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Preface

This volume contains the papers presented at RTA 2015, the 26th International Conference
on Rewriting Techniques and Applications, which was held from 29 June to 1 July 2015,
in Warsaw, Poland. RTA 2015 was co-located with the 13th International Conference
on Typed Lambda Calculi and Applications (TLCA 2015), as part of RDP 2015, the
eighth edition of the International Conference on Rewriting, Deduction, and Programming.
The following workshops were also part of RDP 2015: Higher-Dimensional Rewriting and
Applications (HDRA), Homotopy Type Theory / Univalent Foundations (HoTT/UF), the
Annual Meeting of the IFIP Working Group 1.6 on Term Rewriting, the 29th International
Workshop on Unification (UNIF) and the Second International Workshop on Rewriting
Techniques for Program Transformations and Evaluation (WPTE).

RTA is the major forum for the presentation of research on all aspects of rewriting.
Previous RTA conferences were held in Dijon (1985), Bordeaux (1987), Chapel Hill (1989),
Como (1991), Montreal (1993), Kaiserslautern (1995), New Brunswick (1996), Sitges (1997),
Tsukuba (1998), Trento (1999), Norwich (2000), Utrecht (2001), Copenhagen (2002), Valen-
cia (2003), Aachen (2004), Nara (2005), Seattle (2006), Paris (2007), Hagenberg/Linz (2008),
Brasilia (2009), Edinburgh (2010), Novi Sad (2011), Nagoya (2012), Eindhoven (2013) and
Vienna (2014).

RTA 2015 received 43 submissions from 16 countries. The programme committee selected
19 regular papers and 3 system description papers for presentation at the conference. Each
paper was reviewed by four members of the programme committee, with the help of external
reviewers. The submission and reviewing process, programme committee discussion, and
author notifications were all handled seamlessly by the Easychair conference management
system.

In addition to the contributed papers, there were three invited talks at RTA 2015, by
Hélène Kirchner (joint invited speaker with TLCA 2015), Grigore Roşu and Carolyn Talcott.
We thank the three invited speakers for contributing to the success of the conference with
their interesting talks and papers.

The programme committee gave the award for best contribution to RTA 2015 to Jörg
Endrullis, Helle Hvid Hansen, Dimitri Hendriks, Andrew Polonsky and Alessandra Silva for
the paper A Coinductive Framework for Infinitary Rewriting and Equational Reasoning.

The proceedings of RTA 2015 are published as a volume in the LIPIcs series. We thank
the LIPIcs editorial office for their help in the preparation of these proceedings.

I would like to thank the members of the organisation committee, and in particular the
chair, Aleksy Schubert, for taking care of every detail to make the conference enjoyable for
all the participants. It was also a pleasure to work with Thorsten Altenkirch, programme
chair of TLCA 2015.

I am very grateful to all the members of the RTA 2015 programme committee and external
reviewers for their careful and efficient evaluation of the papers submitted.

RTA 2015 gratefully acknowledges the financial support of the University of Warsaw and
the Warsaw Center of Mathematics and Computer Science.

Maribel Fernández

London, 12 May 2015
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Port Graphs, Rules and Strategies for Dynamic
Data Analytics – Extended Abstract
Hélène Kirchner

Inria
France
helene.kirchner@inria.fr

Abstract
In the context of understanding, planning and anticipating the behaviour of complex systems,
such as biological networks or social networks, this paper proposes port graphs, rules and
strategies, combined in strategic rewrite programs, as foundational ingredients for interactive
and visual programming and shows how they can contribute to dynamic data analytics.

1998 ACM Subject Classification D.3.3 Language Constructs and Features (E.2)

Keywords and phrases Graphs, Rewrite Rules, Strategic Rewriting

Digital Object Identifier 10.4230/LIPIcs.RTA.2015.1

Category Invited Talk

1 Introduction

Understanding, planning and anticipating the behaviour of complex systems, such as biological
networks or social networks, raise a number of theoretical and practical challenges. Their
complexity comes from heterogeneity of components, from their dynamics, their increasing
number, or from the data deluge they generate or manage. Handling this complexity requires
languages with a high-level of expressivity and with modular constructs. But this also
needs powerful visualization tools to represent data and their dynamic evolution, analysis
of different alternatives, parameter tuning. Capability of re-playing or backtracking are
important concerns to address.

Three ingredients contribute to address these challenges: port graphs provide a powerful
representation of data, rules capture their evolution and provide high-level prototyping
mechanism, strategy makes the control and choices explicit. They are combined in the concept
of strategic rewrite programs whose logical and semantic background is well-understood.
The interactive PORGY environment, yet in-progress, illustrates what can be done and the
actual visualization challenges, through an application to the study of propagation in social
networks.

2 Data and Graphs

Graph formalisms are useful to easily describe complex structures in an intuitive way, like
UML diagrams, proof representation, micro-processors design, or workflows. Port graphs [1]
are a general class of labelled graphs that have been used to model a variety of complex
data, such as biological networks or social networks. Intuitively, a port graph is a graph
where nodes have explicit connection points called ports. Edges are undirected, exclusively
attached to ports and two ports may be connected by more than one edge. Nodes, ports

© Hélène Kirchner;
licensed under Creative Commons License CC-BY

26th International Conference on Rewriting Techniques and Applications (RTA’15).
Editor: Maribel Fernández; pp. 1–4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.RTA.2015.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


2 Port Graphs, Rules and Strategies

and edges are labelled by a set of properties. For instance, an edge may be associated with
a state (such as used or marked) and a node may have for instance a name, a colour and
a user-defined function as properties. Properties may be used to define the behaviour of
the modelled system and for visualization purposes. Thanks to these features, port graphs
provide a rich structure able to model many kinds of data and processes.

3 Rewrite rule programming

Rewriting has to be understood here in a broad sense: rewriting transforms syntactic
structures that may be words, terms, propositions, dags, graphs, geometric objects like
segments, and in general any kind of structured objects. Transformations are expressed with
rules, built on the same syntax but with an additional set of variables and with a binder ⇒,
relating the left and the right-hand side of the rule. Optionally, a condition or constraint
restricts the set of values allowed for the variables.

In this rewriting process, there are many possible choices: the rule itself, the position(s)
in the structure, the matching homomorphism(s). For instance, one may choose to apply a
rule concurrently at all disjoint positions where it matches, or using matching modulo an
equational theory like associativity-commutativity.

Rewriting Logic [8] and Rewriting Calculus [5] have contributed to establish rewriting
as a model of computation accounting for concurrency, parallelism, communication, and
interaction. It also has good properties as a metalogical framework for representing logics.

Graph transformations have many applications in specification, programming, and simu-
lation tools and several languages and tools are based on this formalism. The dynamics of a
complex system modeled by a port graph can then be specified using graph rewriting rules.

4 Control via Strategies

While rules describe local transformations, strategies describe the control of rule application.
Strategy is an explicit concept in sequential path-building games, in automated deduction
and reasoning systems and more generally are used to express complex designs for control in
modeling, proof search, program transformation, SAT solving. In these domains, determ-
inistic rule-based computations or deductions are often not sufficient to capture complex
computations or proof developments. Strategies provide the formal mechanism needed, for
instance, to sequentialize the search for different solutions, to check context conditions, to
request user input to instantiate variables, to process subgoals in a particular order, etc.

Several approaches exist to describe strategies: a proof term expressed in rewriting logic;
a ρ-term in rewriting calculus; a subset of paths in a derivation tree ; a partial function
that associates to a reduction-in-progress, the possible next steps in the reduction sequence ;
positional strategies that choose where rules are allowed to apply.

A few strategy languages have been designed in the rewriting community, in particular in
ELAN [4], Stratego [11], Maude [6] or Tom [2]. Common constructs with some variants are
emerging from these proposals.

5 Strategic Programming

Port graphs, rules and strategies are combined in the concept of strategic programs. A
strategic rewrite program consists of a finite set of rewrite rules R, a strategy expression S,
built from R using a strategy language, and a given structure G.
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There are several ways to describe the operational semantics of a programming language.
Due to the fact that rewriting logic is reflexive, it is tempting to describe the operational
semantics of a strategy language with a set of rewrite rules. This has been done for instance
for ELAN [3], Maude [6] and PORGY [1] at least. Another way by defining a transition
relation on configurations using semantic rules in the SOS style is given in [7].

As presented in [9], it is expected from a strategy language and its operational semantics
to satisfy the properties of correctness and completeness w.r.t. rewriting derivations.

6 The PORGY environment

PORGY [1, 7] is a visual environment that allows users to define port graphs and port graph
rewrite rules, and to apply the rewrite rules in an interactive way, or via the use of strategies.
To control the application of rewriting rules, PORGY provides a strategy language. A
distinctive feature of PORGY’s language is that it allows users to define strategies using not
only operators to combine graph rewriting rules but also operators to define the location in
the target graph where rules should, or should not, apply. Users can create graph rewriting
derivations and specify graph traversals using the language primitives to select rewriting
rules and the subgraphs where the rules apply.

In order to support the various tasks involved in the study of a port graph rewriting
system, the system provides facilities:

to offer different views on each component of the rewriting system: the current graph
being rewritten, the derivation tree, the rules and the strategy, with drag-and-drop
mechanisms to apply rules and strategies on a given state,
to explore a derivation tree with all possible derivations,
to perform on-demand reduction using a strategy language which permits to restrict or
guide the reductions,
to track the reduction throughout the whole tree,
to navigate in the tree, for instance, backtracking and exploring different branches,
to plot the evolution of a chosen parameter (a specific element in the port graph structure)
along a derivation. The system supports synchronisation between the different views:
selecting points on the plot view triggers the selection of the corresponding nodes in the
trace tree. Such a mechanism obviously helps to track properties of the output graph
along the rewriting process.

These features have been successfully applied to propose a visual analytics approach to
compare propagation models in social networks in [10].

7 Conclusion

Although first results are promising, this approach raises numerous challenges in different
domains; let un mention some of them. Considering the huge amount of data to manage,
knowledge representation in a structured way should allow better efficient mining, reasoning
and inference. For pattern matching on big graphs with millions of nodes, fast or fuzzy
matching can be explored as well as exploiting the graph structure. Graph rewriting to model
big graphs evolution has to be adapted to their increasing sizes, both for efficient concurrent
application of rules and for adapting the granularity of transformation steps to the property
of interest. Strategies should help in this respect. From the point of view of strategies
and strategic rewrite programs, properties of confluence, termination, or completeness for
rewriting under strategies have been already addressed. But other properties of strategies

RTA 2015



4 Port Graphs, Rules and Strategies

such as fairness or loop-freeness could be worth-fully explored by making connections between
different communities (functional programming, proof theory, verification, game theory,...).
Finally, at all levels of graphs, rules and strategies, as well as for visualisation of processes
evolution, structuration is a challenge and modular constructs for composability have to be
studied in a way coherent between all these levels.

Acknowledgements. The results presented here are based on joint work on ELAN and
Tom languages designed in the Protheo team from 1990 to 2008, and on PORGY since 2008.
I am grateful to José Meseguer and to the members of the Protheo and the PORGY teams,
for many inspiring discussions on the topics of this paper.
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Matching Logic – Extended Abstract∗

Grigore Roşu
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6 Matching Logic

struct listNode { int val; struct listNode *next; };

void list_read_write(int n) {
rule 〈$⇒ return; ···〉k 〈A⇒ · ···〉in 〈··· · ⇒ rev(A)〉out requires n = len(A)
int i=0;
struct listNode *x=0;

inv 〈β ···〉in 〈··· list(x, α) ···〉heap ∧ i ≤ n ∧ len(β) = n− i ∧ A = rev(α)@β
while (i < n) {
struct listNode *y = x;
x = (struct listNode*) malloc(sizeof(struct listNode));
scanf("%d", &(x->val));
x->next = y;
i += 1; }

inv 〈··· α〉out 〈··· list(x, β) ···〉heap ∧ rev(A) = α@β
while (x) {
struct listNode *y;
y = x->next;
printf("%d␣",x->val);
free(x);
x = y; }

}

Figure 1 Reading, storing, and reverse writing a sequence of integers.

recently developed using the K framework (http://kframework.org [18, 19]), such as C11
(POPL’12 [6], PLDI’15 [8]), Java 1.4 (POPL’15 [2]), JavaScript ES5 (PLDI’15 [13]), with
many other similar but partial semantics of other languages. Each of these language semantics
has more than 1,000 semantic rules and has been thoroughly tested on benchmarks and test
suites that implementations of these languages use to test their conformance, where available.
Unfortunately, the current state-of-the-art in program verification is to define yet another
semantics for these languages, amenable for reasoning about programs, such as an axiomatic
or a dynamic logic semantics, because the general belief is that operational semantics are too
low level for program verification. Moreover, when the correctness of the verifier itself is a
concern, tedious proofs of equivalence between the operational and the alternative semantics
are produced. That is because operational semantics are comparatively much easier to define
and at the same time are executable (and thus also testable), so they are often considered as
reference models of the corresponding languages, while the alternative semantics devised for
verification purposes tend to be more mathematically involved and are not executable so
they may hide tricky errors. Defining even one semantics for a real language like C or Java
is already a huge effort. Defining more semantics, each good for a different purpose, is at
best very uneconomical, with or without proofs of equivalence with the reference semantics.

Matching logic was born from our firm belief that programming languages must have
formal definitions of their syntax and semantics, and that all the execution and analysis tools
for a given language, such as parsers, interpreters, compilers, state-space explorers, model
checkers, deductive program verifiers, etc., can be derived from just one reference formal
definition of the language, which is executable and easy to test. No other semantics for the
same language should be needed. This is the ideal scenario and we believe that there is
enough evidence that it is within our reach in the short term. The main idea is that semantic
rules match and apply on program configurations, which are algebraic data types defined as
terms constrained by equations capturing the needed mathematical domains, such as lists
(e.g., for input/output buffers, function stacks, etc.), sets (e.g., for concurrent threads or
processes, for resources held, etc.), maps (e.g., for environments, heaps, etc), and so on.

http://kframework.org
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To reason about programs we need to be able to reason about program configurations.
Specifically, we need to define configuration abstractions and reason with them. Consider,
for example, the program in Figure 1 which shows a C function that reads n elements from
the standard input and prints them to the standard output in reversed order (for now, we
can ignore the specifications, which are grayed). While doing so, it allocates a singly linked
list storing the elements as they are read, and then deallocates the list as the elements are
printed. In the end, the heap stays unchanged. To state the specification of this program,
we need to match an abstract sequence of n elements in the input buffer, and then to match
its reverse at the end of the output buffer when the function terminates. Further, to state
the invariants of the two loops we need to identify a singly linked pattern in the heap, which
is a partial map. Many such sequence or map patterns, as well as operations on them, can
be easily defined using conventional algebraic data types (ADTs). But some of them cannot.

A major limitation of ADTs and of FOL is that operation symbols are interpreted as
functions in models, which sometimes is insufficient. E.g., a two-element linked list in the
heap (we regard heaps as maps from locations to values) starting with location 7 and holding
values 9 and 5, written as pattern list(7, 9 · 5), can allow infinitely many heap values, one
for each location where the value 5 may be stored. So we cannot define list as an operation
symbol Int×Seq → Map. The FOL alternative is to define list as a predicate Int×Seq×Map,
but mentioning the map all the time as an argument makes specifications verbose and hard
to read, use and reason about. An alternative offered by separation logic [11, 14, 12] is to fix
and move the map domain from explicit in models to implicit in the core of the logic, so that
list(7, 9 · 5) is interpreted as a predicate but the map and the non-deterministic choices are
implicit in the logic. We then may need custom separation logics for different languages that
require different variations of map models or different configurations making use of different
kinds of resources. This may also require specialized separation logic theorem provers needed
for each, or otherwise encodings that need to be proved correct. Matching logic avoids the
limitations of both approaches above, by interpreting its terms/formulae as sets of values.

Matching logic’s formulae, or patterns, are defined using variables, symbols from a
signature, and FOL connectives and quantifiers. We only treat the many-sorted first-order
case here, but the same ideas can be extended to order-sorted or higher-order contexts.
Specifically, if (S,Σ) is a many-sorted signature and Var an S-sorted set of variables, then a
pattern ϕ of sort s ∈ S can inductively be a variable in Vars, or have the form σ(ϕ1, . . . , ϕn)
where σ ∈ Σ is a symbol of result s (and arguments of any sorts) and ϕ1, . . . , ϕn are patterns
of appropriate sorts, or ¬ϕ′ or ϕ′ ∧ ϕ′′ or ∃x.ϕ′ where ϕ′ and ϕ′′ are patterns of sort s and
x ∈ Var (of any sort). Derived constructs ∨, ∀,→,↔, >, ⊥ can be defined as usual. One way
to think of patterns is that they collapse the function and predicate symbols of FOL, allowing
patterns to be simultaneously regarded both as terms and as predicates. When regarded as
terms they build structure, and when regarded as predicates they express constraints.

Semantically, a model M consists of a carrierMs for each sort s, like in FOL, but interprets
symbols σ ∈ Σs1...sn,s as maps σM : Ms1 × · · · ×Msn → P(Ms) yielding a set of elements.
In particular, σM can be a function, when the set contains only one element, or a partial
function, when the set contains at most one element. Any M -valuation ρ : Var→M extends
to a map ρ taking patterns to sets of values, where ¬ is interpreted as the complement, ∧ as
intersection, and ∃ as union over all compatible valuations. If ϕ is a pattern and a ∈ ρ(ϕ)
then we say that a matches ϕ (with ρ). The name of matching logic was inspired from
the case when M is a term model, quite common in the context of programming language
semantics where M typically represents a program configuration or a fragment of it. In that
case, if a is a ground term and ϕ is a term with variables, then “a matches ϕ” in matching

RTA 2015



8 Matching Logic

logic becomes precisely the usual notion of pattern matching. Pattern ϕ is valid in M iff
ρ(ϕ) = M (i.e., it is matched by all elements of M), and it is valid iff it is valid in all models.

It turns out that, unlike in FOL, equality can be defined in matching logic (Section 4.3):
i.e., ϕ1 = ϕ2 is a pattern so that, given any model M and any M -valuation ρ : Var→ M ,
ϕ1 = ϕ2 is either matched by all elements when ρ(ϕ1) = ρ(ϕ2), or by none otherwise.

Let us discuss some simple examples. If Σ is the signature of Peano natural numbers and
M is the model of natural numbers with 0 and succ interpreted accordingly, then the pattern
∃x . succ(x) is matched by all positive numbers: indeed, by the semantics of the existential
quantifier, it is the union of all successors of natural numbers. If we want to only allow
models in which 0 is interpreted as one element, succ as a total and injective function, and
whose elements are either zero or successors of other elements, then we add the axioms:

∃y . 0 = y 0 ∨ ∃x . succ(x)
∃y . succ(x) = y succ(x1) = succ(x2)→ x1 = x2

We can go further and axiomatize plus the same way we are used to in algebraic specification:

plus(0, y) = y plus(succ(x), y) = succ(plus(x, y))

or equivalently as the following equality matching logic (and not FOL) pattern:

plus(x, y) = (x = 0 ∧ y ∨ ∃z . x = succ(z) ∧ succ(plus(z, y)))

We next define a matching logic specification whose symbols are not all functions anymore.
Consider a typical ADT of maps from natural to integer numbers, with emp the empty map,
_ 7→_ a one binding map, _ 7→ [_] a map of consecutive bindings, and _ ∗ _ the partial
function merging two maps (notations inspired from separation logic [11, 14, 12]). In addition
to the usual unit, associativity and commutativity axioms for emp and _ ∗_, we also add

¬(0 7→ a) x 7→ a ∗ x 7→ b = ⊥ x 7→ [ε] = emp x 7→ [a, S] = x 7→ a ∗ (x+ 1) 7→ [S]

The first pattern says 0 cannot serve as the key of any binding. The second pattern says that
the keys of different bindings in a map must be distinct. The last two patterns desugar the
consecutive binding construct. Consider now a symbol list ∈ ΣNat×Seq,Map taking a number
x and a sequence of integers S to a set of maps list(x, S), together with the following:

list(0, ε) = emp list(x, n · S) = ∃z . x 7→ [n, z] ∗ list(z, S)

This looks similar to how the list predicate is defined in separation logic using recursive
predicates, although in matching logic there are no predicates and no recursion. The equations
above use the same principle to define list as the Peano equations did to define plus: pattern
equations. We can now show (see Section 4.7) that in the model whose Map carrier consists
of the finite-domain partial maps, and where 7→ and ∗ are interpreted appropriately, the
interpretation of list(x, S) is precisely the set of all singly-linked lists starting with x 6= 0
and comprising the sequence of integers S. That is, in the intended model, the list(x, S)
pattern is matched by precisely the desired lists. In fact, we can show that the matching
logic specification above, in the map model, is equivalent to separation logic (Section 4.9).

Using the generic proof system of matching logic in Section 5, we can now derive properties
about lists in this specification, such as, e.g., (1 7→ 5 ∗ 2 7→ 0 ∗ 7 7→ 9 ∗ 8 7→ 1)→ list(7, 9 · 5):

1 7→ 5 ∗ 2 7→ 0 ∗ 7 7→ 9 ∗ 8 7→ 1 = 1 7→ [5, 0] ∗ 7 7→ [9, 1] =
1 7→ [5, 0] ∗ list(0, ε) ∗ 7 7→ [9, 1] → (∃z . 1 7→ [5, z] ∗ list(z, ε)) ∗ 7 7→ [9, 1] =
list(1, 5 · ε) ∗ 7 7→ [9, 1] = list(1, 5) ∗ 7 7→ [9, 1] →
∃z . 7 7→ [9, z] ∧ list(z, 5) = list(7, 9 · 5)
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The benefits of matching logic can be perhaps best seen when there are no immediate
existing logics to reason about certain structures. Consider, e.g., the operational semantics
of a real language like C, whose configuration can be defined with ordinary ADTs but has
more than 100 semantic cells [6, 8]. The semantic cells, written using symbols 〈...〉cell, can be
nested and their grouping is associative and commutative. There is a top cell 〈...〉cfg holding a
subcell 〈...〉heap among many others. We can globalize the local reasoning above to the entire
C configuration proving the following property using the same proof system in Section 5:

∀c :Cfg.∀h :Map . (〈〈1 7→5 ∗ 2 7→0 ∗ 7 7→9 ∗ 8 7→1 ∗ h〉heap c〉cfg → 〈〈list(7, 9 · 5) ∗ h〉heap c〉cfg)

Quantification over the heap or over the configuration are first-order in matching logic.
We refer to such variables like h and c matching the remaining contents of a cell “cell” as
(structural) “cell” frames; e.g., h is the (structural) heap frame and c is the (structural)
configuration frame, and write them as ellipses (“...”) when their particular name is irrelevant.

The C semantics consists of more than 2,000 rewrite rules between patterns (ordinary
terms with variables are patterns). We are currently developing an extension of the K
framework that allows us to verify programs using a rewrite-based operational semantics of
the programming language, like in [4, 16, 20]. Matching logic reasoning is used in-between
semantic rewrite rule applications to re-arrange the configuration so that semantic rules
match or assertions can be proved. This work-in-progress extension of K will be reported
elsewhere. In the remainder of this section we only want to emphasize, by means of example,
that in spite of its generality, matching logic can also be implemented efficiently.

Figure 1 showed a C function whose correctness can be automatically verified by our
current prototype prover. The reader can check it, as well as dozens of other programs, using
the online MatchC interface at http://matching-logic.org; this function is under the io
folder and it takes about 150ms to verify. The rule specification of the function states its
semantics/summary: the body ($) returns in the code cell 〈〉k possibly followed by other
code (as mentioned, “...” are structural frames, that is, universally quantified “anonymous”
variables), the sequence A of size n is consumed from the prefix of the input buffer (A is
rewritten to “·”, the unit of collections, possibly followed by more input), and the reversed
sequence rev(A) is put at the end of the output buffer.

The first loop invariant says the pattern list(x, α) is matched somewhere in the heap, and
that the sequence β of size n− i is available in the input buffer such that A is the reverse of
the sequence that x points to, rev(α), concatenated with β. By convention, Boolean patterns
like i ≤ n can be used in any context and they are either matched by all elements when they
hold, or by no elements when they do not hold (Section 4.5). The variables starting with a ?
are assumed existentially quantified. The invariant of the second loop says that a sequence α
can be matched as a suffix of the output buffer and sequence β can be matched within a
list that x points to in the heap, such that α@β is the reverse of the original sequence A.
The verification of this function consists of executing the rewrite semantics of C symbolically
on all paths and, each time a pattern is encountered, a pattern implication proof task is
deferred to the matching logic prover. For example, the last proof task is:

〈〈I〉in 〈O,α〉out 〈list(x, β) ∗H〉heap C〉cfg ∧ rev(A) = α@β ∧ x = 0
→ 〈〈I〉in 〈O, rev(A)〉out 〈H〉heap C〉cfg

which can be proved using the proof system in Section 5 and the given pattern axioms.
Section 2 introduces the syntax and semantics of matching logic. Section 3 shows that,

like FOL with equality, matching logic also translates to predicate logic. Section 4 enumerates
a series of examples, most notably showing that equality is definable. Section 5 introduces a
sound and complete proof system. Section 6 discusses related work and Section 7 concludes.

RTA 2015
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10 Matching Logic

2 Matching Logic

We assume the reader familiar with many-sorted sets, functions, and FOL. For any given set
of sorts S, we assume Var is an S-sorted set of variables, sortwise infinite and disjoint. We
may write x : s instead of x ∈ Vars; when the sort of x is irrelevant, we just write x ∈ Var.
We let P(M) denote the powerset of a many-sorted set M , which is itself many-sorted.

I Definition 1. Let (S,Σ) be a many-sorted signature of symbols. Matching logic (S,Σ)-
formulae, also called (S,Σ)-patterns, or just (matching logic) formulae or patterns when
(S,Σ) is understood from context, are inductively defined as follows for all sorts s ∈ S:

ϕs ::= x ∈ Vars | σ(ϕs1 , ..., ϕsn
) with σ ∈ Σs1...sn,s | ¬ϕs | ϕs∧ϕs | ∃x.ϕs with x ∈Var

Let Pattern be the S-sorted set of patterns. By abuse of language, we refer to the symbols
in Σ also as patterns: think of σ ∈ Σs1...sn,s as the pattern σ(x1 :s1, . . . , xn :sn).

To compact notation, ϕ ∈ Pattern means ϕ is any pattern, while ϕs ∈ Pattern or
ϕ ∈ Patterns that it has sort s. We adopt the following derived constructs:

⊥s ≡ x :s ∧ ¬x :s ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2
>s ≡ ¬⊥s ϕ1 ↔ ϕ2 ≡ (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1)

ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2) ∀x.ϕ ≡ ¬(∃x.¬ϕ)

and let FV (ϕ) denote the free variables of ϕ, defined as usual.

I Definition 2. A matching logic (S,Σ)-model M , or simply a model when (S,Σ) is under-
stood, consists of: (1) An S-sorted set {Ms}s∈S , where each set Ms, called the carrier of
sort s of M , is assumed non-empty; and (2) A function σM : Ms1 × · · · ×Msn

→ P(Ms) for
each symbol σ ∈ Σs1...sn,s, called the interpretation of σ in M .

Note that usual (S,Σ)-algebras are special cases of matching logic models, where
|σM (m1, . . . ,mn)| = 1 for any m1 ∈Ms1 , . . . , mn ∈Msn

. Similarly, partial (S,Σ)-algebras
also fall as special case, where |σM (m1, . . . ,mn)| ≤ 1, since we can capture the undefinedness
of σM on m1, . . . , mn with σM (m1, . . . ,mn) = ∅. We tacitly use the same notation σM for
its extension P(Ms1) × · · · × P(Msn) → P(Ms) to argument sets, i.e., σM (A1, . . . , An) =⋃
{σM (a1, . . . , an) | a1 ∈ A1, . . . , an ∈ An}, where A1 ⊆Ms1 , . . . , An ⊆Msn

.

I Definition 3. Given a model M and a map ρ : Var→M , called an M-valuation, let its
extension ρ : Pattern→ P(M) be inductively defined as follows:

ρ(x) = {ρ(x)}, for all x ∈ Vars
ρ(σ(ϕs1 , . . . , ϕsn

)) = σM (ρ(ϕ1), . . . ρ(ϕn))
ρ(¬ϕs) = Ms \ ρ(ϕs) (“\” is set difference)
ρ(ϕ1 ∧ ϕ2) = ρ(ϕ1) ∩ ρ(ϕ2)
ρ(∃x.ϕ) =

⋃
{ρ′(ϕ) | ρ′ : Var→M, ρ′�Var\{x}= ρ�Var\{x}} (“ρ�A” is ρ restricted to A)

The extension of ρ works as expected with the derived constructs:
ρ(⊥s) = ∅ and ρ(>s) = Ms

ρ(ϕ1 ∨ ϕ2) = ρ(ϕ1) ∪ ρ(ϕ2)
ρ(ϕ1 → ϕ2) = {m ∈Ms | m ∈ ρ(ϕ1) implies m ∈ ρ(ϕ2)} = Ms \ (ρ(ϕ1) \ ρ(ϕ2))
ρ(ϕ1 ↔ ϕ2) = {m ∈Ms | m ∈ ρ(ϕ1) iff m ∈ ρ(ϕ2)} = Ms \ (ρ(ϕ1) ∆ ρ(ϕ2))
(“∆” is the set symmetric difference operation)
ρ(∀x.ϕ) =

⋂
{ρ′(ϕ) | ρ′ : Var→M, ρ′�Var\{x}= ρ�Var\{x}}
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I Definition 4. Model M satisfies ϕs, written M |= ϕs, iff ρ(ϕs) = Ms for all ρ : Var→M .

I Proposition 5. The following properties hold:
If ρ1, ρ2 : Var→M , ρ1�FV (ϕ)= ρ2�FV (ϕ) then ρ1(ϕ) = ρ2(ϕ)
If x ∈ Vars then M |= x iff |Ms| = 1
If σ ∈ Σs1...sn,s and ϕ1, . . . , ϕn are patterns of sorts s1, . . . , sn, respectively, then we have
M |= σ(ϕ1, . . . , ϕn) iff σM (ρ(ϕ1), . . . , ρ(ϕn)) = Ms for any ρ : Var→M

M |= ¬ϕ iff ρ(ϕ) = ∅ for any ρ : Var→M

M |= ϕ1 ∧ ϕ2 iff M |= ϕ1 and M |= ϕ2
If ∃x.ϕs is closed, then M |= ∃x.ϕs iff

⋃
{ρ(ϕs) | ρ : Var→M} = Ms; hence, M |= ∃x.x

M |= ϕ1 → ϕ2 iff ρ(ϕ1) ⊆ ρ(ϕ2) for all ρ : Var→M

M |= ϕ1 ↔ ϕ2 iff ρ(ϕ1) = ρ(ϕ2) for all ρ : Var→M

M |= ∀x.ϕ iff M |= ϕ

Note that property “if ϕ closed then M |= ¬ϕ iff M 6|= ϕ”, which holds in FOL, does
not hold in matching logic. Indeed, suppose ϕ is a constant symbol, say 0, of sort s. Then
M |= ¬0 is equivalent to 0M = ∅, while M 6|= 0 is equivalent to 0M 6= Ms.

I Definition 6. Pattern ϕ is valid, written |= ϕ, iff M |= ϕ for all M . If F ⊆ Pattern then
M |= F iff M |= ϕ for all ϕ ∈ F . F entails ϕ, written F |= ϕ, iff for all M , we have M |= F

implies M |= ϕ. A matching logic specification is a triple (S,Σ, F ) with F ⊆ Pattern.

3 Reduction to Predicate Logic

It is known that FOL formulae can be translated into equivalent predicate logic formulae, by
replacing each function symbol with a predicate symbol and then systematically transforming
terms into formulae. We can similarly translate patterns into equivalent predicate logic
formulae. Consider pure predicate logic with equality and no constants, whose satisfaction
relation is |==

PL. If (S,Σ) is a matching logic signature, let (S,ΠΣ) be the predicate logic
signature with ΠΣ = {πσ : s1 × · · · × sn × s | σ ∈ Σs1...sn,s}. We define the translation PL of
matching logic (S,Σ)-patterns into predicate logic (S,ΠΣ)-formulae inductively as follows:

PL(ϕ) = ∀r .PL2(ϕ, r)

PL2(x, r) = (x = r)
PL2(σ(ϕ1, . . . , ϕn), r) = ∃r1 · · · ∃rn .PL2(ϕ1, r1) ∧ · · · ∧ PL2(ϕn, rn) ∧ πσ(r1, . . . , rn, r)

PL2(¬ϕ, r) = ¬PL2(ϕ, r)
PL2(ϕ1 ∧ ϕ2, r) = PL2(ϕ1, r) ∧ PL2(ϕ2, r)

PL2(∃x . ϕ, r) = ∃x .PL2(ϕ, r)

PL({ϕ1, . . . , ϕn}) = {PL(ϕ1), . . . ,PL(ϕn)}

Then the following result holds, like for FOL:

I Proposition 7. If F is a set of patterns and ϕ is a pattern, then F |= ϕ iff PL(F ) |==
PL

PL(ϕ)

Proposition 7 gives a sound and complete procedure for matching logic reasoning: translate
the specification (S,Σ, F ) and pattern to prove ϕ into the predicate logic specification
(S,ΠΣ,PL(F )) and formula PL(ϕ), respectively, and then derive it using the sound and
complete proof system of predicate logic. However, translating patterns to predicate logic
formulae makes reasoning harder not only for humans, but also for machines, since new
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quantifiers are introduced. For example, (1 7→ 5∗2 7→ 0∗7 7→ 9∗8 7→ 1)→ list(7, 9·5) discussed
and proved in Section 1, translates into the formula (to keep it small, we do not translate
the numbers) ∀r . (∃r1 .∃r2 . π7→(1, 5, r1) ∧ (∃r3 .∃r4 . π7→(2, 0, r3) ∧ (∃r5 .∃r6 . π7→(7, 9, r5) ∧
π 7→(8, 1, r6) ∧ π∗(r5, r6, r4)) ∧ π∗(r3, r4, r2)) ∧ π∗(r1, r2, r))→ ∃r7 . π·(9, 5, r7) ∧ πlist(7, r7, r).
What we would like is to reason directly with matching logic patterns, the same way we
reason directly with terms in FOL without translating them to predicate logic.

I Proposition 8. The following hold for matching logic:
1. |= ϕ, where ϕ is a propositional tautology (over patterns)
2. Modus ponens: |= ϕ1 and |= ϕ1 → ϕ2 implies |= ϕ2
3. |= (∀x . ϕ1 → ϕ2)→ (ϕ1 → ∀x . ϕ2) when x 6∈ FV (ϕ1)
4. Universal generalization: |= ϕ implies |= ∀x . ϕ

Proposition 8 states that the proof system of pure predicate logic is actually sound for
matching logic as is. Section 5 shows that a few additional proof rules yield a sound and
complete proof system for matching logic, similarly to how Substitution (∀x . ϕ → ϕ[t/x])
together with the four proof rules of pure predicate logic brings complete deduction to FOL.
But before that, we demonstrate the usefulness of matching logic by a series of examples.

4 Examples and Notations

We have already seen some simple patterns in Section 2, such as ∃x.x (satisfied by all models)
and ∀x.x (satisfied only by models whose carrier of the sort of x contains only one element).
Here we illustrate matching logic by means of a series of more complex examples.

4.1 Propositional logic
If S contains only one sort Prop, Σ is empty, and we drop the existential quantifier, then the
syntax of matching logic becomes that of propositional calculus: ϕ ::= VarProp | ¬ϕ | ϕ ∧ ϕ.

I Proposition 9. For any proposition ϕ, the following holds: |=Prop ϕ iff |= ϕ.

An alternative way to capture propositional logic is to add a constant symbol to Σ
for each propositional variable, and then associate a ground pattern to each proposition.
Proposition 9 still holds, despite the fact that propositional constants can be interpreted as
arbitrary sets. That is since (P(M),¬M ,∩) is a model of propositional logic for any set M .

4.2 Pure predicate logic
If S is a sort set and Π is a set of predicate symbols, the syntax of pure predicate logic
formulae (without equality) is ϕ ::= π(x1, . . . , xn) with π ∈ Πs1...sn

| ¬ϕ | ϕ ∧ ϕ | ∃x.ϕ.
We can pick a new sort name, Pred, and construct a matching logic signature (S ∪ {Pred},Σ)
where Σs1...sn,Pred = Πs1...sn

. Then any predicate logic formula can be trivially regarded as
a matching logic pattern. The following result then holds:

I Proposition 10. For any predicate logic formula ϕ, the following holds: |=PL ϕ iff |= ϕ.

4.3 Definedness, Equality, Membership
Pattern definedness, equality and membership can be defined in matching logic, without any
special support or logic extensions. Let us first discuss why we cannot use ↔ as equality.
Indeed, since M |= ϕ1 ↔ ϕ2 iff ρ(ϕ1) = ρ(ϕ2) for all ρ : Var→M , one may be tempted to
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do so. E.g., given a signature with one sort and one unary symbol f , one may think that
pattern ∃y . f(x)↔ y defines precisely the models where f is a function. Unfortunately, that
is not true. Consider model M with M = {1, 2} and fM the non-function fM (1) = {1, 2},
fM (2) = ∅. Let ρ : Var→M ; recall (Definition 3) that ρ’extension ρ to patterns interprets
“∃” as union and “↔” as the complement of the symmetric difference. If ρ(x) = 1 then
ρ(∃y . f(x) ↔ y) = (M\({1, 2}∆{1})) ∪ (M\({1, 2}∆{2})) = {1, 2} = M . If ρ(x) = 2 then
ρ(∃y . f(x)↔ y) = (M\(∅∆{1})) ∪ (M\(∅∆{2})) = {1, 2} = M . Hence, M |= ∃y . f(x)↔ y.

The problem above was that the interpretation of ϕ1 ↔ ϕ2 is not equivalent to either
> or ⊥, as we are used to think in FOL. Specifically, ρ(ϕ1) 6= ρ(ϕ2) does not suffice for
ρ(ϕ1 ↔ ϕ2) = ∅ to hold. Indeed, ρ(ϕ1 ↔ ϕ2) = M \ (ρ(ϕ1) ∆ ρ(ϕ2)) and there is nothing
to prevent, e.g., ρ(ϕ1) ∩ ρ(ϕ2) 6= ∅, in which case ρ(ϕ1) ∆ ρ(ϕ2) 6= M . What we would like
to have is a proper equality, ϕ1 = ϕ2, which behaves like a predicate: ρ(ϕ1 = ϕ2) = ∅ when
ρ(ϕ1) 6= ρ(ϕ2), and ρ(ϕ1 = ϕ2) = M when ρ(ϕ1) = ρ(ϕ2). Moreover, we want equalities to
be used with terms of any sort, and in contexts of any sort.

The above can be achieved methodologically in matching logic, by adding to the signature
a definedness symbol [_]s2

s1
∈ Σs1,s2 for any sorts s1 and s2, together with the pattern axiom

[x :s1]s2
s1

enforcing ([_]s2
s1

)M (m1) = Ms2 in all models M for all m1 ∈ Ms1 , that is, for any
ρ : Var → M , ρ([ϕ]s2

s1
) is either ∅ when ρ(ϕ) = ∅ (i.e., ϕ undefined in ρ), or is Ms2 when

ρ(ϕ) 6= ∅ (i.e., ϕ defined). We can now use _ =s2
s1

_ and _ ∈s2
s1

_, respectively, as aliases:

ϕ =s2
s1
ϕ′ ≡ ¬[¬(ϕ↔ ϕ′)]s2

s1
where ϕ,ϕ′ ∈ Patterns1

x ∈s2
s1
ϕ ≡ [x ∧ ϕ]s2

s1
where x ∈ Vars1 , ϕ ∈ Patterns1

I Proposition 11. With the above, the following hold:
1. ρ(ϕ =s2

s1
ϕ′) = ∅ iff ρ(ϕ) 6= ρ(ϕ′), and ρ(ϕ =s2

s1
ϕ′) = Ms2 iff ρ(ϕ) = ρ(ϕ′)

2. |= ϕ =s2
s1
ϕ′ iff |= ϕ↔ ϕ′

3. ρ(x ∈s2
s1
ϕ) = ∅ iff ρ(x) 6∈ ρ(ϕ); and ρ(x ∈s2

s1
ϕ) = Ms2 iff ρ(x) ∈ ρ(ϕ)

4. |= (x ∈s2
s1
ϕ) =s3

s2
(x ∧ ϕ =s2

s1
x)

From now on we assume equality and membership in all specifications, without mentioning
the constructions above. Moreover, since s1 and s2 can usually be inferred from context, we
write [_], = and ∈ instead of [_]s2

s1
, =s2

s1
, and ∈s2

s1
, respectively. If the sort decorations cannot be

inferred from context, then we assume the stated property/axiom/rule holds for all such sorts.
For example, the generic pattern axiom “[x] where x ∈ Var” replaces all the axioms [x :s1]s2

s1

above for the definedness symbol, for all the sorts s1 and s2. Similarly, the axiom in Section 4.7
defining list patterns within maps, list(x) = (x = 0∧ emp ∨ ∃z . x 7→ z ∗ list(z)), is equivalent
to the explicit axioms (for all sorts s), list(x) =s

Map (x =Map
Nat 0 ∧ emp ∨ ∃z . x 7→ z ∗ list(z)).

Proposition 8 showed that four of the proof rule/axiom schemas of FOL are already sound
for matching logic. The soundness of several others are shown below, essentially stating the
soundness of the matching logic proof system, except one rule, Substitution (Section 5):

I Proposition 12. The following hold:
1. Equality introduction: |= ϕ = ϕ

2. Equality elimination: |= ϕ1 = ϕ2 ∧ ϕ[ϕ1/x]→ ϕ[ϕ2/x]
3. |= ∀x . x ∈ ϕ iff |= ϕ

4. |= (x ∈ y) = (x = y) when x, y ∈ Var
5. |= (x ∈ ¬ϕ) = ¬(x ∈ ϕ)
6. |= (x ∈ ϕ1 ∧ ϕ2) = (x ∈ ϕ1) ∧ (x ∈ ϕ2)
7. |= (x ∈ ∃y.ϕ) = ∃y.(x ∈ ϕ), with x and y distinct
8. |= x ∈ σ(ϕ1, ..., ϕi−1, ϕi, ϕi+1, ..., ϕn) = ∃y.(y ∈ ϕi ∧ x ∈ σ(ϕ1, ..., ϕi−1, y, ϕi+1, ..., ϕn))
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14 Matching Logic

4.4 Defining special relations
Here we show how to define special relations using patterns. For example, ∃y . σ(x1, . . . , xn) =
y states that σ ∈ Σs1...sn,s is a function in all models. Indeed, if M is any model satisfying
the pattern above and a1 ∈ Ms1 , . . . , an ∈ Msn

then let ρ : Var → M be an M -valuation
such that ρ(x1) = a1, . . . , ρ(xn) = an. Since M satisfies the pattern, it follows that Ms =⋃
{ρ′(σ(x1, . . . , xn) = y) | ρ′ : Var→M, ρ′�Var\{y}= ρ�Var\{y}}. Since ρ′(σ(x1, . . . , xn) = y)

is either Ms or ∅, depending upon whether σM (x1, . . . , xn) = {ρ′(y)} holds or not, we
conclude that there exists some ρ′ : Var→M such that σM (a1, . . . , an) = {ρ′(y)}, that is,
σM (a1, . . . , an) is a one-element set. Therefore, σM represents a total function. To avoid
writing such boring function patterns, from now on we automatically assume such an axiom
whenever we write a symbol σ ∈ Σs1...sn,s using the function notation σ : s1 × · · · × sn → s.

Pattern (f(x) = f(y))→ (x = y) states that f is injective. If (M,fM : M →M) is any
model satisfying this specification, then fM must be injective. Indeed, let a, b ∈M such that
a 6= b and fM (a) = fM (b). Pick ρ : Var → M such that ρ(x) = a and ρ(y) = b. Since M
satisfies the axiom above, we get ρ(f(x) = f(y)) ⊆ ρ(x = y). But Proposition 11 implies that
ρ(x = y) = ∅ and ρ(f(x) = f(y)) = M , which is a contradiction. We can also show that any
model whose f is injective satisfies the axiom. Let (M,fM : M → M) be any model such
that fM is injective. It suffices to show ρ(f(x) = f(y)) ⊆ ρ(x = y) for any ρ : Var → M ,
which follows by Proposition 11: if ρ(x) = ρ(y) then ρ(f(x) = f(y)) = ρ(x = y) = M , and if
ρ(x) 6= ρ(y) then ρ(f(x) = f(y)) = ρ(x = y) = ∅ because fM is injective.

From here on in the rest of the paper we take the freedom to write ϕ 6= ϕ′ instead of
¬(ϕ = ϕ′). With this, another way to capture the injectivity of f is (x 6= y)→ (f(x) 6= f(y)).

Pattern (σ(x1, . . . , xn) = ⊥s) ∨ ∃y . σ(x1, . . . , xn) = y states that σ ∈ Σs1...sn,s is a partial
function, and from now on we use the notation (note the “⇀” symbol) σ : s1 × · · · × sn ⇀ s

to automatically assume a pattern like the above for σ. For example, a division partial
function which is undefined in all models when the denominator is 0 can be specified as:

_ /_ : Nat ×Nat ⇀ Nat ¬(x/0)

i.e., as a symbol _ /_ ∈ ΣNat×Nat,Nat with patterns (x/y = ⊥Nat)∨∃z . x/y = z and ¬(x/0).
Total relations can be defined with [σ(x1, . . . , xn)]ss, equivalent to σ(x1, . . . , xn) 6= ⊥s.

We write σ : s1 × · · · × sn⇒ s to automatically state that σ is a total relation.

4.5 Algebraic specifications and matching logic modulo theories
An algebraic specification is a many-sorted signature (S,Σ) together with a set of equations
E over Σ-terms with variables. To translate an algebraic specification into a matching logic
specification we only need to ensure that symbols get a function interpretation as described
in Section 4.4, and to regard each equation t = t′ as an equality pattern t = t′.

I Proposition 13. Let (S,Σ, F ) be the matching logic specification associated to the algebraic
specification (S,Σ, E) as above. Then for any Σ-equation e, we have E |=alg e iff F |= e.

Using the notations introduced so far, Peano natural numbers can be defined as follows:

0 : → Nat succ : Nat → Nat plus : Nat ×Nat → Nat
plus(0, y) = y plus(succ(x), y) = succ(plus(x, y))

This looks identical to the conventional algebraic specification definition.
Note, however, that matching logic allows us to add more than just equational patterns.

For example, we can add to F the pattern 0 ∨ ∃x . succ(x) stating that any number is either 0



Grigore Roşu 15

or the successor of another number. Nevertheless, since matching logic ultimately has the same
expressive power as predicate logic (Proposition 7), we cannot finitely axiomatize in matching
logic any mathematical domains that do not already admit finite FOL axiomatizations.
In practice, we follow the same standard approach as the first-order SMT solvers, namely
desired domains are theoretically presented with potentially infinitely many axioms but
are implemented using specialized decision procedures. Indeed, our current matching logic
implementation prototype in K defers to Z3 [5] the solving of all the domain constraints.

Algebraic specifications and decision procedures of mathematical domains abound in the
literature. All of these can be used in the context of matching logic. We do not discuss these
further, but only mention that from now on we tacitly assume definitions of integer and of
natural numbers, as well as of Boolean values, with common operations on them. We assume
that these come with three sorts, Int, Nat and Bool, and the operations on them use the
conventional syntax and writing; e.g., _ ≤ _ : Nat × Nat → Bool, x ≤ y, etc. To compact
writing, we take the freedom to write b instead of b = true for Boolean expressions b, in any
sort context. For example, we write ϕs ∧ x ≤ y instead of ϕs ∧ (x ≤ y =s

Bool true).

4.6 Sequences, Multisets and Sets

Sequences, multisets and sets are typical ADTs. Matching logic enables, however, some useful
developments and shortcuts. For simplicity, we only discuss collections over Nat, and name
the corresponding sorts Seq, MultiSet, and Set. Ideally, we would build upon an order-sorted
algebraic signature setting, so that we can regard x :Nat not only as an element of sort Nat,
but also as one of sort Seq (a one-element sequence), as one of sort MultiSet, as well as one
of sort Set. Extending matching logic to an order-sorted setting is not difficult, but would
deviate from our main objective in this paper, so we refrain from doing it. Instead, we rely
on the reader to assume either that order-sortedness does not bring complications (besides
those of order-sortedness itself in the context of algebraic specification) or that elements of
sort Nat used in a Seq, MultiSet, or Set context are wrapped with injection symbols.

Sequences can be defined with two symbols and corresponding equations:

ε : → Seq _ ·_ : Seq × Seq → Seq ε · x = x x · ε = x (x · y) · z = x · (y · z)

We assume that lowercase variables have sort Nat, and uppercase ones have the appropriate
collection sort. To avoid adding initiality constraints on models yet be able to do proofs by
case analysis and elementwise equality, we may add ε ∨ ∃x .∃S. x · S and (x · S = x′ · S′) =
(x = x′) ∧ (S = S′) as pattern axioms. We next define some operations on sequences:

rev : Seq → Seq rev(ε) = ε ¬(x ∈ ε) x ∈ x · S
_ ∈ _ : Nat × Seq → Bool rev(x · S) = rev(S) · x x ∈ y · S ∧ (x 6= y) = x ∈ S

We can transform sequences into multisets adding the equality axiom x · y = y · x, and
into sets by also including x · x = ⊥ or x · x = x. Here is one way to axiomatize intersection:

_∩_:Set×Set → Set ε ∩ S2 = ε (x·S1)∩S2 = ((x∈S2→x) ∧ (¬(x∈S2)→ε))·(S1∩S2)

4.7 Maps and Map Patterns

Finite-domain maps are also a typical example of an ADT. We only discuss maps from natural
numbers to natural numbers, but they can be similarly defined over arbitrary domains as
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16 Matching Logic

keys and as values. We use a syntax for maps that resembles that of separation logic [11]:

_ 7→ _ : Nat ×Nat ⇀ Map emp ∗H = H

emp : → Map H1 ∗H2 = H2 ∗H1
_ ∗_ : Map ×Map ⇀ Map (H1 ∗H2) ∗H3 = H1 ∗ (H2 ∗H3)
0 7→ a = ⊥ x 7→ a ∗ x 7→ b = ⊥

When regarding the above ADT as a matching logic specification, we can prove that
the bottom two pattern equations above are equivalent to ¬(0 7→ a) and, respectively,
(x 7→ a ∗ y 7→ b)→ x 6= y, giving the _ 7→ _ and _ ∗_ the feel of “predicates”.

Consider the canonical model of partial maps M , where: MNat = {0, 1, 2, . . .}; MMap =
partial maps from natural numbers to natural numbers with finite domains and undefined in
0, with emp interpreted as the map undefined everywhere, with _ 7→ _ interpreted as the
corresponding one-element partial map except when the first argument is 0 in which case it
is undefined (note that _ 7→ _ was declared using ⇀), and with _ ∗_ interpreted as map
merge when the two maps have disjoint domains, or undefined otherwise (note that _ ∗_
was also declared using ⇀). M satisfies all axioms above.

We next define two common patterns, for complete linked lists and for list fragments:

list : Nat⇒Map lseg : Nat ×Nat⇒Map
list(0) = emp lseg(x, x) = emp
list(x) ∧ x 6= 0 = ∃z . x 7→ z ∗ list(z) lseg(x, y) ∧ x 6= y = ∃z . x 7→ z ∗ lseg(z, y)

It can be shown that in the model M of partial maps described above, there is a unique
way to interpret list and lseg, namely as the expected linked lists and, respectively, linked
list fragments. Specifically, we can show that lsegM : MNat ×MNat → P(MMap) (we only
discuss lseg, because list is similar and simpler) can only be the following function:

lsegM (n, n) = {empM} for all n ≥ 0
lsegM (n,m) = { n 7→M n1 ∗M n1 7→M n2 ∗M · · · ∗M nk 7→M m

| k ≥ 0, and n0 = n, n1, n2, . . . , nk > 0 all different}

Complete details can be found in [15].
It should be clear that patterns can be specified in many different ways. E.g., the first

list pattern can also be specified as list(x) = (x = 0∧ emp ∨ ∃z . x 7→ z ∗ list(z)). In a similar
style, we can define more complex patterns, such as lists with data. But first, we specify
a convenient operation for defining maps over contiguous keys, making use of a sequence
data-type. The latter can be defined like in Section 4.6; for notational convenience, we take
the freedom to use comma “,” instead of “·” for sequence concatenation in some places:

_ 7→ [_] : Nat × Seq → Map x 7→ [ε] = emp x 7→ [a, S] = x 7→ a ∗ (x+ 1) 7→ [S]

In our model M , we can take MSeq to be the finite sequences of natural numbers, with εM
and _ ·M _ interpreted as the empty sequence and, respectively, sequence concatenation.

We can now define lists with data as follows:

list : Nat × Seq⇒Map lseg : Nat × Seq ×Nat⇒Map
list(0, ε) = emp lseg(x, ε, x) = emp
list(x, n · S) = ∃z . x 7→ [n, z] ∗ list(z, S) lseg(x, n · S, y) = ∃z . x 7→ [n, z] ∗ lseg(z, S, y)

Note that, unlike in the case of lists without data, this time we have not required the side
conditions x 6= 0 and x 6= y, respectively. The side conditions were needed in the former



Grigore Roşu 17

case because without them we can infer, e.g., list(0) = ⊥ (from the second equation of list),
which using the first equation would imply emp = ⊥. However, they are not needed in the
latter case because it is safe (and even desired) to infer list(0, n ·S) = ⊥ for any n and S. We
can show, using a similar approach like for lists without data, that the pattern lseg(x, S, y)
matches in M precisely the lists starting with x, exiting to y, and holding data sequence S.

We can similarly define other data-type specifications, such as trees with data:

none : → Tree node : Nat × Tree × Tree → Tree tree : Nat × Tree⇒Map
tree(0,none) = emp tree(x,node(n,t1,t2)) = ∃y z . x 7→ [n, y, z] ∗ tree(y, t1) ∗ tree(z, t2))

Therefore, fixing the interpretations of the basic mathematical domains, such as those of
natural numbers, sequences, maps, etc., suffices in order to define interesting map patterns
that appear in verification of heap properties of programs, in the sense that the axioms
themselves uniquely define the desired data-types. No inductive predicates or principles were
needed to define them, although induction or initiality may be needed in order to define
the desired models. Choosing the right basic mathematical domains is, however, crucial.
For example, if we allow the maps in MMap to have infinite domains then the list patterns
without data above (the first ones) also include infinite lists. The lists with data cannot
include infinite lists, because we only allow finite sequences. This would, of course, change if
we allow infinite sequences, or streams, in the model. In that case, list and lseg would not
admit unique interpretations anymore, because we can interpret them to be either all the
finite domain lists, or both the finite and the infinite-domain lists. Writing patterns which
admit the desired solution in the desired model suffices in practice; our reasoning techniques
developed in the sequel allow us to derive properties that hold in all models satisfying the
axioms, so any derived property is sound also for the intended model and interpretations.

4.8 First-Order Logic
First-order logic (FOL) allows both function and predicate symbols:

ts ::= x ∈ Vars | σ(t1, . . . , tn) with σ ∈ Σs1...sn,s

ϕ ::= π(x1, . . . , xn) with π ∈ Πs1...sn
| ¬ϕ | ϕ ∧ ϕ | ∃x.ϕ

Let (S,Σ,Π) be a FOL signature. Like in pure predicate logic, we add a Pred sort and regard
the predicate symbols as symbols of result Pred. Let (SML,ΣML) be the matching logic
signature with SML = S ∪ {Pred} and ΣML = Σ ∪ {π : s1 . . . sn → Pred | π ∈ Πs1...sn

}, and
let F be {∃z :s . σ(x1 :s1, . . . , xn :sn) = z | σ ∈ Σs1...sn,s} saying each symbol is a function.

I Proposition 14. For any FOL formula ϕ, we have |=FOL ϕ iff F |= ϕ.

4.9 Separation Logic
Matching logic has inherent support for structural separation, without a need for any special
logic constructs or extensions. That is because pattern matching has a spatial meaning by its
very nature: matching a subterm already separates that subterm from the rest of the context,
so matching two or more terms can only happen when there is no overlapping between them.

Separation logic [11, 14, 12] is a logic for reasoning about heap structures. There are
many variants, but here we only consider the one in [11]. Its syntax extends FOL as follows:

ϕ ::= (FOL syntax) | emp | Int 7→ Int | ϕ ∗ ϕ | ϕ−∗ϕ

Its semantics is based on a fixed model of stores and heaps, which are finite-domain maps from
variables and locations (particular integers), respectively, to integers. The semantics of each
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construct is given in terms of a pair (s, h) of a store and a heap, called a state. For example,
(s, h) |=SL E1 7→ E2 iff Dom(h) = s(E1) and h(s(E1)) = s(E2), and (s, h) |=SL P1 ∗ P2 iff
there exist h1 and h2 of disjoint domains such that h = h1 ∗ h2 and (s, h1) |=SL P1 and
(s, h2) |=SL P2. The semantics of “magic wand”, P1−∗P2 is defined as the states whose heaps
extended with a fragment satisfying P1 result in ones satisfying P2: (s, h) |=SL P1−∗P2 iff
for any h1 of domain disjoint of h’s, if (s, h1) |=SL P1 then (s, h ∗ h1) |=SL P2.

We can define a matching logic specification and a model of it, which precisely capture
separation logic. The FOL constructs are already captured by the generic syntax of patterns
as explained in previous sections. The spatial constructs, except for the −∗ , are given by the
matching logic specification of maps discussed in Section 4.7, in which we substitute Int for
Nat. For the magic wand, we add the partial function _−∗_ : Map ×Map ⇀ Map and the
pattern P1−∗P2 = ∃H .H ∧ [H ∗ P1 → P2]. Recall from Section 4.3 that [_] leverages the
non-emptyness of its argument to the total set. In words, P1−∗P2 is the set of all maps h
which merged with maps satisfying P1 yield only maps satisfying P2. With the above, any
separation logic formula can be regarded, as is, as a matching logic pattern of sort Map.

We next construct our model. Let M be identical to the model for maps in Section 4.7,
except that we replace natural numbers with integer numbers. The only thing left is to
define the partial function _−∗M_ : Map × Map → P(Map), which we do as follows:
h1−∗M h2 = {h | Dom(h) ∩Dom(h1) = ∅ and h ∗M h1 = h2}. Note that h1−∗M h2 is either
the empty set or it is a set of precisely one map. Then the following result holds:

I Proposition 15. If ϕ is a separation logic formula, then |=SL ϕ iff M |= ϕ. More
specifically, for any store s and any heap h, we have (s, h) |=SL ϕ iff h ∈ s(ϕ).

5 Sound and Complete Deduction

As shown in Section 3, the proof system of predicate logic is sound for matching logic as
is. Ideally, we would like the same to hold true for FOL with equality, that is, we would
like its proof system to be sound as is for matching logic reasoning, where we replace
terms and predicates with arbitrary patterns. Unfortunately, FOL’s Substitution axiom,
(∀x . ϕ) → ϕ[t/x], is not sound if we replace t with any pattern. For example, consider
the tautology ∀x .∃y . x = y and let ϕ be ∃y . x = y. If FOL’s Substitution were sound for
arbitrary patterns ϕ′ instead of t, then the formula ∃y . ϕ′ = y, stating that ϕ′ evaluates to a
unique element for any valuation, would be valid for any pattern ϕ′. However, this is not
true in matching logic, because patterns can evaluate to any set of elements, including the
empty set or the total set; several examples of such patterns were discussed in Section 4. We
need to modify Substitution to indicate that ϕ′ admits unique evaluations:

Substitution: ` (∀x . ϕ) ∧ (∃y . ϕ′ = y)→ ϕ[ϕ′/x]

Condition ∃y . ϕ′ = y holds when ϕ′ is a term built with symbols σ obeying the functional
axioms ∃y . σ(x1, . . . , xn) = y discussed in Section 4.4. So the constrained substitution axiom
is still more general than the original substitution axiom in FOL, since it can also apply when
ϕ′ is not built only from functional symbols but can be proved to have unique evaluation. It
is interesting to note that a similar modification of Substitution was needed in the context of
partial FOL [7], where the interpretations of functional symbols are partial functions, so terms
may be undefined; axiom PFOL5 in [7] requires ϕ′ to be defined in the Substitution rule,
and several rules for proving definedness are provided. Note that our condition ∃y . ϕ′ = y is
equivalent to definedness in the special case of PFOL, and that, thanks to the definability of
equality in matching logic, we do not need special machinery for proving definedness.
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FOL axioms and rules:
1. ` propositional tautologies
2. Modus ponens: ` ϕ1 and ` ϕ1 → ϕ2 imply ` ϕ2
3. ` (∀x . ϕ1 → ϕ2)→ (ϕ1 → ∀x . ϕ2) when x 6∈ FV (ϕ1)
4. Universal generalization: ` ϕ implies ` ∀x . ϕ
5. Substitution: ` (∀x . ϕ) ∧ (∃y . ϕ′ = y)→ ϕ[ϕ′/x]
6. Equality introduction: ` ϕ = ϕ

7. Equality elimination: ` ϕ1 = ϕ2 ∧ ϕ[ϕ1/x]→ ϕ[ϕ2/x]
Membership axioms and rules:
8. ` ∀x . x ∈ ϕ iff ` ϕ
9. ` x ∈ y = (x = y) when x, y ∈ Var
10. ` x ∈ ¬ϕ = ¬(x ∈ ϕ)
11. ` x ∈ ϕ1 ∧ ϕ2 = (x ∈ ϕ1) ∧ (x ∈ ϕ2)
12. ` (x ∈ ∃y.ϕ) = ∃y.(x ∈ ϕ), with x and y distinct
13. ` x∈σ(ϕ1,.., ϕi−1, ϕi, ϕi+1,.., ϕn) = ∃y.(y∈ϕi ∧ x∈σ(ϕ1,.., ϕi−1, y, ϕi+1,.., ϕn))

Figure 2 Sound and complete proof system of matching logic.

Our approach to obtain a sound and complete proof system for matching logic is to build
upon its reduction to predicate logic in Section 3. Specifically, to use Proposition 7 and the
complete proof system of predicate logic. Given a matching logic signature (S,Σ), let (S,ΠΣ)
be the predicate logic signature obtained like in Section 3. In addition to the PL translation
there, we also define a backwards translation ML of (S,ΠΣ)-formulae into (S,Σ)-patterns:

ML(x = r) = x = r

ML(πσ(r1, . . . , rn, r)) = r ∈ σ(r1, . . . , rn)
ML(¬ψ) = ¬ML(ψ)

ML(ψ1 ∧ ψ2) = ML(ψ1) ∧ML(ψ2)
ML(∃x . ψ) = ∃x .ML(ψ)

ML({ψ1, . . . , ψn}) = {ML(ψ1), . . . ,ML(ψn)}

Recall from Section 4.3 that we assume equality and membership in all specifications.
Figure 2 shows our sound and complete proof system for matching logic reasoning, which

was specifically crafted to include the proof system of first-order logic. Indeed, the first group
of axiom and rule schemas include all the axioms and proof rules of FOL with equality as
instances (the rules Substitution, Equation introduction and Equation elimination allow
more general patterns instead of terms). The second group of proof rules, for reasoning
about membership, is introduced for technical reasons, namely for the proof of Theorem 16:

I Theorem 16. The proof system in Figure 2 is sound and complete: F |= ϕ iff F ` ϕ.

6 Additional Related Work

Matching logic builds upon intuitions from and relates to at least four important logical
frameworks: (1) Relation algebra (RA) (see, e.g., [21]), noticing that our interpretations of
symbols as functions to powersets are equivalent to relations; although our interpretation
of symbols captures better the intended meaning of pattern and matching, and our proof
system is quite different from that of RA, like with FOL we expect a tight relationship
between matching logic and RA, which is left as future work; (2) Partial FOL (see, e.g., [7]
for a recent work and a survey), noticing that our interpretations of symbols into powersets

RTA 2015



20 Matching Logic

are more general than partial functions (Section 4.3 shows how we defined definedness); and
(3) Separation logics (SL) (see, e.g.,[11]), which we briefly discussed in Section 4.9 but refer
the reader to [15] for more details; and (4) Precursors of matching logic in [17, 20, 16], which
proposed the pattern idea by extending FOL with particular “configuration” terms:

ts ::= x ∈ Vars | σ(t1, . . . , tn) with σ ∈ Σs1...sn,s

ϕ ::= π(x1, . . . , xn) with π ∈ Πs1...sn
| ¬ϕ | ϕ ∧ ϕ | ∃x.ϕ

| t ∈ TΣ,Cfg(X)

where TΣ,Cfg(X) is the set of terms of a special sort Cfg (from “configurations”) over variables
in set X. To avoid naming conflicts, we propose to call the variant above topmost matching
logic from here on. Topmost matching logic can trivially be desugared into FOL with equality
by regarding a particular pattern predicate t ∈ TΣ,Cfg(X) as syntactic sugar for “(current
state/configuration is) equal to t”. One major limitation of topmost matching logic, which
motivated the generalization in this paper, is that its restriction to patterns of sort Cfg
prevented us to define local patterns (e.g., the heap list pattern) and perform local reasoning.

The idea of regarding arbitrary terms as patterns is reminiscent to pattern calculus [10],
although note that matching logic’s patterns are intended to express and reason about static
properties of data-structures or program configurations, while pattern calculi are aimed at
generally and compactly expressing computations and dynamic behaviors of systems. So far
we used rewriting to define dynamic language semantics; it would be interesting to explore
the combination of pattern calculus and matching logic for language semantics and reasoning.

7 Conclusion and Future Work

Matching logic is a sound and complete FOL variant that makes no distinction between
function and predicate symbols. Its formulae, called patterns, mix symbols, logical connectives
and quantifiers, and evaluate in models to sets of values, those that “match” them, instead of
just one value as terms do or a truth value as predicates do in FOL. Equality can be defined
and several important variants of FOL fall as special fragments. Separation logic can be
framed as a matching logic theory within the particular model of partial finite-domain maps,
and heap patterns can be elegantly specified using equations. Matching logic allows spatial
specification and reasoning anywhere in a program configuration, and for any language, not
only in the heap or other particular and fixed semantic components.

We made no efforts to minimize the number of rules in our proof system, because our
main objective here was to include the proof system for FOL with equality. It is likely
that a minimal proof system working directly with the core symbols [_]s2

s1
∈ Σs1,s2 for

all sorts s1, s2 ∈ S can be obtained such that the equality and membership axioms and
rules in Figure 2 can be proved as lemmas. Likewise, we refrained from discussing any
computationally effective fragments of matching logic, although we are implementing them
in K. Finally, complexity results in the style of [1, 3, 9] for separation logic can likely also be
obtained for fragments of matching logic.

Acknowledgments. I wish to express my deepest thanks to the K team1, who share the belief
that programming languages should have only one semantics, which should be executable,
and formal analysis tools, including fully fledged deductive program verifiers, should be
obtained from such semantics at little or no extra cost. I would like to also warmly thank

1 http://kframework.org
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Abstract
Formal executable models provide a means to gain insights into the behavior of complex dis-
tributed systems. Ideas can be prototyped and assurance gained by carrying out analyses at
different levels of fidelity: searching for desirable or undesirable behaviors, determining effects of
perturbing the system, and eventually investing effort to carry out formal proofs of key properties.
This modeling approach applies to a wide range of systems, including a variety of protocols and
networked cyber-physical systems. It is also emerging as an important tool in understanding
many different aspects of biological systems.

Rewriting logic (RWL) is a formalism that is well-suited to developing and working with
formal executable models. In RWL term rewriting is used to represent both structure (equational
properties and functions) and transformation / behavior. Logics and inference systems can be
naturally represented in RWL, as can the structure and behavior of distributed systems both
engineered and natural.

Maude is a high performance realization of Rewriting Logic. Maude specifications are nat-
urally executable and the Maude environment provides a variety analysis tools to reason about
properties of models. These include reachability analysis, symbolic execution (narrowing), and
model-checking. In addition, Maude is reflective. This provides a powerful mechanism for exten-
sion.

The talk will present a sampling of executable specifications using Maude and its extensions.
The examples will illustrate a range of modeling problems and analysis approaches, including

Analysis of engineered systems
finding problems and fixing the system,
optimizing performance.

Analysis of natural systems
finding problems and fixing the model,
using the model to predict consequences of perturbations.

To be self-contained, the talk will begin with a little introduction to RWL and Maude.
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Abstract
Nowadays certification is widely employed by automated termination tools for term rewriting,
where certifiers support most available techniques. In complexity analysis, the situation is quite
different. Although tools support certification in principle, current certifiers implement only the
most basic technique, namely, suitably tamed versions of reduction orders. As a consequence,
only a small fraction of the proofs generated by state-of-the-art complexity tools can be certified.
To improve upon this situation, we formalized a framework for the certification of modular
complexity proofs and incorporated it into CeTA. We report on this extension and present the
newly supported techniques (match-bounds, weak dependency pairs, dependency tuples, usable
rules, and usable replacement maps), resulting in a significant increase in the number of certifiable
complexity proofs. During our work we detected conflicts in theoretical results as well as bugs
in existing complexity tools.

1998 ACM Subject Classification F.4.2 Grammars and Other Rewriting Systems

Keywords and phrases complexity analysis, certification, match-bounds, weak dependency pairs,
dependency tuples, usable rules, usable replacement maps

Digital Object Identifier 10.4230/LIPIcs.RTA.2015.23

1 Introduction

The last decade saw a wealth of techniques for automated termination tools, closely followed
by techniques and tools for automated complexity analysis in recent years. In individual
proofs, such tools often apply several techniques in combination, making human inspection
ever more unrealistic, due to their sheer size. Moreover, the increasing power of automated
tools comes at the cost of amplified complexity, reducing reliability; hence the interest in
automatic certification of termination and complexity proofs.

Whereas our certifier CeTA [18] is already able to certify most proofs generated by current
termination tools for term rewrite systems (TRSs), initial support for complexity proofs was
added only recently [17]. In this paper we present a significant extension of CeTA towards
the certification of complexity proofs. To this end, we formalized several techniques for
complexity analysis within the proof assistant Isabelle/HOL [14] as part of our formal library
IsaFoR.1 On top of these general results, we augmented CeTA by corresponding functions, that
check whether specific applications of techniques, encountered inside automatically generated
complexity proofs, are correct.

As a result, the power of CeTA for certifying complexity proofs has almost tripled in
comparison to last year [17], and more than 75% of all tool-generated proofs can be certified.

1 http://cl-informatik.uibk.ac.at/software/ceta
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Moreover, via certification we detected and fixed several bugs in current complexity tools,
some of which had remained undetected for more than five years.

Contribution and Overview. After giving some preliminaries in Section 2, we present our
main contributions. In Section 3, we explain our formalization of a framework which admits
us to certify composite complexity proofs. At this point, we also report on conflicting notions
of basic complexity definitions in the literature. In Section 4 we describe our formalization
of the match-bounds technique. Here, the transition from termination to complexity results
is surprisingly easy. Concerning the integration of match-bounds for relative rewriting, we
provide a new example showing that two existing variants are incomparable. In Section 5, we
discuss our formalization of two dependency pair related techniques: weak dependency pairs
and dependency tuples. We choose to conduct the respective proofs using two slightly different
approaches – one focusing on contexts, the other on sets of positions – and comment on our
findings. In Section 6, we slightly generalize one variant of usable rules, and also support
another variant for innermost rewriting, for which we reuse existing proofs from termination
analysis. Furthermore, we present a new theorem combining usable rules, usable replacement
maps, and argument filters. Finally, in Section 7, we discuss conducted experiments and
conclude.

All of the proofs that are presented (or omitted) in the following have been formalized
and made available as part of IsaFoR. Direct links to the formalization are available from the
following website, that also contains all details on our experiments.

http://cl-informatik.uibk.ac.at/software/ceta/experiments/complexity/

2 Preliminaries

We assume basic familiarity with term rewriting (as for example obtained by reading the
textbook by Baader and Nipkow [3]) but shortly recall some basic notions and notations that
are used later on.

By T (F ,V) we denote the set of (first-order) terms w.r.t. a signature F and a set of
variables V, and by T (F) the set of ground terms. We write root(t) for the root symbol
of a non-variable term t. The size |t| of a term t is defined by |x| = 1 for t = x ∈ V, and
|f(t1, . . . , tn)| = 1 +

∑n
i=1 |ti|, otherwise. A (multihole) context is a term that may contain

an arbitrary number of holes, represented by the special symbol �. Replacing the holes in a
given multihole context C by terms t1, . . . , tn is written C[t1, . . . , tn]. (At this point it might
be worth mentioning that in our formalization we have to make sure that the number of
holes in C corresponds to the number of terms n. For simplicity’s sake we do not make this
explicit in the remainder). Whenever s = C[t] for some context C ( 6= �), then t is called a
(proper) subterm of s. We write tσ for the application of a substitution σ to a term t.

A TRS R is a set of (rewrite) rules, where a rule `→ r is a pair of terms such that ` /∈ V
and only variables already occurring in ` are allowed in r. The defined symbols of R, written
D(R), are those that are roots of left-hand sides of its rules. We use Fun(·) to denote the
set of function symbols occurring in a given term, context, or TRS. A TRS is left-linear
(non-duplicating) if and only if for all rules `→ r ∈ R, no variable occurs more than once in
` (more often in r than in `).

The standard way of uniquely referring to subterms is via positions, denoted by lists of
natural numbers. The subterm of a term t at position p is written t|p. We use ≤ for the
usual partial order on positions, and denote by p || q that positions p and q are parallel, i.e.,
incomparable by ≤. The strict part of ≤ is denoted by <.

http://cl-informatik.uibk.ac.at/software/ceta/experiments/complexity/
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There is a rewrite step from term s to term t w.r.t. the rewrite relation induced by TRS R,
denoted s −→R t, whenever there are C, σ, and `→ r ∈ R such that s = C[`σ] and t = C[rσ].
Equivalently, we say that s rewrites to t at position p, where p is the unique position of � in
C. The subterm `σ above is called an (R-)redex. Terms not containing any R-redexes are
called R-normal or normal forms, and we write NF(R) for the set of all R-normal forms. We
sometimes use the same notion not only for TRSs but also for sets of terms, since right-hand
sides of rules are irrelevant for the existence of redexes anyway.

For termination analysis Q-restricted rewriting (named after the additional parameter,
a set of terms, which is usually denoted Q) was introduced in order to cover full rewriting
and innermost rewriting (as well as variations that lie somewhere in between) under a
single framework [9]. Here, a rewrite step C[`σ] Q−→R C[rσ] is a standard rewrite step
C[`σ] −→R C[rσ] whose redex `σ additionally satisfies the condition that all its proper
subterms are Q-normal, i.e., do not match any term in Q (in that way standard rewriting is
Q-restricted rewriting with empty Q and for innermost rewriting we take the left-hand sides
of R as Q). This proves convenient also for complexity analysis and its notions of runtime
complexity and innermost runtime complexity. Additionally, relative rewriting is important
for complexity analysis, since it can be employed to obtain modular proofs. A relative
rewrite system consists of two TRSs S and W, and is denoted by S/W. The corresponding
relative rewrite relation, written −→S/W , is given by −→∗W · −→S · −→∗W . Combined this leads to
Q-restricted relative rewriting, where Q−→S/W denotes the relation Q−→∗W · Q−→S · Q−→∗W . Note
that we fix the same Q for “strict” and “weak” steps, which is sufficient for our purposes.2

Given a binary relation → and a set A, we define →(A) = {b | ∃a ∈ A. a→ b}.

3 A Framework for Modular Complexity Proofs

In complexity analysis of TRSs we are usually interested in the maximal number of steps
that are possible when starting from a given set of terms. To this end, the basic ingredient
of our formalization is the derivation bound (defined in theory Complexity; see also [17]),
where a function g constitutes a derivation bound of relation R w.r.t. starting elements from
a family of sets S, written dbS

R(g), if and only if for every n ∈ N and x ∈ Sn, every sequence
of R-steps starting at x is of length at most g(n). The intuition is that Sn contains “objects”
of size n. This, more or less, corresponds to the usual notion of complexity. To be more
precise, Avanzini and Moser [2] define cp(n, T,R) = max{dh(t, R) | ∃t ∈ T. |t| ≤ n}, where
dh denotes the derivation height of a term, and derivational complexity as well as runtime
complexity are obtained by suitably instantiating T and R. However, as argued earlier [17],
using the derivation bound g as argument avoids undefined situations that arise with the
usual definition, e.g., taking the maximum of a potentially infinite set. Whenever cp(n, T,R)
is defined, we have dbS

R(g) with Sn = {t ∈ T | |t| ≤ n} and g(n) = cp(n, T,R), as well as
h(n) ≥ cp(n, T,R) for all other derivation bounds h. That is, our bounds are not tight, but
arbitrary upper bounds.

Depending on the set of starting elements, we obtain the usual notions of derivational
complexity and runtime complexity, respectively. For the former we consider all terms of size
n w.r.t. a given signature F , whereas the latter is based on basic terms of size n. Given two
sets of function symbols D (defined symbols) and C (constructors), and a set of variables V,
the set of basic terms BT(D, C,V) consists of those terms which are rooted by a symbol from

2 A more general relation with separate Qs for S and W would be imaginable. However, since tools do
not support this variation, we stick to the simpler case.
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D and where all arguments are terms of T (C,V). At this point we would like to mention
that there are conflicting notions of basic terms: Hirokawa and Moser [10] and Noschinski et
al. [15] use the above definition of basic terms. In contrast, Avanzini [1] additionally restricts
basic terms to be ground, intending that constructor ground terms correspond to values, and
thus, basic terms correspond to function application on input values. Since IsaFoR does not
enforce basic terms to be ground, every (upper) derivation bound that is certified by CeTA
also is valid w.r.t. Avanzini’s notion of basic terms. However, there might be valid derivation
bounds w.r.t. the ground semantics which cannot be certified in the non-ground setting:

I Example 1. Let R = {f(f(x))→ g(x), g(x)→ f(f(x)), f(a)→ a}. Then there are only two
basic ground terms, f(a) and g(a). Since the longest innermost derivation starting from these
terms is of length 3, R has constant innermost runtime complexity w.r.t. ground basic terms.
But there is an infinite innermost derivation starting from the non-ground basic term g(x).

We adopt the following notions from Avanzini and Moser [2]. A (complexity) problem
P = 〈S/W,Q, T 〉 consists of two TRSs S, W, and two sets of terms Q, T . We asses the
complexity of a problem P by a (complexity) judgment of the form ` P : g, which is valid
whenever g is a bound for Q−→S/W -derivations starting from T . For sets of functions G
we define that ` P : G is valid whenever ` P : G is valid for some g ∈ G. Often, G is an
asymptotic complexity class like O(n3). A (complexity) processor turns a given judgment
` P : G into a list of judgments ` P1 : G1, . . . ,` Pn : Gn. It is sound whenever the validity
of each of ` Pi : Gi also implies validity of ` P : G. A processor is terminal if the returned
list of judgments is empty.

The problem P is called a runtime complexity problem if T = BT(D, C,V), with S and W
not defining any constructor C, i.e., D(S ∪W)∩C = ∅. The problem P is called an innermost
problem if NF(Q) ⊆ NF(S ∪W). In this case, Q−→S/W is a composition of innermost rewrite
steps with respect to S ∪W.

As a first example processor, we formulate a theorem by Zankl and Korp [20, Thm. 3.6]
within our framework which admits modular complexity proofs.

I Theorem 2 (Split Processor). Let P = 〈S1 ∪ S2/W,Q, T 〉 be a complexity problem and
define P1 = 〈S1/S2 ∪W,Q, T 〉 and P2 = 〈S2/S1 ∪W,Q, T 〉. The split processor translates
the judgment ` P : O(g) into the judgments ` P1 : O(g) and ` P2 : O(g).

The split processor is sound.

I Example 3. The split processor is used whenever rules should be shifted from the strict
into the weak component, e.g., when applying match-bounds for relative rewriting or when
using orderings. As an example, consider a TRS with rules numbered from 1 to 5 where
cubic complexity has been proven. In the proof, first rules 2, 3, and 4 have been oriented
strictly and rules 1 and 5 are oriented weakly by some ordering o1 with quadratic complexity.
Afterwards rule 1 could be moved into the weak component by match-bounds, and finally
rule 5 is oriented strictly by some ordering o2 with cubic complexity, where the remaining
rules 1 to 4 are oriented weakly. This proof is restructured via split as follows. First, the
initial complexity judgment ` 〈{1, 2, 3, 4, 5}/∅,Q, T 〉 : O(n3) is splitted into ` 〈{2, 3, 4}/
{1, 5},Q, T 〉 : O(n3) and ` 〈{1, 5}/{2, 3, 4},Q, T 〉 : O(n3) by the split processor where the
former judgment is validated via o1. The latter complexity problem is split again into ` 〈{1}/
{2, 3, 4, 5},Q, T 〉 : O(n3) and ` 〈{5}/{1, 2, 3, 4},Q, T 〉 : O(n3) where the former judgment is
validated via match-bounds, and the latter one via o2.

The example demonstrates that via splitting it suffices to restrict match-bounds and
orderings to terminal complexity processors. This is the reason why we present both
techniques as terminal processors in Sections 4 and 6.



M. Avanzini, C. Sternagel, and R. Thiemann 27

4 Match-Bounds

The match-bounds technique was introduced as termination method by Geser et al. [7]. We
shortly recapitulate the main underlying ideas, before explaining our formalization (theory
Matchbounds) and the necessary adaptations to use it for complexity analysis [19, 20].

Let F be a signature containing at least one constant. For match-bounds, F is expanded
such that symbols are labeled by natural numbers, i.e., F ′ = F × N. Moreover, we define
auxiliary functions base : T (F ′,V) → T (F ,V), liftd : T (F ,V) → T (F ′,V), and lab :
T (F ′,V)→ 2N, where base removes all labels of a term, liftd labels all symbols of a term by
d, and lab returns the set of labels of a term. For a non-duplicating TRS R over signature F
we construct the TRS R′ = match(R) over F ′.

match(R) = {`′ → liftd(r) | `→ r ∈ R, base(`′) = `, d = 1 + min(lab(`′))} (1)

Then for left-linear R, every rewrite step s→R t can be simulated by a step s′ →R′ t′ with
base(t′) = t, provided base(s′) = s. Hence, every (possibly) infinite derivation (2) gives rise to
a step-wise simulation (3) provided base(t′0) = t0, which is ensured by choosing t′0 = lift0(t0).

t0 →R t1 →R t2 →R · · · (2)
t′0 →R′ t′1 →R′ t′2 →R′ · · · (3)

mul(t′0) >ms mul(t′1) >ms mul(t′2) >ms · · · (4)

As the next step, a function mul maps every term t′i to the multiset of negated labels, where
by construction of match(R) every step with R′ results in a strict decrease w.r.t. the standard
multiset-order >ms on the integers, and thus we can construct (4) from (3).

Let us assume that the initial term t0 is ground. Then t′0 = lift0(t0) implies that the initial
term in (3) is always a member of T (F × {0}). We now try to find some bound b ∈ N, such
that →∗R′(T (F × {0})) ⊆ T (F × {0, . . . , b}). If this succeeds, then the labels in derivation
(3) are bounded by b, and hence, all numbers in (4) are in the range −b, . . . , 0. Since > is
well-founded on this domain, so is >ms. Hence, (4) cannot be infinite, and therefore, also (3),
and (2) cannot be infinite, proving termination of R on ground terms. Moreover, since F
contains at least one constant, termination on ground terms implies termination on all terms.

In total, we formalized the following theorem for termination analysis.

I Theorem 4. If R is a non-duplicating, left-linear TRS over signature F , and there is some
language L satisfying →∗R′ (lift0(T (F))) ⊆ L ⊆ T (F × {0, . . . , b}), then R is terminating.

Here, non-duplication is essential in the step from (3) to (4), and left-linearity is required
to ensure the one-step simulation property (Lemma 5). The language L usually comes in the
form of a finite automaton which has been constructed via tree automata completion [6].

I Lemma 5. If R is left-linear, s→R t, and base(s′) = s, then there exists a term t′ such
that s′ →R′ t′ and base(t′) = t.

The lemma is straightforward to prove on paper, and also its formalization posed no
difficulties. Actually, it is no longer present, since IsaFoR now includes a full proof of a more
general result by Korp and Middeldorp [12, Lemma 12], applying also to non-left-linear TRSs.
It is the essential ingredient to obtain (3) from (2).

Concerning the step from (3) to (4), in the formalization we already require the bound b
at this point. This allows us to include an index shift in mul, so that each label i is mapped
onto b− i ∈ N. Then the parameter > of >ms in (4) is the standard order on natural numbers.

In order to certify match-bounds proofs (which are required to contain L in the form of
an automaton), CeTA must be able to check left-linearity and non-duplication, as well as that
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the given automaton indeed accepts all terms in →∗R′(T (F × {0})). For the latter, we make
use of earlier work by Felgenhauer and Thiemann [5], and for the former, we rounded off
Isabelle/HOL’s existing theory on multisets by algorithms for comparing multisets (since
a rule is non-duplicating if and only if the multiset of variables of its right-hand side is a
subset of the multiset of variables of its left-hand side).

In case F does not contain a constant, e.g., in case of string rewrite systems, CeTA does an
automatic preprocessing step, which invents a fresh constant, includes it into the signature,
and adjusts the automaton accordingly.

In the remainder of this section, we adapt Theorem 4 and the corresponding formalization
towards complexity analysis, following Zankl and Korp [19, 20].

The first step is to integrate complexity bounds into (2), (3), and (4), starting from
(4). Given a term of size n, the initial value mul(t′0) is the multiset containing n times
the value b. However, this does not immediately give a nice bound on the length of (4),
since >ms does not impose any bound on the length of derivations w.r.t. the initial multiset:
{{1}} >ms {{0, . . . , 0}} >ms · · · >ms {{0}} >ms ∅. Thus, we replace >ms by >ms,k in (4), where
>ms,k is a bounded version of >ms such that at most k elements may be added in each
comparison: X >ms,k Y if and only if X = U ∪ V , Y = U ∪W , V >ms W , and |W | ≤ k.

Of course, we have to substitute >ms,k (with suitable k) for >ms in all previous proofs.
Doing so within the formalization was an easy task: take k ≥ 1 as the maximum size of
right-hand sides of R. After this adaptation, it is shown that the length of >ms,k-sequences
is linearly bounded, using a result by Dershowitz and Manna [4, page 191]. To be more
precise, we formalized that X >n

ms,k Y implies n ≤
∑

x∈X(k + 1)x, leading to the linear
bound: Recall, that mul(t′0) = {b, . . . , b} where the number of b’s is |t0|. Hence, sequence
(4) can be of length at most

∑
x∈mul(t′

0)(k + 1)x =
∑

1,...,|t0|(k + 1)b = (k + 1)b · |t0|. As
immediate consequence we conclude that also (3) and (2) are linearly bounded.

In total, we get the following result which is used in CeTA to check complexity proofs via
match-bounds, where Tgnd is the set of all ground terms in T . The restriction to ground
terms is possible at this point (in contrast to Example 1) as Q is ignored in the analysis.

I Theorem 6. Let P = 〈R/∅,Q, T 〉 be a complexity problem. If R is a non-duplicating and
left-linear TRS over signature F , and there is some language L satisfying →∗R′(lift0(Tgnd)) ⊆
L ⊆ T (F × {0, . . . , b}), then ` P : O(n).

The next step is to integrate relative rewriting. The main idea to handle weak rules
is to use a modified version of match, which only has to ensure a decrease w.r.t. the weak
multiset order ≥ms,k. To this end, Zankl and Korp [19] define match-rt as in (1) except that
the value of d in (1) is sometimes reduced. If |`| ≥ |r| and all labels in `′ are identical, then d
is min(lab(`′)) instead of 1 + min(lab(`′)). Hence, for some cases it is not required to increase
the labels at all, and thus, it is more likely that a bound on the labels can be obtained.
In order to integrate match-rt into IsaFoR we could mostly reuse or slightly generalize the
existing proofs.

Zankl and Korp give another optimization of match-rt, integrating the bound b: match-rtb

is defined in the same way as match-rt, except that liftd(r) is replaced by liftmin(b,d)(r), which
results in even smaller labels than match-rt, but which is restricted to non-collapsing strict
rules. In total, we have formalized the following theorem.

I Theorem 7. Let P = 〈S/W,Q, T 〉 be a complexity problem. Let S∪W be a non-duplicating
and left-linear TRS over signature F . Assume that R′ = match(S) ∪match-rt(W), or both
R′ = match(S)∪match-rtb(W) and S is non-collapsing. If there is some language L satisfying
→∗R′(lift0(Tgnd)) ⊆ L ⊆ T (F × {0, . . . , b}), then ` P : O(n).
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Note that Q is completely ignored in Theorem 7, since the whole analysis does not
take the strategy into account. In fact, the theorem was first proven for Q = ∅, while the
above statement including Q follows from Q−→S/W ⊆ −→S/W . The sole reason for this naive
integration of Q was to support match-bounds on innermost problems in the first place. An
alternative might be a dedicated processor that transforms 〈S/W,Q, T 〉 into 〈S/W,∅, T 〉.

When integrating match-rtb in the formalization, we encountered two problems. First, we
wanted to get rid of the choice in Theorem 7 and always use the better match-rtb variant.
The reason for this aim was that – while the non-collapsing condition on S appears inside
their proofs – Zankl and Korp [20] did not state that its absence violates the main theorem.
This is now shown by a counterexample.

I Example 8 (Non-collapsing condition required). Let S = {f(x)→ x} and W = {a→ f(a)}.
ForR′ = match(S)∪match-rt0(W) = {fi(x)→ x, ai → f0(a0)}, the language→∗R′(lift0(T (F)))
is exactly T (F × {0}). Without the non-collapsing condition within Theorem 7 one would
be able to conclude linear derivational complexity of S/W, a contradiction.

Hence, the choices in Theorem 7 are really incomparable, and for certification it would
be best to include both. Which brings us to the second problem: we did not want to copy
and paste the existing proof for match-rt, and then incorporate all the tiny modifications
that are required for match-rtb. Thus, in IsaFoR we defined an auxiliary relation covering all
of match, match-rt, and match-rtb, and formalized the main proof step only once.

Currently, CeTA always chooses match-rtb for non-collapsing S, and match-rt, otherwise –
the same as in current complexity tools.

5 Certifying Weak Dependency Pairs and Dependency Tuples

The dependency pair framework [9] is a popular setting for termination analysis. Since
dependency pairs (DPs for short) in their original definition are not suitable for ensuring
small (i.e., polynomial) derivation bounds [13], two variants have been developed. Hirokawa
and Moser [10] introduced weak dependency pairs (WDPs for short). In general however, one
cannot concentrate on counting WDP steps alone. Rather, one also has to take the number
of interleaved steps w.r.t. the original TRS into account. Overcoming this complication,
Noschinski et al. [15] introduced a variation, called dependency tuples (DTs for short). The
DT transformation is however only applicable to innermost problems and it is not complete,
so that (non-confluent) TRSs with polynomial complexity can be turned into complexity
problems of exponential complexity.

Both WDPs and DTs enjoy nice properties that enable us to restrict to usable rules and
limit the monotonicity requirements for reduction pairs, which we discuss later. Since the
two techniques are incomparable but both used in modern complexity tools, we provide a
formalization of either in IsaFoR. To be more precise, we have formalized the corresponding
complexity processors of Avanzini and Moser [2], which – unlike DPs – allow us to apply
WDPs and DTs also to relative problems.

As a case study, we decided to perform two different styles of proof: For DTs, we stuck
more to the original paper proof, where parallel positions are used to point to subterms
that are potential redexes; while for WDPs, we instead focused on contexts around potential
redexes. The former requires us to reason about valid positions, whereas the latter makes it
necessary to explicitly manage properties of contexts. Although both paper proofs are of
comparable length, in our formalization the theories on WDPs are around 30% shorter than
those on DTs (see also DT_Transformation(_Impl) and WDP_Transformation(_Impl)). We
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suspect that this is not mere coincidence, but caused by the fact that contexts can be mostly
treated via explicit recursive functions, while positions require a different style of proof that
is not as amenable to automation.

For the remainder of this section, we fix a runtime complexity problem 〈S/W,Q, T 〉 over
signature F . For each f ∈ F , let f ] be a function symbol fresh with respect to F . For a
term t we denote sharping its root symbol by ](t), where ](x) = x and ](f(t1, . . . , tn)) =
f ](t1, . . . , tn). Sharping is homomorphically extended to sets and lists of symbols and terms.

Weak Dependency Pairs

We start with our formalization of WDPs as defined by Hirokawa and Moser [10].

I Definition 9. Let R be a TRS with defined symbols D(R). For every rule `→ r ∈ R, let
WDP(` → r) denote the new rule ](`) → COM(](u1), . . . , ](un)), where u1, . . . , un are the
maximal subterms of r that are either variables or have a root symbol in D(R). Then the
weak dependency pairs of R are defined by WDP(R) = {WDP(`→ r) | `→ r ∈ R}.

In the above definition COM denotes a “function” that assigns fresh function symbols of
appropriate arity (a common optimization is to omit such symbols in case the argument list
is singleton, i.e., COM(t) = t) to a given list of terms. The thusly generated symbols are
called compound symbols. Note that Definition 9 implies that for each rule `→ r there is a
unique ground context C such that r = C[u1, . . . , un]. This is captured by the following two
functions:

capD(t) =
{
� if t ∈ V or root(t) /∈ C
f(capD(t1), . . . , capD(tn)) if t = f(t1, . . . , tn) and f ∈ C

maxD(t) =
{
t if t ∈ V or root(t) /∈ C
maxD(t1), . . . ,maxD(tn) if t = f(t1, . . . , tn) and f ∈ C

where C is a set of symbols – which is supposed to contain the compound symbols and the
constructors of S ∪W – that is disjoint from sharped F -symbols and the defined symbols of
S ∪W, i.e., (D(S ∪W) ∪ ](F)) ∩ C = ∅. Intuitively, maxD(t) results in the list of maximal
subterms of t that are either variables or have a root not in C (the latter usually implies that
the root is a defined symbol; hence the notation), whereas capD(t) computes the surrounding
context. Together these two functions constitute a unique decomposition of a given term t,
satisfying the property t = (capD(t))[maxD(t)].

For certification we never actually have to construct the set of WDPs.3 Instead it suffices
to check whether a given pair of terms (p, q) constitutes a WDP for a given rule `→ r. This
is done via the predicate:

is-WDP(p, q)(`→ r) ←→ p = ](`)∧ (∃C. ground(C)∧Fun(C) ⊆ C ∧ q = C[](maxD(r))])

In preparation for later results, we somewhat ambiguously use WDP(R) for R ⊆ S ∪W to
denote an arbitrary set of rules (to be provided by the certificate) that is obligated to contain
a WDP for each rule in R, i.e.,

∀`→ r ∈ R.∃(p, q) ∈WDP(R). is-WDP(p, q)(`→ r) (5)

3 Which allows us to avoid a tedious formalization of COM that would have to manage the generation of
fresh symbols using a state monad or similar concept.
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The main ingredient for soundness of WDPs is a simulation lemma that states that when
two terms are in a certain relation, then every R-rewrite sequence starting from the first
term can be simulated by a WDP(R)∪R-rewrite sequence starting from the second one. The
mentioned relation is crafted to fit the definition of WDPs. Intuitively, it relates terms whose
respective maximal defined subterms (computed by maxD) only differ by sharp symbols. We
write s1, . . . , sn ≤] t1, . . . , tn when for each i ≤ n we have that either si = ti or ](si) = ti.
Then the informal statement from above can be formalized as follows.

I Definition 10. A term t is good for a term s, written t� s, if and only if Fun(s) ⊆ F and
there are terms t1, . . . , tn and a ground context C with Fun(C) ⊆ C such that maxD(s) ≤]

t1, . . . , tn and t = C[t1, . . . , tn].

We borrow the terminology good for from Avanzini [1], although the above definition
slightly differs from the original one. As indicated above, its intuition is that two related
terms have the same redexes (or rather an over-approximation, namely, subterms with defined
root) where in addition those in the left term may be sharped.

Before we state the main lemma, we give some useful properties of maxD.

I Lemma 11. Let t be a term with maxD(t) = t1, . . . , tn. Then:
1. If Fun(t) ⊆ F and maxD(t) ≤] u1, . . . , un, then maxD(ui) = ui for all i ≤ n.
2. If Fun(tσ) ⊆ F then maxD(tσ) ≤] maxD(](t1)σ), . . . ,maxD(](tn)σ).

In the main simulation lemma below, Q is extended to a set of terms Q′ taking extensions
of the signature F (by sharped and compound symbols) into account. In particular, the
assumption on Q′ ensures that innermost problems are translated to innermost problems,
thereby allowing a proof-in-progress to continue with techniques that are specific to the
innermost case. The following lemma shows that this does not pose any problems for
rewriting, where Q¬F = {f(t1, . . . , tn) | f /∈ F}.

I Lemma 12. Every term t with Fun(t) ⊆ F that is Q-normal is also Q′-normal for any
Q′ ⊆ Q ∪Q¬F .

Proof. Assume that t is not Q′-normal. Then t = C[`σ] for some C, σ, and ` ∈ Q′; thus
either ` ∈ Q, contradicting Q-normality, or ` ∈ Q¬F , contradicting Fun(t) ⊆ F . J

I Lemma 13. Let R ⊆ S ∪W and Q′ ⊆ Q ∪ Q¬F . If s Q−→R t and u � s then there is a
term v such that u Q

′
−−→WDP(R)∪R v and v � t.

Proof. From s Q−→R t we obtain ` → r ∈ R, σ, and C with s = C[`σ] and t = C[rσ].
Moreover, all proper subterms of `σ are Q-normal. Let s1, . . . , sn denote the result of
maxD(s). Since every redex has a defined root, and all subterms of s with defined root
are either contained in, or subterms of one of s1, . . . , sn, we further obtain a context D
such that si = D[`σ] for some i ≤ n. By Definition 10 and u � s, we get u1, . . . , un with
s1, . . . , sn ≤] u1, . . . , un and a ground contextD′ such that u = D′[u1, . . . , un] and Fun(D′) ⊆
C. Intuitively, it is easy to see that the above, together with Lemma 11(1), implies maxD(u) =
u1, . . . , un (although the corresponding formalization is somewhat tedious). Recall that s =
(capD(s))[s1, . . . , sn] and the considered redex is a subterm of si, thus t = (capD(s))[maxD(t)]
with maxD(t) = s1, . . . ,maxD(D[rσ]), . . . , sn. Moreover, from s1, . . . , sn ≤] u1, . . . , un we
have ui = ](D[`σ]) ∨ ui = D[`σ] and thus proceed by case analysis:

Assume ui = ](D[`σ]).

RTA 2015



32 Certification of Complexity Proofs using CeTA

If D 6= �, then maxD(D[rσ]) = D[rσ] and capD(D[rσ]) = �. We define v =
(capD(u))[u1, . . . , ](D[rσ]), . . . , un]. Then, u Q′

−−→WDP(R)∪R v with the same rule
`→ r, justified by choosing the context (capD(u))[u1, . . . , ](D), . . . , un] and employing
Lemma 12. Then, v � t, by definition of v and maxD(t) ≤] u1, . . . , ](D[rσ]), . . . , un.
If D = �, then the WDP corresponding to ` → r is used. From (5), we obtain a
term q and a ground context E with (](`), q) ∈ WDP(R) and q = E[](maxD(r))].
Define v = (capD(u))[u1, . . . , qσ, . . . , un]. Then u Q′

−−→WDP(R)∪R v as witnessed by
u = (capD(u))[u1, . . . , ](`)σ, . . . , un]→ (capD(u))[u1, . . . , qσ, . . . , un] = v together with
Lemma 12 (and noting that u is a proper subterm of ](`)σ if and only if u is a proper
subterm of `σ). Moreover, let maxD(r) = r1, . . . , rk, Ej = capD(](rj)σ), and vj =
maxD(](rj)σ) for all j ≤ k. Hence, v � t, with E′ = (capD(u))[. . . , E[E1, . . . , Ek], . . .]
and observing that v = E′[u1, . . . , ui−1, v1, . . . , vk, ui+1, . . . , un] as well as maxD(t) ≤]

u1, . . . , ui−1, v1, . . . , vk, ui+1, . . . , un. The latter follows from maxD(rσ) ≤] v1, . . . , vk,
which in turn is a consequence of Lemma 11(2) above.

Assume ui = D[`σ]. Then we can again employ the original rule ` → r. Let E =
(capD(u))[. . . , capD(D[rσ]), . . .] and v = E[u1, . . . , ui−1,maxD(D[rσ]), ui+1, . . . , un]. We
conclude u Q

′
−−→WDP(R)∪R v and v � t in a similar fashion as in the previous case. J

At this point, we obtain a simulation property for relative rewriting as an easy corollary.

I Corollary 14. u� s Q−→n
S/W t implies u Q

′
−−→n

WDP(S)∪S/WDP(W)∪W v � t for some v.

I Theorem 15 (WDP Processor). Let P = 〈S/W,Q, T 〉 be a runtime complexity problem.
Then the WDP processor transforms P into P ′ = 〈WDP(S)∪S/WDP(W)∪W,Q′, ](T )〉 for
an arbitrary Q′ ⊆ Q ∪Q¬F , and ` P ′ : G implies ` P : G.

Proof. Assume ` P ′ : g for some g ∈ G. Moreover, for the sake of a contradiction, assume
that there is a term s ∈ T of size n and a rewrite sequence s Q−→m

S/W t of length m > g(n).
Since s ∈ T , we have ](s) ∈ T ] and trivially ](s)� s. Moreover, by Corollary 14, we obtain
a term v with ](s) Q

′
−−→m

WDP(S)∪S/WDP(W)∪W v, thereby contradicting the initial complexity
judgment. J

I Remark. Note that when P is an innermost problem, by setting Q′ = Q ∪ ](Q) the WDP
processor generates again an innermost problem. In contrast, Avanzini and Moser [1, 2] set
Q′ to Q, thereby not retaining the innermost status as claimed.

Dependency Tuples

According to Theorem 15, we cannot focus on applications of weak dependency pairs in
WDP(S) alone, but also have to account for applications of rules from S. This may have
severe consequences for a proof-in-progress. In the case of reduction pairs for instance, rather
strict monotonicity requirements have to be imposed even after the WDP transformation.
DTs overcome this weaknesses, but the corresponding transformation is sound only on
innermost problems. In contrast to WDPs, which capture outermost calls, a DT captures all
calls in a rule. The following definition is due to Noschinski et al. [15].

I Definition 16. Let R be a TRS with defined symbols D(R). For every rule `→ r ∈ R,
let DT(` → r) denote the new rule ](`) → COM(](u1), . . . , ](un)), where u1, . . . un are all
subterms of r that have a root symbol in D(R). Then the dependency tuples of R are defined
by DT(R) = {DT(`→ r) | `→ r ∈ R}.
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As for weak dependency pairs, our formalization uses a predicate to decide whether a
pair of terms (p, q) constitutes a dependency tuple of a rule `→ r. For a term t, let PosD(t)
denote the set of positions of subterms rooted by defined symbols of S ∪W.

is-DT(p, q)(`→ r) ←→
p = ](`) ∧

(
∃C p1 . . . pn.PosD(r) = {p1, . . . , pk} ∧ q = C[](r|p1), . . . , ](r|pn

)]
)
.

In the following, we use the notation DT(R) where R ⊆ S ∪W, for a set satisfying

∀`→ r ∈ R.∃(p, q) ∈ DT(R). is-DT(p, q)(`→ r) . (6)

In the remainder, we provide a simulation lemma akin to Lemma 13 for DTs. For a
term s, let RPos(s) denote the restriction of PosD(s) to redex-positions. More precisely,
RPos(s) = {q ∈ PosD(s) | ∃t. s|q Q−→S∪W t}. Closely following the proof by Avanzini [1], we
use the following notion of good for.

I Definition 17. A term t is good for a term s, written t≫ s, if and only if Fun(s) ⊆ F and
there is a context C such that t = C[](s|q1), . . . , ](s|qk

)] for positions {q1, . . . , qk} = RPos(s).

We now show that each R-derivation of length n can be simulated by a corresponding
derivation of DT(R) relative to R, of length n. In the proof of the central simulation lemma,
we use the following key observations.

I Lemma 18. Let R ⊆ S∪W. Suppose s Q−→R t is a step at redex position p with rule `→ r.
Abbreviate P = {pq | q ∈ PosD(r)} and Q = {q ∈ RPos(s) | q < p ∨ q || p}. Then:
1. If NF(Q) ⊆ NF(S ∪W) then RPos(t) ⊆ P ∪Q;
2. ](s|p) Q−→DT(R) C[](t|p1), . . . , ](t|pn)] for some context C and {p1, . . . , pn} = P ;
3. ](s|q) Q−→∗R ](t|q) for all positions q ∈ Q.

I Lemma 19. Let R ⊆ S ∪W, suppose NF(Q) ⊆ NF(S ∪W), and let Q′ ⊆ Q ∪ Q¬F . If
s Q−→R t and u≫ s, then there is a term v such that u Q

′
−−→∗R · Q

′
−−→DT(R) v and v≫ t.

Proof. Consider terms s, t and u with u≫ s Q−→R t. Let p denote the corresponding redex
position. Define a function f from positions in s to marked terms as follows: f(q) = ](t|q) if
q < p or q || p and f(q) = ](s|q) otherwise. Since u is good for s, by Definition 17 we obtain
a context C such that u = C[](s|q1), . . . , ](s|qk

)] for positions {q1, . . . , qk} = RPos(s). From
Lemma 18(3) and the definition of f we see that ](s|qi) Q−→∗R f(qi) (i = 1, . . . , k) holds. Since
Fun(sj) ⊆ F holds by assumption for all arguments of sj of ](s|qi

), with Lemma 12 we can
refine these sequences to ](s|qi) Q

′
−−→∗R f(qi) (i = 1, . . . , k).

Observe that p ∈ RPos(s), i.e. p = qi for some i ∈ {1, . . . , k}. In particular ](s|qi
) =

](s|p) = f(qi) by definition of f . Lemma 18(2) yields a context D such that f(qi) Q−→DT(R)
D[](t|p1), . . . , ](t|pn

)], and consequently f(qi) Q
′
−−→DT(R) D[](t|p1), . . . , ](t|pn

)], for positions
{p1, . . . , pn} = {pq | q ∈ PosD(r)}. Putting things together, we can thus construct a rewrite
sequence

C[](s|q1), . . . , ](s|qi), . . . , ](s|qk
)] Q

′
−−→∗R C[f(q1), . . . , f(qi), . . . , f(qk)]
Q′
−−→DT(R) C[f(q1), . . . , D[](t|p1), . . . , ](t|pn

)], . . . , f(qk)] .

Let v be the last term of this sequence. We claim that v is good for t. Abbreviate
Q = {q ∈ RPos(s) | q < p∨q || p}. Observe that by Lemma 18(1), RPos(t) ⊆ Q∪{p1, . . . , pn}
holds. Since in particular Q ⊆ {q1, . . . , qi−1, qi+1, . . . qk} and f(q) = ](t|q) holds by definition
of f for all positions q ∈ Q, it is not difficult to see that v≫ t holds. J
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The lemma is straightforward to generalize to Q-restricted relative rewrite sequences.

I Corollary 20. Suppose NF(Q) ⊆ NF(R∪S), and let Q′ ⊆ Q∪Q¬F . Then u≫ s Q−→n
S/W t

implies u Q
′
−−→n

DT(S)/DT(W)∪S∪W v≫ t for some v.

I Theorem 21 (DT Processor). Let P = 〈S/W,Q, T 〉 be an innermost runtime complexity
problem. Then the DT processor transforms P into P ′ = 〈DT(S)/DT(W)∪ S ∪W,Q′, ](T )〉
for an arbitrary Q′ ⊆ Q ∪Q¬F , and ` P ′ : G implies ` P : G.

Proof. Soundness follows from Corollary 20, by reasoning similar to Theorem 15. J

Whenever WDPs or DTs are employed in a complexity proof, CeTA requires a clear
indication which of the two methods has been applied. Moreover, the set of all WDPs (or
DTs) has to be provided, as well as the extension of the strategy component: Q′ \ Q. All
other information is computed by CeTA, e.g., the set of compound symbols, renaming of
variables, etc.

6 Usable Rules and Usable Replacement Maps

Computing usable rules is a simple syntactic technique for innermost termination; detecting
that certain rules can never be applied in derivations starting from a given set of terms, and
may thus be discarded. While for termination analysis, we start from right-hand sides of
dependency pairs (instantiated by normal form substitutions); for complexity analysis, we
employ the corresponding set of starting terms. Existing results on innermost usable rules
for termination analysis made it quite easy to integrate usable rules for complexity analysis
into IsaFoR, cf. Usable_Rules_Complexity(_Impl) and Usable_Replacement_Map(_Impl).

Avanzini [1, Def. 14.44] as well as Hirokawa and Moser [10, Def. 14] define usable rules
via usable symbols. Our formalization simplifies and generalizes both definitions.

I Definition 22. Let the set of starting terms T be included in T (F ′,V). We define US to
be a set of usable symbols and U a set of usable rules for S/W w.r.t. T , if the following
three conditions are satisfied..
F ′ ⊆ US
whenever `→ r ∈ S ∪W and Fun(`) ⊆ US, then `→ r ∈ U , and
whenever `→ r ∈ U then Fun(r) ⊆ US.

We believe the above definition to be simpler than previous ones, since we avoid reflexive
transitive closures and do not distinguish between dependency pairs and other rules. Still, it is
easy to check that Definition 22 simulates previous definitions, by choosing US = F ′∪Fun(U),
where U is the set of usable rules as defined by Avanzini [1] and Hirokawa and Moser [10].
Moreover, Definition 22 is a generalization of the former, since all symbols of left-hand sides
are considered, as opposed to just root symbols.

I Example 23. Let S ∪ W = {f](g) → f](f(g)), g] → com, f(g) → f(f(g)), g → a} and
T = BT({f], g]}, {a},V). Then according to [1, 10] all rules are usable, whereas Definition 22
allows us to use F ′ = {f], g], a}, US = {f], g], a, com}, and U = {g] → com}.

For soundness of usable rules it is easy to prove that every derivation starting from T
does only contain terms in T (US,V). Hence we can remove all non-usable rules.

I Theorem 24. If U is a set of usable rules for S/W w.r.t. T , then ` 〈S∩U/W∩U ,Q, T 〉 : G
implies ` 〈S/W,Q, T 〉 : G.
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The whole formalization of this theorem via usable symbols, including definitions, occupies
only 100 lines, without having to reuse existing results on usable rules in IsaFoR. This is in
contrast to IsaFoR’s integration of the variant of usable rules used in AProVE, cf. the end of
Section 5.1 in [15]. Here, usable rules are based on unification and normal form checks, but
only work for innermost rewriting. In this part of the formalization, we heavily reused the
existing results for termination, and only little had to be added w.r.t. complexity analysis.
As an example, for complexity with its relative rewrite relation, it was required to switch
between a sequence of S/W-steps and a sequence that explicitly lists every single step in
each relative →∗W · →S · →∗W -step.

Since both variants of usable rules are incomparable, CeTA supports both. The certificate
just requires the set of usable rules. It is then automatically inferred which of the two variants
of usable rules is applicable.

Even less usable rules are obtained when employing argument filters from reduction pairs,
a well-known technique from termination analysis. This technique has already been adapted
for complexity, but we did not find any details in the literature. Thus, in the remainder of this
section, we clarify how usable rules, reduction pairs, argument filters, and usable replacement
maps can be combined. The upcoming theorem generalizes and improves existing complexity
results on reduction pairs ([1, Thm. 14.10], [11, Cor. 20], and [15, Thm. 26]), since usable
replacement maps can simulate safe reduction pairs of [11], cf. [1, Lemma 14.34].

Before presenting the main theorem, we first recapitulate the notion of usable replacement
maps ([1, Def. 14.5] and [11, Def. 8]). These mainly indicate a superset of all positions where
redexes may occur within terms of a derivation. To be more precise, for a replacement map
µ, two TRSs R and R′, and two sets of terms Q and T ; µ is a usable replacement map
(written URM(µ,Q,R, T ,R′)), if for all t ∈ T and t Q−→∗R s, all redexes of s w.r.t. Q−→R′ are
at µ-replacing positions of s.

Sufficient criteria to estimate usable replacement maps have been described in [11] for
full and innermost rewriting, and in [1, Lemma 14.34] for WDPs and DTs, where currently
CeTA only supports innermost rewriting, WDPs and DTs.

We will first present the main theorem, and then explain its ingredients and how to apply
it. Here, a complexity pair (�,%) consists of two partial orders which are both closed under
substitutions, which are compatible (% · � ·% ⊆ �) and where % is reflexive. A reduction
pair is a complexity pair where % is closed under contexts and � is strongly normalizing.

I Theorem 25. Let 〈S/W,Q, T 〉 be an innermost runtime complexity problem with T =
BT(D, C,V). Define R = S ∪W. Let µS , µW be replacement maps, let π be an argument
filter, let U be a set of usable rules, and let (�,%) be a complexity pair. If all of the following
conditions are satisfied, then ` 〈S/W,Q, T 〉 : G.
1. Whenever i /∈ π(f), then % ignores the i-th argument of f .
2. Both URM(µS ,Q,R, T ,S) and URM(µW ,Q,R, T ,W).
3. Whenever i ∈ µS(f) (µW(f)), then � (%) is monotone in the i-th argument of f .
4. S ∩ U ⊆ � and W ∩ U ⊆ %.
5. If `→ r ∈ R and ` ∈ T then `→ r ∈ U .
6. U is closed under right-hand sides of usable rules w.r.t. R for both µS and π ∩ µW .
7. ` 〈�/∅,∅, T 〉 : G

In the theorem, we have two replacement maps µS and µW for the strict and weak rules
as in [1, Thm. 14.10], but additionally there is the usual argument filter π indicating ignored
argument positions of % which is used to reduce the set of usable rules. Let us shortly walk
through all conditions of the theorem.
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1. π is the standard argument filter as known from termination proofs via reduction pairs,
e.g., if [f(x1, x2, x3)] = 2x2 + 1

2x3, then π(f) = {2, 3}.
2. Both µS and µW are estimated usable replacement maps, which can be computed by

one of the methods above, where especially [1, Lemma 14.34] is often only applicable to
generate µS .

3. The maps µS and µW indicate at which positions redexes may occur, and hence the
corresponding orders � and % must be monotone w.r.t. these positions.

4. Only usable rules have to be oriented by the complexity pair.
5. In the generation of usable rules, one starts to include all rules which have basic terms

on their left-hand sides
6. and then performs the closure of usable rules w.r.t. an argument filter as in [16].
7. Finally, one extracts the derivation bound from the strict order �, and eventually derives

the same bound for the input complexity problem.

We included this theorem into CeTA, where in the certificate just the complexity pair
and the usable rules have to be provided, in combination with the strict rules for the split
processor of Theorem 2. Since currently IsaFoR only has an interface for reduction pairs the
latter condition in 3 does not have to be checked at runtime. All other information will be
automatically inferred. To this end, we had to modify our interface of reduction pairs which
now has to provide means of querying monotonicity of � w.r.t. specific positions.

Using this theorem, CeTA could now certify most combinations of applying a complexity pair
with usable rules and/or usable replacement maps in our experiments. Possible improvements
at this point are the inclusion of better estimations of usable replacement maps, and better
support for the complexity pairs itself, e.g., by removing the restriction to upper triangular
matrix interpretations.

7 Experiments

We have tested our new formalization in combination with the only two complexity tools
that apply several of the methods described in this paper: AProVE [8] (version 2015.01) and
TCT [2] (version 2.2). Both were run on the termination problem data base, version 9.0.2,4
which was also used for the complexity category of the FLoC Olympic Games of 2014. All
tests were conducted on a machine with 8 dual core AMD Opteron™ 885 processors running
at 2.60GHz on 64Gb of RAM and within a timeout of 60 seconds per test.

Table 1 collects our experimental findings. Here we show totals on estimated upper
bounds (from constant to polynomial of unknown degree) on runtime complexities w.r.t. full
and innermost rewriting, the former being only supported by TCT. To delineate the extend
of our new formalization, we have compared the tools when run in various modes:

In certification mode (columns certification new) we restrict tools to those methods that
can also be certified by CeTA version 2.19. We contrast this data with results obtained from
the version of TCT that ran in certification mode at the recent termination competition
(columns certification old). Note that until now, AProVE did not feature certification
support, consequently respective results are not present in the table.
In full mode (columns full) we show totals when tools are run in their default setting,
i.e., possibly employing methods that cannot be certified by CeTA.

4 The TPDB is available at http://termcomp.uibk.ac.at/.

http://termcomp.uibk.ac.at/
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Table 1 Experimental Results.

Full Rewriting Innermost Rewriting
TCT TCT AProVE

certification full certification full certification full
new old new old new

constant 0 0 18 0 0 38 1 53
linear 134 67 182 234 117 278 159 249

quadratic 165 107 201 291 157 341 250 350
cubic 165 110 202 299 160 354 283 387

polynomial 165 110 203 301 160 361 283 387

Overall, the experiments confirm significant improvements of CeTA’s support for complexity
analysis. For instance with TCT we certified polynomially bounded innermost runtime
complexity of 301 systems. This corresponds to 83% of the systems that can be handled by
TCT when run in full mode. In contrast, relying on our old formalization TCT could handle
only 44% of the systems. The statement remains essentially correct for AProVE and TCT
w.r.t. full rewriting.

Even more important might have been our preliminary experiments, where several proofs
have been rejected by CeTA. Although the reason have often just been bugs in the proof-
output of the tools, we also revealed and fixed (or at least reported to the developers) some
more severe problems: one tool modified the sets D and C in the set of starting terms
T = BT(D, C,V) when deleting rules by the usable rules processor in a way that made the
tool unnecessarily weak (and unsound for lower complexity bounds); one tool had a bug
when computing usable rules which could be exploited to generate linear derivation bounds
for non-terminating TRSs; and also some match-bounds certificates have been rejected where
the corresponding code had to be disabled. Finally, also the required adaptation of Q to
Q′ ⊆ Q∪Q¬F , as discussed in Section 5, was only detected by earlier versions of CeTA which
did not support this possibility.

8 Conclusion

We presented our formalization of several techniques for complexity analysis that are now
part of the formal library IsaFoR: match-bounds, weak dependency pairs, dependency tuples,
usable rules, and usable replacement maps. Moreover, we reported on the resulting increase
in power of our certifier CeTA, which is now able to certify more than three quarters of all
complexity proofs that are generated by state-of-the-art tools.
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Abstract
Unification in Description Logics has been introduced as a means to detect redundancies in
ontologies. We try to extend the known decidability results for unification in the Description
Logic EL to disunification since negative constraints on unifiers can be used to avoid unwanted
unifiers. While decidability of the solvability of general EL-disunification problems remains an
open problem, we obtain NP-completeness results for two interesting special cases: dismatching
problems, where one side of each negative constraint must be ground, and local solvability of
disunification problems, where we restrict the attention to solutions that are built from so-called
atoms occurring in the input problem. More precisely, we first show that dismatching can be
reduced to local disunification, and then provide two complementary NP-algorithms for finding
local solutions of (general) disunification problems.

1998 ACM Subject Classification I.2.3 Deduction and Theorem Proving, I.2.4 Knowledge
Representation Formalisms and Methods

Keywords and phrases Unification, Description Logics, SAT

Digital Object Identifier 10.4230/LIPIcs.RTA.2015.40

1 Introduction

Description logics (DLs) [6] are a family of logic-based knowledge representation formalisms,
which can be used to represent the conceptual knowledge of an application domain in a
structured and formally well-understood way. They are employed in various application areas,
but their most notable success so far is the adoption of the DL-based language OWL [21]
as standard ontology language for the semantic web. DLs allow their users to define the
important notions (classes, relations) of the domain using concepts and roles; to state
constraints on the way these notions can be interpreted using terminological axioms; and to
deduce consequences such as subsumption (subclass) relationships from the definitions and
constraints. The expressivity of a particular DL is determined by the constructors available
for building concepts.

The DL EL, which offers the concept constructors conjunction (u), existential restriction
(∃r.C), and the top concept (>), has drawn considerable attention in the last decade since, on
the one hand, important inference problems such as the subsumption problem are polynomial
in EL, even with respect to expressive terminological axioms [16]. On the other hand, though
quite inexpressive, EL is used to define biomedical ontologies, such as the large medical
ontology SNOMEDCT.1 For these reasons, the most recent OWL version, OWL2, contains
the profile OWL2EL,2 which is based on a maximally tractable extension of EL [5].
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Unification in Description Logics was introduced in [12] as a novel inference service that
can be used to detect redundancies in ontologies. It is shown there that unification in the
DL FL0, which differs from EL in that existential restriction is replaced by value restriction
(∀r.C), is ExpTime-complete. The applicability of this result was not only hampered by this
high complexity, but also by the fact that FL0 is not used in practice to formulate ontologies.

In contrast, as mentioned above, EL is employed to build large biomedical ontologies for
which detecting redundancies is a useful inference service. For example, assume that one
developer of a medical ontology defines the concept of a patient with severe head injury as

Patient u ∃finding.(Head_injury u ∃severity.Severe), (1)

whereas another one represents it as

Patient u ∃finding.(Severe_finding u Injury u ∃finding_site.Head). (2)

Formally, these two concepts are not equivalent, but they are nevertheless meant to represent
the same concept. They can obviously be made equivalent by treating the concept names
Head_injury and Severe_finding as variables, and substituting the first one by Injury u
∃finding_site.Head and the second one by ∃severity.Severe. In this case, we say that the
concepts are unifiable, and call the substitution that makes them equivalent a unifier. In [10],
we were able to show that unification in EL is of considerably lower complexity than unification
in FL0: the decision problem for EL is NP-complete. The main idea underlying the proof
of this result is to show that any solvable EL-unification problem has a local unifier, i.e., a
unifier built from a polynomial number of so-called atoms determined by the unification
problem. However, the brute-force “guess and then test” NP-algorithm obtained from this
result, which guesses a local substitution and then checks (in polynomial time) whether it is
a unifier, is not useful in practice. We thus developed a goal-oriented unification algorithm
for EL, which is more efficient since nondeterministic decisions are only made if they are
triggered by “unsolved parts” of the unification problem. Another option for obtaining a more
efficient unification algorithm is a translation to satisfiability in propositional logic (SAT):
in [9] it is shown how a given EL-unification problem Γ can be translated in polynomial time
into a propositional formula whose satisfying valuations correspond to the local unifiers of Γ.

Intuitively, a unifier of two EL concepts proposes definitions for the concept names
that are used as variables: in our example, we know that, if we define Head_injury as
Injury u ∃finding_site.Head and Severe_finding as ∃severity.Severe, then the two concepts (1)
and (2) are equivalent w.r.t. these definitions. Of course, this example was constructed
such that the unifier (which is actually local) provides sensible definitions for the concept
names used as variables. In general, the existence of a unifier only says that there is a
structural similarity between the two concepts. The developer who uses unification as
a tool for finding redundancies in an ontology or between two different ontologies needs
to inspect the unifier(s) to see whether the definitions it suggests really make sense. For
example, the substitution that replaces Head_injury by Patient u Injury u ∃finding_site.Head
and Severe_finding by Patientu∃severity.Severe is also a local unifier, which however does not
make sense. Unfortunately, even small unification problems like the one in our example can
have too many local unifiers for manual inspection. In [2] we propose to restrict the attention
to so-called minimal unifiers, which form a subset of all local unifiers. In our example, the
nonsensical unifier is indeed not minimal. In general, however, the restriction to minimal
unifiers may preclude interesting local unifiers. In addition, as shown in [2], computing
minimal unifiers is actually harder than computing local unifiers (unless the polynomial
hierarchy collapses). In the present paper, we propose disunification as a more direct approach
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for avoiding local unifiers that do not make sense. In addition to positive constraints (requiring
equivalence or subsumption between concepts), a disunification problem may also contain
negative constraints (preventing equivalence or subsumption between concepts). In our
example, the nonsensical unifier can be avoided by adding the dissubsumption constraint

Head_injury 6v? Patient (3)

to the equivalence constraint (1) ≡? (2).
Unification and disunification in DLs is actually a special case of unification and disunifi-

cation modulo equational theories (see [12] and [10] for the equational theories respectively
corresponding to FL0 and EL). Disunification modulo equational theories has, e.g., been
investigated in [17, 18]. It is well-known in unification theory that for effectively finitary
equational theories, i.e., theories for which finite complete sets of unifiers can effectively be
computed, disunification can be reduced to unification: to decide whether a disunification
problem has a solution, one computes a finite complete set of unifiers of the equations and
then checks whether any of the unifiers in this set also solves the disequations. Unfortunately,
for FL0 and EL, this approach is not feasible since the corresponding equational theories
have unification type zero [10, 12], and thus finite complete sets of unifiers need not even
exist. Nevertheless, it was shown in [14] that the approach used in [12] to decide unification
(reduction to language equations, which are then solved using tree automata) can be adapted
such that it can also deal with disunification. This yields the result that disunification in
FL0 has the same complexity (ExpTime-complete) as unification.

For EL, going from unification to disunification appears to be more problematic. In fact,
the main reason for unification to be decidable and in NP is locality: if the problem has
a unifier then it has a local unifier. We will show that disunification in EL is not local in
this sense by providing an example of a disunification problem that has a solution, but no
local solution. Decidability and complexity of disunification in EL remains an open problem,
but we provide partial solutions that are of interest in practice. On the one hand, we
investigate dismatching problems, i.e., disunification problems where the negative constraints
are dissubsumptions C 6v? D for which C or D is ground (i.e., does not contain a variable).
Note that the dissubsumption (3) from above actually satisfies this restriction since Patient
is not a variable. We prove that (general) solvability of dismatching problems can be reduced
to local disunification, i.e., the question whether a given EL-disunification problem has a
local solution, which shows that dismatching in EL is NP-complete. On the other hand, we
develop two specialized algorithms to solve local disunification problems that extend the ones
for unification [9, 10]: a goal-oriented algorithm that reduces the amount of nondeterministic
guesses necessary to find a local solution, as well as a translation to SAT. The reason
we present two kinds of algorithms is that, in the case of unification, they have proved
to complement each other well in first evaluations [1]: the goal-oriented algorithm needs
less memory and finds minimal solutions faster, while the SAT reduction generates larger
data structures (of cubic size), but outperforms the goal-oriented algorithm on unsolvable
problems.

Full proofs of the results presented below can be found in [4].

2 Subsumption and dissubsumption in EL

The syntax of EL is defined based on two sets NC and NR of concept names and role names,
respectively. Concept terms are built from concept names using the constructors conjunction
(CuD), existential restriction (∃r.C for r ∈ NR), and top (>). An interpretation I = (∆I , ·I)
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Table 1 Syntax and semantics of EL.

Name Syntax Semantics

top > >I := ∆I

conjunction C uD (C uD)I := CI ∩DI

existential restriction ∃r.C (∃r.C)I := {x | ∃y.(x, y) ∈ rI ∧ y ∈ CI}

consists of a non-empty domain ∆I and an interpretation function that maps concept names
to subsets of ∆I and role names to binary relations over ∆I . This function is extended to
concept terms as shown in the semantics column of Table 1.

A concept term C is subsumed by a concept term D (written C v D) if for every
interpretation I it holds that CI ⊆ DI . We write a dissubsumption C 6v D to abbreviate
the fact that C v D does not hold. The two concept terms C and D are equivalent (written
C ≡ D) if C v D and D v C. Note that we use “=” to denote syntactic equality between
concept terms, whereas “≡” denotes semantic equivalence.

Since conjunction is interpreted as intersection, we can treat u as a commutative and
associative operator, and thus dispense with parentheses in nested conjunctions. An atom is
a concept name or an existential restriction. Hence, every concept term C is a conjunction of
atoms or >. We call the atoms in this conjunction the top-level atoms of C. Obviously, C is
equivalent to the conjunction of its top-level atoms, where the empty conjunction corresponds
to >. An atom is flat if it is a concept name or an existential restriction of the form ∃r.A
with A ∈ NC.

Subsumption in EL is decidable in polynomial time [8] and can be checked by recursively
comparing the top-level atoms of the two concept terms.

I Lemma 1 ([10]). For two atoms C,D, we have C v D iff C = D is a concept name or
C = ∃r.C ′, D = ∃r.D′, and C ′ v D′. If C,D are concept terms, then C v D iff for every
top-level atom D′ of D there is a top-level atom C ′ of C such that C ′ v D′.

We obtain the following contrapositive formulation characterizing dissubsumption.

I Lemma 2. For two concept terms C,D, we have C 6v D iff there is a top-level atom D′

of D such that for all top-level atoms C ′ of C it holds that C ′ 6v D′.

In particular, C 6v D is characterized by the existence of a top-level atom D′ of D for which
C 6v D′ holds. By further analyzing the structure of atoms, we obtain the following.

I Lemma 3. Let C,D be two atoms. Then we have C 6v D iff either
1. C or D is a concept name and C 6= D; or
2. D = ∃r.D′, C = ∃s.C ′, and r 6= s; or
3. D = ∃r.D′, C = ∃r.C ′, and C ′ 6v D′.

3 Disunification

As described in the introduction, we now partition the set NC into a set of (concept)
variables (Nv) and a set of (concept) constants (Nc). A concept term is ground if it does not
contain any variables. We define a quite general notion of disunification problems that is
similar to the equational formulae used in [18].
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I Definition 4. A disunification problem Γ is a formula built from subsumptions of the
form C v? D, where C and D are concept terms, using the logical connectives ∧, ∨, and ¬.
We use equations C ≡? D to abbreviate (C v? D) ∧ (D v? C), disequations C 6≡? D for
¬(C v? D) ∨ ¬(D v? C), and dissubsumptions C 6v? D instead of ¬(C v? D). A basic
disunification problem is a conjunction of subsumptions and dissubsumptions. A dismatching
problem is a basic disunification problem in which all dissubsumptions C 6v? D are such that
C or D is ground. Finally, a unification problem is a conjunction of subsumptions.

The definition of dismatching problems is partially motivated by the definition of matching in
description logics, where similar restrictions are imposed on unification problems [7, 11, 23].
Another motivation comes from our experience that dismatching problems already suffice to
formulate most of the negative constraints one may want to put on unification problems, as
described in the introduction.

To define the semantics of disunification problems, we now fix a finite signature Σ ⊆ NC∪NR
and assume that all disunification problems contain only concept terms constructed over
the symbols in Σ. A substitution σ maps every variable in Σ to a ground concept term
constructed over the symbols of Σ. This mapping can be extended to all concept terms
(over Σ) in the usual way. A substitution σ solves a subsumption C v? D if σ(C) v σ(D);
it solves Γ1 ∧ Γ2 if it solves both Γ1 and Γ2; it solves Γ1 ∨ Γ2 if it solves Γ1 or Γ2; and it
solves ¬Γ if it does not solve Γ. A substitution that solves a given disunification problem is
called a solution of this problem. A disunification problem is solvable if it has a solution.

In contrast to unification, in disunification it does make a difference whether or not
solutions may contain variables from Nv ∩ Σ or additional symbols from (NC ∪ NR) \ Σ [17].
In the context of the application sketched in the introduction, restricting solutions to ground
terms over Σ is appropriate: the finite signature Σ contains exactly the symbols that occur
in the ontology to be checked for redundancy, and since a solution σ is supposed to provide
definitions for the variables in Σ, it should not use the variables themselves to define them;
moreover, definitions that contain symbols that are not in Σ would be meaningless to the
user.

Reduction to basic disunification problems

We will consider only basic disunification problems in the following. The reason is that there
is a straightforward NP-reduction from solvability of arbitrary disunification problems to
solvability of basic disunification problems. In this reduction, we view all subsumptions
occurring in the disunification problem as propositional variables and guess a satisfying
valuation of the resulting propositional formula. It then suffices to check solvability of the
basic disunification problem obtained as the conjunction of all subsumptions evaluated to
true and the negations of all subsumptions evaluated to false. Since the problems considered
in the following sections are all NP-complete, the restriction to basic disunification problems
does not affect our complexity results. In the following, we thus restrict the attention to
basic disunification problems, which we simply call disunification problems and consider them
to be sets of subsumptions and dissubsumptions.

Reduction to flat disunification problems

We further simplify our analysis by considering flat disunification problems, which means
that they may only contain flat dissubsumptions of the form C1 u · · · uCn 6v? D1 u · · · uDm
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for flat atoms C1, . . . , Cn, D1, . . . , Dm with m,n ≥ 0,3 and flat subsumptions of the form
C1 u · · · u Cn v? D1 for flat atoms C1, . . . , Cn, D1 with n ≥ 0.

The restriction to flat disunification problems is without loss of generality: to flatten con-
cept terms, one can simply introduce new variables and equations to abbreviate subterms [10].
Moreover, a subsumption of the form C v? D1 u · · · uDm is equivalent to C v? D1, . . . ,
C v? Dm. Any solution of a disunification problem Γ can be extended to a solution of the
resulting flat disunification problem Γ′, and conversely every solution of Γ′ also solves Γ.

This flattening procedure also works for unification problems. However, dismatching
problems cannot without loss of generality be restricted to being flat since the introduction
of new variables to abbreviate subterms may destroy the property that one side of each
dissubsumption is ground (see also Section 4).

For solving flat unification problems, it has been shown that it suffices to consider so-called
local solutions [10], which are restricted to use only the atoms occurring in the input problem.
We extend this notion to disunification as follows. Let Γ be a flat disunification problem.
We denote by At the set of all (flat) atoms occurring as subterms in Γ, by Var the set of
variables occurring in Γ, and by Atnv := At \ Var the set of non-variable atoms of Γ. Let
S : Var→ 2Atnv be an assignment (for Γ), i.e. a function that assigns to each variable X ∈ Var
a set SX ⊆ Atnv of non-variable atoms. The relation >S on Var is defined as the transitive
closure of {(X,Y ) ∈ Var2 | Y occurs in an atom of SX}. If this defines a strict partial order,
i.e. >S is irreflexive, then S is called acyclic. In this case, we can define the substitution
σS inductively along >S as follows: if X is minimal, then σS(X) :=

d
D∈SX D; otherwise,

assume that σS(Y ) is defined for all Y ∈ Var with X > Y , and define

σS(X) :=
l

D∈SX

σS(D).

It is easy to see that the concept terms σS(D) are ground and constructed from the symbols
of Σ, and hence σS is a valid candidate for a solution of Γ according to Definition 4.

I Definition 5. Let Γ be a flat disunification problem. A substitution σ is called local if
there exists an acyclic assignment S for Γ such that σ = σS . The disunification problem Γ
is locally solvable if it has a local solution, i.e. a solution that is a local substitution. Local
disunification is the problem of checking flat disunification problems for local solvability.

Note that assignments and local solutions are defined only for flat disunification problems.
Obviously, local disunification is decidable in NP: We can guess an assignment S, and

check it for acyclicity and whether the induced substitution solves the disunification problem
in polynomial time. It has been shown [10] that unification in EL is local in the sense that the
equivalent flattened problem has a local solution iff the original problem is solvable. Hence
not only local, but also general solvability of unification problems in EL can be decided in
NP. In addition, this shows that NP-hardness already holds for local unification, and thus
also for local disunification.

I Fact 6. Deciding local solvability of flat disunification problems in EL is NP-complete.

The next example shows that disunification in EL is not local in this sense.

I Example 7. Consider the flat disunification problem

Γ := {X v? B, A uB u C v? X, ∃r.X v? Y, > 6v? Y, Y 6v? ∃r.B}

3 Recall that the empty conjunction is >.
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with variables X,Y and constants A,B,C. The substitution σ with σ(X) := A uB uC and
σ(Y ) := ∃r.(A u C) is a solution of Γ. For σ to be local, the atom ∃r.(A u C) would have to
be of the form σ(D) for a non-variable atom D occurring in Γ. But the only candidates for
D are ∃r.X and ∃r.B, none of which satisfy ∃r.(A u C) = σ(D).

We show that Γ cannot have another solution that is local. Assume to the contrary
that Γ has a local solution γ. We know that γ(Y ) cannot be > since γ must solve the first
dissubsumption. Furthermore, none of the constants A,B,C can be a top-level atom of γ(Y )
since this would contradict the third subsumption. That leaves only the non-variable atoms
∃r.γ(X) and ∃r.B, which are ruled out by the last dissubsumption since both γ(X) and B
are subsumed by B.

The decidability and complexity of general solvability of disunification problems is still open.
In the following, we first consider the special case of solving dismatching problems, for which
we show a similar result as for unification: every dismatching problem can be polynomially
reduced to a flat problem that has a local solution iff the original problem is solvable. The
main difference is that this reduction is nondeterministic. In this way, we reduce dismatching
to local disunification. We then provide two different NP-algorithms for the latter problem
by extending the rule-based unification algorithm from [10] and adapting the SAT encoding
of unification problems from [9]. These algorithms are more efficient than the brute-force
“guess and then test” procedure on which our argument for Fact 6 was based.

4 Reducing dismatching to local disunification

As mentioned in Section 3, we cannot restrict our attention to flat dismatching problems
without loss of generality. Instead, the nondeterministic algorithm we present in the following
reduces any dismatching problem Γ to a flat disunification problem Γ′ with the property that
local solvability of Γ′ is equivalent to the solvability of Γ. Since the algorithm takes at most
polynomial time in the size of Γ, this shows that dismatching in EL is NP-complete. For
simplicity, we assume that the subsumptions and the non-ground sides of the dissubsumptions
have already been flattened using the approach mentioned in the previous section. This
retains the property that all dissubsumptions have one ground side and does not affect the
solvability of the problem.

Our procedure exhaustively applies a set of rules to the (dis)subsumptions in a dismatching
problem (see Figures 1 and 2). In these rules, C1, . . . , Cn and D1, . . . , Dm are atoms. The
rule Left Decomposition includes the special case where the left-hand side of s is >, in which
case s is simply removed from the problem. Note that at most one rule is applicable to any
given (dis)subsumption. The choice which (dis)subsumption to consider next is don’t care
nondeterministic, but the choices in the rules Right Decomposition and Solving Left-Ground
Dissubsumptions are don’t know nondeterministic.

I Algorithm 8. Let Γ0 be a dismatching problem. We initialize Γ := Γ0. While any of the
rules of Figures 1 and 2 is applicable to any element of Γ, choose one such element and apply
the corresponding rule. If any rule application fails, then return “failure”.

To see that every run of the nondeterministic algorithm terminates in polynomial time,
note that each rule application takes only polynomial time in the size of the chosen
(dis)subsumption. In particular, subsumptions between ground atoms can be checked in
polynomial time [8]. Additionally, we can show that the algorithm needs at most polynomially
many rule applications since each rule application decreases the following measure on Γ: we
sum up all sizes of (dis)subsumptions in Γ to which a rule is still applicable, where the size
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Right Decomposition:
Condition: This rule applies to s = C1 u · · · u Cn 6v? D1 u · · · uDm if m = 0 or m > 1, and
C1, . . . , Cn, D1, . . . , Dm are atoms.
Action: If m = 0, then fail. Otherwise, choose an index i ∈ {1, . . . , m} and replace s by
C1 u · · · u Cn 6v? Di.

Left Decomposition:
Condition: This rule applies to s = C1 u · · ·uCn 6v? D if n = 0 or n > 1, C1, . . . , Cn are atoms,
and D is a non-variable atom.
Action: Replace s by C1 6v? D, . . . , Cn 6v? D.

Atomic Decomposition:
Condition: This rule applies to s = C 6v? D if C and D are non-variable atoms.
Action: Apply the first case that matches s:
a) if C and D are ground and C v D, then fail;
b) if C and D are ground and C 6v D, then remove s from Γ;
c) if C or D is a constant, then remove s from Γ;
d) if C = ∃r.C′ and D = ∃s.D′ with r 6= s, then remove s from Γ;
e) if C = ∃r.C′ and D = ∃r.D′, then replace s by C′ 6v? D′.

Figure 1 Decomposition rules.

of C v? D or C 6v? D is defined as |C| · |D|, and |C| is the number of symbols needed to
write down C (for details, see [4]).

Note that the Solving rule for left-ground dissubsumptions is not limited to non-flat
dissubsumptions, and thus the algorithm completely eliminates all left-ground dissubsump-
tions from Γ. It is also easy to see that, if the algorithm is successful, then the resulting
disunification problem Γ is flat. We now prove that this nondeterministic procedure is correct
in the following sense.

I Lemma 9. The dismatching problem Γ0 is solvable iff there is a successful run of Algorithm 8
such that the resulting flat disunification problem Γ has a local solution.

Proof Sketch. Soundness (i.e., the if direction) is easy to show, using Lemmas 1–3. Showing
completeness (i.e., the only-if direction) is more involved. Basically, given a solution γ of Γ0,
we can use γ to guide the rule applications and extend γ to the newly introduced variables
such that each rule application is successful and the invariant “γ solves all (dis)subsumptions
of Γ” is maintained. Once no more rules can be applied, we have a flat disunification
problem Γ of which the extended substitution γ is a (possibly non-local) solution. To obtain
a local solution, we denote by At, Var, and Atnv the sets as defined in Section 3 and define
the assignment S induced by γ as:

SX := {D ∈ Atnv | γ(X) v γ(D)},

for all (old and new) variables X ∈ Var. It can be shown that this assignment is acyclic and
that the induced local substitution σS solves Γ, and thus also Γ0 (see [4] for details). J

The disunification problem of Example 7 is in fact a dismatching problem. The rule Solving
Left-Ground Dissubsumptions can be used to replace > 6v? Y with Y v? ∃r.Z. The presence
of the new atom ∃r.Z makes the solution σ introduced in Example 7 local.
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Flattening Right-Ground Dissubsumptions:
Condition: This rule applies to s = X 6v? ∃r.D if X is a variable and D is ground and is not a
concept name.
Action: Introduce a new variable XD and replace s by X 6v? ∃r.XD and D v? XD.

Flattening Left-Ground Subsumptions:
Condition: This rule applies to s = C1u· · ·uCnu∃r1.D1u· · ·u∃rm.Dm v? X if m > 0,X is a
variable, C1, . . . , Cn are flat ground atoms, and ∃r1.D1, . . . , ∃rm.Dm are non-flat ground atoms.
Action: Introduce new variables XD1 , . . . , XDm and replace s by D1 v? XD1 , . . . , Dm v? XDm

and C1 u · · · u Cn u ∃r1.XD1 u · · · u ∃rm.XDm v? X.

Solving Left-Ground Dissubsumptions:
Condition: This rule applies to s = C1 u · · · u Cn 6v? X if X is a variable and C1, . . . , Cn are
ground atoms.
Action: Choose one of the following options:

Choose a constant A ∈ Σ and replace s by X v? A. If C1 u · · · u Cn v A, then fail.
Choose a role r ∈ Σ, introduce a new variable Z, replace s by X v? ∃r.Z, C1 6v? ∃r.Z, . . . ,
Cn 6v? ∃r.Z, and immediately apply Atomic Decomposition to each of these dissubsumptions.

Figure 2 Flattening and solving rules.

Together with Fact 6 and the NP-hardness of unification in EL [10], Lemma 9 yields the
following complexity result.

I Theorem 10. Deciding solvability of dismatching problems in EL is NP-complete.

5 A goal-oriented algorithm for local disunification

In this section, we present an algorithm for local disunification that is based on transformation
rules. Basically, to solve the subsumptions, this algorithm uses the rules of the goal-oriented
algorithm for unification in EL [10, 3], which produces only local unifiers. Since any local
solution of the disunification problem is a local unifier of the subsumptions in the problem, one
might think that it is then sufficient to check whether any of the produced unifiers also solves
the dissubsumptions. This would not be complete, however, since the goal-oriented algorithm
for unification does not produce all local unifiers. For this reason, we have additional rules
for solving the dissubsumptions. Both rule sets contain (deterministic) eager rules that are
applied with the highest priority, and nondeterministic rules that are only applied if no eager
rule is applicable. The goal of the eager rules is to enable the algorithm to detect obvious
contradictions as early as possible in order to reduce the number of nondeterministic choices
it has to make.

Let now Γ0 be the flat disunification problem for which we want to decide local solvability,
and let the sets At, Var, and Atnv be defined as in Section 3. We assume without loss of
generality that the dissubsumptions in Γ0 have only a single atom on the right-hand side. If
this is not the case, it can easily be achieved by exhaustive application of the nondeterministic
rule Right Decomposition (see Figure 1) without affecting the complexity of the overall
procedure.

Starting with Γ0, the algorithm maintains a current disunification problem Γ and a current
acyclic assignment S, which initially assigns the empty set to all variables. In addition, for
each subsumption or dissubsumption in Γ, it maintains the information on whether it is solved
or not. Initially, all subsumptions of Γ0 are unsolved, except those with a variable on the
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right-hand side, and all dissubsumptions in Γ0 are unsolved, except those with a variable on
the left-hand side and a non-variable atom on the right-hand side. Subsumptions of the form
C1 u · · · u Cn v? X and dissubsumptions of the form X 6v? D, for a non-variable atom D,
are called initially solved. Intuitively, they only specify constraints on the assignment SX .
More formally, this intuition is captured by the process of expanding Γ w.r.t. the variable X,
which performs the following actions:

every initially solved subsumption s ∈ Γ of the form C1 u · · · u Cn v? X is expanded by
adding the subsumption C1 u · · · u Cn v? E to Γ for every E ∈ SX , and
every initially solved dissubsumption X 6v? D ∈ Γ is expanded by adding E 6v? D to Γ
for every E ∈ SX .

A (non-failing) application of a rule of our algorithm does the following:
it solves exactly one unsolved subsumption or dissubsumption,
it may extend the current assignment S by adding elements of Atnv to some set SX ,
it may introduce new flat subsumptions or dissubsumptions built from elements of At,
it keeps Γ expanded w.r.t. all variables X.

Subsumptions and dissubsumptions are only added by a rule application or by expansion if
they are not already present in Γ. If a new subsumption or dissubsumption is added to Γ, it
is marked as unsolved, unless it is initially solved (because of its form). Solving subsumptions
and dissubsumptions is mostly independent, except for expanding Γ, which can add new
unsolved subsumptions and dissubsumptions at the same time, and may be triggered by
solving a subsumption or a dissubsumption.

The rules dealing with subsumptions are depicted in Figure 3; these three eager and two
nondeterministic rules are essentially the same as the ones in [3], with the only difference that
the background ontology T used there is empty for our purposes. Note that several rules
may be applicable to the same subsumption, and there is no preference between them. Using
Eager Ground Solving, the algorithm can immediately evaluate ground subsumptions via the
polynomial-time algorithm of [8]. If the required subsumption holds, it is marked as solved,
and otherwise Γ cannot be solvable and hence the algorithm fails. Eager Solving detects
when a subsumption trivially holds because the atom D from the right-hand side is already
present on the left-hand side, either directly or via the assignment of a variable. Eager
Extension is applicable in case the left-hand side of a subsumption is essentially equivalent
to a single variable X due to all its atoms being “subsumed by” SX . In this case, there is no
other option but to add the right-hand side atom to SX to solve the subsumption, and to
expand Γ w.r.t. this new assignment. In case none of the eager rules apply to a subsumption,
it can be solved nondeterministically by either extending the assignment of a variable that
occurs on the left-hand side (Extension), or decomposing the subsumption by looking for
matching existential restrictions on both sides (cf. Lemma 1).

The new rules for solving dissubsumptions are listed in Figure 4. These include variants
of the Left Decomposition and Atomic Decomposition rules from the previous section (see
Figure 1). In these two rules, which are eager, instead of removing dissubsumptions we
mark them as solved. Additionally, Γ may have to be expanded if such a rule adds a new
dissubsumption that is initially solved. The new nondeterministic rule Local Extension
follows the same idea as the Solving rule for left-ground dissubsumptions (see Figure 2),
but does not have to introduce new variables and atoms since we are looking only for local
solutions. Note that the left-hand side of s may be a variable, and then s is of the form
Y 6v? X. This dissubsumption is not initially solved, because X is not a non-variable atom.

I Algorithm 11. Let Γ0 be a flat disunification problem. We initialize Γ := Γ0 and SX := ∅
for all variables X ∈ Var. While Γ contains an unsolved subsumption or dissubsumption, do
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Eager Ground Solving:
Condition: This rule applies to s = C1 u · · · u Cn v? D ∈ Γ, if s is ground.
Action: The rule application fails if s does not hold. Otherwise, s is marked as solved.

Eager Solving:
Condition: This rule applies to s = C1 u · · · u Cn v? D ∈ Γ, if there is an index i ∈ {1, . . . , n},
such that Ci = D or Ci = X ∈ Var and D ∈ SX .
Action: The application of the rule marks s as solved.

Eager Extension:
Condition: This rule applies to s = C1 u · · · u Cn v? D ∈ Γ, if there is an index i ∈ {1, . . . , n},
such that Ci = X ∈ Var and {C1, . . . , Cn} \ {X} ⊆ SX .
Action: The application of the rule adds D to SX . If this makes S cyclic, the rule application
fails. Otherwise, Γ is expanded w.r.t. X and s is marked as solved.

Decomposition:
Condition: This rule applies to s = C1 u · · · u Cn v? ∃s.D ∈ Γ, if there is at least one index
i ∈ {1, . . . , n} with Ci = ∃s.C.
Action: The application of the rule chooses such an index i, adds C v? D to Γ, expands Γ
w.r.t. D if D is a variable, and marks s as solved.

Extension:
Condition: This rule applies to s = C1 u · · · u Cn v? D ∈ Γ, if there is at least one index
i ∈ {1, . . . , n} with Ci ∈ Var.
Action: The application of the rule chooses such an index i and adds D to SCi . If this makes S

cyclic, the rule application fails. Otherwise, Γ is expanded w.r.t. Ci and s is marked as solved.

Figure 3 Rules for subsumptions.

the following:
1. Eager rule application: If eager rules are applicable to some unsolved subsumption or

dissubsumption s in Γ, apply an arbitrarily chosen one to s. If the rule application fails,
return “failure”.

2. Nondeterministic rule application: If no eager rule is applicable, let s be an unsolved
subsumption or dissubsumption in Γ. If one of the nondeterministic rules applies to s,
choose one and apply it. If none of these rules apply to s or the rule application fails,
then return “failure”.

Once all (dis)subsumptions in Γ are solved, return the substitution σS that is induced by
the current assignment.

As with Algorithm 8, the choice which (dis)subsumption to consider next and which eager
rule to apply is don’t care nondeterministic, while the choice of which nondeterministic rule
to apply and the choices inside the rules are don’t know nondeterministic. Each of these
latter choices may result in a different solution σS . All proof details for the following results
can be found in [4].

I Lemma 12. Every run of Algorithm 11 terminates in time polynomial in the size of Γ0.

Proof Sketch. We can show that each (dis)subsumption that is added by a rule or by
expansion is either of the form C v? D or C 6v? D, where C,D ∈ At, or of the form
C1 u · · · u Cn v? E, where C1 u · · · u Cn is the left-hand side of a subsumption from
the original problem Γ0 and E ∈ At. Obviously, there are only polynomially many such
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Eager Top Solving:
Condition: This rule applies to s = C 6v? > ∈ Γ.
Action: The rule application fails.

Eager Left Decomposition:
Condition: This rule applies to s = C1 u · · · u Cn 6v? D ∈ Γ if n = 0 or n > 1, and D ∈ Atnv.
Action: The application of the rule marks s as solved and, for each i ∈ {1, . . . , n}, adds Ci 6v? D

to Γ and expands Γ w.r.t. Ci if Ci is a variable.

Eager Atomic Decomposition:
Condition: This rule applies to s = C 6v? D ∈ Γ if C, D ∈ Atnv.
Action: The application of the rule applies the first case that matches s:
a) if C and D are ground and C v D, then the rule application fails;
b) if C and D are ground and C 6v D, then s is marked as solved;
c) if C or D is a concept name, then s is marked as solved;
d) if C = ∃r.C′ and D = ∃s.D′ with r 6= s, then s is marked as solved;
e) if C = ∃r.C′ and D = ∃r.D′, then C′ 6v? D′ is added to Γ, Γ is expanded w.r.t. C′ if C′ is a

variable and D′ is not a variable, and s is marked as solved.

Local Extension:
Condition: This rule applies to s = C 6v? X ∈ Γ if X ∈ Var.
Action: The application of the rule chooses D ∈ Atnv and adds D to SX . If this makes S

cyclic, the rule application fails. Otherwise, the new dissubsumption C 6v? D is added to Γ, Γ is
expanded w.r.t. X, Γ is expanded w.r.t. C if C is a variable, and s is marked as solved.

Figure 4 New rules for dissubsumptions.

(dis)subsumptions. Additionally, each rule application solves at least one (dis)subsumption
and takes at most polynomial time. J

To show soundness of the procedure, assume that a run of the algorithm terminates with
success, i.e. all subsumptions and dissubsumptions are solved. Let Γ̂ be the set of all
subsumptions and dissubsumptions produced by this run, S be the final assignment, and σS
the induced substitution (see Section 3). To show that σS solves Γ̂, and hence also Γ0, we
use induction on the following order on (dis)subsumptions.

I Definition 13. Consider any (dis)subsumption s of the form C1 u · · · u Cn v? Cn+1 or
C1 u · · · u Cn 6v? Cn+1 in Γ̂.

We define m(s) := (m1(s),m2(s)), where
m1(s) := ∅ if s is ground; otherwise, m1(s) := {X1, . . . , Xm}, where {X1, . . . , Xm} is
the multiset of all variables occurring in C1, . . . , Cn, Cn+1.
m2(s) := |s|, where |s| is the size of s, i.e. the number of symbols in s.

The strict partial order � on such pairs is the lexicographic order, where the second
components are compared w.r.t. the usual order on natural numbers, and the first
components are compared w.r.t. the multiset extension of >S [13].
We extend � to Γ̂ by setting s1 � s2 iff m(s1) � m(s2).

Since multiset extensions and lexicographic products of well-founded strict partial orders
are again well-founded [13], � is a well-founded strict partial order on Γ̂. We can then use
the fact that the (dis)subsumptions produced by Algorithm 11 are always smaller w.r.t. this

RTA 2015



52 Dismatching and Local Disunification in EL

order than the (dis)subsumptions they were created from to prove the following lemma by
well-founded induction over �.

I Lemma 14. σS is a local solution of Γ̂, and thus also of its subset Γ0.

To prove completeness, assume that σ is a local solution of Γ0. We can show that σ can guide
the choices of Algorithm 11 to obtain a local solution σ′ of Γ0 such that, for every variable X,
we have σ(X) v σ′(X). The following invariants will be maintained throughout the run of
the algorithm for the current set of (dis)subsumptions Γ and the current assignment S:

I. σ is a solution of Γ. II. For each D ∈ SX , we have that σ(X) v σ(D).

By Lemma 1, chains of the form σ(X1) v σ(∃r1.X2), . . .σ(Xn−1) v σ(∃rn−1.Xn) with
X1 = Xn are impossible, and thus invariant II implies that S is acyclic. Hence, if extending S
during a rule application preserves this invariant, this extension will not cause the algorithm
to fail. In [4] it is shown that

the invariants are maintained by the operation of expanding Γ;
the application of an eager rule never fails and maintains the invariants; and
if s is an unsolved (dis)subsumption of Γ to which no eager rule applies, then there
is a nondeterministic rule that can be successfully applied to s while maintaining the
invariants.

This concludes the proof of correctness of Algorithm 11, which provides a more goal-directed
way to solve local disunification problems than blindly guessing an assignment as described
in Section 4.

I Theorem 15. The flat disunification problem Γ0 has a local solution iff there is a successful
run of Algorithm 11 on Γ0.

6 Encoding local disunification into SAT

The following reduction to SAT is a generalization of the one for unification problems in [9].
We again consider a flat disunification problem Γ and the sets At, Var, and Atnv as in Section 3.
Since we are restricting our considerations to local solutions, we can without loss of generality
assume that the sets Nv, Nc, and NR contain exactly the variables, constants, and role names
occurring in Γ. To further simplify the reduction, we assume in the following that all flat
dissubsumptions in Γ are of the form X 6v? Y for variables X,Y . This is without loss of
generality, which can be shown using a transformation similar to the flattening rules from
Section 4.

The translation into SAT uses the propositional variables [C v D] for all C,D ∈ At. The
SAT problem consists of a set of clauses Cl(Γ) over these variables that express properties
of (dis)subsumption in EL and encode the elements of Γ. The intuition is that a satisfying
valuation of Cl(Γ) induces a local solution σ of Γ such that σ(C) v σ(D) holds whenever
[C v D] is true under the valuation. The solution σ is constructed by first extracting an
acyclic assignment S out of the satisfying valuation and then computing σ := σS . We
additionally introduce the variables [X > Y ] for all X,Y ∈ Nv to ensure that the generated
assignment S is indeed acyclic. This is achieved by adding clauses to Cl(Γ) that express that
>S is a strict partial order, i.e. irreflexive and transitive.

Finally, we use the auxiliary variables pC,X,D for all X ∈ Nv, C ∈ At, and D ∈ Atnv
to express the restrictions imposed by dissubsumptions of the form C 6v? X in clausal
form. More precisely, whenever [C v X] is false for some X ∈ Nv and C ∈ At, then the
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dissubsumption σ(C) 6v σ(X) should hold. By Lemma 2, this means that we need to find an
atom D ∈ Atnv that is a top-level atom of σ(X) and satisfies σ(C) 6v σ(D). This is enforced
by making the auxiliary variable pC,X,D true, which makes [X v D] true and [C v D] false
(see Definition 167).

I Definition 16. The set Cl(Γ) contains the following propositional clauses:
(I) Translation of Γ.

a. For every subsumption C1 u · · · u Cn v? D in Γ with D ∈ Atnv:
→ [C1 v D] ∨ · · · ∨ [Cn v D]

b. For every subsumption C1 u · · · uCn v? X in Γ with X ∈ Nv, and every E ∈ Atnv:
[X v E]→ [C1 v E] ∨ · · · ∨ [Cn v E]

c. For every dissubsumption X 6v? Y in Γ: [X v Y ]→
(IV) Properties of subsumptions between non-variable atoms.

a. For every A ∈ Nc: → [A v A]
b. For every A,B ∈ Nc with A 6= B: [A v B]→
c. For every ∃r.A, ∃s.B ∈ Atnv with r 6= s: [∃r.A v ∃s.B]→
d. For every A ∈ Nc and ∃r.B ∈ Atnv:

[A v ∃r.B]→ and [∃r.B v A]→
e. For every ∃r.A, ∃r.B ∈ Atnv:

[∃r.A v ∃r.B]→ [A v B] and [A v B]→ [∃r.A v ∃r.B]
(VI) Transitivity of subsumption.

For every C1, C2, C3 ∈ At: [C1 v C2] ∧ [C2 v C3]→ [C1 v C3]
(VII) Dissubsumptions of the form C 6v? X with a variable X.

For every C ∈ At, X ∈ Nv:
→ [C v X] ∨

∨
D∈Atnv

pC,X,D,

and additionally for every D ∈ Atnv:
pC,X,D → [X v D] and pC,X,D ∧ [C v D]→

(VIII) Properties of >.
a. For every X ∈ Nv: [X > X]→
b. For every X,Y, Z ∈ Nv: [X > Y ] ∧ [Y > Z]→ [X > Z]
c. For every X,Y ∈ Nv and ∃r.Y ∈ At: [X v ∃r.Y ]→ [X > Y ]

The main difference to the encoding in [9] (apart from the fact that we consider (dis)sub-
sumptions here instead of equivalences) lies in the clauses 7 that ensure the presence of a
non-variable atom D that solves the dissubsumption C 6v? X (cf. Lemma 2). We also need
some additional clauses in 4 to deal with dissubsumptions. It is easy to see that Cl(Γ) can
be constructed in time cubic in the size of Γ (due to the clauses in 6 and 2).

To show soundness of the reduction, let τ be a valuation of the propositional variables
that satisfies Cl(Γ). We define the assignment Sτ as follows:

SτX := {D ∈ Atnv | τ([X v D]) = 1}.

In [4] it is shown that X >Sτ Y implies τ([X > Y ]) = 1 and that this implies irreflexivity
of >Sτ . This in particular shows that Sτ is acyclic. In the following, let στ denote the
substitution σSτ induced by Sτ . In [4] it is shown that στ is a solution of Γ by proving that
for all atoms C,D ∈ At it holds that τ([C v D]) = 1 iff στ (C) v στ (D).

Since στ is obviously local, this suffices to show soundness of the reduction.

I Lemma 17. If Cl(Γ) is solvable, then Γ has a local solution.
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To show completeness, let σ be a local solution of Γ and >σ the resulting partial order on Nv,
defined as follows for all X,Y ∈ Nv:

X >σ Y iff σ(X) v ∃r1. . . .∃rn.σ(Y ) for some r1, . . . , rn ∈ NR with n ≥ 1.

Note that >σ is irreflexive since X >σ X is impossible by Lemma 1, and it is transitive since
v is transitive and closed under applying existential restrictions on both sides. Thus, >σ is
a strict partial order. We define a valuation τσ as follows for all C,D ∈ At, E ∈ Atnv, and
X,Y ∈ Nv:

τσ([C v D]) :=
{

1 if σ(C) v σ(D)
0 otherwise

τσ([X > Y ]) :=
{

1 if X >σ Y

0 otherwise

τσ(pC,X,E) :=
{

1 if σ(X) v σ(E) and σ(C) 6v σ(E)
0 otherwise

In [4] it is proved that τσ satisfies Cl(Γ), which shows completeness of the reduction.

I Lemma 18. If Γ has a local solution, then Cl(Γ) is solvable.

This completes the proof of the correctness of the translation presented in Definition 16,
which provides us with a reduction of local disunification (and thus also of dismatching) to
SAT. This SAT reduction has been implemented in our prototype system UEL,4 which uses
SAT4J5 as external SAT solver. First experiments show that dismatching is indeed helpful
for reducing the number and the size of unifiers. The runtime performance of the solver for
dismatching problems is comparable to the one for pure unification problems.

7 Related and future work

Since Description Logics and Modal Logics are closely related [26], results on unification in
one of these two areas carry over to the other one. In Modal Logics, unification has mostly
been considered for expressive logics with all Boolean operators [19, 20, 25]. An important
open problem in the area is the question whether unification in the basic modal logic K,
which corresponds to the DL ALC, is decidable. It is only known that relatively minor
extensions of K have an undecidable unification problem [27]. Disunification also plays an
important role in Modal Logics since it is basically the same as the admissibility problem for
inference rules [15, 22, 24] (see [4] for details).

Regarding future work, we want to investigate the decidability and complexity of general
disunification in EL, and consider also the case where non-ground solutions are allowed.
From a more practical point of view, we plan to implement also the goal-oriented algorithm
for local disunification, and to evaluate the performance of both presented algorithms on
real-world problems.
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Abstract
We study nominal anti-unification, which is concerned with computing least general generaliza-
tions for given terms-in-context. In general, the problem does not have a least general solution,
but if the set of atoms permitted in generalizations is finite, then there exists a least general
generalization which is unique modulo variable renaming and α-equivalence. We present an al-
gorithm that computes it. The algorithm relies on a subalgorithm that constructively decides
equivariance between two terms-in-context. We prove soundness and completeness properties of
both algorithms and analyze their complexity. Nominal anti-unification can be applied to prob-
lems were generalization of first-order terms is needed (inductive learning, clone detection, etc.),
but bindings are involved.
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1 Introduction

Binders are very common in computer science, logic, mathematics, linguistics. Functional
abstraction λ, universal quantifier ∀, limit lim, integral

∫
are some well-known examples of

binders. To formally represent and study systems with binding, Pitts and Gabbay [15, 13, 14]
introduced nominal techniques, based on the idea to give explicit names to bound entities. It
makes a syntactic distinction between atoms, which can be bound, and variables, which can
be substituted. This approach led to the development of the theory of nominal sets, nominal
logic, nominal algebra, nominal rewriting, nominal logic programming, etc.

Equation solving between nominal terms (maybe together with freshness constraints) has
been investigated by several authors, who designed and analyzed algorithms for nominal
unification [30, 18, 19, 20, 6, 5], nominal matching [7], equivariant unification [9], and
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permissive nominal unification [10, 11]. However, in contrast to unification, its dual problem,
anti-unification, has not been studied for nominal terms previously.

The anti-unification problem for two terms t1 and t2 is concerned with finding a term t

that is more general than the original ones, i.e., t1 and t2 should be substitutive instances
of t. The interesting generalizations are the least general ones, which retain the common
structure of t1 and t2 as much as possible. Plotkin [23] and Reynolds [25] initiated research
on anti-unification in the 1970s, developing generalization algorithms for first-order terms.
Since then, anti-unification has been studied in various theories, including some of those with
binding constructs: calculus of constructions [22], Mλ [12], second-order lambda calculus
with type variables [21], simply-typed lambda calculus where generalizations are higher-order
patterns [3], just to name a few.

The problem we address in this paper is to compute generalizations for nominal terms.
More precisely, we consider this problem for nominal terms-in-context, which are pairs of a
freshness context and a nominal term, aiming at computing their least general generalizations
(lgg). However, it turned out that without a restriction, there is no lgg for terms-in-context,
in general. Even more, a minimal complete set of generalizations does not exist. This is in
sharp contrast with the related problem of anti-unification for higher-order patterns, which
always have a single lgg [3]. The reason is one can make terms-in-context less and less general
by adding freshness constraints for the available (infinitely many) atoms, see Example 2.7.
Therefore, we restrict the set of atoms which are permitted in generalizations to be fixed and
finite. In this case, there exists a single lgg (modulo α-equivalence and variable renaming)
for terms-in-context and we design an algorithm to compute it in O(n5) time.

There is a close relation between nominal and higher-order pattern unification: One can
be translated into the other by the solution-preserving translation defined in [8, 18, 20] or
the translation defined for permisive terms in [10, 11]. We show that for anti-unification,
this method, in general, is not applicable. Even if one finds conditions under which such
a translation-based approach to anti-unification works, due to complexity reasons it is still
better to use the direct nominal anti-unification algorithm developed in this paper.

Computation of nominal lgg’s requires to solve the equivariance problem: Given two
terms s1 and s2, find a permutation of atoms which, when applied to s1, makes it α-
equivalent to s2 (under the given freshness context). This is necessary to guarantee that the
computed generalization is least general. For instance, if the given terms are s1 = f(a, b) and
s2 = f(b, a), where a, b are atoms, the freshness context is empty, and the atoms permitted in
the generalization are a, b, and c, then the term-in-context 〈{c#X, c#Y }, f(X,Y )〉 generalizes
〈∅, s1〉 and 〈∅, s2〉, but it is not their lgg. To compute the latter, we need to reflect the
fact that generalizations of the atoms are related to each other: One can be obtained from
the other by swapping a and b. This leads to an lgg 〈{c#X}, f(X, (a b)·X)〉. To compute
the permutation (a b), an equivariance problem should be solved. Equivariance is already
present in α-Prolog [28] and Isabelle [27]. We develop a rule-based algorithm for equivariance
problems, which computes in quadratic time the justifying permutation if the input terms
are equivariant, and fails otherwise.

Both anti-unification and equivariance algorithms are implemented in the anti-unification
algorithm library [2] and can be accessed from http://www.risc.jku.at/projects/stout/
software/.

Various variants of anti-unification, such as first-order, higher-order, or equational anti-
unification have been used in inductive logic programming, logical and relational learning [24],
reasoning by analogy [16], program synthesis [26], program verification [21], etc. Nominal
anti-unification can, hopefully, contribute in solving similar problems in nominal setting or
in first-order settings where bindings play an important role.

http://www.risc.jku.at/projects/stout/software/
http://www.risc.jku.at/projects/stout/software/
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In this paper, we mainly follow the notation from [20]. Long proofs can be found in the
technical report [4].

2 Nominal Terms

In nominal signatures we have sorts of atoms (typically ν) and sorts of data (typically δ) as
disjoint sets. Atoms (typically a, b, . . .) have one of the sorts of atoms. Variables (typically
X,Y, . . .) have a sort of atom or a sort of data, i.e. of the form ν | δ. In nominal terms,
variables can be instantiated and atoms can be bound. Nominal function symbols (typically
f, g, . . .) have an arity of the form τ1 × · · · × τn → δ, where δ is a sort of data and τi are
sorts given by the grammar τ ::= ν | δ | 〈ν〉τ . Abstractions have sorts of the form 〈ν〉τ.

A swapping (a b) is a pair of atoms of the same sort. A permutation is a (possibly empty)
sequence of swappings. We use upright Greek letters (e.g., π, ρ) to denote permutations.
Nominal terms (typically t, s, u, r, q, . . .) are given by the grammar:

t ::= f(t1, . . . , tn) | a | a.t | π·X

where f is an n-ary function symbol, a is an atom, π is a permutation, and X is a variable.
They are called respectively application, atom, abstraction, and suspension. The sorts of
application and atomic terms are defined as usual, the sort of a.t is 〈ν〉τ where ν is the sort
of a and τ is the sort of t, and the sort of π·X is the one of X.

The inverse of a permutation π = (a1 b1) . . . (an bn) is the permutation (an bn) . . . (a1 b1),
denoted by π−1. The empty permutation is denoted by Id. The effect of a swapping over
an atom is defined by (a b) • a = b, (a b) • b = a and (a b) • c = c, when c /∈ {a, b}. It is
extended to the rest of terms: (a b) • f(t1, . . . , tn) = f((a b) • t1, . . . , (a b) • tn), (a b) • (c.t) =
((a b) • c) . ((a b) • t), and (a b)•π·X = (a b)π·X, where (a b)π is the permutation obtained by
concatenating (a b) and π. The effect of a permutation is defined by (a1 b1) . . . (an bn) • t =
(a1 b1) • ((a2 b2) . . . (an bn) • t). The effect of the empty permutation is Id • t = t. We extend
it to suspensions and write X as the shortcut of Id ·X.

The set of variables of a term t is denoted by Vars(t). A term t is called ground if Vars(t) =
∅. The set of atoms of a term t or a permutation π is the set of all atoms which appear in it and
is denoted by Atoms(t), Atoms(π) respectively. For instance, Atoms(f(a.g(a), (b c)·X, d) =
{a, b, c, d}. We write Atoms(t1, . . . , tn) for the set Atoms(t1) ∪ · · · ∪Atoms(tn).

f ε

a. 1

b. 1.1

g 1.1.1

(a b)·X 1.1.1.1 a 1.1.1.2

h 2

c 2.1

Figure 1 The tree form
and positions of the term
f(a.b.g((a b)·X, a), h(c)).

Positions in terms are defined with respect to their tree
representation in the usual way, as strings of integers. However,
suspensions are put in a single leaf node. For instance, the tree
form of the term f(a.b.g((a b)·X, a), h(c)), and the corresponding
positions are shown in Fig. 1. The symbol f stands in the position
ε (the empty sequence). The suspension is put in one node of
the tree, at the position 1.1.1.1. The abstraction operator and
the corresponding bound atom together occupy one node as well.
For any term t, t|p denotes the subterm of t at position p. For
instance, f(a.b.g((a b)·X, a), h(c))|1.1 = b.g((a b)·X, a).

Every permutation π naturally defines a bijective function
from the set of atoms to the sets of atoms, that we will also rep-
resent as π. Suspensions are uses of variables with a permutation
of atoms waiting to be applied once the variable is instantiated. Occurrences of an atom a are
said to be bound if they are in the scope of an abstraction of a, otherwise are said to be free. We
denote by FA(t) the set of all atoms which occur freely in t: FA(f(t1, . . . , tn)) =

⋃n
i=1 FA(ti),
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FA(a) = {a}, FA(a.t) = FA(t) \ {a}, and FA(π·X) = Atoms(π). FA-s(t) is the set of all
atoms which occur freely in t ignoring suspensions: FA-s(f(t1, . . . , tn)) =

⋃n
i=1 FA-s(ti),

FA-s(a) = {a}, FA-s(a.t) = FA-s(t) \ {a}, and FA-s(π·X) = ∅.
The head of a term t, denoted Head(t), is defined as: Head(f(t1, . . . , tn)) = f , Head(a) =

a, Head(a.t) = ., and Head(π·X) = X.
Substitutions are defined in the standard way, as a mapping from variables to terms of the

same sort. We use Greek letters σ, ϑ, ϕ to denote substitutions. The identity substitution is
denoted by ε. Furthermore, we use the postfix notation for substitution applications, i.e. tσ
denotes the application of a substitution σ to a term t, and similarly, the composition of two
substitutions σ and ϑ is written as σϑ. Composition of two substitutions is performed as
usual. Their application allows atom capture, for instance, a.X{X 7→ a} = a.a, and forces
the permutation effect: π·X{X 7→ t} = π • t, for instance, (a b)·X{X 7→ f(a, (a b)·Y )} =
f(b, (a b)(a b)·Y ). The notions of substitution domain and range are also standard and are
denoted, respectively, by Dom and Ran.

A freshness constraint is a pair of the form a#X stating that the instantiation of X cannot
contain free occurrences of a. A freshness context is a finite set of freshness constraints. We
will use ∇ and Γ to denote freshness contexts. Vars(∇) and Atoms(∇) denote respectively
the set of variables and atoms of ∇.

We say that a substitution σ respects a freshness context ∇, if for all X, FA-s(Xσ) ∩ {a |
a#X ∈ ∇} = ∅.

The predicate ≈, which stands for α-equivalence between terms, and the freshness
predicate # were defined in [29, 30] by the following theory:

∇ ` a ≈ a
∇ ` t ≈ t′

∇ ` a.t ≈ a.t′
a 6= a′ ∇ ` t ≈ (a a′) • t′ ∇ ` a#t′

∇ ` a.t ≈ a′.t′

a#X ∈ ∇ for all a such that π • a 6= π′ • a
∇ ` π·X ≈ π′ ·X

∇ ` t1 ≈ t′1 · · · ∇ ` tn ≈ t′n
∇ ` f(t1, . . . tn) ≈ f(t′1, . . . , t′n)

where the freshness predicate # is defined by

a 6= a′

∇ ` a#a′ (#-atom)
∇ ` a#a.t (#-abst-1) a 6= a′ ∇ ` a#t

∇ ` a#a′.t (#-abst-2)

(π−1 • a#X) ∈ ∇
∇ ` a#π·X

(#-susp.) ∇ ` a#t1 · · · ∇ ` a#tn
∇ ` a#f(t1, . . . tn) (#-application)

Their intended meanings are:
1. ∇ ` a#t holds, if for every substitution σ such that tσ is a ground term and σ respects

the freshness context ∇, we have a is not free in tσ;
2. ∇ ` t ≈ u holds, if for every substitution σ such that tσ and uσ are ground terms and σ

respects the freshness context ∇, tσ and uσ are α-equivalent.

Based on the definition of the freshness predicate, we can design an algorithm, which we call
FC, which solves the following problem: Given a set of freshness formulas {a1#t1, . . . , an#tn},
compute a minimal (with respect to ⊆) freshness context ∇ such that ∇ ` a1#t1, . . . ,∇ `
an#tn. Such a ∇ may or may not exist, and the algorithm should detect it. The algorithm
can be found in the technical report [4]. It is simply a bottom-up application of the rules of
the freshness predicate, starting from each of the ∇ ` a1#t1, . . . ,∇ ` an#tn. It succeeds if
each branch of such a derivation tree is either closed (i.e., ends with the application of the
#-atom or the #-abst-1 rule), or ends with an application of the #-susp. rule, producing
a membership atom of the form a#X ∈ ∇ for some a and X. In this case we say that the
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desired ∇ is the set of all such a#X freshness atoms, and write FC({a1#t1, . . . , an#tn}) = ∇.
(Hence, ∇ is empty when all branches are closed.) It fails if at least one branch of the
derivation tree produces ∇ ` a#a for some a, i.e., no rule applies to it. In this case we write
FC({a1#t1, . . . , an#tn}) = ⊥. The following theorem is easy to verify:

I Theorem 2.1. Let F be a set of freshness formulas and ∇ be a freshness context. Then
FC(F ) ⊆ ∇ iff ∇ ` a#t for all a#t ∈ F .

I Corollary 2.2. FC(F ) = ⊥ iff there is no freshness context that would justify all formulas
in F .

Given a freshness context ∇ and a substitution σ, we define ∇σ = FC({a#Xσ | a#X ∈
∇}). The following lemma is straightforward:

I Lemma 2.3. σ respects ∇ iff ∇σ 6= ⊥.

When ∇σ 6= ⊥, we call ∇σ the instance of ∇ under σ.
It is not hard to see that (a) if σ respects ∇, then σ respects any ∇′ ⊆ ∇, and (b) if σ

respects ∇ and ϑ respects ∇σ, then σϑ respects ∇ and (∇σ)ϑ = ∇(σϑ).

I Definition 2.4. A term-in-context is a pair 〈∇, t〉 of a freshness context and a term.
A term-in-context 〈∇1, t1〉 is more general than a term-in-context 〈∇2, t2〉, written 〈∇1,

t1〉 � 〈∇2, t2〉, if there exists a substitution σ, which respects ∇1, such that ∇1σ ⊆ ∇2 and
∇2 ` t1σ ≈ t2.

We write ∇ ` t1 � t2 if there exists a substitution σ such that ∇ ` t1σ ≈ t2.
Two terms-in-context p1 and p2 are equivalent (or equi-general), written p1 ' p2, iff

p1 � p2 and p2 � p1. The strict part of � is denoted by ≺, i.e., p1 ≺ p2 iff p1 � p2 and not
p2 � p1. We also write ∇ ` t1 ' t2 iff ∇ ` t1 � t2 and ∇ ` t2 � t1.

I Example 2.5. We give some examples to demonstrate the relations we have just defined:
〈{a#X}, f(a)〉 ' 〈∅, f(a)〉. We can use {X 7→ b} for the substitution applied to the first
pair.
〈∅, f(X)〉 � 〈{a#X}, f(X)〉 (with σ = ε), but not 〈{a#X}, f(X)〉 � 〈∅, f(X)〉.
〈∅, f(X)〉 � 〈{a#Y }, f(Y )〉 with σ = {X 7→ Y }.
〈{a#X}, f(X)〉 6� 〈∅, f(Y )〉, because in order to satisfy {a#X}σ ⊆ ∅, the substitution
σ should map X to a term t which contains neither a (freely) nor variables. But then
∅ ` f(t) ≈ f(Y ) does not hold. Hence, together with the previous example, we get 〈∅,
f(Y )〉 ≺ 〈{a#X}, f(X)〉.
〈{a#X}, f(X)〉 6� 〈{a#X}, f(a)〉. Notice that σ = {X 7→ a} does not respect {a#X}.
〈{b#X}, (a b)·X〉 � 〈{c#X}, (a c)·X〉 with the substitution σ = {X 7→ (a b)(a c)·X}.
Hence, we get 〈{b#X}, (a b)·X〉 ' 〈{c#X}, (a c)·X〉, because the � part can be shown
with the help of the substitution {X 7→ (a c)(a b)·X}.

I Definition 2.6. A term-in-context 〈Γ, r〉 is called a generalization of two terms-in-context
〈∇1, t〉 and 〈∇2, s〉 if 〈Γ, r〉 � 〈∇1, t〉 and 〈Γ, r〉 � 〈∇2, s〉. It is the least general generalization,
(lgg in short) of 〈∇1, t〉 and 〈∇2, s〉 if there is no generalization 〈Γ′, r′〉 of 〈∇1, t〉 and 〈∇2, s〉
which satisfies 〈Γ, r〉 ≺ 〈Γ′, r′〉.

Note that if we have infinite number of atoms in the language, the relation ≺ is not
well-founded: 〈∅, X〉 ≺ 〈{a#X}, X〉 ≺ 〈{a#X, b#X}, X〉 ≺ · · · . As a consequence, two
terms-in-context may not have an lgg and not even a minimal complete set of generalizations:1

1 Minimal complete sets of generalizations are defined in the standard way. For a precise definition, see,
e.g., [1, 17].
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I Example 2.7. Let p1 = 〈∅, a1〉 and p2 = 〈∅, a2〉 be two terms-in-context. Then in any
complete set of generalizations of p1 and p2 there is an infinite chain 〈∅, X〉 ≺ 〈{a3#X},
X〉 ≺ 〈{a3#X, a4#X}, X〉 ≺ · · · , where {a1, a2, a3, . . .} is the set of all atoms of the language.
Hence, p1 and p2 do not have a minimal complete set of generalizations.

This example is a proof of the theorem, which characterizes the generalization type of
nominal anti-unification:2

I Theorem 2.8. The problem of anti-unification for terms-in-context is of nullary type.

However, if we restrict the set of atoms which can be used in the generalizations to be
fixed and finite, then the anti-unification problem becomes unitary. (We do not prove this
property here, it will follow from the Theorems 6.2 and 6.3 in Sect. 6.)

I Definition 2.9. We say that a term t (resp., a freshness context ∇) is based on a set of
atoms A iff Atoms(t) ⊆ A (resp., Atoms(∇) ⊆ A). A term-in-context 〈∇, t〉 is based on A
if both t and ∇ are based on it. We extend the notion of A-basedness to permutations,
calling π A-based if it contains only atoms from A. Such a permutation defines a bijection,
in particular, from A to A. If p1 and p2 are A-based terms-in-context, then their A-based
generalizations are terms-in-context which are generalizations of p1 and p2 and are based
on A. An A-based lgg of A-based terms-in-context p1 and p2 is a term-in-context p, which is
an A-based generalization of p1 and p2 and there is no A-based generalization p′ of p1 and p2
which satisfies p ≺ p′.

The problem we would like to solve is the following:

Given: Two nominal terms t and s of the same sort, a freshness context ∇, and a finite set
of atoms A such that t, s, and ∇ are based on A.

Find: A term r and a freshness context Γ, such that the term-in-context 〈Γ, r〉 is an A-based
least general generalization of the terms-in-context 〈∇, t〉 and 〈∇, s〉.

Our anti-unification problem is parametric on the set of atoms we consider as the base,
and finiteness of this set is essential to ensure the existence of an lgg.

3 Motivation of Using a Direct Nominal Anti-Unification Algorithm

In [20], relation between nominal unification (NU) and higher-order pattern unification
(HOPU) has been studied. In particular, it was shown how to translate NU problems into
HOPU problems and how to obtain nominal unifiers back from higher-order pattern unifiers.
It is tempting to use the same translation for nominal anti-unification (NAU), using the
algorithm from [3] to solve higher-order anti-unification problems over patterns (HOPAU),
but it turns out that the generalization computed in this way is not always based on the
same set of the atoms as the input:

I Example 3.1. We consider the following problem: Let the set of atoms be A1 = {a, b}. The
terms to be generalized are a.b and b.a, and the freshness context is ∇ = ∅. According to [20],
translation to higher-order patterns gives the anti-unification problem λa, b, a. b , λa, b, b. a,
whose lgg is λa, b, c.X(a, b). However, we can not translate this lgg back to an A1-based
term-in-context, because it contains more bound variables than there are atoms in A1.

2 Generalization types are defined analogously to unification types: unary, finitary, infinitary, and nullary,
see [17].
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On the other hand, the translation would work for the set of atoms A2 = {a, b, c}:
Back-translating λa, b, c.X(a, b) gives the A2-based lgg 〈{c#X}, c.X〉.

The reason why the translation-based approach does not work for A-based NAU is that
A is finite, while in higher-order anti-unification there is an infinite supply of fresh (bound)
variables. If we assumed A to be infinite, there would still be a mismatch between NAU and
the corresponding HOPAU: NAU, as we saw, is nullary in this case, while HOPAU is unitary.
The reason of this contrast is that from infinitely many nominal generalizations, there is only
one which is a well-typed higher-order generalization.

One might think that the translation-based approach would still work, if one considers
only nominal anti-unification problems where the set of atoms is large enough for the input
terms-in-context. However, there is a reason that speaks against NAU-to-HOPAU translation:
complexity. The translation approach leads to a quadratic increase of the input size (Lemma
5.6 in [20]). The HOPAU algorithm in [3] runs in cubic time with respect to the size of its
input. Hence, the translation-based approach leads to an algorithm with runtime complexity
O(n6). In contrast, the algorithm developed in this paper has runtime complexity O(n5),
and requires no back and forth translations.

4 The Lattice of More General Terms-In-Context

The notion of more general term defines an order relation between classes of terms (modulo
some notion of variable renaming). In most cases, we have actually a meet-semilattice, since,
given two terms, there always exists a greatest lower bound (meet) that corresponds to their
anti-unifier. On the contrary, the least upper bound (join) of two terms only exists if they are
unifiable. For instance, the two first-order terms f(a,X1) and f(X2, b) have a meet f(Y1, Y2),
and, since they are unifiable, also a join f(a, b). Notice that unifiability and existence of a
join are equivalent if both terms do not share variables (for instance f(a,X) and f(X, b) are
both smaller than f(a, b), hence joinable, but they are not unifiable). With this restriction
one do not loose generality: The unification problem t1 ≈? t2 (sharing variables), can be
reduced to f(t1, t2) ≈? f(X,X) (not sharing variables), where f is some binary symbol and
X a fresh variable. Therefore, in the first-order case, the problem of searching a most general
unifier is equivalent to the search of the join of two terms, and the search of a least general
generalization to the search of the meet. Notice that meet and join are unique up to some
notion of variable renaming. For instance, the join of f(a,X,X ′) and f(Y, b, Y ′) is f(a, b, Z)
for any renaming of Z by any variable.

In the nominal case, we consider the set of terms-in-context (modulo variable renaming)
with the more general relation. The following lemma establishes a correspondence between
joinability and unifiability.

I Lemma 4.1. Given two terms-in-context 〈∇1, t1〉 and 〈∇2, t2〉 with disjoint sets of variables,
〈∇1, t1〉 and 〈∇2, t2〉 are joinable if, and only if, {t1 ≈? t2} ∪ ∇1 ∪ ∇2 has a solution (is
unifiable).

Like in first-order unification, the previous lemma allows us to reduce any nominal
unification problem P = {a1#u1, . . . , am#um, t1 ≈ s1, . . . , tn ≈ sn} into the joinability of the
two terms-in-context 〈∅, f(X,X)〉 and 〈FC({a1#u1, . . . , am#um}), f(g(t1, . . . , tn), g(s1, . . . ,

sn))〉 where f and g are any appropriate function symbols, and X is a fresh variable.
The nominal anti-unification problem is already stated in terms of finding the meet of

two terms-in-context, with the only proviso that all terms and contexts must be based on
some finite set of atoms.
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5 Nominal Anti-Unification Algorithm

The triple X : t , s, where X, t, s have the same sort, is called the anti-unification triple,
shortly AUT, and the variable X is called a generalization variable. We say that a set of
AUTs P is based on a finite set of atoms A, if for all X : t , s ∈ P , the terms t and s are
based on A.

I Definition 5.1. The nominal anti-unification algorithm is formulated in a rule-based way
working on tuples P ; S; Γ; σ and two global parameters A and ∇, where

P and S are sets of AUTs such that if X : t , s ∈ P ∪ S, then this is the sole occurrence
of X in P ∪ S;
P is the set of AUTs to be solved;
A is a finite set of atoms;
The freshness context ∇ does not constrain generalization variables;
S is a set of already solved AUTs (the store);
Γ is a freshness context (computed so far) which constrains generalization variables;
σ is a substitution (computed so far) mapping generalization variables to nominal terms;
P , S, ∇, and Γ are A-based.

We call such a tuple a state. The rules below operate on states.

Dec: Decomposition
{X : h(t1, . . . , tm) , h(s1, . . . , sm)} ·∪P ; S; Γ; σ

=⇒ {Y1 : t1 , s1, . . . , Ym : tm , sm} ∪ P ; S; Γ; σ{X 7→ h(Y1, . . . , Ym)},
where h is a function symbol or an atom, Y1, . . . , Ym are fresh variables of the corresponding
sorts, m ≥ 0.

Abs: Abstraction
{X : a.t , b.s} ·∪P ; S; Γ; σ =⇒ {Y : (c a) • t , (c b) • s} ∪ P ; S; Γ; σ{X 7→ c.Y },

where Y is fresh, c ∈ A, ∇ ` c#a.t and ∇ ` c#b.s.

Sol: Solving
{X : t , s} ·∪P ; S; Γ; σ =⇒ P ; S ∪ {X : t , s}; Γ ∪ Γ′; σ,

if none of the previous rules is applicable, i.e. one of the following conditions hold:
(a) both terms have distinct heads: Head(t) 6= Head(s), or
(b) both terms are suspensions: t = π1 ·Y1 and s = π2 ·Y2, where π1, π2 and Y1, Y2 are not

necessarily distinct, or
(c) both are abstractions and rule Abs is not applicable: t = a.t′, s = b.s′ and there is no

atom c ∈ A satisfying ∇ ` c#a.t′ and ∇ ` c#b.s′.
The set Γ′ is defined as Γ′ := {a#X | a ∈ A ∧ ∇ ` a#t ∧ ∇ ` a#s}.

Mer: Merging
P ; {X : t1 , s1, Y : t2 , s2} ·∪S; Γ; σ =⇒
P ; {X : t1 , s1} ∪ S; Γ{Y 7→ π·X}; σ{Y 7→ π·X},

where π is an Atoms(t1, s1, t2, s2)-based permutation such that ∇ ` π • t1 ≈ t2, and ∇ `
π • s1 ≈ s2.

The rules transform states to states. One can easily observe this by inspecting the rules.
Given a finite set of atoms A, two nominal A-based terms t and s, and an A-based

freshness context ∇, to compute A-based generalizations for 〈∇, t〉 and 〈∇, s〉, we start with
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{X : t , s}; ∅; ∅; ε, where X is a fresh variable, and apply the rules as long as possible. We
denote this procedure by N. A Derivation is a sequence of state transformations by the rules.
The state to which no rule applies has the form ∅;S; Γ;ϕ, where Mer does not apply to S.
We call it the final state. When N transforms {X : t , s}; ∅; ∅; ε into a final state ∅;S; Γ;ϕ,
we say that the result computed by N is 〈Γ, Xϕ〉.

Note that the Dec rule works also for the AUTs of the form X : a , a. In the Abs rule, it
is important to have the corresponding c in A. If we take A = A2 in Example 3.1, then Abs
can transform the AUT between t and s there, but if A = A1 in the same example, then Abs
is not applicable. In this case the Sol rule takes over, because the condition (c) of this rule is
satisfied.

The condition (b) of Sol helps to compute, e,g, 〈∅, X〉 for identical terms-in-context 〈∅,
(a b)·Y 〉 and 〈∅, (a b)·Y 〉. Although one might expect that computing 〈∅, (a b)·Y 〉 would be
more natural, from the generalization point of view it does not matter, because 〈∅, X〉 is as
general as 〈∅, (a b)·Y 〉.

I Example 5.2. We illustrate N with the help of some examples:
Let t = f(a, b), s = f(b, c), ∇ = ∅, and A = {a, b, c, d}. Then N performs the following
transformations:

{X : f(a, b) , f(b, c)}; ∅; ∅; ε =⇒Dec

{Y : a , b, Z : b , c}; ∅; ∅; {X 7→ f(Y, Z)} =⇒2
Sol

∅; {Y : a , b, Z : b , c}; {c#Y, d#Y, a#Z, d#Z}; {X 7→ f(Y, Z)} =⇒Mer

∅; {Y : a , b}; {c#Y, d#Y }; {X 7→ f(Y, (a b)(b c)·Y )}

Hence, p = 〈{c#Y, d#Y }, f(Y, (a b)(b c)·Y )〉 is the computed result. It generalizes the
input pairs: p{Y 7→ a} � 〈∇, t〉 and p{Y 7→ b} � 〈∇, s〉. The substitutions {Y 7→ a} and
{Y 7→ b} can be read from the final store. Note that 〈{c#Y }, f(Y, (a b)(b c)·Y )〉 would be
also an A-based generalization of 〈∇, t〉 and 〈∇, s〉, but it is strictly more general than p.
Let t = f(b, a), s = f(Y, (a b)·Y ), ∇ = {b#Y }, and A = {a, b}. Then N computes the
term-in-context 〈∅, f(Z, (a b)·Z)〉. It generalizes the input pairs.
Let t = f(g(X), X), s = f(g(Y ), Y ), ∇ = ∅, and A = ∅. It is a first-order anti-unification
problem. N computes 〈∅, f(g(Z), Z)〉. It generalizes the input pairs.
Let t = f(a.b,X), s = f(b.a, Y ), ∇ = {c#X}, A = {a, b, c, d}. Then N computes the
term-in-context p = 〈{c#Z1, d#Z1}, f(c.Z1, Z2)〉. It generalizes the input pairs: p{Z1 7→
b, Z2 7→ X} = 〈∅, f(c.b,X)〉 � 〈∇, t〉 and p{Z1 7→ a, Z2 7→ Y } = 〈∅, f(c.a, Y )〉 � 〈∇, s〉.

6 Properties of the Nominal Anti-Unification Algorithm

The Soundness Theorem states that the result computed by N is indeed an A-based general-
ization of the input terms-in-context:

I Theorem 6.1 (Soundness of N). Given terms t and s and a freshness context ∇, all based
on a finite set of atoms A, if {X : t , s}; ∅; ∅; ε =⇒+ ∅; S; Γ; σ is a derivation obtained by
an execution of N, then 〈Γ, Xσ〉 is an A-based generalization of 〈∇, t〉 and 〈∇, s〉.

The Completeness Theorem states that for any given A-based generalization of two input
terms-in-context, N can compute one which is at most as general than the given one.

I Theorem 6.2 (Completeness of N). Given terms t and s and freshness contexts ∇ and Γ,
all based on a finite set of atoms A. If 〈Γ, r〉 is an A-based generalization of 〈∇, t〉 and 〈∇, s〉,
then there exists a derivation {X : t , s}; ∅; ∅; ε =⇒+ ∅; S; Γ′; σ obtained by an execution
of N, such that 〈Γ, r〉 � 〈Γ′, Xσ〉.
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Depending on the selection of AUTs to perform a step, there can be different derivations in
N starting from the same AUT, leading to different generalizations. The next theorem states
that all those generalizations are the same modulo variable renaming and α-equivalence.

I Theorem 6.3 (Uniqueness Modulo '). Let t and s be terms and ∇ be a freshness context
that are based on the same finite set of atoms. Let {X : t , s}; ∅; ∅; ε =⇒+ ∅; S1; Γ1; σ1
and {X : t , s}; ∅; ∅; ε =⇒+ ∅; S2; Γ2; σ2 be two maximal derivations in N. Then 〈Γ1,

Xσ1〉 ' 〈Γ2, Xσ2〉.

Theorems 6.1, 6.2, and 6.3 imply that nominal anti-unification is unitary: For any A-based
∇, t, and s, there exists an A-based lgg of 〈∇, t〉 and 〈∇, s〉, which is unique modulo ' and
can be computed by the algorithm N.

Now we study how lgg’s of terms-in-context depend on the set of atoms the terms-in-
context are based on. The following lemma states the precise dependence.

I Lemma 6.4. Let A1 and A2 be two finite sets of atoms with A1 ⊆ A2 such that the
A1-based terms-in-context 〈∇, t〉 and 〈∇, s〉 have an A1-based lgg 〈Γ1, r1〉 and an A2-based
lgg 〈Γ2, r2〉. Then Γ2 ` r1 � r2.

Proof. 〈Γ1, r1〉 and 〈Γ2, r2〉 are unique modulo '. Let Di be the derivation in N that
computes 〈Γi, ri〉, i = 1, 2. The number of atoms in A1 and A2 makes a difference in the
rule Abs: If there are not enough atoms in A1, an Abs step in D2 is replaced by a Sol step
in D1. It means that for all positions p of r1, r2|p is also defined. Moreover, there might
exist a subterm r1|p, which has a form of suspension, while r2|p is an abstraction. For such
positions, r1|p � r2|p. For the other positions p′ of r1, r1|p′ and r2|p′ may differ only by
names of generalization variables or by names of bound atoms.

Another difference might be in the application of Sol in both derivations: It can happen
that this rule produces a larger Γ′ in D2 than in D1, when transforming the same AUT.

Hence, if there are positions p1, . . . , pn in r1 such that r1|pi
= πi ·X, then there exists

a substitution ϕX such that Γ2 ` πi ·Xϕ ≈ r2|pi , 1 ≤ i ≤ n. Taking the union of all ϕX ’s
where X ∈ Vars(r1), we get ϕ with the property Γ2 ` r1ϕ ≈ r2. J

Note that, in general, we can not replace Γ2 ` r1 � r2 with Γ2 ` r1 ' r2 in Lemma 6.4.
The following example illustrates this:

I Example 6.5. Let t = a.b, s = b.a, ∇ = ∅, A1 = {a, b}, and A2 = {a, b, c}. Then for 〈∇,
t〉 and 〈∇, s〉, 〈∅, X〉 is an A1-based lgg and 〈{c#X}, c.X〉 is an A2-based lgg. Obviously,
{c#X} ` X � c.X but not {c#X} ` c.X � X.

This example naturally leads to a question: Under which additional conditions can we
have Γ2 ` r1 ' r2 instead of Γ2 ` r1 � r2 in Lemma 6.4? To formalize a possible answer to
it, we need some notation.

Let the terms t, s and the freshness context ∇ be based on the same set of atoms
A. The maximal subset of A, fresh for t, s, and ∇, denoted fresh(A, t, s,∇), is defined as
A \ (Atoms(t, s) ∪Atoms(∇)).

If A1 ⊆ A2 are two sets of atoms such that t, s,∇ are at the same time based on both A1
and A2, then fresh(A1, t, s,∇) ⊆ fresh(A2, t, s,∇).

Let ‖t‖Abs stand for the number of abstraction occurrences in t. |A| stands for the
cardinality of the set of atoms A. We say that a set of atoms A is saturated for A-based t, s
and ∇, if |fresh(A, t, s,∇)| ≥ min{‖t‖Abs , ‖s‖Abs}.

The following lemma answers the question posed above:
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I Lemma 6.6. Under the conditions of Lemma 6.4, if A1 is saturated for t, s,∇, then
Γ2 ` r1 ' r2.

Proof. Let Di be the derivation in N that computes 〈Γi, ri〉, i = 1, 2. Note that in each of
these derivations, the number of Abs steps does not exceed min{‖t‖Abs , ‖s‖Abs}. Since A1 is
saturated for t, s,∇ and A1 ⊆ A2, A2 is also saturated for t, s,∇. Hence, whenever an AUT
between two abstractions is encountered in the derivation Di, there is always c ∈ A1 available
which satisfies the condition of the Abs rule. Therefore, such AU-E’s are never transformed
by Sol. We can assume without loss of generality that the sequence of steps in D1 and D2 are
the same. we may also assume that we take the same fresh variables, and the same atoms
from fresh(A1, t, s,∇) in the corresponding steps in D1 and D2. Then the only difference
between these derivations is in the Γ’s, caused by the Sol rule which might eventually make
Γ2 larger than Γ1. The σ’s computed by the derivations are the same and, therefore, r1 and
r2 are the same (modulo the assumptions on the variable and fresh atom names). Hence,
Γ2 ` r1 ' r2. J

In other words, this lemma answers the following pragmatic question: Given t, s and
∇, how to choose a set of atoms A so that (a) t, s, ∇ are A-based and (b) in the A-based
lgg 〈Γ, r〉 of 〈∇, t〉 and 〈∇, s〉, the term r generalizes s and t in the “best way”, maximally
preserving similarities and uniformly abstracting differences between s and t. The answer is:
Besides all the atoms occurring in t, s, or ∇, A should contain at least m more atoms, where
m = min{‖t‖Abs , ‖s‖Abs}.

Besides that, the lemma also gives the condition when the NAU-to-HOPAU translation
can be used for solving NAU problems: The set of permitted atoms should be saturated.

7 Deciding Equivariance

Computation of π in the condition of the rule Mer above requires an algorithm that solves the
following problem: Given nominal terms t, s and a freshness context ∇, find an Atoms(t, s)-
based permutation π such that ∇ ` π • t ≈ s. This is the problem of deciding whether t and
s are equivariant with respect to ∇. In this Section we describe a rule-based algorithm for
this problem, called E.

Note that our problem differs from the problem of equivariant unification considered
in [9]: We do not solve unification problems, since we do not allow variable substitution. We
only look for permutations to decide equivariance constructively and provide a dedicated
algorithm for that.

The algorithm E works on tuples of the form E; ∇; A; π (also called states). E is a set
of equivariance equations of the form t ≈ s where t, s are nominal terms, ∇ is a freshness
context, and A is a finite set of atoms which are available for computing π. The latter holds
the permutation to be returned in case of success.

The algorithm is split into two phases. The first one is a simplification phase where
function applications, abstractions and suspensions are decomposed as long as possible. The
second phase is the permutation computation, where given a set of equivariance equations
between atoms of the form a ≈ b we compute the permutation which will be returned in case
of success. The rules of the first phase are the following:

Dec-E: Decomposition
{f(t1, . . . , tm) ≈ f(s1, . . . , sm)} ·∪E; ∇; A; Id =⇒ {t1 ≈ s1, . . . , tm ≈ sm} ∪E;∇;A; Id.
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Alp-E: Alpha Equivalence
{a.t ≈ b.s} ·∪E; ∇; A; Id =⇒ {(ć a) • t ≈ (ć b) • s} ∪ E; ∇; A; Id,

where ć is a fresh atom of the same sort as a and b.

Sus-E: Suspension
{π1 ·X ≈ π2 ·X} ·∪E; ∇; A; Id =⇒ {π1 •a ≈ π2 •a | a ∈ A∧a#X 6∈ ∇}∪E; ∇; A; Id.

The rules of the second phase are the following:

Rem-E: Remove
{a ≈ b} ·∪E; ∇; A; π =⇒ E; ∇; A \ {b}; π, if π • a = b.

Sol-E: Solve
{a ≈ b} ·∪E; ∇; A; π =⇒ E; ∇; A \ {b}; (π • a b)π, if π • a, b ∈ A and π • a 6= b.

Note that in Alp-E, ć is fresh means that ć /∈ A and, therefore, ć will not appear in π.
These atoms are an auxiliary means which play a role during the computation but do not
appear in the final result.

Given nominal terms t, s, freshness context ∇, we construct a state {t ≈ s}; ∇; Atoms(t,
s); Id. We will prove that when the rules transform this state into ∅; ∇; A; π, then π is an
Atoms(t, s)-based permutation such that ∇ ` π • t ≈ s. When no rule is applicable, and the
set of equations is not empty, we will also prove that there is no solution, hence we fail and
return ⊥.

I Example 7.1. We illustrate the algorithm E on examples:
Consider the equivariance problem E = {a ≈ a, a.(a b)(c d)·X ≈ b.X} and ∇ = {a#X}:

{a ≈ a, a.(a b)(c d)·X ≈ b.X}; {a#X}; {a, b, c, d}; Id =⇒ Alp-E

{a ≈ a, (é a)(a b)(c d)·X ≈ (é b)·X}; {a#X}; {a, b, c, d}; Id =⇒ Sus-E

{a ≈ a, é ≈ é, c ≈ d, d ≈ c}; {a#X}; {a, b, c, d}; Id =⇒ Rem-E

{é ≈ é, c ≈ d, d ≈ c}; {a#X}; {b, c, d}; Id =⇒ Rem-E

{c ≈ d, d ≈ c}; {a#X}; {b, c, d}; Id =⇒ Sol-E

{d ≈ c}; {a#X}; {b, c}; (c d) =⇒ Rem-E

∅; {a#X}; {b}; (c d).

For E = {a.f(b,X) ≈ b.f(a,X)} and ∇ = {a#X}, E returns ⊥.
For E = {a.f(b, (a b)·X) ≈ b.f(a,X)} and ∇ = {a#X}, E returns (b a).
For E = {a.b.(a b)(a c)·X = b.a.(a c)·X} and ∇ = ∅, E returns Id.
For E = {a.b.(a b)(a c)·X = a.b.(b c)·X} and ∇ = ∅, E returns ⊥.

The Soundness Theorem for E states that, indeed, the permutation the algorithm computes
shows that the input terms are equivariant:

I Theorem 7.2 (Soundness of E). Let {t ≈ s}; ∇; A; Id =⇒∗ ∅; ∇; B; π be a derivation in
E, then π is an A-based permutation such that ∇ ` π • t ≈ s.

We now prove an invariant lemma that is used in the proof of completeness Theorem 7.4.



A. Baumgartner, T. Kutsia, J. Levy, and M. Villaret 69

I Lemma 7.3 (Invariant Lemma). Let A be a finite set of atoms, E1 be a set of equiv-
ariance equations for terms based on A, π1 be an A-based permutation and A1 ⊆ A. Let
E1;∇;A1; π1 =⇒ E2;∇;A2; π2 be any step performed by a rule in E. Let Γ = {ć#X | X ∈
Vars(E1), ć is a fresh variable}. Let µ be an A-based permutation such that ∇∪Γ ` µ• t ≈ s,
for all t ≈ s ∈ E1. Then
1. ∇∪ Γ ` µ • t′ ≈ s′, for all t′ ≈ s′ ∈ E2.
2. If µ−1 • b = π

−1
1 • b, for all b ∈ A \A1, then µ−1 • b = π

−1
2 • b, for all b ∈ A \A2.

Proof. By case distinction on the applied rule.
Dec-E: The proposition is obvious.
Alp-E: In this case it follows from the definitions of ≈ and permutation application.
Sus-E: In this case t = τ1 ·X, s = τ2 ·X, and by the assumption we have∇ ` µτ1 ·X ≈ τ2 ·X.

By the definition of≈, it means that we have a#X ∈ ∇, for all atoms a such that µτ1•a 6= τ2•a.
Hence, for all a ∈ A with a#X /∈ ∇ we have ∇ ` µτ1 • a ≈ τ2 • a. This implies that µ also
solves the equations in E2, hence item 1 of the lemma.

Item 2 of the lemma is trivial for these three rules, since A1 = A2 and π1 = π2 = Id.
Rem-E: The item 1 is trivial. To prove the item 2, note that t = a, s = b, π1 = π2 and we

only need to show µ−1 • b = π
−1
2 • b. By the assumption we have ∇ ` µ • a ≈ b. Since a and

b are atoms, the latter simply means that µ • a = b. From the rule condition we also know
that π1 • a = b. From these two equalities we get µ−1 • b = a = π

−1
2 b.

Sol-E: The item 1 is trivial also in this case. To prove the item 2, note that t = a, s = b,
π2 = (π1 • a b)π1 and we only need to show µ−1 • b = π

−1
2 • b. By the assumption we have

∇ ` µ • a ≈ b, which means that µ • a = b and, hence, a = µ−1 • b. As for π
−1
2 • b, we have

π
−1
2 • b = π

−1
1 (π1 • a b) • b = π

−1
1 • (π1 • a) = a. Hence, we get µ−1 • b = a = π

−1
2 • b. J

I Theorem 7.4 (Completeness of E). Let A be a finite set of atoms, t, s be A-based terms,
and ∇ be a freshness context. If ∇ ` µ • t ≈ s holds for some A-based permutation µ, then
there exists a derivation {t ≈ s}; ∇; A; Id =⇒∗ ∅; Γ; B; π, obtained by an execution of E,
such that π • a = µ • a for any atom a ∈ FA(t).

8 Complexity Analysis

We represent a permutations π as two hash tables. One for the permutation itself, we call it
Tπ, and one for the inverse of the permutation, called Tπ−1 . The key of a hash tables is an
atom and we associate another atom, the mapping, with it. For instance the permutation
π = (a b)(a c) is represented as Tπ = {a 7→ c, b 7→ a, c 7→ b} and Tπ−1 = {a 7→ b, b 7→ c, c 7→ a}.
We write Tπ(a) to obtain from the hash table Tπ the atom which is associated with the key
a. If no atom is associated with the key a then Tπ(a) returns a. We write Tπ(a 7→ b), to set
the mapping such that Tπ(a) = b. As the set of atoms is small, we can assume a perfect
hash function. It follows, that both defined operations are done in constant time, leading to
constant time application of a permutation. Swapping application to a permutation (a b)π is
also done in constant time in the following way: Obtain c = Tπ−1(a) and d = Tπ−1(b) and
perform the following updates:
(a) Tπ(c 7→ b) and Tπ(d 7→ a),
(b) Tπ−1(b 7→ c) and Tπ−1(a 7→ d).

We also represent set membership of atoms to a set of atoms A with a hash table ∈A
from atoms to Booleans such that ∈A (a) = true iff a ∈ A. We also have a list LA of the
atoms representing the entries of the table such that ∈A (a) = true to easily know all atoms
in A.
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Finally we also represent set membership of freshness constraints to a freshness environ-
ment ∇ with a hash table ∈∇.

I Theorem 8.1. Given a set of equivariance equations E, and a freshness context ∇. Let m
be the size of ∇, and let n be the size of E. The algorithm E has O(n2 +m) time complexity.

Proof. Collecting the atoms from E in a separate set A does not affect the space complexity
and can be done in time O(n). The freshness environment ∇ will not be modified by rule
applications and membership test in the rule Sus-E can be done in constant time. We only
have to construct the corresponding hash tables in time O(m). We analyze complexity of
both phases.

For the first phase, notice that all rules can be applied only O(n) many times, since
Dec-E removes two function symbols and Alp-E two abstraction, and Sus-E two suspensions.
The resulting equations after this phase only contain atoms. However, notice that the size
of these equations is not necessarily linear. Every time we apply Alp-E a new swapping is
applied to both subterms. This swappings may increase the size of suspensions occurring
bellow the abstraction. Since there are O(n) many suspensions and O(n) many abstractions,
the final size of suspensions is O(n2). This is the size of the atom equations at the beginning
of the second phase. We can see that the application of Dec-E rule has O(1) time complexity
(with the appropriate representation of equations).

The application of Alp-E rule requires to find a fresh atom not in A, this can be done in
constant time. Later, a swapping has to be applied twice. Swapping application requires
traversing the term hence has O(n) time complexity. The application of Sus-E requires to
traverse LA (O(n)) and check for freshness membership in ∈∇ (O(1)). Finally it has to add
equations like (π1 • a ≈ π2), this requires to build Tπ1 and Tπ2 that can be done in O(n)
time complexity and allow us to build each equation in O(1) time. Summing up, this phase
has O(n2) time complexity.

For the second phase, notice that both rules Rem-E and Sol-E remove an equation and
do not introduce any other one. Hence, potentially having O(n2) many equations in this
phase, these equations can be applied O(n2) may times. We construct a hash table Tπ for π

that will be maintained and used by both rules. Each application has time complexity O(1).
Rem-E uses Tπ to check for applicability and if it is applied, it only removes b from A, hence
updating ∈A (notice that we do not care about LA in this second phase of the algorithm).
Sol-E uses ∈A and Tπ to check for applicability and if it is applied, it only removes b from A

(hence updating ∈A), and updates Tπ. Summing up, this phase maintains the overall O(n2)
time complexity. J

I Theorem 8.2. The nominal anti-unification algorithm N has O(n5) time complexity and
O(n4) space complexity, where n is the input size.

Proof. By design of the rules and theorem 6.3 we can arrange a maximal derivation like {X0 :
t0 , s0}; ∅; ∅; ε =⇒∗Dec,Abs,Sol ∅;Sl; Γl;σl =⇒∗Mer ∅;Sm; Γm;σm, postponing the application of
Mer until the end. Rules Dec, Abs and Sol can be applied O(n) many times. However, notice
that every application of Abs may increase the size of every suspension below. Hence, the
size of the store Sl is O(n2), although it only contain O(n) equations, after an exhaustive
derivation {X0 : t0 , s0}; ∅; ∅; ε =⇒∗Dec,Abs,Sol ∅;Sl; Γl;σl.

Now we turn to analyzing the transformation phase ∅;Sl; Γl;σl =⇒∗Mer ∅;Sm; Γm;σm. Let
Sl = {X1 : t1 , s1, . . . , Xk : tk , sk} and ni be the size of Xi : ti , si, 1 ≤ i ≤ k, then∑k
i=1 ni = O(n2) and k = O(n). From theorem 8.1 we know that solving the equivariance

problem for two AUPs Xi : ti , si and Xj : tj , sj and an arbitrary freshness context ∇
requires O((ni + nj)2 +m) time and space, where m is the size of ∇ with m = O(n).
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Merging requires to solve this problem for each pair of AUPs. This leads to the time
complexity

∑k
i=1
∑k
j=i+1 O((ni +nj)2 +m) ≤ O(

∑k
i=1
∑k
j=1(ni +nj)2) +O(

∑k
i=1
∑k
j=1 m).

The second sum is
∑k
i=1
∑k
j=1 m = k2m = O(n3). Now we estimate an upper bound for

the sum
∑k
i=1
∑k
j=1(ni + nj)2 =

∑k
i=1
∑k
j=1 n

2
i +

∑k
i=1
∑k
j=1 2ninj +

∑k
i=1
∑k
j=1 n

2
j ≤∑k

i=1 kn
2
i + 2

(∑k
i=1 ni

)(∑k
j=1 nj

)
+
∑k
i=1(

∑k
j=1 nj)2 ≤ k(

∑k
i=1 ni)2 + 2O(n2)O(n2) +∑k

i=1 O(n2) = kO(n2)2 + 2O(n2)2 + kO(n2)2 = O(n5), resulting into the stated bounds.
The space is bounded by the space required by a single call to the equivariance algorithm

with an imput of size O(n2), hence O(n4). J

9 Conclusion

The problem of anti-unification for nominal terms-in-context is sensitive to the set of atoms
permitted in generalizations: If this set is infinite, there is no least general generalization.
Otherwise there exists a unique lgg. If this set is finite and satisfies the notion of being
saturated, defined in the paper, then the lgg retains the common structure of the input
nominal terms maximally.

We illustrated that, similar to some other theories where unification, generalization, and
the subsumption relation are defined, the nominal terms-in-contexts form a join-meet lattice
with respect to the subsumption relation, where the existence of join is unifiability, and the
meet corresponds to least general generalization.

We designed an anti-unification algorithm for nominal terms-in-context. It contains a
subalgorithm that constructively decides whether two terms are equivariant with respect
to the given freshness context. We proved termination, soundness, and completeness of
these algorithms, investigated their complexities, and implemented them. Given a fixed
set of atoms A, the nominal anti-unification algorithm computes a least general A-based
term-in-context generalization of the given A-based terms-in-context, and requires O(n5)
time and O(n4) space for that, where n is the size of the input. The computed lgg is unique
modulo α-equivalence and variable renaming.
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Abstract
Rewriting is a formalism widely used in computer science and mathematical logic. When using
rewriting as a programming or modeling paradigm, the rewrite rules describe the transformations
one wants to operate and declarative rewriting strategies are used to control their application.
The operational semantics of these strategies are generally accepted and approaches for analyzing
the termination of specific strategies have been studied. We propose in this paper a generic
encoding of classic control and traversal strategies used in rewrite based languages such as Maude,
Stratego and Tom into a plain term rewriting system. The encoding is proven sound and complete
and, as a direct consequence, established termination methods used for term rewriting systems
can be applied to analyze the termination of strategy controlled term rewriting systems. The
corresponding implementation in Tom generates term rewriting systems compatible with the
syntax of termination tools such as AProVE and TTT2, tools which turned out to be very effective
in (dis)proving the termination of the generated term rewriting systems. The approach can also
be seen as a generic strategy compiler which can be integrated into languages providing pattern
matching primitives; this has been experimented for Tom and performances comparable to the
native Tom strategies have been observed.
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1 Introduction

Rewriting is a very powerful tool used in theoretical studies as well as for practical implement-
ations. It is used, for example, in semantics in order to describe the meaning of programming
languages [24], but also in automated reasoning when describing by inference rules a logic, a
theorem prover or a constraint solver [20]. It is also used to compute in systems making the
notion of rule an explicit and first class object, like Mathematica, Maude [8], or Tom [25, 4].
Rewrite rules, the core concept in rewriting, consist of a pattern that describes a schematic
situation and the transformation that should be applied in that particular case. The pattern
expresses a potentially infinite number of instances and the application of the rewrite rule
is decided locally using a (matching) algorithm which only depends on the pattern and its
subject. Rewrite rules are thus very convenient for describing schematically and locally the
transformations one wants to operate.

In many situations, the application of a set of rewrite rules to a subject eventually leads to
the same final result independently on the way the rules are applied, and in such cases we say
that the rewrite rules are confluent and terminating. When using rewriting as a programming
or modeling paradigm it is nevertheless common to consider term rewriting systems (TRS)
that are non-confluent or non-terminating. In order to make the concept operational when
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such rules are employed we need an additional ingredient allowing one to specify which rules
should be applied and where (in the subject). This fundamental mechanism allowing the
control of rule application is a rewriting strategy.

Rule-based languages like ELAN [6], Maude, Stratego [30] or Tom have introduced the
notion of programmable strategies to express rule application control in a declarative way.
All these languages provide means to define term representations for the objects we want to
transform as well as rewrite rules and strategies expressing the way the terms are transformed
and offer thus, a clear separation between data structures, function logic and control. Similarly
to plain TRS (i.e. TRS without strategy), it is interesting to guarantee that the strategy
controlled TRS enjoy properties such as confluence and termination. Confluence holds as
long as the rewrite rules are deterministic (i.e. the corresponding matching is unitary) and
all strategy operators are deterministic (or a deterministic implementation is provided).

Termination is more delicate and the normalization under some specific strategy is usually
guaranteed by imposing (sufficient) conditions on the corresponding set of rewrite rules.
Such conditions have been proposed for the innermost [2, 13, 29, 17], outermost [9, 28,
17, 26], context-sensitive [14, 1, 17], or lazy [15] reduction strategies. Termination under
programmable strategies has been studied for ELAN [11] and Stratego [21, 23]. In [11], the
authors prove that a programmable strategy is terminating if the system formed with all
the rewrite rules the strategy contains is terminating. This criterion is too coarse as it does
not take into account how the strategy makes its arguments interact and consequently, the
approach cannot be used to prove termination for many terminating strategies. In [21, 23],
the termination of some traversal strategies (such as top-down, bottom-up, innermost) is
proven, assuming the rewrite rules are measure decreasing, for a notion of measure that
combines the depth, and the number of occurrences of a specific constructor in a term.

Contributions. In this paper we propose a more general approach consisting in translating
programmable strategies into plain TRS. The interest of this encoding that we show sound and
complete is twofold. First, termination analysis techniques [2, 19, 16] and corresponding tools
like AProVE [12] and TTT2 [22] that have been successfully used for checking the termination
of plain TRS can be used to verify termination in presence of rewriting strategies. Second,
the translation can be seen as a generic strategy compiler and thus can be used as a portable
implementation of strategies which could be easily integrated in any language providing
rewrite rules (or at least pattern matching) primitives. The translation has been implemented
in Tom and generates TRS which could be fed into TTT2/AProVE for termination analysis
or executed efficiently by Tom.

The paper is organized as follows. The next section introduces the notions of rewriting
system and rewriting strategy. Section 3 presents the translation of rewriting strategies into
rewriting systems, and its properties are stated together with proof sketches in Section 4. In
Section 5 we give some implementation details and present experimental results. We end
with conclusions and further work.

2 Strategic rewriting

This section briefly recalls some basic notions of rewriting used in this paper; see [3, 27]
for more details on first order terms and term rewriting systems, and [31, 5] for details on
rewriting strategies and their implementation in rewrite based languages.
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2.1 Term algebra and term rewriting systems
A signature Σ consists of an alphabet F of symbols together with a function ar which
associates to any symbol f its arity. We write Fn for the subset of symbols of arity n, and
F+ for the symbols of arity n > 0. Symbols in F0 are called constants. Given a countable set
X of variable symbols, the set of first-order terms T (F ,X ) is the smallest set containing X
and such that f(t1, . . . , tn) is in T (F ,X ) whenever f ∈ Fn and ti ∈ T (F ,X ) for i ∈ [1, n].
We write Var (t) for the set of variables occuring in t ∈ T (F ,X ). If Var (t) is empty, t is
called a ground term; TF denotes the set of all ground terms. A linear term is a term where
every variable occurs at most once. A substitution σ is a mapping from X to T (F ,X ) which
is the identity except over a finite set of variables (its domain). A substitution extends as
expected to an endomorphism of T (F ,X ).

A position of a term t is a finite sequence of positive integers describing the path from
the root of t to the root of the sub-term at that position. We write ε for the empty sequence,
which represents the root of t, Pos(t) for the set of positions of t, and t|ω for the sub-term of
t at position ω. Finally, t [s]ω is the term t with the sub-term at position ω replaced by s.

A rewrite rule (over Σ) is a pair (l, r) ∈ T (F ,X )× T (F ,X ) (also denoted l _ r) such
that Var (r) ⊆ Var (l) and a TRS is a set of rewrite rules R inducing a rewriting relation
over TF , denoted by −→R and such that t −→R t′ iff there exist l _ r ∈ R, ω ∈ Pos(t),
and a substitution σ such that t|ω = σ(l) and t′ = t [σ(r)]ω. In this case, we say that l
matches t and that σ is the solution of the corresponding matching problem. The reflexive
and transitive closure of −→R is denoted by −→→R. In what follows, we generally use the
notation R • t −→ t′ to denote t−→→R t′. A TRS R is terminating if there exists no infinite
rewriting sequence t1 −→R t2 −→R . . . −→R tn −→R . . .

2.2 Rewriting strategies
Rewriting strategies allow one to specify how rules should be applied. We call the term to
which the strategy is applied the subject. The application of a strategy to a subject may
diverge, fail, or return a (unique) result.

Taking the same terminology as the one proposed by ELAN and Stratego, a rewrite rule
is considered to be an elementary strategy, and a strategy is an expression built over a
strategy language. We consider a strategy language over a signature Σ consisting of the main
operators used in rewrite based languages like Tom and Stratego:

S := Identity | Fail | l _ r | S ;S | S←+ S | One(S) | All(S) | µX . S | X

with X any variable from the set XS of strategy variables and l _ r any rewrite rule over Σ.
In what follows, we use uppercase for strategy variables and lowercase for term variables.

Before formally defining the strategy semantics, we can already mention that the simplest
strategies we can imagine are Identity and Fail. The Identity strategy can be applied to any
term without changing it, and thus Identity never fails. Conversely, the strategy Fail always
fails when applied to a term. As mentioned above, a rewrite rule is an elementary strategy
which is applied to the root position of its subject. By combining elementary strategies,
more complex strategies can be built. In particular, we can apply sequentially two strategies,
make a choice between the application of two strategies, apply a strategy to one or to all the
immediate sub-terms of the subject, and apply recursively a strategy.

The operational semantics presented in Figure 1 is defined w.r.t. a context of the form
X1 : S1 . . . Xn : Sn which associates strategy expressions to strategy variables. Indeed, a
reduction step is written Γ ` S ◦ t =⇒ u, where Γ is the context under which the current
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Elementary strategies

Γ ` Identity ◦ t =⇒ t
(id)

Γ ` Fail ◦ t =⇒ Fail
(fail)

∃σ, σ(l) = t

Γ ` l _ r ◦ t =⇒ σ(r)
(r1)

@σ, σ(l) = t

Γ ` l _ r ◦ t =⇒ Fail
(r2)

Control combinators

Γ ` S1 ◦ t =⇒ t′

Γ ` (S1←+ S2) ◦ t =⇒ t′
(choice1)

Γ ` S1 ◦ t =⇒ Fail Γ ` S2 ◦ t =⇒ u

Γ ` (S1←+ S2) ◦ t =⇒ u
(choice2)

Γ ` S1 ◦ t =⇒ t′ Γ ` S2 ◦ t′ =⇒ u

Γ ` (S1 ;S2) ◦ t =⇒ u
(seq1)

Γ ` S1 ◦ t =⇒ Fail

Γ ` (S1 ;S2) ◦ t =⇒ Fail
(seq2)

Γ;X : S ` S ◦ t =⇒ u

Γ ` µX . S ◦ t =⇒ u
(mu)

Γ;X : S ` S ◦ t =⇒ u

Γ;X : S ` X ◦ t =⇒ u
(muvar)

Traversal combinators

∃i ∈ [1, n],Γ ` S ◦ ti =⇒ t′i ∀j ∈ [1, i− 1],Γ ` S ◦ tj =⇒ Fail

Γ ` One(S) ◦ f(t1, . . . , tn) =⇒ f(t1, . . . , ti−1, t
′
i, ti+1, . . . , tn)

(one1)

∀i ∈ [1, n],Γ ` S ◦ ti =⇒ Fail

Γ ` One(S) ◦ f(t1, . . . , tn) =⇒ Fail
(one2)

∀i ∈ [1,n],Γ ` S ◦ ti =⇒ t′i

Γ ` All(S) ◦ f(t1, . . . , tn) =⇒ f(t′1, . . . , t′n)
(all1)

∃i ∈ [1,n],Γ ` S ◦ ti =⇒ Fail

Γ ` All(S) ◦ f(t1, . . . , tn) =⇒ Fail
(all2)

Figure 1 Strategy semantics. The meta variable t denotes a term (which cannot be Fail),
whereas the meta variable u denotes a result which can be either a well-formed term, or Fail.

strategy is applied, S is the strategy to apply, t is the subject, and u is the resulting term or
Fail (the context may be omitted if empty). The variables in strategy expressions could
be thus bound by the recursion operator or by a corresponding assignment in the context:
we primarily use the context as an accumulator for the evaluation of recursion strategies,
but it can also be used for the evaluation of strategies featuring free variables. As usual, we
work modulo α-conversion and we adopt Barendregt’s “hygiene-convention”, i.e. free- and
bound-variables have different names.

We distinguish three kinds of operators in the strategy language:
elementary strategies consisting of the Identity and Fail strategies, and rewrite rules
which succeed or fail when applied at the root position of the subject.
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control combinators that compose strategies but are still applied at the root of the
subject. The (left-)choice S1←+S2 tries to apply S1 and considers S2 only if S1 fails. The
sequential application S1 ;S2 succeeds if S1 succeeds on the subject and S2 succeeds on
the subsequent term; it fails if one of the two strategy applications fails. The application
of a strategy µX . S (rule mu) evaluates S in a context where X is bound to S. If the
strategy variable X is applied to a term (rule muvar), the strategy S is (re)evaluated,
allowing thus recursion. This process can, of course, go on forever but eventually stops if
at some point the evaluation of S does not involve X anymore.
traversal combinators that modify the current application position. The operator One(S)
tries to apply S to a sub-term of the subject. We have chosen a deterministic semantics for
One which looks for the left-most sub-term successfully transformed; the non-deterministic
behavior can be easily obtained by removing the second condition in the premises of the
inference rule one1. If S fails on all the sub-terms, then One(S) also fails (rule one2). In
contrast, All(S) applies S to all the sub-terms of the subject (rule all1) and fails if S fails
on one of them (rule all2). Note that One(S) always fails when applied to a constant
while All(S) always succeeds in this case.

The combinators of the strategy language can be used to define more complex ones. For
example, we can define a strategy named Try, parameterized by a strategy S, which tries to
apply S and applies the identity if S fails: Try(S) = S←+ Identity. The Repeat(S) strategy
can be defined using recursion: Repeat(S) = µX . Try(S ;X). In fact, most of the classic
reduction strategies can also be defined using the generic traversal operators:

OnceBottomUp(S) = µX .One(X)←+ S

BottomUp(S) = µX .All(X) ;S
OnceTopDown(S) = µX . S←+ One(X)

TopDown(S) = µX . S ; All(X)

The strategy OnceBottomUp (denoted obu in the following) tries to apply the strategy S
once, starting from the leftmost-innermost leaves. BottomUp behaves almost like obu except
that S is applied to all nodes, starting from the leaves. The strategy which applies S as many
times as possible, starting from the leaves can be either defined naively as Repeat(obu(S))
or using a more efficient approach [31]: Innermost(s) = µX .All(X) ; Try(S ;X). Given the
rules R1, . . . , Rn, the strategy R1←+ · · · ←+Rn can be used to express an order on the rules.

I Example 1. Consider the rewrite rules +(Z, x) _ x and +(S(x), y) _ S(+(x, y)) on the
signature Σ with F0 = {Z}, F1 = {S}, F2 = {+, *}.
` +(Z, x) _ x ◦ Z =⇒ Fail
` +(Z, x) _ x ◦ +(Z, S(Z)) =⇒ S(Z)
` +(Z, x) _ x ; +(Z, x) _ x ◦ +(Z, +(Z, S(Z))) =⇒ S(Z)
` One(+(Z, x) _ x) ◦ +(S(Z), +(Z, S(Z))) =⇒ +(S(Z), S(Z))
` TopDown(+(Z, x) _ x←+ +(S(x), y) _ S(+(x, y))) ◦ +(S(Z), S(S(Z))) =⇒ S(S(S(Z)))
` Innermost(+(Z, x) _ x←+ +(S(x), y) _ S(+(x, y))) ◦ +(S(S(Z)), S(S(Z))) =⇒ S(S(S(S(Z))))

3 Encoding rewriting strategies with rewrite rules

The evaluation of the application of a strategy on a subject consists in setting the “focus” on
the active strategy w.r.t. the global strategy for control combinators (e.g. selecting S1 in
S1←+ S2 in the inference rule choice1), in setting the “focus” on the active term(s) w.r.t.
the global term for traversal combinators (e.g. selecting ti in f(t1, . . . , tn) in the inference
rule one1), and eventually in applying elementary strategies.
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The translation function presented in Figure 2 associates to each strategy a set of
rewrite rules which encodes exactly this behaviour and preserves the original evaluation:
T (S) • ϕS(t) −→ u whenever ` S ◦ t =⇒ u (the exact relationship between the strategy
and its encoding is formally stated in Section 4). The set T (S) contains a number of rules
whose left-hand sides are headed by ϕS and which encode the behaviour of the strategy S
by using, in the right-hand sides, the symbols ϕ corresponding to the sub-strategies of S
and potentially some auxiliary symbols. These ϕS and auxiliary ϕ symbols are supposed to
be freshly generated and uniquely identified, i.e. there will be only one ϕS symbol for each
encoded (sub-)strategy S and each auxiliary ϕ symbol can be identified by the strategy it
has been generated for. For example, in the encoding T (S1 ;S2), the symbol ϕ; is just an
abbreviation for ϕS1;S2

; , i.e. the specific ϕ; used for the encoding of the strategy S1 ;S2.
The left-hand and right-hand sides of the generated rules are built using the symbols of

the original signature, the ϕ symbols mentioned previously as well as a particular symbol ⊥ of
arity 1 which encodes the failure and whose argument can be used to keep track of the origin
of the failure. To keep the presentation of the translation compact and intuitive, we express
it using rule schemas which use some special symbols to provide a concise representation of
the rewrite rules. We start by introducing these special symbols and we then discuss the
translation process.

First, we use the so-called anti-terms1 of the form !t with t ∈ T (F ,X ). Intuitively, an
anti-term !t represents all the terms which do not match t and an anti-term ϕ(!t) represents
all the terms which do not match ϕ(t); the way the finite representation of these terms is
generated is detailed in Section 5. For example, if we consider the signature from Example 1,
!+(Z, x) denotes exactly the terms matched by Z, S(x1), +(S(x1), x2) or +(+(x1, x2), x3). In
this encoding, the semantics of !t with t ∈ TF are considered w.r.t. the terms in TF . For
example, !c for some constant c does not include ⊥(x) or terms of the form ϕ(x1, . . . , xn),
because ⊥ and ϕ symbols do not belong to the original signature. We can also complement
failures but still w.r.t. the terms in TF and the pattern !⊥(x) denotes thus all the ground
terms t ∈ TF of the original signature. Terms in the left-hand sides of rules can be aliased,
using the symbol “@”, by variables which can be then conveniently used in the right-hand
sides of the corresponding rules. Moreover, the variable symbol “ ” can be used in the
left-hand side of a rule to indicate a variable that does not appear in the right-hand side.

For example, the rule schema ϕ(y @ !+(Z, )) _ ⊥(y) denotes the set of rewrite rules
consisting of ϕ(Z) _ ⊥(Z), ϕ(S(y1)) _ ⊥(S(y1)), ϕ(+(S(y1), y2)) _ ⊥(+(S(y1), y2)) and
ϕ(+(+(y1, y2), y3)) _ ⊥(+(+(y1, y2), y3)).

The translation of the Identity strategy (E1) consists of a rule whose left-hand side
matches any term in the signature2 (contextualized by the corresponding ϕ symbol) and
whose right-hand side is the initial term, and of a rule encoding strict propagation of failure.
This latter rule guarantees a faithful encoding of the strategy guided evaluation and is in fact
present, in different forms, in the translations of all the strategy operators. Similarly, the
translation of the Fail strategy (E2) contains a failure propagation rule, and a rule whose
left-hand side matches any term and whose right-hand side is a failure keeping track of this
term.

A rewrite rule (which is an elementary strategy applicable at the root of the subject)
is translated (E3) by two rules encoding the behaviour in case of respectively a matching
success or a failure, together with a rule for failure propagation.

1 We restrict here to a limited form of anti-terms; we refer to [7] for the complete semantics of anti-terms.
2 The rule is in fact expanded into n rewrite rules with n the number of symbols in F .
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(E1) T (Identity) = { ϕIdentity(x@ !⊥( )) _ x, ϕIdentity(⊥(x)) _ ⊥(x) }
(E2) T (Fail) = { ϕFail(x@ !⊥( )) _ ⊥(x), ϕFail(⊥(x)) _ ⊥(x) }
(E3) T (l _ r) = { ϕl_r(l) _ r,

ϕl_r(x@ !l) _ ⊥(x), ϕl_r(⊥(x)) _ ⊥(x) }

(E4) T (S1 ;S2) = T (S1) ∪ T (S2)⋃
{ ϕS1;S2(x@ !⊥( )) _ ϕ;(ϕS2(ϕS1(x)), x), ϕS1;S2(⊥(x)) _ ⊥(x),
ϕ;(x@ !⊥( ), ) _ x, ϕ;(⊥( ), x) _ ⊥(x) }

(E5) T (S1←+ S2) = T (S1) ∪ T (S2)⋃
{ ϕS1←+S2(x@ !⊥( )) _ ϕ←+(ϕS1(x)), ϕS1←+S2(⊥(x)) _ ⊥(x),
ϕ←+(⊥(x)) _ ϕS2(x), ϕ←+(x@ !⊥( )) _ x }

(E6) T (µX . S) = T (S)⋃
{ ϕµX.S(x@ !⊥( )) _ ϕS(x), ϕµX.S(⊥(x)) _ ⊥(x),
ϕX(x@ !⊥( )) _ ϕS(x), ϕX(⊥(x)) _ ⊥(x) }

(E7) T (X) = ∅

(E8) T (All(S)) = T (S)⋃
{ ϕAll(S)(⊥(x)) _ ⊥(x) }⋃

c∈F0
{ ϕAll(S)(c) _ c }⋃

f∈F+
{ ϕAll(S)(f(x1, . . . , xn)) _ ϕf (ϕS(x1), . . . , ϕS(xn), f(x1, . . . , xn)),

ϕf (x1 @ !⊥( ), . . . , xn @ !⊥( ), ) _ f(x1, . . . , xn),
ϕf (⊥( ), , . . . , , x) _ ⊥(x),
...
ϕf ( , . . . , ,⊥( ), x) _ ⊥(x) }

(E9) T (One(S)) = T (S)⋃
{ ϕOne(S)(⊥(x)) _ ⊥(x) }⋃

c∈F0
{ ϕOne(S)(c) _ ⊥(c) }⋃

f∈F+
{ ϕOne(S)(f(x1, . . . , xn)) _ ϕf1(ϕS(x1), x2, . . . , xn) }⋃

f∈F+

⋃
1≤i≤ar(f)

{ ϕfi
(⊥(x1), . . . ,⊥(xi−1), xi @ !⊥( ), xi+1, . . . , xn) _ f(x1, . . . , xn)}⋃

f∈F+

⋃
1≤i<ar(f)

{ ϕfi(⊥(x1), . . . ,⊥(xi), xi+1, . . . , xn) _
ϕfi+1(⊥(x1), . . . ,⊥(xi), ϕS(xi+1), xi+2, . . . , xn) }⋃

f∈F+
{ ϕfn

(⊥(x1), . . . ,⊥(xn)) _ ⊥(f(x1, . . . , xn)) }

(E10) B(Γ;X : S) = B(Γ) ∪ T (S)⋃
{ ϕX(x@ !⊥( )) _ ϕS(x), ϕX(⊥(x)) _ ⊥(x) }

Figure 2 Strategy translation.
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I Example 2. The strategy Spz = +(Z, x) _ x consisting only of the rewrite rule of Example 1
is encoded by the following rules:

T (Spz) = { ϕpz(+(Z, x)) _ x,

ϕpz(y @ !+(Z, x)) _ ⊥(y),
ϕpz(⊥(x)) _ ⊥(x) }

which lead, when the anti-terms are expanded w.r.t. to the signature, to the TRS:
T (Spz) = { ϕpz(+(Z, x)) _ x,

ϕpz(Z) _ ⊥(Z),
ϕpz(S(y1)) _ ⊥(S(y1)),
ϕpz(+(S(y1), y2)) _ ⊥(+(S(y1), y2)),
ϕpz(+(+(y1, y2), y3)) _ ⊥(+(+(y1, y2), y3)),
ϕpz(⊥(x)) _ ⊥(x) }

The term ϕpz(+(Z, S(Z))) reduces w.r.t. this latter TRS to S(Z) and ϕpz(Z) reduces to ⊥(Z).

The translation of the sequential application of two strategies (E4) includes the translation
of the respective strategies and some specific rules. A term ϕS1;S2(t) is reduced by the first
rule into a term ϕ;(ϕS2(ϕS1(t)), t), which guarantees that the rules of the encoding of S1
are applied before the ones of S2. Indeed, a term of the form ϕ(t) can be reduced only if
t ∈ TF or t = ⊥( ) and thus, the rules for ϕS2 can be applied to a term ϕS2(ϕS1( )) only
after ϕS1( ) is reduced to a term in TF (or failure). The original subject t is kept during
the evaluation (of ϕ;), so that ⊥(t) can be returned if the evaluation of S1 or S2 fails (i.e.
produces a ⊥) at some point. If ϕS2(ϕS1(t)) evaluates to a term t′ ∈ TF , then the evaluation
of ϕS1;S2(t) succeeds, and t′ is the final result. In a similar manner, the translation for
the choice operator (E5) uses a rule which triggers the application of the rules for S1. If
the corresponding evaluation results in a failure then the application of the rules for S2 is
triggered on the original subject; otherwise the result is returned.

The translation for a strategy µX . S (E6) triggers the application of the rules for S at
first, and then each time the symbol ϕX is encountered. As in all the other cases, failure is
strictly propagated. There is no rewrite rule for the translation of a strategy variable (E7)
but we should note that the corresponding ϕX symbol could be used when translating the
strategy S (in µX . S), as we can see in the next example.

I Example 3. The strategy Srpz = µX.(+(Z, x) _ x ; X)←+Identity which applies repeatedly
(as long as possible) the rewrite rule from Example 2 is encoded by:

T (Srpz) = { ϕrpz(x@ !⊥( )) _ ϕtpz(x), ϕrpz(⊥(x)) _ ⊥(x) }
∪ { ϕX(x@ !⊥( )) _ ϕtpz(x), ϕX(⊥(x)) _ ⊥(x) }
∪ { ϕtpz(x@ !⊥( )) _ ϕ←+(ϕpzX(x)), ϕtpz(⊥(x)) _ ⊥(x),

ϕ←+(x@ !⊥( )) _ x, ϕ←+(⊥(x)) _ ϕIdentity(x) }
∪ { ϕIdentity(x@ !⊥( )) _ x, ϕIdentity(⊥(x)) _ ⊥(x) }
∪ { ϕpzX(x@ !⊥( )) _ ϕ;(ϕX(ϕpz(x)), x), ϕpzX(⊥(x)) _ ⊥(x),

ϕ;(x@ !⊥( ), ) _ x, ϕ;(⊥( ), x) _ ⊥(x) }
∪ T (Spz)

For presentation purposes, we separated the TRS in sub-sets of rules corresponding to the
translation of each operator occurring in the initial strategy. Note that the symbol ϕX used
in the rules for the inner sequence can be reduced with the rules generated to handle the
recursion operator. The term ϕrpz(+(Z, +(Z, S(Z)))) reduces w.r.t. the TRS to S(Z).

The rules encoding the traversal operators follow the same principle – the rules cor-
responding to the translation of the argument strategy S are applied, depending on the
traversal operator, to one or all the sub-terms of the subject. For the All operator (E8), if
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the application of S to all the sub-terms succeeds (produces terms in TF ), then the final
result is built using the results of each evaluation. If the evaluation of one of the sub-terms
produces a ⊥, a failure with the original subject as origin is returned as a result. Special
rules encode the fact that All applied to a constant always succeeds; the same behaviour
could have been obtained by instantiating the rules for non-constants with n = 0, but we
preferred an explicit approach for uniformity and efficiency reasons. In the case of the One
operator (E9), if the evaluation for one sub-term results in a failure, then the evaluation of
the strategy S is triggered on the next one. If S fails on all sub-terms, a failure with the
original subject as origin is returned. The failure in case of constants is necessarily encoded
by specific rules.

Finally, each binding X : S of a context (E10) is translated by two rules, including the one
that propagates failure. The other rule operates as in the recursive case (rule E6): applying
the strategy variable X to a subject t leads to the application of the rules encoding S to t.

4 Properties of the translation

The goal of the translation is twofold: use well-established methods and tools for plain TRS in
order to prove properties of strategy controlled rewrite rules, and offer a generic compiler for
user defined strategies. For both items, it is crucial to have a sound and complete translation,
and this turns out to be true in our case.

I Theorem 4 (Simulation). Given a term t ∈ TF , a strategy S and a context Γ
1. Γ ` S ◦ t =⇒ t′ iff T (S) ∪ B(Γ) • ϕS(t) −→ t′, t′ ∈ TF
2. Γ ` S ◦ t =⇒ Fail iff T (S) ∪ B(Γ) • ϕS(t) −→ ⊥(t)

Proof. The completeness is shown by induction on the height of the derivation tree and
the soundness by induction on the length of the reduction. The base cases consisting of
the strategies with a constant length reduction – Identity, Fail, and the rewrite rule – are
straightforward to prove since, in particular, the translation of a rule explicitly encodes
matching success and failure. Induction is applied for all the other cases and the corresponding
proofs rely on some auxiliary properties.

First, the failure is strictly propagated: if B(Γ) ∪ T (S) • ϕS(⊥(t)) −→ u, then u = ⊥(t).
This is essential, in particular, for the sequence case where a failure of the first strategy
should be strictly propagated as the final result of the overall sequential strategy.

Second, we note that terms in the signature are in normal form w.r.t. the (rules in
the) translation of any strategy and that contextualized terms of the form ϕS(t) are head-
rigid w.r.t. to (the translation of) strategies other than S, i.e., they can be reduced at
the head position only by the rules obtained for the translation of S and only if t is not
contextualized but a term in the signature. More precisely, if for a strategy S′ and a context Γ,
B(Γ) ∪ T (S′) • ϕS(t) −→ u then t ∈ TF and T (S) ⊆ B(Γ) ∪ T (S′) (or S = X and Γ binds
X). This guarantees that the steps in the strategy derivation are encoded accurately by the
evaluations w.r.t. the rules in the translation.

Finally, the origin of the failure is preserved in the sense that if for a t ∈ TF , ϕS(t) reduces
to a failure, then the reduct is necessarily ⊥(t). This is crucial in particular for the choice
strategy: if the (translation of the) first strategy fails, then the (translation of the) second
one should be applied on the initial subject. J

As a direct consequence of this property, we obtain that (non-)termination of one system
implies the (non-)termination of the other.
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I Corollary 5 (Termination). Given a strategy S and a context Γ, the strategy application
Γ ` S ◦ t has a finite derivation for any term t ∈ TF iff T (S) ∪ B(Γ) is terminating.

The main goal is to prove the termination of some strategy guided system by proving
the property for the plain TRS obtained by translation. When termination does not hold,
non-terminating TRS reductions correspond to infinite strategy-controlled derivations.

5 Implementation and experimental results

The strategy translation presented in Section 3 has been implemented in a tool called
StrategyAnalyser3, written in Tom, a language that extends Java with high level constructs
for pattern matching, rewrite rules and strategies. Given a set of rewrite rules guided by a
strategy, the tool generates a plain TRS in AProVE/TTT2 syntax4 or Tom syntax. In this
section we illustrate our approach on two representative examples.

The first one comes from an optimizer for multi-core architectures, a project where
abstract syntax trees are manipulated and transformations are expressed using rewrite rules
and strategies, and consists of two rewrite rules identified as patterns occurring often in
various forms in the project. First, the rewrite rule g(f(x)) _ f(g(x)) corresponds to the
search for an operator g (which can have more than one parameter in the general case)
which is pushed down under another operator f (again, this operator may have more than
one parameter). This rule is important since the corresponding (innermost) reduction of a

term of the form tgf =
m︷ ︸︸ ︷

g(f(· · · (f︸ ︷︷ ︸
n

(g(f(· · · (f︸ ︷︷ ︸
n

(g(f(· · · (f︸ ︷︷ ︸
n

(g(a))) · · · ), with, for example, n = 10

and m = 18 occurrences of g, involves a lot of computations and could be a performance
bottleneck. Second, the rewrite rule h(x) _ g(h(x)) corresponds to wrapping some parts of
a program by some special constructs, like try/catch for example, and it is interesting since
its uncontrolled application is obviously non-terminating.

At present, a strategy given as input to StrategyAnalyser is written in a simple functional
style and a possible strategy for our example could be:

let S = signature {a:0, b:0, f:1, g:1, h:1} in
let gfx = { g(f(x)) -> f(g(x)) } in
let hx = { h(x) -> g(h(x)) } in
let obu(S) = mu X.(one(X) <+ S) in ## obu stands for OnceBottomUp
let try(S) = S <+ identity in
let repeat(S) = mu X.(try(S ; X)) in ## naive definition of innermost to
repeat(obu(gfx)) ## illustrate various possibilites

As a second example, we consider the following rewrite rules which implement the
distributivity and factorization of symbolic expressions composed of + and * and their
application under a specific strategy:

let S = signature { Z:0, S:1, +:2, *:2 } in
let dist = { *(x, +(y,z)) -> +(*(x,y),*(x,z)) } in
let fact = { +(*(x,y), *(x,z)) -> *(x,+(y,z)) } in
let innermost(S) = mu X.(all(X) ; ((S ; X) <+ identity)) in

innermost(dist) ; innermost(fact)

3 source code available at http://tom.loria.fr/, directory jtom/applications
4 http://aprove.informatik.rwth-aachen.de/
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This time the strategy involves rewrite rules which are either non left-linear or non right-linear
and which are non-terminating if their application is not guided by a strategy.

The StrategyAnalyser tool is built in a modular way such that the compilation (i.e. the
translation presented in Section 3) is performed at an abstract level and therefore, new
concrete syntaxes and new backends can be easily added.

5.1 Generation of executable TRS
When run with the flag -tom, the StrategyAnalyser tool generates a TRS in Tom syntax
which can be subsequently compiled into Java code and executed. Moreover, the tool can
be configured to generate TRS that use the alias notation or not, and to use the notion
of anti-term or not. An encoding using anti-terms and aliasing can be directly used in a
Tom program but for languages and tools which do not offer such primitives, aliases and
anti-terms have to be expanded into plain rewrite rules. We explain first how this expansion
is realized and we discuss then the performances of the obtained executable TRS.

The rules given in Figure 2 can generate two kinds of rules which contain anti-terms.
The first family is of the form ϕ(. . . , yi @ !⊥( ), . . .) _ u with yi ∈ X , and with potentially
several occurrences of !⊥( ). These rules can be easily expanded into a family of rules
ϕ(. . . , yi @ f(x1, . . . , xn), . . .) _ u with such a rule for all f ∈ F , and with x1, . . . , xn ∈ X
and n = ar(f). This expansion is performed recursively to eliminate all the instances of
!⊥( ). The other rules containing anti-terms come from the translation of rewrite rules
(see (E3)) and have the form: ϕ(y @ !f(t1, . . . , tn)) _ ⊥(y), with f ∈ Fn, y ∈ X and
t1, . . . , tn ∈ T (F ,X ). If the term f(t1, . . . , tn) is linear, then the tool generates two families
of rules:

ϕ(g(x1, . . . , xm)) _ ⊥(g(x1, . . . , xm)) for all g ∈ F s.t. g 6= f , x1, . . . , xm ∈ X , m =
ar(g),
ϕ(f(x1, . . . , xi−1, xi @ !ti, xi+1, . . . , xn)) _ ⊥(f(x1, . . . , xn)) for all i ∈ [1, n] and ti 6∈ X ,

with the second family of rules recursively expanded, using the same algorithm, until there is
no anti-term left. For example, if we consider the signature used for the rule gfx, the rule
ϕ(y@ !⊥(_)) _ y is expanded into the set of rewrite rules {ϕ(a) _ a, ϕ(b) _ b, ϕ(f(x1)) _
f(x1), ϕ(g(x1)) _ g(x1), ϕ(h(x1)) _ h(x1) } and the rule ϕ(y@!g(f(x)) _ ⊥(y) is expanded
into the set of rewrite rules { ϕ(a) _ ⊥(a), ϕ(b) _ ⊥(b), ϕ(f(x1)) _ ⊥(f(x1)), ϕ(g(a)) _
⊥(g(a)), ϕ(g(b)) _ ⊥(g(b)), ϕ(g(g(x1))) _ ⊥(g(g(x1))), ϕ(g(h(x1))) _ ⊥(g(h(x1))),
ϕ(h(x1)) _ ⊥(h(x1)) }.

This expansion mechanism is more difficult when we want to find a convenient (finite)
encoding for non-linear anti-terms and in this case the expansion should be done, in fact,
w.r.t. the entire translation of a rewrite rule. Given the rules ϕ(l) _ r and ϕ(y @ !l) _ ⊥(y)
with l ∈ T (F ,X ) a non linear term, we consider the linearized version of l, denoted l′, with
all the variables xi ∈ Var (l) appearing more than once (mi times, with mi > 1) renamed
into z1

i , . . . , z
mi−1
i (the first occurrence of xi is not renamed). Then, these two rules can be

translated into:
ϕ(y @ !l′) _ ⊥(y)
ϕ(l′) _ ϕ′(l′, x1 = z1

1 ∧ · · · ∧ x1 = zm1−1
1 ∧ · · · ∧ xn = z1

n ∧ · · · ∧ xn = zmn−1
n )

ϕ′(l′, true) _ r

ϕ′(l′, false) _ ⊥(l′)
with the first rule containing now the linear anti-term !l′ expanded as previously. The rules
generated for equality and conjunction are as expected.

When considering the rule +(*(x, y), *(x, z)) _ *(x, +(y, z)) the translation generates the
rules ϕ(+(*(x1, x2), *(x1, x3))) _ *(x1, +(x2, x3)) and ϕ(y @ !+(*(x1, x2), *(x1, x3))) _ ⊥(y),
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which are expanded into the following plain TRS:

ϕ(Z) _ ⊥(Z),
ϕ(S(x1)) _ ⊥(S(x1)),
ϕ(*(x1, x2)) _ ⊥(*(x1, x2)),
ϕ(+(x1, Z)) _ ⊥(+(x1, Z)),
ϕ(+(x1, S(x2))) _ ⊥(+(x1, S(x2))),
ϕ(+(x1, +(x2, x3))) _ ⊥(+(x1, +(x2, x3))),
ϕ(+(Z, x2)) _ ⊥(+(Z, x2)),
ϕ(+(S(x1), x2)) _ ⊥(+(S(x1), x2)),
ϕ(+(+(x1, x2), x3)) _ ⊥(+(+(x1, x2), x3)),
ϕ(+(*(x1, x2), *(z1

1 , x3))) _ ϕ′(+(*(x1, x2), *(z1
1 , x3)), x1 = z1

1),
ϕ′(+(*(x1, x2), *(z1

1 , x3)), true) _ *(x1, +(x2, x3)),
ϕ′(+(*(x1, x2), *(z1

1 , x3)), false) _ ⊥(+(*(x1, x2), *(z1
1 , x3))

The number of generated rules for a strategy could thus be significant and it is interesting to
see how this impacts the efficiency of the execution of such a system.

If we execute a Tom+Java program corresponding to the repeat(obu(gfx)) strategy
defined at the beginning of the section and designed using a classic built-in implementation
of strategies where strategy failure is implemented by a Java exception, the normalization
of the term tgf takes 6.3 s5 (Table 1, column Tom). When using an alternative built-in
implementation with a special encoding of failure which avoids throwing Java exceptions, the
computation time decreases to 0.4 s (Table 1, column Tom*). The strategy repeat(obu(gfx)) is
translated into an executable TRS containing 90 Tom plain rewrite rules and the normalization
takes in this case 0.7 s! More benchmarks for the application of other strategies involving
the rules gfx and hx on the same term tgf as well as the application of strategies involving
the rules dist and fact on terms containing more than 400 symbols6 + and * are presented in
Table 1.

We observe that, although the number of generated rules could be significant, the
execution times of the resulting plain TRS are comparable to those obtained with the
native implementation of Tom strategy. This might look somewhat surprising but can be
explained when we take a closer look to the way rewriting rules and strategies are generally
implemented:

the implementation of a TRS can be done in an efficient way since the complexity of
syntactic pattern matching depends only on the size of the term to be reduce and, thanks
to many-to-one matching algorithms [18, 10], the number of rules has almost no impact.
in Tom, each native strategy constructor is implemented by a Java class with a visit
method which implements (i.e. interprets) the semantics of the corresponding operator.
The evaluation of a strategy S on a term t is implemented thus by a call S.visit(t) and
an exception (VisitFailure) is thrown when the application of a strategy fails.

In the generated TRS, the memory allocation involved in the construction of terms headed
by the ⊥ symbol encoding failure appears to be more efficient than the costly Java exception
handling. This is reflected by better performances of the plain TRS implementation compared
to the exception-based native implementation (especially when the strategy involves a lot of
failures). We obtain performances with the generated TRS comparable to an exception-free
native implementation of strategies (as we can see with the columns TRS and Tom* in

5 on a MacPro 3GHz
6 term of the form +(t7, Z), with ti+1 = *(Z, +(ti, ti)), and t0 = +(Z, Z)
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Table 1 Benchmarks: the column #rules indicates the number of plain rewrite rules generated
for the strategy, the column T indicates whether the termination of the rules have been (dis)proven
by AProVE, the column TRS indicates the execution time in milliseconds for the executable TRS, the
column Tom indicates the execution time of the Tom built-in exception-based implementation and
the column Tom* indicates the execution time of the Tom built-in exception-free implementation.

Name Strategy #rules T TRS Tom Tom*

repeat(dist) µX . ((dist ;X)←+ Identity) 60 3 <5 <5 <5
repeat(fact) µX . ((fact ;X)←+ Identity) 63 3 <5 13 <5
repeat(dist ; fact) µX . (((dist ; fact) ;X)←+ Identity) 83 7 – – –
td(dist) µX . ((dist←+ Identity) ; All(X)) 125 3 39 12 30
obu(fact) µX . (One(X)←+ fact) 73 3 <5 <5 <5
repeat(obu(fact)) µX . ((obu(fact) ;X)←+ Identity) 103 3 220 2460 120

td(dist) ; repeat(obu(fact)) 218 3 296 2601 150
rbufact µX . (All(X);

((fact ; All(X))←+ Identity)) 202 3 511 427 302
td(dist) ; rbufact 318 3 557 453 328

innermost(dist) µX . (All(X) ; ((dist ;X)←+ Identity)) 135 3 370 650 230
innermost(fact) µX . (All(X) ; ((fact ;X)←+ Identity)) 138 3 345 308 149

innermost(dist) ; innermost(fact) 138 3 866 960 340
repeat(td(dist)) µX . ((td(dist) ;X)←+ Identity) 155 7 – – –

bu(hx) µX . (All(X) ; (hx←+ Identity)) 72 3 5 6 5
td(hx) µX . ((hx←+ Identity) ; All(X)) 72 7 – – –
repeat(obu(gfx)) µX . ((obu(gfx) ;X)←+ Identity) 90 3 699 6300 414
innermost(gfx) µX . (All(X) ; ((gfx ;X)←+ Identity)) 85 3 565 4180 365
propagate µX . (gfx ; (All(X)←+ Identity)) 75 3 <5 <5 <5
bup µX . (All(X) ; (propagate←+ Identity)) 121 3 59 46 42

Table 1), because efficient normalization techniques can be used for the plain TRS, since its
rewrite rules are not controlled by a programmable strategy.

5.2 Generation of TRS for termination analysis
When run with the flag -aprove, the StrategyAnalyser tool generates a TRS in AProVE/TTT2
syntax which can be analyzed by any tool accepting this syntax. In this case, aliases and
anti-terms are always completely expanded leading generally to an important number of plain
rewrite rules. Fortunately, the number of rules does not seem to be a problem for AProVE
and, for example, the termination of the strategy repeat(obu(gfx)), which is translated into
90 rules, is proven in approximately 10 s (using the web interface). Similarly, the termination
of the strategy td(dist) ; rbufact, whose definition is given in Table 1, is translated into 318
rules, which can be proven terminating in approximately 75 s.

The termination of some strategies like, for example, repeat(obu(gfx)) might look pretty
easy to show for an expert, but termination is less obvious for more complex strategies like,
for example, bup, which is a specialized version of repeat(obu(gfx)), or rbufact, which is a
variant of bu(fact).

The approach was effective not only in proving termination of some strategies, but also
in disproving it when necessary. Once again this might look obvious for some strategies like,
for example, td(hx), which involves a non-terminating rewrite rule, but it is less clear for
strategies combining terminating rewrite rules or strategies like, e.g., repeat(dist ; fact).
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6 Conclusions and further work

We have proposed a translation of programmable strategies into plain rewrite rules that we
have proven sound and complete. Well-established termination methods can be thus used to
(dis)prove the termination of the obtained TRS and we can deduce, as a direct consequence,
the property for the corresponding strategy. Alternatively, the translation can be used as a
strategy compiler for languages which do not implement natively such primitives.

The translation has been implemented in Tom and can generate, for the moment, plain
TRS using either a Tom or an AProVE/TTT2 syntax. We have experimented with classic
strategies and AProVE and TTT2 have been able to (dis)prove the termination even when the
number of generated rules was significant. The performances for the generated executable
TRS are comparable to the ones of the Tom built-in (exception-free) strategies.

The framework can be of course improved. We expect problems in (dis)proving termination
when the number of generated rewrite rules is too big, and we are currently working on a
meta-level representation of the strategy translation which abstracts over the signature and
considerably decreases the size of the generated TRS compared to the approach of this paper.
When termination is disproven and a counter-example can be exhibited, it is interesting to
reproduce the corresponding infinite reductions in terms of strategy derivations. Since the
TRS reductions corresponding to distinct (sub-)strategy derivations are not interleaved, we
think that the back-translation of the counter-examples provided by the termination tools
can be automatized.

As far as the executable TRS is concerned, we intend to develop new backends allowing
the integration of programmable strategies in other languages than Tom.
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Abstract
Presentations of categories are a well-known algebraic tool to provide descriptions of categories
by the means of generators, for objects and morphisms, and relations on morphisms. We gener-
alize here this notion, in order to consider situations where the objects are considered modulo
an equivalence relation (in the spirit of rewriting modulo), which is described by equational gen-
erators. When those form a convergent (abstract) rewriting system on objects, there are three
very natural constructions that can be used to define the category which is described by the pre-
sentation: one is based on restricting to objects which are normal forms, one consists in turning
equational generators into identities (i.e. considering a quotient category), and one consists in
formally adding inverses to equational generators (i.e. localizing the category). We show that,
under suitable coherence conditions on the presentation, the three constructions coincide, thus
generalizing celebrated results on presentations of groups. We illustrate our techniques on a
non-trivial example, and hint at a generalization for 2-categories.
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A string rewriting system P consists in an alphabet P1 and a set P2 ⊆ P ∗1 × P ∗1 of
rules. Such a system induces a monoid ‖P‖ = P ∗1 /

∗⇔ obtained by quotienting the free
monoid P ∗1 on P1 by the smallest congruence ∗⇔ containing the rules in P2; when the
rewriting system is convergent, i.e. both confluent and terminating, normal forms provide
canonical representatives of equivalence classes. Given a monoid M , we say that P is a
presentation of M when M is isomorphic to ‖P‖: in this case, the elements of P1 can be seen
as generators forM , and the elements of P2 as a complete set of relations forM . For instance,
the additive monoid N×N admits the presentation P with P1 = {a, b} and P2 = {ba⇒ ab}:
namely, the string rewriting system is convergent, and its normal forms are words of the
form ambn, with (m,n) ∈ N× N, from which it is easy to build the required isomorphism.

The notion of presentation is easy to generalize from monoids to categories (a monoid
being the particular case of a category with one object): a presentation of category consists
in generators for objects and morphisms, together with rules relating morphisms in the
free category generated by the generators. Starting from this observation, people have
considered a wild generalization of the notion of presentation, in order to present n-categories
(computads [14, 13] or polygraphs [5]), thus providing us with a notion of higher-dimensional
rewriting system. While we will not, in this article, consider much more than presentations
of categories, the motivation for this work really comes from a limitation in presentations of
2-categories (and higher-dimensional categories) that we would like to overcome. We shall
explain it on a simple example of a monoidal category (which, again, is a particular case of a
2-category with only one 0-cell).

Consider the well-known simplicial category ∆ whose objects are integers n ∈ N and mor-
phisms f : m→ n are increasing functions f : [m]→ [n] where [m] = {0, . . . ,m− 1}. This
category is monoidal, with tensor product being given by addition on objects (m⊗n = m+n)
and by “juxtaposition” on morphisms, and it is well known that it admits the following
presentation as a monoidal category [12, 10]: its objects are generated by one object a,
its morphisms are generated by µ : a ⊗ a → a and η : I → a, and the relations are
α : µ ◦ (µ⊗ ida) = µ ◦ (ida⊗µ), λ : µ ◦ (η⊗ ida) = ida and ρ : µ ◦ (ida⊗η) = ida. This means
that every morphism of ∆ can be obtained as a composite of η and µ, and that two such
formal composites represent the same morphism precisely when they can be related by the
congruence generated by the above relations. As we can see on this example, a presentation P
of a monoidal category consists in generators for objects (here P1 = {a}), generators for
morphisms (P2 = {η, µ}) and relations between composite of morphisms (P3 = {α, λ, ρ}).
Notice that such a presentation does not allow for relations between objects, and thus is
restricted to presenting monoidal categories whose underlying monoid of objects is free.

This limitation can be better understood by trying to present the monoidal category ∆×∆
with tensor product extending componentwise the one of ∆: the underlying monoid of objects
is N×N, which is not free. If we try to construct a presentation for this monoidal category, seen
as consisting of “two copies” of the above category ∆, we are lead to consider a presentation
containing “two copies” of the previous presentation: we consider a presentation P with
P1 = {a, b} as object generators (where a and b respectively correspond to the objects
(1, 0) and (0, 1)), with P2 = {µa, ηa, µb, ηb} as morphism generators (with µa : a ⊗ a → a,
µb : b⊗ b→ b, etc.), and with P3 = {αa, λa, ρa, αb, λb, ρb} as relations. If we stop here adding
relations, the presented category has {a, b}∗ as underlying monoid of objects, which is not
right: recalling the above presentation for N×N, we should moreover add a relation γ : ba = ab.
However, such a relation between objects is not allowed in the usual notion of presentation
(only relations between morphisms are usually considered). In order to provide a meaning to
it, three constructions are available: restrict P to some canonical representatives of objects
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modulo the equivalence generated by γ (typically the words of the form ambn), quotient by γ
the monoidal category ‖P‖ presented by P , or formally invert the morphism γ in ‖P‖. We
show that under reasonable assumptions on the presentation, all three constructions coincide,
thus providing one with a notion of coherent presentation modulo. As a fist step toward
this situation, we study here the simpler case of presentations of categories and introduce a
notion of presentation modulo for those, leaving the case of 2-categories for future work.

We begin by recalling the notion of presentation of a category (Section 2.1), then we
extend it to work modulo a relation on objects (Section 2.2), and consider the quotient and
localization wrt to the relation (Section 2.3). In order to compare those constructions, we
consider equational rewriting systems equipped with a notion of residuation (Section 3.1)
and satisfying a particular “cylinder” property (Section 3.2). We then show that, under
suitable coherence conditions, the category of normal forms is isomorphic to the quotient
(Section 4.1) and equivalent with the localization (Section 4.2), and illustrate our results on
an example (Section 4.3). We finally discuss a possible extension of this work to presentations
of 2-categories (Section 5) and conclude (Section 6).

2 Presentations of categories modulo a rewriting system

2.1 Presentations of categories
Recall that a graph (P0, s0, t0, P1) consists of two sets P0 and P1, of vertices and edges
respectively, together with two functions s0, t0 : P1 → P0 associating to an edge its source
and target respectively. Such a graph generates a category with P0 as objects and the set P ∗1
of (directed) paths as morphisms. If we denote by i1 : P1 → P ∗1 the coercion of edges to
paths of length 1, and s∗0, t∗0 : P ∗1 → P0 the functions associating to a path its source and
target respectively, we thus obtain a diagram as on the left below:

P1
s0

~~ t0~~
i1

��
P0 P ∗1

s∗0oo
t∗0

oo

P1
s0

~~ t0~~
i1

��

P2
s1

~~ t1~~
P0 P ∗1

s∗0oo
t∗0

oo

(1)

in Set which is commuting in the sense that s∗0 ◦ i1 = s0 and t∗0 ◦ i1 = t0.

I Definition 1. A presentation P = (P0, s0, t0, P1, s1, t1, P2), as pictured on the right of (1),
consists in a graph (P0, s0, t0, P1) as above, the elements of P0 (resp. P1) being called
object (resp. morphism) generators, together with a set P2 of relations (or 2-generators)
and two functions s1, t1 : P2 → P ∗1 such that s∗0 ◦ s1 = s∗0 ◦ t1 and t∗0 ◦ s1 = t∗0 ◦ t1. The
category ‖P‖ presented by P is the category obtained from the category generated by the
graph (P0, s0, t0, P1) by quotienting morphisms by the smallest congruence wrt composition
identifying any two morphisms f and g such that there exists α ∈ P2 satisfying s1(α) = f

and t1(α) = g.

In the following, we often simply write (P0, P1, P2) for a presentation as above, leaving the
source and target maps implicit. We write f : x→ y for an edge f ∈ P1 with s0(f) = x and
t0(f) = y, and α : f ⇒ g for a relation with f as source and g as target. We sometimes write
α : f ⇔ g to indicate that α : f ⇒ g or α : g ⇒ f is an element of P2, and we denote by ∗⇔
the smallest congruence such that f ∗⇔ g whenever there exists α : f ⇒ g in P2.

I Example 2. The monoid N/2N (seen as a category with only one object) admits the
presentation P with P0 = {x}, P1 = {f : x→ x} and P2 = {ε : f ◦ f ⇒ idx}.
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I Remark. A presentation P generates a 2-category with invertible 2-cells (also called a
(2,1)-category), whose set of 2-cells is denoted P ∗2 , and the category presented by P is
obtained from this 2-category by identifying 1-cells where there is a 2-cell in between [5, 10].
We write α : f ∗⇔ g for such a 2-cell.

I Lemma 3. Any category C admits a presentation P C, called its standard presentation,
with P C0 being the set of objects of C, P C1 being the set of morphisms of C and P C2 being the set
of pairs (f2 ◦ f1, g) ∈ P C∗1 × P C∗1 with f1, f2, g ∈ P1 such that s0(f1) = s0(g), t0(f2) = t0(g)
and f2 ◦ f1 = g in C (with projections as source and target functions).

By previous lemma, every category admits at least one presentation. In general, it actually
admits many presentations. It can be shown that two presentations present the same category
if and only if they are related by Tietze transformations: those transformations generate all
the operations one can do on a presentation without modifying the presented category [15, 8].
For instance, Knuth-Bendix completions are a particular case of those [9].

I Definition 4. Given a presentation P , a Tietze transformation consists in
adding (resp. removing) a generator f ∈ P1 and a relation α : f ⇒ g ∈ P2 with
g ∈ (P1 \ {f})∗,
adding (resp. removing) a relation α : f ⇒ g ∈ P2 such that f and g are equivalent
wrt the congruence generated by the relations in P2 \ {α}.

I Proposition 5. Two presentations P and P ′ are related by a finite sequence of Tietze
transformations if and only if they present the same category, i.e. ‖P‖ ∼= ‖P ′‖.

2.2 Presentations modulo
In a presentation P of a category, relations are generated by elements of P2: the morphisms
of the free category on the underlying graph will be quotiented by those in order to obtain
the presented category. We now extend this notion in order to also allow for quotienting
objects in the process of constructing the presented category.

I Definition 6. A presentation modulo (P, P̃1) consists of a presentation P = (P0, P1, P2)
together with a set P̃1 ⊆ P1, whose elements are called equational generators.

The morphisms of ‖P‖ generated by the equational generators are called equational morphisms.
Intuitively, the category presented by a presentation modulo should be the “quotient category”
‖P‖ /P̃1, as explained in next section, where objects equivalent under P̃1 (i.e. related by
equational morphisms) are identified. We believe that the reason why presentations modulo
of categories were not introduced before is that they are unnecessary, in the sense that
we can always convert a presentation modulo into a regular presentation, see Lemma 10
below. However, the techniques developed here extend in the case of 2-categories (this will
be developed in a subsequent article) and moreover, our framework already enables us to
easily obtain interesting results on presented categories, see Section 4.3.

I Definition 7. Given a presentation modulo (P, P̃1), we define the presentation P/P̃1 as
the presentation (P ′0, P ′1, P ′2) where

P ′0 = P0/ ∼=1 where ∼=1 is the smallest equivalence such that x ∼=1 y whenever there exists
a generator f : x→ y in P̃1, and we denote [x] the equivalence class of x ∈ P0,
the elements of P ′1 are f : [x]→ [y] for f : x→ y in P1,
the elements of P ′2 are of the form α : f → g for α : f → g in P2, or αf : f → id[x] for
f : x→ y in P̃1.
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We will sometimes need to consider presentations modulo with “arrows reversed”:

I Definition 8. Given a presentation modulo (P, P̃1), the presentation modulo (P op, P̃ op
1 )

is given by P op = (P0, P
op
1 , P op

2 ) where P op
1 = {fop : y → x | f : x→ y ∈ P1} and where

P op
2 = {αop : fop ⇒ gop | α : f ⇒ g} with fop = fop

1 ◦ ... ◦ f
op
k for f = fk ◦ . . . ◦ f1 and where

P̃ op
1 is the subset of P op

1 corresponding to P̃1.

2.3 Quotient and localization of a presentation modulo
As explained above, we want to quotient our presentations modulo by equational morphisms,
in order for the equational morphisms to induce equalities in the presented category. Given
a category C and a set Σ of morphisms, there are essentially two canonical ways to “get rid”
of the morphisms of Σ in C: we can either force them to be identities, or to be isomorphisms,
giving rise to the two following notions of quotient and localization of a category. These are
standard construction in category theory and we recall them below.

I Definition 9. The quotient of a category C by a set Σ of morphisms of C is a category C/Σ
together with a quotient functor Q : C → C/Σ sending the elements of Σ to identities, such
that for every functor F : C → D sending the elements of Σ to identities, there exists a
unique functor F̃ such that F̃ ◦Q = F .

Such a quotient category always exists for general reasons [2] and is unique up to isomorphism.
Given a presentation modulo (P, P̃1), the category presented by the associated (non-modulo)
presentation P/P̃1 described in Definition 7, corresponds to considering the category presented
by the (non-modulo) presentation P and quotient it by P̃1.

I Lemma 10. Suppose given a presentation modulo (P, P̃1), the categories ‖P‖ /P̃1 and∥∥P/P̃1
∥∥ are isomorphic.

A second, slightly different construction, consists in turning elements of Σ into isomor-
phisms (instead of identities):

I Definition 11. The localization of a category C by a set Σ of morphisms is the cate-
gory C[Σ−1] together with a localization functor L : C → C[Σ−1] sending the elements of Σ
to isomorphisms, such that for every functor F : C → D sending the elements of Σ to
isomorphisms, there exists a unique functor F̃ such that F̃ ◦ L = F .

In the case where the category is presented, its localization admits the following presentation.

I Lemma 12. Given a presentation P = (P0, P1, P2) and a subset Σ of P1, the category
presented by P ′ = (P0, P

′
1, P

′
2) where P ′1 = P1 ]

{
f : y → x

∣∣ f : x→ y ∈ Σ
}

and where
P ′2 = P2 ]

{
f ◦ f ⇒ id, f ◦ f ⇒ id

∣∣ f ∈ Σ
}
is a localization of the category ‖P‖ by Σ.

I Example 13. Let us consider the category C = x
f //
g
// y with two objects and two

non-trivial morphisms. Its localization by Σ = {f, g} is equivalent to the category with one
object and Z as set of morphisms (with addition as composition), whereas its quotient by Σ
is the category with one object and only identity as morphism. Notice that they are not
equivalent.

The description of the localization of a category provided by the universal property is often
difficult to work with. When the set Σ has nice properties, the localization admits a much
more tractable description [7, 4].
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I Definition 14. A set Σ of morphisms of a category C is a left calculus of fractions when
1. the set Σ is closed under composition : for f and g composable morphisms in Σ, g ◦ f is

in σ.
2. Σ contains the identities idx for x in P0.
3. for every pair of coinitial morphisms u : x → y in Σ and f : x → z in C, there exists a

pair of cofinal morphisms v : z → t in Σ and g : y → t in C such that v ◦ f = g ◦ u.
4. for every morphism u : x→ y in Σ and pair of parallel morphisms f, g : y → z such that

f ◦ u = g ◦ u there exists a morphism v : z → t in Σ such that v ◦ f = v ◦ g.
t

y

g ??

z

v
^^

x
u

__

f

?? x
u // y

f //
g
// z

v // t

I Theorem 15. When Σ is a left calculus of fractions for a category C, the localization
C[Σ−1] can be described as the category of fractions whose objects are the objects of C and
morphisms from x to y are equivalence classes of pairs of cofinal morphisms (f, u) with
f : x → i ∈ C and u : y → i ∈ Σ under the equivalence relation identifying two such pairs
(f1, u1) and (f2, u2) where there exists two morphisms w1, w2 ∈ Σ such that w1 ◦u1 = w2 ◦u2
and w1 ◦ f1 = w2 ◦ f2, as shown on the left:

i1
w1
��

x

f1
@@

g1 ��

j y

u2��

u1
^^

i2

w2

OO

k

i

h
AA

j

w
]]

x

f
AA

y

u
]]

g @@

z

v
]]

identity on an object x is the equivalence class of (idx, idx) and composition of two morphisms
(f, u) : x → y and (g, v) : y → z is the equivalence class of (h ◦ f, w ◦ v) : x → z where the
morphisms h and w are provided by property 1 of Definition 14.

In such a situation, the following property often enables one to show that there is a full and
faithful embedding of the category into its localization [4]:

I Proposition 16. Given a left calculus of fractions Σ for a category C, if all the morphisms
of Σ are mono then the inclusion functor F : C → C[Σ−1] is faithful, where F is the identity
on objects and sends a morphism f : x→ y to (f, idy).

Given a presentation modulo, when the (abstract) rewriting system on objects given by the
equational generators is convergent, normal forms for objects provide canonical representatives
of objects modulo equational generators, and therefore we are actually provided with three
possible and equally reasonable constructions for the category presented by a presentation
modulo (P, P̃1):
1. the full subcategory on ‖P‖ whose objects are normal forms wrt P̃1,
2. the quotient category ‖P‖ /P̃1,
3. the localization ‖P‖ [P̃−1

1 ].
The aim of this article is to provide reasonable assumptions on the presentation modulo
ensuring that the two first categories are isomorphic, and equivalent to the third one. We
introduce them gradually.
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3 Confluence properties

In this section, we introduce a series of local conditions that our presentations modulo should
satisfy in order for the constructions recalled above to coincide. These can be seen as a
generalization of classical local confluence properties in our context in which rewriting rules
correspond to equational generators only, and in which we keep track of 2-cells witnessing
local confluence.

3.1 Residuation
We begin by extending to our setting the notion of residual, which is often associated to a
confluent rewriting system in order to “keep track” of rewriting steps once others have been
performed [11, 3, 6].

I Assumption 1. We suppose fixed a presentation modulo (P, P̃1) such that

1. for every pair of distinct coinitial generators f : x→ y1 in P̃1 and g : x→ y2
in P1, there exist a pair of cofinal morphisms g′ : y1 → z in P ∗1 and
f ′ : y2 → z in P̃ ∗1 and a relation α : g′ ◦ f ⇔ f ′ ◦ g in P2, as shown on the
right,

2. there is no infinite path with generators in P̃1.

y1
g′ // z

x
f
OO

g
//

α⇐⇒
y2

f ′
OO

These assumptions ensure in particular that the (abstract) rewriting system on vertices
with P̃1 as set of rules is convergent. Given a vertex x ∈ P0, we write x̂ for the associated
normal form. For every pair of distinct morphisms (f, g), as in the first assumption, we
suppose fixed an arbitrary choice of a particular triple (g′, α, f ′) associated to it, and write
g/f for g′, f/g for f ′ and ρf,g for α. The morphism g/f (resp. f/g) is as the residual of g
after f (resp. f after g): intuitively, g/f corresponds to what remains of g once f has been
performed. It is natural to extend this definition to paths as follows:

I Definition 17. Given two coinitial paths f : x → y and g : x → z and P ∗1 such that
either f or g is in P̃ ∗1 , we define the residual g/f of g after f as above when f and g are
distinct generators, and by induction with f/f = idy and

g/ idx = g idx /f = idy (g2◦g1)/f = (g2/(f/g1))◦(g1/f) g/(f2◦f1) = (g/f1)/f2

(by convention the residual g/f is not defined when neither f nor g belongs to P̃ ∗1 ). Graphi-
cally,

id //

g

OO

id
//
g/ id=g

OO
f //

id

OO

f
//

id /f=id

OO

f/(g2◦g1)//

g2

OO

f/g1 //
g2/(f/g1)

OO

g1

OO

f
//
g1/f

OO

f1/g //f2/(g/f1)//

g

OO

f1

//
f2

//
g/f1

OO
(g/f1)/f2

OO

It can be checked that residuation is well-defined on the morphisms of the free category P ∗1
in the sense that it is compatible with associativity and identities, and moreover it does not
depend on the order in which rules are applied, see Lemma 20. In order for the definition to
be well-founded, and thus always defined, we will make the following additional assumption.

I Assumption 2. There is a weight function ω1 : P1 → N, and we still write ω1 : P ∗1 → N
for its extension as morphism of category to the category corresponding to the additive
monoid (N,+), such that for every generator g ∈ P1 and f ∈ P̃1, we have ω1(g/f) < ω1(g).
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I Remark. In order to simplify the presentation, we did not present the most general
axiomatization for the weight function. An important point is that it induces a well-founded
ordering on elements of P ∗1 and satisfies properties similar to monomial orderings:

it is compatible with composition: if ω1(g) < ω1(g′) then ω1(h ◦ g ◦ f) < ω1(h ◦ g′ ◦ f),
identities are minimal elements: ω1(id) < ω1(f) for every f 6= id; in particular, we have
ω1(g) < ω1(h ◦ g ◦ f) for f, h 6= id.

In order to study confluence of the rewriting system provided by equational morphisms,
through the use of residuals, we first introduce the following category, which allows us to
consider, at the same time, both residuals g/f and f/g of two coinitial morphisms f and g.

I Definition 18. The zig-zag presentation associated to the presentation modulo (P, P̃1)
is the presentation Z = (Z0, Z1, Z2) with Z0 = P0, Z1 = P1 ] P̃1 (generators in P̃1 are of
the form f : B → A for some generator f : A → B in P̃1) and relations in Z2 are of the
form g ◦ f ⇒ (f/g) ◦ (g/f) or f ◦ f ⇒ idy for some pair of distinct coinitial generators
f : x→ y ∈ P̃1 and g : x→ z ∈ P1.

I Lemma 19. The rewriting system on morphisms in Z∗1 with Z2 as rules is convergent.
Given two coinitial morphisms f : x → y in P̃ ∗1 and g : x → z in P ∗1 , the normal form of
g ◦ f is (f/g) ◦ (g/f).

Proof. We extend the weight function of Assumption 2 to morphisms in Z∗1 by setting
ω1(f) = 0 for f in P̃1. This ensures that the rewriting system on morphisms in Z∗1 with Z2
as rules is terminating. Moreover, because the left members of rules are of the form g ◦f with
g ∈ P1 and f ∈ P̃1, there are no critical pairs, which means that the rewriting system is locally
confluent and thus convergent by Newman’s lemma. Given two coinitial morphisms f : x→ y

in P̃ ∗1 and g : x→ z in P ∗1 , we prove by recurrence on ω1(g ◦ f) that the normal form of g ◦ f
is (f/g) ◦ (g/f). J

As a direct corollary of the convergence of the rewriting system, one can show that Definition 17
makes sense:

I Lemma 20. The residuation operation does not depend on the order in which equalities of
Definition 17 are applied.

Moreover, a “global” version of the residuation property (Assumption 1) holds:

I Proposition 21. Given two coinitial morphisms f : x → y in P̃ ∗1 and g : x → z in P ∗1 ,
there exists a relation α : (g/f) ◦ f ∗⇔ (f/g) ◦ g.

Proof. By Lemma 19, there exists a rewriting path β : g ◦ f ⇒ (f/g) ◦ (g/f) in Z∗2 . By
induction on its length, we can construct a relation α : (g/f) ◦ f ∗⇔ (f/g) ◦ g in the following
way. The case where β is empty is immediate, otherwise we have f = f2 ◦ f1 and g = g2 ◦ g1
where f2 is in P̃ ∗1 (resp. g2 in P ∗1 ) and f1 is a generator in P̃1 (resp. g1 in P1). We distinguish
two cases depending on the form of the first rule of β:

g/f=g2/f2 //

f2

OO

id //

f1

OO

g1
//

⇒

g2
//

id

OO f/g=f2/g2

OO

g/f //

f2

OO

g1/f1 //

g/f1

��g2/(f1/g1) //
q

f2/(g/f1)

OO

f1

OO

g1
//

⇒

g2
//

f1/g1

OO
∗⇒ f1/g

OO
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If f1 = g1, i.e. the first step of β corresponds to rewriting g2 ◦ g1 ◦ f1 ◦ f2 to g2 ◦ f2
by applying the rewriting rule f1 ◦ f1 ⇒ id of Z2, then by induction hypothesis, there
exists a relation α̂′ : (g2/f2) ◦ f2

∗⇔ (f2/g2) ◦ g2. Besides, f2/g2 = f/g and g2/f2 = g/f

which means that there exists a relation (g/f) ◦ f ∗⇔ (f/g) ◦ g. Otherwise f1 6= g1,
and g2 ◦ g1 ◦ f1 ◦ f2 rewrites to g2 ◦ (f1/g1) ◦ (g1/f1) ◦ f2 by applying the rewriting rule
g1 ◦ f1 ⇒ (f1/g1) ◦ (g1/f1) of Z2. By definition of the relations in Z2, there exists a relation
(g1/f1) ◦ f1 ⇔ (f1/g1) ◦ g1 in P2. Moreover, by Lemma 19, the morphism g2 ◦ (f1/g1) in Z∗1
rewrites to (f1/g)◦(g2/(f1/g1)), and therefore by induction hypothesis, there exists a relation
(g2/(f1/g1)) ◦ (f1/g1) ∗⇔ ((f1/g1)/g2) ◦ g2 in P ∗2 . This means that there is a relation in P ∗2

(g/f1) ◦ f1 = (g2/(f1/g1)) ◦ (g1/f1) ◦ f1
∗⇔ ((f1/g1)/g2) ◦ g2 ◦ g1 = (f1/g) ◦ g

Similarly, by lemma 19, (g/f1)◦f2 rewrites to (f2/(g/f1)◦ (g/f) by rules in Z2, which means
that there exists a relation (g/f) ◦ f2

∗⇔ (f2/(g/f1)) ◦ (g/f1) in P ∗2 and therefore, there exists
a relation in P ∗2 :

(g/f) ◦ f = (g/f) ◦ f2 ◦ f1
∗⇔ (f2/(g/f1)) ◦ (f1/g) ◦ g = (f/g) ◦ g

from which we conclude, as indicated in the above diagram. J

3.2 The cylinder property
In previous section, we have studied residuation, which enables one to recover a residual g/f
of a morphism g after a coinitial equational morphism f . We now strengthen our hypothesis
in order to ensure that if two morphisms are equal (wrt the equivalence generated by P ∗2 ) then
their residuals after a same morphism are equal, i.e. equality is compatible with residuation.

I Assumption 3. The presentation (P, P̃1) satisfies the cylinder
property: for every triple of coinitial morphisms f : x → x′ in
P̃1 (resp. in P1) and g1, g2 : x→ y in P ∗1 (resp. in P̃ ∗1 ) such that
there exists a relation α : g1 ⇔ g2, we have f/g1 = f/g2 and there
exists a 2-cell g1/f

∗⇔ g2/f . We write α/f for an arbitrary choice
of such a 2-cell.

x′
g1/f

++

g2/f

33α/f y′

x

f

OO

g1
**

g2

44α y

f/g1=f/g2

OO

As in previous section, we would like to extend this “local” property (f and α are supposed
to be generators) to a “global” one (where f and α can be composite of cells):

I Proposition 22 (Global cylinder property). Given coinitial morphisms f : x → x′ in P̃ ∗1
(resp. in P ∗1 ) and g1, g2 : x→ y in P ∗1 (resp. in P̃ ∗1 ) such that there exists a composite relation
α : g1

∗⇔ g2, we have f/g1 = f/g2 and there exists a 2-cell g1/f
∗⇔ g2/f .

The proof of previous proposition requires generalizing, in dimension 2, the termination
condition (Assumption 2) and the construction of the zig-zag presentation (Definition 18).

I Definition 23. The 2-zig-zag presentation associated to (P, P̃1) is Y = (Y0, Y1, Y2) with
Y0 = P0, Y1 = PH

1 ] PV
1 (where the morphisms of PH

1 are called horizontal of the form
fH : A → B for some morphism f : A → B in P1 and similarly for the morphisms in PV

1
which are called vertical), and the 2-cells in Y2 = Y H

2 ] Y V
2 are either

horizontal 2-cells: Y H
2 = PH

2 ] P2
H (i.e. relations in P2 taken forward

or backward, and decorated by H)
vertical 2-cells: given two generators f : x → y and g : x → z

in P1 such that f or g belongs to P̃1, we have a relation
ρV
f,g : (g/f)H ◦ fV ⇒ (f/g)V ◦ gH in Y V

2 .

x′
(g/f)H

// y′

x

fV

OO

gH
//

ρV
f,g

=⇒
(f/g)V

OO
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We consider the following rewriting system on the 2-cells in Y ∗2 : for every 2-cell α : g1 ⇔ g2 : x→ y

in P2, for every coinitial 1-cell f : x→ x′ in P1 such that either f or both g1 and g2 belong
to P̃ ∗1 , there is a rewriting rule

((f/g1)V ◦ αH) • ρV
f,g1

V ρV
f,g2
• ((α/f)H ◦ fV)

x′
g1/f

H

++

ρV
f,g1

y′

x

fV

OO

gH
1

**

gH
2

44αH y

(f/g1)V

OO

V

x′
(g1/f)H

++

(g2/f)H

33(α/f)H

ρV
f,g2

y′

x

fV

OO

gH
2

44 y

(f/g1)V

OO
(2)

where ◦ (resp. •) denotes horizontal (resp. vertical) composition in a 2-category.
In order to ensure the termination of the rewriting system, we suppose the following.

I Assumption 4. There is a weight function ω2 : PH
2 → N such that for every α : g1 ⇒ g2

in Y ∗2 and f in P1 such that α/f exists we have ω2(α/f) < ω2(α). We still write
ω2 :

(
PH

2 ] P2
H)∗

→ N for the function such that ω2(α) = ω2(α) and both horizontal
and vertical compositions are sent to addition (N being a commutative additive monoid, this
definition is compatible with axioms of 2-categories, such as associativity or exchange law).

I Corollary 24. The rewriting system (2) is convergent.

Proposition 22 follows easily, by a reasoning similar to Proposition 21.
The cylinder property has many interesting consequences for the residuation operation,

as we now investigate.

I Proposition 25. In the category ‖P‖, every equational morphism is epi.

Proof. Suppose given f : x → y in P̃ ∗1 , and g1, g2 : y → z in P ∗1 such that g1 ◦ f
∗⇔ g2 ◦ f .

By Proposition 22, we have g1 = (g1 ◦ f)/f ∗⇔ (g2 ◦ f)/f = g2. J

I Proposition 26. In the category ‖P‖, every morphism g admits a pushout along a coinitial
equational morphism f given by g/f .

Proof. Suppose given f : x→ y1 in P̃ ∗1 and g : x→ y2 in P ∗1 . By Proposition 21, we have
(g/f) ◦ f ∗⇔ (f/g) ◦ g and we now show that (g/f, f/g) forms a universal cocone. Suppose
given f ′ : y1 → z and g′ : y2 → z such that f ′ ◦ f ∗⇔ g′ ◦ g.

y1 g/f

&&

f ′

""
x

f 77

g ''

∗m
g′/(f/g) //
∗m

z
idz

(f/g)/g′oo

y2
f/g

88

g′

<<

We have (g′/(f/g)) ◦ (f/g) ∗⇔ ((f/g)/g′) ◦ g′, where residuals exist because f/g is in P̃ ∗1 .
Moreover, by applying Proposition 22 to morphism f and 2-cell f ′ ◦ f ∗⇔ g′ ◦ g, we have
(f/g)/g′ = f/(g′◦g) ∗⇔ f/(f ′◦f) = idz. Finally, we have f ′◦f

∗⇔ g′◦g ∗⇔ (g′/(f/g))◦(g/f)◦f ,
and by Proposition 25, we have f ′ ∗⇔ (g′/(f/g)) ◦ (g/f). From which we conclude. J
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4 Comparing presented categories

4.1 The category of normal forms
We show here that with our hypothesis on the rewriting system, the quotient category ‖P‖ /P̃1
can be recovered as the following subcategory of ‖P‖, whose objects are those which are in
normal form for P̃1.

I Definition 27. The category of normal forms ‖P‖↓ P̃1 is the full subcategory of ‖P‖ whose
objects are the normal forms of elements of P0 wrt rules in P̃1. We write I : ‖P‖↓ P̃1 → ‖P‖
for the inclusion functor.

I Theorem 28. The category ‖P‖↓ P̃1 is (isomorphic to) the quotient category ‖P‖ /P̃1.

Proof. Recall that for every object x ∈ ‖P‖, the associated normal form wrt rules in P̃1 is
denoted by x̂, and we write ux : x→ x̂ for any equational morphism from x to its normal
form. In particular, we always have ux̂ = idx̂. We define a functor N : ‖P‖ → ‖P‖↓ P̃1 as
the functor associating to each object x its normal form x̂ under P̃1, and to each morphism
f : x→ y, the morphism f̂ : x̂→ ŷ where f̂ = uy′ ◦ (f/ux) with y′ being the target of f/ux:

ŷ = ŷ′

x̂

f̂ 88

f/ux // y′

uy′

OO

x

ux

OO

f
// y

ux/f

OO

Notice that this definition depends on a choice of a representative in P ∗1 for f , and in P̃ ∗1 for
ux and uy′ , in the equivalence classes of morphisms modulo the relations in P2. The global
cylinder property shown in Proposition 22 ensures that the definition is independent of the
choice of such representatives. Given two composable morphisms f : x→ y and g : y → z we
have

Ng ◦Nf = uz′ ◦ (g/uy) ◦ uy′ ◦ (f/ux)
= uz′ ◦ (g/(uy′ ◦ (ux/f))) ◦ uy′ ◦ (f/ux)
= uz′ ◦ (g/(ux/f))/uy′ ◦ uy′ ◦ (f/ux)
= uz′ ◦ uy′/(g/(ux/f)) ◦ g/(ux/f) ◦ (f/ux)
= uz′′ ◦ ((g ◦ f)/ux)
= N(g ◦ f)

ẑ

ŷ

Ng

55

g/uy // z′

uz′

OO

x̂

N(g◦f)

00

Nf

66

f/ux // y′

uy′

OO

g/(ux/f)// z′′

uy′/(g/(ux/f))

OO

x

ux

OO

f
// y

ux/f

OO

g
// z

ux/(g◦f)

OO

The image of an equational morphism u : x→ y under the functor N is an identity. Namely,
we have Nu = û = uz ◦ (u/ux): since u/ux is an equational morphism (since it is the residual
of an equational morphism) whose source is a normal form, necessarily u/ux = idx̂, z = x̂

and uz = idx̂. In particular, N preserves identities.
Suppose given a functor F : ‖P‖ → C sending the equational morphisms to identities. In

order to obtain the result, we have to show that there exits a unique functor G : ‖P‖↓ P̃1 → C
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such that G ◦N = F . Writing I : ‖P‖↓ P̃1 → ‖P‖ for the inclusion functor, it is easy to show
I is a section of F , i.e. N ◦ I = Id‖P‖↓P̃1

. Since F sends equational morphisms to identities,
it is easy to check that G ◦N = F : given an object x, we have

G ◦N(x) = G(x̂) = F ◦ I(x̂) = F (x̂) = F (x)

the last equality, being due to the fact that F (ux) = idF (x̂) = idF (x), and similarly
for morphisms. Finally, we check the uniqueness of G. Suppose given another functor
G′ : ‖P‖↓ P̃1 → C such that G′◦N = F = G◦N . We have G′ = G′◦N ◦I = G◦N ◦I = G. J

4.2 Equivalence with localization
We now show that the two previous constructions (quotient and normal forms) also coincide
with the third possible construction which consists in formally adding inverses for equational
morphisms. First, notice that we can use the description of the localization ‖P‖ [P̃−1

1 ] as a
category of fractions given in Theorem 15:

I Lemma 29. The set of equational morphisms of ‖P‖ is a left calculus of fractions.

Proof. We have to show that the set of equational morphisms satisfies the four conditions
of Definition 14: the two first (closure under composition and identities) are immediate,
the third one follows from Proposition 21, and the last one is ensured by the fact that all
equational morphisms are epi by Proposition 25. J

Our proof of the equivalence is based on the embedding of the presented category into the
localization provided by Proposition 16. In order for the hypothesis of this proposition to
hold, we first need to impose that the same properties hold for the opposite presentation as
for the presentation itself:

I Assumption 5. The presentation modulo (P op, P̃ op) satisfies Assumptions 1, 2, 3 and 4.

This implies that the duals of previously shown properties hold for ‖P‖. For instance, by dual
of Proposition 25, all equational morphisms are mono, from which follows, by Proposition 16:

I Proposition 30. The canonical functor ‖P‖ → ‖P‖ [P̃−1
1 ] is faithful.

I Remark. This generalizes Dehornoy’s theorem [6] stating that under conditions (which
are generalized here), there is an embedding of a monoid into its envelopping groupoid: by
localizing wrt all morphisms rather than simply a subset of them, we recover this result.
Besides, our hypothesis on relations are weaker (for instance, we only require fixed a choice
of residual instead that there is only one possible choice for those).

I Definition 31. A presentation modulo satisfying assumptions 1 to 5 is called coherent.

I Theorem 32. Given a coherent presentation modulo (P, P̃1), the categories ‖P‖ /P̃1 and
‖P‖ [P̃−1

1 ] are equivalent.

Proof. Consider the functor F : ‖P‖ ↓ P̃1 → ‖P‖ [P̃−1
1 ] defined as the composite of the

inclusion functor I : ‖P‖ ↓ P̃1 → ‖P‖, see Definition 27, with the localization func-
tor L : ‖P‖ → ‖P‖ [P̃−1

1 ], see Definition 11. The functor F is faithful since it is the
case for both I and L by Proposition 30. It is also full. Namely, by Theorem 15, given any
two objects x̂ and ŷ of ‖P‖ ↓ P̃1, a morphism from F (x̂) = x̂ to F (ŷ) = ŷ in ‖P‖ [P̃−1

1 ] is
of the form (f, u) with f : x̂ → z and u : ŷ → z equational. Since ŷ is a normal form, we
necessarily have u = idŷ and thus (f, u) = Ff . Finally, given an object y ∈ ‖P‖ [P̃−1

1 ], there
is a morphism u : y → ŷ in P̃ ∗1 to its normal form which induces an isomorphism y ∼= ŷ in
‖P‖ [P̃−1

1 ]. The functor F is thus an equivalence of categories. J
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4.3 An example: the dihedral category D•
4

As an illustration of previous properties, we are going to study a presentation of a category
which is a variant of the dihedral group. Recall that the dihedral group Dn is the group of
isometries of the plane preserving a regular polygon with n faces. This group is generated by
a rotation r of angle 2π/n and a reflection s, and can be described as the free group over the
two generators r and s quotiented by the congruence generated by the three relations s2 = id,
rn = id and rsr = s. We consider here a variant of this group: the category D•n of isometries
of the plane preserving a regular polygon with n faces together with a distinguished vertex
(the category thus has n objects). For instance, the category D•4 is pictured on the left below,
the distinguished vertex of the square being pictured by a black triangle:

r1

%%s1 //
s2

oo

r2

��
r4

OO

s4 //

r3

ee s3
oo

r4

��

r1

%%s1 //
s2

oo

r2

��
r1

ee

s4 //

r4

OO

r3
%%

r3

ee s3
oo

(3)

This category D•4 admits a presentation P with 4 objects and 8 generating morphisms, as
pictured on the left above, satisfying the 12 relations:

ri+3 ◦ ri+2 ◦ ri+1 ◦ ri = id sj+1 ◦ sj = id rj ◦ sj+1 ◦ rj = sj

sj ◦ sj+1 = id rj+3 ◦ sj+2 ◦ rj+1 = sj+1

for i ∈ {1, . . . , 4} and j ∈ {1, 3}, where the indices are to be taken modulo 4 so that they lie
in {1, . . . , 4}.

The methodology introduced earlier can be used to show that by quotienting (resp. local-
izing) by Σ = {r2, r4}, we obtain a category which is isomorphic (resp. equivalent) to D•2 :
intuitively, “forgetting” about those rotations quotients the square under symmetry wrt an
horizontal axis. We thus consider the presentation modulo (P, P̃1) with P̃1 = Σ. Unfortu-
nately, this presentation does not satisfy the assumptions required to apply our results; for
instance, there is no residual of r2 after s2. It is thus necessary to complete the presentation
in order to have the confluence properties (namely, the residuation and cylinder properties).
In rewriting theory, when a rewriting system is not confluent, one usually tries to complete
it (typically using a Knuth-Bendix completion algorithm) in order for confluence to hold.
Similarly, we can transform our presentation using a series of Tietze transformations (Defini-
tion 4 and Proposition 5) while preserving the same presented category, in order to obtain
another presentation of the same category which satisfies the required assumptions.

We first consider the presentation P ′ obtained from P by adding the generator r4 = r3◦r2◦r1
and its defining relation, as well as the derivable relations r4 ◦ r4 = id and r4 ◦ r4 = id.
We can now define r2/s2 as r4, if we consider r4 as an equational morphism. Fortunately,
following lemma shows that we can quotient, or localize, by r4 instead of r4, and we therefore
define P̃ ′1 = {r2, r4}:

I Lemma 33. Let P be a presentation of category such that there exist f and g in P1 and
two relations f ◦ g ⇔ id and g ◦ f ⇔ id in P2. Let Σ be a subset of P1 not containing f
nor g. Then the quotients (resp. localizations) of ‖P‖ by Σ ] {f}, Σ ] {f, g}, and Σ ] {g}
are isomorphic.
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In this way, we have transformed the presentation (P, P̃1) into a presentation (P ′, P̃ ′1) for
which we can now define the residual r2/s2. Similarly, in order for all the required residual to
be defined, we modify P ′ using Tietze transformations by adding generators r1 = r4 ◦ r3 ◦ r2
and r3 = r2 ◦ r1 ◦ r4 and modifying the set of relations. Finally, the presentation we end up
with a presentation P ′′ which has 11 morphism generators ri, si, rk, as shown on the right
of (3), and 16 relations:

sj+1 ◦ sj = id r1 ◦ s2 ◦ r1 = s1 rk ◦ rk = id r2 ◦ r1 = r3 ◦ r4 s3 ◦ r2 = r4 ◦ s2

sj ◦ sj+1 = id r3 ◦ s3 ◦ r3 = s4 rk ◦ rk = id r3 ◦ r2 = r4 ◦ r1 r2 ◦ s1 = s4 ◦ r4

for i ∈ {1, . . . , 4}, j ∈ {1, 3} and k ∈ {1, 3, 4}, which is considered modulo P̃ ′′1 = {r2, r4}.
This presentation modulo is coherent. It satisfies convergence assumption 1, and residuals
are defined by

r2/s2 = r2/r1 = r4 r4/s1 = r4/r1 = r2 s1/r4 = s4 r1/r4 = r3 s2/r2 = s3 r1/r2 = r3

For termination assumption 2, we define ω1 as equal to 1 on s1, s2, r1 and r1 and 0 on
other morphism generators. The cylinder assumption 3 follows from considering 5 diagrams.
For termination assumption 4 we define ω2 as 1 on relation generators such that the only
morphism generators occurring in the source or the target are r1, r1, s1 or s2, and as
0 otherwise. It can be checked similarly that (P ′′op, (P̃ ′′1 )op) satisfies the assumptions.
Therefore ‖P ′′‖↓{r2, r4} is isomorphic to ‖P ′′‖ / {r2, r4} by Theorem 28, and equivalent to
‖P ′′‖ [{r2, r4}−1] by Theorem 32, the left-to-right part of the equivalence being an embedding
by Proposition 30. An explicit (non-modulo) presentation for the quotient can be obtained
by Lemma 10, and this presentation is Tietze equivalent to the canonical presentation of D•2 .
We finally obtain the following result:

I Theorem 34. The category D•2 is isomorphic to the quotient D•4/ {r2, r4}, embeds fully
and faithfully into the category D•4, and is equivalent to the localization D•4 [{r2, r4}−1].

I Remark. In this case, since r2 and r4 are already invertible in ‖P‖, we moreover have
D•4 [{r2, r4}−1] ∼= D•4 .
This illustrates the fact that, even though restricted for now to categories, the tools developed
in this article enable one to obtain interesting results about presented categories.

5 Towards an extension to 2-categories

We would like to briefly mention how this work can be extended to presentations of 2-cat-
egories, and thus be able to handle examples such as the presentation of the monoidal
(i.e. 2-)category ∆×∆ described in the introduction: it should admit a presentation mod-
ulo (P, P̃2) where P = (P0, P1, P2, P3) is a presentation of a 2-category and P̃2 ⊆ P2 is a set
of equational 2-generators, and in particular we should be able to show that the 2-category
of normal forms ‖P‖↓ P̃2 is isomorphic to the quotient 2-category ‖P‖ /P̃2 and equivalent to
the localization ‖P‖ [P̃−1

2 ].
While we leave such an extension for future work, we would like to briefly mention some of

the adjustments necessary to cover this case. Firstly, since the exchange law in a 2-category
ensures that two disjoint rewrites commute, it is enough to impose the existence of suitable
residuals for critical pairs only (this is, in our context, a variant of Newman’s lemma),
and similarly the cylinder property only has to be imposed for triples of coinitial rewriting
rules forming a critical triple. Secondly, since in practice not all operations (residuation for
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instance in our example) are compatible with exchange law, one actually has to explicitly
handle this law and work in the setting of sesquicategories. Thirdly, the precise notion of
equivalence between 2-categories is subtle. For instance, the canonical “inclusion” functor
‖P‖↓ P̃2 ↪→ ‖P‖, exhibiting the restriction to 1-cells in normal form as a “sub-2-category”
of ‖P‖, is in fact a lax 2-functor: the 0-composition of two 1-cells in normal form is not
necessarily a normal form, but always normalizes to one.

6 Conclusion

We have introduced a notion of presentation of a category modulo an “equational” rewriting
system, and provided a series of reasonable coherence conditions ensuring that the equational
rules are well-behaved wrt the generators. In particular, we show that, under those assump-
tions, all the three possible natural constructions for the presented category are equivalent.
These assumptions are “local” in the sense that they are given directly on the presentations,
and can thus be used in practice in order to perform computations, as illustrated in the
article. In the future, we would like to investigate more applications, by studying classes of
presentations (presentations of monoids and groups are well investigated, but there are fewer
studied examples of presentations of categories), and also extend this work to presentations
of 2-(and possibly higher-)categories.
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A Omitted proofs

Proof of Lemma 10. It is enough to show that
∥∥P/P̃1

∥∥ is a quotient of ‖P‖ by P̃1. We
define a quotient functor Q : ‖P‖ →

∥∥P/P̃1
∥∥ on generators by Q(x) = [x] for x ∈ P0 and

Q(f) = f for f ∈ P1 (this extends to a functor since for every 2-generator α ∈ P2 there is
a corresponding 2-generator in P/P̃1). For every generator f ∈ P̃1, we immediately have
Q(f) = id. Suppose given a functor F : ‖P‖ → C sending equational morphisms to identities.
We define a functor F̃ :

∥∥P/P̃1
∥∥→ C by F̃ [x] = Fx for an object [x] of

∥∥P/P̃1
∥∥ (this does

not depend on the choice of the representative of class) and, given f = fk ◦ . . . ◦ f1 in
∥∥P/P̃1

∥∥
with fi ∈ P1, we define F̃ f = Ffk ◦ . . . ◦Ff1 (it can be checked that this is also well-defined).
The functor F̃ satisfies F = F̃ ◦ Q, and it is the only such functor since it has to send
elements of P̃1 to identities. J

Proof of Lemma 12. The localization functor L is defined by Lx = x for x ∈ P0, and
Lf = f for f ∈ P ∗1 . This functor is well-defined since for any 2-generator α : f ⇒ g in P2, we
have that Lf = f and Lg = g, and there is a relation f ⇒ g in P ′2 by definition. Besides, for
any f in Σ, Lf = f is an isomorphism since f is an inverse for f . Suppose given F : ‖P‖ → C
sending the elements of Σ to isomorphisms. We define a functor F̃ : ‖P ′‖ → C on the
generators by F̃ x = Fx for x ∈ P0, F̃ f = Ff for f ∈ P1 and F̃ f = (Ff)−1. This functor is
well-defined, since for any relation α : f ⇒ g in P2 ⊂ P ′2, we have F̃ f = Ff = Fg = F̃ g and
F̃ (f ◦ f) = Ff ◦ Ff = Ff ◦ (Ff)−1 = id and similarly F̃ (f ◦ f) = id. This functor satisfies
F̃ ◦ L = F and is the unique such functor. J

Proof of Lemma 19. We extend the weight function of Assumption 2 to morphisms in Z∗1
by setting ω1(f) = 0 for f in P̃1. This ensures that the rewriting system on morphisms in Z∗1
with Z2 as rules is terminating. Moreover, because the left members of rules are of the form
g ◦ f with g ∈ P1 and f ∈ P̃1, there are no critical pairs, which means that the rewriting
system is locally confluent and thus convergent by Newman’s lemma. Given two coinitial
morphisms f : x→ y in P̃ ∗1 and g : x→ z in P ∗1 , we prove by recurrence on ω1(g ◦ f) that
the normal form of g ◦ f is (f/g) ◦ (g/f). If either f or g is an identity, this result is direct.
Otherwise, f = f2 ◦ f1 and g = g2 ◦ g1 where f1, f2, g1 and g2 are non identity-morphisms.

(g1/f1)/f2// g2/(f/g1) //

f2

OO

g1/f1 //

∗⇒ f2/(g1/f1)

OO

=

f1

OO

g1
//

f/g1

bb

g2
//

f1/g1

OO
∗⇒

(f/g1)/g2

OO

By induction, we have

g1 ◦ f1
∗⇒ (f1/g1) ◦ (g1/f1) and (g1/f1) ◦ f2

∗⇒ (f2/(g1/f1)) ◦ ((g1/f1)/f2)
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since ω1((g1/f1) ◦ f2) < ω1

(
g2 ◦

(
(f1/g1) ◦ (g1/f1)

)
◦ f2

)
< ω1(g ◦ f). And therefore,

g ◦ f ∗⇒ g2 ◦
(

(f1/g1) ◦ (g1/f1)
)
◦ f2

∗⇒ g2 ◦ (f1/g1) ◦
(

(f2/(g1/f1)) ◦ ((g1/f1)/f2)
)

∗⇒ g2 ◦ (f/g1) ◦ (g1/f)

Similarly ω1(g2 ◦ (f/g1)) < ω1(g ◦ f), therefore ω1(g2 ◦ (f/g1)) ∗⇒ ((f/g1)/g2) ◦ (g2/(f/g1)),
and we have

g ◦ f ∗⇒ g2 ◦ (f/g1) ◦ (g1/f)
∗⇒ ((f/g1)/g2) ◦ (g2/(f/g1)) ◦ (g1/f)
∗⇒ (f/g) ◦ (g/f)

from which we conclude. J

Proof of Lemma 33. The isomorphism of localizations follows from Lemma 12 and the
usual proof that a morphism admits at most one inverse in a category. We now consider the
case of quotient: we are going to show that the categories ‖P‖f,g = ‖P‖ /(Σ ] {f, g} and
‖P‖f = ‖P‖ /(Σ]{f}) are isomorphic. We write Qf,g : ‖P‖ → ‖P‖f,g and Qf : ‖P‖ → ‖P‖f
for the quotient functors. By the universal property ofQf , there exist a uniqueQ′ : ‖P‖f → ‖P‖f,g
such that Qf,g = Q′ ◦Qf :

‖P‖
Qf //

Qf,g

��

‖P‖f

Q′{{
‖P‖f,g

‖P‖
Qf,g //

Qf

��

‖P‖f,g

F{{
‖P‖f

‖P‖
Qf //

Qf

��

‖P‖f

Id{{
Q′

��
‖P‖f ‖P‖f,gF

oo

Moreover, since Qf (f) = id, we get that Qf (g) = Qf (g) ◦ Qf (f) = Qf (g ◦ f) = id and
therefore, by the universal property of Qf,g, there exists a unique functor F : ‖P‖f → ‖P‖f,g
such that Qf = F ◦ Qf,g. From these equalities, we get that Qf = F ◦ Q′ ◦ Qf and that
Qf,g = Q′ ◦ F ◦Qf,g. By universal property of Qf , the identity is the unique endofunctor of
‖P‖f such that id ◦Qf = Qf , and therefore F ◦Q′ = Id. Similarly, we have Q′ ◦ I = Id, and
therefore the categories ‖P‖f and ‖P‖f,g are isomorphic. J
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Abstract
We give a relatively simple coinductive proof of confluence, modulo equivalence of root-active
terms, of nearly orthogonal infinitary term rewriting systems. Nearly orthogonal systems allow
certain root overlaps, but no non-root overlaps. Using a slightly more complicated method we
also show confluence modulo equivalence of hypercollapsing terms. The condition we impose on
root overlaps is similar to the condition used by Toyama in the context of finitary rewriting.
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1 Introduction

Infinitary term rewriting extends term rewriting by infinite terms and transfinite reductions.
This enables the consideration of “limits” of terms under infinite reduction sequences. For
instance, in a term rewriting system with the rule

f(a)→ c(f(a))

the term f(a) “in the limit” reduces to an infinite term cω such that cω = c(cω). In fact,
cω is the normal form of f(a) in an infinitary term rewriting system (iTRS) containing the
above single rule.

In this paper we show confluence modulo equivalence of root-active terms of nearly
orthogonal iTRSs. This implies that nearly orthogonal iTRSs have the unique normal forms
property. Nearly orthogonal iTRSs allow certain root overlaps, but no non-root overlaps.
More precisely, for each root critical pair 〈t1, t2〉 we require that there exists s such that
t1 ⇒ s and t2 →∞ s, where →∞ is strongly convergent infinitary reduction and ⇒ is parallel
reduction. Since almost orthogonal (i.e. weakly orthogonal with no non-root overlaps) iTRSs
are nearly orthogonal, this shows that the failure of the unique normal forms property in
weakly orthogonal iTRSs (see [11, 10]) is due to the possibility of non-root overlaps.

Our proof method is different from [21, 22] and it is relatively simple, but it does not
easily generalise to confluence modulo equivalence of hypercollapsing terms. Using a bit
more complicated method similar to [21] we also prove confluence modulo equivalence of
hypercollapsing terms of nearly orthogonal iTRSs. Because of space limits the details of the
second proof were moved to an appendix.

Actually, confluence modulo equivalence of root-active terms follows easily from confluence
modulo equivalence of hypercollapsing terms. However, the method of the proof of confluence
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modulo equivalence of root-active terms is perhaps more interesting than the result itself,
and than the second method which is a coinductive adaptation of [21]. The first method is
also slightly simpler. For these reasons we chose to present this method in detail, despite it
being less general.

In the context of finitary rewriting, confluence of non-orthogonal TRSs was studied by
Huet, Toyama, Gramlich and van Oostrom in [18, 34, 17, 35, 36]. The condition we impose
on root critical pairs is similar to the conditions used by Toyama. It is not possible to
use conditions similar to those from the cited papers for non-root overlaps, because the
unique normal forms property fails already for weakly orthogonal iTRSs [11, 10]. As a
counterexample, consider the following weakly orthogonal iTRS from [11, 10].

P (S(x))→ x S(P (x))→ x

Then S(P 2(S3(P 4(. . .)))) has two distinct normal forms Pω and Sω.

1.1 Related work
Infinitary rewriting was introduced in [22]. For an introduction and a general overview
see [21, 13]. A coinductive definition of infinitary reductions which corresponds to strongly
convergent reductions was introduced in [15] for the infinitary lambda-calculus. The paper [12]
introduces a coinductive definition of infinitary reductions in iTRSs, capturing reductions
of arbitrary ordinal length. Our coinductive definition of infinitary reductions is based
on [15]. Coinductive techniques in infinitary lambda-calculus were investigated in [20]. In [7]
confluence, modulo equivalence of root-active terms, of infinitary lambda-calculus was proven
coinductively. A simpler proof method for confluence modulo equivalence of terms with
no head normal form was later found in [8]. In this paper the proof of confluence modulo
equivalence of root-active terms follows a strategy similar to [8]. It also bears some similarity
to the proof of the unique normal forms property of orthogonal iTRSs in [28]. The general
strategy of the proof of confluence modulo equivalence of hypercollapsing terms, as well as
proofs of some lemmas, are similar to [21]. Some other papers related to the methods of the
present work are [1, 2, 24, 25, 26, 27, 23, 14].

2 Coinduction

In this section we give a brief explanation of coinduction as it is used in the present paper.
Our style of writing coinductive proofs is perhaps not completely standard, but it is similar
to how such proofs are presented in e.g. [15, 4, 31, 30, 29]. However, in contrast to some of
these papers, we do not claim that our proofs are a paper presentation of proofs formalised
in a proof assistant (though they could probably be formalised in such a system).

First, we give an explanation of how our proofs of existential statements should be
interpreted. This is the only part that may be non-obvious to someone already well-
acquainted with coinduction. Then we shall give an elementary explanation of coinduction.
A reader not familiar with coinduction should perhaps skip the following example and return
to it after reading the rest of this section.

I Example 1. Let T be the set of all finite and infinite terms defined coinductively by

T : : = V ‖ A(T ) ‖ B(T, T )

where V is a countable set of variables, and A, B are constructors. By x, y, . . . we denote
variables, and by t, s, . . . we denote elements of T . Define a binary relation → on T
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coinductively by the following rules.

x→ x (1)
t→ t′

A(t)→ A(t′)
(2) s→ s′ t→ t′

B(s, t)→ B(s′, t′)
(3) t→ t′

A(t)→ B(t′, t′)
(4)

We want to show: for all s, t, t′ ∈ T , if s→ t and s→ t′ then there exists s′ ∈ T with t→ s′

and t′ → s′. The idea is to skolemize this statement. So we need to find a Skolem function
f : T 3 → T which will allow us to prove the Skolem normal form:

(?) if s→ t and s→ t′ then t→ f(s, t, t′) and t′ → f(s, t, t′).
The rules for → suggest a definition of f :

f(x, x, x) = x

f(A(s), A(t), A(t′)) = A(f(s, t, t′))
f(A(s), A(t), B(t′, t′)) = B(f(s, t, t′), f(s, t, t′))
f(A(s), B(t, t), A(t′)) = B(f(s, t, t′), f(s, t, t′))

f(A(s), B(t, t), B(t′, t′)) = B(f(s, t, t′), f(s, t, t′))
f(B(s1, s2), B(t1, t2), B(t′1, t′2)) = B(f(s1, t1, t

′
1), f(s2, t2, t

′
2))

f(s, t, t′) = some arbitrary term if none of the above matches

The definition is guarded, so f is well-defined, i.e., there exists a unique function f : T 3 → T

satisfying the above equations.
We now proceed with a coinductive proof of (?). Assume s → t and s → t′. If

s = t = t′ = x then f(s, t, t′) = x, and x → x by rule (1). If s = A(s1), t = A(t1) and
t′ = A(t′1) with s1 → t1 and s1 → t′1, then by the coinductive hypothesis t1 → f(s1, t1, t

′
1)

and t′1 → f(s1, t1, t
′
1). We have f(s, t, t′) = A(f(s1, t1, t

′
1)). Hence t = A(t1) → f(s, t, t′)

and t = A(t′1) → f(s, t, t′), by rule (2). If s = B(s1, s2), t = B(t1, t2) and t′ = B(t′1, t′2),
with s1 → t1, s1 → t′1, s2 → t2 and s2 → t′2, then by the coinductive hypothesis we have
t1 → f(s1, t1, t

′
1), t′1 → f(s1, t1, t

′
1), t2 → f(s2, t2, t

′
2) and t′2 → f(s2, t2, t

′
2). Hence t =

B(t1, t2)→ B(f(s1, t1, t
′
1), f(s2, t2, t

′
2)) = f(s, t, t′) by rule (3). Analogously, t′ → f(s, t, t′)

by rule (3). Other cases are similar.
Usually, it is inconvenient to invent the Skolem function beforehand, because the definition

of the Skolem function and the coinductive proof of the Skolem normal form are typically
interdependent. Therefore, we adopt an informal style of doing a proof by coinduction of a
statement1

ψ(R1, . . . , Rm) = ∀x1,...,xn∈T . ϕ(~x)→
∃y∈T .R1(g1(~x), . . . , gk(~x), y) ∧ . . . ∧Rm(g1(~x), . . . , gk(~x), y)

with an existential quantifier. We intertwine the corecursive definition of the Skolem function f
with a coinductive proof of the Skolem normal form

∀x1,...,xn∈T . ϕ(~x)→
R1(g1(~x), . . . , gk(~x), f(~x)) ∧ . . . ∧Rm(g1(~x), . . . , gk(~x), f(~x))

1 Here ϕ(~x) is a statement/formula (whatever it means) with only x1, . . . , xn occuring free. We believe
that for explanatory purposes it is not necessary to make this any more precise. In general, we
abbreviate x1, . . . , xn with ~x. The symbols R1, . . . , Rm stand for coinductive relations on T , i.e.,
relations defined as greatest fixpoints of some monotone functions on the powerset of an appropriate
cartesian product of T . The symbols g1, . . . , gk denote some functions of ~x. The statement ϕ may
contain R1, . . . , Rm, but their occurences in ϕ are not affected by substituting different relations in ψ,
e.g., if ψ(R) = ∀x∈T .R(x)→ R(g(x)) then ψ(S) = ∀x∈T .R(x)→ S(g(x)).
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We pretend that the coinductive hypothesis2 is ψ(Rα1 , . . . , Rαm). Each element obtained
from the existential quantifier in the coinductive hypothesis is interpreted as a corecursive
invocation of the Skolem function. When later we exhibit an element to show the existential
subformula of ψ(Rα+1

1 , . . . , Rα+1
m ), we interpret this as the definition of the Skolem function

in the case specified by the assumptions currently active in the proof. Note that this exhibited
element may (or may not) depend on some elements obtained from the existential quantifier in
the coinductive hypothesis, i.e., the definition of the Skolem function may involve corecursive
invocations.

To illustrate our style of doing coinductive proofs of statements with an existential
quantifier, we redo the proof done above. For illustrative purposes, we indicate the arguments
of the Skolem function, i.e., we write s′s,t,t′ in place of f(s, t, t′). These subscripts s, t, t′ are
normally omitted.

We show by coinduction that if s → t and s → t′ then there exists s′ ∈ T with t → s′

and t′ → s′. Assume s→ t and s→ t′. If s = t = t′ = x then take s′x,x,x = x. If s = A(s1),
t = A(t1) and t′ = A(t′1) with s1 → t1 and s1 → t′1, then by the coinductive hypothesis
we obtain3 s′s1,t1,t′1

with t1 → s′s1,t1,t′1
and t′1 → s′s1,t1,t′1

. Hence t = A(t1) → A(s′s1,t1,t′1
)

and t = A(t′1) → A(s′s1,t1,t′1
), by rule (2). Thus we may take s′s,t,t′ = A(s′s1,t1,t′1

). If
s = B(s1, s2), t = B(t1, t2) and t′ = B(t′1, t′2), with s1 → t1, s1 → t′1, s2 → t2 and
s2 → t′2, then by the coinductive hypothesis we obtain s′s1,t1,t′1

and s′s2,t2,t′2
with t1 → s′s1,t1,t′1

,
t′1 → s′s1,t1,t′1

, t2 → s′s2,t2,t′2
and t′2 → s′s2,t2,t′2

. Hence t = B(t1, t2) → B(s′s1,t1,t′1
, s′s2,t2,t′2

)
by rule (3). Analogously, t′ → B(s′s1,t1,t′1

, s′s2,t2,t′2
) by rule (3). Thus we may take s′s,t,t′ =

B(s′s1,t1,t′1
, s′s2,t2,t′2

). Other cases are similar.
It is quite clear that the above informal proof, when interpreted in the way outlined

before, implicitly defines the Skolem function f . It should be kept in mind that in every case
the definition of the Skolem function needs to be guarded. We do not explicitly mention this
each time, but verifying this is part of verifying the proof.

At this point a foundationally minded reader might wonder what is exactly the coinduction
principle employed in our proofs. The answer to this is simple: whichever you like. With
enough patience one could, in principle, reformulate all proofs to directly employ the usual
coinduction principle in set theory based on the Knaster-Tarski fixpoint theorem [33]. Since
all our proofs and corecursive definitions are actually guarded, one could probably4 formalise
them in a proof assistant based on type theory with a syntactic guardedness check, e.g., in
Coq [6, 16]. Perhaps the most straightforward, but maybe not the foundationally nicest, way
of justifying our proofs is by reducing coinduction to transfinite induction, as outlined below.

Let T and → be as in Example 1. Formally, the relation → is the greatest fixpoint of a
monotone F : P(T × T )→ P(T × T ) defined by

F (R) = {〈t1, t2〉 | ∃x∈V (t1 = t2 = x) ∨ ∃t,t′∈T (t1 = A(t) ∧ t2 = B(t′, t′) ∧R(t, t′)) ∨ . . .} .

Alternatively, using the Knaster-Tarski fixpoint theorem, the relation → may be char-
acterised as the greatest binary relation on T (i.e. the greatest subset of T × T w.r.t. set

2 We use Rα1 , . . . , Rαm for the α-approximants of the coinductive relations R1, . . . , Rm. A reader confused
by this terminology should take a look at our explanation of coinduction after this example.

3 More precisely: by corecursively applying the Skolem function to s1, t1, t
′
1 we obtain s′

s1,t1,t
′
1
, and by

the coinductive hypothesis we have t1 → s′
s1,t1,t

′
1
and t′1 → s′

s1,t1,t
′
1
.

4 The author has not paid enough attention to the type theory specific details involved in such a
formalisation to claim this with complete certainty.
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inclusion) such that → ⊆ F (→), i.e., such that for every t1, t2 ∈ T with t1 → t2 one of the
following holds:
1. t1 = t2 = x for some variable x ∈ V ,
2. t1 = A(t), t2 = A(t′) with t→ t′,
3. t1 = B(s, t), t2 = B(s′, t′) with s→ s′ and t→ t′,
4. t1 = A(t), t2 = B(t′, t′) with t→ t′.

Yet another way to think about → is that t1 → t2 holds if and only if there exists a
potentially infinite derivation tree of t1 → t2 built using the rules (1)− (4).

The rules (1)− (4) could also be interpreted inductively to yield the least fixpoint of F .
This is the conventional interpretation, and it is indicated with a single line in each rule
separating premises from the conclusion. A coinductive interpretation is indicated with
double lines.

The greatest fixpoint → of F may be obtained by transfinitely iterating F starting
with T × T . More precisely, define an ordinal-indexed sequence (→α)α by:
→0= T × T ,
→α+1= F (→α),
→λ=

⋂
α<λ →α for a limit ordinal λ.

Then there exists an ordinal ζ such that → = →ζ . Note also that →α ⊆ →β for α ≥ β

(we often use this fact implicitly). See e.g. [9, Chapter 8]. The relation →α is called the
α-approximant of →. Note that the α-approximants depend on a particular definition of →
(i.e. on the function F ), not solely on the relation → itself.

It is instructive to note that the coinductive rules for → may also be interpreted as giving
rules for the α+ 1-approximants, for any ordinal α.

x→α+1 x
(1) t→α t′

A(t)→α+1 A(t′)
(2) s→α s′ t→α t′

B(s, t)→α+1 B(s′, t′)
(3) t→α t′

A(t)→α+1 B(t′, t′)
(4)

In this paper we are interested in proving by coinduction statements of the form5

ψ(R1, . . . , Rm) = ∀x1 . . . xn.ϕ(~x)→ R1(g1(~x), . . . , gk(~x)) ∧ . . . ∧Rm(g1(~x), . . . , gk(~x)).

Statements with an existential quantifier may be reduced to statements of this form by
skolemizing, as explained in Example 1.

To prove ψ(R1, . . . , Rm) it suffices to show by transfinite induction that ψ(Rα1 , . . . , Rαm)
holds for each ordinal α ≤ ζ, where Rαi is the α-approximant of Ri. The reader may easily
check that because of the special form of ψ and the fact that R0

i is the full relation, the
base case α = 0 and the cases of α a limit ordinal are trivial. Hence it remains to show the
inductive step for α a successor ordinal. It turns out that a coinductive proof of ψ may be
interpreted as a proof of this inductive step for a successor ordinal, with the ordinals left
implicit and the phrase “coinductive hypothesis” used instead of “inductive hypothesis”.

I Example 2. On terms from T (see Example 1) we define the operation of substitution by
guarded corecursion.

y[t/x] = y if x 6= y (A(s))[t/x] = A(s[t/x])
x[t/x] = t (B(s1, s2))[t/x] = B(s1[t/x], s2[t/x])

5 See footnote 1.
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We show by coinduction: if s→ s′ and t→ t′ then s[t/x]→ s′[t′/x], where → is the relation
from Example 1. Formally, the statement we show by transfinite induction on α ≤ ζ is: for
s, s′, t, t′ ∈ T , if s → s′ and t → t′ then s[t/x] →α s′[t′/x]. For illustrative purposes, we
indicate the α-approximants with appropriate ordinal superscripts, but it is customary to
omit these superscripts.

Let us proceed with the proof. The proof is by coinduction with case analysis on
s → s′. If s = s′ = y with y 6= x, then s[t/x] = y = s′[t′/x]. If s = s′ = x then
s[t/x] = t →α+1 t′ = s′[t′/x] (note that → = →ζ ⊆ →α+1). If s = A(s1), s′ = A(s′1)
and s1 → s′1, then s1[t/x] →α s′1[t′/x] by the coinductive hypothesis. Thus s[t/x] =
A(s1[t/x]) →α+1 A(s′1[t′/x]) = s′[t′/x] by rule (2). If s = B(s1, s2), s′ = B(s′1, s′2) then
the proof is analogous. If s = A(s1), s′ = B(s′1, s′1) and s1 → s′1, then the proof is also
similar. Indeed, by the coinductive hypothesis we have s1[t/x] →α s′1[t′/x], so s[t/x] =
A(s1[t/x])→α+1 B(s′1[t′/x], s′1[t′/x]) = s′[t′/x] by rule (4).

The reduction of coinduction to transfinite induction outlined here gives a simple criterion
to check the correctness of coinductive proofs, using established principles. However, it is
perhaps not the best way to understand coinduction intuitively. The author’s intuition is
that, in the context of the present paper, coinduction formalises the “and so on” arguments
quite common when informally explaining proofs of properties of infinite discrete structures.6
Such intuitions are necessarily vague and can only be shaped through experience.

One thing that remains to be explained is what guarded corecursion is, and why the
equations given above define the substitution operation uniquely. However, the author hopes
this part is fairly standard and well-understood. Intuitively, guardedness means that each
corecursive invocation has to be fed directly as an argument to a constructor, and the result
of this cannot be manipulated further.

In practice, when doing proofs by coinduction the following simple but a bit informal
criteria need to be kept in mind.

When we conclude from the coinductive hypothesis that a certain relation R(t1, . . . , tn)
holds, this really means that only its approximant Rα(t1, . . . , tn) holds. Usually, we
need to infer that the next approximant Rα+1(s1, . . . , sn) holds (for some other ele-
ments s1, . . . , sn) by using Rα(t1, . . . , tn) as a premise of an appropriate rule. But we
cannot, e.g., inspect (do case reasoning on) Rα(t1, . . . , tn), use it in any lemmas, or
otherwise treat it as R(t1, . . . , tn).
An element e obtained from an existential quantifier in the coinductive hypothesis is not
really the element itself, but a corecursive invocation of the implicit Skolem function.
Usually, we need to put it inside some constructor c, e.g. producing c(e), and then
exhibit c(e) in the proof of an existential statement. Applying at least one constructor
to e is necessary to ensure guardedness of the implicit Skolem function. But we cannot,
e.g., inspect e, apply some previously defined functions to it, or otherwise treat it as if it
was really given to us.
In the proofs of existential statements, the implicit Skolem function cannot depend on the
ordinal α. However, this is the case as long as we do not violate the first point, because if
the ordinals are never mentioned and we do not inspect the approximants obtained from
the coinductive hypothesis, then there is no way in which we could possibly introduce a
dependency on α.

6 How does one show that a Böhm tree M of a finite lambda-term does not contain β-redexes? If M = ⊥
then it is obvious. Otherwise M = λx1 . . . xn.yM1 . . .Mm is not a β-redex. And so on, we continue the
argument for M1, . . . ,Mm.
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The above explanation of coinduction is generalised and elaborated in much more detail
in [8]. Also [29] may be helpful as it gives many examples of coinductive proofs written in a
style similar to the one used here. The book [33] is an elementary introduction to coinduction
and bisimulation (but the proofs there are written in a different style than here). A good
way of learning coinduction is by doing non-trivial coinductive proofs. Some people may
initially find a proof assistant helpful for this purpose. The chapters [3, 5] explain coinduction
in Coq from a practical viewpoint. A reader interested in foundational matters should also
consult [19, 32] which deal with the coalgebraic approach to coinduction.

In the rest of this paper we shall freely use coinduction in the style explained above,
giving routine coinductive proofs in as much (or as little) detail as it is customary with
inductive proofs of analogous difficulty. After all, our aim is to prove results in infinitary
rewriting, not to give a mathematically trivial coinduction tutorial. A reader not familiar
with coinduction should treat the apparent difficulty of some proofs as an opportunity to
learn doing non-trivial proofs by coinduction.

3 Infinitary term rewiting systems

I Definition 3. A signature is a set of symbols with associated arities. By T (Σ) we denote
the set of finite terms over a signature Σ. By T∞(Σ) we denote the set of finite and infinite
terms over Σ. We denote the set of variables by V . Formally, a term t ∈ T∞(Σ) is a partial
function from N∗ to Σ ∪ V , satisfying appropriate conditions, see e.g. [21]. A position is an
element of N∗. A position p is below q if q is a prefix of p (not necessarily proper prefix – we
allow p = q). The subterm at a given position is defined in the standard way. See e.g. [21]
for details. The set of terms T∞(Σ) could also be defined coinductively, giving essentially
the same thing.

A rewrite rule is a pair 〈l, r〉 ∈ T (Σ) × T∞(Σ) such that l is not a variable and all
variables of r are present in l. Note that we require l to be finite. An infinitary term rewriting
system (iTRS) is a pair S = 〈Σ, S〉 where Σ is a signature and S a set of rewrite rules. We
often confuse S with S. A substitution is a function from V to T∞(Σ). A substitution σ is
extended to a function σ∗ : T∞(Σ)→ T∞(Σ) coinductively.

σ∗(x) = σ(x)
σ∗(f(t1, . . . , tn)) = f(σ∗(t1), . . . , σ∗(tn))

We often confuse σ∗ with σ.
In what follows by a term we mean a member of T∞(Σ), unless otherwise qualified. We

use = to denote identity of terms. Unless otherwise stated, we use t, s, r, . . . for terms, and
x, y, . . . for variables, and f, g, . . . for symbols in Σ, and σ, σ′, . . . for substitutions.

Let S be an iTRS. A term t is an S-redex by a rule 〈l, r〉 ∈ S with substitution σ, and s
is its S-reduct, if σ(l) = t and σ(r) = s. We define the relation S ⊆ T∞(Σ) × T∞(Σ) by:
〈t, s〉 ∈ S iff t is an S-redex and s its S-reduct. The compatible closure →S of S is defined
inductively by the following rules.

〈t, s〉 ∈ S
t→S s

t→S s

f(t1, . . . , tk−1, t, tk+1, . . . , tn)→S f(t1, . . . , tk−1, s, tk+1, . . . , tn)

By →∗S we denote the transitive-reflexive closure of →S , and by →=
S the reflexive closure

of →S . The parallel closure ⇒S of S is defined coinductively.

〈t, s〉 ∈ S
t⇒S s x⇒S x

ti ⇒S t
′
i for i = 1, . . . , n

f(t1, . . . , tn)⇒S f(t′1, . . . , t′n)
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Given a set U of terms we define the relation ∼U analogously to parallel closure except that
in the premise of the first rule we use t, s ∈ U . The infinitary closure →∞S of S is defined
coinductively by the following rules.

t→∗S x
t→∞S x

t→∗S f(t1, . . . , tn) ti →∞S t′i for i = 1, . . . , n
t→∞S f(t′1, . . . , t′n)

We define →2∞
S in an analogous way to →∞S except that in the first premise of the second

rule we use t→∞S f(t1, . . . , tn).
A term l is linear if no variable occurs in l more than once. A rule 〈l, r〉 ∈ S is left-linear

if l is linear. An iTRS S is left-linear if every rule in S is left-linear. Two rules 〈l1, r1〉
and 〈l2, r2〉 overlap if l1 unifies with a non-variable subterm of l2, or vice versa. We say
that 〈l1, r1〉 and 〈l2, r2〉 overlap at the root, or that they form a root overlap, when l1 unifies
with l2. An iTRS S is nearly orthogonal if it is left-linear, there are no non-root overlaps
and for all rules 〈l1, r1〉, 〈l2, r2〉 ∈ S overlapping at the root there is s such that σ(r1)→∞S s

and σ(r2)⇒S s, where σ is the mgu of l1 and l2 (note that this also implies that there is s′
with σ(r1)⇒S s

′ and σ(r2)→∞S s′).
A rule 〈l, r〉 ∈ S is collapsing if r is a variable. A term t is a collapsing redex if it is a

redex by a collapsing rule. A term t is collapse-stable if there is no collapsing redex s with
t→∞S s. A term t is hypercollapsing if there is no collapse-stable s with t→∞S s. In other
words, t is hypercollapsing if for every s with t→∞S s there is a collapsing redex u such that
s→∞S u. A term t is root-stable if there is no redex s with t→∞S s. A term t is root-active
if there is no root-stable s with t→∞S s. By H we denote the set of hypercollapsing terms,
and by R the set of root-active terms. Let U be a set of terms. An iTRS S is confluent
modulo ∼U when the following condition holds: if t ∼U s, t→∞S t′ and s→∞S s′ then there
exist t′′, s′′ such that t′′ ∼U s′′, t′ →∞S t′′ and s′ →∞S s′′. An iTRS S has the unique normal
forms property when the following condition holds: if t →∞S t′, t →∞S t′′ and t′, t′′ are in
normal form, then t′ = t′′.

The relation →S is often called the contraction relation of S, and →∗S the reduction
relation. A root contraction is a contraction t→S s such that t is the contracted redex. A
collapsing contraction is a contraction of a collapsing redex.

The standard notion of an infinitary reduction is that of a strongly convergent reduction.
In an appendix we prove that for left-linear iTRSs our coinductive definition corresponds,
in the sense of existence, to strongly convergent reductions. The proof of this fact is a
straightforward adaptation of [15, Theorem 3]. As a side-effect, this also yields a proof of
the Compression Lemma for left-linear iTRSs.

I Example 4. Let t1 = A(B(t1)) and t2 = A(C(t2)). The following is an example of a nearly
orthogonal iTRS. By capital letters we denote function symbols.

Z → t1 Z → t2 B(x)→ C(x) C(x)→ B(x) B(x)→ x C(x)→ x

Let s1 = M(A, s1) and s2 = M(B, s2). Here is another example of a nearly orthogonal iTRS.

Z → s1 Z → s2 A→ C B → C

The following iTRS is not nearly orthogonal.

Z → t1 Z → t2 B(x)→ A(x) C(x)→ A(x)

Neither is this one: Z → t1 Z → t2 B(x)→ C(x).
The standard counterexample shows that it is not sufficient to require joinability of root

critical pairs: A→ B B → A A→ C B → D.
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The following simple lemma will often be used implicitly.

I Lemma 5. Let P be a binary relation on terms, S an iTRS, and U a set of terms. Then
the following conditions hold for all terms t, s, s′:
1. t→∞P t and t ∼U t,
2. if t→∗P s→∞P s′ then t→∞P s′,
3. if t→∗P s then t→∞P s,
4. if t⇒P s then t→∞P s,
5. if t ∼U s then s ∼U t,
6. if t→S s (respectively t⇒S s or t→∞S s) then σ(t)→S σ(s) (respectively σ(t)⇒S σ(s)

or σ(t)→∞S σ(s)),
7. if σ(x) →∞P σ′(x) (respectively σ(x) ⇒P σ′(x)) for all variables x, then σ(t) →∞P σ′(t)

(respectively σ(t)⇒P σ
′(t)).

Proof. The first point follows by coinduction. The second point follows by case analysis on
s→∞P s′. The third point follows from the previous two. Points 4–6 follow by coinduction.
The last point follows by coinduction with case analysis on t. Note that the last point does
not hold with →∗P instead of →∞P , because t may contain infinitely many variables. J

4 Confluence

Our aim is to prove the following theorem.

I Theorem 34 (Confluence modulo ∼R of nearly orthogonal iTRSs).
Let S be a nearly orthogonal iTRS. If t ∼R s, t→∞S t′ and s→∞S s′ then there exist t′′, s′′

such that t′ →∞S t′′, s′ →∞S s′′ and t′′ ∼R s′′.

Because ∼R commutes with→∞S (Lemma 18) and ∼R is transitive (Lemma 20), it suffices
to prove the theorem in the case t = s. The general strategy of the proof is illustrated in
Figure 1. We show that for every term s′ there exists a term w such that s′  s w, i.e., s′
reduces to s via a certain “standard” auxiliary “normalizing” reduction which disregards
root-active subterms (see Definition 25 and Lemma 30). In contrast to infinitary N -reductions
from [8], this “standard” reduction need not be unique and it is not really normalizing, but
it is “regular” enough to show that it commutes with →∞S (Lemma 33). The “normal” forms
obtained through  s are not really in normal form, but they are closely related to Böhm
trees. They may differ only in root-active subterms. Our overall proof strategy is partly
similar to the strategy for the proof of the unique normal forms property of orthogonal iTRSs
in [28].

Subdiagram (1) in Figure 1 is obtained by showing that →∞S may be prepended to  s

(Corollary 29), i.e., if t→∞S s′  s w then t s w. Subdiagram (2) follows from commutation
of →∞S and  s (Lemma 33). Subdiagrams (3) and (4) follow from the fact that  s

decomposes into →∞ and ∼R (Lemma 31). Subdiagram (5) follows from the commutation
of →∞S and ∼R (Lemma 18).

We also give a proof of confluence modulo ∼H. In this case a different and a bit more
complicated method similar to [21] is necessary. Initially, we show some lemmas used in both
proofs. In the rest of this section we fix a nearly orthogonal iTRS S = 〈Σ, S〉. We write →,
⇒, →∞, etc., for →S , ⇒S , →∞S , etc.

I Lemma 6. Suppose l is finite and linear. If t→∞ σ(l) then there is a substitution σ′ such
that t→∗ σ′(l) and σ′(x)→∞ σ(x) for all variables x.
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Figure 1 Confluence modulo ∼R of nearly orthogonal iTRSs.

Proof. This follows from the definition of →∞ and the fact that l is finite and linear. Indeed,
we just need to go deep enough in the derivation tree of t →∞ σ(l) to get below variable
positions of l, concatenating the →∗ prefixes along the way. J

Note that the finiteness of l is crucial in the above lemma. As a counterexample consider
l = Aω, t = B and an iTRS with a single rule B → A(B).

I Lemma 7. If t→∞ s→ u then t→∞ u.

Proof. By coinduction. If s = x then u = x and thus t→∞ u. Otherwise s = f(s1, . . . , sn).
First assume that s is the redex contracted in s→ u. Suppose the contraction is by a rule
〈l, r〉 ∈ S with substitution σ. By Lemma 6 there is σ′ with t→∗ σ′(l) and σ′(x)→∞ σ(x)
for all variables x. Then t→∗ σ′(l)→ σ′(r)→∞ σ(r) = u. Hence t→∞ u.

So assume that s→ u is not a root contraction. Then u = f(s1, . . . , sk−1, s
′
k, sk+1, . . . , sn)

with sk → s′k. Also t →∗ f(t1, . . . , tn) with ti →∞ si for i = 1, . . . , n. By the coinductive
hypothesis tk →∞ s′k. Hence t→∞ u. J

I Lemma 8. If t→∞ s→∞ u then t→∞ u.

Proof. By coinduction. If u = x then t →∞ s →∗ u, so t →∞ u by Lemma 7. Otherwise
u = f(u1, . . . , un), s →∗ f(s1, . . . , sn) and si →∞ ui for i = 1, . . . , n. By Lemma 7 we
have t →∞ f(s1, . . . , sn). Thus t →∗ f(t1, . . . , tn) with ti →∞ si for i = 1, . . . , n. By the
coinductive hypothesis ti →∞ ui. Therefore t→∞ f(u1, . . . , un) = u. J

I Corollary 9. If t ∈ H (resp. t ∈ R, t is collapse-stable, t is root-stable) and t→∞ t′ then
t′ ∈ H (resp. t′ ∈ R, t′ is collapse-stable, t′ is root-stable).

I Corollary 10. If t⇒∗ s then t→∞ s.

I Lemma 11. If t→2∞ s then t→∞ s.

Proof. By coinduction, using Lemma 8. J

Note that the proofs of the above lemmas depend only on the left-linearity of S. The next
lemma is crucial in our proof. It fails for weakly orthogonal iTRSs. As a counterexample
consider the weakly orthogonal iTRS from the introduction and the term P (S(Pω)).

I Lemma 12. If 〈l, r〉 ∈ S and σ(l)→ t by a non-root contraction, then t is a redex by 〈l, r〉
with a substitution σ′ such that σ(x)→= σ′(x) for every variable x.
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Proof. The contraction σ(l)→ t must occur below a variable position of l, because there are
no non-root overlaps. Because S is left-linear, t is still a redex by 〈l, r〉, with a substitution σ′
satisfying the requirements of the lemma. J

I Lemma 13. If f(t1, . . . , tn) is a redex by a rule 〈f(l1, . . . , ln), r〉 ∈ S with substitution σ,
and ti →∞ t′i (respectively ti ⇒ t′i) for i = 1, . . . , n, then there is σ′ such that σ′(li) = t′i for
i = 1, . . . , n, and σ(x)→∞ σ′(x) (respectively σ(x)⇒ σ′(x)) for every variable x.

Proof. This follows from left-linearity and the fact that there are no non-root overlaps: all
contractions in ti →∞ t′i (respectively ti ⇒ t′i) must occur below variable positions of li.
Formally, one applies the definition of ti →∞ t′i (respectively ti ⇒ t′i) repeatedly until one
reaches variable positions of li, using Lemma 12 to show that the contractions in the →∗
prefixes occur below variable positions. J

I Lemma 14. If t⇒ t1 and t⇒ t2 then there is s with t1 ⇒ s and t2 →∞ s.

Proof. By coinduction. If t is a redex and t1, t2 are both its reducts, then there is s with
t2 →∞ s and t1 ⇒ s, because S is nearly orthogonal. Suppose t = f(u1, . . . , un) is a redex
by a rule 〈l, r〉 ∈ S with substitution σ, but t2 = f(w1, . . . , wn) with ui ⇒ wi for i = 1, . . . , n.
By Lemma 13 there is σ′ with σ′(l) = t2 and σ(x) ⇒ σ′(x) for every variable x. Then
t1 = σ(r)⇒ σ′(r) and t2 = σ′(l)→ σ′(r), so we may take s = σ′(r). The remaining cases,
when neither t⇒ t1 nor t⇒ t2 contracts at the root, are trivial or follow directly from the
coinductive hypothesis. J

I Lemma 15 (Infinitary Parallel Moves Lemma). If t→∞ t1 and t⇒ t2 then there is s with
t1 ⇒ s and t2 →∞ s.

Proof. By coinduction we show that if t →∞ t1 and t ⇒ t2 then there is s with t1 ⇒ s

and t2 →2∞ s. This suffices by Lemma 11. If t1 = x then t →∗ t1 and the claim follows
from Lemma 14 and Lemma 8. Otherwise t →∗ u = f(u1, . . . , un), t1 = f(w1, . . . , wn)
and ui →∞ wi for i = 1, . . . , n. By Lemma 14 and Lemma 8 there is t′2 with t2 →∞ t′2
and u ⇒ t′2. If u ⇒ t′2 is a root contraction by a rule 〈l, r〉 ∈ S with substitution σ, then
by Lemma 13 there is σ′ with t1 = σ′(l) and σ(x) →∞ σ′(x) for all variables x. Then
t1 = σ′(l) → σ′(r) and t2 →∞ t′2 = σ(r) →∞ σ′(r), so t2 →∞ σ′(r) by Lemma 8. Thus
we may take s = σ′(r). If u ⇒ t′2 does not contract at the root, then t′2 = f(v1, . . . , vn)
with ui ⇒ vi for i = 1, . . . , n. By the coinductive hypothesis we obtain s1, . . . , sn with
vi →2∞ si and wi ⇒ si for i = 1, . . . , n. Take s = f(s1, . . . , sn). Then t2 →2∞ s, because
t2 →∞ f(v1, . . . , vn), and t1 = f(w1, . . . , wn)⇒ s. J

In the following lemmas U stands for either H or R. We say that a term t is active if
t ∈ U . We say that a term is stable if it is collapse-stable and U = H, or it is root-stable and
U = R. An active redex is a collapsing redex if U = H, or just a redex if U = R. Note that:

t is stable iff there is no active redex s with t→∞ s,
t is active (t ∈ U) iff there is no stable s with t→∞ s,
t is active iff for every s with t→∞ s there is an active redex s′ with s→∞ s′.

I Lemma 16. If 〈l, r〉 ∈ S and s ∈ U is a proper subterm of σ(l), then s occurs in σ(l) below
a variable position of l.

Proof. Since s ∈ U , by Lemma 6 there is a redex u such that s→∗ u. Because s is a proper
subterm of σ(l), by Lemma 12 the term t, which is σ(l) with the subterm s replaced with u,
is a redex by 〈l, r〉. But then u (and thus also s) must occur below a variable position of l,
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because otherwise there would be a non-root overlap between 〈l, r〉 and the rule by which u
is a redex. J

I Lemma 17. If t→ t′ and t ∼U s then there is s′ with s→= s′ and t′ ∼U s′.

Proof. Induction on t→ t′. If t, s ∈ U then also t′ ∈ U , so t′ ∼U s and we may take s′ = s.
If t = x then t′ = s′ = x. Otherwise t = f(t1, . . . , tn), s = f(s1, . . . , sn) and ti ∼U si for
i = 1, . . . , n. First assume that t→ t′ is a root contraction, i.e., there are 〈l, r〉 ∈ S and σ such
that σ(l) = t and σ(r) = t′. By Lemma 16 all proper active subterms of t are below variable
positions of l. This implies that s = σ′(l) with some σ′ such that σ(x) ∼U σ′(x) for every
variable x. Then s = σ′(l)→ σ′(r) ∼U σ(r) = t′. Therefore we may take s′ = σ′(r). If t→ t′

is not a root contraction then the claim follows directly from the inductive hypothesis. J

I Lemma 18. If t→∞ t′ and t ∼U s then there is s′ with s→∞ s′ and t′ ∼U s′.

Proof. By coinduction. If t′ = x then t →∗ x and the claim follows from Lemma 17.
Otherwise t →∗ u = f(u1, . . . , un), t′ = f(t′1, . . . , t′n) and ui →∞ t′i for i = 1, . . . , n. By
Lemma 17 there is u′ with s →∗ u′ and u ∼U u′. If u, u′ ∈ U then t′ ∈ U by Corollary 9,
because u →∞ t′. Hence t′ ∼U u′ and we may take s′ = u′. Otherwise u′ = f(u′1, . . . , u′n)
with ui ∼U u′i for i = 1, . . . , n. By the coinductive hypothesis we obtain si with u′i →∞ si
and t′i ∼U si, for i = 1, . . . , n. Take s′ = f(s1, . . . , sn). Then t′ = f(t′1, . . . , t′n) ∼U s′ and
s→∞ s′. J

I Lemma 19. If t ∈ U and t ∼U s then s ∈ U .

Proof. Assume s→∞ s′. Then by Lemma 18 there is t′ with t→∞ t′ ∼U s′. Because t ∈ U ,
there is an active redex t′′ such that t′ →∞ t′′. By Lemma 18 there is s′′ such that s′ →∞
s′′ ∼U t′′. If t′′, s′′ ∈ U then there is another active redex u with s′ →∞ s′′ →∞ u, so s′ →∞ u

by Lemma 8, and thus s′ is not stable. Otherwise t′′ = f(t1, . . . , tn), s′′ = f(s1, . . . , sn)
and ti ∼U si for i = 1, . . . , n. Since t′′ is an active redex, there is a rule 〈l, r〉 ∈ S and a
substitution σ with σ(l) = t′′. By Lemma 16 all proper active subterms of t′′ are below
variable positions of l. This implies that s′′ is also an active redex by the rule 〈l, r〉. Hence s′
is not stable. Since s′ was arbitrary with s→∞ s′, we conclude that s ∈ U . J

I Lemma 20. If t ∼U s ∼U u then t ∼U u.

Proof. By coinduction, using Lemma 19 when t, s ∈ U or s, u ∈ U . J

I Corollary 21. The relation ∼U is an equivalence relation.

We write t→ncr s if t→ s and this is not a collapsing contraction at the root. So t→∗ncr s

if t→∗ s and there are no collapsing root contractions in the reduction.

I Lemma 22. If f(t1, . . . , tn) →∗ncr s and ti →∞ t′i for i = 1, . . . , n then s = g(s1, . . . , sm)
and there are s′1, . . . , s′m with f(t′1, . . . , t′n)⇒∗ g(s′1, . . . , s′m) and sj →∞ s′j for j = 1, . . . ,m.

Proof. Let t = f(t1, . . . , tn). It suffices to consider the case t→ncr s. The general case then
follows by induction.

If t is the redex contracted in t →ncr s then it is contracted by some non-collapsing
rule 〈l, r〉 ∈ S with substitution σ. Then r = g(r1, . . . , rm). By Lemma 13 there is σ′
such that f(t′1, . . . , t′i) = σ′(l) and σ(x) →∞ σ′(x) for every variable x. Thus σ(rj) →∞
σ(r′j) for j = 1, . . . ,m. Since s = σ(r) = g(σ(r1), . . . , σ(rm)) →∞ g(σ′(r1), . . . , σ′(rm))
and f(t′1, . . . , t′i) = σ′(l) → σ′(r) = g(σ′(r1), . . . , σ′(rm)), we may take s′j = σ′(rj) for
j = 1, . . . ,m.
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So assume the contraction t→ncr s does not occur at the root. Then s = f(s1, . . . , sn)
with ti →= si for i = 1, . . . , n. By Lemma 15 there are s′1, . . . , s′n with t′i ⇒ s′i and si →∞ s′i
for i = 1, . . . , n. Then f(t′1, . . . , t′n)⇒ f(s′1, . . . , s′n), so we may take g = f and m = n. J

I Lemma 23. If for every s with t→∗ s there is an active redex u with s→∞ u, then t ∈ U .

Proof. Assume t satisfies the antecedent and t →∞ t′. Then t →∗ f(t1, . . . , tn), t′ =
f(t′1, . . . , t′n) and ti →∞ t′i for i = 1, . . . , n. By assumption and Lemma 6 there is an
active redex s = g(s1, . . . , sm) such that f(t1, . . . , tn) →∗ncr s. By Lemma 22 there are
s′1, . . . , s

′
m such that t′ = f(t′1, . . . , t′n)⇒∗ g(s′1, . . . , s′m) and sj →∞ s′j for j = 1, . . . ,m. Let

s′ = g(s′1, . . . , s′m). By Lemma 13 we conclude that s′ is a redex by the same rule as s, i.e.,
s′ is an active redex. By Corollary 10 we have t′ →∞ s′. Hence t′ is not stable. Since t′ was
arbitrary with t→∞ t′, we conclude that t ∈ U . J

I Lemma 24. If t→∞ t′ and t′ ∈ U then t ∈ U .

Proof. Suppose t →∗ s. By Lemma 15 there is s′ with s →∞ s′ and t′ ⇒∗ s′. We have
t′ →∞ s′ by Corollary 10. Since also t′ ∈ U , there is an active redex u with s→∞ s′ →∞ u.
Then s→∞ u by Lemma 8. By Lemma 23 this implies t ∈ U . J

4.1 Confluence modulo ∼R

We now proceed to show that nearly orthogonal iTRSs are confluent modulo ∼R. None of
the lemmas in this subsection are needed in the proof of confluence modulo ∼H. The method
of the present section does not work if H is used instead of R, because then the proof of
Lemma 33 does not go through.

I Definition 25. The relation  s is defined coinductively.

t→∗ x
t s x

t, s ∈ R
t s s

t→∗ f(t1, . . . , tn) ti  s t
′
i for i = 1, . . . , n f(t1, . . . , tn) is root-stable
t s f(t′1, . . . , t′n)

The relation  a is defined coinductively in the same way as  s except that in the first
premise of the last rule we use t→∞ f(t1, . . . , tn) instead of t→∗ f(t1, . . . , tn).

The relation  s denotes a “standard” reduction to “normal” form. The “normal” forms
are not really in normal form, but they are closely related to Böhm trees. In fact, it
is not difficult to show by coinduction that if t  s s →∞ s′ then s ∼R s′. Bahr and
Ketema [1, 2, 24] define similar reductions to Böhm-like trees, but they do not seem to use
them to obtain new proofs of infinitary confluence. The author has not studied the mentioned
papers in enough depth to give a detailed comparison.

The relation a, which turns out to be the same as s (Lemma 28), is a technical notion
needed to help in some proofs.

I Lemma 26. If t→∞ s a u then t a u.

Proof. If s, u ∈ R then also t ∈ R by Lemma 24, so t a u. If u = x then s→∗ x, and thus
t→∞ x by Lemma 7, so t a u. Otherwise u = f(u1, . . . , un), s→∞ f(s1, . . . , sn), si  a ui
for i = 1, . . . , n, and f(s1, . . . , sn) is root-stable. By Lemma 8 we have t→∞ f(s1, . . . , sn).
Thus t a f(u1, . . . , un) = u. J
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I Lemma 27. If s = f(s1, . . . , sn) is root-stable and ti →∞ si for i = 1, . . . , n, then
t = f(t1, . . . , tn) is also root-stable.

Proof. Suppose t is not root-stable. Hence by Lemma 6 there is a redex u such that
t→∗ncr u = g(u1, . . . , um). By Lemma 22 there is u′ = g(u′1, . . . , u′m) such that uj →∞ u′j for
j = 1, . . . ,m and s⇒∗ u′. By Lemma 13 we conclude that u′ is still a redex. Since s→∞ u′

by Corollary 10, we conclude that s is not root-stable. Contradiction. J

I Lemma 28. t s s iff t a s.

Proof. The implication from left to right follows by straightforward coinduction. We show
the other direction by coinduction. If s = x then t→∗ x, so t s s. If t, s ∈ R then t s s.
Otherwise t →∞ f(t1, . . . , tn), s = f(s1, . . . , sn), f(t1, . . . , tn) is root-stable, and ti  a si
for i = 1, . . . , n. Then t→∗ f(t′1, . . . , t′n) with t′i →∞ ti for i = 1, . . . , n. By Lemma 27 we
conclude that f(t′1, . . . , t′n) is root-stable. By Lemma 26 we have t′i  a si for i = 1, . . . , n.
By the coinductive hypothesis t′i  s si for i = 1, . . . , n. Thus t s f(s1, . . . , sn) = s. J

I Corollary 29. If t→∞ s s u then t s u.

Proof. Follows from Lemma 26 and Lemma 28. J

At this point a reader might conjecture that the following may be easily shown:
(?) if t s t1 and t s t2 then t1 ∼R r2.
However, this is not the case, because a priori t might reduce to two essentially different
root-stable terms. Thus it is not clear how to prove (?) coinductively. Using Lemma 14 it is
not difficult to show that if t→∗ s1, t→∗ s2 and s1, s2 are root-stable then s1 and s2 have
the same root symbol. But they may still differ below the root.

Note that confluence modulo ∼R would easily follow from (?), Lemma 30 and Lemma 31.
There are two methods which could probably be used to show (?), though the author doubts
whether any of them would lead to a much simpler confluence proof than via Lemma 33.
The first method would be to adapt the proof of [28, Theorem 15]. The fact that the terms
obtained through  s need not be in normal form might complicate this slightly. The second
method would be to prove some standardisation result and proceed similarly to [8], using
finitary standard reduction to a root-stable term in the definition of  s instead of ordinary
finitary reduction. Then the proof of Corollary 29 would become more difficult, because
there would be less freedom in the finitary reduction to a root-stable term in  s.

I Lemma 30. For every term t there is s with t s s.

Proof. By coinduction. If t ∈ R then t  s t. Otherwise t →∗ t′ for some root-stable t′,
by Lemma 23. If t′ = x then t  s x. Otherwise t′ = f(t1, . . . , tn). By the coinductive
hypothesis we obtain s1, . . . , sn with ti  s si for i = 1, . . . , n. Thus t s f(s1, . . . , sn). J

I Lemma 31. If t s s then there is u with t→∞ u ∼R s.

Proof. By coinduction. If t, s ∈ R then t ∼R s and we may take u = t. If s = x then t→∗ x,
so t →∞ s and we may take u = s. Otherwise s = f(s1, . . . , sn), t →∗ f(t1, . . . , tn) and
ti  s si for i = 1, . . . , n. By the coinductive hypothesis we obtain ui with ti →∞ ui ∼R si,
for i = 1, . . . , n. Take u = f(u1, . . . , un). Then t→∞ u ∼R s. J

I Lemma 32. If t⇒ t′ and t s t
′′ then there is s with t′  s s and t′′ ⇒ s.
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Proof. By Lemma 28 it suffices to show that if t ⇒ t′ and t  s t
′′ then there is s with

t′  a s and t′′ ⇒ s. We proceed by coinduction. If t′′ = x then the claim follows from
Lemma 15. If t, t′′ ∈ R then by Corollary 9 we have t′ ∈ R, so t′  s t

′′ and we may take
s = t′′. Otherwise t →∗ f(t1, . . . , tn), t′′ = f(t′′1 , . . . , t′′n), f(t1, . . . , tn) is root-stable and
ti  s t

′′
i for i = 1, . . . , n. By Lemma 15 there is u with t′ →∞ u and f(t1, . . . , tn) ⇒ u.

Because f(t1, . . . , tn) is root-stable, u is also root-stable and u = f(u1, . . . , un) with ti ⇒ ui
for i = 1, . . . , n. By the coinductive hypothesis we obtain s1, . . . , sn with ui  a si and
t′′i ⇒ si. Take s = f(s1, . . . , sn). Then t′  a s and t′′ ⇒ s. J

The proof of the following lemma fails if H is used instead of R. This is because a
collapse-stable term may contract at the root, in contrast to a root-stable term.

I Lemma 33. If t s t
′ and t→∞ t′′ then there is s with t′ →∞ s and t′′  s s.

Proof. By Lemma 11 and Lemma 28 it suffices to show that if t  s t
′ and t →∞ t′′ then

there is s with t′ →2∞ s and t′′  a s. We proceed by coinduction. If t′ = x then the
claim follows from Lemma 15. If t, t′ ∈ R then also t′′ ∈ R by Corollary 9, so t′′  a t

′

and we may take s = t′. Otherwise t →∗ f(t1, . . . , tn), t′ = f(t′1, . . . , t′n), f(t1, . . . , tn) is
root-stable and ti  s t

′
i for i = 1, . . . , n. By Lemma 15 there is u with t′′ ⇒∗ u and

f(t1, . . . , tn) →∞ u. Hence f(t1, . . . , tn) →∗ u′ = g(u′1, . . . , u′m), u = g(u1, . . . , um) and
u′j →∞ uj for j = 1, . . . ,m. Because f(t1, . . . , tn) is root-stable, none of the contractions
in f(t1, . . . , tn) →∗ u′ may occur at the root. Thus m = n, g = f and ti →∗ u′i for
i = 1, . . . , n. By Lemma 32 there are w1, . . . , wn with u′i  s wi and t′i ⇒∗ wi. By the
coinductive hypothesis we obtain s1, . . . , sn with ui  a si and wi →2∞ si for i = 1, . . . , n.
Note that u = f(u1, . . . , un) is root-stable by Corollary 9, because f(t1, . . . , tn) is root-stable
and f(t1, . . . , tn) →∞ u. Since t′′ ⇒∗ u, by Corollary 10 we have t′′ →∞ u, and thus
t′′  a f(s1, . . . , sn). Because t′ = f(t′1, . . . , t′n)⇒∗ f(w1, . . . , wn), by Corollary 10 we have
t′ →∞ f(w1, . . . , wn), and thus t′ →2∞ f(s1, . . . , sn). So we may take s = f(s1, . . . , sn). J

I Theorem 34 (Confluence modulo ∼R of nearly orthogonal iTRSs).
Let S be a nearly orthogonal iTRS. If t ∼R s, t→∞S t′ and s→∞S s′ then there exist t′′, s′′

such that t′ →∞S t′′, s′ →∞S s′′ and t′′ ∼R s′′.

Proof. See Figure 1 and the discussion just before it. J

I Corollary 35. Any nearly orthogonal iTRS has the unique normal forms property.

4.2 Confluence modulo ∼H

We only mention the following results, delegating the proofs to an appendix.

I Theorem 36 (Confluence modulo ∼H of nearly orthogonal iTRSs).
Let S be a nearly orthogonal iTRS. If t ∼H s, t→∞S t′ and s→∞S s′ then there exist t′′, s′′

such that t′ →∞S t′′, s′ →∞S s′′ and t′′ ∼H s′′.

I Corollary 37. Any nearly orthogonal iTRS with no collapsing rules is confluent.
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A Proof of Theorem 36

It turns out that because nearly orthogonal iTRSs allow no non-root overlaps, all root
overlaps with a collapsing rule must have a special form.

I Lemma 38. Let 〈l1, x〉, 〈l2, r2〉 ∈ S and let σ be the mgu of l1 and l2. Then σ(r2)⇒ σ(x).

Proof. Because S is nearly orthogonal, there is s such that σ(r2)⇒ s and σ(x)→∞ s. It
suffices to show that s = σ(x). If σ(x) is a variable then this is obvious. Otherwise, because σ
is an mgu of two linear terms, we may assume that σ(x) is a proper subterm of l2 (we may
assume the subterm is proper because l1 is not a variable). But then σ(x) cannot contain
any redexes, because they would constitute a non-root overlap with the rule 〈l2, r2〉. Hence
σ(x) = s. J

I Definition 39. A hypercollapsing sequence for a term t is an infinite sequence (tn)n∈N of
terms satisfying:

t→∞ t0, and
for each n ∈ N there is a collapsing rule 〈l, x〉 ∈ S and a substitution σ such that
tn = σ(l)→ σ(x)→∞ tn+1.

The following lemma was shown for orthogonal iTRSs in [21, Lemma 12.8.4], by essentially
the same proof.

I Lemma 40. If there exists a hypercollapsing sequence for t then t ∈ H.

Proof. Assume that (tn)n∈N is a hypercollapsing sequence for t. It suffices to show that if
t → s then there is a hypercollapsing sequence for s. Then it will follow from Lemma 23
that t ∈ H.

Assume t → s. We describe the construction of a hypercollapsing sequence (sn)n∈N
for s. Assume the elements s0, . . . , sn−1 of the sequence have been defined, and u, v are such
that u ⇒ v, u →∞ tn. In the base case n = 0 we take u = t and v = s. By Lemma 15
there is v′ with v →∞ v′ and tn ⇒ v′. By the definition of a hypercollapsing sequence
there are 〈l, x〉 ∈ S and σ such that tn = σ(l) → σ(x) →∞ tn+1. If tn ⇒ v′ by a root
contraction, then v′ →∞ σ(x) by Lemma 38. Hence v →∞ v′ →∞ σ(x) →∞ tn+1, so
v →∞ tn+1 by Lemma 8. Then take sm = tm+1 for m ≥ n and finish the construction. So
assume tn ⇒ v′ is not a root contraction. Then tn = f(w1, . . . , wk), v′ = f(w′1, . . . , w′k) and
wi ⇒ w′i for i = 1, . . . , k. By Lemma 13 there is σ′ such that v′ = σ′(l) and σ(x)⇒ σ′(x).
Hence v →∞ v′ → σ′(x). Take sn = v′ and continue the construction with u := σ(x) and
v := σ′(x).

It follows by construction that (sn)n∈N is a hypercollapsing sequence for s. J

I Definition 41. The relation  is defined coinductively.

t→∗ x
t x

t→∗ f(t1, . . . , tn) ti  t′i for i = 1, . . . , n
t f(t′1, . . . , t′n)

t, s ∈ H
t s

The relation  ∞ is defined coinductively in the same way as  except that in the first
premise of the second rule we use t→∞ f(t1, . . . , tn) instead of t→∗ f(t1, . . . , tn).
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The intuitive interpretation of  is quite different from the intuitive interpretation of  s

in Section 4.1. If t  s then s need not be “normal” in any sense. The crucial difference
is that in the second rule we do not require f(t1, . . . , tn) to be collapse-stable. Essentially,
t s means that t infinitarily reduces to s, up to equivalence of hypercollapsing subterms.
This intuition is validated by the following lemma.

I Lemma 42. The following conditions are equivalent:
1. t→∞ u ∼H s for some term u,
2. t s,
3. t ∞ s.

Proof.
(1⇒ 2) By coinduction, analysing u ∼H s. If u, s ∈ H then t ∈ H by Lemma 24, so t s.

If u = s = x then t→∗ x, so t s. If u = f(u1, . . . , un), s = f(s1, . . . , sn) and ui ∼H si
for i = 1, . . . , n, then t →∗ f(t1, . . . , tn) with ti →∞ ui. By the coinductive hypothesis
ti  si for i = 1, . . . , n. Thus t f(s1, . . . , sn) = s.

(2⇒ 3) Straightforward coinduction.
(3⇒ 1) We show by coinduction that if t ∞ s then there is u with t→2∞ u ∼H s. This

suffices by Lemma 11. If s = x then t →∗ x ∼H x, so we may take u = x. If t, s ∈ H
then t ∼H s and we may take u = t. Otherwise t →∞ f(t1, . . . , tn), s = f(t′1, . . . , t′n)
and ti  ∞ t′i for i = 1, . . . , n. By the coinductive hypothesis we obtain u1, . . . , un with
ti →2∞ ui ∼H t′i. Take u = f(u1, . . . , un). Then t→2∞ u ∼H s.

J

I Lemma 43. If s ∼H t⇒ t′ then there is s′ with s⇒ s′ ∼H t′.

Proof. By coinduction. If t, s ∈ H then t′ ∈ H by Corollary 9, so t′ ∼H s and we may
take s′ = s. If t = x then t′ = x and we may take s′ = s. Otherwise s = f(s1, . . . , sn),
t = f(t1, . . . , tn) and si ∼H ti for i = 1, . . . , n. If t⇒ t′ is a root contraction then the claim
follows from Lemma 17. If t ⇒ t′ does not contract at the root, then the claim follows
directly from the coinductive hypothesis. J

I Lemma 44. If t⇒ t1 and t t2 then there is s with t1  s and t2 ⇒ s.

Proof. Follows from Lemma 42, Lemma 15 and Lemma 43. J

The construction of a hypercollapsing sequence in the proof of the following lemma is
similar to the construction in [21, Lemma 12.8.14].

I Lemma 45. If t /∈ H, t→∞ t′ and t u then one of the following holds:
1. t′ →∗ x and u→∗ x for some variable x, or
2. there are s = f(s1, . . . , sn), u′ = f(u1, . . . , un) and w = f(w1, . . . , wn) such that t→∗ s,

t′ →∞ w, u→∞ u′, si →∞ wi and si  ui for i = 1, . . . , n.

Proof. By Lemma 40 it suffices to show that if neither 1 nor 2 holds then a hypercollapsing
sequence (vk)k∈N for t may be constructed.

If t′ = x then by Lemma 44 we have u→∗ x, so 1 holds. If t′ is not a variable then we
have t′ = f(t′1, . . . , t′n). Because t →∞ t′, there are t1, . . . , tn with t →∗ t0 = f(t1, . . . , tn)
and ti →∞ t′i for i = 1, . . . , n. By Lemma 44 and Corollary 10 there is u′ with u →∞ u′

and t0  u′. If u′ = x then u →∗ x and t0 →∗ x, and thus t′ →∗ x, by Lemma 15 and
Corollary 10, so point 1 is true. Hence assume u′ = g(u1, . . . , um). Because t /∈ H, also
t0 /∈ H by Lemma 24. Thus t0 →∗ s = g(s1, . . . , sm) with sj  uj for j = 1, . . . ,m.
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If t0 →∗ncr s then by Lemma 22 and Corollary 10 there is w = g(w1, . . . , wm) with t′ →∞ w

and sj →∞ wj for j = 1, . . . ,m. Since also t→∗ s, u→∞ u′ and sj →∞ uj for j = 1, . . . ,m,
then point 2 is true.

So suppose there is a collapsing root contraction in the reduction t0 →∗ s, i.e., t0 →∗
σ(l) → σ(x) →∗ s for some collapsing rule 〈l, x〉 ∈ S and some substitution σ. Since
t0 →∗ σ(x) and t0 →∞ t′, by Lemma 15 and Corollary 10 there is t′′ with t′ →∞ t′′ and
σ(x) →∞ t′′. Note that also σ(x) /∈ H and σ(x)  u′, by Lemma 24 because t →∗ σ(x).
Note that if the points 1-2 hold for σ(x), t′′, u′ then they also hold for t, t′, u, by Lemma 8.
So we may take vk = σ(l) as the next element of the hypercollapsing sequence, and continue
the construction with t := σ(x), t′ := t′′ and u := u′.

Ultimately, we will either conclude that 1 or 2 holds, or we will construct a hypercollapsing
sequence (vk)k∈N for t. J

I Lemma 46. If t→∞ t1 and t t2 then there is s with t1  ∞ s and t2 →2∞ s.

Proof. By coinduction. If t ∈ H then t1, t2 ∈ H by Corollary 9, Lemma 42 and Lemma 19,
so t1  ∞ t2 and we may take s = t2. So assume t /∈ H. Then by Lemma 45 either
t1, t2 →∗ x for some variable x, and then we may take s = x, or there are v = f(v1, . . . , vn),
u = f(u1, . . . , un) and w = f(w1, . . . , wn) such that t1 →∞ w, t2 →∞ u, and vi →∞ wi and
vi  ui for i = 1, . . . , n. By the coinductive hypothesis we obtain s1, . . . , sn with wi  ∞ si
and ui →2∞ si for i = 1, . . . , n. Take s = f(s1, . . . , sn). Then t1  ∞ s and t2 →2∞ s. J

I Theorem 36 (Confluence modulo ∼H of nearly orthogonal iTRSs).
Let S be a nearly orthogonal iTRS. If t ∼H s, t→∞S t′ and s→∞S s′ then there exist t′′, s′′

such that t′ →∞S t′′, s′ →∞S s′′ and t′′ ∼H s′′.

Proof. Assume t ∼H s, t→∞ t′ and s→∞ s′. By Lemma 18 there is u with s→∞ u ∼H t′.
Hence s t′ by Lemma 42. By Lemma 46, Lemma 42 and Lemma 11 there are t′′, s′′ with
t′ →∞ t′′ and s′ →∞ s′′ ∼H t′′. J

B Strongly convergent reductions

In this section we prove that for left-linear iTRSs the existence of coinductive infinitary
reductions is equivalent to the existence of strongly convergent reductions. As a corollary,
this also yields ω-compression of strongly convergent reductions. The equivalence proof is
virtually the same as in [15]. The notion of strongly convergent reductions is the standard
notion of infinitary reductions used in non-coinductive treatments of infinitary rewriting. See
e.g. [21] for details. In the rest of this section we fix a left-linear iTRS S = 〈Σ, S〉.

I Definition 47. On the set of terms we define a metric d by

d(t, s) = inf{2−n | t�n = s�n}

where r�n for r ∈ T∞(Σ) is defined as the term obtained by replacing all subterms of r at
depth n by a fresh constant ⊥. This defines a metric topology on the set of terms. Let α be an
ordinal. A map φ : {β ≤ α} → T∞(Σ) together with contraction steps σβ : φ(β)→S φ(β+ 1)
for β < α is a strongly convergent S-reduction sequence of length α from φ(0) to φ(α) if the
following conditions hold:
1. if γ ≤ α is a limit ordinal then f(γ) is the limit in the metric topology on infinitary terms

of the ordinal-indexed sequence (φ(β))β<γ ,
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2. if γ ≤ α is a limit ordinal then for every d ∈ N there exists β < γ such that for all β′
with β ≤ β′ < γ the redex contracted in the step σβ′ occurs at depth greater than d.

We write s Q,α−−→S t if Q is a strongly convergent S-reduction sequence of length α from s

to t.

I Theorem 48.
1. If s →∞S t then there exists a strongly convergent R-reduction sequence from s to t of

length at most ω.
2. If there exists a strongly convergent S-reduction sequence from s to t then s→∞S t.

Proof. The proof is a straightforward adaptation of the proof of Theorem 3 in [15].
Suppose that s →∞S t. By traversing the infinite derivation tree of s →∞S t and accu-

mulating the finite prefixes by concatenation, we obtain a reduction sequence of length at
most ω which satisfies the depth requirement by construction.

For the other direction, by induction on α we show that if s Q,α−−→S t then s→2∞
S t, which

suffices for s→∞S t by Lemma 11 (recall that the proofs of lemmas 6-11 depended only on
the left-linearity of S). There are three cases.

α = 0. If s Q,0−−→S t then s = t, so s→2∞
S t.

α = β + 1. If s S,β+1−−−−→S t then s
Q′,β−−−→S s′ →S t. Hence s →2∞

S s′ by the inductive
hypothesis. Then s→∞S s′ →S t by Lemma 11. So s→∞S t by Lemma 7.
α is a limit ordinal. By coinduction we show that if s Q,α−−→S t then s →2∞

S t. By the
depth condition there is β < α such that for every γ ≥ β the redex contracted in S at γ
occurs at depth greater than zero. Let tβ be the term at index β in Q. Then by the
inductive hypothesis we have s→2∞

S tβ , and thus s→∞S tβ by Lemma 11. There are two
cases.
tβ = x. This is impossible because then there can be no contraction of tβ at depth
greater than zero.
tβ = f(t1, . . . , tn). Then t = f(u1, . . . , un) and the tail of the reduction S past β may
be split into n parts: ti

Qi,δi−−−→S ui with δi ≤ α for i = 1, . . . , n. Then ti →2∞
S ui by

the inductive and/or the coinductive hypothesis. Since s→∞S f(t1, . . . , tn) we obtain
s→2∞

S f(u1, . . . , un) = t.
J

I Corollary 49 (ω-compression). If there exists a strongly convergent S-reduction sequence
from s to t then there exists such a sequence of length at most ω.
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Abstract
Recently it has been observed that the set of all sound linear inference rules in propositional
logic is already coNP-complete, i.e. that every Boolean tautology can be written as a (left- and
right-) linear rewrite rule. This raises the question of whether there is a rewriting system on
linear terms of propositional logic that is sound and complete for the set of all such rewrite rules.
We show in this paper that, as long as reduction steps are polynomial-time decidable, such a
rewriting system does not exist unless coNP = NP.

We draw tools and concepts from term rewriting, Boolean function theory and graph theory in
order to access the required intermediate results. At the same time we make several connections
between these areas that, to our knowledge, have not yet been presented and constitute a rich
theoretical framework for reasoning about linear TRSs for propositional logic.

1998 ACM Subject Classification F.4 Mathematical Logic and Formal Languages

Keywords and phrases Linear rules, Term rewriting, Propositional logic, Proof theory, Deep
inference

Digital Object Identifier 10.4230/LIPIcs.RTA.2015.127

1 Introduction

Linear inferences, as defined in [9] and also known as “balanced” tautologies (e.g. in [24])
or linear rules (e.g. in deep inference [2], [3] [12], [13]), are sound implications in classical
propositional logic (CPL), each of whose variables occur exactly once in both the premiss
and the conclusion. From the point of view of term rewriting they are rewrite rules that are
non-erasing, left- and right-linear, and such that the Boolean function computed by the left
hand side logically implies that computed by the right hand side.1

The reason why this is an interesting set of rewrite rules is due to the observation
that all Boolean tautologies can be written in this form, by means of a polynomial-time
translation [24]. In this work we ask whether one can derive all of CPL internally to this
fragment; i.e. is there a set of linear inferences (satisfying certain conditions) that is complete,
under term rewriting, for the set of all linear inferences (denoted L henceforth)?

It was previously shown that such a set could not be finite [9, 24], via an encoding of
instances of the pigeonhole principle as linear inferences. However in this work we consider
any system whose reduction steps can be checked efficiently, i.e. form a polynomial-time
decidable set. The motivation behind this generality is that such a set would constitute

1 For generality and ease of presentation, we later drop the “non-erasing” criterion for linear inferences in
this work.
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a sound and complete proof system2 for CPL with no meaningful duplication, creation or
destruction of formulae,3 in stark contrast to the traditional approach of structural proof
theory, based on rules exhibiting precisely such behaviour.

In this work we show that no such linear system exists, unless coNP = NP. In a little
more detail, we show that any such system would admit a derivation of each valid linear
inference of polynomial length (and so polynomial-size, by linearity). This would imply that
coNP is contained in NP as follows:
1. There is an NP-algorithm for L: simply guess the correct derivation in some sound and

complete linear system.
2. Since TAUT is polynomial-time reducible to L there is also an NP-algorithm for TAUT .
3. By the Cook-Levin theorem that SAT is NP-complete [5, 20], we have that TAUT is

coNP-complete, and so there is a NP-algorithm for coNP.

Functions computed by linear terms of CPL have been studied in Boolean function
theory, and more specifically circuit complexity, for decades, where they are called “read-once
functions” (e.g. in [7]).4 They are closely related to positional games (first mentioned in
[15]) and have been used in amplification of approximation circuits, (first in [26], more
generally in [11]) as well amongst other areas. Their equivalence classes under associativity
and commutativity of ∧ and ∨ can also be represented as the set of “cographs”, or “P4-free”
graphs, essentially what we call “relation webs” in this work, following [13] and [23].

In this paper we work in both the Boolean function theoretic and graph theoretic settings,
as well as that of term rewriting, presenting novel interplays between them. In particular,
the proof of our main result, Thm. 30, crucially uses concepts from all three settings, which
we hope is clear from the exposition.

We develop connections and applications of concepts about read-once functions, e.g.,
Prop. 13 and Thm. 19, that seem to be novel, as results on such concepts have appeared
before only in the setting of isolated Boolean functions, rather than in a logical setting
where we care futhermore about logical relations between functions, in particular, when one
function implies another.

From the point of view of rewriting theory, logic has always been a motivational domain
of applications. For example, “tautology checking” is used as one of the three motivating
examples in the Terese book, Term Rewriting Systems [25]. Rewriting systems for proposi-
tional logic can be recovered from axiom systems for Boolean algebras and Boolean rings,
e.g. as in [10] and [18]. While this area has been well studied, our ‘deep inference’ style
approach is more general in scope due to our handling of negation: by dealing with terms
in negation normal form we can reason about systems that are not purely equational, but
consisting of arbitrary sound rules, due to the absence of negative contexts. Notice that
complete equational theories for CPL cannot possibly be linear, e.g. due to Thm. 9, and so
such a question is only pertinent in our more general setting.

The organisation of this paper is as follows. In Sects. 2 and 3 we present the basics
on term rewriting in CPL and usual Boolean interpretations. In Sect. 4 we define relation
webs and give graph-theoretic versions of various logical concepts. In Sect. 5 we present
a normal form of linear derivations, which we ultimately use in Sect. 6 to prove our main

2 Recall that proof systems are usually required to be efficiently (i.e. polynomial-time) checkable [6].
3 The only duplication would occur in the reduction from TAUT to L where its complexity is bounded by

some fixed polynomial.
4 These have been studied in various forms and under different names. The first appearance we are aware

of is in [4], and also the seminal paper of [14] characterising these functions. The book we reference
presents an excellent and comprehensive introduction to the area.
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result, polynomial-time weak normalisation. In Sect. 7 we apply previous results to deduce
and conjecture forms of canonicity of certain linear rules prominent in deep inference proof
theory, and in Sect. 8 we make some concluding remarks.

2 Preliminaries on rewriting theory

We generally work in the first-order term rewriting setting defined in the Terese textbook,
Term Rewriting Systems [25]. We will, in fact, use the same notation for all symbols except
the connectives, for which we use more standard notation from proof theory. In particular
we will use ⊥ and > for the truth constants, reserving 0 and 1 for the inputs and outputs of
Boolean functions, introduced later.

We adopt two particular conventions which differ from usual definitions in the literature:
1. A TRS is usually defined as an arbitrary set of rewrite rules. Here we insist that the set

of instances of these rules, or reduction steps, is polynomial-time decidable.
2. Rewriting modulo an equivalence relation usually places no restriction on the source

and target of a reduction step. Here we insist that they must be distinct modulo the
equivalence relation.

The motivation for (1) is that we wish to be as general as possible without admitting trivial
results. If we allowed all sets then a complete system could be specified quite easily indeed.
Furthermore, that an inference rule is easily or feasibly checkable is a usual requirement
in proof theory, and in proof complexity this is formalised by the same condition (1) on
inference rules, essentially due to the fact that TAUT is coNP-complete. Perhaps it would
be better to call these ‘polynomial’ TRSs, however we drop this prefix for presentation
reasons throughout this article.

The motivation for (2) is that we fundamentally care about weak normalisation, e.g.
Cor. 31, but it will be useful to make statements resembling strong normalisation under this
notion of rewriting modulo, e.g. Thm. 30. All the equivalence relations we will work with are
polynomial-time decidable, and so this convention is consistent with (1). The same notion of
rewriting modulo was also used in previous work [9].

Propositional logic in the term rewriting setting
Our language is built from the connectives ⊥,>,∧,∨ and a set Var of propositional variables,
typically denoted x, y, z, . . . . The set Var is equipped with an involution (i.e. self-inverse
function) · : Var → Var . We call x̄ the dual of x and, for each pair of dual variables, we
arbitrarily choose one to be positive and the other to be negative.

The set Ter of formulae, or terms, is built freely from this signature in the usual way.
Terms are typically denoted by s, t, u, . . . , and term and variable symbols may occur with
superscripts and subscripts if required.

In this setting > and ⊥ are considered the constant symbols of our language. We say
that a term t is constant-free if > and ⊥ do not occur in t.

We do not include a symbol for negation in our language. This is due to the fact that
soundness of a rewrite step is only preserved under positive contexts. Instead we simply
consider terms in negation normal form (NNF), which can be generated for arbitrary terms
from positive and negative variables by the De Morgan laws:

>̄ = ⊥ ⊥̄ = > ¯̄x = x A ∨B = Ā ∧ B̄ A ∧B = Ā ∨ B̄

We say that a term is negation-free if it does not contain any negative variables. We write
Var(t) to denote the set of variables occurring in t. We say that a term t is linear if, for
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each x ∈ Var(t), there is exactly one occurrence of x in t. The size of a term t, denoted
|t|, is the total number of variable and function symbols occurring in t. A substitution is
a mapping σ : Var → Ter from the set of variables to the set of terms such that σ(x) 6= x

for only finitely many x. The notion of substitution is extended to all terms, i.e. a map
Ter → Ter , in the usual way. A (one-hole) context is a term with a single ‘hole’ @ occurring
in place of a subterm. For example consider the following:

C1[@] := y ∧ (z ∨ @) C2[@] := @ ∨ (w ∧ x) C3[@] := (w ∧ x) ∨ (y ∧ (z ∨ @))

We may write Ci[t] to denote the term obtained by replacing the occurrence of @ in Ci[@]
with t. We may also replace holes with other contexts to derive new contexts. For example,
notice that C3[@] is equivalent, modulo commutativity of ∨, to C2[C1[@]].

I Definition 1 (Rewrite rules). A rewrite rule is an expression l→ r, where l and r are terms.
We write ρ : l → r to express that the rule l → r is called ρ. In this rule we call l the left
hand side (LHS) of ρ, and r the right hand side (RHS).

We say that ρ is left-linear (resp. right-linear) if l (resp. r) is a linear term. We say that
ρ is linear if it is both left- and right-linear.

We write s→
ρ
t to express that s→ t is a reduction step of ρ, i.e. that s = C[σ(l)] and

t = C[σ(r)] for some substitution σ and context C[@].

I Definition 2 (Term rewriting systems). A term rewriting system (TRS) is a set of rewrite
rules whose reduction steps are decidable in polynomial time. The one-step reduction relation
of a TRS R is →

R
, where s→

R
t if s→

ρ
t for some ρ ∈ R.

A linear (term rewriting) system is a TRS, all of whose rules are linear.

I Definition 3 (Derivations). A derivation under a binary relation →
R

on Ter is a sequence
π : t0 →

R
t1 →

R
· · · →

R
tl. In this case we say that π has length l.

We also write ∗→
R

to denote the reflexive transitive closure of →
R
.

I Definition 4 (Rewriting modulo). For an equivalence relation ∼ on Ter and a TRS R, we
define the relation −→

R/∼
by s −→

R/∼
t if there are s′, t′ such that s ∼ s′ →

R
t′ ∼ t such that s′ � t′.

An R/∼ derivation is also called an R-derivation modulo ∼.

In this work we consider linear equivalence relations, like associativity and commutivity of ∧
and ∨, denoted AC . We also have linear equations for the truth constants, the system U :

x ∨⊥ = x = ⊥ ∨ x , x ∧> = x = > ∧ x , > ∨> = > , ⊥ ∧⊥ = ⊥

We denote by ACU the combined system of AC and U . For certain reasons it will also be
useful to consider the system U ′ that extends U by the following rules:5

x ∨> = > = > ∨ x , x ∧⊥ = ⊥ = ⊥ ∧ x

We denote by ACU ′ the combined system of AC and U ′. It turns out that this equivalence
relation relates precisely those linear terms that compute the same Boolean function, as we
discuss in the next section.
I Remark (On the use of ‘→’). To avoid possible confusion, notice that we are using the →
symbol both for a formal expression, e.g. the rewrite rule s → t, and with annotations to
express a relation between two terms, e.g. the reduction step s→

ρ
t.

5 Notice that these are not linear in the sense of [9], but are considered linear in our more general setting.
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3 Preliminaries on Boolean functions

In this section we introduce the usual Boolean function models for terms of propositional
logic.

A Boolean function on a (finite) set of variables X ⊆ Var is a map f : {0, 1}X → {0, 1}.
We identify {0, 1}X with P(X), the powerset of X, i.e. we may specify an argument of a
Boolean function by the subset of its variables assigned to 1.

A little more formally, a function ν : X → {0, 1} is specified by the set Xν it indicates, i.e.
x ∈ Xν just if ν(x) = 1. For this reason we may quantify over the arguments of a Boolean
function by writing Y ⊆ X rather than ν ∈ {0, 1}X , i.e., we write f(Y ) to denote the value
of f if the input is 1 for the variables in Y and 0 for the variables in X \ Y . Similarly, we
write f(Y ) for the value of f when the variables in Y are 0 and the variables in X \ Y are 1.

3.1 Boolean semantics of terms
A term t computes a Boolean function {0, 1}Var(t) → {0, 1} in the usual way.

For Boolean functions f, g : {0, 1}X → {0, 1} we write f ≤ g if ∀Y ⊆ X we have that
f(Y ) ≤ g(Y ). Notice that the following can easily be shown to be equivalent:
1. f ≤ g.
2. f(Y ) = 1⇒ g(Y ) = 1.
3. g(Y ) = 0⇒ f(Y ) = 0.
We also write f < g if f ≤ g but f(Y ) 6= g(Y ) for some Y ⊆ X.

I Definition 5 (Soundness). We say that a rewrite rule s→ t is sound if s and t compute
Boolean functions f and g, respectively, such that f ≤ g. We say that a TRS is sound if all
its rules are sound. A linear inference is a sound linear rewrite rule. The set of all linear
inferences is denoted by L.

I Notation 6. To switch conveniently between the settings of terms and Boolean functions,
we freely interchange notations, e.g. writing s ≤ t to denote that s→ t is sound, and saying
f → g is sound when f ≤ g.
I Remark. We point out that, here, our definition of “linear inference” differs slightly from
that occurring in [9]. Namely, we insist only that the LHS and RHS are linear, but not
necessarily that they have the same variable set. We choose this more general definition
since it seems more natural in the setting of term rewriting. Furthermore, since it is indeed
a more general definition, the same result carries over for the previous notion too. In fact, in
later sections, we will restrict our attention to the former notion of linear inference due to
the fact that any erasure or introduction6 of variables in a linear rule would constitute what
we call a “triviality” in Section 5, where we also elaborate on and address this issue.

Finally we give one of the key motivations for this work, essentially from [24]:

I Proposition 7. L is coNP-complete.

This result is the reason, from the point of proof theory, why one might restrict attention
to only linear inferences at all: every Boolean tautology can be written as a linear inference.
As we can see from the proof that follows, the translation is not very complicated. However,

6 We point out that in many settings, indeed in [25], a rewrite rule is not allowed to introduce new
variables. I.e. all variables occurring on the RHS must also occur in the LHS. In our setting it seems
more natural and symmetric to allow such behaviour and, again, this yields a more general result.
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it does induce an at most quadratic blowup in size from an input tautology to a linear
inference.

We include a proof below, for completeness, and since the statement here differs slightly
from that in [24].

Proof of Proposition 7. That L is in coNP is due to the fact that checking soundness of
a rewrite rule s → t can be reduced to checking validity of the formula s̄ ∨ t. To prove
coNP-hardness, we can reduce validity of general tautologies to soundness of linear rewrite
rules. We let t′ be the term obtained from t (which is assumed to be in NNF) by doing
the following for each positive variable x: let n be the number of occurrences of x in t,
and let m be the number of occurrences of x̄ in t. If n = 0 replace every occurence of x̄
by ⊥, and if m = 0 replace every occurrence of x by ⊥. Otherwise, introduce 2mn fresh
(positive) variables x′i,j , x′′i,j for 1 ≤ i ≤ n and 1 ≤ j ≤ m. Now, for 1 ≤ i ≤ n, replace the
ith occurrence of x by x′i,1 ∨ . . .∨ x′i,m and, for 1 ≤ j ≤ m, replace the jth occurrence of x̄ by
x′′1,j ∨ . . . ∨ x′′n,j .

Now t′ is a linear term (without negation), and its size is quadratic in the size of t. Let
s′ be the conjunction of all pairs x′ ∨ x′′ of variables introduced in the construction of t′.
Clearly Var(s′) = Var(t′) and s′ is also a linear term of the same size as t′. Furthermore, t
is a tautology if and only if s′ → t′ is sound. To see this, let s′′ and t′′ be obtained from s′

and t′, respectively, by replacing each x′′ by x̄′. Then s′′ always evaluates to 1, and t′′ is a
tautology if and only if t is a tautology. J

3.2 Read-once functions and linear terms
Linear terms compute what are known as “read-once” Boolean functions, and we survey
some of their theory in this section.

I Definition 8 (Read-once functions). A Boolean function is read-once if it is computed by
some linear term (of propositional logic).

It is not exactly clear when the following result first appeared, although we refer to a
discussion in [7] where it is stated that results directly implying this were first mentioned
in [19]. The result also occurs in [14], and is generalised to certain other bases in [16] and [17].

I Theorem 9. Constant-free negation-free linear terms compute the same (read-once) Boolean
function if and only if they are equivalent modulo AC.

A proof of this can easily be derived from results in Sect. 4, by the presentation of equivalence
classes modulo AC as relation webs and the graph-theoretic definition of soundness.

The following consequences of Thm. 9 appear in [9], where detailed proofs may be found.

I Corollary 10. Negation-free linear terms compute the same (read-once) Boolean function
if and only if they are equivalent modulo ACU ′.

Proof idea. The result essentially follows from the observation that every negation-free term
is ACU ′-equivalent to ⊥, > or a unique constant-free term [8]. J

I Corollary 11. Any sound negation-free linear TRS, modulo ACU ′, is terminating in
exponential-time.

Proof. The result follows by Boolean semantics and the preceding corollary: each consequent
term must compute a distinct Boolean function that is strictly bigger, under ≤, and the
graph of ≤ has length 2n, where n is the number of variables in the input term. J
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3.3 Minterms and maxterms

In this section we restrict our attention to monotone Boolean functions, i.e., those functions
f : {0, 1}X → {0, 1} such that Y ⊆ Y ′ ⊆ X implies f(Y ) ≤ f(Y ′). We point out the
observation that negation-free terms compute monotone Boolean functions.

Minterms and maxterms correspond to minimal DNF and CNF representations, respect-
ively, of a monotone Boolean function. We refer the reader to [7] for an introduction to their
theory. In this work we use them in a somewhat different way to Boolean function theory, in
that we devise definitions of logical concepts, such as soundness and, later in Sect. 5, what
we call “triviality”. The reason for this is to take advantage of the purely function-theoretic
results stated in this section (e.g. Gurvich’s Thm. 14 below) to derive our main results.

I Definition 12. Let f be a monotone Boolean function on a variable set X. A set Y ⊆ X
is a minterm (resp. maxterm) for f if it is a minimal set such that f(Y ) = 1 (resp. f(Y ) = 0).
The set of all minterms (resp. maxterms) of f is denoted MIN (f) (resp. MAX(f)).

Using these notions, we can now give an alternative definition of soundness.

I Proposition 13 (Soundness via minterms or maxterms). For monotone Boolean functions
f, g on the same variable set, the following are equivalent:
1. f ≤ g.
2. ∀S ∈ MIN (f). ∃S′ ∈ MIN (g). S′ ⊆ S.
3. ∀T ∈ MAX(g). ∃T ′ ∈ MAX(f). T ′ ⊆ T .

Proof. 1 =⇒ 2. Let f ≤ g and suppose there is an S ∈ MIN (f) such that there is no
S′ ∈ MIN (g) with S′ ⊆ S. Then f(S) = 1 and g(S) = 0, contradicting f ≤ g.

2 =⇒ 1. Let Y be such that f(Y ) = 1. Then there is a minterm S ∈ MIN (f) with
S ⊆ Y . By 2, there is a minterm S′ ∈ MIN (g) with S′ ⊆ S, and therefore S′ ⊆ Y . Therefore
g(Y ) = 1, by monotonicity, and so f ≤ g.

1 =⇒ 3 and 3 =⇒ 1 are proved similarly. J

The following classical result is due to Gurvich in [14], but has appeared in various
presentations. In particular, the proof appearing in [7] uses the notion of cooccurrence graph,
to which our “relation webs” in the next section essentially amounts.7

I Theorem 14 (Gurvich). A monotone Boolean function f is read-once if and only if

∀S ∈ MIN (f). ∀T ∈ MAX(f). |S ∩ T | = 1 .

4 Relation webs

In this section we restrict our attention to negation-free constant-free linear terms. It will be
useful for us to consider not only the Boolean semantics of terms but also their syntactic
structure, in the form of relation webs [13, 23]. It turns out that many of the same concepts
that we have seen in the previous sections can be defined in this setting and the interplay
between the two settings is something that we will take advantage of in later results.

7 Indeed, by the end of Sect. 4 we will have developed enough technology to give a self-contained proof of
this result, but that is beyond the scope of this work.
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4.1 Preliminary material
We make use of labelled graphs with their standard terminology. For a graph G we denote its
vertex set or set of nodes as V (G), and the set of its labelled edges as E(G).

For graphs G and H such that V (G) ⊆ V (H), we say “G in H” to assert that G is an
(induced) subgraph8 of H. In particular we say “ x y

? in G” to express that the edge
{x, y} is labelled ? in the graph G.

We say that a set X ⊆ V (G) is a ?-clique if every pair x, y ∈ X has a ?-labelled edge
between them. A maximal ?-clique is a ?-clique that is not contained in any larger ?-clique.

Analysing the term tree of a negation-free constant-free linear term, notice that for each
pair of variables x, y, there is a unique connective ? ∈ {∧,∨} at the root of the smallest
subtree containing the (unique) occurrences of x and y. Let us call this the first common
connective of x and y in t.

I Definition 15 (Relation webs). The (relation) web W(t) of a constant-free negation-free
linear term t is the complete graph whose vertex set is Var(t), such that the edge between
two variables x and y is labelled by their first common connective in t.

As a convention we will write x y if the edge {x, y} is labelled by ∧, and we write
x y if it is labelled by ∨.

I Example 16. The term ([x ∨ w] ∧ y) ∨ (z ∧ v) has the relation web

x y

z v

w

.

I Remark (Labels). We point out that, instead of using labelled complete graphs, we could
have also used unlabelled arbitrary graphs, since we have only two connectives (∧ and ∨) and
so one could be specified by the lack of an edge. This is indeed done in some settings, e.g.
the cooccurrence graphs of [7]. However, we use the current formulation in order to maintain
consistency with the previous literature, e.g. [13] and [23], and since it helps write certain
arguments, e.g. in Sect. 7, where we need to draw graphs with incomplete information.

One of the reasons for considering relation webs is the following proposition, which allows
to reason about equivalence classes modulo AC easily. It follows immediately from the
definition and that AC preserves first common connectives.

I Proposition 17. Constant-free negation-free linear terms are equivalent modulo AC if and
only if they have the same web.

An important property of webs is that they have no minimal paths of length > 2. More
precisely, we have the following proposition:

I Proposition 18. A complete {∧,∨}-labelled graph on X is the web of some negation-free
constant-free linear term on X if and only if it contains no induced subgraphs of the form:

w x

y z

(1)

A proof of this property can be found, for example, in [21], [22], [1], or [13]. It is called
P4-freeness or Z-freeness or N-freeness, depending on the viewpoint. We will make crucial
use of it when later reasoning with webs.

8 In fact, since all graphs we deal with are complete, all subgraphs are implicitly induced.
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4.2 Relationships to minterms and maxterms
Essentially one can think of relation webs as a graph-theoretic formulation of minterms and
maxterms, as opposed to the set-theoretic formulation earlier, in light of the following result:

I Theorem 19. A set of variables is a minterm (resp. maxterm) of a negation-free constant-
free linear term t if and only if it is a maximal ∧-clique (resp. maximal ∨-clique) in W(t).

The proof of this follows easily from the following alternative definition of minterms and
maxterms, based on structural induction on a term:

I Proposition 20 (Inductive definition of minterms and maxterms). Let t be a linear term. A
set S ⊆ Var(t) is a minterm of t if and only if:

t = x and S = {x}.
t = t1 ∨ t2 and S is a minterm of t1 or of t2.
t = t1 ∧ t2 and S = S1 ∪ S2 where each Si is a minterm of ti.

Dually, a set T ⊆ Var(t) is a maxterm of t if and only if:
t = x and T = {x}.
t = t1 ∨ t2 and T = T1 ∪ T2 where each Ti is a maxterm of ti.
t = t1 ∧ t2 and T is a maxterm of t1 or of t2.

5 Dealing with constants, negation, erasure and trivialities

In this section we show that we need not deal with linear rules that contain constants or
negation when looking for a complete linear system, or linear rules all of whose variables do
not occur on both sides. The fundamental concept here is that of “triviality”, first introduced
in [9] as “semantic triviality”. This turns out also to be precisely the concept which allows us
to polynomially restrict the length of linear derivations for our main result in Sect. 6.

Many of the following results appeared in [9], so we present only brief arguments here.

5.1 Triviality
The idea behind triviality of a variable in some linear inference is that the inference is
“independent” of the behaviour of that variable.

I Definition 21 (Triviality). Let f and g be Boolean functions on a set of variables X, and
let x ∈ X. We say f → g is trivial at x if for all Y ⊆ X, we have f(Y ∪ {x}) ≤ g(Y \ {x}).
We say simply that f is ‘trivial’ if it is trivial at one of its variables.

I Remark (Hereditariness of triviality). Notice that the triviality relation is somehow hereditary:
if a sound sequence f0 → f1 → . . .→ fl of Boolean functions is trivial at some point fi → fi+1
for 0 ≤ i < l then f1 → fn is trivial. However the converse does not hold: if the first and
last function of a sound sequence constitutes a trivial pair it may be that there is no local
triviality in the sequence. E.g. the endpoints of the derivation,

(w ∧ x) ∨ (y ∧ z)→ [w ∨ y] ∧ [x ∨ z]→ w ∨ x ∨ (y ∧ z)

form a pair that is trivial at w (or trivial at x), but no local step witnesses this. In these
cases we call the sequence globally trivial. This notion is fundamental later in Lemma 33, on
which our main result crucially relies.

In a similar way as we could express soundness with minterms or maxterms in Prop. 13,
we can also define triviality with minterms or maxterms.
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I Proposition 22. The following are equivalent:
1. f → g is trivial at x.
2. ∀S ∈ MIN (f). ∃S′ ∈ MIN (g). S′ ⊆ S \ {x}.
3. ∀T ∈ MAX(g). ∃T ′ ∈ MAX(f). T ′ ⊆ T \ {x}.

Proof. We first show that 1 =⇒ 2. Assume f → g is trivial at x, and let S ∈ MIN (f). We
have f(S) = 1, and hence also f(S ∪ {x}) = 1. By way of contradiction assume there is no
S′ ∈ MIN (g) with S′ ⊆ S \{x}. Therefore g(S \{x}) = 0, contradicting triviality at x. Next,
we show 2 =⇒ 1. For this, let Y be such that f(Y ∪ {x}) = 1. Then there is a minterm
S ∈ MIN (f) with S ⊆ Y ∪ {x}. By 2, there is a minterm S′ ∈ MIN (g) with S′ ⊆ S \ {x}.
Hence S′ ⊆ Y \ {x}. Therefore g(Y \ {x}) = 1, and thus f → g is trivial at x. To show
1 =⇒ 3 and 3 =⇒ 1 we proceed analogously. J

We now present a series of results illustrating that we need not consider trivial derivations
in any linear system containing certain rules. These results are then used to show that
constants and negation are similarly unimportant.

I Definition 23. We define the following rules:

s : x ∧ [y ∨ z]→ (x ∧ y) ∨ z , m : (w ∧ x) ∨ (y ∧ z)→ [w ∨ y] ∧ [x ∨ z]

We call the former switch and the latter medial [2].

In what follows we implicitly assume that rewriting is conducted modulo ACU .

I Lemma 24. If s, t are negation-free linear terms on x1, . . . , xn and s ≤ t, then there are
terms s′, t′, u such that:
1. There are derivations s ∗−→

s,m
s′ ∨ u and t′ ∨ u ∗−→

s,m
t of length O(n2).

2. s′ → t′ is sound and nontrivial.

Proof. See [9]. Briefly, the idea is that u is obtained by repeatedly ‘moving aside’ trivial
variables, using s,m and ACU , until there are no trivialities remaining in s′ → t′. J

I Theorem 25. Let R be a complete linear system. If s ∗→
R
t then there is an R-derivation

from s to t with only O(|s|2)-many steps whose redex and contractum constitute a triviality.

Proof. Apply the lemma above to generate terms s′, t′, u as above. Since R is complete there
must be a derivation of s′ → t′, and this cannot contain any trivialities by the hereditariness
property (cf. Rmk. 5.1) and the fact that s′ → t′ is nontrivial.

Therefore the only steps whose redex and contractum form a trivial pair are those
generated by 1 in Lemma 24 above, whence we know that the number of such steps is
quadratic in the number of variables. J

5.2 Erasing and introducing rules
A left- and right-linear rewrite rule may still erase or introduce variables, i.e. there may
be variables on one side that do not occur on the other. However, notice that any such
situation must constitute a triviality at such a variable, since the soundness of the step is
not dependent on the value of that variable.

I Proposition 26. Suppose ρ : l → r is linear, and there is some variable x occurring in
only one of l and r. Then ρ is trivial at x.
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5.3 Negation
If a (positive) variable x occurs negatively on both sides of a linear rule then x̄ can be replaced
soundly by x on both sides. Otherwise, if x occurs positively on one side and negatively on
the other, it must be that we have a triviality at x.

I Proposition 27. For each linear rule ρ either there is a negation-free linear rule that is
equivalent to ρ (i.e. with the same reduction steps), or ρ is trivial.

5.4 Constants
Let us assume in this subsection that terms are negation-free, in light of Prop. 27 above.

Recall that ACU ′ preserves the Boolean function computed by a term, and that every
linear term is equivalent to ⊥, > or a unique constant-free linear term.

I Theorem 28. Let R be a complete linear system. Then any constant-free nontrivial linear
inference s→ t has a constant-free R/ACU ′-derivation.

Proof. By completeness there is an R-derivation of s→ t. Now reduce every line by ACU ′
to a constant-free term or ⊥ or > (e.g. as shown in [9]). If some line reduces to ⊥ or > and
another does not, then s→ t is trivial, and if every line reduces to ⊥ or every line reduces to
> then the derivation collapses and is no longer constant-free. J

5.5 Putting it together
Combining the various results of this section we obtain the following:

I Theorem 29. The following are equivalent:
1. There is a sound linear system complete for L.
2. There is a sound constant-free negation-free nontrivial linear system, whose rules have

the same variables on both sides, complete for the set of such inferences.

6 Main results

In light of Thm. 29 in the previous section, we assume the following throughout this section:

Terms are constant-free, negation-free and linear on a variable set X of size n.

The following is our main result.

I Main Theorem 30. For every sequence of terms s = t0 < t1 < · · · < tl = t we have
that:
1. l = O(n4); or,
2. s→ t is trivial.

Before giving a proof, we show how this implies that there is no sound and complete
linear system, modulo hardness assumptions.

I Corollary 31. If there is a sound and complete linear system, then there is one that has a
O(n4)-length derivation for each linear inference on n variables.

Proof. This follows from Thm. 30, Lemma 24 and Thm. 29. J

I Corollary 32. There is no sound linear system complete for L unless coNP = NP.
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Proof. L is coNP-complete, by Prop. 7, and so Cor. 31 induces an NP decision procedure
for L for any such system R: guess a correct sequence of R-steps to derive s→ t. J

In the next section we give the crucial lemma that allows us to obtain a proof of our
main theorem. The argument itself is outlined in the section thereafter.

6.1 Critical minterms and maxterms
For this section, let us fix a sequence f = f0 < f1 < · · · < fl = g of strictly increasing
read-once Boolean functions on a variable set X.

Here we show that, unless f → g is trivial, for each variable x ∈ X we must be able to
associate a minterm Sx of f such that, for any S ⊆ Sx that is a minterm of some fi, it must
be that S 3 x. We simultaneously show the dual property for maxterms.

I Lemma 33 (Subset and intersection lemma). Suppose f → g is not trivial. For every
variable x ∈ X, there is a minterm Sx of f and a maxterm T x of g such that:
1. ∀Si ∈ MIN (fi).Si ⊆ Sx =⇒ x ∈ Si.
2. ∀Ti ∈ MAX(gi).Ti ⊆ T x =⇒ x ∈ Ti.
3. ∀Si ∈ MIN (fi),∀Ti ∈ MAX(gi).Si ⊆ Sx, Ti ⊆ T x =⇒ Si ∩ Ti = {x}.

Proof. Suppose that, for some variable x no minterm of f has property 1. In other words,
for every minterm Sx of f containing x there is some minterm Si of some fi that is a subset
of Sx yet does not contain x. Since fi → fl is sound for every i we have that, by Prop. 13,
for every minterm Sx of f containing x there is some minterm Sl of fl = g that is a subset of
Sx not containing x. I.e. f → g is trivial, by Prop. 22, which is a contradiction. Property 2
is proved analogously. Finally, Property 3 is proved by appealing to read-onceness. Any such
Si and Ti must contain x by properties 1 and 2, yet their intersection must be a singleton by
Thm. 14 since all fi are read-once, whence the result follows. J

We notice that, since some Si and Ti must exist for all i, by soundness, we can build
a chain9 of such minterms and maxterms preserving the intersection point. For a given
derivation, let us call a choice of such minterms and maxterms critical.

6.2 Proof of the main result, Thm. 30
Throughout this section let us fix a sound (negation-free constant-free) linear system R,
which we assume to contain s,m,10 whose reduction relation, modulo AC , is −→

R
.

Recall that s −→
R

t implies that s, t are distinct modulo AC so compute distinct Boolean
functions by Thm. 14 and have distinct relation webs. Let us fix a nontrivial R-derivation,

π : s = t0 −→
R

t1 −→
R
· · · −→

R
tl = t

Now, let us fix for each x ∈ X and 0 ≤ i ≤ l choices Sxi and T xi of critical minterms and
maxterms, respectively, of ti, by Lemma 33. I.e. we have that, for each x ∈ X:

1. Sxi ∩ T xi = {x} for each i ≤ l.
2. Sx0 ⊇ Sx1 ⊇ · · · ⊇ Sxl .
3. T x0 ⊆ T x1 ⊆ · · · ⊆ T xl .

9 More generally we can build lattices of these terms since the properties are universally quantified.
10 If a linear system is complete, then it must derive s and m with fixed size derivations.
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First, we give a definition of the measures we will use to deduce the bound of Thm. 30.

I Definition 34 (Measures). For each term ti in π we define the following measures:
1. e∧(ti) (resp. e∨(ti)) is the number of ∧- (resp. ∨-) labelled edges in W(t).11
2. νx(ti) (resp. µx(ti)) is the size of the citical minterm (resp. maxterm) of x at ti, i.e. |Sxi |

(resp. |T xi |).
3. ν(ti) :=

∑
x∈X

νx(ti) and µ(ti) :=
∑
x∈X

µx(ti).

We point out some simple properties of these measures.

I Proposition 35. Let e := 1
2n(n− 1). We have the following:

1. e∧, e∨ ≤ e, and e∧ + e∨ = e.
2. For each x ∈ X we have that νx, µx ≤ n, so ν, µ ≤ n2.

Proof. 1 follows from the fact that there are only e edges in a web, all of which must be
labelled ∧ or ∨. For 2, simply observe that a minterm or maxterm has size at most n. J

We show that, whenever an ∧-edge becomes labelled ∨, some minterm strictly decreases.

I Proposition 36. Suppose, for some i < l, we have that x y in W(ti) and x y

in W(ti+1). Then there is a minterm S of ti, and a minterm S′ of ti+1 such that S′ ( S.

Proof. Take any maximal ∧-clique in W(ti) containing x and y, of which there must be
at least one. This must have a ∧-subclique which is maximal in W(ti+1), by Prop. 13 and
Thm. 19. This subclique cannot contain both x and y, so the inclusion must be strict. J

We show that, if a minterm strictly decreases in size, some critical maxterm must strictly
increase in size.

I Proposition 37. Suppose for j > i there is some minterm Si of ti and some minterm Sj
of tj such that Sj ( Si. Then, for some variable x ∈ X, we have that T xi ( T xj .

Proof. We let x be some variable in x ∈ Si \ Sj , which must be nonempty by hypothesis.
By Thm. 14 we have that |T xi ∩ Si| = 1, so it must be that T xi ∩ Si = {x} by construction.

On the other hand we also have that |T xj ∩ Sj | = 1, and so there is some (unique)
y ∈ T xj ∩Sj . Now, since Si ) Sj we must have y ∈ Si. However we cannot have y ∈ T xi since
that would imply that {x, y} ⊂ T xi ∩ Si, contradicting the above.

Finally, by soundness, we have that T xi ) T xj as required. J

Recall that all W(ti) are distinct, so both e∧ and e∨ must change at each step of π.

I Lemma 38 (Increasing measure). The lexicographical product µ× e∧ is strictly increasing
at each step of π.

Proof. Notice that, by Lemma 33.2, we have that T x0 ⊆ T x1 ⊆ · · · ⊆ T xl , i.e. µ is non-
decreasing. So let us consider the case that e∧ decreases at some step and show that µ must
strictly increase. If e∧(ti) > e∧(ti+1) then we must have that some edge is labelled ∧ in
W(ti) and labelled ∨ in W(ti+1). Hence, by Prop. 36 some minterm has strictly decreased
in size and so by Prop. 37 some critical maxterm must have strictly increased in size. J

From here we can finally give a simple proof of our main result:

11Of course, these measures can more generally be defined for any linear term.
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Proof of Thm. 30. By Prop. 35 we have that µ = O(n2) = e∧ and so, since s → t is
nontrivial, it must be that the length l of π is O(n4), as required. J

Notice that, while the various settings exhibit a symmetry between ∧ and ∨, it is the
property of soundness that induces the necessary asymmetry required to achieve this result.

7 Canonicity

We show that the medial rule is somehow “canonical”: it is the only linear inference that, on
relation webs, preserves ∧-edges (up to reflexive transitive closure modulo AC ).

On the other hand, the switch rule is not canonical, in the sense that it is not the only
rule that preserves ∨-edges, and we give an example of this from previous work. However we
conjecture a weaker form of canonicity for the switch rule.

7.1 Canonicity of medial

I Definition 39. Let s and t be linear terms on a set X of variables. We write s CI t if:
1. Whenever x y in W(s) we have that x y in W(t).
2. Whenever x y in W(s) and x y in W(t), there are w, z ∈ X such that,

w x

y z

in W(s) and
w x

y z

in W(t).

The following result appeared in [23], where a detailed proof may be found.

I Proposition 40 (Medial criterion). s CI t if and only if s ∗→
m
t.

I Definition 41. If t is a linear term with x, y, z ∈ Var(t), we say that y separates x from z

in W(t) if x y in W(t) and y z in W(t).

I Theorem 42. Let s and t be linear terms on a variable set X. The following are equival-
ent:
1. s ≤ t and for all x, y ∈ X we have x y in W(s) implies x y in W(t).
2. s CI t.
3. s ∗→

m
t.

Proof. We have that 2 =⇒ 3 by Prop. 40 and 3 =⇒ 1 by inspection of medial, so it suffices
to show 1 =⇒ 2. For this, assume 1 and suppose x y in W(s) and x y in W(t),
and let S be a minterm of s containing x. We must have S ) {x} since x y in W(t)
and s → t is sound.12 Similarly there must be a maxterm T of t containing y such that
T ) {y}. Now, by 1, it must be that S (resp. T ) is also a minterm (resp. maxterm) of t (resp.
s),13 and so, by Thm. 14, there is some (unique) z ∈ S ∩ T which, by definition, separates
x from y in both W(s) and W(t). By a symmetric argument we obtain a w separating y

12Recall that, by Prop. 13 and Thm. 19, there must a subset of S which is a maximal ∧-clique in W(t).
13 Since by 1, ∧-edges (resp. ∨-edges) are preserved left-to-right (resp. right-to-left) and so ∧-cliques (resp.

∨-cliques) must be preserved (resp. reflected). Of course, these must be maximal by soundness.
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from x in both W(s) and W(t). By construction, w and z must be distinct, so we have the
following situation,

x z

w y

in W(s) and
x z

w y

in W(t).

whence 2 follows by P4-freeness. J

I Corollary 43. The bound in Thm. 30.1 can be improved to O(n3).

For the proof, let us first define #∧(t) to be the number of ∧ symbols occurring in t.

Proof of Cor. 43. Instead of using e∧ in Lemma 38, use #∧, which is linear in the size of
the term. If no ∧-edge becomes labelled ∨, #∧ must have strictly decreased by Thm. 42. J

7.2 Towards canonicity of switch
Switch is not canonical in the same sense, due to the following example appearing in [9]:

([z ∨ v] ∧ [x ∨ (z′ ∧ v′)]) ∨ ([(y ∧ u) ∨ w] ∧ [y′ ∨ u′])
→ [x ∨ (y ∧ y′)] ∧ [(z ∧ z′) ∨ (u ∧ u′)] ∧ [(v ∧ v′) ∨ w] (2)

For this inference, no ∨-edge becomes a ∧-edge, but it is not derivable by switch and
medial, as shown in [9]. However, we conjecture that a weaker form of canonicity applies.

I Conjecture 44. If s→ t is sound and nontrivial, every ∨-edge in W(s) is also labelled ∨
in W(t), s→ t, and #∧(s) = #∧(t), then s ∗→

s
t.

8 Final remarks

Conjecture 44 above is inspired by the observation that the only nontrivial linear inference we
know of that preserves #∧ is s. There are known trivial examples (e.g. “supermix” from [9] :
x ∧ (y1 ∨ · · · ∨ yk)→ x ∨ (y1 ∧ · · · ∧ yk)) that increase #∧ but every nontrivial rule we know of,
including the rule (2) above, strictly decreases it.

Notice that, the stronger conjecture that s is the only nontrivial rule that preserves #∧

already implies our main result, since #∧ × e∧ would be a strictly decreasing measure.
We point out that this measure is used for the usual proof of termination of {s,m}

(modulo AC ), e.g. in [9], and also yields a cubic bound on termination. In this work we have
matched that bound for all linear derivations in the case of weak normalisation, and in the
case of strong normalisation for derivations (modulo ACU) that are not globally trivial.

Finally, some preliminary research has shown that the length-bound for termination of
{s,m} can be improved to a quadratic. We conjecture that such an improvement is also
possible in the case of (nontrivial) linear derivations in general.
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Abstract
We present a coinductive framework for defining infinitary analogues of equational reasoning and
rewriting in a uniform way. We define the relation ∞=, a notion of infinitary equational reasoning,
and →∞, the standard notion of infinitary rewriting as follows:

∞= := νR. (=R ∪ R)∗

→∞ := µR. νS. (→R ∪ R)∗ ◦ S

where µ and ν are the least and greatest fixed-point operators, respectively, and where

R := { 〈f(s1, . . . , sn), f(t1, . . . , tn)〉 | f ∈ Σ, s1 R t1, . . . , sn R tn } ∪ Id .

The setup captures rewrite sequences of arbitrary ordinal length, but it has neither the
need for ordinals nor for metric convergence. This makes the framework especially suitable for
formalizations in theorem provers.
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1 Introduction

We present a coinductive framework for defining infinitary equational reasoning and infinit-
ary rewriting in a uniform way. The framework is free of ordinals, metric convergence and
partial orders which have been essential in earlier definitions of the concept of infinitary
rewriting [11, 26, 29, 25, 24, 3, 2, 4, 18].

Infinitary rewriting is a generalization of the ordinary finitary rewriting to infinite terms
and infinite reductions (including reductions of ordinal length greater than ω). For the
definition of rewrite sequences of ordinal length, there is a design choice concerning the
exclusion of jumps at limit ordinals, as illustrated in the ill-formed rewrite sequence

a→ a→ a→ · · ·︸ ︷︷ ︸
ω-many steps

b→ b
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where the rewrite system is R = { a→ a, b→ b }. The rewrite sequence remains for ω steps
at a and in the limit step ‘jumps’ to b. To ensure connectedness at limit ordinals, the usual
choices are:
(i) weak convergence (also called ‘Cauchy convergence’), where it suffices that the sequence

of terms converges towards the limit term, and
(ii) strong convergence, which additionally requires that the ‘rewriting activity’, i.e., the

depth of the rewrite steps, tends to infinity when approaching the limit.
The notion of strong convergence incorporates the flavor of ‘progress’, or ‘productivity’, in
the sense that there is only a finite number of rewrite steps at every depth. Moreover, it
leads to a more satisfactory metatheory where redex occurrences can be traced over limit
steps.

While infinitary rewriting has been studied extensively, notions of infinitary equational
reasoning have not received much attention. One of the few works in this area is [24] by
Kahrs, see Related Work below. The reason is that the usual definition of infinitary rewriting
is based on ordinals to index the rewrite steps, and hence the rewrite direction is incorporated
from the start. This is different for the framework we propose here, which enables us to
define several natural notions: infinitary equational reasoning, bi-infinite rewriting, and the
standard concept of infinitary rewriting. All of these have strong convergence ‘built-in’.

We define infinitary equational reasoning with respect to a system of equations R, as a
relation ∞= on potentially infinite terms by the following mutually coinductive rules:

s (=R ∪
∞
↽⇁)∗ t

s
∞= t

s1
∞= t1 · · · sn

∞= tn

f(s1, s2, . . . , sn) ∞↽⇁ f(t1, t2, . . . , tn)
(1)

The relation ∞↽⇁ stands for infinitary equational reasoning below the root. The coinductive
nature of the rules means that the proof trees need not be well-founded. Reading the rules
bottom-up, the first rule allows for an arbitrary, but finite, number of rewrite steps at any
finite depth (of the term tree). The second rule enforces that we eventually proceed with
the arguments, and hence the activity tends to infinity.

I Example 1.1. Let R consist of the equation C(a) = a.

Cω ∞= a
Cω ∞↽⇁ C(a) C(a) =R a

Cω ∞= a

Figure 1 Derivation of Cω ∞= a.

We write Cω to denote the infinite term C(C(C(. . .))), the
solution of the equation X = C(X). Using the rules (1),
we can derive Cω ∞= a as shown in Figure 1. This is an
infinite proof tree as indicated by the loop in which
the sequence Cω ∞↽⇁ C(a) =R a is written by juxtaposing
Cω ∞↽⇁ C(a) and C(a) =R a.

Using the greatest fixed-point constructor ν, we can
define ∞= equivalently as follows:
∞= := νR. (=R ∪ R)∗ , (2)

where R, corresponding to the second rule in (1), is defined by

R := { 〈f(s1, . . . , sn), f(t1, . . . , tn)〉 | f ∈ Σ, s1 R t1, . . . , sn R tn } ∪ Id . (3)

This is a new and interesting notion of infinitary (strongly convergent) equational reasoning.
Now letR be a term rewriting system (TRS). If we use→R instead of =R in the rules (1),

we obtain what we call bi-infinite rewriting ∞→ :

s (→R ∪
∞
⇁)∗ t

s
∞→ t

s1
∞→ t1 · · · sn

∞→ tn

f(s1, s2, . . . , sn) ∞⇁ f(t1, t2, . . . , tn)
(4)
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corresponding to the following fixed-point definition:
∞→ := νR. (→R ∪ R)∗ . (5)

We write ∞→ to distinguish bi-infinite rewriting from the standard notion →∞ of (strongly
convergent) infinitary rewriting [32]. The symbol ∞ is centered above → in ∞→ to indicate
that bi-infinite rewriting is ‘balanced’, in the sense that it allows rewrite sequences to be
extended infinitely forwards, but also infinitely backwards. Here backwards does not refer
to reversing the arrow←ε. For example, for R = {C(a)→ a } we have the backward-infinite
rewrite sequence · · · → C(C(a))→ C(a)→ a and hence Cω ∞→ a. The proof tree for Cω ∞→ a
has the same shape as the proof tree displayed in Figure 1; the only difference is that ∞= is
replaced by ∞→ and ∞↽⇁ by ∞⇁. In contrast, the standard notion →∞ of infinitary rewriting
only takes into account forward limits and we do not have Cω →∞ a.

We have the following strict inclusions:

→∞ ( ∞→ ( ∞= .

In our framework, these inclusions follow directly from the fact that the proof trees for →∞
(see below) are a restriction of the proof trees for ∞→ which in turn are a restriction of the
proof trees for ∞=. It is also easy to see that each inclusion is strict. For the first, see above.
For the second, just note that ∞→ is not symmetric.

Finally, by a further restriction of the proof trees, we obtain the standard concept of
(strongly convergent) infinitary rewriting →∞. Using least and greatest fixed-point operat-
ors, we define:

→∞ := µR. νS. (→ ∪ R)∗ ◦ S , (6)

where ◦ denotes relational composition. Here R is defined inductively, and S is defined
coinductively. Thus only the last step in the sequence (→ ∪ R)∗ ◦ S is coinductive. This
corresponds to the following fact about reductions σ of ordinal length: every strict prefix of
σ must be shorter than σ itself, while strict suffixes may have the same length as σ.

If we replace µ by ν in (6), we get a definition equivalent to ∞→ defined by (5). To see
that it is at least as strong, note that Id ⊆ S.

Conversely, →∞ can be obtained by a restriction of the proof trees obtained by the
rules (4) for ∞→. Assume that in a proof tree using the rules (4), we mark those occurrences
of ∞⇁ that are followed by another step in the premise of the rule (i.e., those that are not
the last step in the premise). Thus we split ∞⇁ into ⇁∞ and <

⇁∞. Then the restriction to
obtain the relation →∞ is to forbid infinite nesting of marked symbols <

⇁∞. This marking
is made precise in the following rules:

s (→ ∪ <
⇁∞)∗ ◦⇁∞ t

s→∞ t

s1 →∞ t1 · · · sn →∞ tn

f(s1, s2, . . . , sn) (<)
⇁∞ f(t1, t2, . . . , tn) s

(<)
⇁∞ s

(7)

Here ⇁∞ stands for infinitary rewriting below the root, and <
⇁∞ is its marked version.

The symbol (<)
⇁∞ stands for both ⇁∞ and <

⇁∞. Correspondingly, the rule in the middle is
an abbreviation for two rules. The axiom s ⇁∞ s serves to ‘restore’ reflexivity, that is, it
models the identity steps in S in (6). Intuitively, s <

⇁∞ t can be thought of as an infinitary
rewrite sequence below the root, shorter than the sequence we are defining.

We have an infinitary strongly convergent rewrite sequence from s to t if and only if
s →∞ t can be derived by the rules (7) in a (not necessarily well-founded) proof tree
without infinite nesting of <

⇁∞, that is, proof trees in which all paths (ascending through
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the proof tree) contain only finitely many occurrences of <
⇁∞. The depth requirement in

the definition of strong convergence arises naturally in the rules (7), in particular the middle
rule pushes the activity to the arguments.

The fact that the rules (7) capture the infinitary rewriting relation→∞ is a consequence
of a result due to [26] which states that every strongly convergent rewrite sequence contains
only a finite number of steps at any depth d ∈ N, in particular only a finite number of root
steps →ε. Hence every strongly convergent reduction is of the form ( <⇁∞ ◦ →ε)∗◦ ⇁∞ as
in the premise of the first rule, where the steps <

⇁∞ are reductions of shorter length.
We conclude with an example of a TRS that allows for a rewrite sequence of length

beyond ω.

I Example 1.2. We consider the term rewriting system with the following rules:
f(x, x)→ D a→ C(a) b→ C(b) .

We then have a→∞ Cω, that is, an infinite reduction from a to Cω in the limit:

a→ C(a)→ C(C(a))→ C(C(C(a)))→ · · · →ω Cω .

a→ε C(a)
a→∞ Cω

C(a) ⇁∞ Cω

a→∞ Cω

Figure 2 A reduction a →∞ Cω.

Using the proof rules (7), we can derive a →∞ Cω
as shown in Figure 2.

The proof tree in Figure 2 can be described as fol-
lows: We have an infinitary rewrite sequence from a
to Cω since we have a root step from a to C(a), and
an infinitary reduction below the root from C(a) to Cω.
The latter reduction C(a) ⇁∞ Cω is in turn witnessed
by the infinitary rewrite sequence a→∞ Cω on the dir-
ect subterms.

We also have the following reduction, now of length ω + 1:

f(a, b)→ f(C(a), b)→ f(C(a),C(b))→ · · · →ω f(Cω,Cω)→ D .

like Figure 2
a→∞ Cω

like Figure 2
b→∞ Cω

f(a, b) <
⇁∞ f(Cω,Cω) f(Cω,Cω)→ε D

f(a, b)→∞ D

Figure 3 A reduction f(a, b) →∞ D.

That is, after an infinite rewrite
sequence of length ω, we reach the
limit term f(Cω,Cω), and we then
continue with a rewrite step from
f(Cω,Cω) to D.

Figure 3 shows how this rewrite
sequence f(a, b)→∞ D can be de-
rived in our setup. We note that
the rewrite sequence f(a, b) →∞ D
cannot be ‘compressed’ to length ω.
So there is no reduction f(a, b)→≤ω D.

1.1 Related Work
While a coinductive treatment of infinitary rewriting is not new [7, 22, 19], the previous
approaches only capture rewrite sequences of length at most ω. The coinductive framework
that we present here captures all strongly convergent rewrite sequences of arbitrary ordinal
length.

From the topological perspective, various notions of infinitary rewriting and infinitary
equational reasoning have been studied in [24]. The closure operator SE from [24] is closely
related to our notion of infinitary equational reasoning ∞=. The operator SE is defined by
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SE(R) = (S ◦E)∗(R) where E(R) is the equivalence closure of R, and S(R) is the strongly
convergent rewrite relation obtained from (single steps) R. Thus SE(→) is the repeated
closure under equivalence and strongly convergent reduction of →. Although defined in
very different ways, we conjecture that the relations SE(→) and ∞= typically coincide, and
only in rare cases there is a strict inclusion SE(→) ( ∞=.

Martijn Vermaat has formalized infinitary rewriting using metric convergence (in place
of strong convergence) in the Coq proof assistant [33], and proved that weakly orthogonal
infinitary rewriting does not have the property UN of unique normal forms, see [17]. While
his formalization could be extended to strong convergence, it remains to be investigated to
what extent it can be used for the further development of the theory of infinitary rewriting.

Ketema and Simonsen [27] introduce the notion of ‘computable infinite reductions’ [27],
where terms as well as reductions are computable, and provide a Haskell implementation of
the Compression Lemma for this notion of reduction.

1.2 Outline
In Section 2 we introduce infinitary rewriting in the usual way based on ordinals, and with
convergence at every limit ordinal. Section 3 is a short explanation of (co)induction and
fixed-point rules. The two new definitions of infinitary rewriting →∞ based on mixing
induction and coinduction, as well as their equivalence, are spelled out in Section 4. Then,
in Section 5, we prove the equivalence of these new definitions of infinitary rewriting with
the standard definition. In Section 6 we present the above introduced relations ∞= and ∞→ of
infinitary equational reasoning and bi-infinite rewriting. In Section 7 we compare the three
relations ∞=, ∞→ and →∞. As an application, we show in Section 8 that our framework is
suitable for formalizations in theorem provers. We conclude in Section 9.

2 Preliminaries on Term Rewriting

We give a brief introduction to infinitary rewriting. For further reading on infinitary rewrit-
ing we refer to [29, 32, 6, 18], for an introduction to finitary rewriting to [28, 32, 1, 5].

A signature Σ is a set of symbols f each having a fixed arity ar(f) ∈ N. Let X be an
infinite set of variables such that X ∩ Σ = ∅. The set Ter∞(Σ,X ) of (finite and) infinite
terms over Σ and X is coinductively defined by the following grammar:

T ::=co x | f( T, . . . , T︸ ︷︷ ︸
ar(f) times

) (x ∈ X , f ∈ Σ) .

This means that Ter∞(Σ,X ) is defined as the largest set T such that for all t ∈ T , either
t ∈ X or t = f(t1, t2, . . . , tn) for some f ∈ Σ with ar(f) = n and t1, t2, . . . , tn ∈ T . So the
grammar rules may be applied an infinite number of times, and equality on the terms is
bisimilarity. See further Section 3 for a brief introduction to coinduction.

We write Id for the identity relation on terms, Id := {〈s, s〉 | s ∈ Ter∞(Σ,X )}.

I Remark. Alternatively, the set Ter∞(Σ,X ) arises from the set of finite terms, Ter(Σ,X ),
by metric completion, using the well-known distance function d defined by d(t, s) = 2−n if
the n-th level of the terms t, s ∈ Ter(Σ,X ) (viewed as labeled trees) is the first level where
a difference appears, in case t and s are not identical; furthermore, d(t, t) = 0. It is stand-
ard that this construction yields 〈Ter(Σ,X ),d〉 as a metric space. Now infinite terms are
obtained by taking the completion of this metric space, and they are represented by infinite
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trees. We will refer to the complete metric space arising in this way as 〈Ter∞(Σ,X ),d〉,
where Ter∞(Σ,X ) is the set of finite and infinite terms over Σ.

Let t ∈ Ter∞(Σ,X ) be a finite or infinite term. The set of positions Pos(t) ⊆ N∗ of t
is defined by: ε ∈ Pos(t), and ip ∈ Pos(t) whenever t = f(t1, . . . , tn) with 1 ≤ i ≤ n and
p ∈ Pos(ti). For p ∈ Pos(t), the subterm t|p of t at position p is defined by t|ε = t and
f(t1, . . . , tn)|ip = ti|p. The set of variables Var(t) ⊆ X of t is Var(t) = {x ∈ X | ∃ p ∈
Pos(t). t|p = x}.

A substitution σ is a map σ : X → Ter∞(Σ,X ); its domain is extended to Ter∞(Σ,X )
by corecursion: σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)). For a term t and a substitution σ,
we write tσ for σ(t). We write x 7→ s for the substitution defined by σ(x) = s and σ(y) = y

for all y 6= x. Let � be a fresh variable. A context C is a term Ter∞(Σ,X ∪ {�}) containing
precisely one occurrence of �. For contexts C and terms s we write C[s] for C(� 7→ s).

A rewrite rule `→ r over Σ and X is a pair (`, r) of terms `, r ∈ Ter∞(Σ,X ) such that
the left-hand side ` is not a variable (` 6∈ X ), and all variables in the right-hand side r occur
in `, Var(r) ⊆ Var(`). Note that we require neither the left-hand side nor the right-hand
side of a rule to be finite.

A term rewriting system (TRS) R over Σ and X is a set of rewrite rules over Σ and
X . A TRS induces a rewrite relation on the set of terms as follows. For p ∈ N∗ we define
→R,p ⊆ Ter∞(Σ,X )× Ter∞(Σ,X ), a rewrite step at position p, by C[`σ]→R,p C[rσ] if C
is a context with C|p = �, ` → r ∈ R, and σ : X → Ter∞(Σ,X ). We write →ε for root
steps, →ε = { (`σ, rσ) | ` → r ∈ R, σ a substitution }. We write s →R t if s →R,p t for
some p ∈ N∗. A normal form is a term without a redex occurrence, that is, a term that is
not of the form C[`σ] for some context C, rule `→ r ∈ R and substitution σ.

A natural consequence of this construction is the notion of weak convergence: we say
that t0 → t1 → t2 → · · · is an infinite reduction sequence with limit t, if t is the limit of the
sequence t0, t1, t2, . . . in the usual sense of metric convergence. We use strong convergence,
which in addition to weak convergence, requires that the depth of the redexes contracted in
the successive steps tends to infinity when approaching a limit ordinal from below. So this
rules out the possibility that the action of redex contraction stays confined at the top, or
stagnates at some finite level of depth.

I Definition 2.1. A transfinite rewrite sequence (of ordinal length α) is a sequence of
rewrite steps (tβ →R,pβ tβ+1)β<α such that for every limit ordinal λ < α we have that if β
approaches λ from below, then
(i) the distance d(tβ , tλ) tends to 0 and, moreover,
(ii) the depth of the rewrite action, i.e., the length of the position pβ , tends to infinity.
The sequence is called strongly convergent if α is a successor ordinal, or there exists a term
tα such that the conditions 1 and 2 are fulfilled for every limit ordinal λ ≤ α; we then write
t0 →∞ord tα. The subscript ord is used in order to distinguish →∞ord from the equivalent
relation →∞ as defined in Definition 4.4. We sometimes write t0 →α

ord tα to explicitly
indicate the length α of the sequence. The sequence is called divergent if it is not strongly
convergent.

There are several reasons why strong convergence is beneficial; the foremost being that in
this way we can define the notion of descendant (also residual) over limit ordinals. Also the
well-known Parallel Moves Lemma and the Compression Lemma fail for weak convergence,
see [31] and [11] respectively.
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3 (Co)induction and Fixed Points

We briefly introduce the relevant concepts from (co)algebra and (co)induction that will be
used later throughout this paper. For a more thorough introduction, we refer to [21]. There
will be two main points where coinduction will play a role, in the definition of terms and in
the definition of term rewriting.

Terms are usually defined with respect to a type constructor F . For instance, consider
the type of lists with elements in a given set A, given in a functional programming style:

type List a = Nil | Cons a (List a)

The above grammar corresponds to the type constructor F (X) = 1 +A×X where the 1 is
used as a placeholder for the empty list Nil and the second component represents the Cons
constructor. Such a grammar can be interpreted in two ways: The inductive interpretation
yields as terms the set of finite lists, and corresponds to the least fixed point of F . The
coinductive interpretation yields as terms the set of all finite or infinite lists, and corres-
ponds to the greatest fixed point of F . More generally, the inductive interpretation of a type
constructor yields finite terms (with well-founded syntax trees), and dually, the coinductive
interpretation yields possibly infinite terms. For readers familiar with the categorical defin-
itions of algebras and coalgebras, these two interpretations amount to defining finite terms
as the initial F -algebra, and possibly infinite terms as the final F -coalgebra.

Formally, term rewriting is a relation on a set T of terms, and hence an element of the
complete lattice L := P(T × T ), the powerset of T × T . Relations on terms can thus be
defined using least and greatest fixed points of monotone operators on L. In this setting,
an inductively defined relation is a least fixed point µX.F (X) of a monotone F : L → L.
Dually, a coinductively defined relation is a greatest fixed point νX. F (X) of a monotone
F : L→ L. Coinduction, and similarly induction, can be formulated as proof rules:

X ≤ F (X)
X ≤ νY. F (Y ) (ν-rule) F (X) ≤ X

µY. F (Y ) ≤ X (µ-rule) (8)

These rules express the fact that νY. F (Y ) is the greatest post-fixed point of F , and µY. F (Y )
is the least pre-fixed point of F .

4 New Definitions of Infinitary Term Rewriting

We present two new definitions of infinitary rewriting s→∞ t, based on mixing induction
and coinduction, and prove their equivalence. In Section 5 we show they are equivalent to
the standard definition based on ordinals. We summarize the definitions:
(a) Derivation Rules. First, we define s→∞ t via a syntactic restriction on the proof trees

that arise from the coinductive rules (7). The restriction excludes all proof trees that
contain ascending paths with an infinite number of marked symbols.

(b) Mixed Induction and Coinduction. Second, we define s→∞ t based on mutually mixing
induction and coinduction, that is, least fixed points µ and greatest fixed points ν.
In contrast to previous coinductive definitions [7, 22, 19], the setup proposed here cap-

tures all strongly convergent rewrite sequences (of arbitrary ordinal length).
Throughout this section, we fix a signature Σ and a term rewriting system R over Σ.

We also abbreviate T := Ter∞(Σ,X ).
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I Notation 4.1. Instead of introducing separate derivation rules for transitivity, we write
a reduction of the form s0  s1  · · · sn as a sequence of single steps:

s0  s1 s1  s2 · · · sn−1  sn
conclusion

This allows us to write the subproof immediately above a single step.

I Definition 4.2. For a relation R ⊆ T × T we define its lifting R by

R := { 〈f(s1, . . . , sn), f(t1, . . . , tn)〉 | f ∈ Σ, ar(f) = n , s1 R t1, . . . , sn R tn } ∪ Id .

4.1 Derivation Rules
I Definition 4.3. We define the relation →∞ ⊂ T × T as follows. We have s→∞ t if there
exists a (finite or infinite) proof tree δ deriving s→∞ t using the following five rules:

s (→ε ∪
<
⇁∞)∗ ◦⇁∞ t

s→∞ t
split

s1 →∞ t1 · · · sn →∞ tn

f(s1, s2, . . . , sn) (<)
⇁∞ f(t1, t2, . . . , tn) lift

s
(<)
⇁∞ s

id

such that δ does not contain an infinite nesting of <
⇁∞, that is, such that there exists no

path ascending through the proof tree that meets an infinite number of symbols <
⇁∞. The

symbol (<)
⇁∞ stands for ⇁∞ or <

⇁∞; so the second rule is an abbreviation for two rules;
similarly for the third rule.

We give some intuition for the rules in Definition 4.3. The relations <
⇁∞ and ⇁∞

are infinitary reductions below the root. We use <
⇁∞ for constructing parts of the prefix

(between root steps), and⇁∞ for constructing a suffix of the reduction that we are defining.
When thinking of ordinal indexed rewrite sequences σ, a suffix of σ can have length equal
to σ, while the length of every prefix of σ must be strictly smaller than the length of σ. The
five rules (split, and the two versions of lift and id) can be interpreted as follows:
(i) The split-rule: the term s rewrites infinitarily to t, s →∞ t, if s rewrites to t using a

finite sequence of (a) root steps, and (b) infinitary reductions⇁∞ below the root (where
infinitary reductions preceding root steps must be shorter than the derived reduction).

(ii) The lift-rules: the term s rewrites infinitarily to t below the root, s (<)
⇁∞ t, if the terms

are of the shape s = f(s1, s2, . . . , sn) and t = f(t1, t2, . . . , tn) and there exist reductions
on the arguments: s1 →∞ t1, . . . , sn →∞ tn.

(iii) The id-rules allow for the rewrite relations (<)
⇁∞ to be reflexive, and this in turn yields

reflexivity of →∞. For variable-free terms, reflexivity can already be derived using the
other rules. For terms with variables, this rule is needed (unless we treat variables as
constant symbols).

For an example of a proof tree, we refer to Example 1.2 in the introduction.

4.2 Mixed Induction and Coinduction
The next definition is based on mixing induction and coinduction. The inductive part is
used to model the restriction to finite nesting of <

⇁∞ in the proofs in Definition 4.3. The
induction corresponds to a least fixed point µ, while a coinductive rule to a greatest fixed
point ν.

I Definition 4.4. We define the relation →∞ ⊆ T × T by

→∞ := µR. νS. (→ε ∪ R)∗ ◦ S .
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We argue why →∞ is well-defined. Let L := P(T × T ) be the set of all relations on
terms. Define functions G : L× L→ L and F : L→ L by

G(R,S) := (→ε ∪ R)∗ ◦ S and F (R) := νS.G(R,S) = νS. (→ε ∪ R)∗ ◦ S . (9)

Then we have →∞ = µR.F (R) = µR. νS.G(R,S) = µR. νS. (→ε ∪ R)∗ ◦ S. It
can easily be verified that F and G are monotone (in all their arguments). Recall that a
function H over sets is monotone if X ⊆ Y implies H(. . . , X, . . .) ⊆ H(. . . , Y, . . .). Hence F
and G have unique least and greatest fixed points.

4.3 Equivalence
We show equivalence of Definitions 4.3 and 4.4. Intuitively, the µR in the fixed point
definition corresponds to the nesting restriction in the definition using derivation rules. If
one thinks of Definition 4.4 as µR.F (R) with F (R) = νS.G(R,S) (see equation (9)), then
Fn+1(∅) are all infinite rewrite sequences that can be derived using proof trees where the
nesting depth of the marked symbol <

⇁∞ is at most n.
To avoid confusion we write →∞der for the relation →∞ defined in Definition 4.3, and

→∞fp for the relation →∞ defined in Definition 4.4. We show →∞der = →∞fp . Definition 4.3
requires that the nesting structure of <

⇁∞der in proof trees is well-founded. As a consequence,
we can associate to every proof tree a (countable) ordinal that allows to embed the nesting
structure in an order-preserving way. We use ω1 to denote the first uncountable ordinal, and
we view ordinals as the set of all smaller ordinals (then the elements of ω1 are all countable
ordinals).

I Definition 4.5. Let δ be a proof tree as in Definition 4.3, and let α be an ordinal. An
α-labeling of δ is a labeling of all symbols <

⇁∞der in δ with elements from α such that each
label is strictly greater than all labels occurring in the subtrees (all labels above).

I Lemma 4.6. Every proof tree as in Definition 4.3 has an α-labeling for some α ∈ ω1.

Proof. Let δ be a proof tree and let L(δ) be the set positions of symbols <
⇁∞der in t. For

positions p, q ∈ L(δ) we write p < q if p is a strict prefix of q. Then we have that > is
well-founded, that is, there is no infinite sequence p0 < p1 < p2 < · · · with pi ∈ L(δ) (i ≥ 0)
as a consequence of the nesting restriction on <

⇁∞der. The the extension of this well-founded
order on L(t) to a total, well-founded order is isomorphic to an ordinal α, and α < ω1 since
L(t) is countable. J

I Definition 4.7. Let δ be a proof tree as in Definition 4.3. We define the nesting depth of
δ as the least ordinal α ∈ ω1 such that δ admits an α-labeling. For every α ≤ ω1, we define
a relation →∞α,der ⊆ →∞der as follows: s →∞α,der t whenever s →∞der t can be derived using a
proof with nesting depth < α. Likewise we define relations ⇁∞α,der and <

⇁∞α,der .

As a direct consequence of Lemma 4.6 we have:

I Corollary 4.8. We have →∞ω1,der =→∞der.

I Theorem 4.9. Definitions 4.3 and 4.4 define the same relation, →∞der =→∞fp .

Proof. We begin with →∞fp ⊆ →∞der. Recall that F (→∞der) is the greatest fixed point of
G(→∞der,_), see (9). Also, we have ⇁∞der = <

⇁∞der =→∞der , and hence

F (→∞der) = (→ε ∪ →∞der )∗ ◦ F (→∞der) = (→ε ∪
<
⇁∞der)∗ ◦ F (→∞der) (10)

F (→∞der) = Id ∪ { 〈f(~s), f(~t)〉 | ~s F (→∞der) ~t } (11)
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where ~s, ~t abbreviate s1, . . . , sn and t1, . . . , tn, respectively, and we write ~s R ~t if we have
s1 R t1, . . . , sn R tn. Employing the µ-rule from (8), it suffices to show that F (→∞der) ⊆
→∞der. Assume 〈s, t〉 ∈ F (→∞der). Then 〈s, t〉 ∈ (→ε ∪

<
⇁∞der)∗◦F (→∞der). Then there exists s′

such that s (→ε ∪
<
⇁∞der)∗ s′ and s′ F (→∞der) t. Now we distinguish cases according to (11):

s (→ε ∪
<
⇁∞der)∗ t t ⇁∞ t

id

s→∞ t
split

s (→ε ∪
<
⇁∞der)∗ s′

T1 · · · Tn

s′ ⇁∞ t
lift

s→∞ t
split

Here, for i ∈ {1, . . . , n}, Ti is the proof tree for si →∞ ti obtained from si F (→∞der) ti by
corecursively applying the same procedure.

Next we show that→∞der ⊆ →∞fp . By Corollary 4.8 it suffices to show→∞ω1,der ⊆ →∞fp . We
prove by well-founded induction on α ≤ ω1 that →∞α,der ⊆ →∞fp . Since →∞fp is a fixed point
of F , we obtain →∞fp = F (→∞fp ), and since F (→∞fp ) is a greatest fixed point, using the ν-rule
from (8), it suffices to show that (∗)→∞α,der ⊆ G(→∞fp ,→∞α,der). Thus assume that s→∞α,der t,
and let δ be a proof tree of nesting depth ≤ α deriving s →∞α,der t. The only possibility to
derive s→∞der t is an application of the split-rule with the premise s (→ε ∪

<
⇁∞der)∗ ◦⇁∞der t.

Since s →∞α,der t, we have s (→ε ∪
<
⇁∞α,der)∗ ◦ ⇁∞α,der t. Let τ be one of the steps <

⇁∞α,der
displayed in the premise. Let u be the source of τ and v the target, so τ : u <

⇁∞α,der v.
The step τ is derived either via the id-rule or the lift-rule. The case of the id-rule is not
interesting since we then can drop τ from the premise. Thus let the step τ be derived using
the lift-rule. Then the terms u, v are of form u = f(u1, . . . , un) and v = f(v1, . . . , vn) and
for every 1 ≤ i ≤ n we have ui →∞β,der vi for some β < α. Thus by induction hypothesis
we obtain ui →∞fp vi for every 1 ≤ i ≤ n, and consequently u →∞fp v. We then have
s (→ε ∪ →∞fp )∗ ◦⇁∞α,der t, and hence s G(→∞fp ,→∞α,der) t. This concludes the proof. J

5 Equivalence with the Standard Definition

In this section we prove the equivalence of the coinductively defined infinitary rewrite rela-
tions→∞ from Definitions 4.3 (and 4.4) with the standard definition based on ordinal length
rewrite sequences with metric and strong convergence at every limit ordinal (Definition 2.1).
The crucial observation is the following theorem from [29]:

I Theorem 5.1 (Theorem 2 of [29]). A transfinite reduction is divergent if and only if for
some n ∈ N there are infinitely many steps at depth n.

We are now ready to prove the equivalence of both notions:

I Theorem 5.2. We have →∞ =→∞ord.

Proof. We write ⇁∞ord to denote a reduction →∞ord without root steps, and we write →α
ord

and ⇁α
ord to indicate the ordinal length α.

We begin with the direction→∞ord ⊆ →∞. We define a function T (and T′(<)) by guarded
corecursion [8], mapping rewrite sequences s →α

ord t (and s ⇁α
ord t) to infinite proof trees

derived using the rules from Definition 4.3. This means that every recursive call produces a
constructor, contributing to the construction of the infinite tree. Note that the arguments
of T (and T′(<)) are not required to be structurally decreasing.

We do case distinction on the ordinal α. If α = 0, then t = s and we define

T(s→0
ord s) =

T′(s ⇁0
ord s)

s→∞ s
split

T′(<)(s ⇁0
ord s) = s

(<)
⇁∞ s

id
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If α > 0, then, by Theorem 5.1 the rewrite sequence s →α
ord t contains only a finite

number of root steps. As a consequence, it is of the form:

s = s0  s1 · · · sn−1  sn = t

where for every i ∈ {0, . . . , n− 1}, si  si+1 is either a root step si →ε si+1, or an infinite
reduction below the root si ⇁≤αord si+1 where si ⇁<α

ord si+1 if i < n − 1. In the latter case,
the length of si ⇁ord si+1 is smaller than α because every strict prefix must be shorter than
the sequence itself. We define

T(s→α
ord t) =

T0 T1 · · · Tn−1

s→∞ t
split

where, for 0 ≤ i < n,

Ti =


si →ε si+1 if si  si+1 is a root step,
T′<(si ⇁β

ord si+1) if i < n− 1 and si ⇁β
ord si+1 for some β < α,

T′(si ⇁β
ord si+1) if i = n− 1 and si ⇁β

ord si+1 for some β ≤ α.

For rewrite sequences s ⇁α
ord t with α > 0 we have that s = f(s1, . . . , sn) and t =

f(t1, . . . , tn) for some f ∈ Σ of arity n and terms s1, . . . , sn, t1, . . . , tn ∈ Ter∞(Σ,X ), and
there is a rewrite sequence si →≤αord ti for every i with 1 ≤ i ≤ n. We define the two rules:

T′(<)(s ⇁α
ord t) =

T(s1 →≤αord t1) · · · T(sn →≤αord tn)
s

(<)
⇁∞ t

lift

The obtained proof tree T(s →α
ord t) derives s →∞ t. To see that the requirement that

there is no ascending path through this tree containing an infinite number of symbols <
⇁∞

is fulfilled, we note the following. The symbol <
⇁∞ is produced by T′<(s ⇁β

ord t) which is
invoked in T(s→α

ord t) for a β that is strictly smaller than α. By well-foundedness of < on
ordinals, no such path exists.

We now show →∞ ⊆ →∞ord. We prove by well-founded induction on α ≤ ω1 that
→∞α ⊆ →∞ord. This suffices since→∞ =→∞ω1

. Let α ≤ ω1 and assume that s→∞α t. Let δ be
a proof tree of nesting depth < α witnessing s→∞α t. The only possibility to derive s→∞ t

is an application of the split-rule with the premise s (→ε ∪
<
⇁∞)∗ ◦ ⇁∞ t. Since s →∞α t,

we have s (→ε ∪
<
⇁∞α )∗ ◦⇁∞α t. By induction hypothesis we have s (→ε ∪ →∞ord)∗ ◦⇁∞α t,

and thus s →∞ord ◦ ⇁∞α t. We have ⇁∞α = →∞α , and consequently s →∞ord s1 →∞α t for
some term s1. Repeating this argument on s1 →∞α t, we get s →∞ord s1 →∞ord s2 →∞α t.
After n iterations, we obtain

s→∞ord s1 →∞ord s2 →∞ord s3 →∞ord s4 · · · (→∞α )−(n−1) sn (→∞α )−n t

where (→∞α )−n denotes the nth iteration of x 7→ x on →∞α .
Clearly, the limit of {sn} is t. Furthermore, each of the reductions sn →∞ord sn+1 are

strongly convergent and take place at depth greater than or equal to n. Thus, the infinite
concatenation of these reductions yields a strongly convergent reduction from s to t (there
is only a finite number of rewrite steps at every depth n). J
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a→ε f(a)

a→ε f(a) f(a) ∞↽⇁ fω

a ∞= fω

f(a) ∞↽⇁ fω

fω ∞↽⇁ f(b) f(b)←ε b

fω ∞= b
fω ∞↽⇁ f(b) f(b)←ε b

a ∞= b

(as above)

a ∞= b
C(a) ∞↽⇁ C(b) C(b)→ε C(C(a))

C(a) ∞= Cω

C(C(a)) ∞↽⇁ Cω

C(a) ∞= Cω

Figure 4 An example of infinitary equational reasoning, deriving C(a) ∞= Cω in the TRS R of
Example 6.2. Recall Notation 4.1.

6 Infinitary Equational Reasoning and Bi-Infinite Rewriting

6.1 Infinitary Equational Reasoning
I Definition 6.1. Let R be a TRS over Σ, and let T = Ter∞(Σ,X ). We define infinitary
equational reasoning as the relation =∞ ⊆ T × T by the mutually coinductive rules:

s (←ε ∪ →ε ∪
∞
↽⇁)∗ t

s
∞= t

s1
∞= t1 · · · sn

∞= tn

f(s1, s2, . . . , sn) ∞↽⇁ f(t1, t2, . . . , tn)

where ∞↽⇁ ⊆ T × T stands for infinitary equational reasoning below the root.

Note that, in comparison with the rules (1) for ∞= from the introduction, we now have
used ←ε ∪ →ε instead of =R. It is not difficult to see that this gives rise to the same
relation. The reason is that we can ‘push’ non-root rewriting steps =R into the arguments
of ∞↽⇁.

I Example 6.2. Let R be a TRS consisting of the following rules:

a→ f(a) b→ f(b) C(b)→ C(C(a)) .

Then we have a ∞= b as derived in Figure 4 (top), and C(a) ∞= Cω as in Figure 4 (bottom).

Definition 6.1 of ∞= can also be defined using a greatest fixed point as follows:

∞= := νR. (←ε ∪ →ε ∪ R)∗ ,

where R was defined in Definition 4.2. The equivalence of these definitions can be established
in a similar way as in Theorem 4.9. It is easy to verify that the function R 7→ (←ε ∪ →ε

∪ R)∗ is monotone, and consequently the greatest fixed point exists.
We note that, in the presence of collapsing rules (i.e., rules ` → r where r ∈ X ),

everything becomes equivalent: s ∞= t for all terms s, t. For example, having a rule f(x)→ x

we obtain that s ∞= f(s) ∞= f2(s) ∞= · · · ∞= fω for every term s. This can be overcome by
forbidding certain infinite terms and certain infinite limits.
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6.2 Bi-Infinite Rewriting
Another notion that arises naturally in our setup is that of bi-infinite rewriting, allowing
rewrite sequences to extend infinitely forwards and backwards. We emphasize that each of
the steps →ε in such sequences is a forward step.

I Definition 6.3. Let R be a term rewriting system over Σ, and let T = Ter∞(Σ,X ). We
define the bi-infinite rewrite relation ∞→ ⊆ T × T by the following coinductive rules

s (→ε ∪
∞
⇁)∗ t

s
∞→ t

s1
∞→ t1 · · · sn

∞→ tn

f(s1, s2, . . . , sn) ∞⇁ f(t1, t2, . . . , tn)

where ∞⇁ ⊆ T × T stands for bi-infinite rewriting below the root.

If we replace ∞= and →∞ by ∞→, and ∞↽⇁ and ⇁∞ by ∞⇁, then Examples 1.1 and 1.2 are
illustrations of this rewrite relation.

Again, like ∞=, the relation ∞→ can also be defined using a greatest fixed point:
∞→ := νR. (→ε ∪ R)∗ .

Monotonicity of R 7→ (→ε ∪ R)∗ is easily verified, so that the greatest fixed point exists.
Also, the equivalence of Definition 6.3 with this ν-definition can be established similarly.

7 Relating the Notions

I Lemma 7.1. Each of the relations →∞, ∞→ and ∞= is reflexive and transitive. The relation
∞= is also symmetric.

Proof. Follows immediately from the fact that the relations are defined using the reflexive-
transitive closure in each of their first rules. J

I Theorem 7.2. For every TRS R we have the following inclusions:
→∞ ∞→

( →∞ ∪→∞)∗
( ∞→∪ ∞→)∗ ∞=⊆ ⊆

⊆ ⊆
⊆

Moreover, for each of these inclusions there exists a TRS for which the inclusion is strict.

Proof. The inclusions →∞ ( ∞→ ( ∞= have already been established in the introduction.
The inclusion →∞ ( ( →∞ ∪→∞)∗ is well-known (and obvious). Also ∞→ ( ( ∞→∪ ∞→)∗ is
immediate since ∞→ is not symmetric.

The inclusion ( →∞ ∪→∞)∗ ⊆ ( ∞→∪ ∞→)∗ is immediate since →∞ ⊆ ∞→. Example 1.1
witnesses strictness of this inclusion. The reason is that, for this example, →∞ =→∗ as the
system does not admit any forward limits. Hence ( →∞ ∪→∞)∗ is just finite conversion on
potentially infinite terms. Thus Cω ∞→ a, but not Cω ( →∞ ∪→∞)∗ a.

The inclusion ( ∞→∪ ∞→)∗ ⊆ ∞= follows from the fact that ∞= includes ∞→ and is symmetric
and transitive. Example 6.2 witnesses strictness: C(a) = Cω can only be derived by a rewrite
sequence of the form:

C(a) ∞→ C(fω) ∞← C(b)→ C(C(a)) ∞→ C(C(fω)) ∞← C(C(b))→ C(C(C(a))) ∞→ · · ·

and hence we need to change rewriting directions infinitely often whereas ( ∞→∪ ∞→)∗ allows
to change the direction only a finite number of times. J

Concerning, the rewrite relations introduced in [23] it is not difficult to see that ∞→ (→→t

where →→t is the topological graph closure of →.
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8 A Formalization in Coq

The standard definition of infinitary rewriting, using ordinal length rewrite sequences and
strong convergence at limit ordinals, is difficult to formalize. The coinductive framework we
propose, is easy to formalize and work with in theorem provers.

In Coq, the coinductive definition of infinitary strongly convergent reductions can be
defined as follows:

Inductive ired : relation term :=
| Ired :

forall R I : relation term,
subrel I ired ->
subrel R ((root_step (+) lift I)* ;; lift R) ->
subrel R ired.

Here term is the set of coinductively defined terms, ;; is relation composition, (+) is the
union of relations, * the reflexive-transitive closure, lift R is R, and root_step is the root
step relation.

Let us briefly comment on this formalization. Recall that→∞ := µR. νS.G(R,S) where
G(R,S) = (→ε ∪ R)∗ ◦ S. The inductive definition of ired corresponds to the least fixed
point µR. Coq has no support for mutual inductive and coinductive definitions. Therefore,
instead of the explicit coinduction, we use the ν-rule from (8). For every relation T that
fulfills T ⊆ G(R, T ), we have that T ⊆ νS.G(R,S). Moreover, we know that νS.G(R,S)
is the union of all these relations T . Finally, we introduce an auxiliary relation I to help
Coq generate a good induction principle. One can think of I as consisting of those pairs for
which the recursive call to ired is invoked. Replacing lift I by lift ired is correct, but
then the induction principle that Coq generates for ired is useless.

On the basis of the above definition we proved the Compression Lemma: whenever there
is an infinite reduction from s to t (s→∞ t) then there exists a reduction of length at most
ω from s to t (s →≤ω t). The Compression Lemma holds for left-linear TRSs with finite
left-hand sides. To characterize rewrite sequences →≤ω in Coq, we define:

Inductive ored : relation (term F X) :=
| Ored :

forall R : relation (term F X),
subrel R (mred ;; lift R) ->
forall s t, R s t -> ored s t.

Here mred are finite rewrite sequences →∗. The definition can be understood as follows.
We want the relation ored to be the greatest fixed point of H defined by H(R) = →∗ ◦ R.
So we allow a finite rewrite sequence after which the rewrite activity has to go ‘down’ to
the arguments. Again, as above for ired, we avoid the use of coinduction and define ored
inductively as the union of all relations R with R ⊆ H(R).

To the best of our knowledge this is the first formal proof of this well-known lemma. The
formalization is available at http://dimitrihendriks.com/coq/compression.

9 Conclusion

We have proposed a coinductive framework which gives rise to several natural variants of
infinitary rewriting in a uniform way:
(a) infinitary equational reasoning ∞= := νy. (←ε ∪ →ε ∪ y)∗,
(b) bi-infinite rewriting ∞→ := νy. (→ε ∪ y)∗, and

http://dimitrihendriks.com/coq/compression
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(c) infinitary rewriting →∞ := µx. νy. (→ε ∪ x)∗ ◦ y .
We believe that (a) and (b) are new. As a consequence of the coinduction over the term
structure, these notions have the strong convergence built-in, and thus can profit from the
well-developed techniques (such as tracing) in infinitary rewriting.

We have given a mixed inductive/coinductive definition of infinitary rewriting and es-
tablished a bridge between infinitary rewriting and coalgebra. Both fields are concerned
with infinite objects and we would like to understand their relation better. In contrast to
previous coinductive treatments, the framework presented here captures rewrite sequences
of arbitrary ordinal length, and paves the way for formalizing infinitary rewriting in theorem
provers (as illustrated by our proof of the Compression Lemma in Coq).

Concerning proof trees/terms for infinite reductions, let us mention that an alternative
approach has been developed in parallel by Lombardi, Ríos and de Vrijer [30]. While we focus
on proof terms for the reduction relation and abstract from the order of steps in parallel
subterms, they use proof terms for modeling the fine-structure of the infinite reductions
themselves. Another difference is that our framework allows for non-left-linear systems. We
believe that both approaches are complementary. Theorems for which the fine-structure of
rewrite sequences is crucial, must be handled using [30]. (But note that we can capture
standard reductions by a restriction on proof trees and prove standardization using proof
tree transformations, see [19]). If the fine-structure is not important, as for instance for
proving confluence, then our system is more convenient to work with due to simpler proof
terms.

Our work lays the foundation for several directions of future research:
(i) The coinductive treatment of infinitary λ-calculus [19] has led to elegant, significantly

simpler proofs [9, 10] of some central properties of the infinitary λ-calculus. The coin-
ductive framework that we propose enables similar developments for infinitary term
rewriting with reductions of arbitrary ordinal length.

(ii) The concepts of bi-infinite rewriting and infinitary equational reasoning are novel. We
would like to study these concepts, in particular since the theory of infinitary equational
reasoning is still underdeveloped. For example, it would be interesting to compare the
Church–Rosser properties

∞= ⊆ →∞ ◦ →∞ and ( →∞ ◦ →∞)∗ ⊆ →∞ ◦ →∞ .

(iii) The formalization of the proof of the Compression Lemma in Coq is just the first step
towards the formalization of all major theorems in infinitary rewriting.

(iv) It is interesting to investigate whether and how the coinductive framework can be
extended to other notions of infinitary rewriting, for example reductions where root-
active terms are mapped to ⊥ in the limit [3, 2, 4, 18].

(v) We believe that the coinductive definitions will ease the development of new techniques
for automated reasoning about infinitary rewriting. For example, methods for proving
(local) productivity [13, 15, 35], for (local) infinitary normalization [34, 14, 12], for
(local) unique normal forms [17], and for analysis of infinitary reachability and infinitary
confluence. Due to the coinductive definitions, the implementation and formalization
of these techniques could make use of circular coinduction [20, 16].

Acknowledgments. We thank Patrick Bahr, Jeroen Ketema, and Vincent van Oostrom for
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Abstract
A new technique is presented to prove non-termination of term rewriting. The basic idea is to
find a non-empty regular language of terms that is closed under rewriting and does not contain
normal forms. It is automated by representing the language by a tree automaton with a fixed
number of states, and expressing the mentioned requirements in a SAT formula. Satisfiability
of this formula implies non-termination. Our approach succeeds for many examples where all
earlier techniques fail, for instance for the S-rule from combinatory logic.
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1 Introduction

A basic approach for proving that a term rewriting system (TRS) is non-terminating is to
prove that it admits a loop, that is, a reduction of the shape t→+ C[tσ], see [26]. Indeed,
such a loop gives rise to an infinite reduction t→+ C[tσ]→+ C[(C[tσ])σ]→ · · · in which in
every step t is replaced by C[tσ]. In trying to prove non-termination, several tools ([1, 2])
search for a loop. An extension from [7], implemented in [1] goes a step further: it searches for
reductions of the shape tσnµ→+ C[tσf(n)µτ ] for every n for a linear increasing function f ,
and some extensions. All of these patterns are chosen to be extended to an infinite reduction
in an obvious way, hence proving non-termination. However, many non-terminating TRSs
exist not admitting an infinite reduction of this regular shape, or the technique from [7] fails
to find it.

A crucial example is the S-rule a(a(a(S, x), y), z)→ a(a(x, z), a(y, z)), one of the building
blocks of Combinatory Logic. Although being only one single rule, and having nice properties
like orthogonality, non-termination of this system is a hard issue. Infinite reductions are
known, but are of a complicated shape, see [31]. So developing a general technique that can
prove non-termination of the S-rule automatically is a great challenge. In this paper we
succeed in presenting such a technique, and we describe a SAT-based approach by which
non-termination of many TRSs, including the S-rule, is proved fully automatically.

The underlying idea is quite simple: non-termination immediately follows from the
existence of a non-empty set of terms that is closed under rewriting and does not contain
normal forms. Our approach is to find such a set being the language accepted by a finite tree
automaton, and find this tree automaton from the satisfying assignment of a SAT formula
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describing the above requirements. Hence the goal is to describe the requirements, namely
non-emptiness, closed under rewriting, and not containing normal forms, in a SAT formula.

We want to stress that having quick methods for proving non-termination of term rewriting
also may be fruitful for proving termination. In a typical search for a termination proof, like
using the dependency pair framework, the original problem is transformed in several ways
to other termination problems that not all need to be terminating. Being able to quickly
recognize non-termination of some of them makes a further search for termination proofs
redundant, which may speed up the overall search for a termination proof.

We note that, like termination, non-termination is an undecidable property. However,
while termination is Π0

2-complete, non-termination is Σ0
2-complete [11, 10].

The paper is organized as follows. In Section 2 we present our basic approach in the
setting of abstract reduction systems on a set T , in which the language is just a subset of T .
Surprisingly, being not weakly normalizing corresponds to (strongly) closed under rewriting,
and being not strongly normalizing corresponds to weakly closed under rewriting. In Section
3 we give preliminaries on tree automata and show how string automata can be seen as an
instance of tree automata. In Section 4 we present our basic methods, starting by how the
requirements are expressed in SAT, and next how this is used to disprove weak normalization
and strong normalization. In Section 5 we strengthen our approach by labeling the states of
the tree automata by sets of rewrite rules and exploiting this in the method. In Section 6 we
present experimental results of our implementation. We conclude in Section 7.

1.1 Related Work

The paper [26] introduces the notion of loops and investigates necessary conditions for the
existence of them. The work [34] employs SAT solvers to find loops, [35] uses forward closures
to find loops efficiently, and [33] introduces ‘compressed loops’ to find certain forms of very
long loops. Non-termination beyond loops has been investigated in [29] and [7]. There the
basic idea is the search for a particular generalization of loops, like a term t and substitutions
σ, τ such that for every n there exist C, µ such that tσnτ rewrites to C[tσf(n)τµ], for some
ascending linear function f . Although the S-rule admits such reductions, these techniques
fail to find them. For other examples for which not even reductions exist of the shape studied
in [29] and [7], we will be able to prove non-termination fully automatically.

Our approach can be summarized as searching for non-termination proofs based on
regular (tree) automata. Regular (tree) automata have been fruitfully applied to a wide
rage of properties of term rewriting systems: for proving termination [25, 21, 27], infinitary
normalization [12], liveness [28], and for analyzing reachability and deciding the existence
of common reducts [23, 13]. Local termination on regular languages, has been investigated
in [9].

2 Abstract Rewriting

An abstract reduction system (ARS) is a binary relation → on a set T . We write →+ for the
transitive closure, and →∗ for the reflexive, transitive closure of →.

Let → be an ARS on T . The ARS → is called terminating or strongly normalizing (SN)
if no infinite sequence t0, t1, t2, . . . ∈ T exists such that ti → ti+1 for all i ≥ 0. A normal
form with respect to → is an element t ∈ T such that no u ∈ T exists satisfying t→ u. The
set of all normal forms with respect to → is denoted by NF(→). The ARS → is called weakly
normalizing (WN) if for every t ∈ T a normal form u ∈ T exists such that t→∗ u.
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I Definition 1. A set L ⊆ T is called
closed under → if for all t ∈ L and all u ∈ T satisfying t→ u it holds u ∈ L, and
weakly closed under → if for all t ∈ L \ NF(→) there exists u ∈ L such that t→ u.

It is straightforward from these definitions that if L is closed under →, then L is weakly
closed under → as well. The following theorems relate these notions to SN and WN.

I Theorem 2. An ARS → on T is not SN if and only if a non-empty L ⊆ T exists such
that L ∩ NF(→) = ∅ and L is weakly closed under →+.

Proof. If → is not SN then an infinite sequence t0, t1, t2, . . . ∈ T exists such that ti → ti+1
for all i ≥ 0. Then L = {ti | i ≥ 0} satisfies the required properties.

Conversely, assume L satisfies the given properties. Since L is non-empty we can choose
t0 ∈ L, and using the other properties for i = 0, 1, 2, 3, . . . we can choose ti+1 ∈ L such that
ti →+ ti+1, proving that → is not SN. J

I Theorem 3. An ARS → on T is not WN if and only if a non-empty L ⊆ T exists such
that L ∩ NF(→) = ∅ and L is closed under →.

Proof. If→ is not WN then t ∈ T exists such that L∩NF(→) = ∅ for L = {u ∈ T | t→∗ u}.
Then L satisfies the required properties.

Conversely, assume L satisfies the given properties. Since L is non-empty we can choose
t0 ∈ L. Assume that → is WN, then t0 → t1 → · · · → tn exists such that tn ∈ NF(→). Since
L is closed under → we obtain ti ∈ L for i = 1, 2, . . . , n, contradicting L ∩ NF(→) = ∅. J

A variant of Theorem 2, where →+ is replaced by →, has been observed in [5]. To the
best knowledge of the authors, Theorem 3 has not been observed in the literature.

3 Tree Automata

I Definition 4. A (non-deterministic finite) tree automaton A over a signature Σ is a tuple
A = 〈Q,Σ, F, δ 〉 where
(i) Q is a finite set of states,
(ii) F ⊆ Q is a set of accepting states, and
(iii) δ a set of rewrite rules, called transition rules, of the shape

f(q1, . . . , qn) q

where n is the arity of f ∈ Σ and q1, . . . , qn, q ∈ Q. We write  for the rewrite relation
generated by the rules δ.

Note that we use  to distinguish automata transitions from term rewriting → with respect
to some TRS R.

I Definition 5. The language L(A) accepted by A is the set

L(A) = { t | t ∈ T (Σ,∅), q ∈ F, t ∗ q }

of ground terms that rewrite to a final state.

The kind of tree automata considered here is called bottom up in the literature. Sometimes
in the definition of bottom-up tree automaton the right hand side q in the rule has arguments
and the acceptance criterion is rewriting to a term with a final state as root. However, when
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tree automata are only used for defining (term) languages as is the case in this paper, these
definitions coincide.

Tree automata can be seen as a generalization of string automata as follows. For a string
automaton (= NFA) S define the tree automaton A by

taking the same sets of states and accepting states, and
taking as signature the same signature in which all symbols are unary, extended by a
single constant ε, and
taking as transition rules ε q0 for q0 being the initial state of S, and for every transition
q
a→ q′ in S the rule a(q) q′.

Form this definition it is immediate that a string a1a2 · · · an is accepted by S if and only if
an(an−1(· · · (a1(ε)) · · · )) is accepted by A. Here we assume that S reads the string from left
to right (otherwise there is no need to reverse the order of the letters).

I Example 6. To define a tree automaton accepting the language b a∗ (L|R) a∗ b, that is,
all words that start with b, end with b, contain one L or R and otherwise only a, we start by
its corresponding string automaton

The above construction yields the tree
automaton ALR = 〈Q,Σ, F, δ 〉 where
Σ = {b, L,R, a, ε} in which b, L,R, a

are unary and ε is a constant, Q =
{0, 1, 2, 3}, F = {3} and δ consists of
the rules

ε 0 a(1) 1 b(0) 1 R(1) 2 L(1) 2
a(2) 2 b(2) 3

I Example 7. The following is a tree automaton for the signature Σ = {a,S} where a is
binary and S is a constant. Let AS = 〈Q,Σ, F, δ 〉 where Q = {0, 1, 2, 3, 4}, F = {4} and

S  0 a(0, 0) 1 a(1, 0) 2 a(2, 2) 3 a(3, 3) 3
a(0, 2) 2 a(2, 3) 3 a(3, 3) 4
a(0, 3) 2

As is usual in combinatory logic, ground terms are represented by omitting the a symbol and
writing uvw = (uv)w. We show that this automaton accepts the term SSS(SSS)(SSS(SSS)):

SSS(SSS)(SSS(SSS)) 12 000(000)(000(000))
 4 10(10)(10(10)) 4 22(22) 2 33 1 4

Since 4 ∈ F the term is accepted by the automaton.
This automaton has been found automatically by our tool, and its language is closely

related to the QQQ-criterion of Waldmann [31, 3]. Roughly speaking, the language recognized
by this automaton can be described as follows:

state 0 accepts only the term S ,
state 1 accepts only the term SS ,
state 2 corresponds to terms that contain at least one occurrence of SSS ,
state 3 corresponds to terms that contain at least two occurrence of SSS , and
state 4 accepts terms MN for which both M and N contain two occurrences of SSS .
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4 Basic Methods

In this section, we are concerned with automating the abstract non-termination methods
from Section 2. To this end, we use finite tree automata giving rise to regular tree languages.
We first develop methods for disproving weak normalization and then for disproving strong
normalization.

4.1 SAT Encoding of Properties
In this section, we collect decision procedures for the main properties of tree automata that
we employ for proving non-termination, and we describe how we encode these procedures as
Boolean satisfiability problems (SAT).

I Remark 8 (SAT encoding of tree automata). We encode the search for a tree automaton
A = 〈Q,Σ, F, δ 〉 over a signature Σ as a satisfiability problem as follows. We pick the number
of states n ∈ N the automaton should have; the set of states is Q = {s1, . . . , sn}. While the
set of states Q is fix, we represent the final states F ⊆ Q by n fresh Boolean variables

vF,s1 , vF,s2 , vF,s3 , . . . , vF,sn

and, for every f ∈ Σ, we represent the transition relation δ by fresh variables

vf,q1,...,q#(f),q for every q1, . . . , q#(f), q ∈ Q

For the moment, there are no constraints (formulas) and the interpretation of these variables
can be chosen freely. The intention is that vF,si

is true if and only if si is a final state, and
vf,q1,...,q#(f),q is true if and only if f(q1, . . . , q#(f)) q is a transition rule in δ.

I Definition 9. A state q ∈ Q of a tree automaton A = 〈Q,Σ, F, δ 〉 is called reachable if
there exists a ground term t ∈ T (Σ,∅) such that t ∗ q.

We assume, without loss of generality, that all states are reachable. Note that requiring
that all states are reachable is not a restriction since we can always replace unreachable
states by ‘copies’ of reachable states. We guarantee reachability as follows.

I Lemma 10. Let A = 〈Q,Σ, F, δ 〉 be a tree automaton. Then all states of A are reachable
if and only if there exists a total well-founded order < on the states Q such that for every
q ∈ Q there exists f ∈ Σ and states q1 < q, q2 < q, . . . , q#(f) < q with f(q1, . . . , q#(f)) q.

Proof. The reachable states are the smallest set Q′ ⊆ Q that is closed under δ, that is,
q ∈ Q′ whenever f(q1, . . . , q#(f)) q for some f ∈ Σ and states q1, . . . , q#(f) ∈ Q′.

For the ‘if’-part, assume that there was a non-reachable state. Let q ∈ Q be the smallest
non-reachable state with respect to the order <. By assumption there exist f ∈ Σ and states
q1 < q, q2 < q, . . . , q#(f) < q with f(q1, . . . , q#(f))  q. By choice of q it follows that all
states q1, q2, . . . , q#(f) are reachable, and hence q is reachable, contradicting the assumption.

For the ‘only if’-part, assume that all states are reachable. Then Q is the result of stepwise
closing ∅ under δ. There exists a sequence of states ∅ = Q0 ⊆ Q1 ⊆ . . . ⊆ Q|Q| = Q such
that for every 0 ≤ i < |Q| we have Qi+1 = Qi ∪ {qi} for some qi ∈ Q \Qi such that there are
fi ∈ Σ and states qi,1, . . . , qi,#(fi) ∈ Qi with fi(qi,1, . . . , qi,#(f)) qi. The order < induced
by q0 < q1 < . . . < q|Q|−1 is a total order on the states with the desired property. J

I Remark 11 (SAT encoding of reachability of all states). We extend the encoding of tree
automata as described in Remark 8. We want to guarantee that all states are reachable by
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employing Lemma 10. However, instead of encoding an arbitrary well-founded relation, we
make use of the fact that the names of states are irrelevant. Hence, without loss of generality
(modulo renaming of states), we may assume that s1 < s2 < . . . < sn. We then encode the
condition of Lemma 10 by formulas∨

f∈Σ, q1<q,..., q#(n)<q

vf,q1,...,qn,q

for every q ∈ Q.

The following lemma is immediate.

I Lemma 12. Let A = 〈Q,Σ, F, δ 〉 be a tree automaton such that all states are reachable.
Then L(A) 6= ∅ if and only if F 6= ∅.

I Remark 13 (SAT encoding of L(A) 6= ∅). In a setting where all states are reachable, the
encoding of L(A) 6= ∅ as satisfiability problem trivializes to:

∨
q∈Q vF,q.

The following lemma gives a simple criterion for closure under rewriting.

I Lemma 14 (Genet [24, Proposition 12]). Let A = 〈Q,Σ, F, δ 〉 be a tree automaton and R
a left-linear term rewriting system. Then L(A) is closed under rewriting with respect to R if
for every `→ r ∈ R, α : X → Q and q ∈ Q we have `α ∗A q =⇒ rα ∗A q.

Note that left-linearity of R is crucial for the Lemma 14 since A can be a non-deterministic
automaton. If R would contain non-left-linear rules ` → r then we would need to check
set-assignments α : X → ℘(Q) instead α : X → Q. That is, we would need to take into
account, that a non-deterministic automaton can interpret the same term by different states.

For terms t, we use Var(t) to denote the set of variables occurring in t.

I Remark 15 (SAT encoding of closure under rewriting). We encode the conditions of
Lemma 14. Let the automaton A be encoded as in Remark 8. Let U be the set of all
non-variable subterms of left-hand sides and right-hand sides of rules in R. For every t ∈ U ,
assignment α : Var(t)→ Q and q ∈ Q we introduce a fresh variable

vt,α,q with the intended meaning: vt,α,q is true ⇐⇒ tα ∗ q .

We ensure this meaning by the following formulas: for terms t = f(t1, . . . , tn) ∈ U

vt,α,q ←→
∨

q1,...,qn∈Q

(
vt1,α1,q1 ∧ . . . ∧ vtn,αn,qn

∧ vf,q1,...,qn,q

)
where αi is the restriction of α to the domain Var(ti). For variables x ∈ U , we stipulate
vx,α,q ⇐⇒ α(x) = q; note that we can immediately evaluate and fill in these truth values.
Finally, we encode `α ∗A q =⇒ rα ∗A q by formulas

v`,α,q → vr,α,q

for every `→ r ∈ R, α : Var(`)→ Q and q ∈ Q.

The following modification of Lemma 14 gives a simple criterion for weak closure under
rewriting. The requirement rα ∗A q of Lemma 14 is weakened to tα ∗A q for some reduct
t the left-hand side `.
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I Lemma 16. Let A = 〈Q,Σ, F, δ 〉 be a tree automaton and R a left-linear term rewriting
system. Then L(A) is weakly closed under rewriting with respect to R if for every `→ r ∈ R,
α : X → Q and q ∈ Q we have `α ∗A q =⇒ tα ∗A q for some term t such that `→+

R t.

Proof. Let s ∈ L(A) \ NF(→R). Then s = C[`σ] for a context C, rewrite rule ` → r ∈ R
and substitution σ : X → T (Σ,∅). Since s ∈ L(A) there exists q ∈ Q such that `σ  ∗ q
and C[q] ∗ q′ with q′ ∈ F . By left-linearity ` does not contain duplicated occurrences of
variables. As a consequence, there exists α : X → Q such that σ(x) ∗ α(x) and `α ∗ q.
By the assumptions of the lemma, a term t exists such that ` →+

R t and tα  ∗ q. Hence
tσ  ∗ q and C[tσ]  ∗ C[q]  ∗ q′. Thus C[tσ] ∈ L(A). Since s = C[`σ] →+

R C[tσ], this
proves that L(A) is weakly closed under rewriting with respect to R. J

I Remark 17 (SAT encoding of Lemma 16). The conditions of Lemma 16 can be encoded
similar to Lemma 14 (described in Remark 15). In Lemma 16 the condition rα  ∗A q is
weakened to: tα  ∗A q for some reduct t the left-hand side `. We can pick a finite set of
reducts U ⊆ {t | `→+ t} of the left-hand side `, and encode the disjunction

∨
t∈U tα 

∗
A q

as a Boolean satisfiability problem. Note that U 6= ∅ since r ∈ U .

Next, we want to guarantee that the language L(A) contains no normal forms, in other
words, that every term in the language contains a redex. For left-linear term rewriting
systems R, we can reduce this problem to language inclusion L(A) ⊆ L(B) where B is a
tree automaton that accepts the language of reducible terms. If R is a left-linear rewrite
system, then the set of ground terms containing redex occurrences is a regular tree language.
A deterministic automaton B for this language can be constructed using the overlap-closure
of subterms of left-hand sides, see further [15, 16]. Here, we do not repeat the construction,
but state the lemma that we will employ:

I Lemma 18. Let {`1, . . . , `n} be a set of linear terms over Σ. Then we can construct a
deterministic and complete automaton B = 〈Q,Σ, F, δ 〉 and sets F`1 , . . . , F`n

⊆ Q such that
for every term t ∈ T (Σ,∅) and i ∈ {1, . . . , n} we have:

t ∗ q with q ∈ F`i
if and only if t is an instance of `i.

Note that by choosing F = F`1 ∪ . . . ∪ F`n
we obtain: t ∗ q with q ∈ F if and only if t is

an instance `i for some i ∈ {1, . . . , n}.

I Example 19. The following tree automaton BS = 〈Q,Σ, F, δ 〉 accepts the language of
ground terms that contain a redex occurrence with respect to the S-rule a(a(a(S, x), y), z)→
a(a(x, z), a(y, z)). Here Q = {0, 1, 2, 3}, Σ = {a,S}, F = {3} and

S  0 a(0, q) 1 a(1, q) 2 a(2, q) 3 a(3, q) 3 a(q′, 3) 3

for all q ∈ {0, 1, 2} and q′ ∈ {0, 1, 2, 3}.
Since the automaton BS is deterministic and complete, we can obtain an automaton

BS = 〈Q,Σ, F , δ 〉 that accepts the complement of the language (the language of ground
normal forms) by taking the complement F = {0, 1, 2} of the set of final states.

The following is crucial for feasibility of our approach. Deciding language inclusion of non-
deterministic automata is known to be EXPTIME complete, see [30]. However, to guarantee
that a language contains no normal forms, it suffices to check whether two non-deterministic
automata have a non-empty intersection. This property can be decided in polynomial time
by constructing the product automaton and considering the reachable states.
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I Definition 20. The product A×B of tree automata A = 〈Q,Σ, F, δ 〉 and
B = 〈Q′,Σ, F ′, δ′ 〉 is the tree automaton C = 〈Q×Q′,Σ, F × F ′, γ 〉 where the transition
relation γ is given by

f( (q1, p1), . . . , (qn, pn) ) γ (q′, p′) ⇐⇒ f(q1, . . . , qn) δ q
′ ∧ f(p1, . . . , pn) δ′ p′

for every f ∈ Σ of arity n and states q1, . . . , qn, q
′ ∈ Q and p1, . . . , pn, p

′ ∈ Q′.

I Lemma 21. Let A = 〈Q,Σ, F, δ 〉 and B = 〈Q′,Σ, F ′, δ′ 〉 be tree automata. Then we have
L(A) ∩ L(B) = ∅ if and only if in A×B no state in F × F ′ is reachable.

Proof. Let A×B = 〈Q×Q′,Σ,∅, γ 〉. For the ‘if’-part, assume that L(A)∩L(B) 6= ∅. Let
t ∈ L(A) ∩ L(B). Then t  ∗δ q for some q ∈ F and t  ∗δ′ q′ for some q′ ∈ F ′. But then
t ∗γ (q, q′) and hence (q, q′) ∈ F ×F ′ is reachable in A×B; this contradicts the assumption.

For the ‘only if’-part, assume, for a contradiction, that t ∗γ (q, q′) in A×B with q ∈ F
and q′ ∈ F ′. Then this directly translates to t ∗δ q in A and t ∗δ′ q′ in B. Hence t ∈ L(A)
and t ∈ L(B), contradicting L(A) ∩ L(B) = ∅. J

We can use Lemma 21 to check that the language L(A) of an automaton A does not
contain normal forms. To this end, we only need an automaton B that accepts all ground
normal forms. Then L(A) contains no normal forms if L(A) ∩ L(B) = ∅.

I Example 22. The reachable states of the product AS × BS of the automata AS from
Example 7 and BS from Example 19 are (0, 0), (1, 1), (2, 2), (2, 1), (3, 3), (3, 2), (2, 3), (4, 3).
The only state (q, q′) such that q is accepting in AS is (4, 3) and 3 is not an accepting state
of BS . The conditions of Lemma 21 are fulfilled and hence L(AS) ∩ L(BS) = ∅. Recall that
BS accepts all ground normal forms, and thus every term accepted by AS contains a redex.

I Remark 23 (SAT encoding of language inclusion). Let A = 〈Q,Σ, F, δ 〉 and
B = 〈Q′,Σ, F ′, δ′ 〉 be tree automata. Let A×B = 〈Q×Q′,Σ,∅, γ 〉.

First, note that reachability of all states in the automata A and B does not imply that
all states in the product automaton A × B are reachable. As a consequence, we have to
‘compute’ the set of reachable states using Boolean satisfiability problems. For this purpose,
we reformulate Lemma 21 in the following equivalent way: . . . , then L(A) ∩ L(B) = ∅ if
and only if there exists a set of states P ⊆ Q×Q′ such that
(a) P is closed under transitions in A×B, that is, q ∈ P whenever f(q1, . . . , qn) γ q for

some q1, . . . , qn ∈ P , and
(b) for all (q, q′) ∈ P it holds that q ∈ F implies q′ 6∈ F ′.
Note that this statement is equivalent to Lemma 21. Item (a) guarantees that P contains
all reachable states, and hence (b) is required for at least the reachable states. Thus the
conditions imply those of Lemma 21. On the other hand, we can take P to be precisely the
set of reachable states, and then the conditions are exactly those of Lemma 21.

The idea is that the reformulated statement has a much more efficient encoding as Boolean
satisfiability problem. We only need to encode the closure of P under transitions, but there
is no longer the need for encoding the property that P is the smallest such set (which is a
statement of second-order logic).

Assume that we have a SAT encoding of the automata A and B as in Remark 8; we
write vA,... for the variables encoding A, and vB,... for the variables encoding B. To represent
the set P , we introduce variables p(q,q′) for every (q, q′) ∈ Q × Q′ and the properties are
translated into the following formulas:
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(a) for every f ∈ Σ with arity n and (q1, q
′
1), . . . , (qn, q′n), (q, q′) ∈ Q×Q′:

(vA,f,q1,...,qn,q ∧ vB,f,q′
1,...,q

′
n,q

′ ∧ p(q1,q′
1) ∧ p(q2,q′

2) ∧ . . . ∧ p(qn,q′
n)) → p(q,q′)

(b) for every (q, q′) ∈ Q×Q′: (p(q,q′) ∧ vA,F,q)→ ¬vB,F ′,q′ .
Each of these formulas simplifies to a single clause (a disjunction of literals).

We remark that we will employ this translation for the case that B consists of the set
of terms containing redex occurrences with respect to a given rewrite system R. Then B
is known and fixed before the translation to a satisfiability problem. As a consequence, we
know the truth values of vB,f,q′

1,...,q
′
n,q

′ and vB,F ′,q′ in the formulas above, and can immediate
skip the generation of formulas that are trivially true (the large majority in case (a)).

I Remark 24 (Complexity of the SAT encoding). While the encoding is efficient for string
rewriting systems, it suffers from an ‘encoding explosion’ for term rewriting systems con-
taining symbols of higher arity. The problem arises from the SAT encoding of the recursive
computation of the interpretation of terms (described in Remark 15). The computation of the
interpretation of a term f(t1, . . . , tn) containing m variables needs O(|Q|m+n+1) clauses: m
for the quantification over the variable assignments, n for the possible states of t1, . . . , tn and
1 for the possible result states. To some extend, this problem can be overcome by ‘uncurrying’
the system, that is, for every symbol f of arity n > 2 we introduce fresh symbols f1, . . . , fn−1
of arity 2 and then replace all occurrences of f(t1, . . . , tn) by fn−1(. . . f2(f1(t1, t2), t3) . . . , tn).
This transformation helps to bring the complexity down to O(|Q|m+3). Nevertheless, for
example for the S-rule, which only contains binary symbols, we still need |Q|6 clauses. We
note that after the uncurrying transformation, an automaton with more states may be needed
to generate ‘the same’ language.

4.2 Disproving Weak Normalization
We are now ready to use Theorem 3 in combination with tree automata for automatically
disproving weak normalization. The language L in the theorem is described by a non-
deterministic tree automaton. In the previous section, we have seen how the relevant
properties of tree automata can be checked. Here, we summarize the procedure:

I Technique 25. Let R be a left-linear TRS. We search for a tree automaton A = 〈Q,Σ, F, δ 〉
such that L(A) fulfills the properties of Theorem 3:
(i) We guarantee L(A) ∩ NF(→) = ∅ by the following steps:

We employ Lemma 18 to construct a deterministic, complete automaton B =
〈Q,Σ, F, δ 〉 that accepts the set of terms containing redex occurrences with respect
to R.
Then the automaton B = 〈Q,Q \ Σ, F, δ 〉 accepts all ground normal forms.
We use Lemma 21 to check that L(A) ∩ L(B) = ∅ (thus L(A) ⊆ L(B)).

(ii) We guarantee that L(A) is closed under → by Lemma 14.
(iii) We use Lemma 12 to ensure that L(A) 6= ∅.
These conditions can be encoded as satisfiability problems as described in Remarks 8, 11, 23,
13 and 15. This enables us to utilize SAT solvers to search for suitable automata A.

I Remark 26. The technique 25 can be slightly strengthened by first eliminating collapsing
rules, that is, rules of the form ` → x with x ∈ X . Assume that the TRS R contains a
collapsing rule ` → x. For every f ∈ Σ we define the substitution σf : X → T (Σ,X ) by
σf (x) = f(x1, . . . , x#(f)) for fresh variables x1, . . . , x#(f) and σf (y) = y for all y 6= x. We
define R′ = (R \ {`→ x}) ∪ {`σf → xσf | f ∈ Σ}. Then →R and →R′ coincide on ground
terms and hence R is (weakly) ground normalizing if and only if R is.
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I Remark 27. We note the combination of Technique 25 with Remark 26 is complete with
respect to disproving weak normalization on regular languages: if there exists a regular
language L fulfilling the conditions of Theorem 3, then weak normalization can be disproved
using Technique 25 after eliminating collapsing rules as in Remark 26.

This can be seen as follows. In the work [8, 9] a generalized method for ensuring closure
of the language of automata under rewriting has been proposed. Thereby the condition
`α ∗A q =⇒ rα ∗A q of Lemma 14 is weakened to

`α ∗A q =⇒ rα ∗A p for some p ≥ q . (1)

Here ≤ is a quasi-order on the states Q and the automaton must be monotonic with respect
to this order, see Definition 34. The monotonicity guarantees that the language of the
automaton is closed under rewriting.

In [23] it has been shown that this monotonicity property is strong enough to characterize
and decide the closure of the regular languages under rewriting. In particular, the language
of a deterministic tree automaton is closed under rewriting if and only if there exists such a
monotonic quasi-order on the states.

Let R be a TRS such that there exists a regular language that satisfies the conditions of
Theorem 3. Then there exists a deterministic, complete automaton A accepting this language
and a quasi-order ≤ on the states satisfying (1) and monotonicity. Let R′ be obtained from
R by eliminating collapsing rules as described in Remark 26. We obtain a non-deterministic
automaton A′ that fulfils the requirements of Technique 25 for R′ by closing the transition
relation of A under ≤: we add f(q1, . . . , qn) q whenever q ≤ p and f(q1, . . . , qn) p. As
a consequence of monotonicity and using induction over the term structure, we obtain for all
terms t ∈ T (Σ,X ) with t 6∈ X and α : X → Q that

(?) t ∗A′ q if and only if t ∗A p for some p with q ≤ p.
As a consequence of (?) and monotonicity we have L(A′) = L(A) (roughly speaking, if q ≤ p,
then q accepts a subsets of the language of p). Thus L(A′)∩NF(→) = ∅ and L(A′) 6= ∅ are
guaranteed. Finally, we show that Lemma 14 is applicable for R′ and A′. Let `→ r ∈ R′,
α : X → Q and q ∈ Q such that `α  ∗A′ q. Then by (?) we get `α  ∗A q′ for some q′ ∈ Q
with q ≤ q′. By (1) we have that rα ∗A q′′ for some q′′ ∈ Q with q′ ≤ q′′. Again by (?) we
obtain that rα ∗A q. Hence the conditions of Technique 25 are fulfilled for R′ and A′.

I Example 28. We consider the following string rewriting system:

aL→ La Ra→ aR bL→ bR Rb→ Lab

This rewrite system is neither strongly nor weakly normalizing, but does not admit looping
reductions, that is, reductions of the form s→+ `sr. An example of an infinite reduction is:

bLb→ bRb→ bLab→ bRab→ baRb→ baLab→ bLaab→ bRaab→ · · ·

It is easy to check that the automaton ALR from Example 6 fulfills the requirements of
Technique 25. Hence, the system is not weakly normalizing.

I Example 29. We consider the S-rule from combinatory logic:

a(a(a(S , x), y), z)→ a(a(x, z), a(y, z))

For the S-rule it is known that there are no reductions t→∗ C[t] for ground terms t, see [31].
For open terms t the existence of reductions t→∗ C[tσ] is open.

It is straightforward to verify that the automaton AS from Example 7 fulfills the require-
ments of Technique 25, and hence the S-rule, and in particular the term SSS(SSS)(SSS(SSS)),
are not weakly normalizing.
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I Example 30. The δ-rule (known as Owl in Combinatory Logic) is even simpler:

δxy → y(xy), or equivalently a(a(δ, x), y)→ a(y, a(x, y)) .

As shown in [4], this rule does not admit loops, , and the techniques in [7] fail for this system.
The Technique 25 can be applied to automatically disprove weak-normalization for this rule.
Our tool finds a tree automaton that has 3 states and accepts the language of all ground
terms with two occurrences of δδ. In fact, this is precisely the language of non-terminating
ground δ-terms, see further [4].

In all examples until now infinite reductions exist of the regular shape based on tσnτ
rewriting to a term having tσf(n)τµ as a sub-term, for every n, for some term t and
substitutions σ, τ, µ and an ascending linear function f . For instance, the S rule (Example
29) admits an infinite reduction implied by tσnτ rewriting to a super-term of tσn+1τ , for
t = a(x, x), σ(x) = Ax, τ(x) = SA(SAA), for A = SSS.

I Example 31. The following example does not have an infinite reduction of this regular
shape, neither of the more general patterns from [29] and [7].

aL→ La Raa→ aaaR bL→ bRa Rb→ Lb Rab→ Lab.

In this system bRanb rewrites to bRaf(n)b for f defined by f(2n) = 3n+ 1 and f(2n+ 1) =
3n+ 2 for all n. This obviously yields an infinite reduction, but f is not linear, by which this
example is outside the scope of [29] and [7]. In our approach a proof of non-termination and
even non-weak-normalization is extremely simple: ba∗(L | R)a∗b is non-empty, closed under
rewriting and does not contain normal forms.

4.3 Disproving Strong Normalization
For disproving strong normalization based on Theorem 2, the only difference with Technique 25
is that checking that L is closed under → by Lemma 14 has to be replaced by checking that
L is weakly closed under → by Lemma 16. The technique is applicable to string and term
rewriting systems, and can be automated as described in Technique 25 and Remark 17.

I Example 32. Let us consider the rewrite system

aaL→ Laa Ra→ aR bL→ bR Rb→ Lab Rb→ aLb

This system is non-looping and non-terminating. However, in contrast to Example 28, this
system is weakly normalizing, since by always choosing the fourth rule the last rule is never
used, and the first four rules are terminating. Hence the Technique 25 is not applicable for
this TRS. However, the following pattern extends to an infinite reduction

bRa2nb→2n ba2nRb→ ba2nLab→n bLa2n+1b→

bRa2n+1b→2n+1 ba2n+1Rb→ ba2n+2Lb→n+1 bLa2n+2b→ bRa2n+2b.

Instead of finding this pattern explicitly,
non-termination is also concluded from
checking that b(aa)∗(L | R | aR)a∗b
describes a language satisfying all condi-
tions from Theorem 2. A corresponding
automaton is given on the right.
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The conditions of Theorem 2 are now checked as follows. Non-emptiness follows from the
existence of a path from state 0 to state 4. Every path from 0 to 4 either contains one of
the patterns aaL, Ra, bL or Rb, so it remains to show weakly closedness under rewriting by
Lemma 16. In the setting of string automata this means that for every left hand side ` and
every `-path from a state p to a state q we should find a u-path from p to q for a string u
such that ` rewrites to u in one or more steps. For ` = aaL the only path is from 1 to 2, for
which there is also an Laa path. For ` = Ra there is a path from 1 to 2, for which there is
also an aR path via 3. The only other option for ` = Ra is a path from 3 to 2, for which
there is also an aR path via 1. For ` = bL the only path is from 0 to 2, for which there is
also a bR path. Finally, for ` = Rb there is a path from 1 to 4, for which there is also an Lab
path and a path from 3 to 4, for which there is also an aLb path, by which all conditions
have been verified. Note that for the Rb-path from 1 to 4 it is essential to use the 4th rule,
while for the Rb-path from 3 to 4 it is essential to use the last rule.

This example can also be treated by the technique introduced in the following section.

5 Improved Methods for Disproving Strong Normalization

In this section, we improve the method for proving non-termination. The methods introduced
so far are not able to handle the following example.

I Example 33. We consider the following string rewriting system:

zL→ Lz Rz → zR zLL→ zLR RRz → LzRz

This rewrite system is weakly normalizing but not strongly normalizing. The non-termination
criteria introduced in the previous sections are not applicable for this system. Let us consider
the first steps of an infinite reduction:

zLLzzRz

→ zLRzzRz → zLzRzRz → zLzzRRz

→ zLzzLzRz → zLzLzzRz → zLLzzzRz

→ . . .

Note the underlined occurrences of zLL. Due to the rule zLL→ zLR, the word zL is the
marker for ‘turning’ on the left; However, this marker zL is itself a redex. To obtain an
infinite reduction, this marker must not be reduced.

The idea for proving non-termination of systems like Example 33 is to let the automaton
determine which redex to contract. To this end, we introduce a ‘redex selection’ function

ξ : Q→ P(R)

that maps states of the automaton to sets of rules that may be contracted at the corresponding
position in the term. The idea is that a redex `σ in a term C[`σ] with respect to a rule
`→ r is allowed to be contracted if `σ  ∗ q with `→ r ∈ ξ(q). In this way, the automaton
determines what redexes are to be contracted. Then the automaton only needs to fulfill the
property `α ∗A q =⇒ rα ∗A q for the selected rules:

`→ r ∈ ξ(q) ∧ `α ∗A q =⇒ rα ∗A q
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for every rule `→ r ∈ R, state q ∈ Q and α : X → Q. Moreover, as proposed in [8, 9, 23], we
weaken the requirement rα ∗A q to rα ∗A p for some p ≥ q. Here ≤ is a quasi-order on the
states and the automaton must be monotonic with respect to this order (see Definition 34).
The monotonicity guarantees that the language of the automaton is closed under rewriting.
For the present paper, this closure property holds only for the rules selected by ξ.

I Definition 34 (Monotonicity). A tree automaton A = 〈Q,Σ, F, δ 〉 is monotonic with
respect to a quasi-order ≤ on the states Q if the following properties hold:
(i) For all f ∈ Σ with arity n and states a1 ≤ b1, a2 ≤ b2, . . . , an ≤ bn, it holds

f(a1, . . . , an) A q =⇒ f(b1, . . . , bn) A p for some p ∈ Q with q ≤ p

(ii) Whenever q ∈ F and q ≤ p, then p ∈ F .

The following lemma is immediate by induction on the size of the context.

I Lemma 35. Let A = 〈Q,Σ, F, δ 〉 be a tree automaton that is monotonic with respect to a
quasi-order ≤ on the states Q. Let a, b ∈ Q with a ≤ b. Then for all ground contexts C we
have that C[a] a′ with a′ ∈ Q implies that C[b] b′ for some b′ ∈ Q with a′ ≤ b′.

I Definition 36 (Runs). Let A = 〈Q,Σ, F, δ 〉 be a tree automaton and t ∈ T (Σ,∅). A run
of A on t is a function ρ : Pos(t)→ Q such that for every p ∈ Pos(t) and t(p) = f ∈ Σ there
is a rule f(ρ(p1), . . . , ρ(pn)) ρ(p) in δ. The run ρ is accepting if ρ(ε) ∈ F .

Note that there is a direct correspondence between runs on t and rewrite sequences t ∗ q.
We are now ready to state the generalized theorem for disproving strong normalization.

I Theorem 37. Let R be a left-linear TRS. Let A = 〈Q,Σ, F, δ 〉 be a tree automaton with
L(A) 6= ∅, ≤ a quasi-order on the states Q, and ξ : Q → P(R) a function, called redex
selection function. Assume that the following properties hold:
(a) The automaton A is monotonic with respect to ≤.
(b) For every state q ∈ Q, rule `→ r ∈ ξ(q) and α : X → Q it holds that:

`α ∗A q =⇒ (∃p ∈ Q. q ≤ p ∧ rα ∗A p) ∨
(∃r′ E r. ∃q′ ∈ F. r′α ∗A q′)

(c) For every term t ∈ T (Σ,∅) and accepting run ρ on t there is a position p such that t|p
is an instance of the left-hand side of a rule `→ r ∈ ξ(ρ(p)).

Then R is not strongly normalizing.

Proof. Assume that the conditions of the theorem are fulfilled. To disprove strong normaliz-
ation of → it suffices to disprove strong normalization of → ◦ D where D is the (non-strict)
sub-term relation. We show that L(A) and → ◦ D fulfill the requirements of Theorem 2. Let
t ∈ L(A). Then there exists an accepting run ρ of A on t. By item 3 there exists a position
p ∈ Pos(t) and a rule ` → r ∈ ξ(ρ(p)) such that t|p is an instance of `. Then t|p = `σ

for some substitution σ. By left-linearity, we can define α : Var(`) → Q by α(x) = ρ(pp′)
whenever `|p′ ∈ X . Then `α ∗ ρ(p) and we distinguish cases according to item 2:
1. There exists q ∈ Q with ρ(p) ≤ q and rα  ∗ q. We know that t[`σ]p = t  ∗ ρ(ε) and

define t′ = t[rσ]p. Note that t → t′ and t → ◦ D t′. We have t  t[ρ(p)]  ρ(ε) and
ρ(p) ≤ q. By Lemma 35 we have t[q] q′ for some q′ ≥ ρ(ε) and by monotonicity q′ ∈ F .
Hence t′ = t[rσ]p  t[q] ∗ q′. Thus t′ ∈ L(A) and t→ ◦ D t′.

2. There exist r′ E r and q ∈ F such that r′α ∗ q. Then r′σ  ∗ q and hence r′σ ∈ L(A).
Moreover, t→ ◦ D r′σ.
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This shows that L(A) contains no normal forms and is weakly closed under → ◦ D. By
Theorem 2, → ◦ D is not strongly normalizing and hence → is not strongly normalizing. J

I Remark 38 (SAT encoding of the conditions of Theorem 37). The encoding of condition 1
of Theorem 37 is straightforward, and condition 2 is an easy extension of Remark 15. The
requirement 3 can be encoded similar to Remark 23, as follows. Let `1, . . . , `n be the left-hand
sides of rules in R. Let B be the automaton and F`1 , . . . , F`n the sets of states obtained from
Lemma 18. We construct the product automaton A×B, and then we compute those states
that are reachable without passing states (q, q′) for which there exists `→ r ∈ ξ(q) such that
q′ ∈ F` (that is, the rule `→ r is selected by A and B confirms that the term is an instance
of `).

6 Experimental Results

We have implemented the improved method for disproving strong normalization (Theorem 37)
presented in this paper. For the purpose of evaluating our techniques, the tool applies only
the methods presented in this paper, and no other non-termination method like loop checks.
The SAT solver employed for the evaluation results in this section is MiniSat [6]. Our tool
can be downloaded from http://joerg.endrullis.de/non-termination/.

Our tool can automatically prove non-termination of all examples in this paper, including
the S-rule and the δ-rule. The following table shows the size of the automata that are found
by the tool as witnesses for non-termination for the examples in our paper:

Example 28 29 30 31 32 33
Number of states 4 5 3 4 5 6

Each of these automata has been found within less than a second on a dual core laptop.
We have also evaluated our methods on the database used in [7], consisting of 58 non-

terminating term rewriting systems that do not admit loops. The tool AProVE recognizes 44
systems as non-terminating; an impressive 76%. An extension of AProVE with our method
would increase the recognition by 8.5% to 84.5%. In other words, our method succeeds on
36% (that is 5 systems) of the remaining 14 systems for which AProVE did not find a proof.
These 5 systems are:

nonloop/TRS/emmes/ex3_4.trs
nonloop/TRS/own/challenge_fab.trs
nonloop/TRS/own/downfrom.trs
nonloop/TRS/own/ex_payet.trs
nonloop/TRS/own/isList-List.trs

In total, our tool succeeds for 26 of the 58 non-looping examples from [7]. The results
suggest that our method and that of [7] are complementary and should be combined for
maximum strength. The paper [7] explicitly mentions that the following example is beyond
their techniques (this example is not part of the database above):

f(true, true, x, s(y))→ f(isNat(x), isNat(y), s(x), double(s(y)))
isNat(0)→ true

isNat(s(x))→ isNat(x)
double(0)→ 0

double(s(x))→ s(s(double(x)))

RTA 2015
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Our non-termination techniques can handle this system: the tool finds an automaton with 6
states within 3 seconds (using the transformation from Remark 24).

Finally, we have evaluated the tool on the termination problem database (TPDB). We
have run our tool on all string and term rewriting systems (of the standard categories) that
remained unsolved during the last full run of all tools in December 2013. For string rewriting,
our tool was able to disprove termination for 13, and for term rewriting, for 8 systems of
the unsolved systems. This corresponds to an increase of strength of 11.5% (114 + 13) for
string rewriting and of 3% (274 + 8) for term rewriting. Let us mention that many of the 13
string rewriting systems actually admit loops, but very complicated ones, that are not found
by the standard tools. These loops have been found in previous competitions by the tools
Matchbox [32] and Knocked for Loops [36].

7 Conclusions and Future Work

In this paper, we have employed regular languages for proving non-termination. Instead of
searching for an infinite reduction explicitly we search for a regular language with properties
from which non-termination easily follows. After encoding these properties in a propositional
formula, the actual search is done by a SAT solver. In some examples, like Example 31,
a very simple corresponding regular language is quickly found by our approach, while the
actual infinite reductions have a non-linear pattern being beyond earlier approaches.

For future work, it is interesting to investigate whether this approach can be extended to
context-free (tree) languages; such an approach could potentially also generalize [7]. The
question is whether there are efficient criteria to check the conditions of Theorem 2. For
example, consider the following string rewriting system:

bB → Bb bcd→ BcD Dd→ dD

aX → abb BX → Xb bcd→ XcY Y D → dY Y e→ dde

This system admits for every n > 1 reductions of the form

a bn c dn e→∗ aBn−1 bcdDn−1 e→∗ aBn−1XcY Dn−1 e→∗ a bn+1 c dn+1 e

As a description of this pattern needs a context-free language, it is unlikely that a regular
language exists that fulfills the requirements of Theorem 2.

As described in Remark 24, the SAT encoding of (non-deterministic) automata is not
efficient for symbols of higher arity. We think that these problems can be overcome by more
efficient encodings of automata. For example, the uncurrying transformation mentioned
in Remark 24 can be seen as a restriction of the shape of the automata (the transition is
computed argument by argument) instead of a transformation on the system. It would be
interesting to investigate what other restrictions would lead to a more efficient representation
of automata as Boolean satisfiability problems. Results in this direction can be of interest in
various areas where automata are applied.

We think that it is also interesting to investigate whether the characterization of strong
and weak normalization (Theorems 2 and 3) can be adapted to the setting of infinitary
rewriting [20, 22, 14] with infinite terms and ordinal-length reductions; the interesting
properties then are infinitary strong and weak normalization.

Finally, we note that equality of streams [17, 18, 37, 19] (infinite sequences of symbols)
can be rendered as a non-termination problem (a comparison program running indefinitely
if the streams are equal, and terminating as soon as a difference is found). It remains to
be investigated whether non-termination techniques can be employed fruitfully for proving
stream equality.
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Abstract
We consider the problem of inferring a grammar describing the output of a functional program
given a grammar describing its input. Solutions to this problem are helpful for detecting bugs or
proving safety properties of functional programs and, several rewriting tools exist for solving this
problem. However, known grammar inference techniques are not able to take evaluation strategies
of the program into account. This yields very imprecise results when the evaluation strategy
matters. In this work, we adapt the Tree Automata Completion algorithm to approximate
accurately the set of terms reachable by rewriting under the innermost strategy. We prove that
the proposed technique is sound and precise w.r.t. innermost rewriting. The proposed algorithm
has been implemented in the Timbuk reachability tool. Experiments show that it noticeably
improves the accuracy of static analysis for functional programs using the call-by-value evaluation
strategy.

1998 ACM Subject Classification I.2.3 Deduction and Theorem Proving, F.4.2 Grammars and
Other Rewriting Systems, D.2.4 Software/Program Verification

Keywords and phrases term rewriting systems, strategy, innermost strategy, tree automata,
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1 Introduction and motivations

If we define by a grammar the set of inputs of a functional program, is it possible to infer
the grammar of its output? Some strongly typed functional programming languages (like
Haskell, OCaml, Scala and F#) have a type inference mechanism. This mechanism, among
others, permits to automatically detect some kinds of errors in the programs. In particular,
when the inferred type is not the expected one, this suggests that there may be a bug in
the function. To prove properties stronger than well typing of a program, it is possible to
define properties and, then, to prove them using a proof assistant or an automatic theorem
prover. However, defining those properties with logic formulas (and do the proof) generally
requires a strong expertise.

Here, we focus on a restricted family of properties: regular properties on the structures
manipulated by those programs. Using a grammar, we define the set of data structures given
as input to a function and we want to infer the grammar that can be obtained as output
(or an approximation). Like in the case of type inference, the output grammar can suggest
that the program contains a bug, or on the opposite, that it satisfies a regular property.

The family of properties that can be shown in this way is restricted, but it strictly gener-
alises standard typing as used in languages of the ML family1. There are other approaches
where the type system is enriched by logic formulas and arithmetic like [29, 5], but they

1 Standard types can easily be expressed as grammars. The opposite is not true. For instance, with a
grammar one can distinguish between an empty and a non empty list.
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generally require to annotate the output of the function for type checking to succeed. The
properties we consider here are intentionally simpler so as to limit as much as possible the
need for annotations. The objective is to define a lightweight formal verification technique.
The verification is formal because it proves that the results have a particular form. But,
the verification is lightweight for two reasons. First, the proof is carried out automatically:
no interaction with a prover or a proof assistant is necessary. Second, it is not necessary to
state the property on the output of the function using complex logic formulas or an enriched
type system but, instead, only to observe and check the result of an abstract computation.

With regards to the grammar inference technique itself, many works are devoted to
this topic in the functional programming community [20, 25]2 as well as in the rewriting
community [10, 27, 3, 14, 23, 2, 12]. In [12], starting from a term rewriting system (TRS
for short) encoding a function and a tree automaton recognising the inputs of a function,
it is possible to automatically produce a tree automaton over-approximating as precisely as
possible the outputs. Note that a similar reasoning can be done on higher-order programs [16]
using a well-known encoding of higher order functions into first-order TRS [20]. However, for
the sake of simplicity, examples used in this paper will only be first order functions. This is
implemented in the Timbuk tool [13]. Thus, we are close to building an abstract interpreter,
evaluating a function on an (unbounded) regular set of inputs, for a real programming
language. However, none of the aforementioned grammar inference techniques takes the
evaluation strategy into account, though every functional programming language has one.
As a consequence, those techniques produce very poor results as soon as the evaluation
strategy matters or, as we will see, as soon as the program is not terminating. This paper
proposes a grammar inference technique for the innermost strategy:

overcoming the precision problems of [20, 25] and [10, 27, 3, 14, 23, 2, 12] on the analysis
of functional programs using call-by-value strategy
whose accuracy is not only shown on a practical point of view but also formally proved.
This is another improvement w.r.t. other grammar inference techniques (except [14]).

1.1 Towards an abstract OCaml interpreter
In the following, we assume that we have an abstract OCaml interpreter. This interpreter
takes a regular expression as an input and outputs another regular expression. In fact, all
the computations presented in this way have been performed with Timbuk (and latter with
TimbukSTRAT), but on a TRS and a tree automaton rather than on an OCaml function and
a regular expression. We made this choice to ease the understanding of input and output
languages, since regular expressions are far more easier to read and to understand than
tree automata. Assume that we have a notation, inspired by regular expressions, to define
regular languages of lists. Let us denote by [a*] (resp. [a+]) the language of lists having 0
(resp. 1) or more occurrences of symbol a. We denote by [(a|b)*] any list with 0 or more
occurrences of a and b (in any order). Now, in OCaml, we define a function deleting all the
occurrences of an element in a list. Here is a first (bugged) version of this function:
let rec delete x l= match l with

| [] -> []
| h::t -> if h=x then t else h::( delete x t);;

Of course, one can perform tests on this function using the usual OCaml interpreter:

2 Note that the objective of other papers like [4, 21] is different. They aim at predicting the control flow
of a program rather than estimating the possible results of a function (data flow).



T. Genet and Y. Salmon 179

# delete 2 [1;2;3]);;
-:int list= [1; 3]

With an abstract OCaml interpreter dealing with grammars, we could ask the following
question: what is the set of the results obtained by applying delete to a and to any list of
a and b?
# delete a [(a|b)*];;
-:abst list= [(a|b)*]

The obtained result is not the expected one. Since all occurrences of a should have been
removed, we expected the result [b*]. Since the abstract interpreter results into a grammar
over-approximating the set of outputs, this does not show that there is a bug, it only suggests
it (like for type inference). Indeed, in the definition of delete there is a missing recursive
call in the then branch. If we correct this mistake, we get:
# delete a [(a|b)*];;
-:abst list= [b*]

This result proves that delete deletes all occurrences of an element in a list. This is only
one of the expected properties of delete, but shown automatically and without complex
formalisation. Here is, in Timbuk syntax, the TRS R and tree automata that are given to
Timbuk to achieve the above proof.

Ops delete:2 cons:2 nil:0 a:0 b:0 ite:3 true:0 false:0 eq:2
Vars X Y Z
TRS R
eq(a,a)->true eq(a,b)->false eq(b,a)->false eq(b,b)->true
delete(X,nil)->nil ite(true,X,Y)->X ite(false,X,Y)->Y
delete(X,cons(Y,Z))->ite(eq(X,Y),delete(X,Z),cons(Y,delete(X,Z)))
Automaton A0 States qf qa qb qlb qlab qnil Final States qf
Transitions delete(qa,qlab)->qf a->qa b->qb nil->qlab
cons(qa,qlab)->qlab cons(qb,qlab)->qlab

The resulting automaton computed by Timbuk is the following. It is not minimal but its
recognised language is equivalent to [b*].

States q0 q6 q8 Final States q6
Transitions cons(q8,q0)->q0 nil->q0 b->q8 cons(q8,q0)->q6 nil->q6

1.2 What is the problem with evaluation strategies?
Let us consider the function sum(x) which computes the sum of the x first natural numbers.

let rec sumList x y= let rec nth i (x::l)=
(x+y)::( sumList (x+y) (y+1)) if i <=0 then x else nth (i -1) l

let sum x= nth x ( sumList 0 0)

This function is terminating with call-by-need (used in Haskell) but not with call-by-
value strategy (used in OCaml). Hence, any call to sum for any number i will not terminate
because of OCaml’s evaluation strategy. Thus the result of the abstract interpreter on
sum s*(0) (i.e. sum applied to any natural number 0, s(0), . . . ) should be an empty
grammar meaning that there is an empty set of results. However, if we use any of the
techniques mentioned in the introduction to infer the output grammar, it will fail to show
this. All those techniques compute reachable term grammars that do not take evaluation
strategy into account. In particular, the inferred grammars will also contain all call-by-need
evaluations. Thus, an abstract interpreter built on those techniques will produce a result of
the form s*(0), which is a very rough approximation. In this paper, we propose to improve

RTA 2015
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the accuracy of such approximations by defining a language inference technique taking the
call-by-value evaluation strategy into account.

1.3 Computing over-approximations of innermost reachable terms

Call-by-value evaluation strategy of functional programs is strongly related to innermost
rewriting. The problem we are interested in is thus to compute (or to over-approximate)
the set of innermost reachable terms. For a TRS R and a set of terms L0 ⊆ T (Σ), the
set of reachable terms is R∗(L0) = {t ∈ T (Σ) | ∃s ∈ L0, s→∗R t}. This set can be computed
for specific classes of R but, in general, it has to be approximated. Most of the techniques
compute such approximations using tree automata (and not grammars) as the core formalism
to represent or approximate the (possibly) infinite set of terms R∗(L0). Most of them also
rely on a Knuth-Bendix completion-like algorithm to produce an automaton A∗ recognising
exactly, or over-approximating, the set of reachable terms. As a result, these techniques can
be referred to as tree automata completion techniques [10, 27, 3, 14, 23].

Surprisingly, very little effort has been paid to computing or over-approximating the set
R∗strat(L0), i.e. set of reachable terms when R is applied with a strategy strat. To the best of
our knowledge, Pierre Réty and Julie Vuotto’s work [26] is the first one to have tackled this
goal. They give some sufficient conditions on L0 and R for R∗strat(L0) to be recognised by a
tree automaton A∗, where strat can be the innermost or the outermost strategy. Innermost
reachability for shallow TRSs was studied in [9]. However, in both cases, the restrictions on
R are strong and generally incompatible with functional programs seen as TRS. Moreover,
the proposed techniques are not able to over-approximate reachable terms when the TRSs
does not satisfy the restrictions.

In this paper, we concentrate on the innermost strategy and define a tree automata com-
pletion algorithm over-approximating the set R∗in(L0) (innermost reachable terms) for any
left-linear TRS R and any regular set of input terms L0. As the completion algorithm of [14],
it is parameterized by a set of term equations E defining the precision of the approximation.
We prove the soundness of the algorithm: for all set of equation E, if completion terminates
then the resulting automaton A∗ recognises an over-approximation of R∗in(L0). Then, we
prove a precision theorem: A∗ recognises no more terms than terms reachable by innermost
rewriting with R modulo equations of E. Finally, we show on examples that the precision of
innermost completion noticeably improves the accuracy of the static analysis of functional
programs.

This paper is organised as follows. Section 2 recalls some basic notions about TRSs and
tree automata.

Section 3 exposes innermost completion. Section 4 states and proves the soundness of
this method. Section 5 states the precision theorem. Section 6 demonstrates how our new
technique can effectively give more precise results on functional programs thanks to the tool
TimbukSTRAT, an implementation of our method in the Timbuk reachability tool [13].

2 Preliminaries

We use the same basic definitions and notions as in [1] and [28] for TRS and as in [6] for
tree automata.

For a set of functions Σ and a set of variables X , we denote signatures by (Σ,X ), T (Σ,X )
for the set of terms and T (Σ) for the set of ground terms over (Σ,X ). Given a signature Σ
and k ∈ N, the set of its function symbols of arity k is denoted by Σk.
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I Definition 1 (Rewriting rule, term rewriting system). A rewriting rule over (Σ,X ) is a
couple (`, r) ∈ T (Σ,X )× T (Σ,X ), denoted by `→ r, such that ` is not a variable and any
variable appearing in r also appears in `. A term rewriting system (TRS) over (Σ,X ) is a
set of rewriting rules over (Σ,X ).

The set of normal forms of a rewriting system R (i.e. terms that are not reducible by R)
is Irr(R). A term t is linear when no variable appears twice in t; a TRS is left-linear if the
lhs of each of its rules is linear.

I Definition 2 (Set of reachable terms). Given a signature (Σ,X ), a TRS R over it and
a set of terms L ⊆ T (Σ), we denote R(L) = {t ∈ T (Σ) | ∃s ∈ L, s→R t} and R∗(L) =
{t ∈ T (Σ) | ∃s ∈ L, s→∗R t}.

2.1 Equations
IDefinition 3 (Equivalence relation, congruence). A binary relation is an equivalence relation
if it is reflexive, symmetric and transitive.

An equivalence relation ≡ over T (Σ) is a congruence if for all k ∈ N, for all f ∈ Σk,
for all t1, . . . , tk, s1, . . . , sk ∈ T (Σ) such that ∀i = 1 . . . k, ti ≡ si, we have f(t1, . . . , tk) ≡
f(s1, . . . , sk).

I Definition 4 (Equation, ≡E). An equation over (Σ,X ) is a pair of terms (s, t) ∈ T (Σ,X )×
T (Σ,X ), denoted by s = t. A set E of equations over (Σ,X ) induces a congruence ≡E over
T (Σ) which is the smallest congruence over T (Σ) such that for all s = t ∈ E and for all
substitution θ : X → T (Σ), sθ ≡E tθ. The equivalence classes of ≡E are denoted with [·]E .

I Definition 5 (Rewriting modulo E). Given a TRS R and a set of equations E both
over (Σ,X ), we define the R modulo E rewriting relation, →R/E , as follows. For any
u, v ∈ T (Σ), u →R/E v if and only if there exist u′, v′ ∈ T (Σ) such that u′ ≡E u, v′ ≡E v

and u′ →R v
′. We define→∗R/E as the reflexive and transitive closure of→R/E and (R/E)(L)

and (R/E)∗(L) in the same way as R(L) and R∗(L) where →R/E replaces →R.

2.2 Tree automata
IDefinition 6 (Tree automaton, delta-transition, epsilon-transition, new state). An automaton
over Σ is some A = (Σ, Q,QF ,∆) where Q is a finite set of states (symbols of arity 0 such
that Σ ∩ Q = ∅), QF is a subset of Q whose elements are called final states and ∆ a
finite set of transitions. A delta-transition is of the form f(q1, . . . , qk) � q′ where f ∈ Σk
and q1, . . . , qk, q

′ ∈ Q. An epsilon-transition is of the form q � q′ where q, q′ ∈ Q. A
configuration of A is a term in T (Σ, Q).

A state q ∈ Q that appears nowhere in ∆ is called a new state. A configuration is
elementary if each of its sub-configurations at depth 1 (if any) is a state.

I Definition 7. Let A = (Σ, Q,QF ,∆) be an automaton and let c, c′ be configurations of A.
We say that A recognises c into c′ in one step, and denoted by c�

A
c′ if there a transition

τ � ρ in A and a context C over T (Σ, Q) such that c = C[τ ] and c′ = C[ρ]. We denote by
∗
�
A

the reflexive and transitive closure of�
A

and, for any q ∈ Q, L (A, q) =
{
t ∈ T (Σ)

∣∣∣∣ t ∗�A q

}
.

We extend this definition to subsets of Q and denote it by L (A) = L (A, QF ). A sequence
of configurations c1, . . . , cn such that t�

A
c1 �
A
· · ·�

A
cn �
A
q is called a recognition path
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for t (into q) in A. When q �
A
q′ and q′ �

A
q, this is denoted by q ��

A
q′. A state q of A is

accessible if L (A, q) 6= ∅. An automaton is accessible if all of its states are.

I Example 8. Let Σ be defined with Σ0 = {n, 0}, Σ1 = {s, a, f}, Σ2 = {c} where
0 is meant to represent integer zero, s the successor operation on integers, a the pre-
decessor (‘antecessor’) operation, n the empty list, c the constructor of lists of integers
and f is intended to be the function on lists that filters out integer zero. Let R =
{f(n) → n, f(c(s(X), Y )) → c(s(X), f(Y )), f(c(a(X), Y )) → c(a(X), f(Y )), f(c(0, Y )) →
f(Y ), a(s(X)) → X, s(a(X)) → X}. Let A0 be the tree automaton with final state qf and
transitions {n� qn, 0� q0, s(q0)� qs, a(qs)� qa, c(qa, qn)� qc, f(qc)� qf}. We have
L (A0, qf ) = {f(c(a(s(0)), n))} and R(L (A0, qf )) = {f(c(0, n)), c(a(s(0)), f(n))}.

I Remark. Automata transitions may have ‘colours’, like R for transition q
R
� q′. We will

use colours R and E for transitions denoting either rewrite or equational steps.

I Definition 9. Given an automaton A and a colour R, we denote by A�R the automaton
obtained from A by removing all transitions coloured with R.

2.3 Pair automaton
We now give notations used for pair automaton, the archetype of which is the product of
two automata.

I Definition 10 (Pair automaton). An automaton A = (Σ, Q,QF ,∆) is said to be a pair
automaton if there exists some sets Q1 and Q2 such that Q = Q1 ×Q2.

I Definition 11 (Product automaton [6]). Let A = (Σ, Q,QF ,∆A) and B = (Σ, P, PF ,∆B)
be two automata. The product automaton of A and B is A× B = (Σ, Q× P,QF × PF ,∆)
where ∆ = {f(〈q1, p1〉 , . . . , 〈qk, pk〉)� 〈q′, p′〉 | f(q1, . . . , qk)� q′ ∈ ∆A ∧ f(p1, . . . , pk)�
p′ ∈ ∆B} ∪ {〈q, p〉� 〈q′, p〉 | p ∈ P, q� q′ ∈ ∆A} ∪ {〈q, p〉� 〈q, p′〉 | q ∈ Q, p� p′ ∈ ∆B}

I Definition 12 (Projections). Let A = (Σ, Q,QF ,∆) be a pair automaton, let τ � ρ be
one of its transitions and 〈q, p〉 be one of its states. We define Π1 (〈q, p〉) = q and extend
Π1 (·) to configurations inductively: Π1 (f(γ1, . . . , γk)) = f(Π1 (γ1) , . . . ,Π1 (γk)). We define
Π1 (τ � ρ) = Π1 (τ)� Π1 (ρ). We define Π1 (A) = (Σ,Π1 (Q) ,Π1 (QF ) ,Π1 (∆)). Π2 (·) is
defined on all these objects in the same way for the right component.

I Remark. Using Π1 (A) amounts to forgetting the precision given by the right component
of the states. As a result, L (Π1 (A) , q) ⊇

⋃
p∈P

L (A, 〈q, p〉).

2.4 Innermost strategy
In general, a strategy over a TRS R is a set of (computable) criteria to describe a certain
sub-relation of →R. In this paper, we will be interested in innermost strategies. In these
strategies, commonly used to execute functional programs (‘call-by-value’), terms are re-
written by always contracting one of the lowest reducible subterms. If s→R t and rewriting
occurs at a position p of s, s|p is called the redex.

I Definition 13 (Innermost strategy). Given a TRS R and two terms s, t, we say that s can
be rewritten into t by R with an innermost strategy, denoted by s →Rin t, if s →R t and
each strict subterm of the redex in s is a R-normal form. We define Rin(L) and R∗in(L) in
the same way as R(L), R∗(L) where →Rin replaces →R.
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I Example 14. We continue on Example 8. We have Rin(L (A0, qf )) = {f(c(0, n))} because
the rewriting step f(c(a(s(0)), n)) →R c(a(s(0)), f(n)) is not innermost since the subterm
a(s(0)) of the redex f(c(a(s(0)), n)) is not in normal form.

To deal with innermost strategies, we have to discriminate normal forms. When R is
left-linear, it is possible to compute a tree automaton recognising normal forms.

I Theorem 15 ([7]). Let R be a left-linear TRS. There is a deterministic and complete tree
automaton AIRR(R) whose states are all final except one, denoted by pred and such that
L (AIRR(R)) = Irr(R) and L (AIRR(R), pred) = T (Σ) r Irr(R).

I Remark. Since AIRR(R) is deterministic, for any state p 6= pred, L (AIRR(R), p) ⊆ Irr(R).

I Remark. If a term s is reducible, any term having s as a subterm is also reducible. Thus
any transition of AIRR(R) where pred appears in the left-hand side will necessarily have pred
as its right-hand side. Thus, for brevity, these transitions will always be left implicit when
describing the automaton AIRR(R) for some TRS R.

I Example 16. In Example 8, AIRR(R) needs, in addition to pred, a state plist to recognise
lists of integers, a state pa for terms of the form a(. . . ), a state ps for s(. . . ), a state
p0 for 0 and a state pvar to recognise terms that are not subterms of lhs of R, but may
participate in building a reducible term by being instances of variables in a lhs. We note
P = {plist, p0, pa, ps, pvar} and Pint = {p0, pa, ps}. The interesting transitions are thus 0�
p0,

⋃
p∈Pr{pa}{s(p) � ps},

⋃
p∈Pr{ps}{a(p) � pa} ; n � plist,

⋃
p∈Pint,p′∈P {c(p, p′) �

plist} ; f(plist) � pred, a(ps) � pred, s(pa) � pred. Furthermore, as remarked above, any
configuration that contains a pred is recognised into pred. Finally, some configurations are
not covered by the previous cases: they are recognised into pvar.

3 Innermost equational completion

Our first contribution is an adaptation of the classical equational completion of [14], which
is an iterative process on automata. Starting from a tree automaton A0 it iteratively com-
putes tree automata A1,A2, . . . until a fixpoint automaton A∗ is found. Each iteration
comprises two parts: (exact) completion itself (Subsection 3.1), then equational merging
(Subsection 3.2). The former tends to incorporate descendants by R of already recognised
terms into the recognised language; this leads to the creation of new states. The latter tends
to merge states in order to ease termination of the overall process, at the cost of precision
of the computed result. Some transition added by equational completion will have colours
R or E. We will use colours R and E for transitions denoting either rewrite or equational
steps; it is assumed that the transitions of the input automaton A0 do not have any colour
and that A0 does not have any epsilon-transition.

The equational completion of [14] is blind to strategies. To make it innermost-strategy-
aware, we equip each state of the studied automata with a state from the automaton
AIRR(R) (see Theorem 15) to keep track of normal and reducible forms. Let Ainit be
an automaton recognising the initial language. Completion will start with A0 = Ainit ×
AIRR(R). This automaton enjoys the following property.

I Definition 17 (Consistency with AIRR(R)). A pair automaton A is said to be consistent
with AIRR(R) if, for any configuration c and any state 〈q, p〉 of A, Π2 (c) is a configuration
of AIRR(R) and p is a state of AIRR(R), and if c

∗
�
A
〈q, p〉 then Π2 (c)

∗
�

AIRR(R)
p.
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`σ rσ

f(q1, . . . , qk)

q q′

R

A ∗

A
A′∗

A′
R

(a) For comparison: Clas-
sical completion.

`σ rσ

f(〈q1, p1〉 , . . . , 〈qk, pk〉)

〈q, pred〉
〈
q′, prσ

〉
〈q, prσ〉

Rin

A ∗

A p1, . . . , pk 6= pred

A′∗

A′
R

(b) Innermost completion: we added inform-
ation about normal forms.

Figure 1 Comparison of classical and innermost critical pairs.

3.1 Exact completion
The first step of equational completion incorporates descendants by R of terms recognised
by Ai into Ai+1. The principle is to search for critical pairs between Ai and R. In classical
completion, a critical pair is triple (` → r, σ, q) such that lσ

∗
�
Ai

q, lσ →R rσ and rσ 6
∗
�
Ai

q.
Such a critical pair denotes a rewriting position of a term recognised by Ai such that the
rewritten term is not recognised by Ai. For the innermost strategy, the critical pair notion
is slightly refined since it also needs that every subterm γ at depth 1 in `σ is in normal
form. This corresponds to the third case of the following definition where γ

∗
�
A
〈qγ , pγ〉 and

pγ 6= pred ensures that γ is irreducible. See Figure 1.

IDefinition 18 (Innermost critical pair). LetA be a pair automaton. A tuple (`→ r, σ, 〈q, p〉)
where `→ r ∈ R, σ : X → QA and 〈q, p〉 ∈ QA is called a critical pair if

1. `σ
∗
�
A
〈q, p〉,

2. there is no p′ such that rσ
∗
�
A
〈q, p′〉 and

3. for each sub-configuration γ at depth 1 of `σ, the state 〈qγ , pγ〉 such that γ
∗
�
A
〈qγ , pγ〉

in the recognition path of condition 1 is with pγ 6= pred.

I Remark. Because a critical pair denotes a rewriting situation, the p of Definition 18 is
necessarily pred as long as A is consistent with AIRR(R).

I Example 19. In the situation of Examples 8 and 16, consider the rule f(c(a(X), Y )) →
c(a(X), f(Y )), the substitution σ1 = {X 7→ 〈qs, ps〉 , Y 7→ 〈qn, pn〉} and the state 〈qf , pred〉:
this is not an innermost critical pair because the recognition path is:

f(c(a(〈qs, ps〉), 〈qn, pn〉))� f(c(〈qa, pred〉 , 〈qn, pn〉))� f(〈qc, pred〉)� 〈qf , pred〉
and so there is a pred at depth 1. But there is an innermost critical pair in A0 with the rule
a(s(X))→ X, the substitution σ2 = {X 7→ 〈q0, p0〉} and the state 〈qa, pred〉.

Once a critical pair is found, the completion algorithm needs to resolve it: it adds
the necessary transitions for rσ to be recognised by the completed automaton. Classical
completion adds the necessary transitions so that rσ

∗
�
A′

q, where A′ is the completed
automaton. In innermost completion this is more complex. The state q is, in fact, a pair of
the form 〈q, pred〉 and adding transitions so that rσ

∗
�
A′
〈q, pred〉 may jeopardise consistency

of A′ with AIRR if rσ is not reducible. Thus the diagram is closed in a different way
preserving consistency with AIRR (see Figure 1). However, like in classical completion, this
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can generally not be done in one step, as rσ might be a non-elementary configuration. We
have to split the configuration into elementary configurations and to introduce new states to
recognise them: this is what normalisation (denoted by NormA) does. Given an automaton
A, a configuration c of A and a new state 〈q, p〉, we denote by NormA(c, 〈q, p〉) the set of
transitions (with new states) that we add to A to ensure that c is recognised into 〈q, p〉.
The NormA operation is parameterized by A because it reuses transitions of A whenever it
is possible. On an example, we show how normalisation behaves. For a formal definition
see [15].

I Example 20. With a suitable signature, suppose that automaton A consists of the trans-
itions c� 〈q1, pc〉 and f(〈q1, pc〉)�

〈
q2, pf(c)

〉
and we want to normalise f(g(

〈
q2, pf(c)

〉
, c))

to the new state
〈
qN , pf(g(f(c),c))

〉
. We first have to normalise under g:

〈
q2, pf(c)

〉
is already

a state, so it does not need to be normalised; c has to be normalised to a state: since
A already has transition c � 〈q1, pc〉, we add no new state and it remains to normalise
g(
〈
q2, pf(c)

〉
, 〈q1, pc〉). Since A does not contain a transition for this configuration, we must

add a new state
〈
q′, pg(f(c),c)

〉
and the transition g(

〈
q2, pf(c)

〉
, 〈q1, pc〉) �

〈
q′, pg(f(c),c)

〉
.

Finally, we add f(
〈
q′, pg(f(c),c)

〉
) �

〈
qN , pf(g(f(c),c))

〉
. Note that due to consistency with

AIRR(R), whenever we add a new transition c′ � 〈q′, p′〉, only the q′ is arbitrary: the p′
is always the state of AIRR(R) such that Π2 (c) �

AIRR(R)
p′, in order to preserve consistency

with AIRR(R).

Completion of a critical pair is done in two steps. The first set of operations formalises
‘closing the square’ (see Figure 1), i.e. if lσ

∗
�
A
〈q, pred〉 then we add transitions rσ

∗
�
A′

〈q′, prσ〉
R
� 〈q, prσ〉. The second step adds the necessary transitions for any context C[rσ]

to be recognised in the tree automaton if C[lσ] was. Thus if the the recognition path for
C[lσ] is of the form C[lσ]

∗
�
A
C[〈q, pred〉]

∗
�
A
〈qc, pred〉, we add the necessary transitions for

C[〈q, prσ〉] to be recognised into 〈qc, pc〉 where pc is the state of AIRR(R) recognising C[rσ].

I Definition 21 (Completion of an innermost critical pair). A critical pair (`→ r, σ, 〈q, p〉) in
automaton A is completed by first computing N = Norm

A�R
(rσ, 〈q′, prσ〉) where q′ is a new

state and Π2 (rσ)
∗
�

AIRR(R)
prσ, then adding to A the new states and the transitions appearing

in N as well as the transition 〈q′, prσ〉
R
� 〈q, prσ〉. If rσ is a trivial configuration (i.e. r is

just a variable, and thus Π2 (rσ) is a state), only transition rσ
R
� 〈q,Π2 (rσ)〉 is added.

Afterwards, we execute the following supplementary operations. For any new transition
f(. . . , 〈q, pred〉 , . . . ) � 〈q′′, p′′〉, we add a transition f(. . . , 〈q, prσ〉 , . . . ) � 〈q′′, p′′′〉 with
f(. . . , prσ, . . . ) �

AIRR(R)
p′′′. These new transitions are in turn recursively considered for the

supplementary operations3.

I Definition 22 (Innermost completion step). Let PC be the set of all innermost critical
pairs of Ai. For pc ∈ PC, let Npc be the set of new states and transitions needed un-
der Definition 21 to complete pc, and A ∪ Npc the automaton A completed by states and
transitions of Npc. Then Ai+1 = Ai ∪

⋃
pc∈PC

Npc.

3 Those supplementary operations add new pairs, but the element of each pair are not new. So, this
necessarily terminates.
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I Lemma 23. Let A be an automaton obtained from some Ainit×AIRR(R) after some steps
of innermost completion. A is consistent with AIRR(R).

Due to space constraints, the full proofs can be found in [15].

3.2 Equational simplification
I Definition 24. Given two states q, q′ of some automaton A and a colour E, we note

q
E
��
A
q′ when we have both q

E
�
A
q′ and q′

E
�
A
q.

I Definition 25 (Situation of application of an equation). Given an equation s = t, an
automaton A, a substitution θ : X → QA and states 〈q1, p1〉 and 〈q2, p2〉, we say that
(s = t, θ, 〈q1, p1〉 , 〈q2, p2〉) is a situation of application in A if

1. sθ
∗
�
A
〈q1, p1〉,

2. tθ
∗
�
A
〈q2, p2〉,

3. 〈q1, p1〉
�
�
�E��
A
〈q2, p2〉

4. p1 = p2.

Note that when p1 6= p2, this is not a situation of application for an equation. This is
the only difference with the situation of application in classical completion. This restriction
avoids, in particular, to apply an equation between reducible and irreducible terms. Such
terms will be recognised by states having two distinct second components. On the opposite,
when a situation of application arises, we ‘apply’ the equation, i.e. add the necessary trans-

itions to have 〈q1, p1〉
E
��
A
〈q2, p2〉 and supplementary transitions to lift this property to any

embedding context. We apply equations until there are no more situation of application on
the automaton (this is guaranteed to happen because we add no new state in this part).

I Definition 26 (Application of an equation). Given (s = t, θ, 〈q1, p1〉 , 〈q2, p1〉) a situation
of application in A, applying the underlying equation in it consists in adding transitions
〈q1, p1〉

E
� 〈q2, p1〉 and 〈q2, p1〉

E
� 〈q1, p1〉 to A. We also add the supplementary transitions

〈q1, p
′
1〉

E
� 〈q2, p

′
1〉 and 〈q2, p

′
1〉

E
� 〈q1, p

′
1〉 where 〈q1, p

′
1〉 and 〈q2, p

′
1〉 occur in the automaton.

I Lemma 27. Applying an equation preserves consistency with AIRR(R).

3.3 Innermost completion and equations
I Definition 28 (Step of innermost equational completion). Let R be a left-linear TRS, Ainit
a tree automaton, E a set of equations and A0 = Ainit × AIRR(R). The automaton Ai+1
is obtained, from Ai, by applying an innermost completion step on Ai (Definition 21) and
solving all situations of applications of equations of E (Definition 25).

4 Correctness

I Definition 29 (Correct automaton). An automaton A is correct w.r.t. Rin if for all states
〈q, pred〉 of A, for all u ∈ L (A, 〈q, pred〉) and for all v ∈ Rin(u), either there is a state p of
AIRR(R) such that v ∈ L (A, 〈q, p〉) or there is a critical pair (` → r, σ, 〈q0, p0〉) in A for
some 〈q0, p0〉 and a context C on T (Σ) such that u

∗
�
A
C[`σ]

∗
�
A
C[〈q0, pred〉]

∗
�
A
〈q, pred〉 and

v
∗
�
A
C[rσ].
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I Lemma 30. Any automaton produced by innermost equational completion starting from
some Ainit ×AIRR(R) is correct w.r.t. Rin.

I Theorem 31 (Correctness). Assuming R is left-linear, the innermost equational completion
procedure defined above produces a correct result whenever it terminates and produces some
fixpoint Ain∗:

L (Ain∗) ⊇ R∗in(L (Ainit ×AIRR(R))).

Proof. Ain∗ is correct w.r.t. Rin, but the case of Definition 29 where there remains a critical
pair cannot occur, because it is a fixpoint. J

5 Precision theorem

We just showed that the approximation is correct. Now we investigate its accuracy on a the-
oretical point of view. This theorem is technical and difficult to prove (details can be found
in [15]). But, this result is crucial because producing an over-approximation of reachable
terms is easy (the tree automaton recognising T (Σ) is a correct over-approximation) but
producing an accurate approximation is hard. To the best of our knowledge, no other work
dealing with abstract interpretation of functional programs or computing approximations of
regular languages can provide such a formal precision guarantee (except [14] but in the case
of general rewriting). Like in [14], we formally quantify the accuracy w.r.t. rewriting mod-
ulo E, replaced here by innermost rewriting modulo E. The relation of innermost rewriting
modulo E, denoted by →Rin/E , is defined as rewriting modulo E where →Rin replaces →R.
We also define (Rin/E)(L) and (Rin/E)∗(L) in the same way as R(L), R∗(L) where→Rin/E

replaces →R.
The objective of the proof is to show that the completed tree automaton recognises no

more terms than those reachable by Rin/E rewriting. The accuracy relies on the Rin/E-
coherence property of the completed tree automaton, defined below. Roughly, a tree auto-
maton A is Rin/E-coherent if

∗
�
A

is coherent w.r.t. R innermost rewriting steps and E

equational steps. More precisely if s
∗
�
A
q and t

∗
�
A
q with no epsilon transitions with colour

R, then s =E t (this is called separation of E-classes for A�R). And, if t
∗
�
A

q with at
least one epsilon transitions with colour R, then s →∗Rin/E

t (this is called Rin-coherence
of A). Roughly, a tree automaton separates E-classes if all terms recognized by a state are
E-equivalent. Later, we will require this property on A0 and then propagate it on A�Ri , for
all completed automata Ai.

I Definition 32 (Separation of E-classes). The pair automaton A separates the classes of E if
for any q ∈ Π1 (QA), there is a term s such that for all p ∈ Π2 (QA), L (A, 〈q, p〉) ⊆ [s]E . We
denote by [q]AE the common class of terms in L (A, 〈q, ·〉), and extend this to configurations.
We say the separation of classes by A is total if Π1 (A) is accessible.

I Definition 33 (Rin/E-coherence). An automaton A is Rin/E-coherent if

1. A�R totally separates the classes of E,
2. A is accessible, and

3. for any state 〈q, p〉 of A, L (A, 〈q, p〉) ⊆ (Rin/E)∗
(

[q]A�
R

E

)
.

Then, the objective is to show that the two basic elements of innermost equational
completion: completing a critical pair and applying an equation preserve Rin/E-coherence.
This is the purpose of the two following lemmas.
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I Lemma 34. Completion of an innermost critical pair preserves Rin/E-coherence.

I Lemma 35. Equational simplification preserves Rin/E-coherence.

This shows that, under the assumption that A0 separates the classes of E, innermost
equational completion will never never add to the computed approximation a term that is
not a descendant of L (A0) through Rin modulo E rewriting. This permits to state the
main theorem, which formally defines the precision of the completed tree automaton.

I Theorem 36 (Precision). Let E be a set of equations. Let A0 = Ainit ×AIRR(R), where
Ainit has designated final states. We prune A0 of its non-accessible states. Suppose A0
separates the classes of E. Let R be any left-linear TRS. Let Ai be obtained from A0 after
some steps of innermost equational completion. Then

L (Ai) ⊆ (Rin/E)∗(L (A0))).

Proof. (Sketch) We know that A0 is Rin/E-coherent because (1) A�R0 separates the classes
of E (A0 separates the classes of E and A0 = A�R0 since none of Ainit and AIRR have
epsilon transitions), and (2) A0 is accessible. Condition (3) of Definition 33 is trivially
satisfied since A0 separates classes of E, meaning that for all states q, there is a term s

s.t. L (A0, 〈q, p〉) ⊆ [s]E , i.e. all terms recognized by q are E-equivalent to s which is
a particular case of case (3) in Definition 33. Then, during successive completion steps,
by Lemma 34 and 35, we know that each basic transformation applied on A0 (completion
or equational step) will preserve the Rin/E-coherence of A0. Thus, Ai is Rin/E-coherent.
Finally, case (3) of Rin/E-coherence of Ai entails the result. J

Note that the fact that A0 needs to separate the classes of E is not a strong restriction.
In the particular case of functional TRS (TRS encoding first order typed functional pro-
grams [12]), there always exists a tree automaton recognising a language equal to L (A0)
and which separates the classes of E, see [11] for details.

6 Improving accuracy of static analysis of functional programs

We just showed accuracy of the approximation on a theoretical side. Now we investigate
the accuracy on a practical point of view. There is a recent and renewed interest for Data
flow analysis of higher-order functional programs [25, 22] that was initiated by [20]. None of
those techniques is strategy-aware: on Example 8, they all consider the term c(a(s(0)), f(n))
as reachable, though it is not with innermost strategy. Example 8 also shows that this is
not the case with innermost completion.

We made an alpha implementation of innermost equational completion. This new version
of Timbuk, named TimbukSTRAT, is available at [13] along with several examples. On those
examples, innermost equational completion runs within milliseconds. Sets of approximation
equations, when needed, are systematically defined using [12]. Roughly, the idea is to define
a set E such that the set of equivalence classes of T (Σ) w.r.t. E is finite. Now, we show
that accuracy of innermost equational completion can benefit to static analysis of functional
programs. As soon as one of the analysed functions is not terminating (intentionally or be-
cause of a bug), not taking the evaluation strategy into account may result into an imprecise
analysis. Consider the following OCaml program:
let hd= function x::_ -> x;; let tl= function _::l -> l;;
let rec delete e l=

if (l=[]) then [] else if (hd l=e) then tl l else (hd l)::( delete e l);;
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It is faulty: the recursive call should be (hd l)::(delete e (tl l)). Because of this
error, any call (delete e l) will not terminate if l is not empty and hd l is not e. We can
encode the above program into a TRS R. Furthermore, if we consider only two elements
in lists (a and b), the language L of calls to (delete a l), where l is any non empty list
of b, is regular. Thus, standard completion can compute an automaton over-approximating
R∗(L). Besides, the automaton AIRR(R) recognising normal forms of R can be computed
since R is left-linear. Then, by computing the intersection between the two automata, we
obtain the automaton recognising an over-approximation of the set of reachable terms in
normal form4. Assume that we have an abstract OCaml interpreter performing completion
and intersection with AIRR(R):
# delete a [b+];;
-:abst list= empty

The result empty reflects the fact that the delete function does not compute any result,
i.e. it is not terminating on all the given input values. Thus the language of results is
empty. Now, assume that we consider calls like hd(delete e l). In this case, any analysis
technique ignoring the call-by-value evaluation strategy of OCaml will give imprecise results.
This is due to the fact that, for any non empty list l starting with an element e’ different
from e, (delete e l) rewrites into e’::(delete e l), and so on. Thus hd(delete e l),
can be rewritten into e’ with an outermost rewrite strategy. Thus, if we use an abstract
OCaml interpreter built on the standard completion, we will have the following interaction:
# hd (delete a [b+]);;
-:abst list= b

The result provided by the abstract interpreter is imprecise. It fails to reveal the bug in
the delete function since it totally hides the fact that the delete function does not terminate!
Using innermost equational completion and TimbukSTRAT on the same example would
permit to have the expected result which is5:
# hd (delete a [b+]);;
-:abst list= empty

We can perform the same kind of analysis for the program sum given in the introduc-
tion. This program does not terminate with call-by-value (for any input) but it terminates
with call-by-name strategy. Again, strategy-unaware methods cannot show this: there are
(outermost) reachable terms that are in normal form: the integer results obtained with a
call-by-need or lazy evaluation. An abstract OCaml interpreter unaware of strategies would
say:
# sum s*(0);;
-:abst nat= s*(0)
where a more precise and satisfactory answer would be -:abst nat= empty. Using Tim-
bukSTRAT, we can get this answer. To over-approximate the set of results of the func-
tion sum for all natural numbers i, we can start innermost equational completion with
the initial regular language {sum(s∗(0))}. Let A = (Σ, Q,Qf ,∆) with Qf = {q1} and
∆ = {0 � q0, s(q0) � q0, sum(q0) � q1} be an automaton recognising this language.
Timbuk[13] can compute the automaton AIRR(R). Innermost equational completion with
TimbukSTRAT terminates on an automaton (see [15]) where the only product state labelled
by q1 is 〈q1, pred〉. This means that terms of the form sum(s∗(0)) have no innermost normal
form, i.e. the function sum is not terminating with call-by-value for all input values. On all

4 Computing AIRR(R) and the intersection can be done using Timbuk.
5 Details in [15]; see files nonTerm1 and nonTerm1b in the TimbukSTRAT distribution at [13].
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those examples, we used initial automata A that were not separating equivalences classes of
E. On those particular examples the precision of innermost completion was already suffi-
cient for our verification purpose. Yet, if accuracy is not sufficient, it is possible to refine A
into an equivalent automaton separating equivalences classes of E, see [11]. When necessary,
this permits to exploit the full power of the precision Theorem 36 and get an approximation
of innermost reachable terms, as precise as possible, w.r.t. E.

On the same example, all aforementioned techniques [25, 22, 20], as well as all standard
completion techniques [27, 14, 23], give a more coarse approximation and are unable to prove
strong non-termination with call-by-value. Indeed, those techniques approximate all reach-
able terms, independently of the rewriting strategy. Their approximation will, in particular,
contain the integer results that are reachable by the call-by-need evaluation strategy.

7 Related work

No tree automata completion-like techniques [10, 27, 3, 14, 23] take evaluation strategies
into account. They compute over-approximations of all reachable terms.

Dealing with reachable terms and strategies was first addressed in [26] in the exact case
for innermost and outermost strategies but only for some restricted classes of TRSs, and also
in [9]. As far as we know, the technique we propose is the first to over-approximate terms
reachable by innermost rewriting for any left-linear TRSs. For instance, Example 8 and
examples of Section 6 are in the scope of innermost equational completion but are outside
of the classes of [26, 9]. For instance, the sum example is outside of classes of [26, 9] because
a right-hand side of a rule has two nested defined symbols and is not shallow.

Data flow analysis of higher-order functional programs is a long standing and very active
research topic [25, 22, 20]. Used techniques ranges from tree grammars to specific formalisms:
HORS, PMRS or ILTGs and can deal with higher-order functions. Higher-order functions
are not in the scope of the work presented here, though it is possible with tree automata
completion in general [16]. None of [25, 22, 20], takes evaluation strategies into account and
analysis results are thus coarse when program execution rely on a specific strategy.

8 Conclusion

In this paper, we have proposed a sound and precise algorithm over-approximating the set
of terms reachable by innermost rewriting. As far as we know this is the first algorithm
solving this problem for any left linear TRS and any regular initial set of terms. It is based
on tree automata completion and equational abstractions with a set E of approximation
equations. The algorithm also minimises the set of added transitions by completing the
product automaton (between Ainit and AIRR(R)). We proposed TimbukSTRAT [13], a
prototype implementation of this method.

The precision of the approximations have been shown on a theoretical and a practical
point of view. On a theoretical point of view, we have shown that the approximation auto-
maton recognises no more terms than those effectively reachable by innermost rewriting
modulo the approximation E. On the practical side, unlike other techniques used to stat-
ically analyse functional programs [25, 22, 20], innermost equational completion can take
the call-by-value strategy into account. As a result, for programs whose semantics highly
depend on the evaluation strategy, innermost equational completion yields more accurate
results. This should open new ways to statically analyse functional programs by taking
evaluation strategies into account.
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Approximations of sets of ancestors or descendants can also improve existing termination
techniques [17, 24]. In the dependency pairs setting, such approximations can remove edges
in a dependency graph by showing that there is no rewrite derivation from a pair to another.
Besides, it has been shown that dependency pairs can prove innermost termination [19]. In
this case, innermost equational completion can more strongly prune the dependency graph:
it can show that there is no innermost derivation from a pair to another. For instance, on
the TRS:

choice(X,Y ) → X choice(X,Y ) → Y eq(s(X), s(Y )) → eq(X,Y )
eq(0, 0) → tt eq(s(X), 0) → ff eq(0, s(Y )) → ff
g(0, X) → eq(X,X) g(s(X), Y ) → g(X,Y ) f(ff, X, Y ) → f(g(X, choice(X,Y )), X, Y )
We can prove that any term of the form f(g(t1, choice(t2, t3)), t4, t5) cannot be rewrit-

ten (innermost) to a term of the form f(ff, t6, t7) (for all terms ti ∈ T (Σ), i = 1 . . . 7).
This proves that, in the dependency graph, there is no cycle on this pair. This makes the
termination proof of this TRS simpler than what AProVE [18] does: it needs more com-
plex techniques, including proofs by induction. Simplification of termination proofs using
innermost equational completion should be investigated more deeply.

For further work, we want to improve and expand our implementation of innermost
equational completion in order to design a strategy-aware and higher-order-able static ana-
lyser for a reasonable subset of a real functional programming language with call-by-value
like OCaml, F#, Scala, Lisp or Scheme. On examples taken from [25], we already showed
in [16] that completion can handle some higher-order functions. We also want to study if the
innermost completion covers the TRS classes preserving regularity of [26, 9], like standard
completion does for many decidable classes [8].

Another objective is to extend this completion technique to other strategies. It should
be easy to extend those results to the case of leftmost or rightmost innermost strategy. This
should be a simple refinement of the second phase of completion of innermost critical pairs,
when supplementary transitions are added. To encode leftmost (resp. rightmost) inner-
most, for each transition f(q1, . . . , qi−1, 〈q, pred〉 , qi+1, . . . , qn) � 〈q′′, p′′〉, we should add a
new transition f(q1, . . . , qi−1, 〈q, prσ〉 , qi+1, . . . , qn)� 〈q′′, p′′′〉, only if all states q1, . . . , qi−1
(resp. qi+1, . . . , qn) have a p component that is not pred. Another strategy of interest for
completion is the outermost strategy. This would improve the precision of static analysis of
functional programming language using call-by-need evaluation strategy, like Haskell. Ex-
tension of this work to the outermost case is not straightforward but it may use similar
principles, such as running completion on a pair automaton rather than on single auto-
maton. States in tree automata are closely related to positions in terms. To deal with the
innermost strategy, in states 〈q, p〉, the p component tells us if terms s (or subterms of s)
recognised by the state 〈q, p〉 are reducible or not. This is handy for innermost completion
because we can decide if a tuple (`→ r, σ, 〈q′, p′〉) is an innermost critical pair we checking
if the p components of the states recognising strict subterms of `σ are different from pred.
For the outermost case, this is exactly the opposite: a tuple (` → r, σ, 〈q′, p′〉) is an outer-
most critical pair only if all the contexts C[ ] such that C[`σ] is recognised, are irreducible
contexts. If it is possible to encode in the p′ component (using an automaton or something
else) whether all contexts embedding 〈q′, p′〉 are irreducible or not, we should be able to
define outermost critical pairs and, thus, outermost completion in a similar manner.
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Abstract
Bialgebras and their specialisation Hopf algebras are algebraic structures that challenge tradi-
tional mathematical notation, in that they sport two core operations that defy the basic functional
paradigm of taking zero or more operands as input and producing one result as output. On the
other hand, these peculiarities do not prevent studying them using rewriting techniques, if one
works within an appropriate network formalism rather than the traditional term formalism. This
paper restates the traditional axioms as rewriting systems, demonstrating confluence in the case
of bialgebras and finding the (infinite) completion in the case of Hopf algebras. A noteworthy
minor problem solved along the way is that of constructing a quasi-order with respect to which
the rules are compatible.
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1 Introduction

Bialgebras and Hopf algebras are rarely mentioned in first (or second) abstract algebra courses,
but many familiar algebraic and combinatorial [5] structures possess a Hopf algebra structure,
which may be viewed as giving a more complete picture of the basic thing than the mere
algebra would. For polynomials in one variable x over a field K, one may define the coproduct
∆: K[x] −→ K[x] ⊗ K[x], the counit ε : K[x] −→ K, and the antipode S : K[x] −→ K[x] as
the linear maps which satisfy

∆(xn) =
n∑
k=0

(
n

k

)
xk ⊗ xn−k, ε(xn) =

{
1 if n = 0,
0 otherwise,

S(xn) = (−1)nxn

for all n > 0; this turns K[x] into a Hopf algebra. For any group G, the corresponding
group algebra K[G] is similarly endowed with coproduct ∆: K[G] −→ K[G]⊗K[G], counit
ε : K[G] −→ K, and antipode S : K[G] −→ K[G] defined by

∆(g) = g ⊗ g, ε(g) = 1, S(g) = g−1

for all g ∈ G and then extended to the whole of K[G] by linearity, that turn K[G] into a Hopf
algebra. If G is finite, then the linear dual of K[G] will moreover also be a Hopf algebra.
Hopf algebras are thus close at hand, but they can for syntactic reasons be awkward to work
with abstractly.

The simplest way to fully formalise the Hopf algebra concept of coproduct in a classical
computational context would be that it is a function which returns a generator object for
a finite sequence of pairs of algebra elements, because the basic way to encode a general
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element in a vector space tensor product V ⊗ V is as a finite sum a1 ⊗ b1 + · · ·+ an ⊗ bn
where ai, bi ∈ V for all i = 1, . . . , n; note however that neither the length of this sum nor
any particular term of it is uniquely determined by the element that the sum encodes. For
example, in the polynomial Hopf algebra one can express ∆(x) as 1⊗ x+ x⊗ 1, but equally
well as 1⊗ (x+ 1) + (x−1)⊗1 or (x+ 1)⊗ (x+ 1)−1⊗1−x⊗x, since these are all the same
element of K[x]⊗K[x]. That the overall result of a computation should be independent of
how such a tensor product element happened to get encoded places far-reaching constraints
on what one may do to the ais and bis; in particular, all the ai must be processed in the same
way, and all the bi must be processed in the same way, although ais need not be processed in
the same way as the bi. Hence a more intuitive syntactic interpretation of the coproduct ∆
is that it is like a subroutine with one in-parameter and two out-parameters, one of which is
the “sequence” of ai and the other being the corresponding “sequence” of bi. In a composite
expression, the left and the right results of a coproduct may then be used in quite separate
places of the expression as a whole.

The counit ε is syntactically even stranger, as it also takes one operand as input, but
produces no result as output, although it contributes a global factor to the final result of
any composite expression of which it is part. Getting a grip on ∆ and ε is difficult, and the
main reason for this is precisely that they in the natural interpretation go beyond one of
the fundamental principles of mathematical notation, namely that each expression is either
atomic or a combination of independent subexpressions that each contributes one intermediate
result to the final combining operation, thus giving every expression an underlying rooted tree
structure. The two output results of a coproduct can instead create a syntactic dependence
between what from the root looks like separate subexpressions, and the no output results of
a counit can leave an expression syntactically disconnected, in both cases invalidating the
traditional presumption that an expression is structured like a tree.

One approach for working with bialgebras has been to device special notational extensions
to traditional notation, such as the Sweedler [10] notation which however has the drawback
of having the bialgebra axioms built in; it cannot be used if one wishes to study the bialgebra
axioms themselves. Another approach has been to give up on traditional expressions for
equational reasoning, to rather work in the formalism of category theory: instead of an
equational proof, one has a huge commutative diagram, where the various paths correspond
to expressions, and the facets correspond to applications of axioms. An awkward trait of this
approach is that it places considerable emphasis on such elementary issues as the domains of
intermediate results at the expense of more structural aspects (like saying

R sin−→ [−1, 1] sqr−→ [0, 1] t 7→1−t−→ [0, 1] sqrt−→ [0, 1]

instead of
√

1− sin2 x while aiming to do basic calculus) and a significant disadvantage is
that it requires many steps for trivial rearrangements of parentheses.

The approach followed here, to the end of examining bi- and Hopf algebras using techniques
of rewriting, is instead to adopt a more general expression (formal term) concept, where
the underlying structure is a DAG rather than a simple tree. This kind of generalisation is
known from the works of for example Hasegawa [2], Lafont [6], and Mimram [8], but the
exact realisation of it that will be used here is that of [3]. This network concept of more
general expressions can be transcribed in terms of the categorical primitives of morphism
composition, tensor product, and component permutation, but it is graphical (primarily as
in graph, only secondarily as in graphics) and thus more accessible to the human eye. Even
better, the matter of whether two categorical expressions are equal modulo the axioms of a
symmetric monoidal category (the “rearrangement of parentheses” mentioned above) turns
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out to be exactly the same as whether the corresponding networks are isomorphic (as graphs
with some extra structure). There is much formal nonsense, but once the many minutiae of
establishing the more general expression concept have been taken care of [3, Secs. 4, 5, 7],
rewriting behaves very much as we’re used to, even if some new phenomena pop up.

What is not a new phenomenon, but deserves to be stated explicitly, is that the rewriting
operates on a higher level of abstraction than is usual in applications of rewriting to abstract
algebra; the objects being rewritten do not represent/evaluate to elements of the algebra in
question, but are rather expressions that could be applied to some tuple of algebra elements.
More technically, the objects being rewritten represent (could be taken as evaluating to)
multilinear maps H⊗n −→ H⊗m which live in the PROP (symmetric monoidal category)
of such maps that is generated by the five Hopf algebra operations. Rewrite theories that
describe more specific Hopf algebras, for example “the free Hopf algebra generated by a given
coalgebra”, can be had by extending the generic system described below with extra constant
operations representing the generating elements and extra rewrite rules representing how
the coproduct and counit act on these generators; the resulting Hopf algebra is then the
no-input-one-output component of the generated PROP.

Section 2 gives an introduction to the network formalism for bi- and Hopf algebras.
Section 3 presents the axiom system for bialgebras and shows that it constitutes a confluent
system of rewrite rules. Section 4 presents the axiom system for Hopf algebras and derives
the additional rules needed to make the rewrite system complete. Section 5 shows that the
system of the previous section indeed is confluent. Section 6 takes care of a technical detail
left aside in the earlier critical pairs/completion oriented sections, namely that of how to
construct a compatible order on the set of networks, to ensure termination.

2 Network formalism for bi- and Hopf algebras

In a Hopf algebra H over a field K, there are five multilinear operations:

multiplication
µ : H⊗H −→ H

antipode
S : H −→ H

unit
u : K −→ H

coproduct
∆: H −→ H⊗H

counit
ε : H −→ K

A bialgebra is not required to have an antipode. The graphic symbols shown are used
to denote these operations in network notation expressions (see [3, Sec. 5] for the formal
definition of network notation). These networks will be directed acyclic graphs where each
inner vertex is one of the above five, and all edges by convention are directed downwards; no
arrowheads are drawn. Edges beginning at the top of the network correspond to inputs and
edges ending at the bottom correspond to outputs; together, these constitute the legs of the
network. A network may be interpreted as a “circuit” performing Hopf algebra operations;
any antichain k-edge-cut separating input side from output side is then the location of an
intermediate result of the circuit; technically such an intermediate result is an element of
the tensor power H⊗k. When occurring as parts of a larger mathematical formula, network
expressions are for clarity framed in brackets, like so:

− [ ]
−

[ ]
+
[ ]

The rightmost of these networks is the identity map id⊗2 = id⊗ id : H⊗2 −→ H⊗2, whereas
the first three in categorical notation rather would be ∆ ◦ µ ◦ (S ⊗ S), (id⊗ µ) ◦ (∆⊗ id),
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and (µ⊗ id) ◦ (id⊗∆). The rewriting formalism applied operates on linear combinations of
networks, but the bialgebra and Hopf algebra axioms are all binomial, so the reader may for
this paper ignore that aspect. (Rewrite rules always have simple networks, as opposed to
formal linear combinations of networks, as left hand sides. Critical pairs/ambiguities thus
only arise at simple networks, even though their resolutions might involve linear combinations
if there are rules introducing such.)

Rewrite rules act on networks in the pictorially intuitive way of removing a subnetwork
isomorphic to the left hand side and instead splicing in a subnetwork isomorphic to the right
hand side, making sure that corresponding legs of the left and right hand sides are spliced
into the same edge of the network being rewritten. Thus the rule

[ ]
→

[ ]
can change


 into


 ;

it makes no mathematical difference that the crossing of two edges is shown above the two
antipodes in the right hand side of the rule but below them in the spliced network (rightmost),
as in this formalism the crossing of two edges is merely a presentational artifact that arises
when the abstract network (a graph not given with an embedding) has to be depicted on a
two-dimensional page.

Critical pairs (the formal term used in [3] is decisive ambiguities) arise when the left
hand sides of two rules occur as overlapping subnetworks of some network that they cover
completely, at least in the case of the rewrite systems considered here. (In some more general
cases, there can be an ambiguity even when there is not an overlap.)

3 The bialgebra axioms and rewriting system

The bialgebra axioms are straightforward to state as network rewrite rules. First, there are
the axioms for an associative unital algebra

associativity

s1 :
[ ]

→

[ ]
µ ◦ (id⊗ µ)→ µ ◦ (µ⊗ id)

left unit

s2 :
[ ]

→
[ ]

µ ◦ (u⊗ id)→ id

right unit

s3 :
[ ]

→
[ ]

µ ◦ (id⊗ u)→ id

then the dual axioms (obtained from the above by exchanging the roles of inputs and outputs)
for a coassociative counital coalgebra

coassociativity

s4 :
[ ]

→

[ ]
(id⊗∆) ◦∆→ (∆⊗ id) ◦∆

left counit

s5 :
[ ]

→
[ ]

(ε⊗ id) ◦∆→ id

right counit

s6 :
[ ]

→
[ ]

(id⊗ ε) ◦∆→ id

and finally the axioms relating co- and non-co operations

s7 :
[ ]

→
[]

s8 :
[ ]

→
[ ]

s9 :
[ ]

→
[ ]

s10 :
[ ]

→

[ ]
ε ◦ u→ id⊗0 ∆ ◦ u→ u⊗ u ε ◦ µ→ ε⊗ ε ∆ ◦ µ→ µ⊗ µ ◦

id⊗ τ ⊗ id ◦
∆⊗∆
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where id⊗0 is the neutral element with respect to the tensor product operation ⊗ and τ

is a “twist” map defined by τ(x ⊗ y) = y ⊗ x for all x and y; it is usually when reaching
expressions the size of the right hand side of s10 that one starts to appreciate the network
notation (and its less formalised kin, such as ‘shorthand diagrams’ [7] and Penrose’s pictorial
notation [9]) as an improvement over the raw categorical notation. In more traditional
algebraic presentations, axioms s7 and s9 are often combined into the claim that ε is a unital
algebra homomorphism, whereas axioms s8 and s10 combine into the same claim about ∆.
The crossing of edges (or τ twist) in the right hand side of s10 is then swept under the rug
as a detail of how the multiplication operation of a tensor product algebra H⊗H is defined,
but it is an important feature which deserves to be made explicit.

A sequence of rewriting steps modulo the system {s1, s2, . . . , s10} is
 s10→


 s9→

[ ]
s5→

[ ]
s5→
[ ]

and that is also half of the resolution of the critical pair formed by rules s10 and s5; the
other half amounts to just one application of s5. The full list1 of networks being sites of
critical pairs for this rewriting system is

 , [ ]
,


 ,


 , [ ]

,


 ,


 ,

[ ]
,


 , [ ]

,

  ,
  ,

  ,
  ,

  ,
  ,


 ,


 ,


 ,


 ,


 ,




and these all resolve in a quite straightforward manner. This list was compiled by enumerating
all networks that satisfy the conditions of [3, Lemma 10.15]. Together with the quasi-order
discussed in Section 6, this meets the conditions of the network rewriting diamond lemma [3,
Th. 10.24], and so it follows that:

I Theorem 1. The rewriting system {sk}10
k=1 is terminating and confluent.

Remark on proof. This may seem abrupt, but proofs of confluence using a diamond lemma
admit a degree of stylisation that almost render them redundant. Recall that a diamond
lemma is a theorem of the form that if certain prerequisites are met, then various claims are
equivalent; one of these claims is that a rewriting system is confluent and another that the
rewriting system is locally confluent at each critical pair. Proofs relying upon it therefore
tends to have two parts: first check that the prerequisites are met, which among other things

1 This list of critical pairs, resolutions of these critical pairs, ditto for the extensions of the rewriting
system treated below, and all drawings of networks shown in this paper, were computed using a utility
for completion in network rewriting that was written by the author. The homepage of that utility, where
its sources are available for download, is currently http://www.mdh.se/ukk/personal/maa/lhm03/sw/
rewriting

http://www.mdh.se/ukk/personal/maa/lhm03/sw/rewriting
http://www.mdh.se/ukk/personal/maa/lhm03/sw/rewriting
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establishes termination, second check the local confluence. But when termination holds, the
matter of local confluence becomes algorithmically decidable, so recording the details of those
calculations is not essential for the proof. The second part can therefore be abbreviated pretty
much to the point of being omitted entirely, and the first part is often completely standard.
(For this particular theorem, it is not so standard; the argument underlying termination can
be found in Section 6, since the same argument would be used for all rewriting systems in
this paper.)

What, on the other hand, may require a great deal of ingenuity and calculations is the
construction of the confluent rewrite system. But the rewrite system must be included
already in the statement of the theorem, so in a sense such claims tell the reader how to
prove them. J

Networks which are built from µ, u, ∆, and ε vertices and moreover are on normal
form with respect to {sk}10

k=1 can be fully characterised. Let M0 = u, M1 = id, Mi+2 =
Mi+1 ◦ (µ⊗ id⊗i) for i > 0. Dually let D0 = ε, D1 = id, and Di+2 = (∆⊗ id⊗i) ◦Di+1 for
i > 0. Then the networks on normal form consist of three layers and have the overall form
A ◦ B ◦ C, where A =

⊗m
k=1Mpk

for some numbers {pk}mk=1 ⊆ N, the middle B part is a
permutation, and C =

⊗n
k=1Dqk

for some numbers {qk}nk=1 ⊆ N. In other words, the A
part contains all the µ and u, whereas the C part contains all the ∆ and ε, and both the A
part and the C part are written on left-leaning form.

4 The Hopf algebra axioms and rewriting system

The situation for Hopf algebras is far more complicated. The traditional axiom system for
these adds just two axioms to the ten of a bialgebra, namely

fa0 :


→ [ ]

and fb0 :


→ [ ]

.

Logically, these two are all that is needed, but in practical calculations one needs to employ
a number of derived rules. In particular, there are four rules describing interaction of an
antipode with one of the four bialgebra operations:

s11 :
[ ]

→

[ ]
s12 :

[ ]
→

[ ]
s13 :

[ ]
→
[ ]

s14 :
[ ]

→
[ ]

The rules s13 and s14 for how an antipode interacts with a counit and unit are fairly
straightforward; they are among the first things an automated completion procedure discovers
when given the Hopf algebra axioms as input, and the derivation of s14 is merely

[ ]
s7←

  fb0←


 s8→

  s3→

[ ]
.

The rules s11 and s12 for how an antipode interacts with the multiplication and coproduct
are on the other hand among the last spurious rules such a procedure discovers; a derivation
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of s11 with some steps combined is

[ ]
s3,s6←


 fa0←


 s1,s4→




s3,s6←




fa0←




s4→

s4→




s1↔




s10←




fb0→


 s9→


 s2,s5→

[ ]
(1)

and the derivation of s12 is just the vertical flip (exchanging inputs and outputs, multiplication
and coproduct, and unit and counit) of this one.

Given rules s11 and s12, it is easy to see that these will form critical pairs with the axioms
fa0 and fb0 that lead to the failed resolutions

 s11←


 fa0→


 s14→

[ ]
and


 s11←


 fa0→


 s14→

[ ]
.

This thus calls for the introduction of two derived rules fc0 and fd0, which are themselves
involved in similar critical pairs, that in turn call for another two derived rules with an extra
pair of antipodes and an extra crossing. Since crossing twice takes one back to the original
uncrossed state, this second pair of derived rules may be called fa1 and fb1 as they look
just like fa0 and fb0, except with two extra antipodes on each of the two paths between
coproduct and multiplication:

fa1 :


→

[ ]
fb1 :


→

[ ]

Continuing this way, one will generate four infinite families of rules, where the members of
a family differ only in how many extra antipodes are inserted between the coproduct and the
multiplication in the left hand side, but all rules in a family have the same right hand side.
To present this succinctly in network notation, it becomes convenient to introduce a special
double antipode sequence vertex , that denotes a path of some 2n antipode vertices; the
number n will appear as an index in the rule name. Note especially that all double antipode
sequence vertices in a single network denote the same even number of antipodes. Using this,
the fan, fbn, fcn, and fdn families of rules are what is shown in the top row of Figure 1.

Families a–d also form critical pairs with rules s1 and s4, that do not resolve using the
rules mentioned so far; one example is

 s1←


 fan→

[ ]
s3→
[ ]

.
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
 fan→

[ ] 
 fbn→

[ ] 
 fcn→

[ ] 
 fdn→

[ ]


 fen→

[ ]


 ffn→
[ ]


 fgn→

[ ]



fhn→
[ ]


 fin→

[ ] 
 fjn→

[ ]


 fkn→
[ ]




fln→
[ ]




fmn→ [ ]


 fnn→ [ ]




fon→ [ ]




fpn→ [ ]

Figure 1 The sixteen infinite families of rewrite rules for Hopf algebras. The letters a–p in the
index correspond to the subequation labels in [3, Eq. 1.2], where this system of rewrite rules was
first announced.

These failed resolutions thus give rise to additional families of derived rules; with s1 one gets
fen through fhn and with s4 one gets fin through fln, also defined in Figure 1. Furthermore
families e–h form critical pairs with s4 that give rise to another four families m–p, and those
same four families also arise from critical pairs of s1 and a member of families i–l. But after
these last four that bring the total up to sixteen families {fan}∞n=0 through {fpn}∞n=0, there
are no more derived rules to discover; the rewrite system is, as shall be shown in Section 5,
complete.

The last four families, the simplest member of which is

fn0 :


→ [ ] , so that


→

[ ]

(the filled vertex in that formula is to be read as a placeholder for an arbitrary network
expression) do however exhibit an interesting property: they apply even in places where the
first input is reachable from the first output. Note that since networks are by definition DAGs,
a rewrite formalism for networks may not perform any surgery that would introduce cycles.
A simple condition to that effect would be that left hand sides of rules may only be identified
with networks in such a way that no directed path exists from a left hand side output to a
left hand side input, because that ensures the result of applying the rule is also acyclic no
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matter what the right hand side looks like. Though simple, this convexity condition turns
out to be a bit too restrictive in practice, and a more appropriate condition is that a rewrite
rule should not introduce any new connections; the right hand side should not have a path
from input j to output i unless there was such a path in the left hand side.

Remember that a derived rule can be considered a bottled sequence of proof steps
exercising more elementary rules; any application of a derived rule can, as far as equational
reasoning is concerned, be replaced by a sequence of more elementary steps. When considering
such a sequence of steps in the context of a larger network, there is no a priori reason why
the union of the subnetworks operated upon in the more elementary steps should always
be convex, and in general it will indeed not be. What matters for the validity of a derived
rule is merely that the elementary steps it is a parcel for can be carried out in every context
where the rule is claimed to apply, and that is certainly the case with rule families m–p.

Experience with completing a modification of the Hopf axiom system suggests that rules
will typically become nonconvex as soon as they grow complicated enough. An open problem
in the more general case is however that there may exist more connections in the intermediate
steps of a rule derivation than there are in neither the final left or right hand sides. In this
case the rule is non-sharp [3, Def. 10.3], and it may be involved in critical pairs other than
the decisive ambiguities, a matter which requires further research [4]. The rewrite rules
considered in this paper are however all sharp, so that is not a concern for the results stated
here.

5 Confluence of the Hopf system

For the matter of proving confluence of the system of Hopf algebra rules derived in the
previous section, one may begin with the system of the fourteen spurious rules s1 through
s14. Since this is a superset of the bialgebra system, all the critical pairs of that system arise
again, but they can also be resolved in exactly the same way as there. The additional critical
pairs that arise are at the sites

 ,


 ,


 ,


 ,


 ,


 ,

 ,
  ,

  ,[ ]
,

and these also resolve through straightforward calculations. Again putting aside until
Section 6 the technical details concerning the construction of a compatible order on the set
of networks, it may now be claimed that:

I Theorem 2. The rewriting system {sk}14
k=1 is terminating and confluent.

The normal form modulo {sk}14
k=1 of a Hopf algebra expression is a three-layered A◦B ◦C

as in the case of a bialgebra, but with the difference that B in this case may contain antipodes.
Hence rather than being a simple matching (as permutations are), the B network is in general
a disjoint union of paths where each path may contain any number (including 0) of antipode
vertices. Adding the sixteen infinite families to the system will reduce that slightly, but not
very much.

Continuing with that full rewriting system F = {sk}14
k=1 ∪{fan}∞n=0 ∪ · · · ∪ {fpn}∞n=0, one

may first observe that the spurious rules s3, s6, s7, s13, and s14 do not form any critical pairs
with the family rules. Rules s8 and s9 form critical pairs, but these all resolve very easily
as a unit or counit will effectively gobble any vertex to which it becomes adjacent. Rules
s1, s2, s4, s5, s11, and s12 are another matter, as they get involved in a rather complicated
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fon fgn ffn fnn

fln fdn fbn fjn

fin fan fcn fkn

fmn fen fhn fpn

s1, s4
s1 s1

s1, s4

s1s1

s1 s1

s1 s1
s1s1

s1, s4
s1 s1 s1, s4

s2 s2 s2 s2

s2 s2 s2 s2

s4

s4

s4

s4

s4

s4

s4

s4

s4

s4

s4

s4

s5

s5

s5

s5

s5

s5

s5

s5

s11s11

s11s11

s11

s11s11

s11

s11

s11

s11

s11

s11

s11
s11

s11

s12

s12

s12

s12

s12

s12

s12

s12

s12

s12
s12

s12

s12

s12
s12

s12

Figure 2 The effect of spurious rules on family rules. Critical pairs formed by one spurious rule
from {s1, s2, s4, s5, s11, s12} and some rule fxn from one of the sixteen infinite families resolve in a
number of spurious rule steps and one family rule step; in several but not all cases, these resolutions
can alternatively be used as derivations of that family rule. The head of an arrow point at the family
of which a member might be derived, whereas the family at the tail and the arrow label correspond
to the rules that would be involved in the critical pair.

dance of transforming rules of one family into rules of another family (or sometimes the same
family); Figure 2 gives an overview of how the families connect. If not for the fact that all
rules in a family form the same kind of critical pair with a spurious rule, and also that the
resolutions are (within each family) all trivial variations on each other, it would be very hard
to verify that the resolutions all succeed. The sheer volume of calculations that are needed is
such that one appreciates also having obtained a computer verification2 of them (for the first
couple of rules from each family), even though it remains within the realm of what can be
carried out manually.

The final spurious rule s10 is not only the one most prolific in forming critical pairs with
family rules (once for the coproduct at the top, once for the multiplication at the bottom),
but also the one which creates the most complicated intermediate steps in their resolutions.

2 Using the utility mentioned in a previous footnote.
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A typical sequence is
 s10→




s12
→∗


 s12→


 s4→




where now a rule from family fjn applies on the subnetwork containing the right multiplication,
and then a rule from family fan resolves the rest. In the middle step it looks unlikely that any
family rule can apply, because the crossing introduced by rule s10 means that two paths of
antipodes that are adjacent on the coproduct side are not adjacent on the multiplication side,
but what makes everything fit together is that one of the original paths between coproduct
and multiplication has an even number of antipodes whereas the other has an odd number,
and thus there is an extra twist at the end which makes one pair of paths adjacent on both
sides, after which the resolution becomes straightforward. So even though rule s10 creates
a lot of noise as far as critical pairs are concerned, it does not really contribute anything
interesting here. (Note however that rule s10 plays a crucial role at one point in the derivation
(1) of rule s11.)

The final case of critical pair would be one formed by two family rules, and although
that happens (for example between fan and fmn), it does not happen very often. The main
reason is that the overlap has to take the form of a path starting in a coproduct, passing
some number of antipodes, and ending in a multiplication; this places a strong restriction
on the n values that might be involved, as both rules must have such paths with the same
number of antipode vertices. Considering in addition that twisted families (c, d, g, h, k, l, o,
and p) cannot form overlaps with the straight families (a, b, e, f, i, j, m, and n), one ends
up with the conclusion that the n values of both rules involved must in fact be equal, and
then it follows that all these critical pairs have trivial resolutions. Thus we have, again in
anticipation of the technical details that will be dealt with in the next section, the main
claim that:

I Theorem 3. The full Hopf rewriting system F is terminating and confluent.

As before, networks on normal form with respect to F can be written as A ◦B ◦C where
all the µ and u are in A, all the antipodes S are in B, and all ∆ and ε are in C. What is new
in the full system is that those arrangements of coproduct, antipodes, and multiplication
upon which one of the family rules would act are forbidden, but which arrangements are
those? Define a mid-section path of a network to be one that begins in a coproduct, have
antipodes as inner vertices, and ends in a multiplication. Two mid-section paths are said to
be adjacent on the coproduct or multiplication side if their outermost vertices on that side
are adjacent or coincide. Clearly, the family rules may only apply to pairs of paths that are
adjacent on both sides. Moreover, the number of antipodes on the paths in the pair must
differ by 1, and the paths must cross (or not cross) depending on whether it is the path with
the even number of antipodes that is the longer (or shorter, respectively).

6 Compatible ordering of networks

The diamond lemma in [3] is a descendant of Bergman’s diamond lemma for associative
algebras [1], so it requires a well-founded quasi-order P on the set of networks, that on
one hand is compatible with the rules of the rewriting system, and on the other is strictly
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preserved under composition of networks. This turns out to not be entirely trivial to construct
in this setting.

The main complication is the coproduct–multiplication rule s10, since this has the
unhelpful property of increasing the number of vertices in a network; were it not for this (and
to a lesser extent rules s11 and s12), one could have ensured well-foundedness simply by first
ordering networks by the number of vertices in them. A generalisation to weighted vertex
counts achieves nothing, since one would need wµ +wu > 0 for rules s2 and s3, w∆ +wε > 0
for rules s5 and s6, wµ > wε for rule s9, w∆ > wu for rule s8, and 0 > wµ + w∆ for rule
s10, all of which taken together merely imply that we have equality in all those inequalities.
Beyond weighted vertex counts, it is not easy to come up with an ordering principle that is
preserved under composition; most elementary suggestions of orders one can make up that
do take the structure of an expression into account tend to fail at being preserved under
composition.

Might it be better to orient some rules the other way? But no, this is the natural
orientation; rules s8, s9, s10, s11 and s12 expand things, whereas most of the others remove
superfluous operations, and only the orientations of s1 and s4 are really arbitrary. It is
natural that s11 changes expressions so that antipodes are applied before the multiplication
rather than after, so how would one formalise this intuition? Obviously the order in which
operations are performed matters, but how does one express that when comparing networks,
as the structure of one network can be quite different from the structure of another? One
possibility is to compare the sequence in which different vertex types occur along paths from
input to output, because in the left hand side of s10 each path passes first a µ vertex and
then a ∆ vertex, whereas in the right hand side it is ∆ first and µ second; the same kind
of condition works for s11 and s12. The only catch is that in order to be preserved under
composition of networks, these comparisons must be performed separately for each pair of
input and output, and also separately for paths that begin or end within a network.

In the end, it turns out to be sufficient to compare the number of paths through a network,
provided that vertices are replaced by suitable gadgets, as follows:

7→ 7→ 7→

Unfilled circles (like for the unit u and counit ε) may serve as start or end point of a path, but
the filled dots may only occur as inner vertices on a path; hence a multiplication µ counts as
having three types of paths: paths from the left input passing through, paths from the right
input passing through, and paths beginning here and continuing through the output. With
these substitutions, it turns out that both the left and right hand sides of s10 contribute the
same number of paths reaching the boundary of the network (despite the right hand side
having 3 edges more), but the left hand side in addition has a path that both starts and ends
within the network (starting at the µ, ending at the ∆), which the right hand side does not
(since every µ there, where such a path might start, comes after the ∆s where it would have
to end), and therefore the left hand side achieves a greater number of paths than the right
hand side. Similarly in rule s11, the antipode doubles the number of paths passing through
it, but it is only in the left hand side that the antipode also doubles the number of paths
beginning at the multiplication. This is how these rules can be oriented from greater to
smaller, even though there are more vertices in the right hand side than in the left hand side.

That is however the intuitive explanation. The formal nonsense is rather that a suitable
quasi-order is constructed by pulling back the standard [3, Constr. 6.1] PROP quasi-order [3,
Def. 3.1] on the biaffine PROP Baff(N) [3, Ex. 2.15] along a cleverly chosen PROP homo-
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morphism, namely that g which satisfies

g(µ) =

1 0 0 0
0 1 0 0
0 1 1 1

 g(u) =

1 0
0 1
0 1

 g(∆) =


1 0 1
0 1 0
0 0 1
0 0 1

 g(S) =

1 0 0
0 1 0
0 0 2


g(ε) =

(
1 0 1
0 1 0

)
;

these conditions uniquely determine a homomorphism, because the set of all networks is the
free PROP [3, Th. 8.4]. The italic matrix entries are those that are not fixed for elements
of the biaffine PROP and thus may be chosen, although for the resulting PROP order to be
strict it is necessary that there is at least one positive element in each row and at least one
positive element in each column [3, Cor. 6.5]. The relevant interpretation of an element of
Baff(N) is that the (i+ 2, j + 2) entry keeps track of the number of paths going from input j
to output i of a network, whereas entry (i+ 2, 2) keeps track of the number of paths which
begin inside the network and reach output i, entry (1, j + 2) keeps track of the number of
paths which come from input j but end inside the network, and entry (1, 2) keeps track of
the number of paths which both begin and end inside the network. Thus the above argument
about counting paths in a gadgetified s10 corresponds to the observation that

g

([ ])
=


1 1 1 1
0 1 0 0
0 1 1 1
0 1 1 1

 >


1 0 1 1
0 1 0 0
0 1 1 1
0 1 1 1

 = g

([ ])
.

What is not distinguished by the order pulled back over that g are the left and right
hand sides of rules s1 and s4; since these impose a left–right asymmetry, they would interact
poorly with the left–right swaps introduced by rules s11 and s12. To orient also these, one
introduces a secondary comparison criterion (technically makes a lexicographic composition [3,
Constr. 3.7] of quasi-orders) by pulling back along a second cleverly chosen homomorphism
g2, for example that which has

g2(µ) =

1 0 0 1
0 1 0 0
0 1 1 1

 g2(∆) =


1 0 1
0 1 0
0 0 1
0 1 1


In the path-counting interpretation, this amounts to adding the opportunity to end a path
entering through the right input of a µ and begin a path leaving through the right output of
a ∆. This causes the third input of a right-leaning µ ◦ (id ⊗ µ) to offer two chances for a
path to end, whereas the third input of a left-leaning µ ◦ (µ⊗ id) only sees one; this suffices
for making the left hand side of s1 strictly larger than the right hand side.

Two additional results of [3] that are important in verifying that the quasi-order con-
structed as described above meet the conditions for the diamond lemma (Th. 10.24) are
Corollary 9.16 and Lemma 9.18. Arguably also Lemma 3.5 on well-foundedness, but that
result is on the other hand quite standard.

7 Final remarks

An anonymous reviewer has asked about the difficulty of finding redexes in network rewriting.
Since network rewriting is nondeterministic, this ends up being a search problem, but the
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search is in practice fairly constrained: most of the time, a redex is uniquely determined by
the correspondence of one vertex in the rule left hand side to one vertex in the network being
reduced, because each edge incident with a vertex occupies a distinct “port” on that vertex
(e.g. multiplication µ has a left incoming factor, a right incoming factor, and an outgoing
result, no two of which are interchangeable). Therefore it is feasible to pick one vertex in
the left hand side and try to match it against each vertex of the network to reduce; when
things don’t match, one tends to discover that early, and the only case in which the search
might need to backtrack would be for a left hand side that is not connected. There are
some additional complications related to keeping track of the transference types of rules [3,
Defs. 6.14, 10.3], which can prevent something from being a redex even though the networks
match, but that boils down to doing some extra bookkeeping.

A somewhat tougher problem is how to check which rules in a rewrite system might apply
to a given network, especially when the rewrite system is large and in flux due to a (Knuth–
Bendix style) completion being in progress. The author has implemented a system where
each network is assigned a “signature” that counts occurrences of various small subgraphs
therein, to the end of only considering rules whose signature is dominated by that of the
target network. The performance has been good enough that reduction is not perceived as a
problem when running large completions.
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Abstract
We present an elementary proof of the classical result that the leftmost outermost strategy
is normalizing for left-normal orthogonal rewrite systems. Our proof is local and extends to
hyper-normalization and weakly orthogonal systems. Based on the new proof, we study basic
normalization, i.e., we study normalization if the set of considered starting terms is restricted to
basic terms. This allows us to weaken the left-normality restriction. We show that the leftmost
outermost strategy is hyper-normalizing for basically left-normal orthogonal rewrite systems.
This shift of focus greatly extends the applicability of the classical result, as evidenced by the
experimental data provided.

1998 ACM Subject Classification F.4.2 Grammars and Other Rewriting Systems

Keywords and phrases term rewriting, strategies, normalization

Digital Object Identifier 10.4230/LIPIcs.RTA.2015.209

1 Introduction

The (hyper-)normalization of the leftmost outermost strategy is a fundamental result in
Combinatory Logic and λ-calculus. The importance of hyper-normalization as opposed to
normalization stems from the fact that this property is essential to show that all partial
recursive functions are definable in λ-calculus and Combinatory Logic. Consequently, nu-
merous (hyper-)normalization proofs can be found in the literature and the result is of
foundational interest.

On the other hand, as already observed by O’Donnell [20] effective normalization results
are of significant practical interest. Functional programming languages need to be efficiently
implemented. For this it is mandatory to study computable and normalizing strategies. Our
motivation is mainly concerned with such practical considerations. Consider the term rewrite
system (TRS for short) consisting of the rewrite rules

primes(n)→ take(n, sieve(from(s(s(0))))) filter(0, y : z, w)→ 0 : filter(w, z, w)
sieve(0 : y)→ sieve(y) filter(s(x), y : z, w)→ y : filter(x, z, w)

sieve(s(x) : y)→ s(x) : sieve(filter(x, y, x)) take(0, y)→ nil
from(x)→ x : from(s(x)) take(s(n), x : y)→ x : take(n, y)

encoding the sieve of Eratosthenes.
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When normalizing a term like primes(s(s(s(0)))), it is important to adopt a good evalua-
tion strategy in order to avoid getting trapped in an infinite computation, which happens for
instance with any innermost strategy. Efficiency is another desirable property of a strategy.

Since the TRS is orthogonal, we know that the maximal (parallel) outermost strategy is
normalizing (see O’Donnell [20]) but it is also known that the maximal outermost strategy is
not optimal in the sense that redexes are contracted which do not contribute to the normal
form. Needed reduction is an optimal one-step normalizing strategy for orthogonal TRSs but
in general not computable [15]. As a matter of fact, our example TRS happens to be strongly
sequential and hence admits a computable optimal one-step strategy [16]. This strategy can
be implemented using advanced data structures (matching dags [16], definitional trees [2]
for constructor TRSs). Moreover, showing strong sequentiality of orthogonal TRSs is a
non-trivial matter [7].

What about a popular and easy to implement strategy like leftmost outermost? Since
left-normality is not satisfied, we actually do not know whether the leftmost outermost
strategy is normalizing for this TRS. In this situation, we propose a shift of focus. Instead of
contemplating normalization of all terms, we restrict our attention to specific starting terms,
following the example of the term primes(s(s(s(0)))). That is, for practical considerations
it seems sufficient if we restrict the set of starting terms to basic terms, which are terms
that contain exactly one defined symbol, at the root position. This allows us to replace
left-normality by a significant weaker restriction. This restriction, which we name basic
left-normality, is satisfied for the above and many other non-left-normal TRSs, as witnessed
by the experimental data that we present in this paper.

The proof is based on usable replacement maps, which were originally introduced by
Fernández [10] for innermost termination analysis and adapted for complexity analysis of
(full) rewriting in [14]. Effective computation of an approximation of usable replacement
maps based on unification and fixed point computation is established in [14]. Employing
this approximation in the context of basic left-normality yields an easily decidable criterion
that ensures the normalization of the leftmost outermost strategy. Furthermore the strategy
itself is very easy to implement.

There is a strong and ongoing trend to certify well-established results in all areas of
rewriting. Certification not only helps to identify bugs in automated tools, but may also
reveal mistakes in the underlying theory. Moreover, the huge body of research in this area
shows that it is not unrealistic to aim for the certification of competitive tools. As our
motivation is practical, certifiability of strategy tools is clearly of interest to us. Thus in
addition to providing a simple and easy to implement strategy for basically left-normal
TRS, we provide a formal foundation that is eventually machine-checkable, in order to yield
certified evaluations.

Contribution. In this paper we introduce the class of basically left-normal weakly orthog-
onal TRSs, for which we establish the fundamental result of hyper-normalization for the
leftmost outermost strategy starting from basic terms. Along the way we present an ele-
mentary proof of the hyper-normalization of the leftmost outermost strategy for the class
of left-normal weakly orthogonal TRSs, which is a known result (Toyama [25]). Our proof
is based on abstract quasi-commutation properties in connection with a careful analysis of
the interplay of single leftmost outermost steps and parallel non-leftmost outermost steps.
This gives rise to a local proof which lends itself better to future formalization efforts. We
provide experimental evidence which clearly shows the applicability of our result.
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Organization. The remainder of the paper is organized as follows. In the next section we
recall some rewriting preliminaries and we present the abstract results on which our hyper-
normalization proof is based. Section 3 contains the new proof that the leftmost outermost
strategy is hyper-normalizing for left-normal weakly orthogonal TRSs. This result is ex-
tended to basic hyper-normalization in Section 4, where we also report on our experiments.
In Section 5, we discuss related work. Finally, in Section 6, we conclude, where we also
discuss future work.

2 Preliminaries

We assume familiarity with term rewriting and all that (e.g., [3]) and only shortly recall
notions that are used in the following.

An overlap (`1 → r1, p, `2 → r2)µ of a TRS R consists of variants `1 → r1 and `2 → r2
of rules of R without common variables, a position p ∈ PosF (`2), and a most general unifier
µ of `1 and `2|p. If p = ε then we require that `1 → r1 and `2 → r2 are not variants of
each other. The pair ((`2µ)[r1µ]p, r2µ) is called a critical pair of R. A pair (s, t) is trivial
if s = t. Left-linear TRSs without critical pairs are called orthogonal. A left-linear TRS is
weakly orthogonal if all critical pairs are trivial.

I Definition 1. The relations <l and <lo on positions is inductively defined as follows:

i < j

i p <l j q

p <l q

i p <l i q

p 6= ε

ε <lo p

i < j

i p <lo j q

p <lo q

i p <lo i q

Here i and j are positive integers and p and q are positions. Distinct positions are called
parallel if they are comparable with <l. For a set of parallel positions Q we write p <lo Q if
p <lo q for all q ∈ Q.

We have p <l q if and only if position p is to the left of q. It is easy to see that <lo is a
total order on positions. It is the union of <l and the standard prefix order <. So p <lo q if
and only if p is to the left of q or p is strictly above q.

I Definition 2. The rewrite step that contracts a redex at a position p is denoted by →p.
We write lo(t) for the smallest redex position with respect to <lo. A redex at position lo(t)
is called leftmost-outermost and we write t lo−→ u for t→lo(t) u.

I Definition 3. A term t is called left-normal if function symbols precede variables when
t is written in prefix notation. Formally, if p ∈ PosV(t) and q ∈ Pos(t) with p <lo q then
q ∈ PosV(t). A TRS R is left-normal if the left-hand side ` of every rule ` → r ∈ R is a
left-normal term.

I Definition 4. Parallel rewriting is inductively defined by the following three clauses:
t −−→‖ ∅ t for every term t,
`σ −−→‖ {ε} rσ for every rewrite rule `→ r and substitution σ,
f(s1, . . . , sn) −−→‖ P f(t1, . . . , tn) if si −−→‖ Pi

ti for all 1 6 i 6 n and P = {i p | 1 6 i 6 n

and p ∈ Pi}.
We write s −−→‖ t if s −−→‖ P t for some set of positions P .

We conclude this section by stating the abstract results that will be used in Section 3.
We deal with abstract rewrite systems (ARSs) 〈A,→〉 whose relation → is decomposed into
two, not necessarily disjoint, parts →α and →β . In order to reduce the number of arrows,
we denote the individual relations →α and →β of such an ARS 〈A, {→α,→β}〉 simply by α
and β.
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Let A = 〈A, {α, β}〉 be an ARS. We say that α quasi-commutes over β if the inclusion
→β · →α ⊆ →α · →∗ holds. The following easy result was first stated in [12].

I Lemma 5. Let A = 〈A, {α, β}〉 be an ARS. If →β · →α ⊆ →∗α · →=
β then →∗ ⊆ →∗α · →∗β.

Proof. From the assumption we obtain→β · →∗α ⊆ →∗α · →=
β by a straightforward induction

proof. We show→n ⊆ →∗α · →∗β by induction on n > 0. If n = 0 the inclusion holds trivially.
Suppose a → b →n c. The induction hypothesis yields a → b →∗α · →∗β c. We distinguish
two cases. If a→α b then a→∗α · →∗β c holds without further ado. If a→β b then we obtain
a→∗α · →=

β · →∗β c from the strengthened assumption and thus also a→∗α · →∗β c. J

The following result is due to Bachmair and Dershowitz [4]. Here α/β denotes the
relation →∗β · →α · →∗β and α/β-termination is perhaps better known as the termination of
α relative to β.

I Lemma 6. Let A = 〈A, {α, β}〉 be an ARS. If α quasi-commutes over β then every
α-terminating element is α/β-terminating.

Proof. From the quasi-commutation assumption we obtain →∗β · →α ⊆ →α · →∗ by a
straightforward induction argument. So α quasi-commutes over β∗. We prove that every α-
terminating element a ∈ A is α/β-terminating by well-founded induction on the restriction
of →α to α-terminating elements, which is a well-founded relation. If a ∈ NF(α/β) then the
claim is trivial. Consider an arbitrary step a →α/β b, i.e., a →∗β · →α · →∗β b. Using the
quasi-commutation of α over β, the latter sequence can be written as a →α a

′ →∗ b. The
element a′ is α-terminating because a is α-terminating and a →α a

′. Hence the induction
hypothesis yields that a′ is α/β-terminating. Since →∗ =→∗β ∪→∗α/β and α/β-terminating
elements are preserved under →β , it follows that b is α/β-terminating. Because this holds
for any step a→α/β b, element a is α/β-terminating. J

A rewrite strategy S for an ARS A = 〈A,→A〉 is a relation →S such that →S ⊆ →+
A

and NF(→S) = NF(A). A one-step strategy S satisfies →S ⊆ →A. We say that a strategy
S is deterministic if a = b whenever a S← · →S b. A rewrite strategy S for an ARS
A is normalizing if every A-normalizing element is S-terminating. Here an element a is
A-normalizing if a →∗A b for some b ∈ NF(A). We call S hyper-normalizing if every A-
normalizing element is S/A-terminating. Normalization is the property that by repeatedly
performing steps according the strategy a normal form will be computed, provided the
starting term has a normal form. Hyper-normalization is a much stronger property. It
guarantees that normal forms will still be computed even if between successive strategy
steps arbitrary but finitely many other steps are performed.

I Lemma 7. A deterministic rewrite strategy S for an ARS A is normalizing if there is an
ARS B with →∗A ⊆ →∗S · →∗B and NF(A) ⊆ NF(B−1).

Proof. If a→!
A b then a→∗S c→∗B b for some c. Because b ∈ NF(A) ⊆ NF(B−1), c = b and

thus a→!
S b. Since S is deterministic, it is terminating on a. J

I Theorem 8. A normalizing rewrite strategy S for an ARS A is hyper-normalizing if S
quasi-commutes over A.

Proof. Since every S-terminating element is S/A-terminating according to Lemma 6, the
result follows from the definitions of normalization and hyper-normalization. J
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3 Left-Normal Weakly Orthogonal Rewrite Systems

In this section we present a simple proof of the hyper-normalization of the leftmost outermost
strategy for the class of left-normal weakly orthogonal TRSs. The result is well-known and
different proofs can be found in the literature, especially for Combinatory Logic and left-
normal orthogonal TRSs, cf. the remarks on related work in Section 5. We give full proof
details in order to ease future certification efforts. Let R be a TRS and let → denote the
induced rewrite relation.

I Definition 9. A position p in t overlaps with q (from above) if there are a rule `→ r ∈ R
and p′ ∈ PosF (`) such that t|p is an instance of ` and q = pp′.

The key to our proof is the following restriction of parallel rewriting.

I Definition 10. We write s
¬lo
−−→‖ t if s −−→‖ P t such that lo(s) overlaps with none of the

positions in P . If P is a singleton set, we may write s ¬lo−−→ t.

For orthogonal TRSs we have s
¬lo
−−→‖ t if and only if s −−→‖ P t with lo(s) /∈ P . We start

our analysis with a number of results that do not rely on left-normality.
The following lemma is obvious from the definition of weak orthogonality, and will be

used silently throughout the remainder of this section.

I Lemma 11. If s→p t, s→q u, and p overlaps with q then t = u.

I Lemma 12. The identity → = lo−→∪ ¬lo−−→ holds for every weakly orthogonal TRS.

Proof. The inclusion from right to left is obvious. Suppose s→p t. If p = lo(s) then s lo−→ t

by definition. If lo(s) overlaps with p then s →lo(s) t by weak orthogonality and thus also
s lo−→ t. In the remaining case we have s ¬lo−−→ t by definition. J

The next result is essentially due to Takahashi [22].

I Lemma 13. Suppose s →p t and s −−→‖ Q u such that p overlaps with all positions in Q.
If |Q| > 2 then s = t = u.

Proof. Let Q = {q1, . . . , qn} with n > 2. For 1 6 i 6 n we denote the subterm of u at
position qi by ui. So s→qi

s[ui]qi
. Now for i 6= j we obtain

s

ts[ui]qi
s[uj ]qj

pqi qj

= =

Since qi and qj are parallel, we have ui = (s[ui]qi)|qi = (s[uj ]qj )|qi = s|qi . Consequently
s→qi

s[ui]qi
= s and thus s = t. Since this holds for all 1 6 i 6 n we obtain u = s. J

I Lemma 14. The inclusion −−→‖ ⊆ lo−→∗ ·
¬lo
−−→‖ holds for every weakly orthogonal TRS.

Proof. Suppose s −−→‖ P t. We use induction on |P |. Let P1 = {p ∈ P | lo(s) overlaps with p}
and P2 = P \ P1. There exists a term u such that s −−→‖ P1 u −−→‖ P2 t. If P1 = ∅ then s = u

and if |P1| > 2 then s = u follows from Lemma 13, and thus we have s
¬lo
−−→‖ P2 t. If

|P1| = 1 then we obtain s lo−→ u from weak orthogonality. The induction hypothesis yields
u lo−→∗ ·

¬lo
−−→‖ t and thus also s lo−→∗ ·

¬lo
−−→‖ t. J
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I Lemma 15. The leftmost outermost strategy is deterministic for every weakly orthogonal
TRS.

Proof. Since the leftmost outermost redex position is unique in any reducible term, the
statement holds for any TRS without non-trivial overlays. In particular, it holds for every
weakly orthogonal TRS. J

Because of the inclusion −−→‖ ⊆ →∗, which holds for arbitrary TRSs, every parallel
rewrite step can be serialized into a sequence of rewrite steps. For orthogonal TRSs it can
be shown that every

¬lo
−−→‖ step can be serialized into a sequence of ¬lo−−→ steps. However,

the following (original) example shows that serialization of
¬lo
−−→‖ does not extend to weakly

orthogonal TRSs.

I Example 16. Consider the weakly-orthogonal TRS R consisting of the four rewrite rules

a→ b f(g(a, b))→ f(g(b, b))
g(x, y)→ g(b, b) f(g(b, a))→ f(g(b, b))

Note that R is left-normal. Let s = f(g(a, a)) and t = f(g(b, b)). We have lo(s) = 1 and
s
¬lo
−−→‖ t since s −−→‖ {11,12} t and position 1 does not overlap with 11 or 12 in s. From s we

can perform two different ¬lo−−→ steps:

s ¬lo−−→ f(g(a, b)) s ¬lo−−→ f(g(b, a))

In both cases we obtain a term which is in normal form with respect to ¬lo−−→ because the
created redex at the root position equals a left-hand side.

For the results that follow we need the restriction to left-normal weakly orthogonal TRSs.

I Definition 17. A position p is said to be below a term t if p > q for some q ∈ PosV(t).

I Lemma 18. Let t be a left-normal term and σ a substitution. If p, q ∈ Pos(tσ) such that
p is below t and p <lo q then q is below t.

Proof. We have p > q′ for some position q′ ∈ PosV(t). If q > q′ then q is below t. If q > q′
does not hold then we must have p <l q and q′ <l q. If q ∈ Pos(t) then q ∈ PosV(t) by
left-normality. Otherwise q > q′′ for some position q′′ ∈ PosV(t). In both cases we conclude
that q is below t. J

The next result can be viewed as a special case of the Parallel Moves Lemma. Although
the statement appears plausible, the proof is subtle because of weak orthogonality. Below,
we denote i · P by {i p | p ∈ P}, and write σ −−→‖ τ [X] if xσ −−→‖ xτ holds for all x ∈ X.

I Lemma 19. If R is a left-normal weakly orthogonal TRS then lo←− ·
¬lo
−−→‖ ⊆ −−→‖ · lo←−.

Proof. Let s
¬lo
−−→‖ Q t and s lo−→p u. By induction on the sum ‖Q‖ of the lengths of the

positions in Q we show the existence of a term v such that t lo−→ v and u −−→‖ v. If Q = ∅
then s = t and we simply take u = v. If ε ∈ Q then Q = {ε} and so there is nothing to show
since the assumption s

¬lo
−−→‖ Q t is violated. In the remaining case we have s = f(s1, . . . , sn),

t = f(t1, . . . , tn), si −−→‖ Qi ti for all 1 6 i 6 n, and Q = {i q | 1 6 i 6 n and q ∈ Qi}. We
distinguish two further cases, depending on the position p.
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s = f(s1, . . . , sn) s′ f(t1, . . . , tn) = t

u u′ v

‖
¬lo

j·Qj

‖
Q′

lo p p′
p′

‖ ‖
Q′

lo

‖

sj tj

uj vj

‖
¬lo

Qj

lo pj

‖

loIH

p = j · pj p <lo j ·Qj p′ = j · lo(tj) p′ <l Q
′ p′ <lo j ·Qj

s′ = f(s1, . . . , sj−1, tj , sj+1, . . . , sn) u′ = f(s1, . . . , sj−1, vj , sj+1, . . . , sn)
u = f(s1, . . . , sj−1, uj , sj+1, . . . , sn) v = f(s1, . . . , sj−1, vj , tj+1, . . . , tn)

Figure 1 The critical case in the proof of Lemma 19.

If p = ε then there exist a rewrite rule ` → r and a substitution σ such that s =
`σ and u = rσ. Since the root symbol of s is f , we may write ` = f(`1, . . . , `n).
Fix i ∈ {1, . . . , n}. We have si = `iσ −−→‖ ti. Since lo(s) = ε does not overlap with
positions in Q, all steps in s

¬lo
−−→‖ Q t take place in the substitution σ. Using the linearity

of `, it is not difficult to prove the existence of a substitution τi such that ti = `iτi
and σ −−→‖ τi [Var(`i)]. We assume without loss of generality that dom(τi) ⊆ Var(`i).
Otherwise, we can always consider the restriction of τi to Var(`i) due to the linearity
of `. Thus the substitution τ = τ1 ∪ · · · ∪ τn is well-defined and satisfies `τ = t and
σ −−→‖ τ [Var(`)]. Let v = rτ . Since parallel rewriting is closed under substitutions, we
obtain u = rσ −−→‖ rτ = v. Furthermore, we obviously have t = `τ →p rτ = v with
lo(t) = ε = p.
If p 6= ε then p = j pj for some 1 6 j 6 n and position pj ∈ Pos(sj). This case is
illustrated in Figure 1. We have ‖Qj‖ < ‖Q‖ and Qi = ∅ for all 1 6 i < j because
p <lo Q. Moreover, sj

¬lo
−−→‖ Qj

tj follows from s
¬lo
−−→‖ Q t. Hence we can apply the induction

hypothesis, yielding a term vj such that tj lo−→ vj and uj −−→‖ vj . Let s′ = s[tj ]j ,
u′ = s[vj ]j , and p′ = j · lo(tj). We have u −−→‖ u′, s′ →p′ u′, and s′ −−→‖ Q′ t with
Q′ = Q \ Qj = {i q | j < i 6 n and q ∈ Qi}. Obviously, p′ <l Q

′ and thus there exists
a term v such that u′ −−→‖ Q′ v and t →p′ v. The parallel steps u −−→‖ u′ and u′ −−→‖ Q′ v

can be combined into a single parallel step u −−→‖ v because the redexes contracted in
u −−→‖ u′ are below position j and thus to the left of all positions in Q′. It remains to
show that t lo−→ v. This is obvious if p′ = lo(t). So suppose p′ 6= lo(t), which implies
lo(t) = ε. So t = `σ for some rewrite rule ` = f(`1, . . . , `n)→ r and substitution σ. We
distinguish two further cases.

If p′ is not below ` then we obtain t lo−→ v from weak orthogonality.
If p′ is below ` then, since p′ <l Q

′, all positions in Q′ are below ` according to
Lemma 18. Since

p′ = j · lo(tj) 6 j · pj = p 6lo j ·Qj

the same holds for the positions in j · Qj . It follows that s is an instance of `,
contradicting lo(s) 6= ε. J
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The following example shows the necessity of left-normality in Lemma 19.

I Example 20. Consider the orthogonal TRS consisting of the rewrite rules

a→ b f(x, b)→ c

and the term s = f(a, a). We have s lo−→ f(b, a) and s ¬lo−−→ f(a, b) but there is no term t such
that f(b, a) −−→‖ t and f(a, b) lo−→ t.

I Lemma 21. The inclusion
¬lo
−−→‖ ⊆ lo−→ · −−→‖ · lo←− ∪ = holds for every left-normal weakly

orthogonal TRS.

Proof. Let s
¬lo
−−→‖ P t. If P = ∅ then s = t. If P 6= ∅ then s is reducible and thus s lo−→ u

for some term u. We obtain u −−→‖ · lo←− t from Lemma 19 and thus s lo−→ · −−→‖ · lo←− t as
desired. J

Combining Lemmata 14, 15 and 21 gives the following result.

I Corollary 22. The inclusion
¬lo
−−→‖ · lo−→ ⊆ lo−→+ ·

¬lo
−−→‖ holds for every left-normal weakly

orthogonal TRS.

Proof. We have
¬lo
−−→‖ · lo−→ ⊆ ( lo−→ · −−→‖ · lo←− ∪ =) · lo−→ (Lemma 21)

= lo−→ · −−→‖ · lo←− · lo−→ ∪ = · lo−→

⊆ lo−→ · −−→‖ · = ∪ lo−→ (Lemma 15)

= lo−→ · −−→‖

⊆ lo−→ · lo−→∗ ·
¬lo
−−→‖ (Lemma 14)

= lo−→+ ·
¬lo
−−→‖ J

I Corollary 23. The relation lo−→ quasi-commutes over
¬lo
−−→‖ for every left-normal weakly

orthogonal TRS.

Proof. This follows from the preceding corollary and the inclusion lo−→+ ·
¬lo
−−→‖ ⊆ lo−→ · →∗.

J

I Corollary 24. The inclusion →∗ ⊆ lo−→∗ ·
¬lo
−−→‖ ∗ holds for every left-normal weakly orthog-

onal TRS.

Proof. This follows from Corollary 22 in connection with Lemmata 12 and 5 (with→α = lo−→
and →β =

¬lo
−−→‖ ). J

We arrive at the (hyper-)normalization theorem.

I Theorem 25. The leftmost outermost strategy is hyper-normalizing for every left-normal
weakly orthogonal TRS.

Proof. Normalization of lo−→ is obtained from Lemma 7, Corollary 24, and the inclusion
NF(R) ⊆ NF( ¬lo←−−) which follows from Lemma 19: If t /∈ NF( ¬lo←−−) then s ¬lo−−→ t for some
term s and thus s lo−→ u for some term u and hence u −−→‖ · lo←− t, so t /∈ NF(R). By
combining the normalization of lo−→ with Theorem 8 and Corollary 23, hyper-normalization
of lo−→ is concluded. J
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4 Basic Normalization

We recall a few notions from context-sensitive rewriting.

I Definition 26. A replacement map associates every n-ary function symbol to a subset
of {1, . . . , n}. Let µ be a replacement map. The set Posµ(t) of active positions in t is
inductively defined as follows:

Posµ(t) =
{
{ε} if t is a variable
{ε} ∪ {ip | i ∈ µ(f), 1 6 i 6 n, and p ∈ Posµ(ti)} if t = f(t1, . . . , tn)

The set PosV(t) ∩ Posµ(t) is abbreviated to PosµV(t).

We introduce basic normalization. Let R be a TRS and D = {root(`) | ` → r ∈ R} be
the set of all defined symbols in R. Terms t with PosD(t) = {ε} are called basic terms.

I Definition 27. A rewrite strategy S for a TRS R is basically normalizing if every R-
normalizing basic term is S-terminating.

By recasting the basic term condition of basic normalization in a replacement map for
context-sensitive rewriting, we establish a powerful criterion for basic normalization. As a
basis of this formulation, we use usable replacement maps [10, 14].

I Definition 28. A term t is accessible if s →∗ t for some basic term s. A replacement
map µ for a TRS R is usable if all redex positions in every accessible term t are included in
Posµ(t).

An effective technique for computation of usable replacement maps based on unification
and fixed point computation is suggested in [14]. The method adapts the cap-function ICAP
suitably [11]. The key observation is that through the cap-function usable arguments can
be delineated which is formalizable as a monotone operator ΥR. Applying Tarski’s fixed
point theorem we conclude the existence of a least fixed point which yields the desired
approximation, cf. [14, Definition 9].

We define basically left-normal TRSs. The notion of µ-left-normality in the following
definition was introduced in [18] for normalization of context-sensitive rewriting.

I Definition 29. A term t is called left-normal with respect to a replacement map µ, or
simply µ-left-normal, if p ∈ PosµV(t) and q ∈ Posµ(t) with p <lo q imply q ∈ PosV(t). Let
R be a TRS with a usable replacement map µ. The TRS R is basically left-normal if the
left-hand side ` of every rule `→ r ∈ R is µ-left-normal.

I Example 30. Consider the orthogonal TRS in the introduction. The map µ given by

µ(sieve) = {1} µ(primes) = µ(from) = µ(s) = µ(0) = ∅
µ(filter) = µ(take) = µ(:) = {2}

is a usable replacement map. For example, consider t = take(s(n), x : y). There are no
active positions p ∈ PosµV(t) = {22} and q ∈ Posµ(t) = {ε, 2, 22} such that p <lo q. So t
is µ-left-normal. In a similar way one can verify basic left-normality of all other left-hand
sides of the TRS left-normal. Hence, the TRS is basic left-normal with respect to µ.

We show that the leftmost outermost strategy is basically normalizing for basically left-
normal TRSs.
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Table 1 Experimental results on 161 weakly orthogonal TRSs.

left-normal basically left-normal

# of TRSs 75 150
total time (in seconds) 0.63 1.03

I Lemma 31. Let µ be a replacement map, t a µ-left-normal term, and σ a substitution. If
p, q ∈ Posµ(tσ) such that p is below t and p <lo q then q is below t.

Proof. The proof of Lemma 18 goes through after replacing PosV(t) with PosµV(t): We have
p > q′ for some position q′ ∈ PosV(t). Hence q′ ∈ PosµV(t) follows from p ∈ Posµ(tσ). If
q > q′ then q is below t. If q > q′ does not hold then we must have p <l q and q′ <l q for
otherwise the assumption p <lo q would be violated. If q ∈ Posµ(t) then q ∈ PosV(t) by
µ-left-normality. Otherwise q > q′′ for some position q′′ ∈ PosµV(t) ⊆ PosV(t). In both cases
we conclude that q is below t. J

Let  be a relation on terms. The accessible version  a is defined as follows: s a t if
s is an accessible term and s  t. In Section 3 we used left-normality to show Lemma 19.
The next lemma is its counterpart for basic hyper-normalization.

I Lemma 32. Let R be a weakly orthogonal TRS with a usable replacement map µ. If R is
basically left-normal then the inclusion a

lo←−− ·
¬lo
−−→‖ a ⊆ −−→‖ a · a

lo←−− holds.

Proof. Let s
¬lo
−−→‖ a t and s lo−→a u. Since s is accessible and µ is usable, s

¬lo
−−→‖ Q t and

s lo−→p u hold for some Q ⊆ Posµ(s) and p ∈ Posµ(s). We obtain t −−→‖ · lo←− u as in the
proof of Lemma 19, provided that Lemma 31 is used instead of Lemma 18. Since accessibility
of s carries over to t and u, we conclude t −−→‖ a · a

lo←−− u. J

By using Lemma 32, one can lift all statements (and proofs) in Lemma 21 and Corollar-
ies 22, 23, and 24 to the accessible version in a straightforward way.

I Theorem 33. The leftmost outermost strategy is basically hyper-normalizing for every
basically left-normal weakly orthogonal TRS. J

We implemented and tested Theorems 8 and 33 on a collection of 161 weakly orthogonal
TRSs, consisting of the 153 systems for innermost, outermost, and context-sensitive rewrit-
ing in version 8.0.7 of the Termination Problem Data Base (TPDB)1 and 9 systems from van
de Pol’s examples for strategy annotations [21].2 Usable replacement maps for Theorem 33
are estimated by the fixed point computation of [14, Definition 9]. Table 1 summarizes the
results.3

5 Related Work

The (hyper-)normalization of the leftmost outermost strategy is a fundamental result in
Combinatory Logic and λ-calculus. The importance of hyper-normalization as opposed to

1 http://termcomp.uibk.ac.at/
2 http://wwwhome.cs.utwente.nl/~vdpol/jitty/
3 Details are available at: http://www.jaist.ac.jp/~hirokawa/15bn/

http://termcomp.uibk.ac.at/
http://wwwhome.cs.utwente.nl/~vdpol/jitty/
http://www.jaist.ac.jp/~hirokawa/15bn/
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normalization stems from the fact that this property is essential to show that all partial
recursive functions are definable in λ-calculus and Combinatory Logic. Consequently, nu-
merous (hyper-)normalization proofs can be found in the literature. Below we comment on
some of them.

Combinatory Logic and λ-calculus. The usual argument that the leftmost outermost strat-
egy is (hyper-)normalizing in Combinatory Logic or λ-calculus employs the standardization
theorem [8, 5], which in itself is based on the study of residuals. Avoiding residuals, Kashima
presents in [17] an interesting inductive treatment of standardization and thus provides a
simple proof of hyper-normalization of the leftmost outermost strategy for the λ-calculus.

It is perhaps worthy of note that the proof of the (hyper-)normalization theorem is
absent from the well-known textbook by Hindley and Seldin [13]. The other recent book
covering Combinatory Logic by Bimbó [6, Lemma 2.2.8] contains the following short and
incomplete proof of the normalization theorem (here B1 refers to the rewrite relation of
Combinatory Logic, “lmrs” stands for the leftmost (outermost) strategy, and Theorem 2.1.14
is the Church-Rosser theorem):

If a CL-term has an nf, then there is a B1 reduction sequence of finite length. If the
leftmost reduction sequence is a finite B1 reduction sequence, then by theorem 2.1.14,
the last term is the nf of the starting term.
The other possibility is that the lmrs gives us an infinite B1 reduction sequence. There-
fore, if some redex other than the leftmost one is reduced in another B1 reduction se-
quence, then the leftmost redex remains in the term as long as the lmrs is not followed,
i.e., the term will not reduce to its nf. (qed)

Left-normal (orthogonal) term rewrite systems. O’Donnell [20] introduced left-normality
and proved the normalization of the leftmost outermost strategy for left-normal orthogonal
TRSs. A modern account of his proof, which is based on residual theory and cofinality of
leftmost-fair reductions, can be found in [23, Section 4.9].

Hyper-normalization of the leftmost outermost strategy for left-normal orthogonal TRSs
is obtained by van Oostrom and de Vrijer in [23, Theorem 9.3.21] as a corollary of the more
general statement that the leftmost outermost strategy is a needed strategy for left-normal
orthogonal TRSs.

Extending upon [24] Toyama proves in [25] that external reduction, which is a variation of
needed reduction, is a normalizing strategy for the class of left-linear root balanced joinable
external TRSs. Note that the studied TRSs may be ambiguous. As a corollary he obtains the
hyper-normalization of the leftmost outermost strategy for the class of left-linear left-normal
root balanced joinable TRSs. The latter class includes all left-normal weakly orthogonal
TRSs. It is an open problem whether our proof method extends to left-linear left-normal
root balanced joinable TRSs.

All these proofs can be characterized as global in the sense that definitions refer to
properties of rewrite sequences rather than single (parallel) steps, which are manipulated
throughout the proof. We believe this will hamper formalization efforts. In contrast, our
proof is elementary and local, as it makes essential use of abstract commutation properties.

Commutation properties In [1] Accattoli introduces an abstract framework for factoriza-
tion, relying on commutation properties similar to those exploited in Lemma 5 and 6 above.
The framework is general in the sense that it applies to a multitude of explicit substitutions
calculi. However, its applicability in our context is less straightforward. In order to employ
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a square factorization system [1, Definition 3.3] to prove our Corollary 24, we would need
to decompose the relations lo−→ and

¬lo
−−→‖ into four relations ( lo−→1,

lo−→2,
¬lo
−−→‖ 1,

¬lo
−−→‖ 2), such

that lo−→1 and
¬lo
−−→‖ 1 are terminating; a non-trivial task.

Dershowitz argues in [9, Note 20] that quasi-commutation applies to Combinatory Logic
and orthogonal TRSs, in connection with the inclusion lo←− · ¬lo−−→ ⊆ ¬lo−−→∗ · lo←−. Apart from
the missing left-normality condition, the inclusion does not hold, not even for Combinatory
Logic as Ix lo←− IIx ¬lo−−→ Ix but not Ix ¬lo−−→∗ · lo←− Ix.

6 Conclusion

In this paper we have presented an elementary proof of the classical result that the leftmost
outermost strategy is normalizing for left-normal orthogonal rewrite systems. Our proof
is local and extends to hyper-normalization and weakly orthogonal systems. Our interest
in leftmost outermost stems from the observation that archetypical TRSs often fail the
definition of left-normality, while morally these TRSs are left-normal, if the set of starting
terms is suitable restricted.

Based on this observation, we introduced basic normalization, i.e., normalization if the
set of considered starting terms is restricted to basic terms. This allowed us to weaken
the left-normality restriction. Building upon our new proof, we have shown that the left-
most outermost strategy is hyper-normalizing for basically left-normal weakly orthogonal
rewrite systems. This provides a simple and easy to implement strategy for basic terms in
a surprisingly large number of cases, as evidenced by the experimental data provided.

Despite the technical challenges found in the generalization of our result to weakly or-
thogonal systems, we have striven for an elementary proof, which we believe offers itself to
future formalization within an interactive theorem prover. Hopefully our results pave the
way for future certification efforts in the area of strategies.

In future work we will pursue an experimental and theoretical comparison of our results
with the normalizing strategies induced by strongly/inductively [16, 2] sequential TRSs. Fur-
thermore, we seek a simple proof of (hyper-)normalization of maximal (parallel) outermost
for weakly orthogonal TRSs (cf. [20, 19]).

Acknowledgements. We are grateful for the comments by the anonymous reviewers which
greatly helped us to improve the presentation of the paper.
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Abstract
We propose a notion of complexity for oriented conditional term rewrite systems. This notion is
realistic in the sense that it measures not only successful computations but also partial computa-
tions that result in a failed rule application. A transformation to unconditional context-sensitive
rewrite systems is presented which reflects this complexity notion, as well as a technique to derive
runtime and derivational complexity bounds for the latter.

1998 ACM Subject Classification F.4.2 Grammars and Other Rewriting Systems

Keywords and phrases conditional term rewriting, complexity

Digital Object Identifier 10.4230/LIPIcs.RTA.2015.223

1 Introduction

Conditional term rewriting is a well-known computational paradigm. First studied in the
eighties and early nineties of the previous century, in more recent years transformation
techniques have received a lot of attention and automatic tools for (operational) termination
[8, 16, 25] as well as confluence [27] were developed.

In this paper we are concerned with the following question: What is the length of a longest
derivation to normal form in terms of the size of the starting term? For unconditional rewrite
systems this question has been investigated extensively and numerous techniques have been
developed that provide an upper bound on the resulting notions of derivational and runtime
complexity (e.g. [5, 11, 12, 19, 20]). Tools that support complexity methods ([2, 22, 30]) are
under active development and compete annually in the complexity competition.1

We are not aware of any techniques or tools for conditional (derivational and runtime)
complexity—or indeed, even of a definition for conditional complexity. This may be for a
good reason, as it is not obvious what such a definition should be. Of course, simply counting
(top-level) steps will not do. Taking the conditions into account when counting successful
rewrite steps is a natural idea and transformations from conditional term rewrite systems
to unconditional ones exist (e.g., unravelings [24]) that do justice to this two-dimensional
view [15, 16]. However, we will argue that this still gives rise to an unrealistic notion of
complexity. Modern rewrite engines like Maude [6] that support conditional rewriting can
spend significant resources on evaluating conditions that in the end prove to be useless for
rewriting the term at hand. This should be taken into account when defining complexity.

Contribution. We propose a new notion of conditional complexity for a large class of rea-
sonably well-behaved conditional term rewrite systems. This notion aims to capture the
maximal number of rewrite steps that can be performed when reducing a term to normal
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form, including the steps that were computed but ultimately not useful. In order to reuse ex-
isting methodology, we present a transformation into unconditional rewrite systems that can
be used to estimate the conditional complexity. The transformed system is context-sensitive
(Lucas [13, 14]), which is not yet supported by current complexity tools, but ignoring the
corresponding restrictions, we still obtain an upper bound on the conditional complexity.

Organization. The remainder of the paper is organized as follows. In the next section
we recall some preliminaries. Based on the analysis of conditional complexity in Section 3,
we introduce our new notion formally in Section 4. Section 5 presents a transformation
to context-sensitive rewrite systems, and in Section 6 we present an interpretation-based
method targeting the resulting systems. Even though we are far removed from tool support,
examples are given to illustrate that manual computations are feasible. Related work is
discussed in Section 7 before we conclude in Section 8 with suggestions for future work.

2 Preliminaries

We assume familiarity with (conditional) term rewriting and all that (e.g., [4, 28, 24]) and
only shortly recall important notions that are used in the following.

In this paper we consider oriented conditional term rewrite systems (CTRSs for short).
Given a CTRS R, a substitution σ, and a list of conditions c : s1 ≈ t1, . . . , sk ≈ tk, let
R ` cσ denote siσ →∗R tiσ for all 1 6 i 6 k. We have s →R t if there exist a position p in
s, a rule ` → r ⇐ c in R, and a substitution σ such that s|p = `σ, t = s[rσ]p, and R ` cσ.
We may write s ε−→ t for a rewrite step at the root position and s >ε−−→ t for a non-root step.

Given a (C)TRS R over a signature F , the root symbols of left-hand sides of rules in R
are called defined and every other symbol in F is a constructor. These sets are denoted by
FD and FC , respectively. For a defined symbol f , we write R�f for the set of rules in R
that define f . A constructor term consists of constructors and variables. A basic term is a
term f(t1, . . . , tn) with f ∈ FD and constructor terms t1, . . . , tn.

Context-sensitive rewriting, as used in Section 5, restricts the positions in a term where
rewriting is allowed. A (C)TRS is combined with a replacement map µ, which assigns to
every n-ary symbol f ∈ F a subset µ(f) ⊆ {1, . . . , n}. A position p is active in a term t if
either p = ε, or p = i q, t = f(t1, . . . , tn), i ∈ µ(f), and q is active in ti. The set of active
positions in a term t is denoted by Posµ(t), and t may only be reduced at active positions.

Given a terminating and finitely branching TRS R over a signature F , the derivation
height of a term t is defined as dh(t) = max {n | t→n u for some term u}. This leads to
the notion of derivational complexity dcR(n) = max {dh(t) | |t| 6 n}. If we restrict the
definition to basic terms t we get the notion of runtime complexity rcR(n) [10].

Rewrite rules `→ r ⇐ c of CTRSs are classified according to the distribution of variables
among `, r, and c. In this paper we consider 3-CTRSs, where the rules satisfy Var(r) ⊆
Var(`, c). A CTRS R is deterministic if for every rule ` → r ⇐ s1 ≈ t1, . . . , sk ≈ tk in R
we have Var(si) ⊆ Var(`, t1, . . . , ti−1) for 1 6 i 6 k. A deterministic 3-CTRS R is quasi-
decreasing if there exists a well-founded order > with the subterm property that extends
→R, such that `σ > siσ for all ` → r ⇐ s1 ≈ t1, . . . , sk ≈ tk ∈ R, 1 6 i 6 k, and
substitutions σ with sjσ →∗R tjσ for 1 6 j < i. Quasi-decreasingness ensures termination
and, for finite CTRSs, computability of the rewrite relation. Quasi-decreasingness coincides
with operational termination [15]. We call a CTRS constructor-based if the right-hand sides
of conditions as well as the arguments of left-hand sides of rules are constructor terms.
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Limitations. We restrict ourselves to left-linear constructor-based deterministic 3-CTRSs,
where moreover all right-hand sides of conditions are linear, and use only variables not
occurring in the left-hand side or in earlier conditions. That is, for every rule f(`1, . . . , `n)→
r ⇐ s1 ≈ t1, . . . , sk ≈ tk ∈ R:

`1, . . . , `n, t1, . . . , tk are linear constructor terms without common variables,
Var(si) ⊆ Var(`1, . . . , `n, t1, . . . , ti−1) for 1 6 i 6 k and
Var(r) ⊆ Var(`1, . . . , `n, t1, . . . , tk).

We will call such systems CCTRSs in the sequel. Furthermore, we restrict our attention to
quasi-decreasing and confluent CCTRSs. While these latter restrictions are not needed for
the formal development in this paper, without them the complexity notion that we propose
is either undefined or not meaningful, as argued below.

To appreciate the limitations, note that in CTRSs which are not deterministic, 3-CTRSs
or quasi-decreasing, the rewrite relation is undecidable in general, which makes it hard
to define what complexity means. The restriction to linear constructor-TRSs is common
in rewriting, and the restrictions on the conditions are a natural extension of this. Most
importantly, with these restrictions computation is unambiguous: To evaluate whether a
term `σ reduces with a rule ` → r ⇐ s1 ≈ t1, . . . , sk ≈ tk, we start by reducing s1σ and,
finding an instance of t1, extend σ to the new variables in t1 resulting in σ′, continue with
s2σ
′, and so on. If any extension of σ satisfies all conditions then this procedure will find

one, no matter how we reduce. However, if confluence, quasi-decreasingness or any of the
restrictions on the conditions were dropped, this would no longer be the case and we might
be unable to verify whether a rule applied without enumerating all possible reducts of its
conditions. The restrictions on the `i are needed to obtain Lemma 5, which will be essential
to justify the way we handle failure.

I Example 1. The CTRS R consisting of the rewrite rules

0 + y → y fib(0)→ 〈0, s(0)〉
s(x) + y → s(x+ y) fib(s(x))→ 〈z, w〉 ⇐ fib(x) ≈ 〈y, z〉, y + z ≈ w

is a quasi-deterministic and confluent CCTRS. The requirements for quasi-decreasingness
are satisfied (e.g.) by the lexicographic path order with precedence fib > 〈·, ·〉 > + > s.

3 Analysis

We start our analysis with a deceivingly simple CCTRS to illustrate that the notion of
complexity for conditional systems is not obvious.

I Example 2. The CCTRS Reven consists of the following six rewrite rules:

even(0)→ true (1)
even(s(x))→ true ⇐ odd(x) ≈ true (2)
even(s(x))→ false ⇐ even(x) ≈ true (3)

odd(0)→ false (4)
odd(s(x))→ true ⇐ even(x) ≈ true (5)
odd(s(x))→ false ⇐ odd(x) ≈ true (6)

If, like in the unconditional case, we count the number of steps needed to normalize a
term, then a term tn = even(sn(0)) has derivation height 1, since tn → false in a single step.
To reflect actual computation, the rewrite steps to verify the condition should be taken into
account. Viewed like this, normalizing tn takes n+ 1 rewrite steps.

RTA 2015
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Table 1 Number of steps required to normalize even(sn(0)) and odd(sn(0)) in Maude.

n 0 1 2 3 4 5 6 7 8 9 10 11 12

2n+1 − 1 1 3 7 15 31 63 127 255 511 1023 2047 4095 8191

even(sn(0)) 1 3 3 11 5 37 7 135 9 521 11 2059 13

odd(sn(0)) 1 2 6 4 20 6 70 8 264 10 1034 12 4108

even(sn(0)) 1 2 7 8 31 32 127 128 511 512 2047 2048 8191

odd(sn(0)) 1 3 4 15 16 63 64 255 256 1023 1024 4095 4096

However, this still seems unrealistic, since a rewriting engine cannot know in advance
which rule to attempt first. For example, when rewriting t9, rule (2) may be tried first, which
requires normalizing odd(s8(0)) to verify the condition. After finding that the condition fails,
rule (3) is attempted. Thus, for Reven, a realistic engine would select a rule with a failing
condition about half the time. If we assume a worst possible selection strategy and count
all rewrite steps performed during the computation, we need 2n+1−1 steps to normalize tn.

Although this exponential upper bound may come as a surprise, a powerful rewrite engine
like Maude [6] does not perform much better, as can be seen from the data in Table 1. For
rows three and four we presented the rules to Maude in the order given in Example 2.
Changing the order to (4), (6), (5), (1), (3), (2) we obtain the last two rows. For no order on
the rules is the optimal linear bound on the number of steps obtained for all tested terms.

From the above we conclude that a realistic definition of conditional complexity should
take failed computations into account. This opens new questions, which are best illustrated
on a different (admittedly artificial) CTRS.

I Example 3. The CCTRS Rfg consists of the following two rewrite rules:

f(x)→ x g(x)→ a ⇐ x ≈ b

How many steps does it take to normalize tn,m = fn(g(fm(a)))? As we have not imposed an
evaluation strategy, one approach for evaluating this term could be as follows. We use the
second rule on the subterm g(fm(a)). This fails in m steps. With the first rule at the root
position we obtain tn−1,m. We again attempt the second rule, failing in m steps. Repeating
this scenario results in n ·m rewrite steps before we reach the term t0,m.

In the above example we keep attempting—and failing—to rewrite an unmodified copy
of a subterm we tried before, with the same rule. Even though the position of the subterm
g(fm(a)) changes, we already know that this reduction will fail. Hence it is reasonable to
assume that once we fail a conditional rule on given subterms, we should not try the same
rule again on (copies of) the same subterms. This idea will be made formal in Section 4.

I Example 4. Continuing with the term t0,m from the preceding example, we could try to
use the second rule, which fails in m steps. Next, the first rule is applied on a subterm, and
we obtain t0,m−1. Again we try the second rule, failing after executingm−1 steps. Repeating
this alternation results eventually in the normal form t0,0, but not before computing 1

2 (m2 +
3m) rewrite steps in total.

Like in Example 3, we keep coming back to a subterm which we have already tried before
in an unsuccessful attempt. The difference is that the subterm has been rewritten between
successive attempts. According to the following general result, we do not need to reconsider
a failed attempt to apply a conditional rewrite rule if only the arguments were changed.
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I Lemma 5. Given a CCTRS R, suppose s >ε−−→∗ t and let ρ : `→ r ⇐ c be a rule such that
s is an instance of `. If t ε−→ρ u then there exists a term v such that s ε−→ρ v and v →∗ u.

So if we can rewrite a term at the root position eventually, and the term already matches
the left-hand side of the rule with which we can do so, then we can rewrite the term with
this rule immediately and obtain the same result.

Proof. Let σ be a substitution such that s = `σ and dom(σ) ⊆ Var(`). Because ` is a basic
term, all steps in s >ε−−→∗ t take place in the substitution part σ of `σ. Since ` is a linear term,
we have t = `τ for some substitution τ such that dom(τ) ⊆ Var(`) and σ →∗ τ . Because the
rule ρ applies to t at the root position, there exists an extension τ ′ of τ such that R ` cτ ′.
We have u = rτ ′. Define the substitution σ′ as follows:

σ′(x) =
{
σ(x) if x ∈ Var(`)
τ ′(x) if x /∈ Var(`)

We have s = `σ = `σ′ and σ′ →∗ τ ′. Let a ≈ b be a condition in c. From Var(b)∩Var(`) = ∅
we infer aσ′ →∗ aτ ′ →∗ bτ ′ = bσ′. It follows that R ` cσ′ and thus s ε−→ρ rσ

′. Hence we can
take v = rσ′ as rσ′ →∗ rτ ′ = u. J

From these observations we see that we can mark occurrences of defined symbols with
the rules we have tried without success or, symmetrically, with the rules we have yet to try.

4 Conditional Complexity

To formalize the ideas from Section 3, we label defined function symbols by subsets of the
rules used to define them.

I Definition 6. Let R be a CCTRS over a signature F . The labeled signature F ′ is defined
as FC ∪ {fR | f ∈ FD and R ⊆ R�f}. A labeled term is a term in T (F ′,V).

Intuitively, the label R in fR records the defining rules for f which have not yet been
attempted.

I Definition 7. Let R be a CCTRS over a signature F . The mapping label : T (F ,V) →
T (F ′,V) labels every defined symbol f with R�f . The mapping erase : T (F ′,V)→ T (F ,V)
removes the labels of defined symbols.

We obviously have erase(label(t)) = t for every t ∈ T (F ,V). The identity label(erase(t)) =
t holds for constructor terms t but not for arbitrary terms t ∈ T (F ′,V).

I Definition 8. A labeled normal form is a term in T (FC ∪ {f∅ | f ∈ FD},V).

The relation −⇀ is designed in such a way that a ground labeled term can be reduced if
and only if it is not a labeled normal form. First, with Definition 9 we can remove a rule
from a label if that rule will never be applicable due to an impossible matching problem.

I Definition 9. We write s ⊥−⇀ t if there exist a position p ∈ Pos(s) and a rewrite rule
ρ : f(`1, . . . , `n)→ r ⇐ c such that

1. s|p = fR(s1, . . . , sn) with ρ ∈ R,
2. t = s[fR\{ρ}(s1, . . . , sn)]p, and
3. there exist a linear labeled normal form u with fresh variables, a substitution σ, and an

index 1 6 i 6 n such that si = uσ and erase(u) does not unify with `i.
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The last item ensures that rewriting s strictly below position p cannot give a reduct that
matches `, since si = uσ can only reduce to instances uσ′ of u and thus not to an instance
of `i. Furthermore, by the linearity of ` = f(`1, . . . , `n) we also have that, if s1, . . . , sn are
labeled normal forms then either f(s1, . . . , sn) is an instance of ` or ⊥−⇀ applies.

Second, Definition 10 describes how to “reduce” labeled terms in general.

I Definition 10. A complexity-conscious reduction is a sequence t1 −⇀ t2 −⇀ · · · −⇀ tm of
labeled terms where s −⇀ t if either s ⊥−⇀ t or there exist a position p ∈ Pos(s), rewrite rule
ρ : f(`1, . . . , `n)→ r ⇐ a1 ≈ b1, . . . , ak ≈ bk, substitution σ, and index 1 6 j 6 k such that

1. s|p = fR(s1, . . . , sn) with ρ ∈ R and si = `iσ for all 1 6 i 6 n,
2. label(ai)σ −⇀∗ biσ for all 1 6 i 6 j,

and either

3. j = k and t = s[label(r)σ]p

in which case we speak of a successful step, or

4. j < k and there exist a linear labeled normal form u and a substitution τ such that
label(aj+1)σ −⇀∗ uτ , u does not unify with bj+1, and t = s[fR\{ρ}(s1, . . . , sn)]p,

which is a failed step.

It is easy to see that for all ground labeled terms s which are not labeled normal forms,
a term t exists such that s ⊥−⇀ t or there are p, ρ, σ such that s|p “matches” ρ in the sense
that the first requirement in Definition 10 is satisfied. As all bi are linear constructor terms
on fresh variables and conditions are evaluated from left to right, label(ai)σ ⇀ biσ simply
indicates that aiσ—with labels added to allow reducing defined symbols in ai—reduces to
an instance of bi.

A successful reduction occurs when we manage to reduce each label(ai)σ to biσ. A failed
reduction happens when we start reducing label(ai)σ and obtain a term that will never
reduce to an instance of bi. As discussed after Definition 9, this is what happens in case 4.

I Definition 11. The cost of a complexity-conscious reduction is the sum of the costs of its
steps. The cost of a step s −⇀ t is 0 if s ⊥−⇀ t,

1 +
k∑
i=1

cost(label(ai)σ −⇀∗ biσ)

in case of a successful step s −⇀ t, and

j∑
i=1

cost(label(ai)σ −⇀∗ biσ) + cost(label(aj+1)σ −⇀∗ uτ)

in case of a failed step s −⇀ t. The conditional derivational complexity of a CCTRS R
is defined as cdcR(n) = max {cost(t −⇀∗ u) | |t| 6 n and t −⇀∗ u for some term u}. If we
restrict t to basic terms we arrive at the conditional runtime complexity crcR(n).

Note that the cost of a failed step is the cost to evaluate its conditions and conclude
failure, while for a successful step we add one for the step itself.

The following result connects the relations −⇀ and → to each other.

I Lemma 12. Let R be a CCTRS.
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1. If s, t ∈ T (F ,V) and s→∗ t then label(s) −⇀∗ label(t).
2. If s, t ∈ T (F ′,V) and s −⇀∗ t then erase(s)→∗ erase(t).

Proof. 1. We use induction on the number of rewrite steps needed to derive s →∗ t. If
s = t then the result is obvious, so let s → u →∗ t. The induction hypothesis yields
label(u) −⇀∗ label(t), so it suffices to show label(s) −⇀∗ label(u). There exist a position
p ∈ Pos(s), a rule ρ : `→ r ⇐ a1 ≈ b1, . . . , ak ≈ bk, and a substitution σ such that s|p =
`σ, u = s[rσ]p, and aiσ →∗ biσ for all 1 6 i 6 n. Let σ′ be the (labeled) substitution
label ◦ σ. Fix 1 6 i 6 k. We have label(aiσ) = label(ai)σ′ and label(biσ) = biσ

′ (as
bi is a constructor term). Because aiσ →∗ biσ is used in the derivation of s →∗ t we
can apply the induction hypothesis, resulting in label(aiσ) −⇀∗ label(biσ). Furthermore,
writing ` = f(`1, . . . , `n), we obtain label(`) = fR�f (`1, . . . , `n). Hence

label(s) = label(s)[label(`)σ′]p −⇀ label(s)[label(r)σ′]p = label(u)

because conditions (1)–(4) in Definition 10 are satisfied.
2. We use induction on the pair (cost(s −⇀∗ t), ‖s‖) where ‖s‖ denotes the sum of the sizes

of the labels of defined symbols in s, ordered lexicographically. The result is obvious if
s = t, so let s −⇀ u −⇀∗ t. Clearly cost(s −⇀∗ t) > cost(u −⇀∗ t). We distinguish two cases.

Suppose s ⊥−⇀ u or s −⇀ u by a failed step. In either case we have erase(s) = erase(u)
and ‖s‖ = ‖u‖+ 1. The induction hypothesis yields erase(u)→∗ erase(t).
Suppose s −⇀ u is a successful step. So there exist a position p ∈ Pos(s), a rule
ρ : `→ r ⇐ a1 ≈ b1, . . . , ak ≈ bk in R, a substitution σ, and terms `′, a′1, . . . , a′k such
that s|p = `′σ with erase(`′) = `, a′iσ −⇀∗ biσ with erase(a′i) = ai for all 1 6 i 6 k, and
u = s[label(r)σ]p. Let σ′ be the (unlabeled) substitution erase◦σ. We have erase(s) =
erase(s)[`σ′]p and erase(u) = erase(s)[rσ′]p. Since cost(s −⇀ u) > cost(a′iσ −⇀∗ biσ)
we obtain aiσ′ = erase(a′iσ) →∗ erase(biσ) = biσ

′ from the induction hypothesis, for
all 1 6 i 6 k. Hence erase(s) → erase(u). Finally, erase(u) →∗ erase(t) by another
application of the induction hypothesis. J

5 Complexity Transformation

The notion of complexity introduced in the preceding section has the downside that we
cannot easily reuse existing complexity results and tools. Therefore, we will consider a
transformation to unconditional rewriting where, rather than tracking rules in the labels of
the defined function symbols, we will keep track of them in separate arguments, but restrict
reduction by adopting a suitable context-sensitive replacement map.

I Definition 13. Let R be a CCTRS over a signature F . For f ∈ FD, let mf be the number
of rules in R�f . The context-sensitive signature (G, µ) is defined as follows:

G contains two constants ⊥ and >,
for every constructor symbol g ∈ FC of arity n, G contains the symbol g with the same
arity and µ(g) = {1, . . . , n},
for every defined symbol f ∈ FD of arity n, G contains two symbols f and fa of arity
n+mf with µ(f) = {1, . . . , n} and µ(fa) = {n+ 1, . . . , n+mf},
for every defined symbol f ∈ FD of arity n, rewrite rule ρ : ` → r ⇐ c1, . . . , ck in R�f ,
and 1 6 i 6 k, G contains a symbol ciρ of arity n+ i with µ(ciρ) = {n+ i}.
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Fixing an order R�f = {ρ1, . . . , ρmf }, terms in T (G,V) that are involved in reducing
f(s1, . . . , sn) ∈ T (F ,V) will have one of two forms: f(s1, . . . , sn, t1, . . . , tmf ) with each
ti ∈ {>,⊥}, indicating that rule ρi has been attempted (and failed) if and only if ti = ⊥,
and fa(s1, . . . , sn, t1, . . . , c

j+1
ρi (s1, . . . , sn, b1, . . . , bj , uj+1), . . . , tmf ) indicating that rule ρi is

currently being evaluated and the first j conditions of ρi have succeeded. The reason for
passing the terms s1, . . . , sn to cj+1

ρi is that it allows for easier complexity methods.

I Definition 14. The maps ξ? : T (F ,V)→ T (G,V) with ? ∈ {⊥,>} are inductively defined:

ξ?(t) =


t if t is a variable,
f(ξ?(t1), . . . , ξ?(tn)) if t = f(t1, . . . , tn) and f is a constructor symbol,
f(ξ?(t1), . . . , ξ?(tn), ?, . . . , ?) if t = f(t1, . . . , tn) and f is a defined symbol.

Linear terms in the set {ξ⊥(t) | t ∈ T (F ,V)} are called ⊥-patterns.

In the transformed system that we will define, a ground term is in normal form if and
only if it is a ⊥-pattern. This allows for syntactic “normal form” tests. Most importantly, it
allows for purely syntactic anti-matching tests: If s does not reduce to an instance of some
linear constructor term t, then s→∗ uσ for some substitution σ and ⊥-pattern u that does
not unify with t. What is more, we only need to consider a finite number of ⊥-patterns u.

I Definition 15. Let t be a linear constructor term. The set of anti-patterns AP(t) is
inductively defined as follows. If t is a variable then AP(t) = ∅. If t = f(t1, . . . , tn) then
AP(t) consists of the following ⊥-patterns:

g(x1, . . . , xm) for every m-ary constructor symbol g different from f ,
g(x1, . . . , xm,⊥, . . . ,⊥) for every defined symbol g of arity m in F , and
f(x1, . . . , xi−1, u, xi+1, . . . , xn) for all 1 6 i 6 n and u ∈ AP(ti).

Here x1, . . . , xm(n) are fresh and pairwise distinct variables.

I Example 16. Consider the CCTRS of Example 1. The set AP(〈z, w〉) consists of the
⊥-patterns 0, s(x), fib(x,⊥,⊥), and +(x, y,⊥,⊥).

The straightforward proof of the following lemma is omitted.

I Lemma 17. Let s be a ⊥-pattern and t a linear constructor term with Var(s)∩Var(t) = ∅.
If s and t are not unifiable then s is an instance of an anti-pattern in AP(t).

We are now ready to define the transformation from a CCTRS (F ,R) to a context-
sensitive TRS (G, µ,Ξ(R)). Here, we will use the notation 〈t1, . . . , tn〉[u]i to denote the
sequence t1, . . . , ti−1, u, ti+1, . . . , tn and we occasionally write ~t for a sequence t1, . . . , tn.

I Definition 18. Let R be a CCTRS over a signature F . For every defined symbol f ∈ FD
we fix an order on the mf rules that define f : R�f = {ρ1, . . . , ρmf }. The context-sensitive
TRS Ξ(R) is defined over the signature (G, µ) as follows. Let ρ : f(`1, . . . , `n) → r ⇐
a1 ≈ b1, . . . , ak ≈ bk be the i-th rule in R�f .

If k = 0 then Ξ(R) contains the rule

f(`1, . . . , `n, 〈x1, . . . , xmf 〉[>]i)→ ξ>(r) (1ρ)
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If k > 0 then Ξ(R) contains the rules

f(~̀, 〈x1, . . . , xmf 〉[>]i)→ fa(~̀, 〈x1, . . . , xmf 〉[c1ρ(~̀, ξ>(a1))]i) (2ρ)

fa(~̀, 〈x1, . . . , xmf 〉[ckρ(~y, b1, . . . , bk)]i)→ ξ>(r) (3ρ)

and the rules

fa(~̀, 〈x1, . . . , xmf 〉[cjρ(~y, b1, . . . , bj)]i)→

fa(~̀, 〈x1, . . . , xmf 〉[cj+1
ρ (~y, b1, . . . , bj , ξ>(aj+1))]i) (4ρ)

for all 1 6 j < k, and the rules

fa(~̀, 〈x1, . . . , xmf 〉[cjρ(~y, b1, . . . , bj−1, v)]i)→ f(~̀, 〈x1, . . . , xmf 〉[⊥]i) (5ρ)

for all 1 6 j 6 k and v ∈ AP(bj).
Regardless of k, Ξ(R) contains the rules

f(〈y1, . . . , yn〉[v]j , 〈x1, . . . , xmf 〉[>]i)→ f(〈y1, . . . , yn〉[v]j , 〈x1, . . . , xmf 〉[⊥]i) (6ρ)

for all 1 6 j 6 n and v ∈ AP(`j).

Here x1, . . . , xmf , y1, . . . , yn are fresh and pairwise distinct variables. A step using rule (1ρ)
or rule (3ρ) has cost 1; other rules—also called administrative rules—have cost 0.

Rule (1ρ) simply adds the > labels to the right-hand sides of unconditional rules. To
apply a conditional rule ρ, we “activate” the current function symbol with rule (2ρ) and start
evaluating the first condition of ρ by steps inside the last argument of c1ρ. With rules (4ρ)
we move to the next condition and, after all conditions have succeeded, an application of
rule (3ρ) results in the right-hand side with > labels. If a condition fails (5ρ) or the left-hand
side of the rule does not match and will never match (6ρ), then we simply replace the label
for ρ by ⊥, indicating that we do not need to try it again.

These rules carry some redundant information. For example, all ciρ are passed the pa-
rameters `1, . . . , `n of the corresponding rule. This is done to make it easier to orient the
resulting rules with interpretations, as we will see in Section 6. Also, instead of passing
b1, . . . , bj to each cj+1

ρ , and `1, . . . , `n to fa, it would suffice to pass along their variables.
This was left in the current form to simplify the presentation.

Note that the rules that do not produce the right-hand side of the originating conditional
rewrite rule are administrative and hence do not contribute to the cost of a reduction. The
anti-pattern sets result in many rules (5ρ) and (6ρ), but all of these are simple. We could
generalize the system by replacing each ?i by a fresh variable; the complexity of the resulting
(smaller) TRS gives an upper bound for the original complexity.

I Example 19. The (context-sensitive) TRS Ξ(Reven) consists of the following rules:

even(0,>, y, z)→ true (11)
even(?1,>, y, z)→ even(?1,⊥, y, z) (61)

even(s(x), y,>, z)→ evena(s(x), y, c1
2(s(x), odd(x,>,>,>)), z) (22)

evena(s(x), y, c1
2(y′, true), z)→ true (32)

evena(s(x), y, c1
2(y′, ?2), z)→ even(s(x), y,⊥, z) (52)

even(?3, y,>, z)→ even(?3, y,⊥, z) (62)
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even(s(x), y, z,>)→ evena(s(x), y, z, c1
3(s(x), even(x,>,>,>))) (23)

evena(s(x), y, z, c1
3(y′, true))→ false (33)

evena(s(x), y, z, c1
3(y′, ?2))→ even(s(x), y, z,⊥) (53)

even(?3, y, z,>)→ even(?3, y, z,⊥) (63)
odd(0,>, y, z)→ false (14)

odd(?1,>, y, z)→ odd(?1,⊥, y, z) (64)
odd(s(x), y,>, z)→ odda(s(x), y, c1

5(s(x), odd(x,>,>,>)), z) (25)
odda(s(x), y, c1

5(y′, true), z)→ false (35)
odda(s(x), y, c1

5(y′, ?2), z)→ odd(s(x), y,⊥, z) (55)
odd(?3, y,>, z)→ odd(?3, y,⊥, z) (65)

odd(s(x), y, z,>)→ odda(s(x), y, z, c1
6(s(x), even(x,>,>,>))) (26)

odda(s(x), y, z, c1
6(y′, true))→ true (36)

odda(s(x), y, z, c1
6(y′, ?2))→ odd(s(x), y, z,⊥) (56)

odd(?3, y, z,>)→ odd(?3, y, z,⊥) (66)

for all

?1 ∈ AP(0) = {true, false, s(x), even(x,⊥,⊥,⊥), odd(x,⊥,⊥,⊥)}
?2 ∈ AP(true) = {false, 0, s(x), even(x,⊥,⊥,⊥), odd(x,⊥,⊥,⊥)}
?3 ∈ AP(s(x)) = {true, false, 0, even(x,⊥,⊥,⊥), odd(x,⊥,⊥,⊥)}

Below we relate complexity-conscious reductions with R to context-sensitive reductions
in Ξ(R). The following definition explains how we map terms in T (F ′,V) to terms in
T (G,V). It resembles the earlier definition of ξ?.

I Definition 20. For t ∈ T (F ′,V) we define

ζ(t) =


t if t ∈ V,
f(ζ(t1), . . . , ζ(tn)) if t = f(t1, . . . , tn) with f a constructor symbol,
f(ζ(t1), . . . , ζ(tn), c1, . . . , cmf ) if t = fR(t1, . . . , tn) with R ⊆ R�f

where ci = > if the i-th rule of R�f belongs to R and ci = ⊥ otherwise, for 1 6 i 6 mf .
For a substitution σ ∈ Σ(F ′,V) we denote the substitution ζ ◦ σ by σζ .

It is easy to see that p ∈ Posµ(ζ(t)) if and only if p ∈ Pos(t) if and only if ζ(t)|p /∈ {⊥,>},
for any t ∈ T (F ′,V). The easy induction proof of the following lemma is omitted.

I Lemma 21. If t ∈ T (F ,V) then ζ(label(t)) = ξ>(t). If t ∈ T (F ′,V) and σ ∈ Σ(F ′,V)
then ζ(tσ) = ζ(t)σζ . Moreover, if t is a labeled normal form then ζ(t) = ξ⊥(erase(t)).

I Theorem 22. Let R be a CCTRS. If s −⇀∗ t is a complexity-conscious reduction with cost
N then there exists a context-sensitive reduction ζ(s)→∗Ξ(R),µ ζ(t) with cost N .

Proof. We use induction on the number of steps in s −⇀∗ t. The result is obvious when this
number is zero, so let s −⇀ u −⇀∗ t with M the cost of the step s −⇀ u and N −M the cost
of u −⇀∗ t. The induction hypothesis yields a context-sensitive reduction ζ(u) →∗Ξ(R),µ ζ(t)
of cost N −M and so it remains to show that there exists a context-sensitive reduction
ζ(s) →∗Ξ(R),µ ζ(u) of cost M . Let ρ : f(`1, . . . , `n) → r ⇐ a1 ≈ b1, . . . , ak ≈ bk be the rule
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in R that gives rise to the step s −⇀ u and let i be its index in R�f . There exist a position
p ∈ Pos(s), terms s1, . . . , sn, and a subset R ⊆ R�f such that s|p = fR(s1, . . . , sn) and
ρ ∈ R. We have ζ(s)|p = ζ(s|p) = fR(ζ(s1), . . . , ζ(sn), c1, . . . , cmf ) where cj = > if the j-th
rule of R�f belongs to R and cj = ⊥ otherwise, for 1 6 j 6 mf . In particular, ci = >. Note
that p is an active position in ζ(s). We distinguish three cases.

First suppose that s ⊥−⇀ u. So M = 0, u = s[fR\{ρ}(s1, . . . , sn)]p, and there exist
a linear labeled normal form v, a substitution σ, and an index 1 6 j 6 n such that
sj = vσ and erase(v) does not unify with `j . By Lemma 21, ζ(sj) = ζ(vσ) = ζ(v)σζ =
ξ⊥(erase(v))σζ . By definition, ξ⊥(erase(v)) is a ⊥-pattern, which cannot unify with `j
because erase(v) does not. From Lemma 17 we obtain an anti-pattern v′ ∈ AP(`j) such
that ξ⊥(erase(v)) is an instance of v′. Hence ζ(s) = ζ(s)[f(ζ(s1), . . . , ζ(sn), c1, . . . , cmf )]p
with ζ(sj) an instance of v′ ∈ AP(`j) and ci = >. Consequently, ζ(s) reduces to
ζ(s)[f(ζ(s1), . . . , ζ(sn), 〈c1, . . . , cmf 〉[⊥]i)]p by an application of rule (6ρ), which has cost
zero. The latter term equals ζ(s[fR\{ρ}(s1, . . . , sn)]p) = ζ(u), and hence we are done.
Next suppose that s −⇀ u is a successful step. So there exists a substitution σ such
that label(ai)σ −⇀∗ biσ with cost Mi for all 1 6 i 6 k, and M = 1 + M1 + · · · + Mk.
The induction hypothesis yields reductions ζ(label(ai)σ) →∗Ξ(R),µ ζ(biσ) with cost Mi.
By Lemma 21, ζ(label(ai)σ) = ζ(label(ai))σζ = ξ>(ai)σζ and ζ(biσ) = biσζ . More-
over, ζ(s)|p = ζ(s|p) = f(~̀, 〈c1, . . . , cmf 〉[>]i)σζ and ζ(u) = ζ(s)[ζ(label(r)σ)]p with
ζ(label(r))σζ = ξ>(r)σζ by Lemma 21. So it suffices if f(~̀, 〈c1, . . . , cmf 〉[>]i)σζ →∗Ξ(R),µ
ξ>(r)σζ with cost M . If k = 0 we can use rule (1ρ). Otherwise, we use the reductions
ξ>(ai)σζ →∗Ξ(R),µ biσζ , rules (2ρ) and (3ρ), and k− 1 times a rule of type (4ρ) to obtain

f(~̀, 〈c1, . . . , cmf 〉[>]i)σζ →Ξ(R),µ fa(~̀, 〈c1, . . . , cmf 〉[c1ρ(~̀, ξ>(a1))]i)σζ
→∗Ξ(R),µ fa(~̀, 〈c1, . . . , cmf 〉[c1ρ(~̀, b1)]i)σζ
→Ξ(R),µ fa(~̀, 〈c1, . . . , cmf 〉[c2ρ(~̀, b1, ξ>(a2))]i)σζ
→∗Ξ(R),µ · · ·

→Ξ(R),µ fa(~̀, 〈c1, . . . , cmf 〉[ckρ(~̀, b1, . . . , bk)]i)σζ
→Ξ(R),µ ξ>(r)σζ

Note that all steps take place at active positions, and that the steps with rules 2ρ and
4ρ are administrative. Therefore, the cost of this reduction equals M .
The remaining case is a failed step s −⇀ u. So there exist substitutions σ and τ , an
index 1 6 j < k, and a linear labeled normal form v which does not unify with bj+1
such that label(ai)σ −⇀∗ biσ with cost Mi for all 1 6 i 6 j and label(aj+1)σ −⇀∗ vτ
with cost Mj+1. We obtain ζ(label(ai)σ) = ξ>(ai)σζ , ζ(biσ) = biσζ , and ζ(s)|p =
f(~̀, 〈c1, . . . , cmf 〉[>]i)σζ like in the preceding case. Moreover, like in the first case, we
obtain an anti-pattern v′ ∈ AP(bj+1) such that ξ⊥(erase(v)) is an instance of v′. We
have ζ(vτ) = ζ(v)τζ = ξ⊥(erase(v))τζ by Lemma 21. Hence ζ(vτ) is an instance of v′.
Consequently,

f(~̀, 〈c1, . . . , cmf 〉[>]i)σζ →∗Ξ(R),µ fa(~̀, 〈c1, . . . , cmf 〉[cj+1
ρ (~̀, b1, . . . , bj , ξ>(aj+1))]i)σζ

→∗Ξ(R),µ fa(~̀, 〈c1, . . . , cmf 〉[cj+1
ρ (~̀, b1, . . . , bj , ζ(vτ))]i)σζ

→Ξ(R),µ f(~̀, 〈c1, . . . , cmf 〉[⊥]i)σζ

where the last step uses an administrative rule of type (5ρ). Again, all steps take place
at active positions. Note that f(~̀, 〈c1, . . . , cmf 〉[⊥]i)σζ = ζ(fR\{ρ}(s1, . . . , sn)) = ζ(u|p).
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Hence ζ(s)→∗Ξ(R),µ ζ(u) as desired. The cost of this reduction isM1 + · · ·+Mj+1, which
coincides with the cost M of the step s −⇀ u. J

Theorem 22 provides a way to establish conditional complexity: If Ξ(R) has complexity
O(ϕ(n)) then the conditional complexity of R is at most O(ϕ(n)).2 Although there are no
complexity tools yet which take context-sensitivity into account, we can obtain an upper
bound by simply ignoring the replacement map. Similarly, although existing tools do not
accommodate administrative rules, we can count all rules equally. Since for every non-
administrative step reducing a term fR(· · · ) at the root position, at most (number of rules)
× (greatest number of conditions + 1) administrative steps at the root position can be
done, the difference is only a constant factor. Moreover, these rules are an instance of
relative rewriting, for which advanced complexity methods do exist. Thus, it is likely that
there will be direct tool support in the future.

6 Interpretations in N

A common method to derive complexity bounds for a TRS is to use interpretations in N.
Such an interpretation I maps function symbols of arity n to functions from Nn to N, giving
a value [t]I for ground terms t, which is shown to decrease in every reduction step. The
method is easily adapted to take context-sensitivity and administrative rules into account.

Unfortunately, standard interpretation techniques like polynomial interpretations are ill
equipped to deal with exponential bounds. Furthermore, to handle the interleaving behavior
of f and fa, the natural choice for an interpretation is to map both symbols to the same
function. However, compatibility with rule (2ρ) then gives rise to the constraint [>]I >
[c1ρ(`1, . . . , `n, ξ>(a1))]αI regardless of the assignment α for the variables in a1, which is
virtually impossible to satisfy. Therefore, we propose a new interpretation-based method
which is not subject to this weakness.

Let B = {0, 1}. We define relations > and > on N × B as follows: for ◦ ∈ {>, >},
(n′, b′) ◦ (n, b) if n′ ◦ n and b′ > b. Moreover, let π1 and π2 be the projections π1((n, b)) = n

and π2((n, b)) = b.

I Definition 23. A context-sensitive interpretation over N×B is a function I mapping each
symbol f ∈ F of arity n to a function If from (N × B)n to N × B, such that If is strictly
monotone in its i-th argument for all i ∈ µ(f). Given a valuation α mapping each variable
to an element of N×B, the value [t]αI ∈ N×B of a term t is defined as usual ([x]αI = α(x) and
[f(t1, . . . , tn)]αI = If ([t1]αI , . . . , [tn]αI )). We say I is compatible with R if for all ` → r ∈ R
and valuations α, [`]αI > [r]αI if `→ r ∈ R is non-administrative and [`]αI > [r]αI otherwise.

The primary purpose of the second component of (n, b) is to allow more sophisticated
choices for I. We easily see that if s→Rµ t then [s]αI > [t]αI and [s]αI > [t]αI if the employed
rule is non-administrative. Consequently, dh(s,→R,µ) 6 π1([s]αI ) for any valuation α.

2 We suspect that the equivalence goes both ways: If the derivation height of a term s in Ξ(R) is N then
a complexity-conscious reduction of length at least N exists starting at label(s). However, we have not
yet confirmed this proposition as the proof—which is based on swapping rule applications at different
positions—is non-trivial and Theorem 22 provides the direction which is most important in practice.
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I Example 24. Continuing Example 19, we define

I> = (0, 1) I⊥ = Itrue = Ifalse = I0 = (0, 0) Is((x, b)) = (x+ 1, 0)
Ieven((x, b), (y1, b1), (y2, b2), (y3, b3)) = (1 + x+ y1 + y2 + y3 + b2 · 3x + b3 · 3x, 0)
Iodd = Ievena = Iodda = Ieven Ic1

i
((x, b), (y, d)) = (y, 0) for all i ∈ {2, 3, 5, 6}

One easily checks that I satisfies the required monotonicity constraints. Moreover, all
rewrite rules in Ξ(Reven) are oriented as required. For instance, for rule (22) we obtain

1 + (x+ 1) + y + 0 + z + 1 · 3x+1 + bz · 3x+1

> 1 + (x+ 1) + y + (1 + x+ 0 + 0 + 0 + 3x + 3x) + z + 0 + bz · 3x+1

which holds for all x, y, z ∈ N and bz ∈ B. All constructor terms are interpreted by linear
polynomials with coefficients in {0, 1} and hence π1([s]I) 6 |t| for all ground constructor
terms t. Therefore, the conditional runtime complexity crcReven(n) is bound by

max({π1(If ((x1, b1), . . . , (x4, b4))) | f ∈ FD and x1 + x2 + x3 + x4 < n})
= max({1 + x1 + x2 + x3 + x4 + 2 · 3x1 | x1 + x2 + x3 + x4 < n}) 6 3n

As observed before, the actual runtime complexity for this system is O(2n). In order to
obtain this more realistic bound, we might observe that, starting from a basic term s, if
s→∗ t then the first argument of even and odd anywhere in t cannot contain defined symbols.
Therefore, Ieven does not need to be monotone in its first argument. This observation is based
on a result in [11], which makes it possible to impose a stronger replacement map µ.

As to derivational complexity, we observe that [t]I 6 n3 (tetration, or 3 ↑↑n in Knuth’s
up-arrow notation) when t is an arbitrary ground term of size n. To obtain a more elementary
bound, we will need more sophisticated methods, for instance assigning a compatible sort
system and using the fact that all terms of sort int are necessarily constructor terms.

The interpretations in Example 24 may appear somewhat arbitrary, but in fact there is
a recipe that we can most likely apply to many TRSs obtained from a CCTRS. The idea
is to define the interpretation I as an extension of a “basic” interpretation J over N. To
do so, we choose for every symbol f of arity n in the original signature F interpretation
functions J 0

f , . . . ,J
mf
f : Nn → N such that J 0

f is strictly monotone in all its arguments, and
the other J jf are weakly monotone. Similarly, for each rule ρ with k > 0 conditions we fix
interpretation functions J 1

c,ρ, . . ., J kc,ρ with J ic,ρ : Nn+i → N if ciρ has arity n + i. These
functions must be strictly monotone in the last argument. Based on these interpretations,
we fix an interpretation for G: I> = (0, 1) and I⊥ = (0, 0),

If ((x1, b1), . . . , (xn, bn)) = (J 0
f (x1, . . . , xn), 0)

for every f ∈ FC of arity n,

If ((x1, b1), . . . , (xn, bn), (y1, d1), . . . , (ymf , dmf ))

= (J 0
f (x1, . . . , xn) + y1 + · · ·+ ymf +

mf∑
i=1

(di · J if (x1, . . . , xn)), 0)

and Ifa = If for every f ∈ FD of arity n, and

Iciρ((x1, b1), . . . , (xn+i, bn+i)) = (J ic,ρ(x1, . . . , xn+i), 0)
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for every symbol ciρ. It is not hard to see that I satisfies the monotonicity requirements.
In practice, this interpretation assigns to a > symbol in a term f(s1, . . . , sn, . . . ,>, . . . ) the
value J if (s1, . . . , sn) and ignores the B component otherwise. Using this interpretation for
the rules in Definition 18, the inequalities we obtain can be greatly simplified. Obviously,
[`]αI > [r]αI is satisfied for all rules obtained from clauses (5ρ) and (6ρ). For the other clauses
we obtain the following requirements for each rule ρ : f(`1, . . . , `n)→ r ⇐ a1 ≈ b1, . . . , ak ≈
bk in the original system R, with ρ the i-th rule in R�f :

J 0
f ([`1]), . . . , [`n]) + J if ([`1], . . . , [`n]) > π1([ξ>(r)]αI ) (1ρ)

J if ([`1], . . . , [`n]) > J 1
c,ρ([`1], . . . , [`n], π1([ξ>(r)]αI )) (2ρ)

J 0
f ([`1], . . . , [`n]) + J kc,ρ([`1], . . . , [`n], [b1], . . . , [bk]) > π1([ξ>(r)]αI ) (3ρ)

J jf ([`1], . . . , [`n], [b1], . . . , [bj ]) >

J j+1
f ([`1], . . . , [`n],[b1], . . . , [bj ], π1([ξ>(r)]αI )) (4ρ)

for the same cases of k and j as in Definition 18. Here, [lj ] and [bj ] are short-hand notation
for π1([lj ]αI ) and π1([bj ]αI ), respectively. Note that [f(t1, . . . , tn)] = Jf ([t1], . . . , [tn]) for
constructor terms f(s1, . . . , sn). Additionally observing that

π1([ξ>(f(t1, . . . , tn))]αI ) =
mf∑
i=0
J if (π1([ξ>(t1)]αI ), . . . , π1([ξ>(tn)]αI ))

we can obtain bounds for the derivation height without ever calculating ξ>(t).

I Example 25. We derive an upper bound for the runtime complexity of Rfib. Following the
recipe explained above, we fix J 1

+(x, y) = J 2
+(x, y) = J 1

fib(x) = 0. Writing K = J 0
0 , S = J 0

s ,
P = J 0

+, F = J 0
fib, G = J 2

fib, A = J 0
〈·〉, C = J 1

c,4, and D = J 2
c,4, we get the constraints

P (K, y) > y P (S(x), y) > S(P (x, y)) F (0) > A(0, S(0))

for the unconditional rules of Rfib and

G(S(x)) > C(S(x), F (x) +G(x))
F (S(x)) +D(S(x), A(y, z), w) > A(z, w)

C(S(x), A(y, z)) > D(S(x), A(y, z), P (y, z))

for the conditional rule fib(s(x)) → 〈z, w〉 ⇐ fib(x) ≈ 〈y, z〉, y + z ≈ w. The functions
P , F , A, and S must be strictly monotone in all arguments, whereas for C and D strict
monotonicity is required only for the last argument. Choosing K = 0, S(x) = x + 1,
P (x, y) = 2x+ y + 1, A(x, y) = x+ y + 1, C(x, y) = 3y, and D(x, y, z) = y + z to eliminate
as many arguments as possible, the constraints simplify to

F (0) > 3 G(x+ 1) > 3F (x) + 3G(x) F (x+ 1) > 0

Choosing F (x) = x+ 4 leaves the constraint G(x+ 1) > 3x+ 3G(x) + 12, which is satisfied
(e.g.) by taking G(x) = 4x+1, which results in a conditional runtime complexity of O(4x).

As in Example 24, we can obtain a more precise bound using [11], by observing that
runtime complexity is not altered if we impose a replacement map µ with µ(fib) = ∅, which
allows us to choose a non-monotone function for F . More sophisticated methods may lower
the bound further.
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7 Related Work

We are not aware of any attempt to study the complexity of conditional rewriting, but
numerous transformations from CTRSs to TRSs have been proposed in the literature. They
can roughly be divided into so-called unravelings and structure-preserving transformations.
The former were coined by Marchiori [17] and have been extensively investigated (e.g. [18,
21, 23, 24, 26]), mainly to establish (operational) termination and confluence of the input
CTRS. The latter originate from Viry [29] and improved versions were proposed in [1, 7, 9].

The transformations that are known to transform CTRSs into TRSs such that (simple)
termination of the latter implies quasi-decreasingness of the former, are natural candidates
for study from a complexity perspective. We observe that unravelings are not suitable in
this regard. For instance, the unraveling from [18] transforms the CCTRS Reven into

even(0)→ true even(s(x))→ U1(odd(x), x) U1(true, x)→ true
even(s(x))→ U2(even(x), x) U2(true, x)→ false

odd(0)→ false odd(s(x))→ U3(odd(x), x) U3(true, x)→ false
odd(s(x))→ U4(even(x), x) U4(true, x)→ true

This TRS has a linear runtime complexity, which is readily confirmed by a complexity tool
like TCT [2]. As the conditional runtime complexity is exponential, the transformation is not
suitable for measuring conditional complexity. The same holds for the transformation in [3].

We do not know whether structure-preserving transformations can be used for conditional
complexity. If we apply the transformations from [7] and [9] to Reven we obtain TRSs for
which complexity tools fail to establish an upper bound on the runtime and derivational
complexities. The latter is also true for the TRS that we obtain from Ξ(Reven) by lifting
the context-sensitive restriction, but this is solely due to the (current) lack of support in
complexity tools for techniques that yield non-polynomial upper bounds.

8 Conclusion and Future Work

In this paper we have defined a first notion of complexity for conditional term rewriting,
which takes failed calculations into account as any automatic rewriting engine would. We
have also defined a transformation to unconditional context-sensitive TRSs, and shown how
this transformation can be used to find upper bounds for conditional complexity using
traditional interpretation-based methods.

There are several possible directions to continue our research.

Weakening restrictions. An obvious direction for future research is to broaden the class
of CTRSs we consider. This requires careful consideration. The correctness of the trans-
formation Ξ depends on the limitations that we impose on CCTRSs. However, it may be
possible to weaken the restrictions and still obtain at least a sound (if perhaps not complete)
transformation. More importantly, though, as discussed in Section 2, the restrictions on the
conditions are needed to justify our complexity notion. For the same reason, Lemma 5
(which relies on the left-hand sides being linear basic terms) needs to be preserved.

Alternatively, we might consider different strategies for the evaluation of conditions. For
example, if all restrictions except for variable freshness in the conditions are satisfied, we
could impose the strategy that conditions are always evaluated to normal form. For instance,
given a CTRS with a rule

f(y, z)→ r ⇐ y ≈ g(x), z ≈ x

RTA 2015
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rewriting a term f(g(0 + 0), 0) would then bind 0 rather than 0 + 0 to x in the first con-
dition (assuming sensible rules for +), allowing the second condition to succeed. This ap-
proach could also be used to handle non-left-linear rules, for instance transforming a rule
f(g(x), x)→ r into the left-linear rule above.

It would take a little more effort to handle non-confluent systems in a way that does not
allow us to give up on rule applications when it is still possible that their conditions can be
satisfied. As a concrete example, consider the CCTRS

a(x)→ 0 a(x)→ 1 f(x)→ g(y, y) ⇐ a(x) ≈ y h(x)→ x ⇐ f(x) ≈ g(0, 1)

Even though f(0) →∗ g(0, 0) and g(0, 0) is an instance of g(x, 0) ∈ AP(g(0, 1)), we should
not conclude that h(0) cannot be reduced. We could instead attempt to calculate all normal
forms in order to satisfy conditions, but if we do this for the third rule, we would not find the
desired reduction f(0)→ g(a(0), a(0)). Thus, to confirm that h(0) can be reduced, we need to
determine all (or at least, all most general) reducts of the left-hand sides of conditions. This
will likely give very high complexity bounds, however. It would be interesting to investigate
how real conditional rewrite engines like Maude handle this problem.

Rules with branching conditions. Consider the following variant of Reven:

even(0)→ true (1)
even(s(x))→ true ⇐ odd(x) ≈ true (2)
even(s(x))→ false ⇐ odd(x) ≈ false (3)

odd(0)→ false (4)
odd(s(x))→ true ⇐ even(x) ≈ true (5)
odd(s(x))→ false ⇐ even(x) ≈ false (6)

Evaluating even(s9(0)) with rule (2) causes the calculation of the normal form false of
odd(s8(0)), before concluding that the rule does not apply. In our definitions (of ⇀ and Ξ),
and conform to the behavior of Maude, we would dismiss the result and continue trying the
next rule. In this case, that means recalculating the normal form of odd(s8(0)), but now
to verify whether rule (3) applies. There is clearly no advantage in treating the rules (2)
and (3) separately. Instead, we could consider rules such as these to be grouped; if the left-
hand side matches, we try the corresponding condition, and the result determines whether
we proceed with (2), (3), or fail. Future definitions of complexity for sensible conditional
rewriting should take optimizations like these into account.

Improving the transformation. With regard to the transformation Ξ, it should be possible
to obtain smaller resulting systems using various optimizations, such as reducing the set
AP of anti-patterns using typing considerations, or leaving defined symbols untouched when
they are only defined by unconditional rules. As observed in footnote 2, either proving that
Ξ preserves complexity, or improving it so that it does, would be interesting.

Complexity methods. While the interpretation recipe from Section 6 has the advantage
of immediately eliminating rules (5ρ) and (6ρ), it is not strictly necessary to always map
f and fa to the same function. With alternative recipes, we may be able to more fully
take advantage of the context-sensitivity of the transformed system, and handle different
examples.

Besides interpretations into N, there are many other complexity techniques which could
possibly be adapted to context-sensitivity and to handle the > symbols appearing in Ξ(R).
As for tool support, we believe that it should not be hard to integrate support for conditional
rewriting into existing tools. We hope that, in the future, developers of complexity tools will
branch out to context-sensitive rewriting and not shy away from exponential upper bounds.
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Abstract
In the past few decades, design theory has grown to encompass a wide variety of research direc-
tions. It comes as no surprise that applications in coding theory and communications continue to
arise, and also that designs have found applications in new areas. Computer science has provided
a new source of applications of designs, and simultaneously a field of new and challenging prob-
lems in design theory. In this paper, we revisit a construction for orthogonal designs using the
multiplication tables of Cayley-Dickson algebras of dimension 2n. The desired orthogonal designs
can be described by a system of equations with the aid of a Gröbner basis computation. For
orders greater than 16 the combinatorial explosion of the problem gives rise to equations that
are unfeasible to be handled by traditional search algorithms. However, the structural proper-
ties of the designs make this problem possible to be tackled in terms of rewriting techniques,
by equational unification. We establish connections between central concepts of design theory
and equational unification where equivalence operations of designs point to the computation of
a minimal complete set of unifiers. These connections make viable the computation of some
types of orthogonal designs that have not been found before with the aforementioned algebraic
modelling.
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1 Introduction

Orthogonal designs are an important class of combinatorial designs. They are of great interest
in applications for wireless communication [15] and in statistics [11]. Even though there
exist many combinatorial constructions for orthogonal designs [6], ones that originate from
Cayley-Dickson algebras [7, 8] have not been explored enough. In particular, as we exemplify
in this work, these algebras can provide a general framework for obtaining orthogonal designs
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for powers of two. Designs in these orders are also of theoretical interest due to their
connection to the asymptotic existence of orthogonal designs [6].
Contribution. In this paper, after revisiting past methods we formulate orthogonal design
problems in terms of equational unification. In particular, the Cayley-Dickson formulation
gives rise to a polynomial system of equations of a specific form, that due to its size cannot be
handled by traditional search algorithms. By establishing and proving connections between
central concepts of the theory of orthogonal designs and equational unification, we are able
to completely tackle these systems of equations, where each solution of them gives rise
to an orthogonal design. The efficiency of the unification algorithms needed to solve the
corresponding orthogonal design problems is evident also by the fact that we found some
types of orthogonal designs, that were not known before with this algebraic modelling of
Cayley-Dickson algebras. Our approach not only reports the orthogonal designs, but also
constructs the corresponding design matrices. In this way, we always give a constructive
solution to the problem which is not always the case with other approaches used in design
theory as we explain in the last section. Last but not least, we would like to emphasize the
novel connections we established between base orthogonal designs, a notion introduced in
this paper, and minimal complete sets of unifiers, as a means to advance the knowledge in
the field of design theory (orthogonal design equivalence among other topics) and also benefit
from the algorithmic notions of unification theory as we applied them in this paper.

Structure of the paper. In Section 2 we give some details regarding orthogonal designs and
list some of their applications. Afterwards, in Section 3 we detail the algebraic framework
for constructing orthogonal designs via computation algebra where we also introduce some
new terms for designs. Some first connections with unification theory are also shown. In the
subsequent section we give some basic notions of unification theory while in Section 5 we
establish additional connections of designs with concepts of unification theory that allow us
to formulate orthogonal design problems as unification problems. In Section 6 we describe
the unification algorithms we developed for solving the unification problems and in the last
section, we translate the solutions obtained via unifiers back to orthogonal designs.

2 Orthogonal Designs

In this section, we give some details regarding orthogonal designs. We provide the necessary
definitions and related concepts that will be needed for our approach and list also some
applications of orthogonal designs that are of broader interest.

2.1 Definitions and Related Concepts
An orthogonal design of order n and type (s1, s2, . . . , su) (si > 0), denoted
OD(n; s1, s2, . . . , su), on the commuting variables x1, x2, . . . , xu, is an n× n matrix D with
entries from {0,±x1,±x2, . . . ,±xu} such that

DDT =
(

u∑
i=1

six
2
i

)
In

where by In we denote the identity matrix of order n. Alternatively, the rows of D are
formally orthogonal and each row has precisely si entries of the type ±xi. The design matrix
D, may be considered as a matrix with entries in the field of quotients of the integral domain
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Z[x1, x2, . . . , xu]. In [5], where this was first defined, it was mentioned that

DTD =
(

u∑
i=1

six
2
i

)
In

and so our alternative description of D applies equally well to the columns of D. It was
also shown in [5] that u ≤ ρ(n), where ρ(n) (Radon’s function) is defined by ρ(n) = 8c+ 2d,
when n = 2ab, b odd, a = 4c + d, 0 ≤ d < 4. D will be called a full orthogonal design, if
n = s1 + s2 + . . .+ su. Due to the Equating-Killing Lemma, given below, which is of central
importance in the theory of Orthogonal Designs, one is interested in full orthogonal designs.

I Lemma 1 (The Equating and Killing Lemma, Geramita and Seberry [6]). If D is an orthogonal
design OD(n; s1, s2, . . . , su) on the commuting variables {0,±x1,±x2, . . . ,±xu} then there
exists an orthogonal design:
(i) OD(n; s1, s2, . . . , si + sj , . . . , su) (si = sj, equating variables)
(ii) OD(n; s1, s2, . . . , sj−1, sj+1, . . . , su) (sj = 0, killing variables)
on the u− 1 commuting variables {0,±x1,±x2, . . . ,±xj−1,±xj+1, . . . ,±xu}.

We also list the Doubling Lemma, which will be needed in the last section of the paper.

I Lemma 2 (The Doubling Lemma, Geramita and Seberry [6]). If there exists an orthogonal
design of order n and type (s1, s2, . . . , su), then there exists orthogonal designs of type
(i) (e1s1, e2s2, . . . , eusu) where ei = 1 or 2,
(ii) (s1, s1, fs2, . . . , fsu) where f = 1 or 2.

I Example 3. We give an example of some small orthogonal designs, and how we can obtain
one from another due to Lemma 1 and related equivalence operations.

[
x1 x2
x2 −x1

]
,


x1 −x2 −x3 −x4
x2 x1 −x4 x3
x3 x4 x1 −x2
x4 −x3 x2 x1

 ,


x1 x2 x2 x4
−x2 x1 x4 −x2
−x2 −x4 x1 x2
−x4 x2 −x2 x1

 ,

x1 0 −x3 0
0 x1 0 x3
c 0 x1 0
0 −x3 0 x1


OD(2; 1, 1) OD(4; 1, 1, 1, 1) OD(4; 1, 1, 2) OD(4; 1, 1)

OD(4; 1, 1, 2) can be obtained from OD(4; 1, 1, 1, 1) by setting x3 = −x2 in its design
matrix.
OD(4; 1, 1) can be obtained from OD(4; 1, 1, 1, 1) by setting x2 = x4 = 0 in its design
matrix.

It is important to note here that in the first case the transformation is composed by the
equating operation of the Equating and Killing Lemma and also changing the sign of the
variable. The last operation leaves invariant the type of the design, however changes the
design matrix. We describe more formally equivalence of orthogonal designs taken from [18].

Given two designs D1 and D2 of the same order, we say that D2 is a variant of D1, if it
is obtained from D1 by the following operations, performed in any order and any number of
times:

1. Multiply one row (one column) by -1.
2. Swap two rows (columns).
3. Rename or negate a variable throughout the design.
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It is easy to prove that the relation of being a variant is an equivalence relation. Below
we write D1 ' D2 to express this fact. Note also that if D1 ' D2, then D1 and D2 have the
same type. This follows directly from the definition of orthogonal design.

The general discussion of equivalence of orthogonal designs is very difficult because of
the lack of a nice canonical form. It also means that it is quite difficult to decide whether
or not two given orthogonal designs of the same order are equivalent. To the best of our
knowledge, there has been little effort contributing at this point. In [18], where the above
mentioned notion of equivalence was introduced, some designs for small orders have been
classified by hand.

The approach proposed in this paper, besides providing a systematic search method for
orthogonal designs in order of powers of two, also exhibits some interesting connections
between the Equating and Killing Lemma and equivalence of orthogonal designs on the one
hand, and fundamental concepts of unification theory such as subsumption and equi-generality
on the other hand, as we can see below in Section 5.

2.2 Applications of Orthogonal Designs
We give some references to works describing applications of orthogonal designs. We do not
aim to provide a comprehensive, or by all means complete, treatment of the subject, as this
is not the purpose of the present paper. We are merely interesting in giving a flavor of the
many different application areas involved, in order to exhibit that while orthogonal designs
are specialized types of combinatorial structures their applications are of a broader interest.

As first noted in [11], orthogonal designs are used in statistics where they generate optimal
statistical designs used in weighing experiments. A special case of orthogonal designs, the
so called Hadamard matrices play an important role also in coding theory where they have
been used to generate the so called Hadamard codes ( [10]), i.e. error-correcting codes that
correct the maximum number of errors. It is worthwhile to note that, a Hadamard code
was used during the 1971 space probe Mariner 9 mission by NASA to correct for picture
transmission error. The Mariner 9 mission and the Coding Theory used in that project
are the subjects of [12] and [16]. Recently, complex orthogonal designs were used in [15] to
generate space-time block codes, a relatively new paradigm for communication over Rayleigh
fading channels using multiple transmit antennas. In this case, the orthogonal structure
of the space-time block code derived by the orthogonal design gives a maximum-likelihood
decoding algorithm which is based only on linear processing at the receiver.

Orthogonal designs are also used in telecommunications where they generate sequences
used in digital communications and in optics for the improvement of the quality and
resolution of image scanners. More details, regarding their applications in communications
and signal/image processing can be found in [6, 13,17].

3 Orthogonal Designs via Computational Algebra

In this section, we revisit a construction for orthogonal designs based on the multiplication
tables of algebras of order n. These multiplication tables are used to construct right
multiplication matrices that in the sequel are used to construct orthogonal designs. Using
the right multiplication operator is a way to overcome the obstacle of non-associativity of
the algebra. Non-associativity is an obstacle, because it is incompatible with the existence
of matrix representations, that we could use directly to construct orthogonal designs. To
circumvent this obstacle we use the right multiplication operator, as it seems that left
multiplication is not suitable for our purposes.



I. Kotsireas, T. Kutsia and D. E. Simos 245

First, we give an account of the classical Williamson construction for orthogonal designs [2],
from the point of view of quaternions, following Baumert and Hall to be able to use it as
reference in subsequent constructions.

A basis for quaternions is given by the four elements 1, i, j, k, having the properties

i2 = −1, j2 = −1, k2 = −1, ij = k, ji = −k, ik = −j, ki = j, jk = i, kj = −i.

These properties are enough to specify the full multiplication table for the four basis
elements. We note that quaternion multiplication is not commutative.

To associate a 4× 4 matrix to each basis element, we use the right multiplication operator
on the column vector v =

[
1 i j k

]t
. Then the right multiplications v ·1, v · i, v ·j, v ·k,

give rise to the following four 4× 4 matrices respectively:

q1 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , q2 =


0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0

 ,

q3 =


0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

 , q4 =


0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0

 .
Let A, B, C, D be commuting variables. Then the sum

Aq1 +Bq2 + Cq3 +Dq4

is equal to the classical Williamson array

H4 =


A B C D

−B A −D C

−C D A −B

−D −C B A


which has the property

H4H
T
4 = (A2 +B2 + C2 +D2)I4.

The matrix H is the design matrix of an OD(4; 1, 1, 1, 1).
The Cayley-Dickson process allows us to obtain an algebra of dimension 2n from an

algebra of dimension n, see [4]. One limitation of this process is that restricts our method to
study ODs in powers of two. By applying the Cayley-Dickson process successively to the
algebras of quaternions we get octonions and sedenions [7]. Repeating the Cayley-Dickson
process to the algebra of sedenions one obtains a Cayley-Dickson algebra of dimension 32 and
doing the same for the latter algebra we can obtain a Cayley-Dickson algebra of order 64 [8].

3.1 Cayley-Dickson Orthogonal Designs
It is important to note that the Cayley-Dickson process essentially constructs the multiplica-
tion tables we need to model orthogonal designs. Now we describe a generic formulation of
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the algebraic modelling with multiplication tables of appropriate Cayley-Dickson algebras of
order n to obtain orthogonal designs of order n.

Take a Cayley-Dickson algebra of dimension n with basis e0 = 1, e1, . . . , en−1. To associate
an n×n matrix to each basis element, we use the right multiplication operator on the column
vector v =

[
1 e1 . . . en−1

]t
. Then the n right multiplications v ·e0, v ·e1, . . . , v ·en−1

give rise to n matrices q0, . . . , qn−1 of order n. Let A1, . . . , An be commuting variables. Then

the sum A =
n−1∑
i=0

Ai+1qi is equal to an n × n matrix with the property that the diagonal

elements of AAT are all equal to
n∑
i=1

A2
i , but whose other elements are not necessarily all

zero.
By requiring that all elements of AAT (except the diagonal ones) are equal to zero, we

obtain a polynomial system of equations in the set of variables {A1, . . . , An}. We define this
problem as the Cayley-Dickson Orthogonal Design (CDOD) problem.

To represent solutions, we introduce a special kind of mapping that we call substitution
mapping or, simply, a substitution. Formally, a substitution from a set S1 to a set S2 ⊇ S1
is a mapping from S1 to S2 which is identity almost everywhere. We use lower case Greek
letters to denote them. The identity substitution is denoted by ε. The domain and the
range of a substitution σ are defined, respectively, as dom(σ) := {u | u ∈ S1, u 6= σ(u)} and
ran(σ) := ∪u∈dom(σ){σ(u)}. A substitution, usually, is represented as a function by a finite
set of bindings of variables in its domain. For instance, a substitution σ is represented as
{u 7→ σ(u) | u ∈ dom(σ)}.

It is important to highlight that we seek solutions of CDOD’s in an endomorphic form, i.e.,
substitutions from a set S to itself. For a CDOD of order n, this set is {A1, . . . , An}. Moreover,
the domain and the range of such substitutions should be disjoint, i.e., the substitutions
should be idempotent. These requirements are justified by the following:

Mapping of variables Ai to variables Aj , for i, j ∈ {1, . . . , n}, is due to the fact that we
force the matrix A to be an orthogonal design and by definition the diagonal elements
give rise to a quadratic form that is a sum of squares.
In particular, if several variables map to the same variable, it is the analogue of the
equating operation of the Equating-Killing Lemma for orthogonal designs for the equations
that are produced by the algebraic modelling. It is clear from the context that equating
variables in the polynomial system of equations, is the same as equating variables in the
design matrix representation.

I Theorem 4. Let n = 2m for some m > 0. Any endomorphic idempotent solution to CDOD
of order n gives rise to an orthogonal design of order n, which we call a Cayley-Dickson
orthogonal design of order n.

Proof. Let σ be an endomorphic idempotent solution of the CDOD of order n over the set of
variables {A1, . . . , An}. From σ, we associate with each Ai a number si as follows:

If Ai ∈ dom(σ) and Ai /∈ ran(σ), then si = 0.
If Ai /∈ dom(σ) and Ai /∈ ran(σ), then si = 1.
If Ai /∈ dom(σ) and Ai ∈ ran(σ), then si = m+ 1, where m is the number of variables
that map to Ai by sigma.

These si’s, together with the corresponding Ai, give a matrix A with the property AAT =

(
k∑
j=1

sjA
2
j )In, for k ≤ ρ(n), and ρ(n) is the Radon function that gives an upper bound on the
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number of variables that can appear in a design. This is by definition an orthogonal design
of order n and type (s1, . . . , sk). J

Now, it is important to note that the CDOD problem is instantiated for orders of power of
two, since in these orders we are able to construct the multiplication tables of the respective
algebras by using successively the Cayley-Dickson process on the construction of designs via
quaternions of Baumert and Hall. We are interested in Cayley-Dickson orthogonal designs in
orders 16, 32 and 64.

CDOD16: An instance of the CDOD problem for order 16, consists of a polynomial system
of 42 equations in 14 variables.
CDOD32: An instance of the CDOD problem for order 32, consists of a polynomial system
of 252 equations in 30 variables.
CDOD64: An instance of the CDOD problem for order 64, consists of a polynomial system
of 1182 equations in 62 variables.

We emphasize here the computational difficulty of retrieving all endomorphic solutions of
the previous three problems. We have used Gröbner bases to verify the computations of [7]
and [8], for orders 16 and 32, 64, respectively. In particular, we have computed in Magma
V2.12-14 a reduced Gröbner basis (for a total degree reverse lexicographical ordering) for the
polynomial systems of the CDOD16 and CDOD32 problem. For order 64 we have not managed
to compute a Gröbner basis due to its enormous computational cost. Clearly, a solution of
the reduced polynomial system obtained by a Gröbner basis corresponds to a solution of the
original system. We formulate the CDOD problems in terms of Gröbner bases, below.

CDODGB16: A reduced Gröbner basis of the CDOD problem for order 16, consists of a
polynomial system of 21 equations in 14 variables.
CDODGB32: A reduced Gröbner basis of the CDOD problem for order 32, consists of a
polynomial system of 290 equations in 30 variables.

Gröbner bases give some insight how to locate endomorphic solutions due to the fact that
binomial terms of the polynomial system could be written in a canonical form. However, this
is not sufficient to compute all required solutions as there is no indication for the structure of
substitution of different variables. Moreover, using this property that distills from Gröbner
bases in [7] and [8], it was feasible only to compute a handful of solutions and respectively
orthogonal designs.

It is clear that a specialized equation solver is needed to retrieve all endomorphic solutions
for the previous five problems. Performing some post-processing on the structure of the
polynomial systems we obtained for these problems, we observe that each equation consists
of the same number of positive and negative monomial terms, and within each equation,
all monomials have the same degree. This property, together with some statistics for the
structure of the equations, makes the CDOD problems and their Gröbner basis counterpart
very suitable to be attacked by equational unification as we later explain in Sections 5 and 6.

4 Equational Unification

Unification theory [1] studies unification problems: sets of equations between terms. The
latter, as usual, are constructed by a set of function symbols F and a (countably infinite) set
of variables V. We denote the set of terms over F and V by T (F ,V). Variables are denoted
by x, y, z, function symbols by f, g, and terms by s, t, r.
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Our substitutions are a special case of the substitutions defined in Section 3.1, mapping
variables to terms. An application of a substitution σ to a term t, denoted tσ, is defined as
follows: If t = x, then tσ := σ(x). If t = f(s1, . . . , sn), n ≥ 0, then tσ := f(s1σ, . . . , snσ).
Composition of two substitutions σ and ϕ, written as σϕ, is defined as tσϕ := (tσ)ϕ for
any t.

An equational theory, defined by a set equational axioms E ⊆ T (F ,V) × T (F ,V), is
the least congruence relation on T (F ,V), that is closed under substitution application
and contains E. It is denoted by .=E . If s .=E t, then we say that s and t are equal
modulo E. The axioms (i.e., the elements of E) are written as s ≈ t. For instance,
E = {f(x, f(y, z)) ≈ f(f(x, y), z), f(x, y) ≈ f(y, x)} defines the equational theory of
associativity and commutativity of f .

Given an E and a set of variables X , the substitution σ is more general modulo E on
X than the substitution ϕ, written σ 4XE ϕ, iff there exists a substitution ϑ such that
xσϑ

.=E xϕ for all x ∈ X . The relation 4XE is a quasi-order, and the induced equivalence is
denoted by 'XE .

Given an E and a set of function symbols F , an E-unification problem Γ over F is a finite
set of equations between terms over F and a countable infinite set of variables V , written as
Γ := {s1

.=?
E t1, . . . , sn

.=?
E tn}. An E-unifier of Γ is a substitution σ such that siσ

.=E tiσ

for all 1 ≤ i ≤ n.
Let Γ be an E-unification problem over F and let X be the set of all variables that occur

in Γ. A minimal complete set of unifiers (mcsu, in short) of Γ, denoted mcsu(Γ), is the set
of substitutions such that the following three conditions are satisfied:

Correctness: Each element of mcsu(Γ) is an E-unifier of Γ.
Completeness: For each unifier ϕ of Γ there exists σ ∈ mcsu(Γ) such that σ 4XE ϕ.
Minimality: For all σ1, σ2 ∈ mcsu(Γ), if σ1 4XE σ2, then σ1 = σ2.

The signature of an equational theory E, denoted by sig(E), is the set of all function
symbols that appear in the axioms of E. An E-unification problem Γ over F is elementary,
if F \ sig(E) = ∅. It is a problem with constants, if F \ sig(E) is a set of constants. It is
called a general problem, if F \ sig(E) may contain arbitrary function symbols.

When we are interested in E-unification problems of a special form, we talk about a
fragment of E-unification. When solutions only of a special form are needed, then we say
that a variant of E-unification is considered.

5 Orthogonal Designs Meet Equational Unification

In this section, we establish the connections between orthogonal designs and equational
unification. In particular, we show that Cayley-Dickson orthogonal designs defined in Section
3.1 can be constructed from unifiers of certain unification problems.

Recall that, as we observed, each equation in a CDOD consists of an equal number of
positive and negative monomial terms. Moreover, within an equation, all monomials have the
same degree. That means that the equations have the form A11 · · ·A1n+ · · ·+Am1 · · ·Amn−
B11 · · ·B1n − · · · −Bm1 · · ·Bmn = 0 with n,m > 0. By changing the design variables with
unification variables (A with x, B with y), making the multiplication explicit, and placing
negative monomials on the other side of equation, we obtain a unification problem of the
form x11 ∗ · · · ∗ x1n + · · · + xm1 ∗ · · · ∗ xmn

.=?
AC(+,∗) y11 ∗ · · · ∗ y1n + · · · + ym1 ∗ · · · ∗ ymn,

where ∗ and + are associative and commutative (and the subscript AC(+, ∗) indicates this
fact). We refer to the unification problem obtained from an CDOD (of order n) in this way as
CDODU (of order n). The important property, that is straightforward to see, is that there is a
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direct correspondence between endomorphic solutions of unification equations in the CDODU
and those of the corresponding polynomial equations in the given CDOD.

I Theorem 5. Let n = 2m for some m > 0. If there exists an endomorphic idempotent
unifier for an CDODU problem of order n, then there exists a Cayley-Dickson orthogonal design
of order n.

Proof. CDODU of order n has an idempotent endomorphic unifier iff the corresponding CDOD
of order n has an idempotent endomorphic solution. By Theorem 4, the latter implies the
existence of an Cayley-Dickson orthogonal design of order n. J

For an endomorphic idempotent solution σ of the CDOD, the corresponding Cayley-Dickson
orthogonal design is denoted by CDOD(σ).

In the theory of orthogonal designs, as we have already mentioned the Equating-Killing
Lemma plays a pivotal role, as it can produce a vast number of orthogonal designs from any
given one. It is natural to distinguish between orthogonal designs that can be produced or
not by the Equating-Killing Lemma.

Given two ODs of the same order, D1 and D2, we say D1 is more general than D2 and
write D1 DD2, if there exists an OD D3 of the same order as D1 and D2 such that D1 ' D3
and D2 is obtained from D3 by equating zero or more variables. Strictly more generality
relation is written D1 BD2 and requires equating one or more variables to get D3 from D1.

I Definition 6 (Basis). Let D be a set of orthogonal designs of order n. A basis for D is a
set B ⊆ D such that for each D ∈ D, there is B ∈ B such that B DD.

A trivial basis for D is D itself. The interesting ones are reduced bases defined below:

I Definition 7 (Reduced Basis, Base OD). Let B be a basis of the set D of orthogonal designs
of the same order. B is a reduced basis of D, written rb(D), if B does not contain two elements
B1, B2 such that B1 D B2. The elements of rb(D) are called the base orthogonal designs
for D.

This notion of base orthogonal designs introduced here for the first time, exhibits a
remarkable connection with unification theory.

I Theorem 8. Consider a CDOD problem of order n and the corresponding CDODU unification
problem. Let σ be an element of the minimal complete set of endomorphic idempotent unifiers
of CDODU . Assume D is a set of Cayley-Dickson orthogonal designs of order n (i.e, the
solutions of the CDOD problem). Then CDOD(σ) ∈ D is a base orthogonal design for D.

Proof. Let χ be the set of variables of CDODU and A be the set of variables of CDOD. The
theorem follows from the following fact: For two endomorphic idempotent unifiers ϕ1 and ϕ2
of CDODU , if ϕ1 4χAC(+,∗) ϕ2, then CDOD(ϕ1) D CDOD(ϕ2). Since ϕ1 and ϕ2 are endomorphic,
ϕ1 4χAC(+,∗) ϕ2 means that for some ϑ, xϕ1ϑ = xϕ2 for all x ∈ χ. Hence, ϑ is also
endomorphic on χ and can be decomposed into ϑ1ϑ2, where ϑ1 is a permutation (a bijective
mapping from dom(ϑ) to dom(ϑ)), and ϑ2 is an arbitrary endomorphic substitution. Then
from CDOD(ϕ1) we first can obtain an OD D by renaming variables that correspond to ϑ1. It
gives CDOD(ϕ1) ' D. Afterwards, from D we can perform variable equating according to ϑ2,
which will give CDOD(ϕ2). By the definition of D, we get CDOD(ϕ1) D CDOD(ϕ2). J

The connections between orthogonal designs and unification theory presented in this
section are essential for translating CDOD problems to unification problems, and in addition
provide some concrete guidelines on how to efficiently perform a systematic solving of the
respective polynomial systems.
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6 Solving Unification Problems

Our unification problem Γ contains only equations in the flattened form x1
1 ∗ · · · ∗ x1

n + · · ·+
xm1 ∗ · · · ∗ xmn

.=?
AC(+,∗) y

1
1 ∗ · · · ∗ y1

n + · · ·+ ym1 ∗ · · · ∗ ymn for some n,m > 0, where + and ∗
are the AC symbols. We call it a balanced fragment of AC-unification. We are looking for
AC-unifiers of Γ that map variables of Γ to variables of Γ, i.e., both domain and range of
unifiers should be subsets of var(Γ). We call such variants endomorphic. Hence, the problem
we would like to solve is an endomorphic variant of a balanced fragment of the elementary
AC-unification. For brevity, we refer to it as an ACEB-unification problem.

Note that this problem always has a unifier: Just map all variables to one of them, and it
will be a solution. What we are looking for is the minimal complete set of unifiers.

AC-unification problems are solved by reducing them to systems of linear Diophantine
equations, see, e.g., [3, 14]. However, it is pretty easy to formulate a direct algorithm that
computes a complete set of unifiers for ACEB-unification problems. In fact, as we will see,
the four rules below are sufficient to construct it. The rules transform systems (pairs Γ;σ of
an unification problem and a substitution) into systems. The symbol ∪· stands for disjoint
union. The subscript AC(+, ∗) is omitted, as well as the symbol ∗.

T: Trivial
{x .=?

x} ∪· Γ′; σ =⇒ Γ′; σ.

D-sum: Decomposition for Sums
{s1 + · · ·+ sn

.=?
t1 + · · ·+ tn} ∪· Γ′; σ =⇒ {s1

.=?
π(t1), . . . , sn

.=?
π(tn)} ∪ Γ′; σ,

where n > 1 and π is a permutation of the multiset {t1, . . . , tn}.

D-prod: Decomposition for Products
{x1 · · ·xn

.=?
y1 · · · yn} ∪· Γ′; σ =⇒ {x1

.=?
π(y1), . . . , xn

.=?
π(yn)} ∪ Γ′; σ,

where n > 1 and π is a permutation of the multiset {t1, . . . , tn}.

S: Solve
{x .=?

y} ∪· Γ′; σ =⇒ Γ′{x 7→ y}; σ{x 7→ y}, where x 6= y.

We call a system Γ;σ a balanced system, if Γ is a balanced AC-unification problem. By
inspecting the rules, it is easy to see that the rules transform balanced systems into balanced
systems. Note that any balanced system Γ;σ, where Γ 6= ∅, can be transformed, and each
selected equation can be transformed by only one rule.

To solve an unification problem Γ, we create the initial system Γ; ε and apply the rules
exhaustively. Let BF denote this algorithm, to indicate that it is a brute force approach, i.e.,
BF := (T | D-sum | D-prod | S)∗, where | stands for choice and ∗ for iteration. The terminal
systems have the form ∅;σ. We say in this case that the algorithm computes σ. Given a
balanced Γ, the set of all substitutions computed by BF is denoted by ΣBF(Γ). This set
is finite, because there can be finitely many terminal systems (since rules that produce all
possible permutations lead to finite branching).

I Theorem 9. Given a balanced AC-unification problem Γ, the algorithm BF terminates
and computes ΣBF(Γ), which is a complete set of endomorphic idempotent AC-unifiers of Γ.

Proof. (Sketch) To prove termination, we first define the size of an equation as the number
of symbol occurrences in it (including the ∗ that is omitted in the rules). Next, we associate
to each AC-unification problem its measure: the multiset of sizes of equations in it. Then we
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can see that each rule strictly decreases this measure. For the rules T and S it is obvious.
For the other two rules it follows from the condition n > 1, which implies that the resulting
set of equations reduces the number of occurrences of + or ∗, while the rest does not increase.
These facts, together with the observation that the number of branching alternatives the
rules produce is finite, imply termination.

The S rule guarantees that the computed substitutions are endomorphic and idempotent.
Each rule preserves the set of unifiers for the problems it transforms. Hence the computed
substitutions are endomorphic idempotent unifiers. Completeness is implied by the fact that
the permutations in the decomposition rules generate all possible branchings in the search
tree. J

The set ΣBF(Γ) is not minimal, in general. This is not surprising, since ACEB-unification
is, in fact, variadic commutative (aka orderless) unification [9]. No algorithm is known
that would directly compute minimal complete set of unifiers for commutative unification
problems. There is an additional minimization step required.

Our main challenge, however, was related to the size of the problem. The unification
problems contain hundreds of equations and the brute-force approach of BF usually is not
feasible. We need to keep the alternatives as small as possible. For this purpose, we elaborated
several heuristics. Two of them concern equation selection, and two more unification problem
simplification:

Sel1: For transformation, select an equation with the minimal number of arguments. For
instance, if the unification problem is {x1x2 + y3x3

.=?
x3y3 + y2y1, x1

.=?
y1}, the

equation x1
.=?
y1 will be selected and transformed by the rule Solve.

Sel2: In the decomposition rules, permute that side of the selected equation that generates
fewer permutations (i.e., the side that has more repeated arguments). It reduces the
branching factor, but completeness is not violated, since equality is symmetric.

Simp1: Given an ordering on variables that is extended lexicographically to products and
sums, rearrange unordered subterms in equations in the ordered form. For instance, if
x1 > x2 > x3 > y1 > y2 > y3, then the equation x1x2 + y3x3

.=?
x3y3 + y2y1 would

be transformed in one step to, e.g., x1x2 + x3y3
.=?

x3y3 + y2y1 and in two steps to
x1x2 + x3y3

.=?
x3y3 + y1y2.

Simp2: Remove all common arguments from both sides of equations. This is a well-known
technique used in AC-unification. It reduces, for instance, the equation x1x2 + x3y3

.=?

x3y3 + y1y2 in one step to x1x2
.=?
y1y2. Two applications of this strategy would reduce

the equation x1x2y1
.=?
y1x2y2 to x1

.=?
y2.

Let T-s and S-s be the variations of the T and S rules, respectively, where equations are
selected according to Sel1. Similarly, D-sum-s and D-prod-s stand for the variants of D-sum
and D-prod rules, where the equation is selected according to Sel1, and the permutation side
is selected according to Sel2. Simp1 should be used in combination with Simp2 to detect
common arguments in the sides of equations. Then we define the refined algorithm Ref with
the following strategy (◦ stands for composition, | for choice, ∗ for iteration):

Ref :=
(
(Simp1 | Simp2)∗ ◦ (T-s | S-s | D-sum-s | D-prod-s)

)∗
.

In words, it means that Ref works with a set of systems, selects one of them nondetermin-
istically, normalizes it with respect to the Simp1 and Simp2, transforms the obtained system
into new ones with one of the rules T-s, S-s, D-sum-s, or D-prod-s, and iterates.

Since unification problems are sets, simplification steps may decrease the number of
equations, when several equations simplify to the same one. It is not hard to see that the

RTA 2015



252 Orthogonal Designs in Powers of Two

selection and simplification heuristics affect neither soundness nor completeness. Therefore,
based on Theorem 9 we have that ΣRef(Γ) is a complete set of endomorphic idempotent
unifiers of Γ.

As it turns out, Simp2 plays an important role in reducing the number of computed unifiers.
For instance, for an unification problem Γ originated from CDODGB16, ΣRef(Γ) contains 7
unifiers. For a Γ coming from CDODGB32, this number is 33. If we skipped the Simp2 step in
Ref, then we would get 45 unifiers for CDODGB16, and 1574 for CDODGB32. Similarly, for an
unification problem Γ originated from CDOD16, ΣRef(Γ) contains 65 unifiers. For a Γ coming
from CDOD32, this number is 6935. If we again skip the Simp2 step in Ref, then we get 264
unifiers for CDOD16.

The set computed by Ref is complete but not minimal. A minimal and complete algorithm
ACEB for ACEB-unification problems can be formulated as

ACEB(Γ) := minimize
(
ΣRef(Γ)

)
,

where minimize is a function that minimizes a set of substitutions. Therefore, we have the
following theorem:

I Theorem 10. ACEB(Γ) = mcsu(Γ).

For efficiency reasons, it makes sense to have an incremental version of the algorithm
ACEB: Instead of working with the entire set of equations at once, we split this set into
smaller subsets of some fixed size size. After ACEB computes an mcsu U of one such subset,
we generate all possible instances of the next subset with respect to the unifiers in U , and
proceed further in a similar way for each new set. Such early minimization efforts reduce
the number of redundant potential solutions. This method is sensitive to the choice of size.
It should be not too small not to trigger frequent calls of the expensive minimize function,
and not too big not to postpone minimization too much. As experiments showed, a good
strategy for the unification problems originated from the original polynomials is, for instance,
to set size close to the number of equations of the smallest size. For instance, in CDOD32, the
polynomials of the smallest size are those that contain 4 monomials, each of degree 2. There
are 42 such polynomials (out of 252) there. Setting size to 42 led to the fastest computation
of the result. However, for equations coming from the polynomials in Gröbner bases, we
could not observe such a pattern.

Now we give the elements of ACEB(Γ) for unification problems Γ that originate from
CDOD16, CDODGB16, CDOD32, CDODGB32 and CDOD64 problems:

CDOD16 and CDODGB16:

σ16
1 = {x10 → x2, x11 → x3, x12 → x4, x13 → x5, x14 → x6, x15 → x7, x16 → x8}

σ16
2 = {x2 → x8, x3 → x8, x4 → x8, x5 → x8, x6 → x8, x7 → x8, x10 → x16,

x11 → x16, x12 → x16, x13 → x16, x14 → x16, x15 → x16}

CDOD32 and CDODGB32:

σ32
1 = {x2 → x8, x3 → x8, x4 → x8, x5 → x8, x6 → x8, x7 → x8, x10 → x32,

x11 → x32, x12 → x32, x13 → x32, x14 → x32, x15 → x32, x16 → x32,

x18 → x8, x19 → x8, x20 → x8, x21 → x8, x22 → x8, x23 → x8, x24 → x8,

x25 → x9, x26 → x32, x27 → x32, x28 → x32, x29 → x32, x30 → x32,

x31 → x32}

σ32
2 = {x2 → x26, x10 → x26, x11 → x3, x12 → x4, x13 → x5, x14 → x6, x15 → x7,
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x16 → x8, x18 → x26, x19 → x3, x20 → x4, x21 → x5, x22 → x6, x23 → x7,

x24 → x8, x25 → x9, x27 → x3, x28 → x4, x29 → x5, x30 → x6, x31 → x7,

x32 → x8}

σ32
3 = {x2 → x9, x3 → x9, x4 → x9, x5 → x9, x6 → x9, x7 → x9, x8 → x9,

x10 → x9, x11 → x9, x12 → x9, x13 → x9, x14 → x9, x15 → x9, x16 → x9,

x18 → x32, x19 → x32, x20 → x32, x21 → x32, x22 → x32, x23 → x32,

x24 → x32, x25 → x32, x26 → x32, x27 → x32, x28 → x32, x29 → x32,

x30 → x32, x31 → x32}

CDOD64:

σ64
1 = {x2 → x9, x3 → x9, x4 → x9, x5 → x9, x6 → x9, x7 → x9, x8 → x9,

x10 → x9, x11 → x9, x12 → x9, x13 → x9, x14 → x9, x15 → x9, x16 → x9,

x17 → x9, x18 → x9, x19 → x9, x20 → x9, x21 → x9, x22 → x9, x23 → x9,

x24 → x9, x25 → x9, x26 → x9, x27 → x9, x28 → x9, x29 → x9, x30 → x9,

x31 → x9, x32 → x9, x34 → x64, x35 → x64, x36 → x64, x37 → x64,

x38 → x64, x39 → x64, x40 → x64, x41 → x64, x42 → x64, x43 → x64,

x44 → x64, x45 → x64, x46 → x64, x47 → x64, x48 → x64, x49 → x64,

x50 → x64, x51 → x64, x52 → x64, x53 → x64, x54 → x64, x55 → x64,

x56 → x64, x57 → x64, x58 → x64, x59 → x64, x60 → x64, x61 → x64,

x62 → x64, x63 → x64}

σ64
2 = {x2 → x8, x3 → x8, x4 → x8, x5 → x8, x6 → x8, x7 → x8, x10 → x64,

x11 → x64, x12 → x64, x13 → x64, x14 → x64, x15 → x64, x16 → x64,

x17 → x49, x18 → x8, x19 → x8, x20 → x8, x21 → x8, x22 → x8, x23 → x8,

x24 → x8, x25 → x9, x26 → x64, x27 → x64, x28 → x64, x29 → x64,

x30 → x64, x31 → x64, x32 → x64, x34 → x8, x35 → x8, x36 → x8,

x37 → x8, x38 → x8, x39 → x8, x40 → x8, x41 → x9, x42 → x64, x43 → x64,

x44 → x64, x45 → x64, x46 → x64, x47 → x64, x48 → x64, x50 → x8,

x51 → x8, x52 → x8, x53 → x8, x54 → x8, x55 → x8, x56 → x8, x57 → x9,

x58 → x64, x59 → x64, x60 → x64, x61 → x64, x62 → x64, x63 → x64}

σ64
3 = {x2 → x58, x3 → x59, x4 → x60, x5 → x61, x6 → x62, x10 → x58, x11 → x59,

x12 → x60, x13 → x61, x14 → x62, x15 → x7, x16 → x8, x17 → x49, x18 → x58,

x19 → x59, x20 → x60, x21 → x61, x22 → x62, x23 → x7, x24 → x8, x25 → x9,

x26 → x58, x27 → x59, x28 → x60, x29 → x61, x30 → x62, x31 → x7, x32 → x8,

x34 → x58, x35 → x59, x36 → x60, x37 → x61, x38 → x62, x39 → x7, x40 → x8,

x41 → x9, x42 → x58, x43 → x59, x44 → x60, x45 → x61, x46 → x62, x47 → x7,

x48 → x8, x50 → x58, x51 → x59, x52 → x60, x53 → x61, x54 → x62, x55 → x7,

x56 → x8, x57 → x9, x63 → x7, x64 → x8}

σ64
4 = {x2 → x9, x3 → x9, x4 → x9, x5 → x9, x6 → x9, x7 → x9, x8 → x9, x10 → x9,

x11 → x9, x12 → x9, x13 → x9, x14 → x9, x15 → x9, x16 → x9, x17 → x49,

x18 → x64, x19 → x64, x20 → x64, x21 → x64, x22 → x64, x23 → x64,

x24 → x64, x25 → x64, x26 → x64, x27 → x64, x28 → x64, x29 → x64,

x30 → x64, x31 → x64, x32 → x64, x34 → x9, x35 → x9, x36 → x9, x37 → x9,

x38 → x9, x39 → x9, x40 → x9, x41 → x9, x42 → x9, x43 → x9, x44 → x9,

x45 → x9, x46 → x9, x47 → x9, x48 → x9, x50 → x64, x51 → x64, x52 → x64,
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x53 → x64, x54 → x64, x55 → x64, x56 → x64, x57 → x64, x58 → x64,

x59 → x64, x60 → x64, x61 → x64, x62 → x64, x63 → x64}

We remark that as expected the elements of the ACEB(Γ) for the unification problems Γ
that originate from CDOD16 and CDODGB16, are the same. This also applies for CDOD32 and
CDODGB32.

7 New Cayley-Dickson Orthogonal Designs via Equational Unification

In this section, we translate back from unifiers to solutions of the polynomial systems that
give rise to Cayley-Dickson orthogonal designs and list their types. As noted before the
elements of ACEB(Γ) correspond to base orthogonal designs from Corollary 8, which implies
that the designs we list below are sufficient to give all Cayley-Dickson orthogonal designs for
orders 16, 32 and 64. Therefore, we provide a complete solution to the CDOD problem for
these orders.

1. For order 16 we obtain the following two base Cayley-Dickson orthogonal designs:
From σ16

1 : OD(16; 1, 1, 2, 2, 2, 2, 2, 2, 2).
From σ16

2 : OD(16; 1, 1, 7, 7).
2. For order 32 we obtain the following three base Cayley-Dickson orthogonal designs:

From σ32
1 : OD(32; 1, 1, 2, 14, 14).

From σ32
2 : OD(32; 1, 1, 2, 4, 4, 4, 4, 4, 4, 4).

From σ32
3 : OD(32; 1, 1, 15, 15).

3. For order 64 we obtain the following four base Cayley-Dickson orthogonal designs:
From σ64

1 : OD(64; 1, 1, 31, 31).
From σ64

2 : OD(64; 1, 1, 2, 4, 28, 28).
From σ64

3 : OD(64; 1, 1, 2, 4, 8, 8, 8, 8, 8, 8, 8).
From σ64

4 : OD(64; 1, 1, 2, 30, 30).

It is important to note here that from the previous list of orthogonal designs, some
Cayley-Dickson orthogonal designs appear here for the first time. In particular, the
OD(32; 1, 1, 2, 14, 14) and OD(64; 1, 1, 2, 30, 30), OD(64; 1, 1, 2, 4, 28, 28) have not been repor-
ted in [7] and [8], respectively.

However, these types of orthogonal designs are not new in the literature of ortho-
gonal designs, as they can be obtained by other methods. In particular, the existence of
OD(32; 1, 1, 2, 14, 14) is attributed to a result of Robinson (p. 358, Corollary D.2., [6]) which
states that all orthogonal designs of type (1, 1, a, b, c), a+b+c = 2t−2 exist in order 2t, t ≥ 3,
for a = 2, b = 14, c = 14 and t = 5. Again from Robinson’s result the OD(64; 1, 1, 2, 30, 30)
is known for a = 2, b = 30, c = 30 and t = 6. Finally by applying the Doubling Lemma (c.f.
Lemma 2) to OD(32; 1, 1, 2, 14, 14) we can get OD(64; 1, 1, 2, 4, 28, 28).

From the previous discussion three patterns for the orthogonal designs that are modelled
by Cayley-Dickson algebras and obtained via equational unification are visible.

The four variable designs are of the form OD(2n; 1, 1, 2n−1 − 1, 2n−1 − 1), for orders 2n
where n = 4, 5, 6. These types of orthogonal designs can also be obtained via simple
Paley matrices [6].
The five variable designs are of the form OD(2n; 1, 1, a, b, c) where a = 2, b = 2n − 2,
c = 2n − 2 for n = 5, 6. As we already noted these types of orthogonal designs can be
obtained from Robinson’s results.
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It is clear that there is an analogy between the Cayley-Dickson process and the Doubling
Lemma. In particular, by applying the doubling lemma to the nine variable base
orthogonal design in order 16 we obtain the ten variable base orthogonal design in
order 32. Repeating the process to the latter design, we obtain the eleven variable base
orthogonal design in order 64. In addition, as we have shown earlier the six variable
design in order 64 can also obtained by doubling of the five variable design in order 32.

Moreover, we would like to explicitly state that these designs are new with respect to the
algebraic modelling of Cayley-Dickson algebras (in the class of Cayley-Dickson orthogonal
designs), however the corresponding types of ODs have been reported in the literature also
with other techniques. To make our contribution in this section more precise, we can say the
following:
1. It was not known before that most of the ODs we found belong also to the class of

Cayley-Dickson orthogonal designs.
2. Our approach not only reports the ODs, but also constructs the corresponding design

matrices. In this way, we always give a constructive solution to the problem. It is not
always the case with the other approaches. In some cases, there are semi-constructive
techniques (doubling method), but in some other, there is only the existential, non-
constructive method (Robinson’s Lemma). (The doubling method is semi-constructive in
the sense that one needs to know the design matrix of the initial OD in order to build
design matrices of the ODs the doubling method gives.)

3. The design matrices are of interest for the applications of ODs, since in that case it is
not enough to know that the design type exists. For example, in weighing experiments
you need the design matrix to perform the actual experiment.

4. The fact that the class of Cayley-Dickson orthogonal designs contains the previous types of
orthogonal designs is of interest also to the asymptotic existence of orthogonal designs [6]
and will be studied further in future work.

8 Conclusion

In this paper, we presented a algebraic framework for modelling orthogonal designs in order
of powers of two via Cayley-Dickson algebras of same orders. This framework gives rise to
a polynomial system of equations that is unfeasible to be tackled with traditional search
algorithms, as the order increases. We exhibited that the structural properties of this algebraic
framework can be written in terms of unification theory by establishing important connections
between orthogonal designs and unifiers. These connections enabled the development of
unification algorithms that can solve the problems arising from the algebraic modelling
of orthogonal designs and find solutions that were not known before with this algebraic
modelling of Cayley-Dickson algebras.
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Abstract
We describe how to utilize redundant rewrite rules, i.e., rules that can be simulated by other
rules, when (dis)proving confluence of term rewrite systems. We demonstrate how automatic
confluence provers benefit from the addition as well as the removal of redundant rules. Due to
their simplicity, our transformations were easy to formalize in a proof assistant and are thus
amenable to certification. Experimental results show the surprising gain in power.
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1 Introduction

Confluence of first-order term rewrite systems (TRSs) is an important property which is
intimately connected to uniqueness of normal forms, and hence to determinism of programs. In
recent years there has been tremendous progress in establishing confluence or non-confluence
of TRSs automatically, with a number of tools being developed, like ACP [3], Saigawa [11,14],
CoLL1 and our own tool, CSI [29]. There is an annual confluence competition2 where these
tools compete. To increase the trust in the proofs produced by these tools, a certifier like
CeTA [27] can be used to verify the proofs. (CeTA is a certifier for termination and confluence
proofs for TRSs. Other certifiers already exist for termination proofs, notably Rainbow [5] and
CiME3 [6].) The approach taken by CeTA is to formalize various termination and confluence
criteria in an interactive theorem prover, together with executable functions that can be
used to verify that the criteria are applied correctly. From this formalization, the certifier is
automatically extracted, which produces highly trustworthy code. An alternative approach is
to convert certificates produced by automated termination (or confluence) tools into proofs
that can be replayed in a theorem prover, thereby formally proving the property for the
original TRS.

In this paper we present a remarkably simple technique based on the removal and addition
of redundant rules, which can significantly enhance the power of automatic confluence provers.
The technique is also straightforward to formalize, making it amenable to certification.

I Example 1. Consider the TRS R consisting of the two rewrite rules

f(f(x))→ x f(x)→ f(f(x))
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The two non-trivial critical pairs

f(f(f(x)))←o→ x x←o→ f(f(f(x)))

are obviously joinable

f(f(f(x)))→R f(x)→R f(f(x))→R x

but not by a multistep (cf. Definition 3). Consequently, the result of van Oostrom [19] on
development-closed critical pairs does not apply. After adding the rewrite rule f(x)→ x to
R, we obtain four new critical pairs

f(x)←o→ x x←o→ f(x) f(f(x))←o→ x x←o→ f(f(x))

The new rule ensures that fn(x) −→○ x for all n > 0 and thus confluence of the extension
follows from the main result of [19], cf. Example 4 in Section 2. Since the new rule can be
simulated by the original rules (i.e., f(x)→R f(f(x))→R x), also R is confluent.

None of the aforementioned tools can prove confluence of the TRS R of Example 1, but
every tool can prove confluence of the extended TRS. Below we explain how such extensions
can be found automatically.

The next example shows that also proving non-confluence may become easier after adding
rules.
I Example 2. Consider the TRS R consisting of the eight rewrite rules

f(g(a), g(y))→ b f(x, y)→ f(x, g(y)) g(x)→ x a→ g(a)
f(h(x), h(a))→ c f(x, y)→ f(h(x), y) h(x)→ x a→ h(a)

All critical pairs are deeply3 joinable but R is not confluent [7]. Two of the critical pairs are

b←o→ f(h(g(a)), g(x)) c←o→ f(h(x), g(h(a)))

After adding them as rules

f(h(g(a)), g(x))→ b f(h(x), g(h(a)))→ c

new critical pairs are obtained, one of which is

b←o→ c

Since b and c are different normal forms, the extension is obviously non-confluent. Since
the new rules can be simulated by the original rules, also R is non-confluent. Of the tools
mentioned, ACP shows confluence by first deriving the rule g(a)→ a (which can be simulated
by existing rules), which then gives rise to a critical pair that extends to a non-joinable peak:

b← f(g(a), g(a))→ f(g(a), a)→∗ c

Saigawa also shows non-confluence but exceeded the 60s time limit in our experiments; it
considers critical pairs of the (extended) TRS R∪R−1, which includes the rule g(a)→ a.
Hence Saigawa finds the same non-joinable peak as ACP. However, CoLL and CSI (without
the techniques from this paper) fail.

The remainder of the paper is structured as follows. In Section 3, we describe the theory
underlying the addition and removal of rules, and Section 4 is devoted to its integration
into CeTA. In Section 5 we briefly sketch our implementation in CSI and present experimental
results. Related work is presented in Section 6 before we conclude in Section 7.

3 A critical pair s←o→ t is deeply joinable if u ↓ v for any two reducts u of s and v of t. The example
defeats any non-confluence check based on proving non-joinability of peaks starting from critical peaks.
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2 Preliminaries

Throughout the paper we assume familiarity with term rewriting; for an introduction to
this topic see [4, 25]. We use s and t to denote terms. Given a position p in a term t, t|p
is the subterm at position p of t, and t[s]p is the result of replacing the subterm t|p by the
term s in t. The letter σ represents a substitution (mapping variables to terms) and tσ is
the result of applying σ to the term t. For a binary relation R on terms we write σ R σ′ if
σ(x) R σ′(x) for all variables x. Term rewrite systems R, S consist of rewrite rules `→ r,
and induce rewrite relations (e.g., →R). The relations ←, ←→, →∗ denote the inverse, the
symmetric closure, and the reflexive, transitive closure of →, respectively. Joinability ↓ and
meetability ↑ are defined by ↓ =→∗ · ∗← and ↑ = ∗← ·→∗. Consider two rules `→ r and
`′ → r′ ∈ R that have been renamed such that ` and `′ have no variables in common, and a
non-variable position p of `. If p is the root position, then we demand that `→ r and `′ → r′

are not variants of each other. If `′ and `|p unify with most general unifier σ, then we obtain
a critical peak `[r′]pσ ← `σ → rσ. We write `[r′]pσ ←o→ rσ for the corresponding critical
pair. We also write s←no→ t to denote overlays, i.e., critical pairs that stem from overlaps
at the root position, and s←·o→ t for the other critical pairs.

I Definition 3. For a TRS R, multisteps −→○ R are defined inductively by
x −→○ R x if x is a variable,
`σ −→○ R rσ′ if `→ r ∈ R and σ, σ′ are substitutions with σ −→○ R σ′, and
f(s1, . . . , sn) −→○ R f(t1, . . . , tn) if f is a function symbol of arity n and si −→○ R ti for
1 6 i 6 n.

The TRS R is development-closed if every critical pair s←o→ t satisfies s −→○ t. It is almost
development-closed if s −→○ · ∗← t for all overlays s ←no→ t and s −→○ t for all other critical
pairs s←·o→ t.

Van Oostrom [19] has shown that (almost) development closed TRSs are confluent,
extending results by Huet [13] and Toyama [28].

I Example 4. We revisit Example 1 and show confluence of R ∪ {f(x) → x}. First we
establish that fn(x) −→○ x by induction on n. The claim is trivially true for n = 0. Given
fn−1(x) −→○ x, we can take substitutions σ and σ′ that map x to fn−1(x) and x, respectively,
and obtain f(x)σ −→○ xσ′, i.e., fn(x) −→○ x. For each of the critical pairs s ←o→ t, we have
either s −→○ t or s ←no→ t and s ←−◦ t (which implies s −→○ · ∗← t). Therefore the TRS is
almost development closed and thus confluent.

3 Theory

In this section we present the easy theory behind the use of redundant rules for proving
confluence. For adding such rules we use the following folklore result.

I Lemma 5. If `→∗R r for every rule `→ r from S then →∗R =→∗R∪S .

Proof. The inclusion →∗R ⊆ →∗R∪S is obvious. For the reverse direction it suffices to show
that s→∗R t whenever s→S t. The latter ensures the existence of a position p in s, a rewrite
rule `→ r in S, and a substitution σ such that s|p = `σ and t = s[rσ]p. We obtain `→∗R r

from the assumption of the lemma. Closure (of →∗R) under contexts and substitutions yields
the desired s→∗R t. J

I Corollary 6. If ` →∗R r for every rule ` → r from S then R is confluent if and only if
R∪ S is confluent.
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Proof. We obtain →∗R = →∗R∪S from the preceding lemma. Hence also ↓R = ↓R∪S and
↑R = ↑R∪S . Therefore

↑R ⊆ ↓R ⇐⇒ ↑R∪S ⊆ ↓R∪S J

I Definition 7. A rule `→ r ∈ R is redundant if `→∗R\{`→r} r.

By Corollary 6, if `→ r ∈ R is redundant, then R is confluent if and only if R\{`→ r} is
confluent. In other words, removing a redundant rule does not affect confluence of a TRS. For
removing rules while reflecting4 confluence (or adding rules while reflecting non-confluence) it
suffices that the left- and right-hand side are convertible with respect to the remaining rules.

I Lemma 8. If `←→∗R r for every rule `→ r from S then ←→∗R∪S =←→∗R.

Proof. The inclusion ←→∗R ⊆ ←→∗R∪S is obvious. For the reverse direction it suffices to show
that s←→∗R t whenever s→S t. The latter ensures the existence of a position p in s, a rewrite
rule `→ r in S, and a substitution σ such that s|p = `σ and t = s[rσ]p. We obtain `←→∗R r

from the assumption of the lemma. Closure (of ←→∗R) under contexts and substitutions yields
the desired s←→∗R t. J

I Corollary 9. If R is confluent and ` ←→∗R r for every rule ` → r from S then R ∪ S is
confluent.

Proof. From the preceding lemma and the confluence of R we obtain

←→∗R∪S = ←→∗R ⊆ ↓R ⊆ ↓R∪S

Hence R∪ S is confluent. J

I Example 10. Consider the TRS from [10, Example 2] consisting of the five rewrite rules

hd(x : y)→ x inc(x : y)→ s(x) : inc(y) nats→ 0 : inc(nats)
tl(x : y)→ y inc(tl(nats))→ tl(inc(nats))

While this system can be shown to be confluent using decreasing diagrams, simply removing
the last rule would make confluence obvious, since the remaining four rules constitute an
orthogonal TRS. And indeed, because of the following joining sequences, the last rule is
superfluous and can be dropped:

inc(tl(nats))→ inc(tl(0 : inc(nats)))→ inc(inc(nats))
tl(inc(nats))→ tl(inc(0 : inc(nats)))→ tl(s(0) : inc(inc(nats)))→ inc(inc(nats))

I Remark. Some other examples from [10] can be dealt with in a similar fashion: In
[10, Example 1] the first rule is joinable using the other rules, and the remaining system
is orthogonal. The same argument (with a different joining conversion) applies to [10,
Example 5].

Corollary 9 can also be beneficial when dealing with non-left-linear systems, as demon-
strated by the following example.

4 We are interested in transformations that reflect (rather than preserve) confluence, because our goal is
automation, and it is natural to work from the conclusion for finding (non-)confluence proofs.
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I Example 11. Consider the TRS from [24] consisting of the four rewrite rules

f(x, x)→ f(g(x), g(x)) f(x, y)→ f(h(x), h(y))
g(x)→ p(x) h(x)→ p(x)

Because of the conversion

f(x, x)→ f(h(x), h(x))→ f(p(x), g(x))→ f(p(x), p(x))← f(g(x), p(x))← f(g(x), g(x))

we can remove the first rule. Since the resulting TRS is orthogonal and the removed rule is
convertible using the other rules, also the original TRS is confluent.

It can also be beneficial to both add and remove rules. In particular adding a redundant
rule can help with removing other, problematic rules, as shown in the following example.

I Example 12. Consider the TRS consisting of the three rewrite rules5

f(x, y)→ f(g(x), g(x)) f(x, x)→ a g(x)→ x

After adding the rule f(x, y)→ a, which is justified since f(x, y)→ f(g(x), g(x))→ a, we can
remove the first two original rules, due to the following conversions:

f(x, y)→ a← f(g(x), g(x)) f(x, x)→ a

The resulting TRS is orthogonal and hence confluent. Since the added rule can be simulated
by the original rules, and the removed rules are convertible using the new rule, also the
original TRS is confluent.

While adding (or removing) rules using Corollary 6 is always safe in the sense that we
cannot lose confluence, it is easy to see that the reverse direction of Corollary 9 does not
hold in general. That is, removing convertible rules can make a confluent TRS non-confluent
as for example witnessed by the two TRSs R = {a→ b, a→ c} and S = {b→ a}. Clearly
R is not confluent, S ∪R is confluent, and b←→∗R a.

We give one more example, showing that using removal of redundant rules can considerably
speed up finding a confluence proof.

I Example 13. Consider the TRS consisting of the following two rules:

f(x)→ g(x, f(x)) f(f(f(f(x))))→ f(f(f(g(x, f(x)))))

This TRS is confluent by the simultaneous critical pair criterion of Okui [18]6 which is
implemented by ACP. Alas, there are 58 simultaneous critical pairs and indeed ACP, which im-
plements Okui’s criterion, does not terminate in five minutes. While 58 looks small, the simul-
taneous critical pairs become quite big. For example, with t = g(f3(g(x, f(x))), f4(g(x, f(x)))),
one of the simultaneous critical pairs is

f3(g(f(g(f(t), f(f(t))), f(f(g(f(t), f(f(t))))))))←−◦o→ f5(g(f3(x), f4(x)))

and testing joinability using development steps is very expensive. In general, if one takes
the rules f(x) → g(x, f(x)) and fn(f(x)) → fn(g(x, f(x))), then the number and size of the
simultaneous critical pair will grow exponentially in n. However, Corollary 9 is applicable—
the second rule can be simulated by the first rule in one step—and showing confluence of the
first rule is trivial.

5 http://www.nue.riec.tohoku.ac.jp/tools/acp/experiments/rtatlca14/examples/u1.trs
6 Note that the given TRS is feebly orthogonal [21]. The key observation here is that any simultaneous

critical pair arises from a peak of a development step and a plain rewrite step. By the orthogonalization
procedure from [21], we can obtain an equivalent peak of two orthogonal development steps, which is
joinable by two development steps, thus satisfying Okui’s criterion.

RTA 2015

http://www.nue.riec.tohoku.ac.jp/tools/acp/experiments/rtatlca14/examples/u1.trs


262 Improving Confluence Analysis by Redundant Rules

4 Formalization and Certification

Due to the ever increasing interest in automatic analysis of term rewrite systems in the
recent years, it is of great importance whether a proof, automatically generated by some
tool, is indeed correct. The complexity of the generated proofs makes checking correctness,
i.e., certification, impractical for humans. Thus there is a strong interest in automated
certification of proofs generated by e.g. confluence or termination tools. This led to the
common approach of using proof assistants for certification.

Our technique is particularly well suited for certification for the following reasons. First,
since the theory we use is elementary, formalizing it in a proof assistant is entirely straight-
forward. Moreover the generated proofs, while simple in nature, can become very large,
which makes checking them infeasible by hand, but easy for a machine. Finally, as demon-
strated in Section 5, the existing certifiable confluence techniques heavily benefit from our
transformations.

As certifier we use CeTA [27], originally developed as a tool for certifying termination
proofs which have to be provided as certificates in CPF (certification problem format) [23].
Given a certificate CeTA will either answer CERTIFIED, or return a detailed error message why
the proof was REJECTED. Its correctness is formally proven as part of IsaFoR, the Isabelle
Formalization of Rewriting. IsaFoR contains executable “check”-functions for each formalized
proof technique together with formal proofs that whenever such a check succeeds, the
technique was indeed applied correctly. Isabelle’s code-generation facility is used to obtain a
trusted Haskell program from these check functions: the certifier CeTA.7

Since 2012 CeTA supports checking (non-)confluence certificates [16,26]. Checkable criteria
that ensure confluence are:

Knuth and Bendix’ criterion [15],
(weak) orthogonality [22],
Huet’s result on strongly closed critical pairs [13], and
the rule labeling heuristic for decreasing diagrams [17,20].

For non-confluence CeTA can check that, given derivations s →∗ t1 and s →∗ t2, t1 and t2
cannot be joined. Here the supported justifications are:

testing that t1 and t2 are distinct normal forms,
testing that tcap(t1σ) and tcap(t2σ) are not unifiable [29],
usable rules, discrimination pairs, argument filters, and interpretations [1], and
reachability analysis using tree automata [8].

To add support for our transformations to CeTA we formalized the results from Section 3
in Isabelle and integrated them into IsaFoR. The theory Redundant_Rules.thy contains the
theoretical results, whose formalization, directly following the paper proof, requires a mere
100 lines of Isabelle, stressing the simplicity of the transformations.

We extended CPF for representing proofs using addition and removal of redundant
rules and implemented dedicated check functions in the theory Redundant_Rules_Impl.thy,
enabling CeTA to inspect, i.e., certify such (non-)confluence proofs. A certificate for (non-)con-
fluence of a TRS R by an application of the redundant rules transformation consists of three
parts:

the modified TRS R′,
a certificate for the (non-)confluence of R′, and

7 IsaFoR/CeTA and CPF are available at http://cl-informatik.uibk.ac.at/software/ceta/.
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a justification for redundancy of the added and removed rules. Here for the rules that
were added, i.e., all `→ r in S = R′ \ R, we simply require a bound on the length of the
derivations showing `→∗R r.8 For the deleted rules in a non-confluence certificate, i.e.,
all `→ r in S = R \R′, the same bound is used for `→∗R′ r. For a confluence proof one
can either give explicit conversions `←→∗R′ r or rely on the bound again, which then has
to ensure ` ↓R′ r.

Implementing check functions for such a certificate is then straightforward. We simply
compute S \ R and R \ S and use the given bound and conversions to ensure redundancy.

Whereas for certification we only need to check that the modified rules really are redundant,
the question of how to automatically find suitable rules for addition and deletion is more
intricate. In the next section we discuss and evaluate our implementation of three possible
approaches in the confluence prover CSI.

5 Implementation and Experiments

CSI features a powerful strategy language [29], which allows to combine confluence techniques
in a modular and flexible manner, making it easy to test different strategies that exploit
redundant rules.

We tested our implementation on the Cops database9 using the following three strategies
to add and remove rules.
(js) Our first strategy is to add (minimal) joining sequences of critical pairs as rules, i.e.,

in Corollary 6 choose S ⊆ {s → u, t → u | s←o→ t with s→∗R u and t→∗R u}. The
underlying idea here is that critical peaks become joinable in a single step, which is
advantageous for other confluence criteria, for example rule labeling [20].

(rhs) The second strategy for obtaining redundant rules to add, is to rewrite right-hand
sides of rules, i.e., in Corollary 6 set S = {`→ t | `→ r ∈ R and r →R t}. (This idea has
already been used for termination by Zantema [30].) Again the motivation is to produce
shorter joining sequences for critical pairs, facilitating the use of other confluence criteria.

(del) For removing rules we search for rules whose left- and right-hand sides are joinable,
i.e., in Corollary 9 set S = {` → r | ` ↓R r}. This decision is motivated by simplicity
of implementation and the fact that for confluent TRSs, joinability and convertibility
coincide. Removing rules can benefit confluence proofs by eliminating critical pairs. Since
our strategy here is a simple greedy one that removes as many rules as possible, we also
lose confluence in some cases.

In the case of adding rules we also discard rules that can be simulated by other rules in a
single step. Without this refinement, the gain in power would become smaller, and even
disappear for CSI’s full strategy. We also implemented and tested three other strategies,
which did not yield any additional proofs.

Inspired by Example 1 we tried to add rules specifically for making rewrite systems
development closed. That is, we used S = {s→ t | s←o→ t with s→∗R t and s 6−→○ R t}
in Corollary 6. All examples gained by this strategy can also be handled by (js) or (rhs).
To help with systems containing AC-like rules we tried to add inverted reversible rules,
by setting S = {r → ` | `→ r ∈ R with r →∗R `} in Corollary 6. Again we gained no
additional proofs compared to (js) and (rhs).

8 This bound is necessary, because in Isabelle all functions have to be total and an unbounded search
might not terminate.

9 All TRS problems (276 at the time of writing) from http://coco.nue.riec.tohoku.ac.jp/cops/.
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Table 1 Experimental Results (X = certified).

CSI CSIjs CSIrhs CSIdel CSIall

yes 155 156 159 163 166
no 47 48 47 47 48
maybe 74 72 70 66 62

XCSI XCSIjs XCSIrhs XCSIdel XCSIall

yes 71 86 73 78 104
no 47 48 47 47 48
maybe 158 142 156 151 124

ACP

Saigawa CSIall

CoLL

13

21

5 3

4
1

43

4

4

4

3

29

1032

2

98

Figure 1 Overlap Between Solved Examples.

When removing rules we also tried to search for conversions that are not valleys, by
using rules in the reverse direction when searching for a join. More precisely, we tried
S = {` → r | ` ↓R∪R−1 r} in Corollary 9. However, this variation only lost examples
compared to (del).

The results are shown in Table 1.10 The experiments were performed on a 48 core 2.2 GHz
Opteron 6174 server with 256 GB RAM. We performed two sets of benchmarks, based on
CSI’s full and certifiable strategies, respectively. For the full strategy, adding joining sequences
of critical pairs (js) or rewriting right-hand sides (rhs) show very limited effect, gaining 2
and 4 proofs, respectively. Removing rules (del) is the most effective technique and gains 10
systems while losing 2 other ones. With all techniques combined, 12 new systems can be
shown (non-)confluent. Interestingly, the picture for the certifiable strategy is a bit different.
Here, (rhs) gains 2 proofs, (js) gains 16 systems and (del) gains 17 proofs while losing 10.
Remarkably, in all of those 17 proofs the TRS becomes orthogonal after removing redundant
rules, which emphasizes that our transformations can considerably simplify confluence proofs.
In total, 34 new systems are shown (non-)confluent.

In Table 2, we compare CSI 0.5,to ACP 0.50, CoLL 1.1, and Saigawa 1.7. Figure 1 shows
the examples solved by the four provers in relation to each other.

10Detailed results are available at http://cl-informatik.uibk.ac.at/software/csi/rr-rta2015/.
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Table 2 Comparison of Confluence Provers.

ACP CoLL CSIall Saigawa

yes 186 141 166 128
no 52 16 48 25
maybe 38 119 62 123

6 Related Work

Our work draws a lot of inspiration from existing literature. One starting point is [21], where
van Oostrom introduces the notion of feeble orthogonality. A TRS is feebly orthogonal if the
critical peaks arising from its non-redundant∗ rules are trivial or contain a trivial step (that
rewrites a term to itself); a rule is redundant∗ if it can be simulated by another rule in a
single step. Clearly our notion of redundancy generalizes redundancy∗.

The most important prior work is [2]. In this paper, Aoto and Toyama describe an
automated confluence criterion (which has been implemented in ACP) based on decomposing
TRSs into a reversible part P and a terminating part S. In order to help applicability of
their criterion, they introduce a procedure based on the inference rules

replace 〈S ∪ {`→ r},P〉
〈S ∪ {`→ r′},P〉

r ←→∗P r′ add 〈S,P〉
〈S ∪ {`→ r},P〉

`←→∗P · →∗S r

The key is that because P is reversible, ←→∗P and →∗P coincide, and therefore confluence
of S ∪ P is not affected by applying these inference rules. This very same idea underlies
Lemma 5, which establishes reduction equivalence, and thus Corollary 6. Note that no rule
removal is performed in [2].

There is a second connection between our work and [2] that seems noteworthy. Given
a reversible P, every rule from P−1 can be simulated by a sequence of P-steps. Therefore,
confluence of S ∪ P and S ∪ P ∪ P−1 coincide by Corollary 6. Using this observation, one
could decompose the confluence criteria of [2] into two steps, one that replaces P by P ∪P−1,
and a respective underlying confluence criterion that does not make use of reversibility, but
instead demands that P is symmetric, i.e., P−1 ⊆ P.

The idea of showing confluence by removing rules whose sides are convertible has already
been used in the literature, e.g. [12, Example 11], which is a variation of Example 10.

Other works of interest are [9, 30], where Gramlich and Zantema apply a similar idea to
Corollary 6 to termination: If some additional requirements are met, then termination of
R∪ {`→ r} is equivalent to termination of R∪ {`→ r′} where r →R r′ by a non-erasing
rule. This is true for non-overlapping TRSs [9, Theorem 4], or when the rule used in the
r →R r′ step is locally confluent by itself, left-linear, and furthermore it doesn’t overlap with
any rules from R∪ {`→ r} except itself [30, Theorem 4].

7 Conclusion

In this work we demonstrated how a very simple technique, namely adding and removing
redundant rules, can boost the power of automated confluence provers. It is easy to
implement and we believe that also confluence tools other than CSI could benefit from such
transformations, not only increasing their power, but also simplifying the generated proofs.
Moreover the technique is well-suited for certification, resulting in more trustworthy proofs.
In particular we could significantly increase the number of certifiable confluence proofs in our
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experiments—by almost 50%. Interestingly we observed that all 17 of the systems gained by
X(del) become orthogonal by removing redundant rules. This might be due to the fact that
when designing example TRSs for new techniques, one often works by systematically making
existing criteria non-applicable and removing rules can undo this effort.

As future work we plan to investigate more elaborate strategies for finding useful redundant
rules, both for addition and removal (where the candidates are limited, but performing the
transformation might lose confluence). Here one direction to explore might be the use of
machine learning techniques to devise such strategies automatically.

Acknowledgments. The comments by the anonymous reviewers helped to improve the
presentation.

References

1 T. Aoto. Disproving confluence of term rewriting systems by interpretation and order-
ing. In P. Fontaine, editor, Proc. 9th International Workshop on Frontiers of Combin-
ing Systems, volume 8152 of Lecture Notes in Artificial Intelligence, pages 311–326, 2013.
doi: 10.1007/978-3-642-40885-4_22.

2 T. Aoto and Y. Toyama. A reduction-preserving completion for proving confluence of non-
terminating term rewriting systems. Logical Methods in Computer Science, 8(1:31):1–29,
2012. doi: 10.2168/LMCS-8(1:31)2012.

3 T. Aoto, J. Yoshida, and Y. Toyama. Proving confluence of term rewriting systems automat-
ically. In R. Treinen, editor, Proc. 20th International Conference on Rewriting Techniques
and Applications, volume 5595 of Lecture Notes in Computer Science, pages 93–102, 2009.
doi: 10.1007/978-3-642-02348-4_7.

4 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,
1998.

5 F. Blanqui and A. Koprowski. CoLoR, a Coq library on well-founded rewrite relations
and its application to the automated verification of termination certificates. Mathematical
Structures in Computer Science, 21(4):827–859, 2011. doi: 10.1017/S0960129511000120.

6 E. Contejean, P. Courtieu, J. Forest, O. Pons, and Xavier Urbain. Automated
certified proofs with CiME3. In M. Schmidt-Schauß, editor, Proc. 22nd Inter-
national Conference on Rewriting Techniques and Applications, pages 21–30, 2011.
doi: 10.4230/LIPIcs.RTA.2011.21.

7 B. Felgenhauer. A proof order for decreasing diagrams. In N. Hirokawa and A. Mid-
deldorp, editors, Proc. 1st International Workshop on Confluence, pages 7–14, 2012.
http://cl-informatik.uibk.ac.at/events/iwc-2012/.

8 B. Felgenhauer and R. Thiemann. Reachability analysis with state-compatible automata. In
A.-H. Dediu, editor, Proc. 8th International Conference on Language and Automata Theory
and Applications, volume 8370 of Lecture Notes in Computer Science, pages 347–359, 2013.
doi: 10.1007/978-3-319-04921-2_28.

9 B. Gramlich. Simplifying termination proofs for rewrite systems by preprocessing. In
F. Pfenning, editor, Proc. 2nd ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming, pages 139–150, 2000. doi: 10.1145/351268.351286.

10 B. Gramlich and S. Lucas. Generalizing Newman’s lemma for left-linear rewrite sys-
tems. In F. Pfenning, editor, Proc. 17th International Conference on Rewriting Techniques
and Applications, volume 4098 of Lecture Notes in Computer Science, pages 66–80, 2006.
doi: 10.1007/11805618_6.

http://dx.doi.org/10.1007/978-3-642-40885-4_22
http://dx.doi.org/10.2168/LMCS-8(1:31)2012
http://dx.doi.org/10.1007/978-3-642-02348-4_7
http://dx.doi.org/10.1017/S0960129511000120
http://dx.doi.org/10.4230/LIPIcs.RTA.2011.21
http://cl-informatik.uibk.ac.at/events/iwc-2012/
http://dx.doi.org/10.1007/978-3-319-04921-2_28
http://dx.doi.org/10.1145/351268.351286
http://dx.doi.org/10.1007/11805618_6


J. Nagele, B. Felgenhauer, and A. Middeldorp 267

11 N. Hirokawa and D. Klein. Saigawa: A confluence tool. In N. Hirokawa and A. Mid-
deldorp, editors, Proc. 1st International Workshop on Confluence, page 49, 2012. http:
//cl-informatik.uibk.ac.at/events/iwc-2012/.

12 N. Hirokawa and A. Middeldorp. Decreasing diagrams and relative termination. Journal
of Automated Reasoning, 47(4):481–501, 2011. doi: 10.1007/s10817-011-9238-x.

13 G. Huet. Confluent reductions: Abstract properties and applications to term rewriting
systems. Journal of the ACM, 27(4):797–821, 1980. doi: 10.1145/322217.322230.

14 D. Klein and N. Hirokawa. Confluence of non-left-linear TRSs via relative termination.
In N. Bjørner and A. Voronkov, editors, Proc. 18th International Conference on Logic
for Programming, Artificial Intelligence, and Reasoning, volume 7180 of Lecture Notes in
Computer Science (Advanced Research in Computing and Software Science), pages 258–273,
2012.

15 D.E. Knuth and P.B. Bendix. Simple word problems in universal algebras. In J. Leech,
editor, Computational Problems in Abstract Algebra, pages 263–297. Pergamon Press, 1970.

16 J. Nagele and R. Thiemann. Certification of confluence proofs using CeTA. In T. Aoto and
D. Kesner, editors, Proc. 3rd International Workshop on Confluence, pages 19–23, 2014.
http://www.nue.riec.tohoku.ac.jp/iwc2014/.

17 J. Nagele and H. Zankl. Certified rule labeling. In M. Fernández, editor, Proc. 26th
International Conference on Rewriting Techniques and Applications, volume 36 of Leibniz
International Proceedings in Informatics, 2015. This volume.

18 S. Okui. Simultaneous critical pairs and Church-Rosser property. In T. Nipkow, editor,
Proc. 9th International Conference on Rewriting Techniques and Applications, volume 1379
of Lecture Notes in Computer Science, pages 2–16, 1998. doi: 10.1007/BFb0052357.

19 V. van Oostrom. Developing developments. Theoretical Computer Science, 175(1):159–181,
1997. doi: 10.1016/S0304-3975(96)00173-9.

20 V. van Oostrom. Confluence by decreasing diagrams – converted. In A. Voronkov, editor,
Proc. 19th International Conference on Rewriting Techniques and Applications, volume
5117 of Lecture Notes in Computer Science, pages 306–320, 2008. doi: 10.1007/978-3-540-
70590-1_21.

21 V. van Oostrom. Feebly not weakly. In Proc. 7th International Workshop on Higher-Order
Rewriting, Vienna Summer of Logic flash drive, 2014.

22 B.K. Rosen. Tree-manipulating systems and Church-Rosser theorems. Journal of the ACM,
20(1):160–187, 1973. doi: 10.1145/321738.321750.

23 C. Sternagel and R. Thiemann. The certification problem format. In G. Klein and R. Gam-
boa, editors, Proc. 11th International Workshop on User Interfaces for Theorem Provers,
volume 167 of Electronic Proceedings in Theoretical Computer Science, pages 61–72, 2014.
doi: 10.4204/EPTCS.167.8.

24 T. Suzuki, T. Aoto, and Y. Toyama. Confluence proofs of term rewriting sys-
tems based on persistency. Computer Software, 30(3):148–162, 2013. In Japanese,
doi: 10.11309/jssst.30.3_148.

25 Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 2003.

26 R. Thiemann. Certification of confluence proofs using CeTA. In N. Hirokawa and
A. Middeldorp, editors, Proc. 1st International Workshop on Confluence, page 45, 2012.
http://cl-informatik.uibk.ac.at/events/iwc-2012/.

27 R. Thiemann and C. Sternagel. Certification of termination proofs using CeTA. In
S. Berghofer, editor, Proc. 22nd International Conference on Theorem Proving in Higher
Order Logics, volume 5674 of Lecture Notes in Computer Science, pages 452–468, 2009.
doi: 10.1007/978-3-642-03359-9_31.

RTA 2015

http://cl-informatik.uibk.ac.at/events/iwc-2012/
http://cl-informatik.uibk.ac.at/events/iwc-2012/
http://dx.doi.org/10.1007/s10817-011-9238-x
http://dx.doi.org/10.1145/322217.322230
http://www.nue.riec.tohoku.ac.jp/iwc2014/
http://dx.doi.org/10.1007/BFb0052357
http://dx.doi.org/10.1016/S0304-3975(96)00173-9
http://dx.doi.org/10.1007/978-3-540-70590-1_21
http://dx.doi.org/10.1007/978-3-540-70590-1_21
http://dx.doi.org/10.1145/321738.321750
http://dx.doi.org/10.4204/EPTCS.167.8
http://dx.doi.org/10.11309/jssst.30.3_148
http://cl-informatik.uibk.ac.at/events/iwc-2012/
http://dx.doi.org/10.1007/978-3-642-03359-9_31


268 Improving Confluence Analysis by Redundant Rules

28 Y. Toyama. Commutativity of term rewriting systems. In K. Fuchi and L. Kott, editors,
Programming of Future Generation Computers II, pages 393–407. North-Holland, 1988.

29 H. Zankl, B. Felgenhauer, and A. Middeldorp. CSI – A confluence tool. In N. Bjørner
and V. Sofronie-Stokkermans, editors, Proc. 23rd International Conference on Automated
Deduction, volume 6803 of Lecture Notes in Artificial Intelligence, pages 499–505, 2011.
doi: 10.1007/978-3-642-22438-6_38.

30 H. Zantema. Reducing right-hand sides for termination. In V. van Oostrom A. Mid-
deldorp and and F. van Raamsdonk, editors, Processes, Terms and Cycles: Steps on
the Road to Infinity, Essays Dedicated to Jan Willem Klop, on the Occasion of his
60th Birthday, volume 3838 of Lecture Notes in Computer Science, pages 173–197, 2005.
doi: 10.1007/11601548_12.

http://dx.doi.org/10.1007/978-3-642-22438-6_38
http://dx.doi.org/10.1007/11601548_12


Certified Rule Labeling∗

Julian Nagele and Harald Zankl

Institute of Computer Science, University of Innsbruck, Austria
{julian.nagele|harald.zankl}@uibk.ac.at

Abstract
The rule labeling heuristic aims to establish confluence of (left-)linear term rewrite systems via
decreasing diagrams. We present a formalization of a confluence criterion based on the interplay
of relative termination and the rule labeling in the theorem prover Isabelle. Moreover, we report
on the integration of this result into the certifier CeTA, facilitating the checking of confluence
certificates based on decreasing diagrams for the first time. The power of the method is illustrated
by an experimental evaluation on a (standard) collection of confluence problems.
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1 Introduction

Confluence is an important property of rewrite systems as it ensures unique normal forms.
The recent achievements in confluence research have enabled a competition1 where automated
tools try to establish/refute confluence. As the proofs produced by these tools are often
complicated and large, there is interest in checking them within a trustable certifier.

Decreasing diagrams [15] provide a complete characterization of confluence for abstract
rewrite systems whose convertibility classes are countable. As a criterion for abstract
rewrite systems, they can be applied to first- and higher-order rewriting, including term
rewriting and the λ-calculus. In this paper we build upon the recent Isabelle formalization of
decreasing diagrams (see [28, 29]) and specialize it from abstract rewriting to term rewriting.
Moreover, we formalize the rule labeling and present a mechanized proof of the following
result (see [31, Corollary 16]):

I Theorem 1. A left-linear term rewrite system is confluent if its duplicating rules terminate
relative to its other rules and all its critical peaks are decreasing for the rule labeling.

This result is an adequate candidate for a formalization because of the following reasons.
On the one hand, regarding the aspect of automation, it is easily implementable as the
relative termination requirement can be outsourced to external (relative) termination provers
and the rule labeling heuristic has already been implemented successfully [1,7]. Furthermore,
it is a powerful criterion as demonstrated by an experimental evaluation in Section 6. On the
other hand, regarding the aspect of formalization, it is challenging because it involves the
combination of different labeling functions (in the sense of [31]). Hence, in our formalization
Theorem 1 is not established directly, but obtained as a corollary of more general results.
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This paves the way for reusing the formalization described here when tackling the remaining
criteria in [31].

We based our formalization on the Isabelle Formalization of Rewriting (IsaFoR) [27]
and extended it by the theories Decreasing_Diagrams2.thy and Rule_Labeling_Impl.thy,
which amount to approximately 3500 lines of Isabelle in Isar style. IsaFoR contains executable
check functions for each formalized proof technique together with formal proofs that whenever
such a check is accepted, the technique is applied correctly. Then Isabelle’s code-generation
facility is used to obtain a trusted Haskell program, i.e., the certifier CeTA, which is capable of
checking proof certificates in CPF [22] (certification problem format).2 We suitably extended
CPF to represent proofs according to Theorem 1 and implemented dedicated check functions
in our formalization, enabling CeTA to inspect, i.e., certify such confluence proofs. Typically,
these proofs are generated by automated confluence tools. (See Footnote 1 for details.)

A preliminary result of our formalization has already been proved useful in the latest
edition of the confluence competition (CoCo 2014), where CeTA certified confluence proofs for
linear rewrite systems based on the rule labeling (among others). The main challenge in lifting
the result from linear to left-linear rewrite systems has not been the relative termination
requirement per se, which vacuously holds in the linear case, but the interplay of the relative
termination condition with the rule labeling, which is crucial in the the proof of Theorem 1,
albeit in the statement of the result these concepts are clearly separated. Besides, to establish
decreasingness of variable peaks (involving non-right-linear rules) more details about the
joining sequences were needed than the existing theories in IsaFoR provided.

The remainder of this paper is organized as follows. Preliminaries are introduced in
the next section. The interplay of several labeling functions favors the notion of extended
local decreasingness [7], which is proved to imply local decreasingness in Section 3, where
also the connection to the existing formalization of decreasing diagrams for abstract rewrite
systems [28, 29] is established. Afterwards, Section 4 lifts extended local decreasingness from
abstract rewriting to results for term rewriting that are parametrized by a labeling. Section 5
instantiates these results with concrete labeling functions to obtain corollaries that ensure
confluence. Section 6 presents an experimental evaluation, before we conclude in Section 7.

The full formalization is available from the URL in Footnote 2.

2 Preliminaries

We assume familiarity with rewriting [25] and decreasing diagrams [15]. Basic knowledge
of Isabelle [14] is not essential but experience with an interactive theorem prover might be
helpful.

Let F be a signature and V a set of variables disjoint from F . By T (F ,V), we denote the
set of terms over F and V. Positions are strings of positive natural numbers, i.e., elements
of N∗+. We write q 6 p if qq′ = p for some position q′, in which case p\q is defined to be q′.
Furthermore q < p if q 6 p and q 6= p. Finally, q ‖ p if neither q 6 p nor p < q. Positions are
used to address subterm occurrences. The set of positions of a term t is defined as Pos(t) = {ε}
if t is a variable and as Pos(t) = {ε} ∪ {iq | 1 6 i 6 n and q ∈ Pos(ti)} if t = f(t1, . . . , tn).
The subterm of t at position p ∈ Pos(t) is defined as t|p = t if p = ε and as t|p = ti|q if
p = iq and t = f(t1, . . . , tn). We write s[t]p for the result of replacing the occurrence of
s|p with t in s. The set of function symbol positions PosF (t) is {p ∈ Pos(t) | t|p /∈ V} and
PosV(t) = Pos(t) \ PosF (t).

2 IsaFoR/CeTA and CPF are available at http://cl-informatik.uibk.ac.at/software/ceta/.
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A rewrite rule is a pair of terms (l, r), written l→ r.3 A rewrite rule l→ r is duplicating
if |l|x < |r|x for some x ∈ V. Here the expression |t|x indicates the number of occurrences
of the variable x in term t. A term rewrite system (TRS) is a signature together with a
set of rewrite rules over this signature. In the sequel, signatures are left implicit. By Rd
and Rnd, we denote the duplicating and non-duplicating rules of a TRS R, respectively. A
rewrite relation is a binary relation on terms that is closed under contexts and substitutions.
For a TRS R we define →R (often written as →) to be the smallest rewrite relation that
contains R. As usual →=, →+, and →∗ denote the reflexive, transitive, and reflexive and
transitive closure of →, respectively, while →n denotes the n-fold composition of →.

A relative TRS R/S is a pair of TRSs R and S with the induced rewrite relation
→R/S =→∗S · →R · →∗S . Sometimes we identify a TRS R with the relative TRS R/∅ and
vice versa. A TRS R is terminating (relative to a TRS S) if →R (→R/S) is well-founded.

A critical overlap (l1 → r1, p, l2 → r2)µ of a TRS R consists of variants l1 → r1 and
l2 → r2 of rewrite rules in R without common variables, a position p ∈ PosF (l2), and a most
general unifier µ of l1 and l2|p. From a critical overlap (l1 → r1, p, l2 → r2)µ we obtain a
critical peak l2µ[r1µ]p ←l2µ→ r2µ and a critical pair l2µ[r1µ]p ←o→ r2µ.

If l → r ∈ R, p is a position, and σ is a substitution we call the triple π = 〈p, l → r, σ〉
a redex pattern, and write pπ, lπ, rπ, σπ for its position, left-hand side, right-hand side,
and substitution, respectively. We write →π (or →pπ,lπ→rπ,σπ ) for a rewrite step at position
pπ using the rule lπ → rπ and the substitution σπ. A redex pattern π matches a term t if
t|pπ = lπσπ, which is then called a redex.

Let π1 and π2 be redex patterns that match a common term. They are called parallel,
written π1 ‖ π2, if pπ1 ‖ pπ2 . If P = {π1, . . . , πn} is a set of pairwise parallel redex patterns
matching a term t, we denote by t →pp P t′ the parallel rewrite step from t to t′ by P , i.e.,
t→π1 · . . . · →πn t′.

In IsaFoR, an abstract rewrite system (ARS) is a binary relation → where the domain
is left implicit in the type. Let I be an index set. We write {→α}α∈I to denote the ARS
→ where → is the union of →α for all α ∈ I. Let {→α}α∈I be an ARS and let > and >
be relations on I. Two relations > and > are called compatible if > · > · > ⊆ >. Given
a relation < we write → 4α1···αn for the union of →β where αi < β for some 1 6 i 6 n.
Similarly, 4S is the set of all β such that α < β for some α ∈ S. We call α and β extended
locally decreasing (for > and >) if α← · →β ⊆ →∗<α · →

=

6β
· →∗

<αβ
· ∗

<αβ
← · =

6α
← · ∗

<β
←. If

there exist a well-founded order > and a preorder >, such that > and > are compatible, and
α and β are extended locally decreasing for all α, β ∈ I then the ARS {→α}α∈I is extended
locally decreasing (for > and >). We call an ARS locally decreasing (for >) if it is extended
locally decreasing for > and =, where the latter is the identity relation. In the sequel, we
often refer to extended locally decreasing as well as to locally decreasing just by decreasing,
whenever the context clarifies which concept is meant or the exact meaning is irrelevant.

3 Abstract Rewriting

This section is concerned with the formalization of the following result from [7, Theorem 2]:

I Lemma 2. Every extended locally decreasing ARS is confluent. J

3 We do not require the common variable conditions, i.e., the restriction that l is not a variable and all
variables in r are contained in l.
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Figure 1 (Extended) locally decreasing peaks.

The results for decreasing diagrams formalized in [28] differ from the above lemma for
two reasons. Firstly, [28] establishes results for local decreasingness instead of extended local
decreasingness. Secondly, in contrast to the formulation of the lemma above it does not
represent the ARS as a family of rewrite relations (i.e., {→α}α∈I) but considers a single
labeled relation where a triple (a, α, b) expresses that (a, b) ∈ →α.

Given an ARS that is extended locally decreasing for > and >, the proof in [7] constructs
a single order � on sets of labels and establishes local decreasingness of the ARS for �. Our
formalization goes along the lines with the proposed proof (see below). It turned out that
the representation of the ARS as a family of relations is essential to follow the proof in [7].
Hence establishing equivalence of a single labeled ARS with a family of rewrite relations is
needed to employ the formalization of [28] in the proof of Lemma 2. This equivalence looks
trivial at first sight, but as each representation comes with a different formalization of rewrite
steps, also related concepts such as local peaks, joining sequences, and local decreasingness,
must be mapped. We refer the interested reader to the formalization and do not present the
technical details here.

The remainder of this section sketches the formalization of the next lemma (following [7]).

I Lemma 3. Every extended locally decreasing ARS is locally decreasing.

To prepare for its proof we consider sets of labels.

I Definition 4. Let Cα denote the set {α′ | α > α′ and α 6> α′} and let C be the set of all
Cα. For C,D ∈ C let C � D if there exist α and β with C = Cα, D = Cβ , and α > β. By
→C , we denote the union of →α for all α ∈ C.

The idea is to establish {→α}α∈I = {→C}C∈C and conclude local decreasingness of the
ARS {→C}C∈C based on extended local decreasingness of the ARS {→α}α∈I . The next
example demonstrates some peculiarities of this approach.

I Example 5. Consider the ARS {→α}α∈{1,1.5,2} with →1 = {(a, b), (c, d)}, →1.5 = {(b, d)},
and →2 = {(a, c)}. This ARS is extended locally decreasing for >N and >Q, as depicted
in Figure 1(a). We have C = {C2, C1.5, C1} with C2 = {2, 1.5}, C1.5 = {1.5, 1}, and
C1 = {1}. E.g. 1.5 ∈ C2 since 2 >Q 1.5 but 2 6>N 1.5. Consequently, →C2 = {(a, c), (b, d)},
→C1.5 = {(b, d), (a, b), (c, d)}, and →C1 = {(a, b), (c, d)}. To establish local decreasingness of
the related ARS {→C}C∈C the peak b C1← a→C2 c (emerging from b 1← a→2 c) must be
considered, which can be closed in a locally decreasing fashion via b→C2 d C1← c (based
on b →1.5 d 1← c), as in Figure 1(b). However, the construction also admits the peak
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b C1.5← a→C2 c, for which there is no peak b 1.5← a→2 c in the original ARS, as it does not
contain the step b 1.5← a. Still, this peak can be closed locally decreasing, cf. Figure 1(c).

The following properties are crucial:

I Lemma 6. Let > be a well-founded order and > a preorder compatible with >.
1. Then � is a well-founded order.
2. If γ > γ′, δ > δ′, and x→∗

<γ′δ′ y then x→∗

<γδ
y.

3. If γ > γ′ and x→=
6 γ′ y then x→=

6 γ
y.

4. If x→∗

<γδ
y then x→∗≺CγCδ y.

5. If x→=

6 γ
y then x→=

Cγ
y or x→ ≺Cγ y.

Proof. Items (1–3) follow from the properties of the orders. Items (4) and (5) are established
as in [7]. J

Item (1) of Lemma 6, i.e., well-foundedness of � is not proved explicitly in [7]. Moreover
items (2) and (3) are missing in [7]. Their need becomes apparent in the following proof.
In [8] (the journal version of [7]) extended local decreasingness is avoided by employing the
predecessor labeling. Then a rewrite step comes with a set of labels, which is typically not
computable and hence inappropriate for certification.

Proof of Lemma 3. We assume the ARS {→α}α∈I is extended locally decreasing for >
and > and establish local decreasingness of the ARS {→C}C∈C for � by showing

←−
C
· −→
D
⊆ ∗−−→

≺C
· =−→
D
· ∗−−−→

≺CD
· ∗←−−−

≺CD
· =←−
C
· ∗←−−

≺D
(1)

for C,D ∈ C.4 By definition of C and D, there exist α and β with C = Cα and D = Cβ , i.e.,
C← · →D = Cα← · →Cβ =

⋃
α′∈Cα,β′∈Cβ α′← · →β′ . We note that from y Cα← x in general

we may not infer y α← x, but rather y α′← x for some α′ ∈ Cα (cf. Example 5). Similarly
x→Cβ z implies x→β′ z for some β′ ∈ Cβ . Consequently, the extended local decreasingness
assumption cannot be applied to α and β (as conveyed in [7]) but must be applied to α′
and β′ (as sketched in Example 5), i.e.,

←−
α′
· −→
β′
⊆ ∗−−→

<α′
· =−−→

6β′
· ∗−−−→

<α′β′
· ∗←−−−

<α′β′
· =←−−

6α′
· ∗←−−

<β′

Then we establish

∗−−→

<α′
· =−−→

6β′
· ∗−−−→

<α′β′
· ∗←−−−

<α′β′
· =←−−

6α′
· ∗←−−

<β′
⊆ ∗−−→

<α
· =−−→

6β
· ∗−−→

<αβ
· ∗←−−

<αβ
· =←−−

6α
· ∗←−−

<β

using Lemma 6(2-3), from which the desired

←−−
Cα
· −−→
Cβ
⊆ ∗−−−→

≺Cα
· =−−→
Cβ
· ∗−−−−→

≺CαCβ
· ∗←−−−−

≺CαCβ
· =←−−
Cα
· ∗←−−−

≺Cβ

is obtained using Lemma 6(4–5). Depending on the case of Lemma 6(5) that applies, the
reflexive step either stays, if e.g. →=

6β
becomes →=

Cβ
, or is merged with the subsequent

sequence having smaller labels, if e.g. →=

6β
becomes → ≺Cβ , establishing the property (1).

The proof concludes by the equivalence {→α}α∈I = {→C}C∈C , as in [7]. J

4 In [7] the (stronger) property C← · →D ⊆ →∗

≺C · →
=

≺D · →
∗

≺CD ·
∗

≺CD← ·
=

≺C← ·
∗

≺D← is claimed, but
as this is obviously impossible we anticipate a typo there.
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4 Term Rewriting

This section builds upon the result for ARSs from the previous section to prepare for
confluence criteria for TRSs, such as Theorem 1. To support confluence results besides
Theorem 1, in the formalization we did not follow the easiest way, i.e., suit the definitions
and lemmas directly towards Theorem 1. Rather, we adopted the approach from [31], where
all results are established via labeling functions (satisfying some abstract properties). Apart
from avoiding a monolithic proof, this has the advantage that similar proofs need not be
repeated for different labeling functions but it suffices to establish that the concrete labeling
functions satisfy some abstract conditions. Then decreasingness is established in three steps.
The first step comprises joinability results for local peaks (Section 4.1). The second step
(Section 4.2) formulates abstract conditions with the help of labeling functions that admit a
finite characterization of decreasingness of local peaks. Finally, based on the previous two
steps, the third step (Section 5) then obtains confluence results by instantiating the abstract
labeling functions with concrete ones, e.g. the rule labeling. So only the third step needs to
be adapted when formalizing new labeling functions, as steps one and two are unaffected.

4.1 Local Peaks
As IsaFoR already supported Knuth-Bendix’ criterion (see [21]), it contained results for
joinability of local peaks and the critical pair theorem (the terms obtained by a local peak
in a left-linear TRS are joinable or an instance of a critical pair). However, large parts
of the existing formalization could not be reused directly as the established results lacked
information required for ensuring decreasingness. For instance, to obtain decreasingness for
the rule labeling (cf. Section 5) in case of a variable peak, the rewrite rules employed in the
joining sequences are crucial, but the existing formalization only states that such a local
peak is joinable. On the other hand, the existing notion of critical pairs from IsaFoR could be
reused as the foundation for critical peaks. Since the computation of critical pairs requires a
formalized unification algorithm, extending IsaFoR admitted focusing on the tasks related to
decreasingness.

Local peaks can be characterized based on the positions of the diverging rewrite steps.
Either the positions are parallel, called a parallel peak, or one position is above the other.
In the latter situation we further distinguish whether the lower position is at a function
position, called a function peak, or at/below a variable position of the other rule’s left-hand
side, called a variable peak. More precisely, for a local peak

t = s[r1σ1]p ← s[l1σ1]p = s = s[l2σ2]q → s[r2σ2]q = u (2)

there are three possibilities (modulo symmetry):
(a) p ‖ q (parallel peak),
(b) q 6 p and p\q ∈ PosF (l2) (function peak),
(c) q 6 p and p\q /∈ PosF (l2) (variable peak).

For the situation of a left-linear TRS these cases are visualized in Figure 2. It is easy to
characterize parallel, function, and variable peaks in Isabelle (cf. Listing 1) but it requires
tedious notation. The information of a rewrite step s →p,l→r,σ

R t is represented in IsaFoR
as (s,t) ∈ rstep_r_p_s R (l,r) p σ. As the definition of function and variable peaks is
asymmetric the five cases of local peaks can be reduced to the above three by mirroring
those peaks. Then local peaks can be characterized as in Listing 2. Next we elaborate on
the three cases.
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Figure 2 Three kinds of local peaks.

definition local_peaks where "local_peaks R =
{((s,rl1,p,σ1,t),(s,rl2,q,σ2,u)) | s t u rl1 rl2 p q σ1 σ2.
((s,t) ∈ rstep_r_p_s R rl1 p σ1 ∧ (s,u) ∈ rstep_r_p_s R rl2 q σ2)}"

definition parallel_peak where "parallel_peak R pk = (
pk ∈ local_peaks R ∧ (let ((s,rl1,p,σ1,t),(s,rl2,q,σ2,u)) = pk in
p ⊥ q))"

definition function_peak where "function_peak R pk = (
pk ∈ local_peaks R ∧ (let ((s,rl1,p,σ1,t),(s,rl2,q,σ2,u)) = pk in
∃r.((p<#>r = q) ∧ r ∈ poss (fst rl1) ∧ is_Fun ((fst rl1) |_ r))))"

definition variable_peak where "variable_peak R pk = (
pk ∈ local_peaks R ∧ (let ((s,rl1,p,σ1,t),(s,rl2,q,σ2,u)) = pk in
∃r.((p<#>r = q) ∧ ¬(r ∈ poss (fst rl1) ∧ is_Fun ((fst rl1) |_ r)))))"

Listing 1 Characterization of local peaks.

lemma local_peaks_cases:
assumes "pk ∈ local_peaks R"
shows "parallel_peak R pk ∨ variable_peak R pk ∨ function_peak R pk
∨ variable_peak R (snd pk, fst pk) ∨ function_peak R (snd pk, fst pk)"

Listing 2 Cases of local peaks.

Case 1: Parallel Peaks

Figure 2(a) shows the shape of a local peak where the steps take place at parallel positions.
For a peak t π1← s →π2 u with π1 ‖ π2 we established that t →π2 v π1← u, i.e., the
steps drawn at opposing sides in the diagram are corresponding, that is, they apply the
same rule/substitution at the same position. The proof is straightforward and based on a
decomposition of the terms into a context and the redex.

Case 2: Function Peaks

In general joining function peaks may involve rules not present in the divergence (as indicated
by the question mark in Figure 2(b)). To reduce the duty of joining (infinitely many) function

RTA 2015
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peaks to joining the (in case of a finite TRS finitely many) critical peaks, we established that
every function peak is an instance of a critical peak.

I Lemma 7. Let t p,l1→r1,σ1← s →q,l2→r2,σ2 u with qq′ = p, and q′ ∈ PosF (l2). Then
there are a context C, a substitution τ , and a critical peak l2µ[r1µ]q′ ←l2µ→ r2µ such that
s = C[l2µτ ], t = C[(l2µ[r1µ]q′)τ ], and u = C[r2µτ ]. J

We remark that this fact was already present (multiple times) in IsaFoR, but concealed in
larger proofs, e.g. the formalization of orthogonality [12], and never stated explicitly.

As IsaFoR does not enforce that the variables of a rewrite rule’s right-hand side are con-
tained in its left-hand side, such rules are just also included in the critical peak computation.

Case 3: Variable Peaks

Variable overlaps (Figure 2(c)) can again be joined by the rules involved in the diverging step.5
We only consider the case if l2 → r2 is left-linear, as our main result assumes left-linearity.
More precisely, if q′ is the unique position in PosV(l2) such that qq′ 6 p, x = l2|q′ , and
|r2|x = n then we have t →l2→r2 v, which is similar to the case for parallel peaks, as the
redex l2σ becomes l2τ but is not destroyed, and u→n

l1→r1
v. To obtain this result we reason

via parallel rewriting. The notion of parallel rewriting already supported by IsaFoR (employed
to prove that orthogonal systems are confluent) does not keep track of e.g. the applied rules.
Thus we augmented IsaFoR by a new version of parallel steps, which record the information
(position, rewrite rule, substitution) of each rewrite step, i.e., the rewrite relation is decorated
with the contracted redex patterns:

x
∅−→pp x

l→ r ∈ R

lσ
{〈ε,l→r,σ〉}−−−−−−−→pp rσ

s1
P1−→pp t1 · · · sn

Pn−−→pp tn

f(s1, . . . , sn) (1P1)∪···∪(nPn)−−−−−−−−−−→pp f(t1, . . . , tn)

Here for a set of redex patterns P = {π1, . . . , πm} by iP we denote {iπ1, . . . , iπm} with
iπ = 〈ip, l → r, σ〉 for π = 〈p, l → r, σ〉. To use this parallel rewrite relation for closing
variable peaks we established the following auxiliary results.

I Lemma 8. The following properties of the parallel rewrite relation hold:
1. For all s we have s→pp ∅ s.
2. If s→pp ∅ t then s = t.
3. If s→pp P t and q ∈ Pos(u) then u[s]q →pp qP u[t]q.
4. We have s→π t if and only if s→pp {π} t.
5. If σ(x) →π τ(x) and σ(y) = τ(y) for all y ∈ V with y 6= x then tσ →pp P tτ with

lπ′ → rπ′ = lπ → rπ for all π′ ∈ P .
6. If s→pp {π}∪P t then there is a u with s→pp {π} u→pp P t.
7. If s→pp {π1,...,πn} t then s→π1 · · · →πn t.

Proof. In principle the results follow from the definitions using straightforward induction
proofs. However, the additional bookkeeping, required to correctly propagate the information
attached to the rewrite relation, makes them considerably more involved than for the existing,
agnostic notion of parallel rewriting. J

Now for reasoning about variable peaks as above we decompose u = s[r2σ]q and v = s[r2τ ]q
where σ(y) = τ(y) for all y ∈ V \{x} and σ(x)→p\qq′,l1→r1 τ(x). From the latter by item (5)

5 This includes rules having a variable as left-hand side.
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inductive_set seq for R where
"(s,[]) ∈ seq R" |
"(s,t) ∈ rstep_r_p_s R rl p σ

=⇒ (t,ts) ∈ seq R =⇒ (s,(s,rl,p,σ,t)#ts) ∈ seq R"

Listing 3 Rewrite sequences.

we obtain r2σ →pp P r2τ , where all redex patterns in P use l1 → r1. Then by item (3) we get
s[r2σ]q →pp qP s[r2τ ]q and finally s[r2σ]q →n

l1→r1
s[r2τ ]q with n = |qP | = |P | by item (7).

4.2 Local Decreasingness
The aim of this section is a confluence result (cf. Corollary 14) based on decreasingness of
the critical peaks. Abstract conditions, via the key notion of a labeling, will ensure that
parallel peaks and variable peaks are decreasing. Furthermore these conditions imply that
decreasingness of the critical peaks implies decreasingness of the function peaks.

For establishing (extended) local decreasingness, a label must be attached to rewrite steps.
To facilitate checking, the formalization makes the rewrite sequences (cf. Listing 3) explicit, i.e.,
they involve the intermediate terms, applied rules, etc. based on rstep_r_p_s. Furthermore,
labels are computed by a labeling (function), having (local) information about the rewrite
step (such as source and target term, applied rewrite rule, position, and substitution) it is
expected to label. For reasons of readability in this presentation we employ the mathematical
notation (e.g., →∗, etc.) with all information implicit but remark that the formalization
works on rewrite sequences with explicit information (as in Listing 3).

I Definition 9. A labeling is a function ` from rewrite steps to a set of labels such that for
all contexts C and substitutions σ the following properties are satisfied:

If `(s→π1 t) > `(u→π2 v) then `(C[sσ]→C[π1σ] C[tσ]) > `(C[uσ]→C[π2σ] C[vσ])
If `(s→π1 t) > `(u→π2 v) then `(C[sσ]→C[π1σ] C[tσ]) > `(C[uσ]→C[π2σ] C[vσ])

Here C[πσ] denotes 〈qp, l→ r, τσ〉 for π = 〈p, l→ r, τ〉 and C|q = �.

In presence of a labeling, rewrite sequences can be labeled at any time. This avoids lifting
many notions (such as rewrite steps, local peaks, rewrite sequences, etc.) and results from
rewriting to labeled rewriting.

Following [28], we separate (local) diagrams (where rewriting is involved) from decreas-
ingness (where only the labels are involved). In the next definition a labeling is extended to
peaks and rewrite sequences via the equations: `(t π← s) = `(s→π t), `(t→0 t) = ∅, and
`(s→π t→∗ u) = {`(s→π t)} ∪ `(t→∗ u).

I Definition 10. A local peak t π1← s→π2 u is extended locally decreasing (for `) if it can
be completed into a local diagram t →∗ t′ →= t′′ →∗ v ∗← u′′ =← u′ ∗← u such that its
labels are extended locally decreasing, i.e.,
`(t→∗ t′) ⊆ <`(t π1← s), `(t′ →= t′′) ⊆ 6 `(s→π2 u), `(t′′ →∗ v) ⊆ <`(t π1← s→π2 u) and
`(u′ ∗← u) ⊆ <`(s→π2 u), `(u′′ =← u′) ⊆ 6 `(t π1← s), `(v ∗← u′′) ⊆ <`(t π1← s→π2 u).

The corresponding predicate in IsaFoR is given in Listing 4 where extended local decreas-
ingness (eld) of a local peak pk is expressed via the existence of rewrite sequences jl and jr
that join the divergence caused by the local peak pk in the shape of a local diagram (ld_trs)
and the labels of the underlying rewrite sequences are extended locally decreasing (eld_seq).
Here r is the pair of relations (>,>).
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definition eld where "eld R ` r pk =
(∃ jl jr. (ld_trs R pk jl jr ∧ eld_seq ` r pk jl jr))"

Listing 4 Extended local decreasingness.

Then a function peak is extended locally decreasing if the critical peaks are.

I Lemma 11. Let ` be a labeling and let all critical peaks of a TRS R be extended locally
decreasing for `. Then every function peak of R is extended locally decreasing for `.

Proof. As every function peak is an instance of a critical peak (see Lemma 7), the result
follows from ` being a labeling (Definition 9). J

The notion of compatibility (between a TRS and a labeling) admits a finite characterization
of extended local decreasingness.

I Definition 12. Let ` be a labeling. We call ` compatible with a TRS R if all parallel peaks
and all variable peaks of R are extended locally decreasing for `.

The key lemma then establishes that if ` is compatible with a TRS, then all local peaks
are extended locally decreasing.

I Lemma 13. Let ` be a labeling which is compatible with a TRS R. If the critical peaks
of R are extended locally decreasing for `, then all local peaks of R are extended locally
decreasing for `.

Proof. The cases of variable and parallel peaks are taken care of by compatibility. The case
of function peaks follows from the assumption in connection with Lemma 11. The symmetric
cases for function and variable peaks are resolved by mirroring the local diagrams. J

Representing a TRS R over the signature F and variables V as the ARS over objects
T (F ,V) and relations

⋃
α{(s, t) | s→π t and `(s→π t) = α}, Lemma 2 immediately applies

to TRSs. To this end extended local decreasingness formulated via explicit rewrite sequences
(with labeling functions) has to be mapped to extended local decreasingness on families of
(abstract rewrite) relations; we omit the technical details here.

Finally, we obtain the following result.

I Corollary 14. Let ` be a labeling compatible with a TRS R. If the critical peaks of R are
extended locally decreasing for ` then R is confluent. J

Concrete confluence criteria are then obtained as instances of the above result. In the
case of Theorem 1 by showing that the relative termination assumption in combination with
the rule labeling implies the desired preconditions.

5 Applications

In this section we instantiate Corollary 14 to obtain concrete confluence results. Afterwards
we discuss the design of the certificates, checkable by CeTA.
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5.1 Rule Labeling
The rule labeling [16] is parametrized by an index mapping i : R → N, which associates to
every rewrite rule a natural number.

I Definition 15. The function `i(s→π t) = i(lπ → rπ) is called rule labeling. Labels due to
the rule labeling are compared by >N and >N.

The rule labeling admits a confluence criterion based on the results established so far.

I Lemma 16.
1. The rule labeling is a labeling.
2. Parallel peaks are extended locally decreasing for the rule labeling.
3. Variable peaks of a linear TRS are extended locally decreasing for the rule labeling.
4. The rule labeling is compatible with a linear TRS.
5. A linear TRS is confluent if its critical peaks are extended locally decreasing for the rule

labeling.

Proof. Item (1) follows from Definition 9. For (2) and (3) we employ the analysis of parallel
and variable peaks from Section 4.1, respectively. Item (4) is then a consequence of (2)
and (3). Finally, (5) amounts to an application of Corollary 14. J

Eventually, we remark that for the rule labeling extended local decreasingness implies
local decreasingness, as >N is the reflexive closure of >N.

5.2 Relative Termination
That a locally confluent terminating left-linear TRS is confluent can be established in the
flavor of Lemma 16. The restriction to left-linearity arises from the lack of considering
non-left-linear variable peaks in Section 4.1. As the analysis of such a peak would not
give further insights we pursue another aim in this section, i.e., the mechanized proof of
Theorem 1.

It is well known that the rule labeling `i is in general not compatible with left-linear
TRSs, cf. [8]. Thus, to obtain extended local decreasingness for variable peaks the additional
relative termination assumption is exploited. To this end we use the source labeling, which
labels each rewrite step by its source, i.e., `src(s→π t) = s. Here, labels due to the source
labeling are compared by the orders →+

Rd/Rnd
and →∗R. The relative termination assumption

of Theorem 1 makes all variable peaks of a left-linear TRS extended locally decreasing for
the source labeling.

Following [31], the aim is to establish that the lexicographic combination `src × `i is
compatible with a left-linear TRS. To employ the rule labeling we have to introduce a weaker
version of compatibility.

I Definition 17. A diagram of the shape t α← s →l2→r2
β u, t →

6β
v n

6α
← u is called

weakly extended locally decreasing if n 6 1 whenever r2 is linear. We call a labeling ` weakly
compatible with a TRS R if parallel and variable peaks are weakly extended locally decreasing
for `.

While weak extended local decreasingness could also be defined in the spirit of extended
local decreasingness (with a more complicated join sequence) the chosen formulation eases
the definition and simplifies proofs.

Based on the peak analysis of Section 4.1 the following results are established (Such
properties must be proved for each labeling function.):
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I Lemma 18. Let R be a left-linear TRS.
1. Parallel peaks are weakly extended locally decreasing for the rule labeling.
2. Variable peaks of R are weakly extended locally decreasing for the rule labeling.
3. The rule labeling is weakly compatible with R. J

Similar results are established for the source labeling.

I Lemma 19. Let R be a left-linear TRS whose duplicating rules terminate relative to the
other rules.
1. The source labeling is a labeling.
2. Parallel peaks are extended locally decreasing for the source labeling.
3. Variable peaks of R are extended locally decreasing for the source labeling.
4. The source labeling is compatible with R. J

Using this lemma, we proved the following results for the lexicographic combination of
the source labeling with another labeling.

I Lemma 20. Let R be a left-linear TRS whose duplicating rules terminate relative to the
other rules, and ` a labeling weakly compatible with R.
1. Then `src × ` is a labeling.
2. Then `src × ` is compatible with R. J

For reasons of readability we have left the orders > and > that are required for (weak)
compatibility implicit and just mention that the lexicographic extension (as detailed in [31])
preserves the required properties. Finally, we prove the main result of this paper.

Proof of Theorem 1. From Lemma 18(3) in combination with Lemma 20 we obtain that
`src × `i is a labeling compatible with a left-linear TRS, provided the relative termination
assumption is satisfied. By assumption, the critical peaks are (extended locally) decreasing
for the rule labeling `i. As along a rewrite sequence labels with respect to `src never increase,
the critical peaks are extended locally decreasing for `src × `i. We conclude the proof by an
application of Corollary 14. J

Hence, actually a stronger result than Theorem 1 has been mechanized, as `src × `i might
show more critical peaks decreasing than `i alone.

5.3 Certificates
Next we discuss the design of the certificates for confluence proofs via the rule labeling, i.e.,
how they are represented in CPF, and the executable checker to verify them. A minimal
certificate could just claim that the considered rewrite system can be shown decreasing via
the rule labeling. However, this is undecidable, even for locally confluent systems [8]. Hence
in the certificate the index function i as well as (candidates for) the joining sequences for
each critical pair have to be provided. Note that the labels in the joining sequences are not
required for the certificate, since CeTA has to check, i.e., compute them anyway. The same
holds for the critical peaks.

As the confluence tools that generate certificates might use different renamings than CeTA
when computing critical pairs, the joining sequences given in the certificate are subject to
a variable renaming. Thus, after computing all critical peaks, CeTA has to look for joining
sequences in the certificate modulo renaming of variables.

Now, to verify whether the sequences of labels obtained from the joining sequences by
applying the given index function fulfill the extended local decreasingness condition, we need
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Table 1 Experimental results for 148 TRSs from CoCo 2014.

method success CoCo 2013 CoCo 2014 CeTA 2.19

(weak) orthogonality 4 3 3 3

Knuth-Bendix 26 3 3 3

strong closedness 28 3 3 3

Lemma 16(5) 41 7 3 3

Theorem 1 46 7 7 3∑
45 56 58

to provide means to decide the following: given two natural numbers α and β and a sequence
σ of natural numbers, is there a split σ = σ1σ2σ3 such that σ1 ⊆ <α, σ2 ⊆ 6β with length of
σ2 at most one, and σ3 ⊆ <αβ? To this end our checker employs a simple, greedy approach.
That is, we pick the maximal prefix of σ with labels smaller α as σ1. If the next label is less
or equal to β we take it as σ2 and otherwise we take the empty sequence for σ2. Finally, the
remainder of the sequence is σ3. A straightforward case analysis shows that this approach is
complete, i.e., otherwise no such split exists.

To certify applications of Theorem 1, additionally the relative termination condition has
to be checked. Luckily, CeTA already supports a wide range of relative termination techniques,
so that here we just needed to make use of existing machinery.

6 Experiments

For experiments we considered the 148 TRSs selected for CoCo 2014 and used the confluence
tool CSI [30] to obtain certificates in CPF for confluence proofs. Note that ACP [2] can also
produce certificates in CPF, but at the moment they are a subset of the ones reported by CSI.
All generated certificates have been certified by CeTA. Note that CeTA can also certify various
methods for non-confluence [12]. The largest certificate (for Cops #60) has 760 KB and lists
182 candidate joins for showing the 34 critical peaks decreasing. The certificate is checked
within 1.1 seconds. We remark that no confluence tool besides CSI has solved Cops #60 so
far, stressing the importance of a certified proof.

Next we elaborate on the impact of the new contributions. Experimental results for
various criteria supported by CeTA are shown in Table 1.6 The CeTA version from CoCo 2013
incorporated (weak) orthogonality [18], Knuth-Bendix’ criterion [11], and strong closedness [9].
Due to the formalization described in this paper now also Theorem 1 is supported (column
CeTA 2.19). As already employed for CoCo 2014, we included the data for Theorem 1 restricted
to linear TRSs, i.e., Lemma 16(5). On our testbed Theorem 1 can establish confluence of
more systems than all earlier methods together (46 vs. 45) and admits about 25% increase in
power (58 vs. 45) when used in combination with the other criteria.

7 Conclusion

Finally we discuss related work, comment on the existing formalization of rewriting in IsaFoR,
and conclude with a short summary.

6 Details are available from http://cl-informatik.uibk.ac.at/experiments/2015/rta3.
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7.1 Related Work

Formalizing confluence criteria has a long history in λ-calculus. Huet [10] proved a stronger
variant of the parallel moves lemma in Coq. Isabelle/HOL was used in [13] to prove the
Church-Rosser property of β, η, and βη. For β-reduction the standard Tait/Martin-Löf
proof as well as Takahashi’s proof [24] were formalized. The first mechanically verified proof
of the Church-Rosser property of β-reduction was done using the Boyer-Moore theorem
prover [20]. The formalization in Twelf [17] was used to formalize the confluence proof of a
specific higher-order rewrite system in [23].

Next we discuss related work for term rewriting. Newman’s lemma (for abstract rewrite
systems) and Knuth and Bendix’ critical pair theorem (for first-order rewrite systems) have
been proved in [19] using ACL. An alternative proof of the latter in PVS, following the higher-
order structure of Huet’s proof, is presented in [6]. PVS is also used in the formalization
of the lemmas of Newman and Yokouchi in [5]. Knuth and Bendix’ criterion has also been
formalized in Coq [4] and Isabelle/HOL [26]. The strong closedness condition of Huet [9]
has been formalized by the first author in Isabelle [12] where reasoning similar to the one
in Section 4.1 is used to (strongly) close variable and parallel peaks. However, for strong
closedness it suffices to construct a common reduct while for our setting every rewrite step
has to be made explicit in order to compute the labels and show local decreasingness.

7.2 Assessment

Next we discuss the usefulness of existing formalizations for this work. The existing machinery
of IsaFoR admitted invaluable support. We regard our efforts to establish an annotated version
of parallel rewriting not as a shortcoming of IsaFoR, but as a useful extension to it. On the
contrary, we could employ many results from IsaFoR without further ado, e.g., completeness of
the unification algorithm (to compute critical peaks), plain rewriting (to connect parallel steps
with single steps), and the support for relative termination. Although [28] does not provide
the main result for decreasing diagrams of abstract rewrite systems that are represented via
families (as needed for Lemma 2), the amount of work to use this result has been modest,
justifying the usability of [28]. That Lemma 7 occurred several times in IsaFoR can be
explained as follows. Note that also in textbook proofs (e.g. [3]) this result is not made
explicit but established in the scope of a larger proof, probably due to its nasty formulation.
Still, in later proofs the result is used as if it would have been established explicitly. In IsaFoR
these proofs have been duplicated, but as formalization papers typically come with code
refactoring these deficiencies have been fixed. Note that the duplicated proofs have actually
never been published.

Next, differences to [31] are addressed. The concepts of an L-labeling and an LL-labeling
from [31] have been unified to the notion of a labeling compatible with a TRS while weak-LL-
labelings are represented via weakly compatible labelings here. This admits the formulation of
the abstract conditions such that a labeling ensures confluence (cf. Corollary 14) independent
from the TRS being (left-)linear. We anticipate that the key result for closing variable
peaks for the left-linear case (cf. Section 4.1) does not rely on the annotated version of
parallel rewriting, but as [31] also supports labelings based on parallel rewriting the developed
machinery might be useful for future certification efforts. The formalization described in this
paper covers a significant amount of the results presented in [31]. As explained, additional
concepts (e.g., the annotated version of parallel rewriting) were formalized to already prepare
for the remaining criteria. However, for some results that are not covered yet (e.g. persistency),
we anticipate that already formalizing the preliminaries requires significant effort.
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7.3 Summary
In this paper we presented the formalization of a result establishing confluence of left-
linear term rewrite systems based on relative termination and the rule labeling. While
our formalization admits stronger results (in order to prepare for further results from [31]),
we targeted Theorem 1, whose statement (in contrast to its proof) does not require the
complex interplay of relative termination and the rule labeling, admitting the use of external
termination provers. Our formalization also admits the (original) criterion for the rule
labeling (cf. Lemma 16(5)). As this criterion applies to linear systems only, the involved
analysis of non-right-linear variable peaks is not needed. The same holds for (the interplay
with) the relative termination condition and the notion of extended local decreasingness (the
rule labeling does not benefit from a preorder). Hence the proof of Theorem 1 is significantly
more involved than the one of Lemma 16(5).

Acknowledgments. We thank Bertram Felgenhauer, Christian Sternagel, and René Thie-
mann for discussion and the reviewers for helpful comments.
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Abstract
We present new techniques to prove termination of cycle rewriting, that is, string rewriting on
cycles, which are strings in which the start and end are connected. Our main technique is to
transform cycle rewriting into string rewriting and then apply state of the art techniques to prove
termination of the string rewrite system. We present three such transformations, and prove for
all of them that they are sound and complete. Apart from this transformational approach, we
extend the use of matrix interpretations as was studied before. We present several experiments
showing that often our new techniques succeed where earlier techniques fail.
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1 Introduction
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286 Transforming Cycle Rewriting into String Rewriting

So both string rewriting and cycle rewriting provide natural semantics for string rewrite
systems, also called semi-Thue systems. Historically, string rewriting got a lot of attention
as being a particular case of term rewriting, while cycle rewriting hardly got any attention
until recently.

In [18] a first investigation of termination of cycle rewriting was made. Some techniques
were presented to prove cycle termination, implemented in a tool torpacyc. Further a
transformation φ was given such that for every string rewriting system (SRS) R, string
termination of R holds if and only if cycle termination of φ(R) holds. As a consequence,
cycle termination is undecidable. However, for making use of the strong power of current
tools for proving termination of string rewriting in order to prove cycle termination, we need
a transformation the other way around: transformations ψ such that for every SRS R, cycle
termination of R holds if and only if string termination of ψ(R) holds. The ‘if’ direction in
this ‘if and only if’ is called ‘sound’, the ‘only if’ is called complete. A new way to prove
cycle termination of an SRS R is to apply a tool for proving termination of string rewriting
to ψ(R) for a sound transformation ψ. The main topic of this paper is to investigate such
transformations, and to exploit them to prove termination of cycle rewriting.

A similar approach to exploit the power of tools for termination of term rewriting to prove
a modified property was used before in [8, 7]. However, there the typical observation was that
the complete transformations were complicated, and for non-trivial examples termination
of ψ(R) could not be proved by the tools, while for much simpler sound (but incomplete)
transformations ψ, termination of ψ(R) could often be proved by the tools. In our current
setting this is different: we introduce a transformation split, for which we prove that it is
sound and complete, but we show that for several systems R for which all approaches from
[18] fail, cycle termination of R can be concluded from an automatic termination proof of
split(R) generated by AProVE [6, 1] or TTT2 [12, 15].

It can be shown that if strings of size n exist admitting cycle reductions in which for every
rule the number of applications of that rule is more than linear in n, then all techniques from
[18] fail to prove cycle termination. Nevertheless, in quite simple examples this may occur
while cycle termination holds. As an example consider the following.

A number of people are in a circle, and each of them carries a number, represented in
binary notation with a bounded number of bits. Each of them may increase his/her number
by one, as long as it fits in the bounded number of bits. Apart from that, every person may
increase the number of bits of the number of its right neighbor by two. In order to avoid
trivial non-termination, the latter is only allowed if the leading bit of the number is 0, and
the new leading bit is put to 1, and the other to 0, by which effectively one extra bit is added.
We will prove that this process will always terminate by giving an SRS in which all of the
above steps can be described by a number of cycle rewrite steps, and prove cycle termination.

In order to do so we write P for person, and 0 and 1 for the bits of the binary number.
For carry handling we introduce an extra symbol c of which the meaning is a 1 with a carry.
Assume for every person its number is stored left from it. So if the number ends in 0, by
adding one this last bit 0 is replaced by 1, expressed by the rule 0P → 1P . In case the
number ends in 1, a carry should be created, since c represents a 1 with a carry this is
expressed by the rule 1P → cP . Next the carry should be processed. In case it is preceded
by 0, this 0 should be replaced by 1, while the c is replaced by 0; this is expressed by the
rule 0c → 10. In case it is preceded by 1, a new carry should be created while again the
old carry is replaced by 0; this is expressed by the rule 1c→ c0. In this way adding one to
any number in binary notation can be expressed by a number of rewrite steps, as long as no
overflow occurs. Finally, we have to add a rule to extend the bit size of the number of the
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right neighbor: the leading bit should be 0, while it is replaced by 100: adding two extra bits
of which the leading one is 1 and the other is 0. This is expressed by the rule P 0→ P 100.
Summarizing: we have to prove cycle termination of the SRS consisting of the five rules

0P → 1P, 1P → cP, 0c→ 10, 1c→ c0, P 0→ P 100.

This is fundamentally impossible by the techniques presented in [18]: by one of the techniques
the last rule can be removed, but starting in 0nP a reduction can be made in which all of the
remaining four rules are applied an exponential number of times, by which the techniques
from [18] fail.

In this paper we give two ways to automatically prove that cycle termination holds for
the above example R: TTT2 succeeds in proving termination of split(R), and the other is a
variant of matrix interpretations for which we show that it proves cycle termination.

The paper is organized as follows. Section 2 recalls the basics of cycle rewriting. The
main section Section 3 presents three transformations split, rotate, and shift, and proves
soundness and completeness of all of them. In Section 4 the matrix approach is revisited and
extended. In Section 5 experiments on implementations of our techniques are reported. We
conclude in Section 6.

2 Preliminaries

A signature Σ is a finite alphabet of symbols. With Σ∗ we denote the set of strings over Σ.
With ε we denote the empty string and for u, v ∈ Σ∗, we write uv for the concatenation
of the strings u and v. With |u| we denote the length of string u ∈ Σ∗ and for a ∈ Σ and
n ∈ IN, an denotes n replications of symbol a, i.e. a0 = ε and ai = aai−1 for i > 0.

Given a binary relation →, we write →i for i steps, →≤i for at most i steps, →<i for
at most i− 1 steps, →∗ for the reflexive-transitive closure of →, and →+ for the transitive
closure of →R. For binary relations →1 and →2, we write →1 .→2 for the composition of
→1 and →2, i.e. a→1 .→2 c iff there exists a b s.t. a→1 b and b→2 c.

A string rewrite system (SRS) is a finite set R of rules `→ r where `, r ∈ Σ∗. The rewrite
relation →R ⊆ (Σ∗ × Σ∗) is defined as follows: if w = u`v ∈ Σ∗ and (` → r) ∈ R, then
w →R urv. The prefix-rewrite relation ↪→R is defined as: if w = `u ∈ Σ∗ and (`→ r) ∈ R,
then w ↪→R ru. The suffix-rewrite relation ↪→R is defined as: if w = u` ∈ Σ∗ and (`→ r) ∈ R,
then w ↪→

R ur.
A (finite or infinite) sequence of rewrite steps w1 →R w2 →R · · · is called a rewrite

sequence (sometimes also a reduction or a derivation). An SRS R is non-terminating if there
exists a string w ∈ Σ∗ and an infinite rewrite sequence w →R w1 →R w2 · · · . Otherwise, R
is terminating.

We recall the notion of cycle rewriting from [18]. A string can be viewed as a cycle,
i.e. the last symbol of the string is connected to the first symbol. To represent cycles by
strings, we define the equivalence relation ∼ as follows:

u ∼ v iff u = w1w2 and v = w2w1 for some strings w1, w2 ∈ Σ∗

With [u] we denote the equivalence class of string u w.r.t. ∼.
The cycle rewrite relation ◦→R ⊆ (Σ/∼× Σ/∼) of an SRS R is defined as

[u] ◦→R [v] iff ∃w ∈ Σ∗ : u ∼ `w, (`→ r) ∈ R, and v ∼ rw

The cycle rewrite relation ◦→R is called non-terminating iff there exists a string w ∈ Σ∗ and
an infinite sequence [w] ◦→R [w1] ◦→R [w2] ◦→R · · · . Otherwise, ◦→R is called terminating.

We recall some known facts about cycle rewriting.
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I Proposition 1 (see [18]). Let Σ be a signature, R be an SRS, and u, v ∈ Σ∗.
1. If u→R v then [u] ◦→R [v].
2. If ◦→R is terminating, then →R is terminating.
3. Termination of →R does not necessarily imply termination of ◦→R.
4. Termination of ◦→R is undecidable.
5. For every SRS R there exists a transformed SRS φ(R) s.t. the following three properties

are equivalent:
→R is terminating.
→φ(R) is terminating.
◦→φ(R) is terminating.

For an SRS R, the last property implies that termination of→R can be proved by proving
termination of the translated cycle rewrite relation ◦→φ(R). In [18] it was used to show
that termination of cycle rewriting is undecidable and for further results on derivational
complexity for cycle rewriting.

3 Transforming Cycle Termination into String Termination

Proposition 1 and the involved transformation φ, which transforms string rewriting into
cycle rewriting, provide a method to prove string termination by proving cycle termination.
However, it does not provide a method to prove termination of the cycle rewrite relation
◦→R by proving termination of the string rewrite relations →R or →φ(R). Hence, in this
section we develop transformations ψ s.t. termination of →ψ(R) implies termination of ◦→R.
We call such a transformation ψ sound. However, there are “useless” sound transformations,
for instance, transformations where ψ(R) is always non-terminating. So at least one wants
to find sound transformations which permit to prove termination of non-trivial cycle rewrite
relations. However, a better transformation should fulfill the stronger property that →ψ(R)
is terminating if and only if ◦→R is terminating. If termination of ◦→R implies termination
of →ψ(R), then we say ψ is complete. For instance, for a complete transformation, non-
termination proofs of →ψ(R) also imply non-termination of ◦→R. Hence, our goal is to find
sound and complete transformations ψ.

We will introduce and discuss three transformations split, rotate, and shift where the
most important one is the transformation split, since it has the following properties: The
transformation is sound and complete, and as our experimental results show, it behaves
well in practice when proving termination of cycle rewriting. The other two transformations
rotate and shift are also sound and complete, but rather complex and – as our experimental
results show – they do not behave as well as the transformation split in practice. We include
all three transformations in this paper to document some different approaches to transform
cycle rewriting into string rewriting.

While we will analyze the transformation split in detail and prove its soundness and
completeness, for the other two transformations we briefly list their properties where the
corresponding proofs can be found in the longer version [13] of this paper.

3.1 The Transformation Split
The idea of the transformation split is to perform a single cycle rewrite step [u] ◦→R [v] step
which uses rule (`→ r) ∈ R, by either applying a string rewrite step u→R v or by splitting
the rule (` → r) into two rules (`A → rA) and (`B → rB), where ` = `A `B and r = rArB.
Then a cycle rewrite step can be simulated by a prefix and a subsequent suffix rewrite step:
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first apply rule `B → rB to a prefix of u and then apply rule `A → rA to a suffix of the
obtained string.

I Example 2. Let R = {abc→ bbbb} and [bcdda] ◦→R [bbddbb]. The rule abc→ bbbb can
be split into the rules a→ bb and bc→ bb s.t. bcdda ↪→{bc→bb} bbdda ↪→{a→bb} bbddbb.

We describe the idea of the transformation split more formally. It uses the following
observation of cycle rewriting: if [u] ◦→R [v], then u ∼ `w, (`→ r) ∈ R, and v ∼ rw. From
u ∼ `w follows that u = u1u2 and `w = u2u1 for some u1, u2. We consider the cases for u2:

1. If ui = ε (for i = 1 or i = 2), then u = `w and u ↪→R rw by a prefix string-rewrite step.
2. If ` is a prefix of u2, i.e. `u′2 = u2, then w = u′2u1, u = u1 `u

′
2 →R u1ru

′
2, and

u1ru
′
2 ∼ rw.

3. If u2 is a proper prefix of `, then there exist `A, `B with ` = `A `B s.t. u2 = `A and `B is
a true prefix of u1, i.e. u1 = `Bw and u = u1u2 = `Bw`A ↪→{`B→rB} rBw`A

↪→
{`A→rA}

rBwrA ∼ rw if rArB = r.

The three cases show that a cycle rewrite step [u] ◦→{`→r} [v] can either be performed
by applying a string rewrite step u→{`→r} v′ where v′ ∼ v (cases 1 and 2) or in case 3 by
splitting ` → r into two rules `A → rA and `B → rB such that u ↪→{`B→rB} u

′ replaces a
prefix of u by rB and u′ ↪→{`A→rA} v

′ replaces a suffix of u′ by rA s.t. v′ ∼ v.
For splitting a rule (` → r) into rules `A → rA and `B → rB, we may choose any

decomposition of r for rA and rB (s.t. r = rA rB). We will work with rA = r and rB = ε.
The above cases for cycle rewriting show that a sound transformation of the cycle rewrite

relation ◦→R into a string rewrite relation is the SRS which consists of all rules of R and
all pairs of rules `B → ε and `A → r for all (` → r) ∈ R and all `A, `B with |`A| > 0,
|`B | > 0, and ` = `A `B . However, this transformation does not ensure that the rules evolved
by splitting are used as prefix and suffix rewrite steps only. Indeed, the transformation
in this form is useless for nearly all cases, since whenever the right-hand side r of a rule
(` → r) ∈ R contains a symbol a ∈ Σ which is the first or the last symbol in `, then the
transformed SRS is non-terminating. For instance, for R = {aa→ aba} the cycle rewrite
relation ◦→R is terminating, while the rule a→ aba (which would be generated by splitting
the left-hand side of the rule) leads to non-termination of the string rewrite relation. Note
that this also holds if we choose any other decomposition of the right-hand side. Hence, in
our transformation we introduce additional symbols to ensure:

`B → ε can only be applied to a prefix of the string.
`A → r can only be applied to a suffix of the string.
If `B → ε is applied to a prefix, then also `A → r must be applied, in a synchronized
manner (i.e. no other rule `′B → ε or `′A → r′ can be applied in between).

In detail, we will prepend the fresh symbol B to the beginning of the string, and append
the fresh symbol E to the end of the string. These symbols guarantee, that prefix rewrite
steps `u ↪→(`→r) ru can be expressed with usual string rewrite rules by replacing the left
hand side ` with B` and analogous for suffix rewrite steps u` ↪→(`→r) ur by replacing the
left hand side ` with `E. Let (`i → ri) be the ith rule of the SRS which is split into two rules
`B → ε and `A → ri, where `A `B = `i. After applying the rule `B → ε to a prefix of the
string, the symbol B will be replaced by the two fresh symbols W (for “wait”) and Ri,j where
i represents the ith rule and j means that `i has been split after j symbols (i.e. |`A| = j). The
fresh symbol L is used to signal that the suffix has been rewritten by rule `A → r. Finally, we
use a copy of the alphabet, to ensure completeness of the transformation: for an alphabet Σ,
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290 Transforming Cycle Rewriting into String Rewriting

we denote by Σ a fresh copy of Σ, i.e. Σ = {a | a ∈ Σ}. For a word w ∈ Σ∗ with w ∈ Σ∗ we
denote the word w where every symbol a is replaced by a. Analogously, for a word w ∈ Σ∗

with w ∈ Σ we denote w where every symbol a is replaced by the symbol a.

I Definition 3 (The transformation split). Let R = {`1 → r1, . . . , `n → rn} be an SRS over
alphabet Σ. Let Σ be a fresh copy of Σ and let B,E,W,Ri,j , L be fresh symbols (fresh for
Σ ∪ Σ). The SRS split(R) over alphabet Σ ∪ Σ ∪ {B,E,L,W} ∪

⋃n
i=1{Ri,j | 1 ≤ j < |`i|}

consists of the following string rewrite rules:

`i → ri for every rule (`i → ri) ∈ R (splitA)
aL→ La for all a ∈ Σ (splitB)

WL→ B (splitC)

and for every rule (`i → ri) ∈ R, for all 1 ≤ j < |`i| and `A `B = `i with |`A| = j:

B`B →WRi,j (splitD)
Ri,j `AE→ LriE (splitE)

Ri,j a→ aRi,j for all a ∈ Σ (splitF)

We describe the intended use of the rules and the extra symbols. The symbols B and E mark
the start and the end of the string, i.e. for a cycle [u] the SRS split(R) rewrites BuE.

Let [u] ◦→R [w]. The rule (splitA) covers the case that also u→R w holds. Now assume
that for w′ ∼ w we have u ↪→{`B→ε} v

↪→
{`A→r} w

′ (where (`A`B → r) ∈ R). Rule (splitD)
performs the prefix rewrite step and replaces B by W to ensure that no other such a rule
can be applied. Additionally, the symbol Ri,j corresponding to the rule and its splitting is
added to ensure that only the right suffix rewrite step is applicable. Rule (splitF) moves the
symbol Ri,j to right and rule (splitE) performs the suffix rewrite step. Rules (splitB) and
(splitC) are used to finish the simulation of the cycle rewrite step by using the symbol L to
restore the original alphabet and to finally replace WL by B.

I Example 4. For R1 = {aa→ aba} the transformed string rewrite system split(R1) is:

aa → aba (splitA) aL → La (splitB) bL → Lb (splitB)
WL → B (splitC) Ba → WR1,1 (splitD) R1,1aE → LabaE (splitE)
R1,1a → aR1,1 (splitF) R1,1 b → bR1,1 (splitF)

For instance, the cycle rewrite step [aba] ◦→R1 [baba] is simulated in the transformed system
by BabaE→WR1,1 baE→WbR1,1aE→WbLabaE→WLbabaE→ BbabaE. As a further
example, for R2 = {abc→ cbacba, aa→ a} the transformed SRS split(R2) is:

abc → cbacba (splitA) aa → a (splitA) WL → B (splitC)
aL → La (splitB) bL → Lb (splitB) cL → Lc (splitB)
Bbc → WR1,1 (splitD) Bc → WR1,2 (splitD) Ba → WR2,1 (splitD)
R1,1aE → LcbacbaE (splitE) R1,2abE → LcbacbaE (splitE) R2,1aE → LaE (splitE)
R1,1a → aR1,1 (splitF) R1,2a → aR1,2 (splitF) R2,1a → aR2,1 (splitF)
R1,1 b → bR1,1 (splitF) R1,2 b → bR1,2 (splitF) R2,1 b → bR2,1 (splitF)
R1,1 c → cR1,1 (splitF) R1,2 c → cR1,2 (splitF) R2,1 c → cR2,1 (splitF)

Termination of split(R1) and split(R2) can be proved by AProVE and TTT2.

I Proposition 5 (Soundness of split). If →split(R) is terminating then ◦→R is terminating.

Proof. By construction of split(R), it holds that if [u] ◦→R [v], then Bu′E →+
split(R) Bv′E

with u ∼ u′ and v ∼ v′. Thus for every infinite sequence [w1] ◦→R [w2] ◦→R · · · there exists
an infinite sequence B w′1 E→split(R) B w′2 E→split(R) · · · with wi ∼ w′i for all i. J
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3.1.1 Completeness of Split
We use type introduction [17] and use the sorts A, A, C, and T , and type the symbols used
by split(R) (seen as unary function symbols, and seen as a term rewrite system) as follows:

L :: A→ A

B :: A→ T

W :: A→ T

E :: C → A

a :: A→ A for all a ∈ Σ
a :: A→ A for all a ∈ Σ
Ri,j :: A→ A for all Ri,j

We also add a constant c of sort C to the alphabet, s.t. ground terms for any sort exist.
First one can verify that all rewrite rules of split(R) are well-typed: (splitA) rewrites terms
of sort A, (splitB), (splitE), and (splitF) rewrite terms of sort A, and (splitC) and (splitD)
rewrite terms of sort T . Since there are no collapsing and duplicating rules, type introduction
can be used (see [17]), i.e. (string) termination of the typed system is equivalent to (string)
termination of the untyped system.

We consider ground terms of the sorts A, A, C, and T . For simplicity we use the
representation as strings (instead of terms), and we write E instead of Ec. First we show
that our analysis of non-termination can be restricted to terms of sort T :

I Lemma 6. If a term w of sort S with S ∈ {A,A,C} admits an infinite reduction w.r.t.
split(R), then there exists a term w′ of sort T , which admits an infinite reduction.

Proof. The only term of sort C is the constant c which is a normal form. If a term w of sort
A admits an infinite reduction w.r.t. →split(R), then also the term Bw of type T admits an
infinite reduction w.r.t. →split(R). If a term w of sort A admits an infinite reduction w.r.t.
→split(R), then also the term Ww of type T admits an infinite reduction w.r.t. →split(R). J

Inspecting the typing of the symbols shows:

I Lemma 7. Any term of sort T is of one of the following forms:
BuE where u ∈ Σ∗

WwLuE where w ∈ Σ∗ and u ∈ Σ∗

WwRi,juE where w ∈ Σ∗ and u ∈ Σ∗

We define a mapping from terms of sort T into strings over Σ as follows:

I Definition 8. For a term w :: T , the string Φ(w) ∈ Σ∗ is defined according to the cases of
Lemma 7:

Φ(BuE) := u

Φ(WwLuE) := wu

Φ(WwRi,juE) := `Bwu if (B`B →WRi,j) ∈ split(R)

I Lemma 9. Let w be of sort T and w →split(R) w
′. Then Φ(w) ◦→∗R Φ(w′).

Proof. We inspect the cases of Lemma 7 for w:
If w = BuE where u ∈ Σ∗, then the step w →split(R) w

′ can use a rule of type (splitA) or
(splitD). If rule (splitA) is applied, then Φ(w)→R Φ(w′) and thus Φ(w) ◦→R Φ(w′). If
rule (splitD) is applied, then w = B`2u

′ →split(R) WRi,ju′ = w′ and Φ(w) = `2u
′ = Φ(w′).

If w = WvLuE where v ∈ Σ∗ and u ∈ Σ∗, then the step w →split(R) w
′ can use rules of

type (splitA), (splitB), or (splitC). If rule (splitA) is used, then Φ(w) →R Φ(w′) and
thus Φ(w) ◦→R Φ(w′). If rule (splitB) or (splitC) is used, then Φ(w) = Φ(w′).
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If w = WvRi,juE where v ∈ Σ∗ and u ∈ Σ∗, then the step w →split(R) w
′ can use a rule of

type (splitA), (splitE), or (splitF). If rule (splitA) is used, then Φ(w)→R Φ(w′) and thus
Φ(w) ◦→R Φ(w′). If rule (splitF) is used, then Φ(w) = Φ(w′). If rule (splitE) is used, then
w = WvRi,j `AE and w′ = WvLriE and Φ(w) = `B v`A ∼ `A`Bv →R riv ∼ vri = Φ(w′)
and thus Φ(w) ◦→R Φ(w′). J

I Theorem 10 (Soundness and completeness of split). The transformation split is sound and
complete, i.e. →split(R) is terminating if, and only if ◦→R is terminating.

Proof. Soundness is proved in Proposition 5. It remains to show completeness. W.l.o.g. we
assume that →R is terminating, since otherwise ◦→R is obviously non-terminating. Type
introduction and Lemma 6 show that it is sufficient to construct a non-terminating cycle
rewrite sequence for any term w of sort T where w has an infinite→split(R)-reduction. For every
infinite reduction w →split(R) w1 →split(R) w2 · · · we use Lemma 9 to construct a cycle rewrite
sequence Φ(w) ◦→∗R Φ(w1) ◦→∗R Φ(w2) · · · . It remains to show that the constructed sequence
is infinite: one can observe that the infinite sequence must have infinitely many applications
of rule (splitE) (which is translated by Φ(·) into exactly one ◦→R-step), since every sequence
of (splitA)∨(splitB)∨(splitC)∨(splitD)∨(splitF)−−−−−−−−−−−−−−−−−−−−−−−−−−−−→-steps is terminating (since we assumed that →R is
terminating). J

3.2 Alternative Transformations
We first present the general ideas of the transformations rotate and shift before giving their
definitions. We write y for the relation which moves the first element of a string to the end,
i.e. auy ua for every a ∈ Σ and u ∈ Σ∗. We write uy|·| v if, and only if uy<|u| v holds.
Clearly, u ∼ v holds if and only if uy<|u| v holds. For a string rewrite system R, we define
len(R) as the size of the largest left-hand side of the rules in R, i.e. len(R) = max(`i→ri)∈R |`i|.

Using these notations we present two approaches to simulate cycle rewriting by string
rewriting. One approach is to shift at most len(R)− 1 symbols from the left end to the right
end and then to apply a string rewrite step (this is the relation y<len(R) .→R). Another
approach is to first rotate the string and then to apply a prefix rewrite step (this is the
relation y|·| . ↪→R).

I Example 11. As in Example 2, let R = {abc→ bbbb} and [bcdda] ◦→R [bbddbb].
For the first approach (“shift”) we shift symbols from the left end to the right end

of the string until abc becomes a substring. Then we apply a string rewrite step, i.e.
bcdday<len(R) .→R ddbbbb, since bcdday cddaby ddabc→R ddbbbb.

For the second approach (“rotate“), we rotate the string (by iteratively shifting symbols)
until abc becomes a prefix. Then we apply a prefix rewrite step, i.e. bcdday|·| . ↪→R bbbbdd,
since bcdday cddaby ddabcy dabcdy abcdd ↪→R bbbbdd.

It is quite easy to verify that the following proposition holds:

I Proposition 12. Let R be an SRS. If ◦→R is non-terminating, then
1. y<len(R) .→R admits an infinite reduction, and
2. y|·| . ↪→R admits an infinite reduction.

For an SRS R the SRS shift(R) encodes the relation y<len(R) .→R and the SRS rotate(R)
encodes the relation y|·| . ↪→R where extra symbols are used to separate the steps, and
copies of the alphabet underlying R are used to ensure completeness of the transformations.
We provide the definitions and some explanations of the transformations shift and rotate,
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but for space reasons we exclude their proofs of soundness and completeness. They can
be found in the longer version [13] of this paper. For the remainder of the section, we fix
an SRS R over alphabet ΣA = {a1, . . . , an}. Let us write ΣB ,ΣC ,ΣD,ΣE for fresh copies
of the alphabet ΣA. We use the following notation to switch between the alphabets: for
X,Y ∈ {A,B,C,D,E} and w ∈ ΣX we write LwM

Y
to denote the copy of w in the alphabet

Y where every symbol is translated from alphabet X to alphabet Y .

I Definition 13 (The transformation shift). Let R be an SRS over alphabet ΣA and let N =
max(0, len(R)−1). The SRS shift(R) over the alphabet ΣA∪ΣB∪ΣC∪{B,E,W,V,M, L,R,D}
(where B,E,W,V,M, L,R,D are fresh for ΣA ∪ ΣB ∪ ΣC) consists of the following rules:

B→WMN V (shiftA)
M→ ε (shiftB)

MVa→ VLaM
B

for all a ∈ ΣA (shiftC)
ba→ ab for all a ∈ ΣA and all b ∈ ΣB (shiftD)
bE→ LbM

A
E for all b ∈ ΣB (shiftE)

WV→ RL (shiftF)
La→ LaM

C
L for all a ∈ ΣA (shiftG)

L`→ Dr for all (`→ r) ∈ R (shiftH)
cD→ DLcM

A
for all c ∈ ΣC (shiftI)

RD→ B (shiftJ)

The rules (shiftA) - (shiftE) encode the relation y<len(R), i.e. for uv ∈ Σ∗A with |u| < len(R),
the string BuvE is rewritten into WVvuE by these five rules. The sequence of symbols M
generated by rule (shiftA) denotes the potential of moving at most len(R)− 1 symbols. The
rules (shiftB) and (shiftC) either remove one from the potential or start the moving of one
symbol. The rule (shiftD) performs the movement of a single symbol until it reaches the end
of the string and rule (shiftE) finishes the movement.

The remaining rewrite rules perform a single string rewrite step, i.e. for a rule (`→ r) ∈ R
the string WVw1 `w2 E is rewritten to Bw1rw2E by rules (shiftF) - (shiftJ).

This shows that if u y<len(R) v →R w, then BuE →+
shift(R) BwE and thus by Proposi-

tion 12 soundness of the transformation shift holds.

I Definition 14 (The transformation rotate). Let R be an SRS over alphabet ΣA. The
SRS rotate(R) over the alphabet ΣA ∪ ΣB ∪ ΣC ∪ ΣD ∪ ΣE ∪ {Begin, End, Rewrite, Goright,
Guess, Rotate, Cut, Moveleft, Wait, Finish, Finish2} (where Begin, End, Rewrite, Goright, Guess,
Rotate, Cut, Moveleft, Wait, Finish, and Finish2 are fresh for ΣA ∪ ΣB ∪ ΣC ∪ ΣD ∪ ΣE) is:

BeginEnd→ Rewrite End (rotateA)
Begina→ RotateCutLaM

D
Guess for all a ∈ ΣA (rotateB)

Guessa→ LaM
D

Guess for all a ∈ ΣA (rotateC)
Guessa→ MoveleftLaM

C
Wait for all a ∈ ΣA (rotateD)

GuessEnd→ FinishEnd (rotateE)
dMoveleftc→ MoveleftcLdM

B
for all c ∈ Σc and all d ∈ ΣD (rotateF)

CutMoveleftc→ LcM
E

CutGoright for all c ∈ ΣC (rotateG)
Gorightb→ LbM

D
Goright for all b ∈ ΣB (rotateH)

GorightWaita→ MoveleftLaM
C

Wait for all a ∈ ΣA (rotateI)
GorightWaitEnd→ FinishEnd (rotateJ)

dFinish→ FinishLdM
A

for all d ∈ ΣD (rotateK)
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CutFinish→ Finish2 (rotateL)
eFinish2→ Finish2LeM

A
for all e ∈ ΣE (rotateM)

RotateFinish2→ Rewrite (rotateN)
Rewrite`→ Beginr for all (`→ r) ∈ R (rotateO)

We describe the intended use of the rewrite rules, where we ignore the copies of the alphabet
in our explanations. The goal is that for any string w ∈ Σ∗A, the string BeginwEnd is
rewritten to BeginuEnd, where w y|·| . ↪→R u. The prefix rewrite step is performed by the
last rule (rotateO). All other rules perform the rotation y|·| s.t. BeginwEnd is rewritten
into RewritevEnd where w ∼ v. Instead of moving symbols from the front to the end (as y
does), the rules move a suffix of the string in front of the string (which has the same effect).

The first rewrite rule (rotateA) covers the case that w is empty. If w = a1 . . . an, then
first choose a position to cut the string into two parts w1w2. The symbol Guess is used for
the non-deterministic selection of the position. Rule (rotateB) starts the rotate phase and the
guessing, rule (rotateC) shifts the Guess-marker and rule (rotateD) stops the guessing. Rule
(rotateE) covers the case that w2 = ε and no rotation will be performed. After stopping the
guessing, every symbol of w2 is moved in front of w1, resulting in w2w1. A typical situation
is ak+1 . . . ama1 . . . akam+1 . . . an and now the symbol am+1 must be moved in between am
and a1. To keep track of the position of a1, the symbol Cut (inserted in front of a1) marks
the original beginning, and to keep track of the position of ak, the symbol Wait (inserted
after ak) marks this position. The symbol Moveleft guards the movement of am+1 (by rule
(rotateF)). When arriving at the right place (rule (rotateG)), the symbol Goright is used to
walk along the string (rule (rotateH)) to find the next symbol which has to be moved (rule
(rotateI)). If all symbols are moved, rule (rotateJ) is applied to start the clean-up phase.
There the symbols Finish and Finish2 are used to remove the markers and to replace the
copied symbols of the alphabet with the original ones (rules (rotateK) – (rotateN)).

The construction of rotate(R) shows that BeginuEnd →∗rotate(R) BeginwEnd whenever
uy|·| v ↪→R w. Thus Proposition 12 implies soundness of rotate.

In the long version [13] of this paper, we also prove completeness of both transformations
shift and rotate and thus the following theorem holds:

I Theorem 15 (see [13]). The transformations shift and rotate are sound and complete.

4 Trace Decreasing Matrix Interpretations

In this section we present a variant of matrix interpretations suitable for proving cycle
termination. The basics of matrix interpretations for string and term rewriting were presented
in [9, 10, 5, 11]. The special case of tropical and arctic matrix interpretations for cycle
rewriting was presented in [18], in the setting of type graphs. This section extends matrix
interpretations for cycle rewriting along the lines suggested by Johannes Waldmann.

Fix a dimension d > 0. Define Md to be the set of d × d matrices A over IN for which
A11 > 0. On Md we define the relations > and ≥ by

A > B ⇐⇒ A11 > B11 ∧ ∀i, j : Aij ≥ Bij , A ≥ B ⇐⇒ ∀i, j : Aij ≥ Bij .

Write × for matrix multiplication. Note that (A × B) ∈ Md whenever A,B ∈ Md. The
following lemma is easily checked.

I Lemma 16. Let A,B,C ∈Md.
If A > B then A× C > B × C and C ×A > C ×B,
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If A ≥ B then A× C ≥ B × C and C ×A ≥ C ×B.

A matrix interpretation 〈·〉 for a signature Σ is defined to be a mapping from Σ to Md.
It is extended to 〈·〉 : Σ∗ →Md by defining inductively 〈ε〉 = I and 〈ua〉 = 〈u〉 × 〈a〉 for all
u ∈ Σ∗, a ∈ Σ, where I is the identity matrix.

I Theorem 17. Let R′ ⊆ R be SRSs over Σ and let 〈·〉 : Σ→Md such that

◦→R′ is terminating,
〈`〉 ≥ 〈r〉 for all (`→ r) ∈ R′, and
〈`〉 > 〈r〉 for all (`→ r) ∈ R \R′.

Then ◦→R is terminating.

Proof. For a square matrix A of dimension d, its trace tr(A) is defined to be
∑d
i=1 Aii:

the sum of its diagonal. It is well known and easy to check that tr(A × B) = tr(B × A)
for all A,B. As a consequence we obtain tr(〈u〉) = tr(〈v〉) for u, v satisfying u ∼ v. Since
A > B implies tr(A) > tr(B) and A ≥ B implies tr(A) ≥ tr(B), from Lemma 16 we obtain
tr(〈u〉) ≥ tr(〈v〉) if u→R′ v, and tr(〈u〉) > tr(〈v〉) if u→R\R′ v. Combining these observations
yields tr(〈u〉) ≥ tr(〈v〉) if [u] ◦→R′ [v], and tr(〈u〉) > tr(〈v〉) if [u] ◦→R\R′ [v].

Assume an infinite ◦→R reduction exists: [u1] ◦→R [u2] ◦→R [u3] ◦→R [u4] ◦→R · · · .
Since ◦→R′ is terminating, it contains infinitely many steps [ui] ◦→R\R′ [ui+1], all giving
rise to tr(〈ui〉) > tr(〈ui+1〉), while all other steps give rise to tr(〈ui〉) ≥ tr(〈ui+1〉). As tr(〈·〉)
always yields a natural number, this yields an infinite descending sequence of natural numbers,
contradiction. J

Although this proof is not very hard, it is quite subtle: it is essential to first use the full
order on matrices and disallow A11 to be 0 in order to obtain Lemma 16, and next apply
the trace to get the same interpretations for u and v if u ∼ v. It is not essential to apply
this approach to natural numbers with usual addition and multiplication: other well-founded
semirings can be used as well. Using the semiring IN ∪ {∞} with minimum as semiring
addition and + as semiring multiplication yields tropical matrix interpretations. Using the
semiring IN ∪ {−∞} with maximum as semiring addition and + as semiring multiplication
yields arctic matrix interpretations. For general theory on matrix interpretations for term
rewriting we refer to [10, 5]. Validity of tropical and arctic matrix interpretations for cycle
rewriting has been proved in [18], in the setting of type graphs.

The original versions of matrix interpretations in [9, 5] fail for proving cycle termination
since they succeed in proving termination of aa → bc, bb → ac, cc → ab, for which cycle
termination does not hold due to [ccaa] ◦→ [abaa] ◦→ [abbc] ◦→ [aacc]. The main difference
is that in our setting the interpretation of symbols is multiplication by a matrix, while in
[9, 5] it combines such a matrix multiplication by adding a vector.

The search for an application of Theorem 17 has been implemented in our tool torpacyc,
extending the version presented in [18]. It is done by transforming the requirements to SMT
format and calling the external SMT solver Yices [3, 16]. As an example consider the system
from the introduction:

0P → 1P, 1P → cP, 0c→ 10, 1c→ c0, P 0→ P 100.

First by finding a tropical matrix interpretation, the last rule is removed by torpacyc. Next
the following matrices are found:

〈P 〉 =
(

1 0
1 0

)
, 〈0〉 =

(
1 2
0 2

)
, 〈1〉 =

(
1 1
0 2

)
, 〈c〉 =

(
1 0
0 2

)
.
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For these interpretations we obtain 〈0P 〉 > 〈1P 〉, 〈1P 〉 > 〈cP 〉, 〈0c〉 ≥ 〈10〉 and 〈1c〉 ≥ 〈c0〉,
hence by Theorem 17 it suffices to prove cycle termination of 0c→ 10, 1c→ c0, for which
torpacyc finds a simple counting argument.

4.1 Limitations of the Method
In this section we give an example where the matrix approach fails and the transformational
approach succeeds.

The method for proving cycle termination induced by Theorem 17 has similar limitations
as the method of matrix interpretations in [10] for string termination: Since the entries of
a product of n matrices are bounded by an exponential function in n, the method cannot
prove cycle termination of systems which allow reduction sequences where every rewrite rule
is applied more often than exponentially often.

I Example 18. The rewrite system R1 := {ab→ bca, cb→ bbc} allows for string derivations
of a length which is a tower of exponentials (see [10]), i.e. the string ak bk has such a long
derivation, since the derivation abn →∗R1

b2n−1 cna exists and this can be iterated for
every a in ak. Moreover, the number of applications of the first and of the second rule
of R1 is a tower of exponentials. This shows that the matrix interpretations in [10] are
unable to prove string termination of R1. The system φ(R1) := {RE → LE, aL →
La′, bL → Lb′, cL → Lc′, Ra′ → aR,Rb′ → bR,Rc′ → cR, abL → bcaR, cbL → bbcR}
uses the transformation φ from [18] and transforms the string rewrite system R1 into a
cycle rewrite system s.t. R1 is string terminating iff φ(R1) is cycle terminating. One can
verify that [abnLE] ◦→∗φ(R1) [b2n−1 cnaLE] which can also be iterated s.t. [ak bkLE] has a
cycle rewriting sequence whose length is a tower of k exponentials. Inspecting all nine rules
of φ(R1), the number of applications of any of the rules in this rewrite sequence is also a
tower of k exponentials and thus it is impossible to prove cycle termination of φ(R1) using
Theorem 17. Consequently, our tool torpacyc does not find a termination proof for φ(R1).

I Remark 19. As expected our tool torpacyc does not find a termination proof for φ(R1)
from Example 18. On the other hand, with our transformational approach a cycle termination
can be proved: AProVE proves strings termination of split(φ(R1)).

A further question is whether matrix interpretations are limited to cycle rewrite systems
with exponential derivation lengths only. The following example shows that this is not true:

I Example 20. The SRS R2 := {ab→ baa, cb→ bbc} (see [10]) has derivations of doubly
exponential length (since ack b→∗R2

b2k

a22k

ck and any rewrite step adds one symbol), but
its string termination can be proved by relative termination and matrix interpretations by
first removing the rule cb→ bbc and then removing the other rule. This is possible, since
the second rule is applied only exponentially often. For cycle rewriting the encoding φ from
[18] is φ(R2) = {RE → LE, aL → La′, bL → Lb′, cL → Lc′, Ra′ → aR,Rb′ → bR,Rc′ →
cR, abL→ baaR, cbL→ bbcR} and φ(R2) is cycle terminating iff R2 is string terminating.
The system φ(R2) also has doubly exponential cycle derivations, e.g. [ack bLE] ◦→∗φ(R2)

[b2k

a22k

ckLE]. However, torpacyc proves cycle termination of φ(R2) by first removing the
last rule using the matrix interpretation

〈R〉 =
(

1 2
1 0

)
, 〈E〉 =

(
2 0
0 0

)
, 〈L〉 =

(
1 2
1 0

)
, 〈a〉 =

(
1 0
0 1

)
, 〈a′〉 =

(
1 0
0 1

)
,

〈b〉 =
(

1 2
0 1

)
, 〈b′〉 =

(
1 0
1 1

)
, 〈c〉 =

(
3 0
0 1

)
, 〈c′〉 =

(
1 0
1 3

)
.
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Thereafter the remaining rules (which now only have derivations of exponential length) are
eliminated by matrix interpretations and counting arguments.

Note that the methods in [18] are not able to prove cycle termination of φ(R2), since
they can only remove rules which are applied polynomially often in any derivation.

Also the transformational approach successfully proves cycle termination of φ(R2): TTT2
proves string termination of split(φ(R2)). Interestingly, we did not find a termination proof
of split(φ(R2)) using AProVE.

5 Tools and Experimental Results

We implemented the search for matrix interpretations described in Section 4 in torpacyc.
We also implemented a tool which transforms an SRS by split, rotate, or shift. We also
automatized the proof of cycle termination by a command line tool which can either use
torpacyc to prove cycle termination or by first performing one of the transformations, and
then using one of the termination provers AProVE or TTT2 to prove string termination of the
transformed problem. Also two kinds of combinations of both approaches are implemented:

variant 1: first torpacyc tries to find a termination proof and if no proof is found, the
(perhaps simplified) cycle rewrite system is transformed into a string rewrite system by
split and then used as input for AProVE or TTT2.
variant 2: first string non-termination of the rewrite system is checked by AProVE or TTT2.
If a non-termination proof is found, then also the cycle rewrite system is non-terminating.
Otherwise, the same procedure as in variant 1 is used.

The automatic transformation and the prover can also be used online via a web in-
terface available via http://www.ki.informatik.uni-frankfurt.de/research/cycsrs/
where also the tools and experimental data can be found.

5.1 Experiments

A problem for doing experiments is that no real appropriate test set is available. We played
around with several examples like the ones in this paper, but we were also interested in
larger scale experiments. To that end we chose two problem sets. The first set is the
SRS_Standard-branch of the Termination Problem Data Base [14], which is a benchmark set
for proving termination of string rewrite systems. The second set consists of 50 000 randomly
generated cycle rewrite systems of size 12 over an alphabet of size 3. For all problems we
tried to prove cycle termination using the following methods (all with a time limit of 60
seconds):

torpacyc: We applied torpacyc to the problems, where version 2014 is described in [18]
and version 2015 includes the matrix interpretations described in Section 4.
split, rotate, shift: We transformed the problem by the transformation into a string ter-
mination problem and then applied the termination provers AProVE or TTT2, respectively.
combinations: We also tried the combination of the methods as described before (using
AProVE and TTT2) where for variant 1, torpacyc as well as the second termination prover
had a time limit of 30 seconds, and for variant 2, both – the non-termination check and
torpacyc – had a time limit of 15 seconds, and the termination prover applied to the
transformed problem (i.e. AProVE or TTT2) had a time limit of 30 seconds.
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Table 1 Results of proving cycle termination of the problems in SRS_Standard of the TPDB.

combination string
torpacyc split rotate shift variant 1 variant 2 termination
2014 2015 AProVE TTT2 AProVE TTT2 AProVE TTT2 AProVE TTT2 AProVE TTT2 any AProVE TTT2

yes 36 46 40 30 10 6 10 8 55 55 54 54 63 652 627

no 0 0 309 168 45 0 65 0 310 161 335 173 336 97 38

maybe 1289 1269 966 1117 1260 1309 1240 1307 950 1099 926 1088 916 566 650

5.1.1 String Rewrite Systems of the Termination Problem Data Base
We tested all 1315 string rewrite problems of the SRS_Standard-branch of the Termination
Problem Data Base [14]. Table 1 shows the summary of the performed tests, where in the
column titled with“any” the output of all tools are combined (per problem). The last two
columns show the results of proving string termination of the original problems in our test
environment using AProVE and TTT2. Note that a non-termination proof of string rewriting
also implies non-termination of cycle rewriting, which does not hold for termination proofs.
The results show that having sound and complete transformations is advantageous (compared
to having sound transformations only), since we were able to prove cycle non-termination for
336 problems by the transformational approach (and by using string non-termination). Note
that torpacyc (in both version) has no technique to prove non-termination.

However, the results also show that most of the problems in the test set are too hard to be
proved by the techniques (only 399 out of 1315 problems were shown to be terminating or non-
terminating). This is not really surprising since the test set contains already ‘hard’ instances
for proving string termination as shown by the results in the last two columns. Moreover,
a substantial part of the problems is expected not to be cycle terminating, for instance by
containing a renaming of ab → ba. This is confirmed by the result of non-termination by
split and AProVE for over 300 of the systems.

Comparing the three transformations, the transformation split leads to much better
results than the other two transformations, which holds for termination and for non-
termination proofs. Ignoring the non-termination results (since torpacyc does not check
for non-termination), the following observations are made: the new version of torpacyc
indeed improves the former version, the power of the transformation split together with
AProVE compared to torpacyc 2015 is more or less equal, while other transformations and
back-ends do not perform as well as these tools. The combination of techniques increases the
power, not only since the different tools perform well on different problems, but also, since
torpacyc passes its output (a perhaps simplified SRS) to the string termination prover.

5.1.2 Randomly Generated String Rewrite Systems
As a further test set which contains much simpler problems than the former test set, we
generated 50 000 SRSs of size 12 over an alphabet of size 3, where only SRSs with at least one
rule (`→ r) with |r| ≥ |`| are considered (to rule out obviously terminating problems), SRSs
with rules (`→ u`v) are not considered (to rule out obviously non-terminating problems),
only SRSs without collapsing rules are considered (since torpacyc 2014 cannot handle such
problems), and no alpha-equivalent (i.e. renamed and reordered) SRSs are generated.

The summarized results of applying our methods to this problem set are shown in Table 2.
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Table 2 Results of proving cycle termination of 50 000 randomly generated problems of size 12
over an alphabet of size 3.

combination
torpacyc split rotate shift variant 1 variant 2

2014 2015 AProVE TTT2 AProVE TTT2 AProVE TTT2 AProVE TTT2 AProVE TTT2 any

yes 46981 46929 47017 47073 36967 36260 37053 37027 47071 46967 47064 47015 47124

no 0 0 2331 2201 184 0 771 0 2328 2011 2334 2174 2339

maybe 3019 3071 652 726 12849 13740 12176 12973 601 1022 602 811 537

Most of the problems are cycle terminating and both versions of torpacyc as well as the
transformation split together with AProVE or TTT2 can show termination of most of the
problems. The problems seem to be too simple to separate the power of these successful
approaches and their combinations. However, for the two transformations rotate and shift,
the results show their lack in power, since no proof is found for roughly a quarter of all
problems.

6 Conclusions

We developed new techniques to prove cycle termination. The main approach is to reduce
the problem of cycle termination to the problem of string termination by applying a sound
and complete transformation from cycle into string rewriting. We presented and analyzed
three such transformations. Apart from that we provided a variant of matrix interpretations
which improves the approach presented in [18]. Our implementations and the corresponding
experimental results show that both techniques are useful in the sense that they apply for
several examples for which the earlier techniques failed.

Together with the sound and complete transformation φ in the reverse direction from [18],
the existence of a sound and complete transformation like split implies that the problems
of cycle termination and string termination of SRSs are equivalent in a strong sense. For
instance, it implies that they are in the same level of the arithmetic hierarchy, which is
Π0

2-complete along the lines of [4]. Alternatively, Π0
2-completeness of cycle termination can

be concluded from the sound and complete transformation φ combined with the observation
that cycle termination is in Π0

2.
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Abstract
Nominal rewriting systems (Fernández, Gabbay & Mackie, 2004; Fernández & Gabbay, 2007)
have been introduced as a new framework of higher-order rewriting systems based on the nominal
approach (Gabbay & Pitts, 2002; Pitts, 2003), which deals with variable binding via permutations
and freshness conditions on atoms. Confluence of orthogonal nominal rewriting systems has been
shown in (Fernández & Gabbay, 2007). However, their definition of (non-trivial) critical pairs has
a serious weakness so that the orthogonality does not actually hold for most of standard nominal
rewriting systems in the presence of binders. To overcome this weakness, we divide the notion
of overlaps into the self-rooted and proper ones, and introduce a notion of α-stability which
guarantees α-equivalence of peaks from the self-rooted overlaps. Moreover, we give a sufficient
criterion for uniformity and α-stability. The new definition of orthogonality and the criterion offer
a novel confluence condition effectively applicable to many standard nominal rewriting systems.
We also report on an implementation of a confluence prover for orthogonal nominal rewriting
systems based on our framework.
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1 Introduction

Expressive formal systems such as systems of predicate logics, λ-calculi, process calculi, etc.
need variable binding. Nominal rewriting [5][3] is a framework that extends first-order term
rewriting by a binding mechanism. Studies of nominal rewriting are preceded by extensive
studies of a nominal approach to terms and unifications [6][13][17]. A distinctive feature
of the nominal approach is that α-conversion and capture-avoiding substitution are not
relegated to meta-level—they are explicitly dealt with at object-level. This makes nominal
rewriting significantly different from classical frameworks of higher-order rewriting systems
such as Combinatory Reduction Systems [8] and Higher-Order Rewriting Systems [9] based
on ‘higher-order syntax’.

Confluence is a fundamental property of rewriting systems. As expected, the first results
on confluence of nominal rewriting systems (NRSs for short) are generalisations of two
classical results on confluence, namely Rosen’s criterion (orthogonal systems are confluent)
and Knuth-Bendix’s criterion (terminating and locally confluent systems are confluent) [3].
We notice, however, that the confluence criterion in [3] for orthogonal NRSs is not applicable
to standard NRSs—as the orthogonality in [3] contains the emptiness of the root overlaps of
equivariant rules obtained from the same rule (self-rooted overlaps), which does not hold if
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the system contains a rewrite rule with binders (cf. Remark at the end of Subsection 3.2).
Moreover, in contrast to the first-order case, one cannot skip the joinability check of self-
rooted overlaps (cf. Example 19)—thus, if one relaxes the definition of orthogonality to omit
such overlaps, then confluence is not guaranteed.

The contributions of this paper are summarised as follows:

Our rewrite relation does not allow α-equivalent terms on the result of rewriting. Accord-
ingly, we come to study confluence properties of rewriting modulo α-equivalence, which
enables us to perform fine-grained analysis where confluence modulo and Church-Rosser
modulo are different properties. Such an approach was suggested in [19, page 220].

We overcome the above-mentioned defect of the orthogonality in [3] by introducing
a notion of α-stability, which guarantees α-equivalence of peaks from the self-rooted
overlaps. We prove Church-Rosser modulo α-equivalence for the class of orthogonal
nominal rewriting systems that are uniform and α-stable.

We introduce a notion of abstract skeleton preserving (ASP) as a sufficient criterion for
uniformity and α-stability. To show the α-stability of ASP rewrite rules, we prove some
lemmas on the system of α-equivalence in the nominal setting, which seem to be new.

We report on an implementation of a confluence prover for nominal rewriting systems
based on our criterion, that is, orthogonality and ASP. To check the emptiness of the
proper overlaps, we use equivariant unification [2] with one permutation variable.

While a rewrite system in [5][3] is defined as an infinite set of rewrite rules that is closed
under equivariance, we define a rewriting system as a finite set of rewrite rules. Instead of
appealing to the property of equivariance, we specify a permutation as a parameter in each
rewrite relation. (The idea of specifying a permutation as a parameter is found also in [4].)
This allows us to make a discussion on avoiding capture of a free atom (cf. the latter part of
Example 10) without referring to the property of equivariance.

As regards related work, Vestergaard and Brotherston [18][19] study a confluence proof
of λ-calculus with variable names, not in the nominal setting, where α-conversion is seriously
taken into account. Their definition of confluence is that of the reflexive transitive closure
of →α ∪ →β . Formalisation of a confluence proof of first-order orthogonal term rewriting
systems has been studied, e.g. in [11]. Our proof of Church-Rosser modulo α-equivalence
can be seen as an extension of an inductive confluence proof of first-order orthogonal term
rewriting systems (e.g. [16, Section 4.7] and [7]).

The organisation of the paper is as follows. In Section 2, we explain basic notions and
notations of nominal rewriting. In Section 3, we discuss problems on confluence in nominal
rewriting, and prove confluence of a class of nominal rewriting systems. In Section 4, we give
a sufficient criterion for the class, and conclude in Section 6.

2 Nominal rewriting

Nominal rewriting [5][3] is a framework that extends first-order term rewriting by a binding
mechanism. In this section, we redefine nominal rewriting systems as finite sets of rewrite
rules, and introduce a notion of rewrite relation that is related to but different from the rewrite
relation defined in [5][3]. In the subsequent sections, we will study confluence properties on
our notion of rewrite relation.
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2.1 Nominal terms
First, we introduce notions and notations concerning nominal terms.

A nominal signature Σ is a set of fixed arity function symbols ranged over by f, g, . . . .
We fix a countably infinite set X of variables ranged over by X,Y, Z, . . . , and a countably
infinite set A of atoms ranged over by a, b, c, . . . , and assume that Σ, X , and A are pairwise
disjoint. Unless otherwise stated, different meta-variables for objects in Σ, X , or A denote
different objects. A swapping is a pair of atoms, written (a b). Permutations π are bijections
on A such that the set of atoms for which a 6= π(a) is finite. Permutations are represented
by lists of swappings applied in the right-to-left order. For example, ((b c)(a b))(a) = c,
((b c)(a b))(b) = a, ((b c)(a b))(c) = b. We write Id for the identity permutation, π−1 for the
inverse of π, and π ◦ π′ for the composition of π′ and π.

Nominal terms, or simply terms, are generated by the grammar

t, s ::= a | π·X | [a]t | f t | (t1, . . . , tn)

and called, respectively, atoms, moderated variables, abstractions, function applications
(which must respect the arity of the function symbol) and tuples. We abbreviate Id·X as
X if there is no ambiguity. We write f () as simply f . An abstraction [a]t is intended
to represent t with a bound. The set of free atoms occurring in t, denoted by FA(t), is
defined as follows: FA(a) = {a}; FA(π·X) = ∅; FA([a]t) = FA(t) \ {a}; FA(f t) = FA(t);
FA((t1, . . . , tn)) =

⋃
i FA(ti). We write V (t)(⊆ X ) for the set of variables occurring in t. A

linear term is a term in which any variable occurs at most once.

I Example 1. A nominal signature for the λ-calculus has two function symbols lam and
app with arity 1 and 2, respectively. The nominal term app(lam([a]lam([b]app(a,X))), a)
represents the λ-term (λa.λb.aX)a in the usual notation. Here X is a (meta-level) variable
which can be instantiated by another term possibly with free atoms a and b. For this term t,
we have FA(t) = {a} and V (t) = {X}. J

Positions are finite sequences of positive integers. The empty sequence is denoted by ε. The
set of positions in a term t, denoted by Pos(t), is defined as follows: Pos(a) = Pos(π·X) = {ε};
Pos([a]t) = Pos(f t) = {1p | p ∈ Pos(t)}∪{ε}; Pos((t1, . . . , tn)) =

⋃
i{ip | p ∈ Pos(ti)}∪{ε}.

The subterm of t at a position p ∈ Pos(t) is written as t|p. For each X ∈ V (t), we define
PosX(t) = {p ∈ Pos(t) | ∃π. t|p = π·X}, and the set of variable positions in t is defined by
PosX (t) =

⋃
X∈V (t) PosX(t). The set of atom positions in t is defined by PosA(t) = {p ∈

Pos(t) | ∃a ∈ A. t|p = a}, and we define PosXA(t) = PosX (t) ∪ PosA(t).
A context is a term in which a distinguished function symbol � with arity 0 occurs. The

term obtained from a context C[ ] by replacing each � at positions pi by terms ti is written
as C[t1, . . . , tn]p1,...,pn or simply C[t1, . . . , tn].

Next, we define two kinds of permutation actions, which operate on terms extending a
permutation on atoms. These actions are used to define substitution, α-equivalence and
rewrite relation for nominal rewriting systems. The first permutation action, written π·t, is
defined inductively by: π·a = π(a); π·(π′·X) = (π ◦ π′)·X; π·(t1, . . . , tn) = (π·t1, . . . , π·tn);
π·([a]t) = [π·a](π·t); π·(f t) = f π·t. The second permutation action, written tπ, is defined
by: aπ = π(a); (π′·X)π = (π ◦ π′ ◦ π−1)·X; (t1, . . . , tn)π = (tπ1 , . . . , tπn); ([a]t)π = [aπ](tπ);
(f t)π = f tπ. The difference consists in the clause for moderated variables. In particular,
when π′ = Id, π is suspended before X in the first action as π·(Id·X) = (π ◦ Id)·X = π·X,
while in the second action π has no effect as (Id·X)π = (π ◦ Id ◦ π−1)·X = Id·X.

A substitution is a map σ from variables to terms such that the set {X ∈ X | σ(X) 6= X}
is finite. Substitutions act on variables, without avoiding capture of atoms. We write tσ for
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∇ ` a#b

∇ ` a#[a]t

∇ ` a#t
∇ ` a#f t

∇ ` a#t
∇ ` a#[b]t

∇ ` a#t1 · · · ∇ ` a#tn
∇ ` a#(t1, . . . , tn)

π−1·a#X ∈ ∇
∇ ` a#π·X

Figure 1 Rules for freshness constraints.

∇ ` a ≈α a

∇ ` t ≈α s
∇ ` [a]t ≈α [a]s

∇ ` t ≈α s
∇ ` f t ≈α f s

∇ ` (a b)·t ≈α s ∇ ` b#t
∇ ` [a]t ≈α [b]s

∇ ` t1 ≈α s1 · · · ∇ ` tn ≈α sn
∇ ` (t1, . . . , tn) ≈α (s1, . . . , sn)

∀a ∈ ds(π, π′). a#X ∈ ∇
∇ ` π·X ≈α π′·X

Figure 2 Rules for α-equivalence.

the application of σ on t. Note here that by replacing X of a moderated variable π·X in t
by σ(X), a permutation action π·(σ(X)) occurs. For a permutation π and a substitution σ,
we define the substitution π·σ by (π·σ)(X) = π·(σ(X)).

2.2 α-equivalence and nominal rewriting systems
The distinctive feature of nominal rewriting is that it is equipped with a mechanism to
avoid accidental capture of free atoms on the way of rewriting. This is partly achieved by
α-conversion built in the matching process of the LHS of a rule and a redex involving also
permutations (cf. Example 10).

In this subsection, we first recall the notion of α-equivalence in the nominal setting. This
is different from α-equivalence in the traditional sense in that equivalence between terms is
discussed under assumptions on the freshness of atoms in variables.

A pair a#t of an atom a and a term t is called a freshness constraint. Intuitively, this
means that a does not occur as a free atom in t, including the cases where the variables
in t are instantiated by other terms. A finite set ∇ ⊆ {a#X | a ∈ A, X ∈ X} is called a
freshness context. For a freshness context ∇, we define V (∇) = {X ∈ X | ∃a. a#X ∈ ∇},
∇π = {aπ#X | a#X ∈ ∇}, and ∇σ = {a#σ(X) | a#X ∈ ∇}.

The rules in Figure 1 defines the relation ∇ ` a#t, which means that a#t is satisfied
under the freshness context ∇. It can be seen that a /∈ FA(t) whenever ∇ ` a#t. An example
using the last rule is {c#X} ` a#((a b)(b c))·X, since ((a b)(b c))−1·a = ((b c)(a b))(a) = c.

The rules in Figure 2 defines the relation ∇ ` t ≈α s, which means that t is α-equivalent to
s under the freshness context ∇. ds(π, π′) in the last rule denotes the set {a ∈ A | π·a 6= π′·a}.
For example, ds((a b), Id) = {a, b}.

I Example 2. Consider the nominal signature for the λ-calculus in Example 1, and suppose
∇ = {a#X, b#X}. Then we have the following derivation:

a#X ∈ ∇
∇ ` a#X

b#X ∈ ∇
∇ ` b#X

∇ ` (a b)·X ≈α X
b#X ∈ ∇
∇ ` b#X

∇ ` [a]X ≈α [b]X
∇ ` lam([a]X) ≈α lam([b]X)

J
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The following properties are shown in [3].

I Proposition 3 ([3]).
1. ∇ ` a#t if and only if ∇ ` π·a#π·t.
2. ∇ ` t ≈α s if and only if ∇ ` π·t ≈α π·s.
3. If ∇ ` a#t and ∇ ` t ≈α s then ∇ ` a#s.
4. ∀a ∈ ds(π, π′).∇ ` a#t if and only if ∇ ` π·t ≈α π′·t.

I Proposition 4 ([3]). For any freshness context ∇, the binary relation ∇ ` − ≈α − is a
congruence (i.e. an equivalence relation that is closed under any context C[ ]).

For terms with no variables, this relation coincides with usual α-equivalence (i.e. the
relation reached by renamings of bound atoms) [6].

Now we define nominal rewrite rules and nominal rewriting systems.

I Definition 5 (Nominal rewrite rule). A nominal rewrite rule, or simply rewrite rule, is a
triple of a freshness context ∇ and terms l and r such that V (∇) ∪ V (r) ⊆ V (l). We write
∇ ` l→ r for a rewrite rule. A rewrite rule ∇ ` l→ r is left-linear if l is linear. We define
V (∇ ` l→ r) = V (∇) ∪ V (l) ∪ V (r) and (∇ ` l→ r)π = ∇π ` lπ → rπ.

I Example 6. Using the nominal signature for the λ-calculus in Example 1, the η-rule can
be represented by the following rewrite rule (we omit the braces on the LHS of `):

a#X ` lam([a]app(X, a)) → X (Eta)

This rule is left-linear. J

I Definition 7 (Nominal rewriting system). A nominal rewriting system, or simply rewriting
system, is a finite set of rewrite rules. A rewriting system is left-linear if so are all its rewrite
rules.

I Example 8. We extend the signature in Example 1 by a function symbol sub with arity 2.
By sub([a]t, s), we represent an explicit substitution t〈a := s〉. Then, a nominal rewriting
system to perform β-reduction is defined by the rule (Beta):

` app(lam([a]X), Y ) → sub([a]X,Y ) (Beta)

together with a rewriting system Rσ to execute substitution:

Rσ =


` sub([a]app(X,Y ), Z) → app(sub([a]X,Z), sub([a]Y,Z)) (σapp)
` sub([a]a,X) → X (σvar)
` sub([a]b,X) → b (σvarε)

b#Y ` sub([a]lam([b]X), Y ) → lam([b]sub([a]X,Y )) (σlam)

In a standard notation, the system Rσ is represented as follows:

Rσ =


` (XY )〈a := Z〉 → (X〈a := Z〉)(Y 〈a := Z〉) (σapp)
` a〈a := X〉 → X (σvar)
` b〈a := X〉 → b (σvarε)

b#Y ` (λb.X)〈a := Y 〉 → λb.(X〈a := Y 〉) (σlam)

J
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In [5][3], nominal rewrite systems are defined as infinite sets of rewrite rules that are
closed under equivariance, i.e., if R is a rule of a rewrite system R then so is Rπ for any
permutation π. In the present paper, we define rewriting systems as finite sets of rewrite
rules that may not be closed under equivariance. Accordingly, our rewrite relation is defined
with a permutation as a parameter unlike in the definition of rewrite relation in [5][3]. In the
following, ` is extended to mean to hold for every member of a set or a sequence on the RHS.

I Definition 9 (Rewrite relation). Let R = ∇ ` l → r be a rewrite rule. For a freshness
context ∆ and terms s and t, the rewrite relation is defined by

∆ ` s→〈R,π,p,σ〉 t
def⇐⇒ ∆ ` ∇πσ, s = C[s′]p, ∆ ` s′ ≈α lπσ, t = C[rπσ]p

where V (l) ∩ (V (∆) ∪ V (s)) = ∅. We write ∆ ` s→〈R,π〉 t if there exist p and σ such that
∆ ` s→〈R,π,p,σ〉 t. We write ∆ ` s→R t if there exists π such that ∆ ` s→〈R,π〉 t. For a
rewriting system R, we write ∆ ` s→R t if there exists R ∈ R such that ∆ ` s→R t.

I Example 10. Using the rule (Beta) in Example 8, we see that the term representing
(λa.λb.ba)b rewrites to (λb.ba)〈a := b〉, that is, we have

` app(lam([a]lam([b]app(b, a))), b)→〈Beta,Id,ε,σ〉 sub([a]lam([b]app(b, a)), b)

where σ is the substitution [X := lam([b]app(b, a)), Y := b]. The resulting term rewrites
further to a normal form lam([c]app(c, b)) in four steps with rules of the system Rσ. Here
we give a detail of the first step with rule (σlam) to see how capture of a free atom is avoided.

Let s = sub([a]lam([b]app(b, a)), b). Since the rule has a freshness context ∇ = {b#Y },
to apply (σlam) to s at the position p = ε, it is necessary to find a permutation π and a
substitution σ that satisfy ` ∇πσ and ` s ≈α (sub([a]lam([b]X), Y ))πσ. Here one cannot
simply take π = Id, because then σ(Y ) = b from the condition for ≈α, which contradicts
` ∇πσ. So we take, e.g. π = (b c) and σ = [X := app(c, a), Y := b] to satisfy the conditions,
and get (lam([b]sub([a]X,Y )))πσ = lam([c]sub([a]app(c, a), b)) as the result of rewriting. J

In the following, a binary relation ∆ ` − ./ − (./ is →R, ≈α, etc.) with a fixed freshness
context ∆ is called the relation ./ under ∆, or simply the relation ./ if there is no ambiguity.
If a relation ./ is written using → then the inverse is written using ←. Also, we write ./= for
the reflexive closure, and ./∗ for the reflexive transitive closure. We use ◦ for the composition
of relations.
I Remark. In [5, page 113][3, page 946], the rewrite relation, which we denote by ∆ `
s −−−→

FGM R t, is defined in the following way. For a given rewrite rule R = ∇ ` l → r,
∆ ` s −−−→

FGM R t holds if
1. V (R) ∩ (V (∆) ∪ V (s)) = ∅.
2. s = C[s′] for some context C[ ] and term s′, such that ∆ ` ∇σ, ∆ ` s′ ≈α lσ for some σ.
3. ∆ ` t ≈α C[rσ].
Hence, −−−→

FGM R differs from our →R in the following two points. First, the rules of a rewrite
system in [5][3] are closed under equivariance, so that the rewrite relation is defined without
a permutation as a parameter. Secondly, α-equivalent terms are allowed on the result of
rewriting. Consequently, under the same freshness context, we have −−−→

FGM R = →〈R,Id〉 ◦ ≈α.

3 Confluence of nominal rewriting systems

Having defined basic notions on nominal terms and nominal rewriting systems, we now set
out to investigate confluence properties on the rewrite relations of nominal rewriting systems.
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To be exact, we study confluence properties modulo the equivalence relation ≈α in terms of
abstract reduction systems [10].

I Definition 11. Let R be a nominal rewriting system.
1. →R is confluent modulo ≈α if ∆ ` s (←∗R ◦ →∗R) t implies ∆ ` s (→∗R ◦ ≈α ◦ ←∗R) t.
2. →R is Church-Rosser modulo ≈α if

∆ ` s (←R ∪ →R ∪ ≈α)∗ t implies ∆ ` s (→∗R ◦ ≈α ◦ ←∗R) t.
3. →R is strongly compatible with ≈α if ∆ ` s (≈α ◦ →R) t implies ∆ ` s (→=

R ◦ ≈α) t.

It is known that Church-Rosser modulo an equivalence relation ∼ is a stronger property
than confluence modulo ∼ [10]. So we aim to prove Church-Rosser modulo ≈α for some class
of nominal rewriting systems. The strong compatibility with ≈α also plays an important
role in proving Church-Rosser modulo ≈α through results in [10].

3.1 Self-rooted and proper overlaps

In the study of confluence, the notion of overlaps is important because they are useful for
analysing how peaks ∆ ` s→R t and ∆ ` s→R t′ occur. In this subsection, we introduce
two kinds of overlaps and give some examples.

First, we define unification for nominal terms. Let P be a set of equations and freshness
constraints {s1 ≈ t1, . . . , sm ≈ tm, a1#u1, . . . , an#un} (where ai and aj may denote the
same atom). Then, P is unifiable if there exist a freshness context Γ and a substitution θ
such that Γ ` s1θ ≈α t1θ, . . . , smθ ≈α tmθ, a1#u1θ, . . . , an#unθ; the pair 〈Γ, θ〉 is called a
unifier of P . It is known that the unification problem for nominal terms is decidable [17].

I Example 12. Consider the nominal signature for the λ-calculus in Example 1, and let
P = {lam([a]app(X, a)) ≈ lam([a]Y ), a#X}. Then, 〈{a#X}, [Y := app(X, a)]〉 is a unifier
of P . J

I Definition 13 (Overlap). Let Ri = ∇i ` li → ri (i = 1, 2) be rewrite rules. We assume
without loss of generality that V (R1) ∩ V (R2) = ∅. If ∇1 ∪ ∇π2

2 ∪ {l1 ≈ lπ2
2 |p} is unifiable

for some permutation π2 and a non-variable position p, then we say that R1 overlaps on
R2, and the situation is called an overlap of R1 on R2. If R1 and R2 are identical modulo
renaming of variables and p = ε, then the overlap is said to be self-rooted. An overlap that is
not self-rooted is said to be proper.

I Example 14. Let R1 and R2 be the rules (Eta) a#X ` lam([a]app(X, a)) → X and
(Beta) ` app(lam([a]Y ), Z)→ sub([a]Y,Z) from Examples 6 and 8, respectively. Then, R1
overlaps on R2, since {a#X}∪{lam([a]app(X, a)) ≈ (app(lam([a]Y ), Z))Id |11(= lam([a]Y ))}
is unifiable as seen in Example 12. This overlap is proper. J

I Example 15. There exist self-rooted overlaps of the rule (Beta) on its renamed variant,
since {app(lam([a]Y ), Z) ≈ (app(lam([a]X),W ))π} is unifiable for any permutation π. In the
case of π(a) = b, we take 〈{a#X, b#X}, [Y := X,Z := W ]〉 as a unifier (cf. Example 2). J

In first-order term rewriting, self-rooted overlaps do not matter, and only proper overlaps
need to be analysed. However, in the case of nominal rewriting, that is not enough as seen
in the next subsection.
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3.2 Problems on confluence of nominal rewriting systems
In this subsection, we discuss problems on confluence in nominal rewriting that are not
present in first-order term rewriting.

A standard confluence criterion in rewriting theory is the one by orthogonality.

I Definition 16 (Orthogonality). A nominal rewriting system R is orthogonal if it is left-linear
and for any rules R1, R2 ∈ R, there exists no proper overlap of R1 on R2.

This definition of orthogonality is different from the one in [3] (cf. Remark at the end of
this subsection).

Unlike in first-order term rewriting, orthogonality is not enough to guarantee confluence
of a nominal rewriting system.

I Example 17. Consider the nominal rewriting system Ruc-η with the only rewrite rule:

` lam([a]app(X, a)) → X (Uncond-eta)

The system Ruc-η is orthogonal, but is not Church-Rosser (even confluent) modulo ≈α, since
` lam([a]app(a, a)) →〈Uncond-eta,Id〉 a and ` lam([a]app(a, a)) →〈Uncond-eta,(a b)〉 b. The latter
follows from ` lam([a]app(a, a)) ≈α lam([b]app(b, b)) = (lam([a]app(X, a)))(a b)[X := b] (the
third condition of rewrite relation in Definition 9). J

The above kind of rules can be excluded by the uniformity condition introduced in [3].
Intuitively, uniformity means that if an atom a is not free in s and s rewrites to t then a is
not free in t. Here we employ the following definition of uniformity which is equivalent to
the one in [3].

I Definition 18 (Uniformity). A rewrite rule ∇ ` l→ r is uniform if for any atom a and any
freshness context ∆, ∆ ` ∇ and ∆ ` a#l imply ∆ ` a#r. A rewriting system is uniform if
so are all its rewrite rules.

The rule (Uncond-eta) in Example 17 is not uniform, since ` a#lam([a]app(X, a)) but
not ` a#X. Uniform rewriting systems have many good properties, which we use in the
proof of confluence in the next section.

Our definition of orthogonality together with uniformity does not guarantee confluence of
a nominal rewriting system, as seen in the next example.

I Example 19. We extend the signature in Example 1 by a function symbol uc-eta-exp
with arity 1. Consider the nominal rewriting system Ruc-η-exp with the only rewrite rule:

` uc-eta-exp(X) → lam([a]app(X, a)) (Uncond-eta-exp)

The system Ruc-η-exp is orthogonal and uniform. Uniformity follows from the observation
that for any atom a′ and any freshness context ∆, if ∆ ` a′#uc-eta-exp(X), which is
equivalent to ∆ ` a′#X, then ∆ ` a′#lam([a]app(X, a)). We see, however, that Ruc-η-exp is
not Church-Rosser (even confluent) modulo ≈α, since ` uc-eta-exp(a) →〈Uncond-eta-exp,Id〉
lam([a]app(a, a)) and ` uc-eta-exp(a)→〈Uncond-eta-exp,(a b)〉 lam([b]app(a, b)), where the res-
ulting two terms are normal forms in Ruc-η-exp and not α-equivalent. J

So orthogonality together with uniformity is still not enough to guarantee confluence of a
nominal rewriting system. In the next section, we consider another condition that excludes
rewrite rules like the rule (Uncond-eta-exp) in Example 19.
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I Remark. It is claimed in [3] that terminating uniform nominal rewrite systems are confluent
if all non-trivial1 critical pairs are joinable, and that orthogonal uniform nominal rewrite
systems are confluent. However, the latter criterion is not applicable to standard nominal
rewrite systems: In [3], a critical pair is said to be trivial if it is obtained from the root
overlap of the same (renamed) rewrite rule or obtained from a variable overlap2, where
overlaps are considered without permutations unlike in our Definition 13, and a nominal
rewrite system is said to be orthogonal if it is left-linear and has no non-trivial critical pair.
Then, for example, a critical pair obtained from the root overlap of the two rules (Beta) and
(Beta)π (cf. Example 15) is non-trivial, and so any rewrite system with the rule (Beta), which
also has (Beta)π by equivariance, is not orthogonal in the sense of [3]. The same can be said
of many other rewrite rules and systems.

3.3 Confluence proof of orthogonal nominal rewriting systems
In the previous subsection, we discussed problems on confluence that are peculiar to nominal
rewriting. In this subsection, we prove confluence (Church-Rosser modulo ≈α) for a class of
nominal rewriting systems with one more condition besides uniformity and orthogonality.
The proof can be considered as an adaptation of inductive confluence proofs of first-order
orthogonal term rewriting systems found, e.g. in [16, Section 4.7] and [7]. We omit some of
(the details of) the proofs, which are available at [15].

First, we define a notion of parallel reduction using a particular kind of contexts.

I Definition 20. The grammatical contexts, ranged over by G[ ], are the contexts defined by

G[ ] ::= a | π·X | [a]� | f � | (�1, . . . ,�n)

Let R be a nominal rewriting system. For a given freshness context ∆, we define the relation
∆ ` − −→q R − inductively by the following rules:

∆ ` s1 −→q R t1 · · · ∆ ` sn −→q R tn
∆ ` G[s1, . . . , sn]−→q R G[t1, . . . , tn]

(context)
∆ ` s→〈R,π,ε,σ〉 t R ∈ R

∆ ` s−→q R t
(head)

where n (≥ 0) depends on the form of G[ ]. We define ∆ ` σ−→q R δ by ∀X.∆ ` Xσ−→q RXδ.

I Lemma 21. 1. ∆ ` s−→q R s.
2. If ∆ ` s−→q R t then ∆ ` C[s]−→q R C[t].
3. If ∆ ` s→〈R,π,p,σ〉 t then ∆ ` s−→q R t.
4. If ∆ ` s−→q R t then ∆ ` s→∗R t.

Instead of showing the diamond property of −→q R as in usual confluence proofs, we prove
strong local confluence modulo ≈α (Lemma 27), which together with strong compatibility
with ≈α (Lemma 22) yields Church-Rosser modulo ≈α of −→q R (and hence of →R).

I Lemma 22 (Strong compatibility with ≈α). Let R be a uniform nominal rewriting system.
If ∆ ` s′ ≈α s−→q R t then there exists t′ such that ∆ ` s′ −→q R t′ ≈α t.

Proof. By induction on the derivation of ∆ ` s−→q R t. For the details, see [15]. J

1 As mentioned soon, the definition of non-trivial here is different from the standard one.
2 This definition is not very standard, but it is not the point here.
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The key lemma to strong local confluence modulo ≈α is Lemma 25, which corresponds to
Lemma 4.7.7 of [16, page 122] in the first-order case. To show it, we first prove the following
two technical lemmas.

I Lemma 23. Let R be a nominal rewriting system, and let R = ∇ ` l → r ∈ R and
R̂ = ∇̂ ` l̂ → r̂ ∈ R (we assume V (R) ∩ V (R̂) = ∅). Suppose that l′ is a proper subterm
of lπ for some π where l′ is not a moderated variable, and that there exist σ, π̂, σ̂,∆, s that
satisfy ∆ ` ∇πσ, ∆ ` s ≈α l′σ, ∆ ` ∇̂π̂σ̂ and ∆ ` s ≈α l̂π̂σ̂. Then R is not orthogonal.

Proof. Let p be the position of the subterm l′ of lπ, i.e., lπ|p = l′. Since ∇̂ ∪ ∇π̂−1◦π ∪ {l̂ ≈
lπ̂
−1◦π|p(= l′π̂

−1)} is unifiable with a unifier 〈∆, π̂−1·(σ̂ ∪ σ)〉, R is not orthogonal. J

I Lemma 24. Let R be a uniform rewriting system. Then, if ∆ ` ∇σ, ∆ ` s ≈α π·Xσ and
∆ ` s−→q R t then there exists δ such that ∆ ` ∇δ, ∆ ` t ≈α π·Xδ, ∆ ` σ −→q R δ and for
any Y 6= X, Y σ = Y δ.

Now we prove the announced lemma.

I Lemma 25. Let R be an orthogonal uniform rewriting system, and let ∇ ` l → r ∈ R.
Suppose that l′ is a proper subterm of lπ for some π. Then, if ∆ ` ∇πσ, ∆ ` s ≈α l′σ and
∆ ` s−→q R t then there exists δ such that ∆ ` ∇πδ, ∆ ` t ≈α l′δ, ∆ ` σ−→q R δ and for any
X /∈ V (l′), Xσ = Xδ.

Proof. By induction on l′. The case where l′ is a moderated variable π′·X follows from
Lemma 24. For the other cases, we first show that the last rule used in the derivation of
∆ ` s −→q R t can not be (head). Suppose otherwise. Then by the definition of rewrite
relation, we have ∆ ` ∇̂π̂σ̂ and ∆ ` s ≈α l̂π̂σ̂ for some π̂, σ̂ and ∇̂ ` l̂ → r̂ ∈ R. However,
by Lemma 23, this contradicts the orthogonality of R. Hence, the last rule used in the
derivation of ∆ ` s−→q R t is (context). The rest of the proof is by case analysis according to
the form of l′. For the details, see [15]. J

Now we introduce a notion of α-stability for proving Lemma 27. This notion as well as
uniformity may be introduced independently from the study of confluence as a notion that
yields well-behaved rewriting. Here we consider a version in which the redex position is ε.

I Definition 26 (α-stability). A rewrite rule R = ∇ ` l → r is α-stable if ∆ ` s ≈α s′,
∆ ` s →〈R,π,ε,σ〉 t and ∆ ` s′ →〈R,π′,ε,σ′〉 t′ imply ∆ ` t ≈α t′. A rewriting system R is
α-stable if so is every rewrite rule R ∈ R.

The rule (Uncond-eta-exp) in Example 19 is not α-stable, since, as we saw,
` uc-eta-exp(a)→〈Uncond-eta-exp,Id,ε,[]〉 lam([a]app(a, a)) and
` uc-eta-exp(a) →〈Uncond-eta-exp,(a b),ε,[]〉 lam([b]app(a, b)), but not ` lam([a]app(a, a)) ≈α
lam([b]app(a, b)). In the next section, we give a sufficient criterion for α-stability.

Now we show that −→q R is strongly locally confluent modulo ≈α for a class of orthogonal
nominal rewriting systems.

I Lemma 27 (Strong local confluence modulo ≈α). Let R be an orthogonal rewriting system
that is uniform and α-stable. If ∆ ` s−→q R t and ∆ ` s−→q R t′ then there exist u and u′

such that ∆ ` t−→q R u, ∆ ` t′ −→q R u′ and ∆ ` u ≈α u′.

Proof. By induction on s. We distinguish cases according to the last rules used in the
derivations of ∆ ` s−→q R t and ∆ ` s−→q R t′.
1. Both rules are (head). If they are by the same rewrite rule R ∈ R, then we use the

α-stability of R. Otherwise, this case contradicts the orthogonality of R.
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2. Both rules are (context). The claim follows from the induction hypothesis.
3. One is (context) and the other is (head). It can be shown that the claim holds by using

Lemma 24 or Lemma 25. For the details, see [15].
J

We are now ready to show that →R is Church-Rosser modulo ≈α.

I Theorem 28 (Church-Rosser modulo ≈α). Let R be an orthogonal nominal rewriting system
that is uniform and α-stable. Then, →R is Church-Rosser modulo ≈α.

Proof. By Lemma 22, −→q R is strongly compatible with ≈α, and by Lemma 27, −→q R is
strongly locally confluent modulo ≈α. Hence by the results in [10], −→q R is Church-Rosser
modulo ≈α. Since →R⊆−→q R⊆→∗R by Lemma 21, →R is Church-Rosser modulo ≈α. J

4 Criterion for uniformity and α-stability

In this section, we consider a sufficient criterion for uniform and α-stable nominal rewriting
systems. The main reason why a rewrite rule R does not keep α-stability is that some free
atom occurring in a term is bounded through a rewrite step by R. However, such irrelevant
rewrite steps can be avoided by adding an appropriate constraint to the freshness context of
R. We introduce the notion of abstract skeleton preserving for characterising this constraint
and show it gives a sufficient criterion for uniformity and α-stability.

Throughout this section, different meta-variables for atoms may denote the same atom.

4.1 Abstract skeleton
The abstract skeleton of a nominal term is defined as a subterm abstracted with the binders
occurring on the path from the root position ε to the position of the subterm.

I Definition 29 (Abstract skeleton). For a nominal term t and a position p ∈ Pos(t), skel(p, t)
is defined as follows:

skel(ε, s) = s

skel(1q, [a]s) = [a]skel(q, s)
skel(1q, f s) = skel(q, s)

skel(iq, (s1, . . . , sn)) = skel(q, si)

skel(p, t) is called an abstract skeleton at p of t. skel(p, t) = [a1] . . . [an]s is non-duplicating if
i 6= j implies ai 6= aj . We define Skel(t) = {skel(p, t) | p ∈ Pos(t)}.

I Example 30. Figure 3 shows the abstract skeletons at the leaf positions of the left and
the right hand sides of the rule (σlam) in Example 8. J

For each X ∈ V (t), we define SkelX(t) = {skel(p, t) | p ∈ PosX(t)}. We also define
SkelX (t) = {skel(p, t) | p ∈ PosX (t)}, SkelA(t) = {skel(p, t) | p ∈ PosA(t)}, and SkelXA(t) =
SkelX (t) ∪ SkelA(t).

The following lemmas are useful for discussing the freshness context and the α-equivalency
of the term through the decomposed parts. (For the proofs, see [15].)

I Lemma 31. ∆ ` a#tσ ⇐⇒ ∀u ∈ SkelXA(t).∆ ` a#uσ

I Lemma 32. ∆ ` tσ ≈α tπρ ⇐⇒ ∀u ∈ SkelXA(t).∆ ` uσ ≈α uπρ

RTA 2015



312 Confluence of Orthogonal Nominal Rewriting Systems Revisited
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Figure 3 Abstract skeletons of sub([a]lam([b]X), Y ) and lam([b]sub([a]X,Y )).

4.2 Abstract skeleton preserving rewrite rules
In this subsection, we introduce the notions of abstract skeleton preserving rules and systems.
First, we restrict rewrite rules to the following ones.

I Definition 33 (Standard). A nominal rewrite rule ∇ ` l→ r is standard when:
(S1) For every moderated variable π·X appearing in l or r, π = Id,
(S2) FA(r) ⊆ FA(l),
(S3) Every abstract skeleton [a1] . . . [an]t ∈ Skel(l) ∪ Skel(r) is non-duplicating.
A nominal rewriting system R is standard if so is every rewrite rule R ∈ R.

All examples of rewrite rules we treated so far are standard.
We now define the abstract skeleton preserving nominal rewriting systems.

I Definition 34 (Abstract skeleton preseving). A nominal rewrite rule ∇ ` l→ r is abstract
skeleton preserving (ASP for short) if it is standard and

∀[a1] . . . [am]X ∈ SkelX(r).∃[b1] . . . [bn]X ∈ SkelX(l).∀a ∈ ds({ai}i, {bj}j). a#X ∈ ∇

where ds({ai}i, {bj}j) is the set of atoms such that a ∈ {a1, . . . , am} and a /∈ {b1, . . . , bn},
or a /∈ {a1, . . . , am} and a ∈ {b1, . . . , bn}. A nominal rewriting system R is abstract skeleton
preserving (ASP for short) if so is every rewrite rule R ∈ R.

It is easy to judge whether a standard rewrite rule is ASP or not. The rule (Uncond-eta)
in Example 17 and the rule (Uncond-eta-exp) in Example 19 are not ASP. All the other
rewrite rules we treated so far are ASP.

In the rest of this section, we show that the ASP property gives a sufficient criterion
for the uniformity and the α-stability of nominal rewriting systems. First we prove the
uniformity of ASP rewrite rules.

I Lemma 35. An ASP rewrite rule is uniform.
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Proof. We show that for any ASP rewrite rule R = ∇ ` l→ r, if ∆ ` ∇ and ∆ ` a#l then
∆ ` a#r. Suppose ∆ ` ∇ and ∆ ` a#l. From the latter, we have ∀u ∈ SkelXA(l).∆ ` a#u
by Lemma 31. Similarly, the conclusion ∆ ` a#r is equivalent to ∀u ∈ SkelXA(r).∆ ` a#u.
We show ∆ ` a#u for u ∈ SkelA(r) and for u ∈ SkelX (r), respectively.
1. u ∈ SkelA(r). Then u has the form [a1] . . . [am]b. If a ∈ {a1, . . . , am} or b 6= a, then

∆ ` a#[a1] . . . [am]b holds. Otherwise, we have a = b ∈ FA(r). Since R is standard,
a ∈ FA(l); contradicting ∆ ` a#l.

2. u ∈ SkelX (r). Then u has the form [a1] . . . [am]X. If a ∈ {a1, . . . , am} then ∆ `
a#[a1] . . . [am]X holds. Otherwise, it is enough to show ∆ ` a#X. Since R is ASP, there
exists [b1] . . . [bn]X ∈ SkelX(l) such that ∀a ∈ ds({ai}i, {bj}j). a#X ∈ ∇. Since we have
∀u ∈ SkelXA(l). ∆ ` a#u, it holds that ∆ ` a#[b1] . . . [bn]X. Thus, if a /∈ {b1, . . . , bn}
then ∆ ` a#X. If a ∈ {b1, . . . , bn}, then we have a ∈ ds({ai}i, {bj}j) because now we
discuss the case of a 6∈ {a1, . . . , am}. Hence, a#X ∈ ∇ holds. Since we suppose ∆ ` ∇,
∆ ` a#X is obtained.

J

4.3 α-stability of abstract skeleton preserving rewrite rules
Next, we prove the α-stability of ASP rewrite rules. For this, we need to derive α-equivalence
of respective reducts s′ and t′ of terms s, t, from α-equivalence of s and t. The idea is to use
Lemma 32 and infer α-equivalence via abstract skeletons. Recall abstract skeletons of the rule
(σlam) in Example 30. Here, an abstract skeleton [a][b]X in LHS changes to [b][a]X in RHS.
Thus, [a][b]X ≈α [c][d]X ′ should imply [b][a]X ≈α [d][c]X ′. But generally, this is not true;
for example, we have ` [a][a]a ≈α [a][b]b but 6` [a][a]a ≈α [b][a]b. This can be guaranteed,
however, for non-duplicating skeletons (cf. Lemma 36). Another abstract skeleton Y in LHS
changes to [b]Y in RHS in Example 30. Again, ` Y ≈α Y ′ does not imply ` [b]Y ≈α [b]Y ′
in general. Fortunately, the freshness constraint of the rule (σlam) contains b#Y . Thus, it
suffices to guarantee b#Y, b#Y ′ ` Y ≈α Y ′ implies b#Y, b#Y ′ ` [b]Y ≈α [b]Y ′, which is
indeed the case (cf. Lemma 37). The proofs of the following lemmas are found in [15].

I Lemma 36. Let two terms [a1] . . . [an]s and [b1] . . . [bn]t be both non-duplicating. Then,

∆ ` [a1] . . . [ai] . . . [aj ] . . . [an]s ≈α [b1] . . . [bi] . . . [bj ] . . . [bn]t
=⇒ ∆ ` [a1] . . . [aj ] . . . [ai] . . . [an]s ≈α [b1] . . . [bj ] . . . [bi] . . . [bn]t

I Lemma 37. Let two terms [a1] . . . [an]s and [b1] . . . [bn]t be both non-duplicating, and let
∆ ` ai#s, bi#t. Then,

∆ ` [a1] . . . [ai−1][ai][ai+1] . . . [an]s ≈α [b1] . . . [bi−1][bi][bi+1] . . . [bn]t
⇐⇒ ∆ ` [a1] . . . [ai−1][ai+1] . . . [an]s ≈α [b1] . . . [bi−1][bi+1] . . . [bn]t

I Lemma 38. If ∆ ` tσ ≈α tπρ then ∀a ∈ FA(t). a = π·a.

I Theorem 39. ASP nominal rewriting systems are uniform and α-stable.

Proof. We show that if R is ASP then every R = ∇ ` l→ r ∈ R is α-stable, that is,

∆ ` s ≈α ŝ ∧∆ ` s→〈R,π,ε,σ〉 t ∧∆ ` ŝ→〈R,π̂,ε,σ̂〉 t̂ =⇒ ∆ ` t ≈α t̂.

Considering Rπ as R and π̂ ◦ π−1 as π̂, we can take π = Id without loss of generality. (Note
that if R is ASP then so is Rπ. ) Thus from here on we take Id as π̂. From the definition of
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the rewrite relation,

∆ ` s→〈R,π,ε,σ〉 t ⇐⇒ ∆ ` ∇πσ, ∆ ` s ≈α lπσ, t = rπσ

∆ ` ŝ→〈R,Id,ε,σ̂〉 t̂ ⇐⇒ ∆ ` ∇σ̂, ∆ ` ŝ ≈α lσ̂, t̂ = rσ̂

From the assumption and the transitivity, we have ∆ ` ∇πσ, ∆ ` ∇σ̂ and ∆ ` lσ̂ ≈α lπσ.
Now our aim is to show ∆ ` rσ̂ ≈α rπσ. Here, we have

∆ ` lσ̂ ≈α lπσ ⇐⇒ ∀u ∈ SkelXA(l).∆ ` uσ̂ ≈α uπσ (from Lemma 32) (1)
∆ ` rσ̂ ≈α rπσ ⇐⇒ ∀v ∈ SkelXA(r).∆ ` vσ̂ ≈α vπσ (from Lemma 32)

We show ∆ ` vσ̂ ≈α vπσ for v ∈ SkelA(r) and for v ∈ SkelX (r), respectively.
1. v ∈ SkelA(r). Then v has the form [a1] . . . [am]b.

a. b ∈ {a1, . . . , am}. First we show ∆ ` [ai]ai ≈α [π·ai]π·ai. It is clear when ai = π·ai.
When ai 6= π·ai, from ∆ ` π·ai#ai and ∆ ` (ai π·ai)·ai ≈α π·ai it follows. Moreover,
for aj( 6= ai), ∆ ` aj#ai and ∆ ` π·aj#π·ai hold. Since v and π·v are non-duplicating,
applying Lemma 37 to ∆ ` [ai]ai ≈α [π·ai]π·ai repeatedly, we obtain
∆ ` [a1] . . . [ai−1][ai][ai+1] . . . [am]ai ≈α [π·a1] . . . [π·ai−1][π·ai][π·ai+1] . . . [π·am]π·ai
Thus ∆ ` vσ̂ ≈α vπσ follows.

b. b /∈ {a1, . . . , am}. It is clear that b ∈ FA(r). Since R is standard, b ∈ FA(l). From
∆ ` lσ̂ ≈α lπσ and Lemma 38 it holds that b = π·b. Thus, ∆ ` b ≈α π·b. Moreover,
∆ ` aj#b and ∆ ` π·aj#π·b for every aj . Since v and π·v are non-duplicating,
applying Lemma 37 to ∆ ` b ≈α π·b repeatedly, we obtain ∆ ` vσ̂ ≈α vπσ.

2. v ∈ SkelX (r). Then v has the form [a1] . . . [am]X. Since R is ASP, there exists
[b1] . . . [bn]X ∈ SkelX(l) such that ∀a ∈ ds({ai}i, {bj}j). a#X ∈ ∇. By (1), we have ∆ `
([b1] . . . [bn]X)σ̂ ≈α ([b1] . . . [bn]X)πσ, that is, ∆ ` [b1] . . . [bn]Xσ̂ ≈α [π·b1] . . . [π·bn]Xσ.
Now, let {c1, . . . , ck} = {a1, . . . , am}∩{b1, . . . , bn}. Then ∀a ∈ ds({bj}j , {ch}h).a#X ∈ ∇
and ∀a ∈ ds({π·bj}j , {π·ch}h). a#X ∈ ∇π. From ∆ ` ∇σ̂ and ∆ ` ∇πσ, we obtain
∀a ∈ ds({bj}j , {ch}h).∆ ` a#Xσ̂ and ∀a ∈ ds({π·bj}j , {π·ch}h).∆ ` a#Xσ. Similarly,
∀a ∈ ds({ai}i, {ch}h).∆ ` a#Xσ̂ and ∀a ∈ ds({π·ai}i, {π·ch}h).∆ ` a#Xσ. Therefore,

∆ ` [b1] . . . [bn]Xσ̂ ≈α [π·b1] . . . [π·bn]Xσ
⇐⇒ ∆ ` [c1] . . . [ck]Xσ̂ ≈α [π·c1] . . . [π·ck]Xσ (from Lemmas 36 and 37)
⇐⇒ ∆ ` [a1] . . . [am]Xσ̂ ≈α [π·a1] . . . [π·am]Xσ (from Lemmas 36 and 37)
⇐⇒ ∆ ` vσ̂ ≈α vπσ

J

By Theorems 28 and 39, we have the following corollary.

I Corollary 40. Let R be an orthogonal nominal rewriting system that is ASP. Then, →R
is Church-Rosser modulo ≈α.

I Example 41. The rewriting system Rσ in Example 8 is left-linear and has no proper
overlaps, and hence orthogonal. Moreover, all its rewrite rules are ASP. Hence, →Rσ is
Church-Rosser modulo ≈α by Corollary 40. J

5 Implementation and Experiments

We have implemented a confluence prover for NRSs proving that input NRSs are CR modulo
≈α, based on Corollary 40. We note that recently some confluence provers for TRSs and
CTRSs are emerged (e.g. [1, 20, 14]) and the competition of confluence provers have been
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Table 1 Summary of experiments.

NRS LL non-PO ASP result time (ms)
1 Rσ X X X CR 3
2 NNF of f.o.-formulas without DNE X X X CR <1
3 Ruc-η-exp X X × Failure <1
4 PNF of f.o.-formulas (Example 44 [3]) X × X Failure 20
5 NNF of f.o.-formulas X × X Failure <1
6 {Beta} ∪ Rσ X × X Failure 8
7 {Beta} ∪ {Eta} ∪ Rσ X × X Failure 3
8 β-reduction (Example 43 [3]) X × X Failure 29
9 η-expansion (Introduction [3]) X X X CR <1
10 structural substitution for λµ-term ([12]) X X X CR 17
11 fragment of ML ([3]) X × X Failure 152
12 {a#X ` f(X)→ [a]X} X X X CR <1
13 {` f(X)→ [a]X} X X × Failure <1
14 {a#X ` X → [a]X}

X X X CR <1
(Proof of Lemma 56 [3])

15 Non-joinable trivial critical pair
X X × Failure <1

(Proof of Lemma 56 [3])
16 PNF of f.o.-formulas with additional rules

X × X Failure 33
(Example 44 [3])

17 Substitution for λ-term
X × X Failure 27

(Example 43 [3])
18 {Eta} X X X CR <1
19 Ruc-η X X × Failure <1

held annually3. In contrast, no confluence provers for NRSs has been known previously, up
to our knowledge.

In order to prove confluence of an NRS R based on Corollary 40, we have to show that
(1) R is orthogonal and (2) R is abstract skeleton preserving (ASP). It is straightforward
to check (2), as the standardness is just a syntactical restriction and ∇ ` a#X is easily
checked for any freshness constraint ∇, a ∈ A and X ∈ X . For (1), one has to check (1-a)
left-linearity and that (1-b) there’s no proper overlaps. The checking of (1-a) is easy. For
(1-b), we have to check whether ∇1 ∪∇π2

2 ∪ {l1 ≈ l
π2
2 |p} is unifiable for some permutation

π2, for given ∇1,∇2, l1, l2|p—this problem is different from nominal unification problems as
π2 is not fixed. Fortunately, the problem can be directly reduced to a problem of equivariant
unification [2], which has been known to be decidable. From the equivariant unification
algorithm in [2], we obtain a constraint of π2 for unifiability, if the problem is equivariantly
unifiable. Our system reports concrete critical pairs generated from this constraint, if there
is a proper overlap.

We have tested our confluence prover with 19 NRSs, collected from the literature, and
constructed during our study. The summary of our experiments is shown in Table 1. The
columns below ‘NRS’, ‘LL’, ‘non-PO’, ‘ASP’ , ‘result’ ‘time (ms)’ show the input NRS,
left-linearity, non-existence of proper overlaps, ASP, the result of the confluence prover and

3 Confluence Competition (CoCo) http://coco.nue.riec.tohoku.ac.jp/

RTA 2015



316 Confluence of Orthogonal Nominal Rewriting Systems Revisited

execution time in millisecond, respectively. Here, PNF (NNF) denotes rules for computing
prenex normal forms (resp. negation normal forms), and DNE denotes double negation
elimination (not (not X)→ X). The symbol ‘X’ denotes that the property holds, and the
symbol ‘×’ denotes that the property does not hold, which have been checked by the prover.
Among 19 examples, our prover succeeded in proving confluence of 7 examples. All tests
have been performed in a PC equipped with Intel Core i7-4600U processors of 2.1GHz and a
memory of 8GB.

All details of the experiments are available on the webpage http://www.nue.riec.
tohoku.ac.jp/tools/experiments/rta15nrs/.

6 Conclusion

Using our notion of rewrite relation with a permutation as a parameter, we have presented a
proof of Church-Rosser modulo ≈α for the class of orthogonal nominal rewriting systems
that are uniform and α-stable. Moreover, we have introduced a notion of abstract skeleton
preserving as a sufficient criterion for uniformity and α-stability. We have also implemented
a confluence prover based on our result on Church-Rosser modulo ≈α for abstract skeleton
preserving rewriting systems.

As continuations of this work, we are going to study confluence of nominal rewriting
systems with proper overlaps in both terminating and non-terminating cases. In such studies,
it will be necessary to investigate joinability check of critical pairs with permutation variables.
This is left as future work.
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Abstract
We refine matrix interpretations for proving termination and complexity bounds of term rewrite
systems we restricting them to domains that satisfy a system of linear inequalities. Admissibility
of such a restriction is shown by certificates whose validity can be expressed as a constraint
program. This refinement is orthogonal to other features of matrix interpretations (complexity
bounds, dependency pairs), but can be used to improve complexity bounds, and we discuss its
relation with the usable rules criterion. We present an implementation and experiments.
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1 Introduction

To prove termination of a rewrite system, we can give an interpretation of function sym-
bols that defines a well-founded monotone algebra that is compatible with the rules [30].
By restricting the class of interpretations, we get termination proof methods that can be
automated, in the sense that the interpretation is determined by a finite set of paramet-
ers that can be computed by a program. An early instance is polynomial interpretations
[7], where the parameters are the coefficients of polynomials. We are concerned here with
vector-valued interpretations, where the parameters are coefficients (for the matrix repres-
entations) of multi-linear functions [13, 11]. The domain for these interpretations is Nd,
ordered by x > y iff x1 > y1 ∧ x2 ≥ y2 ∧ . . . ∧ xd ≥ yd. This order is non-total, and the
method can prove non-simple termination.

Several variants and modifications have been investigated, and we list some that are
relevant for the present investigation:

By restricting the shape of matrices, we can prove not just termination, but polynomial
derivational complexity [18, 28].
Vector-valued interpretations can be used to define reduction pairs for termination proofs
in the dependency pair framework [2]. The main point here is that monotonicity con-
straints can be relaxed.
Instead of vectors and linear functions over (N, +, ·), we can take vectors and linear
functions over other semirings, e.g., the arctic semiring (N ∪ {−∞}, max, +) [14]. In
this semiring, monotonicity of operations is different (from N), in a way that this is
well-suited to the dependency pair framework.
Returning to Nd, we may consider different orders on that domain [19].

In the present paper, we modify matrix interpretations in yet another way: we keep the
semiring (N) and order > on Nd, but restrict the domain of interpretations by additional
linear inequalities. We obtain a convex polyhedral domain D ⊆ Nd. Using such domains is a
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standard approach in static analysis of imperative programs that is routinely used in optim-
izing compilers (cf. the Parma Polyhedral Library [3] for the GNU Compiler Collection). In
the context of automated termination analysis of rewrite systems, polyhedral domains were
first suggested by Lucas and Meseguer [17]. In the present paper, we substantially extend
their idea.

Let us illustrate the method by an example.

I Example 1. The goal is to prove termination and polynomial derivational complexity of
the string rewriting system

R = {fg → ff, gf → gg},

where the string fg is an abbreviation for the term f(g(x)), etc. We define a domain
D = {(x1, x2, x3) ∈ N3 | x3 ≥ x2 + 1}. This set is non-empty, e.g., (0, 0, 1) ∈ D. Then both

[f ](x1, x2, x3) = (x1 + 2x2 + 1, 0, x3 + 1)
[g](x1, x2, x3) = (x1 , x3, x3 + 1)

map D into D. Now we combine interpretations:

[fg](x) = (x1 + 2x3 + 1, 0, x3 + 2),
[ff ](x) = (x1 + 2x2 + 2, 0, x3 + 2).

The point is now that ∀x ∈ D : [fg](x) > [ff ](x) even though we don’t have a point-wise
inequality between corresponding coefficients in the first component: the coefficient of x2 in
[fg](x)1 is zero, and the coefficient of x2 in [ff ](x)1 is two.

By the condition that defines D, we have

[fg](x)1 ≥ x1 + 2x3 + 1 ≥ x1 + (2x2 + 2) + 1 > x1 + 2x2 + 2 = [ff ](x)1.

Additionally, we verify (without using D conditions)

[gf ](x) = (x1 + 2x2 + 1, x3 + 1, x3 + 2) > (x1, x3 + 1, x3 + 2) = [gg](x).

We also note that [f ] and [g] are strictly monotone w.r.t. >, since all coefficients are
non-negative, and the coefficient of x1 in the first component is positive.

This proves that [·] is a strictly monotone D-valued interpretation that is strictly com-
patible with the rewrite system R. So, the interpretation certifies termination of R [11].

Moreover, the coefficient matrices of [·] are upper triangular, so we actually proved
polynomial derivational complexity [18]. By closer inspection (there are just two occurrences
of 1 on the main diagonals) the complexity is quadratic. This property of R was known
before, e.g., CaT [15] proves it via root labelling [22]. Ours seems to be the first “direct”
proof.

In the remainder of the paper, we formally define and justify the method (Sections 3
and 4), discuss modifications with respect to derivational complexity (Section 6) and the
dependency pair method (Sections 7) with the usable-rules criterion (Section 8) and finally
(Section 9) describe an implementation and experiments.
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2 Notation and Preliminaries

A ranked signature maps function symbols to arities, e.g., Σ = {(a, 2), (f, 1), (g, 1)}. The
size ‖Σ‖ of a signature is

∑
(f,k)∈Σ) k, e.g., ‖Σ‖ = 4. We consider terms in Term(Σ, V ) with

symbols from Σ and variables from V . We denote by Var(t) the set of variables appearing
in a term t, and by |t| the size of the term (the number of its positions). A rewrite rule is a
pair (l, r) ∈ Term(Σ, V )2, written l → r, and a set R of rewrite rules defines a relation →R

on Term(Σ) in the usual way. We write →1 ◦ →2 for the product of relations →1 and →2.
For a relation →, we denote by →k its k-fold product, by →+ its transitive closure, and
by →∗ its transitive reflexive closure. We write →1 / →2 for the relation →∗2 ◦ →1 ◦ →∗2.
We say a relation → is well-founded if there is no infinite →-chain. A rewrite system R is
called terminating if →R is well-founded. A rewrite system R is called terminating relative
to a rewrite system S if →R / →S is well-founded. The derivational complexity dc→ of a
relation → on terms describes the length of →-chains as a function of the size of the start
term. Formally, dc→ : N → N ∪ {∞} is the function s 7→ sup{k | ∃t1, t2 ∈ Term(Σ) : |t1| ≤
s ∧ t1 →k t2}. This is in fact a function N → N in case → is terminating and finitely
branching. We write dcR for dc→R

and dcR/S for dc→R/→S
.

An algebra A for signature Σ is given by a domain DA, and for each k-ary symbol f from
Σ, a k-ary function [f ]A : Dk

A → DA. The algebra then maps each t ∈ Term(Σ) to an element
of DA, also denoted [t]A, and by extension, each t ∈ Term(Σ, V ) with |V ar(t)| = k, to a
k-ary function [t]A : Dk

A → DA. An algebra is monotone w.r.t. an order >A on its domain
if each [f ]A is monotone in each argument: xi >A x′i implies [f ]A(x1, . . . , xi, . . . , xk) >A

[f ]A(x1, . . . , x′i, . . . , xk). An algebra with order >A is well-founded if >A is well-founded. A
Σ-algebra A is compatible with relation → if x → y implies [x]A > [y]A. If A is clear from
the context, we write [t] for [t]A, and > for >A, etc.

A d-dimensional matrix interpretation defines an algebra with domain Nd, the order is
given by x > y iff x1 > y1 ∧ x2 ≥ y2 ∧ . . . ∧ xd ≥ yd, and the interpretation of a k-ary
symbol f is given by a multi-linear function of shape [f ](x1, . . . , xk) = F0 +

∑
i Fixi, where

F0 is a vector (the absolute part), and F1, . . . , Fk are matrices (the coefficients for the linear
part). Because of this presentation, we think of vectors x1, . . . , xk, F0 as column vectors.
All coefficients in F0, F1, . . . , Fk are nonnegative (because [f ] must map into Nd). A matrix
interpretation is monotone w.r.t. > if each top left entry of F1, . . . , Fk is positive. A matrix
interpretation is strictly (weakly) compatible with a rule (l, r) with |Var(l)∪Var(r)| = k if the
interpretations [l] and [r], which can be written as [l] = F0 +

∑
i Fixi, [r] = G0 +

∑
i Gixi,

verify F0 > G0 (F0 ≥ G0) and for all 1 ≤ i ≤ k, Fi ≥ Gi (here, ≥ on matrices is the
point-wise extension of ≥ on N).

I Example 2. For {f(g(x))→ f(f(x)), g(f(x))→ g(g(x))}, the interpretation

[f ](x1) =

0
0
1

+

1 1 0
0 0 0
0 1 1

 · x1, [g](x1) =

1
1
0

+

1 0 2
0 1 1
0 0 0

 · x1

is monotone and compatible with the rules, since

[fg](x1) =

2
0
2

+

1 1 3
0 0 0
0 1 1

 · x1 > [ff ](x1) =

0
0
2

+

1 1 0
0 0 0
0 1 1

 · x1

[gf ](x1) =

3
2
0

+

1 3 2
0 1 1
0 0 0

 · x1 > [gg](x1) =

2
2
0

+

1 0 2
0 1 1
0 0 0

 · x1
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We note that it is decidable whether a given d-dimensional matrix interpretation is
monotone, and compatible with a given R. The decision procedure is a straight-line program
(the control flow does not depend on the data), so we can derive a constraint system from
it, and use it to compute a suitable interpretation, once R is given. The constraint language
contains inequalities between polynomials (called QFNIA in [4]). Because of its intractability,
one often restricts unknown numbers to finite ranges, and represents them as bit vectors
(using QFBV in [4]), in binary, or even unary [8].

3 Interpretations on Polyhedral Domains

We now define the concepts, and illustrate them by formalizing Example 1.

I Definition 3. A polyhedral interpretation A with domain dimension d ∈ N and constraint
dimension c ∈ N for a ranked signature Σ consists of

(the polyhedral domain) a matrix CA ∈ Qc×d and a vector BA ∈ Qc×1,
describing the set DA = {x | x ∈ Qd, x ≥ 0 ∧ CAx + BA ≥ 0}
(the underlying interpretation) for each (f, k) ∈ Σ,
a (column) vector F0 ∈ Nd×1, and a list of k square matrices F1, . . . , Fk ∈ Nd×d,
describing a function [f ]A : (Nd)k → Nd : (x1, . . . , xk) 7→ F0 +

∑
i Fixi

Subscript A is omitted when it can be inferred from the context.
Note that we use rational numbers (Q) for describing the constraints (this fits with the

theory of linear algebra that we will need) but natural numbers for the interpretation (this
fits with well-foundedness of the domain). In examples, and in our implementation (see
Section 9), we will substitute Z for Q.

I Example 4 (Example 1 continued). The signature is Σ = {(f, 1), (g, 1)}, the domain
dimension is d = 3, the constraint dimension is c = 1, the domain is described by C =(
0 −1 1

)
, B =

(
−1
)

, and the underlying interpretation is

[f ](x) =

1 2 0
0 0 0
0 0 1

x +

1
0
1

 , [g](x) =

1 0 0
0 0 1
0 0 1

x +

0
0
1

 .

Since we will later determine polyhedral interpretations by solving constraint systems,
we collect information that helps to determine their size. In particular, we are interested in
how many extra constraints we need, compared to the standard matrix method.

I Observation 5. A domain description (in Def. 3) contains c · (d + 1) unknowns.

Properties of a polyhedral interpretation will be derived from the existence of a valid
certificate, which contains a part that refers to the domain, and a part that refers to the
rewrite system. These certificates are derived from a general principle

I Lemma 6 (Inhomogenous Farkas’ Lemma). ([25, 26]) A linear inequality aTx ≤ p is a
consequence of a solvable system of inequalities Ax ≤ b iff there is some y ≥ 0 with a = AT y

and yT b ≤ p.

In other words, the conclusion is implied by a nonnegative linear combination of the
premises. Our certificates are in fact representations of the coefficients in that linear com-
bination.

Given a polyhedral interpretation A for signature Σ, we ask for (f, k) ∈ Σ whether
[f ]A : Dk → D. We have the representation [f ](x1, . . . , xk) = F0 +

∑
i Fixi, with F0 ≥

RTA 2015



322 Matrix Interpretations on Polyhedral Domains

0, . . . , Fi ≥ 0, and we know that the arguments are from the domain: ∀i : xi ∈ D, that is,
∀i : xi ≥ 0 ∧Cxi + B ≥ 0. We combine all these assumptions, and collect them in a matrix
(with k · (d + c) rows, k · d + 1 columns)

I 0 . . . 0 0
0 I 0 0
...

. . .
0 0 . . . I 0
C 0 . . . 0 B

0 C 0 B
...

. . .
0 0 . . . C B


(1)

Do we have [f ](x1, . . . , xk) ∈ D? In other words, do these inequalities imply C(F0 +∑
i Fixi) + B ≥ 0? (Note that [f ](x1, . . . , xk) ≥ 0 is already implied by Fi ≥ 0 and xi ≥ 0.)

In our matrix notation, the conclusion is(
CF1 CF2 . . . CFk CF0 + B

)
with c rows, k · d + 1 columns. For each of the c inequalities (rows) from the conclusion,
Lemma 6 gives one coefficient per each of the k·(c+d) assumptions. In total, we have kc(c+d)
coefficients, and we can arrange them as matrices V1, . . . , Vk ∈ Qc×d+ , W1, . . . , Wk ∈ Qc×c+
and get

V1 + W1C = CF1 ∧ . . . ∧ Vk + WkC = CFk ∧
∑
i

WiB ≤ CF0 + B.

Since Vi ≥ 0 we can simplify the equations to inequalities, obtaining

I Lemma 7. The function (x1, . . . , xk) 7→ F0 +
∑
i Fixi with Fi ≥ 0 maps Dk → D if and

only if there exist Wi ∈ Qc×c+ with

W1C ≤ CF1 ∧ . . . ∧WkC ≤ CFk ∧
∑
i

WiB ≤ CF0 + B.

Now we consider compatibility of the interpretation A with a rewrite rule (l, r) with
|Var(l) ∪ Var(r)| = k. Then the difference of interpretations [l]A − [r]A is a linear function
∆ : (x1, . . . , xk) 7→ ∆0 +

∑
i ∆ixi. When xi ∈ D, we want ∆(x1, . . . , xk) > 0 or ≥ 0 (strict

or weak compatibility). So, the conclusion (d rows) is(
∆1 ∆2 . . . ∆k ∆0

)
,

resp. ∆′0 in the last component, where ∆′0 is obtained from ∆0 by decreasing the first
component by 1. Again by Lemma 6, there are coefficients Ti, Ui ∈ Qd×c+ with

T1 + U1C = ∆1 ∧ . . . ∧ Tk + UkC = ∆k ∧
∑
i

UiB ≤ ∆0,

and we simplify (since Ti ≥ 0) all equations to inequalities, and obtain

I Lemma 8. A polyhedral interpretation A is strictly (weakly, respectively) compatible with
a rewrite rule (l, r) with |Var(l) ∪ Var(r)| = k and ([l] − [r])(x1, . . . , xk) = ∆0 +

∑
i ∆ixi if

and only if there exist matrices Ui ∈ Qd×c+ such that

U1C ≤ ∆1 ∧ . . . ∧ UkC < ∆k ∧
∑
i

UiB ≤ ∆0 (≤ ∆0, resp.)
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4 Certificates for Polyhedral Interpretations

We use one direction of Lemmata 7 and 8 to define certificates for properties of polyhedral
interpretations.

I Definition 9. A domain certificate for a polyhedral interpretation consists of
a vector n ∈ Qd+ which is called valid if Cn + B ≥ 0.
for each (f, k) ∈ Σ with [f ](x1, . . . , xk) = F0 +

∑
i Fixi,

matrices W1, . . . Wk ∈ Qc×c+ which are called valid if
∀1 ≤ i ≤ k : CFi ≥WiC and CF0 + B ≥ (

∑
i Wi)B

I Observation 10. The domain certificate contains d + ‖Σ‖ · c2 unknowns. Validity of the
domain certificate can be checked with 1 + |Σ| matrix multiplications in (c× d) · (d× 1), |Σ|
matrix multiplications in (c× c) · (c× 1), ‖Σ‖ matrix multiplications in (c× d) · (d× d), |Σ|
matrix multiplications in (c× c) · (c× d).

There are also additions and comparisons, but their cost is dominated by multiplication.

I Example 11 (Example 4 continued). We take n =
(
0 0 1

)T which is valid since Cn+B =(
0 −1 1

) (
0 0 1

)T − 1 = 0, and for both f and g, the choice W1 = (0) is valid since
CF1 ≥ 0 and CG1 ≥ 0 and CF0 + B = CG0 + B = 0.

I Lemma 12. The following statements are equivalent:
polyhedral interpretation A has a valid domain certificate,
DA is non-empty, and for each (f, k) ∈ Σ, the function [f ]A maps Dk

A into DA.

Proof. This follows from Lemma 7. Additionally, we give an explicit computation that
shows one direction of the equivalence: For y = [f ](x1, . . . , xk) = F0 +

∑
i Fixi, we have

y ∈ D by the chain of inequalities Cy + B = C(F0 +
∑

Fixi) + B = CF0 +
∑
i CFixi + B ≥

CF0 +
∑
i WiCxi + B ≥ CF0 −

∑
WiB + B ≥ 0. J

I Definition 13. A compatibility certificate for polyhedral interpretation A w.r.t. rewrit-
ing system R contains, for each rule (l, r) ∈ R with |Var(l) ∪ Var(r)| = k and ([l]A −
[r]A)(x1, . . . , xk) = ∆0 +

∑
i ∆ixi, matrices U1, . . . , Uk ∈ Qd×c+ , which are called valid if

∀i : ∆i ≥ UiC and
∆0 ≥

∑
i UiB (then the certificate is called weak for that rule)

or ∆0 >
∑
i UiB (then the certificate is called strict for that rule)

For the following, we need notation ‖R‖ =
∑
{|Var(l) ∪ Var(r)| | (l, r) ∈ R}.

I Observation 14. The compatibility certificate contains ‖R‖ · d · c unknowns. Validity of
the compatibility certificate can be checked with ‖R‖ matrix multiplications in (d×c) ·(c×d),
and |R| matrix multiplications in (d× c) · (c× 1), assuming ∆i are already given.
I Example 15 (Example 4 continued). For rule (fg, ff), we compute

[fg](x) =1 0 2
0 0 0
0 0 1

x +

1
0
2

 ,

[ff ](x) =1 2 0
0 0 0
0 0 1

x +

2
0
2

 ,

∆(fg,ff) =0 −2 2
0 0 0
0 0 0

x +

−1
0
0

 .

A valid strict certificate for this rule is U
(fg,ff)
1 =

(
2 0 0

)T , since
U1C =

2
0
0

(0 −1 1
)

=

0 −2 2
0 0 0
0 0 0

 ≤ ∆1, U1B =

2
0
0

 (−1) =

−2
0
0

 < ∆0

RTA 2015



324 Matrix Interpretations on Polyhedral Domains

For rule (gf, gg), we compute

[gf ](x) =1 2 0
0 0 1
0 0 1

x +

1
1
2

 ,

[gg](x) =1 0 0
0 0 1
0 0 1

x +

0
1
2

 ,

∆(gf,gg) =0 2 0
0 0 0
0 0 0

x +

1
0
0

 .

and a valid strict certificate is U
(gf,gg)
1 =

(
0 0 0

)T .
I Lemma 16. These statements are equivalent:

polyhedral interpretation A has a valid compatibility certificate w.r.t. rewrite system R

A is strictly compatible with the rules of R for which the certificate is strict, and weakly
compatible with the rules for which the certificate is weak.

Proof. This follows from Lemma 8. Additionally, we give an explicit computation for
one direction. For (l, r) ∈ R, we have ([l]A − [r]A)(x1, . . . , xk) = ∆0 +

∑
i ∆ixi ≥ ∆0 +∑

i UiCxi ≥ ∆0 −
∑
i UiB which is ≥ 0 or > 0. J

From previous observations, and assuming that matrix multiplication in (a× b) · (b× c)
can be done with O(a · b · c) elementary operations, we obtain the following, which is the
basis for our implementation, see Section 9.

I Theorem 17. The validity of the certificate of a polyhedral interpretation with domain
dimension d and constraint dimension c for a rewrite system R over signature Σ is decidable.
The certificate can be represented by d + ‖Σ‖c2 + ‖R‖cd unknowns and O(‖Σ‖cd2 + |Σ|c2d +
‖R‖cd2 + |R|cd) elementary constraints.

5 Polyhedral Interpretations for Termination and Complexity

Polyhedral interpretations can be used for proofs of termination:

I Theorem 18. If a polyhedral interpretation has a valid domain certificate, and a strict
compatibility certificate for a rewrite system R, and a weakly compatibility certificate for
a rewrite system S, and the underlying interpretation is monotone, then R is terminating
relative to S.

Proof. The polyhedral interpretation defines a well-founded monotone algebra on a subset
of (Nd, >) that is compatible with →R /→S . J

Compared to the standard matrix method, we kept the order, restricted the domain, and
changed the test for compatibility: we can now use properties of the polyhedral domain,
and thus ease the requirement of comparing coefficients of [l]A > [r]A point-wise.

I Example 19. 1 We apply the method to problem Ex16_Luc06_C from the TPDB [21].

1 http://nfa.imn.htwk-leipzig.de/termcomp/show_job_pair/41269410
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active(f(X, X))→ mark(f(a, b)), active(b)→ mark(a),
active(f(X1, X2))→ f(active(X1), X2), f(mark(X1), X2)→ mark(f(X1, X2)),

proper(f(X1, X2))→ f(proper(X1), proper(X2)),
proper(a)→ ok(a), proper(b)→ ok(b),

f(ok(X1), ok(X2))→ ok(f(X1, X2)),
top(mark(X))→ top(proper(X)), top(ok(X))→ top(active(X))

we remove active(b)→ mark(a) and then use interpretation

mark 7→
(

0
0

)
+
(

1 0
0 1

)
· x1, f 7→

(
1
2

)
+
(

1 3
0 0

)
· x1 +

(
1 0
0 0

)
· x2,

a 7→
(

1
0

)
, b 7→

(
0
1

)
, ok 7→

(
0
0

)
+
(

1 0
0 1

)
· x1, top 7→

(
0
1

)
+
(

1 2
1 1

)
· x1,

active 7→
(

0
0

)
+
(

1 0
0 1

)
· x1, proper 7→

(
0
0

)
+
(

1 0
0 1

)
· x1

on a domain restricted by
(
−1
)

+
(
1 1

)
· x ≥ 0. Equivalently, x1 + x2 ≥ 1, so just (0, 0)T

is excluded from the domain. Rule active(f(X, X))→ mark(f(a, b)) is interpreted by

[lhs] =
(

1
2

)
+
(

2 3
0 0

)
· x1, [rhs] =

(
2
2

)
+
(

0 0
0 0

)
· x1,

Note the absolute parts are not decreasing: (1 2)T 6> (2 2)T . This rule has a strong
compatibility certificate (2 0)T . In effect, we add twice the domain constraint, to prove the
decrease in the first component. Starting from the right-hand side: 2 ≤ 2+2(−1+x11+x12) =
x11+x12 < 1+2x11+3x12. Then other rules can be removed by the standard matrix method.

This termination problem was solved in the 2014 competition only by AProVE [12], using
back-transformation to CSR QTRSToCSRProof. 2

The previous example suggests that polyhedral interpretations are strictly more powerful
than standard matrix interpretations (even when these are combined with other methods),
but we currently have no proof. At least we can be sure that they are not less powerful:

I Observation 20. For any domain and constraint dimension: A polyhedral interpreta-
tion with domain constraint B = 0, C = 0 is a standard matrix interpretation.
A polyhedral interpretation with constraint dimension 0 is a standard matrix interpreta-
tion.

Proof. First part: take n = 0, Wi = 0, Ui = 0 and verify that the compatibility condition
reduces to ∆0 ≥ 0(> 0, resp.) and ∆i ≥ 0. Second part: The matrices in the domain
certificate have extension 0× 0, the matrices in the compatibility certificate have extension
d× 0, so they are zero matrices, and the first part applies. J

Even if we do have constraints, we can ignore them, to obtain a statement on derivational
complexity. Recall that the height function dcA of a well-founded monotone Σ-algebra A on
(DA, >A) is the function s 7→ sup{dc>A

([t]A) | t ∈ Term(Σ), |t| ≤ s}.

2 http://nfa.imn.htwk-leipzig.de/termcomp/display_proof/26921465
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I Lemma 21. If a polyhedral interpretation A is monotone and strictly compatible with a
rewrite system R, then dcR is bounded by the height dcA of the matrix interpretation that
underlies A.

Proof. Each →R-chain is mapped to a >-chain in the polyhedral domain D, which is also
a >-chain in Nd. J

We mention two consequences.
The original matrix method is limited because matrix products grow at most exponen-

tially: with matrix interpretations, it is impossible to reduce a termination problem by
“removing a rule” that is used more than exponentially often. E.g., no matrix interpreta-
tion can remove a rule from {ab → bca, cb → bbc} [13], and polyhedral constraints will not
change that.

If we have a polyhedral interpretation A that is compatible with R and where the un-
derlying matrix interpretation grows polynomially only, then we have a proof that dcR is
polynomially bounded. The introductory Example 1 already applies this. We will show in
the next section that we can do better in some cases, by not ignoring the information in the
constraints.

6 Improving Polynomial Growth Bounds

We show that polyhedral constraints can serve to lower a bound for polynomial growth of a
matrix interpretation.

Recall that for each component of a vector valued interpretation we can assign a degree
of growth, and the degree of the interpretation is the degree of the first component.

If the interpretation uses upper triangular matrices (of dimension d), the degree of the
i-th component is at most d + 1 − i, and there is a refinement where the degree can be
reduced further if all matrices have zero diagonal entries at index (i, i).

Now polyhedral constraints for triangular matrices in some cases bound the i-th com-
ponent from above by some positive linear combination of components with higher indices,
that is, of lower degree.

As a special case, the very last component could be bounded by a constant, as in the
following example.

I Example 22. TRS/secret06/jambox/5 3 The rewrite system

{a(a(y, 0), 0)→ y, c(c(y))→ y, c(a(c(c(y)), x))→ a(c(c(c(a(x, 0)))), y)}

has a compatible polyhedral interpretation that uses upper triangular matrices

0 7→

0
0
0
0

 , c 7→

0
0
0
2

+

1 1 0 1
0 1 2 0
0 0 1 1
0 0 0 0

·x1, a 7→

1
0
0
0

+

1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

·x1+

1 2 2 2
0 1 4 4
0 0 1 1
0 0 0 0

·x2

with domain restriction
(
2
)

+
(
0 0 0 −1

)
· x ≥ 0. The restriction means that x4 ≤ 2. (By

inspecting the interpretation, the domain for x4 is found to be {0, 2}.) There are 4 non-zero
positions on the main diagonal, so the naive degree bound is 4. The domain constraint says

3 http://nfa.imn.htwk-leipzig.de/termcomp/show_job_pair/40307443
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that x4 is bounded by 2, so the degree of x3 is at most linear, x2 at most quadratic, and x1
at most cubic.

The states 3, 4 of the underlying automaton are in fact an unambiguous component, so
degree 3 would have been detected by the method from [28], which is however more expensive
to implement.

This example was not solved in the 2014 complexity competition.

I Example 23. For system ExProp7_Luc06_GM (not solved in 2014 complexity competi-
tion), we find a compatible polyhedral upper triangular interpretation 4 with constraint(
0 0 −1 1

)
x + 2 ≥ 0. That is x4 + 2 ≥ x3, so the degree of x3 is linear (not quadratic),

and this reduces the degree estimate for the interpretation as a whole.

7 Polyhedral Constraints and the Dependency Pair Method

The dependency pair (DP) method [2] can use reduction pairs that come from matrix in-
terpretations [11]. We briefly recap the notation. Given Σ, the marked signature Σ# is
{(f#, k) | (f, k) ∈ Σ}. We use sort symbols {O, #} and say that (f, k) ∈ Σ has type
Ok → O, while f# has type Ok → #. For t = f(t1, . . . , tk) ∈ Term(Σ, V ), we write t# for
f#(t1, . . . , tk) ∈ Term(Σ∪Σ#, V ). The root symbol of a term t is root(t). The set of defined
symbols of a rewrite system R over Σ is Def(R) = {root(l) | (l, r) ∈ R}. The dependency
pairs of R are DP(R) = {(l#, s#) | (l, r) ∈ R, root(s) ∈ Def(R), s E r, s 6E l}. Termination of
R is then proved by a reduction pair (>,≥) where DP(R) ⊆> and R ⊆≥.

In this context, a d-dimensional matrix interpretation defines an extended monotone
algebra by interpreting sort O by (Nd,≥), sort # by (N1, >), and function symbols by
multilinear functions (respecting the sorts) as before.

For this basic version of the DP method with matrix interpretations, we can apply
polyhedral constraints with the following (inessential) modifications:

We do not need strict monotonicity, so the top-left entries of matrices are unconstrained.

We restrict the domain for sort O only (not #). That is, we need domain certificates
only for symbols from Σ (not Σ#).

Compatibility certificates are needed for all rules. For rules from R, this is done as
before, and for rules from DP(R), the target domain is N1, so the matrices Ui in the
compatibility certificates have extension (1× c).

The DP method allows for many enhancements, which we do not discuss here, but use in
examples.

I Example 24. We consider the termination problem TRS_Standard/Various_04/11

{f(0, 1, x)→ f(h(x), h(x), x), h(0)→ 0, h(g(x, y))→ y}

4 http://nfa.imn.htwk-leipzig.de/termcomp/show_job_pair/40858473
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After DP transformation, we look at the SCC that contains
{f#(0, 1, x)→ f#(h(x), h(x), x)}, and apply the matrix interpretation 5

0 7→
(

1
1

)
, 1 7→

(
0
2

)
, h 7→

(
0
0

)
+
(

0 1
1 0

)
· x1, g 7→

(
0
0

)
+
(

0 0
0 0

)
· x1 +

(
0 1
1 0

)
· x2,

f 7→
(

0
0

)
+
(

0 0
0 0

)
· x1 +

(
0 0
0 0

)
· x2 +

(
0 0
0 0

)
· x3,

f# 7→
(
0
)

+
(
1 0

)
· x1 +

(
0 1

)
· x2 +

(
1 1

)
· x3

with constraint
(
2
)
+
(
−1 −1

)
·x ≥ 0. The interpretation of f#(0, 1, x)→ f#(h(x), h(x), x)

is

[lhs] =
(
3
)

+
(
1 1

)
· x1, [rhs] =

(
0
)

+
(
2 2

)
· x1.

We can verify that adding the domain constraint to the value of the right-hand side gives
(2) + (1 1) ·x1 which is in the proper point-wise relation to the left-hand side. This problem
was solved in the 2014 termination competition only by Mu-Term [16] and AProVE [12],
using innermost rewriting and narrowing. 6

I Example 25. For TRS_Standard/Endrullis_06/pair2simple2

{p(a(x0), p(a(a(a(x1))), x2))→ p(a(x2), p(a(a(b(x0))), x2))}

we find an interpretation 7

b 7→

0
0
0

+

0 0 1
0 0 0
0 0 0

 · x1, a 7→

0
0
1

+

0 1 0
0 0 3
0 0 0

 · x1,

p 7→

0
0
0

+

1 0 0
0 0 0
0 0 0

 · x1 +

1 1 0
0 0 0
0 0 0

 · x2,

p# 7→
(
0
)

+
(
0 0 0

)
· x1 +

(
1 0 1

)
· x2

with polyhedral constraint dimension two:
(

2
1

)
+
(

0 −1 1
0 0 −1

)
· x ≥ 0.

Rule p(a(x0), p(a(a(a(x1))), x2))→ p(a(x2), p(a(a(b(x0))), x2)) is interpreted by

[lhs] =

3
0
0

+

0 1 0
0 0 0
0 0 0

 · x1 +

0 0 0
0 0 0
0 0 0

 · x2 +

1 1 0
0 0 0
0 0 0

 · x3

[rhs] =

0
0
0

+

0 0 0
0 0 0
0 0 0

 · x1 +

0 0 0
0 0 0
0 0 0

 · x2 +

1 2 0
0 0 0
0 0 0

 · x3,

and the (weak) compatibility certificate is

0 0
0 0
0 0

 ,

0 0
0 0
0 0

 ,

1 1
0 0
0 0


This problem was solved in the 2014 competition with recursive path order 8 and it seems

there is no compatible standard matrix interpretation.

5 http://nfa.imn.htwk-leipzig.de/termcomp/show_job_pair/40515447
6 http://nfa.imn.htwk-leipzig.de/termcomp/show_job_pair/26924062
7 http://nfa.imn.htwk-leipzig.de/termcomp/show_job_pair/40849733
8 http://nfa.imn.htwk-leipzig.de/termcomp/show_job_pair/26919296

http://nfa.imn.htwk-leipzig.de/termcomp/show_job_pair/40515447
http://nfa.imn.htwk-leipzig.de/termcomp/show_job_pair/26924062
http://nfa.imn.htwk-leipzig.de/termcomp/show_job_pair/40849733
http://nfa.imn.htwk-leipzig.de/termcomp/show_job_pair/26919296
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8 Polyhedral Constraints and the DP Method with Usable Rules

The DP method with the “usable rules” extension [2] requires the following change. It is
required that the reduction pair is Cε-compatible (for a fresh function symbol C, we need
[C](x, y) ≥ x ∧ [C](x, y) ≥ y.) For a reduction pair that comes from an interpretation, this
means that its domain must allow to construct least upper bounds.

Let us make explicit how this works for the standard matrix method: the domain
is Nd, the (weak) order is component-wise ≥, the least upper bound sup(x, y) of x =
(x1, . . . , xd), y = (y1, . . . , yd) is (max(x1, y1), . . . , max(xn, yn)), so sup(x, y) ∈ Nd trivially.

Now consider some polyhedral domain D ⊆ Nd. The order we use on D is exactly the
order on Nd as before, so the least upper bound is the same as well. But it is not always
true that x, y ∈ D implies sup(x, y) ∈ D.

I Example 26. In dimension 2, consider the constraint x1 + x2 ≤ 1. This means D =
{(0, 0), (0, 1), (1, 0)}. Then sup((0, 1), (1, 0)) = (1, 1) /∈ D.

Indeed we would obtain erroneous termination statements when using the “usable rules”
extension with polyhedral constraints on domains that are not sup-closed. 9

We now give a sufficient condition for a polyhedral domain to allow sup.

I Theorem 27. Let C ∈ Qc×d, B ∈ Qc×1 describe a domain D = {x | x ≥ 0, Cx + B ≥
0} ⊆ Qd. If each row of C contains at most one negative entry, then x, y ∈ D implies
sup(x, y) ∈ D.

Proof. We analyze the i-th constraint, given by row c = Ci, and entry b = Bi. We need to
show c · sup(x, y) + b ≥ 0. We can write c = c+ + c− where c+ = sup(c, 0) and c− = inf(c, 0).
(all entries in c+ are ≥ 0, all entries in c− are ≤ 0). Multiplication by c+ is monotone: if
x ≤ z, then c+x ≤ c+z. If c has no negative entry, then c = c+, so multiplication by c is
monotone, and we have c·sup(x, y)+b ≥ cx+b ≥ 0. Assume c has one negative entry ck < 0.
Without loss of generality, we have xk ≥ yk (if not, swap x with y). Then c−·sup(x, y) = c−x.
We have c · sup(x, y)+ b = c+ · sup(x, y)+c− · sup(x, y)+ b ≥ c+x+c−x+ b = cx+ b ≥ 0. J

The condition in Theorem 27 is easily implemented in a constraint program.

9 Implementation and Experiments

We extended to the implementation of matrix interpretations in matchbox [29] by adding
polyhedral constraints. The constraint system already has unknowns for the interpretation,
and we added unknowns for the domain constraint and certificate, and for the compatibility
certificates. The constraint program already computes the interpretation of rules (with
compression) [5], and we added the validity constraints for domain and compatibility.

To prove termination of a rewrite system, we have (as usual) one parameter d ∈ N, for
the dimension of the interpretation domain, and now an extra parameter c ∈ N: the number
of inequalities (the height of the C matrix). We found that already c = 1 is often helpful,
see most examples in this paper.

According to Sections 3 and 4, unknowns should be from Q for the domain constraint,
and Q+ for certificates. Since we don’t know of a competitive constraint solver over Q, we
restrict to Z for the domain constraint, and N for certificates. Experiments suggest that

9 http://nfa.imn.htwk-leipzig.de/termcomp/show_job_pair/40422582
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most domain constraints use small numbers, so we further restrict to {−1, 0, 1} for C (not
for B).

The constraint system consists of (in)equalities between polynomials, so it is expressible
in the QFNRA (QFNIA, resp.) logic [4]. With a bit-blasting approach in mind, we can also
use QFBV (bit vectors). Our implementation allows us to choose between Boolector [6] as
a QFBV-solver, or built-in bit-blasting, and then MiniSat [10] as a SAT-solver.

The following data is typical of how polyhedral constraints increase the size of the con-
straint systems:

I Example 28 (Example 22 continued). For TRS/secret06/jambox/5, with domain dimen-
sion 4, and bit width 4, matchbox’ built-in bit-blaster was applied. The number of vari-
ables/clauses is: for constraint dimension 0 (the original matrix method): 31614/40256, for
constraint dimension 1: 39867/67064.

We have two remarks on BV-solving/bit-blasting:
Overflow is forbidden in our context, but allowed in the QFBV standard. So each

arithmetical operation (add, mul) is immediately followed by computing the overflow and
asserting that it is false. We use functions saddo, smulo provided in Boolector’s API.

We need signed numbers. Among the unknowns, just C and B may contain negative
numbers, but signed numbers will propagate into the validity constraints. We note that while
we have additions of signed numbers, all multiplications have at most one signed factor.

In both cases (no overflow, some signs are known), a constraint solver could exploit this
information statically. We especially think that “non-overflowing arithmetic” would be a
useful addition to the QFBV-standard.

We were running our implementation on the termination and complexity problems of
the 2014 termination competition (TPDB version 8). The main purpose was to extract
interesting examples, used in this paper. These examples show that there are several cases
where polyhedral constraints allow a matrix termination proof where none was given in the
last competition, or only proofs that use other methods.

We checked the effect that polyhedral constraints have when added to a base version of
matchbox with arctic and natural matrix interpretations. We observe different behaviour in
less than 10 % of the benchmarks.

We also compared Boolector and bit-blasting/MiniSat back-ends. Our conclusion is that
Boolector wins by a small margin.

A web page with that presents our experimental data is provided. 10

10 Discussion

Related work. Polyhedral constraints for interpretations in termination proofs where first
suggested by Lucas and Meseguer [17]. Our contribution is to provide an actual implement-
ation that handles the case where interpretation and domain constraints are unknown, and
extensions (to complexity analysis, dependency pairs, and usable rules).

We mentioned that polyhedral analysis of imperative programs, especially loops, is a
standard method. The difference to analysis of rewriting systems is: the semantics of the
imperative program is literally given by the numerical values and operations appearing in
the program text (e.g., in int y = 2*x+1, the symbol 2 denotes the number 2, and the
symbol + denotes addition). For rewrite systems, a priori there is no semantics, so it has

10 http://www.imn.htwk-leipzig.de/~waldmann/etc/polyhedral/
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to be determined during the analysis (e.g., it will be defined via an interpretation). This
means that for polyhedral domains for rewrite systems, we cannot use directly the methods
developed for imperative programs.

Certification. It seems straightforward (in principle) to integrate polyhedral domains for
matrix interpretations into the CeTA certification framework [23]. To check validity of
domain and compatibility certificates, we just need to verify the calculations from Section 4,
while a certified proof of Farkas’ Lemma (Section 3) is not needed.

Challenges in Rewriting. There are two long-standing challenges: find a matrix interpret-
ation that gives a tight complexity bound for {a2b2 → b3a3} (z001), and for {a2 → bc, b2 →
ac, c2 → ab} (z086). For both rewrite systems, matrix interpretations with exponential
growth are known, while the growth of rewrite sequences is known to be polynomial (z001
by matchbounds, z086 by a manual proof [1]). Can we prove polynomial derivational com-
plexity via matrix interpretations on a polyhedral domain? So far, we did not succeed—using
several days of CPU time.

Extensions: Order. It may be interesting to analyze different orders on polyhedral do-
mains, as Neurauter et al. [20] did for the full standard domain Nd. We might get more
termination proofs, or better complexity bounds. It is to be expected that monotonicity,
which is now easy (top left coefficient ≥ 1), needs to be replaced with something more
elaborate, that requires a certificate.

Extensions: Negative Coefficients. Can we allow negative coefficients in interpretations
(in F0, F1, . . . , Fk)? We then need to make sure that x ≥ 0 is respected (by extra domain
certificates), and require additional “monotonicity certificates”.

Extensions: Domain. We can perhaps even drop the x ≥ 0 restriction, This implies changes
in other certificates, and requires an extra “well-foundedness certificate” that shows that
values for the first component of interpretations are bounded from below.

Extensions: Semiring. Another direction for extension is to choose a different underlying
semiring, e.g., arctic or tropical, and apply results from tropical linear algebra. At least in
principle, it is clear what to do: a polyhedral domain [9] is described as {x | A1 · x + b1 ≤
x ≤ A2 · x + b2} (since addition is not invertible, we cannot move the right-hand-side x to
the left) and certificates must be constructed accordingly.
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viewers for discussions and comments, and to René Thiemann and Harald Zankl for help
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Abstract
We present the first approach to deduce lower bounds for innermost runtime complexity of term
rewrite systems (TRSs) automatically. Inferring lower runtime bounds is useful to detect bugs
and to complement existing techniques that compute upper complexity bounds. The key idea of
our approach is to generate suitable families of rewrite sequences of a TRS and to find a relation
between the length of such a rewrite sequence and the size of the first term in the sequence. We
implemented our approach in the tool AProVE and evaluated it by extensive experiments.
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1 Introduction

There exist numerous methods to infer upper bounds for the runtime complexity of TRSs
[3, 12, 14, 17, 21]. We present the first automatic technique to infer lower bounds for the
innermost1 runtime complexity of TRSs. Runtime complexity [12] refers to the “worst” cases in
terms of evaluation length and our goal is to find lower bounds for these cases. While upper
complexity bounds help to prove the absence of bugs that worsen the performance of programs,
lower bounds can be used to find such bugs. Moreover, in combination with methods to
deduce upper bounds, our approach can prove tight complexity results. In addition to
asymptotic lower bounds, in many cases our technique can even compute concrete bounds.

As an example, consider the following TRS Rqs for quicksort. The auxiliary function
low(x, xs) returns those elements from the list xs that are smaller than x (and high works
analogously). To ease readability, we use infix notation for the function symbols ≤ and ++.

I Example 1 (TRS Rqs for Quicksort).

qs(nil) → nil (1)
qs(cons(x, xs)) → qs(low(x, xs)) ++ cons(x, qs(high(x, xs))) (2)

low(x, nil) → nil
low(x, cons(y, ys)) → ifLow(x ≤ y, x, cons(y, ys)) zero ≤ x → true

ifLow(true, x, cons(y, ys)) → low(x, ys) succ(x) ≤ zero → false
ifLow(false, x, cons(y, ys)) → cons(y, low(x, ys)) succ(x) ≤ succ(y) → x ≤ y

high(x, nil) → nil
high(x, cons(y, ys)) → ifHigh(x ≤ y, x, cons(y, ys))

∗ Supported by the DFG grant GI 274/6-1.
1 We consider innermost rewriting, since TRSs resulting from the translation of programs usually have

to be evaluated with an innermost strategy (e.g., [10, 18]). Obviously, lower bounds for innermost
reductions are also lower bounds for full reductions (i.e., our approach can also be used for full rewriting).
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ifHigh(true, x, cons(y, ys)) → cons(y, high(x, ys)) nil ++ ys → ys (3)
ifHigh(false, x, cons(y, ys)) → high(x, ys) cons(x, xs) ++ ys → cons(x, xs ++ ys)

For any n ∈ N, let γList(n) be the term
n times︷ ︸︸ ︷

cons(zero, . . . , cons(zero, nil) . . . ), i.e., the list of
length n where all elements have the value zero (we also use the notation “consn(zero, nil)”). To
find lower bounds, we automatically generate rewrite lemmas that describe families of rewrite
sequences. For example, our technique infers the following rewrite lemma automatically.

qs(γList(n)) i→3n2+2n+1
γList(n) (4)

This rewrite lemma means that for each n ∈ N, there is an innermost rewrite sequence of
length 3n2 + 2n + 1 that reduces qs(consn(zero, nil)) to consn(zero, nil). From this rewrite
lemma, our technique then concludes that the innermost runtime of Rqs is at least quadratic.

While most methods to infer upper bounds are adaptions of termination techniques, the
approach in this paper is related to our technique to prove non-termination of TRSs [7].
Both techniques generate “meta-rules” representing infinitely many rewrite sequences. How-
ever, the rewrite lemmas in the current paper are more general than the meta-rules in [7], as
they can be parameterized by several variables n1, . . . , nm of type N.

In Sect. 2 we show how to automatically speculate conjectures that may result in
suitable rewrite lemmas. Sect. 3 explains how these conjectures can be verified automatically
by induction. From these induction proofs, one can deduce information on the lengths
of the rewrite sequences represented by a rewrite lemma, cf. Sect. 4. Thus, the use of
induction to infer lower runtime bounds represents a novel application for automated inductive
theorem proving. This complements our earlier work on using inductive theorem proving
for termination analysis [9]. Finally, Sect. 5 shows how rewrite lemmas can be used to infer
lower bounds for the innermost runtime complexity of a TRS.

Sect. 6 discusses an improvement of our approach by pre-processing the TRS before the
analysis and Sect. 7 extends our approach to handle rewrite lemmas with arbitrary unknown
right-hand sides. We implemented our technique in the tool AProVE [11] and demonstrate
its power by an extensive experimental evaluation in Sect. 8. All proofs can be found in [8].

2 Speculating Conjectures

We now show how to speculate conjectures (whose validity must be proved afterwards in Sect.
3). See, e.g., [5] for the basics of rewriting, where we only consider finite TRSs. T (Σ,V) is the
set of all terms over a (finite) signature Σ and a set of variables V and T (Σ) = T (Σ,∅) is the
set of ground terms. The arity of a symbol f ∈ Σ is denoted by arΣ(f). As usual, the defined
symbols of a TRS R are Σdef (R) = { root(`) | `→ r ∈ R} and the constructors Σcon(R) are
all other function symbols in R. Thus, Σdef (Rqs) = {qs, low, ifLow, high, ifHigh, ++,≤} and
Σcon(Rqs) = {nil, cons, zero, succ, true, false}.

Our approach is based on rewrite lemmas containing generator functions such as γList
for types like List. Hence, in the first step of our approach we compute suitable types for
the TRS R to be analyzed. While ordinary TRSs are defined over untyped signatures Σ,
Def. 2 shows how to extend such signatures by (monomorphic) types (see, e.g., [9, 14, 22]).

I Definition 2 (Typing). Let Σ be an (untyped) signature. A many-sorted signature Σ′ is a
typed variant of Σ if it contains the same function symbols as Σ, with the same arities. So
f ∈ Σ with arΣ(f) = k iff f ∈ Σ′ where f ’s type has the form τ1 × . . .× τk → τ . Similarly, a
typed variant V ′ of the set of variables V contains the same variables as V, but now every
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variable has a type τ . We always assume that for every type τ , V ′ contains infinitely many
variables of type τ . Given Σ′ and V ′, t ∈ T (Σ,V) is a well-typed term of type τ iff

t ∈ V ′ is a variable of type τ or
t = f(t1, . . . , tk) with k ≥ 0, where each ti is a well-typed term of type τi, and where
f ∈ Σ′ has the type τ1 × . . .× τk → τ .

We only permit typed variants Σ′ where there exist well-typed ground terms of types τ1, . . . , τk
over Σ′, whenever some f ∈ Σ′ has type τ1 × . . .× τk → τ .2

A TRS R over Σ and V is well typed w.r.t. Σ′ and V ′ iff for all `→ r ∈ R, we have that
` and r are well typed and that they have the same type.3

For any TRS R, one can use a standard type inference algorithm to compute a typed
variant Σ′ such that R is well typed. Of course, a trivial solution is to use a many-sorted
signature with just one sort (then every term and every TRS are trivially well typed). But to
make our approach more powerful, it is advantageous to use the most general typed variant
where R is well typed. Here, the set of terms is decomposed into as many types as possible.
Then fewer terms are well typed and more useful rewrite lemmas can be generated.

To make Rqs from Ex. 1 well typed, we obtain a typed variant of its signature with the
types Nats, Bool, and List. Here, the function symbols have the following types:

nil : List qs : List→ List
cons : Nats× List→ List ++ : List× List→ List
zero : Nats ≤ : Nats×Nats→ Bool
succ : Nats→ Nats low, high : Nats× List→ List

true, false : Bool ifLow, ifHigh : Bool×Nats× List→ List

A type τ depends on a type τ ′ (denoted τ wdep τ ′) iff τ = τ ′ or if there is a c ∈ Σ′con(R) of
type τ1 × . . .× τk → τ where τi wdep τ ′ for some 1 ≤ i ≤ k. To ease the presentation, we do
not allow mutually recursive types (i.e., if τ wdep τ ′ and τ ′ wdep τ , then τ ′ = τ). To speculate
conjectures, we now introduce generator functions γτ . For any n ∈ N, γτ (n) is a term from
T (Σ′con(R)) where a recursive constructor of type τ is nested n times. A constructor c : τ1×
. . .× τk → τ is recursive iff τi = τ for some 1 ≤ i ≤ k. So for the type Nats above, we have
γNats(0) = zero and γNats(n+1) = succ(γNats(n)). If a constructor has a non-recursive argu-
ment of type τ ′, then γτ instantiates this argument by γτ ′(0). So for List, we get γList(0) =
nil and γList(n+ 1) = cons(zero, γList(n)). If a constructor has several recursive arguments,
then several generator functions are possible. So for a type Tree with the constructors
leaf : Tree and node : Tree×Tree→ Tree, we have γTree(0) = leaf, but either γTree(n+1) =
node(γTree(n), leaf) or γTree(n + 1) = node(leaf, γTree(n)). Similarly, if a type has several
non-recursive or recursive constructors, then several different generator functions can be
constructed by considering all combinations of non-recursive and recursive constructors.

To ease the presentation, we only consider generator functions for simply structured types
τ . Such types have exactly two constructors c, d ∈ Σ′con(R), where c is not recursive, d has
exactly one argument of type τ , and each argument type τ ′ 6= τ of c or d is simply structured,
too. The presented approach can easily be extended to more complex types by applying
suitable heuristics to choose one of the possible generator functions.

2 This is not a restriction, as one can simply add new constants to Σ and Σ′.
3 W.l.o.g., here one may rename the variables in every rule. Then it is not a problem if the variable x is

used with type τ1 in one rule and with type τ2 in another rule.
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I Definition 3 (Generator Functions and Equations). Let R be a TRS that is well typed w.r.t.
Σ′ and V ′. We extend the set of types by a fresh type N. For every type τ 6= N, let γτ be a
fresh generator function symbol of type N→ τ . The set GR consists of the following generator
equations for every simply structured type τ with the constructors c : τ1 × . . .× τk → τ and
d : ρ1× . . .× ρb → τ , where ρj = τ . We write G instead of GR if R is clear from the context.

γτ (0) = c(γτ1(0), . . . , γτk
(0))

γτ (n+ 1) = d(γρ1(0), . . . , γρj−1(0), γτ (n), γρj+1(0), . . . , γρb
(0))

We extend wdep to Σdef (R) by defining f wdep h iff f = h or if there is a rule f(. . .)→ r

and a symbol g in t with g wdep h. When speculating conjectures, we take the dependencies
between defined symbols into account. If f wdep g and g 6wdep f , then we first generate a
rewrite lemma for g. This lemma can be used when generating a lemma for f afterwards.

For f ∈ Σ′def (R) of type τ1× . . .×τk → τ with simply structured types τ1, . . . , τk, our goal
is to speculate a conjecture of the form f(γτ1(s1), . . . , γτk

(sk)) i→∗ t, where the s1, . . . , sk
are polynomials over variables n1, . . . , nm of type N. Moreover, t is a term built from Σ,
arithmetic expressions, generator functions, and n1, . . . , nm. As usual, a rewrite step is
innermost (denoted s i→R t where we omit the index R if it is clear from the context) if
the reduced subterm of s does not have redexes as proper subterms. From the speculated
conjecture, we afterwards infer a rewrite lemma f(γτ1(s1), . . . , γτk

(sk)) i→rt(n1,...,nm)
t,

where rt : Nm → N describes the runtime of the lemma. To speculate a conjecture, we first
generate sample conjectures that describe the effect of applying f to specific arguments.
To this end, we narrow f(γτ1(n1), . . . , γτk

(nk)) where n1, . . . , nk ∈ V using the rules of the
TRS and the lemmas we have proven so far, taking also the generator equations and integer
arithmetic into account.

For any proven rewrite lemma s i→rt(... )
t, let the set L contain the rule s→ t. Moreover,

letA be the infinite set of all valid equalities in the theory of N with addition and multiplication.
Then s narrows to t (“s (R∪L)/(G∪A)t” or just “s t” ifR, L, G are clear from the context) iff
there exist a term s′, a substitution σ that maps variables of type N to arithmetic expressions,
a position π, and a variable-renamed rule `→ r ∈ R∪ L such that sσ ≡G∪A s′σ, s′|πσ = `σ,
and s′[r]πσ = t. Although checking sσ ≡G∪A s′σ (i.e., G ∪ A |= sσ = s′σ) is undecidable in
general, the required narrowing can usually be performed automatically using SMT solvers.

I Example 4 (Narrowing). In Ex. 1 we have qs wdep low and qs wdep high. If the lemmas

low(γNats(0), γList(n)) i→
3n+1

γList(0) (5) high(γNats(0), γList(n)) i→
3n+1

γList(n) (6)

were already proved, then the following narrowing tree can be generated to find sample
conjectures for qs. The arrows are annotated with the rules and the substitutions used for
variables of type N. To save space, some arrows correspond to several narrowing steps.
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qs(γList(n))

nil

Rule (1)
[n/0]

cons(zero, qs(γList(n′)))

cons(zero, nil)

Rule (1)
[n′/0]

cons(zero, cons(zero, qs(γList(n′′))))

cons(zero, cons(zero, nil))

Rule (1)
[n′′/0]

. . .

Rule (2), Lemmas (5) and (6), Rules (1) and (3)
[n′/n′′ + 1]

Rule (2), Rewrite Lemmas (5) and (6), Rules (1) and (3)
[n/n′ + 1]

The goal is to get representative rewrite sequences, but not to cover all reductions. So we
stop constructing the tree after some steps and choose suitable narrowings heuristically.

After constructing a narrowing tree for f , we collect sample points (t, σ, d). Here, t
results from a  -normal form q reached in a path of the tree by normalizing q w.r.t. the
generator equations G applied from right to left. So terms from T (Σ,V) are rewritten to
generator symbols with arithmetic expressions as arguments. Moreover, σ is the substitution
for variables of type N, and d is the number of applications of recursive f -rules on the path
(the recursion depth). A rule f(. . .)→ r is recursive iff r contains a symbol g with g wdep f .

I Example 5 (Sample Points). In Ex. 4, we obtain the following set of sample points:4

S = { (γList(0), [n/0], 0), (γList(1), [n/1], 1), (γList(2), [n/2], 2) } (7)

The sequence from qs(γList(n)) to nil does not use recursive qs-rules. So its recursion depth
is 0 and the  -normal form nil rewrites to γList(0) when applying G from right to left.
The sequence from qs(γList(n)) to cons(zero, nil) (resp. cons(zero, cons(zero, nil))) uses the
recursive qs-rule (2) once (resp. twice), i.e., it has recursion depth 1 (resp. 2). Moreover,
these  -normal forms rewrite to γList(1) (resp. γList(2)) when using G from right to left.

A sample point (t, σ, d) for a narrowing tree with the root s = f(. . .) represents the sample
conjecture sσ i→∗ t, which stands for a reduction with d applications of recursive f -rules. So
for s = qs(γList(n)), the sample points in (7) represent the sample conjectures qs(γList(0)) i→∗

γList(0), qs(γList(1)) i→∗ γList(1), qs(γList(2)) i→∗ γList(2). Now the goal is to speculate a
general conjecture from these sample conjectures (whose validity must be proved afterwards).

In general, we search for a maximal subset of sample conjectures that are suitable
for generalization. More precisely, if s is the root of the narrowing tree, then we take
a maximal subset Smax of sample points such that for all (t, σ, d), (t′, σ′, d′) ∈ Smax, the
sample conjectures sσ i→∗ t and sσ′ i→∗ t′ are identical up to the occurring natural numbers
and the variable names. For instance, qs(γList(0)) i→∗ γList(0), qs(γList(1)) i→∗ γList(1),
and qs(γList(2)) i→∗ γList(2) are indeed identical up to the numbers in these sample con-
jectures. To obtain a general conjecture, we replace all numbers in the sample conjec-
tures by polynomials. So in our example, we want to speculate a conjecture of the form
qs(γList(pol left)) i→∗ γList(polright). Here, pol left and polright are polynomials in one vari-
able n (the induction variable of the conjecture) that stands for the recursion depth. This
facilitates a proof of the resulting conjecture by induction on n.

4 We always simplify arithmetic expressions in terms and substitutions, e.g., the substitution [n/0 + 1] in
the second sample point is simplified to [n/1].
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So in general, in any sample conjecture sσ i→∗ t that correspond to a sample point
(t, σ, d) ∈ Smax, we replace the natural numbers in sσ and t by polynomials. For any term q,
let pos(q) be the set of its positions and Πq

N = {π ∈ pos(q) | q|π ∈ N}. Then for each π ∈ Πsσ
N

(resp. π ∈ Πt
N) with (t, σ, d) ∈ Smax, we search for a polynomial pol left

π (resp. polright
π ). To

this end, for every sample point (t, σ, d) ∈ Smax, we generate the constraints

“pol left
π (d) = sσ|π” for every π ∈ Πsσ

N and “polright
π (d) = t|π” for every π ∈ Πt

N. (8)

Here, pol left
π and polright

π are polynomials with abstract coefficients. So if one searches for
polynomials of degree e, then the polynomials have the form c0 + c1 ·n+ c2 ·n2 + . . .+ ce ·ne
and the constraints in (8) are linear diophantine equations over the unknown coefficients
ci ∈ N.5 These equations can easily be solved automatically. Finally, the desired generalized
speculated conjecture is obtained from sσ i→∗ t by replacing sσ|π with pol left

π for every
π ∈ Πsσ

N and by replacing t|π with polright
π for every π ∈ Πt

N.

I Example 6 (Speculating Conjectures). In Ex. 4, we narrowed s=qs(γList(n)) and Smax is
the set S in (7). For each (t, σ, d) ∈ Smax, we have Πsσ

N ={1.1} and Πt
N={1}. So from the

sample conjecture qs(γList(0)) i→∗γList(0), where the recursion depth is d=0, we obtain the
constraints pol left

1.1 (d)=pol left
1.1 (0)=qs(γList(0))|1.1 =0 and polright

1 (d)=polright
1 (0)=γList(0)|1 =

0. Similarly, from the two other sample conjectures we get pol left
1.1 (1) = polright

1 (1) = 1 and
pol left

1.1 (2)=polright
1 (2)=2. When using pol left

1.1 =c0+c1·n+c2·n2 and polright
1 =d0+d1·n+d2·n2

with the abstract coefficients c0, . . . , c2, d0, . . . , d2, the solution c0 =c2 =d0 =d2 =0, c1 =d1 =1
(i.e., pol left

1.1 =n and polright
1 =n) is easily found automatically. So the resulting conjecture is

qs(γList(pol left
1.1 )) i→∗ γList(polright

1 ), i.e., qs(γList(n)) i→∗ γList(n).

If Smax contains sample points with e different recursion depths, then we generate
polynomials of at most degree e − 1 satisfying the constraints (8) (these polynomials are
determined uniquely). Ex. 7 shows how to speculate conjectures with several variables.

I Example 7 (Conjecture With Several Variables). The following TRS combines half and plus.

hp(zero, y) → y hp(succ(succ(x)), y) → succ(hp(x, y))

Narrowing s = hp(γNats(n1), γNats(n2)) yields the sample points (γNats(n2), [n1/0], 0),
(γNats(n2 + 1), [n1/2], 1), (γNats(n2 + 2), [n1/4], 2), and (γNats(n2 + 3), [n1/6], 3). For the
last three sample points (t, σ, d), the only number in sσ is at position 1.1 and the polynomial
pol left

1.1 = 2 · n satisfies the constraint pol left
1.1 (d) = sσ|1.1. Moreover, the only number in t is at

position 1.2 and the polynomial polright
1.2 = n satisfies polright

1.2 = t|1.2. Thus, we speculate the
conjecture hp(γNats(2 · n), γNats(n2)) i→∗ γNats(n2 + n) with the induction variable n.

3 Proving Rewrite Lemmas

If the proof of a speculated conjecture succeeds, then we have found a rewrite lemma.

I Definition 8 (Rewrite Lemmas). Let R be a TRS that is well typed w.r.t. Σ′ and V ′. For
any term q, let q↓G/A be q’s normal form w.r.t. GR, where the generator equations are applied
from left to right and A-equivalent (sub)terms are considered to be equal. Moreover, let
s i→∗ t be a conjecture with V(s) = {n1, . . . , nm} 6= ∅, where n = (n1, . . . , nm) are pairwise

5 Note that in the constraints (8), n is instantiated by an actual number d. Thus, if pol left
π = c0 + c1 · n+

c2 · n2 + . . .+ ce · ne, then pol left
π (d) is a linear polynomial over the unknowns c0, . . . , ce.
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different variables of type N, s is well typed, root(s) ∈ Σdef (R), and s has no defined symbol
from Σdef (R) below the root. Let rt : Nm → N. Then s→rt(n)

R t is a rewrite lemma for R iff
sσ↓G/A i→rt(nσ)

R tσ↓G/A for all σ : V(s)→ N, i.e., sσ↓G/A can be reduced to tσ↓G/A in exact-
ly rt(n1σ, . . . , nmσ) innermost R-steps. We omit the index R if it is clear from the context.

So the conjecture qs(γList(n)) i→∗ γList(n) gives rise to a rewrite lemma, since σ(n) = b ∈
N implies qs(γList(b))↓G/A= qs(consb(zero, nil)) i→3b2+2b+1 consb(zero, nil) = γList(b)↓G/A.

To prove rewrite lemmas, essentially we use rewriting with i→(R∪L)/(G∪A).6 However, this
would allow us to prove lemmas that do not correspond to innermost rewriting with R, if R
contains rules with overlapping left-hand sides. Consider R = {g(zero) → zero, f(g(x)) →
zero}. We have f(g(γNats(n))) i→(R∪L)/(G∪A) zero, but for the instantiation [n/0], this
would not be an innermost reduction. To avoid this, we use the following relation i⇀R ⊆

i→(R∪L)/(G∪A): We have s i⇀R t iff there exist a term s′, a substitution σ, a position π, and a
rule `→ r ∈ R∪L such that s ≡G∪A s′, s′|π = `σ and s′[rσ]π ≡G∪A t. Moreover, if `→ r ∈
R, then there must not be any proper non-variable subterm q of `σ, a (variable-renamed) rule
`′ → r′ ∈ R, and a substitution σ′ such that `′σ′ ≡G∪A qσ′. Now f(g(γNats(n))) 6 i⇀R zero,
because the subterm g(γNats(n)) unifies with the left-hand side g(zero) modulo G ∪ A.

When proving a conjecture s i→∗ t by induction, in the step case we try to reduce
s[n/n+ 1] to t[n/n+ 1], where one may use the rule IH: s→ t as induction hypothesis. Here,
the variables in IH may not be instantiated. The reason for not allowing instantiations of
the non-induction variables from V(s) \ {n} is that such induction proofs are particularly
suitable for inferring runtimes of rewrite lemmas, cf. Sect. 4.

Thus, for any rule IH: `→ r, let s 7→IH t iff there exist a term s′ and a position π such
that s ≡G∪A s′, s′|π = ` and s′[r]π ≡G∪A t. Let i⇀(R,IH) = i⇀R ∪ 7→IH. Moreover, i⇀

∗
R (resp.

i⇀
∗
(R,IH)) denotes the transitive-reflexive closure of i⇀R (resp. i⇀

∗
(R,IH)), where in addition

s i⇀
∗
R s′ and s i⇀

∗
(R,IH) s

′ also hold if s ≡G∪A s′. Thm. 9 shows which rewrite sequences are
needed to prove a conjecture s i→∗ t by induction on its induction variable n.

I Theorem 9 (Proving Rewrite Lemmas). Let R, s, t be as in Def. 8, n ∈ V(s) = {n1, . . . , nm},
and n = (n1, . . . , nm). If s[n/0] i⇀

∗
R t[n/0] and s[n/n+ 1] i⇀

∗
(R,IH) t[n/n+ 1], where IH is

the rule s→ t, then there is an rt : Nm → N such that s i→rt(n)
t is a rewrite lemma for R.

I Example 10 (Proof of Rewrite Lemma). Assume that we have already proved the rewrite
lemmas (5) and (6). To prove the conjecture qs(γList(n)) i→∗ γList(n), in the induction base
we show qs(γList(0)) i⇀R γList(0) and in the induction step, we obtain qs(γList(n+ 1)) i⇀

∗
R

nil ++ cons(zero, qs(γList(n))) 7→IH nil ++ cons(zero, γList(n)) i⇀R γList(n+ 1). Thus, there is
a rewrite lemma qs(γList(n)) i→rt(n)

γList(n). Sect. 4 will clarify how to find the function rt .

4 Inferring Bounds for Rewrite Lemmas

Now we show how to infer the function rt for a rewrite lemma s i→rt(n)
t from its proof. If n ∈ n

was the induction variable and the induction hypothesis was applied ih times in the induction
step, then we get the following recurrence equations for rt where ñ is n without the variable n:

rt(n[n/0]) = ib(ñ) and rt(n[n/n+ 1]) = ih · rt(n) + is(n) (9)

6 Here, we define i→(R∪L)/(G∪A) to be the relation ≡G∪A ◦ ( i→R ∪ →L) ◦ ≡G∪A. An adaption of our
approach to runtime complexity of full rewriting is obtained by considering →(R∪L)/(G∪A) instead.
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Here, ib(ñ) is the length of the reduction s[n/0]↓G/A i→∗R t[n/0]↓G/A, which must exist due
to the induction base. The addend is(n) is the length of s[n/n+ 1]↓G/A i→∗R t[n/n+ 1]↓G/A,
but without those subsequences that are covered by the induction hypothesis IH. Since the
non-induction variables were not instantiated in IH, rt(n) is the runtime for each application
of IH. To compute ib and is , for each previous rewrite lemma s′ i→rt ′(n′)

t′ that was used in the
proof of s i→rt(n)

t, we assume that rt ′ is known. Thus, rt ′ can be used to infer the number
of rewrite steps represented by that previous lemma. To avoid treating rules and rewrite
lemmas separately, in Def. 11 we regard each rule s→ t ∈ R as a rewrite lemma s i→1

t.

I Definition 11 (ih , ib, is). Let s i→rt(n)
t be a rewrite lemma with an induction proof as

in Thm. 9. More precisely, let u1
i⇀R . . . i⇀R ub+1 be the rewrite sequence s[n/0] i⇀

∗
R

t[n/0] for the induction base and let v1
i⇀(R,IH) . . .

i⇀(R,IH) vk+1 be the rewrite sequence
s[n/n+ 1] i⇀

∗
(R,IH) t[n/n+ 1] for the induction step, where IH: s→ t is applied ih times.

For j ∈ {1, . . . , b}, let `j i→rt j(yj)
rj and σj be the rewrite lemma and substitution used to

reduce uj to uj+1. Similarly for j ∈ {1, . . . , k}, let pj →rt ′j(zj) qj and θj be the lemma and
substitution used to reduce vj to vj+1. Then we define:

ib(ñ) =
∑

j∈{1,...,b}
rt j(yjσj) and is(n) =

∑
j∈{1,...,k}, pj→qj 6=IH

rt ′j(zjθj)

By solving the recurrence equations (9), we can now compute rt explicitly.

I Theorem 12 (Explicit Runtime of Rewrite Lemmas). Let s i→rt(n)
t be a rewrite lemma, where

ih, ib, and is are as in Def. 11. Then we obtain rt(n) = ihn · ib(ñ) +
∑n−1
i=0 ihn−1−i · is(n[n/i]).

I Example 13 (Computing rt). Reconsider qs(γList(n)) i→rt(n)
γList(n) from Ex. 10. The

proof of the induction base is qs(γList(0)) ≡G qs(nil) i→Rqs nil ≡G γList(0). Hence, ib = rt1 = 1.
The proof of the induction step is as follows. Here, we use that the runtime of both previously
proved lemmas (5) and (6) is 3n+ 1. Note that the non-overlap condition required by the
relation i⇀Rqs is clearly satisfied in all steps with i→Rqs in the proof.

qs(γList(n+ 1)) ≡G qs(cons(γNats(0), γList(n))) i→Rqs rt ′1 = 1
qs(low(γNats(0), γList(n))) ++ cons(γNats(0), qs(high(. . .))) →L rt ′2(n) = 3n+ 1
qs(γList(0)) ++ cons(γNats(0), qs(high(γNats(0), γList(n)))) →L rt ′3(n) = 3n+ 1

qs(γList(0)) ++ cons(γNats(0), qs(γList(n))) ≡G
qs(nil) ++ cons(zero, qs(γList(n))) i→Rqs rt ′4 = 1

nil ++ cons(zero, qs(γList(n))) 7→IH rt ′5(n) = rt(n)
nil ++ cons(zero, γList(n)) i→Rqs rt ′6 = 1

cons(zero, γList(n)) ≡G γList(n+ 1)

Hence, is(n) =
∑
j∈{1,...,6}, pj→qj 6=IH rt ′j(zjθj) = rt ′1 + rt ′2(n) + rt ′3(n) + rt ′4 + rt ′6

= 1 + (3n+ 1) + (3n+ 1) + 1 + 1 = 6n+ 5.

In our example, we have ih = 1. So Thm. 12 implies rt(n) = ib +
∑n−1
i=0 is(i) = 1+

∑n−1
i=0 (6i+5)

= 3n2 + 2n+ 1. Thus, we get the rewrite lemma (4): qs(γList(n)) i→3n2+2n+1
γList(n).

To compute asymptotic bounds for the complexity of a TRS afterwards, we have to infer
asymptotic bounds for the runtime of rewrite lemmas. Based on Thm. 12, such bounds can
be automatically obtained from the induction proofs of the lemmas. To ease the formulation
of bounds for rt : Nm → N, we define the unary function rtN : N→ N as rtN(n) = rt(n, . . . , n).
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If the induction hypothesis was not used in the proof of a rewrite lemma (i.e., ih = 0),
then we have rt(n[n/0]) = ib(ñ) and rt(n[n/n+ 1]) = is(n). Thus, if ib and is are polynomials
of degree dib and dis , respectively, then we obtain rtN(n) ∈ Ω(nmax{dib ,dis}).

If ih = 1, then Thm. 12 implies rt(n) = ib(ñ) +
∑n−1
i=0 is(n[n/i]). Again, let ib and is be

polynomials of degree dib and dis , respectively. Then is(n) = t0+t1n+t2n2+. . .+tdisn
dis , where

the tj are polynomials of degree at most dis − j containing variables from ñ. Hence, rt(n) =

ib(ñ) +
n−1∑
i=0

(t0 + t1i+ t2i
2+ . . .+ tdis i

dis ) = ib(ñ) + t0 ·
n−1∑
i=0

i0+ t1 ·
n−1∑
i=0

i1+ t2 ·
n−1∑
i=0

i2+ . . .+ tdis ·
n−1∑
i=0

idis .

By Faulhaber’s formula [15], for any e ∈ N,
∑n−1
i=0 i

e is a polynomial over the variable n of de-
gree e+ 1. For example if e = 1, then

∑n−1
i=0 i

1 = n·(n−1)
2 has degree 2. By taking also the de-

gree dib of ib into account, rt has degree max{dib , dis + 1}, i.e., rtN(n) ∈ Ω(nmax{dib ,dis +1}).
Finally we consider the case where the induction hypothesis was used several times, i.e.,

ih > 1. By construction we always have is(n) ≥ 1 (since the induction step cannot only
consist of applying the induction hypothesis). Thus, Thm. 12 implies rt(n) ≥

∑n−1
i=0 ihn−1−i =∑n−1

j=0 ihj = ihn−1
ih−1 . So rtN(n) ∈ Ω(ihn), i.e., the runtime of the rewrite lemma is exponential.

I Theorem 14 (Asymptotic Runtime of Rewrite Lemmas). Let s i→rt(n)
t be a rewrite lemma

with ih, ib, and is as in Def. 11. Moreover, let ib and is be polynomials of degree dib and dis .
If ih = 0, then rtN(n) ∈ Ω(nmax{dib ,dis}).
If ih = 1, then rtN(n) ∈ Ω(nmax{dib ,dis +1}).
If ih > 1, then rtN(n) ∈ Ω(ihn).

I Example 15 (Exponential Runtime).Consider the TRSRexpwith the rules f(succ(x), succ(x))
→ f(f(x, x), f(x, x)) and f(zero, zero)→ zero. Our approach speculates and proves the rewrite
lemma f(γNats(n), γNats(n)) i→rt(n) zero. For the induction base, we have f(γNats(0), γNats(0))
≡G f(zero, zero) i→Rexp zero and thus ib = 1. The induction step is proved as follows:

f(γNats(n+ 1), γNats(n+ 1)) ≡G f(succ(γNats(n)), succ(γNats(n))) i→Rexp rt ′1 = 1
f(f(γNats(n), γNats(n)), f(γNats(n), γNats(n))) 7→2

IH
f(zero, zero) i→Rexp rt ′4 = 1

zero

Thus, ih = 2 and is(n) is the constant 2 for all n ∈ N. Hence, by Thm. 14 we have
rt(n) ∈ Ω(2n). Indeed, Thm. 12 implies rt(n) = 2n +

∑n−1
i=0 2n−1−i · 2 = 2n+1 + 2n − 2.

5 Inferring Bounds for TRSs

We now use rewrite lemmas to infer lower bounds for the innermost runtime complexity ircR
of a TRS R. To define ircR, the derivation height of a term t w.r.t. a relation→ is the length
of the longest →-sequence starting with t, i.e., dh(t,→) = sup{m | ∃t′ ∈ T (Σ,V), t→m t′ },
cf. [13]. Here, for any M ⊆ N ∪ {ω}, supM is the least upper bound of M and sup∅ = 0.
Since we only regard finite TRSs, dh(t, i→R) = ω iff t starts an infinite sequence of i→R-steps.
So as in [17], dh treats terminating and non-terminating terms in a uniform way.

When analyzing the complexity of programs, one is interested in evaluations of basic
terms f(t1, . . . , tk) where a defined symbol f ∈ Σdef (R) is applied to data objects t1, . . . , tk ∈
T (Σcon(R),V). The innermost runtime complexity function ircR corresponds to the usual
notion of “complexity” for programs. It maps any n ∈ N to the length of the longest sequence
of i→R-steps starting with a basic term t with |t| ≤ n. Here, the size of a term is |x| = 1 for
x ∈ V and |f(t1, . . . , tk)| = 1 + |t1|+ . . .+ |tk|, and TB is the set of all basic terms.
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I Definition 16 (Innermost Runtime Complexity ircR [12]). For a TRS R, its innermost
runtime complexity function ircR :N→N∪{ω} is ircR(n) = sup{ dh(t, i→R) | t ∈ TB , |t| ≤ n }.

In Sect. 4 we computed the length rt(n) of the rewrite sequences represented by a rewrite
lemma s i→rt(n)

t, where V(s) = n. However, ircR is defined w.r.t. the size of the start
term of a rewrite sequence. Thus, to obtain a lower bound for ircR from rt(n), for any
σ : V(s)→ N one has to take the relation between nσ and the size of the start term sσ↓G/A
into account. Note that our approach in Sect. 2 only speculates lemmas where s has the
form f(γτ1(s1), . . . , γτk

(sk)). Here, f ∈ Σdef (R), s1, . . . , sk are polynomials over n, and
τ1, . . . , τk are simply structured types. For any τi, let dτi

: ρ1 × · · · × ρb → τ be τi’s recursive
constructor. Then for any n ∈ N, Def. 3 implies |γτi(n)↓G/A | = szτi(n) for szτi :N→ N with

szτi(n) = |γτi(0)↓G/A |+ n ·
(
1 + |γρ1(0)↓G/A |+ · · ·+ |γρb

(0)↓G/A | − |γτi(0)↓G/A |
)
.

The reason is that γτi(n) ↓G/A contains n occurrences of dτi and of each γρ1(0) ↓G/A, . . . ,
γρb

(0) ↓G/A except γτi
(0) ↓G/A, and just one occurrence of γτi

(0) ↓G/A. For instance,
|γNats(n)↓G/A| is szNats(n) = |γNats(0)↓G/A|+ n · (1 + |γNats(0)↓G/A| − |γNats(0)↓G/A|) =
|zero|+n = 1+n and |γList(n)↓G/A| is szList(n) = |γList(0)↓G/A|+n · (1+ |γNats(0)↓G/A|) =
|nil|+n · (1+ |zero|) = 1+n ·2. Consequently, the size of s↓G/A= f(γτ1(s1), . . . , γτk

(sk))↓G/A
with V(s) = n is given by the following function sz : Nm → N:

sz(n) = 1 + szτ1(s1) + · · ·+ szτk
(sk)

For instance, the term qs(γList(n)) ↓G/A= qs(consn(zero, nil)) has the size sz(n) = 1 +
szList(n) = 2n+ 2. Since |γτ (0)↓G/A | is a constant for each type τ , sz is a polynomial whose
degree is given by the maximal degree of the polynomials s1, . . . , sk.

So the rewrite lemma (4) for qs states that there are terms of size sz(n) = 2n+ 2 with
reductions of length rt(n) = 3n2 +2n+1. To determine a lower bound for ircRqs , we construct
an inverse function sz−1 with (sz◦sz−1)(n) = n. In our example where sz(n) = 2n+2, we have
sz−1(n) = n−2

2 if n is even. So there are terms of size sz(sz−1(n)) = n with reductions of length
rt(sz−1(n)) = rt(n−2

2 ) = 3
4n

2 − 2n+ 2. Since multivariate polynomials sz(n1, . . . , nm) cannot
be inverted, we invert the unary function szN : N→ N with szN(n) = sz(n, . . . , n) instead.

Of course, inverting szN fails if szN is not injective. However, the conjectures speculated in
Sect. 2 only contain polynomials with natural coefficients. Then, szN is always strictly monoto-
nically increasing. So we only proceed if there is a sz−1

N : img(szN)→ N where (szN◦sz−1
N )(n) =

n holds for all n ∈ img(szN) = {n ∈ N | ∃v ∈ N. szN(v) = n}. To extend sz−1
N to a function

on N, for any (total) function h : M → N with M ⊆ N, we define bhc(n) : N→ N by:

bhc(n) = h( max{n′ | n′ ∈M,n′ ≤ n} ), if n ≥ min(M) and bhc(n) = 0, otherwise

Using this notation, the following theorem states how we can derive lower bounds for ircR.

I Theorem 17 (Explicit Lower Bounds for ircR). Let s i→rt(n1,...,nm)
t be a rewrite lemma for R,

let sz : Nm → N be a function such that sz(b1, . . . , bm) is the size of s[n1/b1, . . . , nm/bm]↓G/A
for all b1, . . . , bm ∈ N, and let szN’s inverse function sz−1

N exist. Then rtN ◦ bsz−1
N c is a lower

bound for ircR, i.e., (rtN ◦ bsz−1
N c)(n) ≤ ircR(n) holds for all n ∈ N with n ≥ min(img(szN)).

So for the rewrite lemma (4) for qs where szN(n) = 2n+ 2, we have bsz−1
N c(n) = bn−2

2 c ≥
n−3

2 and ircRqs(n) ≥ rt(bsz−1
N c(n)) ≥ rt(n−3

2 ) = 3
4n

2 − 7
2n+ 19

4 for all n ≥ 2.
However, even if sz−1

N exists, finding resp. approximating sz−1
N automatically can be

non-trivial in general. Therefore, we now show how to obtain an asymptotic lower bound
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for ircR directly from a rewrite lemma f(γτ1(s1), . . . , γτk
(sk)) i→rt(n)

t without constructing
sz−1

N . As mentioned, if e is the maximal degree of the polynomials s1, . . . , sk, then sz is also
a polynomial of degree e and thus, szN(n) ∈ O(ne). Moreover, from the induction proof of
the rewrite lemma we obtain an asymptotic lower bound for rtN, cf. Thm. 14. Using these
bounds, Lemma 18 can be used to infer an asymptotic lower bound for ircR directly.

I Lemma 18 (Asymptotic Bounds for Function Composition). Let rtN, szN : N → N where
szN ∈ O(ne) for some e ≥ 1 and where szN is strictly monotonically increasing.

If rtN(n) ∈ Ω(nd) with d ≥ 0, then (rtN ◦ bsz−1
N c)(n) ∈ Ω(n d

e ).
If rtN(n) ∈ Ω(bn) with b ≥ 1, then (rtN ◦ bsz−1

N c)(n) ∈ Ω(b e
√
n).

So for the rewrite lemma qs(γList(n)) i→rt(n)
γList(n) where rtN = rt and szN = sz, we

only need the asymptotic bounds sz(n) ∈ O(n) and rt(n) ∈ Ω(n2), to conclude ircRqs(n) ∈
Ω(n 2

1 ) = Ω(n2), i.e., to prove that the quicksort TRS has at least quadratic complexity.
So while Thm. 17 explains how to find concrete lower bounds for ircR (if szN can be inver-

ted), the following theorem summarizes our results on asymptotic lower bounds for ircR. To
this end, we combine Thm. 14 on the inference of asymptotic bounds for rt with Lemma 18.

I Theorem 19 (Asymptotic Lower Bounds for ircR). Let s i→rt(n)
t be a rewrite lemma for

R and let sz : Nm → N be a function such that sz(b1, . . . , bm) is the size of s[n1/b1, . . . ,

nm/bm]↓G/A for all b1, . . . , bm ∈ N, where szN(n) ∈ O(ne) for some e ≥ 1 and szN is strictly
monotonically increasing. Furthermore, let ih, ib, and is be defined as in Def. 11.
1. If ih = 0 and ib and is are polynomials of degree dib and dis , then ircR(n) ∈ Ω(n

max{dib ,dis}
e ).

2. If ih = 1 and ib and is are polynomials of degree dib and dis , then ircR(n) ∈ Ω(n
max{dib ,dis +1}

e ).
3. If ih > 1, then ircR(n) ∈ Ω(ih

e
√
n).

6 Preprocessing TRSs by Argument Filtering

A drawback of our approach is that generator functions only represent homogeneous data
objects (e.g., lists or trees where all elements have the same value zero). To prove lower
complexity bounds also in cases where one needs other forms of rewrite lemmas, we use
argument filtering [2] to remove certain argument positions of function symbols.

I Example 20 (Argument Filtering). Consider the following TRS Rintlist:

intlist(zero) → nil intlist(succ(x)) → cons(x, intlist(x))

We have intlist(succn(zero)) i→n+1 cons(succn−1(zero), . . . cons(succ(zero), cons(zero, nil))) for
all n ∈ N. However, the inhomogeneous list on the right-hand side cannot be expressed in a
rewrite lemma. Filtering away the first argument of cons yields the TRS (Rintlist)\(cons,1):

intlist(zero) → nil intlist(succ(x)) → cons(intlist(x))

For this TRS, our approach can speculate and prove the rewrite lemma intlist(γNats(n)) i→n+1

γList(n), i.e., intlist(succn(zero)) i→n+1 consn(nil). From this rewrite lemma, one can infer
n− 1 ≤ irc(Rintlist)\(cons,1)(n) for all n ≥ 2 resp. irc(Rintlist)\(cons,1)(n) ∈ Ω(n).

Def. 21 introduces the concept of argument filtering for terms and TRSs formally.
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I Definition 21 (Argument Filtering). Let Σ be a signature with f ∈ Σ, arΣ(f) = k, and let
i ∈ {1, . . . , k}. Let Σ\(f,i) be like Σ, but with arΣ\(f,i)(f) = k − 1. For any term t ∈ T (Σ,V),
we define the term t\(f,i) ∈ T (Σ\(f,i),V) resulting from filtering away the i-th argument of f :

t\(f,i) =

 t, if t is a variable
f( (t1)\(f,i), . . . , (ti−1)\(f,i), (ti+1)\(f,i), . . . , (tk)\(f,i) ), if t = f(t1, . . . , tk)
g( (t1)\(f,i), . . . , (tb)\(f,i) ), if t = g(t1, . . . , tb) for g 6= f

Let R be a TRS over Σ. Then we define R\(f,i) = {`\(f,i) → r\(f,i) | `→ r ∈ R}.

However, a lower bound for the runtime of R\(f,i) does not imply a lower bound for R if
the argument that is filtered away influences the control flow of the evaluation. Thus, several
conditions have to be imposed to ensure that argument filtering is sound for lower bounds:
(a) Argument filtering must not remove function symbols on left-hand sides of

rules.
An argument may not be filtered away if it is used for non-trivial pattern matching
(i.e., if there is a left-hand side of a rule where the i-th argument of f is not a variable).
As an example, consider R = {f(cons(true, xs))→ f(cons(false, xs))} where ircR(n) ≤ 1
for all n. But if one filters away the first argument of cons, then one obtains the
non-terminating rule f(cons(xs))→ f(cons(xs)), i.e., ircR\(cons,1)(n) = ω for n ≥ 3.

(b) The TRS must be left-linear.
To illustrate this, considerR = {f(xs, xs)→ f(cons(true, xs), cons(false, xs))}, where again
ircR(n) ≤ 1. But filtering away the first argument of cons yields the non-terminating
rule f(xs, xs)→ f(cons(xs), cons(xs)), i.e., ircR\(cons,1)(n) = ω for n ≥ 3.

(c) Argument filtering must not result in free variables on right-hand sides of
rules.
The reason is that otherwise, argument filtering might again turn terminating TRSs
into non-terminating ones. For instance, consider R = {f(cons(x, xs))→ f(xs)} where
ircR(n) = bn2 c − 1. But if one filters away the second argument of cons, then one gets
the rule f(cons(x)) → f(xs) whose runtime is unbounded, i.e., ircR\(cons,2)(n) = ω for
n ≥ 3.

Thm. 22 states that (a) - (c) are indeed sufficient for the soundness of argument filtering.
To infer a lower bound for ircR from a bound for ircR\(f,i) , we have to take into account that
filtering changes the size of terms. As an example, consider R = {f(x)→ a}. Here, we have
ircR\(f,1)(1) = 1 due to the rewrite sequence f i→R\(f,1) a. The corresponding rewrite sequence
in the original TRS R is f(x) i→R a. Thus, ircR(2) = 1, but all terms of size 1 are normal
forms of R, i.e., ircR(1) = 0. So ircR\(f,i)(n) ≤ ircR(n) does not hold in general. Nevertheless,
for any rewrite sequence of R\(f,i) starting with a term t, there is a corresponding rewrite
sequence of R starting with a term7 s where |s| ≤ 2 · |t|. Thus, if we have derived a lower
bound p(n) for ircR\(f,i)(n), we can use p(n2 ) as a lower bound for ircR(n). Hence, in Ex. 20,
we obtain n

2 − 1 ≤ ircRintlist(n) for all n ≥ 4 resp. ircRintlist(n) ∈ Ω(n).

I Theorem 22 (Soundness of Argument Filtering). Let f ∈ Σ, arΣ(f) = k, and i ∈ {1, . . . , k}.
Moreover, let R be a TRS over Σ where the following conditions hold for all rules `→ r ∈
R:
(a) If f(t1, . . . , tk) is a subterm of `, then ti ∈ V.

7 The term s can be obtained from t by adding a variable as the i-th argument for any f occurring in t.
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(b) For any x ∈ V, there is at most one position π ∈ pos(`) such that `|π = x.
(c) V(r\(f,i)) ⊆ V(`\(f,i)).
Then for all n ∈ N, we have ircR\(f,i)(n2 ) ≤ ircR(n).

In our implementation, as a heuristic we always perform argument filtering if it is permitted
by Thm. 22, except for cases where filtering removes defined function symbols on right-hand
sides of rules. As an example, consider R = {a→ f(a, b)} where ircR(n) = ω for n ≥ 1. If
one filters away f’s first argument, then one obtains a→ f(b) and thus, ircR\(f,1)(n) = 1 for
n ≥ 1. So here, argument filtering is sound, but it results in significantly worse lower bounds.

7 Indefinite Rewrite Lemmas

Our technique often fails if the analyzed TRS is not completely defined, i.e., if there are
normal forms containing defined symbols. As an example, the runtime complexity of
Rin = {f(succ(x)) → succ(f(x))} is linear due to the rewrite sequences f(succn(zero)) i→n

succn(f(zero)). However, the term succn(f(zero)) on the right-hand side contains f and
thus, it cannot be represented in a rewrite lemma. Therefore, we now also allow indefinite
conjectures and rewrite lemmas with unknown right-hand sides. Then for our example, we
could speculate the indefinite conjecture f(γN(n)) i→∗ ?, which gives rise to the indefinite
rewrite lemma f(γN(n)) i→n

?, where ? represents an arbitrary unknown term. To distinguish
indefinite conjectures and rewrite lemmas from ordinary ones, we call the latter definite.

Recall that when speculating conjectures in Sect. 2, we built a narrowing tree for a term
s = f(. . .) and obtained a sample point (t, σ, d) whenever we reached a normal form t. When
speculating indefinite conjectures, we do not narrow in order to reach normal forms, but we
create a sample point (σ, d) after each application of a recursive f -rule. Here, σ is again the
substitution and d is the recursion depth of the path. Note that while previously proven
lemmas L may be used during narrowing, we do not use previous indefinite rewrite lemmas,
since they do not yield any information on the terms resulting from rewriting.

I Example 23 (Speculating Indefinite Conjectures). For Rin, we narrow the term s =
f(γNats(x)). We get f(γNats(x)) succ(f(γNats(x′))) with the substitution σ1 = [x/x′ + 1].
Since we applied a recursive f-rule once, we construct the sample point (σ1, 1). We continue
narrowing and get succ(f(γNats(x′))) succ(succ(f(γNats(x′′)))) with the substitution σ2 =
[x′/x′′+1] and recursion depth 2. Since σ2◦σ1 corresponds to [x/x′′+2], this yields the sample
point ([x/x′′ + 2], 2). Another narrowing step results in the sample point ([x/x′′′ + 3], 3).

These sample points represent the sample conjectures f(γNats(x′+ 1)) i→∗ ?, f(γNats(x′′+
2)) i→∗ ?, f(γNats(x′′′ + 3)) i→∗ ? that are identical up to the occurring numbers and variable
names. Thus, they are suitable for generalization. As in Sect. 2, we replace the numbers in the
sample conjectures by a polynomial pol in one variable n that stands for the recursion depth.
This leads to f(γNats(x+ pol)) i→∗ ? and the constraints pol(1) = 1, pol(2) = 2, pol(3) = 3.
A solution is pol = n and thus, we speculate the indefinite conjecture f(γNats(x+ n)) i→∗ ?.

Every indefinite conjecture gives rise to an indefinite rewrite lemma.

I Definition 24 (Indefinite Rewrite Lemmas). LetR, s, rt be as in Def. 8. Then s i→rt(n)
? is an

indefinite rewrite lemma for R iff for all σ : V(s) → N there is a term t such that sσ ↓G/A
i→rt(nσ)
R t, i.e., sσ↓G/A starts an innermost R-reduction of at least rt(n1σ, . . . , nmσ) steps.

In principle, proving indefinite conjectures s i→∗ ? is not necessary, since s i→0
? is always

a valid indefinite rewrite lemma. However, to derive useful lower complexity bounds, we need
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rewrite lemmas s i→rt(n)
? for non-trivial functions rt . Thm. 25 shows that the approaches

for proving lemmas from Sect. 3 and for deriving bounds from these proofs in Sect. 4 can
also be used for indefinite rewrite lemmas. The only adaption needed is that the relation

i⇀R may not reduce redexes that contain the symbol ?. This restriction is needed due to the
innermost evaluation strategy, because ? represents arbitrary terms that are not necessarily
in normal form. In this way, all previously proven (definite or indefinite) rewrite lemmas L
can be used in the proof of new (definite or indefinite) rewrite lemmas.

I Theorem 25 (Bounds for Indefinite Rewrite Lemmas). Let i⇀R and i⇀(R,IH) be restricted
such that redexes may not contain the symbol ? and let ih, ib, and is be defined as in Def.
11. Here, for an indefinite rewrite lemma s i→rt(n)

? with n ∈ V(s), we say that any rewrite
sequence s[n/0] = u1

i⇀R u2
i⇀R . . . i⇀R ub+1 “proves” the induction base and any rewrite

sequence s[n/n+ 1] = v1
i⇀(R,IH) v2

i⇀(R,IH) . . .
i⇀(R,IH) vk+1 “proves” the induction step,

where IH is the rule s→ ?. Then Thm. 12 and Thm. 14 on explicit and asymptotic runtimes
hold for any definite or indefinite rewrite lemma.

I Example 26 (Complexity of Indefinite Rewrite Lemmas). To continue with Ex. 23, we now
infer the runtime for the rewrite lemma f(γNats(x+n)) i→rt(x,n)

?. Since f(γNats(x+ 0)) is al-
ready in normal form w.r.t. i⇀R, the length of the rewrite sequence in the induction base is
ib(x) = 0. In the induction step, we obtain f(γNats(x+n+1)) i⇀R succ(f(γNats(x+n))) 7→IH
succ(?). Thus, the induction hypothesis is applied ih = 1 time and the number of remaining
rewrite steps is is(x, n) = 1. According to Thm. 12, we have rt(x, n) = ihn · ib(x) +∑n−1
i=0 ihn−1−i ·is(x, i) = 1n ·0+

∑n−1
i=0 1n−1−i ·1 = n. Similarly, since ih = 1 and both ib(x) = 0

and is(x, n) = 1 are polynomials of degree 0, Thm. 14 implies rtN(n) ∈ Ω(nmax{0,0+1}) = Ω(n).

8 Experiments and Conclusion

We presented the first approach to infer lower bounds for the innermost runtime complexity
of TRSs automatically. It is based on speculating rewrite lemmas by narrowing, proving
them by induction, and determining the length of the corresponding rewrite sequences from
this proof. By taking the size of the start term of the rewrite lemma into account, this yields
a lower bound for ircR. Our approach can be improved by argument filtering and by allowing
rewrite lemmas with unknown right-hand sides. In this way the rewrite lemmas do not have
to represent rewrite sequences of the original TRS precisely. Future work will be concerned
with considering more general forms of induction proofs and rewrite lemmas.

We implemented our approach in AProVE [11], which uses Z3 [6] to solve arithmetic con-
straints. While our technique can also infer concrete bounds, currently AProVE only computes
asymptotic bounds and provides the lemma that leads to the reported runtime as a witness.

There exist a few results on lower bounds for derivational complexity (e.g., [16, 20]) and
in the Termination Competitions8 2009 - 2011, Matchbox [19] proved lower bounds for full
derivational complexity where arbitrary rewrite sequences are considered.9 However, there are
no other tools that infer lower bounds for innermost runtime complexity. Hence, we compared
our results with the asymptotic upper bounds computed by AProVE and TcT [4], the winners

8 See http://termination-portal.org/wiki/Termination_Competition.
9 For derivational complexity, every non-empty TRS has a trivial linear lower bound. In contrast, proving

linear lower bounds for runtime complexity is not trivial. Thus, lower bounds for derivational complexity
are in general unsound for runtime complexity. Therefore, an experimental comparison with tools for
derivational complexity is not meaningful.
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in the category “Runtime Complexity – Innermost Rewriting” at the Termination Competition
2014. We tested with 808 TRSs from this category of the Termination Problem Data Base
(TPDB 9.0.2) which was used for the Termination Competition 2014. We omitted 118 non-
standard TRSs with extra variables on right-hand sides or relative rules. We also disregarded
51 TRSs where AProVE or TcT proved ircR(n) ∈ O(1) and 87 examples with ircR(n) ∈ Ω(ω)
(gray cells in the table below). To identify the latter, we adapted existing innermost non-
termination techniques to only consider sequences starting with basic terms. Each tool had
a time limit of 300 s for each example. The following table compares the lower bound found
by our implementation with the minimum upper bound computed by AProVE or TcT.

ircR(n) Ω(1) Ω(n) Ω(n2) Ω(n3) Ω(n>3) Ω(2n) Ω(3n) Ω(ω)
O(1) (51) – – – – – – –
O(n) 65 201 – – – – – –
O(n2) 5 57 17 – – – – –
O(n3) – 10 3 8 – – – –
O(n>3) 3 3 1 – – – – –
O(2n) – – – – – – – –
O(3n) – – – – – – – –
O(ω) 78 293 47 6 – 10 1 (87) 0 200 400 600 8000

100

200

300

Finished Examples

T
im

e
in

Se
co
nd

s

The average runtime of our implementation was 22.5 s, but according to the chart above, it
was usually much faster. In 694 cases, the analysis finished in 5 seconds. AProVE inferred
lower bounds for 657 (81%) of the 808 TRSs. Upper bounds were only obtained for 373 (46%)
TRSs, although such bounds exist for at least all 670 TRSs where AProVE shows innermost
termination. So although this is the first technique for lower ircR-bounds, its applicability
exceeds the applicability of the techniques for upper bounds which were developed for years.
Tight bounds (where the lower and upper bounds are equal) were proven for the 226 TRSs
on the diagonal of the table. There are just 74 TRSs where different non-trivial lower and
upper bounds were inferred and for 60 of these cases, they just differ by the factor n.

Our approach is particularly powerful for TRSs that implement realistic algorithms,
e.g., it shows ircR(n) ∈ Ω(n2) for many implementations of classical sorting algorithms
like quicksort, maxsort, minsort, and selection-sort from the TPDB where neither AProVE
nor TcT prove ircR(n) ∈ O(n2). Detailed experimental results and a web interface for our
implementation are available at [1].

Acknowledgments. We thank Fabian Emmes for important initial ideas for this paper.
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Abstract
XSLT 1.0 is a standardized functional programming language and widely used for defining trans-
formations on XML models and documents, in many areas of industry and publishing. The
problem of XSLT type checking is to verify that a given transformation, when applied to an
input which conforms to a given structure definition, e.g. an XML DTD, will always produce an
output which adheres to a second structure definition. This problem is known to be undecidable
for the full range of XSLT and document structure definition languages. Either one or both of
them must be significantly restricted, or only approximations can be calculated. The algorithm
presented here takes a different approach towards type correct XSLT transformations. It does
not consider the type of the input document at all. Instead it parses the fragments of the result
document contained verbatim in the transformation code and verifies that these can potentially
appear in the result language, as defined by a given DTD. This is a kind of abstract interpret-
ation, which can be executed on the fly and in linear time when parsing the XSLT program.
Generated error messages are located accurately to a child subsequence of a single result element
node. Apparently the method eliminates a considerable share of XSLT programming errors, on
the same order of magnitude as a full fledged global control-flow analysis.

1998 ACM Subject Classification D.1.1 Functional Programming, D.3.2 Functional Language
I.7.2 Scripting languages

Keywords and phrases XSLT, type checking, abstract interpretation

Digital Object Identifier 10.4230/LIPIcs.RTA.2015.350

1 Introduction

1.1 XSLT Transformations and Document Types
XSLT, in its different versions, is a standard transformation language for processing XML
documents. There are different implementations of XSLT processors, employing various
technologies. The contribution in this article is about XSLT 1.0. All versions of the language
are Turing complete and fully functional programming languages. “Functional” in the most
obvious sense means that there are no variables which can change state, but instead functions
which can be applied to constant parameters and thereby yield a certain result. These
function calls can be recursive. Functions are called “templates” in the context of the
language specification.

An XSLT program is in most cases used to convert an XML document, serving as the in-
put, into a second XML document serving as its result.1 The templates which are applied to

1 The conversion into unstructured, plain text, or into text structured by other means than XML is also
possible but not covered by this article.
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certain elements of the input document are selected by a simple mechanism of pattern match-
ing — either in a fully automated way by pre-defined standard rules, or semi-automatically
after some explicit pre-selection by the author of the program. For writing meaningful pro-
grams, it is therefore a prerequisite that all input documents to a given transformation have
certain invariant structural properties. This is not a technical necessity imposed by the
language: the semantics of XSLT are rather “robust” and as long as no errors are raised
explicitly by the programmer, arbitrary input will be transformed into some output. But in
practice, the document type of the input document will be defined in some precise formalism
anyhow, e.g. as RELAX NG grammar, W3C Schema, or W3C DTD.

In many cases it is required that the output of an XSLT transformation adheres also
to such a precise document type. Of course this can always be checked a posteriori by
validating the result of every transformation explicitly against this result document type.
All cases where the result document violates the intended result document type are caused
by programming errors in the transformation.

Obviously, it is highly desirable to find these programming errors earlier, when construct-
ing the XSLT program. This is not only relevant for performance issues, since validating
always implies total parsing, but also for increased reliability of services based on transform-
ations: XML and XSLT processing are more and more applied to critical data, like business
objects, physical real-time data, medical files, etc.

The general problem is that of type checking: an XSLT program is type correct, if and
only if every input which adheres to a given input type will produce an output which adheres
to a given output type. This problem has been proven to be intractable in the general case
[9]. Furthermore, restrictions of the involved two languages (XSLT and document type
definition) have been defined for which it is solvable, and the complexity of these problems
has been thoroughly analyzed in the last two decades. For surveys see e.g. [11] and [12].

1.2 Fragmented Validation
In contrast to these theoretically advanced studies, this paper presents a totally differ-
ent approach, a very simple and pragmatic idea which turns out to be rather effective for
concrete programming, called fragmented validation (FV). It does not consider type of the
input document at all, but only the consecutive sequences of nodes from the result lan-
guage which occur in the contents of an element somewhere in the transformation program’s
XML representation, and which serve as constant data for the transformation process. The
transformation result will be produced by combining these fragments;2 therefore they must
match the result document type in at least some context. In other words, there must exist
at least one rule in the result document type definition which is able to produce contents
that contains the fragment.

For example, when producing XHTML output, any XSLT code like

<xsl:template ...>
<xsl:.../><xsl:.../><tr>...</tr><xsl:.../><td>...</td>

</xsl:template>

will never produce a valid result: there is no “content model” (i.e. regular expression, see
section 2.1) in the type definition of XHTML which allows the elements <tr> (table row)

2 There are other ways of producing output, e.g. by copying nodes of the input document, or explicit
element construction, but in many cases their role is marginal.
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and <td> (table data cell) to appear on the same level of nesting. This violation can be
found independently from the contents of the other embedded XSLT commands in this
example. These can produce anything from the empty sequence to arbitrary sequences of
complete elements. So their outcome cannot change the levels of nesting, and cannot heal
the violation.3

That all appearing constant result fragments match the result document type is neither
a necessary nor a sufficient condition for the correctness of the transformation in a strict
mathematical sense: the combination of correct fragments can still violate the result type,
and incorrect fragments appearing in the source may belong to “dead code” and may never
be used. Debugging XSLT transformations is a rather tedious task, in spite of the intended
readability of the “graphical” text format, see next section. We found that not only at about
thirty percent of programming errors are detected a priori by fragmented validation, but
also that the remaining errors of illegal combinations are much easier diagnosed, because
the strategy for debugging applied by the programmers change fundamentally and becomes
much more focused, as soon it is guaranteed that the constant fragments themselves cannot
be the source of typing errors in some generated output.

The algorithm presented here performs simple and comprehensible validation of all result
fragments contained in an XSLT program. This is done by a kind of abstract interpretation,
which operates on sets of states, and pre-figures a possible later parsing process of the result
document. It does so in linear time, when the XSLT program is parsed and its data model
is constructed, “on the fly”, by tracking the corresponding SAX events.

1.3 XSLT Program as a Two-Coloured Tree
The front-end representation chosen by the designers of XSLT integrates the XSLT language
constructs and the constants of the result language seamlessly: both are represented as well-
formed XML structures, which can be interspered in a rather free fashion. The intention is
to make the formatted program easily readable from two different viewpoints, in the style
of a visual ambiguity: the XSLT language constructs can contain fragments of the result
language, as they are to appear in the output, as their operands, and these fragments in turn
can contain XSLT elements which will be replaced by their evaluation result when executing
the transformation.

Therefore an XSLT program comes as a two-coloured XML tree, in which elements from
XSLT and elements from the result language are mixed. The rules for either embedding are
defined atop a categorization of the XSLT elements:

The top element is always a stylesheet element from XSLT.4

This element contains elements from the T or “top” category of XSLT elements.
Some of those and of their children belong to the R or “result element-containing”
category, which can contain result-language elements directly in their contents.
Vice versa, there is the I or “instruction” category5, which can be inserted anywhere

3 This principle is the core of the type safety of XSLT compared to string manipulation languages
like PHP, which produce “tag soup”, and can indeed be a severe obstacle for programmers used to
these, as the long lasting discussion in https://bugzilla.mozilla.org/show_bug.cgi?id=98168 about
“disable-output-escaping” shows.

4 This element can also be called transform, and all definitions must be doubled accordingly. The
following text ignores this synonym for better readability. The nomenclature in the XSLT standard
[14] is a little bit peculiar anyhow, e.g. functions are called “templates”, etc.

5 This strange wording is again taken from the standard; the one character abbreviations of the categories
are ours.

https://bugzilla.mozilla.org/show_bug.cgi?id=98168
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stylesheet/transform

include import output
stripspace preservespace namespace-alias
key decimal-format attribute-set

template

variable param

R

I
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any result element /
tree of result elements

element fallback if for-each
copy message

choose

when otherwise
apply-templates call-template

with-param

value-of copy-of apply-imports number
text processing-instruction comment
attribute sort

Figure 1 XSLT and result language nesting, with categories.

in such contents, or arbitrarily deeply nested in a result language structure. Later,
when the whole program will be executed, these XSLT elements will evaluate to some
result language elements (“produce” them), which will be inserted into the surrounding
constant result structure.

Figure 1 shows the resulting “sandwich” structure and the possible transitions between
both element sets: each arrow indicates a possible parent-child relationship in an XSLT tree.
Figure 2 shows a typical XSLT source, a bi-coloured tree with pure and mixed sub-trees.
The positions where result language elements may occur in an XSLT structure are limited,
namely the complete contents of the elements of category R; there arbitrary sequences of
result language elements may appear, mixed again with XSLT elements from category I.

By defining an artificial XSLT element eR, which wraps these sequences as its contents,
and which appears (like a normal XSLT element) in the content models of the R elements
as a placeholder for this of embedding, we can integrate those mixed sequences smoothly
into the parsing process of XSLT.

The other way round, starting with an element of the result language, this easy proced-
ure is not applicable, because the I category elements from XSLT can appear ubiquitously
in the result language structure. Therefore the theoretically possible approach of factoring
out all possible interleavings and treat them by constructing the joint deterministic auto-
maton is not feasible in practice, due to combinatorial explosion. Instead, we construct two
independent conventional deterministic automata for both language definitions in the form
of a transition relation and some auxiliary mappings. Simple algebraic operations on this
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Figure 2 XSLT (white), result (black) and unparsed, two-coloured subtrees of an XSLT program.

Table 1 Content models and calculation of transition relation.

C ::= (E,S) | (C, . . . ,C) | (C| . . . |C) | C? | C* | C+

startState : (E \ {eC, eR})→ S

refTo : S 9 E

collect : C × PS × (S ↔ S) → PS × (S ↔ S)
collect(c1, T, U) = (V,W ) collect(c2, T, U) = (X,Y )

collect
(
(c1|c2), T, U

)
= (V ∪X,W ∪ Y )

collect(c1, T, U) = (V,W ) collect(c2, V,W ) = (X,Y )
collect

(
(c1,c2), T, U

)
= (X,W ∪ Y )

collect(c, T, U) = (V,W )
collect(c?, T, U) = (T ∪ V,W )
collect(c+, T, U) = collect

(
(c,c?), T, U

)
collect(c*, T, U) = collect

(
(c+)?, T, U

)
collect

(
(e, s), T, U

)
=
(
{s}, U ∪ (T × {s})

)
Sacc =

⋃
e∈E

π1
(
collect(ce, {startState(e)}, {})

)
goesTo =

⋃
e∈E

π2
(
collect(ce, {startState(e)}, {})

)

relation allow us to switch between deterministic and non-deterministic modes of operation,
whenever the special parsing situations arise.

By these means the algorithm constitutes a transition relation, which can be evaluated
on the fly when parsing an XSLT source. As soon as for the given input no further transition
is possible, either a validation of genuine XSLT syntax is found, or a fragment of the result
language which is not part of any valid result document.

2 Parsing XSLT Programs With Fragmented Validation

2.1 Validation of the XSLT Program
The algorithm presented here is based on DTDs as the means for defining the structure of
the involved documents. This formalism is specified in the core XML standard [3]. A DTD
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defines (1) a set of string values as element tags, and for every such element (2) a list of
attributes with names, types and default values6, and for every element (3) a content model,
which is an extended regular expression over the set of element names. As ususal, a regular
expression defines an accepted language. In this case this is a set of sequences of element
names, which defines the legal contents of the element under definition.

While the XSLT language is not specified in terms of a DTD, this can easily be con-
structed, and is called DX in the following.7 The corresponding sets of element tags is
EX. Beside the element tags defined in the standard, EX contains an element eD which
represents the top-most level of the document tree (in XML this called “document” and is
an additional level one above the top-most element), and an additional element eR which
wraps all embedded sequences of result elements, as described above.

The structure of the result language must be given by a second DTD, called DR and a
set of element names ER. References to character data in the content models (#PCDATA) are
realized as a reference to some additional, reserved element eC. This is the only element
contained in both sets EX and ER. Their union is E.

Each DTD contains a mapping from its subset of E to content models C, see the defini-
tions in Table 1. Let ce ∈ C be the content model for a given e ∈ E. A content model is an
extended regular expression: the atoms are references to elements; the unary constructors
are option, star and plus; the n-ary constructors are sequence and alternative, which can be
realized by associative binary operators.

In our approach the references to elements in a content model are realized by a pair of
the element’s name e and a state number s ∈ S. These states are unique over all content
models of both DTDs and identify the symbolic state of the accepting automaton after a
complete element with the name e has been consumed in that position. The content model
of the document level is additionally defined to ceD = (stylesheet, sD).

That a state appears in a pair (e, s) in a content model is reflected by (s, e) appearing in
the mapping refTo : S 9 E. Additionally, there is an initial state for every content model,
given by startState : E 9 S, having consumed nothing and thus not in the domain of refTo.

All automata of all content models of both DTDs are realized by the one global relation
goesTo : S ↔ S, together with the set of accepting states Sacc ⊂ S. These are constructed
by the function collect(c, T, U), which performs an abstract parsing process of the content
model c, with T being the set of final states of all preceding parsing steps, i.e. the “incoming
states”, and U being the accumulated transition relation so far.

For each element, this function is started with its whole content model, its start state, and
an emtpy “goesTo” relation, see the last two lines in Table 1. The rules for the different kinds
of content models are written as logical inference rules and can be executed deterministically
by function evaluation. The rule for alternatives c1|c2 simply unifies both sets; the rule for
sequences c1|c2 starts parsing of c2 with the results of c1 and unifies the transition relation;
the rule for c? simply adds the incoming states to the set of final states, thus reflecting the
epsilon case of its parsing. The other combinators are defined by equivalence; finally the
parsing of a reference adds transitions from all incoming state to its own state, which also
becomes the single final state.

So far, goesTo, Sacc and refTo are nothing more than a decomposed representation of
a standard labeled transition graph. Since all epsilon transitions are eliminated on the

6 Attributes are not treated in this article.
7 The DTD in the appendix of [14] is non-normative. We took it as a starting point, but defined slightly
different abstractions.
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fly, and since XML is basically LL(1), the resulting relation corresponds to a deterministic
finite automaton.8 This decomposition makes parsing look more complicated in the simple,
deterministic case. But it allows to switch into non-deterministic mode by two simple
set-based operations, which are the heart of our algorithm, see the boxed expressions in
Table 2.9

This table shows the operational semantics of the complete parsing process, omitting
tactics for error recovery, which can easily be integrated according to [6]. An XML source
can be seen as a stream of elements from J , which are open tags, close tags and character
data. The nesting of the tags constitute the borders of the encoded element contents. Parsing
means to translate such a stream into a tree-like structure N , which is an algebraic data
type, built from an element tag and the sequence of the element’s children. This is realized
by the function translate from Table 2, which starts the process with eD, and succeeds if
both the accepting state sD of this content model and the end of the input are reached.

A stack frame is a pair of the node currently under construction, and the set of act-
ive states of the accepting (deterministic or non-deterministic) automaton. The parsing
function 7−→ operates on a pair of such a stack and an input stream and is written as
κ / f / b . β 7−→ κ′ / f ′ / b′ . β′. There κ / f stands for a stack or list with last (top) ele-
ment f with the predecessors κ, whereas b . β stands for a stream with the first (head)
element b and tail β.

Corresponding to the tree nature of XML, the overall parsing is realized by a recursive
call of parsers for content models, and the first three rules of table 2 are very similar to
those known from standard tree parsers.

The parsing process can take the following steps:

(open) — Whenever an open tag is found, and at least one of the current states goes to
a state which consumes this element, then a new stack frame is opened and the parsing of
this element is started. This new frame contains the start state of this element as its only
member, so the parsing process begins in a traditional deterministic way. This rule is the
same for XSLT and result elements and can only be taken if the current and the new element
are from the same set; otherwise there is no transition in goesTo.10

(chars) — Character data in the input stream is simply appended to the contents of the
currently parsed element. If it is not totally made of white space characters (indicated by
WS in the formula) then the set of states is modified and reflects the consumption of the
pseudo element eC. This rule is the same for XSLT and result elements.

(charsWs) — Character data which is totally made of white space characters does not
change the set of states. All states which represent “mixed” contents do accept this input
without effect on the further transitions, and states from the other content models will treat

8 XML allows non-deterministic parsing only of empty input sequences, e.g. content models like
“(a*|b*)”, as long as “(a+|b+)” would be LL(1).

9 By employing a library for the manipulation of relations, this algorithm directly describes a practical
implementation.

10 Technical detail: the set of states after this step is needed already here to check the legality of the
input open tag (the set must be non-empty). For optimization, the calculated result is stored in the
stack frame, which from now on reflects the future situation after the successful acceptance of the whole
new element.
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Table 2 Unified parsing process, deterministic and non-deterministic.

J ::= open(E \ {eC, eR, eD}) | close(E \ {eC, eR, eD}) | Chars
N ::= node(E \ {eC} × SEQ

(
N ∪ Chars)

)
frame = N × PS
/ 7−→ / : (SEQ frame)× (SEQ J)→ (SEQ frame)× (SEQ J)

startFrame(b) =
(
{startState(b)}, node(b, 〈〉)

)
refTo−1(b) ∩ goesTo(|s|) = s′ 6= {}

κ / (s, n) / open(b) . β 7−→ κ / (s′, n) / startFrame(b) / β
(open)

refTo−1(eC) ∩ goesTo(|s|) = s′ 6= {} chars ∈ Chars \WS
κ /
(
s, node(a, α)

)
/ chars . β 7−→ κ /

(
s′, node(a, α / chars)

)
/ β

(chars)

chars ∈WS
κ /
(
s, node(a, α)

)
/ chars . β 7−→ κ /

(
s, node(a, α / chars)

)
/ β

(charsWs)

Sacc ∩ s 6= {}
κ /
(
s′, node(a, α)

)
/
(
s, node(b, β)

)
/ close(b) . γ 7−→

κ /
(
s′, node(a, α / node(b, β))

)
/ γ

(close)

refTo−1(eR) ∩ goesTo(|s|) = s′ 6= {} b ∈ ER
κ / (s, n) / open(b) . β 7−→

κ / (s′, n) /
(

refTo−1(b) , node(eR, 〈〉)
)
/ startFrame(b) / β

(x2r)

κ /
(
s, node(x, α)

)
/
(
s′, node(eR, α

′)
)
/ close(x) . β 7−→

κ /
(
s, node(x, α _ α′)

)
/ close(x) . β

(x2r’)

a ∈ (ER ∪ {eR}) b ∈ EXI
κ /
(
s, node(a, α)

)
/ open(b) . β 7−→

κ /
(

goesTo∗(|s|) / node(a, α)
)
/ startFrame(b), β

(r2x)

translate : SEQ J 9 N

translate(j) = n ⇐⇒ startFrame(eD), j 7−→∗ 〈({sD}, n)〉, 〈〉

the input as “ignorable whitespace” and are not affected either.11

(close) — Whenever the expected close tag is found, and at least one of the active states
is accepting, then the top-most stack frame is dropped, the currently parsed element is

11 Note that the rule “A validating XML processor MUST also inform the application which of these char-
acters constitute white space appearing in element content” from the XML specification [3, sect. 2.10],
is somehow ill-defined in the context of XSLT sources. Let “ ” symbolize some white space in the input
text, like in
<xsl:with-param> <b/> <c/></xsl:with-param>
Then, together with the result language DTD definitions
<!ELEMENT x (a,b,c)>
<!ELEMENT y (#PCDATA|a|b|c)*>
this whitespace will be ignorable or not, depending on the dynamic context of the later expansion.
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considered complete and it is appended to the contents of the element parsed one level
above. This rule is the same for any combination of XSLT and result elements on both
positions.

So far the rules are only a complicated implementation of well-known standard parsing.
But the following rules are specific for fragmented validation and represent the topic and
main contribution of this article. They manage the transition between the two sets of DX
and DR, and introduce non-determinism:

(x2r) — Whenever an open tag of the result language element appears while an XSLT
element is parsed, two stack frames are added: the upper one has the artificial element eR
as its growing node, and represents the embedding of a sequence of result elements in the
XSLT elements’ contents. This integration is in a smooth way: no further ad-hoc action or
adjustment are necessary, as the comparison between (open) and the upper and first part
of (x2r) shows.

The second frame represents the result element b and its further contents, in the same
way as in rule (open). The framed part of the formula makes the difference: since we
do not know statically in which context the result elements will be inserted later, when
executing the XSLT program, all states which refer to the result element (i.e. which are
reached by consuming it) are put into the state set of the eR-frame. Here a first source of
non-determinism comes into play.

Then parsing continues normally, according to (close) and (open) (and possibly (r2x),
see below): the contents of b will be completed, and after its close tag all those sequences
of result elements may follow, which may follow in any content model from CR after any
occurence of b. This is achieved because all corresponding states have been entered into the
frame by refTo−1.

(x2r’) — This process continues until the close tag of x is parsed. Now the accumulated
contents of eR are appended to the contents of x, and the stack frame for eR is discarded.12
After this, the rule (close) will apply normally.

(r2x) — Let EXI ⊂ EX be the XSLT elements from the I category, which can appear
ubiquitously in result elements. Whenever a corresponding open tag appears in a result
element’s contents, this is always legal and starts the XSLT parsing process. This is very
similar to the simple rule (open), as the comparison of the formulas shows.

Additionally, the state set of the result element is upgraded by applying the reflexive-
transitive closure of the transition function; see again the framed expression. This reflects
the fact that we do not know how many of the still required/allowed children from the
result content model will later be delivered by the expansion of the XSLT term. This may
be anything from the empty list, up to all the missing rest.

Both kinds of non-determinism combine nicely. The underlying relational operations
can be implemented efficiently as table lookups; the relations depend only on the two DTDs
and their setup time and space complexity grow polynomially with |S| only, hence they can
feasibly be precomputed and cached ahead of time. Time consumption of FV is linear with

12 In this version of XSLT, the upper stack frame created by rule (x2r) could be spared, since the
information s′ is not required after completion of eR: it stands always at a terminal and accepting
position of an XSLT content model. But this does not hold for the general case in which there could
be more than one appearance of eR in a content model.
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the size of the XSLT source, and it can be executed in parallel with parsing. As mentioned
above, as soon as no transition is possible, an error has been detected. Nevertheless, parsing
and FV can be resumed with the next top-level XSLT template element. FV is incremental,
it can be applied to incomplete programs in each phase of programming, and to general
purpose libraries, since it is independent of the input format.

2.2 Generating Diagnostic Information
Whenever the set of active states becomes empty due to the value of the head of the input
stream, either a violation of the XSLT syntax or an invalid fragment of the result language
is detected. In the latter case error information like

Error in xslt file (file id / line number):
The sequence of elements

[tr][xsl:if][td]
cannot produce valid content w.r.t. "xhtml-1-0-strict.dtd"

can easily be derived. A concrete tool can give further hints to the programmer, e.g. print
out all content models which ever contributed to the state set in this stack frame.

2.3 Example
Table 3 illustrates the operation of the algorithm. The top shows content models which are
indeed a small fragment of a typical situation in practice. The informal notation shows the
initial states from startState(e) and the states from (e, s), as defined in Table 1, as exponents.
Below the transition system generated by the algorithm from that table.

The operation of the transition function 7−→ shows on the left side only the element
names and state sets of the stack frames, ie. omits the nodes’ contents, and on the right
only the heads of the input stream. All possibly intervening states and inputs for parsing of
the contents of the nodes are also omitted.

The trace ends with the detection of an error: There is no content model which allows
more than one title element on the same level of nesting.

2.4 Tests
Table 4 shows the results of applying our local analysis FV in comparison to the global
control-flow based analysis from Møller et al. [10] to their test data. Their approach is
referred to as “XSLV” in the following, for a description see the following section on related
work. We used version 0.9 of their tool. The rather tedious mining and preparation of
this real-world test data is described in detail in [10]. We applied the XSLV tool and our
implementation of FV against the XSLT sources of ten of their test cases and the XHTML
1.0 DTD.13

The figures in Table 4 are in no way meant competitive. They only can give an impression
of the possible impact of both tools on programming and debugging practice.

The first numeric column gives the lines of code of the xslt source. The second column
gives the number of errors signalled by XSLV, and the third, labeled “(cf)”, the subset of
those which really can only found by control flow analysis. These are the errors which can

13 Four of the fifteen cases have been excluded because they do not use HTML as their result language;
one test case was not re-producable.
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Table 3 Example run of the algorithm.

html = 1 head2 , body3

head = 4 ( script5 | style6 )*,
( title7 , ( script8 | style9 )*, ( base10 , ( script11 | style12 )*)?)
| base13 ( script14 | style15 )*, title16 , ( script17 | style18 )*
)

. . .

h1 = 71 ( #chars72 | a73 | b74 | script75 )*,
goesTo = { 1 7→ 2, 2 7→ 3,

4 7→ 5, 4 7→ 6, 4 7→ 7, 4 7→ 13
5 7→ 5, 5 7→ 6, 5 7→ 7, 5 7→ 13,
6 7→ 5, 6 7→ 6, 6 7→ 7, 6 7→ 13,
7 7→ 8, 7 7→ 9, 7 7→ 10,
8 7→ 8, 8 7→ 9, 8 7→ 10,
9 7→ 8, 9 7→ 9, 9 7→ 10,
10 7→ 11, 10 7→ 12, 11 7→ 11, 11 7→ 12, 12 7→ 11, 12 7→ 12,
13 7→ 14, 13 7→ 15, 13 7→ 16,
14 7→ 14, 14 7→ 15, 14 7→ 16, 15 7→ 14, 15 7→ 15, 15 7→ 16,
16 7→ 17, 16 7→ 18, 17 7→ 17, 17 7→ 18, 18 7→ 17, 18 7→ 18,
. . .

71 7→ 72, 71 7→ 73, 71 7→ 74, 71 7→ 75,
72 7→ 72, 72 7→ 73, 72 7→ 74, 72 7→ 75,
73 7→ 72, 73 7→ 73, 73 7→ 74, 73 7→ 75,
74 7→ 72, 74 7→ 73, 74 7→ 74, 74 7→ 75,
75 7→ 72, 75 7→ 73, 75 7→ 74, 75 7→ 75

}
Sacc = {3, 7, 8, 9, 10, 11, 12, 16, 17, 18, 71, 72, 73, 74, 75}

κ1 = 〈. . . , (xsl : template〈〉{. . .})〉 / open(script) . . . .
7−→ κ1 / (eR〈〉{5, 8, 11, 14, 17, 75}) / (script〈〉{. . .}) / close(script) . . . .
7−→ κ1 / (eR〈〉{5, 8, 11, 14, 17, 75}) / open(style) . . . .
7−→ κ1 / (eR〈〉{6, 9, 12, 15, 18}) / (style〈〉{. . .}) / close(style) . . . .
7−→ κ1 / (eR〈〉{6, 9, 12, 15, 18}) / open(title) . . . .
7−→ κ1 / (eR〈〉{7, 16}) / (title〈〉{. . .}) / close(title) . . . .
7−→ κ1 / (eR〈〉{7, 16}) / open(xsl : if) . . . .
7−→ κ1 / (eR〈〉{7, 8, 9, 10, 11, 12, 16, 17, 18}) / (xsl : if〈〉{. . .}) / close(xsl : if) . . . .
7−→ κ1 / (eR〈〉{7, 8, 9, 10, 11, 12, 16, 17, 18}) / open(title) . . . .
7−→ κ1 / (eR〈〉{})

never be found by the purely local method of FV. But if the test data is fairly representative,
as claimed in the discussion in [10], then these low figures support our approach.

The last column shows the number of errors detected by our tool, most of them by FV,
enhanced by checks for missing and wrongly used attribute values, based on a similar, but
simpler local strategy. Not considering the (cf) errors, both tools always found the same
errors, and one tool some additionals. The cases when FV “won” are due to implementation
flaws: Theoretically XSLV finds all errors FV can find.

2.5 Execution of the XSLT program
In our implementation fragmented validation is performed when constructing an internal
data model of an XSLT program. In the context of our metatools framework [16], XML
models are driven by DTDs, and rely on the fundamental property that DTD content models



M. Lepper and B. Trancón 361

Table 4 Test results: control flow-based XSLV vs. local-only FV.

Nr Testcase Nickname loc XSLV tool (cf) FV tool
1 poem 36 3 3
2 AffordableSupplies 42 8 8
3 agenda 43 2 1
6 adressebog 76 2 1 1
8 slideshow 119 2 0
9 psicode-links 128 8 2 12

11 proc-def 258 7 1 10
12 email list 243 2 3
13 tip 265 7 2 3
14 window 701 4 1

are specific for element names and do not depend on the context. In this framework, the
tdom tool is a program which translates a DTD into a collection of JAVA sources which
can realize exclusively all well-typed text corpora w.r.t. this DTD: classes are generated for
every element declaration, and for every sub-expression of a nested content model. On all
levels, all constructor methods ensure and all setter methods preserve validity.

In the context of XSLT, this technology is applied throughout, except for the “two-
coloured” lists which combine elements from both sets. They are realized by lists of the
supertype of both tdom models. Since no tdom element instance can be constructed with
such a sequence as contents, the two-coloured nature propagates up the document tree, until
it is absorbed by the synthetic element eR, which combines a two-coloured downside with a
well-typed upside (see Fig. 2).

With this data model the evaluation of an XSLT program becomes a very simple trans-
formation: all subtrees from XSLT must be replaced by their evaluation results; the two-
coloured lists turn into homogeneous ones of result type, and only these must finally be
parsed incrementally into a tdom subtree. All other contents have already been checked
statically when creating the program’s model, by fragmented validation.

3 Outlook

We have presented an enhancement of a standard tree parser algorithm applied to XSLT
sources. Simple algebraic operations on the transition relation reflect the non-determinism
which is induced by XSLT elements serving as parents or siblings of result elements. This
abstract interpretation allows to detect a substantial share of typing errors in sources of
XSLT transformations by an easy to implement “on-the-fly” algorithm.

3.1 Future Work
This kind of abstract interpretation, which operates on sequences of sets of states, seems
promising for further research and possible natural extensions.

First, the treatment of XSLT instructions embedded into output can be differentiated
further, according to their known meaning: for instance, a <comment> element can not affect
the parsing state, and an <element name=...> instruction can be treated as a verbatim
result element, if the name attribute’s value can be determined statically.
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Also, in a general sense, extensions are possible: assume a sequence mixed from result
and XSLT elements r1, x, r2 is parsed, and the set of states after parsing r1 is s1. Then when
parsing x the rule (r2x) widens the set of states to the set s2 by applying the reflexive-
transitive closure of the transition function, which represents the uncertainty of the future
execution, and for r2 the rule (open) narrows the set of states again to the set s3. From
these sets immediately follows a certain type of the XSLT function x, which in any case
must produce a sequence of elements which lie on a path from some state in s1 to some state
in s3.

In many cases this type information can be exploited. E.g. an XSLT <if> expression with
constant contents can only expand to that contents or to the empty sequence. Similarly,
a <choose> represents the disjunction of its contents. When x is the call of a “named
template”, then all types demanded by all places of such calls can be intersected for inference.

It seems worth exploring how far such a notion of “type” will lead. Possibly not very
far w.r.t. absolutely preventing typing errors, simply due to the proven un decidability of
this problem in general. E.g. as soon as dynamically selected processing is initiated by an
<apply-templates> statement, our approach reaches its limits. But in any case a regular
expression can be synthesized and delivered to the programmer as a hint which sequence
of elements the code of such a “framed” sub-expression, like x in the example above, must
deliver.

In the field of XSLT processing some benchmarks and standard conformance test suites
had been developed, but most of them already have disappeared again. A recent benchmark
framework and test case collection has been released by Saxonica company as open source
project [5]. How far this can be adopted to our “DTD aware” approach is currently under
research. The same holds for the only still available conformance test suite by OASIS [1].
The results of applying them both would be very valuable, but since for our tool the result
document DTD must always be provided, e.g. re-constructed, we expect this to become
rather expensive soon, esp. in the second case with its nearly four thousand test cases.

3.2 Related Work
The problem of type checking XML transformations in a general sense has been studied
thoroughly during the last decade in dozens of papers in the context of data base queries
and of dedicated functional XML transformation languages, but seldom w.r.t. XSLT. For a
survey see [12] and [11].

Very early proposals and influential suggestions can be found in [2]. This paper is purely
theoretical. It translates a very simple subset of XSLT into a collection of formal constraints,
but excludes the implications of XPath navigation and the <apply-templates> matching
mechanism completely.

Tozawa [13] also restricts the analyzed transformation language to a non-Turing-complete
subset of XSLT, excluding XPath horizontal and upwards navigation, and again the implic-
ations in control flow induced by pattern matching. The chosen technique is backward type
inference, which infers the type of all input documents w.r.t. a given result type. It seems
that this interesting approach could not be extended to full-scale XSLT.

A variant called “exact type checking” by its authors restricts types and transformations
until type checking becomes decidable. (It is of course highly desirable that analyses of this
kind would be carried out before the corresponding industrial standardization decisions are
met.) For most advanced results and a survey on this line, see Maneth, Perst and Seidel [8].

The opposite approach is to look at the full functional range of XSLT and execute analysis
as far as possible. This approach is more related to programming practice and thus to our
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FV. The current standard in this field is the work of Møller, Olesen and Schwartzbach [10].
Their approach covers two very different problems: first from the collection of all statements
of the form <apply-templates select="α"> and <template match="β"> in the program,
an upper limit of the control flow graph is derived. (I.e. flow of execution from template to
template, enriched with the change of the “current input focus” from one element tag to a
set of possible element tags.)

All templates are translated into data graphs, which each can produce a certain language
of result trees, and then these graphs are plugged together according to the flow graph from
step one. In a second step it is checked that the resulting overall data graph produces only
output which is in the language of the required result type. For most violations detected,
detailed diagnostic information can be derived. Their solution has been implemented, is
freely available, and has been tested with considerable amounts of real-world test data.

This valuable work plays of course in a different league than our approach. Tellingly,
their paper takes nearly thirty pages to describe the algorithm, excluding the second step
which is cited from an earlier work. Nevertheless, what they can calculate is (naturally) still
an approximation, albeit a very good one. A comparison between of practical test results
with both tools is given in section 2.4 above.

Currently, the most widely used XSLT processors (Xalan, Saxon, XT, libxslt) do not
include any type checking, not even automated validation. The 2.0 version of the XSLT
standard [15] defines a feature called “schema awareness” for XSLT processors. This includes
the ability to read and define schema information in the sense of the W3C Schema language
[4]. The standard foresees this information for explicit validation of subtrees of the generated
output, controlled selectively by the programmer. Currently only the latest versions of some
XSLT engines support this still-evolving standard. While it is arguable from the compiler
construction point of view whether this is the right direction of development (these explicit
excursions to the meta level are called “pragmas” in general-purpose programming languages,
and generally deprecated for portability), the same information could be used in future for
feeding type checking algorithms.

Acknowledgments. A two page extended abstract of this work has been published in the
ICMT 2013 [7]. Many thanks to Anders Møller for giving us access to the XSLV tool and
test cases. And to the anonymous reviewers for valuable hints.
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A Mathematical Notation

The employed mathematical notation borrows from the Z formalism. For convenience, the
following table shows the details which are beyond basic set theory.

A→ B The type of total functions from A to B
A9 B The type of partial functions from A to B
A↔ B The type of relations from A to B
f (| s |) The image of set s under function or relation f
f−1(y) The preimage of value y under function f
r∗ The reflexive-transitive closure of relation r
A×B The product type of two sets A and B, i.e. all pairs

{c = (a, b)|a ∈ A ∧ b ∈ B}.
πn The nth component of a tuple.
P(A) Power set, the type of all subsets of the set A.
SEQ A The type of finite sequences from elements of A
〈〉 The empty sequence
α _ α′ Concatenation of sequences α and α′

a . α A stream(/list/sequence) with element a followed by rest α
α / a A list(/stack) with element a preceded by rest α
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Abstract
The formal semantics of a programming language and its implementation are typically separately
defined, with the risk of divergence such that properties of the formal semantics are not proper-
ties of the implementation. In this paper, we present DynSem, a domain-specific language for
the specification of the dynamic semantics of programming languages that aims at supporting
both formal reasoning and efficient interpretation. DynSem supports the specification of the
operational semantics of a language by means of statically typed conditional term reduction rules.
DynSem supports concise specification of reduction rules by providing implicit build and match
coercions based on reduction arrows and implicit term constructors. DynSem supports modular
specification by adopting implicit propagation of semantic components from I-MSOS, which al-
lows omitting propagation of components such as environments and stores from rules that do
not affect those. DynSem supports the declaration of native operators for delegation of aspects
of the semantics to an external definition or implementation. DynSem supports the definition of
auxiliary meta-functions, which can be expressed using regular reduction rules and are subject
to semantic component propagation. DynSem specifications are executable through automatic
generation of a Java-based AST interpreter.
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Keywords and phrases programming languages, dynamic semantics, reduction semantics, se-
mantics engineering, IDE, interpreters, modularity

Digital Object Identifier 10.4230/LIPIcs.RTA.2015.365

1 Introduction

The specification of the dynamic semantics is the core of a programming language design as
it describes the runtime behavior of programs. In practice, the implementation of a compiler
or an interpreter for the language often stands as the only definition of the semantics of
a language. Such implementations, in a traditional programming language, often lack the
clarity and the conciseness that a specification in a formal semantics framework provides.
Therefore, they are a poor source of documentation about the semantics. On the other hand,
formal definitions are not executable to the point that they can be used as implementations
to run programs. Even when both a formal specification and an implementation co-exist,
they typically diverge. As a result, important properties of a language as established based on
its formal semantics may not hold for its implementation. Our goal is to unify the semantics
engineering and language engineering of programming language designs [22] by providing a
notation for the specification of the dynamic semantics that can serve both as a readable
formalization as well as the source of an execution engine.

In this paper, we present DynSem, a DSL for the concise, modular, statically typed,
and executable specification of the dynamic semantics of programming languages. DynSem
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supports the specification of the operational semantics of a language by means of conditional
term reduction rules.

DynSem rules are statically typed with respect to the declaration of the signature of
constructors of abstract syntax nodes and values, and the declaration of typed (and
optionally named) reduction arrows.
DynSem supports concise specification of reduction rules by providing implicit build and
match coercions based on reduction arrows and implicit term constructors.
DynSem supports modular specification by adopting the implicit propagation of semantic
components from the I-MSOS (Implicitly Modular Structural Operational Semantics)
formalism [16], which allows omitting propagation of components such as environments
and stores from rules that do not affect those. The implicit semantic components
are explicated through a source-to-source transformation, to produce a complete and
unambigous specification. This formalizes informal conventions that are often adopted
in language specifications such as The Definition of Standard ML [14]. The declaration
of variable schemes for semantic components allows their concise identification in rules,
following typical naming conventions in typeset renderings of semantic rules.
DynSem supports the declaration of native operators for delegation of aspects of the
semantics to an external definition or implementation. For example, the details of the
semantics of numeric operations may be abstracted over by delegating to a library of
native numeric operators.
DynSem supports the definition of auxiliary meta-functions, which can be expressed using
regular reduction rules and are subject to semantic component propagation. Thus, one
can provide abstractions over run-time operations that one does want to define explicitly
in the semantics, without having to inline their definition in each rule that uses them.
DynSem specifications are executable through automatic generation of a Java-based AST
interpreter. DynSem specifications can be written either in big-step style or in small-step
style, but our interpreter generator is geared towards big-step style rules. While small-step
style rules are compiled as well, the interpreter generator does not (yet) provide any
optimizations (such as refocusing [18]) to reduce the excessive traversals inherent in
small-step specifications. The interpreter generated from big-step style specifications
has reasonable performance, allowing one to run and experiment with the design of a
language on concrete programs.

The DynSem language is integrated into the Spoofax language workbench, a tool for
the definition of (domain-specific) programming languages [11]. From a language definition,
Spoofax generates a complete programming environment including parser, type checker, and
language-aware editor (IDE). The DynSem integration of Spoofax extends these programming
environments with generated interpreters. DynSem itself is built using Spoofax and comes
with a full-fledged IDE.

The rest of the paper is organized as follows. In the next section we introduce the definition
of term reduction rules and the definition of signatures that declare sorts, constructors, and
arrows. In Section 3 we discuss the features that DynSem provides for supporting concise
definitions of rules. In Section 4 we describe the generation of interpreters from DynSem
specifications. Finally, in Section 5 and Section 6 we discuss related and future work.

2 DynSem Reduction Rules

The specification of a language semantics in DynSem is expressed using term reduction rules
such as the one presented in Figure 1. This rule is the fully explicit version of the definition
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rules
Env E ` Plus(e1, e2) :: Sto s1 −→ NumV(PlusI(n1, n2)) :: Sto s3
where

Env E ` e1 :: Sto s1 −→ NumV(n1) :: Sto s2,
Env E ` e2 :: Sto s2 −→ NumV(n2) :: Sto s3

Figure 1 Fully explicit addition reduction rule.

of the reduction of an addition constructor Plus in a language whose semantics uses both
an environment and a store. In general, a reduction rule in DynSem has the form

Rs ` t1 :: Ws a−→ t2 :: Ws’
where ps

and defines the reduction t1 a−→ t2 from a term matching term pattern t1 to a term
obtained by instantiating term pattern t2, provided that the premises ps succeed. Reduction
arrows are identified by their name and the type of their input (left) argument term. Arrows
can be, and typically are, unnamed (i.e. use the default name) as is the case in Figure 1.

The premises of a reduction rule are of one of the following forms:
A reduction premise is the (recursive) invocation Rs ` t :: Ws b−→ t’ :: Ws’ of a
reduction on the term t, matching the result against the term pattern t’. The premises
in Figure 1 are of this form.
An equality or inequality premise tests the equality or inequality of two terms. For
example, in Figure 6, the Ifz constructor has two corresponding reduction rules that are
disambiguated depending on the integer the first sub-term (the condition) reduces to.

Ws’ are used to describe the context in which a particular reduction takes place. For
example, the environment Env E and the store Sto S are semantics components in the rule
in Figure 1.

In the conclusion of a rule, the left-hand side terms (Rs, t1 and Ws) are patterns binding
the meta-variables they contain, while the terms on the right-hand side (t2 and Ws’) are
instantiated to construct the result of reduction. This is reversed in reduction premises,
where the left-hand side terms are term instantiations, while the right-hand side terms are
binding patterns. A variable can only be bound once per rule.

DynSem rules are statically typed with respect to the declaration of the signature of term
constructors, the declaration of typed (and optionally named) reduction arrows, and the
declaration of semantic components.

Term Signature. DynSem rules define reductions on terms that represent the abstract
syntax trees of a programming language. The abstract syntax tree constructors of a language
are declared as an algebraic signature, as illustrated in Figure 2. Semantic rules typically
use additional intermediate representations and final values, which are also represented using
terms and should also be declared in the algebraic signature. For example, in a big-step
semantics the values produced by reductions are typically not a subset of the abstract syntax,
but are defined as a separate set of terms.

The base components of an algebraic signature are sorts and constructors. The sorts
of the object language such as the sorts Expr and Bind in Figure 2 and the sort of the
intermediate or output values such as the sort of values V in Figure 3 are declared in the
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signature
sorts Expr Bind
constructors
Num : String → Expr
Plus : Expr * Expr → Expr
Var : String → Expr
Bind : String * Expr → Bind
Let : List<Bind> * Expr → Expr
Fun : String * Expr → Expr
App : Expr * Expr → Expr
Box : Expr → Expr
Unbox : Expr → Expr
SetBox : Expr * Expr → Expr
Seq : Expr * Expr → Expr
Ifz : Expr * Expr * Expr → Expr

Figure 2 Signatures of the object language.

signature
sorts V
semantic−components

Env = Map<String, V>
Sto = Map<Int, V>

constructors
NumV : Int → V {implicit}
ClosV : Expr * Env → V
BoxV : Int → V

arrows
Expr −→ V
List<Bind> b−→ Env

native operators
plusI : Int * Int → Int
str2int : String → Int

Figure 3 Auxiliary components.

signature
constructors
allocate : V −→ Int
write : Int * V −→ V
read : Int −→ V

Figure 4 Meta-functions.

signature
variables

E : Env
S : Sto

Figure 5 Variable Schemes.

corresponding sort section in the signature. Constructor declarations consist of a name,
the sorts of the argument terms, and the result sort.

In addition to the declared sorts, the parametric sorts, List and Map can be used in
signatures. Given a sort X, List<X> is the sort of lists of terms of sort X. The corresponding
terms are [], which denotes the empty list and [hd|tl], which denotes the list with head
element hd and tail tl (following Prolog list notation). Given two sorts X and Y, Map<X,Y>
denotes the sort of finite maps from terms of sort X to terms of sort Y. The corresponding
terms are {}, which denotes the empty mapping, {x 7→ v, S}, which extends the mapping
S by associating v to x, and S[l], which denotes the term associated with l in mapping S.
These sorts can be used directly in constructor signatures such as the Let constructor in
Figure 2 that takes a list of binders as first parameter.

Semantic Components. The specification of operational semantics using big-step rules
defines reduction relations that involve not only abstract syntax terms but also other entities,
known as semantic components, representing the state of a program under reduction, such
as an environment or a store. DynSem distinguishes two types of semantic components
based on how they are passed through the reduction rules: read-only and read-write semantic
components. Terms of any sort may be used as semantic component after being declared
as such. The semantic−components section in Figure 3 declares Env as a semantic
component of sort Map<String,V>, mapping identifiers (strings) to values, and Sto as a
semantic component of sort Map<Int,V>, mapping locations (integers) to values.

Semantic components appearing left of ` (in Rs) are read-only. These components
propagate downwards, i.e. are passed into premises, but do not propagate horizontally, i.e.
changes introduced by one premise are not visible in the next premise. A typical example of a
read-only component is an environment, mapping variables to values. Downward propagation
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corresponds to the lexical scope of variables. Components that appear right of :: are read-
write semantic components. Since the value of such components is threaded through the
computation, they appear on both the right and the left side of a reduction. A typical
example of a read-write component is a store mapping locations to values. Threading a store
is expressed as e :: Sto st −→ v :: Sto st’ when reduction of expression e into
value v changes the corresponding store form st to st’. Store threading corresponds to the
dynamic extent of store mappings.

Arrows. A reduction arrow defines a relation between terms, possibly involving semantics
components. However, only the sorts of the source and target terms of an arrow have to
be declared in its signature. The set of semantic components an arrow uses is inferred, as
described in Section 3. The signature in Figure 3 declares two arrows, the main evaluation
arrow −→ from expressions Expr to values V, and the binder reduction b−→ from lists of
binders to environments. Arrow declarations can be overloaded on the input sort. That is,
one can declare several arrows with the same name, as long as they have different input
types. For example, in Figure 3 we could also use −→ instead of b−→ to denote the reduction
from lists of binders to environments.

Native Operators and Meta Functions. The core rules of a semantics define reductions
on the abstract syntax terms of the language under consideration. However, some aspects
of the semantics we would like to delegate, i.e. not define directly. DynSem provides two
mechanism for such delegation.

A native operator is a function that is defined externally to DynSem. The specification
just records its signature. A typical use of native operators is the API for numeric operations.
For example, Figure 3 declares the native operators plusI for adding integers and str2int
for parsing strings as integer literals. From the perspective of the type system, native
operators are term constructors. From the perspective of reduction, a native operator comes
with an implementation that replaces its invocation with a term of the appropriate sort.

Sometimes we do want to define the semantics of an operation in DynSem, but we want
to abstract over a frequently occurring pattern. A meta-function, declared as a constructor
C: ts −→ t (with a long arrow), introduces an auxiliary term constructor in combination
with an arrow evaluating it to its result type. For example, Figure 4 declares the signature of
meta-functions allocate, write, and read, which abstract over operations on the store,
simplifying the definition of rules using the store.

3 Conciseness and Modularity

The previous section introduced the general form of DynSem reduction rules and the signatures
that declare the structure of terms and arrows. However, as one can observe in Figure 1,
full-fledged reduction rules can be rather verbose, requiring quite a bit of boilerplate code for
the reduction of subterms and the propagation of semantic components. Such verbosity is
bad since it hides the essence of a rule; which parts of the rule in Figure 1 are truly related
to the addition? Worse, the explicit propagation of semantic components is harmful to
modularity. When introducing a new feature to a language that requires a new semantic
component, all existing rules need to be adjusted to propagate the new semantic component.
It is common practice to reduce the verbosity of rules by means of informal conventions [14].
DynSem provides several features formalizing such conventions so that rules are unambiguous,
yet have can be defined concisely and modularly. These features can be separated in two
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Num(n) −→ str2int(n)

Ifz(0, e1, _) −→ e1

Ifz(n: Int, _, e2) −→ e2
where

n 6≡ 0

E ` Var(x) −→ E[x]

[] : List(Bind) b−→ {}

[Bind(x, v: V) | lb] b−→ {x 7→ v, E}
where

lb b−→ E

E ` Let(E_b, e) −→ v’
where

Env {E_b, E} ` e −→ v’

Seq(v1 : V, e2) −→ e2

Plus(NumV(i1), NumV(i2)) −→ plusI(i1, i2)

E ` f@Fun(_, _) −→ ClosV(f, E)

App(ClosV(Fun(x, e), E), v: V) −→ v’
where
Env {x 7→ v, E} ` e −→ v’

Box(e) −→ BoxV(allocate(e))

Unbox(BoxV(loc)) −→ read(loc)

SetBox(BoxV(loc), e) −→ write(loc, e)

allocate(v) −→ loc
where
fresh ⇒ loc, write(loc, v) −→ _

write(loc, v) :: S −→ v :: Sto {loc 7→ v, S}

read(loc) :: S −→ S[loc] :: S

Figure 6 DynSem reduction rules for a functional language with references (boxes). The meta-
functions allocate, write, and read define reusable abstractions over store operations that
are used in the definition of the rules for boxes.

categories: (1) coercions that allow implicit transformation from one sort into another, and
(2) implicit propagation of semantics components that allows the omission of those semantic
components that are not affected by a rule.

3.1 Implicit Coercions
Implicit Constructors. Including the terms of one sort in another sort requires the intro-
duction of an explicit constructor. For example, in order to use integers (sort Int) as values
(sort V), a constructor NumV: Int → V is required, which should be applied to wrap each
use of an integer as a value. In order to avoid such unnecessary constructor applications
we allow unary constructors to be declared as implicit. An implicit constructor C with
signature S1 →S2 defines a coercion between sort S1 and sort S2. That is, one can use a
term of sort S1 in a context where a term of sort S2 is expected. The constructor C will
then be automatically inserted to match the context. Therefore, since the NumV constructor
is declared as implicit in the signature presented in Figure 3, we can omit it when the
expected sort is known, such as in the first rule in Figure 6 for Num(n) where the right-hand
side is an Int while a V is expected according to the −→ arrow declaration. Coercion
expansion will introduce this implicit constructor, transforming the rule into

Num(n) −→ NumV(str2int(n))

Arrows as Coercions. In big-step operational semantics, most of the reductions rules have
a similar scheme. That is, for a given constructor, reduce its subterms to values using a
(recursive) invocation of the arrow and then combine these values to produce the final value
of the term. If the reductions of the sub-terms behave uniformly with respect to semantic
components, we can infer the sub-reduction by treating an arrow as declaration of an implicit
coercion. Implicit arrow coercions are made explicit by the introduction of reduction premises.
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If a term t of sort A appears in a position where sort B is expected, and if there is an arrow
from A to B, an additional premise reducing t to a variable of sort B will be introduced.
Conversely, if a pattern t of sort B is used in a position where a pattern of sort A is expected,
and there is an arrow from A to B, the pattern is replaced with a fresh meta-variable, which is
subsequently reduced in a new reduction premise to pattern t. For example making coercions
explicit in the Ifz rules of Figure 6 leads to the following rules:

rules
Ifz(e0, e1, _) −→ v1
where

e0 −→ NumV(0),
e1 −→ v1

Ifz(e0, _, e2) −→ v1
where
e0 −→ NumV(n),
n 6≡ 0,
e2 −→ v1

In order to force coercion applications, one can also annotate variables in a pattern with
their required type (e.g. the n : Int pattern in the second Ifz rule) enforcing a coercion
from this type to the expected one to be introduced.

Variable Schemes. Big-step rules for operational semantics often require the use of several
semantics components. In such a case, the use of meta-variables to represent the different
semantics components may lead to an ambiguity about which semantics component is
represented by a particular variable. Therefore, the name of a semantic component is
required to appear before the term that represents its value, as in Figure 1. DynSem supports
writing semantic components using just a variable, through a declaration of variable schemes.
Given a semantics components SC, a variable scheme declaration such as S : SC reserves
the name S and several extensions (e.g. Sn where n is an integer or S_x where x is any
identifier extension) to be used as meta-variables for the semantic component SC. These
reserved variables do not require the explicit semantic component name annotation as shown
in the variable rule in Figure 6 where E is inferred to be the semantic component Env given
the variable declaration in Figure 5.

3.2 Implicit Semantic Components
While the rule for addition in Figure 1 explicitly passes the environment and store to its
premises, the rules in Figure 6 do not mention semantic components or only selectively.
DynSem uses implicit propagation of semantic components, as introduced in I-MSOS [16],
to support the ommission of semantic components in rules that are not affected them. For
example, the rule in Figure 1 can be rewritten to the Plus rule in Figure 6. Explication of
coercions and semantic components automatically transforms this rule to the one in Figure
1. In addition to being more concise, this rule is also more modular, since it can be used in
combination with language constructs that require different semantic components.

Semantic Component Dependency. In order to ensure consistency of the reduction rela-
tions, all reduction rules for a given arrow have to be extended with the same set of read-only
and read-write semantic components. Moreover a particular semantic component can not
appear both as a read-only and read-write component. Therefore, before explicating the
semantic components in all rules, we first infer which semantic components are implicitly
used by each arrow in the specification.

The semantic components used by an arrow do not only depend on the rules defining the
arrow but also on the semantic components used by other arrows on which it depends. Let

r−→ denote a particular reduction arrow, the set of semantic components that have to appear
in the expansion of the reduction rules defining r−→ has to satisfy the following properties:
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Env E_0 ` [Bind(x, e_0) | lb] :: Sto S_0 b−→ {x 7→ v, E} :: Sto S_2
where
Env E_0 ` e_0 :: Sto S_0 −→ v :: Sto S_1,
Env E_0 ` lb :: Sto S_1 b−→ E :: Sto S_2

E ` Let(b_0, e) :: Sto S_0 −→ v’ :: Sto S_2
where
Env E_0 ` b_0 :: Sto S_0 b−→ E_b :: Sto S_1,
Env {E_b, E} ` e :: Sto S_1 −→ v’ :: Sto S_2

Figure 7 Explicated rules for Bind and Let.

All the semantic components appearing explicitly in one of the occurrences of arrow r−→,
either in the premise or conclusion of a rule, should appear in its expansion.
A semantic component appearing in the expansion of an arrow r−→, which is used in the
premise of a rule defining arrow r−→, should appear in the expansion of r−→.

Explication of Semantic Components. Given these dependencies, we define an explication
transformation on reduction rules, which make the use of semantic components explicit.
Assume that for every reduction relation r−→ we know its corresponding set of read-only Rr
and read-write Wr semantic components according to the dependencies introduced above.
Then, for each reduction rule, we apply the following transformations:

Extend the set of read-only and read-write semantic components of the left-hand side of
the conclusion with free variables for each of the components in Rr and Wr

Extend the set of read-only semantic components of each reduction premise using the
read-only semantic components of the conclusion (the second dependency rule ensures
that there is one) as required by its dependencies.
Thread the read-write semantic components through the premises, as follows:

Initialize the context of read-write semantic components Sc with the read-write semantic
components of the left-hand side of the conclusion
For each reduction premise:
• Extend the semantic components on the left-hand side as required by the dependen-
cies of the arrow of the premise

• Use fresh variables to extend the semantic components on the right-hand side
• Update the context Sc by replacing the semantic components used in the left-hand
side with the corresponding fresh variables used in the right-hand side.

Extend the semantic components on the right-hand side of the conclusion using the
context returned by premises processing.

Coercion explication followed by the semantic components explication turns the Plus
rule from Figure 6 in the rule of Figure 1. It also introduces the Env and Sto semantic
components in the binder reduction rules b−→ (through the implicit use of the −→ arrow
in v : V) leading to the explicated rules for binder lists and Let in Figure 7. Note that,
unlike with usual inductive rules, due to the threading of semantics components, the order of
the premises matters when using implicit semantics components.
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4 Interpreter generation

Our objective is to compile DynSem specifications to efficient interpreters. Their performance
should be acceptable and they must lend themselves to later optimizations. To achieve this
we translate a DynSem specification into an interpreter in Java. ASTs of object language
programs are mirrored to instantiations of the generated classes which yields executable ASTs.
Programs in the object language are then directly executable after parsing. Executable ASTs
are simpler to reason about than bytecode interpreters, since they preserve the program
structure and since they lend themselves to local program optimizations. The runtime
behavior of the generated executable ASTs resembles hand-written Java code which allows
the JVM’s JIT to recognize common patterns and optimize the running program.

In a nutshell, the generator maps signatures of the embedded language to classes in
Java, arrow declarations to method stubs and general premisses to method bodies. Classes
are generated into a class hierarchy dictated by the relation between sorts and between
constructors and sorts. Reduction rule alternatives become callable in ancestor classes.

Signatures. A sort definition translates to an abstract Java class. Sorts related by a subtype
relationship translate to Java classes in a subtype relation. A sort definition also derives a
specialized Java implementation for a list of that specific sort.

sort S =⇒
{

abstract class AS extends AbstractNode { . . . }

class ListS implements List〈AS〉 { . . . }

All generated list classes implement the List〈T 〉 interface and generated sort classes
extend the framework-provided AbstractNode class.

A constructor C of arity n and sort S derives a Java class Cn which extends the class
AS . Classes derived from non-nullary constructors form roots for program subtrees. The
generation scheme is

C : S1 ∗ ... ∗ Sn → St =⇒ class Cn extends ASt{AS1 _1; ...;ASn _n; }

An explicated arrow declaration for rel−→ produces a method declaration in the class corres-
ponding to the arrow’s source sort. The return type RAT

of the method is a record of the
target type and the read-write semantic component types:

R1 · ... ·Rnr ` (S :: S1 · ... · Sns) rel−→ (T :: S1 · ... · Sns)

=⇒
{

public RAT
rel(AR1 , ..., ARnr

, AS1 , ..., ASnr
){ def(S, rel) } in target(S)

class RAT
{AT _0;AS1 _1; ...;ASnr

_n; }

The class containing the method is given by the conclusion’s source pattern:

target(t) =


class Cn if t = C(x1, ..., xn)
class ListS if t : List〈S〉
abstract class AS if t : S, otherwise

The generated method calls its ancestor or raises an exception if the containing class
does not have an ancestor:

def(s, rel) =


super.rel(...) if s = C(x0, ..., xn)
super.rel(...) if s : T, T 6= List〈T ′〉 and ∃T ′′, T ≤ T ′′
raise exception otherwise
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term construction Cn(t1, ..., tn) =⇒ new Cn(e1, ..., en)
list construction [t1|t2] (: List〈T 〉) =⇒ new ListT (e1, e2)

empty map {} =⇒ new PersistentTreeMap()
map extension {t1 7→ t2, t3} =⇒ e3.plus(e1, e2)

map access t1[t2] =⇒ e1.get(e2)
assignment t⇒ v (: T ) =⇒ AT v = e

pattern match t⇒ C(v1, ..., vn) =⇒ if (e instanceof Cn) { . . . }

equality check t1 = t2 =⇒ if (e1.equals(e2)) { . . . }

relation t∗rs ` ts :: tsc
rel−→ v :: vtc (: T ) =⇒ RAT

_v = es.rel(e∗rs, e
∗
sc)

Figure 8 Correspondence of DynSem premises in Java.

Reduction rules. A pre-processing step merges all rules defining reductions for the same
constructor (e.g. the two rules for Ifz in Figure 6), common premises are factorized and an
or combinator (∨) is introduced to combine the different alternatives. The merging algorithm
is similar to left-factoring as described by Pettersson [19]. A difference is that premise
equivalence in DynSem is decided modulo alpha-equivalence. Non-trivial pattern matching
on the right-hand side of reduction premises is factored out using a pattern matching premise
t⇒p. When p is not a variable, we apply the following transformation on the premise:

Rs ` t :: Ws −→ p :: Ws’ =⇒ Rs ` t :: Ws −→ x :: Ws’, x ⇒ p

with x a fresh variable. We use similar rules for non-trivial patterns in Ws’. A merged
reduction rule has its conclusion in normal form and a single general premise. It derives a
method into the class described above. The signature of the generated method respects the
signature derived from the arrow declaration. The general premise derives the method body.
Figure 8 gives the correspondence of DynSem premises to Java statements and expressions.
The individual premises are combined either as a sequence or as alternatives. Premises that
can fail, such as pattern matches, are always guarded. If at evaluation a guard fails, its
alternative premise is evaluated. A successful general premise returns from the method. For
each reduction rule rs ` s :: sc rel−→ t :: tc where gp the weaving of Java statements is given
by the function gen(gp · sup(s, rel), t):

gen((p1 · p2) ∨ p3, t) := if geng(p1) then gens(p1) ; gen(p2, t)
else gen(p3, t)

gen(p1 · p2, t) := gen(p1, t) ; gen(p2, t)
gen(ε, t) := return t;

gen(sup(s, rel), t) := def(s, rel)

where geng(p) and gens(p) generate Java code according to Figure 8 for the guard and the
successful case of premise p, respectively.

5 Related work

Definition of Standard ML. The implicit propagation of semantic components in DynSem
is an implementation of the notation used in the The Definition of Standard ML [14] to
define the dynamic semantics for a core of Standard ML. This core of Standard ML is defined,
just like definitions in DynSem, in the style of natural semantics [10]. Although inspired by
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I-MSOS [16], explication in DynSem is closer to the definition used by Milner et al. which
defines an implicit order of premises and is applied to big-step style semantics. Following
I-MSOS, rules in DynSem may also omit the unused read-only semantic components from
rules, which are left implicit by Milner et al. The Definition of Standard ML uses a single
reduction arrow symbol.

I-MSOS, MSOS & interpreter generation. Modular SOS (MSOS) [15] introduces relation
arrows that have record values as arrow labels. This record value carries auxiliary entities to
be propagated together in the label of the arrow. Labels can be composed but have to be
explicitly mentioned on all uses of the relation arrow, regardless of whether the rule accesses
the contents of the label or not.

I-MSOS [16], which is the inspiration for DynSem, improves on the modularity and
conciseness of MSOS. It introduces the distinction between auxiliary entities (semantic
components) that implicitly propagate either only downwards or are threaded through the
premises of rules. Each I-MSOS specification has a translation to an MSOS specification by
aggregating the semantic components on the arrow label. I-MSOS also supports multiple
relation arrows, but in contrast to DynSem, using multiple arrows in the same rule propagates
all of the semantic components to all of the arrows used together. As a special case of this
difference DynSem also prevents propagation of auxiliary entities for ground terms.

I-MSOS and MSOS can derive specialized interpreters [1] in Prolog. In the naive generation
strategy each reduction rule translates to a Prolog clause which calls a stepping predicate
which searches for a next reduction in the program. The number of step inferences harms
performance the interpreter. A refocusing strategy, following Danvy et al. [18], rewrites an
MSOS specification to a specification in which each rule attempts to transitively completely
evaluate intermediate values. This heuristic, speculating on locality of evaluation, significantly
reduces the number of inferences and improves execution performance. Special rules are
introduced to propagate abruptly terminated computations. Specialization of interpreters
from MSOS involves left-factoring the rules as described by Pettersson [19]. Left-factoring
is similar to the merging of rules in DynSem. While left-factoring eliminates only identical
premises, merging in DynSem also eliminates mutually exclusive premises and premises
which can be unified modulo alpha-renaming. The motivation for left-factoring is to reduce
backtracking, merging additionally has the goal of grouping premises per constructor.

K Semantic Framework [20] is a mature language and toolchain for specification of
dynamic semantics of programming languages. K has been applied to production-size
languages such as C [7] and Java [4]. Semantics in K are given as rewrite rules. The
homologue of semantic components in K are configurations. These consist of (nested) cells
used to store the interpreted program and additional data structures. Configurations are
automatically inherited into rules and rewriting takes place directly inside the cells of the
configuration. Rules that do not mention the configuration automatically perform the rewrite
inside the K (program) cell and resemble rewrite rules. Rules that explicitly mention the
configuration resemble context-sensitive reduction rules. Cells in the configuration that are
not accessed are left unchanged and implicitly propagated. Cells are only propagated from
input to output since K rules do not have premises.

K requires that the syntax definition of the object language be embedded in the K
specification. Annotations on the syntax definition can define the evaluation order or
strictness requirements. For example a strict(1) annotation on the conjunction expression
states that the left subexpression has to be evaluated first and completely. Once this syntax
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is defined in K one can use a mix of object language concrete syntax and K syntax to match
and build terms. Mixing of concrete object language syntax and DynSem can be obtained by
assimilation following [21]. K specifications derive textual representations of the rules and
graphical layouts for the configurations and cells to aid in documenting the object language.
K specifications are compiled to rewriting logic in Maude [6]. Our previous micro-benchmarks
[22] revealed that on big-step style specifications of the same language in DynSem and K,
interpreters derived from DynSem are much faster than those derived from K.

PLT Redex [8] is an executable functional domain-specific language for semantic models.
In Redex the semantics of a language is defined using context-sensitive reduction relations
and meta-functions. Redex comes with a rich standard library of functions that can be
used by semantic models. Its toolchain has facilities targeted at semantics prototyping
such as randomized testing in the style of QuickCheck [5] and step-wise visualization of
reductions [12]. Semantics can use either explicit substitution or environments and states. If
environments and stores are used they have to be explicitly mentioned in every reduction
relation. Redex supports ellipsis pattern placement for list matching and redex matching
in program trees using the in-hole pattern, features that are not supported in DynSem.
Readability of reduction relations in Redex is reduced by Racket’s syntax [9] and by the need
to explicitly mention semantic components. Programs are run by interpreting their reduction
semantics in Redex. Racket’s JIT compiler improves the runtime of interpreted programs
but performance is still hampered by the redex lookup overhead and by non-deterministic
rules. Performance of the interpreter is not an explicit goal of PLT Redex according to the
published papers.

Implicit parameters in Scala exhibit similarities to semantic components in DynSem.
Function parameters that are declared as implicit in the function definition may be omitted
from the function application. Propagation of the implicit parameters is resolved by the
compiler. The compiler prioritizes the inherited implicit parameters over the locally defined
instances of the same type. Implicit parameters can be used to emulate the implicit read-only
semantic components of DynSem but special care has to be taken to the mutability of the
objects used. Persistent semantic components cannot be emulated with implicit parameters.
While implicit parameters can be omitted from function applications they cannot be omitted
from function definitions.

Monad transformers [13] allow definition of aggregated data structures with implicit
packing and unpacking of components. The monad abstraction allows interpreters to be
modularly composed. Examples are the state and IO monads. Monad transformers deliver
implicit propagation similar to that of read-write semantic components in DynSem. The
infectious propagation of the IO monad in Haskell resembles the upwards propagation of the
semantic components in DynSem. In Haskell, like in the Scala case, the type signature of
the function has to explicitly declare the monad as a function parameter. Both Haskell and
Scala programs are less suitable for verification than more formal specification languages.

XSemantics [3] (the successor of Xtypes [2]) is a DSL for the specification of type systems
for languages written in Xtext [23]. XSemantics is also applicable to implementation of
interpreters. Dynamic semantics are specified in a syntax similar to deduction rules but with
the rule conclusion preceding the rule premises. Multiple relation symbols can be declared
and relation symbols can be overloaded. Only a single, mutable environment, can be used in
a rule and there is no implicit propagation of the environment into the premises.
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6 Future work

DynSem provides a good starting point for the further exploration of the integration of
semantics engineering and language engineering. We plan to further develop the DynSem
language and its accompanying toolset, and to investigate opportunities for abstraction in
specifications. In particular, we plan to investigate the relation between static and dynamic
binding of names in programs building on our foundational work on name resolution [17].

A goal for the generated interpreters is to obtain high performance execution engines.
Techniques such as meta-tracing and dynamic compilation are proving successful for the
optimization of custom built interpreters. We want to investigate whether such techniques
can be generically applicable at the level of interpreter generation. Two other research
avenues are to grow DynSem to cover a wide range of semantic styles and to automatically
check that DynSem rules are type preserving.
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