s elements in T , where ρ(T ) is the density
of T in [n].

We could have stated the result only for averaging samplers (i.e., for the aforementioned
properties that correspond to them), but we believe that it good to state it in greater
generality. Since {Pi} is totally generic, it is not clear that two-set samplers w.r.t it exist.
For this reason, the following theorem assumes the existence of a two-set sampler w.r.t {Pi}.
Furthermore, we also require that {Pi} is closed under relabeling of [n]; that is, for every
permutation π : [n]→ [n] and every i there exists a j such that Pj = {π(A) : A ∈ Pi}. Note
that the properties corresponding to averaging samplers are indeed closed under relabeling of
[n]. The following theorem says that whenever two-set samplers (w.r.t P) exist at all, there
exists such samplers that fail as blockers (for the case of m = 2).

I Theorem 4.6 (two-set samplers are not necessarily blockers). Let n, s ∈ N such that
n = ω(s2), ε ∈ [0, 1], and P = {Pi ⊆ [n]s} be a collection of properties that is closed under
relabeling of [n]. If there exists a two-set sampler w.r.t (ε,P), then there exists a two-set
sampler w.r.t (2ε,P) that is not a (0.5, o(1), 1− o(1))-blocker. Furthermore, there exists an
(n, 0.5n)-source X such that given X, with probability at least 1− 2s2/n, this two-set sampler
outputs a source of two blocks such that the second block is totally determined by the first
block.

Proof. We start with an arbitrary two-set sampler w.r.t (ε,P), denoted S : {0, 1}r →
[n]s × [n]s. Consider a random matching π : [n]→ [n] (i.e., a random bijection π such that
π(i) 6= i and π(π(i)) = i for every i ∈ [n]), and note that, w.v.h.p, for an 1−O(s2/n) fraction
of the u’s it holds that π(S1(u)) ∩ S1(u) = ∅. Let us call such u’s good for π, and note that
there exists a matching π for which the fraction of good u’s is at least 1−O(s2/n) = 1− o(1).
Fix such a π and define a new two-set sampler S′, which uses a seed (u, u′) ∈ {0, 1}2r, as
follows:
1. If π(S1(u)) ∩ S1(u) = ∅, let S′(u, u′) = (S1(u), π(S1(u))) and call u good;
2. Otherwise (i.e., π(S1(u)) ∩ S1(u) 6= ∅) let S′(u, u′) = S(u′).
Note that 1 − o(1) of the u’s are good, and that S′ is a two-set sampler w.r.t (2ε,P). To
prove the latter assertion, let us first consider S′1(U2r), and denote the set of good r-bit
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strings by G. Then, for every Pi,

Pr[S′1(U2r) 6∈ Pi] = Pru←Ur [S1(u) 6∈ Pi ∧ u ∈ G] + Pr(u,u′)←U2r [S1(u′) 6∈ Pi ∧ u 6∈ G]
< Pru←Ur [S1(u) 6∈ Pi] + Pr(u,u′)←U2r [S1(u′) 6∈ Pi].

The same analysis applies to the second set (i.e., S′2(U2r)), except that here S1(u) is replaced
by S1(π(u)) and the “closure under relabeling” hypothesis is used. Specifically, suppose that
Pj = {π−1(A) : A ∈ Pi}, then:

Pr[S′2(U2r) 6∈ Pi] = Pru←Ur [S1(π(u)) 6∈ Pi ∧ u ∈ G] + Pr(u,u′)←U2r [S2(u′) 6∈ Pi ∧ u 6∈ G]
< Pru←Ur [S1(π(u)) 6∈ Pi] + Pr(u,u′)←U2r [S2(u′) 6∈ Pi]
= Pru←Ur [S1(u) 6∈ Pj ] + Pru′←Ur [S2(u′) 6∈ Pi].

Hence, S′ is a two-set sampler w.r.t (2ε,P). In contrast to this fact, as shown next, it turns
out that S′ fails miserably as a blocker.

Let X be uniform over the set of strings {x : (∀i∈ [n]) xi = xπ(i)}, which has cardinality
2n/2. This means that X has min-entropy n/2. On the other hand, whenever u is good, we
have that XS′2(u) is determined by XS′1(u), since in this case S′2(u) = π(S′1(u)), which implies
XS′2(u) = Xπ(S′1(u)) = XS′1(u). Hence, with probability at least 1 − 2s2/n = 1 − o(1) (i.e.,
whenever u is good), the second block in the source (XS′1(u), XS′2(u)) has min-entropy zero
conditioned on the first block. J

I Remark (non-strong blocking fails too). Actually, the proof of Theorem 4.6 applies also to
the weaker notion of blocking in which it is only required that (XS′1(Ur), XS′2(Ur)) is ε-close
to a (2, (s, δ′s))-block source. The proof implies that (XS′1(Ur), XS′2(Ur)) is 2s2/n-close to a
source in which the second block equals the first block, and thus has no conditional entropy
at all. It follows that this sampled source is far from any block source in which the second
block has even just few bits of min-entropy.

Digest

Note that Theorem 4.6 does not refer to the randomness complexity of the two-set sampler. In
such a setting, we know that blockers (let alone for m = 2) do exist. Hence what Theorem 4.6
asserts is only that requirements regarding the sampling features of individuals sets generated
by a two-set samplers do not imply that this two-set sampler is a blocker.

The reason that two-set samplers may fail as blockers is that their definition makes too mild
requirements regarding the relation between the two generated sets. Indeed, Definition 4.4
only requires that these two sets be disjoint. The proof of Theorem 4.6 capitalizes on this
fact and uses a fixed matching of elements between all pairs of sets (i.e., for a fixed matching
π, the elements of the second set are typically the π-mates of the elements of the first set).

4.2.2 2nd illustration: A natural candidate that fails
The proof of Theorem 4.6 relies on a contrived example and shows that such an example
exists no matter what “sampling property” (regarding individual sets) is considered. Here
we take an opposite approach: We consider a natural construction (and do not specify
the sampling properties that it satisfies). Specifically, we shall present a natural multi-set
sampler, which we believe most readers may find a natural candidate for a good blocker,
and show that it actually fails as a blocker. The multi-set sampler (and candidate blocker)
refers to the case of m = nΩ(1), s = poly(logn), and r = O(logn). (Recall that these are
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the parameters that we want in order to extract nΩ(1) bits in AC0 via conversion to block
sources.)

A rhetoric question: What is more natural than trying the standard O(1)-wise independent
generator? Indeed, let us consider it.

I Construction 4.7 (constant-wise independent multi-set sampler). Let F be a finite field
of size n and c ≥ 2 be a constant, and consider the c-wise independent generator, denoted
G : F c → Fn, such that G(u) = (g1(u), . . . , gn(u)) and gj(u1, . . . , uc) =

∑
i∈[c] uiα

i−1
j , where

α1, . . . , αn are distinct field elements. For m = nΩ(1) and s = poly(logn), consider the
sampler S(u) = (S1(u), . . . , Sm(u)) such that Si(u) = {g(i−1)s+1(u), . . . , gis(u)}.

Note that S : F c → (F s)m, which means that this sampler has a seed of length c log2 n. Is
this sampler not a natural candidate for a blocker? Well, as we show next, it fails badly.

Preliminaries: We assume that for some d ∈ N it holds that ms ∈ (0.9± 0.1) · n1/d (or
so).16 Let F = Kd, where K is a finite field, and let H ⊂ K of sufficiently small constant
density (say, density 1/3cd). Hence, k def= |Hd| = Ω(n), since n = |Kd| and |H| = Ω(|K|).
A class of (affine) sources: Next, for any f : Hd → K, consider its low-degree extension
f ′ : Kd → K, and let X ∈ Kn be uniformly distributed among all d-variate polynomials
of individual degree |H|; that is, for a uniformly distributed f : Hd → K, let Xα = f ′(α)
for every α ∈ Kd ≡ [n]. So X has “min-entropy” k (in units of symbols in K). Indeed,
this is a source over the alphabet K (rather than over {0, 1}).
By the way, it is an affine source, since the values of all Xα’s (i.e., the polynomial f ′) are
determined as linear combination of the values at α ∈ Hd (i.e., the function f).
The foregoing sampler S as a candidate blocker : Now, for any u = (u1, . . . , uc) ∈ [n]c ≡
(Kd)c, the sampler S : (Kd)c → ((Kd)s)m produces the sampled source (XS1(u), . . . , XSm(u)).
Recall that ms ∈ (0.9± 0.1) · |K| and |H| = |K|/3cd.

Let X be a generic source from the above class. Plugging in the definition of Si, note that
the jth element in the ith block of the sampled source is Xg(i−1)s+j(u) = XCu(α(i−1)s+j), where
Cu(α) =

∑
`∈[c] u`α

`−1. Now, suppose that α1, . . . , αms ∈ F = Kd are all in the base field K
(which is possible since ms < |K|). Then, it suffices to define Cu on K (i.e., Cu : K → Kd),
which means that Cu is a (c− 1)-degree curve over Kd (i.e., it is a curve over Kd, defined
based on u ∈ (Kd)c, with a free parameter in K).

Recalling that X is defined in term of the low-degree extension f ′ of a random function
f : Hd → K, we have XCu(α(i−1)s+j) = f ′(Cu(α(i−1)s+j)), where f ′ ◦ Cu : K → K (via Kd)
is a degree (c− 1)d|H| univariate polynomial over K (since f ′ is a d-variate polynomial of
individual degree |H| and Cu is a curve of degree c−1). Hence, for every seed u of the sampler,
less than cd|H| symbols of the sampled source determine all other symbols (of the sampled
source); in particular, the first cd|H|/s blocks of the sampled source (XS1(u), . . . , XSm(u))
fully determine the remaining m− (cd|H|/s) blocks. Recall that cd|H|/s = |K|/3s < m/2
(by our choice of H and K). J

I Remark (non-strong blocking fails too). Since there are only polynomially many curves Cu,
using few additional symbols (let alone few additional blocks), we can determine which curve
is used, and determine the remaining blocks based on this. Typically, each additional symbol

16After all, if the above sampler is a good blocker for m = nΩ(1) and s = poly(logn), then it should be a
good blocker also when n is an integer power of ms (or so).
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read from the sampled source, beyond the cd|H| symbols that suffice for extrapolation, cuts
the number of possible curves by a factor of |K|.

Critique

One may raise two reasonable objections to our example. (1) We considered sources over a
large (non-binary) alphabet K; (2) We made the sampler use the |K| elements of K ⊂ Kd

as the coefficients in the c-wise independent sequence (of length |K|). We believe that both
objections are not acute.

Objection (1) can be addressed by encoding the elements of K by binary strings of length
` = log |K|. This requires an analogous modification of the sampler in which indices in [n]
are replaced by `-sets of [n`] (i.e., i is replaced by {(i− 1)`+ 1, . . . , i`}).17 (Alternatively,
one may argue that the question for arbitrary alphabets is as natural.) Objection (2) can
be addressed by claiming that the construction should work regardless of the choice of field
elements, let alone that the same argument holds when choosing field elements that reside
on any line (or low degree curve) in Kd (instead of residing in K). Indeed, we do not recall
any application of c-wise independence that insists on an “non-structured” choice of the field
elements (whenever there is a choice at all). Actually, it is quite natural to use a structured
choice of field elements.

4.2.3 Discussion
Note that both counterexamples utilize affine sources, whereas it is possible to convert affine
sources (having min-entropy at least k = n/poly(logn)) into block sources (using a seed of
logarithmic length and obtaining blocks of length s = poly(n/k)). Specifically, as hinted
up-front, it is well known that conversion into m blocks is possible if one is willing to use a
seed of length r = O(m logn) (by repeated sampling with fresh random seeds). Since the
number of affine sources is less than 2n2 , we may infer that there exists a set of O(n2/δε)
such that for an affine source of min-entropy δn at least a 1− ε fraction of these seeds yield
an (m, (s, 0.5δs))-block source.

The forgoing argument cannot be applied to general (n, δn)-sources, since their number
is too large. But it is not inconceivable that a more refine counting argument may work.
More generally, we ask –

I Open Problem 4.8 (blockers of logarithmic randomness). Does there exist a (δ, δ′, o(1))-
blockers S : {0, 1}O(logn) → ([n]s)m for constant δ′ ∈ (0, δ) ⊂ (0, 1) and m = ω(1)? What
about m = nΩ(1) and s = poly(logn)?

A positive answer to the latter question is a sufficient but possibly not necessary condition
for a positive resolution of Problem 1.6. Of course, a negative resolution of Problem 1.6
would imply a negative answer to Problem 4.8.

5 Extraction from Block-Fixing Sources

In this section, we consider AC0 extractors for bit-fixing sources, a model first considered by
Chor et al. [18]. In this model the min-entropy bound k denotes the number of bits that are
random in the source, whereas the other n− k bits are fixed obliviously of the values of the

17 Indeed, this merely moves the problem from the alphabet to the sampler (which now samples indices by
taking all indices in each sampled block), and one may object to viewing such a sampler as natural.
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random bits.18 Actually, we consider a generalization to block-fixing sources, first considered
in [41].

I Definition 5.1 (block-fixing sources [18, 41]). An (n, k, `)-block-fixing source is a sequence
of random variables X = (X1, . . . , Xn) ∈ {0, 1}n` such that there exists a set of at least k
indices I ⊆ [n] and a sequence (x1, . . . , xn) ∈ {0, 1}n` such that XI is uniformly distributed
over {0, 1}|I|` and Xi = xi for every i ∈ [n] \ I. The special case of ` = 1 is referred to as a
(n, k)-bit-fixing source; that is, a (n, k, 1)-block-fixing source is called a (n, k)-bit-fixing source.

Note that extractors for block-fixing sources need not preserve the block structure in their
output, although the extractors presented in Theorem 5.2 do preserve this structure. In
general, for every `, an ε-error extractor for (n`, k`)-bit-fixing sources is an ε-error extractor
for (n, k, `)-block-fixing sources, and ditto for strong extractors. It is also easy to see that if
E : {0, 1}n × {0, 1}r(n) → {0, 1}m(n) is a strong ε-error extractor for (n, k)-bit-fixing sources,
then E′ : {0, 1}`·n × {0, 1}r(n) → {0, 1}`·m(n) given by

E′((x1,1, . . . , xn,`), s) = E((x1,1, . . . , xn,1), s) ◦ · · · ◦ E((x1,`, . . . , xn,`), s)

is a strong `ε-error extractor for (n`, k`)-bit-fixing sources. (An analogous statement for
ordinary extractors seems to require using ` different seeds, and so the seed length becomes
` · r(n).)

In Section 5.1, we present (strong) extractors for (n, n/poly(logn), `)-block-fixing sources
that use a seed of logarithmic length and extract n`/poly(logn) bits, whereas in Section 5.3
we present deterministic extractors of similar performance. Both extractors work in AC0,
which is optimal in light of the results presented in Section 5.2 (assuming that ` ≤ poly(logn)).
Specifically, in Section 5.2, we prove that there exist no strong AC0 extractors for min-entropy
lower than n/poly(logn) (regardless of the seed length). We also show that the same holds
for ordinary extractors that output (1 + Ω(1)) · r(n) bits when using a seed of length r(n).

5.1 Extraction with a logarithmically long seed
Although extraction from bit-fixing sources is possible without using a random seed (see [18,
41]), the known deterministic (i.e., seedless) extractors are not computable in AC0. In this
section we present seeded extractors (for bit-fixing sources) that are computable in AC0 (and
use seeds of logarithmic length). In Section 5.3, following ideas of Gabizon et al. [26], we
shall use the aforementioned seeded extractors to obtain deterministic extractors of similar
performance, based on new deterministic extractors that extract poly-logarithmically many
bits.

I Theorem 5.2 (seeded extractor for block-fixing sources). Let k : N→ N and ε : N→ [0, 1]
be such that k(n) ≥ n/poly(logn) and ε(n) ≥ 1/poly(n). Then, there exists a function
E : {0, 1}n` × {0, 1}O(logn) → {0, 1}poly(k(n)/n)·n` that is computable in uniform AC0 and
constitutes a strong ε-error extractor for (n, k, `)-block-fixing sources.

Theorem 5.2 is related to results of Gabizon et al. [26, Sec. 6], but the parameters are
quite different: Most importantly, their extractors are not in AC0, although they could have
obtained such extractors with a different setting of the parameters in their construction.

18 Indeed, such sources are sometimes called oblivious bit-fixing sources, in order to distinguish them from
non-oblivious bit-fixing sources [41] in which the remaining n − k bits are fixed as a function of the
values of the k random bits.
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Likewise, they extract only m(n) = k(n)Ω(1) bits. On the other hand, they treat any
k(n) ≥ poly(logn) and use a seed of length O(log k(n)). The pivot of our solution is the use
of a new pseudorandom partition generator, captured by Lemma 5.3.

Proof. For sake of simplicity, we consider the case of ` = 1, and denote the bits of the
source by x1 ◦ · · · ◦ xn. The basic idea, which goes back to Gabizon et al. [26, Sec. 6], is to
use a random partition of the source into many short sources, and extract bits from each
of these short sources by XORing the corresponding bits. That is, we use the seed of the
extractor to generate (pseudo)random subsets, denoted S1, . . . , Sm ⊂ [n], and output the
bits ⊕j∈Sixj for i = 1, . . . ,m. This works provides that each of the Si’s contains a location
of a random (i.e., non-fixed) bit of the original source, and that these (non-fixed) locations
are distinct. Furthermore, the Si’s should each be of size poly(logn) so to allow for the XOR
to be implemented by constant-depth poly(n)-size circuits.

The first idea that comes to mind is to generate the subsets by repeatedly invoking an
ordinary sampler (cf. [28]), using related seeds, but this seems to require that m <

√
n. An

alternative approach, which also goes back to Gabizon et al. [26, Sec. 6], is to generate a
pseudorandom partition of [n] into m subsets of equal size. Unfortunately, the techniques
used in [26, Sec. 5] also seems to require that m <

√
n, whereas we seek m = n/poly(logn).

Furthermore, we need to generate such a partition using a seed of logarithmic length and each
subset in the partition should have a strong hitting property (i.e., as stated in the second
condition of the following claim). (We comment that similar problems arise in the proof of
Theorems 3.2 and 3.8, but the parameters and hitting requirements there are different.)

I Lemma 5.3 (pseudorandom partitions with a strong hitting property). For δ, γ > 0 and
n, t ∈ N such that t = Θ(δ−1 log(1/γ))2 divides n, let m = n/t and r = O(log(n/γ)). Then,
there exists an explicit function G : {0, 1}r → ([n]t)m such that the following two conditions
hold.
1. For every u ∈ {0, 1}r the m-sequence G(u) is a partition of [n]; that is, for every j1 6= j2

it holds that G(u)j1 and G(u)j2 are disjoint t-subsets of [n].
2. For every T ⊆ [n] of density δ, with probability at least 1− γ, each subset in G(Ur) hits

T ; that is, Pr[∃j ∈ [m] s.t. G(Ur)j ∩ T = ∅] ≤ γ.

Proof. Our starting point is an ordinary hitter H : {0, 1}r′ → [n]s, where r′ = O(log(n/γ′)
and s = O(δ−1 log(1/γ′)), that hits each set of density δ with probability at least 1 − γ′.
We further assume that every two sample points of this hitter are uniformly distributed
independently of one another. Note that the combined hitter of [28, Apdx. C.3] satisfies the
first requirement, whereas the second requirement can be achieved by “randomizing” the
original sample via a sequence of pairwise independent “shifts” (cf. Claim 3.4).19 Associating

19Alternatively, we can apply the sampler used in the proof of Theorem 3.2 (with c = 1), but set the
parameters in order to satisfy hitting rather than sampling. The difference between the two versions
is that shifting the samples (as proposed in the main text) is different from shifting the seeds used
to generate the subsamples. Specifically, recall that the combined hitter of [28, Apdx. C.3] has the
form H ′′(u) = ∪i∈[t′′]H

′
i(vi), where (v1, . . . , vt′′)←W (u) is a random walk on an expander and H ′i is

a pairwise independence generator. In the main text we suggested using pairwise independent shifts
of the sample ∪i∈[t′′]H

′(vi), whereas in the proof of Theorem 3.2 we used the sample ∪i∈[t′′]H
′(v′i),

where (v′1, . . . , v′t′′) is obtained by a pairwise independent shift of (v1, . . . , vt′′). In the analysis of the
first alternative one relies on the generalized hitting property of H ′, whereas in the analysis of the
second alternative one relies on the generalized hitting property of W , where generalized hitting refers to
generating a sequence (σ1, . . . , σs) such that for every sequence of sets (T1, . . . , Ts) (each of density δ)
with probability at least 1− γ there exists an i ∈ [s] such that σi ∈ Ti. Note that the standard analyses
of both H ′ and W extends to this case.
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[n] with [t]× Zm and using t = s2, it follows that with probability at least half, the sample
((i1, j1), . . . , (is, js)) ← H(Ur′) contains no collision on the first coordinate (i.e., for every
a 6= b it holds that ia 6= ib). Hence, conditioned on this event, for every set T of density
δ, the probability that H(Ur′) hits T is at least 1− 2γ′. Consider the following generator
G′ : {0, 1}r′ → ([n]t)m:

1. On input u ∈ {0, 1}r′ , obtain ((i1, j1), . . . , (is, js))← H(u). If there exist a 6= b such that
ia = ib, then output a fixed partition (S0, . . . , Sm−1) of [n] ≡ [t]× Zm into t-subsets; for
example, Sj = {(i, j) : i ∈ [t]}. In this case we say that u is bad.

2. Otherwise (i.e., for every a 6= b it holds that ia 6= ib), for every i ∈ [t] and j ∈ Zm, let
pi,j = (i, ja+j mod m) if i = ia and pi,j = (i, j) otherwise (i.e., i 6∈ {i1, . . . , is}). For every
j ∈ Zm, define G′j(u) = {pi,j : i ∈ [t]}, and output the m-sequence (G′0(u), . . . , G′m−1(u)).
In this case we say that u is good, and it holds that

G′0(u) = {(ia, ja) : a ∈ [s]} ∪ {(i, 0) : i ∈ ([t] \ {i1, . . . , is})}

and G′j(u) = {(i, j′ + j mod m) : (i, j′) ∈ G′0(u)}.

Note that in each case the output sequence is a partition of [n] ≡ [t] × Zm. In the “good
case” (i.e., of a good u) this follows since G′0(u) = {(i, g(i)) : i ∈ [t]} for some function
g : Zm → Zm (i.e., g(ia) = ja for a ∈ [s] and g(i) = 0 for i 6∈ {i1, . . . , is}) and G′j(u) =
{(i, g(i) + j mod m) : i ∈ [t]}. The foregoing properties of H imply that, with probability at
least half Ur′ is good, whereas conditioned on this event the probability that G′j(Ur′) ∈ T is
at least 1− 2γ′, for every set T of density δ and for every j ∈ Zm.

Let us reflect for a moment on the structure of the generator G′. It uses a fixed partition of
[n] ≡ [t]×Zm into t cycles, each of length m, where the ith cycle consists of {(i, j) : j ∈ Zm}.
Assuming that the sample H(u) ∈ ([t]×Zn)s hits exactly s cycles, we augmented the sample
to a cover of all cycles by adding (dummy) elements of the form (i, 0) for every uncovered
cycle. (Of course, this cannot damage the hitting property.) Finally, we use the m “shifts”
of the resulting set S0 as a partition, where the jth shift of the set S0 ⊂ [t] × Zm equals
{(i, j′ + j) : (i, j′) ∈ S0}. In case the initial sample hits less than s cycles (i.e., some cycle is
hit by more than a single point in the sample), the generator outputs a fixed partition. The
only problem is that the latter bad event may occur with constant probability (of at most
1/2), whereas we want it to occur (in the final generator) with probability smaller than γ.

The desired generator G is obtained by taking a random walk of length t′ = O(log(1/γ))
on a constant degree expander with vertex set {0, 1}r′ , and outputting G′(v) where v is the
first vertex on the walk that is good. If no such vertex exists, then we just output the fixed
partition, but this event occurs with probability at most γ/2.

Denoting the random walk by (v1, . . . , vt′), recall that the probability that some vj is good
is at least 1− exp(−Ω(t′)) > 1− (γ/2). We show that conditioned on this event, for every T
of density δ, with probability at least 1−(3γ/4)−(8t′mγ′/γ), each set in the partition output
by G hits the set T . This is shown by considering only the indices j ∈ [t′] such that with
probability at least γ/4t′ vertex vj is the first vertex in the walk that is good. Specifically,
denote by Gj the event that vj is good, and let G′j denote the event Gj ∧ ¬(∨j′<jGj′). Let
J = {j ∈ [t′] : Pr[G′j ] ≥ γ/4t′} and note that Pr[∨j∈JG′j ] > 1− (γ/2)− t′ · (γ/4t′) = 1−3γ/4.
On the other hand, for each j ∈ J , the probability that each set in G(vj) hits T is at least
1− 2mγ′. Let use denote this event by Hj . Then, the probability that all sets output by G
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hit T is at least∑
j∈J

Pr[G′j ] ·Pr[Hj |G′j ] ≥ Pr[∨j∈JG′j ] ·min
j∈J
{Pr[Hj |G′j ]}

≥
(

1− 3γ
4

)
·min
j∈J

{
1− Pr[¬Hj ]

Pr[G′j ]

}
.

Using Pr[¬Hj ] ≤ 2mγ′ and Pr[G′j ] ≥ γ/4t′ (for any j ∈ J), we obtained the claimed lower
bound of (1− 3γ/4) · (1− (2mγ′)/(γ/4t′)) > (1− 3γ/4) + (8t′mγ′/γ).

Setting γ′ = γ2/32t′m, it follows that each set output by G hits a set T of density δ with
probability at least 1− γ. Noting that G uses a seed of length r = r′ +O(t′) = O(log(n/γ)),
the lemma follows. J

Wrapping up. We set δ = k(n)/n = 1/poly(logn) and γ = ε = 1/poly(n), and use
Lemma 5.3 with s = O(δ−1 log(1/γ)) and t = s2 = O(δ−1 logn)2, which implies m = n/t =
Ω(δ2n/ log2 n) = n/poly(logn) and r = O(logn). The extractor E(x, u) outputs y1 ◦ · · · ◦ ym
such that yj = ⊕i∈G(u)j+1xi. Since G can be computed by uniform depth-two circuits of
size poly(n) and t = poly(logn), it follows that E is in uniform AC0. In analyzing the
performance of E on an arbitrary (n, k)-bit-fixing source, let T denote the set of k unfixed
bits in the source, and note that the output bits (i.e., yj ’s) depend on disjoint sets of bits
in the source and that with probability at least 1 − γ each output bit depends on some
unfixed bit of the source. The theorem follows for ` = 1, and the argument for general ` is
identical. J

5.2 Impossibility results
The following impossibility result asserts the optimality of Theorem 5.2 with respect to the
parameter k (i.e., the number of random blocks in the source): While Theorem 5.2 asserts
strong extractors that are computable in AC0 for any k(n) = n/(logn)O(1), the following
result asserts that this is not possible for any k(n) = n/(logn)ω(1).

I Theorem 5.4 (impossibility of strong extraction in AC0). Suppose that E : {0, 1}n` ×
{0, 1}r → {0, 1} is computable by s(n)-size circuits of depth d = d(n). If E is a strong
0.499-error extractor for (n, k, `)-block-fixing sources, then k > n/(` ·O(log s(n))d−1).

Recall that ` = 1 corresponds to bit-fixing sources. Note that the current result regarding
(n, k)-bit-fixing sources implies that if a strong (0.499/`)-error extractor for (n, k, `)-block-
fixing sources is computable in AC0, then k ≥ n/poly(logn). We conjecture that this holds
even for 0.499-error extractor for (n, k, `)-block-fixing sources; that is, we conjecture that the
linear dependence on `, in the foregoing results, can be eliminated.

Before proving Theorem 5.4 we note that it is incomparable but related to Theorem 1.1
(i.e., Viola’s [57, Thm. 6.4]): Theorem 5.4 refers to strong extractors that output a single bit,
whereas Theorem 1.1 applies to ordinary extractors that output a constant factor more bits
than their seed length. (A version that refers to ordinary extractors is presented later; see
Theorem 5.5.) An important advantage of Theorem 5.4 over Theorem 1.1 is that it refers
to a much more restricted class of sources (i.e., (n, k, 1)-block-fixing sources rather than
(n, k)-sources).

Proof. For simplicity, we start with the case of ` = 1. Fixing any value σ ∈ {0, 1}r of the
seed, consider the residual depth d circuit of size s = s(n), denoted Cσ, that computes the
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mapping x 7→ E(x, σ). Invoking the “average sensitivity bound” of Linial et al. [39], as
improved by Boppana [12], for every Cσ we have∑

i∈[n]

Ii(Cσ) < B
def= O(log s)d−1, (5)

where for any Boolean function f : {0, 1}n → {0, 1}

Ii(f) def= Prx←Un [f(x) 6= f(x⊕ 0i−110n−i)]. (6)

(See background in [37, Sec. 12.4] and [47, Chap. 2].)
It follows that there exists a set of εn/B indices I ⊆ [n] such that Eσ←Ur [

∑
i∈I Ii(Cσ)] < ε,

since the expectation over all |I|-sized subsets is smaller than ε. Furthermore, there exists a
string z ∈ {0, 1}n such that

Eσ←Ur

[∑
i∈I

Prx←Un
[
Cσ(x) 6= Cσ(x⊕ 0i−110n−i)

∣∣∣x[n]\I = z[n]\I

]]
< ε (7)

and there exists a set G ⊆ {0, 1}r of density at least 1 −
√
ε such that for every σ ∈ G it

holds that∑
i∈I

Prx←Un
[
Cσ(x) 6= Cσ(x⊕ 0i−110n−i)

∣∣∣x[n]\I = z[n]\I

]
<
√
ε. (8)

Fixing I and z as above, consider an (n, |I|, 1)-block-fixing source X = (X1, . . . , Xn) such
that Xi = zi if i ∈ [n] \ I and Xi is random otherwise. We next show that, for every σ ∈ G
there exists a bit yσ so that Pr[Cσ(X) = yσ] > 1−

√
ε,

To prove the above claim, assume that p def= Pr[Cσ(X) = yσ] ≤ 1 −
√
ε and p ≥ 1/2

(w.l.o.g.). Then, Prx,y←Un [Cσ(x) 6= Cσ(y)|x[n]\I = y[n]\I = z[n]\I ] = 2p(1− p) ≥
√
ε. This

implies that there exists s ∈ {0, 1}n such that s[n]\I = 0n−|I| and Pr[Cσ(X) 6= Cσ(X ⊕ s)] ≥√
ε, which contradicts Eq. (8), since

Pr[Cσ(X) 6= Cσ(X ⊕ s)] ≤
∑
i:si=1

Pr[Cσ(X) 6= Cσ(X ⊕ 0i−110n−i)]

≤
∑
i∈I

Pr[Cσ(X) 6= Cσ(X ⊕ 0i−110n−i)].

(The first inequality uses the fact that X ≡ X ⊕ s′ for every s′ ∈ {0, 1}n such that s′[n]\I =
0n−|I|.)

We have established that for every σ ∈ G, it holds that Pr[E(X,σ) = yσ] > 1−
√
ε, for

some bit yσ, whereas Pr[U1 = yσ] = 1/2. It follows that ∆[E(X,Ur) ◦ Ur ;U1 ◦ Ur], which
equals Eu←Ur [∆[E(X,u) ;U1]], is greater than Pr[Ur ∈ G] · (1−

√
ε−0.5) ≥ (1−

√
ε) · (0.5−√

ε) > 0.5− 2
√
ε. Hence, if E is a strong (0.5− 2

√
ε)-error extractor for (n, k, 1)-block-fixing

sources, then k > εn/B.
The argument for general ` > 1 proceeds analogously, except that here we have n · `

variables/indices, which are partitioned into n blocks. We first consider the set L of all
indices in [n] × [`] such that for every (i, j) ∈ L it holds that Eσ←Ur [Ii,j(Cσ)] < 2B/n,
where B = O(log s)d−1 (as in Eq. (5)). Recalling that

∑
(i,j)∈[n]×[`] Eσ←Ur [Ii,j(Cσ)] < B,

it follows that |L| ≥ n` − n/2. We consider the set L′ ⊆ [n] of blocks such that i ∈ L′ if
for every j ∈ [`] it holds that (i, j) ∈ L. Then, |L′| ≥ n/2. We now select an arbitrary
set I ′ ⊆ L′ of size εn/2`B, let I = I ′ × [`], and proceed as before, while noting that (as
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before) it holds that Eσ←Ur [
∑

(i,j)∈I Ii,j(Cσ)] < ε, since |I| · 2B/n = ε. That is, we fix I,
z = (z1, . . . , zn) ∈ ({0, 1}`)n and G (as before), and note that for every σ ∈ G it holds that∑

(i,j)∈I

Prx←Un`
[
Cσ(x) 6= Cσ(x⊕ 0idx(i,j)−110n−idx(i,j))

∣∣∣x[n]\I = z[n]\I

]
<
√
ε, (9)

where idx(i, j) = (i − 1) · ` + j. Now, consider an (n, |I ′|, `)-block-fixing source X =
(X1, . . . , Xn) such that Xi = zi if i ∈ [n] \ I ′ and Xi is random (i.e., distributed as U`)
otherwise. Then, for every σ ∈ G there exists a bit yσ so that Pr[Cσ(X) = yσ] > 1 −

√
ε,

since otherwise Eq. (9) is contradicted. The claim follows as before, but note that |I ′| =
|I|/` = εn/2`B. J

I Theorem 5.5 (impossibility of ordinary extraction in AC0). Suppose that E : {0, 1}n ×
{0, 1}r → {0, 1}m is computable by s(n)-size circuits of depth d = d(n), and let m′ = m− r.
Suppose that δ > 0 satisfies

(
m
bδm′c

)
< 1 + δ · 2m′ , which is satisfied whenever either δ < 1/m′

or δ ≤ 1/3 logm. Then, if E is a (1 − 2δ − 2−m′)-error extractor for (n, k, 1)-block-fixing
sources, then k > δ3m′n

m·O(log s(n))d−1 . In particular:
1. If m = r + 1 (i.e., m′ = 1) and E is a 0.499-error extractor for (n, k, 1)-block-fixing

sources, then k > n
m·O(log s(n))d−1 .

2. If m = r+ Ω(r) (i.e., m′ = Ω(r)) and E is a 0.999-error extractor for (n, k, 1)-block-fixing
sources, then k > n/O(log s(n))d−1.

Setting δ = min(o(1), 1/3 logm), the general case implies that if E is a (1− 2−m′ − o(1))-
error extractor for (n, k, 1)-block-fixing sources, then k > m′n

Õ(m)·O(log s(n))d−1
. Theorem 5.5

generalizes Theorem 1.1, which only refers to the case of m′ = Ω(r). Another important
advantage of Theorem 5.5 over Theorem 1.1 is that it refers to a much more restricted class
of sources (i.e., (n, k, 1)-block-fixing sources rather than (n, k)-sources).20

Proof. The proof is very similar to the proof of Theorem 5.4, except that we consider 2r ·m
residual circuits Cσ,j such that Cσ,j(x) computes the jth bit of E(x, σ). Specifically, we again
derive a set of εn/B indices I ⊆ [n] and a string z ∈ {0, 1}n such that

Eσ←Ur,j∈R[m]

[∑
i∈I

Prx←Un
[
Cσ,j(x) 6= Cσ,j(x⊕ 0i−110n−i)

∣∣∣x[n]\I = z[n]\I

]]
< ε, (10)

where j ∈R [m] denotes that j is distributed uniformly in [m]. We shall again fix I and z as
above, and consider an (n, |I|, 1)-block-fixing source X = (X1, . . . , Xn) such that Xi = zi if
i ∈ [n] \ I and Xi is random otherwise. We set ε = δ3m′/m, and denote Cσ(x) = E(x, σ).
Now, letting dist(y, z) denote the Hamming distance between the m-bit long strings y and
z (i.e., dist(y1 · · · ym, z1 · · · zm) = |{i ∈ [m] : yi 6= zi}|), we get

Eσ←Ur

[∑
i∈I

Ex←X
[
dist(Cσ(x), Cσ(x⊕ 0i−110n−i))

]]
< m · ε = δ3m′. (11)

20We mention that the proceeding version of [57] contains a result that is more closely related to
Theorem 5.5: The (n, k)-source used in the proof there also belongs to a very restricted class; specifically,
the source is a randomized process that produces an output by starting with 0n and taking k/36 steps
such that at each step a random position is selected (with repetitions) and its value is flipped.
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Hence, there exists a set G ⊆ {0, 1}r of density at least 1− δ such that for every σ ∈ G it
holds that∑

i∈I
Ex←X

[
dist(Cσ(x), Cσ(x⊕ 0i−110n−i))

]
< δ2m′. (12)

Then, for every σ ∈ G there exists a string yσ ∈ {0, 1}m so that E[dist(Cσ(X), yσ)] < δ2m′,
because for two independent samples x and x′ drawn from X, it holds that

Ex,x′ [dist(Cσ(x), Cσ(x′)]

≤ max
s∈{0,1}n:s[n]\I=0n−|I|

{
Ex←X [dist(Cσ(x), Cσ(x⊕ s)]

}
≤ max
s:s[n]\I=0n−|I|

{ ∑
i:si=1

Ex←X
[
dist(Cσ(x), Cσ(x⊕ 0i−110n−i))

]}

which (by Eq. (12)) is smaller than δ2m′. Hence, for every σ ∈ G, it holds that
Pr[dist(Cσ(X), yσ) ≤ δm′] ≥ 1 − δ. Defining S = {yσ : σ ∈ G}, we note that, with
probability at least (1 − δ)2, the Hamming distance between E(X,Ur) and S (i.e., the
distance to the closest string in S) is at most bδm′c. On the other hand, the prob-
ability that Um is at Hamming distance at most bδm′c from S is upper bounded by
( m
bδm′c)·|S|

2m < 2−m′ + 4δ, since |S| ≤ 2r = 2m−m′ and
(

m
bδm′c

)
< 1 + δ · 2m′ . It follows

that ∆[E(X,Ur) ;Um] > (1− δ)− (2−m′ + δ), whereas X has δ3m′n/mB random bits. J

5.3 Deterministic extractors
Recall that the bit-fixing model allows for deterministic extractors (e.g., E(x) = ⊕i∈[n]xi),
which work for even lower min-entropy rate than those that are impossible for AC0, but indeed
these extractors are not computable in AC0. Still, it is possible that whenever extraction in
AC0 is possible for bit-fixing sources, this is also possible via deterministic extractors. We
show that this is indeed the case. Our proof proceeds in three steps: First, we present AC0

circuits that extract a single bit (see Theorem 5.8), next we use them to present AC0 circuits
that extract poly-logarithmically many bits (see Theorem 5.15), and finally we combine these
with the extractor of Theorem 5.2 to extract n/poly(logn) bits.

Recall that a deterministic extractor (a.k.a seedless extractor) is one that gets no seed (i.e.,
has seed length r(n) ≡ 0). By definition, any deterministic extractor is strong. An obvious
deterministic extractor for (n, k)-bit-fixing sources, which is implementable in AC0 when
k(n) ≥ n− poly(logn), is E(x) = ⊕i∈[n−k(n)+1]xi. A first indication that one can do much
better is provided by Ajtai and Linial’s non-explicit construction of AC0 circuits in which
“large sets have small influence” [4, Sec. 5]. As shown in [41, Lem. 6.1], such circuits are
deterministic extractors for non-oblivious bit-fixing sources.

I Definition 5.6 (non-oblivious bit-fixing sources [41]). A non-oblivious (n, k)-bit-fixing source
is a sequence of random variables X = (X1, . . . , Xn) ∈ {0, 1}n such that there exists a set of
at least k indices I ⊆ [n] and a sequence of functions f1, . . . , fn : {0, 1}|I| → {0, 1} such that
XI is uniformly distributed over {0, 1}|I| and Xi = fi(XI) for every i ∈ [n] \ I.

Bit-fixing sources as in Definition 5.1 are a special case in which the fi’s are constant functions.
Such sources are sometimes called oblivious bit-fixing sources. Clearly, any ε-extractor for
non-oblivious (n, k)-bit-fixing sources is an ε-extractor for (oblivious) (n, k)-bit-fixing sources.
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I Theorem 5.7 (deterministic extraction in AC0 for non-oblivious bit-fixing sources [4, Sec. 5]).
There exist AC0 circuits C : {0, 1}n → {0, 1} such that, for every k, it holds that C is a
deterministic O((1− k/n) · log2 n)-error extractors for non-oblivious (n, k)-bit-fixing sources.

As shown in [41, Lem. 6.1&6.2], the error probability of extractors of the foregoing type
is captured by the notion of influence of sets. For a Boolean function f : {0, 1}n → {0, 1}
and a set S ⊂ [n], the influence of S on f , denoted IS(f), is defined as the maximum
of Prx←Un [f(x) 6= f(g(x))], taken over all functions g : {0, 1}n → {0, 1}n that satisfy
g(x)[n]\S = x[n]\S for every x ∈ {0, 1}n (i.e., g only changes the values of x at location in
S and does so depending on the entire input).21 Ajtai and Linial [4, Sec. 5] proved that
there exist balanced AC0 circuits C : {0, 1}n → {0, 1} such that the influence of every set of
density ρ on C is O(log2 n) · ρ, where f is balanced if Pr[f(Un) = 1] = 0.5. Hence, these
circuits are deterministic O(ρ log2 n)-error extractors for the corresponding set of sources
(i.e., non-oblivious (n, n− ρn)-bit-fixing sources).

Theorem 5.7 is meaningful only for min-entropy rate approaching 1; that is, it is only
meaningful for non-oblivious (n, k)-bit-fixing sources with k ≥ n−O(n/ log2 n). This is not
an artifact of the proof (nor even of the fact that the extractor is in AC0): As shown by
Kahn, Kalai, and Linial [40] any deterministic ε-extractor for non-oblivious (n, k)-bit-fixing
sources must satisfy k ≥ n− Ω(ε−1n/ logn). However, for oblivious (n, k)-bit-fixing sources,
one can achieve a min-entropy rate that approaches 0; that is, a deterministic AC0-extractor
for oblivious (n, k)-bit-fixing sources with any k ≥ n/poly(logn).

I Theorem 5.8 (deterministic extraction in AC0 for bit-fixing sources). For every k(n) ≥
n/poly(logn) and every ε(n) > 1/poly(logn), there exist deterministic ε-error extractors
E : {0, 1}n → {0, 1} for (n, k)-bit-fixing sources such that the extractors are computable in
AC0.

Our proof of Theorem 5.8 builds upon Theorem 5.7, and thus inherits the non-uniformity of
the latter. In addition, our own reduction of Theorem 5.8 to Theorem 5.7 is non-explicit,
due to our use of a probabilistic analysis of the rank of rectangular matrices [10].

Proof. Our starting point is the extractor of non-oblivious bit-fixing sources asserted in
Theorem 5.7. Denoting the corresponding AC0 circuit by C : {0, 1}n → {0, 1}, our plan
is to construct a new circuit C ′ : {0, 1}n′ → {0, 1}, where n′ = Õ(n), by feeding each
input of C with the parity of a random subset of poly(logn) inputs of C ′. Specifically,
C ′(x) = C(L1(x), . . . , Ln(x)), where each Li is a random linear function generated by
selecting each xi with probability p = poly(logn)/n. Indeed, these Li’s can be computed by
a constant-depth circuits of size poly(n).

Suppose that, for any choice V of δn′ = k(n′) ≥ n variables (i.e., xi’s), at least n− ρ · n
of the linear functions (i.e.,. Li’s) are linearly independent as functions in the variables in V .
Then, any fixing of n′ − k(n′) of the x-variables, leaves at least n− ρn of the functions (i.e.,
the Li’s) linearly independent, which means that assigning random values to k(n′) of the
inputs of C ′ (and setting the rest arbitrarily but obliviously of the random values) yields a
random assignment to n− ρn of the inputs of C.

In anticipation of considering the influence of sets of ρn inputs on C, we set ρ =
ε/Θ(logn)2 = 1/poly(logn), which guarantees that the influence of such sets is at most ε.
Next, we set m = ρ · n and n′ = Õ(n), and seek a sparse n-by-n′ Boolean matrix M such

21The influence of a single variable, as defined in Eq. (6), is a special case: Indeed, when considering the
influence of the variable i, it suffices to consider g(x) = x⊕ 0i−110n−i.
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that (1) each row of M has at most poly(logn) one-entries, and (2) any n-by-n sub-matrix
of M has rank at least n−m. If we had such a matrix, then we can let its rows serve as the
Li’s and be done (for k(n′) = n = n′/poly(logn′)).

While we believe that such a matrix exists, we were not able to prove this conjecture.
Instead, we take a somewhat longer route. First, we construct a matrix with properties as
above over a finite field of quasi-polynomial (in n) size. Then, we use this construction to
get a matrix with such properties for a finite field of poly-logarithmic (in n) size. Lastly, we
show how to use the latter in our context. These three steps are captured by the following
three claims.

I Claim 5.9 (a desired matrix over a finite field of quasi-polynomial size). For any m ∈
[n/poly(logn), n] and n′ ∈ [Ω(n log2 n), Õ(n)], and every finite field F of cardinality q ≥
exp(n′/m), there exist an n-by-n′ matrix M over F that satisfies the following two proper-
ties.
1. Each row of M has at most poly(logn) non-zero entries.
2. Each n-by-n sub-matrix of M has rank at least n−m.

Proof. Setting p = (logn)/n, consider selecting a random sparse n-by-n′ matrix M over F
by setting each entry to 0 with probability 1− p, and letting it be a uniformly distributed
nonzero value otherwise. (The choices for the various entries are independent of one another.)
Then, with probability at least 1− n · exp(−Ω(pn′)) ≥ 1− exp(−Ω(logn)3), each row of M
has Θ(pn′) = poly(logn) non-zero entries.

In proving the second property, we use a result of Blomer et al. [10] that asserts that an
n-by-n matrix distributed as above has rank smaller than n−m with probability O(q−m).
Applying a union bound, we infer that the second property fails with probability at most(

n′

n

)
·O(q−m) < (n2)n · exp(−Ω(n log2 n)/m)m

= exp(O(n logn)) · exp(−Ω(n log2 n)),

where the inequality uses log q ≥ Ω(n′/m) = Ω(n log2 n)/m. The claim follows. J

I Claim 5.10 (a desired matrix over a finite field of poly-logarithmic size). For any m ∈
[n/poly(logn), o(n)] and n′ ∈ [Ω(n log2 n), Õ(n)], every finite field F ′ of cardinality q′ =
poly(n′/m), and n′′ = poly(q) · n′, there exist an n-by-n′′ matrix M ′ over F ′ that satisfies
the following two properties.
1. Each row of M ′ has at most poly(logn) non-zero entries.
2. Each n-by-(2n/n′) · n′′ sub-matrix of M ′ has rank at least n−m.

Proof. Let F be a finite field of size exp(Θ(n′/m)) and M be a matrix as guaranteed by
Claim 5.9. Let ` = dlog |F |e = Θ(n′/m) = poly(logn). For some q′ = poly(n′/m) and
`′ = poly(q′), consider a linear error correcting code mapping GF(q′)` to GF(q′)`′ such
that this code has relative distance at least 1 − (n/n′). (For example, the Reed-Solomon
code of degree ` over GF(q′) uses `′ = q′ and has relative distance 1 − (`/q′), whereas
`/q′ < n/n′ provided that q′ ≥ (n′/m)2.) Now, encode each element of F (viewed as an
`-long sequence over GF(q′)) by the corresponding codeword, obtaining an n-by-n′`′ matrix
M ′ over F ′ = GF(q′). We may assume that F ′ is a sub-field of F ; in fact, we should pick F
to satisfy this condition (as well as the other conditions stated above).

Letting n′′ = n′ · `′ = poly(logn) · n, note that the number of nonzero entries in each row
of M ′ is at most poly(logn) · `′ = poly(logn), since each row of M has at most poly(logn)
non-zeros. This establishes the first property of M ′.
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To establish the second property of M ′, consider an arbitrary choice of (2n/n′) · (n′`′) =
2n`′ columns of M ′, and let M ′′ denote the corresponding sub-matrix. Considering the
partition of the columns of M ′ into n′ blocks of length `′ (each encoding a symbol of F ),
we infer that at least n of these blocks contain more than `′n/n′ chosen columns. Let us
call these blocks heavy. Recalling that the linear code has absolute distance `′ − (`′n/n′),
we infer that any linear combination of the rows of the sub-matrix M ′′ that yields the zero
vector must yield zero in the column of M that corresponds to each of the heavy blocks
(because a codewords with more than `′n/n′ zeros must encode the zero of F (viewed as
the all-zero sequence of GF(q′)`)). Recalling that there are n heavy blocks, it follows that
an F ′-linear combination of the rows of M ′′ that yields the zero vector must yield zero in
at least n columns of M . Using the second property of M , it follows that this F ′-linear
combination must contain more than n−m rows, and the claim follows. J

I Construction 5.11 (a kind of condenser22). Let m,n′, q′, n′′ and M ′ be as in Claim 5.10,
and suppose that q′ is a power of two. Let δ = 4n/n′ and s = Θ((q′ logn)2/δ), and
consider the following transformation of (z1,1, . . . , zn′′,s) ∈ {0, 1}n

′′s into an n-bit long string
x = (x1, . . . , xn).
1. For each i ∈ [n′′], compute zi =

∑
j∈[s] zi,j mod q′.

Viewing each zi as an element of GF(q′) ≡ Zq′ , let z = (z1, . . . , zn′′) ∈ GF(q′)n′′ .
2. Compute (y1, . . . , yn) = M ′z ∈ GF(q′)n. For each i ∈ [n], let xi be the result of applying

some balanced predicate to yi (e.g., xi is the least significant bit of yi).23

Note that these computation can be carried out by constant-depth circuits of size poly(n),
since q′ = poly(logn), n′ = Õ(n) and each row of M ′ has at most poly(logn) non-zero
entries.

I Claim 5.12 (analysis of Construction 5.11). If the input to Construction 5.11 is taken
from an (n′′s, δn′′s)-bit-fixing source, then there exist n−m bits in the output with a joint
distribution that is n−ω(1)-close to Un−m.

Proof. If a δ fraction of the input bits are random, then for at least a δ/2 fraction of
i ∈ [n′′], called good, at least a δ/2 fraction of the bits zi,1, . . . , zi,s are random. (Recall that
random bits are independent of one another, whereas the other bits are fixed.) As shown
by Kamp and Zuckerman [41], the sum modulo q′ of the bits of a (s, δ′s)-bit-fixing source
is exp(−Ω(δ′s/(q′)2))-close to the uniform distribution on Zq′ . Hence, for each good i it
holds that zi is exp(−Ω(δs/(q′)2))-close to the uniform distribution on Zq′ (and the zi’s
are independent of one another). By the choice of s = Ω(q′ logn)2/δ, it follows that zI is
exp(−Ω(log2 n))-close to be uniform over GF(q′)|I|, where I denotes the set of good i’s and
|I| ≥ δn′′/2.

Consider the column of M ′ that correspond to the good i’s. By the second property of
M ′ (and using δ = 4n/n′), it holds that the rank of the corresponding n-by-(2n/n′) · n′′
sub-matrix is at least n −m. Denoting a set of n −m linearly independent rows by R, it
follows that yR is exp(−Ω(log2 n))-close to be uniform over GF(q′)n−m, and a corresponding
statement holds for xR with respect to {0, 1}n−m. The claim follows. J

22For any δ ≥ 1/poly(logn) and any ρ ≥ 1/poly(logn), this construction “condenses” an (n′′s, δn′′s)-
bit-fixing source, into a non-oblivious (n, (1− ρ) · n)-bit-fixing source. Thus, the min-entropy rate is
significantly increased (from δ to 1− ρ), but the output source belong to a wider class of sources.

23For this reason we need q′ to be even.
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Wrapping up. The final construction is as follows. Let C : {0, 1}n → {0, 1} be the
AC0 circuit guaranteed by Theorem 5.7. Setting ρ = ε/O(logn)2 ≥ 1/poly(logn) and
δ = k(n2)/n2 ≥ 1/poly(logn), we use n′′ = 4n/δ = Õ(n) and invoke Construction 5.11. Let
C ′′ : {0, 1}n′′s → {0, 1}n be the AC0 circuit provided by Construction 5.11, and note that
δ ≤ k(n′′s)/n′′s (since we may assume that k(t)/t is non-increasing in t). We define the final
circuit C ′ : {0, 1}n′′s → {0, 1} as the composition of C and C ′′; that is, C ′(z) = C(C ′′(z)).
Using Claim 5.12, we infer that for any (n′′s, δn′′s)-bit-fixing source Z, it holds that C ′′(Z)
is n−ω(1)-close to a source in which n− ρn of the bits are totally random (and the rest may
be determined as a function of them). By Theorem 5.7, in this case C(C ′′(Z)) is ε-close to a
random bit.24 Hence, C ′ is an ε-error extractor for for (n′′s, k(n′′s))-bit-fixing sources, which
establishes the claim of the theorem. J

I Remark (Construction 5.11, revisited). While the output of Construction 5.11 is not an
affine combination of its input bits, it is n−ω(1)-close to an affine source of min-entropy at
least n−m (cf. [25]). This is due to the following two facts:
1. The vector (z1, . . . , zn′′) ∈ ({0, 1}`′′)n′′ produced in Step 1 is n−ω(1)-close to a (n′′, δn′′/2, `′′)-

block-fixing source, where 2`′′ = q′.
2. The vector x is a GF(2)-linear combination of the bits of z, since y is a GF(2`′′)-linear

combination of the blocks of z (viewed as elements of GF(2`′′)).
Hence, the bits of x are affine combinations of the non-fixed bits of z′, where z′ is the
(n′′, δn′′/2, `′′)-block-fixing source that is n−ω(1)-close to (z1, . . . , zn′′). Since the affine
transformation of z′ to x has rank at least n−m in the non-fixed variables of z′, our claim
follows.
We now improve the construction asserted by Theorem 5.8 in two ways. First we show that
the error of the extraction can be reduced (to a negligible in n level), and then we show
that poly(logn) bits can be extracted (rather than a single one). We start by observing that
XORing values extracted from disjoint portions of a bit-fixing source yields an extractor of
smaller error (alas it is guaranteed to work only for bit-fixing sources of a larger amount of
min-entropy).25

I Theorem 5.13 (error reduction for deterministic extraction from bit-fixing sources). Suppose
that E : {0, 1}n → {0, 1} is an ε-error extractor for (n, k)-bit-fixing sources. Then, for
every t ∈ N, the function E′ : {0, 1}tn → {0, 1}, given by E′(x1, . . . , xt) = ⊕i∈[t]E(xi) is an
εdtk/ne-error extractor for (tn, 2tk)-bit-fixing sources.

Indeed, as detailed in Corollary 5.14 below, applying Theorem 5.13 to Theorem 5.8 yields a
similar deterministic AC0 extractor but for error rates that are smaller than 1/poly(n).

Proof. Letting δ = k/n, we note that the existence of 2δtn random bits in the source
(X1, . . . , Xt) ∈ ({0, 1}n)t implies that for at least a δ fraction of the indices i ∈ [t] the source
Xi is a (n, δn)-bit-fixing source (whereas the t sources are independent of one another). Since
each of these dδte extractions yields a bit that is ε-close to uniform (whereas the t bits are
independent of one another), the claim follows. J

I Corollary 5.14 (improved error in deterministic AC0-extractors for bit-fixing sources). For
every k(n) ≥ n/poly(logn) and every ε(n) ≥ exp(−poly(logn)), there exist deterministic

24Recall that ε(n) ≥ 1/poly(logn), which is much larger than the n−ω(1) deviation created by C′′.
25 Indeed, there is a trade-off, which we do not elaborate, between the amount of error reduction and the

increase in the required min-entropy.
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ε-error extractors E : {0, 1}n → {0, 1} for (n, k)-bit-fixing sources such that the extractors
are computable in AC0.

Proof. Let E0 : {0, 1}n0 → {0, 1} be the 0.1-error extractor for (n0, k(k0)/2)-bit-fixing
sources provided by Theorem 5.8. Letting t = Θ((n0/k(n0)) log(1/ε(n0))) = poly(logn0) and
n = t · n0, and applying Theorem 5.13, the claim follows, since t-wise XOR can be computed
by constant-depth circuits of poly(n)-size. J

Extracting slightly more bits

Applying the same idea as underlying the proof of Theorem 5.13, we can extract poly-
logarithmically many bits rather than one.

I Theorem 5.15 (Corollary 5.14, revisited). For every k(n) ≥ n/poly(logn) and every ε(n) ≥
exp(−poly(logn)), there exist deterministic ε-error extractors E : {0, 1}n → {0, 1}poly(logn)

for (n, k)-bit-fixing sources such that the extractors are computable in AC0.

Proof. We proceed in two steps, first obtaining an extractor that outputs double-logarithmically
many bits, and next using it to establish the claim of the theorem. As in the proof of Corol-
lary 5.14 (and other results), we shall use the fact that t-wise sums can be computed by
constant-depth circuits of exp(tc)-size, for any constant c > 0.

I Claim 5.16 (Corollary 5.14, revisited). For every k(n) ≥ n/poly(logn), ε(n) ≥ exp(−poly(logn)),
and `1(n) = O(log logn), there exist deterministic ε-error extractors E : {0, 1}n → {0, 1}`1(n)

for (n, k)-bit-fixing sources such that the extractors are computable in AC0.

Proof. Letting δ = k(n2)/n2 and t = 22`1δ−1 log(1/ε(n2)) = poly(logn), we note that the
existence of δtn random bits in the source (X1, . . . , Xt) ∈ ({0, 1}n)t implies that for at least
a δ/2 fraction of the indices i ∈ [t] the source Xi is a (n, δn/2)-bit-fixing source (whereas
the t sources are independent of one another). Applying the extractor of Corollary 5.14 to
each of the t sources, we obtain a (t, δt/2)-bit-fixing source (or rather a t-bit string that is
exp(−poly(logn))-close to such a source). Computing the sum of these t outputs modulo
2`1 (and invoking again the result of Kamp and Zuckerman [41]), we obtain a value that is
exp(−Ω(δt/22`1))-close (i.e., ε/2-close) to uniform over Z2`1 . This yields an ε-error extractor
of `1 bits for (tn, δtn)-bit-fixing sources, and the claim follows. J

Extracting poly(logn) many bits. For any `(n) = poly(logn), we will use an 0.1-biased
sample space S ⊂ {0, 1}` of size poly(`) (cf., e.g., [27, Sec. 8.5.2]), and let `1 = log |S| =
O(log logn). For any ε(n) ≥ exp(−poly(logn)), and k(n) ≥ n/poly(logn), we again let
δ = k/n. This time we set t = Θ(` + log(1/ε))/δ = poly(logn), and consider a (tn, δtn)-
bit-fixing source, denoted (X1, . . . , Xt) ∈ ({0, 1}n)t, inferring that at least δ/2 fraction of
the n-bit long Xi’s are (n, δn/2)-bit-fixing sources. Applying the extractor of Claim 5.16
to each of these t sources, we obtain t strings, each of length `1, such that at least δt/2
of these strings are ε-close to being uniformly distributed in {0, 1}`1 . In other words, we
obtain a (t, δt/2, `1)-block fixing source. Denoting the ith block in this source by yi, and
viewing it as an element of [2`1 ] ≡ {0, 1}`1 , we just output ⊕i∈[t]syi , where sj is the jth

string in S. This `-bit output is 0.1δt/2-biased, since for any α ∈ {0, 1}` it holds that
〈α,⊕i∈[t]syi〉2 = ⊕i∈[t]〈α, syi〉2, where 〈·, ·〉2 denotes inner product mod 2. It follows that
the output is (2`/2 · 0.1δt/2)-close to the uniform distribution over {0, 1}`, and the theorem
follows (using sufficiently large t = O(`+ log(1/ε))/δ). J
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Extracting many more bits

Using the composition theorem of Gabizon et al. [26, Thm. 7.1], we obtain deterministic
extractors that are computable in AC0 and extract n/poly(logn) bits. The aforementioned
composition result requires three ingredients: (1) an adequate deterministic extractor (pro-
vided by Theorem 5.15), (2) an adequate seeded extractor (provided by Theorem 5.2), and
(3) an adequate averaging sampler (provided by Theorem 3.8). We shall rely on the fact that
the composition theorem of [26, Thm. 7.1] preserves AC0 complexity.

I Theorem 5.17 (deterministic AC0 extraction of n/poly(logn) bits from bit-fixing sources).
For every k(n) ≥ n/poly(logn) and every ε(n) ≥ 1/poly(n), there exist deterministic ε-error
extractors E : {0, 1}n → {0, 1}n/poly(logn) for (n, k)-bit-fixing sources such that the extractors
are computable in AC0.

Proof. We start by reviewing the composition theorem of Gabizon et al. [26, Thm. 7.1],
which is pivotal to our proof. The composition theorem of Gabizon et al. [26, Thm. 7.1]
requires three ingredients (for some parameters µ, µ′, ε′, ε′′ etc):26

1. A deterministic ε′-error extractor E′ : {0, 1}n → {0, 1}r+r′′ for (n, µ′t)-bit-fixing sources;
2. A seeded ε′′-error extractor E′′ : {0, 1}n × {0, 1}r′′ → {0, 1}m for (n, µn − t)-bit-fixing

sources;
3. An (µ, µ′, γ)-averaging sampler S : {0, 1}r → [n]t.
It yields a deterministic ε-error extractor E : {0, 1}n → {0, 1}m for (n, µn)-bit-fixing sources
and ε = ε′′ + 2r+3 · ε′ + 3γ that operates as follows. Denoting the first r (resp., last r′′) bits
of E′ by E′1(x) (resp., E′2(x)), it holds that E(x) = E′′(x[n]\S(E′1(x)) ◦ 0t, E′2(x)). Hence, if
each of the three ingredients is computable by constant-depth poly(n)-size circuits, then E
is in AC0.

Setting µ = k(n)/n = 1/poly(logn), we shall use µ′ = µ/2 and t = k(n)/2 so that
µ′t = n/poly(logn) and µn − t = n/poly(logn). Furthermore, we shall use ε′ = 2− log3 n,
ε′′ = γ = 1/poly(n), m = n/poly(logn), r′′ = O(logn) and r = O(logn)2. The required
deterministic extractor is provided by Theorem 5.15, the seeded extractor is provided by
Theorem 5.2, and the required averaging sampler is provided by Theorem 3.8. Hence we
obtain AC0 circuits computing E : {0, 1}n → {0, 1}m, which is a deterministic ε-error
extractor for ε = 2r+3 · ε′ + 1/poly(n) = 1/poly(n). J

An explicit disperser

Recall that a deterministic disperser for a class of sources is a function that defines an onto
mapping from the support of each source in the class to the range of the function. That is,
D : {0, 1}n → {0, 1}m is a deterministic disperser for a class of sources if for every source X
in the class and over every v ∈ {0, 1}m it holds taht Pr[D(X)=v] > 0.

26Actually, we present a special case of [26, Thm. 7.1], whereas the original version refers to a generalization
of the notion of an averaging sampler. Loosely speaking, a (µ, µ′, µ′′, γ)-averaging sampler is defined as
in Definition 2.6, except that it refers to functions f : [n]→ [0, 1] such that ρ(f) = µ and also requires
that Pr[

∑
i∈S(Ur)

f(i) > t · µ′′] ≤ γ. Indeed, such an (µ, µ′, 1, γ)-averaging sampler is an (µ, µ′, γ)-
averaging sampler as in Definition 2.6. We comment that using the original form of [26, Thm. 7.1]
allows to obtain somewhat better parameters, by showing that a small variant on the construction
establishing Theorem 3.8 yields the required (µ, µ′, µ′′, γ)-averaging sampler. (Specifically, we shall set
the parameters of the pairwise independent sampler, used in the latter proof, so that its error probability
is o(µ) rather than a constant, and establish the assertion for µ′′ = 2` · µ and γ = 1/poly(n), where
` = O(log(1/γ)).)
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I Theorem 5.18 (deterministic disperser in AC0 for bit-fixing sources). For every k(n) ≥
n/poly(logn), there exist explicit AC0 circuits D : {0, 1}n → {0, 1} that constitute a disperser
for (n, k)-bit-fixing sources.

Proof. The first observation is that the Hamming weight of the outcome of any (n, k)-bit-
fixing source is spread (unevenly) over an interval of k values. Hence, if we partition [n]
into consecutive intervals of length k/10, then at least ten of these intervals will be assigned
non-zero weight.27 Our disperser outputs the least significant bit of the index of the interval
in which the source’s outcome resides. The second observation is that for outcomes that reside
in the middle portion of the interval we can determine the relevant index by approximate
counting. Details follow.

Let ρ = k/n = 1/poly(logn) and ε = ρ/50, and recall that Ajtai [2] (see also [59])
provided explicit AC0 circuits that compute the Hamming weight of n-bit strings up to an
additive deviation of εn. Denoting this circuit by C, consider the circuit C ′(x) that computes
bC(x)/εnc ∈ {0, 1, . . . , 1/ε}. Then, C ′(x) ∈ [bwt(x)/εnc ± 2], where wt(x) def=

∑
i∈[n] xi.

Hence, for every v ∈ [10/ρ] it holds that

5v+4∑
i=5v

Pr[C ′(X) = i] ≥ Pr [bwt(X)/εnc = 5v + 2] ,

which means that if the latter term is positive then so if the former. Our disperser D outputs
the least significant bit of bC ′(x)/5c.

For an arbitrary (n, k)-bit fixing source X, let u = b50E[wt(X)]/kc. Then, for every
u′ ∈ [u ± 10], it holds that Pr[b50wt(X)/kc = u′] > 0. It follows that Pr[bC ′(X)/5c =
bu/5c] > 0 and Pr[bC ′(X)/5c = bu/5c ± 1] > 0, whereas in these two cases D outputs
different values (since the least significant bit of bu/5c is different from the least significant
bit of bu/5c ± 1). J

5.4 Extraction from zero-fixing sources
The impossibility results regarding bit-fixing sources (presented in Section 5.2) do not hold
for a restricted class of such sources that was recently introduced by Cohen and Shinkar [19].
This class, called zero-fixing sources, consists of bit-fixing sources in which all fixed bits are
set to zero.

I Definition 5.19 (zero-fixing sources [19]). An (n, k)-zero-fixing source is a sequence of
random variables X = (X1, . . . , Xn) ∈ {0, 1}n such that there exists a set of at least k indices
I ⊆ [n] such that XI is uniformly distributed over {0, 1}|I| and Xi = 0 for every i ∈ [n] \ I.

As shown next, there exist strong AC0-extractors for zero-fixing sources of logarithmic
min-entropy, which was shown to be impossible for bit-fixing sources (see Theorem 5.4).

I Theorem 5.20 (seeded AC0-extractor for zero-fixing sources). Let k,m : N → N and
ε : N→ [0, 1] be such that m(n) = O(logn) and k(n) = 2m(n) +O(log(1/ε)) ≤ poly(logn).
Then, there exists a function E : {0, 1}n × {0, 1}O(logn) → {0, 1}m(n) that is computable in
uniform AC0 and constitutes a strong ε-error extractor for (n, k)-zero-fixing sources.

27 Indeed, it is likely that almost all the probability mass is concentrated in one interval (since the
probability mass is concentrated in an interval of length o(k2/3), but this does not contradict the
foregoing.
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Proof. On input x ∈ {0, 1}n and a seed s ∈ {0, 1}O(logn), the proposed extractor operates in
two stages. In the first stage, which is deterministic, the extractor determines the first k = k(n)
locations that are assigned the value 1 in x′ = (x′1, . . . , x′n+k) def= x1k; that is, it determines
i1 < · · · < ik ≤ n+k such that the ik-bit long prefix of x′ equals 0i1−110i2−i1−11 ·0ik−ik−1−11
In other words, for each j ∈ [k], the extractor determines ij as the smallest i such that∑
`∈[i] x

′
` = j. (This is done using counters that count up to k + 1 ≤ poly(logn), while

applying such counters to the strings x′1 · · ·x′i, for i ∈ [n+ k].)
In the second stage, which uses the seed s, we apply a (k, ε)-extractor to the sequence

(i1, . . . , ik), which is viewed as a string of length k logn. Here, again, we can use the extractor
of [29, Sec. 5], while relying on the fact that k logn = poly(logn).

Note that if X is a (n, k)-zero-fixing extractor, then the sequence determined by the
first stage has min-entropy at least k. To verify the claim, consider the set I of the first k
non-fixed (i.e., random) bits in X. Then, the random set {i ∈ I : Xi = 1} has min-entropy k,
since each of the 2k possible subsets is equally likely. J

Deterministic extraction

While our deterministic AC0-extractors for bit-fixing sources are not explicit (see Section 5.3),
we show a very simple explicit construction for the case of zero-fixing sources (of comparable
min-entropy rate). In fact, we prove a stronger result.

I Theorem 5.21 (deterministic AC0-extractors for zero-fixing sources).
1. Let k : N→ N and ε : N→ [0, 1] be such that k(n) ≥ n/poly(logn) and ε(n) ≥ 1/poly(n).

Then, there exists a function E : {0, 1}n → {0, 1}n/poly(logn) that is computable in uniform
AC0 and constitutes an ε-error extractor for (n, k)-zero-fixing sources.

2. Let k : N → N and ε : N → [0, 1] be such that k(n) = Θ(ε(n)−3 logn) = poly(logn).
Then, there exists a function E : {0, 1}n → {0, 1} that is computable in uniform AC0 and
constitutes an ε-error extractor for (n, k)-zero-fixing sources.

Proof Sketch. Starting with Part 1 and letting δ = k(n)/n ≥ 1/poly(logn), we first present
a simple extractor that outputs a single bit (and later apply the transformations underlying
the proofs of Theorems 5.15 and 5.17). We consider a partition of the source into consecutive
3t/δ-bit long blocks, where t = Θ(ε−3

0 logn) for any desired constant ε0 > 0. The extractor
picks the first block that contains at least t ones, and outputs the parity of the bits in that
block. (Recall that the block length is 3t/δ = poly(logn).)

Towards the analysis, we fix an arbitrary (n, k)-zero-fixing source, and let ki denote the
number of random bits in the ith block, where i = 1, . . . , δn/3t. We consider corresponding
random variables, Y1, . . . , Yδn/3t, such that Yi denotes the sum of the bits in the ith block.
Clearly, there exists a block i such that ki ≥ 3t. Note that if ki < t, then the ith block will
never be selected. On the other hand, if ki ≥ t, then, with probability at least 1− o(1/n), it
holds that Yi = (0.5±ε0)·ki. Hence, with probability at least 1−o(1), some block i is selected,
and it holds that ki ≥ (2 − 2ε0) · t. Furthermore, for such a block i (i.e., ki ≥ 2t − 2ε0t),
the parity of the bits in the block (i.e., Yi mod 2) has bias O(ε0), also when conditioned
on Yi ≥ t. To verify the last claim consider a pairing of the odd-parity strings of length
ki ≥ 2t− 2ε0t with the even-parity strings obtained by flipping the last bit. Now omit the
strings that have Hamming weight smaller than t, and note that only an O(ε0) fraction of the
remaining strings are left unmatched (since this omission may leave unmatched only strings
of Hamming weight t, whereas Pr[Yi= t] = (1 +O(ε0))j ·Pr[Yi= t+ j] for every j ∈ [ε−1

0 ]).
Part 1 follows by applying the transformations that underlie the proofs of Theorems 5.13,

5.15 and 5.17. Each of these transformations improves some parameter (i.e., error or output
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length) of deterministic AC0-extractors for bit-fixing sources of min-entropy n/poly(logn).
The point is that these transformation only use the fact that certain sub-sources derived from
the given bit-fixing source are bit-fixing sources with certain parameters (where sub-sources
are projections of the source on some locations).28

The same holds for zero-fixing sources.
Turning to Part 2, we consider the following extractor, which, for every ` = 0, 1, . . . ,

log(n/k(n)), uses a family of n2 pairwise independent hashing functions h : [n]→ [2`]. On
input x ∈ {0, 1}n, the extractor finds ` such that for most h : [n] → [2`] it holds that
Sh

def= {i ∈ [n] : xi = 1 &h(i) = 1} has cardinality at least (1 − ε(n)) · k(n) and at most
(2 + ε(n)) · k(n). It then picks the first of these (majority) h’s, and outputs the parity of
|Sh|. (This is done by using a counter that counts till 3k(n) = poly(logn); note that hashing
functions in these families can be computed by depth-two circuits of size poly(n).)

Towards the analysis, we fix an arbitrary (n, k)-zero-fixing source X, and let I denote
the set of random (i.e., non-fixed) bit locations in it. Then, there exists an ` such that
|I| is in [2`+1 · k, 2`+2 · k), where k = k(n), and a hashing function h : [n] → [2`] such
that |{i ∈ I : h(i) = 1}| ∈ (2k − εk, 4k + ε), where ε = ε(n). Using an analysis as in
Part 1, we infer that with high probability the pair (`, h) chosen by the extractor satisfies
|{i∈ I : h(i)=1}| ∈ (2k − 2εk, 4k + 2εk), where here we use the fact that for the majority
of the h’s it holds that |Sh| ∈ [(1 − ε) · k, (2 + ε) · k]. Similarly, we conclude that, for the
selected h, the parity of |Sh| has bias O(ε), and Part 2 follows. J

I Remark (zero-block-fixing sources, generalizing Definition 5.19). An (n, k, `)-zero-block-fixing
source is a sequence of random variables X = (X1, . . . , Xn) ∈ {0, 1}n` such that there exists
a set of at least k indices I ⊆ [n] such that XI is uniformly distributed over {0, 1}|I|` and
Xi = 0` for every i ∈ [n] \ I. Extraction from such a source is quite easy, since each non-fixed
block is clearly identified as such (and is uniformly distributed on {0, 1}` \ {0`}).

6 Extraction with long seeds

In this section we present extractors that use very long seeds, which is indeed uncustomary
in the studies of extractors, but the point is that these extractors establish the tightness
of Theorem 5.5. Recall that (Part 1 of) of Theorem 5.5 establishes lower bounds on the
relationship between the min-entropy k(n) and the seed-length r(n) for any non-trivial
extractor computable in AC0. Specifically, it asserts that k(n) · r(n) ≥ n/poly(logn) must
hold (for any non-trivial extraction in AC0). The point of the current section is showing that
these bounds are tight. Specifically, we shall show that k(n) · r(n) ≥ n/poly(logn) suffices
for trivial extraction in AC0.

We shall first show (see Section 6.1) that AC0 circuits can extract n + poly(logn)
bits using a seed of length n, provided that k(n) ≥ poly(logn). Actually, we show that
r(n) + poly(logn) bits can be extracted in AC0 provided that k(n) · r(n) ≥ n/poly(logn)
(and k(n) ≥ poly(logn)). This is a special case of a more general result (presented in
Section 6.2) that asserts that r(n) + m′(n) bits can be extracted in AC0 provided that
k(n) · r(n) ≥ m′(n) · n/poly(logn) (and m′(n) ≤ k(n)/2 and k(n) ≥ poly(logn)). The
latter result is obtained by combining extractors presented in previous part of this write-up
(including the one presented in Section 6.1) with a simple scheme that amounts to repeated
extraction with independent seeds.

28This holds also for [26, Thm. 7.1], which is used within the proof of Theorem 5.17.
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6.1 Extraction with a seed of linear length
The following construction generalizes an AC0-computable extractor presented by Viola [58,
Lem. 4.3], where the original construction corresponded to the case ` = 1.

I Theorem 6.1 (the inner product extractor). Let n, ` ∈ N such that `/2 is a power of 3 and
` ≤ poly(logn). Then, there exists a (` + 3 log(2/ε), ε)-extractor, E : {0, 1}n × {0, 1}n →
{0, 1}n+`, computable by uniform AC0.

The requirement that ` be of a special form (i.e., `/2 is a power of 3) can be dropped when
` = O(logn). This special form is only used for asserting the existence of (uniform) circuits
of constant depth and size poly(n) for computing inverses in GF(2`).

Proof. Our starting point is the strong extractor E′ : {0, 1}n × {0, 1}n → {0, 1}` that views
its input source x and seed r as n/`-long sequences over GF(2`) and outputs their inner
product, where the arithmetics is of the said field. That is, E′(x, r) =

∑
i∈[t] xiri, where

t = n/`, x = (x1, . . . , xt) and r = (r1, . . . , rt). Note that for a random r, the mapping
x 7→ E′(x, r) is pairwise independent, and so E′ is a strong (`+ 3 log(2/ε), ε)-error extractor
(by the Leftover Hashing Lemma, see, e.g., [27, Thm. D.4]). Hence, E′′(x, r) = r ◦E′(x, r) is
an (`+ 3 log(2/ε), ε)-error extractor with output length n+ `.

Wishing to obtainAC0 circuits, we define E(x, s) = E′′(x, f(x, s)) = (f(x, s), E′(x, f(x, s))),
where f(x, s) = (f1(x, s), . . . , ft(x, s)) ∈ GF(2`)t is defined as follows.

Fictitiously define s0 = 0 ∈ GF(2`) and x0 = 1 ∈ GF(2`).
Let prvx(i) = j ∈ {0, 1, . . . , i − 1} denote the index of the last non-zero element that
precedes i; that is, prvx(i) = j ∈ {0, 1, . . . , i− 1} if xj 6= 0 and xj+1 = · · · = xi−1 = 0.
Finally, define fi(x, s) = si if xi = 0 and fi(x, s) = (si − sprvx(i))/xi otherwise.

In particular, f(0t, s) = s and fi(1t, s) = si − si−1 (for every i ∈ [t]). Note that for ` = 1, we
have fi(x, s) = si if xi = 0 and fi(x, s) = si − sprvx(i) otherwise.

Before showing that E is in AC0, we analyze its output distribution. Note that, for every
fixed x, the mapping s 7→ f(x, s) is a bijection, and it follows that f(x, Un) is distributed
identically to Un. Hence, E(x, Un) = (f(x, Un), E′(x, f(x, Un)) is distributed identically
to E′′(x, Un) = (Un, E′(x, Un)), since in both distributions the last ` bits are obtained
by applying the same function (i.e., E′(x, ·)) to the first n bits. It follows that E′′ is an
(`+ 3 log(2/ε), ε)-error extractor with output length n+ `. It is left to show that E can be
computed in uniform AC0.

Turning to the complexity of E, we first consider the computation of E′(x, f(x, s)). Note
that E′(0t, r) = 0 ∈ GF(2`) for every r, whereas for x 6= 0t, it holds that E′(x, f(x, s)) equals∑

i∈[t]

xifi(x, s) =
∑
i:xi 6=0

xifi(x, s)

=
∑
i:xi 6=0

xi · (si − sprvx(i))/xi

=
∑
i:xi 6=0

si −
∑
i:xi 6=0

sprvx(i)

which equals si for the largest i such that xi 6= 0. Hence, E′(x, f(x, s)) =
∨
i∈[n] χi · si,

where χi = ((xi 6= 0) ∧
∧
i<k≤n(xk = 0)) and σ · (τ1, . . . , τ`) = (σ ∧ τ1, . . . , σ ∧ τ`) for every

σ ∈ {0, 1} and (τ1, . . . , τ`) ∈ {0, 1}` ≡ GF(2`).
Finally, we consider the computation of the fi’s. We first note that prvx(i) can be

computed by uniform AC0 (by computing the bits ((xj 6= 0) ∧
∧
j<k<i(xk = 0)) for j ∈

{0, 1, . . . , i − 1}). Next, we note that for ` = poly(logn), addition and multiplication in
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GF(2`) are computable by (uniform) constant-depth circuits of poly(n)-size.29 We can take
inverses in GF(2`) by raising to the power 2`−2, but the question is whether this can be done
in by (uniform) circuits of constant depth and size exp(`c) for any desired c > 0. Fortunately,
for ` of the form 2 · 3i, the answer is positive – see [33, Cor. 6 (2)]. J

An alternative construction

As an alternative generalization of the extractor presented by Viola [58, Lem. 4.3], consider
using the seed (which will now have length 2n rather than n) as a description of a sequence
of n′ = n/` Toeplitz matrices, denoted T = (T1, . . . , Tn′), where each Ti is a `-by-` matrix.30
Likewise, we view the source x as a sequence (x1, . . . , xn′) ∈ ({0, 1}`)n′ , and output E′(x, T ) =
(T, Tx), where Tx =

∑
i∈[n′] Tixi. Recall that E′ is a strong (`+ 3 log(2/ε), ε)-error extractor;

again, this follows by the the Leftover Hashing Lemma (using the fact that x 7→ E′(x, Un) is
pairwise independent).

It is simpler to implement this extractor in AC0 when using affine transformations based on
`-by-` Toeplitz matrices; that is, rather than the Ti’s we use Ai = (Ti, bi)’s, where bi ∈ {0, 1}`,
and output the pair ((A1, . . . , An′), v) such that v =

∑
i∈[n′](Tixi + bi). That is, for A =

(A1, . . . , An′), where Ai = (Ti, bi), the extractor is defined by E(x,A) = (A,
∑
i∈[n′](Tixi+bi)).

Indeed, v =
∑
i∈[n′] Tixi +

∑
i∈[n′] bi, but it is useful to have this redundancy. Specifically,

the AC0 implementation of E uses its seed to determine (A1, . . . , An′), where Ai = (Ti, bi),
but then outputs (((T1, b

′
1), . . . , (Tn′ , b′n′)), Tn′xn′ + bn′) such that b′i = bi+ (Ti−1xi−1 + bi−1),

where T0x0 + b0 = 0`. The key observation is that Tn′xn′ + bn′ equals the last ` bits of
E(x, ((T1, b

′
1), . . . , (Tn′ , b′n′))). This holds because∑

i∈[n′]

(Tixi + b′i) =
∑
i∈[n′]

(Tixi + bi + Ti−1xi−1 + bi−1)

= Tn′xn′ + bn′ .

Turning back to the construction that uses linear (rather than affine) transformations, we
mention that it can be implemented by using the first column in each matrix Ti that
corresponds to a 1-entry in xi.

Using a shorter seed when the min-entropy is ω(log3 n)

Combining the extractor of Theorem 6.1 with a suitable averaging sampler, we obtain the
following.

I Corollary 6.2 (on the tightness of Theorem 5.5). For any k = Ω(logn) and r ≥ T
def=

min(n,Θ(n log3 n)/k), there exists a (k, poly(1/n))-extractor, E : {0, 1}n×{0, 1}r → {0, 1}r+`,
where ` = min(Ω(k), poly(logn)), that is computable by uniform AC0.

We stress the fact that Corollary 6.2 implies an extractor that outputs m(n) = r(n) +
Ω(logn) > r(n) bits using a seed of length r(n) = O(n log3 n)/k(n) (provided that k(n) =
Ω(logn)). Hence, non-trivial extraction in AC0 (i.e., m(n) > r(n)) is possible whenever
k(n) · r(n) = O(n log3 n) (provided k(n) = Ω(logn)). Recall that (Part 1 of) Theorem 5.5

29 In particular, recall that multiplication in GF(2`) reduces to computing inner products mod 2 of
`-bit long vectors, whereas such computation can be carried out by depth d = O(1) circuits of size
exp(`1/(d−1)) = poly(n).

30As usual, each Toeplitz matrix is represented by its first row and its first column. For notational
simplicity we view strings as either row or column vectors, according to their use.
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asserts that k(n) ·m(n) = Ω(n/poly(logn)) must hold for any non-trivial extraction in AC0.
Loosely speaking, the combination of these results implies that non-trivial extraction in AC0

is possible if and only if k(n) ·m(n) = Θ̃(n).

Proof. (The case of T = n follows immediately from Theorem 6.1, and we focus on the case
that T < 0.1n (since otherwise, we can artificially increase T to n and act accordingly).)
Assuming that T ≤ 0.1n, we combine an adequate averaging sampler with the extractor of
Theorem 6.1, where the combination uses the sample-then-extract paradigm (as stated in
Corollary 2.8). Actually, we plug the extractor of Theorem 6.1 into Corollary 3.9, which
already incorporate the adequate sampler. Specifically, when invoking Corollary 3.9, we set
r0 = t = r −O(logn)2 and δ = k(n)/n (and use ε = 1/poly(n) and (say) β = 1/2).31 J

6.2 Repeated extraction with independent seeds
The following straightforward scheme for repeated extraction is wasteful in its use of the
seed, but its appeal lies in the fact that it preserves the computational complexity of the
original extractor. The key observation underlying its analysis is that (typical) conditioning
on m′ bits extracted from an (n, k)-source yields an (n, k −m′ − 1)-source; this observation
is at least implicit in numerous works regarding randomness extraction.

I Theorem 6.3 (repeated extraction). Let n, k, r,m, t ∈ N and ε ∈ [0, 1]. If E : {0, 1}n ×
{0, 1}r → {0, 1}m is a (k, ε)-extractor, then Et : {0, 1}n × {0, 1}tr → {0, 1}tm defined by
Et(x, s1 ◦ · · · ◦ st) = E(x, s1) ◦ · · · ◦ E(x, st) is a (k + (t− 1) · (m+ 1), (2t− 1) · ε)-extractor.
An analogous statement holds for strong extractors.

(Hence, the quality of extraction is harmed in a small manner, especially when t � k/m.
Indeed, the result is meaningful only if k + (t− 1)(m+ 1) < n.)

Proof. We first prove the version that refers to ordinary extractors.32 We proceed by
induction on t, proving that for any (n, k + (t− 1)(m+ 1))-source X the statistical distance
between Utm and Et(X,Utd) is at most (2t− 1) · ε. The base case (of t = 1) is immediate
by the hypothesis regarding E. In the induction step we proceed as follows, while writing
Et(x, s1 ◦ · · · ◦ st) = Et−1(x, s1 ◦ · · · ◦ st−1) ◦ E(x, st):

∆[Et(X,Utr) ;Utm]
= ∆[Et−1(X,U(t−1)r) ◦ E(X,Ur) ;U(t−1)m ◦ Um]
≤ ∆[Et−1(X,U(t−1)r) ◦ E(X,Ur) ;U(t−1)m ◦ E(X,Ur)]

+∆[U(t−1)m ◦ E(X,Ur) ;U(t−1)m ◦ Um]
≤ ∆[Et−1(X,U(t−1)r) ◦ E(X,Ur) ;U(t−1)m ◦ E(X,Ur)] + ∆[E(X,Ur) ;Um], (13)

where the last inequality uses ∆[Π(Y ) ; Π(Z)] ≤∆[Y ;Z] (for any random process Π). Using
the hypothesis regarding E, the second term of Eq. (13) is upper bounded by ε. So we turn
to analyze the first term of Eq. (13). We shall use the following notation:

We let k′ = k + (t− 1)(m+ 1) and recall that X is an (n, k′)-source;

31We mention that an essentially weaker statement, which refers only to k ≥ n2/3, follows by instantiating
Corollary 3.5 with the extractor of Theorem 6.1. In this case, the resulting extractor has seed length
r = t+O(logn) rather than t+O(logn)2, but this gain is insignificant because in both cases t = Ω(log3 n).

32The proof of the version that refers to strong extraction is very similar, and will be presented later.
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We let Y denote the distribution of E(X,Ur);
For any y in the support of Y , we let X ′y denote the distribution of X conditioned on
E(X,Ur) = y.

Using these notations we have

∆[Et−1(X,U(t−1)r) ◦ E(X,Ur) ;U(t−1)m ◦ E(X,Ur)]
= Ey←Y [∆[Et−1(X ′y, U(t−1)r) ;U(t−1)m]]
≤ max

y:H∞(X′y)≥k′−m−1

{
∆[Et−1(X ′y, Ur) ;U(t−1)m]

}
(14)

+Pry←Y [H∞(X ′y) < k′ −m− 1], (15)

where the inequality uses the fact that ∆[ ; ] is upper bounded by 1. We upper bound
Eq. (14) by using the induction hypothesis, while noting that in this case X ′y is an (n, k +
(t− 1)(m+ 1)−m− 1)-source. Hence, Eq. (14) is upper bounded by (2(t− 1)− 1) · ε. To
bound Eq. (15), we first observe that

Pry←Y
[
Pr[E(X,Ur) = y] < 0.5 · 2−m

]
< ε, (16)

because otherwise the hypothesis regarding E is violated. (Specifically, let B = {y :
Pr[E(X,Ur) = y] < 0.5 · 2−m}, then Pr[Um = y] = 2−m > 2 · Pr[Y = y] for every y ∈ B,
which implies Pr[Um ∈ B] > 2 ·Pr[Y ∈ B], and so Pr[Y ∈ B] ≥ ε implies ∆[Y ;Um] > ε.)
Now, using Eq. (16), it follows that

Pry←Y [H∞(X ′y) < k′ −m− 1]
≤ Pry←Y

[
Pr[E(X,Ur)=y] < 2−m−1]

+Pry←Y
[
∃x s.t. Pr[X ′y=x] > 2−k

′+m+1
∣∣∣Pr[E(X,Ur)=y] ≥ 2−m−1

]
≤ ε+ Pry←Y

[
∃x s.t. Pr[X=x|E(X,Ur)=y] > 2−k

′+m+1
∣∣∣Pr[E(X,u)=y] ≥ 2−m−1

]
.

(17)

Next, note that for every x ∈ {0, 1}n and y ∈ {0, 1}m, it holds that

Pr[X ′y = x] = Pr[X = x|E(X,Ur) = y] ≤ Pr[X = x]
Pr[E(X,Ur) = y]

where equality holds if and only if Pr[E(x, Ur) = y] = 1. Hence, for y such that Pr[E(X,Ur) =
y] ≥ 2−m−1, and for every x, it holds that

Pr[X = x|E(X,Ur) = y] ≤ Pr[X = x]
Pr[E(X,Ur) = y]

≤ 2−k
′+m+1

which means that the second term in Eq. (17) is zero. Hence, Eq. (15) is upper bounded by ε,
and the induction claim follows, since Eq. (13) is upper bounded by ε+ (2(t− 1)− 1) · ε+ ε.

The case of strong extractors. We now turn to the version that refers to strong extractors,
and proceed as in the ordinary case subject to adequate modifications. (Indeed, the reader
may want to skip the rest of the proof.) Denoting E′t(x, u) = Et(x, u) ◦ u (and E′(x, u) =
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E(x, u) ◦ u), we prove (by induction on t) that for any (n, k + (t− 1)(m+ 1))-source X the
statistical distance between Utm+tr and E′t(X,Utr) is at most (2t− 1) · ε. Here we use:

∆ [E′t(X,Utr)Utm+tr]
= ∆[E′t−1(X,U(t−1)r) ◦ E′(X,Ur) ;U(t−1)(m+r) ◦ Um+r]
≤∆[E′t−1(X,U(t−1)r) ◦ E′(X,Ur) ;U(t−1)(m+r) ◦ E′(X,Ur)] + ∆[E′(X,Ur) ;Um+r].

(18)

Using the (strong) hypothesis regarding E, the second term of Eq. (18) is upper bounded by
ε. So we turn to analyze the first term of Eq. (18). We shall use the following notation:

For any u ∈ {0, 1}r, we let Yu denote the distribution of E(X,u);
For any u ∈ {0, 1}r and y in the support of Yu, we let X ′u,y denote the distribution of X
conditioned on E(X,u) = y.

Using these notations we have

∆[E′t−1(X,U(t−1)r) ◦ E′(X,Ur) ;U(t−1)(m+r) ◦ E′(X,Ur)]
= Eu←Ur;y←Yu [∆[E′t−1(X ′u,y, U(t−1)r) ;U(t−1)(m+r)]]
≤ max

u,y:H∞(X′u,y)≥k′−m−1

{
∆[E′t−1(X ′u,y, Ur) ;U(t−1)(m+r)]

}
(19)

+Pru←Ur;y←Yu [H∞(X ′u,y) < k′ −m− 1]. (20)

We upper bound Eq. (19) by using the induction hypothesis, while noting that in this case
X ′u,y is an (n, k + (t − 1)(m + 1) −m − 1)-source. Hence, Eq. (19) is upper bounded by
(2(t− 1)− 1) · ε. To bound Eq. (20), we first observe that

Pru←Ur;y←Yu
[
Pr[E(X,u) = y] < 0.5 · 2−m

]
< ε (21)

because otherwise the hypothesis regarding E is violated. (Specifically, let B = {(u, y) :
Pr[E(X,u) = y] < 0.5 · 2−m}, then Pr[Ur+m ∈ B] > 2 ·Pr[(Ur, YUr) ∈ B], since Pr[Um =
y] > 2 ·Pr[Yu = y] for every (u, y) ∈ B.) It follows that

Pru←Ur;y←Yu [H∞(X ′u,y) < k′ −m− 1]
≤ Pru←Ur;y←Yu

[
Pr[E(X,u)=y] < 2−m−1] (22)

+Pru←Ur;y←Yu

[
∃x s.t. Pr[X ′u,y=x] > 2−k

′+m+1
∣∣∣Pr[E(X,u)=y] ≥ 2−m−1

]
,(23)

where Eq. (22) is upper bounded by ε. Next, note that for every x ∈ {0, 1}n, u ∈ {0, 1}r and
y ∈ {0, 1}m, it holds that

Pr[X ′u,y = x] = Pr[X = x|E(X,u) = y] ≤ Pr[X = x]
Pr[E(X,u) = y]

where equality holds if and only if E(x, u) = y. Hence, for u and y such that Pr[E(X,u) =
y] ≥ 2−m−1, and for every x, it holds that

Pr[X = x|E(X,u) = y] ≤ Pr[X = x]
Pr[E(X,u) = y]

≤ 2−k
′+m+1

which means that the the second term in Eq. (23) is zero. Hence, Eq. (20) is upper bounded by
ε, and the induction claim follows (since Eq. (18) is upper bounded by ε+(2(t−1)−1)·ε+ε). J
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Applications to the study of extraction in AC0

Combining Theorem 6.3 with the various extractors presented in this work, we obtain.

I Corollary 6.4 (on extraction in AC0 using a long seed). For every ε : N→ (0, 1] such that
ε(n) ≥ 1/poly(n) and every constant α < 1, there exist explicit AC0 circuits that compute
(k, ε)-extractors, E : {0, 1}n × {0, 1}r(n) → {0, 1}m(n), for the following relation between r,m
and k.
1. For any k(n) = Ω(n), we can have any m(n) ≤ α · k(n) with any r(n) = max(β ·

m(n),Ω(logn)), for any constant β > 0. Furthermore, the extractor is strong and the
AC0 circuits have depth three.

2. For any k(n) ≥ n/poly(logn), we can have any m(n) ≤ α · k(n) with r(n) = max(β ·
m(n),Ω(logn)), for any constant β > 0. Furthermore, the extractor is strong and the
AC0 circuits have depth 4 + log(n/k(n))

log logn .
3. For any constant c > 0 and k(n) ≥ O(logn)c+3, we can have any m′(n) = m(n)− r(n) ≤

α · k(n) with r(n) · k(n) = m′(n) · n/(logn)c. In particular:
We can have m′(n) = α · k(n) and r(n) = n/(logn)c.
We can have m′(n) = min(α · k(n), (logn)c) and r(n) = n/k(n).

In addition, for any k(n) = Ω(logn) we can have m′(n) = m(n) − r(n) = min(α ·
k(n), poly(logn)) and r(n) = n.

Note that in Part 1 the output length exceeds the seed length, whereas in the other parts
the output is shorter. The extractors in Parts 1 and 2 are strong, but this is not the case
(and cannot be the case) in Part 3. The additional claim (in Part 3) is merely a restating of
Theorem 6.1, which also appears as a special case of Corollary 6.2.

Proof. In all parts, t = t(n) denotes the number of times that the basic extractor E0 :
{0, 1}n × {0, 1}r0(n) → {0, 1}m0(n) is invokes; that is, we will derive m(n) = t(n) ·m0(n) and
r(n) = t(n) · r0(m).

Part 1 (resp., Part 2) is obtained by combining Theorem 2.4 (resp., Theorem 3.1) with
the second part of Theorem 6.3 (i.e., the part referring to strong extractors). In both parts
we have r0(n) = Θ(logn); in Part 1 we can have any m0(n) = r0/β = O(r0(n)), whereas in
Part 2 we have some m0(n) = Ω(r0(n)). Note that the extractor asserted in Theorem 2.4
can be implemented by depth-three AC0 circuits.

Part 3 combines Corollary 6.2 with the first part of Theorem 6.3 (i.e., the part referring
to ordinary extractors). Here we use r0 = min(n,O(n log3 n)/k(n)) and m′0 = m0 − r0 =
min(αk(n), (logn)c+3). Hence, for k(n) ≥ O(logn)c+3, we have r0 · k(n) = m′0 · n/O(logn)c,
which yields r(n)·k(n) = m′(n)·n/O(logn)c for r(n) = t(n)·r0(n) andm′(n) = t(n)·m′0(n) ≤
αk(n). J

7 Extraction from several independent sources

While deterministic extraction is not possible from a single general (n, n−1)-source, it is known
to be possible when having a constant number of independent sources (cf., e.g., [17, 7, 8, 38]).
We ask whether such extraction is possible in AC0, provided that the min-entropy rate is at
least 1/poly(logn). Considering extraction from a constant number of independent sources,
note that the impossibility results in Section 5.2 can be adapted to rule out min-entropy
rates below 1/poly(logn). Details follow.

We view the c sources as a single source of length cn in which the n-bit long parts are
independent of one another. Applying the proof of Theorem 5.4 to such a generic source,

CCC 2015



652 On Randomness Extraction in AC0

yields a bit-fixing source of length cn in which ck bits are random. These ck positions are
“typical” (w.r.t an averaging argument) and so we can make sure that there are approximately
k random bits in each n-bit long part of the source. This proves that AC0-extraction
from a constant number of sources is impossible if all sources have min-entropy rate below
n/poly(logn). However, above that level of min-entropy, AC0-extraction is possible when
using a seed of logarithmic length. Hence, it is reasonable to ask whether deterministic
AC0-extractors can meet this performance (as in the case of bit-fixing sources).

7.1 Extraction from two independent sources
In this section, we consider AC0-extractors for pairs of independent sources, a model first
considered by Vazirani [56] (for Santha-Vazirani sources [52]). Recall that Chor and Goldre-
ich [17] showed that inner-product mod 2 yields a good extractor for pairs of independent
sources provided that each source has min-entropy rate above half; in fact, it yields an
ε-extractor for any pair consisting of an (n, k1)-source and an (n, k2)-source such that
k1 + k2 > n + 1 + 2 log(1/ε). A natural question that arises is whether such a seedless
extractor can operate in AC0. Specifically:

I Definition 7.1 (a (seedless) two-source extractor). The function E : {0, 1}n × {0, 1}n →
{0, 1}m is called a ((k1, k2), ε)-extractor if for every pair of independent random variables
(X,Y ) such thatX is a (n, k1)-source and Y is a (n, k2)-source it holds that ∆[E(X,Y ) ;Um] ≤
ε.

We ask whether a ((0.51n, 0.51n), 0.01)-extractor can be computed in AC0. So far, we only
know of ((k, k), 0.01)-extractors in AC0 for k(n) = n− (n/ log4 n) and m = 1.

I Theorem 7.2 (two-source deterministic extractor in AC0). For k(n) = n− (n/ log4 n) and
ε(n) = n−ω(1), there exists a ((k, k), ε)-extractor in AC0 (extracting a single bit).

The constant 4 in the exponent is an arbitrary constant greater than three.

Proof. First, we shall see how to extract a single bit with error O(1/ logn) from sources
of rate 1 − log−3 n. Consider a partition of each of the two sources into blocks of length
` = log2 n; that is, let X = (X1, . . . , Xn/`) and Y = (Y1, . . . , Yn/`) such that |Xi| = |Yi| = `.
We shall prove (see Claim 7.3 below) that each source is exp(−Ω(`))-close to a source in
which at least a 1 − 10 log−3 n fraction of the blocks have min-entropy rate at least 0.7
conditioned on the previous blocks.

Next, we apply the inner-product mod 2 extractor [17] on each pair of corresponding
blocks, obtaining a sequence Z of n′ def= n/` bits such that at least 1 − 20 log−3 n of them
are “quasi-random” conditioned on the previous bits; that is, Zi is the inner-product mod 2
of Xi and Yi and for all but at most 20n′/ log3 n of the indices i ∈ [n′] it holds that
Pr[Zi=1|Z[i−1] =α] = 0.5± exp(−Ω(`)) for every α ∈ {0, 1}i−1. Applying the extractor of
Theorem 5.7 (which was used in the proof of Theorem 5.8) to Z, we extract a bit with bias
O(1/ logn). (Indeed, a sequence as above is n · exp(−Ω(`))-close to a non-oblivious bit-fixing
source of length n/` with 20n/(` log3 n) bits that are fixed as an arbitrary function of the
random bits.)33

Finally, to reduce the error of the extractor, we use a source of higher min-entropy rate
(1− log−4 n), which we break into logn parts such that each part has conditional min-entropy

33Given a sequence of n′ = n/` bits in which k′ bits are quasi-random conditioned on the previous bits,
note that the subsequence of quasi-random bits is close to being uniformly distributed in {0, 1}k

′
.
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rate at least 1 − log−3 n. Applying the foregoing extractor to each part, we get logn bits
such that each bit has bias O(1/ logn) conditioned on the previous ones. XORing these bits,
we obtain a bit with bias O(1/ logn)logn = n−ω(1). The proof is completed once we prove
the following claim.

I Claim 7.3 (on the number of blocks with high conditional min-entropy). Let X = (X1, . . . , Xn′)
be a (n, δn)-source such that |Xi| = ` = n/n′, and δ′, ε′ ∈ (0, 1) such that ε′` ≥ logn.
Then, X is exp(−Ω(ε′`))-close to a source X ′ for which there exists a set I ⊆ [n′] of
cardinality at least δ−δ′

1−δ′ · n
′ such that for every i ∈ I and x ∈ {0, 1}n it holds that

Pr[X ′i=xi|X ′[i−1] =x[i−1]] ≤ 2−(δ′−2ε′)`.

For the above application we set δ = 1 − log−3 n, δ′ = 0.9, and ε′ = 0.1. Hence, δ−δ′
1−δ′ =

1− 1−δ
1−δ′ = 1− 10 · (1− δ) and δ′ − 2ε′ = 0.7.

Proof. As in many known cases, the proof proceeds via analyzing the collision probability.
Recall that the collision probability of a random variable Z, denoted CP[Z], equals Pr[Z(1) =
Z(2)], where Z(1) and Z(2) are two independent copies of the random variable Z; that
is, CP[Z] =

∑
z Pr[Z = z]2. Using the fact that X has min-entropy δn, we infer that

CP[X] ≤ 2−δn. Hence, it holds that

∏
i∈[n′]

Pr[X(1)
i =X

(2)
i |X

(1)
[i−1] =X

(2)
[i−1]] ≤ 2−δn

′·`, (24)

where X(1) and X(2) are two independent copies of X. We call i good if Pr[X(1)
i =

X
(2)
i |X

(1)
[i−1] =X

(2)
[i−1]] ≤ 2−δ′`, and infer that at least a δ−δ′

1−δ′ fraction of the i’s are good.34

We next observe that, for every good i, there exists a set Si−1 ⊆ {0, 1}(i−1)` such that
Pr[X[i−1] ∈ Si−1] ≥ 1− 2−ε′` and for every z ∈ Si−1 it holds that

Pr[X(1)
i =X

(2)
i |X

(1)
[i−1] =X

(2)
[i−1] =z] ≤ 2−(δ′−ε′)`. (25)

Moving back to a min-entropy upper bound, for any good i and every z ∈ Si−1, let Hi,z
def=

{xi : Pr[Xi=xi|X[i−1] =z] > 2−(δ′−2ε′)`}. Then, Pr[Xi∈Hi,z|X[i−1] =z] ≤ 2−ε′` holds (for
any good i and z ∈ Si−1).35 Let X ′ = X if for every good i it holds that X[i−1] ∈ Si−1 and
Xi ∈ Hi,X[i−1] , and X ′ be uniform otherwise. Then, X ′ is O(n′ · 2−ε′`)-close to X, and for
every good i and every x ∈ {0, 1}n it holds that Pr[X ′i = xi|X ′[i−1] = x[i−1]] ≤ 2−(δ′−2ε′)`.
The claim follows. J

This completes the proof of the theorem. J

34Denoting the set of good i’s by G, we have (2−`)|G| · (2−δ
′`)n

′−|G| ≤ 2−δn
′·`, and it follows that

(1− δ′)|G| ≥ (δ − δ′)n′.
35Let Y and Y ′ be distributed independently and identically to Xi conditioned on X[i−1] = z (i.e., Pr[Y =
y] = Pr[Xi = y|X[i−1] = z]), and H def= {y : Pr[Y = y] > 2−(δ′−2ε′)`}. Then, Pr[Y =Y ′] ≤ 2−(δ′−ε′)`

implies Pr[Y ∈H] ≤ 2−ε
′`. See farther discussion in Remark 7.1.

CCC 2015



654 On Randomness Extraction in AC0

Digest

Note that the sequence Z extracted at the first part (of the main step) is apparently more
restricted than a non-oblivious bit-fixing source, but it is not an (oblivious) bit-fixing source.
Hence, we applied the extractor of Theorem 5.7 to Z, rather than applying the AC0-extractors
for bit-fixing sources that can handle lower min-entropy. Of course, there is room in between,
and one may capitalize on it, but currently we do not see a way of doing so. Indeed, the point
is trying to obtain AC0-extraction for two independent sources of some constant min-entropy
rate. (In Section 7.2, we achieve the corresponding goal for four sources.)

I Remark (from conditional collision probability to conditional min-entropy). The proof of
Claim 7.3 relies on transforming an upper bound on conditional collision probability to a
lower bound on conditional min-entropy. For the benefit of future applications, we distill the
corresponding claim here.

Let X(1) and X(2) be two independent copies of X, and let f, g : {0, 1}∗ → {0, 1}∗.
If Pr[f(X(1))=f(X(2))|g(X(1))=g(X(2))] ≤ ε · 2−k, then X is 2

√
ε-close to X ′ such

that Pr[f(X ′)=v|g(X ′)=u] ≤ 2−k for every u, v.

The proof of this claim proceeds in two steps. First, we infer that there exists a set S such
that Pr[g(X)∈S] ≥ 1 −

√
ε and Pr[f(X(1)) = f(X(2))|g(X(1)) = g(X(2)) = s] ≤

√
ε · 2−k

for every s ∈ S. Next, for every s ∈ S and every v, we show that X is
√
ε-close to X ′ that

satisfies Pr[f(X ′)=v|g(X ′)=s] ≤ 2−k. This is shown by considering the random variable
Xs defined as f(X) conditioned on g(X) = s, letting H = {v : Pr[Xs = v] > 2−k}, and
noting that CP[Xs] ≥ Pr[Xs∈H] ·minv∈H{Pr[Xs=v]}, which implies

√
ε2−k ≥ CP[Xs] >

Pr[Xs∈H] · 2−k. The claim follows by letting X ′ be X conditioned on both g(x) ∈ S and
f(X) 6∈ H.

I Remark (reducing two-source extraction to extraction from non-oblivious block-fixing sources).
As stated above, the core of the proof of Theorem 7.2 is a transformation of a pair of
independent sources, each having min-entropy rate δ > 0.75, into a non-oblivious bit-fixing
source of min-entropy rate at least 1− 4 · (1− δ)− o(1), where here we use Claim 7.3 with
any constant δ′ > 0.5 and ε′ = 1/ logn (rather than with δ′ = 0.9 and ε′ = 0.1). Similarly,
we can transform such a pair of sources into a non-oblivious block-fixing source with block
length Ω(log2 n), by using an extractor that outputs Ω(`) bits [17, 20]. Hence, deterministic
two-source AC0-extractors for some constant min-entropy rate exist if such extractors exist
for a non-oblivious block-fixing source of some constant rate and super-logarithmic block
length.

Recall that there exist no deterministic extractors for non-oblivious bit-fixing source of any
(non-trivial) constant min-entropy rate [40]. Such a result is not known for extraction from
non-oblivious block-fixing source of (any constant min-entropy rate and) super-logarithmic
block length, although it was conjectured more than a decade ago in [23, Conj. 2.2]. Hence,
ruling out two-source extractors for any constant rates requires settling the latter conjecture.

7.2 Extraction from four independent sources
In this section, we consider AC0-extractors from a constant number of independent sources,
showing that such extractor exist for four independent sources of some constant min-entropy
rate. In Section 7.3, we shall show how to extract from independent sources of any constant
min-entropy rate, but we shall use a larger number of sources (which depends on the rate).
In both section, we shall refer to the following definition, which generalizes Definition 7.1.
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I Definition 7.4 (a (seedless) multi-source extractor). For a constant integer c ≥ 2, the
function E : ({0, 1}n)c → {0, 1}m is called a ((k1, . . . , kc), ε)-extractor if for every sequence
of c independent random variables (X(1), . . . , X(c)) such that X(i) is a (n, ki)-source for
i = 1, .., ., c, it holds that ∆[E(X(1), . . . , X(c)) ;Um] ≤ ε.

Indeed, Definition 7.1 corresponds to the special case of c = 2.
While Theorem 7.2 applies to (two) sources of min-entropy rate of the form 1− o(1), the

following result holds for (four) sources of min-entropy rate that is bounded away from 1.
Furthermore, while Theorem 7.2 does not assert uniform AC0 circuits, the following result
does assert such circuits.

I Theorem 7.5 (four-source deterministic extractor in AC0). For k(n) = 0.99n and ε(n) =
n−ω(1), there exists a ((k, k, k, k), ε)-extractor in uniform AC0 (extracting poly-logarithmically
many bits).

Proof Sketch. The general strategy is to use the first two sources in order to sample
polylogarithmically many bits of the third and fourth sources, and then extract out of the
selected sub-sources. Thus, in a sense, we construct a condenser that transforms the second
pair of sources into a pair of short sources that maintains a sufficiently high min-entropy
rate; specifically, the resulting sources have min-entropy rate at least 0.51 (whereas the
original ones had min-entropy rate 0.99). This conversion is performed using the imperfect
randomness that exists in the first pair of sources.

Specifically, we will consider a partition of each source into n′ = n/` blocks of length
` = log2 n, denoted X(i) = (X(i)

1 , . . . , X
(i)
n′ ), and apply a two-source extractor E′ : {0, 1}` ×

{0, 1}` → [n′/`], which is computable by constant-depth poly(n)-size circuits (e.g., E′
computes bilinear functions [17, 20]), to the blocks of the first two sources. We view these n′
outcomes (i.e., E′(X(1)

j , X
(2)
j ) for j ∈ [n′]) as an assignment of blocks indexed by [n′] into

n′′ = n′/` cells (i.e., block j is assigned to cell E′(X(1)
j , X

(2)
j )), and pick a cell cmin ∈ [n′/`]

with a minimal number of blocks (breaking ties arbitrarily).36
Finally, we apply a second two-source extractor E′′ : {0, 1}`2 × {0, 1}`2 → {0, 1}Ω(`) to

the sub-sources X(3)
j1
· · ·X(3)

j`′
and X(4)

j1
· · ·X(4)

j`′
, where (j1, . . . , j`′) is the sequence of blocks

assigned to cell cmin and `′ ≤ `. (If `′ < `, then we pad the said sequence of blocks to the
full length of `2.)

Intuitively, the first extractor E′ uses blocks in the first pair of sources (i.e., X(1) and
X(2)) in order to assign blocks of the second pair of sources into cells. Pairs of blocks of
sufficiently high min-entropy (in X(1) and X(2)) will assign the corresponding blocks (of X(3)

and X(4)) to a random cell, but other pairs of blocks (in X(1) and X(2)) may assign blocks (of
X(3) and X(4)) arbitrarily. Still, each cell is assigned many blocks that have sufficiently high
min-entropy in the second pair of sources. Hence, the smallest cell, denoted cmin, contains
blocks of X(3) and X(4) that have average min-entropy rate that exceeds 0.5, and applying
the extractor E′′ to these blocks (of X(3) and X(4)) will yield an almost random output.
Note that the value cmin may not be random; it is merely determined as the index of the
smallest cell.

36 Indeed, this strategy is inspired by Feige’s protocol for leader election [22], and it was already employed
in the context of O(1)-source extraction by Li [38]. Here, we pick the smallest cell in order to guarantee
that the total length of the blocks assigned to it is small. This guarantees both that E′′ can be computed
by constant-depth circuits of poly(n)-size and that the min-entropy rate of blocks (of X(3) and X(4)) in
this cell exceeds half. Jumping ahead, we mention that in the proof of Theorem 7.6 we shall only rely
on the first implication (and the second implication will not hold).
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In order to analyze the quality of this construction, we first invoke Claim 7.3. Specifically,
for δ = 0.99 and some constant δ′, ε′ ∈ (0, 1), we say that a block index j ∈ [n′] is good
for the ith source if Pr[X ′j = xj |X ′[j−1] = x[j−1]] ≤ 2−(δ′−2ε′)`, for every x, where X ′ is
exp(−Ω(ε′`))-close to X(i). Recall that at least a δ−δ′

1−δ′ = 1− 1−δ
1−δ′ fraction of the blocks are

good for each source. We call j good if it is good for all four sources, and conclude that at
least a 1− 4 · 1−δ

1−δ′ > 1/2 fraction of the blocks are good. Hence, with very high probability,
each cell is assigned at least (1− 4 · 1−δ

1−δ′ − o(1)) · ` good blocks, and the min-entropy of the
blocks assigned to each cell is at least (1 − 4 · 1−δ

1−δ′ − o(1)) · ` · (δ′ − 2ε′)`. The analysis is
completed by selecting δ′ and ε′ such that (1− 4 · 1−δ

1−δ′ ) · (δ
′ − 2ε′) is strictly larger than 1/2

(e.g., using δ′ = 0.9 and ε′ = 0.01 we get a lower bound of 0.52).
We wish to emphasize a key point regarding the foregoing probabilistic analysis. Recall

that blocks are defined as “good” (for a particular source) based on their conditional min-
entropy. That is, the jth block (of the ith source) is good if the conditional min-entropy of
that block, conditioned on the prior j − 1 blocks of this source, exceeds a specific threshold.
It follows that if the jth block is good for both the first and second sources, then the jth

block (of the third and fourth sources) will be assigned a random cell, conditioned on the
assignment of the prior j − 1 blocks. Similarly, the blocks assigned to the smallest cell (i.e.,
cmin) are defined as good in the same sense, which implies that their total min-entropy is
sufficiently high, since it is the sum of their individual conditional min-entropies. Hence, if a
ρ fraction of the blocks assigned to the smallest cell are good, then each of these blocks has
conditional min-entropy rate at least δ′′ = δ′ − 2ε′ (conditioned on the prior blocks), and the
total min-entropy rate of the blocks in this cell is at least ρ · δ′′.

What remains is implementing the determination the smallest cell and its contents by
constant-depth circuits of poly(n)-size. This can be done using techniques as in the proof
of Theorem 3.8. Specifically, we refer to the ranking procedure applied in Step 3(b) of the
proof.37 Lastly, note that the foregoing extractor outputs Ω(`) bits, where ` = log2 n. The
proof remains intact when setting ` to be any larger poly-logarithmic function. J

7.3 Extraction from poly(1/δ) sources of rate δ
Looking at the four-source extractor (presented in the proof of Theorem 7.5), one may notice
that there are two main reasons for the high constant lower bound on the min-entropy rate
(i.e., 0.99) used there. One is that we used a bilinear two-source extractor, whereas we have
such extractors only for rate greater than 0.5 (and, in general, explicit two-source extractors
are known [13] only for constant rate that is slightly smaller than 0.5).38 The second reason
is that we use blocks that are “good” (i.e., have sufficient min-entropy rate) with respect to
all sources.

But if we are willing to use more sources, we may reach an arbitrary low constant rate.
Firstly, we will use the multi-source extractors of Barak et al. [7], which can extract from any
constant rate ρ > 0 using poly(1/ρ)-many sources of such rate. The crucial observation is that
these extractors compute polynomials (of degree that is smaller than the number of sources)
over a finite field, and they can be computed by constant-depth circuits of sub-exponential
size. Since we shall be applying these extractors to sub-sources of polylogarithmic (in n)
length, we can afford this size, which is poly(n).

37Recall that our ranking procedure amount to counting (in uniform AC0) the number of marked elements
in an array of length n′, when guaranteed that this number does not exceed poly(logn). An explicit
construction of such a counter was presented in [48], improving over [3, Sec. 5] (and subsequent works).

38The said constant is not specified in [13], and is estimated to be higher than 0.49.
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Secondly, there is no need to insist on using only blocks that are good for all sources; we
can use blocks that are good for a constant fraction of the sources. This assertion relies on
the fact that the extractors of [7] work well also when applied to many (independent) sources
such that only a constant fraction of these sources are good (i.e., have sufficient min-entropy).
The latter fact is based on two observations:
1. The extractors of [7] iterate the three-source extractor E3(x, y, z) = xy + z, where x, y, z

are field elements. Hence, assuming that Pr[X=0] = 0 and ditto for Y , the min-entropy
of E3(X,Y, Z) is at least the maximum among the min-entropy of the three sources. (The
condition can be guaranteed by redefining each of the sources so that it never assumes
the value zero, while noting that this reduces the min-entropy of the source by at most
one unit.)

2. By the entropy increasing lemma of [7], the min-entropy of E3(X,Y, Z) is at least a
constant factor larger than the minimum among the min-entropy of the three sources,
as long at this value does not exceed 0.9`, where 2` is the size of the field. Using the
following tree marking game, this implies that the iterative extraction procedure of [7],
which applies E3 at the internal nodes of a ternary tree (while the sources are placed at
the leaves), produces output of min-entropy at least 0.9`.
Consider a full ternary tree of height h such that a ρ fraction of the leaves are marked 1
(corresponding to good sources of sufficiently high min-entropy rate), and the other leaves
are marked 0 (corresponding to bad sources). Going from the leaves to the root, the
following marking rule is applied: If the children of a node are all marked i > 0, then the
parent is marked i+ 1 (corresponding to an application of the entropy increasing lemma
of [7]), otherwise the parent is marked by the maximum of its children (corresponding to
preservation of entropy asserted in Observation 1). Then, as shown in Claim 7.7 (below),
for every fixed ρ > 0 and any (allowed) marking of the leaves, the minimal possible
marking of the root is unbounded as a function of h.

Plugging these observations into the framework of the proof of Theorem 7.5, while replacing
each pair of sources by many independent sources, we get uniform AC0-extractors for
poly(1/δ)-sources of min-entropy rate δ, for any δ > 0.

I Theorem 7.6 (deterministic extractor in AC0 for poly(1/δ) sources of constant rate δ). For
any constants δ > 0 and γ > 1, setting t = poly(1/δ), there exists a uniform AC0 function
E : ({0, 1}n)t → {0, 1}Θ(logγ n) that constitutes a ((δn, . . . , δn), n−ω(1))-extractor.

Proof Sketch. We partition the t sources into two sets; a set of t1 sources will be used
to select a small cell, and the remaining t2 = t − t1 sources will be used for the actual
extraction based on sub-sources determined by the selected cell. That is, as in the proof of
Theorem 7.5, we partition each source into n′ = n/` blocks, each of length ` = logγ n, and use
two multi-source extractors, denoted E′ and E′′, for sources of length ` and `2, respectively.
However, here the first extractor (i.e., E′) uses t1 � 2 sources and the second extractor (i.e.,
E′′) uses t2 � 2 sources. Furthermore, here E′ extracts a slightly longer string, which is
interpreted as an element in [n′]× [n′/`]. Specifically, such (b, c) ∈ [n′]× [n′/`] is interpreted
as placing the bth block in cell number c. That is, the pair extracted from the jth block
(of the first t1 sources) does not assign block j to some cell, but rather assigns a hopefully
random block to a hopefully random cell, where these hopes are materialized if extraction
from the jth block succeeds (i.e., if this block has sufficient min-entropy in sufficiently many
sources).

Specifically, the first stage of the extractor will use the iterated extraction procedure of [7].
Recall that this procedure is based on the extractor E3 : F 3 → F that operates over the finite
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field F (of prime cardinality) such that E3(x, y, z) = xy+z and |F | ≈ 2`. Actually, we shall use
a minor modification of E3 that avoids zero elements by letting E′3(x, y, z) = g(x)g(y) + g(z),
where g(0) = 1 and g(x) = x for all x ∈ F \ {0}. Note that the behaviour of E′3 with
respect to sources of min-entropy k is captured by the behaviour of E3 with respect to
sources of min-entropy k − 1, since H∞(g(X)) ≥ H∞(X) − 1, where H∞(V ) denotes the
min-entropy of the random variable V . The extractor E′ : F 3i → F is defined recursively (as
in [7]) by E′(x1, . . . , x3i) = E′3(y1, y2, y3), where yj = E′(x(j−1)·3i−1+1, . . . , xj·3i−1). Actually,
E′(x1, . . . , xt1) is redefined as the first 2 logn′ − log ` bits of E′(x1, . . . , xt1) (as defined
above). Recall that E′ will be applied n′ times, where the jth application takes as input
(X(1)

j , . . . , X
(t1)
j ), where X(i)

j is the jth block of the ith source. We shall detail the second
stage of the final extractor at a later point.

Towards analyzing this construction, we first invoke Claim 7.3 (using δ′ = δ/2 and
ε′ = δ/12). Saying that a block j is good for the ith source if its conditional min-entropy rate
exceeds δ/3, we infer that at least δ/2 of the blocks are good for each specific source (i.e.,
the ith source). (Actually, the bound refers to the conditional min-entropy of a source that
is close to the ith source.) Hence, at least δ/4 of the blocks are good for at least δ/4 of the
(first t1) sources. Let us call such a block good, and analyze extraction from it using the two
foregoing observations. We establish the second observation by proving the following.

I Claim 7.7 (analysis of the tree marking game). Consider a full ternary tree of height h
such that at least ρ · 3h leaves are assigned the value 1 and the other leaves are assigned the
value 0. Assign an internal node the value i+ 1 if all its children are assigned the value i > 0,
and otherwise assign it the maximum value that is assigned to its children. Then, for every
fixed ρ ≥ 0.9h, the value assigned to the root is at least h/100.

Proof. Let us turn the table around and denote by Nh(i) the maximal number of leaves that
may be assigned the value 1 in a ternary tree in which the root is assigned a value that is
smaller or equal to i. Clearly, Nh(i) ≥ Nh(i− 1) and Nh+1(i) ≥ Nh(i). Note that for a tree
consisting of a single vertex (i.e., h = 0), it holds that N0(0) = 0 and N0(i) = 1 for every
i ≥ 1. The key observation is that

Nh+1(i) = max(3 ·Nh(i− 1), 2 ·Nh(i) +Nh(i− 1)) = 2 ·Nh(i) +Nh(i− 1).

It follows that Nh(i) = 2h +
∑
j∈[h] 2j−1 ·Nh−j(i − 1), for every i ≥ 1. Next, for h, i ≥ 1,

one can prove by induction on i that Nh(i) =
∑i−1
j=0 2h−j ·

(
h
j

)
. Our last technical claim is

that Nh(i) ≥ 2.7h implies i ≥ h/100. Suppose, towards the contradiction that i < h/100.
Then, Nh(i) =

∑i−1
j=0 2h−j ·

(
h
j

)
< 2h · 2H2(0.01)·h, which is upper bounded by 2h+0.1h < 2.2h,

in contradiction to Nh(i) ≥ 2.7h. Turning back to the main claim, we note that if a δ ≥ 0.9h
fraction of the leaves are assigned the value 1 and the root is assigned the value i, then
Nh(i) ≥ δ · 3h, which implies that i ≥ h/100. J

Now, assuming that the jth block is good, we claim that E′(X(1)
j , . . . , X

(t1)
j ) is exp(−Ω(`))-

close to the uniform distribution over [n′]× [n′/`] (independently of prior blocks). This is
the case since the jth block is good for at least an δ/4 fraction of the sources, whereas the
values analyzed in Claim 7.7 (with ρ = δ/4) reflect the min-entropy of the corresponding
extracted field element. Specifically, leaves assigned the value 1 correspond to blocks with
(conditional) min-entropy rate of at least δ/3; internal nodes with value i+ 1 having children
that have value i > 0 correspond to the application of E′3 to random variables of min-entropy
rate at least min((1 + Ω(1))i · δ/3, 0.9) (see [7, Lem. 3.1]); whereas the other internal nodes
correspond to the application of E′3 that maintain the maximum min-entropy rate of the
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three random variables to which E′3 is applied.39 Hence, using h = Θ(log(1/δ)), we obtain at
level h− 1 of the tree (i.e., at the children of the root) three independent sources such that
each of them has (conditional) min-entropy rate at least 0.9, where the conditioning is over
the values of prior blocks. Using [43, Lem. 13], while relying on the fact that E3(r, y, s) may
be viewed as a universal hashing function mapping y to ry + s (based on the key (r, s)), we
are done.

Again, we wish to emphasize a key point regarding the foregoing probabilistic analysis.
Recall that blocks are defined as good for a specific source based on their conditional min-
entropy in that source. A block is globally good if it is good for sufficiently many sources (out
of the first t1 sources). Hence, extaction from a good block yields a quasi-random outcome,
conditioned on the values of all prior blocks (and the corresponding outcomes that were
extracted). As detailed next, a similar analysis will apply to the blocks (of the remaining t2
sources) assigned to any specific cell.

It is time to detail the second stage of the final extractor. This stage uses the remaining
t2 = t − t1 sources. First, the n′ outcomes obtained in the first stage are interpreted
as an assignment of blocks to cells; specifically, block b is assigned to cell c if the pair
(b, c) ∈ [n′]× [n′/`] appears in this n′-long sequence of outcomes. Then, a cell with a minimal
number of assigned blocks is picked, and the extractor E′′ (which is analogous to the extractor
E′ that was used in the first stage) is applied to the corresponding t2 sub-sources; specifically,
if the selected cell was assigned the blocks j1, . . . , j`′ , where `′ ≤ `, then E′′ is applied to the
t2 sub-sources X(t1+1)

j1
· · ·X(t1+1)

j`′
, . . . , X

(t)
j1
· · ·X(t)

j`′
.

Defining good blocks (for a specific source, and globally good blocks) as in the first stage
(albeit for the last t2 sources), we infer that (with very high probability) each cell is assigned
at least ((δ/4)2 − o(1)) · ` good blocks, since at least δ/4 of the assignments are random and
the density of good blocks is at least δ/4. (Recall that a block is good if it is good for at
least a δ/4 fraction of the last t2 sources, and that being good for a source means having
conditional min-entropy rate at least δ/3.) In this case (i.e., for a typical assignment of blocks
to cells), the average min-entropy rate of the blocks assigned to the smallest cell is at least
((δ/4)2 − o(1)) · δ/3 = Ω(δ3), where the average is taken over the last t2 sources. It follows
that Ω(δ3) of the corresponding sub-sources (i.e., the sources restricted to the blocks assigned
to a cell) have min-entropy rate of Ω(δ3). Applying Claim 7.7 (this time with ρ = Θ(δ3) and
again with h = Θ(log(1/ρ))), we infer that the final output is close to uniform.

Finally, note that all operations (including the arithmetics in the finite fields, which
have size exp(poly(logn))) can be implemented by constant-depth circuits of size poly(n)
(see [9, 50]).40 J

Trading-off sources for error

Following Barak et al. [8], we can reduce the number of sources to a fixed constant (i.e., five)
independent of the constant min-entropy rate of these sources, but this comes at the expense
of increasing the extraction error to a larger o(1).

I Theorem 7.8 (deterministic extractor in AC0 for five sources of constant rate δ). For
any constants δ > 0 there exists a uniform AC0 function E : ({0, 1}n)5 → {0, 1}ω(1) that
constitutes a ((δn, δn, δn, δn, δn), o(1))-extractor.

39Recall that the min-entropy of g(X)g(Y ) + g(Z) is at least the maximum of the min-entropy of these
three (independent) random variables, where we use the fact that Pr[g(X)=0] = 0 (and ditto for Y ).

40Alternatively, one can use constructions over finite fields of characteristic two, and use the bounds
stated in [Sec. 2.8]Z4 rather than [7, Lem. 3.14].
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Indeed, the three-source extractor in [8, Thm. 1.1] is only claimed to extract a constant
number of bits with constant error, but the proof (as is) establishes functions of the form
logΩ(1) n and log−Ω(1) n, respectively. Our result just inherits these bounds.

Proof Sketch. We follow the strategy of the proof of Theorem 7.6, while implementing the
two stages of extraction in a different manner. Specifically, the first extraction stage (which
used the t1-sources extractor E′) will be performed by the two-source somewhere extractor
of [8, Thm. 6.2], whereas the second extraction stage (which used the t2-sources extractor E′′)
will be performed by the three-source extractor of [8, Thm. 1.1]. These two extractors will be
applied to poly(logn)-bit long blocks of the various sources, and they can be implemented
by explicit constant-depth poly(n)-size circuits, since the computations involved reduce to
applications of the three-source extractor E3 of [7] and the bilinear extractor of [17, 20].41

Note that the two-source somewhere extractor of [8, Thm. 6.2] outputs a constant number
of strings such that one of them is random (or rather an output-dependent choice of an element
in the output sequence yields a distribution that is close to being uniform). Nevertheless, if
we assign to cell c all blocks with index b such that (b, c) appeared in the output sequence of
some invocation of the two-source somewhere extractor, then the analysis of the first stage
remains valid, except that now the total size of the cells is a constant factor bigger. (Indeed,
if E′ : {0, 1}` × {0, 1}` → ([n′] × [n′/`])O(1) is the two-source somewhere extractor in use,
then we use the O(1)-long output sequence E′(X(1)

j , X
(2)
j ) for each j ∈ [n′].)

In the second stage, we shall use a three-source extractor E′′ that can handle min-entropy
rate that is a constant factor smaller than the bound used in the proof of Theorem 7.6. Note
that this extractor only outputs a small number of bits with an o(1) deviation from the
uniform distribution.

In the analysis of both stages, we invoke Claim 7.3 and infer that in each source at least
δ/2 of the blocks have (conditional) min-entropy rate of at least δ/3. The problem is that, in
order for extraction to work, we need (many) blocks that have sufficient min-entropy in each
of the first two sources (resp., each of the last three sources). This problem is solved for
the first two sources by using poly(1/δ) matchings over [n′], rather than the single matching
{(j, j)}j∈[n′]. Specifically, we use (partial) matchings that correspond to a partition of the
edges of an expander graph into partial monotone functions. Such expanders are called
monotone [21] and were constructed in [14]. Monotonicity is important here because the
definition of a good block refers to the conditional min-entropy of the block, which in turn
refers to a fixed order.

In light of the above, the first extraction stage is actually as follows. Let f1, . . . , ft :
[n′]→ [n′] be partial monotone functions such that t = poly(1/δ) and for any set S of density
δ/2 it holds that ∪i∈[t]fi(S) has density at least 1− δ/4. (The second condition follows by
applying the exapander mixing lemma to the graph ([n′],∪i∈[t]{(v, fi(v)) : v ∈ [n′]}.)42 For
every j ∈ [n′] and i ∈ [t′], where t′ = poly(1/δ) is the length of the sequence output by
E′ : {0, 1}`×{0, 1}` → ([n′]× [n′/ logn])t′ , we compute the t′-long sequence E′(X(1)

j , X
(2)
fi(j)),

and assign block b to cell c if (b, c) appeared in that sequence.
Now, letting B1 (resp., B2) denote the set of blocks that are good for the first (resp.,

second) source, it follows that |B1|, |B2| ≥ δn′/2. Hence, (∪i∈[t]fi(B1)) ∩B2 has density at

41For the second extractor (i.e., the three-source extractor of [8, Thm. 1.1]) the corresponding construction
in [8, Thm. 1.1] also apply an optimal two-source extractor, but it is applied on strings of very short
length.

42 If fi is undefined on v, then fi(v) is ignored in the various expressions; for example fi(S ∪ {v}) = fi(S)
and (v, fi(v)) ∪W = W .
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least δ/4, and there exists i ∈ [t] such that {(j, fi(j)) : j ∈B1 ∧ fi(j)∈B2} has density at
least δ/4t. For this i and for every j ∈ B1 ∩ f−1

i (B2), it holds that the jth block in the
first source (resp., the fi(j)th block in the second source) has min-entropy rate at least δ/3
conditioned on the prior blocks, where the blocks are ordered according to j (and we use
fi(j′) < fi(j) for j′ < j). Hence, the corresponding assignment (based on extraction from
these two blocks (i.e., X(1)

j and X(2)
fi(j))) will be somewhere random, conditioned on the prior

assignment. It follows that at least δ/4t
t′ = poly(δ) fraction of the blocks will be assigned

at random, which guarantees that (w.v.h.p.) every cell will be assigned at least poly(δ) · `
random blocks. (Recall that extraction from at least δ/4t blocks will be somewhere random,
which essentially means that one of the t′ extracted outputs is random.)

In the second extraction stage we shall also use matchings of the blocks of one source
with blocks of the second source, but here we need to match the blocks of one source with
blocks of two other sources, which can be done just in the same manner. (Indeed, we shall
use a Monotone expander for density δ/2 and monotone degree t = poly(δ) to determine the
matching of blocks of X(3) and blocks of X(4) (as done for X(1) and X(2)), but we shall use
a Monotone expander for density δ/4t and monotone degree t′′ = poly(δ/t) to determine the
matching of blocks of X(3) and blocks of X(5).) J

8 Open Problems (collected and restated)

In this section we collect and restate open problems that are mentioned in various parts of
the paper. We start with problems regarding general min-entropy sources.

Extraction from general min-entropy sources

The main open problem was stated as Problem 1.6. It refers to extracting more than
poly-logarithmically many bits from a source of constant (or even 1/poly(logn)) min-entropy
rate using a logarithmically long seed. More generally, we have –

I Open Problem 8.1 (Problem 1.6, restated). Can extractors computable in AC0 achieve an
extraction rate that is greater than a poly-logarithmic function (i.e., m(n)/r(n) > poly(logn))
when the min-entropy rate is at least 1/poly(logn) and r(n) = Ω(logn)?

Recall that for k(n) ≥ n/poly(logn) and r(n) = O(logn), we have AC0-extractors either for
the case of m(n) = r(n) + Ω(logn) and ε(n) = 1/poly(n) (see Part 1 of Corollary 3.6) or for
the case of m(n) = poly(logn) and ε(n) = 1/poly(logn) (see Part 2 of Corollary 3.6). We
left open the following problem.

I Open Problem 8.2 (closing a gap w.r.t the error parameter). For k(n) ≥ n/poly(logn)
and r(n) = O(logn), can AC0-extractors extract more than logarithmically many bits with
1/poly(n) error? Moreover, for any polynomial p, can they extract p(logn) bits with error
ε(n) = 1/p(n)?

Turning back to Problem 8.1, recall that a positive resolution of Problem 4.8 (which refers
to converting general sources to block sources) is a sufficient but unnecessary condition for
a positive resolution of a version of Problem 8.1 (when both are qualified with respect to
constant min-entropy rate).

I Open Problem 8.3 (Problem 4.8, restated). Does there exist a (δ, δ′, o(1))-blockers S :
{0, 1}O(logn) → ([n]s)m for constants δ ∈ (0, 1) and δ′ ∈ (0, δ) and some unbounded m =
ω(1)? What about m = nΩ(1) and s = poly(logn)? And what about δ ≥ 1/poly(logn) and
δ − δ′ ≥ 1/poly(logn)?

CCC 2015



662 On Randomness Extraction in AC0

Extraction from restricted sources

While we proved the existence of deterministic AC0-extractors for bit-fixing sources and for
pairs of independent sources, our results in these cases have deficiencies.

Firstly, in the two-source model we only obtained deterministic AC0-extractors for entropy
rate that tends to 1 (see Theorem 7.2). Recall that non-explicit functions (outside of AC0) can
extract from pairs of sources of logarithmic min-entropy [17, Thm. 7], but the impossibility
results in Section 5.2 can be adapted to rule out min-entropy rates below 1/poly(logn). On
the other hand, above that level of min-entropy AC0-extraction with logarithmic seed length
is possible. Hence, it is reasonable to ask whether deterministic AC0-extractors can meet
this performance (as in the case of bit-fixing sources).

I Open Problem 8.4 (two-source deterministic extraction in AC0). Does there exists a
((k, k), ε)-extractor in AC0 (even extracting just a single bit) for any k(n) = n/poly(logn)
and ε(n) = 1/poly(n)?

For starters, one may consider the case of constant min-entropy rate; that is, is any
(Ω(n),Ω(n),Ω(1))-extractor computable in AC0? Recall that AC0 circuits can extract from
four sources of some constant (i.e., 0.99) min-entropy rate (cf. Theorem 7.5), and they can ex-
tract from poly(1/δ)-many sources of any constant min-entropy rate δ > 0 (cf. Theorem 7.6).

We mention that, as shown by Chor and Goldreich [17, Sec. 4], any function that is a
(Ω(n),Ω(n),Ω(1))-extractor has Ω(n) distributional communication complexity with respect
to the uniform distribution. Whether such a function exists in AC0 is open. (Note that the
Ω(n) distributional communication complexity of set disjointness is not with respect to the
uniform distribution.)

A second deficiency in the aforementioned results regarding deterministic extractors is
that these AC0-extractors are non-explicit. Hence, we ask for explicit versions of these results.
Since all results for the bit-fixing source model are obtained by uniform AC0-reductions from
Theorem 5.8, it suffices to have an explicit version of the latter.

I Open Problem 8.5 (explicit version of Theorem 5.8 – deterministic extraction in uniform
AC0 for bit-fixing sources). For every k(n) ≥ n/poly(logn) and every ε(n) > 1/poly(logn),
present deterministic ε-error extractors E : {0, 1}n → {0, 1} for (n, k)-bit-fixing sources such
that the extractors are computable in uniform AC0.

For extraction from pairs of sources, our first challenge is to provide an explicit construction
that matches the parameters of Theorem 7.2. However, since we believe that Theorem 7.2
can be improved w.r.t the required min-entropy rate, we state a more general challenge.

I Open Problem 8.6 (two-source deterministic extraction in uniform AC0). For every k, ε such
that the existence of ((k, k), ε)-extractor in AC0 is established, provide an explicit construction
(i.e., a construction in uniform AC0).

An intermediate step towards resolving Problems 8.5 and 8.6 is providing an explicit con-
struction of a deterministic extractor for non-oblivious bit-fixing sources with parameters
matching those in Theorem 5.7. Such an explicit construction would be of independent
interest. Actually, for our current applications, it will suffice to establish the following:

I Open Problem 8.7 (explicit version of Theorem 5.7 – deterministic extraction in uniform
AC0 for non-oblivious bit-fixing sources). For some ρ = 1/poly(logn), provide uniform AC0

circuits C : {0, 1}n → {0, 1} such that C is balanced and the influence of every set of density
ρ on C is at most 0.1.

Recall that the non-explicit circuits of Ajtai and Linial [4] (i.e., Theorem 5.7) support
ρ = 1/O(logn)2.
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A Appendices

Appendix A.1 presents some observations made in passing, regarding a notion used in this
work. In contrast, Appendix A.2 presents a known (but not well-known) result that is used
in this work. Lastly, Appendix A.3 presents a somewhat different solution to the problem of
counting upto poly(logn) in AC0.

A.1 On the robustness of averaging samplers
We prove two “robustness claims” regarding the notion of (relaxed) averaging samplers (as
in Definition 2.6). These claims are not essential to the current write-up, but we consider it
worthy to present them. The first claim asserts that samplers that perform well for Boolean
functions also perform well for general functions.

I Definition A.1 (Boolean averaging samplers, a restriction of Definition 2.6). A function
S : {0, 1}r → [n]t is called a Boolean (µ, µ′, γ)-averaging sampler if Eq. (1) holds for every
f : [n]→ {0, 1} such that ρ(f) def= Ei∈[n][f(i)] ≥ µ.

The aforementioned claim, stated and proved next, is analogous to the corresponding claim
for standard averaging samplers (cf. [28, Thm. 5.10]).

I Claim A.2 (Boolean vs general averaging samplers). Let µ, µ′, ε ∈ (0, 1] and n > t =
Ω(µε−2 log(1/γ)). If S : {0, 1}r → [n]t is a Boolean (µ, µ′, γ)-averaging sampler, then S is a
(µ+ ε, µ′ − ε, 3γ)-averaging sampler.

The hypothesis n > t = Ω(µε−2 log(1/γ)) is not a real restriction when ε = Ω(µ− µ′), since
any (µ, µ′, γ)-sampler must satisfy it (cf., e.g., the discussion in [28]).43

Proof. The proof mimics the proof of the corresponding claim for standard averaging samplers
(cf. [28, Thm. 5.10]). For any function f : [n]→ [0, 1] such that ρ(f) ≥ µ+ ε, we consider
a mental experiment in which the sampler is invoked on a random Boolean function that
reflects f . Specifically, we consider a random Boolean function b : [n] → {0, 1} such that
b(i) = 1 with probability f(i) and b(i) = 0 otherwise, for every i ∈ [n] and independently of

43 Indeed, one alternative ending of the proof of Claim 3.4 uses Claim A.2; in that application, µ and µ′
are both constants in (0, 1), and ε = (1−mu)/2.
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the setting of all other values. Then, with probability at least 1− exp(−(ε/µ)2 · µn) > 1− γ
(over the choice of b), it holds that ρ(b) ≥ ρ(f) − ε ≥ µ. In this case, with probability
at least 1 − γ (over the choice of I when b is fixed arbitrarily), the sample I chosen by
the Boolean averaging sampler satisfies

∑
i∈I b(i) ≥ µ′. Lastly, with probability at least

1− exp(−(ε/µ)2 · µt) > 1− γ (over the choice of b when I is fixed arbitrarily), it holds that∑
i∈I f(i) ≥

∑
i∈S b(i)− ε ≥ µ′ − ε. The claim follows. J

The second claim asserts an upwards translation of the performance guarantee of (relaxed)
averaging samplers. Note that the translation (from (µ, µ′, γ) to (m ·µ,m ·µ′,m ·γ)) preserves
the relative error (i.e., (µ− µ′)/µ) rather that the absolute error (i.e., µ− µ′).

I Claim A.3 (upward translation of the performance guarantee). If S : {0, 1}r → [n]t is a
(µ, µ′, γ)-averaging sampler, then for every m ∈ N it holds that S is a (m · µ,m · µ′,m · γ)-
averaging sampler. The same holds with respect to Boolean averaging samplers.

The claim holds trivially for any (µ, µ′, γ)-averaging sampler that is actually a standard
averaging sampler (i.e., one that approximates the average value of any function up to an
addition term of µ− µ′ with error probability 1− γ).

Proof. The claim is proved by considering auxiliary functions that share the “weight” of the
target function f such that each auxiliary function takes approximately an equal share of
the weight of f . Specifically, given f : [n]→ [0, 1] such that Ei∈[n][f(i)] ≥ m · µ, consider m
auxiliary functions fj : [n] → [0, 1] such that f(i) =

∑
j∈[m] fj(i) and Ei∈[n][fj(i)] ≥ µ for

every j ∈ [m]. Note that if f is Boolean then (w.l.o.g.) so are the fj ’s. Now, by Eq. (1), for
every j ∈ [m] it holds that

PrI←S(Ur)

[
1
t

∑
i∈I

fj(i) < µ′

]
≤ γ

and the claim follows by a union bound. J

A.2 A standard high moment inequality
The following concentration bound for somewhat independent random variables is well known
to the experts, but is hard to find in standard texts.

I Lemma A.4 (folklore). Let ζ1, . . . , ζn be identical random variables that are distributed in
[0, 1] in a 2k-wise independent manner, and let M = E[

∑
i∈[n] ζi]. Then, for any ε > 0, it

holds that

Pr

∣∣∣∣∣∣
∑
i∈[n]

ζi −M

∣∣∣∣∣∣ > ε ·M

 < (ε−2k2/M
)k
.

Proof. Let ζi = ζi −E[ζi] and note that E[ζi] = 0. By Markov’s inequality and linearity of
expectation, we have

Pr

∣∣∣∣∣∣
∑
i∈[n]

ζi −M

∣∣∣∣∣∣ > ε ·M

 ≤
E
[(∑

i∈[n] ζi

)2k
]

(ε ·M)2k

=

∑
i1,...,i2k∈[n] E

[∏
j∈[2k] ζij

]
(ε ·M)2k (26)
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Now, the key observation is that terms in which some variable appears exactly once do not
contribute to the sum in Eq. (26). In general, by virtue of 2k-wise independence, for any t ≤ 2k,
a term in which variables indexed j1, . . . , jt occur with multiplicities e1, . . . , et contributes
E
[∏

`∈[t] ζ
e`
j`

]
=
∏
`∈[t] E[ζe`j` ]. Denoting by S(n, 2k, j) the set of 2k-long sequences over [n]

in which exactly j variables appear and each of these variables appears with multiplicity at
least two, we have

∑
i1,...,i2k∈[n]

E

 ∏
j∈[2k]

ζij

 =
∑
j∈[k]

∑
(i1,...,i2k)∈S(n,2k,j)

E

 ∏
j∈[2k]

ζij


≤

∑
j∈[k]

|S(n, 2k, j)| · (M/n)j

where the inequality uses the fact that for every e ≥ 2 it holds that E[ζei ] ≤ E[ζei ] ≤ E[ζi] =
M/n. Using |S(n, 2k, j)| <

(
n
j

)
· j2k < nj · k2k/2, we get

Pr

∣∣∣∣∣∣
∑
i∈[n]

ζi −M

∣∣∣∣∣∣ > ε ·M

 <
0.5k2k ·

∑
j∈[k] n

j · (M/n)j

(ε ·M)2k

<
k2k

(ε2 ·M)k

and the lemma follows. J

A.3 Counting few ones in a long string
We consider the problem of counting the number of ones in a string, when guaranteed that
this number is small. Specifically, for ` = poly(logn), given an n-bit string x such that
s

def=
∑
i∈[n] xi ≤ `, we seek explicit AC0-circuits that compute s. A solution to this problem

has been known for decates; see [48], improving over [3, Sec. 5] (and subsequent works). For
sake of elegancy, we present a somewhat different solution here.

We use a small (i.e., poly(n)-sized) familty of pairwise independent hash functions mapping
[n] to [`2]. Such functions can be described by string of length 2 logn, and so they can be
generically evaluated by depth-two circuits of poly(n) size. A random function in such family
H shatters any set of size ` with constant probability; that is, for every set I ⊂ [n] such that
|I| ≤ ` it holds that Prh∈H [|h(I)| = |I|] = Ω(1) (since the collision probability is 1/`2).

Now, on input x as above, we enumerate all h ∈ H, compute for every h the value of∑
v∈[`2](

∨
i∈h−1(v) xi), and take the maximum value. Indeed, if h shatters I = {i : xi=1},

then the value we computed equals
∑
i∈[n] xi. The above computation is in AC0 since we

compute a `2-wise sum (of some unbounded ors).44

44 Indeed,
∨
i∈h−1(v) xi can be computed as

∨
i∈[n](xi ∨ (h(i)=v)).
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